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PREFACE TO THE
ELEVENTH EDITION

This book treats the topic of design of structures for buildings. As
with previous editions, the material in this book has been prepared for
persons lacking formal training in engineering. Mathematical work is
limited mostly to simple algebra. It is thus well suited for programs in
architecture and building construction.

However, as most programs in civil engineering offer little opportu-
nity for study of the general fields of building planning and construc-
tion, this book may well be useful as a supplement to engineering texts.
The emphasis here is on the development of practical design, which
typically involves a relatively small effort in structural investigation
and a lot of consideration for circumstantial situations relating to the
existence of the building structure.

Changes that occur in reference sources and in design and con-
struction practices make it necessary to revise the material in this
book periodically. This edition has indeed received such an updating,
although the reader is advised that these changes are continuous, so

xi



xii PREFACE TO THE ELEVENTH EDITION

that it is inevitable that some material present here will be out-dated
in a short time. However, the concentration in this work is on funda-
mental concepts and processes of investigation and design; thus the use
of specific data is of less concern to the learning of the fundamental
material. For use in any actual design work, data should be obtained
from current references.

In addition to updating, each new edition affords an opportunity
to reconsider the organization, presentation, and scope of the material
contained in the book. This new edition therefore offers some minor
alterations of the basic content of previous editions, although just about
everything contained in the previous edition is here somewhere. Some
trimming has occurred, largely in order to add new material without
significantly increasing the size of the book. For this edition, major
reorganization has been achieved in the basic material in Part I.

One change in this edition is the addition of a treatment of the
load and resistance factor design (LRFD) method for wood structures.
However, the allowable stress design (ASD) method has been retained
for work in wood structures, as it is still highly favored by designers.
This affords an opportunity for the reader to learn the basic procedures
of both methods.

In recent editions it has been the practice to provide answers for all
of the computational exercise problems. However, this book receives
considerable use as a course text, and several teachers have requested
that some problems be reserved for use without given answers. To
accommodate this request in this edition, additional exercise problems
have been provided, with answers given only to alternate problems.
There remains, however, at least one problem—relating to each text
demonstration problem—for which an answer is provided; this is to
accommodate readers using this book for a self-study program.

For text demonstrations, as well as for the exercise problems, it
is desirable to have some data sources contained in this book. We
are grateful to various industry organizations for their permission to
use excerpts from these data sources, acknowledgment for which is
provided where data is provided.

Both personally—as the authors of this edition—and as representa-
tives of the academic and professional communities, we must express
our gratitude to John Wiley & Sons for its continued publication of this
highly utilized reference source. We are truly grateful for the sympa-
thetic and highly competent support provided by the Wiley editors and
production staff.



PREFACE TO THE ELEVENTH EDITION xiii

Finally, we need to express the gratitude we have to our families.
Writing work, especially when added to an already full-time occupation,
is very time consuming. We thank our spouses and children for their
patience, endurance, support, and encouragement in permitting us to
achieve this work.

James Ambrose
Patrick Tripeny





PREFACE TO THE
FIRST EDITION

(The following is an excerpt from Professor Parker’s preface to the first
edition.)

To the average young architectural draftsman or builder, the problem
of selecting the proper structural member for given conditions appears
to be a difficult task. Most of the numerous books on engineering
which are available assume that the reader has previously acquired a
knowledge of fundamental principles and, thus, are almost useless to
the beginner. It is true that some engineering problems are exceedingly
difficult, but it is also true that many of the problems that occur so
frequently are surprisingly simple in their solution. With this in mind,
and with a consciousness of the seeming difficulties in solving structural
problems, this book has been written.

In order to understand the discussions of engineering problems, it
is essential that the student have a thorough knowledge of the vari-
ous terms which are employed. In addition, basic principles of forces
in equilibrium must be understood. The first section of this book,

xv



xvi PREFACE TO THE FIRST EDITION

“Principles of Mechanics,” is presented for those who wish a brief
review of the subject. Following this section are structural problems
involving the most commonly used building materials, wood, steel,
reinforced concrete, and roof trusses. A major portion of the book
is devoted to numerous problems and their solution, the purpose of
which is to explain practical procedure in the design of structural mem-
bers. Similar examples are given to be solved by the student. Although
handbooks published by the manufacturers are necessities to the more
advanced student, a great number of appropriate tables are presented
herewith so that sufficient data are directly at hand to those using
this book.

Care has been taken to avoid the use of advanced mathematics,
a knowledge of arithmetic and high school algebra being all that
is required to follow the discussions presented. The usual formulas
employed in the solution of structural problems are given with
explanations of the terms involved and their application, but only the
most elementary of these formulas are derived. These derivations are
given to show how simple they are and how the underlying principle
involved is used in building up a formula that has practical application.

No attempt has been made to introduce new methods of calcula-
tion, nor have all the various methods been included. It has been the
desire of the author to present to those having little or no knowledge of
the subject simple solutions of everyday problems. Whereas thorough
technical training is to be desired, it is hoped that this presentation of
fundamentals will provide valuable working knowledge and, perhaps,
open the doors to more advanced study.

Harry Parker
Philadelphia, Pennsylvania
March, 1938



INTRODUCTION

The principal purpose of this book is to develop the topic of struc-
tural design . However, to do the necessary work for design, use must
be made of various methods of structural investigation . The work of
investigation consists of the consideration of the tasks required of a
structure and the evaluation of the responses of the structure in per-
forming these tasks. Investigation may be performed in various ways,
the principle ones being the use of modeling by either mathematics or
the construction of physical models. For the designer, a major first step
in any investigation is the visualization of the structure and the force
actions to which it must respond. In this book, extensive use is made of
graphic illustrations in order to encourage the reader in the development
of the habit of first clearly seeing what is happening, before proceeding
with the essentially abstract procedures of mathematical investigation.

Structural Mechanics

The branch of physics called mechanics concerns the actions of forces
on physical bodies. Most of engineering design and investigation is

1



2 INTRODUCTION

based on applications of the science of mechanics. Statics is the branch
of mechanics that deals with bodies held in a state of unchanging motion
by the balanced nature (called static equilibrium) of the forces acting
on them. Dynamics is the branch of mechanics that concerns bodies in
motion or in a process of change of shape due to actions of forces. A
static condition is essentially unchanging with regard to time; a dynamic
condition implies a time-dependent action and response.

When external forces act on a body, two things happen. First,
internal forces that resist the actions of the external forces are set up in
the body. These internal forces produce stresses in the material of the
body. Second, the external forces produce deformations , or changes in
shape, of the body. Strength of materials , or mechanics of materials,
is the study of the properties of material bodies that enable them to
resist the actions of external forces, of the stresses within the bodies,
and of the deformations of bodies that result from external forces.

Taken together, the topics of applied mechanics and strength of mate-
rials are often given the overall designation of structural mechanics or
structural analysis . This is the fundamental basis for structural inves-
tigation, which is essentially an analytical process. On the other hand,
design is a progressive refining process in which a structure is first
generally visualized; then it is investigated for required force responses
and its performance is evaluated. Finally—possibly after several cycles
of investigation and modification—an acceptable form is derived for
the structure.

Units of Measurement

Early editions of this book used U.S. units (feet, inches, pounds, etc.) for
the basic presentation. In this edition, the basic work is developed with
U.S. units with equivalent SI (Standard International—AKA metric)
unit values in brackets [thus]. While the building industry in the United
States is now in the process of changing to SI units, our decision for the
presentation here is a pragmatic one. Most of the references used for
this book are still developed primarily in U.S. units and most readers
educated in the United States use U.S. units as their first language, even
if they now also use SI units.

Table 1 lists the standard units of measurement in the U.S. system
with the abbreviations used in this work and a description of common
usage in structural design work. In similar form, Table 2 gives the
corresponding units in the SI system. Conversion factors to be used
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TABLE 1 Units of Measurement: U.S. System

Name of Unit Abbreviation Use in Building Design

Length
Foot ft Large dimensions, building plans,

beam spans
Inch in. Small dimensions, size of member

cross sections
Area
Square feet ft2 Large areas
Square inches in.2 Small areas, properties of cross sections
Volume
Cubic yards yd3 Large volumes, of soil or concrete

(commonly called simply “yards”)
Cubic feet ft3 Quantities of materials
Cubic inches in.3 Small volumes
Force, Mass
Pound lb Specific weight, force, load
Kip kip, k 1000 pounds
Ton ton 2000 pounds
Pounds per foot lb/ft, plf Linear load (as on a beam)
Kips per foot kips/ft, klf Linear load (as on a beam)
Pounds per square foot lb/ft2, psf Distributed load on a surface, pressure
Kips per square foot k/ft2, ksf Distributed load on a surface, pressure
Pounds per cubic foot lb/ft3 Relative density, unit weight
Moment
Foot-pounds ft-lb Rotational or bending moment
Inch-pounds in.-lb Rotational or bending moment
Kip-feet kip-ft Rotational or bending moment
Kip-inches kip-in. Rotational or bending moment
Stress
Pounds per square foot lb/ft2, psf Soil pressure
Pounds per square inch lb/in.2, psi Stresses in structures
Kips per square foot kips/ft2, ksf Soil pressure
Kips per square inch kips/in.2, ksi Stresses in structures
Temperature
Degree Fahrenheit ◦F Temperature

for shifting from one unit system to the other are given in Table 3.
Direct use of the conversion factors will produce what is called a hard
conversion of a reasonably precise form.

In the work in this book, many of the unit conversions presented
are soft conversions , meaning one in which the converted value is
rounded off to produce an approximate equivalent value of some
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TABLE 2 Units of Measurement: SI System

Name of Unit Abbreviation Use in Building Design

Length
Meter m Large dimensions, building plans, beam spans
Millimeter mm Small dimensions, size of member cross sections
Area
Square meters m2 Large areas
Square millimeters mm2 Small areas, properties of member cross sections
Volume
Cubic meters m3 Large volumes
Cubic millimeters mm3 Small volumes
Mass
Kilogram kg Mass of material (equivalent to weight in U.S. units)
Kilograms per

cubic meter
kg/m3 Density (unit weight)

Force, Load
Newton N Force or load on structure
Kilonewton kN 1000 newtons
Stress
Pascal Pa Stress or pressure (1 pascal = 1 N/m2)
Kilopascal kPa 1000 pascals
Megapascal MPa 1,000,000 pascals
Gigapascal GPa 1,000,000,000 pascals
Temperature
Degree Celsius ◦C Temperature

slightly more relevant numerical significance to the unit system. Thus,
a wood 2 × 4 (actually 1.5 × 3.5 in. in the U.S. system) is precisely
38.1 × 88.9 mm in the metric system. However, the SI equivalent
2 × 4 is more likely to be made 40 × 90 mm—close enough for most
purposes in construction work.

Accuracy of Computations

Structures for buildings are seldom produced with a high degree of
dimensional precision. Exact dimensions are difficult to achieve, even
for the most diligent of workers and builders. Add this to considerations
for the lack of precision in predicting loads for any structure, and the
significance of highly precise structural computations becomes moot.
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TABLE 3 Factors for Conversion of Units

To Convert from U.S. To Convert from SI
Units to SI Units, Units to U.S. Units,
Multiply by: U.S. Unit SI Unit Multiply by:

25.4 in. mm 0.03937
0.3048 ft m 3.281
645.2 in.2 mm2 1.550 × 10–3

16.39 × 103 in.3 mm3 61.02 × 10–6

416.2 × 103 in.4 mm4 2.403 × 10–6

0.09290 ft2 m2 10.76
0.02832 ft3 m3 35.31
0.4536 lb (mass) kg 2.205
4.448 lb (force) N 0.2248
4.448 kip (force) kN 0.2248
1.356 ft-lb (moment) N-m 0.7376
1.356 kip-ft (moment) kN-m 0.7376
16.0185 lb/ft3 (density) kg/m3 0.06243
14.59 lb/ft (load) N/m 0.06853
14.59 kips/ft (load) kN/m 0.06853
6.895 psi (stress) kPa 0.1450
6.895 ksi (stress) MPa 0.1450
0.04788 psf (load or pressure) kPa 20.93
47.88 ksf (load or pressure) kPa 0.02093
0.566 × (◦F – 32) ◦F ◦C (1.8 × ◦C) + 32

This is not to be used for an argument to justify sloppy mathematical
work, overly sloppy construction, or use of vague theories of investi-
gation of behaviors. Nevertheless, it makes a case for not being highly
concerned with any numbers beyond three significant digits.

While most professional design work these days is likely to be done
with computer support, most of the work illustrated here is quite simple
and was actually performed with a hand calculator (the 8-digit, scientific
type is adequate). Rounding off of these primitive computations is done
with no apologies.

With the use of the computer, accuracy of computational work is a
somewhat different matter. Still, it is the designer (a person) who makes
judgments based on the computations, and who knows how good the
input to the computer was, and what the real significance of the degree
of accuracy of an answer is.
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Symbols

The following shorthand symbols are frequently used.

Symbol Reading

> is greater than
< is less than
≥ equal to or greater than
≤ equal to or less than
6′ 6 feet
6′′ 6 inches∑

the sum of
�L change in L

Standard Notation

Notation used in this book complies generally with that used in the
building design field. A general attempt has been made to conform to
usage in the reference standards commonly used by structural designers.
The following list includes all of the notation used in this book that
is general and is related to the topic of the book. Specialized notation
is used by various groups, especially as related to individual materials:
wood, steel, masonry, concrete, and so on. The reader is referred to
basic references for notation in special fields. Some of this notation is
explained in later parts of this book.

Building codes use special notation that is usually carefully defined
by the code, and the reader is referred to the source for interpretation of
these definitions. When used in demonstrations of computations, such
notation is explained in the text of this book.

Ag = gross area of a section, defined by the outer dimensions
An = net area
C = compressive force
E = modulus of elasticity (general)
I = moment of inertia
L = length (usually of a span)

M = bending moment
P = concentrated load
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S = elastic section modulus
T = tension force

W = (1) total gravity load; (2) weight, or dead load of an
object; (3) total wind load force; (4) total of a uniformly
distributed load or pressure due to gravity

Z = plastic section modulus
a = unit area
e = eccentricity of a nonaxial load, from point of application

of the load to the centroid of the section
f = computed stress
h = effective height (usually meaning unbraced height) of a

wall or column
l = length, usually of a span
s = spacing, center to center

w = unit of weight or other uniformly distributed load per
unit length of member





I
FUNDAMENTAL
FUNCTIONS OF

STRUCTURES

This part presents various considerations regarding the general nature
and performance of structures for buildings. A major part of this mate-
rial consists of basic concepts and applications from the field of applied
mechanics as they have evolved in the process of investigation of
the behavior of structures. The purpose of studying this material is
twofold: First, the general need for a comprehensive understanding of
what structures do and how they do it; second, the need for some fac-
tual, quantified basis for the exercise of judgment in the process of
structural design. If it is accepted that the understanding of a problem
is the necessary first step in its solution, this analytical study should be
seen as the cornerstone of any successful, informed design process.

A second major concern is for the sources of the tasks that structures
must undertake, that is, for what are structures basically needed. These

9



10 FUNDAMENTAL FUNCTIONS OF STRUCTURES

tasks are defined in terms of the loads that are applied to structures.
Considerations in this regard include the load sources, the manner of
their application, the combinations in which they occur, and the quan-
tification of their specific values.

Finally, consideration must be given to the possible forms and mate-
rials of structures. These concerns affect the determination of the con-
struction of the structures, but they also relate to the general design
development of the buildings.

This part provides an introduction; the remaining parts of the book
present amplifications of all the issues raised in this part.



1
INVESTIGATION

OF FORCES, FORCE
SYSTEMS, LOADING,

AND REACTIONS

Loads deriving from the tasks of a structure produce forces. The tasks
of the structure involve the transmission of the load forces to the sup-
ports for the structure. The external loads and support forces produce
a resistance from the structure in terms of internal forces that resist
changes in the shape of the structure. This chapter treats the basic
properties and actions of forces.

1.1 PROPERTIES OF FORCES

Force is a fundamental concept of mechanics but does not yield to
simple definition. An accepted concept is that a force is an effort that
tends to change the form or the state of motion of a physical object.
Mechanical force was defined by Isaac Newton as being a product of
mass and acceleration; that is, F = ma. Gravitational attraction is a form

11



12 INVESTIGATION OF FORCES, FORCE SYSTEMS, LOADING, AND REACTIONS

of acceleration, and thus weight—a force we experience—is defined
as W = mg with g being the acceleration of gravity. Physical objects
have weight, but more precisely they have mass, and will thus have
different weights when they experience different gravitational effects,
for example, on the surface of Earth or on the surface of the moon.

In U.S. units gravity force is quantified as the weight of the body.
Gravity forces are thus measured in pounds (lb), or in some other unit
such as tons (T) or kips (one kilopound, or 1000 pounds). In the SI
(metric) system force is measured in a more scientific manner related
to the mass of objects; the mass of an object being a constant, whereas
weight is proportional to the precise value of the acceleration of gravity,
which varies from place to place. Force in metric units is measured in
newtons (N) or in kilonewtons (kN) or in meganewtons (mN), whereas
weight is measured in grams (g) or in kilograms (kg).

In structural engineering work, forces are described as loads. Loads
derive from various sources, including gravity, and are dealt with in
terms of their application to a given structure. Thus, the gravity load
on a beam begins with the weight of the beam itself and goes on to
include the weight of everything else supported by the beam.

Vectors

A quantity that involves magnitude, line of action (e.g., vertical), and
sense (up, down, etc.) is a vector quantity, whereas a scalar quantity
involves only magnitude and sense. Force, velocity, and acceleration
are vector quantities, while energy, time, and temperature are scalar
quantities. A vector can be represented by a straight line, leading to the
possibility of constructed graphical solutions in some cases; a situation
that will be demonstrated later. Mathematically, a scalar quantity can be
represented completely as +50 or −50; while a vector must somehow
have its line of action represented as well (50 vertical, horizontal, etc.).

Properties of Forces

In order to completely identify a force it is necessary to establish the
following:

Magnitude, or the amount of the force, measured in weight units
such as pounds or tons.

Line of Action of the force, which refers to the orientation of its
path, usually described by the angle that the line of action makes
with some reference, such as the horizontal.
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Sense of the force, which refers to the manner in which it acts along
its line of action (e.g., up or down, right or left, etc.). Sense is
usually expressed algebraically in terms of the sign of the force,
either plus or minus.

Forces can be represented graphically in terms of these three prop-
erties by the use of an arrow, as shown in Figure 1.1a. Drawn to some

Figure 1.1 Representation of forces and force actions.



14 INVESTIGATION OF FORCES, FORCE SYSTEMS, LOADING, AND REACTIONS

scale, the length of the arrow represents the magnitude of the force.
The angle of inclination of the arrow represents the direction of the
force. The location of the arrowhead represents the sense of the force.
This form of representation can be more than merely symbolic, since
actual mathematical manipulations may be performed using the vec-
tor representation that the force arrows constitute. In the work in this
book arrows are used in a symbolic way for visual reference when per-
forming algebraic computations and in a truly representative way when
performing graphical analyses.

In addition to the basic properties of magnitude, line of action, and
sense, some other concerns that may be significant for certain investi-
gations are:

The position of the line of action of the force with respect to the
lines of action of other forces or to some object on which the
force operates, as shown in Figure 1.1b. For the beam, shifting
of the location of the load (active force) affects changes in the
forces at the supports (reactions).

The point of application of the force along its line of action may be
of concern in analyzing for the specific effect of the force on a
structure, as shown in Figure 1.1c.

When forces are not resisted, they tend to produce motion. An
inherent aspect of static forces is that they exist in a state of static
equilibrium , that is, with no motion occurring. In order for static
equilibrium to exist, it is necessary to have a balanced system of
forces. An important consideration in the analysis of static forces is the
nature of the geometric arrangement of forces in a given set of forces
that constitute a single system. The usual technique for classifying
force systems involves consideration of whether the forces in the
system are:

Coplanar. All acting in a single plane, such as the plane of a
vertical wall.

Parallel. All having the same direction.

Concurrent. All having their lines of action intersect at a common
point.

Using these three considerations, the possible variations are given
in Table 1.1 and illustrated in Figure 1.2.
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TABLE 1.1 Classification of Force Systemsa

Qualifications

System Variation Coplanar Parallel Concurrent

1 Yes Yes Yes
2 Yes Yes No
3 Yes No Yes
4 Yes No No
5 No Yes No
6 No No Yes
7 No No No

a See Fig. 1.2.

2

y

zx

1 3 4

765

Figure 1.2 Types of force systems.

It is necessary to qualify a set of forces in the manner just illustrated
before proceeding with any analysis, whether it is to be performed
algebraically or graphically.

1.2 STATIC EQUILIBRIUM

As stated previously, an object is in equilibrium when it is either at
rest or has uniform motion. When a system of forces acting on an
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Figure 1.3 Equilibrium of forces.

object produces no motion, the system of forces is said to be in static
equilibrium.

A simple example of equilibrium is illustrated in Figure 1.3a. Two
equal, opposite, and parallel forces, having the same line of action, P1

and P2, act on a body. If the two forces balance each other, the body
does not move and the system of forces is in equilibrium. These two
forces are concurrent. If the lines of action of a system of forces have
a point in common, the forces are concurrent.

Another example of forces in equilibrium is illustrated in
Figure 1.3b. A vertical downward force of 300 lb acts at the midpoint
in the length of a beam. The two upward vertical forces of 150 lb each
(the reactions) act at the ends of the beam. The system of three forces
is in equilibrium. The forces are parallel and, not having a point in
common, are nonconcurrent.

1.3 FORCE COMPONENTS AND COMBINATIONS

Individual forces may interact and be combined with other forces in
various situations. Conversely, a single force may have more than one
effect on an object, such as a vertical action and a horizontal action
simultaneously. This section considers both of these issues: adding up
of forces (combination) and breaking down of single forces into com-
ponents (resolution).

Resultant of Forces

The resultant of a system of forces is the simplest system (usually
a single force) that has the same effect as the various forces in the
system acting simultaneously. The lines of action of any system of
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two coplanar nonparallel forces must have a point in common, and the
resultant of the two forces will pass through this common point. The
resultant of two coplanar, nonparallel forces may be found graphically
by constructing a parallelogram of forces.

To construct a parallelogram of two forces, the forces are drawn at
any scale (of so many pounds to the inch) with both forces pointing
toward or both forces pointing away from the point of intersection of
their lines of action. A parallelogram is then produced with the two
forces as adjacent sides. The diagonal of the parallelogram passing
through the common point is the resultant in magnitude, line of action,
and sense, the direction of the resultant being similar to that of the given
forces, toward or away from the point in common. In Figure 1.4a , P1

and P2 represent two nonparallel forces whose lines of action intersect
at point O. The parallelogram is drawn, and the diagonal R is the
resultant of the given system. In this illustration note that the two forces
point away from the point in common, hence the resultant also has its
sense away from point O. It is a force upward to the right. Notice that
the resultant of forces P1 and P2 shown in Figure 1.4b is R; its sense
is toward the point in common.

Forces may be considered to act at any points on their lines of
action. In Figure 1.4c the lines of action of the two forces P1 and P2

Figure 1.4 Consideration of the resultant of a set of forces.
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are extended until they meet at point O. At this point the parallelogram
of forces is constructed, and R, the diagonal, is the resultant of forces
P1 and P2. In determining the magnitude of the resultant, the scale
used is, of course, the same scale used in drawing the given system of
forces.

Example 1. A vertical force of 50 lb and a horizontal force of 100 lb,
as shown in Figure 1.4d , have an angle of 90◦ between their lines of
action. Determine the resultant.

Solution: The two forces are laid off at a convenient scale from their
point of intersection, the parallelogram is drawn, and the diagonal is
the resultant. Its magnitude scales approximately 112 lb, its sense is
upward to the right, and its line of action passes through the point of
intersection of the lines of action of the two given forces. By use of a
protractor it is found that the angle between the resultant and the force
of 100 lb is approximately 26.5◦.

Example 2. The angle between two forces of 40 and 90 lb, as shown
in Figure 1.4e, is 60◦. Determine the resultant.

Solution: The forces are laid off to scale from their point of inter-
section, the parallelogram of forces is constructed, and the resultant is
found to be a force of approximately 115 lb, its sense is upward to the
right, and its line of action passes through the common point of the two
given forces. The angle between the resultant and the force of 90 lb is
approximately 17.5◦.

Attention is called to the fact that these two problems have been
solved graphically by the construction of diagrams. Mathematics
might have been employed. For many practical problems, carefully
constructed graphical solutions give sufficiently accurate answers and
frequently require far less time. Do not make diagrams too small
as greater accuracy is obtained by using larger parallelograms of
forces.

Problems 1.3.A–F. By constructing the parallelogram of forces, determine the
resultants for the pairs of forces shown in Figures 1.5a – f.
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Figure 1.5 Reference for Problem 1.3, Part 1.

Components of a Force

In addition to combining forces to obtain their resultant, it is often
necessary to replace a single force by its components. The components
of a force are the two or more forces that, acting together, have the
same effect as the given force. In Figure 1.4d , if we are given the force
of 112 lb, its vertical component is 50 lb and its horizontal component is
100 lb. That is, the 112-lb force has been resolved into its vertical and
horizontal components. Any force may be considered as the resultant
of its components.

Combined Resultants

The resultant of more than two nonparallel forces may be obtained by
finding the resultants of pairs of forces and finally the resultant of the
resultants.

Example 3. Let it be required to find the resultant of the concurrent
forces P1, P2, P3, and P4 shown in Figure 1.6.

Solution: By constructing a parallelogram of forces, the resultant of
P1 and P2 is found to be R1. Similarly, the resultant of P3 and P4
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Figure 1.6 Finding a resultant by successive pairs.

is R2. Finally, the resultant of R1 and R2 is R, the resultant of the four
given forces.

Problems 1.3.G–I. Using graphical methods, find the resultant of the systems
of concurrent forces shown in Figure 1.7.

Equilibrant

The force required to maintain a system of forces in equilibrium is
called the equilibrant of the system. Suppose that we are required to
investigate the system of two forces, P1 and P2, as shown in Figure 1.8.
The parallelogram of forces is constructed, and the resultant is found to
be R. The system is not in equilibrium. The force required to maintain
equilibrium is force E, shown by the dashed line. The equilibrant, E, is
the same as the resultant in magnitude and line of action but is opposite
in sense. The three forces, P1 and P2 and E, constitute a system in
equilibrium.
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Figure 1.7 Reference for Problem 1.3, Part 2.

Figure 1.8 Finding an equilibrant.

If two forces are in equilibrium, they must be equal in magnitude,
opposite in sense, and have the same direction and line of action. Either
of the two forces may be said to be the equilibrant of the other. The
resultant of a system of forces in equilibrium is zero.

1.4 GRAPHICAL ANALYSIS OF CONCURRENT
FORCE SYSTEMS

Force Polygon

The resultant of a system of concurrent forces may be found by con-
structing a force polygon. To draw the force polygon, begin with a
point and lay off, at a convenient scale, a line parallel to one of the
forces, with its length equal to the force in magnitude, and having the
same sense. From the termination of this line draw similarly another
line corresponding to one of the remaining forces and continue in the
same manner until all the forces in the given system are accounted for.
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If the polygon does not close, the system of forces is not in equilibrium,
and the line required to close the polygon drawn from the starting point
is the resultant in magnitude and direction. If the forces in the given
system are concurrent, the line of action of the resultant passes through
the point they have in common.

If the force polygon for a system of concurrent forces closes, the
system is in equilibrium and the resultant is zero.

Example 4. Let it be required to find the resultant of the four concurrent
forces P1, P2, P3, and P4 shown in Figure 1.9a. This diagram is called
the space diagram; it shows the relative positions of the forces in a
given system.

Solution: Beginning with some point such as O, shown in Figure 1.9b,
draw the upward force P1. At the upper extremity of the line repre-
senting P1, draw P2, continuing in a like manner with P3 and P4. The
polygon does not close; therefore, the system is not in equilibrium. The
resultant R, shown by the dot-and-dash line, is the resultant of the given
system. Note that its sense is from the starting point O, downward to
the right. The line of action of the resultant of the given system shown
in Figure 1.9a has its line of action passing through the point they have
in common, its magnitude and direction having been found in the force
polygon.

In drawing the force polygon, the forces may be taken in any
sequence. In Figure 1.9c a different sequence is taken, but the resultant

Figure 1.9 Finding a resultant by continuous vector addition of forces.
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R is found to have the same magnitude and direction as previously
found in Figure 1.9b.

Bow’s Notation

Thus far, forces have been identified by the symbols P1, P2, and so
on. A system of identifying forces, known as Bow’s notation, affords
many advantages. In this system letters are placed in the space diagram
on each side of a force and a force is identified by two letters. The
sequence in which the letters are read is important. Figure 1.10a shows
the space diagram of five concurrent forces. Reading about the point
in common in a clockwise manner the forces are AB, BC, CD, DE,
and EA. When a force in the force polygon is represented by a line,
a letter is placed at each end of the line. As an example, the vertical
upward force in Figure 1.10a is read AB (note that this is read clockwise
about the common point); in the force polygon (Figure 1.10b) the letter
a is placed at the bottom of the line representing the force AB and
the letter b is at the top. Use capital letters to identify the forces in
the space diagrams and lowercase letters in the force polygon. From
point b in the force polygon draw force bc, then cd, and continue with
de and ea. Since the force polygon closes, the five concurrent forces
are in equilibrium.

In reading forces, a clockwise manner is used in all the following
discussions. It is important that this method of identifying forces be
thoroughly understood. To make this clear, suppose that a force polygon
is drawn for the five forces shown in Figure 1.10a, reading the forces
in sequence in a counterclockwise manner. This will produce the force
polygon shown in Figure 1.10c. Either method may be used, but for
consistency the method of reading clockwise is used here.

Figure 1.10 Construction of a force polygon.
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Use of the Force Polygon

Two ropes are attached to a ceiling and their lower ends are connected
to a ring, making the arrangement shown in Figure 1.11a. A weight
of 100 lb is suspended from the ring. Obviously, the force in the rope
AB is 100 lb, but the magnitudes of the forces in ropes BC and CA are
unknown.

The forces in the ropes AB, BC, and CA constitute a concurrent force
system in equilibrium (Figure 1.11b). The magnitude of only one of
the forces is known—it is 100 lb in rope AB. Since the three concurrent
forces are in equilibrium, their force polygon must close, and this fact
makes it possible to find their magnitudes. Now, at a convenient scale,
draw the line ab (Figure 1.11c) representing the downward force AB ,
100 lb. The line ab is one side of the force polygon. From point b draw
a line parallel to rope BC; point c will be at some location on this line.
Next, draw a line through point a parallel to rope CA; point c will be
at some position on this line. Since point c is also on the line through b
parallel to BC, the intersection of the two lines determines point c. The
force polygon for the three forces is now completed; it is abca , and
the lengths of the sides of the polygon represent the magnitudes of the
forces in ropes BC and CA, 86.6 and 50 lb, respectively.

Particular attention is called to the fact that the lengths of the
ropes in Figure 1.11a are not an indication of magnitude of the forces
within the ropes; the magnitudes are determined by the lengths of the

Figure 1.11 Solution of a concentric force system.
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Figure 1.12 Reference for Problem 1.4.

corresponding sides of the force polygon (Figure 1.11c). Figure 1.11a
merely determines the geometric layout for the structure.

Problems 1.4.A–D. Find the sense (tension or compression) and magnitude
of the internal force in the member indicated in Figure 1.12 using graphical
methods.

1.5 ALGEBRAIC ANALYSIS OF NONCONCURRENT FORCE
SYSTEMS

The simplest analysis for nonconcurrent force systems is not graphical,
as it was for concurrent force systems, but rather algebraic. Usually,
the forces in the system are resolved into vertical and horizontal com-
ponents, and the components are added; the result is the components



26 INVESTIGATION OF FORCES, FORCE SYSTEMS, LOADING, AND REACTIONS

10 lb 5 lb

(a) (b)

15 lb

Figure 1.13 Reference for Example 5.

of the resultant, which can be used to determine its actual magnitude,
its line of action, and its sense.

Example 5. Find the resultant of the two forces in Figure 1.13a.

Solution: The two forces are parallel, so they can simply be added to
find the resultant, with a magnitude of 15 lb, a line of action parallel to
the forces, and a sense the same as the forces, as shown in Figure 1.13b.
Consideration for the location of the lines of action of the forces and
their resultant requires something more than simple force addition; this
is discussed in the following section.

Moments

The term moment of a force is commonly used in engineering problems.
It is fairly easy to visualize a length of 3 ft, an area of 26 in.2, or a force
of 100 lb. A moment, however, is less easily understood; it is a force
multiplied by a distance. A moment is the tendency of a force to cause
rotation about a given point or axis. The magnitude of the moment of
a force about a given point is the magnitude of the force (pounds, kips,
etc.) multiplied by the distance (feet, inches, etc.) from the force to the
point of rotation. The point is called the center of moments, and the
distance, which is called the lever arm or moment arm , is measured by
a line drawn through the center of moments perpendicular to the line of
action of the force. Moments are expressed in compound units such as
foot-pounds and inch-pounds or kip-feet and kip-inches. In summary,

Moment of force = magnitude of force × moment arm

Consider the horizontal force of 100 lb shown in Figure 1.14a. If
point A is the center of moments, the lever arm of the force is 5 ft.
Then the moment of the 100-lb force with respect to point A is 100 × 5
= 500 ft-lb. In this illustration the force tends to cause a clockwise
rotation (shown by the dashed-line arrow) about point A and is called a
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Figure 1.14 Development of moments.

positive moment. If point B is the center of moments, the moment arm
of the force is 3 ft. Therefore, the moment of the 100-lb force about
point B is 100 × 3 = 300 ft-lb. With respect to point B, the force tends
to cause counterclockwise rotation; it is called a negative moment. It
is important to remember that you can never consider the moment of a
force without having in mind the particular point or axis about which
it tends to cause rotation.

Figure 1.14b represents two forces acting on a bar that is supported
at point A. The moment of force P1 about point A is 100 × 8 = 800 ft-lb,
and it is clockwise or positive. The moment of force P2 about point A is
200 × 4 = 800 ft-lb. The two moment values are the same, but P2 tends
to produce a counterclockwise, or negative, moment about point A.
The positive and negative moments are equal in magnitude and are in
equilibrium; that is, there is no motion. Another way of stating this is
to say that the sum of the positive and negative moments about point
A is zero, or

�MA = 0

Stated more generally, if a system of forces is in equilibrium, the alge-
braic sum of the moments is zero. This is one of the laws of equilibrium.

In Figure 1.14b point A was taken as the center of the moments,
but the fundamental law holds for any point that might be selected. For
example, if point B is taken as the center of moments, the moment of
the upward supporting force of 300 lb acting at A is clockwise (positive)
and that of P2 is counterclockwise (negative). Then

(300 × 8) − (200 × 12) = 2400 − 2400 = 0

Note that the moment of force P1 about point B is 100 × 0 = 0; it is
therefore omitted in writing the equation. The reader should be satisfied
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that the sum of the moments is zero also when the center of moments
is taken at the left end of the bar under the point of application of P2.

Example 6. Find the location of the line of action of the resultant for
the forces in Figure 1.13 if the two forces are 30 ft apart.

Solution: In Example 5 the magnitude of the resultant was determined
to be 15 lb, but the location of its line of action was not determined.
Solution of this problem requires the use of moments of the forces.
A procedure for this solution is as follows.

Consider the layout of the forces and their resultant as shown in
Figure 1.15. A condition for the resultant is that it must be capable of
completely replacing the forces; this is true for force summation and
also for any moment summation. To use this relationship, we consider
an arbitrary reference point (P in Figure 1.15). Moments of the forces
about this point are

Mp = (10 lb × 5 ft) + (5 lb × 35 ft)

= 50 ft-lb + 175 ft-lb = 225 ft-lb

As shown in Figure 1.15, the distance of the resultant from P is defined
as x. Its moment about P is thus Rx, and equating this to the moment
of the forces we determine

x = MP

R
= 225

15
= 15 ft

As stated, the location of P is arbitrary, but the true location of the line
of action of the resultant is a constant. The reader should try a different
location for P to verify this.

5 ft 30 ft

10 lb 5 lb
R = 15 lb

P

x

•

Figure 1.15 Reference for Example 6.
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10 lb

10 lb

25 lb 25 lb

4 ft

6 ft

10 lb

5 lb

8 ft

14.1 lb

45°

10 lb

170 lb 100 lb70 lb

15 lb

20 ft

20 ft 5 ft15 lb

(a) (b)

(d)(c)

Figure 1.16 Reference for Problem 1.5.

Problems 1.5.A–D. Find the resultant for the force systems in Figure 1.16.
Find the magnitude, line of action, and sense of the resultant.

1.6 LAWS OF EQUILIBRIUM

When an object is acted on by a number of forces, each force tends to
move the object. If the forces are of such magnitude and position that
their combined effect produces no motion of the object, the forces are
said to be in equilibrium (Section 1.2). The three fundamental laws of
static equilibrium for a general set of coplanar forces are:

1. The algebraic sum of all the vertical forces equals zero.

2. The algebraic sum of all the horizontal forces equals zero.

3. The algebraic sum of the moments of all the forces about any
point equals zero.

These laws, sometimes called the conditions for equilibrium, may
be expressed as follows (the symbol � indicates a summation, i.e., an
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algebraic addition of all similar terms involved in the problem):

�V = 0 �H = 0 �M = 0

The law of moments, �M = 0, was presented in the preceding
discussion.

The expression �V = 0 is another way of saying that the sum of
the downward forces equals the sum of the upward forces. Thus, the bar
of Figure 1.14b satisfies �V = 0 because the upward force of 300 lb
equals the sum of P1 and P2.

Moments of Forces

Figure 1.17a shows two downward forces of 100 and 200 lb acting
on a beam. The beam has a length of 8 ft between the supports; the
supporting forces, which are called reactions, are 175 and 125 lb. The
four forces are parallel and for equilibrium, therefore, the two laws,
�V = 0 and �M = 0, apply.

First, because the forces are in equilibrium, the sum of the down-
ward forces must equal the sum of the upward forces. The sum of the
downward forces, the loads, is 100 + 200 = 300 lb; and the sum of
the upward forces, the reactions, is 175 + 125 = 300 lb. Thus, the force
summation is zero.

Second, because the forces are in equilibrium, the sum of the
moments of the forces tending to cause clockwise rotation (positive
moments) must equal the sum of the moments of the forces tending
to produce counterclockwise rotation (negative moments) about any
center of moments. Considering an equation of moments about point A
at the right-hand support, the force tending to cause clockwise rotation
(shown by the curved arrow) about this point is 175 lb; its moment is
175 × 8 = 1400 ft-lb. The forces tending to cause counterclockwise
rotation about the same point are 100 and 200 lb, and their moments
are 100 × 6 and 200 × 4 ft-lb. Thus, if �MA = 0, then

175 × 8 = (100 × 6) + (200 × 4)

1400 = 600 + 800

1400 ft-lb = 1400 ft-lb

which is true.
The upward force of 125 lb is omitted from the above equation

because its lever arm about point A is 0 ft, and consequently its moment
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Figure 1.17 Summation of moments about selected points.

is zero. A force passing through the center of moments does not cause
rotation about that point.

Now select point B at the left support as the center of moments (see
Figure 1.17b). By the same reasoning, if �MB = 0, then

(100 × 2) + (200 × 4) = 125 × 8

200 + 800 = 1000

1000 ft-lb = 1000 ft-lb

Again the law holds. In this case the force of 175 lb has a lever arm
of 0 ft about the center of moments and its moment is zero.
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Figure 1.18 Reference for Problem 1.6.

The reader should verify this case by selecting any other point, such
as point C in Figure 1.17c as the center of moments, and confirming
that the sum of the moments is zero for this point.

Problem 1.6.A. Figure 1.18 represents a beam in equilibrium with three loads
and two reactions. Select five different centers of moments and write the
equation of moments for each, showing that the sum of the clockwise moments
equals the sum of the counterclockwise moments.

1.7 LOADS AND REACTIVE FORCES

Structural members, such as beams, are acted on by external forces that
consist of the loads and the reaction forces developed by the beam’s
supports. The two types of loads that commonly occur on beams are
called concentrated and distributed. A concentrated load is assumed
to act at a definite point; such a load is that caused when one beam
supports another beam. A distributed load is one that acts over a con-
siderable length of the beam; such a load is caused by a floor deck
supported directly by a beam. If the distributed load exerts a force of
equal magnitude for each unit of length of the beam, it is known as a
uniformly distributed load. The weight of a beam is a uniformly dis-
tributed load that extends over the entire length of the beam. However,
some uniformly distributed loadings supported by the beam may extend
over only a portion of the beam length.

Reactive Forces

Reactions are the upward forces acting at the supports that hold in equi-
librium the downward forces or loads. The left and right reactions of a
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Figure 1.19 Beam reactions for a single load.

simple beam are usually called R1 and R2, respectively. Determination
of reactions for simple beams is achieved with the use of equilibrium
conditions for parallel force systems.

If a beam 18 ft long has a concentrated load of 9000 lb located 9 ft
from the supports, it is readily seen that each upward force at the
supports will be equal and will be one half the load in magnitude, or
4500 lb. But consider, for instance, the 9000-lb load placed 10 ft from
one end, as shown in Figure 1.19. What will the upward supporting
forces be? This is where the principle of moments can be used. Consider
a summation of moments about the right-hand support R2. Thus,

�M = 0 = +(R1 × 18) − (9000 × 8) + (R2 × 0)

R1 = 72,000

18
= 4000 lb

Then, considering the equilibrium of vertical forces,

�V = 0 = +R1 + R2 − 9000

R2 = 9000 − 4000 = 5000 lb

The accuracy of this solution can be verified by taking moments about
the left-hand support. Thus,

�M = 0 = −(R2 × 18) + (9000 × 10) + (R1 × 0)

R2 = 90,000

18
= 5000 lb

Example 7. A simple beam 20 ft long has three concentrated loads, as
indicated in Figure 1.20. Find the magnitudes of the reactions.
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Figure 1.20 Reference for Example 7.

Solution: Using the right-hand support as the center of moments,

�M = +(R1 × 20) − (2000 × 16) − (8000 × 10) − (4000 × 8)

from which

R1 = 32,000 + 80,000 + 32,000

20
= 7200 lb

From a summation of the vertical forces,

�V = 0 = +R2 + 7200 − 2000 − 8000 − 4000

R2 = 6800 lb

With all forces determined, a summation about the left-hand
support—or any point except the right-hand support—will verify the
accuracy of the work.

The following example demonstrates a solution with uniformly dis-
tributed loading on a beam. A convenience in this work is to consider
the total uniformly distributed load as a concentrated force placed at
the center of the distributed load.

Example 8. A simple beam 16 ft long carries the loading shown in
Figure 1.21a. Find the reactions.

Solution: The total uniformly distributed load may be considered as
a single concentrated load placed at 5 ft from the right-hand support;
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Figure 1.21 Reference for Example 8.

this loading is shown in Figure 1.21b. Considering moments about the
right-hand support,

�M = 0 = +(R1 × 16) − (8000 × 12) − (14,000 × 5)

R1 = 166,000

16
= 10,375 lb

And, from a summation of vertical forces,

R2 = (8000 + 14,000) − 10,375 = 11,625 lb

Again, a summation of moments about the left-hand support will verify
the accuracy of the work.

In general, any beam with only two supports, for which the supports
develop only vertical reaction forces, will be statically determinate. This
includes the simple span beams in the preceding examples as well as
beams with overhanging ends.
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Figure 1.22 Reference for Problem 1.7.

Problems 1.7.A–F. Find the reactions for the beams shown in Figure 1.22.

1.8 LOAD SOURCES

Structural tasks are defined primarily in terms of the loading condi-
tions imposed on the structure. There are many potential sources of
load for building structures. Designers must consider all the poten-
tial sources and the logical combinations with which they may occur.
Building codes currently stipulate both the load sources and the form
of combinations to be used for design. The following loads are listed
in the 2005 edition of the ASCE’s Minimum Design Loads for Build-
ings and Other Structures (Ref. 1), hereinafter referred to as ASCE
2005:

D = Dead load

E = Earthquake induced force

L = Live load, except roof load

Lr = Roof live load
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S = Snow load

W = Load due to wind pressure

Additional special loads are listed, but these are the commonly
occurring loads. The following is a description of some of these loads.

Dead Loads

Dead load consists of the weight of the materials of which the building
is constructed such as walls, partitions, columns, framing, floors, roofs,
and ceilings. In the design of a beam or column, the dead load used
must include an allowance for the weight of the structural member
itself. Table 1.2, which lists the weights of many construction materials,
may be used in the computation of dead loads. Dead loads are due to
gravity and they result in downward vertical forces.

Dead load is generally a permanent load, once the building construc-
tion is completed, unless remodeling or rearrangement of the construc-
tion occurs. Because of this permanent, long-time, character, the dead
load requires certain considerations in design, such as the following:

1. Dead load is always included in design loading combinations,
except for investigations of singular effects, such as deflections
due to only live load.

2. Its long-time character has some special effects causing per-
manent sag and requiring reduction of design stresses in wood
structures, development of long-term, continuing settlements in
some soils, and producing creep effects in concrete structures.

3. Dead load contributes some unique responses, such as the
stabilizing effects that resist uplift and overturn due to wind
forces.

Although weights of materials can be reasonably accurately deter-
mined, the complexity of most building construction makes the com-
putation of dead loads possible only on an approximate basis. This
adds to other factors to make design for structural behaviors a very
approximate science. As in other cases, this should not be used as
an excuse for sloppiness in the computational work, but it should be
recognized as a fact to temper concern for high accuracy in design
computations.
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TABLE 1.2 Weight of Building Construction

psfa kPaa

Roofs

3-ply ready roofing (roll, composition) 1 0.05
3-ply felt and gravel 5.5 0.26
5-ply felt and gravel 6.5 0.31
Shingles: Wood 2 0.10

Asphalt 2–3 0.10–0.15
Clay tile 9–12 0.43–0.58
Concrete tile 6–10 0.29–0.48
Slate, 3 in. 10 0.48

Insulation: Fiber glass batts 0.5 0.025
Foam plastic, rigid panels 1.5 0.075
Foamed concrete, mineral aggregate 2.5/in. 0.0047/mm

Wood rafters: 2 × 6 at 24 in. 1.0 0.05
2 × 8 at 24 in. 1.4 0.07
2 × 10 at 24 in. 1.7 0.08
2 × 12 at 24 in. 2.1 0.10

Steel deck, painted: 22 gage 1.6 0.08
20 gage 2.0 0.10

Skylights: Steel frame with glass 6–10 0.29–0.48
Aluminum frame with plastic 3–6 0.15–0.29

Plywood or softwood board sheathing 3.0/in. 0.0057/mm

Ceilings

Suspended steel channels 1 0.05
Lath: Steel mesh 0.5 0.025

Gypsum board, 1/2 in. 2 0.10
Fiber tile 1 0.05
Drywall, gyspum board, 1/2 in. 2.5 0.12
Plaster: Gypsum 5 0.24

Cement 8.5 0.41
Suspended lighting and HVAC, average 3 0.15

Floors

Hardwood, 1/2 in. 2.5 0.12
Vinyl tile 1.5 0.07
Ceramic tile: 3/4 in. 10 0.48

Thin-set 5 0.24
Fiberboard underlay, 0.625 in. 3 0.15
Carpet and pad, average 3 0.15
Timber deck 2.5/in. 0.0047/mm
Steel deck, stone concrete fill, average 35–40 1.68–1.92
Concrete slab deck, stone aggregate 12.5/in. 0.024/mm
Lightweight concrete fill 8.0/in. 0.015/mm
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TABLE 1.2 (continued)

psfa kPaa

Wood joists: 2 × 8 at 16 in. 2.1 0.10
2 × 10 at 16 in. 2.6 0.13
2 × 12 at 16 in. 3.2 0.16

Walls

2 × 4 studs at 16 in., average 2 0.10
Steel studs at 16 in., average 4 0.20
Lath. plaster—see Ceilings
Drywall, gypsum board, 1/2 in. 2.5 0.10
Stucco, on paper and wire backup 10 0.48
Windows, average, frame + glazing:

Small pane, wood or metal frame 5 0.24
Large pane, wood or metal frame 8 0.38
Increase for double glazing 2–3 0.10–0.15

Curtain wall, manufactured units 10–15 0.48–0.72
Brick veneer, 4 in., mortar joints 40 1.92

1/2 in., mastic-adhered 10 0.48
Concrete block:

Lightweight, unreinforced, 4 in. 20 0.96
6 in. 25 1.20
8 in. 30 1.44

Heavy, reinforced, grouted, 6 in. 45 2.15
8 in. 60 2.87
12 in. 85 4.07

a Average weight per square foot of surface, except as noted. Values given as /in. (per in.) or /mm
(per mm) are to be multiplied by actual thickness of material.

Building Code Requirements

Structural design of buildings is most directly controlled by build-
ing codes, which are the general basis for the granting of building
permits—the legal permission required for construction. Building codes
(and the permit-granting process) are administered by some unit of gov-
ernment: city, county, or state. Most building codes, however, are based
on some model code.

Model codes are more similar than they are different and are in turn
largely derived from the same basic data and standard reference sources,
including many industry standards. In the several model codes and
many city, county, and state codes, however, there are some items that
reflect particular regional concerns. With respect to control of structures,
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all codes have materials (all essentially the same) that relate to the
following issues:

1. Minimum Required Live Loads. All building codes have tables
that provide required values to be used for live loads. Tables 1.3
and 1.4 contain some loads as specified in ASCE 2005 (Ref. 1).

2. Wind Loads. These are highly regional in character with respect
to concern for local windstorm conditions. Model codes provide
data with variability on the basis of geographic zones.

3. Seismic (Earthquake) Effects. These are also regional with pre-
dominant concerns in the western states. This data, including
recommended investigations, is subject to quite frequent modi-
fication, as the area of study responds to ongoing research and
experience.

4. Load Duration. Loads or design stresses are often modified on
the basis of the time span of the load, varying from the life of

TABLE 1.3 Minimum Floor Live Loads

Uniformly Concentrated
Building Occupancy or Use Distributed Load (psf) Load (lb)

Apartments and Hotels

Private rooms and corridors serving them 40
Public rooms and corridors serving them 100

Dwellings, One and Two Family

Uninhabitable attics without storage 10
Uninhabitable attics with storage 20
Habitable attics and sleeping rooms 30
All other areas except stairs and balconies 40

Office Buildings

Offices 50 2000
Lobbies and first-floor corridors 100 2000
Corridors above first floor 80 2000

Stores

Retail
First floor 100 1000
Upper floors 75 1000
Wholesale, all floors 125 1000

Source: ASCE 2005 (Ref. 1), used with permission of the publisher, American Society of Civil
Engineers.
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TABLE 1.4 Live Load Element Factor, KLL

Element K LL

Interior columns 4
Exterior columns without cantilever slabs 4
Edge columns with cantilever slabs 3
Corner columns with cantilever slabs 2
Edge beams without cantilever slabs 2
Interior beams 2
All other members not identified above 1

Source: ASCE 2005 (Ref. 1), used with permission of the publisher,
American Society of Civil Engineers.

the structure for dead load to a few seconds for a wind gust or a
single major seismic shock. Safety factors are frequently adjusted
on this basis. Some applications are illustrated in the work in the
design examples.

5. Load Combinations. These were formerly mostly left to the dis-
cretion of designers but are now quite commonly stipulated in
codes, mostly because of the increasing use of ultimate strength
design and the use of factored loads.

6. Design Data for Types of Structures. These deal with basic mate-
rials (wood, steel, concrete, masonry, etc.), specific structures
(rigid frames, towers, balconies, pole structures, etc.), and special
problems (foundations, retaining walls, stairs, etc.). Industrywide
standards and common practices are generally recognized, but
local codes may reflect particular local experience or attitudes.
Minimal structural safety is the general basis, and some specified
limits may result in questionably adequate performances (bouncy
floors, cracked plaster, etc.).

7. Fire Resistance. For the structure, there are two basic concerns,
both of which produce limits for the construction. The first con-
cern is for structural collapse or significant structural loss. The
second concern is for containment of the fire to control its spread.
These concerns produce limits on the choice of materials (e.g.,
combustible or noncombustible) and some details of the construc-
tion (cover on reinforcement in concrete, fire insulation for steel
beams, etc.).

The work in the design examples in Chapters 18–20 is based largely
on criteria from ASCE 2005 (Ref. 1).
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Live Loads

Live loads technically include all the nonpermanent loadings that can
occur in addition to the dead loads. However, the term as commonly
used usually refers only to the vertical gravity loadings on roof and floor
surfaces. These loads occur in combination with the dead loads but are
generally random in character and must be dealt with as potential con-
tributors to various loading combinations, as discussed in Section 1.9.

Roof Loads

In addition to the dead loads they support, roofs are designed for a uni-
formly distributed live load. The minimum specified live load accounts
for general loadings that occur during construction and maintenance of
the roof. For special conditions, such as heavy snowfalls, additional
loadings are specified.

The minimum roof live load in pounds per square foot (psf) is spec-
ified in ASCE 2005 (Ref. 1) in the form of an equation, as follows:

Lr = 20R1R2, in which 12 ≤ Lr ≤ 20

In the equation R1 is a reduction factor based on the tributary area
supported by the structural member being designed (designated as At

and quantified in square feet) and is determined as follows:

R1 = 1 for At ≤ 200 ft2

= 1.2 − 0.001At for 200 ft2 < At < 600 ft2

= 0.6 for At ≥ 600 ft2

Reduction factor R2 accounts for the slope of a pitched roof and is
determined as follows:

R2 = 1 for F ≤ 4

= 1.2 − 0.05F for 4 < F < 12

= 0.6 for F ≥ 12

The quantity F in the equations for R2 is the number of inches of
rise per foot for a pitched roof (e.g., F = 12 indicates a rise of 12 in.
or an angle of 45◦).
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The design standard also provides data for roof surfaces that are
arched or domed and for special loadings for snow or water accumu-
lation. Roof surfaces must also be designed for wind pressures on the
roof surface, both upward and downward. A special situation that must
be considered is that of a roof with a low dead load and a significant
wind load that exceeds the dead load.

Although the term flat roof is often used, there is generally no such
thing; all roofs must be designed for some water drainage. The min-
imum required pitch is usually 1/4 in./ft, or a slope of approximately
1 : 50. With roof surfaces that are close to flat, a potential problem
is that of ponding, a phenomenon in which the weight of the water
on the surface causes deflection of the supporting structure, which in
turn allows for more water accumulation (in a pond), causing more
deflection, and so on, resulting in an accelerated collapse condition.

Floor Live Loads

The live load on a floor represents the probable effects created by
the occupancy. It includes the weights of human occupants, furniture,
equipment, stored materials, and so on. All building codes provide
minimum live loads to be used in the design of buildings for various
occupancies. Since there is a lack of uniformity among different codes
in specifying live loads, the local code should always be used. Table 1.3
contains a sample of values for floor live loads as given in ASCE 2005
(Ref. 1) and commonly specified by building codes.

Although expressed as uniform loads, code-required values are usu-
ally established large enough to account for ordinary concentrations
that occur. For offices, parking garages, and some other occupancies,
codes often require the consideration of a specified concentrated load
as well as the distributed loading. This required concentrated load is
listed in Table 1.3 for the appropriate occupancies.

Where buildings are to contain heavy machinery, stored materials,
or other contents of unusual weight, these must be provided for indi-
vidually in the design of the structure.

When structural framing members support large areas, most codes
allow some reduction in the total live load to be used for design. These
reductions, in the case of roof loads, are incorporated in the formulas
for roof loads given previously. The following is the method given in
ASCE 2005 (Ref. 1) for determining the reduction permitted for beams,
trusses, or columns that support large floor areas.
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The design live load on a member may be reduced in accordance
with the formula

L = L0

(
0.25 + 15√

KLLAT

)

where L = reduced live load supported, in psf
L0 = unreduced live load, in psf

KLL = live load element factor (see Table 1.4)
AT = tributary area supported, in ft2

For members supporting one floor L shall not be less than 0.50L0, and
L shall not be less than 0.40L0 for members supporting two or more
floors.

In office buildings and certain other building types, partitions may
not be permanently fixed in location but may be erected or moved
from one position to another in accordance with the requirements of
the occupants. In order to provide for this flexibility, it is customary
to require an allowance of 15–20 psf, which is usually added to other
dead loads.

Lateral Loads (Wind and Earthquake)

As used in building design, the term lateral load is usually applied to
the effects of wind and earthquakes, as they induce horizontal forces
on stationary structures. From experience and research, design criteria
and methods in this area are continuously refined, with recommended
practices being presented through the various model building codes.

Space limitations do not permit a complete discussion of the topic
of lateral loads and design for their resistance. The following dis-
cussion summarizes some of the criteria for design in ASCE 2005
(Ref. 1). Examples of application of these criteria are given in the
design examples of building structural design in Chapters 18–20. For
a more extensive discussion the reader is referred to Simplified Building
Design for Wind and Earthquake Forces (Ref. 2).

Wind

Where wind is a regional problem, local codes are often developed
in response to local conditions. Complete design for wind effects on
buildings includes a large number of both architectural and structural
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concerns. The following is a discussion of some of the requirements
from ASCE 2005 (Ref. 1).

Basic Wind Speed. This is the maximum wind speed (or velocity) to
be used for specific locations. It is based on recorded wind his-
tories and adjusted for some statistical likelihood of occurrence.
For the United States recommended minimum wind speeds are
taken from maps provided in the ASCE standard. As a refer-
ence point, the speeds are those recorded at the standard mea-
suring position of 10 m (approximately 33 ft) above the ground
surface.

Wind Exposure. This refers to the conditions of the terrain surround-
ing the building site. The ASCE standard uses three categories,
labeled B, C, and D. Qualifications for categories are based on the
form and size of wind-shielding objects within specified distances
around the building,

Simplified Design Wind Pressure (ps). This is the basic reference
equivalent static pressure based on the critical wind speed and is
determined as follows:

ps = λIpS 30

where λ = adjustment factor for building height and exposure
I = importance factor

pS 30 = simplified pressure, exposure B, height 30 ft, I = 1

The importance factor for ordinary circumstances of build-
ing occupancy is 1.0. For other buildings, factors are given for
facilities that involve hazard to a large number of people, for
facilities considered to be essential during emergencies (such as
windstorms), and for buildings with hazardous contents.

The design wind pressure may be positive (inward) or negative
(outward, suction) on any given surface. Both the sign and the
value for the pressure are given in the design standard. Individual
building surfaces, or parts thereof, must be designed for these
pressures.

Design Methods. Two methods are described in the code for the
application of wind pressures.

Method 1 (Simplified Procedure). This method is permitted to
be used for relatively small, low-rise buildings of simple
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symmetrical shape. It is the method described here and used
for the examples in Part V.

Method 2 (Analytical Procedure). This method is much more
complex and is prescribed to be used for buildings that do
not fit the limitations described for method 1.

Uplift. Uplift may occur as a general effect, involving the entire
roof or even the whole building. It may also occur as a local
phenomenon such as that generated by the overturning moment
on a single shear wall.

Overturning Moment. Most codes require that the ratio of the
dead-load resisting moment (called the restoring moment,
stabilizing moment, etc.) to the overturning moment be 1.5 or
greater. When this is not the case, uplift effects must be resisted
by anchorage capable of developing the excess overturning
moment. Overturning may be a critical problem for the whole
building, as in the case of relatively tall and slender tower
structures. For buildings braced by individual shear walls,
trussed bents, and rigid-frame bents, overturning is investigated
for the individual bracing units.

Drift. Drift refers to the horizontal deflection of the structure due to
lateral loads. Code criteria for drift are usually limited to require-
ments for the drift of a single story (horizontal movement of one
level with respect to the next level above or below). As in other
situations involving structural deformations, effects on the build-
ing construction must be considered; thus, the detailing of curtain
walls or interior partitions may affect design limits on drift.

Special Problems. The general design criteria given in most codes are
applicable to ordinary buildings. More thorough investigation is
recommended (and sometimes required) for special circumstances
such as the following:
Tall Buildings. These are critical with regard to their height

dimension as well as the overall size and number of occupants
inferred. Local wind speeds and unusual wind phenomena
at upper elevations must be considered. Tall buildings often
require wind tunnel testing to determine appropriate wind
loadings.

Flexible Structures. These may be affected in a variety of ways,
including vibration or flutter as well as simple magnitude of
movements.
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Unusual Shapes. Open structures, structures with large overhangs
or other projections, and any building with a complex shape
should be carefully studied for the special wind effects that
may occur. Wind tunnel testing may be advised or even
required by some codes.

Earthquakes

During an earthquake, a building is shaken up and down and back and
forth. The back-and-forth (horizontal) movements are typically more
violent and tend to produce major destabilizing effects on buildings;
thus, structural design for earthquakes is mostly done in terms of con-
siderations for horizontal (called lateral) forces. The lateral forces are
actually generated by the weight of the building—or, more specifically,
by the mass of the building that represents both an inertial resistance
to movement and the source for kinetic energy once the building is
actually in motion. In the simplified procedures of the equivalent static
force method, the building structure is considered to be loaded by a set
of horizontal forces consisting of some fraction of the building weight.
An analogy would be to visualize the building as being rotated verti-
cally 90◦ to form a cantilever beam, with the ground as the fixed end
and with a load consisting of the building weight.

In general, design for the horizontal force effects of earthquakes is
quite similar to design for the horizontal force effects of wind. The
same basic types of lateral bracing (shear walls, trussed bents, rigid
frames, etc.) are used to resist both force effects. There are indeed
some significant differences, but in the main a system of bracing that
is developed for wind bracing will most likely serve reasonably well
for earthquake resistance as well.

Because of its considerably more complex criteria and procedures,
we have chosen not to illustrate the design for earthquake effects in the
examples in this book. Nevertheless, the development of elements and
systems for the lateral bracing of the building in the design examples
here is quite applicable in general to situations where earthquakes are
a predominant concern. For structural investigation, the principal dif-
ference is in the determination of the loads and their distribution in the
building. Another major difference is in the true dynamic effects, critical
wind force being usually represented by a single, major, one-direction
punch from a gust, while earthquakes represent rapid back-and-
forth actions. However, once the dynamic effects are translated into
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equivalent static forces, design concerns for the bracing systems are
very similar, involving considerations for shear, overturning, horizontal
sliding, and so on.

For a detailed explanation of earthquake effects and illustrations of
the investigation by the equivalent static force method, the reader is
referred to Simplified Building Design for Wind and Earthquake Forces
(Ref. 2).

1.9 LOAD COMBINATIONS

The various types of load sources, as described in the preceding section,
must be individually considered for quantification. However, for design
work the possible combination of loads must also be considered. Using
the appropriate combinations, the design load for individual structural
elements must be determined. The first step in finding the design load is
to establish the critical combinations of load for the individual element.
Using ASCE 2005 (Ref. 1) as a reference, the following combinations
are to be considered. As this process is different for the two basic
methods of design, they are presented separately.

Allowable Stress Method

For this method the individual loads are used directly for the following
possible combinations:

Dead load only

Dead load + live load
Dead load + roof load

Dead load + 0.75(live load) + 0.75(roof load)
Dead load + wind load or 0.7(earthquake load)

Dead load + 0.75(live load) + 0.75(roof load) + 0.75(wind load) or
0.7(earthquake load)

0.6(dead load) + wind load
0.6(dead load) + 0.7(earthquake load)

The combination that produces the critical design situation for indi-
vidual structural elements depends on the load magnitudes and the
loading condition for the elements. Demonstrations of examples of the
use of these combinations are given in the building design cases in
Part V.
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Strength Design Method

Some adjustment of the percentage of loads (called factoring) is done
with the allowable stress method. However, factoring is done with all
the loads for the strength method. The need here is to produce a load
higher than the true anticipated load (called the service load )—the
difference representing a margin of safety. The structural elements will
be designed at their failure limits with the design load, and they really
should not fail with the actual expected loads. For the strength method
the following combinations are considered:

1.4(dead load)

1.2(dead load) + 1.6(live load) + 0.5(roof load)

1.2(dead load) + 1.6(roof load) + live load or 0.8(wind load)

1.2(dead load) + 1.6(wind load) + (live load) + 0.5(roof load)

1.2(dead load) + 1.0(earthquake load) + live load + 0.2(snow load)

0.9(dead load) + 1.0(earthquake load) or 1.6(wind load)

Use of these load combinations is demonstrated in the building
design cases in Part V.

1.10 DETERMINATION OF DESIGN LOADS

Figure 1.23 shows the plan layout for the framed structure of a mul-
tistory building. The vertical structure consists of columns and the
horizontal floor structure of a deck and beam system. The repeating
plan unit of 24 × 32 ft is called a column bay. Assuming lateral brac-
ing of the building to be achieved by other structural elements, the
columns and beams shown here will be designed for dead load and
live load only.

The load to be carried by each element of the structure is defined by
the unit loads for dead load and live load and the load periphery for the
individual elements. The load periphery for an element is established
by the layout and dimensions of the framing system. Referring to the
labeled elements in Figure 1.23, the load peripheries are as follows:

Beam A: 8 × 24 = 192 ft2

Beam B: 4 × 24 = 96 ft2
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Figure 1.23 Reference for determination of distributed loads.

Beam C: 24 × 24 = 576 ft2 (Note that beam C carries only 3 of the
4 beams per bay of the system, the fourth being carried directly
by the columns.)

Column 1: 24 × 32 = 768 ft2

Column 2: 12 × 32 = 384 ft2

Column 3: 16 × 24 = 384 ft2

Column 4: 12 × 16 = 192 ft2

For each of these elements the unit dead load and unit live load
from the floor is multiplied by the floor areas computed for the
individual elements. Any possible live-load reduction (as described in
Section 1.8) is made for the individual elements based on their load
periphery area.

Additional dead load for the elements consists of the dead weight
of the elements themselves. For the columns and beams at the building
edge, another additional dead load consists of the portion of the exterior
wall construction supported by the elements. Thus, column 2 carries
an area of the exterior wall defined by the multiple of the story height
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times 32 ft. Column 3 carries 24 ft of wall and column 4 carries 28 ft
of wall (12 + 16).

The column loads are determined by the indicated supported floor,
to which is added the weight of the columns. For an individual story
column this would be added to loads supported above this level—from
the roof and any upper levels of floor.

The loads as described are used in the defined combinations
described in Section 1.9. If any of these elements are involved in the
development of the lateral bracing structure, the appropriate wind or
earthquake loads are also added.

Floor live loads may be reduced by the method described in
Section 1.8. Reductions are based on the tributary area supported and
the number of levels supported by members.

Computations of design loads using the process described here are
given for the building design cases in Part V.

1.11 DESIGN METHODS

Use of allowable stress as a design condition relates to the classic
method of structural design known as the working stress method and
now called the allowable stress design (ASD) method. The loads used
for this method are generally those described as service loads ; that is,
they are related to the service (use) of the structure. Deformation limits
are also related to service loads.

Even from the earliest times of use of stress methods, it was known
that for most materials and structures the true ultimate capacity was not
predictable by use of elastic stress methods. Compensating for this with
the working stress method was mostly accomplished by considerations
for the establishing of the limiting design stresses. For more accurate
predictions of true failure limits, however, it was necessary to aban-
don elastic methods and to use true ultimate strength behaviors. This
lead eventually to the so-called strength method for design, presently
described as the LRFD method, or load and resistance factor design
method.

The procedures of the stress method are still applicable in many
cases—especially for design for deformation limitations. However, the
LRFD methods are now very closely related to more accurate use of
test data and risk analysis and purport to be more realistic with regard
to true structural safety.
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The Allowable Stress Design (ASD) Method

The allowable stress method generally consists of the following:

1. The service (working) load conditions are visualized and quanti-
fied as intelligently as possible. Adjustments may be made here
by the determination of various statistically likely load com-
binations (dead load plus live load plus wind load, etc.), by
consideration of load duration, and so on.

2. Stress, stability, and deformation limits are set by standards for
the various responses of the structure to the loads: in tension,
bending, shear, buckling, deflection, uplift, overturning, and
so on.

3. The structure is then evaluated (investigated) for its adequacy or
is proposed (designed) for an adequate response.

An advantage obtained in working with the stress method is that
the real usage condition (or at least an intelligent guess about it) is
kept continuously in mind. The principal disadvantage comes from its
detached nature regarding real failure conditions, since most structures
develop much different forms of stress and strain as they approach their
failure limits.

The Strength Design Method (LRFD)

In essence, the allowable stress design method consists of designing a
structure to work at some established appropriate percentage of its total
capacity. The strength method consists of designing a structure to fail ,
but at a load condition well beyond what it should have to experience in
use. A major reason for favoring of strength methods is that the failure
of a structure is relatively easily demonstrated by physical testing. What
is truly appropriate as a working condition, however, is pretty much a
theoretical speculation. The strength method is now largely preferred
in professional design work. It was first developed mostly for design
of concrete structures but has now generally taken over all areas of
structural design.

Nevertheless, it is considered necessary to study the classic theo-
ries of elastic behavior as a basis for visualization of the general ways
that structures work. Ultimate responses are usually some form of vari-
ant from the classic responses (because of inelastic materials, secondary
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effects, multimode responses, etc.). In other words, the usual study pro-
cedure is to first consider a classic, elastic response and then to observe
(or speculate about) what happens as failure limits are approached.

For the strength method, the process is as follows:

1. The service loads are quantified as in step 1 for the stress method
and then are multiplied by an adjustment factor (essentially a
safety factor) to produce the factored load.

2. The form of response of the structure is visualized and its ultimate
(maximum, failure) resistance is quantified in appropriate terms
(resistance to compression, to buckling, to bending, etc.). This
quantified resistance is also subject to an adjustment factor called
the resistance factor. Use of resistance factors is discussed in
Part II for wood structures, in Part III for steel structures, and in
Part IV for concrete structures.

3. The usable resistance of the structure is then compared to the
ultimate resistance required (an investigation procedure), or a
structure with an appropriate resistance is proposed (a design
procedure).

Choice of Design Method

Applications of design procedures in the stress method tend to be
simpler and more direct appearing than in the strength methods. For
example, the design of a beam may amount to the simple inversion of a
few stress or strain equations to derive some required properties (section
modulus for bending, area for shear, moment of inertia for deflection,
etc.). Applications of strength methods tend to be more obscure, simply
because the mathematical formulations for describing failure conditions
are more complex than the refined forms of the classic elastic methods.

As strength methods are increasingly used, however, the same kinds
of shortcuts, approximations, and round-number rules of thumb will
emerge to ease the work of designers. And, of course, use of the com-
puter combined with design experience will permit designers to utilize
highly complex formulas and massive databases with ease—all the
while hopefully keeping some sense of the reality of it all.

Arguments for use of the stress method or the strength method are
essentially academic. An advantage of the stress method may be a closer
association with the in-use working conditions of the structure. On the
other hand, strength design has a tighter grip on true safety through
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its focus on failure modes and mechanisms. The successful structural
designer, however, needs both forms of consciousness and will develop
them through the work of design, whatever methods are employed for
the task.

Deformations of structures (such as deflection of beams) that are of
concern for design will occur at the working stress level. Visualization
and computation of these deformations requires the use of basic tech-
niques developed for the ASD method, regardless of whether ASD or
LRFD is used for the design work in general.

Work in this book demonstrates the use of both the ASD and LRFD
methods. Either method can be used for wood, steel, or concrete struc-
tures. However, professional structural design for steel and concrete
is now done almost exclusively with the LRFD method. For wood
design, work is still done with both methods, although the trend is
steadily toward the use of the LRFD method.



2

INVESTIGATION OF AXIAL
FORCE ACTIONS

In Chapter 1 the nature of forces, the sources that produce them, and
the form of their application to structures was considered. This chapter
presents discussion of the force actions of structural members that are
subjected to axial forces, including columns and members occurring in
trusses, suspension cables, cable-stayed systems, and funicular arches.

2.1 FORCES AND STRESSES

Direct Stress

Figure 2.1a represents a block of metal weighing 6400 lb supported
on a wooden block having an 8- × 8-in. cross section. The wooden
block is in turn supported on a base of masonry. The gravity force of
the metal block exerted on the wood is 6400 lb, or 6.4 kips. Ignoring
its own weight, the wooden block in turn transmits a force of equal

55
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Figure 2.1 Direct force action and stress.

magnitude to the masonry base. If there is no motion (a state described
as equilibrium), there must be an equal upward force developed by the
supporting masonry. Thus, the wooden block is acted on by a set of
balanced forces consisting of the applied (or active) downward load of
6400 lb and the resisting (called reactive) upward force of 6400 lb.

To resist being crushed, the wooden block develops an internal force
of compression through stress in the material; stress being defined as
internal force per unit area of the block cross section. For the situation
shown, each square inch of the block cross section must develop a
stress equal to 6400/64 = 100 lb/in.2 (psi). See Figure 2.1b.

Design Use of Direct Stress

The fundamental relationship for simple direct stress may be stated as

f = P

A
or P = fA or A = P

f

where f = direct axial stress
P = axial force
A = cross-sectional area of the member
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The first form is used for stress determinations with stress defined as
force per unit area or simply unit stress ; the second form for finding
the total load (total force) capacity of a member; the third form for
determining the required cross-sectional area of a member for a required
load with a defined limiting stress condition (called the allowable stress
or the working stress).

In the examples and problems dealing with the direct stress equation,
differentiation is made between the unit stress developed in a mem-
ber sustaining a given load, f = P/A, and the allowable unit stress
used when determining the size of a member required to carry a given
load, A = P/f . The latter form of the equation is, of course, the one
used in design. The procedures for establishing allowable unit stresses
in tension, compression, shear, and bending are different for different
materials and are prescribed in industry-prepared specifications. A sam-
ple of such data is presented in Table 2.1. In actual design work, the
building code governing the construction of buildings in the particular
locality must be consulted for specific requirements.

The stresses discussed so far have been direct or axial stresses. This
means they are assumed to be uniformly distributed over the cross
section. The examples and problems presented fall under three general
types: first, the design of structural members (A = P/f ); second, the
determination of safe loads (P = fA); and third, the investigation of

TABLE 2.1 Selected Values for Common Structural Materials

Common Values

Material and Property (psi) (kPa)

Structural Steel

Yield strength 36,000 248,220
Allowable tension 22,000 151,690
Modulus of elasticity, E 29,000,000 200,000,000

Concrete

f ′
c (specified compressive strength) 3,000 20,685

Usable compression in bearing 900 6,206
Modulus of elasticity, E 3,000,000 21,374,500

Structural Lumber (Douglas fir–larch, select structural grade, posts and timbers)

Compression, parallel to grain 1,150 7,929
Modulus of elasticity, E 1,600,000 11,032,000
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members for safety (f = P/A). The following examples will serve to
fix in mind each of these types.

Example 1. Design (determine the size of) a short, square post of Dou-
glas fir, select structural grade, to carry a compressive load of 30,000 lb
[133,440 N].

Solution: Referring to Table 2.1, the allowable unit compressive stress
for this wood parallel to the grain is 1150 psi [7929 kPa]. The required
area of the post is

A = P

F
= 30,000

1150
= 26.1 in.2 [16,829 mm2]

From Table A.8 in Appendix A an area of 30.25 in.2 [19,517 mm2]
is provided by a 6- × 6-in. post with a dressed size of 5.5 × 5.5 in.
[139.7 mm].

Example 2. Determine the safe axial compressive load for a short,
square concrete pier with a side dimension of 2 ft [0.6096 m].

Solution: The area of the pier is 4 ft2 or 576 in.2 [0.3716 m2]. Table 2.1
gives the allowable unit compressive stress for concrete as 900 psi
[6206 m]. Therefore, the safe load on the pier is

P = (f )(A) = (900)(576) = 518,400 lb [206 kN]

Example 3. A running track in a gymnasium is hung from the roof
trusses by steel rods, each of which supports a tensile load of 11,200 lb
[49,818 N]. The round rods have a diameter of 7/8 in. [22.23 mm] with
the ends upset , that is, made larger by forging. This upset allows the
full cross-sectional area of the rod (0.601 in.2) [388 mm2] to be utilized;
otherwise, the cutting of the threads will reduce the cross section of
the rod. Investigate this design to determine whether it is safe.

Solution. Since the gross area of the hanger rod is effective, the unit
stress developed is

f = P

A
= 11,200

0.601
= 18,600 psi [128, 400 kPa]
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Table 2.1 gives the allowable unit tensile stress for steel as 22,000 psi
[151,690 kPa], which is greater than that developed by the loading.
Therefore, the design is safe.

Problem 2.1.A. What axial compression load may be placed on a short timber
post whose cross-sectional dimensions are 9.5 × 9.5 in. if the allowable unit
compressive stress is 1100 psi?

Problem 2.1.B. The allowable compressive bearing capacity of a soil is
8000 psf. What should be the length of the side of a square footing if the total
load (including the weight of the footing) is 240 kips?

Problem 2.1.C. Determine the minimum cross-sectional area of a steel bar
required to support a tensile force of 50 kips if the allowable unit tensile stress
is 20 ksi.

Problem 2.1.D. A short, square timber post supports a load of 115 kips. If the
allowable unit compressive stress is 1000 psi, what nominal size square timber
should be used. (See Table A.8.)

2.2 DEFORMATION

Whenever a force acts on a body, there is an accompanying change in
shape or size of the body. In structural mechanics this is called defor-
mation . Regardless of the magnitude of the force, some deformation
is always present, although often it is so small that it is difficult to
measure. In the design of structures it is often necessary to know what
the deformation in certain members will be. A floor joist, for instance,
may be large enough to support a given load safely but may deflect (the
term for deformation that occurs with bending) to such an extent that
the plaster ceiling below will crack, or the floor may feel excessively
springy to persons walking on it. For the usual cases we can readily
determine what the deformation will be.

Stress is a major issue, primarily for determination of the strength
of structures. However, deformation due to stress is often of concern,
and the relation of stress to strain is one that must be quantitatively
established. These relations and the issues they raise are discussed in
this section.
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Hooke’s Law

As a result of experiments with clock springs, Robert Hooke, a math-
ematician and physicist working in the seventeenth century, developed
the theory that “deformations are directly proportional to stresses.” In
other words, if a force produces a certain deformation, twice the force
will produce twice the amount of deformation. This law of physics is
of utmost importance in structural engineering although, as we shall
find, Hooke’s law holds true only up to a certain limit.

Elastic Limit and Yield Point

Suppose that a bar of structural steel with a cross-sectional area of 1 in.2

is placed into a machine for making tension tests. Its length is accurately
measured and then a tensile force of 5000 lb is applied, which, of course,
produces a unit tensile stress of 5000 psi in the bar. Measuring the
length again, it is found that the bar has lengthened a definite amount,
call it x inches. On applying 5000 lb more, the amount of lengthening
is now 2(x ), or twice the amount noted after the first 5000 lb. If the
test is continued, it will be found that for each 5000-lb increment of
additional load, the length of the bar will increase the same amount
as noted when the initial 5000 lb was applied; that is, the deformations
(length changes) are directly proportional to the stresses. So far Hooke’s
law has held true, but when a unit stress of about 36,000 psi is reached,
the length increases more than x for each additional 5000 lb of load.
This unit stress is called the elastic limit , or the yield stress . Beyond
this stress limit, Hooke’s law will no longer apply.

Figure 2.2 is a graph that displays the relationship between stress
and strain for a ductile steel member subjected to tension stress. Strain
(ε—epsilon) is a form of measurement of deformation expressed as a
percentage of length change; thus,

ε = change in length

original length
= �L

L

Note on the graph that within the elastic stress range the straight line
of the graph indicates a constant proportionality between the stress and
the strain.

Another phenomenon may be noted in this connection. In the test
just described, it will be observed that when any applied load that
produces a unit stress less than the elastic limit is removed, the bar
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Figure 2.2 Stress–strain graph for ductile structural steel.

returns to its original length. If the load producing a unit stress greater
than the elastic limit is removed, it will be found that the bar has
permanently increased its length. This permanent deformation is called
the permanent set. This fact permits another way of defining the elastic
limit: It is that unit stress beyond which the material does not return to
its original length when the load is removed.

If this test is continued beyond the elastic limit, a point is reached
where the deformation increases without any increase in the load. The
unit stress at which this deformation occurs is called the yield point ; it
has a value only slightly higher than the elastic limit. Since the yield
point, or yield stress, as it is sometimes called, can be determined more
accurately by test than the elastic limit, it is a particularly important
unit stress. Nonductile materials such as wood and cast iron have poorly
defined elastic limits and no yield point.

Ultimate Strength

After passing the yield point, the steel bar of the test described in the
preceding discussion again develops resistance to the increasing load.
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When the load reaches a sufficient magnitude, rupture occurs. The unit
stress in the bar just before it breaks is called the ultimate strength. For
the grade of steel assumed in the test, the ultimate strength may occur
at a stress as high as about 80,000 psi.

Steel members are designed so that stresses under normal service
conditions will not exceed the elastic limit, even though there is con-
siderable reserve strength between this value and the ultimate strength.
This procedure is followed because deformations produced by stresses
above the elastic limit are permanent and hence change the shape of
the structure in a permanent manner.

Factor of Safety

The degree of uncertainty that exists, with respect to both actual loading
of a structure and uniformity in the quality of materials, requires that
some reserve strength be built into the design. This degree of reserve
strength is the factor of safety. Although there is no general agreement
on the definition of this term, the following discussion will serve to fix
the concept in mind.

Consider a structural steel that has an ultimate tensile unit stress of
58,000 psi, a yield-point stress of 36,000 psi, and an allowable stress of
22,000 psi. If the factor of safety is defined as the ratio of the ultimate
stress to the allowable stress, its value is 58,000/22,000, or 2.64. On
the other hand, if it is defined as the ratio of the yield-point stress to
the allowable stress, its value is 36,000 ÷ 22,000, or 1.64. This is a
considerable variation, and since deformatioin failure of a structural
member begins when it is stressed beyond the elastic limit, the higher
value may be misleading. Consequently, the term factor of safety is
not employed extensively today. Building codes generally specify the
allowable unit stresses that are to be used in design for the grades of
structural steel to be employed.

If one should be required to pass judgment on the safety of a
structure, the problem resolves itself into considering each structural
element, finding its actual unit stress under the existing loading con-
ditions, and comparing this stress with the allowable stress prescribed
by the local building regulations. This procedure is called structural
investigation.
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Modulus of Elasticity

Within the elastic limit of a material, deformations are directly pro-
portional to the stresses. The magnitude of these deformations can be
computed by use of a number (ratio), called the modulus of elasticity ,
that indicates the degree of stiffness of a material.

A material is said to be stiff if its deformation is relatively small
when the unit stress is high. As an example, a steel rod 1 in.2 in
cross-sectional area and 10 ft long will elongate about 0.008 in. under a
tensile load of 2000 lb. But a piece of wood of the same dimensions will
stretch about 0.24 in. with the same tensile load. The steel is said to be
stiffer than the wood because, for the same unit stress, the deformation
is not so great.

Modulus of elasticity is defined as the unit stress divided by the unit
deformation. Unit deformation refers to the percent of deformation and
is usually called strain. It is dimensionless since it is expressed as a
ratio, as follows:

ε = �L

L

where ε = strain, or unit deformation
�L = actual dimensional change of length

L = original length of the member

The modulus of elasticity for direct stress is represented by the letter
E , expressed in pounds per square inch, and has the same value in
compression and tension for most structural materials. It is defined as

E = f

ε

From Section 2.1, f = P/A, then

E = f

ε
= P /A

�L/L
= PL

A(�L)

This can also be written in the form

�L = PL

AE
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where �L = total deformation, in.
P = force, lb
L = length, in.
A = cross-sectinal area, in.2

E = modulus of elasticity, psi

Note that E is expressed in the same units as f (pounds per square
inch) because in the equation E = f/ε, ε is a dimensionless number.
For steel E = 29,000,000 psi [200,000,000 kPa], and for wood,
depending on the species and grade, it varies from something less than
1,000,000 psi [6,895,000 kPa] to about 1,900,000 psi [13,100,000 kPa].
For concrete E ranges from about 2,000,000 psi [13,790,000 kPa] to
about 5,000,000 psi [34,475,000 kPa] for common structural grades.

Example 4. A 2-in. [50.8-mm] diameter round steel rod 10 ft [3.05 m]
long is subjected to a tensile force of 60 kips [266.88 kN]. How much
will it elongate under the load?

Solution: The area of the 2-in. rod is 3.1416 in.2 [2027 mm2]. Checking
to determine whether the stress in the bar is within the elastic limit, we
find that

f = P

A
= 60 kips

3.1416
= 19.1 ksi [131,663 kPa]

This is within the elastic limit of ordinary structural steel (36 ksi), so
the formula for finding the deformation is applicable. From data, P =
60 kips, L = 120 (length in inches), A = 3.1416, and E = 29,000,000.
Substituting these values, we calculate the total lengthening of the
rod as

�L = PL

AE
= (60,000 lb)(120 in.)

(3.1416 in.2)(29,000,000 psi)
= 0.079 in. [2.0 mm]

Problem 2.2.A. What force must be applied to a steel bar, 1 in. [25.4 mm] square
and 2 ft [610 mm] long, to produce an elongation of 0.016 in. [0.4064 mm]?

Problem 2.2.B. How much will a nominal 8 × 8 in. [actually 190.5 mm] Dou-
glas fir post, 12 ft [3.658 m] long, shorten under an axial load of 45 kips
[200 kN]?
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Problem 2.2.C. A routine quality control test is made on a structural steel bar
that is 1 in. [25.4 mm] square and 16 in. [406 mm] long. The data developed
during the test show that the bar elongated 0.0111 in. [0.282 mm] when sub-
jected to a tensile force of 20.5 kips [91.184 kN]. Compute the modulus of
elasticity of the steel.

Problem 2.2.D. A 1/2-in. [12.7-mm] diameter round steel rod 40 ft [12.19 m]
long supports a load of 4 kips [17.79 kN]. How much will it elongate?

2.3 SUSPENSION CABLES

Suspension cables are structures that transmit applied loads to the sup-
ports by tension in a hanging cable or rope. A famous example of a
suspension cable is the Golden Gate Bridge over San Franscisco Bay.
A more modest example is that of a clothes line. Suspension cables for
buildings fall somewhere between these two examples.

Since cables have little resistance to compression or bending, the
profile shape of a suspension cable changes when the applied load
changes. Structures whose profile shape is derived from their applied
loads are known as funicular structures .

Graphical Investigation Method

Since the shape of a cable changes with the applied load, the simplest
way to determine the cable shape and the tension forces within the
cable is by use of a graphical method of investigation. This method
employs Bow’s notation, as explained in Section 1.4.

Example 5. Determine the cable profile shape and the internal tension
forces for the cable in Figure 2.3a , with three loads of 10 kips each
placed at the quarter points of the span. (Note that the profile and
tension are not related to the actual cable span, only to the relative
positions of the loads and supports.)

Solution: Using the algebraic method described in Section 1.7, the
vertical components of the reactions are determined to be 15 kips each.
The Maxwell diagram for this cable, illustrated in Figure 2.3b, is begun
by drawing the graphic plot of the loads and vertical reactions: a
to b (10 kips down), b to c (10 kips down), c to d (10 kips down),
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Figure 2.3 Reference for Example 5.

d to e (15 kips up), and f to a (15 kips up). The location of the focus
(point o) on a line horizontal from points e and f will determine both
the cable shape and the horizontal components of the reactions. For
this example, two foci are investigated, one whose horizontal reaction
is 10 kips (designated o10) and one whose horizontal reaction is 20 kips
(designated o20).
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Figure 2.4 Reference for Problems 2.3 and 2.4.

Figure 2.3c illustrates the cable for the system with the horizontal
reaction force of 10 kips. The cable shape is determined by beginning at
the left support and drawing a line parallel to a–o10 from the Maxwell
diagram until it intersects the line of action of the first 10-kip load.
Next, a line parallel to b–o10 is drawn to intersect with the second
10-kip load. This procedure continues until the complete cable—from
support to support—is drawn. The magnitudes of the cable’s internal
tension forces are determined by measuring the corresponding line of
the Maxwell diagram.

Figure 2.3d illustrates the same procedure for the cable with 20-kip
horizontal reactions. It should be noted that the result of the larger
horizontal force is a cable with less sag and greater internal tension
forces.

Problems 2.3.A–D. Determine the cable shape and internal forces for the
applied forces illustrated in Figure 2.4, using a horizontal reaction force of
20 kips.

2.4 FUNICULAR ARCHES

Funicular arches are arches whose shape is determined by the loading
(usually the dead loads) applied to the structure. Unlike the shape of a
suspension cable, which changes with the loading, the shape of an arch
is fixed, and therefore an arch is only truly funicular when the shape
matches the anticipated loading.
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A noteworthy funicular arch is the Gateway Arch in St. Louis,
Missouri. The loading that was used to determine its shape was the
dead weight of the total arch construction.

Graphical Investigation Method

The graphical method for arches is similar to that used for suspension
cables, as discussed in Section 2.3. The major difference is that the
focus point (o) of the Maxwell diagram is placed on the opposite side
of the load line; this reflects the situation of internal compression versus
internal tension.

Example 6. Determine a funicular arch shape for the loading and sup-
port conditions shown in Figure 2.5a . The maximum compression force
in the arch is to be limited to 50 kips.

Solution: As with the suspension cable, the vertical reaction compo-
nents may be found with an equilibrium analysis similar to that for a
beam; for example, a summation of moments about one support plus a
summation of vertical forces. For this example, such an analysis will
determine vertical reactions of 15 kips at the left support and 30 kips at
the right support.

Construction of the Maxwell diagram begins with the layout of the
load line a–b–c, as shown in Figure 2.5b. Point d is located horizon-
tally from point c and point e is located horizontally from point a .
Line a–e thus represents the horizontal component of the left reaction,
and line c–d represents the horizontal component of the right reaction.
The focus point o is located on a horizontal line that is 30 kips above
point d and 15 kips below point e, as established by the known values
of the vertical components of the reactions. The horizontal position of
the focus on this line is determined by measuring a distance of 50 kips
from point c. This establishes the maximum limit of compression in
member c–o, and—by measurement on the diagram—a compression
force of approximately 42.7 kips in member a–o.

The funicular arch shape in Figure 2.5c is derived by using lines
parallel to those in the Maxwell diagram, as was done for the cable in
Example 5.

Problem 2.4.A. Determine the funicular arch shape for the loading shown in
Figure 2.4a if the horizontal reaction is equal to 20 kips.
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Problem 2.4.B. Determine the funicular arch shape for the loading in
Figure 2.4b if the greatest compression force in the arch is limited to 26 kips.

Problem 2.4.C. Determine the funicular arch shape for the loading in
Figure 2.4c if the greatest compression force in the arch is limited to 25 kips.

Problem 2.4.D. Determine the funicular arch shape for the loading in
Figure 2.4d if the greatest compression force in the arch is limited to 30 kips.

2.5 GRAPHICAL ANALYSIS OF PLANAR TRUSSES

Planar trusses, comprised of linear elements assembled in triangulated
frameworks, have been used for spanning structures in buildings for
many centuries. Investigation for internal forces in trusses is typically
performed by the basic methods illustrated in the preceding sections.
In this section these procedures are demonstrated using both algebraic
and graphical methods of solution.

When the so-called method of joints is used, finding the internal
forces in the members of a planar truss consists of solving a series of
concurrent force systems. Figure 2.6 shows a truss with the truss form,
the loads, and the reactions displayed in a space diagram. Below the
space diagram is a figure consisting of the free-body diagrams of the
individual joints of the truss. These are arranged in the same manner as
they are in the truss in order to show their interrelationships. However,
each joint constitutes a complete concurrent planar force system that
must have its independent equilibrium. Solving the problem consists
of determining the equilibrium conditions for all of the joints. The
procedures used for this solution will now be illustrated.

Example 7. Figure 2.7 shows a single span, planar truss subjected to
vertical gravity loads. Find the magnitude and sense of the internal
forces in the truss members.

Solution: The space diagram in the figure shows the truss form and
dimensions, the support conditions, and the loads. The letters on the
space diagram identify individual forces at the truss joints, as discussed
in Section 1.4. The sequence of placement of the letters is arbitrary,
the only necessary consideration being to place a letter in each space
between the loads and the individual truss members so that each force
at a joint can be identified by a two-letter symbol.
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Figure 2.6 Examples of diagrams used to represent trusses and their actions.

The separated joint diagram in the figure provides a useful means
for visualization of the complete force system at each joint as well as
the interrelation of the joints through the truss members. The individ-
ual forces at each joint are designated by two-letter symbols that are
obtained by simply reading around the joint in the space diagram in
a clockwise direction. Note that the two-letter symbols are reversed at
the opposite ends of each of the truss members. Thus, the top chord
member at the left end of the truss is designated as BI when shown
in the joint at the left support (joint 1) and is designated as IB when
shown in the first interior upper chord joint (joint 2). The purpose of
this procedure will be demonstrated in the following explanation of the
graphical analysis.

The third diagram in Figure 2.7 is a composite force polygon for the
external and internal forces in the truss. It is called a Maxwell diagram
after one of its early promoters, James Maxwell, a British engineer.
The construction of this diagram constitutes a complete solution for the
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Figure 2.7 Graphic diagrams for the sample problem.

magnitudes and senses of the internal forces in the truss. The procedure
for this construction is as follows:

1. Construct the force polygon for the external forces (also described
as the load line). Before this can be done, the values for the
reactions must be found. There are graphic techniques for finding
the reactions, but it is usually much simpler and faster to find
them with an algebraic solution. In this example, although the
truss is not symmetrical, the loading is, and it may simply be
observed that the reactions are each equal to one half of the total
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load on the truss, or 5000 ÷ 2 = 2500 lb. Since the external forces
in this case are all in a single direction, the force polygon for
the external forces is actually a straight line. Using the two-letter
symbols for the forces and starting with the letter A at the left end,
we read the force sequence by moving in a clockwise direction
around the outside of the truss. The loads are thus read as AB,
BC, CD, DE, EF, and FG, and the two reactions are read as GH
and HA. Beginning at a on the Maxwell diagram, the force vector
sequence for the external forces is read from a to b, b to c, c
to d , and so on, ending back at a , which shows that the force
polygon closes and the external forces are in the necessary state
of static equilibrium. Note that we have pulled the vectors for
the reactions off to the side in the diagram to indicate them more
clearly. Note also that we have used lowercase letters for the
vector ends in the Maxwell diagram, whereas uppercase letters
are used on the space diagram. The alphabetic correlation is thus
retained (A to a), while any possible confusion between the two
diagrams is prevented. The letters on the space diagram designate
open spaces, while the letters on the Maxwell diagram designate
points of intersection of lines.

2. Construct the force polygons for the individual joints. The graphic
procedure for this consists of locating the points on the Maxwell
diagram that correspond to the remaining letters, I through P ,
on the space diagram. When all the lettered points on the dia-
gram are located, the complete force polygon for each joint may
be read on the diagram. In order to locate these points, we use
two relationships. The first is that the truss members can resist
only forces that are parallel to the members’ positioned direc-
tions. Thus, we know the directions of all the internal forces.
The second relationship is a simple one from plane geometry: A
point may be located at the intersection of two lines. Consider
the forces at joint 1, as shown in the separated joint diagram in
Figure 2.7. Note that there are four forces and that two of them
are known (the load and the reaction) and two are unknown (the
internal forces in the truss members). The force polygon for this
joint, as shown on the Maxwell diagram, is read as ABIHA. AB
represents the load; BI the force in the upper chord member; IH
the force in the lower chord member; and HA the reaction. Thus,
the location of point i on the Maxwell diagram is determined
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by noting that i must be in a horizontal direction from h (corre-
sponding to the horizontal position of the lower chord) and in a
direction from b that is parallel to the position of the upper chord.

The remaining points on the Maxwell diagram are found by the
same process, using two known points on the diagram to project lines
of known direction whose intersection will determine the location of an
unknown point. Once all the points are located, the diagram is complete
and can be used to find the magnitude and sense of each internal force.
The process for construction of the Maxwell diagram typically consists
of moving from joint to joint along the truss. Once one of the letters
for an internal space is determined on the Maxwell diagram, it may be
used as a known point for finding the letter for an adjacent space on
the space diagram. The only limitation of the process is that it is not
possible to find more than one unknown point on the Maxwell diagram
for any single joint. Consider joint 7 on the separated joint diagram
in Figure 2.7. To solve this joint first, knowing only the locations of
letters a through h on the Maxwell diagram, it is necessary to locate
four unknown points: l, m, n, and o. This is three more unknowns than
can be determined in a single step, so three of the unknowns must be
found by using other joints.

Solving for a single unknown point on the Maxwell diagram corre-
sponds to finding two unknown forces at a joint, since each letter on the
space diagram is used twice in the force identification for the internal
forces. Thus, for joint 1 in the previous example, the letter I is part
of the identity of forces BI and IH , as shown on the separated joint
diagram. The graphic determination of single points on the Maxwell
diagram, therefore, is analogous to finding two unknown quantities in an
algebraic solution. As discussed previously, two unknowns are the max-
imum that can be solved for the equilibrium of a coplanar, concurrent
force system, which is the condition of the individual joints in the truss.

When the Maxwell diagram is completed, the internal forces can be
read from the diagram as follows:

1. The magnitude is determined by measuring the length of the line
in the diagram, using the scale that was used to plot the vectors
for the external forces.

2. The sense of individual forces is determined by reading the forces
in clockwise sequence around a single joint in the space diagram
and tracing the same letter sequences on the Maxwell diagram.
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Figure 2.8a shows the force system at joint 1 and the force polygon
for these forces as taken from the Maxwell diagram. The forces known
initially are shown as solid lines on the force polygon, and the unknown
forces are shown as dashed lines. Starting with letter A on the force
system, we read the forces in a clockwise sequence as AB, BI, IH,
and HA. Note that on the Maxwell diagram moving from a to b is
moving in the order of the sense of the force, that is, from tail to end
of the force vector that represents the external load on the joint. Using
this sequence on the Maxwell diagram, this flow, moving in the sense
of the force, will be a continuous one. Thus, reading from b to i on
the Maxwell diagram is reading from tail to head of the force vector,
which indicates that force BI has its head at the left end. Transferring
this sense indication from the Maxwell diagram to the joint diagram
indicates that force BI is in compression; that is, it is pushing, rather
than pulling, on the joint. Reading from i to h on the Maxwell diagram
shows that the arrowhead for this vector is on the right, which translates
to a tension effect on the joint diagram.

Having solved for the forces at joint 1 as described, the fact that
the forces in truss members BI and IH are known can be used to
consider the adjacent joints, 2 and 3. However, it should be noted that
the sense reverses at the opposite ends of the members in the joint
diagrams. Referring to the separated joint diagram in Figure 2.7, if the
upper chord member shown as force BI in joint 1 is in compression,
its arrowhead is at the lower left end in the diagram for joint 1, as
shown in Figure 2.8a . However, when the same force is shown as IB
at joint 2, its pushing effect on the joint will be indicated by having the
arrowhead at the upper right end in the diagram for joint 2. Similarly,
the tension effect of the lower chord is shown in joint 1 by placing the
arrowhead on the right end of the force IH , but the same tension force
will be indicated in joint 3 by placing the arrowhead on the left end of
the vector for force HI .

If the solution sequence of solving joint 1 and then joint 2 is chosen,
it is now possible to transfer the known force in the upper chord to
joint 2. Thus, the solution for the five forces at joint 2 is reduced to find-
ing three unknowns since the load BC and the chord force IB are now
known. However, it is still not possible to solve joint 2 since there are
two unknown points on the Maxwell diagram (k and j ) corresponding
to the three unknown forces. An option, therefore, is to proceed from
joint 1 to joint 3, where there are presently only two unknown forces.
On the Maxwell diagram the single unknown point j can be found by
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Figure 2.8 Graphic solutions for joints 1, 2, and 3.
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projecting vector IJ vertically from i and projecting vector JH hori-
zontally from point h . Since point i is also located horizontally from
point h, this shows that the vector IJ has zero magnitude since both i
and j must be on a horizontal line from h in the Maxwell diagram. This
indicates that there is actually no stress in this truss member for this
loading condition and that points i and j are coincident on the Maxwell
diagram. The joint force diagram and the force polygon for joint 3 are
as shown in Figure 2.8b. In the joint force diagram place a zero, rather
than an arrowhead, on the vector line for IJ to indicate the zero stress
condition. In the force polygon in Figure 2.8b, the two force vectors
are slightly separated for clarity, although they are actually coincident
on the same line.

Having solved for the forces at joint 3, proceed to joint 2 since there
remain only two unknown forces at this joint. The forces at the joint and
the force polygon for joint 2 are shown in Figure 2.8c. As for joint 1,
read the force polygon in a sequence determined by reading clockwise
around the joint: BCKJIB . Following the continuous direction of the
force arrows on the force polygon in this sequence, it is possible to
establish the sense for the two forces CK and KJ.

It is possible to proceed from one end and to work continuously
across the truss from joint to joint to construct the Maxwell diagram in
this example. The sequence in terms of locating points on the Maxwell
diagram would be i–j–k–l–m–n–o–p, which would be accomplished
by solving the joints in the following sequence: 1,3,2,5,4,6,7,9,8. How-
ever, it is advisable to minimize the error in graphic construction by
working from both ends of the truss. Thus, a better procedure would be
to find points i–j–k–l–m , working from the left end of the truss, and
then to find points p–o–n–m , working from the right end. This would
result in finding two locations for m, whose separation constitutes an
error in drafting accuracy.

Problems 2.5.A, B. Using a Maxwell diagram, find the internal forces in the
truss in Figure 2.9.

2.6 ALGEBRAIC ANALYSIS OF PLANAR TRUSSES

Graphical solution for the internal forces in a truss using the Maxwell
diagram corresponds essentially to an algebraic solution by the method
of joints. This method consists of solving the concentric force systems
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Figure 2.9 Reference for Problems 2.5 and 2.6.

at the individual joints using simple force equilibrium equations. The
process will be illustrated using the previous example.

As with the graphic solution, first determine the external forces,
consisting of the loads and the reactions. Then proceed to consider
the equilibrium of the individual joints, following a sequence as in the
graphic solution. The limitation of this sequence, corresponding to the
limit of finding only one unknown point in the Maxwell diagram, is that
only two unknown forces at any single joint can be found in a single
step. (Two conditions of equilibrium produce two equations.) Referring
to Figure 2.10, the solution for joint 1 is as follows.

The force system for the joint is drawn with the sense and magnitude
of the known forces shown, but with the unknown internal forces repre-
sented by lines without arrowheads, since their senses and magnitudes
initially are unknown. For forces that are not vertical or horizontal,
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Figure 2.10 Algebraic solution for joint 1.

replace the forces with their horizontal and vertical components. Then
consider the two conditions necessary for the equilibrium of the system:
The sum of the vertical forces is zero and the sum of the horizontal
forces is zero.

If the algebraic solution is performed carefully, the sense of the
forces will be determined automatically. However, it is recommended
that whenever possible the sense be predetermined by simple observa-
tions of the joint conditions, as will be illustrated in the solutions.

The problem to be solved at joint 1 is as shown in Figure 2.10a . In
Figure 2.10b the system is shown with all forces expressed as vertical
and horizontal components. Note that although this now increases the
number of unknowns to three (IH , BIv, and BIh), there is a numeric
relationship between the two components of BI . When this condition
is added to the two algebraic conditions for equilibrium, the number
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of usable relationships totals three, so that the necessary conditions to
solve for the three unknowns are present.

The condition for vertical equilibrium is shown in Figure 2.10c.
Since the horizontal forces do not affect the vertical equilibrium, the
balance is between the load, the reaction, and the vertical component
of the force in the upper chord. Simple observation of the forces and
the known magnitudes makes it obvious that force BIv must act down-
ward, indicating that BI is a compression force. Thus, the sense of BI
is established by simple visual inspection of the joint, and the alge-
braic equation for vertical equilibrium (with upward force considered
positive) is

�Fv = 0 = +2500 − 500 − BIv

From this equation BIv is determined to have a magnitude of 2000 lb.
Using the known relationships among BI, BIv, and BIh, the values of
these three quantities can be determined if any one of them is known.
Thus,

BI

1.000
= BIv

0.555
= BIh

0.832

from which

BIh =
(

0.832

0.555

)
(2000) = 3000 lb

and

BI =
(

1.000

0.555

)
(2000) = 3606 lb

The results of the analysis to this point are shown in Figure 2.10d ,
from which it may be observed that the conditions for equilibrium of
the horizontal forces can be expressed. Stated algebraically (with force
sense toward the right considered positive), the condition is

�Fh = 0 = IH − 3000

from which it is established that the force in IH is 3000 lb.
The final solution for the joint is then as shown in Figure 2.10e. In

this diagram the internal forces are identified as to sense by using C to
indicate compression and T to indicate tension.

As with the graphic solution, proceed to consider the forces at joint
3. The initial condition at this joint is as shown in Figure 2.11a , with
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Figure 2.11 Algebraic solution for joint 3.

the single known force in member HI and the two unknown forces in IJ
and JH. Since the forces at this joint are all vertical and horizontal, there
is no need to use components. Consideration of vertical equilibrium
makes it obvious that it is not possible to have a force in member IJ.
Stated algebraically, the condition for vertical equilibrium is

�Fv = 0 = IJ (since IJ is the only force)

It is equally obvious that the force in JH must be equal and opposite
to that in HI since they are the only two horizontal forces. That is, stated
algebraically

�Fh = 0 = JH − 3000

The final answer for the forces at joint 3 is as shown in Figure 2.11b.
Note the convention for indicating a truss member with no internal
force.

Now proceed to consider joint 2; the initial condition is as shown in
Figure 2.12a . Of the five forces at the joint only two remain unknown.
Following the procedure for joint 1, first resolve the forces into their
vertical and horizontal components, as shown in Figure 2.12b.

Since the sense of forces CK and KJ is unknown, use the procedure
of considering them to be positive until proven otherwise. That is, if
they are entered into the algebraic equations with an assumed sense,
and the solution produces a negative answer, then the assumption was
wrong. However, be careful to be consistent with the sense of the force
vectors, as the following solution will illustrate.

Arbitrarily assume that force CK is in compression and force KJ
is in tension. If this is so, the forces and their components will be
as shown in Figure 2.12c. Then consider the conditions for vertical
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Figure 2.12 Algebraic solution for joint 2.
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equilibrium; the forces involved will be those shown in Figure 2.12d ,
and the equation for vertical equilibrium will be

�Fv = 0 = −1000 + 2000 − CKv − KJv

or

0 = +1000 − 0.555CK − 0.555KJ (2.6.1)

Now consider the conditions for horizontal equilibrium; the forces
will be as shown in Figure 2.12e, and the equation will be

�Fh = 0 = +3000 − CKh + KJh

or

0 = +3000 − 0.832CK + 0.832KJ (2.6.2)

Note the consistency of the algebraic signs and the sense of the
force vectors, with positive forces considered as upward and toward
the right. Now solve these two equations simultaneously for the two
unknown forces as follows:

1. Multiply equation (2.6.1) by
0.832

0.555

0 =
(

0.832

0.555

)
(+1000) +

(
0.832

0.555

)
(−0.555CK)

+
(

0.832

0.555

)
(−0.555KJ)

or
0 = +1500 − 0.832CK − 0.832KJ

2. Add this equation to equation (2.6.2) and solve for CK:

0 = +4500 − 1.664CK

CK = 4500

1.664
= 2704 lb

Note that the assumed sense of compression in CK is correct since
the algebraic solution produces a positive answer. Substituting this
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value for CK in equation (2.6.1),

0 = +1000 − 0.555(2704) − 0.555(KJ)

and

KJ = −500

0.555
= −901 lb

Since the algebraic solution produces a negative quantity for KJ ,
the assumed sense for KJ is wrong and the member is actually in
compression.

Figure 2.13 Presentation of the internal forces in the truss.
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The final answers for the forces at joint 2 are as shown in
Figure 2.12g . In order to verify that equilibrium exists, however,
the forces are shown in the form of their vertical and horizontal
components at (f ) in the illustration.

When all of the internal forces have been determined for the truss,
the results may be recorded or displayed in a number of ways. The
most direct way is to display them on a scaled diagram of the truss,
as shown in Figure 2.13a . The force magnitudes are recorded next to
each member with the sense shown as T for tension or C for compres-
sion. Zero stress members are indicated by the conventional symbol
consisting of a zero placed directly on the member.

When solving by the algebraic method of joints, the results may be
recorded on a separated joint diagram as shown in Figure 2.13b. If the
values for the vertical and horizontal components of force in sloping
members are shown, it is a simple matter to verify the equilibrium of
the individual joints.

Problems 2.6.A, B. Using the algebraic method of joints, find the internal forces
in the truss in Figure 2.9.

2.7 CABLE-STAYED STRUCTURES

Cable-stayed structures are special truss systems in which the members
in tension are cables. Many bridges have been built in recent times
with this system, along with a few roof structures for buildings. Since
these structures are a subset of truss structures, the methods of analysis
described in Section 2.6 can be applied to them.

Example 8. Determine the internal forces in the members of the
cable-stayed structure shown in Figure 2.14a .

Solution: The two reaction forces are determined as follows. The reac-
tion at the bottom support will be aligned with and have the same
magnitude as the compression members at the bottom of the structure.
For this example, that means that the reaction force will be a horizontal
force; thus, the vertical component of the reaction at the upper support
will be equal to the total of the vertical loads. Although it is actu-
ally not necessary to find the reactions for this structure before finding
the internal forces, the task is quite easily performed algebraically, as
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Figure 2.14 Reference for Example 8.
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follows:

The bottom reaction is determined by a summation of moments
about the upper support to be 45 kips.

The horizontal component of the upper reaction is determined by
equilibrium of horizontal forces to be 45 kips.

The vertical component of the upper reaction is determined by equi-
librium of vertical forces to be equal to 50 kips.

The first step in determining the Maxwell diagram (Figure 2.14b)
is to plot the load line a–b–c–d , which establishes the location of
these four points. For the rest of the points, begin by finding point
h , which is accomplished by drawing lines horizontally from point b
and in a direction parallel to member AH from point a . Next, find
point g by drawing lines horizontally from point c and in a direction
parallel to member GH from point h . Finally, find point e by drawing
lines horizontally from point d and in a direction parallel to member
EG from point g . The member forces and reactions are displayed in
Figure 2.14c.

Problems 2.7.A, B. Determine the internal forces and the support reactions for
the cable-stayed structures in Figure 2.15.

2.8 COMPRESSION MEMBERS

Compression is developed in a number of ways in structures, includ-
ing the compression component that accompanies the development of
internal bending. In this section consideration is given to elements
whose primary purpose is resistance of compression. This includes truss
members, piers, bearing walls, and bearing footings, although major
treatment here is given to columns, which are linear compression mem-
bers. Building columns may be free-standing architectural elements,
with the structural column itself exposed to view. However, for fire
or weather protection the structural column must often be incorpo-
rated into other construction and may in some cases be fully concealed
from view.
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Slenderness Effects

Structural columns are often quite slender, and the aspect of slenderness
(called relative slenderness) must be considered (see Figure 2.16). At
the extremes the limiting situations are those of the very stout or short
column that fails by crushing and the very slender or tall column that
fails by lateral buckling.

The two basic limiting response mechanisms—crushing and
buckling—are entirely different in nature. Crushing is a stress resis-
tance phenomenon, and its limit is represented on the graph in
Figure 2.16 as a horizontal line, basically established by the

Figure 2.16 Effect of column slenderness on axial compression capacity.
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compression resistance of the material and the amount of material
(area of the cross section) in the compression member. This behavior
is limited to the range labeled zone 1 in Figure 2.16.

Buckling actually consists of lateral deflection in bending, and its
extreme limit is affected by the bending stiffness of the member,
as related to the stiffness of the material (modulus of elasticity)
and to the geometric property of the cross section directly related
to deflection—the moment of inertia of the cross-section area. The
classic expression for elastic buckling is stated in the form of the
equation developed by Euler:

P = π2EI

(KL)2

The curve produced by this equation is of the form shown in
Figure 2.16. It closely predicts the failure of quite slender compression
members in the range labeled zone 3 in Figure 2.16.

Most building columns fall somewhere between very stout and very
slender; in other words in the range labeled zone 2 in Figure 2.16. Their
behavior therefore is one of an intermediate form, somewhere between
pure stress response and pure elastic buckling. Predictions of structural
response in this range must be established by empirical equations that
somehow make the transition from the horizontal line to the Euler

Figure 2.17 Form of buckling of a column as affected by various end conditions
and lateral restraint.
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curve. Equations currently used are explained in Chapter 6 for wood
columns and in Chapter 10 for steel columns.

Buckling may be affected by constraints, such as lateral bracing that
prevents sideways movement or support conditions that restrain the
rotation of the member’s ends. Figure 2.17a shows the case for the
member that is the general basis for response as indicated by the Euler
formula. This form of response can be altered by lateral constraints,
as shown in Figure 2.17b, that result in a multimode deflected shape.
The member in Figure 2.17c has its ends restrained against rotation
(described as a fixed end). This also modifies the deflected shape and
thus the value produced from the buckling formula. One method used
for adjustment is to modify the column length used in the buckling
formula to that occurring between inflection points; thus, the effective
buckling length for the columns in both Figures 2.17b and c would be
one half that of the true column total length. Inspection of the Euler
formula will indicate the impact of this modified length on buckling
resistance.



3
INVESTIGATION

OF STRUCTURES FOR
SHEAR AND BENDING

This chapter investigates the behavior of beams, columns, and simple
frames. For a basic explanation of relationships, the units used for forces
and dimensions are of less significance than their numeric values. For
this reason, and for sake of brevity and simplicity, most numerical
computations in the text have been done using only U.S. units. For
readers who wish to use metric units, however, the exercise problems
have been provided with dual units.

3.1 DIRECT SHEAR STRESS

Consider the two steel bars held together by a 0.75-in.-diameter bolt, as
shown in Figure 3.1a , and subjected to a tension force of 5000 lb. The
tension force in the bars becomes a shear force on the bolt, described
as a direct shear force. There are many results created by the force

92
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(a) (b)

Figure 3.1 Direct shear stress.

in Figure 3.1a , including tensile stress in the bars and bearing on the
sides of the hole by the bolt. For now we are concerned with the slicing
action on the bolt, described as direct shear stress. The bolt cross section
has an area of 3.1416(0.375)2 = 0.4418 in.2 and the shear stress in the
bolt is thus equal to 5000/0.4418 = 11,317 psi. Note that this type of
stress is visualized as acting in the plane of the bolt cross section, as
a slicing or sliding effect, while both compressive and tensile stresses
are visualized as acting perpendicular to a stressed cross section.

The foregoing manipulations of the direct stress formula can, of
course, be carried out also with the shearing stress formula, fv = P/A.
However, it must be borne in mind that the shearing stress acts trans-
versely to the cross section—not at right angles to it. Furthermore,
while the shearing stress equation applies directly to the situation illus-
trated by Figures 3.1a and b, it requires modification for application to
beams.

3.2 SHEAR IN BEAMS

Figure 3.2a represents a simple beam with a uniformly distributed load
over its entire length. Examination of an actual beam so loaded probably
would not reveal any effects of the loading on the beam. However, there
are three distinct major tendencies for the beam to fail. Figures 3.2b–d
illustrate the three phenomena.

First, there is a tendency for the beam to fail by dropping between
the supports (Figure 3.2b). This is called vertical shear . Second, the
beam may fail by bending (Figure 3.2c). Third, there is a tendency
in wood beams for the fibers of the beam to slide past each other in
a horizontal direction (Figure 3.2d ), an action described as horizontal
shear. Naturally, a beam properly designed does not fail in any of the
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Figure 3.2 Stress failure in beams: (b) bending, (c) vertical shear, (d) horizontal
shear.

ways just mentioned, but these tendencies to fail are always present
and must be considered in structural design.

Vertical Shear

Vertical shear is the tendency for one part of a beam to move vertically
with respect to an adjacent part. The magnitude of the shear force at
any section in the length of a beam is equal to the algebraic sum of
the vertical forces on either side of the section. Vertical shear force
is usually represented by the capital letter V. In computing its values
in the examples and problems, consider the forces to the left of the
section but keep in mind that the same resulting force magnitude will
be obtained with the forces on the right. To find the magnitude of the
vertical shear at any section in the length of a beam, simply add up the
forces to the right or the left of the section. It follows that the maximum
value of the shear for simple beams is equal to the greater reaction.

Example 1. Figure 3.3a illustrates a simple beam with concentrated
loads of 600 and 1000 lb. The problem is to find the value of the
vertical shear at various points along the length of the beam. Although
the weight of the beam constitutes a uniformly distributed load, it is
neglected in this example.

Solution. The reactions are computed as previously described in
Chapter 2 and are found to be R1 = 1000 lb and R2 = 600 lb.

Consider next the value of the vertical shear V at an infinitely short
distance to the right of R1. Applying the rule that the shear is equal to
the reaction minus the loads to the left of the section, we write

V = R1 − 0 or V = 1000 lb
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Figure 3.3 Reference for Examples 1 and 2.

The zero represents the value of the loads to the left of the section,
which of course, is zero. Now take a section 1 ft to the right of R1;
again

Vx=1 = R1 − 0 or Vx=1 = 1000 lb

The subscript x = 1 indicates the position of the section at which the
shear is taken, the distance in feet of the section from R1. At this section
the shear is still 1000 lb and has the same magnitude up to the 600-lb
load.

The next section to consider is a very short distance to the right of
the 600-lb load. At this section,

Vx=2+ = 1000 − 600 = 400 lb

Because there are no loads intervening, the shear continues to be the
same magnitude up to the 1000-lb load. At a section a short distance
to the right of the 1000-lb load,

Vx=6+ = 1000 − (600 + 1000) = −600 lb

This magnitude continues up to the right-hand reaction R2.

Example 2. The beam shown in Figure 3.3b supports a concentrated
load of 12,000 lb located 6 ft from R2 and a uniformly distributed load
of 800 pounds per linear foot (lb/ft) over its entire length. Compute the
value of vertical shear at various sections along the span.

Solution. By use of the equations of equilibrium, the reactions are
determined to be R1 = 10,900 lb and R2 = 13,900 lb. Note that the total
distributed load is 800 × 16 = 12,800 lb. Now consider the vertical
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shear force at the following sections at a distance measured from the
left support:

Vx=0 = 10,900 − 0 = 10,900 lb

Vx=1 = 10,900 − (800×1) = 10,100 lb

Vx=5 = 10,900 − (800×5) = 6900 lb

Vx=10− = 10,900 − (800×10) = 2900 lb

Vx=10+ = 10,900 − [(800×10) + 12,000] = −9100 lb

Vx=16 = 10,900 − [(800×16) + 12,000] = −13,900 lb

Shear Diagrams

In the two preceding examples the value of the shear at several sections
along the length of the beams was computed. In order to visualize the
results, it is common practice to plot these values on a diagram, called
the shear diagram , which is constructed as explained below.

To make such a diagram, first draw the beam to scale and locate
the loads. This has been done in Figures 3.4a and b by repeating the
load diagrams of Figures 3.3a and b, respectively. Beneath the beam
draw a horizontal baseline representing zero shear. Above and below
this line, plot at any convenient scale the values of the shear at the

Figure 3.4 Construction of shear diagrams.
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various sections; the positive, or plus, values are placed above the line
and the negative, or minus, values below. In Figure 3.4a , for instance,
the value of the shear at R1 is +1000 lb. The shear continues to have
the same value up to the load of 600 lb, at which point it drops to
400 lb. The same value continues up to the next load, 1000 lb, where
it drops to –600 lb and continues to the right-hand reaction.

Obviously, to draw a shear diagram it is necessary to compute the
values at significant points only. Having made the diagram, we may
readily find the value of the shear at any section of the beam by scaling
the vertical distance in the diagram. The shear diagram for the beam
in Figure 3.4b is made in the same manner.

There are two important facts to note concerning the vertical shear.
The first is the maximum value. The diagrams in each case confirm the
earlier observation that the maximum shear is at the reaction having the
greater value, and its magnitude is equal to that of the greater reaction.
In Figure 3.4a the maximum shear is 1000 lb, and in Figure 3.4b it is
13,900 lb. We disregard the positive or negative signs in reading the

Figure 3.5 Reference for Problem 3.2.
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maximum values of the shear, for the diagrams are merely conventional
methods of representing the absolute numerical values.

Another important fact to note is the point at which the shear changes
from a plus to a minus quantity. We call this the point at which the
shear passes through zero. In Figure 3.4a it is under the 1000-lb load,
6 ft from R1. In Figure 3.4b it is under the 12,000-lb load, 10 ft from
R1. A major concern for noting this point is that it indicates the location
of the maximum value of bending moment in the beam, as discussed
in the next section.

Problems 3.2.A–F. For the beams shown in Figure 3.5, draw the shear diagrams
and note all critical values for shear. Note particularly the maximum value for
shear and the point at which the shear passes through zero.

3.3 BENDING MOMENTS IN BEAMS

The forces that tend to cause bending in a beam are the reactions and
the loads. Consider section X–X, 6 ft from R1 (Figure 3.6). The force
R1, or 2000 lb, tends to cause a clockwise rotation about this point.
Because the force is 2000 lb and the lever arm is 6 ft, the moment of
the force is 2000 × 6 = 12,000 ft-lb. This same value may be found by
considering the forces to the right of section X–X : R2, which is 6000 lb,
and the load 8000 lb, with lever arms of 10 and 6 ft, respectively. The
moment of the reaction is 6000 × 10 = 60,000 ft-lb, and its direction
is counterclockwise with respect to section X–X . The moment of the
8000-lb force is 8000 × 6 = 48,000 ft-lb, and its direction is clockwise.
Then 60,000 − 48,000 = 12,000 ft-lb, which is the resultant moment
tending to cause counterclockwise rotation about section X–X . This is
the same magnitude as the moment of the forces on the left, which tend
to cause a clockwise rotation.

Figure 3.6 Internal bending at a selected beam cross section.
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Thus, it makes no difference whether use is made of the forces to the
right of the section or the left, as the magnitude of the moment obtained
is the same. It is called the bending moment (or the internal bending
moment) because it is the moment of the forces that causes bending
stresses in the beam. Its magnitude varies throughout the length of the
beam. For instance, at 4 ft from R1 it is only 2000 × 4 = 8000 ft-lb.
The bending moment is the algebraic sum of the moments of the
forces on either side of the section. For simplicity, take the forces
on the left; then the bending moment at any section of a beam is equal
to the moments of the reactions minus the moments of the loads to
the left of the section. Because the bending moment is the result of
multiplying forces by distances, the denominations are foot-pounds or
kip-feet.

Bending Moment Diagrams

The construction of bending moment diagrams follows the procedure
used for shear diagrams. The beam span is drawn to scale, showing
the locations of the loads. Below this, and usually below the shear dia-
gram, a horizontal baseline is drawn representing zero bending moment.
Then the bending moments are computed at various sections along
the beam span, and the values are plotted vertically to any conve-
nient scale. In simple beams all bending moments are positive and
therefore are plotted above the baseline. In overhanging or continuous
beams there are also negative moments, and these are plotted below the
baseline.

Example 3. The load diagram in Figure 3.7 shows a simple beam with
two concentrated loads. Draw the shear and bending moment diagrams.

Solution: R1 and R2 are first computed and are found to be 16,000 and
14,000 lb, respectively. These values are recorded on the load diagram.

The shear diagram is drawn as described in Section 3.2. Note that
in this instance it is necessary to compute the shear at only one section
(between the concentrated loads) because there is no distributed load,
and we know that the shear at the supports is equal to the reactions.

Because the value of the bending moment at any section of the
beam is equal to the moments of the reactions minus the moments of
the loads to the left of the section, the moment at R1 must be zero, for
there are no forces to the left. Other values in the beam are computed
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Figure 3.7 Reference for Example 3.

as follows. The subscripts (x = 1, etc.) show the distance in feet from
R1 at which the bending moment is computed.

Mx=1 = (16,000 × 1) = 16,000 ft-lb

Mx=2 = (16,000 × 2) = 32,000 ft-lb

Mx=5 = (16,000 × 5) − (12,000 × 3) = 44,000 ft-lb

Mx=8 = (16,000 × 8) − (12,000 × 6) = 56,000 ft-lb

Mx=10 = (16,000 × 10)−[(12,000 × 8)+(18,000 × 2)]=28,000 ft-lb

Mx=12 = (16,000 × 12) − [(12,000 × 10) + (18,000 × 4)] = 0

The result of plotting these values is shown in the bending moment
diagram of Figure 3.7. More moments were computed than were nec-
essary. We know that the bending moments at the supports of simple
beams are zero, and in this example only the bending moments directly
under the loads were needed for the determination of the moment
diagram.
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Relations Between Shear and Bending Moment

In simple beams the shear diagram passes through zero at some point
between the supports. As stated earlier, an important principle in this
respect is that the bending moment has a maximum magnitude wherever
the shear passes through zero. In Figure 3.7 the shear passes through
zero under the 18,000-lb load, that is, at x = 8 ft. Note that the bending
moment has its greatest value at this same point, 56,000 ft-lb.

Example 4. Draw the shear and bending moment diagrams for the
beam shown in Figure 3.8

Solution: Computing the reactions, we find R1 = 17,800 lb and R2 =
8800 lb. By use of the process described in Section 3.2, the critical
shear values are determined and the shear diagram is drawn as shown
in the figure.

Figure 3.8 Reference for Example 4.



102 INVESTIGATION OF STRUCTURES FOR SHEAR AND BENDING

Although the only value of bending moment that must be computed
is that where the shear passes through zero, some additional values
are determined in order to plot the true form of the moment diagram.
Thus,

Mx=2 = (17,800 × 2) − (400 × 2 × 1) = 34,800 ft-lb

Mx=4 = (17,800 × 4) − (400 × 4 × 2) = 68,000 ft-lb

Mx=8 = (17,800 × 8) − [(400 × 8 × 4) + (21,000 × 4)] = 45,600 ft-lb

Mx=12 = (17,800 × 12) − [400 × 12 × 6) + (21,000 × 8)] = 16,800 ft-lb

From the two preceding examples (Figures 3.7 and 3.8), it will be
observed that the shear diagram for the parts of the beam on which no
loads occur is represented by horizontal lines. For the parts of the beam
on which a uniformly distributed load occurs, the shear diagram consists
of straight inclined lines. The bending moment diagram is represented
by straight inclined lines when only concentrated loads occur and by a
curved line if the load is distributed.

Occasionally, when a beam has both concentrated and uniformly
distributed loads, the shear does not pass through zero under one of the
concentrated loads. This frequently occurs when the distributed load
is relatively large compared with the concentrated loads. Since it is
necessary in designing beams to find the maximum bending moment,
we must know the point at which it occurs. This, of course, is the
point where the shear passes through zero, and its location is readily
determined by the procedure illustrated in the following example.

Example 5. The load diagram in Figure 3.9 shows a beam with a
concentrated load of 7000 lb, applied 4 ft from the left reaction, and
a uniformly distributed load of 800 lb/ft extending over the full span.
Compute the maximum bending moment on the beam.

Solution: The values of the reactions are found to be R1 = 10,600 lb
and R2 = 7600 lb and are recorded on the load diagram.

The shear diagram is constructed, and it is observed that the shear
passes through zero at some point between the concentrated load of
7000 lb and the right reaction. Call this distance x feet from R2. The
value of the shear at this section is zero; therefore, an expression for
the shear for this point, using the reaction and loads, is equal to zero.
This equation contains the distance x :

Vat x = −7600 + 800x = 0 x = 7600

800
= 9.5 ft
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Figure 3.9 Reference for Example 5.

The zero shear point is thus at 9.5 ft from the right support and (as
shown in the diagram) at 4.5 ft from the left support. This location can
also be determined by writing an equation for the summation of shear
from the left of the point, which should produce the answer of 4.5 ft.

Following the convention of summing up the moments from the left
of the section, the maximum moment is determined as

Mx = 4.5 = +(10,600 × 4.5) − (7000 × 0.5)

−
[

800 × 4.5 ×
(

4.5

2

)]

= 36,100 ft-lb

Problems 3.3.A–F. Draw the shear and bending moment diagrams for the
beams in Figure 3.5, indicating all critical values for shear and moment and all
significant dimensions. (Note: These are the beams for Problem 3.2 for which
the shear diagrams were constructed.)

3.4 SENSE OF BENDING IN BEAMS

When a simple beam bends, it has a tendency to assume the shape
shown in Figure 3.10a . In this case the fibers in the upper part of
the beam are in compression. For this condition the bending moment
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Figure 3.10 Sense of bending moment in beams.

is considered as positive. Another way to describe a positive bending
moment is to say that it is positive when the curve assumed by the
bent beam is concave upward. When a beam projects beyond a support
(Figure 3.10b), this portion of the beam has tensile stresses in the upper
part. The bending moment for this condition is called negative; the
beam is bent concave downward. When constructing moment diagrams,
following the method previously described, the positive and negative
moments are shown graphically.

Example 6. Draw the shear and bending moment diagrams for the
overhanging beam shown in Figure 3.11.

Solution: Computing the following reactions:

From �M about R1 : R2 × 12 = 600 × 16 × 8 R2 = 6400 lb

From �M about R2 : R1 × 12 = 600 × 16 × 4 R1 = 3200 lb

With the reactions determined, the construction of the shear diagram is
quite evident. For the location of the point of zero shear, considering
its distance from the left support as x :

3200 − 600x = 0 x = 5.33 ft

For the critical moment values at x = 5.33 ft and x = 12 ft needed to
plot the moment diagram:

Mx=5.33 = +(3200 × 5.33) −
(

600 × 5.33 × 5.33

2

)
= 8533 ft-lb

Mx=12 = +(3200 × 12) − (600 × 12 × 6) = −4800 ft-lb

The form of the moment diagram for the distributed loading is a curve
(parabolic), which may be verified by plotting some additional points
on the graph.
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Figure 3.11 Reference for Example 6.

For this case the shear diagram passes through zero twice, with both
points indicating peaks of the moment diagram—one positive and one
negative. As the peak in the positive portion of the moment diagram
is actually the apex of the parabola, the location of the zero moment
value is simply twice the value previously determined as x . This point
corresponds to the change in the form of curvature on the elastic curve
(deflected shape) of the beam and is described as the inflection point
for the deflected shape. The location of the point of zero moment can
also be determined by writing an equation for the sum of moments at
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the unknown location. In this case, call the new unknown point x :

M = 0 = +(3200 × x) −
(

600 × x × x

2

)
The solution of this quadratic equation should produce the value of x
= 10.67 ft.

Example 7. Compute the maximum bending moment for the overhang-
ing beam shown in Figure 3.12.

Solution: Computing the reactions, R1 = 3200 lb and R2 = 2800 lb.
As usual, the shear diagram can now be plotted as the graph of
the loads and reactions, proceeding from left to right. Note that the
shear passes through zero at the location of the 4000-lb load and at
both supports. As usual, these are clues to the form of the moment
diagram.

With the usual moment summations, values for the moment diagram
can now be found at the locations of the supports and all of the concen-
trated loads. From this plot it will be noted that there are two inflection
points (locations of zero moment). As the moment diagram is composed
of straight-line segments in this case, the locations of these points may
be found by writing simple linear equations for their locations. How-
ever, use can also be made of some relationships between the shear
and moment graphs. One of these has already been used, relating to
the correlation of zero shear and maximum moment. Another relation-
ship is that the change of the value of moment between any two points
along the beam is equal to the total area of the shear diagram between
the points. If the value of moment is known at some point, it is thus a
simple matter to find values at other points. For example, starting from
the left end, the value of moment is known to be zero at the left end
of the beam; then the value of the moment at the support is the area of
the rectangle on the shear diagram with a base of 4 ft and a height of
800 lb—the area being 4 × 800 = 3200 ft-lb.

Now, proceeding along the beam to the point of zero moment (call
it x distance from the support), the change is again 3200, which relates
to an area of the shear diagram that is x × 2400. Thus,
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Figure 3.12 Reference for Example 7.

2400x = 3200 x = 3200

2400
= 1.33 ft

And, calling the distance from the right support to the point of zero
moment x ,

2600x = 400 x = 400

2600
= 0.154 ft
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Figure 3.13 Reference for Problem 3.4, Part 1.

Problems 3.4.A–D. Draw the shear and bending moment diagrams for the
beams in Figure 3.13, indicating all critical values for shear and moment and
all significant dimensions.

Cantilever Beams

In order to keep the signs for shear and moment consistent with those
for other beams, it is convenient to draw a cantilever beam with its
fixed end to the right, as shown in Figure 3.14. We then plot the values
for the shear and moment on the diagrams as before, proceeding from
the left end.

Example 8. The cantilever beam shown in Figure 3.14a projects 12 ft
from the face of the wall and has a concentrated load of 800 lb at the
unsupported end. Draw the shear and moment diagrams. What are the
values of the maximum shear and maximum bending moment?

Solution: The value of the shear is −800 lb throughout the entire length
of the beam. The bending moment is maximum at the wall; its value
is 800 × 12 = –9600 ft-lb. The shear and moment diagrams are as
shown in Figure 3.14a . Note that the moment is negative for the entire
length of the cantilever beam, corresponding to its concave downward
shape throughout its length.

Although not shown in the figure, the reactions in this case are a
combination of an upward force of 800 lb and a clockwise resisting
moment of 9600 ft-lb.
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Figure 3.14 Reference for Examples 8 and 9.

Example 9. Draw shear and bending moment diagrams for the beam
in Figure 3.14b, which carries a uniformly distributed load of 500 lb/ft
over its full length.

Solution: The total load is 500 × 10 = 5000 lb. The reactions are an
upward force of 5000 lb and a moment determined as

M = −500 × 10 ×
(

10

2

)
= −25,000 ft-lb

which—it may be noted—is also the total area of the shear diagram
between the outer end and the support.

Example 10. The cantilever beam indicated in Figure 3.15 has a con-
centrated load of 2000 lb and a uniformly distributed load of 600 lb/ft
at the positions shown. Draw the shear and bending moment diagrams.
What are the magnitudes of the maximum shear and maximum bending
moment?

Solution: The reactions are actually equal to the maximum shear and
bending moment. Determined directly from the forces, they are
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Figure 3.15 Reference for Example 10.

V = 2000 + (600 × 6) = 5600 lb

M = −(2000 × 14) −
[

600 × 6 ×
(

6

2

)]
= −38,800 ft-lb

The diagrams are quite easily determined. The other moment value
needed for the moment diagram can be obtained from the moment of
the concentrated load or from the simple rectangle of the shear diagram:
2000 × 8 = 16,000 ft-lb.

Note that the moment diagram has a straight-line shape from the
outer end to the beginning of the distributed load and becomes a curve
from this point to the support.

It is suggested that Example 10 be reworked with Figure 3.22
reversed, left for right. All numerical results will be the same, but the
shear diagram will be positive over its full length.
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Figure 3.16 Reference for Problem 3.4, Part 2.

Problems 3.4.E–H. Draw the shear and bending moment diagrams for the
beams in Figure 3.16, indicating all critical values for shear and moment and
all significant dimensions.

3.5 TABULATED VALUES FOR BEAM BEHAVIOR

Bending Moment Formulas

The methods of computing beam reactions, shears, and bending
moments presented thus far in this chapter make it possible to find
critical values for design under a wide variety of loading conditions.
However, certain conditions occur so frequently that it is convenient to
use formulas that give the maximum values directly. Structural design
handbooks contain many such formulas; two of the most commonly
used formulas are derived in the following examples.

Simple Beam, Concentrated Load at Center of Span

A simple beam with a concentrated load at the center of the span occurs
very frequently in practice. Call the load P and the span length between
supports L, as indicated in the load diagram of Figure 3.17a . For this
symmetrical loading each reaction is P/2, and it is readily apparent
that the shear will pass through zero at distance x = L/2 from R1.
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Therefore, the maximum bending moment occurs at the center of the
span, under the load. Computing the value of the bending moment at
this section:

M = P

2
× L

2
= PL

4

Example 11. A simple beam 20 ft in length has a concentrated load
of 8000 lb at the center of the span. Compute the maximum bending
moment.

Solution: As just derived, the formula giving the value of the maxi-
mum bending moment for this condition is M = PL/ 4. Therefore,

M = PL

4
= 8000 × 20

4
= 40,000 ft-lb

Simple Beam, Uniformly Distributed Load

This is probably the most common beam loading; it occurs time and
again. For any beam, its own dead weight as a load to be carried
is usually of this form. Calling the span L and the unit load w , as
indicated in Figure 3.17b, the total load on the beam is W = wL; hence
each reaction is W /2 or wL/ 2. The maximum bending moment occurs

Figure 3.17 Values for simple beam loadings.
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at the center of the span at distance L/ 2 from R1 . Writing the value of
M for this section,

M = +
(

wL

2
× L

2

)
−

[
w ×

(
L

2

)
×

(
L

4

)]
= wL2

8
or

WL

8

Note the alternative use of the unit load w or the total load W in this
formula. Both forms will be seen in various references. It is important
to carefully identify the use of one or the other.

Example 12. A simple beam 14 ft long has a uniformly distributed load
of 800 lb/ft. Compute the maximum bending moment.

Solution: As just derived, the formula that gives the maximum bending
moment for a simple beam with uniformly distributed load is M =
wL2 /8. Substituting these values,

M = wL2

8
= 800 × 142

8
= 19,600 ft-lb

or, using the total load W of 800 × 14 = 11,200 lb,

M = WL

8
= 11,200 × 14

8
= 19,600 ft-lb

Use of Tabulated Values for Beams

Some of the most common beam loadings are shown in Figure 3.18. In
addition to the formulas for the reactions R, for maximum shear V, and
for maximum bending moment M, expressions for maximum deflection
D are given also. Discussion of deflections formulas will be deferred
for the time being but will be considered in Section 5.5.

In Figure 3.18 if the loads P and W are in pounds or kips, the
vertical shear V will also be in units of pounds or kips. When the
loads are given in pounds or kips and the span is given in feet, the
bending moment M will be in units of foot-pounds or kip-feet.

Also given in Figure 3.18 are values designated ETL, which stands
for equivalent tabular load. These may be used to derive a hypothetical
total uniformly distributed load W, which when applied to the beam will
produce the same magnitude of maximum bending moment as that for
the given case of loading. Use of these factors is illustrated in later
parts of the book.
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Figure 3.18 Values for typical beam loadings and support conditions.
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Problem 3.5.A. A simple span beam has two concentrated loads of 4 kips
[17.8 kN] each placed at the third points of the 24-ft [7.32-m] span. Find the
value for the maximum bending moment in the beam.

Problem 3.5.B. A simple span beam has a uniformly distributed load of
2.5 kips/ft [36.5 kN/m] on a span of 18 ft [5.49 m]. Find the value for the
maximum bending moment in the beam.

Problem 3.5.C. A simple beam with a span of 32 ft [9.745 m] has a concentrated
load of 12 kips [53.4 kN] at 12 ft [3.66 m] from one end. Find the value for the
maximum bending moment in the beam.

Problem 3.5.D. A simple beam with a span of 36 ft [11 m] has a distributed load
that varies from a value of 0 at its ends to a maximum of 1000 lb/ft [14.6 kN/m]
at its center (case 8 in Figure 3.18). Find the value for the maximum bending
moment in the beam.

3.6 DEVELOPMENT OF BENDING RESISTANCE

As developed in the preceding sections, bending moment is a measure
of the tendency of the external forces on a beam to deform it by bending.
The purpose of this section is to consider the action within the beam
that resists bending and is called the resisting moment.

Figure 3.19a shows a simple beam, rectangular in cross section,
supporting a single concentrated load P . Figure 3.19b is an enlarged
sketch of the left-handed portion of the beam between the reaction
and section X–X . It is observed that the reaction R1 tends to cause
a clockwise rotation about point A in the section under consideration;
this is defined as the bending moment at the section. In this type of
beam the fibers in the upper part are in compression, and those in the
lower part are in tension. There is a horizontal plane separating the
compressive and tensile stresses; it is called the neutral surface, and at
this plane there are neither compressive nor tensile stresses with respect
to bending. The line in which the neutral surface intersects the beam
cross section (Figure 3.19c) is called the neutral axis (NA).

Call C the sum of all the compressive stresses acting on the upper
part of the cross section, and call T the sum of all the tensile stresses
acting on the lower part. It is the sum of the moments of those stresses
at the section that holds the beam in equilibrium; this is called the
resisting moment and is equal to the bending moment in magnitude.
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Figure 3.19 Development of bending stress in beams.

The bending moment about A is R1 × x , and the resisting moment about
the same point is (C × y) + (T × y). The bending moment tends to
cause a clockwise rotation, and the resisting moment tends to cause a
counterclockwise rotation. If the beam is in equilibrium, these moments
are equal, or

R1 × x = (C × y) + (T × y)

that is, the bending moment equals the resisting moment. This is the
theory of flexure (bending) in beams. For any type of beam, it is possi-
ble to compute the bending moment and to design a beam to withstand
this tendency to bend; this requires the selection of a member with
a cross section of such shape, area, and material that it is capable of
developing a resisting moment equal to the bending moment.

The Flexure Formula

The flexure formula, M = fS, is an expression for resisting moment that
involves the size and shape of the beam cross section (represented by S
in the formula) and the material of which the beam is made (represented
by f ). It is used in the design of all homogeneous beams, that is, beams
made of one material only, such as steel or wood. The following brief
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Figure 3.20 Distribution of bending stress on a beam cross section.

derivation is presented to show the principles on which the formula is
based.

Figure 3.20 represents a partial side elevation and the cross section of
a homogeneous beam subjected to bending stresses. The cross section
shown is unsymmetrical about the neutral axis, but this discussion
applies to a cross section of any shape. In Figure 3.19a let c be the
distance of the fiber farthest from the neutral axis, and let f be the unit
stress on the fiber at distance c. If f, the extreme fiber stress, does not
exceed the elastic limit of the material, the stresses in the other fibers
are directly proportional to their distances from the neutral axis. That
is to say, if one fiber is twice the distance from the neutral axis than
another fiber, the fiber at the greater distance will have twice the stress.

The stresses are indicated in the figure by the small lines with arrows,
which represent the compressive and tensile stresses acting toward and
away from the section, respectively. If c is in inches, the unit stress on
a fiber at 1 in. distance is f /c. Now imagine an infinitely small area
a at z distance from the neutral axis. The unit stress on this fiber is
(f /c) × z , and because this small area contains a square inches, the
total stress on fiber a is (f /c) × z × a. The moment of the stress on
fiber a at z distance is

f

c
× z × a × z or

f

c
az 2

There are an extremely large number of these minute areas. Using
the symbol � to represent the sum of this very large number,

∑ (
f

c
az 2

)
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which means the sum of the moments of all the stresses in the cross
section with respect to the neutral axis. This is the resisting moment ,
and it is equal to the bending moment. Therefore,

MR = f

c

∑
az 2

The quantity �az 2 may be read “the sum of the products of all the
elementary areas times the square of their distances from the neutral
axis.” This is called the moment of inertia and is represented by the
letter I (see Section A.2). Therefore, substituting in the above,

MR = f

c
I or MR = fI

c

This is known as the flexure formula or beam formula , and by its
use it is possible to design any beam that is composed of a single
material. The expression may be simplified further by substituting S
for I/c, called the section modulus , a term that is described more fully
in Section A.4. Making this substitution, the formula becomes

M = fS

Use of the flexural formula is discussed in Chapter 5 for wood
beams, in Chapter 9 for steel beams, and in Chapter 13 for reinforced
concrete beams.

Inelastic Stress Conditions

At the limits of bending resistance the preceding descriptions of stress
and deformation do not generally represent true conditions. The limit
states are described as the ultimate resistance, and design based on the
limit states is called ultimate strength design . These conditions and the
procedures for their use in design are described in Part III for steel
members and in Part IV for reinforced concrete members.

3.7 SHEAR STRESS IN BEAMS

Shear is developed in beams in direct resistance to the vertical force at
a beam cross section. Because of the interaction of shear and bending in
the beam, the exact nature of stress resistance within the beam depends
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Figure 3.21 Nature of horizontal shear in beams.

on the form and materials of the beam. For example, in wood beams
the wood grain is normally oriented in the direction of the span and the
wood material has a very low resistance to horizontal splitting along the
grain. An analogy to this is represented in Figure 3.21, which shows
a stack of loose boards subjected to a beam loading. With nothing
but minor friction between the boards, the individual boards will slide
over each other to produce the loaded form indicated in the bottom
figure. This is the failure tendency in the wood beam, and the shear
phenomenon for wood beams is usually described as one of horizontal
shear .

Shear stresses in beams are not distributed evenly over the cross
section of the beam, as was assumed for the case of simple direct shear
(see Section 2.1). From observations of tested beams and derivations
considering the equilibrium of beam segments under combined actions
of shear and bending, the following expression has been obtained for
shear stress in a beam:

fv = VQ

Ib

where V = shear force at the beam section
Q = moment about the neutral axis of the portion of the cross

section area between the edge of the section and the point
where stress is being computed

I = moment of inertia of the section
b = width of the section where stress is being computed

It may be observed that the highest value for Q, and thus usually
for shear stress, depending on variable widths, will occur at the neutral
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Figure 3.22 Distribution of shear stress in beams with various shapes of cross
sections.

axis and that shear stress will be zero at the top and bottom edges of
the section. This is essentially opposite to the form of distribution of
bending stress on a section. The form of shear distribution for various
geometric shapes of beam sections is shown in Figure 3.22.

The following examples illustrate the use of the general shear stress
formula.

Example 13. A rectangular beam section with a depth of 8 in. and
width of 4 in. sustains a shear force of 4 kips. Find the maximum shear
stress. (See Figure 3.23a .)

Figure 3.23 Reference for Example 13.
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Solution: For the rectangular section the moment of inertia about the
centroidal axis is (see Figure A.11)

I = bd3

12
= 4 × 83

12
= 171 in.4

The static moment (Q) is the product of the area a’ and its cen-
troidal distance from the neutral axis of the section (y as shown in
Figure 3.23b). This is the greatest value that can be obtained for Q and
will produce the highest shear stress for the section. Thus,

Q = a ′y = (4 × 4)(2) = 32 in.3

and
fv = VQ

Ib
= 4000 × 32

171 × 4
= 187 psi

The distribution of shear stress on the beam cross section is as shown
in Figure 3.23c.

Example 14. A beam with the T section shown in Figure 3.24a is
subjected to a shear force of 8 kips. Find the maximum shear stress and
the value of shear stress at the location of the juncture of the web and
the flange of the T.

Solution. Since this section is not symmetrical with respect to its hori-
zontal centroidal axis, the first steps for this problem consist of locating
the neutral axis and determining the moment of inertia for the section
with respect to the neutral axis. To save space, this work is not shown
here, although it is performed as Examples 1 and 8 in Appendix A.
From that work it is found that the centroidal neutral axis is located at
6.5 in. from the bottom of the T and the moment of inertia about the
neutral axis is 1046.7 in.4.

For computation of the maximum shear stress at the neutral axis, the
value of Q is found by using the portion of the web below the neutral
axis, as shown in Figure 3.24c. Thus,

Q = a ′y = (6.5 × 6) ×
(

6.5

2

)
= 127 in.3

and the maximum stress at the neutral axis is, thus,
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Figure 3.24 Reference for Example 14.

fv = VQ

Ib
= 8000 × 127

1046.7 × 6
= 161 psi

For the stress at the juncture of the web and flange, Q is determined
using the area shown in Figure 3.24d . Thus,

Q = (2 × 10)(4.5) = 90 in.3

And the two values for shear stress at this location, as displayed in
Figure 3.24b, are

fv = 8000 × 90

1046.7 × 6
= 114 psi (in the web)

and
fv = 8000 × 90

1046.7 × 10
= 68.8 psi (in the flange)
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In many situations it is not necessary to use the complex form of
the general expression for shear stress in a beam. For wood beams, the
sections are mostly simple rectangles, for which the following simpli-
fication can be made

For the simple rectangle, from Figure A.11, I = bd3/ 12. And

Q =
(

b × d

2

)
d

4
= bd2

8
thus,

fv = VQ

Ib
=

V

(
bd 2

8

)
(

bd3

12

)
b

= 1.5
V

bd

This is the formula specified by design codes for investigation of shear
in wood beams. The somewhat more complex investigations for shear
stress are discussed in Chapter 9 for steel beams and in Chapter 13 for
reinforced concrete beams.

Problem 3.7.A. A beam has an I-shaped cross section with an overall depth
of 16 in. [400 mm], web thickness of 2 in. [50 mm], and flanges that are 8 in.
[200 mm] wide and 3 in. [75 mm] thick. Compute the critical shear stresses and
plot the distribution of shear stress on the cross section if the beam sustains a
shear force of 20 kips [89 kN].

Problem 3.7.B. A T-shaped beam cross section has an overall depth of 18 in.
[450 mm], web thickness of 4 in. [100 mm], flange width of 8 in. [200 mm], and
flange thickness of 3 in. [75 mm]. Compute the critical shear stresses and plot
the distribution of shear stress on the cross section if the beam sustains a shear
force of 12 kips [53.4 kN].

3.8 CONTINUOUS AND RESTRAINED BEAMS

Continuous Beams

A continuous beam is a beam that rests on more than two supports.
Continuous beams are characteristic of sitecast concrete construction
but occur less often in wood and steel construction.

The concepts underlying continuity and bending under restraint are
illustrated in Figure 3.25. Figure 3.25a represents a single beam rest-
ing on three supports and carrying equal loads at the centers of the
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Figure 3.25 Continuous versus simple beams.

two spans. If the beam is cut over the middle support as shown in
Figure 3.25b, the result will be two simple beams. Each of these sim-
ple beams will deflect as shown. However, when the beam is made
continuous over the middle support, its deflected form is as indicated
by the dashed line in Figure 3.25a .

It is evident that there is no bending moment developed over the
middle support in Figure 3.25b, while there must be a moment over
the support in Figure 3.25a . In both cases there is positive moment
at the midspan; that is, there is tension in the bottom and compression
in the top of the beam at these locations. In the continuous beam,
however, there is a negative moment over the middle support; that
is, there is tension in the top and compression in the bottom of the
beam. The effect of the negative moment over the support is to reduce
the magnitudes of both maximum bending moment and deflection at
midspan, which is a principal advantage of continuity.

Values for reaction forces and bending moments cannot be found for
continuous beams by use of the equations for static equilibrium alone.
For example, the beam in Figure 3.25a has three unknown reaction
forces, which constitute a parallel force system with the loads. For
this condition there are only two conditions of equilibrium and thus
only two available equations for solving for the three unknowns. This
presents a situation in algebra that is qualified as indeterminate, and
the structure so qualified is said to be statically indeterminate.

Solutions for investigation of indeterminate structures require addi-
tional conditions to supplement those available from simple statics.
These additional conditions are derived from the deformation and the
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stress mechanisms of the structure. Various methods for investigation
of indeterminate structures have been developed. Of particular interest
now are those that yield to application to computer-aided processes.
Just about any structure, with any degree of indeterminacy, can now
be investigated with readily available programs.

A procedural problem with highly indeterminate structures is that
something about the structure must be determined before an investi-
gation can be performed. Useful for this purpose are shortcut methods
that give reasonably approximate answers without an extensive inves-
tigation. One of these approximation methods is demonstrated in the
investigation of a rigid frame structure in Chapter 20.

Theorem of Three Moments

One method for determining reactions and constructing the shear
and bending moment diagrams for continuous beams is based on
the theorem of three moments . This theorem deals with the relation
among the bending moments at any three consecutive supports of a
continuous beam. Application of the theorem produces an equation,
called the three-moment equation . The three-moment equation for a
continuous beam of two spans with uniformly distributed loading and
constant moment of inertia is

M1L1 + 2M2(L1 + L2) + M3L2 = −w1L3
1

4
− w2L3

2

4

in which the various terms are as shown in Figure 3.26. The following
examples demonstrate the use of this equation.

Continuous Beam with Two Equal Spans

This is the simplest case with the formula reduced by the symmetry
plus the elimination of M 1 and M 3 due to the discontinuity of the beam
at its outer ends. The equation is reduced to

4M2 = −wL2

2

With the loads and spans as given data, a solution for this case is
reduced to solving for M 2, the negative moment at the center support.
Transforming the equation produces a form for direct solution of the
unknown moment, thus
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Figure 3.26 Reference for the three-moment equation.

M2 = −wL2

8

With this moment determined, it is possible to now use the available
conditions of statics to solve the rest of the data for the beam. The
following example demonstrates the process.

Example 15. Compute the values for the reactions and construct the
shear and moment diagrams for the beam shown in Figure 3.27a .

Solution: With only two conditions of statics for the parallel force sys-
tem, it is not possible to solve directly for the three unknown reactions.
However, use of the equation for the moment at the middle support
yields a condition that can be used as shown in the following work:

M2 = −wL2

8
= −100 × (10)2

8
= −1250 ft-lb

Next, an equation for the bending moment at 10 ft to the right of the
left support is written in the usual manner and is equated to the now
known value of 1250 ft-lb.

Mx=10 = (R1 × 10) − (100 × 10 × 5) = −1250 ft-lb
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Figure 3.27 Reference for Example 15.

from which
10R1 = 3750 R1 = 375 lb

By symmetry this is also the value for R3. The value for R2 can
then be found by a summation of vertical forces. Thus,

�FV = 0 = (375 + 375 + R2) − (100 × 20) R2 = 1250 lb

Sufficient data has now been determined to permit the complete con-
struction of the shear diagram, as shown in Figure 3.27b. The location
of zero shear is determined by the equation for shear at the unknown
distance x from the left support:

375 − (100 × x) = 0 x = 3.75 ft
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The maximum value for positive moment at this location can be
determined with a moment summation or by finding the area of the
shear diagram between the end and the zero shear location:

M = 375 × 3.75

2
= 703 ft-lb

Because of symmetry, the location of zero moment is determined
as twice the distance of the zero shear point from the left support.
Sufficient data is now available to plot the moment diagram as shown
in Figure 3.27c.

Problems 3.8.A, B. Using the three-moment equation, find the bending moments
and reactions and draw the complete shear and moment diagrams for the fol-
lowing beams that are continuous over two equal spans and carry uniformly
distributed loadings.

Span Length (ft) Load (lb/ft)

A 16 200
B 24 350

Continuous Beam with Unequal Spans

The following example shows the slightly more complex problem of
dealing with unequal spans.

Example 16. Construct the shear and moment diagrams for the beam
in Figure 3.28a .

Solution: In this case the moments at the outer supports are again
zero, which reduces the task to solving for only one unknown. Apply
the given values to the equation:

2M2(14 + 10) = −1000 × (14)3

4
− 1000 × (10)3

4

M2 = −19,500 ft-lb

Write a moment summation about a point 14 ft to the right of the
left end support, using the forces to the left of the point:

14R1 − (1000 × 14 × 7) = −19,500 R1 = 5607 lb
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Then write a moment summation about a point 10 ft to the left of
the right end, using the forces to the right of the point:

10R3 − (1000 × 10 × 5) = −19,500 R3 = 3050 lb

A vertical force summation will yield the value of R2 = 15,343 lb.
With the three reactions determined, the shear values for completing
the shear diagram are known. Determination of the points of zero shear
and zero moment and the values for positive moment in the two spans
can be done as demonstrated in Example 15. The completed diagrams
are shown in Figure 3.28.

Figure 3.28 Reference for Example 16.
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Problems 3.8.C, D. Find the reactions and draw the complete shear and moment
diagrams for the following continuous beams with two unequal spans and
uniformly distributed loading.

First Span (ft) Second Span (ft) Load (lb/ft)

C 12 16 2000
D 16 20 1200

Continuous Beam with Concentrated Loads

In the previous examples the loads were uniformly distributed.
Figure 3.29a shows a two-span beam with a single concentrated
load in each span. The shape for the moment diagram for this beam
is shown in Figure 3.29b. For these conditions, the form of the
three-moment equation is

M1L1 + 2M2(L1 + L2) + M3L2

= −P1L2
1[n1(1 − n1)(1 + n1)] − P2L2

2[n2(1 − n2)(2 − n2)]

in which the various terms are as shown in Figure 3.29.

Figure 3.29 Two-span beam with concentrated loads.
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Figure 3.30 Reference for Example 17.

Example 17. Compute the reactions and construct the shear and
moment diagrams for the beam in Figure 3.30a .

Solution: For this case note that L1 = L2, P1 = P2, M 1 = M 3 = 0,
and both n1 and n2 = 0.5. Substituting these conditions and given data
into the equation

2M2(20 + 20)

= −4000(20)2(0.5 × 0.5 × 1.5) − 4000(20)2(0.5 × 0.5 × 1.5)

from which M 2 = 15,000 ft-lb.

The value of the moment at the middle support can now be used
as in Examples 15 and 16 to find the end reaction, from which it is
determined that the value is 1250 lb. Then a summation of vertical
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forces will determine the value of R2 to be 5500 lb. This is sufficient
data for construction of the shear diagram. Note that points of zero
shear are evident on the diagram.

The values for maximum positive moment can be determined from
moment summations at the sections or simply from the areas of the rect-
angles in the shear diagrams. The locations of points of zero moment
can be found by simple proportion, since the moment diagram is com-
posed of straight lines.

Problems 3.8.E, F. Find the reactions and draw the complete shear and moment
diagrams for the following continuous beams with two equal spans and a single
concentrated load at the center of each span.

Span Length (ft) Load (kips)

E 24 3
F 32 2.4

Continuous Beam with Three Spans

The preceding examples demonstrate that the key operation in inves-
tigation of continuous beams is the determination of negative moment
values at the supports. Use of the three-moment equation has been
demonstrated for a two-span beam, but the method may be applied to
any two adjacent spans of a beam with multiple spans. For example,
when applied to the three-span beam shown in Figure 3.31a , it would
first be applied to the left span and the middle span and next to the mid-
dle span and right span. This would produce two equations involving
the two unknowns: the negative moments at the two interior supports.
In this example the process would be simplified by the symmetry of the
beam, but the application is a general one, applicable to any arrange-
ment of spans and loads.

As with simple beams and cantilevers, common situations of spans
and loading may be investigated and formulas for beam behavior values
derived for subsequent application in simpler investigation processes.
Thus, the values of reactions, shears, and moments displayed for the
beam in Figure 3.31 may be used for any such support and loading
conditions. Tabulations for many ordinary situations are available from
various references.
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Figure 3.31 Three-span beam with distributed loading.

Example 18. A continuous beam has three equal spans of 20 ft each
and a uniformly distributed load of 800 lb/ft extending over the entire
length of the beam. Compute the maximum bending moment and the
maximum shear.

Solution: Referring to Figure 3.31d, the maximum positive moment
(0.08wL2) occurs near the middle of each end span, and the maximum
negative moment (0.10wL2) occurs over each of the interior supports.
Using the larger value, the maximum bending moment on the beam is

M = −0.1wL2 = −(0.1 × 800 × 202) = 32,000 ft-lb

Figure 3.30c shows that the maximum shear occurs at the face of
the first interior support and is
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V = 0.6wL = 0.6 × 800 × 20 = 9600 lb

Using this process it is possible to find the values of the reactions
and then to construct the complete shear and moment diagrams, if the
work at hand warrants it.

Problems 3.8.G, H. For the following continuous beams with three equal spans
and uniformly distributed loading, find the reactions and draw the complete
shear and moment diagrams.

Span Length (ft) Load (lb/ft)

G 24 1000
H 32 1600

Restrained Beams

A simple beam was previously defined as a beam that rests on a
support at each end, there being no restraint against bending at the
supports; the ends are simply supported . The shape a simple beam
tends to assume under load is shown in Figure 3.32a . Figure 3.32b
shows a beam whose left end is restrained or fixed , meaning that free
rotation of the beam end is prevented. Figure 3.32c shows a beam
with both ends restrained. End restraint has an effect similar to that
caused by the continuity of a beam at an interior support: A negative
bending moment is induced in the beam. The beam in Figure. 3.32b
has a profile with an inflection point, indicating a change of sign of
the moment within the span. This span behaves in a manner similar
to one of the spans in the two-span beam.

The beam with both ends restrained has two inflection points, with
a switch of sign to negative bending moment near each end. Although
values are slightly different for this beam, the general form of the

Figure 3.32 Behavior of beams with various forms of rotational restraint at
supports: (a) no restraint, (b) one end restrained, and (c) both ends restrained.
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deflected shape is similar to that for the middle span in the three-span
beam (see Figure 3.31).

Although they have only one span, the beams in Figures 3.32b
and c are both indeterminate. Investigation of the beam with one
restrained end involves finding three unknowns: the two reactions plus
the restraining moment at the fixed end. For the beam in Figure 3.32c,
there are four unknowns. There are, however, only a few ordinary cases
that cover most common situations, and tabulations of formulas for
these ordinary cases are readily available from references. Figure 3.33
gives values for the beams with one and two fixed ends under both
uniformly distributed load and a single concentrated load at center
span. Values for other loadings are also available from references.

Figure 3.33 Values for restrained beams.
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Figure 3.34 Reference for Example 19.

Example 19. Figure 3.34a represents a 20-ft span beam with both ends
fixed and a total uniformly distributed load of 8 kips. Find the reactions
and construct the complete shear and moment diagrams.

Solution: Despite the fact that this beam is indeterminate to the sec-
ond degree (four unknowns; only two equations of static equilibrium),
its symmetry makes some investigation data self-evident. It can be
observed that the two vertical reaction forces, and thus the two end
shear values, are each equal to one half of the total load, or 4000 lb.
Symmetry also indicates that the location of the point of zero moment
and thus the point of maximum positive bending moment is at the
center of the span. Also the end moments, although indeterminate, are
equal to each other, leaving only a single value to be determined.

From data in Figure 3.33a , the negative end moment is 0.0833WL
(actually 1/12WL). Thus,

M = WL

12
= 8000 × 20

12
= 13,333 ft-lb
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Figure 3.35 Reference for Example 20.

The maximum positive moment at midspan is 0.04167WL (actually 1/24

WL). Thus,

M = WL

24
= 8000 × 20

24
= 6667 ft-lb

The distance from the beam end to the point of zero moment is

x = 0.212L = 0.212(20) = 4.24 ft

The complete shear and moment diagrams are as shown in Figure 3.34.

Example 20. A beam fixed at one end and simply supported at the
other end has a span of 20 ft and a total uniformly distributed load of
8000 lb (Figure 3.35a). Find the reactions and construct the shear and
moment diagrams.
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Solution: This is the same span and loading as in the preceding
example. Here, however, one end is fixed and the other simply sup-
ported (loading case in Figure 3.33c). The beam vertical reactions are
equal to the end shears; thus, from the data in Figure 3.33c

R1 = V1 = 0.375(8000) = 3000 lb

R2 = V2 = 0.625(8000) = 5000 lb

and, for the maximum moments

+M = 0.0703(8000 × 20) = 11,248 ft-lb

−M = 0.125(8000 × 20) = 20,000 ft-lb

The point of zero shear is at 0.375(20) = 7.5 ft from the left end,
and the point of zero moment is at twice this distance, 15 ft, from
the left end. The complete shear and moment diagrams are shown in
Figure 3.35.

Problem 3.8.I. A 22-ft [6.71-m] span beam is fixed at both ends and carries
a single concentrated load of 16 kips [71.2 kN] at midspan. Find the reactions
and construct the complete shear and moment diagrams.

Problem 3.8.J. A 16-ft [4.88-m] span beam is fixed at one end and simply
supported at the other end. A single concentrated load of 9600 lb [42.7 kN] is
placed at the center of the span. Find the vertical reactions and construct the
complete shear and moment diagrams.

3.9 MEMBERS EXPERIENCING COMPRESSION
PLUS BENDING

Development of Bending in Columns

Bending moments can be developed in structural members in a number
of ways. When a member is subjected to an axial compression force,
there are various ways in which the compression effect and any bending
present can relate to each other.

Figure 3.36a shows a very common situation that occurs in building
structures when an exterior wall functions as a bearing wall or contains
a column. The combination of vertical gravity load and lateral load
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Figure 3.36 Development of bending in columns.

due to wind or seismic action can result in the loading shown. If the
member is quite flexible, an additional bending is developed as the axis
of the member deviates from the action line of the vertical compression
load. This added bending is the product of the load and the member
deflection; that is, P times �, as shown in Figure 3.36d . It is thus
referred to as the P–delta effect.

There are various other situations that can result in the P –delta
effect. Figure 3.36b shows an end column in a rigid frame struc-
ture, where moment is induced at the top of the column by the
moment-resistive connection to the beam. Although slightly different
in its profile, the column response is similar to that in Figure 3.36a .
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Figure 3.36c shows the effect of a combination of gravity and lateral
loads on a vertically cantilevered structure that supports a sign or a
tank at its top.

In any of these situations, the P –delta effect may or may not be
critical. The major factor that determines its seriousness is the relative
stiffness of the structure as it relates to the magnitude of deflection
produced. However, even a significant deflection may not be of con-
cern if the vertical load (P ) is quite small. In a worst-case scenario,
a major P –delta effect may produce an accelerating failure, with the
added bending producing more deflection, which in turn produces more
bending, and so on.

Interaction of Bending and Axial Compression

There are a number of situations in which structural members are
subjected to the combined effects that result in development of axial
compression and internal bending. Stresses developed by these two
actions are both of the direct stress type (tension and compression) and
can be combined for consideration of a net stress condition. This is use-
ful for some cases—as is considered following this discussion—but
for columns with bending the situation involves two essentially dif-
ferent actions: column action in compression and beam behavior. For
column investigation, therefore, it is the usual practice to consider the
combination by what is called interaction .

The classic form of interaction is represented by the graph in
Figure 3.37a . Referring to the notation on the graph:

1. The maximum axial load capacity of the member (with no bend-
ing) is Po .

2. The maximum bending capacity of the member (without com-
pression) is Mo .

3. At some compression load below Po (indicated as Pn ) the mem-
ber is assumed to have some tolerance for a bending moment
(indicated as Mn ) in combination with the axial load.

4. Combinations of Pn and Mn are assumed to fall on a line con-
necting points Po and Mo . The equation of this line has the form
expressed as

Pn

Po
+ Mn

Mo
= 1
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Figure 3.37 Interaction of axial compression and bending in a column: (a) classic
form of the interaction formula and (b) form of interaction response in a reinforced
concrete column.
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A graph similar to that in Figure 3.37a can be constructed using
stresses rather than loads and moments. This is the procedure used for
wood and steel members; the graph taking the form is expressed as

fa
Fa

+ fb
Fb

≤ 1

where fa = computed stress due to axial load
Fa = allowable column-action stress in compression
fb = computed stress due to bending

Fb = allowable beam-action stress in flexure

For various reasons, real structures do not adhere strictly to
the classic straight-line form of response shown in Figure 3.37a .
Figure 3.37b shows a form of response characteristic of reinforced
concrete columns. In the midrange, there is some approximation of
the theoretical straight-line behavior, but at the terminal ends of the
response graph there is considerable variation. This has to do with the
nature of the ultimate failure of the reinforced concrete materials in
both compression (upper end) and in tension (lower end), as explained
in Chapter 15.

Steel and wood members also have various deviations from the
straight-line interaction response. Special problems include inelastic
behavior, effects of lateral stability, geometry of member cross sections,
and lack of initial straightness of members. Wood columns are discussed
in Chapter 6 and steel columns in Chapter 10.

Combined Stress: Compression Plus Bending

Combined actions of compression plus bending produce various effects
on structures. In some situations the actual stress combinations may of
themselves be critical, one such case being the development of bearing
stress on soils. At the contact face of a bearing footing and its support-
ing soil, the “section” for stress investigation is the contact face, that
is, the bottom surface of the footing. The following discussion presents
an approach to this investigation.

Figure 3.38 illustrates the situation of combined direct force and
bending moment at a cross section. In this case the “cross section” is
the contact face of the footing bottom with the soil. Whatever produces
the combined load and moment, a transformation is made to an equiv-
alent eccentric force that produces the same effect. The value for the
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Figure 3.38 Combinations of compression and bending stress considered as
generated by an eccentric compression force.
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hypothetical eccentricity e is established by dividing the moment by the
load, as shown in the figure. The net, or combined, stress distribution
at the section is visualized as the sum of separate stresses caused by
the load and the bending moment. For the limiting stresses at the edges
of the section the general equation for the combined stress is

P = (direct stress) ± (bending stress)

or

p = N

A
± Nec

I

Four cases for this combined stress are shown in Figure 3.38. The
first case occurs when e is small, resulting in very little bending stress.
The section is thus subjected to all compressive stress that varies from
a maximum value at one edge to a minimum value at the opposite edge.

The second case occurs when the two stress components are equal,
so that the minimum stress is zero. This is the boundary condition
between the first and third cases since an increase in e will produce
some reversal stress—in this situation some tension stress.

The second stress case is significant for a footing since tension stress
is not possible between the footing and soil. Case 3 is only possible
for a beam or column or some other continuously solid element. The
value for e that produces case 2 can be derived by equating the two
stress components. Thus,

N

A
= Nec

I
and thus e = I

Ac

This value for e establishes what is known as the kern limit of the
section, which defines a zone around the centroid of the section within
which an eccentric force will not cause reversal stress on the section.
The form and dimensions for this zone can be established for any
geometric shape by use of the derived equation for e. The kern limit
zones for three common geometric shapes are shown in Figure 3.39.

When tension stress is not possible, larger eccentricities of the com-
pression normal force will produce a so-called cracked section as shown
for case 4 in Figure 3.38. In this situation some portion of the cross
section becomes unstressed, or cracked, and the compressive stress on
the remainder of the section must develop the entire resistance to the
loading effects of the combined force and moment.
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Figure 3.39 Form of the kern for common shapes of cross sections.

Figure 3.40 shows a technique for the analysis of a cracked section,
called the pressure wedge method . The wedge is a volume that repre-
sents the total compressive force as developed by the soil pressure; its
volumetric unit is in force units produced by multiplying stress times
area. Analysis of the static equilibrium of this wedge produces two rela-
tionships that can be used to establish the dimensions of the wedge.
These relationships are:

1. The volume of the wedge is equal to the vertical force.

2. The centroid of the wedge is located on a vertical line that coin-
cides with the location of the hypothetical eccentric force.

Referring to Figure 3.40, the three dimensions of the wedge are
w (width of the footing), p (maximum soil pressure), and x (limiting
dimension of the stressed portion of the cracked section). In this situa-
tion the footing width is known so the definition of the wedge requires
only the determination of p and x .

For the rectangular section the centroid is at the third point of
the triangle. Defining this distance from the edge as a , as shown in
Figure 3.40, then x is equal to three times a . It may be observed
that a is equal to half the footing width minus the eccentricity e.
Thus, once the eccentricity is computed, the values of a and x can be
determined.

The volume of the stress wedge can be expressed in terms of its
three dimensions as

V = wpx

2

With w and x determined, the remaining dimension of the wedge
can be established by transforming the equation of the volume to
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p = 2V

wx

or, since the volume is equal to the force N,

p = 2N

wx

Figure 3.40 Investigation of combined stress on a cracked section by the
pressure wedge method.
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All four cases of combined stress in Figure 3.38 will cause some
tilting of the footing due to deformation of the compressible soil. The
extent of this tilting and its effect on the structure supported by the
footing must be carefully considered in the design of the footing. It is
usually desired that the soil pressure be evenly distributed for anything
other than very short time loadings such as those caused by wind or
seismic effects.

Example 21. Find the value of maximum soil pressure for a square
footing subjected to a load of 100 kips and a moment of 100 kip-ft.
Find values for footing widths of (a) 8 ft, (b) 6 ft, and (c) 5 ft.

Solution: The first step is to find the equivalent eccentricity and com-
pare it to the kern limit for the footing to establish which of the cases
shown in Figure 3.38 applies. For all parts

e = M

N
= 100

100
= 1 ft

For (a) the 8-ft-wide footing has a kern limit of 8
6 = 1.33 ft; thus

case 1 applies. For computations the properties of the 8-ft2 footing are

A = 8 × 8 = 64 ft2

I = bd3

12
= (8)(8)3

12
= 341 ft4

and the maximum soil pressure is

p = N

A
+ Mc

I
= 100

64
+ (100)(4)

341
= 1.56 + 1.17 = 2.73 ksf

For (b) the 6-ft-wide footing has a kern limit of 1 ft, the same as
the eccentricity. Thus, the situation is case 2 in Figure 3.37 with N/A
= Mc/I and

p = 2

(
N

A

)
= 2

(
100

36

)
= 5.56 ksf

For (c) the eccentricity exceeds the kern limit and the investigation
must be done as illustrated in Figure 3.40. Thus,

a = 5

2
− e = 2.5 − 1 = 1.5 ft
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x = 3a = 3(1.5) = 4.5 ft

p = 2N

wx
= 2(100)

5(4.5)
= 8.89 ksf

Problem 3.9.A. A square footing sustains a force of 40 kips [178 kN] and a
bending moment of 30 kip-ft [40.7 kN-m]. Find the maximum soil pressure for
widths of (a) 5 ft [1.5 m] and (b) 4 ft [1.2 m].

Problem 3.9.B. A square footing sustains a force of 60 kips [267 kN] and a
bending moment of 60 kip-ft [81.4 kN-m]. Find the maximum soil pressure for
widths of (a) 7 ft [2.13 m] and (b) 5 ft [1.5 m].

3.10 RIGID FRAMES

Frames in which two or more of the members are attached to each other
with connections that are capable of transmitting bending between
the ends of the members are called rigid frames. The connections
used to achieve such a frame are called moment connections or
moment-resisting connections. Most rigid-frame structures are statically
indeterminate and do not yield to investigation by consideration
of static equilibrium alone. The rigid-frame structure occurs quite
frequently as a multiple-level, multiple-span bent, constituting part
of the structure for a multistory building. In most cases, such a bent
is used as a lateral bracing element; although once it is formed as a
moment-resistive framework, it will respond as such for all types of
loads. The computational examples presented in this section are all
rigid frames that have conditions that make them statically determinate
and thus capable of being fully investigated by methods developed in
this book.

Cantilever Frames

Consider the frame shown in Figure 3.41a , consisting of two mem-
bers rigidly joined at their intersection. The vertical member is fixed
at its base, providing the necessary support condition for stability of
the frame. The horizontal member is loaded with a uniformly dis-
tributed loading and functions as a simple cantilever beam. The frame
is described as a cantilever frame because of the single fixed support.
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Figure 3.41 Diagrams for investigation of the rigid frame.

The five sets of figures shown in Figure 3.41b through f are useful ele-
ments for the investigation of the behavior of the frame. They consist
of the following:

1. The free-body diagram of the entire frame, showing the loads
and the components of the reactions (Figure 3.41b). Study of
this figure will help in establishing the nature of the reactions
and in the determination of the conditions necessary for stability
of the frame as a whole.
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2. The free-body diagrams of the individual elements (Figure 3.41c).
These are of great value in visualizing the interaction of the parts
of the frame. They are also useful in the computations for the
internal forces in the frame.

3. The shear diagrams of the individual elements (Figure 3.41d ).
These are sometimes useful for visualizing, or for actually com-
puting, the variations of moment in the individual elements. No
particular sign convention is necessary unless in conformity with
the sign used for moment.

4. The moment diagrams for the individual elements (Figure 3.41e).
These are very useful, especially in determination of the deforma-
tion of the frame. The sign convention used is that of plotting the
moment on the compression (concave) side of the flexed element.

5. The deformed shape of the loaded frame (Figure 3.41f ). This is
the exaggerated profile of the bent frame, usually superimposed
on an outline of the unloaded frame for reference. This is very
useful for the general visualization of the frame behavior. It is
particularly useful for determination of the character of the exter-
nal reactions and the form of interaction between the parts of the
frame. Correlation between the deformed shape and the form of
the moment diagram is a useful check.

When performing investigations, these elements are not usually pro-
duced in the sequence just described. In fact, it is generally recom-
mended that the deformed shape be sketched first so that its correlation
with other factors in the investigation may be used as a check on the
work. The following examples illustrate the process of investigation for
simple cantilever frames.

Example 22. Find the components of the reactions and draw the
free-body, the shear and moment diagrams, and the deformed shape
of the frame shown in Figure 3.42a .

Solution: The first step is the determination of the reactions. Consid-
ering the free-body diagram of the whole frame (Figure 3.42b),

�F = 0 = +8 − Rv Rv = 8 kips (up)

and with respect to the support,

�M = 0 = MR − (8 × 4) MR = 32 kip-ft (clockwise)
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Figure 3.42 Reference for Example 22.
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Note that the sense, or sign, of the reaction components is visualized
from the logical development of the free-body diagram.

Consideration of the free-body diagrams of the individual members
will yield the actions required to be transmitted by the moment connec-
tion. These may be computed by application of the conditions for equi-
librium for either of the members of the frame. Note that the sense of the
force and moment is opposite for the two members, simply indicating
that what one does to the other is the opposite of what is done to it.

In this example there is no shear in the vertical member. As a result,
there is no variation in the moment from the top to the bottom of the
member. The free-body diagram of the member, the shear and moment
diagrams, and the deformed shape should all corroborate this fact. The
shear and moment diagrams for the horizontal member are simply those
for a cantilever beam.

It is possible with this example, as with many simple frames, to
visualize the nature of the deformed shape without recourse to any
mathematical computations. It is advisable to attempt to do so as a first
step in the investigation, and to check continually during the work that
individual computations are logical with regard to the nature of the
deformed structure.

Example 23. Find the components of the reactions and draw the
shear and moment diagrams and the deformed shape of the frame in
Figure 3.43a .

Solution. In this frame there are three reaction components required
for stability since the loads and reactions constitute a general copla-
nar force system. Using the free-body diagram of the whole frame
(Figure 3.43b), the three conditions for equilibrium for a coplanar sys-
tem are used to find the horizontal and vertical reaction components
and the moment component. If necessary, the reaction force compo-
nents could be combined into a single-force vector, although this is
seldom required for design purposes.

Note that the inflection occurs in the larger vertical member because
the moment of the horizontal load about the support is greater than that
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Figure 3.43 Reference for Example 23.

of the vertical load. In this case, this computation must be done before
the deformed shape can be accurately drawn.

The reader should verify that the free-body diagrams of the indi-
vidual members are truly in equilibrium and that there is the required
correlation between all the diagrams.
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Figure 3.44 Reference for Problem 3.10, Part 1.

Problems 3.10.A–C. For the frames shown in Figure 3.44a –c, find the compo-
nents of the reactions, draw the free-body diagrams of the whole frame and the
individual members, draw the shear and moment diagrams for the individual
members, and sketch the deformed shape of the loaded structure.

Single-Span Frames

Single-span rigid frames with two supports are ordinarily statically
indeterminate. The following example illustrates the case of a statically
determinate, single-span frame, made so by the particular conditions
of its support and internal construction. In fact, these conditions are
technically achievable, but a little weird for practical use. The example
is offered here as an exercise for readers that is within the scope of the
work in this section.

Example 24. Investigate the frame shown in Figure 3.45 for the reac-
tions and internal conditions. Note that the right-hand support allows for
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an upward vertical reaction only, whereas the left-hand support allows
for both vertical and horizontal components. Neither support provides
moment resistance.

Solution: The typical elements of investigation, as illustrated for the
preceding examples, are shown in Figure 3.45. The suggested procedure
for the work is as follows:

1. Sketch the deflected shape (a little tricky in this case, but a good
exercise).

2. Consider the equilibrium of the free-body diagram for the whole
frame to find the reactions.

3. Consider the equilibrium of the left-hand vertical member to find
the internal actions at its top.

4. Proceed to the equilibrium of the horizontal member.

5. Finally, consider the equilibrium of the right-hand vertical
member.

6. Draw the shear and moment diagrams and check for correlation
of all work.

Before attempting the exercise problems, the reader is advised to
attempt to produce the results shown in Figure 3.45 independently.

Problems 3.10.D, E. Investigate the frames shown in Figure 3.46d and e for
reactions and internal conditions, using the procedure shown for the preceding
examples.

Figure 3.46 Reference for Problem 3.10, Part 2.
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Figure 3.47 Beam shapes with low resistance to lateral bending and buckling.

3.11 BUCKLING OF BEAMS

Buckling of beams—in one form or another—is mostly a problem
with beams that are relatively weak on their transverse axes, that is,
the axis of the beam cross section at right angles to the axis of bending.
This is not a frequent condition in concrete beams, but it is a common
one with beams of wood or steel or with trusses that perform beam
functions. The cross sections shown in Figure 3.47 illustrate members
that are relatively susceptible to buckling in beam action.

When buckling is a problem, one solution is to redesign the beam for
more resistance to lateral movement. Another possibility is to analyze
for the lateral buckling effect and reduce the usable bending capacity as
appropriate. However, the solution most often used is to brace the beam
against the movement developed by the buckling effect. To visualize
where and how such bracing should be done it is first necessary to
consider the various possibilities for buckling. The three main forms of
beam buckling are shown in Figure 3.48.

Figure 3.48b shows the response described as lateral (i.e., sideways)
buckling . This action is caused by the compressive stresses in the top
of the beam that make it act like a long column, which is thus subject
to a sideways movement as with any slender column. Bracing the beam
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Figure 3.48 Forms of buckling of beams.
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for this action means simply preventing its sideways movement at the
beam edge where compression exists. For simple span beams this edge
is the top of the beam. For beams, joists, rafters, or trusses that directly
support roof or floor decks, the supported deck may provide this bracing
if it is adequately attached to the supporting members. For beams that
support other beams in a framing system, the supported beams at right
angles to the supporting member may provide lateral bracing. In the
latter case, the unsupported length of the buckling member becomes
the distance between the supported beams, rather than its entire span
length.

Another form of buckling for beams is that described as torsional
buckling , as shown in Figure 3.48d . This action may be caused by
tension stress, resulting in a rotational, or twisting, effect. This action
can occur even when the top of the beam is braced against lateral
movement and is often due to a lack of alignment of the plane of the
loading and the vertical axis of the beam. Thus, a beam that is slightly
tilted is predisposed to a torsional response. An analogy for this is
shown in Figure 3.48e, which shows a trussed beam with a vertical
post at the center of the span. Unless this post is perfectly vertical, a
sideways motion at the bottom end of the post is highly likely.

To prevent both lateral and torsional buckling, it is necessary to
brace the beam sideways at both its top and bottom. If the roof or floor

Figure 3.49 Lateral bracing for beams.
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deck is capable of bracing the top of the beam, the only extra bracing
required is that for the bottom. For closely spaced trusses this bracing
is usually provided by simple horizontal ties between adjacent trusses.
For beams in wood or steel framing systems, lateral bracing may be
provided as shown in Figure 3.49. The beam shown is braced for both
lateral and torsional buckling. Other forms of bracing are described in
Part II for wood structures and in Part III for steel structures.
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STRUCTURAL SYSTEMS
AND PLANNING

This chapter presents the major structural systems used in architectural
structures and then discusses how to plan for the structural system in
early phases of building design. The work includes the presentation
of approximate dimensions of structural members in order to plan for
the structural members with regards to other building systems such as
those for mechanical, plumbing, and electrical services. These rules
of thumb are derived in later chapters and should not be considered
replacements for determining the actual size of members using the later
work. The material presented here should be considered the beginning
of the structural design process, not the end.

161
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4.1 GENERAL CONSIDERATIONS FOR STRUCTURAL
SYSTEMS

Structural systems are complex, usually highly redundant systems that
must be able to resist any load imposed upon them. Most examples up
to this point have dealt with gravitational loading. Individual structural
elements have been analyzed for dead and live gravitational loading.
When looking at a system as a whole, lateral loading becomes another
key loading that must be dealt with by the structure.

Structural system names are largely based on how the system deals
with lateral loading. Shear wall systems use walls to transfer any lat-
eral load to the foundations. The walls may also carry the gravitational
loading, but they may also be for lateral loading alone. Moment frame
systems transfer the lateral loading by allowing the transfer of internal
bending moments from one member to the next. Braced frame systems
use trussed braces to transfer the lateral loading to the foundations.
There are other structural systems that could be included in this dis-
cussion, but the majority of buildings use one of the three mentioned
above.

Lateral loads in architectural structures are complex and dynamic in
nature. Different regions are affected by different lateral loading. Seis-
mic loading is considered in regions with active seismic faults such
as the Pacific Rim. Wind affects all buildings but strong destructive
winds are regional. Hurricanes cause damage on the western edge
of the Atlantic Ocean and on the Gulf Coasts. Tornados are dom-
inant in the interior regions of continents, and high-velocity winds
affect mountainous regions or areas along large bodies of water. Other
dynamic loadings include those due to impact or explosions. Indi-
vidual buildings are rarely designed to withstand all of these loads.
A designer should be familiar with the lateral loads prevalent in the
region where the building is being built and should be aware that when
working in a different region that the critical loading could be very
different.

Building behavior (how a building moves) under lateral loading is
of concern in the design of structural systems. In general, different
structural systems have different stiffness. A shear wall system is stiffer
than a braced frame system, which is stiffer than a moment frame
system. This means that under the same lateral load a shear wall will
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Figure 4.1 Relative deflection of a shear wall, a braced frame, and a moment
frame.

deflect less than a braced frame, which will deflect less than a moment
frame (Figure 4.1).

Care must be taken when laying out a structural system to balance
stiffness throughout the system. Examples of common unbalanced lat-
eral stiffness in buildings include stiffer elements on one side of the
building than on the other (Figure 4.2a for shear wall and Figure 4.2b
for moment frame), mixing of two structural systems (Figure 4.2c),
geometric irregularities (Figure 4.2d ), or combinations of these irregu-
larities (Figure 4.2e).

An unbalanced stiffness can lead to the development of torsional
forces in the structure when a lateral load is applied to it. This is
caused by the center of the lateral force not being collinear to the
reactive force from the building, which produces a twisting moment or
torsion (Figure 4.3).

The three basic structural systems are presented as if they are totally
distinct. The reality is that they are often combined together in a single
building. A good example is that most frame systems have horizontal
diaphragms (roof and floor decks) to help transfer the lateral loads to
the ground.
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(a) (b)

(c)

(d) (e)

Figure 4.2 Common situations of unbalanced stiffness.
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Figure 4.3 Torsional effect of unbalanced stiffness.
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Figure 4.4 Plan of a horizontal diaphragm.

4.2 SHEAR WALL AND DIAPHRAGM STRUCTURAL
SYSTEM

The shear wall and diaphragm system is the stiffest of the three major
structural systems. This system transmits the lateral loads to the ground
by acting as large, deep beams. If the lateral force is caused by wind, the
wind is collected by the exterior wall and transferred to the horizontal
diaphragms. The diaphragms act as deep beams supported by shear
walls and transfer the loads to the shear walls (Figure 4.4). The shear
walls act as short deep cantilevered beams (Figure 4.5) and transfer the
loads to the foundations through the development of shearing actions
and overturn resistance in the walls. If the lateral load is a seismic
load, the difference is that the lateral force is collected directly into the
diaphragm by its own mass and the mass of the objects resting on it.
Earthquakes produce accelerations that act on the mass of the building

Length of shear wall

Height of
shear wall

Figure 4.5 Elevation of a shear wall.



166 STRUCTURAL SYSTEMS AND PLANNING

and its contents to produce the dynamic seismic force: force = mass ×
acceleration.

The proportions of the dimensions of the diaphragms and the shear
walls are important to make sure that the load transfer happens through
shearing action. In the diaphragm, the proportion of width to length
should be less than 1 : 3. If the length becomes greater than this, a new
intermediate shear wall should be introduced to place the proportions
back into an acceptable range. Similarly, the optimum shear wall pro-
portion of length to height is less than 1 : 3. If the shear wall proportions
are considerably greater than 1 : 3, and there is no way to bring them
back within it, then it is an indication that a shear wall system may not
be the most appropriate for the building and a new system should be
selected.

Shear walls are commonly made of reinforced concrete, concrete
masonry units (CMUs), and plywood or oriented strand board (OSB)
over wood or metal studs. Brick or CMUs may also be used as infill
shear walls within a frame, which handles the gravitational loading.
Diaphragms are commonly made of concrete, formed sheet steel, or
plywood/OSB over wood joists.

4.3 BRACED FRAME SYSTEMS

Braced frame systems consist of several subsets including X brac-
ing, K bracing, cross-bracing, and eccentric bracing (Figures 4.6a to
d , respectively). The braced frame systems are designed so that the
braces transfer only lateral loading. Under lateral loading, the systems
act like trusses to transmit the load through a series of compression
and tension axial members (Figure 4.7). The very small deformation
of individual members within the systems, consisting of elongation or
shortening along the member’s major axis, makes the system relatively

(a) (b) (c) (d)

Figure 4.6 Forms of bracing: (a) diagonal bracing, (b) K bracing,
(c) cross-bracing, and (d) eccentric bracing.
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Figure 4.7 Trusslike actions of bracing under lateral loading. T indicates tension
and C indicates compression. Members with no notation experience no truss
action.

stiff. Careful consideration needs to be given to members that experi-
ence compressive forces in order to prevent the buckling of the member
and thus the failure of the system.

Horizontal or sloped frames can also be braced similar to the vertical
frames or they can utilize a diaphragm to transmit the lateral forces
to the vertical bracing. Braced horizontal frames are commonly used
in long-span roof structures while diaphragms are commonly used in
multistory buildings where floors are commonly made of concrete.

Materials commonly used in braced frame systems are steel and
timber. Diagonal bracing was commonly used for lateral resistance in
wood stud construction prior to the availability of plywood but is no
longer common.

In recent years a few new braced frame systems have been developed
in steel for use in seismic regions. The point of these new systems is to
have a system that is more ductile under lateral loading than traditional
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systems and uses movement to dissipate the seismic energy. The first
of these systems is the eccentric braced frame system (Figure 4.6d ).
By moving the braces so that they do not intersect with the beam
at a single point as they do with a K-braced system (Figure 4.6b),
the beam experiences bending under lateral loading and therefore has
more movement in it than a similar K-braced system. A second sys-
tem is an unbonded brace system , which is also a modification to the
K-braced system in which the braces are made of thin steel members
encased in concrete to prevent buckling under compression. The con-
crete and steel are developed so that they are not bonded together,
and the steel member is allowed to elongate and shorten more than a
K-braced system where the steel brace is sized to handle buckling by
itself. In the unbonded brace system, the braces act similar to a shock
absorber in a car, allowing for more movement under large seismic
accelerations.

4.4 MOMENT FRAME SYSTEMS

Moment frame systems are the most ductile of the three major systems.
In a moment frame system, some or all of the connections between the
system’s beams and columns are made rigid so that one is not able
to rotate without rotating the adjacent members (Figure 4.8). In other

Figure 4.8 Deflected forms of moment frames.
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words, the angle between a column and a beam will be the same after
loading as it was before (usually 90◦). Moment frame systems are
sometimes referred to as rigid frame systems or rigid connection frame
systems.

There are several variations on moment frames, which typically have
to do with which connections are made rigid and which are allowed
to freely rotate. An example of this is a frame in which only the
connections between the exterior columns and beams are made rigid,
producing a moment frame called a tube structure. These variations
are important to the design of the structure, but, unlike variations in
braced frame systems, variations in moment frame systems have little
affect on the appearance of the building or the layout of the frame
members.

A major advantage of moment frame structures is the simplicity
of the arrangements of the frame members. For architectural plan-
ning, there is no need to work around braces or to figure out how
much you can penetrate a shear wall with a window or door with-
out compromising the integrity of the system. The major disadvantage
is the introduction of bending into columns, which requires larger
columns.

Steel and reinforced concrete are the materials most used for moment
frame structures. The choice of which material to use is usually based
on economics and regional preferences, not on structural advantages of
one material over another.

Similar to braced frame systems, special moment frame systems
have been developed for seismic regions. These systems are designed
to release the rigidity of one or more beam–column connections during
large seismic activity. This can be thought of as a fuse in the structural
system. This fuse dissipates large seismic energy through the breaking
of the fuse and subsequently through the additional movement of the
building. The fuse is usually located near the beam–column connection
on the beam. The fuse is designed to release seismic energy without
compromising the integrity of the structure itself. These fuses come
in many forms from expensive proprietary systems to relatively inex-
pensive techniques to weaken beams in order to create a plastic hinge
during major seismic events. After a seismic event, any fuses that have
been used must be replaced. In general terms, the more expensive the
up-front cost of the system, the less expensive the replacement of the
fuse. If the fuse is a plastic hinge in a beam, the entire beam will need
to be replaced.
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4.5 WOOD CONSTRUCTION

Wood by its very nature is quite variable in its structural properties.
Wood species are regional and the grades or quality of wood may be
unavailable at certain times or in certain places. The assumptions taken
in this section are that quality dimensional lumber is being used for the
structure and that the rules of thumb presented here are not to replace
actual engineering, which is presented in Part II.

Structural Layout

Wood construction is typically made up of repetitive wood joists held
up by either wood stud bearing walls or beams, which are in turn held
up by columns or bear directly on the foundation (Figure 4.9). Lateral
resistance is usually provided by a shear wall and diaphragm system
composed of plywood/OSB sheathing over wood studs and joists. All
shear walls in wood construction are bearing walls, although not all
bearing walls are shear walls. Interior bearing walls not covered in
plywood/OSB are usually not used for shear walls even though they
have rated capacity for shear resistance.

When planning a structural layout, the floor and roof joists generally
span in the short direction of the floor plan. Joist lengths are limited
by both availability and acceptable deflection criteria to approximately
18–22 ft; therefore, one should plan for either interior bearing walls
or beams no more than 22 ft apart. If one is using wood beams, they
are generally limited to about 20 ft in length or will need columns at
intervals of 20 ft or less. If you need a beam span greater than 20 ft, one

Bearing wall: sheathing over wood studs

Deck sheathing over wood joists

Beam Column

Beam span

Joist span

Figure 4.9 Construction form of a typical horizontal wood roof or floor structure.
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Wood studs

Thermal insulation

Plywood or OSB sheathing
on exterior surface

Gypsum drywall on
interior surface

Figure 4.10 Plan section of a typical wood stud wall.

should use steel beams and steel columns, which will allow a longer
span (see Section 4.6). If a steel beam is used, it should never bear on
a wood column or stud wall.

Stud Bearing Wall Sizing

Wood stud bearing walls (Figure 4.10) are incredibly strong when prop-
erly braced by plywood, OSB, or wood blocking. For generations, the
2 × 4 wood stud wall was the standard for wood construction. More
recently, the 2 × 6 wood stud wall has become more popular and has
replaced the 2 × 4 stud wall in many regions. This is not because of
its superior strength, which it has, but for its ability to contain more
thermal insulation, thus making it a more energy-efficient system. In 2
× 4 walls, the studs are usually spaced 16 in. on center. In 2 × 6 walls,
the studs are also usually spaced 16 in. on center, but in some regions
they are spaced 24 in. on center. If the project that you are working
on is in a year-round temperate climate, the bearing walls will most
likely be made 2 × 4. If the project will experience cold winters, hot
summers, or both, then the exterior walls will probably be made of 2
× 6’s either at 16 or 24 in. on center.

Floor and Roof Joist Sizing

Roofs and floors are generally both designed with 2-in. thick dimen-
sional lumber with plywood or OSB sheathing on top of it, creating a
diaphragm (Figure 4.11). With joists, it is important to get high-quality
wood. Floor joists are generally sized based on allowable deflection cri-
teria, while sloped roof members are generally sized based on allowable
strength criteria. Flat (or near flat) roof joists should be sized as a floor
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Wood joists

Gypsum drywall Cross-bracing (bridging)

Plywood or OSB sheathing

Figure 4.11 Typical form of construction of wood floor structure.

TABLE 4.1 Approximate Span for Floor and Roof Joists

Maximum Span (ft)

Lumber Size (in.) Floor Joists Roof Joists

2 × 6 9 10
2 × 8 13 14
2 × 10 17 18
2 × 12 21 22

joist during preliminary design. The spacing of floor and roof joist is
typically 16 in. on center but can also be 12, 19.2, or 24 in. on center
depending on the particular project.

Table 4.1 gives the approximate span limits for floor and sloped
roof joists using dimensional lumber. It should be noted that the span
of a sloped roof joist is measured horizontally not along the length of
the member. If you need spans greater than those listed in Table 4.1,
then engineered wood joists may be more appropriate for the project.
Roof joists can be deeper than that recommended in Table 4.1 if more
thermal insulation is required.

Beam Sizing

Wood beams should always be made of high-grade lumber. Beams
are generally limited in length to approximately 20 ft. The approxi-
mate beam depths are listed in Table 4.2. The beam width varies with
actual loading calculations. Headers over window and door openings
in bearing walls are considered beams.
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TABLE 4.2 Approximate Depths for Wood Beams

Beam Span (ft) Nominal Beam Depth (in.)

Span ≤ 9 6
9 < Span ≤ 13 8
13 < Span ≤ 17 10
17 < Span ≤ 20 12

Column Sizing

Wood columns are practically limited to 4 × 4’s and 6 × 6’s. The
unbraced length of the column is often the controlling factor in sizing
wood columns: 4 × 4’s are limited to approximately 12 ft and 6 ×
6’s are limited to about 20 ft; 8 × 8’s are available but are becoming
harder to find and more expensive with the reduction of timber still
coming from old growth forests. If a column is needed that is larger
than a 6 × 6, then a steel column is usually used. Steel columns are
also commonly used in areas where a wood column is vulnerable to a
large lateral load or impact such as in a garage or basement.

Example 1. Determine the preliminary design and layout for the house
illustrated in Figure 4.12. The project is located in a mountainous region
that experiences both cold winters and hot summers. The system will
be designed to be a shear wall and diaphragm system.

Solution: First, we need to check if the diaphragm is in an acceptable
proportion or if interior shear walls need to be added. The overall plan
dimensions are 50 and 28 ft, which give a ratio of 1 : 1.79; as this is
less than 1 : 3, interior shear walls will not be required.

The exterior walls will be shear walls and their proportions need to
be checked. The shear walls between the first and second floors will be
of most concern. The height of this shear wall will be 10 ft floor-to-floor
height. For one of the north–south shear walls, the ratio will be 1 : 5,
which is greater than the required 1 : 3. On the east–west shear walls
the ratio will be 1 : 2.8, which is close to the optimal range.

Since the project is not in a temperate climate, we will make the
exterior shear walls of 2 × 6 construction to accommodate additional
insulation. For the north–south central wall we will use a 2 × 4 bearing
wall between the first and second floor with beams and columns from
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(a)

(b)
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25′

10′

9′
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Unfinished Basement

Family
First Floor

Plan
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Section

Dining

Figure 4.12 Reference for Example 1.
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the basement to the first floor. The beam under the bearing wall in the
basement will be divided into three beams of length 16 ft 8 in. Table 4.2
tells us that the beam will be a nominal 10 in. in depth. We will make
the columns holding the beam steel pipe columns.

The floor and roof joists have spans of 14 ft. Therefore, the floor
joist will be made of 2 × 10’s and the roof joists of 2 × 8’s using
Table 4.1. The roof joist should probably be increased to 2 × 10’s to
accommodate additional insulation.

Problem 4.5.A. A wood structure is proposed for a speculative small office
building. The floor plan for the building is illustrated in Figure 4.13a with
partial elevation in Figure 4.13b and section in Figure 4.13c. The design inten-
tion is to have an 8-ft-wide corridor running east–west down the center of the
building with offices built on each side to suit the tenants’ needs. The corri-
dor walls are not to be used as bearing walls to provide flexibility but should
be where columns are placed. The floor will be made of reinforced concrete.
Determine a preliminary design for the roof joists and beams, exterior walls,
and columns with the roof joists running north to south.

(a)

(b) (c)

North

Building Plan
8' 50'

100'

6' 6'

5'-4"

16'-8" 16'-8"

10'8"

Partial Elevation Section

3'
2.5'

13.5'6"8'

21'

21'

Figure 4.13 Reference for Problem 4.5.
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Problem 4.5.B. Using the same building as in Problem 4.5.A, determine a
preliminary design for the roof joists and beams with the roof joists running
east to west.

4.6 STEEL CONSTRUCTION

Steel construction is typically paired with either moment frame or
braced frame systems. From a gravitational perspective, these systems
work similarly (Figure 4.14). The floor or roof is held up by joists,
which are held up by the primary beams. The columns hold the pri-
mary and secondary beams and transfer the loads to the foundation.
The secondary beams carry a small amount of the floor or roof load in
both systems, but their primary purpose in the moment frame system
is to help transfer lateral loads to the foundation.

The approximations given in this chapter are not for the selection
of sizes of the steel members but for determining critical dimensions
for the members, that is, depth for beams and joists and width and
depth for columns. Steel is available in various strengths, which may
affect these dimensions. The approximations given in this section are
for steel with a yield stress of 50 ksi. The sizing of the actual steel
members should follow the procedures outlined in Part III.

Joist
spacing

Joists

Secondary Beams

Primary beam span
Column spacing 1

Primary Beam

Secondary beam span
Column spacing 2

Figure 4.14 Plan layout for steel structure with braced frame or moment frame.
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Column Spacing

Columns in steel construction can be spaced at large distances from
each other, which is why steel is a common material for long-span sys-
tems. The greater the distance between columns, the larger the columns
and the deeper the beams. Beam depth is often the controlling factor
in the column spacing in multistory buildings where column spacing is
limited to about 45 ft. Likewise, columns should not be spaced closer
than about 18 ft. Columns in steel construction are rarely spaced equally
in both directions. The column spacing in the direction of the primary
beams is larger than that in the direction of the secondary beams, thus
making the primary beams deeper than the secondary beams and joists.
This extra space under the secondary beams and joists may be used for
the placement of mechanical, electrical, and plumbing systems.

Column Sizing

I-shaped steel members (called wide-flange shapes) used for columns
have a generally square cross section, meaning that the depth of
the beam is approximately the same as the width of the flanges
(Figure 4.15). Columns used in moment frame and braced frame
systems generally have a cross-sectional dimension of 8, 10, 12, or
14 in. Columns are available less than 8 in. and are often used in wood
construction systems.

The dimension of a column is based upon how closely the columns
are spaced, the number of stories in the building, the length of the
columns between floors, and the magnitude of the loads being carried
by the column. Table 4.3 outlines the determinates that help to select
column dimensions: 8-in. columns are used for modest-sized projects

Flange width

Beam depth

Figure 4.15 Cross section of typical wide-flange steel column.
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TABLE 4.3 Determinates for Column Dimensionsa

Modest Size Structure Moderate Size Structure Large Size Structure

Column spacing ≤ 20 ft 20 ft < Column spacing ≤ 36 ft 36 ft < Column spacing
Building stories ≤ 2 2 < Building stories ≤ 10 10 < Building stories

Column lengths ≤ 20 ft 20 ft < Column lengths ≤ 30 ft 30 ft < Column lengths
Live load ≤ 40 psf 40 psf < Live load ≤ 100 psf 100 psf < Live load

a For steel or concrete structures of the categories of size as shown.

and 14-in. columns are used for large projects. Moderate-sized projects
fall between the modest and large projects, with column spacing of
about 30 ft or have attributes that are contained in both the modest
and the large project lists, that is, column spacing of 40 ft and col-
umn lengths of 15 ft. Moderate-sized columns are usually either 10 or
12 in. in dimension. If the column design has more in common with
modest-sized projects than large projects, use the 10-in. dimension; and
if the opposite is true, use the 12-in. dimension. The majority of col-
umn applications are for moderate projects, which means the majority
of steel columns are 10 or 12 in. in dimension.

Beam and Joist Layout and Depths

Beam layout from column to column was discussed in the previous
section. The joists in a steel floor system are required when the distance
between two primary beams is greater than 15 ft. In roof systems where
larger floor deflection is acceptable, joists are required when the primary
beams are spaced more than 20 ft apart from one another. Open web
steel joists (light trusses) can be used in both floor and roof systems
when deflection or bounciness is not considered to be a problem. When
joists are required, they should be spaced at 15 ft or less apart when
using steel wide-flange members and no more than 5 ft apart when
using open-web steel joists.

The minimum depth of a beam or joist member is based on the length
of the member and its allowable deflection, not on the strength of the
member (Chapter 9). Table 4.4 outlines the minimum depths a beam
needs based upon these criteria. If minimizing beam depth is not an
issue on the given project, planning for a beam one or two sizes greater
than minimum will result in a more economical beam. Open-web steel
joists may be more economical in some cases but will require more
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TABLE 4.4 Minimum Depths for Steel Wide-Flange Beams
and Joistsa

Beam or Joist Span (ft) Minimum Depth Required (in.)

Span ≤ 18 12
18 < Span ≤ 21 14
21 < Span ≤ 24 16
24 < Span ≤ 27 18
27 < Span ≤ 31 21
31 < Span ≤ 36 24
36 < Span ≤ 40 27
40 < Span ≤ 45 30

a Approximate minimum depths for the span ranges indicated.

depth than wide-flange members. Minimum open-web joist depths are
approximately 1.5–2 times that of wide-flange beams.

Hollow Steel Sections

Hollow steel sections (HSS), also known as tube steel, have gained
popularity in structures where the steel is exposed. These sections
are available in both round and rectangular (including square) cross
sections. The yield strength of these sections is usually close to but
slightly less than the 50 ksi assumed for the wide-flange members dis-
cussed in this section. When working on a preliminary structural plan
using HSS, the sizing approximations used for wide-flange members
can still be used.

Example 2. Determine the preliminary structural plan for a 10-story
(plus a roof) steel residential building, which has a rectangular floor
plan with a distance between outside columns of 60 ft × 120 ft
(Figure 4.16). The floor-to-floor height for the building will be 14 ft.
The lateral system will be concentric K braces in the center bays of
the exterior frames.

Solution: The floors and roof of this building will be the diaphragms,
which are used to transfer the lateral loads to the vertical cross bracing,
which in turn will transfer the loads to the foundation. First, we need to
check the dimensions of the diaphragms in order to determine if interior
cross-bracing will be required. The floor plates are 60 ft × 120 ft, which
makes them have a length-to-width ratio of 1 : 2, which is less than the
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120′

60′

Figure 4.16 Floor plan for Example 2.

40′

20′
Joists Wide Flange

Column

Secondary Beam

Primary Beam

13′ - 4′′

Figure 4.17 Partial structural framing plan for Example 2.

1 : 3 maximum required for an optimal diaphragm. This means that no
vertical interior braces will be needed.

The column–beam layout needs to be determined before sizing the
members. The goal is usually to determine the minimum number of
columns required that meet the parameters of the design and the sug-
gested spacing outlined earlier. The 120-ft side of the building can be
divided into three equal bays of 40 ft each. The 60-ft side of the build-
ing could be divided into two equal bays of 30 ft each. However, since
the cross-bracing is to be in the center bay, an odd number of bays
is required; therefore, it will be divided into three bays of 20 ft each
(Figure 4.17). Joists will be required to carry the floor and roof loads
to the primary beams and will be spaced every 13 ft 4 in. (40 ft divided
by 3) apart from each other.
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This project is neither a modest nor a large project as outlined in
Table 4.3. The column spacing of 40 ft makes it a large project, the
10 stories makes it a moderate project, and the column length of 14 ft
makes it a small project. Finally, the live load for apartments and hotels
given in Table 1.3 is that private rooms and corridors to them have a
live load of 40 psf, which would be a modest project, and public rooms
and corridors to them have a live load of 80 psf, which would be a
moderate project. The column dimensions for this project will either
be 10 or 12 in. If all of the public rooms are at the ground level of the
building, 10-in. columns may be most prudent; otherwise one would
go with 12-in. columns.

The primary beams are 40 ft long, which would require a minimum
of 27 in. in depth. If the design will allow for the extra space, 30-in.-
deep beams should be considered for economic reason. The secondary
beams and joists are 20 ft long; therefore, 14-in.-deep beams should
suffice.

The finished structural elevations for this design are illustrated in
Figure 4.18

27 in. deep
Primary Beams

10 or 12 in.
Columns

14 in. deep
Secondary Beams

Figure 4.18 Elevations of the exterior framing for Example 2.



182 STRUCTURAL SYSTEMS AND PLANNING

Problem 4.6.A. Determine a preliminary structural layout and member sizing
for a four-story (plus a roof) steel office building. The floor plan is rectangular
with distances between the outside columns of 250 ft on one side and 350 ft on
the other (similar to Figure 4.16). The lateral resistance for the building should
be provided by concentric K braces (two pairs per elevation) in the corner bays
on each elevation.

Problem 4.6.B. Determine a preliminary structural layout and member sizing
for a steel wide-flange moment frame version of the building in Example 3 in
Section 4.7 (Figure 4.21a).

4.7 CONCRETE CONSTRUCTION

Concrete construction can be achieved with moment frames, shear walls
and diaphragms, or frames with infill shear walls. Concrete can be
precast in a controlled environment and then shipped to the site for
erection or it can formed on-site. This section deals largely with on-site
reinforced concrete, though some of the approximations are appropriate
for precast concrete.

Concrete structural systems compete directly with steel in building
structures. The decision whether to go with steel or concrete is largely
an economic decision made early in the design process based upon
local economic conditions and preliminary structural layouts similar
to those presented in this chapter. Reinforced concrete dimensions are
largely based upon minimum clearances between steel reinforcing bars
and between outer steel bars and formwork. The approximations given
here do not attempt to determine the size or placement of reinforcing
steel but only to determine overall dimensions to aid in the preliminary
design process. Selection of reinforcing steel and the final dimensions
of the concrete are discussed in Part IV.

Column Layout

The frame systems for concrete are similar to those outlined in steel
with floor slabs, joists, primary and secondary beams, and columns
(Figure 4.19). Concrete frame systems can have more variation than
steel, such as a frame (one set of columns and beams) being replaced
by a bearing/shear wall, joists being replaced with a thicker slab, and
moment frames being replaced with smaller frames with infill shear
walls to handle lateral loads. These variations make concrete systems
somewhat harder to layout since many of these variations are made
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Primary Beams

Secondary Beams

Joists

Figure 4.19 Example of slab and beam framing system.

based upon local economic and building practices, which one will not
know until one has practiced in an area for a length of time.

Column spacing for concrete systems is similar to that of steel. The
further the columns are spaced, the deeper the beams. Column spacing
in most concrete frame systems is between 18 and 45 ft.

Column and Wall Dimensions

Concrete columns are usually round, square, or rectangular in
cross section with square and round being the most common. The
dimensions discussed in this section will be the side of square columns
or the diameter of round ones. Practically, reinforced concrete columns
have a minimum dimension of 10 in. and a maximum dimension
of 24 in. Table 4.3 applies to concrete columns as it did for steel
columns. Modest column sizes are 10 or 12 in., moderate sizes are 14,
16, or 18 in., and large sizes are 20, 22, or 24 in. Concrete moment
frames will use the larger sizes in each category, while columns that
are not directly handling lateral forces will use the smaller sizes.
Bearing/shear wall thicknesses will be the same dimensions as a
column of similar project size and typically will use the minimum
dimension.

Beam, Joist, and Floor Slab Dimensions

Beams, joist, and floor slabs are integrated systems with reinforcement
that goes between them and are generally placed in a single pour or
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Beam width

Beam depth

Slab thickness

Figure 4.20 Cross section of a slab and beam system.

lift of concrete. In steel, the slab generally sits on top of the beam,
and there is a clear differentiation where one starts and the other stops.
In concrete construction, there is no clear differentiation and generally
the thickness of each system is measured from the top of the slab
(Figure 4.20).

Beam width is typically the same as the width of the columns that
hold them up. The width can be 2–4 in. greater than the width of the
column in longer beam spans, which requires more steel reinforcing
bars. Joist widths are usually equal to 2 in. less than the secondary
beam widths. The depth of a concrete beam is usually 1.5–2.5 times
its width. The more load and the longer the beam span, the more it
will be likely the depth will be deeper. In general, joist depths will
approximately be equal to 1.5 times their width and beam depth will
be 2 times their width.

In concrete construction, it is sometimes cheaper to build a structure
with joists supporting a thinner slab, and sometimes it is cheaper to
omit the joists and use a thicker slab supported directly by the beams.
This will vary with local building practices and the economics of the
cost of material versus labor. If one is using joists, then they should
be spaced less than 15 ft apart from each other with a slab thickness of
8 in., which is the minimum slab thickness for fire-rated construction.
If joists are omitted, then the slab thickness can be approximated based
on distance between primary beams (Table 4.5).
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TABLE 4.5 Approximate Thicknesses for Concrete Slabsa

Spacing of Supports (ft) Slab Thickness (in.)

10 < Spacing ≤ 15 6
15 < Spacing ≤ 20 8
20 < Spacing ≤ 25 10
25 < Spacing ≤ 30 12
30 < Spacing ≤ 35 14
35 < Spacing ≤ 40 16

a Thicknesses based on spacing of supports as indicated.

Steel Reinforcement

If the purpose of approximating the dimensions of a concrete structure
is to make sure of enough clearances or to begin sizing members, then
there is no reason to approximate the amount of steel reinforcement
that will be necessary. If the purpose is to obtain a preliminary cost
estimate for the structure, then approximating the quantity of reinforce-
ment steel may be necessary. The amount of steel is often given as
a percentage of the concrete used in a given structural member. For
most columns, the percentage of steel is between 1 and 3% of the con-
crete with an average of 2%. For beams and joists the percentage of
steel reinforcement is between 2 and 5.5% with the average being 4%.
Finally, the average amount of steel reinforcement in structural slabs
is approximately 0.25%.

Example 3. Determine a preliminary concrete moment frame system
for the office building in Figure 4.21a . The building has four stories
plus a roof. The floor-to-floor height between the first and second stories
is 24 ft with 15 ft for the upper floors.

Solution: The L-shaped floor plan will create a change in lateral stiff-
ness, which will not effect the preliminary planning but will need to
be considered later in the design process. The diaphragm for the sys-
tem will be investigated as two rectangular diaphragms to determine
whether either is problematic. The first will be the 100- × 210-ft
section, which has a ratio of 1 : 2.1. The second will be the 80 ×
140 ft, which has a ratio of 1 : 1.75. Both of these ratios are less than
the optimal 1 : 3; therefore, the diaphragm should work.
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Figure 4.21 Example 3: (a) basic floor plan and (b) framing layout for the slab
and beam system.

The column and beam layout will not produce equal structural bays
due to the irregularities of the floor plan. The goal to produce a floor
plan with the fewest number of columns is appropriate as long as
the floor-to-floor heights are adequate to handle deeper beams, which
seems to be the case in this example. The 100- × 130-ft segment can
be divided into three bays of 33 ft 4 in. by three bays of 43 ft 4 in.
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(Figure 4.21b). The 100 × 80 ft will be divided into three bays by two
bays of 33 ft 4 in. × 40 ft. The 40- × 80-ft section will be divided
into one bay by two bays of 40 × 40 ft each. Finally, the floor will be
supported on three concrete joists per primary beam.

The columns will be preliminarily sized based upon the parameters
listed in Table 4.3. Most of the column spacing is above 36 ft, which
associates them with large projects. Four stories are associated with
moderate sized projects. The 15-ft and 24-ft column heights are asso-
ciated with a moderate sized project. Finally, according to Table 1.2,
office building live loads are 50 psf for offices, 100 psf for first-floor
lobbies and corridors, and 80 psf for corridors above the first floor,
which are all associated with moderate size projects. Since this is a
moment frame system, the preliminary column size should be 18 in.

Since the project is using beams and joists, the floor slab thickness
will be 8 in., the beams will be 18 × 36 in., and the joists will by 16
× 24 in.

Table 4.6 is used to determine the total amount of concrete and rein-
forcing steel used in this preliminary design and assumes that the first
floor is not slab on grade and the roof member sizes are approximately
the same as the floor members. Using these numbers we can work on
a preliminary pricing based on 38,400 ft3 of concrete and 270 tons of
reinforcing steel. One can also determine the total structural dead load
of 5760 kips or 50 psf of floor or roof, assuming reinforced concrete
weighs 150 lb/ft3. There is a fair amount of overlap in the numbers at
the intersection of various members such as columns and beams, which
should be investigated during further development of the project.

TABLE 4.6 Estimates of Concrete and Steel Quantities for Example 3

Element Quantity of Concrete Average % of Steel Quantity of Steel

Columns 2.25 ft2 × 108 ft × 27 columns 2% 131 ft3 (32 tons)
= 6560 ft3

Beams 4.5 ft2 × 920 ft × 5 floors 4% 828 ft3 (202 tons)
= 20,700 ft3

Joists 2.37 ft2 × 1160 ft × 5 floors 4% 124 ft3 (30 tons)
= 3090 ft3

Slabs 0.67 ft3 × 24,200 ft2 × 5 floors 0.25% 20.2 ft3 (5 tons)
= 8070 ft3

Totals 38,400 ft3 (2765 tons) 1100 ft3 (267 tons)
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Problem 4.7.A. Rework Example 3 assuming the use of a reinforced concrete
frame with concrete masonry unit (CMU) infill shear walls on the exterior of
the building. How much concrete and steel was saved? How much additional
structural dead load was added by the CMU, assuming that the CMU is an
8-in. reinforced block that covers 60% of the buildings exterior walls between
the columns and the beams.

Problem 4.7.B. Rework Example 2 in Section 4.6 as concrete moment frame
construction.



II
WOOD CONSTRUCTION

Wood has long been the structural material of choice in the United
States whenever conditions permit its use. For small buildings—where
fire codes permit—it is extensively used. As with other building prod-
ucts, elements of wood used for building structures are produced in
a highly developed industrialized production system and the quality
of the materials and products is considerably controlled. In addition
to the many building codes, there are several organizations in the
United States that provide standards for the design of wood products.
The work in this part is based primarily on one of these standards,
the National Design Specification for Wood Construction , published
by the American Forest and Paper Association (Ref. 3), herein referred
to as the NDS .
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5

WOOD SPANNING
ELEMENTS

This chapter deals with applications of wood products for the devel-
opment of spanning structures for building roofs and floors. Spanning
systems used for roofs and floors commonly employ a variety of wood
products. The solid wood material, cut directly from logs (here called
solid-sawn), is used as standard-sized structural lumber, such as the
all-purpose 2 by 4 (here also called 2 × 4). Solid pieces can be mechan-
ically connected and assembled to form various structures and can be
glued together to form glued-laminated products.

A widely used product is the plywood panel, formed by gluing
together three or more very thin plies of wood and used extensively
for wall sheathing or for roof and floor decking. This reconstitution
of the basic wood material essentially retains the grain character both
structurally and for surface appearance.
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A more extensive reconstitution involves the use of the basic wood
fiber reduced to small pieces and adhered with a binding matrix to form
fiber products such as paper, cardboard, and particleboard. Because
of the major commercial use of paper products, the fiber industry is
strongly established and application of wood fiber products for building
construction advances steadily. Wood fiber paneling is slowly replacing
plywood and wood boards in many applications.

5.1 STRUCTURAL LUMBER

Structural lumber consists of solid-sawn, standard-sized elements pro-
duced for various construction applications. Individual pieces of lumber
are marked for identification as to wood species (type of tree of origin),
grade (quality), size, usage classification, and grading authority. On the
basis of this identity, various structural properties are established for
engineering design.

Aside from the natural properties of the species (tree), the most
important factors that influence structural grading are density (unit
weight), basic grain pattern (as sawn from the log), natural defects
(knots, checks, splits, pitch pockets, etc.), and moisture content.
Because the relative effects of natural defects vary with the size of
sawn pieces and the usage application, structural lumber is classified
with respect to its size and use. Incorporating these and other
considerations, the four major classifications are: (Note that nominal
dimensions , as explained in Appendix A, are used here.)

1. Dimension Lumber. Sections with thickness of 2 to 4 in. and width
of 2 in. or more (includes most studs, rafters, joists, and planks).

2. Beams and Stringers. Rectangular sections 5 in. or more in thick-
ness with width 2 in. or more greater than thickness, graded for
strength in bending when loaded on the narrow face.

3. Posts and Timbers. Square or nearly square sections, 5 × 5 or
larger, with width not more than 2 in. greater than thickness,
graded primarily for use as compression elements with bending
strength not especially important.

4. Decking. Lumber from 2 to 4 in. thick, tongued and grooved or
splined on the narrow face, and graded for flat application (mostly
as plank deck).
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Design data and standards for structural lumber is provided in the
publications of the wood industry, such as the NDS.

A broad grouping of trees identifies them as softwoods or hard-
woods. Softwoods such as pine, fir, and redwood, mostly come from
trees that are coniferous or cone-bearing, whereas hardwoods come
mostly from trees that have broad leaves, as exemplified by oaks and
maples. Two species of trees used extensively for structural lumber in
the United States are Douglas fir and Southern pine, both of which are
classified among softwoods.

Dimensions

As discussed in Appendix A, structural lumber is described in terms
of a nominal size, which is slightly larger than the true dimensions
of pieces. However, properties for structural computations, as given in
Appendix Table A.8, are based on the true dimensions, which are also
listed in the table.

For the sake of brevity, we have omitted metric units from the text
and the tabular data.

5.2 REFERENCE DESIGN VALUES FOR ALLOWABLE
STRESS DESIGN

There are many factors to be considered in determining the unit stresses
to be used for the design of wood structures. Extensive testing has
produced values known as reference design values. To obtain values
for design work, the base values are modified for considerations such
as loss of strength from defects, the size and position of knots, the size
of standard dimension members, the degree of density of the wood,
and the condition of seasoning or specific value of moisture content
of the wood at the time of use. For specific uses of the structure,
modifications may be made for considerations such as load duration,
direction of stress with respect to the wood grain, and the type of
structural element. Separate groups of design values are established for
decks, closely spaced rafters and joists, large-dimension beams, and
posts (columns).

Table 5.1 gives reference design values to be used for ordinary allow-
able stress design. It is adapted from the NDS (Ref. 3) and gives data
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for one popular wood species: Douglas fir–larch. To obtain values from
the table the following is determined:

1. Species. The NDS publication lists values for several different
species, only one of which is included in Table 5.1.

2. Moisture Condition at Time of Use. The moisture condition corre-
sponding to the table values is given with the species designation
in the table. Adjustments for other conditions are described in
the table footnotes or in various specifications in the NDS.

3. Grade. This is indicated in the first column of the table and is
based on visual grading standards.

4. Size and Use. The second column of the table identifies size
ranges or usages of the lumber.

5. Structural Function. Individual columns in the table yield val-
ues for various stress conditions. The last two columns yield the
material modulus of elasticity.

In the reference document there are extensive footnotes for this table.
Data from Table 5.1 is used in various example computations in this
book and some issues treated in the document footnotes are explained.
In many situations there are modifications (or adjustments, as they are
called in the NDS ) to the design values, as will be explained later.
Referred to in a footnote to Table 5.1, Table 5.2 yields adjustment
factors for dimension lumber and decking based on the dimensions of
the piece.

Bearing Stress

There are various situations in which a wood member may develop a
contact bearing stress, essentially, a surface compression stress. Some
examples are the following:

1. At the base of a wood column supported in direct bearing. This is
a case of bearing stress that is in a direction parallel to the grain.

2. At the end of a beam that is supported by bearing on a support.
This is a case of bearing stress that is perpendicular to the grain.

3. Within a bolted connection at the contact surface between the
bolt and the wood at the edge of the bolt hole.

4. In a timber truss where a compression force is developed by direct
bearing between the two members. This is frequently a situation
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involving bearing stress that is at some angle to the grain other
than parallel or perpendicular. Common in the past, this form of
joint is seldom used today.

For connections, the bearing condition is usually incorporated into
the general assessment of the unit value of connecting devices. The
situation of stress at an angle to the grain requires the determination of
a compromise value somewhere between the allowable values for the
two limiting stress conditions for stresses parallel and perpendicular to
the wood grain.

TABLE 5.2 Size Adjustment Factors (CF) for Dimension Lumber, Decking,
and Timber

Dimension Lumber

Thickness (breadth), Fb

Grades Width (depth) 2 in. & 3 in. 4 in. Ft Fc

Select structural, 2, 3, 4 in. 1.5 1.5 1.5 1.15
No. 1 and better, 5 in. 1.4 1.4 1.4 1.1
No. 1, No. 2, No. 3 6 in. 1.3 1.3 1.3 1.1

8 in. 1.2 1.3 1.2 1.05
10 in. 1.1 1.2 1.1 1.0
12 in. 1.0 1.1 1.0 1.0
14 in. and wider 0.9 1.0 0.9 0.9

Stud 2, 3, and 4 in. 1.1 1.1 1.1 1.05
5 and 6 in. 1.0 1.0 1.0 1.0
8 in. and wider Use No. 3 grade values and size factors

Decking

2 in. 3 in.

1.10 1.04

Beams and Stringers—Loads Applied to Wide Face
Grade Fb E and E min Other Properties

Select structural 0.86 1.0 1.0
No. 1 0.74 0.9 1.0
No. 2 1.0 1.0 1.0

Timbers, d > 12 in. CF = (12/d )1/9 for Fb only

Source: Data adapted from National Design Specification (NDS ) for Wood Construction , 2005
edition (Ref. 3), with permission of the publisher, American Forest and Paper Association.
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Adjustment of Design Values

The values given in Table 5.1 are basic references for establishing the
allowable values to be used for design. The table values are based
on some defined norms, and in many cases the design values will be
adjusted for actual use in structural computations. In some cases the
form of the modification is a simple increase or decrease achieved
by a percentage factor. Table 5.3 lists the various types of adjustment
and indicates their applicability to various reference design values. The
types of adjustment factors are described in the following discussions.

Load Duration Factor, CD. The Table 5.1 values are based on
so-called normal duration loading, which is actually somewhat mean-
ingless. Increases are permitted for very short duration loading, such as
wind and earthquakes. A decrease is required when the critical design
loading is a long time in duration (such as a major dead load). Table 5.4
gives a summary of the NDS requirements for modifications for load
duration.

Wet Service Factor, CM. The NDS document on which Table 5.1
is based defines a specific assumed moisture content on which the

TABLE 5.3 Applicability of Adjustment Factors for Sawn Lumber, ASD

Fb Ft Fv Fc⊥ Fc E E min

ASD Only
Load duration CD CD CD — CD — —

ASD and LRFD
Wet service CM CM CM CM CM CM CM

Temperature Ct Ct Ct Ct Ct Ct Ct

Beam stability CL — — — — — —
Size CF CF — — CF — —
Flat use C fu — — — — — —
Incising Ci Ci Ci Ci Ci Ci Ci

Repetitive member Cr — — — — — —
Column stability — — — — CP — —
Buckling stiffness — — — — — — CT

Bearing area — — — Cb — — —

LRFD Only
Format conversion KF KF KF KF KF — KF

Resistance φb φt φv φc φc — φs

Time effect λ λ λ λ λ — —
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TABLE 5.4 Adjustment Factors for Design Values for Structural Lumber
Due to Load Duration, CD

a

Load Duration Multiply Design Values by: Typical Design Loads

Permanent 0.9 Dead load
Ten years 1.0 Occupancy live load
Two months 1.15 Snow load
Seven days 1.25 Construction load
Ten minutes 1.6 Wind or earthquake load
Impactb 2.0 Impact load

Source: Data adapted from National Design Specification (NDS ) for Wood Construction, 2005
edition (Ref. 3), with permission of the publisher, American Forest and Paper Association.
a These factors shall not apply to reference modulus of elasticity E , to reference modulus of elasticity
for beam and column stability E min, nor to compression perpendicular to the grain reference design
values Fcζ based on a deformation limit.
b Load duration factors greater than 1.6 shall not apply to structural members pressure treated with
water-borne preservatives or fire retardant chemicals. The impact load duration factor shall not apply
to connections.

table values are based. Increases may be allowed for wood that is
specially cured to a lower moisture content. If exposed to weather or
other high-moisture conditions, a reduction may be required.

Temperature Factor, Ct. Where prolonged exposure to tempera-
tures over 150◦F exists, design values must be reduced. The adjustment
factor varies for different reference values and includes consideration
for moisture condition and exposure of the wood.

Beam Stability Factor, CL. Design flexural stress must be adjusted
for conditions of potential buckling. The general situation of buckling
and the remedies for its prevention are discussed in Section 3.11.

Size Factor, CF. For dimension lumber, adjustments for size are
made for design stresses of bending, shear, and tension as described
in Table 5.2. For beams 5 in. or thicker, with depth exceeding 12 in.,
adjustment of bending stress is made as described in Section 5.4. Other
adjustments may be required for columns and for beams loaded for
bending on their wide face.

Flat Use Factor, Cfu. When sawn lumber 2 to 4 in. thick is loaded
on the wide face (as a plank), adjustments are required as described in
the NDS references for Table 5.1.
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Incising Factor, Ci. Incising refers to small indentation-form cuts
made on the surface of lumber that is treated by impregnation of chem-
icals for the enhancement of resistance to fire or rot. A reduction of all
reference values is required for this condition.

Repetitive Member Factor, Cr. When wood beams of dimension
lumber (mostly joists and rafters) are closely spaced and share a load,
they may be eligible for an increase of 15% in reference design val-
ues; this condition is described as repetitive member use. To qualify,
the members must be not less than three in number, must support a
continuous deck, must be not over 24 in. on center, and must be joined
by construction that makes them share deflections (usually bridging or
blocking). This increase is also permitted for built-up beams formed by
direct attachment of multiple-dimension lumber elements.

The following example illustrates the application of the beam design
procedure for the case of a roof rafter.

Example 1. Rafters of Douglas fir–larch, No. 2 grade, are to be used
at 16 in. spacing for a span of 20 ft. Solid wood blocking is provided
for nailing of the plywood deck panels. Live load without snow is
20 psf and the total dead load, including the rafters, is 15 psf. Find the
minimum size for the rafters, based only on bending stress.

Solution: At this spacing the rafters qualify for the increased bend-
ing stress described as repetitive member use. For the No. 2 grade
rafters, the reference value from Table 5.1 for Fb is 900 psi. The loading
condition as described (live load without snow) qualifies the situa-
tion with regard to load duration for an adjustment factor of CD =
1.25 (see Table 5.4). This live load is usually considered to provide
for temporary conditions during roof construction or maintenance and
is of short duration. The allowable bending stress for design is thus
modified as

F ′
b = Cr CD Fb = (1.15)(1.25)Fb = (1.15)(1.25)(900) = 1294 psi

For the rafters at 16-in. spacing, the maximum bending moment is

M = wL2

8
=

( 16
12

)
(20 + 15)(20)2

8
= 2333 ft-lb
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and the required section modulus is

S = M

F ′
b

= 2333 × 12

1294
= 21.64 in.3

From Table A.8, the smallest section with this property is a 2 × 12,
with an S of 31.64 in.3. Note that the allowable stress is not changed
by Table 5.2 as the table factor is 1.0. Lateral bracing for rafters is
discussed in Section 5.4.

Column Stability Factor, CP. This adjustment is performed in
the typical processes of investigation and design of wood columns,
which is discussed in Chapter 6. Most often, an adjustment consisting
of a reduction of permissible compression stress parallel to the grain is
required for relatively slender columns.

Buckling Stiffness Factor, CT. This adjustment is made only for
the modified modulus of elasticity, E min, in certain situations involving
wood members subjected to combined compression and bending. Its
principal application is in the design of the top chords of wood trusses.

Bearing Area Factor, Cb. This factor is provided for the special
case of bearing perpendicular to the grain when the length of bearing
is very small. This applies primarily to situations where bearing is
transferred from a wood member to a steel plate or washer. The NDS
provides a formula for determination of an adjusted design stress for
these situations.

Adjustments for the LRFD Method. The group of adjustments
given at the bottom of Table 5.3 is designated as being for use with
the LRFD method only. Use of these adjustments is described in
Section 5.3.

Modulus of Elasticity

As discussed in Section 3.8, the modulus of elasticity is a measure of
the relative stiffness of a material. For wood, two reference values are
used for the modulus of elasticity. The basic reference value is des-
ignated E and is the value used for ordinary deformations—primarily
the deflection of beams. The other value is designated E min and it is
used for stability computations involving the buckling of beams and
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columns. Values for the stability modulus of elasticity are given in the
last column in Table 4.1. Applications for determination of buckling
effects in columns are presented in Chapter 6.

5.3 DESIGN CONTROLS FOR LOAD AND RESISTANCE
FACTOR DESIGN

For the allowable stress design method (ASD), the concentration—as
its name implies—is on maximum developed stress levels as produced
by the service loads. The maximum permissible stresses are specified
and adjusted for various circumstances. These limiting stress levels are
then used to produce a limiting force action (shear, bending, bearing,
etc.), and the result is compared to the maximum action produced by
the loading.

For the LRFD method, the same relationships are used, except that
the loads are quantified as factored loads (ultimate loads) and the lim-
iting force action is a defined failure limit. The failure limit is defined
as the adjusted resistance and is designated with the superscript prime,
such as M ′ for adjusted moment resistance. For design purposes, the
relationship between the resistance and the load effect is defined as

λφbM ′ ≥ Mu

where λ = time effect factor, see Table 5.7
φb = resistance factor, 0.85 for bending, see Table 5.6
M ′ = adjusted resisting moment
Mu = maximum moment, due to the factored loading

One approach—as defined by the NDS (Ref. 3)—is to define the
resisting moment (or shear, bearing, etc.) as one produced in the same
manner as that derived by the ASD method, except that an adjusted
level of stress is used. The adjustment factors (KF) are those given in
Table 5.5, referring to the defined stress values listed in Table 5.1. It
is customary to use stress units of pounds with the ASD method but
to use units of kips with the LRFD method, thus the inclusion of the
1000 factor in the adjustment.

Resistance factors φ are as given in Table 5.6. They vary, depending
on the type of behavior being considered.

The time effect factor λ is given in Table 5.7. It varies for the
different load combinations used to find the required ultimate resistance.
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TABLE 5.5 Adjustment Factors for LRFD Using ASD Reference
Design Values

Conversion Factora

Property for (ASD to LRFD) KF

Bending, Fb 2.16/1000φb

Tension, Ft 2.16/1000φt

Shear, Fv 2.16/1000φv

Compression parallel to grain, Fc 2.16/1000φc

Compression perpendicular to grain, Fc⊥ 1.875/1000φc

Connections 2.16/1000φz

Modulus of elasticity for stability, E min 1.5/1000φs

Source: Adapted from data in the National Design Specification (NDS ) for Wood Construction
(Ref. 3), with permission of the publisher, American Forest and Paper Association.
a Produces unit values in kips when ASD values are in pounds.

TABLE 5.6 Resistance Factors for Wood Structures, LRFD

Symbol Property Value

φb Flexure (bending) 0.85
φc Compression, bearing 0.90
φt Tension 0.80
φv Shear 0.75
φs Stability, E min 0.85
φz Connections 0.65

Source: Adapted from data in the National Design Specification (NDS ) for Wood Construction
(Ref. 3), with permission of the publisher, American Forest and Paper Association.

TABLE 5.7 Load Combinations and Time Effect Factors, LRFD

Load Combination Time Effect Factor, λ

1.4(Dead load) 0.6
1.2(Dead load) + 1.6(Live load):

When live load is from storage 0.7
When live load is from occupancy 0.8
When live load is from impact 1.25

1.2(Dead load) + 1.6(Wind load) + Live load + 0.5(Roof load) 1.0
1.2(Dead load) + 1.6(Roof load) + 0.8(Wind load) 0.8
1.2(Dead load) + Earthquake load + Live load 1.0

Source: Adapted from data in the National Design Specification (NDS) for Wood Construction
(Ref. 3), with permission of the publisher, American Forest and Paper Association.
Note: The reference document contains several additional combinations.
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Care must be taken when using the adjustment factors to assure that
the ASD reference design value is not modified by the factor for load
duration (CD). For the LRFD method this adjustment is made by use
of the λ factor.

Use of this process is discussed in Section 5.8. Uses of the LRFD
procedures for other applications are discussed in later chapters of
this book.

5.4 DESIGN FOR BENDING

The design of a wood beam for strength in bending is accomplished
by use of the flexure formula (Section 3.6). The form of this equation
used in design is

S = M

Fb

where M = maximum bending moment
Fb = allowable bending stress
S = required beam section modulus

Beams must be considered for shear, deflection, end bearing, and
lateral buckling, as well as for bending stress. However, a common
procedure is to first find the beam size required for bending and then
to investigate for other conditions. Such a procedure is as follows:

1. Determine the maximum bending moment.

2. Select the wood species and grade of lumber to be used.
3. From Table 5.1 determine the basic allowable bending stress.

4. Consider appropriate modifications for the design stress value to
be used.

5. Using the allowable bending stress in the flexure formula, find
the required section modulus.

6. Select a beam size from Table A.8.

7. Investigate for applicable concerns, other than bending.

Example 2. A simple beam has a span of 16 ft [4.88 m] and supports
a total uniformly distributed load, including its own weight, of 6500 lb
[28.9 kN]. Using Douglas fir–larch, select structural grade, determine
the size of the beam with the least cross-sectional area on the basis of
limiting bending stress.
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Solution: The maximum bending moment for this condition is

M = WL

8
= 6500 × 16

8
= 13,000 ft-lb [17.63 kN-m]

The next step is to use the flexure formula with the allowable stress
to determine the required section modulus. A problem with this is
that there are two different size/use groups in Table 5.1, yielding two
different values for the allowable bending stress. Assuming single mem-
ber use, the part listed under “Dimension Lumber” yields a stress of
1500 psi for the chosen grade, while the part under “Timber, Beams
and Stringers” yields a stress of 1600 psi. Using the latter category, the
required value for the section modulus is

S = M

Fb
= 13,000 × 12

1600
= 97.5 in.3

[
1.60 × 106 mm3]

while the value for Fb = 1500 psi may be determined by proportion as

S = 1600

1500
× 97.5 = 104 in.3

From Table A.8, the smallest members in these two size cat-
egories are: 4 × 16 (S = 135.661 in.3, A = 53.375 in.2) and 6 × 12
(S = 121.229 in.3, A = 63.25 in.2). For the 4 × 16 the allowable stress
is not changed by Table 5.2 as the factor from the table is 1.0. Thus,
the 4 × 16 is the choice for the least cross-sectional area, in spite of
having the lower value for bending stress.

Size Factors for Beams

Beams greater than 12 in. in depth, with thickness of 5 in. or more,
have reduced values for the maximum allowable bending stress. This
reduction is achieved with a reduction factor determined as

CF =
(

12

d

)1/9

Values for this factor for standard lumber sizes are given in Table 5.8.
For the preceding example, neither section qualifies for size reduction
modification.
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TABLE 5.8 Size Factors for Solid-Sawn
Beams, CF

Actual Beam Depth

(in.) (mm) CF

13.5 343 0.987
15.5 394 0.972
17.5 445 0.959
19.5 495 0.947
21.5 546 0.937
23.5 597 0.928

Lateral Bracing

Design specifications provide for the adjustment of bending capacity or
allowable bending stress when a member is vulnerable to a compression
buckling failure. To reduce this effect, thin beams (mostly joists and
rafters) are often provided with bracing that is adequate to prevent
both lateral (sideways) buckling and torsional (rollover) buckling. The
NDS requirements for bracing are given in Table 5.9. If bracing is not
provided, a reduced bending capacity must be determined from rules
given in the specifications.

Common forms of bracing consist of bridging and blocking. Bridg-
ing consists of crisscrossed wood or metal members in rows. Blocking

TABLE 5.9 Lateral Support Requirements for Rectangular
Sawn-Wood Beams

Ratio of Depth
to Breadth (d/b)a Required Conditions to Avoid Reduction of Bending Stress

d/b ≤ 2 No lateral support required.
2 < d/b ≤ 4 Ends held in position to prevent rotation or lateral displacement.
4 < d/b ≤ 5 Compression edge held in position for entire span, and ends held

in position to prevent rotation or lateral displacement.
5 < d/b ≤ 6 Compression edge held in position for entire span, ends held in

position to prevent rotation or lateral displacement, and
bridging or blocking at intervals not exceeding 8 ft.

6 < d/b ≤ 7 Both edges held in position for entire span, and ends held in
position to prevent rotation or lateral displacement.

Source: Adapted from data in National Design Specification (NDS ) for Wood Construction
(Ref. 3), with permission of the publisher, American Forest and Paper Association.
a Ratio of nominal dimensions for standard sections.
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consists of solid, short pieces of lumber the same size as the framing;
these are fit tightly between the members in rows.

Problem 5.4.A. No. 1 grade of Douglas fir–larch is to be used for a series of
floor beams 6 ft [1.83 m] on center, spanning 14 ft [4.27 m]. If the total uni-
formly distributed load on each beam, including the beam weight, is 3200 lb
[14.23 kN], select the section with the least cross-sectional area based on bend-
ing stress.

Problem 5.4.B. A simple beam of Douglas fir–larch, select structural grade, has
a span of 18 ft [5.49 m] with two concentrated loads of 4 kips [13.34 kN] each
placed at the third points of the span. Neglecting its own weight, determine the
size of the beam with the least cross-sectional area based on bending stress.

Problem 5.4.C. Rafters are to be used on 24-in. [610 mm] centers for a roof
span of 16 ft. [4.88 m]. Live load is 20 psf [0.96 kPa] (without snow) and the
dead load is 15 psf [0.69 kPa], including the weight of the rafters. Find the
rafter size required for Douglas fir–larch of (a) No. 1 grade and (b) No. 2
grade, based on bending stress.

5.5 BEAM SHEAR

As discussed in Section 3.7, the maximum beam shear stress for the
rectangular sections ordinarily used for wood beams is expressed as

fv = 1.5V

A

where fv = maximum unit horizontal shear stress, in psi
V = total vertical shear force at the section, in lb
A = cross-sectional area of the beam, in in.2

Wood is relatively weak in shear resistance, with the typical failure
producing a horizontal splitting of the beam ends. This is most fre-
quently only a problem with heavily loaded beams of short span, for
which bending moment may be low but the shear force is high. Because
the failure is one of horizontal splitting, it is common to describe this
stress as horizontal shear in wood design, which is how the allowable
shear stress is labeled in Table 5.1.

Example 3. A 6 × 10 beam of Douglas fir–larch, No. 2 grade, has a
total horizontally distributed load of 6000 lb [26.7 kN]. Investigate for
shear stress.
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Solution: For this loading condition the maximum shear at the beam
end is one half of the total load, or 3000 lb [13.3 kN]. Using the true
dimensions of the section from Table A.8, the maximum stress is

fv = 1.5V

A
= 1.5 × 3000

52.25
= 86.1 psi [0.594 MPa]

Referring to Table 5.1, under the classification “Beams and Stringers,”
the allowable stress is 170 psi. The beam is therefore adequate for this
loading condition.

For uniformly loaded beams that are supported by end bearing, the
code permits a reduction in the design shear force to that which occurs
at a distance from the support equal to the depth of the beam.

Note: In the following problems use Douglas fir–larch and neglect the
beam weight.

Problem 5.5.A. A 10 × 10 beam of select structural grade supports a single
concentrated load of 10 kips [44.5 kN] at the center of the span. Investigate the
beam for shear.

Problem 5.5.B. A 10 × 14 beam of dense select structural grade is loaded
symmetrically with three concentrated loads of 4300 lb [19.13 kN], each placed
at the quarter points of the span. Is the beam safe for shear?

Problem 5.5.C. A 10 × 12 beam of No. 2 dense grade is 8 ft [2.44 m] long and
has a concentrated load of 8 kips [35.58 kN] located 3 ft [0.914 m] from one
end. Investigate the beam for shear.

Problem 5.5.D. What should be the nominal cross-sectional dimensions for the
beam of least weight that supports a total uniformly distributed load of 12 kips
[53.4 kN] on a simple span and consists of No. 1 grade? Consider only the
limiting shear stress.

5.6 BEARING

Bearing occurs at beam ends when a beam sits on a support or when a
concentrated load is placed on top of a beam within the span. The
stress developed at the bearing contact area is compression that is
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perpendicular to the grain, for which an allowable value (Fc⊥) is given
in Table 5.1.

Although the design values given in the table may be safely used,
when the bearing length is quite short, the maximum permitted level of
stress may produce some indentation in the edge of the wood member.
If the appearance of such a condition is objectionable, a reduced
stress is recommended. Excessive deformation may also produce
some significant vertical movement, which may be a problem for the
construction.

Example 4. An 8 × 14 beam of Douglas fir–larch, No. 1 grade, has
an end bearing length of 6 in. [152 mm]. If the end reaction is 7400 lb
[32.9 kN], is the beam safe for bearing?

Solution: The developed bearing stress is equal to the end reaction
divided by the product of the beam width and the length of bearing.
Thus

fc = bearing force

contact area
= 7400

7.5 × 6
= 164 psi [1.13 MPa]

This is compared to the allowable stress of 625 psi [4.31 MPa] from
Table 5.1, which shows the beam to be quite safe.

Example 5. A 2 × 10 rafter cantilevers over and is supported by the
2 × 4 top plate of a stud wall. The load from the rafter is 800 lb
[3.56 kN]. If both the rafter and the plate are No. 2 grade, is the situation
adequate for bearing?

Solution: The bearing stress is determined as

f = 800

1.5 × 3.5
= 152 psi [1.05 MPa]

This is considerably less than the allowable stress of 625 psi [4.31 MPa],
so the bearing is safe.

Example 6. A two-span 3 × 12 beam of Douglas fir–larch, No. 1 grade,
bears on a 3 × 14 beam at its center support. If the reaction force is
4200 lb [18.7 kN], is this safe for bearing?
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Solution: Assuming the bearing to be at right angles, the stress is

f = 4200

2.5 × 2.5
= 672 psi [4.63 MPa]

This is slightly in excess of the allowable stress of 625 psi [4.31 MPa].

Problem 5.6.A. A 6 × 12 beam of Douglas fir–larch, No. 1 grade, has 3 in. of
end bearing to develop a reaction force of 5000 lb [22.2 kN]. Is the situation
adequate for bearing?

Problem 5.6.B. A 3 × 16 rafter cantilevers over a 3 × 16 support beam. If both
members are of Douglas fir–larch, No. 1 grade, is the situation adequate for
bearing? The rafter load on the support beam is 3000 lb [13.3 kN].

5.7 DEFLECTION

Deflections in wood structures tend to be most critical for rafters and
joists, where span-to-depth ratios are often pushed to the limit. How-
ever, long-term high levels of bending stress can also produce sag,
which may be visually objectionable or cause problems with the con-
struction. In general, it is wise to be conservative with deflections of
wood structures. Push the limits and you will surely get sagging floors
and roofs and possibly very bouncy floors. This may in some cases
make a strong argument for use of glued-laminated beams or even
steel beams.

For the common uniformly loaded beam, the deflection takes the
form of the equation

� = 5WL3

384EI

Substitutions of relations between W, M, and flexural stress in this
equation can result in the form

� = 5L2fb
24Ed

Using average values of 1500 psi for fb and 1500 ksi for E , the
expression reduces to

� = 0.03L2

d
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where � = deflection, in in.
L = span, in ft
d = beam depth, in in.

Figure 5.1 is a plot of this expression with curves for nominal dimen-
sions of depth for standard lumber. For reference the lines on the graph
corresponding to ratios of deflection of L/180, L/240, and L/360 are

Figure 5.1 Deflection of wood beams. Assumed conditions: maximum bending
stress of 1500 psi and modulus of elasticity of 1,500,000 psi.
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shown. These are commonly used design limitations for total load and
live-load deflections, respectively. Also shown for reference is the lim-
iting span-to-depth ratio of 25 to 1, which is commonly considered to
be a practical span limit for general purposes. For beams with other
values for bending stress and modulus of elasticity, true deflections can
be obtained as follows

True � = true fb
1500

× 1,500,000

true E
× � from graph

The following examples illustrate problems involving deflection.
Douglas fir–larch is used for these examples and for the problems
that follow them.

Example 7. An 8 × 12 wood beam with E = 1,600,000 psi is used to
carry a total uniformly distributed load of 10 kips on a simple span of
16 ft. Find the maximum deflection of the beam.

Solution: From Table A.8 find the value of I = 950 in.4 for the
8 × 12 section. Then, using the deflection formula for this loading

� = 5WL3

384EI
= 5 × 10,000 × (16 × 12)3

384 × 1,600,000 × 950
= 0.61 in. [15.5 mm]

Or, using the graph in Figure 5.1,

M = WL

8
= 10,000 × 16

8
= 20,000 ft-lb [27.1 kN-m]

fb = M

S
= 20,000 × 12

165
= 1455 psi [10 MPa]

From Figure 5.1, � = approximately 0.66 in. Then

� = 1455

1500
× 1,500,000

1,600,000
× 0.66 = 0.60 in. [15.2 mm]

which shows reasonable agreement with the computed value.

Example 8. A beam consisting of a 6 × 10 section with E =
1,400,000 psi spans 18 ft and carries two concentrated loads. One load
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is 1800 lb and is placed at 3 ft from one end of the beam, and the
other load is 1200 lb, placed at 6 ft from the opposite end of the beam.
Find the maximum deflection due only to the concentrated loads.

Solution: For an approximate computation, use the equivalent uniform
load method, consisting of finding the hypothetical total uniform load
that will produce a moment equal to the actual maximum moment in
the beam. Then the deflection for uniformly distributed load may be
used with this hypothetical (equivalent uniform) load. Thus,

If M = WL

8
then W = 8M

L

For this loading the maximum bending moment is 6600 ft-lb (the
reader should verify this by the usual procedures), and the equivalent
uniform load is thus

W = 8M

L
= 8 × 6600

18
= 2933 lb [13 kN]

and the approximate deflection is

� = 5WL3

384EI
= 5 × 2933 × (18 × 12)3

384 × 1,400,000 × 393
= 0.70 in. [17.8 mm]

As in the previous example, the deflection could also be found by
using Figure 5.1, with adjustments made for the true maximum bending
stress and the true modulus of elasticity.
Note: For the following problems, neglect the beam weight and con-
sider deflection to be limited to 1/240 of the beam span. Wood is
Douglas fir–larch.

Problem 5.7.A. A 6 × 14 beam of No. 1 grade is 16 ft [4.88 m] long and sup-
ports a total uniformly distributed load of 6000 lb [26.7 kN]. Investigate the
deflection.

Problem 5.7.B. An 8 × 12 beam of dense No. 1 grade is 12 ft [3.66 m] in
length and has a concentrated load of 5 kips [22.2 kN] at the center of the span.
Investigate the deflection.

Problem 5.7.C. Two concentrated loads of 3500 lb [15.6 kN] each are located
at the third points of a 15-ft [4.57-m] beam. The 10 × 14 beam is of select
structural grade. Investigate the deflection.



214 WOOD SPANNING ELEMENTS

Problem 5.7.D. An 8 × 14 beam of select structural grade has a span of 16 ft
[4.88 m] and a total uniformly distributed load of 8 kips [35.6 kN]. Investigate
the deflection.

Problem 5.7.E. Find the least weight section that can be used for a simple span
of 18 ft [5.49 m] with a total uniformly distributed load of 10 kips [44.5 kN]
based on deflection. Wood is No. 1 grade.

5.8 BEHAVIOR CONSIDERATIONS FOR LRFD

Investigation of beams in the LRFD method uses many of the relation-
ships derived for the ASD method. One difference, of course, is the
use of ultimate load for design rather than service load. The other main
difference has to do with the basic form of expression for the resistance
of the structural member to force effects (bending, shear, bearing). The
ASD method uses a limiting resistance expressed in terms of a safe lim-
iting stress condition. Thus, the limiting resistance is directly related to
service loads. In the LRFD method, resistance is derived in total force
effect form, based on some stress analysis, but expressed in pounds,
foot-pounds, and the like.

One method for handling the LRFD analysis is to use the basic
relationships of the ASD method with adjusted values for stress and
some additional modification factors. Thus, the process is basically an
altered version of the ASD method, but the answers are expressed in
LRFD terms.

Because the numbers tend to get larger in LRFD analysis, it is cus-
tomary to use force in kips and stress in kips per square inch, rather
than the pounds and pounds per square inch used in the ASD method.
This is somewhat arbitrary, but references are developed in this form
so the reader should become accustomed to the practice.

The following discussions treat the topics in the earlier sections of
this chapter, illustrating the applications in the LRFD method.

Shear in Beams

As described in Section 5.5, the total usable shear in a beam, at a given
stress level, may be expressed as

V = 2 fv A

3
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where fv is the defined value for shear stress and A is the area of the
beam cross section for a rectangular beam. For a limiting condition
in the ASD method, the stress used is that obtained from Table 5.1,
designated Fv. This value for stress is actually only the so-called refer-
ence value and is frequently modified for size of the member, moisture
content, and so on. The modified stress is designated F ′

v , and thus the
true usable shear force is expressed as

V = 2F ′
v A

3

For the LRFD method, this expression is modified in two ways. First,
the usable stress is adjusted, as explained in Section 5.3, by using the
adjustment factor from Table 5.5. For shear this factor is 2.16/1000φv ,
for which φv is 0.75 (see Table 5.6). The fully adjusted and modified
shear resistance is then expressed as

λφv V ′ = λφv

[
2

3

(
2.16

1000φv

)
(F ′

v )(A)

]

In this formula the term λ is the time effect factor described in
Section 5.3. This factor depends on the load combination for which
the shear is being determined, and its values are given in Table 5.7 for
seven common load combinations.

The formula for shear is typically used in one of two ways. The
first way involves a beam of determined size for which the usable
ultimate shear resistance is to be established, usually for comparison
to the actual shear in a beam. For this problem the formula is used in
the form above, with λ chosen for the appropriate load combination.
In the design of beams the beam size is often first established on the
basis of flexure, and consideration for shear involves a check on the
beam’s adequacy.

The second way the formula is used is in a design process if it
is desired to find the appropriate size beam based on shear. For this
problem the formula is transformed into an expression of the required
area. This process may be used when a high shear force makes it
possible that shear, and not flexure, may be critical for the beam.

The following two examples illustrate these two problems. The first
example is the same situation as that described for Example 3.
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Example 9. A simple beam with a span of 14 ft [4.27 m] supports
a uniformly distributed dead load of 300 lb/ft [4.38 kN/m] and a uni-
formly distributed live load of 500 lb/ft [7.30 kN/m]. A 10 × 14 beam of
Douglas fir of select structural grade is used. Is the beam safe with
respect to shear stress?

Solution: The first step is to determine the required ultimate shear
force. For the combined dead load and live load the ultimate combina-
tion is

wu = 1.2(300) + 1.6(500) = 1160 lb/ft or 1.16 kips/ft

and the total load on the beam is 1.16(14) = 16.24 kips.
The maximum shear Vu is one half the load, or 8.12 kips. The test

for adequacy involves the satisfaction of the basic LRFD formula

λφv V ′ ≥ Vu

which is to say the factored shear resistance must be equal to or greater
than the ultimate shear. To find the factored shear, we first determine
the adjusted shear stress. Using the formula given above, we find the
reference shear stress from Table 5.1 to be 170 psi, or 0.170 ksi. For
λ, with the combined dead and live loading, Table 5.7 yields a value
of 0.8. The factored shear is thus found as

λφv V ′ = λφv

[
2

3

(
2.16

1000φv

)
(F ′

v )(A)

]

= (0.8)(0.75)

[
2

3

(
2.16

1000(0.75)

)
(170)(128.25)

]

= 25.1 kips [111.6 kN]

As this is greater than the ultimate shear of 8.12 kips, the section is
adequate (or safe).

As with the ASD method, a reduced value of shear may be used
with uniformly loaded beams. This permits the exclusion of the shear
within a distance from the support equal to the beam depth. This will
result in a design value for ultimate shear force of less than 8.12 kips.
Since the section has been demonstrated to be far from critical, this
investigation is not indicated in this situation.
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The following example illustrates the second type of shear problem,
that in which it is desired to determine the size of beam required for a
given shear performance.

Example 10. A 20-ft-span [6.1-m] beam carries a dead load of 160 lb/ft
[2.33 kN/m] and a live load of 240 lb/ft [3.50 kN/m] and is to consist
of Douglas–fir larch, select structural grade. Find the minimum size
for the beam, based on shear resistance.

Solution: The first step involves the determination of the required
ultimate shear force at the end of the beam. The loads are thus adjusted
to factored ones as follows:

wu = 1.2(160) + 1.6(240) = 576 lb/ft or 576/1000 = 0.576 kip/ft

The maximum shear for the simple beam is determined as

Vu = wL

2
= 0.576(20)

2
= 5.76 kips

Assuming a beam depth of 12 in., the reduced shear at beam depth
distance from the support becomes

Vu = 5.76 − 0.576 = 5.184 kips

Using the adjustments for load time and resistance reduction, the
required shear resistance becomes

V ′ = Vu

λφ
= 5.184

(0.8)(0.75)
= 8.64 kips

Using this value for the required shear, we can transform the shear
equation into one for finding A, as follows:

V ′ = 2

3

[
2.16

1000φv
(F ′

v )(A)

]

from which

A = 3

2


 V ′

2.16

1000φv
(F ′

v )


 = 3

2


 8.64

2.16

1000(0.75)
(170)


 = 26.5 in.2
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From Table A.8, sections of 3 × 12, 4 × 10, or 6 × 6 may be used to
obtain this area. The 3 × and 4 × members are in the class of “Dimen-
sion Lumber” in Table 5.1, and thus a slightly larger shear stress
(180 psi) is permitted; still not a critical issue. However, as in many sit-
uations, considerations for bending and deflection require larger (mostly
deeper) sections. Thus, initial design for shear is only justified when
an exceptionally high load is carried on a relatively short span. In this
example, if the load is doubled and the span is cut in half, the critical
shear is approximately the same but bending and deflection are much
less critical.

Problem 5.8.A. A simple beam with a span of 18 ft [5.49 m] supports a uni-
formly distributed dead load of 240 lb/ft [3.50 kN/m] and a uniformly dis-
tributed live load of 480 lb/ft [7.0 kN/m]. An 8 × 16 beam of Douglas–fir larch
of No. 1 grade is used. Is the beam safe with regard to shear force?

Problem 5.8.B. Same as Problem 5.8.A, except span is 24 ft [7.32 m], dead
load is 360 lb/ft [5.25 kN/m], live load is 560 lb/ft [8.17 kN/m], and the section
is a 10 × 20.

Problem 5.8.C. A 10 × 18 in. beam of Douglas–fir larch, dense No. 1 grade,
is used for a 16-ft [4.88 m] span. The beam supports a uniformly distributed
dead load of 160 lb/ft [2.33 kN/m] and three concentrated live loads of 4 kips
[17.8 kN] each at the quarter points of the span (4 ft [1.22 m] on center). Is the
beam safe with respect to shear?

Problem 5.8.D. Same as Problem 5.8.C, except the dead load is 240 lb/ft
[3.50 kN/m], the live load is 6 kips [26.7 kN], the span is 20 ft [6.10 m], and
the section is a 12 × 20.

Bending in Beams

For bending the procedures are essentially the same as described for
shear. The relationship between beam resistance and load-generated
moment is expressed as

λφbM ′ ≥ Mu

where M ′ is expressed as the product of a limiting bending stress
and the beam’s section modulus: M ′ = F ′

bS , where F ′
b is the
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reference value stress for the ASD method, Fb, multiplied by any
applicable adjustment factors. With these substitutions, the moment
equation becomes

λφb

(
2.16

1000φb

)
(F ′

b)(S ) ≥ Mu

As with shear, there are two common types of problems. The first
is an investigation, or a design check , which consists of determining
the moment resistance capacity of a given member and comparing it to
a required, load-generated, ultimate moment. The second problem is a
basic design situation, where the member required for a given ultimate
moment is to be determined. The following examples demonstrate these
problems.

Example 11. A simple beam with a span of 14 ft [4.27 m] supports
a uniformly distributed dead load of 300 lb/ft [4.38 kN/m] and a uni-
formly distributed live load of 500 lb/ft [7.3 kN/m]. A 10 × 14 beam of
Douglas fir–larch of select structural grade is used. Is the beam safe
with respect to bending?

Solution: First, the required ultimate moment is determined. Thus,

wu = 1.2(300) + 1.6(500) = 1160 lb/ft or 1.16 kips/ft

Mu = wL2

8
= 1.16(14)2

8
= 28.42 kip-ft

For the resistance of the beam, the value of S from Table A.8 is
288.563 in.3. From Table 5.1 the design value of Fb is 1600 psi. This
must be modified by any appropriate factors, but it is assumed for this
example that no modification is required. For the situation of dead load
plus live load, λ from Table 5.7 is 0.8. The resistance factor for bending
is 0.85 from Table 5.6. The moment capacity is thus

λφbM ′ = λφb

(
2.16

1000φb
F ′

b

)
(S )

= (0.8)(0.85)

[
2.16

1000(0.85)
(1600)

]
(288.563)

= 798 kip-in. or
798

12
= 66.5 kip-ft
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Since this is considerably greater than the required moment, the beam
is more than adequate.

Example 12. A 20-ft-span [6.1 m] beam carries a dead load of 160 lb/ft
[2.33 kN/m] and a live load of 240 lb/ft [3.5 kN/m] and is to consist of
Douglas fir–larch, select structural grade. Find the minimum size for
the beam, based on bending resistance.

Solution: For the ultimate moment:

wu = 1.2(160) + 1.6(240) = 576 lb/ft or 576/1000 = 0.576 kip/ft

and the ultimate moment is

Mu = wuL2

8
= 0.576(20)2

8
= 28.8 kip-ft

From Table 5.1 Fb = 1600 psi, and

λφbM ′ = λφb

(
2.16

1000φb
F ′

b

)
(S )

= (0.8)(0.85)

[
2.16

1000(0.85)
(1600)

]
(S )

= 2.7648S (in kip-in.)

Equating this to Mu,

Mu = 28.8 kip-ft = 28.8(12) = 345.6 kip-in. = 2.7648S

S = 345.6

2.7648
= 125 in.3

From Table A.8, possible choices are 6 × 14, 8 × 12, and 10 × 10.

Problem 5.8.E. A simple beam with a span of 18 ft [5.49 m] supports a uni-
formly distributed dead load of 240 lb/ft [3.5 kN/m] and a uniformly distributed
live load of 480 lb/ft [7.0 kN/m]. An 8 × 16 beam of Douglas fir–larch of No. 1
grade is used. Is the beam safe with regard to bending?
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Problem 5.8.F. Same as Problem 5.8.E, except span is 24 ft [7.32 m], dead load
is 360 lb/ft [5.25 kN/m], live load is 560 lb/ft [4.29 kN/m], and the section is a
10 × 20.

Problem 5.8.G. A 10 × 18 in. beam of Douglas fir–larch, dense No. 1 grade,
is used for a 16-ft [4.88 m] span. The beam supports a uniformly distributed
dead load of 160 lb/ft [2.33 kN/m] and three concentrated live loads of 4 kips
[17.8 kN] each at the quarter points of the span (4 ft [1.22 m] on center). Is the
beam safe with regard to bending?

Problem 5.8.H. Same as Problem 5.8.G, except the dead load is 240 lb/ft
[3.5 kN/m], the live load is 6 kips [26.7 kN], the span is 20 ft [6.1 m], and
the section is a 12 × 20.

Problem 5.8.I. A simple beam with a span of 22 ft [6.7 m] supports a uni-
formly distributed dead load of 200 lb/ft [2.92 kN/m] and a uniformly dis-
tributed live load of 600 lb/ft [8.75 kN/m]. Douglas fir–larch of No. 1 grade is
to used. Design the beam for bending ignoring the weight of the beam.

Problem 5.8.J. Same as Problem 6.7.I, except the span is 26 ft [7.92 m],
dead load is 300 lb/ft [4.38 kN/m], and live load is 400 lb/ft [5.84 kN/m].

Deflection

In both the ASD and LRFD methods deflections are considered to
occur under the service loads. Computations are thus the same for both
methods.

Bearing

Bearing is treated in the same manner as shear and bending. The bearing
load is a factored load, adjusted stress is used, and the process is similar
in form to that used for shear and bending.

Design Process

The general beam design process is discussed in Section 5.4. The
broadest context for beam design is illustrated in the building design
examples in Chapters 18 and 19.
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5.9 JOISTS AND RAFTERS

Floor joists and roof rafters are closely spaced beams that support floor
or roof decks. They are common elements of the structural system
described as the light wood frame. These may consist of sawn lumber,
light trusses, laminated pieces, or composite elements achieved with
combinations of sawn lumber, laminated pieces, plywood, or particle-
board. The discussion in this section deals only with sawn lumber,
typically in the class called dimension lumber having nominal thick-
ness of 2–4 in. Although the strength of the structural deck is a factor,
spacing of joists and rafters is typically related to the dimensions of
the panels used for decking. The most used panel size is 48 × 96 in.,
from which are derived spacings of 12, 16, 19.2, 24, and 32 in.

Floor Joists

A common form of floor construction is shown in Figure 5.2. The
structural deck shown in the figure is plywood, which produces a top
surface not generally usable as a finished surface. Thus, some finish
must be used, such as the hardwood flooring shown here. More common
now for most interiors is carpet or thin tile, both of which require some
smoother surface than the structural plywood panels, resulting in the
use of underlayment typically consisting of wood fiber panels.

A drywall panel finish (paper-faced gypsum plaster board) is shown
here for the ceiling directly attached to the underside of the joists.
Since the floor surface above is usually required to be horizontally flat,
the same surface can thus be developed for the ceiling. With rafter

Figure 5.2 Typical wood joist floor construction.
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construction for roofs that must normally be sloped, or when more
space is required in the floor/ceiling construction, a separate suspended
structure must be provided for the ceiling.

Lateral bracing for joists is usually provided by the attached deck. If
additional bracing is required (see Table 5.9), it may consist of bridging
as shown in Figure 5.2 or of solid blocking consisting of short pieces
of the joist elements aligned in rows between the joists. If blocking is
used, it will normally be located so as to provide for edge nailing of
the deck panels. This nailing of all the edges of panels is especially
critical when the joist and deck construction is required to serve as a
horizontal diaphragm for wind or seismic forces. (See discussion of
diaphragms in Chapter 18.)

Solid blocking is also used under any supported walls perpendicular
to the joists or under walls parallel to the joists but not directly above a
joist. Any loading on the joist construction other than the usual assumed
dispersed load on the deck should be considered for reinforcement of
the regular joist system. A simple way to give extra local strength to the
system is to double up joists. Doubling of joists is a common practice
at the edges of large openings in the floor.

With the continuous, multiple-span effect of decking, and possible
inclusion of bridging or blocking, there is typically a potential for load
sharing by adjacent joists. This is the basis for classification as a repet-
itive member, permitting an increase of 15% in the allowable bending
stress.

Floor joists may be designed as beams by the procedure illustrated
in Section 5.4. However, the most frequent use of joists in light wood
framing systems is in situations that are well defined in a short range
of conditions. Spans are usually quite short, both dead and live loads
are predictable, and a relatively few wood species and grades are most
commonly used. This allows for the development of tabulated lists of
joist sizes from which appropriate choices can be made. Table 5.10 is
an abbreviated sample of such a table.

Example 13. Using Table 5.10, select joists to carry a live load of
40 psf and a dead load of 10 psf on a span of 15 ft 6 in. Wood is Douglas
fir–larch, No. 2 grade.

Solution: From Table 5.10, possible choices are 2 × 10 at 12 in.,
2 × 12 at 16 in., or 2 × 12 at 19.2 in.
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TABLE 5.10 Maximum Spans for Floor Joists (ft-in.)a

Joist Size

Spacing (in.) 2 × 6 2 × 8 2 × 10 2 × 12

Live load = 40 psf, Dead load = 10 psf, Maximum live-load deflection = L/360

12 10-9 14-2 17-9 20-7
16 9-9 12-7 15-5 17-10
19.2 9-1 11-6 14-1 16-3
24 8-1 10-3 12-7 14-7

Live load = 40 psf, Dead load = 20 psf, Maximum live-load deflection = L/360

12 10-6 13-3 16-3 18-10
16 9-1 11-6 14-1 16-3
19.2 8-3 10-6 12-10 14-10
24 7-5 9-50 11-6 13-4

Source: Compiled from data in the International Building Code (Ref. 4), with permission of the
publisher, International Code Council.
a Joists are Douglas fir–larch, No. 2 grade. Assumed maximum available length of single piece is 26 ft.

Note that the values in Table 5.10 are based on a maximum deflection
of 1/360 of the span under live load. In using the table for the example,
it is also assumed that there is no modification of the reference stress
values. If true conditions are significantly different from those assumed
for Table 5.10, the full design procedure for a beam is required.

Rafters

Rafters are used for roof decks in a manner similar to floor joists.
While floor joists are typically installed dead flat, rafters are commonly
sloped to achieve roof drainage. For structural design it is common to
consider the rafter span to be the horizontal projection, as indicated in
Figure 5.3.

As with floor joists, rafter design is frequently accomplished with the
use of safe load tables. Table 5.11 is representative of such tables and
has been developed from data in the International Building Code (IBC)
(Ref. 4). Organization of the table is similar to that for Table 5.10. The
following example illustrates the use of the data in Table 5.11.

Example 14. Rafters are to be used for a roof span of 16 ft. Live load
is 20 psf; total dead load is 10 psf; live load deflection is limited to
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Figure 5.3 Span of sloping rafters.

TABLE 5.11 Maximum Spans for Rafters (ft-in.)a

Rafter Size

Spacing (in.) 2 × 4 2 × 6 2 × 8 2 × 10 2 × 12

Live load = 20 psf, Dead load = 10 psf, Maximum live-load deflection = L/240

12 9-10 15-6 20-5 25-8 26-0
16 8-11 14-1 18-2 22-3 25-9
19.2 8-5 13-1 16-7 20-3 23-6
24 7-10 11-9 14-10 18-2 21-0

Live load = 20 psf, Dead load = 20 psf, Maximum live-load deflection = L/240

12 9-10 14-4 18-2 22-3 25-9
16 8-6 12-5 15-9 19-3 22-4
19.2 7-9 11-4 14-4 17-7 20-4
24 6-11 10-2 12-10 15-8 18-3

Source: Compiled from data in the International Building Code (Ref. 4), with permission of the
publisher, International Code Council.
a Rafters are Douglas fir–larch, No. 2 grade. Ceiling is not attached to rafters. Assumed maximum
available length of single piece is 26 ft.

1/240 of the span. Find the rafter size required for Douglas fir–larch
of No. 2 grade.

Solution: From Table 5.11, possible choices are for 2 × 8 at 16 in.,
2 × 8 at 19.2 in., or 2 × 10 at 24 in.

Problems 5.9.A–D. Using Douglas fir–larch, No. 2 grade, pick the joist size
required from Table 5.10 for the stated conditions. Live load is 40 psf, dead
load is 10 psf, and deflection is limited to L/360 under live load only.
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Joist Spacing Joist Span
(in.) (ft)

A 16 14
B 12 14
C 16 16
D 12 20

Problems 5.9.E–H. Using Douglas fir–larch, No. 2 grade, pick the rafter size
required from Table 5.11 for the stated conditions. Live load is 20 psf, dead
load is 20 psf, and deflection is limited to L/240 under live load only.

Rafter Spacing Rafter Span
(in.) (ft)

E 16 12
F 24 12
G 16 18
H 24 18

5.10 DECKING FOR ROOFS AND FLOORS

Materials used to produce roof and floor surfaces include the following:

1. Boards of nominal 1-in. thickness solid-sawn wood, typically
with tongue-and-groove edges

2. Solid-sawn wood elements thicker than 1-in. nominal dimension
(usually called planks or planking) with tongue-and-groove or
other edge development to prevent vertical slipping between adja-
cent units

3. Plywood of appropriate thickness for the span and the con-
struction

4. Other panel materials, including those of compressed wood fibers
or particles.

Plank deck is especially popular for roof decks that are exposed to
view from below. A variety of forms of products used for this con-
struction is shown in Figure 5.4. Widely used is a nominal 2-in.-thick
unit, which may be of solid-sawn form (Figure 5.4a) but is now more
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Figure 5.4 Units for board and plank decks.

likely to be of glue-laminated form (Figure 5.4c). Thicker units can be
obtained for considerable spans between supporting members, but the
thinner plank units are most popular.

Plank decks and other special decks are fabricated products pro-
duced by individual manufacturers. Information about their properties
should be obtained from suppliers or the manufacturers. Plywood decks
are widely used where their structural properties are critical. Plywood
is an immensely variable material, although a few selected types are
commonly used for structural purposes.

5.11 PLYWOOD

Plywood is the term used to designate structural wood panels made
by gluing together multiple layers of thin wood veneer (called plies)
with alternate layers having their grain direction at right angles. The
outside layers are called the faces and the others inner plies. Inner plies
with the grain perpendicular to the faces are called crossbands. There
is usually an odd number of plies so that the faces have the grain in
the same direction. For structural applications in building construction,
the common range of panel thickness is from 5/16 to 11/8 in.

The alternating grain direction of the plies gives the panels consid-
erable resistance to splitting, and as the number of plies increases, the
panels become approximately equal in strength in both directions. Thin
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panels may have only three plies, but for most structural applications
plies will number from 5 to 9.

Types and Grades of Plywood

Many different kinds of panels are produced. For structural applications,
the principal distinctions other than panel thickness are the following:

1. Exposure Classification. Panels described as being exterior are
for use where high moisture conditions are enduring, such as out-
door uses and bathrooms, laundry rooms, and other high-moisture
interior spaces. A classification of exterior 1 is for panels where
the end usage is for interior conditions, but the panels may be
exposed to the weather during construction.

2. Structural Rating. Code-approved rated sheathing is identified as
to class for purpose of establishing reference design values. Iden-
tification is established by marking of panels with an indelible
stamp. Information in the stamp designates several properties of
the panel, including basic structural capabilities.

Design Usage Data for Plywood

Data for structural design of plywood may be obtained from industry
publications or from individual plywood manufacturers. Data is also
provided in most building codes. Tables 5.12 and 5.13 are reproductions
of tables in the International Building Code (Ref. 4). These provide data
for the loading and span capabilities of rated plywood panels. Table 5.12
treats panels with the panel face grain perpendicular to the supports,
and Table 5.13 treats panels with the face grain parallel to the supports.
Footnotes to these tables present various qualifications, including some
of the loading and deflection criteria.

Plywood Diaphragms

Plywood deck-and-wall sheathing is frequently utilized to develop
diaphragm actions for resistance to lateral loads from wind or
earthquakes. Considerations for design of both horizontal deck
diaphragms and vertical wall diaphragms (shear walls) are discussed
in Chapter 18. Where both gravity loading and lateral loading must be
considered, choices for the construction must relate to both problems.
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Usage Considerations for Plywood

The following are some of the principal usage considerations for ordi-
nary applications of structural plywood panels.

1. Choice of Thickness and Grade. This is largely a matter of com-
mon usage and building code acceptability. For economy the
thinnest, lowest grade panels will always be used unless vari-
ous concerns require otherwise. In addition to structural spanning
capabilities, concerns may include moisture resistance, appear-
ance of face plies, and fastener holding capability.

2. Modular Supports. With the usual common panel size of 4 ft ×
8 ft, logical spacing for studs, rafters, and joists become
even-number divisions of the 48 or 96 in. dimensions: 12, 16,
24, 32, or 48. However, spacing of framing must often relate
to what is attached on the other side of a wall or as a directly
attached ceiling.

3. Panel Edge Supports. Panel edges not falling on a support may
need some provision for nailing, especially for roof and floor
decks. Solid blocking is the common answer, although thick deck
panels may have tongue-and-groove edges.

4. Attachment to Supports. For reference design values for shear
loads in diaphragms, attachment is usually considered to be
achieved with common wire nails. Required nail size and spacing
relate to panel thickness and code minimums, as well as to shear
capacities in diaphragms. Attachment is now mostly achieved
with mechanically driven fasteners rather than old-fashioned
pounding with a hand-held hammer. These means of attachment
and the actual fasteners used are usually rated for capacity in
terms of equivalency to ordinary nailing.

5.12 GLUED-LAMINATED PRODUCTS

In addition to plywood panels, there are a number of other products
used for wood construction that are fabricated by gluing together pieces
of wood into solid form. Girders, framed bents, and arch ribs of large
size are produced by assembling standard 2-in. nominal lumber (2 × 6,
etc.). The resulting thickness of such elements is essentially the width
of the standard lumber used, with a small dimensional loss due to
finishing. The depth is a multiple of the lumber thickness of 1.5 in.
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Availability of large glued-laminated products should be investigated
on a regional basis, as shipping to job sites is a major cost factor.
Information about these products can be obtained from local suppliers
or from the product manufacturers in the region. As with other widely
used products, there are industry standards and usually some building
code data for design.

5.13 WOOD FIBER PRODUCTS

Various products are produced with wood that is reduced to fiber form
from the logs of trees. Major considerations are those for the size and
shape of the wood fiber elements and their arrangement in the finished
products. For paper, cardboard, and some fine hardboard products, the
wood is reduced to very fine particles and generally randomly placed
in the mass of the products. This results in little orientation of the
material, other than that produced by the manufacturing process of the
particular products.

For structural products, somewhat larger wood particle elements are
used and some degree of orientation is obtained. Two types of products
with this character are the following:

Wafer Board or Flake Board. These are panel products produced with
wood chips in wafer form. The wafers are laid randomly on top
of each other, producing a panel with a two-way fiber-oriented
nature that simulates the character of plywood panels. Applica-
tions include wall sheathing and some structural decks.

Strip or Strand Elements. These are produced from long strands that
are shredded from the logs. These are bundled with the strands
all in the same direction to produce elements that have something
approaching the character of the linear orientation in solid-sawn
wood. Applications include studs, rafters, joists, and small beams.

For decking or wall sheathing, these products are generally used in
thicknesses greater than that of plywood for the same spans. Other con-
struction issues must be considered, such as nail holding for materials
attached to the deck. Consideration must also be made for the type
and magnitude of loads, the type of finished flooring for floor decks,
and need for diaphragm action for lateral loads. Code approval is an
important issue and must be determined on a local basis.

Information about these products should be obtained from the man-
ufacturers or suppliers of particular proprietary products. Some data
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is now included in general references, such as the IBC, but particular
competitive products are marketed by individual companies.

This is definitely a growth area, as plywood becomes increasingly
expensive and logs for producing plywood are harder to find. Resources
for fiber products include small trees, smaller sections from large trees,
and even some recycled wood. A general trend to use of composite
materials certainly indicates the likelihood of more types of products
for future applications.

5.14 ASSEMBLED WOOD STRUCTURAL PRODUCTS

Various types of structural components can be produced with assem-
bled combinations of plywood, fiber panels, laminated products, and
solid-sawn lumber. Figure 5.5 shows some commonly used elements
that can serve as structural components for buildings.

Figure 5.5 Composite, built-up components with elements of solid-sawn lumber
and panels of plywood or wood fiber.
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The unit shown in Figure 5.5a consists of two panels of plywood
attached to a frame of solid-sawn lumber elements. This is gener-
ally described as a sandwich panel ; however, when used for structural
purposes it is called a stressed-skin panel. For spanning actions, the ply-
wood panels serve as bending stress-resisting flanges and the lumber
elements as beam webs for shear development.

Another common type of product takes the form of the box beam
(Figure 5.5b) or the built-up I beam (Figure 5.5c). In this case the
roles defined for the sandwich panel are reversed, with the solid-sawn
elements serving as flanges and the panel material as the web. These
elements are highly variable, using both plywood and fiber products for
the panels and solid-sawn lumber or glued-laminated products for the
flange elements. It is also possible to produce various profiles, with a
flat chord opposed to a sloped or curved one on the opposite side. Use
of these elements allows for production of relatively large components
from small trees, resulting in a saving of large solid-sawn lumber and
old-growth forests.

The box beam shown in Figure 5.5b can be assembled with attach-
ments of ordinary nails or screws. The I beam uses glued joints to
attach the web and flanges. Box beams may be custom assembled at

Figure 5.6 Light wood trusses.
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the building site, but the I beams are produced in highly controlled
factory conditions.

I-beam products have become highly popular for use in the range
of spans just beyond the feasibility for solid-sawn lumber joists and
rafters, that is, over about 15 ft for joists and about 20 ft for rafters.

Two types of light wood trusses are widely used. The W truss,
shown in Figure 5.6a , is widely used for short-span gable-form roofs.
Achieved with a single layer of 2 × lumber members, and with simple
gusset-plated joints (Figure 5.6b), this has been the form of the roof
structure for small wood-framed buildings for many years. Gussets may
consist of pieces of plywood, attached with nails, but are now mostly
factory assembled with metal connector plates.

For flat spanning structures—both roofs and floors—the truss shown
in Figure 5.6c is used, mostly for spans just beyond the spanning length
feasible for solid-sawn wood rafters or joists. One possible assembly
is shown in Figure 5.6d , using steel tubes with flattened ends, con-
nected to the chords with pins driven through drilled holes. Chords
may be simple solid-sawn lumber elements but are also made of pro-
prietary laminated elements that permit virtually unlimited length for
single-piece members.
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WOOD COLUMNS

A column is a compression member, the length of which is several
times greater than its least lateral dimension. The term column is gen-
erally applied to relatively heavy vertical members, and the term strut
is given to smaller compression members not necessarily in a verti-
cal position. The type of wood column used most frequently is the
simple solid column , which consists of a single sawn piece of wood
that is square or oblong in cross section. Solid columns of circular
cross section are also considered simple solid columns and typically
consist of trimmed, but not sawn, tree trunks called poles . A spaced
column is an assembly of two or more sawn pieces with their longi-
tudinal axes parallel and separated at their ends and at middle points
of their length by blocking. Two other types are built-up columns con-
sisting of multiple sawn pieces bound by mechanical fasteners, and
glued-laminated columns . The studs in light wood framing are also
columns.

236
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Figure 6.1 Determination of unbraced height for a column, as related to the
critical column thickness dimension.

6.1 SLENDERNESS RATIO FOR COLUMNS

In wood construction the slenderness ratio of a freestanding simple solid
column with a rectangular cross section is the ratio of its unbraced (lat-
erally unsupported) length to the dimension of its least side, expressed
as L/d . (See Figure 6.1a .) When members are braced so that the later-
ally unsupported length with respect to one face is less than that with
respect to the other, L is the distance between the supports that prevent
lateral movement in the direction along which the least dimension is
measured. This is illustrated in Figure 6.1b. If the section is not square
or round, it may be necessary to investigate two L/d conditions for
such a column to determine which is the limiting one. The slenderness
ratio for simple solid columns is limited to L/d = 50.

6.2 COMPRESSION CAPACITY OF SIMPLE SOLID
COLUMNS, ASD METHOD

Figure 2.16 illustrates the typical form of the relationship between axial
compression capacity and slenderness ratio for a linear compression
member (column). The limiting conditions are those of the very short
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member and the very long member. The short member—such as a
block of wood—fails in crushing, which is limited by the mass of mate-
rial and the stress limit for compression. The very long member—such
as a yardstick—fails in elastic buckling, which is determined by the
stiffness of the member in bending resistance and the material stiffness
property (modulus of elasticity). Between these two extremes, which
is where most wood columns fall, the behavior is determined by a
transition between the two distinctly different responses.

Over the years, several methods have been employed to deal with
this situation in the design of wood columns, or of any column for
that matter. Earlier editions of the NDS (Ref. 3) used three separate
formulas to cover the entire range of slenderness, reflecting the three
distinct forms of response, as described in Section 2.8. In recent edi-
tions, however, a single formula is employed, effectively covering the
whole range of the graph. The formula and its various factors are com-
plex, and its use involves considerable computation; nevertheless, the
basic process is essentially simplified through the use of a single defined
relationship.

In design practice, use is commonly made of either tabulated data or
computer-aided processes. The NDS formulas are basically analytical
and inverting them to produce design formulas for direct use is not
practical. Direct use of the formulas for design involves a trial-and-error
process, with many runs through the complex formula before a good
fit is found. Once the basic relationships are understood, design aids
are very useful.

Column Load Capacity

The following discussion presents materials from the NDS (Ref. 3) for
design of axially loaded columns. The basic formula for determina-
tion of the capacity of a wood column, based on the working stress
method, is

P = (F∗
c )(Cp)(A)

where A = area of column cross section
F ∗

c = design value for compression, modified
Cp = column stability factor
P = allowable column axial compression load
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The column stability factor is determined as follows:

Cp = 1 + (FcE /F ∗
c )

2c
−

√[
1 + (FcE /F ∗

c )

2c

]2

− FcE /F ∗
c

c

where FcE = Euler buckling stress, as defined below
c = 0.8 for sawn lumber, 0.85 for poles, 0.9 for

glued-laminated timbers

For the buckling stress:

FcE = 0.822E ′
min

(Le/d)2

where E ′
min = modulus of elasticity for stability
Le = effective unbraced length (height) of the column
d = critical column thickness for buckling

The values to be used for the effective column length and the cor-
responding column width should be considered as discussed for the
conditions displayed in Figure 6.1. For a basic reference, the buckling
phenomenon typically uses a member that is pinned at both ends and
prevented from lateral movement only at the ends, for which no mod-
ification for support conditions is made; this is a common condition
for wood columns. The NDS presents methods for modified buckling
lengths that are essentially similar to those used for steel design.

For solid sawn columns, the formula for Cp is simply a function of
the value of FcE /F ∗

c with the value of c being a constant of 0.8. It is,
therefore, possible to plot a graph of the value for Cp as a function of
the value of FcE /F ∗

c , as is done in three parts in Figure 6.2. Accuracy
of values obtained from Figure 6.2 is low but is usually acceptable
for column design work. Of course, greater accuracy can always be
obtained with the use of the formula.

The following examples illustrate the use of the NDS formulas for
columns.

Example 1. A wood column consists of a 6 × 6 of Douglas fir–larch,
No. 1 grade. Using the ASD method, find the safe axial compression
load for unbraced lengths of (1) 2 ft, (2) 8 ft, and (3) 16 ft.
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Figure 6.2 Column stability factor Cp as a function of FcE/F∗
c .

Solution: From Table 5.1 find values of Fc = 1000 psi and E min =
580,000 psi. With no basis for adjustment given, the Fc value is used
directly as the F ∗

c value in the column formulas.
For (1): L/d = 2(12)/5.5 = 4.36. Then

FcE = 0.822Emin

(Lc/d)2
= 0.822 × 580,000

(4.36)2
= 25,080 psi

FcE

F ∗
c

= 25,080

1000
= 25.08

Cp = 1 + 25.08

1.6
−

√(
1 + 25.08

1.6

)2

− 25.08

0.8
= 0.992
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And the allowable compression load is

P = (F ∗
c )(Cp)(A) = (1000)(0.992)(5.5)2 = 30,008 lb

As mentioned previously, Figure 6.2 may be used to simplify the com-
putation.

For (2): L/d = 8(12)/5.5 = 17.45. For which FcE = 1566 psi,
FcE /F ∗

c = 1.566, from Figure 6.2, Cp = 0.82, and thus

P = (1000)(0.82)(5.5)2 = 24,805 lb

For (3): L/d = 16(12)/5.5 = 34.9. For which FcE = 391 psi,
FcE /F ∗

c = 0.391, from Figure 6.2, Cp = 0.355, and thus

P = (1000)(0.355)(5.5)2 = 10,739 lb

Example 2. Wood 2 × 4 elements are to be used as vertical compres-
sion members to form a wall (ordinary stud construction). If the wood
is Douglas fir–larch, stud grade, and the wall is 8.5 ft high, what is the
column load capacity of a single stud?

Solution: It is assumed that the wall has a covering attached to the
studs or blocking between the studs to brace them on their weak (1.5-in.
dimension) axis. Otherwise, the practical limit for the height of the wall
is 50 × 1.5 = 75 in. Therefore, using the larger dimension,

L

d
= 8.5 × 12

3.5
= 29.14

From Table 5.1 Fc = 850 psi, E min = 510,000 psi. From Table 5.2, the
value for Fc is adjusted to 1.05(850) = 892.5 psi. Then

FcE = 0.822(510,000)

(29.14)2
= 494 psi

FcE

F∗
c

= 494

892.5
= 0.554

From Figure 6.2, Cp = 0.47, and the column capacity is

P = (F ∗
c )(Cp)(A) = (892.5)(0.47)(1.5 × 3.5) = 2202 lb
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Problems 6.2.A–D. Using the ASD method, find the allowable axial compres-
sion load for the following wood columns. Use Douglas fir–larch, No. 2 grade.

Nominal Size Unbraced Length
(in.) (ft) (m)

A 4 × 4 8 2.44
B 6 × 6 10 3.05
C 8 × 8 18 5.49
D 10 × 10 14 4.27

Design of Wood Columns

The design of columns is complicated by the relationships in the column
formulas. The allowable stress for the column is dependent upon the
actual column dimensions, which are not known at the beginning of the
design process. This does not allow for simply inverting the column
formulas to derive required properties for the column. A trial-and-error
process is therefore indicated. For this reason, designers typically use
various design aids: graphs, tables, or computer-aided processes.

Because of the large number of wood species, resulting in many dif-
ferent values for allowable stress and modulus of elasticity, precisely
tabulated capacities become impractical. Nevertheless, aids using aver-
age values are available and simple to use for design. Figure 6.3 is a
graph on which the axial compression load capacity of some square
column sections of a single species and grade are plotted. Table 6.1
yields the capacity for a range of columns. Note that the smaller size
column sections fall into the classification in Table 5.1 for “Dimen-
sion Lumber,” rather than for “Timbers.” This makes for one more
complication in the column design process.

Problems 6.2.E–H. Select square column sections of Douglas fir–larch, No. 1
grade, for the following data:

Required Axial Load Unbraced Length
(kips) (kN) (ft) (m)

E 20 89 8 2.44
F 50 222 12 3.66
G 50 222 20 6.10
H 100 445 16 4.88
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Figure 6.3 Axial compression load capacity for wood members of square cross
section. Derived from NDS requirements for Douglas fir–larch, No. 1 grade.
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6.3 COLUMN LOAD CAPACITY, LRFD METHOD

For the LRFD process, the steps are essentially the same as for the ASD
method described in the preceding sections. The principal differences
consist of adjustments of values as achieved by various factors. The
adjustments are as follows:

For loads : Load factors from Section 1.9 for various combinations.

Time effect factor, λ (lambda): See Table 5.7.

Resistance factor : Table 5.6, φc = 0.90 for compression, φs = 0.85
for stability (E min).

Reference values : For stress, 2.16/1000φc ; for stability, 1.5/1000φs .

Computations for investigation:

E ′
min = φs

1.5

1000φs
Emin

FcE = 0.822E ′
min

(L/d)2

F ∗
c = λφc

(
2.16

1000φc

)
Fc

Cp = 1 + FcE /F ∗
c

1.6
−

√(
1 + FcE /F ∗

c

1.6

)2

− FcE /F ∗
c

0.8

For factored usable compression capacity:

P ′ = λφc
2.16

1000φc
CpFcA

The following example illustrates this process. It uses the same data
as in Example 1, part 2, Example 2, which treats the ASD method.

Example 3. A wood column consists of a 6 × 6 of Douglas fir–larch,
No. 1 grade. Using the LRFD method, find the factored usable com-
pression capacity (factored resistance) for an unbraced length of 8 ft.

Solution: From Table 5.1 find values of Fc = 1000 psi and E min =
580,000 psi. With no other information about conditions for modifica-
tion, these values are subject only to the necessary adjustments for the
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LRFD method. Assume that the load is a typical combination of dead
and live load, which yields a value for λ of 0.8 (Table 5.7).

E ′
min = φs

1.5

1000φs
Emin = 0.85

[
1.5

1000(0.85)

]
(580,000) = 870 ksi

L

d
= 8 × 12

5.5
= 17.45

FcE = 0.822
E ′

min

(L/d)2
= 0.822

870

(17.45)2
= 2.3486 ksi

F ∗
c = λφc

2.16

1000φc
Fc = 0.8(0.9)

2.16

1000(0.9)
1000 = 1.728 ksi

FcE

F ∗
c

= 2.3486

1.728
= 1.359

Using Figure 6.2, Cp = 0.78, and the capacity is

λφcP ′ = λφc
2.16

1000φc
CpFcA

= 0.8(0.9)
2.16

1000(0.9)
(0.78)(1000)(5.5)2

= 40.8 kips

As with the ASD method, the column design process is quite labori-
ous, unless some design aid or a computer-assisted procedure is used.
These aids are indeed available, although they are not described in
this book.

Problems 6.3.A–D. Using the LRFD method, find the factored usable com-
pression capacity (factored resistance) for the following wood columns. Use
Douglas fir–larch, No. 2 grade.

Nominal Size Unbraced Length
(in.) (ft) (m)

A 4 × 4 8 2.44
B 6 × 6 10 3.05
C 8 × 8 18 5.49
D 10 × 10 14 4.27
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6.4 STUD WALL CONSTRUCTION

Studs are the vertical elements used for wall framing in light wood con-
struction. Studs serve utilitarian purposes of providing for attachment
of wall surfacing but also serve as columns when the wall provides
support for roof or floor systems. The most common stud is a 2 × 4
spaced at intervals of 12, 16, or 24 in., the spacing derived from the
common 4 ft × 8 ft panels of wall coverings.

Studs of nominal 2 in. thickness must be braced on the weak axis
when used for story-high walls; a simple requirement deriving from
the limiting ratio of L/d of 50 for columns. If the wall is surfaced on
both sides, the studs are usually considered to be adequately braced by
the surfacing. If the wall is not surfaced, or is surfaced on only one
side, horizontal blocking between studs must be provided, as shown
in Figure 6.4. The number of rows of blocking and the spacing of the
blocking will depend on the wall height and the need for column action
by the studs.

Figure 6.4 Stud wall construction with blocking.
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Studs may also serve other functions, as in the case of an exterior
wall subjected to wind forces. For this situation the studs must be
designed for the combined actions of bending plus compression, as
discussed in Section 6.5.

In colder climates it is now common to use studs with widths greater
than the nominal 4 in. in order to create a larger void space within the
wall to accommodate insulation. This often results in studs with redun-
dant strength for the ordinary tasks of one- and two-story buildings. Of
course, wider studs may be required for very tall walls as well.

If vertical loads are high or bending is great, it may be necessary to
strengthen a stud wall. This can be done in a number of ways, such as:

1. Decreasing stud spacing from the usual 16 in. to 12. in.

2. Increasing the stud thickness from 2 in. nominal to 3 in. nominal

3. Increasing the stud width from 4 in. nominal to 6 in. nominal or
greater

4. Using doubled studs or large timber sections as posts at locations
of concentrated loads

It is also sometimes necessary to use thicker studs or to restrict stud
spacing for walls that function as shear walls.

In general, studs are columns and must comply to the various
requirements for design of solid-sawn sections. Any appropriate grade
of wood may be used, although special stud grades are commonly
used for ordinary 2 × 4 studs.

Table 6.2, which is adapted from a table in the International Building
Code (Ref. 4), provides data for the selection of studs for both bearing
and nonbearing walls. The code stipulates that this data must be used
in lieu of any engineering design for the studs, which means that other
possibilities may be considered if computations can support a case for
them.

Stud wall construction is often used as part of a general light con-
struction system described as light wood frame construction . The joist
and rafter construction discussed in Chapter 5, together with the stud
wall construction discussed here, are the primary structural elements
of this system. In most applications the system is almost entirely com-
prised of 2-in. nominal dimension lumber. Timber elements are some-
times used for freestanding columns and for heavily loaded or long-span
beams.
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TABLE 6.2 Requirements for Stud Wall Construction

Bearing Walls Nonbearing Walls

Laterally Supporting Supporting Supporting
Unsupported Roof and One Floor, Two Floors, Laterally

Stud Stud Heighta Ceiling Roof, and Roof, and Unsupported
Size (ft) Only Ceiling Ceiling Stud Heighta Spacing
(in.) Spacing (in.) (ft) (in.)

2 × 3b — — — — 10 16
2 × 4 10 24 16 — 14 24
3 × 4 10 24 24 16 14 24
2 × 5 10 24 24 — 16 24
2 × 6 10 24 24 16 20 24

Source: Compiled from data in the International Building Code (Ref. 4), with permission of the
publisher, International Code Council.
a Listed heights are distances between points of lateral support placed perpendicular to the plane of
the wall. Increases in unsupported height are permitted where justified by analysis.
b Shall not be used in exterior walls.

6.5 COLUMNS WITH BENDING

There are a number of situations in which structural members are sub-
jected to combined effects of axial compression and bending. Studs in
exterior walls represent the situation shown in Figure 6.5a , with a load-
ing consisting of vertical gravity plus horizontal wind loads. Due to use
of common construction details, columns carrying the ends of beams
may sometimes be loaded eccentrically, as shown in Figure 6.5b.

Stresses developed by these two actions are both of the direct type
(tension and compression) and can be combined for consideration of
a net stress condition. However, the basic actions of a column and a
bending member are essentially different in character, and it is there-
fore customary to consider this combined activity by what is called
interaction . The classic form of interaction is represented by the graph
in Figure 3.37a .

The interaction relationship is expressed in the formula

Pn

Po
+ Mn

Mo
= 1

The plot of this equation is the straight line connecting Po and Mo as
shown on Figure 3.37a .

An interaction graph similar to that in Figure 3.37a can also be pro-
duced using stresses rather than loads and moments since the stresses
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Figure 6.5 Common cases involving combined axial compression and bending
in columns: (a) exterior stud or truss chord and (b) column with bracketed support
for spanning member.

are directly proportional to the loads and moments. This is the proce-
dure generally used in wood and steel design, with the graph taking a
form expressed as

fa
Fa

+ fb
Fb

≤ 1

where fa = computed stress due to load
Fa = allowable column action stress
fb = computed stress due to bending

Fb = allowable bending stress

Investigation of Columns with Bending, ASD Method

Present design of wood columns uses the straight-line interaction rela-
tionship and then adds considerations for buckling due to bending,
P –delta effects, and so on. For solid-sawn columns the NDS provides
the following formula for investigation:

(
fc
F ′

c

)2

+ fb

Fb

(
1 − fc

FcE

) ≤ 1

where fc = computed compressive stress
F ′

c = adjusted reference design value for compressive stress
fb = computed bending stress
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Fb = reference design stress for bending
FcE = value determined for buckling, described in Section 6.2

The following examples demonstrate some applications for the pro-
cedure.

Example 4. An exterior wall stud of Douglas fir–larch, stud grade, is
loaded as shown in Figure 6.6a. Investigate the stud for the combined
loading. (Note: This is the wall stud from the building example in
Chapter 18.)

Solution: From Table 5.1, Fb = 700 psi, Fc = 850 psi, and E min

= 510,000 psi. Note that the allowable stresses are not changed by
Table 5.2, as the table factors are 1.0. With inclusion of the wind load-
ing, the stress values (but not E ) may be increased by a factor of 1.6
(see Table 4.3).

Assume that wall surfacing braces the 2 × 6 studs adequately on
their weak axis (d = 1.5 in.), so the critical value for d is 5.5 in. Thus,

L

d
= 11 × 12

5.5
= 24

FcE = 0.822Emin

(L/d)2 = 0.822 × 510,000

(24)2
= 728 psi

1120 lb/ft live load
600 lb/ft dead load

2 × 6 studs
at 16"

(a) (b)

6 × 6

11′

8 k

e = 4.5"

12′
Wind at
13.33 psf

Figure 6.6 Reference for Examples 4 and 5.
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The first investigation involves the gravity load without the wind,
for which the stress increase factor of 1.6 is omitted. Thus,

F ∗
c = 850 psi

FcE

F∗
c

= 728

850
= 0.856

From Figure 6.2, Cp = 0.63, and the stud compression capacity is

P = (F ∗
c )(Cp)(A) = (850)(0.63)(8.25) = 4418 lb

This is compared to the given load for the 16-in. stud spacing, which is

P =
(

16

12

)
(1720) = 2293 lb

which demonstrates that the gravity-only load is not a critical concern.
Proceeding with consideration for the combined loading, we deter-

mine that

F ∗
c = 1.6Fc = 1.6(850) = 1360 psi

FcE

F∗
c

= 728

1360
= 0.535

From Figure 6.2, Cp = 0.45.
For the load combination with wind, the adjusted vertical load is

P = 16

12
[Dead load + 0.75(Live load)]

= 16

12
(600 + 840) = 1920 lb

F ′
c = CpF∗

c = 0.45 × 1360 = 612 psi

fc = P

A
= 1920

8.25
= 233 psi



COLUMNS WITH BENDING 253

For the wind load use w = 0.75(13.33) = 10 psf. Then

M = 16

12

wL2

8
= 16

12

10(11)2

8
= 202 lb-ft

fb = M

S
= 202 × 12

7.563
= 320 psi

fc
FcE

= 233

728
= 0.320

Then, using the code formula for the interaction,

(
fc
F ′

c

)2

+ fb

Fb

(
1 − fc

FcE

) ≤ 1

(
233

612

)2

+ 320

1.6 × 700(1 − 0.320)
= 0.145 + 0.420 = 0.565

As the result is less than 1, the stud is adequate.

Example 5. The column shown in Figure 6.6b is of Douglas fir–larch,
dense No. 1 grade. Investigate the column for combined column action
and bending.

Solution: From Table 5.1, Fb = 1400 psi, Fc = 1200 psi, E min

= 620,000 psi. From Table A.8, A = 30.25 in.2 and S = 27.7 in.3.
Then

L

d
= 12 × 12

5.5
= 26.18

FcE = 0.822 × 620,000

(26.18)2
= 744 psi

FcE

Fc
= 744

1200
= 0.62
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From Figure 6.2, Cp = 0.51.

fc = 8000

30.25
= 264 psi

F ′
c = CpFc = (0.51)(1200) = 612 psi

fc
FcE

= 264

744
= 0.355

fb = M

S
= 8000 × 4.5

27.7
= 1300 psi

and for the column interaction(
fc
F ′

c

)2

+ fb

Fb

(
1 − fc

FcE

) ≤ 1

(
264

612

)2

+ 1300

1400(1 − 0.355)
= 0.186 + 1.440 = 1.626

As this exceeds 1.0, the column is inadequate. Since bending is the
main problem, a second try might be for a 6 × 8 or a 6 × 10, or for
an 8 × 8 if a square section is required.

Problem 6.5.A. Nine-feet-high 2 × 4 studs of Douglas fir–larch, No. 1 grade,
are used in an exterior wall. Wind load is 17 psf on the wall surface; studs
are 24 in. on center; the gravity load on the wall is 400 lb/ft of wall length.
Investigate the studs for combined action of compression plus bending using
the ASD method.

Problem 6.5.B. Ten-feet-high 2 × 4 studs of Douglas fir–larch, No. 1 grade,
are used in an exterior wall. Wind load is 25 psf on the wall surface; studs
are 16 in. on center; the gravity load on the wall is 500 lb/ft of wall length.
Investigate the studs for combined action of compression plus bending using
the ASD method.

Problem 6.5.C. A 10 × 10 column of Douglas fir–larch, No. 1 grade, is 9 ft
high and carries a compression load of 20 kips that is 7.5 in. eccentric from the
column axis. Investigate the column for combined compression and bending
using the ASD method.
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Problem 6.5.D. A 12 × 12 column of Douglas fir–larch, No. 1 grade, is 12 ft
high and carries a compression load of 24 kips that is 9.5 in. eccentric from the
column axis. Investigate the column for combined compression plus bending
using the ASD method.

Investigation of Columns with Bending, LRFD Method

The process for investigation of columns with bending in the LRFD
method uses essentially the same steps as in the ASD method. The
usual adjustments are made with load factors, resistance factors, and
conversions of reference values. The following example illustrates the
process, using the same data as in the ASD work for Example 4.

Example 6. The column shown in Figure 6.6b is of Douglas fir–larch,
dense No. 1 grade. Investigate the column for combined column action
and bending using the LRFD method. The applied compression load is
one-half live load and one-half dead load.

Solution: From Table 5.1, Fb = 1400 psi, Fc = 1200 psi, E min =
620,000 psi. From Table A.8, A = 30.25 in.2, S = 27.7 in.3.

Pu = 1.2(DL) + 1.6(LL) = 1.2(4000) + 1.6(4000)

= 11,200 lb or 11.2 kips

Mu = 11.2 × 4.5 = 50.4 kip-in.

L

d
= 12 × 12

5.5
= 26.18

E ′
min = 1.5

φs
φs Emin = 1.5

0.85
0.85(620,000) = 930,000 psi

FcE = 0.822E ′
min

(L/d)2
= 0.822(930,000)

(26.18)2
= 1115 psi or 1.115 ksi

F ∗
c = λφc

(
2.16

1000φc

)
Fc

= 0.8(0.90)

[
2.16

1000(0.90)

]
1200 = 2.074 ksi

FcE

F ∗
c

= 1.115

2.074
= 0.5376
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From Figure 6.2, Cp = 0.46.

F ′
c = λφc

(
2.16

1000φc

)
CpFc

= 0.8(0.90)

[
2.16

1000(0.90)

]
(0.46)(1200) = 0.954 ksi

For a consideration of the value to be used for bending stress, an
investigation should ordinarily be done of the effects of lateral and
torsional buckling, as in the case of a beam. This is usually not critical
unless the depth-to-width ratio of the section is greater than 3. In this
case the square section has a ratio of 1.0 and the issue is not a concern.
What remains to be done to establish the limit for bending stress is
simply to make the appropriate adjustments. Thus,

F ′
b = λφb

2.16

1000φb
Fb = 0.8(0.85)

[
2.16

1000(0.85)

]
1400 = 2.419 ksi

fc = P

A
= 11.2

(5.5)2
= 0.370 ksi

fb = M

S
= 50.4

27.7
= 1.819 ksi

And, for the interaction analysis:

(
fc
F ′

c

)2

+


 fb

F ′
b

(
1 − fc

FcE

)

 =

(
0.370

0.954

)2

+


 1.819

2.419

(
1 − 0.370

1.115

)



= 0.150 + 1.126 = 1.276

As this exceeds 1.0, the column is not adequate. A second try might
use a 6 × 8, which has a significantly larger section modulus to reduce
the bending stress.
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Problem 6.5.E. A 10 × 10 column of Douglas fir–larch, No. 1 grade, is 9 ft
high and carries a compression load of 10 kips dead load plus 10 kips live
load that is 7.5 in. eccentric from the column axis. Investigate the column for
combined compression and bending using the LRFD method.

Problem 6.5.F. A 12 × 12 column of Douglas fir–larch, No. 1 grade, is 12 ft
high and carries a compression load of 12 kips dead load plus 12 kips live
load that is 9.5 in. eccentric from the column axis. Investigate the column for
combined compression plus bending using the LRFD method.



7

CONNECTIONS
FOR WOOD STRUCTURES

Structures of wood typically consist of large numbers of separate pieces
that must be joined together. For assemblage of building construction,
fastening is most often achieved by using some steel device, common
ones being nails, screws, bolts, and specially formed steel fasteners.

7.1 BOLTED JOINTS

When steel bolts are used to connect wood members, there are several
design concerns. Some of the principle concerns are the following:

1. Net Cross Section in Member. Holes made for the placing of bolts
reduce the wood member cross section. For this investigation
the hole diameter is assumed to be 1/16 in. larger than that of the
bolt. Common situations are shown in Figure 7.1. When bolts in
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Figure 7.1 Effect of bolt holes on reduction of cross section for tension
members.

multiple rows are staggered, it may be necessary to make two
investigations, as shown in the illustration.

2. Bearing of the Bolt on the Wood. This compressive stress limit
varies with the angle of the wood grain to the load direction.
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Figure 7.2 Twisting in the two-member bolted joint.

3. Bending of the Bolt. Long thin bolts in thick wood members will
bend considerably, causing a concentration of bearing at the edge
of the hole.

4. Number of Members Bolted at a Single Joint. The worst case,
as shown in Figure 7.2, is that of the two-member joint. In this
case the lack of symmetry in the joint produces considerable
twisting. This situation is referred to as single shear since the
bolt is subjected to shear on a single cross section of the bolt.
With more members in the joint, twisting may be eliminated and
the bolt is sheared at multiple cross sections.

5. Ripping Out the Bolt When Too Close to an Edge. This problem,
together with that of the minimum spacing of bolts, is dealt with
by using criteria given in the NDS .

7.2 NAILED JOINTS

Nails are used in great variety in building construction. For structural
fastening, the nail most commonly used is called—appropriately—the
common wire nail . As shown in Figure 7.3, the critical concerns for
such nails are the following:

1. Nail Size. Critical dimensions are the diameter and length (see
Figure 7.3a). Sizes are specified in pennyweight units, designated
as 4d, 6d, and so on, and referred to as four penny, six penny,
and so on.

2. Load Direction. Pullout loading in the direction of the nail shaft
is called withdrawal ; shear loading perpendicular to the nail shaft
is called lateral load .

3. Penetration. Nailing is typically done through one element and
into another, and the load capacity is essentially limited by the
amount of the length of embedment of the nail in the second
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Figure 7.3 Use of common wire nails: (a) critical dimensions, (b) loading consid-
erations; (c)–(g) poor nailing practices: (c) too close to edge, (d) nails too close
together, (e) nails too large for wood piece, (f) too little penetration of nail into
holding piece of wood, and (g) too many closely spaced nails in a single row
parallel to the wood grain and/or nails too close to end of piece.

member (see Figure 7.3b). The length of this embedment is called
the penetration.

4. Species and Grade of Wood. The heavier the wood (indicating
generally harder, tougher material), the greater is the load resis-
tance capability.

Design of good nailed joints requires a little engineering and a lot
of good carpentry. Some obvious situations to avoid are those shown
in Figures 7.3c –g .

Withdrawal load capacities of nails are given in units of force per
inch of nail penetration length. This unit load is multiplied by the
actual penetration length to obtain the total force capacity of the nail.
For structural connections, withdrawal resistance is relied on only when
the nails are perpendicular to the wood grain direction.
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Lateral load capacities for common wire nails are given in Table 7.1
for joints with both plywood and lumber side pieces. The NDS contains
very extensive tables for many wood types as well as metal side pieces.
The following example illustrates the design of a nailed joint using the
ASD method with data from Table 7.1.

TABLE 7.1 Reference Lateral Load Values for Common Wire Nails (lb/in.)

Side Member Nail Length, Nail Diameter, Nail Load per Nail,
Thickness, t s (in.) L (in.) D (in.) Pennyweight Z (lb)

Part 1 — With Wood Structural Panel Side Membersa (G = 0.42)
2 0.113 6d 48

3/8 21/2 0.131 8d 63
3 0.148 10d 76

2 0.113 6d 50
21/2 0.131 8d 6515/32 3 0.148 10d 78
31/2 0.162 16d 92

2 0.113 6d 58
21/2 0.131 8d 7323/32 3 0.148 10d 86
31/2 0.162 16d 100

Part 2 — With Sawn Lumber Side Membersb (G = 0.50)
21/2 0.131 8d 90

3 0.148 10d 1053/4 31/2 0.162 16d 121
4 0.192 20d 138

3 0.148 10d 118
31/2 0.162 16d 141

4 0.192 20d 170
11/2 41/2 0.207 30d 186

5 0.225 40d 205
51/2 0.244 50d 211

Source: Adapted from the National Design Specification (NDS) for Wood Construction , 2005
edition (Ref. 3), with permission of the publisher, American Forest and Paper Association.
a Values for single shear joints with wood structural panel side members with G = 0.42 and nails
anchored in sawn lumber of Douglas fir–larch with G = 0.50.
b Values for single-shear joints with both members of sawn lumber of Douglas fir–larch with
G = 0.50.
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Example 1. A structural joint is formed as shown in Figure 7.4, with
the wood members connected by 16d common wire nails. Wood is
Douglas fir–larch. What is the maximum value for the compression
force in the two side members?

Solution: From Table 7.1, we read a value of 141 lb per nail. (Side
member thickness of 1.5 in., 16d nails). As shown in the illustration,
there are five nails on each side or a total of 10 nails in the joint. The
total joint load capacity is thus

C = (10)(141) = 1410 lb

No adjustment is made for direction of load to the grain. However,
the basic form of nailing assumed here is so-called side grain nailing
in which the nail is inserted at 90◦ to the grain direction and the load
is perpendicular (lateral) to the nails.

Minimum adequate penetration of the nails into the supporting mem-
ber is a necessity, but use of the combinations given in Table 7.1 assures
adequate penetration if the nails are fully buried in the members.

Problem 7.2.A. A joint similar to that in Figure 7.4 is formed with outer
members of 1-in. nominal thickness ( 3/4-in. actual thickness) and 10d common
wire nails. Find the compression force that can be transferred to the two side
members.

Figure 7.4 Reference for Example 1.
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Problem 7.2.B. Same as Problem 7.2.A, except outer members are 2 × 10,
middle member is 4 × 10, and nails are 20d.

7.3 PLYWOOD GUSSETS

Cut pieces of plywood are sometimes used as connecting devices,
although the availability of manufactured metal devices is widespread.
Light trusses consisting of a single plane of wood members of 2-in.
nominal thickness are sometimes assembled with gussets of plywood.
Although such connections may have considerable load resistance, it is
best to be conservative in using them for computed structural forces,
especially with regard to tension stress in the plywood. The following
example treats a joint for a light truss using lumber members for the
truss and connecting panels of structural grade plywood.

Example 2. The truss heel joint shown in Figure 7.5 is made with 2-in.
nominal thickness lumber and gusset plates of 1/2-in.-thick plywood.
Nails are 6d common wire with the nail layout shown occurring on
both sides of the joint. Find the tension load capacity for the bottom
chord member (load 3 in the figure).

Solution: From Table 7.1 the capacity of one nail is 50 lb. With 12
nails on each side of the joint, the total capacity of the joint is thus

T = (24)(50) = 1200 lb

Problem 7.3.A. A truss heel joint similar to that in Figure 7.5 is made with
gusset plates of 1/2-in. plywood and 8d nails. Find the tension force limit for
the bottom chord.

Problem 7.3.B. A truss heel joint similar to that in Figure 7.5 is made with
3/4-in. plywood and 10d nails. Find the tension force limit for the bottom chord.

7.4 INVESTIGATION OF CONNECTIONS, LRFD METHOD

Use of the LRFD method for connections involves the same basic
procedures as for the ASD method. Reference values are adjusted by
the format conversion factor, K F = 2.16/1000φZ , for which φZ = 0.65.
Other adjustment factors for loads and resistance are used appropriate
to the load combinations, moisture conditions, and the like.
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Figure 7.5 Reference for Example 2.

7.5 FORMED STEEL FRAMING ELEMENTS

Formed metal framing devices have been used for many centuries for
the assembly of structures of heavy timber. In ancient times elements
were formed of bronze or cast iron or wrought iron. Later they were
formed of forged or bent and welded steel elements. Some of the
devices commonly used today are essentially the same in function and
detail to those used long ago.

For large timber members, connecting elements are now mostly
formed of steel plate that is bent and welded to produce the desired



266 CONNECTIONS FOR WOOD STRUCTURES

Figure 7.6 Simple connecting devices fromed from bent and welded steel
plates.

shape. (See Figure 7.6.) The ordinary tasks of attaching beams to
columns and columns to foundations continue to be required, and the
simple means of achieving the tasks evolve from practical concerns.

For resistance to gravity loads, connections such as those shown in
Figure 7.6 sometimes have no direct structural functions. In theory, it
is possible to simply rest a beam on top of a column as is done in some
rustic construction. However, for resistance to lateral loads from wind
or earthquakes, the tying and anchoring functions of these connecting
devices are often quite essential. They also serve a practical function
of simply holding the parts together during the construction process.

A development of more recent times is the extension of the use
of metal devices for the assembly of light wood frame construction.
Devices of thin sheet metal, such as those shown in Figure 7.7, are
now commonly used for stud and joist construction employing predom-
inantly wood members of 2-in. nominal dimension thickness. As with
the devices used for heavy timber construction, these lighter connec-
tors often serve useful functions of tying and anchoring the structural
members. Load transfers between basic elements of a building’s lateral
bracing system are often achieved with these elements

Commonly used connection devices of both the light sheet steel
type and the heavier steel plate type are readily available from building
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Figure 7.7 Common connection devices used for light wood frame construction,
formed from bent sheet steel.

material suppliers. Many of these devices are approved by building
codes for rated structural capacity functions.

Concrete and Masonry Anchors

Wood members supported by concrete or masonry structures must usu-
ally be anchored through some intermediate device. The most common
attachment is with steel bolts cast into the concrete or masonry. How-
ever, there is also a wide variety of devices that may be directly cast
into the supports or attached with drilled-in, dynamically anchored, or
other elements.

Two common situations are shown in Figure 7.8. The sill member
for a wood stud is typically attached directly with steel anchor bolts that
are cast into the supports. These bolts serve to hold the wall securely

stud

masonry wall

strap nailed to rafter
for horizontal force

rafter
anchor bolt for
vertical force

ledger

(a) (b)

sill

Figure 7.8 Devices for anchoring wood structures to concrete and masonry
supports.
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in position during the construction process. However, they may also
serve to anchor the wall against lateral or uplift forces.

Figure 7.8b shows a common situation in which a wood-framed
roof or floor is attached to a masonry wall through a member bolted
to the face of the wall, called a ledger . Vertical load transfer develops
a shear effect on the bolt. For lateral force a problem is the pullout
or tension effect on the bolt, although another problem may be the
cross-grain bending in the ledger. In zones of high seismic risk, it is
usually required to have a separate horizontal anchor , such as the strap
shown in Figure 7.8b.



III
STEEL CONSTRUCTION

Steel is used in a wide variety of forms for many tasks in building con-
struction. Wood, concrete, and masonry structures require many steel
objects. This part of the book, however, deals with steel as a material
for the production of components and systems for steel structures. This
usage includes some common ones and an endless range of special
possibilities. The concentration here is on ordinary uses.
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8

STEEL STRUCTURAL
PRODUCTS

For the assemblage of building structures, components of steel consist
mostly of standard forms of industrially produced products. The most
common and widely used of these products are in forms that have been
developed and produced for a long time. Modifications of production
and assemblage methods are made continuously, but the basic forms of
most steel structures are pretty much as they have been for many years.

8.1 DESIGN METHODS FOR STEEL STRUCTURES

Presently, two fundamentally different methods for structural investi-
gation and design are in use. The first of these, traditionally used for
many years by designers and researchers, is referred to as the working
stress method or the allowable stress method. At present, this method is
called the allowable stress design method, designated ASD. The second
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method, first adopted in 1986, is called the ultimate strength method or
simply the strength method. At present, this method is called the load
and resistance factor design method, designated LRFD.

In general, the techniques and operational procedures of the ASD
method are simpler to use. They are based largely on direct use of
classical analytical formulas for stress and strain and a direct use
of the actual working loads (called service loads) assumed for the
structure. In fact, it is often useful to explain the analytical proce-
dures of the LRFD method by comparing them to those used for the
ASD method.

The ASD method for steel design is similar to the method used
for wood design demonstrated in Part II. Allowable stresses for steel
design are mostly based on the yield point of the steel adjusted with
a safety factor. The basis for design is the limiting of the conditions
in the structure under service loads to an acceptable level of stress
and strain.

With the LRFD method, the basis for design is a visualization of the
mode of failure of the structure under the given loads. The failure load-
ing is considered as the ultimate resistance of the structure, designated
as the nominal resistance of the structure. For design purposes, the true
resistance is reduced by some percentage through the use of a resis-
tance factor designated φ. The design process consists of comparing
this modified resistance to a loading that is also modified by use of fac-
tors to increase the load above the level of the service loads. The design
strength must be equal to or greater than the resistance required by the
design loading. The basic process is expressed mathematically as

φRn ≥ �δi Qi

where φ = resistance factor (φ < 1)
Rn = nominal resistance of the member
δi = load factor (δ > 1)

Qi = different loading effects

The chief source for information for design of steel structures—the
American Institute of Steel Construction (AISC)—publishes design ref-
erences supporting both the ASD and LRFD methods. These references
are used extensively throughout this book, with a major source being
the AISC Manual of Steel Construction (Ref. 5). Because of its steady
emergence as the accepted design method by design professionals, the
LRFD method is chosen for the work in this book.
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8.2 MATERIALS FOR STEEL PRODUCTS

The strength, hardness, corrosion resistance, and various other physi-
cal properties of steel can be varied through a considerable range by
changes in the material production process. Literally hundreds of differ-
ent steels are produced, although only a few standard products are used
for the elements of building structures. Working and forming processes,
such as rolling, drawing, forging, and machining, may also alter some
properties. However, some properties, such as density (unit weight),
stiffness (modulus of elasticity), thermal expansion, and fire resistance,
tend to remain constant for all steels.

For various applications, other properties may be significant. Hard-
ness effects the ease with which cutting, drilling, planing, and other
working can be done. For welded connections, the weldability of the
base material must be considered. Resistance to rusting is normally low
but can be enhanced by various materials added to the steel, produc-
ing special steels, such as stainless steel and so-called “rusting steel,”
which rusts at a very slow rate.

These various properties of steel must be considered when working
with the material and when designing for its use. However, in this book,
we are most concerned with the unique structural nature of steel.

Structural Properties of Steel

Basic structural properties, such as strength, stiffness, ductility, and
brittleness, can be interpreted from laboratory load tests on specimens
of the material. Figure 8.1 displays characteristic forms of curves that
are obtained by plotting stress (load resistance) and strain (deforma-
tion) values from such tests. An important property of most structural
steels is the plastic deformation (ductility or yield) phenomenon. This
is demonstrated by curve 1 in Figure 8.1. For steels with this character,
there are two different stress values of significance: the yield limit and
the ultimate failure limit.

Generally, the higher the yield limit, the less the degree of ductility.
The extent of ductility is measured as the ratio of the plastic deformation
between first yield and strain hardening (see Figure 8.1, curve 1) to
the elastic deformation at the point of yield. Curve 1 in Figure 8.1
is representative of ordinary structural steel (ASTM A36), and curve 2
indicates the typical effect when the yield strength is raised a significant
amount. Eventually, the significance of the yield phenomenon becomes
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Figure 8.1 Stress–strain response of steel: (1) ordinary structural steel,
(2) high-strength steel for rolled shapes, and (3) superstrength steel, mostly
in wire form.

virtually negligible when the yield strength approaches as much as three
times the yield of ordinary steel (36 ksi for ASTM A36 steel).

Some of the highest strength steels are produced only in thin-sheet
or drawn-wire forms. Bridge strand is made from wire with strength as
high as 300 ksi. At this level, yield is almost nonexistent, and the wires
approach the brittle nature of glass rods (see curve 3 in Figure 8.1).
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For economical use of the expensive material, steel structures are
generally composed of elements with relatively thin parts. This results
in many situations in which the limiting ultimate strength of elements
in bending, compression, and shear is determined by buckling, rather
than by the stress limits of the material. Because buckling is a function
of stiffness (modulus of elasticity) of the material, and because this
property remains the same for all steels, there is limited opportunity
to make effective use of higher strength steels in many situations. The
grades of steel commonly used are to some extent ones that have the
optimal effective strength for most tasks.

Because many structural elements are produced as some manufac-
turer’s product line, choices of basic materials are often mostly out of
the hands of individual building designers. The proper steel for a given
task—on the basis of many properties—is determined as part of the
product design, although a range of grades may be available for some
products.

Steel that meets the requirements of the American Society for Test-
ing and Materials (ASTM) Specification 36 is the grade of structural
steel most commonly used to produce rolled steel elements for building
construction. It must have an ultimate tensile strength of 58–80 ksi and
a minimum yield point of 36 ksi. It may be used for bolted, riveted, or
welded fabrication. This is the steel used for much of the work in this
book and is referred to simply as A36 steel.

Although used sparingly in the past, high-strength steel members are
gaining popularity in today’s construction market. Steel is designated
high strength when its yield stress is greater than 36 ksi. Traditionally,
high-strength steel was used only when the savings of weight or added
durability were important. Today it is available mainly because steel
produced by electric arc furnaces is made largely of recycled steel,
and one of the outcomes of using recycled steel is that the steel’s
yield strength increases. Electric arc furnaces produce the steel for all
domestically made wide-flange beam shapes. Thus, the use of steel with
50 ksi yield strength is steadily increasing. Some of the data provided
for steel members in this book uses both 36 and 50 ksi steel.

Other Uses of Steel

Steel used for other purposes than the production of rolled products
generally conforms to standards developed for the specific product. This
is generally true for steel connectors, wire, cast and forged elements,
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and very high strength steels produced in sheet, bar, and rod forms
for fabricated products. The properties and design stresses for some of
these product applications are discussed in other places in this book.
Standards used typically conform to those established by industry-wide
organizations, such as the Steel Joist Institute (SJI) and the Steel Deck
Institute (SDI). In some cases, larger fabricated products make use of
ordinary rolled products, produced from A36 steel or other grades of
steel from which hot-rolled products can be obtained.

8.3 TYPES OF STEEL STRUCTURAL PRODUCTS

As a material, steel itself is formless; used basically for production
as a molten material or a heat-softened lump. The structural products
produced derive their basic forms from the general potentialities and
limitations of the industrial processes of forming and fabricating. A
major process used for structural products is that of hot-rolling , which is
used to produce the familiar cross-sectional forms (called shapes) of I,
H, L, T, U, C, and Z, as well as flat plates and round or rectangular bars.
Other processes include drawing (used for wire), extrusion, casting, and
forging.

Raw stock can be assembled by various means into objects of mul-
tiple parts, such as a manufactured truss, a prefabricated wall panel, or
a whole building framework. Learning to design with steel begins with
acquiring some familiarity with the standard industrial processes and
products and with the means of reforming them and attaching them to
other elements in structural assemblages.

Rolled Structural Shapes

The products of the steel rolling mills used as beams, columns, and
other structural members are designated as sections or shapes , relat-
ing to the form of their cross sections. Their usage relates to the
industry-developed standard cross sections that have been developed
in response to common uses. American standard I beams (Figure 8.2a)
were the first beam sections rolled in the United States and are currently
produced in sizes of 3–24 in. in depth. The W shapes (Figure 8.2b,
originally called wide-flange shapes) are a modification of the I cross
section and are characterized by parallel flange surfaces (of constant
thickness) as contrasted with the tapered form of the I-beam flanges. W
shapes are available in depths from 4 to 44 or more inches. In addition
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Figure 8.2 Shapes of typical hot-rolled products.

to the standard I and W shapes, the structural steel shapes most fre-
quently used in building construction are channels, angles, tees, plates,
and bars. The tables in Appendix A list the dimensions, weights, and
various properties of some of these shapes. Complete tables of struc-
tural shapes are given in the AISC Manual (Ref. 5). Table 8.1 lists the
standard designations used for rolled shapes and for formed rectangular
tubing and round steel pipe.

W Shapes

In general, W shapes have greater flange widths and relatively thinner
webs than standard I beams. As noted earlier, the inner faces of the
flanges are parallel to the outer faces. These sections are identified by
the alphabetic symbol W, followed by the nominal depth in inches and
the weight in pounds per linear foot. Thus, the designation W 12 × 26
indicates a W shape of nominal 12-in. depth, weighing 26 lb per linear
foot (plf).



278 STEEL STRUCTURAL PRODUCTS

TABLE 8.1 Standard Designations for Structural Steel
Elements

Elements Designation

American standard I beams, S shapes S 12 × 35
Wide flanges, W shapes W 12 × 27
Miscellaneous shapes, M shapes M 8 × 18.5
American standard channels, C shapes C 10 × 20
Miscellaneous channels, MC shapes MC 12 × 40
Bearing piles, HP shapes HP 14 × 117
Angles, L shapes L 5 × 3 × 1/2

Structural tees, WT, ST, MT WT 9 × 38
Plates PL 1 1/2 × 10 × 16
Structural tubing HSS 10 × 6 × 1/2

Pipe, standard weight Pipe 4 Std
Pipe, extra strong Pipe 4 X-strong
Pipe, double extra strong Pipe 4 XX-strong

The actual depths of W shapes vary within the nominal depth group-
ings. From Table A.3, we know that a W 12 × 26 has an actual depth of
12.22 in., whereas the depth of a W 12 × 30 is 12.34 in. This is a result
of the rolling process during manufacture in which the cross-sectional
areas of W shapes are increased by spreading the rollers both hori-
zontally and vertically. Additional area is thereby added to the cross
section by increasing flange and web thicknesses as well as flange
width (Figure 8.2b). The higher percentage of material in the flanges
makes the W shapes more efficient for bending resistance than standard
I beams. A wide variety of weights is available within each nominal
depth group.

Many W shapes are rolled with flange widths approximately equal
to their depth. The resulting H-shape configurations are more suitable
for columns than the I-shape profiles.

Cold-Formed Steel Products

Sheet steel can be bent, punched, or rolled into a variety of forms.
Structural elements so formed are called cold-formed or light-gage
steel products. Steel decks and very light weight framing elements are
produced in this manner. These products are described in Chapter 12.
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Figure 8.3 Fabricated products formed from steel elements.

Fabricated Structural Components

A number of structural products are produced with both hot-rolled and
cold-formed elements. Open-web steel joists consist of prefabricated,
light steel trusses. For short spans and light loads, a common design
is that shown in Figure 8.3a in which the web consists of a single,
continuous bent steel rod and the chords of steel rods or cold-formed
elements. For larger spans or heavier loads, the forms more closely
resemble those of ordinary light steel trusses with members of single
angles, double angles, and structural tees. Open-web joists are discussed
in Section 9.10.
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Another type of fabricated joist is shown in Figure 8.3b. This mem-
ber is formed from standard rolled shapes by cutting the web in a
zigzag fashion as shown in Figure 8.3c. The resulting product, called
a castellated beam , has a greatly reduced weight-to-depth ratio when
compared with the lightest rolled shapes.

Other fabricated products range from those used to produce whole
building structural systems to individual elements for construction
of frames for windows, doors, curtain wall systems, and partitions.
Many components and systems are produced as proprietary items by
a single manufacturer, although some are developed under controls
of industry-wide standards, such as those published by the Steel Joist
Institute and the Steel Deck Institute.

Development of Structural Systems

Structural systems that comprise entire roof, floor, or wall
constructions—or even entire building frameworks—are typically
assembled from many individual elements. These elements may be of
some variety, as in the case of floors using rolled shapes for beams
and a formed sheet steel deck. Selection of individual elements may be
made from structural investigations but is also often largely a matter
of practical development of the form of construction with commonly
used systems.

It is common for a building to incorporate more than a single mate-
rial for its entire structural system. Various combinations, including a
wood deck on steel beams, or masonry bearing walls for support of
steel framing, are possible. This part of the book deals primarily with
structures of steel, but some of these mixed material situations are very
common and are discussed in other parts of this book.

Connection Methods

Connection of structural steel members that consist of rolled steel
shapes is typically achieved by direct welding or by steel rivets or
bolts. Riveting for building structures, although common in the past,
has become obsolete in favor of bolting with high-strength bolts. How-
ever, the forms of structural members, and even of connections, that
were developed for riveted construction are still used with little change
for bolted construction. The design of bolted connections is discussed
in Chapter 11. In general, welding is preferred for shop (factory) fab-
rication and bolting for field (construction site) connections.
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Thin elements of cold-formed sheet steel may be attached by weld-
ing, bolting, or using sheet metal screws. Thin deck and wall paneling
elements are sometimes attached to one another by simple interlocking
at their abuting edges; the interlocked parts can be folded or crimped
to give further security to the connection.

A frequent structural design problem is that of the connections of
columns and beams in heavy frames for multistory buildings. Design
of these connections is beyond the scope of this book, although lighter
framing connections of various forms are discussed in Chapter 11.



9

STEEL BEAMS AND
FRAMING ELEMENTS

There are many steel elements that can be used for the basic functions of
spanning, including rolled shapes, cold-formed shapes, and fabricated
beams and trusses. This chapter deals with fundamental considerations
for these elements, with an emphasis on rolled shapes. For simplicity,
it is assumed that all the rolled shapes used for the work in this chapter
are steel with Fy = 36 ksi [250 MPa] or Fy = 50 ksi [350 MPa].

9.1 FACTORS IN BEAM DESIGN

Various rolled shapes may serve beam functions, although the most
widely used is the wide-flange shape, that is, the member with an
I-shaped cross section that bears the standard designation of W shape.
Except for those members of the W series that approach a square in
cross section (flange width approximately equal to nominal depth), the

282
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proportions of the shapes in this series are developed for optimal use
in flexure about their major axis (designated as x–x ). Design for beam
use may involve any combination of the following considerations.

Flexural Stress. Flexural stresses generated by bending moments
are the primary stress concern in beams. There are many failure
modes for beams that define the approach to designing with them,
but the general equation for the design of bending members, using
the LRFD method, is

φbMn ≥ Mu

where φb = 0.9 for rolled sections
Mn = nominal moment capacity of the member
Mu = maximum moment due to factored loading

Buckling. In general, beams that are not adequately braced may be
subject to various forms of buckling. Especially critical are beams
with very thin webs or narrow flanges or with cross sections
very weak in the lateral (sideways) direction, that is, with low
resistance in regard to the minor axis, or y–y axis. Buckling
controls the failure mechanism in inadequately braced members
and greatly reduces bending capacity. The most effective solution
is to provide adequate bracing to eliminate this mode of failure.
See discussion in Section 3.11.

Deflection. Although steel is the stiffest material used for ordi-
nary construction, steel structures tend to be quite flexible; thus,
vertical deflection of beams must be carefully investigated. A sig-
nificant value to monitor is the span-to-depth ratio of beams; if
this is kept within certain limits, defection is much less likely to
be critical.

Connections and Supports. Framed structures contain many joints
between separate pieces, and details of the connections and sup-
ports must be developed for proper construction as well as for
the transfer of necessary structural forces through the joints. End
connections for beams may also provide some bracing to reduce
buckling failures.

System Design Concerns. Individual beams are often parts of a sys-
tem in which they play an interactive role. Besides their basic
beam functions, there are often design considerations that derive
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from the overall system actions and interactions. Discussions in
this chapter focus mostly on individual beam actions, but dis-
cussions in other chapters treat the general usage and overall
incorporation of beams in structural systems and, indeed, in the
whole building construction system.

There are several hundred different W shapes for which properties
are listed in the AISC Manual (Ref. 5). A sampling of these is presented
in Table A.3 in Appendix A. In addition, there are several other shapes
that frequently serve beam functions in special circumstances. Selection
of the optimal shape for a given situation involves many considerations;
an overriding concern is often the choice of the most economical shape
for the task. In general, the least costly shape is usually the one that
weighs the least—other things being equal—because steel is priced by
unit weight. In most design cases, therefore, the least weight selection
is typically considered the most economical.

Just as a beam may be asked to develop other actions, such as
tension, compression, or torsion, other structural elements (such as
columns) may be asked to develop beam functions. Walls may span for
bending against wind pressure, columns may receive bending moments
as well as compression loads, and truss chords may span as beams
as well as function for basic truss actions. The basic beam functions
described in this chapter may thus be part of the design work for various
structural elements besides the singular-purpose beam.

9.2 INELASTIC VERSUS ELASTIC BEHAVIOR

As discussed in Chapters 1 and 8, there are two competing methods of
design for steel: allowable stress design (ASD) and load and resistance
factor design (LRFD). ASD in steel is very similar to ASD for wood
discussed in Part II of this book. LRFD for steel has been selected
for this book because it has become the predominant standard for the
construction industry. The basic difference between these two methods
is rooted in the distinction between elastic or inelastic theory of member
behavior. ASD is rooted in elastic behavior and LRFD is rooted in
inelastic behavior. The purpose of this section is to compare these
two theories so the reader can better understand inelastic theory and,
therefore, the LRFD method of design.

The maximum resisting moment by elastic theory is predicted to
occur when the stress at the extreme fiber of a cross section reaches
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the elastic yield value, Fy, and it may be expressed as the product of the
yield stress and the section modulus of the member cross section. Thus,

My = Fy × S

Beyond this condition the resisting moment can no longer be expressed
by elastic theory equations because an inelastic, or plastic, stress con-
dition will start to develop on the beam cross section.

Figure 9.1 represents an idealized form of a load test response for a
specimen of ductile steel. The graph shows that up to the yield point
the deformations are proportional to the applied stress and that beyond
the yield point there is a deformation without an increase in stress.
For A36 steel, this additional deformation, called the plastic range, is
approximately 15 times that produced just before yield occurs. This
relative magnitude of the plastic range of deformation is the basis for
qualification of the material as significantly ductile.

Note that beyond the plastic range the material once again stiffens,
called the strain-hardening effect, which indicates a loss of ductil-
ity and the onset of a second range of increased stress resistance in
which increased deformation is produced only with additional increase
in stress. The end of this range establishes the ultimate stress limit for
the material.

Figure 9.1 Idealized form of the stress–strain response of ductile steel.



286 STEEL BEAMS AND FRAMING ELEMENTS

The following example illustrates the application of the elastic theory
and will be used for comparison with an analysis of plastic behavior.

Example 1. A simple beam of A36 steel has a span of 16 ft [4.88 m]
and supports a single concentrated load of 18 kips [80 kN] at its center.
If the beam is a W 12 × 30, compute the maximum flexural stress.

Solution: See Figure 9.2. For the maximum value of the bending
moment,

M = PL

4
= 18 × 16

4
= 72 kip-ft [98 kN-m]

In Table A.3 find the value of S for the shape as 38.6 in.3 [632 ×
103 mm3]. Thus, the maximum stress is

f = M

S
= 72 × 12

38.6
= 22.4 ksi [154 MPa]

and it occurs as shown in Figure 9.2d .

Note that this stress condition occurs only at the beam section at
midspan. Figure 9.2e shows the form of the deformations that accom-
pany the stress condition. This stress level is well below the elastic
stress limit (yield point) of 36 ksi.

Figure 9.2 Elastic behavior of the beam.
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Figure 9.3 Progression of development of bending stress, from the elastic to
the plastic range.

The limiting moment for elastic stress is that which occurs when the
maximum flexural stress reaches the yield limit, as stated before in the
expression for My. This condition is illustrated by the stress diagram
in Figure 9.3a .

If the loading and the resulting bending moment that causes the yield
limit flexural stress is increased, a stress condition such as illustrated
in Figure 9.3b begins to develop as the ductile material deforms plasti-
cally. This spread of the yield stress level over the beam cross section
indicates the development of a resisting moment in excess of My. With
a high level of ductility, a limit for this situation takes a form as shown
in Figure 9.3c, and the limiting resisting moment is described as the
plastic moment , designated Mp. Although a small portion of the beam
cross section near the beam’s neutral axis remains in an elastic stress
condition, its effect on the development of the resisting moment is quite
negligible. Thus, it is assumed that the full plastic limit is developed
by the condition shown in Figure 9.3d .

Attempts to increase the bending moment beyond the value of Mp

will result in large rotational deformation, with the beam acting as
though it were hinged (pinned) at this location. For practical pur-
poses, therefore, the resisting moment capacity of the ductile beam
is considered to be exhausted with the attaining of the plastic moment;
additional loading will merely cause a free rotation at the location of
the plastic moment. This location is thus described as a plastic hinge
(see Figure 9.4), and its effect on beams and frames will be discussed
further.



288 STEEL BEAMS AND FRAMING ELEMENTS

Figure 9.4 Development of the plastic hinge.

In a manner similar to that for elastic stress conditions, the value of
the resisting plastic moment is expressed as

Mp = Fy × Z

The term Z is called the plastic section modulus , and its value is deter-
mined as follows:

Refer to Figure 9.5, which shows a W shape subjected to a level of
flexural stress corresponding to the fully plastic section (Figures 9.3d
and 9.4), and note the following:

where Au = upper area of the cross section, above the neutral axis
yu = distance of the centroid of Au from the neutral axis
Al = lower area of the cross section, below the neutral axis
yl = distance of the centroid of Al from the neutral axis

For equilibrium of the internal forces on the cross section (the result-
ing forces C and T developed by the flexural stresses), the condition
can be expressed as

�Fh = 0

or
[Au × (+ fy)] + [Al × (− fy)] = 0

and, thus,
Au = Al
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Figure 9.5 Development of the plastic bending moment.

This shows that the plastic stress neutral axis divides the cross
section into equal areas, which is apparent for symmetrical sections,
but it applies to unsymmetrical sections as well. The resisting moment
equals the sum of the moments of the stresses; thus, the value for Mp

may be expressed as

Mp = C × yu + T × yl

or
Mp = (Au × fy × yu) + (Al × fy × yl )

or
Mp = fy [(Au × yu) + (Al × yl )]

or
Mp = fy × Z

and the quantity [(Au × yu) + (Al × yl)] is the property of the cross
section defined as the plastic section modulus, designated Z .

Using the value for Z just derived, its value for any cross section
can be computed. However, values for Z are tabulated in the AISC
Manual (Ref. 5) for all rolled sections used as beams. See Table A.3
in Appendix A.

Comparison of the values for Sx and Zx for the same W shape will
show that the values for Z are larger. This presents an opportunity to
compare the fully plastic resisting moment to the yield stress limit-
ing moment by elastic stress—that is, the advantage of using plastic
analysis to express a beam’s true limiting capacity.
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Example 2. A simple beam consisting of a W 21 × 57 is subjected
to bending about its major axis. Find the limiting moments (1) based
on elastic stress conditions and a limiting yield strength of 36 ksi and
(2) based on full development of the plastic moment.

Solution: For (1) the limiting moment is expressed as

My = Fy × Sx

From Table A.3, Sx = 111 in.3, so the limiting moment is

My = 36 × 111 = 3996 kip-in.

or
3996

12
= 333 kip-ft [452 kN-m]

For (2) the limiting plastic moment, using the value of Zx = 129 in.3

from Table A.3, is

Mp = 36 × 129 = 4644 kip-in.

or
4644

12
= 387 kip-ft [525 kN-m]

The increase in moment resistance represented by the plastic moment
indicates an increase of 387 – 333 = 54 kip-ft, or a percentage gain of
(54/333)(100) = 16.2%.

Problem 9.2.A. A simple-span, uniformly loaded beam consists of a W 18 × 50
with Fy = 36 ksi. Find the percentage of gain in the limiting bending moment
if a plastic condition is assumed, instead of a condition limited by elastic stress.

Problem 9.2.B. A simple-span, uniformly loaded beam consists of a W 16 × 45
with Fy = 36 ksi. Find the percentage of gain in the limiting bending moment
if a plastic condition is assumed, instead of a condition limited by elastic stress.
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9.3 NOMINAL MOMENT CAPACITY OF STEEL BEAMS

A critical step in design for bending using LRFD is the determination
of the bending capacity (Mn) of a steel section. The capacity of a steel
section is based upon its cross-sectional properties, its yield stress, and
the conditions of bracing of the member from out-of-plane buckling.
Each of these parameters affect how the beam will ultimately fail and
thus how much capacity it will have for bending.

Ideally, the failure mode that every beam will be controlled by is
the inelastic failure described in Section 9.2. If a member section is
capable of failing in a plastic hinge, it is considered a “compact” cross
section. A compact shape is one that meets the following criteria:

bf

2tf
≤ 65√

Fy
and

hc

tw
≤ 640√

Fy

where bf = flange width, in.
tf = flange thickness, in.

Fy = minimum yield stress, ksi
hc = height of the web, in.
tw = web thickness, in.

For A36 steel, this translates to

bf

2tf
≤ 10.8 and

hc

tw
≤ 107

and for steel with a yield stress of 50 ksi, it translates to

bf

2tf
≤ 9.19 and

hc

tw
≤ 90.5

Table 9.1 contains data for several properties of selected W shapes.
In the AISC Manual (Ref. 5) and in Table 9.1, the ratios needed to
determine compactness are computed for each structural shape, and in
many of the AISC tables, the noncompact sections are clearly labeled.
It should be noted that most shapes used for beams are compact by
design.
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Compact beams that are adequately laterally supported will fail with
a plastic hinge, and, therefore, the moment capacity is the yield moment
or plastic moment (Mp) for the section.

Example 3. Determine the moment capacity of an A36 W 24 × 76
steel beam that is adequately laterally supported.

Solution: First, check to make sure that the section is compact. Com-
pact section criteria is taken from Table 9.1. For the ratio of flange
dimensions, the table yields a value of 6.61, which is less than the
limit of 10.8. For the ratio of the web dimensions, the table yields a
value of 49, which is less than the limit of 107. The shape is, therefore,
compact and the moment capacity will be equal to the plastic moment:

Mn = My = Fy × Zx = 36 × 200 = 7200 kip-in.

= 7200

12
= 600 kip-ft [814 kN-m]

To ensure that a compact section fails plastically, the maximum
spacing between lateral supports of the beam (Lb) must be less than
a limiting laterally unbraced length for fully plastic flexural strength
(Lp), which is defined as

Lp = 300 × ry√
Fy

where ry = radius of gyration about the y axis, in.
Fy = minimum yield stress, ksi

If the actual unbraced length (Lb) is greater than the limiting value
of Lp, the beam will fail in buckling at a moment less than the plastic
moment. The plastic moment will attempt to develop but cannot be
attained. However, the stress condition at failure will be in the plastic
range, so the form of buckling is described as inelastic lateral-torsional
buckling . This form of buckling will occur for unbraced lengths up to
a second limiting length called Lr. Unbraced lengths greater than Lr

will result in a different form of buckling with the beam in the elastic
stress range; this limiting unbraced length causes the form of buckling



296 STEEL BEAMS AND FRAMING ELEMENTS

to change to one described as elastic buckling . The limiting length Lr

is defined as

Lr =
(

ry × X1

Fy − Fr

)
×

√
1 +

√
1 + X2 × (Fy − Fr )2

where ry = radius of gyration about the y axis, in.
X 1 = beam buckling factor
Fy = minimum yield stress, ksi
Fr = compressive residual stress (10 ksi for rolled shapes)
X 2 = beam buckling factor

Example 4. Determine the limiting lateral bracing lengths Lp and Lr

for an A36 W 24 × 76 steel beam.

Solution: From Table 9.1, for the shape: ry = 1.92 in., X 1 = 1760 ksi,
X 2 = 0.0186 (1/ksi)2. Note: Values given in Table 9.1 for X 2 are
1,000,000 times the actual value; therefore, move the decimal point six
places to the left for computations (0.0816, not 18,600).

Lp = 300 × ry√
Fy

= 300 × 1.92√
36 ksi

= 96 in. = 8 ft [2.44 m]

and

Lr =
(

ry × X1

Fy − Fr

)
×

√
1 +

√
1 + X2 × (Fy − Fr )2

=
(

1.92 × 1760

36 − 10

)
×

√
1 +

√
1 + 0.0186 × (36 − 10)2

= 281 in. = 23.4 ft [7.14 m]

These may be verified by the values listed for the shape in Table 9.1.

Knowing the relationship between the unbraced length (Lb) and the
limiting lateral unbraced lengths (Lp and Lr), it is possible to determine
the nominal moment capacity (Mn) for any beam. Figure 9.6 shows the
form of the relation between Mn and Lb using the example of a W 18
× 50 with yield stress of 50 ksi. The AISC Manual (Ref. 5) contains
a series of such graphs for shapes commonly used as beams.
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Figure 9.6 Relation between nominal capacity Mn and unbraced length Lb for a
W 18 × 50 steel beam with Fy = 50 ksi.
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For the three cases of lateral unsupported length (Lb), relating to the
three parts of the graph in Figure 9.6, the nominal resisting moment
(Mn) is determined as follows:

Case 1, if Lb ≤ Lp, then

Mn = Mp = Fy × Zx

Case 2, if Lp < Lb ≤ Lr , then

Mn = Mp − (Mp − Mr ) ×
(

Lb − Lp

Lr − Lp

)

where Mr = (Fy − Fr) × Sx

Fr = compressive residual stress, 10 ksi
Sx = section modulus for the x axis

Case 3, if Lb > Lr, then

Mn =
(

Sx × X1 × √
2

Lb/ry

)
×

√
1 + (X1)2 × X2

2 × (Lb/ry)2

where X 1, X 2 = beam buckling factors from Table 9.1
ry = radius of gyration for the y axis

Example 5. Determine the nominal resisting moment capacity of an
A36 W 24 × 76 steel beam that is laterally supported every 10 ft. (This
is the same shape that is used in Example 4.)

Solution: From Table 9.1, Lp = 8 ft, Lr = 23.4 ft, Mp = 600 kip-ft, Mr

= 381 kip-ft.
Note that this is case 2, where Lp < Lb < Lr. Then

Mn = Mp − (Mp − Mr ) ×
(

Lb − Lp

Lr − Lp

)

= 600 − (600 − 381) ×
(

10 − 8

23.4 − 8

)

= 572 kip-ft [775 kN-m]
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Example 6. Determine the nominal resisting moment capacity of an
A36 W 24 × 76 steel beam that is laterally unsupported on a 25-ft span.

Solution: Note that this is case 3 since the unsupported length
exceeds Lr.

From Table 9.1, Sx = 176 in3, ry = 1.92 in., X 1 = 1760 ksi, X 2 =
18,600 × (10)-6 (1/ksi). Note: As discussed for Example 4, the value
of X 2 is actually 0.0186. Then

Mn =
(

Sx × X1 × √
2

Lb/ry

)
×

√
1 + (X1)2 × X2

2 × (Lb/ry)2

=
(

176 × 1760 × √
2

(25 × 12)/1.92

)
×

√
1 + (1760)2 × 0.0186

2 × {(25 × 12)/1.92}2

=
(

438,000

156

)
×

√
1 + 57,615

48,828

= 2804 × 1.48 = 4150 kip-in. = 345 kip-ft [469 kN-m]

Problem 9.3.A. Determine the nominal resisting moment capacity (Mn) for a
W 27 × 94 made of A36 steel and the following unbraced lengths: (1) 5 ft, (2)
15 ft, and (3) 30 ft.

Problem 9.3.B. Determine the nominal resisting moment capacity (Mn) for a
W 16 × 36 made of A36 steel and the following unbraced lengths: (1) 5 ft, (2)
10 ft, and (3) 20 ft.

9.4 DESIGN FOR BENDING

Design for bending usually involves the determination of the ultimate
bending moment (Mu) that the beam must resist and the use of formu-
las derived in Section 9.3 for definition of bending resistance of the
member (Mn). Stated in equation form, the relationship is

φbMn ≥ Mu

where φb = 0.9.
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Design for Plastic Failure Mode

Using the formula for resisting moment defined for case 1 in the preced-
ing section, a relationship can be stated that leads to the determination
of the required plastic modulus of elasticity for a beam. Thus,

Zx = Mu

Fyφb

For cost effectiveness, weight is more important, so that the chosen
shape may be one with a larger section modulus than required. The
following example illustrates the basic procedure.

Example 7. Design a simply supported floor beam of A36 steel to
carry a superimposed load of 2 kips/ft [29.2 kN/m] over a span of 24 ft
[7.3 m]. (A superimposed load is any load other than the weight of
the beam itself.) The superimposed load is 25% dead load and 75%
live load. The beam is continuously supported against lateral buckling
(Lb = 0).

Solution: The load must first be factored to produce the maximum
required moment (Mu). Thus,

wu = 1.4(deadload)

= 1.4(0.5) = 0.7 kips/ft [10.2 kN/m]

or

wu = 1.2(dead load) + 1.6(live load)

= 1.2(0.5) + 1.6(1.5) = 3.0 kips/ft [43.8 kN/m]

The bending moment due to the maximum factored load is

Mu = wL2

8
= 3(24)2

8
= 216 kip-ft [293 kN-m]

The required bending resistance of the member is

Mn = Mu

φb
= 216

0.9
= 240 kip-ft [325 kN-m]
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The required plastic section modulus for this moment is

Zx = Mn

Fy
= 240 × 12

36
= 80.0 in.3 [1.31 × 106 mm3]

Table 9.1 lists a number of shapes in descending order of the value of
their plastic section modulus. Possible choices with a section modulus
of at least 80.0 in.3 are

W 16 × 45, Zx = 82.3 in.3

W 14 × 53, Zx = 87.1 in.3

W 18 × 46, Zx = 90.7 in.3

W 10 × 68, Zx = 85.3 in.3

W 21 × 44, Zx = 95.4 in.3

Although there are often other considerations for a complete design,
for flexure alone the lightest choice is W 21 × 44. A check should be
made to assure that the added weight of the beam does not push the
required value for the plastic section modulus above that of the selected
shape. The additional factored dead load is

wu = 1.2(44) = 52.8 lb/ft or 0.053 kips/ft

and the percentage increase in the required section modulus is

0.053

3.0
(100) = 1.77%

This is a negligible increase for this shape, as its section modulus
is considerably larger than required. However, in some cases it may
make for different options if other shapes are considered.

Use of Plastic Section Modulus Tables

Selection of rolled shapes on the basis of required plastic section
modulus may be achieved by the use of tables in the AISC Manual
(Ref. 5) in which beam shapes are listed in descending order of their
section modulus values. Table 9.1 presents a small sample of the ref-
erence table data. Note that certain shapes have their designations in
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boldface type. These are shapes with sections that have an especially
efficient bending moment resistance, indicated by the fact that there are
other shapes of greater weight but the same or smaller section modulus.
Thus, for a savings of material cost, these least weight shapes offer an
advantage. Consideration of other beam design factors, however, may
sometimes make this a less important concern.

Data are also supplied in Table 9.1 for the consideration of lateral
support for beams. Values are given for the two critical limiting lengths
Lp and Lr. If a calculation has been made by assuming the minimum
yield stress of 36 ksi [250 MPa], the required plastic section modulus
obtained will be proper only for beams in which the lateral unsupported
length is equal to or less than Lp as listed under the column labeled
“36 ksi.” Similarly, if the required section modulus was obtained using
a minimum yield stress of 50 ksi [350 MPa], the lateral unsupported
length needs to be equal to or less than Lp as listed under the “50 ksi”
column.

A second method of using Table 9.1 for beams omits the calculation
for a required plastic section modulus and refers directly to the listed
values for the plastic bending moment for the shapes, given as Mp in
the tables. If Mp ≥ Mu/φb , then it is an appropriate shape if Lb ≤ Lp.

Example 8. Rework the problem in Example 7 by using Table 9.1
directly.

Solution: As before, the required resisting bending moment is found
to be 240 kip-ft. Noting that some additional bending capacity will be
required because of the beam’s own weight, scan the tables for shapes
with Mp slightly greater than 240 kip-ft. Thus,

Shape Mp (kip-ft)

W 16 × 45 247
W 14 × 53 261
W 18 × 46 272
W 10 × 68 256
W 21 × 44 286

As before, the least weight choice is the W 21 × 44.
In Examples 7 and 8 the beam was assumed to be continuously

laterally supported; that is, Lb = 0. If the lateral unsupported length
is a specific value, full development of the plastic moment will be
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possible only if Lb ≤ Lp. Choices can still be made from Table 9.1, as
the following examples illustrate for the 24-ft-span beam.

Lateral Maximum Permitted Least Weight Listed Lp

Supports at: Unsupported Length Shape for the Shape

Quarter points 6 ft W 16 × 45 6.54 ft
Third points 8 ft W 14 × 53 8.00 ft
Midpoint 12 ft W 12 × 79 12.7 ft
Ends of beam only 24 ft No shape qualifies

It should be noted that not all available W shapes listed in Table A.3
are included in Table 9.1. Specifically excluded are the shapes that are
approximately square (depth equal to flange width) and are ordinarily
used for columns rather than for beams.

The following problems involve design for bending under plastic
failure mode only. Use A36 steel and assume that least weight members
are desired for each case.

Problem 9.4.A. Design for flexure a simple beam 14 ft [4.3 m] in length and
having a total uniformly distributed dead load of 13.2 kips [59 kN] and a total
uniformly distributed live load of 26.4 kips [108 kN].

Problem 9.4.B. Design for flexure a beam having a span of 16 ft [4.9 m] with
a concentrated live load of 40 kips [178 kN] at the center of the span.

Problem 9.4.C. A beam 15 ft [4.6 m] in length has three concentrated live
loads of 6, 7.5, and 9 kips at 4, 10, and 12 ft [26.7, 33.4, and 40.0 kN at 1.2,
3, and 3.6 m], respectively, from the left-hand support. Design the beam for
flexure.

Problem 9.4.D. A beam 30 ft [9 m] long has concentrated live loads of 9 kips
[40 kN] each at the third points and also a total uniformly distributed dead load
of 20 kips [89 kN] and a total uniformly distributed live load of 10 kips [44 kN].
Design the beam for flexure.

Problem 9.4.E. Design for flexure a beam 12 ft [3.6 m] in length, having a
uniformly distributed dead load of 1 kip/ft [14.6 kN/m], a uniformly distributed
live load of 1 kip/ft [14.6 kN/m], and a concentreated dead load of 8.4 kips
[37.4 kN] a distance of 5 ft [1.5 m] from one support.
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Problem 9.4.F. A beam 19 ft [5.8 m] in length has concentrated live loads of
6 kips [26.7 kN] and 9 kips [40 kN] at 5 ft [1.5 m] and 13 ft [4 m], respectively,
from the left-hand support. In addition, there is a uniformly distributed dead
load of 1.2 kips/ft [17.5 kN/m] beginning 5 ft [1.5 m] from the left support and
continuing to the right support. Design the beam for flexure.

Problem 9.4.G. A steel beam 16 ft [4.9 m] long has a uniformly distributed dead
load of 100 lb/ft [1.46 kN/m] extending over the entire span and a uniformly
distributed live load of 100 lb/ft [1.46 kN/m] extending 10 ft from the left sup-
port. In addition, there is a concentrated live load of 8 kips [35.6 kN] at 10 ft
[3 m] from the left support. Design the beam for flexure.

Problem 9.4.H. Design for flexure a simple beam 21 ft [6.4 m] in length, having
two concentrated loads of 20 kips [89 kN] each, one 7 ft [2.13 m] from the left
end and the other 7 ft [2.13 m] from the right end. The concentrated loads are
each made up of equal parts of dead load and live load.

Problem 9.4.I. A cantilever beam 12 ft [3.6 m] long has a uniformly distributed
dead load of 600 lb/ft [8.8 kN/m] and a uniformly distributed live load of
1000 lb/ft [14.6 kN/m]. Design the beam for flexure.

Problem 9.4.J. A cantilever beam 6 ft [1.8 m] long has a concentrated live load
of 12.3 kips [54.7 kN] at its unsupported end. Design the beam for flexure.

9.5 DESIGN OF BEAMS FOR BUCKLING FAILURE

Although it is preferable to design beams to fail under the plastic hinge
mode discussed in Section 9.4, it is not always possible to do so. This
is commonly caused by excessive unbraced lengths for lateral support.
The simplest solution is to decrease the maximum unbraced length to
make it less than the plastic failure limit (Lb). If this is not possible, the
solution is to accept that the beam failure mode is buckling and use the
appropriate equations to determine the nominal moment capacity of the
beam as described in Section 9.3. The following example demonstrates
the process.

Example 9. A 14-ft- [4.7-m]-long simply supported beam has a uni-
formly distributed live load of 3 kips/ft [43.3 kN/m] and a uniformly
distributed dead load of 2 kips/ft [29.2 kN/m]. It is laterally supported
only at its ends. Determine the least weight A36 steel W shape that
will work.
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Solution: First, determine the appropriate load combination and the
maximum factored moment. Thus,

wu = 1.4(dead load) = 1.4(2) = 2.8 kips/ft [40.9 kN/m]

or

wu = 1.2(dead load) + 1.6(live load)

= 1.2(2) + 1.6(3) = 7.2 kips/ft [105 kN/m]

The bending moment caused by the maximum factored load is

Mu = wL2

8
= 7.2 × (14)2

8
= 176 kip-ft [239 kN-m]

The required bending resistance of the member is

Mn = Mu

φb
= 176

0.9
= 196 kip-ft [266 kN-m]

The required plastic modulus for this moment is

Zx = Mn

Fy
= 196 × 12

36
= 65.3 in.3 [4213 mm3]

From Table 9.1, the least weight shape not taking into account
unbraced length is a W 18 × 40, but this shape has a plastic limit
on unbraced length (Lp) of only 5.29 ft. However, its plastic section
modulus (Zx) is larger than required, so it still has reserve moment
capacity beyond the plastic length limit. If this shape does not work,
a search of Table 9.1 can be done to see if there are any shapes that
have Zx > 65.3 in.3 and Lp ≥ 14 ft. There are two listed shapes that
match this criteria, a W 14 × 120 and a W 14 × 145. As these shapes
are quite heavy, the search should be continued for lighter shapes. Try
for a shape that has Zx > 65.3 in.3 and Lp < 14 ft < Lr and whose
moment capacity Mn > 196 kip-ft.

For a first try, check the W 18 × 40 because it would be the least
weight choice if it works. From Table 9.1

Lp = 5.29 ft Lr = 15.7 ft
Mp = 235 kip-ft Mr = 148 kip-ft
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And

Mn = Mp − (Mp − Mr ) ×
(

Lb − Lp

Lr − Lp

)

= 235 kip-ft − (235 kip-ft − 148 kip-ft) ×
(

14 ft − 5.29 ft

15.7 ft − 5.29 ft

)

= 162 kip-ft, which is less than the required 196 kip-ft

Next, try the W 14 × 43 (the next lightest shape) and check to see if
it works.

Mn = 209 − (209 − 136)

(
14 − 7.88

24.7 − 7.88

)

= 182 kip-ft, which is also not adequate

Try a W 21 × 44:

Mn = 286 − (286 − 177)

(
14 − 5.25

15.4 − 5.25

)

= 192 kip-ft, which is also not adequate

Try a W 16 × 45:

Mn = 247 − (247 − 158)

(
14 − 6.54

20.2 − 6.54

)

= 198 kip-ft

As this is slightly larger than the moment required, this shape appears
to work. However, a check should be made of the increased moment
due to the beam weight. This investigation will show that the required
moment is almost exactly equal to the beam’s capacity, technically an
acceptable situation but cutting it really close.

The following problems involve the use of Table 9.1 to choose the
least weight beams when lateral bracing is a concern. Use A36 steel
for all beams.

Problem 9.5.A. A W shape is to be used for a uniformly loaded simple beam
carrying a total dead load of 27 kips [120 kN] and a total live load of 50 kips
[222 kN] on a 45-ft [13.7-m] span. Select the lightest weight shape for unbraced
lengths of (1) 10 ft [3.05 m], (2) 15 ft [4.57 m], and (3) 22.5 ft [6.90 m].
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Problem 9.5.B. A W shape is to be used for a uniformly loaded simple beam
carrying a total dead load of 30 kips [133 kN] and a total live load of 40 kips
[178 kN] on a 24-ft [7.32-m] span. Select the lightest weight shape for unbraced
lengths of (1) 6 ft [1.83 m], (2) 8 ft [2.44 m], and (3) 12 ft [3.66 m].

Problem 9.5.C. A W shape is to be used for a uniformly loaded simple beam
carrying a total dead load of 22 kips [98 kN] and a total live load of 50 kips
[222 kN] on a 30-ft [9.15-m] span. Select the lightest weight shape for unbraced
lengths of (1) 6 ft [1.83 m], (2) 10 ft [3.05 m], and (3) 15 ft [4.57 m].

Problem 9.5.D. A W shape is to be used for a uniformly loaded simple beam
carrying a total dead load of 26 kips [116 kN] and a total live load of 26 kips
[116 kN] on a 36-ft [11-m] span. Select the lightest weight shape for unbraced
lengths of (1) 9 ft [2.74 m], (2) 12 ft [3.66 m], and (3) 18 ft [5.49 m].

9.6 SHEAR IN STEEL BEAMS

Investigation and design for shear forces in beams with the LRFD
method is similar to that for bending moment in that the maximum
factored shear force must be equal to or less than the factored shear
capacity of the beam chosen. This is expressed as

φv Vn ≥ Vu

where φv = 0.90
Vn = nominal shear capacity of the beam
Vu = required (factored) shear load on the beam

Shear in beams consists of the vertical slicing effect produced by
the opposition of the vertical loads on the beams (downward) and the
reaction forces at the beam supports (upward). The internal shear force
mechanism is visualized in terms of the shear force diagram for the
beam. With a uniformly loaded simple beam, this diagram takes the
form of that shown in Figure 9.7a .

As the shear diagram for the uniformly distributed load shows, the
internal shear force has a maximum value at the beam supports and
decreases steadily to zero at midspan. With a beam having the same
cross section throughout its length, the critical location for shear is thus
at the supports and of less concern at other locations.
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Figure 9.7 Development of shear in beams.

Figure 9.7b shows the form of shear force variation due to a con-
centrated load; a condition commonly occurring when a beam supports
the ends of other beams. In this case, major internal shear force is
generated for some length along the beam.

Internal shear force develops shear stress in the beam (see
Section 3.8). The form of distribution of these stresses depends on the
shape of the cross section of the beam. For a simple rectangular cross
section, such as that of a wood beam, the distribution is as shown in
Figure 9.7c, taking the form of a parabola with a maximum value at
the centroidal axis of the beam, and decreasing to zero at the top and
bottom edges.

For the I-shaped cross section of the typical W shape steel beam,
the beam shear stress distribution takes the form shown in Figure 9.7d
(referred to as the “derby hat” form). Again, the maximum stress occurs
at the neutral axis, but the drop off toward the edges is slower and then
drops dramatically at the flanges. A traditional shear stress investiga-
tion for the W shape, therefore, is based on ignoring the flanges and
assuming the shear-resisting portion of the beam to be an equivalent
vertical plate (Figure 9.7e) with a width equal to the beam web thick-
ness and a height equal to the full beam depth. For the ASD method,
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an allowable value is established for a unit shear stress on the basis of
this analogy, and the stress is defined as

fv = V

tw db
= V

Aw

where fv = average shear stress, based on the distribution in
Figure 9.7e

V = shear force at the cross section
tw = beam web thickness
db = overall beam depth
Aw = area of the beam web, tw × db

Uniformly loaded steel beams are seldom critical with regard to
shear stress on the basis just described. The most common case for
beam support is that shown in Figure 9.8a , where a connecting device
affects the transfer of the end shear force to the beam support, usually
using a pair of steel angles that grasp the beam web and are turned
outward to fit against another beam’s web or the side of a column. If
the connecting device is welded to the supported beam’s web, as shown
in Figure 9.8a , it actually reinforces the web at this location; thus, the
critical section for shear stress becomes that portion of the beam web
just beyond the connector. At this location, the shear force is as shown
in Figure 9.8b, and it is assumed to operate on the effective section of
the beam as discussed previously.

Some situations, however, can result in critical conditions for the
transfer of the vertical force at the beam end. When the supporting
beam is also a W shape, and the tops of the two beams are at the
same level (common in framing systems), it becomes necessary to cut
back the top flange and a portion of the beam web of the supported
beam to permit the end of the web to get as close as possible to the
web of the supporting beam (Figure 9.8c). This results in some loss of
the shear-resisting area of the web as assumed in Figure 9.2b and an
increase in the shear stress.

Another possible reduction of the shear-resisting area may occur
when bolts, rather than welds, are used to fasten connecting angles to
the supported beam’s web, as shown in Figure 9.8c. The full reduction
of the shear-resisting area will thus include the losses due to the bolt
holes and the notched top of the beam. The form of failure in this
situation may be one of block tearing of the beam web, as described
in Section 11.1.
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(a)

(b)

(c)

(d)

N

h d

Figure 9.8 Considerations for end support in rolled beams: (a) development
of shear by the full beam section with a framed beam connection, (b) design
assumption for resistance to shear by the web only, (c) development of shear on
a reduced section, and (d) development of vertical compression in the beam web
at a bearing support.
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Shear stress as such, however, may not be the nature of the critical
problem at a beam support. Figure 9.8d illustrates the condition of a
vertical compression effect at a beam support consisting of a bearing
of the beam end on top of the support, usually in this case the top
of a wall or a wall ledge. The potential problem here is a squeezing
of the beam end and a columnlike action in the thin beam web. As
with a column, the range of possibilities for this form of failure relate
to the relative slenderness of the web. For the LRFD method, three
cases are defined by the slenderness ratio of the web (h/tw) and control
the shear capacity (Vn) of a beam. The dimension h , as shown in
Figure 9.8d , is the true unbraced height of the web, equal to the beam
depth minus twice the flange thickness. The three distinct cases are as
follows:

1. A very stiff (thick) web that may actually reach something close
to the full yield stress limit of the steel where

h

tw
≤ 418/

√
Fy

Vn = (0.6Fy )Aw

2. A somewhat slender web that responds with some combined yield
stress and buckling effect (called an inelastic buckling response)
where

418√
Fy

≤ h

tw
≤ 523√

Fy

Vn = (0.6Fy)Aw

(
418/

√
Fy

h/tw

)

3. A very slender web that fails essentially in elastic buckling in
the classic Euler formula manner; basically, a deflection failure
rather than a stress failure where

h

tw
>

523√
Fy

Vn = 132,000

(
Aw

(h/tw )2

)
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Example 10. A simple beam of A36 steel is 6 ft [1.83 m] long and has
a concentrated live load 36 kips [160 kN] applied 1 ft [0.3 m] from one
end. It is found that a W 10 × 19 is adequate for the bending moment.
Investigate the beam to determine if the shear capacity is adequate for
the required shear.

Solution: The load must first be factored.

Pu = 1.2(dead load) + 1.6(live load)

= 1.2(0) + 1.6(36) = 57.6 kips [256 kN]

The two beam reactions for this loading are 48 kips [214 kN] and
9.6 kips [43.2 kN]. The maximum shear in the beam (Vu) is equal to
the larger reaction force.

From Table A.3, for the given shape, d = 10.24 in., tw = 0.250 in.,
tf = 0.395 in. Then

h = d − 2(tf ) = 10.24 − 2(0.395) = 9.45 in.

h

tw
= 9.45

0.25
= 37.8

418√
Fy

= 418√
36

= 69.7 >
h

tw

Therefore, the shear capacity will be determined using the equation
associated with the full yield stress limit of the steel:

Aw = d × tw = 10.24 × 0.250 = 2.56 in.2 [1651 mm2]

Vn = (0.6Fy )Aw = (0.6 × 36) × 2.56 = 55.3 kips [246 kN]

φv Vn = 0.9(55.3) = 49.8 kips > Vu = 48 kips

Because the factored capacity of the beam is greater than the factored
shear force, the shape is acceptable.

The net effect of investigations of all the situations so far described,
relating to end shear in beams, may be to influence a choice of a beam
shape with a web that is sufficient. However, other criteria for selection
(flexure, deflection, framing details, and so on) may indicate an ideal
choice that has a vulnerable web. In the latter case, it is sometimes
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decided to reinforce the web, the usual means being to insert vertical
plates on either side of the web and to fasten them to the web as well
as to the beam flanges. These plates then both brace the slender web
and absorb some of the vertical compression stress in the beam.

For practical purposes, the considerations for beam end shear and
end support limitations of unreduced webs can be handled by data
supplied in tables in the AISC Manual (Ref. 5).

Problems 9.6.A–C. Compute the shear capacity (φv Vn) for the following beams
of 36 ksi [160 kN] steel: (A) W 24 × 94, (B) W 12 × 45, and (C ) W 10 × 33.

9.7 DEFLECTION OF BEAMS

Deformations of structures must often be controlled for various reasons.
These reasons may relate to the proper functioning of the structure, but
more often they relate to effects on the supported construction or to the
overall purpose of the structure.

To steel’s advantage is the relative stiffness of the material itself.
With a modulus of elasticity of 29,000 ksi, it is 8–10 times as stiff
as average structural concrete and 15–20 times as stiff as structural
lumber. However, it is often the overall deformation of whole structural
assemblages that must be controlled; in this regard, steel structures are
often quite deformable and flexible. Because of its high material cost,
steel is usually formed into elements with thin parts (e.g., beam webs
and flanges), and because of its high strength, it is frequently formed
into slender elements (e.g., beams and columns).

For a beam in a horizontal position, the critical deformation is usu-
ally the maximum sag, called the beam’s deflection . For most beams in
service, this deflection will be too small to be detected by eye. How-
ever, any load on the beam, such as that in Figure 9.9, will cause
some amount of deflection, beginning with the beam’s own weight.
In the case of a simply supported, symmetrical, single-span beam, the
maximum deflection will occur at midspan, and it usually is the only
deformation value of concern for design. However, as the beam deflects,
its ends rotate unless restrained, and this twisting deformation may also
be of concern in some situations.

If deflection is determined to be excessive, the usual remedy is to
select a deeper beam. Actually, the critical geometric property of the
beam cross section is the moment of inertia (I ) about its major axis
(Ix for a W shape), which is affected significantly by increase in depth
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Figure 9.9 Deflection of a simple beam under symmetrical loading.

of the beam. Formulas for deflection of beams take a typical form that
involves variables as follows:

� = C
WL3

EI

where � = deflection, measured vertically, usually in. or mm
C = constant related to load and support conditions
W = total load on the beam
L = span of the beam
E = modulus of elasticity of the beam material
I = moment of inertia for the beam about the bending axis

Note that the magnitude of the deflection is directly proportional
to the magnitude of the total load; that is, if the load is doubled, the
deflection will double. However, the deflection is proportional to the
third power of the span; double the span and get 23 or eight times
as much deflection. For resistance to deflection, increases in either the
material’s stiffness or the beam’s geometric form, I , will cause direct
proportional reduction of the deflection. Because E is constant for all
steel, design modification of deflections must deal only with the beam’s
shape.

Excessive deflection may cause problems in buildings. Excessive
sag may disrupt the intended drainage patterns for a generally flat roof
surface. For floors, a common problem is the development of some
perceivable bounciness. The form of the beam and its supports may also
be a consideration. For the simple-span beam in Figure 9.9, the usual
concern is simply for the maximum sag at midspan. For a beam with a
projected (cantilevered) end, however, a problem may be created at the
unsupported cantilevered end; depending on the extent of the cantilever,
this may involve downward deflection (as shown in Figure 9.10a) or
upward deflection (as shown in Figure 9.10b).
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Figure 9.10 Considerations for deflection of beams.

With continuous (multiple-span) beams, a potential problem derives
from the fact that a load in any span causes some deflection in all spans.
This is most critical when loads vary in different spans or the lengths
of spans differ significantly (see Figure 9.10c).

Most deflection problems in buildings stem from the effects of the
structural deformations on adjacent or supported elements of the build-
ing construction. When beams are supported by other beams, excessive
deflection of the supported beams can cause rotation at the supported
ends, resulting in cracking or separation of the floor deck that is con-
tinuous over the supporting beams, as shown in Figure 9.10d . For such
a system, there is also an accumulative deflection caused by the inde-
pendent deflections of the deck, beams, and support beams, which can
cause problems for maintaining a flat floor surface or a desired roof
profile for drainage.
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An especially difficult problem related to deflections is the effect
of beam deflections on nonstructural elements of the construction.
Figure 9.10e shows the case of a beam occurring directly over a
solid wall. If the wall is made to fit tightly beneath the beam, any
deflection of the beam will cause it to bear on top of the wall—not
an acceptable situation if the wall is especially fragile (a metal and
glass curtain wall, for example). A different sort of problem occurs
when relatively rigid walls (e.g., masonry or plastered) are supported
by spanning beams, as shown in Figure 9.10f . In this case, the wall is
relatively intolerant of any deformation, so anything significant in the
form of sag of the beam is really critical.

For long-span structures (an ambiguous class, usually meaning 100 ft
or more span), a special problem is that of the relatively flat roof
surface. In spite of provisions for code-mandated minimum drainage,
heavy rain will run off slowly from the surface and linger to cause
some deflection. The sag of the spanning structure can swiftly cause
formation of a pond (see Figure 9.10g). The pond itself then produces
more deflection, resulting in a deeper pond, a progression that can
accelerate into a failure condition. Building codes and design speci-
fications (including the AISC’s) provide requirements relating to this
phenomenon, referred to as “ponding.”

Standard Equations for Deflection

Determining deflection of a beam is usually done using a series of
standard equations. These equations are listed for various loading con-
ditions in the AISC Manual (Ref. 5), samples of which are given in
Figure 3.18. The purpose of these equations is to determine actual
deflection dimensions due to service loads, so the computations are the
same for both ASD and LRFD methods and the loads are not factored
for LRFD. Care must be taken to assure the use of consistent units
in these equations; beam section properties and modulus of elasticity
are usually in inch or millimeter units, while spans are often in feet or
meters and uniformly distributed loads are usually in pounds per foot
of beam length. Conversions to proper units should be made before
entering data in the equations, or conversion must be done within the
equations. The most used equations for simply supported beams are
as follow:
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Loading Condition Maximum Deflection

Uniform load over entire span � = 5wL4

384EI
or � = 5WL3

384EI

Concentrated load at midspan � = PL3

48EI

Example 11. A simple beam has a span of 20 ft [6.10 m] with a uni-
formly distributed load of 1.95 kips/ft [28.5 kN/m]. The beam consists
of a W 14 × 34 shape. Find the maximum deflection.

Solution: To use the deflection equation, first convert the data to all
kip and inch units. Thus,

Total load = 1.95 × 20 = 39 kips

Span = 20 × 12 = 240 in.

Then

� = 5WL3

384EI
= 5(39)(240)3

384(29,000)(340)
= 0.712 in. [18.1 mm]

Allowable Deflections

What is permissible for beam deflection is mostly a judgment to be
made by experienced designers. While code specifications must be rec-
ognized, it is difficult to provide useful guidance for specific limitations
to avoid the various problems described in Figure 9.10. Each situation
must be considered individually, requiring cooperation of the structural
designer and the rest of the building design team.

For spanning beams in ordinary situations, some rules of thumb have
been derived over many years of experience. These usually consist of
establishing some maximum degree of curvature described in the form
of a ratio of the deflection to the beam span, expressed as a fraction
of the span. These are sometimes, although not always, specified in
design codes or legally enacted building codes. Some typical limitations
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recognized by designers are the following:

To avoid visible sag under total load on short to medium spans,
L/150

For total load deflection of a roof structure, L/180

For deflection under live load only for a roof structure, L/240

For total load deflection of a floor structure, L/240

For deflection under live load only for a floor structure, L/360

Deflection of Uniformly Loaded Simple Beams

The most frequently used beam in flat roof and floor systems is the
single, simply supported beam (no end restraint) with a uniformly dis-
tributed loading, as shown in Figure 3.18, Case 2. For this case, the
following values may be obtained for the beam behavior:

Maximum bending moment:

M = wL2

8

Maximum elastic bending stress on the beam cross section:

f = Mc

I
or

M

S

Maximum midspan deflection:

� = 5wL4

384EI
or

5WL3

384EI

Using these relationships, together with a known modulus of elastic-
ity (E = 29,000 ksi for steel), a convenient abbreviated formula can be
derived. Noting that the dimension c in the bending stress formula is
one half the beam depth (d /2) for symmetrical shapes, and substituting
the expression for M , we can say

f = Mc

I
=

(
wL2

8

) (
d/2

I

)
= wL2d

16I
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Then

� = 5wL4

384EI
=

(
wL2d

16I

) (
5L2

24Ed

)
= (f )

(
5L2

24Ed

)
= 5fL2

24Ed

This a basic formula for any beam symmetrical about its bending
axis. For a shorter version the value for E for steel (29,000 ksi) may be
used. Also, because deflections are only appropriate within the elastic
range, it is reasonable to set the limit for f as that of the allowable
bending stress for ASD, Fb = 0.667 × Fy. Also, for convenience,
spans are usually measured in feet, not inches, so a factor of 12 is
added. Thus, for A36 steel:

� = 5fL2

24Ed
=

(
5

24

) (
0.667 × 36

29,000

) [
(12L)2

d

]
= 0.02483L2

d

In metric units, with f = 165 MPa, E = 200 GPa, and the span in
meters:

� = 0.0001719L2

d

For Fy = 50 ksi:

� = 50

36

(
0.2483L2

d

)
= 0.03449L2

d

In metric units, with f = 230 MPa, E = 200 GPa, and the span in
meters:

� = 0.0002396L2

d

The derived deflection formula involving only span and beam depth
can be used to plot a graph that displays the deflection of a beam of a
constant depth for a variety of spans. Figure 9.11 consists of a series
of such graphs for beams from 6 to 36 in. in depth and a yield stress
of 36 ksi. Of similar form is Figure 9.12, which has graphs for a yield
stress of 50 ksi. Use of these graphs presents yet another means for
determining beam deflections. An answer within about 5% should be
considered reasonable from the graphs.
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Figure 9.11 Deflection of steel beams with yield stress of 36 ksi [250 MPa] under
a constant bending stress of 24 ksi [165 MPa].

The real value of the graphs in Figures 9.11 and 9.12, however, is in
assisting the design process. Once the span is known, it may be initially
determined from the graphs what beam depth is required for a given
deflection. The limiting deflection may be given as an actual dimension,
or more commonly, as a limiting percentage of the span (1/240, 1/360,
etc.), as previously discussed. To aid in the latter situation, lines are
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Figure 9.12 Deflection of steel beams with yield stress of 50 ksi [345 MPa] under
a constant bending stress of 33 ksi [228 MPa].

drawn on the figures representing the usual percentages of 1/180, 1/240,
and 1/360. Thus, if a beam is to be used for a span of 36 ft, and the total
load deflection limit is 1/240, it may be observed in Figure 9.11 that
the lines for a span of 36 ft and a ratio 1/240 intersect almost precisely
on the graph for an 18-in.-deep beam. This means that an 18-in.-deep
beam will deflect almost precisely 1/240th of the span if it is stressed
in bending to 24 ksi. Thus, any beam chosen with greater depth will be
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conservative for deflection, and any beam with less depth will function
only if it has lower stress.

It must be noted that the curves in Figure 9.11 are based on an exact
value of 24-ksi bending stress, while those in Figure 9.12 are based on
33-ksi bending stress. When the true service load moment and bending
stress is determined, the real value for deflection can be determined by
direct proportion from that found from the graphs.

The minimum depth of a beam required by deflection criteria can
be approximated from the span–depth equations. They are derived by
placing the allowable deflection criteria into the equation derived ear-
lier. It is important to remember here that the beam length (L) is in feet,
whereas the beam depth (d ) is in inches. The equations are as follows:

Yield Stress � = L/180 � = L/240

Fy = 36 ksi dmin = 0.372L or about L/3 d min = 0.497L or about L/2
Fy = 50 ksi dmin = 0.517L or about L/2 dmin = 0.690L or about 2L/3

Problems 9.7.A–D. Find the maximum deflection in inches for the following
simple beams of A36 steel with uniformly distributed load. Find the values
using (1) the equation for deflection of a uniformly distributed load and (2) the
curves in Figure 9.11.

A. W 10 × 33, span = 18 ft, total service load = 1.67 kips/ft [5.5 m, 24.2 kN/m]

B. W 16 × 36, span = 20 ft, total service load = 2.5 kips/ft [6 m, 36.5 kN/m]

C. W 18 × 46, span = 24 ft, total service load = 2.29 kips/ft [7.3 m, 33.6 kN/m]

D. W 21 × 57, span = 27 ft, total service load = 2.5 kips/ft [8.2 kN/m,
36.5 kN/m]

9.8 SAFE LOAD TABLES

The simple beam with uniformly distributed load occurs so frequently
that it is useful to have a rapid design method for quick selection of
shapes based on knowing only the beam load and span. The AISC
Manual (Ref. 5) provides a series of such tables with data for W, M,
S, and C shapes most often used for beams.

Tables 9.2 and 9.3 present data for selected W shapes for Fy =
36 ksi and 50 ksi, respectively. Table values are for the total factored
load capacity in kips, assuming lateral bracing at points not further apart
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than the limiting dimension of Lp (see discussion in Section 9.5). The
table values are determined as the maximum factored plastic moment
capacity of the shapes; thus,

φbMp = 0.9Zx Fy

For very short spans, loads are often limited by beam end shear or
end support conditions rather than by bending or deflection limits. For
this reason, table values are not shown for spans less than 12 times the
beam depth.

For long spans, loads are often limited by deflection rather than by
bending. Thus, table values are not shown for spans exceeding a limit
of 24 times the beam depth.

The self-weight of the beam is included in the load given in these
tables. Once a beam is selected, its weight must be subtracted from the
table value to obtain the net allowable superimposed load.

The following example illustrates the use of Table 9.2 for a common
design situation.

Example 12. Design a simply supported A36 steel beam to carry a
uniformly distributed live load of 1.33 kips/ft [19.4 kN/m] and a super-
imposed uniformly distributed dead load of 0.66 kips/ft [9.6 kN/ft] on a
span of 24 ft [7.32 m]. Find (1) the lightest shape and (2) the shallowest
(least depth) shape.

Solution: First, the load must be factored:

wu = 1.4(dead load) = 1.4(0.66)

= 0.924 kip/ft [13.5 kN/m]

or

wu = 1.2(dead load) + 1.6(live load)

= 1.2(0.66) + 1.6(1.33) = 2.92 kips/ft [42.6 kN/m]

and the total superimposed load is

Wu = wu L = 2.92 × 24 = 70.1 kips [312 kN]
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TABLE 9.4 Possible Choices for the Beam (Loads in kips)

Load from Net Safe Is Beam
Shape Table 9.2 Beam Weight Superimposed Load Acceptable?

W 12 × 53 70.1 1.5 68.6 No
W 18 × 40 70.6 1.2 69.4 No
W 16 × 45 74.1 1.3 72.8 Yes
W 14 × 53 78.4 1.5 76.9 Yes
W 18 × 46 81.6 1.3 80.3 Yes
W 21 × 44 85.9 1.3 84.6 Yes
W 12 × 79 107 2.3 104.7 Yes

Possible choices from Table 9.2 are displayed in Table 9.4. Also
shown are the values for the factored beam self-weight and the net
usable load. The lightest acceptable shape is the W 21 × 44 and the
shallowest choice is the W 12 × 79. The 12-in.-deep beam is almost
twice as heavy as the lightest choice, so its use is questionable, unless
a really constricting dimensional problem exists.

Problems 9.8.A–H. For each of the following conditions, find (1) the lightest
permitted shape and (2) the shallowest permitted shape of A36 steel.

Span Live Load Superimposed Dead Load

A 16 ft 3 kips/ft 3 kips/ft
B 20 ft 1 kip/ft 0.5 kip/ft
C 36 ft 1 kip/ft 0.5 kip/ft
D 40 ft 1.25 kips/ft 1.25 kips/ft
E 18 ft 0.33 kip/ft 0.625 kip/ft
F 32 ft 1.167 kips/ft 3.5 kips/ft
G 42 ft 1 kip/ft 0.238 kip/ft
H 28 ft 0.5 kip/ft 0.5 kip/ft

Equivalent Load Techniques

The safe loads in Tables 9.2 and 9.3 are uniformly distributed loads on
simple beams. Actually, the table values are determined on the basis of
bending moments and limiting bending stress so that it is possible to
use the tables for other loading conditions for some purposes. Because
framing systems usually contain some beams with other than simple
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uniformly distributed loadings, this is sometimes a useful process for
design.

Consider the following situation: a beam with a load consisting of
two equal concentrated loads placed at the beam third points—in other
words, Case 2 in Figure 3.18. For this condition, the figure yields a
maximum moment value expressed as PL/3. By equating this to the
moment value for a uniformly distributed load, a relationship between
the two loading conditions can be derived. Thus,

WL

8
= PL

3
or W = 2.67P

which shows that if the value of one of the concentrated loads in Case 3
of Figure 3.18 is multiplied by 2.67, the result would be an equivalent
uniform load or equivalent tabular load (called EUL or ETL) that
would produce the same maximum bending moment as the true loading
condition.

Although the expression “equivalent uniform load” is the general
name for this converted loading, when derived to facilitate the use of
tabular materials, it is also referred to as the “equivalent tabular load-
ing.” Figure 3.18 yields the ETL factors for several common loading
conditions.

It is important to remember that the EUL or ETL is based only on
consideration of flexure, so that investigation for shear, bearing, and
deflection must still use the true loading condition.

This method may also be used for any loading condition, not just
the simple, symmetrical conditions shown in Figure 3.18. The process
consists of first finding the true maximum bending moment due to the
actual loading; then this is equated to the expression for the maximum
moment for a theoretical uniformly distributed load, and the EUL is
determined. Thus,

M = WL

8
or W = 8M

L

The expression W = 8M/L is the general expression for an equiva-
lent uniform load for any loading condition.

9.9 STEEL TRUSSES

When iron and then steel emerged as major industrial materials in the
eighteenth and nineteenth centuries, one of the earliest applications to
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spanning structures was in the development of trusses and trussed forms
of arches and bents. One reason for this was the early limit on the size
of members that could be produced. In order to create a reasonably large
structure, therefore, it was necessary to link together a large number of
small parts.

Besides the truss elements themselves, a major technical problem
to be solved for such assemblages is the achieving of the many joints.
Thus, the creation of steel structural assemblages involves design of
many joints, which must be both economical and practical for forma-
tion. Various connecting devices or methods have been employed, a
major one used for building structures in earlier times being the use of
hot-driven rivets. The process for this consists of matching up of holes
in members to be connected, placing a heat-softened steel pin in the
hole, and then beating the heck out of the protruding ends of the pin
to form a rivet.

Basic forms developed for early connections are still widely used.
Today, however, joints are mostly achieved by welding or with highly
tightened bolts in place of rivets. Welding is mostly employed for
connections made in the fabricating shop (called shop connections),
while bolting is preferred for connections made at the erection site
(called field connections). Rivetting and bolting are often achieved
with an intermediate connecting device (gusset plate, connecting angles,
etc.), while welding is frequently achieved directly between attached
members.

Truss forms relate to the particular structural application (bridge,
gable-form roof, arch, flat-span floor, etc.), to the magnitude of the
span, and to the materials and methods of construction.

Some typical forms for individual trusses used in steel construction
are shown in Figure 9.13. The forms in widest use are the parallel-
chorded types, shown here in Figures 9.13a and b, these often
being produced as manufactured, proprietary products by individual
companies. (See discussion in Section 9.10.) Variations of the gable-
form truss (Figure 9.13c) can be produced for a wide range of
spans.

As planar elements, trusses are quite unstable in a lateral direction
(perpendicular to the plane of the truss). Structural systems employ-
ing trusses require considerable attention for development of bracing.
The delta truss (Figure 9.13d ) is a unique self-stabilizing form that is
frequently used for towers and columns but may also be used for a
spanning truss that does not require additional bracing.
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Figure 9.13 Common forms of light steel trusses.

9.10 MANUFACTURED TRUSSES FOR FLAT SPANS

Factory-fabricated, parallel-chord trusses are produced in a wide range
of sizes by a number of manufacturers. Most producers comply with
the regulations of industrywide organizations; for light steel trusses
the principal such organization is the Steel Joist Institute, called the
SJI. Publications of the SJI are a chief source of general information
(see Ref. 6), although the products of individual manufacturers vary,
so that much valuable design information is available directly from
the suppliers of a specific product. Final design and development of
construction details for a particular project must be done in cooperation
with the supplier of the products.

Light steel parallel-chord trusses, called open-web joists , have been
in use for many years. Early versions used all steel bars for the chords
and the continuously bent web members (see Figure 9.14), so that they
were also referred to as bar joists . Although other elements are now
used for the chords, the bent steel rod is still used for the diagonal
web members for some of the smaller size joists. The range of size
of this basic element has now been stretched considerably, resulting
in members as long as 150 ft [46 m] and depths of 7 ft [2.14 m] and
more. At the larger size range the members are usually more common
forms for steel trusses—double angles, structural tees, and so on. Still,
a considerable usage is made of the smaller sizes for both floor joists
and roof rafters.
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Figure 9.14 Form of a short-span open-web joist.

Table 9.5 is adapted from a standard table in a publication of the
SJI (Ref. 6). This table lists a number of sizes available in the K series,
which is the lightest group of joists. Joists are identified by a three-unit
designation. The first number indicates the overall nominal depth of the
joist, the letter indicates the series, and the second number indicates the
class of size of the members—the higher the number, the heavier and
stronger the joist.

Table 9.5 can be used to select the proper joist for a determined load
and span situation. Figure 9.15 shows the basis for determination of the
span for a joist. There are two entries in the table for each span; the first
number represents the total factored load capacity of the joist in pounds
per feet of the joist length (lb/ft); the number in parentheses is the load
that will produce a deflection of 1/360 of the span. The following
examples illustrate the use of the table data for some common design
situations. For the purpose of illustration the examples use data from
Table 9.5. However, more joists sizes are available and their capacities
are given in the reference for Table 9.5.

Figure 9.15 Definition of span for open-web steel joists, as given in Ref. 6.
Reprinted with permission of the Steel Joist Institute.
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Example 13. Open-web steel joists are to be used to support a roof
with a unit live load of 20 psf and a unit dead load of 15 psf (not
including the weight of the joists) on a span of 40 ft. Joists are spaced
at 6 ft center to center. Select the lightest joist if deflection under live
load is limited to 1/360 of the span.

Solution: The first step is to determine the unit load per foot on the
joists. Thus,

Live load: 6(20) = 120 lb/ft [1.8 kN/m]

Dead load: 6(15) = 90 lb/ft (not including joist weight) [1.3 kN/m]

Total factored load: 1.2(90) + 1.6(120) = 108 + 192 = 300 lb/ft
[4.4 kN/m]

This yields the two numbers (total factored load and live load only)
that can be used to scan the data for the given span in Table 9.5. Note
that the joist weight—so far excluded in the computation—is included
in the total load entries in the table. Once a joist is selected, therefore,
the actual joist weight (given in the table) must be deducted from the
table entry for comparison with the computed values. We thus note
from the table the possible choices listed in Table 9.6. Although the
joists weights are all very close, the 24K6 is the lightest choice.

Example 14. Open-web steel joists are to be used for a floor with
a unit live load of 75 psf [3.59 kN/m2] and a unit dead load of 40 psf
[1.91 kN/m2] (not including the joist weight) on a span of 30 ft [9.15 m].
Joists are 2 ft [0.61 m] on center, and deflection is limited to 1/240 of
the span under total load and 1/360 of the span under live load only.
Determine the lightest possible joist and the lightest joist of least depth
possible.

TABLE 9.6 Possible Choices for the Roof Joist

Required Capacity of the Indicated Joists (lb/ft)

Load Condition Capacity (lb/ft) 22K9 24K6 26K5

Factored total capacity 412 337 337
Joist weight from Table 9.5 11.3 9.7 9.8
Factored joist weight 14 12 12
Net usable capacity 300 398 325 325
Load for deflection of 1/360 120 146 133 145
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Solution: As in the previous example, the unit loads are first deter-
mined. Thus,

Live load: 2(75) = 150 lb/ft (for limiting deflection of L/360)
[2.2 kN/m]

Dead load: 2(40) = 80 lb/ft (not including joist weight) [1.2 kN/m]

Total service load: 150 + 80 = 230 lb/ft [3.36 kN/m]

Total factored load: 1.2(80) + 1.6(150) = 96 + 240 = 336 lb/ft
[4.9 kN/m]

To satisfy the deflection criteria for total load, the limiting value
for deflection in parentheses in the table should be not less than
(240/360)(230) = 153 lb/ft [2.2 kN/m]. Since this is slightly larger than
the live load, it becomes the value to look for in the table. Possible
choices obtained from Table 9.5 are listed in Table 9.7, from which it
may be observed:

The lightest joist is the 18K5.

The shallowest depth joist is the 18K5.

In some situations it may be desirable to select a deeper joist, even
though its load capacity may be somewhat redundant. Total sag, rather
than an abstract curvature limit, may be of more significance for a flat
roof structure. For example, for the 40-ft [12.2-m] span in Example 13,
a sag of 1/360 of the span = (1/360)(40 × 12) = 1.33 in. [338 mm]. The
actual effect of this dimension on roof drainage or in relation to interior
partition walls must be considered. For floors, a major concern is for
bounciness, and this very light structure is highly vulnerable in this
regard. Designers therefore sometimes deliberately choose the deepest

TABLE 9.7 Possible Choices for the Floor Joist

Required Capacity of the Indicated Joists (lb/ft)

Load Condition Capacity (lb/ft) 18K5 20K5 22K4

Factored total capacity 409 457 448
Joist weight from Table 9.4 7.7 8.2 8.0
Factored joist weight 10 10 10
Net usable capacity 336 399 447 438
Load for deflection 153 161 201 219
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feasible joist for floor structures in order to get all the help possible
to reduce deflection as a means of stiffening the structure in general
against bouncing effects.

As mentioned previously, joists are available in other series for heav-
ier loads and longer spans. The SJI, as well as individual suppliers,
also have considerable more information regarding installation details,
suggested specifications, bracing, and safety during erection for these
products.

Stability is a major concern for these elements since they have very
little lateral or torsional resistance. Other construction elements, such
as decks and ceiling framing, may help, but the whole bracing situation
must be carefully studied. Lateral bracing in the form of X braces or
horizontal ties is generally required for all steel joist construction, and
the reference source for Table 9.5 (Ref. 7) has considerable information
on this topic.

One means of assisting stability has to do with the typical end sup-
port detail, as shown in Figure 9.15. The common method of support
consists of hanging the trusses by the ends of their top chords, which
is a general means of avoiding the rollover type of rotational buck-
ling at the supports that is illustrated in Figure 3.48c. For construction
detailing, however, this adds a dimension to the overall depth of the
construction, in comparison to an all-beam system with the joist/beams
and supporting girders all having their tops level. This added dimen-
sion (the depth of the end of the joist) is typically 2.5 in. [63.5 mm] for
small joists and 4 in. [101 mm] for larger joists.

For development of a complete truss system, a special type of pre-
fabricated truss available is that described as a joist girder . This truss is
specifically designed to carry the regularly spaced, concentrated loads
consisting of the end support reactions of joists. A common form of
joist girder is shown in Figure 9.16. Also shown in the figure is the
form of standard designation for a joist girder, which includes indi-
cations of the nominal girder depth, the number of spaces between
joists (called the girder panel unit), and the end reaction force from the
joists—which is the unit concentrated load on the girder.

Predesigned joist girders (i.e., girders actually designed for fabrica-
tion by the joist suppliers) may be selected from catalogs in a manner
similar to that for open-web joists. The procedure is usually as follows:



342 STEEL BEAMS AND FRAMING ELEMENTS

Figure 9.16 Considerations for layout of the joist girder.

1. The designer determines the joist spacing, joist load, and girder
span. (The joist spacing should be a full number division of the
girder span.)

2. This information is used to specify the girder by the standard
designation.

3. The girder may be chosen from a catalog or simply specified for
the supplier.

Illustrations of use of joists and complete truss systems are given in
the building design examples in Part V.

Problem 9.10.A. Open-web steel joists are to be used for a roof with a live load
of 25 psf [1.2 kN/m2] and a dead load of 20 psf [957 N/m2] (not including the
joist weight) on a span of 48 ft [14.6 m]. Joists are 4 ft [1.22 m] on center, and
deflection under live load is limited to 1/360 of the span. Select the lightest joist.
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Problem 9.10.B. Open-web steel joists are to be used for a roof with a live load
of 30 psf [1.44 kN/m2] and a dead load of 18 psf [862 N/m2] (not including the
joist weight) on a span of 44 ft [13.42 m]. Joists are 5 ft [1.53 m] on center, and
deflection is limited to 1/360 of the span. Select the lightest joist.

Problem 9.10.C. Open-web steel joists are to be used for a floor with a live load
of 50 psf [2.39 kN/m2] and a dead load of 45 psf [2.15 kN/m2] (not including
the joist weight) on a span of 36 ft [11 m]. Joists are 2 ft [0.61 m] on center,
and deflection is limited to 1/360 of the span under live load only and to 1/240
of the span under total load. Select (a) the lightest possible joist and (b) the
shallowest depth possible joist.

Problem 9.10.D. Repeat Problem 9.10.C, except that the live load is 100 psf
[4.79 kN/m2], the dead load is 35 psf [1.67 kN/m2], and the span is 26 ft
[7.93 m].

9.11 DECKS WITH STEEL FRAMING

Figure 9.17 shows four possibilities for a floor deck used in conjunction
with a framing system of rolled steel beams. When a wood deck is used
(Figure 9.17a), it is usually supported by and nailed to a series of wood
joists, which are in turn supported by the steel beams. However, in some
cases the deck may be nailed to wood members that are bolted to the
tops of the steel beams, as shown in the figure. For floor construction,
it is now also common to use a concrete fill on top of the wood deck,
for added stiffness, fire protection, and improved acoustic behavior.

A sitecast concrete deck (Figure 9.17b) is typically formed with
plywood panels placed against the bottoms of the top flanges of the
beams. This helps to lock the slab and beams together for lateral effects,
although steel lugs are also typically welded to the tops of the beams
for composite construction.

Concrete may also be used in the form of precast deck units. In this
case, steel elements are imbedded in the ends of the precast units and
are welded to the beams. A site-poured concrete fill is typically used
to provide a smooth top surface and is bonded to the precast units for
added structural performance.

Formed sheet steel units may be used in one of three ways: as the
primary structure, as strictly forming for the concrete deck, or as a
composite element in conjunction with the concrete. Attachment of
this type of deck to the steel beams is usually achieved by welding the
steel units to the beams before the concrete is placed.
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Figure 9.17 Typical forms of floor deck construction used with steel framing.

Three possibilities for roof decks using steel elements are shown in
Figure 9.18. Roof loads are typically lighter than floor loads and bounci-
ness of the deck is usually not a major concern. (A possible exception
to this is the situation where suspended elements may be hung from
the deck and can create a problem with vertical movements during an
earthquake.) A fourth possibility for the roof is the plywood deck shown
in Figure 9.17a . This is, in fact, probably a wider use of this form of
construction. Decks of formed sheet steel are discussed in Chapter 12,
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Figure 9.18 Typical forms of roof deck construction used with steel framing.

together with other structural products and systems developed from
formed sheet stock.

9.12 CONCENTRATED LOAD EFFECTS ON BEAMS

An excessive bearing reaction on a beam, or an excessive concentrated
load at some point in the beam span, may cause either localized yielding
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or web crippling (buckling of the thin beam web). The AISC Speci-
fication requires that beam webs be investigated for these effects and
that web stiffeners be used if the concentrated load exceeds limiting
values.

The three common situations for this effect occur as shown in
Figure 9.19. Figure 9.19a shows the beam end bearing on a sup-
port (commonly a masonry or concrete wall), with the reaction force
transferred to the beam bottom flange through a steel bearing plate.
Figure 9.19b shows a column load applied to the top of the beam at
some point within the beam span. Figure 9.19c shows what may be the
most frequent occurrence of this condition—that of a beam supported in
bearing on top of a column with the beam continuous through the joint.

Figure 9.19d shows the development of the effective portion
of the web length (along the beam span) that is assumed to resist
bearing forces. For yield resistance, the maximum end reaction and
the maximum load within the beam span are defined as follows (see

Figure 9.19 Considerations for concentrated bearing in steel beams with thin
webs, as related to web crippling (compression buckling).



CONCENTRATED LOAD EFFECTS ON BEAMS 347

Figure 9.20 Use of stiffeners to prevent buckling of a thin beam web.

Figure 9.19d ):

Maximum end reaction = (0.66Fy)(tw )[N + 2.5(k)]

Maximum interior load = (0.66Fy)(tw )[N + 5(k)]

where tw = thickness of the beam web
N = length of the bearing
k = distance from the outer face of the beam flange to the web

toe of the fillet (radius) of the corner between the web and
the flange

For W shapes, the dimensions tw and k are provided in the AISC
Manual (Ref. 5) tables of properties for rolled shapes.

When these values are exceeded, it is recommended that web stiff-
eners be provided at the locations of the concentrated loads, as shown
in Figure 9.20. These stiffeners add to bearing resistance and also brace
the web for buckling in general.

The AISC also provides additional information for computation
of limiting loads due to web crippling. However, the AISC Manual
(Ref. 5) tables also provide shortcuts for such computations.



10

STEEL COLUMNS
AND FRAMES

Steel compression members range from small, single-piece columns
and truss members to huge, built-up sections for high-rise buildings
and large tower structures. The basic column function is one of sim-
ple compressive force resistance, but it is often complicated by the
effects of buckling and the possible presence of bending actions. This
chapter deals with various issues relating to the design of individual
compression members and with the development of building structural
frameworks.

10.1 COLUMN SHAPES

For modest load combinations, the most frequently used shapes are the
round pipe, the rectangular tube, and the W shapes with wide flanges.
(See Figure 10.1.) Accommodation with beams for framing is most
easily achieved with W shapes of 10-in. or greater depth.

348
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Figure 10.1 Common cross-sectional shapes for steel columns.

Figure 10.2 Various forms of combined, built-up shapes for steel columns.

For various reasons, it is sometimes necessary to make up a col-
umn section by assembling two or more individual steel elements.
Figure 10.2 shows some such shapes that are used for special purposes.
The custom assemblage of built-up sections is costly, so a single piece
is typically favored if one is available.

One widely used built-up section is the double angle, as shown in
Figure 10.2f . This occurs most often as a member of a truss or as a
bracing member in a frame, the general stability against buckling being
much better than that for a single angle member. This section is not
used, however, for a building column.
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10.2 COLUMN SLENDERNESS AND END CONDITIONS

For steel columns, the value of the critical stress (Fc) in compression is
determined from formulas in the AISC Specification, contained in the
AISC Manual (Ref. 5); it includes variables of the steel yield stress
and modulus of elasticity, the relative slenderness of the column, and
special considerations for the restraint of the column ends.

Column slenderness (or stiffness) is determined as the ratio of the
column unbraced length to the radius of gyration of the column section:
L/r . Effects of end restraint are considered by use of a modifying factor
(K ). (See Figure 10.3.) The modified slenderness is thus expressed
as KL/r .

Figure 10.4 is a graph of the critical compressive stress for a col-
umn with two grades of steel with yield stress (Fy) of 36 and 50 ksi.
Values for full-number increments of KL/r , derived from the AISC
Specification formulas, are also given in Table 10.1.

Figure 10.3 Determination of effective column length (KL) for buckling. Reprinted
from the Manual of Steel Construction (Ref. 5), with permission of the publishers,
the American Institute of Steel Construction.
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Figure 10.4 Critical unfactored compressive stress for steel columns as a func-
tion of yield stress and column slenderness.

For practical reasons, most building columns tend to have a value
for relative stiffness between about 50 and 100, with only very heavily
loaded columns being stiffer and with designers avoiding very slen-
der columns. The AISC Specification for steel discourages use of any
compression members with a slenderness ratio greater than 200. For
columns, a practical limit is 120.

10.3 SAFE AXIAL LOADS FOR STEEL COLUMNS

The design strength in axial compression for a steel column is computed
by multiplying the design stress (φcFc) by the cross-sectional area of
the column, where φc = 0.85. Thus,

Pu = φc × Pn = φc × Fc × A

where Pu = maximum factored load
φc = resistance factor, 0.85 for columns
Pn = nominal load resistance (unfactored) of the column
Fc = critical compressive stress for the column, based on KL/r
A = area of the column cross section
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The following examples demonstrate the process for column
load investigation. For a more direct design process for single-piece
columns, load tables are frequently used. For built-up sections,
however, it is necessary to compute the required column properties.

Example 1. A W 12 × 53 shape of A36 steel is used as a column with
an unbraced length of 16 ft [4.88 m]. Compute the maximum factored
load.

Solution: Referring to Table A.3, A = 15.6 in.2, rx = 5.23 in., and
ry = 2.48 in. If the column is unbraced on both axes, it is limited by
the lower r value for the weak axis. With no stated end conditions,
case (d) in Figure 10.3 is assumed, for which K = 1.0; that is, no
modification is made. Thus, the relative stiffness is computed as

KL

r
= 1 × 16 × 12

2.48
= 77.4

It is usually considered acceptable to round the slenderness ratio off to
the nearest whole number. Thus, with a KL/r value of 77, Table 10.1
yields a value for Fc of 26.3 ksi. The maximum factored load for the
column is then

Pu = φcFcA = 0.85 × 26.3 × 15.6 = 349 kips [1550 kN]

Example 2. Compute the maximum factored load for the column in
Example 1 if the top is pinned but prevented from lateral movement
and the bottom is fully fixed.

Solution: Referring to Figure 10.3, note that for this case—(b) in the
figure—the modifying factor K is 0.8. Then

KL

r
= 0.8 × 16 × 12

2.48
= 62

From Table 10.1, Fc = 29.4 ksi. Then

Pu = φcFcA = 0.85 × 29.4 × 15.6 = 390 kips [1730 kN]

The following example illustrates the situation where a W shape is
braced differently on its two axes.
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Example 3. Figure 10.5a shows an elevation of the steel framing at
the location of an exterior wall. The column is laterally restrained but
rotation free at the top and bottom in both directions (on both the x and
y axes). With respect to the x axis, the column is laterally unbraced
for its full height. However, the existence of the horizontal framing in
the wall plane provides lateral bracing with respect to the y axis of
the section; thus, the buckling of the column in this direction takes the
form shown in Figure 10.5b. If the column is a W 12 × 53 of A36
steel, L1 is 30 ft [9.15 m], and L2 is 18 ft [5.49 m], what is the maximum
factored compression load?

Solution: Note that this is the shape used in Example 1 for which the
properties are A = 15.6 in.2, rx = 5.23 in., and ry = 2.48 in. For the
x axis, the situation is case (d) from Figure 10.3. Thus,

x axis :
KL

r
= 1 × 30 × 12

5.23
= 68.8 say 69

For the y axis, the situation is also assumed to be case (d) from
Figure 10.3, except that the deformation occurs in two parts (see
Figure 10.5b). The lower part is used as it has the greater unbraced
length. Thus,

y axis:
KL

r
= 1 × 18 × 12

2.48
= 87.1 say 87

Despite the bracing, the column is still critical on its weak axis. From
Table 10.1, the value of Fc = 24.2 ksi, and the maximum factored load
is thus

Pu = φcFcA = 0.85 × 24.2 × 15.6 = 321 kips [1430 kN]

For the following problems, use A36 steel with Fy = 36 ksi.

Problem 10.3.A. Determine the maximum factored axial compression load
for a W 10 × 49 column with an unbraced height of 15 ft [4.57 m]. Assume
K = 1.0.

Problem 10.3.B. Determine the maximum factored axial compression load for
a W 12 × 120 column with an unbraced height of 22 ft [6.71 m], if both ends
are fixed against rotation and horizontal movement.
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356 STEEL COLUMNS AND FRAMES

Figure 10.5 Biaxial bracing for steel columns.

Problem 10.3.C. Determine the maximum factored axial compression load in
Problem 10.3.A if the conditions are as shown in Figure 10.5 with L1 = 15 ft
[4.6 m] and L2 = 8 ft [2.44 m].

Problem 10.3.D. Determine the maximum factored axial compression load in
Problem 10.3.B if the conditions are as shown in Figure 10.5 with L1 = 40 ft
[12 m] and L2 = 22 ft [6.7 m].



DESIGN OF STEEL COLUMNS 357

10.4 DESIGN OF STEEL COLUMNS

Unless a computer-supported procedure is used, design of steel columns
is mostly accomplished through the use of tabulated data. The following
discussions in this section consider the latter process, using materials
from the AISC Manual (Ref. 5). Design of a column without using load
tables is hampered by the fact that the critical stress (Fc) is not able to
be precisely determined until after the column shape is selected. That
is, KL/r and the associated value for Fc cannot be determined until the
critical r value for the column is known. This leads to a trial-and-error
approach, which can become laborious in even simple circumstances.
This process is unavoidable with built-up sections, so their design is
unavoidably tedius.

The real value of the safe load tables for single rolled shapes is
the ability to use them directly, once only the factored load, column
unbraced height, and K factor are determined. The AISC Manual
(Ref. 5) provides load tables for W shapes for Fy = 50 ksi [340 MPa].
The work that follows in this section provides examples of the use of
tables similar to those in the AISC Manual (Ref. 5) for selection of
columns of a variety of shapes.

In many cases, the simple, axial compression capacity is all that
is involved in design selection. However, columns are also sometimes
subjected to bending and shear, and in some cases to torsion. In com-
bined actions, however, the axial load capacity is usually included, so
its singular determination is still a factor—thus, the safe compression
load under simple axial application conditions is included in some way
in just about every column design situation. The case of combined axial
compression and bending is discussed in Section 10.5.

Single Rolled Shapes as Columns

The single rolled shape used most commonly for steel columns is the
squareish, H-shaped element, with a nominal depth of 8 in. or more.
Responding to this, steel rolling mills produce a wide range of these
shapes. Most are in the W-shape series, although some are designated
as M shapes.

Table 10.2 summarizes data from the series of AISC tables for shapes
ranging from the W 8 × 24 to the W 14 × 211 for steel with a yield
of 36 ksi. Table 10.3 has similar values for steel with a yield of 50 ksi.
Table values are based on the r value for the y axis with K = 1.0. Also
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included in this table are values for the bending factor (m), which is
used for approximate design of columns with bending, as discussed in
Section 10.5.

To illustrate one use of Table 10.2, refer to Example 1 of
Section 10.3. For the safe load for the W 12 × 53 with unbraced height
of 16 ft, the table yields a value of 348 kips, which agrees closely with
the computed load found in the example.

The real value of Tables 10.2 and 10.3, however, is for quick design
selections. The following examples illustrate this use of the tables.

Example 4. Using Table 10.2, select a W shape A36 steel column for
an axial load of 100 kips [445 kN] dead load and 150 kips [667 kN] live
load. The unbraced height is 24 ft [7.32 m] and the end conditions are
pinned at the top and bottom.

Solution: The load must be factored using the load combinations to
determine the maximum factored load on the column. Thus,

Pu = 1.4(dead load) = 1.4(100) = 140 kips [623 kN]

or
Pu = 1.2(dead load) + 1.6(live load)

= 1.2(100) + 1.6(150) = 360 kips [1600 kN]

This is the value for the maximum factored column resistance that must
be found in Table 10.2 for the unbraced height of 24 ft. Some possible
choices are:

Shape Table Safe Load

W 10 × 88 422 kips [1880 kN]
W 12 × 79 444 kips [1970 kN]
W 14 × 82 361 kips [1610 kN]

The 12-in.-deep shape is the lightest choice, but details of the framing
system may indicate the desirability of other column dimensions.

Tables 10.2 and 10.3 are set up to work when the y axis has the
least bending resistance—that is, when Ky Ly/ry > Kx Lx /rx . If the x
axis is critical for slenderness, another step is required to use the table
values. For this purpose, use is made of the ratio of rx/ry. This ratio
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varies with each section but is usually in a range of 1.6–3.1, with an
average value being 1.75. If Lx /Ly � rx /ry , then the slenderness ratio
about the y axis still controls and the unbraced length about the y axis
is used. If Lx /Ly > rx /ry , then the slenderness ratio about the x axis
controls. When this happens, a new equivalent length (KL′

y) must be
used to find the most appropriate steel section for a column. The new
equivalent length can be found by using the following equation:

KL′
y = KLx

rx /ry

Example 5. Using Table 10.2, select an A36 steel column section for
an axial load of 100 kips [445 kN] dead load and 150 kips [667 kN]
live load if the unbraced height is 24 ft [7.32 m] about the x axis, the
unbraced height is 8 ft [2.44 m] about the y axis, and the end conditions
are pinned at top and bottom.

Solution: The load is the same as it is in Example 4, for which the
maximum factored load was determined as 360 kips. Next, determine
the ratio of the unbraced lengths for the two axes:

Lx

Ly
= 24

8
= 3

Looking at Table 10.2, note that only one shape has a ratio of r
values greater than 3; therefore, it is safe to assume that the x axis will
control. Next, determine a new effective length for the column and use
it to find the most appropriate columns. Use an average value for the r
ratio of 1.75; it can be verified once a choice is made.

KL′
y = KLx

rx/ry
= 24

1.75
= 13.7 say 14

Options from Table 10.2 are as follows:

Actual New
Shape Design Load (φcPn) rx/ry Equivalent Length

W 8 × 58 374 kips [1660 kN] 1.74 13.8 ft [4.21 m]
W 10 × 54 385 kips [1710 kN] 1.71 14.0 ft [4.27 m]
W 12 × 53 375 kips [1670 kN] 2.11 11.4 ft [3.48 m]
W 14 × 68 479 kips [2130 kN] 2.44 9.84 ft [3.0 m]
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The actual new equivalent height for each shape is less than or equal
to the 14 ft [4.27 m] used in the computation, and each is greater than the
unbraced length (KLy) about the y axis. Thus, all options are acceptable.
Barring other parameters for the design, the most economical section
is the W 12 × 53.

Problem 10.4.A. Using Table 10.2, select a column shape for an axial dead
load of 60 kips [267 kN] and an axial live load 88 kips [391 kN] if the unbraced
height about both axes is 12 ft [3.66 m]. A36 steel is to be used and K is
assumed as 1.0.

Problem 10.4.B. Select a column shape using the same data as in Problem
10.4.A, except the dead load is 103 kips [468 kN] and the live load is 155 kips
[689 kN]. The unbraced height about the x axis is 16 ft [4.88 m] and the
unbraced height about the y axis is 12 ft [3.66 m].

Problem 10.4.C. Select a column shape using the same data as in Problem
10.4.A, except the dead load is 142 kips [632 kN] and the live load is 213 kips
[947 kN]. The unbraced height about the x axis is 20 ft [6.10 m] and the
unbraced height about the y axis is 10 ft [3.05 m].

Problem 10.4.D. Using Table 10.3, select a column shape for an axial dead
load of 400 kips [1779 kN] and a live load of 600 kips [2669 kN]. The unbraced
height about the x axis is 16 ft [4.88 m] and about the y axis is 4 ft [1.22 m].
The steel is to have a yield stress of 50 ksi and K is assumed as 1.0.

Steel Pipe Columns

Round steel pipe columns most frequently occur as single-story
columns, supporting either wood or steel beams. Pipe is available
in three weight categories: standard (Std), extra strong (XS), and
double-extra strong (XXS). Pipe is designated with a nominal diameter
slightly less than the outside diameter. The outside diameter is the
same for all three weights, with variation occurring in terms of the
wall thickness and interior diameter. See Table A.7 in Appendix A
for properties of standard weight pipe. Table 10.4 gives safe loads for
pipe columns of steel with a yield stress of 35 ksi.
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Example 6. Using Table 10.4, select a standard weight steel pipe col-
umn to carry a dead load of 15 kips [67 kN] and a live load of 26 kips
[116 kN] if the unbraced height is 12 ft [3.66 m].

Solution: The load must be factored to determine the maximum fac-
tored load on the column:

Pu = 1.4(dead load) = 1.4(15) = 21 kips [93 kN]

or
Pu = 1.2(dead load) + 1.6(live load)

= 1.2(15) + 1.6(26) = 59.6 kips [265 kN]

For the height of 12 ft, the table yields a value of 95 kips as the design
load for a 5-in. pipe. A 4-in. pipe is close, but its design strength is
59 kips, just short of that required.

Problems 10.4.E–H. Select the minimum size standard weight pipe column
for an axial dead load of 20 kips [89 kN], a live load of 30 kips [133 kN], and
the following unbraced heights: (E) 8 ft [2.74 m], (F) 12 ft [3.66 m], (G) 18 ft
[5.49 m], and (H) 25 ft [7.62 m].

Structural Tubing Columns (HSS)

Structural tubing, designated HSS for hollow structural sections , is used
for building columns and for members of trusses. Members are avail-
able in a range of designated nominal sizes that indicate the actual outer
dimensions of the rectangular tube shapes. Within these sizes, various
wall thicknesses (the thickness of the steel plates used to make the
shapes) are available. For building structures, sizes used range upward
from the 3-in. square tube to the largest sizes fabricated (48-in. square
at present). Tubing can be specified in various grades of steel.

Table 10.5 yields factored design strengths for square tubes from 3
to 12 in. The steel grade for the shapes in the table has a yield stress of
46 ksi. Use of the tables is similar to that for other design strength tables.

Problem 10.4.I. A structural tubing column, designated HSS 4 × 4 × 3/8, is
used with an unbraced height of 12 ft [3.66 m]. Find the maximum factored
axial load.
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Problem 10.4.J. A structural tubing column, designated HSS 3 × 3 × 5/16,
is used with an unbraced height of 15 ft [4.57 m]. Find the maximum factored
axial load.

Problem 10.4.K. Using Table 10.5, select the lightest tubing column to carry
an axial dead load of 30 kips [133 kN] and a live load of 34 kips [151 kkN] if
the unbraced height is 10 ft [3.05 m].

Problem 10.4.L. Using Table 10.5, select the lightest structural column to carry
an axial dead load of 90 kips [400 kN] and a live load of 60 kips [267 kkN] if
the unbraced height is 12 ft [3.66 m].

Double-Angle Compression Members

Matched pairs of angles are frequently used for trusses or for braces
in steel frames. The common form consists of two angles placed back
to back but separated a short distance to achieve end connections by
use of gusset plates or by sandwiching the angles around the web
of a structural tee. Compression members that are not columns are
frequently called struts.

The AISC Manual (Ref. 5) contains safe load tables for double
angles with an assumed average separation distance of 3/8 in. [9.5 mm].
For angles with unequal legs, two back-to-back arrangements are pos-
sible, described either as long legs back to back or as short legs back
to back . Table 10.6 presents data for selected pairs of double angles
with long legs back to back. Note that separate data is provided for
the variable situation of either axis being used for the determination of
the unbraced length. If conditions relating to the unbraced length
are the same for both axes, then the lower value for safe load from the
table must be used. Properties for selected double angles are given in
Table A.6 in Appendix A.

Like other members that lack biaxial symmetry, such as the structural
tee, there may be some reduction applicable due to the slenderness of
the thin elements of the cross section. This reduction is incorporated in
the values provided in Table 10.6.

Problem 10.4.M. A double-angle compression member 8 ft [2.44 m] long is
composed of two A36 steel angles 4 × 3 × 3/8 in., with the long legs back to
back. Determine the maximum factored axial compression load for the angles.
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368 STEEL COLUMNS AND FRAMES

Problem 10.4.N. A double-angle compression member 8 ft [2.44 m] long is
composed of two A36 steel angles 6 × 4 × 1/2 in., with the long legs back to
back. Determine the maximum factored axial compression load for the angles.

Problem 10.4.O. Using Table 10.6, select a double-angle compression member
for an axial compression dead load of 25 kips [111 kN] and a live load of
25 kips [111 kN] if the unbraced length is 10 ft [3.05 m].

Problem 10.4.P. Using Table 10.6, select a double-angle compression member
for an axial compression dead load of 75 kips [334 kN] and a live load of
100 kips [445 kN] if the unbraced length is 16 ft [4.885 m].

10.5 COLUMNS WITH BENDING

Steel columns must frequently sustain bending in addition to the usual
axial compression. Figures 10.6a –c show three of the most common
situations that result in this combined effect. When loads are supported
by connection at the column face, the eccentricity of the compression
adds a bending effect (Figure 10.6a). When moment-resistive con-
nections are used to produce a rigid frame, any load on the beams
will induce a twisting (bending) effect on the columns (Figure 10.6b).
Columns built into exterior walls (a common occurrence) may become
involved in the spanning effect of the wall in resisting wind forces
(Figure 10.6c).

Adding bending to a direct compression effect results in a combined
stress, or net stress, distribution on the member cross section. The two
separate effects may be analyzed separately and their stresses added
to consider this effect. However, the two actions —compression and
bending—are essentially different, so that a combination of the separate
actions, not just the stresses, is more significant. Consideration of this
combination is accomplished with the so-called interaction analysis
that takes the form of

Pu

φcPn
+ Mux

φbMnx
+ Muy

φbMny
≤ 1

On a graph, the interaction formula describes a straight line, which
is the classic form of the relationship in elastic theory. However, vari-
ations from the straight-line form occur because of special conditions
having to do with the nature of the materials, the usual forms of
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Figure 10.6 Considerations for development of bending in steel columns.

columns, inaccuracies in fabrication and construction, and the different
effects of buckling for columns and beams (bending members).

For steel columns, major issues include slenderness of column
flanges and webs (for W shapes), ductility of the steel, and overall
column slenderness that effects potential buckling in both axial
compression and bending. Understandably, the AISC formulas are
considerably more complex than the simple straight-line formula
above. The AISC interaction formulas for compression and bending
are as follows:
If Pu/φcPn � 0.2,

Pu

φcPn
+ 8

9

(
Mux

φbMnx
+ Muy

φbMny

)
≤ 1.0

If Pu/φcPn < 0.2,

Pu

2φcPn
+

(
Mux

φbMnx
+ Muy

φbMny

)
≤ 1.0

Another potential problem with combined compression and bending
is that of the P –delta effect. This occurs when a relatively slender col-
umn is subjected to bending and the resulting deflection of the curved,
bent, column produces an additional bending in conjunction with the
compression force. This problem should be carefully considered with
very slender columns.



370 STEEL COLUMNS AND FRAMES

For use in preliminary design work, or to quickly obtain a first
trial shape for use in a more extensive design investigation, a proce-
dure developed by Uang, Wattar, and Leet (Ref. 8) may be used that
involves the determination of an equivalent axial load that incorporates
the bending effect. This is accomplished by use of a bending factor (m),
which is listed for the W shapes in Tables 10.2 and 10.3 at the bottom
of the tables. Using this factor, the equivalent axial load is obtained as

P ′
u = Pu + (m × Mux ) + [(2 × m) × Muy ]

If Pu/P ′
u < 0.2, recalculate P ′

u using the following equation:

P ′
u = Pu

2
+ 9

8
× [m × Mux + (2 × m) × Muy ]

where P ′
u = equivalent factored axial compression load

Pu = actual factored compression load
m = bending factor

Mux = factored bending moment, x axis
Muy = factored bending moment, y axis

The following examples illustrate the use of this approximation method.

Example 7. A 10-in. W shape is desired for a column in a situation
such as that shown in Figure 10.7. The factored axial load from above
on the column is 175 kips [778 kN], and the factored beam load at the
column face is 35 kips [156 kN]. The column has an unbraced height of
16 ft [4.88 m] and a K factor of 1.0. Select a trial shape for the column.

Solution: From Table 10.2, the bending factor (m) is 1.7. Then

P ′
u = Pu + m × Mu x = (175 + 35) + (1.7 × 35 × 5/12)

= 210 + 24.8 = 235 kips [1050 kN]

Check to see if the correct equation was used:

Pu

P ′
u

= 210

235
= 0.894

As this is greater than 0.2, the correct equation was used. Using the
value of 235 kips and the unbraced height of 16 ft, Table 10.2 yields a
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Figure 10.7 Development of an eccentric loading condition with steel framing.

W 10 × 45 with a table value of 252 kips. For a more assured selection,
the next step is to use the AISC equations to investigate the chosen
shape. To determine which equation to use, we find

Pu

φcPn
= 210

252
= 0.833

As this is greater than 0.2, the appropriate AISC equation is

Pu

φcPn
+ 8

9

(
Mux

φbMnx
+ Muy

φbMny

)
� 1.0

The value for φbMnx is determined by the process described for
beams in Section 9.5. With the example data, and using data from
Table 9.1, this value is found to be 148 kip-ft. The combined interaction
equation for the example is thus

210

252
+ 8

9

(
14.6

148
+ 0

)
= 0.833 + 0.088 = 0.921 < 1.0

which indicates that the chosen shape is acceptable.

Although this process is laborious, without the use of the approxi-
mation it is even more laborious. This is one of those design situations
for which a computer-aided process is highly desirable.
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When bending occurs about both axes, as it does in most three-
dimensional rigid frames, all parts of the combined action formula
must be used.

For the following problems use A36 steel.

Problem 10.5.A. It is desired to use a 12-in. W shape for a column to support
a beam as shown in Figure 10.6. Select a trial size for the column for the
following data: column factored axial load from above is 200 kips [890 kN],
factored beam reaction is 30 kips [133 kN], and unbraced column height is
14 ft. [4.27 m].

Problem 10.5.B. Check the section found in Problem 10.5.A to see if it complies
with the AISC interaction equations for axial compression plus bending.

Problem 10.5.C. Same as Problem 10.5.A, except factored axial load is 485 kips
[2157 kN], factored beam reaction is 100 kips [445 kN], and unbraced height is
18 ft [5.49 m].

Problem 10.5.D. Check the section found in Problem 10.5.C to see if it complies
with the AISC interaction equations for axial compression plus bending.

10.6 COLUMN FRAMING AND CONNECTIONS

Connection details for columns must be developed with considerations
of the column form and size; with the form, size, and orientation of
other framing; and with the particular structural functions of the joints.
Some common forms of simple connections for light frames are shown
in Figure 10.8. The usual means for attachment are by welding, by
bolting with high-strength bolts, or with anchor bolts embedded in
concrete or masonry.

When beams sit directly on top of a column (Figure 10.8a), the
usual solution is to weld a bearing plate on top of the column and
bolt the bottom flange of the beam to the plate. For this, and for all
connections, it is necessary to consider what parts of the connection
are achieved in the fabrication shop and what is achieved as part of
the erection of the frame at the job site (called the field ). In this case,
it is likely that the plate will be attached to the column in the shop
(where welding is preferred) and the beam will be attached in the field
(where bolting is preferred). In this joint the plate serves no particular
structural function, because the beam could theoretically bear directly
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(a)

(b)

(d)

(c)

Figure 10.8 Typical fabrication details for steel columns in lightly loaded frames.

on the column. However, field assembly of the frame works better with
the plate serving as an intermediate connecting device. Incidentally, the
plate also helps to spread the bearing from the beam more fully on the
column cross section.

In many situations, beams must frame into the side of a column.
If simple transfer of vertical force is all that is basically required, a
common solution is the connection shown in Figure 10.8b, in which
a pair of steel angles is used to connect the beam web to the column
face. With minor variation, this form of connection can also be used to
connect a beam to the column web when framing intersects the column
differently. When the latter is the case, the outspread legs of the angles
must fit between the column flanges, which generally requires at least
a 10-in. W shape column—thus, the popularity of the 10-, 12-, and
14-in. W shapes for columns.

If bending moment must be transferred between a beam’s end and
its supporting column, a common solution is to weld the cut ends of
the beam flanges directly to the column face, as shown in Figure 10.8c.
Because the bending must be developed in both column flanges, and the
connected beam grabs only one flange, the filler plates shown—welded
to the column web and the insides of the flanges—are often used for
a more effective transfer of the bending moment from the beam. This
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leaves the beam web as yet not connected, so some attachment must
also be made there because the beam web essentially carries the beam
shear force. Although common for many years, and still widely used for
gravity and wind loads, this form of connection has recently received
a lot of scrutiny because of its poor performance in earthquakes, and
some refinements are now required for transfer of major earthquake
forces.

At the column bottom, where bearing is usually on top of a con-
crete pier or footing, the major concern is for reduction of the bearing
pressure on the much softer concrete. With upwards of 20 ksi or more
of compression in the column steel, and possibly little over 1 ksi resis-
tance in the concrete, the contact bearing must be quite spread out.
For this reason, as well as the simple practical one of holding the col-
umn bottom in place, the common solution is a steel bearing plate
attached to the column in the shop and made to bear on a leveling
filler material between the rough concrete surface and the smooth plate
(see Figure 10.8d ). This form of connection is adequate for lightly
loaded columns. For transfer of very large column loads, development
of uplift forces or bending moment, or other special concerns, this joint
can receive a lot of special modification. Still, the simple joint shown
here is the most common form.
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BOLTED CONNECTIONS
FOR STEEL STRUCTURES

Making a steel structure for a building typically involves the connecting
of many parts. The technology available for achieving connections is
subject to considerable variety, depending on the form and size of
the connected parts, the structural forces transmitted between parts,
and the nature of the connecting materials. At the scale of building
structures, the primary connecting methods utilized presently are those
using electric arc welding and high-strength steel bolts. Considerations
for the design of bolted connections are treated in this chapter.

11.1 BOLTED CONNECTIONS

Elements of steel are often connected by mating flat parts with common
holes and inserting a pin-type device to hold them together. In times
past the device was a rivet; today it is usually a bolt. Many types and
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Figure 11.1 Actions of bolted connections.

sizes of bolt are available, as are many connections in which they are
used.

Structural Actions of Bolted Connections

Figures 11.1a and b show the plan and section of a simple connection
between two steel bars that function to transfer a tension force from
one bar to the other. Although this is a tension-transfer connection,
it is also referred to as a shear connection because of the manner in
which the connecting device (the bolt) works in the connection (see
Figure 11.1c). For structural connections, this type of joint is now
achieved mostly with so-called high-strength bolts , which are special
bolts that are tightened in a controlled manner that induces development
of yield stress in the bolt shaft. For a connection using such bolts, there
are many possible forms of failure that must be considered, including
the following:

Bolt Shear. In the connection shown in Figures 11.1a and b, the
failure of the bolt involves a slicing (shear) failure that is devel-
oped as a shear stress on the bolt cross section. The resistance
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factor (φv ) is taken as 0.75. The design shear strength (φv Rn ) of
the bolt can be expressed as a nominal shear stress (F v ) times
the nominal cross-sectional area of the bolt, or

φv Rn = φv Fv Ab

With the size of the bolt and the grade of steel known, it is a
simple matter to establish this limit. In some types of connections,
it may be necessary to slice the same bolt more than once to
separate the connected parts. This is the case in the connection
shown in Figure 11.1f , in which it may be observed that the bolt
must be sliced twice to make the joint fail. When the bolt develops
shear on only one section (Figure 11.1c), it is said to be in single
shear ; when it develops shear on two sections (Figure 11.1f ), it
is said to be in double shear .

Bearing. If the bolt tension (due to tightening of the nut) is relatively
low, the bolt serves primarily as a pin in the matched holes,
bearing against the sides of the holes, as shown in Figure 11.1d .
When the bolt diameter is larger or the bolt is made of very
strong steel, the connected parts must be sufficiently thick if they
are to develop the full capacity of the bolts. The factored design
bearing strength (φv Rn ) permitted for this situation by the AISC
Specification is

φv Rn = φv × 1.5 × Lc × t × Fu ≤ φv × 3.0 × d × t × Fu

where φv = 0.75
Rn = nominal bearing strength
Lc = distance between edge of hole and edge of next

hole in material, in.
t = thickness of connected material, in.

F u = ultimate tensile strength of connected material, ksi
d = diameter of bolt, in.

Tension on Net Section of Connected Parts. For the connected bars in
Figure 11.1b, the tension stress in the bars will be a maximum at
a section across the bar at the location of the hole. This reduced
section is called the net section for tension resistance. Although
this is indeed a location of critical stress, it is possible to achieve
yield here without serious deformation of the connected parts. For
this reason, design strength (φt Pn ) at the net section is based on
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the ultimate—rather than the yield—strength of the connected
parts. The value used for the design tensile strength is

φt Pn = φt × Fu × Ae

where φt = 0.75 for tension
F u = ultimate tensile strength of the connected part
Ae = reduced (net) area of the part

Bolt Tension. While the shear (slip-resisting) connection shown in
Figures 11.1a and b is common, some joints employ bolts for
their resistance in tension, as shown in Figure 11.1g . For the
threaded bolt, the maximum tension stress is developed at the
net section through the cut threads. However, it is also possible
for the bolt to have extensive elongation if yield stress develops
in the bolt shaft (at an unreduced section). However stress is
computed, bolt tension resistance is established on the basis of
data from destructive tests.

Bending in the Connection. Whenever possible, bolted connections
are designed to have a bolt layout that is symmetrical with regard
to the directly applied forces. This is not always possible, so that
in addition to the direct force actions, the connection may be
subjected to twisting due to a bending moment or torsion induced
by the loads. Figure 11.2 shows some examples of this situation.

In Figure 11.2a two bars are connected by bolts, but the bars are not
aligned in a way to transmit tension directly between the bars. This may
induce a rotational effect on the bolts, with a torsional twist equal to the
product of the tension force and the eccentricity due to misalignment
of the bars. Shearing forces on individual bolts will be increased by
this twisting action. And, of course, the ends of the bars will also be
twisted.

Figure 11.2b shows the single-shear joint, as shown in Figures 11.1a
and b. When viewed from the top, such a joint may appear to have the
bars aligned; however, the side view shows that the basic nature of the
single-shear joint is such that a twisting action is inherent in the joint.
This twisting increases with thicker bars. It is usually not highly critical
for steel structures, where connected elements are usually relatively
thin; for connecting of wood elements, however, it is not a favored
form of joint.
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Figure 11.2 Development of bending in bolted connections.

Figure 11.2c shows a side view of a beam end with a typical form
of connection that employs a pair of angles. As shown, the angles
grasp the beam web between their legs and turn the other legs out
to fit flat against a column or the web of another beam. Vertical load
from the beam, vested in the shear in the beam web, is transferred
to the angles by the connection of the angles to the beam web—with
bolts as shown here. This load is then transferred from the angles at
their outward-turned face, resulting in a separated set of forces due to
the eccentricity shown. This action must be considered with others in
design of these connections.

Slipping of Connected Parts. Highly tensioned, high-strength
bolts develop a very strong clamping action on the mated
flat parts being connected, analogous to the situation shown
in Figure 11.3a . As a result there is a strong development of
friction at the slip face, which is the initial form of resistance
in the shear-type joint. Development of bolt shear, bearing, and
even tension on the net section will not occur until this slipping
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is allowed. For service-level loads, therefore, this is the usual
form of resistance, and the bolted joint with high-strength bolts
is considered to be a very rigid form of joint.

Block Shear . One possible form of failure in a bolted connection
is that of tearing out the edge of one of the attached members.
This is called a block shear failure. The diagrams in Figure 11.3b
show this potentiality in a connection between two plates. The
failure in this case involves a combination of shear and tension
to produce the torn-out form shown. The total tearing force is
computed as the sum required to cause both forms of failure.
The design strength (φt Pn ) of the net tension area is computed
as described before for net cross sections. The design strength
(φv Rn) of the shear areas is specified as 0.75FvAc, where Ac is
the cross-sectional area experiencing shear stress.

With the edge distance, hole spacing, and diameter of the holes
known, the net widths for tension and shear are determined and mul-
tiplied by the thickness of the part in which the tearing occurs. These
areas are then multiplied by the appropriate stress to find the total tear-
ing force that can be resisted. If this force is greater than the connection
design load, the tearing problem is not critical.

Another case of potential tearing is shown in Figure 11.3c. This is
the common situation for the end framing of a beam in which support
is provided by another beam, whose top is aligned with that of the
supported beam. The end portion of the top flange of the supported
beam must be cut back to allow the beam web to extend to the side of
the supporting beam. With the use of a bolted connection, the tearing
condition shown is developed.

Types of Steel Bolts

Bolts used for the connection of structural steel members come in two
basic types. Bolts designated A307 and called unfinished bolts have
the lowest load capacity of the structural bolts. The nuts for these
bolts are tightened just enough to secure a snug fit of the attached
parts; because of this low resistance to slipping, plus the oversizing
of the holes to achieve practical assemblage, there is some movement
in the development of full resistance. These bolts are generally not
used for major connections, especially when joint movement or loos-
ening under vibration or repeated loading may be a problem. They are,



BOLTED CONNECTIONS 381

Figure 11.3 Special actions of bolted connections.
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however, used extensively for temporary connections during erection
of frames.

Bolts designated A325, F1852, or A490 are called high-strength
bolts. The nuts of these bolts are tightened to produce a consider-
able tension force, which results in a high degree of friction resistance
between the attached parts. Different specifications for installation of
these bolts results in different classifications of their strength, relating
generally to the critical mode of failure.

When loaded in shear-type connections, bolt capacities are based
on the development of shearing action in the connection. The shear
capacity of a single bolt is further designated as S for single shear
(Figure 11.1c) or D for double shear (Figure 11.1f ). In high-strength
bolts, the shear capacity is effected by the bolt threads. If the threads
are present in the shear plane being considered, the cross-sectional area
is reduced and therefore the capacity of the bolt is also reduced. The
capacities of structural bolts in both tension and shear are given in
Table 11.1. These bolts range in size from 1/2 to 11/2 in. in diameter,
and capacities for these sizes are given in tables in the AISC Manual
(Ref. 5). However, the most commonly used sizes for light structural
steel framing are 3/4 and 7/8 in. However, for larger connections and
large frameworks, sizes of 1–11/4 are also used. This is the size range
for which data is given in Table 11.1: 3/4–11/4.

Bolts are ordinarily installed with a washer under both head and nut.
Some manufactured high-strength bolts have specially formed heads
or nuts that in effect have self-forming washers, eliminating the need
for a separate, loose washer. When a washer is used, it is sometimes
the limiting dimensional factor in detailing for bolt placement in tight
locations, such as close to the fillet (inside radius) of angles or other
rolled shapes.

For a given diameter of bolt, there is a minimum thickness required
for the bolted parts in order to develop the full shear capacity of the
bolt. This thickness is based on the bearing stress between the bolt and
the side of the hole. The stress limit for this situation may be established
by either the bolt steel or the steel of the bolted parts.

Steel rods are sometimes threaded for use as anchor bolts or tie rods.
When they are loaded in tension, their capacities are usually limited by
the stress on the reduced section at the threads. Tie rods are sometimes
made with upset ends , which consist of larger diameter portions at the
ends. When these enlarged ends are threaded, the net section at the
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TABLE 11.1 Design Strength of Structural Bolts (kips)a

ASTM Loading Thread Nominal Diameter of Bolts (in.)

Designation Conditionb Condition 3/4 7/8 1 11/8 11/4

A307 S 7.95 10.8 14.1 17.9 22.1
D 15.9 21.6 28.3 35.8 44.2
T 14.9 20.3 26.5 33.5 41.4

A325 S Included 15.9 21.6 28.3 35.8 44.2
Excluded 19.9 27.1 35.3 44.7 55.2

D Included 31.8 43.3 56.5 71.6 88.4
Excluded 39.8 54.1 70.7 89.5 110

T 29.8 40.6 53 67.1 82.8

A490 S Included 19.9 27.1 35.3 44.7 55.2
Excluded 24.9 33.8 44.2 55.9 69

D Included 39.8 54.1 70.7 89.5 110
Excluded 49.7 67.6 88.4 112 138

T 37.4 51 66.6 84.2 104

Source: Compiled from data in the Manual of Steel Construction (Ref. 5) with permission of the
publisher, American Institute of Steel Construction.
a Slip-critical connections; assuming there is no bending in the connection and that bearing on con-
nected materials is not critical.
b S = single shear, D = double shear, and T = tension.

thread is the same as the gross section in the remainder of the rods; the
result is no loss of capacity for the rod.

Layout of Bolted Connections

Design of bolted connections generally involves a number of considera-
tions in the dimensional layout of the bolt hole patterns for the attached
structural members. The material in this section presents some basic
factors that often must be included in the design of bolted connections.
In some situations, the ease or difficulty of achieving a connection may
affect the choice for the form of the connected members.

Figure 11.4a shows the layout of a bolt pattern with bolts placed in
two parallel rows. Two basic dimensions for this layout are limited by
the size (nominal diameter) of the bolt. The first is the center-to-center
spacing of the bolts, usually called the pitch. The AISC Specification
limits this dimension to an absolute minimum of 2.5 times the bolt
diameter. The preferred minimum, however, which is used in this book,
is 3 times the diameter.
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Figure 11.4 Layout considerations for bolted connections: (a) pitch and end
distances, (b) bolt spacing, and (c) gage distance for angle legs.

The second critical layout dimension is the edge distance, which is
the distance from the center line of the bolt to the nearest edge of the
member containing the bolt hole. There is also a specified limit for this
as a function of bolt size and the nature of the edge, the latter referring
to whether the edge is formed by rolling or is cut. Edge distance may
also be limited by edge tearing in block shear, as previously discussed.

Table 11.2 gives the recommended limits for pitch and edge distance
for the bolt sizes used in ordinary steel construction.

In some cases bolts are staggered in parallel rows (Figure 11.4 b). In
this case the diagonal distance, labeled m in the illustration, must also
be considered. For staggered bolts the spacing in the direction of the
rows is usually referred to as the pitch; the spacing of the rows is called
the gage. The usual reason for staggering the bolts is that sometimes the
rows must be spaced closer (gage spacing) than the minimum spacing
required for the bolts selected. However, staggering the bolt holes also
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TABLE 11.2 Pitch and Edge Distances for Bolts

Minimum Minimum
Edge Distance for Punched, Recommended Pitch,

Reamed, or Drilled Holes (in.) Center-to-Center (in.)

At Rolled Edges of
Rivet or Bolt Plates, Shapes, or
Diameter d Bars, or Gas-Cut
(in.) At Sheared Edges Edgesa 2.667d 3d

0.625 1.125 0.875 1.67 1.875
0.750 1.25 1.0 2.0 2.25
0.875 1.5b 1.125 2.33 2.625
1.000 1.75b 1.25 2.67 3.0

Source: Adapted from data in the Manual of Steel Construction, with permission of the publisher,
American Institute of Steel Construction.
a May be reduced 0.125 in. when the hole is at a point where stress does not exceed 25% of the
maximum allowed in the connected element.
b May be 1.25 in. at the ends of beam connection angles.

helps to create a slightly less critical net section for tension stress in
the steel member with the holes.

Location of bolt lines is often related to the size and type of structural
members being attached. This is especially true of bolts placed in the
legs of angles or in the flanges of W, M, S, C, and structural tee shapes.
Figure 11.4c shows the placement of bolts in the legs of angles. When
a single row is placed in a leg, its recommended location is at the
distance labeled g from the back of the angle. When two rows are
used, the first row is placed at the distance g1, and the second row is
spaced a distance g2 from the first. Table 11.3 gives the recommended
values for these distances.

TABLE 11.3 Usual Gage Dimensions for Angles (in.)

Gage Width of Angle Leg

Dimension 8 7 6 5 4 3.5 3 2.5 2

g 4.5 4.0 3.5 3.0 2.5 2.0 1.75 1.375 1.125
g1 3.0 2.5 2.25 2.0
g2 3.0 3.0 2.5 1.75

Source: Adapted from data in the Manual of Steel Construction, with permission of the publisher,
American Institute of Steel Construction.
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When placed at the recommended locations in rolled shapes, bolts
will end up a certain distance from the edge of the part. Based on the
recommended edge distance for rolled edges given in Table 11.2, it
is thus possible to determine the maximum size of bolt that can be
accommodated. For angles, the maximum fastener may be limited by
the edge distance, especially when two rows are used; however, other
factors may in some cases be more critical. The distance from the center
of the bolts to the inside fillet of the angle may limit the use of a large
washer where one is required. Another consideration may be the stress
on the net section of the angle, especially if the member load is taken
entirely by the attached leg.

Tension Connections

When tension members have reduced cross sections, two stress inves-
tigations must be considered. This is the case for members with holes
for bolts. For the member with a hole, the design tension strength at
the reduced cross section through the hole is

φt Pn = φt × Fu × Ae

where φt = 0.75 for tension
Fu = ultimate strength of the steel
Ae = reduced (net) cross-sectional area

The resistance at the net section must be compared with the resis-
tance at the unreduced section of the member for which the resistance
factor is 0.90. For steel bolts the design strength is specified as a value
based on the type of bolt.

Angles used as tension members are usually connected by only one
leg. In a conservative design, the effective net area is only that of the
connected leg, less the reduction caused by holes.

Rivet and bolt holes are punched larger in diameter than the nominal
diameter of the fastener. The punching damages a small amount of the
steel around the perimeter of the hole; consequently the diameter of
the hole to be deducted in determining the net section is 1/8 in. greater
than the nominal diameter of the fastener.

When only one hole is involved, as with a single row of fasteners
along the line of stress, the net area of the cross section of one of
the plates is found by multiplying the plate thickness by its net width
(width of member minus diameter of hole).
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Figure 11.5 Determination of net cross-sectional area for connected members
in a bolted connection.

When holes are staggered in two rows along the line of stress
(Figure 11.5), the net section is determined somewhat differently. The
AISC Specification reads:

In the case of a chain of holes extending across a part in any diagonal
or zigzag line, the net width of the part shall be obtained by deducting
from the gross width the sum of the diameters of all the holes in the
chain and adding, for each gage space in the chain, the quantity s2/4g ,
where
s = longitudinal spacing (pitch) in inches or any two successive holes.
g = transverse spacing (gage) in inches for the same two holes.

The critical net section of the part is obtained from that chain which
gives the least net width.

11.2 DESIGN OF A BOLTED CONNECTION

The issues raised in the preceding sections are illustrated in the follow-
ing design example.

Example 1. The connection shown in Figure 11.6 consists of a pair of
narrow plates that transfer a tension force that is produced by a dead
load of 50 kips [222 kN] and a live load of 90 kips [495 kN]. This load
is transferred to a single middle plate. All plates are of A36 steel with
F y = 36 ksi [250 MPa] and F u = 58 ksi [400 MPa] and are attached
with 3/4-in. A325 bolts placed in two rows with threads included in
the planes of shear. Using data from Table 11.1, determine the number
of bolts required, the width and thickness of the narrow plates, the
thickness of the wide plate, and the layout for the connection.



388 BOLTED CONNECTIONS FOR STEEL STRUCTURES

Figure 11.6 Reference figure for Example 1.

Solution. The process begins with the determination of the ultimate
load.

Pu = 1.2D + 1.6L = 1.2(50) + 1.6(90) = 204 kips [907 kN]

From Table 11.1, the capacity of a single bolt in double shear is found
as 31.8 kips [141 kN]. The required number of bolts for the connection
is thus

n = 204

31.8
= 6.41 or 7

Although placement of seven bolts in the connection is possible, most
designers would choose to have a symmetrical arrangement with eight
bolts, four to a row. The average bolt load is thus

Vu = 204

8
= 25.5 kips [113 kN]

From Table 11.2, for the 3/4-in. bolts, minimum edge distance for a
cut edge is 1.25 in. and minimum recommended spacing is 2.25 in. The
minimum required width for the plates is thus (see Figure 11.6)

w = b + 2(a) = 2.25 + 2(1.25) = 4.75 in. [121 mm]

If space is tightly constrained, this actual width could be specified for
the narrow plates. For this example a width of 6 in. is used. Checking
for the requirement of stress on the gross area of the plate cross section
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Ag = Pu

φt Fy
= 204

0.9(36)
= 6.30 in.2

[
4070 mm2]

and, with the 6-in. width, the required thickness is

t = 6.30

2 × 6
= 0.525 in. [13mm]

This permits the use of a minimum thickness of 9/16 in. (0.5625 in.)
[14 mm]. The next step is to check the stress on the net section. For the
computations it is recommended to use a bolt hole size at least 1/8-in.
larger than the bolt diameter. This allows for the true oversize (usually
1/16-in.) and some loss due to the roughness of the hole edges. Thus
the hole is assumed to be 7/8-in. (0.875) in diameter, and the net width
and area are

w = 6 − 2(0.875) = 4.25 in. [108 mm]

Ae = w × t = 4.25 × 9
16 = 2.39 in.2

and the design strength at the net section is

φt Pn = 0.75 × Fu × Ae = 0.75 × 58 × (2 × 2.39)

= 208 kips [935 kN]

As this is greater than the factored load (Pu ), the narrow plates are
adequate for tension stress.

The bolt capacities in Table 11.1 are based on a slip-critical con-
dition, which assumes a design failure limit to be that of the friction
resistance (slip resistance) of the bolts. However, the back-up failure
mode is the one in which the plates slip to permit development of
the pin action of the bolts against the sides of the holes; this then
involves the shear capacity of the bolts and the bearing resistance of
the plates. Bolt shear capacities are higher than the slip failures, so the
only concern for this is the bearing on the plates

Bearing design strength is computed for a single bolt as

φv Rn = 2(φv × 1.5 × Lc × t × Fu)

= 2(0.75 × 1.5 × 1.5 × 9
16 × 58) = 110 kips [490 kN]
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which is clearly not a critical concern since the factored load on each
bolt is 25.5 kips.

For the middle plate the procedure is essentially the same, except
that the width is given and there is a single plate. As before, the stress
on the unreduced cross section requires an area of 6.30 in.2, so the
required thickness of the 10-in.-wide plate is

t = 6.30

10
= 0.630 in. [16 mm]

which indicates the use of a 5/8-in. thickness.
For the middle plate the width and cross-sectional area at the net

section are
w = 10 − (2 × 0.875) = 8.25 in. [210 mm]

A = 8.25 × 0.625 = 5.16 in.2
[
3327 mm2]

and the design strength at the net section is

φt Pn = 0.75 × Fu × Ae

= 0.75 × 58 × 5.16 = 224 kips [9296 kN]

which is greater than the factored load of 204 kips.
The computed bearing design strength on the sides of the holes in

the middle plate is

φv Rn = φv × 1.5 × Lc × t × Fu

= 0.75 × 1.5 × 1.5 × 5
8 × 58 = 61 kips [272 kN]

which is greater than the factored load of 25.5 kips, as determined
previously.

A final problem that must be considered is the possibility for tearing
out of the two bolts at the end of a plate in a block shear failure
(Figure 11.3a). Because the combined thicknesses of the outer plates is
greater than that of the middle plate, the critical case for this connection
is that of the middle plate. Figure 11.7 shows the condition for tearing,
which involves a combination of tension on the section labeled 1 and
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Figure 11.7 Tearing in example problem.

shear on the two sections labeled 2. For the tension section

Net w = 3 − 0.875 = 2.125 in. [54 mm]

Ae = 2.125 × 5
8 = 1.328 in.2

[
857 mm2

]
and the design strength for tension is

φt Pn = φt × Fu × Ae

= 0.75 × 58 × 1.328 = 57.8 kips [257 kN]

For the two shear sections

Net w = 2

(
1.25 − 0.875

2

)
= 1.625 in. [41.3 mm]

Ae = 1.625 × 5
8 = 1.016 in.2

[
655 mm2

]
and the design strength for shear is

φv Rn = φv × Fu × Ac

= 0.75 × 58 × 1.016 = 44.2 kips [197 kN]

The total resistance to tearing is thus

T = 57.8 + 44.2 = 102 kips [454 kN]
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Figure 11.8 Solution for example problem.

Because this is greater than the combined load on the two end bolts
(51 kips), the plate is not critical for tearing in block shear.

The solution for the connection is displayed in the top and side
views in Figure 11.8. Connections that transfer compression between
the joined parts are essentially the same with regard to the bolt stresses
and bearing on the parts. Stress on the net section in the joined parts
is not likely to be critical since the compression members are likely to
be designed for a relatively low stress due to column action.

Problem 11.2.A. A bolted connection of the general form shown in Figure 11.6
is to be used to transmit a tension force of 75 kips [334 kN] dead load and
100 kips live load by using 7/8-in. A325 bolts and plates of A36 steel with
F y = 36 ksi [250 kPa] and F u = 58 ksi [400 kPa]. The outer plates are to be
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8 in. wide [200 mm] and the center plate is to be 12 in. wide [300 mm]. Find
the required thicknesses of the plates and the number of bolts needed if the
bolts are placed in two rows. Sketch the final layout of the connection.

Problem 11.2.B. Design the connection for the data in Problem 11.2.A, except
that the outer plates are 9 in. [229 mm] wide and the bolts are placed in three
rows.

11.3 BOLTED FRAMING CONNECTIONS

The joining of structural steel members in a structural system generates
a wide variety of situations, depending on the form of the connected
parts, the type of connecting device used, and the nature and magnitude
of the forces that must be transferred between the members.

Framing connections quite commonly involve the use of welding and
bolting in a single connection, as illustrated in the figures. In general,
welding is favored for fabrication in the shop and bolting for erection
in the field. If this practice is recognized, the connections must be
developed with a view to the overall fabrication and erection process
and some decision made regarding what is to be done where. With the
best of designs, however, the contractor who is awarded the work may
have some ideas about these procedures and may suggest alterations in
the details.

Development of connection details is particularly critical for struc-
tures in which a great number of connections occur. The truss is one
such structure.

Framed Beam Connections

The connection shown in Figure 11.9a is the type used most frequently
in the development of framed structures that consist of I-shaped beams
and H-shaped columns. This device is referred to as a framed beam
connection , for which there are several design considerations:

Type of Fastening. Fastening of the angles to the supported beam
and to the support may be accomplished with welds or with any
of several types of structural bolt. The most common practice is
to weld the angles to the supported beam’s web in the fabricat-
ing shop and to bolt the angles to the support (column face or
supporting beam’s web) in the field (the erection site).
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Figure 11.9 Framed beam connections for rolled shapes, using intermediate
connecting angles.

Number of Fasteners, If bolts are used, this refers to the number
of bolts used on the supported beams web, there being twice
this number of bolts in the outstanding legs of the angles. The
capacities are matched, however, because the web bolts are in
double shear and the others in single shear. For smaller beams,
or for light loads in general, angle leg sizes are typically narrow,
being just enough to accommodate a single row of bolts, as shown
in Figure 11.9b. However, for very large beams and for greater
loads, a wider leg may be used to accommodate two rows of
bolts.

Size of the Angles. Leg width and thickness of the angles depend on
the size of fasteners and the magnitude of loads. Width of the
outstanding legs may also depend on space available, especially
if attachment is to the web of a column.

Length of the Angles. Length must be that required to accommodate
the number of bolts. Standard layout of the bolts is that shown in
Figure 11.9, with bolts at 3-in. spacing and end distance of 1.25 in.
This will accommodate up to 1-in.-diameter bolts. However, the
angle length is also limited to the distance available on the beam
web; that is, the total length of the flat portion of the beam web
(see Figure 11.9a).

The AISC Manual (Ref. 5) provides considerable information to
support the design of these frequently used connecting elements. Data
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is provided for both bolted and welded fastenings. Predesigned con-
nections are tabulated and can be matched to magnitudes of loadings
and to sizes (primarily depths) of the beams (mostly W shapes) that
can accommodate them.

Although there is no specified limit for the minimum size of a framed
connection to be used with a given beam, a general rule is to use
one with the angle length at least one half of the beam depth. This
rule is intended in the most part to ensure some minimum stability
against rotational effects at the beam ends. For very shallow beams the
special connector shown in Figure 11.9c may be used. Regardless of
loading, this requires the angle leg at the beam web to accommodate
two rows of bolts (one bolt in each row) simply for the stability of the
angles.

There are many structural effects to consider for these connections.
Of special concern is the inevitable bending in the connection that
occurs as shown in Figure 11.2c. The bending moment arm for this
twisting action is the gage distance of the angle leg, dimension g as
shown in Figure 11.9b. It is a reason for choosing a relatively narrow
angle leg.

If the top flange of the supported beam is cut back—as it commonly
is when connection is to another beam—either vertical shear in the net
cross section or block shear failure (Figure 11.3c) may be critical.
Both of these conditions will be aggravated when the supported beam
has a very thin web, which is a frequent condition because the most
efficient beam shapes are usually the lightest shapes in their nominal
size categories.

Another concern for the thin beam web is the possibility of critical
bearing stress in the bolted connection. Combine a choice for a large
bolt with one for a beam with a thin web, and this is likely to be a
problem.

11.4 BOLTED TRUSS CONNECTIONS

A major factor in the design of trusses is the development of the truss
joints. Since a single truss typically has several joints, the joints must
be relatively easy to produce and economical, especially if there is
a large number of trusses of a single type in the building structural
system. Considerations involved in the design of connections for the
joints include the truss configuration, member shapes and sizes, and the
fastening method—usually welding or high-strength bolts.
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In most cases the preferred method of fastening for connections
made in the fabricating shop is welding. Trusses are usually shop fab-
ricated in the largest units possible, which means the whole truss for
modest spans or the maximum-sized unit that can be transported for
large trusses. Bolting is mostly used for connections made at the build-
ing site. For the small truss, bolting is usually done only for the con-
nections to supports and to supported elements or bracing. For the large
truss, bolting may also be done at splice points between shop-fabricated
units. All of this is subject to many considerations relating to the nature
of the rest of the building structure, the particular location of the site,
and the practices of local fabricators and erectors.

Two common forms for light steel trusses are shown in Figure 11.10.
In Figure 11.10a the truss members consist of pairs of angles and the
joints are achieved by using steel gusset plates to which the mem-
bers are attached. For top and bottom chords the angles are often
made continuous through the joint, reducing the number of connec-
tors required and the number of separate cut pieces of the angles. For
flat-profiled, parallel-chord trusses of modest size, the chords are some-
times made from tees, with interior members fastened directly to the
tee web (Figure 11.10b).

Figure 11.11 shows a layout for several joints of a light roof truss,
employing the system shown in Figure 11.10a . This is a form com-
monly used in the past for roofs with high slopes, with many short-span
trusses fabricated in a single piece in the shop, usually with riveted
joints. Trusses of this form are now mostly welded or use high-strength
bolts as shown in Figure 11.11.

Development of the joint designs for the truss shown in Figure 11.11
would involve many considerations, including:

Truss Member Size and Load Magnitude. This determines primarily
the size and type of connector (bolt) required, based on individual
connector capacity.

Angle Leg Size. This relates to the maximum diameter of bolt that
can be used, based on angle gages and minimum edge distances.
(See Table 11.3.)

Thickness and Profile Size of Gusset Plates. The preference is to have
the lightest weight added to the structure (primarily for the cost
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Figure 11.10 Common framing details for light steel trusses.

per pound of the steel), which is achieved by reducing the plates
to a minimum thickness and general minimum size.

Layout of Members at Joints. The aim is to have the action lines of
the forces (vested in the rows of bolts) all meet at a single point,
thus avoiding twisting in the joint.

Many of the points mentioned are determined by data. Minimum
edge distances for bolts (Table 11.2) can be matched to usual gage
dimensions for angles (Table 11.3). Forces in members can be related
to bolt capacities in Table 11.1, the general intent being to keep the
number of bolts to a minimum in order to make the required size of
the gusset plate smaller.

Other issues involve some judgment or skill in the manipulation of
the joint details. For really tight or complex joints, it is often necessary
to study the form of the joint with carefully drawn large-scale layouts.
Actual dimensions and form of the member ends and gusset plates may
be derived from these drawings.

The truss shown in Figure 11.11 has some features that are quite
common for small trusses. All member ends are connected by only two
bolts, the minimum required by the specifications. This simply indicates
that the minimum-sized bolt chosen has sufficient capacity to develop
the forces in all members with only two bolts. At the top chord joint
between the support and the peak, the top chord member is shown as
being continuous (uncut) at the joint. This is quite common where the
lengths of members available are greater than the joint-to-joint distances
in the truss, a cost savings in member fabrication as well as connection.
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Figure 11.11 Typical form of a light steel truss with double-angle members and
bolted connections with gusset plates.

If there is only one or a few of the trusses as shown in Figure 11.11
to be used in a building, the fabrication may indeed be as shown in
the illustration. However, if there are many such trusses, or the truss is
actually a manufactured, standardized product, it is much more likely
to be fabricated employing welding for shop work and bolting only for
field connections.
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LIGHT-GAGE FORMED
STEEL STRUCTURES

Many structural elements are formed from sheet steel. Elements formed
by the rolling process must be heat softened, whereas those produced
from sheet steel are ordinarily made without heating the steel: Thus,
the common description for these elements is cold formed . Because
they are typically formed from thin sheet stock, they are also referred
to as light-gage steel products.

12.1 LIGHT-GAGE STEEL PRODUCTS

Figure 12.1 illustrates the cross sections of some common products
formed from sheet steel. Large corrugated or fluted panels are in wide
use for wall paneling and for structural decks for roofs and floors
(Figure 12.1a). These products are made by a number of manufacturers,
and information regarding their structural properties may be obtained
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Figure 12.1 Cross-sectional shapes of common cold-formed sheet steel
products.

directly from the manufacturer. General information on structural decks
may also be obtained from the Steel Deck Institute (see Ref. 9).

Cold-formed shapes range from the simple L, C, and U shapes
(Figure 12.1b) to the special forms produced for various construction
systems, such as door and window frames (Figure 12.1c). Structures
for some buildings may be almost entirely comprised of cold-formed
products.

While some cold-formed and fabricated elements of sheet steel may
be used for parts of structural systems, a major use of these products is
for the formation of structural frames for partitions, curtain walls, sus-
pended ceilings, and door and window framing. In large buildings, fire
safety requirements usually prevent use of wood for these applications,
so the noncombustible steel products are widely chosen.

12.2 LIGHT-GAGE STEEL DECKS

Steel decks consisting of formed sheet steel are produced in a variety of
configurations, as shown in Figure 12.2. The simplest is the corrugated
sheet, shown in Figure 12.2a . This may be used as the single, total
surface for walls and roofs of utilitarian buildings (tin shacks). For
more demanding usage, it is used mostly as the surfacing of a built-up
panel or general sandwich-type construction. As a structural deck, the
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Figure 12.2 Cross-sectional shapes of formed sheet steel deck units.

simple corrugated sheet is used for very short spans, typically with
a structural-grade concrete fill that effectively serves as the spanning
deck—the steel sheet serving primarily as forming for the concrete.

A widely used product is that shown in three variations in
Figures 12.2b –d . When used for roof deck, where loads are light,
a flat top surface is formed with a very lightweight fill of foamed
concrete or gypsum concrete or a rigid sheet material that also serves
as insulation. For floors—with heavier loads, need for a relatively
hard surface, and concern for bouncing—a structural-grade concrete
fill is used, and the deeper ribs of the units shown in Figures 12.2c
and d may be selected to achieve greater spans with wide-spaced
beams. Common overall deck heights are 1.5, 3, and 4.5 in.
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There are also formed sheet steel decks produced with greater depth,
such as those shown in Figures 12.2e and f . These can achieve con-
siderable span, generally combining the functions of joist and deck in
a single unit.

Although used somewhat less now, with the advent of different
wiring products and techniques for facilitating the need for frequent
and rapid change of building wiring, a possible use for steel deck units
is as a conduit for power, signal, or communication wiring. This can
be accomplished by closing the deck cells with a flat sheet of steel, as
shown in Figures 12.2g and h . This usually provides for wiring in one
direction in a grid, the perpendicular wiring being achieved in conduits
buried in the concrete fill.

Decks vary in form (shape of the cross section) and in the thickness
(gage) of the steel sheet used to form them. Design choices relate to the
desire for a particular form and to the load and span conditions. Units
are typically available in lengths of 30 ft or more, which usually permits
design for a multiple-span condition; this reduces bending effects only
slightly but has a considerable influence on reduction of deflection and
bouncing.

Fire protection for floor decks is provided partly by the concrete
fill on top of the deck. Protection of the underside is achieved by
sprayed-on materials (as also used on beams) or by use of a permanent
fire-rated ceiling construction. The latter is no longer favored, how-
ever, as many disastrous fires have occurred in the void space between
ceilings and overhead floors or roofs.

Other structural uses of the deck must also be considered. The
most common use is as a horizontal diaphragm for distribution of lat-
eral forces from wind and earthquakes. Lateral bracing of beams and
columns is also often assisted or completely achieved by structural
decks.

When structural-grade concrete is used as a fill, there are three pos-
sibilities for its relationship to a forming steel deck. These are:

1. The concrete serves strictly as a structurally inert fill, providing
a flat surface, fire protection, added acoustic separation, and so
on but no significant structural contribution.

2. The steel deck functions essentially only as a forming system for
the concrete fill, the concrete being reinforced and designed as a
spanning structural deck.



LIGHT-GAGE STEEL DECKS 403

3. The concrete and sheet steel work together in what is described
as composite structural action . In effect, the sheet steel on the
bottom serves as the reinforcement for midspan bending stresses,
leaving a need only for top reinforcement for negative bending
moments over the deck supports.

Table 12.1 presents data relating to the use of the type of deck unit
shown in Figure 12.2b for roof structures. This data is adapted from
a publication distributed by an industrywide organization referred to
in the table footnotes and is adequate for preliminary design work.
The reference publication also provides considerable information and
standard specifications for usage of the deck. For any final design work
for actual construction, structural data for any manufactured products
should be obtained directly from the suppliers of the products.

The common usage for roof decks with units as shown in Table 12.1
is that described above as Case 1: structural dependence strictly on the
steel deck units. That is the basis for the data in the table given here.

Three different rib configurations are shown for the deck units in
Table 12.1, described as narrow , intermediate, and wide rib decks.
The configurations for these variations are shown in Figure 12.3. This
has some effect on the properties of the deck cross section and thus
produces three separate sections in the table. While structural perfor-
mance may be a factor in choosing the rib width, there are usually
other predominating reasons. If the deck is to be welded to its supports
(usually required for good diaphragm action), it is done at the bottom
of the ribs and the wide rib is required. If a relatively thin topping
material is used, the narrow rib is favored.

Rusting is a critical problem for the very thin sheet steel deck. With
its top usually protected by other construction, the main problem is
the treatment of the underside of the deck. A common practice is to
provide the appropriate surfacing of the deck units in the factory. The
deck weights in Table 12.1 are based on simple painted surfaces, which
is usually the least expensive surface. Surfaces consisting of bonded
enamel or galvanizing are also available, adding somewhat to the deck
weight.

As described previously, these products are typically available in
lengths up to 30 ft or more. Depending on the spacing of supports,
therefore, various conditions of continuity of the deck may occur. Rec-
ognizing this condition, the table provides three cases for continuity:
simple span (one span), two spans, and three or more spans.
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TABLE 12.1 Safe Service Load Capacity of Formed Steel Roof Deck

Total Safe Service Load (Dead + Live)c

Deck Span Weightb for spans indicated in feet

Typea Condition (lb/ft)2 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

NR22 Simple 1.6 73 58 47
NR20 2.0 91 72 58 48 40
NR18 2.7 125 99 80 66 55 47
NR22 Two 1.6 80 63 51 42
NR20 2.0 97 76 62 51 43
NR18 2.7 128 101 82 68 57 48 42
NR22 Three + 1.6 100 79 64 53 44
NR20 2.0 121 96 77 64 54 46
NR18 2.7 160 126 102 85 71 61 52 45
IR22 Simple 1.6 84 66 54 44
IR20 2.0 104 82 67 55 46
IR18 2.7 142 112 91 75 63 54 46 40
IR22 Two 1.6 90 71 58 48 40
IR20 2.0 110 87 70 58 49 41
IR18 2.7 145 114 93 77 64 55 47 40
IR22 Three + 1.6 113 89 72 60 50 43
IR20 2.0 137 108 88 72 61 52 45
IR18 2.7 181 143 116 96 81 69 59 52 45 40
WR22 Simple 1.6 90 70 56 46
WR20 2.0 113 88 70 57 48 40
WR18 2.7 159 122 96 77 64 54 46 40
WR22 Two 1.6 96 79 67 57 49 43
WR20 2.0 123 102 86 73 63 55 48 43
WR18 2.7 164 136 114 98 84 73 64 57 51 46 41
WR22 Three + 1.6 119 99 83 71 61 53 47 41 36
WR20 2.0 153 127 107 91 79 68 58 50 43
WR18 2.7 204 169 142 121 105 91 79 67 58 51 43

Source: Adapted from the Steel Deck Institute Design Manual for Composite Decks, Form Decks, and
Roof Decks (Ref. 9), with permission of the publisher, the Steel Deck Institute.
a Letters refer to rib type (see Fig. 12.3). Numbers indicate gage (thickness) of deck sheet steel.
b Approximate weight with paint finish; other finishes available.
cTotal safe allowable service load in lb/ft2. Loads in parentheses are governed by live-load deflection
not in excess of 1/240 of the span, assuming a dead load of 10 lb/ft2.

Figure 12.3 Reference for Table 12.1.
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Problems 12.2.A–F. Using data from Table 12.1, select the lightest steel deck
for the following:

A. Simple span of 7 ft, total load of 45 psf

B. Simple span of 5 ft, total load of 50 psf

C. Two-span condition, span of 8.5 ft, total load of 45 psf

D. Two-span condition, span of 6 ft, total load of 50 psf

E. Three-span condition, span of 6 ft, total load of 50 psf

F. Three-span condition, span of 8 ft, total load of 50 psf

12.3 LIGHT-GAGE STEEL SYSTEMS

Proprietary steel structural systems are produced by many manufactur-
ers for various applications. While some systems exist for developing
structures for entire buildings, a larger market is that for the systems
used for wall framing, ceiling structures, and supports for building ser-
vice elements. With systems for large structures, rolled shapes or trusses
may be used for larger elements, with light-gage elements creating the
infilling structure, bracing, and various secondary framing.

The light-gage elements and systems widely developed for partition
and ceiling framing for large buildings can be utilized to produce a
stud–rafter–joist system that emulates the classic light wood frame
with 2-in. nominal lumber elements.





IV
CONCRETE

CONSTRUCTION

The term concrete covers a variety of products that share a common
character: They consist of a mass of loose particles (called the aggre-
gate) that is bound together by some cementing material. Included in
this group are asphalt paving and precast shingle tiles, but the material
in this part deals primarily with the more familiar material described
by the term—that produced with Portland cement as the binder and
sand and gravel as the inert mass of loose particles. When used for
building structures, provisions are made with concrete construction to
compensate for the low tensile strength of the material. Three different
methods are currently in use: the addition of fibrous material to the
concrete mix, prestressing to add a compressive stress to counteract
tension stresses, and insertion of steel reinforcing rods to the cast con-
crete. When reinforced with steel rods, the construction is described as
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reinforced concrete, which is the form of construction treated in this
part. Work for investigation and design in this part is based on the
requirements of Building Code Requirements for Structural Concrete,
ACI 318-08, published by the American Concrete Institute (Ref. 10),
hereinafter referred to as the ACI Code.
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REINFORCED CONCRETE
STRUCTURES

This part deals primarily with concrete formed with the common bind-
ing agent of Portland cement and a loose mass consisting of sand
and gravel. With minor variations, this is the material used mostly for
structural concrete—to produce building structures, pavements, and
foundations. For common structural uses, the tensile strength weak-
ness of the concrete is modified by the addition of steel reinforcing
rods (round bars); when this occurs, the construction is described as
reinforced concrete.

13.1 GENERAL CONSIDERATIONS

Concrete made from natural materials was used by ancient builders
thousands of years ago. Modern concrete, made with industrially
produced cement, was developed in the early part of the nineteenth
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century when the process for producing Portland cement was
developed. Because of its lack of tensile strength, however, concrete
was used principally for crude, massive structures—foundations,
bridge piers, and heavy walls.

In the mid- to late-nineteenth century, several builders experimented
with the technique of inserting iron or steel rods into relatively thin
structures of concrete to enhance their ability to resist tensile forces.
This was the beginning of what we now know as reinforced concrete.

From ancient times until now, there has been a steady accumu-
lation of experience derived from experiments, research, and—most
recently—intense development of commercial products. As a result,
there is now available to the designer an immense variety of prod-
ucts under the general classification of concrete, although the range is
somewhat smaller if structural usage is required.

Forms of Concrete Structures

For building structures, concrete is mostly used with one of three basic
construction methods. The first is called sitecast concrete, in which the
wet concrete mix is deposited in some forming at the location where it
is to be used. This method is also described as cast-in-place or in situ
construction.

A second method consists of casting portions of the structure at
a location away from the desired location of the construction. These
elements—described as precast concrete —are then moved into posi-
tion, much as are blocks of stone or parts of steel frames.

Finally, concrete may be used for masonry construction—in one
of two ways. Precast units of concrete, called concrete masonry units
(CMUs), may be used in a manner similar to bricks or stones. Or,
concrete fill may be used to produce solid masonry by being poured
into cavities in the masonry construction produced with bricks, stone,
or CMUs. The latter technique, combined with the insertion of steel
reinforcement into the cavities, is widely used for masonry structures
today. The use of concrete-filled masonry, however, is one of the oldest
forms of concrete construction—used extensively by the Romans and
the builders of early Christian churches.

Concrete is produced in great volume for various forms of construc-
tion. Other than for pavements, the widest general use of concrete for
building construction is for foundations. Almost every building has a
concrete foundation, whether the major aboveground construction is
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concrete, masonry, wood, steel, aluminum, or fabric. For small build-
ings with shallow footings and no basement, the total foundation sys-
tem may be modest, but for large buildings and those with many
below-ground levels, there may well be a gigantic underground concrete
structure.

For aboveground building construction, concrete is generally used in
situations that fully realize the various advantages of the basic material
and the common systems that derive from it. For structural applications,
this means using the major compressive resistance of the material and
in some situations its relatively high stiffness and inertial resistance
(major dead weight). However, in many applications, the nonrotting,
vermin- and insect-resistive, and fire-resistive properties may be of
major significance. And for many uses, its relatively low bulk volume
cost is important.

Strength of Concrete

The quality of concrete of greatest significance for structural purposes is
its resistance to compressive stress. As such, the common practice is to
specify a desired limiting capacity of compressive stress, designated as
f ′
c , to design a concrete mix to achieve that limit, and to test samples of

cast and hardened concrete to verify its true capacity for compression.
For design work, the capacity of concrete for all purposes is

established as some percentage of f ′
c . Attainment of a quality of

concrete to achieve a particular level of compressive resistance
generally also serves to certify various other properties, such as
hardness, density, and durability. Choice for the desired strength is
typically based on the form of construction. For most purposes a
strength of 3000–5000 psi [21–34 MPa] for f ′

c is usually adequate.
However, strengths of 20,000 psi [135 MPa] and higher have recently
been achieved for lower columns in very tall structures. At the other
end of this spectrum is the situation where quality control may be less
assured and the designer may assume the attainment of a relatively
low strength, basing conservative design computations on strength
as low as 2000 psi [14 MPa]—while doing all possible to achieve a
better concrete.

As it makes up the major bulk of the finished concrete, the aggregate
is of primary importance for stress resistance. It must be hard and
durable and must be graded in size so that small particles fill the voids
between larger ones, producing a dense mass before the cement and
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water are added. The weight of concrete is usually determined primarily
by the density of the aggregate.

The other major factor for concrete strength is the amount of water
used for mixing. The basic idea is to use as little water as possible,
as an excess will water down the water–cement mixture and produce
very weak, porous concrete. However, this must be balanced against
the need for a wet mix that can be easily placed in forms and finished.
A lot of skill and some science is involved in producing an ideal mix.

A final consideration for strength is the control of conditions during
the early life of a cast mix. The mobile wet mix hardens relatively
quickly but gains its highest potential strength over some period of
time. It is important to control the water content and the temperature
of the hardened concrete during this critical period, if the best quality
concrete is to be expected.

Stiffness of Concrete

As with other materials, the stiffness of concrete is measured by the
modulus of elasticity , designated E . This modulus is established by tests
and is the ratio of stress to strain. Since strain has no unit designation
(measured as inch/inch, etc.), the unit for E thus becomes the unit for
stress, usually lb/in.2 [MPa].

The magnitude of elasticity for concrete, Ec, depends on the weight
of the concrete and its strength. For values of unit weight between
90 and 155 lb/ft3 or pcf [1440 and 2480 kg/m3], the value of Ec is
determined as

Ec = w 1.5 × 33
√

f ′
c

The unit weight for ordinary stone–aggregate concrete is usually
assumed to be an average of 145 pcf [2323 kg/m3]. Substituting this
value for w in the equation, an average concrete modulus of Ec =
57,000

√
f ′
c . For metric units, with stress measured in MPa, the expres-

sion becomes Ec = 4730
√

f ′
c .

Distribution of stresses and strains in reinforced concrete is depen-
dent on the concrete modulus, the steel modulus being a constant. In
the design of reinforced concrete members the term n is employed.
This is the ratio of the modulus of elasticity of steel to that of concrete,
or n = Es/Ec; and Es is taken as 29,000 ksi [200,000 MPa], a constant.
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Creep

When subjected to long-duration stress at a high level, concrete has
a tendency to creep, a phenomenon in which strain increases over
time under constant stress. This has effects on deflections and on the
distributions of stresses between the concrete and reinforcing. Some of
the implications of this for design are discussed in dealing with design
of beams and columns.

Cement

The cement used most extensively in building construction is Port-
land cement. Of the five types of standard Portland cement generally
available in the United States and for which the American Society for
Testing and Materials has established specifications, two types account
for most of the cement used in buildings. These are a general-purpose
cement for use in concrete designed to reach its required strength in
about 28 days and a high-early-strength cement for use in concrete that
attains its design strength in a period of a week or less.

All Portland cements set and harden by reacting with water, and
this hydration process is accompanied by generation of heat. In mas-
sive concrete structures such as dams, the resulting temperature rise
of the materials becomes a critical factor in both design and con-
struction, but the problem is usually not significant in building con-
struction. A low-heat cement is designed for use where the heat rise
during hydration is a critical factor. It is, of course, essential that the
cement actually used in construction correspond to that employed in
designing the mix, to produce the specified compressive strength of the
concrete.

Air-entrained concrete is produced by using special cement or by
introducing an additive during mixing of the concrete. In addition
to improving workability (mobility of the wet mix), air entrainment
permits lower water–cement ratios and significantly improves the dura-
bility of the concrete. Air-entraining agents produce billions of micro-
scopic air cells throughout the concrete mass. These minute voids
prevent accumulation of water in cracks and other large voids which,
on freezing, would permit the water to expand and result in spalling
away of the exposed surface of the concrete.
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Reinforcement

The steel used in reinforced concrete consists of round bars, mostly
of the deformed type, with lugs or projections on their surfaces. The
surface deformations help to develop a greater bond between the steel
bars and the enclosing concrete mass.

Purpose of Reinforcement . The essential purpose of steel reinforcing
is to reduce the failure of the concrete due to tensile stresses.
Structural actions are investigated for the development of tension
in the structural members and steel reinforcement in the proper
amount is placed within the concrete mass to resist the tension. In
some situations steel reinforcement may also be used to increase
compressive resistance since the ratio of magnitudes of strength
of the two materials is quite high; thus the steel displaces a much
weaker material and the member gains significant strength.

Tension stress can also be induced by shrinkage of the con-
crete during its drying out from the initial wet mix. Temperature
variations may also induce tension in many situations. To provide
for these latter actions, a minimum amount of reinforcing is used
in surface-type members such as walls and paving slabs, even
when no structural action is visualized.

Stress–Strain Considerations . The most common grades of steel
used for ordinary reinforcing bars are Grade 40 and Grade 60,
having yield strengths of 40 ksi [276 MPa] and 60 ksi [414 MPa],
respectively. The yield strength of the steel is of primary interest
for two reasons. Plastic yielding of the steel generally represents
the limit of its practical utilization for reinforcing of the concrete
since the extensive deformation of the steel in its plastic range
results in major cracking of the concrete. Thus, for service load
conditions, it is desirable to keep the stress in the steel within its
elastic range of behavior where deformation is minimal.

The second reason for the importance of the yield character
of the reinforcing is its ability to impart a generally yielding
nature (plastic deformation character) to the otherwise typically
very brittle concrete structure. This is of particular importance
for dynamic loading and is a major consideration in design for
earthquake forces. Also of importance is the residual strength
of the steel beyond its yield stress limit. The steel continues to
resist stress in its plastic range and then gains a second, higher,
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strength before failure. Thus, the failure induced by yielding is
only a first-stage response and a second level of resistance is
reserved.

Cover . Ample concrete protection, called cover , must be provided
for the steel reinforcement. This is important to protect the steel
from rusting and to be sure that it is well engaged by the mass
of concrete. Cover is measured as the distance from the outside
face of the concrete to the edge of the reinforcing bar.

Code minimum requirements for cover are 3/4 in. [19 mm] for
walls and slabs and 1.5 in. [38 mm] for beams and columns. Addi-
tional distance of cover is required for extra fire protection or for
special conditions of exposure of the concrete surface to weather
or by contact with the ground.

Spacing of Bars . Where multiple bars are used in concrete members
(which is the common situation), there are both upper and lower
limits for the spacing of the bars. Lower limits are intended to
facilitate the flow of wet concrete during casting and to permit
adequate development of the concrete-to-steel stress transfers for
individual bars.

Maximum spacing is generally intended to assure that there is
some steel that relates to a concrete mass of limited size; that is,
there is not too extensive a mass of concrete with no reinforce-
ment. For relatively thin walls and slabs, there is also a concern
of scale of spacing related to the thickness of the concrete.

Amount of Reinforcement . For structural members the amount of
reinforcement is determined from structural computations as that
required for the tension force in the member. This amount (in total
cross-sectional area of the steel) is provided by some combina-
tion of bars. In various situations, however, there is a minimum
amount of reinforcement that is desirable, which may on occasion
exceed the amount determined by computation.

Minimum reinforcement may be specified as a minimum num-
ber of bars or as a minimum amount, the latter usually based on
the amount of the cross-sectional area of the concrete member.
These requirements are discussed in the sections that deal with
the design of the various types of structural members.

Standard Reinforcing Bars . In early concrete work reinforcing bars
took various shapes. A problem that emerged was the proper
bonding of the steel bars within the concrete mass, due to the
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tendency of the bars to slip or pull out of the concrete. This issue
is still a critical one and is discussed in Section 13.7.

In order to anchor the bars in the concrete, various methods
were used to produce something other than the usual smooth
surfaces on bars. After much experimentation and testing, a single
set of bars was developed with surface deformations consisting
of ridges. These deformed bars were produced in graduated sizes
with bars identified by a single number (see Table 13.1).

For bars numbered 2–8, the cross-sectional area is equivalent to a
round bar having a diameter of as many eighths of an inch as the bar
number. Thus, a No. 4 bar is equivalent to a round bar of 4/8 or 1/2 in.
diameter. Bars numbered from 9 up lose this identity and are essentially
identified by the tabulated properties in a reference document.

The bars in Table 13.1 are developed in U.S. units but can, of course,
be used with their properties converted to metric units. However, a
new set of bars has been developed, deriving their properties more
logically from metric units. The general range of sizes is similar for
both sets of bars, and design work can readily be performed with either
set. Metric-based bars are obviously more popular outside the United
States, but for domestic use (nongovernment) in the United States, the
old bars are still in wide use. This is part of a wider conflict over units,
which is still going on.

TABLE 13.1 Properties of Deformed Reinforcing Bars

Nominal Dimensions

Bar Size Nominal Weight Diameter Cross-Sectional Area

Designation lb/ft kg/m in. mm in.2 mm2

No.3 0.376 0.560 0.375 9.5 0.11 71
No.4 0.668 0.994 0.500 12.7 0.20 129
No.5 1.043 1.552 0.625 15.9 0.31 200
No.6 1.502 2.235 0.750 19.1 0.44 284
No.7 2.044 3.042 0.875 22.2 0.60 387
No.8 2.670 3.974 1.000 25.4 0.79 510
No.9 3.400 5.060 1.128 28.7 1.00 645
No.10 4.303 6.404 1.270 32.3 1.27 819
No.11 5.313 7.907 1.410 35.8 1.56 1006
No.14 7.650 11.390 1.693 43.0 2.25 1452
No.18 13.600 20.240 2.257 57.3 4.00 2581
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The work in this book uses the old inch-based bars, simply because
the computational examples are done in U.S. units. In addition, many
of the references still in wide use have data presented basically with
U.S. units and the old bar sizes.

13.2 GENERAL APPLICATION OF STRENGTH METHODS

Strength design in effect consists of designing members to fail; thus, the
ultimate strength of the member at failure (called its design strength)
is the only type of resistance considered. The basic procedure of the
strength method consists of determining a factored (increased) design
load and comparing it to the factored (usually reduced) ultimate resis-
tance of the structural member.

The ACI Code (Ref. 10) provides various combinations of loads
that must be considered for design. Each type of load (live, dead,
wind, earthquake, snow, etc.) is given an individual factor in these
load equations. See discussion in Chapter 1.

The design strength of individual concrete members (i.e., their usable
ultimate strength) is determined by the application of assumptions and
requirements given in the code and is further modified by the use of a
strength reduction factor φ as follows:

φ = 0.90 for flexure, tension, and combinations of these
= 0.70 for columns with spirals
= 0.65 for columns with ties
= 0.75 for shear and torsion
= 0.65 for compressive bearing
= 0.55 for flexure in plain (not reinforced) concrete

13.3 BEAMS: ULTIMATE STRENGTH METHOD

The primary concerns for beams relate to their necessary resistance to
bending and shear and some limitations on their deflection. For wood
or steel beams the usual concern is only for the singular maximum
values of bending and shear in a given beam. For concrete beams on
the other hand, it is necessary to provide for the values of bending
and shear as they vary along the entire length of a beam, even through
multiple spans in the case of continuous beams, which are a common
occurrence in concrete structures. For simplification of the work it is
necessary to consider the actions of a beam at a specific location, but
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Figure 13.1 Bending action in a reinforced concrete beam.

it should be borne in mind that this action must be integrated with all
the other effects on the beam throughout its length.

When a member is subjected to bending, such as the beam shown
in Figure 13.1a , internal resistances of two basic kinds are generally
required. Internal actions are “seen” by visualizing a cut section, such
as that taken at X–X in Figure 13.1a . Removing the portion of the
beam to the left of the cut section, its free-body actions are as shown
in Figure 13.1b. At the cut section, consideration of static equilibrium
requires the development of the internal shear force (V in the figure)
and the internal resisting moment (represented by the force couple: C
and T in the figure).

If a beam consists of a simple rectangular concrete section with
tension reinforcement only, as shown in Figure 13.1c, the force
C is considered to be developed by compressive stresses in the
concrete—indicated by the shaded area above the neutral axis. The
tension force, however, is considered to be developed by the steel
alone, ignoring the tensile resistance of the concrete. For low-stress
conditions the latter is not true, but at a greater level of stress the
tension-weak concrete will indeed crack, virtually leaving the steel
unassisted, as assumed.

At moderate levels of stress, the resisting moment is visualized as
shown in Figure 13.2a , with a linear variation of compressive stress
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Figure 13.2 Development of bending stress actions in a reinforced concrete
beam.

from zero at the neutral axis to a maximum value of fc at the edge of the
section. As stress levels increase, however, the nonlinear stress–strain
character of the concrete becomes more significant, and it becomes
necessary to acknowledge a more realistic form for the compressive
stress variation, such as that shown in Figure 13.2b. As stress levels
approach the limit of the concrete, the compression becomes vested
in an almost constant magnitude of unit stress, concentrated near the
top of the section. For strength design, in which the moment capacity
is expressed at the ultimate limit, it is common to assume the form of
stress distribution shown in Figure 13.2c, with the limit for the concrete
stress set at 0.85 times f ′

c . Expressions for the moment capacity derived
from this assumed distribution compare reasonably with the response
of beams tested to failure in laboratory experiments.

Response of the steel reinforcement is more simply visualized and
expressed. Since the steel area in tension is concentrated at a small
location with respect to the size of the beam, the stress in the bars is
considered to be a constant. Thus, at any level of stress the total value
of the internal tension force may be expressed as

T = As fs

and for the practical limit of T,

T = As fy
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Figure 13.3 Reference notation for a reinforced concrete beam.

The following is a presentation of the formulas and procedures used
in the strength method. The discussion is limited to a rectangular beam
section with tension reinforcement only.

Referring to Figure 13.3, the following are defined:

b = width of the concrete compression zone
d = effective depth of the section for stress analysis; from the

centroid of the steel to the edge of the compressive zone
h = overall depth (height) of the section

As = cross-sectional area of reinforcing bars
p = percentage of reinforcement, defined as

p = As

bd

Figure 13.2c shows the rectangular “stress block” that is used for
analysis of the rectangular section with tension reinforcing only by
the strength method. This is the basis for investigation and design as
provided for in the ACI Code (Ref. 10).

The rectangular stress block is based on the assumption that a
concrete stress of 0.85f ′

c is uniformly distributed over the compression
zone, which has dimensions equal to the beam width b and the distance
a , which locates a line parallel to and above the neutral axis. The
value of a is determined from the expression a = β1 × c, where β1

(beta one) is a factor that varies with the compressive strength of the
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concrete, and c is the distance from the extreme fiber to the neutral axis
(see Figure 6.2c). For concrete having f ′

c equal to or less than 4000 psi
[27.6 MPa], the ACI Code (Ref. 10) gives a maximum value for
a = 0.85c.

With the rectangular stress block, the magnitude of the compressive
force is expressed as

C = (0.85f ′
c )(b)(a)

and it acts at a distance of a/2 from the top of the beam.
The arm of the resisting force couple then becomes d − (a/2), and

the developed resisting moment as governed by the concrete is

Mc = C
(

d − a

2

)
= 0.85f ′

c ba
(

d − a

2

)
(13.3.1)

With T expressed as As × fy , the developed moment as governed
by the reinforcement is

Mt = T
(

d − a

2

)
= As fy

(
d − a

2

)
(13.3.2)

A formula for the dimension a of the stress block can be derived
by equating the compression and tension forces; thus

0.85f ′
c ba = As fy a = As fy

0.85f ′
c b

(13.3.3)

By expressing the area of steel in terms of a percentage p, the
formula for a may be modified as follows:

p = As

bd
As = pbd

a = (pbd) fy
0.85f ′

c b
= pdfy

0.85f ′
c

or
a

d
= pfy

0.85f ′
c

(13.3.4)

A useful reference is the so-called balanced section, which occurs
when use of the exact amount of reinforcement results in the simulta-
neous development of the limiting stresses in the concrete and steel.
The balanced section for strength design is visualized in terms of strain
rather than stress. The limit for a balanced section is expressed in the
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form of the percentage of steel required to produce balanced conditions.
The formula for this percentage is

pb = 0.85f ′
c

fy
× 87

87 + fy
(13.3.5)

in which f ′
c and fy are in units of ksi.

Returning to the formula for the developed resisting moment, as
expressed in terms of the steel, a useful formula may be derived as
follows:

Mt = As fy
(

d − a

2

)
= (pbd)

(
fy

) (
d − a

2

)
= (pbd)

(
fy

)
(d)

(
1 − a

2d

)
= (

bd2) [
pfy

(
1 − a

2d

)]

Thus,
Mt = Rbd2 (13.3.6)

where
R = pfy

(
1 − a

2d

)
(13.3.7)

With the reduction factor applied, the design moment for a section
is limited to nine-tenths of the theoretical resisting moment.

Values for the balanced section factors (p, R, and a/d) are given
in Table 13.2 for various combinations of f ′

c and fy . The balanced
section is not necessarily a practical one for design. In most cases
economy will be achieved by using less than the balanced reinforcing
for a given concrete section. In special circumstances it may also be
possible, or even desirable, to use compressive reinforcing in addition
to tension reinforcing. Nevertheless, the balanced section is often a
useful reference when design is performed.

Beams with reinforcement less than that required for the balanced
moment are called underbalanced sections or underreinforced sections.
If a beam must carry bending moment in excess of the balanced moment
for the section, it is necessary to provide some compressive rein-
forcement, as discussed in Section 13.4. The balanced section is not
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TABLE 13.2 Balanced Section Properties for Rectangular Sections with
Tension Reinforcement Only

f y f ′
c R

ksi MPa ksi MPa p a/d ksi kPa

40 276 2 13.8 0.0291 0.685 0.766 5280
3 20.7 0.0437 0.685 1.149 7920
4 27.6 0.0582 0.685 1.531 10600
5 34.5 0.0728 0.685 1.914 13200

60 414 2 13.8 0.0168 0.592 0.708 4890
3 20.7 0.0252 0.592 1.063 7330
4 27.6 0.0335 0.592 1.417 9770
5 34.5 0.0419 0.592 1.771 12200

necessarily a design ideal but is useful in establishing the limits for the
section.

In the design of concrete beams, there are two situations that com-
monly occur. The first occurs when the beam is entirely undetermined;
that is, the concrete dimensions and the reinforcement are unknown.
The second occurs when the concrete dimensions are given, and the
required reinforcement for a specific bending moment must be deter-
mined. The following examples illustrate the use of the formulas just
developed for each of these problems.

Example 1. The service load bending moments on a beam are 58 kip-ft
[78.6 kN-m] for dead load and 38 kip-ft [51.5 kN-m] for live load. The
beam is 10 in. [254 mm] wide, f ′

c is 3000 psi [20.7 MPa], and fy is 60 ksi
[414 MPa]. Determine the depth of the beam and the tensile reinforcing
required.

Solution: The first step is to determine the required moment, using the
load factors. Thus,

U = 1.2 (D) + 1.6 (L)

Mu = 1.2 (MDL) + 1.6 (MLL)

= 1.2 (58 kip-ft) + 1.6 (38 kip-ft)

= 130.4 kip-ft [177 kN-m]

With the capacity reduction of 0.90 applied, the desired moment
capacity of the section is determined as
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Mt = Mu

0.90
= 130.4 kip-ft

0.90
= 145 kip-ft

= 145 kip-ft ×
(

12 in.

1 ft

)
= 1739 kip-in. [197 kN-m]

The reinforcement ratio as given in Table 13.2 is p = 0.0252. The
required area of reinforcement for this section may thus be determined
from the relationship

As = pbd

While there is nothing especially desirable about a balanced section,
it does represent the beam section with the least depth if tension rein-
forcing only is used. Therefore proceed to find the required balanced
section for this example.

To determine the required effective depth d , use equation (13.3.6);
thus,

Mt = Rbd2

With the value of R = 1.063 ksi from Table 13.2,

Mt = 1739 kip-in. = 1.063 ksi(10 in.)(d)2

and

d =
√

M

Rb
=

√
1739 kip-in.

1.063 ksi (10 in.)

=
√

164 in.2 = 12.8 in. [325 mm]

If this value is used for d , the required steel area may be found using
the value of p = 0.0252 from Table 13.2. Thus,

As = pbd = 0.0252(10 in.)(12.8 in.) = 3.23 in.2 [208 mm2]

Although they are not given in this example, there are often some
considerations other than flexural behavior alone that influence the
choice of specific dimensions for a beam. These may include:

Design for shear

Coordination of the depths of a set of beams in a framing system
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Figure 13.4 Common form of a reinforced concrete beam.

Coordination of the beam dimensions and placement of reinforce-
ment in adjacent beam spans

Coordination of beam dimensions with supporting columns

Limiting beam depth to provide overhead clearance beneath the
structure

If the beam is of the ordinary form shown in Figure. 13.4, the spec-
ified dimension is usually that given as h . Assuming the use of a No. 3
U-stirrup, a cover of 1.5 in. [38 mm], and an average-size reinforcing
bar of 1-in. [25-mm] diameter (No. 8 bar), the design dimension d will
be less than h by 2.375 in. [60 mm]. Lacking other considerations, the
overall required depth of the beam (h) will be 15.175 in.

Next select a set of reinforcing bars to obtain this area. For the
purpose of the example, select bars all of a single size (see Table 13.1);
the number required will be as follows:

No. 6 bars: 3.23/0.44 = 7.3, or 8 [2084/284 = 7.3]

No. 7 bars: 3.23/0.60 = 5.4, or 6 [2084/387 = 5.4]

No. 8 bars: 3.23/0.79 = 4.1, or 5 [2084/510 = 4.1]

No. 9 bars: 3.23/1.00 = 3.3, or 4 [2084/645 = 3.3]

No. 10 bars: 3.23/1.27 = 2.5, or 3 [2084/819 = 2.5]

No. 11 bars: 3.23/1.56 = 2.1, or 3 [2084/1006 = 2.1]

In real design situations there are always various additional consid-
erations that influence the choice of the reinforcing bars. One general
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8 No. 6 bars

3 No. 10 bars
6.25"

10"

1.875" 1.875"

0.375"

1.5"

8(0.75) + 7(1.0) = 13.0"

5(1.41) = 6.35"

Figure 13.5 Consideration of beam width for proper spacing of a single layer of
reinforcement.

desire is that of having the bars in a single layer, as this keeps the
centroid of the steel as close as possible to the edge (bottom in this
case) of the member, giving the greatest value for d with a given height
(h) of a concrete section. With the section as shown in Figure 13.5,
a beam width of 10 in. will yield a net width of 6.25 in. inside the
No. 3 stirrups, determined as the outside width of 10 in. less 2 (1.5-in.
cover) and 2 (0.375-in. stirrup diameter). Applying the code criteria
for minimum spacing for this situation, the required width for the var-
ious bar combinations can be determined. Minimum space required
between bars is one bar diameter or a minimum of 1 in. (See discus-
sion in Section. 13.1.) Two examples for this are shown in Figure 13.5.
It will be found that none of the choices will fit this beam width. Thus,
the beam width must be increased or two layers of bars must be used.

If there are reasons, as there often are, for not selecting the least
deep section with the greatest amount of reinforcing, a slightly different
procedure must be used, as illustrated in the following example.

Example 2. Using the same data as in Example 1, find the reinforce-
ment required if the desired beam section has b = 10 in. [254 mm] and
d = 18 in. [457 mm].
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Solution: The first two steps in this situation would be the same as
in Example 1—to determine Mu and Mt. The next step would be to
determine whether the given section is larger than, smaller than, or
equal to a balanced section. Since this investigation has already been
done in Example 1, observe that the 10-in. × 18-in. section is larger
than a balanced section. Thus, the actual value of a/d will be less than
the balanced section value of 0.592 from Table 13.2. The next step
would then be as follows.

Estimate a value for a/d —something smaller than the balanced
value. For example, try a/d = 0.3. Then

a = 0.3d = 0.3(18 in.) = 5.4 in. [137 mm]

With this value for a , use equation (13.3.2) to find a required value for
As. Referring to Figure 13.2,

Mt = T (jd) = (
As fy

) (
d − a

2

)

As = Mt

fy
(

d − a

2

) = 1739 kip-in.

60 ksi (15.3 in.)
= 1.89 in.2

[
1220 mm2]

Next test to see if the estimate for a/d was close by finding a/d using
equation (13.3.4). Thus,

p = As

bd
= 1.89 in.2

10 in. × 18 in.
= 0.0105

and, from equation 13.3.4

a

d
= pfy

0.85f ′
c

= 0.0105 × 60 ksi

0.85 × 3 ksi
= 0.247

Thus,
a = 0.247 × 18 in. = 4.446 in.

d − a

2
= 15.78 in. [401 mm]

If this value for d − a/ 2 is used to replace that used earlier, the required
value of As will be slightly reduced. In this example, the correction will
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be only a few percent. If the first guess of a/d had been way off, it
may justify another run through the analysis to get closer to an exact
answer.

For beams that are classified as underreinforced (section dimen-
sions larger than the limit for a balanced section), check for the mini-
mum required reinforcement. For a rectangular section, the ACI Code
(Ref. 10) specifies that a minimum area be

As = 3
√

f ′
c

fy
(bd)

but not less than
As = 200

fy
(bd)

On the basis of these requirements, values for minimum reinforce-
ment for rectangular sections with tension reinforcement only are given
in Table 13.3 for two grades of steel and three concrete strengths. For
the example, with a concrete strength of 3000 psi and fy of 60 ksi, the
minimum area of steel is thus

As = 0.00333(bd)

= 0.00333(10 × 18) = 0.60 in.2 [387 mm2]

which is clearly not critical in this case.

Problem 13.3.A. A rectangular concrete beam has f ′
c = 3000 psi [20.7 MPa] and

steel with fy = 40 ksi [276 MPa]. Select the beam dimensions and reinforcement
for a balanced section if the beam sustains a moment due to dead load of
60 kip-ft [81.4 kN-m] and a moment due to live load of 90 kip-ft [122 kN-m].

TABLE 13.3 Minimum Required Tension
Reinforcement for Rectangular Sectionsa

f ′
c (psi) f y = 40 ksi f y = 60 ksi

3000 0.0050 0.00333
4000 0.0050 0.00333
5000 0.0053 0.00354

a Required As equals table value times bd of the beam
section.
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Problem 13.3.B. Same as Problem 13.3.A, except f ′
c = 4000 psi [27.6 MPa],

fy = 60 ksi [414 MPa], M DL = 36 kip-ft [48.8 kN-m], and M LL = 65 kip-ft
[88.1 kN-m].

Problem 13.3.C. Find the area of steel reinforcement required and select the
bars for the beam in Problem 13.3.A if the section dimensions are b = 16 in.
[406 mm] and d = 32 in. [813 mm].

Problem 13.3.D. Find the area of steel reinforcement required and select the
bars for the beam in Problem 13.3.B if the section dimensions are b = 14 in.
[356 mm] and d = 25 in. [635 mm].

Use of Beam Tables

Compiling tables for design of concrete beams is complicated by the
large number of values for concrete strength and steel yield strength.
Limiting these values to those most commonly used may reduce the
amount of tabulation; however, the number of possible combinations
of beam dimensions is also extensive.

Table 13.4 contains a limited number of beam examples with a
range of values for beam width and effective depth. The table uses
a single combination of strength values: 4 ksi for concrete strength
and 60 ksi for steel yield stress. For each size of beam listed, four
different choices for reinforcement are shown. The four choices for
reinforcement are based on an assumption of a value for the ratio a/d .
Specific combinations of bars mostly do not conform exactly to the a/d
values but approximate them with practical bar choices. The percentage
of steel area corresponding to the a/d values are bracketed between the
requirement for minimum reinforcement in Table 13.3 and the upper
limit represented by the balanced section values in Table 13.2.

A practical consideration for the amount of reinforcement that can
be used in a beam is that of the spacing required as related to the beam
width. In Table 13.4 the bar combinations that cannot be accommodated
in a single layer are indicated in parentheses.

For each combination of concrete dimensions and bar choices
Table 13.4 yields a value for the factored moment resistance of
the beam. The following example illustrates a possible use for this
table.

Example 3. Using Table 13.4, find acceptable choices of beam dimen-
sions and reinforcement for a factored moment of 1000 kip-ft.



430 REINFORCED CONCRETE STRUCTURES

TABLE 13.4 Factored Moment Resistance of Concrete Beams, φ Mr
a

Approximate Values for a/d

0.1 0.2 0.3 0.4

Approximate Values for p

b × d (in.) 0.00567 0.01133 0.0170 0.0227

10 × 14 2 #6 2 #8 3 #8 3 #9
53 90 126 151

10 × 18 3 #5 2 #9 3 #9 (3 #10)
68 146 207 247

10 × 22 2 #7 3 #8 (3 #10) (3 #11)
113 211 321 371

12 × 16 2 #7 3 #8 4 #8 3 #11
82 154 193 270

12 × 20 2 #8 3 #9 4 #9 (2 #10 + 2 #11)
135 243 306 407

12 × 24 2 #8 3 #9 (4 #10) (4 #11)
162 292 466 539

15 × 20 3 #7 4 #8 5 #9 (4 #11)
154 256 382 449

15 × 25 3 #8 4 #9 4 #11 (3 #10 + 3 #11)
253 405 597 764

15 × 30 3 #8 5 #9 (5 #11) (3 #10 + 4 #11)
304 607 895 1085

18 × 24 3 #8 5 #9 6 #10 (6 #11)
243 486 700 809

18 × 30 3 #9 6 #9 (6 #11) (8 #11)
384 729 1074 1348

18 × 36 3 #10 6 #10 (7 #11) (9 #11)
566 1110 1504 1819

20 × 30 3 #10 7 #9 6 #11 (9 #11)
489 850 1074 1516

20 × 35 4 #9 5 #11 (7 #11) (10 #11)
598 1106 1462 1966

20 × 40 6 #8 6 #11 (9 #11) (12 #11)
810 1516 2148 2696

24 × 32 6 #8 7 #10 (8 #11) (11 #11)
648 1152 1527 1977

24 × 40 6 #9 7 #11 (10 #11) (14 #11)
1026 1769 2387 3145

24 × 48 5 #10 (8 #11) (13 #11) (17 #11)
1303 2426 3723 4583

a Table yields values of factored moment resistance in kip-ft with reinforcement indicated. Reinforce-
ment choices shown in parentheses require greater width of beam or use of two stacked layers of
bars. f ′

c = 4ksi, f y = 60 ksi.
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Solution: Possible choices from the table are

15 × 30, 3 No. 10 + 4 No. 11 (requires two layers)

18 × 30, 6 No. 11 (requires two layers)

18 × 36, 6 No. 10

20 × 30, 6 No. 11

20 × 35, 5 No. 11

24 × 32, 7 No. 10

24 × 40, 6 No. 9

Using this range of possibilities, together with other design consid-
erations for the beam size, a quick approximation for the beam design
can be determined. A review of the work for Example 1 should indicate
the practical use of this easily determined information.

Problems 13.3.E, F. Using Table 13.4 find acceptable choices for beam dimen-
sions and reinforcement for a factored moment of: E, 400 kip-ft [542 kN-m]
and F, 1200 kip-ft [1630 kN-m].

13.4 BEAMS IN SITECAST SYSTEMS

In sitecast construction it is common to cast as much of the total struc-
ture as possible in a single, continuous pour. The length of the workday,
the size of the available work crew, and other factors may affect this
decision. Other considerations involve the nature, size, and form of the
structure. For example, a convenient single-cast unit for a multistory
building may consist of the whole floor structure for one level, if it can
be cast in a single workday.

Planning of the concrete construction is itself a major design task.
The issue in consideration here is that such work typically results in
the achieving of continuous beams and slabs versus the common con-
dition of simple spanning elements in wood and steel construction. The
design of continuous-span elements involves more complex investiga-
tion for behaviors due to the statically indeterminate nature of internal
force resolution involving bending moments, shears, and deflections.
For concrete structures, additional complexity results from the need to
consider conditions all along the beam length, not just at locations of
maximum responses.
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Figure 13.6 Utilization of tension reinforcement in concrete beams.

In the upper part of Figure 13.6 is shown the condition of a
simple-span beam subjected to a uniformly distributed loading. The
typical bending moment diagram showing the variation of bending
moment along the beam length takes the form of a parabola, as shown
in Figure 13.6b. As with a beam of any material, the maximum effort
in bending resistance must respond to the maximum value of the
bending moment, here occurring at the midspan. For a concrete beam,
the concrete section and its reinforcement must be designed for this
moment value. However, for a long span and a large beam with a lot
of reinforcement, it may be possible to reduce the amount of steel
at points nearer to the beam ends. That is, some steel bars may be
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full length in the beam, while some others are only partial length and
occur only in the midspan portion (see Figure 6.6c).

Figure 13.6d shows the typical situation for a continuous beam
in a sitecast slab and beam framing system. For a single uniformly
distributed loading the moment diagram takes a form as shown in
Figure 13.6e, with positive moments near the beam’s midspan and
negative moments at the supports. Locations for reinforcement that
respond to the sign of these moments are shown on the beam elevation
in Figure 13.6f .

For the continuous beam, separate requirements for the beam’s
moment resistance must be considered at each of the locations of peak
values on the moment diagram. However, there are many additional
concerns as well. Principal considerations include the following:

T-Beam Action. At points of positive bending moment (midspan)
the beam and slab monolithic construction must be considered to
function together, giving a T-shaped form for the portion of the
beam section that resists compression.

Use of Compression Reinforcement. If the beam section is designed
to resist the maximum bending moment, which occurs at only
one point along the beam length, the section will be overstrong
for all other locations. For this or other reasons, it may be advis-
able to use compressive reinforcement to reduce the beam size at
the singular locations of maximum bending moment. This com-
monly occurs at support points and refers to the negative bending
moment requiring steel bars in the top of the beam. At these
points an easy way to develop compressive reinforcement is to
simply extend the bottom steel bars (used primarily for positive
moments) through the supports.

Spanning Slabs. Design of sitecast beams must usually be done in
conjunction with the design of the slabs that they support. Basic
considerations for the slabs are discussed in Section 13.5. The
whole case for the slab–beam sitecast system is discussed in
Chapter 20.

Beam Shear. While consideration for bending is a major issue, beams
must also be designed for shear effects. This is discussed in
Section 13.6. While special reinforcement is typically added for
shear resistance, its interaction and coexistence in the beam with
the flexural reinforcement must be considered.
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Development of Reinforcement. This refers generally to the proper
anchorage of the steel bars in the concrete so that their resistance
to tension can be developed. At issue are the exact locations of the
end cutoffs of the bars and the details such as that for the hooked
bars at the discontinuous ends, as shown in Figure 13.6f . It also
accounts for the hooking of the ends of the bars in the simple
beam. The general problems of bar development are discussed in
Section 13.7.

T Beams

When a floor slab and its supporting beams are cast at the same time,
the result is monolithic construction in which a portion of the slab on
each side of the beam serves as the flange of a T beam. The part of
the section that projects below the slab is called the web or stem of
the T beam. This type of beam is shown in Figure 13.7a . For positive
moment, the flange is in compression and there is ample concrete to
resist compressive stresses, as shown in Figure 13.7b or c. However,
in a continuous beam, there are negative bending moments over the
supports, and the flange here is in the tension stress zone with com-
pression in the web. For this situation the beam is assumed to behave
essentially as a rectangular section with dimensions bw and d , as shown
in Figure 13.7d . This section is also used in determining resistance to
shear. The required dimensions of the beam are often determined by
the behavior of this rectangular section. What remains for the beam is
the determination of the reinforcement required at the midspan where
the T-beam action is assumed.

The effective flange width (bf) to be used in the design of symmet-
rical T beams is limited to one-fourth the span length of the beam. In
addition, the overhanging width of the flange on either side of the web
is limited to eight times the thickness of the slab or one-half the clear
distance to the next beam.

In monolithic construction with beams and one-way spanning solid
slabs, the effective flange area of the T beams is usually quite capable of
resisting the compressive stresses caused by positive bending moments.
With a large flange area, as shown in Figure 13.7a , the neutral axis of
the section usually occurs quite high in the beam web. If the compres-
sion developed in the web is ignored, the net compression force may be
considered to be located at the centroid of the trapezoidal stress zone
that represents the stress distribution in the flange, and the compression
force is located at something less than t /2 from the top of the beam.
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Figure 13.7 Considerations for T beams.

An approximate analysis of the T section that avoids the need to
find the location of the neutral axis and the centroid of the trapezoidal
stress zone consists of the following steps:

1. Determine the effective flange width for the T, as previously
described.
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Figure 13.8 Basis for simplified analysis of a T beam.

2. Ignore compression in the web and assume a constant value for
compressive stress in the flange (see Figure 13.8). Thus,

jd = d − t

2

Then, find the required steel area as

Mr = Mu

0.9
= T (jd) = As fy

(
d − t

2

)

As = Mr

fy

(
d − t

2

)

3. Check the compressive stress in the concrete as

fc = C

bf t
≤ 0.85f ′

c

where

C = Mr

jd
= Mr

d − t

2

The value of maximum compressive stress will not be critical if
this computed value is significantly less than the limit of 0.85f ′

c .
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4. T beams ordinarily function for positive moments in continuous
beams. Since these moments are typically less than those at the
beam supports, and the required section is typically derived for
the more critical bending at the supports, the T beam is typically
considerably underreinforced. This makes it necessary to con-
sider the problem of minimum reinforcement, as discussed for
the rectangular section. The ACI Code (Ref. 10) provides special
requirements for this for the T beam, for which the minimum
area required is defined as the greater value of

As = 6
√

f ′
c

Fy
(bw d)

or

As = 3
√

f ′
c

Fy
(bf d)

where bw = width of the beam web
bf = effective width of the T flange

The following example illustrates the use of this procedure. It
assumes a typical design situation in which the dimensions of the
section (bf, bw, d , and t ; see Figure 13.7) are all predetermined by
other design considerations and the design of the T section is reduced
to the requirement to determine the area of tension reinforcement.

Example 4. A T section is to be used to resist positive moment. The
following data is given: beam span = 18 ft [5.49 m], beams are 9 ft
[2.74 m] center to center, slab thickness is 4 in. [102 mm], beam stem
dimensions are bw = 15 in. [381 mm] and d = 22 in. [559 mm], f ′

c =
4 ksi [27.6 MPa], fy = 60 ksi [414 MPa]. Find the required area of steel
and select the reinforcing bars for a dead-load moment of 125 kip-ft
[170 kN-m] plus a live-load moment of 100 kip-ft [136 kN-m].

Solution: Determine the effective flange width (necessary only for a
check on the concrete stress). The maximum value for the flange width
is

bf = span

4
= 18 × 12

4
= 54 in. [1.37 m]

or
bf = center-to-center beam spacing = 9 × 12 = 108 in. [2.74 m]
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or
bf = beam stem width plus 16 times the slab thickness

= 15 + (16 × 4) = 79 in. [201 m]

The limiting value is therefore 54 in. [1.37 m]. Next find the required
steel area:

Mu = 1.2(125) + 1.6(100) = 310 kip-ft [420 kN-m]

Mr = Mu

0.9
= 344 kip-ft [466 kN-m]

As = Mr

fy

(
d − t

2

) = 344 × 12

60

(
22 − 4

2

) = 3.44 in.2 [2020 mm2]

Select bars using Table 13.5, which incorporates consideration for the
adequacy of the stem width. From the table choose four No. 9 bars,
actual As = 4.00 in.2. From Table 14.1, the required width for four
No. 9 bars is 12 in., less than the 15 in. provided.

Check the concrete stress:

C = Mr

jd
= 344 × 12

20
= 206.4 kips [918 kN]

fc = C

bf t
= 206.4

54 × 4
= 0.956 ksi [6.59 MPa]

Compare this to the limiting stress of

0.85f ′
c = 0.85(4) = 3.4 ksi [23.4 MPa]

Thus, compressive stress in the flange is clearly not critical.

TABLE 13.5 Options for the T-Beam Reinforcement

Bar Size No. of Bars Actual Area Provided (in.2) Width Requireda (in.)

7 6 3.60 14
8 5 3.95 13
9 4 4.00 12

10 3 3.81 11
11 3 4.68 11

a From Table 14.1.
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Using the beam stem width of 15 in. and the effective flange width of
54 in., the minimum area of reinforcement is determined as the greater
of

As = 6
√

f ′
c

Fy
(bw d)

= 6
√

4000

60,000
(15 × 22) = 2.09 in.2 [1350 mm2]

or

As = 3
√

f ′
c

Fy

(
bf × d

)

= 3
√

4000

60,000
(54 × 22) = 3.76 in.2 [2430 mm2]

The minimum area required is thus greater than the computed area
of 3.44 in.2. The choice of using four No. 9 bars is not affected by
this development since its area is 4.00 in.2. Some of the other data in
Table 13.5 must be adjusted if other bar choices are considered.

The examples in this section illustrate procedures that are reasonably
adequate for beams that occur in ordinary beam and slab construction.
When special T sections occur with thin flanges (t less than d /8 or so),
these methods may not be valid. In such cases more accurate investi-
gation should be performed, using the requirements of the ACI Code.

Problem 13.4.A. Find the area of steel reinforcement required for a concrete
T beam for the following data: f ′

c = 3 ksi [20.7 MPa], fy = 50 ksi [345 MPa],
d = 28 in. [711 mm], t = 6 in. [152 mm]. bw = 16 in. [406 mm], bf = 60 in.
[1520 mm], and the section sustains a factored bending moment of Mu =
360 kip-ft [488 kN-m].

Problem 13.4.B. Same as Problem 13.4.A, except f ′
c = 4 ksi [27.6 MPa], fy

= 60 ksi [414 MPa], d = 32 in. [813 mm], t = 5 in. [127 mm], bw = 18 in.
[457 mm], bf = 54 in. [1370 mm], Mu = 500 kip-ft [678 kN-m].

Beams with Compression Reinforcement

There are many situations in which steel reinforcement is used on both
sides of the neutral axis in a beam. When this occurs, the steel on
one side of the axis will be in tension and that on the other side in
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compression. Such a beam is referred to as a double reinforced beam
or simply as a beam with compressive reinforcement (it being naturally
assumed that there is also tensile reinforcement). Various situations
involving such reinforcement have been discussed in the preceding
sections. In summary, the most common occasions for such reinforce-
ment include:

1. The desired resisting moment for the beam exceeds that for which
the concrete alone is capable of developing the necessary com-
pressive force.

2. Other functions of the section require the use of reinforcement on
both sides of the beam. These include the need for bars to support
U-stirrups and situations when torsion is a major concern.

3. It is desired to reduce deflections by increasing the stiffness of
the compressive side of the beam. This is most significant for
reduction of long-term creep deflections.

4. The combination of loading conditions on the structure results in
reversal moments on the section at a single location; that is, the
section must sometimes resist positive moment and other times
resist negative moment.

5. Anchorage requirements (for development of reinforcement)
require that the bottom bars in a beam be extended a significant
distance into the supports.

The precise investigation and accurate design of doubly reinforced
sections, whether performed by the working stress or by strength design
methods, are quite complex and are beyond the scope of this book. The
following discussion presents an approximation method that is adequate
for preliminary design of a doubly reinforced section. For real design
situations, this method may be used to establish a first trial design,
which may then be more precisely investigated using more rigorous
methods.

For the beam with double reinforcement, as shown in Figure 13.9a ,
consider the total resisting moment for the section to be the sum of the
following two component moments:

M 1 (Figure 13.9b) is comprised of a section with tension reinforce-
ment only (As1). This section is subject to the usual procedures
for design and investigation, as discussed in Section 13.3.
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Figure 13.9 Basis for simplified analysis of a double reinforced beam.

M 2 (Figure 13.9c) is comprised of two opposed steel areas (As2 and
A′

s ) that function in simple moment couple action, similar to the
flanges of a steel beam or the top and bottom chords of a truss.

The limit for M 1 is the so-called balanced moment, as described
in Section 13.3. Given the values for steel yield stress and the speci-
fied strength of the concrete, the factors for definition of the properties
of this balanced section can be obtained from Table 13.2. Given the
dimensions for the concrete section, b and d , the limiting moment
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resistance for the section can be determined using the value of R from
the table. If the capacity of the section as thus determined is less
than the required factored moment (M r ), compressive reinforcing is
required. If the balanced resistance is larger than the required factored
moment, compressive reinforcement is not required. Although not actu-
ally required, the compressive reinforcement may be used for any of
the reasons previously mentioned.

When M 1 is less than the factored required moment, it may be
determined using the balanced value for R in Table 13.2. Then the
required value for M 2 may be determined as M 2 = M r − M 1. This is
seldom the case in design work, as the amount of tensile reinforcement
required to achieve the balanced moment capacity of the section is
usually not practical to be fit into the section.

When the potential balanced value for M 1 is greater than the required
factored moment, the properties given in Table 13.2 may be used for an
approximation of the value for the required steel area defined as As1.
For the true value of the required M 1 the table values may be adjusted
as follows:

1. The actual value for a/d will be smaller than the table value.

2. The actual value for p will be less than the table value.

The approximation procedure that follows starts with the assumption
that the concrete dimensions describe a section with the potential M r

greater than that required. The first step of the procedure is therefore to
establish what is actually an arbitrary amount of compressive reinforce-
ment. Using this reinforcement as As2, a value for M 2 is determined.
The value for M 1 is then found by subtracting M 2 from the required
moment for the section.

Ordinarily, we expect that As2 = A′
s since the same grade of steel

is usually used for both. However, there are two special considerations
that must be made. The first involves the fact that As2 is in tension,
while A′

s is in compression. Therefore, A′
s must be dealt with in a man-

ner similar to that for column reinforcement. This requires, among other
things, that the compressive reinforcement be braced against buckling,
using ties similar to those in a tied column.

The second consideration for A′
s involves the distribution of stress

and strain on the section. Referring to Figure 13.2a , it may be observed
that, under normal circumstances, A′

s will be closer to the neutral axis
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than As2. Thus, the stress in A′
s will be lower than that in As2 if pure

elastic conditions are assumed. It is common practice to assume steel to
be doubly stiff when sharing stress with concrete in compression, due
to shrinkage and creep effects. Thus, in translating from linear strain
conditions to stress distribution, use the relation fc = f ′

s /2n (where n
= E s /E c).

For the approximate method it is really not necessary to find separate
values for As1 and As2. This is because of an additional approximation
assumption that the value for a is 2 × d ′. Thus, the moment arm
for both As1 and As2 is the same, and the value for the total tension
reinforcement can be simply determined as

As = required Mr

fy (d − d ′)

This value for As can actually be determined as soon as the values for
d and d ′ are established.

With the total tension reinforcement established, the next step
involves the determination of A′

s and As2. Compression reinforcement
in beams ordinarily ranges from 0.2 to 0.4 times the total tension
reinforcement. For this approximation method we will determine the
area to be 0.3 × As . We will also assume the stress in the compression
reinforcement to be one half of the yield stress. This permits a
definition of the resisting moment M 2 as follows:

M2 = A′
s

(
fy
2

) (
d − d ′) = 0.3As

(
fy
2

)
(d − d ′)

= 0.15As fy (d − d ′)

Using this moment the amount of the tension reinforcement that is
required for the development of the steel force couple is twice A′

s , and
the amount of the tension steel devoted to development of M 2 is found
by subtracting this from the total tension reinforcement.

For a final step, the value of As1 may be used to compute a value
for the percentage of steel relating to the moment resistance of the
section without the compression reinforcement. If this percentage is less
than that listed in Table 13.2, the concrete stress will not be critical.
However, this situation is predetermined if the total potential balanced
resisting moment is determined first and compared to the required fac-
tored resisting moment.
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For the section that is larger than the balanced section defined by
Table 13.2 the procedure can be shortened. The following example will
serve to illustrate this procedure.

Example 5. A concrete section with b = 18 in. [457 mm] and d =
21.5 in. [546 mm] is required to resist service load moments as fol-
lows: dead-load moment = 175 kip-ft [237 kN-m], live-load moment
= 160 kip-ft [217 kN-m]. Using strength methods, find the required
reinforcement. Use f ′

c = 3 ksi [20.7 MPa], and fy = 60 ksi [414 MPa].

Solution: Using Table 13.2, find a/d = 0.592, p = 0.0252, and R =
1.063 in kip-in. units [7330 in kN-m units].

The factored moment for the section is

Mu = 1.2(175) + 1.6(160) = 466 kip-ft [632 kN-m]

and the required factored resisting moment is

Mr = Mu

0.9
= 466

0.9
= 518 kip-ft [702 kN-m]

Using the R value for the balanced section, the maximum resisting
moment of the section is

MB = Rbd2 = 1.063

12
(18)(21.5)2 = 737 kip-ft [999 kN-m]

As this is considerably larger than the required resisting moment, the
section is qualified as “underbalanced,” that is, it will be understressed
as relates to the compression resistance of the section. It is reasonable,
therefore, to use the simplified formula for the tension reinforcing; thus,

As = required Mr

fy (d − d ′)

= 518 × 12

60(21.5 − 2.5)
= 5.45 in.2 [3520 mm2]

And a reasonable assumption for the compressive reinforcement is

A′
s = 0.3As = 0.3(5.45) = 1.63 in.2 [1050 mm2]

Bar combinations may next be found for these two steel areas.
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If the situation exists in which it is desired to use a given con-
crete section for a resisting moment that exceeds the balanced limit
described by the values in Table 13.2, a different procedure is required.
For this case the first two steps are the same as in the preceding
example: determining the required resisting moment Mr and the lim-
iting balanced moment MB. The tension reinforcement required for
the balanced moment can be determined with the balanced percent-
age p from Table 13.2. Then MB becomes the moment M 1 as shown
in Figure 13.9b. As shown in Figure 13.9c, M 2 is determined as the
difference between Mr and MB. The compression reinforcement and
the additional tension reinforcement required for M 2 can then be deter-
mined. The following example illustrates this procedure.

Example 6. Find the reinforcement required for the beam in Example 4
if the required resisting moment Mr is 900 kip-ft [1220 kN-m].

Solution: The first step is the determination of the limiting balanced
moment MB. For this section this value was computed in Example 4
as 737 kip-ft. As the required moment exceeds this value, compression
reinforcement is required and the moment for this is determined as

M2 = Mr − MB = 900 − 737 = 163 kip-ft [221 kN-m]

For the balanced moment the required tension reinforcement can be
computed using the balanced p from Table 13.2. Thus,

As1 = pbd = 0.0252 × 18 × 21.5 = 9.75 in.2 [6290 mm2]

For the determination of the tension reinforcement required for M 2,
the procedure involves the use of the moment arm d − d ′. Thus,

As2 = M2

fy(d − d ′)
= 163 × 12

60(19)
= 1.72 in.2 [1110 mm2]

and the total required tension reinforcing is

As = 9.75 + 1.72 = 11.5 in.2 [7420 mm2]

For the compressive reinforcement assume a stress approximately
equal to one half the yield stress. Thus, the area of steel required is
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TABLE 13.6 Options for the Tension Reinforcement—Example 5

Area of One Actual Area Width
Bar Size Bar (in.2) No. of Bars Provided (in.2) Requireda (in.)

8 0.79 15 11.85 33
9 1.00 12 12.00 30

10 1.27 10 12.70 28
11 1.56 8 12.48 25

a Using data from Table 14.1.

twice the value of As2, 2(1.72) = 3.44 in.2 [2220 mm2]. This require-
ment can be met with three No. 10 bars providing an area of 3.81 in.2

[2460 mm2].
Options for the tension reinforcement are given in Table 13.6. As

the table indicates, it is not possible to get the bars into the 18-in.-wide
beam by placing them in a single layer. Options are to use two layers
of bars or to increase the beam width. Frankly, this is not a good beam
design and would most likely not be acceptable unless extreme cir-
cumstances force the use of the limited beam size. This is pretty much
the typical situation for beams required to develop resisting moments
larger than the balanced moment.

Problem 13.4.C. A concrete section with b = 16 in. [406 mm] and d = 19.5 in.
[495 mm] is required to develop a bending moment strength of Mr = 400 kip-ft
[542 kN-m]. Use of compressive reinforcement is desired. Find the required
reinforcement. Use f ′

c = 4 ksi [27.6 MPa] and f y = 60 ksi [414 MPa].

Problem 13.4.D. Same as Problem 13.4.C, except required M r = 1000 kip-ft
[1360 kN-m], b = 20 in. [508 mm], d = 27 in. [686 mm].

Problem 13.4.E. Same as Problem 13.4.C except M r = 640 kip-ft [868 kN-m].

Problem 13.4.F. Same as Problem 13.4.D except M r = 1400 kip-ft [1900 kN-m].

13.5 SPANNING SLABS

Concrete slabs are frequently used as spanning roof or floor decks, often
occurring in monolithic, cast-in-place slab and beam framing systems.
There are generally two basic types of slabs: one-way spanning and
two-way spanning. The spanning condition is not so much determined



SPANNING SLABS 447

by the slab as by its support conditions. As part of a general framing
system, the one-way spanning slab is discussed in Section 14.1. The
following discussion relates to the design of one-way solid slabs using
procedures developed for the design of rectangular beams.

Solid slabs are usually designed by considering the slab to consist of
a series of 12-in.-wide planks. Thus, the procedure consists of simply
designing a beam section with a predetermined width of 12 in. Once the
depth of the slab is established, the required area of steel is determined,
specified as the number of square inches of steel required per foot of
slab width.

Reinforcing bars are selected from a limited range of sizes, appro-
priate to the slab thickness. For thin slabs (4–6 in. thick) bars may be
of a size from No. 3 to No. 6 or so (nominal diameters from 3/8 to
3/4 in.). The bar size selection is related to the bar spacing, the com-
bination resulting in the amount of reinforcing in terms of an average
amount of square inches of steel per one foot unit of slab width. Spac-
ing is limited by code regulation to a maximum of three times the slab
thickness. There is no minimum spacing, other than that required for
proper placing of the concrete; however, a very close spacing indicates
a very large number of bars, making for laborious installation.

Every slab must be provided with two-way reinforcement, regard-
less of its structural functions. This is partly to satisfy requirements for
shrinkage and temperature effects. The amount of this minimum rein-
forcement is specified as a percentage p of the gross cross-sectional
area of the concrete as follows:

1. For slabs reinforced with grade 40 or grade 50 bars:

p = As

bt
= 0.002 (0.2%)

2. For slabs reinforced with grade 60 bars:

p = As

bt
= 0.0018 (0.18%)

Center-to-center spacing of this minimum reinforcement must not
be greater than five times the slab thickness or 18 in.

Minimum cover for slab reinforcement is normally 0.75 in., although
exposure conditions or need for a high fire rating may require addi-
tional cover. For a thin slab reinforced with large bars, there will be a
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Figure 13.10 Reference for slab design.

considerable difference between the slab thickness t and the effective
depth d , as shown in Figure 13.10. Thus, the practical efficiency of
the slab in flexural resistance decreases rapidly as the slab thickness is
decreased. For this and other reasons, very thin slabs (less than 4 in.
thick) are often reinforced with wire fabric rather than sets of loose bars.

Shear reinforcement is seldom used in one-way slabs, and conse-
quently the maximum unit shear stress in the concrete must be kept
within the limit for the concrete without reinforcement. This is usually
not a concern, as unit shear is usually low in one-way slabs, except for
exceptionally high loadings.

Table 13.7 gives data that are useful in slab design, as demonstrated
in the following example. Table values indicate the average amount of
steel area per foot of slab width provided by various combinations of
bar size and spacing. Table entries are determined as follows:

As /ft = (single bar area)
12

bar spacing

Thus, for No. 5 bars at 8-in. centers,

As/ft = (0.31)

(
12

8

)
= 0.465 in.2/ft

It may be observed that the table entry for this combination is rounded
off to a value of 0.46 in.2/ft.

Example 7. A one-way solid concrete slab is to be used for a simple
span of 14 ft [4.27 m]. In addition to its own weight, the slab carries a
superimposed dead load of 30 psf [1.44 kPa] plus a live load of 100 psf
[4.79 kPa]. Using f ′

c = 3 ksi [20.7 MPa] and fy = 40 ksi [276 MPa],
design the slab for minimum overall thickness.
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TABLE 13.7 Areas Provided By Spaced Reinforcement

Bar Area Provided (in.2/ft width)Spacing
(in.) No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11

3 0.20 0.44 0.80 1.24 1.76 2.40 3.16 4.00
3.5 0.17 0.38 0.69 1.06 1.51 2.06 2.71 3.43 4.35
4 0.15 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68
4.5 0.13 0.29 0.53 0.83 1.17 1.60 2.11 2.67 3.39 4.16
5 0.12 0.26 0.48 0.74 1.06 1.44 1.89 2.40 3.05 3.74
5.5 0.11 0.24 0.44 0.68 0.96 1.31 1.72 2.18 2.77 3.40
6 0.10 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12
7 0.08 0.19 0.34 0.53 0.75 1.03 1.35 1.71 2.18 2.67
8 0.07 0.16 0.30 0.46 0.66 0.90 1.18 1.50 1.90 2.34
9 0.07 0.15 0.27 0.41 0.59 0.80 1.05 1.33 1.69 2.08

10 0.06 0.13 0.24 0.37 0.53 0.72 0.95 1.20 1.52 1.87
11 0.05 0.12 0.22 0.34 0.48 0.65 0.86 1.09 1.38 1.70
12 0.05 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56
13 0.05 0.10 0.18 0.29 0.40 0.55 0.73 0.92 1.17 1.44
14 0.04 0.09 0.17 0.27 0.38 0.51 0.68 0.86 1.09 1.34
15 0.04 0.09 0.16 0.25 0.35 0.48 0.63 0.80 1.01 1.25
16 0.04 0.08 0.15 0.23 0.33 0.45 0.59 0.75 0.95 1.17
18 0.03 0.07 0.13 0.21 0.29 0.40 0.53 0.67 0.85 1.04
24 0.02 0.05 0.10 0.15 0.22 0.30 0.39 0.50 0.63 0.78

Solution: Using the general procedure for design of a beam with a
rectangular section (Section 13.2), we first determine the required slab
thickness. Thus, for deflection, from Table 13.11,

Minimum t = L

25
= 14 × 12

25
= 6.72 in. [171 mm]

For flexure, first determine the maximum bending moment. The
loading must include the weight of the slab, for which the thickness
required for deflection may be used as a first estimate. Assuming a 7-in.
[178-mm]-thick slab, then slab weight is (7/12) (150 pcf) = 87.5 psf,
say 88 psf, and the total dead load is 30 + 88 = 118 psf [5.65 kPa].
The factored load is thus

U = 1.2(dead load) + 1.6(live load)

= 1.2(118) + 1.6(100) = 302 psf [14.45 kPa]
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The maximum bending moment on a 12-in.-wide strip of the slab
thus becomes

Mu = wL2

8
= 302(14)2

8
= 7400 ft-lb [10.0 kN-m]

and the required factored resisting moment is

Mr = 7400

0.9
= 8220 ft-lb [11.2 kN-m]

For a minimum slab thickness, we consider the use of a balanced
section, for which Table 13.2 yields the following properties: a/d =
0.685, and R = 1.149 (in kip and inch units). Then the minimum value
for bd2 is

bd2 = Mr

R
= 8.220 × 12

1.149
= 85.9 in.3 [1,400,000 mm3]

and, since b is the 12-in. design strip width,

d =
√

85.9

12
=

√
7.16 = 2.68 in. [68 mm]

Assuming an average bar size of a No. 6 (3/4-in. nominal diameter) and
cover of 3/4-in., the minimum required slab thickness based on flexure
becomes

t = d + bar diameter

2
+ cover

= 2.68 + 0.75

2
+ 0.75 = 3.8 in. [96.5 mm]

The deflection limitation thus controls in this situation, and the min-
imum overall thickness is the 6.72-in. dimension. Staying with the 7-in.
overall thickness, the actual effective depth with a No. 6 bar will be

d = 7.0 − 1.125 = 5.875 in. [149 mm]

Since this d is larger than that required for a balanced section,
the value for a/d will be slightly smaller than 0.685, as found from
Table 13.2. Assume a value of 0.4 for a/d and determine the required
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TABLE 13.8 Alternatives for the Slab
Reinforcement

Bar Spacing of Bars Average As in
Size Center to Center (in.) a 12-in. Width

5 7 0.53
6 10 0.53
7 13 0.55
8 18 0.53

area of reinforcement as follows:

a = 0.4d = 0.4(5.875) = 2.35 in. [59.7 mm]

As = M

fy
(

d − a

2

) = 8.220 × 12

40(5.875 − 1.175)
= 0.525 in.2 [339 mm2]

Using data from Table 13.7, the optional bar combinations shown in
Table 13.8 will satisfy this requirement. Note that for bars larger then
the assumed No. 6 bar (0.75-in. diameter) d will be slightly less and
the required area of reinforcement slightly higher.

The ACI Code (Ref. 10) permits a maximum center-to-center bar
spacing of three times the slab thickness (21 in. in this case) or 18 in.,
whichever is smaller. Minimum spacing is largely a matter of the
designer’s judgment. Many designers consider a minimum practical
spacing to be one approximately equal to the slab thickness. Within
these limits, any of the bar size and spacing combinations listed are
adequate.

As described previously, the ACI Code (Ref. 10) requires a mini-
mum reinforcement for shrinkage and temperature effects to be placed
in the direction perpendicular to the flexural reinforcement. With the
grade 40 bars in this example, the minimum percentage of this steel is
0.0020, and the steel area required for a 12-in. strip thus becomes

As = p(bt) = 0.0020(12 × 7) = 0.168 in.2/ft [356 mm2]

From Table 13.7, this requirement can be satisfied with No. 3 bars
at 7-in. centers or No. 4 bars at 14-in. centers. Both of these spacings
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are well below the maximum of five times the slab thickness (35 in.)
or 18 in.

Although simply supported single slabs are sometimes encountered,
the majority of slabs used in building construction are continuous
through multiple spans. An example of the design of such a slab is
given in Chapter 20.

Problem 13.5.A. A one-way solid concrete slab is to be used for a simple span
of 16 ft [4.88 m]. In addition to its own weight, the slab carries a superimposed
dead load of 40 psf [1.92 kPa] and a live load of 100 psf [4.79 kPa]. Using the
strength method with f ′

c = 3 ksi [20.7 MPa], and f y = 40 ksi [276 MPa], design
the slab for minimum overall thickness.

Problem 13.5.B. Same as Problem 13.5.A, except span = 18 ft [5.49 m], super-
imposed dead load = 50 psf [2.39 kPa], live load = 75 psf [3.59 kPa], f ′

c =
4 ksi [27.6 MPa], f y = 60 ksi [414 MPa].

13.6 SHEAR IN BEAMS

From general consideration of shear effects, as developed in the science
of mechanics of materials, the following observations can be made:

1. Shear is an ever-present phenomenon, produced directly by slic-
ing actions, by lateral loading in beams, and on oblique sections
in tension and compression members.

2. Shear forces produce shear stress in the plane of the force and
equal unit shear stresses in planes that are perpendicular to the
shear force.

3. Diagonal stresses of tension and compression, having magnitudes
equal to that of the shear stress, are produced in directions of 45o

from the plane of the shear force.

4. Direct slicing shear force produces a constant magnitude shear
stress on affected sections, but beam shear action produces shear
stress that varies on the affected sections, having magnitude of
zero at the edges of the section and a maximum value at the
centroidal neutral axis of the section.

In the discussions that follow it is assumed that the reader has a general
familiarity with these relationships.

Consider the case of a simple beam with uniformly distributed load
and end supports that provide only vertical resistance (no moment
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Figure 13.11 Considerations for shear in concrete beams.

restraint). The distribution of internal shear and bending moment are
as shown in Figure 13.11a . For flexural resistance, it is necessary to
provide longitudinal reinforcing bars near the bottom of the beam.
These bars are oriented for primary effectiveness in resistance to ten-
sion stresses that develop on a vertical (90o) plane (which is the case
at the center of the span, where the bending moment is maximum and
the shear approaches zero).

Under the combined effects of shear and bending, the beam tends to
develop tension cracks as shown in Figure 13.11b. Near the center of
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the span, where the bending is predominant and the shear approaches
zero, these cracks approach 90o. Near the support, however, where the
shear predominates and bending approaches zero, the critical tension
stress plane approaches 45o, and the horizontal bars are only partly
effective in resisting the cracking.

Shear Reinforcement for Beams

For beams, the most common form of added shear reinforcement con-
sists of a series of U-shaped bent bars (Figure 13.11d ), placed vertically
and spaced along the beam span, as shown in Figure 13.11c. These bars,
called stirrups , are intended to provide a vertical component of resis-
tance, working in conjunction with the horizontal resistance provided
by the flexural reinforcement. In order to develop flexural tension near
the support face, the horizontal bars must be bonded to the concrete
beyond the point where the stress is developed. Where the ends of sim-
ple beams extend only a short distance over the support (a common
situation), it is often necessary to bend or hook the bars as shown in
Figure 13.11c.

The simple span beam and the rectangular section shown in
Figure 13.11d occur only infrequently in building structures. The
most common case is that of the beam section shown in Figure 13.12,
which occurs when a beam is cast continuously with a supported
concrete slab. In addition, these beams normally occur in continuous
spans with negative moments at the supports. Thus, the stress in the
beam near the support is as shown in Figure 13.12a , with the negative
moment producing compressive flexural stress in the bottom of the
beam stem. This is substantially different from the case of the simple
beam, where the moment approaches zero near the support.

Figure 13.12 Development of negative bending and shear in concrete T beams.
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For the purpose of shear resistance, the continuous, T-shaped beam
is considered to consist of the section indicated in Figure 13.12b. The
effect of the slab is ignored, and the section is considered to be a
simple rectangular one. Thus, for shear design, there is little difference
between the simple span beam and the continuous beam, except for
the effect of the continuity on the distribution of shear along the beam
span. It is important, however, to understand the relationships between
shear and moment in the continuous beam.

Figure 13.13 illustrates the typical condition for an interior span of
a continuous beam with uniformly distributed load. Referring to the
portions of the beam span numbered 1, 2, and 3, note the following:

Zone 1: In this zone the high negative moment requires major flex-
ural reinforcement consisting of horizontal bars near the top of
the beam.

Zone 2: In this zone, the moment reverses sign; moment magnitudes
are low; and, if shear stress is high, the design for shear is a
predominant concern.

Figure 13.13 Shear and bending in continuous beams.
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Figure 13.14 Forms for vertical stirrups.

Zone 3: In this zone, shear consideration is minor and the predom-
inant concern is for positive moment requiring major flexural
reinforcement in the bottom of the beam.

Vertical U-shaped stirrups, similar to those shown in Figure 13.14a ,
may be used in the T-shaped beam. An alternate detail for the U-shaped
stirrup is shown in Figure 13.14b, in which the top hooks are turned out-
ward; this makes it possible to spread the negative moment reinforcing
bars to make placing of the concrete somewhat easier. Figures 13.14c
and d show possibilities for stirrups in L-shaped beams that occur at
the edges of large openings or at the outside edge of the structure. This
form of stirrup is used to enhance the torsional resistance of the section
and also assists in developing the negative moment resistance in the
slab at the edge of the beam.

So-called closed stirrups , similar to ties in columns, are sometimes
used for T- and L-shaped beams, as shown in Figures 13.14c – f . These
are generally used to improve the torsional resistance of the beam
section.
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Stirrup forms are often modified by designers or by the reinforc-
ing fabricator’s detailers to simplify the fabrication and/or the field
installation. The stirrups shown in Figures 13.14d and f are two such
modifications of the basic details in Figures 13.14c and e, respec-
tively.

The following are considerations and code requirements that apply
to design for beam shear:

Concrete Capacity. Whereas the tensile strength of the concrete is
ignored in design for flexure, the concrete is assumed to take some
portion of the shear in beams. If the capacity of the concrete
is not exceeded—as is sometimes the case for lightly loaded
beams—there may be no need for reinforcement. The typical
case, however, is as shown in Figure 13.15, where the maximum
shear V exceeds the capacity of the concrete alone (Vc), and the
steel reinforcement is required to absorb the excess, indicated as
the shaded portion in the shear diagram.

Minimum Shear Reinforcement. Even when the maximum computed
shear stress falls below the capacity of the concrete, the present
code requires the use of some minimum amount of shear rein-
forcement. Exceptions are made in some situations, such as for
slabs and very shallow beams. The objective is essentially to
toughen the structure with a small investment in additional rein-
forcement.

Type of Stirrup. The most common stirrups are the simple U-shape or
closed forms shown in Figure 13.14, placed in a vertical position
at intervals along the beam. It is also possible to place stirrups
at an incline (usually 45o), which makes them somewhat more
effective in direct resistance to the potential shear cracking near
the beam ends (see Figure 13.11b). In large beams with high unit
shear stress, both vertical and inclined stirrups are sometimes
used at the location of the greatest shear.

Size of Stirrups. For beams of moderate size, the most common size
for U-stirrups is a No. 3 bar. These bars can be bent relatively
tightly at the corners (small radius of bend) in order to fit within
the beam section. For larger beams, a No. 4 bar is sometimes
used, its strength (as a function of its cross-sectional area) being
almost twice that of a No. 3 bar.
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Figure 13.15 Sharing of shear resistance in reinforced concrete beams.

Spacing of Stirrups. Stirrup spacings are computed (as discussed in
the following sections) on the basis of the amount of reinforcing
required for the unit shear stress at the location of the stirrups. A
maximum spacing of d /2 (i.e., one-half the effective beam depth
d ) is specified in order to assure that at least one stirrup occurs at
the location of any potential diagonal crack (see Figure 13.11b).
When shear stress is excessive, the maximum spacing is limited
to d/ 4.

Critical Maximum Design Shear. Although the actual maximum
shear value occurs at the end of the beam, the code permits the
use of the shear stress at a distance of d (effective beam depth)
from the beam end as the critical maximum for stirrup design.
Thus, as shown in Figure 13.16, the shear requiring reinforcement
is slightly different from that shown in Figure 13.15.

Total Length for Shear Reinforcement. On the basis of computed
shear forces, reinforcement must be provided along the beam
length for the distance defined by the shaded portion of the shear
stress diagram shown in Figure 13.16. For the center portion of
the span, the concrete is theoretically capable of the necessary
shear resistance without the assistance of reinforcement. How-
ever, the code requires that some shear reinforcement be provided
for a distance beyond this computed cutoff point. Earlier codes
required that stirrups be provided for a distance equal to the
effective depth of the beam beyond the computed cutoff point.
Currently, codes require that minimum shear reinforcement be
provided as long as the computed shear force exceeds one-half
of the capacity of the concrete (φ × VC

/
2). However it is estab-

lished, the total extended range over which reinforcement must
be provided is indicated as R on Figure 13.16.
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Figure 13.16 Shear stress analysis: ACI Code (Ref. 10) requirements.

Design for Beam Shear

The following is a description of a procedure for design of shear rein-
forcement for beams that are experiencing flexural and shear stresses
exclusively.

The ultimate shear force (Vu) at any cross section along a given beam
due to factored loading must be less than the reduced shear capacity at
the section. Mathematically, this is represented as

Vu ≤ φv × (Vc + Vs)

where Vu = ultimate shear force at the section
φv = 0.75 for shear
Vc = shear capacity of the concrete
Vs = shear capacity of the reinforcement

For beams of normal weight concrete, subjected only to flexure and
shear, shear force in the concrete is limited to
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Vc = 2
√

f ′
c bd

where f ′
c = specified strength of the concrete in psi
b = width of the cross section
d = effective depth of the cross section

When Vu exceeds the limit for φv Vc, reinforcing must be provided,
complying with the general requirements discussed previously. Thus,

Vs ≥ Vu

φv
− Vc

Required spacing of shear reinforcement is determined as follows.
Referring to Figure 13.17, note that the capacity in tensile resistance
of a single, two-legged stirrup is equal to the product of the total steel
cross-sectional area, Av, times the yield steel stress. Thus,

T = Av fy

Figure 13.17 Consideration for spacing of a single stirrup.
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This resisting force opposes part of the steel shear force required at
the location of the stirrup, which we will refer to as V ′

s . Equating the
stirrup tension to this force, an equilibrium equation for one stirrup is
obtained.

Av fy = V ′
s

The total shear force capacity of the beam in excess of the concrete
is determined by the number of stirrups encountered by the shear force
acting at a 45◦ angle through the beam. The number of stirrups will be
d/s . Thus, the equilibrium equation for the beam is(

d

s

)
Av fy = V ′

s

From this equation, an expression for the required spacing can be
derived; thus,

s ≤ Av fy d

V ′
s

The following example illustrates the design procedure for a simple
beam.

Example 8. Design the required shear reinforcement for the simple
beam shown in Figure 13.18. Use f ′

c = 3 ksi [20.7 MPa] and fy =
40 ksi [276 MPa] and single U-shaped stirrups.

Solution: First, the loading must be factored in order to determine the
ultimate shear force:

wu = 1.2 × wDL + 1.6 × wLL

= 1.2 (2) + 1.6 (3) = 7.2 kips/ft [105 kN/m]

The maximum value for the shear is 57.6 kips [256 kN].
Now construct the ultimate shear force diagram (Vu) for one half of

the beam, as shown in Figure13.18c. For the shear design, the criti-
cal shear force is at 24 in. (the effective depth of the beam) from the
support. Using proportionate triangles, this value is

Vu =
(

72 in.

96 in.

)
(57.6 kips) = 43.2 kips [192 kN]
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wLL = 3 kips/ft [43.8 kN/m]
wDL = 2 kips/ft [29.2 kN/m]

16′ [4.8 m]

Maximum Vu = 57.6 kips

(72/96)(57.6) = 43.2 kips

72"
φVs = 19.5 kips

φVc = 23.7 kips

½ φVc = 11.85 kips

½ Span = 96"

1@5, 4@10, 3@12 = 81"

d = 24"

R = 76.3"

(19.6/57.6)(96) = 32.7" (11.85/57.6)(96) = 19.7"

12"

24" 
[610 mm]

(a) (b)

(c)

(d)

Figure 13.18 Stirrup design: Example 8.

The shear capacity of the concrete without reinforcing is

φVc = (0.75)2
√

f ′
c (b) (d)

= (0.75)2
√

3000 psi (12 in.) (24 in.)

= 23, 662 lb = 23.7 kips [105 kN]
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At the point of critical force, therefore, there is an excess shear
force of 43.2 − 23.7 = 19.5 kips [87 kN] that must be carried by
reinforcement. Next, complete the construction of the diagram in
Figure 13.18c to define the shaded portion, which indicates the extent
of the required reinforcement. Observe that the excess shear condition
extends to 56.7 in. [1.44 m] from the support.

In order to satisfy the requirements of the ACI Code (Ref. 10), shear
reinforcement must be used wherever the shear force (Vu) exceeds
one-half of φVc. As shown in Figure 13.18c, this is a distance of
76.3 in. from the support. The code further stipulates that the minimum
cross-sectional area of this reinforcing be

Av = 50

(
b × smax

fy

)

With fy = 40 ksi [276 MPa] and the maximum allowable spacing of
one-half the effective depth, the required area is

Av = 50

(
12 in. × 12 in.

40,000 psi

)
= 0.18 in.2 [16 mm2]

which is less than the area of 2 × 0.11 = 0.22 in.2 provided by the two
legs of the No. 3 stirrup.

For the maximum Vs value of 19.5 kips, the maximum spacing per-
mitted at the critical point 24 in. from the support is determined as

s ≤ Av fy d

φVs
=

(
0.22 in.2

)
(40 ksi) (24 in.)

19.5 kips
= 10.8 in. [274 mm]

Since this is less than the maximum allowable of one-half the depth
or 12 in., it is best to calculate one more spacing at a short distance
beyond the critical point. For example, at 36 in. from the support the
shear force is

Vu =
(

60 in.

96 in.

)
(57.6 kips) = 36.0 kips [160 kN]

and the value of V ′
s at this point is 36.0 − 23.7 kips = 12.3 kips. The

spacing required at this point is thus

s ≤ Av fy d

φV ′
s

=
(
0.22 in.2

)
(40 ksi) (24 in.)

12.3 kips
= 17.2 in. [437 mm]
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which indicates that the required spacing drops to the maximum allowed
at less than 12 in. from the critical point.

A possible choice for the stirrup spacings is shown in Figure 13.18d ,
with a total of 8 stirrups that extend over a range of 81 in. from the
support. There are thus a total of 16 stirrups in the beam, 8 at each
end. Note that the first stirrup is placed at 5 in. from the support, which
is one-half the computed required spacing; this is a common practice
with designers.

Example 9. Determine the required number and spacings for No. 3
U-stirrups for the beam shown in Figure 13.19. Use f ′

c = 3 ksi
[20.7 MPa] and fy = 40 ksi [276 MPa].

Solution: As in Example 7, the shear values are determined, and the
diagram in Figure 13.19c. is constructed. In this case, the maximum
critical shear force of 28.5 kips and a shear capacity of concrete (φVc)
of 16.4 kips results in a maximum φVs value to 12.1 kips, for which
the required spacing is

s ≤ Av fy d

φV ′
s

=
(
0.22 in.2

)
(40 ksi) (20 in.)

12.1 kips
= 14.5 in. [368 mm]

Since this value exceeds the maximum limit of d/ 2 = 10 in., the
stirrups may all be placed at the limited spacing, and a possible arrange-
ment is as shown in Figure 13.10d. As in Example 7, note that the first
stirrup is placed at one-half the required distance from the support.

Example 10. Determine the required number and spacings for No. 3
U-stirrups for the beam shown in Figure 13.20. Use f ′

c = 3 ksi
[20.7 MPa] and fy = 40 ksi [276 MPa].

Solution: In this case, the maximum critical design shear force is found
to be less than Vc (16.4 kips from Example 8, Figure 13.19), which
in theory indicates that reinforcement is not required. To comply with
the code requirement for minimum reinforcement, however, provide
stirrups at the maximum permitted spacing out to the point where the
shear stress drops to 8.2 kips (one-half of φVc). To verify that the No.
3 stirrup is adequate, compute

Av = 50

(
10 in. × 10 in.

40,000 psi

)
= 0.125 in.2
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wu = 4.5 kips/ft [65.7 kN/m]

16′ [4.8 m]

Maximum Vu = 36 kips

(76/96)(36) = 28.5 kips

76"
φVs = 12.1 kips

φVc = 16.4 kips

½ φVc = 8.2 kips

½ Span = 96"

1@5, 7@10 = 75"

R = 74.1"

d = 20"

(12.1/36)(96) = 32.3" (8.2/36)(96) = 21.9"

20" 
[508 mm]

10" 
[254 mm]

(a) (b)

(c)

(d)

Figure 13.19 Stirrup design: Example 9.

which is less than the area of 0.22 in. provided, so the No. 3 stirrup at
10 in. is adequate.

Examples 7–9 have illustrated what is generally the simplest case for
beam shear design—that of a beam with uniformly distributed load and
with sections subjected only to flexure and shear. When concentrated
loads or unsymmetrical loadings produce other forms for the shear
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wLL = 0.8 kips/ft [11.67 kN/m]
wDL = 0.8 kips/ft [11.67 kN/m]

16′ [4.8 m]

Maximum Vu = 17.9 kips

(76/96)(17.9) = 14.2 kips, thus no Vs required

76"

½ φVc = 8.2 kips

½ Span = 96"

1@5, 5@10, = 55"

d = 20"

R = 52"

(8.2/17.9)(96) = 44"

20" 
[508 mm]

10" 
[254 mm]

(a) (b)

(c)

(d)

Figure 13.20 Stirrup design: Example 10.

diagram, these must be used for design of the shear reinforcement.
In addition, where axial forces of tension or compression exist in the
concrete frame, consideration must be given to the combined effects
when designing for shear.

When torsional moments exist (twisting moments at right angles to
the beam), their effects must be combined with beam shear.
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Problem 13.6.A. A concrete beam similar to that shown in Figure 13.18
sustains a uniform live load of 1.5 klf and a uniform dead load of 1 klf on a
span of 24 ft [7.32 m]. Determine the layout for a set of No. 3 U-stirrups using
the stress method with fy = 40 ksi [276 MPa] and f ′

c = 3000 psi [20.7 MPa].
The beam section dimensions are b = 12 in. [305 mm] and d = 26 in.
[660 mm].

Problem 13.6.B. Same as Problem 13.6.A, except the span is 20 ft [6.1 m], b
= 10 in. [254 mm], d = 23 in. [584 mm].

Problem 13.6.C. Determine the layout for a set of No. 3 U-stirrups for a beam
with the same data as Problem 13.6.A, except the uniform live load is 0.75 klf
and the uniform dead load is 0.5 klf.

Problem 13.6.D. Determine the layout for a set of No. 3 U-stirrups for a beam
with the same data as Problem 13.6.B, except the uniform live load is 1.875 klf
and the uniform dead load is 1.25 klf.

13.7 DEVELOPMENT LENGTH FOR REINFORCEMENT

The ACI Code (Ref. 10) defines development length as the length of
embedment required to develop the design strength of the reinforce-
ment at a critical section. For beams, critical sections occur at points
of maximum stress and at points within the span where some of the
reinforcement terminates or is bent up or down. For a uniformly loaded
simple span beam, the bending moment is a maximum at midspan. The
tensile reinforcement required for flexure at this point must extend on
both sides a sufficient distance to develop the stress in the bars; how-
ever, except for very short spans with large bars, the bar lengths will
ordinarily be more than sufficient.

In the simple beam, the bottom reinforcement required for the max-
imum moment at midspan is not entirely required as the moment
decreases toward the end of the span. It is thus sometimes the prac-
tice to make only part of the midspan reinforcement continuous for
the whole beam length. In this case it may be necessary to assure that
the bars that are of partial length are extended sufficiently from the
midspan point and that the bars remaining beyond the cutoff point can
develop the stress required at that point.
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When beams are continuous through the supports, top reinforce-
ment is required for the negative moments at the supports. These top
bars must be investigated for the development lengths in terms of the
distance they extend from the supports.

For tension reinforcement consisting of bars of No. 11 size and
smaller, the code specifies a minimum length for development (Ld) as
follows:

For No. 6 bars and smaller:

Ld = fy db

25
√

f ′
c

but not less than 12 in.

For No. 7 bars and larger:

Ld = fy db

20
√

f ′
c

In these formulas db is the bar diameter.
Modification factors for Ld are given for various situations, as fol-

lows:

For top bars in horizontal members with at least 12 in. of concrete
below the bars: increase by 1.3.

For flexural reinforcement that is provided in excess of that required
by computations: decrease by a ratio of required As/provided As.

Additional modification factors are given for light-weight concrete,
for bars coated with epoxy, for bars encased in spirals, and for bars
with fy in excess of 60 ksi. The maximum value to be used for

√
f ′
c is

100 psi.
Table 13.9 gives values for minimum development lengths for tensile

reinforcement, based on the requirements of the ACI Code (Ref. 10).
The values listed under “Other Bars” are the unmodified length require-
ments; those listed under “Top Bars” are increased by the modification
factor for this situation. Values are given for two concrete strengths and
for the two most commonly used grades of tensile reinforcement.

The ACI Code (Ref. 10) makes no provision for a reduction factor
for development lengths. As presented, the formulas for development
length relate only to bar size, concrete strength, and steel yield strength.
They are thus equally applicable for the stress method or the strength
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TABLE 13.9 Minimum Development Length for Tensile Reinforcement (in.)a

f y = 40 ksi f y = 60 ksi
[276 MPa] [414 MPa]

f ′
c = 3 ksi f ′

c = 4 ksi f ′
c = 3 ksi f ′

c = 4 ksi
[20.7 MPa] [27.6 MPa] [20.7 MPa] [27.6 MPa]

Bar Top Other Top Other Top Other Top Other
Size Barsb Bars Barsb Bars Barsb Bars Barsb Bars

3 15 12 13 12 22 17 19 15
4 19 15 17 13 29 22 25 19
5 24 19 21 16 36 28 31 24
6 29 22 25 19 43 33 37 29
7 42 32 36 28 63 48 54 42
8 48 37 42 32 72 55 62 48
9 54 42 47 36 81 62 70 54

10 61 47 53 41 91 70 79 61
11 67 52 58 45 101 78 87 67

a Lengths are based on requirements of the ACI Code (Ref. 10).
b Horizontal bars with more than 12 in. of concrete cast below them in the member.

method with no further adjustment, except for the conditions previously
described.

Example 11. The negative moment in the short cantilever shown in
Figure 13.21 is resisted by the steel bars in the top of the beam.
Determine whether the development of the reinforcement is adequate
without hooked ends on the No. 6 bars, if L1 = 48 in. [1220 mm] and
L2 = 36 in. [914 mm]. Use f ′

c = 3 ksi [20.7 MPa] and f y = 60 ksi
[414 MPa].

Solution: At the face of the support, anchorage for development must
be achieved on both sides: within the support and in the top of the beam.
In the top of the beam the condition is one of “Top Bars,” as previously
defined. Thus, from Table 13.9, a length of 43 in. is required for Ld ,
which is adequately provided, if cover is minimum on the outside end
of the bars.

Within the support, the condition is one of “Other Bars” in the table
reference. For this the required length for Ld is 33 in., which is also
adequately provided.

Hooked ends are thus not required on either end of the bars, although
most designers would probably hook the bars in the support just for
the security of the additional anchorage.
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Figure 13.21 Reference for Example 10.

Problem 13.7.A. A short cantilever is developed as shown in Figure 13.21.
Determine whether adequate development is achieved without hooked ends on
the bars if L1 is 36 in. [914 mm], L2 is 24 in. [610 mm], overall beam height is
16 in., bar size is No. 4, f ′

c = 4 ksi [27.6 MPa], and fy = 40 ksi [276 MPa].

Problem 13.7.B. Same as Problem 13.7.A, except L1 = 40 in. [1020 mm], L2

= 30 in. 762 mm], No. 5 bar.

Hooks

When details of the construction restrict the ability to extend bars suf-
ficiently to produce required development lengths, development can
sometimes be assisted by use of a hooked end on the bar. So-called
standard hooks may be evaluated in terms of a required development
length, Ldh. Bar ends may be bent at 90◦, 135◦, or 180o to produce a
hook. The 135o bend is used only for ties and stirrups, which normally
consist of relatively small diameter bars.

Table 13.10 gives values for development length with standard
hooks, using the same variables for f ′

c and fy that are used in
Table 13.9. The table values given are in terms of the required
development length as shown in Figure 13.22. Note that the table
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TABLE 13.10 Required Development Length Ldh for Hooked Bars (in.)a

f y = 40 ksi [276 MPa] f y = 60 ksi [414 MPa]

f ′
c = 3 ksi f ′

c = 4 ksi f ′
c = 3 ksi f ′

c = 4 ksi
Bar Size [20.7 MPa] [27.6 MPa] [20.7 MPa] [27.6 MPa]

3 6 6 9 8
4 8 7 11 10
5 10 8 14 12
6 11 10 17 15
7 13 12 20 17
8 15 13 22 19
9 17 15 25 22

10 19 16 28 24
11 21 18 31 27

a See Fig. 13.22. Table values are for a 180◦ hook; values may be reduced by 30% for a 90◦ hook.

values are for 180o hooks, and that values may be reduced by 30% for
90o hooks. The following example illustrates the use of the data from
Table 13.10 for a simple situation.

Example 12. For the bars in Figure 13.21, determine the length Ldh

required for development of the bars with a 90o hooked end in the
support. Use the same data as in Example 10.

Solution: From Table 13.10, the required length for the data given is
17 in. (No. 6 bar f ′

c = 3 ksi, f y = 60 ksi). This may be reduced for the
90o hook to

L = 0.70(17) = 11.9 in. [302 mm]

Problem 13.7.C. Find the development length required for the bars in Problem
13.7.A, if the bar ends in the support are provided with 90o hooks.

Problem 13.7.D. Find the development length required for the bars in Problem
13.7.B, if the bar ends in the support are provided with 90o hooks.

Bar Development in Continuous Beams

Development length is the length of embedded reinforcement required
to develop the design strength of the reinforcement at a critical section.
Critical sections occur at points of maximum stress and at points within
the span at which adjacent reinforcement terminates or is bent up into
the top of the beam. For a uniformly loaded simple beam, one critical
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Figure 13.22 Requirements for standard hooks for use of values in Table 13.10.

section is at midspan where the bending moment is maximum. This
is a point of maximum tensile stress in the reinforcement (peak bar
stress), and some length of bar is required over which the stress can
be developed. Other critical sections occur between midspan and the
reactions at points where some bars are cut off because they are no
longer needed to resist the bending moment; such terminations create
peak stress in the remaining bars that extend the full length of the beam.

When beams are continuous through their supports, the negative
moments at the supports will require that bars be placed in the top of
the beams. Within the span, bars will be required in the bottom of the
beam for positive moments. While the positive moment will go to zero
at some distance from the supports, the codes require that some of the
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Figure 13.23 Development lengths in continuous beams.

positive moment reinforcement be extended for the full length of the
span and a short distance into the support.

Figure 13.23 shows a possible layout for reinforcement in a beam
with continuous spans and a cantilevered end at the first support. Refer-
ring to the notation in the illustration, note the following:

1. Bars a and b are provided for the maximum moment of positive
sign that occurs somewhere near the beam midspan. If all these
bars are made full length (as shown for bars a), the length L1 must
be sufficient for development (this situation is seldom critical). If
bars b are partial length as shown in the illustration, then length
L2 must be sufficient to develop bars b and length L3 must be
sufficient to develop bars a . As was discussed for the simple
beam, the partial length bars must actually extend beyond the
theoretical cutoff point (B in the illustration) and the true length
must include the dashed portions indicated for bars b.

2. For the bars at the cantilevered end, the distances L4 and L5 must
be sufficient for development of bars c. L4 is required to extend
beyond the actual cutoff point of the negative moment by the
extra length described for the partial length bottom bars. If L5

is not adequate, the bar ends may be bent into the 90o hook as
shown or the 180o hook shown by the dashed line.

3. If the combination of bars shown in the illustration is used at the
interior support, L6 must be adequate for the development of bars
d and L7 adequate for the development of bars e.
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For a single loading condition on a continuous beam it is possi-
ble to determine specific values of moment and their location along
the span, including the locations of points of zero moment. In prac-
tice, however, most continuous beams are designed for more than a
single loading condition, which further complicates the problems of
determining development lengths required.

Splices in Reinforcement

In various situations in reinforced concrete structures it becomes nec-
essary to transfer stress between steel bars in the same direction. Con-
tinuity of force in the bars is achieved by splicing, which may be
accomplished by welding, by mechanical means, or by the lapped
splice. Figure 13.24 illustrates the concept of the lapped splice, which
consists essentially of the development of both bars within the concrete.
Because a lapped splice is usually made with the two bars in contact,
the lapped length must usually be somewhat greater than the simple
development length required in Table 13.10.

For a simple tension lap splice, the full development of the bars
usually requires a lap length of 1.3 times that required for simple devel-
opment of the bars. Lap splices are generally limited to bars of No. 11
size or smaller.

For pure tension members, lapped splicing is not permitted, and
splicing must be achieved by welding the bars or by some other
mechanical connection. End-to-end butt welding of bars is usually
limited to compression splicing of large diameter bars with high fy for
which lapping is not feasible.

When members have several reinforcement bars that must be spliced,
the splicing must be staggered. Splicing is generally not desirable and
is to be avoided when possible, but because bars are obtainable only in

Figure 13.24 Lapped splice for steel reinforcing bars.
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limited lengths, some situations unavoidably involve splicing. Horizon-
tal reinforcement in walls is one such case. For members with computed
stress, splicing should not be located at points of maximum stress, for
example, at points of maximum bending. Splicing of compression rein-
forcement for columns is discussed in the next section.

Development of Compressive Reinforcement

Development length in compression is a factor in column design and
in the design of beams reinforced for compression. The absence of
flexural tension cracks in the portions of beams where compression
reinforcement is employed, plus the beneficial effect of the end bearing
of the bars on the concrete, permit shorter developmental lengths in
compression than in tension. The ACI Code (Ref. 10) prescribes that
Ld for bars in compression shall be computed by the formula

Ld = 0.02fy db√
f ′
c

but shall not be less than 0.0003fydb or 8 in., whichever is greater.
Table 13.11 lists compression bar development lengths for a few com-
binations of specification data.

TABLE 13.11 Minimum Development Length for Compressive
Reinforcement (in.)

f y = 40 ksi [276 MPa] f y = 60 ksi [414 MPa]

Bar f ′
c = 3 ksi f ′

c = 4 ksi f ′
c = 3 ksi f ′

c = 4 ksi f ′
c = 5 ksi

Size [20.7 MPa] [27.6 MPa] [20.7 MPa] [27.6 MPa] [34.5 MPa]

3 8 8 8 8 7
4 8 8 11 10 9
5 10 8 14 12 11
6 11 10 17 15 13
7 13 12 20 17 15
8 15 13 22 19 17
9 17 15 25 22 20

10 19 17 28 25 22
11 21 18 31 27 24
14 38 33 29
18 50 43 39
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Figure 13.25 Considerations for bar development in concrete columns.

In reinforced columns both the concrete and the steel bars share
the compression force. Ordinary construction practices require the con-
sideration of various situations for development of the stress in the
reinforcing bars. Figure 13.25 shows a multistory concrete column
with its base supported on a concrete footing. With reference to the
illustration, note the following:

1. The concrete construction is ordinarily produced in multiple, sep-
arate pours, with construction joints between the separate pours
occurring as shown in the illustration.

2. In the lower column, the load from the concrete is transferred to
the footing in direct compressive bearing at the joint between the
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column and footing. The load from the reinforcing must be devel-
oped by extension of the reinforcing into the footing: distance L1

in the illustration. Although it may be possible to place the col-
umn bars in position during casting of the footing to achieve this,
the common practice is to use dowels, as shown in the illustra-
tion. These dowels must be developed on both sides of the joint:
L1 in the footing and L2 in the column. If the f ′

c value for both the
footing and the column are the same, these two required lengths
will be the same.

3. The lower column will ordinarily be cast together with the sup-
ported concrete framing above it, with a construction joint occur-
ring at the top level of the framing (bottom of the upper column),
as shown in the illustration. The distance L3 is that required to
develop the reinforcing in the lower column—bars a in the illus-
tration. As for the condition at the top of the footing, the distance
L4 is required to develop the reinforcing in bars b in the upper
column. L4 is more likely to be the critical consideration for the
determination of the extension required for bars a.

13.8 DEFLECTION CONTROL

Deflection of spanning slabs and beams of cast-in-place concrete is con-
trolled primarily by using a recommended minimum thickness (overall
height) expressed as a percentage of the span. Table 13.12 is adapted
from a similar table given in the ACI Code (Ref. 10) and yields min-
imum thickness as a fraction of the span. Table values apply only for
concrete of normal weight (made with ordinary sand and gravel) and
for reinforcement with fy of 40 ksi [276 MPa] and 60 ksi [414 MPa].
The ACI Code supplies correction factors for other concrete weights
and reinforcing grades. The ACI Code further stipulates that these rec-
ommendations apply only where beam deflections are not critical for
other elements of the building construction, such as supported partitions
subject to cracking caused by beam deflections.

Deflection of concrete structures presents a number of special prob-
lems. For concrete with ordinary reinforcement (not prestressed), flex-
ural action normally results in some tension cracking of the concrete
at points of maximum bending. Thus, the presence of cracks in the
bottom of a beam at midspan points and in the top over supports is
to be expected. In general, the size (and visibility) of these cracks
will be proportional to the amount of beam curvature produced by
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TABLE 13.12 Minimum Thickness of Slabs or Beams Unless Deflections
Are Computeda

Minimum Thickness of Slab
or Height of Beam

f y = 40 ksi f y = 60 ksi
Type of Member End Conditions of Span [276 MPa] [414 MPa]

Solid one-way slabs Simple support L/25 L/20
One end continuous L/30 L/24
Both ends continuous L/35 L/28
Cantilever L/12.5 L/10

Beams or joists Simple support L/20 L/16
One end continuous L/23 L/18.5
Both ends continuous L/26 L/21
Cantilever L/10 L/8

Source: Adapted from material in Building Code Requirements for Structural Concrete (ACI 318–08)
(Ref. 10), with permission of the publisher, American Concrete Institute.
a Refers to overall vertical dimension of concrete section. For normal weight concrete (145 pcf) only;
code provides adjustment for other weights. Valid only for members not supporting or attached rigidly
to partitions or other construction likely to be damaged by large deflections.

deflection. Crack size will also be greater for long spans and for deep
beams. If visible cracking is considered objectionable, more conserva-
tive depth-to-span ratios should be used, especially for spans over 30 ft
and beam depths over 30 in.

Creep of concrete results in additional deflections over time. This is
caused by the sustained loads—essentially the dead load of the con-
struction. Deflection controls reflect concern for this as well as for
the instantaneous deflection under live load, the latter being the major
concern in structures of wood and steel.

In beams, deflections, especially creep deflections, may be reduced
by the use of some compressive reinforcement. Where deflections are
of concern, or where depth-to-span ratios are pushed to their limits,
it is advisable to use some compressive reinforcement, consisting of
continuous top bars.

When, for whatever reasons, deflections are deemed to be critical,
computations of actual values of deflection may be necessary. The ACI
Code provides directions for such computations; they are quite complex
in most cases, and beyond the scope of this work. In actual design work,
however, they are required very infrequently.
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FLAT-SPANNING
CONCRETE SYSTEMS

There are many different systems than can be used to achieve flat spans.
These are used most often for floor structures, which typically require
a dead flat form. However, in buildings with an all-concrete structure,
they may also be used for roofs. Sitecast systems generally consist of
one of the following basic types:

1. One-way solid slab and beam

2. Two-way solid slab and beam

3. One-way joist construction

4. Two-way flat slab or flat plate without beams

5. Two-way joist construction, called waffle construction

Each system has its own distinct advantages and limits and some
range of logical use, depending on required spans, general layout of

479
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supports, magnitude of loads, required fire ratings, and cost limits for
design and construction.

The floor plan of a building and its intended usage determine loading
conditions and the layout of supports. Also of concern are require-
ments for openings for stairs, elevators, large ducts, skylights, and so
on, as these result in discontinuities in the otherwise commonly contin-
uous systems. Whenever possible, columns and bearing walls should
be aligned in rows and spaced at regular intervals in order to simplify
design and construction and lower costs. However, the fluid concrete
can be molded in forms not possible for wood or steel, and many very
innovative, sculptural systems have been developed as takeoffs on these
basic ones.

14.1 SLAB-AND-BEAM SYSTEMS

The most widely used and most adaptable cast-in-place concrete floor
system is that which utilizes one-way solid slabs supported by one-way
spanning beams. This system may be used for single spans but occurs
more frequently with multiple-span slabs and beams in a system such
as that shown in Figure 14.1. In the example shown, the continuous
slabs are supported by a series of beams that are spaced at 10 ft center
to center. The beams, in turn, are supported by a girder and column
system with columns at 30-ft centers, every third beam being supported
directly by the columns and the remaining beams being supported by
the girders.

Because of the regularity and symmetry of the system shown in
Figure 14.1, there are relatively few different elements in the basic
system, each being repeated several times. While special members must
be designed for conditions that occur at the outside edge of the system
and at the location of any openings for stairs, elevators, and so on,
the general interior portions of the structure may be determined by
designing only six basic elements: S1, S2, B1, B2, G1, and G2, as
shown in the framing plan (Figure 14.1).

In computations for reinforced concrete, the span length of freely
supported beams (simple beams) is generally taken as the distance
between centers of supports or bearing areas; it should not exceed the
clear span plus the depth of beam or slab. The span length for contin-
uous or restrained beams is taken as the clear distance between faces
of supports.
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Figure 14.1 Framing layout for a typical slab-and-beam system.

In continuous beams, negative bending moments are developed at the
supports and positive moments at or near midspan. This may be readily
observed from the exaggerated deformation curve of Figure 14.2a . The
exact values of the bending moments depend on several factors, but in
the case of approximately equal spans supporting uniform loads, when
the live load does not exceed three times the dead load, the bending
moment values given in Figure 14.2 may be used for design.

The values given in Figure 14.2 are in general agreement with the
those given in Chapter 8 of the ACI Code (Ref. 10). These values
have been adjusted to account for partial live loading of multiple-span
beams. Note that these values apply only to uniformly loaded beams.
The ACI Code also gives some factors for end-support conditions other
than the simple supports shown in Figure 14.2

Design moments for continuous-span slabs are given in Figure 14.3.
With large beams and short-slab spans, the torsional stiffness of the
beam tends to minimize the continuity effect in adjacent slab spans.
Thus, most slab spans in the slab-and-beam systems tend to function
much like individual spans with fixed ends.
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Figure 14.2 Approximate design factors for concrete beams.

Figure 14.3 Approximate design factors for continuous slabs with spans of 10 ft
or less.
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Design of a One-Way Continuous Slab

The general design procedure for a one-way solid slab was illustrated
in Section 13.5. The example given there is for a simple span slab.
The following example illustrates the procedure for the design of a
continuous solid one-way slab.

Example 1. A solid one-way slab is to be used for a framing system
similar to that shown in Figure 14.1. Column spacing is 30 ft with
evenly spaced beams occurring at 10 ft center to center. Superimposed
loads on the structure (floor live load plus other construction dead load)
are a dead load of 38 psf [1.82 kPa] and a live load of 100 psf [4.79 kPa].
Use f ′

c = 3 ksi [20.7 MPa] and fy = 40 ksi [276 MPa]. Determine the
thickness for the slab and select its reinforcement.

Solution: To find the slab thickness, consider three factors: the min-
imum thickness for deflection, the minimum effective depth for the
maximum moment, and the minimum effective depth for the maxi-
mum shear. For design purposes the span of the slab is taken as the
clear span, which is the dimension from face to face of the supporting
beams. With the beams at 10-ft centers, this dimension is 10 ft, less the
width of one beam. Since the beams are not given, a dimension must
be assumed for them. For this example assume a beam width of 12 in.,
yielding a clear span of 9 ft.

Consider first the minimum thickness required for deflection. If the
slabs in all spans have the same thickness (which is the most common
practice), the critical slab is the end span, since there is no continuity of
the slab beyond the end beam. While the beam will offer some restraint,
it is best to consider this as a simple support; thus, the appropriate factor
is L/ 30 from Table 13.12, and

Minimum t = L

30
= 9 × 12

30
= 3.6 in. [91.4 mm]

Assume here that fire-resistive requirements make it desirable to
have a relatively heavy slab of 5-in. overall thickness, for which the
dead weight of the slab is

w = 5

12
× 150 = 62 psf [2.97 kPa]
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The total dead load is thus 62 + 38 = 100 psf and the factored total
load is

U = 1.2(100) + 1.6(100) = 280 psf [13.4 kPa]

Next consider the maximum bending moment. Inspection of the
moment values given in Figure 14.3 shows the maximum moment to be

M = 1

10
wL2

With the clear span and the loading as determined, the maximum
moment is thus

M = wL2

10
= 280 × (9)2

10
= 2268 ft-lb [3.08 kN-m]

and the required resisting moment for the slab is

MR = 2268

0.9
= 2520 ft-lb [3.42 kN-m]

This moment value should now be compared to the balanced capac-
ity of the design section, using the relationships discussed for rectan-
gular beams in Section 13.3. For this computation an effective depth
for the design section must be assumed. This dimension will be the
slab thickness minus the concrete cover and one-half the bar diame-
ter. With the bars not yet determined, assume an approximate effective
depth to be the slab thickness minus 1.0 in.; this will be exactly true
with the usual minimum cover of 3/4 in. and a No. 4 bar. Then using
the balanced moment R factor from Table 13.2, the maximum resisting
moment for the 12-in.-wide design section is

MR = Rbd2 = (1.149)(12)(4)2 = 221 kip-in. [25 kN-m]

or
MR = 221 × 1000

12
= 18,400 ft-lb [25 MN-m]

As this value is in excess of the required resisting moment of
2520 ft-lb, the slab is adequate for concrete flexural stress.

It is not practical to use shear reinforcement in one-way slabs, and
consequently the maximum unit shear stress must be kept within the
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limit for the concrete alone. The usual procedure is to check the shear
stress with the effective depth determined for bending before proceed-
ing to find As . Except for very short span slabs with excessively heavy
loadings, shear stress is seldom critical.

For interior spans, the maximum shear will be wL/2, but for the
end span it is usual practice to consider some unbalanced condition
for the shear due to the discontinuous end. Use a maximum shear of
1.15(wL/2), or an increase of 15% over the simple beam shear value.
Thus,

Maximum shear = Vu = 1.15 × wL

2

= 1.15 × 280 × 9

2
= 1449 lb [6.45 kN]

and

Required Vr = 1449

0.75
= 1932 lb [8.59 kN]

For the slab section with b = 12 in. and d = 4 in.

Vc = 2
√

f ′
c (b × d) = 2

√
3000(12 × 4) = 5258 lb [23.4 kN]

This is considerably greater than the required shear resistance, so the
assumed slab thickness is not critical for shear stress.

Having thus verified the choice for the slab thickness, we may now
proceed with the design of the reinforcement. For a balanced section,
Table 13.2 yields a value of 0.685 for the a/d factor. However, since
all sections will be classified as underreinforced (actual moment less
than the balanced limit), use an approximate value of 0.4 for a/d . Once
the reinforcement for a section is determined, the true value of a/d can
be verified using the procedures developed in Section 13.3.

For the slab in this example the following is computed:

a

d
= 0.4 and a = 0.4(d) = 0.4(4) = 1.6 in. [40.6 mm]

For the computation of required reinforcement use

d − a

2
= 4 − 1.6

2
= 3.2 in. [81.3 mm]
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Referring to Figure 14.3, note that there are five critical locations for
which a moment must be determined and the required steel area com-
puted. Reinforcement required in the top of the slab must be computed
for the negative moments at the end support, at the first interior beam,
and at the typical interior beam. Reinforcement required in the bottom
of the slab must be computed for the positive moments at midspan loca-
tions in the first span and in the typical interior spans. The design for
these conditions is summarized in Figure 14.4. For the data displayed
in the figure note the following:

Maximum spacing of reinforcement:

s = 3t = 3(5) = 15 in. [381 mm]

Figure 14.4 Summary of design for the continuous slab.
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Maximum required bending moment:

MR = (moment factor C )

(
wL2

0.9

)

= C

[
280 × (9)2

0.9

]
× 12 = 302,400C

Note that the use of the factor 12 makes this value for the moment in
inch-pound units.

Required area of reinforcement:

As = M

fy
(

d − a

2

) = 302,400 × C

40,000 × 3.2
= 2.36C

Using data from Table 13.7, Figure 14.4 shows required spacing for
Nos. 3, 4, and 5 bars. A possible choice for the slab reinforcement,
using straight bars, is shown at the bottom of Figure 14.4.

For required temperature reinforcement

As = 0.002bt = 0.002(12 × 5)

= 0.12 in.2/ft of slab width [254 mm2/m]

Using data from Table 13.7, possible choices are No. 3 at 11 in. or
No. 4 at 18 in.

Problem 14.1.A. A solid one-way slab is to be used for a framing system similar
to that shown in Figure 14.1. Column spacing is 36 ft [11 m], with regularly
spaced beams occurring at 12 ft [3.66 m] center to center. Superimposed dead
load on the structure is 40 psf [1.92 kPa] and live load is 80 psf [3.83 kPa]. Use
f ′
c = 4 ksi [27.6 MPa] and fy = 60 ksi [414 MPa]. Determine the thickness for

the slab and select the size and spacing for the bars.

Problem 14.1.B. Same as Problem 14.1.A, except column spacing is 33 ft
[10.1 m], beams are at 11 ft [3.35 m] centers, superimposed dead load is 50 psf
[2.39 kPa], and live load is 75 psf [3.59 kPa].
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14.2 GENERAL CONSIDERATIONS FOR BEAMS

The design of a single beam involves a large number of pieces of
data, most of which are established for the system as a whole, rather
than individually for each beam. Systemwide decisions usually include
those for the type of concrete and its design strength (f ′

c ), the type
of reinforcing steel (f y ), the cover required for exposure conditions
and the necessary fire rating, and various generally used details for
forming of the concrete and placing the reinforcement. Most beams
occur in conjunction with solid slabs that are cast monolithically with
the beams. Slab thickness is established by the structural requirements
of the spanning action between beams and by various concerns, such
as those for fire rating, acoustic separation, type of reinforcement, and
so on. Design of a single beam is usually limited to determination of
the following:

1. Choice of shape and dimensions of the beam cross section

2. Selection of the type, size, and spacing of shear reinforcement
3. Selection of the flexural reinforcement to satisfy requirements

based on the variation of moment along the several beam spans

The following are some factors that must be considered in effecting
these decisions.

Beam Shape

Figure 14.5 shows the most common shapes used for beams in sitecast
construction. The single, simple rectangular section is actually uncom-
mon but does occur in some situations. Design of the concrete section
consists of selecting the two dimensions: the width b and the overall
height or depth h .

As mentioned previously, beams occur most often in conjunction
with monolithic slabs, resulting in the typical T shape shown in
Figure 14.5b or the L shape shown in Figure 14.5c. The full T shape
occurs at the interior portions of the system, while the L shape occurs
at the outside of the system or at the side of large openings. As shown
in the illustration, there are four basic dimensions for the T and L
shapes that must be established in order to fully define the beam
section:

t = slab thickness, ordinarily established on its own, rather than as
a part of the single beam design
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Figure 14.5 Common shapes for beams.

h = overall beam stem depth, corresponding to the same dimension
for the rectangular section

bw = beam stem width, which is critical for consideration of shear
and for problems of fitting reinforcing into the section

bf = so-called effective width of the flange, which is the portion of
the slab assumed to work with the beam

A special beam shape is that shown in Figure 14.5d . This occurs in
concrete joist and waffle construction when “pans” of steel or reinforced
plastic are used to form the concrete, the taper of the beam stem being
required for easy removal of the forms. The smallest width dimension
of the beam stem is ordinarily used for the beam design in this situation.

Beam Width

The width of a beam will affect its resistance to bending. Consideration
of the flexure formulas given in Section 13.3 shows that the width
dimension affects the bending resistance in a linear relationship (double
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the width and you double the resisting moment, etc.). On the other
hand, the resisting moment is affected by the square of the effective
beam depth. Thus efficiency—in terms of beam weight or concrete
volume—will be obtained by striving for deep, narrow beams instead
of shallow, wide ones (just as a 2 × 8 joist is more efficient than a
4 × 4 joist in wood).

Beam width also relates to various other factors, however, and these
are often critical in establishing the minimum width for a given beam.
The formula for shear capacity indicates that the beam width is equally
as effective as the depth in shear resistance. Placement of reinforc-
ing bars is sometimes a problem in narrow beams. Table 14.1 gives
minimum beam widths required for various bar combinations, based
on considerations of bar spacing, minimum concrete cover of 1.5 in.,
placement of the bars in a single layer, and use of a No. 3 stirrup.
Situations requiring additional concrete cover, use of larger stirrups, or
the intersection of beams with columns, may necessitate widths greater
than those given in Table 14.1.

Beam Depth

While selection of beam depth is partly a matter of satisfying structural
requirements, it is typically constrained by other considerations in the
building design. Figure 14.6 shows a section through a typical building
floor/ceiling with a concrete slab-and-beam structure. In this situation
the critical depth from a general building design point of view is the

TABLE 14.1 Minimum Beam Widthsa

Number Bar Size

of Bars 3 4 5 6 7 8 9 10 11

2 10 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10 11
4 10 10 10 10 11 11 12 13 14
5 10 11 11 12 12 13 14 15 17
6 11 12 13 14 14 15 17 18 19
7 13 14 15 15 16 17 19 20 22
8 14 15 16 17 18 19 21 23 25
9 16 17 18 19 20 21 23 25 28

10 17 18 19 21 22 23 26 28 30

a Minimum width in inches for beams with 1.5-in. cover, No. 3 U-stirrups, clear spacing between
bars of one bar diameter or minimum of 1 in. General minimum practical width for any beam with
No. 3 U-stirrups is 10 in.
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Figure 14.6 Concrete beam in typical multistory construction. Dimension H is
critical for architectural planning; dimension d is critical for structural design.

overall thickness of the construction, shown as H in the illustration.
In addition to the concrete structure, this includes allowances for the
floor finish, the ceiling construction, and the passage of an insulated
air duct. The net usable portion of H for the structure is shown as
the dimension h , with the effective structural depth d being something
less than h . Since the space defined by H is not highly usable for the
building occupancy, there is a tendency to constrain it, which works to
limit any extravagant use of d .

Most concrete beams tend to fall within a limited range in terms of
the ratio of width to depth. The typical range is for a width-to-depth
ratio between 1 : 1.5 and 1 : 2.5, with an average of 1 : 2. This is not
a code requirement or a magic rule; it is merely the result of satisfying
typical requirements for flexure, shear, bar spacing, economy of use of
steel, and deflection.

Deflection Control

Deflection of spanning slabs and beams must be controlled for a vari-
ety of reasons. This topic is discussed in Section 13.8. Typically, the
most critical decision factor relating to deflection is the overall vertical
thickness or height of the spanning member. The ratio of this height
dimension to the span length is the most direct indication of the degree
of concern for deflection. Recommended minimum beam heights are
given in Table 13.12.
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CONCRETE COLUMNS
AND FRAMES

In view of the ability of concrete to resist compressive stress and its
weakness in tension, it would seem to be apparent that its most logical
use is for structural members whose primary task is the resistance of
compression. This observation ignores the use of reinforcement to a
degree but is nevertheless not without some note. And indeed, major
use is made of concrete for columns, piers, pedestals, posts, and bearing
walls—all basically compression members. This chapter presents dis-
cussions of the use of reinforced concrete for such structural purposes,
with emphasis on the development of columns for building structures.
Concrete columns often exist in combination with concrete beam sys-
tems, forming rigid frames with vertical planar bents; this subject is
addressed as part of the discussion of the concrete example structure
in Chapter 20.

492
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15.1 EFFECTS OF COMPRESSION FORCE

When concrete is subjected to a direct compressive force, the most
obvious stress response in the material is one of compressive stress,
as shown in Figure 15.1a . This response may be the essential one of
concern, as it would be in a wall composed of flat, precast concrete
bricks, stacked on top of each other. Direct compressive stress in the
individual bricks and in the mortar joints between bricks would be a
primary situation for investigation.

However, if the concrete member being compressed has some
dimension in the direction of the compressive force—as in the case of
a column or pier—there are other internal stress conditions that may

Figure 15.1 Fundamental failure modes of the tension-weak concrete.
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well be the source of structural failure under the compressive force.
Direct compressive force produces a three-dimensional deformation
that includes a pushing out of the material at right angles to the
force, actually producing tension stress in that direction, as shown
in Figure 15.1b. In a tension-weak material, this tension action may
produce a lateral bursting effect.

Since concrete as a material is also weak in shear, another possibility
for failure is along the internal planes where maximum shear stress is
developed. This occurs at a 45◦ angle with respect to the direction of
the applied force, as shown in Figure 15.1c.

In concrete compression members, other than flat bricks, it is gen-
erally necessary to provide for all three stress responses shown in
Figure 15.1. In fact, additional conditions can occur if the structural
member is also subjected to bending or torsional twisting. Each case
must be investigated individually for all the individual actions and the
combinations in which they can occur. Design for the concrete member
and its reinforcement will typically respond to several considerations of
behavior, and the same member and reinforcement must function for all
responses. The following discussions focus on the primary function of
resistance to compression, but other concerns will also be mentioned.
The basic consideration for combined compression and bending is dis-
cussed here since present codes require that all columns be designed
for this condition.

Reinforcement for Columns

Column reinforcement takes various forms and serves various purposes,
the essential consideration being to enhance the structural performance
of the column. Considering the three basic forms of column stress
failure shown in Figure 15.1, it is possible to visualize basic forms of
reinforcement for each condition. This is done in the illustrations in
Figures 15.2a –c.

To assist the basic compression function steel bars are added with
their linear orientation in the direction of the compression force. This
is the fundamental purpose of the vertical reinforcing bars in a column.
While the steel bars displace some concrete, their superior strength and
stiffness make them a significant improvement.

To assist in resistance to lateral bursting (Figure 15.2b), a critical
function is to hold the concrete from moving out laterally, which may
be achieved by so-called containment of the concrete mass, similar
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Figure 15.2 Forms and functions of column reinforcement.

to the action of a piston chamber containing air or hydraulic fluid.
If compression resistance can be obtained from air that is contained,
surely it can be more significantly obtained from contained concrete.
This is a basic reason for the traditional extra strength of the spiral
column and one reason for now favoring very closely spaced ties in
tied columns. In retrofitting columns for improved seismic resistance a
technique sometimes used is to actually provide a confining, exterior
jacket of steel or fiber strand, essentially functioning as illustrated in
Figure 15.2b.
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Natural shear resistance is obtained from the combination of the
vertical bars and the lateral ties or spiral, as shown in Figure 15.2c.
If this is a critical concern, improvements can be obtained by using
closer-spaced ties and a larger number of vertical bars that spread out
around the column perimeter.

When used as parts of concrete frameworks, columns are also typi-
cally subjected to torsion and bending, as shown in Figures 15.2d and e.
Torsional twisting tends to produce a combination of longitudinal ten-
sion and lateral shear; thus, the combination of full perimeter ties or
spirals and the perimeter vertical bars provide for this in most cases.

Bending, if viewed independently, requires tension reinforcement,
just as in an ordinary beam. In the column the ordinary section is
actually a doubly reinforced one, with both tension and compression
reinforcement for beam action. This function, combined with the basic
axial compression, is discussed more fully in later sections of this
chapter. An added complexity in many situations is the existence of
bending in more than a single direction.

All of these actions can occur in various combinations due to dif-
ferent conditions of loading. Column design is thus a quite complex
process if all possible structural functions are considered. A fundamen-
tal design principle becomes the need to make multiple usage of the
simplest combination of reinforcing elements.

15.2 GENERAL CONSIDERATIONS FOR CONCRETE
COLUMNS

Types of Columns

Concrete columns occur most often as the vertical support elements in
a structure generally built of cast-in-place concrete (commonly called
sitecast). This is the situation discussed in this chapter. Very short
columns, called pedestals , are sometimes used in the support system
for columns or other structures. The ordinary pedestal is discussed as a
foundation transitional device in Chapter 16. Walls that serve as vertical
compression supports are called bearing walls .

The sitecast concrete column usually falls into one of the following
categories:

1. Square columns with tied reinforcement

2. Oblong columns with tied reinforcement

3. Round columns with tied reinforcement
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4. Round columns with spiral-bound reinforcement
5. Square columns with spiral-bound reinforcement

6. Columns of other geometries (L shaped, T shaped, octagonal,
etc.) with either tied or spiral-bound reinforcement

Obviously, the choice of column cross-sectional shape is an architec-
tural, as well as a structural, decision. However, forming methods and
costs, arrangement and installation of reinforcement, and relations of
the column form and dimensions to other parts of the structural system
must also be dealt with.

In tied columns the longitudinal reinforcement is held in place by
loop ties made of small-diameter reinforcement bars, commonly No. 3
or No. 4. Such a column is represented by the square section shown in
Figure 15.3a . This type of reinforcement can quite readily accommo-
date other geometries as well as the square.

Figure 15.3 Primary forms of column reinforcement: (a) rectangular layout of
vertical bars with lateral ties and (b) circular layout of vertical bars with continuous
helix (spiral) wrap.
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Spiral columns are those in which the longitudinal reinforcing is
placed in a circle, with the whole group of bars enclosed by a continu-
ous cylindrical spiral made from steel rod or large-diameter steel wire.
Although this reinforcing system obviously works best with a round
column section, it can be used also with other geometries. A round
column of this type is shown in Figure 15.3b.

Experience has shown the spiral column to be slightly stronger than
an equivalent tied column with the same amount of concrete and rein-
forcement. For this reason, code provisions have traditionally allowed
slightly more load on spiral columns. Spiral reinforcement tends to be
expensive, however, and the round bar pattern does not always mesh
well with other construction details in buildings. Thus, tied columns are
often favored where restrictions on the outer dimensions of the sections
are not severe.

A recent development is the use of tied columns with very closely
spaced ties. A basic purpose for this is the emulation of a spiral column
for achieving additional strength, although many forms of gain are actu-
ally obtained simultaneously, as discussed in regard to the illustrations
in Figure 15.2.

General Requirements for Columns

Code provisions and practical construction considerations place a num-
ber of restrictions on column dimensions and choice of reinforcement.

Column Size. The current code does not contain limits for col-
umn dimensions. For practical reasons, the following limits are
recommended. Rectangular tied columns should be limited to a
minimum area of 100 in.2 and a minimum side dimension of 10 in.
if square and 8 in. if oblong. Spiral columns should be limited to
a minimum size of 12 in. if either round or square.

Reinforcement. Minimum bar size is No. 5. The minimum number
of bars is four for tied columns, five for spiral columns. The
minimum amount of area of steel is 1% of the gross column area.
A maximum area of steel of 8% of the gross area is permitted,
but bar spacing limitations makes this difficult to achieve; 4%
is a more practical limit. The ACI Code stipulates that for a
compression member with a larger cross section than required
by considerations of loading, a reduced effective area not less
than one-half the total area may be used to determine minimum
reinforcement and design strength.
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Ties. Ties should be at least No. 3 for bars No. 10 and smaller.
No. 4 ties should be used for bars that are No. 11 and larger. Ver-
tical spacing of ties should be not more than 16 times the vertical
bar diameter, 48 times the tie diameter, or the least dimension
of the column. Ties should be arranged so that every corner and
alternate longitudinal bar is held by the corner of a tie with an
included angle of not greater than 135◦, and no bar should be far-
ther than 6 in. clear from such a supported bar. Complete circular
ties may be used for bars placed in a circular pattern.

Concrete Cover. A minimum of 1.5 in. cover is needed when the
column surface is not exposed to weather and is not in contact
with the ground. Cover of 2 in. should be used for formed surfaces
exposed to the weather or in contact with ground. Cover of 3 in.
should be used if the concrete is cast directly against earth without
constructed forming, such as occurs on the bottoms of footings.

Spacing of Bars. Clear distance between bars should not be less than
1.5 times the bar diameter, 1.33 times the maximum specified size
for the coarse aggregate, or 1.5 in.

Combined Compression and Bending

Due to the nature of most concrete structures, design practices generally
do not consider the possibility of a concrete column with axial com-
pression alone. This is to say, the existence of some bending moment
is always considered together with the axial force.

Figure 15.4 illustrates the nature of the so-called interaction response
for a concrete column, with a range of combinations of axial load
plus bending moment. In general, there are three basic ranges of this
behavior, as follows (see the dashed lines in Figure 15.4):

1. Large Axial Force, Minor Moment. For this case the moment
has little effect, and the resistance to pure axial force is only
negligibly reduced.

2. Significant Values for Both Axial Force and Moment. For this
case the analysis for design must include the full combined force
effects, that is, the interaction of the axial force and the bending
moment.

3. Large Bending Moment, Minor Axial Force. For this case the
column behaves essentially as a doubly reinforced (tension and
compression reinforced) member, with its capacity for moment
resistance affected only slightly by the axial force.
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Figure 15.4 Interaction of axial compression (P) and bending moment (M) in a
reinforced concrete column.

In Figure 15.4 the solid line on the graph represents the true response
of the column—a form of behavior verified by many laboratory tests.
The dashed line represents the generalization of the three types of
response just described.

The terminal points of the interaction response—pure axial compres-
sion or pure bending moment—may be reasonably easily determined
(P0 and M0 in Figure 15.4). The interaction responses between these
two limits require complex analyses beyond the scope of this book.

Considerations for Column Shape

Usually, a number of possible combinations of reinforcing bars may
be assembled to satisfy the steel area requirement for a given col-
umn. Aside from providing for the required cross-sectional area, the
number of bars must also work reasonably in the layout of the col-
umn. Figure 15.5 shows a number of columns with various numbers
of bars. When a square tied column is small, the preferred choice is
usually that of the simple four-bar layout, with one bar in each cor-
ner and a single perimeter tie. As the column gets larger, the distance
between the corner bars gets larger, and it is best to use more bars so
that the reinforcement is spread out around the column periphery. For
a symmetrical layout and the simplest of tie layouts, the best choice is
for numbers that are multiples of four, as shown in Figure 15.5a . The
number of additional ties required for these layouts depends on the size
of the column and the considerations discussed in Section 15.4.
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Figure 15.5 Considerations for bar layouts and tie patterns in tied columns.
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An unsymmetrical bar arrangement (Figure 15.5b) is not necessarily
bad, even though the column and its construction details are otherwise
not oriented differently on the two axes. In situations where moments
may be greater on one axis, the unsymmetrical layout is actually pre-
ferred; in fact, the column shape will also be more effective if it is
unsymmetrical, as shown for the oblong shapes in Figure 15.5c.

Figures 15.5d –g show some special column shapes developed as
tied columns. Although spirals could be used in some cases for such
shapes, the use of ties allows greater flexibility and simplicity of
construction. A reason for using ties may be the column dimensions,
there being a practical lower limit of about 12 in. in width for a
spiral-bound column.

Round columns are frequently formed as shown in Figure 15.5h , if
built as tied columns. This allows for a minimum reinforcement with
four bars. If a round pattern is used (as it must be for a spiral-bound col-
umn), the usual minimum number recommended is six bars, as shown
in Figure 15.5i . Spacing of bars is much more critical in spiral-bound
circular arrangements, making it very difficult to use high percentages
of steel in the column section. For very large diameter columns it is
possible to use sets of concentric spirals, as shown in Figure 15.5j .

For cast-in-place columns a concern that must be dealt with is that
for vertical splicing of the steel bars. Two places where this commonly
occurs are at the top of the foundation and at floors where a multi-
story column continues upward. At these points there are three ways to
achieve the vertical continuity (splicing) of the steel bars, any of which
may be appropriate for a given situation.

1. Bars may be lapped the required distance for development of
the compression splice. For bars of smaller dimension and lower
yield strengths, this is usually the desired method.

2. Bars may have milled square-cut ends butted together with a
grasping device to prevent separation in a horizontal direction.

3. Bars may be welded with full-penetration butt welds or by weld-
ing of the grasping device described for method 2.

The choice of splicing methods is basically a matter of cost compar-
ison but is also affected by the size of the bars, the degree of concern
for bar spacing in the column arrangement, and possibly for a need for
some development of tension through the splice if uplift or high magni-
tudes of moments exist. If lapped splicing is used, a problem that must
be considered is the bar layout at the location of the splice, at which
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point there will be twice the usual number of bars. The lapped bars
may be adjacent to each other, but the usual considerations for space
between bars must be made. If spacing is not critical, the arrangement
shown in Figure 15.5k is usually chosen, with the spliced sets of bars
next to each other at the tie perimeter. If spacing limits prevent the
arrangement in Figure 15.5k , that shown in Figure 15.5l may be used,
with the lapped sets in concentric patterns. The latter arrangement is
used for spiral columns, where spacing is often critical.

Bending of steel bars involves the development of yield stress to
achieve plastic deformation (the residual bend). As bars get larger in
diameter, they are more difficult—and less feasible—to bend. Also, as
the yield stress increases, the bending effort gets larger. It is question-
able to try to bend bars as large as No. 14 or No. 18 in any grade, and
it is also not advised to bend any bars with yield stress greater than
75 ksi [517 MPa]. Bar fabricators should be consulted for real limits of
this nature.

Columns in Sitecast Frames

Reinforced concrete columns seldom occur as single, pin-ended mem-
bers, as opposed to most wood columns and many steel columns. This
condition may exist for some precast concrete columns, but almost all
sitecast columns occur as members in frames, with interaction of the
frame members in the manner of a so-called rigid frame.

Rigid frames derive their name from the joints between members,
which are assumed to be moment resistive (rotationally rigid) and thus
capable of transmitting bending moments between the ends of the con-
nected members. This condition may be visualized by considering the
entire frame as being cut from a single piece of material, as shown
in Figure 15.6a . The sitecast concrete frame and the all-welded steel
frame most fully approximate this condition.

When the horizontal-spanning frame members (beams) are subjected
to vertical gravity loads, the inclination of their ends to rotate trans-
mits bending to the columns connected to their ends, as shown in
Figure 15.6b. If the frame is subjected to lateral loads (often the case,
as rigid frames are frequently used for lateral bracing), the relative
horizontal displacement of the column tops and bottoms (called lateral
drift) transmits bending to the members connected to the columns (see
Figure 15.6c). The combinations of these loading results in the general
case of combined axial loads plus bending in all the members of a rigid
frame.
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Figure 15.6 Columns in rigid frames.

Figure 15.6d shows the case for the effect on the cross section
of a column in a frame: a condition of axial compression plus bend-
ing. For some purposes, it is useful to visualize this as an analogous
eccentric compressive force, with the bending produced by the product
of the compression times its distance of eccentricity (dimension e in
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Figure 15.6d ). It is thus possible to consider the column to have a max-
imum capacity for compression (with e = 0), which is steadily reduced
as the eccentricity is increased. This is the concept of the interaction
graph (see Figure 15.4).

Multistory Columns

Concrete columns occur frequently in multistory structures. In the site-
cast structure, separate stories are typically cast in separate pours, with
a cold joint (construction joint) between the successive pours. While
this makes for a form of discontinuity, it does not significantly reduce
the effective monolithic nature of the framed structure. Compression is
continuous by the simple stacking of the levels of the heavy structure,
and splicing of the reinforcement develops a form of tension continu-
ity, permitting development of bending moments.

The typical arrangement of reinforcement in multistory columns is
shown in Figure 13.25, which illustrates the form of bar development
required to achieve the splicing of the reinforcement. This is essentially
compressive reinforcement, so its development is viewed in those terms.
However, an important practical function of the column bars is sim-
ply to tie the structure together through the discontinuous construction
joints.

Load conditions change in successive stories of the multistory
structure. It is, therefore, common to change both the column size and
reinforcement. Design considerations for this are discussed in the
examples in Chapter 20.

In very tall structures the magnitude of compression in lower stories
requires columns with very high resistance. There is often some practi-
cal limit to column sizes, so that all efforts are made to obtain strength
increases other than by simply increasing the mass of concrete. The
three basic means of achieving this are:

1. Increase the amount of reinforcement, packing columns with the
maximum amount that is feasible and allowable by codes.

2. Increase the yield strength of the steel, using as much as twice
the strength for ordinary bars.

3. Increase the strength of the concrete.

The superstrength column is a clear case for use of the highest
achievable concrete strengths and is indeed the application that has
resulted recently in spiraling high values for design strength. Strengths
exceeding 20,000 psi have been achieved.
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15.3 DESIGN METHODS AND AIDS FOR CONCRETE
COLUMNS

At the present, design of concrete columns is mostly achieved by using
either tabulations from handbooks or computer-aided procedures. Using
the code formulas and requirements to design by “hand operation” with
both axial compression and bending present at all times is prohibitively
laborious. The number of variables present (column shape and size, f ′

c ,
fy , number and size of bars, arrangement of bars, etc.) adds to the usual
problems of column design to make for a situation much more complex
than those for wood or steel columns.

The large number of variables also works against the efficiency of
handbook tables. Even if a single concrete strength (f ′

c ) and a single
steel yield strength (fy ) are used, tables would be very extensive if all
sizes, shapes, and types (tied and spiral) of columns were included.
Even with a very limited range of variables, handbook tables are much
larger than those for wood or steel columns, They are, nevertheless,
often quite useful for preliminary design estimation of column sizes.
The obvious preference when relationships are complex, requirements
are tedious and extensive, and there are a large number of variables, is
for a computer-aided system. It is hard to imagine a professional design
office that is turning out designs of concrete structures on a regular basis
at the present without computer-aided methods. The reader should be
aware that the software required for this work is readily available.

As in other situations, the common practices at any given time tend
to narrow down to a limited usage of any type of construction, even
though the potential for variation is extensive. It is thus possible to use
some very limited but easy-to-use design aids to make early selections
for design. These approximations may be adequate for preliminary
building planning, cost estimates, and some preliminary structural
analyses.

Approximate Design of Tied Columns

Tied columns are much preferred due to the relative simplicity and usu-
ally lower cost of their construction, plus their adaptability to various
column shapes (square, round, oblong, T shape, L shape, etc.) Round
columns—most naturally formed with spiral-bound reinforcing—are
often made with ties instead, when the structural demands are
modest.
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The column with moment is often designed using the equivalent
eccentric load method. The method consists of translating a compres-
sion plus bending situation into an equivalent one with an eccentric
load, the moment becoming the product of the load and the eccentric-
ity (see Figure 15.6d ). This method is often used in presentation of
tabular data for column capacities.

Figures 15.7–15.10 yield safe ultimate factored capacities for a
selected number of sizes of square tied columns with varying percent-
ages of reinforcement. Allowable axial compression loads are given
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Figure 15.7 Maximum factored axial compression capacity for selected square
tied columns.



508 CONCRETE COLUMNS AND FRAMES

0
300

500

700

900

F
ac

to
re

d 
A

xi
al

 C
om

pr
es

si
on

 L
oa

d 
- 

ki
ps

1100

1300

1500

1700

1900

2100
SQUARE TIED COLUMNS

Side Reinf.  %
Dimens.

(In.)

18      4 #9     1.27
18     8 #8     1.95

18     8 #11    3.85
20    4 #10   1.27

20     8 #9     2.00
20     8 #14   4.50

22     4 #11   1.29
22     8 #10    2.10

22    16 #10  4.20
24    8 #9     1.39

24    8 #11   2.17
24    16 #11  4.33

f′c = 5000 psi fy = 60,000 psi

2 4 6 8 10

Load Eccentricity - inches

12 14 16

Figure 15.8 Maximum factored axial compression capacity for selected square
tied columns.

for various degrees of eccentricity, which is a means for handling axial
load and bending moment combinations. The computed moment on
the column is translated into an equivalent eccentric loading. Data for
the curves were computed by strength design methods, as currently
required by the ACI Code (Ref. 10).
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Figure 15.9 Maximum factored axial compression capacity for selected square
tied columns.

When bending moments are relatively high in comparison to axial
loads, round or square column shapes are not the most efficient, just
as they are not for spanning beams. Figures 15.11 and 15.12 yield safe
ultimate factored capacities for columns with rectangular cross sections.
To further emphasize the importance of major bending resistance, all
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Figure 15.10 Maximum factored axial compression capacity for selected square
tied columns.

the reinforcement is assumed to be placed on the narrow sides, thus
utilizing it for its maximum bending resistance effect.

The following examples illustrate the use of Figures 15.7–15.12 for
the design of square and rectangular tied columns.

Example 1. A square tied column with f ′
c = 5 ksi [34.5 MPa] and

steel with fy = 60 ksi [414 MPa] sustains an axial compression load
of 150 kips [667 kN] dead load and 250 kips [1110 kN] live load with
no computed bending moment. Find the minimum practical column
size if reinforcement is a maximum of 4% and the maximum size if
reinforcement is a minimum of 1%.
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RECTANGULAR TIED COLUMNS

Side      Reinf.     %
Dimens.

(In.)

12 × 16     6 #7      1.88
12 × 20     6 #8      1.98

14 × 20     6 #9      2.14
14 × 24     6 #10    2.27

16 × 24     6 #10    1.98
16 × 30     8 #10    2.12

18 × 28     8 #10   2.02
18 × 32     8 #11   2.17

20 × 30     8 #11    2.08
20 × 36   10 #11   2.17

f′c = 5000 psi fy = 60,000 psi

2 4 6 8 10

Load Eccentricity - inches

12 14 16 18 20

Figure 15.11 Maximum factored axial compression capacity for selected rect-
angular tied columns. Bending moment capacity determined for the major axis
with reinforcement equally divided on the short sides of the column section.

Solution: As in all problems, this one begins with the determination
of the factored ultimate axial load Pu:

Pu = 1.2PDL + 1.6PLL

= (1.2 × 150) + (1.6 × 250) = 580 kips [2580 kN]
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RECTANGULAR TIED COLUMNS

Side        Reinf.    %
Dimens.

(In.)

f′c = 6000 psi fy = 75,000 psi

4 8 12 16 20

Load Eccentricity - inches

24 28 32

24 × 32     10 #11    2.03
24 × 40    8 #14      1.88

28 × 36    8 #14      1.79
28 × 44    10 #14    1.83

32 × 40    8 #14      1.41
32 × 48    8 #18      2.08

36 × 44    8 #18     2.02
36 × 48    10 #18    2.31

40 × 44    12 #18    2.72
40 × 48    12 #18    2.50

Figure 15.12 Maximum factored axial compression capacity for selected rect-
angular tied columns. Bending moment capacity determined for the major axis
with reinforcement equally divided on the short sides of the column section.

With no real consideration for bending, the maximum axial load
capacity may be determined from the graphs by simply reading up the
left edge of the figure. The curved lines actually end some distance from
this edge since the code requires a minimum bending for all columns.

Using Figure 15.7, the minimum size is a 14-in. square column with
four No. 9 bars, for which the graph yields a maximum capacity of
approximately 590 kips. Note that this column has a steel percentage
of 2.04%.
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What constitutes the maximum size is subject to some judgment.
Any column with a curve above that of the chosen minimum column
will work. It becomes a matter of increasing redundancy of capacity.
However, there are often other design considerations involved in devel-
oping a whole structural system, so these examples are quite academic.
See the discussion for the example building in Chapter 20. For this
example, it may be observed that the minimum size choice is for a
14-in. square column. Thus, going up to a 15-in. or 16-in. size will
reduce the reinforcement. We may thus note from the limited choices
in Figure 15.7 that a maximum size is 16 in. square with four No. 8
bars, capacity is 705 kips, and pg = 1.23%. Since this is close to the
usual recommended minimum reinforcement percentage (1%), columns
of larger size will be increasingly redundant in strength, that is, struc-
turally oversized in designer’s lingo.

Example 2. A square tied column with f ′
c = 5 ksi [34.5 MPa] and steel

with fy = 60 ksi [414 MPa] sustains an axial load of 150 kips [667 kN]
dead load and 250 kips [1110 kN] live load and a bending moment of
75 kip-ft [110 kN-m] dead load and 125 kip-ft [170 kN-m] live load.
Determine the minimum size column and its reinforcement.

Solution: First determine the ultimate axial load and ultimate bending
moment. From Example 1, Pu = 580 kips [2580 kN]:

Mu = 1.2 × MDL + 1.6 × MLL

= (1.2 × 75) + (1.6 × 125) = 290 kip-ft [393 kN-m]

Next determine the equivalent eccentricity. Thus,

e = Mu

Pu
= 290 × 12

580
= 6 in. [152 mm]

Then, from Figure 15.8, minimum size is 18 in. square with eight
No. 11 bars, capacity at 6-in. eccentricity is approximately 650 kips.
Note that the steel percentage is 3.85%. If this is considered to be too
high, use a 20 × 20 in. column with four No. 10 bars with a capacity
of approximately 675 kips, or a 22 × 22 in. column with four No. 11
bars with a capacity of approximately 900 kips.
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Example 3. Select the minimum size rectangular column for the same
data as in Example 2.

Solution: With the factored axial load of 580 kips and the eccentricity
of 6 in., Figure 15.11 yields the following: 14- × 24-in. column, six
No. 10 bars, with a capacity of approximately 730 kips.

Problems 15.3.A–C. Using Figures 15.7–15.10, select the minimum size
square tied column and its reinforcement for the following data.

Concrete Axial Compressive Load (kips) Bending Moment (kip-ft)

Strength (psi) Live Dead Live Dead

A 5000 80 100 30 25
B 5000 100 140 40 60
C 5000 150 200 100 100

Problems 15.3.D–F. From Figures 15.11 and 15.12, determine minimum sizes
for rectangular columns for the same data as in Problems 15.3.A–C.

Round Columns

Round columns, as discussed previously, may be designed and built as
spiral columns, or they may be developed as tied columns with bars in a
rectangular layout or with the bars placed in a circle and held by a series
of round circumferential ties. Because of the cost of spirals, it is usually
more economical to use the tied column, so it is often used unless the
additional compressive strength or other behavioral characteristics of
the spiral column are required.

Figure 15.13 gives safe loads for round columns that are designed
as tied columns. As for the square and rectangular columns in
Figures 15.7–15.12, load values have been adapted from values
determined by strength design methods, and use is similar to that
demonstrated in the preceding examples.

Problems 15.3.G–I. Using Figure 15.13, pick the minimum size round col-
umn and its reinforcing for the load and moment combinations in Problems
15.3.A–C.
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1800
ROUND TIED COLUMNS

Side  Reinf.  %
Dimens.

(In.)

12     4 #5     1.10
12     4 #7     2.12

12    4 #9     3.54
14    4 #6    1.14

14    4 #8    2.05
14    4 #11   4.05

16    4 #7    1.19
16    6 #8     2.36

16   6 #10   3.79
20   4 #9    1.27

20   6 #10  2.43
20   8 #11  3.97

24   6 #10  1.68
24   6 #14  2.98

24  12 #11  4.14

f′c = 5000 psi fy = 60,000 psi

1 2 3 4 5

Load Eccentricity - inches

6 7 8 9 10 11 12 13

Figure 15.13 Maximum factored axial compression capacity for selected round
tied columns.

15.4 SPECIAL CONSIDERATIONS FOR CONCRETE
COLUMNS

Slenderness

Cast-in-place concrete columns tend to be stout in profile, so that slen-
derness related to buckling failure is much less often a critical concern
than with columns of wood or steel. Earlier editions of the ACI Code
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(Ref. 10) provided for consideration of slenderness, but permitted the
issue to be ignored when the L/r of the column fell below a controlled
value. For rectangular columns this meant that the effect was ignored
when the ratio of unsupported height to side dimension was less than
about 12. This is roughly analogous to the case for the wood column
with L/d less than 11.

Slenderness effects must also be related to the conditions of bend-
ing for the column. Since bending is usually induced at the column
ends, the two typical cases are those shown in Figure 15.14. If a sin-
gle end moment exists, or two equal end moments exist, as shown in
Figure 15.14a , the buckling effect is magnified and the P –delta effect
is maximum. The condition in Figure 15.14a is not the common case,
however, the more typical condition in framed structures being that
shown in Figure 15.14b, for which the code treats the problem as one
of moment magnification.

When slenderness must be considered, the ACI Code provides pro-
cedures for a reduction of column axial load capacity. One should be
aware, however, that reduction for slenderness is not considered in
design aids such as tables or graphs.

Development of Compressive Reinforcement

In multistory buildings, it is usually necessary to splice the vertical
reinforcement in columns. Steel bars are available in limited lengths,
making it necessary to do some splicing between stories of the structure.

Figure 15.14 Assumed conditions of bending moments at column ends for
consideration of column slenderness.
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Thus, the vertical load transfer from an upper column to the column
below it is achieved in two parts: from concrete to concrete by direct
bearing, and from steel to steel by splicing. This transfer must also occur
at the joint between the lowest column and its supporting foundation.
These development problems are treated in Section 13.7.

Vertical Concrete Compression Elements

There are several types of construction elements used to resist vertical
compression for building structures. Dimensions of elements are used
to differentiate between the defined elements. Figure 15.15 shows four
such elements, described as follows.

Figure 15.15 Classification of concrete compression elements.
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Wall. Walls of one or more story height are often used as bear-
ing walls, especially in concrete and masonry construction. Walls
may be quite extensive in length but are also sometimes built in
relatively short segments.

Pier. When a segment of wall has a length that is less than six
times the wall thickness, it is called a pier or sometimes a wall
pier.

Column. Columns come in many shapes but generally have some
extent of height in relation to dimensions of the cross section. The
usual limit for consideration as a column is a minimum height of
three times the column diameter (side dimension, etc.). A wall
pier may serve as a column, so the name distinction gets some-
what ambiguous.

Pedestal. A pedestal is really a short column; that is, a column with
height not greater than three times its thickness. This element is
also frequently called a pier, adding to the confusion of names.

To add more confusion, most large, relatively stout and massive
concrete support elements are typically also called piers. These may
be used to support bridges, long-span roof structures, or any other
extremely heavy load. Identity in this case is more a matter of overall
size rather than any specific proportions of dimensions. Bridge sup-
ports and supports for arch-type structures are also sometimes called
abutments .

One more use of the word pier is for description of a type of foun-
dation element, which is also sometimes called a caisson . This consists
essentially of a concrete column cast in a vertical shaft that is dug in
the ground.

Walls, piers, columns, and pedestals may also be formed from con-
crete masonry units (CMUs). The pedestal, as used with foundation
systems, is discussed in Chapter 16.

Concrete Masonry Columns and Piers

Structural columns may be formed with CMU construction for use as
entities or as part of a general CMU structure. In light construction,
column pedestals are commonly formed with CMU construction, espe-
cially if no other sitecast concrete is being used, other than for ground
slabs and foundations.
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The two block column. 
(a)

Arrangement of blocks alternated in 
successive courses. Column ties placed
in mortar joints.

The four block column. 
(b)

Also with alternating 
courses of blocks. Can
be lightly or heavily
reinforced, minimally or
totally filled with
concrete.

The box column. 
(c)

Basically a reinforced concrete column
cast in a masonry shell.

The box pilaster.
(d)

A column formed within a continuous
wall of CMU construction.

Figure 15.16 Forms of CMU columns.

Figure 15.16 shows several forms of CMU columns, commonly
used with construction that is generally reinforced to qualify as struc-
tural masonry. Figure 15.16a shows the minimum column, formed with
two block units in plan. The positions of the two blocks are ordinar-
ily rotated 90◦ in alternating courses of the construction, as shown
in the figure. This column is totally filled with concrete and ordi-
narily reinforced with a vertical rod in each block cavity. Horizontal
ties—necessary for full qualification as a structural column—must be
placed in the mortar joints, which must usually be at least 0.5 in. thick
to accommodate the ties.
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Figure 15.16b shows the four-unit column, forming in this case a
small void area in the center of the column. Capacity of this column
may be varied, with the minimum column having concrete fill and steel
rods in only the corner voids. Additional rods and fill may be placed
in the other voids for a stronger column. Finally, the center void may
also be filled.

Even larger columns may be formed with a perimeter of CMU con-
struction and an increasing center void. These may be constituted as
hollow masonry shell structures or may have significantly large concrete
columns or piers cast into their voids.

It is also possible to form a reinforced concrete column by casting
the concrete inside a boxlike shell made from CMU pieces that define a
considerable void. The simplest form for this is shown in Figure 15.16c,
using two U-shaped units for each course of the masonry. Columns as
small as 8 in. wide could be made this way, but the usual smallest size
is one with a 12-in.-wide side, and the most common size is one with a

Continuous, reinforced, concrete-filled cores
required as a minimum at:

Every 4 ft, vertically and horizontally

Tops, corners, intersections, and ends of all walls

All sides of openings

Figure 15.17 Common form of reinforced masonry construction with CMUs.
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16-in. side, producing an exterior that exactly resembles the column in
Figure 15.16a . With 16-in. units, the net size of the concrete column
on the inside is about 13.5 in., which is a significant concrete column.

The form of column in Figure 15.16c is also frequently used to
produce pilasters in continuous walls of CMU construction. This is
typically done by using alternating courses of units, with one course
being as shown in Figure 15.16c and the alternating course being as
shown in Figure 15.16d .

Shown in Figure 15.17 is a common form of structural masonry
with CMUs, called reinforced masonry . In this type of construction,
concrete is used in two ways:

1. For precast units that are laid up with mortar in the time-honored
fashion

2. To fill selected vertically aligned voids and special horizontal
courses after steel rods have been inserted

The result of using the concrete fill and steel reinforcement produces
a reinforced concrete rigid frame inside the CMU construction. This
type of construction is most popular in western and southern states in
the United States.
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FOUNDATIONS

Almost every building has a foundation built into the ground as its
base. In times past, stone or masonry construction was the usual form
of this structure. Today, however, sitecast concrete is the basic choice.
This is one of the most common and extensive uses for concrete in
building construction.

16.1 SHALLOW BEARING FOUNDATIONS

The most common foundation consists of pads of concrete placed
beneath the building. Because most buildings make a relatively shallow
penetration into the ground, these pads—called footings—are generally
classified as shallow bearing foundations. For simple economic reasons,
shallow foundations are generally preferred. However, when adequate
soil does not exist at a shallow location, driven piles or excavated piers
(caissons)—which extend some distance below the building—must be
used; these are called deep foundations.

522



WALL FOOTINGS 523

The two common footings are the wall footing and the column
footing. Wall footings occur in strip form, usually placed symmetrically
beneath the supported wall. Column footings are most often simple
square pads supporting a single column. When columns are very close
together or at the very edge of the building site, special footings that
carry more than a single column may be used.

Two other basic construction elements that occur frequently with
foundation systems are foundation walls and pedestals. Foundation
walls may be used as basement walls or merely to provide a transition
between more deeply placed footings and the aboveground building
construction. Foundation walls are common with aboveground con-
struction of wood or steel, as these constructions must be kept from
contact with the ground.

Pedestals are actually short columns used as transitions between the
building columns and their bearing footings. These may also be used to
keep wood or steel columns aboveground, or they may serve a structural
purpose to facilitate the transfer of a highly concentrated force from a
column to a widely spread footing.

16.2 WALL FOOTINGS

Wall footings consist of concrete strips placed under walls. The most
common type is that shown in Figure 16.1, consisting of a strip with a
rectangular cross section placed in a symmetrical position with respect
to the wall and projecting an equal distance as a cantilever from both

Figure 16.1 Typical form of a strip wall footing.
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faces of the wall. For soil pressure the critical dimension of the footing
is its width as measured perpendicular to the wall.

Footings ordinarily serve as construction platforms for the walls they
support. Thus, a minimum width is established by the wall thickness
plus a few inches on each side. The extra width is necessary because
of the crude form of foundation construction but also may be required
for support of forms for concrete walls. A minimum projection of 2 in.
is recommended for masonry walls and 3 in. for concrete walls.

With relatively light vertical loads, the minimum construction width
may be adequate for soil bearing. Walls ordinarily extend some distance
below grade, and allowable bearing will usually be somewhat higher
than for very shallow footings. With the minimum recommended foot-
ing width, the cantilever bending and shear will be negligible, so no
transverse (perpendicular to the wall) reinforcement is used. However,
some longitudinal reinforcement is recommended.

As the wall load increases and a wider footing is required, the trans-
verse bending and shear require some reinforcement. At some point the
increased width also determines a required thickness. Otherwise rec-
ommended minimum thickness is 8 in. for nonreinforced footings and
10 in. for reinforced footings.

Determination of the Footing Width

Footing width is determined by soil pressure, assuming that the mini-
mum width required for construction is not adequate for bearing. Since
footing weight is part of the total load on the soil, the required width
cannot be precisely determined until the footing thickness is known.
A common procedure is to assume a footing thickness, design for
the total load, verify the structural adequacy of the thickness, and—if
necessary—modify the width once the final thickness is determined.
The current ACI Code (Ref. 10) calls for using the unfactored loading
(service load) when determining footing width by soil pressure. The
example demonstrates this procedure.

Determination of the Footing Thickness

If the footing has no transverse reinforcing, the required thickness is
determined by the tension stress limit of the concrete, in either flexural
stress or diagonal stress due to shear. Transverse reinforcement is not
required until the footing width exceeds the wall thickness by some
significant amount, usually 2 ft or so. A good rule of thumb is to provide
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transverse reinforcement only if the cantilever edge distance for the
footing (from the wall face to the footing edge) exceeds the footing
thickness. For average conditions, this means for footings of about 3 ft
width or greater.

If transverse reinforcement is used, the critical concerns become for
shear in the concrete and tension stress in the reinforcing. Thicknesses
determined by shear will usually assure a low bending stress in the con-
crete, so the cantilever beam action will involve a very low percentage
of steel. This is in keeping with the general rule for economy in foun-
dation construction, which is to reduce the amount of reinforcement to
a minimum.

Minimum footing thicknesses are a matter of design judgment,
unless limited by building codes. The ACI Code (Ref. 10) recommends
limits of 8 in. for unreinforced footings and 10 in. for footings with
transverse reinforcement. Another possible consideration for the
minimum footing thickness is the necessity for placing dowels for
wall reinforcement.

Selection of Reinforcement

Transverse reinforcement is determined on the basis of flexural ten-
sion and development length due to the cantilever action. Longitudinal
reinforcement is usually selected on the basis of providing minimum
shrinkage reinforcement. A reasonable value for the latter is a minimum
of 0.0015 times the gross concrete area (area of the cross section of the
footing). Cover requirements are for 2 in. from formed edges and 3 in.
from surfaces generated without forming (such as the footing bottom).
For practical purposes, it may be desirable to coordinate the spacing of
the footing transverse reinforcement with that of any dowels for wall
reinforcement. Reinforcement for shear is required by code only when
the ultimate shear capacity due to factored loading (Vu) is greater than
the factored shear capacity of the concrete (φVc).

Example 1 illustrates the design procedure for a reinforced wall foot-
ing. Data for predesigned footings are given in Table 16.1. Figure 16.2
provides an explanation of the table entries. The use of unreinforced
footings is not recommended for footings greater than 3 ft in width.
Note: In using the strip method, a strip width of 12 in. is an obvious
choice when using U.S. units but not with metric units. To save space
the computations are performed with U.S. units only, but some metric
equivalents are given for key data and answers.
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TABLE 16.1 Allowable Loads on Wall Footings (see Figure 16.2)

Minimum
Wall Footing

Thickness, Dimensions
t (in.) (in.)

Concrete Masonry h w

Maximum Allowable
Soil Load on

Pressure Footinga

(lb/ft2) (lb/ft)

Reinforcement

Long Short
Direction Direction

1000 4 8 2,625 10 36 3 No. 4 No. 3 at 17
4 8 3,062 10 42 2 No. 5 No. 3 at 12
6 12 3,500 10 48 4 No. 4 No. 4 at 18
6 12 3,938 10 54 3 No. 5 No. 4 at 13
6 12 4,375 10 60 3 No. 5 No. 4 at 10
6 12 4,812 10 66 5 No. 4 No. 5 at 13
6 12 5,250 10 72 4 No. 5 No. 5 at 11

1500 4 8 4,125 10 36 3 No. 4 No. 3 at 11
4 8 4,812 10 42 2 No. 5 No. 4 at 14
6 12 5,500 10 48 4 No. 4 No. 4 at 11
6 12 6,131 11 54 3 No. 5 No. 5 at 16
6 12 6,812 11 60 5 No. 4 No. 5 at 12
6 12 7,425 12 66 4 No. 5 No. 5 at 11
8 16 8,100 12 72 5 No. 5 No. 5 at 10

2000 4 8 5,625 10 36 3 No. 4 No. 4 at 15
6 12 6,562 10 42 2 No. 5 No. 4 at 12
6 12 7,500 10 48 4 No. 4 No. 5 at 13
6 12 8,381 11 54 3 No. 5 No. 5 at 12
6 12 9,520 12 60 4 No. 5 No. 5 at 10
8 16 10,106 13 66 4 No. 5 No. 5 at 10
8 16 10,875 15 72 6 No. 5 No. 5 at 10

3000 6 12 8,625 10 36 3 No. 4 No. 4 at 11
6 12 10,019 11 42 4 No. 4 No. 5 at 14
6 12 11,400 12 48 3 No. 5 No. 5 at 11
6 12 12,712 14 54 6 No. 4 No. 5 at 11
8 16 14,062 15 60 5 No. 5 No. 5 at 10
8 16 15,400 16 66 5 No. 5 No. 6 at 13
8 16 16,725 17 72 6 No. 5 No. 6 at 11

a Allowable loads do not include the weight of the footing, which has been deducted from the total
bearing capacity. Criteria: f ′

c = 2000 psi, Grade 40 bars.
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Figure 16.2 Reference for Table 16.1.

Example 1. Design a wall footing with transverse reinforcement for
the following data:

Footing design load = 3750 lb/ft [5.47 kN/m] dead load and
5000 lb/ft [7.30 kN/m] live load of wall length.

Wall thickness for design = 6 in. [150 mm].

Maximum soil pressure = 2000 psf [100 kPa].

Concrete design strength = 2000 psi [14 MPa].

Steel yield stress = 40,000 psi [280 MPa]

Solution: For the reinforced footing the only concrete stress of concern
is that of shear. Concrete flexural stress will be low because of the low
percentage of reinforcement. As with the unreinforced footing, the usual
design procedure consists of making a guess for the footing thickness,
determining the required width for soil pressure, and then checking the
footing stress.

Try h = 12 in. Then, footing weight = 150 psf, and the net usable
soil pressure is 2000 minus 150 = 1850 lb/ft2.

The footing design load is unfactored when determining footing
width; therefore, the load is 8750 lb/ft [11.9 kN/m]. Required footing
width is 8750/1850 = 4.73 ft, or 4.73(12) = 56.8 in., say 57 in., or 4 ft
9 in., or 4.75 ft [1.45 m]. With this width, the design soil pressure for
stress is 8750/4.75 = 1842 psf [88 kPa].

For the reinforced footing it is necessary to determine the effective
depth, that is, the distance from the top of the footing to the center of
the steel bars. For a precise determination this requires a second guess:
the steel bar diameter (D). For the example a guess is made of a No. 6
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bar with a diameter of 0.75 in. With the cover of 3 in., this produces an
effective depth of d = h – 3 – (D /2) = 12 – 3 – (0.75/2) = 8.625 in.
[219 mm].

Concern for precision is academic in footing design, however, con-
sidering the crude nature of the construction. The footing bottom is
formed by a hand-dug soil surface, unavoidably roughed up during
placing of the reinforcement and casting of the concrete. The value
of d will, therefore, be taken as 8.6 in. [218 mm].

Next, we need to determine how much the soil is pushing back up
on the footing using the factored loads. This load is

wu = (1.2 × 3750) + (1.6 × 5000) = 12,500 lb/ft [182 kN/m]

With a width of 4.75 ft, the factored design soil pressure is

pd = 12,500

4.75
= 2630 psf [126 kPa]

The critical section for shear stress is taken at a distance of d from
the face of the wall. As shown in Figure 16.3a , this places the shear
section at a distance of 16.9 in. from the footing edge. At this location
the shear force is determined as

Vu = (2630 psf) × (16.9 in.) ×
(

1 ft

12 in.

)
= 3700 lb [16.5 kN]

and the shear capacity of the concrete is

φVc = 0.75
(
2
√

f ′
c

)
(b × d)

= 0.75
(
2
√

2000
)
(12 × 8.6) = 6920 lb [30.8 kN]

It is possible, therefore, to reduce the footing thickness. However,
cost-effectiveness is usually achieved by reducing the steel reinforce-
ment to a minimum. Low-grade concrete dumped into a hole in the
ground is quite inexpensive, compared to the cost of steel bars. Selec-
tion of footing thickness, therefore, becomes a matter of design judg-
ment, unless the footing width becomes as much as five times or so the
wall thickness, at which point stress limits may become significant.

If a thickness of 11 in. is chosen for this example, the shear capacity
decreases only slightly, and the required footing width will remain
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Figure 16.3 Considerations for shear and bending in the wall footing.

effectively the same. A new effective depth of 7.6 in. will be used, but
the design soil pressure for stresses will remain the same as it relates
only to the width of the footing.

The bending moment to be used for determination of the steel bars is
computed as follows (see Figure 16.3b). The force on the cantilevered
edge of the footing is

F = 25.5

12
× 2630 = 5589 lb [24.9 kN]

and the cantilever bending moment at the wall face is thus

Mu = 5589 × 25.5

2
= 71,260 in.-lb [1159 kN-m]

Mt = Mu

φ
= 71,260

0.9
= 79,178 lb-in. [1288 kN-m]
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Assuming an under-reinforced section with a/d approximately 0.2, the
required steel area per foot of wall length is

As = Mt

fy(d − a/z )
= 79,178

40,000 × 0.9 × 7.6
= 0.290 in.2

[
187 mm2]

The spacing required for a given bar size to satisfy this requirement
can be derived as follows:

Required spacing = (area of bar) × 12

required area/ft

Thus, for a No. 3 bar

s = 0.11 × 12

0.290
= 4.6 in. [117 mm]

Using this procedure, the required spacings for bar sizes 3–7 are
shown in the fourth column of Table 16.2. Bar sizes and spacings can
be most easily selected using handbook tables that yield the average
steel areas for various combinations of bar size and spacing. One such
table is Table 13.7 from which the spacing shown in the last column of
Table 16.2 were selected, indicating a range of choices for the footing
transverse reinforcement. Selection of the actual bar size and spacing
is a matter of design judgment, for which some considerations are the
following:

1. Maximum recommended spacing is 18 in.

2. Minimum recommended spacing is 6 in., to reduce the number
of bars and make placing of concrete easier.

3. Preference is for smaller bars as long as spacing is not too close.

TABLE 16.2 Options for the Reinforcement for Example 1

Area Required Bar Spacing Bar Spacing
Area of Bar for Bending Required Selected

Bar Size (in.2) (in.2) (in.) (in.)

3 0.11 0.290 4.6 4.5
4 0.20 0.290 8.3 8.0
5 0.31 0.290 12.8 12.5
6 0.44 0.290 18.2 18.0
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4. A practical spacing may be that of the spacing of vertical rein-
forcement in the supported wall, for which footing dowels are
required (or some full number multiple or division of the wall
bar spacing).

With these considerations in mind, a choice may be made for either
the No. 5 bars at 12.5-in. spacing or the No. 4 bars at 8-in. spacing. The
No. 6 bars at 24-in. spacing would not be a good choice due to the large
distance between bars; thus, the practice is to use a maximum spacing
of 18 in. for any spaced set of bars. Another consideration that must
be made for the choice of reinforcement is that regarding the required
development length for anchorage. With 2 in. of edge cover, the bars
will extend 23.5 in. from the critical bending section at the wall face
(see Figure 16.3b). Inspection of Table 13.9 will show that this is an
adequate length for all the bar sizes used in Table 16.2. Note that the
placement of the bars in the footing falls in the classification of “other”
bars in Table 13.9.

For the longitudinal reinforcement the minimum steel area is

As = (0.0015)(11)(57) = 0.94 in.2
[
606 mm2]

Using three No. 5 bars yields

As = (3)(0.31) = 0.93 in.2
[
600 mm2]

Table 16.1 gives values for wall footings for four different soil
pressures. Table data were derived using the procedures illustrated
in the example. Figure 16.2 shows the dimensions referred to in the
table.

Problem 16.2.A. Using concrete with a design strength of 2000 psi [13.8 MPa]
and grade 40 bars with a yield strength of 40 ksi [276 MPa], design a wall
footing for the following data: wall thickness = 10 in. [254 mm]; dead load
on footing = 5000 lb/ft [73 kN/m] and live load = 7000 lb/ft [102 kN/m]; and
maximum soil pressure = 2000 psf [96 kN/m2].

Problem 16.2.B. Same as Problem 16.2.A, except wall is 15 in. [380 mm] thick,
dead load is 6000 lb/ft [87.5 kN/m] and live load is 8000 lb/ft [117 kN/m], and
maximum soil pressure is 3000 psf [144 kN/m2].
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16.3 COLUMN FOOTINGS

The great majority of independent or isolated column footings are
square in plan, with reinforcement consisting of two equal sets of bars
at right angles to each other. The column may be placed directly on
the footing, or it may be supported by a pedestal, consisting of a short
column that is wider than the supported column. The pedestal helps
to reduce the so-called punching shear effect in the footing; it also
slightly reduces the edge cantilever distance and thus the magnitude of
bending in the footing. The pedestal thus allows for a thinner footing
and slightly less footing reinforcement. However, another reason for
using a pedestal may be to raise the bottom of the supported column
above the ground, which is important for columns of wood and steel.

The design of a column footing is based on the following
considerations:

Maximum Soil Pressure. The sum of the unfactored superimposed
load on the footing and the unfactored weight of the footing must
not exceed the limit for bearing pressure on the supporting soil
material. The required total plan area of the footing is derived on
this basis.

Design Soil Pressure. By itself, simply resting on the soil, the footing
does not generate shear or bending stresses. These are developed
only by the superimposed load. Thus, the soil pressure to be used
for designing the footing is determined as the factored superim-
posed load divided by the actual chosen plan area of the footing.

Control of Settlement. Where buildings rest on highly compressible
soil, it may be necessary to select footing areas that assure a
uniform settlement of all the building foundation supports. For
some soils, long-term settlement under dead load only may be
more critical in this regard, and must be considered as well as
maximum soil pressure limits.

Size of the Column. The larger the column, the less will be the shear
and bending stresses in the footing since these are developed by
the cantilever effect of the footing projection beyond the edges
of the column.

Shear Capacity Limit for the Concrete. For square-plan footings this
is usually the only critical stress in the concrete. To achieve an
economical design, the footing thickness is usually chosen to
reduce the need for reinforcement. Although small in volume,
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the steel reinforcement is a major cost factor in reinforced con-
crete construction. This generally rules against any concerns for
flexural compression stress in the concrete. As with wall footings,
the factored load is used when determining footing thickness and
any required reinforcement.

Flexural Tension Stress and Development Length for the Bars. These
are the main concerns for the steel bars, on the basis of the
cantilever bending action. It is also desired to control the spacing
of the bars between some limits.

Footing Thickness for Development of Column Bars. When a footing
supports a reinforced concrete or masonry column, the com-
pressive force in the column bars must be transferred to the
footing by development action (called doweling), as discussed in
Chapter 13. The thickness of the footing must be adequate for
this purpose.

Example 2 illustrates the design process for a simple, square column
footing.

Example 2. Design a square column footing for the following data:

Column load = 200 kips [890 kN] dead load and 300 kips [1334 kN]
live load

Column size = 15 in. [380 mm] square

Maximum allowable soil pressure = 4000 psf [200 kPa]

Concrete design strength = 3000 psi [21 MPa]

Yield stress of steel reinforcement = 40 ksi [280 MPa]

Solution: A quick guess for the footing size is to divide the load by
the maximum allowable soil pressure. Thus,

A = 500

4
= 125 ft2 w =

√
125 = 11.2 ft [3.41 m]

This does not allow for the footing weight, so the actual size required
will be slightly larger. However, it gets the guessing quickly into the
approximate range.

For a footing this large the first guess for the footing thickness is
a real shot in the dark. However, any available references to other
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footings designed for this range of data will provide some reasonable
first guess.

Try h = 31 in. [787 mm]. Then, footing weight = (31/12)(150) =
388 psf [18.6 kPa]. Net usable soil pressure = 4000 – 388 = 3612 psf
[173 kPa]. The required plan area of the footing is thus

A = 500,000

3612
= 138.4 ft2

[
12.9 m2]

and the required width for a square footing is

w =
√

138.4 = 11.76 ft [3.58 m]

Try w = 11 ft 9 in., or 11.75 ft. Then, design soil pressure =
500,000/(11.75)2 = 3622 psf [173 kPa].

For determining reinforcement and footing thickness, a factored soil
pressure is needed:

Pu = 1.2 × PDL + 1.6 × PLL

= 1.2(200) + 1.6(300) = 720 kips [3202 kN]

and, for the design soil pressure

pd = 720

(11.75)2
= 5.22 ksf or 5220 psf [250 kPa]

Determination of the bending force and moment are as follows (see
Figure 16.4):

Bending force:

F = 5220 × 63

12
× 11.75 = 322,000 lb [1432 kN]

Bending moment:

Mu = 322,000 × 63

12
× 1

2
= 845,000 ft-lb [1146 kN-m]

and for design

Mt = Mu

φ
= 845,000

0.9
= 939,000 ft-lb [1273 kN]
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Figure 16.4 Considerations for bending and bar development in the column
footing.

Figure 16.5 Considerations for effective depth of the column footing with
two-way reinforcement.

This bending moment is assumed to operate in both directions on the
footing and is provided for with similar reinforcement in each direc-
tion. However, it is necessary to place one set of bars on top of the
perpendicular set, as shown in Figure 16.5, and there are thus different
effective depths in each direction. A practical procedure is to use the
average of these two depths, that is, a depth equal to the footing thick-
ness minus the 3-in. cover and one bar diameter. This will theoretically
result in a minor overstress in one direction, which is compensated for
by a minor understress in the other direction.

It is also necessary to assume a size for the reinforcing bar in order to
determine the effective depth. As with the footing thickness, this must
be a guess, unless some reference is used for approximation. Assuming
a No. 9 bar for this footing, the effective depth thus becomes

d = h − 3 − (bar D) = 31 − 3 − 1.13

= 26.87 in., say 26.9 in. [683 mm]
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The section resisting the bending moment is one that is 141 in. wide
and has a depth of 26.9 in. Using a resistance factor for a balanced
section from Table 13.2, the balanced moment capacity of this section
is determined as follows:

MR = Rbd2 = 1149 × 141 × (26.9)2

12

= 9,770,000 ft-lb [13.25 MN-m]

which is almost 10 times the required moment.
From this analysis it may be seen that the compressive bending stress

in the concrete is not critical. Furthermore, the section may be classified
as considerably underreinforced, and a conservative value can be used
for jd (or d−a/2) in determining the required reinforcement.

The critical stress condition in the concrete is that of shear, either in
beam-type action or in punching action. Referring to Figure 16.6, the
investigation for these two conditions is as follows:

For beam-type shear (Figure 16.6a):

Vu = 5220 × 11.75 × 36.1

12
= 185,000 lb [823 kN]

For the shear capacity of the concrete:

Vc = 2
√

f ′
c (b × d) = 2

√
3000(141 × 26.9)

= 415,000 lb [1846 kN]

φVc = 0.75(415,000) = 311,000 lb [1383 kN]

For punching shear (Figure 16.6b):

Vu = 5220

[
(11.75)2 −

(
41.9

12

)2
]

= 657,000 lb [2922 kN]

Shear capacity of the concrete is

Vc = 4
√

f ′
c (b × d) = 4

√
3000(4 × 41.9)(26.9)

= 988,000 lb [4395 kN]

φVc = 0.75 × 988,000 = 741,000 lb [3296 kN]
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Figure 16.6 Considerations for shear in the column footing.

Although the beam shear force is low, the punching shear force is
close to the limit, so the 31-in. thickness is probably the minimum
allowable dimension.

Using an assumed value of 0.9 for j, the area of steel required is
determined as

As = M

fy jd
= 939,000 × 12

40,000 × 0.9 × 26.9
= 11.64 in.2

[
7510 mm2]

There are a number of combinations of bar size-and-number combi-
nations that may be selected to satisfy this area requirement. A range
of possible choices is shown in Table 16.3. Also displayed in the
table are data relating to two other considerations for the bar choice:
the center-to-center spacing of the bars and the development lengths
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required. Spacings given in the table assume the first bar to be centered
at 4 in. from the footing edge. Maximum spacing should be limited to
18 in. and minimum to about 6 in.

Required development lengths are taken from Table 13.9. The devel-
opment length available is a maximum of the distance from the column
face to the footing edge minus a 2-in. cover, in this case, a distance
of 61 in.

Inspection of Table 16.3 reveals that all the combinations given are
acceptable. In most cases designers prefer to use the largest possible
bar in the fewest number since handling of the bars is simplified with
fewer bars, which is usually a savings of labor time and cost.

Although the computations have established that the 31-in. dimen-
sion is the least possible thickness, it may be more economical to use
a thicker footing with less reinforcement, assuming the usual ratio of
costs of concrete and steel. In fact, if construction cost is the major
determinant, the ideal footing is the one with the lowest combined cost
for excavation, forming, concrete, and steel.

One possible limitation for the footing reinforcement is the total
percentage of steel. If this is excessively low, the section is hardly being
reinforced. The ACI Code stipulates that the minimum reinforcement
be the same as that for temperature reinforcement in slabs, a percentage
of 0.002 Ag for grade 40 bars and 0.0015Ag for grade 60 bars. For this
footing cross section of 141 in. × 31 in. with grade 40 bars, this means
an area of

As = 0.002(141 × 31) = 8.74 in.2
[
5639 mm2]

TABLE 16.3 Options for the Reinforcement for the Column Footing

Area of Steel Required
Provided Development Center-to-Center

(Required = 12.7 in.2) Lengtha Spacing

in.2 mm2 in. mm in. mm

Number
and Size
of Bars

20 No. 7 12.0 7742 32 813 7.0 178
15 No. 8 11.85 7646 37 940 9.5 241
12 No. 9 12.0 7742 42 1067 12.1 307
10 No. 10 12.7 8194 47 1194 14.7 373
8 No. 11 12.48 8052 52 1321 19.0 483

a From Table 13.9, values for “Other Bars,” f y = 40 ksi, f ′
c = 3 ksi.
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There are a number of other considerations that may affect the
selection of footing dimensions, such as the following:

Restricted Thickness. Footing thickness may be restricted by excava-
tion problems, water conditions, or presence of undesirable soil
materials at lower strata. Thickness may be reduced by use of
pedestals as discussed in Section 16.4.

Need for Dowels. When the footing supports a reinforced concrete
or masonry column, dowels must be provided for the vertical
column reinforcement, with sufficient extension into the foot-
ing for development of the bars. This problem is discussed in
Section 13.7.

Restricted Footing Width. Proximity of other construction or close
spacing of columns sometimes makes it impossible to use the
required square footing. For a single column a possible solution
is the use of an oblong (called a rectangular) footing. For multiple
columns a combined footing is sometimes used. A special foot-
ing is the cantilever footing, used when footings cannot extend
beyond the building face. An extreme case occurs when the entire
building footprint must be used in a single large footing, called
a mat foundation.

Table 16.4 yields the allowable superimposed load for a range of
predesigned footings and soil pressures. This material has been adapted
from more extensive data in Simplified Design of Building Foundations
(Ref. 11). Figure 16.7 indicates the symbols used for dimensions in
Table 16.4.

Problem 16.3.A. Design a square footing for a 14-in. [356-mm] square column
and a superimposed dead load of 100 kips [445 kN] and a live load of 100 kips
[445 kN]. The maximum permissible soil pressure is 3000 psf [144 kPa]. Use
concrete with a design strength of 3 ksi [20.7 MPa] and grade 40 reinforcing
bars with yield strength of 40 ksi [276 MPa].

Problem 16.3.B. Same as Problem 16.3.A, except column is 18 in. [457 mm],
dead load is 200 kips [890 kN] and live load is 300 kips [1334 kN], and per-
missible soil pressure is 4000 psf [192 MPa].
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TABLE 16.4 Safe Loads for Square Column Footingsa (see Figure 16.7)

Maximum Minimum Service
Soil Column Load on

Pressure Width, t Footing Reinforcement
(psf) (in.) (kips) Each Way

Dimensions

h w
(in.) (ft)

1000 8 7 10 3 3 No. 2
8 10 10 3.5 3 No. 3
8 14 10 4 4 No. 3
8 17 10 4.5 4 No. 4
8 21 10 5 4 No. 5
8 31 10 6 4 No. 6
8 42 11 7 6 No. 6

1500 8 12 10 3 3 No. 3
8 16 10 3.5 3 No. 4
8 22 10 4 4 No. 4
8 27 10 4.5 4 No. 5
8 34 10 5 5 No. 5
8 49 12 6 5 No. 6
8 65 13 7 5 No. 7
8 84 15 8 7 No. 7
8 105 17 9 8 No. 7

2000 8 16 10 3 3 No. 3
8 23 10 3.5 3 No. 4
8 30 10 4 5 No. 4
8 38 10 4.5 5 No. 5
8 46 11 5 4 No. 6
8 66 13 6 6 No. 6
8 89 15 7 6 No. 7
8 114 17 8 8 No. 7
8 143 19 9 7 No. 8

10 175 20 10 9 No. 8

3000 8 25 10 3 3 No. 4
8 35 10 3.5 3 No. 5
8 45 11 4 4 No. 5
8 57 12 4.5 4 No. 6
8 71 13 5 5 No. 6
8 101 15 6 7 No. 6

10 136 17 7 7 No. 7
10 177 20 8 7 No. 8
12 222 21 9 9 No. 8
12 272 24 10 9 No. 9
12 324 26 11 10 No. 9
14 383 28 12 10 No. 10
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TABLE 16.4 (continued)

Maximum Minimum Service
Soil Column Load on

Pressure Width, t Footing Reinforcement
(psf) (in.) (kips) Each Way

Dimensions

h w
(in.) (ft)

4000 8 34 10 3 4 No. 4
8 47 11 3.5 4 No. 5
8 61 12 4 5 No. 5
8 77 13 4.5 5 No. 6
8 95 15 5 5 No. 6
8 136 18 6 6 No. 7

10 184 20 7 8 No. 7
10 238 23 8 8 No. 8
12 300 25 9 8 No. 9
12 367 27 10 10 No. 9
14 441 29 11 10 No. 10
14 522 32 12 11 No. 10
16 608 34 13 13 No. 10
16 698 37 14 13 No. 11
18 796 39 15 14 No. 11

a Service loads do not include the weight of the footing, which has been deducted from the total bearing
capacity. Service load is considered 40% dead load and 60% live load. Grade 40 reinforcement.
f ′
c = 3 ksi.

Figure 16.7 Reference for Table 16.4.

16.4 PEDESTALS

A pedestal (also called a pier) is defined by the ACI Code as a short
compression member whose height does not exceed three times its
width. Pedestals are frequently used as transitional elements between
columns and the bearing footings that support them. Figure 16.8 shows
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Figure 16.8 Considerations for use of pedestals.

the use of pedestals with both steel and reinforced concrete columns.
The most common reasons for use of pedestals are:

1. To spread the load on top of the footing. This may relieve the
intensity of direct bearing pressure on the footing or may simply
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permit a thinner footing with less reinforcement due to the wider
column.

2. To permit the column to terminate at a higher elevation where
footings must be placed at depths considerably below the lowest
parts of the building. This is generally most significant for steel
columns.

3. To provide for the required development length of reinforcing
in reinforced concrete columns, where footing thickness is not
adequate for development within the footing.

4. To effect a transition between a column with very high concrete
strength and a footing with only moderate concrete strength.

Figure 16.8d illustrates the third situation described. Referring to
Table 13.11, we may observe that a considerable development length
is required for large-diameter bars made from high grades of steel. If
the minimum required footing does not have a thickness that permits
this development, a pedestal may offer a reasonable solution. However,
there are many other considerations to be made in the decision, and the
column reinforcing problem is not the only factor in this situation.

If a pedestal is quite short with respect to its width (see
Figure 16.8e), it may function essentially the same as a column footing
and may develop significant values for shear and bending stresses.
This condition is likely to occur if the pedestal width exceeds twice
the column width and the pedestal height is less than one-half of the
pedestal width. In such cases, the pedestal must be designed by the
same procedures used for an ordinary column footing.





V
STRUCTURAL SYSTEMS

FOR BUILDINGS

This part contains examples of the design of structural systems for
buildngs. The buildings selected for design are not intended as examples
of good architectural design but rather have been selected to create a
range of common situations in order to be able to demonstrate the
use of various structural components. Design of individual elements
of the structural systems is based on the materials presented in earlier
chapters. The purpose here is to show a broader context of design work
by dealing with the whole structure and with the building in general.
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17
GENERAL

CONSIDERATIONS FOR
BUILDING STRUCTURES

This chapter contains discussions of some general issues relating to
design of building structures. These concerns have mostly not been
addressed in the presentations in earlier chapters but require consider-
ation when dealing with whole building design situations. Application
of these materials is illustrated in the design examples in Chapter 15.

17.1 CHOICE OF BUILDING CONSTRUCTION

Materials, methods, and details of building construction vary consider-
ably on a regional basis. There are many factors that affect this situation,
including the effects of response to climate and regional availability of
construction materials and products. Even in a single region, differences
occur between individual buildings, based on styles of architectural
design and techniques of builders. Nevertheless, at any given time there

547
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are usually a few predominant, popular methods of construction that are
employed for most buildings of a given type and size. The construction
methods and details shown here are reasonable, but in no way are they
intended to illustrate a singular, superior style of building.

It is not possible to choose the materials and forms for a building
structure without considering the integration of the structure with the
general building construction. In some cases it may also be necessary
to consider the elements required for various building services, such
as those for piping, electrical service, lighting, communication, roof
drainage, and the HVAC (heating, ventilating, and air conditioning)
systems.

For multistory buildings it is necessary to accommodate the place-
ment of stairs, elevators, and the vertical elements for various building
services—particularly for air ducts between building levels. A major
consideration for multistory buildings is the planning of the various lev-
els so that they work when superimposed on top of each other. Bearing
walls and columns must be supported from below.

Choice of the general structural system as well as the various
individual elements of the system is typically highly dependent on
the general architectural design of the building. Hopefully, the two
issues—structural planning and architectural planning—are dealt with
simultaneously from preliminary design to final construction drawings.

17.2 STRUCTURAL DESIGN STANDARDS

Use of methods, procedures, and reference data for structural design
is subject to the judgment of the designer. Many guides exist, but
some individual selection is often required. Strong influences on choices
include:

Building code requirements from the enforceable statutes relating to
the location of the building

Acceptable design standards as published by professional groups,
such as the reference from the American Society of Civil Engi-
neers (ASCE) referred to frequently in this book (Ref. 1).

Recommended design standards from industry organizations, such
as the AISC and ACI

The body of work from current texts and references produced by
respected authors
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Some reference is made to these sources in this book. However,
much of the work is also simply presented in a manner familiar to
the authors, based on their own experiences. If study of this subject is
pursued by readers, they are sure to encounter styles and opinions that
differ from those presented here. Making one’s own choices in the face
of those conflicts is part of the progress of professional growth.

17.3 STRUCTURAL DESIGN PROCESS

The accomplishment of the structural design work for a building project
involves the planning of the structure and the application of a design
process for use of standard resources and methods. Design work tends
to be highly repetitive from one project to the next, so individual design
organizations and individual designers generally develop some standard
process to assure thorough completion of the work.

An early task to be done is the establishment of the enforceable
building code for the project. Once this is established, specific values
can be assigned for design loads, as discussed in Chapter 1. Application
of design criteria from the building code may also be spelled out in
detail by the code, although this is mostly a task for the designer.
Examples of project-related determination of design loads are given in
the building design cases in Chapters 18–20.

Standards of Performance for Design

Loads used for structural design must be derived primarily from
enforceable building codes. However, the principal concern of
codes is public health and safety. Performance of the structure for
other concerns may not be adequately represented in the minimum
requirements of the building code. Issues sometimes not included in
code requirements are:

Effects of deflection of spanning structures on nonstructural elements
of the construction

Sensations of bounciness of floors by building occupants

Protection of structural elements from damage due to weather or
normal usage

Damage to nonstructural construction and building services due to
movements of the structure during windstorms or earthquakes
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It is quite common for professional structural designers to have sit-
uations where they use their own judgment in assigning design loads.
This ordinarily means using increased loads, as the minimum loads
required by codes must always be recognized.

17.4 DEVELOPMENT OF STRUCTURAL SYSTEMS

Structural Planning

Planning a structure requires the ability to perform two major tasks. The
first is the logical arranging of the structure itself, regarding its geo-
metric form, its actual dimensions and proportions, and the ordering of
the elements for basic stability and reasonable interaction. All of these
issues must be faced, whether the building is simple or complex, small
or large, of ordinary construction or totally unique. Spanning beams
must be supported and have depths adequate for the spans; horizontal
thrusts of arches must be resolved; columns above should be centered
over columns below; and so on.

The second major task in structural planning is the development of
the relationships between the structure and the building in general. The
building plan must be “seen” as a structural plan. The two may not be
quite the same, but they must fit together. “Seeing” the structural plan
(or possibly alternative plans) inherent in a particular architectural plan
is a major task for designers of building structures.

Hopefully, architectural planning and structural planning are done
interactively, not one after the other. The more the architect knows
about the structural problems and the structural designer (if another per-
son) knows about architectural problems, the more likely it is possible
that an interactive design development may occur.

Although each individual building offers a unique situation if all of
the variables are considered, the majority of building design problems
are highly repetitious. The problems usually have many alternative solu-
tions, each with its own set of pluses and minuses in terms of various
points of comparison. Choice of the final design involves the com-
parative evaluation of known alternatives and the eventual selection
of one.

The word selection may seem to imply that all the possible solutions
are known in advance, not allowing for the possibility of a new solution.
The more common the problem, the more this may be virtually true.
However, the continual advance of science and technology and the
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fertile imagination of designers make new solutions an ever-present
possibility, even for the most common problems. When the problem
is truly a new one in terms of a new building use, a jump in scale,
or a new performance situation, there is a real need for innovation.
Usually, however, when new solutions to old problems are presented,
their merits must be compared to established previous solutions in order
to justify them. In its broadest context the selection process includes
the consideration of all possible alternatives: those well known, those
new and unproven, and those only imagined.

Building Systems Integration

Good structural design requires integration of the structure into the
whole physical system of the building. It is necessary to realize the
potential influences of structural design decisions on the general archi-
tectural design and on the development of the systems for power,
lighting, thermal control, ventilation, water supply, waste handling, ver-
tical transportation, firefighting, and so on. The most popular structural
systems have become so in many cases largely because of their ability
to accommodate the other subsystems of the building and to facilitate
popular architectural forms and details.

Economics

Dealing with dollar cost is a very difficult, but necessary, part of struc-
tural design. For the structure itself, the bottom-line cost is the delivered
cost of the finished structure, usually measured in units of dollars per
square foot of the building. For individual components, such as a single
wall, units may be used in other forms. The individual cost factors or
components, such as cost of materials, labor, transportation, installa-
tion, testing, and inspection, must be aggregated to produce a single
unit cost for the entire structure.

Designing for control of the cost of the structure is only one aspect
of the cost problem, however. The more meaningful cost is that for
the entire building construction. It is possible that certain cost-saving
efforts applied to the structure may result in increases of cost of other
parts of the construction. A common example is that of the floor struc-
ture for multistory buildings. Efficiency of floor beams occurs with the
generous provision of beam depth in proportion to the span. However,
adding inches to beam depths with the unchanging need for dimen-
sions required for floor and ceiling construction and installation of ducts
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and lighting elements means increasing the floor-to-floor distance and
the overall height of the building. The resulting increases in cost for
the added building skin, interior walls, elevators, piping, ducts, stairs,
and so on, may well offset the small savings in cost of the beams.
The really effective cost-reducing structure is often one that produces
major savings of nonstructural costs, in some cases at the expense of
less structural efficiency.

Real costs can only be determined by those who deliver the com-
pleted construction. Estimates of cost are most reliable in the form of
actual offers or bids for the construction work. The farther the cost
estimator is from the actual requirement to deliver the goods, the more
speculative the estimate. Designers, unless they are in the actual employ
of the builder, must base any cost estimates on educated guesswork
deriving from some comparison with similar work recently done in
the same region. This kind of guessing must be adjusted for the most
recent developments in terms of the local markets, competitiveness of
builders and suppliers, and the general state of the economy. Then the
four best guesses are placed in a hat and one is drawn out.

Serious cost estimating requires training and experience and a source
of reliable, timely information. For major projects various sources are
available in the form of publications or computer databases.

The following are some general rules for efforts that can be made
in the structural design work in order to have an overall general
cost-saving attitude.

1. Reduction of material volume is usually a means of reducing cost.
However, unit prices for different grades must be noted. Higher
grades of steel or wood may be proportionally more expensive
than the higher stress values they represent; more volume of
cheaper material may be less expensive.

2. Use of standard, commonly stocked products is usually a cost
savings, as special sizes or shapes may be premium priced. Wood
2 × 3 studs may be higher in price than 2 × 4 studs since the
2 × 4 is so widely used and bought in large quantities.

3. Reduction in the complexity of systems is usually a cost savings.
Simplicity in purchasing, handling, managing of inventory, and
so on will be reflected in lower bids as builders anticipate simpler
tasks. Use of the fewest number of different grades of materials,
sizes of fasteners, and other such variables is as important as the
fewest number of different parts. This is especially true for any
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assemblage done on the building site; large inventories may not
be a problem in a factory but usually are on a restricted site.

4. Cost reduction is usually achieved when materials, products, and
construction methods are familiar to local builders and construc-
tion workers. If real alternatives exist, choice of the “usual” one
is the best course.

5. Do not guess at cost factors; use real experience, yours or others.
Costs vary locally, by job size and over time. Keep up to date
with cost information.

6. In general, labor cost is greater than material cost. Labor for
building forms, installing reinforcement, pouring, and finishing
concrete surfaces is the major cost factor for site-poured concrete.
Savings in these areas are much more significant than saving of
material volume.

7. For buildings of an investment nature, time is money. Speed of
construction may be a major advantage. However, getting the
structure up fast is not a true advantage unless the other aspects
of the construction can take advantage of the time gained. Steel
frames often go up quickly, only to stand around and rust while
the rest of the work catches up.
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BUILDING ONE

The building in this chapter consists of a simple, single-story,
box-shaped building. Lateral bracing is developed in response to wind
load. Several alternatives are considered for the building structure.

18.1 GENERAL CONSIDERATIONS

Figure 18.1 shows the general form, the construction of the basic build-
ing shell, and the form of the wind-bracing shear walls for Building
One. The drawings show a building profile with a generally flat roof
(with minimal slope for drainage) and a short parapet at the roof edge.
This structure is generally described as a light wood frame and is the
first alternative to be considered for Building One. The following data
is used for design:

Roof live load = 20 psf (reducible).
Wind load as determined from the ASCE standard (Ref. 1).
Wood framing lumber of Douglas fir–larch.
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18.2 DESIGN OF THE WOOD STRUCTURE
FOR GRAVITY LOADS

With the construction as shown in Figure 18.1f , the roof dead load is
determined as follows:

Three-ply felt and gravel roofing 5.5 psf
Glass fiber insulation batts 0.5
1/2-in.-thick plywood roof deck 1.5
Wood rafters and blocking (estimate) 2.0
Ceiling framing 1.0
1/2-in.-thick drywall ceiling 2.5
Ducts, lights, and so on 3.0
Total roof dead load for design 16.0 psf

Assuming a partitioning of the interior as shown in Figure 18.2a ,
various possibilities exist for the development of the spanning roof and
ceiling framing systems and their supports. Interior walls may be used
for supports, but a more desirable situation in commercial uses is some-
times obtained by using interior columns that allow for rearrangement
of interior spaces. The roof framing system shown in Figure 18.2b is
developed with two rows of interior columns placed at the location of
the corridor walls. If the partitioning shown in Figure 18.2a is used,
these columns may be totally out of view (and not intrusive in the build-
ing plan) if they are incorporated in the wall construction. Figure 18.2c
shows a second possibility for the roof framing using the same column
layout as in Figure 18.2b. There may be various reasons for favoring
one of these framing schemes over the other. Problems of installation
of ducts, lighting, wiring, roof drains, and fire sprinklers may influence
this structural design decision. For this example the scheme shown in
Figure 18.2b is arbitrarily selected for illustration of the design of the
elements of the structure.

Installation of membrane-type roofing ordinarily requires at least a
1/2-in.-thick roof deck. Such a deck is capable of up to 32-in. spans in
a direction parallel to the face ply grain (the long direction of ordinary
4- × 8-ft panels). If rafters are not over 24 in. on center—as they
are likely to be for the schemes shown in Figure 18.2b and c —the
panels may be placed so that the plywood span is across the face grain.
An advantage in the latter arrangement is the reduction in the amount
of blocking between rafters that is required at panel edges not falling
on a rafter. The reader is referred to the discussion of plywood decks
in Section 5.11.
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Figure 18.1 Building One: general form.

A common choice of grade for rafters is No. 2, for which Table 5.1
yields an allowable bending stress of 1035 psi (repetitive use) and a
modulus of elasticity of 1,600,000 psi. Since the data for this case falls
approximately within the criteria for Table 5.6, possible choices from
the table are for either 2 × 10’s at 12-in. centers or 2 × 12’s at 16-in.
centers.

A ceiling may be developed by direct attachment to the underside
of the rafters. However, the construction as shown here indicates a



DESIGN OF THE WOOD STRUCTURE FOR GRAVITY LOADS 557

Figure 18.2 Developed plan for the interior partitioning and alternatives for the
roof framing.
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ceiling at some distance below the rafters, allowing for various ser-
vice elements to be incorporated above the ceiling. Such a ceiling
might be framed independently for short spans (such as at a corri-
dor) but is more often developed as a suspended ceiling , with hanger
elements from the overhead structure used to shorten the span of ceiling
framing.

The wood beams as shown in Figure 18.2b are continuous through
two spans, with a total length of 33 ft 4 in. and beam spans of 16 ft
8 in. For the two-span beam the maximum bending moment is the
same as for a simple span, the principal advantage being a reduction
in deflection. The total load area for one span is

A =
(

21 + 8

2

)
× 16.67 = 242 ft2

This permits the use of a live load of 16 psf. Thus, the unit of the
uniformly distributed load on the beam is found as

w = (16 psf LL + 16 psf DL) × 21 + 8

2
= 464 lb/ft

Adding a bit for the beam weight, a design for 480 lb/ft is reasonable,
for which the maximum bending moment is

M = wL2

8
= 480 × (16.67)2

8
= 16,673 ft - lb

A common minimum grade for beams is No. 1. The allowable bending
stress depends on the beam size and the load duration. Assuming a
15% increase for load duration, Table 5.1 yields the following:

For a 4 × member: Fb = 1.15(1000) = 1150 psi

For a 5 × or larger: Fb = 1.15(1350) = 1552 psi

Then, for a 4 ×

Required S = M

Fb
= 16,673 × 12

1150
= 174 in.3
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From Table A.8, the largest 4-in.-thick member is a 4 × 16 with
S = 135.7 in.3, which is not adequate. (Note: deeper 4 × members are
available but are quite laterally unstable and thus not recommended.)
For a thicker member the required S may be determined as

S = 1150

1552
× 174 = 129 in.3

for which possibilities include a 6 × 14 with S = 167 in.3 or an
8 × 12 with S = 165 in.3

Although the 6 × 14 has the least cross-sectional area and ostensibly
the lower cost, various considerations of the development of construc-
tion details may affect the beam selection. This beam could also be
formed as a built-up member from a number of 2 × members. Where
deflection or long-term sag are critical, a wise choice might be to use
a glued laminated section or even a steel rolled section. This may also
be a consideration if shear is critical, as is often the case with heavily
loaded beams.

A minimum slope of the roof surface for drainage is usually 2%,
or approximately 1/4-in. per foot. If drainage is achieved as shown in
Figure 18.3a , this requires a total slope of 1/4 × 25 = 6.25 in. from the
center to the edge of the roof. There are various ways of achieving this
sloped surface, including the simple tilting of the rafters.

Figure 18.3b shows some possibilities for the details of the con-
struction at the center of the building. As shown here the rafters are
kept flat and the roof profile is achieved by attaching cut 2 × mem-
bers to the tops of the long rafters and using a short profiled rafter
at the corridor. Ceiling joists for the corridor are supported directly
by the corridor walls. Other ceiling joists are supported at their ends
by the walls and at intermediate points by suspension from the rafters.

The typical column at the corridor supports a load approximately
equal to the entire spanning load for one beam, or

P = 480 × 16.67 = 8000 lb

This is a light load, but the column height requires something larger
than a 4 × size. (See Table 6.1.) If a 6 × 6 is not objectionable, it is
adequate in the lower stress grades. However, it is common to use a
steel pipe or tubular section, either of which can probably be accom-
modated in a stud partition wall.
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Figure 18.3 Construction details.

18.3 DESIGN FOR LATERAL LOADS

Design of the building structure for wind includes consideration for the
following:

1. Inward and outward pressure on exterior building surfaces, caus-
ing bending of the wall studs and an addition to the gravity loads
on roofs

2. Total lateral (horizontal) force on the building, requiring bracing
by the roof diaphragm and the shear walls



DESIGN FOR LATERAL LOADS 561

3. Uplift on the roof, requiring anchorage of the roof structure to
its supports

4. Total effect of uplift and lateral forces, possibly resulting in over-
turn (toppling) of the entire building

Uplift on the roof depends on the roof shape and the height above-
ground. For this low, flat-roofed building, the ASCE standard (Ref. 1)
requires an uplift pressure of 10.7 psf. In this case the uplift pressure
does not exceed the roof dead weight of 16 psf, so anchorage of the roof
construction is not required. However, common use of metal framing
devices for light wood frame construction provides an anchorage with
considerable resistance.

Overturning of the building is not likely critical for a building with
this squat profile (50 ft wide by only 13.5 ft high). Even if the over-
turning moment caused by wind exceeds the restoring moment due
to the building dead weight, the sill anchor bolts will undoubtedly hold
the building down in this case. Overturn of the whole building is usu-
ally more critical for towerlike building forms or for extremely light
construction. Of separate concern is the overturn of individual brac-
ing elements, in this case the individual shear walls, which will be
investigated later.

Wind Force on the Bracing System

The building’s bracing system must be investigated for horizontal force
in the two principal orientations: east–west and north–south. And, if
the building is not symmetrical, in each direction on each building axis:
east, west, north, and south.

The horizontal wind force on the north and south walls of the build-
ing is shown in Figure 18.4. This force is generated by a combination
of positive (direct, inward) pressure on the windward side and negative
(suction, outward) on the leeward side of the building. The pressures
shown as Case 1 in Figure 18.4 are obtained from data in the ASCE
standard (Ref. 1). (See discussion of wind loads in Chapter 4.) The
single pressures shown in the figure are intended to account for the
combination of positive and suction pressures. The ASCE standard
provides for two zones of pressure—a general one and a small special
increased area of pressure at one end. The values shown in Figure 18.4
for these pressures are derived by considering a critical wind velocity
of 90 mph and an exposure condition B, as described in the standard.
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Figure 18.4 Wind pressure on the south wall.

The range for the increased pressure in Case 1 is defined by the
dimension a and the height of the windward wall. The value of a is
established as 10% of the least plan dimension of the building or 40%
of the wall height, whichever is smaller, but not less than 3 ft. For this
example a is determined as 10% of 50 ft, or 5 ft. The distance for the
pressure of 12.8 psf in Case 1 is thus 2(a) = 10 ft.
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The design standard also requires that the bracing system be
designed for a minimum pressure of 10 psf on the entire area of the
wall. This sets up two cases (Case 1 and Case 2 in Figure 18.4) that
must be considered. Since the concern for the design is the generation
of maximum effect on the roof diaphragm and the end shear walls, the
critical conditions may be determined by considering the development
of end reaction forces and maximum shear for an analogous beam
subjected to the two loadings. This analysis is shown in Figure 18.5,
from which it is apparent that the critical concern for the end shear
walls and the maximum effect in the roof diaphragm is derived from
Case 2 in Figure 18.4.

The actions of the horizontal wind force resisting system in this
regard are illustrated in Figure 18.6. The initial force comes from wind
pressure on the building’s vertical sides. The wall studs span vertically
to resist this uniformly distributed load, as shown in Figure 18.6a .

Figure 18.5 Resultant wind forces on the end shear walls.
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Figure 18.6 Wall functions and wind pressure development.

Assuming the wall function to be as shown in Figure 18.6a , the
north–south wind force delivered to the roof edge is determined as

Total W = (10 psf) (100 × 13.5) = 13,500 lb

Roof edge W = 13,500 × 6.75

11
= 8284 lb

In resisting this load, the roof functions as a spanning member sup-
ported by the shear walls at the east and west ends of the building.
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The investigation of the diaphragm as a 100-ft simple span beam with
uniformly distributed loading is shown in Figure 18.7. The end reaction
and maximum diaphragm shear force is found as

R = V = 8284

2
= 4142 lb

which produces a maximum unit shear in the 50-ft-wide diaphragm of

v = shear force

roof width
= 4142

50
= 82.8 lb/ft

From Table 18.1, a variety of selections is possible. Variables include
the class of the plywood, the panel thickness, the width of supporting
rafters, the nail size and spacing, the use of blocking, and the layout
pattern of the plywood panels. Assuming a minimum plywood thickness
for the flat roof at 1/2-in. (given as 15/32 in the table), a possible choice
is as follows:

APA rated sheathing, 15/32-in.-thick, 2 × rafters, 8d nails at 6 in. at
all panel edges, blocked diaphragm

For these criteria the table yields a capacity of 270 lb/ft.
In this example, if the need for the minimum thickness plywood

is accepted, it turns out that the minimum construction is more than
adequate for the required lateral force resistance. Had this not been
the case, and the required capacity had resulted in considerable nail-
ing beyond the minimum, it would be possible to graduate the nailing
spacings from that required at the building ends to minimal nailing in
the center portion of the roof. (See the form of the shear variation
across the roof width.)

The moment diagram shown in Figure 18.7 indicates a maximum
value of 104 kip-ft at the center of the span. This moment is used to
determine the maximum force in the diaphragm chord at the roof edges.
The force must be developed in both compression and tension as the
wind direction reverses. With the construction as shown in Figure 18.1f ,
the top plate of the stud wall is the most likely element to be utilized
for this function. In this case the chord force of 2071 lb, as shown in
Figure 18.7, is quite small, and the doubled 2 × member should be
capable of resisting the force. However, the building length requires
the use of several pieces to create this continuous plate, so the splices
for the double member should be investigated.
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Figure 18.7 Spanning function of the roof diaphragm.
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The end reaction force for the roof diaphragm, as shown in
Figure 18.7, must be developed by the end shear walls. As shown in
Figure 18.1, there are two walls at each end, both 21 ft long in plan.
Thus, the total shear force is resisted by a total of 42 ft of shear wall
and the unit shear in the wall is

v = 4142

42
= 98.6 lb/ft

As with the roof, there are various considerations for the selection
of the wall construction. Various materials may be used on both the
exterior and interior surfaces of the stud wall. The common form of
construction shown in Figure 18.1f indicates gypsum drywall on the
inside and a combination of plywood and stucco (cement plaster) on the
outside of this wall. All three of these materials have rated resistances
to shear wall stresses. However, with a combination of materials, it is
common practice to consider only the strongest of the materials to be
the resisting element. In this case that means the plywood sheathing on
the exterior of the wall. From Table 18.2, a possible choice is

APA rated sheathing, 3/8-in.-thick, with 6d nails at 6-in. spacing at
all panel edges.

For this criteria the table allows a unit shear of 200 lb-ft. Again,
this is minimal construction. For higher loadings a greater resistance
can be obtained by using better plywood, thicker panels, larger nails,
closer nail spacing, and—sometimes—wider studs. Unfortunately, the
nail spacing cannot be graduated—as it may be for the roof—as the
unit shear is a constant value throughout the height of the wall.

Figure 18.8a shows the loading condition for investigation of the
overturn effect on the end shear wall. Overturn is resisted by the
so-called restoring moment, due to the dead load on the wall—in this
case a combination of the wall weight and the portion of roof dead load
supported by the wall. Safety is considered adequate if the restoring
moment is at least 1.5 times the overturning moment. A comparison is
therefore made between the value of 1.5 times the overturning moment
and the restoring moment as follows:

Overturning moment = (2.071)(11)(1.5) = 34.2 kip-ft

Restoring moment = (3 + 6)(21/2) = 94.5 kip-ft
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Figure 18.8 Functions of the end shear wall.

This indicates that no tie-down force is required at the wall ends
(force T as shown in Figure 18.6). Details of the construction and other
functions of the wall may provide additional resistances to overturn.
However, some designers prefer to use end anchorage devices (called
tie-down anchors) at the ends of all shear walls, regardless of loading
magnitudes.

Finally, the walls will be bolted to the foundation with code-required
sill bolts, which provide some resistance to uplift and overturn effects.
At present most codes do not permit sill bolts to be used for com-
puted resistances to these effects due to the cross-grain bending that is
developed in the wood sill members.

The sill bolts are used, however, for resistance to the sliding of
the wall. The usual minimum bolting is with 1/2-in. bolts, spaced at a
maximum of 6-ft centers, with a bolt not less than 12 in. from the wall
ends. This results in a bolting for this wall as shown in Figure 18.8b.
The five bolts shown should be capable of resisting the lateral force,
using the values given by the codes.

For buildings with relatively shallow foundations, the effects of shear
wall anchorage forces on the foundation elements should also be inves-
tigated. For example, the overturning moment is also exerted on the
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foundations and may cause undesirable soil stresses or require some
structural resistance by foundation elements.

Another area of concern has to do with the transfer of forces from
element to element in the whole lateral force resisting structural sys-
tem. A critical point of transfer in this example is at the roof-to-wall
joint. The force delivered to the shear walls by the roof diaphragm
must actually be passed through this joint, by the attachments of the
construction elements. The precise nature of this construction must be
determined and must be investigated for these force actions.

18.4 ALTERNATIVE STEEL AND MASONRY STRUCTURE

Alternative construction for Building One is shown in Figure 18.9.
In this case the walls are made of CMU construction, and the roof
structure consists of a formed sheet steel deck supported by open-web
steel joists (light, prefabricated steel trusses). A plan for this fram-
ing is shown in Figure 18.2d . The following data is assumed for
design:

Roof dead load = 15 psf, not including the weight ofthe structure

Roof live load = 20 psf, reducible for large supported areas

Construction consists of:

K-series open-web steel joists (See Section 9.10.)

Reinforced hollow concrete masonry construction

Formed sheet steel deck (See Table 12.1.)

Deck surfaced with lightweight insulating concrete fill

Multiple-ply, hot-mopped, felt-and-gravel roofing

Suspended ceiling with gypsum drywall

The section in Figure 18.9b indicates that the wall continues above
the top of the roof to create a parapet, and that the steel trusses are
supported at the wall face. The span of the joists is thus established as
approximately 48 ft, which is used for their design.
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Figure 18.9 Building One: alternative steel and masonry structure.

As the construction section shows, the roof deck is placed directly
on top of the trusses and the ceiling is supported by attachment to
the bottom of the trusses. For reasonable drainage of the roof surface
a slope of at least 1/4 inch per foot (2%) must be provided. The roof
slope may be provided by tilting the trusses or by using a variable depth
truss with the top chord sloped and the bottom chord horizontally flat.
The following work assumes a constant depth of the trusses for design
purposes.
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Design of the Roof Structure

Spacing of the open-web joists must be coordinated with the selection
of the roof deck and the details for construction of the ceiling. For a
trial design, a spacing of 4 ft is assumed. From Table 12.1, with deck
units typically achieving three spans or more, the lightest deck in the
table (22 gage) may be used. Choice of the deck configuration (rib
width) depends on the type of materials placed on top of the deck and
the means used to attach the deck to the supports.

Adding the weight of the deck to the other roof dead load produces
a total dead load of 17 psf for the superimposed load on the joists. As
illustrated in Section 9.10, the design for a K-series joist is as follows:

Joist dead load = 4(17) = 68 lb/ft (not including joist)

Joist live load = 4(20) = 80 lb/ft

Total factored load = 1.2(68) + 1.6(80) = 82 + 128 = 210 lb/ft +
the joist weight

For the 48-ft span, the following alternative choices are obtained from
Table 9.5:

24K9 at 12.0 plf, total factored load = 1.2(12 + 68) + 128 = 96 +
128 = 224 lb/ft (less than the table value of 313 lb/ft)

26K5 at 10.6 plf, total load = 1.2(68 + 10.6) + 128 = 94 + 128 =
222 lb/ft (less than the table value of 233 lb/ft)

Live-load capacity for L/360 deflection exceeds the requirement for
both of these choices.

While the 26K5 is the lightest permissible choice, there may be com-
pelling reasons for using a deeper joist. For example, if the ceiling is
directly attached to the bottoms of the joists, a deeper joist will provide
more space for passage of building service elements. Deflection will
also be reduced if a deeper joist is used. Pushing the live-load deflec-
tion to the limit means a deflection of (1/360)(48 × 12) = 1.9 in. While
this may not be critical for the roof surface, it can present problems for
the underside of the structure, involving sag of ceilings or difficulties
with nonstructural walls built up to the ceiling.

Choice of a 30K7 at 12.3 plf results in considerably less deflection
at a small premium in additional weight.
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It should be noted that Table 9.5 is abridged from a larger table in
the reference, and there are therefore many more choices for joist sizes.
The example here is meant only to indicate the process for use of such
references.

Specifications for open-web joists give requirements for end support
details and lateral bracing (see Ref. 6). If the 30K7 is used for the 48-ft
span, for example, four rows of bridging are required.

Although the masonry walls are not designed for this example, it
should be noted that the support indicated for the joists in Figure 18.9b
results in an eccentric load on the wall. This induces bending in the wall,
which may be objectionable. An alternative detail for the roof-to-wall
joint is shown in Figure 18.10 in which the joists sit directly on the wall
with the joist top chord extending to form a short cantilever. This is a
common detail, and the reference supplies data and suggested details
for this construction.

Alternative Roof Structure with Interior Columns

If a clear spanning roof structure is not required for this building, it
may be possible to use some interior columns and a framing system for
the roof with quite modest spans. Figure 18.11a shows a framing plan
for a system that uses columns at 16 ft 8 in. on center in each direction.
While short-span joists may be used with this system, it would also
be possible to use a longer span deck, as indicated on the plan. This
span exceeds the capability of the deck with 1.5-in. ribs, but decks with
deeper ribs are available.

A second possible framing arrangement is shown in Figure 18.11b
in which the deck spans the other direction and only two rows of beams
are used. This arrangement allows for wider column spacing; while that
increases the beam spans, a major cost savings is represented by the
elimination of 60% of the interior columns and their footings.

Beams in continuous rows can sometimes be made to simulate a con-
tinuous beam action without the need for moment-resistive connections.
Use of beam splice joints off the columns, as shown in Figure 18.11c,
allows for relatively simple connections but some advantages of the
continuous beam. A principal gain thus achieved is a reduction in
deflections.

For the beam in Figure 18.11b, assuming a slightly heavier deck, an
approximate dead load of 20 psf will result in a beam factored load of

w = 16.67[1.2(20) + 1.6(16)] = 827 plf + the beam,say 900 plf
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Figure 18.10 Building One: variation of the roof-to-wall joint.

(Note that the beam periphery of 33.3 × 16.67 = 555 ft2 qualifies the
beam for a roof live-load reduction, indicating the use of 16 psf as
discussed in Section 1.8.)

The simple beam bending moment for the 33.3-ft span with the
factored load is

Mu = wL2

8
= 0.900 × (33.3)2

8
= 125 kip-ft

and the required moment resistance of the beam is therefore

Mr = Mu

φb
= 125

0.9
= 139 kip-ft



ALTERNATIVE STEEL AND MASONRY STRUCTURE 577

Figure 18.11 Building One: options for the roof framing with interior columns.

From Table 9.1, the lightest W-shape beam permitted is a
W 14 × 34. From Figure 9.11, it may be observed that the total load
deflection will be less then L/180, which is usually not critical for
roof structures. Furthermore, the live-load deflection will be less than
one half this amount, which is quite a modest value.

It is assumed that the continuous connection of the deck to the
beam top flange is adequate to consider the beam to have continuous
lateral support, permitting the use of a resisting moment of Mp. If the
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Figure 18.12 Framing detail at the top of the column with simple beam action.

three-span beam is constructed with three simple-spanning segments,
the detail at the top of the column will be as shown in Figure 18.12.

It is also possible to consider the use of the beam framing indicated
in Figure 18.11b with a continuous beam having pinned connections
off the columns. This will reduce both the maximum bending moment
and the deflection for the beam, and most likely permit a slightly lighter
beam.

The total load on the beam is the approximate load on the column.
Thus, the column factored load is 0.900(33.3) = 30 kips. The required
design strength of the column is therefore 30(1/0.85) = 35.3 kips.
Assuming an unbraced column height of 10 ft, the following choices
may be found for the column:

From Table 10.4, a 3-in. pipe (nominal size, standard weight)

From Table 10.5, an HSS 3-in. square tube, with 3/16-in. thick wall

18.5 ALTERNATIVE TRUSS ROOF

If a gabled (double sloped) roof form is desirable for Building One, a
possible roof structure is shown in Figure 18.13. The building pro-
file shown in Figure 18.13a is developed with a series of trusses,
spaced at plan intervals, as shown for the beam-and-column rows in
Figure 18.11a . The truss form is shown in Figure 18.13b. The com-
plete results of an algebraic analysis for a unit loading on this truss are
displayed in Figure 2.13. The true unit loading for the truss is derived
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Figure 18.13 Building One: alternative truss roof structure.

from the form of construction and is approximately 10 times the unit
load used in the example. This accounts for the values of the internal
forces in the members as displayed in Figure 18.13e.

The detail in Figure 18.13d shows the use of double-angle members
with joints developed with gusset plates. The top chord is extended to
form the cantilevered edge of the roof. For clarity of the structure, the
detail shows only the major structural elements. Additional construction
would be required to develop the roofing, ceiling, and soffit.
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In trusses of this size, it is common to extend the chords with-
out joints for as long as possible. Available lengths depend on the
sizes of members and the usual lengths in stock by local fabricators.
Figure 18.13c shows a possible layout that creates a two-piece top
chord and a two-piece bottom chord. The longer top chord piece is
thus 36 ft plus the overhang, which may be difficult to obtain if the
angles are small.

The roof construction illustrated in Figure 18.13d shows the use of
a long-span steel deck that bears directly on top of the top chord of the
trusses. This option simplifies the framing by eliminating the need for
intermediate framing between the trusses. For the truss spacing of 16 ft
8 in. as shown in Figure 18.11a , the deck will be quite light and this
is a feasible system. However, the direct bearing of the deck adds a
spanning function to the top chord, and the chords must be considerably
heavier to work for this added task.

The loading condition for the truss as shown in Section 2.6 indicates
concentrated forces of 1000 lb each at the top chord joints. [Note: It
is a typical procedure to assume this form of loading, even though
the actual load is distributed along the top chord (roof load) and the
bottom chord (ceiling load).] If the total of the live load, roof dead
load, ceiling dead load, and truss weight is approximately 60 psf, the
single joint load is

P = (60)(10)(16.67) = 10,000 lb

This is 10 times the load in the truss in Section 2.6, so the inter-
nal forces for the gravity loading will be 10 times those shown in
Figure 2.13. These values are shown here in Figure 18.13e.

Various forms may be used for the members and the joints of this
truss. The loading and span is quite modest here so the truss members
will be quite small and joints will have minimum forces. A common
form for this truss would be one using tee shapes for the top and bottom
chords and double angles for interior members with the angles welded
directly to the tee stems (see Figure 11.10b). Bolted connections are
possible but probably not practical for this size truss.

18.6 FOUNDATIONS

Foundations for Building One would be quite minimal. For the exte-
rior bearing walls, the construction provided will depend on concerns
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Figure 18.14 Options for the exterior wall foundations for the wood structure.

for frost and the location below ground of suitable bearing material.
Options for the wood structure are shown in Figure 18.14.

Where frost is not a problem and suitable bearing can be achieved at
a short distance below the finished grade, a common solution is to use
the construction shown in Figure 18.14a , called a grade beam . This is
essentially a combined footing and short foundation wall in one. It is
typically reinforced with steel bars in the top and bottom to give it
some capacity as a continuous beam, capable of spanning over isolated
weak spots in the supporting soil.

Where frost is a problem, local codes will specify a minimum dis-
tance from the finished grade to the bottom of the foundation. To reach
this distance, it may be more practical to build a separate footing and
foundation wall, as shown in Figure 18.14b. This short, continuous
wall may also be designed for some minimal beamlike action, similar
to that for the grade beam.

For either type of foundation, the light loading of the roof and the
wood stud wall will require a very minimal width of foundation, if
the bearing soil material is at all adequate. If bearing is not adequate,
then this type of foundation (shallow bearing footings) must be replaced
with some form of deep foundation (piles or caissons), which presents
a major structural design problem.
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Figure 18.15 Options for the exterior wall foundations for the masonry wall
structure.

Figure 18.15 shows foundation details for the masonry wall struc-
ture, similar to those for the wood structure. Here the extra weight of the
masonry wall may require some more width for the bearing elements,
but the general form of construction will be quite similar. An alterna-
tive for the foundation wall in either Figure 18.14b or Figure 18.15b
is to use grout-filled concrete blocks instead of the cast concrete wall.

Footings for any interior columns for Building One would also be
minimal, due to the light loading from the roof structure and the low
value of live load for the roof.
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BUILDING TWO

Figure 19.1 shows a building that consists essentially of stacking the
plan for Building One to produce a two-story building. The profile
section of the building shows that the structure for the second story is
developed the same as the roof structure and walls for Building One.
Here, for both the roof and the second floor, the framing option chosen
is that shown in Figure 18.2b.

While the framing layout is similar, the principal difference between
the roof and floor structures has to do with the loadings. Both the dead
load and live load are greater for the floor. In addition, the deflection
of long-spanning floor members is a concern both for the dimension
and for the bounciness of the structure.

The two-story building sustains a greater total wind load, although
the shear walls for the second story will be basically the same as for
Building One. The major effect in this building is the force generated
in the first-story shear walls. In addition, there is a second horizontal
diaphragm: the second-floor deck.

583
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Figure 19.1 Building Two: general form and construction details.
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Some details for the second-floor framing are shown in Figure 19.1c.
Roof framing details are similar to those shown for Building One in
Figure 18.3b. As with Building One, an option here is to use a clear
spanning roof structure—most likely with light trusses—that would
eliminate the need for the corridor wall columns in the second floor.

19.1 DESIGN FOR GRAVITY LOADS

For design of the second-floor structure the following construction is
assumed. The weight of the ceiling is omitted, assuming it to be sup-
ported by the first-story walls.

Carpet and pad 3.0 psf

Fiberboard underlay 3.0

Concrete fill, 1.5 in. 12.0

Plywood deck, 3/4 in. 2.5

Ducts, lights, wiring 3.5

Total, without joists 24.0 psf

Minimum live load for office areas is 50 psf. However, the code
requires the inclusion of an extra load to account for possible additional
partitioning; usually 25 psf. Thus, the full design live load is 75 psf. At
the corridor the live load is 100 psf. Many designers would prefer to
design the whole floor for a live load of 100 psf, thereby allowing for
other arrangements or occupancies in the future. As the added partition
load is not required for this live load, it is only an increase of about
20% in the total load. With this consideration, the total design load for
the joists is thus 124 psf.

With joists at 16-in. centers, the superimposed uniformly distributed
load on a single joist is

DL = 16

12
(24) = 32 lb/ft + the joist, say 40 lb/ft

LL = 16

12
(100) = 133 lb/ft

and the total load is 173 lb/ft. For the 21-ft-span joists the maximum
bending moment is

M = wL2

8
= 173 × (21)2

8
= 9537 ft-lb
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For Douglas fir–larch joists of select structural grade and 2-in. nom-
inal thickness, F b from Table 5.1 is 1725 psi for repetitive member use.
Thus, the required section modulus is

S = M

Fb
= 9537 × 12

1725
= 66.3 in.3

Inspection of Table A.8 shows that there is no 2 × member with
this value for section modulus. A possible choice is for a 3 × 14 with
S = 73.151 in.3. This is not a good design since the 3 × members in
select structural grade are very expensive. Furthermore, as inspection
of Figure 5.1 reveals, the deflection is considerable—not beyond code
limits but sure to result in some sag and bounciness. A better choice
for this span and load is probably for one of the proprietary fabricated
joists (see discussion in Section 5.14).

The beams support both the 21-ft joists and the short 8-ft corridor
joists. The total load periphery carried by one beam is approximately
240 ft2, for which a reduction of 7% is allowed for the live load (see
discussion in Section 4.1). Using the same loading for corridors and
offices, the beam load is determined as

DL = (30)(14.5) = 435 lb/ft

+ beam weight = 50

+ wall above = 150

Total DL = 635 lb/ft

LL = (0.93)(100)(14.5) = 1349 lb/ft

Total load on beam = 1984, say 2000 lb/ft

For the uniformly loaded simple beam with a span of 16.67 ft

Total load = W = (2)(16.67) = 33.4 kips

End reaction = maximum beam shear = W/2 = 16.7 kips

Maximum bending moment is

M = WL

8
= 33.4 × 16.67

8
= 69.6 kip-ft

For a Douglas fir–larch, dense No. 1 grade beam, Table 5.1 yields
values of F b = 1550 psi, F v = 170 psi, and E = 1,700,000 psi. To
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satisfy the flexural requirement, the required section modulus is

S = M

Fb
= 69.6 × 12

1.550
= 539 in.3

From Table A.8 the least weight section is a 10 × 20 or a 12 × 18.
If the 20-in.-deep section is used, its effective bending resistance

must be reduced (see discussion in Section 5.2). Thus the actual moment
capacity of the 10 × 20 is reduced by the size factor from Table 5.3
and is determined as

M = CF × Fb × S

= (0.947)(1.550)(602.1)(1/12) = 73.6 kip-ft

As this still exceeds the requirement, the selection is adequate. Similar
investigations will show the other size options to also be acceptable.

If the actual beam depth is 19.5 in., the critical shear force may be
reduced to that at a distance of the beam depth from the support. Thus,
an amount of load equal to the beam depth times the unit load can be
subtracted from the maximum shear. The critical shear force is thus

V = (actual end shear force) − (beam depth in feet times unit load)

= 16.7 − 2.0(19.5/12) = 16.7 − 3.25 = 13.45 kips

For the 10 × 20 the maximum shear stress is thus

fv = 1.5
V

A
= 1.5

13450

185.3
= 109 psi

This is less than the limiting stress of 170 psi as given in Table 5.1,
so the beam is acceptable for shear resistance. However, this is still
a really big piece of lumber, and questionably feasible, unless this
building is in the heart of a major timber region. It is probably log-
ical to modify the structure to reduce the beam span or to choose a
steel beam or a glued laminated section in place of the solid-sawn
timber.

Although deflection is often critical for long spans with light loads, it
is seldom critical for the short-span, heavily loaded beam. The reader
may verify this by investigating the deflection of this beam, but the
computation is not shown here (see Section 5.7).
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For the interior column at the first story the design load is approx-
imately equal to the total load on the second-floor beam plus the load
from the roof structure. As the roof loading is about one third of that
for the floor, the design load is about 50 kips for the 10-ft-high col-
umn. Table 6.1 yields possibilities for an 8 × 10 or 10 × 10 section.
For various reasons it may be more practical to use a steel member
here—a round pipe or a square tubular section—which may actually
be accommodated within a relatively thin stud wall at the corridor.

Columns must also be provided at the ends of the beams in the east
and west walls. Separate column members may be provided at these
locations, but it is also common to simply build up a column within
the wall from a number of studs.

19.2 DESIGN FOR LATERAL LOADS

Lateral resistance for the second story of Building Two is essentially
the same as for Building One. Design consideration here will be limited
to the diaphragm action of the second-floor deck and the two-story end
shear walls.

The wind loading condition for the two-story building is shown
in Figure 19.2a . For the same design conditions assumed for wind
in Chapter 18, the pressure used for horizontal force on the building
bracing system is 10 psf for the entire height of the exterior wall. At the
second-floor level the wind load delivered to the edge of the diaphragm
is 120 lb/ft, resulting in the spanning action of the diaphragm as shown
in Figure 19.2b. Referring to the building plan in Figure 19.1a , it may
be observed that the opening required for the stairs creates a void in the
floor deck at the ends of the diaphragm. The net width of the diaphragm
is thus reduced to approximately 35 ft at this point, and the unit stress
for maximum shear is

v = 6000

35
= 171 lb/ft

From Table 18.1 it may be determined that this requires only min-
imum nailing for a 19/32-in.-thick plywood deck, which is the usual
minimum thickness used for floor decks

As discussed for the roof diaphragm in Chapter 18, the chord at the
edge of the floor diaphragm must be developed by framing members
to sustain the computed tension–compression force of 3 kips. Ordinary
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Figure 19.2 Building Two: development of lateral force due to wind.

framing members may be capable of this action, if attention is paid to
splicing for full continuity of the 100-ft-long edge member.

The construction details for the roof, floor, and exterior walls must
be carefully studied to assure that the necessary transfers of force are
achieved. These transfers include the following:

1. Transfer of the force from the roof plywood deck (the horizontal
diaphragm) to the wall plywood sheathing (the shear walls)
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2. Transfer from the second-story shear wall to the first-story shear
wall that supports it

3. Transfer from the second-floor deck (horizontal diaphragm) to
the first-story wall plywood sheathing (the shear walls)

4. Transfer from the first-story shear wall to the building foundations

In the first-story end shear walls the total lateral load is 5000 lb, as
shown in Figure 19.2d . For the 21-ft-wide wall the unit shear is

v = 5000

21
= 238 lb/ft

From Table 18.2 it may be noted that this resistance can be achieved
with APA rated sheathing of 3/8-in. thickness, although nail spacing
closer than the minimum of 6 in. is required at the panel edges. Choice
of APA structural I plywood will permit use of fewer nails.

At the first-floor level, the investigation for overturn of the end shear
wall is as follows (see Figure 19.2c):

Overturning moment = (2)(24)(1.5) + (3)(13)(1.5)

Total overturning moment with safety factor: 130.5 kip-ft

Restoring moment = (3 + 2 + 11)(21/2) = 168 kip-ft

Net overturning effect = 130.5 − 168 = −37.5 kip-ft

As the restoring moment provides a safety factor greater than 1.5, there
is no requirement for the anchorage force T .

In fact there are other resisting forces on this wall. At the building
corner the end walls are reasonably well attached through the corner
framing to the north and south walls, which would need to be lifted
to permit overturning. At the sides of the building entrance, with the
second-floor framing as described, there is a post in the end of the wall
that supports the end of the floor beams. All in all there is probably
no computational basis for requiring an anchor at the ends of the shear
walls. Nevertheless, many designers routinely supply such anchors.

19.3 ALTERNATIVE STEEL AND MASONRY STRUCTURE

As with Building One, an alternative construction for this building is
one with masonry walls and interior steel framing, with ground floor
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Figure 19.3 Building Two: details for the alternative steel and masonry structure.

and roof construction essentially the same as that shown for Building
One in Section 18.4. The second floor may be achieved as shown in
Figure 19.3. Because of heavier loads, the floor structure here consists
of a steel framing system with rolled steel beams supported by steel
columns on the interior and by pilasters in the exterior masonry walls.
The plan detail in Figure 19.3b shows the typical pilaster as formed in
the CMU construction.

The floor deck consists of formed sheet steel units with a structural-
grade concrete fill. This deck spans between steel beams, which are
in turn supported by larger beams that are supported directly by the
columns. All of the elements of this steel structure can be designed by
procedures described in Part III of this book.

Figure 19.4 shows a possible framing plan for the second floor of
Building Two, consisting of a variation of the roof framing plan in
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Figure 19.4 Second-floor framing plan with steel beams.

Figure 18.9b. Here, instead of the long-span roof deck, a shorter span
floor deck is used with a series of beams at 6.25-ft spacing supported
by the exterior walls and the two interior girders.

Fireproofing details for the steel structure would depend on the local
fire zone and the building code requirements. Encasement of steel mem-
bers in fire-resistive construction may suffice for this small building.

Although the taller masonry walls, carrying both roof and floor loads,
have greater stress development than in Building One, it is still possible
that minimal code-required construction may be adequate. Provisions
for lateral load depend on load magnitudes and code requirements.

Another possibility for Building Two—depending on fire resistance
requirements—is to use wood construction for the building roof and
floor systems, together with the masonry walls. Many buildings were
built through the nineteenth and early twentieth centuries with masonry
walls and interior structures of timber, a form of construction referred
to as mill construction. A similar system in present-day construction is
one that uses a combination of wood and steel structural elements with
exterior masonry walls, as illustrated for Building Three in Section 20.7.
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BUILDING THREE

Building Three is a modest-size office building, generally qualified as
being low rise (see Figure 20.1). In this category there is a considerable
range of choice for the construction, although in a particular place, at a
particular time, a few popular forms of construction tend to dominate
the field.

20.1 GENERAL CONSIDERATIONS

Some modular planning is usually required for this type of building,
involving the coordination of dimensions for spacing of columns, win-
dow mullions, and interior partitions in the building plan. This modular
coordination may also be extended to development of ceiling construc-
tion, lighting, ceiling HVAC elements, and the systems for access to
electric power, phones, and other signal wiring systems. There is no
single magic number for this modular system; all dimensions between
3 and 5 ft have been used and strongly advocated by various designers.

593
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Figure 20.1 Building Three: general form.

Selection of a particular proprietary system for the curtain wall, interior
modular partitioning, or an integrated ceiling system may establish a
reference dimension.

For buildings built as investment properties, with speculative occu-
pancies that may vary over the life of the building, it is usually desirable
to accommodate future redevelopment of the building interior with
some ease. For the basic construction, this means a design with as
few permanent structural elements as possible. At a bare minimum,
what is usually required is the construction of the major structure
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(columns, floors, and roof), the exterior walls, and the interior walls that
enclose stairs, elevators, rest rooms, and risers for building services.
Everything else should be nonstructural or demountable in nature, if
possible.

Spacing of columns on the building interior should be as wide as
possible, basically to reduce the number of freestanding columns in
the rented portion of the building plan. A column-free interior may be
possible if the distance from a central core (grouped permanent ele-
ments) to the outside walls is not too far for a single span. Spacing of
columns at the building perimeter does not affect this issue, so addi-
tional columns are sometimes used at this location to reduce their size
for gravity loading or to develop a stiffer perimeter rigid-frame system
for lateral loads.

The space between the underside of suspended ceilings and the top
of floor or roof structures above must typically contain many elements
besides those of the basic construction. This usually represents a situa-
tion requiring major coordination for the integration of the space needs
for the elements of the structural, HVAC, electrical, communication,
lighting, and fire-fighting systems. A major design decision that must
often be made very early in the design process is that of the overall
dimension of the space required for this collection of elements. Depth
permitted for the spanning structure and the general level-to-level ver-
tical building height will be established—and not easy to change later
if the detailed design of any of the enclosed systems indicates a need
for more space.

Generous provision of the space for building elements makes the
work of the designers of the various other building subsystems easier,
but the overall effects on the building design must be considered. Extra
height for the exterior walls, stairs, elevators, and service risers all result
in additional cost, making tight control of the level-to-level distance
very important.

A major architectural design issue for this building is the choice
of a basic form of the construction of the exterior walls. For the
column-framed structure, there are two elements that must be inte-
grated: the columns and the nonstructural infill wall. The basic form of
the construction as shown in Figure 20.2 involves the incorporation of
the columns into the wall, with windows developed in horizontal strips
between the columns. With the exterior column and spandrel covers
developing a general continuous surface, the window units are thus
developed as “punched” holes in the wall.
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Figure 20.2 Wall, floor, and exterior column construction at the upper floors.

The windows in this example do not exist as parts of a continuous
curtain wall system. They are essentially single individual units, placed
in and supported by the general wall system. The curtain wall is devel-
oped as a stud-and-surfacing system not unlike the typical light wood
stud wall system in character. The studs in this case are light-gage steel,
the exterior covering is a system of metal-faced sandwich panel units,
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and the interior covering, where required, is gypsum drywall, attached
to the metal studs with screws.

Detailing of the wall construction (as shown in detail A of
Figure 20.2) results in a considerable interstitial void space. Although
taken up partly with insulation materials, this space may easily contain
elements for the electrical system or other services. In cold climates, a
perimeter hot-water heating system would most likely be used, and it
could be incorporated in the wall space shown here.

Design Criteria

The following are used for the design work:

Design codes: ASCE 2005 standard (Ref. 1) and 2009 IBC (Ref. 4)

Live loads:

Roof: 20 psf, reducible as described in Section 1.8.

Floor: from Table 1.3, 50 psf minimum for office areas, 100 psf for
lobbies and corridors, 20 psf for movable partitions

Wind: map speed of 90 mph, exposure B

Assumed construction loads:

Floor finish: 5 psf

Ceilings, lights, ducts: 15 psf

Walls (average surface weight):

Interior, permanent: 15 psf

Exterior curtain wall: 25 psf

Steel for rolled shapes: ASTM A36, Fy = 36 ksi

20.2 STRUCTURAL ALTERNATIVES

Structural options for this example are considerable, including possibly
the light wood frame if the total floor area and zoning requirements per-
mit its use. Certainly, many steel frame, concrete frame, and masonry
bearing wall systems are feasible. Choice of the structural elements will
depend mostly on the desired plan form, the form of window arrange-
ments, and the clear spans required for the building interior. At this
height and taller, the basic structure must usually be steel, reinforced
concrete, or masonry.

Design of the structural system must take into account both gravity
and lateral loads. Gravity requires developing horizontal spanning
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systems for the roof and upper floors and the stacking of vertical
supporting elements. The most common choices for the general lateral
bracing system are the following (see Figure 20.3):

Core Shear Wall System (Figure 20.3a). Use of solid walls around
core elements (stairs, elevators, rest rooms, duct shafts) produces
a very rigid vertical structure; the rest of the construction may
lean on this rigid core.

Truss-Braced Core. Similar to the shear wall core; trussed bents
replace solid walls.

Perimeter Shear Walls (Figure 20.3b). Turns the building into a
tubelike structure; walls may be structurally continuous and
pierced by holes for windows and doors, or may be built as
individual, linked piers between vertical strips of openings.

Mixed Exterior and Interior Shear Walls or Trussed Bents. For some
building plans the perimeter or core systems may not be feasible,
requiring use of some mixture of walls and/or trussed bents.

Figure 20.3 Options for the vertical elements of the lateral bracing system.
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Full Rigid Frame Bent System (Figure 20.3c). Uses all the available
bents described by vertical planes of columns and beams.

Perimeter Rigid Frame Bents (Figure 20.3d ). Uses only the columns
and spandrel beams in the exterior wall planes, resulting in only
two bents in each direction for this building plan.

In the right circumstances, any of these systems may be acceptable
for this size building. Each has some advantages and disadvantages
from both structural and architectural design points of view.

Presented here are schemes for use of three lateral bracing systems:
a truss-braced core, a rigid frame bent, and multistory shear walls.
For the horizontal roof and floor structures, several schemes are also
presented.

20.3 DESIGN OF THE STEEL STRUCTURE

Figure 20.4 shows a partial plan of a framing system for the typical
upper floor that uses rolled steel beams spaced at a module related to
the column spacing. As shown, the beams are 7.5 ft on center and the
beams that are not on the column lines are supported by column line
girders. Thus three-fourths of the beams are supported by the girders
and the remainder are supported directly by the columns. The beams
in turn support a one-way spanning deck.

Within this basic system there are a number of variables:

Beam Spacing . Affects the deck span and the beam loading.

Deck . A variety available, as discussed later.
Beam/Column Relationship in Plan. As shown, permits possible

development of vertical bents in both directions.

Column Orientation . The W shape has a strong axis and accommo-
dates framing differently in different directions.

Fire Protection . Various means, as related to codes and general
building construction.

These issues and others are treated in the following discussions.
Inspection of the framing plan in Figure 20.4 reveals a few common

elements of the system as well as several special beams required at
the building core. The discussions that follow are limited to treatments
of the common elements, that is, the members labeled “Beam” and
“Girder” in Figure 20.4.
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Figure 20.4 Partial framing plan for the steel floor structure for the upper levels.

For the design of the speculative rental building, it must be assumed
that different plan arrangements of the floors are possible. Thus, it is
not completely possible to predict where there will be offices and where
there will be corridors, each of which require different live loads. It is
thus not uncommon to design for some combinations of loading for the
general system that relates to this problem. For the design work here,
the following will be used:

For the deck: live load = 100 psf

For the beams: live load = 80 psf, with 20 psf added to dead load
for movable partitions

For girders and columns: live load = 50 psf, with 20 psf added to
dead load
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The Structural Deck

Several options are possible for the floor deck. In addition to structural
concerns, which include gravity loading and diaphragm action for lat-
eral loads, consideration must be given to fire protection for the steel,
to the accommodation of wiring, piping, and ducts, and to attachment
of finish floor, roofing, and ceiling constructions. For office buildings
there are often networks for electrical power and communication that
must be built into the ceiling, wall, and floor constructions.

If the structural floor deck is a concrete slab, either sitecast or pre-
cast, there is usually a nonstructural fill placed on top of the structural
slab; power and communication networks may be buried in this fill. If a
steel deck is used, closed cells of the formed sheet steel deck units may
be used for some wiring, although this is no longer a common practice.

For this example, the selected deck is a steel deck with 1.5-in.-deep
ribs, on top of which is cast a lightweight concrete fill with a minimum
depth of 2.5 in. over the steel units. The unit average dead weight of
this deck depends on the thickness of the sheet steel, the profile of the
deck folds, and the unit density of the concrete fill. For this example, it
is assumed that the average weight is 30 psf. Adding to this the assumed
weight of the floor finish and suspended items, the total dead load for
the deck design is thus 50 psf.

While industry standards exist for these decks (see Ref. 9), data for
deck design should be obtained from deck manufacturers.

The Common Beam

As shown in Figure 20.4, this beam spans 30 ft and carries a load strip
that is 7.5 ft wide. The total peripheral load support area for the beam is
thus 7.5 × 30 = 225 ft2. This allows for a reduced live load as follows
(see Section 4.2):

L = L0

(
0.25 + 15√

KLLAT

)
= 80

(
0.25 + 15√

2 × 225

)
= 77 psf

The beam loading is thus

Live load = 7.5(77) = 578 lb/lineal ft (or plf)

Dead load = 7.5(50 + 20) = 525 plf + beam weight, say 560 plf

Total factored unit load = 1.2(560) + 1.6(578) = 672 + 925 = 1597 plf

Total supported factored load = 1.597(30) = 48 kips
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Assuming that the welding of the steel deck to the top flange of
the beam provides almost continuous lateral bracing, the beam may be
selected on the basis of flexural failure.

For this load and span, Table 9.2 yields the following possible
choices: W 16 × 45, W 18 × 40, or W 21 × 44. Actual choice may
be affected by various considerations. For example, the table used does
not incorporate concerns for deflection or lateral bracing. The deeper
shape will obviously produce the least deflection, although in this case
the live-load deflection for the 16-in. shape is within the usual limit (see
Figure 9.11). This beam becomes the typical member, with other beams
being designed for special circumstances, including the column-line
beams, the spandrels, and so on.

The Common Girder

Figure 20.5 shows the loading condition for the girder, as generated
only by the supported beams. While this ignores the effect of the weight
of the girder as a uniformly distributed load, it is reasonable for use in
an approximate design since the girder weight is a minor loading.

Figure 20.5 Loading condition and moment for the floor girder.
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Note that the girder carries three beams and thus has a total load
periphery of 3(225) = 675 ft2. The reduced live load is thus (see
Section 4.1)

L = (80 × 675)

(
0.25 + 15√

2 × 675

)
= 35,545 lb or 35.5 kips

The unit beam load for design of the girder is determined as follows:

Live load = 35.5/3 = 11.8 kips

Dead load = 0.560(30) = 16.8 kips

Factored load = 1.2(16.8) + 1.6(11.8) = 30.0 kips

To account for beam weights use 40 kips

From Figure 20.5, maximum moment is 600 k-ft

Selection of a member for this situation may be made using vari-
ous data sources. Since this member is laterally braced at only 7.5-ft
intervals, attention must be paid to this point. The maximum moment
together with the laterally unbraced length can be used in Table 9.2 to
determine acceptable choices. Possible are W 18 × 106, W 21 × 101,
W 24 × 94, W 27 × 94, or W 30 × 90. The deeper members will
have less deflection and will allow greater room for building service
elements in the enclosed floor/ceiling space. However, shallower beams
may reduce the required story height, resulting in cost savings.

Computation for deflections may be performed with formulas that
recognize the true form of loading. However, approximate deflection
values may be found using an equivalent load derived from the max-
imum moment, as discussed in Section 9.4. For this example, the
equivalent uniform load (EUL) is obtained as follows:

M = WL

8
= 600 kip-ft

W = 8M

L
= 8 × 600

30
= 160 kips

This hypothetical uniformly distributed load may be used with the
formula for deflection of a simple beam (see Figure 3.18) to find an
approximate deflection. However, for a quick check, Figure 9.11 indi-
cates that for this span all the previous given options will have a total
load deflection of less than 1/240 of the span.
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While deflection of individual elements should be investigated, there
are wider issues regarding deflection, such as the following:

Bounciness of Floors . This involves the stiffness and the fundamen-
tal period of spanning elements and may relate to the deck and/or
the beams. In general, use of the static deflection limits usually
assures a reasonable lack of bounce, but just about anything that
increases stiffness improves the situation.

Transfer of Load to Nonstructural Walls . With the building con-
struction completed, live-load deflections of the structure may
result in bearing of spanning members on nonstructural construc-
tion. Reducing deflections of the structure will help for this, but
some special details may be required for attachment between the
structure and the nonstructural construction.

Deflection During Construction. The deflection of the girders plus
the deflection of the beams adds up to a cummulative deflection
at the center of a column bay. This may be critical for live load
but can also create problems during construction. If the steel
beams and steel deck are installed dead flat, then construction
added later will cause deflection from the flat condition. In this
example, that would include the concrete fill, which can cause
a considerable deflection at the center of the column bay. One
response is to camber (bow upward) the beams by bending them
in the fabricating shop so that they deflect to a flat position under
the dead load.

Column Design for Gravity Loads

Design of the steel columns must include considerations for both grav-
ity and lateral loads. Gravity loads for individual columns are based
on the column’s periphery , which is usually defined as the area of
supported surface on each level supported. Loads are actually deliv-
ered to the columns by the beams and girders, but the peripheral
area is used for load tabulation and determination of live-load redu-
ctions.

If beams are rigidly attached to columns with moment-resistive
connections—as is done in development of rigid frame bents—then
gravity loads will also cause bending moments and shears in the
columns. Otherwise, the gravity loads are essentially considered only
as axial compressive loads.
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Involvement of the columns in development of resistance to lateral
loads depends on the form of the lateral bracing system. If trussed
bents are used, some columns will function as chords in the vertically
cantilevered trussed bents, which will add some compressive forces
and possibly cause some reversals with net tension in the columns. If
columns are parts of rigid frame bents, the same chord actions will be
involved, but the columns will also be subject to bending moments and
shears from the rigid frame lateral actions.

Whatever the lateral force actions may do, the columns must also
work for gravity load effects alone. In this part this investigation is
made and designs are completed without reference to lateral loads. This
yields some reference selections, which can then be modified (but not
reduced) when the lateral resistive system is designed. Later discussions
in this chapter present designs for both a trussed bent system and a rigid
frame system.

There are several different cases for the columns, due to the fram-
ing arrangements and column locations. For a complete design of all
columns it would be necessary to tabulate the loading for each different
case. For illustration purposes here, tabulation is shown for a hypothet-
ical interior column. The interior column illustrated assumes a general
periphery of 900 ft2 of general roof or floor area. Actually, the floor
plan in Figure 20.1 shows that all the interior columns are within the
core area, so there is no such column. However, the tabulation yields
a column that is general for the interior condition and can be used for
approximate selection. As will be shown later, all the interior columns
are involved in the lateral force systems, so this also yields a takeoff
size selection for the design for lateral forces.

Table 20.1 is a common form of tabulation used to determine the
column loads. For the interior columns, the table assumes the existence
of a rooftop structure (penthouse) above the core, thus creating a fourth
story for these columns.

Table 20.1 is organized to facilitate the following determinations:

1. Dead load on the periphery at each level, determined by mul-
tiplying the area by an assumed average dead load per square
foot. Loads determined in the process of design of the horizontal
structure may be used for this estimate.

2. Live load on the periphery areas.
3. The reduced live load to be used at each story, based on the total

supported periphery areas above that story.
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TABLE 20.1 Service Load Tabulation for the Interior Column

Load Tabulation (lb)

Level Supported Load Source and Computation Dead Load Live Load

Penthouse roof Live load, not reduced = 20 psf × 225 4,500
225 ft2 Dead load = 40 psf × 225 9,000

Building roof Live load, not reduced = 20 psf × 675 13,500
675 ft2 Dead load = 40 psf × 675 27,000
Penthouse floor Live load = 100 psf × 225 22,500
225 ft2 Dead load = 50 psf × 225 11,250

Story loads + loads from above 47,250 40,500
Reduced live load (50%) 20,250

Third floor Live load = 50 psf × 900 45,000
900 ft2 Dead load = 70 psf × 900 63,000

Story loads + loads from above 110,250 85,500
Reduced live load (50%) 42,750

Second floor Story loads 63,000 45,000
(same as third) Story loads + loads from above 173,250 130,500

Reduced live load (50%) 65,250

4. Other dead loads directly supported, such as the column weight
and any permanent walls within the load periphery.

5. The total load collected at each level.
6. A design load for each story, using the total accumulation from

all levels supported.

For the entries in Table 20.1, the following assumptions were made:

Roof unit live load = 20 psf (reducible)
Roof dead load = 40 psf (estimated, based on the similar floor con-

struction)
Penthouse floor live load = 100 psf (for equipment, average)
Penthouse floor dead load = 50 psf

Floor live load = 50 psf (reducible)
Floor dead load = 70 psf (including partitions)

Table 20.2 summarizes the design for the four-story column. For the
pin-connected frame, a K factor of 1.0 is assumed, and the full story
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TABLE 20.2 Design of the Interior Column

Design Loads for Each Story (lb) Possible Choices

Penthouse, unbraced height = 13 ft
Pu = φ Pn = 1.2(9000) + 1.6(4500)

= 10,800 + 7200 = 18,000 lb
W 8 × 24

Third story, unbraced height = 13 ft
Pu = φ Pn = 1.2(47,250) + 1.6(20,250)

= 58,700 + 32,400 = 91,100 lb
W 8 × 24, W 10 × 33

Second story, unbraced height = 13 ft
P u = φ Pn = 1.2(110,250) + 1.6(42,750)

= 132,300 + 68,400 = 200,700 lb
W 8 × 31, W 10 × 45, W 12 × 45

First story, unbraced height = 15 ft
Pu = φ Pn = 1.2(173,250) + 1.6(65,250)

= 207,900 + 104,400 = 312,300 lb
W 8 × 58, W 10 × 54, W 12 × 53,
W 14 × 53

heights are used as the unbraced column lengths. Although column
loads in the upper stories are quite low, and some small column sizes
would be adequate for the loads, a minimum size of 10 in. is maintained
for the W shapes for two reasons.

The first consideration involves the form of the horizontal fram-
ing members and the type of connections between the columns and
the horizontal framing. All the H-shaped columns must usually facili-
tate framing in both directions, with beams connected both to column
flanges and webs. With standard framing connections for field bolting
to the columns, minimum beam depths and flange widths are required
for practical installation of the connecting angles and bolts.

The second consideration involves the problem of achieving splices
in the multistory column. If the building is too tall for a single-piece
column, a splice must be used somewhere, and the stacking of one
column piece on top of another to achieve a splice is made much
easier if the two pieces are of the same nominal size group.

Add to this a possible additional concern relating to the problem of
handling long pieces of steel during transportation to the site and erec-
tion of the frame. The smaller the members cross section, the shorter
the piece that is feasible to handle.

For all of these reasons, a minimum column is often considered to
be the W 10 × 33, which is the lightest shape in the group that has an
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8-in.-wide flange. It is assumed that a splice occurs at 3 ft above the
second-floor level (a convenient, waist-high distance for the erection
crew), making two column pieces approximately 18 and 23 ft long.
These lengths are readily available and quite easy to handle with the
10-in. nominal shape. On the basis of these assumptions, a possible
choice would be for a W 10 × 33 for the penthouse and the third-story
column and a W 10 × 54 for the lower two stories.

20.4 ALTERNATIVE FLOOR CONSTRUCTION
WITH TRUSSES

A framing plan for the upper floor of Building Three is shown in
Figure 20.6, indicating the use of open-web steel joists and joist gird-
ers. Although this construction might be extended to the core and the
exterior spandrels, it is also possible to retain the use of rolled shapes

Figure 20.6 Building Three: partial framing plan at the upper floor, using open-
web joists and joist girders.
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for these purposes. Although somewhat more applicable to longer spans
and lighter loads, this system is reasonably applicable to this situation
as well.

One potential advantage of using the all-truss framing for the hori-
zontal structure is the higher degree of freedom of passage of building
service elements within the enclosed space between ceilings and the
supported structure above. A disadvantage is the usual necessity for
greater depth of the structure, adding to building height—a problem
that increases with the number of stories.

Design of the Open-Web Joists

General concerns and basic design for open-web joists are presented
in Section 9.10. Using the data for this example, a joist design is as
follows:

Joists at 3 ft on center, span of 30 ft

Dead load = 3(70) = 210 lb/ft not including joists

Live load = 3(100) = 300 lb/ft not reduced

This is a high live load, but it permits location of a corridor anywhere
on the plan and also reduces deflection and bounciness.

Total factored load = 1.2(210) + 1.6(300) = 252 + 480 = 732 lb/ft

Referring to Table 9.5, choices may be considered for any joist that
will carry the total load of 732 lb/ft, and a live load of 300 lb/ft, on a
span of 30 ft. The following choices are possible:

24K9 at 12 lb/ft, permitted load = 807 − 1.2(12) = 794 lb/ft

26K9, stronger than 24K9 and only 0.2 lb/ft heavier

28K8, stronger than 24K9 and only 0.7 lb/ft heavier

30K7, stronger than 24K9 and only 0.3 lb/ft heavier

All of the joists listed are economically equivalent. Choice would
be made considering details of the general building construction. A
shallower joist depth means a shorter story height and less overall
building height. A deeper joist yields more open space in the floor
construction for ducts, wiring, piping, and the like and also means less
deflection and less floor bounce.



610 BUILDING THREE

Design of the Joist Girders

Joist girders are also discussed in Section 9.10. Both the joists and the
girders are likely to be supplied and erected by a single contractor.
Although there are industry standards (see Ref. 6), the specific manu-
facturer should be consulted for data regarding design and construction
details for these products.

The pattern of the joist girder members is somewhat fixed and relates
to the spacing of the supported joists. To achieve a reasonable propor-
tion for the panel units of the truss, the dimension for the depth of the
girder should be approximately the same as that for the joist spacing.

Considerations for design for the truss girder are as follows:

The assumed depth of the girder is 3 ft, which should be considered
a minimum depth for this span (L/10). Any additional depth pos-
sible will reduce the amount of steel and also improve deflection
responses. However, for floor construction in multistory build-
ings, any increase of this dimension is hard to bargain for.

Use a live-load reduction of 40% (maximum) with a live load of
50 psf. Thus, live load from one joist = (3 × 30)(0.6 × 50) =
2700 lb or 2.7 kips.

For dead load add a partition load of 20 psf to the construction load
of 40 psf. Thus, dead load = (3 × 30)(60) = 5400 lb, + joist
weight of 12 lb/ft × 30 = 360 lb, total = 5400 + 360 = 5760 lb or
5.76 kips.

Total factored load = 1.2(5.76) + 1.6(2.7) = 6.91 + 4.32 = 11.23 kips.

Figure 20.7 shows a possible form for the joist girder. For this form
and the computed data the joist specification is as follows:

36G = a girder depth of 3 ft

10N = 10 spaces between the joists

11.23K = design factored joist load

Complete specification is thus 36G10N11.23K

Construction Details for the Truss Structure

Figure 20.8 shows some details for construction of the trussed system.
The deck shown here is the same as that for the scheme with W-shape
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Figure 20.7 Form and data for the joist girder.

Figure 20.8 Details for the floor system with open-web joists and joist girders.
For location of the details see the framing plan in Figure 20.6.

framing, although the shorter span may allow use of a lighter sheet
steel deck. However, the deck must also be used for diaphragm action,
which may limit the reduction.

Adding to the problem of overall height for this structure is the
detail at the joist support, in which the joists must sit on top of the
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supporting members, whereas in the all W-shape system the beams and
girders have their tops level.

With the closely spaced joists, ceiling construction may be directly
supported by the bottom chords of the joists. This may be a reason
for selection of the joist depth. However, it is also possible to suspend
the ceiling from the deck, as is generally required for the all W-shape
structure with widely spaced beams.

Another issue here is the usual necessity to use a fire-resistive ceiling
construction, as it is not feasible to encase the joists or girders in
fireproofing material.

20.5 DESIGN OF THE TRUSSED BENT FOR WIND

Figure 20.9 shows a partial framing plan for the core area, indicating the
placement of some additional columns off the 30-ft grid. These columns
are used together with the regular columns and some of the horizontal
framing to define a series of vertical bents for the development of the

Figure 20.9 Modified framing plan for development of the trussed bents at the
building core.
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Figure 20.10 General form of the trussed bent bracing system.

trussed bracing system shown in Figure 20.10. With relatively slender
diagonal members, it is assumed that the X bracing behaves as if the
tension diagonals function alone. There are thus considered to be four
vertical, cantilevered, determinate trusses that brace the building in each
direction.

With the symmetrical building exterior form and the symmetrically
placed core bracing, this is a reasonable system for use in conjunction
with the horizontal roof and upper floor structures to develop resis-
tance to horizontal forces due to wind. The work that follows illustrates
the design process, using criteria for wind loading from ASCE 2005
(Ref. 1).

For the total wind force on the building, we will assume a base pres-
sure of 15 psf, adjusted for height as described in the ASCE standard
(Ref. 1). The design pressures and their zones of application are shown
in Figure 20.11.

For investigation of the lateral bracing system, the design wind pres-
sures on the outside wall surface are distributed as edge loadings to the
roof and floor diaphragms. These are shown as the forces H 1, H 2, and
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Figure 20.11 Building Three: development of the wind loads to the horizontal
diaphragms.

H 3 in Figure 20.11. The horizontal forces are next shown as loadings
to one of the vertical truss bents in Figure 20.12a . For the bent loads
the total force per bent is determined by multiplying the unit edge
diaphragm load by the building width and dividing by the number of
bracing bents for load in that direction. The bent loads are thus

H1 = (165.5)(92)/4 = 3807 lb

H2 = (199.5)(92)/4 = 4589 lb

H3 = (210)(92)/4 = 4830 lb
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Figure 20.12 Investigation of one of the east–west bents.

The truss loading, together with the reaction forces at the supports,
are shown in Figure 20.12b. The internal forces in the truss members
resulting from this loading are shown in Figure 20.12c, with force
values in pounds and sense indicated by C for compression and T for
tension.

The forces in the diagonals may be used to design tension
members, using the factored load combination that includes wind (see
Section 4.2). The compression forces in the columns may be added
to the gravity loads to see if this load combination is critical for
the column design. The uplift tension force at the column should be
compared with the dead load to see if the column base needs to be
designed for a tension anchorage force.
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The horizontal forces should be added to the beams in the core fram-
ing and an investigation should be done for the combined bending and
compression. Since beams are often weak on their minor axis (y axis),
it may be practical to add some framing members at right angles to
these beams to brace them against lateral buckling.

Design of the diagonals and their connections to the beam and col-
umn frame must be developed with consideration of the form of the
elements and some consideration for the wall construction in which
they are imbedded. Figure 20.13 shows some possible details for the
diagonals and the connections. A detail problem that must be solved is
that of the crossing of the two diagonals at the middle of the bent. If
double angles are used for the diagonals (a common truss form), the

Figure 20.13 Details of the bent construction with bolted joints.
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splice joint shown in Figure 20.13 is necessary. An option is to use
either single angles or channel shapes for the diagonals, allowing the
members to pass each other back to back at the center. The latter choice,
however, involves some degree of eccentricity in the members and con-
nections and a single shear load on the bolts, so it is not advisable if
load magnitudes are high. For the tension member, a recommended
minimum slenderness is represented by an L/r ratio of 300.

20.6 CONSIDERATIONS FOR A STEEL RIGID FRAME

The general nature of rigid frames is discussed in Section 3.12. A crit-
ical concern for multistory, multiple-bay frames is the lateral strength
and stiffness of columns. As the building must be developed to resist
lateral forces in all directions, it becomes necessary in many cases to
consider the shear and bending resistance of columns in two direc-
tions (e.g., north–south and east–west). This presents a problem for
W-shape columns, as they have considerably greater resistance on their
major (x–x ) axis versus their minor (y–y) axis. Orientation of W-shape
columns in plan thus sometimes becomes a major consideration in struc-
tural planning.

Figure 20.14a shows a possible plan arrangement for column ori-
entation for Building Three, relating to the development of two major
bracing bents in the east–west direction and five shorter and less stiff
bents in the north–south direction. The two stiff bents may well be
approximately equal in resistance to the five shorter bents, giving the
building a reasonably symmetrical response in the two directions.

Figure 20.14b shows a plan arrangement for columns designed to
produce approximately symmetrical bents on the building perimeter.
The form of such perimeter bracing is shown in Figure 20.15.

One advantage of perimeter bracing is the potential for using deeper
(and thus stiffer) spandrel beams, as the restriction on depth that applies
for interior beams does not exist at the exterior wall plane. Another pos-
sibility is to increase the number of columns at the exterior, as shown in
Figure 20.14c, a possibility that does not compromise the building inte-
rior space. With deeper spandrels and closely spaced exterior columns,
a very stiff perimeter bent is possible. In fact, such a bent may have
very little flexing in the members, and its behavior approaches that of
a pierced wall, rather than a flexible frame.

At the expense of requiring much stronger (and heavier and/or larger)
columns and expensive moment-resistive connections, the rigid frame
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Figure 20.14 Building Three: optional arrangements for the steel W-shape
columns for development of the rigid frame bents.

bracing offers architectural planning advantages with the elimination of
solid shear walls or truss diagonals in the walls. However, the lateral
deflection (drift) of the frames must be carefully controlled, especially
with regard to damage to nonstructural parts of the construction.

20.7 CONSIDERATIONS FOR A MASONRY
WALL STRUCTURE

An option for the construction of Building Three involves the use of
structural masonry for development of the exterior walls. The walls
are used for both vertical bearing loads and lateral shear wall func-
tions. The choice of forms of masonry and details for the construction
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Figure 20.15 Form of the perimeter bent bracing system.

depend very much on regional considerations (climate, codes, local con-
struction practices, etc.) and on the general architectural design. Major
differences occur due to variations in the range in outdoor temperature
extremes and the specific critical concerns for lateral forces.

General Considerations

Figure 20.16 shows a partial elevation of the masonry wall structure
and a partial framing plan of the upper floors. The wood construction
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Figure 20.16 Building Three: partial framing plan for the upper floor and partial
elevation for the masonry wall structure.

shown here is questionably acceptable for fire codes. The example is
presented only to demonstrate the general form of the construction.

Plan dimensions for structures using CMUs (concrete blocks) must
be developed so as to relate to the modular sizes of typical CMUs. There
are a few standard sizes widely used, but individual manufacturers often
have some special units or will accommodate requests for special shapes
or sizes. However, while solid brick or stone units can be cut to produce
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precise, nonmodular dimensions, the hollow CMUs generally cannot.
Thus, the dimensions for the CMU structure itself must be carefully
developed to have wall intersections, corners, ends, tops, and openings
for windows and doors fall on the fixed modules. (See Figure 18.9a .)

There are various forms of CMU construction. The one shown here
is that widely used where either windstorm or earthquake risk is high.
This is described as reinforced masonry and is produced to generally
emulate reinforced concrete construction, with tensile forces resisted
by steel reinforcement that is grouted into the hollow voids in the
block construction. This construction takes the general form shown in
Figure 15.17.

Another consideration to be made for the general construction is
that involving the relation of the structural masonry to the complete
architectural development of the construction, regarding interior and
exterior finishes, insulation, incorporation of wiring, and so on.

The Typical Floor

The floor framing system here uses column-line girders that support fab-
ricated joists and a plywood deck. The girders could be glued-laminated
timber but are shown here as rolled steel shapes. Supports for the steel
girders consist of steel columns on the interior.

As shown in the details in Figure 20.17, the exterior masonry walls
are used for direct support of the deck and the joists, through ledgers
bolted and anchored to the interior wall face. With the plywood deck
also serving as a horizontal diaphragm for lateral loads, the load trans-
fers for both gravity and lateral forces must be carefully developed in
the details for this construction.

Since the masonry structure in this scheme is used only for the exte-
rior walls, the construction at the building core is free to be developed
by any of the general methods shown for other schemes. If the steel
girders and steel columns are used here, it is likely that a general steel
framing system might be used for most of the core framing.

Attached only to its top, the supported construction does not provide
very good lateral support for the steel girder in resistance to torsional
buckling. It is advisable, therefore, to use a steel shape that is not too
weak on its Y axis, generally indicating a critical concern for lateral
unsupported length.
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Figure 20.17 Details of the upper floor and the exterior masonry wall.
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The Masonry Walls

Buildings much taller than this have been achieved with structural
masonry, so the feasibility of the system is well demonstrated. The ver-
tical loads increase in lower stories, so it is expected that some increases
in structural capacity will be achieved in lower portions of the walls.
The two general means for increasing wall strength are to use thicker
CMUs or to increase the amount of core grouting and reinforcement.

It is possible that the usual minimum structure—relating to code
minimum requirements for the CMU construction—may be sufficient
for the top story walls, with increases made in steps for lower walls.
Without increasing the CMU size, there is considerable range between
the minimum and the feasible maximum potential for a wall.

It is common to use fully grouted walls (all cores filled) for CMU
shear walls. In this scheme that would technically involve using fully
grouted construction for all of the exterior walls; which might likely
rule against the economic feasibility of this scheme. Adding this to the
concerns for thermal movements in the long walls might indicate the
wisdom of using some control joints to define individual wall segments.

Design for Lateral Forces

A common solution for lateral bracing is the use of an entire masonry
wall as a shear wall, with openings considered as producing the effect of
a very stiff rigid frame. As for gravity loads, the total lateral shear force
increases in lower stories. Thus, it is also possible to consider the use
of the potential range for a wall from minimum construction (defining
a minimum structural capacity) to the maximum possible strength with
all voids grouted and some feasible upper limit for reinforcement.

The basic approach here is to design the required wall for each story,
using the total shear at that story. In the end, however, the individual
story designs must be coordinated for the continuity of the construc-
tion. However, it is also possible that the construction itself could be
significantly altered in each story, if it fits with architectural design
considerations.

Construction Details

There are many concerns for the proper detailing of the masonry con-
struction to fulfill the shear wall functions. There are also many con-
cerns for proper detailing to achieve the force transfers between the
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horizontal framing and the walls. Some construction details for the
building are shown in Figure 20.17. The general framing plan for the
upper floor is shown in Figure 20.16 and the locations of the details
discussed here are indicated by the section marks on that plan.

Detail A. This shows the general exterior wall construction and the
framing of the floor joists at the exterior wall. The wood ledger
is used for vertical support of the joists, which are hung from
steel framing devices fastened to the ledger. The plywood deck
is nailed directly to the ledger to transfer its horizontal diaphragm
loads to the wall. Outward forces on the wall must be resisted
by anchorage directly between the wall and the joists. Ordinary
hardware elements can be used for this, although the exact details
depend on the type of forces (wind or seismic), their magnitude,
the details of the joists, and the details of the wall construction.
The anchor shown in the detail is really only symbolic. General
development of the construction here shows the use of a concrete
fill on top of the floor deck, furred out wall surfacing with batt
insulation on the interior wall side, and a ceiling suspended from
the joists.

Detail B . This shows the use of the steel beam for support of the
joists and the deck. After the wood lumber piece is bolted to the
top of the steel beam, the attachment of the joists and the deck
become essentially the same as they would be with a timber
girder.

Detail C. This shows the section of the exterior wall at the location
of the girder support. The girder is shown with its end resting on
top of a steel column, which may be a W shape, a pipe, or a tube.
If this detail is used, the column in the story above must rest on
top of the girder end. This is indeed possible, if the girder web is
braced for the high compression force. However, the girder could
also be framed conventionally into the side of the column, with
the column continuous through the joint.

20.8 THE CONCRETE STRUCTURE

A structural framing plan for the upper floors in Building Three is
presented in Figure 20.18, showing the use of a sitecast concrete
slab-and-beam system. Support for the spanning structure is provided
by concrete columns. The system for lateral bracing is that shown
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Figure 20.18 Building Three: framing plan for the concrete structure for the
upper floor.

in Figure 20.15, which uses the exterior columns and spandrel
beams as rigid frame bents at the building perimeter. This is a
highly indeterminate structure for both gravity and lateral loads, and
its precise engineering design would undoubtedly be done with a
computer-aided design process. The presentation here treats the major
issues and illustrates an approximate design using highly simplified
methods.

Design of the Slab-and-Beam Floor Structure

For the floor structure use f ′
c = 3 ksi and fy = 40 ksi. As shown in

Figure 20.18, the floor framing system consists of a series of parallel
beams at 10-ft centers that support a continuous, one-way spanning slab
and are in turn supported by column-line girders or directly by columns.
Although there are special beams required for the core framing, the
system is made up largely of repeated elements. The discussion here
will focus on three of these elements: the continuous slab, the four-span
interior beam, and the three-span spandrel girder.
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Slab

Beam
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1/16

1/16
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Figure 20.19 Approximate design factors for moments in the slab and beam
structure.

Using the approximation method described in Section 14.1, the criti-
cal conditions for the slab, beam, and girder are shown in Figure 20.19.
Use of these coefficients is reasonable for the slab and beam that sup-
port uniformly distributed loads. For the girder, however, the presence
of major concentrated loads makes the use of the coefficients somewhat
questionable. An adjusted method is thus described later for use with
the girder. The coefficients shown in Figure 20.19 for the girder are for
uniformly distributed load only (e.g., the weight of the girder itself).

Figure 20.20 shows a section of the exterior wall that illustrates
the general form of the construction. The exterior columns and the
spandrel beams are exposed to view. Use of the full available depth
of the spandrel beams results in a much stiffened bent on the building
exterior. As will be shown later, this is combined with the use of
oblong-shaped columns at the exterior to create perimeter bents that
will indeed absorb most of the lateral force on the structure.

The design of the continuous slab is presented as the example in
Section 14.1. The use of the 5-in. slab is based on assumed minimum
requirements for fire protection. If a thinner slab is possible, the 9-ft
clear span would not require this thickness based on limiting bending or
shear conditions or recommendations for deflection control. If the 5-in.
slab is used, however, the result will be a slab with a low percentage of
steel bar weight per square foot—a situation usually resulting in lower
cost for the structure.
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Figure 20.20 Section at the exterior wall with the concrete structure.

The unit loads used for the slab design are determined as follows:

Floor live load: 100 psf (at the corridor)

Floor dead load (see Table 4.1):

Carpet and pad at 5 psf

Ceiling, lights, and ducts at 15 psf

2-in. lightweight concrete fill at 18 psf

5-in.-thick slab at 62 psf

Total dead load: 100 psf
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With the slab determined, it is now possible to consider the design
of one of the typical interior beams, loaded by a 10-ft-wide strip of
slab, as shown in Figure 20.18. The supports for these beams are 30 ft
on center. If the beams and columns are assumed to be a minimum
of 12 in. wide, the clear span for the beam becomes 29 ft and its load
periphery is 29 × 10 = 290 ft2. Using the ASCE standard (Ref. 1)
provisions for reduction of live load (see Section 4.1),

L = L0

(
0.25 + 15√

KLLAT

)
= 100

(
0.25 + 15√

2 × 290

)
= 87 psf

The beam loading as a per foot unit load is determined as follows:

Live load = (87 psf)(10 ft) = 870 lb/ft

Dead load without the beam stem extending below the slab:

(100 psf)(10 ft) = 1000 lb/ft

Estimating a 12-in.-wide × 20-in.-deep beam stem extending below the
bottom of the slab, the additional dead load becomes

12 × 20

144
× 150 lb/ft3 = 250 lb/ft

The total dead load for the beam is thus 1000 + 250 = 1250 lb/ft, and
the total uniformly distributed factored load for the beam is

wu = 1.2(1250) + 1.6(870) = 1500 + 1392

= 2892 lb/ft, or 2.89 kips/ft

Consider now the four-span continuous beam that is supported by
the north–south column-line beams that are referred to as the girders.
The approximation factors for design moments for this beam are given
in Figure 20.19, and a summary of design data is given in Figure 20.21.
Note that the design provides for tension reinforcement only, which is
based on an assumption that the beam concrete section is adequate to
prevent a critical bending compressive stress in the concrete. Using the
strength method (see Section 13.3), the basis for this is as follows.
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Moment Coefficient:

Required Reinforcement (in square inches)

Note: Requires 13 in. wide beam

Choice

2 No. 9 (2.00) 4 No. 10 (5.08) 2 No. 9 + 2 No. 10 (4.54)

2 No. 9 + 1 No. 10 (3.27) 3 No. 9 (3.00)

4.334.77

−1/24 +1/14 −1/10 −1/11 +1/16 −1/11 −1/11

2.673.05=
=Bottom, As

Top, As
1.99=

=

=C

47.66 C

42.64 C

Figure 20.21 Summary of design for the four-span floor beam.

From Figure 20.19 the maximum bending moment in the beam is

Mu = wL2

10
= 2.89 × (29)2

10
= 243 kip-ft

Mr = Mu

φ
= 243

0.9
= 270 kip-ft

Then, using factors from Table 13.2 for a balanced section, the
required value for bd2 is determined as

bd 2 = M

R
= 270 × 12

1.149
= 2820

With the unit values as used for M and R, this quantity is in
units of cubic inches. Various combinations of b and d may now be
derived from this relationship, as demonstrated in Section 13.3. For this
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example, assuming a beam width of 12 in.,

d =
√

2820

12
= 15.3 in.

With minimum cover of 1.5 in., No. 3 stirrups, and moderate size
bars for the tension reinforcement, an overall required beam dimension
is obtained by adding approximately 2.5 in. to this derived value for the
effective depth. Thus, any dimension selected that is at least 17.8 in.
or more will assure a lack of critical bending stress in the concrete.
In most cases the specified dimension is rounded off to the nearest
full inch, in which case the overall beam height would be specified
as 18 in. As discussed in Section 13.3, the balanced section is useful
only for establishing a tension failure for the beam (yielding of the
reinforcement).

Another consideration for choice of the beam depth is deflection
control, as discussed in Section 13.3. From Table 13.12, a minimum
overall height of L/23 is recommended for the end span of a continuous
beam. This yields a minimum overall height of

h = 29 × 12

23
= 15 in.

Pushing these depth limits to their minimum is likely to result in
high shear stress, a high percentage of reinforcement, and possibly
some excessive creep deflection. We will therefore consider the use of
an overall height of 24 in., resulting in an approximate value of 24 −
2.5 = 21.5 in. for the effective depth d . Since this is quite close to the
size assumed for dead load, no adjustment is made of the previously
computed loading for the beam.

For the beams the flexural reinforcement that is required in the top
at the supports must pass either over or under the bars in the top
of the girders. Figure 20.22 shows a section through the beam with
an elevation of the girder in the background. It is assumed that the
much heavier-loaded girder will be deeper than the beams, so the bar
intersection problem does not exist in the bottoms of the intersecting
members. At the top, however, the beam bars are run under the girder
bars, favoring the heavier-loaded girder. For an approximate consid-
eration, an adjusted dimension of 3.5–4 in. should thus be subtracted
from the overall beam height to obtain an effective depth for design of
the beam. For the remainder of the computations a value of 20 in. is
used for the beam effective depth.
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Figure 20.22 Layout of the reinforcement for the intersecting beam and girder.

The beam cross section must also resist shear, and the beam dimen-
sions should be verified to be adequate for this task before proceeding
with design of the flexural reinforcement. Referring to Figure 14.2, the
maximum shear force is approximated as 1.15 times the simple span
shear of wL/2. For the beam this produces a maximum shear of

Vu = 1.15
wL

2
= 1.15 × 2.89 × 29

2
= 48.2 kips

As discussed in Section 13.5, this value may be reduced by the shear
between the support and the distance of the beam effective depth from
the support; thus,

Design V = 48.2 −
(

20

12
× 2.89

)
= 43.4 kips

and the required maximum shear capacity is

V = 43.4

0.75
= 57.9 kips

Using a d of 20 in. and b of 12 in., the critical shear capacity of the
concrete alone is

Vc = 2
√

f ′
c bd = 2

√
3000 (12 × 20)

= 26,290 lb or 26.3 kips
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This leaves a shear force to be developed by the steel equal to

V ′
s = 57.9 − 26.3 = 31.6 kips

and the closest stirrup spacing at the beam end is

s = Av fy d

V ′
s

= 0.22 × 40 × 20

31.6
= 5.6 in.

which is not an unreasonable spacing.
For the approximate design shown in Figure 20.21, the required area

of steel at the points of support is determined as follows.
Assume a of 6 in., jd = d − a/2 = 17 in. Then, using Mu = CwL2,

As = M

φfy jd
= C × 2.89 × (29)2 × 12

0.9(40 × 17)
= 47.66C

At midspan points, the positive bending moments will be resisted
by the slab and beam acting in T-beam action (see Section 13.3). For
this condition, an approximate internal moment arm consists of d −
t /2 and the required steel areas are approximated as

As = M

φfy

(
d − t

2

) = C × 2.89 × (29)2 × 12

0.9[40 × (21.5 − 2.5)]
= 42.64C

Inspection of the framing plan in Figure 20.18 reveals that the gird-
ers on the north–south column lines carry the ends of the beams as
concentrated loads at their third points (10 ft from each support). The
spandrel girders at the building ends carry the outer ends of the beams
plus their own dead weight. In addition, all the spandrel beams support
the weight of the exterior curtain walls. The form of the spandrels and
the wall construction is shown in Figure 20.20.

The framing plan also indicates the use of widened columns at the
exterior walls. Assuming a minimum width of 2 ft, the clear span of
the spandrels thus becomes 28 ft. This much stiffened bent, with very
deep spandrel beams and widened columns, is used for lateral bracing,
as discussed later in this section.

The spandrel beams carry a combination of uniformly distributed
loads (spandrel weight plus wall) and concentrated loads (the beam
ends). These loadings are determined as follows:
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For reduction of the live load, the portion of floor loading carried
is two times one-half the beam load, or approximately the same as
one full beam: 290 ft2. The design live load for the spandrel girders is
thus reduced the same amount as it was for the beams. From the beam
loading, therefore:

The total factored load from the beam is

P = 2.89 kip/ft × 30/2 ft = 43.4 say 44 kips

The uniformly distributed load is basically all dead load, deter-
mined as

Spandrel weight: [(12)(45)/144)](150 pcf) = 563 lb/ft

Wall weight: (25 psf average)(9 ft high) = 225 lb/ft

Total distributed load: 563 + 225 = 788 lb say 0.8 kip/ft

And the factored load is

w = 1.2(0.8) = 0.96 say 1.0 kip/ft

For the distributed load, approximate design moments may be
determined using the moment coefficients, as was done for the slab
and beam. Values for this procedure are given in Figure 20.19.
Thus,

Mu = C (w × L2) = C (1.0 × 282) = 784C

The ACI Code does not permit use of coefficients for concentrated
loads, but for an approximate design some adjusted coefficients may
be derived from tabulated loadings for beams with third-point load
placement. Using these coefficients, the moments are

Mu = C (P × L) = C (44 × 28) = 1232C

Figure 20.23 presents a summary of the approximation of moments
for the spandrel girder. This is, of course, only the gravity loading,
which must be combined with effects of lateral loads for complete
design of the bents. The design of the spandrel girder is therefore
deferred until after the discussion of lateral loads later in this
section.
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Figure 20.23 Factored gravity load effect on the spandrel girder.

Design of the Concrete Columns

The general cases for the concrete columns are as follows (see
Figure 20.24):

1. The interior column, carrying primarily only gravity loads due to
the stiffened perimeter bents

2. The corner columns, carrying the ends of the spandrel beams
and functioning as the ends of the perimeter bents in both
directions

3. The intermediate columns on the north and south sides, carrying
the ends of the interior girders and functioning as members of
the perimeter bents



THE CONCRETE STRUCTURE 635

Figure 20.24 Relations between the columns and the floor framing.

4. The intermediate columns on the east and west sides, carrying
the ends of the column-line beams and functioning as members
of the perimeter bents

Summations of the design loads for the columns may be done from
the data given previously. As all columns will be subjected to combina-
tions of axial load and bending moments, these gravity loads represent
only the axial compression action. Bending moments will be relatively
low in magnitude on interior columns, since they are framed into by
beams on all sides. As discussed in Chapter 15, all columns are designed
for a minimum amount of bending, so routine design, even when done
for axial load alone, provides for some residual moment capacity. For
an approximate design, therefore, it is reasonable to consider the interior
columns for axial gravity loads only.

Figure 20.25 presents a summary of design for an interior column,
using loads determined from a column load summation with the data
given previously in this section. Note that a single size of 20 in.2 is
used for all three stories; a common practice permitting reuse of column
forms for cost savings. Column load capacities indicated in Figure 20.25
were obtained from the graphs in Chapter 15.

A general cost-savings factor is the use of relatively low percentages
of steel reinforcement. An economical column is therefore one with a
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Figure 20.25 Design of the interior concrete column for gravity load only.

minimum percentage (usually a threshold of 1% of the gross section)
of reinforcement. However, other factors often effect design choices
for columns, some common ones being the following:

1. Architectural planning of building interiors. Large columns are
often difficult to plan around in developing of interior rooms, cor-
ridors, stair openings, and so on. Thus, the smallest feasible col-
umn sizes—obtained with maximum percentages of steel—are
often desired.

2. Ultimate load response of lightly reinforced columns borders on
brittle fracture failure, whereas heavily reinforced columns tend
to have a yield form of ultimate failure. The yield character is
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especially desirable for rigid frame actions in general, and par-
ticularly for seismic loading conditions.

3. A general rule of practice in rigid frame design for lateral loadings
(wind or earthquakes) is to prefer a form of ultimate response
described as strong column/weak beam failure. In this example
this relates more to the columns in the perimeter bents but may
also somewhat condition design choices for the interior columns,
since they will take some lateral loads when the building as a
whole deflects sideways.

Column form may also be an issue that relates to architectural plan-
ning or to structural concerns. Round columns work well for some
structural actions and may be quite economical for forming, but unless
they are totally freestanding, they do not fit so well for planning of
the rest of the building construction. Even square columns of large size
may be difficult to plan around in some cases, an example being at
the corners of stair wells and elevator shafts. T-shaped or L-shaped
columns may be used in special situations.

Large bending moments in proportion to axial compression may also
dictate some adjustment of column form or arrangement of reinforce-
ment. When a column becomes essentially beamlike in its action, some
of the practical considerations for beam design come into play. In this
example these concerns apply to the exterior columns to some degree.

For the intermediate exterior columns there are four actions to
consider:

1. The vertical compression due to gravity.
2. Bending moment induced by the interior framing that intersects

the wall. These columns are what provides the end resisting
moments shown in Figures 20.21 and 20.23.

3. Bending moments in the plane of the wall bent, induced by any
unbalanced gravity load conditions (movable live loads) on the
spandrels.

4. Bending moments in the plane of the wall bents due to lateral
loads.

For the corner columns, the situation is similar to that for the inter-
mediate exterior columns; that is, there is bending on both axes. Gravity
loads will produce simultaneous bending on both axes, resulting in a
net moment that is diagonal to the column. Lateral loads can cause the
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same effect since neither wind nor earthquakes will work neatly on the
building’s major axes, even though this is how design investigation is
performed.

Further discussion of the exterior columns is presented in the fol-
lowing considerations for lateral load effects.

Design for Lateral Forces

The major lateral force resisting systems for this structure are as shown
in Figure 20.15. In truth, other elements of the construction will also
resist lateral distortion of the structure, but by widening the exterior
columns in the wall plane and using the very deep spandrel girders, the
stiffness of these bents becomes considerable.

Whenever lateral deformation occurs, the stiffer elements will attract
the force first. Of course, the stiffest elements may not have the nec-
essary strength and will thus fail structurally, passing the resistance
off to other resisting elements. Glass tightly held in flexible window
frames, stucco on light wood structural frames, lightweight concrete
block walls, or plastered partitions on light metal partition frames may
thus be fractured first in lateral movements (as they often are). For
the successful design of this building, the detailing of the construc-
tion should be carefully done to assure that these events do not occur,
in spite of the relative stiffness of the perimeter bents. In any event,
the bents shown in Figure 20.15 will be designed for the entire lateral
load. They thus represent the safety assurance for the structure, if not
a guarantee against loss of construction.

With the same building profile, the wind loads on this structure will
be the same as those determined for the steel structure in Section 20.5.
As in the example in that section, the data given in Figure 20.11 is
used to determine the horizontal forces on the bracing bent as follows:

H1 = (165.5)(122)/2 = 10,096 lb, say 10.1 kips/bent

H2 = (199.5)(122)/2 = 12,170 lb, say 12.2 kips/bent

H3 = (210)(122)/2 = 12,810 lb, say 12.8 kips/bent

Figure 20.26a shows a profile of the north–south bent with these loads
applied.

For an approximate analysis consider the individual stories of the
bent to behave as shown in Figure 20.26b, with the columns developing
an inflection point at their midheight points. Because the columns are
all deflected the same sideways distance, the shear force in a single
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Figure 20.26 Aspects of the lateral load response of the north–south perimeter
bents.

column may be assumed to be proportionate to the relative stiffness of
the column. If the columns all have the same stiffness, the total load
at each story for this bent would simply be divided by 4 to obtain the
column shear forces.

Even if the columns are all the same size, however, they may not all
have the same resistance to lateral deflection. The end columns in the
bent are slightly less restrained at their ends (top and bottom) because
they are framed on only one side by a beam. For this approximation,
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therefore, it is assumed that the relative stiffness of the end columns is
one-half that of the intermediate columns. Thus, the shear force in the
end columns is one-sixth of the total bent shear force and that in the
intermediate column is one-third of the total force. The column shears
for each of the three stories is thus as shown in Figure 20.26c.

The column shear forces produce bending moments in the columns.
With the column inflection points (points of zero moment) assumed
to be at midheight, the moment produced by a single shear force is
simply the product of the force and half the column height. These
column moments must be resisted by the end moments in the rigidly
attached beams, and the actions are as shown in Figure 20.27. At each
column–beam intersection the sum of the column and beam moments
must be balanced. Thus, the total of the beam moments may be equated
to the total of the column moments, and the beam moments may be
determined once the column moments are known.

For example, at the second-floor level of the intermediate column,
the sum of the column moments from Figure 20.27 is

M = 48.3 + 87.8 = 136.1kip-ft

Assuming the two beams framing the column to have equal stiffness
at their ends, the beams will share this moment equally, and the end
moment in each beam is thus

M = 136.1

2
= 68.05 kip-ft

as shown in the figure.
The data displayed in Figure 20.27 may now be combined with that

obtained from gravity load analyses for a combined load investigation
and the final design of the bent members.

Design of the Bent Columns

For the bent columns the axial compression due to gravity must first
be combined with any moments induced by gravity for a gravity-only
analysis. Then the gravity load actions are combined with the results
from the lateral force analysis, using the usual adjustments for this
combined loading.

Gravity-induced moments for the girders are taken from the girder
analysis in Figure 20.24 and are assumed to produce column moments
as shown in Figure 20.28. The summary of design conditions for the
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Figure 20.27 Investigation for column and girder bending moments in the
north–south bents.

corner and intermediate columns is given in Figure 20.29. For design,
two conditions must be investigated. The first condition is that with the
gravity loads only. The second condition adds the lateral load effects to
the gravity effects. Different load factors apply for these two conditions.
The dual requirements for the columns are given in the bottom two lines
of the table in Figure 20.29.

Note that a single column choice from Figure 15.8 is able to ful-
fill the requirements for all the columns. This is not unusual, as the



642 BUILDING THREE

Figure 20.28 Assumptions for approximations of the distribution of bending
moments in the bent columns due to gravity loading.

relationship between load magnitude and moment magnitude changes.
A broader range of data for column choices is given in the extensive
column design tables in various references.

When bending moment is very high in comparison to the axial load
(very large eccentricity), an effective approximate column design can
be determined by designing a section simply as a beam with tension
reinforcement; the reinforcement is then merely duplicated on both
sides of the column.

Design of the Bent Girders

The spandrel girders must be designed for the same two basic load con-
ditions as discussed for the columns. The summary of bending moments
for the third-floor spandrel girder is shown in Figure 20.30. Values for
the gravity moments are taken from Figure 20.23. Moment induced by
wind is that shown in Figure 20.27. It may be noted from the data in
Figure 20.30 that the effects of gravity loading prevail, and that wind
loading is not a critical concern for the girder. This would most likely
not be the case in lower stories of a much taller building, or possibly
with a combined loading including major seismic effects.
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Figure 20.29 Design of the north–south bent columns for combined gravity and
lateral loading.

Figure 20.31 presents a summary of design considerations for the
third-floor spandrel girder. The construction assumed here is that shown
in Figure 20.21, with the very deep, exposed girder. Some attention
should be given to the relative stiffness of the columns and girders, as
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Figure 20.30 Combined gravity and lateral bending moments for the spandrel
girders.

discussed in Section 3.12. Keep in mind, however, that the girder is
almost three times as long as the column and thus may have a con-
siderably stiffer section without causing a disproportionate relationship
to occur.

For computation of the required flexural reinforcement, the T-beam
effect is ignored and an effective depth of 40 in. is assumed. Required
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2 No. 9 + 1 No. 10 5 No. 10

2 No. 10 2 No. 10

2 No. 92 No. 92 No. 92 No. 9

45"

16"

Design Ultimate
Moment
(See Figure 20.30)

Required
Reinforcement
As = 0.00926 M

Actual As

+

−

435

346

5.98

4.03

3.27 2.54 6.35 2.54

2.00 2.004.00 4.00

3.09

3.20

top

top

bottom

bottom

646

334

Figure 20.31 Design of the spandrel girder for the combined gravity and lateral
loading effects.

areas of reinforcement may thus be derived as

As = M

φfs jd
= M × 12

0.9(40 × 0.9 × 40)
= 0.00926M

From Table 13.3, minimum reinforcement is

As = 0.005bd = 0.005 × 16 × 40 = 3.2 in.2, not critical

Values determined for the various critical locations are shown in
Figure 20.31. It is reasonable to consider the stacking of bars in two
layers in such a deep section, but it is not necessary for the selection
of reinforcement shown in the figure.

The very deep and relatively thin spandrel should be treated some-
what as a wall/slab, and thus the section in Figure 20.31 shows some
additional horizontal bars at midheight points. In addition, the stirrups
shown should be of a closed form (see Figure 13.14) to serve also as
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ties, vertical reinforcement for the wall/slab, and (with the extended
top) as negative moment flexural reinforcement for the adjoining slab.
In this situation it would be advisable to use continuous stirrups at
a maximum spacing of 18 in. or so for the entire girder span. Closer
spacing may be necessary near the supports, if the end shear forces
require it.

It is also advisable to use some continuous top and bottom rein-
forcement in spandrels. This relates to some of the following possible
considerations:

1. Miscalculation of lateral effects, giving some reserved reversal
bending capacity to the girders.

2. A general capability for torsional resistance throughout the beam
length (intersecting beams produce this effect).

3. Something there to hold up the continuous stirrups.
4. Some reduction of long-term creep deflection with all sections

doubly reinforced. Helps keep load off the window mullions and
glazing.

Alternative Floor Structure

Figure 20.32 shows a partial plan and some details for a concrete flat
slab system for the roof and floor structures for Building Three. Features
of the system include the following:

1. A general solid 10-in.-thick slab without beams in the major
portion of the structure outside the building core.

2. A thickened portion, called a drop panel , around the supporting
columns, ordinarily extending to one-sixth the span from the col-
umn on all sides. The thickness increase shown is one-half of the
general slab thickness.

3. A column capital , consisting of a truncated, inverted pyramidal
form.

4. Use of the same spandrel beam and the same slab and beam core
framing as in the slab and beam example.

The flat slab is generally more feasible when live loads are very
high and there are a considerable number of continuous bays of the
structure in both directions. The system for this building is marginally
feasible and might be justified on the basis of some other building
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A A

Partial Plan

Section A - A

10" 15"

Figure 20.32 Alternative structure for the upper floor, using a concrete flat slab
with drop panels at columns.

design considerations. For example, the story height may be decreased
since downward-protruding beams do not interfere with air ducts, sprin-
kler piping, and so on in the main portion of the floor. This could mean
a building several feet shorter, with resultant savings in curtain walls,
columns and partitions, stairs, elevator housing, piping and wiring ris-
ers, and so on.

For some occupancies, in fact, the drop ceiling construction might be
eliminated, with all overhead items exposed beneath the considerably
simpler form of the concrete structure. This is a real advantage for
parking garages and industrial buildings, but not so popular with office
buildings.
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The flat slab system is highly indeterminate and a bit complicated for
reinforcement. However, it has been used extensively since its devel-
opment in the early twentieth century, and routine design of common
examples is pretty much “canned” for repetition by now.

20.9 DESIGN OF THE FOUNDATIONS

Unless site conditions require the use of a more complex foundation
system, it is reasonable to consider the use of simple shallow bear-
ing foundations (footings) for Building Three. Column loads will vary
depending on which of the preceding structural schemes is selected.
The heaviest loads are likely to occur with the all-concrete structure in
Section 20.8.

The most direct solution for concentrated column loads is a square
footing, as described in Section 16.3. A range of sizes of these foot-
ings is given in Table 16.4. For a freestanding column, the choice is
relatively simple, once an acceptable design pressure for the supporting
soil is established.

Problems arise when the conditions at the base of a column involve
other than a freestanding case for the column. In fact, this is the case
for most of the columns in Building Three. Consider the structural plan
as indicated in Figure 20.18. All but two of the interior columns are
adjacent to construction for the stair towers or the elevator shaft.

For the three-story building, the stair tower may not be a problem,
although in some buildings these are built as heavy masonry or concrete
towers and are used for part of the lateral bracing system. This might
possibly be the case for the structure in Section 20.7.

Assuming that the elevator serves the lowest occupied level in the
building, there will be a considerably deep construction below this level
to house the elevator pit. If the interior footings are quite large, they
may come very close to the elevator pit construction. In this case, the
bottoms of these footings would need to be dropped to a level close
to that of the bottom of the elevator pit. If the plan layout results
in a column right at the edge of the elevator shaft, this is a more
complicated problem, as the elevator pit would need to be on top of
the column footing.

For the exterior columns at the building edge, there are two special
concerns. The first has to do with the necessary support for the exterior
building wall, which coincides with the column locations. If there is
no basement, and the exterior wall is quite light in weight—possibly a
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metal curtain wall that is supported at each upper level—the exterior
columns will likely get their own individual square footings and the
wall will get a minor strip footing between the column footings. This
scheme is shown in the partial foundation plan in Figure 20.33a . Near
the columns the light wall will simply be supported by the column
footings.

If the wall is very heavy, the solution in Figure 20.33a may be
less feasible, and it may be reasonable to consider the use of a wide

Figure 20.33 Considerations for the foundations: (a) partial plan with individual
column footings, (b) partial plan with continuous wall footing, and (c) use of a tall
basement wall as a distribution girder for the continuous wall footing.
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strip footing that supports both the wall and the columns, as shown in
Figure 20.33b. The ability of the wall to serve as a distributing mem-
ber for the uniform pressure on the strip footing must be considered,
which brings up another concern as well. The other concern has to do
with the presence or absence of a basement. If there is no basement,
it may be theoretically possible to place footings quite close to the
ground surface, with a minimal penetration of the general foundation
construction below grade. If there is a basement, there will likely be
a reasonably tall concrete wall at the building edge. Regardless of the
wall construction above grade, it is reasonable to consider the use of the
basement wall as a distributing member for the column loads, as shown
in Figure 20.33c. Again, this is only feasible for a low-rise building,
with relatively modest loads on the exterior columns.



Appendix A

PROPERTIES OF
SECTIONS

This appendix deals with various geometric properties of planar
(two-dimensional) areas. The areas referred to are the cross-sectional
areas of structural members. These geometric properties are used in
the analysis of stresses and deformations in the design of the structural
members.

A.1 CENTROIDS

The center of gravity of a solid is the point at which all of its weight
can be considered to be concentrated. Since a planar area has no weight,
it has no center of gravity. The point in a planar area that corresponds
to the center of gravity of a very thin plate of the same area and shape
is called the centroid of the area. The centroid is a useful reference for
various geometric properties of planar areas.

651
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Figure A.1 Centroids of various shapes.

For example, when a beam is subjected to a bending moment, the
materials in the beam above a certain plane in the beam are in compres-
sion and the materials below the plane are in tension. This plane is the
neutral stress plane, also called the neutral surface or the zero stress
plane (see Section 3.7). For a cross section of the beam the intersection
of the neutral stress plane is a line that passes through the centroid of
the section and is called the neutral axis of the section. The neutral
axis is very important for investigation of bending stresses in beams.

The location of the centroid for symmetrical shapes is located on the
axis of symmetry for the shape. If the shape is bisymmetrical—that is,
it has two axes of symmetry—the centroid is at the intersection of these
axes. Consider the rectangular area shown in Figure A.1a; obviously,
its centroid is at its geometric center and is quite easily determined.

(Note: Tables A.3–A.8 and Figure A.11, referred to in the discussion
that follows, are located at the end of this appendix.)

For more complex forms, such as those of rolled steel members, the
centroid will also be on any axis of symmetry. And, as for the simple
rectangle, if there are two axes of symmetry, the centroid is readily
located.

For simple geometric shapes, such as those shown in Figure A.1,
the location of the centroid is easily established. However, for more
complex shapes, the centroid and other properties may have to be deter-
mined by computations. One method for achieving this is by use of the
statical moment , defined as the product of an area times its distance
from some reference axis. Use of this method is demonstrated in the
following examples.

Example 1. Figure A.2 is a beam cross section that is unsymmetrical
with respect to a horizontal axis (such as X –X in the figure). The area
is symmetrical about its vertical centroidal axis, but the true location
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Figure A.2 Reference for Example 1.

of the centroid requires the locating of the horizontal centroidal axis.
Find the location of the centroid.

Solution: Using the statical moment method, first divide the area into
units for which the area and location of the centroid are readily deter-
mined. The division chosen here is shown in Figure A.2b with the two
parts labeled 1 and 2.

The second step is to choose a reference axis about which to sum
statical moments and from which the location of the centroid is readily
measured. A convenient reference axis for this shape is one at either
the top or bottom of the shape. With the bottom chosen the distances
from the centroids of the parts to this reference axis are shown in
Figure A.2b.

The computation next proceeds to the determination of the unit areas
and their statical moments. This work is summarized in Table A.1,
which shows the total area to be 80 in.2 and the total statical moment
to be 520 in.3. Dividing this moment by the total area produces the
value of 6.5 in., which is the distance from the reference axis to
the centroid of the whole shape, as shown in Figure A.2c.

TABLE A.1 Summary of Computations for Centroid: Example 1

Part Area (in.2) y (in.) A × y (in.3)

1 2 × 10 = 20 11 220
2 6 × 10 = 60 5 300
� 80 520

yx = 520
80 = 6.5 in.
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Problems A.1.A–F. Find the location of the centroid for the cross-sectional
areas shown in Figure A.3. Use the reference axes indicated and compute the
distances from the axes to the centroid, designated as cx and cy, as shown in
Figure A.3b.

A.2 MOMENT OF INERTIA

Consider the area enclosed by the irregular line in Figure A.4a . In this
area, designated A, a small unit area a is indicated at z distance from
the axis marked X –X . If this unit area is multiplied by the square of its
distance from the reference axis, the result is the quantity az 2. If all of
the units of the area are thus identified and the sum of these products
is made, the result is defined as the second moment or the moment of
inertia of the area, designated as I . Thus

�az 2 = I or specifically IX−X

which is the moment of inertia of the area about the X –X axis.
The moment of inertia is a somewhat abstract item, less able

to be visualized than area, weight, or center of gravity. It is,
nevertheless, a real geometric property that becomes an essential
factor for investigation of stresses and deformations due to bending.
Of particular interest is the moment of inertia about a centroidal
axis, and—most significantly—about a principal axis for the shape.
Figures A.4b, c, e, and f indicate such axes for various shapes. An
inspection of Tables A.3–A.8 will reveal the properties of moment of
inertia about the principal axes of the shapes in the tables.

Moment of Inertia of Geometric Figures

Values for moment of inertia can often be obtained from tabulations of
structural properties. Occasionally, it is necessary to compute values for
a given shape. This may be a simple shape, such as a square, rectangle,
circular, or triangular area. For such shapes simple formulas are derived
to express the value for the moment of inertia.

Rectangle. Consider the rectangle shown in Figure A.4c. Its width is
b and its depth is d . The two principal axes are X –X and Y –Y ,
both passing through the centroid of the area. For this case the
moment of inertia with respect to the centroidal axis X –X is

IX−X = bd3

12
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Figure A.3 Reference for Problem A.1.
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Figure A.4 Consideration of reference axes for the moment of inertia of various
shapes of cross sections.

and the moment of inertia with respect to the Y –Y axis is

IY −Y = db3

12

Example 2. Find the value of the moment of inertia for a 6 × 12 in.
wood beam about an axis through its centroid and parallel to the narrow
dimension.

Solution: As listed in standard references for wood products, the actual
dimensions of the section are 5.5 × 11.5 in. Then

I = bd 3

12
= 5.5 × (11.5)3

12
= 697.1 in.4

which is in agreement with the value for I X –X in references.

Circle. Figure A.4e shows a circular area with diameter d and axis
X –X passing through its center. For the circular area the moment
of inertia is

I = πd4

64

Example 3. Compute the moment of inertia of a circular cross section,
10 in. in diameter, about its centroidal axis.

Solution: The moment of inertia is

I = πd4

64
= 3.1416(10)4

64
= 490.9 in.4
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Triangle. The triangle in Figure A.4f has a height h and a base
width b. The moment of inertia about a centroidal axis parallel
to the base is

I = bh3

36

Example 4. If the base of the triangle in Figure A.4f is 12 in. wide
and the height from the base is 10 in., find the value for the centroidal
moment of inertia parallel to the base.

Solution: Using the given values in the formula

I = bh3

36
= 12(10)3

36
= 333.3 in.4

Open and Hollow Shapes. Values of moment of inertia for shapes
that are open or hollow may sometimes be computed by a method
of subtraction. The following examples demonstrate this process.
Note that this is possible only for shapes that are symmetrical.

Example 5. Compute the moment of inertia for the hollow box section
shown in Figure A.5a about a centroidal axis parallel to the narrow
side.

Solution: Find first the moment of inertia of the shape defined by the
outer limits of the box:

I = bd3

12
= 6(10)3

12
= 500 in.4

Figure A.5 Reference for Examples 5, 6, and 7.
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Then find the moment of inertia for the shape defined by the void
area:

I = 4(8)3

12
= 170.7 in.4

The value for the hollow section is the difference; thus,

I = 500 − 170.7 = 329.3 in.4

Example 6. Compute the moment of inertia about the centroidal axis
for the pipe section shown in Figure A.5b. The thickness of the shell
is 1 in.

Solution: As in the preceding example, the two values may be found
and subtracted. Or a single computation may be made as follows:

I = π

64
(d4

o − d4
i ) = 3.1416

64
(104 − 84) = 491 − 201 = 290 in.4

Example 7. Referring to Figure A.5c, compute the moment of iner-
tia of the I-shaped section about the centroidal axis parallel to the
flanges.

Solution: This is essentially similar to the computation for Example
5. The two voids may be combined into a single one that is 7 in. wide.
Thus,

I = 8(10)3

12
− 7(8)3

12
= 667 − 299 = 368 in.4

Note that this method can only be used when the centroids of the
outer shape and the void coincide. For example, it cannot be used to
find the moment of inertia for the I shape about its vertical centroidal
axis. For this computation the method discussed in the next section
must be used.

A.3 TRANSFERRING MOMENTS OF INERTIA

Determination of the moment of inertia of unsymmetrical and complex
shapes cannot be done by the simple processes illustrated in the pre-
ceding examples. An additional step that must be used is that involving
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the transfer of moment of inertia about a remote axis. The formula for
achieving this transfer is as follows:

I = Io + Az 2

In this formula,
I = moment of inertia of the cross section about the required

reference axis
Io = moment of inertia of the cross section about its own

centroidal axis, parallel to the reference axis
A = area of the cross section
z = distance between the two parallel axes

These relationships are illustrated in Figure A.6, where X –X is
the centroidal axis of the area and Y –Y is the reference axis for the
transferred moment of inertia.

Application of this principle is illustrated in the following examples.

Example 8. Find the moment of inertia of the T-shaped area in
Figure A.7 about its horizontal (X –X ) centroidal axis. (Note: The
location of the centroid for this section was solved as Example 1 in
Section A.1.)

Solution: A necessary first step in these problems is to locate the
position of the centroidal axis if the shape is not symmetrical. In this
case, the T shape is symmetrical about its vertical axis but not about
the horizontal axis. Locating the position of the horizontal axis was the
problem solved in Example 1 in Section A.1.

Figure A.6 Transfer of moment of inertia to a parallel axis.
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Figure A.7 Reference for Example 8.

The next step is to break the complex shape down into parts for
which centroids, areas, and centroidal moments of inertia are readily
found. As was done in Example 1, the shape here is divided between
the rectangular flange part and the rectangular web part.

The reference axis to be used here is the horizontal centroidal axis.
Table A.2 summarizes the process of determining the factors for the par-
allel axis transfer process. The required value for I about the horizontal
centroidal axis is determined to be 1046.7 in.4.

A common situation in which this problem must be solved is in the
case of structural members that are built up from distinct parts. One
such section is that shown in Figure A.8, where a box-shaped cross
section is composed by attaching two plates and two rolled channel
sections. While this composite section is actually symmetrical about
both its principal axes, and the locations of these axes are apparent,
the values for moment of inertia about both axes must be determined
by the parallel axis transfer process. The following example demon-
strates the process.

TABLE A.2 Summary of Computations for Moment of Inertia: Example 9

Part Area (in.2) y (in.) Io (in.4) A × y2 (in.4) Ix (in.4)

1 20 4.5 10(2)3/12 = 6.7 20(4.5)2 = 405 411.7
2 60 1.5 6(10)3/12 = 500 60(1.5)2 = 135 635
� 1046.7
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Figure A.8 Reference for Example 9.

Example 9. Compute the moment of inertia about the centroidal X –X
axis of the built-up section shown in Figure A.8.

Solution: For this situation the two channels are positioned so that
their centroids coincide with the reference axis. Thus, the value of
Io for the channels is also their actual moment of inertia about the
required reference axis, and their contributions to the required value
here is simply two times their listed value for moment of inertia about
their X –X axis, as given in Table A.4: 2(162) = 324 in.4.

The plates have simple rectangular cross sections, and the centroidal
moment of inertia of one plate is thus determined as

Io = bd 3

12
= 16 × (0.5)3

12
= 0.1667 in.4

The distance between the centroid of the plate and the reference
X –X axis is 6.25 in. And the area of one plate is 8 in.2. The moment
of inertia for one plate about the reference axis is thus

Io + Az 2 = 0.1667 + (8)(6.25)2 = 312.7 in.4

and the value for the two plates is twice this, or 625.4 in.4.
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Adding the contributions of the parts, the answer is 324 + 625.4 =
949.4 in.4.

Problems A.3.A–F. Compute the moments of inertia about the indicated cen-
troidal axes for the cross-sectional shapes in Figure A.9.

Problems A.3.G–I. Compute the moments of inertia with respect to the cen-
troidal X –X axes for the built-up sections in Figure A.10. Make use of any
appropriate data from the tables of properties for steel shapes.

A.4 MISCELLANEOUS PROPERTIES

Elastic Section Modulus

The term I/c in the formula for flexural stress is called the section
modulus. Use of the section modulus permits a minor shortcut in the
computations for flexural stress or the determination of the bending
moment capacity of members. However, the real value of this prop-
erty is in its measure of relative bending strength of members. As a
geometric property, it is a direct index of bending strength for a given
member cross section. Members of various cross sections may thus be
rank-ordered in terms of their bending strength strictly on the basis
of their S values. Because of its usefulness, the value of S is listed
together with other significant properties in the tabulations for steel
and wood members.

For members of standard form (structural lumber and rolled steel
shapes), the value of S may be obtained from tables similar to those
presented at the end of this appendix. For complex forms not of standard
form, the value of S must be computed, which is readily done once the
centroidal axes are located and moments of inertia about the centroidal
axes are determined.

Example 10. Verify the tabulated value for the section modulus of a
6 × 12 wood beam about the centroidal axis parallel to its narrow side.

Solution: From Table A.8 the actual dimensions of this member are
5.5 × 11.5 in. And the value for the moment of inertia is 697.1 in.4.
Then

S = I

c
= 697.1

5.75
= 121.235 in.3

which agrees with the value in Table A.8.
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Figure A.9 Reference for Problems A.3.A–F.
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Figure A.10 Reference for Problems A.3.G–I.

Plastic Section Modulus

The plastic section modulus, designated Z , is used in a similar manner
to the elastic stress section modulus S . The plastic modulus is used to
determine the fully plastic stress moment capacity of a steel beam.
Thus,

Mp = Fy × Z

The use of the plastic section modulus is discussed in Section 9.2.

Radius of Gyration

For design of slender compression members an important geometric
property is the radius of gyration , defined as

r =
√

I

A

Just as with moment of inertia and section modulus values, the radius
of gyration has an orientation to a specific axis in the planar cross
section of a member. Thus, if the I used in the formula for r is that
with respect to the X –X centroidal axis, then that is the reference for
the specific value of r .

A value of r with particular significance is that designated as the
least radius of gyration . Since this value will be related to the least
value of I for the cross section, and since I is an index of the bending
stiffness of the member, then the least value for r will indicate the
weakest response of the member to bending. This relates specifically to
the resistance of slender compression members to buckling. Buckling is
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essentially a sideways bending response, and its most likely occurrence
will be on the axis identified by the least value of I or r . Use of these
relationships is discussed for columns in Parts II and III.

A.5 TABLES OF PROPERTIES OF SECTIONS

Figure A.11 presents formulas for obtaining geometric properties of var-
ious simple plane sections. Some of these may be used for single-piece
structural members or for the building up of complex members.

Tables A.3–A.8 present the properties of various plane sections.
These are sections identified as those of standard industry-produced
sections of wood and steel. Standardization means that the shapes and
dimensions of the sections are fixed and each specific section is iden-
tified in some way.

Structural members may be employed for various purposes, and thus
they may be oriented differently for some structural uses. Of note for
any plane section are the principal axes of the section. These are the
two, mutually perpendicular, centroidal axes for which the values will
be greatest and least, respectively, for the section; thus, the axes are
identified as the major and minor axes. If sections have an axis of
symmetry, it will always be a principal axis—either major or minor.

For sections with two perpendicular axes of symmetry (rectangle,
H, I, etc.), one axis will be the major axis and the other the minor
axis. In the tables of properties the listed values for I , S , and r are all
identified as to a specific axis, and the reference axes are identified in
a figure for the table.

Other values given in the tables are for significant dimensions, total
cross-sectional area, and the weight of a 1-ft-long piece of the member.
The weight of wood members is given in the table, assuming an average
density for structural softwood of 35 lb/ft3. The weight of steel members
is given for W and channel shapes as part of their designation; thus,
a W8 × 67 member weighs 67 lb/ft. For steel angles and pipes the
weight is given in the table, as determined from the density of steel at
490 lb/ft3.

The designation of some members indicates their true dimensions.
Thus, a 10-in. channel and a 6-in. angle have true dimensions of 10 and
6 in. For W shapes and pipe, the designated dimensions are nominal ,
and the true dimensions must be obtained from the tables.



666 PROPERTIES OF SECTIONS

d

d

d

d/3

b

b

d

d1

d

d1

b

b1

A = bd

A = bd − b1d1

I =
bd3 − b1d1

3

12

I =
12

bd3

S =
6

bd2

Z =
4

bd2

A =
4

πd2

A =
2

bd

I =
36

bd3

S =
24

bd2

Z =
81

8bd2

I =
64

πd4

S =
32

πd3

Z =
6

d3

r =
4

d

r =
√12

d

r =
√18

d

S =
bd2 − b1d1

2

6

r =
bd3 − bd1

3

12A

I =
π(d4 − d1

4)
64

S =
π(d3 − d1

3)
32

A =
π(d2 − d1

2)
4

r =
d2 − d1

2

4

Figure A.11 Properties of various geometric shapes of cross sections: A = area,
I = moment of inertia, S = section modulus, and r = radius of gyration.
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TABLE A.6 Properties of Double-Angle Shapes with Long Legs
Back to Back

Size Weight
and per

Thickness ft

Area
A

Axis X –X Axis Y –Y

I S r y Radii of Gyration
Back to Back
of Angles, in.

(in.) (lb) (in.2) (in.4) (in.3) (in.) (in.) 0 3/8 3/4

8 × 6 × 1 88.4 26.0 161.0 30.2 2.49 2.65 2.39 2.52 2.66
× 3/4 67.6 19.9 126.0 23.3 2.53 2.56 2.35 2.48 2.62
× 1/2 46.0 13.5 88.6 16.0 2.56 2.47 2.32 2.44 2.57

6 × 4 × 3/4 47.2 13.9 49.0 12.5 1.88 2.08 1.55 1.69 1.83
× 1/2 32.4 9.50 34.8 8.67 1.91 1.99 1.51 1.64 1.78
× 3/8 24.6 7.22 26.9 6.64 1.93 1.94 1.50 1.62 1.76

5 × 31/2 × 1/2 27.2 8.00 20.0 5.97 1.58 1.66 1.35 1.49 1.63
× 3/8 20.8 6.09 15.6 4.59 1.60 1.61 1.34 1.46 1.60

5 × 3 × 1/2 25.6 7.50 18.9 5.82 1.59 1.75 1.12 1.25 1.40
× 3/8 19.6 5.72 14.7 4.47 1.61 1.70 1.10 1.23 1.37
× 5/16 16.4 4.80 12.5 3.77 1.61 1.68 1.09 1.22 1.36

4 × 3 × 1/2 22.2 6.50 10.1 3.78 1.25 1.33 1.20 1.33 1.48
× 3/8 17.0 4.97 7.93 2.92 1.26 1.28 1.18 1.31 1.45
× 5/16 14.4 4.18 6.76 2.47 1.27 1.26 1.17 1.30 1.44

31/2 × 21/2 × 3/8 14.4 4.22 5.12 2.19 1.10 1.16 0.976 1.11 1.26
× 5/16 12.2 3.55 4.38 1.85 1.11 1.14 0.966 1.10 1.25
× 1/4 9.8 2.88 3.60 1.51 1.12 1.11 0.958 1.09 1.23

3 × 2 × 3/8 11.8 3.47 3.06 1.56 0.940 1.04 0.777 0.917 1.07
× 5/16 10.0 2.93 2.63 1.33 0.948 1.02 0.767 0.903 1.06
× 1/4 8.2 2.38 2.17 1.08 0.957 0.993 0.757 0.891 1.04

21/2 × 2 × 3/8 10.6 3.09 1.82 1.09 0.768 0.831 0.819 0.961 1.12
× 5/16 9.0 2.62 1.58 0.932 0.776 0.809 0.809 0.948 1.10
× 1/4 7.2 2.13 1.31 0.763 0.784 0.787 0.799 0.935 1.09

Source: Adapted from data in the Manual of Steel Construction, with permission of the publishers,
American Institute of Steel Construction. This table is a sample from an extensive set of tables in the
reference document.
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TABLE A.7 Properties of Standard Weight Steel Pipe

Dimensions Properties

Nominal Outside Inside Wall
Diameter Diameter Diameter Thickness A I S r

(in.) (in.) (in.) (in.) (in.2) (in.4) (in.3) (in.)

Weight
per ft
(lb)

3 3.500 3.068 0.216 7.58 2.23 3.02 1.72 1.16
31/2 4.000 3.548 0.226 9.11 2.68 4.79 2.39 1.34
4 4.500 4.026 0.237 10.79 3.17 7.23 3.21 1.51
5 5.563 5.047 0.258 14.62 4.30 15.2 5.45 1.88
6 6.625 6.065 0.280 18.97 5.58 28.1 8.50 2.25
8 8.625 7.981 0.322 28.55 8.40 72.5 16.8 2.94

10 10.750 10.020 0.365 40.48 11.9 161 29.9 3.67
12 12.750 12.000 0.375 49.56 14.6 279 43.8 4.38

Source: Adapted from data in the Manual of Steel Construction , with permission of the publishers,
American Institute of Steel Construction. This table is a sample from an extensive set of tables in the
reference document.
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TABLE A.8 Properties of Structural Lumber

X –X Axis Y –Y Axis Weight at
Section Moment Section Moment 35 lb/ft3

Area Modulus of Inertia Modulus of Inertia Density
A S I S I

(in.2) (in.3) (in.4) (in.3) (in.4) (lb/ft)

Dimenions (in.)

Nominal Actual
b × h b × h

2 × 3 1.5 × 2.5 3.75 1.563 1.953 0.938 0.703 0.911
2 × 4 1.5 × 3.5 5.25 3.063 5.359 1.313 0.984 1.276
2 × 6 1.5 × 5.5 8.25 7.563 20.80 2.063 1.547 2.005
2 × 8 1.5 × 7.25 10.88 13.14 47.63 2.719 2.039 2.643
2 × 10 1.5 × 9.25 13.88 21.39 98.93 3.469 2.602 3.372
2 × 12 1.5 × 11.25 16.88 31.64 178.0 4.219 3.164 4.102
2 × 14 1.5 × 13.25 19.88 43.89 290.8 4.969 3.727 4.831
3 × 4 2.5 × 3.5 8.75 5.104 8.932 3.646 4.557 2.127
3 × 6 2.5 × 5.5 13.75 12.60 34.66 5.729 7.161 3.342
3 × 8 2.5 × 7.25 18.13 21.90 79.39 7.552 9.440 4.405
3 × 10 2.5 × 9.25 23.13 35.65 164.9 9.635 12.04 5.621
3 × 12 2.5 × 11.25 28.13 52.73 296.6 11.72 14.65 6.836
3 × 14 2.5 × 13.25 33.13 73.15 484.6 13.80 17.25 8.051
3 × 16 2.5 × 15.25 38.13 96.90 738.9 15.89 19.86 9.266
4 × 4 3.5 × 3.5 12.25 7.146 12.51 7.146 12.51 2.977
4 × 6 3.5 × 5.5 19.25 17.65 48.53 11.23 19.65 4.679
4 × 8 3.5 × 7.25 25.38 30.66 111.1 14.80 25.9 6.168
4 × 10 3.5 × 9.25 32.38 49.91 230.8 18.89 33.05 7.869
4 × 12 3.5 × 11.25 39.38 73.83 415.3 22.97 40.20 9.570
4 × 14 3.5 × 13.25 46.38 102.4 678.5 27.05 47.34 11.27
4 × 16 3.5 × 15.25 53.38 135.7 1034 31.14 54.49 12.97
5 × 5 4.5 × 4.5 20.25 15.19 34.17 15.19 34.17 4.922
6 × 6 5.5 × 5.5 30.25 27.73 76.26 27.73 76.26 7.352
6 × 8 5.5 × 7.5 41.25 51.56 193.4 37.81 104.0 10.03
6 × 10 5.5 × 9.5 52.25 82.73 393.0 47.90 131.7 12.70
6 × 12 5.5 × 11.5 63.25 121.2 697.1 57.98 159.4 15.37
6 × 14 5.5 × 13.5 74.25 167.1 1128 68.06 187.2 18.05
6 × 16 5.5 × 15.5 85.25 220.2 1707 78.15 214.9 20.72
6 × 18 5.5 × 17.5 96.25 280.7 2456 88.23 242.6 23.39
6 × 20 5.5 × 19.5 107.3 348.6 3398 98.31 270.4 26.07
6 × 22 5.5 × 21.5 118.3 423.7 4555 108.4 298.1 28.74
6 × 24 5.5 × 23.5 129.3 506.2 5948 118.5 325.8 31.41
8 × 8 7.5 × 7.5 56.25 70.31 263.7 70.31 263.7 13.67
8 × 10 7.5 × 9.5 71.25 112.8 535.9 89.06 334.0 17.32
8 × 12 7.5 × 11.5 86.25 165.3 950.5 107.8 404.3 20.96
8 × 14 7.5 × 13.5 101.3 227.8 1538 126.6 474.6 24.61
8 × 16 7.5 × 15.5 116.3 300.3 2327 145.3 544.9 28.26
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TABLE A.8 (Continued)

X –X Axis Y –Y Axis Weight at
Section Moment Section Moment 35 lb/ft3

Area Modulus of Inertia Modulus of Inertia Density
A S I S I

(in.2) (in.3) (in.4) (in.3) (in.4) (lb/ft)

Dimenions (in.)

Nominal Actual
b × h b × h

8 × 18 7.5 × 17.5 131.3 382.8 3350 164.1 615.2 31.90
8 × 20 7.5 × 19.5 146.3 475.3 4634 182.8 685.5 35.55
8 × 22 7.5 × 21.5 161.3 577.8 6211 201.6 755.9 39.19
8 × 24 7.5 × 23.5 176.3 690.3 8111 220.3 826.2 42.84

10 × 10 9.5 × 9.5 90.25 142.9 678.8 142.9 678.8 21.94
10 × 12 9.5 × 11.5 109.3 209.4 1204 173.0 821.7 26.55
10 × 14 9.5 × 13.5 128.3 288.6 1948 203.1 964.5 31.17
10 × 16 9.5 × 15.5 147.3 380.4 2948 233.1 1107 35.79
10 × 18 9.5 × 17.5 166.3 484.9 4243 263.2 1250 40.41
10 × 20 9.5 × 19.5 185.3 602.1 5870 293.3 1393 45.03
10 × 22 9.5 × 21.5 204.3 731.9 7868 323.4 1536 49.64
10 × 24 9.5 × 23.5 223.3 874.4 10270 353.5 1679 54.26
12 × 12 11.5 × 11.5 132.3 253.5 1458 253.5 1458 32.14
12 × 14 11.5 × 13.5 155.3 349.3 2358 297.6 1711 37.73
12 × 16 11.5 × 15.5 178.3 460.5 3569 341.6 1964 43.32
12 × 18 11.5 × 17.5 201.3 587.0 5136 385.7 2218 48.91
12 × 20 11.5 × 19.5 224.3 728.8 7106 429.8 2471 54.51
12 × 22 11.5 × 21.5 247.3 886.0 9524 473.9 2725 60.10
12 × 24 11.5 × 23.5 270.3 1058 12440 518.0 2978 65.69
14 × 14 13.5 × 13.5 182.3 410.1 2768 410.1 2768 44.30
14 × 16 13.5 × 15.5 209.3 540.6 4189 470.8 3178 50.86
14 × 18 13.5 × 17.5 236.3 689.1 6029 531.6 3588 57.42
14 × 20 13.5 × 19.5 263.3 855.6 8342 592.3 3998 63.98
14 × 22 13.5 × 21.5 290.3 1040 11180 653.1 4408 70.55
14 × 24 13.5 × 23.5 317.3 1243 14600 713.8 4818 77.11
16 × 16 15.5 × 15.5 240.3 620.6 4810 620.6 4810 58.39
16 × 18 15.5 × 17.5 271.3 791.1 6923 700.7 5431 65.93
16 × 20 15.5 × 19.5 302.3 982.3 9578 780.8 6051 73.46
16 × 22 15.5 × 21.5 333.3 1194 12840 860.9 6672 81.00
16 × 24 15.5 × 23.5 364.3 1427 16760 941.0 7293 88.53
18 × 18 17.5 × 17.5 306.3 893.2 7816 893.2 7816 74.44
18 × 20 17.5 × 19.5 341.3 1109 10810 995.3 8709 82.94
18 × 22 17.5 × 21.5 376.3 1348 14490 1097 9602 91.45
18 × 24 17.5 × 23.5 411.3 1611 18930 1199 10500 99.96
20 × 20 19.5 × 19.5 380.3 1236 12050 1236 12050 92.42
20 × 22 19.5 × 21.5 419.3 1502 16150 1363 13280 101.9
20 × 24 19.5 × 23.5 458.3 1795 21090 1489 14520 111.4
22 × 22 21.5 × 21.5 462.3 1656 17810 1656 17810 112.4
22 × 24 21.5 × 23.5 505.3 1979 23250 1810 19460 122.8
24 × 24 23.5 × 23.5 552.3 2163 25420 2163 25420 134.2

Source: Compiled from data in the National Design Specification for Wood Construction (Ref. 3),
with permission of the publishers, American Forest and Paper Association.



Appendix B

ANSWERS TO SELECTED
EXERCISE PROBLEMS

Answers are given here for some of the exercise problems for which
computational work is required and a single correct answer exists. In
most cases there are two exercise problems that are similar to each
computational example problem in the text. In those cases the answer
is given here for one of the related exercise problems.

Chapter 1

1.3.A. R = 80.62 lb, upward to the right, 29.74◦ from the horizontal

1.3.C. R = 94.87 lb, downward to the right, 18.43◦ from the hori-
zontal

1.3.E. R = 100 lb, downward to the left, 53.13◦ from the hortizontal

1.3.G. R = 58.1 lb, downward to the right, 7.5◦ from the horizontal

1.3.I. R = 91.1 lb, upward to the right, 9.5◦ from the horizontal

1.4.A. 141.4 lb T

678
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1.4.C. 300 lb C

1.5.A. R = 5 lb, toward the right, 40 ft below the 15-lb force

1.5.C. R = 20 lb, toward the right, 2 ft below the lower 10-lb force

1.6.A. Sample: M about R1 = +(500 × 4) +(400 × 6) +(600 ×
10) – (650 × 16)

1.7.A. R1 = 3594 lb [15.98 kN], R2 = 4406 lb [19.60 kN]

1.7.C. R1 = 7667 lb [34.11 kN], R2 = 9333 lb [41.53 kN]

1.7.E. R1 = 7143 lb [31.79 kN], R2 = 11,857 lb [52.76 kN]

Chapter 2

2.1.A. 99,275 lb

2.1.C. 2.5 in.2 [1613 mm2]

2.2.A. 19,333 lb [86 kN]

2.2.C. 29,550,000 psi [203 GPa]

2.3.A. Cable tensions, left to right: 25 kips, 20 kips, 25 kips; both
loads at 7.5 ft below the supports

2.3.C. Cable tensions, left to right: 28.3 kips, 20.5 kips, 22.3 kips;
left load at 5 ft below left support, right load at 7.5 ft below
right support

2.4.A. Arch rise at both loads is 7.5 ft

2.4.C. Arch rise is 4 ft at left load, 6 ft at right load

2.5.A. Sample values: CI = 2000C , IJ = 812.5T , JG = 1250T

2.6.A. Same as 2.5.A

2.7.A. Cable tensions, left to right: 10.75 kips, 12.75 kips, 15.5 kips,
9.5 kips; compression members, left to right: 32 kips, 28 kips,
20 kips, 8 kips; reactions shown in figure

Chapter 3

3.2.A. Maximum shear = 10 kips [44.5 kN]

3.2.C. Maximum shear = 1114 lb [4.956 kN]

3.2.E. Maximum shear = 9.375 kips [41.623 kN]

3.3.A. Maximum M = 60 kip-ft [80.1 kN-m]

3.3.C. Maximum M = 4286 ft-lb [5.716 kN-m]

3.3.E. Maximum M = 18.35 kip-ft [24.45 kN-m]
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3.4.A. R1 = 1860 lb [8.27 kN], maximum V = 1360 lb [6.05 kN],
maximum – M = 2000 ft-lb [2.66 kN-m], maximum +M =
3200 ft-lb [4.27 kN-m]

3.4.C. R1 = 2760 lb [12.28 kN], maximum V = 2040 lb [9.07 kN],
maximum – M = 2000 ft-lb [2.67 kN-m], maximum +M =
5520 ft-lb [7.37 kN-m]

3.4.E. Maximum V = 1500 lb [6.67 kN], maximum M =
12,800 ft-lb [17.1 kN-m]

3.4.G. Maximum V = 1200 lb [5.27 kN], maximum M = 8600 ft-lb
[11.33 kN-m]

3.5.A. M = 32 kip-ft [43.4 kN-m]

3.5.C. M = 90 kip-ft [122 kN-m]

3.7.A. At neutral axis fv = 811.4 psi; at junction of web and flange
fv = 175 psi and 700 psi

3.8.A. R1 = 1200 lb, R2 = 4000 lb, R3 = 1200 lb, +M = 3600 lb-ft,
– M = 6400 lb-ft

3.8.C. R1 = 7.67 kips, R2 = 35.58 kips, R3 = 12.75 kips, +M =
14.69 kip-ft and 40.64 kip-ft, 8M = 52 kip-ft

3.8.E. R1 = 0.9375 kips, R2 = 4.125 kips, +M = 11.25 kip-ft, – M
= 13.5 kip-ft

3.8.G. R1 = 9.6 kips, R2 = 26.4 kips, +M = 46.08 kip-ft and
14.4 kip-ft, – M = 57.6 kip-ft

3.8.I. R = 8 kips, +M = – M = 44 kip-ft

3.9.A. (a) 3.04 ksf; (b) 5.33 ksf

3.10.A. R = 10 kips up and 110 kip-ft counterclockwise

3.10.C. R = 6 kips to the left and 72 kip-ft counterclockwise

3.10.E. Left R = 4.5 kips down and 6 kips to left, right R = 4.5 kips
up and 6 kips to left

Chapter 4

4.5.A. Exterior walls: 2 × 6 studs; joist: 2 × 12 (21-ft span); beams:
10 in. deep (16 ft 8 in. span); columns: 4 × 4

4.6.A. With column spacing of 35 ft 8.5 in. × 38 ft 11 in.: columns
10-in.-wide flange; beam depth, primary, 27 in., secondary,
24 in., joists, 24 in., joist spacing, 12 ft 11.7 in.
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4.7.A. Columns 14 in. square; beams 14 in. × 28 in.; joists 12 in. ×
18 in.; slab depth 8 in.; concrete total of 26,500 ft3 (savings
of 31%); steel total of 165 tons (38% savings); CMU walls
725 kips

Chapter 5

5.4.A. 3 × 16

5.4.C. (a) 2 × 12, (b) 2 × 12

5.5.A. fv = 83.1 psi, less than allowable of 170 psi, beam is OK

5.5.C. fv = 68.65 psi, less than allowable of 170 psi, beam is OK

5.6.A. Stress = 303 psi, allowable is 625 psi, beam is OK

5.6.C. Stress = 480 psi, allowable is 565 psi, beam is OK

5.7.A. D = 0.31 in. [7.6 mm], allowable is 0.8 in., beam is OK

5.7.C. D = 0.23 in. [6 mm], allowable is 0.75 in., beam is OK

5.7.E. Need I = 911 in.4, lightest choice is 4 × 16

5.9.A. 2 × 10

5.8.A. Max. V = 9.5 kips, usable V = 23 kips, beam is OK

5.8.C. Max. V = 11 kips, usable V = 33 kips, beam is OK

5.8.E. Required M = 43 k-ft, usable M = 58 k-ft, beam is OK

5.8.G. Required M = 57 k-ft, usable M = 108 k-ft, beam is OK

5.8.J. 8 × 20 is lightest choice

5.9.A. 2 × 10

5.9.C. 2 × 12

5.9.E. 2 × 8

5.9.G. 2 × 12

Chapter 6

6.2.A. 6.8 kips

6.2.C. 21.3 kips

6.2.E. 6 × 6

6.2.G. 10 × 10

6.3.A. 10.5 kips

6.3.C. 33 kips

6.5.A. 2 × 4’s at 24 in. are OK
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6.5.C. Very close to limit, but OK

6.5.E. Column is OK

Chapter 7

7.2.A. 1050 lb

7.3.A. 1560 lb

Chapter 9

9.2.A. 13.5%

9.3.A. (1) 849 kip-ft, (2) 725 kip-ft, (3) 520 kip-ft

9.4.A. W 14 × 26

9.4.C. W 10 × 26

9.4.E. W 12 × 26

9.4.G. W 10 × 19

9.4.I. W 16 × 36

9.5.A. (a) W 30 × 90 (b) W 30 × 108 (c) W 27 × 114

9.5.C. (a) W 24 × 62 (b) W 24 × 76 (c) W 24 × 76

9.6.A. 220 kips

9.6.C. 54.8 kips

9.7.A. (a) 0.79 in. (b) 0.9 in.

9.7.C. (a) 0.83 in. (b) 0.8 in.

9.8.A. (a) W 16 × 57 (b) W 10 × 88

9.8.C. (a) W 24 × 55 (b) W 18 × 86

9.8.E. (a) W 12 × 16 (b) W 10 × 19

9.8.G. (a) W 24 × 76 (b) W 21 × 83

9.8.H. (a) W 14 × 34 (b) W 14 × 34

9.10.A. 26K7

9.10.C. (a) 24K4, (b) 22K6

Chapter 10

10.3.A. 338 kips

10.3.C. 401 kips

10.4.A. W8 × 31

10.4.C. W10 × 68 or W14 × 68
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10.4.E. 4-in. standard pipe

10.4.G. 6-in. standard pipe

10.4.I. 98 kips [436 kN]

10.4.K. HHS 6 × 6 × 3/16

10.4.M. 104 kips [463 kN]

10.4.O. 4 × 3 × 5/16

10.5.A. W12 × 45

10.5.C. W12 × 96

Chapter 11

11.2.A. 6 bolts, outer plates 1/2 in., middle plate 11/16 in.

Chapter 12

12.2.A. WR20

12.2.C. WR18

12.2.E. IR22 or WR22

Chapter 13

13.3.A. Possible choice: 12 × 14.5 in., requires 7.60 in.2, use 5 No.
11 bars. However, width required to get bars into one layer
is critical, least width is 17 in., must have wider beam or
use two layers of bars.

13.3.C. From work for Problem 13.3.A, this section is underrein-
forced. Try a/d = 0.4, required As = 2.81 in.2, actual a/d
= 0.086, revised area = 2.34 in.2, minimum reinforcement
= 2.56 in.2, use 3 No. 9 bars, width required = 10 in.

13.3.E. Possible choices are: 12 × 20 with 2 No. 10 + 2 No. 11,
12 × 24 with 4 No. 10, 15 × 20 with 4 No. 11, 15 × 25
with 4 No. 9, 18 × 24 with 5 No. 9, 18 × 36 with 3 No.
10, 20 × 30 with 3 No. 10.

13.4.A. For bending moment approximate area of reinforcement =
3.84 in.2. However, minimum reinforcement based on bf is
5.52 in.2.

13.4.C. Check balanced M R = 718 kip-ft; use tension reinforcement
of 5 No. 9, compressive reinforcement of 2 No. 9 or 3
No. 7.
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13.4.E. As with Problem 13.4.C, balanced moment capacity exceeds
required moment. Can use 5 No. 11 bars for tension rein-
forcement, but width required is 17 in., need wider beam or
two layers of bars. Use compression reinforcement of 3 No.
9 bars.

13.5.A. For deflection use 8-in.-thick slab, referring to Figure 14.4,
reinforce with No. 8 at 16 in., No. 7 at 12 in., No. 6 at 9 in.,
or No. 5 at 6 in., use temperature reinforcement of No. 4 at
12 in.

13.6.A. Possible choice for spacing: 1 at 6 in., 8 at 13 in.

13.6.C. Possible choice: 1 at 6 in., 5 at 13 in.

13.7.A. Required development length in cantilever is 17 in., 34 in.
provided, OK. Required development length in support is
13 in, 22 in. provided, anchorage as shown is adequate by
code, but use a hook anyway.

13.7.C. Required development length is 4.9 in., but use the full
length available (18 in.)

Chapter 14

14.1.A. For deflection need 6-in.-thick slab. Referring to Figure
14.4, left to right, with all No. 4 bars, use spacings of 16,
18, 13, 18, and 16 in.

Chapter 15

15.3.A. From Figure 15.7, with load of 248 kips and e = 3.77 in.:
12-in. column, 4 No. 8 bars

15.3.C. From Figure 15.7, with load of 480 kips and e = 7.0 in.:
18-in. column, 8 No. 11 bars

15.3.D. From Figure 15.11, with load of 248 kips and e = 3.77 in.:
12 × 16 column, 6 No. 7 bars, no savings (overstrong, but
smallest choice from graph)

15.3.F. From Figure 15.11, with load of 480 kips and e = 7.0 in.:
14 × 20 column, 6 No. 9 bars, more steel but less concrete

15.3.G. From Figure 15.9, with load of 136 kips and e = 3 in.,
12-in.-diameter column, 4 No. 7 bars

15.3.I. From Figure 15.9, with load of 480 kips and e = 6.2 in.,
24-in.-diameter column, 6 No. 10 bars
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Chapter 16

16.2.A. Possible choice: w = 6 ft–9 in., h = 17 in., 7 No. 5 in long
direction, No. 5 at 11 in. in short direction.

16.3.A. Possible choice: 8-ft 8-in. square, h = 20 in., 7 No. 8 each
way.

Appendix A

A.1.A. cy = 2.6 in. [65 mm]

A.1.C. cy = 4.2895 in. [107.24 mm]

A.1.E. cy = 4.4375 in. [110.9 mm], cx = 1.0625 in. [26.6 mm]

A.3.A. I = 535.86 in.4 [2.23 × 108 mm4]

A.3.C. I = 447.33 in.4 [186 × 106 mm4]

A.3.E. I = 205.33 in.4 [ 85.46 × 106 mm4]

A.3.G. I = 420 in.4

A.3.I. I = 1672.5 in.4



GLOSSARY

The material presented in this glossary constitutes a brief dictionary of
words and terms frequently encountered in discussions of the design
of building structures. Many of the words and terms have reasonably
well-established meanings; in those cases we have tried to be consistent
with the accepted usage. In some cases, however, words and terms are
given different meanings by different authors or by groups that work
in different fields—in which case the definition here is that used for
the work in this book.

Some words and terms are commonly misused with regard to their
precise meaning, an example being unreinforced, which would imply
something from which reinforcing has been removed, whereas it is
commonly used to refer to something that was never reinforced in the
first place. Where such is the case, we have given the commonly used
meaning here.

To be clear in its requirements, a legal document such as a building
code often defines some words and terms. Care should be exercised
when reading such documents to be aware of these precise meanings.
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For fuller explanation of some of the words and terms here, as well
as many not given here, the reader should use the Index to find the
related discussion in the text.

Adequate. Just enough; sufficient. Indicates a quality of bracketed
acceptability—on the one hand, not insufficient, but on the other
hand, not superlative or excessive.

Aggregate. Inert, loose material that makes up the largest part (typ-
ically two thirds to three fourths) of the bulk of concrete; what
the water and cement paste holds together; ordinarily consists of
stone—ranging in size from medium fine sand to coarse gravel.

Allowable Stress. See Stress.

Allowable Stress Design (ASD). Structural design method that
employs limits based on allowable stresses and responses to service
(actual usage) load conditions. See also Strength Design.

Analysis. Separation into constituent parts. In engineering, the
investigative determination of the detail aspects of a particular
phenomenon. May be qualitative—meaning a general evaluation
of the nature of the phenomenon—or quantitative—meaning the
numerical determination of the magnitude of the phenomenon. See
also Synthesis.

Anchorage. Attachment for resistance to movement; usually oppos-
ing uplift, overturn, sliding, or horizontal separation. Tiedown , or
holddown , refers to anchorage against uplift or overturn. Positive
anchorage refers to fastening that does not easily loosen.

Beam. A structural element that sustains transverse loading and devel-
ops internal forces of bending and shear in resisting loads. Also
called a girder if very large, a joist if small or in closely spaced
sets, a rafter if used for a roof, and a header or lintel if used over
an opening in a wall.

Bearing Foundation. Foundation that transfers loads to soil by direct
vertical contact pressure (bearing). Usually refers to a shallow bear-
ing foundation , which is placed directly beneath the lowest part of
the building and not very far from the ground surface. See also
Footing.

Bending. Turning action that causes change in the curvature of lin-
ear elements; characterized by the development of opposed internal
stresses of compression and tension. See also Moment.
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Bent. A planar framework, or some defined portion of one, that is
intended for resistance to both horizontal and vertical loads in the
plane of the frame.

Box System. A lateral bracing system in which horizontal loads are
resisted not by a column-and-beam system but rather by planar ele-
ments (shear walls and horizontal diaphragms) or braced frames
(trusses).

Braced Frame. Building code term for a trussed frame used for lateral
bracing.

Bracing. The general term used for elements that provide support
against sideways movements due to lateral loads or to the buckling
of slender elements.

Brittle Fracture. Sudden failure, usually due to tension or shear; the
usual failure of brittle materials, such as glass, plaster, and concrete.

Buckling. Collapse, in the form of sudden sideways deflection or of
torsional rotation (twisting).

Building Code. Legal document for regulation of building form, fea-
tures, and construction. Model codes are developed by recommend-
ing organizations; real codes are enacted as ordinances by some
governmental unit (city, county, state).

Built-up Member. Structural member assembled from two or more
parts in a manner that results in the combined parts working as a
single unit.

Calculation. Ordered, rational determination, usually by mathematical
computations.

Centroid. The geometric center of an object, usually analogous to the
center of gravity. The point at which the entire mass of the object
may be considered to be concentrated when considering moment of
the mass.

Cold-Formed Element. Structural element produced from sheet steel
by bending, rolling, or stamping without heating of the steel.

Composite Panel. Structural panel with wood veneer faces and a
fiberboard core. In thick panels there is also a center wood veneer.

Compression. Force action that tends to press adjacent particles of a
material together and to cause shortening of objects in the direction
of the compressive force.

Concrete Masonry Unit (CMU). Precast concrete unit; or good old
concrete block.
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Connection. The union or joining of two or more distinct elements. In
a structural assemblage, a connection device itself becomes an entity,
with interactions of the connected elements visualized in terms of
their actions on the connecting device.

Continuity. The character of continuous, monolithic structural
elements; wherein actions of adjacent elements are influenced by
their continuous nature, such as with multistory columns, multispan
beams, and multielement rigid frames.

Core Bracing. Concentration of the vertical elements of a lateral brac-
ing system at a central location in the building; usually at the location
of elevators, stairs, and vertical service elements.

Creep. Plastic deformation at constant stress levels that occurs over
time (basically under dead load); a common effect in structures of
concrete.

Curtain Wall. An exterior wall of a building that is supported entirely
by the building structure, rather than being self-supporting or a
bearing wall.

Dead Load. See Load.

Deflection. Lateral movement of a structure under loading, such as
the sag of a beam.

Determinate Structure. A structure having the exact sufficiency for
stability, and therefore being subject to investigation by consid-
eration of the equilibrium of simple static forces alone. See also
Indeterminate Structure.

Diaphragm. A planar element (wall, floor deck, etc.) used to resist
forces in its own plane by shear action. See also Horizontal
Diaphragm and Shear Wall.

Doubly Reinforced Beam. A concrete beam with both tension and
compression reinforcement.

Ductility. Stress–strain (load–deformation) behavior that results from
the plastic yielding of materials. To be significant—qualifying a
material as ductile—the plastic yield before failure should be several
times the elastic strain up to the point of plastic yield.

Elastic Behavior. Used to describe two aspects of stress–strain behav-
ior. The first is a constant stress–strain proportionality, or constant
modulus of elasticity, as represented by a straight-line form of the
stress–strain graph. The second is the stress level limit within which
all strain is recoverable; that is, there is no permanent deformation.
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The latter phenomenon may occur even though the stress–strain
relationship is nonlinear (e.g., as it is for wood).

Engineered Wood. General term for products produced from wood
other than single pieces of sawn wood.

Equilibrium. A balanced state or condition, usually used to describe
a situation in which opposed force effects neutralize each other to
produce a net effect of zero.

Factored Load. Service load multiplied by a factor to produce an
adjusted load for strength design.

Field Assemblage. Construction work performed at the construction
site (the field). Refers mostly to production and erection of steel
frames.

Flexible. See Stiffness.

Footing. A shallow bearing-type foundation element consisting of a
concrete pad cast directly into an excavation.

Freestanding Wall. See Wall.

Function. Capability; intended use.

Grade. 1. The level of the ground surface. 2. Rated quality (capability,
capacity, refinement, etc.) of material.

Grade Beam. A foundation element at or near the finished ground
level that acts as a footing, a tie, or a spanning element.

Grain. 1. A discrete particle of material that constitutes a loose mate-
rial, such as soil. 2. The fibrous orientation of wood.

Grout. Lean concrete (predominantly water, cement, and sand) used
as a filler in the voids of masonry units, under steel bearing plates,
and so on.

Header. A beam at the edge of an opening in a roof or floor or at the
top of an opening in a wall.

Horizontal Diaphragm. Usually a roof or floor deck used as part of
a lateral bracing system. See Diaphragm.

Hot-Rolling. Industrial process in which an ingot (lump) of steel is
heated to the softening point and then squeezed between rollers
repeatedly to produce a linear element with a constant cross section.

Indeterminate Structure. In general, any structure whose load-
resisting behavior cannot be determined by simple consideration of
static equilibrium.

Inelastic. See Stress–Strain Behavior.
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Joist. See Beam.

Kern Limit. Limiting dimension for the eccentricity (off-center con-
dition) of a compression force if tension stress is to be avoided.

Lateral. Sideways. Used to describe something that is perpendicular
to a major axis or direction. With respect to the vertical direction of
gravity forces, primary effects of wind, earthquakes, and horizontal
soil pressures are called lateral effects. Horizontal buckling of beams
is called lateral buckling.

Lateral Unsupported Length. For a linear structural element (beam,
column), the distance between points of assured lateral bracing.

Live Load. See Load.

Load. The active force (or combination of forces) exerted on a struc-
ture. Dead Load is permanent gravity load, including the weight of
the structure itself. Live Load is literally any load that is not perma-
nent, although the term is ordinarily applied to distributed surface
loads on roofs and floors. Service Load is that to which the struc-
ture is expected to be subjected. Factored Load is the service load
modified by amplification factors for use in strength design.

Load and Resistance Factor Design (LRFD). See Strength Design.

Member. One of the distinct elements of an assemblage.

Moment. Action tending to produce turning or rotation. Product of
a force times a distance (lever arm); yields a measurement unit of
force times distance—for example, foot-pounds, kilonewton-meters,
and so on. Bending moment causes curvature of linear elements;
torsional moment causes twisting rotation.

Moment of Inertia. The second moment of an area about a fixed line
(axis) in the plane of the area. A purely mathematical property, not
subject to direct physical measurement. Has significance in that it
can be quantified for any geometric shape and is a measurement of
certain structural responses, such as deflection of beams.

Net Section. Cross-section area of a structural member reduced by
holes, notches, and so on. Most significant in determination of
tension response.

Normal. 1. The ordinary, usual, unmodified state of something. 2.
Perpendicular, such as pressure on a surface.

Open-Web Joist. A light steel truss, usually with parallel chords,
commonly used in closely spaced sets—as with wood floor joists.
A manufactured product.
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Optimal. Best; most satisfying. The best solution to a set of criteria
is the optimal one. When the criteria have opposed values, there
may be no single optimal solution, except by the superiority of a
single criterion—such as the lightest, the strongest, the cheapest,
and so on.

Overturn. Rotational effect consisting of toppling or tipping over; an
effect of lateral loads on vertical elements.

P –delta Effect. Secondary bending effect on vertical members of a
frame, induced by the vertical loads acting on the laterally displaced
(deflected) members.

Pedestal. A short pier or upright compression member. A column
qualified by a ratio of unsupported (unbraced) height to least lateral
dimension of 3 or less.

Perimeter Bracing. Vertical elements of a lateral bracing system
located at the building perimeter.

Plain Concrete. Concrete cast without reinforcement or prestressing.

Plastic. In structural investigation, the type of stress–strain response
that occurs in ductile behavior, beyond the yield stress point; usually
results in permanent deformation.

Plastic Hinge. Rotational effect that occurs in steel members when
the entire cross section is subjected to yield stress.

Plastic Moment. Resisting moment produced at the point of devel-
opment of a plastic hinge.

Poured-in-Place Concrete. Concrete cast where it is intended to stay;
also called sitecast.

Precast Concrete. Concrete members cast at a location other than
that at which they are to be used.

Principal Axes. The set of mutually perpendicular axes through the
centroid of an area, about which the moments of inertia will be
maximum and minimum. Called individually the major axis and the
minor axis.

Radius of Gyration. A defined mathematical property: the square
root of the product of the moment of inertia divided by the area of
a section.

Reaction. Response. In structural investigation, the response of the
structure to the loads or the response of the supports to the loaded
structure. Mostly used to describe the latter.
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Reference Design Values. Values for allowable stress and modulus
of elasticity for wood with no modification for usage conditions.

Reinforce. To strengthen, usually by adding something.

Resistance Factor. Reduction factor for adjustment of the ultimate
resistance of a structural element to a force action—bending, com-
pression, shear, and so on.

Restoring Moment. Resistance to overturn due to the weight of the
laterally loaded element.

Rigid Bent. See Rigid Frame.

Rigid Frame. Common term for a framework in which members
are connected by joints that are capable of transmitting bending
moments to the ends of the members. The term rigid derives not
so much from the character of the frame as from that of the rigid
joints. Now more accurately described as a moment-resisting space
frame —a mouthfull but more accurate.

Rigidity. Degree of resistance to deformation; highly resistive ele-
ments are stiff or rigid , elements with low resistance are flexible.

Rolled Shape. Linear steel member with a cross section produced by
hot-rolling.

Safety. Relative unlikelihood of failure; absence of danger. The safety
factor is the ratio of the structure’s ultimate resistance to the actual
demand (service load) on the structure.

Section. The two-dimensional area or profile obtained by passing a
plane through a form. Cross section usually implies a section at right
angles to another section or to the linear axis of an object (such as
a vertical cross section of a horizontal beam).

Sense. See Sign.

Service Conditions. Situations arising from the usage of a structure.
See also Service Load.

Service Load. See Load.

Shear. A force effect that is lateral (perpendicular) to a structure, or
one that involves a slipping effect, as opposed to a push–pull effect
on a cross section.

Shear Wall. A vertical diaphragm; acts as a bracing element for
horizontal force (shear) by developing shear stress in the plane
of the wall.
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Shop Assemblage. Refers to construction work performed at a pro-
duction facility (the shop), as opposed to work done at the construc-
tion site (the field). Refers mostly to production and erection of steel
frames.

Sign. Algebraic notation of sense—positive, negative, or neutral.
Relates to direction of forces—if up is positive, down is negative;
to stress—if tension is positive, compression is negative; to
rotation—if clockwise is positive, if counterclockwise is negative.

Sitecast. See Poured-in-Place.

Slab. A horizontal, planar element of concrete. Occurs as a roof or
floor deck in a framed structure (called a supported slab) or as a
pavement poured directly on the ground surface (called a slab on
grade).

Slenderness. Relative thinness; a measurement of resistance to
buckling.

Stability. Refers to the inherent capability of a structure to develop
force resistance as a result of its form, orientation, articulation of
its parts, type of connections, methods of support, and so on. Is
not related to quantified strength or stiffness, except when actions
involve buckling of slender elements.

Stiffness. See Rigidity.

Strain. Deformation resulting from stress; measured as a percentage
change and is thus dimensionless.

Strength. Capacity to resist force.

Strength Design. One of two fundamental design methods for assur-
ing a margin of structural safety. Allowable stress design (ASD)
is performed by analyzing stresses produced by service loads and
comparing them to established limits. Strength design , also called
ultimate strength design , is performed by using a design ultimate
load (a magnification of the service load) and comparing it to the
ultimate resistance of the structure. When strength design is per-
formed with both factored loads and factored resistances, it is called
load and resistance factor design (LRFD).

Stress. The mechanism of force within a material of a structure, visu-
alized as a pressure effect (tension or compression) or a shear effect
on the surface of a unit of material and quantified as force per unit
area. Allowable stress is a limit established for design by stress
methods; ultimate stress is that developed at a failure condition.
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Stress–Strain Behavior. The relation of stress to strain in a material
or structure; usually visualized by a stress–strain graph covering
the range from no load to failure. Various aspects of the form of
the graph define particular behavior characteristics of the material.
A straight line indicates an elastic relationship; a curve indicates
inelastic behavior. A sudden bend in the graph usually indicates a
plastic strain or yield that results in some permanent deformation.
The slope of the graph (if straight), or of a tangent to the curve, indi-
cates the relative stiffness of the material; measured by the tangent
of the angle (stress–strain) and called the modulus of elasticity.

Structure. That which gives form to something and works to resist
changes in the form due to the actions of various forces.

Stud. One of a set of closely spaced columns used to produce a
framed wall.

Synthesis. The process of combining a set of components into a
whole; opposite of analysis.

System. A set of interrelated elements; an ordered assemblage; an
organized procedure or method.

Tension. Force action that tends to separate adjacent particles of a
material or pull elements apart. Produces straightening effects and
elongation.

Tiedown. See Anchorage.

Torsion. Rotational (moment) effect involving twisting in a plane
perpendicular to the linear axis of an element.

Truss. A framework of linear elements that achieves stability through
triangular formations of the elements.

Unreinforced. Grammatically incorrect but commonly used term
referring to concrete or masonry structures without reinforcement.
Unreinforced concrete is also called plain concrete.

Uplift. Net upward (lifting) force effect; may be due to wind, over-
turning moment, or an upward seismic acceleration.

Vector. A mathematical quantity having direction as well as mag-
nitude and sense (sign). Comparison is made to scalar quantities
having only magnitude and sense, such as time and temperature. A
vector may be represented by an arrow with its length proportional
to the magnitude, the angle of its line indicating the direction, and
the arrowhead representing the sign.

Vertical Diaphragm. See Shear Wall.



696 GLOSSARY

Wall. A vertical, usually planar, building element. Foundation walls
are those partly or totally below ground. Bearing walls are used
to carry vertical loads. Shear walls are used as bracing elements
for horizontal forces in the plane of the wall. Freestanding walls are
walls whose tops are not laterally braced. Retaining walls resist hor-
izontal soil pressures perpendicular to the wall plane. Curtain walls
are nonstructural exterior walls. Partition walls are nonstructural
interior walls.

Wet Concrete. Freshly mixed concrete before hardening.

Yield. See Stress–Strain Behavior.
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Index

A
Accuracy of computations, 4
Algebraic analysis of truss, 77
Allowable deflection, 317
Allowable loads for:

nails, 262
plywood:

diaphragm, 566
roof deck, 229
shear wall, 570

steel:
bolts, 383
columns, 358
roof deck, 404

wood:
columns, 243
joists, 224

nailed joints, 260
rafters, 225

Angles, structural steel, 674
double, 366, 675
gage for bolts, 385
properties of, 672, 674

Approximate analysis of
structures, 482, 638

design factors for concrete
beams, 482

Areas of:
slab reinforcement, 449
steel reinforcing bars, 416

B
Balanced reinforcement, strength

design, 421

699
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Bars, reinforcing, see
Reinforcement

Beams:
bearing, 196, 208
bending in, 98, 115
buckling, 157
cantilever, 108
concentrated load, 32
concrete, 417
connections:

steel, 395
wood, 258

continuous, 123
deflection, 210, 313, 490
diagrams, typical loadings,

114
distributed load, 32
doubly-reinforced, 439
equivalent load, 113
fixed-end, 134
flexure formula, 118
framed connections, 393
indeterminate, 123, 482
inflection, 105
internal resisting moment, 115
joists, 171, 222
lateral buckling, 157
lateral support for, 159, 206
loading, 32
load-span values for:

steel, 324
concrete, 429

moment diagram, 99
moment in, 98
neutral axis, 115
overhanging, 104
rafter, 222
reactions, 30, 32
resisting moment in, 115
restrained, 134

rotational buckling, 157
sense (sign) of bending, 103
shear diagram, 96
shear in, 93, 207, 307, 452
stability, 157
statically indeterminate, 123,

482
steel, 282
stresses in, 115, 118
T-beams, 433
tabular data for, 111
theorem of three moments,

125
torsional buckling, 159
uniformly distributed load, 32

Bearing foundation, 522
Bearing in bolted connections,

377
Bearing of wood beams, 196,

208
Bending,

in concrete beams, 417
factors, columns, 370
resistance, 98, 117
in steel beams, 286
stress, 115
in wood beams, 204

Bending moment:
in beam, 98
diagrams, 99
sense of, 103

Bent, 154, 638
Block shear failure, 380, 390
Bolted connections, 375

bearing in, 377
block shear, 380, 390
design, 387
effective net area, 377
framed beam connections,

steel, 393
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gage for angles, 385
layout of, 383
in steel, 375
tearing in, 380, 390
tension stress in, 386
in truss, 395
in wood, 258

Bolts:
capacity in steel, 382
sill, 571
types, 380

Bow’s notation, 23
Box system, 554
Braced frame, 162, 166, 612
Bracing of framed structures,

587
Buckling:

of beams, 157, 304
of columns, 89
lateral, 157
torsional, 159
of web of steel beam, 345

Building code requirements, 39
Building construction, choice of,

547
Built-up sections:

in steel, 349
in wood, 233

C
Cable:

graphical analysis, 65
suspension, 65

Cable-stayed structure, 85
graphical analysis of, 85

Cantilever:
beam, 108
frame, 148

Cement, 413
Center of gravity, 651

Centroid, 651
Chord in horizontal diaphragm,

565
Classification of force systems,

14
CMU, 518
Cold-formed products, 278
Columns:

bending factors for, 370
bending in, 138
buckling, 89
built-up steel, 349
CMU, 518
combined axial load and

moment, 138
design of:

concrete, 506
steel, 357
wood, 242

development of reinforcement,
476

double angles, 366
eccentrically loaded, 249, 368,

507
effective buckling length, 91,

350
end conditions, 350
footing for, 532
framing connections, 372
interaction, axial load plus

moment, 140
load tabulation, 49, 606
P –delta effect, 139
pedestals for, 541
reinforced concrete, 492
round, concrete, 514
safe load for:

concrete, 506
steel, 351
wood, 244
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Columns: (continued )
slenderness of, 89, 237, 350,
solid, wood, 236
spiral, concrete, 497
steel,

angle, 366
critical stress, 354
pipe, 362
shapes of, 149
tubular, 364
W shapes, 358

tied, concrete, 497,
500, 506

wood, 236
Combined axial force and

moment, 140
Compact shape, steel, 291
Combined stress, compression

plus bending, 142
Component of a force, 19
Composite construction, 403
Compression:

in columns, 493
reinforcement in concrete

beams, 439
Compression elements, 87, 517

buckling of, 89
columns, 89
combined compression and

bending, 138
combined stress, 142
cracked section, 144
interaction, 140
kern limit, 144
P-delta effect, 139
pressure wedge method, 145

Computations, 4
Concurrent force systems, 21
Concentrated load, 32

Concrete:
balanced section properties,

421, 423
beam, 417

with compressive
reinforcement, 439

deflection, 477, 491
depth, 490
load-span values for, 429
shape, 488
shear in, 452
in sitecast system, 431
T-beam, 433
width, 489

bents, 638
cast-in-place, 410
cement, 413
column,

CMU, 514
design methods, 506
footing for, 532
general requirements for,

498
multistory, 505
reinforcement in, 494
round, 514
safe load for, 506
shape, 500
slenderness, 575
spiral, 497
tied, 497, 500, 506
type, 496

composite construction, 403
compression elements, 493,

517
construction, 182
cover, 415, 499
creep, 413
deflection of beams and slabs,

477
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development of reinforcement,
467, 475

effect of compression force,
493

flat-spanning systems, 479
foundations, 522
framing systems, 503
general requirements:

for beams, 488
for columns, 496

hook for, 470
masonry unit (CMU), 518
member sizing, 182
minimum reinforcement, 428,

439
modulus of elasticity, 412
one-way continuous slab, 483
pedestal, 547
precast, 410
reinforced masonry, 520
reinforcement for, 414, 448
resistance factors, 417
rigid frame, 638
safe load for:

beams, 429
columns, 506

shape of beams, 488
shear in, 452
sitecast, 410
slab and beam system, 480,

624
slabs,

minimum thickness, 477
spanning, 446, 483
temperature reinforcement,

447, 487
spacing of reinforcement, 415,

426, 448
specified compressive

strength, 411

splice in reinforcement, 474
stirrup, 454
stiffness, 412
strength of, 411
strength reduction factor, 417
T-beam, 433
temperature reinforcement,

447, 487
vertical compression elements,

517
wall, footing, 523
width of beam, 426

Connection:
bolted:

steel, 375
wood, 258

field, 393
framing, 372, 393
nailed, 260
shop, 393
steel, 375
tension, 258, 386
truss, 395

Continuous action of:
beams, 123, 481
frames, 148, 638
slabs, 481

Conversion factors for units, 5
Core bracing, 598
Cost of construction, 187, 551
Cover, of reinforcement, 415,

499
Cracked section, 144
Creep, 413
Crippling of beam web, 345
Curtain wall, 594

D
Dead load, of building

construction, 37
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Deck:
concrete, 446, 480
plywood, 227
steel, 343, 400
with steel framing, 343, 400
wood plank, 192, 226

Deflection:
allowable, 317
of concrete beams and slabs,

490
effects of, 314
equivalent uniform load for,

113
formulas, typical loadings,

114
of steel beams, 313
of wood beams, 210

Deformation, 59
unit (strain), 60

Design methods, 51
Design standards, 548
Development length for

reinforcement, 467
Diaphragm:

chord, 565
horizontal, 163, 565
plywood, 565

Dimension lumber, 192
Direct stress, 55
Distributed load, 32
Double-angle shapes, 366
Double shear, 377
Doubly reinforced beams, 439
Dowels, in footings, 476
Ductility, 273
Duration of load, wood, 198
Dynamics, 2

E
Earthquake, 47, see also Seismic
Eccentric load:

on column, 249, 368, 507
on footing, 142
as P –delta, 139

Economics, 551
Effective:

column length, 350
depth of concrete beam, 420
width of concrete T-beam

flange, 434
Elastic limit, 60
Elastic stress-strain response, 60
Equilibrant, 20
Equilibrium, 2, 15, 29
ETL (equivalent tabular load),

113, 332
EUL (equivalent uniform load),

333
Euler buckling formula, 90

F
Factored load, 49
Factor of safety, 62
Fasteners, for wood frames, 258
Fiber products, wood, 232
Field assembly, 393
Fixed end beam, 134
Flexure:

in beams, 115, 204, 283, 417
formula, 118

Floor-ceiling space, in multilevel
buildings, 490

Footings,
column, 532
moment-resistive, 142
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wall, 523
Force:

classification of systems, 14
combinations, 16
components, 16
composition, 16
definition, 11
equilibrant, 20
equilibrium, 2, 15, 29
graphical analysis, 16, 24, 65,

68, 70, 85
line of action, 11
notation for truss analysis, 23
parallelogram, 17
point of application, 11
polygon, 21
properties, 11
resolution, 16
resultant, 16
space diagram, 70
systems, 14

Foundations:
column footing, 532
deep, 522
grade beam, 581
moment-resistive, 142
pedestal, 541
shallow bearing, 522
wall footing, 523

Framed, beam connections, 393
Frames:

braced, 162, 166, 612
cantilever, 148
indeterminate, 124, 640
investigation of, 148, 640
moment-resisting, 148, 640
rigid, 148, 617, 640

trussed, 162, 166, 612
X-braced, 162, 166, 612

Framing:
connections, 372, 393
plans:

concrete, 481, 625
steel, 600, 608

Funicular structure, 65
arch, 67
cable, 65, 85

G
Gage in angles, 385
Glue-laminated wood, 231
Grade of:

reinforcing bars, 414
structural steel, 273
wood, 192

Grade beam, 581
Graphical analysis of:

arch, 67
cable structure, 65, 85
forces, 16, 21
truss, 70

Gusset plate, 264, 396

H
Hook in concrete, 470
Hooke’s law, 60
Horizontal:

diaphragm, 163, 565
shear, 119

I
Indeterminate structures, 124,

431, 640
Inelastic behavior, 287, 419
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Inflection in beams, 105
Interaction, axial load and

moment, 140
Internal forces:

in beams, 115
in rigid frames, 148
in trusses, 70

Internal resisting moment, 115

J
Joints, method of, 77
Joist girder, 341, 610
Joists:

open web steel, 333, 574, 609
wood, 171, 222

K
Kern, 144
K factors for steel columns, 350

L
Lapped splice, 474
Lateral:

bracing of:
beams, 159, 206
buildings, 554, 587,

buckling:
of beams, 157
of columns, 89

load, 44
support for beams, 159

Lateral resistive structures:
horizontal diaphragm, 163,

565
moment-resistive frame, 148,

640
perimeter:

bent, 599, 619, 638
shear wall, 598

rigid frame, 148, 617, 640
shear wall, 162, 165,

569, 598
trussed bent, 598, 612
types of, 597

Least weight selection, 302
Light-gage steel elements, 399
Light wood frame, 554
Live load:

for floors, 40
reduction, 44

Load:
allowable, see Allowable

load
beam, 32
building code, 39
combinations, 48, 49
concentrated, 32
dead (DL), 31, 37
design, 49
distributed, 32
duration, wood, 198
earthquake, 47
eccentric, 139, 142, 249, 368,

507
factored, 49
floor, live, 40
lateral, 44
live, 40, 42
periphery, 49
roof, 42
seismic, 47
service, 49, 52
sources, 36
superimposed, 300
uniformly distributed, 32
wind, 44, 561, 588, 612,

638
LRFD (load and resistance

factor design), 51
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Lumber:
allowable stresses for, 193
properties of standard sizes,

676

M
Masonry wall, 618
Materials, weight of, 37
Mathematical analysis of forces,

25
Maxwell diagram, 71
Measurement, units of, 2
Mechanics, 1
Method of joints, 77
Metric units, 2
Modification of design values,

wood, 198
Modulus:

of elasticity for direct stress,
63

section, 118, 289, 662
Moment:

arm, 26, 30, 98
in beams, 98
diagram for beam, 99
of a force, 26, 30
of inertia, 654
internal bending moment, 115
overturning, 46, 569, 590
restoring, 46, 569, 590
sense of, 103
stabilizing, 46, 569, 590
statical, 652

Moment of inertia, 654
transferring axis for, 658

Moment-resisting frame, 148,
617, 638

Moment-resistive foundation,
142, 617

Multistory rigid frame, 617, 638

N
Nailed joints, 260
Nails, 260
Net section:

in shear, 307
in tension, 386

Neutral axis, 115
Neutral surface, 115
Nomenclature, 6
Nominal dimensions, 193
Nominal moment capacity of

steel beam, 291
Nominal size, of lumber, 193
Notation, 6

O
One-way slab, 483
Open web steel joists, 335, 574,

609
Overturning moment on shear

wall, 46, 569, 590

P
Parallel axis theorem, 658
Parallelogram of forces, 17
P–delta effect, 139
Pedestal, concrete, 541
Periphery, load, 49
Perimeter bracing, 617
Peripheral:

load, 49
shear in concrete footing, 536

Permanent set, 61
Pipe columns, 362
Pitch of bolts, in steel, 383
Planks, wood, 192, 226
Plastic:

hinge, 287
moment, 287
range in steel, 273
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Plastic: (continued )
section modulus (Z ), 288, 664

Plywood, 227
in built-up beams, 233
deck, 227
diaphragm, 565
horizontal diaphragm, 565
shear wall, 569

Point of inflection, 105
Polygon of forces, 21
Ponding, 43
Portland cement, 409
Poured-in-place concrete, 410
Precast concrete, 410
Pressure:

in soils, 142, 524
wedge method, 145
wind, 45

Principal axis, of section, 654
Properties of:

forces, 11
geometric shapes, 665
reinforcing bars, 416
structural materials, 57

Properties of sections (areas):
angles, steel:

single, 672
double, 675

balanced section, concrete,
421, 423

built-up, 661
centroid, 651
channels, 670
elastic section modulus (S ),

118, 662
lumber, 676
moment of inertia, 654
parallel axis formula, 658
plastic section modulus, 288,

664

principal axis, 654
radius of gyration, 664
section modulus, 118, 288,

658, 664
statical moment, 652
steel pipe, 675
transfer axis formula, 658
steel tube, 364, 676
W shapes, 667

Punching shear, 536

R
Radius of gyration, 664
Rafters, 222
Reactions, 30, 32
Rectangular:

beam in concrete, 418
stress block, strength method,

420
Reduction of live load, 44
Reference design values, for

wood, 193
Reinforcement,

anchorage of, 467
areas of, in slabs, 449
balanced, 421, 423
compressive, in beam, 439
cover for in concrete, 415,

499
development of, 467
grade of, 414
hook, 470
minimum, 428, 439
properties of, 416
shrinkage, 447, 487
spacing of, 415
splice, 474
standard bars, 416
temperature, 447, 487
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Repetitive member use, wood,
200

Resisting moment in beams, 115
Resistance factor, 53

concrete, 417
steel, 272, 299

bearing, 377
bending, 299
compression, 351
shear, 307
tension, 386

Restrained beam, 134
Restoring moment, 46, 569, 590
Resultant, of forces, 16
Rigid frame,

approximate analysis, 638
cantilever, 148
determinate, 148
indeterminate, 154, 638
for lateral force resistance,

154, 617, 638
multi story, 617, 638
single span, bent, 154

Rolled steel shapes, 276, 667
Rotational buckling, 159
Round columns, concrete, 514

S
Safe load tables for:

column footings, 532
nails, 260
open web steel joists, 337
plywood:

diaphragm, 565
deck, 229, 230
shear wall, 570

steel:
beams, 324
bolts, 383,
columns, 358

roof deck, 404
wall footings, 523
wood:

columns, 243
joists, 224
nailed joints, 262
rafters, 225

Safety, factor of, 62
Sandwich panel, 233
Section modulus:

elastic, 118, 662
plastic, 289, 662

Seismic effects, 47
Sense of bending in beams, 103
Separated joint diagram, 71
Set, permanent, 287
Service load, 49, 52
Shallow bearing foundations,

522
Shapes, steel, 276
Shear:

beam, 93, 207, 307, 452
block, 380, 390
in column footing, 536
in concrete beams, 452
diagram for beam, 96
direct, 92
double, 377
horizontal, 119
peripheral, 536
punching, 536
reinforcement, 453, 456
single, 260, 377
vertical, 93
wall, 162, 165, 569
wall footing, 528

Shear in:
beams, 93, 118, 207, 307, 452
bolts, 327
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Shear in: (continued )
concrete structures, 452, 528,

536
footings, 528, 536
steel beams, 307

Shear reinforcement, 453, 456
Shear wall,

anchorage, 569
multi-story, 590
overturn, 569
peripheral, 617
plywood, 569
sill bolts, 571
sliding, 571

Shop assembly, 493
Shrinkage reinforcement, 447,

487
Sill bolts for sliding resistance,

571
Single angle shapes, 277, 672
Single shear, 260, 377
Sitecast concrete, 410
Size adjustment factor for:

dimension lumber, 197
wood beams, 197, 206

Slab and beam structure, 480,
624

Slab, spanning, 446, 483
Slenderness:

of columns, 89, 237, 350, 515
ratio, 237, 350

Sliding, due to wind, 571
Soil pressure, 142, 524
Solid-sawn wood, 191
Solid wood columns, 236
Spacing:

of bars in concrete, 415
of bolts in steel, 383
of stirrups, 458

Specified compressive strength
of concrete, (f ′

c ), 411
Spiral column, concrete, 497
Splices in reinforcement, 474
Stability:

of beams, 159, 206
of columns, 89, 237, 350, 515

Stabilizing moment of building
weight, 46, 569, 590

Staggered bolts, 383
Standard notation, 6
Standards for structural design,

548
Static equilibrium, 2, 15, 29
Statical moment, 652
Statically indeterminate

structure, 124, 640
Statics, 2
Steel:

angle, 277, 672, 674
beam,

buckling of web, 345
concentrated load effect,

345
deflection, 313
design, 282, 299
inelastic behavior, 284
lateral buckling, 157, 304
lateral unsupported length,

295
load-span values, 324
LRFD design selection, 282
nominal moment capacity,

291
plastic:

hinge, 287
moment, 287
section modulus, 289, 664
safe load tables, 322
shear in, 307
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torsional buckling, 159
web buckling, 346

behavior of beams, 286
bending, design for, 304
buckling of:

beams, 157, 304
columns, 350

built-up members, 349
cold-formed products, 278
columns,

with bending, 368
critical stress for, 354
design, 357
framing, 372
safe loads, 351
shapes, 348
slenderness, 350

compact shape, 291
composite structure, 403
connections, 375
construction, 176
deck with steel frame, 343
double-angle compression

member, 366
fabricated components, 279
factors in beam design, 282
floor deck, 343, 400
joist girder, 341
light-gage products, 399
manufactured truss, 335
member sizing, 176
open web joist, 335, 574
pipe, 362
plastic behavior, 287
products, 276
properties, 273
reinforcement, 414
resistance factors, 272
rigid frame, 617
rolled shapes, 276

roof deck, 343, 400
truss, 333
trussed bent, 612
tube, 364
yield in, 60, 273

Stiffness,
relative, 162

Stirrups, 456
spacing of, 458

Strain:
general definition, 60
hardening, 61

Strength:
of concrete, 411
ultimate, 61
yield, 60, 273

Stress,
allowable, 57
in beams, 115, 118, 286,

417
bearing, 196, 208
bending, 98, 115, 204, 286,

417
combined, 142
compression, 87, 517
direct, 55
horizontal shear, 119
inelastic, 287, 419
kinds of, 55
shear, 93, 99
strain behavior, 60
tensile, 87
yield, 60, 273

Stress–strain:
behavior, 60
diagram, 61
ductility, 273
modulus of elasticity, 63
proportional limit, 60
yield stress, 60, 273
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Structural:
analysis, 2
computations, 5
design, 549
lumber, 192, 676

design values, 193
materials, 57
mechanics, 1
planning, 550
systems, 162

Studs, wood, 171, 247
Superimposed load, 300
Suspended cable, 65
Symbols, 6

T
T-beams, concrete, 433
Tearing, in bolted connections,

380, 390
Temperature reinforcement, 447,

487
Tension connection, 258, 386
Tension elements:

net section in, 386
upset end, threaded rod, 382

Theorem of Three Moments, 125
Three moment equation, 125
Tied concrete column, 497, 500,

506
Tiedown, 569
Torsional buckling of beams,

159
Transfer axis formula, 658
Trussed bent, 612
Trussed bracing for steel frame,

612
Trusses:

algebraic analysis, 77
bracing for frames, 612
connections, 235, 395

forces in members, 77
graphical analysis, 70
internal forces in, 77
joints, method of, 77
joist girder, 610
manufactured, 335
Maxwell diagram for, 71
method of joints, 70
open-web joists, 335, 574,

609
separated joint diagram, 71
space diagram, 71
steel, 333, 612
wood, 235

Tubular steel columns, 364

U
Ultimate:

strength, 61
stress, 61

Under-reinforced concrete beam,
422

Uniformly distributed load, 32
Unit deformation (strain), 60
Units, of measurement, 2

conversion, 5
Uplift, 46
Upset end, threaded rod, 382

V
Vector, 12

W
W shapes, steel, 276, 667

properties, 667
Wall:

footing, 523
safe load for, 526

masonry, 618
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shear, 569, 590
Web, crippling, steel beam, 345
Weight of building construction,

37
Wide flange (W) shapes, 276,

667
properties, 667

Wind:
basic wind speed, 45
building code requirements

for, 45
design for, 561
design wind pressure, 45
load determination, 44, 561,

588, 638
overturning moment, 46, 569,

590
pressure variation with height

above ground, 588,
638

uplift, 46
Wood:

adjusted resistance for LRFD,
202, 214

adusrment of design values,
198

allowable stresses for, 193
assembled products. 235
beams, 204
bearing of beams, 196, 208
bending, 204
board decks, 192
bolted joints, 258
built-up members, 233
columns, solid, 236

with bending, 249
buckling of, 237
compression capacity, 237
design of, 242
L/d ratio, 237

LRFD, 245, 255
lateral support, 237
safe load, 244
slenderness, 237
solid-sawn, 236
stability factor, 238
studs, 247

common wire nail, 260
construction, 170
deck, 226
deflection of beams, 210
design values for structural

lumber, 193
diaphragm, 565
dimension lumber, 192
duration of load, 198
fiber products, 232
glue-laminated products, 231
grade, 192
horizontal diaphragm, 163,

565
joists, 171, 222
lateral support for

beams, 206
light frame, 554
lumber, 192, 676
modified design values, 198
nails, 260
nominal size, 193
plank deck, 192, 226
plywood, 227
rafters, 222
reference design values, 193
repetitive use, 200
resistance factors, LRFD, 203
sandwich panel, 233
shear in beams, 207
shear walls, 569
size factors for beams, 197,

205
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Wood: (continued )
solid-sawn, 191
stressed-skin panel, 233
structural lumber, 192, 676
studs, 171, 247
trusses, 235

X
X-bracing, 612

Y
Yield:

point, 60, 273
strength, 60, 273
stress, 60, 273

Z
Z , plastic section modulus, 288,

664
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