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Preface

This book is intended primarily to introduce civil engineers, especially geotechnical engineers and all
civil engineering students reading the specialist subjects of soil mechanics and geotechnical engineer-
ing, to the fundamental concepts and application of shallow foundation analysis and design. Also, the
furnished material can be considered as an essential reference work for practising civil engineers, con-
sulting engineers and government authorities. The primary focus of this book is on interfacing struc-
tural elements with the underlying soil, which is, in the author’s opinion, where the major focus of
shallow foundation engineering lies.

The book is not intended to be a specific text book on soil mechanics or geotechnical engineering.
Therefore, there is no part of the text alone that could be used as a core syllabus for a certain course.
However, it is the author’s opinion that more than 70% of the book is core material at the advanced
undergraduate levels. It is expected that civil engineering students will find the text helpful in better
understanding the fundamental concepts and their implications for the analysis and design of shallow
foundations. The author tried to present the material such that separable topics and subtopics are
covered in separate sections, with clear and unambiguous titles and subtitles. Thus, it would not be
difficult for a university lecturer to draw up a personalised reading schedule, appropriate to his or
her own course. It is hoped that the book can establish itself as an effective reference and a useful text
in most of the engineering colleges and technical institutions.

Generally, the given material is of an advanced level and, therefore, it is assumed that the reader has a
good understanding of basic statics and the mechanics of materials and has studied the basic principles
of soil mechanics, lateral earth pressures and reinforced concrete. SI units are used throughout all the
chapters and, therefore, the reader also needs to have sufficient background knowledge regarding the
use of these units.

The book would be very beneficial to the reader, since it provides essential data for the design of
shallow foundations under ordinary circumstances. The necessary background concepts and theories
are generally presented clearly in concise forms of formulas or charts, and their applications are high-
lighted through solving a relatively large number of realistic problems. Moreover, the worked problems
are of the types usually faced by civil engineers in practice and, therefore, the obtained information will
be most valuable.

Generally, the subject matter is introduced here by first discussing the particular topic and then solv-
ing a number of pertinent objective problems that highlight the relevant theories, concepts and analysis
methods. A list of crucial references is given at the end of each chapter. Thus, each chapter consists of
three parts: discussions, problem solving and references.

The “discussion” part is presented in a clear and concise but precise manner, keeping in view the
avoidance of unnecessary details. In some chapters, where the topics are of special difficulty, full guid-
ing explanations are given; where the subject of study is simpler, less detailed treatment is provided.



The “problem solving” part gives a relatively comprehensive range of worked out problems to
consolidate an understanding of the principles and illustrate their applications in simple practical situ-
ations. A total of 180 worked problems have been provided. The author’s academic and professional
career has proved to him that geotechnical engineers and civil engineering students need to be well
acquainted with the correct and effective use of the theoretical and empirical principles and formulas
they have learned. An effective way to lessen the deficiency may be through solving, as much as pos-
sible, a variety of problems of the type or nearly similar to those engineers face in practice. For these
reasons the author considers the “problem solving” part, on which the book is partially based, as a vital
portion of the text.
The “references” part that comes directly at the end of each chapter enriches the discussions part

with valuable sources of information and increases its reliability. Moreover, the furnished references
will be very beneficial to any ambitious fresh civil engineer or undergraduate student who may wish
later to undertake higher studies in the subject.
The text comprises six chapters. The chapters are devoted mostly to the geotechnical and structural

aspects of shallow foundation design. A brief overview of each chapter follows:

• Chapter 1 deals with site investigation in relation to the analysis and design of shallow foundations.
Unlike the other chapters, this chapter requires various topics, field tests in particular, to be dis-
cussed separately. Therefore, only a general and relatively brief overview of the overall subject mat-
ter, consistent with the chapter title, is given in the main “discussion” part. Discussion individual
topics is given in the “problem solving” part directly below the relevant problem statement. Solu-
tions of 27 problems have been provided. These solutions and those of the other five chapters have
fully worked out calculations.

• Chapter 2 presents introductory discussions and explanations of various topics pertaining to shal-
low foundations, their analysis and design. It discusses type and depth of shallow foundations, per-
formance requirements, sulfate and organic acid attack on concrete, distribution of contact
pressures and settlements and vertical stress increase in soils due to foundation loads. Solutions
of 21 problems are presented.

• Chapter 3 concerns settlements due to foundation loads. The chapter discusses various types of
settlements of foundations on both coarse- and fine-grained soils, methods of settlement estima-
tion, methods of estimating and accelerating consolidation settlement, settlement due to secondary
compression (creep), estimation of settlements over the construction period and settlement of foun-
dations on rock. Solutions of 56 problems are introduced.

• Chapter 4 deals with the bearing capacity of shallow foundations. The chapter discusses most of the
significant aspects of the subject matter, among them: bearing capacity failure mechanism, bearing
capacity equations, bearing capacity of footings with concentric and eccentric vertical loads, bearing
capacity of footings with inclined loads, effects of water table and other factors on bearing capacity,
uplift capacity of shallow foundations, bearing capacity of foundations on layered soils and on
slopes, and bearing capacity of rock. Solutions of 40 problems are provided.

• Chapter 5 deals with the structural design of different types of shallow foundations. Structural
design of plain concrete spread footings, pedestals, pile caps and the foundations of earth-retaining
concrete walls are also included. The discussion part of the chapter covers most of the major aspects
of the subject matter such as: selection of materials, design loads, structural action of isolated and
continuous footings, eccentrically loaded footings, modulus of subgrade reaction and beams on
elastic foundations, rigid and flexible design methods and so on. Design calculations of 28 typical
problems are presented in a step by step order. All the structural designs conform to the Building
Code Requirements for Structural Concrete (ACI 318) and Commentary, USA.

• Chapter 6 deals with Eurocode Standards in relation to the design of spread foundations. The dis-
cussion part of the chapter covers certain important topics such as: Eurocode background and
applications, basis of design and requirements, principles of limit states design, design approaches,
partial factors and load combinations, geotechnical and structural designs of spread foundations
and so on. The problem solving part of the chapter provides design calculations of eight typical
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problems, as an attempt to introduce the concerned engineer to application of the design rules
stipulated by Eurocodes 2 and 7 (or EN 1992 and 1997) rather than the geotechnical and structural
related issues.
It is well known that not all civil engineers are acquainted with all internationally recognised

codes, such as the ACI Code and Eurocodes, at the same time. Therefore, this chapter is especially
written for those civil engineers, specially geotechnical engineers, who are unfamiliar with the tech-
nical rules and requirements of the Eurocode Standards (Structural Eurocode). The implementation
of the Eurocode is extended to all the European Union countries and there are firm steps toward
their international adoption.

It must be clear that, despite every care taken to ensure correctness or accuracy, some errors might
have crept in. The author will be grateful to the readers for bringing such errors, if any, to his notice.
Also, suggestions for the improvement of the text will be gratefully acknowledged.

Tharwat M. Baban
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CHAPTER 1

Site Investigation in Relation to Analysis
and Design of Foundations

1.1 General

The stability and safety of a structure depend upon the proper performance of its foundation.
Hence, the first step in the successful design of any structure is that of achieving a proper foundation
design.
Soil mechanics is the basis of foundation design since all engineered constructions rest on the earth.

Before the established principles of soil mechanics can be properly applied, it is necessary to have a
knowledge of the distribution, types and engineering properties of subsurface materials. Therefore,
an adequate site investigation is an essential preliminary to enable a safe and economic design and
to avoid any difficulties during construction. A careful site investigation can minimise the need for
overdesign and reduce the risks of underdesign. A designer who is well equipped with the necessary
reliable information can use a lower factor of safety, thereby achieving a more economical design. With
enough information available, construction troubles can be decreased and, therefore, construction
costs are decreased too.
A site investigation usually costs a small percentage of total construction costs. According to Bowles

(2001), elimination of the site exploration, which usually ranges from about 0.5 to 1.0% of total
construction costs, only to find after construction has started that the foundation must be redesigned
is certainly a false economy. However, a geotechnical engineer planning a subsurface exploration
program for a specific job must keep in mind the relative costs of the exploration versus the total con-
struction costs. It is understood that there is no hard and fast procedure for an economical planning a
site investigation programme. Each condition must be weighed with good judgment and relative
economy.
Nowadays, it is doubtful that any major structures are designed without site exploration being

undertaken. Sometimes, for small jobs, it may be more economical to make the foundation design
on conservative values rather than making elaborate borings and tests, especially, when the condition
of the adjacent structures is an indication that the site is satisfactory. However, generally, design of
structures without site investigation is not recommended by civil engineers.
The cheapest and most common method of subsurface exploration is by drilling boreholes. Test pits

are too expensive for general exploration, but they may be used for more careful examination if found
to be needed.

Shallow Foundations: Discussions and Problem Solving, First Edition. Tharwat M. Baban.
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1.2 Site Investigation

A successful investigation of a site for an important structure will generally falls under the following five
headings:

(1) Reconnaissance
(2) Subsurface exploration
(3) Laboratory tests
(4) Compiling information
(5) Geotechnical report.

1.2.1 Reconnaissance

Office Reconnaissance: This phase of reconnaissance comprises the following duties:

• Review of plans, boring logs and construction records of existing structures in the area.

• Study of the preliminary plans and designs of the proposed structure, including the approximate
magnitude of the loads to be transmitted to the supporting material.

• Review of other backlogs of information already compiled on the same general area and similar
structures.

• Review of other information pertaining to the site area obtained from such sources as different types
of maps (i.e., topographic, geologic and agricultural maps), photographs, records of adjacent bridge
if exists, underground utility constructions and well drilling logs.

• Formulation of a boring plan should be made during the latter phases of the office reconnaissance.
This prepared boring plan should be reviewed during the field reconnaissance. The objective should
be the development of a maximum of subsurface information through the use of a minimum num-
ber of boreholes. Spacing, number and depth of boreholes will be discussed later in conjunction with
the Solution of Problem 1.4.

Field Reconnaissance: This phase of reconnaissance should commence with a visit to the site of the pro-
posed structure. It should always be made by a Soils or Foundation Engineer who will complete the
Geotechnical Report. Whenever possible, it is desirable that this engineer be accompanied by the driller
or the driller foreman. Notes on items to be observed are as follows:

• Surface Soils: Surface soils are easily revealed through the use of a shovel or post-hole diggers. These
soils may sometimes be identified as belonging to some particular formation, and usually they indi-
cate the underlying material.

• Gullies, Excavations and Slopes: Any cut or hole near the proposed structure site is a subsurface
window, and for its depth it will provide more information than borehole since it may be examined
in detail.

• Surface and Subsurface Water: The presence of either surface or subsurface water is an important
factor in both preparation of boring plans and foundation design. All surface flows should be noted,
and all opportunities should be taken to observe the groundwater level.

• Study of Existing Structures: The existing structures within an area are valuable sources of infor-
mation. A very close examination of them with regard to their performance, type of foundation,
apparent settlement, load, location and age will yield a wealth of data.

• Topography: To some extent, topography is indicative of subsurface conditions. In narrow, steep
stream beds, rock is likely to be near the surface with little overlying stream-deposited soil. On the
other hand, wide, flat valleys indicate deep soil deposits.
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• Information required by the Drill Crew. The drill crew needs to know how to get to the site,
where to drill, what equipment to take, and what difficulties to expect. Generally, the following
types of information are usually needed:

• Information regarding verification of the boring plan which was already prepared during the
office reconnaissance phase. The proposed locations of boreholes should be checked for acces-
sibility. Desirable deletions, additions, and relocations should be made as are necessary to better
suit the crew’s capabilities and to add completeness to the subsurface information.

• Type of drilling and equipment needed. Notes should be made as to which type of drilling is best
suited to the site (i.e., rotary, auger, etc.).

• Reference points and benchmarks. The reconnaissance should determine if reference points and
bench marks are in place adjacent to the site and properly referenced on the plans.

• Utilities. Underground and overhead utilities located at the site should be accurately shown on
the plans or their locations should be staked on the ground.

• Geophysical Survey: The field reconnaissance may require a geophysical survey of the site. The use
of geophysical methods provides information on the depths to the soil and rock layers, the homo-
geneity of the layer and the type of soil or rock present. This information can be used to supplement
the boring plan.

• Field Reconnaissance Report: A concise and informative field reconnaissance report, in which all
decisions concerning the boring plan and the drill crew are delineated, should be prepared. It can be
facilitated by the use of a special check list or form.

1.2.2 Subsurface Exploration

General:After the reconnaissance has been completed, the results should be given to the foreman of the
drill crew in order to carry out the foundation investigation at the site. Briefly, the subsurface or foun-
dation exploration consists of making the borings and collecting the pertinent samples (i.e., drilling and
sampling), performing the required field tests in conjunction with the drilling, coring, and identifica-
tion of materials. Each job site must be studied and explored according to its subsurface conditions and
the size and type of the proposed structure. The civil engineer or the experienced geologist in charge of
the exploration task should endeavour to furnish complete data such that a reliable study of practical
foundation types can be made.
Before the arrival of the drill crew at the exploration site, enough survey control should have been

previously carried out with reference to at least one bench mark already established at the site. The
borehole locations should be staked in conformity with the boring plan. The stakes could indicate
the borehole number and the existing ground surface elevation.
Drilling: It is defined as that process which advances the borehole. There are various methods of

drilling or boring, namely: auger drilling, rotary drilling, wash boring, drilling by continuous sampling,
percussion drilling and rock coring. Most of these methods are best suited for some particular problem
or type of information sought. It is doubtful if an organisation (authority responsible for site investi-
gation) would adopt any one method for all of its work unless the work was limited to one particular
area. The same argument is true with respect to the various types of equipment used in drilling and
coring.
Sampling: It is defined as that process wherein samples of the subsurface materials are obtained. As

there are various methods of drilling and various equipment types, also there are different types of
sampling, namely: split-barrel or spoon sampling, push barrel or thin-walled Shelby tube and station-
ary piston type sampling, wet barrel or double wall and dry barrel or single wall sampling, retractable
plug sampling and rock coring.
Samples: The samples obtained during subsurface exploration should always represent the material

encountered, that is, representative samples. These samples are disturbed, semi-disturbed or
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undisturbed. Usually, disturbed and semi-disturbed samples are used for identification and classifica-
tion of the material. Undisturbed samples are used for determining the engineering properties such as
strength, compressibility, permeability and so on, density and natural moisture content of the material.
Disturbed samples are those in which the material (soil or rock) structure has not been maintained, and
they are used in those tests in which structure is not important. On the other hand, relatively undis-
turbed samples have structures maintained enough that they could be used in engineering properties
determination of the material. The degree of disturbance depends upon several factors such as type of
materials being sampled, sampler or core barrel used, the drilling equipment, methods of transporting
and preserving samples and driller skill. Extended exposure of the sample material to the atmosphere
will change relatively undisturbed sample into an unusable state; therefore, the methods of obtaining
and maintaining samples cannot be overemphasised.

Field Tests: there are various types of tests performed in the field, in conjunction with the drillings, in
order to determine soil properties in situ. These tests are: dynamic penetration tests, such as standard
(SPT) cone penetration and driven probe and driven casing; static cone penetration (CPT); in-place vane
shear; plate-load (may not be in conjunction with the drillings); pressuremeter; flat-plate dilatometer; and
other tests made in field laboratories, such as classification tests and unconfined strength test. Rock qual-
ity designation (RQD) test is performed on rock core samples. Note: Discussion of a particular field test
will be given in the “Problem Solving” part of this chapter directly below the relevant problem statement.

Field Boring Log and Borehole Logging: The log is a record which should contain all of the informa-
tion obtained from a boring whether or not it may seem important at the time of drilling. The process of
recording the information in a special field log form is “logging”. It is important to record the max-
imum amount of accurate information. This record is the “field” boring log. The importance of good
logging and field notes cannot be overemphasised, and it is most necessary for the logger (whomay be a
soil engineer, a geologist, a trained technician or a trained drill crew foreman) to realise that a good field
description must be recorded. The field boring log is the major portion of the factual data used in the
analysis of foundation conditions.

Groundwater Table: The location of the groundwater level is an important factor in foundation ana-
lysis and design, and emphasis should be placed upon proper determination and reporting of this data.

In order to determine the elevation of groundwater it is suggested that at least two boreholes be left
open for the duration of the subsurface exploration and periodically checked as to water level. These
two boreholes should have their final check made no earlier than 24 h after the completion of explor-
ation. The depth to the water level should be recorded on the boring log each time a reading is made,
along with the time lapse since completion of the boring. When there is significant difference between
the two borings checked, or when the logger deems it otherwise necessary, the water level in other bore-
holes should be checked.

Note: It is obvious that details of all the various methods and descriptions of the above mentioned
drilling, samples and sampling, field tests, field boring log and borehole logging are too large in bulk for
inclusion in the discussions. However, those interested in further information and details, should see
various standards, practice codes and manuals, such as AASHTOManual on Subsurface Investigations
(1988), ASTM, BSI and Eurocode standards.

1.2.3 Laboratory Tests

Economical foundation design requires the use of the physical properties of the foundation material
(soil or rock). The physical properties may be determined by in situ tests, load tests and laboratory tests.
Results of laboratory tests, in addition to their use in foundations design, are used to predict the foun-
dation behavior based on the experience of similar tested materials and their performance in the field.
The two main reasons for making these laboratory tests are first to verify classification and second to
determine engineering properties. An adequate amount of laboratory testing should be conducted to
simulate the most sever design criteria. Generally, the amount of testing performed will depend on the
subsurface conditions, laboratory facilities and type of the proposed structure.
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Laboratory tests for foundations design will generally fall into four categories: classification, strength,
compressibility and swelling and soil collapsibility. Other tests, such as permeability and compaction
tests, may be required, especially when the proposed structure is a bridge or a dam.
Note: Significance, apparatus and procedure of various types of laboratory tests can be found in

geotechnical books and recognised laboratory standard manuals (ASTM, AASHTO, BSI, etc.). The
detailed description of these items is too bulky for inclusion in these discussions. The author assumes
that the reader will have access to the latest volumes of the standards just mentioned. Nevertheless,
Table 1.1 presents a summary list of ASTM and AASHTO tests frequently used for the laboratory
testing of soils.

Table 1.1 ASTM and AASHTO standards for frequently used laboratory testing of soils.

Test category Name of test

Test designation

ASTM AASHTO

Visual
identification

Practice for identification of soils (visual-manual procedure) D 2488 —

Practice for description of frozen soils (visual-manual procedure) D 4083 —

Index properties Test method for determination of water (moisture) content of soil by direct
heating method

D 4959 T 265

Test method for specific gravity of soils D 854 T 100

Method for particle-size analysis of soils D 422 T 88

Test method for amount of material in soils finer than the no. 200 sieve D1140 —

Test method for liquid limit, plastic limit and plasticity index of soils D 4318 T 89

T 90

Test method for laboratory compaction characteristics of soil using standard effort
(600 kN.m/m3)

D 698 T 99

Test method for laboratory compaction characteristics of soil using modified effort
(2700 kN.m/m3)

D 1557 T 180

Corrosivity Test method for pH of peat material D 2976 —

Test method for pH of soils D 2972 —

Test method for pH of soil for use in corrosion testing G 51 T 289

Test method for sulfate content D 4230 T 290

Test method for resistivity D 1125 T 288

G 57

Test method for chloride content D 512 T 291

Test method for moisture, ash and organic matter of peat and other organic soils D 2974 T194

Test method for classification of soils for engineering purposes D 2487 M 145

D 3282

Strength
Properties

Unconfined compressive strength of cohesive soil D 2166 T 208

Unconsolidated, undrained compressive strength of clay and silt soils in triaxial
compression

D 2850 T 296

(Continued )
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1.2.4 Compiling Information

General: Having carried the investigation through the steps of reconnaissance, subsurface exploration
and laboratory testing, the next step is obviously the compilation of all the information.

Prior to preparing finished (final) logs, all samples should be checked by the Engineer in charge. This
should ideally be performed immediately after the borings are completed and even while the boring
program is still in progress. Significant soil characteristics that may have been omitted from the field
logs may be identified, and the Engineer thus alerted to a potential foundation problem that might
otherwise have gone undetected.

Finished Boring Log: It is important to differentiate clearly between the “field” boring log and the
“finished” boring log. The field log is a factual record of events during boring operation, whereas
the finished log is a graphical representation. The field log gives a wide range of information in notes
or tabular form. The finished log is drawn from the data given in the field log as well as from results of
visual inspection of samples; it represents a graphical picture of subsurface conditions. Information
obtained from laboratory test results along with other necessary information are also utilised in its
preparation. Also, various data such as results of field tests, depth location of different samples and
groundwater level are superimposed upon it. It is important that the soil or rock in each stratum be
clearly described and classified. A typical finished boring log is shown in Figure 1.1.

Soil Profile: In many cases it may be advantageous to plot a soil profile along various longitudinal or
transverse lines. This should be done by plotting the boreholes in their true location, but with vertical
scale exaggerated, connecting the similar strata by lines and shading similar areas by means of an iden-
tifying cross-section mark. The groundwater level should also be shown on the plot. Thus a probable
representation of the subsurface conditions between the boreholes can be given, although a pocket or
more of different formation may exist between any two adjacent boreholes. A representative example
of an interpreted subsurface profile is shown in Figure 1.2.

Table 1.1 (Continued)

Test category Name of test

Test designation

ASTM AASHTO

Consolidated undrained triaxial compression test on cohesive soils D 4767 T 297

Direct shear test of soils for unconsolidated drained conditions D 3080 T 236

Modulus and damping of soils by the resonant-columnmethod (small-strain properties) D 4015 —

Test method for laboratory miniature vane shear test for saturated fine-grained
clayey soil

D 4648 —

Test method for bearing ratio of soils in place D 4429 —

Strength
Properties

California bearing ratio (CBR) of laboratory-compacted soils D 1883 —

Test method for resilient modulus of soils — T 294

Method for resistance R-value and expansion pressure of compacted soils D 2844 T 190

Permeability Test method for permeability of granular soils (constant head) D 2434 T 215

Test method for measurement of hydraulic conductivity of saturated porous materials
using flexible wall perameters

D 5084 —

Compression
Properties

Method for one-dimensional consolidation characteristics of soils (oedometer test) D 2435 T 216

Test method for one-dimensional swell or settlement potential of cohesive soils D 4546 T 258

Test method for measurement of collapse potential of soils D 5333 —
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1.2.5 Final Geotechnical Report

After information compiling has been successfully completed, a final written Geotechnical Report
should be prepared and presented to the designer for use in the foundations design. Additionally, this
report will furnish the Resident Engineer with data regarding anticipated construction problems, as
well as serving to establish a firm basis for the contractor to estimate costs, unless the organisation’s
policies or regulations restrict the release of such information. A good policy may be of releasing such
information, which should be as accurate as possible, provided that it is expressly and formally under-
stood that the organisation will not be liable for any damages or losses incurred as a result of reliance
upon it in the bidding or in the construction operations.
The Geotechnical Engineer who writes the Report should avoid including extraneous data which are

of no use to the Designer or Resident Engineer. Also, his recommendations should be brief, concise
and, where possible, definite. The Report should include:

• Authorisation of the site investigation and the job contract number and date.

• A description of the investigation scope.

• A description of the proposed structure for which the subsurface exploration has been conducted.

Boring Log

Name of the Project
Two-story apartment building

Location Johnson & Olive St. March 2, 2005Date of Boring

Boring No. 3 Type of Hollow-stem auger Ground 60.8 m

Boring

Soil

description

Elevation

Depth

(m)

Soil

sample

type and

number

Comments

Light brown clay (fill)

Silty sand (SM)

1

2
SS-1 9 8.2

17.6 LL = 38

LL = 36

PI = 11

20.4

20.6

9

Groundwater table

observed after one

week of drilling

12

11

27

SS-2

ST-1

SS-3

SS-4

3

4

5

6

7

8

°G.W.T.

3.5 m

Light gray clayey

silt (ML)

Sand with some

gravel (SP)

End of boring @ 8 m

N60
wn

(%)

N60= standard penetration number

wn= natural moisture content

qu= 112 kN/m2

LL = liquid limit; PI = plasticity index

SS = split-spoon sample; ST = Shel by tube sample

qu= unconfined compression strength

Figure 1.1 A typical finished boring log (from Das, 2011).
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• A description of the location of the site, including any structures nearby, drainage conditions, the
nature of vegetation on the site and surrounding it, and any other features unique to the site.

• A description of the geological setting of the site.

• Details of the field exploration including number and depths of boreholes, types of borings involved
and so on. A general description of the subsurface conditions, as determined from soil specimens
and rock cores, and from results of related field and laboratory tests.

• A description of groundwater conditions.

• Brief description of suitable types of foundations, foundations depth and bearing capacity analysis.

• Recommendations and conclusions regarding the type and depth of foundations, allowable design
bearing pressures for the supporting soil and rock layers, and solutions for any anticipated design
and construction problems.

• The following presentations (mostly graphical) also need to be attached (as appendices) to the Report:

• A site location map.

• A plan view of the boreholes location with respect to the proposed location of each structure.

• Finished boring logs.

• Summary of the laboratory test results.

• Other special graphical presentations.

Problem Solving

Problem 1.1

A rock stratumwas cored for a length of 1.00m (i.e., length of core advance). Total length of the recovered core was
0.75 m. Total length of the recovered pieces which are 100 mm or larger was 0.60 m. Determine:

(a) The rock recovery ratio (RRR) and the rock quality.
(b) The rock quality designation (RQD) and the rock quality.
(c) An approximate value for the reduced field modulus of elasticity (Ef) of the rock if its laboratory modulus

of elasticity (Elab) is 20 000 MPa.
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Figure 1.2 A subsurface profile based on boring data showing cross- sectional view (from FHWA, 2002).
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Discussion:
General evaluation or classification of rock quality may be determined by calculating rock recovery ratio (RRR)
and rock quality designation (RQD), where

RRR =
Total length of core recovered

Length of core advance
1 1

RQD =
ΣLengths of intact pieces of core > 10mm

Length of core advance
1 2

Value of RRR near to 1.0 usually indicates good-quality rock, while in badly fractured or soft rock the RRR value
may be 0.5 or less. Table 1.2 presents a general relationship between RQD and in situ rock quality (Deere, 1963).
An approximate relationship between RQD and ratio of field and laboratory modulus of elasticity (Ef /Elab) was
added to Table 1.2 (Bowles, 2001). This relationship can be used as a guide only.

Solution:

(a) Equation (1.1): RRR=
0 75
1 00

= 0 75 Fair rock quality

(b) Equation (1.2): RQD=
0 60
1 00

= 0 60 Fair rock quality (see Table 1.2)

(c) RQD = 0 6
Ef
Elab

= 0 25 (see Table 1.2)

Ef = 20000 × 0 25 = 5000MPa

Problem 1.2

(a) What are the factors on which disturbance of a soil sample depends?
(b) The cutting edge of a sampling tube has outside diameter Do = 50.8 mm and inside diameter Di = 47.6 mm,

while the sampling tube has Dot = 50.03 mm and Dit = 48.50 mm. Is the tube sampler well designed?

(Continued)

Table 1.2 Correlation for RQD and in situ rock quality.

RQD Rock quality Ef /Elab
�

<0.25 Very poor 0.15

0.25–0.5 Poor 0.2

0.50–0.75 Fair 0.25

0.75–0.9 Good 0.3–0.7

>0.9 Excellent 0.7–1.0

∗Approximately for field/laboratory ratio of compression strengths also.
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Discussion:
Disturbance of a soil sample, during the sampling process, depends onmany factors such as rate of penetration of the
sampling tube, method of applying the penetrating force (by pushing or driving), the presence of gravel, the area ratio
Ar, the inside and outside clearances (see Figure 1.3) and proper working of the check valve inside the sampler head.
In obtaining undisturbed soil samples, the sample disturbance can be greatly reduced by: pushing the sampler with

a moderate rate of penetration, using stainless steel tube with inside protective coating as required by ASTMD 1587,
frequent cleaning the sampler head so that the check valve works properly, and using sampler of Ar < 10% with its
inside clearance Ci = 0.5–3.0% and outside clearance Co = 0–2%. The factors Ar, Ci and Co are usually expressed as:

Ar =
D2
o−D

2
i

D2
i

× 100 Ci =
Dit −Di

Di
× 100 Co =

Do−Dot

Dot
× 100

Solution:
(a) The answer is included in the discussion.

(b) Ar =
D2
o−D

2
i

D2
i

× 100 =
50 82−47 632

47 632
× 100 = 13 75

Ci =
Dit −Di

Di
× 100 =

48 50−47 63
47 63

× 100 = 1 83

Co =
Do−Dot

Dot
× 100 =

50 80−50 03
50 03

× 100 = 1 54

The Ar value is not satisfactory because it is greater than 10%; however, it is close to the limit. The Ci and Co

values are both satisfactory because they are less than 3% and 2%, respectively. Therefore, one may judge that the
sampler to some extent (approximately) is well designed.

Problem 1.3

A thin-walled tube sampler was pushed into soft clay at the bottom of a borehole a distance of 600 mm. When the
tube was recovered, a measurement down inside the tube indicated a recovered sample length of 585 mm. What is
the soil recovery ratio SRR, and what (if anything) happened to the sample? If Do and the Di (outside and inside
diameters) of the sampling tube were 76.2 and 73.0 mm respectively, what is the probable sample quality?

Dot

Dit

Di

Do

Sampling

tube

Cutting 

edge

Figure 1.3 Sampling tube and the inside and outside diameters.
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Discussion:
Similar to the rock recovery ratio, there is also soil recovery ratio, SRR, which can be used in estimating degree of
disturbance of soil samples, where

SRR=
Actual length of recovered soil sample

Total length of sampler in soil
1 3

A recovery ratio of 1 indicates, theoretically, that the sample did not become compressed during sampling.
A recovery ratio less than 1 indicates compressed sample in a disturbed state. Also, when a recovery ratio is greater
than 1, the sample is disturbed due to loosening from rearrangement of stone fragments, roots, removal of over-
burden, or other factors.

Solution:

Equation (1.3): SRR=
585
600

= 0 98 < 1 slightly compressed sample

The sample is compressed from friction on the tube and, or from pressure of entrapped air above the sample due
to incapable head check valve.

Ar =
D2
o−D

2
i

D2
i

× 100 =
76 22−73 02

73 02
× 100 = 8 96 < 10

Ci =
Dit −Di

Di
× 100 =

73 0−73 0
73 0

× 100 = 0 < 0 5−3 0

Co =
Do−Dot

Dot
× 100 =

76 2−76 2
76 2

× 100 = 0

These results and that of SRR indicate that the sample is nearly undisturbed.

Problem 1.4

A five story office building is to be built in a deep, moderately uniform fine-grained soil deposit. The bedrock has a
depth of over 75 m. The foundation level will be located at a depth of 1 m below ground surface. At the foundation
level, the unfactored uniformly distributed load (q) from the building structure is 70 kPa (or 1434 psf ). The build-
ing will be 50 m wide and 85 m long. Appropriate values for any missing data may be assumed. Estimate:

(a) The required number, spacing and location of exploratory boreholes.
(b) The required depth of the boreholes.

Discussion:
A boring plan should include number, spacing, location and depth of borings in addition to the sampling intervals.
There are many variables involved in formulation a boring plan such as general knowledge of subsurface condi-
tions, knowledge of proposed structure, economy by scheduling an inexcessive number and depth of boreholes,
and personal experience, preference and judgment of the responsible geotechnical engineer.
Boring spacing: Required number and location configuration of borings (or boreholes) is defined by their

spacing. Boring spacing depends mainly on the uniformity of soil strata, the type of structure and loading con-
ditions. Erratic subsurface conditions require closely spaced borings, whereas uniform conditions require a
maximum spacing. Structures sensitive to settlements and structures subjected to heavy loads require extensive

(Continued)
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subsurface knowledge; therefore borings should be closely spaced. Knowledge of the regional conditions as well
as the type and nature of the proposed structure is the best guide to the necessary boreholes spacing.
It is a difficult subject to pinpoint in exact figures the required number of boreholes and their tentative spacing

for the many reasons stated above; therefore, there are no binding rules on the number and spacing of boreholes.
For buildings taller than three stories or 12.2 m, the BOCA (1996) National Building Code requires at least one

boring for every 230m2 of built-over area, while others prefer boreholes drilled at or near all the corners and also at
important locations. For buildings a minimum of three borings, where the surface is level and the first two borings
indicate regular stratification, may be adequate. Five borings are generally preferable (four borings at building
corners and one at centre), especially if the site is not level. On the other hand, a single boring may be sufficient
for small and less important building, an antenna or industrial process tower base with the hole drilled at centre.
There are tables which give suggested spacing of boreholes (Table 1.3) or required area for each borehole

(Table 1.4). These tables should be used as general guidelines only.

Furthermore, the following are two key clauses of BSI publications regarding the spacing of borings:

BSI 5930: 1999 Code of Practice for Site Investigations – Clause 12.6
“Although no hard and fast rules can be laid down, a relatively close spacing between points of exploration, e.g.

10 m to 30 m, are often appropriate for structures. For structures small in plan area, exploration should be made at
a minimum of three points, unless other reliable information is available in the immediate vicinity.”

BSI EN 1997-2: 2007 Ground Investigation and Testing – Clause B.3
“The following spacing of investigation points should be used as guidance:

• For high-rise and industrial structures, a grid pattern with points at 15 m to 40 m distance,

• For large-area structures, a grid pattern with points at not more than 60 m distance,

• For linear structures, a spacing of 20 m to 200 m,

• For special structures, two to six investigation points per foundation.”

Table 1.4 Suggested required area for each borehole.

Subsurface conditions
Structure foot print area
for each borehole, m2

Poor quality and/or erratic 100–300

Average 200–400

High quality and uniform 300–1000

Table 1.3 Suggested spacing of boreholes.

Type of project Boreholes spacing, m

One story building 25–30

Multistory building 15–25

Residential subdivision planning 60–100

Highway 150–300∗

Earth dam 25–50

Bridge∗∗ —

∗ It is reduced to even 30 m for erratic subsurface conditions.
∗∗Minimum of one borehole at location of each pier or abutment.
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Depth of Borings: As it was the case with the required spacing and number of borings and due to nearly the
samemain reasons, here also, there is no absolute and unique rule to determine the required depth of exploratory
borings. Borings should reach depths adequate to explore the nature of the subsurface soils, mainly encountered
in the influence stress zones, including all strata likely to contribute significantly to settlement. There are many
empirical and semi-empirical criteria, rules and equations established by individual researchers, engineering
agencies and societies, to estimate the required minimum depth of borings. Some of these are as follows:

ASCE Criteria (1972): “Unless bedrock is encountered first, borings should be carried to such depth that the net
increase in soil stress σz under the weight of the structure is less than 10 percent of the average load of the
structure q, or less than 5 percent of the effective overburden stress σO in the soil at that depth, whichever
is the lesser depth.” These two criteria are shown in the scheme below.

Criterion 1: σz = 0.10 q find z1
Criterion 2: σz = 0.05 σO find z2
Use z1 or z2, whichever is smaller.
Boring depth = zb = (z1 or z2) + D
D = the anticipative foundation depth

Smith (1970) used Criterion 2 in the form: σz = M σO;
in which M is the compressibility criterion equals 10% for
fine-grained soils and 20% for course-grained soils. He
used the Boussinesq principles of stress distribution to
determine the influence depth z, and established a set of
curves relating the influence depth to the equivalent square
dimension of a uniformly loaded rectangular or circular
area. Also, he derived equations for estimating minimum
depth of borings for embedded footing systems, mats or
rafts and pile groups.
Baban (1992) established the same relationships using the ASCE criteria andWestergaard principles of stress

distribution; with an assumed average value for Poisson’s ratio of the base soil equals 0.3. He found that
for embedded footing systems, mats or rafts and pile groups of width B larger than 20 m, Criterion 2 always
controls the minimum boring depth. The equations derived by Baban are as follows:
According to the ASCE Criterion 1,

Z = 0 5 0 9B2 + 0 9L2
2
+ 122B2L2

1 ∕ 2
−0 4 B2 + L2

1 ∕ 2

1 4

According to the ASCE Criterion 2,

tan
0 025 π γAz

q
=

BL

1 144B2Z2 + 1 144L2Z2 + 1 309Z4 1 ∕ 2 1 5

Zb =Z +D

γA = average effective unit weight of soil within depth Z in lb/ft3, q is in lb/ft2, and Z, B and L are in feet.
Sowers and Sowers (1970) suggested a rough estimate of minimum boring depth (unless bedrock is encoun-

tered) required for building structures according to number of stories S, as follows:

For light steel or narrow concrete buildings, zb = 3 S0 7 + D 1 6

For heavy steel or wide concrete buildings, zb = 6 S0 7 + D 1 7

(Continued)

Base soil

•

Base level

z

B

q

σ ó

σz

Scheme 1.1
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Coduto (2001) adapted from Sowers (1979) equations for zb considering both the number of stories and the
subsurface conditions, as presented in Table 1.5.

It is noteworthy there is a general rule of thumb, often adopted in practice, requires minimum boring depth
equals 2× the least lateral plan dimensions of the building or 10 m below the lowest building elevation. This is
because the foundation or footing dimensions are seldom known in advance of borings. According to Bowles
(2001), where 2× width is not practical as, say, for a one-story warehouse or department store, boring depths
of 6 to 15 m may be adequate. On the other hand, for important (or high-rise) structures that have small plan
dimensions, it is common to extend one or more of the borings to competent (hard) soil or to bedrock regardless
of depth.
When the foundations are taken up to rock, it should be insured that large boulders are not mistaken as bedrock.

The minimum depth of core boring into the bedrock should be 3 m to establish it as a rock.

Solution:
(a) Try the suggested guidelines as follows:

• According to BSI requirements, for large-area structures, a grid pattern with boring spacing not more than
60 m should be used. A spacing range of 10–30 m is appropriate.

• According to BOCA, minimum of one boring shall be used for every 230 m2. The building area is 50 × 85 =
4250 m2 which requires about 20 boreholes (considered relatively large number). This number of bore-
holes requires a grid of four rows and five columns with about 16.5 m vertical and 21.0 m horizontal centre
to centre spacing (considered relatively small spacing). Moreover, using 20 boreholes is uneconomical.

• Others may suggest five boreholes, but undoubtedly this requires too large a borehole spacing.

• According to Table 1.3, for multistory buildings, borehole spacing of 15–25 m is suggested.

• According to Table 1.4, for uniform subsurface soil condition, 300–1000 m2 for every borehole is
suggested.
If 10 boreholes are used, the area per borehole will be 425 m2; considered a reasonable figure. These bore-

holes may be distributed in a triangular pattern, with three rows in the long direction. Each of the two side
rows gets three boreholes, the middle row gets the remaining four boreholes. The boreholes of each row will
have equal spacing. Let the centre of the exterior boreholes be located 0.65 m inside the building area. In this
way, the centre to centre borehole spacing will be 27.9 m. This borehole spacing is considered adequate.
Hence:

Use 10 boreholes.
The boreholes will be distributed and spacing as shown in Figure 1.4.

(b) Depth of boreholes: Try all the available criteria and established relationships. In order to accomplish this it is
necessary to assume reasonable values for certain missing data, as follows:

• The ground water table is so deeply located that it would not be reached during subsurface exploration.

• The average effective unit weight of the subsurface soil equals 18 kN/m3 (or 112.4 pcf ).

• The expected type of support would be shallow foundation such as column footing system, mat and raft
foundation; rests on soil (not piles).

Table 1.5 Minimum boring depth for different subsurface conditions.

Subsurface conditions Minimum boring depth, m

Poor zb = 6 S 0.7 + D

Average zb = 5 S 0.7 + D

Good zb = 3 S 0.7 + D
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According to Smith (1970):

For M = 0 1, q γ M = 1434 112 4 × 0 1 = 127 6 ft

Equivalent width Be = A1/2 = (50 × 3.28 × 85 × 3.28)1/2 = 213.8 ft, and for L/B = 85/50 = 1.7, from Smith curves
find D = z = 100 ft. Hence, the minimum borehole depth is

zb = foundation depth + z

= 1 +
100
3 28

= 31 49m; say 32m

According to Baban (1992):
The ASCE Criteria 2 controls because B = 50 > 20 m

γ

q
=
112 4
1434

=
1

12 76
ft−1,

L
B
=
85
50

= 1 7, B = 50 × 3 28 = 164 ft

Using the applicable equation or from table and interpolating, find z = 125 ft (computed from the equation)

zb = foundation depth + z

=
125
3 28

+ 1 = 39 11m; say 39m

According to Coduto (2001) and Sowers (1970):

zb = 6S0 7 +D= 6 × 50 7 + 1

= 6 × 3 09 + 1 = 19 54m, say 20 0m

According to the 2 × width rule of thumb, zb = 2 × 50 = 100 m; it is unrealistic and uneconomical.
Refer to Figure 1.4. The responsible Geotechnical Engineer may recommend the following borehole depths:

• All four boreholes nearest to the corners shall be drilled to 20 m depth (boreholes 1, 3, 8 and 10).

• The two boreholes, each at centre of an exterior row, shall be drilled to 25 m depth (boreholes 2 and 9).

• The two exterior boreholes of the middle row shall be drilled to 25 m depth (boreholes 4 and 7). The remain-
ing two middle boreholes shall be drilled to 35 m depth (boreholes 5 and 6).

27.9 m27.9 m 14.6 m14.6 m

0.65 m

0.65 m

2
4
.3

5
m

0.65 m 0.65 m27.9 m

2
4
.3

5
m

27.9 m 27.9 m

5
0
.0

m

85.0 m

4 5 6 7

1 2 3

8 9 10

Figure 1.4 Borehole spacing.
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Problem 1.5

Field vane shear tests (FVST) were conducted in a layer of organic clay (not peat). The rectangular vane dimen-
sions were 63.5 mm width × 127 mm height. At the 2 m depth, the torque T required to cause failure was 51 N.m.
The liquid limit LL and plastic limit PL of the clay were 50 and 20, respectively. The effective unit weight γ of the
clay is 18 kN/m3. Estimate the design undrained vane shear strength su, the preconsolidation pressure σc and the
ratio OCR of the clay.

Discussion:
The in situ or field vane shear test (FVST – ASTM D-2573) is used to estimate the in situ undrained shear
strength su (or undrained cohesion cu) of very soft to soft clay, silty clay (muck) and clayey silt soils. It is
practically used when sensitive fine-grained soils are encountered. However, these materials must be free
of gravel, large shell particles, and roots in order to avoid inaccurate results and probable damage to the
vane.
Briefly, the test apparatus consists of a small diameter shaft with four tapered or rectangular thin blades or fins

(Figure 1.5), and suitable extension rods and fasteners used to connect the shear vane with a torque measuring
device at the ground surface, as shown in Figure 1.6a. There are various forms of the equipment; the device shown
in the figure is somewhat an antique version, belongs to The Bureau of Reclamation, USA; (Gibbs andHoltz, 1960).
Also, there are different vane sizes (the diameter D and height H dimensions) used for soils of different consist-
encies; the softer the soil, the larger the vane diameter should be. A standard vane has theH/D ratio equals 2, whereD
is the overall vane width. Typical vane dimensions being 150 mm by 75 mm and 100 mm by 50 mm.

(a)

45°

H
=

2
D

L
=

1
0
D

H
=

2
D

(b)

D

D

D

Figure 1.5 Field vane shapes: (a) tapered vane, (b) rectangular vane.
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The test is conducted by pushing the shear vane into the soil at bottom of a borehole, without disturbing the soil
appreciably, until the vane top is about 15 cm below the hole bottom. After a short time lapse of 5–10 min, the
torque is applied at the top of the extension rod to rotate the fins at a standard rate of 0.1 degree per second. This
rotation will induce failure in the soil surrounding the vanes. The shear surface has the same vein dimensions
D and H. The maximum torque T required to cause failure is measured and recorded. Steps of the test procedure
are schematically illustrated in Figure 1.6b. Note: Refer to ASTMD-2573 for more details of the test apparatus and
procedure.

(Continued)

Torque ring

5° graduations

Rotation indicator

Strain gauge for

reading torque

(a)

200 mm casing with side fins

for anchoring torque assembly

Torque rod

A-rod (size) for applying torque

to vane. Made up in 1.5 m lengths

Rubber “O” ring seal

Grease chamber

Fitting for greasing

Rubber “O” ring seal

BX (size) casing for housing

torque rod and A rod

Vane rod
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BX-casing-point containing

bearing and water seals for
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Vent—

opened

while

greasing
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Figure 1.6 (a) Field vane shear apparatus (after Gibbs and Holtz 1.6; USBR). (b) Field vane shear test procedure.
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The following equations relate the torque T at failure to the undrained vane shear strength su,v (or cu,v) and vane
dimensions:

T = πsu,v
D2H
2

+
D3

6
1 8

T = 7πsu,v
D3

6
for

H
D

= 2, su,v =
6T
7πD3

1 9

Note: In using these equations, all the units should be consistent; D and H are in metres, su,v is in kN/m2 and T
is in kN.m.
Researchers found that the su,v values obtained from the FVST are too high for design purposes; its use reduces

the factor of safety considerably. It is recommended to use the empirical correction factor λ with su,v in order to
obtain appropriate value for design undrained shear strength. Hence,

Design su,v = λ× su,v 1 10

The correction factor λ may be obtained from curves or calculated using any of the following equations:
Bjerrum (1972):

λ = 1 7−0 54log PI 1 11

Vane

rods

B = borehole

diameter

H = blade

height

Blade width = D

Blade thickness = e

1. Insertion of vane

d
1
= 4B

Vane Shear Test (VST) per ASTM D 2573:

Undrained shear strength:

In-situ sensitivity:

S
uv

= 6 T/(7пD
3
) 

S
t
= S

uv
 (peak)/S

uv
 (remolded)

For H/D = 2

2. Within 1 minute, rotate

vane at 6 deg./minute;

Measure peak torque, Tmax

3. Perform an

additional 8 to 10

revolutions

4. Measure residual

torque Tres for

remolded case

D = 62.5 mm

H = 130 mm

e = 2 mm

Lower vane
to bottom of

prebored hole

Push in vane

at bottom of

borehole

Four-bladed

vane shear

device:

Torquemeter

(b)

Figure 1.6 (Continued)
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PI = plasticity index
Morris and Williams (1994):

λ= 7 01 e−0 08 LL + 0 57 1 12

λ= 1 18 e−0 08 PI + 0 57 for PI > 5 1 13

For organic soils other than peat, an additional correction factor of 0.85 is recommended be used with the cor-
rected su,v (Terzaghi, Peck, and Mesri, 1996). However, this correction may not be necessary when the Morris and
Williams correction factors are used.
Researchers derived empirical equations for estimating the effective preconsolidation pressure σc and the over-

consolidation ratio OCR (or σc σO) of natural clays using results of the field vane shear test. Mayne and Mitchell
(1988) found the following correlations:

σc = 7 04 cu,v field
0 83

, cu,v field and σc are in kN m2 1 14

OCR= β
cu,v field

σO
, cu,v field and σO are in kN m2 1 15

β = 22 PI −0 48

β =
222
ω

, ω = moisture content Hansbo, 1957 1 16

β =
1

0 08 + 0 0055 PI
Larsson, 1980 1 17

Solution:

T = 51N m = 51 × 10−3 kN m;
D= 63 5mm = 63 5 × 10−3 m
H = 127mm = 127 × 10−3 m;H D= 2

Equation (1.9): su,v =
6T
7πD3

=
6 × 51 × 10−3

7 × π 63 5 × 10−3 3 = 54 32 kN m2

Equation (1.11): λ= 1 7−0 54 log PI

= 1 7−0 54 log 50−20 = 0 902

As the soil is organic (not peat), an additional correction factor of 0.85 is recommended.

Designsu ,v = 0 85 × λ× su ,v = 0 85 × 0 902 × 54 32 = 41 65 kN m2

Equation (1.14): σc = 7 04 cu,v field
0 83

= 7 04 54 32 0 83 = 193 9 kN m2

Equation (1.15): OCR= β
cu,v field

σO

β = 22 PI −0 48 = 22 50−20 −0 48 = 4 3

OCR= β
cu,v field

σO
= 4 3 ×

54 32
2 × 18

= 6 5 >
193 9
2 × 18

= 5 4

(Continued)
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Equation (1.17): β =
1

0 08 + 0 0055 PI
=

1
0 08 + 0 0055 50−20

= 4 08

OCR= β
cu,v field

σO
= 4 08 ×

54 32
2 × 18

= 6 2 >
193 9
2 × 18

= 5 4

Problem 1.6

At the site of a proposed structure the variation of the SPT number (N60) with depth in a deposit of normally
consolidated sand is as given below:

Depth, m: 1.5 3.0 4.5 6.0 7.5 9.0

N60: 6 8 9 8 13 14

The ground water table (W.T) is located at a depth of 6.5 m. The dry unit weight γdry of the sand above W.T is
18 kN/m3, and its saturated unit weight γsat below W.T is 20.2 kN/m3.

(a) Correct the SPT numbers.
(b) Select an appropriate SPT corrected number N60 for use in designs. Assume the given depths are located

within the influence zone (zone of major stressing).

Discussion:
One of the most common in situ tests conducted during subsurface exploration is the standard penetration test
SPT.When a borehole is extended to a predetermined depth, the drill tools are removed and a standard split-spoon
sampler connected to a drill rod is lowered to the bottom of the hole. The sampler is 50 mm in external diameter,
35 mm in internal diameter and about 650 mm in length (Figure 1.7a, b). The sampler is driven into the soil by
means of blows from a standard 65 kg hammer which freely drops a standard 760 mm distance to an anvil at top of
the drill rod (Figure 1.8). The number of blows N required for the spoon penetration of three 150 mm intervals is
recorded. The number of blows required for the last two intervals are added to give the field standard penetration
number, recorded as Nfield at the particular depth. This number is generally referred to as N-value. If 50 blows are
reached before a penetration of 300 mm, no further blows should be applied but the actual penetration should be
recorded. The test depth intervals are, generally, 1–2 m. At conclusion of a test the sampler is withdrawn and the
soil extracted. If the test is to be carried out in gravelly soils the driving shoe is replaced by a solid 60 cone and the
test is usually called a dynamic cone penetration test. There is evidence that slightly higher results are obtained in
the same material when the normal driving shoe is replaced by the 60 cone.
Note: For more details of the test refer to ASTM D-1586.
The SPT is very useful for determining the relative density Dr and the effective angle of shearing resistance Ø of

cohesionless soils. To a lesser degree, it can also be used to estimate the undrained shear strength Su (or Cu) of
cohesive soils. The SPT N-value is used to estimate allowable bearing capacity of granular soils. It may be useful to
point out herein, that the SPT N-value of soil deposits which contain large boulders and gravel may be erratic and
un-reliable. In loose coarse gravel deposits, the spoon sampler tends to slide into the large voids and gives low
values of N. Excessively large values of N may be expected if the sampler is blocked by a large stone or gravel.
According to Bowles (2001), the penetration test in gravel or gravelly soils requires careful interpretation, since
pushing a piece of gravel can greatly change the blow count. Generally if one uses a statistical average of the blow
count in the stratum from several borings, either excessively high or very low (pushing gravel or creating a void
space) values will be averaged out so that approximately the correct blow count can be estimated for design.
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Corrections of SPT number:
The recorded Nfield should be adjusted and corrected for the effects of some factors such as effective overburden
pressure (CN), hammer efficiency (ηh), borehole size (ηb), sampler (ηs) and rod length (ηr).

Due to various types of driving hammers with different efficiencies, the hammer energy ratio Er is referenced
to a standard or basic energy ratio, Erb, such that ηh be equal to ratio of the particular hammer energy to the stand-
ard Erb, which is equal to either 60 or 70%.
WhenNfield is adjusted to ηh, ηb, ηs and ηr corrections, it is generally referred to asN60 orN70 according to the Erb

value, as follows:

N60 =
Er ηb ηs ηr Nfield

60
1 18

N70 =
Er ηb ηs ηr Nfield

70
1 19

Table 1.6 gives values of Er for different types of SPT hammers. Table 1.7 gives values for borehole, sampler and
rod correction factors.
When N60 and N70 are corrected for the effective overburden pressure, they are written as N60 and N70, where

N60 =CN N60

N70 =CN N70
(Continued)
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Figure 1.7 (a) Standard split-spoon sampler; (b, d) dimensions and inserts of the standard split-spoon sampler, respectively;
(c) Shelby tube (from Bowles, 2001).
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Figure 1.8 Schematic diagrams of the three commonly used hammers (from Bowles, 2001).

Table 1.6 SPT hammer efficiencies (adapted from Clayton, 1990).

Country Hammer type Hammer release mechanism Efficiency, Er

Argentina Donut Cathead 45

Brazil Pin weight Hand dropped 72

China Automatic Trip 60

Donut Hand dropped 55

Donut Cathead 50

Colombia Donut Cathead 50

Japan Donut Tombi triggers 78–85

Donut Cathead, two turns + special release 65–67

UK Automatic Trip 73

US Safety Cathead, two turns 55–60

Donut Cathead, two turns 45

Venezuela Donut Cathead 43
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CN = effective overburden pressure factor

CN ≤ 2

Terzaghi and Peck (1967) have recommended the following additional correction where the soil is fine sand or
silty sand below the water table:

Nfield = 15 + 0 5 Nfield −15 , for Nfield > 15 1 20

Note: This correction is applied first and then the overburden and other corrections are applied.

The effective overburden pressure factor CN, may be determined from different empirical relationships, such as:
Liao and Whitman (1986):

CN =
pa
σO

, where σO = effective overburden pressure, kPa 1 21

Skempton (1986):

CN =
2

1 +
σO
Pa

, for normally consolidated fine sand 1 22

CN =
3

2 +
σO
Pa

, for normally consolidated coarse sand 1 23

CN =
1 7

0 7 +
σO
Pa

, for overconsolidated sand 1 24

(Continued)

Table 1.7 Borehole, sampler and rod correction factors (adapted from
Skempton, 1986).

Factor Equipment variables Value

ηb 65–115 mm (2.5–4.5 in) 1.0

150 mm (6 in) 1.05

200 mm (8 in) 1.15

ηs Standard sampler 1.0

with liner for dense sand and clay 0.8

with liner for loose sand 0.9

ηr < 4 m (< 13 ft) 0.75

4–6 m (13–20 ft) 0.85

6–10 m (20–30 ft) 0.95

> 10 m (> 30 ft) 1.0
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Seed et al (1975):

CN = 1−1 25log
σO
Pa

1 25

In the above CN equations, note that σO is the effective overburden pressure and Pa = atmospheric pressure
( 100 kN/m2).
Figure 1.9 may give the most realistic relationship.

For cohesionless soils, the SPT number can be correlated with the relative density Dr and effective angle of
shearing resistance Ø . Some of the published empirical relationships are:

• Marcuson and Bieganousky (1977):

Dr = 11 7 + 0 76 222N60 + 1600−53σo−50C
2
u

½
1 26

• Kulhawy and Mayne (1990):

Dr = 12 2 + 0 75 222N60 + 2311−711OCR−
779σo
Pa

−50C2
u

½

1 27
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Figure 1.9 Variation of correction factor CN with effective overburden pressure for coarse-grained soils (from Knappett
and Craig, 2012).
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• Cubrinovisky and Ishihara (1999):

Dr =
N60 0 23 +

0 06
D50

1 7

9
1
σo
Pa

½

1 28

• Kulhawy and Mayne (1990):

Dr =
N60

CPCACOCR
× 100 1 29

Where:
Cp = 60 + 25 log D50 = Grain size correction factor

CA = 1 2 + 0 05log
t

100
=Aging correction factor

t = age of soil in year (time since deposition)
COCR = (OCR)0.18 = Overconsolidation correction factor

N60 = corrected SPTN−value

σo = effective overburden pressure, kN m2

Pa = atmospheric pressure (≈100 kPa)
D50 = sieve size through which 50 % of the soil will pass (mm)
Cu = uniformity coefficient of the sand

OCR = overconsolidation ratio =
preconsolidation pressure, σC
effective overburden pressur,σO

Note:When there is shortage in data to compute the Cp, CA and COCR parameters; estimated approximate values
may be assumed. For example, a value forD50 may be estimated from visual examination of the soil with reference to
particle size classification tables. If there is no reliable source available to estimate the age of a sand deposit; a value of
t= 1000 yearsmay be assumed since the aging factor is not very sensitive to the t value. Also, for the overconsolidation
correction factor, values of about one in loose sands to about four in dense sands would be adequate (Coduto, 2001).
Table 1.8 gives approximate relation between Dr, N 60, Ø, unit weight γ and denseness description for

cohesionless soils.

(Continued)

Table 1.8 Correlation for Dr, N60, Ø , γ, soil denseness.

N60 Dr % Ø γ, kN/m3 Denseness

0–5 5–15 25–32 11–16 Very loose

5–10 15–30 27–35 14–18 Loose

10–30 30–60 30–40 17–20 Medium

30–50 60–85 35–45 17–22 Dense

> 50 > 85 > 45 20–23 Very dense
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Peck et al. (1974) gives a correlation between N60 and Ø in a graphical form which can be approximated
(Wolff, 1989) as

Ø = 27 1 + 0 3N60−0 00054 N60
2

1 30

Kulhawy and Mayne (1990):

Ø = tan−1 N60

12 2 + 20 3
σO
Pa

0 34

1 31

Hatanac and Ushida (1996):

Ø = 20N60 + 20 1 32

The SPT number N60 is correlated to the modulus of elasticity (Es) of sands as follows:
Kulhawy and Mayne (1990):

Es
Pa

= αN60 1 33

Where: Pa = atmospheric pressure (same unit as Es)
α = 5, 10 and 15 for sands with fines, clean normally consolidated sand, and clean overconsolidated sand,

respectively.
The SPT number is also correlated to unconfined compression strength qu and undrained shear strength su of

fine-grained soils as given in Table 1.9 and the following equations. It is important to point out that the obtained
values of qu and su should be used as a guide only; local cohesive soil samples should be tested to verify that the
given relationships or correlations are valid.

Stroud and Butler (1975):

su = kN60 for insensitive overconsolidated clay 1 34

where k= 4 5 kPa for PI > 30

k= 4 – 6 kPa for PI = 30 15

Table 1.9 Correlations for N 60, qu and consistency of fine-grained soils.

N60 Consistency qu, kN/m
2

0–2 Very soft 0–25

2–5 Soft 25–50

5–10 Medium stiff 50–100

10–20 Stiff 100–200

20–30 Very stiff 200–400

> 30 Hard > 400
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Hara et al (1971):
cu = 29 N60

0 72, kPa 1 35

Mayne and Kemper (1988):

OCR = 0 193
N60

σO

0 689

1 36

where σO = effective overburden pressure inMN m2

Szechy and Varga (1978) gave the correlations presented in Table 1.10.

Where:

CI = consistency index =
LL−ω
LL−PI

ω = natural moisture content
LL = liquid limit
PL = plastic limit
N60 = SPT N-value corrected for field procedures only

Note:As mentioned earlier, any correlation or relationship between N60, su, cu,OCR, CI and qu for cohesive soils
is approximate and should be used as a guide only.

Solution:
(a)

Depth, m: 1.5 3.0 4.5 6.0 7.5 9.0

N60: 6 8 9 8 13 14

N60 =CN N60

Equation (1.22): CN =
2

1 +
σO
Pa

Pa 100 kPa

(Continued)

Table 1.10 Correlations for N60, CI, qu and consistency.

N60 Consistency CI qu, MN/m2

< 2 Very soft < 0.5 < 25

2–8 Soft to medium 0.5–0.75 25–80

8–15 Stiff 0.75–1.0 80–150

15–30 Very stiff 1.0–1.5 150–400

> 30 Hard > 1.5 > 400
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At 1 5mdepth, σO = 1 5 × 18 = 25 kPa CN = 1 6 N60 = 10

At 3 0mdepth, σO = 3 0 × 18 = 54 kPa CN = 1 3 N60 = 10

At 4 5mdepth, σO = 4 5 × 18 = 81 kPa CN = 1 1 N60 = 10

At 6 0mdepth, σO = 6 0 × 18 = 108 kPa CN = 0 96 N60 = 8

At 7 5mdepth, σO = 6 5 × 18 + 1 20 2−10 = 127 kPa CN = 0 88 N60 = 11

At 9 0mdepth, σO = 6 5 × 18 + 2 5 20 2−10 = 143 kPa CN = 0 82 N60 = 12

Depth, m: 1.5 3.0 4.5 6.0 7.5 9.0

N60: 10 10 10 8 11 12

(b) The design N60 is the average of all N60 values of SPT conducted at the depth intervals encountered within the
influence zone. For example, for a spread footing the zone of interest is from about one-half footing width B
above the estimated foundation level to a depth of about 2B below that level. For shallow foundations,
weighted average using depth increment × N may be preferable to an ordinary arithmetic average; that is,
Naverage = N × zi zi and not Ni i.

For deep foundations, the simple ordinary average may be adequate unless the stratum is very thick. In case
of thick stratum, it may be better to subdivide the stratum into several strata and average the N values for each
subdivision (Bowles, 2001).

Depth, m N60 N60 ×Depth

1.5 10 15

3.0 10 30

4.5 10 45

6.0 8 48

7.5 11 83

9.0 12 108

zi = 31 5 N60 × zi = 329

Average N60 = 329 31 5 = 10 44 use 10 only use integers
Design N60 = 10

Problem 1.7

A standard penetration test was performed in a 150 mm diameter borehole at a depth of 9.5 m below the ground
surface. The driller used a UK-style automatic trip hammer, a standard SPT sampler and a 10-m drill rod. The
actual blow count Nfield was 19. The soil is normally consolidated fine sand with a unit weight of 18.0 kN/m3 and
D50 = 0.4 mm. The ground water table is at a depth of 15 m. Compute (a) N60, (b) N60, (c) Dr%, (d) Ø , and
(e) denseness of the fine sand.
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Solution:
(a) From Table 1.6, for the UK automatic trip hammer, Er = 73%

From Table 1.7, for 150 mm diameter borehole, ηb = 1.05
From Table 1.7, for a standard sampler, ηs = 1.0
From Table 1.7, for a 10-m drill rod, ηr = 0.95

Equation (1.18): N60 =
Er ηb ηs ηr Nfield

60
=
73 × 1 05 × 1 × 0 95 × 19

60
= 23

(b)
N60 =CN N60

Assume using Equation (1.18): CN =
pa
σO

=
100

9 5 × 18
= 0 76

N60 = 0 76 × 23 = 17

(c) Equation (1.28):

Dr =
N60 0 23 +

0 06
D50

1 7

9
1
σO
Pa

½

=
23 0 23 +

0 06
0 4

1 7

9
1

9 5 × 18
100

½

100 = 54

(d) Equation (1.31):

Ø = tan−1 N60

12 2 + 20 3
σO
Pa

0 34

= tan−1 23

12 2 + 20 3
9 5 × 18
100

0 34

= tan−1 0 785 Ø = 38

(e) Table 1.8: forN60 = 17,Dr = 54%, Ø = 38% and γ = 18 kN/m3, the soil may be classified asmedium dense sand.

Problem 1.8

A 15 cm diameter borehole has been drilled through a fine sand deposit to a depth of 7 m. At this depth, the SPT,
using a US safety hammer and a standard SPT sampler, gave Nfield = 23. Boring then continued to greater depths,
encountering water table at a depth of 11 m. Compute N60, Ø , and Dr at the test location, and use the data to
estimate the denseness of the sand.

Solution:
ThemeasuredNfield of 23, with an estimated allowance of about ± 20% for the correction factors, suggests medium-
dense sand (Table 1.8). Knowing that fine sand may be considered poorly graded, a value for γ equals 18 kN/m3

may be assumed appropriate (Table 1.8).
(Continued)
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At 7mdepth, σO = 7 × 18 = 126 kN m2

Equation (1.25): CN = 1−1 25log
σO
Pa

= 1−1 25log
126
100

= 0 87

From Table 1.6, for the US safety hammer, Er = 55–65%

For Erb = 60 , ηh =
55 + 60 2

60
= 0 96

N60 = ηh × ηb × ηsηr ×Nfield

N60 = 0 96 × 1 05 × 1 × 0 95 × 23 = 22

N60 =CN N60 = 0 87 × 22 = 19

Equation (1.32): Ø = 20N60 + 20 = 20 × 19 + 20 = 39

Equation (1.29): Dr =
N60

CPCACOCR
× 100

Cp = 60 + 25 logD50

Grain size of fine sand ranges from 0.075 to 0.425 mm (ASTMD 2487) EstimateD50 = 0.2 mm; hence, CP = 60 +
25 log 0.2 = 42.5

CA = 1 2 + 0 05log
t

100

Since there is shortage in data and there is no reliable source available, assume t = 1000 years;

hence, CA = 1 2 + 0 05 log
1000
100

= 1 25

COCR = OCR 0 18

Also, for the same reasons just mentioned, assume OCR = 2.5; hence, COCR = (2.5)0.18 = 1.18

Dr =
19

42 5 × 1 25 × 1 18
× 100 = 55

Problem 1.9

Twoplate-load testsonasandysoilwereperformedusingplates0.3×0.3mand0.6×0.6m.Fora20mmsettlement, the
loadswere30and72kN, respectively.FinddimensionBofa square footingrequired tocarrya200kNcolumnloadwith
an allowable settlement of 20mm, (a) assume extrapolating plate-load test results to the footing size is approximately
justified and the bearing load V increases linearly with B (for the given settlement), (b) use Housel’s method.

Discussion:
A method to obtain load-settlement relationship and to estimate allowable bearing capacity of foundations
is by conducting field load tests. One of these tests is the Plate Load Test or PLT. To carry out a PLT, a
pit of the size 5 Bplate × 5 Bplate is excavated to a depth equals to the estimated foundation depth Df. The
dimension Bplate is the width or diameter of the rigid steel plate. The size of the plate is usually 0.3-m square, and its
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thickness is 25 mm. Sometimes, large size plates of 0.6-m square are used. A central hole of the same plate size is

excavated in the pit such that its depth Dh = Df
Bh

Bf
, where Bf is the pit width, and Bh is the hole size. Usually,

for shallow foundation depths, excavation of the central hole is optional.
For conducting the test, the plate is placed in the central hole in a horizontal position. The vertical load is applied

by means of a suitable hydraulic jack. The reaction to the jack is provided by means of a reaction beam, a truss, a
loaded platform and so on (Figure 1.10). A seating load of 7 kPa is first applied, which is released after sometimes.
Then the load is applied in successive increments until failure of the ground in shear is attained or, more usually,
until the bearing pressure on the plate reaches somemultiple, say two or three, of the bearing pressure proposed for
the full-scale foundations. The magnitude and rate of settlements are observed and recorded.

Pavement subgrades are tested using circular plates of relatively large diameter (Fig. 1.11). Some laboratories use
a steel plate of 30-inch (76.2 cm) diameter and 5/8 inch (15.9 mm) thick, and stiffened with plates of 26-inch
(66.0 cm) and 22-inch (55.9 cm) diameter, of the same thickness, placed on top of it.

(Continued)
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Figure 1.10 Plate-load testing (reproduced from Bowles, 2001).

Figure 1.11 Plate load test in the field (Courtesy of Bjara M. Das, Henderson, NV).
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Note: For more detailed discussion on the test tools and apparatus, preparation, procedure and data recording,
refer to ASTM D-1194.
Figure 1.12a shows a typical plot of settlement versus log time (as for the consolidation test), and Figure 1.12b

shows a plot of load versus settlement. When the slope of the time-settlement curve for a certain load increment is
approximately horizontal, the maximum settlement for that load can be obtained as a point on the load-settlement
curve. When the load-settlement curve approaches the vertical, one interpolates the ultimate load intensity qult.
Sometimes, however, qult is obtained as that value corresponding to a specified settlement (as, say, 25 mm).

The following points are related to results of a plate-load test:

(1) Extrapolating plate-load test results to full-size footings is not standard. For clay soils it might be said that qult
is independent of footing size, giving:

qult, footing = qult, plate 1 37

According to Housel, size of a footing to carry a given load for a given safe settlement may be established by
using data from at least two PLT in the following equation

V = qA+ sP 1 38

where V = total load on a bearing area A
A = contact area of footing or plate
P = perimeter of footing or plate
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q = bearing pressure beneath A
P = perimeter shear

For sand soils, practically, extrapolation may be justified using

qult, footing = qult, plate
Bfooting

Bplate
1 39

However, the use of this equation is not recommended unless the ratio Bfooting/Bplate is not much more than
about three. When the ratio is 6 to 15 or more, the extrapolation from a plate-load test is little more than a
guess that could be obtained at least as reliably using SPT or cone penetration test (CPT) correlations
(Bowles, 2001).

(2) For clayey soils (cohesive soils) and for the same qult of the footing and plate, the following empirical approxi-
mate relationship regarding footing settlement may be used:

Sfooting = Splate
Bfooting

Bplate
1 40

However, since a plate-load test is of short duration, consolidation settlements usually cannot be predicted.
If the test is performed on a material overlying a saturated compressible stratum, the test may give highly
misleading information. As a precautionary measure against this event, it is good practice to have borings
performed at the plate-load test site. Note: For clayey soils, settlement is normally determined from laboratory
consolidation test results and not from results of plate-load test.

For sandy soils (cohesionless soils) and for the same qult of the footing and plate, the following empirical
relationship regarding footing settlement may be used:

Sfooting = Splate
Bfooting Bplate + 0 3

Bplate Bfooting + 0 3

2

1 41

In this equation, both Bfooting and Bplate are in meters.
(3) In designing a shallow foundation for an allowable settlement, a trial and error procedure is usually adopted.

First, a value for Bfooting is assumed and qo is calculated using qo =Q/Afooting, whereQ is the structure load (such
as a column load). Then, for the computed value of qo, from the load-settlement curve a value for Splate is
estimated. The value of Sfooting is computed from the above equations and compared with the allowable settle-
ment value. The procedure is repeated till the computed settlement value is equal to the allowable settlement.

(4) The plate load test can also be used for determination of the stress-strain modulus (or deformation modulus)
Es of the supporting soil, used in the known immediate settlement equation

ΔH = qB
1−μ2

Es
I 1 42

Where: ΔH = settlement
q = uniform load per unit area
B = least lateral dimension of the loaded area
I = influence factor
μ = Poisson’s ratio of the soil obtained from tables

(Continued)
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The expression
1−μ2

Es
I equals to

ΔH
qB

which is the slope of an assumed straight line plotted with coord-

inatesΔH and q B. It is determined from results of two or more plate-load tests, using plates of the same shape.
The main features of Equation (1.42) and its applications will be outlined in Chapter 3.

(5) The influence depth of the plate (about 2 Bplate) is much smaller than that of the real footing, so the test reflects
only the load carrying capacity of the near surface soils, whereas, usually, soils type and property vary with
depth. This can introduce large errors. Several complete foundation failures occurred in spite of the use of
plate-load tests (Terzaghi and Peck, 1967; Mesri, 1996). Obviously, for the reasons just mentioned, plate-load
test is not used for design of deep foundations. Because of the development of better methods of testing and
analysis, current engineering practice rarely uses plate-load tests for design of foundations. However, these
tests are still useful for other design problems, such as those involving wheel loads on pavement subgrades,
where the service loads act over smaller area.

Solution:

(a) The linear proportionality requires

V = aB + b

From the first PLT 30 = a 0 3 + b
From the second PLT 72 = a 0 6 + b

Therefore, a =
42
0 3

= 140 and b= 30−140 0 3 = −12

For full-size footing:

V = 140 B−12
V = column load = 200 kN
200 = 140 B−12

Therefore, B=
212
140

= 1 514m

Try 1 5m× 1 5msquare footing

(b) Equation 1 38 V = qA+ sP

From the first PLT 30 = q 0 3 2 + s 4 × 0 3 = 0 09q+ 1 2 s

From the secondPLT 72 = q 0 6 2 + s 4 × 0 6 = 0 36q+ 2 4 s or 36 = 0 18q+ 1 2 s

Therefore, q=
36−30
0 09

= 66 67 and s=
30−66 67 0 09

1 2
= 20

For full-size footing:

200 = 66 67B2 + 20 × 4B or B2 + 1 2B−3 = 0

B=
−1 2 ± 1 22−4 × 1 −3

2 × 1
=
−1 2 + 3 67

2
= 1 23 m

Try 1.3 m × 1.3 m square footing.
Obviously, the assumed linear proportionality used in solution (a) is in error, whereas the Housel’s equa-

tion used in solution (b) is based on research results; expected to be more correct. Therefore, one may decide
on using 1.3 m × 1.3 m square footing.
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Problem 1.10

A standard plate-load test was conducted on a clay soil using a plate of 0.6 × 0.6 m. Under the ultimate vertical load
V of 96.8 kN the plate settlement was 5 mm. If the clay supports a square footing, what will be its net safe bearing
capacity net qsafe with a safety factor SF = 3? What size of square footing is required to carry a column load Q of
550 kN and what will be the settlement?

Solution:
In a standard PLT, actually, qult,plate is net qult rather than gross qult since width of the test pit is as large as about five
times the plate width.

Equation (1.37): qult, footing = qult,plateor

net qult, footing = net qult, plate

net qult, plate =
V

Aplate
=

96 8
0 6 × 0 6

= 268 9 kPa Hence

net qult, footing = 268 9 kPa

net qsafe =
net qult
SF

=
268 9
3

= 89 6 kPa

The footing area Afooting =Q net qsafe =
550
89 6

= 6 14m2

Use a square footing 2.5 m × 2.5 m

Equation (1.40): Sfooting = Splate
Bfooting

Bplate
= 0 005 ×

2 5
0 6

= 0 021m

The footing settlement = 21 mm.

Problem 1.11

A standard plate-load test was performed with a plate of 0.3 × 0.3 m at a depth of 1.0 m below the ground surface in
a highly cohesive soil with Ø = 0 . The water table was located at a depth of 5 m below the ground surface. Failure
occurred at a load of 4500 kg. The foundation level will be located at the same depth of the test. The total unit
weight of the cohesive soil above water table γ = 19 kN/m3. Using the Terzaghi general bearing capacity equation
(see any geotechnical text book), what would be the net ultimate bearing capacity for a 1.5 m wide continuous
footing?

Solution:
Terzaghi general bearing capacity equation:

Gross qult = cNcsc + γ DfNq + 0 5γ BNγsγ

Where c = soil cohesion;Nc,Nq andNγ = Terzaghi bearing capacity factors; sc and sγ = shape factors; B = footing
base width.

For Ø = 0 condition Nc = 5 7; Nq = 1; Nγ = 0

For square footings sc = 1 3; sc = 0 8

For continuous footings sc = 1; sγ = 1

(Continued)
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Water table is located at 4 m depth below the foundation level which is deeper than B, hence, γ = γ = 19 kN/m3

net qult = gross qult −γ Df

= c× 5 7 × 1 3 + 19 × 1 × 1 + 0 – 19 × 1

= 7 41c

Equation (1.37): qult, footing = qult,plate or

net qult, footing = net qult,plate

net qult, plate =
4500

0 3 × 0 3
= 50 000 kg m2

7 41c= 50 000 kg m2 c= 6748 kg m2

For continuous footings, net qult = c× 5 7 × 1

= 6748 × 5 7 = 38 462 kg m2

= 384 62 kN m2

Usenet qult = 385 kN m2

Problem 1.12

Two plate load tests on a cohesionless soil yielded the following data:

Plate size, m Load V, kN splate, mm

0.6 × 0.6 40 10

0.9 × 0.9 40 3

(a) Determine the stress-strain modulus Es of the supporting soil. Assume the soil Poisson’s ratio μ = 0.3.
(b) What will be the differential settlement of two footings; one of the size 2.5 × 2.5 m, supporting a column load

of 700 kN; the other of the size 3.0 × 3.0 m, supporting a column load of 1000 kN? Assume the footings are so
apart that there will be no overlap of stresses take place in the supporting soil.

Solution:

(a) Equation (1.42): ΔH = qB
1−μ2

Es
I

From the first PLT, let q1 = qult :

q1 =
40

0 6 × 0 6
= 111 1 kN m2, and q1B1 = 111 1 × 0 6 = 66 7 kN m

From the second PLT, let q2 = qult :

q2 =
40

0 9 × 0 9
= 49 4 kN m2, and q2B2 = 49 4 × 0 9 = 44 5 kN m
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From a plot of ΔH versus q B or by calculation:

1−μ2

Es
I =

ΔH
qB

=
ΔH1 – ΔH2
q1B1− q2B2

=
0 010−0 003
66 7−44 5

=
0 007
22 2

= 3 15 × 10−4

From tables (available in any geotechnical or foundation engineering text book), for a point at centre of a rigid
square plate or footing, obtain I = 0.82 (approximately),

1−μ2

Es
I =

1−0 32

Es
× 0 82 =

0 75
Es

0 75
Es

= 3 15 × 10−4

Es =
0 75

3 15 × 10−4
= 2381 kPa

(b) Equation (1.41): Sfooting = Splate
Bfooting Bplate + 0 3

Bplate Bfooting + 0 3

2

First footing : load intensity = 700 2 5 × 2 5 = 112 0 kN m2

Second footing : load intensity = 1000 3 × 3 = 111 1 kN m2

The load intensity of the first PLT = 111 1 kN m2

The load intensity of the secondPLT = 49 4 kN m2

Use the results of the first PLT, since its load intensity is equal or very close to that of the footings.

Settlement of the first footing = 0 01
2 5 0 6 + 0 3
0 6 2 5 + 0 3

2

= 0 018 m

Settlement of the second footing = 0 01
3 0 6 + 0 3
0 6 3 + 0 3

2

= 0 019 m

The differential settlement of the footings is 0 019−0 018 = 0 001m

The differential settlement = 1 mm.

Problem 1.13

A static cone penetration test was conducted in a deposit of normally consolidated and moderately compressible
dry sand. The test results were as given below:

Depth (m): 1.50 3.00 4.50 6.00 7.50 9.00

Point resistance qc (MN/m2): 2.05 4.23 6.01 8.18 9.97 12.42

(Continued)
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Assume the dry unit weight of the sand deposit = 16 kN/m3. Estimate its average peak friction angle Ø and
relative density Dr.

Discussion:
The static cone penetration test or cone penetrometer test, CPT, also known as the Dutch cone penetration test, has
found wide application in lieu of the SPT, especially in European countries.
The test is particularly used for soft clays, soft silts and fine to medium sand deposits. It is not well adapted to

gravel deposits or to stiff and hard cohesive soil deposits. Briefly, in its original version, the test consists in pushing
down a standard steel cone, usually a 60 cone of a 1000mm2 base area, into ground at a steady rate of 10–20mm/s
for a depth of 40mm each time (each stroke) over stages (intervals) of 200mm; the resistance in units of pressure is
recorded for each stroke. The cone is pushed by applying thrust and not by driving. Data usually recorded as point
or tip bearing resistance qc, side friction resistance qs and total penetration resistance qT. Pore pressures, vertical
alignment, and temperature may also be taken if allowed by the equipment configuration. A CPT allows nearly
continuous testing at many sites, which is often valuable. If the soil is stratified, the test may be performed in
parallel with a drilling machine. In this case the hole is drilled to a soft material, a CPT is done, boring recom-
mences and so on. This test is rather popular for sites where there are deep deposits of transported soil such as in
flood plains, river deltas and along coastlines.
Although many different penetrometer styles and configurations have been used, however, the most widely used

are the mechanical Dutch cone (Figure 1.13), and the electric friction cone (Figure 1.14). The operation of the two
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Figure 1.13 A mechanical friction cone penetrometer (from ASTM, 2001).
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types differs in that the mechanical cone is advanced in stages and measures qc and qs at intervals of 20 cm, whereas
the electric cone is able to measure qc and qs continuously with depth. In either case, the CPT defines the soil profile
with much greater resolution than does the SPT. Another advantage of the CPT is that the disturbance to the soil is
minimal.
In conducting a CPT, using a developedmechanical cone, initially the inner rod is pushed downwards a distance

of 40mm, causing the cone only to penetrate the soil, and the cone point resistance qc is recorded. The outer shaft is
now advanced to the cone base, and the side (or skin) friction resistance qs is recorded. Now the cone and the
engaged friction sleeve are advanced in combination to obtain the total penetration resistance qT, which should
be approximately the sum of the point and side resistances just measured.
In using the electric friction cone, the cone penetration resistance is measured by means of a load cell inside the

body of the instrument and can thus be recorded continuously as the penetrometer is pushed into the soil. The
results are normally plotted automatically, against depth, by means of a chart recorder. The friction sleeve is mech-
anically separate from the conical point; side resistance is measured bymeans of a second load cell. Cone resistance
and side resistance can thus be measured independently. A full description of the test apparatus, procedure and
results interpretation is given by Meigh (1987). Note: This test has been standardised by ASTM as D-3441.
The CPT data are used to classify a soil, to establish the allowable bearing capacity of shallow foundation

elements, or to design piles. The CPT data processing and evaluating should always be handled by a specialised
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Figure 1.14 An electric friction cone penetrometer (from Bowles, 2001).
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geotechnical engineer with enough experience because the data can be so erratic that may need good engineering
judgment.
The measured point resistance qc and side friction qs are used to compute the friction ratio fr as

fr =
qs
qc

× 100 1 43

The friction ratio fr may also be estimated using D50 as in the following empirical equations:
Anagnostopoulos et al (2003),

fr = 1 45−1 36logD50 using electric cone 1 44

fr = 0 781−1 611logD50 using mechanical cone 1 45

Note: In developing these equations, the D50 of soils ranged from 0.01 mm to about 10 mm.
The friction ratio fr is primarily used for soil classification as illustrated in the charts of Figures 1.15 and 1.16.

The friction ratio may be used to give an estimate for soil sensitivity St as follows (Robertson and
Campanella, 1983):

St≈
10
fr

fr is in 1 46

CPT correlations for cohesive soils:
The cone bearing resistance qc (tip bearing resistance) and the undrained shear strength su (or cu) are correlated
through the following empirical equation (Mayne and Kemper, 1988):

su =
qc−σo
Nk

1 47

σo = γZ = overburden pressure where the qc is measured. It is in the same units of qc and same type of pressure
(i.e., if qc is an effective pressure, σO shall be used).
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Nk = Cone factor or bearing capacity factor, constant for a certain soil; depends mainly on soil plasticity index
(PI) and sensitivity (St), and on the cone penetrometer type. Its range is 5–30. The recommended values for mech-
anical and electric cones are 20 and 15, respectively. Anagnostopoulos et al. (2003) determined these two values
equal 18.9 and 17.2, respectively. They also showed that cu equals 0.79 qs and qs for mechanical and electric cones,
respectively. For normally consolidated clays of St < 4 and PI < 30, a value of Nk = 18 may be satisfactory.
The preconsolidation pressure σc and overconsolidation ratio OCR are correlated as follows (Mayne and

Kemper, 1988):

σc = 0 243 qc
0 96 qc and σc are inMN m2 1 48

OCR= 0 37
qc−σo
σo

1 01

1 49

CPT correlations for cohesionless soils:
Lancellotta (1983) and Jamiolkowsk et al (1985) showed that for the normally consolidated sand, the relative dens-
ity Dr and the cone resistance qc can be correlated as:

Dr = 66 × log
qc
σo

−98 1 50

where the qc and σO are in t/m2

According to Kulhawy and Mayne (1990), the above equation can be rewritten as

Dr = 68 log
qc
pa σo

−1 1 51

Pa = atmospheric pressure ≈100 kPa

Figure 1.17 represents the empirical relationship recommended by Baldi et al. (1982), and Robertson and
Campanella (1983), for normally consolidated quartz sand.
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Also, Dr, OCR and qc are correlated by Kulhawy and Mayne (1990) as

Dr =
1

305QcOCR1 8

qc
pa
σo
pa

0 5 1 52

Where Qc = compressibility factor; using 0.91, 1.0 and 1.09 for high, moderate and low compressibility of sand,
respectively.
For normally consolidated quartz sand, the effective friction angle Ø , σO and qc can be correlated and expressed

as (Kulhawy and Mayne, 1990):

Ø = tan−1 0 1 + 0 38log
qc
σo

1 53

Ricceri et al. (2002) suggested a similar correlation for ML and SP-SM soil types as

Ø = tan−1 0 38 + 0 27log
qc
σo

1 54

An approximate correlation (Bowles, 1996) for Ø is

Ø = 29 + qc + 5 for gravel;−5 for silty sand where qc is in MPa
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Campanella, 1983).

42 Shallow Foundations



Lee et al. (2004) established a relationship between the horizontal effective stress σh, Ø and qc as follows:

Ø = 15 575
qc
σh

0 1714

1 55

A number of correlations have been proposed to estimate the SPT N-values from CPT results in both cohesive
and cohesionless soils. These correlations, generally, use a form of qc = k N. Unfortunately, all the available cor-
relations cannot be used with much confidence. According to Meyerhof, qc ≈ 4N55, where qc is in kg/cm2.
Figure 1.18 gives a relatively reliable correlation between mean grain size D50 (grain size at which 50% of the soil
is finer, mm) and qc/N ratio. Also, Table 1.11 gives approximate range values of qc N60 ratio for different soils,
using qc in MPa.
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Anagnostopoulos et al. (2003) proposed the following correlation:

qc
pa
N60

= 7 6429D0 26
50 1 56

where pa = atmospheric pressure ( 100 kPa); qc in kPa.
Schmertmann (1970) established empirical correlations between Es and the cone resistance qc. Because CPT can

provide a continuous plot of qc versus depth, it is possible to model Es as a function of depth, which is especially
useful. Table 1.12 presents design range values of Es/qc for sands, adapted from Schmertmann et al. (1978),
Robertson and Campanella (1989), and other sources.

Solution:

Equation (1.53): Ø = tan−1 0 1 + 0 38log
qc
σo

σO = 16 z,where z = depth, m

Ø = tan−1 0 1 + 0 38log
qc
16 z

Equation (1.52): Dr =
1

305QcOCR1 8

qc
pa
σo
pa

0 5

Table 1.12 Design range values of Es/qc for sands (from Coduto, 2001).

Soil type USCS Group Symbol Es/qc

Young, normally consolidated clean silica sands∗ SW or SP 2.5–3.5

Aged, normally consolidated clean silica sands∗∗ SW or SP 3.5–6.0

Overconsolidated clean silica sands SW or SP 6.0–10.0

Normally consolidated silty or clayey sand SM or SC 1.5

Overconsolidated silty or clayey sand SM or SC 3.0

∗Age < 100 years;
∗∗Age > 100 years

Table 1.11 Approximate range values of qc N60 ratio for different soils.

Soil type qc N60

Silts, sandy silts and slightly cohesive silt-sand mixtures 0.1–0.2

Clean fine to medium sands and slightly silty sands 0.3–0.4

Coarse sands and sands with little gravel 0.5–0.7

Sandy gravels and gravels 0.8–1.0
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pa = 100 kN m2; σO = 16 z

For normally consolidated sand OCR= 1

For moderately compressible sand Qc = 1

Dr =
1
305

qc
100

16 z
100

0 5 =
qc

12200 z0 5

Obtain Ø and Dr values for different values of qc at the given depths, as shown in the table below:

Z, m qc, kN/m
2 σO, kN/m

3 Ø , degree Dr, %

1.5 2050 24 39.8 37.0

3.0 4230 48 40.0 44.7

4.5 6010 72 39.7 48.2

6.0 8180 96 39.8 52.3

7.5 9970 120 39.7 54.6

9.0 12420 144 39.9 58.3

Average Ø = Ø 6= 238 9 6 = 39 8

Average Dr = Dr 6 = 295 1 6 = 49 2

Note: To obtain the average values for Ø and Dr, one may prefer to use the same procedure as that followed for
N60 in Solution (b) of Problem 1.6. If that procedure is used, the average values will be 39.8 and 52.5%.

Problem 1.14

A cone penetration test was conducted, using an electric-friction cone, in a clay deposit. The cone penetration
resistance, at 6 m depth, was 0.8 MN/m2. Sensitivity of the clay St < 4, and its PI < 30. Ground water table was
located at 2 m depth. The unit weight γ of the clay above and below water table was 18 and 20 kN/m3, respectively.
Find the over consolidation ratio OCR, and the undrained cohesion cu.

Solution:

Equation (1.49): OCR= 0 37
qc−σo
σo

1 01

qc = 0 8MN m2 = 800 kN m2

σo = 2 × 18 + 4 × 20 = 116 kN m2

σo = 2 × 18 + 4 20−10 = 76 kN m2

(Continued)
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OCR= 0 37
800−116

76

1 01

= 3 4

Equation (1.49): su =
qc−σo
Nk

= cu

For electric friction penetrometers a value of Nk = 15 may be used. However, because the clay has St < 4 and
PI < 30, and in order to be more on the safe side, assume using Nk = 18.

cu =
800−116

18
= 38 kN m2

Problem 1.15

Figure 1.19 shows an electric cone penetration record at site of a proposed structure. The average soil unit weight
γ = 19 kN/m3. Classify the soil encountered at the depth interval of 10–12 m. Also estimate the internal friction
angle Ø , the relative density Dr and the undrained shear strength Su of the classified soil, as applicable (according
to the soil type). Assume the soil is normally consolidated and of low compressibility.

Solution:
Estimate the average value for qc = 10 MPa = 10 000 kN/m2

Estimate the average value for fr = 4
Use Figure 1.15 and classify the soil as sandy silt
Consider the soil as cohesionless (approximately); estimate Ø and Dr:
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Figure 1.19 Cone penetration record.
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Equation (1.53): Ø = tan−1 0 1 + 0 38log
qc
σo

σO = 11 × 19 = 209 kN m2

Ø = tan−1 0 1 + 0 38log
10000
209

= 36 44

Equation (1.52): Dr =
1

305QcOCR1 8

qc
pa
σo
pa

0 5

pa = 100 kPa; σO = 209 kPa

For normally consolidated sand,OCR= 1

For sand of low compressibility,Qc = 1 09

Dr =
1

305 × 1 09 × 1

10000
100

209 100 0 5 = 0 208 = 0 456 = 45 6

Problem 1.16

Using the data given in Problem 1.15, estimate the equivalent SPT N-value of the classified soil.

Solution:
The soil was classified as medium dense sandy silt. However, the soil grain size curve is not available. Visual exam-
ination of the soil is not possible since there is no representative sample available. Therefore, the soilD50 should be
estimated from soil classification with reference to grain size range for silt and sand. According to ASTM particle
size classification, the lower limit of sand grain size is 0.075 mm and that of silt is 0.006 mm.

AssumeD50 = 0 06mm

From Figure 1 18, obtain qc 100N = 3 4

Forqc = 10MPa = 10 000 kN m2, computeN55 = 29

According to Meyerhof: N≈
qc kg cm2

4
≈

10000 100
4

≈25

According to Equation (1.56): qc qa
N60

= 7 6429D0 26
50

10000 100
N60

= 7 6429 0 06 0 26 = 3 68, N60 = 27

Since the three results are somewhat close, it may be reasonable to use their average. Use N = 27.
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Problem 1.17

A pressuremeter test (PMT) was conducted in a soft saturated clay.
Given: corrected Vo = 535 cm3, vo = 46 cm3, po = 42 4 kN m2, pf = 326 5 kN m2, and vf = 180 cm3.
Assuming Poisson’s ratio μs = 0.5 and using Figure 1.22, calculate the pressuremeter modulus Esp.

Discussion:
A PMT is a cylindrical device designed to apply a uniform radial pressure to the sides of a borehole at the required
depth below ground surface. Although it can be used in different types of soil, however, its best applications are in
relatively fine-grained sedimentary soil deposits. The original PMT was developed in the year 1956 by Louis
Menard in an attempt to overcome the problem of sampling disturbance and to insure that the in-place soil struc-
ture is adequately represented. There are two different basic types: (1) The Menard PMT, which is lowered into a
pre-formed borehole (Figure 1.20a); (2) The self-boring PMT, which forms its own borehole and thus causes much
less disturbance to the soil prior to testing (Figure 1.20b).

The device basically consists of a cylindrical rubber cell, usually of 58 mm in diameter and 535 cm3 in volume,
and two guard cells of the same diameter arranged coaxially. The probe length is usually 420 mm. The device
is lowered into a carefully prepared (slightly oversize) borehole to the required depth. As recommended
by ASTM, for diameters of 44, 58 and 74 mm, the required borehole diameter ranges are 45–53 mm, 60–70 mm

Pressure
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Feeler

Hollow shaft

Membrane

Pore pressure

transducer

Cutters

(a) (b)

Guard cell

Guard cell

[Sheath]

Soil

under

test

Borehole

Measuring

cell

Gas

Volume

indicator

Figure 1.20 Basic features of (a) Menard pressuremeter and (b) self-boring pressuremeter (from Knappett and Craig, 2012).
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and 76–89 mm, respectively. The central measuring cell is expanded against the borehole wall by means of water
pressure, measurements of the applied pressure and the corresponding increase in volume being recorded.
Pressure is applied to the water by compressed gas (usually nitrogen) in a controlled gas cylinder at the surface.
The increase in volume of the pressure cell is determined from the movement of the water-gas interface in the
other control cylinder (Figure 1.20a). Readings being normally taken at 15, 30, 60 and 120 s after a pressure incre-
ment has been applied. The process is continued until the total volume of the expanded cavity becomes as large as
twice the volume of the original cavity, or, the pressure limit of the device is reached. A new test begins after the
probe has been deflated and advanced to another depth. A version of Menard pressuremeter test is schematically
shown in Figure 1.21. Note: Refer to ASTM D 4719 for more details of the test.

Generally, a pressuremeter is designed for maximum pressures in the ranges 2.5–10.0 MPa in soils and 10–20
MPa in very stiff soils and weak rocks. Corrections must be made to the measured pressure, volume change and
cavity deformation in order to account for: (a) the head difference between the water level in the cylinder and the
test level in the borehole (or between the pressure transducer and the element), (b) the pressure required to stretch
the rubber cell (i.e. for stiffness of the membrane) and (c) the expansion of the control cylinder and tubing
under pressure. The two other guard cells are expanded under the same pressure as in the measuring cell but using
compressed gas. The increase in volume of the guard cells is not measured. The function of the guard cells is to
eliminate end effects, insuring a state of plane strain.

(Continued)
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Figure 1.21 A version of the Menard pressuremeter test schematic (from FHWA, 2002).
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The results of a Menard pressuremeter test are represented by a graphical form of corrected pressure (P) against
total volume (V), as shown in Figure 1.22. Zone I of the figure represents the reloading stage during which the soil
around the borehole is pushed back into the original state (the at-rest state before drilling the borehole). At this
state the cell initial volume (Vo) has been increased to (Vo + vo), and the cell pressure (po) approximately equals to
the in situ lateral earth pressure (ph), depending on procedure and insertion disturbance. Zone II represents an
assumed elastic zone in which the cell volume versus cell pressure is practically linear. In this stage, within the
linear section of the P − V plot, the shear modulus of the soil may be considered equal to slope (dp/dV) multiplied
by volume V. Pressure (pf) represents the yield (or creep) pressure. Zone III is the plastic (or creep) zone, and the
pressure (pl) represents the limit pressure.

Results of a pressuremeter test can be used in solving the following equations:

Esp = 2 1 + μs Vo + vm
Δp
Δv

1 57

where:
Esp = pressuremeter modulus

vm =
vo + vf

2
(for a pre-drilled borehole using Menard pressuremeter)

vm =
vf
2
(for a self-boring pressuremeter)

Δp= pf −po, Δv = vf −vo

μs = Poisson’s ratio of soil; Menard recommended μs = 0.33, but other values can be used.

Δp
Δv

= slope of the linear section of the P−V plot Figure 1 22
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Zone I Zone II Zone III

Total
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volume,

V
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Δv

Pf
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Vo Vo+ υfVo+ υo 2(Vo+ υo)Vo+ υm

Figure 1.22 Plot of pressure versus total cavity volume (from Das, 2011).
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According to Ohya et al. (1982):

Esp kN m2 = 1930N0 63
60 for clays 1 58

Esp kN m2 = 908N0 66
60 for sands 1 59

Esp = 2 1 + μs Gsp 1 60

Gsp = Vo + vm
Δp
Δv

1 61

where:

Gsp = pressuremeter shear modulus

ΔV
V

= 1− 1 + εc
−2

1 62

where

ΔV
V

= volumetric strain of soil

εc = circumferential strain

= increase in cavity radiusΔr radius ro

Ko =
ph
σo

≈
po
σo

1 63

where Ko = at-rest earth-pressure coefficient.
σo = total vertical stress

According to Kulhawy and Mayne (1990):

σc = 0 45 pl 1 64

where σc =Preconsolidation pressure
pl = limit pressure (Figure 1.22)

According to Baguelin et al. (1978):

cu =
pl−po
Np

1 65

where Np = 1 + ln
Esp
3cu

; cu = the undrained shear strength of soil. Typical values of Np vary between 5 and 12.

In the case of saturated clays, it is possible to obtain the value of cu by iteration from the following expression:

pl−po = cu ln
Gsp

cu
+ 1 1 66

Note: Experience indicates that cu values obtained from pressuremeter tests are probably higher by about 50%
than the values obtained from other tests.
A comprehensive review of the use of pressuremeter, including examples of test results and their applications

in design, has been given by Mair and Wood (1987) and Clarke (1995). Also, an analysis for the interpretation

(Continued)
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of pressuremeter tests in sands has been given by Hughes, Wroth and Windle (1977). Those who are interested
in the pressuremeter test should refer to E. Winter (1982) for the test and calibration details and to Briaud and
Gambin (1984), and Briaud (1989) for borehole preparation (which is extremely critical).

Solution:

Equation (1.57): Esp = 2 1 + μs Vo + vm
Δp
Δv

vm =
vo + vf

2
= 46 + 180 2 = 113 cm3

Δp= pf −po = 326 5−42 4 = 284 1 kPa

ΔV = vf −vo = 180−46 = 134 cm3

Esp = 2 1 + 0 5 535 × 10−6 + 113 × 10−6
284 1

134 × 10−6
= 4122 kPa

Problem 1.18

Refer to Problem 1.17. The test was conducted at a depth of 4 m below the existing ground surface. Saturated γ of
the clay was 20 kN/m3. The test results gave the limit pressure pl = 400 kN/m2. Determine: σc, Gsp, Ko and a design
value for cu. Also, find an approximate value for N60.

Solution:
Equation (1.64): σc = 0 45 pl = 0 45 × 400 = 180 kN m2

Equation (1.61): Gsp = Vo + vm
Δp
Δv

= 535 × 10−6 + 113 × 10−6
284 1

134 × 10−6

= 648 × 2 12 = 1374 kN m2

Equation (1.63): Ko =
ph
σo

≈
po
σo

=
42 4
20 × 4

= 0 53

Equation (1.65): cu =
pl−po
Np

Typical values for Np vary in the range 5 to 12; assume Np = 8.5.

cu =
400−42 4

8 5
= 42 1 kN m2

Equation (1.66): pl−p = cu ln
Gsp

cu
+ 1

400−42 4 = cu ln
1374
cu

+ 1 . Using iteration, find cu = 98.4 kN/m2

However, it is recommended to reduce this value by 50%; hence, cu = 49.2 kN/m2.
Average of the two results is 45.7 kN/m2. Hence,

Use cu = 45 kN m2
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Equation (1.58): For clays, Esp kN m2 = 1930N0 63
60

Equation (1.60): Esp = 2 1 + μs Gsp = 2 1 + 0 5 1374 = 4122 kN m2

N0 63
60 =

4122
1930

= 2 136

N60 = 2 136
1

0 63 = 2 136 1 59 = 3 34. Hence, N60 = 3

Problem 1.19

Plot the following corrected pressuremeter test data and estimate ph, Ko and Esp. Assume average γ = 17.65 kN/m3,
μs = 0.3 and the test depth = 2.60 m. What is the “limiting pressure”?

V, cm3: 55 88 110 130 175 195 230 300 400 500

P, kPa: 10 30 110 192 290 325 390 430 460 475

Solution:
Figure 1.23 shows the plot of the pressure P versus volume V.

From the plot, obtain:

po = 50 kPa;Vo + vo = 95 cm3; pf = 160 kPa; Vo + vf = 120 cm3

ph≈po; ph≈50 kPa

Equation (1.63): Ko =
ph
σo

≈
po
σo

=
50

2 60 × 17 65
= 1 09

Δp= pf −po = 160−50 = 110 kPa

ΔV = Vo + vf − Vo + vo = 120−95 = 25 cm3

Vo + vm =Vo + vo +
ΔV
2

= 95 +
25
2
= 107 5 cm3

(Continued)
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Figure 1.23 Plot of pressure versus volume.
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Equation (1.57): Esp = 2 1 + μs Vo + vm
Δp
Δv

Esp = 2 1 + 0 3 107 5 × 10−6
110

25 × 10−6
= 1230 kPa

Extrapolate the plot in Figure 1.23 and estimate the limiting pressure 495 kPa.

Problem 1.20

Plot the following corrected pressuremeter test data. The test depth is at 4 m below the ground surface. Estimate
Esp, σ3, Ko, Gsp, pl, σc and cu. Use: μs = 0.5, γ = 19.81 kN/m2. In estimating cu assume Np = 6.

V, cm3: 40 70 88 132 180 250 330 500 600 700

P, kPa: 10 20 38 178 305 410 460 480 490 493

Solution:
Figure 1.24 shows the plot of the pressure P versus volume V.

From the plot, obtain:

po = 38 kPa;Vo + vo = 88 cm3; pf = 178 kPa;Vo + vf = 132 cm3

σ3 = ph≈po; σ3≈38 kPa

Equation (1.63): Ko =
ph
σo

=
σ3
σo

=
38

4 × 19 81
= 0 48

0

100

200

300

400

500

600

0 200 400 600 800

P
re

s
s
u
re

 P
, 
k
P

a

Volume V, cm3

Figure 1.24 Plot of pressure versus volume.

54 Shallow Foundations



Δp= pf −po = 178−38 = 140 kPa
ΔV = Vo + vf − Vo + vo = 132−88 = 44 cm3

Vo + vm =Vo + vo +
Δv
2

= 88 +
44
2
= 110 cm3

Equation (1.57): Esp = 2 1 + μs Vo + vm
Δp
Δv

Esp = 2 1 + 0 5 110 × 10−6
140

44 × 10−6
= 1050 kPa

Equation (1.61): Gsp = Vo + vm
Δp
Δv

= 110 × 10−6
140

44 × 10−6
= 350 kPa

Extrapolate the plot in Figure 1.24 and estimate the limiting pressure 500 kPa

Equation (1.64): σc = 0 45 pl = 0 45 × 500 = 225 kN m2

Equation (1.65): cu =
pl −po
Np

=
500−38

6
= 77 kPa

Problem 1.21

A dilatometer test (DMT) was conducted in a clay deposit. The water table was located at a depth of 3 m below the
ground surface. At 8 m depth the contact pressure (p1) was 280 kPa and the expansion stress (p2) was 350 kPa.
Assume σo = 95 kPa at the 8 m depth and μ = 0.35. Determine (a) Coefficient of at-rest earth pressure Ko,
(b) Overconsolidation ratio OCR and (c) Modulus of elasticity Es.

Discussion:
ADMT is an in situ test carried out in order to assess the in place stresses and compressibility of soils. The test uses
a device called dilatometer developed during the late 1970s in Italy by Silvano Marchetti. It is also known as a flat
dilatometer or aMarchetti dilatometer. The device consists of a spade-shaped flat plate (tapered blade) measuring
240 mm (length) × 95 mm (width) × 15 mm (thickness) with an expandable steel-faced membrane (pressure cell)
60 mm in diameter on one face of the probe (Figure 1.25a). Figure 1.26 shows theMarchetti dilatometer along with
its control panel and accessories. The dilatometer probe is inserted down by pushing or driving (if necessary). The
CPT pushing equipment (or some other suitable device) can be used for pressing the dilatometer (Figure 1.25b).
In soils where the expected SPT-N value is greater than 35–40, it can be driven or pushed from the bottom of a

predrilled borehole using the SPT drilling and testing equipment. After insertion of the probe to the depth of inter-
est z, the DMT is conducted as in the following steps:

(1) Apply nitrogen gas pressure to the expandable membrane so as to move it 0.05 mm into the soil and record the
required pressure (termed “liftoff” pressure) as p1. The operator gets a signal at liftoff.

(2) Increase the probe pressure until the membrane expands Δd = 1.1 mm into the adjacent soil and record this
pressure as p2. This pressure is recorded after the operator receives a signal again.

(3) Decrease the pressure and take a reading when the membrane has returned to the liftoff position. Record this
pressure as p3.

(4) The probe is then pushed to the next depth position, which is normally from 150 to 300 mm further down into
the ground, and the test is repeated. The probing is continued until the desired depth is reached.
According to Schmertmann (1988), the CPT and DMT are complementary tests. The CPT is a good way to

evaluate soil strength, whereas the DMT assess the compressibility and in situ stresses. These three kinds of
information form the basis for most foundation engineering analysis. In addition, the dilatometer tapered
blade is most easily pressed into the ground using a conventional CPT rig, so it is a simple matter to conduct
both CPT and DMT while mobilising only a minimum of equipment.

(Continued)
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According to bothMarchetti (1980) and Schmertmann (1986) the DMT can be used to obtain the full range of
soil ED, Ko, OCR, su, Ø and mv parameters for both strength and compressibility analyses.
A given test data are reduced to obtain the following parameters:

(1) Dilatometer modulus ED. According to Marchetti (1980),

Δd =
2D P2−P1

π

1−μ2

Es
1 67
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1.1 mm

lift off

95mm

D
=

6
0

m
m

P
u

s
h

 r
o

d

z
60mm

Flexible

membrane

Flexible

membrane

of diameter D

P2
P1

Pneumatic

tubing

(b)

Figure 1.25 Schematic diagrams of a flat-plate dilatometer and the equipment inserter. (a) Marchetti dilatometer
(after Marchetti, 1980). (b) The dilatometer pushed to depth z for test.

Figure 1.26 Dilatometer along with control panel and accessories (Courtesy of N.Sivakugan, James Kook University, Australia).
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where Δd = 1.1 mm, D = 60 mm (membrane diameter)

ED =
Es

1−μ2
= 34 7 P2−P1 1 68

where Es, P1 and P2 are in kN/m2

(2) The lateral stress index KD is defined as

KD =
p1−u
σo

1 69

(3) The material or deposit index ID is defined as

ID =
p2−p1
p2−u

1 70

The pore pressure u may be computed as the static pressure from groundwater table, which must be known
or estimated. The effective overburden pressure σo = γ z must be computed by estimating the soil unit weight
or taking tube samples for a more direct determination.
The lateral stress index KD is related to the coefficient of at-rest earth pressure Ko and therefore indirectly to the

overconsolidation ratio OCR. Determination of Ko is approximate since the probe blade of finite thickness has
been inserted into the soil. Figure 1.27 may be used to estimate Ko from KD.

A typical data set of a DMT results might be as follows (Bowles, 2001):

Depth z, m Rod push, kg p1, bar p2, bar u, bar (100 kPa)

2.10 1400 2.97 14.53 0.21

2.40 1250 1.69 8.75 0.24

2.70 980 1.25 7.65 0.27

Here the depths shown are from 2.1 to 2.7 m. The probe push ranged from 1400 to 980 kg (the soil became
softer) and, as should be obvious, values of p2 are greater than p1. With the groundwater table at the ground surface
the static pore pressure is directly computed as u = 9.81z/100 bars.
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The results of a dilatometer test are usually presented in form of graphs showing variation of p1, p2, KD and ID
with depth.
According to Marchetti (1980):

Ko =
KD

BD

α

−CD 1 71

Where:

BD α CD According to:

1.50 0.47 0.6 Marchetti (KD < 8)

1.25–?? 0.44 – 0.46 0 – 0.6 Others

7.40 0.54 0.0 —

2.00 0.47 0.6 (for sensitive clay)

OCR= nKD
m 1 72

Where:

n m According to

0.5 1.56 Marchetti (KD < 8; ID < 1.2)

0.225–?? 1.30 – 1.75 Others

cu
σo

= 0 22 for normally consolidated clay 1 73

cu
σo OC

=
cu
σo NC

0 5KD
1,25 1 74

where OC = overconsolidated soil
NC = normally consolidated soil.

Es = 1−μ2s ED 1 75

There are other relevant correlations using the results of DMT as follows:
Kamei and Iwasaki (1995):

cu = 0 35 σo 0 47KD
1 14 1 76

Ricceri et al. (2002):
For ML and SP-SM soils,

Ø ult = 31 +
KD

0 236 + 0 066KD
1 77
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Ø ult = 28 + 14 6 logKD−2 1 logKD
2

1 78

The material index ID and the stress index KD together are related to the soil type and to the soil consistency or
density, as illustrated in Figure 1.28.

Solution:

(a) Equation (1.71): Ko =
KD

BD

α

−CD

Equation (1.69): KD =
p1−u
σo

=
280−5 × 10

95
= 2 42

According to Marchetti (1980):
BD = 1 5, α= 0 47, CD = 0 6, for KD < 8

Ko =
2 42
1 5

0 47

−0 6 = 0 65
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(b) Equation (1.72): OCR = nKD
m

According to Marchetti (1980):

n= 0 5, m= 1 56 for KD < 8; ID < 1 2

OCR= 0 5 × 2 42 1 56 = 1 35

(c) Equation (1.68): ED =
Es

1−μ2
= 34 7 P2−P1

Es
1−μ2

= 34 7 350−280 = 2429 kPa

Es = 1−μ2 ED = 1−0 352 2429 = 2131 kPa

Problem 1.22

A dilatometer test was conducted in a sand deposit at a depth of 6 m. The water table was located at a depth of 2 m
below the ground surface. Given: sand γd = 14.5 kN/m3, γsat = 19.8 kN/m3 and contact stress p1 = 260 kN/m2.
Estimate the soil friction angles Ø and Ø ult .

Solution:

Equation (1.69): KD =
p1−u
σo

=
260−4 × 10

2 × 14 5 + 4 19 8−10
= 3 23

Equation (1.77): Ø = 31 +
KD

0 236 + 0 066KD
= 31 +

3 23
0 236 + 0 066 × 3 23

= 38 2

Equation (1.78): Ø ult = 28 + 14 6 logKD−2 1 logKD
2

= 28 + 14 6 log3 23 – 2 1 log3 23 2

= 28 + 7 434−0 545 Ø ult = 34 9

Problem 1.23

Below is a corrected DMT data set. For the individually assigned depth value, estimate ED, KD, ID, Ko, and soil
description. In case the soil classification suggests fine-grained soil, an estimate of cu is required.

Depth z, m Rod push, kg p1, bar p2, bar u, bar*

2.10 1400 2.97 14.53 0.21

2.40 1250 1.69 8.75 0.24

2.70 980 1.25 7.65 0.27

∗1 bar ≈ 100 kPa.
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Solution:
DMTat 2.1mdepth: Both γ and μ are not known; they must be assumed. Therefore, Assume γsat = 19 kN/m3 and
μ = 0.35. From the u values it is clear that the groundwater table is located at the ground surface. Use 1 bar = 100
kN/m2.
Equation (1.68): ED =

ES
1−μ2

= 34 7 P2−P1

= 34 7 1453−297 = 40 113 kPa

Equation (1.69): KD =
p1−u
σo

=
297−21

2 1 19−10
= 14 6

Equation (1.70): ID =
p2−p1
p2−u

=
1453−297
1453−21

= 0 81

In the Marchetti equation of Ko [i.e. Equation (1.71)] the assigned values for BD, α and CD factors may not be
applicable because KD is greater than 8. In such a case we may assign other’s values for the factors and use
Equation (1.71), or estimate Ko from the Schmertmann curves of Figure 1.27. Let us try both possibilities:

(1) Using other values for BD, α and CD factors [refer to the table of the factors which belong to Equation (1.71)].
Assume average values as follows:

BD =
1 25 + 7 4 + 2 0

3
= 3 55; α=

0 45 + 0 54 + 0 47
3

= 0 49; CD =
0 3 + 0 + 0 6

3
= 0 3

Equation (1.71): Ko =
KD

BD

α

− CD =
14 6
3 55

0 49

− 0 3 = 1 7

(2) Using Figure 1.27. ForKD = 14.60 and a Ø value between 35 and 40 , the Schmertmann curves give a value for
Ko 1.5.

Using the average of the estimated two values, obtain Ko = 1.6.
The soil is considered overconsolidated since the upper limit for Ko in normally consolidated soils is 1.

Using the Schmertmann chart of Figure 1.28, for the estimated ED and ID values, the soil is very dense clayey
silt. Therefore, the soil may be described as very dense overconsolidated clayey silt.
DMT at 2.4 m depth:

Equation (1.68): ED =
ES

1−μ2
= 34 7 P2−P1 = 34 7 875−169

= 24 498 kPa

Equation (1.69): KD =
p1−u
σo

=
169−24

2 4 19−10
= 6 71

Equation (1.70): ID =
p2−p1
p2−u

=
875−169
875−24

= 0 83

Equation (1.71):

Ko =
KD

BD

α

−CD; KD = 6 71 < 8

=
6 71
1 5

0 47

−0 6 = 1 42 > 1 overconsolidated soil

Using the Schmertmann chart of Figure 1.28, for the estimated ED and ID values, the soil is dense clayey silt.
Therefore, the soil may be described as dense overconsolidated clayey silt.
DMT at 2.7 m depth:

Equation (1.68): ED =
ES

1−μ2
= 34 7 = P2−P1 = 34 7 765−125

= 22 208 kPa
(Continued)
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Equation (1.69): KD =
p1−u
σo

=
125−27

2 7 19−10
= 4 03

Equation (1.70): ID =
p2−p1
p2−u

=
765−125
765−27

= 0 87

Equation (1.71): Ko =
KD

BD

α

−CD; KD = 4 03 < 8

=
4 03
1 5

0 47

−0 6 = 1 0 slightly overconsolidated soil

Using the Schmertmann chart of Figure 1.23, for the estimated ED and ID values, the soil is dense clayey silt.
Therefore, the soil may be described as dense slightly overconsolidated clayey silt.
Summary of results:

z, m ED KD ID Ko Soil description

2.10 40113 14.60 0.81 1.80 very dense overconsolidated clayey silt

2.40 24498 6.71 0.83 1.42 dense overconsolidated clayey silt

2.70 22208 4.03 0.87 1.00 dense slightly overconsolidated clayey silt

Problem 1.24

The results of a refraction survey at a site are given in Table 1.13. Determine the thickness and the P-wave velocity
of the materials encountered.

Discussion:
In the last five decades, even earlier, the trend for increased knowledge of subsurface conditions has placed
emphasis upon methods which save time and money in obtaining this information. This is why geophysical
methods have been developed. Among the several developed and used, the seismic refraction and electrical resist-
ivity methods have received the widest use. The basic philosophy of geophysical methods of exploration is that
changes in subsurface conditions near the surface of the earth can be detected by the nature of the physical

Table 1.13 Refraction survey site results.

Distance from the source
of disturbance (m)

Time of first arrival of
P-waves (s × 10−3)

10.0 50.0

20.0 100.0

24.0 118.0

30.49 148.2

45.73 174.2

60.98 202.8

76.22 228.6

91.46 256.7
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characteristics of the material. Generally speaking, these methods are particularly suited for large sites and for
areas inaccessible to other forms of equipment when the geology of these areas is well known, that is, when the
materials to be encountered are known but the depths at which they lie are to be determined. The main uses of
seismic refraction and resistivity methods in foundation exploration are:

(1) To determine the depths and homogeneity of the soil and rock layers. The methods are accurate enough; how-
ever, classification and identification of the soil and rock type cannot always be accurately accomplished. The
engineering properties of soils, to some extent, can be detected; however, the results would not be accurate
enough for direct use in the foundations design.

(2) To detect subsurface anomalies such as faults, caves, cavities and sinkholes. Caves and sinkholes, however, can
best be located by resistivity methods.

(3) To aid in planning the initial boring plan. The boring plan will require less change and a better estimate of
the cost and time required for detailed exploration can bemade if a geophysical investigation is conducted first.

(4) To complement borings, so a more complete soil profile can be drawn. Closely spaced borings are costly and
may not find trouble areas that may often be easily detected by a geophysical investigation. Complementary
use of geophysical data and boring can save time and money during all phases of design and construction.
Seismic Refraction Method (ASTM D 5777): In this method impact or shock waves are generated either by

the detonation of explosives or by striking a metal plate with a large hammer at a certain location on the
ground surface, such as point A in Figure 1.29. The equipment consists of one or more sensitive vibration
transducers, called geophones, installed at a number of points in a straight line with increasing distances from
the source of wave generation, and an extremely accurate time-measuring device called seismograph. The
length of the line of points should be three to five times the required depth of investigation. A circuit between
the detonator or hammer and the seismograph starts the timing mechanism at the instant of detonation or
impact. The geophone is also connected electrically to the seismograph. When the first wave reaches the geo-
phone the timing mechanism stops and the time interval is recorded in milliseconds.
Seismic waves bend (refract) with different velocities when crossing different strata interface. Using this wave

property and the principles of wave propagation in layered systems, different strata thickness can be determined.
An impact on the ground surface creates different types of stress wave, such as the compression or P-wave

and shear or S-wave. The P-waves travel faster than the S-waves; hence the first arrival of disturbance waves
will be related to P-waves in various layers. P-wave and S-wave velocities range in common geotechnical
materials are given in Tables 1.14 and 1.15, respectively.
The velocity of P-waves in a medium is

vP =
λ+ 2Gs

ρ
=

Es 1−μs
γ

g
1−2μs 1 + μs

1 79

Where λ = Lame s constant = 2μsGs 1−2μs
ρ = mass density of medium = γ/g
Gs = dynamic shear modulus of medium= Es 2 1 + μs
g = acceleration due to gravity (9.81 m/s2)
Es = modulus of elasticity of medium
γ = unit weight of medium
μs = Poisson’s ratio of medium
The velocity vp and thickness Z of various layers are determined as follows:

• Times of first wave arrival t1, t2, t3 … for distances x1, x2, x3 … from impact source are recorded.

• A plot of time t versus distance x is prepared (Figure 1.30).

• Slope of the lines l1, l2, l3 … are determined using slope of l1 =
1
v1
, slope of l2 =

1
v2
, slope of l3 =

1
v3
, …; vel-

ocities v1, v2, v3, …, are the P-wave velocities in layers I, II, III; …, respectively (Figure 1.29).

(Continued)

Site Investigation in Relation to Analysis and Design of Foundations 63



• Thickness Z1 of the layer I is determined using

Z1 =
1
2
xc

v2−v1
v2 + v1

1
2

1 80

where xc is a distance, as shown in Figure 1.30.

• Thickness Z2 of the layer II is determined as

Z2 =
1
2

Ti2−2Z1
v23 −v

2
1

v3v1

v3v2
v23 −v

2
2

1 81

where Ti2 is the time intersept of line l3 extended backwards, as shown in Figure 1.30.
The P-wave velocities in various strata indicate the types of soil and rock that are present below the

ground surface. Table 1.14 gives P-wave velocities range in different types of soil and rock at shallow depths.

•• • •

Layer I
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Velocity
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Velocity
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Figure 1.29 Refraction of seismic waves in subsurface layers.
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Figure 1.30 A graph of time t versus distance x.
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Seismic Refraction Problems and Limitations:Most of the problems that arise in the use of seismic refraction
are due to field conditions. Seismic refraction theory assumes the following conditions exist:

(1) The soil and rock are to be considered homogeneous, isotropic and elastic material.
(2) No decrease in velocity with depth occurs; that is v1 < v2 < v3. …
(3) Contrast in elastic properties of adjacent layers exists.

Soils, however, are neither homogeneous nor isotropic. Anomalies or discontinuities such as cavities, faults,
boulders, and sinkholes can introduce errors if careful attention is not given to the interpretation of the seismic
data.
Most soil and rock deposits increase in density with depth which is in favor of the second assumption. If not,

the velocity of the shock waves will not increase with depth and errors will be introduced. When velocities of
adjacent strata are within about 60–90 m/s of each other, determination of depth to the interface is virtually
impossible from seismic data. Layers of clay or shale (of low velocity) underlying limestone (of high velocity)
will not be recognisable on a time distance plot. The thickness of the harder material will appear to include the
thickness of the softer layer. This condition, known as the “hidden layer” problem, can be corrected to some
extent. If a hidden layer problem is suspected, the maximum errors in depth determination can be detected
using nomographs.
Complications also arise if the elastic properties of the adjacent strata do not contrast enough to define the

interface. A layer of hard clay lying on soft shale or sandstone is an example of this problem.
When a soil is saturated below water table, the P-wave velocity may be deceptive. P-waves can travel with vel-

ocity of about 1500m/s through water. For dry loose soil the velocity may be well below 1500m/s. if the presence of
the groundwater has not been detected, the P-wave velocity may be erroneously interpreted to indicate a stronger
material (e.g. sandstone) than is actually present in the site.
In general, geophysical interpretation should always be verified by the results obtained from borings.
Cross-hole SeismicMethod:The cross-hole seismic technique is an in situ seismic test conducted so that shear wave

velocity vs and dynamic shear modulusGs of soil or rock can be determined effectively (Stokoe and Woods, 1972).
In this method (Bowles, 2001), two boreholes a known distance apart are drilled to some depth, preferably on

each side of the proposed foundation location so that the shear wave can be measured between the two boreholes
and across the base zone. At a depth of about B a sensor device is located in the side or bottom of one hole and a
shock-producing device (or small blast) in the other (Figure 1.31a). A trigger is supplied with the shock so that the

(Continued)

Table 1.14 Range of P-wave velocity in various soils and rocks.

Type of material P-wave velocity (m/s)

Soil

Sand, dry silt and fine-grained topsoil 200–1000

Alluvium 500–2000

Compacted clays, clayey gravel and dense clayey sand 1000–2500

Loess 250–750

Rock

Slate and shale 2500–5000

Sandstone 1500–5000

Granite 4000–6000

Sound limestone 5000–10 000
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time for the induced shear wave can be observed at the pickup unit. The time of travel Th of the known distanceDh

between the two holes gives the shear wave velocity vs as

vs =
Dh

Th
1 82

The dynamic shear modulus of the material at the depth at which the test is taken can be determined from the
relation

Gs =
v2s γ
g

or vs =
Gs

γ g
1 83

Borehole

Borehole

Borehole

Energy source

(a)

(b)

Energy source

Detector unit

Detector unit

Pickup

Pickup

Pickup unit

Pickup unit

Trace

Trigger

Trigger

Distance

Figure 1.31 Two seismic methods for obtaining dynamic shear modulus Gs. (a) Cross-hole method, (b) Down-hole method
(from Bowles, 2001).
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Down-hole Seismic Method: The down-hole method is similar to the cross-hole but has the advantage of only
requiring one boring, as shown in Figure 1.31b. In this method, the hole is drilled, and a shock device is located a
known distance away. A shock detector is located at some known depth in the hole and a shock applied. As with
the cross-hole method, we can measure the time Th for arrival of the shear wave and, by computing the diagonal
side of the triangle, obtain the travel distance Dh. The detector device is then placed at a greater depth and the test
repeated until a reasonably average value of vs is obtained.

Hoar and Stokoe (1978) discuss in some detail precautionary measures to take in making either of the above
mentioned two tests so that the results can justify the test effort (Bowles, 2001).
Electrical Resistivity Method: There are two types of the electrical resistivity methods:

(1) The electrical resistivity sounding method. It is used when the variation of resistivity of the subsurface mater-
ials with depth is required at a predetermined location; resulting in rough estimates of types and depths of
strata. In other words, the method can indicate subsurface variation when a hard layer overlies a soft layer or
vice versa. It can also be used to locate the groundwater table.

(2) The electrical resistivity mapping (profiling) method. Here, the resistivity soundings are conducted along
different profile lines across the area such that contours of resistivity variation with depth can be plotted.
Themethods depend ondifferences in the electrical resistance of different types of soil and rock. Resistivity of a

material depends upon type of material, its water content and the concentration of dissolved salts in the pore
water. Themineral particles of a soil are poor conductors of electric current; they are of high resistivity. Resistivity
of a soil decreases (conductivity increases) as both the water content and pore water salts concentration increase.
Approximate ranges of resistivity value for different types of soil and rock are given in Table 1.16.

(Continued)

Table 1.15 S-wave velocities range in common geotechnical materials at shallow depths.

Type of material S-wave velocity (m/s)

Hard rocks (e.g. metamorphic) 1400+

Firm to hard rocks (e.g. igneous, conglomerates, competent sedimentary) 700–1400

Gravelly soils and soft rocks (e.g. sandstone, shale, soils with > 20% gravel) 375–700

Stiff clays and sandy soils 200–375

Soft soils (e.g. loose submerged fills and soft clays) 100–200

Very soft soils (e.g. marshland, reclaimed soil) 50–100

Table 1.16 Representative values of resistivity.

Material Resistivity (ohm.m)

Sand 500–1500

Clays, saturated silt 0–100

Clayey sand 200–500

Gravel 1500–40 000

Weathered rock 1500–2500

Sound rock > 1500
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Resistivity of any conducting material having a length l and cross section area A is given by the equation:

ρ=
RA
l

1 84

where ρ = electrical resistivity (ohm.m)

R= electrical resistance ohm =
voltage dropE

current I
(Ohm’s law)

The in situ common electrical sounding procedure involves driving four electrodes, which are usually in the
form of metal spikes, into the ground at equal distances L apart in a straight line (Figure 1.32a). The two outer
electrodes are known as current electrodes, and the inner electrodes are called potential electrodes. The current I,
usually 50–100 mA, from a battery, flows through the soil between the two current electrodes producing an elec-
trical field within the soil. The potential (voltage) drop E is then measured between the two potential electrodes.
The mean (apparent) resistivity ρ is given by the equation:

ρ=
2πLE
I

1 85
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Figure 1.32 (a) Electrical resistivity method schematically illustrated; (b) apparent resistivity versus electrode spacing
(redrawn from Knappett and Craig, 2012).
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Equation (1.85) gives the mean resistivity up to a depth equals the distance L below the ground surface, as the
depth of current penetration below the ground surface is approximately equal to the spacing L of the two potential
electrodes.
A series of readings are taken, the (equal) spacingof the electrodes being increased for each successive reading; how-

ever the central position of the four electrodes remains unchanged. As L is increased, the resistivity ρ is influenced by a
greater depth of soil. The distance L is thus gradually increases to a distance equal to the required depth of exploration.
Themaximumdepth is usually about 30mor so. Ifρ decreaseswith increasingL a stratumof lower resistivity, suchas a
saturated clay layer, is beginning to influence the readings. If ρ increases with increasing L it can be concluded that an
underlying stratum of higher resistivity, such as a gravel layer, is beginning to influence the readings.
The mean resistivity ρ is plotted against the electrode spacing L, preferably on log-log paper. Characteristic

curves for a two-layer structure are illustrated in Figure 1.32b. For curve A the resistivity of layer 1 is lower than
that of layer 2; for curve B the resistivity of layer 1 is higher than that of layer 2. The curves become asymptotic to
lines representing the true resistivity ρ1 and ρ2 of the respective layers. Approximate layer thickness can be
obtained by comparing the observed curve of ρ versus L with a set of standard curves, or, by using other methods
of interpretation, such as the method illustrated by the graph of Figure 1.33, which relates the sum of the apparent
resistivity Σρ to the electrode spacing. In this figure, the slopes ρ1 and ρ2 are actual resistivity of layers 1 and 2,
respectively.

Resistivity Problems and Limitations: The theoretical basis for electrical resistivity assumes:

(1) The soil or rock is homogeneous and isotropic.
(2) Uniform resistivity exists.
(3) The soil layers are parallel to each other and to ground surface.

Unfortunately, the assumed soil conditions seldom exist in the field because soil and rock are not homoge-
neous and isotropic. Therefore the user must be aware of the effects on data caused by anomalies, such as faults,
folded layers, caves, sinkholes or intermixing of soil and rock in the layers. Also, buried pipelines, underground
cables, tunnels or any buried metallic materials will cause anomalous readings.
Nonparallel layers cause bending or warping of the current flow lines causing erroneous resistivity readings. If

the ground surface and the interfaces are not parallel the exact depth below centre of the fixed location (centre of
the spread) may not be found due to varying layer thickness.
Materials differ in their electrical resistivity. The resistivity of materials does not change due to texture only,

but also because of the changes in the moisture and electrolytic content. As a result, considerable overlapping of
the resistivity of various materials will exist. Overlapping makes interpretation of resistivity data very difficult in
some cases.

(Continued)

Slope = ρ1

Electrode spacing, L

Σρ

Z1= thickness of

layer 1 Slope = ρ2

Figure 1.33 An approximate method for determining resistivity and thickness of subsurface layers.
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It is noteworthy: (1) there is no masked layer problem with electrical resistivity methods as there is with seis-
mic methods, (2) an increase in material density is not necessary, as is the case with seismic refraction, (3) as the
resistivity measures change in texture rather than change in strength and consolidation; it is generally used for
locating coarse-grained soil deposits within fine-grained soil deposits, (4) the resistivity methods are not con-
sidered as reliable as the seismic methods, (5) as it is the case with seismic methods, the resistivity data should
also be supplemented by few borings, (6) since seismic and resistivity methods measure different properties, they
can be used effectively to complement each other.

Solution:
Plot the times of first arrival of P waves against the distance of geophone from the source of disturbance, as shown
in the scheme below.
From the plot:

Slope of segment ab =
1
v1

=
148 2 – 50 0 × 10−3

30 49 −10
=
0 098
20 49

; hence,

v1 = 209m s

Slope of segment bc =
1
v2

=
228 6 – 174 2 × 10−3

76 22 −45 73
=
0 054
30 49

; hence

v2 = 565m s

From the plot: xc = 30.5 m

Equation (1.80): Z1 =
1
2
xc

v2−v1
v2 + v1

1
2 =

1
2
× 30 5

565−209
565 + 209

1
2 = 10 34m

Thickness of the top layer = 10.34 m
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Problem 1.25

The plot in the scheme below represents the results of a seismic refraction survey.

Determine the P-wave velocities and the thickness of the material encountered in the third stratum.

Solution:
From the plot:

Slope of segment ab =
1
v1

=
47 × 10−3

10 5
, v1 = 223 4m s first layer

Slope of segment ab =
1
v2

=
25 × 10−3

19 5
, v2 = 780 0m s second layer

Slope of segment cd =
1
v3

=
4 5 × 10−3

20
, v3 = 4444 4m s third layer

Comparing these velocity values with those given in Table 1.14, we find that the third layer is rock.
From the plot: xc = 10.5 m

Equation (1.80): Z1 =
1
2
xc

v2−v1
v2 + v1

1
2

Thickness of the first layer =Z1 =
1
2
xc

v2−v1
v2 + v1

1
2

=
1
2
× 10 5

780 0 −223 4
780 0 + 223 4

1
2 = 3 91m

Equation (1.81): Z2 =
1
2

Ti2−2Z1
v23 −v

2
1

v3v1

v3v2
v23 −v

2
2

From the plot Ti2 = 66 × 10
−3

(Continued)
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Thickness of the second layer is

Z2 =
1
2

66 × 10−3−2 3 91
4444 42−223 42

4444 4 × 223 4
4444 4 × 780

4444 42−7802
= 12 29m

Surface of the rock layer is located at the depth D = Z1 + Z2 = 16.2 m

Problem 1.26

Using the data of Problem 1.25 determine the dynamic shear modulusGs and Es of the material encountered in the
top layer. Assume the unit weight γ of the material equals 16 kN/m3, and the Poisson’s ratio μs = 0.35.

Solution:

Equation (1.79): vP =
λ+ 2Gs

ρ

λ= Lame s constant =
Gs

1−2μs
; ρ=

γ

g
=

γ

9 81

vp =
Gs

γ

9 81
1−2μs

+
2Gs
γ

9 81

=
Gs

16
9 81

1−2 × 0 35
+
2Gs
16
9 81

= 3 27Gs

vp = 223 4m s from Solution of Problem1 25

223 4 = 3 27Gs

Gs =
223 42

3, 27
= 15 262 kN m2

Gs =
Es

2 1 + μs
Es = 2Gs 1 + μs = 2 × 15262 1 + 0 35 = 41 207 kN m2

Problem 1.27

A seismic refraction test yielded the following data:
v1 = 610 m/s; v2 = 4268 m/s; xc = 91.5 m
The profile was a two-layer system and no v3 was detected.
Determine the thickness of the top layer.

Solution:

Equation (1.80): Z1 =
1
2
xc

v2−v1
v2 + v1

1
2

Thickness of the top layer Z1 =
1
2
xc

v2−v1
v2 + v1

1
2

=
1
2
× 91 5

4268−610
4268 + 610

1
2

= 40m
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CHAPTER 2

Shallow Foundations – Introductory
Chapter

2.1 General

In civil engineering, the foundation may be defined as that part of a structure which transmits loads
directly to the underlying soil and/or rock safely. This is also sometimes called the substructure, since
the superstructure brings load onto the foundation, or substructure. The term foundation soil is com-
monly used to describe the underlying material within the adjacent zone which will be affected by the
substructure and its loads. This is also sometimes called the supporting soil, or base material, since the
total structure will rest on it.

Generally, foundations may be broadly classified into two categories: (1) Shallow foundations, (2)
Deep foundations.

A shallow foundation transmits loads to the near-surface strata; it is positioned at a shallow depth.
According to Terzaghi and Peck (1967), a foundation is shallow if the least dimension (usually the
width B) of the structural base is equal to or greater than the foundation depth Df . This criterion is
reasonable for normal shallow foundations, but it is unsatisfactory for narrow or very wide founda-
tions. Some investigators have suggested that Df can be as great as 3–4B (Das, 2011). Here, Df is
the vertical distance from the ground surface down to a level at which the bottom of the structural
base is located. The level at this depth is usually known as the foundation level.

In practice, all the spread footing foundations are usually shallow foundations. Also, the mat and raft
foundations are mostly shallow foundations. Here, “spread” is a generic word can be applied to any
structural base that spreads its structure load on a large area. It is function of the base to spread
the load laterally to the underlying strata so that the stress intensity is reduced to a value that the foun-
dation soil or rock can safely carry. In practice, however, a spread footing is particularly used to mean
an individual column footing.

Before the early twentieth century, almost all the spread footings were made of steel grillage or
masonry. The steel grillage footings included several layers of railroad tracks or I-beams placed in both
directions. The masonry footings were dimension-stone footings built of stones cut and dressed to spe-
cific sizes fit together with joints of very small gap, or, they were rubble-stone footings built of random
size material joined with mortar. These footings prevailed until the advent of reinforced concrete in the
early twentieth century. Compared to steel grillage or masonry footings, reinforced concrete footings
are very strong, economical, durable and easy to build. Also, they are thinner and smaller in plan
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dimensions than the old masonry footings, so they do not require large excavations and do not
intrude into basements. Therefore, nearly all shallow foundations are nowmade of reinforced concrete.

2.2 Types of Shallow Foundations

There are different types of shallow foundations. They are different due to the differences in their
geometrical shape, design and construction. They are of the following types:

(1) Strip or continuous footing. Load bearing walls are supported by continuous-strip footings (also
known as wall footings) as shown in Figure 2.1. Transverse reinforcing steel bars are provided
at the footing bottom to satisfy the bending requirements of the footing projection. Longitudinal
steel bars are required to satisfy shrinkage requirements. Longitudinal steel will, in general, bemore
effective in the top of the footing than in the bottom.

A strip footing is also used to support a row of columns which are so closely spaced that their
individual footings overlap or nearly touch each other. In this case it is more economical to exca-
vate and concrete a strip foundation than to work in a large number of individual pits. In fact it is
often thought to be more economical to provide a strip footing whenever the distance between the
adjacent individual footings is less than their dimensions. The individual footings are formed by
inserting vertical joints in a continuous strip of concrete. Also, footings of this type, if the foun-
dation soil conditions permit, are more economical in reinforcing steel than continuous combined
(beam) footings.

(2) Spread footing (also, individual, single, isolated or independent column footing). This is an inde-
pendent footing provided to support an individual column. The footing may be circular, square
or rectangular slab of uniform thickness or may be stepped or sloped, used to spread the load over
a large area (Figure 2.2). An advantage of this type of footing foundation is that the footing size can
be adjusted to the same or different contact soil pressures. Also, the footings can be located at dif-
ferent foundation levels so as to distribute the structure’s load advantageously over the site, holding
the differential settlement within certain limits. It is often thought that this type of foundation
becomes more economical than the continuous-strip foundation when the required foundation
depth is greater than 1.5 m.

(3) Combined footing. When a reinforced concrete slab supports a line of two or more columns, it is
called combined footing. An ordinary combined footing which supports two columns may be rect-
angular or trapezoidal in plan (Figure 2.3). When the slab supports more than two columns it is
called continuous combined footing. In this case, more often the slab has a longitudinal pedestal
beam (rib), and the footing is designed as a continuous inverted T-beam (Figure 2.4b). Combined
footings are used when the columns are so close to each other that their individual footings would
touch each other or overlap. They are also used when the foundation soil is erratic and of relatively
low bearing capacity. A combined footing may be used when a column is located near or right next
to a property limit; it often supports the edge column and an interior column to avoid using an
undesirable eccentrically loaded spread footing adjacent to the property line (Figure 2.4a).

R.C. wall footing

Transverse steel

Longitudinal steel

Masonry wall

Figure 2.1 Strip or continuous wall footing.
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Figure 2.2 Typical spread column footings: (a) sloped footing, (b) footing of uniform thickness, (c) stepped footing
and (d) footing with pedestal.
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Figure 2.3 Typical ordinary combined footings: (a) rectangular footing; (b) trapezoid footing.
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Figure 2.4 (a) Typical combined footings, (b) Combined footing with a pedestal beam designed as an inverted
T-beam to reduce footing mass.



(4) Strap footing. A strap footing (also known as a cantilever footing) consists of two individual foot-
ings connected to each other with a structural rigid beam called strap; so it may be considered as a
special form of the ordinary combined footing. Figure 2.5 shows the common arrangements of
strap footings. The strap should be out of contact with soil so that there are no soil reaction
and the srap could act as a rigid beam. Strap footings may be used in place of the combined footings
to achieve the same purposes. However, this type of foundation would be economical than rect-
angular or trapezoidal combined footing foundations only when the allowable soil bearing capacity
is high and the distance between the columns are relatively large. Similar to the continuous com-
bined footing, strap footing can be continuous supporting more than two columns in one row;
designed as continuous strap footing.

(5) Ring spread footing. This is a continuous-strip footing that has been wrapped into a circle
(Figure 2.6). This type of footing is commonly used to support above-ground and elevated storage
tanks, transmission towers, TV antennas and various process tower structures. Regarding the

Elevation

Elevation

Elevation

Plan

Plan

Plan

Strap Strap

Strap

P2P1

P1

P1P1

P2

P2
P2

Strap Footing

Wall

(a) (b)

(c)

(d)

Column

Figure 2.5 Common configurations of strap footing.

Shallow Foundations – Introductory Chapter 79



above-ground storage tanks, the contents weight of these tanks is spread uniformly across the total
base area, and this weight is probably greater than that of the tank itself. Accordingly, the geotech-
nical analyses of these tanks usually treat them as circular mat foundations with the diameters
equal to diameter of the tank. Obviously, this case is quite different from that with an elevated
storage tank which is usually supported by a number of columns distributed in a circular line. Here,
the footing may be treated as a circular (ring) continuous combined footing.

(6) Mat foundation.A simplemat foundation consists of a single reinforced concrete slab, relatively thick,
used to support two ormore columns both ways, and/or walls of a structure or a part of it (Figure 2.7).

A mat foundation may be used where the base soil has a low bearing capacity, and where there
is a large variation in the loads on the individual columns. It is commonly used when the column
loads are so large that more than 50% of the construction area is covered by the conventional
spread footings. It is common to use mat foundation when the structure contains basement

P2 P3

P4

h

B

P5P6

P1

Figure 2.6 Ring footing supporting six columns.

Mat

Plan

G.S

Elevation

Wall
Columns

Wall

Figure 2.7 A mat foundation.
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(especially deep basement) in order to spread the column loads to a more uniform pressure dis-
tribution, to decrease danger of differential settlement, and to provide the floor slab for the base-
ment. Moreover, a particular advantage is to provide a water barrier for basements at or below
the ground water table, since the basement walls can be constructed integral with the mat.

A mat foundation may be supported by piles to control buoyancy due to high ground water
level, or, where the base soil is susceptible to large settlement.

(7) Raft foundation. A raft foundation consists of a relatively thin reinforced concrete slab cast inte-
grally with reinforced concrete beams either above or below the slab in both directions (Figure 2.8).
Sometimes raft and mat are used synonymously since they are desired to achieve the same goal.
Raft foundations are usually used on compressible soil in order to distribute the building load over
the entire building area. Sometimes stiffening walls or basement walls are used as part of the raft,
making a heavy large cellular construction capable of supporting a heavy structure (Figure 2.9).

The raft with the beams below the slab (Figure 2.8b) has the advantages of ease of construction
(if the groundwater level is not a problem) and providing a level surface slab which can form the
ground floor or the basement floor. However, it is necessary to construct the beams in trenches
which can cause difficulties in in soft or loose soil that requires continuous support sheeting and

Basement wall Basement wall

Structural slab Structural slab

Beams

(b)(a)

Beams
Beams above slab Beams below slab

Col.Col.

Basement floorBasement floor

(Deck)

Figure 2.8 Raft foundations with beams either above or below slab.

Plan

Section

(a) (b)
Hollow water tight

rectangular cells

Large cellular raft with

stiffener walls

Basement walls as

a part of raf

Figure 2.9 Cellular raft foundations.

Shallow Foundations – Introductory Chapter 81



strutting. Construction may also be difficult when the trenches are excavated in water-bearing soil
requiring additional space in the excavation for subsoil drainage and sumps. Another disadvantage
is in the design because the loads from the foundation slabs are transmitted to the beams by tension.

The raft with beams formed above the slab (Figure 2.8a) has an advantage in design because the
load from the slab is transferred to the beams in a conventional manner, producing compression and
diagonal tension due to shear. Also, it insures that the beams are constructed in clean dry conditions
above the foundation slab. Where excavation for the foundation slab has to be undertaken in water-
bearing soil it is easier to deal with water in a large open excavation than in the confines of narrow
trenches. However, this type of raft foundation requires the provision of an upper slab (deck) to form
the ground or the basement floor of the structure. This involves the construction and removal of soffit
form work for the deck slab, or the alternative of filling the spaces between the beams with granular
material to provide a surface onwhich the deck slab can be cast. Precast concrete slabs can be used for
the top decking, but these require the addition concrete screed to receive the floor finish.

Some designers prefer a raft consists of a flat plate (slab) thickened under columns, or with
pedestals (Figure 2.10), than a raft consists of slab and beams.

(8) Floating foundation.A raft foundation with the weight of the excavated materialQm from the base-
ment approximately equal to the superimposed total weight of the structureQs is often called float-
ing foundation or compensated foundation. When this condition exists the foundation is usually
referred to as fully compensated foundation. On the other hand when Qm < Qs the foundation is
referred to as partially compensated foundation. The use of a floating foundation is probably the
most effective and practical method of controlling total settlement, especially, when structures are
to be built on very soft soils. Another advantage of using this technique of floatation is that the
factor of safety against bearing capacity failure will be greatly increased.

2.3 Depth of Foundations

As mentioned earlier, the vertical distance between the ground surface (G.S.) and the foundation level
(bottom of the structural base) is called foundation depth (sometimes the footing depth), usually
represented by the symbol Df. Foundation depth is one of the basic factors that control the allowable
bearing capacity of a foundation material. In all cases, the foundation depth must not be shallower than
depth of:

(a) Overburden soil and/or rock as a requisite of the allowable bearing capacity.
(b) Debris and garbage fill materials.
(c) Peat and muck.

Section

Plan

(a) (b)

Slab thickened under columnSlab with pedestal under column

Figure 2.10 Raft foundations consist of a flat plate (slab) thickened under columns, or with pedestals.

82 Shallow Foundations



(d) Top soil consisting of loose and organic materials.
(e) Frost penetration.
(f) Zone of high volume change.
(g) Scour.

The materials mentioned in (b) and (c) are considered unsuitable foundation materials and must be
removed from the construction area. If they are too deep, the material directly under the footing is
removed and replaced with lean concrete, or replaced with compacted clean granular soil (such as clean
sub-base material) in an area relatively larger than the footing area (Figure 2.11).
Generally, soils encountered within the zone of frost penetration remains in an unstable condition

because of alternate seasonal freezing and thawing. Consequently, a footing located within the zone is
lifted during cold weather due to freezing of the soil porewater, and it settles during worm weather due
to thawing of the frozen water. Therefore, frost action can cause damage to the foundation and to the
superstructure unless Df is greater than the depth of frost penetration. Gravel and coarse sand above
water level containing less than about 3% fine sand, silt, or clay particles cannot hold any water and
consequently are not subject to frost damage. Other soils are subjected to frost heave within the depth
of frost penetration.
Some clay soils of relatively high plasticity, usually called expansive soils, undergo excessive volume

change (usually seasonal) by shrinking upon drying and swelling upon wetting. Consequently, footings
rest on such soils will move up and down. This process can cause severe damage to the total structure
unless Df is greater than the depth within which large volume change takes place.
Bridge piers, abutments, bases for retaining walls and footings for other structures adjacent to or

located in flowing water must be located at a depth such that erosion or scour does not undercut
the soil and cause a failure.
Thedifference in foundationdepthsbof adjacent footings shouldnot be so large as toproduceundesir-

able overlapping of stresses in the foundation soils. This is generally avoided by maintaining the max-
imum difference in foundation levels b equal tom/2 for footings rest on soil andm for footings on rock,
where m is the horizontal distance between two adjacent footings (Figure 2.12). These requirements
should be satisfied to prevent shear failure and excessive settlement take place in the supporting soils.

Top soil or soil with

inadequate bearing

capacity

Sand or gravelly sand compacted to

develop required bearing capacity, or,

lean concrete pad directly under footing Inorganic soil with adequate

bearing capacity or rock

2 (max), Sand

1 & gravel

Figure 2.11 Unsuitable foundation soil replaced with sand and gravel or lean concrete pad.

m

b

Footings on

soil: b≤(m/2)

Footings on

rock: b≤m

Figure 2.12 Suggested limits for difference in foundation depth of adjacent footings.
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If a new footing is lower than an existing footing, the new excavation may cause soil flow laterally
from beneath the existing footing. This may result in settlement cracks in the existing structure. In this
case, the safe depth difference bmay be approximately determined for a c – soil using the following
equation:

bsafe
2 c

SF γ K
−

qo
SF γ

2 1

where c = soil cohesion
SF = suitable factor of safety
qo = footing (or base) contact pressure
γ = average unit weight of soil
K = coefficient of lateral earth pressure, Ka ≤ K ≤ Kp

For cohesionless soils such as sand, the equation reveals that one cannot excavate to a depth greater
than that of the existing foundation, that is b = 0.

Footings on sloping ground should have sufficient edge distance of about 1 m minimum to provide
protection against erosion (Figure 2.13).

Underground defects or utilities, such as cavities, old mine tunnels, sewer lines, water mains and
underground cables, may affect the foundation depth. Sometimes the solution may require shifting
the utilities, relocating the foundations or even an abandonment of the site.

It is not good practice to place footings on the ground surface (i.e.Df = 0) even in localities where the
requirements of bearing capacity, frost penetration, seasonal volume change and so on, mentioned earl-
ier, are not obstacles because of the possibility of surface erosion. Generally the minimum depth of
foundation should be 50 cm below the natural ground surface.

2.4 Foundation Performance Requirements

2.4.1 General

It is important to remember that the performance of foundations is based on an interface between
the loadings from the structure and the supporting ground or strata. Foundations must be designed
both to interface with the soil at a safe stress level and to limit settlements to an acceptable amount.
In all cases the most economical solution will be selected, provided that it satisfies the performance
requirements.

The factors related to the ground conditions are the allowable bearing capacity and location of the
supporting strata, the soil composition, the ground level and gradients and the groundwater level. The
allowable bearing capacity of the supporting ground is one of the key elements in the selection of

Depth of frost penetration

Slo
pe

Minimum 90 cm (footings on soil)

Minimum 60 cm (footings on rock)

Figure 2.13 Foundation depth requirements for footings on slope.
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appropriate foundations for all types of structures. The ground of a satisfactory bearing strength may
be located at a considerable depth below the surface that may require using a deep foundation rather
than a shallow foundation form which is unlikely to be efficient or cost effective. It is not uncommon to
find buildings being constructed on sites made up of filled ground which is of greater variability in
composition than the natural ground strata even they are ununiformed or heterogeneous deposits.
With respect to ground surface; it is quite rare for building sites to be truly flat and level. Where
the groundwater is present, it is common to lower its level below the construction zone either perman-
ently or for the duration of the construction work. If the groundwater rises above the foundation level,
the foundation will be subject to uplift or flotation, which would have to be taken into account. Also,
there is a potential problem of ground subsidence in the area surrounding the construction site if there
is significant lowering of groundwater level. Obviously, solutions to such problems increase the
construction cost.
The factors related to the structure loads are the type and application, source and duration of the

loads. There are different types of loads such as axial compressive or tensile, shear, moment and tor-
sional loads. Knowing nature of these design loads can in turn help in selecting the type of foundation
to be used. The nature of framed buildings is such that the loads are likely to be concentrated at the
point of application, that is the column bases. Hence the use of pads (spread bases) and piles tends to be
most common. However, there may be situations where there are also uniformly distributed loads, such
as frommasonry cladding for example. These must also be dealt with and a combination of foundation
solutions may applied in a given situation.
In design of foundations for a structure the designer should already have appropriate answers to

questions such as what functions the proposed structure will accomplish?What are the required design
criteria? What would be the acceptable performance? As long as failure is an unacceptable difference
between expected and observed performance, the foundations like the other engineering products will
have varying degrees of performance which are not the same for all structures.
In view of the above discussions, the performance requirements of foundations concern the

followings:

(1) Strength
(2) Serviceability
(3) Constructibility
(4) Economy

2.4.2 Strength Requirements

Foundations are required to be strong enough that catastrophic failures not be allowed to take place.
There are two types of strength requirements: the geotechnical and the structural strength
requirements.
Geotechnical strength requirements are those that directly related to the supporting soil or rock strata.

In footing foundations geotechnical strength is expressed as bearing capacity considering shear in the
supporting material; the failure due to shear is usually referred to as bearing capacity failure
(Figure 2.14). In the design of foundations there must be a sufficient factor of safety against such failures.
Geotechnical strength analysis is usually performed using working (unfactored) loads, that is using
allowable stress design (ASD) methods. However, using the load and resistance factor design
(LRFD) methods are not uncommon.
Structural strength requirements are those that directly related to the structural foundation compo-

nents. The foundation elements are designed to avoid structural failures, similar to the other structural
analyses. The strength analyses are made using either LRFD or ASDmethods, depending on the type of
structure and its foundation, the structural material, and the governing design code. It is important to
realise that foundations which are loaded beyond there structural capacity will, in principle, fail
catastrophically.
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2.4.3 Serviceability Requirements

The second performance requirement is serviceability. A foundation should have adequate service-
ability performance when subjected to the service loads during its design life time. That is it should
not excessively: (a) settle under vertical downward loads, move laterally due to lateral loads, (b) move
upward due to heave of the supporting soil or uplift pressure or (c) tilt because of uneven settlement
or heave occurring under a part of the structure. Also, it should not excessively move due to other
factors such as changes in groundwater level, seasonal changes (dry and wet periods), internal erosion
(piping), soil creep, adjacent excavations and buildings and vibrations. Moreover, the foundation
concrete must be durable; resistant to the various physical and chemical processes, such as sulfate
and acid attacks, that cause deterioration. In practice, all foundations are subjected to one or more
of these undesirable events or processes; however, there are tolerable limits laid down in various
building codes and specifications in order to control their effects and to achieve acceptable
performance.

The most important seviceability requirement is the one that concerns settlement. The variability of
soil in combination with unanticipated loads can result in settlement problems over which the designer
may have little control. However, a relatively low number of modern buildings collapse from excessive
settlements, but it is not uncommon for a partial collapse or a localised failure in a structural member to
occur. More common occurrences are unsightly wall and floor cracks, uneven floors (sags and slopes),
sticking doors and windows and the like.

2.4.4 Constructibility Requirements

The third performance requirement is constructibility. According to the Construction Industry Insti-
tute (CII) at the University of Texas in Austin, USA, constructibility may be defined as “the optimum
use of construction knowledge and experience in planning, design, procurement and field operations to
achieve the overall project objectives”. In some universities research has been developed for new man-
agement methods and techniques to improve the construction industry. In addition, local and regional
groups of construction users have been formed, resulting in increased awareness of the benefits to be
gained through improved constructibility programs. These benefits include improvements in quality
and reliability, as well as savings in time and money.

The foundation should be buildable with available construction personnel and, as much as possible,
without having to use extraordinary methods or equipment. A proper design requires insuring that a
structural member can be constructed without degrading the specified material quality of the product.
For example, problems of constructibility of concrete structures occur most often because of the
attempt to design slimmer columns or beams of smaller cross-section area. These designs, although
satisfying the governing design codes, reduce space for placing concrete, and can create problems

Ground surface

after failure

Ground surface

before failure

Failure surface

P

Figure 2.14 A bearing capacity failure beneath a spread footing foundation. The soil has failed in shear, causing
the foundation to collapse.
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in obtaining good vibration and proper compaction. In case there is no enough previous experience
required for construction of a certain kind of projects, it may be necessary that all concerned parties
carefully work together to achieve the desired result.

2.4.5 Economy Requirements

The last performance requirement is economy. In general, it is common practice to be conservative in
design of foundations. This is because of the uncertainties in soil properties, loads and the uncertainty
in the nature and distribution of the load transfer between foundations and the ground (soil–structure
interaction).
Due to the fact that foundations being the most important part of the total structure but the most

difficult to access if problems later develop, a conservative design or even an overdesign has a better
return on investment here than in other parts of the structure or the project. However, gross over-
conservatism is not warranted. An overly conservative design can be very expensive to build, especially
with large projects where the foundation is a greater portion of the total project cost. Being excessively
conservative is an ethics problem, unless the client is made aware of the several alternatives and accepts
the more conservative recommendation as being in his or her interests. It is necessary that a designer
always try to produce designs that are both safe and cost-effective. Achieving the optimum balance
between safety and cost is a part of good engineering. It is important to remember, designs that min-
imise the required quantity of construction materials do not necessarily minimise the cost. In some
cases, designs that use more mterials may be easier to build, and thus have a lower overall cost.
As a summary, foundation design tends to be more conservative than other structural designs

because the unknowns are not as well quantified; consequences of catastrophic foundation failure
are much greater, as the entire structure fails with the foundation; reduction in weight may not be bene-
ficial in foundation design, depending upon the circumstance.

2.5 Sulfate and Organic Acid Attack on Concrete

2.5.1 Sulfate Attack

Concrete in foundations may have to withstand attack by water soluble sulfate salts existing in the
ground or in chemical wastes. Calcium sulfate occurs naturally in soils, usually clays, as crystalline gyp-
sum. Sodium and magnesium sulfates are usually occur to a lesser degree, but as they are more soluble
than the calcium sulfate they are potentially more dangerous. The severity of attack on concrete foun-
dations depends mainly on the type and quality of the concrete, the concentration of sulfates (SO4), the
level of and fluctuations in the groundwater table and the climatic conditions.
Sulfates in solution can react with cement to form insoluble calcium sulfate and calcium sulfoalu-

minate crystals. The latter compound is highly hydrated and contains 31 molecules of water of hydra-
tion. The internal stresses in the concrete, created by the expansion accompanying the formation of
calcium sulfoaluminate, are sufficient to cause disruption of the concrete at the surface. This disruption
exposes fresh areas to attack again and if there is flow of groundwater bringing fresh sulfates to the
affected area, the rate of disruption can be very rapid causing mechanical failure of the concrete
as whole.
In areas that were formerly used for agricultural purposes, some fertilisers contain a high concen-

tration of sulfates that may cause problems to concrete foundations of structures built in such areas.
The same is true for some industrial wastes.
Attack takes place when there is groundwater; and for the disruption of concrete to continue there

must be replenishment of the sulfates. If the groundwater is always static the attack does not penetrate
beyond the outer skin of concrete. Thus there is little risk of serious attack on structures buried in clay
soils provided that there is no flow of groundwater such as might occur along a loosely backfilled
trench. There is risk of attack in clayey soils in certain climatic conditions, for example when hot,
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dry conditions cause an upward flow of water by capillarity from sulfate-bearing waters below foun-
dation level. Similar conditions can occur when water is drawn up to the ground floor of a building due
to the drying action of domestic heating or furnaces.

In case the laboratory tests indicate that the soil or groundwater has high sulfate content, for example
more than 0.1% by weight in soil or more than 150 ppm in water, the foundation concrete may be
protected against sulfate attack by using one or more of the following methods:

(1) Reduce the water:cement ratio. This reduces the permeability of concrete; thus retarding the chem-
ical reactions and disruption. This is one of the most effective methods of resisting sulfate attack.
Table 2.1 presents suggested maximum water:cement ratio with sulfate concentration and cement
type. The table is adapted from Kosmatka and Panarese, 1988, and Portland Cement Association
(PCA), 1991.

(2) Increase the cement content. The permeability of concrete is also reduced when the cement content
is increased. A minimum cement content of 335 kg/m3 is recommended.

(3) Use sulfate resisting cement. In American practice, type I cement (ASTM C 150-71) is similar in
chemical and physical properties to British ordinary Portland cement. The American type II
cement has a moderate sulfate resistance, and type V has a high sulfate resistance equivalent to
that of British sulfate resisting cement (BS 4027). Pozzolan additives to the type V cement also help.

(4) Coat the concrete with an asphalt emulsion. This alternative method is usually used for retaining
walls or buried concrete pipes, but not practical for foundations.

(5) Use well-compacted dense impermeable concrete made with sulfate resisting cement or in severe
conditions use a protective membrane formed from a heavy coat of hot bitumen or from polythene
sheeting. This method provides the best form of protection for high sulfate concentrations in
ordinary foundation work.

2.5.2 Organic Acid Attack

The acidic nature of organic matter constituents tends to give an acid reaction to the water in soil which
in turn may have a corrosive effect on materials buried in the soil. In certain marsh peats, oxidation of
pyrite or marcasite can produce free sulfuric acid which is highly aggressive to concrete. The presence
of free sulfuric acid is indicated by pH values lower than 4.3 and high sulfate content. However, the pH
value of the groundwater provides a rather crude measure of the potential aggressiveness to concrete of
naturally occurring organic acids. In European countries reliance is generally placed on obtaining a
dense impermeable concrete as a means of resisting attack by organic acids rather than the use of spe-
cial cements. Researchers found that ordinary Portland or rapid-hardening Portland cement combined
with ground-granulated slag or of ash provides better resistance to acid attack than concrete made only
with ordinary Portland cement.

Where the acids are organic and derived from natural sources the reader may find Table 2.2 more
convenient to use; it gives precautions for foundations against attack by organic acids in peaty or

Table 2.1 Suggested maximum water–cement ratio, sulfate concentration and cement type.

Water-soluble sulfate
in soil (% by weight)

Sulfates in
water (ppm)

Sulfate attack
hazard Cement type

Maximum
water–cement ratio

0.0–0.1 0–150 Negligible – –

0.1–0.2 150–1500 Moderate II 0.5

0.2–2.0 1500–10000 Severe V 0.45

>2.0 >10000 Very severe V plus pozzolan 0.45
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marshy soils. This table has been based on practice in Germany and the Netherlands where extensive
deposits of marshy soil are present.

2.6 Pressures under Foundations

2.6.1 Contact Pressure and Contact Settlement

The vertical pressure at contact surface between the foundation bottom and its base material (soil or
rock) is termed contact pressure; and the induced settlement is termed contact settlement.
Contact pressure distribution and contact settlement beneath symmetrically loaded shallow foun-

dations are functions of the type of base material, the consistency or density of soil or rock quality
and the relative rigidity of the base material and foundation. For the limiting cases of rigidity, that
is perfectly flexible or perfectly rigid foundations, the distribution of contact pressures and settlements
for cohesionless soils (sands) and cohesive soils (clays) are as follows:
Consider a flexible footing carrying a uniformly distributed load on the surface of a cohesionless soil

(Figure 2.15). Uniform contact pressure distribution exists, whereas, the contact settlement is not uni-
form. The outer edge of the footing undergoes a relatively large settlement compared to that at the
centre, as shown by the dashed curve. Below the centre of the footing the settlement is small because
the soil develops strength and rigidity as soon as it is loaded by the footing.
For a rigid footing resting on a surface of cohesionless soil the settlement must be uniform. In cohe-

sionless soils, for uniform settlement to occur there must be a relatively large pressure under centre of
the footing and no pressure at the edge (Figure 2.16a). If the average pressure is relatively small or if the
footing width is large, the non-uniform pressure distribution is somewhat flatter over the central por-
tion of the footing (Figure 2.16b).
For rigid footings placed in a cohesionless soil deposit below the ground surface there is some strength

below the edge of the footing, therefore, the pressure is not zero at the edges (Figure 2.16c). For very
deep rigid footings on sand the contact pressure distribution may be more like that discussed below for
rigid footings in cohesive soils.
Consider a uniformly loaded flexible footing on highly cohesive soil. The contact pressure distribution

is uniform, but the resulting contact compressive strain (contact settlement) distribution beneath the
footing shows a dish pattern with maximum settlement at the centre (Figure 2.17). This is because the
greater stress below the centre of the footing in the subsurface horizontal layers, such as the one shown,
must cause a greater compressive strain at this location.
For a rigid footing on highly cohesive soil the contact settlement must be uniform, whereas the contact

pressure distribution is not; it is much larger at the edges than that at the centre (Figure 2.18).

Table 2.2 Precautions for foundations against attack by organic acids in peaty or marshy soils (from Tomlinson, 2001).

pH
value

Precautions for foundations above groundwater
table in any soil and below groundwater level in
impervious clay

Precautions for foundations in contact with flowing
groundwater in permeable soil

6.0 None necessary None necessary

6.0–4.5 Use ordinary Portland cement at ≥ 370 kg/m3, max.
W/C ratio = 0.5

Use ordinary Portland cement at 380 kg/m3, or sulfate-
resisting cement at ≥ 350 kg/m3, maximum W/C ratio = 0.5

4.5 Use ordinary Portland cement at ≥ 400 kg/m3, or
sulfate – resisting cement at ≥ 390 kg/m3, maximum
W/C ratio = 0.5.

Use super-sulfate cement or ordinary Portland cement at
≥ 400 kg/m3, or sulfate-resisting cement at ≥ 390 kg/m3,
max. W/C ratio = 0.5; plus protection by external sheathing.

Note: The cement contents recommended in the table are suitable for medium-workability concrete (50–75 mm slump).

Shallow Foundations – Introductory Chapter 89



Contact pressure

Contact pressure

Cohesionless soil

Cohesionless soil

Contact settlement

Contact settlement

Rigid footing

Rigid footing

(a) (b)

(c)

Figure 2.16 Contact settlement and pressure distribution beneath rigid footing placed (a), (b) on surface of
cohesionless soil (c) in cohesionless soil.
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Contact settlement

Highly cohesive soil

Subsurface layer
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Figure 2.17 Contact pressure distribution and contact settlement beneath flexible footing on surface of highly
cohesive soil.

Contact
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Contact pressure
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Figure 2.15 Contact pressure distribution and contact settlement beneath a uniformly loaded flexible footing rests
on cohesionless soil.
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According to the theory of elasticity, for an elastic material of infinite strength the contact pressure
distribution is as indicated in the Figure by the long dash-dot curve which shows an infinite stress
at the edge of the footing. Actually an infinite stress cannot occur, but the stress at the edges may
be much larger than that at the centre.
In practice, spread footings are usually of intermediate to very high rigidity, so the actual contact

pressure distribution is not uniform. Bearing capacity and settlement analyses as well as structural
design of footings based on such a distribution would be very complex. Therefore, it is common prac-
tice to use the uniformly distributed contact pressure beneath centrally loaded spread footings, as
shown in Figure 2.19. Results of some field measurements indicate this simplification in design of
spread footings does not cause serious error and the assumption can be considered adequate. However,
after a design has been prepared on this basis, it is suggested that the designer review it and strength it at
locations where the actual distribution gives greater stresses than are given by the assumed distribution.
In Figure 2.18, for example, the bending moment in the footing is much larger for the distribution
shown than it is for a case of uniform pressure; additional reinforcing steel is needed to carry this
greater moment.
With mat or raft foundations the problems of contact pressure distribution and deformation are

quite different from those with spread footings. Usually, mat foundations have a much smaller thick-
ness to width ratio, and thus are more flexible than spread footings. Therefore, the assumption of rigid-
ity is no longer valid. Also, the assumption of linear contact pressure distribution would be erroneous
unless the supporting material is mud or peat or soft soil. At locations of heavy loads, such as those of
columns and bearing walls, a mat settles more than at locations with relatively light loads because the
pressure beneath the heavily loaded zones are greater. Figure 2.20a shows contact pressure distribution
beneath a mat rests on strong bedrock; the column loads are transmitted to the rock on a relatively

Highly cohesive soil

Rigid footing

Contact settlement

Contact pressure

Figure 2.18 Contact pressure distribution and contact settlement beneath a rigid footing on surface of highly
cohesive soil.

Centrally loaded rigid

spread footing

Supporting soil

Assumed uniform

contact pressure

Figure 2.19 Assumed uniform contact pressure distribution beneath a spread footing.
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small area directly under the columns. When a mat rests on stiff soils, the column loads are distributed
to the supporting soil in larger areas (Figure 2.20b). The pressure beneath amat foundation rests on soft
soil approaches planar distribution (Figure 2.20c).

2.6.2 Contact Pressure under Eccentrically Loaded Spread Footings

In certain cases, as with a footing of a retaining wall, foundations are subjected to eccentric loading; the
resultant of all the loads and moments applied off the centre of the foundation base area. Usually, this
loading condition results from an eccentric vertical load (or a resultant of vertical loads) alone or from a
concentric load plus moments in one or more directions. In general, any combinations of vertical loads
and moments can be represented by a vertical load shifted to a fictitious location with an eccentricity, e,
relative to the centroid of the base area, as shown in Figure 2.21.

This eccentricity may be calculated as follows:
For column footings and rigid mats subjected to eccentric vertical loads without moments,

e =
V × ev
V +Wf

2 2

For continuous footings subjected to eccentric vertical loads without moments,

e=

V
L

ev

V L + Wf L
2 3

For column footings and rigid mats subjected to concentric vertical loads with moments,

e =
M

V +Wf
2 4

For continuous footings subjected to concentric vertical loads with moments,

e=

M
L

V L + Wf L
2 5

(a) (b) (c)

Rock Stiff soil Soft soil

Figure 2.20 Distribution of contact pressure under a mat foundation.
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Figure 2.21 Eccentrically loaded spread footing.
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where: e = eccentricity of the resultant vertical load
V = applied vertical load
ev = eccentricity of applied vertical load
M = applied total moment
Wf = weight of foundation
L = length of continuous footing.

Eccentric loads produce non-uniform contact pressure distribution under footings. For practical
design purposes, the contact pressure distribution is usually assumed linear, as shown in
(Figure 2.22a). The contact pressure is calculated by assuming linearly elastic action in compression,
across the contact between the footing and the soil. Eccentricity of the resultant load R larger than
B/6 or L/6 (Figure 2.23) will cause a portion of a footing to lift off the soil (i.e. soil in tension), since
the soil-footing interface cannot resist tension. The dimensions B and L are the actual width and length
of the base area, respectively. For a rectangular footing, the distances B/6 and L/6 are called the kern
distance.
The resultant load applied within the kern, the shaded area in Figure 2.22b, will cause compression

over the entire area beneath the footing, and the contact pressure q under rigid spread foundations can
be calculated using the following common flexural equation:

q=
R
A
±
My

Iy
x ±

Mx

Ix
y 2 6

In this equation, Ix and Iy are the moments of inertia of the base about x and y axis, respectively. The
x and y distances define location of q with respect to centroid of the base area. The moments Mx and
My are about x and y axis, respectively.
For rectangular footings of B and L base dimensions Equation (2.6) may be written as:

q=
R
BL

1 ±
6ex
B

±
6ey
L

2 7

where ex = eB; ey = eL. They are eccentricities of R in x and y directions. This equation is applicable
only when:

6eB
B

+
6eL
L

≤ 1 0 2 8

V

V / A

My (B/2)/Iy

q = (V/A) ± (My x /Iy)

Kern

(a) (b)

y

B

x L

L/6

B/6

B

L/6

My

Figure 2.22 Contact pressure under eccentrically loaded rectangular spread footing with kern distances B/6 and
L/6 indicated.
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If the applied resultant load falls outside the kern area, Equation (2.6) will not be satisfied. However,
the soil reaction resultant remains equal and opposite in direction to the resultant R, as shown in
Figure 2.23. Generally, such a pressure distribution would not be acceptable because it makes insuffi-
cient use of the footing concrete and tends to overload the supporting soil. Therefore, foundations with
eccentric loads and/or moments must have R always fall within the kern. This criterion maintains com-
pressive stresses along the entire base area.

The kern distance for circular footings is r/4 where r is radius of the circular base area, as shown in
Figure 2.24.

Resultant of

applied loads

> (2qav= 2R/A)

Resultant 

of contact

pressure

B

B/6

3[(B/2)–e]

R
e

qmax= 4R/3L (B–2e)

Figure 2.23 Contact pressure under eccentrically loaded spread footing where the resultant load falls outside
the kern.
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Figure 2.24 Contact pressure under eccentrically loaded circular spread footings.
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2.7 Vertical Stresses in a Soil Mass due to Foundation Loads

2.7.1 General

Knowledge of stresses at a point in a soil mass is required for the settlement analysis of foundations,
the stability analysis of the soil mass, and the determination of earth pressures. Stresses in a soil deposit
are due to weight of the soil itself, may be called geostatic stresses, and due to the external applied loads,
such as the foundation loads, maybe called induced stresses. In soil engineering problems the geostatic
stresses are significant; unlike many other civil engineering problems wherein the stresses due to self-
weight are relatively small, such as in design of a steel superstructure. In a loaded soil mass, both
the normal stress σ and the shear stress τ may exist. The normal horizontal stresses are usually rep-
resented by variables σx and σy, and the normal vertical stress by σz. Normal stresses, in reality, are
nearly always compressive. Geotechnical engineers use compressive stresses positive while tensile
stresses negative.
Regarding the geostatic stresses, foundation engineers are more interested in the vertical compres-

sive geostatic stress. The vertical total stress σz and effective stress σz at a depth z below the ground
surface may be computed as σz = γz and σz = γz – u= γ z, where u is the soil pore water pressure,
γ is the average total unit weight of the soil and γ is the effective unit weight. Generally, the unit
weight of a natural soil deposit increases with depth due to the weight of soil above. Therefore, the
unit weight of soil cannot be taken as constant. For this reason, the geostatic vertical stress may be
expressed as

σz =
z

0
γdz 2 9

For layered soils with variable unit weight, the vertical stress is given by

σz = γ1Δz1 + γ2Δz2 +… + γnΔzn = ∑γΔz 2 10

In the following subsections the induced vertical stresses due to external applied loads, such as foun-
dation loads, will be discussed.

2.7.2 Vertical Stress Due to a Concentrated Load

Normal and shear stresses at a point within a semi-infinite homogeneous, isotropic and elastic mass,
due to a concentrated point load on the mass surface, where determined by Boussinesq (1883). Accord-
ingly, the vertical stress increase σz at any point A due to a surface point load V (Figure 2.25) is given by

σz =
3V
2πz2

1

1 + r ∕z 2 5 ∕2 =
3V
2πz2

I 2 11

I =
1

1 + r ∕z 2 5 ∕2 = Influence factor

Equation (2.11) is universally known as Boussinesq’s equation.
The form of variation of σz with z and r is illustrated in Figure 2.26. The left-hand side of the figure

shows the variation of σz with z on the vertical through the point of application of the load V (i.e. for
r = 0). The right-hand side of the figure shows the variation of σzwith three different values of z. It must
be realised that these vertical stresses do not include the vertical stress due to self-weight of the
overburden soil.
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2.7.3 Vertical Stress Due to a Line Load

The Boussinesq’s solution described in Section 2.7.2 can be used to obtain the vertical stresses in a soil
mass due to a vertical line load. Figure 2.27 shows a line load of infinite length having intensity V per
unit length on the surface of a semi-infinite soil mass. The vertical stress increase at point A inside the
soil mass is

σz =
2V
π

z3

x2 + z2 2 2 12

z

σr

σz

σθ
rA

V

Figure 2.25 Stresses at point A of depth z below ground surface acted on by a point load.

z1

z2

z3

V

r

r

r

(r = 0)

(σz plotted vertically)(σz plotted horizontally)

Variation of σz with

variable r at depths 

z1, z2, and z3

z

r
Variation of σz with

depth z below the 

point load (r = 0)

Figure 2.26 Variation of vertical stress σz due to a point load.
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2.7.4 Vertical Stress Due to a Uniformly Loaded Strip Area

Referring to Figure 2.28a, the vertical stress at point A due to a uniform load per unit area q on a flexible
strip area of width B and infinite length are given in terms of the angles α and β, as follows:

σz =
q
π
α+ sinα cos α+ 2β 2 13

The vertical stress at points below the centre of the strip, such as point A of Figure 2.28b, is given as

σz =
q
π

α+ sinα 2 14

The vertical stress at point A of Figure 2.28c due to pressure increasing linearly from zero to q on a
strip area of width B and infinite length is given in terms of the angles α and β as follows:

σz =
q
π

x
B
θ−

1
2
sin2β 2 15

When the point is located within B under the loaded area, β is negative.

2.7.5 Vertical Stress Due to a Uniformly Loaded Circular Area

Referring to Figure 2.29, the stresses at a point due to a uniformly loaded circular area with intensity q
can be obtained by dividing the loaded area into many small elements, each with an area of dA and a
small concentrated load at its centre equal to

dV = q dA

From the Boussinesq’s equation of vertical stress due to a concentrated point load, the vertical stress
at point A due to dV is

dσZ =
3 dV
2πz2

1

1 + r ∕z 2 5 ∕2 =
3q
2πz2

1

1 + r ∕z 2 5 ∕2 dA

The stress increase σz can be found by integrating this equation over the loaded area. If we consider
the vertical stress at any depth z underneath the centre of the loaded area of radius R, we will have

σZ =
3q
2π

2π

0

R

0

1

z2 1 + r ∕z 2 5 ∕2 r dθ dr

where r.dθ.dr = dA

V / unit length
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x
σz

+ ∞– ∞
y

z

z

Figure 2.27 Vertical stress due to a line load of infinite length.
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Figure 2.28 (a, b) Vertical stresses due to a uniformly loaded strip area of infinite length. (c) Vertical stresses due to a triangularly
loaded trip area of infinite length.
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Figure 2.29 Vertical stresses below center of a uniformly loaded circular area.



Performing the integrations and inserting the limits, we obtain

σz = q 1−
1

1 + R ∕z 2 3 ∕2 = qIc 2 16

This equation can be used to directly obtain the vertical stress at depth z under centre of a uniformly
loaded flexible circular area of radius R. The bracket part of the equation is usually known as influence
factor Icwhich is function of the ratio R/z. For selected values of R/z, values of Ic can easily be calculated
and tabulated, or, may be obtained in terms of the ratio 2R/z from the plot of Figure 2.30.

2.7.6 Vertical Stress Due to a Uniformly Loaded Rectangular Footing

The vertical stress increase at depth z under a corner of a uniformly loaded flexible rectangular area
(Figure 2.31) can be obtained using the integration technique of the Boussinesq’s equation.
Consider an elemental area dA = dx dy on the loaded rectangular area (Figure 2.31). If the load per

unit area is q, the total load on the elemental area is

dV = q dx dy

This elemental load dV may be treated as a point load which causes a vertical stress increase dσz at
point A. Boussinesq’s equation of point load can be written as

σz =
3V
2π

z3

r2 + z2 5 2
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Figure 2.30 Vertical stresses under centre of circular area carrying a uniform pressure.
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Using r2 = x2 + y2; the equation can be rewritten for the elemental point load as

dσz =
3q dx dy z3

2π x2 + y2 + z2 5 2

The value of σz at point A caused by the entire loaded rectangular area of dimensions B and L may
now be obtained by integrating the preceding equation:

σz =
L

y = 0

B

x = 0

3q dx dy z3

2π x2 + y2 + z2 5 2
= qIr 2 17

The influence factor Ir is function of two variables m and n, where

m=B z; n= L z;

It is of interest to note that for any magnitude of z the vertical stress σz depends only on the ratiosm
and n and the surface load intensity q.

The variations of Ir values with m and n, required in computing σz below corner of a uniformly
loaded rectangular area, are given in Table 2.3. The table is usually known as Newmark Table, since
the earliest use of the integration technique of the Boussinesq’s equation has been attributed to
Newmark (1935).

Values of Ir in terms of m and n are also given in the chart of Figure 2.32 (note that Ir is Iqr in the
chart); due to Fadum (1948).

Equation (2.17) can also be used to find the vertical stress at a point which is not located below the
corner (Figure 2.33). The rectangular area, carrying a uniform pressure q, is subdivided into four
rectangles such that each rectangle has a corner at the point where the vertical stress is required.
The principle of superposition is used to determine the vertical stress at the point.

Figure 2.33a shows location of any point P on the uniformly loaded rectangular area EFGH. This
rectangle is subdivided into four smaller rectangles EIPL, IFJP, PJGK and LPKH. These rectangles have
their influence factors I1, I2, I3 and I4, respectively. The vertical stress at pointA of depth z below point P
due to the uniformly loaded rectangular area EFGH is

σz = q I1 + I2 + I3 + I4

x

B

L

dx
dy

dA
dV

A

y

z
σz

Figure 2.31 Vertical stresses σz at depth z below a corner of a uniformly loaded rectangular area.
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Table 2.3 Values of the influence factor Ir (Equation 2.17) to compute vertical stresses beneath the corner of a uniformly loaded
rectangular area.

n

m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.005 0.009 0.013 0.017 0.020 0.022 0.024 0.026 0.027 0.028

0.2 0.009 0.018 0.026 0.033 0.039 0.043 0.047 0.050 0.053 0.055

0.3 0.013 0.026 0.037 0.047 0.056 0.063 0.069 0.073 0.077 0.079

0.4 0.017 0.033 0.047 0.060 0.071 0.080 0.087 0.093 0.098 0.101

0.5 0.020 0.039 0.056 0.071 0.084 0.095 0.103 0.110 0.116 0.120

0.6 0.022 0.043 0.063 0.080 0.095 0.107 0.117 0.125 0.131 0.136

0.7 0.024 0.047 0.069 0.087 0.103 0.117 0.128 0.137 0.144 0.149

0.8 0.026 0.050 0.073 0.093 0.110 0.125 0.137 0.146 0.154 0.160

0.9 0.027 0.053 0.077 0.093 0.116 0.131 0.144 0.154 0.162 0.168

1.0 0.028 0.055 0.079 0.101 0.120 0.136 0.149 0.160 0.168 0.175

1.1 0.029 0.056 0.082 0.104 0.124 0.140 0.154 0.165 0.174 0.181

1.2 0.029 0.057 0.083 0.106 0.126 0.143 0.157 0.168 0.178 0.185

1.3 0.030 0.058 0.085 0.108 0.128 0.146 0.160 0.171 0.181 0.189

1.4 0.030 0.059 0.086 0.109 0.130 0.147 0.162 0.174 0.184 0.191

1.5 0.030 0.059 0.086 0.110 0.131 0.149 0.164 0.176 0.186 0.194

2.0 0.031 0.061 0.089 0.113 0.135 0.153 0.169 0.181 0.192 0.200

2.5 0.031 0.062 0.089 0.114 0.136 0.155 0.170 0.183 0.194 0.202

3.0 0.031 0.062 0.090 0.115 0.137 0.155 0.171 0.184 0.195 0.203

5.0 0.032 0.062 0.090 0.115 0.137 0.156 0.172 0.185 0.196 0.204

10.0 0.032 0.062 0.090 0.115 0.137 0.156 0.172 0.185 0.196 0.205

m

1.1 1.2 1.3 1.4 1.5 2.0 2.5 3.0 5.0 10.0

0.1 0.029 0.029 0.030 0.030 0.030 0.031 0.031 0.031 0.032 0.032

0.2 0.056 0.057 0.058 0.059 0.059 0.061 0.062 0.062 0.062 0.062

0.3 0.082 0.083 0.085 0.086 0.086 0.089 0.089 0.090 0.090 0.090

0.4 0.104 0.106 0.108 0.109 0.110 0.113 0.114 0.115 0.115 0.115

0.5 0.124 0.126 0.128 0.130 0.131 0.135 0.136 0.137 0.137 0.137

0.6 0.140 0.143 0.146 0.147 0.149 0.153 0.155 0.155 0.156 0.156

0.7 0.154 0.157 0.160 0.162 0.164 0.169 0.170 0.171 0.172 0.172

0.8 0.165 0.168 0.171 0.174 0.176 0.181 0.183 0.184 0.185 0.185

0.9 0.174 0.178 0.181 0.184 0.186 0.192 0.194 0.195 0.196 0.196

1.0 0.181 0.185 0.189 0.191 0.194 0.200 0.202 0.203 0.204 0.205

1.1 0.186 0.191 0.195 0.198 0.200 0.207 0.209 0.211 0.212 0.212

1.2 0.191 0.196 0.200 0.203 0.205 0.212 0.215 0.216 0.217 0.218

(Continued )
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Table 2.3 (Continued)

n

m

1.1 1.2 1.3 1.4 1.5 2.0 2.5 3.0 5.0 10.0

1.3 0.195 0.200 0.204 0.207 0.209 0.217 0.220 0.221 0.222 0.223

1.4 0.198 0.203 0.207 0.210 0.213 0.221 0.224 0.225 0.226 0.227

1.5 0.200 0.205 0.209 0.213 0.216 0.224 0.227 0.228 0.230 0.230

2.0 0.207 0.212 0.217 0.221 0.224 0.232 0.236 0.238 0.240 0.240

2.5 0.209 0.215 0.220 0.224 0.227 0.236 0.240 0.242 0.244 0.244

3.0 0.211 0.216 0.221 0.225 0.228 0.238 0.242 0.244 0.246 0.247

5.0 0.212 0.217 0.222 0.226 0.230 0.240 0.244 0.246 0.249 0.249

10.0 0.212 0.218 0.223 0.227 0.230 0.240 0.244 0.247 0.249 0.250

Note: The factors m and n are interchangeable.
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Figure 2.32 Values of the influence factor for computing vertical stress under corner of rectangular area carrying a uniform pressure
(reproduced from Knappett and Craig, 2012; after R.E. Fadum, 1948).
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Figure 2.33b shows location of any point P outside the loaded area EFGH. In this case, a large rect-
angle EIPJ is drawn such that point P is one of its corners. Therefore, the vertical stress at point A of
depth z below point P due to the uniformly loaded rectangular area EFGH is

σz = q I1− I2− I3 + I4

The influence factors I1, I2, I3 and I4 belong to the rectangles EIPJ, FIPL, HKPJ and GKPL,
respectively.
Figure 2.33c shows any point P located on an edge of the loaded area EFGH. In order to find the

vertical stress at point A of depth z below point P, the area is divided into two smaller rectangles EFPJ
and JPGH. Hence,

σz = q I1 + I2

The influence factors I1 and I2 belong to the rectangles EFPJ and JPGH, respectively.
There is an approximate method, referred to as the 2V : 1Hmethod, used to estimate vertical stresses

caused by foundation loads (Figure 2.34). However, since the method gives only rough estimates of
stress values, it is not very much used at present.
According to this method, the foundation load spreads out within the supporting soil on a slope two

vertical to one horizontal.
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Figure 2.33 Vertical stresses under a uniformly loaded rectangular area.
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Thus, a vertical loadV, distributed as a uniform pressure q over a horizontal area B × L (loaded area),
causes an increase in pressure σz, at depth z below the loaded area, over an area with dimensions (B + z)
(L + z). Hence,

σz =
V

B + z L + z
or σz = q

B× L
B + z L + z

2 18

According to Bowles (2001), the 2V : 1H method compares reasonably well with more theoretical
methods for values of z equals B to about 4B but should not be used for z values between 0 and B value.

2.7.7 Newmark’s Chart Method of Determining Vertical Stresses

Equation 2.16 can be rearranged and written in the following form:

R
z
= 1−

σz
q

−2 ∕3

−1

As it is clear, the ratios R/z and σz/q are non-dimensional quantities. This equation reveals that
the R/z ratio is the relative size of a uniformly loaded circular area which gives a unique pressure ratio
σz/q on a soil element of depth z in the soil mass.

Values of R/z that correspond to various pressure ratios may be computed and tabulated, as
shown below:

σz/q: 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R/z: 0.0 0.27 0.4 0.518 0.637 0.766 0.918 1.11 1.387 1.908 ∞

Using these R/z and σz/q values, Newmark (1942) developed influence charts, such as the chart of
Figure 2.35, which can be used to determine vertical pressure σz below any point x on a uniformly
loaded flexible area of any shape.

B

Column

Footing

2

2
 V

:1
H

V

L

L+z

q

1
σz

Figure 2.34 Approximate 2: 1 method of vertical stress distribution under a rectangular footing.
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The influence chart is useful in cases where access to a computer is not practical and there are several
footings with different contact pressures or where the footing is irregular-shaped and σz is desired for a
number of points.
An influence chart consists of concentric circles and radial lines (Figure 2.35). The radii of the circles

are equal to the R/z values corresponding to σz/q = 0, 0.1, 0.2… 1.0 (note that for σz/q = 0, R/z = 0, and
for σz/q = 1, R/z =∞, so nine circles are shown). The unit length for plotting the circles is the length of
the scale line AB. The circles are divided by several equally spaced radial lines. The influence value I of
the chart is given by 1/N, whereN equals to number of elements in the chart. In the chart of Figure 2.35,
there are 200 elements; hence, the influence value I = 0.005.
Steps of the procedure for obtaining vertical stress σz at a point of depth z below a uniformly loaded

area of any shape are as follows:

• Determine the depth z below the uniformly loaded area at which the vertical stress is required.

• Plot the plan of the loaded area on a transparent paper to a scale such that the length of the scale line
AB represents the depth z at which the vertical stress σz is required. On the drawn plan locate the
point, say point x, below which σz is required.

• Place the plan on top of the influence chart with point x located at the origin of the chart.

• Count the number of elements M occupied by the plan of the loaded area.

• The vertical stress at the point under consideration is given by

σz = I Mq 2 19

where I and M are dimensionless quantities.

2.7.8 Pressure Bulbs Method of Determining Vertical Stresses

Based on Boussinesq’s equation, the vertical stresses under continuous (strip), rectangular, square and
circular footings have been computed. For example, the results due to uniformly loaded square and
continuous areas are shown in Figures 2.36 and 2.37. The magnitudes of vertical stresses at various
points in a soil mass are given in terms of the uniform contact pressures qo in Figure 2.36 and q in
Figure 2.37. The vertical stress is designated q in Figure 2.36. The pressure bulbs are isobars (lines

A

B

1 unit

Influence value: I=0.005

O

Figure 2.35 Influence chart for computing vertical stresses based on Boussinesq’s theory (after Newmark, 1942).
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footings. Applicable only along line ab from centre to edge of base (From Bowles, 2001).
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Figure 2.37 Contours of equal vertical stress: (a) under strip area, (b) under square area (redrawn from Knappett
and Craig, 2012).
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of constant vertical stress) obtained by constructing vertical stress profiles at selected points across the
footing width B and interpolating points of vertical stress intensity.
All concepts of the size of the pressure bulb depend on an arbitrary choice of the magnitude of a

stress at which other stress values are considered to pass from appreciable or significant to inappre-
ciable or negligible. If vertical stresses are considered to be of inappreciable magnitude when they
are smaller than 20% of the uniform contact pressure at the surface of loading, the isobar (stress con-
tour) labelled 0.2 in Figure 2.36 or 0.2 q in Figure 2.37 may be said to define the outline of the pressure
bulb. However, it is generally considered that the zone inside the isobar labelled 0.1 is the bulb of pres-
sure. The zones outside this bulb of pressure are assumed to have negligible vertical stresses. On this
basis the depth of the bulb is between 1.5 and 2.0 times the diameter of the uniformly loaded circular
surface area. It is, of course, an arbitrary choice, but in general bulb of pressure is considered to have a
depth roughly 1.5 times the breadth of the loaded area.
Knowledge of isobars is useful for determining the effect of the foundation load on the vertical stres-

ses at various points in the supporting material. Consequently, the bulb of pressure has a significant
effect on the settlement of structures. Also, it is of extreme importance in subsurface exploration
regarding the depth to which preliminary borings should penetrate.

2.7.9 Average Vertical Stress Due to a Loaded Rectangular Area

The average vertical stress, with limits of depth z = 0 to z = H, below the corner of a uniformly loaded
rectangular area (Figure 2.38), can be evaluated as

σz,av =
1
H

H

0
qI dz = qIa 2 20a

where Ia = f m,n , m=
B
H
, andn=

L
H

Loaded

area

Plan

Section

L

B

q

Hz

A

dz

z

σz,av σz

Figure 2.38 Average of vertical stresses below corner of a uniformly loaded rectangular flexible area.
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The variation of Ia with m and n is shown in Figure 2.39, as proposed by Griffiths (1984).
Considering a given layer between z = H1 and z = H2, as shown in Figure 2.40, the average vertical

stress below the corner of a uniformly loaded rectangular flexible area can be determined as
(Griffiths, 1984)

σav = q
H2Ia H2

−H1Ia H1

H2−H1
2 20b
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Figure 2.39 Griffiths influence factor, Ia.
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Figure 2.40 Average of vertical stresses between z = H1 and z = H2 below the corner of a uniformly loaded
rectangular flexible area.
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Where Ia H2
= Ia = f m=

B
H2

, n=
L
H2

for z = 0 to z = H2, and

Ia H1
= Ia = f m=

B
H1

, n=
L
H1

for z = 0 to z =H1

Another simple and nearly accurate method for determination of an average vertical stress σav in a
layer is by the use of the following Simpson’s rule, provided that the vertical stress values at top, middle
and bottom of the layer are known:

σav =
1
6
σzt + 4σzm + σzb

Where σzt, σzm and σzb are vertical stresses at top, middle and bottom of the layer.

2.7.10 Westergaard’s Equations

An actual soil mass may not be as homogeneous and isotropic as Boussinesq’s solution assumes.
Sedimentary soil deposits are generally anisotropic.
Typical clay strata usually have partings or thin lenses of coarser and more rigid materials sandwiched

within them. These lenses or thin sheets are the cause of a greatly increased resistance to lateral strain.
Westergaard (1938) derived equations, for computing vertical stress σz, based on conditions which

are nearly analogous to extreme conditions exist in reality. Therefore, Westergaard’s elastic solution
can give a better estimate of vertical stress in actual sedimentary soil deposits and in a soil mass consists
of layered strata of fine and coarse materials.
Westergaard’s equation for the vertical stress caused by a surface point load Q is

σz =
Q

1
2π

1−2μ
2−2μ

z2
1−2μ
2−2μ

+
r
z

2 3 2
2 21

As it is seen, the Westergaard’s equation, unlike that of the Boussinesq’s, includes Poisson’s ratio μ;
the other terms are the same as defined in the Boussinesq equation. Also, as done for the Boussinesq
equation we can write this equation as

σz =
Q
z2

Iw 2 22

Where, Iw represents Westergaard influence coefficient. For μ = 0.30 we obtain the following values:

r/z 0.0 0.1 0.2 0.3 0.4 0.5 0.75 1.0 1.5 2.0

Iw 0.557 0.529 0.458 0.369 0.286 0.217 0.109 0.058 0.021 0.01
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According to Taylor (1948), for cases of point loads with r/z less than about 0.8, theWestergaard’s
equation, assuming μ = 0, gives values of vertical stresses which are approximately equal to two
thirds of the values given by the Boussinesq equation. Also, it gives results as reasonable as any
for use in connection with soil analyses, since it gives the flattest curve of vertical stress variation
(or influence factor) with depth and a flat curve is the logical shape for a case of large lateral
restraint.

For the assumed condition of μ = 0, Equation (2.21) becomes

σz =
Q

1
π

z2 1 + 2
r
z

2 3 2
=
Q
z2

IW 2 23

Similarly as for the Boussinesq equation, Westergaard’s equation, Equation (2.21), can also be
integrated over uniformly loaded circular and rectangular areas to obtain equations for σz, as written
below:

For a circular area

σz = q 1−
a

r
z

2
+ a

= q IWc a=
1−2μ
2−2μ

2 24

For a rectangular area; σz below corner of the area

σz =
q
2π

cot−1 a
1
m2

+
1
n2

+ a2
1

m2n2

1 2

=
q
2π

IWr 2 25a

σz =
q
2π

cot−1
1

2m2
+

1
2n2

+
1

4m2n2

1 2

for μ= 0 2 25b

The factors m and n are as previously defined with the Newmark table or Fadum chart.
Also, just like Newmark’s charts, there are influence charts based on Westergaard’s equation, for a

given value of μ, available in geotechnical text books. They are used in the same manner as that for the
Boussinesq (Newmark) charts.

According to Taylor (1948), it has been found that estimates of settlements obtained by use of the
Boussinesq equations for estimation of stresses, which is a procedure widely in use, are in the great
majority of cases larger than the observed settlements. This may be somewhat of an indication that
the Boussinesq equations give stress values which are relatively large, although it also could be the result
of other assumptions that are used in settlement estimates.

For these reasons the Westergaard equations tend to be accepted by many engineers as
somewhat preferable to the Boussinesq equations for use in settlement predictions of sedimentary soil
deposits.
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Problem Solving

Problem 2.1

Compute the effective contact pressure q beneath the following foundations:

(a) An individual column footing is 0.5 m × 2.0 m × 2.0 m. The column load is 500 kN. Unit weights of concrete
and the overburden soil are 24 and 18 kN/m3, respectively. The foundation depth is 2.5 m, and the water table
is located at a depth of 2.2 m below the ground surface.

(b) A continuous concrete footing is 0.75 m wide and 0.50 m thick, supports a wall load of 100 kN/m. The foun-
dation level is at a depth of 0.5 m below the ground surface. The soil has a unit weight of 17 kN/m3. The ground
water table is at a depth of 8 m below the ground surface.

(c) A mat foundation of a building structure is 1.2 m × 40 m × 80 m. The sum of the column and wall loads is
800 MN. The foundation depth is 10 m, and the water table exists at 5 m depth below the ground surface. The
unit weight γ of the soil above and below water table are 17 and 20 kN/m3 respectively.

Also, compute the net increase in the vertical effective stress immediately below the mat centre.

Solution:
(a)

Wf = 2 × 2 × 0 5 × 24 = 48 kN

Weight of overburden (backfill) soil

= 2 × 2 × 2 × 18 = 144 kN

The upward pore water pressure

= 10 2 5−2 2 = 3 kN m2

The effective contact pressure is

q=
500 + 48 + 144

2 × 2
– 3 = 170 kPa

(b)

Wf = 1 × 0 75 × 0 5 × 24 = 9 kN

Here, since the foundation depth equals the footing thickness there will be no backfill soil.
Also, since the water table exists below the foundation level, there will be no uplift pressure. Hence, the

effective contact pressure is

q=
100 + 9
1 × 0 75

= 145 3 kPa

(Continued)

2.2 m 2.0 m

500 kN

2.0 m

0.5 m

Scheme 2.1
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(c)
Wf = 1 2 × 40 × 80 × 24 = 92160 kN

The effective contact pressure is

q= 800000 + 92160 40 × 80 −5 × 10 = 228 8kPa

The vertical effective stress (i.e.
the effective overburden pressure)
at the foundation level due to the
effective weight of the overburden
soil is

σo = 5 × 17 + 5 20 – 10 = 135 kPa

Hence, the net increase in the vertical effective stress immediately below the mat centre due to the foundation
load is

228 8−135 0 = 93 8 kPa

Problem 2.2

A continuous footing is 1.5 m wide, subjected to a
concentric vertical load V = 200 kN/m and moment
My = 40 m.kN/m acting laterally across the footing,
as shown in the scheme. The ground water table is
at a great depth. Unit weight of concrete = 24 kN/
m3. Determine whether the resultant force on the
footing base acts within the middle third and
compute the maximum and minimum contact
pressures.

Solution:

Wf = 0 5 × 1 5 × 1 0 × 24 = 18 kN m

Equation 2 5 ex =

My

L
V
L
+
Wf

L

=
40

200 + 18
= 0 183m

800 MN

5 m

1.2 m

10 m

Mat: 40 m × 80 m

Scheme 2.2

V

My

1.5 m

0.5 m

Scheme 2.3
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B
6
=
1 5
6

= 0 25m> e. Therefore, the resultant force acts within the middle third.

The ground water table has no effect on the contact pressure, since it exists at a great depth below the
foundation level.

Equation 2 7 q=
R
BL

1 ±
6ex
B

±
6ey
L

=
200 + 18
1 5 × 1

1 ±
6 × 0 183

1 5
± 0

qmax = 145 33 + 106 56 = 251 89 kPa

qmin = 145 33−106 56 = 38 77 kPa

Problem 2.3

Six cylindrical grain silos are to be supported by a mat foundation, as shown in the scheme below. Weight of the
mat is 90 MN, and empty weight of each silo is 29 MN. Each silo can hold up 110 MN. Each silo will be filled
independently. For the various critical loading conditions find whether the resultant force falls within the kern.
In case the resultant falls within the kern compute the maximum and minimum contact pressures and show the
contact pressure diagram, and if it does not, revise the plan dimensions of the mat so that Equation (2.8) is
satisfied.

(Continued)

12 m

24 m

24 m

B = 50 m

Silo

Elevation

Plan

Silo

Mat

y

x

24 m

L = 75 m

Scheme 2.4
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Solution:
(1) Check one-way eccentricity

(a) One-way eccentricity in L or y direction occurs when two adjacent (in B or x direction) corner silos are full
of grains and the other four silos are empty.

Weight of grains in the two silos cause a moment about x axis equals

Mx = 2 × 110 × 24 = 5280MN m

R= 6 × 29 + 2 × 110 + 90 = 484MN

eL = ey =
Mx

R
=
5280
484

= 10 91m; eB = ex = 0

L
6
=
75
6
= 12 5 > eL the resultant R falls within the kern

or,

Equation 2 8
6eB
B

+
6eL
L

≤ 1

6eB
B

+
6eL
L

= 0 +
6 × 10 91

75
= 0 87 < 1 the resultant R falls within the kern.

Equation 2 7 q=
R
BL

1 ±
6ex
B

±
6ey
L

=
484

50 × 75
1 ± 0 ±

6 × 10 91
75

Use the plus sign (+) for soil in compression, and the minus sign (−) for soil in tension.

qmax =
484

50 × 75
1 +

6 × 10 91
75

= 0 24175 MN m2 =241 75 kPa

qmin =
484

50 × 75
1−

6 × 10 91
75

= 0 01642 MN m2 = 16 42 kPa

(b) One-way eccentricity in B or x direction occurs when three silos in one row are full, and the other three
silos are empty.

Weight of grains in the three silos cause a moment about y axis equals

My = 3 × 110 × 12 = 3960MN m

R= 6 × 29 + 3 × 110 + 90 = 594MN

eB = ex =
My

R
=
3960
594

= 6 67m; eL = ey = 0

6eB
B

+
6eL
L

=
6 × 6 67

50
+ 0 = 0 80 < 1 the resultant R falls within the kern.

qmax

= 241.75 kPa

qmin

= 16.42 kPa

L = 75 m

Scheme 2.5
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qmax =
R
A

1 +
6eB
B

=
594

50 × 75
1 +

6 × 6 67
50

= 0 28518 MN m2 = 285 18 kPa

qmin =
R
A

1 –
6eB
B

=
594

50 × 75
1 –

6 × 6 67
50

= 0 03168 MN m2 = 31 68 kPa

(c) One-way eccentricity in B or x direction occurs when one of the two silos, located on x axis, is full and the
other five silos are empty.

Weight of grains in the silo cause a moment about y axis equals

My = 1 × 110 × 12 = 1320MN m

R= 6 × 29 + 1 × 110 + 90 = 374MN

eB = ex =
My

R
=
1320
374

= 3 53m; eL = ey = 0

6eB
B

+
6eL
L

=
6 × 3 53

50
+ 0 = 0 42 < 1 the resultant R falls within the kern.

qmax =
R
A

1 +
6eB
B

=
374

50 × 75
1 +

6 × 3 53
50

= 0 1416 MN m2 = 141 62 kPa

qmin =
R
A

1 –
6eB
B

=
374

50 × 75
1 –

6 × 3 53
50

= 0 05749 MN m2 = 57 49 kPa

(d) One-way eccentricity in B or x direction occurs when the two corner silos, located on a line parallel to
y axis, are full and the other four silos are empty. Since computing eccentricity and pressures are similar to
those presented in (b), this will be left to the reader.

(Continued)

B = 50 m

qmax

= 285.18 kPa

qmin

= 31.68 kPa

Scheme 2.6
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(2) Check two-way eccentricity
(a) Eccentricities ex and ey occur simultaneously when one corner silo is full, and the other five silos

are empty.

Mx = 1 × 110 × 24 = 2640MN m

My = 1 × 110 × 12 = 1320MN m

R= 6 × 29 + 1 × 110 + 90 = 374MN

eB = ex =
My

R
=
1320
374

= 3 53m; eL = ey =
Mx

R
=
2640
374

= 7 06m

6eB
B

+
6eL
L

=
6 × 3 53

50
+
6 × 7 06

75
= 0 424 + 0 565 = 0 989m< 1 the resultant R falls within the kern but

very close to the limit.
It may not be necessary now to compute the contact pressures for this case because in the remaining

critical cases the resultant may not be located within the kern and a revise of mat dimensions may be
required.

(b) Eccentricities ex and ey occur simultaneously when two adjacent silos, located on a line parallel to y axis,
are full and the other four silos are empty.

Mx = 1 × 110 × 24 = 2640MN m

My = 2 × 110 × 12 = 2640MN m

R= 6 × 29 + 2 × 110 + 90 = 484MN

eB = ex =
My

R
=
2640
484

= 5 45m; eL = ey =
Mx

R
=
2640
484

= 5 45m

6eB
B

+
6eL
L

=
6 × 5 45

50
+
6 × 5 45

75
= 0 654 + 0 436 = 1 09m> 1 the resultant R does not fall within the

kern but very close to limit.
Therefore, the mat dimensions should be revised.

However, it would be better to examine the following case too before doing any change in dimensions.
(c) Eccentricities ex and ey occur simultaneously when two adjacent corner silos and another adjacent silo are

full and the other three silos are empty.

Mx = 2 × 110 × 24 = 5280MN m

My = 1 × 110 × 12 = 1320MN m

R= 6 × 29 + 3 × 110 + 90 = 594MN

B = 50 m

qmax

= 141.62 kPa

qmin

= 57.49 kPa

Scheme 2.7 (belongs to (c) in previous page)
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eB = ex =
My

R
=
1320
594

= 2 22 m, eL = ey =
Mx

R
=
5280
594

= 8 89 m

6eB
B

+
6eL
L

=
6 × 2 22

50
+
6 × 8 89

75
= 0 266 + 0 711 = 0 977m < 1 the resultant R falls within the kern but

very close to the limit.
The above results reveal that the mat dimensions need to be revised, as indicated in case (2b).

Try a mat area 56 m × 80 m provided that centre to centre of the silos and their distances from the x and y axis
remain unchanged (i.e. the mat projections are increased only). Weight of the mat becomes 107.52 MN.

Consider case (2b) again:

Mx = 1 × 110 × 24 = 2640MN m

My = 2 × 110 × 12 = 2640MN m

R= 6 × 29 + 2 × 110 + 107 52 = 501 52MN

eB = ex =
My

R
=

2640
501 52

= 5 26m; eL = ey =
Mx

R
=

2640
501 52

= 5 26m

6eB
B

+
6eL
L

=
6 × 5 26

56
+
6 × 5 26

80
= 0 564 + 0 395 = 0 96m; hence, the resultant R falls within the kern.

Equation 2 7 q=
R
BL

1 ±
6ex
B

±
6ey
L

qA =
R
BL

1−
6ex
B

−
6ey
L

=
501 52
56 × 80

1−
6 × 5 26

56
−
6 × 5 26

80

qA = 0 112 1−0 564−0 395 = 0 0046MN m2 = 4 6 kPa

qB = 0 112 1 + 0 564−0 395 = 0 1309MN m2 = 130 9 kPa

qC = 0 112 1−0 564 + 0 395 = 0 0046MN m2 = 93 1 kPa

qD = 0 112 1 + 0 564 + 0 395 = 0 0046MN m2 = 219 4 kPa

12 m 12 m

Full silo

y
q

B

q
A

q
C

q
D

BA

C D

Plan

Contact pressure

diagram for case 2-(b)

B = 56 m

L =

80 m

24 m

24 m

Empty silo

Scheme 2.8
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Problem 2.4

The square footing shown in the scheme below is subjected to a concentric column load V = 300 kN and moment
M = 50 kN.m acting clockwise about the diagonal axisAD. The footing is 0.6 m thick. The foundation depth equals
0.6 m and the ground water table is encountered at a great depth. Determine whether the resultant force falls
within the kern of the footing base area, and compute contact pressure at corner points A, B, C and D.

Solution:
The resultant force is

R= 300 + 0 6 × 1 7 × 1 7 × 24 = 341 62 kN

e =
50

341 62
= 0 15m. The components of this eccentricity are

ex = e cos 45o = 0 15 × 0 707 = 0 11m< 1 7 6

ey = e sin 45o = 0 15 × 0 707 = 0 11m< 1 7 6

6eB
B

+
6eL
L

=
6 × 0 11
1 7

+
6 × 0 11
1 7

= 0 39 + 0 39 = 0 78 < 1. Hence, the resultant R falls within the kern.

y

BA

M

M

0.6 m

V

x
1.7 m

1.7 m

1.7 m

DC

Scheme 2.9

R
y

B

D

x

ex

1.7 m
45°

1.7 m

A

C

ey

Scheme 2.10
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q=
R
BL

1 ±
6ex
B

±
6ey
L

qA =
R
BL

1−
6ex
B

+
6ey
L

=
341 62
1 7 × 1 7

1−
6 × 0 11
1 7

+
6 × 0 11
1 7

= 118 21 1−0 39 + 0 39 = 118 21 kPa

qB = 118 21 1 + 0 39 + 0 39 = 210 41 kPa

qC = 118 21 1−0 39−0 39 = 26 01 kPa

qD = 118 21 1 + 0 39−0 39 = 118 21 kPa

Problem 2.5

(a) Two columns A and B are to be supported on a trapezoidal combined footing, as shown in the scheme
below. The footing is 0.7 m thick. The top of the footing is flush with the ground surface, and the ground
water table is located at a great depth. The vertical dead load on columns A and B is 500 and 1400 kN,
respectively. Determine dimension B2 so that the resultant of the column loads acts through the centroid
of the footing.

(b) In addition to the dead loads, columns A and B also can carry vertical live loads of up to 800 and 1200 kN,
respectively. The live load on each column is independent of that on the other column; that is, one could be
carrying the full live load while the other does not. Using the dimensions obtained in (a), find the worst
possible combination of the columns live load.

Solution:
(a) Centroid of the trapezoid is located at distance m from B2, as shown. The trapezoid rule gives

m=
L
3

2B1 +B2

B1 +B2
=
4 5
3

2 × 1 5 +B2

B1 +B2
=
4 5 + 1 5B2

B2 + 1 5
1

Wf = 24 × 0 7 × 4 5
1 5 +B2

2
= 56 7 + 37 8B2

R=Wf + 500 + 1400 = 56 7 + 37 8B2 + 1900 = 1956 7 + 37 8B2

(Continued)

y

xBA

Centroid

3.0 m 1.0 m0.5 m

B1= 1.5 m B2

m

Scheme 2.11
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Moment of R about B2 equals to moment of components:

m 1956 7 + 37 8B2 =m 56 7 + 37 8B2 + 4 × 500 + 1 × 1400

m=
3400
1900

= 1 79m 2

Hence,

1 79 =
4 5 + 1 5B2

B2 + 1 5
1 79B2 + 2 69 = 4 5 + 1 5B2 0 29B2 = 1 81

B2 =
1 81
0 29

= 6 241m UseB2 = 6 3m

m=
4 5 + 1 5B2

B2 + 1 5
=
4 5 + 1 5 × 6 3

6 3 + 1 5
= 1 79m unchanged

(b) In order to find the worst possible combination of the columns live load, it is necessary to find which
combination produces the greatest maximum contact pressure qmax. Therefore the following possible loading
conditions may be examined:
(1) The two column live loads are present at the same time.

A= 4 5
1 5 + 6 3

2
= 17 55 m2,Wf = 0 7 × 17 55 × 24 = 294 84 kN

R= 294 84 + 500 + 800 + 1400 + 1200 = 4194 84 kN

Moment of R about B2 equals to moment of components:

4194 84x = 294 84 × 1 79 + 1300 × 4 + 2600 × 1 = 8327 76

x =
8327 76
4194 84

= 1 99m>m; ex = x −m= 1 99−1 79 = 0 2

Equation 2 6 q=
R
A
±
My

Iy
x ±

Mx

Ix
y

Mx = 0; xmax = L−m= 4 5−1 79 = 2 71m

For a trapezoid area

Iy =
B2
1 + 4B1B2 +B2

2

36 B1 +B2
L3

Iy =
1 52 + 4 × 1 5 × 6 3 + 6 32

36 1 5 + 6 3
4 53 = 25 88m4

My =Rex = 4194 84 × 0 2 = 838 97 kN m

qmax =
4194 84
17 55

+
838 97 × 2 71

25 88
= 239 02 + 87 85 = 326 87 kPa

It may be noticed that qmin is also positive. Therefore, the supporting soil is totally in compression.
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(2) Live load of column A is present only.

R= 294 84 + 500 + 800 + 1400 = 2994 84Kn

Moment of R about B2 equals to moment of components:

2994 84x = 294 84 × 1 79 + 1300 × 4 + 1400 × 1 = 7127 76

x =
7127 76
2994 84

= 2 38m>m; ex = x −m= 2 38−1 79 = 0 59m

qmax =
R
A
+
Myxmax

Iy
, xmax = L−m= 4 5−1 79 = 2 71m

My =Rex = 2994 84 × 0 59 = 1766 96 kN m

qmax =
2994 84
17 55

+
1766 96 × 2 71

25 88
= 170 65 + 185 03 = 355 68 kPa

However, in this case, qmin is negative which indicates tension between the soil and a part of the footing
bottom. Because soil cannot take any tension, separation between the footing and the soil underlying it will
take place. This condition tends to overload the base soil, that is to increase qmax. Therefore, the maximum
contact pressure needs to be recomputed, using the same concept as outlined for rectangular footings (see
Figure 2.23).
The soil reaction resultant Rs remains equal and opposite in direction to the resultant R, as shown below.

Let L represent length of the base area under which the soil is in compression, andm equals the distance of
its centroid from side B, as shown in the scheme below.

(Continued)

L′

L′

2.12 m

Centroid

R
B B2= 6.3 mB1= 1.5 m

L = 4.5 m

R

Rs

qmax

ex m

x

m′

m′

Scheme 2.12
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L − L−x =m =
L
3

2B1 +B
B1 +B

L − 4 5−2 38 =
L
3

2 × 1 5 +B
1 5 +B

L −2 12 =
L
3

2 × 1 5 +B
1 5 +B

………… 1

B=B1 + 2 L
B2−B1

2
L = 1 5 + L

6 3−1 5
4 5

B= 1 5 + 1 07L ………… 2
Hence,

L −2 12 =
L
3

2 × 1 5 + 1 5 + 1 07L
1 5 + 1 5 + 1 07L

=
L
3

4 5 + 1 07L
3 + 1 07L

3L + 1 07 L 2−6 36−2 27L = 1 5L + 0 36 L 2

L 2−1 08 L −8 96 = 0

L =
− −1 08 ± −1 08 2 −4 1 −8 96

2 1
=
1 08 ± 6 08

2
= 3 58m

Rs =R= 2994 84 kN

Rs =
qmax L

2
B1 +B
2

=
qmax 3 58

2
1 5 + 1 5 + 1 07 × 3 58

2
= 6 11 qmax

qmax =
2994 84
6 11

= 490 15 kPa > 355 68 kPa

(3) Live load of column B is present only.

R= 294 84 + 500 + 1400 + 1200 = 3394 84 kN

Moment of R about B2 equals to moment of components:

3394 84 x = 294 84 × 1 79 + 500 × 4 + 2600 × 1 = 5127 76

x =
5127 76
3394 84

= 1 51m<m; ex =m−x = 1 79−1 51 = 0 28

qmax =
R
A
+
Myxmax

Iy
, xmax =m= 1 79m

My =Rex = 3394 84 × 0 28 = 950 56 kN m

qmax =
3394 84
17 55

+
950 56 × 1 79

25 88
= 193 44 + 65 75 = 259 19 kPa

Therefore, the worst possible combination of the columns live load occurs when the live load of columnA is
present only.
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Problem 2.6

Awater tower has a circular foundation of 10m diameter. If the total weight of the tower, including the foundation,
is 20 MN, calculate the vertical stress increase at a depth of 2.5 m below the foundation level.

Solution:
The base area A= 22 7 102 4 = 78 57m2

The uniformly distributed load q= 20 78 57 = 0 255MN m2

Equation 2 16 σz = q 1−
1

1 + R z 2 3 2

= 0 255 1−
1

1 + 5 2 5 2 3 2

= 0 255 × 0 911 = 0 2319MN m2 = 231 9 kPa

Problem 2.7

Amonument weighing 15MN is erected on the ground surface. Considering the load as a concentrated one, deter-
mine the vertical pressure directly under the monument at a depth of 8 m below the ground surface.

Solution:

Equation 2 11 σz =
3V
2πz2

1

1 + r ∕z 2 5 ∕2 =
3 × 15

2π 8 2

1

1 + 0 ∕z 2 5 ∕2

σz =
3 × 15

2π 8 2 = 0 1119MN m2 = 111 9 kPa

Problem 2.8

A square foundation 5 × 5m is to carry a load of 4MN. Calculate the vertical stress increase at a depth of 5 m below
the centre of the foundation, using (a) The Newmark table, (b) The approximate 2 V: 1 H ratio method

Solution:
(a) The area is divided into four squares, each of B = L = 5/2 = 2.5 m.

B z = L z = 2 5 5 = 0 5

From Table 2.3 find I = 0.084

σz = q 4I =
4

5 × 5
× 4 × 0 084 = 0 05376MN m2 = 53 76 kPa

(Continued)
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(b) Using the approximate 2 V: 1 H ratio method

σz =
V

B + z L + z
=

4
5 + 5 5 + 5

= 0 040MN m2 = 40 kPa

Problem 2.9

Two columns A and B situated 6 m apart. Column A transfers a load of 500 kN, and column B transfers a load of
250 kN. Determine the resultant vertical stress increase at points vertically below the columns on a horizontal
plane 2 m below the ground surface.

Solution:
Consider the point below column A:

Equation 2 11 σz =
3V
2πz2

1

1 + r z 2 5 2

Vertical stress increase due to load of column A

σz =
3 × 500
2π22

1

1 + 0 ∕2 2 5 ∕2 = 59 67 kPa

Vertical stress increase due to load of column B

σz =
3V
2πz2

1

1 + r ∕z 2 5 ∕2 =
3 × 250
2π22

1

1 + 6 ∕2 2 5 ∕2 = 29 83 ×
1

105 2
= 0 09 kPa

The resultant vertical stress increase = 59.67 + 0.09 = 59.76 kPa
Consider the point below column B:

Equation 2 11 σz =
3V
2πz2

1

1 + r z 2 5 2

Vertical stress increase due to load of column B

σz =
3 × 250
2π22

1

1 + 0 ∕2 2 5 ∕2 = 29 83 kPa

Vertical stress increase due to load of column A

σz =
3 × 500
2π22

1

1 + 6 ∕2 2 5 ∕2 = 59 67 ×
1

105 2
= 0 19 kPa

The resultant vertical stress increase = 29.83 + 0.19 = 30.02 kPa
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Problem 2.10

An excavation 3 × 6 m for a foundation is to be made to a depth of 2.5 m below ground level in a soil of bulk
unit weight = 20 kN/m3. What effect this excavation will have on the vertical pressure at a depth of 6 m measured
from the ground surface vertically below the centre of foundation? The influence factor form = 0.43 and n = 0.86
is 0.10.

Solution:
The area is divided into four rectangles, each of B = 1.5 m and L = 3 m.

m = B z = 1 5 6−2 5 = 0 43

n = L z = 3 6−2 5 = 0 86

From Table 2.3 find I = 0.1

The decrease in vertical stress is
σz = q(4I) = (20 × 2.5)(4 × 0.1) = 20 kPa. Therefore, the vertical stress at 6 m depth will be decreased by 20 kPa.

Problem 2.11

The contact pressure due to a mat foundation 10 × 20 m is 250 kPa. Determine the vertical stress increase at a
depth of 5 m below P at the foundation level, as shown in the scheme below. Use the Fadum chart of Figure 2.32.

Solution:
A large rectangle EIPJ is drawn such that point p is one of its corners.

σz = q I1− I2− I3 + I4

I1 = influence factor for rectangle EIPJ;m=
18
5
= 3 6, n =

28
5
= 5 6

I2 = influence factor for rectangle FIPL;m=
8
5
= 1 6, n=

18
5
= 3 6

I3 = influence factor for rectangle HKPJ;m=
8
5
= 1 6, n=

28
5
= 5 6

I4 = influence factor for rectangle GKPL; m=
8
5
= 1 6, n=

8
5
= 1 6

(Continued)
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From the Fadum chart:

I1 = 0 248, I2 = 0 233, I3 = 0 233, I4 = 0 223

σz = 250 0 248−0 233−0 233 + 0 223 = 1 25 kPa

Problem 2.12

A column footing foundation is shown in the schemes (plan and profile) below. Determine the average increase in
pressure within the clay layer below the centre of the footing using (a) The Griffiths equation, (b) The Newmark
method based on the Boussinesq solution, (c) The Westergaard solution; μ = 0.45, and (d) The approximate 2V :
1H ratio method.

Sand

Sand

W.T

eo= 0.8

1.22 m

1.52 m

Q = 900 kN (net load)

3.05 m Cc= 0.25

Cr= 0.06

Preconsolidation pressure = 100 kN/m2

γ = 15.7 kN/m3

γsat= 19.24 kN / m3

Clay: γsat= 19.24 kN/m3

Δ

Scheme 2.15

1.83 m

1.83 m

Scheme 2.14
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Solution:
(a) Using the Griffiths equation

Equation 2 20b σav = q
H2Ia H2

−H1Ia H1

H2−H1

The loaded area can be divided into four squares, each measuring 0.915 × 0.915 m.

H1 = 1 22m;H2 = 1 22 + 3 05 = 4 27m

Ia H2
m=

B
H2

=
0 915
4 27

= 0 214, n=
L
H2

=
0 915
4 27

= 0 214

From the Griffiths chart estimate Ia H2
= 0 1

Ia H1
m =

B
H1

=
0 915
1 22

= 0 75, n=
L
H1

=
0 915
1 22

= 0 75

From the Griffiths chart estimate Ia H1
= 0 204

σav =
900

1 83 × 1 83
4 27 × 0 10−1 22 × 0 204

4 27−1 22
= 268 74 × 0 059 = 15 86 kPa

The average increase in pressure in the clay layer below the centre of the foundation is

4σav = 4 × 15 86 = 63 44 kPa

(b) Using the Newmark method based on the Boussinesq solution

σz = q 4 I

The average increase in pressure σav may be approximated by the use of Simpson’s rule

σav =
1
6
σzt + 4σzm + σzb

where σzt, σzm and σzb are vertical stresses at top, middle and bottom of the clay layer, respectively.
At top:

Table 2.3: m=
B
z
=
0 915
1 22

= 0 75, n=
L
z
=
0 915
1 22

= 0 75 I = 0 137

σzt =
900

1 83 × 1 83
4 × 0 137 = 147 27 kPa

At middle:

Table 2.3: m=
B
z
=
0 915
2 75

= 0 33, n=
L
z
=
0 915
2 75

= 0 33 I = 0 043

σzm =
900

1 83 × 1 83
4 × 0 043 = 46 22 kPa

(Continued)
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At bottom:

Table 2.3: m=
B
z
=
0 915
4 27

= 0 21, n=
L
z
=
0 915
4 27

= 0 21 I = 0 021

σzb =
900

1 83 × 1 83
4 × 0 021 = 22 57 kPa

σav =
1
6
147 27 + 4 × 46 22 + 22 57 = 59 12 kPa

(c) Using the Westergaard equation with μ = 0.45 for saturated clay

Equation 2 25− a σz =
q
2π

cot−1 a
1
m2

+
1
n2

+ a2
1

m2n2
1
2

a=
1−2μ
2−2μ

=
1−2 × 0 45
2−2 × 0 45

= 0 09

Follow the same procedure used in (b) above:
At top:

m=
B
z
=
0 915
1 22

= 0 75, n=
L
z
=
0 915
1 22

= 0 75

σzt = 4
900

1 83 × 1 83 × 2 × π
cot−1

0 09
1
m2

+
1
n2

+ 0 092
1

m2n2

1 2

= 4 42 75 cot−1 0 09
1

0 752
+

1
0 752

+ 0 092
1

0 752 × 0 752

1 2

= 4 42 75 cot−10 588 = 4 42 75 × 0 33 π = 177 65 kPa

At middle:

m=
B
z
=
0 915
2 75

= 0 33, n=
L
z
=
0 915
2 75

= 0 33

m=
B
z
=
0 915
2 75

= 0 33, n=
L
z
=
0 915
2 75

= 0 33

σzm = 4 42 75 cot−10 921 = 4 42 75 × 0 26 π = 139 72 kPa

At bottom:

m=
B
z
=
0 915
4 27

= 0 21, n=
L
z
=
0 915
4 27

= 0 21

σzb = 4 42 75 cot−1 0 09
1

0 212
+

1
0 212

+ 0 092
1

0 212 × 0 212

1 2

σzb = 4 42 75 cot−10 921 = 4 42 75 × 0 11 π = 59 12kPa

σav =
1
6
177 65 + 4 × 139 72 + 59 12 = 132 6 kPa
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(d) Using the approximate 2V : 1H ratio method

Equation 2 18 σz =
V

B + z L + z

V =Q= 900 kPa

At top:

σzt =
900

1 83 + 1 22 1 83 + 1 22
= 96 75 kPa

At middle:

σzm =
900

1 83 + 2 75 1 83 + 2 75
= 42 91 kPa

At bottom:

σzb =
900

1 83 + 4 27 1 83 + 4 27
= 24 19 kPa

σav =
1
6
σzt + 4σzm + σzb

σav =
1
6
96 75 + 4 × 42 91 + 24 19 = 48 76 kPa

Problem 2.13

An embankment is shown in the scheme below. Determine the vertical stress increase under the embankment at
points A1 and A2.

Solution:
The embankment section may be divided into a rectangle at the middle and two triangles on sides of the embank-
ment, as shown below. Superposition enables the vertical stress increase to be obtained at points A1 and A2 using
Equations (2.13), (2.14) and (2.15) as applicable.

Vertical stress increase at point A1:

tan
α

2
=
2 5
5

= 0 5
α

2
= 26 6 α= 53 2 ; β =

α

2
= 26 6

tan θ + β =
14 + 2 5

5
= 3 3 θ + β = 73 1 θ = 46 5

Equation 2 14 σz =
q
π

α+ sinα

Equation 2 15 σz =
q
π

x
B
θ−

1
2
sin2β

Σσz =
7 × 17 5

π

53 2
180

π + sin53 2 + 2
7 × 17 5

π

16 5
14

×
46 5
180

π−
1
2
sin53 2

= 67 42 + 43 42 = 110 84 kPa

(Continued)
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Vertical stress increase at point A2:
Vertical stress increase at point A2 equals to sum of the vertical stresses due to loads of the rectangle at the

middle and the two triangles on the sides, computed as shown below.

(1) Vertical stress due to load of the triangle on the right side of the embankment.

tanβ =
14
5
= 2 8 β = 70 4 , tan θ + β =

28
5
= 5 6

θ + β = 79 84 θ = 9 44

14 m

5 m

A 2

q

β

x = 28 m

B = 14 m

θ

Scheme 2.17

14 m 14 m

16.5 m11.5 m

A2 A1

5 m5 m

H = 7 m

5 m

γ =17.5 kN/m3

5 m

5 m

x = 16.5 m

B = 14 m

A1

q

αθ

β

Scheme 2.16
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Equation 2 15 σz =
q
π

x
B
θ−

1
2
sin2β =

7 × 17 5
π

28
14

×
9 44
180

π−
1
2
sin 140 8

σz1 = σz = 39 0 33−0 316 = 0 55 kPa

(2) Vertical stress due to load of the triangle on the left side of the embankment.

tanβ =
9
5
= 1 8 β = 61 , θ = 45 + 61 = 106

Note that, in this case, angle β should be treated negative, since point A2 is located within the
distance B.

Equation 2 15 σz =
q
π

x
B
θ−

1
2
sin −2β

=
7 × 17 5

π

5
14

×
106
180

π−
1
2
sin −122

σz2 = σz = 39 0 661 + 0 424 = 42 32 kPa

(3) Vertical stress due to load of the rectangle at middle of the embankment.

tan α+ β = 14 5 = 2 8 α+ β = 70 4

tanβ = 9 5 = 1 8 β = 61 ;α= 9 4

Equation 2 13 σz =
q
π
α+ sinα cos α+ 2β

σz3 = σz = 39
9 4π
180

+ sin9 4 cos 131 4

σz3 = 39 0 164−0 108 = 2 19 kPa

Σσz = σz1 + σz2 + σz3

= 0 55 + 42 32 + 2 19 = 45 06 kPa

5 m

5 m

A2

9 m

q

αβ

Scheme 2.19

B = 14 m

x = 5 m
q

A2

θ
β5 m

Scheme 2.18
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Problem 2.14

There is a line load of 120 kN/m acting on the ground surface along y axis, as shown below. Determine the vertical
stress at a point which has x and z coordinates at 2.0 m and 3.5 m, respectively.

Solution:

Equation 2 12 σz =
2V
π

z3

x2 + z2 2

σz =
2 × 120

π
×

3 53

22 + 3 52 2 = 12 4 kPa m length

Problem 2.15

Determine the vertical stress at point P which is 3 m below and at a radial distance of 3 m from the vertical point
load of 100 kN. Use:

(a) Boussinesq solution
(b) Westergaard solution with μ = 0
(c) Westergaard solution with μ = 0.4

Solution:
(a)

Equation 2 11 σz =
3V
2πz2

1

1 + r ∕z 2 5 ∕2 =
3 × 100
2π × 32

1

1 + 3 ∕3 2 5 ∕2 = 0 94 kPa

(b)

Equation 2 23 σz =
Q

1
π

z2 1 + 2
r
z

2 3 2
=

100 ×
1
π

32 1 + 2
3
3

2 3 2
= 0 68 kPa

V = 120 kN/m

+∞–∞

σz

z

z

x

x

y

A

Scheme 2.20
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(c)

σz =
Q

1
2π

1−2μ
2−2μ

z2 1−2μ 2−2μ + r z 2 3 2
=

100 ×
1
2π

1−2 × 0 4
2−2 × 0 4

32 1−2 × 0 4 2−2 × 0 4 + 3 3 2 3 2
= 0 573 kPa

Problem 2.16

The scheme below shows an embankment load on a silty clay layer of soil. Determine the vertical stress increase at
points A, B and C, located at a depth of 5 m below the ground surface.

Solution:
The embankment section may be divided into a rectangle at the middle and two triangles on sides of the embank-
ment, as shown below. Superposition enables the vertical stress increase to be obtained at points A, B and C using
Equations (2.13), (2.14) and (2.15) as applicable.

Vertical stress increase at point A:

tan
α

2
=
3
5
= 0 6

α

2
= 31 α= 62 ; β =

α

2
= 31

tan θ + β =
23
5
= 4 6 θ + β = 77 75 θ = 46 75

(Continued)

6 m

5 m

ABC

10 m

1V :2H1V :2H
Silty clay

γ = 17 kN/m3

Scheme 2.21

Silty clay

10 m

6 m

5 m

γ = 17 kN/m3

α θ

q

x

A

1V:2H 1V:2H

B

β

Scheme 2.22
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Equation 2 14 σz =
q
π

α+ sinα

Equation 2 15 σz =
q
π

x
B
θ−

1
2
sin2β

Σσz =
10 × 17

π

62
180

π + sin62 + 2
10 × 17

π

23
20

×
46 75
180

π−
1
2
sin62

= 106 31 + 53 79 = 160 1 kPa

Vertical stress increase at point B:
Vertical stress increase at point B equals to sum of the vertical stresses due to loads of the rectangle at the middle

and the two triangles on the sides, computed as shown below.

(1) Vertical stress due to load of the triangle on the right side of the embankment.

tanβ =
6
5
= 1 2 β = 50 3 , tan θ + β =

26
5
= 5 2

θ + β = 79 12o θ = 28 82

Equation 2 15 σz =
q
π

x
B
θ−

1
2
sin2β

σz1 = σz =
10 × 17

π

26
20

×
28 82
180

π−
1
2
sin100 6

= 54 09 0 654−0 491 = 8 82kPa

(2) Vertical stress due to load of the triangle on the left side of the embankment.

x = 26 m

q

B

β

6 m

5 m

1V : 2H 10 m

B = 20 m

θ

Scheme 2.23

10 m

x = B = 20 m

1V : 2
H

5 m
B

q

θ

Scheme 2.24
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β = 0 , tanθ =
20
5
= 4 θ = 76

Equation 2 15 σz =
q
π

x
B
θ−

1
2
sin2β

σz2 = σz =
q
π

x
B
θ = 54 09

20
20

×
76
180

π = 71 78 kPa

(3) Vertical stress due to load of the rectangle at middle of the embankment.

β = 0 , tan α+ β = tanα=
6
5
= 1 2 α= 50 3

Equation 2 13 σz =
q
π
α+ sinα cos α+ 2β

σz3 = σz = 54 09
50 3 × π
180

+ sin50 3 cos 50 3

= 54 09 0 878 + 0 491 = 74 05 kPa

Σσz = σz1 + σz2 + σz3
= 8 82 + 71 78 + 74 05 = 154 65 kPa

Vertical stress increase at point C:
The determination of vertical stress at point C proceeds in the same manner as that for vertical stress at point A2

in Problem 2.14. The necessary computations are left for the reader.

Problem 2.17

Three point loads 10, 7.5 and 9 MN, act in line 5 m apart near the surface of a soil mass, as shown below. Calculate
the vertical stress at a depth of 4 m vertically below the centre load.

Solution:
Vertical stress due to a point load is

Equation 2 11 σz =
3V
2πz2

1

1 + r ∕z 2 5 ∕2

(Continued)

5 m

6 m

q

B

α

Scheme 2.25
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Vertical stress due to the 10 MN load plus the 9 MN load is

σz =
3

2π × 42
1

1 + 5 ∕4 2 5 ∕2 10 + 9 = 0 00284 19 = 0 054MN m2

Vertical stress due to the 7.5 MN load is

σz =
3 × 7 5
2π × 42

1

1 + 0 ∕4 2 5 ∕2 = 0 224MN m2

Totalσz = 0 054 + 0 224 = 0 278MN m2 = 278 kPa

Problem 2.18

A strip footing 2.5 m wide carries a uniform pressure of 300 kPa on the surface of a deposit of sand, as shown in the
scheme below. The water table is at the surface. The sand has a saturated unit weight = 20 kN/m3. Determine the
effective vertical stress at a point 3m below the centre of the footing before and after the application of the pressure.

Solution:
Before loading:

Effective unit weight of soil = γ = γsat −γw

The effective unit weight of the sand = γ = 20−10 = 10 kN m3

The effective vertical stress = σz = 3 × γ = 3 × 10 = 30 kPa

10 MN 7.5 MN 9 MN

4 m

5 m5 m

Scheme 2.26

2.5 m

Sand:

γ = 20 kN/m3

W.T

3 m

q = 300 kPa

α

Scheme 2.27
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After loading:

tan
α

2
=
2 5 2
3

= 0 417
α

2
= 22 65 α= 45 3

Equation 2 14 σz =
q
π

α+ sinα =
300
π

45 3
180

π + sin45 3

= 143 35 kPa

The effective vertical stress = σz + σz = 143 35 + 30 00 = 173 35 kPa

Problem 2.19

Loads P and 2P of two columns are to be applied to the surface of a 6 m thick layer of dense sand which overlies a
layer of clay. Determine the maximum spacing of the columns if the settlement of the heavier column is not to be
greater than 1.5 times that of the other column. Assume the settlement is due to the clay alone and that its com-
pressibility characteristics are the same for each load.

Solution:
Settlement of a clay layer may be assumed proportional to the effective vertical stress causing it provided that
compressibility characteristics of the clay as well as the layer thickness remain unchanged. This is readily noticed
in the known equation of consolidation settlement: sc =mvσzH; in whichmv is the coefficient of volume compress-
ibility of the clay and H is the layer thickness.

Equation 2 11 σz =
3V
2πz2

1

1 + r ∕z 2 5 ∕2

Let V = P, and assume x = [1 + (r/z)2]5/2. Also, let the vertical effective stress increase below centre of load
P equals σz1 and that below centre of load 2P equals σz2, as shown in the scheme above.

σz1 =
3P
2πz2

+
6P
2πz2

1
x
=

3P
2πz2

1 +
2
x

σz2 =
6P
2πz2

+
3P
2πz2

1
x
=

3P
2πz2

2 +
1
x

sc =mvσzH;
sc2
sc1

≤
1 5
1

mvσz2H
mvσz1H

≤
1 5
1

σz2
σz1

≤
1 5
1

(Continued)

P 2P

Dense sand σ′z2
σ′z1

Clay

z = 6 m

r

Scheme 2.28
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Use
σz2
σz1

=
1 5
1

σz2
σz1

=

3P
2πz2

2 +
1
x

3P
2πz2

1 +
2
x

=
2 +

1
x

1 +
2
x

=
2x + 1
x + 2

= 1 5

1 5x + 3 = 2x + 1 x = 4 = 1 + r z 2 5 2

4 = 1 + r z 2 5 2
= 1 + r 6 2 5 2

1 74 = 1 + r 6 2 0 74 = r 6 2

r2 = 26 64 r = 5 16m

Therefore, the maximum spacing of the columns = 5.16 m

Problem 2.20

Centres of two columns A and B are 3 m apart. Column A is supported by a footing 1.2 × 1.2 m and column B by a
footing 1 × 1 m. Column A is founded at a depth of 2.5 m below ground level and column B at 1.5 m. The contact
pressure on the soil under each footing is 425 kPa. Find the increase in vertical stress at a depth of 9 m vertically
below the centres of A and B and the point midway between them. Use the Newmark method.

Solution:
Vertical stress increase below centre of column A:

(1) Vertical stress increase due to load of column A is

σA1 = q 4I
q = 425 kPa

BA

3 m

2.5 m

1 m

9 m

1.5 m

1.2 m

Scheme 2.29
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B z = L z = 0 6 6 5 ≈ 0 1 I = 0 0047

σA1 = q 4I = 425 × 4 × 0 0047 = 7 99 kPa

(2) Vertical stress increase due to load of column B is obtained using the
scheme shown below.

For the two long rectangles:
B
Z
=
0 5
7 5

= 0 067 and
L
Z
=
3 5
7 5

= 0 467

Ilong = 0 012

For the two short rectangles:
B
Z
=
0 5
7 5

= 0 067 and
L
Z
=
2 5
7 5

= 0 333

Ishort = 0 01

σA2 = q 2Ilong −2Ishort = 425 2 × 0 012−2 × 0 01 = 1 7 kPa

Vertical stress increase below centre of column A is

σA = σA1 + σA2 = 7 99 + 1 7 = 9 67 kPa

Vertical stress increase below centre of column B :

(1) Vertical stress increase due to load of column B is

σB1 = q 4I

q = 425 kPa

B z = L z = 0 5 7 5 = 0 067 I = 0 003

σA1 = q 4I = 425 × 4 × 0 003 = 5 1 kPa

(2) Vertical stress increase due to load of column A is obtained using the scheme shown below.

(Continued)

I I

II

A

1.2 m

1.2 m

Scheme 2.30

2.5 m 1 m

1 mBA

Scheme 2.31

I I

I

B

I

1 m

1 m

Scheme 2.32

A B

2.4 m1.2 m

1.2 m

Scheme 2.33
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For the two long rectangles:
B
Z
=
0 6
6 5

= 0 092 and
L
Z
=
3 6
6 5

= 0 467

Ilong = 0 016

For the two short rectangles:
B
Z
=
0 6
6 5

= 0 092 and
L
Z
=
2 4
6 5

= 0 369

Ishort = 0 0125

σB2 = q 2Ilong −2Ishort = 425 2 × 0 016−2 × 0 0125 = 2 98 kPa

Vertical stress increase below centre of column B is

σB = σB1 + σB2 = 5 1 + 2 98 = 8 08 kPa

Vertical stress increase below the point midway between centres of A and B:

(1) Vertical stress increase due to load of column A is obtained using the scheme shown below.

For the two long rectangles:
B
Z
=
0 6
6 5

= 0 092 and
L
Z
=
2 1
6 5

= 0 323

Ilong = 0 013

For the two short rectangles:
B
Z
=
0 6
6 5

= 0 092 and
L
Z
=
0 9
6 5

= 0 138

Ishort = 0 006

σA = q 2Ilong −2Ishort = 425 2 × 0 013−2 × 0 006 = 5 95 kPa

(2) Vertical stress increase due to load of column B is obtained using the scheme shown below.

A

0.9 m1.2 m

1.2 m

Scheme 2.34

B 1 m

1 m1 m

Scheme 2.35
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For the two long rectangles:
B
Z
=
0 5
7 5

= 0 067 and
L
Z
=

2
7 5

= 0 267

Ilong = 0 008

For the two short rectangles:
B
Z
=
0 5
7 5

= 0 067 and
L
Z
=

1
7 5

= 0 133

Ishort = 0 004

σB = q 2Ilong −2Ishort = 425 2 × 0 008−2 × 0 004 = 3 4 kPa

Increase in vertical stress below the point midway between centres of A and B is

σz = σA + σB = 5 95 + 3 4 = 9 35 kPa

Problem 2.21

A cantilever retaining wall is shown in the scheme below. Height of the stem is 4 m, and there is a line load V of
150 kN/m length on the surface of the backfill acting at a distance of 2 m from top of the wall as shown. Calculate
(a) the increase in vertical stress at points A and B due to the loadV, and plot a linear pressure distribution between
the points, (b) the total thrust on the structure.

Solution:
(a)

Equation 2 12 σz =
2V
π

z3

x2 + z2 2

σzA =
2 × 150

π
×

43

22 + 42 2 = 15 27 kPa

σzB =
2 × 150

π
×

43

0 62 + 42 2 = 22 82 kPa

(Continued)

2 m

Backfill

Stem

1.4 m

4 m

V

BA

Scheme 2.36

B

σzBσzA

A

Scheme 2.37
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(b) Similar to Equation (2.12), the following equation (not presented in Section 2.7.3, since it was beyond the
scope of the subject matter) gives horizontal stress increase:

σx =
2V
π

zx2

x2 + z2 2

However, in this case, since the relatively rigid retaining wall will tend to interfere with the lateral strain due to the
load V, the lateral pressure px shall be twice as great as σx. For this loading condition, the lateral pressure is given by:

px =
4V
π

zx2

x2 + z2 2

In terms of the dimensions given in the scheme below, this equation becomes

px =
4V
πh

m2n

m2 + n2 2

The total thrust on the stem due to the line load V is given by:

Px =
1

0
pxh dn=

2V
π

1
m2 + 1

x =mh= 2 m=
2
h
=
2
4
= 0 5

Px =
2 × 150

π

1
0 52 + 1

= 76 36 kN m

x

x

z

z

σx

V/m

Scheme 2.38

V = 150 kN/m

z = nh

px

x = mh

h = 4 m

Scheme 2.39
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CHAPTER 3

Shallow Foundations – Settlement

3.1 General

The vertical downward displacements at the ground surface or the vertical downward displacement of a
structure are often called settlement. It is usually caused by direct application of structural loads on the
foundation which in turn cause compression of the supporting material (soil or rock). However, in
addition to the settlement under loads, foundation settlement may also occur due to some or combin-
ation of other causes, as follows:

(1) Seasonal swelling and shrinking of expansive soils.
(2) Ground water lowering or a falling ground water table. Prolonged lowering of water level in fine-

grained soils may introduce settlement due to consolidation. Repeated lowering and rising of water
level in loose granular soils tends to compact the soil and cause settlement. Pumping water or
draining water by pipes or tiles from granular soils without adequate filter material as protection
may in a period of time wash and carry a sufficient amount of fine particles away from the soil and
cause settlement.

(3) Underground erosion. It may cause formation of cavities in the subsoil which when collapse settle-
ment occurs.

(4) Changes in the vicinity. If there are changes adjacent to the property such as recently placed fill,
excavation, construction of a new structure, underground tunnelling or mining and so on, settle-
ment may occur due to increase in the stresses.

(5) Vibrations and shocks. Vibrations due to pile driving or oscillating machineries as well as shocks
due to blasting or earthquake cause settlements, especially in granular soils.

(6) Ground movement on earth slopes. If surface erosion, slow creep or landslides occur, there may be
settlement problems.

Theoretically, no damage is done to the superstructure if the foundations settle uniformly. How-
ever, settlement exceeding a certain limit may cause trouble in utilities such as water pipe lines,
sewers, telephone lines; also trouble in the surface drainage configuration and in access from
streets. Sometimes buildings must join existing structures, and it is required that floors of the
two buildings be at the same level. If the new building settles excessively, the floors will no
longer remain at the same level, causing serious serviceability problems. In addition to all these
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unfavourable incidents, excessive settlement may cause aesthetic problems long before there is any
threat to structural integrity or serviceability.
More serious troubles may occur due to excessive differential settlements. Differential settlement can

be computed as the difference in settlement between two adjacent points. It has been found from actual
observations of various existing buildings that differential settlement seldom exceeds 75% of the max-
imum total settlement. Actually, in most constructions, the subsoil is not homogeneous and the load
carried by various shallow foundations of a given structure can vary widely. Consequently, settlements
of varying degrees in different parts of the structure are expected.
In the design of foundations, there are certain settlement requirements must be satisfied. The

requirements are usually stated in terms of the allowable total settlement STa and the allowable total
differential settlement ΔSTa, as follows:

ST ≤ STa 3 1 - a

ΔST ≤ΔSTa 3 1 - b

where ST = total settlement, and ΔST = total differential settlement.
Figure 3.1 defines the necessary settlement parameters. Line AE represents base line of various foot-

ings for a given structure. Center of the footings at A, B, C,D and E have gone through varying degrees
of settlement. The total settlement at A is AA and that at B is BB and so on. Definitions of the various
settlement parameters are as follows:

ST = Total settlement of a given point
ΔST = Difference in total settlement between any two points
α = Gradient between two successive points

β = Angular Distortion =
ΔST
L

ω = Tilt or tilt angle
Δ = Relative deflection (i.e. movement from a straight line joining two reference points)
Δ
L
=Deflection ratio.

MacDonald and Skempton (1955) made a study of settlements in 98 buildings, mostly older struc-
tures of load-bearing wall, steel and reinforced concrete construction. As a result, they proposed accept-
able limiting values for the maximum allowable differential settlement ΔSTa, total settlement STa
and angular distortion β, to be used for building purposes, as presented in Table 3.1 (Skempton
and MacDonald, 1956).

C DB

βmax

αmax

ω
A

A′

B′

C′
D′

E′

E

L

lAB

ST(max) Δ
ΔST(max)

Figure 3.1 Definition of parameters for differential settlement (from Das, 2011).
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Also, one might use Table 3.2, a composite from several sources, as a guide in estimating differential
settlement (Bowles, 2001). Here, L = column spacing and δ = differential settlement between two adja-
cent columns.

Recommendations of the European Committee for Standardisation (1994) regarding the limiting
values for the serviceability and maximum accepted foundation movements are presented in Table 3.3.

Values of acceptable deflection ratios from The Soviet Code of Practice for buildings on both
unfrozen and frozen ground are given in Table 3.4 (Mikhejef et al., 1961; Polshin and Tokar, 1957).

There are empirical criteria have been established by many researchers for limiting the movement of
structures in order to prevent or minimise cracking or other forms of structure damage. These criteria
are shown in Table 3.5. It will be noted from this table that the critical factor for framed buildings and
reinforced load-bearing walls is the relative rotation (or angular distortion), whereas the deflection
ratio is the criterion for unreinforced load-bearing walls which may fail by sagging or hogging.

In Table 3.5, the limiting values for framed buildings are for structural members of average dimen-
sions. Values may be much less for exceptionally large and stiff beams or columns for which the limit-
ing values of angular distortion should be obtained by structural analysis.

According to Coduto (2001), Table 3.6 presents a synthesis of the abovementioned studies, expressed
in terms of the allowable angular distortion βa; compiled from Wahls (1994), AASHTO (1996) and

Table 3.1 Tolerable settlements, mm.

Criterion
Isolated
foundation Rafts

Angular distortion (cracking), βmax 1/300

Greatest differential settlement, ΔST(max)

Clays 45 (35)∗

Sands 32 (25)

Maximum total settlement, ST(max)

Clays 75 75–125 (65–100)

Sands 50 50–75 (35–65)

a Recommended values are in the parentheses.

Table 3.2 A composite guide for estimating differential settlement.

Construction and/or material Maximum δ/L

Masonry (centre sag) 1/250–1/700

(edge sag) 1/500–1/1000

Masonry and steel 1/500

Steel with metal siding 1/250

Tall structures <1/300

Storage tanks (centre – to – edge) <1/300
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other sources. These values already include a factor of safety of at least 1.5. They may be used to com-
pute the allowable differential settlement as follows:

ΔSTa = βaL 3 2

Where:
ΔSTa = allowable differential settlement
βa = allowable angular distortion (from the following table)
L = column spacing (horizontal distance between columns)

Note: Be sure to consider local practice and precedent when developing design values of ΔSTa.

Table 3.4 Allowable deflection ratios for structures (from Bowles, 2001).

Structure on:

Average maximum
settlement, mmStructure

Sand or
hard clay Plastic clay

Crane runway 0.003 0.003

Steel and concrete frames 0.002 0.002 100

End rows of brick-clad frame 0.0007 0.001 150

Where strain does not occur 0.005 0.005

Multistory brick wall 25 L/H ≥ 2.5

L/H to 3a 0.0003 0.0004 100 L/H ≤ 1.5

Multistory brick wall

L/H over 5 0.0005 0.0007

One-story mill buildings 0.001 0.001

Smokestacks, water towers, ring foundations 0.004 0.004 300

a L/H = ratio of the length to the height of a building.

Table 3.3 Recommendations of the European Committee for Standardisation of Differential Settlement Parameters
(from Das, 2011).

Item Parameter Magnitude Comments

Limiting values for serviceability
(European Committee for Standardization, 1994a)

ST 25 mm Isolated shallow foundation

50 mm Raft foundation

ΔST 5 mm Frames with rigid cladding

10 mm Frames with flexible cladding

20 mm Open frames

β 1/500 —

Maximum acceptable foundation movement
(European Committee for Standardization, 1994b)

ST 50 Isolated shallow foundation

ΔST 20 Isolated shallow foundation

β ≈1/500 —
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Total settlement (ST) under loads of a structural foundation is generally made up of three compo-
nents. The immediate settlement (Si) takes place immediately after application of the loading or within a
short period of time (not more than several days) as a result of elastic deformation of the soil without

Table 3.5 Limiting values of distortion and deflection ratio of buildings (from Tomlinson, 2001).

Type of structure Type of damage

Limiting values

Values of relative rotation (angular distortion)

Skempton and
MacDonald Mayerhof Polshin and Tokar Bjerrum

Framed buildings
and reinforced load
bearing walls

Structural
damage

1/15 1/250 1/200 1/150

Cracking in walls
and partitions

1/300 (but 1/500
recommended)

1/500 1/500 (0.7/1000 to
1/1000 for end bays)

1/500

Values of deflection ratio Δ/L

Mayerhof Polshin and Tokar Burland and Wroth

Unreinforced
load-bearing walls

Cracking by
sagging

0.4/1000 L/H = 3: 0.3 to
0.4 × 10−3

At L/H = 1: 0.4 × 10−3

At L/H = 5: 0.8 × 10−3

Cracking by
hogging

– – At L/H = 1: 0.2 × 10−3

At L/H = 5: 0.4 × 10−3

Table 3.6 Allowable angular distortions βa (compiled from Wahls, 1994; AASHTO, 1996; and other sources).

Tyle of structure βa

Steel tanks 1/25

Bridges with simply-supported spans 1/125

Bridges with continuous spans 1/250

Buildings which are very tolerant of differential settlement, such as industrial buildings
with corrugated steel siding and no sensitive interior finish

1/250

Typical commercial and residential buildings 1/500

Overhead traveling crane rails 1/500

Buildings which are especially intolerant of differential settlements, such as that with
sensitive wall or floor finishes

1/1000

Machinerya 1/1500

Buildings with unreinforced masonry load bearing walls
Length/height≤ 3

1/2500

Length/height≥ 5 1/1250

a Large machines, such as turbines or large punch presses, often have their own foundation, separate from that of the building that
houses them. It often is appropriate to discuss allowable differential settlement issues with the machine manufacturer.
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change in water content. It may predominate in all coarse-grained soils with a large coefficient of per-
meability (not less than 0.001 m/s) and in unsaturated (degree of saturation less than 90%) fine-grained
soils. The consolidation settlement (Sc) takes place as a result of volume reduction of the soil caused by
extrusion of some of the porewater from the soil. It predominates in saturated or nearly saturated fine-
grained soils unless the soil is very organic. Analysis of consolidation settlement requires estimate of
both the settlement and how long a time it will take for most of the settlement to occur. Secondary
compression or creep (Ss) caused by the viscous resistance of the soil to continuing readjustment
of the soil particles into a closer (or denser) state under the compressive load. This phenomenon is
associated with both immediate and consolidation-type settlements, although it is usually not of much
significance with immediate settlements. Secondary compression may be the larger component of total
settlement in some soils, particularly in soils with a large organic content.
Thus, the total settlement (ST) is given by

ST = Si + Sc + Ss 3 3

3.2 Immediate Settlement

Immediate settlement or elastic settlement of a shallow foundation can be estimated by using the theory
of elasticity.
The settlement under the corner of a uniformly loaded flexible rectangular base of dimensions B× L,

or a round base converted to an equivalent square, on the surface of an elastic half-space can be
computed as

Si = q×B×
1−μ2

Es
×m× IS 3 4

According to Fox (1948), the settlement is reduced when the loaded area (the foundation base) is
placed at some depth in the ground. He suggested a factor IF be used with the above equation as follows:

Si = q×B×
1−μ2

Es
×m × IS × IF 3 5

Where:

q = Contact pressure intensity (uniformly distributed load), in units of Es
B = Least lateral dimension of the contributing base area, in units of Si
L = Length of the contributing base area in units of Si
Es = Average modulus of elasticity of soil for a depth equals to H
H = Thickness of the soil layer or 4B whichever is smaller

IF = Influence factor (Fox, 1948) depends on Poisson’s ratio of soil μ,
B
L
or

L
B
and

D
B
; it can be obtained

from Figure 3.2 or from Table 3.7 (approximately).
m = Number of corners contributing to Si

IS = Influence factor (Steinbrenner) = I1 +
1−2μ
1−μ

I2

I1 and I2 = Factors obtained from equations by Steinbrenner or from Table 3.8, depend on M and N

M =
L
B
, N =

H
B
, H = Thickness of the soil layer, in units of B

For Si at centre use
B
2
instead of B,

L
2
instead of L, and m = 4.

For Si at corner use B = B, L = L, and m = 1.
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For Si at middle of side B use
B
2
instead of B, L = L, andm = 2.

For Si at middle of side L where
L
2
is larger than B, use B=B,

L
2
for L, andm= 2; otherwise, use B for L,

L
2

for B, and m= 2.

Table 3.7 Variation of IF with
B
L
,
D
B
and μ.

B/L

μ D/B 0.2 0.5 1.0

0.3 0.2 0.95 0.93 0.90

0.4 0.90 0.86 0.81

0.6 0.85 0.80 0.74

1.0 0.78 0.71 0.65

0.4 0.2 0.97 0.96 0.93

0.4 0.93 0.89 0.85

0.6 0.89 0.84 0.78

1.0 0.82 0.75 0.69

0.5 0.2 0.99 0.98 0.96

0.4 0.95 0.93 0.89

0.6 0.92 0.87 0.82

1.0 0.85 0.79 0.72

Depth ratio, D

B
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Figure 3.2 Influence factor IF for a foundation base at depth D. Use the actual base width B for the
D
B
ratio.
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Table 3.8 Values of I1 and I2 to compute IS factor (from Bowles, 2001).

N M = 1.0 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.2 I1 = 0.009 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007

I2 = 0.041 0.042 0.042 0.042 0.042 0.042 0.043 0.043 0.043 0.043 0.043

0.4 0.033 0.032 0.031 0.030 0.029 0.028 0.028 0.027 0.027 0.027 0.027

0.066 0.068 0.069 0.070 0.070 0.071 0.071 0.072 0.072 0.073 0.073

0.6 0.066 0.064 0.063 0.061 0.060 0.059 0.058 0.057 0.056 0.056 0.055

0.079 0.081 0.083 0.085 0.087 0.088 0.089 0.090 0.091 0.091 0.092

0.8 0.104 0.102 0.100 0.098 0.096 0.095 0.093 0.092 0.091 0.090 0.089

0.083 0.087 0.090 0.093 0.095 0.097 0.098 0.100 0.101 0.102 0.103

1.0 0.142 0.140 0.138 0.136 0.134 0.132 0.130 0.129 0.127 0.126 0.125

0.083 0.088 0.091 0.095 0.098 0.100 0.102 0.104 0.106 0.108 0.109

1.5 0.224 0.224 0.224 0.223 0.222 0.220 0.219 0.217 0.216 0.214 0.213

0.075 0.080 0.084 0.089 0.093 0.096 0.099 0.102 0.105 0.108 0.110

2.0 0.285 0.288 0.290 0.292 0.292 0.292 0.292 0.292 0.291 0.290 0.289

0.064 0.069 0.074 0.078 0.083 0.086 0.090 0.094 0.097 0.100 0.102

3.0 0.363 0.372 0.379 0.384 0.389 0.393 0.396 0.398 0.400 0.401 0.402

0.048 0.052 0.056 0.060 0.064 0.068 0.071 0.075 0.078 0.081 0.084

4.0 0.408 0.421 0.431 0.440 0.448 0.455 0.460 0.465 0.469 0.473 0.476

0.037 0.041 0.044 0.048 0.051 0.054 0.057 0.060 0.063 0.066 0.069

5.0 0.437 0.452 0.465 0.477 0.487 0.496 0.503 0.510 0.516 0.522 0.526

0.031 0.034 0.036 0.039 0.042 0.045 0.048 0.050 0.053 0.055 0.058

6.0 0.457 0.474 0.489 0.502 0.514 0.524 0.534 0.542 0.550 0.557 0.563

0.026 0.028 0.031 0.033 0.036 0.038 0.040 0.043 0.045 0.047 0.050

7.0 0.471 0.490 0.506 0.520 0.533 0.545 0.556 0.566 0.575 0.583 0.590

0.022 0.024 0.027 0.029 0.031 0.033 0.035 0.037 0.039 0.041 0.043

8.0 0.482 0.502 0.519 0.534 0.549 0.561 0.573 0.584 0.594 0.602 0.611

0.020 0.022 0.023 0.025 0.027 0.029 0.031 0.033 0.035 0.036 0.038

9.0 0.491 0.511 0.529 0.545 0.560 0.574 0.587 0.598 0.600 0.618 0.627

0.017 0.019 0.021 0.023 0.024 0.026 0.028 0.029 0.031 0.033 0.034

10.0 0.498 0.519 0.537 0.554 0.570 0.584 0.597 0.610 0.621 0.631 0.641

0.016 0.017 0.019 0.020 0.022 0.023 0.025 0.027 0.028 0.030 0.031

20.0 0.529 0.553 0.575 0.595 0.614 0.631 0.647 0.662 0.677 0.690 0.702

0.008 0.009 0.010 0.010 0.011 0.012 0.013 0.013 0.014 0.015 0.016

500.0 0.560 0.587 0.612 0.635 0.656 0.677 0.696 0.714 0.731 0.748 0.763

0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001

(Continued )
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Table 3.8 (Continued)

N M = 2.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 25.0 50.0 100.0

0.2 I1 = 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

I2 = 0.043 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044

0.4 0.026 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024

0.074 0.075 0.075 0.075 0.076 0.076 0.076 0.076 0.076 0.076 0.076

0.6 0.053 0.051 0.050 0.050 0.050 0.049 0.049 0.049 0.049 0.049 0.049

0.094 0.097 0.097 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098

0.8 0.086 0.082 0.081 0.080 0.080 0.080 0.079 0.079 0.079 0.079 0.079

0.107 0.111 0.112 0.113 0.113 0.113 0.113 0.114 0.114 0.114 0.114

1.0 0.121 0.115 0.113 0.112 0.112 0.112 0.111 0.111 0.110 0.110 0.110

0.114 0.120 0.122 0.123 0.123 0.124 0.124 0.124 0.125 0.125 0.125

1.5 0.207 0.197 0.194 0.192 0.191 0.190 0.190 0.189 0.188 0.188 0.188

0.118 0.130 0.134 0.136 0.137 0.138 0.138 0.139 0.140 0.140 0.140

2.0 0.284 0.271 0.267 0.264 0.262 0.261 0.260 0.259 0.257 0.256 0.256

0.114 0.131 0.136 0.139 0.141 0.143 0.144 0.145 0.147 0.147 0.148

3.0 0.402 0.392 0.386 0.382 0.378 0.376 0.374 0.373 0.368 0.367 0.367

0.097 0.122 0.131 0.137 0.141 0.144 0.145 0.147 0.152 0.153 0.154

4.0 0.484 0.484 0.479 0.474 0.470 0.466 0.464 0.462 0.453 0.451 0.451

0.082 0.110 0.121 0.129 0.135 0.139 0.142 0.145 0.154 0.155 0.156

5.0 0.553 0.554 0.552 0.548 0.543 0.540 0.536 0.534 0.522 0.519 0.519

0.070 0.098 0.111 0.120 0.128 0.133 0.137 0.140 0.154 0.156 0.157

6.0 0.585 0.609 0.610 0.608 0.604 0.601 0.598 0.595 0.579 0.576 0.575

0.060 0.087 0.101 0.111 0.120 0.126 0.131 0.135 0.153 0.157 0.157

7.0 0.618 0.653 0.658 0.658 0.656 0.653 0.650 0.647 0.628 0.624 0.623

0.053 0.078 0.092 0.103 0.112 0.119 0.125 0.129 0.152 0.157 0.158

8.0 0.643 0.688 0.697 0.700 0.700 0.698 0.695 0.692 0.672 0.666 0.665

0.047 0.071 0.084 0.095 0.104 0.112 0.118 0.124 0.151 0.156 0.158

9.0 0.663 0.716 0.730 0.736 0.737 0.736 0.735 0.732 0.710 0.704 0.702

0.042 0.064 0.077 0.088 0.097 0.105 0.112 0.118 0.149 0.156 0.158

10.0 0.679 0.740 0.758 0.766 0.770 0.770 0.770 0.768 0.745 0.738 0.735

0.038 0.059 0.071 0.082 0.091 0.099 0.106 0.112 0.147 0.156 0.158

20.0 0.756 0.856 0.896 0.925 0.945 0.959 0.969 0.977 0.982 0.965 0.957

0.020 0.031 0.039 0.046 0.053 0.059 0.065 0.071 0.124 0.148 0.156

500.0 0.832 0.977 1.046 1.102 1.150 1.191 1.227 1.259 1.532 1.721 1.879

0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.008 0.016 0.031
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Equation (3.5) is strictly applicable to flexible bases on the half-space. Here, the half-space may con-
sist of either cohesionless materials of any water content or unsaturated cohesive soils, with no or very
small organic content.
In practice most foundations are not perfectly rigid. Even thick footings deflect under the superstruc-

ture loads.
It was found that if the footing is rigid the settlement will be uniform and the IS factor will be reduced

by about 7%. Hence, Si of a rigid base can be estimated as

Si rigid = 0 93Si flexible 3 6

It may be more correct to use the weighted average of Es than the simple ordinary average. The
weighted average Es in the depth z =H can be computed (where for n layers, H = n

i Hi as

Es, av =
H1Es1 +H2Es2 +…+HnEsn

H
3 7

Another equation may be considered as an improved equation compared to Equation (3.5) for cal-
culation of the elastic settlement was presented by Mayne and Poulos (1999). The equation takes into
account the increase in the modulus of elasticity of the soil with depth, the rigidity of the base, the depth
of embedment of the foundation and the location of rigid layers at a limited depth. The equation gives
the elastic settlement below centre of a uniformly loaded rectangular base of the equivalent diameter
Be, as

Si =
qoBeIGIFIE

Eo
1−μ2s 3 8

Where:

qo = Contact pressure intensity in units of Eo
Eo = Soil modulus of elasticity considered at the foundation level

IG = Influence factor for the variation of Es with depth, = f β =
Eo
kBe

,
H
Be

, obtained from Figure 3.4

IF = Foundation rigidity correction factor, obtained from Figure 3.5
IE = Foundation embedment correction factor, obtained from Figure 3.6
μs = Poisson’s ratio of soil
Es = Eo + kz , as shown in Figure 3.3
Ef = Modulus of elasticity of the foundation material

0

Compressible

soil layer

Base;
Be

Df

H

Ef

Es

Es= (Eo+ kz)

Eo

z

Es; μs

t

Rigid layer

Figure 3.3 Defined general parameters for use in the improved elastic settlement equation.
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Be = Equivalent diameter; for a rectangular base: Be =
4BL
π

Df = Foundation depth
t = Base thickness
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Figure 3.5 Variation of factor IF with flexibility factor KF.
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The foundation rigidity correction factor can be expressed as

IF =
π

4
+

1

4 6 + 10 Ef Eo + Bek 2 2t Be
3 3 9

The foundation embedment correction factor can be expressed as

IE = 1−
1

3 5 exp 1 22μs−0 4 Be Df + 1 6
3 10

Figure 3.3 shows a foundation with an equivalent diameter Be, located at a depthDf below the ground
surface. A rigid layer is located at a depth H below the bottom of the foundation. Variation of Es with
depth is also shown.

3.3 Settlement of Foundations on Coarse-grained Soils

3.3.1 General

Settlements of foundations on sands, gravel deposits and granular fill materials take place almost
immediately as the foundation loading is imposed on them. Therefore, Equation (3.5) or (3.8) can
be used with enough confidence provided that the elastic parameters Es and μ are computed to a rea-
sonable degree of accuracy. This is because these parameters especially the Es, are mainly responsible
for magnitude of the soil strain ε occurs under the imposed load. Since the elastic settlement is simply

Si =
H
0 εdh= n

i = 1εiHi, anymethod that accurately gives the strains in the identified influence depthH
would give an accurate evaluation of the settlement Si. However, because of difficulty of obtaining
undisturbed samples of sand and gravel soils, there is no practicable laboratory test procedure for
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Figure 3.6 Variation of factor IE with Df /Be.

Shallow Foundations – Settlement 155



determining their elastic parameters or consolidation characteristics. For these reasons geotechnical
engineers resort to empirical or semi-empirical methods for estimation of foundation settlements,
based on the results of in situ PLT, SPT, CPT, pressuremeter test and dilatometer test.

Due to the many limitations the PLT suffers from (as indicated in the discussion of Problem 1.9),
the test has little real value. Sutherland (1974) concluded that there is no reliable method for extrapo-
lating the settlement of a standard plate to the settlement of an actual foundation at the same
location.

The pressuremeter and the dilatometer tests tend to obtainmore direct measurement of Es. However,
the value of Es obtained from these tests is generally the horizontal value, whereas the vertical value is
usually needed for settlement. According to Bowles (2001), most soils are anisotropic, so the horizontal
Es value may considerably different from the vertical Es value. Overconsolidation may also alter the
vertical and horizontal values of a stress–strain modulus. Therefore, in computing Si the geotechnical
engineer should use results of these tests with caution.

As already noted, because the laboratory values of Es are difficult and expensive to obtain and are
generally not very good anyway owing to sampling disturbance and due to the limitations of the other
in situ tests just mentioned above, the standard penetration test (SPT) and cone penetration test (CPT)
have been widely used to obtain the stress–strainmodulus Es. For this purpose there aremany empirical
equations and/or correlations have been developed by researchers [see Equations (1.33), (1.57) and
(3.32), Tables 1.12 and 3.10]. Also, a comprehensive study of the subject has been done by Bowles
(2001); the outcome was a table, such as Table 3.9, which gives empirical equations for stress-strain
modulus Es by several test methods. However, Bowles suggested that the value to use should be based
on local experience with that equation giving the best fit for that locality. Bowles, in his table, indicated
that the SPT-N values should be estimated asN55 and notN70. As suggested by Bowles, the value ranges

Table 3.9 Equations for stress-strain modulus Es by several test methods (reproduced from Bowles, 2001). Note: The N -values
should be estimated as N55; and Es should be used in kPa for SPT and units of qc for CPT.

Soil SPT CPT

Sand (normally consolidated) Es = 500 N + 15

= 7000 N

= 6000N

— — —

Es = 2 to 4 qe

= 800 qc

— — —

Sand (saturated)

‡Es = 15000 to 22000 lnN

Es = 250 N + 15

Es = 1 2 3D2
e + 2 qe

∗Es = 1 +D2
e qe

Es = Fqe

e= 1 0 F = 3 5

e= 0 6 F = 7 0

Sandt, all (norm. concol.) ¶Es = (2600 to 2900)N

Sand (overconsolidated) †Es = 40 000 + 1050N Es = (6 to 30)qc

Ep OCR =Es, nc OCR

Gravelly sand Es = 1200(N + 6)

= 600(N + 6) N ≤ 15

= 600(N + 6) + 2000 N > 15

Clayey sand Es = 320(N + 15) Es = (3 to 6)qc

Silts, sandy silt, or clayey silt Es = 300(N + 6) Es = (1 to 2)qc
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for static stress-strain modulus Es presented in Table 3.10 and the values or value ranges of Poisson’s
ratio μ presented in Tables 3.11 and 3.12 should also be used as references or guides.

3.3.2 Estimation of Settlements from SPT

(1) Using bearing capacity equations.
Mayerhof (1956, 1974) published equations for computing the net allowable bearing capacity (net qa)
for 25 mm settlement. Considering the accumulation of field observations and the stated opinions of
the author and others, Bowles (1977) adjusted the Mayerhof equations for an approximate 50%
increase in net qa to obtain the following:

net qa =
N55

F1
KdWr for footings; B≤ F4 3 11

Table 3.9 (Continued)

Soil SPT CPT

If qc < 2500 kPa use 2500 < qc < 5000 use $Es = 2 5qe

Es = 4qc + 5000

where

Es = constrained modulus =
Es 1−μ

1 + μ 1−2μ
=

1
me

Soft clay or clayey silt Es = (3 to 8)qc

Clay and silt Ip > 30 or organic Es = (100 to 500)su

Silty or sandy clay Ir < 30 or stiff Es = (500 to 1500)su

Again,Ei,OCR =Es,nc OCR

Use smaller su − coefficient for highly
plastic clay

Of general application in clays is

Es = Ksw (units of su) (a)

where K is defined as

K = 4200−142 54IP + 1 73I2P −0 0071IP3 (b)

and Ip = plasticity index in percent. Use 20% ≤ Ip ≤ 100% and round K to the nearest multiple of 10.

Another equation of general application is

Es = 9400 − 8900Ip + 11600Ic − 8800S (kPa)

(c)

IP, Ic, S = previously defined above and/or in chapter 2

* Vesic (1970); †based on plot of D’Appolonia et al. (1970); ‡USSR (may not be standard blow count N); ¶Japanese Design Standards (lower value for
structures); $Senneset et al. (1988).
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Table 3.10 Value ranges∗ for static stress–strain modulus Es
for selected soils.

Soil Es, MPa

Clay

Very soft 2–15

Soft 5–25

Medium 15–50

Hard 50–100

Sandy 25–250

Glacial till

Loose 10–150

Dense 150–720

Very dense 500–1440

Loess 15–60

Sand

Silty 5–20

Loose 10–25

Dense 50–81

Sand and gravel

Loose 50–150

Dense 100–200

Shale 150–5000

Silt 2–20

∗The value ranges are too large to use an “average” value for design.

Table 3.11 Values or value ranges for Poisson’s ratio μ.

Type of soil μ

Clay, saturated 0.4–0.5

Clay, unsaturated 0.1–0.3

Sandy clay 0.2–0.3

Silt 0.3–0.35

Sand, gravelly sand −0.1–1.00

commonly used 0.3–0.4

Rock 0.1–0.4 a

Loess 0.1–0.3

Ice 0.36

Concrete 0.15

Steel 0.33

aDepends somewhat on type of rock



net qa =
N55

F2

B+ F3
B

2

KdWr for footings; B > F4 3 12

net qa =
N55

F2
KdWr formats 3 13

where:

Kd = depth factor = 1 + 0 33
D
B

≤ 1 33

Wr = water reduction factor due to ground water table (W.T)

0 5 +
0 5 zw
B

; zw = depth of W.T below foundation level ≤B

D = depth of foundation
B = width of footing
F1, F2, F3 and F4 = factors depend on the SPT hammer energy ratio Er, as given below:

N F1 F2 F3 F4

N55 0.05 0.08 0.3 1.2

N70 0.04 0.06 0.3 1.2

Note that, for complete saturation (submergence) conditions, that is when W.T is above the
foundation level or when zw = 0, Wr 0 5; and Wr 1 0 for zw ≥B.

In these equations N55 is the statistical average corrected value (refer to Solution (b) of
Problem 1.6) for the footing influence zone of about 0.5 B above the foundation level to at
least 2 B below.

In the above three equations the allowable soil pressure is for an assumed 25-mm settlement. In
general, for cohesionless soils, it is possible to assume that settlement S is proportional to net soil
pressure net q. Based on this assumption, the settlement Si caused by any given net soil pressure
netq Si is

Si = So ×
netq Si

netqa, So

3 14

where So = 25 mm, Si = required settlement in mm.
(2) Using Burland and Burbidge empirical relationship

Burland and Burbidge (1985) established the following empirical relationship, based on SPT
results, for estimating settlement Si of foundations on sands and/or gravels:

Table 3.12 Commonly used values ranges for μ.

μ Soil type

0.4–0.5 Most clay soils

0.45–0.50 Saturated clay soils

0.3–0.4 Cohesionless—medium and dense

0.2–0.35 Cohesionless—loose to medium
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Si
BR

= α1α2α3
1 25

L
B

0 25 + L B

2

B
BR

0 7 q
pa

3 15

where:
α1 = a constant
α2 = compressibility index
α3 = correction for depth of influence
BR = reference width = 0.3 m
B = width of actual foundation
L = length of actual foundation
pa = atmospheric pressure = 100 kN/m2

q = contact pressure in kN/m2

Values of q , α1, α2 and α3 are given in Table 3.13.
Equation (3.15) may be applied as follows:

(a) Obtain the field penetration number N60 with depth at the foundation location. The following
adjustments of each N60 -value may be necessary, depending on field conditions:
For gravel or sandy gravel, the adjusted N60 is

N60 a = 1 25N60 3 16

For fine sand or silty sand below the ground water table and N60 > 15, the adjusted N60 is

N60 a = 15 + 0 5 N60−15 3 17

(b) Determine the influence depth z as follows:
Case I. If N60 or [N60(a)] is nearly constant with depth, calculate z from:

z
BR

= 1 4
B
BR

0 75

3 18

Case II. If N60 or [N60(a)] is increasing with depth, use Equation (3.18) to calculate z
Case III. If N60 or [N60(a)] is decreasing with depth, calculate z = 2B or to the bottom of soft soil

layer measured from the bottom of the foundation, whichever is smaller.

Table 3.13 Values of q , α1, α2 and α3.

Soil type q α1 α2 α3

Normally consolidated sand net q 0.14
1 71

N60 orN60 a
1 4 α3 =

H
Z

2−
H
Z

for H ≤ z

Overconsolidated sand for net q≤ σc net q 0.047
0 57

N60 orN60 a
1 4 α3 = 1 for H > z

where σc = preconsolidation pressure where H = depth of compressible layer

Overconsolidated sand for net q > σc net q − 0.67 σc 0.14
0 57

N60 orN60 a
1 4 z = influence depth
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Note: N60 or N60 a = the statistical average of N60 or [N60(a)] values within the depth of stress
influence.

3.3.3 Estimation of Settlements from CPT

(1) The Buisman–DeBeer method
According to this method, the constant of compressibility (C) of the sand is proportional to static
cone penetration resistance (qc), as in the following empirical equation:

C = 1 5
qc
σo

3 19

where:
σo is the effective overburden pressure at the depth of measurement.

Settlement of a sand layer of thickness H can be estimated using the equation:

Si =
H
C
ln
σo + σz
σo

3 20

where:
σz is the increase in vertical stress at the centre of the layer.

Considering an elemental layer of small thicknesses (dz) with C assumed constant; the settlement is
computed by means of the equation:

Si =
z =H

z = 0

1
C

ln
σo + σz
σo

dz 3 21

or approximately:

Si =
H

0

2 3σ0
1 5qc

Δz log
σo + σz
σo

Si =
H

0
1 53

σo
qc
Δz log

σo + σz
σo

3 22

In practice the thickness H is divided into suitable layers (thickness Δz) provided that within
each of which the value of qc is assumed constant. In deep deposits the summation may be ter-
minated at the depth at which the stress increment σz becomes less than 10% of the effective over-
burden pressure σo. According to Craig (2004), the Buisman–DeBeer method is strictly applicable
only to normally consolidated sands. In the case of overconsolidated sands the method will give
settlements which are too high. Based on a study of case records, Mayerhof (1965) recommended
that the foundation pressure producing the allowable settlement by the Buisman–DeBeer method
should be increased by 50%. This is approximately equivalent to using the following equation for
the constant of compressibility:

C = 1 9
qc
σo

3 23

(2) The Schmertmann method
A semi-empirical equation to compute settlement of granular soils was proposed by Schmertmann
(1978). The equation is based on a simplified distribution of vertical strain εz under the centre of a
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shallow foundation, expressed in the form of a strain influence factor Iz. According to this method,
the settlement is

Si =C1C2C3qnet
z = z2

z = 0

Iz
Es
Δz 3 24

where:
C1 = depth factor = 1−0 5σo qnet

C2 = correction factor for creep in soil = 1 + 0 2log
t
0 1

C3 = shape factor = 1 03−
0 03L
B

≥ 0 73

= 1 for square and circular foundations
qnet = net contact pressure = qtotal−σo in kN m2

σo = effective overburden pressure at foundation level in kN/m2

qtotal = total contact pressure in kN/m2

Es = equivalent modulus of elasticity (linear function), in kN/m2

Δz = thickness of a soil layer in m
t = time in years
z2 = final depth below foundation where Iz is insignificant or zero.

The assumed distribution of Iz with depth is shown in Figure 3.7; depth is expressed in terms of the
width B of the footing. This is a simplified distribution, based on both theoretical and experimental
results, in which it is assumed that strains become insignificant at a depth of 2B below square or circular
footings and at a depth of 4B below continuous L B ≥ 10 footings. It should be noted that the max-
imum vertical strain does not occur immediately below the footing as is the case with vertical stress.

As already noted in Section 3.3.1, there are several direct correlations between Es and qc, such as those
presented in Table 1.11 or given by Equation 1.57, which may be used to obtain a suitable value for Es.
Schmertmann et al. (1978) recommended Es = 2 5 qc for square or circular foundations and Es = 3 5 qc
for long strip foundations with L B ≥ 10.

The measured qc/depth profile, to a depth z2 below the footing, is divided into suitable layers (thick-
ness Δz) within each of which the value of qc is assumed constant. The value of Iz at the centre of each

0

1

2

3

4

z = depth below bottom of footing

B = width of footing

L = length of footing

Es= 2.5 qc

L/B = 1

Es= 3.5 qc

L/B ≥ 10

z/B = 0.5;   z = z1

z
/B

z2= 2B

0 0.1 0.2

Strain influence factor. Iz

z/B = 1.0;   z = z1

z2= 4B

Izp

Figure 3.7 Distribution of Iz with depth under shallow foundations.
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layer is determined by superimposing the distribution of Iz in Figure 3.7. It being assumed that this
distribution of Iz is independent of the sand heterogeneity. The sum of the settlement of the layers
equals Si.
Figure 3.7 is drawn such that: for square or circular foundations value of Iz at depth z = 0 (i.e. foun-

dation level), z = 0 5B and z = 2B are respectively equal to 0.1, peak value of Iz and 0; for continuous
foundations with L B ≥ 10 value of Iz at depth z = 0, z = B and z = 4B are respectively equal to 0.2,
peak value of Iz and 0; for rectangular foundations with 1 < L B < 10 interpolation can be made.
The peak strain influence factor Izp is calculated as

Izp = 0 5 + 0 1
qnet
σzp

3 25

where σzp initial vertical effective stress at depth of Izp.

The exact value of Iz at any given depth z below the foundation level may be most easily computed
using equations of the straight lines in Figure 3.7, as follows:

Considering square and circular foundations:

For z = 0 to
B
2

Iz = 0 1 +
z
B

2Izp−0 2 3 26

For z =
B
2
to 2B Iz = 0 667Izp 2−

z
B

3 27

Considering continuous foundations L B ≥ 10 :

For z = 0 toB Iz = 0 2 +
z
B

Izp−0 2 3 28

For z =B to 4B Iz = 0 333Izp 4−
z
B

3 29

Considering rectangular foundations 1 < L B < 10 :

Iz = Izs + 0 111 Izc− Izs
L
B
−1 3 30

where:

z = depth below foundation to centre of layer
Izc = Iz for a continuous foundation
Izs = Iz for a square foundation

When only minimal subsurface data is available, as it is often the case with SPT and the soil appears
to be fairly homogeneous, it may be possible to consider Es constant with depth between the bottom
of foundation and the depth of influence Δz = 2B=H for square and circular footings and
Δz = 4B = H for continuous footings. Consequently, it may be possible to use Iz, av instead of the
Iz in Equation 3.24; considered constant within the influence depth.
For square and circular foundations Δz = 2B=H :

Iz, av = 0 0125 + 0 5 Izp

Si =C1C2C3qnet
B Izp + 0 025

Es

3 31 - a
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For continuous footings Δz = 4B=H :

Iz, av = 0 025 + 0 5 Izp

Si =C1C2C3qnet
B 2 Izp + 0 1

Es

3 31 - b

It is useful to understand clearly that Schmertmann’s method was developed primarily for ordinary
spread footings, so the various empirical data used to calibrate the method have been developed with
this type of foundations in mind. However, in principle, the method also may be used with mat foun-
dations. In using the Schmertmann’s method with mats, an overestimated settlement is obtained
because their depth of influence is much greater and the equivalent modulus values at these depths
is larger than predicted from correlations based on results of tests which are usually performed at rela-
tively shallow depths.

According to Coduto (2001); when applying Schmertmann’s method to mat foundations, it is best to
progressively increase the Es values with depth, such that Es at 30 m is about three times that predicted,
as just mentioned above.

It is noteworthy that the Schmertmann’s method also may be used with Es values based on the stand-
ard penetration test. However, generally, these values may not be as precise as those obtained from the
cone penetration test. For those projects in which the soil conditions are satisfactory and the loads are
relatively small, the SPT data is considered adequate for use with the Schmertmann’s method.

There are several direct correlations between Es and SPTN-values have been developed; see Table 3.9
and Equation (1.33). The correlations between qc and N given in Tables 1.11, 1.12 and Figure 1.16 may
be used, indirectly, to obtain Es values.

Also, the following relationship gives approximate values of Es:

Es = βo OCR+ β1N60 3 32

where:

Es = equivalent modulus of elasticity in kPa
N60 = SPT N−value corrected for field procedures only
OCR = overconsolidation ratio. Use OCR = 1 unless there is clear evidence of overconsolidation
βo, β1 = correlation factors, as given below:

Soil type βo β1

Clean sands (SW and SP) 5000 1200

Silty sands and clayey sands (SM and SC) 2500 600

3.4 Settlement of Foundations on Fine-grained Soils

3.4.1 General

Before starting any settlement analysis it is necessary to study carefully the particular soil report,
especially, those items concerning description and engineering properties of soils encountered in each
stratum. In the case of thick clay strata, it must not be assumed that the compressibility is constant
throughout the depth of the strata. Clays usually show progressively decreasing compressibility and
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increase in modulus of elasticity (deformation modulus) with increasing depth. For large and import-
ant structures it is worthwhile to make settlement analyses for the highest compressibility and max-
imum depth of compressible strata and the lowest compressibility with the minimum depth of strata
and then to compare the two analyses to obtain an idea of the differential settlement if these two
extremes of conditions occur over the area of the structure. Since strain varies non-linearly with depth,
analyses that use a large number of thin layers produce a more precise results than those that use a few
thick layers. However, unless computer is used in settlement computations of a large number of thin
layers, it would be too tedious to do the computations by hand, so manual computations normally use
less number of layers. According to Coduto (2001), for most soils, the guidelines in Table 3.14 should
produce reasonable results.
When considering long-term consolidation settlement, it is essential that the foundation loading

used in the analysis should be realistic and representative of the sustained loading over the time period
under consideration. This is a different procedure from that used when calculating safe bearing cap-
acity. In the latter case the most severe loading conditions are allowed for, with full provision for max-
imum imposed loading. The imposed loading used in a settlement analysis is an average value
representing the continuous load over the time period being considered.
Wind loading is only considered in settlement analyses for high structures where it represents a

considerable proportion of the total loads. If so, the wind loads, expressed as equivalent static loads,
representing the average of continuous wind over the full period are allowed for. However, many well-
known building codes, such as ICBO, BOCA and ICC, allow 33% greater allowable bearing capacity for
short term loads (such as wind and seismic loads) which are included in the design total load combin-
ations. Usually, geotechnical engineers do not use this increase in the allowable bearing capacity for
foundations supported on soft clayey soils.
In the case of deep compressible soils the lowest level considered in the settlement analysis is the

point where the increase in vertical stress σz resulting from the net foundation pressure qn is equal
or less than 20% of the effective overburden pressure σo, as shown in Figure 3.8. However, some author-
ities prefer 10% instead of the 20%. In the case of soil layers of limited thicknesses, the lowest level
considered is the bottom of the layer or the depth z = 4B below the foundation level, whichever is
giving a shallower depth.
As already noted in Section 2.6.1, the distribution of contact pressure and settlement beneath a shal-

low foundation are functions of the type of the supporting soil and the relative rigidity of the founda-
tion and soil. In a ground steel storage tank the weight of the stored liquid is supported directly on the
plate steel floor. Usually this type of floor is so thin that could be considered to be perfectly flexible. The
settlement beneath the floor centre and edge would not be the same and their difference (i.e. differential
settlement) could be computed. On the other hand, a spread footing is much more rigid than the plate
steel floor. This increase in rigidity causes the settlement to be nearly uniform or uniform beneath the

Table 3.14 Approximate thicknesses of soil layers for manual computation of consolidation settlement of shallow
foundations.

Layer Number

Approximate Layer Thickness

Layer 1

B

Layer 3 

Layer 2 

Square Footing Continuous Footing

1 B/2 B

2 B 2B

3 2B 4B
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footing. Another possibility is associated with mat foundations. A mat is more rigid than a plate steel
floor and less rigid than a spread footing. Obviously, there will be differential settlement between centre
and the edge, but not as much as that of a plate steel floor.

For these reasons, in order to account for the degree of rigidity of foundations, results of settlement
computations may be multiplied by a rigidity factor r. Table 3.15 presents values of r for various con-
ditions. When r is used as1, which is preferred by many geotechnical engineers, the design will be con-
servative. This practice may not have serious impact on construction costs of small or moderate-size
structures and can be considered acceptable. The use of r < 1 is justified when the subsurface condi-
tions have been well defined and the provided data are complete and reliable to make a more precise
analysis.

3.4.2 Immediate Settlement of Fine-grained Soils

The immediate settlement, that is the elastic settlement, beneath the corner or centre of a flexible
uniformly loaded rectangular area, can be calculated from Equations (3.5) and (3.8), respectively, as
discussed in Section 3.2.

In saturated clays or clayey silts the immediate settlement occurs under undrained conditions; hence,
the undrained modulus Eu is required. It is the general practice to obtain drained and undrained
E-values of fine-grained soils from laboratory tests on undisturbed samples taken from boreholes.
The undrained modulus Eu of clays can be determined from relationships with the undrained shear
strength, as presented in Table 3.9. Also, the value of Eu can be determined from results of pressure-
meter tests or other in situ tests.

In the case of an extensive, homogeneous deposit of saturated clay, it is a reasonable approximation
to assume that Eu is constant throughout the deposit.

Researchers demonstrated that for certain soils, such as normally consolidated clays, there is a sig-
nificant departure from linear stress- strain behaviour within the range of working stress, that is local

Table 3.15 Values of rigidity factor r for computation of total settlement St at the
centre of a shallow foundation (adapted from Coduto, 2001).

Foundation rigidity r – Values for St at center of foundation

Perfectly flexible (i.e. steel tanks) 1.00

Intermediate (i.e. mat foundations) 0.85–1.00, typically about 0.90

Perfectly rigid (i.e. spread footings) 0.85

Lowest level considered

in settlement analysis,

σz≤ 0.2 σo′

σzσo′

Overburden pressure

qn

Combined σo′ and σz

Figure 3.8 Vertical pressure and stress distribution for deep clay layer (redrawn from Tomlinson, 2001).
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yielding will occur within this range and the immediate settlement will be underestimated; hence,
geotechnical engineers should be aware of that.
In principle the settlement under fully drained conditions could be estimated using the settlement

elastic equations if the value of drainedmodulus Ed and the value of Poisson’s ratio μ for the soil skel-
eton could be determined. If the results of drained triaxial tests are not available, Ed for overconsoli-
dated clays can be obtained approximately from the relationship Ed = 0 6 Eu. Alternatively if values of
the coefficient of volume compressibility mv from oedometer tests are available, the relationship
Ed = 1 mv may be used.
In practice, in most of cases, the soil deposit will be of limited thickness and will be underlain by a

hard stratum. Christian and Carrier (1978) proposed the following equation for determining average
vertical displacement Si (in mm) under a uniformly loaded flexible area carrying a uniform pressure q:

Si = μoμ1
qB
E

3 33

where μo depends on the depth of foundation and μ1 depends on the layer thickness and the shape of
the loaded area. The width B is in metres; q is in kN/m2 and E is in MN/m2.
Values of the coefficients μo and μ1 for Poisson’s ratio μ equal to 0.5 are given in Figure 3.9. It may be

noted that the rigidity factor is not included in the equation. The principle of superposition can be used
in cases of a number of soil layers each having a different value of E. The equation is used mainly to
estimate the immediate settlement of foundations on saturated clays; such settlement occurs under
undrained conditions, the suitable value of μ being 0.5 and therefore the value of undrained modulus
Eu should be used in the equation.
According to Tomlinson (2001), due to the difficulty of obtaining representative values of the

deformation modulus of clay, either by correlation with the undrained shear strength or directly from
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Figure 3.9 Factors for average immediate settlement in saturated clay or silty clay soils (from Knappett and
Craig, 2012; after Christian and Carrier, 1978).
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field or laboratory tests, it may be preferable to determine the immediate settlement from relationships
established by Burland et al. (1977), as follows:

For stiff over-consolidated clays:
Immediate settlement = Si = 0 5 to 0.6 Soed
Consolidation settlement = Sc = 0 5 to 0.4 Soed

Final settlement = Soed = settlement calculated from results of an oedometer test (i.e. one-dimensional
consolidation test).

For soft normally-consolidated clays:
Immediate settlement = Si = 0 1 Soed
Consolidation settlement = Sc = Soed
Final settlement = 1.1 Soed

3.4.3 Consolidation Settlement

(1) Lateral strain is neglected – Terzaghi method
Laboratory one-dimensional consolidation tests (ASTM Test Designation D-2435) on represen-
tative undisturbed saturated fine-grained soil specimens can be conducted to determine the con-
solidation settlement caused by various incremental loadings.

In order to estimate consolidation settlement, the value of coefficient of volume compressibility
mv or the values of compression index Cc, expansion (swelling) index Ce, recompression index Cr

and effective preconsolidation pressure σc are required.
Consider a layer of saturated clay of thickness H: due to construction the total vertical stress in

an elemental layer of thickness dz at depth z is increased by σz , as shown in Figure 3.10. It is
assumed that the condition of zero lateral strain applies within the clay layer; which is the same
condition with the specimen under the oedometer test due to the confining ring. After the com-
pletion of consolidation an equal increase in effective vertical stress σz = σ1−σo will have taken
place corresponding to a stress increase σo to σ1 and a reduction in void ratio from eo to e1 on
the e−σ curve. The reduction in volume ΔV per unit initial volume Vo of clay can be written
in terms of void ratio as

ΔV
Vo

=
eo−e1
1 + eo

The lateral strain is assumed equal to zero; hence, the reduction in volume per unit volume
is equal to the reduction in thickness per unit thickness, that is the settlement per unit depth.

Sc

eo

e1

z

H
dz

σ′z

σ′z

σ′o σ′1

Figure 3.10 Consolidation settlements.
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Therefore, by proportion, the consolidation settlement dSc of the elemental layer of thickness dz
will be given by:

dSc =
eo−e1
1 + eo

dz =
eo−e1
σ1−σo

σ1−σo
1 + eo

dz

The coefficient of volume compressibility mv is defined as the volume change ΔV per unit
volume Vo per unit increase in effective stress σz , written as

mv =
eo−e1
1 + eo

×
1

σ1−σo
=

1
Ho

Ho−H1

σ1−σo

Therefore, dSc =mv σz dz and the settlement of the layer of thickness H is given by

Sc =
z =H

z = 0
mv σz dz

If mv and σz are assumed constant with depth, then

Sc =mv σzH 3 34

or

Sc =
Δe

1 + eo
H 3 35

It is noteworthy that Equation (3.34) or (3.35) is general and can be used for normally consoli-
dated, overconsolidated and underconsolidated clays.

According to the Terzaghi theory of consolidation, the void ratio versus log of pressure rela-
tionship for normally consolidated clays is a straight line. The slope of this straight line is the

compression index Cc =
Δe

logσ1− logσo
, as shown in Figure 3.11. Therefore, Δe=Cc log σ1 σo .

Hence, Equation (3.35) can be written as

Sc =
Cc log σ1 σo

1 + eo
H

Virgin compression curve 

Slope = Cc=
eo

e1

eo– e1

log σ′o

log σ′1– log σ′o

log σ′1

Figure 3.11 Relationship of pressure-versus-void ratio for normally consolidated clay, according to the Terzaghi
theory of consolidation.
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or

Sc =
CcH
1 + eo

log
σo + σz
σo

for σo≈σc; OCR≈1 3 36 - a

According to Terzaghi and Peck (1967), for normally consolidated undisturbed clays with low
or moderate sensitivity

Cc 0 009 LL−10 3 36 - b

Figure 3.12 shows the virgin compression curves for both normally-consolidated and over-
consolidated clays. It also shows the expansion and recompression curves. The slope of the expan-
sion curve KI is the expansion (or swelling) indexCe, while, the slope of the recompression curve KJ
or that of the curve GB is the recompression index Cr. The dotted line HF is the virgin compression
curve for normally consolidated clays, that is when σo≈σc. Lines GB and BF are respectively the
virgin recompression and compression curves for overconsolidated clays.

Derivation of the consolidation settlement equations for overconsolidated clays proceeds in the
same manner as that for the normally consolidated clays, as follows:

Case I: σo < σ1 = σo + σz ≤ σc ;OCR > 1

Sc =
CrH
1 + eo

log
σo + σz
σo

3 37

Case II: σo < σc < σ1 = σo + σz ;OCR > 1

Sc =
CrH
1 + eo

log
σc
σo

+
CcH
1 + eo

log
σo + σz
σc

3 38
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Figure 3.12 In situ and laboratory consolidation curves for normally and overconsolidated clays.
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If a clay deposit has not reached equilibrium under the overburden loads, i.e. still consolidating,
it is said to be underconsolidated clay. Based on the definition of normally consolidated clays, the
OCR of underconsolidated clays must be less than 1. This condition normally occurs in areas of
recent land fill and newly transported clay deposits, particularly via water, which tend initially to
produce somewhat loose deposits with large void ratios. Following the same technique used in
defining the virgin compression curves for normally and overconsolidated clays; the same type
of curves may be obtained for underconsolidated clays too, as shown in Figure 3.13.

The settlement equation for underconsolidated clays can be written as

Sc =
CcH
1 + eo

log
σo + σz
σc

σ1 > σo > σc;OCR < 1 3 39

Figure 3.14 shows the Casagrande (1936) empirical construction to obtain from the e− logσ
curve the maximum effective vertical stress that has acted on an overconsolidated clay deposit
in the past; referred to as the preconsolidation pressure, σc. Steps of the construction are as follows:

• Extend back the straight part BC of the curve to a point E.

• Determine the point D of maximum curvature on the recompression part AB of the curve.

• Draw the tangent to the curve at D and bisect the angle between the tangent and the horizontal
through D.

• The vertical through the point of intersection of the bisector and EC gives the approximate
value of the preconsolidation pressure.

An indication that a clay deposit is overconsolidated is when the natural moisture content of
the clay is nearer to its plastic limit PL than to the liquid limit LL. Whenever possible the precon-
solidation pressure for overconsolidated clays should not be exceeded in construction. Settlement
will not usually be great if the effective vertical stress remains below σc; only if σc is exceeded will
settlement be large.

The laboratory σc represents the preconsolidation stress only at the sample depth. To estimate
σc at a desired depth shallower than the sample depth in the same strata (i.e. in soil strata with the
same geologic origin), the difference in effective overburden pressure Δσo at the two depths (the
sample depth and the desired depth) is subtracted from the laboratory σc and, for a deeper depth in
the same strata, the difference is added.

Any of the two expressions OCR=
σc
σo

and σm = σc−σo may be used to classify clay soils with

Lab compression 

curve

Virgin compression curve; slope = Cc
e

Δe1

eo

0.42 eo

Lab expansion curve

σ′c σ′o σ′o+ σ′z
log σ′

Δe2

Δe

Figure 3.13 In situ and laboratory consolidation curves for underconsolidated clays.
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respect to their degree of overconsolidation as indicated in Table 3.16, where OCR = the overcon-
solidation ratio and σm = the overconsolidation margin.

(2) Lateral strain is considered – Skempton–Bjerrum method
In reality the condition of zero lateral strain is satisfied approximately in the cases of thin clay layers
and of layers under loaded areas which are large compared with the layer thickness. In practice,
however, there are many situations where significant lateral strain will occur and the initial excess
pore water pressure will depend on the in-situ stress conditions. In these cases, there will be an
immediate settlement, under undrained conditions, in addition to the consolidation settlement.
Immediate settlement is zero if the lateral strain is zero, as assumed in the one-dimensional method
of calculating settlement. In the Skempton–Bjerrum method the final settlement S (excluding
settlement due to creep or secondary compression) of a foundation on clay equals to the immediate
settlement Si plus the consolidation settlement Sc. However, Skempton and Bjerrum (1957)
accounted for differences in the way excess pore water pressures are generated when the soil
experiences lateral strain. This is reflected in the three-dimensional adjustment coefficient K (also
known as settlement coefficient or settlement ratio), using

Sc =K Soed 3 40

An equation for the coefficient K can be derived as follows:
From soil mechanics, if there is no change in static pore water pressure, the initial value of excess

pore water pressure ui at a point in a fully saturated clay layer is given as

Table 3.16 Types of overconsolidated clay soils.

OCR σm(kPa) Classification

1–3 0–100 Lightly overconsolidated

3–6 100–400 Moderately overconsolidated

>6 >400 Heavily overconsolidated

EA

e

σ ′c log σ′

B

C

D

Figure 3.14 Determination of preconsolidation pressure.
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ui =Δσ3 +A Δσ1−Δσ3

=Δσ1 A+
Δσ3
Δσ1

1−A
3 41

where A is a pore pressure coefficient. Value of A for a fully saturated soil can be determined from
measurements of pore water pressure during the application of principal stress difference Δσ1
under undrained conditions in a triaxial compression test (see ASTM D2850).

By the Skempton–Bjerrum method, consolidation settlement is expressed as

Sc =
H

0
mvuidz,

=
H

0
mvΔσ1 A+

Δσ3
Δσ1

1−A dz,

where H is the thickness of the clay layer. By the one-dimensional consolidation method, settle-
ment calculated from results of an oedometer test is

Soed =
H

0
mvΔσ1dz whereΔσ1 = σz

A settlement coefficient K is introduced, such that Sc =K Soed , where

K =

H

0
mv Δσ1 A+

Δσ3
Δσ1

1−A dz

H

0
mvΔσ1dz

3 42

Values of the settlement coefficient K, for circular footing of diameter B and strip footing
of width B, in terms of A and the ratio H/B are given in Figure 3.15. For square and rectangular
foundations B will be the diameter of the equivalent circle.
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Figure 3.15 Settlement coefficients K for circular and strip foundations.
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According to Leonards (1976), the settlement ratio KOC for circular foundation on overcon-
solidated clay is a function of overconsolidation ratio OCR and the ratio B/H and the consoli-
dation settlement is:

Sc =KOC Soed 3 43

According to Das (2011), the interpolated values ofKOC from the work of Leonards (1976) are as
given in Table 3.17.

According to Craig (2004), values of K are typically within the following ranges:

Soft, sensitive clays 1.0 to 1.2
Normally consolidated clays 0.7 to 1.0
Lightly overconsolidated clays 0.5 to 0.7
Heavily overconsolidated clays 0.2 to 0.5

3.4.4 Estimation of the Rate of Consolidation Settlement

Sometimes it is necessary to know the rate at which the foundations will settle during the long process
of consolidation of a clay layer. In practical problems it is the average degree of consolidationU over the
depth of the layer as a whole that is of interest; the consolidation settlement at time t being given by the
product of U and the final settlement.

In one-dimensional consolidation, the dimensionless time factor

Tv =
cvt
d2

3 44

Table 3.17 Values of KOC for round footings.

OCR

KOC

B/H = 4.0 B/H = 1.0 B/H = 0.2

1 1 1 1

2 0.986 0.957 0.929

3 0.972 0.914 0.842

4 0.964 0.871 0.771

5 0.950 0.829 0.707

6 0.943 0.800 0.643

7 0.929 0.757 0.586

8 0.914 0.729 0.529

9 0.900 0.700 0.493

10 0.886 0.671 0.457

11 0.871 0.643 0.429

12 0.864 0.629 0.414

13 0.857 0.614 0.400

14 0.850 0.607 0.386

15 0.843 0.600 0.371

16 0.843 0.600 0.357

174 Shallow Foundations



Hence,

t =
Tvd2

cv
or t =

10−7 ×Tv × d2

3 154 × cv
3 45

where

t = time in years
cv = average coefficient of consolidation over the range of pressure involved, obtained from oedometer

test, in m2/sec
d =H (thickness of compressible layer in metres) for drainage at top

or at bottom only, whereas, d =
H
2
for drainage at top and bottom.

The following empirical equations, for the condition of constant initial porewater pressure, give
almost exact relationships between the average degrees of consolidation U and time factor Tv:

Tv =
π

4
U2 forU < 60 3 46

Tv = 1 781−0 933log 100−U forU > 60 3 47

Sivaram and Swamee (1977) also developed an empirical relationship between Tv and U, for the
condition of constant initial porewater pressure, which is valid forU varying from 0 to 100%. The equa-
tion is of the form

Tv =

π

4
U
100

2

1−
U
100

5 6 0 357 3 48

The total settlement at any time t is given by

St = Si +USc 3 49

3.4.5 Method of Accelerating the Rate of Consolidation Settlement

The use of preload fills and other means to precompress soils in advance of construction of permanent
facilities is a relatively inexpensive but effective method for improving poor foundation soils. The bene-
fits of precompression are to increase shear strength and to decrease post construction settlements to
tolerable values. Temporary surcharge loading makes it possible to practically eliminate, in advance of
construction of structures or paving of roadways or runways, subsoil settlement that would otherwise
occur subsequent to completion of construction. However, many compressible subsoil deposits are suf-
ficiently thick or impermeable so that consolidation occurs slowly and preload fills required to precom-
press the soil within the time available may become so high that they become uneconomical or, because
of possible foundation instability, require large and costly berms. When this happens, it may be wise to
install artificial internal drainage channels in the poor subsoil to accelerate the rate of consolidation.
One method of doing this consists of installing vertical drains.
The slow rate of consolidation in saturated clays of low permeability is accelerated by means of

vertical drains which shorten the drainage path within the clay. Consolidation is then due mainly
to horizontal radial drainage, resulting in the faster dissipation of excess pore water pressure; vertical
drainage becomes of minor importance. In theory the final magnitude of consolidation settlement is
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the same, only the rate of settlement being affected. The traditional vertical drains are sand drains
(Figure 3.16). These drains are constructed by drilling holes through the clay layer (or layers) in
the field at regular intervals. The holes are then backfilled with suitably graded sand. This can be
achieved by several means, such as: (a) rotary drilling and then backfilling with sand, (b) drilling
by continuous-flight auger with a hollow stem and backfilling with sand (through the hollow stem)
and (c) driving hollow steel piles. The soil inside the pile is then jetted out, after which backfilling with
sand is done. Typical diameters of sand drains are 200–400 mm and drains have been installed to
depths of over 30 m. The sand should be capable of allowing the efficient drainage of water without
permitting fine soil particles to be washed in.

In the case of an embankment constructed over a highly compressible clay layer (Figure 3.17),
vertical drains installed in the clay would enable the embankment to be brought into service much
sooner and there would be a quicker increase in the shear strength of the clay. A degree of consolidation
of the order of 80% would be desirable at the end of construction. Any advantages, of course, must be
set against the additional cost of the installation.

Prefabricated drains (PVDs) are also used and are generally cheaper than backfilled drains for a
given area of treatment. One such type consists of a filter stocking, generally of woven polypropylene,
filled with sand, a typical diameter being 65 mm; compressed air is used to ensure that the stocking
is completely filled with sand. This type of drain is very flexible and is usually unaffected by lateral

Embankment

Vertical

drains 

G.S
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drainage layer
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clay

Impervious stratum

H

Figure 3.17 Vertical drains (redrawn from Knappett and Craig, 2012).
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Figure 3.16 Sand drains.

176 Shallow Foundations



groundmovements. Another type of PVDs is the band drain, consisting of a flat plastic core with drain-
age channels, enclosed by a thin layer of geotextile filter fabric (Figure 3.18); the fabric must have suf-
ficient strength to prevent it from being squeezed into the channels. The main function of the fabric is
to prevent the passage of fine soil particles which might clog the channels in the core. Typical dimen-
sions of a band drain are 100 × 4mm and the equivalent diameter is generally assumed to be the per-
imeter divided by π. The PVDs are installed either by insertion into pre-bored holes or by placing them
inside a mandrel or casing which is then driven or vibrated into the ground (Figure 3.19); thus, drilling

Figure 3.19 Installation of PVDs in the field (from Das, 2011).

Polypropylene core

Geotextile fabric

b

a

Figure 3.18 Prefabricated vertical drain.
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would not be required and installation would bemuch faster, which are considered advantages of PVDs
over vertical sand drains.

The spacing of the drains is the most important design consideration because the object in using the
vertical drains is to reduce the length of the drainage path. The drains are usually spaced in either a
square or a triangular pattern, as shown in Figure 3.20a.

The centre to centre spacing of the drains must obviously be less than the thickness of the clay layer
and there is no point in using vertical drains in relatively thin clay layers. It is clear to understanding
that a successful design requires the coefficients of consolidation in both the horizontal and vertical
directions ch and cv respectively to be known fairly accurately. It is noteworthy that the ratio ch/cv
is normally between 1 and 2; the higher the ratio the more beneficial the drain installation will be.
The values of the coefficients for the clay adjacent to the drains may be significantly reduced due
to remoulding during installation (especially if a mandrel is used), an effect known as smear
(Figure 3.20b). The smear effect can be taken into account by assuming a reduced value of ch or by
using a reduced drain diameter in the design computations.

In the case of vertical sand drains both radial and vertical drainage contribute to the average degree
of consolidation U. The three-dimensional form of the consolidation equation in polar coordinates,
with different soil properties in the horizontal and vertical directions, is

∂ue
∂t

= ch
∂2ue
∂r2

+
1
r
∂ue
∂r

+ cv
∂2ue
∂z2

3 50

Sand drain
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rd

rs

Sand drain

radius = rd

R = 0.525 S R = 0.564 S

Triangular pattern Square pattern

R
R
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SSS
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2 R

H Clay

(a)

(b)

Figure 3.20 Vertical sand drains: (a) sand drain patterns, (b) vertical section of a sand drain with smeared zone
indicated.
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The vertical prismatic blocks of soil surrounding the drains are replaced by equivalent cylindrical
blocks, of radius R having the same cross-sectional area (Figure 3.20a). The solution to
Equation (3.50) can be written in two parts: Uv = f Tv and Ur = f Tr , where

Uv = average degree of consolidation due to vertical drainage
Uv = average degree of consolidation due to radial drainage drainage (radial drainage)
Tv = time factor for consolidation due to vertical drainage
Tr = time factor for consolidation due to radial drainage

Tv = cvt d2 3 51

Tr = ch t 4R2 3 52

Equation (3.52) confirms the fact that the smaller the value of R, i.e. the closer the spacing of the
drains, the quicker the consolidation process due to radial drainage proceeds. The solution for radial
drainage, due to Barron (1948), is given in Figure 3.21. The relationship between Ur and Tr depends on
the ratio n=R rd, where R is the radius of the equivalent cylindrical block and rd is the radius of
the drain.
For a given surcharge and time duration, the average degree of consolidationU due to drainage in the

vertical and radial directions is:

U = 1− 1−Uv 1−Ur 3 53

According to Olson (1977), if the surcharge is applied during a certain period of time tc, that is in the
form of ramp loading (not instantaneous loading) as shown below, then:

(a) For radial drainage, instead of using the solution of Figure 3.21 the following equations are to
be used:

Ur =
Tr

Trc
−

1
ATrc

1− exp −ATr forTr ≤Trc 3 54

Ur = 1−
1

ATrc
exp ATrc −1 exp −ATr forTr ≥Trc 3 55
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Figure 3.21 Solution for radial consolidation (reproduced from Knappett and Craig, 2012).
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where

Trc =
ch tc
4R2

, Tr =
ch t
4R2

A=
2

n2 n2−1 ln n − 3n2−1 4n2

(b) For vertical drainage, instead of using Equations (3.46),
(3.47) and (3.48), the curves of Figure 3.22 are to be
used. This figure gives the variation of U (%) with Tv and Tc (Olson, 1977). Note that

Tc =
cv tc
d2

; Tv =
cv t
d2

It is necessary to realise that the effect of smear is not included in all the equations presented
above; that is they are applicable for no-smear cases. For sand drain problems in which smear effect
is to be considered, see Solution of Problems 3.45 and 3.46.

3.4.6 Estimation of Settlements over the Construction Period

Before the actual construction of a structure starts, necessary excavations will be carried out which
cause a reduction in net load, resulting in swelling the foundation clay soil. Structural loads are applied
to the soil over a period of time and not instantaneously. Actual settlement will not begin until the
applied load exceeds the weight of the excavated soil. Terzaghi proposed an empirical method of cor-
recting the instantaneous time–settlement curve to allow for the construction period (Figure 3.23).
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Assume tc represents the effective construction period and P represents the net load which is the
gross load less the weight of the excavated soil. The period tc is measured from the time when P is
zero and it is assumed that the net load is applied uniformly over the time tc, as shown in
Figure 3.23. Also, it is assumed that the degree of consolidation at time tc is the same as if the load
P had been acting as a constant load for the period tc/2. The settlement curve due to the instantan-
eously applied net load is first plotted as shown by the lower curve. The first point C on the corrected
curve is obtained by intersection of a perpendicular dropped from a point where tc is located on the
time abscissa with the horizontal line BC, where B is the point of intersection of another perpendicular,
dropped from point of tc/2 with the instantaneous curve. Thus the settlement at any time during the
construction period is equal to that occurring for instantaneous loading at half that time; however,
since the load then acting is not the total net load P , the settlement value so obtained must be reduced
in the proportion of that load to the total load. Therefore, to obtain any other point G on the corrected
curve for a period tG, a perpendicular is dropped from tG/2 to intersect the instantaneous loading curve
at D. A horizontal line DE is drawn; then the intersection of OE with the perpendicular from the point
tG gives the intermediate point G on the corrected curve for time tG.
During the period after completion of construction, the corrected curve will be the instantaneous

curve offset by tc/2, as shown in Figure 3.23. The corrected total settlement curve can be obtained
by adding the immediate settlement to the corrected consolidation settlement.

3.4.7 Secondary Compression

Figure 3.24 shows variation of e with log t under a given load increment. The final part of the experi-
mental void ratio–log time curve represents the curve of the secondary compression, which is practic-
ally linear. According to the Terzaghi theory of consolidation, the primary consolidation is due entirely
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Figure 3.23 Corrected consolidation settlement curve during the construction period.
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to the dissipation of the excess porewater pressure, with permeability alone governing the time depend-
ency of the consolidation process. However, practice observations as well as experimental results show
that compression does not cease when the excess porewater pressure has dissipated to zero but con-
tinues at a gradually decreasing rate under constant effective stress.

Secondary compression (or creep) is thought to be due to the gradual readjustment of the clay par-
ticles into a more stable configuration following the structural disturbance caused by the decrease in
void ratio, especially if the clay is laterally confined. Another factor is the gradual lateral displacements
which take place in thick clay layers. Some authorities relate secondary compression to the clay
adsorbed water (the water molecules that are held to the clay particles). Researchers measured the sec-
ondary compression in a clay soil after the water was replaced by a non-polar liquid, such as CCl4 and
found its value was considerably less than that in the undisturbed clay. Hence, the adsorbed water may
exert an important influence on the viscoelastic behaviour of the clay–particle contacts. The rate of
secondary compression is thought to be controlled by the highly viscous film of adsorbed water sur-
rounding the clay mineral particles in the soil. A very low viscous flow of adsorbed water takes place
from the zones of film contact, allowing the soil particles to move closer together. The viscosity of the
film increases as the particles move closer, resulting in a decrease in the rate of compression of the soil.
According to Knappett and Craig (2012), it is presumed that primary consolidation and secondary
compression proceed simultaneously from the time of loading.

The secondary compression index Cα can be defined by the slope of the final part of the curve of
Figure 3.24; written as

Cα =
Δe

log t2− log t1
=

Δe
log t2 t1

3 56

where

Δe = change in void ratio
t1, t2 = time

From the results of laboratory tests and field observations, Simons (1974) derived the following
equation for clays:

Cα = 0 00018 × natural moisture content in percent 3 57

The magnitude of the secondary compression can be calculated as

Ss =CαH log t2 t1 3 58
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Figure 3.24 Variation of ewith log t under a given load increment and definition of secondary compression index.
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where Cα =
Cα

1 + ep
ep = void ratio at the end of primary consolidation
H = thickness of clay layer
The magnitude of secondary compression in a given time is generally greater in normally consoli-

dated clays than in overconsolidated clays.
Mesri (1973) correlated Cα with the natural moisture content w of several soils, from which it

appears that

Cα = 0 0001w 3 59

where w = natural moisture content, in percent.
For most overconsolidated clays, the range of Cα values are 0.0005 to 0.001. Also, Mesri and

Godlewski (1977) compiled the magnitude of Cα/Cc for a number of soils (Cc = compression index).
Accordingly, the following relationships can be given:

For inorganic clays and silts Cα Cc = 0 04 +− 0 01 3 60

For organic clays and silts Cα Cc = 0 05 +− 0 01 3 61

For peats Cα Cc = 0 075 +− 0 01 3 62

For a particular soil under oedometer test, the magnitude of secondary compression over a given
time, as a percentage of the total compression, increases as the ratio of pressure increment to initial
effective pressure decreases; the magnitude of secondary compression also increases as the thickness
of the oedometer specimen decreases and as temperature increases. The secondary compression char-
acteristics of an oedometer specimen cannot normally be extrapolated to the case of a full-scale
foundation (Knappett and Craig, 2012).

3.5 Settlement of Foundations on Rock

Closely jointed rock formations and weak to moderately weak weathered rocks possess a degree of
compressibility such that it is necessary to make estimates of settlement wherever heavily loaded struc-
tures are founded on these formations.
Settlement of a rock mass may be estimated using equations from elastic theory similar to

Equation (3.4). Meigh (1976) proposed the following settlement equation:

ρi = q
B
Ef

IpFBFD 3 63

where ρi = immediate settlement beneath corner of a uniformly loaded area
q = net foundation pressurer
B = width of foundation
Ef = deformation modulus of rock at the foundation level
IP = influence factor (Figure 3.25)
FB = correction factor for roughness of the base (Figure 3.26a)
FD = correction factor for depth of embedment in rock (Figure 3.26b)

In the case of a flexible rectangular foundation, the loaded area is divided into four equal rectangles
and the settlement computed at the corner of each rectangle. The settlement at the centre of the foun-
dation is then four times the corner settlement. In the case of relatively rigid foundation, the settlements
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at centre, at the midpoint of a longer side and at a corner of the loaded area are calculated. Then the
average settlement of the rigid foundation is given by (Tomlinson, 2001),

ρi, ave = 1 3 ρi, center + ρi, midpoint long side + ρi, corner 3 64

Meigh obtained curves for influence factors for various values of the constant k using a value for
Poisson’s ratio equals to 0.2, as shown in Figure 3.25. The value of k is computed from the following
equation:

k=
Ed −Ef
Ef

B
z

3 65

For a rock mass of thickness H below the foundation level

k=
Ed −Ef
Ef

B
H

Measured values of E against depth z are plotted and a straight line through the plotted points is
drawn (Figure 3.25). Thus values of deformation modulus such as Ed and Ef are obtained, which
are used in Equation (3.65) to obtain value of k.

Correction factorFB =
Settlement for rough base
Settlement for smooth base

The most important of the procedure is to obtain reliable variation of E values with depth. According
to Tomlinson (2001), where the results of unconfined compression test on core samples are in sufficient
numbers to be representative of the variation in strength of the rock over the depth stressed by
the foundation loading, the deformation modulus Em of the rock mass can be obtained from the
relationship

Em = j Mr quc 3 66
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Figure 3.26 Correction factors: (a) for roughness of base of foundation; (b) for depth of embedment of foundation
below surface of rock (from Tomlinson, 2001).
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where j = rock mass factor related to the discontinuity spacing in the rock mass; its values are given by
Hobbs (1974), as shown in Table 3.18,

Mr = modulus ratio, which is the ratio of E to quc of the intact rock,
quc = unconfined compressive strength.

Hobbs showed that rocks of various types could be grouped together, and for practical purposes a
modulus ratio Mr could be assigned to each group as shown in Table 3.19.

The high porosity chalks such as that of south-east England and marls such as the Keuper Marl are
special cases. Values of the mass modulus of deformation of chalk established by Hobbs (1974) and for
Keuper Marl established by Chandler and Davis (1973) are shown in Table 3.20.

Table 3.19 Modulus ratios Mr for different groups of rock.

Rock group Description Mr

Group 1 Pure limestones and dolomites

Carbonate sandstones

600

Group 2 Igneous

Oolite and marly limestones

Well-cemented sandstone

Indurated carbonate mudstones

Metamorphic rocks, including slates and schists (flat cleavage/foliation) 300

Group 3 Very marly limestones

Poorly cemented sandstones

Cemented mudstones and shales

Slates and schists (steep cleavage/foliation) 150

Group 4 Uncemented mudstones and shales 75

Table 3.18 Values of mass factor, j.

Quality
classificationa

RQD
(%)

Fracture frequency
per metre

Velocity indexb

(Vf /VL)
2

Mass
factor (j)

Very poor 0–25 15 0–0.2 0.2

Poor 25–50 15–8 0.2–0.4 0.2

Fair 50–75 8–5 0.4–0.6 0.2–0.8

Good 75–90 5–1 0.6–0.8 0.5–0.8

Excellent 90–100 1 0.8–1.0 0.8–1.0

aAs BS 5930.
b Vf = wave velocity in field, VL = wave velocity in laboratory.
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Problem Solving

Problem 3.1

A steel-frame office building has a column spacing of 6 m. It is to be supported on spread footings founded on a
clayey soil. What are the allowable total and differential settlements?

Solution:
Table 3.1 gives maximum allowable total settlement= 75mm
Table 3.2 gives maximum allowable total settlement= 50mm
Table 3.2 gives allowable total settlement= 25mm as limiting value for serviceability.
Use allowable total settlement= 25mm

Tables 3.2, 3.4 and 3.5, relatively, give a small value for the allowable angular distortion β =
1
500

=
ΔST
L

, which is a

conservative value.

Hence, ΔST =
L
500

=
6 × 1000
500

=12mm

Use allowable differential settlement= 12mm

Table 3.20 Mass deformation modulus values for high porosity chalk and Keuper Marl.

Rock type Weathering grade Description
Deformation
modulus (MN/m2)

Chalk I Blocky, moderately weak, brittle >400

II Blocky, weak, joints more than 200 mm apart and closed 90–400

III Rubbly to blocky, unweathered, joints 60–200 mm apart, open to 3 mm
and sometimes filled with fragments

50–90

IV Rubbly, partly weathered, with bedding and jointing, joints 10–60 mm
apart, open to 20 mm, often filled with weak remoulded chalk and
fragments

35–50

V Structureless, remoulded, containing lumps of intact chalk 10–35

VI Extremely weak, structureless, containing small lumps of intact chalk <10

Keuper
Marl

I (unweathered) Mudstone (often fissured) >150

II (slightly
weathered)

Angular blocks of unweathered marl and mudstone with virtually no
matrix

75–150

III (Moderately
weathered)

Matrix with frequent lithorelicts up to 25 mm 30–75

IV (Highly to
completely
weathered)

Matrix with occasional claystone pellets less than 3 mm size (usually
coarse sand) degrading to matrix only

Obtain from
laboratory tests
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Problem 3.2

A rigid shallow foundation 1 × 2m is shown in the scheme. Calculate the elastic settlement at the centre of the
foundation.

Solution:

Equation (3.5): Si = q×B×
1−μ2

Es
×m× IS × IF

Equation(3.7):

Es, av =
H1Es1 +H2Es2 +…+HnEsn

H
=
10 000 × 2 + 8000 × 1 + 12 000 × 2

5
= 10 400 kPa

For settlement at centre of the foundation

m= 4; B=
1
2
m; L=

2
2
= 1m; M =

L
2

B 2
=

1
1 2

= 2; N =
H
B 2

=
5
1 2

= 10

From Table 3.8 obtain I1 = 0 641 and I2 = 0 031. Hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 641 +
1−2 × 0 3
1−0 3

0 031 = 0 659

D
B
=
1
1
= 1;

B
L
=
1
2
= 0 5; μ= 0 3. From Table 3.7 obtain IF = 0 71

Si = 150 ×
1
2
×
1− 0 3 2

10 400
× 4 × 0 659 × 0 71 = 0 0123m = 12 3mm

Equation (3.6): Si rigid = 0 93Si flexible

Si = 0 93 × 12 3 = 11 4mm

Sand

μs= 0.3 2

3

1

8000

10000

Es (kPa)1 m

1 m

4 12000

5

0
0

Rock

z
 (

m
)

q = 150 kPa

Scheme 3.2

188 Shallow Foundations



Problem 3.3

Solve Problem 3.2 ignoring the given Es-data and considering that the supporting soil is clean, normally consoli-
dated sand with the following available data:

Assume the rock layer exists at depth z = 10m. Use Equation (1.33) for computing Es values.

Solution:

Equation (3.5): Si = q×B×
1−μ2

Es
×m× IS × IF

Equation (1.33):
Es
Pa

= α N60 Es = αPa N60; Pa = 100 kPa

For clean normally consolidated sand α= 10
Thickness of the sand deposit = 10m > 4B = 4m ; use H = 4m

Es, av =
H1Es1 +H2Es2 +… +HnEsn

H
=
10 × 100 × 7 × 2 5 + 10 × 100 × 11 × 1 5

4
= 8500 kPa

For settlement at centre of the foundation:

m= 4; B=
1
2
m; L=

2
2
= 1 m; M =

L
2
B 2 =

1
1 2

= 2; N =
H
B 2

=
4
1 2

= 8

From Table 3.8 obtain I1 = 0 611 and I2 = 0 038. Hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 611 +
1−2 × 0 3
1−0 3

0 038 = 0 633

D
B
=
1
1
= 1;

B
L
=
1
2
= 0 5; μ= 0 3. From Table 3.7 obtain IF = 0 71

Si = 150 ×
1
2
×
1− 0 3 2

8500
× 4 × 0 633 × 0 71 = 0 0144m = 14 4mm

Equation (3.6): Si rigid = 0 93Si flexible

Si = 0 93 × 14 4 = 13 4mm

z, m N60
Sand

μs= 0.3
7
11

0 − 2.5
2.5 − 6.5
6.5 − 10.0 14

1 m q = 150 kPa

0

z

Scheme 3.3
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Problem 3.4

Solve Problem 3.3 using the improved equation by Mayne and Poulos: Equation (3.8). Assume the footing
thickness t = 0 30m, and the modulus of elasticity of the foundation material Ef = 15 × 106 kPa.

Solution:

Equation (3.8): Si =
qoBeIGIFIE

Eo
1−μ2s

Obtain variation of Es with depth z as follows:

Equation (1.33):
Es
Pa

= αN60 Es = αPa N60; Pa = 100 kPa

Es = 10 × 100 × 7

= 7000 kPa, for the depth interval 0 2 5 m; at z = 1 25m

Es = 10 × 100 × 11

= 11000 kPa, for the depth interval 2 5 6 5m; at z = 4 5m

Es = 10 × 100 × 14

= 14000 kPa, for the depth interval 6 5 10 0m; at z = 8 25m

From the plot obtain (approximately):

Eo = 6700 kPa

k =
14 000−6700

8 25
= 885 kN m

Be =
4BL
π

=
4 × 1 × 2

π
= 1 6 m

β =
Eo
kBe

=
6700

885 × 1 6
= 4 73;

H
Be

=
4Be

Be
= 4

From Figure 3.4, for
H
Be

= 4; β = 4 73 IG≈0 75

0 Es× 103, kPa

Es= Eo+ k z2.5

5.0

7.5

z

10.0

5 10 15

Foundation 

level

z (m)

Scheme 3.4
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Equation (3.9): IF =
π

4
+

1

4 6 + 10
Ef

Eo + Bek 2
2t
Be

3

=
π

4
+

1

4 6 + 10
15 × 106

6700 + 1 6 × 885 2
2 × 0 3
1 6

3 = 0 787

Equation (3.10): IE = 1−
1

3 5 exp 1 22μs−0 4 Be Df + 1 6

= 1−
1

3 5 exp 1 22 × 0 3−0 4 1 6 1 + 1 6
= 0 908

qo = 150 kPa

Si =
qoBeIGIFIE

Eo
1−μ2s =

150 × 1 6 × 0 75 × 0 787 × 0 908
6700

1−0 32

Si = 0 0175m = 17 5mm

Problem 3.5

A rigid foundation 4 × 2m carries a uniform pressure of 150 kN/m2. It is located at a depth of 1 m in a layer of
saturated clay 5 m thick, which is underlain by a second clay layer 8 m thick. The average values of Eu for the
first and second layers are 40 and 75 MN/m2, respectively. A hard stratum lies below the second layer. Using
Equation (3.33), determine the average immediate settlement under the foundation.

Solution:

Equation (3.33): Si = μoμ1
qB
E

(a) Consider the upper clay layer, with Eu = 40MN m2:
D B = ½ = 0 5 and therefore from Figure 3.9, μo = 0 94
H
B
=
4
2
= 2; L B = 4 2 = 2. From Figure 3.9 obtain μ1 = 0 60

Si a = 0 94 × 0 60 ×
150 × 2
40

= 4 2mm

(b) Consider the two clay layers combined, with Eu = 75MN m2:
D B = ½ = 0 5 and therefore from Figure 3.9, μo = 0 94
H
B
=
12
2
= 6; L B = 4 2 = 2. From Figure 3.9 obtain μ1 = 0 85

Si b = 0 94 × 0 85 ×
150 × 2
75

= 3 2mm

(c) Consider the upper clay layer, with Eu = 75MN m2:
D B = ½ = 0 5 and therefore from Figure 3.9, μo = 0 94
H
B
=
4
2
= 2; L B = 4 2 = 2. From Figure 3.9 obtain μ1 = 0 60

(Continued)
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Si c = 0 94 × 0 60 ×
150 × 2
75

= 2 3mm

Hence, using the principle of superposition, the average settlement of the foundation, considering flexible
loading area, is given by:

Si = Si a + Si b −Si c = 4 2 + 3 2 − 2 3 = 5 1mm

Equation (3.6): Si rigid = 0 93Si flexible

Si = 0 93 × 5 1 = 4 7; say 5mm

Problem 3.6

Solve Problem 3.5 using equation Equation (3.5). Use μ= 0 5 for saturated clays. Consider settlement at centre of
the foundation only.

Solution:

Equation (3.5): Si = q×B×
1−μ2

Es
×m× IS × IF

(a) Consider the upper clay layer, with Eu = 40MN m2:
For settlement at centre of the foundation:

m= 4; B =
2
2
= 1 m; L=

4
2
= 2 m; M =

L
2

B 2
=

4
2
2 2

= 2; N =
H
B 2

=
4
2 2

= 4

From Table 3.8 obtain I1 = 0 476 and I2 = 0 069. Hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 476 +
1−2 × 0 5
1−0 5

0 069 = 0 476

D
B
=
1
2
= 0 5;

B
L
=
2
4
= 0 5; μ = 0 5. From Table 3.7 obtain IF = 0 90

Si a = 150 ×
2
2
×
1− 0 5 2

40 000
× 4 × 0 476 × 0 9 = 0 0048 m = 4 8mm

(b) Consider the two clay layers combined, with Eu = 75MN m2:
For settlement at centre of the foundation:

m= 4;B =
2
2
= 1 m;L=

4
2
= 2 m;M =

L
2

B 2
=

4
2
2 2

= 2;N =
H
B 2

=
12
2 2

= 12

From Table 3.8 obtain I1 = 0 653 and I2 = 0 028. Hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 653 +
1−2 × 0 5
1−0 5

0 069 = 0 0 653
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D
B
=
1
2
= 0 5;

B
L
=
2
4
= 0 5; μ = 0 5. From Table 3.7 obtain IF = 0 90

Si b = 150 ×
2
2
×
1− 0 5 2

75 000
× 4 × 0 653 × 0 9 = 0 0035 m= 3 5 mm

(c) Consider the upper clay layer, with Eu = 75MN m2:
For settlement at centre of the foundation:

m= 4;B =
2
2
= 1 m;L=

4
2
= 2 m;M =

L
2

B 2
=

4
2
2 2

= 2;N =
H
B 2

=
4
2 2

= 4

From Table 3.8 obtain I1 = 0 476 and I2 = 0 069. Hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 476 +
1−2 × 0 5
1−0 5

0 069 = 0 476

D
B
=
1
2
= 0 5;

B
L
=
2
4
= 0 5; μ = 0 5. From Table 3.7 obtain IF = 0 90

Si c = 150 ×
2
2
×
1− 0 5 2

75 000
× 4 × 0 476 × 0 9 = 0 0026m = 2 6mm

Hence, using the principle of superposition, settlement at centre of the foundation, considering flexible loading
area, is given by:

Si = Si a + Si b −Si c = 4 8 + 3 5 − 2 6 = 5 7mm

Equation (3.6): Si rigid = 0 93Si flexible

Si = 0 93 × 5 7 = 5 3mm

Another procedure is to calculate settlement of each layer alone and then adding them to obtain the total settle-
ment, as follows:

(a) Settlement of the upper clay layer was calculated = 4 8mm.
(b) Settlement of the lower clay layer:

Assume using the simple 2V : 1H ratio method of stress distribution
At top of the layer: q = 150 2 × 4 2 + 4 4 + 4 = 25 kN m2

For settlement at the centre of the foundation:

m= 4;B =
6
2
= 3 m;L=

8
2
= 4 m;M =

L
2

B 2
=
4
3
= 1 33

N =
H
B 2

=
8
3
= 2 67

From Table 3.8 obtain I1 = 0 36 and I2 = 0 074. Hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 36 +
1−2 × 0 5
1−0 5

0 074 = 0 36

(Continued)
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D
B
=
5
6
= 0 83;

B
L
=
6
8
= 0 75; μ = 0 5. From Table 3.7 obtain IF = 0 79

Si b = 25 ×
6
2
×
1− 0 5 2

75 000
× 4 × 0 36 × 0 79 = 0 0009m = 0 9mm

Hence, using the principle of superposition, settlement at centre of the foundation, considering flexible loading
area, is given by

Si = Si a + Si b = 4 8 + 0 9 = 5 7mm

Equation (3.6): Si rigid = 0 93Si flexible

Si = 0 93 × 5 7 = 5 3mm

Problem 3.7

A bridge pier has a base 8.5 m long by 7.5 m wide, founded at a depth of 3.0 m. The base of the pier imposes net
foundation contact pressure equals 220 kN/m2 due to dead loading and 360 kN/m2 due to combined dead and live
loading. Borings showed dense sand and gravel with cobbles and boulders to a depth of 9 m, followed by very stiff
overconsolidated clay tomore than 25m below ground level. Standard penetration tests gave an averageN-value of
40 blows per 300 mm in the sand and gravel stratum. A number of oedometer tests were made on samples of the
stiff clay; the following values for the coefficient of compressibilitymv corresponding to the respective increments
of pressure (due to the two types of loading) were obtained as follows:

Net contact pressure qn, kN/m
2 Depth of layer, m mv m

2/kN

220 9−12 0.000 11

12−18 0.000 03

360 9−12 0.000 20

12−18 0.000 04

Triaxial tests on undisturbed samples of the clay (nearly saturated) gave minimum shear strength of 120 kN/m2

and undrained modulus of deformation Eu of 40MN/m2. Calculate the immediate and long-term settlement of the
bridge pier.

Solution:
(1) Calculating immediate settlements in sand and gravel stratum.

It is not known whether this stratum is overconsolidated; the preconsolidation pressure is not given, hence
assume it is normally consolidated.

Assume using the Burland and Burbidge empirical relationship:

Equation (3.15):
Si
BR

= α1α2α3
1 25

L
B

0 25 + L B

2

B
BR

0 7 q
pa

Use Equation (3.16) to adjust the N-value for the gravel content; and therefore,

N a = 1 25 ×N = 1 25 × 40 = 50
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Equation 3.18:
z
BR

= 1 4
B
BR

0 75

z
0 3

= 1 4
7 5
0 3

0 75

; z = 4 7m< H = 6m ; hence use α3 = 1

For normally consolidated sand and gravel, α1 = 0 14 and

α2 = 1 71 N1 4
a = 1 71 501 4 = 0 007

For dead loading only:

Si = 0 3 × 0 14 × 0 007 × 1
1 25

8 5
7 5

0 25 + 8 5 7 5

2

7 5
0 3

0 7 220
100

= 0 0065m

Si = 6 5mm

For combined dead and live loading:

Si = 6 5 ×
360
220

= 10 6mm

(2) Calculating immediate settlements in clay stratum
Determine the net average vertical stress at top of the clay layer using Fadum chart of Figure 2.32:
Below centre of the pier base at depth z = 6m;

m=
B
2

z
=

7 5
2

6
= 0 63; n=

L
2

z
=

8 5
2

6
= 0 71; I = 0 12

σz = q 4I = 220 × 4 × 0 12 = 105 6 kN m2

Below middle of the long side at depth z = 6m;

m=
B
z
=
7 5
6

= 1 25; n=
L
2

z
=

8 5
2

6
= 0 71; I = 0 158

σz = q 2I = 220 × 2 × 0 158 = 69 5 kN m2

Below middle of the short side at depth z = 6m;

m=
B
2

z
=
7 5 2
6

= 0 63; n=
L
z
=
8 5
6

= 1 42; I = 0 156

σz = q 2I = 220 × 2 × 0 156 = 68 6 kN m2

Below corner of the pier base at depth z = 6m;

m=
B
z
=
7 5
6

= 1 25; n=
L
z
=
8 5
6

= 1 42; I = 0 203

σz = q I = 220 × 0 203 = 44 7 kN m2

(Continued)
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The average stress below middle of the long side is greater than that below middle of the short side; hence
the average stress on top of the clay layer, for the dead loading only, may be calculated, approximately, as

qave = σz,ave =
105 6 +

69 5 + 44 7
2

2
= 81 4 kN m2

This pressure is distributed over an area B × L =
220
81 4

× 7 5 × 8 5

B × L = 172 3m2;
B
L

=
7 5
8 5

B =
7 5
8 5

L ; hence,

L =
8 5 × 172 3

7 5
= 14 0m, and B = 12 3m

For combined dead and live loading,

qave = 81 4 ×
360
220

= 133 2 kN m2. It is distributed over the area B × L

The pier base is nearly square. According to the pressure bulb of Figure 2.36 for a square area loaded with q,
the pressure at a depth of 2B below the loaded area is about 0.1q. Therefore, practically, we need not consider
settlements below that depth. Hence, thickness of the clay layer to be used in computations is

H = 2 × 7 5−6 = 9m

Si = q×B×
1−μ2

Es
×m× IS × IF

For settlement below the centre of the loaded area B L :

m= 4;B =
B
2
=
12 3
2

= 6 15m;L=
L
2
=
14
2
= 7m;M =

L
2

B 2
= 1 14

N =
H

B 2
=

9
6 15

= 1 46. Assume μ= 0 5

From Table 3.8 obtain I1 = 0 217; I2 = 0 083

IS = I1 +
1−2μ
1−μ

I2 = 0 217 +
1−2 × 0 5
1−0 5

0 083 = 0 217

D
B

=
9

12 3
= 0 73;

B
L

=
12 3
14

= 0 88. From Table 3.7 obtain IF = 0 8

For dead loading only:

Si clay = 81 4 ×
12 3
2

×
1− 0 5 2

40 000
× 4 × 0 217 × 0 8 = 0 0065m

= 6 5 mm
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For combined dead and live loading:

Si clay = 6 5 ×
133 2
81 4

= 10 6 mm

(3) Calculating consolidation settlements Sc =KSoed
Consider the first 3 m clay layer:

Equation (2.20)-(a): σav = qIa (Below corner of the loaded area)

m=
B 2
H

=
12 3 2

3
= 2 05; and n=

L 2
H

=
14 2
3

= 2 33

From Figure 2.38: Ia = 0 248
For dead loading only, below centre of the loaded area:

σav = 4qIa = 4 × 81 4 × 0 248 = 80 7 kN m2

For combined dead and live loading, below centre of the loaded area:

σav = 4qIa = 4 × 133 2 × 0 248 = 132 1 kN m2

Consider the remaining 6 m clay layer:

Equation (2.20)-(b): σav = q
H2Ia H2

−H1Ia H1

H2−H1
(Below corner of the loaded area)

m=
B
2

H2
=

12 3
2

9
= 0 68 and n=

L
2

H2
=

14
2

9
= 0 78; from Figure 2.38

Ia H2
= 0 2

m=
B
2

H1
=

12 3
2

3
= 2 05; and n=

L
2

H1
=

14
2

3
= 2 33. From Figure 2.38:

Ia H1
= 0 248

For dead loading only, below centre of the loaded area:

σav = 4 × 81 4
9 × 0 2−3 × 0 248

9−3
= 57 3 kN m2

For combined dead and live loading, below centre of the loaded area:

σav = 4 × 133 2
9 × 0 2−3 × 0 248

9−3
= 93 8 kN m2

Soed =H ×mv × σav

Sc =K × Soed

(Continued)
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Since the clay is overconsolidated, we can take K = 0 5.

Net contact
pressure, kN/m2

Depth of
layer, m

Layer
thickness, m

mv

m2/kN
σav

kN/m2
Soed
mm K

Sc
mm

220 9–12 3 0.000 11 80.7 26.6 0.5 13.3

12–18 6 0.000 03 57.3 10.3 0.5 5.2

360 9−12 3 0.000 20 132.1 79.3 0.5 39.7

12–18 6 0.000 04 93.8 22.5 0.5 11.3

The total final settlement of the bridge pier is given by
S = immediate settlement in sand and gravel

+ Immediate settlement in clay
+ Consolidation settlement in clay

For the dead loading net q = 220 kN m2 :

S = 6 5 + 6 5 + 13 3 + 5 2 = 31 5 mm

For the combined dead and live loadings net q = 360 kN m2 :

S= 10 6 + 10 6 + 39 7 + 11 3 = 72 2 mm

The results may be interpreted such that a settlement of 13 mmwill take place as the pier is constructed and
this will increase to about 22 mm if and when the bridge sustains its maximum live load. The remaining settle-
ment due to long-term consolidation of the clay under the dead load and sustained live load will take a long
period of time to attain its final value of about 50 mm.

Problem 3.8

A compacted fill of 8.5 m height is to be placed over a large area. The soil profile under the filled area is shown in
the scheme below. Oedometer tests on samples from points A and B produced the following results:

Cc Cr eo σc kPa

Sample A 0.25 0.08 0.66 101

Sample B 0.2 0.06 0.45 510

Compute Soed and make an estimate of Si and Sc.

Solution:
The loaded area is large and, therefore, B/z and L/z values will be large too (say three or above). Assume the same
vertical pressure q will be transmitted to any point located in the concerned subsurface layers below centre of the
filled area. Accordingly,

σz = q= 20 3 × 8 5 = 172 6 kPa
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At location of sample A:
σo = 2 × 18 3 + 2 19−10 = 54 6 kPa < σc = 101 kPa. Hence, the soil is overconsolidated.

σ1 = σo + σz = 54 6 + 172 6 = 227 2 kPa > σc Case II

Equation (3.38): Sc =
CrH
1 + eo

log
σc
σo

+
CcH
1 + eo

log
σo + σz
σc

At location of sample B:
σo = 2 × 18 3 + 7 19−10 + 10 19 5−10 = 194 6 kPa < σc = 510 kPa. Hence, the soil is overconsolidated.

σ1 = σo + σz = 194 6 + 172 6 = 367 2 kPa < σc Case I

Equation (3.37): Sc =
CrH
1 + eo

log
σo + σz
σo

In order to compute settlements more accurately, the stiff silty clay is divided into three layers and the very stiff
clay into four layers, as shown in the scheme above and as indicated in Table 3.21.
Calculate σo, σc and σo + σz at midpoint of each layer and determine Soed using Equations (3.37) and (3.38) as

applicable.
For the Case II overconsolidation, it is required to determine the σc value at midpoint of each layer, as follows:

Layer I; σc = 101− 1 × 18 3 + 2 19−10 = 64 7 kPa
Layer II; σc = 101− 0 5 19−10 = 96 5 kPa
Layer III; σc = 101 + 3 19−10 = 128 0 kPa

(Continued)

10

γ = 18.3 kN/m3

γ = 19.0 kN/m3

Very stiff clay

Stiff silty clay

∇
• A

• B

4 m

G . S

10 m

8.5 m

2.0 m

7.0 m

18.0 m

Very dense sand and gravel

Compacted fill

γ = 20.3 kN/m3

II

III

IV

V

VI

VII

I

γ = 19.5 kN/m3

Scheme 3.5
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Total Soed = 834mm

The clays are stiff and overconsolidated; hence, according to Burland et al. (1977), the immediate settlement Si
and the consolidation settlement Sc may be estimated, approximately, as

Si = 0 5 Soed = 0 5 × 834 = 417mm

Sc = 0 5 Soed = 0 5 × 834 = 417mm

Also, the Sc may be estimated, approximately, using Equation (3.42) as follows:

According to Craig (1995), value the settlement ratio K for lightly over-consolidated clays is typically between 0.5
and 0.7. Values of σc and σo indicate that the clays are lightly overconsolidated OCR < 3 . Hence, an average
value of K = 0 6 may be used to estimate, approximately,

Sc = 0 6 Soed = 0 6 × 834 = 500mm

Si = 0 4 × 834 = 334mm

Problem 3.9

A compacted fill of 3.0 m height is to be placed over a large area. The soil profile under the area is shown in the
scheme below.
An oedometer test on a sample from point A produced the following results:

Cc Cr eo σc kPa

Sample A: 0.40 0.08 1.10 70.0

These results can be used in settlement calculations for the soft clay stratum as a whole.
Compute the total settlement below centre of the area due to the weight of the fill.

Table 3.21 Division of stiff silty clay and very stiff clay into layers.

Layer H (m) σo (kPa) σc (kPa) σo + σz (kPa)
Cr

1+ eo

Cc

1+ eo Eq. Soed mm

I 2.0 18.3 64.7 190.9 0.05 0.15 (3.38) 196

II 3.0 50.1 96.5 222.7 0.05 0.15 (3.38) 206

III 4.0 81.6 128.0 254.2 0.05 0.15 (3.38) 218

IV 4.0 118.6 – – 291.2 0.04 0.14 (3.37) 62

V 4.0 156.6 – – 329.2 0.04 0.14 (3.37) 52

VI 5.0 199.4 – – 372.0 0.04 0.14 (3.37) 54

VII 5.0 246.9 – – 419.5 0.04 0.14 (3.37) 46
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Solution:
The loaded area is large and therefore, B/z and L/z values will be large too (say three or above). Assume the same
vertical pressure q will be transmitted to any point located in the concerned subsurface layers below centre of the
filled area. Accordingly,

σz = q= 19 2 × 3 = 57 6 kPa

In order to compute the settlements more accurately, the fine to medium sand is divided into layers I and II, and
the soft clay layers III, IV and V, as shown in the scheme above.

(1) Settlement in the fine to medium sand stratum.
Assume using the Buisman–DeBeer method:

Equation (3.20): Si =
H
C
ln
σo + σz
σo

Equation (3.23): C = 1 9
qc
σo

(Recommended by Meyerhof, 1965)

Si =
σoH
1 9qc

ln
σo + σz
σo

=
2 3σoH
1 9qc

log
σo + σz
σo

Here, σz = q= 57 6 kPa
An adequate value for qcmay be estimated from Dr and qc correlations. For this purpose let us use the average
of results using the relationships given by Equation (1.50) and Figure 1.17, as follows:

Equation (1.50): Dr = 66 × log
qc
σo

−98,

where qc and σo are in t/m2

(Continued)

Compacted fill

Fine to medium sand∇

• A

3.0 m

3.0 m

4.0 m

3.0 m

1.5 m

2.0 m

Very dense sand and gravel

4 m

γ = 19.2 kN/m3

I

II

III

IV

V

γ = 19.5 kN/m3

γ = 18.5 kN/m3

Dr = 40%

Soft clay, γ = 16.0 kN/m3

Scheme 3.6
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At midpoint of Layer I:

σO = 0 75 × 18 5 = 13 9 kPa = 1 39 t m2

40 = 66 × log
qc
1 39

−98 log 0 85qc = 2 09

qc = 143 53 t m2 = 1435 kPa

From Figure 1.17; qc = 1 333
MN
m2

= 1333 kPa

Use qc =
1435 + 1333

2
= 1384 kPa

Si I =
2 3 × 1 5 × 13 9

1 9 × 1384
log

13 9 + 57 6
13 9

= 0 013m

At mid-point of Layer II:

σO = 1 5 × 18 5 + 1 19 5−10 = 37 25 kPa = 3 73 t m2

40 = 66 × log
qc
3 73

−98 log 0 52qc = 2 09

qc = 234 6 t m2 = 2346 kPa

From Figure 1.17, qc = 2 667
MN
m2

= 2667 kPa

Use qc =
2346 + 2667

2
= 2507 kPa

Si II =
2 3 × 2 × 37 25
1 9 × 2507

log
37 25 + 57 6

37 25
= 0 015m

Settlement in the fine to medium sand stratum

Ssand = Si I + Si II = 0 013 + 0 15 = 0 028m= 28 mm

(2) Settlement in the soft clay stratum:
At sample A: σo = 1 5 × 18 5 + 2 19 5−10 + 4 16−10 = 70 75 kPa≈pc = 70 0 kPa. Hence, the clay is con-
sidered normally consolidated.

Calculate σo and σo + σz at midpoint of layers and determine Soed using Equation (3.36)-(a)

Equation (3.36)-(a): Sc =
CcH
1 + eo

log
σo + σz
σo

The total settlement below centre of the area due to the weight of the fill = Stotal = Ssand +
Soed = 28 + 476 = 504 mm

Layer (σ ó+ σ ź)

(kPa) Eq.

H

(m)

3III

IV

V

55.8 113.4 0.19 176

3 73.8 131.4 0.19 143

4 94.8 152.4 0.19 157

Σ Soed = 476 mm

σ ó

(kPa) 1+eo

cc Soed

(mm)

(3.36)

(3.36)

(3.36)

Scheme 3.7

202 Shallow Foundations



Problem 3.10

The scheme below shows results of a CPT sounding performed at a certain site. The soil profile consists of
normally consolidated sands with some interbedded silts. The groundwater table exists at a depth of 2.0 m
below the ground surface. A long footing of 2 5 × 30 0m is required to support a total load, including weights
of the footing and backfill soil, equal to 197 kN/m2 and will be founded at a depth of 2.0 m. Use Schmertmann’s
method to compute the settlement of this footing soon after construction and the settlement 50 years after
construction.

Solution:

Equation (3.24): Si =C1C2C3qnet
z = z2

z = 0

Iz
Es
Δz

According to Schmertmann, for long footings
L
B
> 10 ; Es = 3 5 qc.

Values of Es for each layer will be calculated (using 1 kPa = 0 01 kg cm2).
Influence depth = 4B below the foundation level. Hence, all the seven layers should be considered in the settlement
computations.

Layer: I II III IV V VI VII

Es (kPa): 7000 10 500 14 350 23 800 31 500 20 300 37 800

(Continued)

Layer

Depth (m) 2 − 3 3 −5 5 − 6 6 − 7 7 − 8 8 − 9 9 − 12

qc (kg/cm2) 20 30 41 68 90 58 108

VIIVI

8

0 40 80 120

0

12

VII

VI

IV

III

II

I

V

2
∇

D
e
p
th

,m

qc (kg/cm2)

γ = 17 kN/m3

γ = 20 kN/m3

I II III IV V

Scheme 3.8
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Equation (3.25): Izp = 0 5 + 0 1
qnet
σzp

qnet = q−σo = 197−2 × 17 = 163 kPa

For long footings, σzp is calculated at depth B below foundation level; hence, σzp = 2 × 17 + 2 5 20−10 = 59 kPa

Izp = 0 5 + 0 1
163
59

= 0 666

Considering continuous foundations L B ≥ 10 :

For z = 0 to B Iz = 0 2 +
z
B

Izp−0 2

For z =B to 4B Iz = 0 333Izp 4−
z
B

Determine value of
Iz
Es
Δz at midpoint of each layer, as shown in Table 3.22

C1 = 1−
0 5σo
qnet

= 1−
0 5 2 × 17

163
= 0 896

C2 = 1 + 0 2log
t
0 1

At t = 0 1 year C2 = 1

C3 = 1 03−
0 03L
B

= 1 03−
0 03 × 30

2 5
= 0 67 < 0 73 useC3 = 0 73

0.1 0.666

4B

0

B Izp

Iz

z

0.2

Scheme 3.9
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Si =C1C2C3qnet
z = z2

z = 0

Iz
Es
Δz = 0 896 × 1 × 0 73 × 163 × 25 03 × 10−5

Si = 0 027m = 27mm

At t = 50 year: C2 = 1 + 0 2log
50
0 1

= 1 54

Si = 27 × 1 54 = 42mm

Problem 3.11

A 900-kN column load is to be supported on square footing founded at a depth of 1 m blow the ground surface.
The foundation soil is a fairly homogeneous silty sand with an average N60 of 28 and γ = 19 kN m3. Assume γ of
the backfill material is approximately the same as that of concrete. The ground water table is at a depth of 15 m
below the ground surface. The allowable total settlement is 20mm. Determine the required footing width using the
Schmertmann’s method.

Solution:
Only a limited soil data is available and because the supporting soil is fairly homogeneous, it may be satisfactory to
assume Es constant with depth. Hence, Equation (3.31)-(a), derived from the Schmertmann’s original equation,
can be applied.

Equation (3.31)-(a): Si =C1C2C3qnet
B Izp + 0 025

Es
Estimate Es from Equation (3.32):

Es = βo OCR+ β1N60 = 2500 1 + 600 × 28 = 19 300 kPa

(Continued)

Table 3.22 Determining the value of
Iz
Es
Δz at the midpoint of each layer.

Layer Es (kN/m2) z (m) Iz Δz (m) Iz Δz/Es

I 7000 0.5 0.293 1.0 4.19 × 10−5

II 10 500 2.0 0.573 2.0 10.91 × 10−5

III 14 350 3.5 0.577 1.0 4.02 × 10−5

IV 23 800 4.5 0.488 1.0 2.05 × 10−5

V 31 500 5.5 0.399 1.0 1.27 × 10−5

VI 20 300 6.5 0.310 1.0 1.53 × 10−5

VII 37 800 8.5 0.133 3.0 1.06 × 10−5

(Iz Δz/Es) = 25.03 × 10−5
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As a first trial, assume B = 2 0m

qnet = q−σo =
900 + 2 0 × 2 0 × 1 × 24

2 0 × 2 0
−1 × 19 = 230 kPa

C1 = 1−
0 5σo
qnet

= 1−
0 5 × 1 × 19

230
= 0 959

Assume the total settlement will be completed after 50 years;

C2 = 1 + 0 2log
t
0 1

= 1 + 0 2log
50
0 1

= 1 54

C3 = 1 03−
0 03L
B

= 1 03−
0 03 × 2 5

2 5
= 1

Equation (3.25): Izp = 0 5 + 0 1
qnet
σzp

For square footings, σzp is calculated at depth 0.5B below foundation level; hence σzp = 1 × 19 + 0 5 × 2 × 19 =

38 kPa

Izp = 0 5 + 0 1
qnet
σzp

= 0 5 + 0 1
230
38

= 0 746

Si = 0 02 = 0 959 × 1 54 × 1 × 230
B 0 746 + 0 025

19300
= 0 0136B

B= 1 47m< 2 0 m increase B

As a second trial, assume B = 2 5m

qnet = q−σo =
900 + 2 5 × 2 5 × 1 × 24

2 5 × 2 5
−1 × 19 = 149 kPa

C1 = 1−
0 5σo
qnet

C1 = 1−
0 5 × 1 × 19

149
= 0 936

Assume the total settlement will be completed after 50 years;

C2 = 1 + 0 2log
t
0 1

= 1 + 0 2log
50
0 1

= 1 54

C3 = 1 03−
0 03L
B

=C3 = 1 03−
0 03 × 2 5

2 5
= 1

Izp = 0 5 + 0 1
qnet
σzp

= 0 5 + 0 1
149

19 1 +
2 5
2

= 0 69

Si = 0 02 = 0 936 × 1 54 × 1 × 149
B 0 69 + 0 025

19 300
= 0 008B

B= 2 5m= the assumed value

Use the footing width B = 2 5m
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Problem 3.12

Solve Problem 3.10 using the Buisman–DeBeer method.

Solution:

Equation (3.20): Si =
H
C
ln
σo + σz
σo

Equation (3.23): C = 1 9
qc
σo

(Recommended by Meyerhof, 1965)

Si =
H

0

2 3σo
1 9qc

Δzlog
σo + σz
σo

Refer to Table 3.23. The depth z (below ground level) to the centre of each layer is obtained from the figure of
Problem 10. The effective overburden pressure σo and the stress increment σz at the centre of each layer are
calculated. The σz-values are obtained using either Figure 2.32 or Table 2.3. Values of qc in kg/cm2 are converted
to their corresponding values in kPa using 1 kPa = 0 01 kg cm2. The above settlement equations are applied to
obtain the total settlement.

The total settlement = 56mm
This result, compared with that obtained by Schmertmann’s method (see Solution of Problem 3.10), is

considered too conservative.

Problem 3.13

A column load of 500 kN is supported on a 1 5 × 2 0m spread footing. The foundation depth equals 0.5m. Assume
γ of the backfill material is approximately the same as γ of concrete. The soil profile consists of clean, well graded,
normally consolidated sand with γ = 17 kN m3 and the following SPT results:

Depth (m): 1.0 2.0 3.0 4.0 5.0

N60, (blow): 12 13 13 18 22

(Continued)

Table 3.23 Data for solving Problem 3.12.

Layer z (m) Δz (m) σo (kPa) σz (kPa) log
σo + σz
σo

qc (kPa)
2 3σo
1 9qc

Δz (mm) Si (mm)

I 2.5 1.0 39 158.0 0.703 2000 23.6 16.6

II 4.0 2.0 54 104.3 0.467 3000 43.6 20.4

III 5.5 1.0 69 68.5 0.300 4100 20.4 6.1

IV 6.5 1.0 79 57.4 0.237 6800 14.1 3.3

V 7.5 1.0 89 45.6 0.180 9000 12.0 2.2

VI 8.5 1.0 99 38.5 0.143 5800 20.7 3.0

VII 10.5 3.0 119 31.3 0.101 10800 40.0 4.0

Si = 55.6
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The ground water table is at a depth of 25 m. Using Schmertmann’s method, compute the total settlement at
t = 30 years.

Solution:

Equation (1.33):
Es
Pa

= αN60 Es = αPa N60;Pa = 100 kPa

α= 10 for normally consolidated sands Es = 1000N60

Equation (3.32): Es = βo OCR+ β1N60

βo = 5000 and β1 = 1200 (for clean normally consolidated sands)

Es = 5000 1 + 1200N60 = 5000 + 1200N60

It may be a reasonable judgment to use the average of Es values computed from these two equations, as
presented below:

Depth (m): 1.0 2.0 3.0 4.0 5.0

Es, (kPa): 15 700 16 800 16 800 22 300 26 700

L B = 2 1 5 = 1 33

1 < L B < 10

Hence,

Iz = Izs + 0 111 Izc− Izs
L
B
−1

Considering square and circular foundations:

For z = 0 to
B
2

Izs = 0 1 +
z
B

2Izp−0 2

For z =
B
2

to 2B Izs = 0 667Izp 2−
z
B

Considering continuous foundations L B ≥ 10 :

For z = 0 toB Izc = 0 2 +
z
B

Izp−0 2

For z =B to 4B Izc = 0 333Izp 4−
z
B

Izp = 0 5 + 0 1
qnet
σzp

qnet = q−σo = 500 1 5 × 2 + 0 5 × 24−0 5 × 17 = 170 2 kPa
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For square footings: σzp is calculated at depth 0.5B below foundation level; hence, σzp = 0 5 × 17 + 1 5 2 17 =

21 25 kPa

Izp = 0 5 + 0 1
170 2
21 25

= 0 783

For long footings: σzp is calculated at depth B below foundation level; hence, σzp = 0 5 × 17 + 1 5 × 17 = 34 kPa

Izp = 0 5 + 0 1
170 2
34

= 0 724

Si =C1C2C3qnet
z = z2

z = 0

Iz
Es
Δz

C1 = 1−
0 5σo
qnet

= 1−
0 5 0 5 × 17

170 2
= 0 975

C2 = 1 + 0 2log
t
0 1

= 1 + 0 2log
30
0 1

= 1 495

C3 = 1 03−
0 03L
B

= 1 03−
0 03 × 2
2 5

= 1 006 > 0 73

Si = 0 975 × 1 495 × 1 006 × 170 2 × 7 86 × 10−5

Si = 0 02m= 20mm

Total settlement at t = 30 years is 20 mm
Values of (Iz Δz/ Es) indicate that the influence depth is, practically, equals to 2B (or 3 m) because the footing is

too close to a square footing than to a long or continuous footing.

Problem 3.14

A raft 30 × 40m supports a building. The net contact pressure equals 120 kPa; assumed uniformly distributed
over the building area. The soil profile is shown in the scheme below. The laboratory test results gave an average
value of mv for the clay equals 0.32 m2/MN. Determine the final settlement under the centre of the raft due to
consolidation of the clay.

(Continued)

Es
(kPa)

Layer

No.

z 

(m)
Δz

(m)

1 15700 0.5 0.555

Izs Iz Δz/EsIzc Iz

0.375 0.548 1 3.49 × 10−5

2 16800 1.5 0.522 0.724 0.529 1 3.15 × 10−5

3 16800 2.5 0.174 0.562 0.188 1 1.12 × 10−5

4 22300 3.5 0 0.402 0.015 1 0.07 × 10−5

5 26700 4.5 0 0.241 0.009 1 0.03 × 10−5

Σ (Iz Δz/Es) = 7.86 × 10−5

Scheme 3.10
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Solution:
The clay layer thickness of 3 m is considered thin relative to the raft dimensions. Therefore, the condition of zero
lateral strain is approximately satisfied and the consolidation process can be assumed one dimensional. Also, for
this clay layer, it will be practically justified to consider the layer as a whole when consolidation settlement is
computed.

Equation (3.34): Sc =mv σz H

σz = The average stress increment in the clay layer due to the net contact pressure q; may be determined from
Equation (2.20)-(b), as follows:

σav = q
H2Ia H2

−H1Ia H1

H2−H1
(Below corner of the loaded area)

Refer to Figure 2.39:

Ia H2
m=

B 2
H2

=
15
20

= 0 75; n=
L 2
H2

=
20
20

= 1 Ia H2
= 0 215

Ia H1
m=

B 2
H1

=
15
17

= 0 88; n=
L
H1

=
20
17

= 1 18 Ia H1
= 0 223

Under the raft centre:

σz = σav = 4 × 120
20 × 0 215−17 × 0 223

20−17
= 81 44 kPa

The final settlement due to consolidation of the clay layer is

Sc =
0 32
1000

× 81 44 × 3 = 0 078m= 78 mm

Problem 3.15

A net contact pressure equals 160 kN/m2 is applied to a stiff clay layer 15 m thick. The footing is 6 m square
founded at 2 m depth below ground surface. A layer of silty sand, 2 m thick, overlies the clay and a firm stratum
lies immediately below the clay. Oedometer tests on specimens of the clay gave the value ofmv = 0 13 m2/MN, and
triaxial tests gave the value of pore pressure parameter A = 0 35. The undrained Young’s modulus for the clay Eu
was estimated equal 55 MN/m2. Determine the total settlement under the footing centre.

3.5 m
8 m

20.5 m Sand z = 18.5 m

3 m clay

Buildingnet q = 120 kN/m2

∇ W.T

Scheme 3.11
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Solution:
In order to compute the consolidation settlement more accurately, assume the clay is divided into five layers of
equal thicknesses, as shown in the figure below.
The clay layer is relatively thick; there will be significant lateral strain (resulting in immediate settlement in the

clay) and therefore, it will be more appropriate if the Skempton–Bjerrum method is used.

Stotal = Si + Sc

(a) Immediate settlement.

Equation (3.33): Si = μoμ1
qB
Eu

H
B
=
15
6
= 2 5;

D
B
=
2
6
= 0 33;

L
B
= 1; hence, from Figure 3.9:

μo = 0 95 and μ1 = 0 55

Si = 0 95 × 0 55 ×
160 × 6
55 × 1000

= 0 009m= 9mm

(b) Consolidation settlement.

Equation (3.40): Sc =K Soed

Sc =K Soed

For each layer:

Soed =mv × σz ×H =
0 13
1000

× σz × 3 × 1000 = 0 39 σz mm

σz = q 4 I ; I is calculated from Table 2.3 or Figure 2.32.

The equivalent diameter of the base area =
4 6 × 6

π
= 6 77 m

H
B
=

15
6 77

= 2 2, A= 0 35

(Continued)

6 m

Firm stratum

2 m Silty sand

3 m

z

1.5 m I

II

III

IV

V

4.5 m

7.5 m

10.5 m

13.5 m

15 m Stiff clay

net q = 160 kN/m2

Scheme 3.12
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Figure 3.15 for
H
B
= 2 2 and A= 0 35, obtain K = 0 55

Sc = 0 55 × 116 6 = 64mm

Stotal = Si + Sc = 9 + 64 = 73 mm

Problem 3.16

A general soil profile at a certain site is shown in the scheme below. The lower sand layer is under artesian pressure,
the piezometric level being 6 m above ground level. For the clay, mv = 0 94m2 MN and cv = 1 4m2 year.
As a result of pumping from the artesian layer the piezometric level falls by 3 m over a period of 2 years. Draw

the time-settlement curve due to consolidation of the clay for a period of 5 years from the start of pumping.

Solution:
Consolidation of the clay layer occurs due to decrease in porewater pressure at the lower boundary of the clay as
a consequence of pumping operation. As there is no change in total vertical stress; the effective vertical stress in
the clay layer will increase with depth. The 3 m drop in piezometric level is equivalent to the decrease in the
porewater pressure and increase in the effective vertical stress, which is 3γw at bottom of the clay layer, as shown
below.

Sand

Artesian sand layer

4 m
2 m

8 m

Clay

G.S

mν= 0.94 m2/MN

Cν= 1.4 m2/year

∇ W.T

Scheme 3.14

Layer

1.5 0.233

0.121

0.060

0.033

0.021

149

78

38

21

13

58.1

30.4

14.8

8.2

5.1

Σ Soed= 116.6

4.5

7.5

10.5

13.5

z

(m)

σ'z 
(kPa)

I Soed

(mm)

I

II

III

IV

V

Scheme 3.13
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σz = increase in effective vertical stress

At the centre of the clay layer: σz = 1 5γw = 1 5 × 10 = 15 kN m2

Equation (3.34): Sc =mv × σz ×H

Sc =
0 94
1000

× 15 × 8 = 0 113m= 113mm

Equation (3.44): Tv =
cvt
d2

Tv =
cvt
d2

=
1 4 × 5
42

= 0 438

Equation (3.48): Tv =

π

4
U
100

2

1− U 100 5 6 0 357

Tv = 0 438 =

π

4
U
100

2

1− U 100 5 6 0 357 Therefore,U = 0 73

To obtain the time settlement curve, a series of values of U is selected up to 0.73 and the corresponding Tv

calculated using either Equation (3.48) or Equations (3.46) and (3.47) as applicable. Then, the corresponding t
values are calculated using Equation (3.44). The corresponding values of settlement (Sc) are given by the product
of U and the calculated final settlement, as shown in Table 3.24.

(Continued)

Table 3.24 Data for the calculation of settlement values.

U Tv t (years) Sc(mm)

0.10 0.008 0.09 11.3

0.20 0.031 0.35 22.8

0.30 0.070 0.79 33.9

0.40 0.126 1.42 45.2

0.50 0.196 2.21 56.5

0.60 0.285 3.22 67.8

0.73 0.438 5.00 82.5

Sand

Artesian Sand

4 m

4 m

Clay

𝜎 zʹ  = 1.5 𝛾 w

𝜎 zʹ  = 3 𝛾 w

Scheme 3.15
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Problem 3.17

At a certain site the soil profile consists of 8 m sand layer overlying a 6 m layer of normally consolidated clay,
below which is an impermeable stratum. The water table exists at 2 m depth below the surface of the sand (ground
surface), as shown in the scheme below.

Sand8 m

2 m

6 m

Clay

cν = 1.26 m2/year

4.5 m

1.5 m

d = 2.25 m

d = 1.5 m
d = 6 m

Impermeable stratum

q

∇ W.T

Fill, γ = 20 kN/m3

γ = 17 kN/m3

γ = 19 kN/m3

γ = 20 kN/m3

Scheme 3.17
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m

)
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The saturated unit weight of the sand = 19 kN m3 and that of the clay = 20 kN m3. The sand above water table
has unit weight = 17 kN m3. For the clay, the relationship between void ratio and effective stress (in kN/m2) can
be represented by the equation e = 0 88−0 32log σ 100 ; and the coefficient of consolidation cv = 1 26m2 year.
Over a period of 1 year a fill of 3 m depth is to be dumped on the surface over an extensive area. The fill has unit

weight γ = 20 kN m3.

(a) Calculate the final settlement of the area due to consolidation of the clay and the settlement after a period of
3 years from the start of dumping.

(b) If a very thin layer of sand, freely draining, exists 1.5 m above the bottom of the clay layer, what will be the final
and 3 year settlements?

Solution:
(a) The fill covers a wide area; hence, the same fill pressure q is transmitted (approximately) to the concerned

subsurface layers and the problem can be considered one-dimensional. Consider one-dimensional consolida-
tion, taking the clay layer as a whole.

At the middle of the clay layer:

σo = 17 × 2 + 6 19−10 + 3 20−10 = 118 kN m2

eo = 0 88−0 32log
118
100

= 0 857

From the given relationship it is clear that Cc = 0 32

Equation (3.36)-(a): Sc =
CcH
1 + eo

log
σo + σz
σo

Final consolidation settlement is

Sc =
0 32 × 6000
1 + 0 857

log
118 + 3 × 20

118
= 185mm

The corrected value of time to allow for 1 year dumping period is

t = 3−
1
2
1 = 2 5 years

The clay layer is half closed; hence, d = 6m

Equation (3.44):
Tv =

cvt
d2

Tv =
1 26 × 2 5

62
= 0 0875

Equation (3.48):

Tv =

π

4
U
100

2

1− U 100 5 6 0 357

0 0875 =

π

4
U
100

2

1− U 100 5 6 0 357 U = 0 334

Settlement after 3 years =U × final consolidation settlement
Settlement after 3 years = 0 334 × 185 = 62mm

(Continued)
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(b) Thickness of the drainage layer (i.e. the very thin layer of sand) can be ignored and from the point of view of
drainage there is an open upper clay layer of thickness 4.5m d = 2 25m above a half closed lower clay layer of
1.5 m d = 1 5m , as shown in the scheme above.

Now, by proportion:

Tv1 =
0 0875 × 62

2 252
= 0 622. Equation (3.48) gives U1 = 0 825 upper layer; U

Tv2 =
0 0875 × 62

1 52
= 1 4. Equation (3.48) gives U2 = 0 968 lower layer

For each layer, Sc is proportional to HU. Therefore, if Ū is the overall degree of consolidation for the
two layers combined:

4 5U1 + 1 5U2 = 6 ×U
4 5 × 0 825 + 1 5 × 0 968 = 6 ×U . Hence U = 0 86 and the 3 year settlement is
Sc = 0 86 × 185 = 159 1mm; say 160 mm

Problem 3.18

A 2 0 × 3 2m flexible loaded area carries a uniformly distributed load = 210 kN m2, as shown in the scheme
below. Estimate the elastic settlement below the centre of the loaded area. Assume that the foundation depth
Df = 1 6m and H = ∞ . Use Equation (3.5).

Solution:
Elastic settlement Si below the centre of the loaded area:

Equation (3.5): Si = q×B×
1−μ2

Es
×m × IS × IF

m= 4;
B
2
=
2
2
= 1 m;

L
2
=
3 2
2

= 1 6 m; M =

L
2

B 2
=
1 6
1

= 1 6; B=
2
2
= 1

N =
H
B 2

=
∞
1

= ∞

From Table 3.8 obtain I1 = 0 697 and I2 = 0 0; hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 697

D
B
=
1 6
2

= 0 8;
B
L
=

2
3 2

= 0 625, μ= 0 3. From Table 3.7: IF = 0 728

Si = 210 ×
2
2
×
1− 0 3 2

8500
× 4 × 0 697 × 0 728 = 0 046m = 46 mm

Df

H

Silty sand

Es= 8500 kN/m2

μs = 0.3

2.0 m × 3.2 m

210 kN/m2

Rock

≈

Scheme 3.18
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Problem 3.19

Redo Problem 3.18, assuming that Df = 1 2m and H = 4m.

Solution:
Elastic settlement Si below the centre of the loaded area:

Equation (3.5): Si = q× B×
1−μ2

Es
×m× IS × IF

m= 4;
B
2
=
2
2
= 1m;

L
2
=
3 2
2

= 1 6m;M =

L
2

B 2
=
1 6
1

= 1 6;B=
2
2
= 1

N =
H
B 2

=
4
1
= 4

From Table 3.8 obtain I1 = 0 460 and I2 = 0 057; hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 460 +
1−2 × 0 3
1−0 3

0 057 = 0 493

D B=
1 2
2

= 0 6;
B
L
=

2
3 2

= 0 625; μ = 0 3. From Table 3.7: IF = 0 778

Si = 210 ×
2
2
×
1− 0 3 2

8500
× 4 × 0 493 × 0 778 = 0 0345m= 34 5mm

Problem 3.20

For a 3 × 3m shallow foundation, supported by a layer of sand as shown in the scheme below, the following data
are given:

Df = 1 5m; t = 0 25m;Eo = 16 000 kN m2;Ef = 15 × 10
6 kN m2

k= 400 kN m2 mdepth; qo = 150 kN m2; μs = 0 3 ;H = 20m

Calculate the elastic settlement.

(Continued)

Rigid layer

Sand layer; Es; μsBase; Ef

≈

Df

Eo
Es

Es= (Eo + kz)
H

z

t

B

Scheme 3.19
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Solution:

Equation (3.8): Si =
qoBeIGIFIE

Eo
1−μ2s

Be =
4BL
π

=
4 × 3 × 3

π
= 3 384m

β =
Eo
kBe

=
16 000

400 × 3 384
= 11 82;

H
Be

=
20

3 384
= 5 91

Figure 3.4 obtain IG = 0 85

Equation (3.9):

IF =
π

4
+

1

4 6 + 10 Ef Eo + Bek 2 2t Be
3

=
π

4
+

1

4 6 + 10 15 × 106 16 000 + 3 384 × 400 2 2 × 0 25 3 384 3

= 0 816

Equation (3.10):

IE = 1−
1

3 5 exp 1 22μs−0 4 Be Df + 1 6

IE = 1−
1

3 5 exp 1 22 × 0 3−0 4 3 384 1 5 + 1 6
= 0 926

Si =
150 × 3 384 × 0 85 × 0 816 × 0 926

16 000
1−0 32 = 0 0183m= 18 3 mm

Problem 3.21

Estimate the consolidation settlement of the clay layer shown in the scheme in Problem 2.13, using the results of
part (a) of the same problem.

Solution:
At the middle of the clay layer:

σo = 1 52 × 15 7 + 1 22 19 24−10 +
3 05
2

19 24−10

= 49 23
kN
m2

< σc = 100 kN m2 the clay is overconsolidated

Solution of Problem 2.13, part (a), gave σz = 63 44 kN m2

63 44 + 49 23 = 112 67 kN m2 > σc. Hence, Equation (3.38) is applied.

Equation (3.38): Sc =
CrH
1 + eo

log
σc
σo

+
CcH
1 + eo

log
σo + σz
σc

Sc =
0 06 × 3 05
1 + 0 8

log
100
49 23

+
0 25 × 3 05
1 + 0 8

log
49 23 + 63 44

100
= 0 053 m= 53 mm
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Problem 3.22

A stratum of clay is 20 m thick and is just consolidated under its present overburden. The average saturated unit
weight of the clay = 20 kN m3. Results of oedometer tests revealed that the coefficient of consolidation
cv = 10m2 year and the relationship between the effective pressure σ (in kN/m2) and the void ratio e of the clay

could be expressed by the equation: e= 0 8−0 3log
σ

100
At the top of the clay stratum the intergranular pressure and the hydrostatic pressure are 162 and 54 kN/m2, respect-

ively. To furnish a supply of water it is proposed to pump water from a sand stratum that underlies the clay. What
ultimate settlement would occur at ground surface if the pressure in the water below the clay were to be permanently
reduced by an amount = 54 kN m2 by pumping and what would be the settlement after one year of pumping?

Solution:
The decrease in water pressure equals 54 kN/m2 will cause the effective vertical stress (granular stress) be increased
by the same amount.
At the centre of the clay layer the pressure increase is

σZ = 54 2 = 27 kN m2

The ultimate settlement would occur due to this pressure increment.
Since the clay is consolidated under its present overburden, it is considered as normally consolidated clay.

Hence, Equation (3.36)-(a) is applied.

Equation (3.36)-(a): Soed =
CcH
1 + eo

log
σo + σz
σo

for σo≈σc; OCR≈1

σo = 162 + 10 20−10 = 262 kN m2

From the given equation it is clear that Cc = 0 3

eo = 0 8−0 3log
262
100

= 0 800−0 125 = 0 675

Ultimate settlement = Soed =
0 3 × 20 × 1000

1 + 0 675
log

262 + 27
262

= 153 mm

Equation (3.44): Tv =
cvt
d2

The clay layer is open; hence, d = 10 m

Tv =
10 × 1
102

= 0 1

Equation (3.48): Tv =

π

4
U
100

2

1− U 100 5 6 0 357

0 1 =

π

4
U
100

2

1− U 100 5 6 0 357 U = 0 357

Settlement after 1 year of pumping =U × Soed = 0 357 × 153

= 55mm
(Continued)
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Problem 3.23

The following results were obtained from an oedometer test on a specimen of saturated clay:

Pressure (kPa): 27 54 107 214 429 214 107 54

Void ratio: 1.243 1.217 1.144 1.068 0.994 1.001 1.012 1.024

A layer of this clay 8 m thick lies below a 4 m depth of sand, the water table being at the surface. The saturated
unit weight for both soils = 19 kN m3. A 4 m depth of fill, unit weight = 21 kN m3, is placed on the sand over an
extensive area. Determine the final settlement due to consolidation of the clay. If the fill were to be removed some
time after the completion of consolidation, what heave would eventually take place due to swelling of the clay?

Solution:
A plot of e–log σ , using the given pressure–void ratio data, was drawn on a separate semi-logarithmic graph paper.
From the plot the preconsolidation pressure σc was approximately determined = 73 kN m2.
At the centre of the clay layer, the effective overburden pressure is

σo = 4 19−10 + 4 19−10 = 72 kN m2≈σc

Therefore, the clay is considered normally consolidated.
After the virgin compression curve and the expansion curve were found, approximately, the following e – log σ

relationships and indices could be obtained:

Compression: e= 1 74−0 27logσ ;Cc = 0 27
Expansion: e = 1 075−0 031logσ ;Ce = 0 031
Compression: eo = 1 74−0 27log72 = 1 24

The fill covers a wide area; hence, the same fill pressure q is transmitted to the concerned subsurface layers and
the problem can be considered one-dimensional. Consider one-dimensional consolidation, taking the clay layer as
a whole:

The increase in the vertical effective stress at centre of the clay layer is

σz = q= 4 × 21 = 84 kN m2

Equation (3.36)-(a): Soed =
CcH
1 + eo

log
σo + σz
σo

for σo≈σc; OCR≈1

Soed =
0 27 × 8 × 1000

1 + 1 24
log

72 + 84
72

= 324 mm

Expansion (heave):

σo = 4 × 21 + 4 19−10 + 4 19−10 = 156 kN m2

eo = 1 075−0 031log156 = 1 01

Removed pressure σz = q= 4 × 21 = 84 kN m2 will be used as a negative pressure in the settlement equa-
tion. Hence,
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Heave expansion =
CeH
1 + eo

log
σo−σz
σo

=
0 031 × 8 × 1000

1 + 1 01
log

156−84
156

= −42 mm The negative sign indicates expansion

Problem 3.24

A compressible clay layer 5 m thick carries an overburden of pervious sand and rests on an impervious bed of rock.
A structure with a large construction area, founded in the sand, causes the same increase in vertical effective stress
throughout the clay layer. Results of an oedometer test on a sample of the clay, 19 mm thick, showed that the void
ratio decreased from 0.85 to 0.83 under a corresponding increase in pressure and the consolidation was 75%
complete after 30 min. The following values of time factor versus degree of consolidation are available:

U: 0.45 0.65 0.85

TV: 0.15 0.30 0.60

Estimate the final settlement of the structure due to consolidation of the clay. Also, estimate the time elapsing
before one-half of the final settlement has taken place.

Solution:

Equation (3.35): ΔH =
Δe

1 + eo
H = final settlement

Therefore, in an oedometer test: dh=
de

1 + eo
h

Change in sample height = dh=
0 85−0 83
1 + 0 85

× 19 = 0 204mm

Therefore, the same clay under the corresponding increase in pressure in the field, by proportion, will settle
0.204(H/h)mm and the final settlement is

S=
0 204 × 5 × 1000

19
= 54 mm

Refer to the plot of the given values of U and Tv shown below:
For U = 0 75 obtain Tv = 0 66; Tv = 0 436

Equation (3.44): Tv =
cvt
d2

cv =
Tvd2

t
=
0 436 × 19 2 2

30 × 60
= 0 022 mm2 s = 0 022 × 10−6 m2 s

For one-half of the final settlement, U = 0 50; Tv = 0 43; Tv = 0 185

Equation (3.45): t =
10−7 ×Tv × d2

3 154 × cv
=

10−7 × 0 185 × 52

3 154 × 0 022 × 10−6
= 6 67 years

(Continued)
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Problem 3.25

In an oedometer test, with half-closed drainage condition, a specimen of saturated clay 19 mm thick reaches 50%
consolidation in 20 min. How long would it take a layer of this clay 5 m thick to reach the same degree of
consolidation under the same stress and drainage conditions? How long would it take the layer to reach 30%
consolidation?

Solution:
For the same degree of consolidation U under the same stress and drainage conditions the time factor Tv is the
same too.

Equation (3.44): Tv =
cvt
d2

Sample: Tv =
cvt
d2

=
cv × 20

19 2

Layer:

Tv =
cvt
d2

=
cv × t

5 × 1000 2

cv × 20

19 2 =
cv × t

5 × 1000 2

t =
20 5 × 1000 2

19 2 min

t =
20 5 × 1000 2

19 2 ×
1

365 × 24 × 60
= 2 63 years

Equation (3.46): Tv =
π

4
U2 forU < 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4

Tν

U

0.6 0.8

Scheme 3.20
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For U = 50 , Tv =
π

4
× 0 52 =

cv × 2 63

5 2

cv = 1 867m2 year

For 30% consolidation: Tv =
π

4
× 0 32 =

cv × t

5 2

t =

π

4
× 0 32 × 52

cv
=

π

4
× 0 32 × 52

1 867
= 0 95 year

Problem 3.26

Assuming the fill in Problem 3.23 is dumped very rapidly, what would be the value of excess porewater pressure at
the centre of the clay layer after a period of three years? The layer is open and the value of cv = 2 4m2 year.

Solution:
The total stress increment, applied very rapidly t 0 , equals to the pressure applied by the fill and will be
carried initially entirely by the pore water, that is the initial value of excess pore water pressure
ui =Δσ = 4 × 21 = 84 kN m2. In particular, if ui is constant throughout the clay layer, the excess porewater
pressure ue at any time t > 0 may be determined from the following equation based on the Terzaghi theory of
one-dimensional consolidation:

ue =
n= ∞

n= 1

2ui
nπ

1− cos nπ sin
nπz
2H

exp −
n2π2Tv

4

where:

n = an odd integer; hence, 1−cosnπ = 2

z =H

2 H = thickness of the clay layer

Equation (3.44): Tv =
cvt
d2

=
2 4 × 3

4 2 = 0 45

Using ui = 84 kN m2, n = 1 and Tv = 0 45:

ue =
2 × 84
π

2 sin
π

2
exp −

π2 × 0 45
4

ue = 106 91 × 1 × 0 329 = 35 2 kN m2

Problem 3.27

A 10 m depth of sand overlies a clay layer 8 m thick, below which is a further depth of sand. For the clay,
mv = 0 83m2 MN and cv = 4 4m2 year. Water table is at the surface level but is to be lowered permanently by
4 m, the initial lowering taking place over a period of 40 weeks. Calculate the final settlement due to consolidation
of the clay, assuming no change in the weight of sand and the settlement 2 years after the start of lowering.

(Continued)
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Solution:
Total increase in vertical effective stress equals to total decrease in the porewater pressure due to lowering of the
water table, which is

4γw = 4 × 10 = 40 kN m2

Assume taking the clay layer as a whole:
At the centre of the layer the increase in effective stress is

σz =
1
2
× 40 = 20 kN m2

Equation (3.34): Sc =mv σzH

Sc = 8 ×
0 83
1000

× 20 = 0 133m= 133 mm

For calculation of settlement two years after the start of lowering, the time t would be equal to two years minus
one-half of the total lowering period.

Equation (3.44): Tv =
cvt
d2

=
4 4

4 2 2−
20 × 7
365

= 0 444

Equation (3.48): Tv =

π

4
U
100

2

1−
U
100

5 6 0 357

0 444 =

π

4
U
100

2

1−
U
100

5 6 0 357 U = 0 73

Settlement two years after the start of lowering the water table is

S=U × Sc = 0 73 × 133 = 97mm

Problem 3.28

A raft foundation 60 × 40m carrying a net pressure of 145 kN/m2 is located at a depth of 4.5 m below the surface in
a deposit of dense sandy gravel 22 m deep. The water table is at a depth of 7 m and below the sandy gravel is a layer
of clay 5 m thick which, in turn, is underlain by dense sand. The average value of mv for the clay is 0.22 m

2/MN.
Determine the settlement below the centre of the raft, the corner of the raft and the centre of each edge of the raft,
due to consolidation of the clay.

Solution:
Final settlement due to consolidation of the clay is given by

Equation (3.34): Sc =mv σzH
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Calculation of σz at depth z = 20m (i.e. at middle of the clay layer), using Table 2.3 or Figure 2.32:

(a) Below the centre of the raft

B
z
=
20
20

= 1;L z = 30 20 = 1 5 Ir = 0 194

σz = q 4Ir = 145 × 4 × 0 194 = 112 52 kN m2

(b) Below the corner of the raft

B z = 40 20 = 2, L z = 60 20 = 3 Ir = 0 238

σz = q Ir = 145 × 0 238 = 34 51 kN m2

(c) Below the centre of a long edge of the raft

B z = 30 20 = 1 5, L z = 40 20 = 2 Ir = 0 224

σz = q 2Ir = 145 × 2 × 0 224 = 64 96 kN m2

(d) Below centre of a short edge of the raft

B z = 20 20 = 1, L z = 60 20 = 3 Ir = 0 203

σz = q 2Ir = 145 × 2 × 0 203 = 58 87 kN m2

Calculation of consolidation settlement:

(a) Below the raft centre

Sc = 5 ×
0 22
1000

× 112 52 = 0 124m= 124 mm

(b) Below the raft corner

Sc = 5 ×
0 22
1000

× 34 51 = 0 038m= 38 mm

(c) Below centre of a long edge

Sc = 5 ×
0 22
1000

× 64 96 = 0 072m= 72 mm

(d) Below centre of a short edge

Sc = 5 ×
0 22
1000

× 58 87 = 0 065m= 65 mm

Problem 3.29

An oil storage tank 35 m in diameter is located 2 m below the surface of a deposit of clay 32 m thick, which overlies
a firm stratum, as shown in the scheme below. The net foundation pressures at the foundation level equal
105 kN/m2. The average values of mv and pore pressure coefficient A for the clay are 0.14 m2/MN and 0.65,
respectively. The undrained value of Young’s modulus is estimated to be 40 MN/m2. Determine the total settle-
ment (excluding settlement due to secondary compression or creep) under the centre of the tank.

(Continued)
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Solution:
The clay deposit is considered a thick layer; there will be significant lateral strain (resulting in immediate settle-
ment in the clay) and therefore it would be appropriate if the Skempton–Bjerrummethod is used in the settlement
computations. Accordingly, the total settlement (excluding settlement due to secondary compression or creep) is
given by

Equation (3.3): ST = Si + Sc

Immediate settlement Si may be calculated using Equation (3.33) and Figure 3.9, whereas the consolidation
settlement Sc is calculated using Equation (3.40) and Figure 3.15.
In order to compute the consolidation settlement more accurately, assume the clay below the foundation level is

divided into six layers of equal thicknesses, as shown in the scheme above:

(a) Immediate settlement

Equation (3.33): Si = μoμ1
qB
Eu

H
B
=
30
35

= 0 857;
D
B
=

2
35

= 0 057

Figure 3.9: obtain μo = 0 99 and μ1 = 0 35

Si = 0 99 × 0 35 ×
105 × 35
40 × 1000

= 0 032m= 32mm

(b) Consolidation settlement.

Equation (3.40): Sc =K Soed
For each layer:

Soed =mv × σz ×H =
0 14
1000

× σz × 5 × 1000 = 0 7 σz mm

Figure 2.30: σz = σz = q Ic

35 m Oil tank

32 m clay

2.5 m I

zII

III

7.5 m

12.5 m

17.5 m

22.5 m

27.5 m

Firm stratum

2 m

5 m

∇ W.T Net q = 105 kN/m2

IV

V

VI

Scheme 3.21
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A= 0 65 ;
H
B
= 0 857

Figure 3.15: obtain K = 0 775

Sc = 0 775 × 320 6 = 248mm

Total settlement ST = Si + Sc = 32 + 248 = 280 mm

Problem 3.30

The foundation of a large building is at 3m below ground level. The building contains one-story basement. The soil
profile consists of topsoil and sand 7.5 m thick, overlies a clay layer 3 m thick. The water table is 6.25 m deep. Unit
weights of the sand above and below water table are 20 and 22 kN/m3, respectively. Saturated unit weight of the
clay is 19.2 kN/m3. The average value ofmv for the clay is 177 × 10−6 m2 kN and the coefficient of consolidation cv
is 0.025 mm2/s. Additional pressure on the clay due to weight of the building = 200 kN m2 at the top of the
stratum, decreasing uniformly with depth to 150 kN/m2 at the bottom. Find:

(a) The original effective pressures at top and bottom of the clay stratum before excavation commences.
(b) The effective pressures at the top and bottom of the clay stratum after completion of the building.
(c) The magnitude of settlement of the building expected due to consolidation of the clay.
(d) The probable time in which 90 % of the settlement will occur. Assume half-closed drainage condition.

Solution:
(a) At top of the clay: σo = 6 25 × 20 + 1 25 22−10 = 140 kPa

At bottom of the clay: σo = 140 + 3 19 2−10 = 167 6 kPa
(b) At top of the clay: σ = 140 + 200 −3 × 20 = 280 kPa

At bottom of the clay: σ = 167 6 + 150 −3 × 20 = 257 6 kPa

(c) The net increase in effective pressure at the centre of the clay layer σz =
280 + 257 6

2
−
140 + 167 6

2
=

268 8−153 8 = 115 kPa
or,

σz =
200 + 150

2
−3 × 20 = 115 kPa

Equation (3.34): Sc =mv × σz ×H

= 177 × 10−6 × 115 × 3 = 0 061 m= 61 mm
(Continued)
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0.55

0.40

105.0

98.7

86.1

68.3

57.8

42.0
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(d) For 90 % of the settlement, the degree of consolidation U = 0 90 > 0 60; hence the time factor may be
computed from

Equation (3.47): Tv = 1 781−0 933log 100−U

Tv = 1 781−0 933log 100−90 = 0 85

Equation (3.45): t =
10−7 ×Tv × d2

3 154 × cv

t =
10−7 × 0 85 × 32

3 154 ×
0 025
10002

=
0 85 × 9

3 154 × 0 25
= 9 7 years

Problem 3.31

Below the foundation of a structure there is a stratum of compressible clay 6 m thick with incompressible porous
strata above and below. The average overburden pressure on the stratum before construction was 115 kPa and
after completion of the structure the pressure increased to 210 kPa. Oedometer tests were carried out on a sample
of clay initially 20 mm thick. Each pressure was allowed to act for 24 h and the decrease in thickness measured, the
results being as follows:

Pressure, (kPa): 0 50 100 200 400

Thickness, mm: 20.0 19.8 19.4 19.0 18.6

Under a pressure of 100 kPa, 90 % of the total consolidation took place in 21 min.
Find (a) value ofmv for the increased stress range after completion of the structure, (b) the probable settlement

of the structure and (c) the time in which 90% of this settlement may be expected to occur.

Solution:

(a)

mv =
eo−e1
1 + eo

×
1

σ1−σo
=

1
Ho

Ho−H1

σ1−σo

A plot of the given pressure versus thickness was drawn on a separate graph paper. From the plot, thickness
of the oedometer sample under a pressure of 115 kPa was estimated at 19.34 mm and that under a pressure of
210 kPa was 18.97 mm. Hence,

mv =
1

19 34
19 34−18 98
210−115

= 1 97 × 10−4m2 kN

(b)
σz = 210−115 = 95 kPa

Equation (3.34): Sc =mv × σz ×H

= 1 96 × 10−4 × 95 × 6 × 1000 = 112 mm

(c) Equation (3.44): Tv =
cvt
d2
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For the same 90 % of the total consolidation and pressure increment, the time factor of the clay stratum equals
that of the test sample. Therefore, under a pressure of 100 kPa, we can write

cv × t
32

=
cv × 21

10 1000 2

t = 9 × 21 × 10 000 = 189 × 104min

Under a pressure of 95 kPa:

t = 189 × 104 ×
100
95

= 198 95 × 104min

The time in which 90% of the 112 mm settlement may be expected to occur is

t =
198 95 × 104

365 × 24 × 60
= 3 8 years

Problem 3.32

On a flat site boreholes reveal that a 4 m layer of dense sand overlies a layer of compressible clay 8 m thick, below
which stiffer clay extends to a considerable depth. The appropriate values of the coefficient of compressibility of
the 8 m clay layer are:

Upper 4 m, mv = 0 746 × 10−3m2 kN
Lower 4 m, mv = 0 559 × 10−3m2 kN

It is proposed to store material on two adjacent paved areas as indicated in the scheme below. The pavement and
the stored material together can be assumed to provide a uniform contact pressure q on the surface of the ground.
Estimate the value of q in kPa if the differential settlement between points A and B is to be limited to 0.05 m. Use
the pressure influence chart of Figure 2.32.

(Continued)

12 m 4 m 12 m

6 m

6 m

12 m A B

Scheme 3.23
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Solution:
(A) Settlement at point A

Equation (3.34): Sc =mv × σz ×H

(1) Settlement of the upper 4 m clay; z = 6m
Left area:
B
z
=
L
z
=
6
6
= 1; Figure 2.31 gives I = 0 175 and 4I = 0 7

σz = q 4I = 0 7 q kPa

Right area:

B
z
=
6
6
= 1;

L
z
=
22
6
= 3 67 I = 0 204 2I = 0 408

B
z
=
6
6
= 1; L z = 10 6 = 1 67 I = − 0 195 2I = − 0 390

σz = q 0 408 −0 390 = 0 018 q kPa

Sc = 0 746 × 10−3 0 7q+ 0 018 q 4 = 2 143 × 10−3 q m

(2) Settlement of the lower 4 m clay, z = 10 m
Left area:
B
z
=
L
z
=

6
10

= 0 6. Figure 2.31 gives I = 0 107 and 4I = 0 428.

σz = q 4I = 0 428 q kPa

Right area:

B
z
=

6
10

= 0 6;L z = 22 10 = 2 2 I = 0 153 2I = 0 306

B
z
=

6
10

= 0 6;L z = 10 10 = 1 I = − 0 136 2I = − 0 272

σz = 0 306−0 272 q= 0 034 q kPa

Sc = 0 559 × 10−3 0 428 q+ 0 034 q 4 = 1 033 × 10−3 q

Settlement at A = 2 143 × 10−3 q+ 1 033 × 10−3 q= 3 176 × 10−3 q
(B) Settlement at point B

Equation (3.34): Sc =mv × σz ×H

(1) Settlement of the upper 4 m clay; z = 6m:
Left area:

B
z
=
6
6
= 1;

L
z
=
12
6
= 2 I = 0 2,and 2I = 0 4

σz = 0 4 q kPa

Right area:

B
z
=
6
6
= 1;

L
z
=
16
6
= 2 67 I = 0 202; and 2I = 0 404
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B
z
=
4
6
= 0 667;

L
z
=
6
6
= 1 I = − 0 145; and 2I = −0 29

σz = 0 404−0 290 q= 0 114 q kPa

Sc = 0 746 × 10−3 0 404 q+ 0 114 q 4 = 1 546 × 10−3 q

(2) Settlement of the lower 4 m clay, z = 10 m
Left area:

B
z
=

6
10

= 0 6; L z = 12 10 = 1 2 I = 0 143 and 2I = 0 286

σz = 0 286 q kPa

Right area:

B
z
=

6
10

= 0 6;
L
z
=
16
10

= 1 6 I = 0 15, and 2I = 0 3

B
z
=

4
10

= 0 4;L z = 6 10 = 0 60 I = − 0 08, and 2I = − 0 16

σz = 0 3−0 16 q= 0 14 q kPa

Sc = 0 559 × 10−3 0 286 q+ 0 14 q 4 = 0 953 × 10−3 q

Settlement at B= 1 546 × 10−3 q + 0 953 × 10−3 q= 2 499 × 10−3 q
The differential settlement between points A and B = 0 05m. Therefore, 0 05 = 3 176 × 10−3 q

−2 499 × 10−3 q

q=
0 05

0 677 × 10−3
= 73 86 kPa

Problem 3.33

Solve Problem 3.32 taking the 8 m clay layer as a whole.

Solution:
(A) Settlement at point A

Equation (3.34): Sc =mv × σz ×H

Use average mv =
0 746 + 0 559

2
× 10−3 = 0 653 × 10−3 m2 kN

z = 8m

Left area:
B
z
=
L
z
=
6
8
= 0 75; Figure 2.31 gives I = 0 14 and 4I = 0 56

σz = q 4I = 0 56 q kPa

(Continued)
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Right area:

B
z
=
6
8
= 0 75;

L
z
=
22
8
= 2 75 I = 0 18; and 2I = 0 36

B
z
=
6
8
= 0 75;

L
z
=
10
8
= 1 1 25 I = − 0 165 2I = − 0 33

σz = q 0 36−0 33 = 0 03 q kPa

Sc = 0 653 × 10−3 0 56q+ 0 03 q 8 = 3 082 × 10−3q m

(B) Settlement at point B
Equation (3.34): Sc =mv × σz ×H

Use average mv =
0 746 + 0 559

2
× 10−3 = 0 653 × 10−3 m2 kN

z = 8m

Left area:

B
z
=
6
8
= 0 75;

L
z
=
12
8
= 1 5 I = 0 17; and 2I = 0 34

σz = 0 34 q kPa

Right area:

B
z
=
6
8
= 0 75;

L
z
=
16
8
= 2 I = 0 175; and 2I = 0 35

B
z
=
4
8
= 0 5;

L
z
=
6
8
= 0 75 I = − 0 108; and 2I = −0 216

σz = 0 35 −0 216 q= 0 134 q kPa

Sc = 0 653 × 10−3 0 34 q+ 0 134 q 8 = 2 476 × 10−3 q

The differential settlement between points A and B= 0 05m. Therefore,

0 05 = 3 082 × 10−3 q−2 476 × 10−3 q

q=
0 05

0 606 × 10−3
= 82 51 kPa

Problem 3.34

A building has a foundation base slab supported on a bed of compact sand. Under the sand there is a stratum of
clay 4.5 m thick which in turn rests on impermeable shale. The ground water level is situated within the sand. The
initial effective overburden pressure at the top of the clay is 85 kPa. Additional pressures due to the foundation
loads are as follows:

232 Shallow Foundations



Location Additional pressure, kPa

Under centre of slab Under corner of slab

Top of clay layer 85.0 45.0

Bottom of clay layer 25.0 10.5

The clay has an average unit weight = 19 2 kN m3 and oedometer tests gave the following void ratio/effective
pressure data:

e 0.93 0.91 0.88 0.85

σ , kPa 50 100 200 400

Estimate the final settlement under the centre and under a corner of the foundation base slab due to consoli-
dation of the clay stratum.

Solution:
(A) Final settlement under centre of the base slab:

The initial effective overburden pressure at bottom of the clay layer is

85 + 4 5 19 2 − 10 = 126 4 kPa

The average initial effective overburden pressure at centre of the clay layer is

85 + 126 4
2

= 105 7 kPa

The average increase in pressure at centre of the clay layer is

85 + 25
2

= 55 kPa

The total effective pressure at centre of the clay layer is

105 7 + 55 = 160 7 kPa

The graph of e versus σ is shown in the scheme below.
From this graph the initial void ratio eo = 0 908 at the initial effective pressure σ = 105 7 kPa,

and
de
dσ

= 3 5 × 10−4

mv =
1

1 + eo

de
dσ

=
1

1 + 0 908
× 3 5 × 10−4 = 18 34 × 10−5m2 kN

Sc =mv × σz ×H = 18 34 × 10−5 × 55 × 4 5 = 0 045 m= 45 mm

It is noteworthy that mv may also be calculated approximately by assuming a straight line relationship
between e and σ over the current range of pressures, as follows:

(Continued)
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mv =
1

1 + eo

eo−e1
σ1−σo

=
1

1 + 0 908
0 908−0 889
160 7−105 7

= 18 11 × 10−5 m2 kN

(B) Final settlement under a corner of the base slab:
The average increase in pressure at centre of the clay layer is

45 + 10 5
2

= 27 75 kPa

The total effective pressure at centre of the clay layer = 133 45 kPa.
This pressure falls within the range of the pressures for which the computedmv may be assumed constant. There-
fore, the final settlement under a corner of the base slab is

Sc =mv × σz ×H = 18 34 × 10−5 × 27 75 × 4 5 × 1000 = 23 mm

Problem 3.35

A soft to very soft silty clay layer 3 m thick exists between a layer of permeable clayey silty sand at top and a nearly
impermeable layer of stiff silty clay at bottom. Oedometer tests were carried out on a sample of the soft clay 19 mm
thick. From the plot of ΔH versus log time, the value of time t100 (the time at 100% primary consolidation) was
100 min. From the graph of e versus log σ the compression index Ccwas 0.32 and the void ratio ep at the end of the
primary consolidation was 0.72. Estimate the secondary compression of the silty clay layer that would occur from
time of completion of the primary consolidation to 30 years of the load application in the field.

Solution:

Equation (3.58): Ss =CαH log t2 t1 , where C α=
Cα

1 + ep
.

Equation (3.60): estimate
Cα

Cc
= 0 04 ; hence Ca = 0 04 × 0 32 = 0 013

Cα =
0 013
1 + 0 72

= 75 6 × 10−4

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0 100 200 300

σʹ, kPa

400 500

160.7

e

Slope = 3.5 × 10–4

Scheme 3.24
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For the same clay soil:

Tv =
cv × tfield
dfield

2 =
cv × tlab
dlab

2 ; hence tfield =
dfield

2 × tlab
dlab

2 =
30002 × 100

19
2

2

tfield = 99 723 × 105 min =
99 723 × 105

365 × 24 × 60
= 19 years

t1 = tfield = 19 years; t2 = 30 years

Ss = 75 6 × 10−4 × 3000 × log 30 19 = 4 5 mm

However, it is very likely that the secondary compression will be larger than this small value, as some will occur
during primary consolidation. Theoretically, at the end of the 19 years there is no excess pore pressure anywhere in
the 3-m clay layer; however during this time period dissipation occurs from the top down, with secondary com-
pression beginning before 19 years have elapsed in the upper regions.

Problem 3.36

A soil profile is shown in the scheme below. A uniformly distributed load q = 100 kPa is applied at the ground
surface covering an extensive area. The clay is normally consolidated. Assume that the primary consolidation will
be complete in 3.5 years. The secondary compression index Ca = 0 011. Estimate the total settlement 10 years after
the load application due to consolidation and secondary compression of the clay layer.

Solution:

Equation (3.36)-(b): Sc =
CcH
1 + eo

log
σo + σz
σo

The average effective overburden stress at the middle of the clay layer is

σo = 2 × 14 + 4 18−10 + 2 19−10 = 78 kN m2

Equation (3.36)-(b): Cc = 0 009 LL−10 = 0 009 40−10 = 0 27
The loaded area is a large area; hence, practically, σz = q= 100 kPa

Sc =
0 27 × 4
1 + 0 8

log
78 + 100

78
= 0 215 m= 215mm

(Continued)

γdry= 14 kN/m3

γsat= 18 kN/m3

γsat= 19 kN/m3

e = 0.8

LL = 40

Sand

Clay

Sand

2 m

4 m

4 m

G. S

q = 100 kPa

∇ W.T

Scheme 3.25
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Equation (3.58):

Ss =CαH log t2 t1 , where Cα =
Cα

1 + ep

Cc =
Δe

log
σo + σz
σo

; Δe= eo− ep =Cc log
σo + σz
σo

; hence,

ep = e0−Cc log
σo + σz
σo

= 0 8−0 27log
78 + 100

78
= 0 703; hence,

Cα =
0 011

1 + 0 703
= 0 0065; t1 = 3 5 years; t2 = 10 years

Ss = 0 0065 × 4log 10 3 5 = 0 0118m= 12mm

Therefore, the total settlement 10 years after the load application due to consolidation and secondary compres-
sion of the clay layer is

215 + 12 = 227mm

Problem 3.37

A soil profile consists of two strata of normally consolidated homogeneous clay above an impervious layer and
with a drainage layer of incompressible sand, γsat = 19 6 kN m3, separating the strata, as shown in the scheme
below. Undisturbed samples were taken from nearly middle of the clay layers, consolidation tests were carried
out, e− logσ curves were plotted and values of Cc were determined. Also, for one point on each curve (the straight
part of the curve), the value of σ and its corresponding e value were found. These data and values of specific gravity
Gs are as tabulatedin the scheme:

q = 74 kPa

Upper clay layer

Lower clay layer

G.S

∇ W.T

Soft clay

Silty clay

1.2 m

3 m

0.6 m

4 m

Impervious bed

Layer Gs Cc e σʹ, kPa 

2.74

2.70

0.36

0.24

1.02

0.73

100

160

Sand

Scheme 3.26
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A very large area is to be loaded on the surface with a uniform load of 74 kPa. Determine:

(a) The settlement due to consolidation of the clay strata under the added surface uniform load.
(b) The data required for drawing a time settlement curve using the following additional data:

Layer Height of specimen, cm t50, min

Upper 2.54 4.6

Lower 1.62 3.1

Solution:
(a) The upper and lower clay strata are divided into convenient layers for the desired degree of accuracy. In the

upper layer the water table is a convenient plane for division. The lower 4 m stratum is arbitrarily divided into
two equal layers. The necessary calculations are carried out on the tabulated form in Table 3.25, in accordance
with the following procedure:
(1) Number the layers and record them in column 1 of the table.
(2) Write the layers thickness H in column 2.
(3) Determine the effective overburden pressure σo at mid-depth of each layer and record them in column 3.

Practically, the first soft clay layer may be considered nearly saturated.

For layers I and II: γsat =
Gs + e
1 + e

γw =
2 74 + 1 02
1 + 1 02

10 = 18 6 kN m3

For layers III and IV: γsat =
2 7 + 0 73
1 + 0 73

10 = 19 8 kN m3

For example, the effective overburden pressure σo at the mid-depth of layer III is

σo = 1 2 × 18 6 + 1 8 18 6−10 + 0 6 19 6−10 + 1 19 8−10

= 53 36 kPa

(4) Record Cc values in column 4.

(5) Compute eo values using the relationship eo = e +Cc log
σ

σo
and record them in column 5. For example, at

the mid-depth of layer III

eo = 0 73 + 0 24 log
160
53 36

= 0 844

(6) Record values of
Cc H
1 + e0

in column 6. Because
Cc

1 + e0
is dimensionless, thicknessH can be in any unit and the

consolidation settlement Sc will be in the same unit.
(7) Determine and record in column 7 the effective pressure increase σz produced at the mid-depth of each

layer by the added load. In this problem, because the loaded area is large compared to the depth of the
compressible layers, σz may be considered as constant for the full depth and equals to the added uniform
load q which is 74 kPa.

(Continued)
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(8) Record in column 8 values of σz + σo

(9) Record in column 9 values of log
σo + σz
σo

(10) Record in column 10 values of Sc =
CcH
1 + eo

log
σo + σz
σo

Add the Sc values to obtain the total settlement.

The settlement due to consolidation of the clay strata under the added surface uniform load is

Sc = 0 497m= 497 mm

(b) Considering the upper layer:

Equation (3.44): Tv =
cvt
d2

cv =
Tv × d2

t
d =H = thickness of compressible layer for drainage at top or at bottom, as it is the case with the lower silty

clay layer, whereas d =
H
2
for drainage at top and bottom at the same time, as it is the case with the upper

soft clay layer and the laboratory specimens.
Height of the specimen which belongs to the upper layer = 2.54 cm and t50 = 4 6 min.
At time t50 the degree of consolidation U = 50 . Hence, Equation (3.46) gives

Tv =
π

4
U2 =

π

4
0 5 2 = 0 2

cv =
0 2 × 1 272

4 6
= 0 07 cm2 min

Now, for certain values of U, selected arbitrarily, the corresponding values of Tv are calculated from
Equation (3.46) or (3.47), as applicable. Values of settlement and the corresponding values of time t are also
calculated and tabulated, as shown in the scheme below. For example, using U = 10 , Equation (3.46) gives

Tv = 0 008. For the upper layer d =
H
2
= 1 5 m and cv = 0 07 cm2 min; hence,

t =
0 008 × 1 5 × 100 2

0 07
= 2571 min

Total settlement of the upper layer = 0 318m; hence, settlement at time t = 2571 min is

Sc =U × 0 318 = 0 1 × 0 318 = 0 032m

Table 3.25 Layers of the upper and lower clay strata and the calculations necessary to determine settlement due to
consolidation of the clay strata.

1 2 3 4 5 6 7 8 9 10

Layer H, m σo, kPa Cc eo
Cc H
1+ eo

, m σz , kPa σo + σz logσo + σzσo
Sc, m

I 1.2 11.16 0.36 1.360 0.183 74 85.16 0.883 0.162

II 1.8 30.06 0.36 1.210 0.293 74 104.60 0.534 0.156

III 2.0 53.36 0.24 0.844 0.260 74 127.36 0.378 0.098

IV 2.0 72.96 0.24 0.812 0.265 74 146.96 0.304 0.081

Sc = 0.497 m
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Considering the lower layer:
The computations just mentioned above are also required for the lower layer. For this case:

d =H = 4 m, specimen height = 1 62 cm and t50 = 3 1 min

At time t50 the degree of consolidation U = 50 ; hence, Equation (3.46) gives

Tv =
π

4
U2 =

π

4
0 5 2 = 0 2

cv =
0 2 × 0 812

3 1
= 0 0423 cm2 min

For example, using U = 10 , Equation (3.46) gives Tv = 0 008. Therefore,

t =
0 008 × 4 × 100 2

0 0423
= 30 260 min

Total settlement of the lower layer = 0 179m; hence, settlement at time t = 30 260 min is

Sc =U × 0 179 = 0 1 × 0 179 = 0 018m

The plot shown in the scheme represents a time–settlement curve which belongs to the upper soft clay layer.
A similar curve can be plotted for each of the lower silty clay layer and the two clay layers

combined.
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the upper soft clay layer

Upper layer

(drained 2 sides)

H = 3 m, Sc= 0.318 m

Lower layer

(draine 1 side)

H = 4 m, Sc= 0.179 m

(1 month = 30 days) (1 month = 30 days)

Settlement, m

U × 0.318

Settlement, m

U × 0.179U%
t

month

t

month

10 0.008 0.032 0.060 0.018 0.70

30 0.071 0.095 0.528 0.054 6.22

50 0.197 0.159 1.466 0.090 17.25

70 0.405 0.223 3.013 0.125 35.46

90 0.848 0.286 6.309 0.161 74.25

= 7.44 month
d2

cν

Tν

= 87.56 month
d2

cν

Scheme 3.27
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Problem 3.38

The plan of a group of independent square footings is shown in the scheme below. Each footing size is propor-
tioned for a contact pressure of 100 kPa. Footing loads are assumed to be applied independently, so that differential
settlements have no effect upon the applied loads. All the footings have the same foundation depth equals 3.6 m.
Water table exists at a depth of 4.6 m below the ground surface. The scheme also shows the average soil profile of
the site. The submerged unit weight γ of the intervening drainage sand layer equals 10 kN/m3. Results of the
oedometer tests revealed that the clay strata are normally consolidated (i.e. σo σc). The soil profile also shows
data which are obtained from results of oedometer tests carried out on undisturbed samples of the clay soils. Esti-
mate settlement of footing number five due to consolidation of the clay strata under the loads of the footings group.

Solution:
The computations for the total settlement analysis are organised in Table 3.26, following the same general pro-
cedure which was used in the solution of Problem 3.37. The soft clay below the foundation level is divided into
three layers, whereas the silty clay below the intervening 0.6 m sand is divided into two layers, as indicated in the
table. The increase in vertical stresses at the middle of the layers below centre of footing number five caused by the

γʹ = 8.4 kN/m3

eʹ = 1.02

σʹ = 100 kPa

Cc= 0.41

γʹ = 10.2 kN/m3

eʹ = 0.67

σʹ = 150 kPa

Cc= 0.22

5 m 7 m 

 

1

2.0 m × 2.0 m

2.0 m × 2.0 m

2.4 m × 2.4 m

2.4 m × 2.4 m

r=
8.6

m

r=
7
.3

m

r=
9.

9
m

1.7 m × 1.7 m

1.7 m × 1.7 m

2

7 m 5 m

3

4 5 6

Soft clay

Silty clay

Top soil 1.2 m

4.6 m

∇ W. T

5.5 m

Sand

Rock bed

6.7 m

0.6 m

3.6 m

G. S

7 m

Scheme 3.28
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loads on the other footings in the group (i.e. footings numbered 1–4 & 6), is computed assuming the footings act as
point loads at the foundation level. Because these footings are at some distance (i.e. the r distances) from the foot-
ing under consideration, this assumption does not produce an appreciable error. The increase in vertical stress
caused by the load of footing number five is computed considering the load is uniformly distributed as pressure
q = 100 kPa at its foundation level. In this stress computation the Fadum chart of Figure 2.32 will be used.
Results of the oedometer tests revealed that the clay strata are normally consolidated; hence the settlement due

to consolidation of each clay layer is calculated using

Equation (3.36)-(a): Sc =
CcH
1 + eo

log
σo + σz
σo

(Continued)

Table 3.26 Computations for the total settlement analysis.

1 2 3 4 5 6

Layer H, m σo, kPa Cc eo
Cc H
1+ eo

, m

I 1.0 75.44 0.41 1.070 0.198

II 1.3 90.10 0.41 1.039 0.261

III 2.0 103.96 0.41 1.013 0.407

IV 2.5 131.11 0.22 0.683 0.327

V 3.0 159.16 0.22 0.664 0.397

7 8 9

Footing: No. 5 No. 1 No. 2

4 I q σz z r/z V σz z r/z V σz

0.96 100 96.0 0.50 17.2 400 0.15 0.50 14.60 576 0.22

0.72 100 72.0 1.15 7.48 400 0.03 1.15 6.35 576 0.04

0.28 100 28.0 2.80 3.07 400 0.08 2.80 2.61 576 0.22

0.08 100 8.0 5.65 1.52 400 0.31 5.65 1.29 576 0.73

0.03 100 3.0 8.40 1.02 400 0.48 8.40 0.87 576 0.90

10 11 12

Footing: No. 3 No. 4 No. 6

z r/z V σz z r/z V σz z r/z V σz

0.50 19.8 289 0.11 0.50 14.0 400 0.16 0.50 10.0 289 0.11

1.15 8.61 289 0.02 1.15 6.09 400 0.03 1.15 4.35 289 0.07

2.80 3.54 289 0.33 2.80 2.50 400 0.17 2.80 1.79 289 0.02

5.65 1.75 289 0.13 5.65 1.24 400 0.58 5.65 0.88 289 1.00

8.40 1.18 289 0.25 8.40 0.83 400 0.74 8.4 0.60 289 0.91

Shallow Foundations – Settlement 241



Total settlement = 199 mm

Problem 3.39

Assume the soft clay layer of Figure 3.17 is 12 m thick and construction of the embankment will increase the
average total vertical stress in the clay by 70 kPa. Design requirement is that all except the last 20 mm of the settle-
ment due to consolidation of the clay layer will have taken place after 6 months. For the clay:

cv = 5m
2 year; ch = 8m

2 year;mv = 0 2m2 MN

Determine the spacing, in a square pattern, of 450 mm diameter sand drains to achieve the above requirement.

Solution:
Final settlement is calculated from

Equation (3.34): Sc =mvσzH

=
0 2
1000

× 70 × 12 = 0 168m= 168mm

For t = 6 months, U =
168−20
168

= 0 88

Diameter of each sand drain is 0.45 m. Therefore, rd = 0 225m
Radius of equivalent cylindrical block = R= n rd = 0 225n
The layer is half-closed and therefore d = H = 12m

Equation (3.44): Tv =
cvt
d2

=
5 ×

6
12

122
= 0 0174

Equation (3.48): Tv =

π

4
Uv

100

2

1− Uv 100 5 6 0 357 = 0 0174

Uv = 14 9 = 0 149

Equation (3.53): U = 1− 1−Uv 1−Ur

0 88 = 1− 1−0 149 1−Ur Hence,Ur = 0 86

13 14 15 16 17

Layer σz , kPa σo + σz , kPa log
σo + σz

σo
Sc, m

I 96.75 172.19 0.358 0.071

II 72.19 162.29 0.256 0.067

III 28.82 132.78 0.106 0.043

IV 10.75 141.86 0.034 0.011

V 6.28 165.44 0.017 0.007

Sc = 0.199 m
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Equation (3.52): Tr =
ch t
4R2

=
8 ×

6
12

4 0 225n 2

n=
19 75
Tr

A trial and error solution is necessary to obtain the value of n. Start with a value of n corresponding to one of the
curves in Figure 3.21 and obtain the value of Tr for Ur = 0 86 from that curve. Using this value of Tr the value of

19 75
Tr

is calculated and plotted against the selected value of n, as shown in the scheme below:

From the plot it is clear that n= 11 53.
Therefore, R= 0 225 × 11 53 = 2 594m
Refer to Figure 3.20a. Spacing of drains in a square pattern is given by

S=
R

0 564

=
2 594
0 564

= 4 6 m

Problem 3.40

A half-closed clay layer is 8 m thick and it can be assumed that the coefficients of consolidation in both the vertical
and horizontal directions are the same. Vertical sand drains 300 mm in diameter, spaced at 3 m centres in a square
pattern, are to be used to increase the rate of consolidation of the clay under the increased vertical stress due to the
construction of an embankment. Without sand drains the degree of consolidation at the time the embankment is
due to come into use has been calculated as 25%. What degree of consolidation would be reached with the sand
drains at the same time?

(Continued)

Tr

Trn
19.75
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n
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5.99
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0
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Scheme 3.29
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Solution:

Equation (3.46): Tv =
π

4
U2
v =

π

4
0 25 2 = 0 049

Equation (3.44): Tv =
cvt
d2

cv t =Tv × d2 = 0 049 × 82 = 3 136 m2

cv = ch. Therefore, ch t = cv t = 3 136 m2

Equation (3.52): Tr =
ch t
4R2

ch t =Tr × 4 ×R2 = 3 136

Refer to Figure 3.20a. For sand drains in a square pattern

R= 0 564 S= 0 564 × 3 = 1 692m

R= n × rd = n×
300

1000 × 2
= 0 15n Hence, n=

1 692
0 15

= 11 3

Tr =
3 136

4 × 1 6922
= 0 274. From Figure 3.21 obtain Ur = 0 72

Equation (3.53): U = 1− 1−Uv 1−Ur

U = 1− 1−0 25 1−0 72 = 0 79

Therefore, the degree of consolidation that would be reached with the sand drains at the same time is

U = 79

Problem 3.41

A layer of saturated clay is 10 m thick, the lower boundary being impermeable; an embankment is to be con-
structed above the clay. Determine the time required for 90% consolidation of the clay layer. If 300 mm diameter
sand drains at 4−m centres in a square pattern were installed in the clay, in what time would the same overall
degree of consolidation be reached? The coefficients of consolidation in the vertical and horizontal directions
respectively are 9.6 and 14.0 m2/year.

Solution:
Equation (3.47): Tv = 1 781−0 933log 100−U

Tv = 1 781−0 933log 100−90 = 0 848

Equation (3.44): Tv =
cvt
d2

Time required for 90% consolidation of the clay layer (without sand drains) is

t =Tv ×
d2

cv
= 0 848 ×

102

9 6
= 8 8 years

For sand drains in square pattern, R= 0 564 S= 0 564 × 4 = 2 256m

R= n× rd = 0 15n

n =
2 256
0 15

= 15 04

Tr =
ch t
4R2

=
14 × t

4 × 2 2562
= 0 688 t
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For selected values of t determine the corresponding values of Tr and then from Figure 3.21 obtain the corres-
ponding values of Ur.

Tv =
cv t
d2

=
9 6 × t
102

= 0 096 t

For selected values of t determine the corresponding values of Tv and then from Equation (3.48) obtain the
corresponding values of Uv.
For the obtained values of Uv and Ur, compute values of U using
Equation (3.53): U = 1− 1−Uv 1−Ur

All the computed values of Tr, Ur, Tv, Uv and U are shown in Table 3.27.

Draw a plot of t against U, as shown in the scheme below. Thus, from the plot, the time required for 90% con-
solidation of the clay layer, with sand drains, is

t = 0 67 years

Problem 3.42

During the construction of a highway bridge, the average permanent load on a normally consolidated clay layer,
6 m thick with open drainage at top and bottom, is expected to increase by about 115 kPa. The average effective
overburden pressure at mid-depth of the layer is 210 kPa. The average values of Cc and eo are 0.28 and 0.9, respect-
ively. The consolidation coefficient is 0.36 m2/month. Determine:

(a) The final consolidation settlement without precompression
(b) The added pressureΔσ f , due to weight of a temporary surcharge fill as a part of the total surcharge load, at the

middle of the clay layer, needed to eliminate the consolidation settlement in nine months by precompression.

(Continued)

0

0.2

0.4

0.6

0.8

1

1.2

U= 90%

0 0.5 1 1.5 2

U

t= 0.67 year

t , year

Scheme 3.30

Table 3.27 All the computed values of Tr, Ur, Tv, Uv and U.

t,year Tv Uv (1 − Uv) Tr Ur (1 − Ur) U

0.5 0.050 0.245 0.755 0.344 0.760 0.240 0.819

1.0 0.096 0.350 0.650 0.688 0.933 0.067 0.956

2.0 0.192 0.495 0.505 1.376 0.990 0.010 0.995
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Solution:

(a) Equation (3.36)-(a):
Sc =

CcH
1 + eo

log
σo + σz
σo

=
0 28 × 6
1 + 0 9

log
210 + 115

210
= 0 168 m= 168 mm

(b) This technique of precompression is sometimes used to control or eliminate, as desired, consolidation settle-
ment due to a structure load. Assume the permanent load of the structure causes increase in pressure, at the
middle of the clay layer, equals Δσ p . Settlement Sc will take place if a total surcharge load, which causes

increase in pressure =Δσ p +Δσ f , is acting for a sufficient period of time t. At that time, if the entire sur-

charge is removed and a permanent load of a structure is applied which causes increase in pressure equals
Δσ p no appreciable settlement will occur.

Equation (3.44): Tv =
cvt
d2

=
0 36 × 9

6 2 2 = 0 36

Equation (3.48): Tv =

π

4
U
100

2

1− U 100 5 6 0 357 = 0 36 Compute U = 66 5

According to this process of consolidation, the entire settlement due to U = 100 is computed as

Sc =
100
66 5

× 0 168 = 0 253m

Therefore, it is necessary σz be increased so that the entire consolidation settlement is eliminated in nine
months.
Equation (3.36)-(a):

Sc =
CcH
1 + eo

log
σo + σz
σo

0 253 =
0 28 × 6
1 + 0 9

log
210 + σz
210

log
210 + σz
210

=
0 253
0 884

= 0 286

210 + σz
210

= 1 93 Hence,

σz = 195 3 kPa

σz =Δσ p +Δσ f

195 3 = 115 +Δσ f

Δσ f = 195 3−115 = 80 3 kPa

Another method for determining (approximately) the surcharge pressure Δσ f is by using the scheme below

(Das, 2011), as follows:
Values of Tv and U% are computed as before.
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Δσ p

Δσo
=
115
210

= 0 548

From the scheme, for U = 66 5 and
Δσ p

Δσo
= 0 548, estimate

Δσ f

Δσ p

= 0 7

Therefore, Δσ f = 0 7 × 115 = 80 5 kPa

Problem 3.43

Solve Problem 3.42 with the addition of some sand drains. Assume that rd = 0 1 m, R= 1 5 m, cv = ch. Also,
assume that this is a no-smear case. Consider that the surcharge is applied instantaneously.

Solution:
(a) Settlement due to consolidation of the normally consolidated clay will be 168 mm as computed before.
(b) Values of Tv and Uv remain unchanged, that is Tv = 0 36 and Uv = 66 5 .

n=
R
rd

=
1 5
0 1

= 15 and Tr =
ch t
4R2

=
0 36 × 9
4 × 1 52

= 0 36

From Figure 3.21, obtain Ur = 0 77

Equation (3.53): U = 1− 1−Uv 1−Ur

= 1− 1−0 67 1−0 77 = 0 924 = 92 4
(Continued)
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The entire settlement due to U = 100 is

100
92 4

× 0 168 = 0 182 m

Therefore, σz should have an increased value so that the entire consolidation settlement is eliminated in nine
months.

Equation (3.36)-(a): Sc =
CcH
1 + eo

log
σo + σz
σo

0 182 =
CcH
1 + eo

log
σo + σz
σo

=
0 28 × 6
1 + 0 9

log
210 + σz
210

log
210 + σz
210

=
0 182
0 884

= 0 206

Hence,
210 + σZ

210
= 1 61 and σZ = 128 1 kPa.

σZ =Δσ p +Δσ f . Therefore,

Δσ f = 128 1−115 = 13 1 kPa

or,

from the scheme in Problem 3.42: for U = 92 4 and
Δσ p

Δσo
= 0 548, estimate

Δσ f

Δσ p

= 0 115. Therefore,

Δσ f = 0 115 × 115 = 13 2 kPa

Problem 3.44

For a sand drain project the clay is normally consolidated and the entire surcharge is applied, as shown in the
scheme below:

The following data are given:

For the sand drains:
rd = 0 1m, R= 1 0 m, cv = ch. Assume no-smear case.

For the clay: thickness H = 4 6m (two-way drainage), Cc = 0 31, eo = 1 1, σo = 50 kPa at middle of clay
layer, cv = 0 011 m2 day

Calculate the degree of consolidation 30 days after the surcharge is first applied. Also, determine the consoli-
dation settlement at that time due to the surcharge.

 

Total surcharge

pressure, kPa

Time, days

60 days = tc

tc

100 = Δσʹ(p)+ Δσʹ( f ) 

Scheme 3.32
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Solution:

Equation (3.44): Tv =
cv t
d2

=
0 011 × 30

4 6 2 2 = 0 062

Tc =
cv tc
d2

=
0 011 × 60

4 6 2 2 = 0 125

Using Figure 3.22, for Tc = 0 125 and Tv = 0 062, we obtain Uv≈9
Equation (3.54):

n=
R
rd

=
1
0 1

= 10

Trc =
ch tc
4R2

=
0 011 × 60
4 × 12

= 0 165

Tr =
ch t
4R2

=
0 011 × 30
4 × 12

= 0 082 <Trc; hence use

Ur =
Tr

Trc
−

1
ATrc

1− exp −ATr ; A=
2

n2 n2−1 ln n − 3n2−1 4n2

A=
2

102 102−1 ln 10 − 3 × 102−1 4 × 102
=

2
1 576

= 1 269

Ur =
0 082
0 165

−
1

1 269 × 0 165
1− exp −1 269 × 0 082 = 0 024 = 2 4

Equation (3.53): U = 1− 1−Uv 1−Ur

U = 1− 1−0 090 1−0 024 = 0 112 = 11 2

The final consolidation settlement Sc =
CcH
1 + eo

log
σo + Δσ p +Δσ f

σo

Sc =
0 31 × 4 6
1 + 1 1

log
50 + 100

50
= 0 324m

The consolidation settlement after 30 days =U × Sc

= 0 112 × 0 324 = 0 036m

= 36 mm

Problem 3.45

For a sand drain project, the following are given:
Clay: Normally consolidated (one-way drainage)

H = 5 5m

Cc = 0 3;eo = 0 76;cv = 0 015m
2 day

σo = 80 kPa,atmiddle of clay layer

Sand drains: rd = 0 07m, R= 1 25m, rs = rd , cr = cv.
(Continued)

Shallow Foundations – Settlement 249



A surcharge is applied as shown in the scheme below. Calculate the degree of consolidation and the consoli-
dation settlement 50 days after the surcharge is first applied.

Solution:
As the radius of the smeared zone is given in this Problem, it is possible to consider the smear effect in the solution;
more realistic results would be achieved by doing so.
For the case in which smear effect is considered, the A factor in Equations (3.54) and (3.55) becomes

A=
2

n2

n2−S2
ln

n
S

−
3
4
+

S2

4n2
+
kh
ks

n2− s2

n2
lnS

where: n=
R
rd
; S=

rs
rd

ks = horizontal permeability in the smeared zone
kh = horizontal permeability in the unsmeared zone

Tc =
cvtc
d2

=
0 015 × 30

5 5 2 = 0 015

Tv =
cvt
d2

=
0 015 × 50

5 5 2 = 0 025

Total surcharge

pressure, kPa

30 days = tc

70 = Δσ(́p)+ Δσ(́ f ) 

tc Time, days

Scheme 3.33

rd

rs

H Clay
Smeared zone

Sand drain

2R

Scheme 3.34
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For Tc = 0 015 and Tv = 0 025, Figure 3.22 gives

Uv≈13

n=
R
rd

=
1 25
0 07

= 17 86

Trc =
chtc
4R2

=
0 015 × 30
4 × 1 252

= 0 072

Tr =
cht
4R2

=
0 015 × 50
4 × 1 252

= 0 12 >Trc; hence use

Equation (3.55):

Ur = 1−
1

ATrc
exp ATrc −1 exp −ATr

A=
2

n2

n2−S2
ln

n
S

−
3
4
+

S2

4n2
+
kh
ks

n2− s2

n2
lnS

, S=
rs
rd

= 1

A=
2

17 862

17 862−1
ln 17 86 −

3
4
+

1
4 × 17 862

+ 0
=

2
2 89−0 75 + 0 0008

= 0 934

ATrc = 0 934 × 0 072 = 0 067; ATr = 0 934 × 0 12 = 0 112

Ur = 1−
1

0 067
exp 0 067 −1 exp −0 112 = 0 075 = 7 5

Equation (3.53): U = 1− 1−Uv 1−Ur

U = 1− 1−0 13 1−0 075 = 0 195 = 19 5

.

The final consolidation settlement

Sc =
CcH
1 + eo

log
σo + Δσ p +Δσ f

σo

Sc =
0 3 × 5 5
1 + 0 76

log
80 + 70
80

= 0 256 m

The settlement after 50 days =U × Sc

= 0 195 × 0 256 × 1000 = 50 mm

Problem 3.46

For a sand drain project, the following are given:

rd = 0 2 m,R= 2 5 m, rs = 0 3m, ch = cv = 0 3m2 month,H = 6 m, kh ks = 2

Determine:

(a) The degree of consolidation of the clay layer caused only by the sand drains after six months of application of
the surcharge.

(Continued)
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(b) The degree of consolidation of the clay layer caused by the combination of vertical drainage (drained at top
and bottom) and radial drainage after six months of application of the surcharge.

Assume that the surcharge is applied instantaneously.

Solution:
(a) For the case in which smear effect is considered and the surcharge assumed instantaneously applied, according

to Barron (1948),

Ur = 1−exp
−8Tr

m

m =
n2

n2−S2
ln

n
S

−
3
4
+

S2

4n2
+
kh
ks

n2− s2

n2
lnS; n=

R
rd
; S=

rs
rd

n =
2 5
0 2

= 12 5; S=
0 3
0 2

= 1 5; Tr =
cht
4R2

=
0 3 × 6
4 × 2 52

= 0 072

m =
12 52

12 52−1 52
ln

12 5
1 5

−
3
4
+

1 52

4 × 12 52
+ 2

12 52−1 52

12 52
ln1 5

m = 2 151−0 75 + 0 004 + 0 799 = 2 204

Ur = 1−exp
−8 × 0 072
2 204

= 1−0 77 = 0 23 = 23

(b) Equation (3.44): Tv =
cv t
d2

=
0 3 × 6

6 2 2 = 0 2

Equation (3.48): Tv =

π

4
U
100

2

1− U 100 5 6 0 357

0 2 =

π

4
U
100

2

1− U 100 5 6 0 357 ; hence U≈50 =Uv

Equation (3.53): U = 1− 1−Uv 1−Ur

U = 1− 1−0 5 1−0 23 = 615−61 5

Problem 3.47

Redo part (a) of Problem 3.46 considering no-smear case.

Solution:

Tr =
ch t
4R2

=
0 3 × 6
4 × 2 52

= 0 072; n=
2 5
0 2

= 12 5

From Figure 3.21 obtain the corresponding value of Ur = 0 28 = 28
or,

Ur = 1−exp
−8Tr

m
. For no-smear case:
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m=
n2

n2−1
ln n −

3n2−1
4n2

m=
156 25

156 25−1
ln12 5−

3 × 156 25−1
4 × 156 25

= 1 794

Ur = 1−exp
−8 × 0 072
1 794

= 0 275 = 27 5

Problem 3.48

For a large fill operation, the average permanent load at middle of the clay layer will increase by 75 kPa. The aver-
age effective overburden pressure on the clay layer before the fill operation was 110 kpa. For the clay the following
are given:

Normally consolidated clay, drained at the top and bottom; H = 8m; Cc = 0 27; eo = 1 02; cv = 0 52m2 month.
Determine: (a) the consolidation settlement of the clay layer caused by the addition of the permanent load, Δσ p ,

(b) the time required for 80% of consolidation settlement under the additional permanent load only, (c) the tem-
porary surcharge pressure increase, Δσ f , which will be required to eliminate the entire consolidation settlement

in 12 months by the precompression technique. Assume that the surcharge is applied instantaneously.

Solution:
(a) Equation (3.36)-(a):

Sc =
CcH
1 + eo

log
σo + σz
σo

σz =Δσ p = 75 kPa

Sc =
CcH
1 + eo

log
σo +Δσz

σo
=
0 27 × 8
1 + 1 02

log
110 + 75
110

= 0 241m = 241 mm

(b) For 80% consolidation settlement, U = 80
Assume using Equation (3.47):

Tv = 1 781−0 933log 100−U

Tv = 1 781−0 933log 100−80 = 0 567

Equation (3.45): t =
Tvd2

cv
=
0 567 ×

8
2

2

0 52
= 17 45 month

or,
Figure 3.22: for Tc = 0 and U = 80 , obtain Tv = 0 565 Therefore,

t =
0 565 ×

8
2

2

0 52
= 17 44 months

(Continued)
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(c) Final consolidation settlement under the average permanent load Δσ p is 241 mm.

Equation (3.44): Tv =
cv t
d2

=
0 52 × 12

8 2 2 = 0 39

Use Figure 3.22 with Tc = 0 and Tv = 0 39 or either of Equations (3.47) and (3.48) and obtain U 70 .
Therefore, settlement due to 100% consolidation is

100
70

× 241 = 344mm=0 344m

For this settlement to take place in 12 months by the precompression technique, the required load increase
of the entire surcharge is

σz = Δσ p +Δσ f . Therefore,

Sc = 0 344 =
CcH
1 + eo

log
σo + Δσ p +Δσ f

σo

0 344 =
0 27 × 8
1 + 1 02

log
110 + 75 +Δσ f

110

log
110 + 75 +Δσ f

110
= 0 322 Hence,

110 + 75 +Δσ f

110
= 2 1

Δσ f = 46 kPa

Another method for determining (approximately) the surcharge pressure Δσ f is by using the scheme in

Problem 3.42. Value of U is computed as before. Then, from the scheme, for values of U = 70 and
Δσ p

σo
=

75
110

= 0 682, obtain
Δσ f

Δσ p

= 0 63. Therefore, Δσ f = 0 63 × 75 = 47 kpa

Problem 3.49

The loading period for a structure was two years. Average settlement of 12 cm occurred five years after the struc-
ture’s load was first applied due to consolidation of an underlying clay layer. It is known that the final settlement
will exceed 30 cm. Estimate the settlement after 10 years from the time the loading was started.

Solution:
It is reasonable to measure the time t for the purpose of settlement calculations, from the middle of the loading
period. Thus, the 12 cm settlement occurred during four years, that is t = 4 years and it is desired what settlement
will occur at the required time t = 9 years.
For a certain clay deposit:

Sc =U Sc final ; hence, Sc Sc = U U

For U < 60 Tv =
π

4
U2; hence, Tv Tv =U U

Equation (3.44): Tv =
cv t
d2

; hence, Tv Tv = t t

Note that the terms with and without primes represent quantities for the required case and given case,
respectively.
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Now, we can write Sc Sc = t t or Sc = 12 = 9 4

Therefore, the settlement after 10 years from the time the loading was started, Sc = 12 ×
3
2
= 18 cm.

Since the final settlement was given as greater than 30 cm the obtained 18 cm settlement probably corresponds
to less than 60%, that is U < 60 and cannot be above 60% by a sufficient amount to invalidate the expres-

sion Tv =
π

4
U2.

Problem 3.50

Building (A) settled 10 cm in three years due to consolidation of the underlying clay layer and it is known that the
final settlement will be about 30 cm Building (B) and its underlying clay layer are, as far as the available data con-
firm, very similar to (A) except that the underlying clay layer is 20% thicker than the clay layer below (A). The
available data also confirm that the increase in the average pressure at the middle of the two clay layers can be
considered approximately alike. Estimate the final settlement of building (B) and also the settlement in three years.

Solution:
For a certain clay deposit:
Sc =mvσzH; hence, Sc Sc =H H
H = 1 2H. Therefore, Sc 30 = 1 2H H.
The final settlement of building B = Sc = 30 × 1 2 = 36 cm
Equation (3.44):

Tv =
cvt
d2

Tv = cv
t
H2

;

Tv = cv
t
H2

; hence,

Tv Tv =
t

H 2

t

H 2

Tv Tv =
3

1 2H 2

3

H 2 =
1

1 2 2

In this case the expression Tv =
π

4
U2 is valid, that is U < 60 ; hence

Tv Tv = U 2 U 2; hence, U U =
1
1 2

Sc =USc final ; U =
Sc

Sc final
; hence, U U =

Sc
Sc final

Sc
Sc final

=
1
1 2

Sc
Sc

Sc final

Sc final

=
1
1 2

Sc final =mv σz H and Sc final =mv σz 1 2H ; hence,
Sc final

Sc final

=
1
1 2

Therefore, Sc = Sc. Thus at any time the settlement of buildings (A) and (B) are alike, as long as U < 60 .
Therefore, settlement in three years = 10 cm.
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Problem 3.51

The settlement analysis, based on two-way drainage of the underlying clay layer, for a proposed structure indicates
8 cm of settlement in four years and a final settlement of 25 cm. However, there is some indication that there may
be no drainage at the bottom. For this second case, that is one-way drainage, determine the final settlement and the
time required for the same 8 cm settlement.

Solution:
The general equation of final consolidation settlement Sc =mvσzH does not include a term that depends on
drainage conditions. Hence, the final settlement is independent of drainage conditions. Accordingly, for the sec-
ond case, that is one-way drainage, the final settlement is 25 cm.
Degrees of consolidation at 8 cm of final settlements are the same for both cases, since the final settlements are

the same. Therefore, the time factors Tv =
cvt
d2

are the same too. Hence,

cv × 4

d
2

2 =
cvt
d2

t =
cv × d2 × 4 × 4

cv × d2
= 16 years

For the second case, that is one-way drainage, the time required for the same 8 cm settlement is 16 years.

Problem 3.52

Consider the clay layer of Problem 3.51 with two-way drainage condition. One of the borings at the site showed
thin sand strata at points about one-third and two-thirds of the layer. Assume that these two thin strata are com-
pletely drained but that other conditions remain unchanged. Determine the time required for 8 cm of settlement.

Solution:
Assume that the average increase in pressure σz for the entire clay layer is constant throughout the height and that
it may be used as σz for each of the three partial heights. This assumption might lead to appreciable errors in
estimates for the top and bottom thirds individually, but in estimates for the entire stratum the errors in the
top third will approximately balance those in the bottom third.

For U < 60 Tv =
π

4
U2; hence, Tv Tv =U U = Sc Sc

cvt
d2

cvt
d2

= Sc Sc

t

t
=
Sc
Sc

The settlement in one year is computed as Sc = Sc ×
t

t
= 8 ×

1

4
= 4cm

Therefore, the three sections (sublayers of the same thickness) together will settle 3 × 4 = 12 cm in one year and a
check shows that this is less than 60% of the final 25 cm settlement.

t = t ×
Sc
Sc
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t = 1 ×
8
12

t = 1 ×
8
12

2

=
4
9
year

Therefore, the time required for 8 cm settlement = 0.444 years.

Problem 3.53

The laboratory data for the clay layer of Problem 3.51, with two-way drainage condition, were from tests on a few
samples. Subsequent tests on additional samples give what are believed to be more accurate determinations of the
soil coefficients and show that the coefficient of volume compressibility mv is 20% smaller and the coefficient of
consolidation cv is 30% smaller than originally obtained. Considering these changes into account, but otherwise
using the same available data of the original two-way drainage condition, determine the final settlement and the
time required for 8 cm settlement.

Solution:
Equation (3.44): Sc =mvσzH

Sc final =mvσz H

after change

Sc final =mv σz H before change

mv = 0 8mv

mv mv = Sc final Sc final

Sc final = Sc final ×
mv

mv
= 25 ×

0 8mv

mv
= 20 cm

Taking the changes into account, the final settlement = 20 cm.
Considering 8 cm settlement:

For U < 60 Tv =
π

4
U2 =

cvt

d 2 2

For U =
8
25

π

4
8
25

2

=
cv × 4

d 2 2 ; hence,
cv

d 2 2 =
π

16
8
25

2

For U =
8
20
:

π

4
8
20

2

=
cv × t

d 2 2 ; cv = 0 7cv ; hence,

(Continued)
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π

4
8
20

2

=
0 7 × cv × t

d 2 2 = 0 7t
cv

d 2 2 ;

t =

π

4
8
20

2

0 7
cv
d 2 2

=

π

4
8
20

2

0 7 ×
π

16
8
25

2 =
4

8
20

2

0 7
8
25

2 =
4 × 625
0 7 × 400

= 8 93 years

Taking the changes into account, the time required for 8 cm of settlement = 8.93 years.

Problem 3.54

The settlement analysis for a proposed building structure indicates 8 cm of settlement in four years and a final
settlement of 25 cm. The underlying clay layer is drained at both its top and bottom surfaces. An alternate design
of the structure uses a taller building (i.e. the same proposed building structure with increased number of stories
only) which would increase the net building load by 25% On the basis of this heavier load, determine the final
settlement, the settlement in four years and the time required for 8 cm settlement.

Solution:
Equation (3.44): Sc =mvσzH

Sc final =mv σzH before change

Sc final =mv 1 25 σz H after change

Sc final =
1 25σz × 25

σz
= 31 25 cm

The final settlement under the heavier building = 31.25 cm
Equation (3.44):

Tv =
cvt
d2

Since the quantity
cv
d2

remains unchanged, for the same time t (i.e. t = t = 4 years) the time factor Tv remains

unchanged too (i.e. Tv =Tv).
Equation (3.46):

Tv =
π

4
U2 forU < 60

Tv =
π

4
U2 before change

Tv =
π

4
U2 after change

Therefore, U =U

Sc =USc final
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U =
Sc

Sc final

; hence, U =
Sc

Sc final
=

8
25

=U

8
25

=
Sc

32 25
; hence, Sc =

31 25 × 8
25

= 10cm

Under the heavier building, the settlement in four years = 10 cm.

For U =
10

31 25
and t = 4 years:

Tv =
π

4
10

31 25

2

= 4
cv
d2

; hence
cv
d2

=
π

4 × 4
10

31 25

2

For U =
8

31 25
and t = t :

Tv =
π

4
8

31 25

2

= t
cv
d2

= t
π

4 × 4
10

31 25

2

t =

π

4
8

31 25

2

π

4 × 4
10

31 25

2
=
4 × 82

102
= 2 56 years

The time required for 8 cm settlement, under the heavier building, is 2.56 years.

Problem 3.55

A building consisting of 20 storeys is founded on a stiff raft 20 mwide by 40 m long at a depth of 2 m below ground
level. The raft rests on a weathered rock becoming less weathered with increasing depth, until a relatively incom-
pressible stratum is met at a depth of 45 m Deformation modulus, Ed, values obtained from plate-load tests made
in a large-diameter borehole are shown in the scheme below. Estimate the settlement of the building for a net
bearing pressure (net uniform contact pressure) of 250 kPa (a) considering the raft as a flexible base, (b) consid-
ering the raft as a rigid base.

(Continued)

net q = 250 kPa
Ed × 1000 (MPa)

Weathered rock 

2 m

Incompressible stratum

0 1 2 3 4

10

20

30

45

D
e
p
th

,m

•

•
•

•

•

200 MPa

3600 MPa

Values from

load test

z

H

20 m × 40 m

Scheme 3.35
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Solution:
Variation of Ed with depth is obtained by plotting a straight line through the given points, shown in the figure. At
foundation level Ef = 200MPa and at a depth of 30 m below ground level, where z = 28m, Ed = 3600MPa.
Equation (3.65):

K =
Ed−Ef
Ef

B
z

=
3600−200

200
20
28

= 12 14

(a) Considering the raft as a flexible base.
The raft area is divided into four equal rectangles, each 10 × 20m.

H = 45−2 = 43 m;
H
B
=
43
10

= 4 3;
L
B
=
20
10

= 2; k= 12 14. Therefore, from Figure 3.25: IP≈0 05

From Figure 3.26a, for
H
B
=
43
20

= 2 15, the factor FB = 0 96

From Figure 3.26b, for
D
B
=

2
20

= 0 1, the factor FD = 1 0

From Equation (3.63), immediate settlement at corner of each flexible rectangle is given by

ρi = q
B
Ef

IpFBFD = 250
10

200 × 1000
0 05 0 96 1 = 6 × 1−4m

The immediate settlement at the centre of the flexible raft is

ρi = 4 6 × 1 – 4 = 2 4 × 10 – 3 m = 2 4mm

(b) Considering the raft as a rigid base.
The average settlement of the rigid foundation is given by

Equation (3.64): ρi, ave = 1 3 ρi, centre + ρi,midpoint long side + ρi, corner
ρi,comer:

H = 45−2 = 43m;
H
B
=
43
20

= 2 15;
L
B
=
40
20

= 2; k= 12 14 Therefore, from Figure 3.25: IP≈0 05

From Figure 3.26a, for
H
B
=
43
20

= 2 15, the factor FB = 0 96

From Figure 3.26b, for
D
B
=

2
20

= 0 1, the factor FD = 1 0

From Equation (3.63), immediate settlement at corner of the flexible raft is given by

ρi = q
B
Ef

IpFBFD = 250
20

200 × 1000
0 05 0 96 1 = 1 2 × 1−3m
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ρi, mid point long side:

H = 45−2 = 43m;
H
B
=
43
20

= 2 15;
L
B
=
20
20

= 1; k= 12 14

Therefore, from Figure 3.25: IP≈0 05

From Figure 3.26a, for
H
B
=
43
20

= 2 15, the factor FB = 0 96

From Figure 3.26b, for
D
B
=

2
20

= 0 1, the factor FD = 1 0

From Equation (3.63), immediate settlement at the corner of each flexible rectangle is given by

ρi = q
B
Ef

IpFBFD = 250
20

200 × 1000
0 05 0 96 1 = 1 2 × 1−3m

Immediate settlement at the midpoint of a long side of the flexible raft is

ρi = 2 1 2 × 1−3 = 2 4 × 10−3m

ρi, centre

From (a), ρi, centre = 2 4 × 10−3 m

The average settlement of the rigid foundation is

ρi, ave =
1
3

2 4 × 10−3 + 2 4 × 10−3 + 1 2 × 10−3 = 2 × 10−3 m

= 2 mm

There could, in addition, be some creep settlement in the weathered rock which might double the immediate
settlement.

Problem 3.56

A column footing 1.8 m square is to be founded at a depth of 0.6 m on weak medium-bedded poorly cemented
sandstone. The net foundation pressure (net contact pressure) is 1.55 MPa Examination of rock cores showed an
average joint spacing of 250 mm Tests on the cores showed representative uniaxial compression strength of
1.75 MPa Make an estimation of the foundation settlement. Consider the footing as a rigid base.

Solution:
For the 250 cm joint spacing, the fracture frequency per metre (or joint spacing per metre) is 1000 250 = 4
From Table 3.18, for a fracture frequency of four per metre; a suitable value for the mass factor (j) is 0.6, Also,
from Table 3.19, for poorly cemented sandstone the modulus ratio (Mr) is 150. Let quc of the intact rock
equals the uniaxial compression strength, which is 1.75 MPa. The mass deformation modulus is given by
Equation (3.66):

Em= jMrquc = 0 6 × 150 × 1 75 = 157 5MPa

(Continued)
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Assume the influence depth H of the rock below the foundation level is 4B= 4 × 1 8 = 7 2m
Divide the footing area into four equal squares each of 0.9 m width.

From Figure 3.25 for
L
B
=
0 9
0 9

= 1;
H
B
=
7 2
0 9

= 8 and k= 0 (using Em = Ed = Ef ), obtain IP≈0 48

From Figure 3.26a, for
H
B
=
7 2
1 8

= 4, the factor FB≈ 1

From Figure 3.26b, for
D
B
=
0 6
1 8

= 0 33, the factor FD = 0 93

From Equation (3.63), immediate settlement at corner of each flexible square is given by

ρi = q
B
Ef

IpFBFD = 1 55
0 9
157 5

0 48 1 0 93 = 3 954 × 1−3m

The immediate settlement at centre of the flexible raft is

4 3 954 × 1−3 = 15 82 × 10−3m

According to Equation (3.6) the rigidity factor is 0.93 and according to Table 3.15 the rigidity factor is 0.85.
Assume the rigidity factor is 0.90. Accordingly, the average settlement of the foundation is

0 90 × 15 82 × 10−3 = 14 24 × 10−3m= 14 24 mm; say15mm

(Creep might increase this settlement to about 30 m in the long term.)
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CHAPTER 4

Shallow Foundations – Bearing Capacity

4.1 General

As discussed in Section 2.4, the geotechnical strength, expressed as bearing capacity, is considered one
of the most important performance aspects of shallow foundations. Therefore, the subject of bearing
capacity is perhaps the most important of all subjects in soil engineering. Geotechnical strength
requirements of a shallow foundation comprise two fundamental criteria which must be always
satisfied:

(1) The shearing stresses transmitted to the supporting material must be smaller than the shearing
strength by an amount sufficient to give an ample factor of safety, a value between 2.5 and 3.0 nor-
mally being specified.

(2) The settlement of the foundation should be tolerable and, in particular, differential settlement
should not cause any unacceptable damage nor interfere with the function of the structure. This
settlement criterion was discussed in Chapter 3.

This chapter will concern criterion (1), that is the bearing capacity requirements. In conjunction with
this subject, sometimes the shear failure of the supporting soil is called bearing capacity failure, maybe
because the observation of the behaviour of shallow foundations revealed that bearing capacity failure
usually occurs due to shear failure of the supporting material.
Three principal modes of shear failure, shown in Figure 4.1, have been identified and described in

literature: general shear failure, local shear failure and punching shear failure.
The mode of the general shear failure is characterised by the existence of a well-defined failure pat-

tern, which consists of continuous slip surfaces from the edges of the footing to ground surface. Under
the increased pressure towards the ultimate failure load, the state of plastic equilibrium is reached ini-
tially in the soil around the edges of the footing then gradually spreads downwards and outwards.
Finally the state of plastic equilibrium is fully developed throughout the soil above the failure surfaces
(Figure 4.1a). Bulging or heaving of the adjacent ground surface occurs on both sides of the footing,
although the final slip movement (or soil collapse) occurs only on one side and it is often accompanied
by tilting of the footing. The general shear failure is typical of soils of low compressibility such as dense
or stiff soils. In this mode of failure, the pressure settlement curve comes to a vertical ultimate condition
at a relatively small settlement, as illustrated by curve (a) in Figure 4.1.
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© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



In contrast to the mode of general shear failure, the punching shear failuremode is characterised by a
failure pattern that is not easily identified. Under the increasing pressure the downwards vertical move-
ment of the footing is accompanied by compression of the soil immediately underneath; shear in ver-
tical direction around the footing edges assists the progress of the footing penetration to continue
(Figure 4.1c). There is little or no bulging of the ground surface away from the footing edges; both
the vertical and horizontal equilibrium of the footing are maintained; hence, there is neither visible
collapse nor substantial tilting. The ultimate load at failure is not defined and relatively large settle-
ments occur, as illustrated by curve (c) in Figure 4.1. Punching shear failure depends on the compress-
ibility of the supporting soil and the depth of foundation relative to its breadth. It occurs in very loose
sands, thin crust of strong soil underlain by a very weak soil, in weak clays loaded under slow drained
conditions, or in a soil of low compressibility if the footing is located at considerable depth.

The mode of local shear failure is characterised by a failure pattern which is clearly defined only
immediately below the foundation (Figure 4.1b). There is significant compression of the soil under
the footing and only partial development of the state of plastic equilibrium. Therefore the failure sur-
faces end somewhere in the soil mass without reaching the ground surface. However, there is a visible
tendency toward soil bulging on the sides of the footing. There would be no catastrophic collapse or
tilting of the footing. As indicated by curve (b) in Figure 4.1, local shear failure is characterised by the
occurrence of relatively large settlements and the ultimate load at failure is not clearly defined. This type
of shear failure mode is usually associated with soils of high compressibility. According to Vesic (1973),
the local shear failure retains some characteristics of both general and punching shear failure modes,
representing truly a transitional mode.

4.2 Basic Definitions

There are various terms, especially those which are directly related to pressures intensity, involved in
bearing capacity analysis which requires clear understanding without confusion. Therefore, it may be
useful at this stage to write down their definitions and symbols, as follows:

(1) Total overburden pressure σo is the intensity of total pressure or total stress due to the weights of
both soil and soil water, on any horizontal plane at and below foundation level before construction
operations come into action.

Pressure

(b)
(c)

(a)

(b)

(c)

(a)

S
e
tt
le

m
e
n
t

Figure 4.1 Modes of bearing capacity failure with typical pressure–settlement curves: (a) general shear failure,
(b) local shear failure, (c) punching shear failure (reproduced from Knappett and Craig, 2012).
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(2) Effective overburden pressure σo is the intensity of the intergranular pressure, or effective normal
stress, on any horizontal plane at and below foundation level before construction operations come
into action. It is the total overburden pressure σo less the pore-water pressure u. Therefore,

σo = σo−u

(3) Gross foundation pressure (or gross contact pressure, or, gross loading intensity), gross q, is the
intensity of total pressure directly beneath the foundation (at the foundation level) after the struc-
ture has been erected and fully loaded. It is inclusive of the load of the foundation substructure,
the loading from the superstructure and the total loading from any backfilled soil.

(4) Gross effective foundation pressure, gross q is the gross foundation pressure less the uplift pres-
sure due to height h of ground water table (W.T) above the foundation level, expressed as

gross q = gross q−hγw

(5) Net foundation pressure (or net contact pressure, or, net loading intensity), net q, is the excess
pressure or the difference between the gross foundation pressure gross q and the total overburden
pressure σo directly beneath the foundation, expressed as

net q= gross q−σo 4 1

(6) Net effective foundation pressure, net q , is the effective excess pressure or the difference between
the gross effective foundation pressure gross q and the effective overburden pressure σo directly
beneath the foundation, expressed as

net q = gross q −σo 4 2

The term net q is used for calculating the net increase in effective stresses at any depth below the
foundation level.

(7) Gross ultimate bearing capacity (or gross ultimate soil pressure), gross qult, is the minimum value
of the gross effective contact pressure at which the supporting material fails in shear. It is often
written as qult only.

(8) Net ultimate bearing capacity (or net ultimate soil pressure), net qult, is the minimum value of the
excess effective contact pressure at which the supporting material fails in shear, expressed as

net qult = gross qult−σo 4 3

(9) Net safe bearing capacity, net qs is the net ultimate bearing capacity divided by a suitable safety
factor SF, expressed as

net qs =
net qult
SF

4 4

(10) Gross safe bearing capacity, net qs is the net safe bearing capacity plus the effective overburden
pressure, expressed as

gross qs =
net qult
SF

+ σo 4 5

Note that the σo term is not divided by the safety factor and may not be logical to do so because its
value is usually available in full. However, some authors define the gross qs as the gross ultimate
bearing capacity divided by a suitable safety factor, expressed as

gross qs =
gross qult

SF
=
net qult + σo

SF
=
net qult
SF

+
σo
SF

4 6

Shallow Foundations – Bearing Capacity 267



(11) Presumptive bearing value is the net loading intensity considered appropriate to the particular
type of soil for preliminary design purposes. The particular value is based either on local experi-
ence or by calculation from strength tests or field loading tests using a factor of safety against
shear failure but without consideration of settlement. As an example, Table 4.1 gives presumed
bearing values for different types of soils (BS 8004: 1986).

(12) Net safe settlement pressure, net qs,ρ, is the maximum net effective pressure which the soil can
carry without exceeding the particular allowable settlement.

(13) Net allowable bearing capacity or allowable bearing pressure (or: net allowable soil pressure;
design bearing capacity or soil pressure) net qa or net qdesign. It is the maximum allowable
net loading intensity that the supporting material can carry, taking into consideration the bear-
ing capacity, the estimated amount and rate of settlement that will occur and the ability of the
structure to accommodate the settlement. Hence, it is a function both of the site and of the
structural conditions. It is either net qs or net qs,ρ, whichever is smaller; used in design of shal-
low foundations.

4.3 Gross and Net Foundation Pressures

The gross and net foundation pressures (or gross and net contact pressures) at the foundation level can
be determined as follows:

(A) The footing foundation is backfilled
Refer to Figure 4.2a. The concrete footing is subjected to a superimposed load (a column load or a
wall load per unit length) V. The footing is backfilled up to the ground surface with a material of
unit weight γ. Footing base area =A, thickness =Dc and unit weight = γc.

Table 4.1 Presumed bearing values (BS 8004: 1986).

Soil type Bearing value (kN/m2) Remarks

Dense gravel or dense sand and gravel >600 Width of foundation (B)
not less than 1m. Water
table at least B below base
of foundation

Medium-dense gravel or medium-dense sand and gravel 200–600

Loose gravel or loose sand and gravel <200

Dense sand >300

Medium-dense sand 100–300

Loose sand <100

Very stiff boulder clays and hard clays 300–600 Susceptible to long-term
consolidation settlement

Stiff clays 150–300

Firm clays 75–150

Soft clays and silts <75

Very soft clays and silts –
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The gross foundation pressure is given by

gross q=
V +Wf

A
4 7 - a

or

gross q=
V
A
+Dcγc + γ Df −Dc 4 7 - b

where Wf = total weights of the footing and the backfill material.
Assuming unit weight γ of the overburden soil above W.T is the same as that of the backfill

material and the saturated unit weight of the overburden soil (below W.T) is γsat, then from
Equation (4.1), the net foundation pressure is given by

net q=
V +Wf

A
−σo 4 8 - a

or

net q=
V
A
+Dcγc + γ Df −Dc − γ Df −h + γsath

=
V
A
−h γsat−γ +Dc γc−γ

h γsat −γ = γwh
Hence,

net q=
V
A
−γwh+Dc γc−γ ≤ net qa 4 8 - b

Column or wall

Backfill material

Basement 

Floor

Footing

(a)

∇

∇ WT

V
Wf

Wf

Dc

Dc

Df

h

h

Df

V

tc

(b)

Figure 4.2 Footings subjected to superimposed loads.
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where: γwh= uplift water pressure
From Equation (4.2), the net effective foundation pressure is given by

net q =
V +Wf

A
−γwh −σo

net q =
V
A
+ γDf −γDc + γcDc−γwh− γ Df −h + h γsat−γw

=
V
A
+ γDf −γDc + γcDc−γwh−γDf + γh−γsath+ γwh

=
V
A
−h γsat−γ +Dc γc−γ

h γsat−γ = γwh

4 9 - a

Hence,

net q =
V
A
−γwh+Dc γc−γ ≤ net qa 4 9 - b

It is noteworthy that both Equations (4.8)-(b) and (4.9)-(b) give the same result, indicating that it
makes no difference whether the net foundation pressure is computed on the basis of total stress or
effective stress approach.Equation (4.9)-(b) indicates that if γ γc and W.T is located at a depth
greater than Df, the net effective foundation pressure can be written as

net q =
V
A

4 10

For a safe design, the net effective foundation pressure net q should be less than or equal to the
net allowable bearing capacity net qa. Therefore,

net q ≤ net qa 4 11

(B) The footing foundation is not backfilled.
Refer to Figure 4.2b. In this case the interior footings are directly below the basement floor, not
backfilled and with no overburden soil above. Also, one side of the exterior footings are under the
same loading conditions. Therefore, the overburden pressure should not be deducted from q when
net q or net q is calculated.

The gross foundation pressure is given by

gross q=
V +Wf

A
=
V
A
+Dcγc + tcγc

net q= gross q=
V
A
+Dcγc + tcγc

gross q =
V
A
−γwh +Dcγc + tcγc

4 12

net q = gross q =
V
A
−γwh +Dcγc + tcγc ≤ net qa 4 13

where tc = thickness of the floor slab

Comparing Equation (4.13) with Equation (4.9)-(b), it is observed that the load carrying cap-
acity of a foundation is increased if it is not backfilled.
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(C) Mat or raft foundation under a basement.
Assume the basement footings and the floor slabs in Figure 4.2b are replaced by a mat with
thickness Dc and the building load is Q.

Equation (4.7)-(a):

gross q=
Q+Wf

A

gross q=
Q
A
+
A Dcγc

A
=
Q
A
+Dcγc

Equation (4.1): net q= gross q−σo

net q=
Q
A
+Dcγc−σo

Assume γ represents unit weight of the overburden soil aboveW.T, that is the effective unit weight.

net q=
Q
A
+Dcγc− γ Df −h + γsath 4 14

Equation (4.2): net q = gross q −σo

net q =
Q
A
−γwh +Dcγc−σo

=
Q
A
−γwh +Dcγc− γ Df −h + h γsat−γw

=
Q
A
− γwh+Dcγc−γ Df + γ h−γsath+ γwh

=
Q
A
−h γsat−γ +Dcγc−γ Df

h γsat−γ = γwh; hence,

net q =
Q
A
−γwh +Dcγc −γ Df ≤ net qa

4 15

or

Net effective
foundation
pressure

=

Total applied effective
pressure due to the total
building loads including
weight of foundation

−
Effective
overburden
pressure

≤ net qa 4 16

Here, also, it makes no difference whether the net foundation pressure is computed on the basis of
total stress or effective stress approach, as it is clear from Equations (4.14) and (4.15)
Equation (4.16) indicates that the net effective foundation pressure would reduce to zero if the

total applied effective pressure
Q
A
−γwh +Dcγc equals the effective overburden pressure

(γ Df). This is the same principle of floating foundations (or compensated foundations) which
has been discussed in Section 2.2.
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4.4 Bearing Capacity Failure Mechanism for Long
(Strip or Continuous) Footings

Assumethestrip footing (width =B) of Figure 4.3 carries a uniform pressure q on the surface of amass of
elastic, homogeneous and isotropic soil (i.e. ideal soil). The unit weight γ of the soil is assumed to be
zero (the same assumption by Prandtl, 1921; and Reissner, 1924) but it possesses shear strength param-
eters c and Ø .When the soil fails in shear, that is when the pressure q becomes equal to qult, the footing
will have been pushed downwards into the soil mass, producing a state of plastic equilibrium, in the
form of an active Rankine zone, below the footing, the angles ABC and BAC being 45 + Ø 2 . The
downward movement of the wedge ABC, that is zone I, forces the adjoining soil sideways, producing
outward lateral forces on both sides of the wedge. Therefore, passive Rankine zones ADE and BGF, that
is zone III, develop on both sides of zone I, the angles DEA and GFB being 45 − Ø 2 . The transition
between the downward movement of zone I and lateral movement of zone III occur through zones of
radial shear (also known as slip fan zones) ACD and BCG, that is zone II. The slip surfaces CD and CG
are logarithmic spirals (or circular arcs if Ø = 0) to which BC and ED, or AC and FG, are tangential.
The soil mass below the surface EDCGF remains in the state of elastic equilibrium, whereas the soil
above exists in the state of plastic equilibrium.

It may be useful tomention herein that stability of zone I dependsmainly on whether the footing base
is smooth or rough. When the base is perfectly smooth, the shear pattern in this wedge is identical with
the shear pattern for an active Rankine zone. When the base is rough, the soil underneath the footing
cannot spread laterally due to friction and adhesion between the bottom of the footing and the soil. As a
consequence, the soil within this zone acts as a part of the footing and remains in elastic equilibrium.
The depth of this wedge remains practically unchanged and still the footing sinks. According to Ter-
zaghi (1943), the boundary AC or BC rises at an angle ψ = Ø to the horizontal, provided no sliding

movement of the footing occur. However, most other theories use ψ = 45 +
Ø
2

, as just indicated.

Based on the mechanism described above and using the Prandtl plastic equilibrium theory, the
following exact expression can be obtained for the ultimate bearing capacity of a strip footing on
the surface of a weightless ideal soil:

qult = 2 + π cu

qult = 5 14 cu For undrained condition, Ø = 0
4 17

Where cu =undrained cohesion of soil (or undrained shear strength)
However, in the general case shear strength parameters are c and Ø ; hence it is necessary to consider

surcharge pressure qo acting on the soil surface as shown in Figure 4.3; otherwise if c= 0 the bearing
capacity of the weightless soil would be zero. For this case, Reissner (1924) found the following solution
(based on the Prandtl plastic equilibrium theory):

qult = ccot Ø exp π tan Ø tan2 45 +
Ø
2

−1

+ qo exp π tan Ø tan2 45 +
Ø
2

4 18

45°–
Ø
2

45° −
Ø
2

III
III

II
II

I
E

D C G

F

A B

B

qo qo
qultψ

Figure 4.3 Bearing capacity failure under a strip footing.
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We should not forget that Equation (4.18) was derived assuming weightless soil. Therefore, an add-
itional termmust be added to this equation to take into account the component of bearing capacity due
to the self-weight of the soil. This third term cannot theoretically (or exactly) be determined mainly
because of the inclination angle ψ which is unknown; hence the term can only be determined using
approximate procedures (e.g. Terzaghi, 1943; Meyerhof, 1951, 1955; Terzaghi and Peck, 1966; Hansen,
1969; Vesic, 1973). According to Terzaghi, the ultimate bearing capacity (gross qult) of the soil under a
shallow strip footing can be expressed by the following general equation (known as the Terzaghi gen-
eral bearing capacity equation):

gross qult = cNc + γ DfNq +
1
2
γ BNγ 4 19

where Nc, Nq and Nγ are bearing capacity factors depending only on the value of Ø .
Contributions of the first, second and third terms in Equation (4.19) are due to the constant com-

ponent of shear strength, the surcharge pressure and the self-weight of the soil, respectively. It is neces-
sary to realise, however, that the superposition of the components of bearing capacity is not strictly
correct for a plastic material; it leads to errors which are on the safe side, not exceeding 17–20%
for Ø = 30 to 40 and zero for Ø = 0 .
It may be useful to mention herein that there exists in literature a great variety of proposed solutions

to the problem of ultimate bearing capacity, especially, those related to the bearing capacity factors.
While variations in the proposed Nc and Nq values remain relatively insignificant, the differences in
Nγ values, coming primarily from the sharp variation of this factor with the angle ψ , are substantial.

4.5 Bearing Capacity Equations

Various analytical methods have been established so that the problem of a two-dimensional solution
for a strip footing is extended to a solution of three-dimensional problem for square, rectangular and
circular footings. Accordingly, semi-empirical shape, depth and various inclination factors are applied
to the ultimate bearing capacity solution for a strip footing.
Table 4.2 shows four general equations for estimating gross ultimate bearing capacity, currently in

use, proposed by the four authors Terzaghi (1943), Meyerhof (1963), Hansen (1970) and Vesic (1973,
1975). The table also shows equations for computing the bearing capacity factors included in each
equation. Table 4.3 gives values of bearing capacity factors for the Terzaghi bearing capacity equations.
Table 4.4 gives values of bearing capacity factors for the Hansen, Meyerhof and Vesic equations.
Table 4.5 shows equations for computing shape, depth and load inclination factors for use in the
Meyerhof bearing capacity equations. Table 4.6 shows equations for computing shape and depth fac-
tors for use in either the Hansen or Vesic bearing capacity equations. Table 4.7 shows equations for
computing load inclination, ground and base factors for use in the Hansen bearing capacity equations.
Table 4.8 shows equations for computing load inclination, ground and base factors for use in the Vesic
bearing capacity equations. According to Bowles (2001), as a result of his observations regarding the
use of the various bearing capacity equations, one may suggest the following equation use:

• Terzaghi – best for very cohesive soils where D B≤ 1 or for a quick estimate of qult to compare with
other methods. Do not use for footings with moments and/or horizontal forces or for tilted bases
and/or sloping ground.

• Hansen, Meyerhof, Vesic – best for any situatin that applies, depending on user preference or famil-
iarity with a particular method.

• Hansen, Vesic – best when base is tilted, when footing is on a slope or when D B > 1.

Notes for Table 4.2–4.8:

(1) Note use of “effective” base dimensions B , L in shape factors by Hansen but not by Vesic.
B =B−2 eB, L = L−2 eL and Af =B L .
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(2) In both Hansen and Vesic depth factors use actual dimensions B and L.
(3) Values of the si factors in the table above are consistent with vertical loads only. For inclined loads

see Section 4.7.
(4) With a vertical load V accompanied by a horizontal loadHL and eitherHB = 0 orHB > 0 you may

have to compute two sets of shape and depth factors as si,B, si,L, and di,B, di,L as discussed in
Section 4.7.

(5) Use Hi as either HB or HL or both if HL > 0.
(6) Hansen (1970) did not give values of ic for Ø > 0. The value given in the tables above is from

Hansen (1961), which is also used by Vesic.
(7) Variable ca = soil adhesion to the base, about 0 6 to 1 0 × c.

Table 4.2 Bearing capacity equations by the several authors indicated (from Bowles, 2001).

Terzaghi (1943).

qult = cNcsc + qNq + 0 5γ BNγsγ
Nq =

a2

αcos2 45 +ϕ 2

a = e(0.75π−ϕ/2)tan ϕ

Nc = (Nq − 1) cot ϕ

Nγ =
tanϕ
2

Kpγ

cos2ϕ
−1

For: strip round square

sc = 1.0 1.3 1.3

sγ = 1.0 0.6 0.8

Meyerhof (1963).

Vertical load: qult = cNcscdc + qNqsqdq + 0 5γ B Nγsγdγ

Inclined load: qult = cNcdcic + qNqdqiq + 0 5γ B Nγdγ iγ

Nq = eπ tanϕtan2 45 + ϕ
2

Nc = (Nq − 1)cot ϕ

Nγ = (Nq − 1) tan (1.4ϕ)

Hansen (1970).

General:† qult = cNcscdcicgcbc + qNqsqdqiqgqbq + 0 5γ B Nγsγdγ iγgγbγ

when ϕ = 0

use qult = 5 14su 1 + sc + dc− ic−bc−gc + q

Nq = same as Meyerhof above

Nc = same as Meyerhof above

Nγ = 1.5(Nq − 1) tan ϕ

Vesić (1973, 1975).

Use Hansen’s equations above.

Nq = same as Meyerhof above

Nc = same as Meyerhof above

Nγ = 2(Nq + 1) tan ϕ
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Table 4.3 Values of bearing capacity factors for use in the Terzaghi bearing capacity equations of Table 4.2.

Ø Nc Nq Nγ KPγ

0 5.7∗ 1.0 0.0 10.8

5 7.3 1.6 0.5 12.2

10 9.6 2.7 1.2 14.7

15 12.9 4.4 2.5 18.6

20 17.7 7.4 5.0 25.0

25 25.1 12.7 9.7 35.0

30 37.2 22.5 19.7 52.0

34 52.6 36.5 36.0

35 57.8 41.4 42.4 82.0

40 95.7 81.3 100.4 141.0

45 172.3 173.3 297.5 298.0

48 258.3 287.9 780.1

50 347.5 415.1 1153.2 800.0

Note: Values of Nγ for Ø of 0 , 34 , and 48 are original Terzaghi values used to back–compute Kpγ (Bowles, 1996).
*Nc = 1.5 π + 1. [See Terzaghi (1943), P. 127.]

Table 4.4 Values of bearing capacity factors for use in theHansen,Meyerhof andVesic bearing capacity equations
of Table 4.2.

Ø Nc Nq Nγ(H) Nγ(M) Nγ(V) Nq/Nc 2tan Ø(1 − sign Ø)2

0 5.14a 1.0 0.0 0.0 0.0 0.195 0.000

5 6.49 1.6 0.1 0.1 0.4 0.242 0.146

10 8.34 2.5 0.4 0.4 1.2 0.296 0.241

15 10.97 3.9 1.2 1.1 2.6 0.359 0.294

20 14.83 6.4 2.9 2.9 5.4 0.431 0.315

25 20.71 10.7 6.8 6.8 10.9 0.514 0.311

26 22.25 11.8 7.9 8.0 12.5 0.533 0.308

28 25.79 14.7 10.9 11.2 16.7 0.570 0.299

30 30.13 18.4 15.1 15.7 22.4 0.610 0.289

32 35.47 23.2 20.8 22.0 30.2 0.653 0.276

34 42.14 29.4 28.7 31.1 41.0 0.698 0.262

36 50.55 37.7 40.0 44.4 56.2 0.746 0.247

38 61.31 48.9 56.1 64.0 77.9 0.797 0.231

40 75.25 64.1 79.4 93.6 109.3 0.852 0.214

45 133.73 134.7 200.5 262.3 271.3 1.007 0.172

50 266.50 318.5 567.4 871.7 761.3 1.195 0.131

Note: Values of Nc and Nq are the same for all three methods; subscripts identify author for Nγ.
aNc = π + 2 as limit when Ø 0



Table 4.5 Shape, depth, and load inclination factors, for use in the Meyerhof
bearing capacity equations of Table 4.2.

Factor Value For

Shape
sc = 1 + 0 2Kp

B
L

Any ϕ

sq = sγ = 1+ 0 1Kp
B
L

ϕ > 10

sq = sγ = 1 ϕ = 0

Depth
dc = 1 + 0 2 Kp

D
B

Any ϕ

dq = dγ = 1 + 0 1 Kp
D
B

ϕ > 10

dq = dγ = 1 ϕ = 0

Load-inclination
ic = iq = 1−

θ∘

90∘

2 Any ϕ

H

VR

θ <
iγ = 1−

θ∘

ϕ∘

2 ϕ > 0

iγ = 0 for θ > 0 ϕ = 0

Where: KP = tan2 (45 + Ø/2)
θ = angle of resultant R measured from vertical without a sign; if θ = 0 all ii = 1.0
D = depth of foundation
B = width of footing
L = length of footing
si, di, ii = shape, depth, and load – inclination factors, respectively

Table 4.6 Shape and depth factors for use in the Hansen and Vesic bearing
capacity equations of Table 4.2. Use sc and dc when Ø =0 only for Hansen
equations. Subscripts H, V used for Hansen, Vesic, respectively.

Shape factors Depth factors

sc H = 0 2
B
L

ϕ= 0∘ dc = 0 4k ϕ= 0∘

dc = 1.0 + 0.4 k

Sc H = 1 0 +
Nq

Nc

B
L

k = D/B for D/B ≤ 1

Sc V = 1 0 +
Nq

Nc

B
L

k = tan−1(D/B) for D/B >
1

k in radians

sc = 1.0 for strip

Sq H = 1 0 +
B
L
sinϕ

dq = 1 + 2 tan ϕ(1 − sin ϕ)2 k

Sq V = 1 0 +
B
L
tanϕ

k defined above

for all ϕ

sγ H = 1 0−0 4
B
L

≥ 0 6
dγ = 1.00 for all ϕ

sγ V = 1 0−0 4
B
L

≥ 0 6



(8) Variables Ø and c are angle of internal friction and cohesion of the base soil, respectively.
(9) Hansen suggests using:

Ø tr triaxial strain Ø for
L
B
≤ 2

Ø ps plane strain Ø = 1 5 Ø tr−17 for
L
B
> 2

Ø ps = Ø tr for Ø tr ≤ 34

(10) Variable δ = friction angle between footing and base soil 0 5 Ø ≤ δ≤ Ø
(11) Bowles (2001) suggests: 2≤ α1 ≤ 3 and 3≤ α2 ≤ 4

Table 4.7 Load inclination, ground and base factors for use in the Hansen bearing capacity equations
of Table 4.2.

Load-inclination factors
ic = 0 5−0 5 × 1−

Hi

Af Ca

forϕ= 0

ic = iq−
1− iq
Nq−1

iq = 1−
0 5Hi

V +Af Ca cotϕ

a1

2≤ a1 ≤ 5

iγ = 1−
0 7Hi

V +Af Ca cotϕ

a2

2≤ a2 ≤ 5

iγ = 1−
0 7Hi

V +Af Ca cotϕ

a2

Ground factors (base
on slope)

gc =
B
147

forϕ= 0

gc = 1−
B
147

gq = gγ = 1−0 5cotβ 5

Base factors (tilted base)
bc =

η

147
forϕ= 0

bc = 1−
η

147

bq = exp −1η tanϕ

η in radians

bγ = exp −2 7η tanϕ

η in radians

Table 4.8 Load inclination, ground and base factors for use in the Vesic bearing capacity equations
of Table 4.2.

Load inclination factors
ic = 1−

mHi

Af CaNc

forϕ= 0

ic = iq−
1− iq
Nq−1

iq = 1−
Hi

V +Af Ca cotϕ

m

iγ = 1−
Hi

V +Af Ca cotϕ

m+ 1

m=mB =
2 +B L
1 + b L

m=mL =
2 +B L
1 +B L

Ground factors (base on
slope)

gc =
β

5 14
β in radians

gc = iq−
1− iq

5 14cotϕ

gq = gγ = 1− tanβ 2

Base factors (tilted base) bc = gc forϕ= 0

bc = 1−
2β

5 14 tanϕ

bq = bγ = 1−η tan ϕ 2

η in radians
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(12) According to Vesic:
with Ø = 0 (and β 0), use Nγ = −2sin ± β .
m=mB when Hi =HB (H parallel to B) and m=mL when Hi =HL (H parallel to L)

Use m= m2
B +m

2
L if you have both HB and HL.

Note use of B and L, not B and L
The Hi term ≤ 1 0 for computing iq, iγ (always).

(13) Vesic uses B in the Nγ term even when Hi =HL.
(14) Refer to the scheme 4.1 for identification of angles η and β, foundation depthD and location ofHi

(parallel and at top of the base slab; usually also produces eccentricity). Especially note that V =
force normal to the base and is not the resultant R from combining V and Hi.

4.6 Some Considerations Concerning the Use of Bearing
Capacity Equations

(1) The requirement of moment equilibrium M = 0 is not satisfied in the methods used in devel-

oping the bearing capacity equations; only the requirements FH = FY = 0 are satisfied.

However this error would not be serious since statics is obviously satisfied at ultimate loading.
(2) The common practice is, usually, to use conservative estimates for the soil parameters; hence, the

bearing capacity equations tend to be conservative most of the time. Moreover, after obtaining a
conservative qult this is reduced to the safe soil pressure qs using a safety factor. Therefore, the
probability is very high that the allowable soil pressure qa is safe.

(3) Terzaghi developed his bearing capacity equations considering the mode of general shear failure
in a dense or stiff soil and the mode of local shear failure in a loose or soft soil. According to
Terzaghi, the same general bearing capacity equation of Table 4.2 is used for the mode of local
shear failure provided that reduced values of the parameters c and Ø are used, as follows:

clocal =
2
3
cgeneral

tan Ø local =
2
3
tan Ø general; or Ø local = tan

−1 2
3
tan Ø general

Therefore, according to Terzaghi, for the mode of local shear failure clocal instead of c should be
used in the Nc term and Ø local instead of Ø should be used in computing the bearing capacity
factors (using equations or Table 4.3).

Hmax = V tan δ + ca Af

Limitations:
V

H
B

D

iq, iγ > 0

H < Hmax

η + β ≤ 90°
+β

β

+η

β ≤ ϕ

Scheme 4.1
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(4) The researchers Vesic (1969) and De Beer (1965) found that, for very large values of B of the Nγ

term, the limiting value of qult approaches that of deep foundations and suggest a reduction factor
such as rγ may be used with the Nγ term of all the bearing capacity equations. Bowles (1996)
suggests:

rγ = 1−0 25 log
B
K

forB > 2m 4 20

where B = width or diameter of footing or mat foundation, in m, and K = 2
(5) It is not recommended using tables of N factors (Tables 4.3 and 4.4) that require interpolation

over about 2 . For angles larger than 35 the factors change rapidly and by large amounts;
interpolation can have a considerable error, so someone checking the work may not be able
to verify qult.

(6) The Nc term (the shear strength term) predominates in cohesive soils.
(7) The Nq term (the surcharge term) predominates in cohesionless soils.
(8) The Nγ term (the weight term) provides some increase in bearing capacity for both c- Ø and

cohesionless soils.
(9) One should avoid placing a footing on the surface of a cohesionless soil mass.
(10) It is recommended to compact loose cohesionless soils of relative density less than 50% to a higher

density prior to placing footings in it.
(11) In case the soil beneath a footing is not homogeneous or is stratified, some judgment must be

applied to determine the bearing capacity. Bearing capacity for footings on layered soils will
be considered in Section 4.13.

(12) It is obvious that the Terzaghi bearing capacity equation is much easier to use than the others
equation so that it has great appeal for many practitioners, particularly for bases with only vertical

loads and
D
B
≤ 1. The shape factors proposed by Terzaghi and Peck (1967) are still widely used in

practice although they are considered to give conservative values of qult. The shape factors for strip,
square and circular footings are as shown in Table 4.2. For a rectangular footing of breadth B and
length L, the shape factors are obtained by linear interpolation between the values for a strip

footing
B
L
= 0 and a square footing

B
L
= 1 . Hence,

sc = 1 + 0 3
B
L
, and sγ = 1−0 2

B
L

(13) According to Vesic (1973), it is recommended that the depth factors di are not be used for
shallow foundations D B≤ 1 because of uncertainties in quality of the overburden. How-
ever, he did give the di values as shown in Table 4.6 despite this recommendation. Also, Vesic
always used the actual B as B in the Nγ term of the general bearing capacity equation of
Table 4.2.

(14) In a study of bearing capacity theories, Skempton (1951) concluded that the bearing capacity fac-
tor Nc for saturated clays under undrained conditions Ø u = 0 is a function of the shape of the
footing and the depth to breadth ratio, as shown in Figure 4.4. This figure also includes relation-
ships suggested by Salgado et al. (2004), which are described by Nc = 2 + π 1 + 0 27 d B 0 5 .
Nc for circular footings may be obtained by taking the square values. The factor for a rectangular
footing of dimensions B× L whereB < L is the value for a square footing multiplied by
0 84 + 0 16B L . In practice, Nc is normally limited at a value equals 9.0 for very deeply embed-
ded square or circular foundations.
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4.7 Bearing Capacity of Footings with Inclined Loads

A footing may be subjected to inclined loading and such condition leads to a reduction in bearing cap-
acity. This type of loading is common for footing of retaining walls loaded with both horizontal (lateral
earth pressure) and vertical loading, for footings of many industrial process structures where horizontal
wind loads are acting in combination with the gravity loads and for a number of other types of foun-
dations which are subjected to horizontal and vertical loads simultaneously. The effect of inclined load-
ing on bearing capacity can be taken into account by means of inclination factors, as shown in
Tables 4.5, 4.7 and 4.8.

The Terzaghi equations have no direct provision for a reduction in cases where the load is inclined.
TheMeyerhof inclination factors of Table 4.5 do not need explanation. However, he did not take into

account the direction of the load horizontal component (HB,HL).
The Vesic inclination factors take into account the load direction (HB,HL) in computing the m

exponents, as shown in Table 4.8. According to Vesic, the shape s factors are computed regardless of
i factors.

The Hansen inclination and shape factors take into account the load direction (HB,HL) as
follows:

(1) Compute the inclination factors using the equations given in Table 4.7 and using either the expo-
nents given in that table or those suggested by Bowles mentioned before (see note 11 below
Table 4.8). Accordingly, for:

HB = 0; ic,B = 0 and ic,B, iq,B, iγ,B are all 1 0

HL = 0; ic,L = 0 and ic,L, iq,L, iγ,L are all 1 0
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within the  significant depth by 

more than 50% of the average 

value.

Figure 4.4 Bearing capacity factors Nc for embedded foundations in undrained soil (reproduced from Knappett
and Craig, 2012).
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(2) Use the computed inclination factors to compute Hansen shape factors, as follows:

sc,B = 0 2B ic,B L sc,L = 0 2L ic,L B ϕ= 0 case

sc,B = 1 0 +
Nq

Nc

B ic,B
L

sc,L = 1 0 +
Nq

Nc

L ic,L
B

sq,B = 1 + sinϕ B iq,B L sq,L = 1 + sinϕ L iq,L B

sγ,B = 1−0 4B iγ,B L iγ,L sγ,L = 1−0 4L iγ,LB iγ,B

Limitation sγ, i ≥ 0 6 if less than 0 6 use 0 60

These factors are used in the following modifications of the Hansen general bearing capacity
equation of Table 4.2:

qult = cNcsc,Bdc,Bic,Bgc,Bbc,B + qNqsq,Bdq,Biq,Bgq,Bbq,B

+ 0 5γB Nγsγ,Bdγ,Biγ,Bgγ,Bbγ,B
4 21

or

qult = cNcsc,Ldc,Lic,Lgc,Lbc,L + qNqsq,Ldq,Liq,Lgq,Lbq,L

+ 0 5γL Nγsγ,Ldγ,Liγ,Lgγ,Lbγ,L
4 22

4.8 Bearing Capacity of Footings with Eccentric Loads

A footing may be subjected to eccentric loading and such condition leads to a reduction in bearing
capacity.
The estimate of ultimate bearing capacity for footings with eccentricity, using the general bearing

capacity equations of Table 4.2, may be obtained by the following methods:

(1) The effective area method (Meyerhof, 1953, 1963; Hansen, 1970).
Refer to Figure 4.5. The procedure is as explained below:
(a) Determine the effective footing dimensions B and L using

B =B−2 eB; where eB is the eccentricity parallel toB

L = L−2 eL; where eL is the eccentricity parallel toL

The smaller of the two dimensions (i.e. B and L ) is the effective width of the footing used in the
Nγ term of the bearing capacity equations. Effective area of the footing A = B L .
The equivalent effective areaA and the effective width B for eccentrically loaded circular foot-
ings is given in a nondimensional form (Highter and Anders, 1985), as shown in the table of
Figure 4.5b. Hence, the effective length L =A B . It may be noted that in the case of circular
foundations under eccentric loading, the eccentricity is always one-way.

(b) Use the effective footing dimensions B and L in computing the shape factors.
(c) Use actual B and L dimensions in computing the depth factors.
(d) Use a general bearing capacity equation to obtain qult.

The ultimate load that the foundation can support is

Qult = qult ×A = qult B L 4 23
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≡

(a)

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1

2.80 2.40 2.00 1.61 1.23 0.93 0.62 0.35 0.12 0.00

1.85 1.32 1.20 0.80 0.67 0.50 0.37 0.23 0.12 0.00
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Figure 4.5 Eccentrically loaded footings and method of computing effective footing dimensions.
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The safety factor against bearing capacity failure is

SF =
Qult

R
4 24

(2) The Meyerhof reduction factor method.
In this procedure the ultimate bearing capacity is computed for concentric loading condition using
theMeyerhof bearing capacity equations of Table 4.2. This computed ultimate soil pressure, qult(c),
is then reduced with a reduction factor Re to obtain the ultimate soil pressure for eccentric loading
condition which is

qult e = qult c ×Re 4 25

The original Meyerhof method gave reduction curves for obtaining Re; however, Bowles (1982)
converted the curves to the following suitable equations:

Re = 1−
2e
B

cohesive soil 4 26 - a

Re = 1−
e
B

1
2

cohesionless soil and for 0 < e B < 0 3 4 26 - b

It should be evident that, for two-way eccentricity (ex, ey), two reduction factors are used
for each type of soil. According to this method, the ultimate load that the foundation can
support is

Qult = qult e ×A= qult e BL 4 27

(3) Purkaystha and Char reduction factor method (for granular soils).
Purkaystha and Char (1977) performed stability analysis of strip foundations under eccentric ver-
tical loads supported by sand, using the method of slices. Their analysis resulted in the following
eccentricity reduction factor,

Rk = 1−
qult e
qult c

4 28

Rk = a
e
B

k
4 29

Where Rk = eccentricity reduction factor

qult e = ultimate bearing capacity of strip foundations under eccenteric vertical loads

qult c = ultimate bearing capacity of strip foundations under centeric vertical loads

a and k= functions of the embedment ratio Df B Table 4 9

By combining Equations (4.28) and (4.29),

qult e = qult c 1−Rk = qult c 1−a
e
B

k

qult e = qult c 1−a
e
B

k
4 30
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Where

qult c = qNqFqd +
1
2
γBNγFγd 4 31

The relationships for the depth factors Fqd and Fγd are given in Table 4.6.
The ultimate load per unit length of the strip foundation can be given as

Qult =Bqult eccentric 4 32

(4) Prakash and Saran method
According to Prakash and Saran (1971), the ultimate load per unit length of an eccentrically and
vertically loaded strip (continuous) foundation can be estimated as

Qult =B c Nc e + qNq e +
1
2
γBNγ e 4 33

where Nγ(e), Nq(e) and Nc(e) are bearing capacity factors depend on Ø , given in Figures 4.6, 4.7 and
4.8, respectively.
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Figure 4.6 Nγ versus Ø.

Table 4.9 Variations of a and k, Equation (4.30).

Df / B a k

0.00 1.862 0.730

0.25 1.811 0.785

0.50 1.754 0.800

1.00 1.820 0.888
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For an eccentrically and vertically loaded rectangular foundation, the ultimate load can be
given as

Qult = BL c Nc e Fcs e + qNq e Fqs e +
1
2
γBNγ e Fγs e 4 34

where Fcs (e), Fqs(e) and Fγs(e) are shape factors can be determined as

Fcs e = 1 2−0 025
L
B

≥ 1

Fqs e = 1

Fγs e = 1 0 +
2e
B
−0 68

B
L
+ 0 43−

3
2

e
B

B
L

2

For dense sands

Fγs e = 1 For loose sands
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(5) Saran and Agarwal Analysis
Bearing capacity of a continuous foundation subjected to an eccentric inclined load was studied by
Saran and Agarwal (1991). They proposed the following bearing capacity equation for a continu-
ous foundation located at a depth Df below the ground surface and subjected to an eccentric load
(load eccentricity = e) which is inclined at an angle β to the vertical:

Qult =B c Nc ei + qNq ei +
1
2
γBNγ ei 4 35

The bearing capacity factors Nq(ei), Nc(ei) and Nγ(ei) are obtained from Figures 4.9, 4.10 and 4.11,
respectively. These figures are reproduced fromDas (1911). Equation (4.35) gives ultimate load per
unit length of a strip foundation.

4.9 Effect of Water Table on Bearing Capacity

The depth at which the ground water table (W.T) is located may have a significant effect on the bearing
capacity of shallow foundations. This is mainly because the effective unit weights of both the base and
surcharge soils are needed in the bearing capacity equations (such as those of Table 4.2). It is known
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that the effective unit weight of a submerged soil will be reduced to about half of its unit weight above
water table. Moreover, generally, the submergence of soils will cause the loss of all apparent cohesions,
coming from capillary stresses or from weak cementation bonds. Thus, through submergence, all the
three terms (cohesion, surcharge and weight) of the bearing capacity equation become considerably
smaller. Therefore, it is essential that the bearing capacity analyses be made assuming the highest pos-
sible W.T at the particular location for the expected lifetime of the structure in question. It is necessary
that the assessment of this highest possible level is made taking into consideration the probability of
temporary high levels that could be expected in some locations during heavy rainstorms or floods,
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although they may not appear in the official records. The effective unit weights needed in bearing
capacity equations may be determined as follows:

(A) The effective unit weight in the weight term (i.e. Nγ term) of the bearing capacity equations of
Table 4.2. There are three possible cases:
(1) The highest W.T exists at or above the foundation level, that is zw = 0, where zw is the depth to

W.T below the foundation level. The base soil is submerged; hence, the effective unit weight γ
is the buoyant (submerged) unit weight γb. Therefore,

γ = γb = γsat−γw 4 36

(2) The highest W.T exists within the depth 0 < zw ≤B. The average effective unit weight may be
determined as

γ = 2H−zw
zw
H2

γwet +
γb
H2

H−zw
2 4 37

where H = 0 5B tan 45 +
Ø
2

≤B

γwet = wet unit weight of soil within depth zw
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Also, it may be determined as

γ = γb +
zw
B

γwet−γb 4 38

(3) The highest W.T exists permanently at a depth well below the foundation level, that is zw >B.
The average effective unit weight is determined as

γ = γwet 4 39

(B) The effective unit weight needed for computing the effective surcharge (overburden) pressure q in
the surcharge term (i.e. Nq term) of the bearing capacity equations of Table 4.2. There are three
possible cases:
(1) The highest W.T exists at or below the foundation level, that is dw ≥Df , where dw is the depth

toW.T below the ground surface. Hence, the average effective unit weight of the surcharge soil
is determined as

γ = γwet 4 40 - a

and

q = γwetDf 4 40 - b

(2) The highest W.T exists within the depth 0 < dw <Df . In this case, γ = γwet is used for the soil

within the depth dw, and γb = γsat−γw is used for the soil within the depth Df −dw . Hence,

q = γwet dw + γb Df −dw 4 41
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Scheme 4.3
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(3) The highest W.T exists at or above the ground surface, i.e. dw = 0. The surcharge soil is
submerged; hence, the effective unit weight γ is the buoyant (submerged) unit weight γb.
Therefore,

γ = γb = γsat−γw 4 42 - a

q = γbDf 4 42 - b

It may be useful to mention herein that all preceding considerations are based on the assump-
tion that the seepage forces acting on the soil skeleton are negligible. In case there is significant
ground-water seepage in any direction, it may have an effect on the bearing capacity. In addition
to possible internal erosion of the soil (undermining, piping and similar phenomena), the seepage
force adds a component to the body forces caused by gravity. When it is believed wise to consider
seepage effects, a particular bearing capacity analysis would be necessary.

4.10 Influence of Soil Compressibility on Bearing Capacity

The bearing capacity equations of Table 4.2 are based on the assumption of incompressibility of soil
and that they should be applied, strictly speaking, only to cases where the mode of general shear failure
prevails. The other two failure modes are characteristic for compressible soils as previously explained in
Section 4.1. Terzaghi (1943) accounted for the effect of soil compressibility, considering the mode of
local shear failure, through using reduced values of cohesion c and friction angle Ø , as explained in
Section 4.6. However, according to Vesič (1973), such an approach is not always satisfactory; and
instead, he proposed using the following compressibility factors (ζic), always smaller than 1, with
the three terms of bearing capacity equations of Table 4.2:

For Ir < Ir cr :

ζcc = 0 32 + 0 12
B
L
+ 0 60 logIr for Ø = 0 4 43

ζcc = ζqc−
1−ζqc

Nc tan Ø
for Ø > 0 4 44

ζqc = ζγc = exp −4 4 + 0 6
B
L

tan Ø +
3 07sin Ø log2Ir

1 + sin Ø
4 45

For Ir ≥ Ir cr :

ζcc = ζqc = ζγc = 1 4 46

Where:

Ir = Rigidity index of soil at a depth approximately B/2 below the foundation level

Ir =
Gs

c+ q tan Ø
4 47

Gs = shear modulus of the soil
q = effective overburden pressure at a depth of Df + B 2
Ir(cr) = Critical rigidity index of soil
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Ir cr =
1
2

exp 3 30−0 45
B
L

cot 45−
Ø
2

4 48

The variations of Ir(cr) with (B/L) for different values of Ø are given in Table 4.10.

4.11 Effect of Adjacent Footings on Bearing Capacity

Approximations for the spacing of footings to avoid interference between old and new footings were
discussed in Section 2.3.
The analyses used in the derivation of the bearing capacity equations (Table 4.2) were concerned

with the bearing capacity of isolated footings. All analyses based on the assumption that that the sup-
porting soil is under the action of gravity forces alone and is not under the influence of any other foot-
ing. However, in engineering practice, there are conditions where footings are placed so close to each
other that the influence zones of their supporting soils overlap.
This problem of stress overlap due to closely spaced, simultaneously loaded, footings has been

investigated and studied by many researchers. For example, the results of experimental studies
by Stuart (1962) and West and Stuart (1965) indicate that the effects of adjacent parallel
strip footings in sand on bearing capacity may vary considerably with the angle of shearing resist-
ance, Ø . With decreased Ø values the effects become small or negligible; however, for high Ø values
they appear to be significant, especially if a footing is surrounded by others on both sides. According to
Vesic (1973), these effects are considerably reduced as the value of (L/B) ratio approaches unity.
Similarly, the compressibility of soils reduces and may eliminate completely the interference effects.
There are practically no such effects in the case of punching shear failure. For these and other reasons,
as Vesic suggested, it is not recommended to consider interference effects in bearing capacity compu-
tations. A designer should be aware, however, of the possibility of their existence in some special
circumstances.

Table 4.10 Values of critical rigidity index of soil.

Critical rigidity index, Ir(cr)

Ø (deg) B/L = 0 B/L = 0.2 B/L = 0.4 B/L = 0.6 B/L = 0.8 B/L = 1.0

0 13.56 12.39 11.32 10.35 9.46 8.64

5 18.30 16.59 15.04 13.63 12.36 11.20

10 25.53 22.93 20.60 18.50 16.62 14.93

15 36.85 32.77 29.14 25.92 23.05 20.49

20 55.66 48.95 43.04 37.85 33.29 29.27

25 88.93 77.21 67.04 58.20 50.53 43.88

30 151.78 129.88 111.13 95.09 81.36 69.62

35 283.20 238.24 200.41 168.59 141.82 119.31

40 593.09 488.97 403.13 332.35 274.01 225.90

45 1440.94 1159.56 933.19 750.90 604.26 486.26
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4.12 Bearing Capacity of Foundations on Slopes

4.12.1 General

In principle, it may be a good engineering practice to avoid constructing shallow foundations on or
adjacent to sloping ground whenever possible. Among the reasons are:

(1) The foundation might be dislocated or undermined if a landslide is to take place.
(2) The reduction in lateral support makes bearing capacity failures more likely.
(3) The overburden and near-slope surface soils are more vulnerable to erosion by the action of water,

wind and so on.
(4) The near-surface soils, particularly clay soils, may be slowly creeping downhill and this creep may

cause the footings move slowly downslope.

There are, however, circumstances where foundations must be constructed on or adjacent to a slope.
Examples include bridge abutments supported on approach embankments, foundations for electric
transmission towers and some buildings. However, through adopting appropriate site investigation,
design and construction methodologies, the adverse situations just mentioned above may be prevented
from occurring.

Figure 4.12 shows footing setback as required by the Uniform Building Code (ICBO, 1997) and the
International Building Code (ICC, 2000) for slopes steeper than 3H: 1V. The horizontal distance from
the footing to the face of the slope should be at leastH/3, but need not exceed 12 m. Fore slopes that are
steeper than 1H: 1V, this setback distance should be measured from a line that extends from the toe of
the slope at an angle of 45 . This criteria can be satisfied either by moving the footing away from the
slope or by making it deeper. We must keep in mind, however, this setback criteria does not justify
foundations on unstable slopes. Hence, appropriate slope stability analysis is required to verify the
overall stability.

4.12.2 Solutions

(1) Hansen (1970) and Vesic (1975) solutions.
The ground factors gi of Tables 4.7 and 4.8 account for the effect of sloping ground on bearing
capacity. However, both the Hansen and Vesic methods appear too conservative, especially for
slopes which exist in granular soils.

(2) Meyerhof (1957) solution.
Refer to Figure 4.13. The height of the slope is H and the slope makes an angle β with the hori-
zontal. The edge of the foundation is located at a distance b from the top of the slope. At ultimate
load (i.e. qult) the failure surface will be as shown in the figure.

Steeper than 1 H: 1 V

H/3, but 

need not 

exceed 12 m 

3 H: 1 V to 1 H: 1 V

45°

H/3, but 

need not 

exceed 12 m

H

H

V H

H

V

Figure 4.12 Setback distances of footings adjacent to slopes as required by the ICBO (1997) and the ICC (2000).
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Meyerhof derived the following theoretical equation for the gross ultimate bearing capacity of
continuous foundations:

gross qult = cNcq +
1
2
γ BNγq 4 49

The variations of Ncq and Nγq are shown in Figure 4.14a, b, respectively.
For purely granular soils c = 0 :

gross qult =
1
2
γ BNγq 4 50

For purely cohesive soils Ø = 0 :

gross qult = cNcq 4 51

where c = undrained cohesion
In using Ncq of Figure 4.14a it is necessary to determine the stability number, Ns,
where

H
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γ

b B
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Figure 4.13 A shallow foundation adjacent to a slope (from Das, 2011).
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Ns =
γH
c

4 52

If B <H, use the curves for Ns = 0. If B≥H, use the curves for Ns

(3) Stress characteristics solution.
Graham, Andrews and Shields (1988), on the basis of the method of stress characteristics,
developed a solution for the bearing capacity factor Nγq for continuous shallow foundations on
top of granular soil slopes (Figure 4.15).

The variations ofNγq are shown in Figures 4.16, 4.17 and 4.18. Using the appropriate Nγq factor,
the ultimate bearing capacity of continuous foundations is computed from Equation (4.50).

(4) Bowles solution.
According to Bowles (2001), the gross ultimate bearing capacity may be computed by any of the
equations of Table 4.2 which contain ground factors; however, they give too conservative results.
Bowles suggests using the Hansen equation modified to read as follows:

gross qult = cNcscic + qNqsqiq + 0 5γ BNγsγiγ 4 53

where Nc, Nq, and Nγ are adjusted bearing capacity factors.

The depth di factors are not included in the foregoing equation since the depth effect is included
in the computation of area ratios.
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Figure 4.15 Schematic diagram of failure zones for: (a) embedment,
Df

B
>0; (b) setback,

b
B
>0 (from Das, 2011).
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The Nc and Nq factors are obtained from Table 4.11, developed by Bowles.

It will be conservative to use shape factors sc = sq = 1; but sγ should be computed. It is recommended
not to adjust Ø tr to Ø ps, as there are considerable uncertainties in the stress state when there is loss
of soil support on one side of the base, even for strip (or long) bases. The adjusted bearing capacity
factor Nγ is obtained as follows:

(1) For the ratio
b
B
≥ 2 (Figure 4.19b), use Nγ =Nγ H , obtained from Table 4.4.
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Figure 4.16 Graham et al.’s theoretical values of Nγq for
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=0 ; from: Graham, Andrews and Shields (1988).
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(2) For the ratio
b
B
< 2, use Nγ = adjustedNγ H , as follows:

(a) Compute the Coulomb passive pressure coefficients for the slope angle β using β = − for
one computation and + for the other. Use the friction angle δ= Ø and α= 90 for both
computations. The Coulomb passive pressure coefficient Kp can be computed from equa-
tions or obtained from tables or curves, usually given in geotechnical text books. When
β = + or 0 is used, the computed Kp =Kmax on the base side away from the slope
and when β = − is used, the computed Kp =Kmin (see Figure 4.19).

(b) Compute a reduction factor R=Kmin Kmax

(c) Compute Nγ =
Nγ H

2
+
Nγ H

2
R+

b
2B

1−R . This equation is easily checked:

At b= 0 and foundation on slope; Nγ =
Nγ H

2
+
Nγ H

2
R

At b= 2B and foundation on top of slope and out of slope influence; Nγ =Nγ H

4.13 Bearing Capacity of Footings on Layered Soils

4.13.1 General

All the preceding bearing capacity equations presented in Section 4.5 or referred to in the other sections
have considered only the cases in which the supporting soil is homogeneous, with constant strength
parameters and unit weight with depth and extends to a depth sufficient to fully enclose the rupture
zone. However, in practice, many soil profiles exist which are not uniform; consist of different soil types
in layers of variable thicknesses. In these cases, if the failure zone extends into the lower layer (or layers
if they are very thin) the ultimate bearing capacity, undoubtedly, will be modified to some extent.
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Table 4.11 Bearing capacity factorsNc,Nq for footings on or adjacent to a slope. Refer to Figure 4.19 for identification of variables.

D/B = 0 b/B = 0 D/B = 0.75 b/B = 0 D/B = 1.50 b/B = 0

β Ø = 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0 Nc = 14 8.35 14.83 30.14 75.31 5.14 8.35 14.83 30.14 75.31 5.14 8.25 14.83 30.14 75.31

Nq = 03 2.47 6.40 18.40 64.20 1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.40 18.40 64.20

10 4.89 7.80 13.37 26.80 64.42 5.14 8.35 14.83 30.14 75.31 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 0.92 1.95 4.43 11.16 33.94 1.03 2.47 5.85 14.13 40.81

20 4.63 7.28 12.39 23.78 55.01 5.14 8.35 14.83 30.14 66.81 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 0.94 1.90 4.11 9.84 28.21 1.03 2.47 5.65 12.93 35.14

25 4.51 7.02 11.82 22.38 50.80 5.14 8.35 14.83 28.76 62.18 5.14 8.35 14.83 30.14 73.57

1.03 2.47 6.40 18.40 64.20 0.92 1.82 3.85 9.00 25.09 1.03 2.47 5.39 12.04 31.80

30 4.38 6.77 11.28 21.05 46.88 5.14 8.35 14.83 27.14 57.76 5.14 8.35 14.83 30.14 68.64

1.03 2.47 6.40 18.40 64.20 0.88 1.70 3.54 8.08 21.91 1.03 2.47 5.04 10.99 28.33

60 3.62 5.33 8.33 14.34 28.56 4.70 6.83 10.55 17.85 34.84 5.14 8.34 12.76 21.37 41.12

1.03 2.47 6.40 18.40 64.20 0.37 0.63 1.17 2.36 5.52 0.62 1.04 1.83 3.52 7.80

D/B = 0 b/B = 0.75 D/B = 0.75 b/B = 0.75 D/B = 1.50 b/B = 0.75

β Ø = 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

10 5.14 8.33 14.34 28.02 66.60 5.14 8.35 14.83 30.14 75.31 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 1.03 2.34 5.34 13.47 40.83 1.03 2.47 6.40 15.79 45.45

20 5.14 8.31 13.90 26.19 59.31 5.14 8.35 14.83 30.14 71.11 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.04 14.39 40.88 1.03 2.47 6.40 16.31 43.96

25 5.14 8.29 13.69 25.36 56.11 5.14 8.35 14.83 30.14 67.49 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.27 14.56 40.06 1.03 2.47 6.40 16.20 42.35

30 5.14 8.27 13.49 24.57 53.16 5.14 8.35 14.83 30.14 64.04 5.14 8.35 14.83 30.14 74.92

1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.40 14.52 38.72 1.03 2.47 6.40 15.85 40.23

60 5.14 7.94 12.17 20.43 39.44 5.14 8.35 14.38 23.94 45.72 5.14 8.35 14.83 27.46 52.00

1.03 2.47 6.40 18.40 64.20 1.03 2.47 5.14 10.05 22.56 1.03 2.47 4.97 9.41 20.33

D/B = 0 b/B = 1.50 D/B = 0.75 b/B = 1.50 D/B = 1.50 b/B = 1.50

10 5.14 8.35 14.83 29.24 68.78 5.14 8.35 14.83 30.14 75.31 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.01 15.39 47.09 1.03 2.47 6.40 17.26 49.77

20 5.14 8.35 14.83 28.59 63.60 5.14 8.35 14.83 30.14 75.31 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.40 18.40 53.21 1.03 2.47 6.40 18.40 52.58

25 5.14 8.35 14.83 28.33 61.41 5.14 8.35 14.83 30.14 72.80 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.40 18.40 55.20 1.03 2.47 6.40 18.40 52.97

30 5.14 8.35 14.83 28.09 59.44 5.14 8.35 14.83 30.14 70.32 5.14 8.35 14.83 30.14 75.31

1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.40 18.40 56.41 1.03 2.47 6.40 18.40 52.63

60 5.14 8.35 14.83 26.52 50.32 5.14 8.35 14.83 30.03 56.60 5.14 8.35 14.83 30.14 62.88

1.03 2.47 6.40 18.40 64.20 1.03 2.47 6.40 18.40 46.18 1.03 2.47 6.40 16.72 36.17
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The easiest way to tackle this problem is estimating the bearing capacity using the lowest values of
strength parameters (c, Ø) and unit weight (γ) in the zone between the foundation level and a depth B
below that level (i.e. the zone in which bearing capacity failures occur), where B equals to the founda-
tion width. This procedure may be too conservative, since the rupture zone comprises the stronger
layers also. Therefore, this methodmay be adopted only when it is clear that the bearing capacity failure
criterion does not control the geotechnical design even with a conservative analysis (i.e. the settlement
criterion controls); thus, there would be no need to conduct a more detailed analysis. Another way to
handle the problem of layered soils is using weighted average values of strength parameters and unit
weight based on the relative thicknesses of each stratum in the zone in which bearing capacity failures
occur. This method could be conservative or unconservative, but should provide acceptable results so
long as the differences in the strength parameters are not too great (Coduto, 2001). A more detailed
method, in which a series of trial slip surfaces under the foundation are considered, requires more effort
to implement and would be appropriate only for critical projects on complex soil profiles. For these
reasons, numerous solutions have been proposed to enable one to make an estimate of the ultimate
bearing capacity. Some of these solutions will be presented in the following sections.

4.13.2 Ultimate Bearing Capacity: Stronger Soil Underlain by Weaker Soil

(A) General case
Meyerhof and Hanna (1978) and Meyerhof (1974) proposed semi-theoretical methods for esti-
mating ultimate bearing capacity of a shallow continuous foundation supported by two-layered
soils. The stronger soil layer which exists immediately beneath the foundation, underlain by a
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45 + (ϕ/2)
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Slope

(b)
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V

B

V

b
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Figure 4.19 Foundation: (a) on a slope; (b) adjacent to a slope.
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weaker soil layer, extends to a great depth, as shown in Figure 4.20. The physical parameters
γ1, Ø 1,c1 and γ2, Ø 2,c2 belong to the stronger and weaker soil layers (top and bottom layers),
respectively. In case the depth H is small compared with the foundation width B, the punching
shear failure will take place in the top soil layer, followed by a general shear failure in the bottom
soil layer, as shown in Figure 4.20a. In case, however, the depth H is large, then the general shear
failure completely occurs in the top soil layer, as shown in Figure 4.20b. This condition is con-
sidered the upper limit of the ultimate bearing capacity.

Considering these two cases, the following equation for ultimate bearing capacity of a continu-
ous footing could be derived (Das, 2011):

qult = qult,b +
2caH
B

+ γ1H
2 1 +

2Df

H
Ks tan Ø 1

B
−γ1H ≤ qult, t 4 54

Where

qult, t = c1Nc 1 + γ1Df Nq 1 +
1
2
γ1BNγ 1

= ultimate bearing capacity of the top stronger soil layer

4 55
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Figure 4.20 Bearing capacity of continuous foundation on layered soil(adapted from Das, 2011).
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qult,b = c2Nc 2 + γ1 Df +H Nq 2 +
1
2
γ2BNγ 2 4 56

q1 = c1Nc 1 +
1
2
γ1BNγ 1 4 57

q2 = c2Nc 2 +
1
2
γ2BNγ 2 4 58

Ks = punching shear coefficient; its variation with
q2
q1

and Ø 1 is shown in Figure 4 21 -

ca = unit adhesion of stronger soil. The variation of
ca
c1

with
q2
q1

is shown in Figure 4.22.

Ca = adhesive force = caH
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Figure 4.21 Meyerhof and Hanna’s punching shear coefficient Ks.
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For rectangular foundations, Equation 4.54 can be extended to the form

qult = qult,b + 1 +
B
L

2caH
B

+ γ1H
2 1 +

B
L

1 +
2Df

H
Ks tan Ø 1

B
−γ1H ≤ qult, t 4 59

Where

qult, t = c1Nc 1 Fcs 1 + γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1 4 60

qult,b = c2Nc 2 Fcs 2 + γ1 Df +H Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2 4 61

Fcs 1 , Fqs 1 , Fγs 1 = Shape factors with respect to the stronger soil layer

Fcs 2 , Fqs 2 , Fγs 2 = Shape factors with respect to the weaker soil layer

(B) Special cases
(1) Strong sand (top layer) overlying saturated soft clay Ø 2 = 0

From Equation (4.61):

qult,b = 1 + 0 2
B
L

5 14c2 + γ1 Df +H 4 62

From Equation (4.60):

qult, t = γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1 4 63

Hence, from Equation (4.59):

qult = 1 + 0 2
B
L

5 14c2 + γ1H
2 1 +

B
L

1 +
2Df

H
Ks tan Ø 1

B
+ γ1Df ≤ γ1Df Nq 1 Fqs 1

+
1
2
γ1BNγ 1 Fγs 1

4 64

where
c2 = undrained cohesion of the soft clay
Ks is determined from Figure 4.21, using

q2
q1

=
c2Nc 2

1
2
γ1BNγ 1

=
5 14c2

0 5γ1BNγ 1
4 65

(2) Stronger sand (top layer) overlying weaker sand c1 = 0,c2 = 0
From Equation (4.61):

qult,b = γ1 Df +H Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2 4 66 - a

From Equation (4.60):

qult, t = γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1 4 66 - b
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Hence, from Equation (4.59):

qult = γ1 Df +H Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2 + γ1H

2 1 +
B
L

1 +
2Df

H
Ks tanØ 1

B
−γ1H

≤ γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

4 67

Ks is determined from Figure 4.21, using

q2
q1

=

1
2
γ2BNγ 2

1
2
γ1BNγ 1

=
γ2BNγ 2

γ1BNγ 1
4 68

(3) Stronger saturated clay Ø 1 = 0 overlying weaker saturated clay Ø 2 = 0
From Equation (4.61):

qult,b = 1 + 0 2
B
L

5 14c2 + γ1 Df +H

From Equation (4.60):

qult, t = 1 + 0 2
B
L

5 14c1 + γ1Df 4 69

Hence, from Equation (4.59):

qult = 1 + 0 2
B
L

5 14c2 + 1 +
B
L

2caH
B

+ γ1Df

≤ 1 + 0 2
B
L

5 14c1 + γ1Df

4 70

where
c1 and c2 = undrained cohesion of the top and bottom clays,
ca is determined from Fig. 4.22, using

q2
q1

=
5 14c2
5 14c1

=
c2
c1

4 71

4.13.3 Ultimate Bearing Capacity: Weaker Soil Underlain by Stronger Soil

Refer to Figure 4.23a. If the ratio
H
B
is relatively small, the slip surface at ultimate load will pass through

both soil layers, as shown in the left half of the figure. For large
H
B
ratio, however, the failure surface will

be completely located in the weaker soil layer which overlies the stronger soil, as shown in the right half
of the figure. The ultimate bearing capacities q1 and q2 are the same as defined by Equations (4.57)

and (4.58); however, the ratio
q2
q1

should be greater than unity.
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For this case, the ultimate bearing capacity can be given by the following semi-theoretical general
equation (Meyerhof, 1974; Meyerhof and Hanna, 1978):

qult = qult, t + qult,b−qult, t
H
D

2

≥ qult, t 4 72

Where:

qult, t = c1Nc 1 Fcs 1 + γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

= ultimate bearing capacity of the top weaker soil layer

4 73
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Figure 4.23 (a) Foundation on weaker soil layer underlain by stronger soil layer. (b) Nature of variation of qult
with (H/B). From Das (2011).
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qult,b = c2Nc 2 Fcs 2 + γ2Df Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2

= ultimate bearing capacity of the bottom stronger soil layer

4 74

D = maximum depth of failure surface beneath the foundation in the thick bed of the upper (weaker)
soil layer.

Meyerhof and Hanna (1978) suggested that:

D≈B for loose sand and clay
D≈2B for dense sand

Equations (4.72) to (4.74) indicate that qult,b ≥ qult ≥ qult, t , as shown in Figure 4.23b.
Equation (4.72) is general; can be applied to special cases as needed following the same procedure

delineated in Section 4.13.2

4.14 Safety Factor

One of the main performance requirements of any structure is strength.With respect to foundations, as
explained in Section 2.4, this performance requirement comprises both the geotechnical strength and
the structural strength. In general, structures are designed on the basis of determining the service loads
and obtaining a suitable ratio of material strength to these loads, termed either a safety factor (SF; in
geotechnical design) or load factor (in structural design). These factors are used to compensate for the
many uncertainties usually associated with analysis and design of structures, particularly, foundations.
Thus, reliable designs could be developed. In design, the selected safety factor defines the designer’s
estimate of the best compromise between cost and reliability. Therefore, in selection of an appropriate
safety factor the designer should consider many factors or parameters, including: importance of struc-
ture, probability of failure and its consequences; uncertainties in materials properties, applied loads and
analytical methods; cost–benefit ratio of additional conservatism in the design.

In the analysis and design of foundations, especially the geotechnical part, there are more uncertain-
ties than those associated with analysis and design of superstructure elements. For this reason, safety
factors in foundations are typically greater than those in the superstructure. These uncertainties and
their causes may be stated as follows:

Insufficient knowledge of subsurface conditions
Deficient in accurate determination of the soil properties
Complexity of soil behavior and soil–structure interaction
Deficient in methods of analyses
Lack of control over environmental changes after construction

Coduto (2001) presents the necessary parameters and the typical values of safety factor which are
usually considered in selecting an adequate design safety factor, as shown in Figure 4.24. Geotechnical
engineers usually use SF between 2.5 and 3.5 for bearing capacity analyses of shallow foundations.
Occasionally, however, they might use values as low as 2.0 or as high as 4.0.

It may be useful to mention herein that the true safety factor is probably greater than the design
safety factor, for one or combination of the following reasons:

(1) Where settlement controls the final design, the safe bearing capacity will be reduced, which in turn
increases the real safety factor.

(2) The shear strength data are usually interpreted conservatively, so the design strength parameters c
and Ø implicitly contain another safety factor.
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(3) The service loads are probably less than the design loads.
(4) Spread footings are commonly built somewhat larger than the plan dimensions.
(5) Where the same design safety factor for a spread footing 2 5−3 5 is also used for a mat foun-

dation, the real safety factor of the mat will be higher because, normally, mats require a lower
design safety factor 2 0−2 5 .

4.15 Bearing Capacity from Results of In Situ Tests

(1) From results of standard penetration test.
The standard penetration test, SPT, has been described and explained in some detail in the dis-
cussion of solution of Problem 1.6. Also, the use of SPT results, that is N-values, in estimating
settlement of granular soils was discussed in Section 3.3.2. In that discussion a set of allowable
bearing capacity equations [Equations (3.11) to (3.13)], based on SPT results, have been presented.
These equations give net allowable bearing capacity for a specified 25 mm settlement. It has been
stated also that for cohesionless soils, it is possible to assume that settlement is proportional to
net allowable soil pressure. Based on this assumption, a net allowable soil pressure, netq Si , for
an allowable settlement other than 25 mm can be estimated using Equation (3.14).

(2) From results of plate-load test.
The plate-load test, PLT, was described and explained in some detail in the discussion of the Solu-
tion of Problem 1.9. Also, the use of PLT results, that is the time settlement curves (Figure 1.12a)
for different load increments and the load settlement curve (Figure 1.12b), was explained in the
discussion of the Solution of the same Problem. In that discussion a set of equations
[Equations (1.37) to (1.39)], based on PLT results, were presented. These equations give ultimate
bearing capacities, qult, for different types of soils. However, due to several factors which are
explained in the same discussion and also in Section 3.3.1, the extrapolation of the PLT results
to full-size footings is questionable except in very limited cases.

(3) From results of cone penetration test.
The static cone penetration test, CPT, was described and explained in some detail in the discussion
of the Solution of Problem 1.13. Also, the CPT correlations for both cohesive and cohesionless soils
(i.e. qc with cu or su and Ø correlations) have been provided. It is obvious that we can use these
CPT correlations to obtain the necessary parameters so that the bearing capacity equations of
Table 4.2 can be applied. Furthermore, correlations for the SPT-N values have been presented,
as shown in Figure 1.18, Table 1.11 and Equation (1.56). The net allowable bearing capacity of
sand can be estimated directly using Equations (3.11) to (3.13) in which the N55 is replaced

(approximately) by
qc
4
(Meyerhof, 1956), where qc is in units of kg/cm2.

Soil Type                           Sand Clay

Site characterisation data Extensive Minimal

Soil variability                 Uniform Erratic

Importance of structure

and consequences of failure

Low High

Likelihood of design load

occurring
Low High

Design SF extreme values 2.0 4.0

Typical range        25 3.5

Figure 4.24 Factors considered in selecting design safety factor and typical values of SF (adapted from
Coduto, 2001).
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According to Schmertmann (1978), the bearing capacity factors for use in the Terzaghi bearing
capacity equation of Table 4.2 can be estimated as

0 8Nq 0 8Nγ qc for
D
B

≤ 1 5 4 75

The qc (kg/cm
2) is averaged over the depth interval from about B/2 above to 1.1 B below the

footing base.
For cohesionless soils one may use

qult = 28−0 0052 300−qc
1 5 kg cm2 Strip footings 4 76

qult = 48−0 009 300−qc
1 5 kg cm2 Square footings 4 77

For clays one may use
qult = 2 + 0 28 qc kg cm2 Strip footings 4 78

qult = 5 + 0 34 qc kg cm2 Square footings 4 79

According to Bowles (2001), Equations (4.76) through (4.79) are based on charts given by
Schmertmann (1978) credited to an unpublished reference by Awakti.

4.16 Uplift Capacity of Shallow Foundations

Foundations under special circumstances, particularly in industrial applications, are subjected to exter-
nal uplift or tension forces. Examples are: footings for the columns (legs) of an elevated water tank,
bases for legs of power transmission towers, anchorages for the anchor cables of transmission towers
and many other industrial equipment installations.

Balla (1961) considered the problem of round footings which develop tension resistance. He
assumed circular failure surfaces and developed mathematical expressions. Later, Meyerhof and
Adams (1968) studied the problem and proposed two conditions; one for shallow and the other for
deep footings, as shown in Figure 4.25. They provided relationships to estimate the ultimate uplifting
load for shallow circular and rectangular footings.

Refer to Figure 4.26. The ultimate load Qu (or the ultimate tension Tu) can be expressed in the form
of a nondimensional breakout factor Fq as follows:

Fq =
Qu

A γDf
4 80

where A = area of footing
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zone
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pull-out

zone
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q = γ L1

a
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b′b
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Figure 4.25 Footing under uplift load.
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The factor Fq is a function of the soil friction angle Ø and the embedment ratioDf/B. For a given soil
friction angle, the breakout factor increases with increase in Df/B and reaches its maximum value at
Df/B equals to the critical embedment ratio, (Df/B)cr. For shallow foundations the embedment ratio
Df B≤ Df B cr, whereas for deep foundations Df B > Df B cr. Using Equation (4.80) and the
relationships developed by Meyerhof and Adams (1968), Das and Seely (1975) developed relationships
for foundations subjected to uplift load as follows:

(A) Uplift capacity of footings in granular soils c = 0
For shallow circular and square foundations:

Fq = 1 + 2 1 +m
Df

B

Df

B
Ku tan Ø 4 81

For shallow rectangular foundations:

Fq = 1 + 1 + 2m
Df

B
B
L

+ 1
Df

B
Ku tan Ø 4 82

where
m = a coefficient which is a function of Ø
Ku = nominal uplift coefficient

The variations of Ku,m and (Df/B)cr for square and circular foundations are given in Table 4.12
(Meyerhof and Adams, 1968).
Das and Jones (1982) recommended the following critical embedment ratio for rectangular
foundations:

Df

B cr, rec

=
Df

B cr, sq

0 133
L
B

+ 0 867 ≤ 1 4
Df

B cr, sq

4 83

Figure 4.27 shows variations of Fq with Df/B and Ø for square and circular foundations. The
variations have been calculated from Equation (4.81).

Assumed approximation for 

surface of shear resistance 

Probable actual 

pull-out zone

Sand

Pp

Df

B

Pp

Qu

α

Unit weight = γ
Friction angle = ϕ′

δ′ δ′

Figure 4.26 Shallow continuous foundation subjected to uplift load (reproduced from Das, 2011).
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According to Das (2011), the steps of the procedure to estimate the uplift capacity of founda-
tions in granular soils are as below:
(1) Determine Df, B, L and Ø .
(2) Calculate Df/B.
(3) Using Table 4.12 and Equation (4.83), calculate (Df/B)cr.
(4) If Df/B is less than or equal to (Df/B)cr, it is a shallow foundation.
(5) If Df/B is greater than (Df/B)cr, it is a deep foundation.
(6) For shallow foundations, use Df/B calculated in Step 2 in Equation (4.81) or (4.82) to estimate

Fq. Thus, Qu = FqAγDf .
(7) For deep foundations, substitute (Df/B)cr for Df/B in Equation (4.81) or (4.82) to obtain Fq

from which the ultimate load Qu may be obtained.
(B) Uplift capacity of footings in cohesive soils Ø =0

The ultimate load Qu of a foundation in a cohesive soil, considering Ø = 0, may be expressed as

Qu =A γDf + cuFc 4 84

Table 4.12 Variations of Ku, m and (Df/B)cr for circular and square foundations.

Ø (deg) Ku m (Df/B)cr

20 0.856 0.05 2.5

25 0.888 0.10 3

30 0.920 0.15 4

35 0.936 0.25 5

40 0.960 0.35 7

45 0.960 0.50 9

100

10F
q

1
1 2 3 4 5 6 7 8 9 10

Df /B

ϕ′ = 45°

40°

35°

30°

Figure 4.27 Variations of Fq with Df/B and Ø for circular and square foundations.
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where
A = area of foundation
cu = undrained shear strength of soil
Fc = breakout factor

The breakout factor increases with increase inDf/B and reaches its maximum value of Fc = F∗
c at

Df/B equals to the critical embedment ratio, (Df/B)cr. Das (1978, 1980) proposed

Df

B cr

= 0 107 cu + 2 5 ≤ 7 for square and circular footings 4 85

where

cu = undrained shear strength of soil, in kN m2

Df

B cr

=
Df

B cr, sq

0 73 + 0 27
L
B

≤ 1 55
Df

B cr, sq

for rectangular footings

4 86

where
L = length of footing

According to Das (2011), steps of the procedure to estimate the uplift capacity of foundations in
cohesive soils are as below:

(1) Determine the undrained cohesion, cu.
(2) Determine the (Df /B)cr using Equations (4.85) and (4.86).

(3) Determine the
Df

B
ratio of the foundation. If Df B≤ Df B cr, it is a shallow foundation.

However, if Df/B is greater than (Df /B)cr, it is a deep foundation.
(4) For Df B > Df B cr (i.e. deep foundations)

Fc = F∗
c = 7 56 + 1 44

B
L

Qu =A 7 56 + 1 44
B
L

cu + γDf

4 87

(5) For Df B≤ Df B cr (i.e. shallow foundations)

Qu =A B F∗
c cu + γDf =A B 7 56 + 1 44

B
L

cu + γDf 4 88

where:

B =
Fc
F∗
c

, obtained from the average curve of Figure 4.28 which shows a plot of B versus a non-

dimensional factor α .

α =
Df B

Df B cr

According to Das, the procedures outlined above give fairly good results for estimating the net
ultimate uplift capacity of foundations and agree reasonably well with the theoretical solution of
Merifield et al. (2003).
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4.17 Some Comments and Considerations Concerning the
Geotechnical Design of Shallow Foundations

(1) The geotechnical design of a shallow foundation comprises determination of the depth of foun-
dation and the dimensions of the foundation base area through assessment of the results of bearing
capacity and settlement analyses, as well as other considerations, so that the applied loads are trans-
ferred from the foundation to the ground safely.

The foundation depth was discussed in some detail in Section 2.3. Dimensions of the base area
are determined such that the net effective foundation pressure net q , is always less or equal to the
net allowable bearing capacity (or design soil pressure) net qa; see Equation (4.11). Therefore, as it
is obvious, the main and most important task in geotechnical design is how to determine net qa
reasonably so that the performance requirements of Section 2.4 are satisfied. However, the base
dimensions are usually required in executing the bearing capacity and settlement computations.
For example, the width B and length L dimensions are needed to compute shape, depth and load
inclination factors which are contained in the ultimate bearing capacity equations of Table 4.2.
Therefore, the analysis methods require trial process to obtain the design base dimensions.

(2) In selecting a design soil pressure, it is important to consider the following:

• If the supporting soil is very loose and saturated, it should be compacted and retested. Based on
the available new data, an allowable bearing capacity can be selected.

• Usually, the allowable bearing capacity values for sand, except for narrow footings on loose sat-
urated sand, are governed only by settlement considerations, because it can be taken for granted
that the safety factor with respect to bearing capacity failure (base failure) is adequate (Terzaghi
and Peck, 1967). On routine jobs the net allowable soil pressure on dry and moist sand can be
determined from Equations (3.11) to (3.13) on the basis of the results of SPT or CPT. These
Equations satisfy the condition that the maximum total and differential settlements are unlikely
to exceed 25 and 20 mm, respectively. Obviously, results of computations using these equations
may be verified, if desired, using other appropriate bearing capacity and settlement equations.

• The net ultimate bearing capacity for clay can be calculated on the basis of the equations given
in Table 4.2 and the results of unconfined compression tests or undrained shear tests. The net
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310 Shallow Foundations



safe bearing capacity value for clay is usually determined using a safety factor with respect to a
bearing capacity failure not less than three. After the net safe soil pressure has been selected, it is
necessary to find out under this pressure whether the settlement will be tolerable. If the calcu-
lated settlement is tolerable, the net safe soil pressure is taken as the net allowable bearing cap-
acity or design soil pressure. Otherwise, settlement controls and the net allowable bearing
capacity will be selected accordingly. If the clay is normally consolidated, excessive differential
settlements of about 50–100 mm or even 150 mm are commonly considered unavoidable.
Attempts to reduce the settlement by reducing the net allowable soil pressures to values smaller
than the net safe soil pressure are ineffective and wasteful (Terzaghi and Peck, 1967). Therefore,
the designer must choose between two alternatives. Either he designs the footings using the net
safe bearing capacity at the risk of large differential settlements, or else he provides the structure
with another type of foundations (raft, pile or pier foundations). On the other hand, if the clay is
overconsolidated (medium and stiff clays beneath a shallow overburden are usually precom-
pressed), the differential settlement is likely to be tolerable. In doubtful cases the load test
method may be used; however, if it is not expertly planned and executed, the results may be
very misleading. The net allowable soil pressure on stiff fissured clays can be determined only
by this method.

• Very loose or even loose saturated silt is unsuitable for supporting foundation loads. The allow-
able bearing capacity value of medium or dense silt of the rock-flour type (of nearly equidimen-
sional quartz grains) can be estimated roughly by means of the methods proposed for sand. On
the other hand, that of medium or stiff plastic silt (of mostly flake-shaped particles) can be
approximated by the methods for clays.

• In case the area occupied by the footings exceeds half the total area covered by the building, it is
commonly more economical and may be safer to provide the building with a mat or raft
foundation (see Section 2.2).

(3) Reduction of differential settlement by adjusting footing size. The preceding equations of settle-
ment (Chapter 3) indicated that the settlement of loaded areas with similar shape but different
size increases at a given load intensity with increasing width B of the area. In case the footings
of a structure differ greatly in size, the differential settlement due to this cause can be important;
hence, some revision of the safety factor through change in the size of the footing may be necessary.
In case the subsoil consists of sand, the differential settlement can be reduced by decreasing the size
of the smallest footings, because even after the reduction the safety factor SF of these footings
with respect to bearing capacity failure is likely to be adequate. If the subsoil consists of clay,
the application of this procedure would reduce the value of SF for the smallest footings to less than
three, which is not admissible. Therefore, the differential settlement of footing foundations on
clay can be reduced only by increasing size of the largest footings beyond that required by the safe
bearing capacity.

(4) Overall design steps of shallow foundations. The first step is to compute the effective load (the
design load), according to a specified method (ASD or LRFD method), that will be transferred
to the subsoil at the base of the foundation. The second step is to determine the allowable bearing
capacity (the design soil pressure) for the supporting soil. The area of the foundation base is then
obtained by dividing the design load by the design soil pressure. Finally, using a specified design
method, the design loads are computed, the bending moments and shears in the base are deter-
mined and the structural design of the base is carried out.

(5) Design loads. There are two methods of expressing and working with design loads: the allowable
stress design (ASD) method (also known as the working stress design, WSD, method) and the
load and resistance factor design (LRFD) method (also known as the ultimate strength design,
USD, method). The ASD method uses unfactored (working) loads, whereas the LRFD uses
factored loads. All codes, except few ones, specify using the ASD method in geotechnical
analysis and design, whereas the LRFD method is mostly specified for use in structural analysis
and design.
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As defined by the codes, the design load is the most critical combination of the various load sources.
The ANSI/ASCEMinimum Design Loads for Buildings and Other Structures (ASCE, 1996) defines the
ASD design load as the greatest of the following four load combinations [ANSI/ASCE 2.4.1]:

(a) D (Governs only when some of the loads act in opposite direction)
(b) D+ L+ F +H +T + Lr or S orR
(c) D+ L+ Lr or S orR + W orE
(d) D+ W orE

where
D = Dead loads due to the weight of the structure, including permanently installed equipment.
L = Live loads; they are caused by the intended use and occupancy. These include loads from

people, furniture, inventory, maintenance activities, moveable partitions, moveable equipment,
vehicles and other similar sources.

Lr = Roof-live loads.
S = Snow loads, they are a special type of live load caused by accumulation of snow.
R = Rain loads; they are a special type of live load caused by accumulation of rain. Sometimes rain

loads caused by ponding (the static accumulation of water on the roof ) are considered
separately.

H = Earth pressure loads due to the weight and lateral pressures from soil or rock, such as those
acting on a retaining wall.

F = Fluid loads; they are caused by fluids with well-defined pressures and maximum heights, such
as water in a storage tank.

E = Earthquake loads; they are the result of accelerations from earthquakes.
W = Wind loads; they are imparted by wind onto the structure.
T = Self-straining loads; they are due to temperature changes, shrinkage, moisture changes, creep,

differential settlement and other similar processes.

There are codes which are using different load combinations for computing the ASD design load, so
it is important to observe the applicable code for each project.

Foundation engineers normally have the authority to increase the design bearing capacity by one-
third when they consider load combination (c) or (d), even if this increase is not specifically authorised
by the prevailing code. An easy way to implement this criterion is by multiplying these load combin-
ations by a factor of 0 75 = 1 1 33 instead of increasing the static design bearing capacity. Thus, the
design load combinations become

(a) D
(b) D+ L+ F +H +T + Lr or S orR
(c) 0 75 D+ L+ Lr or S orR + W orE
(d) 0 75 D+ W orE

4.18 Bearing Capacity of Rock

Unless rocks are completely weathered to the consistency of sand, silt or clay, failure of foundations
occurs in modes different from that of soils (Figure 4.29). In case where a rock is completely weathered
as just described, it should be considered as a soil and the ultimate bearing capacity can be determined
using the bearing capacity equations of Table 4.2. Critical conditions causing bearing capacity failure
can occur where foundations rest on bedded and jointed unweathered or partly weathered rocks, as
shown in Figure 4.29. Therefore, it would not be correct to assume that safe bearing pressures on rock
are governed only from the considerations of permissible settlement. However, usually, settlement is
more often of concern than is the bearing capacity.
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It may be possible to use building code values for estimating the allowable bearing capacity of rock;
however, geology, type and quality (RQD) of rock are significant parameters, which should be used
together with the recommended code values. In estimating allowable bearing capacity of a rock, it
is common to use a relatively large safety factor, from 5 to 10, which depends to some degree on
the RQD value of the particular rock. The higher values of safety factor are usually used for RQD values
less than about 0.75. Table 4.13 may be used as a guide to estimate bearing capacity from code values or

Shear

Wedge

failure plane

Weak joint

plane

Strong layer

Weak layer

Open joint

(a) (b)

(c) (d)

Figure 4.29 Failure of foundations on jointed rocks. (a) Shear failure of unsupported rock columns. (b)Wedge-type
failure with closed joints (horizontal or inclined). (c) Splitting and punching with strong layer over weak layer.
(d) Sliding on weak inclined joint. (From Tomlinson, 2001).

Table 4.13 Range of properties for selected rock groups; data from several sources (from Bowles, 2001).

Type or rock
Typical unit wt.,
kN/m3

Modulus of elasticity Ea,
MPa ×103

Piosson’s
ratio, μ

Compressive
strength, MPa

Basalt 28.0 17–103 0.27–0.32 170–415

Granite 26.4 14–83 0.26–0.30 70–276

Schist 26.0 7–83 0.18–0.22 35–105

Limestone 26.0 21–103 0.24–0.45 35–170

Porous
limestone

3–83 0.35–0.45 7–35

Sandstone 22.8–23.6 3–42 0.20–0.45 28–138

Shale 15.7–22.0 3–21 0.25–0.45 7–40

Concrete 15.7–23.6 Variable 0.15 15–40

aDepends heavily on confining pressure and how determined; E = tangent modulus at approximately 50% of ultimate
compressive strength.
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to obtain trial values for elastic parameters. In all cases, the upper limit on allowable bearing capacity of
rock is taken as the ultimate compressive strength, fc of the base concrete.

In a rock mass with wide open joints (Figure 4.29a), the ultimate bearing capacity of the foundation
is given by the unconfined compression strength of the intact rock, which is measured using represen-
tative rock samples and standard test procedure.

The ultimate bearing capacity of a shallow foundation on a rock mass with closed joints
(Figure 4.29b) may be obtained using bearing capacity equations of the form given by Terzaghi,
as presented in Table 4.2, which requires using bearing capacity factors Nc, Nq and Nγ different from
those used for soils. The required cohesion c and angle of internal friction Ø may be obtained from
results of high-pressure triaxial tests on large samples of the jointed rock. However, the samples are
difficult to obtain and the tests are expensive. According to Tomlinson (2001), for ordinary foundation
design it may be satisfactory to use typical values of Ø such as those given by Wyllie (1991); shown in
Table 4.14.

Kulhawy and Goodman (1987, 1980) have shown that the c and Ø parameters can be related to RQD
of the rock mass and they have suggested the approximate relationships shown in Table 4.15.

Table 4.14 Typical friction angles Ø for clean fractures in rock
(after Wyllie, 1991).

Rock type Ø -Values

Schists with high mica content

Shale

Marl

20–27

Sandstone

Siltstone

Chalk

Gneiss

Slate

27–34

Basalt

Granite

Limestone

Conglomerate

34–40

Table 4.15 Approximate relationships of c and Ø parameters to RQD of rockmass.

Rock mass properties

RQD (%) qc c Øo

0–70 0.33 quc 0.1 quc 30

70–100 0.33–0.80 quc 0.1 quc 30–60
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Here, qc and quc are the unconfined compression strength of the rock mass and intact rock,
respectively.
According to Tomlinson (2001), the bearing capacity factors Nc, Nq and Nγ shown in Figure 4.30

are appropriate to the wedge failure conditions shown in Figure 4.29b. They are related to the friction
angle Ø of the jointed rock mass.
According to Stagg and Zienkiewicz (1968), the bearing capacity factors for sound rock are

approximately

Nq = tan
6 45 +

Ø
2

Nc = 5tan
4 45 +

Ø
2

Nγ =Nq + 1 4 89

The bearing capacity factors and the appropriate Terzaghi shape factors are used in the Terzaghi
bearing capacity equation of Table 4.2 so that the ultimate bearing capacity may be determined.
For rocks the magnitude of the cohesion intercept, c , can be obtained from

qu = 2c tan 45 +
Ø
2

4 90

The unconfined compression strength qu and angle of friction Ø values of rocks can vary widely.
Table 4.16 gives a general range of qu for various types of rocks.
According to Bowles (2001): it is possible to estimate Ø = 45 for most rock except limestone or

shale where values between 38 and 45 should be used. Similarly inmost cases, it is possible to estimate
su or cu = 5MPa as a conservative value. Also, in order to account for the effect of discontinuities of
rocks, the qult may be reduced to qult according to RQD of the particular rock as follows:

qult = qult RQD 2 4 91
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Figure 4.30 Wedge bearing capacity factors for shallow foundations on rock (from Tomlinson, 2001).
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Problem Solving

Problem 4.1

A mat foundation 22.5 × 60.0 m supports a silo which completely covers the mat area. The dead weightW of the
complete structure, unloaded, is assumed to be 200 MN. The foundation level is located at 3 m below ground
surface. The soil profile consists of a uniform saturated clay deposit with average undrained shear strength of
75 kPa and unit weight of 17.5 kN/m3. The water table is located at the ground surface. If the safety factor SF
against bearing capacity failure is to be not less than three and neglecting soil adhesion on the walls of the silo:

(a) Determine the maximum vertical load V which the silo may carry, considering bearing capacity failure only
and using Terzaghi bearing capacity equation.

(b) What will be the effect on the SF if the water level rises to 1.5 m above the ground surface in times of flooding?

Solution:
(a) Gross effective foundation pressure is

Gross q = gross q−uplift pressure

Gross q =
V +W

A
−hγw =

V + 200 × 103

22 5 × 60
−3 × 10 kPa

Equation 4 2 net q = gross q −σo

net q =
V + 200 × 103

22 5 × 60
−3 × 10−3 17 5−10

= 7 41 × 10−4 V + 95 7 kPa

Table 4.2: gross qult = cNcsc + γ DfNq +
1
2
γ BNγsγ

For saturated clay, Ø = 0 undrained condition ; hence, from Table 4.3, Nc = 5 7, Nq = 1, Nγ = 0 and from

Section 4.6: sc = 1 + 0 3
B
L

Gross qult = 75 × 5 7 1 + 0 3 ×
22 5
60

+ γ Df kPa

Equation (4.3): net qult = gross qult−σo

net qult = 75 × 5 7 1 + 0 3 ×
22 5
60

+ γ Df −γ Df = 476 kPa

Table 4.16 Ranges of unconfined compression strength of various
types of rocks.

Rock type qu, MN/m2 Ø , degree

Granite 65–250 45–55

Limestone 30–150 35–45

Sandstone 25–130 30–40

Shale 5–40 15–30
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Equation (4.4): net qs =
net qult
SF

=
476
3

= 158 7 kPa

Let net q = net qs. Hence, 7 41 × 10−4 V + 95 7 = 158 7

V = 85 × 103 kN

(b) The reduced net q = net q − the increase in the uplift pressure

= 7 41 × 10−4 85 × 103 + 95 7 −1 5 × 10

= 143 7 kPa

SF =
net qult

reduced net q
=

476
143 7

= 3 31. There will be a slight increase in SF.

Problem 4.2

A strip footing 3.5 m wide is to be placed 3 m below ground surface on sandy clay soil having γ = 20 5 kN m3.
Undrained shear box tests give shear strengths of 35, 47 and 59 kN/m2 for normal stresses of 70, 140 and
210kN/m2, respectively. Find the apparent cohesion c and angle of shearing resistance Ø , and then calculate
the gross ultimate load per metre run of foundation immediately after construction. Consider bearing capacity
failure only. Use Terzaghi bearing capacity equation.

Solution:
Obtain c and Ø values either by calculation τ = c+ σ tan Ø or from the plot of shear stress τ versus normal stress
σ (drawn to the same scale), as shown below.

From the plot: c = 23 kPa and Ø 10

Table 4.2: gross qult = cNcsc + γ DfNq +
1
2
γ BNγsγ

For strip footings sc = sγ = 1

Table 4.3: Ø = 10 ; Nc = 9 6; Nq = 2 7; Nγ = 1 2

Equation (4.20): rγ = 1−0 25 log
B
K

forB > 2m

120

80

40

0
0 40 80 120 160

σ, kPa

τ,
 k

P
a τ = c + σ tan ϕ

ϕ ≅ 10°

200 240

c = 23 kPa

Scheme 4.4

(Continued)
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rγ = 1−0 25log
3 5
2

= 0 94

gross qult = 23 × 9 6 × 1 + 20 5 × 3 × 2 7

+
1
2
× 20 5 × 3 5 × 1 2 × 1 × 0 94

= 220 80 + 166 05 + 40 47 = 427 32 kPa

Gross ultimate load = 427 32 × B = 427 32 × 3 5 = 1496 kN mrun.

Problem 4.3

A square footing is required to carry a gross load of1500 kN. The base of the footing is to be 4.5 m below the ground
level. The ground water table will rise to the ground surface. The soil is saturated clay having the following prop-
erties: apparent cohesion c = 57 5 kPa, Ø = 0 and γ = 19 2 kN m3. Using the Terzaghi bearing capacity equa-
tion with a safety factor SF = 3 0, find a suitable size for the footing.
The clay extends to a depth of 8.1 m below the ground surface and below this level there is a stratum of relatively

incompressible material. Assume that the mean vertical pressure in the 3.6 m clay layer under the footing is 0.56 of
the net contact pressure. Consolidation tests on the clay under similar conditions of pressure distribution and
drainage show that an increment of pressure equals 10 kP a causes a settlement of 1.5 % of the sample thickness.
Find the probable settlement of the footing.

Solution:

Table 4.2: gross qult = cNcsc + γ DfNq +
1
2
γ BNγsγ

Table 4.3: Ø = 0 ; Nc = 5 7; Nq = 1; Nγ = 0;

For square footings, the Terzaghi sc = 1 3

gross qult = cNcsc + γ Df

Equation (4.3): net qult = gross qult−σo = cNcsc + γ Df −γ Df = cNcsc

Equation (4.5): gross qs =
net qult
SF

+ σo =
57 5 × 5 7 × 1 3

3
+ 19 2−10 4 5

= 142 03 + 41 4 = 183 43 kPa

Equation (4.4): net qs =
net qult
SF

=
57 5 × 5 7 × 1 3

3
= 142 03 kPa

Gross effective foundation pressure is

Gross q = gross q−uplift pressure

Gross q =
1500
A

−hγw =
1500
A

−4 5 × 10 =
1500
A

−45 kPa

Equation (4.2): net q = gross q −σo

=
1500
A

−45−4 5 19 2−10

=
1500
A

−45−41 4 kPa
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On the basis of gross pressures:
Gross q = gross qs

1500
A

−45 = 183 43 A=
1500
228 43

= 6 57m2

On the basis of net pressures:

net q = net qs

1500
A

−45−41 4 = 142 03 A=
1500
228 43

= 6 57m2

The footing size = 2 6 × 2 6m
Settlement of the clay stratum under the footing= Sc =mv × σz ×H

σz = 0 56
1500

2 6 × 2 6
−45−41 4 = 75 88 kPa

Settlement of the clay sample = 0 015h=mv × 10 × h, where h = thickness of the sample. Hence,

Sc
0 015h

=
mv × 75 88 × 3 6
mv × 10 × h

The probable settlement of the footing = Sc =
0 015 × 75 88 × 3 6

10
= 0 41 m

Problem 4.4

A strip footing is to be designed to carry a gross foundation load equals 800 kN/m run at a depth of 0.7m in a gravelly
sand stratum. Appropriate shear strength parameters are c = 0 and Ø = 40 . Assume that the water table exists at
the foundation level. The sand unit weights above and below the water table are 17 and 20 kN/m3, respectively. Using
Terzaghi bearing capacity equation with a safety factor of three, considering shear failure only, determine the width of
the footing.

Solution:
Equation (4.3): net qult = gross qult−σo

= cNcsc + γ DfNq +
1
2
γ BNγsγ −γ Df

= γ Df Nq−1 +
1
2
γ BNγsγ

Table 4.3: Ø = 40 ; Nq = 81 3; Nγ = 100 4
For strip footings all shape factors areone. Hence,

net qult = 17 × 0 7 81 3−1 + 0 5 × 20−10 B 100 4

= 955 6 + 502B kPa

Equation(4.4): net qs =
net qult
SF

=
955 6 + 502B

3
kPa

Equation (4.1): net q= gross q−σo =
800
B

−17 × 0 7 kPa
(Continued)
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Let net q = net qs. Hence,

800
B

−11 9 =
955 6 + 502B

3

2400−35 7B= 955 6B+ 502B2

B2 + 1 97B−4 78 = 0

B=
−1 97 ± 1 972−4 × 1 −4 78

2 × 1
=
−1 97 + 4 8

2
=
2 83
2

= 1 415m

Use width of the footing = 1.45m

Problem 4.5

A footing 2 m square is located at a depth of 4 m in stiff clay of unit weight 21 kN/m3. The undrained strength of
clay at a depth of 4 m is given by the parameters cu = 120 kPa and Ø u = 0 . For SF = 3 with respect to bearing
capacity failure, determine the gross foundation vertical load that the footing can carry using: (a) the Vesic method,
(b) the Skempton method.

Solution:
(a) The Vesic method. For saturated clay with Ø u = 0 :

Table 4.4: Nc = 5 14, Nq = 1, Nγ = 0

Table 4.2: gross qult = cNcscdcicgcbc + qNqsqdqiqgqbq

Table 4.8: for the conditions of this problem all i, g and b factors are one.

Table 4.6: sc = 1 +
Nq

Nc

B
L

= 1 +
1

5 14
2
2

= 1 2

dc = 1 + 0 4 tan−1D
B
= 1 + 0 4 tan−1 4

2
= 1 44

sq = dq = 1

gross qult = 120 × 5 14 × 1 2 × 1 44 + 4 × 21 = 1065 8 kPa

Equation (4.3): net qult = gross qult−σo = 1065 8− 4 × 21 = 982 kPa

Equation (4.4): net qs =
net qult
SF

=
982
3

= 327 kPa

Equation (4.5): gross qs =
net qult
SF

+ σo = 327 + 4 × 21 = 411 kPa

Let gross q = gross qs. Hence,
The gross load the footing can carry (gross safe foundation load) is 411 × A = 411 × 22 = 1644 kN

(b) The Skempton method.

Figure 4.4:
D
B
= 2;Nc = 8 35

gross qult = cNc + q

net qult = cNc = 120 × 8 35 = 1002 kPa
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Equation (4.5): gross qs =
net qult
SF

+ σo =
1002
3

+ 4 × 21 = 418 kPa

Let gross q = gross qs. Hence,
The gross load the footing can carry (gross safe foundation load) is 418 × A = 418 × 22 = 1672 kN

Problem 4.6

The footing of a long retaining wall is 3 m wide and is 1 m below the ground surface in front of the wall. The water
table is well below the foundation level. The vertical V and horizontal H components of the base load are 282 and
102 kN/m run, respectively. The eccentricity of the base load is 0.36 m, as shown in the scheme below. The
appropriate shear strength parameters for the foundation soil are c = 0 and Ø = 35 and the unit weight of
the soil is 18 kN/m3. Determine the safety factor against shear failure (a) using Meyerhof equations and effective
area method, (b) using Hansen equations and effective area method.

Solution:
(a) Using Meyerhof equations and effective area method.

B =B−2eb = 3−2 × 0 36 = 2 28 m andL = L

Table 4.5: θ = tan−1 102
282

= 20 ; iq = 1−
θ

90

2

= 1−
20
90

2

= 0 61;

iγ = 1−
θ

Ø

2

= 1−
20
35

2

= 0 18; KP = tan2 45 +
Ø
2

= 3 69;

dq = dγ = 1 + 0 1 KP
D
B
= 1 + 0 1 × 1 92 ×

1
3
= 1 064

Table 4.4: Ø = 35 ; Nq = 33 6; Nγ = 37 8

Table 4.2: gross qult = qNqdqiq + 0 5γ B Nγdγiγ

Equation (4.20): rγ = 1−0 25 log
B
K

forB > 2m

rγ = 1−0 25log
2 28
2

= 0 96

gross qult = 1 × 18 × 33 6 × 1 064 × 0 61

+ 0 5 × 18 × 2 28 × 37 8 × 1 064 × 0 18 × 0 96 = 535 kPa

Equation (4.3): net qult = gross qult−σo = 535−1 × 18 = 517 kPa

V
R

H

θ

B = 3 m

eB = 0.36 m

Scheme 4.5

(Continued)
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Equation (4.2): net q = gross q −σo =
V

1 ×B
−σo =

282
2 28

−18 = 106 kPa

The safety factor SF =
net qult
net q

=
517
106

= 4 88; and on the basis of gross pressures, the SF =
gross qult
gross q

=

535
282 1 ×B

=
535

282 2 28
= 4 33

(b) Using Hansen equations and effective area method.

Table 4.2: gross qult = 0 + qNqsqdqiqgqbq + 0 5γ B Nγsγdγiγgγbγ

Table 4.4: Ø = 35 , Nq = 33 6, Nγ = 34 4

Table 4.7: for the conditions of this problem all g and b factors areone and for long or strip footings all s factors
are one.

iq = 1−
0 5H

V +Af ca cotØ

α1

, using α1 = 2 5 and ca = 0:

iq = 1−
0 5 × 102

282

2 5

= 0 61

iγ = 1−
0 7H

V +Af ca cotØ

α2

, using α2 = 3 5 and ca = 0:

iγ = 1−
0 7 × 102

282

3 5

= 0 36

Tables 4.4 and 4.6: dq = 1 + 2tanØ 1−sinØ 2k= 1 09; dγ = 1

Equation (4.20): rγ = 1−0 25log
2 28
2

= 0 96

gross qult = 1 × 18 × 33 6 × 1 09 × 0 61 + 0 5 × 18 × 2 28 × 34 4 × 1 × 0 36 × 0 96

= 646 kPa

Equation (4.3): net qult = gross qult−σo = 646−1 × 18 = 628 kPa

Equation (4.2): net q = gross q −σo =
V

1 ×B
−σo =

282
2 28

−18 = 106 kPa

The safety factor SF =
net qult
net q

=
628
106

= 5 92; and on the basis of gross pressures, the SF =
gross qult
gross q

=

646
282 1 ×B

=
646

282 2 28
= 5 22

Problem 4.7

A load test was carried out on a rectangular footing shown in the scheme below.
The test gave the following results:

The ultimate horizontal load in L direction, HL, ult = 382 kN
The ultimate gross vertical compression load, Vult = 1060 kN

(a) Find the safety factor against sliding of the footing under the ultimate loads. Neglect the resisting passive earth
pressure and assume δ= 0 8 Ø .

(b) Find the gross ultimate bearing capacity by the Hansen method.
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(c) Find the gross ultimate bearing capacity by the Vesic method.
(d) Find the gross ultimate bearing capacity by the Meyerhof method.

Solution:
(a) Maximum resisting force =Hmax =V tanδ+ caAf

ca = 0, since c= 0. Hence,

Hmax =Vult tanδ = 1060 × tan 0 8 × 43 = 726kN

The sliding force =HL,ult = 382 kN

Safety factor against sliding of the footing = SF =
Hmax

HL,ult
=
726
382

= 1 9

(b) Hansen method.
L
B

=
L
B
=

2
0 5

= 4 > 2, and Ø tr = 43 > 34 . Hence according to Hansen

Ø ps = 1 5Ø tr−17 = 1 5 × 43−17 = 47 5

According to Meyerhof: Ø ps = 1 1Ø tr = 1 1 × 43 = 47 3
Use Ø ps = 47

Table 4.2: Nq = e
π tanØ tan2 45 +

Ø
2

= eπ tan47 tan2 45 +
47
2

= 187 21

Nγ = 1 5 Nq−1 tanØ

= 1 5 187 21−1 tan47 = 299 53

Table 4.4: 2 tanØ 1−sinØ 2 = 2tan47 1−sin47 2 = 0 155

HB = 0

HL = 382 kN

HL = 382 kN

B = 0.5 m

0.5 m

Dense sand: γ ′ = 9.43 kN/m3

ϕtr = 43°; c = 0

L = 2 m

L = 2 m

V = 1060 kN

∇ W.T

PLAN

SECTION

Scheme 4.6

(Continued)
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Because the horizontal component is in L direction, both Equations (4.21) and (4.22) should be used in order
to find the smaller gross q

ult.
Refer to Tables 4.6 and 4.7 and Section 4.7:

dq,B = 1 + 2tanØ 1−sinØ 2D B= 1 + 0 155
0 5
0 5

= 1 16

dq,L = 1 + 2tanØ 1−sinØ 2D L= 1 + 0 155
0 5
2

= 1 04

dγ,B = dγ,L = 1

iq, B = 1−
0 5HB

V +Af ca cotØ

α1 = 2 5

= 1 using α1 = 2 5 and HB = 0

iγ,B = 1−
0 7HB

V +Af ca cotØ

α2 = 3 5

= 1 using α2 = 3 5, HB = 0 and η = 0

ca = 0 since c= 0

iq, L = 1−
0 5HL

V +Af ca cotØ

2 5

= 1−
0 5 × 382
1060 + 0

2 5

= 0 608

iγ,L = 1−
0 7HL

V +Af ca cotØ

α2 = 3 5

= 1−
0 7 × 382
1060 + 0

α2 = 3 5

= 0 361

sq, B = 1 + sinØ Biq, B L = 1 + sin47 0 5 × 1 2 = 1 18

sq, L = 1 + sinØ Liq,L B = 1 + sin47 2 × 0 608 0 5 = 2 78

sγ ≥ 0 6

sγ, B = 1−0 4
Biγ, B
Liγ, L

= 1−0 4
0 5 × 1
2 × 0 361

= 0 723 > 0 6

sγ, L = 1−0 4
Liγ, L
Biγ, B

= 1−0 4
2 × 0 361
0 5 × 1

= 0 422 < 0 6

Use sγ, L = 0 6
All ground g factors and base b factors are one, since both the ground and base are horizontal.

Equation (4.21):

qult = qNqsq,Bdq,Biq,Bgq,Bbq,B

= 0 5 × 9 43 × 187 × 1 18 × 1 16 × 1

+ 0 5 × 9 43 × 0 5 × 300 × 0 732 × 1 × 1 = 1718 kPa

Equation (4.22):

qult = qNqsq,Ldq,Liq,Lgq,Lbq,L + 0 5γL Nγsγ,Ldγ,Liγ,Lgγ,Lbγ,L

= 0 5 × 9 43 × 187 × 2 78 × 1 04 × 0 608

+ 0 5 × 9 43 × 2 × 300 × 0 6 × 1 × 0 361 = 2163 kPa

Use the smaller value of qult = 1718 kPa

This result is much greater than the 1060 kPa of the load test.
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(c) Vesic method.
Table 4.2:

Nq = eπ tanØ tan2 45 +
Ø
2

= eπ tan47 tan2 45 +
47
2

= 187 21

Nγ = 2 Nq + 1 tanØ = 2 187 21 + 1 tan47 = 403 66

Table 4.4: 2tanØ 1−sinØ 2 = 2tan47 1−sin47 2 = 0 155
Refer to Tables 4.6 and 4.8:

B
L
=
B
L

=
0 5
2

= 0 25;
D
B

=
D
B
=
0 5
0 5

= 1; k=
D
B
=
0 5
0 5

= 1;
L
B
=

2
0 5

= 4

sq = 1 +
B
L
tanØ = 1+

0 5
2
tan47 = 1 27

sγ = 1−0 4
B
L

= 1−0 4 0 25 = 0 9 > 0 6

dq = 1 +
2tanØ 1−sinØ 2D

B
= 1 + 0 155 1 = 1 16; dγ = 1

m=mL =
2 +

L
B

1 +
L
B

=
2 + 4
1 + 4

= 1 2

iq, L = 1−
HL

V +Af ca cot Ø

m

= 1−
382

1060 + 0

1 2

= 0 585

iγ,L = 1−
HL

V +Af ca cot Ø

m + 1

= 1−
382

1060 + 0

1 2 + 1

= 0 374

All ground g factors and base b factors are one, since both the ground and base are horizontal.

gross qult = qNqsqdqiq + 0 5γ B Nγsγdγ iγ

= 0 5 × 9 43 × 187 × 1 27 × 1 16 × 0 585

+ 0 5 × 9 43 × 0 5 × 404 × 0 9 × 1 × 0 374 = 1081 kPa

This result is practically very close to the 1060 kPa of the load test.
(d) Meyerhof method.

Table 4.5:

θ = tan−1 382
1060

≈20o; iq = 1−
θ

90

2

= 1−
20
90

2

= 0 61

iγ = 1−
θ

Ø

2

= 1−
20
47

2

= 0 33; KP = tan2 45 +
Ø
2

= 6 44

dq = dγ = 1 + 0 1 KP
D
B
= 1 + 0 1 × 2 54 ×

0 5
0 5

= 1 254

Table 4.2: Nq = 187 21 (the same as that of Hansen)

Nγ = Nq−1 tan 1 4Ø = 187 21−1 tan 1 4 × 47

= 414 34
(Continued)
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Table 4.2: gross qult = qNqdqiq + 0 5γ B Nγdγiγ

gross qult = 0 5 × 9 43 × 187 × 1 254 × 0 61

+ 0 5 × 9 43 × 0 5 × 414 × 1,254 × 0 33 = 1078 kPa

This result is practically very close to the 1060 kPa of the load test.

Problem 4.8

The scheme below shows a 2 × 2 m square footing with a tilted base, rests on a c− Ø soil of the given properties.
The ground surface is level and horizontal. The foundation depth equals 0.4 m. The design requires a minimum
SF = 2 5 against bearing capacity failure and 1.5 against sliding under the given loading conditions.

(a) Check whether the footing is safe against sliding. Assume: δ= Ø ; ca = c; resisting passive earth pressure is
neglected.

(b) Considering the bearing capacity failure only, check the adequacy of the footing dimensions. Use both Hansen
and Vesic methods.

Solution:
(a) Safety against sliding of the footing.

Maximum resisting force =Hmax = P tanδ+ caAf

Hmax = 650 × tan25 + 25 × 2 × 2 = 403 kN

The sliding force =HB = 200 kN

Safety factor = SF =
Hmax

HB
=
403
200

= 2 02 > 1 5 required

Therefore, the footing is safe against sliding.
(b) Adequacy of the footing dimensions.

(i) Hansen method:

Table 4.4: Ø = 25 ;Nc = 20 7;Nq = 10 7;Nγ = 6 8;
Nq

Nc
= 0 514

2tanØ 1−sinØ 2 = 0 311;
D
B
=
0 4
2

= 0 2 = k;
B
L

=
B
L
=
2
2
= 1

0.4 m
0.4 m

90°

η = 15°

P = 650 kN

c = 25 kPa

H
B = 200 kN

B = 2 m

γ = 18 kN/m3

ϕ = 25°

Scheme 4.7
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Table 4.7: β = 0 ; hence, all g factors are one.
Equation 4 21 gross qult = cNcsc,Bdc,Bic,Bbc,B + qNqsq,Bdq,Biq,Bbq,B

+ 0 5γ B Nγsγ,Bdγ,Biγ,Bbγ,B

Refer to Tables 4.6 and 4.7 and Section 4.7:

η= 15 = 0 262 radians

bc,B = 1−
η

147
= 1−

15
147

= 0 9

bq,B = exp −2η tanØ = exp −2 0 262 tan25 = 0 783

bγ,B = exp −2 7η tanØ = exp −2 7 0 262 tan25 = 0 719

dc,B = 1 + 0 4k= 1 + 0 4 × 0 2 = 1 08

dq,B = 1 + 2tanØ 1−sinØ 2k= 1 + 0 311 × 0 2 = 1 062

dγ,B = 1

V = P = 650 kN. HB = 200 kN. Assume α1 = 3 and α2 = 4

V +Af ca cotØ = 650 + 2 × 2 × 25 × cot25 = 864 5

iq,B = 1−
0 5HB

V +Af ca cotØ

α1

= 1−
0 5 × 200
864 5

3

= 0 692

iγ,B = 1−
0 7 −η 450 HB

V +Af ca cot Ø

α2

= 1−
0 678 × 200

864 5

4

= 0 506

ic,B = iq−
1− iq
Nq−1

= 0 692−
1−0 692
10 7−1

= 0 66

sc,B = 1 +
Nq

Nc
×
Bic,B
L

= 1 + 0 514 ×
2 × 0 66

2
= 1 34

sq,B = 1 + sinØ Biq,B L = 1 + sin25 2 × 0 692 2 = 1 29

sγ,B = 1−0 4
Biγ,B
Liγ,L

. The value of iγ,L = 1, since HL = 0; hence,

sγ,B = 1−0 4
2 × 0 506
2 × 1

= 0 798 > 0 6

gross qult = 25 × 20 7 × 1 34 × 1 08 × 0 66 × 0 9

+ 0 4 × 18 × 10 7 × 1 29 × 1 062 × 0 692 × 0 783

+ 0 5 × 18 × 2 × 6 8 × 0 798 × 1 × 0 506 × 0 719

= 444 9 + 57 2 + 35 5 = 537 6 kPa

gross contact pressure gross q=
P
A
=

650
2 × 2

= 162 5 kPa
(Continued)
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Safety factor SF =
gross qult
gross q

=
537 6
162 5

= 3 3 > 2 5 (required); hence,

The footing dimensions are adequate according to the Hansen method.
(ii) Vesic method:

Table 4.4: Ø = 25 ; Nc = 20 7; Nq = 10 7; Nγ = 10 9;
Nq

Nc
= 0 514

2tanØ 1−sinØ 2 = 0 311;
B
L
=
2
2
= 1

Refer to Tables 4.6 and 4.8:

η= 15 = 0 262 radians; β = 0

bc = 1−
2β

5 14tanØ
= 1 since ground slope β = 0

bq = bγ = 1−ηtanØ 2 = 1− 0 262 tan25 2 = 0 771

dc = 1 080; dq = 1 062; dγ = 1 (The same as Hansen depth factors)

sc = 1 +
Nq

Nc
×
B
L
= 1 + 0 514 ×

2
2
= 1 514

sq = 1 + tanØ
B
L

= 1 + tan25
2
2

= 1 466

sγ = 1−0 4
B
L

= 1−0 4 ×
2
2
= 0 6

m=
2 +

L
B

1 +
L
B

=
2 + 1
1 + 1

= 1 5

V = P = 650 kN H = 200 kN

V +Af ca cot Ø = 650 + 2 × 2 × 25 × cot25 = 864 5

iq = 1−
H

V +Af ca cot Ø

m

= 1−
200
864 5

1 5

= 0 674

iγ = 1−
H

V +Af ca cot Ø

m+1

= 1−
200
864 5

2 5

= 0 518

ic = iq−
1− iq
Nq−1

= ic,B = 0 674−
1−0 674
10 7−1

= 0 64

gc = iq−
1− iq

5 14 tanØ
= 0 674−

1−0 674
5 14 tan25

= 0 538

gq = gγ = 1− tanβ 2 = 1

gross qult = cNcscdcicbcgc + qNqsqdqiqbqgq

+ 0 5γ B Nγsγdγiγbγgγ
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gross qult = 25 × 20 7 × 1 514 × 1 08 × 0 64 × 1 × 0 538

+ 0 4 × 18 × 10 7 × 1 466 × 1 062 × 0 674 × 0 771 × 1

+ 0 5 × 18 × 2 × 10 9 × 0 6 × 1 × 0 518 × 0 771 × 1

= 291 4 + 62 3 + 47 0 = 400 7 kPa

gross contact pressure gross q=
P
A
=

650
2 × 2

= 162 5 kPa

Safety factor = SF =
gross qult
gross q

=
400 7
162 5

= 2 5 = 2 5 (required); hence:

The footing dimensions are probably adequate according to the Vesic method.
The large difference between the two results is mainly due to the g

c
factor of the predominating cohesion term;

it is considered as unity in the Hansen equation, whereas in the Vesic equation it is about half (0.538) of this
value, which reduces the cohesion term by about 50%.

Problem 4.9

Solve Problem 4.6 (a) using the Saran and Agarwal analysis and (b) find whether the Purkaystha and Char
reduction factor method, which is originally used for eccentric vertical loads, gives reasonable results for eccentric
inclined loads. Use the Hansen bearing capacity, depth and inclination factors.

Solution:
(a) Saran and Agarwal analysis

Equation 4 35 Qult =B c Nc ei + qNq ei +
1
2
γBNγ ei

β = tan−1 102
282

= 20 ; Ø = 35 ; B= 3m; e= 0 36m; Df = 1m

e
B
=
0 36
3

= 0 12; γ = 18 kN m3; q= γDf ; c = 0

Figure 4.9: Nq ei = 11 5
Figure 4.11: Nγ ei = 14

Qult = 3 0 + 18 × 1 × 11 5 +
1
2
× 18 × 3 × 14 = 1755 kN

The vertical load V = 282 kN

Safety factor SF =
Qult

V
=
1755
282

= 6 2

(b) Purkaystha and Char reduction factor method.

Equation (4.30): qult e = qult c 1−a
e
B

k

Equation (4.31): qult c = qNqFqd +
1
2
γBNγFγd

Table 4.9: for
Df

B
=
1
3
obtain a= 1 793, k= 0 79 (by interpolation)

Table 4.4: for Ø = 35 Nq = 33 6 and Nγ = 34 4 (by interpolation)

Table 4.6:
Fqd = 1 + 2tanØ 1−sinØ 2k

= 1 + 2tan35 1−sin35 2 1
3

= 1 085
Fγd = 1

(Continued)
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Use Hansen iq and iγ factors to account for the effect of inclined loading condition. These factors are already
computed before (see Solution of Problem 4.6):
iq = 0 61; iγ = 0 36

qult e =
1 × 18 × 33 6 × 1 085 × 0 61

+
1
2
× 18 × 3 × 34 4 × 1 × 0 36

1−1 793
0 36
3

0 79

= 400 3 + 334 4 0 664 = 487 8 kPa

Qult =Bqult e = 3 × 487 8 = 1463 4 kN

Safety factor SF =
Qult

V
=
1463 4
282

= 5 2

This result represents the average of the three results obtained before. Therefore, one may consider that the
Purkaystha and Char reduction factor method gives reasonable results for eccentric inclined loading condi-
tions provided that the Hansen bearing capacity, depth and inclination factors are used in Equation (4.30).

Problem 4.10

A mat foundation 9 × 27 m is to be placed at a depth of 3 m in a deep stratum of soft, saturated clay of
γ = 16 5 kN m3. The water table is at 2.5 m below the ground surface. The strength parameters of the soil, obtained
from unconsolidated, undrained tests are cu = 25 kPa, Ø u = 0, whereas consolidated, drained tests give
cd = 5 kPa, Ø d = 23 . The modulus of deformation of the soil in the undrained condition obtained equals to
Eu = 2593 kPa. The modulus of confined compression (in drained conditions) increases with pressure q (or σz)
according to Mv = 12 6 q . Taking the effect of compressibility of the soil into consideration and using the Vesic
equations, find the ultimate bearing capacity in the following conditions:

(a) Assume the rate of application of dead and live loads (vertical loads) is fast in comparison with rate
of dissipation of excess pore-water pressures caused by loads, so that undrained conditions prevail at
failure.

(b) Assume, as the other extreme, that the rate of vertical loading is slow enough so that no excess pore-water
pressures are introduced in the foundation soil.

Solution:
(a) Undrained condition.

Assume incompressibility soil condition; hence,

gross qult = cNcscdcicbcgc + qNqsqdqiqbqgq

+ 0 5γ B Nγsγdγiγbγgγ

There is no horizontal load component, the base is not tilted and the foundation is not on slope, therefore all
ii, bi and gi factors are 1. Hence,

gross qult = cu Ncscdc + qNqsqdq + 0 5γ B Nγsγdγ

For saturated clay, under undrained conditions, Ø = 0; hence, from Table 4.4: Nc = 5 14; Nq = 1 and Nγ = 0.
According to Vesic, from

Table 4.6: sc = 1 +
Nq

Nc
×
B
L
= 1 +

1
5 14

×
9
27

= 1 065
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sq = 1 +
B
L
tanØ = 1

dc = 1 + 0 4k;
D
B
=
3
9
= 0 33 < 1; dc = 1 + 0 4 ×

3
9
= 1 133

dq = 1 + 2tanØ 1−sinØ 2k= 1

q= 2 5 × 16 5 + 0 5 16 5−10 = 44 5 kPa

gross qult = 25 × 5 14 × 1 065 × 1 133 + 44 5 × 1 × 1 × 1 + 0

= 200 kPa

Equation 4 48 Ir cr =
1
2

exp 3 30−0 45
B
L

cot 45−
Ø
2

=
1
2

exp 3 30−0 45 ×
9
27

1 = 11 7

Equation (4.47): Ir =
Gs

c+ q tanØ

Equation (1.61): shear modulus of the clay =Gs =
Eu

2 1 + μ
Table 3.10: assume Poisson’s ratio of the saturated clay μ= 0 5

Gs =
2593

2 1 + 0 5
= 864 33 kPa

c= cu = 25 kPa; and Ø = 0 undrained condition

Ir =
864 33
25 + 0

= 35 > 11 7

Therefore, the assumption of soil incompressibility is justified. The computed value of ultimate bearing
capacity can be used without reduction. Use gross qult = 200 kPa

(b) Drained condition.
Assume incompressibility soil condition; hence,

gross qult = cd Ncscdc + qNqsqdq + 0 5γ B Nγsγdγ

For Ø = 23 , Nc = 18 05; Nq = 8 66; Nγ = 8 20 (these values are computed from equations of Table 4.2).
Table 4.6:

sc = 1 +
8 66
18 05

×
9
27

= 1 16

sq = 1 +
9
27

tan23 = 1 14

sγ = 1−0 4 ×
B
L
= 1−0 4 ×

9
27

= 0 87 > 0 6, use 0 87

dc = 1 + 0 4k= 1 + 0 4 ×
3
9
= 1 133

dq = 1 + 2tanØ 1−sinØ 2k

= 1 + 2tan23 1−sin23 2 3 9 = 1 105

dγ = 1

(Continued)
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Equation 4 20 rγ = 1−0 25 log
B
K

for B≥ 2 m

= 1−0 25 log
9
2

= 0 84

gross qult = 5 × 18 05 × 1 16 × 1 133 + 44 5 × 8 66 × 1 14 × 1 105

+ 0 5 16 5−10 9 8 2 × 0 87 × 1 0 84

gross qult = 118 61 + 485 45 + 175 28 = 779 kPa

The average effective overburden pressure in the influence zone, which is taken as pressure at the depth
B/2 below the foundation level, is

q = 2 5 × 16 5 + 0 5 + 4 5 16 5−10 = 73 75 kPa

The modulus of confined compression Mv = 12 6 q = 12 6 × 73 75 = 929 25 kPa
For drained condition, Poisson’s ratio may be calculated from the following equation (Vesic, 1973):

μ=
1−sin1 2Ø d

2−sin1 2Ø d
=
1−sin 1 2 × 23
2−sin 1 2 × 23

= 0 35

Drained modulus of deformation Ed may be calculated from the following equation (Vesic, 1973):

Ed =Mv
1 + μ 1−2μ

1−μ
= 929 25

1 + 0 35 1−2 × 0 35
1−0 35

= 579 kPa

The actual rigidity index is

Equation 4 47 Ir =
Gs

c+ q tanØ

=
Ed

2 1 + μ
×

1
cd + q tan Ø d

=
579

2 1 + 0 35 5 + 73 75tan23
= 5 9

Equation 4 48 Ir cr =
1
2

exp 3 30−0 45
B
L

cot 45−
Ø
2

=
1
2

exp 3 30−0 45 ×
9
27

cot 45−
23
2

= 59

Ir < Ir cr . Thus, the assumption of soil incompressibility is not justified. The compressibility factors
of Equations (4.44) and (4.45) need to be used in the bearing capacity equation.

Equation 4 45 ζqc = exp −4 4 + 0 6
B
L

tanØ +
3 07sinØ log2Ir

1 + sinØ

= exp −4 4 + 0 6 ×
9
27

tan23 +
3 07sin23 log11 8

1 + sin23

= 0 424

ζγc = ζqc = 0 424
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Equation 4 44 ζcc = ζqc−
1−ζqc

Nc tan Ø
for Ø > 0

= 0 424−
1−0 424

18 05 × tan 23
= 0 35

gross qult = 118 61 0 35 + 485 45 0 424 + 175 28 0 424

= 322 kPa

Problem 4.11

Solve Problem 4.10 if the soil consists of a deep stratum of medium-dense sand. Assume the following
additional data:

For the sand, the saturated unit weight = 19 kN m3 and an average moist unit weight above the water
table = 16 kN m3.

Drained triaxial tests on sand samples show that the angle of shearing resistance of sand Ø varies with mean
normal stress σ according to

Ø = Ø 1− 5 5 log
σ

σ1
, in which Ø 1 = 38 = the angle of shearing resistance of the sand at mean normal stress

σ1 = 100 kPa. According to De Beer (1965), the average mean normal stress along the slip surface is

σ =
1
4
qult + 3q 1−sinØ ,

in which q is the effective overburden pressure at the fundation level. In the low and elevated pressure range, the

modulus of deformation E of sand increases with the mean normal stress according to the relationship E = E1
σ

σ1
in which E1 is the modulus at the mean normal stress σ1.

Also, the following equations may be needed in solving the Problem:

Ko = 1−sin 1 2Ø = coefficient of earth pressure at rest

μ=
Ko

1 +Ko
=Poisson’sratio

σ =
1 + 2Ko

3
q = initial mean normal stress at depth z

Solution:
In sands, the drained condition prevails. Assume incompressibility soil condition.
A preliminary estimate of qult is required so that the mean normal stress along the slip surface can be found. For

this preliminary analysis, assume that Ø = 34 , and Table 4.4 gives Nq = 29 4; Nγ = 41.
Table 4.6:

sq = 1 +
9
27

tan34 = 1 22

sγ = 1−0 4 ×
B
L
= 1−0 4 ×

9
27

= 0 87

dq = 1 + 2tanØ 1−sinØ 2k

= 1 + 2tan34 1−sin34 2 3
9

= 1 09

dγ = 1 (Continued)
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Equation (4.20):

rγ = 1−0 25 log
B
K

forB ≥ 2m

= 1−0 25 log
9
2

= 0 84

q= 2 5 × 16 + 0 5 19−10 = 44 5kPa

gross qult = 44 5 × 29 4 × 1 22 × 1 09

+ 0 5 19−10 9 41 × 0 87 × 1 0 84

= 1739 78 + 1213 49 = 2953kPa

The mean normal stress along the slip surface is

σ =
1
4
qult + 3q 1−sinØ =

1
4
2953 + 3 × 44 5 1−sin34

= 340 kPa

The representative angle of shearing resistance is Ø = Ø 1− 5 5 log
σ

σ1
= 38 − 5 5 log

340
100

35 . The differ-

ence between this and the assumed value of Ø is small; however, to improve clarity the analysis is now repeated
with Ø = 35 . Thus, from Table 4.2:

Nq = eπ tanØ tan2 45 +
Ø
2

= eπ tan35 tan2 45 +
35
2

= 33 4

Nγ = 2 Nq + 1 tanØ = 2 33 4 + 1 tan35 = 48 1

sq = 1 +
9
27

tan35 = 1 23; sγ = 1−0 4 ×
B
L
= 1−0 4 ×

9
27

= 0 87

dq = 1 + 2tanØ 1−sinØ 2k

= 1 + 2tan35 1−sin35 2 3
9

= 1 08

dγ = 1; rγ = 0 84

gross qult = 44 5 × 33 4 × 1 23 × 1 08

+ 0 5 19−10 9 48 1 × 0 87 × 1 0 84

= 1974 4 + 1423 6 = 3398 kPa

The mean normal stress along the slip surface is

σ =
1
4
qult + 3q 1−sinØ

=
1
4
3398 + 3 × 44 5 1−sin35 = 376 5kPa

The representative angle of shearing resistance is

Ø = Ø 1− 5 5 log
σ

σ1
= 38− 5 5 log

376 5
100

= 34 8
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The analysis can be repeated again for more accuracy; however, in view of small change in mean normal stress
from the previously found value, a value for gross qult using Ø = 34 8 would be retained for incompressible soil.
For this value of Ø , the equations of Tables 4.2 and 4.6 give

Nq = 32 8;Nγ = 47; sq = 1 +
9
27

tan34 7 = 1 23; dγ = 1;

sγ = 1−0 4 ×
9
27

= 0 87; dq = 1 + 2tan34 8 1−sin34 8 2 3
9

= 1 09

gross qult = 44 5 × 32 8 × 1 23 × 1 09

+ 0 5 19−10 9 47 × 0 87 × 1 0 84

= 1956 9 + 1391 1 = 3348 kPa

To check whether the assumption of incompressibility is justified, the following computations may be
necessary.
The mean normal stress in the expansion zone, needed in estimating the elastic parameters E and μ of the sand

soil, is taken as the initial mean normal stress at a depth =B 2 below the foundation level. With Ø = 38 for the
sand in elastic zone the coefficient of earth pressure at rest is

Ko = 1− sin 1 2 Ø = 1−sin 1 2 × 38 = 0 29

The mean normal stress at a depth of 7.5 m, below ground surface, is

σ =
1 + 2Ko

3
q =

1 + 2 × 0 29
3

2 5 × 16 + 5 × 9 = 44 77 kPa

the modulus of deformation is

E = E1
σ

σ1
= 36 400

44 77
100

= 24 355kPa

Poison’s ratio is μ=
Ko

1 +Ko
=

0 29
1 + 0 29

= 0 225

The representative angle of shearing resistance for the plastic zone is taken again to be 34.8 .
The critical rigidity index is

Equation (4.48):

Ir cr =
1
2

exp 3 30−0 45
B
L

cot 45−
Ø
2

=
1
2

exp 3 30−0 45 ×
9
27

cot 45−
34 8
2

= 208

Ir =
Gs

c + q tanØ
=

Ed
2 1 + μ

×
1

q tan Ø d
=

24355
2 1 + 0 225 2 5 × 16 + 5 × 9 tan34 8

= 168

Ir < Ir cr Thus, the assumption of soil incompressibility is not justified. The compressibility factors of Equation (4.45)
need to be used in the bearing capacity equation.

(Continued)
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Equation (4.45):

ζqc = exp −4 4 + 0 6
B
L

tanØ +
3 07sinØ log2Ir

1 + sinØ

= exp

−4 4 + 0 6 ×
9
27

tan34 8

+
3 07sin34 8 log338

1 + sin34 8

= 0 9

ζγc = ζqc = 0 9

gross qult = 44 5 × 32 8 × 1 23 × 1 09 0 9

+ 0 5 19−10 9 47 × 0 87 × 1 0 84 0 9

= 3013 kPa

(This value is considered too high; however, the allowable soil pressure may be controlled by maximum tolerable
settlement for the structure in question).

Problem 4.12

For the design of a shallow foundation, the following data are given:
Foundation: L = 1 5m, B = 1 0m, Df = 1 0m
Soil: Ø = 25

c= 50kPa

γ = 17kN m3

Modulus of deformation Es = 1020 kPa
Poisson’s ratio μs = 0 35
Calculate the gross qult of the soil. Take the soil compressibility into consideration.

Solution:
Assume incompressibility soil condition; hence,

gross qult = cd Ncscdc + qNqsqdq + 0 5γ B Nγsγdγ

For Ø = 25 , Nc = 20 72; Nq = 10 66; Nγ = 10 88 (these values are computed from the Vesic equations of
Table 4.2).
Table 4.6:

sc = 1 +
10 66
20 72

×
1
1 5

= 1 343

sq = 1 +
1
1 5

tan25 = 1 311

sγ = 1−0 4 ×
1
1 5

= 0 733 > 0 6, use 0 733
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D
B
=
1
1
= 1 k=

D
B
= 1

dc = 1 + 0 4k= 1 + 0 4 × 1 = 1 4

dq = 1 + 2tanØ 1−sinØ 2k

= 1 + 2tan25 1−sin25 2 1 1 = 1 311

dγ = 1

gross qult = 50 × 20 72 × 1 343 × 1 4

+ 1 × 17 × 10 66 × 1 311 × 1 311

+ 0 5 × 17 × 1 × 10 88 × 0 733 × 1

= 1947 89 + 311 47 + 67 79 = 2327 kPa

The average overburden pressure in the influence zone, which is taken as pressure at the depth B/2 below the
foundation level, is

q= 1 5 × 17 = 25 5 kPa

Equation (4.47):

Ir =
Gs

c+ q tanØ
=

Es
2 1 + μ

×
1

c+ q tanØ

=
1020

2 1 + 0 35 50 + 25 5tan25
= 6 1

Equation (4.48):

Ir cr =
1
2

exp 3 30−0 45
B
L

cot 45−
Ø
2

=
1
2

exp 3 30−0 45 ×
1
1 5

cot 45−
25
2

= 55 53

Ir < Ir cr . Thus, the assumption of soil incompressibility is not justified. The compressibility factors of
Equations (4.44) and (4.45) need to be used in the bearing capacity equation.

Equation (4.45):

ζqc = exp −4 4 + 0 6
B
L

tanØ +
3 07sinØ log2Ir

1 + sinØ

= exp

−4 4 +
0 6 × 1
1 5

tan25

+
3 07sin25 log12 2

1 + sin25

= 0 417

Equation (4.44):

ζcc = ζqc−
1−ζqc

Nc tan Ø
for Ø > 0

ζcc = 0 417−
1−0 417

20 72 × tan 25
= 0 357

ζγc = ζqc = 0 417

gross qult = 1947 89 0 357 + 311 47 0 417 + 67 79 0 417

= 854 kPa
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Problem 4.13

The column footing shown in the scheme below measures 1.2 × 1.8 m and is subjected to a centric vertical load
Q and two momentsMB andML. If eB = 0 12 m, eL = 0 26 m and the depth of foundation Df = 1 m, determine the
allowable load the foundation can carry using: (a) Terzaghi equations and effective area method, (b) the Meyerhof
equations and effective area method, (c) thePrakash and Saran method. Use the safety factor against bearing
capacity failure equals three.

Solution:
(a) Terzaghi equations and effective area method

Table 4.2: gross qult = cNcsc + γ DfNq +
1
2
γ BNγsγ

The Nc term is 0, since the cohesion c = 0. B=B

Table 4.3: Ø = 35 ; Nq = 41 4; Nγ = 42 4

For rectangular footings, the Terzaghi sγ = 1−0 2
B
L
(see Section 4.6)

B =B−2eB = 1 2−2 × 0 12 = 0 96 m

L = L−2eL = 1 8−2 × 0 26 = 1 28 m

gross qult =Df γ Nq +
1
2
γ B Nγsγ

= 1 × 17 41 4 + 0 5 × 17 0 96 42 4 1−0 2 ×
0 96
1 08

= 703 8 + 284 4 = 988 2 kPa

Gross ultimate load = gross qult ×B L = 988 2 × 0 96 × 1 28

= 1214 3 kN

The allowable load (safe load) the footing can carry =
1214 3
SF = 3

= 405 kN

(b) Meyerhof equations and effective area method

Table 4.2: gross qult = cNcscdc + γ DfNqsqdq +
1
2
γ B Nγsγdγ

Df = 1 m

B

Q
MB

ML

c ′ = 0

γ = 17 kN/m3

Ø′ = 35°

Scheme 4.8
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The Nc term is 0, since the cohesion c= 0. B =B

Table 4.5: KP = tan2 45 +
Ø
2

= 3 69

dq = dγ = 1 + 0 1 KP
D
B
= 1 + 0 1 × 1 92 ×

1
1 2

= 1 16

sq = sγ = 1 + 0 1KP
D
B

= 1 + 0 1 × 3 69 ×
1

0 96
= 1 38

Table 4.4: Ø = 35 ; Nq = 33 6; Nγ = 37 8 (by interpolation)

gross qult = 1 × 17 33 6 1 38 1 16

+ 0 5 × 17 0 96 37 8 1 38 1 16

= 914 4 + 493 8 = 1408 2 kPa

Gross ultimate load = gross qult ×B L = 1408 2 × 0 96 × 1 28

= 1730 4 kN

The allowable load (safe load) the footing can carry =
1730 4
SF = 3

= 577 kN

(c) Prakash and Saran method.

Equation (4.34): Qult =BL c Nc e Fcs e + qNq e Fqs e +
1
2
γBNγ e Fγs e

The Nc term is 0, since the cohesion c= 0

For more safety, use
eB
B
=
0 12
1 2

= 0 1 or
eL
L
=
0 26
1 8

= 0 14 whichever is greater; hence, use 0.14.

Figure 4.6: for Ø = 35 and
e
B
= 0 14 estimate Nγ e = 20

Figure 4.7: for Ø = 35 and
e
B
= 0 14 estimate Nq e = 29

Fqs e = 1

For the purpose of computing Fγs(e) assume the soil is dense sand; hence,

Fγs e = 1 0 +
2e
B
−0 68

B
L
+ 0 43−

3
2

e
B

B
L

2

= 1 0 + 2 × 0 2−0 68
1 2
1 8

+ 0 43−
3
2

0 2
1 2
1 8

2

= 0 873

Qult = 1 2 × 1 8 1 × 17 × 29 × 1 +
1
2
× 17 × 1 2 × 20 × 0 873

= 1450 kN

The allowable load (safe load) the footing can carry =
1450
SF = 3

= 483 kN
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Problem 4.14

A footing 2.5 m square carries a gross foundation pressure of 400 kPa at a depth of 1 m in a sand soil. The saturated
and moist unit weights of the sand are 20 and 17 kN/m3, respectively. The shear strength parameters are c = 0 and
Ø = 40 . Determine the factor of safety with respect to shear failure for the following cases:

(a) The water table is 5 m below ground level.
(b) The water table is 1 m below ground level.
(c) The water table is 2 m below ground level.
(d) The water table is at ground level and there is seepage vertically upwards under hydraulic gradient i= 0 2.

Use the Terzaghi bearing capacity equation and assume the bearing capacity factors Nq and Nγ equal 65 and 95,
respectively.

Solution:

(a) Table 4.2: gross qult = cNcsc + qNq +
1
2
γ BNγsγ

Equation (4.40): γ = γwet and q = γwetDf = q (Nq term)

Equation (4.39): γ = γwet (Nγ term)
The cohesion term is zero, since c = 0.
For square footings, sγ = 0 8

Equation (4.20): rγ = 1−0 25 log
B
K

for B > 2 m

rγ = 1−0 25log
2 5
2

= 0 98

gross qult = 1 × 17 × 65 + 0 5 × 17 × 2 5 × 95 × 0 8 × 0 98

= 2688 kPa
Equation (4.3): net qult = gross qult−σo = 2688−1 × 17 = 2671 kPa

gross q = gross q−hγw = 400− 0 γw = 400 kPa

Equation (4.2): net q = gross q −σo = 400−1 × 17 = 383 kPa

Safety factor SF =
net qult
net q

=
2671
383

= 6 97

(b) Table 4.2: gross qult = cNcsc + qNq +
1
2
γ BNγsγ

Equation (4.40): γ = γwet and q = γwetDf = q (Nq term)

Equation (4.36): γ = γb = γsat−γw (Nγ term)

The cohesion term is zero, since c = 0.

For square footings, sγ = 0 8

Equation (4.20): rγ = 1−0 25 log
B
K

for B > 2 m

rγ = 1−0 25log
2 5
2

= 0 98
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gross qult = 1 × 17 × 65 + 0 5 × 20−10 × 2 5 × 95 × 0 8 × 0 98

= 2036 kPa

Equation (4.3): net qult = gross qult−σo = 2036−1 × 17 = 2019 kPa

gross q = gross q−hγw = 400− 0 γw = 400kPa

Equation (4.2): net q = gross q −σo = 400−1 × 17 = 383kPa

Safety factor SF =
net qult
net q

=
2019
383

= 5 27

(c) Table 4.2: gross qult = cNcsc + qNq +
1
2
γ BNγsγ

Equation (4.40): γ = γwet and q = γwetDf = q (Nq term)

Equation (4.37): γ = 2H−zw
zw
H2

γwet +
γb
H2

H−zw
2 (Nγ term)

H = 0 5B tan 45 +
Ø
2

= 0 5 × 2 5 × tan 45 +
40
2

= 2 68m

γ = 2 × 2 68−1
1

2 68 2 17 +
10

2 68 2 2 68−1 2 = 14 25kN m3

or

Equation (4.38):

γ = γb +
zw
B

γwet−γb

= 10 +
1
2 5

17−10 = 12 8 kN m3

Equation (4.37) gives a more exact result than Equation (4.38) does. However, it would be more
conservative to use Equation (4.38). Use γ = 13kN m3.

The cohesion term is zero, since c = 0.
For square footings, sγ = 0 8

Equation (4.20):
rγ = 1−0 25 log

B
K

forB > 2m

rγ = 1−0 25log
2 5
2

= 0 98

gross qult = 1 × 17 × 65 + 0 5 × 13 × 2 5 × 95 × 0 8 × 0 98

= 2315kPa

Equation (4.3): net qult = gross qult−σo = 2315−1 × 17 = 2298kPa

gross q = gross q−hγw = 400− 0 γw = 400kPa

Equation (4.2): net q = gross q −σo = 400−1 × 17 = 383kPa

Safety factor SF =
net qult
net q

=
2298
383

= 6

(d) Table 4.2: gross qult = cNcsc + qNq +
1
2
γ BNγsγ

The cohesion term is zero, since c = 0
(Continued)
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For square footings, sγ = 0 8

Equation (4.20):
rγ = 1−0 25 log

B
K

forB > 2 m

rγ = 1−0 25log
2 5
2

= 0 98

Equation (4.42): γ = γb = γsat−γw and q = γb Df = q (Nq term)

Equation (4.36): γ = γb = γsat−γw (Nγ term)

However, the force due to vertically upwards seepage in a soil reduces the effective stress. Therefore, the
effective unit weight of the soil is reduced by the same magnitude of seepage force per unit volume.

Seepage force = i γwV = 0 2 × 10 ×V = 2V

Seepage force per unit volume =
2V
V

= 2 kN m3

The reduced γ = γb−2 = 20−10−2 = 8kN m3

gross qult = 1 8 65 + 0 5 8 2 5 95 0 8 0 98

= 1265kPa
Equation (4.3): net qult = gross qult−σo = 1265−1 × 8 = 1257kPa

gross q = gross q−hγw = 400−1 × 10 = 390kPa

Equation (4.2): net q = gross q −σo = 290−1 × 8 = 382kPa

Safety factor SF =
net qult
net q

=
1257
383

= 3 29

Problem 4.15

A footing foundation 6 m square is located at a depth of 2 m below ground level, the water table being at ground
level. A 2 m silty sand layer, below the ground level, overlies a stiff to very stiff saturated clay layer 15 m thick and a
firm stratum lies immediately below the clay. The saturated unit weight of the silty sand soil is 20 kN/m3 and that
of the clay is 21 kN/m3. Assume the following parameters for the clay:

cu = 150 kPa; Ø u = 0;mv = 0 06m2 MN; Eu = 60MN m2;A= 0 3

The design requires a factor of safety with respect to shear failure not to be less than three and the maximum final
consolidation settlement not to exceed 35 mm. Determine the net allowable bearing capacity. Use the Hansen
bearing capacity equations.

Solution:
Table 4.2: gross qult = 5 14 su 1 + sc + dc + q Ø =0

Equation (4.3):
net qult = 5 14 su 1 + sc + dc + q −γ Df

= 5 14 su 1 + sc + dc

su = cu = 150kPa;
B
L

=
B
L
=
6
6
= 1;

D
B
=
2
6
= 0 33 < 1; k=

D
B
= 0 33

Table 4.6: sc = 0 2
B
L

= 0 2; dc = 0 4k= 0 4 × 0 33 = 0 133
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net qult = 5 14 150 1 + 0 2 + 0 133 = 1027 7 kPa

Equation (4.4): net qs =
net qult
SF

=
1027 7

3
= 343 kPa

Calculation of final consolidation settlement may be carried out considering the net effective foundation
pressure of 343 kPa. However; experience indicates that this pressure is likely to cause settlement larger than
the specified allowable settlement of 35 mm. Therefore, as the first trial use a net design soil pressure of
150 kPa.
The clay layer is relatively thick; there will be significant lateral strain (resulting in immediate settlement in the

clay) and it is appropriate to use the Skempton–Bjerrum method. Accordingly, the final settlement S = Si + Sc,
may be calculated as follows.
In order to compute the consolidation settlement more accurately, assume the clay is divided into five layers of

equal thicknesses, as shown in the scheme below.

Calculation of the immediate settlement Si:

Equation (3.33): Si = μoμ1
qB
Eu

H
B
=
15
6
= 2 5;

D
B
=
2
6
= 0 33;

L
B
= 1; hence, from figure 3.9:

μo = 0 95 and μ1 = 0 55

Si = 0 95 × 0 55 ×
150 × 6
60 × 1000

= 0 008m= 8mm

Calculation of consolidation settlement Sc:

Sc =K Soed

For each layer:

Soed =mv × σz ×H =
0 06
1000

× σz × 3 × 1000 = 0 18 σz mm

σz = q 4 I ; I is calculated from Table 2.3 or Figure 2.32.

2 m Silty sand

15 m Stiff clay

Firm stratum

1.5 m3 m

∇ W.T
6 m net q = 150 kN/m2

4.5 m

I

II

III

IV

V

7.5 m

10.5 m

13.5 m

z

Scheme 4.9

(Continued)
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The equivalent diameter of the base area =B =
4 × 36
π

= 6 77m

H
B
=

15
6 77

= 2 2, A= 0 3; from Figure 3.15 obtain K = 0 51

Sc = 0 51 × 50 7 = 26mm

Final settlement S= Si + Sc = 8 + 26 = 34mm < 35mm
As it is clear this result is less than the specified settlement, but too close. Therefore, settlement criterion controls

the design. Also, as the result indicates, a second trial computation would not be necessary.
Use: net qa = 150 kPa

Problem 4.16

A long braced excavation in soft clay is 4 m wide and 8 m deep. The saturated unit weight of the clay is 20 kN/m3

and the undrained shear strength adjacent to the bottom of the excavation is given by cu = 40 kPa, Ø u = 0.
Determine the safety factor against base failure of the excavation.

Solution:
According to Bjerrum and Eide (1956), the Skempton’s values of Nc (Figure 4.4) could also be used in the analysis
of base stability in temporary braced excavations in saturated clay (see the scheme below).

Table 4.2: gross qult = cNcsc + γDf ( Ø = 0 Nq = 1 and Nγ = 0)

Base failure occurs when gross qult = 0. Therefore, the critical depth Dc =
cuNc 1

γ
. In this case, cu should

represent the undrained shear strength of the soil immediately below and adjacent to the excavation base. In
general the safety factor against base failure in an excavation of depth D, in clay, is given by

SF =
cuNc

γD

Figure 4.4: for
D
B
=
8
4
= 2; Nc = 7 1

SF =
cuNc

γD
=
40 × 7 1
20 × 8

= 1 8

z
(m)

σ′z
(kPa)

Soed
(mm)

Soed = 50.7 mm

Layer

I

II

1.5

4.5

7.5

10.5

13.5

0.233 140 25.2

13.1

6.5

3.6

2.3

73

36

20

13

0.121

0.060

0.033

0.021

III

IV

V

I

Σ
Scheme 4.10

Base

Bracing struts

D

B

Scheme 4.11
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Problem 4.17

A footing foundation 3.5 m square is to be constructed at a depth of 2 m in the deep sand deposit of Problem 1.6.
All the data given in that problem are also to be used in solution of this problemwithout change. If the settlement is
not to exceed 30 mm, determine the net allowable bearing capacity using (a) the bearing capacity Equation (3.12),
(b) the Meyerhof bearing capacity equation with a safety factor against shear failure SF = 3.

Solution:
(a) Refer to the solution of Problem 1.6. In general, in design of shallow foundations, the zone of interest starts
from a depth of about one-half footing width (B) above the estimated foundation level to a depth of about (2B)
below. Therefore, this zone is located between depths 0.25 m and 9 m below the ground surface. All the given SPT
N-values should be considered in selecting a design N-value, which is the weighted average of the corrected
N-values. In the solution of Problem 1.6, the average N60 selected equalled 10, that is the design N60 = 10.

Net allowable bearing capacity for 25 mm settlement:

Equation (3.12):

net qa =
N55

F2

B+ F3
B

2

KdWr B > F4

where F2 = 0 08;F3 = 0 3; F4 = 1 2

N55 =N60
60
55

= 10 ×
60
55

= 11

The water table is located at 6.5 m depth; hence,

zw = 6 5−2 = 4 5m>B= 3 5m

For zw ≥B Wr 1 (see Section 3.3.2)

Kd = 1 + 0 33
D
B

= 1 + 0 33
2
3 5

= 1 19 < 1 33

net qa =
11
0 08

3 5 + 0 3
3 5

2

1 19 1 = 193 kPa

Equation (3.14): Si = So ×
netq Si

netqa So

. Hence,

netqa = Si ×
netq So

So
= 30 ×

210 4
25

= 232 kPa

γ = 18 kN/m3

γ = 20.2 kN/m3

6.5 m

G.S

2 m

B = 3.5 m

∇ W.T

Scheme 4.12

(Continued)
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Table 4.2: gross qult = cNcscdc + γ DfNqsqdq +
1
2
γ BNγsγdγ

For the sand soil the Nc term is 0, since c is zero. Hence,

gross qult = γ DfNqsqdq +
1
2
γ BNγsγdγ

Because there is no value for Ø given in the Problem data, it is necessary to select a suitable value using the various
approximate correlations between Ø , Dr and N given in the discussion of Problem 1.6.

Equation (1.30):
Ø = 27 1 + 0 3N60−0 00054 N60

2

= 27 1 + 0 3 10 – 0 00054 10 2 = 30

Equation (1.32): Ø = 20N60 + 20 = 20 × 11 + 20 = 34

The average denseness of the sand may be classified as loose. For loose sands Table 1.7 gives an average value for
Ø = 31 . It would be appropriate use the average of these three values and select Ø = 32 .

Table 4.5: KP = tan2 45 +
Ø
2

= 3 25

dq = dγ = 1 + 0 1 KP
D
B
= 1 + 0 1 × 1 8 ×

2
3 5

= 1 1

sq = sγ = 1 + 0 1KP
D
B
= 1 + 0 1 × 3 25 ×

2
3 5

= 1 19

rγ = 1−0 25log
B
k

= 1−0 25log
3 5
2

= 0 94

Table 4.4: Ø = 32 ; Nq = 23 2; Nγ = 22 0

gross qult = 2 × 18 23 2 1 19 1 1

+ 0 5 × 18 3 5 22 1 19 1 1 0 94

= 1093 3 + 852 7 = 1946kPa

Equation (4.3): net qult = gross qult−σo = 1946−18 × 2 = 1910kPa

net qs =
net qult
SF

=
1910
3

= 637 kPa

Check settlement:

Equation (3.5): Si = q×B×
1−μ2

Es
×m× IS × IF

Because there are no given values for the elastic parameters Es and μ, it is necessary to select suitable values for these
parameters using the tables and various approximate correlations between Es and N given in Section 3.3.1 and in
the discussion of Problem 1.6.
Es value:

Equation (1.33):
Es
Pa

= αN60
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Pa = atmospheric pressure = 100 kPa

Assume α= 10 (for clean normally consolidated sand) and N60 N60

Es = 100 × 10 × 10 = 11 000 kPa

Table 3.8: for normally consolidated sand the following values are suggested:

Es = 7000 N55 = 7000 11 = 23 216 kPa

Es = 500 N55 + 15 = 500 11 + 15 = 13 000 kPa

Es = 2600N55 = 2600 × 11 = 28 600 kPa

Table 3.9: for loose sand Es ranges 10–25MPa, with average Es = 17 5 MPa = 17 500 kPa
Use the average of these values, which gives Es = 20 579 kPa.
μ value:
Table 3.10a: commonly used value for μ ranges 0 3−0 4
Table 3.10b: for loose to medium dense sand μ ranges 0 2−0 35
Assume μ= 0 31

Is value

IS = I1 +
1−2μ
1−μ

I2

M =
L 2
B 2

= 1; N =
H
B 2

=
4B
B 2

=
4 × 3 5
3 5 2

= 8

Table 3.7: I1 = 0 482; I2 = 0 02. Hence,

IS = 0 482 +
1−2 × 0 31
1−0 31

× 0 02 = 0 493

IF value

Table 3.6:
D
B
=

2
3 5

= 0 57;
B
L
=
3 5
3 5

= 1 IF = 0 75

For settlement under centre of the loaded area, m = 4

q= net qs = 637 kPa

Si = 637 ×
3 5
2

×
1− 0 31 2

20579
× 4 × 0 493 × 0 75 = 0 0724m

Equation (3.6): Si rigid = 0 93Si flexible

Si = 0 93 × 0 0724 = 0 067m

Si = 67 mm> 30mm. Hence, settlement criterion controls the design.

Equation (3.14): Si = So ×
netq Si

netqa So

. Hence,

netqa = Si ×
netq So

So
= 30 ×

637
67

= 285 kPa
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Problem 4.18

A footing 3 m square carries a net foundation pressure of 130 kPa at a depth of 1.2 m in a deep deposit of sand. The
water table is at a depth of 3 m and the unit weights of the sand above and below the water table are 16 and
19 kN/m3, respectively. The variation of cone penetration resistance (qc) with depth (z) is as follows:

The allowable settlement is specified not to exceed 25 mm and the safety factor against bearing capacity failure
should not be less than three. Check whether these two requirements are satisfied. Use the Vesic, Buisman–DeBeer
and Schmertmann methods as applicable.

Solution:
The CPT results show that the sand deposit below the foundation level may be divided into four layers as shown in
Table 4.17.

Check safety factor against bearing capacity failure.
For each layer, select a suitable value for Ø using the various approximate correlations between Ø and qc given

in the discussion of Problem 1.13. If more than one correlation is considered, the average of the results will be taken
as a design value for Ø ; in this solution the following two correlations are considered:

Equation (1.53): Ø 1 = tan−1 0 1 + 0 38log
qc
σo

An approximate correlation (Bowles, 2001) for Ø is
Ø = 29 + qc + 5 for gravel; − 5 for silty sand, where qc is in MPa. As a second correlation, assume

Ø 2 = 29 + qc (Table 4.18).

z (m) 1.2 1.6 2.0 2.4 2.6 3.0 3.4 3.8 4.2

qc (MN/m2)

z (m)

qc (MN/m2)

3.2 2.1 2.8 2.3 6.1 5.0 6.6 4.5 5.5

4.6 5.0 5.5 5.8 6.2 6.6 7.0 7.4 8.0

4.5 5.4 10.4 8.9 9.9 9.0 15.1 12.9 14.8

Scheme 4.13

Table 4.18 Values of Ø 1 and Ø 2 obtained using correlations.

Layer
Ave. qc
(MN/m2)

Depth to center
of layer (m) σO (kN/m2)

Ø 1

(degree)
Ø 2

(degree)
Ave. Ø
(degree)

I 2.60 1.85 29.60 40.0 30.6 35

II 5.37 3.85 55.65 40.5 31.3 36

III 9.55 6.00 75.00 42.0 32.1 37

IV 14.27 7.40 87.60 43.2 32.8 38

Table 4.17 Layers of the sand deposit below the foundation level.

Layer Depth (m) Thickness (m) Average qc (MN/m2)

I 1.2–2.5 1.3 2.60

II 2.5–5.2 2.7 5.37

III 5.2–6.8 1.6 9.55

IV 6.8–8.0 1.2 14.27
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In bearing capacity analysis, the influence depth for square footings is about 2B below the foundation level and
therefore, the Ø values of the first three layers need to be taken into consideration only. Accordingly, the design
Ø is

Ø =
35 + 36 + 37

3
= 36

Table 4.2:
gross qult = cNcscdcicgcbc + qNqsqdqiqgqbq

+
1
2
γ BNγsγdγiγgγbγ

The Nc term is 0, since the cohesion c= 0
Table 4.8: for the conditions of this problem all icgcbc and iqgqbq are 1.

gross qult = qNqsqdq +
1
2
γ BNγsγdγ

Table 4.4: for Ø = 36 Nq = 37 7, Nγ = 56 2

Table 4.6:

sq = 1 +
B
L
tanØ = 1 73; sγ = 1−0 4

B
L
= 0 6

dq = 1 + 2tanØ 1−sinØ 2 D
B

= 1 + 2tan36 1−sin36 2 0 4 = 1 1

= 1 + 2tan36 1−sin36 2 0 4 = 1 1

dγ = 1

Equation (4.38):
γ = γb +

zw
B

γwet−γb = 19−10 +
1 8
3

16−9

= 13 2 kN m3

gross qult = 16 × 1 2 × 37 7 × 1 73 × 1 1

+ 0 5 × 13 2 × 3 × 56 2 × 0 6 × 1

gross qult = 1252 + 668 = 1920 kPa

Equation (4.3): net qult = gross qult−σo = 1920− 1 2 × 16 = 1901 Pa
The safety factor against bearing capacity failure is

SF =
net qult

net foundation pressure
=
1901
130

= 14 6 3

The required safety against bearing capacity failure is satisfied.
Check allowable settlement using the Buisman–DeBeer method:

C = 1 9
qc
σo

(Recommended by Meyerhof, 1965)

Si =
H
C
ln
σo + σz
σo

=
2 3H σo
1 9qc

log
σo + σz
σo

or ΣSi =
H

0

2 3σ0
1 9qc

Δzlog
σo + σz
σo

The stress increment σz at the centre of each layer will be calculated using either Figure 2.32 or Table 2.3. The
above settlement equations are applied to obtain the total settlement, as in Table 4.19.

ΣSi = 24 5 mm 25 mm
(Continued)
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The required safety against excessive settlement is satisfied.
Check the allowable settlement using the Schmertmann method:

Equation (3.24): Si =C1C2C3 qnet
z = z2

z = 0

Iz
Es
Δz

According to Schmertmann, for sand soils supporting square footings:
Es = 2 5 qc (see Section 3.3.3)
Also, the influence depth under square footings is 2B (Figure 3.7). Hence, in this case, only the first three layers

need to be considered in the settlement computations. The thickness of layer III should be increased by 0.4 m so
that the required 2B depth is maintained.
Considering square footings:

For z = 0 to
B
2

Iz = 0 1 +
z
B

2Izp−0 2

Equation (3.26)

For z =
B
2
to 2B Iz = 0 667Izp 2−

z
B

Equation(3.27)

Izp = 0 5 + 0 1
qnet
σzp

Equation (3.25)
qnet = 130 kPa

For square footings, σzp is calculated at depth B/2 below foundation level; hence, σzp = 2 7 × 16 = 43 2 kPa

Izp = 0 5 + 0 1
130
43 2

= 0 673

Determine the value of (IzΔz/Es) at the midpoint of each layer, as shown in Table 4.20.

C1 = 1−
0 5σo
qnet

= 1−
0 5 1 2 × 16

130
= 0 926

Table 4.19 Total settlement obtained using settlement equations.

Layer Δ z (m) σo (kPa) σz (kPa) log
σo +σz
σo

qc (kPa)
2 3σo
1 9qc

ΔZ (mm) Si (mm)

I 1.3 29.60 122.2 0.71 2600 17.9 12.7

II 2.7 55.65 52.0 0.29 5370 33.8 9.8

III 1.6 75.00 20.3 0.10 9550 15.2 1.5

IV 1.2 87.60 14.0 0.06 14270 8.9 0.5

Si = 24 5

Table 4.20 Value of (IzΔz/Es) at the midpoint of each layer.

Layer Es (kN/m
2) z (m) Iz Δz (m) IZΔz/Es

I 6500 0.65 0.348 1.3 6.96 × 10-5

II 13425 2.65 0.501 2.7 10.08 × 10-5

III 23875 4.80 0.180 2.0 1.51 × 10-5

IzΔz Es = 18 55 × 10−5
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C2 = 1 + 0 2log
t
0 1

. Assume t = 0.1 year; hence, C2 = 1

C3 = 1 0 (for square footings)

Si =C1C2C3qnet
z = z2

z = 0

Iz
Es
Δz = 0 926 × 1 × 1 × 130 × 18 55 × 10−5

= 0 0223m= 22 3mm < 25mm

The required safety against excessive settlement is satisfied.

Problem 4.19

A rectangular footing 0.92 ×1.22 m is shown in the scheme below. Find the gross ultimate load that the footing can
carry.

Solution:
This is a case of layered soils where stronger saturated clay Ø 1 = 0 is overlying weaker saturated clay Ø 2 = 0 .

Equation (4.70):

qult = 1 + 0 2
B
L

5 14c2 + 1 +
B
L

2caH
B

+ γ1Df

≤ 1 + 0 2
B
L

5 14c1 + γ1Df

H = 0 76m; Df = 0 92m; B= 0 92m; L= 1 22m

Figure 4.22: for
q2
q1

=
c2
c1

=
43
72

= 0 6, find
ca
c1

0 97

ca = 0 97 × 72 = 69 84 kPa

qult =
1 + 0 2 ×

0 92
1 22

5 14 × 43 + 1 +
0 92
1 22

2 × 69 84 × 0 76
0 92

+ 17 × 0 92

= 221 02 + 33 33 + 115 39 + 87 01 + 15 64

= 472 39 kPa

Gross Qult

0.92 m

0.76 m B = 0.92 m

Saturated clay

Saturated clay

c1 = 72 kPa

γ ′1 = 17 kN/m3

Ø1 = 0

c2 = 43 kPa

γ ′2 = 17 kN/m3

Ø2 = 0

Scheme 4.14

(Continued)
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As a check, we have:

Equation (4.69):

qult, t = 1 + 0 2
B
L

5 14c1 + γ1Df

= 1 + 0 2 ×
0 92
1 22

5 14 × 72 + 17 × 0 92

= 441 54 kPa < qult
Therefore, qult = qult, t
The gross ultimate load is

Qult = 441 54 0 92 × 1 22 = 496 kN

Problem 4.20

A square footing on layered sand is shown in the scheme below. Determine the net allowable load that the foun-
dation can support, considering shear failure only. Use theMeyerhof bearing capacity and shape factors. The safety
factor against bearing capacity failure should not be less than four.

Solution:
This is a case of layered soils where Stronger sand c1 = 0 is overlying weaker sand c2 = 0 .
Equation (4.67):

qult = γ1 Df +H Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2 + γ1H

2 1 +
B
L

1 +
2Df

H
Ks tanØ 1

B
−γ1H

≤ γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

H = 1 0 m; Df = 1 5m; B= L= 1 5m

Table 4.4:
Ø 1 = 40 ; Nq 1 = 64 1; Nγ 1 = 93 69

Ø 2 = 32 ; Nq 2 = 23 2; Nγ 2 = 22 02

Fqs 1 = Fγs 1 = 1 + 0 1
B
L
tan2 45 +

Ø 1

2
= 1 + 0 1 ×

1 5
1 5

× 4 6 = 1 5

Fqs 2 = Fγs 2 = 1 + 0 1
B
L
tan2 45 +

Ø 2

2
= 1 + 0 1 ×

1 5
1 5

× 3 3 = 1 3

Net Qa

1.5 m

1.0 m B = 1.5 m

Sand

Sand

c′1 = 0 kPa

γ′1 = 18 kN/m3

Ø′1 = 40°

c′2 = 0 kPa

γ′2 = 16.7 kN/m3

Ø′2 = 32°

Scheme 4.15
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Figure 4.21: for
q2
q1

=
γ2BNγ 2

γ1BNγ 1
=
16 7 × 22 02
18 × 93 69

= 0 22 and Ø 1 = 40 ,

find Ks 4 5

qult =

18 1 5 + 1 23 2 1 3 + 0 5 16 7 1 5 22 02 1 3

+ 18 1 2 1 + 1 1 +
2 × 1 5

1
4 5 × 0 84

1 5
−18 × 1

= 1357 2 + 358 5 + 362 9−18 = 2060 6 kPa

As a check, we have: Equation (4.66)-(b)

Equation(4.66)-(b):

qult, t = γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

= 18 × 1 5 64 1 × 1 5

+ 0 5 × 18 × 1 5 × 93 69 × 1 5

= 2596 1 + 1897 2 = 4493 3 kPa qult

Use gross qult = 2060 6 kPa
Equation (4.3): net qult = gross qult−σo

net qult = 2060 6 −18 × 1 5 = 2033 6 kPa

Considering shear failure only, net qa =
net qult
SF

=
2033 6

4
= 508 4 kPa

The net allowable load is

NetQa = 508 4 1 5 2 = 1144 kN

Problem 4.21

Find the gross qult that the 1.22 × 1.83 m footing, shown in the scheme, can carry. The soil profile consists of two
layers of saturated clay.

Solution:
This is a case of layered soils where weaker saturated clay Ø 1 = 0 is overlying stronger saturated clay Ø 2 = 0 .

Equation (4.72): qult = qult, t + qult,b−qult, t
H
D

2

≥ qult, t

0.91m

0.61m B = 122 m

Saturated clay

Saturated clay

gross qult

c1 = 57.5 kPa

γ ′1 = 17.29 kN/m3

Ø1 = 0

c2 = 119.79 kPa

γ ′2 = 19.65 kN/m3

Ø2 = 0

Scheme 4.16

(Continued)
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Equation (4.73):
qult, t = c1Nc 1 Fcs 1 + γ1Df Nq 1 Fqs 1 +

1
2
γ1BNγ 1 Fγs 1

= c1Nc 1 Fcs 1 + γ1Df Fqs 1

Fqs 1 = 1 + 0 1
B
L
tan2 45 +

Ø 1

2
= 1 + 0 1 ×

1 22
1 83

× 1 = 1 067

Fcs 1 = 1 + 0 2
B
L
tan2 45 +

Ø 1

2
= 1 + 0 2 ×

1 22
1 83

× 1 = 1 133

For Ø = 0 Nc 1 =Nc 2 = 5 14

gross qult, t = 57 5 × 5 14 × 1 133

+ 17 29 × 0 91 × 1 067 = 351 74 kPa

Equation (4.74):

gross qult,b = c2Nc 2 Fcs 2 + γ2Df Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2

= c2Nc 2 Fcs 2 + γ2Df Fqs 2

Fqs 2 = Fqs 1 = 1 067; Fcs 2 = Fcs 1 = 1 133

gross qult,b = 119 79 × 5 14 × 1 133

+ 19 65 × 0 91 × 1 067 = 716 9 kPa

Equation (4.72): gross qult = qult, t + qult,b−qult, t
H
D

2

≥ qult, t

= 351 74 + 716 9−351 74
0 61
1 22

2

gross qult = 351 74 + 91 29 = 443 kPa > gross qult, t

< gross qult,b

Use gross qult = 443 kPa

Problem 4.22

Assume locations of the two sand layers of Problem 4.20 are reversed, that is the weaker layer at top and the stron-
ger layer at bottom. Determine the net allowable load that the foundation can support, considering shear failure
only. Use theMeyerhof bearing capacity and shape factors. The safety factor against bearing capacity failure should
not be less than four.

Solution:
This is a case of layered soils where weaker sand c1 = 0 is overlying stronger sand c2 = 0 .
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Equation (4.72): qult = qult, t + qult,b−qult, t
H
D

2

≥ qult, t

Equation (4.73): qult, t = c1Nc 1 Fcs 1 + γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

gross qult, t = γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

Fqs 1 = Fγs 1 = 1 + 0 1
B
L
tan2 45 +

Ø 1

2
= 1 + 0 1 ×

1 5
1 5

× 3 3 = 1 3

Table 4.4: for Ø 1 = 32 Nq 1 = 23 2;Nγ 1 = 22 02

gross qult, t = 16 7 1 5 23 2 1 3 + 0 5 16 7 1 5 22 02 1 3

= 1114 kPa

Equation (4.74):

gross qult,b = c2Nc 2 Fcs 2 + γ2Df Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2

= γ2Df Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2

Fqs 2 = Fγs 2 = 1 + 0 1
B
L
tan2 45 +

Ø 2

2
= 1 + 0 1 ×

1 5
1 5

× 4 6 = 1 5

Table 4.4: for Ø 2 = 40 Nq 2 = 64 1;Nγ 2 = 93 69

gross qult,b = 18 × 1 5 64 1 × 1 5 + 0 5 × 18 × 1 5 × 93 69 × 1 5

= 2596 1 + 1897 2 = 4493 3 kPa

gross qult = 1114 + 4493 3−1114
1
1 5

2

= 2616 kPa

> gross qult, t

< gross qult,b

Use gross qult = 2616 kPa

Equation (4.3):
net qult = gross qult−σo

net qult = 2616−16 7 × 1 5 = 2591 kPa

Considering shear failure only,

net qa = net qs =
net qult
SF

=
2591
4

= 647 8 kPa

net Qa = 647 8 1 5 2 = 1457 kN
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Problem 4.23

The scheme below shows a continuous foundation with B = 2m. Determine the gross ultimate load per unit length
of the foundation. Use the Meyerhof bearing capacity and shape factors.

Solution:
This is a case of layered soils where sand c1 = 0 is overlying saturated soft clay Ø 2 = 0 . For this case,
Equation (4.64) will apply.
Equation (4.64):

qult =
1 + 0 2

B
L

5 14c2 + γ1H
2 1 +

B
L

1 +
2Df

H
Ks tan Ø 1

B

+ γ1Df

≤ γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

Table 4.4: Ø 1 = 40 ; Nq 1 = 64 1; Nγ 1 = 93 69
For continuous footings, all shape factors are one.

Equation (4.65):
q2
q1

=
c2Nc 2

1
2
γ1BNγ 1

=
5 14c2

0 5γ1BNγ 1
=

5 14 × 30
0 5 × 17 5 × 2 × 93 69

= 0 094

Figure 4.21: Ø 1 = 40 ;
q2
q1

= 0 094; Ks 3

gross qult = 1 + 0 2 × 0 5 14 × 30

+ 17 5 1 5 2 1 + 0 1 +
2 × 1 2
1 5

3 × 0 84
2

+ 17 5 × 1 2

= 304 2 kPa

Equation (4.66)-(b): gross qult, t = γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

c1 = 0 kPa

γ ′1 = 17.5 kN/m3

Ø′1 = 40°

c2 = 30 kPa

γ ′2 = 16.5 kN/m3

Ø2 = 0

Gross Qult

1.2 m

1.5 m

Saturated soft clay

Sand

G.S

B = 2 m

Scheme 4.17
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gross qult, t = 17 5 × 1 2 64 1 1 + 0 5 17 5 2 93 69 1

= 2986 kPa > gross qult

Use gross qult = 304 2 kP

Gross ultimate load per meter length of the foundation = 304 2 B

= 304 2 2

= 608 kN

Problem 4.24

Assume locations of the sand and clay layers of Problem 4.23 are reversed, that is the saturated soft clay layer at top
and the stronger sand layer at bottom. Determine the net allowable bearing capacity, considering shear failure
only. Use the Meyerhof bearing capacity and shape factors. Use a safety factor SF = 3.

Solution:
This is a case of layered soils where weaker saturated clay Ø 1 = 0 overlying stronger sand layer c2 = 0 .

Equation (4.72): qult = qult, t + qult,b−qult, t
H
D

2

≥ qult, t

Equation (4.73): qult, t = c1Nc 1 Fcs 1 + γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

= c1Nc 1 Fcs 1 + γ1Df Fqs 1

Table 4.4:
Ø 2 = 40 ;Nq 2 = 64 1;Nγ 2 = 93 69

Ø = 0;Nc 1 = 5 14; Nq 1 = 1;Nγ 1 = 0

For continuous footings, all shape factors are one.

gross qult, t = 30 × 5 14 × 1 + 16 5 × 1 2 × 1 = 174 kPa

Equation (4.74):

gross qult,b = c2Nc 2 Fcs 2 + γ2Df Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2

= γ2Df Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2

= 17 5 × 1 2 × 64 1 + 0 5 × 17 5 × 2 × 93 69

= 2986 kPa

H = 1 5m; D≈B= 2m

gross qult = 174 + 2986−174
1 5
2

2

= 1756 kPa > gross qult, t

net qult = gross qult−γ1Df = 1756−16 5 × 1 2 = 1736 2 kPa

(Continued)
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Considering shear failure only:

net qa = net qs =
net qult
SF

=
1736 2

3
= 575 kPa

(This result is considered too high!)

In the author’s opinion, this method overestimates net qult of soft clays which overly strong sands. However, in
many of such circumstances the allowable soil pressure is based on allowable settlement rather than net qs.

Problem 4.25

A rectangular footing of 3 × 6m is to be placed on a two-layer clay deposit, as shown in the scheme below. Estimate
the gross ultimate bearing capacity. Use the Meyerhof bearing capacity and shape factors.

Solution:
This is a case of layered soils where weaker saturated clay Ø 1 = 0 is overlying stronger saturated clay Ø 2 = 0 .

Equation (4.72): qult = qult, t + qult,b−qult, t
H
D

2

≥ qult, t

Equation (4.73): qult, t = c1Nc 1 Fcs 1 + γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

= c1Nc 1 Fcs 1 + γ1Df Fqs 1

Fqs 1 = 1 + 0 1
B
L
tan2 45 +

Ø 1

2
= 1 + 0 1 ×

3
6
× 1 = 1 05

Fcs 1 = 1 + 0 2
B
L
tan2 45 +

Ø 1

2
= 1 + 0 2 ×

3
6
× 1 = 1 1

Table 4.4: Ø = 0; Nc 1 =Nc 2 = 5 14
gross qult, t = 77 × 5 14 × 1 1

+ 17 26 × 1 83 × 1 05 = 468 52 kPa

Equation (4.74):

gross qult,b = c2Nc 2 Fcs 2 + γ2Df Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2

= c2Nc 2 Fcs 2 + γ2Df Fqs 2

Fqs 2 = Fqs 1 = 1 05; Fcs 2 = Fcs 1 = 1 1

1.83 m

1.22 m B = 3 m

Saturated clay

Saturated clay

gross qult

c1 = 77 kPa

γ ′1 = 17.26 kN/m3

Ø1 = 0

c2 = 115 kPa

γ ′2 = 19.65 kN/m3

Ø2 = 0

Scheme 4.18
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gross qult,b = 115 × 5 14 × 1 1

+ 17 26 × 1 83 × 1 05 = 683 38 kPa

Equation (4.72): qult = qult, t + qult,b−qult, t
H
D

2

≥ qult, t

D≈B= 3m

Equation (4.72): gross qult = 468 52 + 683 38−468 52
1 22
3

2

gross qult = 504 kPa > gross qult, t

< gross qult,b
gross qult = 504 kPa

Problem 4.26

A 2 × 2 m square footing is to be placed on a sand layer overlying a clay layer, as shown in the scheme below.
Determine the net qa, considering shear failure only. Use the Meyerhof bearing capacity and shape factors.
The safety factor against bearing capacity failure should not be less than three.

Solution:
In this case it may not be very clear which soil is stronger or weaker than the other. In such a case, it may be
reasonable to try the two possibilities then choosing the smaller result.

(a) Assume the sand is stronger than the clay:
Equation (4.64):

qult =
1 + 0 2

B
L

5 14c2 + γ1H
2 1 +

B
L

1 +
2Df

H
Ks tan Ø 1

B

+ γ1Df

≤ γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

Table 4.4: for Ø 1 = 34 Nq 1 = 29 4; Nγ 1 = 31 1

  

net qa
1.5 m

0.6 m B = 2 m

Sand

Clay

c1 = 0 kPa

γ′1 = 17.25 kN/m3

Ø′1 = 34°

c2 = 75 kPa

γ′2 = 17.25 kN/m3

Ø2 = 0

Scheme 4.19
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Table 4.5:

Fqs 1 = Fγs 1

= 1 + 0 1
B
L
tan2 45 +

Ø 1

2
= 1 + 0 1 ×

2
2
× 3 5 = 1 35

Equation (4.65):
q2
q1

=
c2Nc 2

1
2
γ1BNγ 1

=
5 14c2

0 5γ1BNγ 1
=

5 14 × 75
0 5 × 17 25 × 2 × 31 1

= 0 72

Figure 4.21: Ø 1 = 34 ;
q2
q1

= 0 72; Ks 6

gross qult = 1 + 0 2 × 1 5 14 × 75

+ 17 25 0 6 2 1 + 1 1 +
2 × 1 5
0 6

6 × 0 67
2

+ 17 25 × 1 5 = 638 3 kPa

γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1 = 17 25 × 1 5 29 4 1 35

+ 0 5 17 25 2 31 1 1 35

= 1751 2 kPa > gross qult

gross qult = 638 3kPa

(b) Assume the sand is weaker than the clay:

gross qult = qult, t + qult,b−qult, t
H
D

2

≥ qult, t

Equation (4.73):
qult, t = c1Nc 1 Fcs 1 + γ1Df Nq 1 Fqs 1 +

1
2
γ1BNγ 1 Fγs 1

= γ1Df Nq 1 Fqs 1 +
1
2
γ1BNγ 1 Fγs 1

Fqs 1 = Fγs 1 = 1 + 0 1
B
L
tan2 45 +

Ø 1

2
= 1 + 0 1 ×

2
2
× 3 5 = 1 35

Table 4.4: for Ø 1 = 34 Nq 1 = 29 4; Nγ 1 = 31 1

gross qult, t = 17 25 1 5 29 4 1 35

+ 0 5 17 25 2 31 1 1 35 = 1751 2 kPa

Equation (4.74):

gross qult,b = c2Nc 2 Fcs 2 + γ2Df Nq 2 Fqs 2 +
1
2
γ2BNγ 2 Fγs 2

= c2Nc 2 Fcs 2 + γ2Df Nq 2 Fqs 2

Fqs 2 = 1 + 0 1
B
L
tan2 45 +

Ø 2

2
= 1 + 0 1 ×

2
2
× 1 = 1 1

Fcs 2 = 1 + 0 2
B
L
tan2 45 +

Ø 2

2
= 1 + 0 2 ×

2
2
× 1 = 1 2
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Table 4.4: for Ø 2 = 0 Nc 2 = 5 14; Nq 2 = 1; Nγ 2 = 0

gross qult,b = 75 × 5 14 × 1 2 + 17 25 × 1 5 × 1 × 1 1

= 2596 1 + 1897 2 = 488 5 kPa

H = 0 6m; D≈B = 2m

gross qult = 1751 2 + 488 5−1751 2
0 6
2

2

= 1637 6 kPa < gross qult, t
Hence, gross qult = 1751 2 kPa

Now, the result of (a) is smaller than that of (b); therefore use:

gross qult = 638 3 kPa

net qult = gross qult−γ1Df = 638 3−17 25 × 1 5 = 612 42 kPa

Considering shear failure only, net allowable bearing capacity is

net qa = net qs =
net qult
SF

=
612 42

3
= 204 kPa

Problem 4.27

A 1mwide strip footing is located on the top of a compacted (not very dense) cohesionless sand slope, as shown in
the scheme below. The other available data are: β = 26 5 ; Ø tr = 36 ; γ = 14 85 kN m3.
Determine the gross ultimate bearing capacity using the Bowles method and the Hansen bearing capacity equa-

tion and shape factors.

Solution:
Equation (4.53): gross qult = cNcscic + qNqsqiq + 0 5γ BNγsγ iγ
The cohesion term is zero, since c= 0. Hence,

gross qult = qNqsqiq + 0 5γBNγsγiγ

For footings on slopes, it is recommended not to adjust Ø tr to Ø ps, as there are considerable uncertainties in the

stress state when there is loss of soil support on one side of the base, even for strip (or long) bases. Therefore, use
Ø ps = Ø tr = 36 .

Slope

B = 1.0 m

b = 0.75 m

gross qult

c = 0

γ ′  = 14.85 kN/m3

Ø′tr = 36°

β = 26.5°

D = 1.5 m

Scheme 4.20
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For strip footings, all shape (s) factors are one and in this case, since the foundation load is vertical Hi = 0 , all
load inclination (i) factors are also one.

b
B
=
0 75
1

= 0 75 < 2

Hence, the Nγ factor should be adjusted as follows:

Determine the Coulomb passive pressure coefficients using + β for KP,max and −β for KP,min, using

KP =
sin2 α− Ø

sin2αsin α+ δ 1−
sin Ø + δ sin Ø + β
sin α+ δ sin α+ β

2

This method uses α= 90 and δ= Ø .
For Ø = 36 ; δ= 36 ; α= 90 ; β = + 26 5 KP,max = 128 2
For Ø = 36 ; δ= 36 ; α= 90 ; β = −26 5 KP,min = 2 8

R=
KP,min

KP,max
=

2 8
128 2

= 0 022

Table 4.4: Ø = 36 ; Nγ = 40

Nγ =
Nγ

2
+
Nγ

2
R+

b
2B

1−R =
40
2
+
40
2

0 022 +
0 75
2 × 1

1−0 022

Nγ = 28

Table 4.11:
b
B
= 0 75;

D
B
=
1 5
1

= 1 5; β = 26 5 ; Ø = δ= 36 ; obtain (by interpolation) Nq≈27.

gross qult = 14 85 × 1 5 × 27 + 0 5 × 14 85 × 1 × 28 = 809 kPa

Problem 4.28

Solve Problem 4.27 using (a) D= 0 and b= 1 5, (b) D= b= 0.

Solution:
(a) gross qult = qNqsqiq + 0 5γBNγsγ iγ

b
B
=
1 5
1

= 1 5 < 2. Hence, the Nγ factor should be adjusted.

The KP,max, KP,min, Nγ and R values remain unchanged.

Nγ =
Nγ

2
+
Nγ

2
R+

b
2B

1−R =
40
2
+
40
2

0 022 +
1 5
2 × 1

1−0 022

Nγ = 35 11
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q= 0, since D= 0. Hence, the Nq term will be 0. All shape (s) and load inclination (i) factors are one for the
same reasons stated earlier.

gross qult = 0 5γBNγsγ iγ = 0 5 × 14 85 × 1 × 35 11 = 261 kPa

(b)
b
B
=
0
1
= 0 < 2. Hence, the Nγ factor should be adjusted.

Nγ =
Nγ

2
+
Nγ

2
R+

b
2B

1−R =
40
2
+
40
2

0 022 +
0

2 × 1
1−0 022

Nγ = 20 44

q= 0, since D = 0. Hence, the Nq term will be 0.All shape (s) and load inclination (i) factorsare one for the
same reasons stated earlier.

gross qult = 0 5γBNγsγ iγ = 0 5 × 14 85 × 1 × 20 44 = 152 kPa

Problem 4.29

A shallow continuous foundation in a clay soil is shown in the scheme below. Determine the gross ultimate bearing
capacity using: (a) the Meyerhof method, (b) the Bowles method.

Solution:
(a) Meyerhof method

Equation (4.51): gross qult = cNcq

Assume the stability number Ns = 0, since B < H.

Figure 4.14a:
b
B
=
0 8
1 2

=
3
4
;
Df

B
=
1 2
1 2

= 1; β = 30 ;Ns = 0;Ncq≈6 3

gross qult = 50 × 6 3 = 315 kN m2

B = 1.2 m

b = 0.8 m

H = 6.2 m Gross qult

c = 50 kN/m2

γ ′  = 17.5 kN/m3

Ø = 0

β = 30°

D = 1.2 m

Scheme 4.21

(Continued)

Shallow Foundations – Bearing Capacity 363



(b) Bowles method
Equation (4.53): gross qult = cNcscic + qNqsqiq + 0 5γ BNγsγ iγ

Since Ø = 0, the Nγ term is zero. For strip footings, all shape (s) factors are one and in this case, since the
foundation load is vertical Hi = 0 , all load inclination (i) factors are also one.

gross qult = cNc + qNq

Table 4.11:
b
B
=
3
4
;
Df

B
=
1 2
1 2

= 1; β = 30 ; Ø = δ= 0 ; obtain

Nc = 5 14; Nq = 1 03 (by interpolation)

gross qult = 50 × 5 14 + 1 2 × 1 03 = 258 2 kPa

Problem 4.30

Refer to Problem 4.29. Assume the soil is cohesionless compacted sand which has Ø = 40 and γ = 20 kN m3.
Determine the gross ultimate bearing capacity using (a) the Bowles method, (b) the Meyerhof method, (c) the
stress characteristic solution method.

Solution:
(a) Bowles method.

Equation (4.53): gross qult = cNcscic + qNqsqiq + 0 5γ BNγsγiγ
The cohesion term is zero, since c= 0. Hence,

gross qult = qNqsqiq + 0 5γ BNγsγ iγ

For strip footings, all shape (s) factors are one and in this case, since the foundation load is vertical Hi = 0 ,
all load inclination (i) factors are also one.

Table 4.11:
b
B
=
0 8
1 2

= 0 75;
D
B
=
1 2
1 2

= 1; β = 30 ; Ø = δ= 40 ; Nq = 39 2 (by interpolation).

b
B
= 0 75 < 2. Hence, the Nγ factor should be adjusted as follows.

Determine the Coulomb passive pressure coefficients using + β for KP,max and −β for KP,min

KP =
sin2 α− Ø

sin2αsin α+ δ 1−
sin Ø + δ sin Ø + β
sin α+ δ sin α+ β

2

This method uses α= 90 and δ= Ø .

For Ø = 40 ; δ= 40 ; α= 90 ; β = + 30 KP,max = 23 38

For Ø = 40 ; δ= 40 ; α= 90 ; β = −30 KP,min = 3 16

R=
Kmin

Kmax
=

3 16
23 38

= 0 135
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Table 4.4: Ø = 40 ; Nγ = 93 6 (according to Meyerhof )

Nγ =
Nγ

2
+
Nγ

2
R+

b
2B

1−R =
93 6
2

+
93 6
2

0 135 +
0 8

2 × 1 2
1−0 135

Nγ = 66 61

gross qult = 20 × 1 2 × 39 2 + 0 5 × 20 × 1 2 × 66 61 = 1740 kPa

(b) Meyerhof method.

Equation (4.50): gross qult =
1
2
γ BNγq

Figure 4.14b:
b
B
=
0 8
1 2

= 0 75;
D
B
=
1 2
1 2

= 1; β = 30 ; Ø = 40 ; Nγq = 113.

gross qult =
1
2
γ BNγq = 0 5 × 20 × 1 2 × 113 = 1356 kPa

(c) Stress characteristic solution method.

Equation (4.50): gross qult =
1
2
γ BNγq

Figure 4.18a, b:
b
B
=
0 8
1 2

= 0 75;
D
B
=
1 2
1 2

= 1; β = 30 ; Ø = 40 :

Nγq = 170 (by interpolation).

gross qult =
1
2
γ BNγq = 0 5 × 20 × 1 2 × 170 = 2040 kPa

It may be useful to note that the Bowels solution gave a result which is nearly equal to the average of the
other two results.

Problem 4.31

Refer to Problem 4.29. Assume a c− Ø soil with c= 25 kPa, Ø = 30 and δ= 20 for computing KP. Use 1.2 × 1.2 m
square footing; other data remain unchanged. Determine the gross ultimate bearing capacity using the Bowles
method. Use the Hansen bearing capacity and shape factors.

Solution:
Equation (4.53): gross qult = cNcscic + qNqsqiq + 0 5γ BNγsγ iγ
All load-inclination (i) factors are one, since the foundation load is vertical Hi = 0 . Hence,

gross qult = cNcsc + qNqsq + 0 5γ BNγsγ

Table 4.4: Ø = 30 ; Nc = 30 13; Nq = 18 4; Nγ = 15 1

Table 4.6:

sc = 1 +
Nq

Nc

B
L

= 1 +
18 4
30 13

1 2
1 2

= 1 61

sq = 1 +
B
L

sinØ = 1 +
1 2
1 2

sin30 = 1 5

sγ = 1−0 4
B
L

= 1−0 4
1 2
1 2

= 0 6
(Continued)
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Table 4.11:
b
B
=
0 8
1 2

= 0 75;
D
B
=
1 2
1 2

= 1; β = 30 ; Ø = 30 ; δ= 20 ;

Nc = 30 14; Nq = 15 03 (by interpolation).

b
B
= 0 75 < 2. Hence, the Nγ factor should be adjusted as follows:

Determine the passive earth pressure coefficients using + β for KP,max and –β for KP,min.

KP =
sin2 α− Ø

sin2αsin α+ δ 1−
sin Ø + δ sin Ø + β
sin α+ δ sin α+ β

2

α= 90 ; δ= 20

For Ø = 30 ; δ= 20 ; α= 90 ; β = + 30 KP,max = 84 65
For Ø = 30 ; δ= 20 ; α= 90 ; β = −30 KP,min = 0 8

R=
Kmin

Kmax
=

0 8
84 65

= 0 0095

Nγ =
Nγ

2
+
Nγ

2
R+

b
2B

1−R =
15 1
2

+
15 1
2

0 0095 +
0 8

2 × 1 2
1−0 0095 = 10 11

gross qult = 25 × 30 14 × 1 61 + 17 5 × 1 2 × 15 03 × 1 5

+ 0 5 × 17 5 × 1 2 × 10 11 × 0 6 = 1750 kPa

Problem 4.32

A strip footing is located on the slope shown in the scheme below. What is the net safe bearing capacity using the
Bowles method with a safety factor SF = 3 5? Use the Hansen bearing capacity and shape factors. Assume δ = 20
for computing KP.

Solution:
Equation (4.53): gross qult = cNcscic + qNqsqiq + 0 5γ BNγsγiγ
For strip footings, all shape (s) factors are one and in this case since the foundation load is vertical Hi = 0 , all

load inclination (i) factors are also one.

gross qult = cNc + qNq + 0 5γ BNγ

B = 2 m

Q

1 m

c = 25 kN/m2

γ ′ = 18 kN/m3

Ø = 30°β = 25°

Scheme 4.22
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Table 4.11:
b
B
=
0
2
= 0;

D
B
=
1
2
= 0 5; β = 25 ; Ø = 30 ;

Nc = 26 63; Nq = 12 13. (by interpolation)
b
B
= 0 < 2. Hence, the Nγ factor should be adjusted as follows.

Determine the Coulomb passive earth pressure coefficients using + β for KP,max and −β for KP,min.

KP =
sin2 α− Ø

sin2αsin α+ δ 1−
sin Ø + δ sin Ø + β
sin α+ δ sin α+ β

2

α= 90 and δ= 20 (assumed).
For Ø = 30 ; δ= 20 ; α= 90 ; β = + 25 KP,max = 39 79
For Ø = 30 ; δ= 20 ; α= 90 ; β = −25 KP,min = 1 54

R=
Kmin

Kmax
=

1 54
39 79

= 0 039

Table 4.4: Ø = 30 ; Nγ = 15 1

Nγ =
Nγ

2
+
Nγ

2
R+

b
2B

1−R

=
15 1
2

+
15 1
2

0 039 +
1

2 × 2
1−0 039 = 9 66

gross qult = 25 × 26 63 + 18 × 1 × 12 13 + 0 5 × 18 × 2 × 9 66

gross qult = 1058 kPa

net qult = gross qult−γ Df = 1058−18 × 1 = 1040 kPa

net qs =
net qult
SF

=
1040
3 5

= 297 kPa

Problem 4.33

A square foundation in a sand deposit measures 1.22 × 1.22 m in plan. Given: Df = 1 52m, soil friction angle
Ø = 35 and soil unit weight γ = 17 6 kN m3. Estimate the ultimate uplift capacity of the foundation.

Solution:

Table 4.12: Ø = 35 ;
Df

B cr

= 5, m= 0 25, Ku = 0 936

Df

B
=
1 52
1 22

= 1 25 <
Df

B cr

. Hence, it is a shallow foundation.

Equation (4.81):
Fq = 1 + 2 1 +m

Df

B

Df

B
Ku tan Ø

= 1 + 2 1 + 0 25 1 25 1 25 0 936 × tan35 = 3 15

(Continued)
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Equation (4.80): Fq =
Qu

A γDf

The ultimate uplift capacity of the foundation is

Qu = Fq A γDf = 3 15 1 22 × 1 22 × 17 6 × 1 52 = 125 4 kN

Problem 4.34

A circular foundation of 1.5 m diameter is constructed in a sand deposit. Given: Df = 1 5m, soil friction angle
Ø = 35 and soil unit weight γ = 17 4 kN m3. Estimate the ultimate uplift capacity of the foundation.

Solution:

Table 4.12: Ø = 35 ;
Df

B cr

= 5, m= 0 25, Ku = 0 936

Df

B
=
1 5
1 5

= 1 <
Df

B cr

. Hence, it is a shallow foundation

Equation (4.81):
Fq = 1 + 2 1 +m

Df

B

Df

B
Ku tan Ø

= 1 + 2 1 + 0 25 1 1 0 936 × tan35 = 2 64

Equation (4.80): Fq =
Qu

A γDf

The ultimate uplift capacity of the foundation is

Qu = Fq A γDf = 2 64
π

4
× 1 52 × 17 4 × 1 5 = 121 8 kN

Problem 4.35

A rectangular foundation in a saturated clay deposit measures 1.5m × 3.0 m in plan. The data given: Df = 1 8m,
cu = 52 kPa and soil unit weight γ = 18 9 kN m3. Estimate the ultimate uplift capacity of the foundation.

Solution:

Equation (4.85):

Df

B
cr = 0 107 cu + 2 5≤ 7 for square footings

= 0 107 × 52 + 2 5 = 8 1 > 7 Hence use 7

Equation (4.86):

Df

B cr

=
Df

B cr, sq

0 73 + 0 27
L
B

≤ 1 55
Df

B cr, sq

for rectangular footings

= 7 0 73 + 0 27
3
1 5

= 8 89
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Check:

1 55
Df

B cr, sq

= 1 55 × 7 = 10 85 >
Df

B cr

. Hence,
Df

B cr

= 8 89

Df

B
=
1 8
1 5

= 1 2 <
Df

B cr

= 8 89 . Hence, it is a shallow foundation.

α =
Df B

Df B cr

=
1 2
8 89

= 0 135

From the average curve of Figure 4.28, for α = 0 135 obtain β = 0 2
Equation (4.88):

Qu =A B 7 56 + 1 44
B
L

cu + γDf

= 1 5 × 3 0 2 7 56 + 1 44
1 5
3

52 + 18 9 × 1 8

= 540 6 kN

The ultimate uplift capacity of the foundation =Qu = 540 6 kN

Problem 4.36

A foundation measuring 1.2 × 2.4 m in plan is constructed in a saturated clay deposit. The data given: Df = 2 m,
cu = 74 kPa and soil unit weight γ = 18 kN m3. Estimate the ultimate uplift capacity of the foundation.

Solution:

Equation (4.85):

Df

B cr

= 0 107 cu + 2 5≤ 7 for square footings

= 0 107 × 74 + 2 5 = 10 4 > 7 Hence use 7

For rectangular footings, Equation (4.86) gives

Df

B cr

=
Df

B cr, sq

0 73 + 0 27
L
B

≤ 1 55
Df

B cr, sq

= 7 0 73 + 0 27
2 4
1 2

= 8 89

Check:

1 55
Df

B cr, sq

= 1 55 × 7 = 10 85 >
Df

B cr

. Hence, use
Df

B cr

= 8 89

Df

B
=

2
1 2

= 1 67 <
Df

B cr

= 8 89 . Hence, it is a shallow foundation.

α =
Df B

Df B cr

=
1 67
8 89

= 0 188

(Continued)
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From the average curve of Figure 4.28, for α = 0 188 obtain β ≈0 28
Equation (4.88):

Q18u =A B 7 56 + 1 44
B
L

cu + γDf

= 1 2 × 2 4 0 28 7 56 + 1 44
1 2
2 4

74 + 18 × 2 = 598 kN

The ultimate uplift capacity of the foundation =Qu = 598 kN

Problem 4.37

A composite of the several site borings gave the average soil profile shown below. A square mat, estimated to be in
the order of 15 m in plan dimensions, is to be located at Df 1 5 m. Estimate the net allowable bearing capacity
which will be recommended for design of the mat foundation.

Solution:
It is noteworthy that the very limited data given in this problem are basically the type a geotechnical consultant
would have on which to make a design soil pressure recommendation.
Usually, in the analysis of such design problems, a net safe bearing capacity (net qs) is found first and then the

final settlement due to a net effective foundation pressure, using net q = net qs, is computed and compared to the

Very stiff silty clay (nearly saturated)

qu(av) = 300 kPa

Medium dense sand

N70(av) = 18

Medium dense gravelly sand

N70(av) = 22

Very dense sand with gravel

N70(av) = 40

Rock

Base
−1.5

−4.9

−8.2

−15.2

−29.0

3.4 m

3.3 m

7.0 m

13.8 m

0.0

∇ W.T

G.S

γ = 18.7 kN/m3

Scheme 4.23
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desired maximum allowable settlement (not specified in this problem). If the computed settlement is considered
acceptable, the net allowable bearing capacity (net qa) will be recommended equal to net qs; otherwise, a lower
value for net qa should be selected so that excessive settlement will not occur.

(A) Bearing capacity analysis:
Find net qs with a safety factor = 3 for the supporting saturated silty clay soil. Assume undrained condition,
Ø = 0 and use the Hansen bearing capacity equations.

Table 4.2: gross qult = 5 14 su 1 + sc + dc− ic−bc−gc + q

Table 4.7: for the conditions of this problem all i, g and b factors arezero.

Equation (4.3):
net qult = gross qult−γ Df

= 5 14 su 1 + sc + dc

Table 4.6:
sc = 0 2

B
L

= 0 2 ×
15
15

= 0 2

dc = 0 4k; k=
D
B
for

D
B
≤ 1;

D
B
=
1 5
15

= 0 1; hence, dc = 0 04

su =
qu
2
=
300
2

= 150 kPa Ø = 0

net qult = 5 14 150 1 + 0 2 + 0 04 = 956 04 kPa

net qs =
net qult
SF

=
956 04

3
= 319 kPa

(B) Settlement analysis:
Find the final settlement due to a net effective foundation pressure net q = net qs = 319 kPa.
(a) The very stiff saturated silty clay layer:

Assume the secondary compression settlement is neglected (which is common to do so).
Equation (3.3): ST = Si + Sc

In this Problem, consolidation data for the clay is not given. Therefore, some assumptions and approxi-
mations may be necessary to be made.

Assume, for the very stiff saturated clay, Sc = Si = 0 5 ST , approximately (see Section 3.4.2) and Poisson’s
μ= 0 5 (see Table 3.10). Also, from Table 3.8, select Es = 500−1500 su and assume Es = 500 su. Hence,
Es = 500 su = 500 × 150 1000 = 75 MPa (it is the same average value given in Table 3.9).

Equation (3.5): Si = q×B×
1−μ2

Es
×m× IS × IF

For settlement below the centre of the mat:

m= 4; B = 0 5 width =
15
2
= 7 5m; L= 0 5 length =

15
2
= 7 5 m;

M =
0 5 width
0 5 length

=
7 5
7 5

= 1;N =
H

0 5 width
=
3 4
7 5

= 0 453

Table 3.7: M = 1; N = 0 453; I1 = 0 042; I2 = 0 066

IS = I1 +
1−2μ
1−μ

I2 = 0 042 +
1−2 × 0 5
1−0 5

× 0 066 = 0 042

Figure 3.2:
D
B
=
1 5
15

= 0 1;
B
L
=
15
15

= 1; μ= 0 5; IF = 0 89
(Continued)
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Use the average q at middle of the clay layer below the base = net qs, since the ratios
B
z
and

L
z
are so large

that the value of (4I) is nearly one (see Figure 2.32 or Table 2.3).

Si = 319 × 7 5 ×
1− 0 5 2

75000
× 4 × 0 042 × 0 89 = 0 0036 m= 3 6mm

ST , clay = 2 × 3 6 = 7 2mm

(b) The sand layers:
The depth to the rock is less than 2B; therefore, all the three sand layers should be included in the settle-
ment computations. It may be sufficient if the weighted average of the estimated Es values is obtained and
used in Equation (3.5) only once. For each sand layer, assume Es = 500 N55 + 15 . This equation is the
most conservative equation given in Table 3.8.

Determine N55 and compute the weighted average value of Es, as shown in Table 4.21.

Es, av =
EsH

H
=
668 600
24 1

= 27 743kPa

Determine q(av) at the middle of the three sand layers together due to the 319 kPa pressure acting at top of
the first sand layer (the same net contact pressure is, conservatively, used here also because thickness of the
clay layer is small compared to the base dimensions).

Figure 2.32: z =
24 1
2

= 12 05m;
B 2
z

=
L 2
z

=
15 2
12 05

= 0 622; I = 0 115

Therefore, q av = 319 4I = 319 × 4 × 0 115 = 147kPa
For settlement below the centre of the mat:

m= 4; B = 0 5 width =
15
2
= 7 5m; L= 0 5 length =

15
2
= 7 5m;

M =
0 5 width
0 5 length

=
7 5
7 5

= 1; N =
H

0 5 width
=
24 1
7 5

= 3 213

Table 3.7: M = 1; N = 3 213; I1 = 0 373; I2 = 0 046
Estimate μ= 0 3 for all sand layers (see Table 3.10). Hence,

IS = I1 +
1−2μ
1−μ

I2 = 0 373 +
1−2 × 0 3
1−0 3

× 0 046 = 0 399

Figure 3.2:
D
B
=
4 9
15

= 0 33;
B
L
=
15
15

= 1; μ= 0 3; IF = 0 78

Si = 147 × 7 5 ×
1− 0 3 2

27743
× 4 × 0 399 × 0 78 = 0 045m= 45mm

Table 4.21 Values of N55 and Es.

Layer N70 N55 = N70 (70/55) Es, kPa H, m EsH

I 18 23 19 000 3.3 62 700

II 22 28 21 500 7.0 150 500

III 40 51 33 000 13.8 455 400

Σ = 24.1 668 600
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The common value of the allowable total settlement for mat or raft foundations on clay is on the order of
about 50 mm (Tables 3.1 and 3.2). The final settlement = 7 2 + 45 = 52 2mm> 50 0mm. However, the dif-
ference is so small that it can be neglected and therefore the geotechnical engineer may recommend a
design net soil pressure (net allowable bearing capacity) = 300 kPa < net qs = 319 kPa . Other geotechnical
engineers may be in favour of recommending an even smaller value, such as 250 kPa for example, on the
basis that the available data are very limited and the selected values for Es and μ are not sufficiently
accurate.

Problem 4.38

The retaining wall shown in the scheme below provides lateral support for an existing car park adjacent to a new
pavement in a road-widening project. The soil beneath the footing is 3 m clay with average su = 120 kPa
and mv = 12 × 10−4 m2 kN, underlain by a very dense silty sand deposit. It is required that the safety factor against
shear failure not to be less than SF = 3 and the maximum settlement not to exceed 50 mm. Check the safety of the
foundation with respect to these two geotechnical design criteria.

Solution:
(1) Safety against bearing capacity failure.

(a) Determine the horizontal force Pa and its overturning moment Mo due to the active lateral earth
pressures.

qz = qs + γz Ka = 12 + 17 3z 0 4

Pavement

Concrete footing

Concrete wall;

0.25 m thick

Compacted 

granular backfill

0.45m

0.8m

2 m

1.2 m0.55 m

0.25 m

γ = 18 kN/m3

Soil:

Excavation line

(approx.)
2.45m

Car park  

su = cu = 120 kPa

Ka = 0.4

qs = 12 kPa (Surcharge)

mv = 12 × 10−4m2/kN

γ = 19 kN/m3; Ø = 0

ϕ = 36°

γ = 17.3 kN/m3

Scheme 4.24

(Continued)
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At top: qz = 12 + 17 3 × 0 0 4 = 4 8 kPa

At base:
qz = 12 + 17 3 2 45 + 0 45 0 4

= 24 87 kPa

Pa =
4 8 + 24 87

2
× 2 9 = 43 02 kN mrun

For trapezoid area y =
H
3

2a+ b
a + b

=
2 9
3

2 × 4 8 + 24 87
4 8 + 24 87

= 1 123 m

Mo = y × Pa = 1 123 × 43 02 = 48 31kN m mrun

(b) Determine all vertical forces and their moments (resisting moment, Mr) about the toe of the base as in
Table 4.22.

(c) Determine eccentricity e and effective width B .

The net moment
Mnet =ΣMr −Mo = 125 07−48 31

= 76 76 kN m

x =
Mnet

R
=

76 76
109 48

= 0 70 m; hence, e=
B
2
−x =

2
2
−0 7 = 0 3 m<

B
6

The effective width B = B−2eB = 2−2 × 0 3 = 1 4 m

(d) Determine net qult and SF against bearing capacity failure.

Assume using the Hansen bearing capacity equation for the condition Ø = 0:

Table 4.2: gross qult = 5 14 su 1 + sc + dc− ic−bc−gc + q

Table 4.6: sc = 0 2
B
L

= 0,since
B
L
≈0 for continuous foundations.

Table 4.7: bc = gc = 0, since η= 0 and β = 0

H

b

qz

Pa

y

a

z

Scheme 4.25

Table 4.22 Vertical forces and moments (resisting moment, Mr) about the toe of the base.

Part Weight (kN) Arm (m) Mr (kN.m)

Soil above toe 0.55 (18 × 0.8) = 7.92 0.275 2.18

Soil above heel 1.2(17.3 × 2.45 + 12) = 65.26 1.400 91.37

Stem 24(0.25 × 2.45) = 14.70 0.675 9.92

Base slab 24 (0.45 × 2) = 21.60 1.000 21.60

R= W = 109 48 Mr = 125 07

374 Shallow Foundations



dc = 0 4k; k=
D
B
for

D
B
≤ 1;

D
B
=
1 25
2

= 0 625; hence, dc = 0 25

ic = 0 5−0 5 1−
H
Af ca

Af =B × 1;H = Pa. Assume ca = 0 7cu = 0 7 × 120 = 84 kPa

ic = 0 5−0 5 1−
43 02

1 4 × 1 × 84
= 0 102

gross qult = 5 14 su 1 + dc− ic + q

= 5 14 120 1 + 0 25−0 102 + 18 × 1 25

= 730 59 kPa

Equation (4.3):
net qult = gross qult−γ Df

= 730 59−18 × 1 25 = 708 09 kPa

Net uniform foundation pressure,net q=
R

B × 1
−q=

109 48
1 4 × 1

−18 × 1 25

= 55 7 kPa

SF =
net qult
net q

=
708 9
55 7

= 12 7 3

Check the maximum foundation pressure, qmax:

qmax =
R
A
+

R× e
B
2

1 B 3 1 12
=
109 48
1 × 2

+
109 48 × 0 3

2
2

1 2 3 1 12
= 104 01 kPa

gross qsafe =
gross qult

SF
=
730 59

3
= 243 53 kPa 104 01 kPa

The foundation is very safe against bearing capacity failure.
(2) Safety against excessive settlement:

Assume average uniformnet contact pressure =
R
A
−q

=
109 48
1 × 2

−18 × 1 25

= 32 24 kPa

B 2
z

=
1 2
1 5

= 0 33,
L 2
z

=
2 2
1 5

= 0 67. From Figure 2.32 obtain I≈0 075

At centre of the clay layer
σz = 32 24 4I

= 32 24 × 4 × 0 07 = 10kPa

Equation (3.34):
S= h mv σz = 3 12 × 10−4 10

= 0 036m= 36mm< 50mm
The foundation is safe against excessive settlement.
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Problem 4.39

Refer to Problem 3.56. Assume the footing dimensions are not known and the column carries a total net load of
5000 kN. Unit weight γ of the rock is 22 kN/m3. The foundation design requires a minimum safety factor against
shear failure = 3 and a maximum tolerable settlement equals 30 mm. Determine suitable dimensions for the col-
umn footing.

Solution:
Assume a square footing with a trial width B= 1 5m.
Refer to the discussions of Article 4.18 and Tables 4.13, 4.14 and 4.15. For the given type of the jointed rock,

estimate a suitable value for Ø = 30 . Also, for Ø = 30 and RQD range of 0−70, the cohesion cmay be estimated
equals 0 1 qc = 0 175 MPa.

Equation (4.89):

Nq = tan6 45 +
Ø
2

= tan6 45 +
30
2

= 27

Figure 4.30: Ø = 30 ; Nq = 9

Use Nq,ave =
27 + 9
2

= 18

Equation (4.89):

Nc = 5tan4 45 +
Ø
2

= 5tan4 45 +
30
2

= 45

Figure 4.30: Ø = 30 ; Nc = 14

Use Nc, ave =
45 + 14

2
= 29

Equation (4.89):
Nγ =Nq + 1

= 27 + 1 = 28
Figure 4.30: Ø = 30o; Nγ = 15

Use Nγ,ave =
28 + 15

2
= 21

Table 4.2: gross qult = cNcsc + qNq +
1
2
γ BNγsγ

net qult = c Ncsc + q Nq−1 +
1
2
γ BNγsγ

= 0 175 × 1000 × 29 × 1 3 + 22 × 0 6 18−1

+
1
2
× 22 × 1 5 × 21 × 0 8

= 7099 kPa

Net foundation pressure = net q =
5000

1 5 × 1 5
= 2222 kPa

SF =
net qult
net q

=
7099
2222

= 3 2 > 3

Therefore, try 1.5 × 1.5 m square footing.
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Check settlement as follows:

Net foundation pressure = 2222 kPa = 2 222 MPa

For the 250 mm joint spacing, the fracture frequency per metre (or joint spacing per metre) is 1000 250 = 4.
From Table 3.15, for a fracture frequency of four per metre, a suitable value for the mass factor ( j) is 0.6. Also, from
Table 3.16, for poorly cemented sandstone the modulus ratio (Mr) is 150. Let quc of the intact rock equals the
uniaxial compression strength which is 1.75 MPa. The mass deformation modulus is given by Equation (3.66):

Em = jMr quc = 0 6 × 150 × 1 75 = 157 5 MPa

Assume the influence depth of the rock below the foundation level is H = 4B= 4 × 1 5 = 6 m.
Divide the footing area into four equal 0.75 × 0.75 m squares.

Figure 3.25:
L
B
=
0 75
0 75

= 1;
H
B
=

6
0 75

= 8; k= 0 (using Em = Ed = Ef ), obtain IP≈0 46

Figure 3.26a:
H
B
=

6
1 5

= 4; FB≈1

Figure 3.26b:
D
B
=
0 6
1 5

= 0 4; FD = 0 925

Immediate settlement at the corner of each flexible square is given by

Equation (3.63):

ρi = q
B
Ef

IpFBFD

= 2 222
0 75
157 5

0 46 1 0 925 = 4 5 × 10−3 m

Immediate settlement at the centre of the flexible raft is

4 4 5 × 10−3 = 0 018m

Equation (3.6):
Si rigid = 0 93Si flexible

= 0 93 × 0 018 = 0 017 m= 17mm
Table 3.12: gives rigidity factor = 0 85. Hence,

Si rigid = 0 85 × 0 018 = 0 015 m= 15mm

Average of the two settlement values = 16mm< 30mm; O K
However, creep might increase the settlement to about the maximum tolerable settlement of 30 mm in the
long term.
Use 1.5 m × 1.5 m square footing.

Problem 4.40

A column footing 1.6 × 1.6 m is required to be founded in a moderately strong rock mass of limestone. An embed-
ment depth of 1.5 m is required to get through the top soil and weathered rock zone. Tests on rock cores taken
below the foundation level showed representative unconfined compression strength quc = 24 MPa; other tests gave
average RQD= 0 5; friction angle Ø = 38 and rock unit weight γ = 24 5 kN m3. Neglect the relatively thin top
soil layer which overlies the rock. For the footing concrete use fc = 28 MPa. Assume a safety factor against bearing
capacity failure = 4. Estimate the gross safe bearing capacity for the foundation, taking into consideration the effect
of discontinuities of the rock.

Solution:

Table 4.2: gross qult = cNcsc + qNq +
1
2
γ BNγsγ

(Continued)
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Equation (4.89):

Nc = 5tan
4 45 +

38
2

= 88 36

Nq = tan
6 45 +

38
2

= 74 29

Nγ =Nq + 1 = 74 29 + 1 = 75 29

Equation (4.90): quc = 2c tan 45 +
Ø
2

c= c =
quc

2tan 45 +
Ø
2

=
24

2tan 45 +
38
2

= 5 85MPa = 5850 kPa

sc = 1 3; sγ = 0 8; B= 1 6 m; q= 1 5 × 24 5 = 36 75 kPa

gross qult = 5850 × 88 36 × 1 3 + 36 75 × 74 29

+
1
2
× 24 5 × 1 6 × 75 29 × 0 8

= 671978 + 2730 + 1181

= 675889 kPa = 675 889 MPa

Equation (4.91):
qult = qult RQD 2

= 675 889 0 5 2 = 169 MPa

gross safe bearing capacity =
qult
SF

=
169
4

= 42 MPa > fc = 28 MPa

gross safe bearing capacity of the foundation = 28 MPa
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CHAPTER 5

Shallow Foundations – Structural Design

5.1 General

One of the most important matters the foundation performance requirements concern is the strength
of the foundation. As discussed in Section 2.4, one type of this strength is the structural strength. It is
important to realise that foundations which are loaded beyond their structural strength capacity will, in
principle, fail catastrophically. Therefore, foundations are designed to avoid structural failures, similar
to the other structural analyses.
Foundation units such as footings transfer the loads from the structure to the soil or rock supporting

the structure. As the soil is generally much weaker than the concrete columns and walls that must be
supported, the contact area between the soil and the foundation base is much larger than that between
the supported member and the base. The plan dimensions of the base contact area and the embedment
depth (foundation depth) are primarily geotechnical concerns, as discussed in Section 4.17. Soon after
these design requirements have been set, the next step is to develop a structural design that gives the
foundation enough strength and integrity to safely transmit the design loads from the structure to the
ground.
In general, the structural design of a reinforced concrete base includes:

• Selecting the more significant combination of loads that the particular foundation must support,
and computing the design factored loads.

• Selecting an appropriate value for the compressive strength, fc , of concrete.

• Selecting an appropriate grade of the reinforcing steel which specifies the yield strength, fy, of
reinforcement.

• Determining the required thickness of the concrete base.

• Determining the size, number, spacing and location of the flexural and temperature reinfor-
cing bars.

• Designing the connection between the supported member (column, pedestal or wall) and the struc-
tural base.

Virtually all foundations support a compressive vertical load and, unlike the geotechnical design, it is
computed without including the weight of the structural base because this weight is evenly distributed
and thus does not produce shear or moment in the base. Sometimes foundations are required to
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support shear and moment loads also. Again, unlike the geotechnical design, in structural design all the
loads supported by the foundation must be factored loads.

In structural design of shallow foundations there are two modes of failure considered: shear and
flexure. A structural base may fail in shear as a wide beam, referred to as one-way shear or beam shear,
or as a result of punching, referred to as two-way shear or punching shear. Punching shear failure occurs
when part of the base is just about to come out of the bottom, which is actually a combination of tension
and shear on inclined failure surfaces. These shear stresses are resisted by providing an adequate base
thickness; without using shear reinforcement. The flexural (bending) stresses are resisted by providing
steel reinforcement similar to any other reinforced concrete structural member.

The design and construction of buildings is regulated by municipal bylaws called building codes
(MacGregor et al., 2005). Unlike the geotechnical design, the structural design aspects are more strictly
codified. Any structural design must satisfy requirements of a specified building code. The most not-
able, widely used, code is the Building Code Requirements for Structural Concrete, generally referred to
as theACI 318 orACI Code, published by the American Concrete Institute (ACI). The code is explained
in a Commentary; they are bound together in one volume. Chapter 5 of this book refers extensively to
the ACI 318M-08 code. Chapter 15 of the code concerns the structural design of footings. It is recom-
mended that the reader have a copy available.

5.2 Design Loads

Section 9.2 of ACI 318M-08 defines the design factored load, for use in the LRFDmethod, as the largest
of those computed from the following equations:

ACI Equation 9-1 U = 1 4 D+ F 5 1

ACIEquation 9-2 U = 1 2 D+ F +T + 1 6 L+H + 0 5 Lr or S orR 5 2

ACI Equation 9-3 U = 1 2D+ 1 6 Lr or S orR + 1 0L or 0 8W 5 3

ACIEquation 9-4 U = 1 2D+ 1 6W + 1 0L+ 0 5 Lr or S orR 5 4

ACI Equation 9-5 U = 1 2D+ 1 0E + 1 0L+ 0 2S 5 5

ACI Equation 9-6 U = 0 9D+ 1 6W + 1 6H 5 6

ACI Equation 9-7 U = 0 9D+ 1 0E + 1 6H 5 7

Each load designation such as D, F, T and so on is defined in Section 2.1 of the ACI Code and in
Section 4.17 of this book.

The reader should be aware of the exceptions and limitations regarding some of the factored loads in
the above equations, as stated in ACI Section 9.2.1. Also, it is important to remember that the above-
mentioned design factored load combinations must only be used in conjunction with strength-
reduction factors of ACI Section 9.3.2.

As an alternative to the requirements of ACI Sections 9.2.1 and 9.3.2, ACI 318M-08, Appendix C,
Section C.9.1 permits the design of reinforced structural concrete members using the load combin-
ations defined in Section C.9.2 and the strength-reduction factors of Section C.9.3.

5.3 Selection of Materials

In the design of shallow foundations the structural engineer (the designer) must select appropriate
values for concrete compressive strength, fc , and reinforcing steel yield strength, fy. It is easy for a struc-
tural engineer to do so, whereas a geotechnical engineer has little or no control over the engineer prop-
erties of the supporting natural soil deposits.
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In design of spread footings, selection of high strength concrete may not be justified unless the foot-
ings carry relatively large loads. The plan dimensions of footings are governed by bearing capacity and
settlement requirements; it is the footing thickness only which is governed by the concrete strength.
Moreover, high strength concrete requires additional materials and inspection costs. Spread footings
are usually designed using fc of only 20–25 MPa. For footings that carry relatively large loads, high
strength concrete might be justified to keep the footing thickness within reasonable limits, perhaps
using fc as high as 35 MPa.
Usually, the flexural stresses in footings are small compared to those in the other structural members

of the superstructure. Grade-300 steel is usually adequate to resist flexural stresses in spread footings,
whereas, Grade-420 steel is, most probably, required on the remaining reinforced concrete members.
However, due to practical and economic reasons, usually, designers like to use one grade of steel as
much as possible. Therefore, for foundations built of reinforced concrete, designers often use
Grade-420 steel, the same as for the other structural members of the structure.

5.4 Structural Action of Vertically and Centrically Loaded Isolated
and Continuous (Strip) Footings

5.4.1 General

The structural analysis and design methodology of reinforced concrete footings that engineers now use
have been developed, standardised and codified as a result of full-scale tests conducted by many
researchers at various times (Talbot, 1913; Richart, 1948; Whitney, 1957; Moe, 1961). Scientific soci-
eties, associations and organisations made important contributions (ACI-ASCE, 1962). The structural
design of a footing must essentially consider flexure (bending), shear, development of reinforcement,
and the transfer of load from the column or wall to the footing. Each of these design aspects will be
considered separately in the following Sections.

5.4.2 Flexure

An individual column footing is shown in Figure 5.1. Contact soil pressures cause bending of the footing
about axes A−A and B−B, as shown in Figure 5.1a. Soil pressures acting under the cross-hatched portion
of the footing in Figure 5.1b cause moments,Mu, about axis A−A at the face of the column. The footing
behaves as if it is an inverted cantilever beam. The same argument is true with respect to a continuous
(strip) wall footing, in which soil pressures cause bending of the footing about axis A−A along the wall
length only. Tensile stresses due to these bending moments must be resisted by tensile reinforcement
placed near the footing bottom, in both directions for column footing (Figure 5.1c), and in transverse
direction for wall footing. The total factored moment at the critical section (Figure 5.1b) is:

Mu = lbqfactored l 2 5 8

The critical sections for maximum factored moment, Mu, in the footing are located as follows (ACI
Section 15.4.2):

• At face of column, pedestal, or wall, for footings supporting a concrete column, pedestal, or wall;

• Halfway between middle and edge of wall, for footings supporting a masonry wall;

• Halfway between face of column and edge of steel base plate, for footings supporting a column with
steel base plate.

According to ACI Section 15.3, for location of critical sections for moment, shear, and development
of reinforcement in footings, it shall be permitted to treat circular or regular polygon-shaped concrete
columns or pedestals as square members with the same area.
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As it is clear from Figure 5.1c the moments per unit length (or unit width) vary along lines A–A and
B−B, with the maximum occurring adjacent to the column. However, to simplify reinforcement
placing, ACI Section 15.4.3 states that for two-way square footings reinforcement shall be distributed
uniformly across entire width of footing. In two-way rectangular footings, reinforcement shall be
distributed in accordance with ACI Sections 15.4.4.1 and 15.4.4.2.

The design equation for flexure is

ØMn ≥Mu 5 9

Mu = factored moment or required ultimate moment at section
Mn = nominal strength or nominal moment capacity at section
ØMn = design strength or factored moment resistance at section
Ø = strength-reduction factor for bending (ACI Section 9.3.2)
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Figure 5.1 Flexural action of a column footing. (a) Footing under load. (b) Tributary area for moment at section
A–A. (c) Moment about section A–A.
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Two requirements are satisfied throughout the analysis and design of a reinforced concrete member,
(1) stress and strain compatibility, which requires stress at any point in the beam must correspond to
the strain at that point, (2) equilibrium, which requires the internal forces must balance the external
load effects.

Equations forMn – Tension steel yielding:
ACI Section 10.2.7 permits the use of the equivalent rectangular compressive stress distribution, as
shown below:

α1fc = 0 85fc ACI Section 10 2 7 1

β1 = factor relating depth a of the equivalent rectangular
compressive stress block to the neutral axis depth c.

For fc between 17 and 28 MPa, β1 shall be taken as 0.85. For fc above 28 MPa, β1 shall be reduced
linearly at a rate of 0.05 for each 7 MPa of strength in excess of 28 MPa, but β1 shall not be taken less
than 0.65 (ACI Section 10.2.7.3).
The compressive force in the concrete is

C = volume of the compressive stress block = 0 85fc ba

The tension force in the steel is

T =Asfs

For equilibrium, C = T, and therefore, the depth of the equivalent stress block is

a=
Asfs

0 85fc b

If it is assumed that fs = fy, then

a=
Asfy

0 85fc b
5 10

Neutral axis

(axis of zero

strain) Cross section

of a beam

b

c

d = dt

a = β1c
a/2

C

α1f'c

Equivalent rectangular

stress distribution

jd = d – a/2

T

Scheme 5.1
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Mn = T × jd or Mn = C × jd, and jd = d−
a
2

. Hence,

Mn =Asfy d−
a
2

, and

ØMn = Ø Asfy d−
a
2

5 11

Also,

Mn =C × jd = 0 85fc ba d−
a
2

Hence,

ØMn = Ø 0 85fc ba d−
a
2

5 12

The flexural design requires that the tension steel yields before the concrete crushes. The tensile force T
equals the yield stress fy times the area of the tension steel As. In other words; it is assumed that fs = fy.
Therefore, it is necessary to check this assumption. This checking may be done by using strain com-
patibility as follows:

According to ACI Sections 10.3.3 and R10.3.3, the nominal flexural strength of a member is reached
when the strain in the extreme concrete compression fiber εcu reaches the assumed strain limit 0.003
as shown in thisscheme.

By similar triangles,

εt = 0 003
dt −c
c

The strain εt is the net tensile strain in extreme layer of longitudinal tension steel at nominal strength,
excluding strains due to effective pre-stress, creep, shrinkage and temperature.

εy =
fy
Es

If εt > εy, fs = fy

Strength-reduction factor, Ø:
In order to restrict the flexural reinforcement ratio or to set the upper limit on this reinforcement in a
member, ACI Section 10.3.5 requires that the net tensile strain εt in the extreme-tension steel shall not
be less than 0.004.

Although a footing is not exactly a beam, it is desirable that it be ductile in flexure by limiting εt, as
just mentioned above.

Extreme tension

steel
dt

εt

c

εcu = 0.003

Scheme 5.2
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ACI Section 10.3.3 states that, sections are compression-controlled if the net tensile strain in the
extreme tension steel εt is equal to or less than the compression-controlled strain limit when the con-
crete in compression reaches its assumed strain limit of 0.003. The compression-controlled strain limit
is the net tensile strain in the reinforcement at balanced strain conditions. For Grade-420 reinforce-
ment, and for all pre-stressed reinforcement, it shall be permitted to set the compression-controlled
strain limit equal to 0.002.
ACI Section 10.3.4 states that, sections are tension-controlled if the net tensile strain in the extreme

tension steel εt is equal or greater than 0.005 when the concrete in compression reaches its assumed
strain limit of 0.003. Sections with εt between the compression-controlled strains limit and 0.005 con-
stitute a transition region between compression-controlled and tension-controlled sections.
For tension-controlled sections: Ø = 0.9 (ACI Section 9.3.2.1):

For compression-controlled sections (flexural members other than spiral columns): Ø = 0.65 [ACI
Section 9.3.2.2(b)]

For sections in the transition region: 0.90 > Ø > 0.65

According to ACI Section 9.3.2.2, for sections in the transition region, Ø shall be permitted to be lin-
early increased from that for compression-controlled sections to 0.9 as εt increases from the compres-
sion-controlled strain limit to 0.005.
For Grade-420 steel, for which the compression-controlled strain limit is 0.002, the variation of Ø

with net tensile strain in extreme tension steel εt is shown in ACI Figure R9.3.2. Accordingly, Ø is deter-
mined by linear proportionality as follows:

Ø = 0 65 +
εt −0 002

0 005−0 002
0 9−0 65

Ø = 0 65 + εt −0 002 250 3

5 13

As indicated in ACI Figure R9.3.2, the factor Ø is also determined from the following equation:

Ø = 0 65 + 0 25
1

c dt
−
5
3

5 14

Equations (5.13) and (5.14) give

εt =
dt −c
c

× 0 003 5 15

where

c = distance from extreme compression fiber to neutral axis
dt = the distance from the extreme compression fiber to the extreme tension steel

Similarly, for Grade-280 steel, for which the compression-controlled strain limit is
fy
Es

= 0 0014 , the

factor Ø is determined from the following equations:

Ø = 0 55 + 69 4εt 5 16

or

Ø = 0 34 +
0 21
c dt

5 17
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According to ACI Section 10.5.4, for footings of uniform thickness, the minimum area of flexural ten-
sile reinforcement As, min shall be the same as that required for shrinkage and temperature reinforce-
ment in accordance with ACI Section 7.12.2.1. Therefore, for deformed bars of Grade-280 or 530 steel,
As, min = 0.002 bh; for deformed bars or welded wire reinforcement of Grade-420 steel, As,min =
0.0018 bh. Also, ACI Section 10.5.4 requires that, the maximum spacing of this minimum reinforce-
ment shall not exceed three times the footing thickness, or 450 mm whichever is smaller.

In case the required flexural reinforcement exceeds the minimum flexural reinforcement, it shall be
adequate to use the same maximum spacing of reinforcement for slabs which is two times the slab
thickness or 450 mm, whichever is smaller, as specified by ACI Section 13.3.2.

According to ACI Section 7.12.2.2, shrinkage and temperature reinforcement shall be spaced not
farther apart than five times the slab thickness, nor farther apart than 450 mm.

ACI Section 7.7.1-(a) states that, cover for reinforcement in concrete cast against and permanently
exposed to earth, shall not be less than 75 mm.

ACI Section 15.7 states that, depth of footing above bottom reinforcement shall not be less than
150 mm for footings on soil, or less than 300 mm for footings on piles.

5.4.3 Shear

As mentioned in Section 5.1, a footing may fail in shear as a wide beam, referred to as one-way shear or
beam shear (Figure 5.2a), or as a result of punching, referred to as two-way shear or punching shear
(Figure 5.2b).

Shear reinforcement is very seldom used in spread footings or in mats, due to difficulty in placing it,
and due to the fact that it is usually cheaper and easier to deepen the footings than to provide stirrups.
ACI Section 11.4.6.1 excludes footings from the minimum shear reinforcement requirements. For these
reasons the factored shear force, Vu, at any critical section shall be resisted only by the concrete shear
strength alone.
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Figure 5.2 Critical sections and tributary areas for shear in a column footing (see text for details).
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One-way shear:
According to ACI Sections 15.5.1, 15.5.2, 11.11.1.1 and 11.1.3.1, critical section for one-way shear
extends in a plane across the entire width of the footing, located at distance d from face of the column,
pedestal, or wall, as shown in Figure 5.2a. For footings supporting a column or pedestal with steel base
plates, the critical section shall be located at distance d from a line halfway between the face of the
column and the edge of the base plate.
From Figure 5.2a, the factored shear force

Vu = bfqfactored 5 18

ACI Section 11.1.1 requires that

ØVc ≥Vu taking reinforcement shear strength, Vs = 0 5 19

where

Ø = strength-reduction factor
= 0.75 for shear (ACI Section 9.3.2.3)

Vc = nominal shear strength provided by concret

According to ACI Sections 11.11.1.1 and 11.2.1.1, Vc shall be computed as

Vc = 0 17λ fc bwd 5 20

where

λ = modification factor (ACI Section 8.6.1)
fc = square root of specified compressive strength of concrete in MPA.

bw = footing width or length of critical section
d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement

Two-way shear:
In footings subject to two-way action, failure may occur by punching along a truncated cone or pyramid
around a column. For square or rectangular columns, ACI Sections 11.11.1.2 and 11.11.1.3 allows the
use of a critical section with four straight sides drawn parallel to and at a distance d/2 from the faces of
the column (or the edges of the loaded area), as shown by the dashed lines in Figure 5.2b. The tributary
area, assumed critical for design purposes, is shown cross-hatched. For footings supporting a column or
pedestal with steel base plates, the critical section shall be located at distance d/2 from a line halfway
between the face of the column and the edge of the base plate ACI Section 15.5.2.
The applied net factored shear force is:

Vu = factored column loads – factored soil reaction on the shear block

Vu =Af qfactored − m+ d n+ d qfactored 5 21

where Af is the footing area
Since shear reinforcement is not used in a footing, Ø Vc ≥Vu. According to ACI Section 11.11.2.1, Vc

shall be the smallest of (a), (b), and (c):
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(a) Vc = 0 17 1 +
2
β

λ fc bod 5 22

(b) Vc = 0 083
αsd
bo

+ 2 λ fc bod 5 23

(c) Vc = 0 33 λ fc bod 5 24

where:

β = the ratio of long side to short side of the column, concentrated load or reaction area.
bo = the perimeter of the critical section for two-way shear.
αs = a constant equals 40 for interior columns, 30 for edge columns and 20 for corner columns.

ACI Section 15.5.3 requires that, footing supported on piles (i.e. piles cap) shall satisfy ACI Sections
11.11 and 15.5.4.

ACI Section 15.5.4 states that, computations of shear on any section through a footing supported on
piles shall be in accordance with 15.5.4.1, 15.5.4.2, and 15.5.4.3.

5.4.4 Development of Reinforcement

The calculated reinforcing bar stresses at any section must be developed by extending each bar on each
side of that section a sufficient distance ld (embedment length), or by hook (for bars in tension only) at
the outer ends.

ACI Section 15.6.2 states that calculated tension or compression in reinforcement at each
section shall be developed on each side of that section by embedment length, hook (tension only)
or mechanical device or a combination thereof. ACI Section 15.6.1 requires this development of
reinforcement in footings be accomplished in accordance with Chapter 12 of the Code. According
to ACI Section 15.6.3, critical sections for development of reinforcement shall be assumed at the same
locations as defined in ACI Section 15.4.2 for maximum factored moment and at all other vertical
planes where changes of section or reinforcement occur.

5.4.5 Transfer of Force at Base of Column, Wall or Pedestal

Connections through which forces and moments are transferred must be designed carefully, since
they are often the weak links in structures. There are different types of connections available; each
is intended for particular loading conditions, and construction materials of both the supported and
supporting members. For example; the methods of connecting concrete, steel and wood columns to
concrete footings are different. This Section will discuss concrete column, wall or pedestal con-
nected to concrete footing, and steel column with base plate connected to concrete footing or
pedestal.

Concrete column, wall or pedestal connected to concrete footing:
ACI Section 15.8.1 states that, forces and moments at base of column, wall, or pedestal shall be trans-
ferred to supporting pedestal or footing by bearing on concrete and by reinforcement, dowels and
mechanical connectors.

According to ACI Section 15.8.1.1, bearing stress on concrete at contact surface between concrete
column or wall (supported member) and concrete footing or pedestal (supporting member) must not
exceed concrete bearing strength for either surface as given by ACI Section 10.14.

According to ACI Section 10.14.1, the maximum design bearing strength of concrete is
Ø 0 85fc A1 except when the supporting surface is wider on all sides than the loaded area; then
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the design bearing strength of the loaded area shall be permitted to be multiplied by A2 A1 but not

more than two (i.e. the design bearing strength = Ø 0 85fc A1 A2 A1, and A2 A1 ≤ 2). For the
load combinations of ACI Section 9.2.1, ACI Section 9.3.2.4 gives the strength-reduction factor Ø =
0.65 for bearing.
Area A1 is the loaded area (area of the contact surface) but not greater than the bearing cross-

sectional area or the bearing plate area. Area A2 is area of the lower base of larger frustum of a
pyramid, cone, or tapered wedge contained wholly within the support and having for its upper
base the loaded area (A1), and having side slopes of 1 vertical to 2 horizontal, as shown in
Figure 5.3.
ACI Section 15.8.2 states that, for a castinplace construction, the reinforcement required to satisfying

15.8.1 shall be provided either by extending longitudinal bars (reinforcement) into supporting pedestal
or footing, or by dowels. For cast-in-place columns and pedestals, area of these bars across interface
shall be not less than 0.005 Ag, where Ag is the gross area of the supported member (ACI
Section 15.8.2.1). For cast-in-place walls, ACI Section 15.8.2.2 requires area of reinforcement across
interface shall be not less than minimum vertical reinforcement given in ACI Section 14.3.2.
In practice, generally, the column bars stop at the top of the footing or pedestal, and dowels are used

to transfer loads across the interface. This is because it is unwieldy to embed the column steel in the
footing or pedestal, due to its unsupported height above the supporting member and the difficulty in
locating it properly.
For castinplace columns and pedestals, normally, the number of dowels is equal to the number of

longitudinal bars in the column or pedestal. However, at least four dowels should be provided across
interface.
According to ACI Section 15.8.2.3:

• Dowels shall not be larger than No. 36 bar.

• At footings, it is permitted to lap splice longitudinal bars of sizes as large as No. 43 and No. 57, in
compression only, with dowels.
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Figure 5.3 Application of frustum to find A2 in footing or pedestal.

Shallow Foundations – Structural Design 391



• Dowels shall extend into supported member a distance not less than the compression development
length ldc of the longitudinal bars (larger than dowels) and compression lap splice length of the
dowels, whichever is greater (ACI Sections 12.3.2, 12.3.3, 12.16.1, 12.16.2).

• Dowels shall extend into the footing a distance not less than ldc of the dowels (ACI Sections 12.3.2
and 12.3.3).

Usually, dowels have a 90 hook at the bottom used to facilitate fastening them tightly in place with the
footing bottom bars. Figure 5.4a shows a column-footing joint with dowel bars extending through the
interface, and Figure 5.4b shows a wall-footing joint.

The preceding discussions concern the condition in which the full section at the interface is under
compressive stresses. In other words, no moments are transferred or the eccentricity falls within the
kern of the section. The total force transferred by bearing is then calculated as (Ag − Asd) times
the smaller of the bearing stresses allowed on the supported member (column, pedestal or wall) or
the supporting member (footing), where Asd is area of the longitudinal bars or dowels crossing the
interface. Any additional load must be transferred by dowels [ACI Section 15.8.1.2-(a)].

For the condition in which moments are transferred to the supporting footing or pedestal, usually,
compressive stresses will exist over part, but not all, of the cross-section. The number of dowels
required can be obtained by considering the cross-sectional area as an eccentrically loaded column with
a maximum compressive concrete stress equal to the smaller of the bearing stresses allowed on the
supported member (column, pedestal or wall) or the supporting member (footing). Sufficient
reinforcement must cross the interface to provide the necessary axial load and moment capacity. In
general, this requires that all the column bars or dowels of the same steel area must cross the interface.
According to ACI Section 15.8.1.3, these longitudinal bars or dowels should satisfy ACI Section 12.17.
Also, the minimum embedment length of these bars in the footing should not be smaller than the com-
pression development length ldc or tension development length ldh, whichever is greater.

Since the footing and column are poured separately, there is a weak shear plane along the cold joint.
For the condition in which lateral forces are imparted to the supporting footing or pedestal, ACI
Section 15.8.1.4 requires that, these forces shall be transferred in accordance with shear-friction pro-
visions of ACI Section 11.6, or by other appropriate means.
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Steel column with base plate connected to concrete footing or pedestal:
A steel column requires a base plate either shop-welded or field-bolted to its bottom, to spread the very
high stresses in the small column contact area to a value that the supporting footing or pedestal can safely
carry. Steel columns are connected to their foundations using anchor bolts or rods of specified type, grade
and ultimate tensile strength (Table 5.1). Slightly oversized holes, 2 to 5 mm larger in diameter than the
bolts, are shop punched in the base plate for later attachment to the supportingmember. The anchor bolts
are usually set in nearly exact position in the wet concrete and become fixed in place. The slightly over-
sized holes allow a small amount of bolt misalignment when placing the base plate into position; thus,
erection of the column onto the foundation is simplified. Figure 5.5 shows a base plate and anchor bolts
used to connect ametal column to its foundation.More often, four anchor bolts are used for each column.
If possible, it is best to place the bolts in a square pattern to simplify construction and leave less oppor-
tunity for mistakes. Of course, more bolts and other patterns also may be used, if necessary.
It is necessary the base plate is carefully aligned horizontally and to elevation, since top surface of the

concrete footing or pedestal is usually rough and not necessarily level. Therefore, the contractor must
use special construction methods to provide adequate support for the plate and to make the column
plumb. One method is to use shims (small and thin steel wedges), which are driven between the base
plate and the supportingmember. The remaining space is grouted, using non-shrink grout which swells
slightly when it cures (as compared to normal grout, which shrinks).

Table 5.1 Ultimate tensile strength, Tu, of selected A307 bolts*.

Bolt diameter and pitch, mm Net tensile stress area, At, mm2

Tensile force Tu, kN

Grade A Grade B

16P2 ** 157 63 108

20P2.5 245 98 169

24P3 353 141 244

30P3.5 561 224 387

36P4 817 327 564

42P4.5 1120 448 773

48P5 1470 588 1014

56P5.5 2030 812 1401

64P6 2680 1072 1849

72P6 3460 1384 2387

80P6 4340 1736 2995

90P6 5590 2236 3857

100P6 6990 2796 4823

* From American National Standards Institute (ANSI) SR 17 (also, ASTM STP 587 dated 1975).
** 16P2 is a nominal bolt diameter of 16 mm with a thread pitch
P = 2 mm.
Grade A, fult = 400 MPa; fy = 250 MPa
Grade B, fult = 690 MPa; fy = 400 MPa
At = 0.7854 (Diam. −0.9382P)2

For 16P2: At = 0.7854 (16 − 0.9382 × 2)2 = 157 mm2

Tu =
400 × 1000
10002

× 157 = 63 kN

P = thread pitch = distance between corresponding points on adjacent thread forms in mm. A pitch of 2 means there are 2 mm
between points.

P
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The AISC (1989) manual provides general guidance in the design of base plates. The design of base
plates is beyond the scope of this book, but it is covered in most steel design texts and scientific docu-
ments such as “Column Base Plates,” AISC, by DeWolf and Ricker (1990).

Anchor bolts may be cast-in or post-installed in the supporting member. Cast-in anchor is a headed
bolt, headed stud, or hooked bolt installed before placing concrete. Post-installed anchor, such as
expansion anchor and undercut anchor, is an anchor installed in hardened concrete. These types of
anchor bolts are shown in Figure RD.1– Appendix D of ACI 318M-08.

In general, the modes of failure associated with anchor bolts are (i) rupture or fracture of the bolt
itself, due to the structural tension and shear loads transmitted from the column to the supporting
member, (ii) loss of anchorage in the concrete, such as bolt pullout, concrete breakout, concrete split-
ting and concrete side-face blowout, due to tension loads; or, such as concrete spall, concrete pryout and
concrete breakout, due to shear loads. All these modes of failure are illustrated in Figure RD.4.1–
Appendix D of ACI 318M-08.

Steel, of which anchor bolts are made, is more ductile than concrete. For this reason, it is preferred
that anchors are designed so the critical mode of failure is tension or shear of the bolt itself rather than
failure of the anchorage.

Compression load transfer:
If the structural design loads between the column and the supporting member consist solely of com-
pression, then theoretically no anchorage will be required. However, anchor bolts are still required to
resist erection loads, accidental collisions during erection, and unanticipated shear or tensile loads. The
engineer might attempt to estimate these loads and design accordingly, or simply select the bolts using
engineering judgment. For example, an engineer might arbitrarily select enough bolts of specified type
and diameter to carry 10% of the total compressive load (unfactored) in shear.

Tensile load transfer:
For the design of anchors (except when anchor design includes earthquake forces), each anchor bolt
must satisfy the following design criterion (ACI Appendix D Section D.4.1.1):

ØNn ≥Nua 5 25
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Figure 5.5 Base plate and anchor bolts to connect a metal column to its foundation.
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where

ØNn = the lowest design strength in tension determined from all appropriate failure modes (ACI
Section D. 4.1.2).

Ø = strength-reduction factor for anchors in concrete (ACI Section D. 4.4).
Nn = factored tensile force applied to anchor or group of anchors.

Shear load transfer:
For the design of anchors (except when anchor design includes earthquake forces), each anchor bolt
must satisfy the following design criterion (ACI Appendix D Section D.4.1.1):

ØVn ≥Vua 5 26

where

Ø Vn = the lowest design strength in shear determined from all appropriate failure modes (ACI
Section D. 4.1.2).

Ø = strength-reduction factor for anchors in concrete (ACI Section D. 4.4).
Vn = nominal shear strength for any mode of failure (ACI Sections D. 6.1, D.6.2, and D.6.3).
Vua = factored shear force applied to a single anchor or group of anchors.

Combined tensile and shear load transfer:
When both tensile force Nua and shear force Vua are present, interaction effects shall be considered in
design (ACI Section D. 4.1.3). According to ACI Section D.4.3, this requirement shall be considered
satisfied by ACI Section D.7 which specifies that, anchors or groups of anchors shall be designed to
satisfy the requirements of ACI Sections D.7.1–D.7.3, as follows:

• If Vua ≤ 0.2 Ø Vn, then full strength in tension shall be permitted:

ØNn ≥Nua ACI SectionsD 7 1

• If Nua ≤ 0.2 ØNn, then full strength in shear shall be permitted:

ØVn ≥Vua ACI SectionsD 7 2

• If Vua > 0.2 ØVn and Nua > 0.2 ØNn, then

Nua

ØNn
+

Vua

ØVn
≤ 1 2 ACI SectionD 7 2 5 27

where values of ØNn and Ø Vn shall be as given in Equations (5.25) and (5.26), respectively.

Anchorage:
The designer must determine the required depth of embedment of the anchor bolts into the concrete to
provide the necessary anchorage. This required embedment depth is not specifically indicated in most
(including ACI) building codes. For an expansion or undercut post-installed anchors only, the ACI
Section D.8.5 requires the value of hef (effective embedment depth of anchor) shall not exceed the greater
of two-thirds of the member (footing or pedestal) thickness and the member thickness minus 100 mm.
However, it is understood that the hefmust be so determined that the requirements of concrete breakout
strength (ACI Section D.5.2) and pullout strength (ACI Section D.5.3) of the anchor in tension are
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satisfied. In addition, the anchorage design must satisfy the requirements of ACI Section D.9 regarding
minimum spacing and edge distances for anchors and minimum thickness of members.

According to Coduto (2001), Table 5.2 presents conservative design values for embedment depth
and edge distance.

5.5 Eccentrically Loaded Spread Footings

Onoccasions, footings have overturningmoments as well as axial loads (eccentric loading condition), as
shown in Figures 2.22 and 4.5. Structural design of eccentrically loaded footings can proceed in the same
manner as that for centrically loaded footings. However, the contact soil pressure will not be uniform, as
discussed in Section 2.6.2 and shown in Figure 2.22. Therefore, for square footings as well as rectangular
footings, it will be necessary to consider both the one-way shear and two-way shear in determining the
footing thickness, and to determine the amount of steel required in each direction separately.

A footing is also considered eccentrically loaded when the column, with or without moment, is offset
from the footing centroid. If space permits, it will be possible to place the column away from the centre
so that the resulting soil pressure is uniform, i.e. the structural load resultant coincides with the soil
pressure resultant at centre of the footing, as shown in Figure 5.6. This solution is obviously valid only
for moments which always act in the direction shown for that footing configuration. This is not a valid
solution for wind moments, since reversals can occur.

In conventional analysis of rigid footings the soil pressure can be computed using Equation (2.7),
repeated here for convenience:

q=
R
BL

1 ±
6ex
B

±
6ey
L

Equation 2 7

where B and L are in x and y directions. respectively.

Table 5.2 Anchorage requirements for bolts and threaded rods (Shipp and Haninger, 1983; © AISC).

Steel grade Minimum embedment depth Minimum edge distance

A307, A36 12d 5d or 100 mm, whichever is greater

A325, A449 17d 7d or 100 mm, whichever is greater

d = Nominal bolt diameter

Centroid 

R

M

V

e =
e

R = V

q ≤ qa

M

V

L

Figure 5.6 Eccentrically loaded spread footing with uniform soil pressure.
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According to Bowles (2001), spread footings (assumed somewhat less than rigid) should be designed
consistent with the procedure for obtaining the bearing capacity, considering that the soil analogy is
almost identical to the Strength Design method of concrete. According to this method of analysis, a
uniform soil pressure under the effective area B L is used to compute design moments and shear;
hence, the design is more easily done. In this analysis the soil pressure resultant passes through
centroid of the effective area B L , as shown in Figure 5.7a. The eccentric distances ex and ey are

computed as ex =
My

P
and ey =

Mx

P
It is required that:

Bmin = 4ey +wy; Lmin = 4ex +wx

Bmin = 2ey +wy; Lmin = 2ex +wx

Where wy and wx are the column cross-section dimensions in y (or B) and x (or L) directions, respect-
ively, as shown in Figure 5.7b.
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R = qB'L'
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'
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L'min= 2 ex+ wx

B'min= 2 ey+ wy
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B
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ex

e
y

w
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Figure 5.7 A spread footing with overturning moments, considering uniform soil pressure under the effective area
B L (see text for details).
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5.6 Pedestals

Pedestal is a member with the ratio of height-to-least lateral dimension less than or equal to three used
primarily to support axial compressive load. For a tapered member, the least lateral dimension is the
average of the top and bottom dimensions of the smaller side (ACI Section 2.2). The ACI code allows
both reinforced and unreinforced concrete pedestals (ACI Section 22.8). The height-thickness limita-
tion ratio for plain concrete pedestals applies only to the unsupported height; does not apply for por-
tions of pedestals embedded in soil capable of providing lateral restraint (ACI Sections 22.8.2 and
R22.8). Usually, a pedestal is used to carry the loads from metal columns through the floor and soil
to the footing when the footing is at some depth in the ground, as shown in Figure 5.8. One purpose
for using such pedestal is to avoid possible corrosion of the metal from the soil.

Usually, concrete pedestals are reinforced with minimum column steel of 0.01Ag but not more than
0.08Ag (ACI Section 10.9.1) even when they are designed as unreinforced members. However, if
moment or uplift load exists, the vertical steel should always be designed to carry any tension stresses.
Steel ties should be liberally added at the top to avoid concrete spalls and to keep the edges from crack-
ing (Figure 5.8).

According to ACI Sections 22.8.3 and 22.5.5, maximum factored axial compressive load, Pu, applied
to plain concrete pedestals shall not exceed design bearing strength, Ø Bn, where Bn is nominal bearing
strength of loaded area A1 using

Bn = 0 85 fc A1 5 28

In a case where the supporting surface is wider on all sides than the loaded area, then Bn shall be multi-

plied by A2 A1 but not more than two.
For a reinforced concrete pedestal being designed as a simply supported column element (a rather

common condition); the following formula may be used:

Pu ≤ Ø 0 85 fc Ac +Asfy 5 29

where

Ac = net area of concrete in pedestal (Ag–As)
As = area of reinforcing steel
fy = specified – yield strength of reinforcement
fc = specified – compressive strength of concrete

Metal column
Pu

Base plate

Anchor bolt
Floor

Pedestal 

Footing75 – 125 mm

Column As,min or As

for any tension load,

whichever is greater 

75 – 125 mm

100 mm

Shoulder, 50 mm Stirrups as

required (code)

Steel (liberal)

at top to avoid

concrete spall

Figure 5.8 Pedestal details (approximate).
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5.7 Pile Caps

A pile cap or a cap is a reinforced concrete element which connects a column, pedestal or wall with a
group of piles. The function and structural design of pile caps are very similar to those of spread foot-
ings; both elements must distribute loads from the supported member across the bottom of footing or
cap. The ACI code calls a cap “a footing supported on piles” (ACI Section 15.5.4). The conventional
structural design of rigid pile caps should satisfy the following requirements:

(1) The depth of cap above bottom reinforcement (the effective depth) shall not be less than 300 mm
(ACI Section 15.7).

(2) Bendingmoments, development of reinforcement and shear are taken at the same critical sections
as for reinforced-concrete footings (defined in ACI Sections 15.4.2, 15.6.3 and 15.5.2), as shown in
Figure 5.9. Computation of shear on any section shall be in accordance with ACI Section 15.5.4.
Computations for moments and shear shall be based on the assumption that the reaction from
any pile is concentrated at pile centre (ACI Section 15.2.3).

(3) Where necessary, shear around individual piles (punching shear) may be investigated in accord-
ance with ACI Section 11.11.1.2. If shear perimeters overlap, the modified critical perimeter bo
should be taken as described in ACI Section R15.5.2 and illustrated in ACI Figure R15.5.

(4) Bearing stress on concrete at contact surface between supported and supporting member, includ-
ing contact surface between cap and individual concrete pile, shall not exceed concrete bearing
strength for either surface as given by ACI Section 10.14 (ACI Section 15.8.1.1).

(5) Piles should extend at least 150 mm into the cap. Some building authorities may allow as little as
75 mm of pile embedment into the cap.

(6) Ordinarily the pile heads are assumed hinged to the pile cap. When pile heads are assumed fixed
to the cap, they should extend at least 300 mm into the cap.

(7) The cap bottom reinforcement should be 75 mm above the pile top to control concrete cracking
around the pile head.

(8) When piles extend into the cap more than 150 mm, the cap bottom bars should loop around the
pile to avoid splitting a part of the cap from pile head.

(9) Reinforcement should be placed so there is a minimum cover of 75 mm for concrete adjacent to
the soil (ACI Section 7.7.1).

(10) Pile caps should extend at least 200 mm beyond the outside face of exterior piles.

The conventional pile cap design assumes:

(1) Each pile in a group carries an equal amount of the total concentric axial load Q on the cap. This
assumption is practically valid when Q is applied at the centre of the pile group, the piles are all

d/2

d/2

d

Critical sections for:

One-way shear  

Two-way shear 

Critical section for

moment and

development of

reinforcement  

Pile 

Column 
Cap for

12 piles  

Figure 5.9 A pile cap with locations of critical sections for shear, moment and development of reinforcement.
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vertical, the pile group is symmetrical, the cap is rigid and in contact with the ground. The design
considers structural axial loads of the supported member, weight of the cap and weight of any soil
overlying the cap (if it is below the ground surface). For a group of n piles, the load Pp per pile is

Pp =
Q
n

5 30

(2) For a pile cap eccentrically loaded with Q or loaded with Q at centre and moments, the combined
stress equation [Equation (2.6)] is assumed valid (assuming planar stress distribution). The equa-
tion is repeated here for convenience:

q=
R
A
±
My

Iy
x ±

Mx

Ix
y Equation 2 6

Where

q=
Pp

pile cross section area
=
Pp
Ap

; A= nAp; R=Q

My = Moment about y axis
Mx = Moment about x axis
y = Distance from x axis at pile centre
x = Distance from y axis at pile centre
Iy = Moment of inertia of the pile group about y axis
= Σ Moment of inertia of Ap about y axis
=Σ Io +Apx2

= ApΣx2 (Considering ΣIo has a negligible value)
Ix = Moment of inertia of the pile group about x axis
= Σ Moment of inertia of Ap about x axis
=Σ Io +Apy2

= ApΣy2 (Considering ΣIo has a negligible value)

Therefore, the combined stress equation can be written in the form

Pp
Ap

=
Q
nAp

±
My

ApΣx2
x ±

Mx

ApΣy2
y; hence,

Pp =
Q
n
±
My

Σx2
x ±

Mx

Σy2
y 5 31

5.8 Plain Concrete Spread Footings

Structural plain concrete is concrete with no reinforcement or with less reinforcement than the min-
imum amount specified for reinforced concrete (ACI Section 2.2). Chapter 22 of ACI 318M-08 build-
ing code concerns design requirements of structural plain concrete members. However, according to
ACI Section 22.1.2, unless in conflict with the provisions of Chapter 22, the provisions of ACI Sections
1.1–7.5, 7.6.1, 7.6.2, 7.6.4, 7.7, 9.1.3, 9.2 and 9.3.5 shall also apply to structural plain concrete. Also,
provisions of ACI Chapter 20, ACI Section 21.12.2.5, Sections C.9.2 and C.9.3.5 of ACI Appendix C,
and ACI Appendix D are applied.
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According to ACI Section 22.2.1, use of structural plain concrete shall be limited to: (a) members that
are continuously supported by soil or supported by other structural members capable of providing con-
tinuous vertical support; (b) members for which arch action provides compression under all conditions
of loading; (c) walls and pedestals. Therefore, it is clear that structural plain concrete can be used for
construction of spread footings. However, plain concrete shall not be used for footings on piles (ACI
Section 22.7.3). Generally, plain concrete footings are only practical and economical for small column
or wall loads.
The structural design of plain concrete spread footings should satisfy the following

requirements:

(1) Thickness of structural plain concrete footingsh shall not be less than 200 mm (ACI
Section 22.7.4).

(2) When computing strength in flexure, combined flexure and axial load, and shear, the thicknessh
shall be taken as 50 mm less than actual thickness (ACI Section 22.4.7).

(3) When load factor combinations of ACI Section 9.2.1 are used, the strength-reduction factor Ø
shall be 0.6 for flexure, compression, shear, and bearing (ACI Section 9.3.5). When load factor
combinations of ACI Section C.9.2.1 are used, the strength-reduction factor Ø shall be 0.65 for
flexure, compression, shear, and bearing (ACI Section C.9.3.5).

(4) According to ACI Section 22.5.1, design of cross-sections subject to flexure shall be based on

ØMn ≥Mu the same as Equation 5 9 5 32

If tension controls

Mn = 0 42λ fc Sm 5 33

If compression controls

Mn = 0 85fc Sm 5 34

Sm = The corresponding elastic section modulus.
(5) Maximum factored moment shall be taken at the critical sections defined in ACI Section 22.7.5

(taken at the same critical sections as for reinforced-concrete footings).
(6) According to ACI Section 22.5.4, design of rectangular cross-sections subject to shear shall be

based on

ØVn ≥Vu 5 35

where Vn is computed by

Vn = 0 11λ fc bwh 5 36

for one-way shear, and by

Vn = 0 11 1 +
2
β

λ fc boh 5 37

for two-way shear, but not greater than0 22λ fc boh
where β corresponds to ratio of long side to short side of concentrated load or reaction area.
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(7) Location of critical section for shear shall be measured from face of column, pedestal, or wall for
footing supporting a column, pedestal, or wall. For footing supporting a column with steel base
plates, the critical section shall be measured from location of critical section for moment (ACI
Section 22.7.6.1).

(8) Critical section across the entire footing width for one-way shear is located at a distance h from
face of concentrated load or reaction area (ACI Section 22.7.6.2). For this condition, the footing
shall be designed in accordance with Equation (5.36).

(9) Critical section for two-way shear is located so that the perimeter bo is a minimum, but need not
approach closer than h/2 to perimeter of concentrated load or reaction area (ACI Section 22.7.6.2).
For this condition, the footing shall be designed in accordance with Equation (5.37).

(10) Circular or regular polygon-shaped concrete columns or pedestals shall be permitted to be treated
as square members with the same area for location of critical sections for moment and shear (ACI
Section 22.7.7).

(11) According to ACI Sections 22.7.8 and 22.5.5, factored bearing load, Bu, on concrete at contact
surface between supporting and supported member shall not exceed design bearing strength,
Ø Bn, for either surface as given in Equation (5.28). In case where the supporting surface is wider

on all sides than the loaded area, then Bn shall be multiplied by A2 A1 but not more than 2.
(12) Plain concrete shall not be used for footings on piles (ACI Section 22.7.3).

5.9 Combined Footings

5.9.1 General

Generally, a combined footing is a rectangular or trapezoidal reinforced concrete slab supporting more
than one column in a line. A combined footing supporting two columns only is usually known as ordin-
ary combined footing (Figure 2.3). A combined footing supporting more than two columns is usually
called continuous combined footing or strip footing. Another form of combined footing is strap (or can-
tilever) footing which consists of two or more spread footings connected by a rigid beam called strap.
All these footings are more complicated foundation members than isolated footings due to complexity
of their loading and geometry. Therefore, it is appropriate to conduct a more rigorous structural ana-
lysis. The available methods of analysis are the rigid method (also known as the conventional method)
and the flexible method (also known as the beam on elastic foundation method), as reported by ACI
Committee 336 (1993).

The rigid method assumes that the footing is much more rigid than the underlying soils, which
means any distortions in the footing are too small to significantly impact the distribution of soil bearing
pressure. Consequently, the magnitude and distribution of bearing pressure depends only on the
applied loads and footing geometry, which is assumed either uniform across the bottom of the footing
(if the normal resultant load acts through the centroid) or varies linearly (if the loading is eccentric);
thus simplifying the design computations. This method of design, in spite of its substantial approxi-
mations and inaccuracies, can be considered appropriate for most combined footings.

For large or heavily loaded combined footings such as continuous strip footings or grid foundations,
it may bemore appropriate to conduct structural design based on a beam on elastic foundation analysis,
as described in Section 5.11. This analysis produces more reliable estimates of the shears, moments
and deformations in the footing. However, unfortunately, it is more difficult to implement as it
requires consideration of soil-structure interaction which is not as simple. The analysis requires a com-
puter program for maximum design efficiency, such as the program B-5 (FADBEMLP) given in
Bowles (2001).

Structural designs will be based on the Load and Resistance Factor Design (LRFD) method. Provi-
sions of Chapter 15 of the ACI code, where applicable, shall apply for design of combined footings and

402 Shallow Foundations



mats also (ACI Section 15.1.1). The direct design method of Chapter 13 of the ACI code shall not be
used for design of combined footings and mats (ACI Section 15.10.2).
The following Sections will describe a design procedure, based on the rigid method of analysis, for

each of the ordinary rectangular combined footing, trapezoidal combined footing and strap footing.

5.9.2 Rectangular Combined Footings

According to the conventional method of analysis, the design is conducted on the assumption that the
footing acts as a rigid body, and the contact pressure is assumed to follow a linear distribution, as dis-
cussed earlier. Also, the footing base area and its B and L dimensions should be established such that
the maximum contact pressure (unfactored) at no place exceeds the given allowable soil pressure. The
structural design steps may be summarised as follows:

(1) Determine the appropriate load factor combination, as discussed in Section 5.2. Then, determine
the resultant (R) of all column service (working) loads and moments and the factored resultant
(Rfact) of all column factored loads and moments.

(2) Determine the factored net contact pressure (net qfact) using

A=
R

net qa
=

Rfact

net qfact
Hence,

net qfact = net qa
Rfact

R

(3) Find footing dimensions B and L. First find the location of Rfact by taking moments about the
centre of column 1 (exterior column). Let this location represent the centre of the footing base
area A and the centre of contact pressure instantaneously; hence, L/2 equals the distance between
the centre and the given property line (exterior edge of the footing). Find B = R/L(net qa).

(4) Draw factored load, shear and moment diagrams considering the footing as a reinforced concrete
beam. The diagrams should give shear and moment values at the critical sections and other neces-
sary locations. For convenience, take each column load as a concentrated load acting at the col-
umn centre.

(5) Find the thickness of the footing by calculating d based on analysis for both wide-beam and
two-way shear at the most critical sections.

(6) Find steel for bending in long direction required by the maximum (+) and (−) bending moments.
Steel bars for (+) bending shall be placed in the bottom of the footing near the columns, and those
for (−) bending in the top near or in the centre portion between columns. When it is found that
trying to cut the (−) bars in accordance with ACI code requirements is not worth the extra engin-
eering and bar placing effort, it would be preferable to extend the bars full length of the footing.
Also, enough number of the (+) bottom bars are needed full length of the footing so that the trans-
verse bottom bars (bars in short direction) can be supported. The design should provide number,
size, spacing and length of steel bars for each type of reinforcement, in accordance with ACI code
requirements.

(7) Check the development of the top and bottom steel bars in long direction in accordance with the
requirements of ACI Section 12.2.

(8) Find steel for bending in short direction required at bottom of the footing. For this purpose
(Bowles, 2001), the footing is divided into three zones or strips of the defined widths shown
in Figure 5.10. Zones I and II, usually known as effective zones, should be analysed as beams;
the provided steel should not be less than that required for bending or As(min), whichever is
greater. For zone III (the remaining portions), the provided steel should satisfy As(min) require-
ment only.

Shallow Foundations – Structural Design 403



(9) Check the development of the bottom steel bars in the short direction in accordance with the
requirements of ACI Section 12.2.

(10) Check column bearing on the footing at the location of each column, and design the column-to-
footing dowels. Follow the same procedure used for isolated spread footings, as discussed in
Section 5.4.4.

5.9.3 Trapezoidal Combined Footings

A trapezoidal combined footing may be necessary if a rectangular combined footing cannot provide the
assumed uniform contact pressure. This condition will exist if the column which has too limited space
for a spread footing carries much larger load. In this case the resultant of all column loads (including
moments) will be much closer to the heavier column, and doubling the centroid distance as done for
the rectangular combined footing will not provide sufficient footing length to reach the other column.
In order to obtain uniform contact pressure, the location of centroid can be adjusted to agree with
location of the resultant load by using a trapezoid-shaped base area with dimensions L, B1 and B2,
where B2 is the larger width near or adjacent to the heavier column, as shown in Figure 5.11. Using
the known values of the base area A, footing length L and centroid distance x , the unique values of
widths B1 and B2 are computed by solving the following two equations simultaneously:

A=
B1 +B2

2
L 5 38

x =
L
3

2B1 +B2

B1 +B2
5 39

Equation (5.39) reveals that the solution for B1 = 0 is a triangle and for B1 = B2 is a rectangle. Therefore,
a trapezoid solution exists only for (L/3) < x < (L/2) with the minimum value of L as out-to-out of the
column faces.

When the values of B1 and B2 are computed, the footing is treated similarly to the rectangular com-
bined footing (as a reinforced concrete beam); following the same design steps mentioned in

Zone I Zone III Zone II Zone III

B

c + w1+

0.75d

c ≤ 0.75d

w2+ 1.5d

w2w1c
Col. 1   Col. 2

L

Figure 5.10 Zones (transverse strips) for steel bars at bottom of a rectangular combined footing in short direction.

Col. 2 

x–

x'
Col. 1 

B1 B2

L

S

Rectangular combined footing

is too short to reach Col. 1 due

to limited space at Col. 2            

Figure 5.11 A trapezoidal combined footing supporting two columns.
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Section 5.9.2. However, it must be realised that the contact pressure per unit length of the footing will
vary linearly due to the varying width from B1 to B2. Therefore, the shear diagram will be a second-
degree curve and the moment diagram will be a third-degree curve.
In most cases a trapezoidal combined footing would be used with only two columns as shown in

Figure 5.11, but the solution proceeds similarly for more than two columns.

5.9.4 Strap (or Cantilever) Footings

A strap (or cantilever) footing is a combined footing designed as two spread footings connected by a
rigid beam called strap. Strap footings may have a number of arrangements or configurations (see
Figure 2.5); however, the one which produce the high degree of rigidity is more desirable
(Figure 5.12). Themain purpose in using the strap is to transmit the moment of the eccentrically loaded
exterior footing to the interior column footing so that a uniform contact pressure is assumed beneath
each footing. A strap footing may be used in the case when the distance of the resultant of all column
loads (including moments) from the exterior face of one of the columns (i.e. x ) is less than L/3, where L
is the footing length out-to-out of the column faces. In this case neither rectangular nor trapezoid com-
bined footing can be used. Also, if the distance between columns is relatively large and/or the design soil
pressure is relatively high, a strap footing will be preferable and more economical than rectangular or
trapezoid combined footings. However, due to extra labor and forming costs, a strap footing should be
considered only after a careful analysis shows that the other footing types including isolated footings
(even if oversize) will not be satisfactory.
Refer to Figure 5.12. The distance between columns S, columnwidthsw1 andw2, loads P1 and P2, and

footing projection c have given values. The contact pressure is assumed uniformly distributed beneath
each footing and their resultants R1 andR2 is acting at the footings centre. These resultants are com-
puted only when the distance S is known. Therefore, it will be necessary to assume an appropriate
value for either the eccentricity e or length L1, since S = S − e or S = S − [(L1/2) − (w1/2) − c]. When
the resultants R1 and R2 are found, the footing dimensions are proportioned using the equation
Ri = BLqa, where qa is the design soil pressure.
In conventional design of a strap footing the following points should be considered:

(1) The strap dimensionsmust provide adequate rigidity so that any rotation of the footings is avoided.
According to Bowles (2001), it may be necessary that the design provide (Istrap/Ifooting) > 2.

(2) The strap should not be subjected to any direct soil pressure from below (Figure 5.12). Usually, the
strap weight is neglected in the design.

(3) Width of the strap should be at least equal to the smallest column width. In case the strap depth is
restricted, it would be necessary to increase the width to obtain the necessary rigidity.

Strap 

Space 

P1

R1 = P1(S/S'); strap weight is neglected

R2 = P1+ P2– R1; Ri= BLqa

  e = (L1/2) – (w1/2) – c
P2

L1/2 L2/2

R1 R2

S'

w1 w2

S

c

e

Figure 5.12 Assumed loading and reactions for design of a strap footing.
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(4) The strap shall be designed as a reinforced concrete beam. However, it may be desirable not to use
shear reinforcement in either the strap or the two footings so that structural rigidity of the system is
increased. It is necessary to check depth to span (clear span between footings) to see if it is a deep
beam (ACI Section 10.7).

(5) The strap must be properly connected to the footing and column by sufficient dowels so that the
system acts as a unit.

(6) An appropriate value for either the eccentricitye or length L1 must be selected so that the footing
widths B1 and B2 will not be greatly different. This is necessary to control or reduce footing dif-
ferential settlement.

(7) Footing thicknesses are designed for the worst case of two-way action or wide-beam shear. The
design wide-beam shear values are obtained from the factored shear diagram.

(8) Design footing reinforcing as a spread footing for both directions.
(9) It is not possible to obtain a unique design, since the footing dimensions are dependent upon the

designer’s arbitrarily selected value of the eccentricity e or length L1.

5.10 Modulus of Subgrade Reaction

All flexible methods of structural analysis require the relationship between deflection (settlement) and
soil pressure be defined. This relationship is known asmodulus (or coefficient) of subgrade reaction, Ks,
expressed as:

Ks =
q
δ

5 40

where q = bearing pressure; δ deflection (settlement)
It is important to realise that the modulus of subgrade reaction is not a constant for a given soil, but

rather depends on several factors, such as load intensity, size and shape of the foundation base and
foundation embedment depth. Furthermore, it is different for different points at the base of the same
foundation. Also, it should be clear that the load-settlement relationship of a soil is non-linear, so the Ks

value in the above equation must represent some assumed linear function, such as an initial tangent or
secant modulus, as shown in Figure 5.13.

The modulus of subgrade reaction may be estimated on the basis of field experiments, such as plate-
load tests, which yield load-deflection relationships, or on the basis of known soil characteristics. For
small foundations of width B less than about 1.5 m, Ksmay be estimated from results of plate-load tests
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Figure 5.13 A non-linear q − δ relationship, with assumed linear functions for the modulus of subgrade
reaction, Ks.
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as suggested by Terzaghi (1955). He proposed certain equations for estimating Ks for full-sized footings
on clay and sand soils (see Das, 2011; Bowles, 2001). However, even for small-sized footings, the evalu-
ation of Ks involves many uncertainties, and the customary procedure for determining Ks on the basis
of small-scale load tests is subject to all limitations of the plate-load test described in the discussion of
Problem 1.9. For mat foundations, Ks cannot be reliably estimated on the basis of field plate-load tests
because the scale effects are too severe.
According to Vesic (1961), the modulus of subgrade reaction could be computed as

Ks =
Ks

B
=
1
B

0 65
EsB4

Ef If

12 Es
1−μ2s

5 41

where

Ks = modulus of subgrade reaction, in units of Es
Ks = modulus of subgrade reaction, in units of unit weight
Es = deformation modulus of soil
Ef = modulus of elasticity of foundation material
μs = Poisson’s ratio of soil
If = moment of inertia of the cross-section of the foundation
B = foundation width

For all practical purposes, value of 0 65
EsB4

Ef If

12
can be approximated as one; hence, the above Vesic

equation reduces to

Ks =
Es

B 1−μ2s
5 42

Equation (5.42) shows a direct relationship between Ks and Es. According to Bowles (2001), one may
rearrange the general equation of immediate settlement, Equation (3.5), using Es = 1−μ2s Es, and
obtain

Si = δ= q×B× Es ×m× IS × IF

Hence,

Ks =
q
δ
=

1
B× Es ×m× IS × IF

5 43

Carefully note in using Equation (5.43) that its basis is in the settlement equation of Chapter 3,
Equation (3.5), and use B, m, IS and IF as defined there.
Also, Bowles has suggested the following equation for approximating KS from the allowable bearing

capacity qa provided by the geotechnical engineer:

Ks = 40 SF qa 5 44

where

KS = modulus of subgrade reaction in kN/m3.
SF = safety factor
qa = allowable bearing capacity in kPa
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Tables 5.3 and 5.4 provide approximate ranges of KS values for sandy and clayey soils which may be
used as a guide and for comparison when using the approximate equations.

The KS values of Table 5.4 were obtained from results of load tests using square plates of size
0.3 × 0.3 m.

Equation (5.44) is based on relationships: qa =
qult
SF

; Ks =
qult
δ
; and qult is at a settlement δ =

0.0254 m (or 25 mm). According to Bowles, for δ = 6, 12, 20 mm and so on, the factor 40 can be
adjusted to 165, 83, 50 and so on. Factor 40 is reasonably conservative but smaller assumed displace-
ments can always be used.

Table 5.3 Values of modulus of subgrade reaction, Ks (from
Bowles, 2001).

Soil Ks, kN/m
3

Loose sand 4800–16 000

Medium dense sand 9600–80 000

Dense sand 64 000–128 000

Clayey medium dense sand 32 000–80 000

Silty medium dense sand 24 000–48 000

Clayey soil:

qa ≤ 200 kPa 12 000–24 000

200 < qa ≤ 800 kPa 24 000–48 000

qa > 800 kPa >48 000

Table 5.4 Typical values of modulus of subgrade reaction,
Ks (from Das, 2001).

Soil Ks, MN/m3

Dry or moist sand:

Loose 8–25

Medium 25–125

Dense 125–375

Saturated sand:

Loose 10–15

Medium 35–40

Dense 130–150

Clay:

Stiff 10–25

Very stiff 25–50

Hard >50
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5.11 Beams on Elastic Foundations

When flexural rigidity of a continuous strip footing (either isolated or taken from a mat) is taken into
account, the foundation is considered as an elastic (or flexible) member interacting with an elastic soil;
analysed on the basis of some form of a beam on elastic foundation. The analysis may be based on:
(1) classical solutions, (2) discrete-element formulations.

(1) Classical solutions.
A classical solution (also known as classical Winkler solution) is an approximate flexible method of
analysis in which the soil is considered to be equivalent to a bed of infinite number of coil springs
(Figure 5.14) used to compute the shears, moments, and deformations in the supported structural
base. This equivalent foundation is sometimes referred to as the Winkler foundation because the
earliest use of these “springs” to represent the interaction between soil and foundations has been
attributed toWinkler (1867). The elastic stiffness of these assumed springs represents the modulus
of subgrade reaction, KS.

Refer to Figure 5.15. The beam has an infinite length and a width B; rests on an elastic soil
equivalent to an infinite number of elastic springs. Using deflection δ = y, soil reaction per unit
length of the beam = q, and Ks =Ks B, then from Equation (5.40)

q= −y Ks 5 45

From the mechanic of materials

M = Ef If
d2y
dx2

; V =
dM
dx

; q=
dV
dx

Spring with a

stiffness = Ks

Flexible beam

or strip footing

P1 P2
P3 P4

Figure 5.14 A flexible foundation on a “bed of springs” (Winkler concept).

P P
A
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x
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Sec. A – A

q = y K'
sB

Figure 5.15 Beam of infinite length on elastic foundation.
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hence, q= Ef If
d4y
dx4

, and from Equation (5.45)

Ef If
d4y
dx4

= −y Ks 5 46

where

M = moment at any section
V = shear force at any section
Ef = modulus of elasticity of the material of the beam
If = moment of inertia of the cross-section of the beam

The solution of Equation (5.46) is

y = eλx C1 cosλx +C2 sinλx + e−λx C3 cosλx +C4 sinλx 5 47

where factor λ=
Ks

4Ef If
4 =

KsB
4Ef If

4

The factor λ is impotant in determining whether a foundation should be analysed on the basis of
the conventional rigid procedure or as a beam on an elastic foundation (Section 5.12.1). It has been
suggested that rigid members of length L should have λL < (π/4), flexible members have λL > π, and
members of intermediate flexibility have (π/4) < λL < π. However, these criteria are of limited
application because of the number of loads and their locations along the member.

The closed-form solution of the basic differential equations concerning the deflections, slopes,
moments and shears in the beam of Figure 5.15, for several loadings, is given in Table 5.5.

Deflections, moments and shears in a beam of finite length L, rests on an elastic foundation and
carries a concentrated load P at any point (Figure 5.16), are given in Table 5.6. The equations were
developed by Hetenyi (1946) using the Winkler concept. The distance x to use in the equations is
measured from the end of the beam to the point for which the deflection, moment, or shear is
desired. For x < a, use the equations as given, and measurex from E (Figure 5.16). For x > a, replace
a with b in the equations, and measure x from F. Applying the boundary conditions, as illustrated
in Figure 5.16, the equations of Table 5.6 can be expressed as

y =
Pλ
Ks

A M =
P
2λ

B V = PC

where the coefficients A , B and C are the values for the hyperbolic and trigonometric remainder
of the equations. These coefficients are so complicated that a computer program will be required to
carry out the design computations.

The classical Winkler solutions, being of closed form, suffer from many problems and difficul-
ties. According to the classical approach each spring is linear and acts independently from the
others, and that all of the springs have the same KS. In other words, it is difficult to allow for change
in subgrade reaction along footing. In reality, the load-deformation behavior of soil is nonlinear,
and a load at one point on a footing induces deflection both at that point and in the adjacent parts
of the footing. Another problem with the classical solution it is difficult to account for boundary
conditions of known rotation or deflection at desired points. Also, it is difficult to apply multiple
types of loads to a footing. The classical solution assumes weightless footing, but weight will be a
factor when footing tends to separate from the soil. Due to all these shortcomings, the classical
approach is rarely a better model than a discrete-element analysis.
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Table 5.5 Closed-form solution of a beam of infinite length on an elastic
foundation (from Bowles, 1982).

Concentrated load at end Moment at end

y =
2V1λ

ks
Dλx y =

−2M1λ
2

ks
Cλx

θ =
−2V1λ

2

ks
Aλx θ =

4M1λ
3

ks
Dλx

M =
−V1

λ
Bλx

M = M1Aλx

Q = −V1Cλx Q = −2M1λBλx

Concentrated load at centre, + Moment at centre, + ↷

⃕

y =
Pλ
2ks

Aλx y =
M0λ

2

kx
Bλx deflection

θ =
−Pλ2

kri
Bλx θ =

M0λ
3

ks
Cλx slope

M =
P
4λ

Cλx M =
M0

2
Dλx moment

Q=
−P
2

Dλx Q=
−M0λ

2
Aλx shear

The A, B, C, and D coefficients (use only + x) are as follows:

Aλx = e−λx(cos λx + sin λx)

Bλx = e−λx sin λx

Cλx = e−λx(cos λx − sin λx)

Dλx = e−λx cos λx

Elastic curve 

L

a b

x
P

F

B

y
x

E

y

+ y

K's = KsB

q = yK's

Figure 5.16 Beam of finite length on elastic foundation.
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(2) Discrete-element formulations.
Among the discrete-element methods of analysis, the finite-element method (FEM) is the most
efficient and reliable means for developing solutions to problems of beams on elastic foundations
[based on Equation (5.46)]. With this method it becomes easy to overcome most of the above-
mentioned shortcomings the classical solutions suffer from. However, the FEM requires a digital
(or personal) computer. It is practical only when written into a computer program, because there
are usually too many equations for hand solving. Compared to the finite-difference method
(FDM), the FEM is more capable and adaptable because an equation model for one element
can be used for all the other elements in the beam model. The FDM requires all the elements have
the same length and cross-section, otherwise great difficulty will arise. Also, it requires a different
equation formulation for end elements than for the interior ones, and modeling boundary condi-
tions is not easy. However, the finite difference method may provide good results for the approxi-
mations used, and it does not require much computer memory.

The FEM divides the beam into a number of elements as desired. Each element has certain
defined dimensions, a specified stiffness and strength, and is connected to the adjacent elements
at certain points or nodes in a specified way. The beam elements and their nodal points are num-
bered, and connected to the ground through a series of “springs”, which are defined using the
modulus of subgrade reaction. Typically, one spring is required at each nodal point, as shown
in Figure 5.17. Thus, a beam-finite element model is produced. The loads on the beam include
the externally applied column loads and the weight of the beam itself. These loads cause downward
movement of the beam elements (or the nodes) which is resisted by the supporting springs. These
resisting forces, along with the stiffness of the beam, can be evaluated simultaneously using matrix
algebra, which allows us to compute the induced deflections, moments and shears in the beam. The
fundamental components (developed equations and element matrices) of FEM are found in
Bowles (2001), and if more background is required the reader is referred to references, such as
Zienkiewicz (1977), Cook (1974), Bowles (1974a) or Wang (1970). There are computer programs,
such as the program B-5 (FADBEMLP) given in Bowles (2001), which can be used to illustrate the
procedure.

Table 5.6 Closed-form solution of a beam of finite length on an elastic foundation (from Bowles, 2001).

Deflection y =
Pλ

ks sinh2λL−sin2λL
2cosh λx cos λx sinh λL cos λa cosh λb−sin λL cosh λa cos λb

+ cosh λx sin λx + sinh λx cos λx sinh λL sin λa cosh λb−cos λa sinh λb

+ sin λL sinh λa cos λb−cosh λa sin λb

Moment M =
P

2λ sinh2λL−sin2λL
2sinh λx sin λx sinh λL cos λa cosh λb−sin λL cosh λa cos λb

+ cosh λx sin λx−sinh λx cos λx

× sinh λL sin λa cosh λb−cos λa sinh λb + sin λL sinh λa cos λb−cosh λa sin λb

Shear Q=
P

sinh2λL−sin2λL
cosh λx sin λx + sinh λx cos λx

× sinh λL cos λa cos λb−sin λL cosh λa cos λb

+ sinh λx sin λx sinh λL sin λa cosh λb−cos λa sinh λb

+ sin λL sinh λa cos λb−cosh λa sin λb
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5.12 Mat Foundations

5.12.1 General

Mat, raft and floating foundations were described in some detail in Section 2.2. Usually, a mat foun-
dation is a reinforced concrete slab, relatively thick and with or without depressions or openings, sup-
porting an array of columns in several lines both ways. Most mat foundations are supported directly on
the underlying soils. However, mats may be supported on piles, or, partially on the underlying soil, and
use piles to carry the balance of the load. These foundation options may be necessary when the contact
pressure is too high or the underlying supporting soil is too compressible; that a soil-supported mat
may experience large excessive settlement. This Section concerns structural design of mat foundations
supported on soils. Depending upon the flexural rigidity of foundation, the methods of design of mat
foundations can be classified into the following two categories:

(1) Rigid (or conventional) methods.
As mentioned earlier (Section 5.9.1), the conventional method assumes that the base (mat) is per-
fectly rigid and that the contact pressure follows a planar distribution; its centroid coincides with
the line of action of the resultant force of all loads acting on the base. This method does not con-
sider redistribution of contact pressure beneath the mat, and it assumes that the individual col-
umns will not settle differentially. These simplifying assumptions make it easy to compute the
shears, moments, and deflections using the principles of structural mechanics. However, although
the conventional analysis is appropriate for isolated and most of combined footings, it does not
reliably model mat foundations because the rigidity assumption, inmost of cases, is no longer valid.
A continuous strip footing (or a mat which consists of continuous strip footings in both directions)
having adjacent column loads and column spacing vary by not more than 20% of the greater value,
and the average of two adjacent spans is less than 1.75/λ, can be considered rigid and the variation
of soil pressure determined on the basis of simple statics (ACI Committee 336). The conventional
design method may be adequate where these rigidity requirements are satisfied. The factor λ is

λ=
KsB
4EcI

4 5 48

where

KS = coefficient (or modulus) of vertical subgrade reaction
EC = modulus of elasticity of concrete
I = moment of inertia of the beam (strip) section

The geotechnical engineer should furnish the designer KS values even when a simplified design
method is used. The design procedure will be described in Section 5.12.2.

2  3 4 

Node numbers Element numbers 

1 (1)

Ks1 Ks2 Ks3 Ks4

L1 L2 L3

(2) (3)

Figure 5.17 A continuous beam or strip footing on elastic foundation (bed of springs) divided into a number of
beam finite elements.
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(2) Flexible methods.
For general cases falling outside the rigidity limitations given in method (1), it is recommended to
design the mat as a flexible plate supported by an elastic foundation (the soil). Flexible methods
include the following:
(A) Approximate flexible method. It is primarily based on the theory of plates on elastic foun-

dation, using the Winkler’s concept (i.e., the plate or mat rests on a bed of “springs” which
have the same KS). This method was proposed by ACI Committee 336 (1993) to calculate
moments, shears, and deflections at all points in a mat foundation with the help of charts.
The design procedure will be briefly described in Section 5.12.3.

(B) Discrete (finite) element methods. In these methods the mat is divided into a number of dis-
crete elements using grid lines. These methods use modulus of subgrade reaction KS as the soil
contribution to the structural model. There are three general discrete element formulations
which may be used:

• Finite difference method (FDM)

• Finite element method (FEM)

• Finite grid method (FGM).

5.12.2 Design Procedure for the Conventional (Rigid) Method

The procedure for design a mat foundation, using the conventional method, consists of the follow-
ing steps:

(1) All the columns and walls are numbered and their total unfactored (working) axial
loads, moments and any overturning moment due to wind or other causes, are calculated sep-
arately. The mat self-weight, however, may not be considered because it is taken directly by
the supporting soil. It may be useful if a suitable table is used for this purpose. The table should
also contain summations of all the vertical loads and moments, that is Σ (column loads), ΣMx

and ΣMy.
(2) The line of action of the resultant R of all the axial loads and moments is determined using statics;

summing moments about two of the adjacent mat edges, and computing the x and y moment
arms of the resultant force. Then, the eccentricities ex and ey are computed (Figure 5.18a).

(3) Determine the maximum contact pressure (unfactored), qmax, below one of the mat corners using
Equation (2.7), repeated here for convenience.

q=
R
BL

1 ±
6ex
B

±
6ey
L

Equation 2 7

In this equation, the B and L dimensions are in x and y directions, respectively.
(4) Compare the computed qmax with the allowable soil pressure qa furnished by the geotechnical

engineer to check if qmax ≤ qa.
(5) Compute the contact pressure (unfactored) at selected points beneath the mat. These selected

points are corners of continuous beam strips (or combined footings with multiple columns)
to which the mat is divided in both x and y directions, as shown in Figure 5.18b. The contact
pressure q at any point below the mat is computed using Equation (2.6), repeated here:

q x, y =
R
A
±
My

Iy
x ±

Mx

Ix
y Equation 2 6

(6) Check static equilibrium of each individual beam strip, and modify the column loads and contact
pressures accordingly. Since a mat transfers load horizontally, any given strip may not satisfy a
vertical load summation (vertical equilibrium) unless consideration is given to the shear transfer
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between strips. However, each strip acts independently as assumed without considering any shear
transfer. Therefore, vertical equilibrium may not be satisfied. As Bowles (1982) suggests, we may
average the column loads and soil pressures so a strip is in vertical equilibrium. For example, take
strip AEHD (Figure 5.18b):

Let the average soil (contact) pressure on the strip be qav, and the strip area be A; hence, the
upward soil reaction is Aqav. Let the downward column loads on the strip be Σ column loads.
Therefore, the average load on the strip is

Qav =
1
2
Σ column loads +Aqav 5 49

The column load modification factor is

MF col =
Qav

Σ column loads
5 50

Each column load on the strip should be multiplied by the factor MF(col.). The contact pressure
modification factor is

MF soil =
Qav

Aqav
5 51a

Assume qav represents the modified average soil pressure, then

qav = qav
Qav

Aqav
=

MF col Σ column loads

A
5 51b

Note if the resultant of the modified column loads (i.e. column loads) does not fall at the centre
of strip, a non-uniform soil pressure diagram must be used; the soil pressure at any point is com-
puted using Equation (2.6).

(a) (b)

A E F B

J

L

N

CGHD

A

y

B

R
x–

y–

L x

D
y

B

C
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Figure 5.18 Amat foundation supporting 12 columns. (a) The resultant R has eccentricities ex and ey. (b) The mat is
divided into beam strips in both directions.
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(7) Change each modified column load (dead load D + live load L) to factored load. For example, a
factored modified column load may be computed as

1 2 MF col D + 1 6 MF col L

However, in order to avoid repetition, this computation can be done directly as soon as the factor
MF(col.) is determined; using the factored modified load as

MF col 1 2D+ 1 6L

Compute modified factored contact pressure, modified qfactored, as follows:
If the resultant of the factored modified loads (modified Rfactored) passes through the centre of

strip, the modified qfactored is simply given by

modified qfactored =
modifiedRfactored

A
5 52

If the modified Rfactored has an eccentricity eL (in x or y direction), modified qfactored at any point
below the strip is given by

modified qfactored =
modifiedRfactored

A
±

eL modifiedRfactored

IB
l 5 53

where

l = distance of point from the strip centre in L direction
IB =moment of inertia of the strip area about an axis passes through the strip centre in B direction

(8) Draw factored load, shear and moment diagrams for the continuous beam strips in both
directions.

(9) Determine the minimum mat thickness considering punching shear (two-way or diagonal ten-
sion shear) at critical columns, based on factored column load and shear perimeter, similarly as
for a spread footing. Note that the factored actual column load should be used and not the fac-
tored modified column load. Columns adjacent to a mat edge often control the mat depth d, and
may require investigation of a two-sided (corner column) and three-sided (side column) diagonal
tension shear perimeter. Also, the condition of unbalanced moment transfer should be investi-
gated, and the design must satisfy the requirements of ACI Sections 11.11.7.1.

It is common practice not to use shear reinforcement so that depth is a maximum. This
increases the flexural stiffness (rigidity) and increases the reliability of using Equation (2.6) or
Equation (2.7).

(10) Check the computed mat depth d considering beam shear (one-way shear) at the most critical
section.For this purpose, the maximum factored shear value may be obtained from the factored
shear diagram of the most critical strip. Furthermore, some designers also perform this checking
computations at most critical section in a given direction taking the mat as a whole.

(11) Obtain the maximum factored positive and negative moments per unit width using the factored
moment diagrams of the strips in each direction.

(12) Determine the positive and negative reinforcement required in each direction in accordance with
the requirements of ACI 318M-08.

(13) Check development of the reinforcement in both directions in accordance with the requirements
of ACI code-Chapter 12.

(14) Check column bearing on the mat at critical column locations and design the column-to-mat
dowels. Follow the same procedure used for isolated spread footings, as discussed in Section 5.4.4.
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5.12.3 Design Procedure for the Approximate Flexible Method

The procedure for design a mat foundation, using the approximate flexible method, consists of the
following major steps:

(1) Find the required total thickness t of the mat. The computations proceed exactly in the same
manner as that described in step 9 for the conventional rigid method.

(2) Determine the flexural rigidity D of the mat as

D=
Ef t3

12 1−μ2f
5 54

where

Ef = modulus of elasticity of foundation material
μf = Poisson’s ratio of foundation material.

(3) Determine the radius of effective stiffness L as

L =
D
Ks

4 5 55

where KS = coefficient of subgrade reaction.

The radius of influence of any column load is on the order of 3L to 4L .
(4) Determine the radial moment Mr and tangential moment Mt at any point (in polar coordinates)

caused by a column load P using the following equations:

Mr = −
P
4

Z4−
1− μf
x

Z3 5 56

Mt = −
P
4

μf Z4−
1− μf
x

Z3 5 57

Where

Zi = factors depend on x, obtained from Figure 5.19

x = distance ration
r
L

shown in Figure 5.19

In rectangular coordinates the above moment equations can be written as

Mx =Mrcos
2θ +Mtsin

2θ 5 58

My =Mrsin
2θ +Mtcos

2θ 5 59

where θ is the angle which the radius r makes with x – axis (Figure 5.19).
(5) Determine the shear force V per unit width of the mat caused by a column load as

V = −
P
4L

Z4 5 60

(6) Determine the deflection δ caused by a column load as

δ=
P L 2

8D
at location of a column load 5 61
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δ=
P L 2

4D
Z3 at any point a distance r from a column load 5 62

(7) When the zones of influence of two or more columns overlap, the method of superposition can be
used to obtain the net values of responses (moment, shear and deflection) at any desired point.

(8) If the free edge of the mat is at a distance less than the radius of influence from an individual col-
umn load, a correction should be applied to the calculated response net values, as follows:
(a) Responses at the edge points of the mat due to column loads within the radius of influence

should be calculated by Equations (5.56–5.62).
(b) Assuming strips of 1 m width as semi-infinite beams, shear and moments equal and opposite

to those obtained in (a) should be applied as edge loads and their effects at various points
superimposed on the net value of the respective response.

(c) Moment, shear, and deflection in a semi-infinite beam are

M =M1 Aλx−
P1
λ
Bλx V = −2M1 λBλx−P1Cλx

δ= −
2M1 λ

2

Ks
Cλx +

2P1 λ
Ks

Dλx
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Figure 5.19 Zi factors for computing moments, shears, and deflections in a flexible mat (reproduced from Bowles,
2001; after Hetenyi, 1946).
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Where M1, P1 = moment and shear, respectively, from (a)

λ=
Ksb
4EcIb

0 25

b = strip width (1 m)
Ib = moment of inertia of the strip
Aλx; Bλx; Cλx; Dλx = coefficients obtained from tables or figures (see Hetenyi, 1946).

5.12.4 Finite Difference Method for the Design of Mat Foundations

The following fourth-order differential equation, which corresponds to Equation (5.46), concerns
deflection of a mat foundation, considered as a flexible plate:

∂4w
∂x4

+ 2
∂4w

∂x2∂y2
+
∂4w
∂y4

=
q
D
+

P
D ∂x ∂y

5 63

where

w = deflection (contact settlement)
q = subgrade reaction per unit area of mat (contact pressure)
D = flexural rigidity of mat
P = concentrated load at a given point

The mat rests on an assumed bed of uniformly distributed coil springs representing the supporting soil.
The modulus of subgrade reaction KS at a point is represented by the elastic stiffness of a spring at that
point. It is common to use the concept of modulus of subgrade reaction in the solution of this type of
problem. Because the subgrade reaction becomes converted to an equivalent spring applied at the node
of interest, the analytical methods for mat foundations using this concept are considerably simplified
over other methods of computations.
When a mat is divided into a grid of elements of (rh × h) dimension (Figure 5.20), Equation (5.63)

can be reproduced in a finite- difference equation for deflection at an interior point O, as follows:

6
r4

+
8
r2

+ 6 wO + −
4
r4
−
4
r2

wL +wR + −
4
r2
−4 wT +wB

+
2
r2

wTL +wTR +wBL +wBR +wTT +wBB +
1
r4

wLL +wRR

=
qh4

D
+
Ph2

rD

5 64

when r = 1, that is using a grid of square elements, Equation (5.64) becomes

20wO−8 wL +wR +wT +wB + 2 wTL +wTR +wBL +wBR

+ wTT +wBB +wLL +wRR =
qh4

D
+
Ph2

D

5 65

Since q = − KswO, Equation (5.65) becomes

20 +
Ksh4

D
wO−8 wL +wR +wT +wB

+ 2 wTL +wTR +wBL +wBR + wTT +wBB +wLL +wRR =
Ph2

D

5 66
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The notations wO, wT, wR,…, represent deflection at points O, T, R,…. Suffixes L, T, R and B are
respectively stand for left, top, right and bottom, as shown in Figure 5.20. Equation (5.66) is diagram-
matically represented by Figure 5.21. For a given mat foundation, one difference equation can be
written for each point (node) of the network. For points at or near free edges, the difference equations
are modified to account for boundary conditions. By solving these simultaneous equations, the
deflections at all points are computed. The computations can be carried out rapidly using a digital
computer.

By using finite-difference operators which relate moments to deflections, bending moments
per unit width in x or y direction can be determined for any point in the network. For example,
the total moment per unit width in L − R direction for an interior node O (Figure 5.21) is deter-
mined as

ML−R = −
D
h2

wL−2wO +wR + μ wT −2wO +wB 5 67

The finite-difference method was extensively used in the past, but is sometimes used as a check on
alternative methods where it is practical. It is reliable if the mat can be modeled using a finite-difference
grid. It does not require massive computer resources, since the input data are minimal compared with
any other discrete method. However, it is very difficult for the method to model boundary conditions

rh rh rh rh

TT

TL T TR

LL L 0 R RR

BL B BR

BB

h

h

h

h

Figure 5.20 A finite-difference grid of elements of rh × h dimension shows points of deflection, wi, included in
Equation (5.64).

–8wL –8wR0

+2wTL

+1wTT
h

h
+2wTR–8wT

+1wLL +1wRR

Ph2

D

+2wBR+2wBL

+1wBB

–8wB

=+ [20 + (Ksh4 / D)]w0

Figure 5.21 Diagrammatical representation of the finite-difference equation, Equation (5.66), for deflection at an
interior node, using a grid of square elements.
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for column fixity, to allow for holes, notches, or re-entrant corners. Also, it is difficult to account for
moments applied at nodes (such as columnmoments) since the difference model uses moment per unit
of width.
There are FDM computer programs, such as program FADMATFD, B19, which can be used to illus-

trate the procedure. Bowles (2001) has given an example problem (Example 10-4) which illustrates
typical input and output from this FDM program. All the necessary equations for various nodes
and a FDM program for their solutions are given in Bowles 1974a.

5.12.5 Modulus of Subgrade Reaction and Node Coupling of Soil Effects for Mats

It is very common to use the concept of modulus of subgrade reaction in the discrete element analyses
for mat foundations. As it has already been mentioned in Section 5.10.4, the use of KS in analysing mats
is rather widespread because of the greater convenience of this parameter. These analyses use KS to
compute the node springs. At any node, a node spring (or spring constant) K is simply equals to
the product of the node KS and the contributory area from any element, expressed as

Ki = Ks ×Contributory area in units of kN m 5 68

Since the result of this product has units of a “spring” it is commonly called a node spring.
Figure 5.22 shows grid lines dividing an irregular-shaped mat into discrete elements. The spring

constant K at various nodal points is computed as follows:
Assume the area of any element such asA; B; C; and so on equals AA;AB;AC; and so on. Also, assume

the modulus of subgrade reaction within any element A; B; C; and so on equals KA; KB; KC; and so
on. Then:

K1 =
KAAA

3
+
KBAB

4
, K2 =

KBAB

4
+
KCAC

4
, K3 =

KCAC

4
+
KDAD

4
, K4 =

KDAD

4
,

K5 =
KAAA

3
+
KEAE

3
+
KFAF

4
, K6 =

KAAA

3
+
KBAB

4
+
KFAF

4
+
KGAG

4
,

K7 =
KBAB

4
+
KCAC

4
+
KGAG

4
+
KHAH

4
, K8 =

KCAC

4
+
KDAD

4
+
KHAH

4
+
KIAI

4
,

K9 =
KDAD

4
+
KIAI

4

When the coil springs with constant KS are acting independent of each other, the bed of springs sup-
porting the mat is termed a “Winkler” foundation (see Section 5.11). Springs of this foundation are
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Figure 5.22 Grid lines dividing an irregular shaped mat into discrete elements.
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uncoupled; hence, the deflection of any spring is not influenced by adjacent springs. If we compute
node springs based on contributing node area, as just outlined above, analysis of a uniformly loaded
mat (base of an oil tank) will produce a constant settlement profile across the slab with uncoupled
springs and a dishing settlement profile with coupled springs, as shown in Figure 5.23. Boussinesq the-
ory indicates the dishing profile is correct. Because of this major shortcoming associated with
uncoupled springs, some designers do not like to use the concept of KS, preferring instead to use a
discrete element method of the elastic foundation bed with ES and μS as elastic parameters. This choice
does somewhat couple the effects; however, the computations are extensive and only as good as one’s
estimate of ES and μS. It was already shown in Section 5.10 that there is a direct relationship between
these elastic parameters and KS. Since the elastic parameters ES and KS usually increase with depth from
overburden and preconsolidation it appears this may be lessen the effect of ignoring coupling
(Christian, 1976).

More accurate analysis will be achieved when the node springs are coupled, as shown in Figure 5.24.
Accordingly, the vertical springs no longer act independently, and the uniformly loaded mat of
Figure 5.23 exhibits the desired dish shape. In principle, this approach is more realistic than the Wink-
ler analysis, but it is difficult to select appropriate KS values for the coupling springs, and the equations
to be programmed become much more complicated. Additionally, fractions of the springs Ki appear in
off-diagonal terms of the stiffness matrix, making it difficult to perform any kind of nonlinear analysis
(soil-base separation or excessive deformation).

In order to avoid the difficulties of true coupling and at the same time overcome the lack of
coupling in the Winkler method, several ways have been proposed (Bowles, 1986; Liao, 1991; Hor-
vath, 1993; ACI Committee 336) which indirectly allow for coupling (approximately). These proposed
ways are known as the pseudo-coupled method. This method uses “springs” that act independently, but
have different KS values depending on their location on the mat. In order to produce the actual dish-
shaped deformation (settlement) in a uniformly loaded mat resting on a uniform soil, the method
requires the mat area be concentrically zoned using softer springs in the innermost (central) zone
and transitioning to the outer (exterior) zone. Some authorities recommend using KS values along
the mat perimeter be about twice those in the centre. In case concentrated loads, such as column loads,
also are present, the resulting deformations are automatically superimposed on the dishing deform-
ation profile.

There are different methods to assign a KS value to each zone so that approximate coupling can be
done. The following two methods may be used:

(1) Compute values of KS at 1/4 or 1/8 points, depending on the mat size and L/B value, along centre
line of the mat area in L or B direction as applicable. Subsequently, the mat plan is zoned with

(a) (b)

Figure 5.23 Settlement of a uniformly loaded flexible mat on a uniform soil: (a) constant settlement, Winkler
concept; (b) dishing settlement, actual.

Mat 

Vertical spring 

Coupling spring 

Figure 5.24 Soil–structure interaction using coupled springs.
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different values of KS, as shown in Figure 5.25. Value of KS at any point may be computed from
Equation (5.43), repeated here for convenience, as follows:

Ks =
q
δ
=

1
B× Es ×m× IS × IF

Es =
1−μ2s
Es

; δ= Si

Carefully note in using Equation (5.43) that its basis is Equation (3.5) of Chapter 3, and use B,m, IS,
and IF as defined there.

Consolidation settlement Sc, which is a time-dependent effect, can be incorporated into the mat
analyses in an approximate manner using a revised modulus of subgrade reaction Ks . This param-
eter can be computed from the basic definition of KS as follows:

Ks =
base contact pressure remains constant

total settlement
=

q
ST

=
q

Si + Sc
5 69

Ks =
q
Si
, as indicated above. Hence,

Ks =
Ks Si
Si + Sc

5 70

As before, the mat plan is zoned with different values of Ks (Figure 5.25). If the computer output
shows that the contact pressure in the zone of interest is much different from the consolidation
pressure q (which may change as computations progress), a new value of Sc would have to be
estimated and the problem recycled.

(2) This method also requires that the mat plan be divided into three or more concentric zones. The
innermost (central) zone should be about half as wide and half as long as the mat, as shown in
Figure 5.26. Then, a KS value shall be assigned to each zone using softer springs in the innermost
zone and transitioning to the outermost (exterior) zone. Usually, the outermost zone will have a
KS about twice as large as that of the innermost zone. For example, assume the central zone
(Figure 5.26) has KS equals to Ks, A. Exterior and interior zones may have modulus of subgrade

Exterior zone

L

A B C D E B

Interior zone

  Central zone

Ks and K'  s values

of the edge points

A and E are used

for the nodes of

the exterior zone

Ks and K'  s values

of the    points

B and D are used

for the nodes of

the interior zone

1
4

Ks and K'  s values

of the center point

C are used for the

nodes of the

central zone

Figure 5.25 A rectangular mat foundation divided into three zones for the pseudo-coupled analysis.
The coefficients of subgrade reaction Ks andKs are assigned for the nodes of each zone.
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reaction equals to 2Ks,A and 1.5 Ks,A, respectively. Summation of product of each zone area and
its KS should equal to the product of the mat area and Ks,av. Average modulus of subgrade
reaction Ks,av is usually furnished by the geotechnical consultant. Thus, KS for each zone will
be computed.

According to ACI Committee 336 (1993), the pseudo-coupled method produced computed
moments 18 to 25 percent higher than those determined from the Winkler method, which is an
indication of how unconservative Winkler method can be.

5.12.6 Finite Element Method for the Design of Mat Foundations

Finite element method (FEM) is a computer-based technique which can model soil–mat interaction
with good realism over a wide range of practical conditions. Use of finite element method is a necessity
for the detailed analysis of those cases where it is unrealistic to assume a mat as being either infinitely
rigid or infinitely flexible. The usual manner of carrying out an analysis using FEM involves use of plate
bending finite elements to model the mat. These elements, rectangular and/or triangular in shape, are
defined by a two-dimensional mesh with specific node points. The surface of the soil under the mat is
defined by an equivalent mesh and node points. In order to include soil contribution to the structural
model, the mat elements are connected to the ground through a series of “springs,” which are defined
using the modulus of subgrade reaction KS (Section 5.10.5). Typically, one spring is located at each
corner of each element. The finite element method is the most efficient means for analysing mats with
curved boundaries or notches with re-entrant corners as shown in Figure 5.27a. Generally, finite elem-
ent models require gridding that produces large number of elements, nodes, and equations. For this
reason, the FEM is computationally intensive. The simple gridding of Figure 5.27b produces 70 elem-
ents, 82 nodes and 246 equations.

Finite element programs use displacement functions to produce conforming inter-element
compatibility at nodes and along element boundaries. The displacement function for a plate finite
element is

u = a1 + a2X + a3Y + a4X2 + a5XY + a6Y2 + a7X3 + a8X2Y +

a9XY2 + a10Y3 + a11X4 + a12X3Y + a13X2Y2 + a14XY3 + a15Y4
5 71

Exterior zone

L

B

Interior zone

Central zone

Central zone has Ks= Ks,A

Interior zone has Ks = 1.5 Ks,A

Exterior zone has Ks= 2.0 Ks,A

Figure 5.26 A rectangular mat foundation divided into three zones for the pseudo-coupled analysis. Modulus of
subgrade reaction, KS, progressively increases from the central zone to the exterior zone.
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This general displacement equation consists of 15 unknown terms. For bending, the vertical displace-
ment and slopes (rotations) in the X- and Y-directions are required at each node. Therefore, with a
rectangular plate element and these three general displacements (three degrees of freedom) at each
corner node only 12 unknowns (four translations and eight rotations) are required, as shown in
Figure 5.28. For this reason one must reduce Equation (5.71) to one with 12 terms instead of 15 or
add a node and use the 15-term displacement function. There are computer programs which delete
terms, combined terms and add nodes. These programs will give about the same computed output
so the preferred program is that one most familiar to the user.
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Figure 5.27 Mat gridding for finite element or finite grid method. (a) Mat with wall, notch with re-entrant corners
and irregular shape, including a curved area. (b) Finite element model for themat shown in (a); the curved boundary
has been replaced with straight segments and triangles are utilised.
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Figure 5.28 Displacements at the corner nodes of a rectangular plate finite element.
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An important advance in FEM is using an iso-parametric element approach. An element is of this
type if the same function can be used to describe both shape and displacement. Iso-parametric formu-
lation can allow a given element have more nodes than an adjacent one, which produces some mesh
refinement without the large increase in grid lines of the other methods. It was found that adequate mat
analysis can be carried out through implementing computer programs based on this methodology.
However, the method is heavily computation-intensive.

The FEM technique is mathematically efficient, canmodel boundary condition displacements effect-
ively and utilise an iso-parametric approach. All these are considered as major advantages of the
method. However, the followings may be considered as disadvantages of FEM:

• Identification of the incorrect output is not easy since the methodology uses advanced mathematical
concepts which are not commonly known to many geotechnical and structural engineers.

• The formulation of the stiffness matrix is computationally intensive

• The methodology gives output node moments per unit width, whereas the input moments are con-
centrated at the nodes. This unit incompatibility makes direct moment summation and nodal statics
check difficult. Similarly a vertical force summation is not easy since element node shears are dif-
ficult to compute with the element moments obtained on a unit width basis

• FEM is particularly sensitive to aspect ratios of rectangular elements and intersection angles of
triangles. To control these factors, the designer needs to increase the grid lines and number of
nodes. This solution increases user input and causes rapid increase in the size of the stiffness
matrix

In addition to the references mentioned in Section 5.11, the finite element necessary equations and
matrix formulations can be found inmany other publications and textbooks (for example Bowles, 1976;
Ghali and Neville, 1972). Also, a variety of FEM programs have been implemented into readily-
available software packages. Commercial computerised finite element programs, such as SAP, SAFE,
NASTRAN, ANSYS and so on, may be used to run a mat analysis and design.

5.12.7 Finite Grid Method for the Design of Mat Foundations

The finite grid method (FGM) is similar to the beam-finite element described in Section 5.11 but
extended to a beam-column finite element, used for a plate with bending and torsional resistance,
as shown in Figure 5.29. The torsional resistance is used to incorporate the plate twist using the shear
modulusG. The FGMproduces nonconforming elements, that is inter-element compatibility is insured
only at the nodes.

Node spring 

Typical beam element

with torsion included  

M2= F2

B
t

L

M1= F1

T=F 3

P5– X5

P6– X6 (or Δz)

P1, P2, P4, P5= moment (Xi = 0i)

P3, P6= P (Xi = Δzi)

P2– X2

P3– X3

K

P1
–X1

P4
–X4

T=F 3

Node P – X

Figure 5.29 Element coding for nodes and element forces for the finite grid method.

426 Shallow Foundations



The analysis is begun by drawing the mat plan to a suitable scale with all column and wall
locations. Then, a grid is laid on this plan such that the grid nodes occur at any points of zero rotations
or displacements, i.e. at column faces, wall edges, fixed edges and similar (Figure 5.27). If no nodes
have unknown rotations or displacements, any convenient gridding will be used. It is not necessary
the grid elements have the same size, but best results are obtained if very small members are not adja-
cent to large ones. For pinned columns between nodes the grid can be at convenient divisions. Suitable
orientation of node numbers helps in reducing size of stiffness matrix. It is recommended the orien-
tation be such that the origin of node numbers located at the upper left corner of the grid, a minimum
number of nodes are horizontal and coding starts first across and then down. Since the elements input
data are enormous, a data generator (e.g. program B-18; Bowles, 2001) to produce all element data is a
necessity.
A comprehensive theoretical development of FGM specifically for mats is found in Bowles (2001).

This reference also presents several examples which are used to illustrate mat analyses using the FGM.
Computer program FADMAT (B-6) with necessary example data sets (EXAM? DATA), given in the
same reference, are used to obtain the particular example output.
The FGM is particularly well-suited for use for the analysis of mats and plates. Usually, this method

of analysis requires large number of data entries and large matrices (even using band-matrix solution
methods) to solve. Some designers consider these problems as disadvantages of the method. However,
the FGM has the following distinct advantages (Bowles, 2001):

• It is easy to input concentrated column moments directly.

• The output is easy to interpret since beam-column type elements that have only bending and torsion
are used. The moment per unit width is simply the node moment (from a node summation) divided
by the element width.

• It is easy to model notches or slots, holes, or re-entrant corners as with the FEM.

• Boundary conditions are as easily modeled as with the FEM.

• It is easy to obtain design shears at the ends of the elements. The shear is simply the sum of the
element end moments divided by element length. Then one divides the total element shear by
the element width to get the shear per unit width.

• It is relatively simple to extend the three degrees of freedom (d.o.f.) nodes of this method to use six d.
o.f. nodes that are required for pile-cap analysis (Bowles, 1983).

• The method can be fixed (reprogrammed) to solve circular mats or plates.

Problem Solving

Problem 5.1

A reinforced concrete circular column is supported by a square isolated footing (spread footing). The footing is
of plain concrete, and concentrically loaded. Design the footing in accordance with the requirements of ACI
318M-08 and using the following available data:

Net allowable soil pressure: net qa = 150 kPa.3
Column loads (unfactored): D= 150 kN L= 100 kN
Column diameter = 300 mm
Column steel: six No. 25 bars; fy = 420 MPa, Esteel = 200 000 MPa
Column concrete: fc = 28MPa
Footing concrete: fc = 21MPa

(Continued)
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Solution:
Step 1. Find footing base dimensions (ACI Section 22.7.2).

Refer to the set of load combinations of Section 4.17. The greatest combination of the given loads is D + L =
150 + 100 = 250 kN.

Footing base area =
D+ L
net qa

=
250
150

= 1 67m2

The footing base area is square; hence, B= L= 1 67 = 1 29m.
Try square footing 1.3 m × 1.3 m, and check net qa:
Equation (4.11): net q ≤ net qa

Equation (4.10): net q =
V
A
=
D+ L
A

=
250

1 3 × 1 3
= 148 kPa < net qa OK

Use 1.3 × 1.3 m square footing

Step 2. Compute the design factored net load and factored net soil pressure
Because the statement of the problem mentioned only dead and live loads, we will assume these as the only

applicable loads. This reduces the set of factored load combinations of Section 5.2 to the following:

U = 1 4 D = 1 4 × 150 = 210 kN

U = 1 2 D + 1 6 L = 1 2 × 150 + 1 6 × 100 = 340 kN

The design factored net load is the greater of these two values. Use:
Design factored net load = 340 kN.

Design factored net soil pressure = net qfactored =
design factored net load

area

=
340

1 3 × 1 3
= 201 2 kPa

Note: This factored net soil pressure, strictly, is the net effective foundation pressure net q , defined in
Section 4.2, but factored.

Step 3. Find footing thickness h.
(a) Considering bending. The critical section for the maximum bending moment is located at face of the

equivalent square column (ACI Sections 22.7.5 and 22.7.7), as shown in the scheme below:

The side of an equivalent square column is w =
π × 0 32

4
= 0 26m

h'/2

h'/2

Critical section

for moment

Critical section for

one – way shear 

Critical section for

two – way shear 

Equivalent square

0.26 m × 0.26 m  

0.13 m l =  0.52 m

h'

L = B = 1.30 m

Scheme 5.3
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Use effective footing thickness = h = h − 0.05 m (ACI Section 22.4.7)
The applied factored bending moment per meter of the critical section is

Mu =
net qfactored l 2

2
=
201 2 × 0 522

2
= 27 20 kN m

Equation (5.32): ØMn ≥Mu

When load factor combinations of ACI Section 9.2.1 are used, the strength-reduction factor Ø shall be 0.6 for
flexure, compression, shear, and bearing (ACI Section 9.3.5).
Equation (5.33): Mn = 0 42λ fc Sm
where

λ = modification factor (ACI Section 8.6.1)
= 1.0 for normal-weight concrete

Sm = the corresponding elastic section modulus

=
b h 2

6
(for rectangular section)

Let ØMn =Mu; hence,

0 6 0 42 1 21 1000
1 h 2

6
= 27 2

h = 0 376m= 376mm; hence,

h= 376 + 50 = 426mm

> hmin = 200mm; ACI Section 22 7 4 OK

(b) Considering two-way shear. The critical section for two-way shear is located a distance h /2 from faces of the
equivalent square column (ACI Sections 22.7.6.2 and 22.7.7), as shown in the scheme above.

Equation (5.35): ØVn ≥Vu

Vu =Af net qfactored −soil reaction on the shear block

For columns of small cross-section, such as the column of this problem, the soil reaction on the shear block is
small; it is usually neglected. Hence, use

Vu =Af net qfactored = 1 3 × 1 3 × 201 2 = 340 kN

Equation (5.37): Vn = 0 11 1 +
2
β

λ fc bo h

Vn ≤ 0 22λ fc bo h ACI Section 22 5 4

where β corresponds to ratio of long side to short side of concentrated load or reaction area.

Use Vn = 0 22λ fc bo h , since β =
0 26
0 26

= 1

Let ØVn = Vu
(Continued)
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0 6 0 22 1 21 1000 4 0 26 + h h = 340

2420 h 2 + 629h −340 = 0

h =
−629 ± 6292− 4 2420 −340

2 × 2420

=
−629 + 1920

4840
= 0 267m= 267mm; hence,

h = 267 + 50 = 317 mm < h required by bending moment
(c) Considering one-way shear. The critical section for one-way shear is located a distance h from face of the

equivalent square column (ACI Sections 22.7.6.2 and 22.7.7), as shown in the scheme above.
Equation (5.35): ØVn ≥Vu

Vu = B 0 52− h net qfactored = 1 3 0 52− h 201 2

= 136−261 56h kN

Equation (5.36):
Vn = 0 11λ fc bw h

= 0 11 1 21 1000 1 3 h = 655 3 h kN

Let Ø Vn =Vu

0 6 × 655 3h = 136−261 56h

h =
136

654 74
= 0 208m= 208mm; hence,

h= 208 + 50 = 258mm< h= 426mm

Use h as required by bending moment.
Use footing thickness h = 450 mm

Step 4. Check column bearing on the footing (ACI Sections 22.7.8 and 22.5.5).

ØBn ≥Bu

Bu = factored bearing load = 1 2D+ 1 6L= 340 kN

(a) Top surface of the footing. The supporting surface is wider on all sides than the loaded area A1.
Diameter of the lower base area A2 of the frustum, shown in the scheme below, is

0 3 + 2 0 5 = 1 3m

2 
1

0.50 m 0.50 m

A2

A1

 0.30 m

0.45 m 

Scheme 5.4
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A2 =
π 1 3 2

4
= 1 33m2; A1 =

π 0 3 2

4
= 0 071m2;

A2

A1
= 4 3 > 2; hence, use

A2

A1
= 2.

ØBn = Ø 0 85fc A1
A2

A1
ACI Section 22 5 5

ØBn = 0 6 0 85 × 21 × 0 071 2

= 1 521MN=1521 kN Bu OK

Therefore, vertical compression reinforcement or dowels through the supporting surface at the interface is
theoretically not required.

(b) Base of the column. The allowable bearing strength of the column base at the interface is

ØBn = Ø 0 85fc A1

= 0 6 0 85 × 28 × 0 071 = 1 014MN=1014 kN Bu OK

Therefore, dowels through the column base at the interface are theoretically not required.
Step 5. Design dowels to satisfy the minimum area of reinforcement across interface (ACI Section 15.8.2.1).

As,min = 0 005Ag

where Ag is the gross area of the supported member

As,min = 0 005
π 0 3 2

4
= 0 005 0 071 = 0 355 × 10−3 m2

Assume using (arbitrarily) six No. 20 dowel bars:

As,provided = 6
π 0 020 2

4
= 1 88 × 10−3 m2 As,min OK

Usesix No. 20 dowels (fy = 420 MPa).

Step 6. Find the embedment length of dowels in both the footing and the column.
As mentioned in Section 5.4.4, dowels shall not be larger than a No. 36 bar and shall extend into supported
member a distance not less than the larger of ldc, of the longitudinal bars (No. 57 and smaller but larger than
dowels) and compression lap splice length of the dowels, whichever is greater, and into the footing a distance
not less than ldc of the dowels. Also, according to ACI Section 12.16.2, when bars of different size are lap
spliced in compression, splice length shall be the larger of ldc of larger bar and compression lap splice length
of smaller bar.

(a) Embedment length of dowels in the footing:
According to ACI Section 12.3.2,

ldc =
0 24fydb
λ fc

or ldc = 0 043fy db, whichever is the larger

ldc =
0 24 420 20

1 21
= 440mm,

(Continued)
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or,

ldc =
0 043 × 10−6

10−6
420 20 = 361mm

ldc, min = 200mm ACI Section 12 3 1

ldc = 440mmcontrols

h= 450mm> ldc = 440mm OK

Use the embedment length of dowels in the footing = 440 mm.
Note: One may use a smaller length as permitted by ACI Section 12.3.3, but not less than 200 mm.

(b) Embedment length of dowels in the column:

ldc =
0 24 420 25

1 28
= 476 mm, or,

ldc =
0 043 × 10−6

10−6
420 25 = 452mm

Use ldc = 476 mm.
According to ACI Section 12.16.I, for fy ≤ 420 MPa and fc ≥ 21MPa, compression lap splice length shall be

0.071fydb, but not less than 300 mm. Lap splice length = 0.071 × 420 × 20 = 596 mm > (ldc = 476 mm)
Use the embedment length of dowels in the column = 600 mm
Note: One (arbitrarily) may use a larger length.

Step 7. Decide whether shrinkage and temperature (S and T) steel is required for this plain concrete footing.
For footings, this decision depends mainly on the designer’s judgment of effects of shrinkage and tempera-

ture cracks, since the ACI Code, strictly, is not clear on this point. The ACI Section 2.2 defines plain concrete as
structural concrete with no reinforcement or with less reinforcement than the minimum amount specified for
reinforced concrete. This definition allows designers to use some amount of reinforcement as S and T steel in
plain concrete footings. However, some authorities are of the opinion that concrete placed in the ground does
not require S and T steel since the temperature differentials are not large. In any case a more conservative
solution is obtained by using shrinkage and temperature reinforcement in both directions. For this problem,
if S and T steel is desired, the required amount of steel shall be computed in accordance with ACI
Section 7.12.2.1, as follows:

As = 0 0018 bh= 0 0018 × 1 30 × 0 45 = 1 053 × 10−3 m2

= 1053mm2

An amount ofAs = 1000mm2 will be sufficient

Try five No. 16 bars:

As,provided = 5 × 199 1000mm2 OK

Using 75 mm minimum concrete cover (ACI Section 7.7.1) at each side, centre to centre bar spacing will be
283 mm. Check concrete cover provided at each side:

1300− 4 × 283 + 16
2

= 76mm> 75mm OK
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The centre to centre bar spacing of 283 mm also satisfies the maximum spacing requirement of ACI
Section 7.12.2.2.

Use five No. 16 bars @ 283 mm c.c. both ways, distributed near the top of the footing.

Step 8. Decide whether the footing should be sloped or stepped so that some economy may be achieved.
Isolated footings may be of constant thickness or either sloped or stepped. Sloped or stepped plain concrete

footings are most commonly used to reduce the quantity of concrete away from the column where the bending
moments are small. If labor and material costs permit, these alternative footings may be economical. However,
when labor costs are high relative to material, it is usually more economical to use constant-thickness reinforced
footings.

Assume a sloped footing is desired. One can check the footing thickness and determine the material savings
as follows:

Let the footing thickness at its edges = 200 mm, which is the minimum thickness required by
ACI Section 22.7.4. Leave a 100 mm around the column to obtain a shoulder of square perimeter, as shown
in the scheme below, since the column must be formed after the footing has been poured. In sloped or stepped
footings, angle of slope or depth and location of steps shall be such that design requirements are satisfied at
every section (ACI Section 15.9.1). With this slope, shown in the scheme below, the depth furnished at critical
section for two-way shear, that is at location (h /2) = 0.2 m from face of the equivalent square column, is

h= 0 2 +
0 32
0 42

× 0 25 = 0 390m> 0 317m OK

The applied factored bending moment at this location is

Mu =
net qfactored l 2

2
=
201 2 × 0 322

2
= 10 3 kN m m

0.13

0.1

0.32 m

0.2 m

0.2 m

0.25 m

0.42 m

0.14 m

   0.25 m

1.30 m

Equivalent

square col.

Sloped

footing

0.20 m

0.46 m

Scheme 5.5
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Let ØMn =Mu

ØMn = Ø 0 42λ fc Sm

= 0 6 0 42 1 21 1000
1 h 2

6
= 10 3

h = 0.23 m; hence, the depth required for bending is

h= 0 23 + 0 05 = 0 28m< 0 39m OK

The sloped footing is satisfactory.
The material savings is calculated (approximately) as follows:

Volume of right pyramid =
1
3
× base area × height to apex

Volume of the sloped footing =
1
3
1 32 0 25 + 0 14 −0 462 × 0 14

+ 1 32 × 0 2 = 0 21 + 0 338

= 0 548m3

Volume of the footing with constant thickness = 1 32 × 0 45

= 0 761m3

Material savings =
0 761−0 548

0 761
× 100 = 28

Step 9. Draw a final design sketch.

Problem 5.2

Design a reinforced concrete square footing using the same data given in Problem 5.1. Use the same fy for the
column and footing steel.

Solution:
Step 1. Find footing base dimensions (ACI Section15.2.2).

Since the footing shape, design loads and netqa are remained unchanged, the design and computations pro-
ceed exactly in the same manner as those for the plain concrete footing; presented inSolution of Problem 5.1,
Step1. Therefore,

Use 1.3 × 1.3 m square footing.

Step 2. Compute the design factored net load and factored net soil pressure.
For the same reasons mentioned in Step 1, and since the footing base area is remained unchanged, the design
loads will remain unchanged too. Therefore,
Design factored net load, U = 1.2(D) + 1.6(L) = 340 kN
Design factored net soil pressure, net qfactored = 201.2 kPa

Step 3. Find footing thickness h.
Since the footing is square and centrally loaded by the column axial load, the required thickness shall
be based on two-way shear only. The critical section for two-way shear is located a distance d/2 from
faces of the equivalent square column (ACI Sections 11.11.1.2 and 15.3), as shown in the scheme below.
The side of the equivalent square column is
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w =
π × 0 32

4

1 2

= 0 26m

ACI Section 11.1.1 requires that

ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where

Ø = strength-reduction factor (ACI Section 9.3.2.3)
=0.75 for shear

Vu = Af(netqfactored) – soil reaction on the shear block

For columns of small cross-section, such as the column of this problem, the soil reaction on the shear block is
usually too small and would be safer if neglected. Hence,

Vu =Af net qfactored = 1 3 × 1 3 × 201 2 = 340 kN

The shear strength of concrete Vc shall be the smallest of (a), (b) and (c):
(a)

Vc = 0 17 1 +
2
β

λ fc bod Equation 5 22

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

(b)

Vc = 0 083
αsd
bo

+ 2 λ fc bod Equation 5 23

= 0 083
40d
bo

+ 2 1 fc bod = 0 083
40d
bo

+ 2 fc bod

(c)

Vc = 0 33 λ fc bod Equation 5 24

= 0 33 1 fc bod = 0 33 fc bod

0.52 m

Critical section

for moment

Critical section for

one – way shear

Critical section for

two – way shear

Equivalent square

0.26 m × 0.26 m

0.13 m

d

d/2

d/2

L = B = 1.30 m

Scheme 5.6
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Use Vc = 0 33 fc bod. Calculate d, then check Vc of Equation (5.23).
Let ØVc = Vu

ØVc = 0 75 0 33 21 1000 4 0 26 + d d = 340

4537 d 2 + 1180d−340 = 0

d =
−1180 ± 11802− 4 4537 −340

2 × 4537

=
−1180 + 2750

9074
= 0 173m

Check Vc of Equation (5.23):

Vc = 0 083
40 × 0 173

4 × 0 26 + 4 × 0 173
+ 2 fc bod

= 0 498 fc bod > 0 33 fc bod OK

Use d = 0.2 m = 200 mm.
The distance d will be taken to the intersection of the steel bars running each way at bottom of the square

footing.
Assume using No. 19 bars; hence, depth of footing above reinforcement 180 mm > (dmin150 mm); ACI

Section 15.7 (OK.)
Use minimum concrete cover for reinforcement = 75 mm; ACI Section 7.7.1. Hence, the overall footing

thickness is

h= 200 + 75 + 1 bar diameter = 275 + 19 1 = 294 1mm

Use h = 300 mm.

Step 4. Design the flexural reinforcement.
Equation (5.9):

ØMn ≥Mu

Equation (5.8): Mu = lbqfactored l 2 =
net qfactored l 2

2
m

=
201 2 × 0 522

2
= 27 20 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

Equation (5.12): ØMn = Ø 0 85fc ba d−
a
2

= 0 9 0 85 × 21 × 1000 1 0 2a−
a
2

= 3213a−8033a2 kN m m

Let ØMn =Mu:

8033a2−3213a+ 27 2 = 0
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a=
− −3213 ± 32132− 4 8033 27 2

2 × 8033
=

139
16 066

= 8 65 × 10−3 m

Equation (5.10): a=
Asfy

0 85fc b

As =
0 85fc b a

fy
=
0 85 × 21 × 1000 × 1 × 8 65 × 10−3

420 × 1000

= 3 7 × 10−4 m2 = 368mm2 m

As,min = 0.0018 bh (ACI Sections 10.5.4 and 7.12.2.1)

= 0 0018 × 1 × 0 3 = 5 4 × 10−4 m2

= 540 mm2/m > As required by analysis
Hence, use As = As,min.
Use three No. 16; As,provided = 3 × 199 = 597 mm2/m
Compute a for As = 597mm2/m, and check if fs = fy and whether the section is tension-controlled:

a=
Asfy

0 85fc b
=
5 97 × 10−4 × 420
0 85 × 21 × 1

= 0 014m= 14mm

c=
a
β1

For fc between 17 and 28 MPa, β1 shall be taken as 0.85. Hence,

c=
14
0 85

= 16 47

dt = d + 16 2 = 200 + 8 = 208mm

εt = 0 003
dt −c
c

= 0 003
208−16 47

16 47
= 0 035 > 0 005Equation 5 15

Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200 000
= 0 0021

Therefore, εt > εy, and fs = fy
The assumptions made are satisfied. Note that this checking may not be necessary when As,min governs.

Total number of bars required each way =
1 3
1

× 3 = 3 9; use four bars.

Note: The reinforcement and thickness results indicate clearly that it may be more economical and effective to
use reinforced concrete footing than plain concrete footing with S and T steel provided.

Using 75 mm concrete cover at each side, centre to centre bars spacing will be 378 mm. ACI Section 10.5.4
requires maximum spacing shall not exceed three times the slab or footing thickness, or 450 mm, whichever is
smaller. Therefore, the 378 mm spacing is adequate.

Try four No. 16 bars @ 378 mm c.c. each way.

Step 5. Check the development of reinforcement.
In this case, the bars are in tension, the provided bar size is smaller than No. 19, the clear spacing of the bars
exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the

(Continued)
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critical section (which is the same critical section for moment) shall be determined from the following equa-
tion, but not less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 21

15 9
1000

= 0 694m 0 7m= 700mm> 300mm

The required ld,min = 700 mm
The bar extension past the critical section (i.e. the available length) is

520mm−75mmcover = 445mm<700mm Not OK

We must consider smaller bars or use bars terminating in a standard hook.
(a) Assume considering smaller bars. Try 10 No. 10 bars each way:

As,provided = 10 × 71 = 710mm2 >
1 3
1

× 540 = 702mm2 OK

ld,min =
420 × 1 × 1

2 1 × 1 × 21

9 5
1000

= 0 415m= 415mm<445mm OK

Using 75 mm concrete cover at each side, centre to centre bar spacing will be 126.6 mm. Therefore, steel bars shall
be distributed at 126 mm centre to centre.

However, such bar spacing may not be desirable, since overcrowded reinforcement may cause inadequate con-
crete placement and increase labour costs.
(b) Assume using bars terminating in a 180 degree standard hook, as shown below (ACI Section 12.5.1 and Figure

R12.5).
Try four No. 16 hooked bars each way.

ldh =
0 24ψ efy
λ fc

db ACI Sections 12 5 2

where the factors ψ e and λ shall be taken as 1.

ldh =
0 24 × 1 × 420

1 × 21

15 9
1000

= 0 35m= 350mm< 445mm OK

5 db  – No. 29, No. 32 & No. 25

6 db  – No. 43 & No. 57

– Critical

   section

db

4 db ≥ 65 mm

ldh

4 db  – No. 10 through No. 25

Scheme 5.7
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Assume the designer prefers using the specified hooked bars.
Use four No. 16 bars @ 378 mm c.c. each way at bottom of the footing. The bars must have 180 degree standard

hooks at each end.

Step 6. Check column bearing on the footing (ACI Section 10.14).
The factored load at the base of the column = 1.2D + 1.6L = 340 kN

(a) Top surface of the footing. From Step 4 – (a) of the solution of Problem 5.1, the maximum bearing load on the
top of the footing may be taken equal to Ø 0 85fc A1 2 . (ACI Section 10.14.1)

ACI Section 9.3.2.4 gives Ø = 0.65 for bearing. Hence,
The maximum bearing factored load = 0.65(0.85)(21)(0.071)(2)

= 1 648MN=1648 kN 340 kN

Therefore, vertical compression reinforcements or dowels through the supporting surface at the interface are,
theoretically, not required.

(b) Base of the column. The allowable bearing strength of the column base at the interface is Ø 0 85fc A1 . Hence,
The allowable bearing factored load = (0.65)(0.85 × 28 × 0.071)

= 1 098MN=1098 kN 340 kN

Therefore, dowels through the column base at the interface are, theoretically, not required.
Step 7. Design dowels to satisfy the minimum area of reinforcement across interface required by ACI

Section 15.8.2.1.
From Step 5 of the Solution of Problem 5.1, As,min = 0.36 × 10− 3 m2

Assume, arbitrarily, usingsix No 20 dowel bars:

As,provided = 6
π 0 020 2

4
= 1 88 × 10−3 m2 As,min

Try six No. 20 dowels (fy = 420 MPa).

Step 8. Find the embedment length of dowels in both the footing and the column.
(a) Embedment length of dowels in the footing:

Refer to ACI Section 12.3.

ACI Section 12.3.2: ldc =
0 24fydb
λ fc

or ldc = (0.043fy)db, whichever is larger, but shall not be less than 200 mm.

ldc =
0 24 420 20

1 21
= 440mm, or

ldc =
0 043 × 10−6

10−6
420 20 = 361mm

ldc,min = 200mm ACI Section 12 3 1

ldc = 440mm> h= 300mm NotOK

According to ACI Section 12.3.3, for reinforcement in excess of that required by analysis, ldc is permitted to be
reduced as follows:

Required ldc = ldc (As required/As provided)

= 440 0 36 ×
10−3

1 88
× 10−3 = 84mm< ldc,min OK

(Continued)
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Use the embedment length of dowels in the footing = 200 mm.
(b) Embedment length of dowels in the column:

The necessary computations are exactly the same as those presented in Step 6(b) of the Solution of Problem
5.1. Therefore,

Use the embedment length of dowels in the column = 600 mm.
Note: One, arbitrarily, may use a larger length.

Step 9. Draw a final design sketch as shown in the scheme below.

Problem 5.3

A rectangular reinforced concrete footing is required to support an interior concrete column carrying a service
(working) dead load of 2000 kN and a service live load of 1350 kN, at centre of the footing. The column cross-
section is 450 × 450 mm. The column is built of 35-MPa concrete and has eight No. 29 longitudinal steel bars with
fy = 420 MPa and Esteel = 2 × 105 MPa. The gross allowable soil pressure (gross qa) at an expected foundation level
of 1.0–1.5 m depth has been recommended by the geotechnical consultant equals 250 kPa. The maximum width of
the footing is limited to 3 m. The top of the footing will be covered with 0.15 m fill with a unit weight of 20 kN/m3

and a 0.15-m concrete basement floor (γc = 24 kN/m3) with a uniform live loadof 3.75 kPa. Using fc = 21MPa and
fy = 420 MPa, design the footing in accordance with the requirements of ACI 318M-08.

Solution:
Step 1. Find footing base dimensions (ACI Section15.2.2).

Assume the foundation depth Df = 1.2 m.
Hence, footing thickness (assumed) h = 1.2 − (0.15 + 0.15) = 0.9 m

The greatest combination of the given loads is

D+ L= 2000 +A 0 15 × 24 + 0 15 × 20 + 0 9 × 24

+ 1350 + 3 75A

= 3350 + 31 95A kN

The gross effective foundation pressure = gross q =D + L

= 3350 + 31 95A

6 No. 25

6 No. 20 dowels

4 No. 16 bars @ 378

mm c. c. each way with

180 – degree standard

hook

Square footing

200 mm 300 mm

600 mm

300 mm – diameter

round column

84 mm

B = L = 1300 mm

Scheme 5.8
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Footing base area =A=
gross q
gross qa

=
3350 + 31 95A

250
; hence,

A=
3350
218 05

= 15 36m2

Use the maximum footing width B = 3 m. Therefore, the footing length is

L=
A
B
=
15 36
3

= 5 12m

Use:
3.0 × 5.2 mrectangular footing [gross q < gross qa, OK.]

Step 2. Compute the design factored net load and factored net soil pressure.
Because the statement of the problem mentioned only dead and live loads, we will assume these as the only

applicable loads. This reduces the set of foundation net factored load combinations of Section 5.2 to the
following:

U = 1 4 D

U = 1 2 D + 1 6 L

The factored soil pressure is usually computed without including the weights of footing, backfill material, floor and
the floor uniform live load because these loads are evenly distributed and supported; thus they do not produce
shear or moment in the footing.

U = 1 4 D = 1 4 × 2000 = 2800 kN; or,

U = 1 2 D + 1 6 L = 1 2 2000 + 1 6 1350 = 4560 kN

Use design factored net load = 4560 kN.

Design factored net soil pressure = net qfactored =
4560
3 × 5 2

= 292 31 kPa

Step 3. Find footing thickness h.
Since the footing is rectangular in shape, determine the required thickness based on both one-way shear and

two-way shear analyses.
(a) Considering one-way shear:

The critical section for one-way shear is located at a distanced from face of the column across the entire
footing width (ACI Sections 11.11.1.1 and 11.1.3.1), as shown in the scheme below.

Critical section

for moment;

(steel bars in

long direction)

Critical section

for moment;

(steel bars in

short direction)

Critical section for

two – way shear

B
=

3
.0

 m

2.38 m

1.28 m

d/2

d

d/2

L = 5.2 m

450–mm square

concrete column

Criticial section for

one – way shear

Scheme 5.9
(Continued)
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Equation (5.19): ØVc ≥Vu taking reinforcement shear strength,VS = 0

where
Ø = strength-reduction factor (ACI Section 9.3.2.3)
= 0.75 for shear

Vu = B 2 38−d net qfactored = 3 2 38−d 292 31

= 2087 09−876 93 d kN

Equation (5.20): Vc = 0 17λ fc bwd

Let ØVc = Vu:

0 75 × 0 17 × 1 21 1000 3 d = 2087 09−876 93 d

d =
2087 09
2629 77

= 0 794m= 794mm

(b) Considering two-way shear:

Vu =Af net qfactored −soil reaction on the shear block

= 3 × 5 20 292 31 − 0 45 + d 2 292 31

= 4560−59 19−263 08 d−292 31 d2

= 4500 81−263 08 d−292 31 d2

The shear strength of concrete Vc shall be the smallest of (i), (ii) and (iii):
(i)

Vc = 0 17 1 +
2
β

λ fc bod Equation 5 22

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

(ii)

Vc = 0 083
αsd
bo

+ 2 λ fc bod Equation 5 23

= 0 083
40d
bo

+ 2 1 fc bod = 0 083
40d
bo

+ 2 fc bod

(iii)

Vc = 0 33 λ fc bod Equation 5 24

= 0 33 1 fc bod = 0 33 fc bod
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Use Vc = 0 33 fc bod. Calculate d, then check Vc of Equation (5.23).

ØVc = 0 75 0 33 21 1000 4 0 45 + d d = 4537 d 2 + 2042d

Let ØVn =Vu:

4537 d 2 + 2042 d = 4500 81−263 08 d−292 31 d2

4829d2 + 2305d−4501 = 0

d =
−2305 ± 23052− 4 4829 −4501

2 × 4829
=
−2305 + 9605

9658
= 0 756m= 756mm

Check Vc of Equation (5.23):

Vc = 0 083
40 × 0 756

4 0 45 + 0 756
+ 2 fc bod

= 0 686 fc bod >Vc = 0 33 fc bod OK

d = 756 mm < (d = 794 mm, required by one way shear)
Therefore, the one-way shear controls:
Use d = 0.8 m = 800 mm.
The distance d will be taken to the centre of the steel bars in long direction.
Assume using No. 25 bars, and 75 mmminimum concrete cover (ACI Section 7.7.1). Hence, the overall footing

thickness is

h= 800 + 75 + 1 2bar diameter = 875 + 12 7 = 887 7mm

Use h = 900 mm.
Step 4. Design the flexural reinforcement.
(a) Reinforcement in long direction. The critical section is shown in the figure of Step 3.

Equation (5.9): ØMn ≥Mu

Equation (5.8): Mu = lbqfactored l 2 =
net qfactored l 2

2
m

=
net qfactored l 2

2
=
292 31 × 2 382

2
= 828 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

Equation 5 11

= 0 9 As × 420 × 1000 0 8−
23 53As

2

= 302 400As−4 447 170A2
s kN m m

(Continued)
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Let ØMn =Mu:

302 400As−4 447 170A2
s = 828

4 447 170A2
s −302 400As + 828 = 0

As =
− −302 400 ± −302 400 2− 4 4 447 170 828

2 × 4 447 170
=
302 400−276 978

8 894 340

= 2858 × 10−6 m2 m= 2858mm2 m

As,min = 0 0018 bh (ACI Sections 10.5.4 and 7.12.2.1)

= 0 0018 × 1 × 0 9 = 1 62 × 10−3 m2 m

= 1620mm2 m<As required by analysis

Try six No. 25; As,provided = 6 × 510 = 3060 mm2/m > As (OK.)
Compute a for As = 3060 mm2/m, and check if fs = fy and whether the section is tension-controlled:

a= 23 53As = 23 53 × 3060 × 10−6 = 0 072m= 72mm

c=
a
β1
; For fc between 17 and 28 MPa, β1 shall be taken as 0.85.

c=
72
0 85

= 84 71mm

dt = d = 800mm

εt = 0 003
dt −c
c

Equation 5 23

= 0 003
800−84 71

84 71
= 0 025 > 0 005.

Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200 000
= 0 0021

Hence, εt > εy ,

and fs = fy

Therefore the assumptions made are satisfied.
Total number of bars required in long direction = 3 × 6 = 18
Using 75 mm minimum concrete cover at each side, centre to centre bar spacing will be 166 mm. Check con-

crete cover provided at each side:

3000− 17 × 166 + 25 4
2

= 76 3mm> 75 mm OK
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In case the required flexural reinforcement exceeds the minimum flexural reinforcement, it shall be adequate to
use the samemaximum spacing of reinforcement for slabs which is two times the slab thickness, or 450mmwhich-
ever is smaller, as specified by ACI Section 13.3.2. Therefore, the 166 mm spacing is adequate.

Try 18 No. 25 @ 166 mm c.c. across the footing width.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is larger than No. 19, the clear spacing of the bars

exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation, but not
less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

1 7 × 1 × 21

25 4
1000

= 1 37m= 1370mm> 300mm

Therefore, the required ld = 1370 mm.
The bar extension past the critical section (i.e. the available length) is

2380mm−75mmcover = 2305mm> 1370mm OK

Use 18 No. 25 @ 166 mm c.c. across the footing width, at bottom in long direction.
(b) Reinforcement in short direction. The critical section is shown in the scheme in Step 3.

Bars in short direction are placed on bars in long direction. Therefore,

d = 0 8−

1
2
diameter of bar in long direction +

1
2
diameter of bar in short direction

Assume using No. 19 bars in short direction. Hence,

d = 0 8−
1
2
× 0 0254 +

1
2
× 0 0191 = 0 778m

Equation (5.9):

ØMn ≥Mu

0.9 m

Bar inshort direction

Bar in long direction

d

Scheme 5.10

(Continued)
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Mu =
net qfactored l 2

2
=
292 31 × 1 282

2
= 239 5 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

Equation 5 11

= 0 9 As × 420 × 1000 0 778−
23 53As

2

= 294084As−4447170A
2
s kN m m

Let ØMn =Mu:

294 084As−4 447 170A2
s = 239 5

4 447 170A2
s −294 084As + 239 5 = 0

As =
− −294 084 ± −294 084 2− 4 4 447 170 239 5

2 × 4 447 170
=
294 084−286 749

8 894 340

= 824 7 × 10−6 m2 m= 825mm2 m

As,min = 0.0018 bh (ACI Sections 10.5.4 and 7.12.2.1)

= 0 0018 × 1 × 0 9 = 1 62 × 10−3 m2 m

= 1620mm2 m>As required by analysis

Therefore, use As required = As,min = 1620 mm2/m
The assumptions made are satisfied, since As required = As,min.
Total As required = 1620 × 5.2 = 8424 mm2

Try 30 No. 19:

As,provided = 30 × 284 = 8520mm2 > 8424mm2 OK

Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 19, the clear spacing of the bars exceeds 2db,

and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation, but
not less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 21

19 1
1000

= 0 833m= 833mm>300 mm
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Therefore, the required ld = 833 mm.
The bar extension past the critical section (i.e. the available length) is

1280mm−75mmcover = 1205mm> 833mm OK

According to ACI Section 15.4.4.2, for reinforcement in short direction, a portion of the total reinforcement ( γsAs)
shall be distributed uniformly over a band width (centred on centreline of column or pedestal) equal to the length
of short side of footing. Remainder of reinforcement ın short direction, (1 − γs)As, shall be distributed uniformly
outside centre band width of footing.

γs =
2

β + 1

where β is ratio of long to short sides of footing.
In this case: As = 8520 mm2 or 30 No. 19 bars;

γs =
2

5 2
3

+ 1
= 0 732

0 732 30 bars = 21 96 bars

Provide 22 bars uniformly distributed in the middle strip of 3 m width.
When As,min controls, ACI Section 10.5.4 requires maximum spacing shall not exceed three times the slab or

footing thickness, or 450 mm, whichever is smaller.
Provide 22 No. 19 bars @ 142 mm c.c. in the middle strip in short direction, placed on top of bars in long direction.
Provide 4 No. 19 bars @ 255 mm c.c. in each strip outside the middle strip in short direction, placed on top of bars

in long direction.

Step 5. Check column bearing on the footing (ACI Section 10.14).
The factored load at the base of the column = 1.2D + 1.6L = 1.2 × 2000 + 1.6 × 1350 = 4560 kN

(a) Top surface of the footing. The supporting surface is wider than the loaded areaA1 on all sides. Base area of the
frustum, shown in the scheme below, is

A2 = 3 × 3 = 9m
2

A1 = 0 45 × 0 45 = 0 203m2

A2

A1
=

9
0 203

= 6 6 > 2

Use
A2

A1
= 2.

The maximum bearing load on the top of the footing may be taken as

Ø 0 85fc A1 2 ACI Section 10 14 1

Where Ø = 0 65 ACI Section 9 3 2 4

The maximum bearing factored load = 0.65(0.85)(21)(0.203)(2)

= 4 711MN=4711 kN

 2

A2

A1
 

1

1.275 m 1.275 m 

3.0 m 

0.9 m 

0.45 m × 0.45 m

concrete column

Scheme 5.11
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The factored load at the base of the column is less than the maximum bearing factored load. Therefore, vertical
compression reinforcement or dowels through the supporting surface at the interface is theoretically not required.
(b) Base of the column. The allowable bearing strength of the column base at the interface is Ø 0 85fc A1 .

The allowable bearing factored load = 0 65 0 85 × 35 × 0 203

= 3 925MN=3925 kN

< 4560 kN

Therefore, dowels through the column base at the interface are needed to transfer the excess load.

Area of dowels required =Ad =
4560−3925

Ø fy

Ø =0 65 ACI Sections 9 3 2 4 and 9 3 2 2 b

Ad =
4560−3925

0 65 × 420 × 1000
= 2 326 × 10−3 m2 = 2326mm2

The area of dowels must also satisfy ACI Section 15.8.2.1, which requires

Ad ≥ 0 005Ag

Ad = 0 005 × 0 452 = 1 013 × 10−3 m2 = 1013mm2 < 2326mm2

Trysix No. 22 dowels. As,provided = 6 × 387 = 2322 mm2 (acceptable).
Provide six No. 22 dowels (fy = 420 MPa); dowel each corner bar and two other (opposite) bars.

Step 6. Find the embedment length of dowels in both the footing and the column.
(a) Embedment length of dowels in the footing:

According to ACI Sections 15.8.2.3 and 12.3.2:

ldc =
0 24fydb
λ fc

, or, ldc = 0 043fy db, whichever is the larger

ldc =
0 24 420 22 2

1 21
= 488mm, or, ldc = 0 043 420 22 2

= 401mm

ldc, min = 200mm ACI Section 12 3 1

Therefore, the required ldc = 488 mm < d
The dowel bars will be extended down to the level of the main footing steel and hooked 90 (ACI standard 90

hook). The hooks will be tied (wired) to the main steel to hold the dowels in place.
Use the embedment length of dowels in the footing 768 mm.

(b) Embedment length of dowels in the column:
According to ACI Sections 15.8.2.3, 12.3.2 and 12.16.1:

ldc =
0 24 420 28 7

1 35
= 489mm, or, ldc = 0 043 420 28 7

= 518mm

ldc =
0 043 × 10−6

10−6
420 28 7 = 518mm
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Therefore, the required ldc = 518 mm
For fy ≤ 420MPa and fc ≥ 21MPa: compression lap splice length shall be 0.071 fydb, but not less than 300 mm.
Lap splice length = 0.071 × 420 × 22.2 = 662 mm > (ldc = 518 mm)
Therefore, the minimum embedment length = lap splice length = 662 mm
Use the embedment length of dowels in the column = 700 mm.
Note: One, arbitrarily, may use a larger length.

Step 7. Develop the final design sketch as shown in the scheme below.

Problem 5.4

A single column footing is loaded with an axial column load at centre, a moment and a horizontal load, as shown in
the scheme below. Design the footing for the following given design data:

Loads:

P =D+ L D= 420 kN L= 535 kN

My =My,D +My,L My,D = 228 kN m My,L = 250 kN m

H =HD +HL HD = 42 kN HL = 53 kN

Column:
Reinforced concrete 500mm×500mm 8No 19 bars

fy = 420MPa Esteel = 2 × 105 MPa fc = 28MPa

Footıng:
Reinforced concrete footing

fy = 420MPa Esteel = 2 × 105 MPa fc = 21MPa

Foundation soil:
Net allowable soil pressure = net qa = 150 kPa

– 4 No. 19

@ 255

mm c.c.

– 22 No. 19

@142

mm c.c.

– 4 No. 19

@255

mm c.c.

1020 mm 1020 mm3000 mm

80 mm 80 mm L = 5200 mm 

150 mm

3.0 m × 5.2 m Footing
900 mm

Basement floor

–18 No. 25 @166 mm c.c.

6 No. 22 dowels

700 mm 

8 No. 29

450 mm-square column

85

mm

Fill 150 mm

Scheme 5.12
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Solution:
Step 1. Find footing base dimensions (ACI Section 15.2.2).

P =D+ L= 420 + 535 = 955 kN

My,D +My,L = 228 + 250 = 478 kN m

HD +HL = 42 + 53 = 95 kN

My,H = h HD +HL

Assume h = 0.5 m. Hence,
My,H = 95 × 0 5 = 47 5 kN m

My, total = 478 + 47 5 = 525 5 kN m

Eccentricity,ex =
My, total

P
=
525 5
955

= 0 55m

Since eccentrically loading condition prevails, it will be more economical to use rectangular footing with its
lengthL parallel to ex.

q=
R
BL

±
My x

Iy
or q=

R
BL

1 ±
6eL
L

Net qmax =
P
BL

1 +
6eL
L

=
955
BL

1 +
6 × 0 55

L

Let net qa = net qmax:

150 =
955
BL

1 +
6 × 0 55

L
=
955
BL

+
3151 5
BL2

B=
6 37
L

+
21 01
L2

Consider eL≤ (L/6): L≥ (6 eL = 3.3 m):
Compute B and A using suitable values for L, as shown in the table below:

Foundation soil

H

H

P

h
x

My

Footing

Column

Scheme 5.13

= c. g

P

ex =  eL

My,total

L

L

x
ex

P = R

Scheme 5.14
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L, m B, m A, m2

3.5 3.54 > L? 12.39
4.0 2.91 11.64
4.5 2.45 11.03
5.0 2.11 10.55

These results indicate that when L increases, area decreases providing more economical design. However, it is also
required not to use a large value for L in order to avoid the appearance of the column on a beam. Therefore, it is
necessary to take these requirements into consideration when L and B dimensions are selected.

Use rectangular footing 2.5 × 4.5 m.

Check net qa: net qmax =
P
BL

1 +
6eL
L

=
955

2 5 × 4 5
1 +

6 × 0 55
4 5

= 84 89 + 62 25

= 147 14 kPa < net qa OK

Step 2. Compute the design factored net loads, moments and soil pressures.
Factored P = Pult = 1.2 × 420 + 1.6 × 535 = 1360 kN
Factored My =My, ult = 1.2(228 + 42 × 0.5) + 1.6(250 + 53 × 0.5)

= 298 8 + 442 4 = 741 2 kN m

eL =
My,ult

Pult
=
741 2
1360

= 0 55m<
L
6
= 0 75m OK

Factorednet qmax =
Pult
BL

1 +
6eL
L

=
1360

2 5 × 4 5
1 +

6 × 0 55
4 5

= 120 89 + 88 65 = 209 54 kPa

Factorednet qmin =
Pult
BL

1−
6eL
L

= 120 89−88 65 = 32 24 kPa

Step 3. Draw the factored soil pressure diagram and locate the necessary critical sections.

209.54 kPa

Critical section for moment

(steel bars in long direction)

Critical section for moment

(steel bars in short direction

Critical section for one way shear

Critical section for two way shear

Slope = (39.4/1)

209.54 kPa

32.24 kPa

L = 4.5 m

2 m
2 – d

0.5 + d

B
 =

 2
.5

 m
1
 m

d

Scheme 5.15 (Continued)
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Step 4. Find footing thickness h.
Since the footing is eccentrically loaded and rectangular in shape, the required thickness shall be determined

on the basis of both one-way and two-way shear analyses.
(a) Considering one-way shear:

The critical section for one-way shear is located a distance d from face of the column across the entire
footing width (ACI Sections 11.11.1.1 and 11.1.3.1), as shown on the factored soil pressure diagram of Step 3.

Slope of the soil pressure line =
209 54−32 24

4 5
=
39 4
1

Factored net q at the critical section = 32.24 + [39.4(4.5 − 2 + d)]

= 130 74 + 39 4 d

Vu =
209 54 + 130 74 + 39 4 d

2
2−d 2 5

= 170 14 + 19 7 d 5−2 5 d

= 850 7 + 98 5 d−425 35 d−49 25 d2

= 850 7−326 85 d−49 25 d2 kN

Equation (5.19): ØVc ≥Vu taking reinforcement shear strength,VS = 0

where Ø = strength-reduction factor (ACI Section 9.3.2.3) = 0.75 for shear

Equation (5.20): Vc = 0 17λ fc bwd

Let ØVc = Vu

0 75 × 0 17 × 1 21 1000 2 5 d = 850 7−326 85 d−49 25 d2

1460 7 d −850 7 + 326 85 d + 49 25 d2 = 0

d2 + 36 3 d−17 3 = 0

d =
−36 3 ± 36 32− 4 1 −17 3

2 × 1
=
−36 3 + 37 24

2
= 0 47m= 470mm

(b) Considering two-way shear:
Vu = volume of the factored pressure diagram or Pult

– soil reaction on the shear block
=1360 – soil reaction on the shear block (kN)

The shear strength of concrete Vc shall be the smallest of (a), (b), and (c):

(a)

Vc = 0 17 1 +
2
β

λ fc bod Equation 5 22

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod
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(b)
Vc = 0 083

αsd
bo

+ 2 λ fc bod Equation 5 23

= 0 083
40d
bo

+ 2 1 fc bod = 0 083
40d
bo

+ 2 fc bod

(c) Vc = 0 33 λ fc bod Equation 5 24

= 0 33 1 fc bod = 0 33 fc bod

Use Vc = 0 33 fc bod. Calculate d, then check Vc of Equation (5.23).
Assume d = 0.47 m (as required by one-way shear)

ØVc = 0 75 0 33 21 1000 4 0 5 + 0 47 0 47 = 2068 3 kN

ØVn >Vu. Therefore, one-way shear controls.
Check Vc of Equation (5.23) using d = 0.47 m:

Vc = 0 083
40 × 0 47

4 0 5 + 0 47
+ 2 fc bod = 0 568 fc bod

Vc = 0 33 fc bod < 0 568 fc bod OK

Use d = 0.47 m = 470 mm.

The distance d will be taken to the centre of the steel bars in the long direction.
Assume using No. 25 bars, and 75 mmminimum concrete cover (ACI Section 7.7.1). Hence, the overall footing

thickness is

h= 470 + 75 + 1 2bar diameter = 545 + 12 7 = 557 7mm

Use h = 600 mm.
Step 5. Designthe flexural reinforcement.
(a) Reinforcement in long direction. The most critical section is located at the right face (or the left face) of the

column, as shown on the factored soil pressure diagram.

Equation (5.9): ØMn ≥Mu

Factored net q at the critical section = 209.54 − 39.4 × 2 = 130.74 kPa
The maximum factored moment/m is

Mu =
130 74 2 2

2

+
209 54−130 74 2

2
2
3
× 2

= 366 55 kN m m
(Continued)
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Assume tension-controlled section,

Ø = 0 9; fs = fy

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

Equation 5 11

= 0 9 As × 420 × 1000 0 47−
23 53As

2

= 177 660As−4 447 170A2
s

Let ØMn =Mu:

177 660As−4 447 170A2
s = 366 55

4 447 170A2
s −177 660As + 366 55 = 0

As =
− −177 660 ± −177 660 2− 4 4 447 170 366 55

2 × 4 447 170
=
177 660−158 249

8 894 340
= 2182 × 10−6 m2 m= 2182mm2 m

As,min = 0 0018 bh ACI Sections 10 5 4 and 7 12 2 1

= 0 0018 × 1 × 0 6 = 1 08 × 10−3 m2

= 1080mm2 m<As required by analysis

Try six No. 22; As,provided = 6 × 387 = 2322 mm2/m
Compute a for As = 2322 mm2/m, and check if fs = fy and whether the section is tension-controlled:

a= 23 53As = 23 53 × 2322 × 10−6 = 0 055m= 55mm

c=
a
β1
; For fc between 17 and 28 MPa, β1 shall be taken as 0.85

c=
55
0 85

= 64 71mm

dt = d = 470mm

εt = 0 003
dt −c
c

Equation 5 15

εt = 0 003
470−64 71

64 71
= 0 019 > 0 005. Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections

10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200 000
= 0 0021

Hence, εt > εy and fs = fy.
Therefore the assumptions are satisfied.

130.74 kPa

Slope = (39.4/1)

2 m

L = 4.5 m

B
 =

 2
.5

 m
2

0
9

.5
4

 k
P

a

Scheme 5.16
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Total number of bars required in long direction = 2.5 × 6 = 15
Using 75 mm minimum concrete cover at each side, centre to centre bar spacing will be 166 mm. Check con-

crete cover provided at each side:

2500− 14 × 166 + 22 2
2

= 76 9mm> 75mm OK

In case the required flexural reinforcement exceeds the minimum flexural reinforcement, it shall be adequate to
use the samemaximum spacing of reinforcement for slabs which is two times the slab thickness, or 450mmwhich-
ever is smaller, as specified by ACI Section 13.3.2.

Try 15 No. 22 @ 166 mm c.c. in long direction at bottom of the footing.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is larger than No. 19, the clear spacing of the bars

exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation, but not
less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

1 7 × 1 × 21

22 2
1000

= 1 20m= 1200mm> 300 mm

Therefore, the required ld = 1200 mm
The bar extension past the critical section (i.e. the available length) is

2000mm−75mmcover = 1925mm>1200mm OK

Use 15 No. 22 @ 166 mm c.c. across the footing width, at bottom in long direction.
(b) Reinforcement in short direction. The critical section is located at the face of the column, as shown on the

factored soil pressure diagram.
Bars in short direction are placed on bars in long direction. Therefore,

d = 0 47−

1
2
diameter of bar in long direction +

1
2
diameter of bar in short direction

Assume using No. 19 bars in short direction. Hence,

d = 0 47−
1
2
× 0 0222 +

1
2
× 0 0191 = 0 449m

0.47 m

Bar inshort direction 

Bar in long direction 

d

Scheme 5.17
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ØMn ≥Mu

Mu =
32 24 + 209 54 4 5

2
1

1
2

4 5

= 60 45 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

Equation 5 11

= 0 9 As × 420 × 1000 0 449−
23 53As

2

= 1 697 224As−4 447 170A2
s

Let ØMn =Mu

169 722As−4 447 170A2
s = 60 45

4 447 170A2
s −169 722As + 60 45 = 0

As =
− −169 722 ± −169 722 2− 4 4 447 170 60 45

2 × 4 447 170
=
169 722−166 524

8 894 340
= 360 × 10−6 m2 m= 360mm2 m

As,min = 0 0018 bh= 0 0018 × 1 × 0 6 = 1 08 × 10−3 m2 m

= 1080mm2 m>As required by analysis

Use As required = As,min = 1080 mm2/m
The assumptions made are satisfied, since As required = As,min.
Total As required = 1080 × 4.5 = 4860 mm2

Try 18 No. 19: As,provided = 18 × 284 = 5112 mm2 > 4860 mm2 (OK.)
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 19, the clear spacing of the bars exceeds 2db, and

the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical section (which is
the same critical section for moment) shall be determined from the following equation, but not less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

Where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 21

19 1
1000

= 0 833m= 833mm> 300mm

Therefore, the required ld = 833 mm
The bar extension past the critical section (i.e. the available length) is

1000mm−75mmcover = 925mm> 833mm OK
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According to ACI Section 15.4.4.2, for reinforcement in short direction, a portion of the total reinforcement, γsAs,
shall be distributed uniformly over a band width (centred on centreline of column or pedestal) equal to the length
of short side of footing. Remainder of reinforcement in short direction (1 − γs)As, shall be distributed uniformly
outside centre band width of footing.

γs =
2

β + 1

where β is ratio of long to short sides of footing.
In this case: As = 5112 mm2 or 18 No.19 bars;

γs =
2

4 5
2 5

+ 1
= 0 714

0 714 18 bars = 12 85 bars

Provide 13 bars uniformly distributed in the middle strip of 2.5 m width.
When As,min controls, ACI Section 10.5.4 requires maximum spacing shall not exceed three times the slab or

footing thickness, or 450 mm, whichever is smaller.
Provide 13 No. 19 @ 207 mm c.c. in the middle strip in short direction, placed on top of bars in long direction.
Provide 3 No. 19 @ 300 mm c.c. in each strip outside the middle strip in short direction, placed on top of bars in

long direction.
Step 6. Check the column bearing on the footing (ACI Section 10.14).

The factored load at the base of the column = 1.2D + 1.6L

= 1 2 × 420 + 1 6 × 535

= 1360 kN

(a) Top surface of the footing. The supporting surface is wider than the loaded area A1 on all sides.
Base area of the frustum shown in the scheme below, is

A2 = 2 5 × 2 5 = 6 25m2

A1 = 0 5 × 0 5 = 0 25m2

A2

A1
=

6 25
0 25

= 5 > 2

Use
A2

A1
= 2.

2
A1

A2

1 

1.0 m 1.0 m

2.5 m

0.6 m

Concrete column

0.5 m × 0.5 m

Scheme 5.18
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The maximum bearing load on the top of the footing may be taken as

Ø 0 85fc A1 2 ACI Section 10 14 1

ACI Section 9.3.2.4 gives Ø = 0.65 for bearing. Hence,
The maximum bearing factored load = 0.65(0.85)(21)(0.25)(2)

= 5 801MN

= 5801 kN 1360 kN

Therefore, vertical compression reinforcement or dowels through the supporting surface at the interface are the-
oretically not required.
(b) Base of the column. The allowable bearing strength of the column base at the interface is Ø 0 85fc A1 . Hence,

The allowable bearing factored load = 0 65 0 85 × 28 × 0 25

= 3868MN=3868 kN 1360 kN

Therefore, dowels through the column base at the interface are theoretically not required.
It should be realised that the preceding analysis concerns the condition in which the full section at the interface

is under compressive stresses. In other words, no moments are transferred to the section or the eccentricity falls
within the kern of the section. For the condition in which moments are transferred to the supporting footing or
pedestal, usually, compressive stresses will exist over part, but not all, of the section at the interface, which is the
same condition of this Problem. The number of dowels required can be obtained by considering the cross-sectional
area as an eccentrically loaded column with a maximum compressive concrete stress equal to the smaller of the
bearing stresses allowed on the supported member (column, pedestal or wall) or the supporting member (footing).
Sufficient reinforcement must cross the interface to provide the necessary axial load and moment capacity.

In general, this requires that all the column bars or dowels of the same steel area must cross the interface. These
longitudinal bars or dowels should satisfy ACI Sections 15.8.1.3, 12.17 and 15.8.2.3. Also, the minimum embed-
ment length of these bars in the footing should not be smaller than the compression development length ldc or
tension development length ldh, whichever is greater.
Step 7.Design dowels to satisfy the requirements of moment transfer and the minimum reinforcement area across

interface (ACI Section 15.8.2.1).
Assume using dowels of the same number and size of the column bars. Hence, use eight No. 19 dowels.

As,min = 0 005Ag = 0 005 × 0 52 = 1 25−3m2 = 1250mm2

As,provided = 8 × 284 = 2272mm2 >As,min OK

Provide eight No.19 dowels (fy = 420 MPa).

Step 8. Find the embedment length of dowels in both the footing and the column.
(a) Embedment length of dowels in the footing.

According to ACI Sections 15.8.2.3 and 12.3.2:

ldc =
0 24fydb
λ fc

or ldc = 0 043fy db,

whichever is the larger
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ldc =
0 24 420 19 1

1 21
= 420mmor

ldc =
0 043 × 10−6

10−6
420 19 1 = 345mm

ldc,min = 200mm ACI Section 12 3 1

Therefore, the required ldc = 420 mm < d = 470 mm
According to ACI Sections 12.5.1 and 12.5.2:

ldh =
0 24fydb
λ fc

or 8db or 150mm ,

which ever is the larger.
Therefore, it is clear that the minimum embedment length of dowels in the footing is 420 mm.
The dowel bars will be extended down to the level of the main footing steel and hooked 90 (ACI standard 90

hook). The hooks will be tied (wired) to the main steel to hold the dowels in place.
Use the embedment length of dowels in the footing 450 mm.

(b) Embedment length of dowels in the column.
According to ACI Sections 15.8.2.3, 12.3.2 and 12.16.1:

ldc =
0 24fydb
λ fc

or ldc = 0 043fy db,

whichever is the larger

ldc =
0 24 420 19 1

1 28
= 364mm or

ldc = 0 043 × 420 × 19 1 = 345mm

ldc,min = 200mm ACI Section 12 3 1

Therefore, the required ldc = 364 mm
For fy ≤ 420 MPa and fc ≥ 21MPa: compression lap splice length shall be 0.071 fydb, but not less than 300 mm.

Lap splice length = 0.071 × 420 × 19.1 = 570 mm > 364 mm.
According to ACI Sections 12.17.2.2 and 12.15:
Minimum length of lap for tension lap splices shall be for class B splice, but not less than 300 mm.

Class B-splice length = 1 3 ld = 1 3
fy ψ t ψ e

2 1 λ fc
db

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

1 3 ld = 1 3
420 × 1 × 1

2 1 × 1 28

19 1
1000

= 0 94m= 940mm> 570 mm

Use the embedment length of dowels in the column = 1000 mm.

(Continued)
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Step 9. Develop the final design sketch as shown in the scheme below.

Problem 5.5

Given: Same data as that of Problem 5.4 except we have the same moment about both axes, the load H = 0, and
instead the given net qa the following geotechnical data is available:

• Angle of internal friction Ø = 0

• Undrained shear strength su = 100 kPa

• Depth of foundation Df = 1m

• Unit weight of soil γ = 17.5 kN/m3

Required: Design the footing using uniform soil pressure distribution as suggested by Bowles (2001). Assume bear-
ing capacity failure controls the design soil pressure. Use Hansen’s bearing capacity equation with SF = 3.

Solution:
Step 1. Determine the design net qa using the Hansen’s bearing capacity equation.

We realise that with equal moments about both axes the optimum footing shape will be square with ex = ey,
L = B and L = B .

Table 4.2 gross qult = 5 14 su 1 + sc + dc + q Ø =0

Equation (4.3): net qult = gross qult −σo
σo = q= γ Df

net qult = 5 14 su 1 + sc + dc

3 No. 19

@ 300

mm c. c.

3 No. 19

@ 300

mm c. c.

13 No. 19

@ 207

mm c. c.

910 mm 910 mm 90

mm

90

mm L =  4500 mm 

1000 mm

600

mm

15 No. 22 @ 166 mm c. c.

8 No. 19 dowels

500 mm – square column 

8 No. 19

119 mm  

2.5 m ×  4.5 m footing

2500 mm

P
M

Scheme 5.19

Foundation soil

Footing

Column

P My

Mx

Df

x
h

Scheme 5.20

460 Shallow Foundations



Assume B = 3 m. Hence,
D
B
=
1
3
= 0 33

Table 4.6: sc = 0 2
B
L

= 0 2; k=
D
B
for

D
B
≤ 1

dc = 0 4k= 0 4 × 0 33 = 0 13; su = 100 kPa

net qult = 5 14 100 1 + 0 2 + 0 13

= 683 6 kPa

net qs =
net qult
SF

=
683 6
3

= 227 87 kPa

Let the design soil pressure net qa = net qs = 228 kPa since, in this case, bearing capacity failure controls the
design soil pressure.

Step 2. Find footing base dimensions (ACI Section15.2.2).

Net foundation unfactored loadP = 420 + 535 = 955 kN

Net allowable unfactored load = net qa L B

Let (net qa)(L B ) = P. Hence,

L B =
955
228

= 4 2 m2, or, B = 4 2 = 2 05m, since L = B .

ex =
My

P
=
228 + 250

955
= 0 50m= ey , sinceMx =My

B=B + 2ex = 2 05 + 2 × 0 5 = 3 05m

Try L = B = 3.1 m

dc = 0 4k= 0 4 ×
1
3 1

= 0 129 0 13 OK

Check ex ≤
B
6

ex = 0 5m;
B
6
=
3 1
6

= 0 52m> ex OK

Check ey ≤
L
6

ey = 0 5m;
L
6
=
3 1
6

= 0 52m> ey OK

Check Bmin: Bmin = 4 eB or ex +wx ; wherewx = col dimension B

= 4 × 0 5 + 0 5 = 2 5m< B= 3 1m OK

Check Lmin: Lmin = 4 eL or ey +wy ; wherewy = col dimension L

= 4 × 0 5 + 0 5 = 2 5m< L= 3 1m OK

Use 3.1 × 3.1 m reinforced concrete square footing.

2ey

 2ex
B

B'

L'

y

Lxey

ex

Scheme 5.21

(Continued)
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Step 3. Compute the design factored net loads, moments and soil pressures.

FactoredP = Pult = 1 2 × 420 + 1 6 × 535 = 1360 kN

FactoredMx =Mx,ult = 1 2 228 + 1 6 250 = 673 6 kN m

Factored My =My, ult = 1 2 228 + 1 6 250 = 673 6 kN m

ex = ey =
673 6
1360

0 50m<
3 1
6

= 0 52m OK

B = L = 3 1−2 × 0 5 = 2 1m

Factorednet q=
Pult
B L

=
1360

2 1 × 2 1
= 308 4 kPa

Step 4. Draw the factored soil pressure diagram and locate the necessary critical sections.

Step 5. Find footing thickness h.
Since the footing is eccentrically loaded, the required thickness shall be based on both one-way shear and

two-way shear analyses. The critical sections for shear are shown on the scheme of Step 4.
(a) Consider one-way shear: The critical section for one-way shear is located at distance d from face of the column.

Vu = B 1 3−d net qfactored = 1 1 3−d 308 4

= 400 92−308 4 d kN m

Equation (5.19):

ØVc ≥Vu taking reinforcement shear strength,Vs = 0

whereØ = strength reduction factor ACI Section 9 3 2 3

= 0 75for shear

Critical section

for two-way shear

Critical section

for moment 

Critical section

for one-way shear

308.4 kPa

308.4 kPa
 308.4 kPa

y

B =
 L

 =
 3

.1
 m

1.3
–d

d

d/2

d/2

B' =
 L

' =
 2

.1
 m

x

Scheme 5.22
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Equation (5.20): Vc = 0 17λ fc bwd

Let ØVc =Vu

0 75 × 0 17 × 1 21 1000 1 d = 400 92−308 4 d

d =
400 92
892 7

= 0 45m= 450mm

(b) Consider two-way shear:

Vu = Pult −soil reaction on the shear block

= 1360−soil reaction on the shear block kN

The shear strength of concrete Vc shall be the smallest of (a), (b) and (c):

(a) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

Equation 5 22

(b) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
40d
bo

+ 2 1 fc bod = 0 083
40d
bo

+ 2 fc bod

Equation 5 23

(c) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod. Calculate d, then check Vc of Equation (5.23).
Assume d = 0.45 m

ØVc = 0 75 0 33 21 1000 4 0 5 + 0 45 0 45 = 1939 5 kN

ØVc >Vu. Therefore, one-way shear controls.
Check Vc of Equation (5.23):

Vc = 0 083
40 × 0 45

4 0 5 + 0 45
+ 2 fc bod = 0 56 fc bod

Vc = 0 33 fc bod < 0 568 fc bod OK

Use d = 0.45 m = 450 mm.

The distance d will be taken to the intersection of the steel bars running each way at bottom of the footing.
Assume using No. 22 bars; hence, depth of footing above reinforcement = (450 − 22.2) mm > 150 mm min-

imum required (ACI Section 15.7).
Minimum concrete cover for reinforcement (ACI Section 7.7.1) = 75mmHence, the overall footing thickness is

h= 450 + 75 + 22 2 = 275 + 19 1 = 547 2mm
(Continued)
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Use h = 550 mm.
Step 6. Design the flexural reinforcement.

The most critical section is located at the face of the column, shown in
the schemes 5.22 and 5.23.

Equation (5.9): ØMn ≥Mu

net qfactored = 308 4 kN

The maximum factored moment is

Mu =
net qfactored × l2

2

=
308 4 1 3 2

2
= 260 6 kN m m

The rest of the design computations proceed in the samemanner as that for the
reinforcement of the square footing of Problem 5.2.

Also, for the rest of the design steps concerning the column bearing on foot-
ing, the necessary dowels and their embedment lengths in both the footing and
the column, the design proceeds in the same manner as that for the footing of
Problem 5.4.

The necessary computations are left for the reader.

Problem 5.6

Using thesame data given in Problem 5.4, design an eccentrically loaded footing such that the soil pressure will be
approximately uniform. Assume there will be no space limitation in layout of the footing and the moments always
act in the directions shown.

Solution:
Step 1. Compute theeccentricity e and place centre of the footing away from the column centre a distance equals e.

If space permits, it will be possible to place the footing centre away from the column so that the resulting soil
pressure is uniform, that is the resultant of structural loads coincides with the soil pressure resultant at centre of
the footing (see Figure 5.6). This solution is obviously valid only for moments which always act in the given
direction. This is not a valid solution for wind moments, since reversals can occur.

The greatest combinations of the given loads are

P =D+ L= 420 + 535 = 955 kN

My,D +My,L = 228 + 250 = 478 kN m

HD +HL = 42 + 53 = 95 kN

My,H = h HD +HL

Assume h = 0.5 m. Hence, My,H = 95 × 0.5 = 47.5 kN. m

My, total = 478 + 47 5 = 525 5 kN m

Resultant of the structural loads =R= P = 955 kN

Eccentricity of P = ex =
My, total

P
=
525 5
955

= 0 55m

B = L = 3.1 m

1.3 m 

308.4 kPa

L'
 =

 2
.1

 m

B' = 2.1 m

= 673.6 kN. m

P = 1360 kN 

R = 1360 kN 

0
.5

5
 m

Critical section

for moment  y

x

Mx= My

Scheme 5.23
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Place the column centre at 0.55 m to the left of the footing centre; thus, the resultant of structural loads coincides
with the soil pressure resultant at centre of the footing, as shown below:

Step 2. Find footing base dimensions (ACI Section 15.2.2).
Since the soil pressure is uniformly distributed, a square footing may be used.

Let net q= net qa

A=
R

net qa
=
955
150

= 6 4m2. Hence, B = L= 6 4 = 2 53m

Use 2.6 × 2.6 m square footing.

Step 3. Compute the design factored net load, moment and soil pressure.

Factored P = Pult = 1 2 × 420 + 1 6 × 535 = 1360 kN

Factored My =My,ult = 1 2 228 + 42 × 0 5 + 1 6 250 + 53 × 0 5

= 298 8 + 442 4 = 741 2 kN m

Factorednet q=
Pult
BL

=
1360

2 6 × 2 6
= 201 2 kPa

Check the eccentricity of the factored P:

ex =
Factored My

Factored P
=
741 2
1360

= 0 545m 0 55m OK

Step 4. Find footing thickness h.

Centroid 

P = 955 kN

My,total = 525.5 kN. m

ex = 0.55 m

R = P

R = P

x

net q =
A
R

=

Scheme 5.24

Pult= 1360 kN 

My,ult = 741.2 kN.m

Footing

Column 

h

1.30 m

Long sideShort side

1.6

Critical section

for moment

(steel in x direction) 

y

d

x

R = P = 1360 kN

Critical section for moment

(steel in y direction)R = P = 1360 kN

201.2 kPa

0.55

0.50

0
.5

0

0.50

1
.0

5
 m

2.60 m

2
.6

0
 m 0.3

1.60 m

1.30 m

Critical section

for one way shear

ex= 0.55 m   

Scheme 5.25 (Continued)
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Determine the required thickness based on both one-way shear and two-way shear analyses.
(a) Considering one-way shear: The most critical section for one-way shear is located a distance d from the right

face of the column, as shown in the scheme above.

Vu = 2 60 1 6−d net qfactored = 2 60 1 60−d 201 2

= 836 99−523 12 d kN

Equation (5.20):
Vc = 0 17λ fc bwd

Let ØVc =Vu

0 75 × 0 17 × 1 21 1000 2 60 d = 836 99−523 12 d

d =
836 99
2042 24

= 0 41m= 410mm

(b) Considering two-way shear:
The critical section for two-way shear is located a distance d/2 from the column faces (ACI Sections

11.11.1.2 and 15.3), as shown in the scheme.

Assume d = 0.41 m as requıred by one-way shear.

Vu =Af net qfactored −soil reaction on the shear block

= 2 6 × 2 6 201 2 −soil reaction on the shear block

= 1360 11−soil reaction on the shear block kN

The shear strength of concrete Vc shall be the smallest of (a), (b) and (c):

(a) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

Equation 5 22

(b) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
40d
bo

+ 2 1 fc bod

= 0 083
40 0 41

4 0 5 + 0 41
+ 2 fc bod = 0 54 fc bod

Equation 5 23

(c) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod.

d/2

d/2
0
.5

0.5

Scheme 5.26
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ØVc = 0 75 0 33 21 1000 4 0 5 + 0 41 0 41

= 1692 7 kN>Vu

Therefore one-way shear controls.
Use d = 0.41 m = 410 mm.
This depth d will be taken to the centre of the steel bars in the x-direction.
Using No. 22 bars with 75 mm concrete cover (ACI Section 7.7.1), the overall footing thickness is

h= 410 + 75 + 11 1 = 875 + 12 7 = 496 1mm

Use h = 500 mm.

Step 5. Design the flexural reinforcement.
(a) Reinforcement in the x-direction. The critical section is shown in the scheme 5.25.

Equation (5.9):

ØMn ≥Mu

The maximum factored moment is

Mu =
net qfactored l 2

2
=
201 2 × 1 62

2
= 258 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85 fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 41−
23 53As

2

= 154980As−4447170As
2

Equation 5 11

Let ØMn =Mu

154980As−4447170As
2 = 258

4447170As
2−154980As + 258 = 0

As =
− −154 980 ± −154 980 2− 4 4 447 170 258

2 × 4 447 170
=
154980−139389

8894340
= 1753 × 10−6 m2 m= 1753mm2 m

As,min = 0 0018 bh= 0 0018 × 1 × 0 5 = 0 9 × 10−3 m2 m

= 900mm2 m<As required by analysis

Try five No.22 bars: As,provided = 5 × 387 = 1935 mm2/m > As (OK.)
Compute a for As = 1935 mm2/m and check if fs = fy and whether the section is tension-controlled:

a= 23 53As = 23 53 × 1935 × 10−6 = 0 0455m= 45 5mm
(Continued)
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c=
a
β1
; For fc between 17 and 28 MPa, β1 shall be taken as 0.85

c=
45 5
0 85

= 53 53mm

dt = d = 410mm

εt = 0 003
dt −c
c

= 0 003
410−53 53

53 53
= 0 020 > 0 005

Equation 5 15

Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200000
= 0 0021

Hence, εt > εy and fs = fy.
Therefore the assumptions made are satisfied.
Total number of bars required in the x-direction = 2.6 × 5 = 13
Using 75 mm minimum concrete cover at each side, centre to centre bar spacing will be 202 mm. Check con-

crete cover provided at each side:

2600− 12 × 202 + 22 2
2

= 76 9mm> 75 mm OK

In case the required flexural reinforcement exceeds the minimum flexural reinforcement, it shall be adequate to
use the same maximum spacing of reinforcement for slabs which is two times the slab thickness, or 450 mm,
whichever is smaller, as specified by ACI Section 13.3.2.

Try 13 No.22 bars @ 202 mm c.c. in the x -direction at bottom of the footing.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is larger than No.19, the clear spacing of the bars

exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation, but not
less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

1 7 × 1 × 21

22 2
1000

= 1 2m= 1200mm> ld,min = 300mm

Therefore, the required ld = 1200 mm
The smaller bar extension past the critical section (i.e. the available length) is

1000mm−75mmcover = 925mm< 1200mm NotOK
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We must consider smaller bars or use bars terminating in a standard hook.
Assume the designer prefers using smaller bars:
Tryseven No.19 bars; As,provided = 7 × 284 = 1988 mm2/m > As required by analysis (OK.)
Total number of bars required in the x-direction = 2.6 × 7 = 19

ld =
420 × 1 × 1

2 1 × 1 × 21

19 1
1000

= 0 834m= 834mm< 925mm OK

Using 75 mm concrete cover at each side, centre to centre bar spacing will be 135 mm. Check concrete cover
provided at each side:

2600− 18 × 135 + 19 1
2

= 75 5mm> 75mm, O K

Use 19 No.19 bars @ 135 mm c.c. in the x -direction at bottom of the footing.
(b) Reinforcement in the y-direction. The critical section is shown in the scheme of Step 4.

ØMn ≥Mu

The maximum factored moment is

Mu =
net qfactored l 2

2
=
201 2 × 1 052

2
= 111 kN m m

Bars in short direction are placed on bars in long direction. Therefore,

d = 0 41−

1
2
diameter of bar in x−directıon +

1
2
diameter of bar in y−directıon

Assume using No. 16 bars in y-directıon. Hence,

d = 0 41−
1
2
× 0 0191 +

1
2
× 0 0159 = 0 39m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85 fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 39−
23 53As

2

= 147420 As−4447170As
2

Equation 5 11

0.41 m

Bar in y- direction 

d

Bar in long direction 

Scheme 5.27

(Continued)
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Let ØMn =Mu

147420As−4447170As
2 = 111

4447170As
2−147420 + 111 = 0

As =
− −147 420 ± −147 420 2− 4 4 447 170 111

2 × 4447170
=
147420−140563

8 894 340

= 771 × 10−6 m2 m= 771mm2 m

As,min = 0 0018 bh= 0 0018 × 1 × 0 5 = 0 9 × 10−3 m2

= 900mm2 m>As required by analysis

Therefore, use As = As,min = 900 mm2/m
Try five No.16 bars; As,provided = 5 × 199 = 995 mm2/m > As (OK.)
The assumptions made are satisfied, since As required = As,min.
Total number of bars required in the y -direction = 2.6 × 5 = 13.
It may be more appropriate to place eight bars (about 60% of the total bars) within the half of the footing area

that contains the column and the other five bars in the other half, uniformly distributed.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is smaller than No. 19, the clear spacing of the bars

exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation, but not
less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 21

15 9
1000

= 0 694m= 694mm> ld,min = 300mm

Therefore, the required ld = 694 mm
The bar extension past the critical section (i.e. the available length) is

1050mm−75mmcover = 975mm>694 mm OK

When As,min controls, ACI Section 10.5.4 requires maximum spacing shall not exceed three times the slab or
footing thickness, or 450 mm, whichever is smaller.

Using 75 mm minimum concrete cover at each side, the reinforcement distribution and centre to centre bar
spacing shall be as follow:

Provide eight No.16 bars @ 173mm c.c.in the half of the footing area that contains the column, placed on top of
bars in x-direction.

Provide five No.13 bars @ 243 mm c.c. in the other half of the footing area, placed on top of bars in x-direction.
Step 6. Check the column bearing on the footing (ACI Section 10.14).

For this step and the other design steps concerning the necessary dowels and their embedment lengths in
both the footing and the column, the design proceeds in the same manner as that for the footing of Problem 5.4.
The necessary computations are left for the reader.
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Problem 5.7

The bearing walls of a one-story industrial building will be built of concrete block 200 × 300 × 400 mm. Design a
wall footing for the following data:

Wall loads including wall floor and roof contribution D= 70 kN m

L= 30 kN m

D+ L= 100 kN m

Wall thickness = 300mm

Footing fc = 21MPa fy = 420 MPa Esteel = 2 × 10
5 MPa

Foundation soil net qa = 150 kPa

Solution:
Step 1. Find the footıng width and the factored net soil pressure.

Neglect any weight increase from displacing the lighter soil with heavier concrete, since it is usually too small
for lightly loaded footings.

Footing width =B= area per meter length of wall =
wall load
net qa

B=
100
150

= 0 67m

Let the footing projects 200 mm on each side of the wall to facilitate placing the foundation wall.
Use B = 0.7 m = 700 mm.

Factored net soil pressure = net qfactored =
factored net load

area
=
1 2D+ 1 6L

area

=
1 2 × 70 + 1 6 × 30

0 7 × 1
= 188 6 kPa

Step 2. Find footing thickness h.
One-way shear only is significant in wall footings. Critical section for one-way shear is located a distance d

from face of the wall (ACI Sections 11.11.1.1 and 11.1.3.1). However, in this case, the critical section may fall out
the footing projection, and to account for the most severe condition, we consider the section located at face of
the wall, as shown in the scheme below.

Vu = 1 × 0 2 net qfactored = 1 × 0 2 188 6 = 37 72 kN m

Equation (5.19): ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

(Continued)
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Equation(5.20): Vc = 0 17λ fc bwd

Let ØVc =Vu

0 75 × 0 17 × 1 21 1000 1 d = 37 72

d =
37 72
584 28

= 0 065m= 65mm

dmin = 150mm

ACI Section 15 7

Choose arbitrarily d = 250 mm.
The depth d will be taken to the centre of the transverse steel bars.

Minimum concrete cover = 75mm ACI Section 7 7 1

Assume using No.13 bars. Hence, the overall footing thickness is

h= 250 + 75 + 6 4 = 331 4mm

Use h = 350 mm.

Step 3. Design the flexural reinforcement.
The critical section for transverse bending is shown in the scheme of Step 2.
Equation (5.9): ØMn ≥Mu

The maximum factored moment is

Mu =
net qfactored l 2

2
=
188 6 × 0 282

2
= 7 4 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 25−
23 53As

2

= 94 500 As−4 447170 As
2

Equation 5 11

0.2 m0.2 m 0.3 m

B = 0.7 m

0.28 m

Critical section

for moment

(ACI Section 15.4.2) 

Critical section for

one way shear

(arbirarily located)Wall 

Footing 

Scheme 5.28
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Let ØMn =Mu

94 500As−4 447 170As
2 = 7 4

4 447 170As
2−94 500As + 7 4 = 0

As =
− −94 500 ± −94 500 2− 4 4 447 170 7 4

2 × 4 447 170
=
94 500−93 801

8 894 340

= 78 6 × 10−6m2 m= 78 6 mm2 m

As,min = 0 0018 bh

= 0 0018 × 1 × 0 35 = 0 63 × 10−3 m2 m

= 630 mm2 m As required by analysis

ACISections 10 5 4 and 7 12 2 1

Therefore, use As required = As,min = 630 mm2/m
The assumptions made are satisfied, since As required = As,min.
Try No.13 bars @ 250 mm c.c., that is five No.13 bars per metre length of the footing. As,provided = 5 × 129 =

645 mm2/m > As,min (OK.)
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is smaller than No. 19, the clear spacing of the bars

exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation, but not
less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 21

12 7
1000

= 0 554m= 554mm> 300mm

Therefore, the required ld = 554 mm.
The bar extension past the critical section (i.e. the available length) is

280mm−75mmcover = 205mm< 554mm NotOK

Use bars terminating in a 180-degree standard hook (ACI Section 12.5.1 andACI Figure R12.5). Hooked bar details
for development of 180-degree standard hooks are shown in the scheme in Solution of Problem 5.2, Step 5.

ldh =
0 24ψ efy
λ fc

db ACI Sections 12 5 2

where the factors ψ e and λ shall be taken as 1.

ldh =
0 24 × 1 × 420

1 × 21

12 7
1000

= 0 28m= 280mm> 150mm> 8db

Therefore, the required ldh = 280 mm. (Continued)
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ldh = 280mm> 205mmavailable NotOK

However, ldh can be reduced by the applicable modification factor of ACI Section 12.5.3(a), as follows:

Reduced ldh = 0 7 × ldh = 0 7 × 280 = 196mm<205mm

> 150mm OK

Therefore, the bars shall be terminating in a 180-degree standard hook.
Use No.13 bars @ 250 mm c.c. placed transversely at bottom of the footing. The bars must have 180-degree standard
hook at each end.

Step 4. Select longitudınal steel based on the minimum shrinkage and temperature reinforcement (ACI Sectıons
7.12.1 and 7.12.2.1).

As = 0 0018 bh= 0 0018 × 0 7 × 0 35 = 4 41 × 10−4 m2 = 441mm2

Try seven No. 10 bars: As,provided = 7 × 71 = 497mm2 > 441mm2 OK
Longitudinal steel will, in general, be more effective in the top of the footing than in the bottom; it could control
cracks when the foundation settles. According to ACI Section 7.12.2.2, shrinkage and temperature reinforcement
shall be spaced not farther apart than five times the slab thickness, nor farther apart than 450 mm. Provide four
No. 10 bars at top and three No. 10 bars at bottom, which will also provide support for the transverse flexural
reinforcement.

Provide four No.10 bars @ 180 mm c.c. at top of the footing in long direction.
Provide three No.10 bars @ 250 mm c.c. at bottom of the footing in long direction as support for the transverse bars.

Step 5. Draw a final design sketch as shown in the scheme below.

Problem 5.8

A 300 mm thick reinforced concrete wall carries a service dead load of 150 kN/m and live load of 185 kN/m. The
wall is reinforced with No. 13 vertical steel bars in two layers parallel with faces of the wall at 350 mm centre to
centre. The supporting soil has gross qa = 240 kPa at the foundation level, which is 1.5 m below the final ground

3 No. 10 bars

@ 250 mm c. c.

180 – degree

standard hook

350 mm

No. 13 bars @

250 mm c. c.

700 mm

80 mm

Footing 

4 No. 10 bars @

180 mm c. c. 

Concrete block wall

300 mm

Scheme 5.29
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surface. The soil unit weight is 19 kN/m3. Design the wall footing using fc = 21MPa, fy = 420MPa and Esteel = 2 ×
105 MPa.

Solution:
Step 1. Find footing width B and the factored net soil pressure.

Equation 4.8b: net q=
V
A
−γwh+Dc γc−γ ≤ net qa

where γwh= uplift water pressure = 0 in this case Hence

net q=
V
A
+Dc γc−γ

Guess a trial value for Dc between 1 and 1.5 times the wall thickness.
Assume Dc = 0.4 m

net q=
150 + 185

A
+ 0 4 24−19 =

335
A

+ 2 kPa

net qa = gross qa−σo = 240−19 × 1 5 = 211 5 kPa

Let net q = net qa
335
A

+ 2 = 211 5

A=
335
209 5

= 1 6m2

A = B × 1. Hence, B = 1.6 m.
Another method to find B is as follows:

Gross foundation load = 150 + 185 + B × 1 24 × 0 4 + 19 × 1 1

= 335 + 30 5 B kN

A=B× 1 =
gross foundation load

gross qa
=
335 + 30 5 B

240

B=
335
209 5

= 1 6m2

The factored soil pressure is computed without including the weights of footing and backfill material because
these loads are evenly distributed and thus do not produce shear or moment in the footing.

Foundation factored net load = 1 2 150 + 1 6 × 185 = 476 kN

Factorednet soil pressure = net qfactored =
476
A

=
476

1 6 × 1
300 kPa

Step 2. Find footing thickness h. One-way shear only is significant in strip footings.
Critical section for one-way shear is located a distance d from face of the wall (ACI Sections 11.11.1.1 and

11.1.3.1), as shown in the scheme below.

(Continued)
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Equation (5.19): ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Vu = 1 0 65−d net qfactored = 0 65−d 300 = 195−300 d

Equation (5.20): Vc = 0 17λ fc bwd

ØVc = 0 75 × 0 17 × 1 21 1000 1 d
Let Ø Vc =Vu:

0 75 × 0 17 × 1 21 1000 1 d = 195−300 d

d =
195

884 28
= 0 221m= 221mm> dmin = 150mm ACI Section 15 7

Try d = 221 mm.
The depth d will be taken to the centre of the transverse steel bars. Assume using No. 13 bars, and 75 mm

minimum concrete cover (ACI Section 7.7.1). Hence, the overall footing thickness is

h= 221 + 75 + 6 4 = 302 4mm

Try h = 310 mm.
Check gross qa:

gross q=
gross foundation load

A
=

150 + 185 + 1 6 × 1 24 × 0 31 + 19 × 1 19
1 6 × 1

= 239 4 kPa < gross qa = 240 kPa OK

 0.65 m0.65 m 0.3 m

B = 1.6 m

Critical section

for moment (ACI

Section 15.4.2) 

Critical section for

one-way shear  

Concrete

wall  

Concrete

footing  

0.65 – dd

Scheme 5.30
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Use: d = 221 mm
h = 310mm

Step 3. Design the flexural reinforcement.
The critical section for transverse bending is shown in the scheme of Step 2.

Equation (5.9): ØMn ≥Mu

Mu =
net qfactored l 2

2
=
300 × 0 652

2
= 63 4 kN m m

Equation (5.11): ØMn = Ø Asfy d−
a
2

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = 0 9 As × 420 × 1000 0 221−
23 53As

2

= 83 538As−4 447 170As
2

Let ØMn =Mu

83 538As−4 447 170As
2 = 63 4

4 447 170As
2−83 538As + 63 4 = 0

As =
− −83 538 ± −83 538 2− 4 4 447 170 63 4

2 × 4 447 170
=
83 538−76 490

8 894 340

= 792 × 10−6 m2 m= 792 mm2 m

As,min = 0 0018 bh= 0 0018 × 1 × 0 31 = 5 58 × 10−4 m2

= 558 mm2 m<As required by analysis

In case the required flexural reinforcement exceeds the minimum flexural reinforcement, it shall be adequate to
use the samemaximum spacing of reinforcement for slabs which is two times the slab thickness, or 450mmwhich-
ever is smaller, as specified by ACI Section 13.3.2.

Try No. 13 @ 160 mm c.c.

As,provided =
1000
160

× 129 = 806mm2 m >As OK

Compute a for As = 806 mm2/m, and check if fs = fy and whether the section is tension-controlled:

a= 23 53As = 23 53 × 806 × 10−6 = 0 019m= 19mm

(Continued)
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c=
a
β1
; For fc between 17 and 28 MPa, β1 shall be taken as 0.85

c=
19
0 85

= 22 4mm

dt = d = 221mm

εt = 0 003
dt −c
c

= 0 003
221−22 4

22 4
= 0 027 > 0 005 Equation 5 15

Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200 000
= 0 0021

Hence, εt > εy and fs = fy.
Therefore the assumptions made are satisfied.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is smaller than No. 19, the clear spacing of the bars

exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation, but not
less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 21

12 7
1000

= 0 554m= 554mm> 300 mm

Use ld = 0.554 m = 554 mm.

The bar extension past the critical section (i.e. the available length) is

650mm−75mmcover = 575mm> ld OK

Use No. 13 bars @ 160 mm c.c. placed at bottom of the footing in the transverse direction.
Step 4. Select longitudinal steel based on the minimum shrinkage and temperature reinforcement (ACI Sectıons

7.12.1 and 7.12.2.1).

As = 0 0018 bh= 0 0018 × 1 6 × 0 31

= 8 928 × 10−4 m2 = 893mm2

Try 13 No. 10 bars: As,provided = 13 × 71 = 923mm2 >As OK
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Longitudinal steel will, in general, be more effective in the top of the footing than in the bottom; it could control
cracks when the foundatıon settles.

According to ACI Section 7.12.2.2, shrinkage and temperature reinforcement shall be spaced not farther apart
than five times the slab thickness, nor farther apart than 450 mm.

Provide eight No. 10 @ 205 mm c.c. at top of the footing in long direction.
Provide five No. 10 @ 360 mm c.c. at bottom of the footing in long direction as support for the transverse bars.

Step 5. Check wall bearing on the footing (ACI Section 10.14).

The factored load at the base of the wall = 1 2D+ 1 6L

= 1 2 × 150 + 1 6 × 185

= 476 kN

(a) Base of the wall. The allowable bearing strength of concrete at the wall base is

Ø 0 85fc A1 = 0 65 0 85 × 21 0 3 × 1

= 3 48MN=3480 kN 1 2D+ 1 6L OK

(b) Top surface of the footing. The design bearing strength on the top surface of the footing shall not exceed
Ø 0 85fc A1 , except when the supporting surface is wider on all sides than the loaded area; then the design

bearing strength of the loaded area shall be permitted to be multiplied by A2 A1 but not more than 2, (ACI
Section 10.14.1).

Since both the footing and wall concrete have the same fc , it is clear that the design bearing strength on the
top surface of the footing is also much greater than (1.2D + 1.6L).

Therefore, vertical compression reinforcement or dowels through the supporting surface at the interface
are theoretically not required. However, ACI Section 15.8.2.2 requires area of reinforcement across interface
shall be not less than the minimum vertical reinforcement given in ACI Section 14.3.2.

Step 6. Design dowels to satisfy the minimum area of reinforcement across interface required by ACI Sections
15.8.2.2 and14.3.2.

ACI Section 14.3.2 states that minimum ratio of vertical reinforcement area to gross concrete area, ρℓ,
shall be:

(a) 0.0012 for deformed bars not larger than No. 13 with fy not less than 420 MPa; or
(b) 0.0015 for other deformed bars; or
(c) 0.0012 for welded wire reinforcement not larger than MW200 or MD200.

Assume using No. 10 dowels with fy = 420MPa. Hence, ρℓ = 0.0012.

As,min = 0 0012 × 1 × 0 3 = 3 6 × 10−4 m2 m= 360mm2 m

Try No. 10 @ 350 mm c.c. (the same spacing of the wall vertical bars) in two layers parallel with faces of the wall:

As,provided = 2
1000
350

× 71 = 406mm2 m >As,min OK

Provide No. 10 @ 350 mm c.c. in two layers parallel with faces of the wall.

Step 7. Find the embedment length of dowels in both the footing and the wall.
For this step, the design proceeds in the same manner as that of Solution of Problem 5.3, Step 6.

Step 8. Develop the final design sketch.
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Problem 5.9

A metal column with steel base bearing plate is supported by a concrete pedestal rests on a reinforced concrete
footing. The pedestal should have shoulder to provide bearing for the floor slab which will be placed 1.5 m above
the footing, as shown in the scheme below. Design the pedestal and bearing plate for the following given data:

Loads P =D+ L D= 600 kN L= 450 kN

Column: W 310×107 metal (A-36 steel) column; fy = 250 MPa
Bearing plate: metal (A-36 steel) plate; fy = 250 MPa
Anchor bolts: A307-grade A (A-36 steel); fult = 400 MPa; fy = 250 MPa
Concrete pedestal: fc = 24MPa
Steel bars: fy = 420 MPa; Esteel = 2 × 105 MPa

Solution:
Step 1. Find area of the base plate and the cross-section dimensions of the pedestal.

Usually, the cross-sectional area of the pedestal is set for the base plate but increased by at least 50 mm to
provide bearing for the floor slab.

(a) Area of the base plate, A1. Design according to the AISC specifications.

A1 =
1
A2

P
0 35 fc

2

, or, A1 =
P

0 7 fc
, whichever is greater.

A2 = Surface area of the supporting member

A2 =
P

0 175 fc

A2 =
P

0 175 fc
=

600 + 450
0 175 × 24 × 1000

= 0 25m2

A1 =
1

0 25
1050

0 35 × 24 × 1000

2

= 0 0625m2, or,

Metal column

P

Base bearing plate

Anchor bolt100 mm 

150 mm-Concrete floor 

Concrete pedestal 

Reinforced concrete

footing    

1.5 m

Foundation soil 

Scheme 5.31
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A1 =
1050

0 7 × 24 × 1000
= 0 0625m2

Use a plate area A1 ≥ 0.0625 m2.
The plate plan dimensions should be larger than the column cross-section dimensions on all sides by about

12 mm in order that the plate can be fillet-welded to the bottom of the column.
Column cross-section dimensions:
For W 31 × 107 metal, AISC Tables give:

d = 311mm

bf = 306mm

Try a plate with dimensions:

Bp = bf + 2 × 12 = 306 + 24 = 330mm

Cp = d + 2 × 12 = 311 + 24 = 335mm

Check A1:
The furnished area is

0 330 × 0 335 = 0 116m2 > A1,min = 0 0625m2 OK

Use 330 mm × 335 mm base bearing plate.
(b) Cross-section dimensions of the pedestal.

Assume using a pedestal with cross-section dimensions as follows:

For the height between the bottom levels of the base plate and floor slab, the cross-section shall be
0.5 × 0.5 m.

For the height between the bottom level of the floor slab and top level of the footing, the cross-section
shall be 0.6 × 0.6 m.

Thus, the pedestal will have a 50 mm shoulder on all sides as bearing for the floor slab.
Check A2:

The furnished area = 0 5 × 0 5 = 0 25m2

A2 = 0 25m2 OK

Check the ratio
Lu
B
:

Lu =Unsupported height of a pedestal

B= Least lateral dimension of a pedestal

Assume neglecting lateral restraint due to backfill. Hence,

Lu
B

=
1 5
0 6

= 2 5 < 3

Therefore, the supporting member is considered pedestal (ACI Section 2.2).

Critical

sections

for bending

moment

in the plate 

Base plate 

Metal column

W 310 × 107  

0.95 d

0.8bf

d

Cp

bf Bp

n

m

Scheme 5.32
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Step 2. Check plate bearing on pedestal.

Maximum allowable bearing load should be ≤ 0 7 fc A1

≥ D+ L

0 7 fc A1 = 0 7 × 24 × 0 33 × 0 36 = 1 996MN

D+ L= 600 + 450 = 1050 kN

According to AISC, for the case A2 > A1, the maximum allowable bearing load on the top of the pedestal is

0 35 fc A1 A2 A1, on the condition A2 A1 ≤ 2.

A2 A1 = 0 25 0 33 × 0 36 = 1 45 < 2

Maximum allowable bearing load = 0 35 24 0 33 × 0 36 1 45

= 1 447MN=1447 kN

< 0 7 fc A1

> D+ L OK

Step 3. Find the plate thickness tp.
Actually, computation of tp is beyond the scope of this text. However, for completeness, we may compute tp

using the AISC specifications.
Refer to the scheme of Step 1:

tp = 2 ν
fp
fy

where fy = tensile yield stress of the plate steel

fp = service loadP Bp ×Cp

ν= m or n or λn , whichever is the greatest, mm

m= Cp−0 95 d 2

n= Bp−0 80 bf 2

n = 0 25 d × bf

λ =
2 X

1 + 1−X
or 1 0whichever is smaller If X > 1, use λ= 1

X =
4Po
L2 Fb

UsePo = P andFb = 0 35 fc A2 A1

L= d + bf

L= 311 + 306 = 617mm=0 617m

m=
335−0 95 × 311

2
= 19 8mm; n=

330−0 80 × 306
2

= 42 6mm>m

n = 0 25 311 × 306 = 77 1mm;Fb = 0 35 24 1 45 = 12 18MPa

X =
4 × 1050

0 6172 12 18 × 1000
= 0 906
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λ=
2 × 0 906

1 + 1−0 906
= 1 457 > 1 Hence, use λ = 1

λn = 1 × 77 1 = 77 1mm> n Hence, ν = 77.1 mm

fp =
1050

0 330 × 0 335
= 9498 kPa = 9 498MPa; fy = 250MPa

tp = 2 77 1
9 498
250

= 30 06mm

Use plate thickness tp = 30 mm.

Step 4. Design pedestal reinforcement.
Longitudinal reinforcement:
As mentioned in Section 5.6, usually, concrete pedestals are reinforced with minimum column steel of 0.01

Ag but not more than 0.08 Ag (ACI Section 10.9.1) even when they are designed as unreinforced members.
The top surface area of the pedestal A2 = 0 25m2 = 250 000mm2

As, min = 0 01Ag = 0 01 × 250 000 = 2500mm2

Try 8 No. 22 bars. As,provided = 8 × 387 = 3096mm2

> As, min

< 0 08Ag OK

Provide eight No. 22 bars.
The bars should terminate at about 100 mm below the top surface of the pedestal in order to minimise point

loading on the base plate. The bars should be extended through the pedestal-footing interface into the footing,
hooked (90-degree standard hook) and fastened tightly with the footing bottom bars.

Ties:
Lateral ties should be at least No. 10 in size (ACI Section 7.10.5.1).
Provide No. 10 square-shaped ties.

The longitudinal bar clear spacing =
500− 2 × 40 + 2 × 9 5 + 3 × 22 2

2
= 167 2mm> 150 mm

Therefore, diamond-shaped ties should be provided also (ACI Section 7.10.5.3). (See the final design sketches of
Step 7).

Vertical spacing of ties shall not exceed 16 longitudinal bar diameters, 48 tie bar or wire diameters, or least
dimension of the compression member (ACI Section 7.10.5.2):

16 longitudinal bar diameters = 16 × 22 2 = 355 2mm

48 tie bar diameters = 48 × 9 5 = 456mm

Least dimension of the compression member = 0 5m= 500mm

Use maximum tie spacing = 355mm
(Continued)
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Place a tie not more than one-half tie spacing above the top of the footing (ACI Section 7.10.5.4). The ties shall be
located vertically as follows:

Locate the first tie at 100 mm below the top of the pedestal (at top end of the longitudinal bars). Locate the
second tie at 100 mm below the first one. Use 355 mm tie spacing for the rest of the required ties. The lowest
tie will be placed at 130 mm above the footing, which is less than one-half tie spacing. With this arrangement
the required number of ties will be 6 square-shaped and 6 diamond-shaped ties.

Step 5. Design anchor bolts.
If the structural design loads between the column and the supporting member consist solely of compres-

sion (as in thıs Problem), then theoretically no anchorage will be required. However, anchor bolts are still
required to resist erection loads, accidental collisions during erection, and unanticipated shear or tensile
loads. The engineer might attempt to estimate these loads and design accordingly, or simply select the bolts
using engineering judgment. For example, an engineer might arbitrarily select enough bolts of specified type
and diameter to carry 10 % of the total compressive load in shear. Assume we consider the latter option as
follows:

Equation (5.26): ØVn ≥Vua

Vua = total factored shear force = 0 1 × factoredP

= 0 1 1 2 × 600 + 1 6 × 450 = 144 kN

ØVn = the lowest of ØVsa, ØVcb and ØVcp ACI SectionD 4 1 2

Ø = strength reduction factor for anchors in concrete

= 0 65 for anchors of ductile steel in shear ACI SectionD 4 4

Since this analysis is based on an arbitrary choice or option and the anchor bolts will be installed in a deep member
(the pedestal) relatively far from the edges, the concrete breakout and pryout effects may be neglected.

Assume using A307 bolt material grade A (A-36 steel of fult = 400MPa and fy = 250MPa). From Table 5.1 select
a bolt diameter and pitch equal to 20P2.5. For threaded bolts, ANSI/ASME B1.1 uses the same effective cross-
sectional area of a bolt in tension or in shear (see ACI Sections RD.5.1.2 and RD.6.1.2). For the 20P2.5 bolt,
Table 5.1 gives At = 245 mm2.

For cast-in headed bolt and hooked bolt anchors (ACI Section D.6.1.2):

ØVsa = Ø n 0 6Ase, V futa

where n is the number of anchors in the group, and futa shall not be taken greater than the smaller of 1.9 fya and
860 Mpa.

fya = fy of bolt steel

ØVsa = 0 65 0 6 × 245 × 1 9 × 250 106 n = 0 0454 n

Let ØVsa = ØVn =Vua

0 0454 n = 144 1000

n=
144
45 4

= 3 17

Provide four 20P2.5 A307 Grade A cast-in headed bolt or hooked bolt anchors.
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Step 6. Determine the effective embedment depth hef, spacing and edge distances of the anchor bolts.
Effective embedment depth hef :
The required anchor bolt embedment depth hef is not directly and specifically indicated in most (including

ACI) building codes. We may, however, use the minimum depth of Table 5.2, compression development
length ldc (ACI Section 12.3.2) and tension development length ldh (ACI Section 12.5.2), whichever is the
greatest.

Table 5 2 gives minimum effective embedment depth = 12 da

= 12 × 20

= 240 mm

ldc =
0 24fydb
λ fc

or ldc = 0 043fy db,whichever is the larger

ldc =
0 24 250 20

1 21
= 262mm, or

ldc =
0 043 × 10−6

10−6
250 20 = 215mm

ldc,min = 200mm ACI Section 12 3 1

Required ldc = 262mm

ldh =
0 24fydb
λ fc

or 8 db or 150mm, whichever is the larger.

ldh =
0 24 250 20

1 21
= 262mm> 8db > 150mm

Required ldh = 262 mm
Therefore, use hef = 262 mm
Also, additional lengths due to the plate and nut thicknesses, grout bed, bend and so on are to be specified.

Anchor bolt spacing:

ACI Section D.8.1 requires minimum centre-to-centre spacing of anchors shall be 4da for untorqued cast-in
anchors and 6da for torqued cast-in anchors and post-installed anchors.

In this case, it is not exactly clear whether the anchors will be torqued or untorqued. Therefore, it may be better
to use anchor spacing not less than 6da.

Use minimum anchor spacing = 6da = 6 × 20 = 120 mm.
Edge distances for anchor bolts:
Table 5.2 gives minimum edge distances for A307 (A-36 steel) anchor bolts = 5da or 100 mm, whichever is

greater.
ACI Section D.8.2 requires minimum edge distances for cast-in headed anchors that will not be torqued shall be

based on concrete cover for reinforcement specified in ACI Section 7.7. For cast-in headed anchors that will be
torqued, the minimum edge distances shall be 6da.

(Continued)
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As mentioned above, here also it may be better to use minimum edge distance not less than 6da, which is larger
than 5da or 100 mm.

Use minimum edge distance = 6da = 6 × 20 = 120 mm
In order to satisfy the above anchor spacing and edge distance requirements, the anchor bolts may be placed in

the pattern shown in the scheme below.

Step 7. Develop the final design sketch.

4-20P2.5 A307 (A36 steel)

cast-in anchor bolt

Concrete pedestal

Base baring plate (A36 steel)

335 × 330 × 30 mm

W 310 × 107 column (A-36 steel)

d = 311 mm; bf = 306 mm

a = 99.5 mm

b = 65.0 mm

500 mm

600 mm

6
0
0
 m

m

50

a

b

CL

CL

182 136 182 50

5
0

1
5

0
2

0
0

1
5
0

5
0

Scheme 5.34
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+

1 No. 10 square-shaped and
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8 No. 22

6 No. 10

6 No. 10

8 No. 22

500 mm

500 mm
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Scheme 5.35
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Problem 5.10

A rigid pile cap is required to support at its centre an interior metal column of type HP 360 × 174 with
660 × 660 mm base plate. The column will carry a service dead load of 1000 kN and live load of 1400 kN. Each
pile working load and diameter should not exceed 300 kN and 400mm, respectively. Top of the cap will be covered
with 0.15 m compacted fill with a unit weight of 20 kN/m3 and a 0.15 m concrete floor (γc = 24 kN/m3) with a
uniform live load of 3.75 kPa. Design the pile cap using fc = 28MPa for concrete, fy = 420MPa for reinforcing steel
and minimum centre-to-centre pile spacing = two pile diameters but not less than 760 mm.

Solution:
Step 1. Determine number of piles required, pile-group pattern, pile spacing and plan dimensions of the pile cap.

Equation (5.30): Pp =
Q
n

n=
Q
Pp

A trial estimate of the cap dimensions may be necessary in order to compute the total load Q. Since the cap will be
concentrically loaded (the column is at centre without moments), it may be appropriate to use a square cap and
pile-group pattern.

Try a square cap with dimensions 2.8 × 28 × 0.85 m.

Q= 1000 + 1400 + 2 8 × 2 8 0 85 × 24 + 0 15 × 20 + 0 15 × 24 + 3 75

= 2641 08 kN

n=
2641 08
300

= 8 8 piles

Use nine piles distributed uniformly in a square pattern.
Assume pile diameter = 400 mm
Minimum centre to centre pile spacing

= 2 × 400
= 800 mm

Use centre-to-centre pile spacing = 1000 mm.
Plan dimensions of the pile cap shall be larger than that of its pile-group pattern by at least 200 mm on all sides

(see Section 5.7).
Use the cap plan dimensions = 2.8 × 2.8 m.

Step 2. Locate the necessary critical sections according to ACI Sections 15.4, 15.5 and 15.6.
AISC Tables give the dimensions for the HP 360 174 as shown in Scheme 5.37.

Step 3. Find cap thickness h.
Determine the required thickness based on both two-way shear and one-way shear analyses.

ACI Section 15.5.3 states that where the distance between the axis of any pile and the axis of the column is
more than two times the distance between the top of the pile cap and the top of the pile, the pile cap shall satisfy
11.11 and 15.5.4. Other pile caps shall satisfy either Appendix A or 11.11 and 15.5.4.

In this case, we design the cap so that the requirements of ACI Sections 11.11 and 15.5.4 are satisfied and,
therefore, Appendix A will not be considered.

(a) Two-way shear.
Two-way shear at location of the column:
The critical section is located at distance d/2 from a line halfway between the face of the column and the

edge of the base plate (ACI Section 15.5.2), as shown in the scheme 5.37.

1 m

  2.8 m 

1
 m

  
2
.8

 m
 

Cap 

 0.4 m 

0
.4

 m

Group

perimeter 

Scheme 5.36
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Assume only one pile reaction exists within the shear block.

FactoredQ= 1 2 1000 + 2 8 × 2 8
0 85 × 24 + 0 15 × 20

+ 0 15 × 24

+ 1 6 1400 + 2 8 × 2 8 × 3 75

= 1454 02 + 2287 04 = 3741 06 kN

FactoredPP =
factoredQ

n
=
3741 06

9
= 415 67 kN

Equation (5.19):

ØVc ≥Vu taking reinforcement shear strength, Vs = 0

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Vu = factoredQ−one pile reaction on the shear block

= 3741 06−415 67 = 3325 39 kN

bf = 0.378 m 

dw= 0.361 m 

Base plate dimensions: 

Bp= 0.66 m

Cp= 0.66 m
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The shear strength of concrete Vc shall be the smallest of (i), (ii) and (iii):

(i)

Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

Equation 5 22

(ii)

Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
40d
bo

+ 2 1 fc bod = 0 083
40d
bo

+ 2 fc bod

Equation 5 23

(iii)
Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod. Calculate d, then check Vc of Equation (5.23).
Perimeter of the critical section is 2(0.51 + d + 0.52 + d) m

ØVc = 0 75 0 33 28 1000 2 0 51 + d + 0 52 + d d

= 5239 d 2 + 2698 d kN

Let ØVc = Vu

5239 d 2 + 2698d = 3325 39

5239 d 2 + 2698 d −3325 39 = 0

d =
−2698 ± 26982− 4 5239 −3325 39

2 × 5239
=
−2698 + 8773

10478
= 0 58m= 580mm

Check Vc of Equation (5.23):

Vc = 0 083
40 × 0 580

2 0 51 + 0 580 + 0 52 + 0 580
+ 2 fc bod = 0 606 fc bod

Vc = 0 33 fc bod < 0 606 fc bod OK

Try d = 0.6 m = 600 mm and h = 850 mm.
Check whether only one pile reaction exists within the shear block:
Face of the nearest pile is located at 0.8 m from the cap centre, whereas, the critical section is at 0.56 m Hence,

there is only one pile reaction located within the shear block area, as assumed. (OK.)
Two-way shear around individual piles:
Where necessary, shear around individual piles may be investigated in accordance with ACI Sections 11.11.1.2.

In this case, by inspection, it is clear that shear around individual piles is not critical. However, for completeness, it
may be performed as follows:

Check first whether there is any overlapping of critical shear perimeters from the adjacent piles.
Since the centre-to-centre pile spacing (i.e. 1000 mm) is not less than two times the radius of shear perimeter

[i.e. 2(300 + 200) = 1000 mm)], there is no overlapping of critical shear perimeters. Therefore, the modified critical
perimeter for shear defined in ACI Section R 15.5.2 and Figure R 15.5 is not applicable.

It will be sufficient to investigate two-way shears around one of the piles only, since the pile cap has a constant d
and the piles have the same Pp and diameter.

(Continued)
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ØVc = Ø 0 33 fc bod

= 0 75 0 33 28 1000 π × 1 0 6 = 2470 kN

Vu = factored Pp − factored weights of cap fill and floor loads

= 415 67− factored weights of cap fill and floor loads

Vu < ØVc Therefore the cap is safe against two-way shear around any individual pile.
(b) One-way shear:

The critical section is located at distance d from a line halfway between the face of the column and the edge
of the plate, as shown in Scheme 5.37.

Assume d = 0.6 m. The critical section is located at (0.26 + 0.6) =
0.86 m from the cap centre, whereas face of the nearest exterior pile is
located at 0.8 m. Hence, the critical section passes through the exterior
piles, as shown below. Accordıng to ACI Section 15.5.4.3, the portion of
the full pile reaction contributes to the applied shear load equals

0 34 0 40 full pile reaction

= 0 85 415 67

= 353 32 kN

Vu = portion of full pile reaction from three piles – (weights of cap, filland floor loads covering the cross-hatched
area shown in Scheme 5.40)

= 3 × 353 32− 2 8 × 0 54 1 2 0 85 × 24 + 0 15 × 20 + 0 15 × 24 + 1 6 × 3 75

= 1060 0−58 0 = 1002 kN

d/2 d/2dpile

400

mm

300

mm

300

mm

1000

mm 

Shear perimeter

Pile

Scheme 5.38

0.40 m

0.34 m

Full pile reaction

Portion of full

pile reaction

Critical section

Scheme 5.39

0.54 m

1.0 m

0.60 m

Critical section

for one-way

shear 

2.80 m

d

0.26 m

Critical section

for moment and

development of

reinforcement

Scheme 5.40
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Equation (5.20):

ØVc = Ø 0 17λ fc bwd

= 0 75 0 17 × 1 28 1000 2 80 0 6

= 1133 kN>Vu

Therefore, the two-way shear controls.
Use d = 0.60 m = 600 mm.
The depth d will be taken to the intersection of the steel bars running each way at bottom of the cap.
Check the cap thickness h:

h= d + one bar diameter say 25mm

+75mmspace between steel bars and top of piles

+ 150mm pile embedment into the cap

= 600 + 25 + 75 + 150 = 850mm OK

Use the cap thickness h = 850 mm.

Step 4. Design the flexural reinforcement.
The cap is square and centrically loaded, the pile pattern is symmetrical about both x and y axes and the critical

sections formoment in both directions are approximately located at the same distance (0.260mor 0.255m) from
the cap centre. Therefore, practically, the same bottom reinforcement will be required for both directions.

Equation (5.9): ØMn ≥Mu

The maximum factored moment is

Mu = 0 74 3 × factoredPP − 0 57 factored W + floor load

= 0 74 3 × 415 67 −

0 57
1 2 2 8 × 1 14 0 15 × 24 + 0 15 × 20 + 0 85 × 24

+ 1 6 2 8 × 1 14 3 75

= 923− 70 = 853 kN m

Mu Per metre width =
853
2 8

= 305 kN m m

(Continued)
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Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 28 × 1

= 17 65As

d = 0 6m

Equation (5.11): ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 6−
17 65As

2

= 226 800As−3 335 850As
2

Let ØMn =Mu 226 800As−3 335 850As
2 = 305

3 335 850As
2−226 800As + 305 = 0

As =
− −226 800 ± −226 800 2− 4 3 335 850 305

2 × 3 335 850
=
226 800−217 643

6 671 700

= 1 373 × 10−3 m2 m= 1373mm2 m,

required by analysis.
In order to provide a more strong and rigid pile cap it may be more appropriate to use As,min as required for

flexural members (ACI Section 10.5.1) rather than As,min based on shrinkage and temperature reinforcement (ACI
Sections 10.5.1 and 7.12.2.1). Accordingly, ACI Section 10.5.1 requires

As,min =
0 25 fc

fy
bwd

=
0 25 28

420
× 1 × 0 6

= 1 89 × 10−3 m2 m= 1890mm2 m

0.15 m concrete

floor

0.15 m fill

0
.6

0
m

0
.8

5
 m

 0
.2

5

3.75 kPa

0.57 m

W = weights of cap + floor + fill

Pp

Mn
Vc

1.14 m

W

Scheme 5.42
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and not less than 1.4

bw d
fy

=
1 4 × 1 × 0 6

420

= 2 × 10−3 m2 m= 2000mm2 m

Therefore,As,min = 2000mm2/m controls. However, according to ACI Section 10.5.3, thisAs,min need not be used if
As,provided is at least one-third greater than that required by analysis.

1.33As = 1 33 × 1373 = 1826mm2 m

As, total = 2 8 × 1826 = 5113mm2

Try 18 No. 19 bars:

As,provided = 18 × 284

= 5112mm2 > 1 33As OK

The assumptions made will be satisfied, since As,min controls.

Provide 18 No. 19 bars each way

Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 19, the clear spacing of the bars exceeds 2db,

and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation,
but not less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 28

19 1
1000

= 0 722m= 722mm> 300mm

Therefore, the required ld = 0.722.
The bar extension past the critical section (i.e. the available length) is

1140mm−75mmcover = 1065mm> 722mm OK

However, we shall hook the bars (90-degree standard hook) at both ends to insure better anchorage and keep the
pile cap safe against bursting of the side cover where the pile transfers its load to the cap.

ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing thick-
ness, or 450 mm, whichever is smaller.

(Continued)
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Use centre to centre bar spacing = 154 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover provided =
2800−17 × 154−19 1

2
= 81 5mm OK

Provide 18 No. 19 bars @ 154 mm c.c. at bottom of the cap in both directions. All the bars shall be hooked (90-degree
standard hook) at both ends. The extreme bottom bars shall be placed 81 mm above top of piles.

Step 5. Check plate bearing on pile cap.
For this step, the design proceeds in the same manner as that of Solution of Problem 5.9, Step 2.
However, where necessary, bearing strength of concrete at location of individual piles may be investigated in

accordance with ACI Sections 15.8.1.1 and 10.14.
In this case, at location of any pile, the pile cap is the supported member and the pile is the supporting mem-

ber. The supporting contact surface area is the loaded area A1 equals to the pile cross-section area. The max-
imum design bearing strength of the cap is

Ø 0 85fc A1 = 0 65 0 85 28 × 1000 0 42π 4 = 1945 kN

FactoredPp = 415 67 kN< Ø 0 85fc A1 OK

Step 6. Design anchor bolts.
Design of the anchor bolts proceeds in the same manner as that of Solution of Problem 5.9, Step 5.

Step 7. Determine the effective embedment depth hef, spacing and edge distances of the anchor bolts.
The design proceeds in the same manner as that of Solution of Problem 5.9, Step 6.

Step 8. Develop the final design sketch.

200 mm 400      600      400       600        400          200 mm

400400

2800 mm 

6
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8
1
 

HP 360 × 174 column (A-36 steel)

d = 361 mm; bf = 378 mm 

Cast-in anchor bolts 

Base baring plate (A36 steel)

660 mm × 660 mm

18 No.19 @154 mm c.c.

each way with 90-degree

hook at both ends

Reinforced concrete

square pile cap            

150 mm concrete floor       

150 mm fill                            

Group of 9 concrete

piles with 1.0 m c.c.

spacing arranged in

a square pattern.

1000 mm1000 mm

Scheme 5.43
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Problem 5.11

Given: same data as that of Problem 5.10 except the column, in addition to its axial loads, carries the same moment
M about both x and y axes, and each pile working load should not exceed 435kN.

M =MD +ML MD = 55 kN m ML = 65 kN m

Required: Design the pile cap.

Solution:
Step 1. Determine number of piles required, pile-group pattern, pile spacing and plan dimensions of the pile cap.

The greatest combinations of the given loads are

Q= P =D+ L

My =Mx =M =MD +ML = 55 + 65 = 120 kN m

Since the column is at centre of the pile cap and carries the same moment M about both x and y axes, it may be
appropriate to use a square cap.

Try a square cap with trial dimensions: 3.0 m × 3.0 m × 0.85 m
For the purpose of estimating a trial number of piles let:

n=
Q

allowable pile working load

Q= 1000 + 1400 + 3 × 3 0 85 × 24 + 0 15 × 20 + 0 15 × 24 + 3 75

= 2677 kN

n=
2677
435

= 6 2piles

Try seven piles
Pile diameter = 0.4 m
A square pile cap can accommodate seven piles distributed in a stable hexagonal pattern as shown. The pile

group pattern will be symmetrical about both x and y axes.

O    O    O 

O    O

s

s s
O    O

Scheme 5.44
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Pile caps should extend at least 200 mm beyond the outside face of exterior piles (see Section 5.7).
Centre-to-centre spacing of adjacent piles is

s= 3−2 cap projection at each side −2 half pile diameter 2

= 3−2 × 0 2−2 × 0 2 2 = 1 1 m

Equation (5.31): Pp =
Q
n
±
My

Σx2
x ±

Mx

Σy2
y

It is clear that Pp, max is located at centre of pile B. Compute Pp, max and check the 435 kN pile working load.

Pp, max =
Q
n
+
My

Σx2
x +

Mx

Σy2
y =

2677
7

+
120

4 × 0 552 + 2 × 1 12
× 0 55 +

120
4 × 0 952

× 0 95

= 382 4 + 18 2 + 31 6 = 432 kN< 435 kN OK

Also, it is clear that Pp,min is located at pile C.

Pp,min =
Q
n
−
My

Σx2
x−

Mx

Σy2
y =

2699
7

−
120

4 × 0 552 + 2 × 1 12
× 1 1−

120
4 × 0 952

× 0 95

= 382 4−18 2−31 6 = 333 kN

Use seven piles arranged in a hexagonal pattern.
Use centretocentre pile spacing = 1100 mm.
Use the cap plan dimensions = 3000 × 3000 mm.

Step 2. Locate the necessary critical sections according to ACI Sections 15.4, 15.5 and 15.6.
AISC Tables give the dimensions for the HP 360 174 as shown in Scheme 5.46.

Step 3. Find cap thickness h.
Determine the required thickness based on both two-way shear and one-way shear analyses.

ACI Section 15.5.3 states that where the distance between the axis of any pile and the axis of the column is
more than two times the distance between the top of the pile cap and the top of the pile, the pile cap shall satisfy
Sections 11.11 and 15.5.4. Other pile caps shall satisfy either Appendix A or Sections 11.11 and 15.5.4.

Metal plate
dw

Cp

bf Bp

Metal column

bf = 0.378 m 

dw= 0.361 m 

Base plate dimensions: 

Bp= 0.66 m

Cp= 0.66 m

Scheme 5.46

496 Shallow Foundations



In this case, we design the cap so that the requirements of ACI Sections 11.11 and 15.5.4 are satisfied, and
therefore, Appendix A will not be considered.

(a) Two-way shear:
Two-way shear at location of the column:
The critical section is located at distance d/2 from a line halfway between face of the column and edge of the

base plate, as shown in the scheme below.

Assume only one pile (centre pile) reaction exists within the shear block.

FactoredQ= 1 2 1000 + 3 × 3
0 85 × 24 + 0 15 × 20

+ 0 15 × 24

+ 1 6 1400 + 3 × 3 × 3 75

= 1491 6 + 2294 0 = 3785 6 kN

FactoredPP center pile = Pp =
Q
n
±
My

Σx2
x ±

Mx

Σy2
y

=
factoredQ

n
+ 0 + 0 =

3785 6
7

= 540 8 kN

Equation (5.19): ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Vu = factoredQ−one pile reaction on the shear block

= 3785 6−540 8 = 3245 kN
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The shear strength of concrete Vc shall be the smallest of (i), (ii) and (iii):

(i) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

Equation 5 22

(ii) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
40d
bo

+ 2 1 fc bod = 0 083
40d
bo

+ 2 fc bod

Equation 5 23

(iii) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod. Calculate d, then check Vc of Equation (5.23).

ØVc = 0 75 0 33 28 1000 2 0 51 + d + 0 52 + d d

= 5239 d 2 + 2698 d

Let ØVn =Vu:

5239 d 2 + 2698 d = 3245

5239 d 2 + 2698 d −3245 = 0

d =
−2698 ± 26982− 4 5239 −3245

2 × 5239
=
−2698 + 8246

10 478
= 0 53m= 530mm

Check Vc of Equation (5.23):

Vc = 0 083
40 × 0 53

2 0 51 + 0 53 + 0 52 + 0 53
+ 2 fc bod = 0 60 fc bod

Vc = 0 33 fc bod < 0 60 fc bod OK

Try d = 0.6 m = 600 mm and h = 850 mm
Check whether only one pile reaction exists within the shear block:
Face of the nearest pile to the critical section is located (0.95 − half pile diameter = 0.95 − 0.2 = 0.75 m) from the

cap centre.

0 52 + d
2

=
0 52 + 0 6

2
= 0 56m< 0 75m

Hence, there is only one pile (centre pile) reaction located within the shear block area. (OK.)
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Two-way shear around individual piles:
Where necessary, shear around individual piles may be investigated in accordance with ACI Section 11.11.1.2.

In this case, by inspection, it is clear that shear around individual piles is not critical. However, for completeness, it
may be performed as follows:

Check first whether there is any overlapping of critical shear perimeters from the adjacent piles.
Since the centretocentre pile spacing (i.e.1100 mm) is more than two times the radius of shear perimeter [i.e.

2(300 + 200) = 1000 mm)], there is no overlapping of critical shear perimeters. Therefore, the modified critical
perimeter for shear defined in ACI Section R 15.5.2 and Figure R 15.5 is not applicable.

It will be sufficient to investigate two-way shears around the pile of maximum PP, which is pile B.

ØVc = Ø 0 33 fc bod

= 0 75 0 33 28 1000 π × 1 0 6 = 2470 kN

Vu = factored Pp,max –factored weights of cap, fill and floor loads

Factored M= 1 2 × 55 + 1 6 × 65 = 170 kN m

FactoredPp,max =
Q
n
+
My

Σx2
x +

Mx

Σy2
y

=
3785 6

7
+

170
4 × 0 552 + 2 × 1 12

× 0 55 +
170

4 × 0 952
× 0 95

= 540 8 + 25 76 + 44 74 = 611 3 kN

Vu = 611.3 –factored weights of cap, fill and floor loads.

Vu ØVc

Therefore the cap is safe against two-way shear around any individual pile.
(b) One-way shear:

The critical section is located at distance d from a line halfway between face of the column and edge of the
base plate, as shown in Schemes 5.47, 5.49 and 5.50.

Assume d = 0 6m

d/2 d/2dpile

400

mm

300

mm

300

mm

1000

mm 

Shear perimeter

Pile B

Scheme 5.48
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The critical section in each direction is located at (0.26 + 0.6) = 0.86 m from the cap centre.
(1) Consider the critical section in y direction:

The inner face of pile E (the outer pile) is located at 0.90 m from the cap centre, whereas the exterior
faces of piles B and F are located at 0.75 m. Therefore, only factored full reaction of pile E contributes to
shear at the critical section. Full reaction of pile E is

Pp =
3785 6

7
+

170
4 × 0 552 + 2 × 1 12

× 1 1 +
170

4 × 0 952
× 0 = 540 8 + 51 52 + 0

= 592 32Kn

Vu = (factored full reaction of pile E) – (weights of cap, fill and floor loads covering the diamond outlined area
shown in the scheme above)

= 592 32 − 3 × 0 64 1 2 0 85 × 24 + 0 15 × 20 + 0 15 × 24 + 1 6 × 3 75

= 592 32 − 73 73 = 519 kN

Equation (5.20):

ØVc = Ø 0 17λ fc bwd

ØVc = Ø 0 17λ fc bwd = 0 75 0 17 × 1 28 1000 3 0 0 6

= 1214kN Vu

Therefore, the two-way shear controls.
(2) Consider the critical section in x direction:

The inner face of each of the upper two piles, that is piles A and B, is at 0.75 m from the cap centre.
Therefore, the critical section passes through these two piles as shown below. According to ACI
Section 15.5.4.3, for each of these two piles only a portion of the full pile reaction contributes to the applied
shear load.

Portion of full pile reaction =
0 29
0 40

full pile reaction

E 

C

 0.86 m  0.64 m 

x

y

d 

Critical section for

one-way shear

Critical section

for moment and

development of

reinforcement
3.00 m

B 

F 

A 

0.26 m

Scheme 5.49
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The portion of full pile reaction for pile B is

0 29
0 40

Pp =
0 29
0 40

Q
n
+
My

Σx2
x +

Mx

Σy2
y

=
0 29
0 40

3785 6
7

+
170

4 × 0 552 + 2 × 1 12
× 0 55 +

170
4 × 0 952

× 0 95

= 0 725 540 8 + 25 76 + 44 74 = 0 725 × 611 3

= 443 2 kN

The portion of full pile reaction for pile A is

0 29
0 40

Pp =
0 29
0 40

Q
n
−
My

Σx2
x +

Mx

Σy2
y

=
0 29
0 40

3785 6
7

−
170

4 × 0 552 + 2 × 1 12
× 0 55 +

170
4 × 0 952

× 0 95

= 0 725 540 8−25 76 + 44 74 = 0 725 × 559 8

= 405 9 kN

(Continued)
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Vu = pile reactions – (weights of cap, fill and floor loads covering the cross-hatched area shown in the scheme)

= 443 2 + 405 9 −

3 × 0 64 1 2 0 9 × 24 + 0 15 × 20 + 0 15 × 24 + 1 6 × 3 75

= 849 1−76 49 = 772 61 kN

ØVc = Ø 0 17λ fc bwd = 0 75 0 17 × 1 28 1000 3 0 0 6

= 1214 kN>Vu

Therefore, the two-way shear controls.
Use d = 0.60 m = 600 mm.
The depth d will be taken to the centre of the steel bars placed at bottom of the cap.
Check the assumed cap thickness h:

h= d + one bar diameter say 25mm

+75mmspace between steel bars and top of piles

+ 150mm pile embedment into the cap

= 600 + 25 + 75 + 150 = 850mm OK

Use the cap thickness h = 850 mm
Check the pile working load or the number of piles required, using the designed cap dimensions:
Actually, this checking is unnecessary, since the provided cap dimensions are exactly the same assumed dimen-

sions which were used in the design computations.

Q= 1000 + 1400 + 3 × 3 0 85 × 24 + 0 15 × 20 + 0 15 × 24 + 3 75

= 2677 kN

Pp,max =
Q
n
+
My

Σx2
x +

Mx

Σy2
y

=
2677
7

+
120

4 × 0 552 + 2 × 1 12
× 0 55 +

120
4 × 0 952

× 0 95

= 382 43 + 18 2 + 31 6 = 432 2 kN< 435 kN OK

Step 4. Design the flexural reinforcement.
(a) Reinforcement in x direction. The critical section is located at 0.26 m to the right of y axis, as shown in the

scheme below. Use d = 0.60 m.
From Step 3:

FactoredPp, E = 592 32 kNand Pp, B = 611 3 kN

FactoredPp, F =
Q
n
+
My

Σx2
x−

Mx

Σy2
y

=
3785 6

7
+

170
4 × 0 552 + 2 × 1 12

× 0 55−
170

4 × 0 952
× 0 95

= 540 8 + 25 76−44 74 = 521 82 kN
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The maximum factored moment is

Mu = 0 29 PP, B + PP, F + 0 84 PP, E − 0 62 Factored W + floor load

= 0 29 611 3 + 521 82 + 0 84 592 32

− 0 62
1 2 3 × 1 24 0 15 × 24 + 0 15 × 20 + 0 85 × 24

+ 1 6 3 × 1 24 3 75

= 826 15− 88 57 = 737 58 kN m

Equation (5.9):

ØMn ≥Mu

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 28 × 1

= 17 65As

C E 

0.84 m 0.40 m

3.00 m

0.15 m concrete floor

0.15 m fill

0
.6

0
 

0
.8

5
 m

 0
.2

5
 

3.75 kPa

0.62 m

W = weights of cap + floor + fill 

Mn
Vc

Pp,(B&F) Pp,(E)

1.24 m

0.29 m

y 

Critical section

for moment and

development of

reinforcement 
3.00 m x

B 

F

A 

0.26 m

W
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ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 6−
17 65As

2

= 226 800As−3335 850As
2

Equation 5 11

Let ØMn =Mu

226 800As−3 335 850As
2 = 246

3 335 850As
2−226 800As + 246 = 0

As =
− −226 800 ± −226 800 2− 4 3 335 850 246

2 × 3 335 850
=
226 800−219 444

6 671 700

= 1 108 × 10−3 m2 m= 1108mm2 m

In order to provide amore strong and rigid pile cap it may bemore appropriate to useAs,min as required for flexural
members (ACI Section 10.5.1) rather than As,min based on shrinkage and temperature reinforcement (ACI
Sections 10.5.1 and 7.12.2.1). Accordingly, ACI Section 10.5.1 requires

As,min =
0 25 fc

fy
bwd =

0 25 28
420

× 1 × 0 6

= 1 89 × 10−3 m2 m= 1890mm2 m

and not less than 1.4
bw d
fy

=
1 4 × 1 × 0 6

420

= 2 × 10−3 m2 m= 2000mm2 m

Therefore, As,min = 2000 mm2/m controls. However, according to ACI Section 10.5.3, this As,min need not be
used if As,provided is at least one-third greater than that required by analysis.

1.33 As required by analysis = 1.33 × 1108 = 1474 mm2/m

As, total = 3 × 1474 = 4422mm2

Try 16 No. 19 bars:

As,provided = 16 × 284 = 4544mm2 > 1 33As OK

The assumptions made are satisfied, since As,min controls.
Provide 16 No. 19 bars.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 19, the clear spacing of the bars exceeds 2db, and

the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical section (which is
the same critical section for moment) shall be determined from the following equation, but not less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4
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where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1) ld =
420 × 1 × 1

2 1 × 1 × 28

19 1
1000

= 0 722 m=

722mm> 300 mm. Therefore, the required ld = 722 mm.
The bar extension past the critical section (i.e. the available length) is

1240mm−75mmcover = 1165mm> 722mm OK

However, we shall hook the bars (90-degree standard hook) at both ends to insure better anchorage and keep the
pile cap safe against bursting of the side cover where the pile transfers its load to the cap.

ACI Sections 7.6.5 and 10.5.4 require maximum spacing shall not exceed three times the slab or footing thick-
ness, or 450 mm, whichever is smaller.

Use centre to centre bar spacing = 188 mm.
Check the 75 mm minimum concrete cover at each side:

Concrete cover =
3000−15 × 188−19 1

2
= 80 5mm> 75mm, O K

Provide 16 No.19 bars @ 188 mm c.c. at bottom of the pile cap in x direction, placed 90 mm above top of piles and
hooked (90-degree standard hook) at both ends.
(b) Reinforcement in y direction. The critical section is located at 0.26 m above the x axis, as shown in the scheme

below.

From Step 3:
Factored Pp,(A) = 559.8 kN and Pp,(B) = 611.3 kN
The maximum factored moment is

Mu = 0 69 PP, A + PP, B − 0 62 factored W + floor load

= 0 69 559 8 + 611 3

− 0 62
1 2 3 × 1 24 0 15 × 24 + 0 15 × 20 + 0 85 × 24

+ 1 6 3 × 1 24 3 75

= 808 06−88 57 = 719 5 kN m

Mu =
719 5
3

= 240 kN m m

This moment is very close to the Mu just calculated in (a) above. Therefore, it is very clear here again As,min con-
trols. Consequently, it is appropriate to use reinforcement in y direction equals to that in x direction. Also, the same

E 

C

0
.5

5
 

1
.2

4
 m

x

0
.6

9
0

.2
6
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A 

3
.0

0
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size, number and spacing of the steel bars will be used for both directions, since the cap is square, h is constant and
the critical sections are located at the same distance from the cap centre.

Provide 16 No.19 bars @ 188 mm c.c. at bottom of the pile cap in y direction, placed on top of bars in x direction,
and hooked (90-degree standard hook) at both ends.

Step 5. Check plate bearing on pile cap.
For this step, the design proceeds in the same manner as that of Solution of Problem 5.9, Step 2 and Solution

of Problem 5.10, Step 5.

Step 6. Design the anchor bolts and determine their effective embedment depth hef, spacing and edge distances.
The design computations proceed in the same manner as those presented in Solution of Problem 5.9, Steps 5

and 6.

Step 7. Develop the final design sketch.

Problem 5.12

The following design data belong to a rectangular ordinary combined footing which supports two columns. The
distance between the columns is 6 m, centre to centre. The exterior face of the exterior column (Col. 1) is located
right on the property line. The gross allowable soil pressure (gross qa) is 250 kPa at a depth of 1.3 m below the
finished basement floor. The basement concrete floor is 0.15 m thick and supports a live load of 5 kPa. The density
of the fill above the footing is γs = 20 kN m3. Design the footing using the conventional method.Footing: concrete
strength fc = 21MPa; reinforcing steel fy = 420 MPa.

 200        400        700       700        400         200   

     400        1100 mm                1100 mm          400 

3000 mm 

6
0
0
  

2
5
0

150 

90

HP 360 × 174 column (A-36 steel)

d = 361 mm; bf= 378 mm 

Cast-in anchor bolts 

Base baring plate (A36 steel)

660 mm × 660 mm  

16 No.19 @ 188

mm c.c. each way

with 90-degree

hook at both ends 

Concrete pile cap

3000 × 3000 × 850

 mm

150 mm concrete floor

150 mm fill

Group of 7 concrete

piles with 1.1 m c.c.

spacing arranged in

a hexagonal pattern.

O     O     O 

  O     O 

s s 
 O     O 

s 

8
5
0
 m

m
 

400

P
Mx

My
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Solution:
Step 1. Estimate the net factored soil pressure and footing dimensions.

Let resultant of all moments and axial loads passes through the centroid of the footing base area to achieve uni-
form soil pressure. The gross load of this resultant equals to the dead and live loads of the two columns plus the floor
load and the weights of footing, backfill material and floor. For a first trial guess the footing thickness h equals 1 m.

Df = foundation depth = thicknesses of footing + fill + floor = 1 3m

Therefore thickness of the fill above the footing = 1 3−1−0 15

= 0 15 m

The net resultant load is

net R= gross R−Af Df γs

net q=
net R
Af

=
gross R−Af Df γs

Af
=
gross R
Af

−Df γs

=
900 + 675 + 1350 + 1000 +Af 1 × 24 + 0 15 × 24 + 0 15 × 20 + 5

Af
−1 3 × 20

=
3925
Af

+ 35 6−26 0 =
3925
Af

+ 9 6 kPa

net qa = gross qa−Df γs = 250−1 3 × 20 = 224 kPa

Let net q = net qa:

3925
Af

+ 9 6 = 224

Af =
3925

224−9 6
=
3925
214 4

= 18 31m2

As for the concentrically loaded spread footings, the net factored soil pressure (net qfactored) is computed without
including the uniform floor load and the weights of footing, backfill material and floor because these loads are
evenly distributed and directly transferred to the soil below and, thus, do not affect the footing shear forces
and moments. Therefore, the factored net soil pressure is

net qfactored =
factored column loads

Af
=
1 2 900 + 1350 + 1 6 675 + 1000

18 31

=
5380
18 31

= 293 83 kPa

Compute factored moments, factored column loads and factored resultant.
Column No. 1: factored moment M1 = 1.2 × 90 + 1.6 × 70 = 220 kN. m

D,kN L,kN MD,kN.m ML,kN.m M,kN.m

1 0.6 × 0.4

Size, m

Working loads

Column

No.

900 675 90 70 160

1350 1000 130 100 2300.6 × 0.62
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Column No. 2: factored momentM2 = 1 2 × 130 + 1 6 × 100

= 316 kN m
Factored ΣM = 536 kN. m
Column No. 1: factored load P1 = 1.2 × 900 + 1.6 × 675 = 2160 kN
Column No. 2: factored loadP2 = 1 2 × 1350 + 1 6 × 1000

= 3220 kN

Factored resultantR= FactoredΣP = 5380 kN

X =
0 2 × P1 + 0 2 + 6 0 P2 +M

R
=
0 2 × 2160 + 0 2 + 6 0 3220 + 536

5380
= 3 891m

Let
L
2
=X:

L= 2 × 3 891 = 7 782m

B=
A
L
=
18 31
7 782

= 2 353m

Use rectangular combined footing 2.4 m × 7.8 m
Check eccentricity of unfactored R:

X =
0 2 900 + 675 + 0 2 + 6 0 1350 + 1000 + 160 + 230

900 + 675 + 1350 + 1000
=
15275
3925

= 3 892m

eccentricity e=X−L 2 = 3 892−3 891 = 0 001m 0 OK

Step 2. Obtain data for shear-force and bending-moment diagrams considering the combined footing as a rein-
forced concrete beam.

Any convenient method, for example integral calculus, may be used for calculating the shear and moment
values at different locations necessary to obtain informable diagrams. Usually, the design calculations involve
tedious busywork; therefore, it may be preferable to use any available computer program concerns the conven-
tional design of ordinary combined footings.

In the design computations it may be necessary to use the exact B and L values (i.e. B = 2.353 m and
L = 7.782 m) so that the shear and moment diagrams will close.

L/2 

6.0 m0.2 m

Property line Centroid
M1 M2

P1 P2R

L

x–

Scheme 5.55
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It is preferable to draw the complete load diagram first, and then the shear and moment diagrams, as shown
above. The factored distributed loads on the footing, shear forces and bending moments are computed for the
full 2.4-m width of the footing.

Step 3. Find footing thickness h.
Determine the required thickness based on both one-way shear and two-way shear analyses.

(a) One-way shear. It is critical at distance d from the interior face of the interior column (Col. No. 2), as indicated
on the shear-force diagram.

Equation (5.19): ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Vu = 2126−691 38 d + 0 3 = 1919−691 38 d kN

Equation (5.20): Vc = 0 17λ fc bwd

= 0 75 × 0 17 × 1 21 1000 2 353 dLet ØVc =Vu:

0 75 × 0 17 × 1 21 1000 2 353 d = 1919−691 38 d

d =
1919

2066 19
= 0 929m= 929mm

Try d = 0.93 m.

(b) Two-way shear. This shear action is most critical at one of the two columns. Therefore, both locations should
be considered. The critical sections are shown in the scheme below.

= 293.83 × 2.353  

= 691.38 kN/m

Combined footing

L = 7.8 m (= 7.782 m, in computations)

Shear-force diagram

Factored load diagram 

2022 kN

234 kN.m

138 kN 

1094 kN 

2126 kN 

Bending-moment diagram

3.12 m 

567 kN.m 

864 kN.m 

Location of inflection point

0.6 m
0.4 m  1.3 m 5.5 m

–59 kN. m–157 kN.m

Critical sec.

beam shear

0.27 m

–Mmax = 2722 kN. m

q = net qf actored × B

P1 = 2160 kN P2 = 3220 kN

M1 = 220 kN. m M2 = 316 kN. m

x

d

Scheme 5.56
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Two-way shear at the exterior column:
The shear perimeter has three sides only.
Assume d = 0.93 m.
Shear strength of concrete Vc shall be the smallest of (a), (b) and (c):

(a) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1 5

1 fc bod = 0 397 fc bod

Equation 5 22

(b) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
30d
bo

+ 2 1 fc bod = 0 083
30d
bo

+ 2 fc bod

= 0 083
30 × 0 93

2 0 4 +
0 93
2

+ 1 53
+ 2 fc bod = 0 88 fc bod

Equation 5 23

(c) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod

ØVc = 0 75 0 33 21 1000 2 0 4 + 0 465 + 0 6 + 0 93 0 93

= 3439 kN

For this three-sided shear perimeter, the condition of unbalanced moment transfer exists, as shown in the scheme
below. According to ACI Section 11.11.7.1, where unbalanced momentMu exists, the fraction γfMu shall be trans-
ferred by flexure in accordance with ACI Section 13.5.3, and the remainder fraction of the unbalanced moment,
γvMu, shall be considered to be transferred by eccentricity of shear about the centroid of the critical shear perimeter
defined in ACI Section 11.11.1.2. Also, ACI Section 11.11.7.2 requires that the shear stress resulting from moment
transfer by eccentricity of shear shall be assumed to vary linearly about the centroid of the critical shear perimeter,
and the maximum shear stress due to Vu and Mu shall not exceed ØVc/(bod). Factors γf and γv are used to deter-
mine the unbalanced moment transferred by flexure and by eccentricity of shear, respectively.

Col. 2 

0.4 +

(d/2)

 

 

0
.6

+
 d

0
.6

+
 d

 

0.6 + d 

Col. 1 

 

Col. 1: 0.4 m × 0.6 m

Col. 2: 0.6 m × 0.6 m 
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Summation of moments about the centroid of the shear perimeter equals the unbalanced moment. Hence,

Mu = 2160 × 0 43−386 6 × 0 2 = 851 5 kN m

γv = 1− γf ACI Section 11 11 7 1

γf =
1

1 + 2 3 b1 b2
ACI Section 13 5 3 2

=
1

1 + 2 3 0 86 1 53
= 0 667

γv = 0 667 = 0333

The shear stresses due to the direct shear and the shear due to moment transfer will add at points D and C, giving
the largest shear stresses on the critical shear perimeter. Hence,

vu DC =
Vu

bod
+
γvMuCDC

Jc
ACI SectionR11 11 7 2

Jc = Jz = Property of the shear perimeter analogous to polar moment of inertia

d/2 = 0.46 

d/2 = 0.46 

0.2 m 

0.43 

0.6 m 

0.4 

A 

B C 

D 

Column 1 

Centroid of shear

perimeter  

Critical shear

perimeter  

P1 = 2160 kN

CAB = 0.23 m

b2 = 0.6 + d

  = 1.53 m

0.46 

Critical shear

perimeter  

Centroidal axis of

shear perimeter

(parallel to the

footing edge)

b1 = 0.86  

=

moment of area of sides

about A – B
area of sides

=
2(0.86 × 0.93)(0.86/2)

(2 × 0.86 + 1.53)(0.93)

CAB  is the distance from line

A – B to the centroid of the

shear perimeter   

= 0.23 m

Soil reaction on the shear

Block    

= 293.83(0.86 × 1.53)

= 386.6 kN   

386.6 kN
Free-body diagram of

the footing-column

connection

d
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Jc = 2
b1d3

12
+ 2

db31
12

+ 2 b1d
b1
2
−CAB

2

+ b2d CAB
2

= 2
0 86 × 0 933

12
+ 2

0 93 × 0 863

12
+ 2 0 86 × 0 93

0 86
2

−0 23
2

+

1 53 × 0 93 0 232

= 0 115 + 0 099 + 0 064 + 0 075 = 0 353m4

vu DC =
2160−386 6

2 × 0 86 + 1 53 0 93
+
0 333 × 851 5 0 86−0 23

0 353
= 586 73 + 506 05

= 1093 kN m2

Ø vc =
ØVc

bod
=

3439
2 0 4 + 0 465 + 0 6 + 0 93 0 93

= 1134 kN m2 > vu DC OK

Therefore, the one-way shear controls.
Two-way shear at the interior column:

ØVc ≥Vu

The shear perimeter has four sides.
Assumed = 0.93 m.
The shear strength of concrete Vc shall be the smallest of (a), (b) and (c):

(a) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

Equation 5 22

D

Z

ZB

A

C

d = 0.93 m

Centroidal axis

CAB = 0.23 m

b1 = 0.86 m

CDC

b2 =
1.53 m

Scheme 5.59
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(b)
Vc = 0 083

αsd
bo

+ 2 λ fc bod

= 0 083
40d
bo

+ 2 1 fc bod

= 0 083
40 × 0 93

4 0 6 + 0 93
+ 2 fc bod = 0 67 fc bod

Equation 5 23

(c) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod.

ØVc = 0 75 0 33 21 1000 4 0 6 + 0 93 0 93 = 6455 kN

Vu = P2 –soil reaction on the shear block
Vu = 3220 –soil reaction on the shear block (kN)
Vu < ØVc. Hence, the one-way shear controls.

Use d = 0.93 m = 930 mm.

The depth d will be taken to the centre of the steel bars at top or at bottom of the footing in long direction.
Assume using No. 25 bars, and 75 mmminimum concrete cover (ACI Section 7.7.1). Hence, the overall footing

thickness is

h= 930 + 75 + 1 2 bar diameter = 1005 + 12 7 = 1017 7mm

This value of h is considered very close to the assumed 1000mm. For more safety, one may use a slightly larger value.
Use h = 1050 mm.

Step 4. Design the flexural reinforcement in the long direction.
(a) Midspan negative reinforcement at top of the footing.

Refer to the factored bending moment diagram of Step 2.

−Mmax = 2722 kN m

Equation (5.9):
ØMn ≥Mu

Mu =
2722
B

=
2722
2 4

= 1134 2 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.
Equation (5.11):

ØMn = Ø Asfy d−
a
2

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

(Continued)
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ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 93−
23 53As

2

= 351 540As−4 447 170As
2

Let ØMn =Mu:

351 540As−4 447 170As
2 = 1134 2

4 447 170As
2−351 540As + 1134 2 = 0

As =
− −351 540 ± −351 540 2− 4 4 447 170 1134 2

2 × 4 447 170
=
351 540−321 566

8 894 340
= 3370 × 10−6 m2 m= 3370mm2 m

ACI Section 10.5.1:

As,min =
0 25 fc

fy
bwd , and not less than 1 4

bw d
fy

As,min =
0 25 fc

fy
bwd =

0 25 21
420

× 1 × 0 93 = 2 537 × 10−3 m2 m

= 2537mm2 m

1 4
bw d
fy

=
1 4 × 1 × 0 93

420
= 3 1 × 10−3

m2

m
= 3100mm2 m

Therefore, use As = 3370 mm2/m

As, total = 3370 ×B= 3370 × 2 4 = 8088mm2

Try 16 No. 25 bars: As,provided = 16 × 510 = 8160 mm2 (OK.)

Compute a for As =
8160
2 4

= 3400mm2 m, and check if fs = fy and whether the section is tension-controlled:

a= 23 53As = 23 53 × 3400 × 10−6 = 0 080m= 80mm

c=
a
β1
; For fc between 17 and 28 MPa, β1 shall be taken as 0.85

c=
80
0 85

= 94 12mm

dt = d = 930mm

εt = 0 003
dt −c
c

= 0 003
930−94 12

94 12
= 0 027 > 0 005

Equation 5 15

514 Shallow Foundations



Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200 000
= 0 0021 Hence, εt > εy and fs = fy.

Therefore, the assumptions made are satisfied.
In case the required flexural reinforcement exceeds the minimum flexural reinforcement, it shall be adequate to

use the samemaximum spacing of reinforcement for slabs which is two times the slab thickness or 450mm, which-
ever is smaller, as specified by ACI Section 13.3.2.

Use centre to centre bar spacing = 148 mm. Check the 75 mm minimum concrete cover at each side:

2400− 15 × 148 + 25 4
2

= 77 3mm> 75mm OK

Try 16 No. 25 bars @ 148 mm c. c. at top, across the footing width.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 25, the clear spacing of the bars exceeds 2db and

the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical section (which is
located where the maximum factored negative moment exists) shall be determined from the following equation,
but not less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1) .
The factor ψ t = 1.3 because the reinforcement is placed such that more than 300 mm of fresh concrete exists

below the top bars (ACI Section 12.2.4).

ld =
420 × 1 3 × 1

1 7 × 1 × 21

25 4
1000

= 1 78m= 1780mm> 300 mm

Therefore, the required ld = 1780 mm.
The bar extension past the critical section (i.e. the available length) is

3120mm−75mmcover = 3045mm>1780mm OK

According to MacGregor and Wight (2005), since the loading, the supports and the shape of the moment diagram
are all inverted from those found in a normally loaded beam, the necessary check of the ACI Section 12.11.3 require-
ment which concerns positive moment reinforcement shall be made for the negative moment reinforcement.

It may be appropriate to extend all the bars into the column regions at both ends. At the point of inflection, 0.27 m
from the centre of the interior column, Vu = 1940 kN and by ACI Section 12.11.3,

ld ≤
Mn

Vu
+ la

Mn = nominal flexural strength of the cross section =Asfy d−
a
2

a=
Asfy

0 85fc b
=

8160 106 420
0 85 × 21 × 2 4

= 0 08

Mn = 8160 106 420 × 1000 0 93−
0 08
2

= 3050 kN m

(Continued)
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Let ld =
Mn

Vu
+ la. Hence, la, min = ld −

Mn

Vu
= 1 78−

3050
1940

= 0 21m. The distance la at a support shall be the embed-

ment length beyond centre of support.
Accordingly, extend the bars to the exterior face of the interior column. This will give

la = 0 30m> la,min

However, in order to satisfy the requirements of ACI Sections 12.12.3 and 12.10.3, the negative moment reinforce-
ment shall have an embedment length beyond the point of inflection not less than d, 12db or ℓn/16, whichever is
greater. In this case, d controls. Therefore, the top bars should be extended not less than 0.93 m beyond the point of
inflection at x = 5.93 m. However, since the remaining distance to the footing edge is only 0.94 m, it may be more
practical to extend the top bars to the right edge of the footing (less 75 mm minimum concrete cover).

At centre of the exterior column, Vu = 2022 kN; hence,

la,min = ld −
Mn

Vu
= 1 78−

3050
2022

= 0 27m

The available space beyond the column centre is 0.2 m less concrete cover, which is less than la,min. Therefore, the
top bars will all have to be hooked at the exterior end. This is also necessary to anchor the bars transferring the
unbalanced moment from the column to the footing.

Provide 16 No.25 bars @ 148 mm c.c. at top, full length of the footing (less concrete cover at the ends). All the bars
should be hooked at the exterior end (at the exterior face of the exterior column).
(b) Positive reinforcement at bottom of the footing.

Let us design, conservatively, for +Mmax = 864 kN. m instead the 567 kN.m positive moment. However, in
most of cases As,min controls and it makes no difference which moment is used.

Equation (5.9): ØMn ≥Mu

Mu =
864
B

=
864
2 4

= 360 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 93−
23 53As

2

= 351 540As−4 447 170As
2

Equation 5 11

Let ØMn =Mu:

351 540As−4 447 170As
2 = 360

4 447 170As
2−351 540As + 360 = 0

As =
− −351 540 ± −351 540 2− 4 4 447 170 360

2 × 4 447 170
=
351 540−342 310

8 894 340

= 1038 ×
10−6 m2

m
= 1038mm2 m< As,min = 3100mm2 m
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Therefore, As,min controls.

As, total = 3100 ×B= 3100 × 2 4 = 7440mm2

Try 15 No. 25 bars: As,provided = 15 × 510 = 7650mm2 m
ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing thickness
or 450 mm, whichever is smaller.

Use centretocentre bar spacing = 158 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
2400− 14 × 158 + 25 4

2
= 81 3mm> 75mm OK

Try 15 No. 25 bars @ 158 mm c.c. at bottom, across the footing width.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 25, the clear spacing of the bars exceeds 2db, and

the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical section (which is
located where the maximum factored positive moment exists) shall be determined from the following equation,
but not less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1).

ld =
420 × 1 × 1

1 7 × 1 × 21

25 4
1000

= 1 37m= 1370mm> 300mm

Therefore, the required ld = 1370 mm.
The bar extension past the critical section (i.e. the available length) is

1600mm−75mmcover = 1525mm> 1370mm OK

In order to satisfy the requirements of ACI Sections 12.10.3 and even 12.12.3 when we consider the footing as an
inverted normally loaded beam (the same as we did for the top bars), it is necessary to extend the bottom bars a
minimum distance d (greater than 12db) past the point of inflection. Therefore, cut off eight bottom bars (alter-
nately spaced) at 1.4 m from centre of the interior column toward the exterior column. The other seven bars shall
be extended full length (less 75 mm cover at each end) of the footing and hooked at the exterior end (at the exterior
column). These seven bars will resist the tensile stresses due to the relatively small positive moment at the exterior
column, and provide supports to the transverse bottom bars.

Provide 15 No.25 bars @ 158 mm c.c. at bottom of the footing. Cut off eight bars (alternately spaced) at 1.40 m
from the centre of the interior column. The other seven bars shall be extended full length of the footing and hooked at
the exterior end (at the exterior column).

Step 5. Design the transverse reinforcement at bottom of the footing.
The footing is divided into three zones or strips of the defined widths shown in the scheme below.

Zones I and II, usually known as effective zones, should be analyzed as beams; the provided steel should
not be less than that required for bending or As,min, whichever is greater. For zone III (the remaining portions),
the provided steel should satisfy As,min requirement only. All the transverse steel bars should be placed on top of
bars in long direction at the bottom of the footing.

(Continued)
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Zone I: 1.1 m × 2.4 m
Zone II: 2.0 m × 2.4 m
Zone III(a): 4.1 m × 2.4 m (between zones I and II)
Zone III(b): 0.6 m × 2.4 m (the portion of the cantilever part)

Transverse reinforcement for zone I:

net qfactored =
P1

B1 ×B
=

2160
1 1 × 2 4

= 818 18 kPa

Mu =
net qfactored × l21

2
=
818 18 × 0 92

2
= 331 4 kN m m

d = 0 93m−one bar diameter = 0 93−0 0254 = 0 9046m

Use d = 0.9 m.
Assume tension-controlled section, Ø = 0.9 and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 9−
23 53As

2

= 340 200As−4 447 170As
2

Equation 5 11

Let ØMn =Mu:

4 447 170As
2−340 200As + 331 4 = 0

As =
− −340 200 ± −340200 2− 4 4 447 170 331 4

2 × 4 447 170
=
340 200−331 422

8 894 340
= 987 × 10−6 m2 m= 987mm2 m

As,min =
0 25 fc

fy
bwd =

0 25 21
420

× 1 × 0 9 = 2 455 × 10−3 m2 m

= 2455mm2 m

B = 2.40 m

L = 7.80 m

Col. No. 1

I

4.10 m

Column No. 1:

0.4 m × 0.6 m

Column No. 2:

0.6 m × 0.6 m

l1 = 0.9 m l2 = 0.9 m

Zone:

Col. No. 2 

III II

0.60 m

III(a)

w2 + 1.5 d
     = B2

w1 +

0.75 d
= B1

w1 w2

III(b)

Scheme 5.60
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and not less than 1.4

bw d
fy

=
1 4 × 1 × 0 9

420
= 3 0 ×

10−3m2

m

= 3000mm2 m

As,min > As required by analysis. Use As = As,min = 3000 mm2/m
Transverse reinforcement for zone II:

net qfactored =
P2

B2 ×B
=

3220
2 × 2 4

= 670 83 kPa

Mu =
net qfactored × l21

2
=
670 83 × 0 92

2
= 271 7 kN m m <Mu of zone I

Therefore, As,min controls. Use As = 3000 mm2/m
Transverse reinforcement for zone III:

Use As =As,min = 3000mm2 m
Thus, in this case, for all the three zones the same amount of reinforcement will be required.

As, total = 3000 × L= 3000 × 7 8 = 23 400mm2

Try 46 No. 25 bars: As,provided = 46 × 510 = 23 460 mm2.
ACI Sections 7.6.5 and 10.5.4 require maximum spacing shall not exceed three times the slab or footing thick-

ness or 450 mm, whichever is smaller.
Use centre to centre bar spacing = 169 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
7800− 45 × 169 + 25 4

2
= 84 8mm> 75mm OK

Thus, theoretically, the bars will be uniformly distributed with 169 mm centretocentre.
However, it may be more realistic if the amount of steel in the effective zones I and II are somewhat increased

and that in zone III decreased. We shall do this by arbitrarily decreasing and increasing the bar spacing in the three
zones but without decreasing the required total steel amount, as follows:

Zone I: Eight No.25 bars; seven spacings @ 142 mm c.c.
Zone II: 15 No.25 bars;14 spacings @ 141 mm c.c.
Zone III(a): 19 No.25 bars;18 spacings @ 226 mm c.c.
Zone III(b): Four No.25 bars; three spacings @ 166 mm c.c.

Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 25, the clear spacing of the bars exceeds 2db,

and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is located where the maximum factored positive moment exists) shall be determined from
the following equation, but not less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

(Continued)
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where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

1 7 × 1 × 21

25 4
1000

= 1 37m= 1370mm> 300 mm

Therefore, the required ld = 1370 mm.
The bar extension past the critical section (i.e. the available length) is

l1 or l2 −75mmcover = 900−75 = 825mm< ld,min Not OK

The bottom transverse bars will all have to be hooked at both ends.
Because two-way shear cracks would extend roughly the entire width of the footing, the hooked transverse bars

provide adequate anchorage outside the inclined cracks (MacGregor and Wight, 2005).

Step 6. Check columns bearing on the footing (ACI Section 10.14).
The design proceeds in the same manner as that of Solution of Problem 5.4, Step 6.

Step 7. Design dowels to satisfy the requirements of moment transfer and minimum reinforcement area across
interface (ACI Section 15.8.2.1).

The design proceeds in the same manner as that of Solution of Problem 5.4, Step 7.

Step 8. Find the embedment length of dowels in both the footing and the column.
The design proceeds in the same manner as that of Solution of Problem 5.4, Step 8.

Step 9. Develop the final design sketch as shown in the scheme below.

Problem 5.13

The following design data belong to a combined footing which supports two columns. The distance between the
columns is 6 m, centre to centre. The exterior face of the exterior column (Col. 1) is located right on the property
line. The interior column (Col. 2) has too limited space for a centrally loaded spread footing. The net allowable soil
pressure (net qa) is 151 kPa at the expected foundation depth. Seeking a uniform soil pressure distribution under
the footing, select either a rectangular or a trapezoid combined footing, and then design the footing using the
conventional method.

1050 mm

1600 mm6200 mm 

8 No. 25

7 spacings

@ 142 mm

19 No. 25

18 spacings

@ 226 mm 

2000 mm 

1400 mm

15 No. 25

 14 spacings @ 158 mm

          7 bars  continuous

15 No. 25

14 spacings

@ 141 mm 

600 mm 

16 No. 25

15 spacings

@ 148 mm

4 No. 25

3 spacings

@ 166 mm

1100 mm

Notes: (1) Width of footing = 2400 mm. (2) All transverse bars are hooked at both ends.

4100 mm 

1300 mm
200 mm 

100 mm

7 No. 13 stirrup

support bars

Scheme 5.61
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Solution:
Step 1. Locate the resultant of the loads and find the distance x shown in the figure below.

Because the space is too limited at column 2, it is desirable not to extend the footing beyond the column.
Therefore,

L = 6 0 + 0 2 + 0 3 = 6 5 m

The loads resultant R must pass through the centroid of the footing base area which is located at distance x
from the right face of the interior column.

x =
P1 6 + 0 3 + P2 0 3

R
=
1575 × 6 3 + 2350 × 0 3

3925
= 2 71m

L/3 < x < L/2. This means that the resultant R is much closer to the heavier column, and doubling the centroid
distance x , as it was done for the rectangular combined footing of Problem 5.12, will not provide sufficient footing
length to reach the other column. Therefore, in this case, a trapezoid combined footing is required.

Select a trapezoid combined footing.

Step 2. Find footing dimensions B1 and B2 and compute net qfactored.
In order to obtain uniform contact pressure, locations of the centroid and R must coincide, as shown in the

scheme below.

Column 2

0.6 m × 0.6 m 

Column 1

0.4 m × 0.6 m Property line

0.2 m S = 6.0 m

Column

No.

Size

(m)

Working loads

D

(kN)

L

(kN)

1

2

Concrete strength f′c = 30 Mpa

Reinforcing steel fy = 420 Mpa

Footing:

0.6 × 0.4 900 675

1350 10000.6 × 0.6

Scheme 5.62

R = 3925 kN 

P1 = 1575 kN 

P2 = 2350 kN 

S = 6.0 m

L = 6.5 m

0.3 m 

 

0.2 m

Column 1 Column 2

P1 P2

S

R

L

x′

Scheme 5.63
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Assume neglecting any weight increase from displacing the lighter soil with heavier concrete, since it is usu-
ally too small compared to the foundation loads.

The foundationnet load =R= 3925 kN

The footing base area =A =
R

net qa
=
3925
151

= 26 0m2

Equation (5.38):

A =
B1 + B2

2
L

26 =
B1 + B2

2
6 5 = 3 25 B1 + B2

B2 = 8−B1

Equation (5.39):

x =
L
3

2B1 +B2

B1 +B2

6 5
3

2B1 +B2

B1 + B2
=
6 5
3

2B1 + 8−B1

B1 + 8−B1
=
2 167B1 + 17 333

8
= 2 71

B1 =
4 347
2 167

= 2 0 m

B2 = 8−2 = 6 0 m

Factored P1 = 1.2 × 900 + 1.6 × 675 = 2160 kN
Factored P2 = 1.2 × 1350 + 1.6 × 1000 = 3220 kN
Factored R = 5380 kN

net qfactored =
FactoredR

A
=
5380
26

= 206 92 kPa

Use net qfactored = 207 kPa
Check x using factored loads:

x =
2160 6 + 0 3 + 3220 0 3

5380
=
14574
5380

= 2 71m OK

Col. 2 

Col. 1

Rectangular combined footing

is too short to reach Col. 1 due

to limited space at Col. 2

Centroid 

S = 6.00 m 

L = 6.50 m

x′= 2.71 m

x′

B1 B2

L

S

Scheme 5.64
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Step 3. Obtain data for shear-force and bending-moment diagrams considering the combined footing as a rein-
forced concrete beam.

It is preferable to draw the complete load diagram first, and then the shear and moment diagrams, as shown
below. The factored distributed loads on the footing, shear forces and bending moments are computed for full
width (variable) of the footing at necessary locations. Obviously, the contact pressure per unit length of the
footing will vary linearly due to the varying width from B1 to B2. Therefore, the shear diagram will be a sec-
ond-degree curve and the moment diagram will be a third-degree curve.

Any convenient method, for example integral calculus (with attention to values at the limits), may be used for
calculating the shear and moment values at different locations necessary to obtain informable diagrams. Usu-
ally, the design calculations involve an enormous amount of busywork, and more tedious than that with a rect-
angular combined footing. Therefore, it may be preferable to use any available computer program concerns the
conventional design of combined footings.

Step 4. Find footing thickness h.
Determine the required thickness based on both one-way shear and two-way shear analyses.

0.6 0.4

Trapezoid combined footing 

5.5 m 

Factored shear force 

diagram, kN

Factored load diagram

2075 

85  

360

Factored Bending moment

diagram, kN.m

3.42 m 

1984  

746   

6  

–Mmax = 3685 kN.m

qmax

qmin

x

d

398 

Critical sec. 

beam shear 

Inflection point

@ x = 6.18 m

qmin = (net qf act.)(B1)

    = 207 × 2

        = 414 kN/m               

qmax = (net qf act.)(B2)

    = 207 × 6

    = 1242 kN/m              

Slope = 127.38/1

3220 kN 
6.0 m 

 2500  

2160 kN 

L = 6.5  m

d

8.58.58.5

Scheme 5.65
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(a) One-way shear. Since the footing width varies, we should consider shear at two critical sections; one at distance
d from the right face of the exterior column, and the other at distance d from the left face of the interior col-
umn, as indicated on the shear-force diagram. However, in this case, one may detect location of the most
critical shear by comparing the B ratio with the ratio of shear forces at the column faces, as follows:

The width B ratio (approximately) =
6
2
= 3

The shear-force ratio =
2500
1984

= 1 26

Since the width ratio is much larger than the shear-force ratio, the footing depth dwill probably be based on
shear at distance d from the interior face of the exterior column. Based on this reasoning, d is calculated as
follows:

Vu = 414 0 4 + d + 127 38 0 4 + d 2 0 5 −2160

= 165 6 + 414d + 10 19 + 50 95d + 63 69d2−2160

= 464 95d + 63 69d2−1984 21 kN

It may be noticed from the shear diagram that at this critical section Vu is negative. Therefore, it would be
necessary to use it positive when equated to the shear strength.

Equation (5.19):

ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Equation (5.20):

Vc = 0 17λ fc bwd

bw = 2 +
0 4 + d
6 5

× 4 = 2 + 0 25 + 0 62d = 2 25 + 0 62d

ØVc = 0 75 × 0 17 × 1 30 1000 2 25 + 0 62d d

= 1571d + 433 d2

Let ØVc =Vu:

1571d + 433 d2 = − 464 95d + 63 69d2−1984 21

497 d2 + 2036 d−1984 21 = 0

d2 + 4d−4 = 0

d =
−4 ± 42−4 × 1 −4

2 × 1
=
−4 + 5 66

2
= 0 83m

Since there will be moment transfer at the column regions, the two-way shear may require d larger than
0.83 m.
Try d = 1.0 m = 1000 mm

(b) Two-way shear at location of each column. If it is not very clear at which column this shear is most critical,
both locations should be considered. The shear perimeter at each column has three sides only, as shown in the
scheme below. One may detect location of the most critical shear by comparing the shear- perimeter ratio with
the shear-force ratio.
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Assume d = 1.0 m.

The shear-perimeter ratio =
2 0 6 + 0 5 + 0 6 + 1
2 0 4 + 0 5 + 0 6 + 1

= 1 12

The shear-force ratio =
3220−207 0 6 + 0 5 0 6 + 1
2160−207 0 4 + 0 5 0 6 + 1

=
2855 68
1861 92

= 1 53

Since the shear-perimeter ratio is much smaller than the shear-force ratio, the most critical two-way shear
will be at the interior column.

Shear strength of concrete Vc shall be the smallest of (a), (b) and (c):

(a) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1 5

1 fc bod = 0 397 fc bod

Equation 5 22

(b) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
30d
bo

+ 2 1 fc bod

= 0 083
30 × 1

2 0 6 + 0 5 + 0 6 + 1
+ 2 fc bod = 0 821 fc bod

Equation 5 23

(c) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use

Vc = 0 33 fc bod

ØVc = 0 75 0 33 30 1000 2 0 6 + 0 5 + 0 6 + 1 1

= 5151 33 kN
The condition of unbalanced moment transfer exists, and the design must satisfy the requirements of ACI Sec-

tions 11.11.7.1, 11.11.7.2 and 13.5.3. The design proceeds in the same manner as that for the three-sided shear
perimeter at location of the exterior column of Problem 5.12.

6 m 2 m

Col. 2 

Col. 1  

6.5 m

2
2

d/2 d/2

d
d

Shear perimeter

Col. 1: 0.4 m × 0.6 m

Col. 2: 0.6 m × 0.6 m

Scheme 5.66
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Soil reaction on the shear block = 207(1.1 × 1.6) = 364.32 kN

CDC = b1−CAB = 1 1−0 32 = 0 78m

Summation of moments about the centroid of the shear perimeter equals the unbalanced moment. Hence,

Mu = 3220 × 0 48−364 32 × 0 23 = 1461 81 kN m

γv = 1− γf ACI Section11 11 7 1

γf =
1

1 + 2 3 b1 b2
ACI Section 13 5 3 2

=
1

1 + 2 3 1 1 1 6
= 0 644

γv = 1−0 644 = 0 356

The shear stresses due to the direct shear and the shear due to moment transfer will add at points D and C,
giving the largest shear stresses on the critical shear perimeter. Hence,

vu DC =
Vu

bod
+
γvMuCDC

Jc
ACI SectionR11 11 7 2

Jc = Jz = Property of the shear perimeter analogous to polar moment of inertia

d/2 = 0.5 

d/2 = 0.5  

0.23 m 

 0.48 

0.6 m 

0.6 

A 

B C 

D 

Column 2 

Centroid of shear

perimeter 

Critical shear perimeter 

P2 = 3220 kN

CAB = 0.32 m

      = 1.6 m     

0.5 

Critical shear

perimeter

Centroidal axis of

shear perimeter

(parallel to the

footing edge) 

=

moment of area of sides

about A – B

area of sides

CAB is the distance from line

A – B to the centroid of the

shear perimeter

=
(2×1.1+1.6)(1)

 = 0.32 m

364.32 kN

Free-body diagram of

the footing-column

connection 

d

CAB CDC

b1 = 1.1 m

2(1.1×1)
1.1
2

b2=  0.6 + d 

Scheme 5.67
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Jc = 2
b1d3

12
+ 2

db31
12

+ 2 b1d
b1
2
−CAB

2

+ b2d CAB
2

= 2
1 1 × 13

12
+ 2

1 × 1 13

12
+ 2 1 1 × 1

1 1
2

−0 32
2

+ 1 6 × 1 0 322

= 0 183 + 0 222 + 0 116 + 0 164 = 0 685m4

vu DC =
3220−364 32
2 × 1 1 + 1 6 1

+
0 356 × 1461 81 0 78

0 685

= 751 49 + 592 58 = 1344 07 kN m2

Ø vc =
ØVc

bod
=

5151 33
2 0 6 + 0 5 + 0 6 + 1 1

= 1355 61 kN m2 > vu DC OK

The factored shear stress vu(DC) is too close to Ø vc (the choice of using d = 1 m was successful), which means
that two-way shear requires d 1 m, whereas, one-way shear requires d = 0.83 m and, therefore, the two-way
shear controls the footing depth.

Use d = 1.0 m = 1000 mm.
The depth d will be taken to the centre of the steel bars in long direction.
Assume using No. 29 bars, and 75 mmminimum concrete cover (ACI Section 7.7.1). Hence, the overall footing

thickness is

h= 1000 + 75 + 1 2bar diameter = 1075 + 14 4 = 1089 4mm

Use h = 1010 mm.
Step 5. Design the flexural reinforcement in the long direction.

The bending-moment diagram requires that the flexural reinforcement in long direction must be placed at
top of the footing. The maximum factored negative moment of 3685 kN.m is located at x = 3.42 m (from the left
face of the exterior column). At this location the footing width is

B = 2 +
3 42
6 5

× 4 = 4 1m

Equation (5.9):
ØMn ≥Mu

Mu =
3685
B

=
3685
4 1

= 899 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

D 

Z

B 

A

C 
d = 0.93 m

b1 = 1.1 m

C
AB C

DC

Centroidal

axis  

Z 
b2 =

1.6 m

Scheme 5.68
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a=
Asfy

0 85fc b
=

As × 420
0 85 × 30 × 1

= 16 47As

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 1−
16 47As

2

= 378 000As−3 112 830As
2 kN m m

Equation 5 11

Let ØMn =Mu:
378 000As−3 112 830As

2 = 899

As
2−0 121As + 2 888 × 10−4 = 0

As =
− −0 121 ± −0 121 2− 4 1 2 888 × 10−4

2 × 1
=
0 121−0 116

2

= 2 5 × 10−3 m2 m= 2500mm2 m

As,min =
0 25 fc

fy
bwd =

0 25 30
420

× 1 × 1 = 3 26 × 10−3 m2 m

= 3260mm2 m

and not less than 1.4
bw d
fy

=
1 4 × 1 × 1

420

= 3 333 × 10−3 m2 m= 3333mm2 m
Therefore, use As = As,min = 3333 mm2/m

As, total = 3333 ×B= 3333 × 4 1 = 13 667mm2

Try 22 No. 29 bars: As,provided = 22 × 645 = 14 190 mm2/m (OK.)
ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing thick-

ness, or 450 mm, whichever is smaller.
Use centre to centre bar spacing = 186 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
4100− 21 × 186 + 28 7

2
= 82 7mm> 75 mm OK

Provide 22 No. 29 bars @ 188 mm c.c. in long direction, at top across the footing width where B = 4.1 m.
Since the footing is subjected to negative bending moment for its full length and As,min controls, the same

amount of reinforcement per meter width of the footing shall be provided at top in long direction for the full
footing length. Also, since the footing width varies, one should compute totalAs for several locations so that cutting
of the steel bars (if justified) can be done properly as required. The necessary computations are left for the reader.

Also, checking the development of reinforcement, at the critical sections, is left for the reader.

Step 6. Design the transverse reinforcement at bottom of the footing.
The footing is divided into three zones or strips of the defined widths shown in the figure below. Zones I and

II, usually known as effective zones, should be analysed as beams; the provided steel should not be less than that
required for bending or As,min, whichever is greater. For zone III (between zones I and II), the provided steel
should satisfy theAs,min requirement only. All the transverse steel bars should be placed on top of the supporting
bars in long direction at the bottom of the footing.
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Zone I: Z1 = 0.4 + 0.75 × 1 = 1.15 m
Zone II: Z2 = 0.6 + 0.75 × 1 = 1.35 m
Zone III: Z3 = 6.5 − (1.15 + 1.35) = 4 m

Zone I: average footing width =
2 + 2 +

4
6 5

× 1 15

2
= 2 35m

Zone II: average footing width =
6 + 2 +

4
6 5

× 5 15

2
= 5 58m

Zone III: average footing width =
2 +

4
6 5

× 1 15 + 2 +
4
6 5

× 5 15

2
= 3 94m

(a) Transverse reinforcement for Zone I:

net qfactored =
factoredP1
zone area

=
2160

Z1 × average width
=

2160
1 15 × 2 35

= 799 26 kPa

l1 =
average width−0 6

2
=
2 35−0 6

2
= 0 875m

Mu =
net qfactored × l21

2
=
799 26 × 0 8752

2
= 306 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 30 × 1

= 16 47As

d = 1m−one bar diameter = 1−0 025 = 0 975m

B1 = 2 m

L = 6.5 m

Zone I Zone II 

Column 1: 0.4 m × 0.6 m

Column 2: 0.6 m × 0.6 m

B2 = 6 m

Zone III

2.71 m 5.17 m

w1

w1 +

0.75 d

= Z1

w2 +

0.75 d

= Z2

w2

Col. 2Col. 1

Z3

Scheme 5.69

(Continued)
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ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 975−
16 47As

2

= 368550As−3112830As
2 kN m m

Equation 5 11

ØMn ≥Mu

Let ØMn =Mu:

368550As−3112830As
2 = 306

As
2−0 118As + 9 83 × 10

−5 = 0

As =
− −0 118 ± −0 118 2− 4 1 9 83 × 10−5

2 × 1
=
0 118−0 116

2

= 1 × 10−3 m2 m= 1000mm2 m

As,min =
0 25 fc

fy
bwd =

0 25 30
420

× 1 × 0 975 = 3 18 × 10−3 m2 m

and not less than 1.4
bw d
fy

=
1 4 × 1 × 0 975

420
= 3 325 × 10−3 m2 m

Therefore, use As = As,min = 3.325 × 10− 3 m2/m = 3325 mm2/m

As, total = 3325 ×Z1 = 3325 × 1 15 = 3824mm2

Try eight No. 25 bars: Aprovided = 8 × 510 = 4080 mm2 (OK.)
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 25, the clear spacing of the bars exceeds 2db,

and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is located where the maximum factored positive moment exists) shall be determined from
the following equation, but not less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

Where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

1 7 × 1 × 30

25 4
1000

= 1 15m= 1150mm> 300mm

Therefore, the required ld = 1150 mm.
The bar extension past the critical section (i.e. the shortest available length) is

B1−600
2

−75mmcover =
2000−600

2
−75 = 625mm< ld,min NotOK

Therefore, thebars will all have to be hooked (90-degree standard hook) at both ends.
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Check ldh (ACI Section 12.5.2):

ldh =
0 24ψ efy
λ fc

db

where the factors ψ e and λ shall be taken as 1.

ldh =
0 24 × 1 × 420

1 × 30

25 4
1000

= 0 47m= 470mm> 8db > 150mm

Therefore, the required ldh = 470 mm.

ldh < 625mm OK

ACI Sections 7.6.5 and 10.5.4 require maximum spacing shall not exceed three times the slab or footing
thickness or 450 mm, whichever is smaller.

Use centre-to-centre bar spacing = 150mm. Check the 75 mmminimum concrete cover at the small end of
the footing:

Concrete cover = 1150−7 × 150−
25 4
2

= 87 3mm> 75mm OK

Provide eight No. 25 bars @ 150 mm c.c. in Zone I, placed at bottom of the footing in the transverse direction.
The bars will all have to be hooked (90-degree standard hook) at both ends.

(b) Transverse reinforcement for zone II:

net qfactored =
factoredP2
zone area

=
3220

Z2 × average width
=

3220
1 35 × 5 58

= 427 45 kPa

l2 =
average width−0 6

2
=
5 58−0 6

2
= 2 49 m

Mu =
net qfactored × l22

2
=
427 45 × 2 492

2
= 1325 12 kN m m

d = 1m−one bar diameter = 1−0 025 = 0 975m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 30 × 1

= 16 47As

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 975−
16 47As

2

= 368 550As−3 112 830As
2 kN m m

Equation 5 11

ØMn ≥Mu

Let ØMn =Mu:
368 550As−3 112 830As

2 = 1325 12
(Continued)
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As
2−0 118As + 4 26 × 10−4 = 0

As =
− −0 118 ± −0 118 2− 4 1 4 26 × 10−4

2 × 1
=
0 118−0 111

2

= 3 5 × 10−3 m2 m= 3500mm2 m

As,min =
0 25 fc

fy
bwd =

0 25 30
420

× 1 × 0 975 = 3 18 × 10−3 m2 m

and not less than 1.4
bw d
fy

=
1 4 × 1 × 0 975

420
= 3 325 × 10−3 m2 m<As

Therefore, use As = 3.5 × 10− 3 m2/m = 3500 mm2/m

As, total = 3500 ×Z2 = 3500 × 1 35 = 4725mm2

Try 10 No. 25 bars: As,provided = 10 × 510 = 5100 mm2 (OK.)

Compute a for As =
5100
1 35

= 3778mm2 m, and check if fs = fy and whether the section is tension-controlled:

a= 16 47As = 16 47 × 3778 × 10−6 = 0 062m= 62mm

c=
a
β1
. For fc between 17 and 28MPa, β1 shall be taken as 0.85. For fc above 28MPa, β1 shall be reduced linearly at a

rate of 0.05 for each 7 MPa of strength in excess of 28 MPa, but β1 shall not be taken less than 0.65 (ACI
Section 10.2.7.3).

β1 = 0 85−
2
7
× 0 05 = 0 836

c=
62

0 836
= 74 16mm

dt = d = 975mm

εt = 0 003
dt −c
c

= 0 003
975−74 16

74 16
= 0 036 > 0 005

Equation 5 15

Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200 000
= 0 0021

Hence, εt > εy and fs = fy.
Therefore, the assumptions made are satisfied.
Check the development of reinforcement:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

1 7 × 1 × 30

25 4
1000

= 1 15m= 1150mm> 300mm
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Therefore, the required ld = 1150 mm.
The bar extension past the critical section (i.e. the shortest available length) is

5170−600
2

−75mmcover = 2210mm ld OK

In case the required flexural reinforcement exceeds the minimum flexural reinforcement, it shall be adequate to
use the samemaximum spacing of reinforcement for slabs which is two times the slab thickness, or 450mmwhich-
ever is smaller, as specified by ACI Section 13.3.2.

Use centretocentre bar spacing = 140 mm. Check the 75 mm minimum concrete cover at the large end of the
footing:

Concrete cover = 1350−9 × 140−
25 4
2

= 77 3mm> 75mm OK

Provide 10 No. 25 bars @ 140 mm c.c. in Zone II, placed at bottom of the footing in the transverse direction.
(c) Transverse reinforcement for zone III:

Use As = As,min = 3325 mm2/m

As, total = 3325 ×Z3 = 3325 × 4 = 13 300mm2

Try 26 No. 25 bars: As,provided = 26 × 510 = 13260 mm2 (Acceptable)

Use centretocentre bar spacing =
4000
25

= 160mm.

By inspection, the development of reinforcement is not a problem.
Provide 26 No. 25 bars @ 160 mm c.c. in Zone III, placed at bottom of the footing in the transverse direction.

Step 7. Check columns bearing on the footing (ACI Section 10.14), and design the necessary dowels.
The design proceeds in the same manner as that of Solution of Problem 5.3, Step 5.

Step 8. Find the embedment length of dowels in both the footing and the columns.
The design proceeds in the same manner as that of Solution of Problem 5.3, Step 6.

Step 9. Develop the final design sketches.

Problem 5.14

The design data given in Scheme 5.70 belong to a strap footing which will support two columns. The distance
between the columns is 5.5 m, centre to centre. Centre of the exterior column (Col. 1) is located at a distance of
0.4 m from the property line where the footing edge will be located. At location of the interior column (Col. 2), there
will be a sufficient space for a centrally loaded spread footing. At the expected foundation depth, the net allowable soil
pressure (net qa) is 150 kPa. In this Problem, it is required to design the strap as beam but not “deep” beam, and the
minimum stiffness ratio (Istrap/Ifooting) equals 1.5. Design the strap footing using the conventional (rigid) method.

Solution:
Step 1. Compute working and factored column loads, their resultants, and factored net contact pressure (net

qfactored).
(Continued)
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Total area of footings =
workingR
net qa

=
factoredR
net qfactored

net qfactored =
150 × 1760

1250
= 211 2 kN

Step 2. Estimate a trial value for the eccentricity e of the load of Col. 1 or a trial value for the length L1 of Footing 1,
and then compute S , R1 and R2 shown below.

Each of the factored soil reactions R1 and R2 should act at the centre of its footing so that a uniform soil
pressure distribution can be assumed. Also, in order to reduce differential settlement, it is required that the
selected value for e or L1 results in very close footing widths, that is B1 and B2 should not be greatly different.
In design of strap footings, usually, the strap weight is neglected.

Estimate the eccentricity e = 0.7 m

S = S−e= 5 5−0 7 = 4 8 m

Take moments about centre of Col. 2:

ΣM = 0−R1S −P1S = 0

FactoredR1 =
800 × 5 5

4 8
= 916 kN

ΣFv = 0

FactoredR2 = P1 + P2−R1 = 1760−916 67 = 843 33 kN

Col. 2: 0.4 m × 0.4 m 

Col. 1: 0.4 m × 0.4 m 

Property line

0.4 m 
S = 5.5 m 

Column

1

2

Footing: concrete strength f′c = 21 Mpa.

Size, m Working loads

D,kN L,kN

0.4 × 0.4 200 350

3004000.4 × 0.4

reinforcing steel fy = 420 Mpa.

Scheme 5.70

S = 5.5 m
0.4 m

P1 P2

R2

e S′

R1

Property line

Scheme 5.71

Column Working loads, kN Factored loads, kN

1 200 + 350 = 550 P1 = 1.2 × 200 + 1.6 × 350 = 800

2 400 + 300 = 700 P2 = 1.2 × 400 + 1.6 × 300 = 960

For Cols 1 + 2 Working R = 1250 Factored R = 1760
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Step 3. Find the plan dimensions of each footing.
Footing 1:

L1
2
= 0 4 + e= 0 4 + 0 7 = 1 1m L1 = 2 × 1 1 = 2 2m

R1 = B1 L1 net qfactored B1 =
R1

L1 net qfactored
=

916 67
2 2 × 211 2

= 1 973m

Footing 2:
Use a square column footing. Hence, B2 = L2

R2 = B2
2 net qfactored B2 =

R2

net qfactored
=

843 33
211 2

= 1 998m

Use: Footing 1 2.0 × 2.2 m
Footing 2 2.0 × 2.0 m

It is expected that settlement of the footings should be nearly equal, since net qfactored is the same for both foot-
ings and the widths B1 and B2 are equal.

In the design computations it may be necessary to use the exact B and L values so that the shear and moment
diagrams will close.

Step 4. Obtain data for shear-force and bending-moment diagrams considering the strap footing as a reinforced
concrete structural member with variable cross-section dimensions and loadings.

Strap

0.8  0.4

0.4 m

0.4 0.81.6 m

P2 = 960 kN

S = 5.5 m

P1 = 800 kN

Space 

2.7 m

q
1

= 211.2 B
1

    = 416.7 kN/m 

q
1

d d

q
2

q
2

= 211.2 B
2

    = 422 kN/m

 0.2 m

Col. 1 Col. 2

Factored load

diagram

Factored

shear-force

diagram, kN

167 

211 

Factored

Bending-moment

diagram, kN.m

0.28 m 

–116

135 

M
max 

= –448 

85  

33 Inflection point 

117

550

338

455
1.92 m

Critical sec.

beam shear

Critical section

moment (–M
max

)

1.92 m 0.28 m 

117

–432

Scheme 5.72 (Continued)
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It is preferable to draw the complete load diagram first, and then the shear and moment diagrams, as shown
above.

The factored distributed loads on the footings (uniform contact pressure), shear forces and bending
moments at any location shall be computed for the full width of the member.

Any convenient method, for example integral calculus (with attention to values at the limits), may be used for
calculating the shear and moment values at necessary locations so that informable diagrams are obtained.

If the necessary computations involve tedious busywork, it will be preferable to use an appropriate computer
program.

Step 5. Find footing thickness h. Determine the required thickness for each footing based on both one-way shear
and two-way shear analyses.

(a) One-way shear.
Footing 1 (the exterior footing):

The critical section is located at distance d from the interior face of the exterior column, as indicated on the
shear-force diagram.

Equation (5.19):
ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Vu = 550−416 7d kN

Equation (5.20):
Vc = 0 17λ fc bwd

Let ØVc =Vu

0 75 × 0 17 × 1 21 1000 2 d = 550−416 7d

d =
550
1585

= 0 35m= 350mm

Try d = 0.36 m = 360 mm.
Footing 2 (the interior footing):
The critical section is located at distance d from the interior face of the interior column, as indicated on the

shear-force diagram.

Vu = 454−422d kN

Let ØVc = Vu:
0 75 × 0 17 × 1 21 1000 2 d = 454−422d

d =
454
1591

= 0 29m= 290mm

This depth is close to that of Footing 1 (only 0.06 m difference); it may be more practical, in this case, to use the
same d for both footings.

Try d = 0.36 m = 360 mm.
(b) Two-way shear.

Footing 1 (the exterior footing):
Consider the shear perimeter has three sides only.
In this case, the condition of unbalanced moment transfer exists, and the design must satisfy the require-

ments of ACI Sections 11.11.7.1, 11.11.7.2 and 13.5.3. The design proceeds in the same manner as that for the
three-sided shear perimeter at location of column1 of Problem 5.12.
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Assume d = 0.36 m = 360 mm.

CAB is the distance from line A–B to the centroid of the shear perimeter

=

moment of area of sides

aboutA-B

area of sides
=
2 0 78 × 0 36 0 78 2
2 × 0 78 + 0 76 0 36

= 0 26m

Soil reaction on the shear block = 211.2(0.78 × 0.76) = 125.2 kN
Summation of moments about the centroid of the shear perimeter equals the unbalanced momentMu. Hence,
Mu = 800 × 0.12 − 125.2 × 0.13 = 80 kN. m

γv = 1− γf ACI Section 11 11 7 1

γf =
1

1 + 2 3 b1 b2

=
1

1 + 2 3 0 78 0 76
= 0 60

γv = 1−0 6 = 0 4

The shear stresses due to the direct shear and the shear due to moment transfer will add at points D and C,
giving the largest shear stresses on the critical shear perimeter. Hence,

vu DC =
Vu

bod
+
γvMuCDC

Jc
ACI SectionR11 11 7 2

d/2 = 0.18 

d/2 = 0.18

0.4 m 

0.4

A 

B C 

D 

Column 1 

b2 = 0.4 + d

  = 0.76 m

Critical shear perimeter 

Centroidal axis of shear

perimeter (parallel to

the footing edge)

b1 = 0.78

0.2 m 0.18 m

Scheme 5.73

0.39

0.40

Centroid of shear

perimeter  

Critical shear perimeter 

CAB = 0.26 m

0.12 

125.2 kN

Free-body diagram of the

footing-column connection
0.13 m

800 kN

d

Scheme 5.74

(Continued)
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Jc = Jz = Property of the shear perimeter analogous to polar moment of inertia

Jc = 2
b1d3

12
+ 2

db31
12

+ 2 b1d
b1
2
−CAB

2

+ b2d CAB
2

= 2
0 78 × 0 363

12
+ 2

0 36 × 0 783

12
+ 2 0 78 × 0 36

0 78
2

−0 26
2

+

0 76 × 0 36 0 262 = 0 0061 + 0 0285 + 0 0095 + 0 0185 = 0 063m4

Vu = 800−125 2 = 674 8 kN

CDC = b1−CAB = 0 78−0 26 = 0 52m

vu DC =
674 8

2 × 0 78 + 0 76 0 36
+
0 4 × 80 × 0 52

0 063
= 807 95 + 264 13

= 1072 1 kN m2

Ø vc ≥ vu DC

Ø vc =
ØVc

bod

Shear strength of concrete Vc shall be the smallest of (i), (ii) and (iii):

(i) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

Equation 5 22

(ii) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
30 × 0 36

2 0 78 + 0 76
+ 2 fc bod = 0 46 fc bod

Equation 5 23

(iii) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod

ØVc = 0 75 0 33 21 1000 bod = 1134 2 bod kN

Ø vc =
1134 2 bod

bod
= 1134 2 kN m2 > vu DC OK

Footing 2 (the interior footing):
The footing is concentrically loaded, and the shear perimeter has four sides, as shown below.
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Assume d = 0.36 m.
Shear strength of concreter Vc shall be the smallest of (i), (ii) and (iii):

(i) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

Equation 5 22

(ii) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
40d
bo

+ 2 1 fc bod

= 0 083
40 × 0 36

4 0 4 + 0 36
+ 2 fc bod

= 0 56 fc bod

Equation 5 23

(iii) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod.

ØVc = 0 75 0 33 21 1000 4 0 4 + 0 36 0 36 = 1241 kN

Vu = P2 –soil reaction on the shear block
Vu = 960 –soil reaction on the shear block (kN)

Vu < ØVc OK

Therefore, for both footings, the depth d is controlled by one-way shear.

d/2

Critical section for

two-way shear  

d/2

2.0 m

400-mm square column 2 m

Scheme 5.75

(Continued)
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Assume using No. 19 bars, with 75mmminimum concrete cover (ACI Section 7.7.1). Hence, the overall footing
thickness is

h= 360 + 75 +
1
2
bar diameter = 435 +

19 1
2

= 444 6mm

Therefore, for both footings, use:
d = 0 36m = 360mm

h = 450 mm.

Step 6. Design theflexural reinforcement for each footing.
(a) Footing 1 (the exterior footing).

It is expected that the strap depth will be larger than that of the footings, since the design requires the strap-
footing stiffness ratio not be less than 1.5. In such a case, it is usual practice to extend the strap beam over the
footings to the columns. Thus, Footing 1, actually, acts as a wall footing, cantilevering out on the two sides of
the strap. Therefore, the main flexural reinforcement at the footing bottom shall be the transverse reinforce-
ment only (i.e. one-way footing). Obviously, shrinkage and temperature reinforcement shall be provided nor-
mal to the flexural reinforcement (ACI Sections 7.12.1 and 7.12.2.1). As indicated by the bending-moment
diagram, the footing is subjected to negative moments in long direction. This moment will be resisted by
the strap top bars, since the strap extends over the footing to Column 1.

Transverse flexural positive reinforcement:
Design the footing reinforcement as a spread footing. Consider the critical section located at the face of

Column 1 (not the strap face so that conservative design is achieved), as shown below.

ØMn ≥Mu

The maximum factored moment is

Mu =
net qfactored ℓ

2

2
=
211 2 × 0 82

2
= 68 kN m m

Assume tension-controlled section, Ø = 0.9 and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

d = 0 36m

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 36−
23 53As

2

= 136 080As−4 447 170As
2 kN m m

Equation 5 11

= 0.8 m

Critical section

for moment

Strap

2.2 m

400-mm square

column 
2 m

Scheme 5.76
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Let ØMn =Mu:

136 080As−4 447 170As
2 = 68

4 447 170As
2−136 080As + 68 = 0

As
2−0 031As + 1 529 × 10−5 = 0

As =
− −0 031 ± −0 031 2− 4 1 1 529 × 10−5

2 × 1
=
0 0310−0 0299

2

= 550 × 10−6 m2 m= 550mm2 m

As,min = 0 0018 bh= 0 0018 × 1 × 0 45 = 810 × 10−6 m2 m

= 810mm2 m>As

Use As = As,min = 810 mm2/m
The assumptions made are satisfied, since As required = As,min.

As, total =As × L1 = 810 × 2 2 = 1782mm2

Try nine No.16 bars: As,provided = 9 × 199 = 1791 mm2 (OK.)
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is smaller than No. 19, the clear spacing of the bars

exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is the same critical section for moment) shall be determined from the following equation, but not
less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1. (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 21

15 9
1000

= 0 694m= 694mm> 300mm

Therefore, the required ld = 694 mm.
The bar extension past the critical section (i.e. the available length) is

800mm−75mmcover = 725mm> 694mm OK

ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing thick-
ness or 450 mm, whichever is smaller.

Use centretocentre bar spacing = 253 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
2200−8 × 253−15 9

2
= 80mm> 75mm OK

Provide nine No. 16 bars @ 253 mm c.c., placed at bottom of the footing in the transverse direction.
(Continued)
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Shrinkage and temperature reinforcement:
This reinforcement shall be provided, in long direction, normal to the flexural reinforcement (ACI Sections

7.12.1 and 7.12.2.1).
Total

As = 0 0018 bh= 0 0018 × 2 × 0 45 = 1620 × 10−6 m2

= 1620mm2

Try nine No.16 bars: As,provided = 9 × 199 = 1791 mm2 (OK.)
According to ACI Section 7.12.2.2, shrinkage and temperature reinforcement shall be spaced not farther apart

than five times the slab thickness, nor farther apart than 450 mm.
Use centre-to-centre bar spacing = 229 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
2000−8 × 229−15 9

2
= 76mm> 75mm OK

Provide nine No. 16 @ 229mm c.c. in the long direction, placed on top of the transverse reinforcement at bottom of
the footing.

Longitudinal flexural negative reinforcement:
As mentioned earlier, this reinforcement will be provided by the strap top bars (see design of the strap later).

(b) Footing 2 (the interior footing).
Dimension of Footing 2 in both directions is the same as the transverse dimension of Footing 1(i.e.

B = 2 m); the design contact pressure for both footings is the same (i.e. net qfactored = 211.2 kPa); the columns
have the same cross-section dimensions (i.e. 0.4 m × 0.4 m); the same d, fc and fy are used in design of both
footings. For these reasons, the same amount of flexural positive reinforcement which was computed for Foot-
ing 1 shall also be used for Footing 2 and in both directions.

Use centre-to-centre bar spacing = 229 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
2000−8 × 229−15 9

2
= 76mm> 75mm OK

As indicated by the bending-moment diagram, a small portion of the footing is subjected to a small
negative moment. This moment will be resisted by the strap top bars, since the strap extends over the footing
to Column 2.

Provide nine No. 16 @ 229 mm c.c.,placed at bottom of the footing in both directions.
Step 7. Check column bearing on each footing (ACI Section 10.14), and design the necessary dowels.

Proceed in the same manner as that of Solution of Problem 5.3, Step 5.

Step 8. Find the embedment length of dowels in both the footing and the column for each column-footing joint.
Proceed in the same manner as that of Solution of Problem 5.3, Step 6.

Step 9. Design the strap as a reinforced concrete structural beam.
This design step involves findingb, d and As. Bending-moment and shear-force diagrams indicate that the

strap must be designed for a negative moment of 432 kN.m and a shear force of 117 kN. However, this design
moment is too close to the maximum negative moment (448 kN.m) and it would be conservative if the latter is
used for design. In order to compute the cross-section dimensions b and d, it may be necessary to select a trial
steel ratio ρ. For Grade-420 reinforcement and fc values between 21 and 35MPa, it may be appropriate to start a
beam design by assuming that ρ 0.01. This choice or assumption of ρ value, generally, is economical, gives
desirable level of structural ductility and assures easy placement of reinforcement.

The required strap-footing minimum stiffness ratio of 1.5 will be a factor in selecting a minimum value for
the strap height h. Also, if the designer wants to avoid deflection calculations, ACI Section 9.5.2.1 and ACI
Table 9.5(a) require h≥ ℓ

16. Furthermore, it is required the strap shall be designed as beam but not “deep” beam,
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which requires h < ℓn
4 (ACI Section 10.7).Taking all these factors into consideration, the strap may be designed

as follows:
Assume tension-controlled section, Ø = 0.9, and fs = fy.
Equation (5.10):

a=
Asfy

0 85fc b

If we substitute As = ρbd into Equation (5.10), we get

a =
ρfy
fc

d
0 85

Equation (5.12):

ØMn = Ø 0 85fc ba d−
a
2

If we substitute a=
ρfy
fc

d
0 85

into Equation (5.12), we get

ØMn = Ø 0 85fc b
ρfy
fc

d
0 85

d−
ρfy
2fc

d
0 85

Hence, for fc = 21MPa, fy = 420 MPa, ρ = 0.01

ØMn = Ø 0 85 × 21 b
0 01 × 420d
21 × 0 85

d−
0 01 × 420d
2 × 21 × 0 85

= Ø bd2 4 2 1−
4 2
35 7

= 3 706Ø bd2 MN m

=3706Ø bd2 kN m

Mu = 448 kN m

ØMn ≥Mu

Let ØMn =Mu:

3706Ø bd2 = 448

bd2 =
448

3706 × 0 9
= 0 134m3; b=

0 134
d2

m

The strap width b should be at least equal to the smaller width of the columns. Therefore, use b ≥ 0.4 m, or,
bmin = 0.40 m.

Assume b = 0.40 m. Hence, d =
0 134
0 4

= 0 52 m.

According to ACI Section10.7, deep beams have ℓn ≤ 4 h.
The strap clear span ℓn = 2.7 m.
Let ℓn = 4 h:

h=
2 7
4

= 0 675m
(Continued)
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It is required to design the strap as beam but not “deep” beam. Therefore, the overall strap depth or height h
must be smaller than 0.675 m.

Assume: h = 0.67 m; concrete cover = 0.08 m. Hence,

d = 0 67−0 08 = 0 59m> d = 0 52m

Try: h= 0 67m d = 0 59m b= 0 40m
Check the minimum stiffness ratio:

Istrap
Ifooting

=

bh3

12 strap

bh3 12 footing

=
0 4 ×

0 673

12
2 × 0 453 12

= 0 66 1 5 Not OK

Increase the strap width and check the stiffness ratioagain.
Try b = 0.9 m:

bd3

12 strap

bd3 12 footing

=
0 9 ×

0 673

12
2 × 0 453 12

= 1 49 1 5 Acceptable

Check deflection of the strap beam:
According to ACI Section 9.5.2.1 and ACI Table 9.5(a), for a simple beam constructed with structural normal-

weight concrete and Grade 420 reinforcement, not supporting or attached to partitions or other construction likely

to be damaged by large deflections, theminimum overall depth or h to avoid deflection calculations is
ℓ

16
, where ℓ is

the span length of the beam. In this case, the individual footings are supporting the strap, and it may be appropriate
to let ℓ represent the distance between the footings, centre to centre, which is 4.8 m.
Therefore,

ℓ

16
=
4 8
16

= 0 3m< h= 0 67m . Therefore, deflections should not be a problem.

Use a strap beam with b = 0.90 m, d = 0.59 m and h = 0.67 m.
Flexural reinforcement at the top of the strap:

ØMn ≥Mu

Mu = 448 kN m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 0 9

= 26 14As m

ØMn = Ø 0 85fc ba d−
a
2

= 0 9 0 85 × 21 × 1000 0 9 × 26 14As 0 59−
26 14As

2

= 222 988As−4 939 744A2
s kN m

Let ØMn =Mu:
222 988As−4939 744A

2
s = 448

A2
s −45 14 × 10−3As + 9 07 × 10−5 = 0
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As =
− −45 14 × 10−3 ± −45 14 × 10−3 2−4 × 1 × 9 07 × 10−5

2 × 1
= =

0 04514−0 04092
2

= 2 11 × 10−3 m2 = 2110mm2

As,min =
0 25 fc

fy
bwd =

0 25 21
420

× 0 9 × 0 59 = 1 448 × 10−3 m2

= 1448mm2

and not less than 1.4
bw d
fy

=
1 4 × 0 9 × 0 59

420
= 1 77 × 10−3 m2 = 1770mm2

Use As = 2110 mm2

Try six No. 22 bars: As,provided = 6 × 387 = 2322 mm2 (OK.)
Compute a for As = 2322 mm2 and check if fs = fy and whether the section is tension-controlled:

a= 26 14As = 26 14 × 2322 × 10−6 = 0 061m= 61mm

c=
a
β1
; For fc between 17 and 28 MPa, β1 shall be taken as 0.85

c=
61
0 85

= 71 8mm

dt = d = 590mm

εt = 0 003
dt −c
c

= 0 003
590−71 8

71 8
= 0 022 > 0 005 Equation 5 15

Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200000
= 0 0021. Hence, εt > εy and fs = fy.

Therefore the assumptions made are satisfied.
Because εt = 0.022 exceeds 0.004, the strap section satisfies the definition of beam in ACI Section 10.3.5.
It may be a good practice to compute ØMn to check whether the provided As is adequate. This checking guards

against errors in computations. Thus,

ØMn = Ø 0 85fc ba d−
a
2

= 0 9 × 0 85 × 21 × 1000 × 0 9 × 0 061 0 59−
0 061
2

= 493 kN m> Mu = 448 kN m OK

Provide six No. 22 bars at the top of the strap in one layer.
Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 22, the clear spacing of the bars exceeds 2db, and

the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical section (which is
located where the maximum factored negative moment exists) shall be determined from the following equation,
but not less than

ld =
fy ψ t ψ e

1 7 λ fc
db (ACI Sections 12.2.1, 12.2.2 and 12.2.4)

where the factors ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1). (Continued)
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The factor ψ t is 1.3 because the reinforcement is placed such that more than 300 mm of fresh concrete exists
below the top bars (ACI Section 12.2.4).

ld =
420 × 1 3 × 1

1 7 × 1 × 21

22 2
1000

= 1 556m= 1556mm> 300mm

Therefore, the required ld = 1556 mm.
Since top of the strap will be about 0.3 m above the top of each footing, the left end of the strap shall be extended

to the edge of footing 1 at the property limit and its right end to a point 0.2 m beyond column 2. Thus, the bar
extension past the critical section (i.e. the shortest available length) is

2200mm−75mmcover = 2125mm>1556mm OK

The point of inflection is located at 0.28 m from the interior face of column 2 as shown on the bending-moment
diagram. The available length of bars beyond this point is

0 28 + 0 40 + 0 20 beyond Col 2 = 0 88m> d = 0 59m > 12db

Therefore, the requirements of ACI Section 12.10.3 are satisfied.
Check the shear strength, Ø Vc:
Equation (5.19):

ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where Ø = shear strength reduction factor ACI Section 9 3 2 3

= 0 75

Equation (5.20):
Vc = 0 17λ fc bwd

ØVc = 0 75 × 0 17 × 1 21 1000 0 9 0 59 = 311 kN

Vu = 117 kN< ØVc OK

ACI Section 11.4.6.1 requires that a minimum area of shear reinforcement, Av,min, shall be provided in all rein-
forced concrete flexural members (prestressed and non-prestressed) where Vu exceeds 0.5 Ø Vc.

0 5ØVc = 0 5 × 311 = 158 kN> Vu = 117 kN

Therefore, the Av,min will not be required. However, a sufficient number of stirrup support bars shall be pro-
vided to hold and support the longitudinal negative reinforcement properly.

Step 10. Develop the final design sketches as shown in the schemes below.

2.7 m

Property limit

1.6 m

2.0 m2.2 m

Strap

6.9 m

PLAN

0.4 0.8 m0.8 m

0.2

0.4
1 

1 

2 m

Footing 1 Footing 2

Column 1

0.4 m × 0.4 m
Column 2

0.4 m × 0.4 m

0.9 m

0.2

Scheme 5.77
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Problem 5.15

Design the strap of Problem 5.14 using the minimum stiffness ratio ( Istrap/Ifooting) equals 1.0 instead of the 1.5.

Solution:
Equation (5.10):

a=
Asfy

0 85fc b
If we substitute As = ρbd into Equation (5.10), we get

a =
ρfy
fc

d
0 85

Equation (5.12): ØMn = Ø 0 85fc ba d−
a
2

If we substitute a=
ρfy
fc

d
0 85

into Eq. (5.12) we get

ØMn = Ø 0 85fc b
ρfy
fc

d
0 85

d−
ρfy
2fc

d
0 85

For Grade-420 reinforcement and fc values between 21 and 35MPa, it may be appropriate to start a beam design
by assuming that ρ 0.01. This choice or assumption of ρ value, generally, is economical, gives desirable level of
structural ductility, and assures easy placement of reinforcement.
For fc = 21MPa, fy = 420 MPa, assume ρ = 0.01 (Continued)

0.6 m

0.2 m

Strap

2.0 m

9 No. 16 @

253 mm c. c

2.2 m

9 No. 16 @

229 mm c. c
6 No. 10 stirrup

support bars 

SECTION

SECTION 1 – 1

Space

Col. 1 Col. 2

9 No. 16 @

229 mm c. c
9 No. 16 @

229 mm c. c6 No. 22

Footing 2Footing 1

2 No. 13 at

bottom corners

of the strap

0.45

80

80

670 mm

Footing

900 mm

2 No. 13

6 No. 10 stirrup

support bars

6 No. 22

Column

Strap

Scheme 5.78
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ØMn = Ø 0 85 × 21 b
0 01 × 420d
21 × 0 85

d−
0 01 × 420d
2 × 21 × 0 85

= Ø bd2 4 2 1−
4 2
35 7

= 3 706Ø bd2 MN m

=3706Ø bd2 kN m

Mu = 448 kN.m (see the B.M.D. of Solution of Problem 5.14, Step 4)

ØMn ≥Mu

Let ØMn =Mu:

3706Ø bd2 = 448

Assume tension-controlled section, Ø = 0.9.

bd2 =
448

3706 × 0 9
= 0 134m3

The strap width b should be at least equal to the smaller width of the columns. Therefore, use b ≥ 0.4 m or
bmin = 0.40 m. Assume b = 0.40 m. Hence,

d =
0 134
0 4

= 0 52m

According to ACI Section10.7, deep beams have ℓn ≤ 4 h.
Strap clear span ℓn = 2.7 m, and the overall strap depth or height h = d + 0.080 (assumed).

Let ℓn = 4 h. Hence, h=
2 7
4

= 0 675m If a deep strap is not required, the strap height h should be decreased.

Assume hmax = 0.67 m. Hence,

dmax = 0 67−0 08 = 0 59m> d = 0 52m

Try h = 0.67 m, d = 0.59 m and b = 0.40 m. Check the required strap-footing stiffness ratio, (Istrap/Ifooting) ≥ 1.

Istrap
Ifooting

=

bh3

12
strap

bh3 12
footing

=
0 4 ×

0 673

12
2 × 0 453 12

= 0 66 < 1 (Not OK.)

Increase the strap width and check the stiffness ratioagain.
Try b = 0.6 m:

bd3

12 strap

bd3 12 footing

=
0 6 ×

0 673

12
2 × 0 453 12

= 0 99 1 0 Acceptable

Check deflection of the strap beam:
According to ACI Section 9.5.2.1 and ACI Table 9.5(a), for a simple beam constructed with structural normal-
weight concrete and Grade 420 reinforcement, not supporting or attached to partitions or other construction likely

to be damaged by large deflections, theminimum overall depth or h to avoid deflection calculations is
ℓ

16
, where ℓ is

the span length of the beam. In this case, the individual footings are supporting the strap, and it may be appropriate
to let ℓ represent the distance between the footings, centre to centre, which is 4.8 m,
ℓ

16
=
4 8
16

= 0 3m< h= 0 67m . Therefore, deflections should not be a problem.
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Use h = 0.67 m, d = 0.59 m and b = 0.6 m.
Compute the area of reinforcement, As:
Assume tension-controlled section, Ø = 0.9 and fs = fy.

a=
As fy

0 85fc b
=

As × 420
0 85 × 21 × 0 6

= 39 22As m

ØMn = Ø 0 85fc ba d−
a
2

= 0 9 0 85 × 21 × 1000 0 6 × 39 22As 0 59−
39 22As

2

= 223 045As−7 413 395A2
s kN m

Mu = 448 kN m

ØMn ≥Mu

Let ØMn =Mu:
223 045As−7 413 395A2

s = 448

A2
s −0 03As + 6 04 × 10−5 = 0

As =
− −0 03 ± −0 03 2−4 × 1 × 6 04 × 10−5

2 × 1
=
0 03−0 02857

2

= 2 17 × 10−3 m2 = 2170mm2

As,min =
0 25 fc

fy
bwd =

0 25 21
420

× 0 6 × 0 59 = 9 66 × 10−4 m2

= 966mm2

and not less than: 1 4
bw d
fy

=
1 4 × 0 6 × 0 59

420
= 1 18 × 10−3 m2

= 1180mm2

Use As = 2170 mm2

Try six No. 22 bars: As,provided = 6 × 387 = 2322 mm2 (OK.)
Compute a for As = 2322 mm2 and check if fs = fy and whether the section is tension-controlled:

a= 39 22As = 39 22 × 2322 × 10−6 = 0 091m= 91mm

c=
a
β1
; For fc between 17 and 28 MPa, β1 shall be taken as 0.85

c=
91
0 85

= 107 06mm; dt = d = 590mm

εt = 0 003
dt −c
c

= 0 003
590−107 06

107 06
= 0 014 > 0 005

Equation 5 15

Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200000
= 0 0021. Hence, εt > εy and fs = fy. (Continued)
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Therefore the assumptions made are satisfied.
Because εt = 0.014 exceeds 0.004, the strap section satisfies the definition of beam in ACI Section 10.3.5.

It may be a good practice to compute ØMn to check whether the provided As is adequate. This checking guards
against errors in computations. Thus,

ØMn = Ø 0 85fc ba d−
a
2

= 0 9 × 0 85 × 21 × 1000 × 0 6 × 0 091 0 59−
0 091
2

= 478 kN m> Mu = 448 kN m

OK

Provide six No. 22 bars at the top of the strap in one layer.

Check the development of reinforcement:
The check proceeds exactly in the same manner as that for the strap of Problem 5.14; its repetition is
unnecessary.
Check the shear strength, Ø Vc:
Equation (5.19):

ØVc ≥Vu taking reinforcement shear strength, Vs = 0

where Ø = shear strength reduction factor ACI Section 9 3 2 3

= 0 75
Equation (5.20):

Vc = 0 17λ fc bwd

ØVc = 0 75 × 0 17 × 1 21 1000 0 6 0 59 = 206 8 kN

Vu = 117 kN< ØVc OK

However, ACI Section 11.4.6.1 requires that a minimum area of shear reinforcement,Av,min, shall be provided in
all reinforced concrete flexural members (prestressed and non-prestressed) where Vu exceeds
0.5 ØVc.
0.5 ØVc = 0.5 × 206.8 = 103.4 kN < (Vu = 117 kN).

Therefore, Av,min is required.
Try No.10 double-leg stirrups (fyt = 300 MPa) with standard 135 stirrup hooks.

Av = 2 × 71 = 142mm2

Anchorage of stirrups:

ACI Sections 7.1.3 and 12.13.2.1 allow No. 25 and smaller stirrups to be anchored by standard90 or 135 stirrup
hooks. The stirrup legs should be hooked around longitudinal bars.

Provide two No. 13 bars in the lower corners of the strap cross-section to anchor the stirrups properly.
Stirrups spacing, s.

(a) Based on the strap depth d:
According to ACI Section 11.4.5.1, spacing of shear reinforcement perpendicular to axis of member shall not

exceed the smaller of d/2 of the member and 600 mm.
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d
2
=
590
2

= 295mm< 600mm

Try smax = 295 mm
Ø Vn ≥ Vu(ACI Section 11.1.1)

Vn =Vc +Vs

Vs = Reinforcement shear strength

According to ACI Section 11.4.5.3, whereVs exceeds 0 33 fc bwd, the above smax shall be reduced by one-half.

Thus, smax must be cut in half if Vn exceeds Vc + 0 33 fc bwd .

Vc = 0 33 fc bwd

Vc + 0 33 fc bwd = 3Vc = 3 0 17 21 × 0 6 × 0 59 × 1000

= 827 kN

Let Ø Vn ≥Vu:

Vn =
Vu

Ø
=
117
0 75

= 156 kN< 3Vc

Therefore, smax based on the strap depth is 295 mm.
(b) Based on Av,min:

According to ACI Section 11.4.6.3, Av, min = 0 062 fc
bw s
fyt

≥
0 35 bw s

fyt
Let Av,min = Av:

s=
Av × fyt

bw × 0 062 fc
=
142 × 10−6 × 300

0 6 × 0 062 21
= 0 25m= 250mm or

s=
Av × fyt
0 35 × bw

=
2 × 71 × 10−6 × 300

0 35 × 0 6
= 0 203m ≤ 295mm

Maximum spacing based on Av,min governs.
Try smax = 203 mm (conservatively).
Since the factored shear force Vu is constant along the strap span, uniform stirrup spacing may be used. Place

the first and last stirrups at
s
2
from the interior edges of footings, since each stirrup is assumed to reinforce a length

of strap web extending
s
2
on each side of the stirrup, as shown in the scheme below.

Number of stirrups =
2700
203

= 13 3

Use 15 stirrups.
Provide 15 No. 10 U-stirrups @ 180 mm c.c. Place the first and last stirrups at 90 mm from the interior edge of
footings.

Make the necessary sketches.

(Continued)
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Problem 5.16

(A) Design a rectangular combined footing using the same data given in Problem 5.14.
(B) Make a rough quantity estimate of concrete and steel materials required for construction of the rectangular

combined footing designed in (A).
(C) Make a rough quantity estimate of concrete and steel materials required for construction of the strap footing

of Problem 5.14 but using the strap of Problem 5.15.

Solution:
(A) Design of the rectangular combined footing.

Step 1. Compute working and factored column loads and factored resultant.

Column Working loads, kN Factored loads, kN

1 200 + 350 = 550 P1 = 1.2 × 200 + 1.6 × 350 = 800

2 400 + 300 = 700 P2 = 1.2 × 400 + 1.6 × 300 = 960

R = 1760

 
 

Footing 2

90 mm 

Footing 1
 

90 mm
14 spacings @ 180 mm c.c.

ln = 2700 mm

 

space

100 mm

6 No. 22 1

1

 

2 No. 13 15 No. 10 Grade–300

U stirrups with standard

135° – hooks

 

670

mm
 

 

80 mm 

 

 

Strap 670 mm

Footing

15 No. 10

6 No. 22

600 mm

STRAP

SECTION 1 – 1

Column

100 mm

80

80

2 No. 13

135° – Hooks

(standard)

Scheme 5.79
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Step 2. Estimate the footing dimensions and net qfactored.

The factored resultant R is located at

X =
0 4 × P1 + 0 4 + 5 5 P2

R
=
0 4 × 800 + 5 9 960

1760
= 3 4m

Let
L
2
=X

L= 2 × 3 4 = 6 8m

Area of footingAf =
working R
net qa

=
550 + 700

150
= 8 33m2

B=
Af

L
=
8 33
6 8

= 1 225m

With these B and L dimensions the footing appears like a beam supporting columns, which is, usually,
undesirable. Therefore, it may be more adequate if a wider footing is provided.

Let us, arbitrarily, use B = 2.0 m:

Af = 2 × 6 8 = 13 6m2 > 8 33m2

net q=
workingR

Af
=
1250
13 6

= 92 kPa net qa OK

Check eccentricity of unfactored R:

X =
0 4 550 + 5 9 700

1250
=
4350
1250

= 3 48m

eccentricity e=X−
L
2

= 3 48−3 40 = 0 08m Acceptable

Average net qfactored =
factoredR

Af
=
1760
13 6

= 129 41 kPa

Use 2.0 × 6.8 m rectangular combined footing.
Step 3. Obtain data for shear-force and bending-moment diagrams considering the combined footing as a rein-

forced concrete beam.

Property line

0.4 m
5.5 m

R

L/2

P1
P2

X

Centroid

L

Scheme 5.80

(Continued)
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It is preferable to draw the complete load diagram first, and then the shear and moment diagrams, as
shown below. The factored distributed loads on the footing, shear forces and bending moments shall be
computed for the full 2.0-m width of the footing.

q= net qfactored ×B

= 129 41 × 2 = 258 82 kN m

L = 6.8 m

x = 3.09 m

x = 3.09 m

104

644

675
727

233

105

63

–35

696

21

–113

Factored

shear-force

diagram.kN

Factored

Bending-moment

diagram,kN.m

Factored load

diagram 

Inflection point

@ x = 5.75 m

5.5 m0.4 m

5.1 m0.40.2 m 0.4 0.7

Col.1 Col.2

Rectangular combined footing

0.9 m

Critical sec.

beam shear

Critical section for

moment (Mmax)

Mmax = – 1076 kN. m

q = 258.85

kN/m

q 

x

P1 = 800 kN

y

P2 = 960 kN

d

Scheme 5.81
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Step 4. Find footing thickness h.
Determine the required thickness based on both one-way shear and two-way shear analyses.

(a) One-way shear. It is critical at distance d from the interior face of the interior column (Col. No. 2), as
indicated on the shear-force diagram.

Vu = 675−258 82 d kN

Equation (5.19):

ØVc ≥Vu taking reinforcement shear strength,Vs = 0

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Equation (5.20): Vc = 0 17λ fc bwd

Let ØVc =Vu

0 75 × 0 17 × 1 21 1000 2 d = 675−258 82 d

d =
675

1427 38
= 0 473m= 473mm

Try d = 0.5 m = 500 mm

(b) Two-way shear at location of each column. If it is not very clear at which column this shear is most critical,
both locations should be considered. One may detect location of the most critical shear by comparing the
shear-perimeter ratio with the shear-force ratio.

The shear perimeter at Column 1 (the exterior column) has three sides only, whereas at Column 2 (the
interior column) it has four sides, as shown in the scheme below.

Assume using d = 0.5 m, as required by one-way shear.

The shear-perimeter ratio =
2 0 2 + 0 4 + 0 25 + 0 4 + 0 5

4 0 4 + 0 5
= 0 72

The shear-force ratio =
800−129 41 0 2 + 0 4 + 0 25 0 4 + 0 5

960−129 41 0 4 + 0 5 0 4 + 0 5
=

701
855 18

= 0 82

Since the shear-perimeter ratio is smaller than the shear-force ratio, themost critical shear will probably be
at column 1. Furthermore, there will be an increase in applied shear stress at Column 1 due to transfer of
unbalanced moment. However, for completeness, we will check two-way shear at location of each column.

0.2 m

/

Column No.1:

0.4 m × 0.4 m

Column No.2:

0.4 m × 0.4 m

L = 6.8 m

B = 2.0 m

Col.1

d/2
d/2

d/2
d/2

Col.2

Scheme 5.82

(Continued)
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Two-way shear at location of Column 1:
In this case, we should realise that the condition of unbalanced moment transfer exists, and the design

must satisfy the requirements of ACI Sections 11.11.7.1, 11.11.7.2 and 13.5.3. The analysis proceeds in the
same manner as that for the three-sided shear perimeter at location of column 1 of Problem 5.14.

Area of the shear block = (0.2 + 0.4 + 0.25) × (0.4 + 5) = 0.765 m2

Soil reaction on the shear block = 129.41 × 0.765 = 99 kN

CAB is the distance from line A–B to the centroid of the shear perimeter.

=

moment of area of sides

aboutA-B

area of sides
=
2 0 85 × 0 5 0 85 2
2 × 0 85 + 0 9 0 5

= 0 28m

Summation of moments about the centroid of the shear perimeter equals the unbalanced moment,
Mu. Hence,

Mu = 800 × 0 17−99 × 0 14 = 122 14 kN m

γv = 1− γf ACI Section 11 11 7 1

γf =
1

1 + 2 3 b1 b2
ACI Section 13 5 3 2

=
1

1 + 2 3 0 85 0 0 9
= 0 607

γv = 1−0 607 = 0 393

d/2 = 0.25 

d/2 = 0.25 

0.4 m

 0.4

A

BC

D

Column 1

b2 = 0.9 m

b1 = 0.85

 
Critical shear perimeter

Centroidal axis of shear

perimeter (parallel to

the footing edge)

0.2 m 0.25 m

Scheme 5.83

0.43

0.40

d
Centroid of shear

perimeter

Critical shear perimeter

0.17

99 kN

Free-body diagram of

the footing-column

connection

0.14 m

800 kN

CAB = 0.28 m

Scheme 5.84
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The shear stresses due to the direct shear and the shear due to moment transfer will add at points D and C,
giving the largest shear stresses on the critical shear perimeter. Hence,

vu DC =
Vu

bod
+
γvMuCDC

Jc
ACI Section R11 11 7 2

Jc = Jz = Property of the shear perimeter analogous to polar moment of inertia

Jc = 2
b1d3

12
+ 2

db31
12

+ 2 b1d
b1
2
−CAB

2

+ b2d CAB
2

= 0 0177 + 0 0512 + 0 0179 + 0 0353 = 0 122m4

Vu = 800−99 = 701 kN

CDC = b1−CAB = 0 85−0 28 = 0 57m

vu DC =
701

2 × 0 85 + 0 9 0 5
+
0 393 × 122 14 × 0 57

0 122

= 539 23 + 224 27

= 763 5 kN m2

Ø vc ≥ vu DC

Ø vc =
ØVc

bod

Shear strength of concrete Vc shall be the smallest of (i), (ii) and (iii):

(i) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1

1 fc bod = 0 51 fc bod

Equation 5 22

(ii) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
30 × 0 5

2 0 85 + 0 9
+ 2 fc bod = 0 64 fc bod

Equation 5 23

(iii) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use Vc = 0 33 fc bod

(Continued)
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ØVc = 0 75 0 33 21 1000 bod

= 1134 2 bod kN

Ø vc =
1134 2 bod

bod
= 1134 2 kN m2 > vu DC

Therefore, one-way shear controls.
Two-way shear at location of Column 2:
The shear perimeter has four sides, as shown.
It is clear that shear strength of concrete Vc = 0 33 fc bod controls. Therefore,

ØVc = 0 75 0 33 21 1000 4 0 4 + 0 5 0 5 = 2041 kN

Vu = P2 –soil reaction on the shear block
Vu = 960 –soil reaction on the shear block (kN)

Vu < ØVc

Therefore, one-way shear controls.
Assume using No. 25 bars, with 75 mm minimum concrete cover (ACI Section 7.7.1). Hence, the overall

footing thickness is

h= 500 + 75 +
1
2
bar diameter = 575 +

25 4
2

= 588mm

Use: d = 0.5 m = 500 mm; h = 600 mm.
The depth d will be taken to the centre of the steel bars in long direction.

Step 5. Design the flexural reinforcement in the long direction.
(a) Midspan negative reinforcement at top of the footing.

Design negative factored moment = 1076 kN. m
Equation (5.9):

ØMn ≥Mu

Mu =
1076
B

=
1076
2

= 538 kN m m

Assume tension-controlled section, Ø = 0.9, and fs = fy.

Equation (5.10): a=
Asfy

0 85fc b

=
As × 420

0 85 × 21 × 1
= 23 53As

Equation (5.11): ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 5−
23 53 As

2

= 189 000As−4 447 170 As
2

Shear

perimeter

Column 2

d/2

d/2

Scheme 5.85
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Let ØMn =Mu:
189 000As−4 447 170As

2 = 538

As
2−42 5 × 10−3As + 1 21 × 10−4 = 0

As =
− −42 5 × 10−3 ± −42 5 × 10−3 2− 4 1 1 21 × 10−4

2 × 1
=
0 0425−0 0364

2

= 3 05 × 10−3 m2 m= 3050mm2 m

ACI Section 10.5.1:

As,min =
0 25 fc

fy
bwd =

0 25 21
420

× 1 × 0 5 = 1 364 × 10−3 m2 m

= 1364mm2 m

and not less than 1.4
bw d
fy

=
1 4 × 1 × 0 5

420
= 1 667 × 10−3

m2

m
= 1667mm2 m

Therefore, use As = 3050 mm2/m

TotalAs = 3050 ×B= 3050 × 2 = 6100mm2

Try 12 No. 25 bars. As,provided = 12 × 510 = 6120 mm2 (OK.)

Compute a for As =
6120
2

= 3060mm2 m, and check if fs = fy and

whether the section is tension-controlled:

a= 23 53As = 23 53 × 3060 × 10−6 = 0 072m= 72mm

c=
a
β1
. For fc between 17 and 28 MPa, β1 shall be taken as 0.85. For fc above 28 MPa, β1 shall be reduced

linearly at a rate of 0.05 for each 7 MPa of strength in excess of 28 MPa, but β1 shall not be taken less than 0.65
(ACI Section 10.2.7.3).

c=
72
0 85

= 84 71mm

dt = d = 500mm

εt = 0 003
dt −c
c

= 0 003
500−84 71

84 71
= 0 015 > 0 005

Equation 5 15

Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections 10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200 000
= 0 0021. Hence, εt > εy and fs = fy

Therefore the assumptions made are satisfied.
In case the required flexural reinforcement exceeds the minimum flexural reinforcement, it shall be

adequate to use the same maximum spacing of reinforcement for slabs which is two times the slab thickness
or 450 mm, whichever is smaller, as specified by ACI Section 13.3.2.

(Continued)
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Use centre-to-centre bar spacing = 165 mm. Check the 75 mmminimum concrete cover at the large end of
the footing:

Concrete cover =
2000− 11 × 165 + 25 4

2
= 79 8mm> 75mm OK

Try 12 No. 25 bars@ 165 mm c.c. at top, across the footing width.

Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 25, the clear spacing of the bars exceeds 2db,
and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is located where the maximum factored negative moment exists) shall be determined from
the following equation, but not less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

Where the factors ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1).
The factor ψ t = 1.3 because the reinforcement is placed such that more than 300 mm of fresh concrete exists

below the top bars (ACI Section 12.2.4).

ld =
420 × 1 3 × 1

1 7 × 1 × 21

25 4
1000

= 1 78m= 1780mm> 300mm

Therefore, the required ld = 1780 mm.
The bar extension past the critical section (i.e. the available length) is

3090mm−75mmcover = 3015mm> 1780mm OK

According to MacGregor and Wight (2005), since the loading, the supports and the shape of the moment
diagram are all inverted from those found in a normally loaded beam, the necessary check of the ACI
Section 12.11.3 requirement which concerns positive moment reinforcement shall be made for the negative
moment reinforcement.

It may be appropriate to extend all the bars into the column regions. At the point of inflection, 0.15 m from
the centre of the interior column,

Vu = 727−0 15 × 258 82 = 688 2 kN

ACI Section 12.11.3 requires ld ≤
Mn

Vu
+ la

Mn = nominal flexural strength of the cross section =Asfy d−
a
2

a=
Asfy

0 85fc b
=

6120 106 420
0 85 × 21 × 2

= 0 072

Mn = 6120 106 420 × 1000 0 5−
0 072
2

= 1193 kN m

Let ld =
Mn

Vu
+ la:
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la,min = ld −
Mn

Vu
= 1 78−

1193
688 2

= 1 780−1 734 = 0 046m

la at a support shall be the embedment length beyond centre of support.
Accordingly, extend the bars to the exterior face (right face) of the interior column. This will give
la = 0.20 m la,min.

However, in order to satisfy the requirements of ACI Sections 12.12.3 and 12.10.3, the negative moment
reinforcement shall have an embedment length beyond the point of inflection not less than d, 12db or ℓn/
16, whichever is greater. In this case, d controls. Therefore, the top bars should be extended not less than
0.5 m beyond the point of inflection at x = 5.75 m. However, since the remaining distance to the footing
edge is only 0.55 m, it may be more practical to extend the top bars to the right edge of the footing (less
75 mm minimum concrete cover).

At the region of the exterior column a similar condition prevails. However, the available space beyond
the column centre is only 0.4 m less concrete cover, which is smaller than the minimum required embed-
ment length d or 0.5 m. Therefore, the top bars will all have to be hooked (90-degree standard hook) at the
footing left edge. This is also necessary to anchor the bars transferring the unbalanced moment from the
column to the footing.

Provide 12 No. 25 bars @ 165 mm c.c. at top, full length of the footing (less concrete cover at the ends). All
the bars should be hooked (90-degree standard hook) at the footing left edge.

(b) Positive reinforcement at bottom of the footing.
Design positive factored moment = 105 kN.m (more conservative than using 63 kN.m). However, the

moments are so small that As,min controls and it makes no difference which moment is used.

Mu =
105
B

=
105
2

= 53 kN m m

Assume tension-controlled section Ø = 0.9 and fs = fy.

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53As

Equation (5.11): ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 5−
23 53As

2

= 189 000As−4 447 170As
2 kN m m

ØMn ≥Mu. Let ØMn =Mu

189 000As−4 447 170As
2 = 53

As
2−42 5 × 10−3As + 1 19 × 10−5 = 0

As =
− −42 5 × 10−3 ± −42 5 × 10−3 2− 4 1 1 19 × 10−5

2 × 1
=
0 0425−0 0419

2

= 6 ×
10−4 m2

m
= 600mm2 m, required by analysis

(Continued)
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ACI Section 10.5.1:

As,min =
0 25 fc

fy
bwd =

0 25 21
420

× 1 × 0 5 = 1 364 × 10−3 m2 m

= 1364mm2 m

and not less than:

1 4
bw d
fy

=
1 4 × 1 × 0 5

420
= 1 667 × 10−3 m2 m= 1667mm2 m

Therefore, As,min controls. However, ACI Section 10.5.3 states that the requirements of ACI Section 10.5.1
need not be applied if, at every section, As provided is at least one-third greater than that required by analysis.

Accordingly, total As,min = (1.33 × 600)(B) = 800 × 2 = 1600 mm2.
Try 6 No. 19 bars: As,provided = 6 × 284 = 1704 mm2 (OK.)
ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing

thickness, or 450 mm, whichever is smaller.
Use centre to centre bar spacing = 365 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
2000− 5 × 365 + 19 1

2
= 78mm> 75mm OK

Try six No. 19 bars @ 364 mm c.c. at bottom, across the footing width.

Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 19, the clear spacing of the bars exceeds 2db,

and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is located where the maximum factored positive moment exists) shall be determined from
the following equation, but not less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

Where the factors ψ t ψ e, λ and are 1 (ACI Sections 12.2.4 and 8.6.1).

ld =
420 × 1 × 1

2 1 × 1 × 21

19 1
1000

= 0 83m= 830mm> 300mm

Therefore, the required ld = 830 mm.
The bar extension past the critical section (i.e. the available length) is

900mm−75mmcover = 825mm<830mm NotOK

Therefore, all the bottom bars in long direction have to be hooked (90-degree standard hook) at the footing
right edge.

In order to satisfy the requirements of ACI Sections 12.10.3 and 12.11.3, it is necessary to extend the bottom
bars a minimum distance d past the point of inflection. Therefore, cut off two bottom bars at 1.0 m from the
center of the interior column toward the exterior column. The otherfour bars shall be extended full length of
the footing (less75 mm cover at each end). These four bars will resist the tensile stresses due to the relatively
small positive moment at the exterior column and provide support to the transverse bottom bars.
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Provide six No. 19 bars @ 365 mm c.c. at bottom of the footing in long direction. Cut off 2 bars at 1 0m
from the centre of the interior column. The other four bars shall be extended full length of the footing. All the
bars have to be hooked (90-degree standard hook) at the footing right edge.

Step 6. Design the transverse reinforcement at bottom of the footing.

Transverse reinforcement for zone I:

net qfactored =
P1
area

=
800

0 98 × 2 0
= 408 2 kPa

Mu =
net qfactored × l21

2
=
408 2 × 0 82

2
= 131 kN m m

d = 0 5m−one bar diameter = 0 5−0 0191 = 0 4809m

Use d = 0.48 m.
Assume tension-controlled section, Ø = 0.9, and fs = fy.

a=
As fy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53 As

Equation (5.11): ØMn = Ø As fy d−
a
2

= 0 9 As × 420 × 1000 0 48−
23 53As

2

= 181 440As−4 447 170 As
2

Let ØMn =Mu:
181 440As−4 447 170As

2 = 131

As
2−0 041As + 2 95 × 10

−5 = 0

As =
− −0 041 ± −0 041 2− 4 1 2 95 × 10−5

2 × 1
=
0 0410−0 0395

2

= 1 5 × 10−3 m2 m= 1500mm2 m

1.15 m

Col.1

c = 0.2 m

c ≤ 0.75 d.

l1  =  l2  = 0.8 m

I II

0.32 m4.35 m0.98 m

Zone

Zone I: 0.98 m × 2.00 m

Zone II: 1.15 m × 2.00 m

Zone III(a): 4.35 m × 2.00 m (between zones I & II)

Zone III(b): 0.32 m × 2.00 m (the portion of the cantilever part)

III(a)

Column No. 1:

0.4 m × 0.4 m

Column No. 2:

0.4 m × 0.4 m

c

Col. 2

l2 w2w1

w2 +

1.5 d

w1 +

0.75d

L = 6.80 m

B = 2.0 m

III(b)

Scheme 5.86

(Continued)
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As,min =
0 25 fc

fy
bwd =

0 25 21
420

× 1 × 0 48 = 1 31 × 10−3 m2 m

= 1310mm2 m

and not less than: 1 4
bw d
fy

=
1 4 × 1 × 0 48

420

= 1 6 × 10−3
m2

m
= 1600mm2 m

As,min > As required by analysis. Therefore, As,min controls.
Use As = As,min = 1600 mm2/m.

Transverse reinforcement for zone II:

net qfactored =
P2
area

=
960

1 15 × 2
= 417 4 kPa

Mu =
net qfactored × l22

2
=
417 4 × 0 82

2
= 134 kN m m

ØMn = 181 440As−4 447 170As
2 as before

Let ØMn =Mu:

181 440As−4 447 170As
2 = 134

As
2−0 041As + 3 01 × 10

−5 = 0

As =
− −0 041 ± −0 041 2− 4 1 3 01 × 10−5

2 × 1
=
0 0410−0 0395

2

= 1 5 × 10−3 m2 m= 1500mm2 m <As,min

Therefore, As,min controls. Use As = As,min = 1600 mm2/m.
Transverse reinforcement for zone III:
Use As = As,min = 1600 mm2/m.
Thus, in this case, the required amount of reinforcement for each zone is 1600 mm2 per meter length of the
footing.

TotalAs = 1600 × L = 1600 × 6 8 = 10 880mm2

Try 39 No. 19 bars. As,provided = 39 × 284 = 11 076 mm2 (OK.)
ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing thick-
ness or 450 mm, whichever is smaller.

Use centre to centre bar spacing = 174 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
6800− 38 × 174 + 19 1

2
= 84mm> 75mm OK

Thus, theoretically, the bars will be uniformly distributed with 174 mm centretocentre spacing. However, it
may be more realistic if the amount of steel in the effective zones I and II are somewhat increased and that in
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zone III decreased. We shall do this by arbitrarily decreasing and increasing the bar spacing in the three zones
but without decreasing the required total steel amount, as follows:

Zone I: seven No.19 bars; six spacings @ 147 mm c.c.
Zones II+ Zone III(b): 11 No.19 bars;10 spacings @ 137 mm c.c.
Zone III(a): 21 No.19 bars;20 spacings @ 216 mm c.c.

Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 19, the clear spacing of the bars exceeds 2db, and
the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is located where the maximum factored positive moment exists) shall be determined from
the following equation, but not less than 300 mm.

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1)

ld =
420 × 1 × 1

2 1 × 1 × 21

19 1
1000

= 0 83m= 830mm> 300mm

Therefore, the required ld = 830 mm.
The bar extension past the critical section (i.e. the available length) is

800mm−75mmcover = 725mm< 830mm NotOK

Therefore, all the bottom transverse bars have to be hooked at both ends.
The bottom transverse bars will all have to be hooked (90-degree standard hook) at both ends.
Because two-way shear cracks would extend roughly the entire width of the footing, the hooked transverse bars

provide adequate anchorage outside the inclined cracks (MacGregor and Wight, 2005).
Step7. Check columns bearing on the footing (ACI Section 10.14), and design the necessary dowels.

The design proceeds in the same manner as that of Solution of Problem 5.3, Step 5.
Step8. Find the embedment length of dowels in both the footing and the columns.

The design proceeds in the same manner as that ofSolution of Problem 5.3, Step 6.
Step 9. Develop the final design sketches.

(B) and (C) Rough quantity estimate of concrete and steel materials.

Table 5.7 Quantity estimates of concrete and steel materials.

Material Rectangular combined footing

Strap footing

Footing 1 and
Footing 2 Strap Total

Concrete, m3

(fc = 21 MPa)
0.6 × 2.0 × 6.8 = 8.16 0.45(2 × 2.2 + 2 × 2) =

3.78
0.67 × 0.6 × 2.7 + 0.32 ×
0.6 × 3.6 = 1.7

5.48

Steel, kg (fy =
420 MPa)

(12)(6.8 – 0.15 + 12 × 0.0254)(4) = 339
(2)(1.9 – 0.075 + 12 × 0.0191)(2.24) = 9
(4)(6.8 – 0.15 + 12 × 0.0191)(2.24) = 62
(39)(2 – 0.15 + 24 × 0.0191)(2.24) = 202

Total (339 + 9 + 62 + 202) = 612

(3 × 9)(2.0 – 0.15)
(1.55) = 77

(9)(2.2 – 0.15)(1.55) =
29

Total (77 + 29) = 106

(6)(6.2 – 0.15)(3.04) = 110

(20)(0.56)(2 × 0.57 + 1 ×
0.5 + 24 × 0.01) = 21

(2)(6.2 – 0.15)(0.994) = 12

Total (110 + 21 + 12) = 143

249
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Problem 5.17

Design the reinforced concrete cantilever retaining wall in the scheme shown below to provide lateral support for a
recreational park. In the required length of the wall, the largest wall height above the ground level (in front the
wall) is 2 m. Factors such as soil bearing capacity, depth of frost penetration and seasonal volume change require
the base (footing) be placed at a foundation depth D = 1.2 m, as shown in the scheme. It is required the wall shall
have a front batter not less than 1H : 48V and thickness at top = 0.3 m. Other given data are:
Surcharge: qs = 10 kPa.

Backfill material: compacted granular backfill in the limited zone over the heel, which will be compacted to
γ = 17 kN/m3 and an estimated Ø = 35 .

Supporting soil: clay of γ = 18 kN/m3, qu = 200 kPa, cu = 100 kPa and Ø = 0 .
Wall stability : SF against overturning should not be less than 2.0.

SF against sliding should not be less than 1.5.
Concrete: fc = 21 MPa
Reinforcing steel: fy = 420MPa

Solution:
Step 1. Select tentative values for the base dimensions, stem thickness and toe distance. For this purpose, it is common

to use the following approximate relationships as a guide (based on experience accumulated with stable walls):
Base widthB = (0.4 to 0.7)H, whereH is the total height of the retaining wall including the footing. In this case,

H = 2.0 + 1.2 = 3.2m

Base thickness h=
1
12

to
1
10

H

Stem bottom thickness b h
Toe distance l B/3
Assume the following dimensions:

B = 2 2m

h = 0 45m

b = 0 4m

l = 0 6m

g = 1 2m

D = 1.2 m

2.0 m

Excavation line

(approximately)

q1 = 10 kPa

Guard railing

Compacted

granular

backfill

γ = 17 
kN

m3

= 35°

Clay: γ = 18 kN/m3 

cu = 2
=

200

2
= 100 kPa

ϕ = 0°

Stem

Base

Front face

batter
≥ (1H: 48V)

qu

Scheme 5.87

qs = 10 kPa 

 

0.3 m 

f

b
h

g

e

l
H

B

Scheme 5.88
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Check the front batter:

Slope of the front face =
b−0 3
H−h

=
0 4−0 3
3 20−0 45

=
0 10
2 75

=
1

27 5
>

1
48

OK

Step 2. Using earth pressure principles, obtain the profiles of the active lateral pressure on both the stem and
vertical line ef at the heel (the “virtual” back, shown in the scheme of Step 1).

Lateral earth pressure due to the vertical surcharge pressure qs and the vertical soil pressure γz, at any
depth z, is

qhz = qs + γz Ka

where Ka = Rankine active earth pressure coefficient.
The coefficient Ka depends on the backfill slope angle β and friction angle Ø can be obtained from tables or may

be calculated from the equation:

Ka = cosβ
cosβ− cos2β−cos2 Ø

cosβ + cos2β−cos2 Ø

For β = 0o andØ = 35o Ka = 1
1 − 1 −cos235

1 + 1 −cos235
=
1−sin35
1 + sin35

= 0 271

However, there will be a relatively large lateral pressure induced by compaction of the backfill, which may be
accounted for by using a larger value for Ka. Also, the probability that a Rankine active wedge will not form
in the limited backfill zone should be realised. Moreover, in this case, the guard rail would occasionally have a
lateral load from persons leaning against it, which increases lateral pressure on the wall. In order to account
for all these effects, it may be advisable (Bowles, 2001) to use Ka equals to the at rest lateral earth pressure coef-
ficient Ko. This gives

Ka =Ko = 1−sinØ = 1−sin35 = 0 426

qhz = 10 + 17z 0 426

At top:
qhz = 10 + 17 × 0 0 0 426

= 4 26 kPa

At bottom of stem:
qhz = 10 + 17 3 20−0 45 0 426

= 24 18 kPa

At bottom of base: qhz = [(10) + 17(3.20)](0.426) = 27.43 kPa

(Continued)
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Total lateral force per metre length of wall is Pah = area of pressure diagram

Pah, stem =
4 26 + 24 18

2
× 2 75 = 39 11 kN m

y stem =
L
3

2a+ b
a+ b

=
2 75
3

2 × 4 26 + 24 18
4 26 + 24 18

= 1 05 m

Pah, ef =
4 26 + 27 43

2
× 3 2 = 50 7 kN m

y ef =
L
3

2a+ b
a + b

=
3 2
3

2 × 4 26 + 27 43
4 26 + 27 43

= 1 21m

Step 3. Check wall stability for overturning and sliding and that the resultant R is in the middle third of base
width B.

Before these computations are started, the designer must make a decision on whether to use passive pressure
from the soil in front of the toe and whether the adjacent soil directly in front of the stem (covering the base top
at the toe) will be available for resisting overturning moments and sliding. Most times toe soil is neglected for a
conservative solution, espacially, when the foundation depth D is small. In this case, assume we neglect the soil
covering the base in front of the stem, and neglect the passive resistance unless necessary.

(a) Compute the vertical resultant force R and its moment Mr about the base toe at point A.
For these computations refer to the scheme of Step 1 It is convenient to use Table 5.8, where the load sources

are labelled, weights computed, moment arms given and so on. Include the surcharge qs in the backfill soil
weight Ws, take concrete unit weight γc = 24 kN/m3 and ignore the weight of the guard rail since its mass
per metre length is negligible. Ignore the heel friction Pav ef in order to accomplishmore conservative stability

analyses.

4.26 kPa

27.43 kPa 
24.18 kPa 

4.26 kPa

Pah,(stem) = 39.11 kN/m
Pah,(ef ) = 50.70 kN/m

  

3.2 m

f

e

  

y (stem) –

y (ef) 
–

2.75 m

Scheme 5.89

Table 5.8 Load sources, loads, moment arms and moments for wall stability, Step 3.

Load source Load (weight), kN/m Arm, m Moment (MA), kN.m/m

Backfill soil + surcharge 1.2(10 + 17 × 2.75) = 68.1 1.6 108.96

Stem
24

0 3 + 0 4
2

× 2 75 = 23 1
0.828 19.13

Base slab 24(0.45 × 2.2) = 23.8 1.1 26.18

Pav, ef = 0 β = 0 0.0 — 0.00

Pav, ef = Pah, ef tan 0 8Ø ignored — —

R= 115 0 ΣMA =Mr = 154 27
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(b) Check the overturning stability.

Overturning moment Mo = Pah, ef × y ef

= 50 7 × 1 21 = 61 35 kN m m

Resisting moment (ignoring the resisting moment due to the heel friction Pav, ef , as shown in Table 5.8) =

Mr = 154.27 kN.m/m

Safety factor against overturning SF =
Mr

Mo
=
154 27
61 35

= 2 5 > 2 0 OK

(c) Check that the location of the resultant R is inside the middle third of the base width B.

The net overturning momentMo,net =Mr −Mo = 154 27−61 35

= 92 92 kN m m

x =
Mo,net

R
=
92 92
115

= 0 81 m from the toe

Eccentricity = e=
B
2
−x =

2 2
2

−0 81 = 0 29 m

B
6
=
2 2
6

= 0 37 m> e OK

The resultant R is inside the middle third of the base width B.
(d) Check the sliding stability.

Resistance against sliding is

Fr =R tanδ+ caAf + PP

whereAf = base effective area =B × 1 = B−2e 1

= 2 2−2 × 0 29 = 1 62m2 m

ca = base adhesion 0 6 to 1 0c Assume ca = 0 6cu

= 0 6 100 = 60 kPa

δ= friction angle between base and soil 0 5 to 1 0 Ø

= 0 for Ø = 0

PP = passive resistance

In this case, assume PP is neglected.

Fr = 0 + 60 × 1 62 + 0 = 97 2 kN m

Safety factor against sliding SF =
Fr

Pah, ef
=
97 2
50 7

= 1 9 > 1 5 OK

Step 4. Compute safe bearing capacity of the supporting soil. Assume using Hansen bearing capacity equation for
the Ø = 0 condition.

(Continued)
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Table 4.2 gross qult = 5 14 su 1 + sc + dc− ic−bc−gc + q
Since the toe soil is neglected, the overburden pressure q= 0. Hence, the safe bearing capacity is

gross qsafe = 5 14 su 1 + dc− ic SF

su = cu = 100 kPa

Table 4.6: sc = 0 2B
L = 0, since B

L ≈0 for continuous foundations.
Table 4.7: bc = gc = 0, since η = 0 and β = 0

dc = 0 4k; k=
D
B

for
D
B
≤ 1;

D
B
=
1 2
2 2

= 0 545; hence, dc = 0 218

ic = 0 5−0 5 1−
H
Af ca

. Use ca = 60 kPa; Af = 1 62 m2 as in Step 3 (d).

ic = 0 5−0 5 1−
50 7

1 62 × 60
= 0 154

gross qsafe = 5 14 100 1 + 0 218−0 154 3

= 182 3 kPa

Gross foundation pressure gross q=
R

B × 1
=
115
1 62

= 71 0 kPa gross qsafe OK

Check the maximum gross foundation pressure, gross qmax:

gross qmax =
R
A
+

R× e
B
2

1 B 3 1
12

Check

=
115

1 × 2 2
+

115 × 0 29
2 2
2

1 2 2 3 1 12
= 93 62 kPa < gross qsafe OK

Step 5. Apply the appropriate load factors (ACI Section 9.2) to all the horizontal and vertical forces, compute
eccentricity e of the factored resultant force and calculate the base factored contact pressures.

In this case, the only applicable loads areD (dead loads, or related internal moments and forces) andH (loads
due to weight and pressure of soil, or related internal moments and forces). The applicable load combinations of
the ACI Section 9.2.1 are reduced to:

U = 1 2D+ 1 6 H

where H represents loads due to soil and surcharge (Table 5.9).

Factored overturning momentMo = 1 6 Pah, ef × y ef

= 1 6 × 61 35 = 98 16 kN m m
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Factored net overturning momentMo,net =Mr −Mo = 223 3−98 16

= 125 14 kN m m

x =
Mo,net

R
=
125 14
160 2

= 0 78 m from the toe

Eccentricity e=
B
2
−x =

2 2
2

−0 78 = 0 32 m

B
6
=
2 2
6

= 0 37 m> e OK

Factored qA, max =
R
A
+

M
B
2

1 B 3 1
12

=
160 2
2 2 × 1

+
51 3

2 2
2

1 2 2 3 1
12

= 72 82 + 63 60 = 136 42 kPa

Factored qf , min =
R
A
−

M
B
2

1 B 3 1
12

= 72 82−63 60 = 9 22 kPa

Step 6. Check the assumed footing thickness h using (a) uniform soil pressure distribution as suggested by Bowles
(2001), (b) linear non-uniform soil pressure distribution.

(a) Using uniform soil pressure distribution. Uniform soil pressure is

q=
R

B × 1
=

160 2
2 2−2 × 0 32 1

=
160 2
1 56

= 103 0 kPa

Table 5.9 Factored loads and moments required for calculating factored contact pressures, Step 5.

Load source Factored load (weight), kN/m Arm, m Factored moment (MA), Kn.m/m

Backfill soil + surcharge 1.6[1.2(10 + 17 × 2.75)] = 109.0 1.6 174.4

Stem
1 2 24

0 3 + 0 4
2

× 2 75 = 27 7
0.83 23.0

Base slab 1.2[24(0.45 × 2.2)] = 23.5 1.1 25.9

Pav, ef = 0 β = 0 0.0 — 0.0

Pav, ef = 1 6 Pah, ef tan 0 8Ø ignored — —

R = 160.2 kN/m ΣMA =Mr = 223.3 kN.m/m

M = 51.3 kN. m/m 

0.78 m

R = 160.2 kN/m

A Af f

B = 2.2 m

e = 0.32 m

R = 160.2 kN/m

B = 2.2 m

Scheme 5.90

(Continued)
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One-way shear is only significant in a continuous-strip footing supporting a wall. To consider the most
severe condition we use, conservatively, the critical sections located at the faces of the wall as shown.

Shear at the stem front face:
Neglect backfill soil over the toe as being conservative.

qnet = q−qc = 103−13 = 90 kPa

Vu = qnet ×A= 90 1 × 0 6 = 54 kN

Shear at the stem back face:

Vu = 91 + 13 1 × 0 64 + 91 + 13−103 1 × 0 56 = 67 12 kN

Use Vu = 67.12 kN/m
Equation (5.19): ØVc ≥ Vu (taking reinforcement shear strength, Vs = 0)

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Equation (5.20): Vc = 0 17λ fc bwd

Estimate d = h−concrete cover−0 5 bar diameter assume No 25

= 0 450−0 075−0 013 = 0 362 m

ØVc = 0 75 × 0 17 × 1 21 1000 1 0 362

= 212 kN m Vu OK

(b) Using linear non-uniform soil pressure distribution.
Shear at the stem front face:

Vu =
qmax + q1

2
0 6 1 −qc 0 6 1

=
136 42 + 101 73

2
0 6 1 − 13 0 6 1 = 64 kN m

ØVc = 212 kN m Vu OK

0.6 m

= 91 kPa

Footing

Critical section (back face)

Critical section (front face)

0.56 m

B = 2.2 m

q = 103 kPa

2e

h = 0.45 m

0.64 m0.4 m

Stem

q(s+soil) = 1.6 (10 + 17 × 2.75)

qc = 1.2(24 × 0.45) = 13 kPa

Scheme 5.91
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Shear at the stem back face:

q2 = 9 22 +
136 42−9 22

2 2
1 2 = 78 6 kPa

Vu = 91 + 13 1 2 1 −
78 6 + 9 22

2
1 2 1 = 72 11 kN m

ØVc = 212 kN m Vu OK

Use footing thickness h = 0.45 m.
Step 7. Find the flexural reinforcement needed for the toe and heel.

(a) Toe flexural reinforcement. The shear computations of Step 6 indicate that the ultimate momentMu based on
uniform soil pressure (Bowles method) will be smaller than that based on non-uniform pressure. The latter
method, furnish more conservative design but not as economical as the Bowles method. Since the provided
base thickness h is more than adequate, it may be appropriate to use the more economical or Bowles method.

The critical section for bending is at the front face of the stem where the maximum factored positive
moment is

Mu =
qnet l 2

2
=
90 × 0 62

2
= 16 2 kN m m

Equation (5.9): ØMn ≥Mu

Assume tension-controlled section, Ø = 0.9, and fs = fy.

Equation (5.11): ØMn = Ø Asfy d−
a
2

q1 = 9.22 +
132.42–9.22

2.2
(1.6 )

= 101.73 kPa  

Stem

0.6 m

B = 2.2m

1.6 m

q(s+soil) = 1.6 (10 + 17 × 2.75) = 91 kPa

Footing

qmax
= 136.4

    kPa

qmin
 = 9.22 kPa

qc = 1.2(24 × 0.45) = 13 kPa

q2

h = 0.45 m

Scheme 5.92
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Equation (5.10): a=
Asfy

0 85fc b

=
As × 420

0 85 × 21 × 1
= 23 53 As

ØMn = 0 9 As × 420 × 1000 0 362−
23 53 As

2

= 136 836As−4 447 170 As
2 kN m m

Let ØMn =Mu:

136 836As−4 447 170 As
2 = 16 2

As
2−0 031As + 3 64 × 10

−6 = 0

As =
− −0 031 ± −0 031 2− 4 1 3 64 × 10−6

2 × 1
=
0 031−0 03076

2
= 1 2 × 10−4m2 m= 120mm2 m, required by analysis

As,min = 0 0018 bh ACI Sections 10 5 4 and 7 12 2 1

= 0 0018 × 1 × 0 45 = 8 1 × 10−4 m2 = 810mm2 m

As,min > As. Therefore, use As = As,min = 810 mm2/m
The assumptions made are satisfied, since As,min controls.

Try four No. 16 bars. As,provided = 4 × 199 = 796 mm2/m. It is less than As,min but much greater than 1.33 As

allowed by ACI Section 10.5.3. Because the difference is too small and the base thickness h is somewhat overde-
signed, the provided As is considered adequate.

ACI Sections 10.5.4 and 7.6.5 requires maximum spacing shall not exceed three times the slab or footing thick-
ness, or 450 mm, whichever is smaller.

Try No. 16 bars @ 250 mm c.c.

Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is No. 16, the clear spacing of the bars exceeds 2db, and
the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical section (which is
located where the maximum factored positive moment exists) shall be determined from the following equation,
but not less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1).

ld =
420 × 1 × 1

2 1 × 1 × 21

15 9
1000

= 0 694m= 694mm> 300 mm

Therefore, the required ld = 694 mm.
The bar extension past the critical section (i.e. the available length) is

600mm−75mmcover = 525mm< ld Not OK
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Therefore, the bottom bars in the transverse direction will all have to be hooked (90-degree standard hook) at
the toe end.

Check ldh (ACI Section 12.5.2):

ldh =
0 24ψ efy
λ fc

db

where the factors ψ e and λ shall be taken as 1.

ldh =
0 24 × 1 × 420

1 × 21

15 9
1000

= 0 35m= 350mm>8db > 150 mm

Therefore, the required ldh = 350 mm.
The available length = 525 mm > (ldh = 350 mm)
These bars may be cut at a minimum distance = 0.6 + 0.694 = 1.3 m from the toe end. However, since full-

width bar length is only 2.05 m, it may not worth the effort to cut the bars. In this case, assume we prefer to cut
some of the bars as indicated below.

Provide No. 16 bars @ 250 mm c.c. placed at bottom of the footing in the transverse direction. All the bars
have to be hooked (90-degree standard hook) at the toe end. Two out of each four bars shall be extended full
width of the footing and the other two bars cut at 1.3 m from the toe end.

(b) Heel flexural reinforcement. The critical section for bending is at the back face of the stem.
The maximum factored negative moment is

Mu =
103 × 0 562

2
−

91 + 13 1 2 2

2
= −59 kN m m

ØMn ≥Mu

Assume tension-controlled section, Ø = 0.9, and fs = fy.

ØMn = Ø Asfy d−
a
2

a=
Asfy

0 85fc b
=

As × 420
0 85 × 21 × 1

= 23 53 As Equation 5 11

ØMn = 0 9 As × 420 × 1000 0 362−
23 53As

2

= 136 836As−4447170 As
2 kN m m

Let ØMn =Mu:

136 836As−4447170As
2 = 59

As
2−0 031As + 1 33 × 10

−5 = 0

As =
− −0 031 ± −0 031 2− 4 1 1 33 × 10−5

2 × 1
=
0 031−0 0301

2
= 4 5 × 10−4 = 450mm2 m, required by analysis

As,min = 0 0018 bh ACI Sections 10 5 4 and 7 12 2 1

= 0 0018 × 1 × 0 45 = 8 1 × 10−4 m2 = 810 mm2 m
(Continued)
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As,min > As. Therefore, use As = As,min = 810 mm2/m
The assumptions made are satisfied, since As,min controls.

Try four No. 16 bars. As,provided = 4 × 199 = 796 mm2/m. It is considered adequate for the same reasons just
mentioned in (a).

ACI Sections 10.5.4 and 7.6.5 requires maximum spacing shall not exceed three times the slab or footing thick-
ness, or 450 mm, whichever is smaller.

Try No. 16 bars @ 250 mm c.c.

Check the development of reinforcement:
In this case, the bars are in tension, the provided bar size is smaller than No. 19, the clear spacing of the bars
exceeds 2db, and the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical
section (which is located where the maximum factored positive moment exists) shall be determined from the fol-
lowing equation, but not less than 300 mm:

ld =
fy ψ t ψ e

2 1 λ fc
db ACI Sections 12 2 1, 12 2 2 and 12 2 4

where the factors ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1).
The factor ψ t = 1.3 because the reinforcement is placed such that more than 300 mm of fresh concrete exists

below the top bars (ACI Section 12.2.4).

ld =
420 × 1 3 × 1

2 1 × 1 × 21

15 9
1000

= 0 902m= 902mm> 300 mm

Therefore, the required ld = 902 mm.
The bar extension past the critical section (i.e. the available length) is

1000mm−75mmcover = 925mm> 902mm OK

Provide No. 16 bars @ 250 mm c.c. placed at top of the footing, full width, in the transverse direction.
Step 8. Provide longitudinal shrinkage and temperature reinforcement.

ACI Chapter 15 (Footings) does not give any provision or requirement concerning shrinkage and tempera-
ture reinforcement. The provisions of ACI Section 7.12 are intended for structural slabs only; they are not
intended for slabs on ground (ACI R7.12.1). Some authorities (e.g. Bowles, 1996) do not use this reinforcement
in one-way footings, whereas others (MacGregor and Wight) use it to satisfy ACI Section 7.12.2.1. In this case,
assume we also prefer to provide minimum shrinkage and temperature reinforcement perpendicular to the toe
and heel transverse reinforcement.

Select longitudınal steel based on the minimum shrinkage and temperature reinforcement (ACI Sectıons
7.12.1 and 7.12.2.1).

As = 0 0018 bh= 0 0018 × 2 2 × 0 45 = 1 782 × 10−3 m2

= 1782 mm2

Try 14 No. 13 bars: As,provided = 14 × 129 = 1806 mm2 > As (OK.)
Longitudinal steel will, in general, be more effective in the top of the footing than in the bottom; it could

control cracks when the foundation settles.
According to ACI Section 7.12.2.2, shrinkage and temperature reinforcement shall be spaced not farther

apart than five times the slab thickness, nor farther apart than 450 mm.
Use eight No. 13 bars at top and six No. 13 bars at bottom, which will also provide support for the transverse

flexural reinforcement.
Provide eight No. 13 @ 288 mm c.c. at top of the footing in long direction, as support for the transverse bars.
Provide six No. 13 @ 405 mm c.c. at bottom of the footing in long direction.
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Step 9. Check thickness b at the stem bottom.
Refer to the profiles of the active lateral pressure of Step 2 and the scheme shown below.

Unfactored shear force at the stem bottom is

V = Pah, stem = 39 11 kN m

Vu = 1 6 × 39 11 = 63 kN m

Equation (5.19): ØVc ≥ Vu (taking reinforcement shear strength, Vs = 0)

where Ø = shear strength reduction factor ACI Section 9 3 2 3

= 0 75

Equation (5.20): Vc = 0 17λ fc bwd

bw = 1m

d = 0 315m allowing 85mm for concrete cover +
1
2

bar diameter

ØVc = 0 75 × 0 17 × 1 21 1000 1 0 315

= 184 kN m> Vu = 63 kN m OK

Check shear friction (ACI Section 11.6) since the stem is built after the base has been poured and partially
cured.

According to ACI Section 11.6.5, the nominal shear strength Vn shall not exceed the smaller of 0 2 fc Ac or
5.5 Ac, where Ac is area of concrete section resisting shear transfer.

Vn = Vc taking reinforcement shear strength, Vs = 0

= 0 2 fc Ac = 0 2 × 21 × 0 4 × 1 × 1000 = 1680 kN m

0.3 m

24.18 kPa

4.26 kPa

2.75 m

bb = 0.4  m

Unfactored V = Pah,(stem)  = 39.11 kN/m

Unfactored M = 39.11 × 1.05  = 41.07 kN.m/m

y = 1.05  m–

Pah,(stem) = 39.11 kN/m

Scheme 5.93

(Continued)
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or,

Vn = Vc = 5 5Ac = 5 5 × 0 4 × 1 × 1000 = 2200 kN m> 1680 kN m

Use Vc = 1680 kN/m

ØVc = 0 75 × 1680 = 1260 kN m Vu = 63 kN m

From this computation it would appear that shear friction seldom controls except possibly for a very high wall
with a thin stem (Bowles, 1996).

Step 10.Determine bendingmoment at the stem bottom andmoments at other necessary points of the stem height.
Since the stem height is only 2.75 m, it may be necessary to compute moments at the stem bottom and at

about the mid-point of its height, as shown below.

At 1.3 m height:

qhz = 10 + 17 2 75−1 3 0 426 = 14 76 kPa

Pah =
4 26 + 14 76

2
× 1 45 = 13 79 kN m

y =
L
3

2a+ b
a+ b

=
1 45
3

2 × 4 26 + 14 76
4 26 + 14 76

= 0 59m

Bending moment at the level of the stem bottom:

Mu,max = 1 6 × 39 11 × 1 05 = 65 7 kN m m

Bending moment at the 1.3 m height level:

Mu = 1 6 × 13 79 × 0 59 = 13 02 kN m m

Step 11. Determine the stem vertical and horizontal reinforcement.
ACI Section 14.1.2 states that cantilever retaining walls are designed according to flexural design provisions

of Chapter 10 with minimum horizontal reinforcement according to 14.3.3.
ACI Section 15.8.2.2 states that for cast-in-place walls, area of reinforcement across interface shall be not less

than minimum vertical reinforcement given in 14.3.2.
Vertical reinforcement at the stem bottom level:

Equation (5.9): ØMn ≥Mu

14.76 kPa

24.18 kPa

4.26 kPa4.26 kPa

1.30 m

1.45 m

2.75 m
Pah,(stem) = 39.11 kN/m

Pah = 13.79 kN/m

y = 0.59 m–

y 

= 1.05 m

–

Scheme 5.94
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Assume tension-controlled section, Ø = 0.9, and fs = fy.

Equation (5.11): ØMn = Ø Asfy d−
a
2

Equation (5.10): a=
Asfy

0 85 fc b

=
As × 420

0 85 × 21 × 1
= 23 53As

ØMn = 0 9 As × 420 × 1000 0 315−
23 53As

2

= 119 070As−4 447 170As
2 kN m m

Let ØMn =Mu:

119 070As−4 447 170As
2 = 65 7

As
2−0 027As + 1 48 × 10

−5 = 0

As =
− −0 027 ± −0 027 2− 4 1 1 48 × 10−5

2 × 1
=
0 0270−0 0259

2
= 5 6 × 10−4 = 560mm2 m

Try three No. 16 bars:

As,provided = 3 × 199 = 597mm2 m OK

Minimum ratio of vertical reinforcement area to gross concrete area perpendicular to that reinforcement, ρℓ,
shall be 0.0012 for deformed bars not larger than No. 16 with fy not less than 420 MPa (ACI Section 14.3.2).

As,min = 0 0012 bℓ = 0 0012 × 0 4 × 1 = 4 8 × 10−4 m2 = 480mm2 m

As,min <As OK

Compute a for As = 597 mm2/m, and check if fs = fy and whether the section is tension-controlled:

a= 23 53As = 23 53 × 597 × 10−6 = 0 014m= 14mm

c=
a
β1
; For fc between 17 and 28 MPa, β1 shall be taken as 0.85.

c=
14
0 85

= 16 47mm;

dt = d = 315mm

εt = 0 003
dt −c
c

Equation 5 15

(Continued)
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εt = 0 003
315−16 47

16 47
= 0 054 > 0 005. Hence, the section is tension-controlled, and Ø = 0.9 (ACI Sections

10.3.4 and 9.3.2.1).

εy =
fy
Es

=
420

200 000
= 0 0021

Hence, εt > εy and fs = fy.
The assumptions made are satisfied.
Vertical and horizontal reinforcement shall not be spaced farther apart than three times the wall thickness or

farther apart than 450 mm, whichever is smaller (ACI Section 14.3.5).
Provide No. 16 bars @ 333 mm c.c. at bottom level of the stem.
Vertical reinforcement at the 1.3 m stem height level:

Stem thickness b= 0 3 +
0 4−0 3
2 75

× 1 45 = 0 305m

d = 0 305−0 085 = 0 22m

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 22−
23 53As

2

= 83160 As−4447170As
2 kN m m

Let ØMn =Mu:

83160As−4447170As
2 = 13 02

As
2−0 0187As + 2 928 × 10

−6 = 0

As =
− −0 0187 ± −0 0187 2− 4 1 2 928 × 10−6

2 × 1
=
0 0187−0 0184

2
= 1 5 × 10−4 = 150mm2 m

As,min = 0 0012 bℓ = 0 0012 × 0 305 × 1

= 3 66 × 10−4 m2 = 366mm2 m>As

Therefore, As,min controls.
This reinforcement will be provided by extending two out of each three bars of the stem reinforcement, at the

bottom level, full height of the stem. The third bar shall be cut at d or 12db, whichever is greater, above the 1.3 m
height level (ACI Section 12.10.3). Accordingly, the cut point will be located at 1.52 m height level.

All the vertical bars shall be extended through the interface into the footing, hooked (90-degree standard hook)
and wired to the bars at the toe bottom.Thus, the requirement of ACI Section 15.8.2.2 will be satisfied.

Provide No. 16 bars @ 333 mm c.c. placed vertically and extended through the interface into the footing. All the
bars shall be hooked (90-degree standard hook) at the lower end only and wired to the bars at the toe bottom. Two
out of each three bars shall be extended full height of the stem and the third bar shall be cut at 1.52 m stem height.

Horizontal reinforcement (ACI Section 14.3.3):
Minimum ratio of horizontal reinforcement area to gross concrete area perpendicular to that reinforcement ρt,
shall be 0.0020 for deformed bars not larger than No. 16 with fy not less than 420 MPa.

As,min = 0 0020 baveh = 0 002 ×
0 4 + 0 3

2
× 1

= 7 × 10−4m2 = 700mm2 per metre height of the stem
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Try four No. 16 bars: As,provided = 4 × 199 = 796mm2 m OK

Provide No. 16 bars @ 250 mm c.c. placed horizontally for the full stem height and wired to the vertical
reinforcement.

Step 12. Develop the final design sketches.

Problem 5.18

Refer to Problem 5.17. Find the flexural reinforcement needed for the toe and heel based on linear non-uniform
soil pressure distribution.

0.45 m

0.40 m

0.30 m

    No. 16  @

250 mm c.c.

8 No. 10 @

288 mm c.c.

6 No. 10 @

405 mm c.c.

    No. 16  @

333 mm c.c.

Two out of each

three bars shall

be extended full

height of the

stem

No. 16 @250 mm c.c.

Two out of each four

bar extended full

width of the footing

qs = 10 kPa

Compacted

granular

backfill

γ  = 17 kN/m3

ϕ  = 35°

Excavation line

(approximately)

O

 O 
Guard railing

1.30 m

2.20 m

0.60 m 1.20 m

    No. 16  @

250 mm c.c.

2.75 m

0.75 m

1.52 m

Scheme 5.95
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Solution:
From Problem 5.17, Step 6(b):

(a) Toe flexural reinforcement.
The critical section is located at the stem front face as shown in the scheme above.
Maximum factored bending moment is

Mu = B Mdue to contact pressure − B Mdue to toe weight

=
101 73 × 0 62

2
+
136 42−101 73

2
× 0 6 ×

2
3
× 0 6−

13 × 0 62

2

= 18 314 16 – 2 34 = 20 13 kN m m

Equation (5.9): ØMn ≥Mu

Assume tension-controlled section, Ø = 0.9 and fs = fy.

Equation (5.11): ØMn = Ø Asfy d−
a
2

Equation (5.10): a=
As fy

0 85fc b

=
As × 420

0 85 × 21 × 1
= 23 53As

Estimate

d = h−concrete cover−0 5 bar diameter assume No 25

= 0 450−0 075−0 013 = 0 362m

 

Critical section for

Toe moment

Critical section for

Heel moment

 

         

q1 = 9.22 +
136.42–9.22

2.2
(1.6)

    = 101.73 kPa  

Stem 

 

0.6 m 1.6 m 

B = 2.2 m

q(s+soil) = 1.6 (10 + 17 × 2.75) = 91 kPa

qc = 1.2 (24 × 0.45) = 13 kPa Footing

qmin
= 9.22 kPa

qmax
= 136.42

    kPa

q2

h = 0.45 m

Scheme 5.96
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ØMn = 0 9 As × 420 × 1000 0 362−
23 53 As

2

= 136 836As−4 447 170 As
2 kN m m

Let ØMn =Mu:

136 836As−4 447 170As
2 = 20 13

As
2−0 031As + 4 53 × 10

−6 = 0

As =
− −0 031 ± −0 031 2− 4 1 4 53 × 10−6

2 × 1
=
0 031−0 03071

2
= 1 45 × 10−4m2 m= 145mm2 m, required by analysis

As,min = 0 0018 bh ACI Sections 10 5 4 and 7 12 2 1

= 0 0018 × 1 × 0 45 = 8 1 × 10−4 m2 = 810mm2 m

As,min > As by analysis. Therefore, use As = As,min = 810 mm2/m
The assumptions made are satisfied, since As,min controls.
Try four No.16 bars: As,provided = 4 × 199 = 796 mm2/m. It is less than As,min but much greater than 1.33 As

required by analysis. Since the difference is too small and the base thickness h is somewhat overdesigned, it is
considered acceptable.

ACI Sections 10.5.4 and 7.6.5 requires maximum spacing shall not exceed three times the slab or footing
thickness, or 450 mm, whichever is smaller.

Try No. 16 bars @ 250 mm c.c.

Check the development of reinforcement:
The necessary computations is exactly the same as that carried out in Problem 5.17, Step 7(a). Since the
reinforcement, concrete and footing dimensions are all remained unchanged, the same results will be
obtained.

Provide No. 16 bars @ 250 mm c.c. placed at bottom of the footing in the transverse direction. All the bars
have to be hooked (90-degree standard hook) at the toe end. Two out of each four bars shall be extended full
width of the footing and the other two bars cut at 1.3 m from the toe end.

(b) Heel flexural reinforcement.
The critical section for bending is located at the back face of the stem, as shown in the scheme above.

q2 = 9 22 +
136 42−9 22

2 2
1 0 = 67 04 kPa

Mu = (B.M due to weight of backfill soil and load) + (B.M due to heel weight) – (B.M due to contact pressure)

Mu =
91 × 1 02

2
+

13 × 1 02

2
−

9 22 × 1 02

2
+
67 04−9 22

2
× 1 0 ×

1
3
× 1 0

= 45 5 + 6 5 – 4 61 – 9 64 = 37 75 kN m m

Equation (5.9): ØMn ≥Mu

Assume tension-controlled section, Ø = 0.9 and fs = fy.

Equation (5.11): ØMn = Ø As fy d−
a
2

(Continued)
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Equation (5.10):

a=
Asfy

0 85 fc b

=
As × 420

0 85 × 21 × 1
= 23 53As

ØMn = 0 9 As × 420 × 1000 0 362−
23 53 As

2

= 136836As−4447170A2
s kN m m

Let ØMn =Mu:

136836As−4447170A
2
s = 37 75

A2
s −0 031As + 8 49 × 10

−6 = 0

As =
− −0 031 ± −0 031 2− 4 1 8 49 × 10−6

2 × 1
=
0 031−0 0304

2

= 3 × 10−4m2 m= 300mm2 m, required by analysis

As,min = 0 0018 bh ACI Sections 10 5 4 and 7 12 2 1

= 0 0018 × 1 × 0 45 = 8 1 × 10−4 m2 = 810mm2 m

As,min > As required by analysis.
Therefore, use As = As,min = 810 mm2/m.
The assumptions made are satisfied, since As,min controls.
Try four No.16 bars: As,provided = 4 × 199 = 796 mm2/m. It is acceptable for the same reasons mentioned in

(a) above.
ACI Sections 10.5.4 and 7.6.5 requires maximum spacing shall not exceed three times the slab or footing

thickness, or 450 mm, whichever is smaller.
Try No. 16 bars @ 250 mm c.c.

Check the development of reinforcement:
The necessary computations is exactly the same as that carried out in Problem 5.17, Step 7(a). Since the
reinforcement, concrete and footing dimensions are all remained unchanged, the same results will be
obtained.

Provide No. 16 bars @ 250 mm c.c. placed at top, extended full width of the footing in the transverse direction.
Thus, in this case, we find that the required transverse flexural reinforcement based on the linear non-

uniform soil pressure distribution is the same as that based on the uniform soil pressure distribution since
As,min governs in both cases.

Problem 5.19

Refer to Problem 5.17. Assume the base soil and that in front the wall is gravelly sand of Ø = 33 and γ = 18 kN/m3,
overlying a soft-clay deposit at 1.0mdepth below the base level, as shown in the scheme below.The groundwater table
is also located at the same depth. The soft clay has an average c = 20 kPa, Ø = 0 and γ = 17.5 kN/m3. Determine the
safety factor (SF) against a deep-seated shear failure (or rotational instability) for a trial cylindrical slip surface through
the heel shown in Scheme 5.97. Assume radius of the cylindrical slip surface is 4.33 m, and its centre O located at
2.87 m above the foundation level. Use the conventional method of slices (the Fellenius or Swedish solution).
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Solution
Normally, the safety factor (SF) against a deep-seated shear failure (or rotational instability) should be at least two.
For this analysis, several trial failure surfaces (circles) should be drawn, the safety factor computed, and the min-
imum value taken. It may be useful to mention that the trial failure circles passing through the heel apply for
ground or backfill slope angles of β = 0 to perhaps β = 10 ; for larger values of β, irregular surfaces or surcharges,
the assumed failure circles may not pass through the heel, and other failure locations should be investigated.
In this case, we try to compute the safety factor for the circle indicated in the given scheme of the Problem as an

example. Due to the repetitive nature of the calculations and the need to select an adequate number of trial sur-
faces, the method of slices is particularly suitable for solution by computer, especially, where more complex slope
geometry and different soil strata are required to be introduced.

Step 1. Draw the wall-soil system to a convenient scale, as shown below.

γ = 18 kN/m3

c = 0

Soft clay: γ = 17.5 kN/m3 

c = 20 kPa

ϕ = 0°

 W. T

Δ

0.3 m

0

ϕ = 33°
1.21 m

H = 3.20 m

Gravelly sand:

D = 1.20 m
B = 2.20 m
g = 1.20 m
h = 0.45 m
b = 0.40 m
l = 0.60 m
z = 1.00 m

R = 4.33 m

D

B
f

g

e

qs = 10 kPa

z

h

l
b

Pa =

50.7 kN/m
H

Scheme 5.97

Scale:7 mm = 600 mm

0.3 m

1.21 m

Soft clay: γ = 17.5 kN/m3 

c = 20 kPa

ϕ = 0°

 W. T

Δ

0

H = 3.20 m
D = 1.20 m
B = 2.20 m
g = 1.20 m
h = 0.45 m
b = 0.40 m
l = 0.60 m
z = 1.00 m

R = 4.33 m

qs = 10 kPa

ϕ = 33°
c = 0

Gravelly sand: γ = 18 kN/m3

H

D

z

h

B
f

g

e

b
l

Pa =

50.7 kN/m

Scheme 5.98 (Continued)
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Step 2.Divide the circular segment amnf and the material above by vertical planes into a series of slices, as shown in
the scheme below. The base b of each slice is assumed to be a straight line. For any slice the inclination of the
base to the horizontal is α and the height, measured on the centre line, is h. WeightW (including surcharge) of
each slice is resolved into its normal component N =W cos α and tangential component T =W sin α, which are
determined graphically, as shown. Alternatively, the value of α can be measured or calculated.

Note: Since the centre of rotation O is centered with respect to the circular arcmn (located in the soft clay), it is
not necessary to divide this arc and the material above into slices and findN and T; their resultant effects will be
zero (neglecting the difference in weights of a portion of the concrete footing and displaced soil). However, some
correction was applied to include the weight of a portion of the concrete stem in slice 5, as shown in the scheme.

Step 3.Determine values ofN and T per metre length of the retaining wall for each slice, as indicated in Table 5.10.

1 m

3.86 m

53°
3.87 m

ϕ = 33°
c = 0

γ = 18 kN/m3

c = 20 kPa
ϕ = 0°

γ = 17.5 kN/m3

R = 4.33 m

0

qs = 10 kPa

e

 W. T

Δ

α

5 45 4 3  3   2 2   1   1  5 4 3   2   1  

Scale: 1 mm = 0.64 kN

           7 mm = 600 mm

  9    9    8    7    6 8    7    6  9    8    7    6

Scheme 5.99

Table 5.10 Values of N and T per metre length for each slice of the retaining wall.

Slice number Weight of slice, W (kN) N (kN) T (kN)

1 0.4 (10 + 2.92 × 18) + 0.4 × 0.45 × 24 = 29.3 21.2 20.3

2 0.4 (10 + 3.26 × 18) + 0.4 × 0.45 × 24 = 31.8 25.0 19.7

3 0.4 (10 + 3.56 × 18) + 0.4 × 0.45 × 24 = 34.0 28.8 18.1

4 0.2 (10 + 1.00 × 18) + 0.2 × 3.20 × 24 = 21.0 18.6 9.7

5 0.15 × 2.75 × 24 = 9.9 9.0 4.5

6 0.43 × 2.06 × 18 = 15.9 14.1 –7.5

7 0.43 × 1.84 × 18 = 13.8 10.2 –9.3

8 0.43 × 1.37 × 18 = 10.6 7.2 –7.7

9 0.5 × 0.63 × 1.11 × 18 = 6.3 3.8 –5.0

Σ N = 137.8. Σ T = 42.8

586 Shallow Foundations



Step 4. Determine the driving and resisting moments about centre of rotation at point O, then compute the
safety factor SF.

(a) Driving moment Md.
This moment consists of moment of the total active thrust Pa plus moment of Σ T, computed as

Md = y Pa +R T

The thrust Pa is located at 1.21 m above the foundation level, whereas, pointO is located at 2.87 m above the
same level. Therefore,

y = 2 87−1 21 = 1 66m

Md = 1 66 × 50 7 + 4 33 × 42 8 = 269 5 kN m m

(b) Resisting moment Mr.
This moment equals to moment of the total shear strength Tf along the circular arc amnf,

computed as

Mr =R Tf

Tf = cohesion force + friction force = arc length × c + N tanØ

Gravelly sand:
The base of slice 5 is located in soft clay. Therefore, N for this slice should not be considered.

Tf = 0 + N −N of slice 5 tan Ø o = 137 8−9 tan33

= 83 6 kN m

Soft clay:

Tf = length of arcmn× c + 0 =
53
360

2πR c

=
53
360

× 2 ×
22
7
× 4 33 × 20 = 80 1 kN m

Mr = 4 33 83 6 + 80 1 = 708 8 kN m m

Safety factor is

SF =
Mr

Md
=
708 8
269 5

= 2 63 > 2 OK

Problem 5.20

A gravity concrete retaining wall is shown in the scheme below. Determine the maximum andminimum pressures
under the base of the wall, and the safety factors against overturning and sliding (ignore any material which may
exist in front the wall). Use Coulomb’s active earth pressure theory and wall friction angle δ = (2/3)Ø.

(Continued)
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Solution:
Step 1. Determine the total active earth pressure thrust Pa and its components Pah and Pav.

Pa =
γH2

2
Ka

Where Ka = Coulomb’s coefficient of lateral active earth pressure.
For cohesionless soils, Ka may be obtained from tables or calculated as

Ka =
sin2 α+ Ø

sin2αsin α−δ 1 +
sin Ø + δ sin Ø −β

sin α−δ sin α+ β

2

Angles:

Ø = 36

β = 15

α= 80

δ=
2Ø
3

=
2
3
× 36 = 24

Ka =
sin2116

sin280sin56 1 +
sin60sin21
sin56sin95

2

Ka =
0 808

0 804 1 +
0 310
0 826

2 =
0 808

0 84 1 + 0 613 2

β = 15°

0.60 m0.74 m

Concrete wall

γ = 23.5 kN/m3

γ = 18 kN/m3

ϕ = 36°
c = 0

0.60 m

0.75 m

B = 3.00 m

α = 80°

H = 6.00 m

Scheme 5.100
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=
0 808

0 84 × 2 6
= 0 37

Pa =
18 × 62

2
× 0 37 = 120 kN m

The active thrust Pa acts on the wall back face at a height of
1
3
H and at δ above the normal, or at 34 above the

horizontal as shown.

Pah = Pa cos34 = 120 × 0 83 = 99 6 kN m

Pav = Pa sin34 = 120 × 0 56 = 67 2 kN m

Step 2.Compute the vertical resultant force R, net momentMnet, eccentricity e, overturningmomentMo about base
toe at point A and the resisting moment Mr.

For these computations refer to the scheme in Step 1. It is convenient to tabulate the load sources, loads,
moment arms and moments, as in Table 5.11.

γ =
18 kN/m3

β

2.0 m
(I)

(II)

B = 3.0 m

(III)

(IV)

1.34

0.75 m

1.060.6
A

H = 6.0 m

ϕ = 36°

δ   34°

c = 0

Pav

Pah

P a

α

Scheme 5.101

Table 5.11 Load sources, loads, moment arms and moments.

Load source Load (weight) kN/m Arm m Moment MA kN.m/m+ ↷

(I) 0.5 × 6 × 1.06 × 23.5 = 74.73 2.29 171.13

(II) 0.6 × 6 × 23.5 = 84.60 1.64 138.74

(III) 0.5 × 5.25 × 0.74 × 23.5 = 45.65 1.09 49.76

(IV) 0.75 × 1.34 × 23.5 = 23.62 0.67 15.83

Pav = 67.20 2.65 178.08

Pah = 99.6 kN/m 2.00 −199.20

R = 295.80 Mnet = 354.34

(Continued)
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xR= Mnet

x =
Mnet

R
=
354 34
295 80

= 1 2m

e=
B
2
−x =

3
2
−1 2 = 0 3 m <

B
6
= 0 5m

Overturning moment Mo = Pah × 2 = 99.6 × 2 = 199.2 kN.m/m
Resisting moment Mr = Mnet − Mo = 354.34 − (−199.20) = 553 54 kN m m

Step 3. Determine the safety factor against overturning.
Safety factor against overturning is

SF =
Mr

Mo
=
553 54
199 2

= 2 78

Step 4. Determine the safety factor against sliding.
Resisting force against sliding is

Fr =R tanδ+ caAf + PP

In this case, ca is zero since the base soil cohesion c = 0. Also, since anymaterial which may exist in front the wall
is ignored, PP is zero.

Fr =R tanδ= 295 8 × tan24 = 131 7 kN m

Sliding force = Pah = 99.6 kN/m
Safety factor against sliding is

SF =
Fr
Pah

=
131 7
99 6

= 1 32

Step 5. Determine the maximum and minimum pressures under the base.

q=
R
BL

1 ±
6ex
B

±
6ey
L

Equation 2 7

Maximum pressure under the base is

qmax =
R
BL

1 +
6ex
B

=
295 8
3 × 1

1 +
6 × 0 3

3

= 98 60 + 59 16 = 157 76 kPa

Minimum pressure under the base is

qmin =
R
BL

1−
6ex
B

=
295 8
3 × 1

1−
6 × 0 3

3
= 98 6−59 16 = 39 44 kPa
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Problem 5.21

Solve Problem 5.20 using Rankine’s active earth pressure theory.

Solution:
Step 1. Determine the total active earth pressure thrust Pa and its components Pah and Pav.

Pa =
γ H 2

2
Ka

where Ka = Rankine’s coefficient of lateral active earth pressure.

The active thrust Pa acts on the vertical shear plane at a height of
1
3
H and at β above the horizontal as shown.

For cohesionless soils, the coefficient Ka depends on the backfill slope angle β and friction angle Ø. It can be
obtained from tables or may be calculated from the following equation

Ka = cosβ
cosβ− cos2β−cos2 Ø

cosβ + cos2β−cos2 Ø

For β = 15 and Ø = 36 :

Ka = 0 966 ×
0 966− 0 9662−0 8092

0 966 + 0 9662−0 8092
= 0 966 ×

0 966−0 528
0 966 + 0 528

=
0 423
1 494

= 0 283

Pa =
18 × 6 282

2
× 0 283 = 100 45 kN m

Pah = Pa cos15 = 100 45 × 0 966 = 97 03 kN m

Pav = Pa sin15 = 100 45 × 0 259 = 26 0 kN m

Step 2.Compute the vertical resultant force R, net momentMnet, eccentricity e, overturningmomentMo about base
toe at point A and the resisting moment Mr.

 80°

  β = 15°

  β = 15°

0.60 m0.74 m

Concrete wall

γ = 23.5 kN/m3

0.60 m

0.75 m

B = 3.00 m

(IV)

(III)

Vertical

shear

plane

(II)

(V)

(I)

2
.0

9
 γ = 18 kN/m3

ϕ = 36°
c = 0

 γ = 18 kN/m3

ϕ = 36°
c = 0

A

P a

Pah

Pav
H = 6.00 m

H
' =

6
.2

8
 m

Scheme 5.102
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For these computations refer to the scheme of Step 1. It is convenient to tabulate the load sources, loads,
moment arms and moments in a table such as Table 5.12.

xR= Mnet

x =
MR

R
=
409 23
314 51

= 1 3m

e=
B
2
−x =

3
2
−1 3 = 0 2 m <

B
6
= 0 5m

Overturning moment
Mo = Pah × 2 09 = 97 03 × 2 09

= 202 79 kN m m

Resisting moment
Mr = Mnet− Mo = 409 23− −202 79

= 612 02 kN m m

Step 3. Determine the maximum and minimum pressures under the base.

q=
R
BL

1 ±
6ex
B

±
6ey
L

Equation 2 7

Maximum pressure under the base is

qmax =
R
BL

1 +
6ex
B

=
314 51
3 × 1

1 +
6 × 0 2

3

= 104 84 + 41 93 = 146 77 kPa

Minimum pressure under the base is

qmin =
R
BL

1−
6ex
B

=
314 51
3 × 1

1−
6 × 0 2

3

= 104 84−41 93 = 62 91 kPa

Table 5.12 Load sources, loads, moment arms and moments.

Load source Load (weight) kN/m Arm m Moment MA kN. m/m + ↷

(I) 0.5 × 6.28 × 1.06 × 18.0 = 59.91 2.65 158.56

(II) 0.5 × 6.0 × 1.06 × 23.5 = 74.73 2.29 171.13

(III) 0.6 × 6 × 23.5 = 84.60 1.64 138.74

(IV) 0.5 × 5.25 × 0.74 × 23.5 = 45.65 1.09 49.76

(V) 0.75 × 1.34 × 23.5 = 23.62 0.67 15.83

Pav = 26.00 3.00 78.00

Pah = 97.03 kN/m 2.09 −202.79

R = 314.51 Mnet = 409.23
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Step 4. Determine the safety factor against overturning.
Safety factor against overturning is

SF =
Mr

Mo
=
612 02
202 79

= 3 0

Step 5. Determine the safety factor against sliding.
Resisting force against sliding is

Fr =R tanδ+ caAf + PP

In this case, ca is zero since the base soil cohesion c = 0. Also, since any material which may exist in front the wall is
ignored, PP is zero.

Fr =R tanδ= 314 51 × tan24 = 140 0 kN m

Sliding force = Pah = 97.03 kN/m
Safety factor against sliding is

SF =
Fr
Pah

=
140 0
97 03

= 1 44

Problem 5.22

A trapezoidal-shaped solid gravity concrete wall is required to retain a 5.0-m embankment which has a slope angle
β = 15 . A stiff silty clay will support the wall structure at a foundation depth of about 1.0 m below the lowest
ground level. Safety factors against bearing capacity failure, overturning and sliding should not be less than
3.0, 2.0 and 1.5, respectively. The following tentative dimensions for a gravity retaining wall may be used as a guide:
Base width B : 0.5 to 0.7H

where H = total height of wall structure

Base thickness h
H
8

to
H
6

 

H

m

h

B

βb1

b2

Scheme 5.103
(Continued)
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Toe projection m : 0.5 h to h

Stem thickness b1 (at top) 0 30m to
H
12

Minimum front face batter: 1 : 48
Design the retaining wall using the following soil and concrete data:

Base soil Backfill Concrete

γ = 18 kN/m3 γ = 17 kN/m3 γ = 23.5 kN/m3

cu =
qu
2
= 105 kPa cu = 0 fc = 17MPa

Ø = 0 Ø = 34 —

Solution:
Step 1. Select initial values for the base and stem cross-section

dimensions.
Assume the following tentative dimensions:
Total height H = 6.00 m
Base thickness h = 0.75 m
Stem height Z =H − h = 6.00 − 0.75 = 5.25 m
Base width B = 3.50 m
Toe projection m = 0.60 m
Heel projection n = 0.60 m
Stem thickness at top b1 = 0.40 m
Stem thickness at bottom b2 = 2.30 m
Front face batter = 1 : 10.5
Angle α = (75.1)
Angle β = 15
Foundation depth D = 1.00 m
Height of the vertical shear plane at heel is

H =H + 2tanβ =H + 2tan15o

= 6 + 2 × 0 268 = 6 54m

Step 2. Determine the total active earth pressure thrust Pa and its components Pah and Pav, using Rankine’s lateral
earth pressure theory.

Pa =
γH 2

2
Ka

Where Ka = Rankine’s coefficient of lateral active earth pressure.

The active thrust Pa acts on the vertical shear plane at a height of
1
3
H and at β above the horizontal as shown in

the scheme above.

Silty clay: γ = 18 
kN

Cu = 105 kPa

ϕ = 0

Batter

10.5

1

kN

m3

ϕ = 34°
Cu = 0

H′

n

b2

b1

B

m3

m

hD

H
Z

γ = 18

β

Scheme 5.104
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For cohesionless soils, the coefficient Ka depends on the backfill slope angle β and friction angle Ø, can be
obtained from tables or may be calculated from the equation

Ka = cosβ
cosβ− cos2β−cos2 Ø

cosβ + cos2β−cos2 Ø

For β = 15 and Ø = 34 :

Ka = 0 966 ×
0 966− 0 9662−0 8292

0 966 + 0 9662−0 8292
= 0 966 ×

0 966−0 496
0 966 + 0 496

=
0 454
1 462

= 0 311

Pa =
18 × 6 542

2
× 0 311 = 119 72 kN m

Pah = Pa cos15 = 119 72 × 0 966 = 115 65 kN m

Pav = Pa sin15 = 119 72 × 0 259 = 31 01 kN m

Step 3.Compute the vertical resultant force R, net momentMnet, eccentricity e, overturningmomentMo about base
toe at point A, and the resisting moment Mr.

For these computations refer to the scheme in Step 2. It is convenient to tabulate the load sources, loads,
moment arms and moments, as in Table 5.13. Assume, conservatively, we neglect the toe soil and that covering
the base in front of the wall stem.

β = 15°

β = 15°

0.6

II      I

0.6

IV   

0.5 Silty clay: γ = 18 kN/m3 

cu = 105 kPa

ϕ = 0°
0.4

5.25 m

1.40

III

VI

V Vertical

shear

plane

Pav

Pah

Pa

B = 3.50 m  

0.75 m 

A

2.18 m

γ = 18

kN/m3

ϕ = 34°
cu = 0

H′ = 6.54 mH = 6.00 m  

Scheme 5.105
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x R=Mnet

x =
Mnet

R
=
597 33
391 75

= 1 52 m

e =
B
2
−x =

3 5
2

−1 52 = 0 23 m <
B
6
= 0 58 m

Step 4. Check wall stability for overturning and sliding.
(a) Overturning stability.

Overturning moment:

Mo = Pah × 2 18 = 115 65 × 2 18

= 252 12 kN m m

Resisting moment:

Mr =Mnet −Mo = 597 33− −252 12

= 849 45 kN m m

Safety factor against overturning is

SF =
Mr

Mo
=
849 45
252 12

= 3 4 > 2 OK

(b) Sliding stability.
Resisting force against sliding (neglecting any passive resistance force) is

Fr =R tanδ+ caAf

In this case, δ is zero since Ø = 0, and therefore Fr = caAf.
Assume ca = 0.6 cu = 0.6 × 105 = 63 kPa

Table 5.13 Load sources, loads, moment arms and moments for Step 3.

Load source Load kN/m Arm m Moment MA, kN. m/m, +↷

I
0 6 5 25 +

2 0 + 1 4
2

tan15 18 0 = 61 62
3.21 197.80

II (1.4/2)(5.25 + 1.4 tan 15 )(18.0) = 70.88 2.43 172.47

III 0.5 × 1.4 × 5.25 × 23.5 = 86.36 1.97 169.84

IV 0.4 × 5.25 × 23.5 = 49.35 1.30 64.16

V 0.5 × 0.5 × 5.25 × 23.5 = 30.84 0.93 28.68

VI 0.75 × 3.5 × 23.5 = 61.69 1.75 107.96

Pav = 31.01 3.50 108.54

Pah = 115.65 kN/m 2.18 −252.12

R = 391.75 Mnet = 597.33
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Af = base effective area =B × 1 = B−2e 1

= 3 5−2 × 0 23 1 = 3 04 m2 m

Fr = 63 × 3 04 = 191 52 kN m

Sliding force = Pah = 115.65 kN/m
Safety factor against sliding is

SF =
Fr
Pah

=
191 52
115 65

= 1 66 > 1 50 OK

Step 5. Check the foundation stability against bearing capacity failure.
Compute safe bearing capacity of the supporting soil using Hansen bearing capacity equation for the Ø = 0

condition.
Table 4.2: gross qult = 5 14 su 1 + sc + dc− ic−bc−gc + q

su = cu = 105 kPa

Table 4.6: sc = 0 2
B
L

= 0, since
B
L
≈0 for continuous foundations.

Table 4.7: bc = 0 since η = 0; gc =
β

147
=

15
147

= 0 102

dc = 0 4k; k=
D
B

for
D
B
≤ 1;

D
B
=
1 0
3 5

= 0 286; hence, dc = 0 114

ic = 0 5−0 5 1−
H
Af ca

Use ca = 63 kPa; Af = 3.04 m2, as in Step 4(b).

ic = 0 5−0 5 1−
115 65
3 04 × 63

= 0 184

gross qult = 5 14 su 1 + dc− ic−gc + q

Since the toe soil is neglected, the overburden pressure q= 0. Hence, the safe bearing capacity is

gross qsafe = 5 14 su 1 + dc− ic−gc SF

= 5 14 105 1 + 0 114−0 184−0 102 3

= 464 87 3 = 155 kPa

Gross foundation pressure is

gross q=
R

B × 1
=

391 75
3 04 × 1

= 128 87 kPa < gross qsafe OK 5 73

Check the maximum gross foundation pressure, gross qmax:

gross qmax =
R
BL

1 +
6ex
B

=
391 75
3 5 × 1

1 +
6 × 0 23
3 5

= 156 kPa gross qsafe OK

(Continued)
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Step 6. Apply the appropriate load factors (ACI Section 9.2) to all the horizontal and vertical forces, compute
eccentricity e of the factored resultant force and calculate the base factored contact pressures.

In this case, the applicable load combinations of the ACI Section 9.2.1 are reduced to:
U = 1.2 D + 1.6(H), where H represents weight of soil.
U = 1.6(H), where H represents load of lateral pressures
Refer to Table 5.13 in Step 3 to produce Table 5.14.

x R=Mnet

x =
Mnet

R
=
807 45
535 51

= 1 51 m

e =
B
2
−x =

3 5
2

−1 51 = 0 24 m <
B
6
= 0 58m OK

qmax =
R
BL

1 +
6ex
B

=
535 51
3 5 × 1

1 +
6 × 0 24
3 5

= 153 00 + 62 95 = 215 95 kPa At the toe

qmin =
R
BL

1−
6ex
B

=
535 51
3 5 × 1

1−
6 × 0 24
3 5

At the heel

= 153 00−62 95 = 90 05 kPa

Step 7. Check the assumed footing thickness h considering shear and bending in accordance with ACI Sections
22.7.6 and 22.5.1, respectively.

(a) Considering shear.
In this case, only one-way shear is significant. To consider the most severe condition we use the critical sec-
tions located at the faces of the wall. It is clear that the most critical section is in the toe at the wall front face,
0.6 m from the footing edge, as shown below.

Table 5.14 Load sources, loads, moment arms and moments for Step 6.

Load source Factored Load kN/m Arm, m Factored Moment MA + kN. m/m

I (1.6)(61.62) = 98.59 3.21 316.47

II (1.6)(70.88) = 113.41 2.43 275.59

III 1.2 × 86.36 = 103.63 1.97 204.15

IV 1.2 × 49.35 = 59.22 1.30 76.99

V 1.2 × 30.84 = 37.01 0.93 34.42

VI 1.2 × 61.69 = 74.03 1.75 129.55

Pav 1.6 × 31.01 = 49.62 3.50 173.67

Pah = 1.6 × 115.65 kN/m 2.18 −403.39

R = 535.51 Mnet = 807.45
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Use effective footing thickness = h = h − 0.05 m (ACI Section 22.4.7)

Vu =
qmax + q

2
0 6 1 − factored weight of concrete

=
215 95 + 194 37

2
0 6 1 − 1 2 h 0 6 1 23 5

= 123 1−16 92 h

ØVn ≥Vu

When the load factor combinations of ACI Section 9.2.1 are used, the strength reduction factor Ø shall be 0.6 for
flexure, compression, shear and bearing of structural plain concrete (ACI Section 9.3.5).

Vn = 0 11λ fc bwh Equation 5 36

where λ=modification factor ACI Section 8 6 1

= 1 0 for normal-weight concrete

ØVn = 0 6 0 11 1 17 1000 1 0 h = 272 12 h

Let ØVn =Vu:

272 12h = 123 1−16 92h

h =
123 1
289 04

= 0 43 m

h= 0 43 + 0 05 = 0 48 m< h= 0 75m provided OK

Therefore, the section is safe against shear.
(b) Considering bending.

The critical section for the maximum bending moment is located at the wall front face, as shown in the scheme
above.

B = 3.50 m
A

Critical section

h = 0.75 m 

Wall front face

0.6 m

Soil

qmin = 90.05 kPa

qmax = 215.95 kPa

q = 90.05 + (3.5 – 0.6)
215.95 – 90.05

3.5
= 194.37 kPa                                              

Scheme 5.106

(Continued)
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Assume h = 0.75 − 0.05 = 0.7 m (as provided)
The applied factored bending moment per metre length of the wall is

Mu =
q× 0 62

2
+

qmax−q 0 6
2

×
2 × 0 6

3
−

1 2 0 7 0 62 23 5
2

= 0 18 × 194 37 + 0 12 215 95−194 37 −3 55 = 34 03 kN m

ØMn ≥Mu Equation 5 32

Mn = 0 42 λ fc Sm Equation 5 33

Sm = the corresponding elastic section modulus =
b h 2

6

=
1 0 72

6
= 0 082m3

ØMn = Ø 0 42λ fc Sm = 0 6 0 42 1 17 × 1000 0 082

= 85 2 kN m>Mu

Therefore, the section is safe against bending.
The assumed footing thickness (h = 0.75m) is safe against shear and bending.

Step 8. Check the wall thickness b at about half of its height; say 3 m from top, considering (a) shear and (b) com-
bined bending and axial load in compression.

(a) Considering shear.

Refer to the scheme in Step 2 and the figure above:

H = 3 +
1 4
5 25

× 3 tan15 = 3 21m

b=
0 5
5 25

× 3 + 0 4 +
1 4
5 25

× 3 = 1 49m; b = b−0 05 = 1 44m

Pa =
γH 2

2
Ka =

18 × 3 212

2
× 0 311 = 28 84 kN m

Pah = Pa cos15 = 28 84 × 0 966 = 27 86 kN m

Pav = Pa sin15 = 28 84 × 0 259 = 7 47 kN m

Vu = factoredPah = 1 6 × 27 86 = 44 58 kN m

ØVn ≥Vu

I 
 

 
III   

0.4

3.00 m 

II

IVV  
 

 γ = 18 kN/m3

ϕ = 34°;

β = 15°

β

cu = 0Pav Pa

Pah

bA

H′ = 3.21 m

H′/3 =1.07 m

Scheme 5.107
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Vn = 0 11λ fc bw b

ØVn = 0 6 0 11 1 17 1000 1 0 1 44

= 391 86 kN m Vu

Therefore,the section is safe against shear.
(b) Considering combined bending and axial load in compression.

Determine factored resultant R of all loads and its eccentricity e. For these computations refer to the figure
shown above and that of Step 2. It is convenient to use Table 5.15, where the load sources are labeled, weights
computed, moment arms given and so on.

x R= Mnet

x =
Mnet

R
=

66 6
128 7

= 0 52m

e=
b
2
−x =

1 49
2

−0 52 = 0 23 m <
b
6
= 0 25m

Therefore, R is located within the middle-third of the wall thickness and the whole section is in
compression.

Maximum compressive stress fmax =
R
b L

1 +
6ex
b

=
128 70
1 44 × 1

1 +
6 × 0 23
1 44

= 89 38 + 85 65 = 175 03 kPa

Table 5.15 Load sources, loads, moment arms and moments for Step 8 (b).

Load source Factored Load kN/m Arm, m Moment MA, + kN.m/m, + ↷

I
1 6

3 21
2

×
1 4 × 3
5 25

18 0 = 36 98
1.22 45.12

II
1 2

3
2
×
1 4 × 3
5 25

23 5 = 33 84
0.96 32.49

III 1.2 × 0.4 × 3 × 23.5 = 33.84 0.49 16.58

IV
1 2

3
2
×
0 5 × 3
5 25

23 5 = 12 09
0.19 2.30

Pav 1.6 × 7.47 = 11.95 1.49 17.81

Pah = 1.6 × 27.86 = 44.58 kN/m 1.07 −47.70

R = 128.70 Mnet = 66.60

(Continued)
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Allowable compressive stress of plain concrete, in bearing, is

fc = Ø 0 85 fc = 0 6 × 0 85 × 17 × 1000 = 8670 kPa fmax

According to ACI Section 22.6.5, if the resultant of all factored loads is located within the middle-third of the wall
thickness, structural plain concrete walls of solid rectangular cross section shall be permitted to be designed by

Ø Pn ≥ Pu

In this case Pu = R = 128.7 kN/m, and Pn is nominal axial strength calculated by

Pn = 0 45 fc Ag 1−
ℓc

32b

2

The term
ℓc

32b

2

is neglected since it is too small.

Ø Pn = 0 6 × 0 45 × 17 × 1000 × 1 44 × 1

= 6609 6 kN m Pu

Therefore, the section is safe against the applied factored compressive stress.
Step 9. Develop the final design sketches.

Problem 5.23

A rectangular footing 2 × 3 m is to be placed at a depth of 1 m in a deep stratum of soft to medium saturated clay.
Average elastic parameters Es and μ of the clay are 8 MPa and 0.5, respectively. Estimate the average modulus of-
subgrade reaction Ks using:

(a) Equation (5.42).
(b) Equation (5.43).
(c) Equation (5.44). Assume qa = 80 kPa and SF = 3

Solution:

(a) Equation (5.42): Ks =
Es

B 1−μ2s

Ks =
Es

B 1−μ2s
=

8 × 1000
2 1−0 52

= 5333 kN m3

(b) Equation (5.43): Ks =
1

B× Es ×m× IS × IF

Es =
1−μ2s
Es

=
1−0 52

8 × 1000
= 9 38 × 10−5 m2 kN

602 Shallow Foundations



For the centre of the loaded area:

Use:
B
2
instead of B,

L
2
instead of L, m = 4 and H = 4B

M = L/B, N =H/B, H = Thickness of the soil layer, in units of B

M =
1 5
1

= 1 5,N = 4 ×
2
1
= 8

From Table 3.7 obtain I1 = 0.561 and I2 = 0.029

IS = I1 +
1−2μ
1−μ

I2 = 0 561 +
1−2 × 0 5
1−0 5

× 0 029 = 0 561

For actual values of
B
L
= 0 667;

D
B
= 0 5; μ = 0.5, from Table 3.6, obtain IF = 0.88.

Ks =
1

1 × 9 38 × 10−5 × 4 × 0 561 × 0 88
= 5399 kN m3

For a corner of the loaded area:
Use: actual B and L dimensions; m = 1; H = 4B;

M =
3
2
= 1 5; N = 4 ×

2
2
= 4

From Table 3.7 obtain I1 = 0.455 and I2 = 0.054

IS = I1 +
1−2μ
1−μ

I2 = 0 455 +
1−2 × 0 5
1−0 5

× 0 054 = 0 455

For actual values of
B
L
= 0 667,

D
B
= 0 5, μ = 0.5 Table 3.6 gives

IF = 0 88 as before

Ks =
1

2 × 9 38 × 10−5 × 1 × 0 455 × 0 88
= 13313 kN m3

Compute weighted average Ks using four centre Ks values and one corner value, as follows:

Average Ks =
4 × 5399 + 13313

5
= 6982 kN m3

(c) Equation (5.44):
Ks = 40 SF qa

Ks = 40 SF qa = 40 × 3 × 80 = 9600 kN m3

Problem 5.24

For the 15 × 15 m mat foundation and soil data of Problem 4.37 recommend a single value of Ks that may be
considered as an average value for the base.

(Continued)
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Solution:
Step 1. Zone the area beneath the mat. In this case, it would be sufficient to compute Ks for three zones, namely,

centre (point C), intermediate or one-quarter point (point B) and edge (point A), as shown below.

Step 2. Compute Ks, C for the centre zone (point C).

Ks, C =
1

B× Es ×m× IS × IF

Es =
1−μ2s
Es

Refer to Solution of Problem 4.37. Estimate weighted average Es of soils beneath the mat, using the estimated Es
of the stiff silty clay and sand soils, as follows:

Es, av =
3 4 × 75 000 + 668 600

3 4 + 24 1
= 33 585 kPa

Also, estimate weighted average μ=
3 4 × 0 5 + 24 1 × 0 3

3 4 + 24 1
= 0 32

Es =
1−0 322

33585
= 2 67 × 10−5 m2 kN

IS = I1 +
1−2μ
1−μ

I2;M =
L 2
B 2

; N =
H
B 2

H = total thickness of the soil layers = 27 5m< 4B

M =
7 5
7 5

= 1; N =
27 5
7 5

= 3 67

From Table 3.7 obtain I1 = 0.393 and I2 = 0.041

IS = 0 393 +
1−2 × 0 32
1−0 32

× 0 041 = 0 415

For actual values of
B
L
= 1,

D
B
=
1 5
15

= 0 1 and μ = 0.32, from Table 3.6 obtain IF = 0.95 (approximately).

3.75 3.75  

7.5 m 

7.5 m 

7.5 m 

15 m 

15 m ABC

Scheme 5.108
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Ks,C =
1

B× Es ×m× IS × IF
=

1
7 5 × 2 67 × 10−5 × 4 × 0 415 × 0 95

= 3167 kN m3

Step 3. Compute Ks,B for the intermediate zone at the one-quarter point (point B).
There are two sets of rectangles contribute at point B, as shown below:

Set 1: two rectangles of B = 7.5 m and L = 11.25 m

M =
L
B
= 1 5; N =

H
B
= 3 67

I1 = 0 41; I2 = 0 065; IS = 0 444

B
L
= 0 67;

D
B
=
1 5
7 5

= 0 2; IF = 0 926

Si = q×B×
1−μ2s
Es

×m× IS × IF

Si = q×B× Es ×m × IS × IF

Si
q
= 7 5 × 2 67 × 10−5 × 2 × 0 444 × 0 926 = 1 647 × 10−4 m3 kN

Set 2: two rectangles of B = 3.75 m and L = 7.5 m

M =
L
B
= 2;N =

H
B
= 7 33; I1 = 0 597; I2 = 0 041; IS = 0 619

B
L
= 0 5;

D
B
=

1 5
3 75

= 0 4; IF = 0 866

Si = q×B× Es ×m × IS × IF

Si
q
= 3 75 × 2 67 × 10−5 × 2 × 0 619 × 0 86 = 1 073 × 10−4 m3 kN

1
Ks,B

=
Si
q
= 1 647 × 10−4 + 1 073 × 10−4 = 2 72 × 10−4 m3 kN

Ks,B =
1

2 72 × 10−4
= 3676 kN m3

3.75 m

3.75 m

11.25 m

11.25 m

7.5 m

7.5 m

B

Scheme 5.109
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Step 4. Compute Ks,A for the edge zone (point A).
There is one set of two rectangles contributing at point A, as shown below:

B = 7.5 m and L = 15.0 m

M =
L
B
= 2;N =

H
B
=
27 5
7 5

= 3 67

I1 = 0 452; I2 = 0 074; IS = 0 491

B
L
= 0 5;

D
B
=
1 5
7 5

= 0 2; IF = 0 936

Si = q×B× Es ×m × IS × IF

1
Ks, A

=
Si
q
=B× Es ×m× IS × IF

Ks, A =
1

7 5 × 2 67 × 10−5 × 2 × 0 491 × 0 936
= 5433 kN m3

Step 5. Recommend a single value of KS that may be considered as an average value for the base.
If a single value of KS is to be provided, one might simply use

Ks =
Ks,C +Ks,B +Ks,A

3
=
3167 + 3676 + 5433

3
= 4092 kN m3

or (weighting Ks,C),

Ks =
4Ks,C +Ks,A

5
=
4 × 3167 + 5433

5
= 3620 kN m3

or (weighting Ks,B and using Simpson’s rule),

Ks =
Ks,C + 4Ks,B +Ks,A

6
=
3167 + 4 × 3676 + 5433

6
= 3884 kN m3

Another method may be by equating summation of product of each zone area and its Ks to the product of the mat
area and Ks,av, as follows:

Divide the mat area into three zones, as shown in the scheme below, and compute the area of each zone.

15.00 m

11.25 m

3.75 m

1
5
.0

0
 m

3
.7

5
 m

1
1
.2

5
 m Zone C

Zone A 

Zone B

BC A

Scheme 5.111

 

7.5 m 

15.0 m

A

 

7.5 m 

15.0 m 

Scheme 5.110
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Area of zoneC central AC = 3 75 × 3 75 = 14 063m2

Area of zoneB interior AB = 11 25 × 11 25−14 063 = 112 5m2

Area of zoneA exterior AA = 15 × 15−112 5 = 98 437m2

AA Ks,A +AB Ks,B +AC Ks,C = AA +AB +AC Ks,av

98 437 5433 + 112 5 3676 + 14 063 3167 = 152 Ks,av

Ks,av =
992896
225

= 4413 kN m3

It may be appropriate to recommend the average of all the computed values as a single value for the required
modulus of subgrade reaction, which is

Ks =
4092 + 3620 + 3884 + 4413

4
= 4002 25 kN m3

Recommend Ks = 4000 kN/m3

Problem 5.25

A structure is to be supported on a 15-m square mat foundation. The average contact pressure is 100 kPa.
A settlement analysis conducted by the geotechnical engineer gave an average settlement S = 25 mm.
Recommend design values for the modulus of subgrade reaction KS which may be used in a pseudo-coupled

analysis.

Solution:

Step 1. Estimate Ks,av.
Equation (5.40): Ks =

q
δ

Where

q= bearing pressure

δ= deflection settlement

Average modulus of subgrade reaction = Ks,av =
100
0 025

= 4000 kN m3

Step 2. Divide the mat area into three zones and compute the area of each zone. Note that the innermost (central)
zone shall be half as wide and half as long as the mat.

Area of zoneA central AA = 7 5 × 7 5 = 56 25m2

Area of zoneB interior AB = 11 25 × 11 25−7 5 × 7 5 = 70 313m2

Area of zoneC exterior AC = 15 × 15−11 25 × 11 25 = 98 438m2

Step 3.Assign a KS value to each zone.
The KS values should progressively increase from the centre such that the outermost zone (exterior zone) has

a KS about twice as large as the innermost zone (central zone). In this case, let us use:

(Continued)
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Ks,C = 2Ks,A; Ks,B = 1 5Ks,A

Step 4. Compute the design KS values.
Summation of the product of each zone area and its KS should equal to the product of the mat area and Ks,av.

AA Ks,A +AB Ks,B +AC Ks,C = AA +AB +AC Ks,av

56 25 Ks,A + 70 313 1 5 Ks,A + 98 438 2 Ks,A = 152 Ks,av

Ks,A =
225
358 6

= 0 627Ks,av

Ks,A = 0 627 × 4000 = 2508 kN m3

Ks,B = 1 5Ks,A = 1 5 × 2508 = 3762 kN m3

Ks,C = 2Ks,A = 2 × 2508 = 5016 kN m3

Zone A 

15.00 m

11.25 m

7.50 m

Zone B 

Zone C 

1
5
.0

0
 m

7
.5

0
 m

1
1
.2

5
 m

Scheme 5.112

Zone B, Ks = 3762 kN/m3

Zone C, Ks = 5016 kN/m3

Zone A,
Ks = 2508 kN/m3

7.50 m

11.25 m

1
1
.2

5
 m

15.00 m

7
.5

0
 m

1
5
.0

0
 m

Scheme 5.113
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Problem 5.26

The plan of a simple mat foundation and the tabulated column working loads are shown in the scheme below. All
the columns are 0.4 × 0.4 m and carry no moment of significant value.
The design soil pressure or net qa and average modulus of subgrade reaction Ks,av, recommended by the

geotechnical engineer, are 60 kPa and 7200 kN/m3, respectively.
Design the mat by the conventional rigid method, and then check if this design method could be considered

appropriate. Use:

fc = 24 MPa

fy = 420 MPa

Solution:
Step 1. Compute resultant R of all working (unfactored) loads, as shown in Table 5.16.
Step 2. Find location of R and determine the eccentricities ex and ey.
(a) Take moments about the left edge of the mat and compute x as follows:

Rx =Σmoment of column D+ L ±ΣMy

x =

2 0 2 240 + 2 0 2 960 + 2 6 0 360 + 2 6 0 960

+ 11 8 300 + 810 + 810 + 270 ± 0
7230

= 5 83 m

ex =
12
2
−5 83 = 0 17 m <

B
6

7
.2

 m
 

7
.2

 m
 

0.2 m

0.2 m

  

B = 12 m

L
=

2
2
 m

 

  

7
.2

 m
5.8m5.8 m 0.2 m 

0.2 m 

10

1

64

7 8 9

32  

5

11 12 

y

y

x x

D,kN L,kNCol.No.

Axial col.loads

1 80 160

2 120 240

3 100 200

4 320 640

5 320 640

6 270 540

7 320 640

8 320 640

9 270 540

10 80 160

11 120 240

12 90 180

Scheme 5.114
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(b) Take moments about the bottom edge of the mat and compute y as follows:

Ry =Σmoment of column D+L ±ΣMx

y =

21 8 240 + 360 + 300 + 14 6 960 + 960 + 810 + 7 4 960 + 960 + 810

+ 0 2 240 + 360 + 270 ± 0
7230

= 11 04 m

ey = 11 04−
22
2
= 0 04 m <

L
6

Step 3. Determine the maximum net contact pressure (unfactored) using Equation (2.7) and compare it with the
given net qa.

q=
R
BL

1 ±
6ex
B

±
6ey
L

net qmax =
R
BL

1 +
6ex
B

+
6ey
L

Equation 2 7

=
7230
12 × 22

1 +
6 × 0 17

12
+
6 × 0 04

22
= 30 01 kPa

net qa = 60 kPa > net qmax OK

Step 4. Compute unfactored net contact pressure q at selected points beneath the mat using Equation (2.6). These
selected points are corners of continuous beam strips (or combined footings with multiple columns) to which
the mat is divided in both x and y directions, as shown in the scheme below.

Table 5.16 Computation of resultant R of all working (unfactored) loads.

Col. No.

Axial loads Moments

D, kN L, kN (D + L), kN Mx,(D+L) My,(D+L)

1 80 160 240 – – – –

2 120 240 360 – – – –

3 100 200 300 – – – –

4 320 640 960 – – – –

5 320 640 960 – – – –

6 270 540 810 – – – –

7 320 640 960 – – – –

8 320 640 960 – – – –

9 270 540 810 – – – –

10 80 160 240 – – – –

11 120 240 360 – – – –

12 90 180 270 – – – –

R = Σ (D + L) = 7230 kN Σ Mx = 0 Σ My = 0
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q x, y =
R
A
±
My

Iy
x ±

Mx

Ix
y Equation 2 6

My =R× ex = 7230 × 0 17 = 1229 1 kN m

Mx =R× ey = 7230 × 0 04 = 289 2 kN m

Iy =
LB3

12
=
22 × 123

12
= 3168m3; Ix =

BL3

12
=
12 × 223

12
= 10 648m3

q x,y =
7230
12 × 22

±
1229 1
3168

x ±
289 2
10 648

y = 27 39 ± 0 39 x ± 0 03 y

Step 5. Check static equilibrium of each individual beam strip and modify the column loads and contact pressures
accordingly.

(A) Beam strips in y − or L − direction.
Strip AEGC (3.1 × 22 m):
This strip is symmetrically loaded by columns No. 1, 4, 7 and 10.

column loads = 240 + 960 + 960 + 240 = 2400 kN

Average soil reaction = A qav = 3 1 × 22
30 06 + 28 85 + 28 19 + 29 40

4

= 1986 33 kN column loads

Therefore, static equilibrium is not satisfied ( Fv 0); the column loads and contact pressures need to be
modified.

1

7
.2

 m
7
.2

 m

3.1 m

12.0 m

5.8 m

3
.8

 m

3.1 m

3
.8

 m

2
2
.0

 m

10

6

ex

ey

4

R

K

M

C G H D

8 9

32

7

5

11  12

y

A

I

E F B

J

J X

N

Point

+ 27.39A

R/A

kPa
q

kPa

E

F

B

I

J

K

L

M

N

C

G

H

D

+ 2.34

+– 0.39 x

kPa

+– 0.03 y

kPa

+ 0.33 + 30.06*

+ 28.85

+ 26.59

+ 25.38

+ 29.95

+ 29.73

+ 29.51

+ 25.27

+ 25.05

+ 24.83

+ 29.40

+ 28.19

+ 25.93

+ 24.72

+ 0.33

+ 0.33

+ 0.33

+ 0.22

+ 0.22

– 0.22

– 0.22

– 0.33

– 0.33

– 0.33

– 0.33

0

0

+ 2.34

+ 2.34

+ 2.34

– 2.34

+ 2.34

– 2.34

– 2.34

– 2.34

– 2.34

+ 1.13

+ 1.13

– 1.13

– 1.13

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

+ 27.39

*The + sign indicates that the soil is in

“compression”

Scheme 5.115
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Qav =
1
2
Σ column loads +Aqav

Qav =
1
2
2400 + 1986 33 = 2193 17 kN Equation 5 49

The reducing factor for column loads of strip AEGC is

MF col =
Qav

Σcolumn loads

=
2193 17
2400

= 0 914

Equation 5 50

The increasing factor for contact pressures is

MF soil =
Qav

Aqav

=
2193 17
1986 33

= 1 104

Equation 5 51 - a

For each column load, the applicable factored load combinations of the ACI Section 9.2.1 are reduced to:

U = 1 2D+ 1 6L

Each column factored modified load (Table 5.17) = [MF(col.)](1.2 D + 1.6 L).

Since the strip is symmetrically loaded, the factored R falls at the centre and the factored contact pressure
qfactored is assumed uniformly distributed.

qfactored =
Rfactored

A

=
3218

3 1 × 22
= 47 185 kPa

Equation 5 52

The factored contact pressure per metre length of the strip is

qfactored = 47 185 × 3 1 = 146 27 kN m length

Table 5.17 Column factored modified loads.

Column No. Factored modified column loads

1 (0.914)(1.2 × 80 + 1.6 × 160) = 322 kN

4 (0.914)(1.2 × 320 + 1.6 × 640) = 1287 kN

7 (0.914)(1.2 × 320 + 1.6 × 640) = 1287 kN

10 (0.914)(1.2 × 80 + 1.6 × 160) = 322 kN

R = 3218 kN
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Strip EFHG (5.8 × 22 m):
This strip is also symmetrically loaded by columns No. 2, 5, 8 and 11.

Σ column loads = 360 + 960 + 960 + 360 = 2640 kN

Average soil reaction = A qav = 5 8 × 22
28 85 + 26 59 + 25 93 + 28 19

4

= 3494 96 kN Σ column loads

Therefore, static equilibrium is not satisfied (∑Fv 0); the column loads and contact pressures need to be modified.

Qav =
1
2
2640 + 3494 96 = 3067 48 kN

MF col =
3067 48
2640

= 1 162. It is an increasing factor for the columns of strip EFHG.

The contact pressure modification factor is

MF soil =
Qav

Aqav
=
3067 48
3494 96

= 0 878

It is a reducing factor in this case.
Each column factored modified load = [MF(col.)](1.2 D + 1.6 L), computed as shown in Table 5.18.

qfactored =
4500

5 8 × 22
= 35 27 kPa

The factored contact pressure per metre length of the strip is

qfactored = 35 27 × 5 8 = 204 57 kN m length

Strip FBDH (3.1 × 22 m):
This strip is unsymmetrically loaded by columns No. 3, 6, 9 and 12.

Σ column loads = 300 + 810 + 810 + 270 = 2190 kN

Average soil reaction = A qav = 3 1 × 22
26 59 + 25 38 + 24 72 + 25 93

4

= 1749 67 kN Σ column loads

Table 5.18 Column factored modified loads.

Column No. Factored modified column loads

2 (1.162)(1.2 × 120 + 1.6 × 240) = 614 kN

5 (1.162)(1.2 × 320 + 1.6 × 640) = 1636 kN

8 (1.162)(1.2 × 320 + 1.6 × 640) = 1636 kN

11 (1.162)(1.2 × 120 + 1.6 × 240) = 614 kN

R = 4500 kN

(Continued)
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Therefore, static equilibrium is not satisfied (ΣFv 0); the column loads and contact pressures need to bemodified.

Qav =
1
2
2190 + 1749 67 = 1969 84 kN

MF col =
1969 84
2190

= 0 899. This is a reducing factor for columns of strip FBDH.

Each column factored modified load = [MF(col.)](1.2 D + 1.6 L), computed as shown in Table 5.19.

Since the strip is unsymmetrically loaded, the factored R does not fall at the centre; it has an eccentricity eL or ey,
calculated as follows:

Ry = moment of factored column loads

y =
396 × 21 8 + 1068 × 14 6 + 1068 × 7 4 + 356 × 0 2

2888
= 11 15m

eL = 11 15−
22
2
= 0 15m<

L
6

The factored contact pressures are calculated, using Equation (5.53), as follows:

qfactored =
Rfactored

A
±
eLRfactored

IB
l

qmax =
2888

3 1 × 22
+

0 15 × 2888
3 1 × 223 12

× 11 = 42 346 + 1 732 = 44 078 kPa

qmin = 42 346−1 732 = 40 614 kPa

qmax = 44 078 × 3 1 = 136 64 kN m length

qmin = 40 614 × 3 1 = 125 9 kN m length

(B) Beam strips in x − or B − direction.
Strip ABJI (3.8 × 12 m):
This strip is unsymmetrically loaded by columns No. 1, 2 and 3.

column loads = 240 + 360 + 300 = 900 kN

Average soil reaction = A qav = 3 8 × 12
30 06 + 25 38 + 25 27 + 29 95

4

= 1261 52 kN ∑ column loads

Table 5.19 Column factored modified loads.

Column No. Factored modified column loads

3 (0.899)(1.2 × 100 + 1.6 × 200) = 396 kN

6 (0.899)(1.2 × 270 + 1.6 × 540) = 1068 kN

9 (0.899)(1.2 × 270 + 1.6 × 540) = 1068 kN

12 (0.899)(1.2 × 90 + 1.6 × 180) = 356 kN

R = 2888 kN
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Therefore, static equilibrium is not satisfied (ΣFv 0); the column loads and contact pressures need to be
modified.

Qav =
1
2
900 + 1261 52 = 1080 76 kN

MF col =
1080 76
900

= 1 2 It is an increasing factor for columns of stripABJI

Each column factored modified load = [MF(col.)](1.2 D + 1.6 L), computed as shown in Table 5.20.

Since the strip is unsymmetrically loaded, the factored R does not fall at the centre; it has an eccentricity ex
calculated as follows:

Rx =Σmoment of factored column loads

x =
422 × 0 2 + 634 × 6 0 + 528 × 11 8

1584
= 6 388 m

ex = 6 388−
12
2
= 0 388 m<

12
6

The factored contact pressures are calculated, using Equation (5.53), as follows:

qfactored =
Rfactored

A
±
exRfactored

Iy
l

qmax =
1584

3 8 × 12
+
0 388 × 1584
3 8 × 123 12

× 6 = 34 737 + 6 739 = 41 476 kPa

qmin = 34 737−6 739 = 27 998 kPa

qmax = 41 476 × 3 8 = 157 61 kN m length

qmin = 27 998 × 3 8 = 106 39 kN m length

Strip IJLK (7.2 × 12 m):
This strip is unsymmetrically loaded by columns No. 4, 5 and 6.

column loads = 960 + 960 + 810 = 2730 kN

Average soil reaction = A qav = 7 2 × 12
29 95 + 25 27 + 25 05 + 29 73

4

= 2376 kN column loads

Table 5.20 Column factored modified loads.

Column No. Factored modified column loads

1 (1.2)(1.2 × 80 + 1.6 × 160) = 422 kN

2 (1.2)(1.2 × 120 + 1.6 × 240) = 634 kN

3 (1.2)(1.2 × 100 + 1.6 × 200) = 528 kN

R = 1584 kN

(Continued)
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Therefore, static equilibrium is not satisfied (ΣFv 0); the column loads and contact pressures need to be
modified.

Qav =
1
2
2730 + 2376 = 2553 kN

MF col =
2553
2730

= 0 935. This is a reducing factor for columns of strip IJLK.

Each column factored modified load = [MF(col.)](1.2 D + 1.6 L), computed as shown in Table 5.21.

Since the strip is unsymmetrically loaded, the factored R does not fall at the centre; it has an eccentricity ex
calculated as follows:

Rx =Σmoment of factored column loads

x =
1316 × 0 2 + 1316 × 6 0 + 1111 × 11 8

3743
= 5 682 m

ex =
12
2
−5 682 = 0 318 m<

12
6

The factored contact pressures are calculated, using Equation (5.53), as follows:

qfactored =
Rfactored

A
±
exRfactored

Iy
l

qmax =
3743

7 2 × 12
+
0 318 × 3743
7 2 × 123 12

× 6 = 43 322 + 6 888 = 50 210 kPa

qmin = 43 322−6 888 = 36 434 kPa

qmax = 50 210 × 7 2 = 361 51 kN m length

qmin = 36 434 × 7 2 = 262 32 kN m length

Strip KLNM (7.2 × 12 m):
This strip is the same as strip IJLK. However, there is a very small difference in their average soil reactions; com-
puted equals 0.8% only, which may be considered negligible. For design purposes, assume both strips identical.
Strip MNDC (3.8 × 12 m):
This strip is unsymmetrically loaded by columns No. 10, 11 and 12.

Table 5.21 Column factored modified loads.

Column No. Factored modified column loads

4 (0.935)(1.2 × 320 + 1.6 × 640) = 1316 kN

5 (0.935)(1.2 × 320 + 1.6 × 640) = 1316 kN

6 (0.935)(1.2 × 270 + 1.6 × 540) = 1111 kN

R = 3743 kN
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Σ column loads = 240 + 360 + 270 = 870 kN

Average soil reaction = A qav = 3 8 × 12
29 51 + 24 83 + 24 72 + 29 40

4

= 1236 44 kN Σ column loads

Therefore, static equilibrium is not satisfied (ΣFv 0); the column loads and contact pressures need to be modified.

Qav =
1
2
870 + 1236 44 = 1053 22 kN

MF col =
1053 22
870

= 1 211. This is an increasing factor for columns of strip MNDC.

Each column factored modified load = [MF(col.)](1.2 D + 1.6 L), computed as shown in Table 5.22:

Since the strip is unsymmetrically loaded, the factored R does not fall at the centre; it has an eccentricity ex
calculated as follows:

Rx =Σmoment of factored column loads

x =
426 × 0 2 + 639 × 6 0 + 480 × 11 8

1545
= 6 203m

ex = 6 203−
12
2
= 0 203m<

12
6

The factored contact pressures are calculated, using Equation (5.53), as follows:

qfactored =
Rfactored

A
±
exRfactored

Iy
l

qmax =
1545

3 8 × 12
+
0 203 × 1545
3 8 × 123 12

× 6 = 33 882 + 3 439 = 37 321 kPa

qmin = 33 882−3 439 = 30 443 kPa

qmax = 37 321 × 3 8 = 141 82 kN m length

qmin = 30 443 × 3 8 = 115 68 kN m length

Step 6. Draw factored load, shear and moment diagrams for the continuous beam strips in both directions.
Note that some of the strips are unsymmetrically loaded; so shear and moment computations become more

tedious and troublesome unless a programmable calculator is available (use calculus to obtain shear and
moment values).

Table 5.22 Column factored modified loads.

Column No. Factored modified column loads

10 (1.211)(1.2 × 80 + 1.6 × 160) = 426 kN

11 (1.211)(1.2 × 120 + 1.6 × 240) = 639 kN

12 (1.211)(1.2 × 90 + 1.6 × 180) = 480 kN

R = 1545 kN

(Continued)
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(A) Beam strips in y − or L − direction.
Strip AEGC (3.1 × 22.0 m):

Strip EFHG (5.8 × 22.0 m):
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Strip FBDH (3.1 × 22.0 m):

(B) Beam strips in x − or B − direction.
Strip ABJI (3.8 × 12.0 m):
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Strip IJLK (7.2 × 12.0 m):

Strip KLNM (7.2 × 12.0 m):
The same load, shear and moment diagrams which belong to strip IJLK are also used for strip KLNM, since
these two strips are assumed identical, as mentioned earlier.

Strip MNDC (3.8 × 12.0 m):
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A summary of the maximum positive and negative bending moments per metre width of each strip is given
in Table 5.23.

Step 7.Determine the minimummat thickness considering punching shear (two-way or diagonal tension shear) at
critical columns.

Considering the factors which contribute to two-way shear (column load, soil reaction, column size and
length of shear perimeter at each column), by inspection, it appears that the maximum shear occurs at column
No. 4 (or column No. 7) with a three-side shear perimeter or at column No. 3 with a two-side shear perimeter.
Let us check first at which of these two columns the two-way shear is more critical:

Assume soil reaction on the shear block under each column is neglected (for the purpose of this checking
only) since it is too small compared to the column load.

Column No 4 factored load = 1 2D+ 1 6L= 1 2 320 + 1 6 640

= 1408 kN

Column No 3 factored load = 1 2D+ 1 6L= 1 2 100 + 1 6 200

= 440 kN

The shear–force ratio =
1408
440

= 3 2

Assume a range for the mat thickness d between 0.5 and 1.0 m.

The shear-perimeter ratio =
2 0 4 + 0 5d + 0 4 + d

2 0 4 + 0 5d
= 1 72 for d = 0 5m

= 1 78 for d = 1 0m

Since the shear–force ratio is much larger than the shear–perimeter ratios shear at column No. 4 is more
critical.

Table 5.23 Summary of the maximum positive and negative bending moments per metre width of each strip.

Moment (kN.m/m)
Strips in y- or L-direction Strips in x- or B-direction

AEGC EFHG FBDH ABJI IJLK KLNM MNDC

+Mmax 544 152 297 1 1 1 1

–Mmin 94 138 160 213 306 306 1

d/2

d/2

d/2

0.4 m 

 0.4 m 

Column No. 4 

b2 = 0.4 + d 

Critical shear perimeter

Scheme 5.122
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Consider two-way shear at column No. 4:
Equation (5.19): ØVc ≥Vu (taking reinforcement shear strength, Vs = 0)
or

Ø vc ≥ vu

where Ø = shear strength reduction factor = 0 75 ACI Section 9 3 2 3

Compute Ø vc:
Assume the mat thickness d = 0.6 m.
Shear strength of concrete Vc shall be the smallest of (a), (b) and (c):

(a)

Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1 0

1 fc bod = 0 51 fc bod

Equation 5 22

(b)

Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
30d
bo

+ 2 1 fc bod

= 0 083
30 × 0 6

2 0 4 + 0 3 + 0 4 + 0 6
+ 2 fc bod = 0 789 fc bod

Equation 5 23

(c)

Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

Use: Vc = 0 33 fc bod;vc =
Vc

bod
= 0 33 fc

Ø vc = 0 75 0 33 24 1000 = 1212 5 kN m2

Compute the factored shear stress, vu:
Column No. 4 is a side column with a three-side shear perimeter. The condition of unbalanced moment transfer
exists; and the design must satisfy the requirements of ACI Sections 11.11.7.1, 11.11.7.2 and 13.5.3. Therefore, we
should consider factored shear stresses due to both the direct shearVu and the moment transferMu, as given by the
following equation:

vu =
Vu

bod
±
γvMuC

Jc
ACI SectionR11 11 7 2
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CAB = distance from line A−B to the centroid of the shear perimeter

=

moment of area of sides

about A−B

area of sides
=

2 0 7 × d
0 7
2

2 × 0 70 + 1 0 d

=
2 0 7 × 0 6 0 7 2
2 × 0 70 + 1 0 0 6

= 0 204m
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Estimate the average soil pressure on the shear block = 29 kPa. (Note: it would be more correct if the factored
value is used. However, since its effect is nearly negligible and in order to obtain a more conservative design the
un-factored value is considered.)

Soil reaction on the shear block = 29 × 1 × 0.7 = 20.3 kN
Summation of moments about the centroid of the shear perimeter equals the unbalanced moment,Mu. Hence,

Mu = 1408 × 0 296−20 3 × 0 146 = 413 8 kN m

Vu = 1408−20 3 = 1387 7 kN

γv = 1− γf

γf =
1

1 + 2 3 b1 b2
ACI Section 11 11 7 1

=
1

1 + 2 3 0 7 1 0
= 0 642 ACI Section 13 5 3 2

γv = 1−0 642 = 0 358

Jc = Jz = Property of the shear perimeter analogous to polar moment of inertia

Jc = 2
b1d3

12
+ 2

db31
12

+ 2 b1d
b1
2
−CAB

2

+ b2d CAB
2

= 2
0 7 × 0 63

12
+ 2

0 6 × 0 73

12
+ 2 0 7 × 0 6

0 7
2

−0 204
2

+ 1 × 0 6 0 2042

= 0 0252 + 0 0343 + 0 0179 + 0 0250 = 0 1024m4

C =CDC = b1−CAB = 0 70−0 204 = 0 496m

İn this case, the shear stresses due to direct shear and shear due to moment transfer will add at points D and C,
giving the largest shear stresses on the critical shear perimeter. Hence,

vu DC =
Vu

bod
+
γvMuCDC

Jc
ACI SectionR11 11 7 2

vu DC =
1387 7

2 × 0 7 + 1 0 6
+
0 358 × 413 8 × 0 496

0 1024
= 963 68 + 717 56

= 1681 24 kPa > Ø vc = 1212 5 kPa Not OK

Assume another value for d and check Ø vc again.
Try d = 0.76 m:

b1 = 0 4 + d 2 = 0 78m; b2 = 0 4 + d = 1 16m

CAB =

moment of area of sides
about A−B

area of sides
=
2 0 78 × d 0 78 2
2 × 0 78 + 1 16 d

2 0 78 × 0 76 0 39
2 × 0 78 + 1 16 0 76

= 0 224 m

C =CDC = b1−CAB = 0 78−0 224 = 0 56 m
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Soil reaction on the shear block = 29 × 1 16 × 0 78 = 26 24 kN

Moment arm of soil reaction =
b1
2

−CAB

=
0 78
2

−0 224 = 0 17m

Moment arm of column load = b1−0 2 −CAB

= 0 58−0 22 = 0 36m

Mu = 1408 × 0 36−26 24 × 0 17 = 502 42 kN m

Vu = 1408−26 24 = 1381 76 kN

γf =
1

1 + 2 3 b1 b2

=
1

1 + 2 3 0 78 1 16
= 0 646; γv = 1−0 646 = 0 354

Jc = 2
b1d3

12
+ 2

db31
12

+ 2 b1d
b1
2
−CAB

2

+ b2d CAB
2

= 2
0 78 × 0 763

12
+ 2

0 76 × 0 783

12
+ 2 0 78 × 0 76

0 78
2

−0 224
2

+ 1 16 × 0 76 0 2242

= 0 0571 + 0 0601 + 0 0327 + 0 0442 = 0 194m4

vu DC =
1381 76

2 × 0 78 + 1 16 0 76
+
0 354 × 502 42 × 0 56

0 194
= 668 42 + 513 40

= 1181 82 kPa < Ø vc = 1212 5 kPa OK

Use d = 0.76 m; h = 0.85 m
Step 8. Check the computed mat depth d considering beam shear (one-way shear) at the most critical section.

Refer to the shear diagrams in Step 6. It is clear that the most critical section for shear per metre width is
located in strip AEGC at distance d from either the left face of column No. 4 or the right face of column No. 7.
The applied beam shear at any of these two locations is

Vu =
760 4−q d + 0 2

3 1
=
760 4−146 27 0 76 + 0 2

3 1
= 200 kN mwidth

Equation (5.19):
ØVc ≥Vu taking reinforcement shear strength, Vs = 0

Equation (5.20):

Vc = 0 17λ fc bwd
ØVc = 0 75 × 0 17 × 1 24 1000 1 0 76

= 474 7 kN m Vu = 200 kN m OK

Step 9. Obtain the design factored positive and negative moments per metre width using the factored moment
diagrams in Step 6.

Refer to Table 5.23 at the end of Step 6. Obtain the following factored maximum moments per metre width:
(A) Moments required for design of reinforcement in y − or L − direction.

(Continued)
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+Mmax = 544 kN m m for steel inmidspans, at bottom of the mat

−Mmax = 160 kN m m for steel in exterior spans, at top

(B) Moments required for design of reinforcement in x − or B − direction.
+ Mmax 1 kN. m/m. For all practical purposes, it is considered negligible.
− Mmax = 306 kN. m/m (for steel in both spans, at top of the mat)

Step 10. Determine the positive and negative flexural reinforcement required in each direction.

(A) Flexural reinforcement required in y − or L − direction.
(a) Negative reinforcement at top of the mat:

Equation (5.9): ØMn ≥Mu

Mu = 160 kN m m

Assume tension-controlled section, Ø = 0.9 and fs = fy.
Equation (5.10):

a=
Asfy

0 85fc b

=
As × 420

0 85 × 24 × 1
= 20 59As m

Equation (5.11):

ØMn = Ø Asfy d−
a
2

= 0 9 As × 420 × 1000 0 76−
20 59As

2

= 287 280As−3 891 510As
2

Let ØMn =Mu:
287 280As−3 891 510As

2 = 160

As
2−0 074As + 4 11 × 10−5 = 0

As =
− −0 074 ± −0 074 2− 4 1 4 11 × 10−5

2 × 1
=
0 074−0 073

2

= 0 5 ×
10−3 m2

m
= 500mm2 m required by analysis

ACI Section 10.5.1:

As,min =
0 25 fc

fy
bwd and not less than 1 4

bw d
fy

As,min =
0 25 24

420
× 1 × 0 76 = 2 216 × 10−3 m2 m= 2216mm2 m

1 4
bw d
fy

=
1 4 × 1 × 0 76

420
= 2 533 × 10−3 m2 m= 2533mm2 m

As,min > As by analysis. However, the requirements of ACI Section 10.5.1 need not be applied if, at every section,
As provided is at least one-third greater than that required by analysis (According to ACI Section 10.5.3).
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1 333 As by analysis = 1 333 × 500 = 667mm2 m

ACI Section 10.5.4:

As,min = 0 0018 bh= 0 0018 1 0 85 = 1 53 × 10−3 m2 m

= 1530mm2 m> 1 333 ×As by analysis

Use As,min = 1530 mm2/m.
The assumptions made are satisfied, since required As = As,min.

As, total = 1530 ×B= 1530 × 12 = 18 360 mm2

Try 36 No. 25 bars, As,provided = 36 × 510 = 18 360 mm2 (OK.)
ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing thick-

ness or 450 mm, whichever is smaller.
Use centre to centre bar spacing = 337 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
12 000− 35 × 337 + 25 4

2
= 89 8 mm> 75mm (OK.)

Check the development of reinforcement:
Refer to the moment diagrams of strips AEGC, EFHG and FBDH. Negative moments exist in the exterior spans of
all the three strips except strip EFHG where a very small negative moment of 25 kN.m/m exists in the middle span
also. Therefore, for all practical purposes there are no negative reinforcement required in the mid spans; they are
needed in the exterior spans only. However, we shall extend one out of each three bars full length (less 75 mm
concrete cover at the ends) of the mat. The other bars shall be extended beyond the inflection points and into the
column regions of the exterior spans.

In this case, the bars are in tension, the provided bar size is No. 25, the clear spacing of the bars exceeds 2db and
the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical section (which is
located where the maximum factored negative moment exists) shall be determined from the following equation,
but not less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db (ACI Sections 12.2.1, 12.2.2 and 12.2.4)

where the factors ψ e and λ are l (ACI Sections 12.2.4 and 8.6.1).
The factor ψ t = 1.3 because the reinforcement is placed such that more than 300 mm of fresh concrete exists

below the top bars (ACI Section 12.2.4).

ld =
420 × 1 3 × 1

1 7 × 1 × 24

25 4
1000

= 1 665 m= 1665mm> 300mm

Therefore, the required ld = 1665 mm.
The moment diagrams show that the smallest bar extension past the critical section (i.e. the available length) is

2200mm−75mmcover = 2125mm> 1665mm OK

MacGregor and Wight (2005) suggest that, in conventional design of combined footings (the mat strips
are continuous combined footings), the computed ld of the negative tension reinforcement (top steel bars)
shall satisfy Equation (12.5) of ACI Section 12.11.3. This is due to the fact that in the case of a combined
footing (designed as a reinforced concrete beam), the loading, the supports, and the shape of the moment
diagram are all inverted from those found in a normally loaded beam carrying gravity loads (loaded on the
top surface and supported on the bottom surface), where the ACI equation concerns the positive tension
reinforcement.

(Continued)
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Check ACI Section 12.11.3:

ld ≤
Mn

Vu
+ la ACIEquation 12 5

Mn = nominal flexural strength of the cross section. It is calculated assuming all reinforcement at the section to
be stressed to fy

Vu = shear at the section where the inflection point is located.
la = additional embedment length beyond centerline of support or point of inflection la at a support shall be the

embedment length beyond center of support; at a point of inflection shall be limited to d or 12 db, whichever is
greater.

Mn =Asfy d−
a
2

a=
Asfy

0 85fc b
=

1000
337

×
510
106

420

0 85 24 1
= 0 031 m

Mn =
1000
337

×
510
106

420 × 1000 0 76−
0 031
2

= 473 2 kN m m

As mentioned before, we shall extend two-thirds of all the steel bars beyond the inflection points and into the
column regions of the exterior spans.

In y − or L − direction, the exterior supports are columns No. 1, 2, 3, 10, 11 and 12; and the interior supports are
columns No. 4, 5, 6, 7, 8 and 9. From shear diagrams of the strips in long direction, at points of inflection, max-
imum shear values are:

At all the exterior supports of the three strips, it is clear that maximum shear per metre width is:

Vu =
368 7
3 1

= 119 kN m

At the interior supports, maximum shear per metre width at inflection points in each of the three strips are:

Strip AEGC Vu =
760 4− 7 4−4 2 146 27

3 1
= 94 3 kN m

Strip EFHG Vu =
899 8− 7 4−5 8 204 57

5 8
= 98 7 kN m

Strip FBDH:

at x = 5 6 m q= 136 64−0 488 × 5 6 = 133 91 kN m

at x = 7 4 m q= 136 64−0 488 × 7 4 = 133 03 kN m

at x = 5 6 m Vu =
601 8−

7 4−5 6 133 91 + 133 03
2

3 1
= 116 6 kN m approximately

at x = 14 6m q= 136 64−0 488 × 14 6 = 129 52 kN m

at x = 16 8m q= 136 64−0 488 × 16 8 = 128 44 kN m

at x = 16 8m Vu =
589 1−

16 8−14 6 129 52 + 128 44
2

3 1
= 98 5 kN m approximately
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For strip FBDH, maximum Vu = 116.6 kN/m (approximately)
Therefore, use maximum Vu = 116.6 kN/m (approximately)
At the exterior supports, the available distance beyond the centreline of each column is

la = 0 20m−0 075mcover = 0 125m

Mn

Vu
+ la =

473 2
119 0

+ 0 125 = 4 1m ld = 1 665m OK

At the interior supports, extend the top bars to the interior face (away from exterior column) of the interior
columns. The available distance beyond the centreline of each column is

la = 0 20m

Mn

Vu
+ la =

473 2
116 6

+ 0 2 = 4 3m ld = 1 665m OK

Provide 36 No. 25 bars @ 337 mm c.c., placed at top of the mat in L-direction. Extend one out of each three bars
full length (less 75 mm concrete cover at the ends) of the mat. The other bars shall be cut at the interior face of the
interior columns to provide reinforcement for the exterior spans.
(b) Positive reinforcement at bottom of the mat:

Mu = 544 kN m m

ØMn ≥Mu

Assume tension-controlled section, Ø = 0.9 and fs = fy.

ØMn = Ø Asfy d−
a
2

Equation 5 11

Equation (5.10):

a=
Asfy

0 85fc b

=
As × 420

0 85 × 24 × 1
= 20 59As m

ØMn = 0 9 As × 420 × 1000 0 76−
20 59As

2

= 287280As−3891510A2
s kN m m

Let ØMn =Mu:

287280As−3891510A2
s = 544

A2
s −0 074As + 1 4 × 10−4 = 0

As =
− −0 074 ± −0 074 2− 4 1 1 4 × 10−4

2 × 1
=
0 074−0 070

2

= 2 ×
10−3 m2

m
= 2000mm2 m required by analysis

(Continued)
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ACI Section 10.5.1:

As,min =
0 25 fc

fy
bwd and not less than 1 4

bw d
fy

As,min =
0 25 24

420
× 1 × 0 76 = 2 216 × 10−3 m2 m= 2216mm2 m

1 4
bw d
fy

=
1 4 × 1 × 0 76

420
= 2 533 × 10−3 m2 m= 2533mm2 m

As,min > As by analysis Therefore, use As = As,min = 2533 mm2/m
The assumptions made are satisfied, since As required = As,min.

As, total = 2533 ×B= 2533 × 12 = 30 396mm2

Try 60 No. 25 bars, As,provided = 60 × 510 = 30 600 mm2 (OK.)
ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing thick-

ness, or 450 mm, whichever is smaller.
Use centre to centre bar spacing = 200 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
12 000− 59 × 200 + 25 4

2
= 87 3 mm> 75mm OK

Check the development of reinforcement:
We shall extend one out of each four bars full length (less 75 mm concrete cover at the ends) of the mat. The

other bars shall be extended beyond the inflection points a distance equal to d or 12db, whichever is greater (ACI
Sections 12.10.3). In this case, it is clear that d controls. Maximum distance between any two inflection points in all
the three strips is 13.6 m (strip AEGH). Therefore, each cut off point shall be located beyond the column centre at a
distance equal to

13 6−7 2
2

+ 0 76 = 3 96 m; say, 4m

In this case, the bars are in tension, the provided bar size is No. 25, the clear spacing of the bars exceeds 2db and
the clear cover exceeds db. Therefore, the development length ld of bars at each side of the critical section (which is
located where the maximum factored positive moment exists) shall be determined from the following equation,
but not less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db (ACI Sections 12.2.1, 12.2.2 and 12.2.4)

Where the factors ψ t, ψ e and λ are 1 (ACI Sections 12.2.4 and 8.6.1).

ld =
420 × 1 × 1

1 7 × 1 × 24

25 4
1000

= 1 28 m= 1280mm> 300mm

Therefore, the required ld = 1280 mm.
The bar extension past the critical section (at column centre) is

4m= 4000mm 1280mm OK
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Provide 60 No. 25 bars @ 200 mm c.c., placed at bottom of the mat in L-direction. Extend one out of each four bars
full length (less 75 mm concrete cover at the ends) of the mat. The other bars (short bars of 15.2 m length) shall be
extended 4 m beyond the centre line of each interior column toward the exterior column.
(B) Flexural reinforcement required in x − or B − direction.

(a) Negative reinforcement at top of the mat:

Mu = 306 kN m m

ØMn ≥Mu

Assume tension-controlled section, Ø = 0.9 and fs = fy.

ØMn = Ø Asfy d−
a
2

Equation 5 11

Equation (5.10):

a =
Asfy

0 85fc b

=
As × 420

0 85 × 24 × 1
= 20 59As m

d = 0 7600−0 0254 = 0 735m

ØMn = 0 9 As × 420 × 1000 0 735−
20 59As

2

= 277 830As−3 891 510A2
s kN m m

Let ØMn =Mu:

277 830As−3 891 510A2
s = 306

A2
s −0 0714As + 4 11 × 10−5 = 0

As =
− −0 0714 ± −0 0714 2− 4 1 7 86 × 10−5

2 × 1
=
0 0714−0 0692

2
= 1 1 × 10−3 m2 m= 1100mm2 m required by analysis

ACI Section 10.5.1:

As,min =
0 25 fc

fy
bwd and not less than 1 4

bw d
fy

As,min =
0 25 24

420
× 1 × 0 735 = 2 143 × 10−3 m2 m= 2143mm2 m

1 4
bw d
fy

=
1 4 × 1 × 0 735

420
= 2 450 × 10−3 m2 m= 2450mm2 m

(Continued)
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As,min > As by analysis. However, the requirements of ACI Section 10.5.1 need not be applied if, at every section,
As provided is at least one-third greater than that required by analysis (According to ACI Section 10.5.3).

1 333 As by analysis = 1 333 × 1100 = 1463mm2 m

ACI Section 10.5.4:

As,min = 0 0018 bh= 0 0018 1 0 85 = 1 53 × 10−3 m2 m

= 1530mm2 m> 1 333 ×As by analysis

Use As = As,min = 1530 mm2/m
The assumptions made are satisfied, since required As = As,min.

As, total = 1530 × L= 1530 × 22 = 33 660mm2

Try 66 No. 25 bars, As,provided = 66 × 510 = 33 660 (OK.)
ACI Sections 7.6.5 and 10.5.4 requires maximum spacing shall not exceed three times the slab or footing thick-

ness, or 450 mm, whichever is smaller.
Use centre to centre bar spacing = 335 mm. Check the 75 mm minimum concrete cover at each side:

Concrete cover =
22 000− 65 × 335 + 25 4

2
= 99 8 mm> 75mm OK

Check the development of reinforcement:
We shall extend all the bars full width (less 75 mm concrete cover at the ends) of the mat.
In this case, the bars are in tension, the provided bar size is No. 25, the clear spacing of the bars exceeds 2db, and

the clear cover exceeds db Therefore, the development length ld of bars at each side of the critical section (which is
located where the maximum factored negative moment exists) shall be determined from the following equation,
but not less than 300 mm:

ld =
fy ψ t ψ e

1 7 λ fc
db (ACI Sections 12.2.1, 12.2.2 and 12.2.4)

where the factors ψ e and λ are l (ACI Sections 12.2.4 and 8.6.1).
The factor ψ t = 1.3 because the reinforcement is placed such that more than 300 mm of fresh concrete exists

below the top bars (ACI Section 12.2.4).

ld =
420 × 1 3 × 1

1 7 × 1 × 24

25 4
1000

= 1 665m= 1665mm> 300mm

Therefore, the required ld = 1665 mm.
The moment diagrams show that the smallest bar extension past the critical section (i.e. the available length) is

3500mm−75mmcover = 3425mm> 1665mm OK

Check ACI Section 12.11.3:
In this case, it is required to check ACI Equation (12.5) at the exterior supports only, since all the bars are

extended full width of the mat.

ld ≤
Mn

Vu
+ la ACIEquation 12 5

632 Shallow Foundations



Mn =Asfy d−
a
2

a =
Asfy

0 85fc b
=

1000
335

×
510
106

420

0 85 24 1
= 0 0313 m

Mn =
1000
335

×
510
106

420 × 1000 0 735−
0 0313

2

Vu =
1243 9
7 2

= 172 8 kN m

At all the exterior supports of the three strips, it is clear that maximum shear per metre length is

Vu =
1243 9
7 2

= 172 8 kN m

At the exterior supports, the available distance beyond the centreline of each column is

la = 0 20m−0 075 mcover = 0 125m

Mn

Vu
+ la =

460 0
172 8

+ 0 125 = 2 8m> ld = 1 665m OK

Provide 66 No. 25 bars @ 335 mm c.c., placed at top of the mat in B − direction and directly below the bars in
L-direction. Extend all the bars full width (less 75 mm concrete cover at the ends) of the mat.
(b) Positive reinforcement at bottom of the mat:

As mentioned in Step 9, for all practical purposes there are no (+) moments in any span; so (+) moment
steel in x − or B − direction is not required by analysis. However, enough supportive steel bars shall be pro-
vided and wired to the bottom bars in L − direction so that the latter bars can be positioned and held properly.

Provide 50-No. 13 bars @ 450 mm c.c., at bottom of the mat in B − direction, wired to the bars in L −
direction. Extend all the bars full width (less 75 mm concrete cover at the ends) of the mat.

Step 11. Check column bearing on the mat at critical column locations and design the column to mat dowels.
The design computations proceed in the same manner as that presented in the design Steps 5 and 6 for the

column footing of Problem 5.3. The necessary computations are left for the reader.
Step 12. Check if the conventional rigid design method could be considered appropriate.

The rigid design method is considered appropriate if the mat strips, both ways, can be considered or treated
as a rigid body. As mentioned in Section 5.10.1, strips (continuous footings or combined footings with multiple
columns) can be considered rigid if the following requirements or criteria are met:

(a) Variation in adjacent column loads and spacing is not over 20% of the greater value.
(b) Average of two adjacent spans is < (1.75/ λ).

Equation (5.48):

λ=
KsB
4EcI

4

Where
Ks = coefficient (or modulus) of vertical subgrade reaction
Ec = modulus of elasticity of concrete
I = moment of inertia of the beam (strip) section
B = width of the strip

(Continued)
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Criterion (a):
All strips (both ways) have no variation in the adjacent column spacing. The problem is with the column

loads. All strips except strips IJLK and KLNM have adjacent column loads varying by more than 20%.
Therefore criterion (a) is not fully satisfied. One may estimate that this requirement of rigidity is only

50–60% met.
Criterion (b):

Ec = 4700 fc (ACI Section 8.5.1)

Ec = 4700 × 24 = 23025 2 MPa = 5 2 × 107 kPa

Ks, av = 7200 kN m3 given

I =
bh3

12
=

B 0 853

12
= 0 051 B m4

λ=
KsB
4EcI

4

=
7200 B

4 5 2 × 107 0 051 B
4

= 0 161

1 75
λ

=
1 75
0 161

= 10 87m

Maximum span length in all the strips (both ways) is 7.2 m < (1.75/ λ)
Therefore, the rigidity requirement of criterion (b) is fully satisfied.
However, since both rigidity criteria were not met simultaneously, one may consider the conventional rigid

method is unsuitable or not appropriate for design of the given mat.

Step 13. Draw the final design sketches showing top and bottom steel bars, as shown below.

Steel bars @ top of matSteel bars @ bottom of mat

Mat thickness h = 0.85 m
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Problem 5.27

The plan of a mat foundation with nine reinforced concrete columns is shown in the scheme below. The scheme
also shows the working dead load D and live load L for each column. All the columns are 0.5 × 0.5 m in cross-
section and are spaced at 8.0 m each way. The edge distance of the mat from the centreline of the exterior columns
is 1.0 m. All the columns carry no moment of significant value. The design soil pressure or net qa and average
modulus of subgrade reaction Ks,av, recommended by the geotechnical engineer, are 100 kPa and 13 000 kN/m3,
respectively. Design the mat by the approximate flexible method. Use: fc = 24 MPa; fy = 420 MPa.

Solution:
Step 1. Compute the working and factored (D + L) column loads and their resultants; then check net qa.

All the column loads and resultants are computed and tabulated, as shown in Table 5.24.

1
.0

8
.0

 m
8
.0

 m

8.0 m
1.0

B = 18.0 m

y

y

x x

L
=

1
8
.0

 m

  8.0 m 
1.0

1
.0

1

64

9

  3

7

 2

5

8

Column loads, kN

Col. No.

1 360 540

720

540

720

1080

720

540

720

540

480

360

480

720

480

360

480

360

2

3

4

5

6

7

8

9

D L

Scheme 5.126

Table 5.24 Column loads and resultants.

Col. No.

Working loads

Unfactored col. loads (D + L), kN Factored col. loads (1.2 D + 1.6 L), kND, kN L, kN

1 360 540 900 1296

2 480 720 1200 1728

3 360 540 900 1296

4 480 720 1200 1728

5 720 1080 1800 2592

6 480 720 1200 1728

7 360 540 900 1296

8 480 720 1200 1728

9 360 540 900 1296

Unfactored R = 10200 kN Factored R = 14688 kN

(Continued)
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Unfactorednet q=
unfactoredR

A
=
10 200
18 × 18

= 31 5 kPa net qa = 100 kPa OK

Step 2. Determine the minimum mat thickness t considering punching shear.
In this problem, all the columns are of the same size with the same four-side shear perimeter. Therefore,

punching shear is most critical at the heaviest column which is the interior column (Col. No. 5). Since it is
common practice not to use shear reinforcement, we conservatively neglect the resisting factored soil reaction
(which is too small compared to the factored column load) on the shear block. Thus, the factored applied shear
force on the shear perimeter is

Vu = 2592 kN

Equation (5.19):

ØVc ≥Vu (taking reinforcement shear strength, Vs = 0)

where Ø = strength reduction factor ACI Section 9 3 2 3

= 0 75 for shear

Shear strength of concrete Vc shall be the smallest of (a), (b) and (c):

(a) Vc = 0 17 1 +
2
β

λ fc bod

= 0 17 1 +
2
1 0

1 fc bod = 0 51 fc bod

Equation 5 22

(b) Vc = 0 083
αsd
bo

+ 2 λ fc bod

= 0 083
40d
bo

+ 2 1 fc bod

Equation 5 23

(c) Vc = 0 33 λ fc bod

= 0 33 1 fc bod = 0 33 fc bod
Equation 5 24

d/2
Critical section for

two-way shear

d/2

500-mm square column

Column No. 5

Scheme 5.127
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Use Vc = 0 33 fc bod. Calculate d then check Vc of Equation (5.23).
Let ØVc = Vu:

ØVc = 0 75 0 33 24 1000 4 0 5 + d d = 4850 d2 + 2425d

4850d2 + 2425d = 2592

d2 + 0 50 d−0 534 = 0

d =
−0 5 ± 0 5 2−4 1 −0 534

2
=
−0 5 + 1 545

2
= 0 523 m

Check Vc of Equation (5.23):

Vc = 0 083
40 × 0 523

4 0 5 + 0 523
+ 2 fc bod = 0 59 fc bod

Vc = 0 33 fc bod < 0 59 fc bod OK

Assume using No. 22 bars and 75 mm clear concrete cover. Therefore, t = 523 + 11 + 75 = 609 mm
Try t = 0.65 m = 650 mm.

Step 3. Determine the flexural rigidity D of the mat.
Equation (5.54):

D=
Ef t3

12 1−μ2f

Ef = Ec = 4700 fc ACI Section 8 5 1

Ec = 4700 × 24 = 23025 2 MPa = 23 03 × 106 kPa

μf = μc. For concrete, assume μc = 0.15.

D=
23 03 × 106 × 0 653

12 1−0 152
= 5 395× 105 kN m

Step 4.Determine the radius of effective stiffness L and define a value for the radius of influence on the order of 3L
to 4L

Equation (5.55):
L =

D
Ks

4

L =
5 392 × 105

13000

4

= 2 54 m

3L = 3 × 2 54 = 7 62 m; 4L = 4 × 2 567 = 10 16m

Assume we recommend: radius of influence < 10 m.

Step 5. Determine moments (Mr, Mt,Mx,My), shear force V and deflection δ at points of interest so that a com-
plete analysis of the given mat may be furnished.

The mat and its loads are symmetrical in both x and y directions. Therefore, it is clear that only one-eighth of
the mat area needs to be analysed. Thus,M,V, and δ values at Points α through i will complete the analysis, as
shown in the scheme below.

The foundation responses, namely, moments, shear and deflection, per unit width of the mat are expressed
by Equations (5.56) to (5.62). Values of Z for the desired values of the ratio r/L are obtained from Figure 5.19, as
shown in Table 5.25.

(Continued)
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Table 5.26 gives the calculated factored moments, shear and deflection at the points of interest. It is note-
worthy that, theoretically, as observed from Figure 5.19 (Z4 and Z4 are∞ for zero r/L ), the moments and shear
due to a point load at the load itself will be infinite. Therefore, it will be necessary to determine these responses at
the column faces and, for design purpose, assume their maximum values uniform under the column. In the
present Problem with square columns, Mx and My (moments in x and y directions) at the column faces will
have the same maximum values. Also, Mx and My, calculated from Equations (5.58) and (5.59), are moments
about the y − and x − axis, respectively.

8
.0

 m
8
.0

 m

8.0 m

1.0

B = 18.0 m

y

y

e f

h i

a b c d

xx

L
=

1
8
.0

 m

8.0 m
  1.0

1
.0

 1
.0

1

64

8 9

  3 2

7

5
 4 m

 4 m

4 m 4 m

Notes:

(1) Points a, c and h are located

at center of columns No. 5, 6 and
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follows:

Point a: Cols. No. 5, 4, 2,

6 and 8.

Point b: Cols. No. 5, 2, 3,

6, 9 and 8.

Point c and d: Cols. No. 5,

3, 6 and 9.

Point e, f and g:

     Cols. No. 5, 2, 3 and 6.

Point h and i: Cols. No. 2

3 and 6.

g

Scheme 5.128

Table 5.25 Values of Z for the desired values of the ratio r/L .

r, m r/L Z3 Z3 Z4 Z4

0.25 0.10 0.490 −0.100 −0.850 1.550

1.00 0.39 0.440 −0.210 −0.575 1.200

4.00 1.57 0.190 −0.180 −0.025 0.170

4.12 1.62 0.180 −0.170 −0.020 0.165

5.66 2.23 0.100 −0.125 0.040 0.040

8.00 3.15 0.025 −0.060 0.040 −0.020

8.06 3.17 0.024 −0.058 0.038 −0.022

8.94 3.52 0.015 −0.040 0.035 −0.025

9.00 3.54 0.013 −0.035 0.034 −0.023

9.85 3.88 0.002 −0.020 0.025 −0.020
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Table 5.26 Calculated factored moments, shear and deflection.

(1) Point a:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

2592 0.25 0 633.4 0, 90 0,1 1,0 633.4 633.4 −395.4 3.9

1728 8.00 −24.3 4.4 0 0 1 −24.3 4.4 3.4 0.1

1728 8.00 −24.3 4.4 −90 1 0 4.4 −24.3 3.4 0.1

1728 8.00 −24.3 4.4 180 0 1 −24.3 4.4 3.4 0.1

1728 8.00 −24.3 4.4 90 1 0 4.4 −24.3 3.4 0.1

Σ = 593.6 593.6 −381.8 4.3

(2) Point b:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

2592 4.00 −46.9 65.6 0 0 1 −46.9 65.6 −43.4 1.5

1728 8.94 −19.3 1.9 −63.5 0.8 0.2 −2.3 −15.1 4.3 0.1

1296 8.94 −14.5 1.4 243.5 0.8 0.2 −1.8 −11.3 3.2 0.1

1728 4.00 −31.3 43.7 180 0 1 −31.3 43.7 −28.9 1.0

1296 8.94 −14.5 1.4 116.5 0.8 0.2 −1.8 −11.3 3.2 0.1

1728 8.94 −19.3 1.9 63.5 0.8 0.2 −2.3 −15.1 4.3 0.1

Σ = −86.4 56.5 −57.3 2.9

(3) Point c:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

2592 8.00 −36.4 6.6 0 0 1 −36.4 6.6 5.1 0.2

1296 8.00 −18.2 3.3 −90 1 0 3.3 −18.2 2.6 0.1

1728 0.25 0 422.3 0, 90 0, 1 1, 0 422.3 422.3 −263.6 2.6

1296 8.00 −18.2 3.3 90 1 0 3.3 −18.2 2.6 0.1

Σ = 392.5 392.5 −253.3 3.0

(4) Point d:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

2592 9.00 −27.5 2.1 0 0 1 −27.5 2.1 5.9 0.1

1296 8.06 −17.4 3.2 −82.9 0.98 0.02 2.8 −17.0 2.8 0.1

1728 1.00 50.7 235.0 0 0 1 50.7 235.0 −204.1 2.3

1296 8.06 −17.4 3.2 82.9 0.98 0.02 2.8 −17.0 2.8 0.1

Σ = 28.8 203.1 −192.6 2.6

(Continued )
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Table 5.26 (Continued)

(5) Point e:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

2592 5.66 −56.8 27.0 45 0.5 0.5 −14.9 −14.9 −10.2 0.8

1728 5.66 −37.9 18.0 −45 0.5 0.5 −10.0 −10.0 −6.8 0.5

1296 5.66 −28.4 13.5 225 0.5 0.5 −7.5 −7.5 −5.1 0.4

1728 5.66 −37.9 18.0 135 0.5 0.5 −10.0 −10.0 −6.8 0.5

Σ = −42.4 −42.4 −28.9 2.2

(5) Point f:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

2592 9.85 −28.9 2.9 26.6 0.2 0.8 −22.5 −3.5 6.4 0.1

1728 9.85 −19.3 1.9 −26.6 0.2 0.8 −15.1 −2.3 4.3 0.1

1296 4.00 −23.5 32.8 −90 1 0 32.8 −23.5 −21.7 0.7

1728 4.00 −31.3 43.7 90 1 0 43.7 −31.3 −28.9 1.0

Σ = 38.9 −60.6 −39.9 1.9

(6) Point g:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

2592 9.85 −19.0 0.4 24 0.17 0.83 −15.7 −2.9 5.1 0.1

1728 9.85 −12.7 0.3 −24 0.17 0.83 −10.5 −1.9 3.4 0

1296 4.12 −22.4 29.9 −76 0.94 0.06 26.8 −19.3 −21.0 0.7

1728 4.12 −29.9 39.8 76 0.94 0.06 35.6 −25.7 −28.1 0.9

Σ = 36.2 −49.8 −40.6 1.7

(7) Point h:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

1728 8.00 −24.3 4.4 0 0 1 −24.3 4.4 3.4 0.1

1296 0.25 0 316.7 0,90 0,1 1,0 316.7 316.7 −197.7 2.0

1728 8.00 −24.3 4.4 90 1 0 4.4 −24.3 3.4 0.1

Σ = 296.8 296.8 −190.9 2.2

(8) Point i:

P
(kN)

r
(m)

Mr

(kN, m)
Mt

(kN, m)
θ

(deg)
sin2 θ cos2 θ Mx

(kN, m)
My

(kN, m)
V

(kN)
δ

mm

1728 9.00 −18.3 1.4 0 0 1 −18.3 1.4 3.9 0.1

1296 1.00 38.0 176.3 0 0 1 38.0 176.3 −153.1 1.7

1728 8.06 −23.2 4.3 82.9 0.98 0.02 3.8 −22.7 3.7 0.1

Σ = 23.5 155.0 −145.5 1.9
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Step 6.Applymoment and shear equal and opposite to those given in the tables of Step 5 for the edge points d, g and
i as edge redundant loads, and superimpose their effects (moment, shear and deflection) on the respective values
at the points located less than 10m (radius of influence) from the particular edge point. For this purpose, use the
moment, shear and deflection equations given in Section 5.10.3, repeated here for convenience:

M =M1 Aλx−
P1
λ
Bλx V = −2M1 λBλx−P1Cλx

δ= −
2M1 λ

2

Ks
Cλx +

2P1 λ
Ks

Dλx

where M1, P1 = the applied edge moment and shear, respectively.

λ=
Ksb
4EcIb

0 25

Equation 5 48

where b = strip width (1 m); Ib = moment of inertia of the strip.
Aλx, Bλx, Cλx and Dλx are coefficients obtained from tables or figures. For example, see Table 9-3 of Foundation

Analysis and Design (Bowles, 1982).
In these equations, P1 and M1 are equal and opposite to the calculated redundant loads V and Mx (actually

should be zero), respectively, of a point at the east or west edge. They are applied at the edge point; the effects
M, V and δ calculated and superimposed on the respective previous values at all the points within the radius
of influence on the E–W line which contains the edge point. Similarly, at the north or south edge the redundant
loads are V and My; the necessary corrections should be applied to respective previous values at all the points
within the radius of influence on the N–S line which contains the edge point.

As mentioned earlier, in the present conventionMx is the moment about the y-axis andMy is themoment about
the x-axis. It may be noted that, due to symmetry of the mat of the present Problem, Mx and My at the east edge
points are equal to My and Mx, respectively, at the corresponding north edge points.

λ=
Ksb
4EcIb

0 25

=
13 000 × 1

4 × 23 03 × 106 1 × 0 653 12

0 25

= 0 28 m−1

The calculated correction values of M,V and δ are given in the Table 5.27.
Final net results (after superposition of the respective values) of moment, shear and deflection values at points a,

b, c, d, e, f and h on the E–W line are given in Table 5.28. Due to symmetry of the given mat, the corresponding
points on the N–W line have the same moment, shear and deflection values. The moment and shear values are per
unit width of the mat each way. Thus, these values will complete the analysis.
Step 7. Check the mat thickness (t = 650 mm) considering beam shear (one-way shear) using maximum shear

force Vu = 359.4 kN/m width.
Equation (5.19): ØVc ≥Vu taking reinforcement shear strength,Vs = 0

Equation (5.20): Vc = 0 17λ fc bwd

d = t−concrete cover−half bar diameter

= 650−75−11 = 564mm

ØVc = 0 75 × 0 17 × 1 24 1000 1 0 564

= 352 3 kN m< Vu = 359 4 kN m Not OK
(Continued)
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However, the difference (1.7%) is so small that the 0.65-m thickness may be considered acceptable or increased
by 15 mm (i.e t = 665 mm). This slight increase in the mat thickness would not require any analysis revision.

Use mat thickness t = 665 mm.

Step 8. Determine the positive and negative flexural reinforcement required in E–W and N–S directions, that is x
and y directions, respectively.

Due to the symmetry of the given mat and its loads, the same positive and negative flexural reinforcement
shall be required in both x and y directions. The design maximum positive and negative moments per metre
width of the mat are: +M = 561.4 kN.m; −M = 261.8 kN. m. The design of flexural reinforcement proceeds in
the same manner as that for the mat of the Solution of Problem 5.26, Step 10, with attention to the moment
locations. The remainder of the solution is left for the reader.

Step 9. Check column bearing on the mat at critical column locations and design the column to mat dowels.
The design computations proceed in the same manner as that presented in the design Steps 5 and 6 for the

column footing of Problem 5.3. The necessary computations are left for the reader.

Step 10. Develop the final design sketches.

Table 5.27 Calculated correction values of M, V and δ.

(1) Edge point d, (E − W line): M1 = −28.8 kN.m; P1 = 192.6 kN

Point x (m) λx Aλx Bλx Cλx Dλx M (kN.m) V (kN) δ (mm)

a 9 2.52 −0.0175 0.0475 −0.1124 −0.0649 −32.2 22.4 0.0

b 5 1.40 0.2849 0.2430 −0.2011 0.0419 −175.4 42.7 0.0

c 1 0.28 0.9416 0.2078 0.5190 0.7266 −170.1 −96.6 0.0

(2) Edge point g, (E − W line): M1 = −36.2 kN.m; P1 = 40.6 kN

Point x (m) λx Aλx Bλx Cλx Dλx M (kN.m) V (kN) δ (mm)

e 5 1.40 0.2849 0.2430 −0.2011 0.0419 −45.5 13.1 0.0

f 1 0.28 0.9416 0.2078 0.5190 0.7266 −64.2 −16.9 0.0

(3) Edge point i, (E − W line): M1 = −23.5 kN.m; P1 = 145.5 kN

Point x (m) λx Aλx Bλx Cλx Dλx M (kN.m) V (kN) δ (mm)

h 1 0.28 0.9416 0.2078 0.5190 0.7266 −130.1 −72.8 0.0

Table 5.28 Moment, shear and deflection values.

Point M (kN. m) V (kN) δ (mm)

a 561.4 −359.4 4.3

b −261.8 −14.6 2.9

c 222.4 −349.9 3.0

e −87.9 −15.8 2.2

f −25.3 −56.8 1.9

h 166.7 −263.7 2.2
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Problem 5.28

Consider the mat foundation of Problem 5.27.

(a) Check the rigidity of the mat. Use t = 665 mm, Ec = 23.03 × 106 kPa and Ks = 13000 kN/m3.
(b) Using the conventional (rigid) design method, determine the minimum mat thickness t and the design

maximum positive and negative moments. Compare the results with those obtained in the Solution of
Problem 5.27.

Solution:
(a) A strip taken from a mat may be considered rigid if the following criteria are met:

(1) Variation in adjacent column loads and spacing is not over 20% of the greater value.
(2) Average of two adjacent spans is < (1.75/ λ). The factor λ is

λ=
KsB
4EcI

4 Equation 5 48

Criterion (1) is not fully satisfied since variation in the adjacent column loads is over 20% of the greater
value (25 and 33%).

=
KsB
4EcI

4 =
KsB

4Ec
Bt3

12

4 =
13 000 × 12

4 × 23 03 × 106 × 0 6653
4

= 0 275m−1;
1 75
λ

=
1 75
0 275

= 6 36m

The given span length = 8 m. Therefore, criterion (2) is also not satisfied.
The given mat cannot be considered rigid.

(b) Refer to Solution of Problem 5.27, Step 7. The provided mat thickness t considering two-way shear is
665 mm. However, this thickness should be checked for one-way shear soon after shear diagrams are
obtained.

8
.0

 m
5
.0

 m

1.0

L
 =

1
8
.0

 m

B = 18.0 m

y

g

e

x

c

a b

d

f

x

h

5
.0

 m

1

4

8 9

  3 2

7

5

9 m9 m
1.0

1.0 1.0

6

Strips in x direction have the

following dimensions:

Note: Due to symmetry, only

two strips, namely, strips

abcd and cdef, need to be

analyzed.

Strips abcd 5 m × 18 m

8 m × 18 m

5 m × 18 m
Strips cdef

Strips efgh

Scheme 5.129

(Continued)
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Divide themat into three continuous beam strips (or combined footingswithmultiple columns), as shown
above. Due to symmetry of themat and its loads, it makes no difference in which direction themat is divided.

The net contact pressure, net q, is assumed uniformly distributed since the mat and its loads are symmet-
rical about both the x and y axes (ex = ey = 0).

Unfactored net q=
unfactoredR

A
=
10 200
18 × 18

= 31 48 kPa.

Check the static equilibrium of strips abcd and efgh and modify the column loads and contact pressures
accordingly.

Strip abcd:

Σ column unfactored loads = 900 + 1200 + 900 = 3000 kN

Average soil reaction = A Unfactorednet q = 5 × 18 31 48

= 2833 2 kN Σ column loads

Therefore, static equilibrium is not satisfied (ΣFv 0); the column loads and contact pressures need to bemodified.

Qav =
1
2
∑ column loads + average soil reaction

=
1
2
3000 + 2833 2 = 2916 6 kN

Equation 5 49

MF col =
Qav

Σ column loads

=
2916 6
3000

= 0 972

Equation 5 50

This is a reducing factor for columns of strip abcd.
Each column load on the strip should be multiplied by the factor MF(col.).
Each column factored modified load = (MF(col.))(1.2 D + 1.6 L). The computed load values are as shown in

Table 5.29 (for the column factored loads refer to Table 5.24 in Solution of Problem 5.27, Step 1).

Since the strip is symmetrically loaded, the factored R falls at the centre and the factored contact pressure
qfactored is assumed uniformly distributed.

qfactored =
Rfactored

A

=
4196
5 × 18

= 46 622 kPa
Equation 5 52

Table 5.29 Computed load values.

Column No. Factored modified column loads

1 (0.972)(1296) = 1258 kN

2 (0.972)(1728) = 1680 kN

3 (0.972)(1296) = 1258 kN

R = 4196 kN
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The factored contact pressure per metre length of the strip is
qfactored = 46.622 × 5 = 233.11 kN/m length
Strip cdef:

Σ column unfactored loads = 1200 + 1800 + 1200 = 4200 kN

Average soil reaction = A unfactored net q = 8 × 18 31 48

= 4533 12 kN Σ column loads

Therefore, static equilibrium is not satisfied (ΣFv 0); the column loads and contact pressures need to be
modified.

Qav =
1
2
Σ column loads + average soil reaction

=
1
2
4200 + 4533 12 = 4366 56 kN

MF col =
Qav

Σ column loads
=
4366 56
4200

= 1 04

It is an increasing factor for columns of strip cdef.
Each column load on the strip should be multiplied by the factor MF(col.).
Each column factored modified load = [MF(col.)](1.2 D + 1.6 L). The computed load values are as shown in

Table 5.30 (for the column factored loads refer to Table 5.24 in Solution of Problem 5.27, Step 1).

Since the strip is symmetrically loaded, the factored R falls at the centre and the factored contact pressure
qfactored is assumed uniformly distributed.

qfactored =
Rfactored

A

=
6290
8 × 18

= 43 681 kPa

Table 5.30 Computed load values.

Column No. Factored modified column loads

4 (1.04)(1728) = 1797 kN

5 (1.04)(2592) = 2696 kN

6 (1.04)(1728) = 1797 kN

R = 6290 kN

(Continued)
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The factored contact pressure per metre length of the strip is

qfactored = 43 681 × 8 = 349 45 kN m length

Draw factored load, shear and moment diagrams for the continuous beam strips in both directions.

Strip abcd:

Strip cdef:

18.0 m

Factored shear

 diagram, kN

Factored moment

 diagram, kN.m

Factored load

diagram

–2136.5 –2136.5

116.6 

5.4 m

1024.9

1024.9

233.11 kN/m

840.0

116.6

233.1

233.1

840.0

1 m1 m

a, c b,d

1258 kN

3
1258 kN

1

8.0 m

5.4 m

8.0 m

1680 kN

2

–623.0

Scheme 5.130

Factored shear

diagram, kN

Factored moment

diagram, kN.m

Factored load

diagram

–2823.4

–223.3

18.0 m

–2823.4

174.7

5.14 m

1447.5

1447.6

1348

174.7

349.5

349.5

1348

1 m1 m

c, e d, f

1797 kN

5
1797 kN

3

8.0 m

5.14 m

8.0 m

2696 kN

4

349.45 kN/m

Scheme 5.131
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The provided mat thickness t = 665 mm

d = t−concrete cover−half bar diameter

= 665−75−11 = 579mm

Check the designed mat depth d considering beam shear (one-way shear) at the most critical section:
Refer to the shear diagrams. It is clear that the most critical section for shear per metre width is located in strip
abcd, at distance d from either the left face of column No. 3 or the right face of column No. 1. The applied beam
shear at any of these two locations is

Vu =
1024 9−q d + 0 2

5
=
1024 9−233 11 0 579 + 0 200

5
= 168 7 kN mwidth

Equation (5.19): ØVc ≥Vu taking reinforcement shear strength,Vs = 0

Equation (5.20): Vc = 0 17λ fc bwd

ØVc = 0 75 × 0 17 × 1 24 1000 1 0 579

= 352 3
kN
m

Vu = 168 7 kN mwidth OK

Table 5.31 elucidates comparison of results obtained using the approximate flexible and rigid methods of
analysis:

Note: For a flexible mat such as the one given in Problems 5.27 and 5.28, one may conclude that the approximate
flexible method gives more realistic results than the conventional (rigid) method.
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CHAPTER 6

Eurocode Standards and the Design
of Spread Foundations

6.1 General

In line with the European Union’s (EU’s) strategy of smart, sustainable and inclusive growth, Stand-
ardisation plays an important part in supporting the industrial policy for the globalisation era. All
33 national members of the European Committee for Standardisation (CEN; French: Comité Européen
de Normalisation, founded in 1961) work together to develop European Standards (ENs) in various
sectors in order to build a European market for goods and services and to position Europe in the global
economy. CEN is officially recognised as a European standards body by the EU.
The construction sector is of strategic importance to the EU as it delivers the buildings and infra-

structure needed. It is the largest single economic activity and it is the biggest industrial employer in
Europe. These facts urged CEN to produce what is known as Eurocode Standards, also called Structural
Eurocodes or Eurocodes.They are a set of harmonised technical rules and requirements developed by
the CEN for the structural design of construction works in the European Union. The development of
the Eurocodes started in 1975; since then they have evolved significantly and are now claimed to be
among the most technically advanced structural codes in the world. With the publication of all the
58 Eurocodes Parts in 2007, the implementation of the Eurocode Standards has been extended to
all the European Union countries and there are firm steps toward their adoption internationally.
The purposes of the Eurocodes may be summarised as follows:

• A means to prove compliance with the requirements for mechanical strength and stability and
safety in case of fire established by European Union law.

• A basis for construction and engineering contract specifications.

• A framework for creating harmonised technical specifications for building products.

There are 10 Structural Eurocodes,each published as a separate European Standard and each having
a number of parts (so far 58 parts have been produced), covering all the main structural materials
(Figure 6.1).
It has been a legal requirement from March 2010 that all European public-sector clients base their

planning and building control applications on structural designs that meet the requirements of the
Eurocode. To comply with this, changes have been necessary to the building regulations. The Euro-
codes therefore replace the existing national building codes published by national standard bodies
(e.g. BS 5950), although many countries had a period of co-existence. Each country is required to

Shallow Foundations: Discussions and Problem Solving, First Edition. Tharwat M. Baban.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



publish a Eurocode with a national title page and forward but the original text of the Eurocode (includ-
ing any annexes) must appear as produced by CEN as the main body of the document. A National
Annex can be included at the back of the document (Figure 6.2). Throughout Chapter 6 the relevant
UK National Annexes will be used along with the Eurocodes.

There are two categories of Annexes to the Structural Eurocodes. One type is labelled “I” and is
Informative (i.e. for information and not as a mandatory part of the code). The second type is labelled
“N” and is Normative (i.e. a mandatory part of the code). In their National Annex a country can choose
to make an Informative annex Normative if they so whish. In other words, a National annex may only
contain information on those parameters which are left open in the Eurocode for national choice,
known as Nationally Determined Parameters (NDP), to be used for the design of buildings and civil
engineering works in the country concerned, that is:

• Values and/or classes where alternatives are given in the Eurocode,

• Values to be used where a symbol only is given in the Eurocode,

• Country-specific data (geographical, climatic, etc.), for example a snow map,

• A procedure to be used where an alternative procedure is given in the Eurocode,

• Decisions on the application of informative annexes,

• References to non-contradictory complementary information so that the Eurocode may easily be
used without complications.

BS EN 1992, Eurocode 2: Concrete

BS EN 1993, Eurocode 3: Steel

BS EN 1994, Eurocode 4: Composite

BS EN 1995, Eurocode 5: Timber

BS EN 1996, Eurocode 6: Masonry

BS EN 1999, Eurocode 9: Aluminium

EN 1990, Eurocode:    Basis of structural design

EN 1991, Eurocode 1: Actions on structures

EN 1992, Eurocode 2: Design of concrete structures

EN 1993, Eurocode 3: Design of steel structures

EN 1994, Eurocode 4: Design of composite steel and concrete structures

EN 1995, Eurocode 5: Design of timber structures

EN 1996, Eurocode 6: Design of masonry structures

EN 1997, Eurocode 7: Geotechnical design

EN 1998, Eurocode 8: Design of structures for earthquake resistance

EN 1999, Eurocode 9: Design of aluminium structures

BS EN 1991, Eurocode 1:
Actions on structures 

BS EN 1990, Eurocode:
Basis of structural design

BS EN 1998, Eurocode 8:
Seismic design

BS EN 1997, Eurocode 7:
Geotechnical design

Structural

safety,

serviceability

Actions on

structures

Design and

detailing 

Geotechnical and

seismic design

Figure 6.1 The Eurocodes and their relationships.
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Finally, it may be useful to mention some of the following significant benefits of using the new
Eurocodes:

(1) Use of Eurocodes provides more opportunity for marketing and use of structural components in
EU Member States.

(2) Eurocodes facilitate the marketing and use of materials and constituent products, the properties
of which enter into design calculations.

(3) Eurocodes facilitate the acquisition of European contracts as well as public sector contracts.
(4) Use of the Eurocodes provides more opportunity for designers to work throughout Europe.
(5) In Europe all public works must allow the Eurocodes to be used.
(6) Eurocodes provide a design framework and detailed implementation rules which are valid across

Europe and likely to find significant usage worldwide.
(7) Eurocodes are among the most advanced technical views prepared by the best informed groups of

experts in their fields across Europe.
(8) Eurocodes are considered as the most comprehensive treatment of subjects, with many aspects

not codified now being covered by agreed procedures.
(9) Eurocodes provide common design criteria and methods of meeting necessary requirements for

mechanical strength (resistance), serviceability and durability.
(10) Use of Eurocodes enables the preparation of common design aids and software.
(11) Use of Eurocodes increases competitiveness of European civil engineering firms, contractors,

designers and manufacturers in their global activities.
(12) Eurocodes provide a common understanding regarding the design of structures between owners,

designers, contractors and manufacturers of construction products.

6.2 Basis of Design Irrespective of the Material of Construction

6.2.1 Introduction

The basis for the design and verification of structures irrespective of the material of construction can be
found in the EN 1990 Eurocode. This code is a fully operative material-independent code, establishes
principles and requirements for safety, serviceability and durability of structures and gives guidelines
for related aspects of structural reliability. It uses a statistical approach to determine realistic values for

A: National title page

B: National forward

C: CEN title page

D: Main text

E: Main annex(es)

F: National annex(es)

B 

D

C

D
D

D
D

D
D

D
D

D

F
E

B
A

Figure 6.2 A typical Eurocode layout.
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actions that occur in combination with each other. It is based on the limit state concept and used in
conjunction with the partial factor method.

The EN 1990 Eurocode is intended to be used in conjunction with the other Eurocodes for the struc-
tural design of buildings and civil engineering works, including geotechnical aspects, structural fire
design and situations involving earthquakes, execution and temporary structures. Also, it is applicable
for: design of structures where other materials or actions outside the scope of the EN 1991 to EN 1999
Eurocodes are involved, structural appraisal of existing construction, developing the design of repairs
and alterations or in assessing changes of use.

As a fully operative material-independent key code, EN 1990 is new to the European design engineer.
It needs to be fully understood as it is a key code to designing structures that have an acceptable level of
safety and economy, with opportunities for innovation.

As mentioned above and shown in Figure 6.1, for the design of new structures, EN 1990 will be used
together with:

• EN 1991 (Eurocode 1: Actions on structures);

• EN 1992 to EN 1999 (design Eurocodes 2–9).

Gulvanessian et al. (2012) provide a comprehensive description, background and commentary to EN
1990 Eurocode.

6.2.2 Terms and Definitions

To assist familiarity, the followings are definitions of some important Eurocode terminology, symbols
and subscripts, which will be used throughout Chapter 6.

Common terms and special terms relating to design in general:

(1) Structure: organised combination of connected parts designed to carry loads and provide
adequate rigidity.

(2) Structural member: physically distinguishable part of a structure, for example a column, a beam, a
foundation pile.

(3) Structural system: load-bearing members of a building or civil engineering works and the way in
which these members function together.

(4) Structural model: idealisation of the structural system used for the purposes of analysis, design
and verification.

(5) Design criteria: quantitative formulations that describe for each limit state the conditions to be
fulfilled.

(6) Design situations: sets of physical conditions representing the real conditions occurring during a
certain time interval for which the design will demonstrate that relevant limit states are not
exceeded.

(7) Persistent design situation: design situation that is relevant during a period of the same order as
the design working life of the structure.

(8) Transient design situation: design situation that is relevant during a period much shorter than the
design working life of the structure and which has a high probability of occurrence.

(9) Seismic design situation: design situation involving exceptional conditions of the structure when
subjected to a seismic event.

(10) Accidental design situation: design situation involving exceptional conditions of the structure or
its exposure, including fire, explosion, impact or local failure.

(11) Fire design: design of a structure to fulfill the required performance in case of fire.
(12) Hazard: for the purpose of EN 1991 to EN 1999, an unusual and severe event, for example an

abnormal action or environmental influence, insufficient strength or resistance, or excessive devi-
ation from intended dimensions.
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(13) Design working life: assumed period for which a structure or part of it is to be used for its intended
purpose with anticipated maintenance but without major repair being necessary.

(14) Limit states: states beyond which the structure no longer fulfills the relevant design criteria.
(15) Ultimate limit states: states associated with collapse or with other similar forms of structural

failure.
(16) Serviceability limit states: states that correspond to conditions beyond which specified service

requirements for a structure or structural member are no longer met.
(17) Reversible serviceability limit states: serviceability limit states where no consequences of actions

exceeding the specified service requirements will remain when the actions are removed.
(18) Irreversible serviceability limit states: serviceability limit states where some consequences of

actions exceeding the specified service requirements will remain when the actions are removed.
(19) Serviceability criterion: design criterion for a serviceability limit state.
(20) Resistance (R): capacity of a member or component, or a cross-section of a member or compo-

nent of a structure, to withstand actions without mechanical failure, for example bending resist-
ance, buckling resistance, tension resistance

(21) Strength: mechanical property of a material indicating its ability to resist actions, usually given in
units of stress.

(22) Basic variable: part of a specified set of variables representing physical quantities which charac-
terise actions and environmental influences, geometrical quantities and material properties
including soil properties.

(23) Nominal value: value fixed on non-statistical bases, for instance on acquired experience or on
physical conditions.

(24) Characteristic value: a value that may be derived statistically with a probability of not being
exceeded during a reference period. The value corresponds to a specified fractile (that point below
which a stated fraction of the values lie) for a particular property of material or product. The
characteristic values are denoted by subscript “k” (e.g. Qk etc.). It is the principal representative
value from which other representative values may be derived.

(25) Representative value: value used for verification of a limit state. It may be the characteristic value
or an accompanying value, for example combination, frequent or quasi-permanent.

(26) Reference period: chosen period of time that is used as a basis for assessing statistically variable
actions, and possibly for accidental actions.

(27) Combination of actions: set of design values used for the verification of the structural stability for a
limit state under the simultaneous influence of different and statistically independent actions.

Terms relating to actions:
(28) Action (F): (a) set of forces (loads) applied to the structure (direct action), (b) set of imposed

deformations or accelerations caused for example, by temperature changes, moisture variation,
uneven settlement or earthquakes (indirect actions).

(29) Effect of action (E): effect of actions (or action effect) on structural members, (e.g. internal force,
moment, stress, strain) or on the whole structure (e.g. deflection, rotation).

(30) Permanent action (G): action that is likely to act throughout a given reference period and for
which the variation in magnitude with time is negligible, or for which the variation is always
in the same direction (monotonic) until the action attains a certain limit value.

(31) Variable action (Q): action for which the variation in magnitude with time is neither negligible
nor monotonic.

(32) Accidental action (A): action, usually of short duration but of significant magnitude; that is
unlikely to occur on a given structure during the design working life.

(33) Seismic action (AE): action that arises due to earthquake ground motion.
(34) Fixed action: action that have a fixed distribution and position over the structure or structural

member such that the magnitude and direction of the action are determined unambiguously
for the whole structure or structural member if this magnitude and direction are determined
at one point on the structure or structural member.
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(35) Free action: action that may have various spatial distributions over the structure.
(36) Single action: action that can be assumed to be statically independent in time and space of any

other action.
(37) Static action: action that does not cause significant acceleration of the structure or structural

members.
(38) Dynamic action: action that cause significant acceleration of the structure or structural members.
(39) Quasi-static action: dynamic action represented by an equivalent static action in a static model.
(40) Characteristic value of an action (Fk): principal representative value of an action (see defin-

ition 24.).
(41) Combination value of a variable action (Ψ0Qk): value chosen – in so far as it can be fixed on stat-

istical bases – so that the probability of the effects caused by the combination is approximately the
same as by the characteristic value of an individual action. It may be expressed as a determined
part of the characteristic value by using a factor Ψ0 ≤ 1.

(42) Frequent value of a variable action (Ψ1Qk): value determined– in so far as it can be fixed on statistical
bases – so that either the total time, within the reference period, during which it is exceeded is only a
small given part of the reference period, or the frequency of it being exceeded is limited to a given
value. It may be expressed as a determined part of the characteristic value by using a factorΨ1 ≤ 1.

(43) Quasi-permanent value of a variable action (Ψ2Qk): value determined so that the total period of
time for which it will be exceeded is a large fraction of the reference period. It may be expressed as
a determined part of the characteristic value by using a factor Ψ2 ≤ 1.

(44) Accompanying value of a variable action (ΨQk): value of a variable action that accompanies the
leading action in a combination. It may be the combination value, the frequent value or the quasi-
permanent value.

(45) Representative value of an action (Frep): value used for the verification of a limit state.
A representative value may be the characteristic value (Fk) or an accompanying value ΨFk).

(46) Design value of an action (Fd): value obtained by multiplying the representative value by the par-
tial factor γf.

(47) Load arrangement: identification of the position, magnitude and direction of a free action.

Terms relating to material and product properties:
(48) Characteristic value (Xk or Rk): value of a material or product property having a prescribed

probability of not being attained in a hypothetical unlimited test series. This value generally
corresponds to a specified fractile of the assumed statistical distribution of the particular prop-
erty of the material or product. A nominal value is used as the characteristic value in some
circumstances.

(49) Design value of a material or product property (Xd or Rd): value obtained by dividing the char-
acteristic value by a partial factor γm, or γM or, in special circumstances, by direct determination.

(50) Nominal value of a material or product property (Xnom or Rnom): value normally used as a charac-
teristic value and established from an appropriate document such as a European Standard or
Prestandard.

Terms relating to geometrical data:
(51) Characteristic value of a geometrical property (αk): value usually corresponding to the dimensions

specified in the design. Where relevant, values of geometrical quantities may correspond to some
prescribed fractile of the statistical distribution.

(52) Design value of a geometrical property (αd): generally a nominal value. Where relevant, values of
geometrical quantities may correspond to some prescribed fractile of the statistical distribution.

Note: The design value of a geometrical property is generally equal to the characteristic value.
However, it may be treated differently in cases where the limit state under consideration is very
sensitive to the value of the geometrical property, for example when considering the effect of geo-
metrical imperfections on buckling. In such cases, the design value will normally be established as
a value specified directly, for example in an appropriate European Standard or Prestandard.
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Alternatively, it can be established from a statistical basis, with a value corresponding to a more
appropriate fractile (e.g. a rarer value) than applies to the characteristic value.

Symbols and subscripts
So far as we may notice, most of the significant symbols and subscripts have been presented. The fol-
lowing are some others:

AEd – Design value of seismic action AEd = γI AEd.
AEk – Characteristic value of seismic action.
Cd – Nominal value or a function of certain properties of materials.
Ed,dst – Design value of effect of destabilising section.
Ed,stb – Design value of effect of stabilising section.
Fw – Wind force (general symbol).
Fwk – Characteristic value of the Wind force.
P – Relevant representative value of a prestressing action.
QSn – Characteristic value of snow load.
T – Thermal climatic action (general symbol).
X – Material property.
ad – Design values of geometrical data.
ad – Characteristic values of geometrical data.
anom –Nominal value of geometrical data.
dset – Difference in settlement of an individual foundation or part of a foundation compared to a

reference level.
u – Horizontal displacement of a structure or structural member.
w – Vertical deflection of a structural member.
γ – Partial factor (safety or serviceability).
γG – Partial factor for permanent action.
γQ – Partial factor for variable action.
γM – Partial factor for a material property, also accounting for model uncertainties and dimensional

variations.
γF – Partial factor for actions, also accounting for model uncertainties and dimensional variations.
γG,set – Partial factor for permanent actions due to settlements, also accounting for model uncertainties.
ψ – Factor for converting a characteristic value to a representative value.
ψ0 – Factor for combination value of a variable action.
ψ1 – Factor for frequent value of a variable action.
ψ2 – Factor for quasi-permanent value of a variable action.
ξ – Reduction factor for permanent action.

Note: Other symbols will be defined when they appear for the first time.

6.2.3 Requirements

The followings are the requirements that must be adhered to by all the Eurocode suite and construction
product standards so that safety, serviceability anddurability of structures are achieved inapropermanner:

• Basic requirements,

• Reliability management and differentiation,

• Design working life,

• Durability.

These requirements are thoroughly covered by EN 1990 Section 2, and may be summarised as in the
following paragraphs.
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Basic requirements
According to EN 1990 Section 2, Clause 2.1, the basic requirements stipulate that:

A structure and structural members should be designed and executed in such a way that it will, dur-
ing its intended life, with appropriate degrees of reliability and in an economic way:

• Sustain all actions and influences likely to occur during execution and use (safety requirement relat-
ing to the ultimate limit state); and remain fit for use under all expected conditions (serviceability
requirement relating to the serviceability limit state).

• Have satisfactory structural resistance, serviceability and durability.

• In the case of fire, provide satisfactory structural resistance for the required period of time.

• Not be damaged by events such as explosions, impact or consequences of human errors, to an extent
disproportionate to the original cause (robustness requirement).

EN 1990 Section 2, Clause 2.1 provides methods of avoiding or limiting potential damage. Also, it
provides methods of achieving basic requirements satisfied.

Reliability management and differentiation
EN 1990 Section 2, Clause 2.2 provides: methods of achieving and adopting reliability, factors to be
considered in selecting reliability levels, methods of specifying reliability levels that apply to a particular
structure, measures of achieving reliability levels relating to structural resistance and serviceability.

Reliability is ability of a structure or a structural member to fulfill the specified requirements, includ-
ing the design working life, for which it has been designed. It covers safety, serviceability and durability
of a structure or a structural member. Reliability is usually expressed in probabilistic terms. Design and
execution according to the suite of the Eurocodes, together with appropriative quality control meas-
ures, will ensure an appropriate degree of reliability for the majority of structures.

Reliability differentiation means measures intended for the socio-economic optimisation of the
resources to be used to build construction works, taking into account all the expected consequences
of failures and the cost of construction works. It is a concept which is not covered by BSI codes.
EN 1990 provides guidance for adopting reliability differentiation. It gives further guidance in an
Informative Annex “Management of Structural Reliability for Construction Works” (2005). Calgaro
et al. (2001) describe the management of structural reliability in EN 1990, where the concept of the
risk background of the Eurocodes is described more comprehensively.

Design working life
The design working life should be specified. Table 6.1, taken from the UK National Annex for EN 1990,
gives indicative designworking life classifications. BSI codes do not have a designworking life requirement
for buildings. The given values may also be used for time-dependent performance (e.g. fatigue-related cal-
culations).
Buildings subject to Building Regulations, hospitals, schools and so on will be in Category 4 (Table 6.1).

The design working life requirement is useful for:

• The selection of design actions,

• Consideration of material property deterioration,

• Life cycle costing,

• Evolving maintenance strategies.

Durability
The durability of a structure is its ability to remain fit for use during the design working life given
appropriate maintenance. EN 1990 stipulates that the structure needs to be designed so that deteri-
oration over its design working life does not impair the performance of the structure. The Factors
that should be considered to ensure adequately durable structures are listed in EN 1990 Section 2,
Clause 2.4.
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6.2.4 Quality Management

EN 1990 Section 2, Clause 2.5 states: In order to provide a structure that corresponds to the require-
ments and to the assumptions made in the design, appropriate quality management measures should
be in place. These measures comprise:

• Definition of the reliability requirements,

• Organisational measures,

• Controls at the stages of design, execution, use and maintenance.

6.2.5 Principles of Limit States Design

EN 1990 considers two different types of limit state, namely ultimate limit state (ULS) and serviceability
limit state (SLS). These limit states shall be related to design situations. Verification of one of these two
limit states may be omitted provided that sufficient information is available to prove that it is satisfied
by the other. Verification of limit states that are concerned with time dependent effects (e.g. fatigue)
should be related to the design working life of the construction. Limit state concept is used in conjunc-
tion with the partial safety factor method.
EN 1990 stipulates that the structure needs to be designed so that no limit state is exceeded when

relevant design values for actions, material and product properties, and geometrical data are used. This
is satisfied by the partial factor method. In this method the basic variables (i.e. actions, resistances and
geometrical properties) are given design values through the use of partial factors, γ, and reduction coef-
ficients, ψ , of their characteristic values.

Design situations
EN 1990 states: The relevant design situations shall be selected taking into account the circumstances
under which the structure is required to fulfill its function.
The selected design situations shall be sufficiently severe and varied so as to encompass all conditions

that can reasonably be foreseen to occur during the execution and use of the structure.
EN 1990 considers persistent, transient, accidental and seismic design situations related to the ultim-

ate limit states verification; their definitions have been presented in Section 6.2.2.
The design situations related to the serviceability limit state concern:

• The functioning of the structure or structural members under normal use,

• The comfort of people,

• The appearance of the construction works.

Table 6.1 Design working life classification.

Design working life
category

Indicative design working
life (years) Examples

1 10 Temporary structuresa

2 10 to 25 Replaceable structural parts, e.g. gantry girders, bearings

3 15 to 30 Agricultural and similar structures

4 50 Building structures and other common structures

5 100 Monumental Building structures, bridges, and other civil
engineering structures

a Structures or parts of structures that can be dismantled with a view to being reused should not be considered as temporary.

Eurocode Standards and the Design of Spread Foundations 657



EN 1990 requires that verification of serviceability limit states should be based on criteria concerning
the following aspects:

(a) Deformations that affect

• the appearance,

• the comfort of users, or

• the functioning of the structure (including the functioning of machines or services), or that
cause damage to finishes or non- structural members;

(b) Vibrations

• that cause discomfort to people, or

• that limit the functional effectiveness of the structure;
(c) Damage that is likely to adversely affect

• the appearance,

• the durability, or

• the functioning of the structure.

Actions
General definitions of different actions have been given in Section 6.2.2. Actions are classified by their
variation in time as follows:

• Permanent actions, G, for example self-weight of structures, fixed equipment and road surfacing,
and indirect actions caused by shrinkage and uneven settlements;

• Variable actions, Q, for example imposed loads on building floors, beams and roofs, and wind
actions or snow loads;

• Accidental actions, A, for example explosions or impact from vehicle;

• Seismic action, AE, action that arises due to earthquake ground motion.

For each variable action there are four representative values. The principal representative value is
the characteristic value, Qk, and this can be determined statistically or, where there is insufficient
data, a nominal value may be used. The other representative values are combination, frequent and
quasi- permanent; these are obtained by applying to the characteristic value the factors ψ0, ψ1 and
ψ2 respectively (Figure 6.3).Table 6.2 gives the representative values of the different actions men-
tioned above.

Time

Characteristic value Qk

Q

Combination value Ψ0Qk

Δ t1 Δ t2 Δ t3

Quasi-

permanent

value Ψ2Qk 

Frequent value Ψ1Qk

Figure 6.3 Representative values of variable actions.
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A semi-probabilistic method is used to derive the ψ factors, which vary depending on the type of
imposed load (see Table 6.3). Further information on derivation of the ψ factors can be found in
Appendix C of the Eurocode.
The combination value ( ψ0Qk) of an action is associated with the combination of actions for ultimate

and irreversible serviceability limit states (e.g. functionality of fittings with brittle behaviour) in order to
take account of the reduced probability of simultaneous occurrence of the most unfavourable values of
two or more independent actions (i.e. applied to the characteristic value of all accompanying actions).

Table 6.3 Recommended values of factors for buildings (from UK National Annex A to EN 1990).

Action ψ0 ψ1 ψ2

Imposed loads in buildings (see BS EN 1991 – 1 − 1)

•Category A: domestic, residential areas

•Category B: office areas

•Category C: congregation areas

•Category D: shopping areas

•Category E: storage areas

•Category F: traffic area, vehicle weight < 30 kN

•Category G: traffic area, 30 kN < vehicle weight < 160 kN

•Category H: roofs a

Snow loads on buildings (see BS EN 1991−3)

•For sites located at altitude H > 1000 m above see level

•For sites located at altitude H < 1000 m above see level

Wind loads on buildings (see BS EN 1991 – 1 − 4)

Temperature (non – fire) in buildings (see BS EN 1991 – 1 − 5)

0.7

0.7

0.7

0.7

1.0

0.7

0.7

0.7

0.7

0.5

0.5b

0.6

0.5

0.5

0.7

0.7

0.9

0.7

0.5

0.0

0.5

0.2

0.2

0.5

0.3

0.3

0.6

0.6

0.8

0.6

0.3

0.0

0.2

0.0

0.0

0.0

a See also EN 1991-1-1: Clause 3.3.2 where ψ0 = 0.
b 0.6 in the EN 1991-1-1

Table 6.2 Representative values of actions.

Value

Action

Permanent Variable Accidental Seismic

Character Gk Qk – – – AEk, or

Nominal – – – – – – Ad AEd = γIAEk

Combination – – – ψ0Qk – – – – – –

Frequent – – – ψ1Qk – – – – – –

Quasi-permanent – – – ψ2Qk – – – – – –
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The frequent value (ψ1Qk) is primarily associated with the frequent combination in the service-
ability limit states, but it is also used for verification of the accidental design situation of the
ultimate limit states (e.g. every day office use). In both cases, the factor ψ1 is applied as a multiplier
of the leading variable action. In accordance with EN 1990, the frequent value ψ1Qk of a variable
action Q is determined so that the total time, within a chosen period of time, during which
Q > ψ1Qk is only a specified (small) part of the period, or the frequency of the event Q > ψ1Qk is
limited to a given value. The total time for which ψ1Qk is exceeded is equal to sum of time periods,
shown in Figure 6.3 by continuous sections of the horizontal line that belongs to the frequent
value ψ1Qk.

The quasi-permanent values (ψ2Qk) are mainly used in the assessment of long-term effects, (e.g.
cosmetic cracking of a slab). They are also used for the representation of variable actions in accidental
and seismic combinations of actions (ultimate limit states) and for verification of frequent and quasi-
permanent combinations (long-term effects) of serviceability limit states. In accordance with EN 1990,
the quasi-permanent values (ψ2Qk) is defined so that the total time, within a chosen period during
which it is exceeded, that is when Q > ψ2Qk is a considerable part (0.5) of the chosen period of time.
The value may also be determined as the value averaged over the chosen period of time. The total time
of ψ2Qk being exceeded is equal to the sum of periods, shown in Figure 6.3 by continuous sections of the
horizontal line that belongs to the frequent value ψ2Qk.

The representative values ψ0Qk, ψ1Qk and ψ2Qk and the characteristic values are used to define the
design values of the actions and the combinations of the actions as explained in the following
paragraphs.

Combinations of actions
The term “combinations of actions”, as defined in Section 6.2.2, should not be confused with “load
cases”, which are concerned with the arrangement of the variable actions to give the most unfavourable
conditions.

The following process can be used to determine the value of actions used for analysis:

(1) Identify the design situation (e.g. persistent, transient, etc.).
(2) Identify all realistic actions.
(3) Determine the partial factors for each applicable combination of actions.
(4) Arrange the actions to produce the most critical conditions.

Where there is only one variable action (e.g. imposed load) in a combination, the magnitude of the
actions can be obtained by multiplying them by the appropriate partial factors. Where there is more
than one variable action in a combination, it is necessary to identify the leading action (Qk,1) and other
accompanying actions (Qk,i).

For the persistent and transient design situations for ultimate limit states and for the characteristic
(rare) combinations of serviceability limit states, only the non-leading variable actions may be reduced
using the ψ0 factors. In other cases (for accidental design situation and combinations of serviceability
limit states), the leading as well as accompanying actions may be reduced using the appropriate ψ
factors (see Table 6.4).

Verification by the partial factor method

(A) Ultimate limit states
(a) Ultimate limit state categories and verifications.
EN 1990 stipulates that the effects of design actions do not exceed the design resistance of the
structure at the ultimate limit state (ULS); and the following four categories to which ULS are
divided needs to be verified, where relevant:
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(1) EQU. Loss of static equilibrium of the structure or any part of it considered as a rigid
body, where:

• Minor variations in the value or the spatial distribution of actions from a single source are
significant;

• The strengths of construction materials or ground are generally not governing.

The verification shall be based on:

Ed,dst ≤ Ed,stb 6 1

where:
Ed,dst = design value of the effect of destabilizing action,
Ed,stb = design value of the effect of stabilizing actions.

(2) STR. Internal failure or excessive deformation of the structure or structural members, includ-
ing footings, piles and basement walls and so on, where the strength of construction materials
of the structure governs.
The verification shall be based on:

Ed ≤Rd 6 2

where:
Ed = design value of the effect of actions
Rd = design value of the corresponding resistance.

(3) GEO. Failure or excessive deformation of the ground where the strengths of soil or rock are
significant in providing resistant.
The verification shall be based on Equation (6.2).

(4) FAT. Fatigue failure of the structure or structural members. The combinations apply:

• Persistent or transient design situation (fundamental combination);

• Accidental design situation;

• Seismic design situation.
Specific rules for FAT limit states are given in the design Eurocodes EN 1992 to EN 1999.

(B) (b) Load combination expressions in EN 1990 for the verification of ULS for the persistent and tran-
sient design situations.
EN 1990 Clause 6.4.3.2 defines three alternative sets of expressions for the verification of ultimate
limit states for the persistent and transient design situations as follows:
(1) EN 1990 Expression (6.10)

j≥ 1
γG, jGk, j + γPP + γQ,1Qk, 1 +

i > 1
γQ, iψ0, iQk, i

Table 6.4 Applicationof factorsψ0, ψ1 andψ2 for leadingandnon-leadingvariableactionsatultimateandserviceability limit states.

Limit state
Design situation or
Combination

Combination
value ψ0

Frequent
value ψ1

Qusi-permanent
value ψ2

Ultimate Persistent and transient non-leading × ×

Accidental × leading leading and non-
leading

Seismic × × all variable actions

Serviceability Characteristic non-leading × ×

Frequent × leading non-leading

× means not applied Quasi-permanent × × all variable actions
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(2) Less favourable of EN 1990 Expressions (6.10a) and (6.10b)
EN 1990 Expressions (6.10a)

j≥ 1
γG, jGk, j + γPP + γQ,1ψ0,1Qk, 1 +

i > 1
γQ, iψ0, iQk, i

EN 1990 Expressions (6.10b)

j≥ 1
ξjγG, jGk, j + γPP + γQ, 1Qk,1 +

i > 1
γQ, iψ0, iQk, i

(3) Less favourable of EN 1990 Expression (6.10a, modified) to include permanent actions (i.e.
self-weight) only and EN 1990 Expression (6.10b).

EN 1990 Expression (6.10a, modified)

j≥ 1
γG, jGk, j + γPP

EN 1990 Expressions (6.10b)

j≥ 1
ξjγG, jGk, j + γPP + γQ, 1Qk,1 +

i > 1
γQ, iψ0, iQk, i

In the preceding Expressions:

+implies “to be combined with”
Σ implies “the combined effect of”
ξ is a reduction factor for unfavourable permanent actions G

In Expression (6.10) the combination of actions is governed by a leading variable action Qk,1

represented by its characteristic value andmultiplied by its appropriate safety factor γQ. Other vari-
able actionQk,i for i > 1whichmayact simultaneouslywith the leadingvariable actionQk,1 are taken
intoaccount as accompanying variable actions and are representedby their combinationvalue, that
is their characteristic value reducedby the relevant combination factorψ0, and aremultipliedby the
appropriate safety factor to obtain the design values. The permanent actions are taken into account
with their characteristic values, and aremultiplied by the load factor γG. Depending onwhether the
permanent actions are favourably or unfavourably they have different design values.
In Expression (6.10a) all the variable actions are taken into account with their combination value,
that is there is no leading variable action. The permanent actions are taken into account as in
Expression (6.10). All the actions are multiplied by the appropriate safety factors, γG or γQ.

In Expression (6.10b) the combination of actions is governed by a leading variable action rep-
resentedby its characteristic valueas inExpression (6.10)with theother variable actionsbeing taken
intoaccount as accompanying variable actions and are representedby their combinationvalue, that
is their characteristic value is reduced by the appropriate combination factor of a variable actionψ0.
Theunfavourable permanent actions are taken intoaccountwith a characteristic value reducedbya
reduction factor, ξ, whichmay be considered as a combination factor. All the actions aremultiplied
by the appropriate factors, γG or γQ, as mentioned before.

The thirdExpression set is very similar to the second set except that theExpression (6.10a,modi-
fied) includes only permanent actions.

Using Expression (6.10), the following comparison between BSI structural code and EN 1990
with regard to combination of the effects of actions may be made:

For one variable action (imposed or wind)

• BSI 1 4Gk + 1 4 or 1 6 Qk

• EN 1990 1 35Gk + 1 5Qk

For two or more variable actions (imposed + wind)

• BSI 1 2Gk + 1 2Qk,1 + 1 2Qk,2

• EN 1990 1 35Gk + 1 5Qk, 1 + 0 75Qk,2
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According to Gulvanessian et al. (2012), the following combinations have been adopted in the
UK national annex for EN 1990 for buildings:

• Expression (6.10) using γG = 1 35 and γQ = 1 5

• Expression (6.10a) and (6.10b) using γG = 1 35, γQ = 1 5 and ξ= 0 925

The recommended values for all γ and ψ factors (except ψ0 for wind actions, where in the
UK national annex ψ0 = 0 5) have been adopted by the UK national annex for EN 1990, and
are generally being adopted by most CEN Member States.

For UK buildings, Expression (6.10) is always equal to or more conservative than the less
favourable of Expressions (6.10a) and (6.10b). Expression (6.10b) will normally apply when
the permanent actions are not greater than 4.5 times the variable actions [except for storage
imposed load (category E, Table 6.3) where Expression (6.10a) always applies]. Therefore,
for a typical concrete frame building, Expression (6.10b) will give the most structurally
economical combination of actions.

For bridges only the use of Expression (6.10) is permitted.

(C) (c) Load combination expressions in EN 1990 for the verification of ULS for the accidental design
situation.
The expressions for the accidental design situation given in EN 1990 basically use the same concept
as BSI codes for the accidental action but accompanying loads are treated as in (b) above.

EN 1990 Clause 6.4.3.3 requires the following combination expression to be investigated:
EN 1990 Expression (6.11b)

j≥ 1
Gk, j + P + Ad + ψ1,1 orψ2,1 Qk,1 +

i > 1
ψ2, iQk, i

The choice between ψ1,1Qk,1 or ψ2,1Qk,1 should be related to the relevant accidental design situ-
ation (impact, fire or survival after an accidental event or situation). In the UK national annex to
EN 1990, ψ1,1Qk,1 is chosen.

The combinations of actions for accidental design situations should either (i) involve explicit an
accidental actionsA (fire or impact), or (ii) refer to a situation after an accidental event A= 0 . For
fire situations, apart from the temperature effect on the material properties, Ad should represent
the design value of the direct thermal action due to fire.

The expression for the accidental design situation specifies factor of safety of unity both for the
self-weight and the accidental action Ad and a frequent or quasi-permanent value for the leading
variable action. The philosophy behind this is the recognition that an accident on a building or
construction works is a very rare event (although when it does occur the consequences may be
severing) and hence EN 1990 provides an economic solution.

(D) (d) Load combination expressions in EN 1990 for the verification of ULS for the seismic design
situation.
EN 1990 Clause 6.4.3.4 requires the following combination expression to be investigated:

EN 1990 Expression (6.12b)

j≥ 1
Gk, j + P + AEd +

i≥ 1
ψ2, iQk, i

Notes:
(1) The values of γ and ψ factors for actions should be obtained from EN 1991 and fromAnnex A.
(2) The partial factors for properties of materials and products should be obtained from EN 1992

to EN 1999.

(B) Serviceability limit states
As mentioned earlier, EN 1990 gives guidance on the following serviceability limit state (SLS)
verifications:
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• The functioning of the structure or structural members under normal use,

• The comfort of people,

• The appearance of the construction works.
This is different from the concept of BSI codes.

In the verification of serviceability limit states in EN 1990, separate load combination expres-
sions are used depending on the design situation being considered. For each of the particular
design situation an appropriate representative value for an action is used.

For the SLS verification, EN 1990 Clause 6.5.1 stipulates that

Ed ≤Cd 6 3

where:
Cd = limmiting design value of the relevant serviceability criterion
Ed = design value of the effects of actions specified in the serviceability criterion, determined on the

basis of the relevant combination.
EN 1990 Clause 6.5.3 requires that the combinations of actions to be taken into account in the
relevant design situations should be appropriate for the serviceability requirements and perform-
ance criteria being verified.

For the serviceability limit states verification, EN 1990 gives three expressions, namely, charac-
teristic, frequent and quasi-permanent. Care should be taken not to confuse these SLS three expres-
sions with the representative values that have the same titles. For design of concrete structures, EN
1992 indicateswhich combination should be used for which phenomenon (e.g. deflection is checked
using the quasi-permanent combination). It is assumed, in the three expressions, that all partial fac-
tors are equal to 1. See Annex A and EN 1991 to EN 1999. Also, for SLS the partial factors γM for the
properties ofmaterials should be taken as 1 except if differently specified in EN1992 to EN1999.The
Eurocode three expressions are:

(1) EN 1990 Expression (6.14b): the characteristic (rare) combination is used mainly in those
cases when exceedance of a limit state causes a permanent (irreversible) local damage or
permanent unacceptable deformation.

j≥ 1
Gk, j + P + Qk, 1 +

i > 1
ψ0, iQk, i

(2) EN 1990 Expression (6.15b): the frequent combination is used mainly in those cases when
exceedance of a limit state causes local damage, large deformation or vibrations which are
temporary (reversible).

j≥ 1
Gk, j + P + ψ1,1Qk, 1 +

i > 1
ψ2, iQk, i

(3) EN 1990 Expression (6.16b): the quasi permanent combination is usedmainly when long term
effects are of importance.

j≥ 1
Gk, j + P +

i > 1
ψ2, iQk, i

6.3 Design of Spread Foundations

6.3.1 Introduction

All foundations should be designed so that the underlying materials(soil and/ or rock) safely resist the
actions applied to the structure. The design of any foundation consists of two components; the geo-
technical design and the structural design of the foundation itself. However, for some foundations
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(e.g. flexible mats or rafts) the effect of the interaction between the soil and structure (i.e. soil-structure
interaction) may be critical and must also be considered.
The design of “Spread foundations” is covered by EN 1997 (Eurocode 7). There are two parts to EN

1997, Part 1 (or EN 1997-1): General rules and Part 2 (or EN 1997-2):Ground investigation and testing.
Section 6 of EN 1997-1 “Spread foundations” applies to pad (e.g. footing of a column), strip (e.g. footing
of a wall or a long pedestal) and raft foundations, and some provisions may be applied to deep foun-
dations, such as caissons. Section 9 of EN 1997-1 “Retaining structures” applies to gravity walls (walls
of stone or plain or reinforced concrete), embedded walls and composite retaining structures (see
Subsections 9.1.2.1, 9.1.2.2 and 9.1.2.3 of EN 1997-1).
EN 1997-1 §6.8 gives principles and application rules related to “Structural design of spread foun-

dations”. However, it provides no guidance on the procedures for assessing the required amount or
detailing of reinforcement in the concrete – this is dealt with by EN 1992.
National annex for EN 1997-1 gives alternative procedures and recommended values with notes

indicating where national choices may have to be made. Therefore the National Standard implement-
ing EN 1997-1 should have a National annex containing all Nationally Determined Parameters (NDP)
to be used for the design of buildings and civil engineering works to be constructed in the relevant
country.
The Eurocodes adopt, for all civil and building engineering materials and structures, a common

design philosophy based on the use of separate limit states and partial factors, rather than global safety
factors; this is a significant change in the traditional geotechnical design practice as embodied in BS
Codes such as the superseded BS 8004. Moreover, EN 1997-1 provides one, unified methodology
for all geotechnical design problems. An advantage of EN 1997-1 is that its design methodology is
largely identical with that for all of the structural Eurocodes, making the integration of geotechnical
design with structural design more rational.

6.3.2 Geotechnical Categories

EN 1997-1 Section 2.1 introduces three Geotechnical Categories to assist in establishing the geotech-
nical design requirements for a structure, as shown in Table 6.5.
It is expected that structural engineers will take responsibility for the geotechnical design of category

1 structures, and that geotechnical engineers will take responsibility for category 3 structures. The
geotechnical design of category 2 structures may be undertaken by members of either profession; this
decision will very much depend on individual circumstances.
Geotechnical design differs from design in other structural materials in that both the design actions

and the design resistances are functions of the effect of the actions, material properties and dimensions
of the problem. For example, when assessing sliding in a retaining wall design the horizontal forces due

Table 6.5 Geotechnical categories of structures.

Category Description Risk of geotechnical failure Examples from EN 1997

1 Small and relatively simple structures Negligible None given

2 Conventional types of structure and foundation
with no difficult ground or loading
conditions

No exceptional risk Spread foundation

3 All other structures Abnormal risks Large or unusual structures

Exceptional ground
conditions
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to the earth (design effect of the actions) are derived from the material properties of the soil and the
dimensions of the problem; similarly, the resistance to sliding is also derived from the actions, material
properties and the dimensions. Therefore, geotechnical calculations have a greater level of complexity
than design in other structural materials where actions are not normally a function of the material
properties and resistances not a function of the actions.

6.3.3 Limit States

The following limit states should be satisfied for geotechnical design:

(a) Ultimate limit states
Ultimate limit states (ULS) are those that will lead to failure of the ground and/or the associated
structure.

EN 1997-1 identifies the following five ultimate limit states. They should be satisfied for geo-
technical design; each has its combination of actions (For an explanation of Eurocode terminology,
please refer to the Section 6.2.2 of this chapter):
EQU – Loss of static equilibrium of the structure.
STR – Internal failure or excessive deformation of the structure.
GEO – Failure or excessive deformation in the ground.
UPL – Loss of equilibrium or excessive deformation due to uplift.
HYD – Failure due to hydraulic heave, piping and erosion.

(b) Serviceability limit states
Serviceability limit states (SLS) are those that result in unacceptable levels of deformation (e.g.
excessive settlement or heave), vibration and noise. They should be satisfied for geotechnical
design.

The designer of a geotechnical structure tries first to identify the possible ultimate and service-
ability limit states that are likely to affect the structure. Usually, it will be clear that one of the limit
states will govern the design and therefore it will not be necessary to carry out verifications for all of
them, although it is good practice to record that they have all been considered. Verifications of
serviceability limit states is a key requirement of a EN 1997 design, which does not explicitly feature
in more traditional approaches. In traditional design it is assumed in many calculation procedures
that the lumped safety factor provides not only safety against failure but also will limit deform-
ations to tolerable levels. For example, it is common to adopt safety factors against bearing capacity
failure in the foundation soil in excess of 3.0. This is far greater than needed to ensure sufficient
reserve against failure. EN 1997 generally requires a specific verification that serviceability limits
are met and thus serviceability requirements are more likely to be the governing factor for many
settlement sensitive projects.

Traditional geotechnical design methods, adopting lumped safety factors, have proved sat-
isfactory over many decades and much experience has been built on such methods. However,
the use of a single factor to account for all uncertainties in the analysis does not provide an
adequate control of different levels of doubt in various parts of the design process. The limit
state approach forces designers to think more rigorously about possible modes of failure and
those parts of the calculation process where there is most uncertainty. The partial factors in EN
1997 have been chosen to give similar designs to those obtained using lumped factors; thus,
ensuring that the wealth of previous experience is not lost by the introduction of a radically
different design methodology. The Eurocodes present a unified approach to all structural
materials and should lead to less confusion and fewer errors when considering soil–structure
interaction.
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EN 1997-1 §6.2 lists eight different types of limit states (repeated below for convenience)
that should be considered in geotechnical design of spread foundations including pads, strips
and rafts. The limit states are:

• Loss of overall stability;

• Bearing resistance failure, punching failure, squeezing;

• Failure by sliding;

• Combined failure in the ground and in the structure;

• Structural failure due to foundation movement;

• Excessive settlements;

• Excessive heave due to swelling, frost and other causes;

• Unacceptable vibrations.

We may notice that the first five limit states are related to ultimate limit state design; their details
are covered in EN 1997-1 §6.5. The remaining three limit states are related to serviceability limit
state design; their details are covered in EN 1997-1 §6.6.

6.3.4 Geotechnical Design

(A) Design situations
EN1997-1 Section 6.3 requires that design situations shall be selected in accordancewith EN1997-1
Section 2.2 which states: both short-term and long-term design situations shall be considered. This
consideration is to reflect the sometimes vastly different resistances obtained from drained and
undrained soils. Examples of these situations may be given as follows:

• For persistent design situation: long-term is considered where structures are founded on course
soils and fully-drained fine soils; and short-term is considered where there is partially-drained
fine soils (with design working life less than 25 years).

• For transient design situation: long-term is considered where there are temporary works in
coarse soils; and short-term is considered where there are temporary works in fine soils

• For accidental design situation: long-term is considered where structures are founded on
course soils and quick-draining fine soils; and short-term is considered where structures are
founded on slow-draining fine soils.

• For seismic design situation: short-term is considered where structures are founded on slow-
draining fine soils.

EN 1997-1 Section 2.2 provides a list of nine different items that the detailed specifications of
design situations should include.

(B) Actions
EN 1997-1 Section 6.3 requires that the actions listed in EN 1997-1 Section 2.4.2(4) should be con-
sidered when selecting the limit states for calculation. This section provides a list of 20 types of
actions that should be included in geotechnical design.

In geotechnical design it is necessary to identify which action is favourable and which action is
unfavourable. The Eurocodes make an important distinction between favourable (or stabilising) and
unfavourable(or destabilising) actions, which is reflected in the values of the partial factors γF applied
to each type of action. Unfavourable actions are typically increased by the partial factor (i.e. γF > 1)
and favourable actions are decreased or left unchanged (i.e. γF ≤ 1). For example, to provide sufficient
reliability against bearing capacity failure, the self-weight of a wall and its strip footing should be
considered as unfavourable actions, since they increase the effective stress beneath the footing. How-
ever, the same actions should be considered as favourable for sliding, since they increase resistance.

The designer should be aware of not treating an action as both favourable and unfavourable in
the same calculation since it is illogical to do so. EN 1997 deals with this issue in what has been
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known as the Single-Source Principle: “unfavourable (or destabilising) and favourable (or stabilising)
permanent actions may in some situations be considered as coming from a single source. If they are
considered so, a single partial factor may be applied to the some of these actions or to the some of
their effects”. [EN 1997-1 Section 2.4.2(9) P Note]. In the example just given if the water table is
located above the foundation level, the upward thrust on the footing bottom owing to water pressure
will be considered as favourable and the horizontal thrust on the wall as unfavourable for bearing
(both thrusts coming from a single source). The Note allows these thrusts to be treated in the same
way; either both unfavourable or both favourable, whichever represents the more critical design
condition.

(C) Basic requirements
Considering the ULS, the design effect of destabilising actions Ed,dst and design effect of actions Ed
must be less than or equal to the design effect of stabilising actions Ed,st and design resistance Rd,
respectively, as indicated in Equations (6.1) and (6.2). Considering the SLS, the design effect of the
actions Ed must be less than or equal to the limiting design value of the relevant serviceability cri-
terion Cd, as indicated in Equation (6.3).

(D) Geometrical data
According to EN 1997-1 Section 2.4.4, the level and slope of ground surface, water levels, levels of
interfaces between strata, excavation levels and the dimensions of the geotechnical structure shall
be treated as geometrical data.

(E) Design approaches and combinations
There has not been a consensus amongst geotechnical engineers over the application of limit state
principles to geotechnical design. EN 1997-1, to allow for these differences of opinion, presents
three different Design Approaches (DAs) for carrying out ultimate limit state analysis for the
GEO and STR limit states. The decision on which approach to use for a particular country is given
in its National Annex. The design approaches are:

• DA1 – Combination 1: A1 “+” M1 “+” R1 (EN 1997-1§2.4.7.3.4.2)
– Combination 2: A2 “+” M2 “+” R1

• DA2: A1 “+” M1 “+” R2 (EN 1997-1§2.4.7.3.4.3)

• DA3: (A1 or A2) “+” M2 “+” R3 (EN 1997-1§2.4.7.3.4.4)
“+”implies “to be combined with” (EN 1997-1§2.4.7.3.4.2)

These approaches apply the partial factor sets in different combinations in order to provide reliabil-
ity in the design. Themethod of applying the partial factors reflects the differing opinions regarding
geotechnical design held across theEuropeanUnion.Actually,DesignApproach 1provides reliabil-
ity by applying different partial factor sets to two variables (actions and ground strength parameters
or ground resistance) in two separate calculations (Combinations 1 and 2), whereas Design
Approaches 2 and 3 apply factor sets to two variables simultaneously, in a single calculation. Further
clarification of the Design approaches is provided in Annex B of EN 1997-1.

InAnnexAofEN1997-1 thepartial factors are grouped in sets denotedbyA (for actions or effects
of actions), M (for soil parameters) and R (for resistances).

In the UK, Design Approach 1 is specified in the National Annex. For this Design Approach
(excluding design of axially loaded piles and anchors) there are two sets of combinations to use
for the STR and GEO ultimate limit states, as indicated above. The values for the partial factors
to be applied to the actions for these combinations are given in Table 6.6 and the partial factors
for the geotechnical material properties are given in Table 6.7. Combination 1 will generally govern
the structural resistance, and Combination 2 will generally govern the size of the foundations.

The partial factors to be applied to the geotechnical material properties and actions at the EQU
limit state are given in Table 6.7 and Table 6.8, respectively.

For the SLS, EN 1997-1 does not give any advice onwhether the characteristic, frequent or quasi-
permanent combination should be used. Where the prescriptive design method is used for spread
foundations (will be discussed in the following paragraphs) then the characteristic combination
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Table 6.7 Partial factors for geotechnical material properties.

Symbol

Angle of shearing
resistance
(apply to tan φ)

Effective
cohesion

Undrained
shear
strength

Unconfined
strength

Bulk
density

γφ γc γcu γqu γγ

Combination 1

Combination 2

EQU

1.0

1.25

1.1

1.0

1.25

1.1

1.0

1.4

1.2

1.0

1.4

1.2

1.0

1.0

1.0

Table 6.6 Design valuesof actionsderived forUKdesign, STRandGEOultimate limit states–persistent and transient design situations.

Combination Exp. reference
BS EN 1990

Permanent actions

Leading variable
action

Accompanying variable
actions

Unfavorable Favorable
Main
(if any) Others

Combination 1{Application of combination 1(BS EN 1997) to set B (BS EN 1990)}

Exp. (6.10)

Exp. (6.10a)

Exp. (6.10b)

1 35Ga
k

1 35Ga
k

0 925d × 1 35Ga
k

1 0Ga
k

1 0Ga
k

1 0Ga
k

1.5bQk

–

1.5bQk

–

1 5ψ c
0,1Qk

–

1 5bψ c
0, iQk, i

1 5bψ c
0, iQk, i

1 5bψ c
0, iQk, i

Combination 2{Application of combination 2(BS EN 1997) to set C (BS EN 1990)}

Exp. (6.10) 1 0Ga
k 1 0Ga

k 1.3bQk,1 – 1 3bψ c
0, iQk, i

Key:
a Where the variation in permanent action is not considered significant Gk,jsup and Gk,jinf may be taken as Gk; Gk,jsup & Gk,jinf are upper & lower

characteristic values of permanent action j.
b Where the action is favorable, γQ,i = 0 and the variable actions should be ignored.
c The value of ψ0 can be obtained from NA A1.1 of the UK NA to BS EN 1990 or from Table 6.3.
d The value of ξ in the UK NA to BS EN 1990 is 0.925

Table 6.8 Design values of actions derived for UK design, EQU ultimate limit states– persistent and transient design situations.

Combination Exp.reference
BS EN 1990

Permanent actions
Leading variable
action

Accompanying variable
actions

Unfavorable Favorable Main (if any) Others

Exp.(6.10) 1 1Ga
k 0 90Ga

k 1.5bQk – 1 5bψ c
0, iQk, i

Key:
a Where the variation in permanent action is not considered significant Gk,jsup and Gk,jinfmay be taken as Gk; Gk,jsup& Gk,jinf are upper & lower

characteristic values of permanent action j.
b Where the action is favorable, γQ,i = 0 and the variable actions should be ignored.
c The value of ψ0 can be obtained from NA A1.1 of the UK NA to BS EN 1990 or from Table 6.3.
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should be adopted. For direct design method the frequent combination can be used for sizing of
foundations and the quasi-permanent combination can be used for settlement calculations.

(F) Design methods
Section 6 of EN 1997-1 requires spread foundations (e.g. pad and strip) to be designed using the
following methods:
(1) Direct method – calculation is carried out for each limit state. At the ULS, the bearing resistance

of the soil should be checked using partial factors on the soil properties as well as on the
actions. At the SLS, the settlement of the foundations should be calculated and checked against
permissible limits. As mentioned earlier, the frequent combination can be used for sizing of
foundations and the quasi-permanent combination can be used for settlement calculations.

(2) Indirect method – experience and testing used to determine serviceability limit state parameters
that also satisfy all relevant limit states. Thismethod is used predominantly for Geotechnical Cat-
egory 1 structures (see Table 6.5), where there is negligible risk in terms of overall stability or
ground movements, which are known from comparable local experience to be sufficiently
straightforward. In these cases the procedures may consist of routine methods for foundation
design and construction. The procedures should be used only if there is no excavation below
the water table or if comparable local experience indicates that a proposed excavation below
thewater tablewillbe straightforward. Indirectmethodsmayalsobeused forhigher risk structures
where it is difficult to predict the structural performance with sufficient accuracy from analytical
solutions. In these cases, reliance is placed on the observational method, and identification of
potential behaviour. Then the final, suitably conservative, designof the foundation canbedecided.

(3) Prescriptive method – a presumed bearing resistance is used. This method may be used where
calculation of the soil properties is not possible or necessary and can be used provided that con-
servative rules of design are used. Tables (for example Tables in the Building Regulations) of
presumed bearing values may be used to determine presumed (allowable) bearing pressures
forGeotechnical Category 1 structures where ground conditions arewell known, and in prelim-
inary calculations for Geotechnical Category 2 structures. Alternatively, the presumed bearing
pressure to allow for settlement can be calculated by the geotechnical designer and included in
the geotechnical design report. Unlike British standard BS 8004 – which was giving allowable
bearing pressures for rocks, non-cohesive soils, cohesive soils, peat and organic soils, made
ground, fill, high porosity chalk and theMerciaMudstone –Annex G of EN 1997-1-1 only pro-
vides values of presumed bearing resistance for rock (which was also appeared in BS 8004).
This chapter does not attempt to provide complete guidance on the design of spread founda-
tions, for which the reader should refer to any well-established text on the subject.

(G) Footings subject to vertical actions
(a) Eccentricity e= 0

EN 1997-1 requires the design vertical action Vd acting on the foundation to be less than or
equal to the design bearing resistance Rd of the ground beneath it:

Vd ≤Rd 6 4

The action Vd should include the self-weight of the foundation and any backfill on it.
Equation (6.4) is simply a re-statement of Equation (6.2). Designers more commonly consider
pressures and stresses rather thanwork in terms of forces, so we will re-write Equation (6.4) as:

qEd ≤ qRd 6 5

The pressure qEd is the design bearing pressure on the ground (an action effect); qRd is the
corresponding design resistance.

Design baring pressure:
Figure 6.4 shows a footing carrying characteristic vertical actions VGk (permanent) and

VQk (variable) imposed on it by the super-structure. The characteristic self-weights of the
footing and of the backfill upon it are both permanent actions (WGk)
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Refer to Figure 6.4:
The characteristic bearing pressure qEk is given by

qEk =
Vrep

A
=

VGk + i
ψ iVQk,i + WGk

A
6 6

The action Vrep is a representative vertical action, and A is the footing’s effective area. The
factor ψ i is the combination factor applicable to the variable action (see Table 6.3).

Ifwe assume that only one variable action is applied to the footing, Equation (6.6) simplifies to

qEk =
VGk +VQk,1 + WGk

A
6 7

This is because ψ = 1 0 for the leading variable action i = 1 .
The design bearing pressure qEd beneath the footing is then

qEd =
Vd

A
=
γG VGk + WGk + γQVQk,1

A
6 8

where γG and γQ are partial factors on permanent and variable actions, respectively (see the
UK national annex for EN 1990).

Design baring resistance:
The design resistance qRd may be calculated using analytical or semi-empirical formulae.

Annex D (informative) of BS EN 1997-1-1 provides widely-recognised formulae for bearing
resistance, considering both the drained and undrained conditions. (Also, see the relevant for-
mulations in Chapter 4). These apply for homogeneous ground conditions. We should notice
that for drained conditions, water pressures must be included as actions. The question then
arises, which partial factors should be applied to the weight of a submerged structure? Since
the water pressure acts to reduce the value of the design vertical actionVd, it may be considered
as favourable action, while the total weight is unfavourable. Physically however, the soil has to
sustain the submerged weight.

For the design of structural members, water pressure may be considered as unfavourable
action (Scarpelli and Orr, 2013).

(b) Eccentricity e 0
It may be realised that the ability of a spread foundation to carry forces reduces dramatically
when those forces are applied eccentrically from the centre of the foundation.

Refer to Figure 6.5. To prevent contact with the ground being lost at the footing’s edges, it is
customary to keep the total action Rwithin the foundation’s “middle third”. This requires that
eB ≤ B 6 and eL ≤ L 6 , where B and L are the footing’s breadth and length; and eB and eL
are eccentricities in the direction of B and L. (see Section 4.8 of Chapter 4).

Amethod to take account of the effect of eccentric loading on bearing capacity calculations is by
assuming that the load acts at centre of a smaller foundation, as shown in Figure 6.5. The actual
foundation area A=B× L is therefore reduced to an effective area A (the shaded part of
area A) where

Backfill

Concrete footing

G.S 

W.T 

Δ

qEd

qRd

Df

zw

VGk+ VQk

WGk

B

Figure 6.4 Vertical actions on a spread foundation.
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A =B × L = B−2eB × L−2eL 6 9

The dimensions B and L are the footing’s effective width and length.
It may be useful to mention that there is no guidance in the Eurocode as to whether the eccen-

tricity should be calculated for the characteristic or design values of the actions. In the author’s and
many others’ opinion it would be best to base the calculation on design actions. In this case, the
eccentricities eB and eL may be denoted by e B and e L.

EN 1997-1 §6.5.4 requires that special precautions be taken when the eccentricity of the loading
exceeds one-third of the width or length of a rectangular footing or 0.6 of the radius of a circular
footing. It should be noted that this is not the middle-third rule, but rather a “middle two-thirds”
rule. Such precautions include: careful review of the design values of actions; designing the loca-
tion of the foundation edge by taking into account the magnitude of construction tolerances up to
0.1 m (i.e. tolerances up to 0.1 m in the dimensions of the foundation). However, it may be appro-
priate that foundations continue to be designed using the middle-third rule until the implications
of EN 1997’s more relaxed Principle have been thoroughly tested in practice (Bond and Harris,
2010).

According to Scarpelli and Orr (2013), for the eccentric loading condition shown in Figure 6.6,
it may be necessary to analyse different load combinations, by considering the permanent vertical
load as both favourable and unfavourable and by changing the leading variable load.

Vunfavourable andHunfavourable

Vd = γGGk + γQvψ0Qvk Hd = γQhQhk

γG = 1 35 γQv = 1 5 γQh = 1 5

Vunfavourable andHunfavourable

Vd = γGGk + γQv Qvk Hd = γQhψ0Qhk

γG = 1 35 γQv = 1 5 γQh = 1 5
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Figure 6.5 Eccentrically loaded spread foundation and method of computing effective footing dimensions.
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Vfavourable andHunfavourable

Vd = γGGk + γQv Qvk Hd = γQhQhk

γG = 1 0 γQv = 0 0 γQh = 1 5

(H) Footings subject to overturning
When there is a moment applied to the foundation, the EQU limit state should also be checked.
Assuming the potential overturning of the base is due to the variable action from the wind (Qk,w),
the following combination should be used (the variable imposed action is not considered to con-
tribute to the stability of the structure):

0 9Gk + 1 5Qk,w EQUcombination

The action Gk is the stabilising characteristic permanent action. (Use 1.1 Gk for a destabilising
permanent action)

The action Qk,w is the destabilising characteristic variable action.

(I) Footings subject to horizontal actions and sliding
Figure 6.7 shows the footing from Figure 6.4 subject to characteristic horizontal actions HGk (per-
manent) and HQk (variable), in addition to characteristic vertical actions VGk (permanent), VQk

(variable), and WGk (permanent).
EN 1997-1 requires the design horizontal action Hd acting on the foundation to be less than or

equal to the sum of the design resistance Rd from the ground beneath the footing and any design
passive thrust Rpd on the side of the foundation:

Hd ≤Rd + Rpd 6 10

This equation is merely a re-statement of Equation (6.2)

Gk

Qvk

Qhk

Figure 6.6 Spread footing under vertical and horizontal loads (eccentric loading condition).
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Figure 6.7 Horizontal actions on a spread foundation.
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Designers more commonly consider shear stresses rather than work in terms of shear forces, so
we will re-write Equation (6.10) as:

τEd ≤ τRd 6 11

The stress τEd is the design shear stresses acting across the base of the footing (an action effect);
τRd is the design resistance to that shear stress.

Design shear stresses
The characteristic shear stress τEk shown in Figure 6.7 is given by

τEk =
Hrep

A
=

HGk + iψ iHQk,i + Pa,Gk
A

6 12

The action Hrep is a representative horizontal action; Pa,Gk is the characteristic thrust due to
active earth pressures on the side of the foundation (a permanent action);A is the footing’s effective
area. The factor ψ i is the combination factor applicable to the variable action (see Table 6.3).

If we assume that only one variable horizontal action is applied to the footing, Equation (6.12)
simplifies to

τEk =
HGk +HQk,1 + Pa,Gk

A
6 13

This is because ψ = 1 0 for the leading variable action i= 1 .
The design shear stress τEd is then

τEd =
Hd

A
=
γG HGk + Pa,Gk + γQHQk,1

A
6 14

where γG and γQ are partial factors on permanent and variable actions, respectively.

Sliding resistance
(a) Drained sliding resistance

For drained conditions, the characteristic shear resistance τRk shown in Figure 6.7, excluding
the passive thrust in front of the foundation, is given by:

τRk =
VGk tanδk

A
=

VGk − UGk tanδk
A

6 15

where VGk and V Gk represent the characteristic total and effective permanent vertical actions
on the footing, respectively; UGk is the characteristic uplift owing to pore water pressures acting
on the underside of the base (also a permanent action); and δk is the characteristic angle of
friction between the base and the ground.

Variable vertical actions have been excluded from Equation (6.15), since they are favourable.
Also, the equation conservatively ignores any effective adhesion between the underside of the
base and the ground, as suggested by EN 1997 §6.5.3(10).

The design shear resistance τRd (ignoring passive pressures) is then given by:

τRd =
V 'Gd tanδd
γRhA

=
VGd− UGd tanδd

γRhA
6 16

where γRh is a partial factor on horizontal sliding resistance and the subscript, d, denote design
values.

Normally it is assumed that the soil at the interfacewith concrete is remolded. So the design fric-
tion angle δdmaybe assumed equal to the design value of the effective critical state angle of shearing
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resistance φ cv,d for cast in situ concrete foundations and equal to 2/3 φ cv,d for smooth precast
foundations [EN 1997 §6.5.3(10)]. The design effective critical state angle is

φ'cv,d = tan−1 tanφcv,k

γφ
6 17

where γφ is the partial factor on shearing resistance.
The vertical action VGk is favourable, since an increase in its value increases the shear resistance;

whereas UGd is unfavourable action, since an increase in its value decreases the resistance. Intro-
ducing into Equation (6.15) partial factors on favourable and unfavourable permanent actions
(γG,fav and γG) results in:

τRd =
γG,favVGk − γGUGk tanδk

γRhγφA

=
γG,fav

γRh × γφ
VGk −

γG
γRh × γφ

UGk ×
tanδk
A

6 18

If, however, partial factors are applied to the net effects of actions rather than to the actions
themselves, then Equation (6.18) will become

τRd =
γG,fav VGk − UGk tanδk

γRhγφA
=

γG,fav
γRh × γφ

VGk − UGk ×
tanδk
A

6 19

Table 6.9 summarises the values of these partial factors for each of the EN 1997’s three Design
Approaches.

As far as an ultimate limit state of sliding is concerned, the horizontal component of an inclined
load on the footing is considered unfavourable, whereas the vertical component is favourable,
although they have the same source. Except in Combination 2 of Design Approach 1, a favourable
permanent action attracts a partial factor γG,fav = 1 and an unfavourable permanent action a partial

Table 6.9 Partial factors for each of the EN 1997’s three Design Approaches.

Individual Partial Factor or
Partial Factor “Grouping”

Design Approach

1

2 3Combination 1 Combination 2

γG

γG,fav

γφ

γcu

γRh

1.35

1.0

1.0

1.0

1.0

1.0

1.0

1.25

1.4

1.0

1.35

1.0

1.0

1.0

1.1

1.35/1

1.0

1.0

1.4

1.0

γG,fav γRh × γφ

γG γRh × γφ

1 γRh × γcu

1.0

1.35

1.0

0.8

0.8

0.71

0.91

1.23

0.91

0.8

1.08/0.8

0.71
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factor γG = 1 35. In case the components of the inclined action are treated differently, then the
inclination of that action will change. This is a prime example of where the Single Source Principle
[discussed in Section 6.3.4 (B)] should be invoked and the whole action should be treated either as
unfavourable or as favourable, whichever represents the more critical design condition.
(b) Undrained sliding resistance

For undrained conditions, the characteristic shear resistance τRk shown in Figure 6.7,
excluding the passive thrust in front of the foundation, is given by:

τRk =Cuk 6 20

where Cuk represents the characteristic undrained shear strength of the soil.
The design shear resistance τRd (ignoring passive pressures) is then given by:

τRd =
Cud

γRh
=

Cuk

γcu × γRh
6 21

where γcu is the partial factor on undrained shear strength (see Table 6.9).

(J) SLS verification
When design is carried out by direct methods, settlement calculations are required to check SLS.
For soft clays, irrespective of Geotechnical categories, settlement calculations shall be carried out.
For spread foundations on stiff and firm clays in Geotechnical categories 2 and 3, vertical displace-
ment should usually be calculated [EN 1997 §6.6.1(3, 4)].

As mentioned in Sections 6.2.5(B) and 6.3.3(b), EN 1997 requires the design movements Ed of a
foundation to be less than or equal to the limiting movement Cd specified for the project; see
Equation (6.3).

The following three components of settlement should be considered for partially or fully satur-
ated soils [EN 1997-1 §6.6.2(2)]:

• s0: immediate settlement; for fully-saturated soil due to shear deformation at constant volume,
and for partially-saturated soil due to both shear deformation and volume reduction;

• s1: settlement caused by consolidation;

• s2: settlement caused by creep.

So, Equation (6.3) can be re-written for settlement of foundations as follows:

sEd = s0 + s1 + s2 ≤ sCd 6 22

where sEd is the total settlement (an action effect), and sCd is the limiting value of that settlement.
The components of foundation movement, which should be considered include: settlement, rela-

tive (or differential) settlement, rotation, tilt, relative deflection, relative rotation, horizontal displace-
ment and vibration amplitude. Definitions and limiting values of some terms for foundation
movement and deformation are given in Annex H to EN1997-1. For example, for normal structures
with isolated foundations, total settlements up to 50mm are often acceptable. Larger settlements may
be acceptable provided the relative rotations remain within acceptable limits and provided the total
settlements do not cause problems with the services entering the structure, or cause tilting and so on.

In verifications of SLS, partial factors are normally set to 1. The combination factors ψ applied to
accompanying variable actions are those specified for the characteristic, frequent, or quasi-permanent
combinations, which are the ψ2 values from EN 1990.

Annex F of EN 1997-1 presents two methods to evaluate settlement. Other methods (from the in
situ tests) are given in the Annexes to EN 1997-2.

EN 1997 emphasises the fact that settlement calculations should not be regarded as accurate. They
merely provide an approximate indication [EN 1997-1 §6.6.1(6)].
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Where the depth of compressible layers is large, it is normal to limit the analysis to depths
where the increase in effective vertical stress is greater than 20% of the effective overburden stress
[EN 1997-1 §6.6.2(6)].

For conventional structures founded on clays, settlements should be calculated explicitly when the
ratio of the characteristic bearing resistance Rk to the applied serviceability loads Ek is less than three.
If this ratio is less than two, those calculations should take account of the ground’s non-linear stiffness
[EN 1997-1 §6.6.2(16)].

Therefore, the serviceability limit state may be deemed to have been verified if:

Ek ≤
Rk

γR,SLS
6 23

where Ek characteristic effects of actions, Rk = characteristic resistance to those actions, and
γR,SLS = a partial resistance factor ≥ 3.

Concluding remarks
The geotechnical design of spread foundations to EN 1997 involves checking that the ground has
sufficient bearing resistance to withstand vertical actions, sufficient sliding resistance to withstand
horizontal and inclined actions and sufficient stiffness to prevent unacceptable settlement. The first
two requirements concern ultimate limit states (ULS) and the last concerns a serviceability limit
state (SLS).

Verification of ULS is carried out by satisfying Equations (6.4) and (6.10), repeated here for
convenience:

Vd ≤Rd and Hd ≤Rd + Rpd

These two equations are merely specific forms of Equation (6.2):

Ed ≤Rd

Verification of SLS is carried out by satisfying Equation (6.22), repeated here for convenience:

sEd = s0 + s1 + s2 ≤ sCd

This equation is merely a specific form of Equation (6.3):

Ed ≤Cd

Alternatively, serviceability limit states may be verified by satisfying Equation (6.23), repeated
here for convenience:

Ek ≤
Rk

γR,SLS

In this equation the partial factor γR,SLS is equal or greater than 3.

6.3.5 Structural Design

(A) General
As mentioned earlier in Section 6.3.1, the principles and application rules related to “Structural
design of spread foundations” is given in EN 1997-1 §6.8. It requires that structural failure of a
spread foundation shall be prevented in accordance with EN 1997-1 §2.4.6.4, which states: The
design strength properties of structural materials and the design resistances of structural elements
shall be calculated in accordance with EN 1992 to EN 1996 and EN 1999. Therefore, it is clear that
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all the structural reinforced concrete elements of a spread foundation shall be designed in accord-
ance with EN 1992.

For stiff footings, EN 1997-1 §6.8 recommends a linear distribution of bearing pressures may be
used to calculate bending moments and shear stresses in the structural elements. A more detailed
analysis of soil-structure interaction may be used to justify a more economic design.

The distribution of bearing pressures beneath flexible foundations may be derived by modeling
the foundation as a beam or raft resting on a deforming continuum or series of springs, with
appropriate stiffness and strength.

(B) Selected symbols and their definitions
Ac Cross-sectional area of concrete= bh
As Area of tension steel
As,prov Area of tension steel provided
As,req ’ d Area of tension steel required
d Effective depth
deff Average effective depth = dy + dz 2
fcd Design value of concrete compressive strength= accfck γc
fck Characteristic cylinder strength of concrete

fctm Mean of axial tensile strength= 0 3fck
2 3 for fck ≤C50 60 (From Table 3.1, EN 1992)

Gk Characteristic value of a permanent action
h Overall depth of the section
leff Effective span of member
M Design moment at the ULS
Qk Characteristic value of a variable action
Qkw Characteristic value of a variable wind action
VEd Design value of applied shear force
vEd Design value of applied shear stress
VRd,c Design value of the punching shear resistance without punching shear reinforcement
vRd,c Design value of the punching shear stress resistance without punching shear

reinforcement
vRd,max Design value of the maximum punching shear stress resistance along the control

section considered
x Depth to neutral axis = d−z 0 4
xmax Limiting value for depth to neutral axis = δ−0 4 d, where δ≤ 1
z Lever arm
acc Coefficient taking account of long term effects on compressive strength and of unfavour-

able effects resulting from the way load is applied (from UK National Annex) = 0 85 for
flexure and axial loads, 1.0 for other phenomena

β Factor for determining punching shear stress
δ Ratio of the redistributed moment to the elastic bending moment
γm Partial factor for material properties
ρ0 Reference reinforcement ratio = fck 1000
ρl Required tension on reinforcement at mid-span to resist the moment due to the design

loads (or at support for cantilevers) =As bd
ψ0 Factor for combination value of a variable action
ψ1 Factor for frequent value of a variable action
ψ2 Factor for quasi-permanent value of a variable action

(C) Material properties
(a) Concrete

The concrete compressive strength classes are based on the characteristic cylinder strength fck
determined at 28 days with a maximum value of Cmax. The value of Cmax for use in a Country
may be found in its National Annex. EN 1992-1-1 §3.1.2(2) recommends C90/105. Details of
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the required concrete properties such as strength, elastic deformation and creep and shrink-
age, are given in EN 1992-1-1 §3.1.

Typical concrete properties are given in Table 6.10.
In EN 1992 the design of reinforced concrete is based on the characteristic cylinder strength

fck rather than cube strength and should be specified to BS 8500: Concrete-complementary
British Standard to BS EN 206-1.

A key change in BS 8500 was the introduction of dual classification system where the con-
crete cylinder strength is given alongside the equivalent concrete cube strength (e.g. for class
C28/35 concrete the cylinder strength is 28 MPa, whereas the cube strength is 35 MPa).

As mentioned above, EN 1992 allows the designer to use high strength concrete, up to a class
C90/105 (or class C70/85 for bridges). Above a class C50/60, the engineer will find that there are
restrictions placed in EN 1992. For example, there are lower strain limits, additional require-
ments for fire resistance and in the UK the resistance to shear should be limited to that of a
class C50/60 concrete.

(b) Reinforcing steel
According to EN 1992-1-1 §3.2.2(1), the behaviour of reinforcing steel is specified by the fol-
lowing properties:

• Yield strength (fyk or f0,2k)

• Maximum actual yield strength (fy,max),

• Tensile strength (ft),

• Ductility (εuk and ft /fyk)

• Bond characteristics (fR: See Annex C),

• Section sizes and tolerances,

• Fatigue strength,

• Weldability,

• Shear and weld strength for welded fabric and lattice girders.
Details of all these required reinforcing steel properties are given in EN 1992-1-1 §3.2.
The application rules for design and detailing in EN 1992-1-1 are valid for a specified yield

strength range fyk = 400 – 600MPa. The upper limit of fyk within this range for use within a
Country may be found in its National Annex. The recommended value for partial factor γs is
1.15 for ULS, persistent and transient design situations [EN 1992-1-1 §2.4.2.4(1)].

The characteristic strength of reinforcing steel supplied in the UK is 500MPa; previously the
minimum strength was 460 MPa. In order to ensure that there was no confusion with older
steel grades the 500 grade steel is designated with an “H”. The properties of reinforcing steel

Table 6.10 Selected concrete properties based on Table 3.1 of EN 1992, Part1-1.

Symbol Properties

fck (MPa) 12 16 20 25 30 35 40 45 50 28a 32a

fck,cube (MPa) 15 20 25 30 37 45 50 55 60 35a 40a

fctm (MPa) 1.6 1.9 2.2 2.6 2.9 3.2 3.5 3.8 4.1 2.8a 3.0a

Ecm
b(GPa) 27 29 30 31 33 34 35 36 37 32a 34a

Key

fck = Characteristic cylinder strength

fck, cube = Characteristic cube strength

fctm = Mean tensile strength

Ecm = Mean secant modulus of elasticity
a Concrete properties not cited in Table 3.1 of EN 1992, Part1-1.
bMean secant modulus of elasticity at 28 days for concrete with quartzite aggregates. For concrete with other aggregates refer to CI 3.1.3 (2)
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in UK for use with EN 1992 are given in BS 4449 (2005): “Specification for carbon steel bars for
the reinforcement of concrete”.

There are three classes of reinforcement: A, B and C, which provide increasing ductility, as
shown in Table 6.11. Class A is not suitable where redistribution of 20% and above has been
assumed in the design.

There is no provision for the use of plain bar or mild steel reinforcement, but guidance is
given in the background paper to the UK National Annex.

(D) Actions
EN1991:Actionsonstructuresconsistsof10partsgivingdetailsofawidevarietyofactions.Arelatively
brief description of different types of actions has been given in Section 6.2.5 of this Chapter.

EN1991,Part1-1:GeneralActions-Densities, self-weight, imposed loads forbuildingsgives thedens-
ities and self-weights of building material. The draft National Annex to this Eurocode gives the
imposed loads for UK buildings. Table 6.12 gives bulk density of three selectedmaterials. A selection
of imposed loads is presented in Table 6.13.

(E) Combination of actions
As defined earlier, the term combination of actions refers to a set of values of actions to be used when
a limit state is under the influence of different actions. The ULS and SLS combinations of actions are
covered in EN 1990 and in Section 6.2.5 of this Chapter. Also, the values of partial factors for these
limit state combinations can be obtained by referring to same sources.

(F) Reinforced concrete pads (column footings)
Successful structural design of a reinforced concrete pad foundation must ensure:

• Beam shear strength,

• Punching shear strength,

• Sufficient reinforcement to resist bending moments.
The moments and shear forces should be assessed using one of the three alternative sets of

expressions given in Section 6.2.5 and the design values of actions of Table 6.6. For example,
the moments and shear forces may be assessed using Expression (6.10) and STR combination 1:

Table 6.11 Characteristic tensile properties of reinforcing steel.

Reinforcement class

Property A B C

Characteristic yield strength fyk or f0,k (MPa) 500 500 500

Minimum value of k= ft fy k
≥ 1 05 ≥ 1 08 ≥ 1 15 < 1 35

Characteristic strain at maximum force εuk(%) ≥ 2 5 ≥ 5 0 ≥ 7 5

Notes
a Table derived from BS EN 1992–1–1 Annex C, BS 4449: 2005 and BS EN 10080
b The nomenclature used in BS 4449: 2005 differs from that used in BS EN 1992–1–1 Annex C and used here.
c In accordance with BS 8666, class H may be specified, in which case class A, B or C may be supplied.

Table 6.12 Selected bulk density of material (from EN 1991–1–1).

Material Bulk density (kN/m3)

Normal weight concrete 24.0

Reinforced normal weight concrete 25.0

Wet Normal weight reinforced concrete 26.0
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For one variable action 1 35Gk + 1 5Qk

However, there may be economies to make from using the other two Expressions (6.10a) and
(6.10b).

The design applied moment, beam shear and punching shear should be checked at their critical sec-
tions located as shown in Figure 6.8.

Treating the reinforced pad as a beam in bending, the critical bending moments for design of bottom
reinforcement are calculated at the column faces, as shown in Figure 6.8. A procedure for determining
flexural reinforcement for pad foundations is shown in Figure 6.9 (and Table 6.14). Particular rules and
detailing of column footings are given in EN 1992-1-1 §9.8.2.

EN 1992 provides specific guidance on the design of foundations for punching shear, and this varies
from that given for slabs. The critical shear perimeter has rounded corners and the forces directly
resisted by the ground should be deducted (to avoid unnecessary conservative designs). The critical
peripheral section should be found iteratively, but it is generally acceptable to check at d and 2d
[EN 1992-1-1 §6.4.2 (1, 2)]. A procedure for determining punching shear capacity for pad foundations
as suggested by The Concrete Centre (TCC), UK, is shown in Figure 6.10. It is not usual for a pad
foundation to contain shear reinforcement; therefore it is only necessary that the concrete shear stress

Punching shear 

critical perimeters 

(control perimeters) 

Beam shear 

critical section 

Bending moment 

critical section 

Footing

d

d d

Figure 6.8 Location of critical section for beam shear, punching shear and bendingmoment in reinforced concrete
pad foundations.

Table 6.13 Selected imposed loads for buildings (from draft UK National Annex to EN 1991-1-1).

Category Example use qk (kN/m
2) Qk (kN)

A1 All uses within self-contained dwelling units 1.5 2.0

A2 Bedrooms and dormitories 1.5 2.0

A3 Bedrooms in hotels and motels, hospital wards and toilets 2.0 2.0

A5 Balconies in single family dwelling units 2.5 2.0

A7 Balconies in hotels and motels 4.0 min. 2.0 at outer edge

B1 Offices for general use 2.5 2.7

C5 Assembly area without fixed seating, concert halls, bars,
places of worship

5.0 3.6

D1/2 Shopping areas 4.0 3.6

E12 General storage 2.4 per m height 7.0

E17 Dense mobile stacking in warehouses 4.8 per m height 7.0

F Gross vehicle weight ≤ 30 kN 2.5 10.0
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capacity without shear reinforcement (vRd,c; see Table 6.17) is greater than the applied shear stress
vEd = VEd bd . If the basic shear stress is exceeded, the designer may increase the thickness of
the pad. Alternatively, the amount of main reinforcement could be increased or, less desirably, shear
links could be provided. EN 1992-1-1 §6.4.4(2) gives equations for calculation of applied and resisting
shear stresses.

Determine the applied design moment M
Ed at face of column or wall

Is concrete class

≤ C50/60?

Yes

No Outside scope of

this publication

Determine K from: K = 
M

b d
2

eff
 f

ck

No compression reinforcement required

Determine K' from Table 6.14 or

K′ = 0.60 δ – 0.18 δ 2 – 0.21 where δ ≤ 1.0

Yes

No

Compression

reinforcement

required - (Not

recommended;

usually, not

needed in pad

foundations

START

Obtain lever arm z from Table 6.15 or: z = (deff/2) 1 + 1 K3.53 0.95 deff

Check maximum reinforcement requirements: As,max= 0.04 Ac

Is K ≤ K′?

Check minimum reinforcement requirements (see Table 6.16) 

As,min = (0.26 fctmbtdeff) / fyk

Calculate tension reinforcement required from: As= M /(z × fyd)

Figure 6.9 Procedure for determining flexural reinforcement for pad foundations.
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Table 6.16 Minimum percentage of reinforcement required.

fck fctm Minimum % (0.26 fctm/fyk
a)

25 2.6 0.13%

28 2.8 0.14%

30 2.9 0.15%

32 3.0 0.16%

35 3.2 0.17%

40 3.5 0.18%

45 3.8 0.20%

50 4.1 0.21%

Key

a Where fyk = 500MPa; 0 26 fctm fyk ≥ 0 13

Table 6.14 Values for K .

% Redistribution δ (Redistribution ratio) K

0 1.00 0.208a

10 0.90 0.182a

15 0.85 0.168

20 0.80 0.153

25 0.75 0.137

30 0.70 0.120

Key

a It is often recommended in the UK that K should be limited to 0.168 to ensure ductile failure.

Table 6.15 Values of z/deff for singly reinforced rectangular sections.

K z/deff K z/deff

≤ 0.05 0.950a 0.13 0.868

0.06 0.944 0.14 0.856

0.07 0.934 0.15 0.843

0.08

0.09

0.924

0.913

0.16

0.17

0.830

0.816

0.10 0.902 0.18 0.802

0.11 0.891 0.19 0.787

0.12 0.880 0.20 0.771

Key

a Limiting z to 0.95 deff is not a requirement of EN 1992, but is considered to be good practice.
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(G) Reinforced concrete strip foundations
Where the supporting soil is weak and the wall load is heavy a wide strip footing may be required.
For this case, a reinforced concrete strip foundation, at a comparatively shallow depth, is likely to
show an advantage in safety and cost over unreinforced concrete. In addition to the main trans-
verse reinforcement, longitudinal bars is also desirable in strip foundations on highly variable soils
when the foundation is enabled to bridge over local weak or hard spots in the soil at the foundation
level, or when there is an abrupt change in loading.

START

Determine value of νRd,max (refer to Table 6.18) 

Determine value of factor β . [ β = 1.0 when applied moment is zero; refer

to Expressions (6.38) to (6.42) from BS EN 1992-1-1 for other cases]

Yes

No Redesign

foundation 

No shear reinforcement required. Check complete

Determine concrete punching shear capacity νRd (without shear

reinforcement) from 2d νRd/a (refer to Table 6.17 for νRd,c)

Yes

No

Either increase main

steel, or provide

punching shear

reinforcement. (Not

recommended for

foundations)

Is νEd,max< νRd,max ?

Is νEd < νRd? at

critical perimeter

Determine value of νEd (design shear stress) from: vEd = 

where u1 is length of control perimeter (refer to Fig. 6.8). For eccentrically

loaded bases, refer to Expression (6.51). The control perimeter will have to

 be found though iteration; it will usually be between d and 2d

(VEd– ΔVEd)

(u1 deff)

Determine value of νEd,max (design shear stress at face of column) from:

=
β (VEd– ΔVEd)

(u0 deff)
[from Expression (6.38)] where u0 is

perimeter of column (see Clause 6.4.5 for columns at base edges)

vEd,max

deff = (dy + dz)/2 where dy and dz are the effective depths in orthogonal

directions 

Figure 6.10 Procedure for determining punching shear capacity for pad foundations.
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The critical bending moments for design of bottom transverse reinforcement are calculated at
the wall faces on the assumption that the footing projections behave as cantilevers. The slab must
also be designed to withstand shear and bond stresses. It is necessary to consider only the beam
shear stress, which is usually checked at the critical sections, in long direction, located a distance d
from the wall face. Particular rules and detailing of wall footings are given in EN 1992-1-1 §9.8.2.

(H) Pile caps
The function and structural design of pile caps are very similar to those of reinforced concrete
pads; both elements must distribute loads from the supported member across their bottoms.

Here also, a pile cap may be treated as a beam in bending, where the critical bending moments
for the design of the bottom reinforcement are located at the column faces. Alternatively, a truss
analogy may be used; this is covered in EN 1992-1-1 §5.6.4 and 6.5.

Both beam shear and punching shear should be checked as shown in Figure 6.11a. For calcu-
lating the design values of shear resistances, Table 6.17 may be used. Again here also, if the basic
shear stress is exceeded, the designer may increase the thickness of the cap. Alternatively, the
amount of main reinforcement could be increased or, less desirably, shear links could be provided.
Care should be taken that main reinforcing bars are fully anchored. The compression caused by
the support reaction from the pile may be assumed to spread at 45 degree angles from the edge of
the pile (Figure 6.11b).This compression may be taken into account when calculating the anchor-
age length. Also, when assessing the shear capacity in a pile cap, only the tension steel placed
within the stress zone should be considered as contributing to the shear capacity.

Table 6.17 Resistance vRd,c of members without shear reinforcement, MPa.

ρl

Effective depth, d (mm)

300 400 500 600 700 800 900 1000a

0.25% 0.47 0.43 0.40 0.38 0.36 0.35 0.35 0.34

0.50% 0.54 0.51 0.48 0.47 0.45 0.44 0.44 0.43

0.75% 0.62 0.58 0.55 0.53 0.52 0.51 0.50 0.49

1.00% 0.68 0.64 0.61 0.59 0.57 0.56 0.55 0.54

1.25% 0.73 0.69 0.66 0.63 0.62 0.60 0.59 0.58

1.50% 0.78 0.73 0.70 0.67 0.65 0.64 0.63 0.62

1.75% 0.82 0.77 0.73 0.71 0.69 0.67 0.66 0.65

≥ 2.00% 0.85 0.80 0.77 0.74 0.72 0.70 0.69 0.68

K 1.816 1.707 1.632 1.577 1.535 1.500 1.471 1.447

fck 25 28 32 35 40 45 50

Factor 0.94 0.98 1.02 1.05 1.10 1.14 1.19

Key

a For depths greater than 1000 mm calculate vRd,c directly.

Notes

(1) Table derived from: vRd,c = 0 12k 100ρl fck
1 3 ≥ 0 035k1 5 fck

0 5 where k= 1 + 200 d ≤ 2 and ρl = ρly × ρlz ≤ 0 02,

ρly =Asy bd and ρlz =Asz bd

(2) This Table has been prepared for fck = 30; where ρl exceed 0.40 % the following factors may be used:

fck 25 28 32 35 40 45 50

Factor 0.94 0.98 1.02 1.05 1.10 1.14 1.19
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Particular rules and detailing of column footings on piles are given in EN 1992-1-1 §9.8.1.

(I) Raft foundations
The basic design processes for rafts are similar to those for isolated pad foundations or pile caps.
The only difference in approach lies in the selection of an appropriate method for analysing the
interaction between the raft and he ground so as to achieve a reasonable representation of their
behaviour (TCC, 2006).

For stiffer rafts (i.e. span to thickness smaller than 10) with a fairly regular layout, simplified
approaches such as yield line or the flat slab equivalent framemethodmay be employed, once an esti-
mationof the variations inbearingpressurehasbeenobtained fromageotechnical specialist.Whatever
simplifications are made, individual elastic raft reactions should equate to the applied column loads.

For thinner,more flexible rafts or for thosewith a complex layout, the application of a finite element
or grillage analysis may be required. For rafts bearing on cohesionless subgrades or when contiguous
walls ordiaphragmperimeterwalls are present, the groundmaybemodeled as abedofWinkler springs
(see Section 5.11 of Chapter 5).For rafts bearing on cohesive subgrades, this approach is unlikely to be
valid, and specialist software will be required (TCC, 2006).

(J) Spacing and quantity of reinforcement
The minimum clear spacing of reinforcing bars should be the greatest of (see EN 1992-1-1 § 8.2):

• Bar diameter

• Aggregate size plus 5 mm

• 20 mm

The minimum area of principal reinforcement is As,min = 0 26 fctmbtd
fyk

, but not less than 0.0013 btd

(see Table 6.19; EN 1992-1-1 §9.2.1.1).

(a) (b)

45°Cap 

 Pile 

Stress zone 

As contributing to shear capacity

Pile diameter ϕ

Beam shear ≤ d from column face

Punching shear ≤ 2d from column 

ϕ/5

ϕ/5

Figure 6.11 A pile cap: (a) critical shear perimeters, (b) compressed zone.

Table 6.18 Values for vRd,max, MPa.

fck 20 25 28 30 32 35 40 45 50

vRd,max 3.68 4.50 4.97 5.28 5.58 6.02 6.72 7.38 8.00

Table 6.19 Minimum percentage of reinforcement required.

fck 25 28 30 32 35 40 45 50

fctm 2.6 2.8 2.9 3.0 3.2 3.5 3.8 4.1

Minimum% (0.26 fctm/fyk); fyk = 500MPa 0.13 0.14 0.15 0.16 0.17 0.18 0.20 0.21
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Except at lap locations, the maximum area of tension or compression reinforcement, should
not exceed As,max = 0 04Ac (EN 1992-1-1 §9.2.1.1).

(K) Bar bend and anchorage length
The minimum diameter to which a bar is bent shall be such as to avoid bending cracks in the bar,
and to avoid failure of the concrete inside the bend of the bar. In order to avoid these damages, EN
1992-1-1 §8.3(2) specifies minimum mandrel diameter m,min (diameter to which the bar is bent)
to be 4 and 7 for bar diameters ≤ 16mm and > 16mm, respectively. EN 1992-1-1 §8.3(3)
give further guidance and provisions regarding the mandrel diameter.

Reinforcing bars shall be so anchored that the bond forces are safely transmitted to the concrete
avoiding longitudinal cracking or spalling. Transverse reinforcement shall be provided if neces-
sary. The calculation of the required anchorage length shall take into consideration the type of
steel and bond properties of the bar. EN 1992-1-1 §8.4.3give guidance and an equation for calcu-
lation of the basic required anchorage length lb,rqd. Also, EN 1992-1-1 §8.4.4 give guidance and an
equation for calculation of the design anchorage length lbd. For bent bars the lengths lb,rqd and lbd
should be measured along the centre line of the bar [EN 1992-1-1 §8.4.3(3)]. Bends and hooks do
not contribute to compression anchorages [EN 1992-1-1 §8.4.1(3)].

Table 6.20 gives anchorage length lbd for reinforcing straight bars, and length lb,rqd for standard
bends, hooks and loops, in footings, based on the simplified procedure suggested in EN 1992-1-1
§8.4.4(2). The given length values account for good or poor bond conditions (related to concreting)
as well as reinforcement function (i.e. tension or compression reinforcement). Also, for standard
bends or hooks, the table data are based on the assumption that minimum bar spacing smin ≥ 2cnom,
using the nominal concrete cover to reinforcement cnom = 40mm.

(L) Plain concrete foundations
EN 1992-1-1 §12.9.3(1) states: In the absence of more detailed data, axially loaded strip and pad
footings may be designed and constructed as plain concrete provided that:

0 85 × hF
a

≥ 3σgd fctd,pl

Where:
hF = The foundation depth (footing thickness; see Figure 6.12)
a = The projection from the column face
σgd = The design value of the ground bearing pressure

Table 6.20 Anchorage lengths for reinforcing bars in footings (C25/30).

Diameter
(mm)

Straight bar lbd (mm) Bend, hook and loop (mm)

Tension Compression Tension

Good Poor Good Poor Good Poor

8 226 323 323 461 226 323

10 283 404 404 577 283 404

12 339 484 484 692 339 484

14 408 582 565 807 565 807

16 500 715 646 922 646 922

20 686 980 807 1153 807 1153

25 918 1312 1009 1441 1009 1441
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fctd,pl = The design concrete tensile strength from Expression (3.16).
As a simplification the relation hF a ≥ 2 may be used.
For plain concrete in compression: the value of acc should be taken as 0.6 instead of the 0.85

usually used for reinforced concrete. The coefficient acc is applied to the design compressive
strength to take account of long-term effects.

The possibility of splitting forces, especially, for footings on rock, as advised in EN 1992-1-1
§9.8.4, may need to be considered.

EN 1992-1-1 §12.1(4) allows plain concrete to contain reinforcement needed to satisfy ser-
viceability and/or durability requirements, for example, to control cracking.

Problem Solving

Problem 6.1

A building consists of n= 3 stories with plan dimensions L= 48 m and B= 15 m; divided into NL = 8 bays in the L
direction and NB = 2 bays in the B direction, as shown in the scheme below. The height of each story is h= 3 2 m.
The floors of the building are dfloor = 250 mm thick.
Shear walls, intended to resist overturning, are located at both ends of the building and are t = 300 mm thick by

bw = 4 m wide on plan.
A water tank, dtank = 2 m deep by ltank = 5 m long by btank = 5 m wide, sits over the shear wall at one end of the

building.
The shear walls are supported by strip foundations of length lfdn = 6 5 m, width bfdn = 2 m and dfdn = 1 5 m. The

following characteristic imposed/wind actions act on the building:

• roof loading qrf ,k = 0 6 kPa

• office floor loading qoff ,k = 2 5 kPa

• partition loading qpar,k = 0 8kPa

• wind (horizontal) qw,k = 1 15 kPa

The characteristic unit weight of reinforced concrete is γc,k = 25 kN m3 and of water γw,k = 10 kN m3.
Required: the way in which actions should be combined according to Eurocode (EN 1990), in a way that is

suitable for geotechnical design of foundations.

Solution:
Geometry
The total plan area of building is

Atotal = L×B= 48 × 15 = 720m
2

bF

hF

a a

Figure 6.12 Unreinforced strip and pad footings; notations.
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The tributary area above the stability wall is

A=
B+ bw

2
×
1
2

L
NL

=
15 + 4
2

×
1
2

48
8

= 28 5m2

Characteristic permanent actions
Self-weight of slabs:

• Floor gfl,Gk = γc, k × dfloor = 25 × 0 25 = 6 25 kPa

• Screed on roof gscr,Gk = 1 5 kPa

• Raised floor gr, − fl,Gk = 0 5 kPa (removable)

Self-weight of water tank on roof-only half total weight is carried by the core wall:

Wtank,Gk =
1
2
γw, k × dtank × ltank × btank =

1
2
× 10 × 2 × 5 × 5

= 250 kN removable

Self-weight of core wall:

Wwall,Gk = γc, ktwbw nh = 25 × 0 3 × 4 × 3 × 3 2 = 288 kN

Self-weight of strip foundation:

Wfdn,Gk = γc, kdfdnbfdnlfdn = 25 × 1 5 × 2 × 6 5 = 488 kN

(Continued)

6
m

L
=

4
8

m

7.5 m

Strip

footing 

7.5 m

B = 15 m

Water

 tank

h

h

h

df dn

Scheme 6.1
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Total self-weight of non-removable members (normal to ground):

NGk1 =A ngfl,Gk + gscr,Gk +Wwall,Gk +Wfdn,Gk

= 28 5 3 × 6 25 + 1 5 + 288 + 488 = 1353 kN

Total self-weight of removable members (normal to ground):

NGk2 =A n−1 gr, − fl,Gk +Wtank, Gk

= 28 5 3−1 × 0 5 + 250 = 279 kN

Characteristic variable actions
Imposed actions (normal to ground):

• On roof N rf ,Qk = qrf ,kA= 0 6 × 28 5 = 171 kN

• On floor Nfl,Qk = n−1 qoff ,k + qpar,k A

= 3−1 2 5 + 0 8 × 28 5 = 188 1 kN

Wind actions (horizontal direction):

• On roof Qw,rf , Qk = qw, k
h
2

L
2

= 1 15
3 2
2

48
2

= 44 2 kN

• On each floor Qw, fl, Qk = qw, k h
L
2

= 1 15 3 2
48
2

= 88 3 kN

Total wind action (normal to ground):

Nw, Qk = 0 kN

Moment effect of wind action (on ground):

• First floor
Mw, Qk1 =Qw, fl, Qk n−2 h+ dfdn

= 88 3 3−2 3 2 + 1 5 = 415 kN m

• Second floor
Mw, Qk2 =Qw, fl, Qk n−1 h+ dfdn

= 88 3 3−1 3 2 + 1 5 = 698 kN m

• Roof
Mw, Qk3 =Qw,rf , Qk n−0 h+ dfdn

= 44 2 3−0 3 2 + 1 5 = 490 kN m

• total
Mw, Qk = Moment effect of wind action

= 415 + 698 + 490 = 1603 kN m

Combinations of actions for persistent and transient design situations – ULS verification
Combination 1 – wind as leading variable action, vertical actions unfavourable, partial factors from Set B in
Table 6.6 or Section 6.3.4(G).
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• Partial factors:

• On permanent actions γG = 1 35

• On variable actions (wind) γQ,w = 1 5

• On variable actions (imposed loads) γQ, i = 1 5

• Combination factors (Table 6.3):

• For wind (leading variable action) ψw = 1 0

• For imposed load in office areas (Category B) ψ fl =ψ0, i,B = 0 7

• For imposed load on roof (Category H) ψ rf =ψ0, i,H = 0 0 (also see EN 1991-1-1: Clause 3.3.2)

• Design value of normal action effect:

NEd = γG NGk1 +NGk2 + γQ,wψwNw, Qk + γQ,I ψ flNfl, Qk +ψ rf Nrf , Qk

= 1 35 1353 + 279 + 0 + 1 5 0 7 × 188 1 + 0∗ = 2401 kN

∗ See EN 1991-1-1 §3.3.2(1)

• Design value of moment effect:

MEd = γQ,wψwMw, Qk = 1 5 × 1 × 1603 = 2405 kN m

• Maximum bearing pressure (Pmax, Ed) on underside of strip foundation:

• Check eccentricity el:

el = MEd NEd = 2405 2401 = 1 00m<
lfdn
6

OK

Pmax, Ed =
NEd

A
1 +

6 el
lfdn

Equation 2 7 or

Pmax, Ed =
NEd

bfdnlfdn
+

6MEd

bfdnl2fdn

=
2401
2 × 6 5

+
6 × 2405
2 × 6 52

= 184 69 + 170 77 = 355 5 kPa

Combination 2 – wind as leading variable action, vertical actions favourable (γG = 1 and γQ, i = 0), partial factors
from Set B in Table 6.6 or Subsection 6.3.4(G).

• Design value of normal action effect:

NEd = γG, fav NGk1 +NGk2 = 1 1353 + 279 = 1632 kN

• Design value of moment effect:

MEd = γQ,wψwMw, Qk = 1 5 × 1 × 1603 = 2405 kN m

(Continued)

Centroid

lf dn= 6.5 m

Strip footing

NEd NEd

el

MEd

Scheme 6.2
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• Maximum bearing pressure (Pmax,Ed) on underside of strip foundation:

• Check eccentricity el:

el = MEd NEd = 2405 1632 = 1 47m>
lfdn
6

(Not OK.)

Therefore, Equation (2.7) is not applicable.
Since tension cannot occur between ground and the underside of the footing, the triangular bearing pres-

sure distribution shown below may be considered (see Section 2.6.2 of Chapter 2).

a=
lfdn
2

− el =
1
2

lfdn−2el

NEd =
Pmax, Ed × 3a

2
bfdn = Pmax, Ed

3
4

bfdn lfdn−2el

Pmax, Ed =
4NEd

3bfdn lfdn−2el
=

4 × 1632
3 × 2 6 5−2 × 1 47

= 306 kPa

However, TCC (2006) recommends a rectangular ULS pressure distribution diagram to be considered and
not triangular, as shown below.

Accordingly, the maximum bearing pressure (Pmax, Ed) on the underside of the strip foundation is

Pmax, Ed =
NEd

bfdn × 2a
=

1632

2 × 2
1
2

lfdn−2el

=
1632

2 6 5−2 × 1 47
= 229 kPa

NEd

Pmax,Ed

a2a

lf dn /2 el

lf dn= 6.5 m

Scheme 6.3

NEd

Pmax,Ed

aa

lf dn /2 el

lf dn= 6.5 m

Scheme 6.4
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Combination 3 – imposed loads as leading variable action, vertical actions unfavourable, partial factors from Set
B in Table 6.6 or Section 6.3.4(G).

• Partial factors:

• On permanent actions γG = 1 35

• On variable actions (imposed loads) γQ, i = 1 5

• On variable actions (imposed loads) (wind) γQ,w = 1 5

• Combination factors (Table 6.3):

• For imposed load in office areas (Category B) ψ fl = 1 0

• For imposed load on roof (Category H) ψ rf = 1 0

• For wind ψw =ψ0, w = 0 6

• Design value of normal action effect:

NEd = γG NGk1 +NGk2 + γQ, i ψ flNfl, Qk + ψ rf Nrf , Qk + γQ,wψ0,wNw, Qk

= 1 35 1353 + 279 + 1 5 1 × 188 1 + 1 × 17 1 + 0

= 2511 kN

• Design value of moment effect:

MEd = γQ,wψ0,wMw, Qk = 1 5 × 0 6 × 1603 = 1443 kN m

• Maximum bearing pressure (Pmax, Ed) on underside of strip foundation:

• Check eccentricity el:

el = MEd NEd = 1443 2511 = 0 57m<
lfdn
6

OK

Pmax, Ed =
NEd

bfdnlfdn
+

6MEd

bfdnl2fdn

=
2511
2 × 6 5

+
6 × 1443
2 × 6 52

= 193 15 + 102 46 = 296 kPa

Combination 4 – wind as leading variable action, vertical actions unfavourable, partial factors from Set C in
Table 6.6 or Section 6.3.4(G).

• Partial factors:

• On permanent actions γG = 1 0

• On variable actions (wind) γQ,w = 1 3

• On variable actions (imposed loads) γQ, i = 1 3

• Combination factors (Table 6.3):

• For wind (leading variable action) ψw = 1 0

• For imposed load in office areas (Category B) ψ fl =ψ0, i,B = 0 7

• For imposed load on roof (Category H) ψ rf =ψ0, i,H = 0 0 (also see EN 1991-1-1: Clause 3.3.2)

• Design value of normal action effect:

NEd = γG NGk1 +NGk2 + γQ,wψwNw, Qk + γQ,I ψ flNfl, Qk +ψ rf Nrf , Qk

= 1 0 1353 + 279 + 0 + 1 3 0 7 × 188 1 + 0∗ = 1803 kN

(Continued)
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∗ See EN 1991-1-1 §3.3.2(1)

• Design value of moment effect:

MEd = γQ,wψwMw, Qk = 1 3 × 1 × 1603= 2084 kN m

• Maximum bearing pressure (Pmax, Ed) on underside of strip foundation.
The calculations proceed in the same manner as those for the preceding combinations; left for the reader.

Combination 5– wind as leading variable action, vertical actions favourable γG = 1 and γQ, i = 0 , partial factors
from Set C in Table 6.6 or Section 6.3.4(G).

• Design value of normal action effect:

NEd = γG, fav NGk1 +NGk2 = 1 1353 + 279 = 1632 kN

• Design value of moment effect:

MEd = γQ,wψwMw, Qk = 1 3 × 1 × 1603 = 2084 kN m

• Maximum bearing pressure (Pmax, Ed) on underside of strip foundation:
The calculations proceed in the same manner as those for the preceding combinations; left for the reader.
Combination 6 – imposed loads as leading variable action, vertical actions unfavourable, partial factors from Set
C in Table 6.6 or Section 6.3.4(G).

• Partial factors:

• On permanent actions γG = 1 0

• On variable actions (imposed loads) γQ, i = 1 3

• On variable actions (imposed loads) (wind) γQ,w = 1 3

• Combination factors (Table 6.3):

• For imposed load in office areas (Category B) ψ fl = 1 0

• For imposed load on roof (Category H) ψ rf = 1 0

• For wind ψw =ψ0, w = 0 6

• Design value of normal action effect:

NEd = γG NGk1 +NGk2 + γQ, i ψ flNfl, Qk + ψ rf Nrf , Qk + γQ,wψ0,wNw, Qk

= 1 0 1353 + 279 + 1 3 1 × 188 1 + 1 × 17 1 + 0

= 1899 kN

• Design value of moment effect:

MEd = γQ,wψ0,wMw, Qk = 1 3 × 0 6 × 1603 = 1250 kN m

• Maximum bearing pressure (Pmax, Ed) on underside of strip foundation.
The calculations proceed in the same manner as those for the preceding combinations; left for the reader.
Combinations of actions for quasi-persistent design situations – SLS verifications
Combination 1 – wind as leading variable action, vertical actions unfavourable, partial factors for SLS.

• Partial factors [see Section 6.3.4(J)]:

• On permanent actions γG = γG, SLS = 1 0

• On variable actions (wind) γQ,w = γQ,w, SLS = 1 0

• On variable actions (imposed loads) γQ, i = γQ, i, SLS = 1 0

• Combination factors [see Section 6.3.4(J) and Table 6.3]:

• For wind ψw =ψ2, w = 0 0

• For imposed load in office areas (Category B) ψ fl =ψ2, i = 0 3

• For imposed load on roof (Category H) ψ rf =ψ2, i = 0 0
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• Design value of normal action effect:

NEd = γG NGk1 +NGk2 + γQ,wψwNw, Qk + γQ, i ψ flNfl, Qk +ψ rf Nrf , Qk

= 1 0 1353 + 279 + 0 + 1 0 0 3 × 188 1 + 0 = 1688 kN

• Design value of moment effect:

MEd = γQ,wψwMw, Qk = 1 0 × 0 × 1603 = 0 0 kN m

Combination 2 – wind as leading variable action, vertical actions favourable, partial factors for SLS.

• Design value of normal action effect:

NEd = γG, fav NGk1 +NGk2 = 1 0 1353 + 279 = 1632 kN

• Design value of moment effect:

MEd = γQ,wψwMw, Qk = 1 0 × 0 × 1603 = 0 0 kN m

Combination 3 – imposed loads as leading variable action, vertical actions unfavourable, partial factors for SLS.

• Combination factors [see Section 6.3.4(J) and Table 6.3]:

• For wind ψw =ψ2, w = 0 0

• For imposed load in office areas (Category B) ψ fl =ψ2, i = 0 3

• For imposed load on roof (Category H) ψ rf =ψ2, i = 0 0

• Design value of normal action effect:

NEd = γG NGk1 +NGk2 + γQ, i ψ flNfl, Qk + ψ rf Nrf , Qk + γQ,wψwNw, Qk

= 1 0 1353 + 279 + 1 0 0 3 × 188 1 + 0 + 0

= 1688 kN

• Design value of moment effect:

MEd = γQ,wψwMw, Qk = 1 0 × 0 × 1603 = 0 0 kN m

Problem 6.2

A centrally loaded column footing (pad) of length L= 2 5m, width B= 1 5m and depth (thickness) d = 0 5m is
required to carry a vertical imposed permanent action VGk = 800 kN and a vertical imposed variable action
VQk = 450 kN. The footing base is horizontal (i.e. α= 0 ) and located at a depth of 0.5 m below ground surface
(i.e. D= 0 5m). The weight density (unit weight) of the reinforced concrete is γc, k = 25 kN m3 (see
Table 6.12). The footing is founded on dry sand which has the following characteristic parameters:

• Angle of shearing resistance ϕk = 35

• Effective cohesion ck = 0 0 kPa

• weight density γk = 18 kN m3

It is required to perform verification of strength (GEO ultimate limit state), that is verification of bearing resist-
ance, using all the three Design Approaches. Note: In order to concentrate on the EN 1997 rather than the geo-
technical related issues a relatively simple problem has been selected which excludes the effects of groundwater.

(Continued)
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Solution:
(A) Design Approach 1

DA1 – Combination 1: A1 “ + ”M1 “ + ”R1
– Combination 2: A2 + M2 + R1

Actions and effects:

Characteristic self -weight of footingWGk = γc, k × L×B× d

= 25 × 2 5 × 1 5 × 0 5

= 46 9 kN

Area of base Ab = L×B = 2 5 × 1 5 = 3 75m2

Partial factors from Table 6.6 for
Combination 1

Combination 2
:

γG =
1 35

1
; γQ =

1 5

1 3

Design vertical action: Vd = γG WGk +VGk + γQ VQk

=
1 35 46 9 + 800 + 1 5 × 450

1 46 9 + 800 + 1 3 × 450
=

1818 3

1431 9
kN

Design bearing pressure [Equation (6.8)]:

qEd =
Vd

Ab
=

1818 3
3 75
1431 9
3 75

=
484 9

381 8
kPa

Materials properties and resistance:

Partial factors from Table 6.7 for
Combination 1

Combination 2
:

γ =
1

1 25
; γc =

1

1 25

Design angle of shearing resistance

ϕd = tan
−1 tanϕk

γ
=

tan−1 tan35
1

tan−1 tan35
1 25

=
35

29 3

GS

dWGk

VQk

VGkPad

(footing)

L

B

Scheme 6.5
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Design effective cohesion cd =
ck
γc

=
0

0
kPa

Bearing capacity factors from Annex D of EN 1997-1:

For effect of overburden, Nq = eπ tan d tan2 45o + d

2
=

33 3

17 0

For effect of cohesion, Nc = Nq−1 cotϕd =
46 1

28 4

For effect of self-weight, Nγ = 2 Nq−1 tanϕd =
45 2

17 8

Shape factors:

For effect of overburden, sq = 1 +
B
L
sinϕd =

1 34

1 29

For effect of cohesion, sc =
sqNq−1

Nq−1
=

1 35

1 31

For effect of self-weight, sγ = 1−0 3
B
L
=

0 82

0 82

Depth factors:
The suggested method in Annex D does not include depth factors which are present in other formulations

of the extended bearing capacity formula (see Section 4.5 of Chapter 4). There has been concern in using these
depth factors as their influence can be significant and the reliance on the additional capacity provided by its
inclusion is not conservative.

Load-inclination factors, caused by a horizontal load H:
Since H = 0, each of the load-inclination factors ic, iq and iγ is 1.0.
Base-inclination factors:
Since the foundation base is horizontal, that is α= 0, each of the base-inclination factors bc, bq and bγ is 1.0.
Ground-inclination factors:
The suggested method in Annex D omits the ground-inclination factors which are present in other

formulations of the extended bearing capacity formula. However, neglecting these factors is unsafe.
Effective overburden pressure q (or σvk,b):

q = γk ×D= 18 × 0 5 = 9kN m2

Gross ultimate bearing capacity (Gross qult) or gross bearing resistance (R/A ):

Annex D of EN 1997-1 suggests that bearing resistance may be calculated from

R A = c Nc bc sc ic
Cohesion

+ q Nq bq sq iq

Overburden

+ 0 5γ B Nγ bγsγ iγ

Self -weight

• From cohesion: Gross qult 1 =
0

0

46 1

28 4

1 35

1 31
=

0

0
kPa

(Continued)
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• From overburden: Gross qult 2 =
9

9

33 3

17 0

1 34

1 29
=

402

197
kPa

• From self-weight: Gross qult 3 =

0 5

0 5

18

18

1 5

1 5

45 2

17 8

0 82

0 82

=

500

197

kPa

Gross bearing resistanceR A =Gross qult =
3

i= 1

Gross qult i

=
902

394
kPa

From Set R1 in Table A.5 of Annex A to EN 1997-1: the partial factor on bearing resistance is

γR;v =
1

1

Design bearing resistance: qRd =
R A
γR;v

=

902

394

1

1

=
902

394
kPa

Verification of bearing resistance

Utilization factorAGEO =
qEd
qRd

=
484 9 902

381 8 394
=

54

97

Since design is unacceptable if utilisation factor is greater than 100%, combination 2 of the Design
Approach 1(i.e. DA1-2) is critical with a utilisation factor of 97%, implying that the requirements of the
Eurocode are only just met.

(B) Design Approach 2 A1 “+” M1 “+” R2
Actions and effects:

Characteristic self -weight of footing WGk = γc, k × L×B× d

= 25 × 2 5 × 1 5 × 0 5

= 46 9 kN

Area of baseAb = L×B = 2 5 × 1 5 = 3 75m2

Partial factors from Set A1 in Table A.3 of Annex A to EN 1997-1:

γG = 1 35; γQ = 1 5
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Design vertical action: Vd = γG WGk +VGk + γQ VQk

= 1 35 46 9 + 800 + 1 5 × 450 = 1818 3 kN

Design bearing pressure [Equation (6.8)]: qEd =
Vd

Ab
=
1818 3
3 75

= 484 9 kPa

Materials properties and resistance:
Partial factors from Set M1 in Table A.4 of Annex A to EN 1997-1:

γ = 1; γc = 1

Design angle of shearing resistance ϕd = tan
−1 tanϕk

γ
= tan−1 tan35

1

= 35

Design effective cohesion cd =
ck
γc

=
0
1
= 0kPa

Bearing capacity factors from Annex D of EN 1997-1:

For effect of overburden, Nq = eπ tan d tan2 45 + d

2
= 33 3

For effect of cohesion, Nc = Nq−1 cotϕd = 46 1

For effect of self-weight, Nγ = 2 Nq−1 tanϕd = 45 2

Shape factors:

For effect of overburden, sq = 1 +
B
L
sinϕd = 1 34

For effect of cohesion, sc =
sqNq−1

Nq−1
= 1 35

For effect of self-weight, sγ = 1−0 3
B
L
= 0 82

Depth factors:[see the comments given in (A) Design Approach 1]

Load-inclination factors, caused by a horizontal load H:

Since H = 0, each of the load-inclination factors ic, iq and iγ is 1.0.

Base-inclination factors:

Since the foundation base is horizontal, that is α= 0, each of the base-inclination factors bc, bq and bγ is 1.0.

Ground-inclination factors: [see the comments given in (A) Design Approach 1]

Effective overburden pressure q (or σvk,b):

q = γk ×D= 18 × 0 5 = 9kN m2

Gross ultimate bearing capacity (Gross qult) or gross bearing resistance (R/A ):

Annex D of EN 1997-1 suggests that bearing resistance may be calculated from

R A = c Nc bc sc ic
Cohesion

+ q Nq bq sq iq

Overburden

+ 0 5γ B Nγ bγsγ iγ

Self -weight

(Continued)
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• From cohesion: Gross qult 1 = 0 46 1 1 35 = 0 kPa

• From overburden: Gross qult 2 = 9 33 3 1 34 = 402 kPa

• From self-weight: Gross qult 3 = 0 5 18 1 5 45 2 0 82

= 500 kPa

Gross bearing resistanceR A =Gross qult =
3

i= 1

Gross qult i

= 902 kPa

From Set R2 in Table A.5 of Annex A to EN 1997-1: the partial factor on bearing resistance is

γR;v = 1 4

As it may be noticed, for Design Approach 2 the uncertainty in the calculation is covered through partial
factors on the actions and on overall factor on the calculated resistance.

Design bearing resistance: qRd =
R A
γR;v

=
902
1 4

= 644 3 kPa

Verification of bearing resistance

Utilization factorAGEO =
qEd
qRd

=
484 9
644 3

= 75

Design is unacceptable if utilisation factor is greater than 100%.
The calculated utilisation factor (75%) would indicate that, for the design situation of this problem, accord-

ing to DA2 the footing is potentially over-designed.

(C) Design Approach 3 A1 “+ ”M2 “+ ”R3
Actions and effects:

Characteristic self -weight of footing WGk = γc, k × L×B× d

= 25 × 2 5 × 1 5 × 0 5

= 46 9 kN

Area of base Ab = L×B = 2 5 × 1 5 = 3 75m2

Partial factors on structural actions from Set A1 in Table A.3 of Annex A to EN 1997-1:

γG = 1 35; γQ = 1 5

Design vertical action:
Vd = γG WGk +VGk + γQ VQk

= 1 35 46 9 + 800 + 1 5 × 450 = 1818 3 kN

Design bearing pressure [ (6.8)]: qEd =
Vd

Ab
=
1818 3
3 75

= 484 9 kPa

Materials properties and resistance:
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Partial factors from Set M2 in Table A.4 of Annex A to EN 1997-1:

γ = 1 25; γc = 1 25

Design angle of shearing resistanceϕd = tan
−1 tanϕk

γ
= tan−1 tan35

1 25

= 29 3

Design effective cohesion cd =
ck
γc

=
0

1 25
= 0 kPa

Bearing capacity factors from Annex D of EN 1997-1:

For effect of overburden, Nq = eπ tan d tan2 45o + d

2
= 17

For effect of cohesion, Nc = Nq−1 cotϕd = 28 4

For effect of self-weight, Nγ = 2 Nq−1 tanϕd = 17 8

Shape factors:

For effect of overburden, sq = 1 +
B
L
sinϕd = 1 29

For effect of cohesion, sc =
sqNq−1

Nq−1
= 1 31

For effect of self-weight, sγ = 1−0 3
B
L
= 0 82

Depth factors: [see the comments given in (A) Design Approach 1]

Load-inclination factors, caused by a horizontal load H:

Since H = 0, each of the load-inclination factors ic, iq and iγ is 1.0.

Base-inclination factors:

Since the foundation base is horizontal, that is α= 0, each of the base-inclination factors bc, bq and bγ is 1.0.

Ground-inclination factors: [see the comments given in (A) Design Approach 1]

Effective overburden pressure q (or σ vk,b):

q = γk ×D= 18 × 0 5 = 9kN m2

Gross ultimate bearing capacity (Gross qult) or gross bearing resistance (R/A ):

Annex D of EN 1997-1 suggests that bearing resistance may be calculated from

R A = c Nc bc sc ic
Cohesion

+ q Nq bq sq iq

Overburden

+ 0 5γ B Nγ bγsγ iγ

Self -weight

• From cohesion: Gross qult 1 = 0 28 4 1 31 = 0 kPa

• From overburden: Gross qult 2 = 9 17 1 29 = 197 kPa

• From self-weight: Gross qult 3 = 0 5 18 1 5 17 8 0 82

= 197 kPa

Gross bearing resistanceR A =Gross qult =
3

i= 1
Gross qult i

= 394 kPa
(Continued)
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From Set R3 in Table A.5 of Annex A to EN 1997-1: the partial factor on bearing resistance is

γR;v = 1 0

As it may be noticed, Design Approach 3 applies partial factors to both actions and material properties at
the same time.

Design bearing resistance: qRd =
R A
γR;v

=
394
1 0

= 394 kPa

Verification of bearing resistance

Utilisation factorAGEO =
qEd
qRd

=
484 9
394

= 123

The design is unacceptable since the utilisation factor is greater than 100%. Thus the DA3 calculation sug-
gests the design is unsafe and re-design would be required.

Finally, one may comment on the three DAs calculations as follows:
The three design approaches gives different evaluation of the suitability of the proposed foundation for the

given design situation and loading. Of the three approaches, DA1 suggests the footing is only just satisfactory
whilst DA3 suggests redesign would be required and DA2 may indicate that the footing is overdesigned!

It may not be so easy to decide on which approach is the most appropriate or which one to be neglected or
considered. However, it would appear that DA3 is unnecessary conservative as providing significant partial
factors on both actions andmaterial properties, and therefore, the footing redesign would not be necessary. At
the end, considering both safety and economy requirements, one may decide on the DA1-2 calculations;
knowing that this approach generally governs the size of the foundations.

Problem 6.3

Solve Problem 2 assuming that the rectangular pad footing is eccentrically loaded by the imposed actions. The
eccentricities eB and eL are 0.075 and 0.100 m, respectively.

Solution:
(A) Design Approach 1 DA1 – Combination 1: A1 “ + ”M1 “ + ”R1

– Combination 2: A1 “+ ”M2 “+ ”R1
Effective footing plan dimensions:

The footing self-weight and partial factors for actions are the same as those calculated in the Solution of
Problem 6.2.

As mentioned earlier in Section 6.3.4(G), it would be best to base calculation of the eccentricities on design
actions. The self-weight of the footing still acts through the centre of the footing. Accordingly, we can write:
Eccentricity of total vertical action

eB =
eB γGVGk + γQVQk

γG WGk +VGk + γQVQk

=

0 075 1 35 × 800 + 1 5 × 450
1 35 46 9 + 800 + 1 5 × 450

0 075 1 × 800 + 1 3 × 450
1 46 9 + 800 + 1 3 × 450

=
0 0724

0 0725
m
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Eccentricity of total vertical action

eL =
eL γGVGk + γQVQk

γG WGk +VGk + γQVQk

=

0 100 1 35 × 800 + 1 5 × 450
1 35 46 9 + 800 + 1 5 × 450

0 100 1 × 800 + 1 3 × 450
1 46 9 + 800 + 1 3 × 450

=
0 0965

0 0967
m

Load is within the middle third since eB <
B
6
= 0 25m and

eL <
L
6
= 0 42m

Effective width B =B−2eB = 1 5−2
0 0724

0 0725
=

1 36

1 35
m

Effective length L = L−2eL = 2 5−2
0 0965

0 0967
=

2 31

2 31
m

Effective area A = L × B =
2 31 × 1 36

2 31 × 1 35
=

3 13

3 13
m2

Actions and effects:

From previous calculation (Solution of Problem 6.2.), Vd =
1818 3

1431 9
kN

Design bearing pressure [Equation (6.8)]: qEd =
Vd

Ab

=

1818 3
3 13
1431 9
3 13

=
581 6

458 2
kPa

Materials properties and resistance:

From previous calculation (Solution of Problem 6.2.), ϕd =
35

29 3
and

cd =
0

0
kPa

Also, bearing capacity factors Nq =
33 3

17 0
, Nc =

46 1

28 4
and Nγ =

45 2

17 8

(Continued)
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Shape factors:

For effect of overburden, sq = 1 +
B
L
sinϕd =

1 34

1 29

For effect of cohesion, sc =
sqNq−1

Nq−1
=

1 35

1 31

For effect of self-weight, sγ = 1−0 3
B
L

=
0 82

0 82

Depth factors: [see the comments given in Solution of Problem 6.2- (A) Design Approach 1]

Load-inclination factors, caused by a horizontal load H:

Since H = 0, each of the load-inclination factors ic, iq and iγ is 1.0.

Base-inclination factors:

Since the foundation base is horizontal, that is α= 0, each of the base-inclination factors bc, bq and

bγ is 1.0.

Ground-inclination factors: [see the comments given in Solution of Problem 6.2- (A)Design Approach 1]

Effective overburden pressure q (or σ vk,b):

q = γk ×D= 18 × 0 5 = 9kN m2

Gross ultimate bearing capacity (Gross qult) or gross bearing resistance (R/A ):

Annex D of EN 1997-1 suggests that bearing resistance may be calculated from

R A = c Nc bc sc ic
Cohesion

+ q Nq bq sq iq

Overburden

+ 0 5γ B Nγ bγsγ iγ

Self -weight

• From cohesion: Gross qult 1 =
0

0

46 1

28 4

1 35

1 31
=

0

0
kPa

• From overburden: Gross qult 2 =
9

9

33 3

17 0

1 34

1 29
=

402

197
kPa

• From self-weight: Gross qult 3 =
0 5
0 5

18
18

1 36
1 35

45 2
17 8

0 82
0 82

=
454
177

kPa

Gross bearing resistance R A =Gross qult =
3

i = 1
Gross qult i

=
856
374

kPa
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From Set R1 in Table A.5 of Annex A to EN 1997-1: the partial factor on bearing resistance is

γR;v =
1

1

Design bearing resistance: qRd =
R A
γR;v

=

856

374

1

1

=
856

374
kPa

Verification of bearing resistance

Utilization factorAGEO =
qEd
qRd

=
581 6 856

458 2 374
=

68%

122%

Design is unacceptable if utilisation factor is greater than 100%.

(B) Design Approach 2A1“+ ”M1“ + ”R2
Effective footing plan dimensions:

The footing self-weight and partial factors for actions are the same as those calculated in the Solution of
Problem 6.2.

eB =
eB γGVGk + γQVQk

γG WGk +VGk + γQVQk
= 0 0724m as before

Load is within middle-third since eB <
B
6
= 0 25m

eL =
eL γGVGk + γQVQk

γG WGk +VGk + γQVQk
= 0 0965m

Load is within middle-third since eL <
L
6
= 0 42m

Effective width B =B−2eB = 1 5−2 × 0 0724 = 1 36m
Effective length L = L−2eL = 2 5−2 × 0 0965 = 2 31m
Effective area A = L × B = 2 31 × 1 36 = 3 14m2

Actions and effects:
From previous calculation (Solution of Problem 6.2.), Vd = 1818 3 kN

Design bearing pressure [Equation (6.8)]: qEd =
Vd

Ab

=
1818 3
3 14

= 579 1 kPa

Materials properties and resistance:
From previous calculation (Solution of Problem 6.2.), ϕd = 35

o and cd = 0 kPa
Also, bearing capacity factors Nq = 33 3, Nc = 46 1 and Nγ = 45 2
Shape factors:

For effect of overburden, sq = 1 +
B
L
sinϕd = 1 34

For effect of cohesion, sc =
sqNq−1

Nq−1
= 1 35

(Continued)
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For effect of self-weight, sγ = 1−0 3
B
L

= 0 82

Depth factors: [see the comments given in Solution of Problem 6.2]
Load-inclination factors, caused by a horizontal load H:
Since H = 0, each of the load-inclination factors ic, iq and iγ is 1.0.
Base-inclination factors:
Since the foundation base is horizontal, that is α= 0, each of the base-inclination factors bc, bq and bγ is 1.0.
Ground-inclination factors: [see the comments given in Solution of Problem 6.2]
Effective overburden pressure q (or σvk,b):

q = γk ×D= 18 × 0 5 = 9kN m2

Gross ultimate bearing capacity (Gross qult) or gross bearing resistance (R/A ):
Annex D of EN 1997-1 suggests that bearing resistance may be calculated from

R A = c Nc bc sc ic
Cohesion

+ q Nq bq sq iq

Overburden

+ 0 5γ B Nγ bγsγ iγ

Self -weight

• From cohesion: Gross qult 1 = 0 46 1 1 35 = 0 kPa

• From overburden: Gross qult 2 = 9 33 3 1 34 = 402 kPa

• From self-weight: Gross qult 3 = 0 5 18 1 36 45 2 0 82

= 454 kPa
Gross bearing resistanceR A =Gross qult =

3

i= 1
Gross qult i

= 856 kPa

From Set R2 in Table A.5 of Annex A to EN 1997-1: the partial factor on bearing resistance is

γR;v = 1 4

Design bearing resistance: qRd =
R A
γR;v

=
856
1 4

= 611 kPa

Verification of bearing resistance

Utilization factorAGEO =
qEd
qRd

=
597 1
611

= 98

Design is unacceptable if utilisation factor is greater than 100%.

(C) Design Approach 3 A1“+ ”M2 “+ ”R3
Effective footing plan dimensions:

The footing self-weight and partial factors for actions are the same as those calculated in the Solution of
Problem 6.2.

eB =
eB γGVGk + γQVQk

γG WGk +VGk + γQVQk
= 0 0724m as before

Load is within middle-third since eB <
B
6
= 0 25m
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eL =
eL γGVGk + γQVQk

γG WGk +VGk + γQVQk
= 0 0965m

Load is within middle-third since eL <
L
6
= 0 42m

Effective width B =B−2eB = 1 5−2 × 0 0724 = 1 36m

Effective length L = L−2eL = 2 5−2 × 0 0965 = 2 31m

Effective area A = L × B = 2 31 × 1 36 = 3 14m2

Actions and effects:

From previous calculation (Solution of Problem 6.2.), Vd = 1818 3 kN

Design bearing pressure [Equation (6.8)]: qEd =
Vd

Ab

=
1818 3
3 14

= 579 1 kPa

Materials properties and resistance:

From previous calculation (Solution of Problem 6.2.), ϕd = 29 3 and cd = 0 kPa

Also, bearing capacity factors Nq = 16 9, Nc = 28 4 and Nγ = 17 8

Shape factors:

For effect of overburden, sq = 1 +
B
L
sinϕd = 1 29

For effect of cohesion, sc =
sqNq−1

Nq−1
= 1 31

For effect of self-weight, sγ = 1−0 3
B
L

= 0 82

Depth factors (see the comments given in Solution of Problem 6.2):

Load-inclination factors, caused by a horizontal load H:

Since H = 0, each of the load-inclination factors ic, iq and iγ is 1.0.

Base-inclination factors:

Since the foundation base is horizontal, that is α= 0, each of the base-inclination factors bc, bq and bγ is 1.0.

Ground-inclination factors: [see the comments given in Solution of Problem 6.2]

Effective overburden pressure q (or σvk,b):

q = γk ×D= 18 × 0 5 = 9kN m2

Gross ultimate bearing capacity (Gross qult) or gross bearing resistance (R/A ):

Annex D of EN 1997-1 suggests that bearing resistance may be calculated from

R A = c Nc bc sc ic
Cohesion

+ q Nq bq sq iq

Overburden

+ 0 5γ B Nγ bγsγ iγ

Self -weight

• From cohesion: Gross qult 1 = 0 28 4 1 31 = 0 kPa

• From overburden: Gross qult 2 = 9 16 9 1 29 = 196 2 kPa

• From self-weight: Gross qult 3 = 0 5 18 1 36 17 8 0 82

= 178 7 kPa
(Continued)
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Gross bearing resistanceR A =Gross qult =
3

i= 1
Gross qult i

= 374 9 kPa

From Set R3 in Table A.5 of Annex A to EN 1997-1: the partial factor on bearing resistance is

γR;v = 1 0

Design bearing resistance: qRd =
R A
γR;v

=
374 9
1 0

= 374 9 kPa

Verification of bearing resistance:

Utilization factorAGEO =
qEd
qRd

=
597 1
374 9

= 154

Design is unacceptable if utilisation factor is greater than 100%.
Finally, one may comment on the three DAs calculations as follows:
The introduction of eccentricity into Problem 6.3 results in the foundation being inadequate for Design

Approach 1. Thus the footing would need to be re-designed in order to satisfy EN 1997 requirements. Also,
the footing does not satisfy Design Approach 3 and needs to be re-designed. Design Approach 2 suggests the
footing is only just satisfactory. These results might necessitate redesigning the footing (making the footing
larger) or, if possible, repositioning the source of the applied loads.

Problem 6.4

A long strip footing of width B= 2 5m and depth (thickness) d = 1 5m, is required to carry a vertical imposed
permanent action VGk = 250 kN m and a vertical imposed variable action VQk = 110 kN m. The footing base is
horizontal (i.e. α= 0 ) and located at a depth of 1.5 m below ground surface (i.e. D= 1 5m). The weight density
(unit weight) of the reinforced concrete is γc, k = 25 kN m3. The water table currently exists at a depth dw = 1 m
(see the scheme below). Assume the weight density of groundwater γw = 10 kN m3. The footing is founded on a
medium strength clay layer which has the following characteristic parameters:

• Undrained strength cuk = 45kPa

• Angle of shearing resistance ϕk = 25
o

• Effective cohesion ck = 5 kPa

• Saturated weight density (saturated unit weight) γk = 21 kN m3

It is required to perform verification of strength (GEO ultimate limit state), that is verification of bearing resist-
ance, using Design Approaches 1.

VGk + VQk

WGk

B

d W. T

Δ dw

Scheme 6.7

708 Shallow Foundations



Solution:
DA1 – Combination 1: A1 “ + ”M1 “+ ”R1

– Combination 2: A2 “+ ”M2 “+ ”R1

Geometrical parameters
In an ultimate limit state, the design water level should represent the most onerous that could occur during the
design working life of the structure. Therefore, it would be appropriate to take the ground water level at the
ground surface.
Use the design depth of water table dw = 0 0 m

Actions and effects
Characteristic self -weight of footing WGk = γc, k ×B× d

= 25 × 2 5 × 1 5

= 93 8 kN m

Area of base Ab = L×B= 1 × 2 5 = 2 5 m2 m

Partial factors from Table 6.6 for
Combination 1

Combination 2
:

γG =
1 35

1
; γG, fav =

1

1
; γQ =

1 5

1 3

Design vertical action:
Vd = γG WGk +VGk + γQ VQk

=
1 35 93 8 + 250 + 1 5 × 110

1 93 8 + 250 + 1 3 × 110
=

629 1

486 8
kN m

Design bearing pressure (total stress) qEd =
Vd

B
=

251 6

194 7
kPa

Characteristic pore pressure (uplift pressure) underneath footing is

uk,base = γw d− dw = 10 1 5−0 = 15 kPa

Design uplift pressure (favourable) is

ud = γG, fav × uk,base =
1 × 15

1 × 15
=

15

15
kPa

(Continued)

Strip footing VGk + VQk

WGk

B

d

W. T (dw= 0)

Δ

Scheme 6.8
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Design bearing pressure (effective stress) qEd = qEd −ud =
236 6

179 7
kPa

Materials properties and resistance:

Partial factors from Table 6.7 for
Combination 1

Combination 2
:

γ =
1

1 25
; γc =

1

1 25
; γcu =

1

1 4

Design angle of shearing resistance ϕd = tan
−1 tanϕk

γ
=

tan−1 tan25
1

tan−1 tan25
1 25

=
25

20 5

Design effective cohesion cd =
ck
γc

=
5 1

5 1 25
=

5

4
kPa

Design undrained strength cu, d =
cu,k
γcu

=
45 1

45 1 4
=

45

32 1
kPa

Drained bearing capacity factors from Annex D of EN 1997-1:

For effect of overburden, Nq = eπ tan d tan2 45o + d

2
=

10 7

6 7

For effect of cohesion, Nc = Nq−1 cotϕd =
20 7

15 3

For effect of self-weight, Nγ = 2 Nq−1 tanϕd =
9

4 3

Shape factors:
Drained and undrained shape factors for strip footing are taken as 1.0.
Depth factors:
The suggested method in Annex D does not include depth factors whatsoever, which are present in other for-

mulations of the extended bearing capacity formula (see Section 4.5 of Chapter 4). There has been concern in using
these depth factors as their influence can be significant and the reliance on the additional capacity provided by its
inclusion is not conservative.

Load-inclination factors, caused by a horizontal load H:
Since H = 0, all the load-inclination factors, for both drained and undrained conditions, ic, iq and iγ are 1.0.
Base-inclination factors:
Since the foundation base is horizontal, that is α= 0, all the base-inclination factors, for both drained and

undrained conditions, bc, bq and bγ are 1.0.
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Ground-inclination factors:
The suggested method in Annex D omits the ground-inclination factors which are present in other formula-

tions of the extended bearing capacity formula. However, neglecting these factors is unsafe.
Undrained bearing resistance:

Total overburden pressure at foundation level qk (or σvk,b):

q= γk ×D= 21 × 1 5 = 31 5 kPa

Gross ultimate bearing capacity (Gross qult) or gross bearing resistance (R/A ):
Annex D of EN 1997-1 suggests that undrained bearing resistance may be calculated from

R
A

= π + 2 cu,dbcscic + q

= 5 14
45

32 1
1 1 1 + 31 5 =

262 8

196 5
kPa

From Set R1 in Table A.5 of Annex A to EN 1997-1: the partial factor on bearing resistance is

γR;v =
1

1

Design undrained bearing resistance: qRd =
R A
γR;v

=

262 8

196 5

1

1

=
262 8

196 5
kPa

Verification of undrained bearing resistance:

Utilization factorAGEO =
qEd
qRd

=
251 6 262 8

194 7 196 5
=

96

99

Design is unacceptable if utilisation factor is greater than 100%.
Drained bearing resistance:

Effective overburden pressure at foundation level qk (or σvk,b):

qk = q− uk,base = 31 5−15 = 16 5 kPa

Annex D of EN 1997-1 suggests that drained bearing resistance may be calculated from

R A = c Nc bc sc ic
Cohesion

+ q Nq bq sq iq

Overburden

+ 0 5γ B Nγ bγsγ iγ

Self -weight

• From cohesion: Gross qult 1 = cdNc =
5

4

20 7

15 3
=

104

61
kPa

(Continued)
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• From overburden: Gross qult 2 = q Nq = 16 5
10 7

6 7

=
177

111
kPa

• From self-weight: Gross qult 3 = 0 5γ B Nγ

=
0 5

0 5

11

11

2 5

2 5

9

4 3
=

124

59
kPa

Gross drained bearing resistance R A =Gross qult

=
405

231
kPa

From Set R1 in Table A.5 of Annex A to EN 1997-1: the partial factor on bearing resistance is

γR;v =
1

1

Design drained bearing resistance: qRd =
R A
γR;v

=

405

231

1

1

=
405

231
kPa

Verification of drained bearing resistance

Utilization factorAGEO =
qEd
qRd

=
236 6 405

179 7 231
=

58

78

Design is unacceptable if utilisation factor is greater than 100%.
Finally, one may comment on the Design Approach 1 calculation as follows:
The calculation indicates that the undrained (short-term) situation is more critical than the drained (long-

term). The main reason for this may be due to the favourable depth and shape factors which are ignored in both
situations. However, finite element studies indicate that these factors could be more significant when undrained
condition prevails, and therefore, it may not be realistic to assume that short-term situation is always critical.

Combination 2 governs in both cases and is verified, since the utilisation factors in each case is less than 100%,
although it is too close in the undrained condition.

Problem 6.5

Consider the same long strip footing of Problem 6.4 with the following available additional data:

• The clay layer overlies a rigid layer at a depth dR = 4 5mbelow the ground surface, as shown in the scheme below.

• The clay’s characteristic coefficient of compressibilitymv,k = 0 12m2 MN and its undrained Young’s modulus
is assumed to be Eu,k = 600 cu,k.

• The limiting value of total settlement sCd = 50mm.
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It is required to perform verification of serviceability of the strip footing (a) implicitly (through an ultimate limit
state, ULS), (b) explicitly (using a serviceability limit state, SLS, calculation).

Solution:
(a) Implicit verification of serviceability (based on ULS check)

Geometrical parameters
For serviceability limit states, the design depth of the water table is the most adverse level that could occur in
normal circumstances. Therefore, it would be more appropriate not to raise the water table to ground surface.
Hence, use the current depth of water table as the design depth.

Design depth of water table dw,d = dw = 1m.
Actions and effects

Characteristic self -weight of footing WGk = γc, k ×B× d

= 25 × 2 5 × 1 5

= 93 8 kN m

Imposed permanent action VGk = 250 kN m
Imposed variable action VQk = 110 kN m
Characteristic uplift pore pressure on the underside of the footing is

uk,base = γw d−dw,d = 10 1 5−1 = 5kPa

Partial load factors for SLS (see Section 6.2.5):

γG = 1, γG, fav = 1, γQ = 1

Design vertical action: Vd = γG WGk +VGk + γQ VQk

= 1 93 8 + 250 + 1 × 110 = 453 8 kN m

(Continued)

Rigid layer

VGk + VQk

WGk

B

d

dR, Clay

W. T

Δ dw

Scheme 6.9
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Design bearing pressure (total stress) qEd =
Vd

B
=
453 8
2 5

= 181 5 kPa

Design uplift pressure (favourable) is

ud = γG, fav × uk,base = 1 × 5 = 5kPa

Design bearing pressure (effective stress) qEd = qEd −ud = 176 5 kPa
Materials properties and resistance:
Characteristic material properties are:

• undrained shear strength cuk = 45 kPa

• angle of shearing resistance ϕk = 25

• cohesion ck = 5kPa

Partial material factors for SLS (see Section 6.2.5):

γcu = 1; γϕ = 1; γc = 1

Design angle of shearing resistance ϕd = tan
−1 tanϕk

γ
= 25

Design effective cohesion cd =
ck
γc

= 5 kPa

Design undrained strength cu, d =
cu,k
γcu

= 45 kPa

Drained bearing capacity factors from Annex D of EN 1997-1:

For effect of overburden, Nq = eπ tan d tan2 45 + d

2
= 10 7

For effect of cohesion, Nc = Nq−1 cotϕd = 20 7

For effect of self-weight, Nγ = 2 Nq−1 tanϕd = 9
Shape factors:
Drained and undrained shape factors for strip footing are normally taken as 1.0.
Depth factors:
The suggested method in Annex D does not include depth factors whatsoever, which are present in other

formulations of the extended bearing capacity formula (see Section 4.5 of Chapter 4). There has been concern
in using these depth factors as their influence can be significant and the reliance on the additional capacity
provided by its inclusion is not conservative.

Load-inclination factors, caused by a horizontal load H:
Since H = 0, all the load-inclination factors, for both drained and undrained conditions, ic, iq and iγ are 1.0.

Base-inclination factors:
Since the foundation base is horizontal, that is α= 0, all the base-inclination factors, for both drained and

undrained conditions, bc, bq and bγ are 1.0.
Ground-inclination factors:
The suggested method in Annex D omits the ground-inclination factors which are present in other

formulations of the extended bearing capacity formula. However, neglecting these factors is unsafe.
Undrained bearing resistance:
Total overburden pressure at foundation level qk (or σvk,b) assume γk clay above W.T. is 21 kN/M3:

q= γk ×D= 21 × 1 5 = 31 5 kPa

Gross ultimate bearing capacity (Gross qult) or gross bearing resistance (R/A ):
Annex D of EN 1997-1 suggests that undrained bearing resistance may be calculated from
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R
A

= π + 2 cu,dbcscic + q

= 5 14 45 1 1 1 + 31 5 = 262 8 kPa

Partial resistance factor for SLS is γRv, SLS = 3 0

Design undrained bearing resistance: qRd =
R A
γRv, SLS

=
262 8
3 0

= 87 6 kPa

Verification of undrained bearing resistance:

Utilization factorASLS =
qEd
qRd

=
181 5
87 6

= 207

Design is unacceptable if utilisation factor is greater than 100%.
Drained bearing resistance:
Effective overburden pressure at foundation level qk (or σ vk,b):

qk = q− uk,base = 31 5−5 = 26 5 kPa

Annex D of EN 1997-1 suggests that drained bearing resistance may be calculated from

R A = c Nc bc sc ic
Cohesion

+ q Nq bq sq iq

Overburden

+ 0 5γ B Nγ bγsγ iγ

Self -weight

• From cohesion: Gross qult 1 = cdNc = 5 20 7 = 103 5 kPa

• From overburden: Gross qult 2 = q Nq = 26 5 10 7

= 283 6 kPa

• From self-weight: Gross qult 3 = 0 5γ B Nγ

= 0 5 21−10 2 5 9

= 123 8 kPa

Gross drained bearing resistanceR A =Gross qult =
3

i = 1
Gross qult i

= 510 9 kPa

Design drained bearing resistance: qRd =
R A
γRv, SLS

=
510 9
3 0

= 170 3 kPa

Verification of drained bearing resistance

Utilization factorAGEO =
qEd
qRd

=
176 5
170 3

= 104

Design is unacceptable if utilisation factor is greater than 100%.
As it is clear, the calculation based on a resistance factor (γRv, SLS) of 3.0 does not work for both the undrained and
drained conditions and therefore an explicit settlement calculation is required.

(Continued)
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(b) Explicit verification of serviceability
Actions and effects
The net bearing pressure at the foundation level z = 0m is

qnet, d = qEd−σvk,b = 181 5−31 5 = 150 kPa

Immediate settlement so (or si)
For evaluation of settlement Annex F to EN 1997-1 suggests using an equation of the form:

s= p×B× f Em

The symbols are defined in the Annex F.
The following settlement equation [Equation (3.33)] is one of many that are available and follows the guid-

ance given in the Annex F, as indicated above.

so = μoμ1
qB
Em

where the coefficient μo depends on the depth of foundation and μ1 depends on the layer thickness and the
shape of the loaded area (see Figure 3.9). The width B is in m, q in kPa and Em in MPa.

The immediate settlement is considered to be the short-term component of the total settlement, which
occurs without drainage.

The values adopted for the stiffness parameters (such as Em and Poisson’s ratio) should in this case
represent the undrained behaviour.

Refer to Figure 3.9:

D
B
=
d
B
=
1 5
2 5

= 0 6. For this value of
d
B
obtain μo 0 93

H
B
=
dR−d
B

=
4 5−1 5

2 5
= 1 2. For this value of

dR−d
B

obtain μ1 0 4

q= qnet, d = 150 kPa

Em = Eu,k = 600 cu,k = 600 × 45 = 27 000 kPa = 27MPa

so = μoμ1
qnet, d B
Eu,k

= 0 93 × 0 4 ×
150 × 2 5

27
= 5 2mm

This settlement equation gives average vertical displacement under a flexible uniformly loaded area. It does
not include a factor to account for rigidity. It was found that if the footing is rigid the settlement will be uni-
form and reduced by about 7%, as Equation (3.6) indicates. If we assume that the given strip footing is
rigid, then

so 0 93 × 5 2 = 4 8mm

Consolidation settlement s1 (or sc)
In order to compute the consolidation settlement more accurately, assume the 3 m clay layer below the foun-
dation level is divided into five sub-layers, each 0.6 m thick, as shown in the scheme below.

Consolidation settlement in each sub-layer is

sc, i =mvk × σz, i × h

mv,k = 0 12m
2 MN
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h= 0 6m= thickness of sublayer i
σz, i = net increase in pressure atmiddle of sublayer i = qnet, d 4I
I = stress influence factor obtained from Table 2.3 or Figure 2.32

Results of the necessary calculations are presented in the table below:

Layer (m) z I (kPa) qnet, d (kPa) σz, i (m
2/Mpa) mv,k (m) h (mm) sc

I 0.3 0.24 150 144 0.12 0.6 10.4

II 0.3 0.22 150 132 0.12 0.6 9.5

III 0.3 0.18 150 108 0.12 0.6 7.8

IV 0.3 0.15 150 90 0.12 0.6 6.5

V 0.3 0.12 150 72 0.12 0.6 5.2

s1 = sc = 39 4

The total consolidation settlement s1 = 39 4 mm
Total settlement
In this solution only immediate and consolidation settlements have been considered. The creep component s2
(secondary compression) is considered negligible.

Sum of settlements is s= so + s1 = 5 2 + 39 4 = 44 6mm
Design effect of actions is sEd = s= 45mm

Verification of settlement (SLS)
Equation (6.22): sEd = s0 + s1 + s2 ≤ sCd

sCd = 50mm given

Utilisation factor ASLS =
sEd
sCd

=
45
50

= 90

Design is unacceptable if utilisation factor is greater than 100%.
Serviceability is satisfied by the explicit calculation since ASLS = 90

h = 0.6 m

0.9 m    II 

1.5 m    III 

2.1 m    IV 

2.7 m    V

z = 0

Rigid layer

VGk + VQk

WGk

z

d

dR, Clay

dw
W. T

Δ

0.3 m    I

Scheme 6.10
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Problem 6.6

The scheme shown below represents geometry of a heavily loaded column footing which has a total depth (thick-
ness) h= 0 8m. The footing is centrally loaded by the vertical imposed actions. The gross design soil pressure qEd
on the underside of the footing was calculated equals 1445 kPa. The design requires using class C25/30 concrete
and type B500B steel.
It is required to design the bottom reinforcement using the approach described in EN 1992-1-1§9.8.2.2.

Solution:
The EN 1992-1-1 § 9.8.2.2 design approach for anchorage of steel bars provides the maximum force in the
reinforcement. Hence, the required bottom reinforcement may be designed.

Actions and effects:

Characteristic self-weight of footing WGk = γc, k × L×B× h

= 25 × 2 0 × 2 0 × 0 8

= 80 kN

Table 6.6 gives partial factor γG = 1 35. Hence,

Wd = 1 35 × 80 = 108 kN

The effective design soil pressure on the underside of the footing is

qEd = qEd −
Wd

BL
= 1445−

108
2 × 2

= 1418 kPa

The tensile force to be anchored is given by:

Fs =Rd ×
Ze

Zi

0.75 m0.75 m 0.50 m

B = 2.00 m

0
.7

5
m

L
=

2
.0

0
m

0
.5

0
m

0
.7

5
mFooting

Column

Scheme 6.11
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where:
Rd = design resultant of ground pressure within distance X
Ze = External lever arm
Zi = Internal lever arm

EN 1992-1-1 §9.8.2.2(3) suggests, as simplifications, Ze may be determined assuming e= 0 15 b and Zi may be
taken as 0.9 d.

Assume using bar diameter = 16mm, and nominal concrete cover to the reinforcing bars cnom =K2 = 75mm
[EN 1992-1-1 §4.4.1.3(4)]

e = 0 15 × 0 5 = 0 075m

Ze =
B
2
−
X
2
−
b
2
+ e

Maximum tensile force Fs, max

Assuming X =
B
2
−0 35 b (the distance between sections at A and B), the maximum tensile force Fs,max on the

reinforcement is obtained using

Fs,max =Rd ×
Ze

Zi

X =
B
2
−0 35 b=

2
2
−0 35 × 0 5 = 0 825m

d = h−cnom− 2
= 0 800−0 075−0 008 = 0 717m

Zi = 0 9d = 0 9 × 0 717 = 0 645m

Ze =
B
2
−
X
2
−
b
2
+ e=

2
2
−
0 825
2

−
0 5
2

+ 0 075 = 0 413m

Rd = qEd × L×X = 1418 × 2 × 0 825 = 2340 kN

Fs,max = 2340 ×
0 413
0 645

= 1498 kN

(Continued)
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e
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B

d h

A
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Scheme 6.12
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Required reinforcement area As

Partial factor for reinforcing steel γs = 1 15

Required reinforcement area
As =

Fs, max

fyk γs
=
1498 1000
500 1 15

= 3 445 × 10−3 m2 = 3445mm2

Provide 18 16 both ways with 91 mm clear bar spacing.
Verifications and reinforcement arrangement

• The recommended minimum bar diameter is 8 mm [EN 1992-1-1 §9.8.2.1(1)]. The provided bar diameter is
16mm> min (OK.)

As, provided = 18 × 200 = 3600mm2 > As,required OK

• The minimum clear spacing of reinforcing bars smin = 25mm (EN 1992-1-1 §8.2). The provided clear bar spa-
cing is 91mm> smin (OK.)

As, max = 0 04Ac (EN 1992-1-1 §9.2.1.1)

= 0 04 × 800 × 2000 = 64000mm2 As,provided OK

• From Table 6.16: minimum percentage of reinforcement is

As,min = 0 13 = 0 0013 × 717 × 2000

= 1864mm2 < As, provided OK

• The provided concrete cover to the external reinforcing bars is

cprovided =
2000−18 × 16−17 × 91

2
= 82 5mm> 75mm OK

• Verification of straight bar anchorage:
For straight bars without end anchorage the minimum value of X is the most critical. As a simplification,

Xmin = h 2 may be assumed [EN 1992-1-1 §9.8.2.2(5)]

Xmin =
h
2
=
0 8
2

= 0 4m

Ze =
B
2
−
Xmin

2
−
b
2
+ e =

2
2
−
0 4
2

−
0 5
2

+ 0 075 = 0 625m

Rd = qEd × L× Xmin = 1418 × 2 × 0 4 = 1134 4 kN

Fs = 1134 4 ×
0 625
0 645

= 1099 2 kN

for the purpose of this verification assume cnom = 0 040m.
From Table 6.20: the design anchorage length in case of tensile force and good bond conditions

is lbd = 500mm=0 5m.

lb =
Fs

Asfyd
× lbd =

1099 2
3600
106

×
500 × 1000

1 15

× 0 5 = 0 351m
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Straight bar anchorage will be verified satisfactory when

lb + cnom < Xmin

0 351 + 0 040 = 0 391m< Xmin = 0 4m;OK

Problem 6.7

The tensile reinforcing steel bars at bottom of a column footing are of the type H16 and Grade B500B. The footing
depth h is 500 mm. Assume the concrete strength class is C25/30, nominal concrete cover cnom is 40 mm and bar
spacing is 200 mm. Calculate:

(a) Bond stress, fbd
(b) Basic anchorage length, lb,req
(c) Design tension anchorage length lbd for straight bars
(d) Design tension anchorage length lbd for 90

o-bent bars
(e) Design lap length in tension, l0

Solution:
(a) Bond stress, fbd

fbd = 2 25η1η2fctd [EN 1992-1-1 § 8.4.2 (2)]

• η1 = 1 0 for “Good” bond conditions

• η2 = 1 0 for bar ≤ 32mm

fctd = design value of concrete tensile strength according to
EN 1992-1-1 §3.1.6(2)

(Continued)
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=
αct fctk, 0 05

γc
, where αct = 1 and γc = 1 5

fctk, 0 05 = 0 7fctm (Table 3.1 of EN 1992-1-1)

fctm = 0 3 × fck
2 3 ≤C50 60 (Table 3.1 of EN 1992-1-1)

fctk, 0 05 = 0 7 × 0 3 × fck
2 3 = 0 21 × 252 3 = 1 8MPa

fctd =
1 × 1 8
1 5

= 1 2MPa

fbd = 2 25 × 1 × 1 × 1 2 = 2 7MPa

(b) Basic anchorage length, lb,req
The lb,req for anchoring the force σsdAs in a straight bar assuming constant bond stress fbd is

lb,req = 4 σsd fbd [EN 1992-1-1 §8.4.3(2)]

Where σsd is the design stress of the bar at the position the anchorage is measured from.
For bent bars, the length lb,req and design length lbd should bemeasured along the centre-line of the bar [EN

1992-1-1 §8.4.3(3)].

Maximum stress in the bar σsd,max =
fyk
γs

=
500
1 15

= 435MPa.

lb, req = 4 435 2 7 = 40 3 (For concrete class C25/30)

(c) Design tension anchorage length lbd for straight bars
lbd = α1α2α3α4α5 lb, req ≥ lb, min [EN 1992-1-1 §8.4.4(1)]

Where:
α1, α2, α3, α4 and α5 are coefficients given in Table 8.2 of EN 1992-1-1

α1 = 1 0

α2 = 1−0 15 cd −

≥ 0 7

≤ 1 0

Let c= c1 = cnom = 40mm
a= 200mm; = 16mm
cd =min a 2, c1, c [EN 1992-1-1 §8.4.4(1)]

α2 = 1−
0 15 40−16

16
= 0 775

α3 = 1−Kλ

≥ 0 7

≤ 1 0

Assume using conservative value for α3, that is K = 0. Hence,

α3 = 1

C1

a

C

Scheme 6.14
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Also, assume using conservative values for both α4 and α5, but not greater than 1.0. Hence,

α4 = α5 = 1

lbd = 1 × 0 775 × 1 × 1 × 1 × 40 3 = 31 23 × 16 = 500mm

lb, min ≥max 0 3lb, req, 10 , 100mm [EN 1992-1-1 §8.4.4(1)]

lb, min = 0 3lb, req = 0 3 × 40 3 × 16 = 193 4mm< lbd = 500mm

lbd = 500mm (For concrete class C25/30)
(d) Design tension anchorage length lbd for 90 -bent bars

lbd = α1α2α3α4α5 lb, req ≥ lb, min [EN 1992-1-1 §8.4.4(1)]
α1 = 0 7 if cd > 3 ; otherwise α1 = 1 0 (Table 8.2 of EN 1992-1-1)
cd =min a 2, c1 (Figure 8.6 of EN 1992-1-1)
Let c1 = cnom = 40mm.
a= 200mm; = 16mm
cd = 40mm< 3 . Hence,

α1 = 1 0

α2 = 1−0 15 cd −3 (Table 8.2 of EN 1992-1-1)

≥ 0 7

≤ 1 0

α2 = 1−
0 15 40−3 × 16

16
= 1 075 > 1 0. Hence,

α2 = 1

α3 = 1−Kλ

≥ 0 7

≤ 1 0

Assume using conservative value for, α3, that is K = 0. Hence,

α3 = 1

Also, assume using conservative values for both α4 and α5, but not greater than1.0. Hence,

α4 = α5 = 1

lbd = 1 × 1 × 1 × 1 × 1 × 40 3 = 40 3 × 16 = 645mm

lb, min ≥max 0 3lb, req, 10 , 100mm [EN 1992-1-1 §8.4.4(1)]

lb, min = 0 3lb, req = 0 3 × 40 3 × 16

= 193 4mm< lbd = 500mm

lbd = 645mm (For concrete class C25/30)
(e) Design lap length in tension, l0

l0 = α1α2α3α5α6 lb, req ≥ l0, min [EN 1992-1-1 §8.7.3(1)]

(Continued)
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Values of α1, α2, α3 and α5 may be taken from Table 8.2 of EN 1992-1-1; however, for the calculation of α3,

ΣAst, min should be taken as 1 0As
σsd
fyd

, with As = area of one lapped bar.

From Table 8.2 of EN 1992-1-1:

α1 = 1 0

α2 = 0 775 [As calculated in (c)]
α3 = 1 0 [Conservative value as calculated in (c)]
α5 = 1 0 [Conservative value]

α6 =
ρ1
25

0 5
with 1 5≥ a6 ≥ 1 0. The ratio ρ1 is the percentage of reinforcement lapped within 0.65 l0 from

centre of the lap length considered (see Figure 8.8 of EN 1992-1-1). Values of α6 are given in Table 8.3 of EN
1992-1-1.

Percentage of reinforcement lapped within a bar spacing of 200 mm is conservatively calculated as

ρ1 =
Ast

Ac
=
2 π 2 4

Ac
=
2 π × 162 4
200 × 500

= 0 004 = 0 4 < 25 . Hence,

Table 8.3 of EN 1992-1-1 gives α6 = 1 0
l0, min ≥ max 0 3α6lb, req;15 ;200mm [EN 1992-1-1 §8.7.3(1)]

≥ max 0 3 × 1 × 40 3 × 16;15 × 16;200mm

≥ max 193 4mm;240mm;200mm

≥ 240mm

l0 = 1 × 0 775 × 1 × 1 × 1 × 40 3 × 16 = 500mm> l0, min. Hence,
l0 = 500mm (For concrete class C25/30)

Problem 6.8

Fairly loose becomingmedium-dense medium sand will support the widely spaced individual column footings of a
structure. One of the centrally loaded interior column footings is required to carry a vertical imposed permanent
action VGk = 1100 kN and a vertical imposed variable action VQk = 700 kN. The column is 600 mm square. The
geotechnical designer recommended using an isolated footing 4 m square, and a foundation depth = 1 2m. Also,
he reported that the differential settlement between columns founded on loosest and densest soils will be about
2 mm, which is negligible.
The structural design requires using class C25/30 concrete fck = 25MPa and type B500B steel fyk = 500MPa .

Using DA1-Combination 1, perform the necessary design calculations for flexure and shear (i.e. determine the
footing depth (thickness) h and design the reinforcement).

Solution:
Actions and effects:

Partial factors from Annex A to EN 1990, or from Table 6.6 of this chapter:

γG = 1 35; γQ = 1 5

Design vertical action:
Vd = γGVGk + γQ VQk

= 1 35 × 1100 + 1 5 × 700 = 2535 kN

Design bearing pressure [Equation (6.8)]: qEd =
Vd

Ab
=
2535
4 × 4

= 158 4 kPa
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Design assumptions:

• A trial value for h= 750mm=0 75m

• Concrete cover to the tensile reinforcement at the footing bottom:
cnom =K2 = 75mm [EN 1992-1-1 §4.4.1.3(4)]

• There will be no shear reinforcement provided

• Steel bar = 16mm

Design applied moment MEd at the column face

MEd = qEd ×
l2

2
×B= 158 4 ×

1 72

2
× 4 = 915 6 kN m

Reinforcement
Since the square footing is symmetrically loaded and the depth h is constant, it would be appropriate to provide the
same reinforcement both ways. Hence, it would also be appropriate to take the effective depth deff to the inter-
section of the steel bars running each way. Thus, the successive stages of the design calculations will be minimised.

deff = h−cnom− = 0 75−0 075−0 016 = 0 659m

K =
MEd

bd2eff fck
=

915 6
4 × 0 6592 × 25 × 1000

= 0 021

K = 0 60δ−0 18δ2−0 21where δ≤ 1

It may also be obtained from Table 6.14. However, it is often recommended in the UK that K should be limited
to 0.168 to ensure ductile failure.

Let K = 0 168 >K (OK.). Compression reinforcement is not required.
Lever arm z may be obtained from tables, such as Table 6.15, or calculated using

z =
deff
2

1 + 1−3 53K ≤ 0 95deff

=
deff
2

1 + 1−3 53 × 0 021 = 0 981deff > 0 95deff Hence,

z = 0 95deff = 0 95 × 0 659 = 0 626 m

(Continued)

l = 1.7 m

Column

L = 4 m

B
=

4
m

Footing

deff

qEd= 158.4 kPa

Critical

section for

moment

Critical

section for

beam shear

l = 1.7 m0.6 m

Scheme 6.15
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The required tension steel area As may be calculated from

As =
MEd

fyk
γs

× z

γs = 1 15 [EN 1992-1-1 §2.4.2.4(1)]

As =
915 6

500 × 1000
1 15

× 0 626
= 3 364 × 10−3 m2 = 3364mm2

Try 18 16 As, provided = 3618mm2

Check minimum reinforcement requirements using Table 6.16 or by calculating As, min from:

As, min = 0 26
fctmbtdeff

fyk
,but not less than 0 0013 btdeff

where fck ≥ 25MPa

As, min = 0 26 ×
2 6btdeff
500

= 0 0013 btdeff

Minimum percentage of reinforcement required = 0 13

Percentage of reinforcement provided =
3618

4000 × 659
× 100 = 0 14 (OK.)

Check maximum reinforcement requirements:

As, max = 0 04Ac = 0 04 × 4000 × 659 = 105440mm2 As, provided OK

Provide 18 16 steel bars both ways at the bottom of the footing
Bar clear spacing and concrete cover:
For footings on soil, minimum concrete cover is
cnom =K2 = 75mm [EN 1992-1-1 §4.4.1.3(4)]

Bar clear spacing s=
4000−2 × 75−18 × 16

17
= 209 5mm. Use:

sprovided = 209mm. Hence,

cprovided =
4000−17 × 209−18 × 16

2
= 79 5mm > cnom (OK).

Centre to centre bar spacing = 209 + 16 = 225mm

Beam Shear (one-way shear)
Design beam shear at critical section is

VEd = qEd l−deff B = 158 4 1 7−0 659 4 = 660 kN

Design shear stress at critical section is

vEd =
VEd

Bdeff
=

660
4 × 0 659

= 250 4 kPa

Design concrete resisting shear stress, vRd, c:

vRd, c =CRd, ck 100ρl fck
1 3 ≥ 0 035k1 5fck

0 5 [EN 1992-1-1 §6.2.2]
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k= 1 +
200
deff

≤ 2;fck = 25MPa; ρl =
As

Bdeff
= 0 0014;CRd, c =

0 18
γc

k= 1 +
200
659

= 1 55;CRd, c =
0 18
1 5

= 0 12; 0 035k1 5fck
0 5 = 0 338MPa

vRd, c = 0 12 × 1 55 100 × 0 0014 × 25 1 3 = 0 282MPa

vRd, c < 0 035k1 5fck
0 5. Hence,

vRd, c = 0 338MPa = 338 kPa > vEd (OK.); no shear reinforcement is required by beam shear in both directions.

Punching shear [EN 1992-1-1 § 6.4.1(4), 6.4.3(2) and 6.4.4]
Refer to the flow chart of Figure 6.10.

(a) Considering punching shear perimeter u0 at the column face:
The factor β = 1 0 since there is no external applied moment.
Design maximum shear stress at the face of the column is

vEd,max =
VEd −ΔVEd

u0deff

u0 = perimeter of the column= 4 × 0 6 = 2 4m

ΔVEd =ΔVd = the net upward force within the control perimeter u0

= 158 4 × 0 6 × 0 6−0 75 × 0 62 × 25 = 50 3 kPa

VEd =Vd = the applied design shear force = 2535 kN

deff = the average of the effective depths in orthogonal directions

vEd,max =
2535−50 3
2 4 × 0 659

= 1567 kPa = 1 571MPa

Refer to Table 6.18: for fck = 25MPa, the maximum resisting shear is

vEd,max = 4 5MPa > vEd, max (OK)

(Continued)

Column

B
=

4
m

Footing

2deff

2deff

L = 4 m

Punching shear

critical perimeter u1

(control perimeters)

Scheme 6.16
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No shear reinforcement is required by punching shear [EN 1992-1-1 §6.4.3(2)].
(b) Considering punching shear perimeter u1 at distance 2deff from the column face:

Design punching shear stress at distance 2deff from the column face is

vEd =
VEd −ΔVEd

u1deff

ΔVEd =ΔVd = the net upward force within the control perimeter u1

= qEd
π 2 × 2deff

2

4
+ 4 0 6 × 2deff + 0 6 × 0 6

−0 75
π 2 × 2deff

2

4
+ 4 0 6 × 2deff + 0 6 × 0 6 × 25

= 158 4
π 2 × 2 × 0 659 2

4
+ 4 0 6 × 2 × 0 659 + 0 36

−0 75
π 2 × 2 × 0 659 2

4
+ 4 0 6 × 2 × 0 659 + 0 36 × 25

= 1423− 168 = 1255 kN

u1 = 4 × 0 6 + 2 × 2 × 0 659π = 10 68m

vEd =
2535−1255
10 68 × 0 659

= 189 kPa = 0 189MPa

1700 1700600

7
5
0

1
7
0
0

1
7
0
0

6
0
0

4000

4
0
0
0

79

7
9

Center-to-center

bar spacing

= 225 mm

both ways

(spacing is not

to scale)   

18Ø16

18Ø16

Scheme 6.17
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Design punching resisting shear stress, vRd, c:

vRd, c =CRd, ck 100ρlfck
1 3 ≥ 0 035k1 5fck

0 5 [EN 1992-1-1 §6.4.4]

k= 1 +
200
deff

≤ 2;fck = 25MPa;ρl =
As

Bdeff
= 0 0014;CRd, c =

0 18
γc

k= 1 +
200
659

= 1 55;CRd, c =
0 18
1 5

= 0 12; 0 035k1 5f 0 5
ck = 0 338MPa

vRd, c = 0 12 × 1 55 100 × 0 0014 × 25 1 3 = 0 282MPa

vRd, c < 0 035k1 5f 0 5
ck . Hence,

vRd, c = 0 338MPa = 338 kPa = 0 338MPa > vEd (OK).
No shear reinforcement is required by punching shear [EN 1992-1-1 § 6.4.3(2)].

Summary of design calculation results

• Footing depth h= 750mm

• No shear reinforcement is required

• No compression reinforcement is required

• Tension reinforcement is required at the footing bottom: 18 16 straight bars, both ways

• Centre-to-centre bar spacing = 225mm

• Concrete cover to the bottom steel bars = 79mm

• Concrete: fck = 25MPa; Steel: fyk = 500 MPa
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Index

AASHTO manual, 4, 5
accidental design situation, 652
accompanying values, 654
ACI 318M-08 code, 382
actions, 653, 658, 667, 680
active earth pressure, 373, 567, 588, 591
active Rankine zone, 272
AISC (1989), 394
allowable bearing capacity see bearing capacity
allowable bearing pressure, 268
allowable settlement see settlement
allowable stress design, 311
anchorage & anchorage length, 395, 687
anchor bolt, 393

design criteria, 394–395
tensile strength, 393

angle of internal friction,
CPT, based on, 42
DMT, based on, 58–59
SPT, based on, 25–26

A-pore pressure coefficient, 173
approximate flexible method, 414, 417–419
approximate 2V : 1H method see vertical stress in a

soil mass
area ratio, 10
ASD see allowable stress design
at-rest earth pressure-coefficient, Ko

DMT, based on, 57–58
PMT, based on, 51

auger drilling, 3
average degree of consolidation, 178–179
average vertical stress, 107–109

basic requirements, 656, 668
beam-finite element model, 412
beam shear, 388

beams on elastic foundations, 409–412
bearing capacity, 265
eccentric inclined loading, 286
eccentric loading, 281–286
effect of adjacent footings, 291
effect of water table, 286–290
equations, 273–278
factors, 273–277
failure mechanism, 272–273
from results of in-situ tests, 305–306
for rock, 312–316
gross safe, 267
gross ultimate, 267
influence of soil compressibility, 290–291
layered soils, 296–304
net allowable, 268
net safe, 267
net ultimate, 267
safety factor (SF), 304–305
on slopes, 292–296

bearing strength of concrete, 390–391, 398, 402
bending see flexure
borehole
depth, 13–14
drilling, 3
finished log, 6–7
logging, 4
spacing and number, 11–12

Boussinesq’s equations, 95
Bowles method, 397, 573–574
Bowles solution, 294–296
braced excavation in soft clay
SF against base failure, 344

building codes, 165
Buisman–DeBeer method, 161
Burland and Burbidge method, 159–161

Shallow Foundations: Discussions and Problem Solving, First Edition. Tharwat M. Baban.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



cantilever footing, 79, 405–406
design, 533–547

cantilever gravity retaining wall
design, 593–602
stability analysis, 587–593

cantilever reinforced concrete retaining wall
SF against rotational instability 584–587
stability analysis & design, 566–581

Casagrande empirical method, 171
CEN, 649
characteristic value, 653, 658
coefficient
consolidation, 175
Coulomb active earth pressure, 587
lateral earth pressure, 84, 683
Rankine active earth pressure, 567, 594–595
settlement or settlement ratio K, 172–173
subgrade reaction, 406
volume compressibility, 167, 169

column-base plate, 393–394
combination of actions, 660
combination values, 654, 658
combined footing, 77, 402
rectangular, 403–404
design, 506–520, 552–565

trapezoid, 404
design, 520–533

compensated foundation, 82
compressibility factor, 42, 290
compressibility index, 160
compression-controlled section, 387
compression index, 169
empirical equation, 170
secondary, 182

compression load transfer, 394
compression reinforcement, 431, 682
compressive stress block, 385
concrete compressive strength, 314
cone penetration test, 4, 38, 156–157, 161–164,

305–306
correlation for cohesionless soils, 41–43
correlation for cohesive soils, 40–41
CPT-qc and SPT-N correlations, 43–44
discussion, 38–40
Es/qc ratio, 44
friction ratio, 40
penetrometers, 38–39
soil classification charts, 40–41
solved problems, 44–47

consistency index, 26, 27
consolidation settlement, 149, 168–174
constant k, 184–185
constant of compressibility, 161
constructibility requirements, 86–87
contact pressure, 89–94
contact settlement, 89–91
continuous footing, 77, 383
design (wall footing), 471–479

Coulomb’s active earth pressure, coefficient, 588

creep, 149, 182, 676
critical sections for
bending moment, 383–385
development of reinforcement, 390
one-way shear, 389
two-way shear, 389

cross-hole seismic method, 65–66

deep beam, 406, 542, 544
deep foundation, 76
degree of consolidation, 175, 178, 179
depth factors
bearing capacity, 276
settlement (FD ; rock), 183–185
settlement (IF ; soil), 149–150

depth of foundations, 74, 82–84
design approaches & combinations, 668
design bearing capacity, 268
design loads, 311–312, 382
design situations, 652, 667
development of reinforcement, 390
differential settlement, 145–148, 311
dilatometer test, 4
discussion, equations and correlations, 55–59
solved problems, 59–62

Donut hammer, 22
dowels, 391–392
down-hole seismic method, 67
dynamic cone penetration test, 20 see also standard

penetration test

eccentrically loaded footings
bearing capacity of, 281
effective area method, 281–283
Meyerhof method, 283
Prakash et al. method, 284–285
Purkaystha et al. method, 283–284
Saran et al. analysis, 286

contact pressure under, 92
non-uniform linear, 93–94
uniform, 396–397

economy requirements, 87
edge distance for anchor bolts, 396
effective embedment depth of anchor, 395
effective overburden pressure, 267
effective stress approach, 270–271
effective zones, 403
elastic parameters, 155–158
elastic settlement, 149
electrical resistivity method see geophysical methods
electric cone penetrometer, 38–39
ENs see European Standards
equilibrium, 385
equivalent compressive stress block, 385
equivalent modulus of elasticity, 162
EU see European Union
European Standards, 649
European Union, 649
expansive soils, 83
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factored load combinations, 382
factor of safety, 304, 344, 584
Fadum’s chart, 102
FDM see finite difference method
FEM see finite element method
FGM see finite grid method
field boring log, 4
field load tests, 30
field penetration number (N60), 160
Field Reconnaissance Report, 2–3
field tests, 4
final geotechnical report, 7–8
finished boring log, 6–7
finite difference method, 419–421
finite element method, 424–426
finite grid method, 426–427
fire design, 652
flexible footing (base), 89–91, 153
flexural strength, 386
flexure, 383–386, 680–682
floating foundation, 82
foundation performance requirements

constructibility, 86–87
economy, 87
general, 84–85
serviceability, 86
strength, 85–86

foundation pressure
gross effective, 267–271
net effective, 267–271

frequent values, 654, 658
frost penetration, 83

general shear failure, 265–266, 278
geophysical methods, 62

electrical resistivity method, 67–69
problems and limitations, 69–70

seismic refraction method, 63–65
cross-hole method, 65–66
down-hole method, 67

problems and limitations, 65
solved problems, 70–72

geophysical survey, 3
geotechnical categories, 665
geotechnical design, 664, 667
geotechnical design of shallow foundations

comments and considerations, 310–312
design loads, 311–312
reduction of differential settlement, 311
selection of design soil pressure,

310–311
geotechnical strength requirement, 85, 265
groundwater table, 4

hammer efficiency, 21
hammer energy ratio, 21
hammer, SPT, 20
Hetenyi chart, 418
high strength concrete, 383

horizontal effective stress, 43
Housel’s method, 32, 34

immediate settlement, 149–155, 676
coarse-grained soils, 155–157
fine-grained soils, 166–168

improved equation, 153
inclination factors, 276–277
influence chart, Newmark’s, 105
influence depth, 34, 160
influence factors for
Es variation with depth, 153–154
settlement (IF &IS), 149–150
vertical stress due to loaded circular area
Boussinesq, 99
Westergaard, 110

vertical stress due to loaded rectangular area
Boussinesq, 100–102
Westergaard, 110

vertical stress due to point load
Boussinesq, 95
Westergaard (coefficient), 109

influence of soil compressibility on bearing capacity,
290–291

influence value (Newmark’s chart), 105
initial excess pore water pressure, 172
International Code Council, ICC, 165
International Conference of Building Officials,

ICBO, 165
isolated concrete footing, 77, 383
design
rectangle, reinforced, 440–449
eccentrically loaded, 449–460

square, plain, 427–434
square, reinforced, 434–440
eccentrically loaded, 460–470

iso-parametric element approach, 426

Kern, 93–94
Kern distance, 93

laboratory tests, 4
Lame’s constant, 63
lap-splice length, 392
lateral strain, 168, 172
lateral stress index, 57
limit pressure, 50–51
load and resistance factor design, 85, 311, 382
load transfer
combined tensile and shear, 395
compression, 394
shear, 395
tensile, 394
unbalanced moment, 510

local shear failure, 265, 278, 290
longitudinal bars (reinforcement), 391

material index, 57
Mat foundation, 80, 91
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general, 413–414
Ks for, 421–424
structural design by
approximate flexible method, 635–642
rigid method, 609–634, 643–648

structural design methods
flexible
approximate, 414, 417–419
finite difference, 414, 419–421
finite element, 414, 424–426
finite grid, 414, 426–427

rigid (conventional), 413–416
method of accelerating the rate of consolidation, 175–176
method of slices, 584
modes of shear failure (soil), 265–266
modulus of elasticity of concrete, 413, 633
modulus of elasticity of soil, 155–157, 166
average and weighted average, 153, 372
drained & undrained, 167
effect of OCR on, 156, 164
empirical equations for, 26, 156, 164
equivalent, 162
in situ tests used for, 155–156
pressuremeter modulus, 50–51
tables for, 44, 156–158

modulus of subgrade reaction, 406
for analysis and design of
beams on elastic foundations, 409–412
Mat foundations, 421–424

as an assumed linear function, 406
based on qa (approximate), 407
coupling and pseudocoupled methods, 421–422
empirical equation, 407
solved problems, 602–608
as spring elastic stiffness, 409–410
table of typical values, 408

net allowable bearing capacity, 268
net effective foundation pressure, 267
net foundation pressure, 267–271
net safe bearing capacity, 267
net ultimate bearing capacity, 267
Newmark’s influence chart, 105
Nfield, 20
node, 412
node spring, 421
normally consolidated clay, 168–169

Oedometer settlement Soed, 168, 173
Oedometer test, 168
office reconnaissance, 2
one-dimensional consolidation, 174
one-way shear, 388–389
organic-acid attack, 88–89
overburden correction factor, 23–24
overconsolidated clay, 169–170
overconsolidation correction factor, 25
overconsolidation margin, 172
overconsolidation ratio, 19, 25, 174

equations for OCR, 19, 27, 41, 58
overturning stability, 569

partial factor method, 657
passive resistance, 568–569, 596
peat, 82
pedestals, 398
design, 480–486

percussion drilling, 3
permanent actions, 653
permeability, 5, 1149
persistent design situation, 652
pile caps, 399–400
design, 487–506

plain concrete spread footings, 400, 687
design see isolated concrete footing

plane strain , 277, 295
Plate load test, 4
discussion, equations and correlations, 30–34
solved problems, 34–37

Poisson’s ratio, 13, 109, 153, 155, 167, 185
table of typical values, 158–159

polar moment of inertia, 511
pore-water pressure, 267
Pozzolan additives, 88
precompression, 175
solved problems, 245–254

preconsolidation pressure, 19, 171
prescriptive method, 670
pressure bulbs, 105–107
pressuremeter test, 4
discussion, equations and correlations, 48–52
solved problems, 52–55

presumptive bearing values, 268
Pryout, concrete, 394
pseudo-coupled method, 422
punching shear, 265, 382
concrete footings & mats, 388
supporting soils, 266

P-wave velocity, 63–64

quasi-permanent values, 654, 658

raft foundation, 81–82
cellular, 81

ramp loading, 179
Rankine’s active earth pressure coefficient, 567, 591
rate of consolidation settlement
accelerating method, 175–180
estimation, 174–175

recovery ratio
rock (RRR), 8–9
soil (SRR), 10–11

rectangular combined footing see combined footing
refraction survey see geophysical methods
relative density, 24
correlation with
N60, σo, Cu: 24
N60, σo, Cu, OCR: 24
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relative density (cont’d)
N60, σo, D50 : 25
N60, CP , CA, COCR: 25
qc, σo: 41–42
qc, σo, OCR, Qc: 42

representative values, 653
retaining walls see cantilever walls
retractable plug sampling, 3
rigid footing (base), 89–91, 153
rigidity factor, 166
rigidity index, 290–291

critical, 290
ring spread footing, 79–80
rock, 6, 65, 76

bearing capacity, 312–316
factors, 315

coring, 3
layers, 3, 63
quality, 8–9
quality designation (RQD), 4, 9
correlation for, 9
as a reduction factor, 315

recovery ratio (RRR), 8–9
settlement, 183–187
equation, 183

modulus ratio (Mr), 185–186
mass factor (j), 185–186

rotary drilling, 3

safety factor (SF) see factor of safety
safety hammer see SPT hammer efficiencies
sample disturbance, 9–10
samples, 3
sampling, 3
sand drains, 176

average degree of consolidation, 179
patterns and spacing, 178
radius of the equivalent cylindrical block, 179
smeared zone, 178
solved problems, 242–253

Schmertmann’s method, 161–164
Scour depth, 83
secondary compression, 181–183, 676

Cα/Cc, 183
index (Cα), 182

seismic design situation, 652
seismic refraction method see geophysical methods
sensitivity, 40
serviceability limit state, 653, 666
serviceability requirements, 86
settlement, 33, 84, 86, 89, 144, 265, 304, 676

allowable angular distortion (βa), 148
allowable deflection ratios, 147
differential settlement, 145–148
estimation from CPT, 161
estimation from consolidation test see consolidation

settlement
estimation from SPT, 157
estimation over the construction period, 180

general, 144–149
immediate see immediate settlement
limiting values for angular distortion, 148
limiting values for deflection ratios, 148
settlement, 146
tolerable total and differential settlements, 146

shape factor see bearing capacity
shear, 85, 265, 382, 388
one-way (concrete), 388–389, 680–681
punching, 388, 680–681, 684
shear failure (soil), 83, 265–266
general, 265–266
local, 266, 278, 290
punching, 265–266

two-way, 388–390
shear friction, 577
shear modulus, 51, 290
dynamic, 63, 66

shear reinforcement, 382, 388, 681–682
shear strength, 265, 388
anchor bolt (nominal), 395
concrete see shear
soil, undrained, from
CPT, 40
DMT, 58
FVST, 18–19
PMT, 51
SPT, 26–27

Shelby tube sampling, 3
shrinkage & temperature reinforcement, 388
sieve size (D50), 25, 43
simplified soil classification chart, 40–41
Simpson’s rule, 109, 606
single-source principle, 668
site investigation, 1
compiling information, 6
Final Geotechnical Report, 2, 7–8
laboratory tests, 4–5
reconnaissance, 2–3
subsurface exploration, 3–4

Skempton–Bjerrum method, 172
slices method, 584
retaining wall analysis, 584–587

slip fan zones, 272
SLS see serviceability limit state
smear zone see sand drains
soil classification charts, CPT, 40–41
spall, concrete, 394, 398
splice length see lap-splice length
split-barrel/spoon sampling, 3
spread footing see isolated footing
spring constant, 421
springs, soil, 409, 412
stability (retaining wall), 566
overturning, 568–569
rotation, 584–587
sliding, 569

stability number, 293
standard penetration test, 4, 20, 156–158, 305
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correlation of SPT-number with
cu: 27
Dr , σo, Cu: 24
Dr , σo, Cu, OCR: 24
Dr , σo, D50: 25
Dr, CP, CA, COCR: 25
Dr , , γ: 25
Es: 26, 156–157

: 25–26
, σo: 26

OCR, σo: 27
qu: 26
qu, CI: 27
su: 26

corrections of SPT-number, 21, 23–24
CPT-qc and SPT-N correlations, 43–44
design N60, 28
discussion, 20–21
solved problems, 27–30

static penetration test see cone penetration test
strain, 385
compatibility, 385, 386
lateral, 168, 172
limit, 386, 387
net tensile, 386, 387
strain influence factor, 162

strength, 85, 381
flexural, 386
geotechnical, 85, 265
high (concrete), 383
shear see shear strength
structural, 381
ultimate compressive (concrete), 314, 381
ultimate tensile, anchor bolt, 393
yield, steel, 381, 382

strength-reduction factors, 382
plain concrete, 401
reinforced concrete, 384, 386, 389, 391

strength requirements, 85
stress, 385
compressive, concrete, 385
tensile, 383
vertical (soil), 95
due to
concentrated load, 95–96
line load, 96–97
loaded circular area, 97–98
loaded rectangular area, 99–103
loaded strip area, 97–98

general, 95
stress and strain compatibility, 385
stress–strain modulus, (soil), 156
strip footing, 77, 383
design, wall footing, 471–479

structural action, 383
structural analysis and design (methods), 402, 413–414,

664, 677
structural Eurocodes, 649, 650
subsurface exploration see site investigation

sulfate attack, 87–88
sulfate resisting cement, 88
S-wave velocity, 63, 65–67
Swedish solution see slices method
swelling (expansion) index, 168, 170

tangent modulus (rock), 313
temperature reinforcement see shrinkage & temperature

reinforcement
tensile reinforcement, 383
tensile strain see strain
tensile stress see stress
tension-controlled section, 387
tension steel, 386
Terzaghi method, 168
thin-walled tube sampler, 3, 10
time factor, 179
tolerable settlement see settlement
total stress approach, 270–271
transient design situation, 652
trapezoidal combined footing see combined

footing
two-way shear see shear
two-way shear cracks, 520
types of shallow foundations, 77–82

ULS see ultimate limit states
ultimate bearing capacity see bearing capacity
ultimate compressive strength (rock), 314
ultimate limit states, 653, 657, 666
ultimate strength design, 311
unbalanced moment transfer, 510
unconfined compression strength, 26
correlation with N60, 26
correlation with N60, 27
for rock, 313–314

undrained cohesion, 16 see also shear strength
undrained shear strength, 16 see also shear strength
uniformity coefficient, 25
uplift capacity of shallow foundations, 306–310
breakout factor, 309
nominal uplift coefficient, 307
non-dimensional factor, 309

utilization factor, 698

vane shear test (field), 16
apparatus, 16–17
correction factor, 18
discussion, 16–19
procedure steps (schematically), 18
solved problem, 19–20
vane shear strength correlations, 19

variable actions, 653
vertical drains, 175–177
band, 177
prefabricated (PVDs), 176
sand see sand drains

vertical stresses in soils see stress
Vesič’s compressibility factors, 290
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virgin compression curve, 169–171
virtual back (retaining wall), 567

wall footings see strip footings
wash boring, 3
water table, effect on bearing capacity, 286–290
Westergaard’s equations, 109–110
wide-beam shear, 388–389, 680–681
wind load, 312, 382
Winkler foundation, 409, 421

concept, 409–410

working loads, 85, 311
working stress design, 311

yield strength, steel see strength
Young’s modulus see modulus of elasticity

zone (pull-out), 306
zone of high volume change, 83
zones of radial shear, 272
zones (effective) see effective zones
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