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Foreword

Due to the ongoing global change from sellers’ to buyers’ markets, the share of industrial
production and services that is provided in the form of project deliverables continues to
rise. Estimates suggest that current annual budgets for projects amount to U.S.$12 trillion
or 20% of the world’s gross domestic product. Hence, successful project management is of
salient importance for an economy as a whole and for each single firm involved in projects.
From the perspective of a firm, the selection of projects and the staffing of the chosen

projects are crucial for its success. In regard to project execution, a firm’s prosperity relies
on an efficient use of its employees and their skills, on well-performing project teams, on
smooth project execution, and on content employees. When employees have to work
in large teams, however, their individual performance may decline due to coordination
problems and motivation losses.
So far, only a few optimization models and methods exist that offer decision support

for project selection and staffing and that consider special characteristics of human re-
sources. The work at hand, which mainly addresses the composition of an optimal project
portfolio and the assignment of workers to small project teams, thus tackles challenging
problems, whose resolution harbors great benefits. For the first time, this work devises a
hierarchically integrated approach that supports decision makers who face selection and
staffing problems given a multi-skilled workforce with heterogeneous skill levels. The ap-
proach, which was developed and also coded and thoroughly tested by Matthias Walter,
comprises three stages that are associated with the following three questions:

(1) Which is the optimal project portfolio subject to a given workforce?

(2) How should the available workers be assigned to the selected projects?

(3) How can the workload of the employees be leveled assuming a matrix organization
where work requirements originate from projects and from departments?

At the first stage, portfolio selection is considered. Here, a firm has to choose a set of
projects that either have been requested by customers or have been proposed within the
firm. The selection is constrained by the capacity of non-consumable resources hold by
the firm. In his thesis, Matthias Walter outlines a model that explicitly accounts for the
capacities of human resources. Furthermore, he examines different skill configurations,
i.e., different cross-training strategies for workers. A new skill configuration is proposed
that enlarges the flexibility of a workforce. In addition, a refined flexibility measure is
devised which shows that the novel skill configuration is superior to established chaining
configurations.
The focus of the thesis is on the second stage where the staffing problem is dealt with.

In this staffing problem, a team of workers must be composed for each project of the
firm. Each worker masters some skills and each project requires a subset of all mastered
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skills. The objective is to minimize average project team size and, hence, to minimize the
average number of project assignments per worker. The objective prevents that project
teams suffer unduly from social loafing and that workers loose their focus. Since team
size has not been addressed before, the problem formulation and the proposed solution
methods make a valuable contribution to the field of multi-project management.
A postprocessing step at the last stage ensures that differences in working times among

workers, which arise from the project assignments, are mitigated by allocating depart-
mental workload. For this leveling task, a linear program is formulated and solved by a
dedicated polynomial-time algorithm.
The comprehensive performance analysis of the thesis demonstrates that the three-

stage approach is well suited even for large-scale planning problems. For instances that
feature a large number of projects and workers, good solutions are determined in accept-
able time. Consequently, the approach offers a great potential for practitioners.
Altogether, the work at hand is a convincing application of operations research meth-

ods to the vital field of project management and provides a notable advancement for the
task of forming project teams.

Clausthal-Zellerfeld, June 2014 Prof. Dr. Jürgen Zimmermann
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methods. My hope is that both decisions makers and project team members can benefit
from the ideas and methods that I have developed.
Completing the thesis would not have been possible without the support of many

people to whom I am very grateful. First of all, I would like to thank Prof. Dr. Jürgen
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the second reviewer. He supported my work many times by sharing his vast knowledge.
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the pleasant and trustworthy cooperation, for their willingness to share their experience
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7.7 Numbers of variables zp, variables ŷkpst, and constraints for three instances of

different size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.8 Results for test sets with different numbers of workers K and projects P̃ ,

tmax = 300 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.9 Results for test sets with different numbers of workers K and projects P̃ ,

tmax = 1 h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.10 Results for test sets with different numbers of skills per worker |Sk| . . . . . . 217
7.11 Skill configurations of three different skill chaining strategies . . . . . . . . . . 219
7.12 Results for three different skill chaining strategies . . . . . . . . . . . . . . . . 220
7.13 Results of the simulation with 100 000 randomly generated skill demand sce-

narios for different skill configurations . . . . . . . . . . . . . . . . . . . . . . . 222
7.14 Values of different flexibility measures for the three skill configurations from

Table 7.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.15 Numbers of assignments of workers to projects for three different models . . . 224
7.16 Results for the LP relaxation of the standard model with different big-M con-

straints for testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.17 Results for the standard model with different big-M constraints for testbed 1,

tmax = 300 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228



xiv List of tables

7.18 Results for the standard model with different big-M constraints for testbed 1,
tmax = 1 h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.19 Results for the LP relaxation of the standard model and the network model
for testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.20 Results for the standard model and the network model for the small-sized
instances of testbed 1, tmax = 300 s . . . . . . . . . . . . . . . . . . . . . . . . 230

7.21 Results for the standard model and the network model for testbed 1, tmax = 1 h231
7.22 Numbers of binary variables xkp, continuous variables, and constraints for three

instances of different size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.23 Results for the LP relaxation of the standard model with different globally

valid inequalities for testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.24 Results for the standard model with different globally valid inequalities for

testbed 1, tmax = 300 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.25 Results for the standard model with different globally valid inequalities for

testbed 1, tmax = 1 h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.26 Results for the standard model with different locally valid inequalities for

testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.27 Solutions for the LP relaxation of instances A and B in Example 7.3 . . . . . 241
7.28 Results of the standard model with different time limits tmax for the test sets

of testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.29 Results of GRAP and ModGRAP for testbed 1 . . . . . . . . . . . . . . . . . 246
7.30 Results of GRAP for testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.31 Results of ISAP for testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.32 Results of ISAP for testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.33 Results of the solver CPLEX and the generalized network simplex (GNS)

method for solving the initial linear programs for test sets of testbed 1 and 2 . 256
7.34 Results of different DROP variants with and without extensions for testbed 1 . 257
7.35 Effect of a time saving strategy for DROP(GNS) . . . . . . . . . . . . . . . . . 259
7.36 Results of DROP(CPLEX, stand.) for different unsuitability values uskp for

testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.37 Results of DROP(CPLEX, stand.) with surrogate objective function (6.22) for

different suitability values uskp for testbed 1 . . . . . . . . . . . . . . . . . . . 261
7.38 Results of DROP for testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.39 Results of DROP for testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.40 Results of ROUND for testbed 1 . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.41 Results of ROUND for testbed 2 . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.42 Results of CPLEX and Algorithm 6.4 for instances of the utilization leveling

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274



List of algorithms

6.1 Calculation of the lower bound LBglob
ps on the number of assignments of workers

to project p for skill s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Calculation of the lower bound LB loc

ps on the number of assignments of workers
to project p for skill s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Calculation of the lower bound LBglob
p on the number of assignments of workers

to project p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 Algorithm to level working times within department d in period t by allocating

departmental workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.5 Multi-start procedure for heuristics for the workforce assignment problem . . . 126
6.6 Initializations for the heuristic GRAP . . . . . . . . . . . . . . . . . . . . . . . 129
6.7 Main part of the heuristic GRAP . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.8 Calculation of the suitability value suitB

kp . . . . . . . . . . . . . . . . . . . . . 133
6.9 Sketch of the heuristic ModGRAP . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.10 Main part of the heuristic ISAP . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.11 Preparatory part of the heuristic DROP . . . . . . . . . . . . . . . . . . . . . 150
6.12 Main part of the heuristic DROP . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.13 Subprocedure of Algorithm 6.12: Cancellation of assignments without contri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.14 Subprocedure of Algorithm 6.12: Calculation of the lower bound LBDrop

p on
the number of assignments of workers to project p . . . . . . . . . . . . . . . . 155

6.15 Subprocedure of Algorithm 6.12: Calculation of the lower bound LBDrop
ps on

the number of assignments of workers to project p for skill s . . . . . . . . . . 156
6.16 Algorithm to compute the node potentials of a 1-tree . . . . . . . . . . . . . . 166
6.17 Algorithm to compute the changes of arc flows in a 1-tree caused by a unit

flow change on the entering arc . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.18 Algorithm to update the indices of tree tr1 containing the old root node rtr . . 174
6.19 Algorithm to update the indices of tree tr2, which will be rooted at node n2 . 175
6.20 Algorithm to reroot a tree tr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.21 Algorithm to graft a tree tr toGraft onto node nonto of another tree tr onto . . . . 180
6.22 Algorithm to update tree indices during a pivot operation . . . . . . . . . . . 182
6.23 Subprocedure of Algorithm 6.22: One old 1-tree, overlapping cycles . . . . . . 183
6.24 Subprocedure of Algorithm 6.22: One old 1-tree, cycles do not overlap . . . . . 184
6.25 Subprocedure of Algorithm 6.22: Two old 1-trees . . . . . . . . . . . . . . . . 185
6.26 The heuristic ROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



List of symbols

Acronyms

DROP Drop procedure

GNS Generalized network simplex

GRAP Greedy randomized assignment procedure

ISAP Iterated simultaneous assignment procedure

LP Linear program/linear programming

MIP Mixed-integer linear program/mixed-integer linear program-
ming

PIP Pure integer linear program/pure integer linear program-
ming

ROUND Rounding procedure

Miscellaneous

∅ Empty set

:= Equal by definition

�a� Largest integer less than or equal to a (floor function)

N = {0, 1, 2, 3, . . .} Set of natural numbers

R Set of real numbers

Models and solution methods

akp ∈ [0, 1] Real-valued decision variable that equals 1 if worker k is
selected for project p, and 0 otherwise

bp Benefit of project p

C List of pairs (k, p) for which dropping is considered



xviii List of symbols

D Number of departments of a firm

D = {1, . . . , D} Set of departments of a firm

d Department

d(k) Department to which worker k belongs

Δkk′ ∈ R≥0 Decision variable that registers the amount of time that
worker k works more than worker k′

Δkk′t ∈ R≥0 Decision variable that registers the amount of time that
worker k works more than worker k′ in period t

fdep
kt ∈ R≥0 Decision variable that represents the flow of working time

from worker k to his department in period t

fproj
kpt ∈ R≥0 Decision variable that represents the flow of working time

from worker k to project p in period t

K Number of workers of a firm

K = {1, . . . , K} Set of workers of a firm

Kd Set of workers that belong to department d

Kassigned
p Set of workers that are already assigned to the ongoing

project p, p ∈ Pongoing (Kassigned
p = ∅ for p /∈ P ongoing)

Kfrac
p Set of workers who are suitable for project p and whose cor-

responding variable xkp has not been fixed to 0 or 1, subset
of Ksuit

p

Ksuit
p Set of workers that are suitable for project p

Ksuit,rem
p Set of remaining workers that can contribute to project p

Ks Set of workers that master skill s

k Worker

lks Level with which worker k masters skill s

LBDrop
p Local lower bound on the number of workers that are needed

to accomplish all requirements of project p, calculated in the
course of the heuristic DROP

LBDrop
ps Local lower bound on the number of workers that are needed

to accomplish all requirements of project p for skill s, calcu-
lated in the course of the heuristic DROP

LBglob
p Global lower bound on the number of workers that are

needed to accomplish all requirements of project p



List of symbols xix

LBglob
ps Global lower bound on the number of workers that are

needed to accomplish all requirements of project p for skill s

LB loc
p Local lower bound on the number of workers that are addi-

tionally needed to accomplish all requirements of project p

LB loc
ps Local lower bound on the number of workers that are addi-

tionally needed to accomplish all requirements of project p
for skill s

LPrem
t Linear program that remains for period t if all binary vari-

ables xkp in the workforce assignment problem are fixed

P̃ Number of projects that can be selected

P̃ = {1, . . . , P̃} Set of projects that can be selected

Pmust Set of projects that must be selected

Pongoing Set of ongoing projects, which must be continued

P Number of projects that will be executed in the planning
horizon

P = {1, . . . , P} Set of projects that will be executed in the planning horizon

P̂suit
k Set of projects that are suitable for worker k, subset of

Pongoing ∪ Pmust ∪ P̃

Psuit
k Set of projects that are suitable for worker k, subset of P

P̂suit
k (t) Set of projects that are suitable for worker k and executed

in period t, subset of P̂suit
k

Psuit
k (t) Set of projects that are suitable for worker k and executed

in period t, subset of Psuit
k

P toRound Set of projects for which at least one corresponding vari-
able xkp is fractional and can be rounded up

P toStaff List of projects that have not been completely staffed

p Project

Rkt Availability of worker k in period t

Rrem
kt Remaining availability of worker k in period t

rpst Requirement of project p for skill s in period t

rrem
pst Remaining requirement of project p for skill s in period t

rddt Requirement of department d in period t



xx List of symbols

rd rem
dt Remaining requirement of department d in period t

S Number of skills

S = {1, . . . , S} Set of skills

Sk Set of skills that are mastered by worker k

Smatch
kp Set of matching skills between worker k and project p

Smatch,rem
kp Set of remaining matching skills between worker k and

project p

Sp Set of skills that are required by project p

Srem
p Set of skills that are required by project p and whose work-

load has not been completey allocated to workers

s Skill

suitkp Suitability of worker k for project p

T Number of periods in the planning horizon of a firm

T = {1, . . . , T} Set of periods, planning horizon of a firm

Tp Set of periods in which project p is executed

t Period

tfinish
p Finish period of project p

tstart
p Start period of project p

totRrem
dt Total remaining availability of all workers that belong to

department d in period t

uskp Unsuitability of worker k for project p

w1, w2, w3 Objective function weights

xkp ∈ {0, 1} Decision variable that equals 1 if worker k is assigned to
project p, and 0 otherwise

x Matrix that contains all decision variables xkp
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Chapter 1

Introduction

Multi-project management and human resource management are important pillars of
business success. Multi-project management is crucial because the share of work that
is accomplished within projects has increased steadily during the past 60 years and in
some branches virtually all revenues are generated through projects (cf. Kerzner, 2013,
pp. 47–63 and 25–27, respectively). As each project demands some resources, proper co-
ordination of projects and resources is vital for a firm. With regard to resources, human
resource management is a major factor because the demand for high-skilled workers has
increased disproportionately over the last three decades, while skilled workers are a scarce
resource (cf. Borjas, 2013, pp. 294–306; Oesch and Rodríguez Menés, 2011; BMWi, 2014).
Since projects are executed by humans, multi-project management and human resource
management are closely linked to each other. The close link becomes obvious when asking
questions like “Which project portfolio can a firm select given its workforce?”, “How can
workers be assigned to projects such that small project teams result and such that workers
are not scattered across a multitude of projects?”, or “How can we level the workload over
the workforce such that workload is as evenly distributed as possible?” In this thesis, we
will present quantitative methods to answer these three questions.
In particular, we are interested in the second question, which asks how to form project

teams that are small in relation to project workload and how to avoid scattering of workers
across projects. This question came up in a research project triggered by an information
technology (IT) center. Though, this question is relevant not only for this IT center but
for many firms. Nowadays, almost every firm sets up projects in order to carry out various
undertakings. For each project, which is a one-time endeavor, a firm composes a group of
employees or workers to accomplish the workload of the project. Such a group of workers
is called a project team. Each member of a project team contributes to the project with
one or more of his skills. Usually, a worker can be a member of more than one project
team at the same time. We and other authors argue that the size of a team should not
be too large. A small number of workers per project eases communication within the
project team and reduces social loafing and free-riding of team members. If average team
size is small, then the average number of assignments per worker to projects is also small.
A small number of projects per worker allows workers to better concentrate on each of
their projects and avoids productivity losses due to scattering. That is why we aim at
small teams. For the very first time, exact and heuristic approaches are presented that
help firms with a large multi-skilled workforce and a large project portfolio to form small
project teams.
The problems that correspond to our three questions are—directly or indirectly—

related to small project teams and will be tackled one by one. The three problems are
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(1) the selection of projects under resource constraints, (2) the assignment of multi-skilled
workers with heterogeneous skill levels to projects with the objective to obtain project
teams of minimum size, and (3) the leveling of workload, i.e., the even distribution of
workload across the workforce. Our focus is on the second problem. But before workers
can be assigned to projects, projects must be selected. And after project teams have been
formed and project workload has been allocated, departmental workload can be allocated
such that worker utilization is leveled. Hence, we will tackle these problems in hierarchical
order, beginning with the strategic project selection problem at the first stage, continuing
with the tactical workforce assignment problem at the second stage, and ending with the
operational utilization leveling problem at the bottom stage. Our three-stage top-down
approach is partially integrated to ensure feasibility and practical applicability at each
stage. The primary goal of this thesis is to find solution methods for the three problems
that offer high solution quality within acceptable solution time.
The first problem of our three-stage approach is the selection of a most beneficial set

of projects such that the total skill requirements of the selected projects can be accom-
plished in every period of the planning horizon. We model this project selection problem
as a mixed-integer program with a single objective. The objective is to maximize portfolio
benefit and we assume that a benefit value is specified for each project. The gist of our
model is that it captures resource constraints and ensures a feasible staffing of projects,
which is a desirable basis for the second stage. Already Weingartner (1966) and, more
recently, Kolisch et al. (2005) have emphasized the necessity of integrating resource con-
straints into portfolio planning. Our optimization model explicitly considers each worker
and his skills. This high resolution is necessary because we distinguish different skill levels,
i.e., for each skill we distinguish more experienced from less experienced workers.1 Yet,
the resolution is just high enough to fulfill its purpose; it strikes a balance between the
resolution of Yoshimura et al. (2006) and the higher resolution of Gutjahr et al. (2008).
Related to the problem of project selection is the question how skills should be dis-

tributed among workers. This question is relevant for making decisions about cross-
training of workers. Jordan and Graves (1995) found that a skill configuration called
chaining is very beneficial, as it can increase the number of feasible project portfolios.
For our setting with many workers, we present a skill configuration that outperforms a
chaining configuration. We use simulation, an extended version of a flexibility measure
of Iravani et al. (2005), and the flexibility measure of Chou et al. (2011) to confirm the
effectiveness of the proposed configuration.
The second problem that we consider constitutes the core of this thesis and deals with

staffing the selected projects such that small project teams result. The problem is to assign
multi-skilled workers to projects and to allocate project workload to workers such that all
skill requirements of the projects and all requirements of the departments are satisfied,
availabilities of the workers are observed, and the average number of assignments per
project, i.e., the average team size, is minimized. We formulate this workforce assignment
problem as a mixed-integer program that minimizes the total number of assignments. The
formulation takes different skill levels of workers into account: An experienced worker,
who has a high skill level, needs less time to accomplish a skill requirement than a worker
with a lower skill level.

1Even in case of homogenous skill levels, it can be advantageous to explicitly consider each worker
compared to aggregating worker capacities, as we will explain in Section 4.2.
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Our aim to minimize average team size and the corresponding solution methods are an
answer to the call for small teams that has echoed through the literature for a long time.
Already in 1975, computer architect and software engineer Frederick Brooks pointed out
that growing team size hampers project progress due to increased communication needs.
He wrote that “adding manpower to a late software project makes it later” (Brooks,
1982, p. 25), what has become known as Brooks’s law. Likewise, Hammer and Champy
(1993, p. 144) demanded in their best-selling business book Reengineering the corporation
that “as few people as possible should be involved in the performance of a process”.
Especially for multi-project environments, Hendriks et al. (1999) introduced the project
scatter factor, which measures the number of workers that are assigned to one man-year
of project workload. As scattering workload across many workers and scattering workers
across many projects is inefficient, Hendriks et al. recommend a small project scatter
factor, i.e., small teams. Another drawback of large teams is increased social loafing.
Social loafing describes the decrease in individual productivity of workers when they work
in a team. Liden et al. (2004) investigated work groups in two U.S. firms and confirmed
the hypothesis that the productivity loss increases with team size. They concluded that
“organizations will recognize the need . . . to keep group size down to a minimum in
combating social loafing” (p. 299). So far, these calls for small teams have not been
adequately answered by the development of algorithms for complex staffing tasks. We set
out to give an answer to this call.
In the literature concerned with workforce assignment problems, Grunow et al. (2004)

and Heimerl and Kolisch (2010a) consider problems that have similarities to our problem.
The work of Grunow et al. might have come closest to a reply to the call for small project
teams. In Section 4.2 of their work, Grunow et al. consider the problem of staffing clinical
studies where each clinical study comprises several tasks. A certain number of qualified
and available employees must be assigned to each task. As soon as an employee contributes
to a task of a study, he is assigned to this study. The objective is to minimize the total
number of assignments of employees to studies, i.e., it is desired that an employee devotes
his time to a minimum number of studies but contributes as much as possible to the few
studies he is assigned to.
There are three crucial points where our approach differs from the approach of Grunow

et al. (2004). The first point is that in the model of Grunow et al. the number of employees
necessary to accomplish a task is prespecified, whereas in our model the number of workers
necessary to cover a skill requirement is not fixed a priori. For example, our model grants
the choice to allocate a skill requirement to either one worker who may have to spend
2 weeks on it or to two workers who may require 1 week to accomplish this requirement.
The second point is that we take different skill levels into account. This allows us to
distinguish an expert who may require only 1 week to accomplish a certain workload from
a beginner whom it may take 4 weeks to accomplish the same work. The first two points
make our model applicable to a broader range of firms and industries. The third difference
is that, although both the problem of Grunow et al. and our workforce assignment problem
are NP-hard2 and thus intractable in case of large-sized instances, Grunow et al. do not
outline heuristic solution methods as we do. In our case, the heuristics are necessary to

2We prove NP-hardness of our problem in Subsection 4.6.3. Grunow et al. (2004) do not provide
complexity results for their problem. In Section 5.2, we show that their problem is NP-hard as well.
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solve instances of realistic size, which can comprise more than one thousand workers and
hundreds of projects as in the case of the IT center that initiated our research.
The model of Heimerl and Kolisch (2010a) is similar to our model as both models

distinguish skill levels and do not prespecify the number of workers necessary to satisfy a
skill requirement. The main difference between the models lies in the objective function.
Heimerl and Kolisch minimize variable costs that are incurred for each minute of project
work performed by employees, whereas we minimize fixed costs or setup costs that are only
incurred if an employee contributes to a project, no matter for how long she contributes.
Solutions to our model feature small project teams, whereas solutions to the model of
Heimerl and Kolisch tend to feature very large project teams. If we aimed at minimizing
variable costs, our model would become a linear program (LP). Minimizing fixed costs or
average team size, however, cannot be modeled without binary decision variables and is
thus a much harder task.
The third problem, utilization leveling, arises when project teams have been arranged

and project workload has been allocated to the team members. After planning at the
second stage has been finished, the resulting distribution of project workload may have
led to an unbalanced utilization of workers. Hence, when workers are compared with
respect to their workload, discrepancies may occur. Then, departmental workload can be
distributed such that utilization is leveled as well as possible. This utilization leveling
problem is modeled as an LP at the third stage of the planning hierarchy.
Equal loading of workers is valuable for firms and workers for at least two reasons.

First, an equal utilization is deemed fair by workers and increases worker satisfaction (cf.
Lee and Ueng, 1999). Second, a leveled load distribution facilitates a simple and popular
working time organization where working time is constant in each period (cf. Huang et
al., 2006). Leveling avoids overtime and prevents underutilization during regular working
time. Solving the utilization leveling problem completes the three-stage approach outlined
in this thesis.
The main contribution of our work is that we develop and identify methods to solve

the three outlined problems. In particular, we outline construction heuristics to compose
project teams of minimum average size. One of the proposed heuristics, a drop heuristic,
applies in one of its variants the generalized network simplex method. For this simplex
method, we provide detailed pseudo code, which, to the best of our knowledge, has not
been published so far.
Our thesis makes further contributions that are relevant from a theoretical and a

practical perspective. With regard to practice, we tackle three problems that have gained
increased relevance for firms. For each problem, we present a mathematical model and dis-
cuss limitations of the model that should be observed by practitioners. For the workforce
assignment problem, we outline a lean model that requires a relatively small amount of
input data. The model gets along without cost data, which are often difficult to estimate.
With regard to theory, we analyze the complexity of our three problems and classify them
in terms of their computational tractability.
The key results of our work can be summarized as follows. The project selection prob-

lem that we consider at the first stage is NP-hard in the strong sense, but even instances
that represent cases of large firms can be handled well by state-of-the-art branch-and-cut
solvers for mixed-integer programs. The workforce assignment problem at the second stage
is also strongly NP-hard. Only for small-sized instances, solutions of acceptable quality
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can be determined within reasonable time. From the heuristics that we developed, a vari-
ant of a drop method that uses a commercial LP solver for subproblems performs best.
The drop method profits from temporal decomposition, problem-specific lower bounds,
and other problem-specific devices. The utilization leveling problem arising at the third
stage can be modeled as an LP and is thus solvable in polynomial time. For this problem,
we developed a specially tailored algorithm that outperforms a commercial state-of-the-
art LP solver, which applies the simplex method. A further notable result was obtained
with regard to skill configurations. In line with recent work, we found that a configuration
which follows the chaining principle is inferior to a more diverse skill structure.
Our work has implications for both research and practice. With respect to research, we

make a novel contribution to the growing field of multi-project planning. We satisfy a long
outstanding demand by providing methods for building small project teams. Our methods
are a first landmark and can serve as a basis for further research. With respect to practice,
our methods can give valuable support to managers who are charged with project portfolio
and human resource planning. Our methods help them in three ways. First, our approach
helps managers to select beneficial portfolios which fully exploit workforce potential but
which do not overstrain any workforce member. Second, our approach helps to form
small project teams, which raise the chance of smooth project execution. Additionally,
the approach avoids scattering workers across projects and thereby decreases harmful
stress and increases worker satisfaction. Third, the approach helps to equally distribute
workload such that the workers feel that they are treated fairly. Altogether, our methods
can improve the well-being of a firm and its workers alike.
The remainder of this thesis is organized as follows. In Chapter 2, we provide some

essentials of multi-project planning and background information about multi-skilling, e.g.,
about measuring skill levels, which are required input for our approach. Furthermore, we
explain the motives for our approach: We stress why resources should be taken into
account for composing a project portfolio and we present theoretical, experimental, and
empirical findings which suggest that small project teams and a small number of projects
per worker are favorable. In Chapter 3, we describe our three problems and introduce
the notation, i.e., we introduce symbols for sets, parameters, and variables that define
our problems. Mathematical optimization models for these problems are presented in
Chapter 4. In this chapter, we also discuss limitations of the models and classify the
hardness of our problems according to complexity theory. Work that is related to our
problems and models is reviewed in Chapter 5.
Solution approaches to our problems are outlined in Chapter 6. For the project

selection problem, the branch-and-cut method offered by the solver package CPLEX pro-
vides good solutions. For the workforce assignment problem, we present valid inequalities
that tighten the corresponding model and four heuristic solution methods. We also give a
detailed description of the generalized network simplex method, which is integrated into
one of the heuristics. For the utilization leveling problem, we outline a polynomial-time
algorithm. Chapter 7 deals with thorough testing of the proposed solution methods.
We describe the generation of test instances and report on the results of our performance
analysis. The results of the analysis and their implications are discussed in Chapter 8.
Chapter 9 concludes this thesis with a summary and an outlook.



Chapter 2

Background and motivation

In this chapter, we provide general information on three essential elements of the envi-
ronment in which our three problems are embedded. These elements are multi-project
management, multi-skilled workers, and teamwork. In Section 2.1, we elaborate on multi-
project management, which is concerned with managing a portfolio of parallel undertak-
ings. We emphasize the importance of multi-project management, explain its main tasks,
and give an overview of contributions that address the main tasks. Two of these main
tasks, namely, project selection and staffing, are part of our approach. In Section 2.2,
we turn to multi-skilled workers. Here, we describe advantages of cross-training and give
a brief overview of methods to determine skill levels, which are required as input data
for our models. Furthermore, we describe the flexibility design problem that is associated
with a multi-skilled workforce. Later, we make a novel contribution to this design problem
in Section 7.2. Eventually, we address teamwork in Section 2.3 where we give reasons why
small teams are advantageous.

2.1 Multi-project management
In this section, we briefly review principles of multi-project management. First of all,
we stress the importance of multi-project management. Then, we elaborate on its three
main planning tasks, which are portfolio selection, scheduling, and staffing of projects
(cf. Heimerl and Kolisch, 2010a, p. 344). All three tasks are affected by the availabilities
and capabilities of (human) resources whose crucial role is emphasized throughout this
section.
The importance of multi-project management has increased over the last decades and

is still growing. In the middle of the last century, project and multi-project management
gained momentum; the share of project work has increased since then and the penetration
of firms by corresponding management methods has not stopped at the beginning of this
century (cf. Kerzner, 2013, pp. 47–63). The ongoing growth of multi-project management
and its still increasing relevance is reflected in the currently growing need for portfolio
and project management software (cf. Figure 2.1).
The rise in project work has been a response to several developments. Accelerated

technological progress and faster changing consumer needs have led to shorter product
life cycles and have rewarded shorter product development times. This in turn put time
pressure on organizations and caused shorter life spans of the respective organizational
structures. Intensified national and international competition rewarded customer orien-
tation, i.e., customized and thus unique solutions. Shorter life spans of organizational
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Figure 2.1: Global revenue from project and portfolio management software from 2008
to 2012 (data provided by Statista (2013), original source: Gartner, Inc.)

structures and customer orientation favor project work, which is temporary and unique
by nature. The increase in project work has amplified the importance of multi-project
management, which is concerned with planning, executing, and controlling. In the realm
of planning, the major management tasks are selecting, scheduling, and staffing projects.
We elaborate on these main tasks because they overlap with our approach.
The first main task of multi-project management is selecting projects. The resulting

project portfolio contains both external and internal projects. External projects origi-
nate outside a firm, whereas internal projects come from within the firm. Examples are
a customer order and a process improvement project, respectively. Common criteria for
project selection are strategic fit, urgency, and profitability of a project amongst others
(cf. Pinto, 2010, pp. 90–125; Rüdrich, 2011). The strategic fit expresses how well the
project contributes to overall long-term goals of the organization, whereas urgency relates
to the operational need for the deliverables of the project. The criterion profitability mea-
sures the economic advantage of the project. In our approach, we condense information
emerging from several criteria into a single benefit value for a project.
Two variants of project selection problems are distinguished: static and dynamic

project selection. The static variant, which we consider in our approach, considers a
set of candidate projects from which only a proper subset can be selected for implemen-
tation. A decision is made only once. If resource constraints are taken into account, this
variant is related to the knapsack problem where a subset of items must be chosen such
that their total weight does not exceed the capacity limit of a knapsack and their total
utility is maximized. The dynamic variant of the project selection problem considers the
situation where project proposals arrive over time (cf. Herbots et al., 2007). Every time
when a project arrives, a decision has to be made whether the project is selected or not.
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When such a decision must be taken, details of future arrivals, e.g., resource requirements,
benefits, and arrival times of the projects arriving next, are not known.
Static project selection problems are formulated either as single- or multi-period prob-

lems. In the case of multi-period formulations, the planning horizon is divided into peri-
ods. Hence, the temporal process of a project can be taken into account. A multi-period
approach is advantageous especially if scarce resources are considered because the sched-
ule of a project—whether already fixed or still flexible—does not result in a constant load
over time for all resources in general. The following example demonstrates the advantage
of a multi-period model when resource requirements vary over time.

Example 2.1 Let two candidate projects that last one year each have a resource demand
for 4 man-years while 8 workers are available. Then, both projects can be selected in a
single-period model as they do not violate resource constraints. However, if each project
requires 6 full-time workers in the first half of the year and only 2 workers in the second
half, it is not possible to implement both projects given 8 workers. Nevertheless, the
portfolio containing both projects would be a feasible portfolio in the single-period model.�

Since changes in resource requirements over time, e.g., the dynamic requirements stated
in Example 2.1, cannot be captured by a single-period model, we opted for a multi-period
formulation. A multi-period model allows to take non-constant resource demands and
supplies into account.
In the literature on project selection, however, an explicit consideration of resource

requirements and resource availabilities is not a given and often, resources are neglected.
Textbooks on project management frequently suggest selection procedures which do not
consider resource constraints (cf. GPM, 2008, pp. 447–467; Pinto, 2010, pp. 90–125). Of
course, procedures that do not account for resources can be justified, as in some situations
resource constraints are not present or because the procedures have another focus. In
many situations, though, resources are scarce, and neglecting resource constraints can
lead to plans that cannot be implemented.
Many approaches to project selection consider budget constraints, i.e., limited finan-

cial resources. Financial requirements of projects may include cost for personnel. Some
approaches that consider only budget constraints but no other resource constraints may
imply the assumption that workers with the necessary qualification profiles can just be
bought. However, such an assumption is risky. Since skilled workers are rather scarce,
this assumption is questionable and may lead to failure when projects are carried out.
Table 2.1 gives an overview of contributions to static project selection problems that

we reviewed for this thesis. Some of these contributions will be treated in more detail
in subsequent chapters, especially in Section 5.1. Table 2.1 distinguishes single-period
from multi-period models and whether only budget restrictions or resource constraints
including potential budget restrictions are considered. Furthermore, we marked contri-
butions that consider skills, be it in the form of multi-skilled resources or in the form of
different skill levels of mono-skilled resources. Some of the listed publications integrate
scheduling and/or staffing and some explicitly consider multi-skilled resources. Scheduling
is integrated into the models of Chen and Askin (2009), Escudero and Salmeron (2005),
Ghasemzadeh et al. (1999), and Kolisch et al. (2008). Kolisch et al. (2005) and Taylor et
al. (1982) consider problems with a time-resource trade-off where project start times are
fixed but project durations vary with the amount of allocated resources. Both scheduling
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and staffing is incorporated in the selection models of Gutjahr et al. (2008, 2010). Lopes
et al. (2008), Yoshimura et al. (2006), and Taylor et al. (1982) integrate selection and
staffing.

Table 2.1: Classification of selected publications on static project selection procedures

Constraints

Multi-period Only Resources
model budget (incl. budget) Skills

Fox et al. (1984) •
Golabi et al. (1981) •
Gurgur and Morley (2008) •
Lai and Xue (1999) •
Lopes et al. (2008) • •
Muralidhar et al. (1990) •
Schmidt (1993) •
Tavana (2003) •
Eilat et al. (2006) •
Santhanam et al. (1989) •
Santhanam and Kyparisis (1996) •
Yoshimura et al. (2006) • •
Chen and Askin (2009) • •
Doerner et al. (2004) • •
Escudero and Salmeron (2005) • •
Ghasemzadeh et al. (1999) • •
Graves and Ringuest (2003) • •
Gutjahr et al. (2008) • • •
Gutjahr et al. (2010) • • •
Kolisch et al. (2005) • •
Kolisch et al. (2008) • •
Taylor et al. (1982) • •
Weingartner (1966) • •

Skills are considered in only four of the listed works. In Yoshimura et al. (2006) and
Gutjahr et al. (2008, 2010), multi-skilled workers constrain the composition of the project
portfolio. Skill levels are static in the model of Yoshimura et al. (2006), whereas Gutjahr
et al. (2008, 2010) take learning and forgetting into account resulting in dynamic skill
levels that increase through exercising the respective skill and decrease when the skill is
not used. In Lopes et al. (2008), projects are selected and assigned to students who must
complete a project as part of their curriculum. Here, students exhibit different average
grades that can be interpreted as distinct skill levels. A soft constraint requires that the
mean skill of each project team is not below a minimum level.
In all contributions, portfolio benefit or value is maximized while occasionally other

goals are pursued in addition to benefit maximization. Some authors describe how mul-
tiple criteria can be aggregated, whereas Yoshimura et al. (2006), Doerner et al. (2004),
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Graves and Ringuest (2003), and Gutjahr et al. (2010) consider genuine multi-criteria
models with a separate objective function for each criterion. Apart from the objective of
maximum portfolio benefit, three models feature additional objectives that refer to skills
and worker satisfaction. Lopes et al. (2008) minimize the total deviation of all project
teams from the minimum mean skill level. Yoshimura et al. (2006) pursue the aim of
maximizing the skill supply for each project and maximizing worker satisfaction. Gut-
jahr et al. (2010) seek for solutions that lead to an optimal growth in skill levels due to
learning.
The second main task of multi-project management is project scheduling, which is

concerned with determining a start time for each project and sometimes also for each
activity of a project if there is leeway. Start times must be chosen such that resource
constraints and temporal constraints are regarded. Since resources are required to perform
project activities, a feasible schedule must observe availabilities of renewable resources
such as manpower and of non-renewable resources such as budget. Temporal constraints
can comprise minimum and maximum time lags between project activities. Frequent
objectives for scheduling are maximization of the net present value, minimization of costs,
and minimization of project duration, also called makespan minimization. Though, Tukel
and Rom (1998) found in a survey among U.S. project managers from various industries
that quality was the most important scheduling objective for the respondents; it was more
important than time and cost. However, a precise definition of the term quality was not
given by Tukel and Rom.
In general, a multi-project scheduling problem can be transformed into a single-project

scheduling problem for which a rich body of literature exists that provides different so-
lution approaches for a large number of objective functions (cf. Neumann et al., 2003,
for example). To sketch the transformation, assume that each project is represented by
an activity-on-node network whose nodes correspond to project activities and whose arcs
correspond to temporal constraints. Then, the separate project networks can be merged
into one network that represents a meta-project and contains all projects as subprojects.
In this case, multi-project and single-project scheduling problems are equivalent.
For the project selection and staffing problem that we consider in this thesis, we

assume that the schedule of each project is already fixed prior to the decision about
the project portfolio. This assumption holds true for many situations nowadays. Due
to increased competition, clients can often demand tight due dates that do not give the
freedom to shift activity start times (cf. Kolen et al., 2007, pp. 530–531). Nevertheless,
it is worthwhile to explore scheduling approaches because they often integrate staffing
decisions and sometimes explicitly consider multi-skilled workers.
When multi-skilled workers are considered, it is possible but not advisable to represent

a project scheduling problem as a multi-mode resource-constrained project scheduling
problem (MRCPSP). In the MRCPSP, activities can be executed in alternative modes
that differ in resource usage and activity duration (cf. De Reyck and Herroelen, 1999;
Heilmann, 2003). To give an example, consider an activity that can be executed in two
modes. In the first mode, the activity is executed by an expert and finished within two
days. In the second mode, two beginners perform the activity and need three days. To
demonstrate the disadvantage of a multi-mode model, consider a workforce of 20 workers
and an activity that can be accomplished by any of the 20 workers alone but also by any
team formed by the workers. Each distinct, non-empty subset of workers may represent
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a mode in which the task can be performed. Then, the activity can be executed in
220−1 = 1 048 575 different modes.1 Here, the size of a model that explicitly describes all
possible modes increases exponentially in the number of workers. Hence, if each worker is
considered as an individual resource and workers have overlapping skill sets, the number
of alternative modes per activity usually is so large that a multi-mode representation
is not adequate (cf. Bellenguez-Morineau and Néron, 2007, pp. 156–158). That is why
multi-mode models are not common for problems with multi-skilled workers. The work of
Tiwari et al. (2009) is an exception as they use an MRCPSP formulation for scheduling
activities given a multi-skilled workforce with heterogeneous skill levels.2
Table 2.2 lists a choice of papers that tackle either multi-project or single-project

scheduling problems or problems that are no project scheduling problems but scheduling
problems that involve multi-skilled workers. Papers that explicitly refer to multi-project
scheduling are marked in the table. Furthermore, the table indicates when contributions
consider multi-skilled resources, when skill levels are distinguished, and what kind of
objective is pursued. Most of the listed papers that deal with multi-project scheduling
determine project start times only and assume that activity start times are coupled to the
start time of the corresponding project and cannot be shifted. Solely Kolisch and Heimerl
(2012) determine project and also activity start times. In the models of Gutjahr et al.
(2008, 2010) and Wu and Sun (2006), there is also freedom: The workload of an activity
must be accomplished sometime between the release and the due date of the activity. In
Kolisch et al. (2008), a start time and a mode must be chosen for each project; different
modes are associated with different project durations and different resource requirement
profiles.
Time related and cost related objectives are very common for scheduling approaches,

as Table 2.2 reveals. In Alfares and Bailey (1997), costs depend on project duration and
on the number of workers that are deployed in different days-off tours in each week of the
planning horizon. Barreto et al. (2008) suggest different objectives for their scheduling
and staffing problem, e.g., the minimization of project duration, staffing costs, and team
size. Li and Womer (2009a) try to schedule tasks on a naval ship such that the size of
the required crew is minimized. In Li and Womer (2009b), costs of a project schedule
directly depend on the number of workers that are required to staff the project; in a
numerical study, the costs of assigning a worker to the project are the same for each
worker, hence they minimize project team size in the numerical study. Valls et al. (2009)
consider three objectives, which are lexicographically ordered; their objective with lowest
priority is leveling the workload of employees, which is also our lowest-priority objective.
Dodin and Elimam (1997) take switching costs into account that are incurred every time
when an employee is assigned to a task which belongs to another project than his previous

1The number of modes is even higher if a team can accomplish the task in different modes, as it will be
the case in our models.

2The work of Tiwari et al. (2009) is noteworthy for a second reason as the authors explicitly consider
quality in their approach. They require that an activity is completed by a suitable worker with a
certain skill level in order to meet a desired quality requirement. However, a less skilled worker can
start to process the activity and hand it to a worker with the required skill level for the final touch.
As workers with high skill levels are a bottleneck, this splitting of an activity’s accomplishment can
shorten project duration.
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Table 2.2: Classification of selected publications on (project) scheduling

Skills

Multi-project Multi-skilled Different
model ressources skill levels Aim∗

Alfares and Bailey (1997) C

Drexl (1991) • C

Bellenguez-Morineau and Néron (2007) • T
Correia et al. (2012) • T
Drezet and Billaut (2008) • T
Ho and Leung (2010) • O
Li and Womer (2009a) • C
Li and Womer (2009b) • O
Vairaktarakis (2003) • T

Barreto et al. (2008) • • C,T,O
Cordeau et al. (2010) • • T
Fırat and Hurkens (2012) • • T
Hegazy et al. (2000) • • T
Valls et al. (2009) • • O

Chen and Askin (2009) • B
Escudero and Salmeron (2005) • B
Ghasemzadeh et al. (1999) • B
Kolisch et al. (2008) • B

Grunow et al. (2004) • • C

Bassett (2000) • • • C
Dodin and Elimam (1997) • • • C
Gutjahr et al. (2008) • • • O
Gutjahr et al. (2010) • • • O
Heimerl and Kolisch (2010a) • • • C
Kolisch and Heimerl (2012) • • • C
Wu and Sun (2006) • • • C
∗Abbreviations for aims: B = portfolio benefit, C = cost,

T = time (makespan, completion times, lateness), O = other

task.3 In Wu and Sun (2006), it is possible to outsource workload to external workers in
order to meet due dates; the aim is to minimize costs for external staff.
The listed works do not only differ in the characteristics stated in Table 2.2. Another

difference is, for example, whether the number of workers necessary to accomplish a task
is prescribed or not. A further difference in the respective models is whether a worker can
contribute to one or more tasks per period. Moreover, the length of the planning horizons
differs. A schedule searched for can span one day (cf. Ho and Leung, 2010; Valls et al.,
2009; Grunow et al., 2004), a couple of days (cf. Drezet and Billaut, 2008; Cordeau et al.,
2010; Fırat and Hurkens, 2012), several weeks (cf. Barreto et al., 2008; Li and Womer,

3The model presented by Dodin and Elimam (1997) is not utterly correct, as the constraints that are
intended for counting the occurrences of switching can actually exclude some feasible solutions.
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2009a; Hegazy et al., 2000), a number of month (Alfares and Bailey, 1997; Wu and Sun,
2006, cf.), one or two years (cf. Bassett, 2000; Gutjahr et al., 2008, 2010), or even a period
between three and five years (cf. Escudero and Salmeron, 2005; Ghasemzadeh et al., 1999;
Kolisch et al., 2008).
Teams are addressed by five works listed in Table 2.2. Ho and Leung (2010) solve

a crew pairing and routing problem where teams of two persons must be formed and a
job sequence must be assigned to each team such that at least one team member masters
the skill that is required by a job in the sequence. For a scheduling and staffing problem,
Barreto et al. (2008) formulate alternative objective functions that lead the search to either
a fastest, a least expensive, a best qualified or a smallest team, for example. Cordeau et al.
(2010) and Fırat and Hurkens (2012) consider a problem where for each day technicians
must be grouped in teams that stay together for one day. A team can only accomplish
tasks whose skill requirements can be satisfied by the team. In Grunow et al. (2004),
workers that are assigned to tasks which belong to the same clinical study form a team.
In the corresponding staffing subproblem that is embedded in their scheduling approach,
Grunow et al. minimize average team size as we do in our approach. In our approach,
though, the number of workers that are needed to accomplish a task of a project is not
fixed a priory. Furthermore, we distinguish different skill levels for workers and do not
assume homogeneous efficiencies.
Most of the listed papers on scheduling integrate staffing, i.e., tasks are assigned to

individual workers or to single teams. In contrast, Alfares and Bailey (1997), Hegazy
et al. (2000), Chen and Askin (2009), Escudero and Salmeron (2005), Ghasemzadeh et al.
(1999), and Kolisch et al. (2008) only ensure resource feasibility of their schedules but do
not specify which resource has to accomplish which tasks.
The third main task of multi-project management is to assign workers to projects and

allocate project workload to them. For this task, many aspects such as availabilities,
skills, and capacity for teamwork must be taken into account: Availabilities of workers
must be observed, especially if workers have other duties apart from project work. Other
duties are common in matrix organizations, where long-term organizational structures,
which are embodied by functional departments, for example, and short-term project or-
ganizations coexist. Here, both department and project managers demand workers and
hence coordination is necessary (cf. Schneider, 2008). Workers should master the skills
that are needed to successfully accomplish those tasks they are assigned to. If collabora-
tion of project team members is essential, an employee’s ability to work in a team and his
capability to cooperate with each co-worker in the team should be regarded. Our staffing
model explicitly considers the situation in a matrix organization and takes workloads of
functional departments and projects into account. Skills of workers and their efficiencies
are also regarded.
In the literature, various aspects have been considered in staffing models and many

approaches to workforce assignment problems have been presented. Table 2.3 contains
a choice of papers that deal with staffing for the day-to-day business, staffing of single
projects, or staffing of multiple projects. Those papers that consider multiple projects
are marked in the second column of Table 2.3. The table further distinguishes whether
mono- or multi-skilled workers are considered, whether workers differ in skill levels, and
whether a single- or multi-period problem is tackled.
There are many other differences between the works compiled in Table 2.3. These
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Table 2.3: Classification of selected publications on staff assignment

Skills

Multi-project Multi-skilled Different Multi-period
model ressources skill levels model

Miller and Franz (1996) •
Corominas et al. (2005) •
Gomar et al. (2002) • •
Krishnamoorthy et al. (2012) • •
Kumar et al. (2013) •
Slomp and Molleman (2002) •
Valls et al. (1996) • •
Brusco and Johns (1998) • • •
Campbell and Diaby (2002) • •
Eiselt and Marianov (2008) • •
Fowler et al. (2008) • • •
Otero et al. (2009) • •
Fitzpatrick and Askin (2005) •
LeBlanc et al. (2000) • •
Lopes et al. (2008) • •
Reeves and Hickman (1992) • •
Certa et al. (2009) • • •
Patanakul et al. (2007) • • •
Santos et al. (2013) • • • •
Yoshimura et al. (2006) • • •

differences concern the level of detail with which workers are modeled, the interpretation
of skill levels, and the objectives pursued, for example. First of all, the listed papers
consider either individual workers or groups of workers where the workers of each group
have identical skill sets and identical skill levels. Such groups of homogeneous workers
are found in Corominas et al. (2005), Valls et al. (1996), Brusco and Johns (1998), and
Fowler et al. (2008).
A major difference lies in the interpretation of skill levels. Those papers that do not

only distinguish whether a worker masters a certain skill or not but that also distinguish
the level of excellence with which a skill is mastered, interpret skill levels in various ways.
Some authors, namely, Brusco and Johns (1998), Fowler et al. (2008), and Otero et al.
(2009), interpret skill levels as a measure of efficiency. We follow the same interpretation.
According to this interpretation, a worker with a higher skill level accomplishes a corre-
sponding task faster than a less skilled worker. Other authors, videlicet, Campbell and
Diaby (2002), Lopes et al. (2008), Reeves and Hickman (1992), Certa et al. (2009), and
Patanakul et al. (2007), interpret skill levels as a measure of quality. Here, utility of a task
completion is the higher, the higher the skill level of the responsible worker is. Yoshimura
et al. (2006) and also Barreto et al. (2008) (see Table 2.2) interpret skill levels in terms of
both efficiency and quality, whereas Eiselt and Marianov (2008) use the positive difference
between a worker’s skill level and the skill level demanded by a task to express the degree
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of boredom resulting from the corresponding assignment for the worker. In Santos et al.
(2013), the skill level impacts training costs that are incurred if a worker whose skill level
is lower than the maximum level is assigned to a task requiring the skill. In the approach
of Otero et al. (2009) a low skill level can be compensated by high levels in related skills.
As in the case of papers on scheduling, the staffing models differ with respect to the

maximum number of projects or tasks a worker can contribute to in each period or during
the complete planning horizon. The staffing models differ also with respect to the number
of skills required by a task and whether the number of workers required to perform a task
is predefined or not. Planning horizons range between one day (cf. Krishnamoorthy et al.,
2012; Brusco and Johns, 1998; Campbell and Diaby, 2002), a couple of weeks (cf. Gomar
et al., 2002), several months (cf. Eiselt and Marianov, 2008; Fowler et al., 2008; Patanakul
et al., 2007), and one year (cf. LeBlanc et al., 2000). Most authors assume for their models
that the workforce is fixed and that its size cannot be altered, i.e., that capacity is fixed.
However, Gomar et al. (2002) and Fowler et al. (2008) include decisions about hiring and
laying off workers; Santos et al. (2013) allow for hiring but not for firing. In Eiselt and
Marianov (2008), the workforce is fixed but tasks can be outsourced.
Objectives of the listed contributions are different as well. Some models search for

an assignment that maximizes the preferences of the workers, some minimize staffing
costs. Staffing costs can comprise several types of cost, e.g., costs for hiring, firing,
overtime, outsourcing, and training. The goal of a minimum number of required workers
is pursued by Krishnamoorthy et al. (2012), Valls et al. (1996), and Brusco and Johns
(1998); though, none of them considers a multi-project environment. Other objectives
apart from the aforementioned are pursued as well. Multi-criteria models with more than
one objective function are formulated by Reeves and Hickman (1992), Certa et al. (2009),
and Yoshimura et al. (2006).
A special problem is the assignment of project managers to projects. The papers

of LeBlanc et al. (2000) and Patanakul et al. (2007) address only this problem, while
Yoshimura et al. (2006) tackle this problem as one of many. Patanakul et al. (2007) ex-
plicitly consider a manager’s effort to head more than one project team simultaneously.
Time needed for switching from one project to another is taken into account. This switch-
ing time represents the productivity loss that arises due to multi-tasking. Furthermore,
the maximum number of projects a manager can lead is limited in the model of Patanakul
et al.
Team issues are addressed by six contributions in Table 2.3. Certa et al. (2009)

consider the relationship between pairs of workers and assume that a parameter describes
for each pair of workers their preference to work together. One of the goals pursued by
Certa et al. is to form project teams such that the preferences for cooperation of those
team members who perform the same skill are maximized. Similarly, Kumar et al. (2013)
seek for an assignment of workers to tasks such that those tasks whose execution requires
cooperation between the responsible workers are assigned to workers who can collaborate
as well as possible. Likewise, Yoshimura et al. (2006) integrate mutual compatibility
of team members into one of their objective functions. Fitzpatrick and Askin (2005)
try to determine a team such that personality traits and instinctive behaviors of team
members are optimally balanced. Lopes et al. (2008) and Reeves and Hickman (1992)
tackle problems where students must be assigned to projects that are part of the students’
curricula. In both contributions, one aim is to form project teams of equal quality. Team
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quality is defined by the mean of the team members’ average grades, i.e., by the mean
skill level of the students belonging to the team.
In two contributions, the proposed computer-based approaches were compared to man-

ual planning approaches. These comparisons revealed that even small-sized instances can
ask too much of a manual planner and that human intuition can be misleading. Barreto
et al. (2008) (see Table 2.2) conducted an experiment where test persons had to solve
small-sized instances of their problem without the support of computer-based solution
methods. Most of the participants did not find an optimal solution and spent much more
time on the task than the automated solution method that Barreto et al. have outlined.
Otero et al. (2009) asked test persons to select the most suitable worker out of a workforce
for a task with given skill requirements. It came out that most test persons attached great
importance on the main skill, i.e., on the skill for which—among all skills demanded by
the task—the highest level was required. They based their decision on this main skill and
neglected the remaining skills required by the task and mastered by the workers. All in
all, both comparisons showed that manual planning for complex assignment problems is
tedious and tends to result in suboptimal assignments.
From the reviewed publications in Tables 2.1–2.3, it becomes obvious that there are

manifold aspects that should be carefully considered by those who are responsible for
multi-project management. One of these aspects is team size. So far, team size has not
been considered for a multi-project environment with multi-skilled workers and heteroge-
neous skill levels. We set out to close this gap.
Apart from the three main tasks of the planning stage, there are other important

tasks in the realm of multi-project management, e.g., risk management or actual project
execution. During project execution, managers must motivate workers to reach their
desired performance levels, resolve interpersonal conflicts that often accompany teamwork,
and ensure that the project is completed on time and in budget and that the deliverables
of the project meet quality requirements.
Our approach covers only some tasks out of the wide range of tasks associated with

project portfolio management. However, our models for project selection and workforce
assignment are crucial parts of the planning process, which have great impact on sub-
sequent stages such as project execution. To give an example of this impact, imagine a
project team that was formed but cannot meet the requirements of a project due to lack
of time or lack of skills. Workers and their skills are an essential part of our models and
are considered in more detail in the next section.

2.2 Multi-skilled workers and flexibility design
At the beginning of Chapter 1, we pointed to the importance of human resource man-
agement and its close link to multi-project management. In the first part of this section,
we will underscore the close relationship and explain why human resource management
plays a crucial role for a firm’s performance. The human resources that we consider are
multi-skilled workers with heterogeneous skill levels. The second part of this section will
bring them into focus: We define the term skill and give an example for a multi-skilled
worker; we refer to methods with which information about skill levels can be obtained and
made accessible, because skill levels are necessary input data for our models; eventually,
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advantages and disadvantages of multi-skilling, which is also called cross-training, will be
briefly discussed. A main advantage of multi-skilling is greater flexibility, which can be
exploited when the demand for two or more skills varies over time. This advantage gives
rise to the question how each worker should be cross-trained or, put differently, which
skill should be mastered by which worker. This question is known as the flexibility design
problem. The third and final part of this section elaborates on this problem. We introduce
a prominent solution to the problem: a skill configuration termed chain. Furthermore,
we outline simple but effective measures to estimate the quality of a skill configuration.
These measures, which have been proposed only recently, are used later in Section 7.2 to
compare different skill configurations and to derive a refined measure.
When workers are assigned to projects, the realm of human resource management

is affected. Human resource management is responsible for assigning tasks to workers,
for recruiting, for training and compensating workers, but also for ensuring health and
satisfaction of workers. The overall goal of human resource management is to provide
workers with required behavior and skills such that these workers can achieve the goals
set by the firm, e.g., the successful execution and completion of projects. The importance
of human resource management has grown over the last decennia, especially in developed
countries, due to increased demand for skilled workers and due to demographic change.
A shift in labor demand has made the recruitment of project workers more difficult.

Compared to middle- and low-skill occupations, the relative employment share of high-
skill occupations has experienced a massive increase during the last three decades; wages
for high-skill jobs have risen disproportionately. Several factors may have contributed to
this development (cf. Borjas, 2013, pp. 294–306; Autor et al., 2008; Goos et al., 2009;
Dustmann et al., 2009; Oesch and Rodríguez Menés, 2011; Autor and Dorn, 2013). Two
persuasive explanations, which are underpinned by empirical data, are the hypothesis of
skill-biased technological change (cf. Berman et al., 1998) and the hypothesis of task-
biased technological change (cf. Autor et al., 2006, 2008; Spitz-Oener, 2006; Goos et al.,
2009; Oesch and Rodríguez Menés, 2011; Autor and Dorn, 2013). The former hypothesis
suggests that technological change acts as a complement for skilled labor and as a substi-
tute for unskilled labor. The hypothesis of task-biased technological change, which is also
termed routinization hypothesis, argues that computerization and automation have had a
negative impact on middle-skill occupations characterized by cognitive or manual routine
tasks and a positive impact on high-skill and low-skill jobs, which are associated with ab-
stract non-routine tasks and manual non-routine tasks, respectively. Since project work
is usually characterized by non-routine tasks and tends to require skilled labor, human
resource managers are exposed to severe competition when seeking for suitable workers
and must fear that current employees are headhunted.
Demographic change exacerbates the difficulties in recruiting in some countries, e.g., in

Germany. In these countries, a long-term decline of the fertility rate below the replacement
level has led to a decrease in the number of people in working age, while a long-run increase
in life expectancy has prevented labor demand from falling. Hence, skilled workers have
become a scarce resource in some occupations, particularly in nursing and in occupations
related to mathematics, informatics, natural science, and technology (cf. BMWi, 2014;
Demary and Erdmann, 2012).
The shortage of skilled labor ascribes human resource management an important role.

Firms must deploy their workers effectively and efficiently. An efficient use of labor
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is facilitated when workers are multi-skilled. Furthermore, firms must ensure that a
certain level of worker satisfaction is attained. Satisfaction can be secured not only by
fair remuneration but also by fair workload allocation which does not overstrain single
workers. In consequence, a firm must take the interests of workers, their capabilities and
skills, and their availabilities into account. Then, short-term success, e.g., smooth project
execution, and long-term success, e.g., low labor turnover, become more likely.
In the second part of this section, we concentrate on skills and multi-skilling. In

our context, the term skill refers to a worker’s knowledge in a certain field and to her
ability to perform a certain set of tasks. We consider the term competency as a synonym
for skill. Both stand for a potential that becomes visible through performance, i.e., when
knowledge and abilities are successfully applied to accomplish a task or to solve a problem
(cf. Gnahs, 2010, pp. 19–24; Erpenbeck and Rosenstiel, 2007, pp. XVII–XXI; Shippmann
et al., 2000, pp. 706–707). To give an example for skills, consider a worker in the IT center
of an insurance firm. His skills may comprise the ability to write computer programs, the
qualification to act as a system administrator, and knowledge of processes in life insurance
business. Since this worker masters more than one skill, he is an example for a multi-
skilled worker. A worker who masters only one relevant skill is termed a mono-skilled
worker.
The term skill refers in our work also to tasks and projects. Both ask for skills in order

to be accomplished. Hence, tasks and projects demand workers who provide the required
skills. A project of the IT center may be the setup of a new database for recording
information about life insurance customers and their contracts. For this project, three
skills may be needed, namely, familiarity with life insurance business, knowledge about
database design, and acquirements in database management.
The level of detail with which skills are distinguished by a firm depends on its projects

and its workforce. In an IT center it might be reasonable to differentiate between pro-
gramming skills in two languages such as C++ and Java. In a small company, however,
where only a small share of projects asks for software applications, where these programs
base on rather simple code, and where only a few workers have programming skills, a
broader skill category that only records whether a worker has programming experience or
not may be appropriate. In this case, it is assumed that a worker with programming ex-
perience in one programming language can acquaint herself with any other programming
language and can take over any programming task.
Skills that are relevant for accomplishing project tasks must be carefully identified.

Relevant skills comprise hard skills, i.e., professional and methodological competencies,
as well as soft skills, e.g., social competencies. Our work focuses on professional skills,
though the following remarks are valid for hard and soft skills. The vantage point for skill
identification are the projects, which represent the demand side. Techniques from job
analysis and competency modeling can be used to identify relevant skills. Both methods,
job analysis and competency modeling, are used to elaborate job descriptions that support
recruitment and worker assignment. Job analysis (cf. Flanagan, 1954; Lopez et al., 1981;
Levine et al., 1983, 1988) tends to have a short-term, task-oriented focus on matching
workers and jobs, whereas competency modeling (cf. Mansfield, 1996; Shippmann et al.,
2000) is rather long-term and worker-oriented in its nature and is geared towards match-
ing workers and organizations. Though, the overlap area of both methods is large (cf.
Schneider and Konz, 1989; Shippmann et al., 2000).
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When all relevant skills have been recognized on the demand side, a firm has to identify
for each skill those workers that supply the respective skill. Since workers can differ in
efficiency with respect to a skill, identification not only of workers mastering a skill but also
of the corresponding efficiencies, i.e., of the skill levels, is necessary for making informed
and reasonable decisions on project assignment and workload allocation.
Several methods for measuring skill levels exist. Their main ingredient is information

about the abilities and experience of a worker. This information can be gathered in various
ways, e.g., by observing the worker, by sample works and tests, by querying the supervisor
of the worker, or by self-reporting in an interview or through a questionnaire (cf. Gnahs,
2010, pp. 48–58; Schaper, 2007). Methods to measure skill levels often combine different
of these ways to gather information about the efficiency with which a worker masters
a skill. A specific method of measurement should meet quality standards with respect
to objectivity, reliability, and validity. Additionally, a method should be economical,
ethical, and accepted by the people whose skills are evaluated (cf. Gnahs, 2010, pp. 52–
54; Erpenbeck and Rosenstiel, 2007, p. XXVIII).
To ensure a systematic storage, regular updates, and controlled accessibility of skill

level data, a skill management system is needful. An important foundation of a skill
management system is a database that records the skills and skill levels of workers. Re-
sponsible for regular updates of skill data are supervisors, department managers, members
of the human resource department, or workers themselves. Managers that have to make
staffing decisions can use the database to find suitable workers for tasks and algorithms
that support these decisions can be linked to the database. Other uses of the data include
decisions about training of workers, for instance. Examples for skill management systems
used in practice are given by Beck (2003), Hiermann and Höfferer (2005), and Pawlowsky
et al. (2005, pp. 360–362). A skill management system is the vital basis for an efficient
use and development of a multi-skilled workforce.
Multi-skilling, which is also termed cross-training and means equipping a worker with

more than one skill, has many advantages for both the worker and the employer. Though,
disadvantages and pitfalls exist that should be taken into account. Slomp and Molleman
(2002, pp. 1194–1196) and Inman et al. (2005, pp. 117–118) discuss various impacts of
cross-training. In the following we summarize their arguments for and against multi-
skilling.
From an employer’s perspective, a main advantage of multi-skilling is the increase in

flexibility that allows to better cope with changes in skill demand and skill supply. A
change or shift in skill demand can occur when customer requests rise for those products
or services that heavily rely on a certain skill. Supply shifts can be caused by illness
or absenteeism, for example. Increased flexibility can avoid lost sales that would arise
due to a shortage in labor supply and it can save money as it can reduce the need for
hiring external temporary staff when service or output levels have been guaranteed. Since
external workers are less familiar with procedures and processes in the hiring firm, quality
issues may emerge when external workers are engaged. On the other hand, training of
internal workers that is necessary to reach a desired degree of flexibility costs money.
From an employee’s point of view, multi-skilling enables job rotation which can raise

motivation and satisfaction as it makes work less repetitive and provides a better overview
of the work process the employee is involved in. Though, cross-training can also attenuate
motivation. When the skill sets of workers assimilate, a single worker looses his expert
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status and his contributions to the work team are no longer indispensable. Social loafing
may occur if no one wants to undertake an unpopular, troublesome task because everyone
else has the required skill to accomplish the task. Moreover, workers may oppose change
and may be reluctant to learn and apply new skills. A positive impact of cross-training
for the worker is that it makes him more attractive to other employers and is likely to
increase his wage, what is a drawback for the current employer.
Workload sharing is another important aspect of multi-skilling and has advantages

and disadvantages for employees. Cross-training enables workers to support one another
and facilitates sharing of workload. This allows better workload leveling and can thus
help to satisfy the desire for a just distribution of workload. At the same time, sharing of
workload can reduce processing times of orders and idle times of workers. On the flip side
of the coin, workers may suffer from work intensification (cf. Adams et al., 2000; Green,
2004).
A further aspect of multi-skilling is the maintenance of skills. Skills must be maintained

by strategies such as job rotation or task variety but these strategies have disadvantages.
If workers acquire more and more skills, they are at risk of forgetting them. Then, job
rotation, job enrichment, job enlargement, or similar measures are necessary to counteract
forgetting. All these measures, however, come along with problems such as greater need
for coordination, higher setup costs due to frequently changing worker assignments, and
tendentially lower continuity in job and task outcomes.
We conclude from the discussion, as Slomp and Molleman (2002, p. 1196) and Inman

et al. (2005, p. 118) do, that cross-training is in general beneficial for both workers and
employers if multi-skilling is carefully managed and its extent is limited. So, it may be
wise to equip a worker with two skills and not with one or five skills, for example. But is
a rather small number of skills per worker sufficient to effectively cope with fluctuations
in the demand of skills? And if so, which skills should be mastered by which worker, i.e.,
how should a firm’s skill configuration look like? And how can a given skill configuration
be evaluated and compared to another one? Answers to these questions will be outlined
in the final part of this section, which has a focus on the principle of skill chaining.
In the third and last part of this section, we will first consider the question how a

workforce with a small number of skills per worker compares to a fully flexible workforce
where each worker masters every skill. Several studies have found that a limited number
of skills per worker is sufficient to yield almost all benefits of a fully flexible workforce.
We will review some of these studies and realize that it is crucial how skills are distributed
among workers.4 The question of an optimal skill distribution is addressed by the flexi-
bility design problem. A prominent but not necessarily optimal solution of this problem
is the principle of skill chaining, which will be explained at the beginning of this part. At
the end of this part, we provide an overview of measures that allow to quickly assess the
quality of skill configurations.
In a seminal paper, Jordan and Graves (1995) examined the flexibility of manufactur-

ing plants and outlined the chaining concept. The authors consider fictitious plants that
differ with respect to their product portfolio. A plant in their paper corresponds to a
worker in this thesis and the product portfolio of a plant corresponds to the set of skills

4All studies that we review, except those of Jordan and Graves (1995) and Campbell (1999), are classified
either in Table 2.2 on page 13 or in Table 2.3 on page 15. The study of Campbell (1999) is a precursor
of the work of Campbell and Diaby (2002), which is listed in Table 2.3.
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mastered by a worker. A plant where only one specific product can be manufactured is
said to have no flexibility. Each additional product that can be manufactured in this plant
enlarges the product portfolio of this plant and makes the plant more flexible. Given a
limited portfolio size, Jordan and Graves wanted to determine an ideal product portfolio
for each plant such that the expected total shortfall for a random demand for all products
is minimized. They showed that for a set of plants flexibility does not only depend on the
flexibility of each single plant, but also on “the opportunities . . . for shifting capacity from
building products with lower than expected demand to those with higher than expected
demand” (Jordan and Graves, 1995, p. 580).
Shifting capacity requires direct links between plants and the capability of shifting

capacity is enhanced by indirect links between plants. Two plants are directly linked
if they can produce at least one common product. Two plants are indirectly linked if a
chain of direct links connects both plants (cf. Jordan and Graves, 1995, pp. 579–582). The
longer the chains are, the greater the opportunity for shifting capacity and, hence, the
greater the flexibility of the set of plants. Analogously, in our case two workers are directly
linked if they master at least one common skill and two workers are indirectly linked if
they are connected by a chain of direct links. Jordan and Graves compared configurations
with short and long chains and demonstrated the advantage of long chains, especially the
advantage of a closed chain of maximum length. If such a chain links all plants, limited
flexibility at the plant level is sufficient to achieve almost the same benefits as in the
case of full flexibility at the plant level. Therefore, Jordan and Graves recommended the
concept of chaining, i.e., designing configurations with closed, long chains.
Before we continue the literature review, we will give an example for different skill

configurations and illustrate the concept of chaining. Assume that a set K = {1, . . . , K}
of workers or resources is given where an element of K is denoted by k. Let S = {1, . . . , S}
denote a set of skills and let s represent a single skill from S. For the sake of brevity,
we refer to worker k = i by ki, i = 1, . . . , K, and we abbreviate skill s = i by si,
i = 1, . . . , S. For a case of four workers and four skills, Figure 2.2 illustrates three
different skill configurations. A configuration is depicted as a bipartite graph G = (N,E)
with node set N and edge set E. The node set comprises K+S nodes. Each worker k ∈ K
is associated with a node in G. The K nodes of graph G that are associated with workers
are termed worker nodes. Likewise, each skill s ∈ S is associated with a node in G. The
S nodes that correspond to skills are termed skill nodes. The fact that node set N is
composed of worker and skill nodes is expressed by the notation N = K ∪ S. The set of
edges E contains only pairs of worker and skill nodes, i.e., E ⊆ K×S. An edge (k, s) ∈ E
indicates that worker k masters skill s.
Configurations A and B in Figures 2.2(a) and 2.2(b), respectively, represent cases

of limited flexibility. Note that in both configurations each worker masters two skills
and each skill is mastered by two workers. Configuration A features two short chains.
ConfigurationB features a closed chain of maximum length; this configuration is a classical
2-chain. Configuration C represents the case of full flexibility where each worker masters
every skill.
In all three configurations, workers k1 and k2, for example, are directly linked, because

both workers master a common skill. Assume that worker ki accomplishes the workload
of skill si, i = 1, . . . , 4. Let there be a low demand for skill s1 and a high demand for
skill s2 which exceeds the capacity of worker k2. Then, worker k1 can support worker k2
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Figure 2.2: Examples for skill configurations

in satisfying the demand for skill s2. Now, assume that there is a low demand for skill s1
and a high demand for skill s3. In configuration B, workers k1 and k3 are indirectly
linked, as there is a chain that connects k1 and k3, e.g., the chain via nodes s1–k1–s2–
k2–s3–k3. Unused capacity of worker k1 can be shifted along this chain to worker k3 who
faces additional demand for skill s3. The shift of capacity works as follows. Worker k1
satisfies demand for skill s2, thereby freeing up capacity of worker k2, who in turn can
support worker k3 in accomplishing workload of skill s3. In configuration A, in constrast,
workers k1 and k3 are not linked at all. Hence, configuration A cannot accommodate the
assumed shift in demand from skill s1 to skill s3.
Brusco and Johns (1998) investigated different cross-training strategies for mainte-

nance workers of a paper mill and examined the chaining concept among other things.
The authors consider a model that aims at minimizing costs for assigning workers with
different skill sets to skill requirements. Workers master their skills at different levels, i.e.,
with different efficiencies. For each skill, one requirement exists that must be staffed with
an arbitrary number of workers such that the sum of their efficiencies exceeds a given
threshold. Given this model, Brusco and Johns assessed various cross-training strategies
that combine three basic decisions. They assume that workers master a primary skill with
an efficiency of 100% and can be cross-trained (1) for one or two secondary skills (2) with
an efficiency of either 50% or 100% (3) such that either short or long chains as defined
by Jordan and Graves (1995) are created.
Brusco and Johns found that a limited amount of flexibility, i.e., one secondary skill

with an efficiency of 50%, leads to substantially better solutions compared to the situation
without cross-training and yields almost as good solutions as two secondary skills with
efficiencies of 100%. Furthermore, cross-training strategies that lead to long skill chains
facilitate considerably greater cost savings than strategies that lead to short chains.
Campbell (1999) examined different cross-training policies for the problem of assigning

nurses to departments of a hospital at the beginning of a shift. Nurses can be qualified
to work for other departments than their primary department. The efficiency with which
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a nurse works for her secondary departments can vary from department to department
and from nurse to nurse. Campbell formulated a model that minimizes the total shortfall
of nurses across all departments. The shortfall of a department does not only depend
on the number of nurses assigned to this department, but also on their efficiencies. In
his experiments, Campbell varied the cross-training breadth and the cross-training depth.
The breadth of cross-training is determined by the average number of departments for
which a nurse can work, the depth is defined by the minimum efficiency for secondary
departments.
Also Campbell has found that limited flexibility is sufficient to yield virtually as high

benefits as in the case of total flexibility. In other words, the study revealed that marginal
returns of multi-skilling decrease. Furthermore, the results of Campbell indicate that a
low level of cross-training depth can be compensated by greater cross-training breadth
and vice versa.
Gomar et al. (2002) modeled a staffing problem that arises for construction projects.

They examined the effect of multi-skilling on two measures. The first measure is the ratio
of hires to the maximum number of required workers in the course of the project. This
ratio is expected to decrease with increasing multi-skilling, because a multi-skilled worker
may be assigned to another task when a task has been finished, whereas a mono-skilled
worker who is not skilled for the next task is fired and a new worker is hired. The second
measure is the mean tenure of workers during a construction project.
Gomar et al. found that multi-skilling has a positive impact on both measures. The

higher the share of multi-skilled workers in the workforce, the smaller is the ratio of hires
to required workers. The more skills mastered by a worker, the longer is his tenure on
average. Notably, the growth of both benefits diminishes when the degree of multi-skilling
increases. Thus, the results of Gomar et al. are in line with the results of previously cited
studies.
Another study that investigated the value of cross-training was presented by Vairak-

tarakis (2003). He formulated a model for a project scheduling problem where each
activity must be processed by exactly one qualified resource. Each resource can process
only a subset of all activities and resource efficiencies are either 0 or 1. The model pur-
sues the minimization of project duration. Vairaktarakis varied the capabilities of the
resources and recorded the deviation of the resulting project duration from the duration
that is achieved in case of full flexibility. We term the latter project duration ideal project
duration. The author investigated the range from inflexible resources that can process
only a small subset of all tasks to fully flexible resources that can process any task. At
around half the way from inflexibility to full flexibility, deviation from the ideal project
duration was down from about 30% to less than 5% for almost all test sets.
Recently, Heimerl and Kolisch (2010a) analyzed the impact of multi-skilling among

other things in a model that minimizes costs for staffing IT projects. For these projects,
a start time must be determined and workload must be allocated to multi-skilled workers
who master different skills at different levels. Heimerl and Kolisch take only variable
costs into account that depend on the time that a worker performs a skill. These variable
costs vary from worker to worker. When the number of skills mastered by a worker
increases, staffing costs decrease, because some workers master their additional skill at a
high level. These workers can substitute less skilled workers. Again, savings generated by
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an additional skill per worker decrease when the number of skills mastered by a worker
increases.
In conclusion, the studies found in the literature agree on two results. First, with

limited flexibility one can yield almost as high benefits as with total flexibility. In other
words, marginal benefits of flexibility tend to decrease. Second, chaining is advantageous
in general. However, chaining may not be optimal in every case, e.g., when expected
skill demands differ widely across skills while capacities are similar across resources, and
sometimes chaining may not be possible, e.g., when budget constraints limit the extent
of cross-training. Then, other skill configurations can be optimal. The so called flexibility
design problem addresses the task to find an optimal skill configuration.
For a specific variant of the flexibility design problem, Schneider et al. (2013) provide a

mixed-integer programming formulation. The variant is formulated as a two-stage stochas-
tic program with fixed and complete recourse (cf. Birge and Louveaux, 1997, pp. 84–93
and 163–165; Shapiro et al., 2009, p. 33). On the first stage, decisions about the skill
configuration must be made, while skill demands are unknown but all possible scenarios
for demand realizations are given and the probability of occurrence is known for each sce-
nario. Costs are incurred for equipping resources with skills. On the second stage where
uncertainty about skill demand is resolved, an optimal contribution of each resource to
each skill considering the first-stage decisions can be determined. Revenues are earned
for each unit of satisfied skill demand.
The variant of the flexibility design problem tackled by Schneider et al. is strongly

NP-hard, as can be shown by transformation from the fixed-charge network flow problem,
which is also known as the minimum edge-cost flow problem (cf. Garey and Johnson,
1979, p. 214; see also page 83 in Subsection 4.6.3 of this thesis). To solve larger-sized
instances of their problem heuristically, Schneider et al. devise a genetic algorithm.
The approach of Schneider et al. draws on detailed information about distribution of

skill demand. For situations where less information is available, Iravani et al. (2005) and
Chou et al. (2011) have outlined simple but meaningful flexibility measures that can be
used to assess skill configurations and to design good configurations. For the following
explanation of their measures, we assume that a skill configuration with K workers and
S skills is given and that the configuration is represented by a bipartite graph G = (N,E)
with N = K∪S. As already mentioned, the two sets of nodes that constitute node set N
are termed worker nodes and skill nodes, respectively.
Two out of the three flexibility measures proposed by Iravani et al. (2005) are based

on the so called structure flexibility matrix M , which is a quadratic, symmetric matrix
with S rows and S columns. An entry mss′ of M where s, s′ ∈ S and s 
= s′ states the
number of non-overlapping paths between skill node s and skill node s′ in graph G. The
number of non-overlapping paths, in turn, is equal to the number of opportunities to shift
capacity that is not required for skill s′ to skill s. The value of such an entry mss′ can be
calculated by solving a maximum flow problem. The entries mss, s ∈ S, which lie on the
main diagonal of matrix M , represent the number of edges incident with skill node s, i.e.,
the number of workers that master skill s. The structure flexibility matrices of the three
skill configurations A, B, and C depicted in Figure 2.2 look as follows.
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MA =

⎛
⎜⎜⎝
2 2 0 0
2 2 0 0
0 0 2 2
0 0 2 2

⎞
⎟⎟⎠ MB =

⎛
⎜⎜⎝
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

⎞
⎟⎟⎠ MC =

⎛
⎜⎜⎝
4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

⎞
⎟⎟⎠

Iravani et al. propose the three measures ϕarc, ϕmean(M), and ϕeigenvalue(M) to indicate
the flexibility of a skill configuration with structure flexibility matrixM . Computation of
the latter two is based on matrixM , whereas ϕarc can be determined without knowingM .
The measure ϕarc is the most simple one. It is defined as the total number of edges |E| in
bipartite graph G that represents the skill configuration; an equivalent definition is given
by ϕarc :=

∑
s∈S mss. The measure ϕmean(M) represents the mean value of all elements

in M ; in mathematical terms, it is defined as ϕmean(M) := 1
S2

∑
s∈S

∑
s′∈S mss′ . The

measure ϕeigenvalue(M) is defined as the largest eigenvalue of the matrix M , which has
S eigenvalues. Iravani et al. recommend to apply the measure ϕeigenvalue(M) only to con-
nected graphs G, whose structure flexibility matrix has only strictly positive entries mss′ ,
s, s′ ∈ S. For each of the three measures, it is understood that the flexibility of a skill
configuration is the greater, the larger the value of the measure is.
Chou et al. (2011) have presented a set of flexibility measures that require more infor-

mation; the authors presume that information about resource capacity and expected skill
demands is available. More precise, they assume that for each worker or resource k ∈ K,
its capacity ck and for each skill s ∈ S its expected demand E

[
d̃s
]
is known. Here, d̃s is a

random variable that represents the uncertain demand for skill s and E[ · ] is the expected
value operator.
As flexibility measures Chou et al. calculate so called expansion ratios for various

subsets of nodes. These measures have been derived from desired characteristics of flexible
skill configurations. The two most meaningful expansion ratios are the ratio δnode

i , which
is associated with a single node i ∈ N of configuration graph G = (N,E), and the
ratio δpairwise

ii′ , i < i′, which is associated with nodes i and i′ that both belong either to the
subset K or to the subset S of the node set N . For each of these two expansion ratios,
the definition differs between worker nodes and skill nodes.
The single node expansion ratios are defined as follows (cf. Chou et al., 2011, p. 1100).

δnode
k :=

∑
s∈S | (k,s)∈E

E
[
d̃s
]

ck
k ∈ K, δnode

s :=

∑
k∈K | (k,s)∈E

ck

E
[
d̃s
] s ∈ S

The larger the smallest δnode
i , i ∈ K ∪ S, for a skill configuration, the greater is its

flexibility. A large δnode
s , s ∈ S, indicates that the demand for skill s is likely to be satisfied

due to sufficient capacity. A large δnode
k , k ∈ K, signals that the capacity of resource k is

likely to be used and unlikely to be idle. If the smallest single node expansion ratios of
two skill configurations are equal, ties are broken by comparing the next lowest expansion
ratios.
The definitions of the pairwise expansion ratios read as follows.

δpairwise
kk′ :=

∑
s∈S | (k,s)∈E ∨ (k′,s)∈E

E
[
d̃s
]

ck + ck′
(k, k′) ∈ K ×K, k < k′
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δpairwise
ss′ :=

∑
k∈K | (k,s)∈E ∨ (k,s′)∈E

ck

E
[
d̃s
]
+ E

[
d̃s′

] (s, s′) ∈ S × S, s < s′

Again, the greater the smallest δpairwise
ii′ , (i, i′) ∈ {K × K ∪ S × S}, i < i′, the more

flexible is a skill configuration. Ties are broken by comparing the second smallest pairwise
expansion ratios.
To give an example, we applied the flexibility measures of Iravani et al. (2005) and

Chou et al. (2011) to the three skill configurations depicted in Figure 2.2. For all config-
urations, we assumed ck = 1 for each resource k ∈ K and E

[
d̃s
]
= 1 for each skill s ∈ S.

The values of the measures are displayed in Table 2.4. Note that the measures differ
in their discriminatory power. Only the measures ϕmean, ϕeigenvalue, and δpairwise

ii′ clearly
rank the three configurations and indicate that skill configuration C is the most flexible
and configuration A the least flexible. For configurations A and B, all single node ex-
pansion ratios are of identical value. Ties are broken by the lowest pairwise expansion
ratio, which marks configuration B, which follows the classical chaining principle, as more
flexible than configuration A. However, when the number of skills per worker is limited,
classical chaining need not lead to the best possible configuration in general, as Chou
et al. (2011, pp. 1100–1102) have shown by comparing a 3-chain to a so called Levi graph.

Table 2.4: Values of different flexibility measures for the three skill configurations from
Figure 2.2 (a bracketed value for ϕeigenvalue indicates that this value was
computed—contrary to recommendation—for a disconnected graph)

Skill configurations from Figure 2.2

Config. A Config. B Config. C
Flexibility measure (short chains) (long chain) (full flexibility)

ϕarc 8 8 16
ϕmean 1 2 4
ϕeigenvalue (4) 8 16
Lowest δnode

i 2 2 4

Lowest δpairwise
ii′ 1 1.5 2

A skill configuration that allows to effectively handle demand shifts is advantageous
when it comes to project selection. The more flexible the skill configuration, the larger is
the set of feasible portfolios, because each portfolio represents a scenario for skill demand.
In Section 7.2, we will present computational results that confirm this statement. In
regard to the workforce assignment problem, a skill configuration with a long chain is also
advantageous compared to a configuration with short chains for forming small teams, as
preliminary tests revealed. But before the formation of small teams will be addressed, we
want to explain in the first place why small teams are advantageous.

2.3 Why small project teams?
The objective of our main problem, the problem of assigning workers to projects, is to
minimize average project team size. In this section, we motivate and justify this objective;
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we argue that project teams which have a small number of members in relation to project
workload are advantageous compared to relatively large teams. Before we address the
question “Why small teams?”, we respond to the question “Why teams, why teamwork?”
We define the terms team and project team, outline advantages of working in groups
compared to working individually, and point to some important issues such as social
competencies and team size that should be taken into account when managing work
teams. However, teamwork has not only advantages; teamwork also poses problems. A
problem relevant in the context of this thesis is social loafing, i.e., the phenomenon that
workers tend to expend less effort when working in teams than when working alone. We
report on experimental and empirical findings that have demonstrated the existence of
this phenomenon and identified moderating variables. Among these variables is team
size, which is related positively to social loafing: Productivity losses of team members
are the greater, the larger a team is. A small team has further advantages and we
describe benefits with respect to communication and division of labor, for example. We
provide experimental, empirical, and theoretical evidence from literature for the superior
performance of relatively small work groups in comparison to large groups. Finally, we
consider advantages of relatively small project teams from an employee’s perspective who
works in a multi-project environment.
Following Antoni and Bungard (2004, p. 138), we define a team as a group of persons

who have a common task and must cooperate to accomplish their task. Ideally, team
members share common goals and perceive themselves as a team. We understand a
project team as a temporary team that has to solve a new, complex problem and that
may consist of persons who are experts in different fields (cf. Antoni and Bungard, 2004,
p. 140; Mintzberg, 1980, pp. 336–337).
Collective work, which means the organization of work in teams or groups5 and which is

frequently encountered in almost every organization, has several advantages in comparison
with individual work. First of all, there are tasks that cannot be accomplished by an
individual but require the joint effort of several persons, e.g., the task of building a bridge,
the task of lifting a heavy table and carrying it from the basement to the second floor, the
task of redesigning the process of handling an insurance claim, or the task of designing a
new car model. Furthermore, synergies between group members who contribute expertise
from different areas can lead to innovative solutions. Teamwork can have a positive
impact on motivation and job satisfaction of workers because workers who are part of
a team may experience mutual encouragement and assistance, realize the importance of
their contribution for the success of the group, and receive credit and acknowledgment
from fellow team members (cf. Hertel, 2011, p. 176). Positive impacts exist especially
when a certain degree of discretion is granted to the team allowing the team to make own
decisions.
Teamwork has benefits not only for workers but also for the organization as a whole.

Delarue et al. (2008) reviewed 31 studies in which employees or managers were surveyed or
company documents were analyzed. They found support for the hypothesis that teamwork
is related positively to organizational performance. Delarue et al. could confirm that
teamwork lowered throughput times, increased job satisfaction, and reduced absenteeism;
these effects in turn improved productivity and profitability.
Examples for surveys that have been included in the meta-analysis of Delarue et al.

5We use the terms team and group interchangeably.
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(2008) are the surveys of Banker et al. (1996) and Elmuti (1997). Banker et al. (1996)
conducted a longitudinal study of a U.S. manufacturing plant where electromotors are
produced. The study spanned almost two years and covered the introduction of work
teams. Banker et al. screened company records to obtain data on quality, measured
as the defect rate of produced units, and on labor productivity, measured as output
per production hour. The authors found that quality and labor productivity improved
significantly after the implementation of work teams.
Elmuti (1997) conducted a cross-sectional study of U.S. firms to evaluate the impact

of self-managed teams on organizational performance. 126 managers from firms in various
sectors returned the questionnaire developed by Elmuti. His analysis of the answers con-
firmed a positive link between teamwork and organizational performance. Organizational
performance was measured as a mix of productivity, product quality, service quality, and
other performance indicators.
Teamwork is a complex process, which has not been fully understood yet. Different

theories about group processes have been proposed that exhibit similarities but have not
been fully aligned so far. Hence, researchers have not agreed on clear guidelines for
managing teams. Two theories of team processes shall be mentioned. Both, the theory of
Tuckman and Jensen (1977) and that of McGrath (1991), state that when team members
have been selected and their project has been started, teams usually do not work effectively
right away and perform their task immediately.
From a literature review, Tuckman and Jensen (1977) derived a five-stage model that

describes the development of a group. Before a group actually performs (stage 4, per-
forming), there is a phase in which members get to know each other and their common
task (stage 1, forming), followed by a phase in which conflicts about roles and positions
within the group break forth and competing solutions for the team task are brought for-
ward (stage 2, storming). To resolve these issues, norms and rules for the collaboration
must be established (stage 3, norming). After the workload has been accomplished, the
collaboration ends and the group may break up (stage 5, adjourning).
According to the theory of McGrath (1991), there is no fixed sequence of stages a

group runs through. Instead there are rather four alternative modes of activities that
group members can exert at any time. These modes are titled inception, problem solving,
conflict resolution, and execution. McGrath argues that engagement in conflict resolution
is not a sign of team failure but reflects difficult conditions under which a team has to
search for a viable path for attaining its goals.
In our models, which deal with the work of project teams in a firm, we will focus on

the performing stage or on the execution mode, respectively, and neglect the remaining
aspects. We assume that performing or executing, i.e., accomplishing workload, occupies
most of the time that is required by a project team to complete its task. Nevertheless, it
should be kept in mind that some time will be taken by those aspects that we ignore.
It is widely accepted that the design and the composition of a team are crucial for

effective teamwork. Important design criteria stated by Högl (1998, pp. 88–108) are
competencies of team members, heterogeneity, leadership, and team size. Högl (1998,
pp. 89–91 and 149–159) and Klimoski and Jones (1995, pp. 311–312) stress the importance
of social competences as a key difference to the requirements of individual work.
With regard to heterogeneity, Zenger and Lawrence (1989) surveyed the members of

19 project teams in a U.S. electronics firm. They found that team members of similar
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age communicate more often about their project tasks than members who are dissimilar
in terms of age. Communication across team boundaries is more likely to occur between
employees who are similar to each other in terms of tenure. Although communication in-
fluences team outcomes positively, Zenger and Lawrence (1989, pp. 372–373) warn against
staffing each team in a firm with employees of similar age because these team composi-
tions may have negative implications in the long run. In regard to leadership, an overview
of leadership theories is presented by Wilke and Meertens (1994, pp. 156–188), who point
out that an explicit group leader is not absolutely necessary and only beneficial if his net
effect with respect to coordination and motivation is positive.
Team size, which is defined as the number of team members, is a design variable that

has occupied researchers for a long time. Already Simmel (1902, pp. 159–160) noted
that an additional group member changes the relationships within a group and enhances
deindividualization; this effect of an additional member is the greater, the smaller the
group is. Simmel (1902, pp. 192–196) gives examples from various epochs and cultures
where the size of certain groups was constrained. He argues that an upper limit on group
size was set to avoid that a member perceives her individual responsibility as negligible.
The purpose of a lower limit on group size, e.g., for groups with decisive power, was to
facilitate corrective actions in discussions of the group and to attenuate the influence of
members with extreme positions or opinions.
In an early literature review, Thomas and Fink (1963) analyzed 31 empirical studies

that examined effects of group size. Thomas and Fink differentiated between effects on
the group as a whole and effects on group members. For the group as a whole, they
concluded that increasing team size leads to a decrease in cohesion and to the emergence
of subgroups. For individual members, satisfaction tends to decrease as group size in-
creases. However, the authors point to methodological shortcomings of the studies, such
as uncontrolled independent variables other than team size that may affect dependent
variables.
In general, the appropriate team size depends on the nature of the team task and on

its requirements. If the nature of the task is associated with creativity, e.g., when ideas for
a new advertising campaign shall be generated, the adequate team size tends to be larger
than in a case where a team has to make many decisions in a short period of time and
where consensus is necessary, e.g., when a military operation is executed. If the nature
of the task stays the same but requirements change, optimal group size can change. As
an example, consider the required speed for decision making. When speed becomes a
critical issue, smaller groups of decision makers are often favored, whereas larger groups
are preferred when more time is available, as can be seen from many constitutions that
prescribe different rules for legislation in wartime and in times of peace.
From the team task or workload, a lower and an upper limit on team size can be

derived. Klimoski and Jones (1995, pp. 307–308) emphasize that a group must be so
large that the capacity of the members is sufficient to accomplish the task. With respect
to a reasonable maximum size of a team, researchers tend to recommend that a team
should have only as many members as necessary. Filley et al. (1976, pp. 138, 144–147, and
417–421) conclude from various studies that groups should be rather small and Hackman
(1987, p. 327) states that a team should be “just large enough to do the work”. Hence,
the lower limit and the upper limit on team size coincide and researchers advise the
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smallest possible team size as the appropriate size. Reasons for this recommendation are
disadvantages of teamwork that intensify with increasing team size.
One such disadvantage of teamwork is social loafing, which names the phenomenon that

individuals tend to exert less effort when working in groups than when working alone. This
dysfunctional effect of groups was first observed for physical tasks in laboratory experi-
ments. Ingham et al. (1974) repeated the experiment of the French agricultural engineer
Maximilien Ringelmann where participants had to pull a rope with maximum strength
alone and in groups. Measurements showed that average individual effort decreased with
group size. Additionally, Ingham et al. measured the performance of participants when
pulling in pseudo-groups of various size. Here, participants were made to believe that
they pulled in a group but actually pulled alone. The pseudo-group experiments have
shown that the decline in effort can be explained only partially by coordination losses and
must be attributed mainly to a loss in motivation. The loafing effect was also observed
by Latané et al. (1979) in experiments where subjects had to clap and shout as loud
as possible. In these experiments, the size of the audience was kept constant to control
motivational effects that arise from evaluation apprehension.
Social loafing can have different causes. Several theories try to explain the loafing

phenomenon and each theory emphasizes one cause or another (cf. Karau and Williams,
1993, pp. 682–684). According to social impact theory, team members are targets of social
impact. The social impact can emanate from a supervisor who assigns a task, for instance.
This impact is divided equally across the targets. Hence, an increase in team size reduces
the impact on each team member and leads to a decline in individual effort. Note that a
team member need not be fully aware of his reduction in effort as it is likely for the rope
pulling experiment, for example.
Another explanation of social loafing refers to evaluation potential. If the effort or

input of a group member cannot be observed and thus cannot be evaluated, this member
may exert only little effort as he or she cannot be blamed if the team misses its goals.
Under these circumstances, “the opportunity to ‘hide in the crowd’ or otherwise gain
respite from the pressure of constant scrutiny” is attractive and this opportunity occurs
the more often, the larger the group is (Davis, 1969, p. 72). But even if it is likely that
goals will be achieved, an individual may slack if he fears that his contribution cannot be
identified and that he will not receive appropriate rewards or an adequate appraisal. This
motivation loss is ascribed to feeling “lost in the crowd” (Latané et al., 1979, p. 830); this
loss also grows with group size.
Social loafing of team members can be a consequence of rational behavior, which is in

accordance with self-interest, but can also be based on irrational behavior, which can be
explained by social values, as Kerr (1983) demonstrated. His experiments revealed two
effects that can come along with group work, namely, the free-rider effect, which can be
attributed to rational behavior, and the so called sucker effect, which cannot be explained
with rational, self-benefiting behavior. Loafing of a group member is called free riding
when the member realizes that his effort is dispensable and that he can profit from group
outcome without making a real contribution and then willfully expends only little effort.
The sucker effect describes a reduction in effort that is a response to free riding of fellow
team members. The effect occurs when a group member free rides and another member
reduces his effort because he feels being exploited by the free rider and does not want to
play the sucker role. Kerr observed this retributive inactivity although it was irrational
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in his experiment because it was associated with reduced payoffs. He inferred that this
behavior was driven by equity norms. Both, free riding and retributive inactivity, are
forms of social loafing.
Free riding is more likely to occur in larger than in smaller groups. Hamburger et al.

(1975) provided experimental evidence for this claim. They let groups of three and seven
persons play 150 rounds of a take-some game where payoff structures were comparable for
both group sizes. In each round of the game, a player can choose one of two strategies:
either cooperation or defection. Overall expected returns in a round are highest when
all players cooperate and lowest when all players defect. Though, a player can always
increase his individual expected returns by choosing to defect. Such an incentive structure
is typical for so called social dilemmas. In the experiment, defection rates were higher
for the groups of seven. Hamburger et al. concluded that the decline in cooperation for
the larger groups was caused by deindividuation6, i.e., by greater anonymity implying
a weaker feeling of individual responsibility. Hence, free riding and, consequently, the
sucker effect occur with greater probability in large groups than in small ones.
Bonatti and Hörner (2011) modeled free riding in a theoretic approach. They consider

individuals who collaborate in a project. Project success is uncertain and depends on the
total effort expended by team members over time. Each individual decides about his effort
level at every point in time. The model suggests that individuals will engage in free riding
and postpone their contributions to later points in time, no matter if team members can
or cannot observe the effort choice of fellow team members. In fact, the model predicts
that procrastination of the project will be the greater, the larger the project team is.
It is worth noting that social loafing is a phenomenon that prevails in individualis-

tic cultures but is rather rare in collectivistic, group-oriented cultures (cf. Gabrenya et
al., 1985; Earley, 1989, 1993). Earley (1993), for instance, compared the performance
of American, Chinese, and Israeli managers who had to accomplish an in-basket task.
He examined three work situations: working alone; working in a pseudo-ingroup that al-
legedly comprised subjects with similar personality and similar other characteristics such
as religious orientation and lifestyle; and working in a pseudo-outgroup whose members
were said to have not much in common as they allegedly had different interests, back-
grounds, and lifestyles. American participants, whose cultural background is understood
as individualistic, performed best when working alone. Chinese and Israeli managers, who
live in societies characterized by collectivism, performed better in ingroups than in the
outgroup and in the alone condition.
Several variables besides culture moderate the extent of social loafing. Overviews of

moderating variables are contained in the articles of Karau and Williams (1993), Comer
(1995), and Oelsnitz and Busch (2006). Social loafing can be reduced by a motivating
task or intrinsic motivation; by task visibility, i.e., evaluation potential; by perceived
indispensability of one’s contribution; by perceived influence over the group outcome;
and by a small group size. Note that a small group size has positive effects on many
of the other aforementioned variables: The smaller a group is, the greater tends to be
the perceived and actual impact of a group member on the outcome of group work, for
example.
Social loafing has mainly been observed in laboratory settings with ad hoc groups

performing simple physical or cognitive tasks. Groups were in most cases composed
6The terms deindividuation and deindividualizaiton have the same meaning.
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of students without a common past and future. Consequently, it has been called into
question whether the laboratory findings apply to real teams, e.g., work teams in firms,
whose members are more familiar with one another and more likely to work together again,
e.g., in a future project team (cf. Antoni and Bungard, 2004, pp. 168–169). Though, there
is also empirical evidence for the loafing effect, that means field evidence from real teams.
George (1992) questioned salespeople and their supervisors of a U.S. retail chain. The

salespeople worked—organized in teams—in retail stores of the chain. From the answers
of 221 salespersons and 26 supervisors, George inferred that social loafing was the higher,
the lower perceived task visibility and intrinsic motivation were.
Liden et al. (2004) surveyed 168 employees from 23 work groups in two U.S. manu-

facturing firms and interviewed 23 of their superiors. The study examined predictors of
social loafing that are associated either with individuals or with the group as a whole.
Among the predictors on the group level was team size and the perceived loafing of fellow
team members. The authors found that team size was positively correlated with social
loafing. Interestingly, Liden et al. found that perceived loafing of co-workers was neg-
atively correlated with loafing. The latter result implies that the sucker effect did not
occur or did at least not dominate and that a perceived lack of effort was compensated
by others who expended more effort.
The hypothesis that group size is positively related to free riding was tested by He

(2012). His study has experimental and empirical character. Over 200 students formed
teams with two, three, and four members in order to do a compulsory coursework. The
sample comprised 9 two-member teams, 59 three-member teams, and 21 four-member
teams. Each team had to tackle a software development task which had to be completed
within five weeks. All students were surveyed at the beginning and end of the five-week
period. The author found a positive correlation between group size and free riding.
The finding that social loafing intensifies with increasing team size means that a worker

is less productive in larger than in smaller teams. Hence, relatively large teams imply an
inefficient use of human resources.
Apart from social loafing, there are other disadvantages of large teams. A serious dis-

advantage are greater communication requirements. Communication within teams is vital
for sharing important information and coordinating member efforts. The larger a team
is, the more communication links arise, independently from the way how the communi-
cation network of the team is configured.7 In the general case where free communication
among team members is possible, a larger team implies that more information must be
sent as well as received and processed by each team member to keep the whole team up
to date. Greater communication requirements in larger project teams can prolong project
duration. If communication demands cannot be met, project quality may decrease.
Although communication requirements tend to rise with team size, the average amount

of communication between two team members can actually diminish with increasing team
size. Zenger and Lawrence (1989) made this observation in their empirical study of work
groups in a U.S. electronics firm.8 They found that the average frequency of commu-

7Davis (1969, pp. 94–104) and Wilke and Meertens (cf. 1994, pp. 183–186) depict different communica-
tion networks and discuss their impact on group performance and on the motivation of group members.
In addition, Davis (1969, pp. 88–104) puts communication networks and patterns in relation to group
structures.

8We have already mentioned this study on page 29.
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nication between two team members decreased when team size increased. However, this
reduction in bilateral communication can occur even if the total amount of communication
increases. The decrease in communication for each pair can have several causes; it can be
explained by a reduced requirement for information sharing between two team members
when an additional team member decreased their individual workload or by stress and
exhaustion due to the increased number of communication partners.
A lower frequency of communication between any two team members can lead to

a decrease in cohesion and cooperation. The relationship between communication and
cooperation was studied by Balliet (2010). He provides a meta-analysis of the literature
on social dilemma experiments. The take-some game mentioned on page 32 is an example
for a social dilemma, where free riding is rational for each individual but leads to the
worst outcome for all participants. For these kinds of dilemmas, Balliet (2010) found that
communication increases cooperation.
Tohidi and Tarokh (2006) proposed a quantitative model that links team size, com-

munication, and productivity for a group of production workers. In their theoretical
approach, workers must divide their time between production on one side and infor-
mation processing including communication on the other side. For each unit of output
produced by any of the workers, all workers must process one unit of information. Under
the assumptions made by Tohidi and Tarokh, total output increases when team size in-
creases but the additional output that results from a further worker decreases with team
size. Since the marginal returns of team size diminish, there exists an optimal team size
under certain conditions for costs, e.g., when constant costs per worker are assumed. Ac-
cording to their model, team size can be reduced without sacrificing output if improved
information and communication technology is applied such that less time is needed for
information processing.
The effect that projects take the longer, the larger the project team is, was observed

by Cassera et al. (2009), for example. They analyzed data records of surgical procedures
in three U.S. hospitals and found that, ceteris paribus, larger teams required more time
for a surgical procedure than smaller ones. In their analysis, Cassera et al. controlled
for the complexity of a procedure. A team comprised all surgeons, nurses, and other
medical staff that participated in the surgical operation or observed it. Team members
were present either for the complete time of the operation or for some part of it. Cassera
et al. explained the efficiency loss of larger teams by greater communication requirements,
which arose especially when the job of a nurse was taken over by another nurse during a
procedure and the new nurse had to be informed about the current state of the procedure.
A small number of team members does not only ease communication within the team

but also with stakeholders outside the team, in particular with clients in the case of
external projects. The smaller the team for an external project, the smaller is the number
of potential contact persons for the client and the easier it is to follow the principle
of one face to the customer. Marketing experts recommend this principle for customer
relationship management (cf. Ingram et al., 2002, p. 565). Even if the structure of a team
and the configuration of the communication network within a team are geared towards a
one face to the customer policy, the effort necessary to enforce this policy tends to increase
with team size.
Another disadvantage of large project teams is that team composition is more likely

to vary over time. Often and independent from the size of a team, some workers join the
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team later in the course of the project and must be acquainted with the current state of the
project. The greater a team is, the greater tends to be the number of late entrants. Each
late entrant can cause an interruption when he must be trained by existing team members;
moreover, he increases communication requirements also beyond the training phase. These
detrimental effects of a late entrant were observed by Brooks (1982), who stated that
“adding manpower to a late software project makes it later” (p. 25). Likewise, Cass
(1992) concluded that varying crew levels and varying crew compositions in construction
projects caused productivity losses. He drew his conclusions from an analysis of three
large construction projects. For the analysis, Cass considered late entrants that replaced
other team members and understaffing due to no-shows of workers.
The more workers form a team, the greater is, assuming constant workload, the division

of labor. A high division of labor creates many interfaces between workers and causes
many handoffs that can slow down a work process. For this reason, Hammer and Champy
(1993, p. 144) recommended to reengineer processes such that as few workers as possible
are involved in a process. They reported on several cases where process times could be
considerably reduced by assigning a work process to a smaller number of workers (cf.
Hammer and Champy, 1993, pp. 36–44, 51–53, and 182–199). In a similar vein, Brooks
(1982, pp. 16–19) pointed out that it will take two workers more than half the time that
it takes one worker to accomplish a task because in case of two workers additional time is
necessary for communication. So, a workload of six man-months may be accomplished in
six months by one worker, whereas it may take two workers three and a half month and
three workers two and a half month to accomplish this workload. Brooks (1982, p. 16)
warned that the man-month is not an adequate measure of task size. In our approach,
we will nevertheless use this measure. However, by minimizing average project team size,
we implicitly take the warning of Brooks into account.
Disadvantages of small teams shall not go unmentioned. A small project team may

raise the risk of procrastination. The absence of a worker from a small project team
is likely to result in a delay of the project, whereas a larger team often implies some
redundancy of human resources. This redundancy allows to compensate for the absence
of a worker. The lack of redundancy in small teams could be at least partially mitigated
by a substitution arrangement that specifies for each member of a project team a deputy
or a substitute who replaces the member in case of illness, for example. It should be
ensured that each deputy is informed about project content and progress and about the
task of the person he may have to replace.
Another disadvantage of small team size is related to motivation. A small team may

be perceived by its members as too small and too weak to master the team task, whereas a
larger team may be conceived as more likely to successfully accomplish the team workload.
Hence, motivation of team members may rise and fear of team failure may decrease with
increasing team size. However, in our approach we ensure that the capacities of the team
members are sufficient to meet all workload requirements. And we could not find empirical
support for the concern that a small but adequate team size is associated with low levels
of motivation.
On the contrary, there are further empirical findings that prove the positive effect of

a relatively small team size on team performance. Högl (1998) analyzed factors affecting
the quality of teamwork in four software development departments in Germany that were
part of three different firms. Quality of teamwork was determined by communication,
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coordination, mutual support of team members, and cohesion, for example (cf. Högl, 1998,
pp. 77–88). 575 managers and team members were interviewed for the analysis, which
comprised 145 teams. Each team had at least three members. Högl (1998, pp. 149–151)
found that absolute team size and quality of teamwork were negatively correlated, while
an adequate team size, relative to the size of the task, was positively correlated with
teamwork quality.
Hanna et al. (2007) assessed 103 construction projects in the United States that in-

volved mechanical construction or metal sheet construction. For these two trades, the
authors considered the impact of overmanning on efficiency, which was measured as the
ratio of estimated man-hours to actually required man-hours. Overmanning was mea-
sured as absolute peak crew size and as the ratio of peak crew size to average crew size
during project execution. A regression analysis showed for both measures of overmanning
that efficiency decreased when overmanning increased.
Also experimental studies could demonstrate that smaller teams can perform at least

as well as larger ones. As an example, we quote two studies of team performance in control
rooms of nuclear power plants. In the corresponding experiments, operator teams were
exposed to different scenarios in which they had to cope with critical faults. Performance
was assessed by situational awareness and fault handling, for instance. For advanced
control rooms, which were equipped with latest technology, Sebok (2000) found that
two-person teams performed as well as four-person teams. The teams were composed of
professional operators. For the experiments of Huang and Hwang (2009), students acted
as operators. Huang and Hwang compared the average performance of a single operator
to that of two- and three-person teams. Single operators were clearly outperformed by
teams but there was no significant difference in performance between teams with two and
three members.
So far we have discussed the size of a single team. When we consider a multi-project

environment, which is frequently encountered in firms, there are several teams and there
are further advantages of a small team size, especially for workers. In a multi-project
environment, small teams imply a small average number of projects to which a worker
is assigned. Small teams also imply a larger contribution of a worker per project he is
assigned to. Hendriks et al. (1999) argue that small contributions to many projects are less
efficient than large contributions to a few projects and hence recommend to allocate the
workload of a project to a small number of workers. Inefficiencies of scattering workload
across many workers and of scattering workers across many projects arise from switching
and setup costs for workers and from a greater number of partners a worker has to
communicate with.
Another advantage of small teams for workers is greater task variety. If a worker

joins only a few projects and has to make a relatively large contribution to each project,
task variety is likely to increase as he may have to accomplish different requirements in a
project. Task variety fosters motivation and prevents unlearning of skills.
To sum up, there is lots of evidence that small teams are advantageous compared

to relatively large ones. A small number of workers per team curbs social loafing and
positively affects individual productivity. In small teams, communication is easier and
cooperation and motivation are higher. For us, the advantages of relatively small teams
outweigh the disadvantages and the arguments for small teams are stronger than those
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for large teams. That is why we aim at small project teams in the workforce assignment
problem that will be outlined in the following chapter.



Chapter 3

Problem definitions and basic notation

In this chapter, we approach our three problems, which are the selection of projects, the
assignment of workers to projects, and the distribution of departmental workload. These
problems are faced by an organization, e.g., a firm. The organization with its workforce
and the projects that the organization can select define the setting of the three problems.
Hence, we will first elaborate on the characteristics of the organization and the projects
in Section 3.1 to describe the setting or the environment in which our problems are
situated. For the characteristics we will introduce identifiers, which will be used through
the remainder of this thesis. After having shed light on the setting, we will define the three
problems, namely, the project selection problem in Section 3.2, the workforce assignment
problem in Section 3.3, and the utilization leveling problem in Section 3.4.

3.1 Setting of the problems
In our problems, we consider an organization that wants to carry out projects. The link
between the organization and the projects are skills that are mastered by the workers
of the organization and that are required by the projects. In this section, we will first
describe the firm’s characteristics including skills before we turn to the characteristics of
the projects. Finally, we look at skills in their role as the link between the firm’s workforce
and the projects.
The organization can be either a profit or a nonprofit organization, e.g., an insurance

firm or a charity organization, respectively. The organization can be part of a greater
organization or of a cooperation of greater organizations. For instance, the organization
may be the information technology (IT) center of an insurance group. Such an IT center
triggered our research. The IT center of the insurance group provides IT services for the
group members. In the following, we will consider a firm as the organization.
We assume that the firm is planning its project portfolio, the assignment of workers

to projects, and the allocation of departmental workload for a set T = {1, . . . , T} of
T periods, which span the planning horizon. In case of the IT center, the length of the
planning horizon is one year and the length of a period t ∈ T is one month, thus T = 12.
The top management of the IT center holds a meeting always in the last quarter of a year
to plan for the the upcoming year.1 If a project that is considered for the portfolio has a
planned completion time T ′ later than T , the length of the planning horizon is adjusted
accordingly and set to T ′ periods.

1Of course, plans are revised during the year if necessary.
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The workforce of the firm is denoted by K = {1, . . . , K}, i.e., it comprises K workers.
For each worker k ∈ K his availability Rkt is given for each period t ∈ T . We measure
availability in hours, hence Rkt = 160 means that worker k is available for 160 hours in
period t, i.e., he can work 160 hours or less, but must not work more. The availability
parameter Rkt allows to model full-timers, e.g., Rkt = 160, and half-timers, e.g., Rkt = 80.
Furthermore, the parameter can account for a planned reduction of availability, which
occurs when vacation, training, routine jobs, or other tasks are scheduled for a worker in
advance.
An availability of 160 hours per month may reflect a typical labor contract that pre-

scribes eight hours of work per day and 40 hours per week, presuming four weeks per
month. If a plan assigns a workload of 160 hours to a worker whose availability is equal to
160 hours, we regard the working time limit of eight hours per day as observed, because
on average eight hours per day are not exceeded. However, the actual working hours on a
single day can deviate from the average when the plan is put into operation. A monthly
availability limit may seem rough, but it features built-in flexibility, as the daily working
times within a period can be adjusted to meet the needs of both the workers and the
managers of the firm (cf. Schlereth, 2009). Furthermore, such a rough approach is ade-
quate for a planning horizon of one year, where it is hardly reasonable to plan workloads
on a daily basis several months in advance.
We assume that the workforce is fixed during the planning horizon. Short-term de-

cisions on hires, dismissals, and resignations within the planning horizon are not taken
into account. With respect to workers who are dismissed or who hand in their notices,
we may likewise suppose that these workers can be immediately and adequately replaced
by new hires. If hires, lay-offs or similar changes are known at the time of planning, these
events can be modeled by setting Rkt := 0 for each period t ∈ T in which a worker k is
not under contract. Moreover, virtually increasing the workforce by delegating work to
external service providers is not considered an option.
The long-term organizational structure of the firm is reflected by a set D = {1, . . . , D}

of D departments. This structure may emphasize functions, product lines, or customer
regions, for example (cf. Laux and Liermann, 2003, pp. 181–182; Schulte-Zurhausen, 1999,
pp. 237–254). With regard to an IT center, there may be—amongst others— separate
departments for software maintenance, database applications, and customer support. Let
Kd ⊆ K, d ∈ D, denote the workers that belong to department d. Since each worker k,
k ∈ K, is member of exactly one department, we have

⋃
d∈D Kd = K and Kd ∩Kd′ = ∅ for

all (d, d′) ∈ D × D, d 
= d′. Let the index d(k), k ∈ K, denote the department to which
worker k belongs.
We assume that in each department d ∈ D a departmental work requirement rddt

has to be accomplished in each period t ∈ T by the staff Kd of department d. The
departmental work requirement rddt is expressed in man-hours, so a requirement rddt =
100 can be accomplished, for example, by one worker k ∈ Kd who works for 100 hours
or by two workers of department d who work for 50 hours each. Within a software
maintenance department, the departmental work requirement can comprise the roll-out
of a software update or the negotiation about a license agreement. We presume that
the work requirement of a department d can be accomplished by an arbitrary subset of
workers of Kd and that every worker of department d performs departmental workload
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with the same efficiency. Thus, it takes each worker k ∈ Kd one hour to accomplish one
hour of the work requirement of department d.
Competencies of the firm originate from a set of skills S = {1, . . . , S} which are

mastered by its workforce. Each worker k ∈ K masters at least one skill s ∈ S. In
case of the aforementioned IT center of an insurance group, skills might be experience
in developing databases, experience in object-oriented programming, or knowledge of life
insurance business. Let Sk ⊆ S denote the set of skills mastered by worker k ∈ K.
Conversely, let Ks ⊆ K denote the set of workers who master skill s ∈ S. Sometimes
there may be a close relation between skills and departments such that all the workers
of a department share a common skill, which is mastered only by few workers outside of
that department.
For each skill s ∈ S, we distinguish four levels of efficiency with which a worker k

can master skill s. The level lks lies in the domain {0.5, 1, 1.5, 2}. If worker k does not
master skill s, his skill level lks is not defined. If worker k has little experience in skill s, if
he is beginner or learner, his skill level lks is 0.5. This level implies that it takes worker k
two hours to accomplish a nominal requirement for skill s of one man-hour. A level of 1
designates a worker who has already gained some experience in skill s. It takes him one
hour to perform a requirement for skill s of one man-hour. A worker has a level of 1.5 if
he is very familiar with tasks asking for skill s. He can perform a requirement of one man-
hour within 40 minutes. A worker who is very well qualified and has much experience in
regard to skill s is characterized by a level of 2. We presume that he needs only 30 minutes
for a requirement of one man-hour. In the literature, it is common practice to distinguish
four or five levels of efficiency including a level of zero, which indicates the lack of the
skill (cf., e.g., Yoshimura et al., 2006, pp. 836–837; Mansfield, 1996, pp. 13–14).
The skills of the firm’s workforce are the link to the projects that the firm can execute,

because projects usually require specific skills. A project within the IT center can be the
development of new features for a database that contains data on life insurance customers.
The new features may allow sales personnel to record and access more information about
their customers. This project may require three skills: experience in developing databases,
knowledge of life insurance business, and finally the capability to hold training courses in
which the sales personnel is instructed how to use the new features. Consequently, the
project team must cover these three skills.
We distinguish four sets of projects. The first set is the set Pongoing of ongoing projects,

which the firm has already started but not completed before period t = 1. We assume that
all started projects must be completed, i.e., ongoing projects are continued. The second
set P̃ = {1, . . . , P̃} includes projects that can be selected for realization within the plan-
ning horizon. The third set Pmust represents those projects that must be conducted by the
firm within the planning horizon, e.g., for reasons of legal compliance or obligations to ful-
fill contracts. Finally, after projects have been selected, the set P = {1, . . . , P} comprises
those projects that will be executed during the planning horizon. Hence, Pongoing ⊆ P ,
Pmust ⊆ P , and P \ (Pongoing ∪ Pmust) ⊆ P̃ holds.
We assume that for each project p ∈ Pongoing∪Pmust∪P̃ a rough schedule is given. This

schedule specifies the start period tstart
p ∈ T and the finish period tfinish

p ∈ T , which mark
the set of periods Tp = {tstart

p , . . . , tfinish
p } during which project p is executed.2 Furthermore,

2For ongoing projects, we consider only the remaining part that must be performed in the planning
horizon. Thus, we set tstartp := 1 for all p ∈ Pongoing.
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the rough schedule specifies a set Sp ⊆ S of skills that are required by project p, and a skill
requirement rpst for each skill s ∈ Sp in each period t ∈ Tp of project execution. The skill
requirements are also expressed in man-hours. A requirement rpst = 50 is accomplished
by a worker k in 50 hours if his skill level lks is equal to 1. For another worker k′ with
lk′s = 2 the same requirement would result in a workload of only 25 hours. The terms
skill requirement and project requirement will be used interchangeably in the remainder
of this thesis.
Let us briefly discuss whether the assumption is realistic that a rough schedule is given

for projects. Proposals for projects may originate from inside the firm or from outside (cf.
Zimmermann et al., 2010, pp. 2–3). Proposals from inside lead to internal projects, which
often aim at improving processes within the firm. These proposals are usually put forward
by the management or by a worker who is involved in the process. A source of proposals
from outside the firm are potential customers who request a customized product. If such a
proposal leads to an order, the fulfillment of this order constitutes an external project. For
both internal and external projects the proposal must include a preliminary schedule or
an initial work breakdown structure that enables managers to make an informed decision
about whether to select the project or not (cf. Schwarze, 2001, pp. 54–55). A schedule
as well as a work breakdown structure define work packages that must be delivered to
complete a project (cf. Kerzner, 2013, pp. 529–536). They also state the estimated size
of the work packages in man-hours and the order in which the work packages must be
accomplished due to technical or logical restrictions. In our setting, the work packages
are represented by the requirements rpst. Furthermore, for external projects the start and
completion date are often prescribed by the customer. In our setting, these prescribed
dates correspond to the parameters tstart

p and tfinish
p of a project. For internal projects, it

is more likely that the project start is not fixed, but can be postponed or brought forward
to periods with low workload. A variable project start period could be easily integrated
into our approach, e.g., Heimerl and Kolisch (2010a) present a model where projects can
start within a time window.
Figure 3.1 illustrates the main characteristics of the setting of our problems. To ease

reading, the notation in the figure is slightly changed: d1 stands for department d = 1
and d2 for department d = 2. The same holds for the other indices.
The skills link workers and projects. A skill s that is mastered by worker k and

required by project p is termed “matching skill” between worker k and project p. Let
Smatch
kp = Sk ∩ Sp denote the set of matching skills between worker k and project p. If

Smatch
kp 
= ∅, worker k is called suitable for project p and project p is called suitable for
worker k. Given the set Smatch

kp for each pair (k, p) ∈ K ×
(
Pongoing ∪ Pmust ∪ P̃

)
, we can

derive for each worker k ∈ K his set P̂suit
k =

{
p ∈

(
Pongoing ∪ Pmust ∪ P̃

) ∣∣∣ Smatch
kp 
= ∅

}
of

suitable projects and for each project p, p ∈ Pongoing ∪ Pmust ∪ P̃ , its set Ksuit
p = {k ∈ K |

Smatch
kp 
= ∅} of suitable workers. Similarly, let the set Psuit

k = {p ∈ P | Smatch
kp 
= ∅} contain

the projects that were selected for the portfolio and that are suitable for worker k.
For each ongoing project p ∈ Pongoing, a project team exists already. This team

comprises the workers that have already contributed to project p. Let the set Kassigned
p

denote these workers that have already contributed to project p, i.e., that have already
been assigned to project p. Other workers can join this team and existing team members
need not contribute to project p during the planning horizon.
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Figure 3.1: Main characteristics of the firm and the projects

Based on these characteristics of the firm and the projects, we outline our three prob-
lems in hierarchical order in the following three sections.

3.2 The project selection problem
The problem of project selection arises when the requirements of projects that the man-
agement deems beneficial for the firm exceed the availability of the firm’s workforce.
Then, the task of the management is to determine a project portfolio that provides max-
imum benefit among those project portfolios that are feasible with regard to workers’
availabilities. We first look at portfolio membership and at the benefit of a portfolio and
discuss assumptions that we make for the valuation of a portfolio. Eventually, we consider
availabilities of workers in more detail.
To model the decision about membership of a project p in the project portfolio, we

introduce the binary decision variable zp ∈ {0, 1}, p ∈ Pongoing ∪Pmust ∪ P̃ , which equals 1
if project p is selected, and 0 otherwise. As already mentioned, there are not only projects
that can be selected or not, but also ongoing projects, which were started in the past and
which must be continued, and there are also mandatory projects, which must be conducted
to fulfill contracts or to comply with new legal requirements. This means that the portfolio
must contain all ongoing projects p ∈ Pongoing and all mandatory projects p ∈ Pmust, thus
zp = 1 holds for p ∈ Pongoing∪Pmust. The actual selection concerns only the projects p ∈ P̃ ,
which can be picked for the portfolio. Though, to guarantee feasibility with respect to
workers’ availabilities, ongoing and mandatory projects must be taken into account when
the portfolio is determined.
We assume that the benefit of each project p ∈ P̃ , e.g., the expected profit, is inde-

pendent of the selection or rejection of other projects, that the benefit can be expressed
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by a single parameter bp ∈ N \ {0}, and that a point estimate for bp is given.3 The more
beneficial project p is, the higher is the value of the benefit parameter bp. The benefit of
a project portfolio can be calculated as the sum of the benefits of those projects p ∈ P̃
that are part of the portfolio.
Our approach makes three strong assumptions, which simplify measuring the benefit

of a portfolio:

(1) We assume that a project can be rated by the value of a single parameter. Though,
usually there are multiple criteria such as strategic fit, urgency, or net present value
that are considered when a project is assessed. Then, instead of a single parameter,
there results a vector of parameters, which represents the benefit of a project.

(2) We assume that there is a single decision maker who rates each project and who de-
cides about the portfolio. In many firms, however, there is not a single decision maker,
but a group of managers who have to assess a project and whose assessments may
differ from one another. Their different views result in different vectors of multiple
parameters.

(3) Finally, we neglect interactions between projects. Interactions between two projects
occur when both projects are selected. The interactions affect their parameters, e.g.,
their resource requirements or their benefits.

Fox et al. (1984) distinguish three types of interactions that can occur between
projects: resource, outcome, and benefit interactions. Resource interactions occur,
for example, when two projects can share resources such that the costs for executing
both projects are lower than the sum of the costs of the two projects when executed
alone. Resource interactions also occur when resource requirements of a project de-
pend on the selection of another project. Outcome interactions refer to the success
probability of projects. The success probability of project p can depend on the success
or failure of another project p′. Benefit interactions are subdivided into impact and
present value interactions. Impact interactions exist, for example, when the product
developed in a project competes with the product developed in another project and
the sales of both products are less than the sum of individual sales which would have
been realized for each product without competition. Present value interactions exist
when the present value of the portfolio is not an additive function of the present
values of the projects in the portfolio. Fox et al. show that present value interactions
can occur even when no other interactions are present.

The assumptions impose limitations on the applicability of our approach. In the
following, we report on approaches taken from literature that do without such limiting
assumptions. Some of the approaches could be integrated into our approach in order to
mitigate the described limitations.

ad (1) and (2): Lai and Xue (1999) present a procedure that transfers a multiple criteria,
multiple decision maker problem within three steps into a single criterion, single

3For the case of uncertainty where a decision maker can specify for each parameter bp, p ∈ P̃, only
an interval which contains the “true” value of bp, Liesiö et al. (2007) outline an approach to select a
robust portfolio. Here, a robust portfolio means a portfolio whose benefit is reasonably large for all
realizations of the parameter values.
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decision maker problem. In the first step, Lai and Xue basically average the assess-
ments of all managers for each criterion. In the second step, the judgments of the
managers on the importance of each criterion are also basically averaged. Finally,
a linear programming approach is applied to determine a weight for each criterion
such that the weights are “acceptable” for the managers. The procedure of Lai and
Xue (1999) leads to a model that meets our first two strong assumptions, i.e., the as-
sumption of a single parameter representing project benefit and the assumption of a
single decision maker. Hence, their procedure could be applied to the projects p ∈ P̃
in advance of our project selection.

ad (3): Schmidt (1993) presents a model that copes with all three types of interactions
resulting in a nonlinear fourth order objective function with quadratic constraints.
Santhanam and Kyparisis (1996) outline a nonlinear model that captures resource
and benefit interactions. They linearize the model using the efficient technique of
Glover and Woolsey (1974), which requires only continuous variables in addition to
the binary selection variables and merely a small number of additional constraints.
Eilat et al. (2006) propose a method for project selection that is based on the data
envelope analysis. Their method takes into account project interactions, however,
these interactions are considered not until candidate portfolios have been generated.

Our approach can be adapted to the method of Santhanam and Kyparisis (1996)
without major effort. The methods of Schmidt (1993) and Eilat et al. (2006), in contrast,
cannot be integrated into our approach without substantial changes of our approach.
Hence, especially outcome interactions remain a severe limitation for our method and we
must answer the question whether we can adhere to our method and when we should
abandon it.
We adhere to our simple portfolio valuation for two reasons: First, we could adopt

alternative approaches for valuation if necessary. The approach of Lai and Xue (1999)
would just precede our approach, for example. Second, since our focus is on project teams,
we are more interested in integrating the workers’ availabilities during project selection
such that the portfolio can be accomplished by the workforce. Benefit and outcome
interactions are not critical for our focus on project teams. Anyway, outcome interactions
are prevalent in a research and development environment where the success of a project is
uncertain. In other environments, e.g., in an IT center, the probability of project failure is
rather small, as project tasks are not utterly novel in most cases. Resource interactions,
however, are important for our focus, because they can impact the skill requirements
of projects. If such resource interactions exist, alternative approaches, e.g., the one of
Santhanam and Kyparisis (1996), should be considered.
We do not only neglect interactions, but also interdependencies between projects. To

explain the difference between interactions and interdependencies, we consider the case
of two projects, which we denote by p and p′. Interactions affect the parameters of p
and p′, e.g., the resource requirements or the benefits, when both projects are selected.
Interdependencies directly affect the selection variables zp and z′p, e.g., by mutual exclu-
siveness. Mutual exclusiveness means that either project p or project p′ can be selected
for the portfolio, but not both. Weingartner (1966) as well as Ghasemzadeh et al. (1999)
take into account the same two types of interdependencies between projects by additional
constraints. The first type of interdependencies is mutual exclusiveness of projects, the
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second is a dependency that allows selection of project p′ only if another project p is
selected. The constraints for these two types of interdependencies could easily be adopted
for our approach.
Having discussed project interdependencies and the three assumptions that we make,

we will now describe three constraints for our project portfolio and begin with the skill
requirements. For each project that is selected, we have to ensure that its requirements
are satisfied. To this end, we introduce decision variables ŷkpst ∈ R≥0, k ∈ K, p ∈ P̂suit

k ,
s ∈ Smatch

kp , t ∈ Tp, which indicate the preliminary contribution of worker k to skill s of
project p in period t. This contribution is expressed in man-hours. If ŷkpst = 10 and
lks = 2, worker k contributes for 10 hours to project p and accomplishes 20 hours of the
requirement rpst of project p for skill s. Note that ŷkpst is only a preliminary value for the
contribution, because the actual contribution will be determined later when preferably
small project teams are constructed.
We assume that a worker can contribute to different projects in each period t ∈ T .

A worker can perform different skills for one project in each period t. Furthermore, he
can perform the same skill for more than one project in each period t and he can also
contribute to different skills of different projects in every period. A requirement rpst of
project p for skill s in period t can be covered by an arbitrarily large number of workers
or, more precisely, by up to |Ks| workers.
Apart from satisfying project requirements, we must observe two more restrictions,

which both refer to the availabilities of workers. The first restriction refers to the avail-
ability of workers on the individual level. This restriction demands that the total contri-
bution which a worker k makes across all projects and skills in period t must not exceed
his availability Rkt. The second restriction refers to the availability of workers on the de-
partmental level. In each period t ∈ T , the total contribution to projects by workers who
belong to the same department d must leave enough time for the workers to accomplish
the departmental requirement rddt.
A solution for our problem of project selection entails values for the variables zp, p ∈ P̃ ,

which reflect the completion of the portfolio, and values for the variables ŷkpst, k ∈ K,
p ∈ P̂suit

k , s ∈ Smatch
kp , t ∈ Tp, which specify the allocation of project workload to workers.

The values for the variables ŷkpst imply project teams for each selected project p ∈ P : All
workers k with ŷkpst > 0 for at least one period t ∈ Tp and one skill s ∈ Smatch

kp contribute
to project p and are thus member of the team for project p. However, the project teams
that result from solving the problem of project selection may be larger than necessary
because the objective function of the selection problem does not penalize scattering the
workload of a project across workers. After project selection, we try to minimize the
average team size. This minimization problem is addressed in the next section, where
we explicitly assign workers to projects and obtain final values for the contributions of
workers to projects.

3.3 The workforce assignment problem
After having selected the project portfolio P , we seek for a team of workers for each
project p ∈ P and for an allocation of workload to the respective team members. Each
project team must be able to cover the requirements of its project. Our aim is to minimize
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the average team size over all projects p ∈ P . In this section, we will state important
assumptions underlying our problem, differentiate our aim from related but distinct ob-
jectives, and point to questionable implications of our objective. Finally, we introduce
decision variables to formalize our problem and present the restrictions that constrain
team formation and workload allocation in our setting.
The following assumptions are the same as for the project selection problem. We

assume that a worker can contribute to different projects in each period t ∈ T . A worker
can perform different skills for one project in each period. Furthermore, he can perform
the same skill for more than one project in each period and also different skills for different
projects within any single period. A requirement rpst of project p for skill s in period t
can be covered by an arbitrarily large number of workers or, more precisely, by up to |Ks|
workers.
Our objective for the assignment of workers to projects is to minimize average team

size. This aim is equivalent to minimizing the total number of assignments of workers
to projects, because the total number of assignments is equal to the average team size
multiplied by the number of projects P , where P is a constant. Note that we limit
neither the size of a team nor the number of assignments for a worker. It would be a
different objective to minimize the maximum team size over all projects p ∈ P . Another
different objective would be to minimize the maximum number of projects which a worker
is assigned to over all workers k ∈ K. In general, different solutions are optimal for these
related but distinct objectives.
The formulation of our objective implies that every assignment of a worker to a project

has equal weight. Hence, it does not make a difference whether an additional worker is
assigned to a project team of 3 workers or to a team of 78 workers. From the perspective
of a single project, one may argue that it should make a difference because detrimental
effects of an additional team member tend to decrease with team size. However, from
the perspective of a single worker, there is no difference between being assigned to a
large team or a small team, at least with respect to the extent of scattering the working
time of this worker across projects. Different weights can favor solutions that feature more
assignments than necessary. Since we want to avoid scattering workers across projects, we
stick to the formulation of our objective, which features equal weights for all assignments.
To formalize our problem, we require two types of decision variables. The first type

of variables is needed to count the assignments in the objective function of our problem.
The second type of variables appears in the constraints only, these variables are needed
to record the allocation of workload. In the objective function, we do not measure the
average team size, but the total number of assignments of workers to projects. To record
the number of assignments, we introduce binary decision variables xkp ∈ {0, 1}, k ∈ K,
p ∈ Psuit

k , which equal 1 if worker k is assigned to project p, and 0 otherwise. A worker k is
assigned to project p if he contributes to project p. To record the contribution of worker k
to project p for skill s in period t, we introduce the variable ykpst ∈ R≥0, k ∈ K, p ∈ Psuit

k ,
s ∈ Smatch

kp , t ∈ Tp. Again, the contribution is expressed in man-hours. If ykpst = 10 and
lks = 2, worker k contributes for 10 hours to project p and accomplishes 20 hours of the
requirement rpst of project p for skill s in period t.
For a feasible assignment and workload allocation, three constraints have to be ob-

served. (1) For each project p ∈ P , its requirements must be satisfied by contribu-
tions from workers. (2) The sum of contributions of each worker k ∈ K across all
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projects p ∈ Psuit
k must not exceed the worker’s availability Rkt in each period t ∈ T .

(3) Finally, in each period t ∈ T and for each department d ∈ D, the total contribution to
projects by workers who belong to department d must leave enough time for the workers
to accomplish the departmental requirement rddt.
For each ongoing project p ∈ Pongoing, a project team has already been formed in

the past. This team of workers is denoted by the set Kassigned
p . For each team mem-

ber k ∈ Kassigned
p , the variable xkp is fixed to 1, indicating the existing assignment. These

assignments, which have been made in the past, persist for the future, but we do not de-
mand that a worker k ∈ Kassigned

p must contribute to project p in any period t ∈ Tp, even
if he could. Other workers, not yet assigned to project p, can join the existing team and
accomplish requirements of project p. For each project p that is not an ongoing project,
Kassigned

p = ∅ holds as there exists no team for project p so far.
A solution for our problem of assigning workers to projects entails values for the

variables xkp, k ∈ K, p ∈ Psuit
k , which reflect the project teams, and values for the

variables ykpst, k ∈ K, p ∈ Psuit
k , s ∈ Smatch

kp , t ∈ Tp, which specify the allocation of
project workload to workers. While the variables ŷkpst, which are obtained as a solution
for the problem of selecting projects, provide preliminary values for the allocation of
project workload, the values of ykpst state the final allocation of project workload. This
final allocation may result in an unbalanced utilization of workers. While one worker
may have to perform 100 hours of project workload in a period, another worker may have
to perform only 50 hours. To achieve a more even utilization of workers at least within
departments, we can distribute the departmental workload of each department d ∈ D
among the members of department d such that the resulting working times are better
leveled. This leveling problem is addressed in the next section.

3.4 The utilization leveling problem
Workers must not only satisfy project requirements, but also departmental requirements.
The time that worker k can accomplish departmental workload in period t is limited by
his availability that remains from his initial availability Rkt after he accomplished project
workload. To calculate the remaining availability after project work for a single worker k,
we subtract the time that he must spend for performing project work from his initial
availability Rkt. The solution to the problem of forming project teams and allocating
project workload to workers guaranteed that the workers of each department d ∈ D
have enough remaining availability after project work to accomplish the departmental
workload rddt in all periods t ∈ T . However, this solution did not specify how the
departmental workload rddt of a period t is distributed among the workers of department d.
Whether different allocations of the departmental workload are possible depends on the
total remaining availability after project work for the workers in period t. If the total
remaining availability after project work for the members of department d is equal to
the departmental workload rddt, only one feasible allocation of departmental workload
exists. If the total remaining availability is greater than rddt, different allocations of the
workload are feasible, and we can use this degree of freedom to determine an allocation of
departmental workload that levels the utilization of workers within a department as well
as possible. A leveled utilization of workers is claimed by workers themselves on grounds
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of fairness and it is a common aim for firms (cf. Lee and Ueng, 1999; Huang et al., 2006;
Valls et al., 2009; and Eiselt and Marianov, 2008, for example). In this section, we will
describe how utilization can be defined in our setting, outline the leveling problem, and
critically reflect our assumptions about allocation of departmental workload.
Our definition of the utilization of a worker requires the hours worked by the worker.

For the ease of presentation, let us assume that the hours worked by worker k ∈ K comprise
the time he spends for projects and the time he spends for accomplishing departmental
workload. This means that all workload that is allocated to worker k in period t ∈ T
originates from projects and from his department only, i.e., there are no individual tasks
assigned to worker k that reduce his initial availability. Hence, the availability Rkt of
worker k in period t is equal to his initial availability.
The utilization of workers can be defined in two different ways. The first way defines

the utilization of worker k in period t as the total hours worked by worker k in period t.
The second way defines utilization as the ratio of total hours worked by worker k in
period t to his availability Rkt. While the first definition of utilization considers the
absolute time spent by a worker for projects and his department, the second definition
considers the relative time spent by a worker, because the time spent is set in relation to
the time available.
The problem of allocating departmental workload is illustrated in Figure 3.2. The

initial situation in a period t is shown in Figure 3.2(a): Project workload has already
been allocated to the workers k1 and k2, who are the only members of department d.
They have an availability Rkt of four hours and two hours, respectively. The depart-
mental requirement rddt that must be accomplished by k1 and k2 comprises one hour.
Figure 3.2(b) depicts the allocation that levels the absolute working time of k1 and k2,
while Figure 3.2(c) shows the allocation of the departmental workload where the relative
working time is leveled. In the latter case worker k1 has to accomplish 40 minutes and
worker k2 20 minutes of the departmental workload rddt.
As in our example in Figure 3.2, the two different definitions of utilization normally

lead to different allocations of departmental workload if a leveled utilization is pursued.
Though, from a computational point of view, both definitions are equivalent, as models
and algorithms for the first definition can easily be adjusted to suit the second definition.
Therefore, we will consider only the first definition, which allows a shorter notation.
To formulate the problem of allocating departmental workload, we introduce a decision

variable ydkt ∈ R≥0, k ∈ K, t ∈ T , that represents the time that worker k performs
departmental workload in period t. We express the time ydkt in hours. Remember that
all department members perform departmental workload with the same efficiency, i.e.,
they all have an implicit “skill level” of 1 for performing workload of their department. If
ydkt = 10, worker k spends 10 hours for his department d and accomplishes 10 hours of
the requirement rddt of department d in period t.
Our objective for the problem of allocating departmental workload is to level the total

hours worked over all workers of each department d ∈ D in each period t ∈ T . The total
hours worked by worker k in period t are the sum of his contributions to projects and to
his department. Leveling the total hours worked means that we want to find an allocation
of departmental workload such that the total hours worked by all workers of a department
are as equal as possible.
Two constraints must be observed. First, the total hours worked by a worker must not
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Figure 3.2: The problem of allocating departmental workload in period t

exceed his availability. Second, the total workload allocated to workers of department d
in period t must be equal to the requirement rddt.
Let us briefly elaborate on the assumptions for our leveling problem. Recall that we

presume that the allocation of project workload is fixed and cannot be altered at this
stage. We assume that the workload of a department is arbitrarily divisible and can thus
be arbitrarily allocated to the workers of the department, as long as their availabilities
are observed. Hence, it can happen that a departmental task that would be accomplished
best by a single worker is split among three workers. This split causes a great need
for coordination between those three workers. To avoid such an inefficient allocation
of departmental workload, the head of the department should consider the solution of
our leveling problem as a recommendation or as a point of reference that may require
adjustment.
Having defined the problem of project selection, the problem of assigning workers
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to projects and allocating project workload, and the problem of allocating departmen-
tal workload, we will formalize the three problem definitions by setting up optimization
models in the next chapter.



Chapter 4

Optimization models and complexity
analysis

In this chapter, we will present optimization models for the three problems that were out-
lined in the previous chapter. Furthermore, we will judge the complexity of the problems.
In Section 4.1, we discuss the suitability of an integrated approach and of an alterna-
tive hierarchical planning approach for the three problems, i.e., for the project selection
problem, the workforce assignment problem, and the utilization leveling problem. The
hierarchical approach comprises three stages—one for each problem. We conclude that
the hierarchical approach is preferable and present the corresponding optimization models
for the three problems in Sections 4.2, 4.3, and 4.4, respectively. For our key problem of
assigning workers to projects and allocating project workload, we will discuss limitations
of our modeling approach in detail and point out potential remedies in Section 4.3. Addi-
tionally, we will present an integrated, monolithic optimization model in Section 4.5. The
optimization models are mathematically precise statements of the problems. Each model
features one objective function, various sets of constraints, and different sets of decision
variables. The constraints define the solution space and allow to check if a solution, which
is defined by the values of the decision variables, is feasible. The objective function allows
to compare two solutions and to decide which of these two solutions is better. Finally,
we will elaborate on the complexity of our three problems of the hierarchical planning
approach in Section 4.6. The optimization models together with the evaluation of their
complexity serve as a basis for the solution methods that will be presented in the next
chapter.

4.1 An integrated approach vs. a hierarchical planning
approach

In this section, we will briefly discuss two alternative approaches to tackle the three prob-
lems that were outlined in Sections 3.2–3.4. The first approach tries to simultaneously
solve the three problems by formulating an integrated, monolithic optimization model.
The second approach formulates separate optimization models, orders these models hier-
archically, and solves one at a time. The separate models are only partially integrated.
We will argue that the second approach is preferable for our problems and outline a
three-stage hierarchical planning approach, which is partially integrated.
The first approach for our three problems, a monolithic model, integrates all decision

variables into a single model. To integrate the three objectives of maximizing portfolio

M. Walter, Multi-Project Management with a Multi-Skilled Workforce, Produktion
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benefit, minimizing average team size, and leveling working times into this single model,
alternative roads can be selected (cf. Ehrgott, 2005; Neumann and Morlock, 2002, pp. 135–
142; Domschke and Drexl, 2007, pp. 55-59). Two roads that are often selected are as
follows. The first alternative associates a weight with each objective and considers the
weighted sum of the objectives in a one-dimensional objective function. The second
alternative considers a vector whose components are one-dimensional objective functions.
For such a vector, a set of pareto-optimal solutions can be determined. The decision
maker can select a solution out of this set of pareto-optimal solutions. For his selection,
he must trade off the objectives against each other. For example, the decision maker
could select the solution that offers the best leveled working times with an average team
size of at most six workers per team and a portfolio benefit of at least 100.
In general, an integrated approach has two main disadvantages, which also become

important in our case. First, an integrated approach tries to generate a detailed master
plan and must, hence, process an enormous amount of data and information. In our
case, a monolithic model would become very complex due to the high number of decision
variables (cf. Günther, 1989, pp. 9–10). Second, a solution for the monolithic model fixes
even those decision variables that lie in the distant future, although the situation in the
distant future tends to be uncertain.
To overcome these two disadvantages of the first approach, the second approach struc-

tures the planning process hierarchically. The planning process is divided into several
stages. The monolithic model is split into smaller problems, each problem is allocated to
one stage of the planning process. The solution to a problem of a higher stage defines or
constrains the solution space for problems at subordinated stages (cf. Schneeweiß, 1992,
p. 13). An illustrative example of a hierarchical planning approach for a staffing problem
is given by Grunow et al. (2004).
The hierarchy of planning problems often follows the importance of the corresponding

decisions or the time horizon for which these decisions are made. The time horizon of a
decision and its importance tend to be closely related: A long-term decision is usually
a very important decision, i.e., a strategic decision, whereas short-term decisions, which
affect only the near future, tend to have less impact on a firm. Accordingly, long-term or
strategic planning, mid-term or tactical planning, and short-term or operational planning
are distinguished.
Compared to an integrated approach, a hierarchical planning approach has advantages

and drawbacks. On the one hand, a hierarchical planning approach is computationally
better tractable and enables to postpone decisions of subordinate stages to times when
uncertainty about data is resolved. On the other hand, a hierarchical approach requires
the decision maker to rank the problems according to their importance before solutions
to the problems will be generated. Here, the decision maker cannot trade off conflicting
objectives as well as with the integrated approach. For instance, if the portfolio benefit is
maximized first and the average team size is minimized afterwards, it may not be possible
at the second stage to find a solution that offers an average team size of at most six
workers per team.
For our three problems, however, a ranking of objectives in order of their importance

stands out clearly. The decision about the project portfolio is the most important one
for the firm, because selecting those projects which generate the highest total benefit
is what matters most. For a given portfolio of projects the firm may wish an efficient
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execution of projects. An efficient execution is facilitated by small project teams and
by not scattering workers across a great number of projects. Therefore, minimizing the
average size of project teams is the second most important objective. Finally, the aim of
leveling hours worked by department members can be pursued when the other two goals
have been achieved.
A ranking of objectives according to the time horizon of the corresponding decisions

leads to the same order as a ranking in order of importance. The decision about the project
portfolio affects the complete planning horizon {1, . . . , T} unless the set Pongoing∪Pmust∪P̃
of projects can be partitioned into two non-empty subsets P̂1 and P̂2 such that there exists
a period t ∈ T \ {T} with t ≥ tfinish

p for all p ∈ P̂1 and t < tstart
p for all p ∈ P̂2 that divides

the planning horizon into two separate planning horizons {1, . . . , t} and {t + 1, . . . , T}.
The decision of assigning workers to projects affects also the complete planning horizon
if the set P of projects cannot be partitioned into two sets P1 and P2, as just explained.
Though, while the decision about the portfolio is almost irreversible, it is relatively easy
and inexpensive to change the composition of the team for a project at later points in
time, even after the start of the project. Hence, we can conclude that the time span that
is affected by decisions about project teams is actually shorter than the time span that is
affected by the decision about the project portfolio.
The time span that is affected by the problem of leveling hours worked by allocating

departmental workload is shorter than the time spans affected by the decisions made for
selection and team formation. The leveling problem must be solved for each department
in each period t ∈ T , hence, it is a short-term decision problem. At the time of project
selection, the utilization of workers in a later period t is uncertain. Thus, it is reasonable
to solve the leveling problem when utilization can be estimated more exactly, maybe two
weeks before period t starts. It is not reasonable to solve this problem at the time when
projects are selected, e.g., 10 months before period t starts.
In regard to the advantages of the hierarchical approach in general, and in regard to

its suitability for our problems, we propose the following three-stage planning process. At
the first stage, we solve the problem of selecting a project portfolio. At the second stage,
we seek for the minimum number of assignments of workers to those projects that were
selected at the first stage. Finally, we level the hours worked by department members in
each period t ∈ T immediately before period t begins.
Although we have separated the solution process for our three problems into three

stages, the problems are not fully separated but partially integrated. Here, partial integra-
tion means that we take into account subordinate problems when a problem of a superior
stage is solved. When we solve the problem of project selection at the first stage, we take
into account the availabilities of the workers who must accomplish the projects. We en-
sure that the requirements of the selected projects comply with the workers’ availabilities.
Furthermore, we take into account that sufficient availability remains for accomplishing
departmental workloads. Also at the second stage, we take departmental workloads into
account. For instance, at the time of project selection, the management of the firm may
know that department d is busy with preparing a report every first month of a quarter
and that department d′ must prepare an exhibition appearance in period t = 10. These
pieces of information can be integrated into the decision about the project portfolio.
In the subsequent sections we will present optimization models for the problem on

each stage of our three-stage planning approach.
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4.2 A model for the project selection problem
For a neat presentation of the model for project selection, we will introduce one further
identifier. Recall that the set P̂suit

k is a subset of the union of the sets Pongoing, Pmust,
and P̃ and contains those projects p that are suitable for worker k. Let P̂suit

k (t) ⊆ P̂suit
k ,

t ∈ T , denote the set of projects that are suitable for worker k and that are executed
in period t. In other words, P̂suit

k (t) contains those projects p of the set P̂suit
k for which

tstart
p ≤ t ≤ tfinish

p holds.
Now, our problem of selecting projects can be modeled by (4.1)–(4.7). Model (4.1)–

(4.7) is a mixed-integer linear programming (MIP) model with binary decision variables zp,
p ∈ P̃ , that indicate whether project p is selected or not, and with non-negative continuous
decision variables ŷkpst, k ∈ K, p ∈ P̂suit

k , s ∈ Smatch
kp , t ∈ Tp, that represent the workload

that worker k performs for project p and skill s in period t.

Max.
∑
p∈P̃

bpzp (4.1)

s. t.
∑
k∈Ks

(lksŷkpst) = rpstzp
p ∈ Pongoing ∪ Pmust ∪ P̃ ,

s ∈ Sp, t ∈ Tp

(4.2)

∑
p∈P̂suit

k (t)

∑
s∈Smatch

kp

ŷkpst ≤ Rkt k ∈ K, t ∈ T (4.3)

∑
k∈Kd

⎛
⎝Rkt −

∑
p∈P̂suit

k (t)

∑
s∈Smatch

kp

ŷkpst

⎞
⎠ ≥ rddt d ∈ D, t ∈ T (4.4)

zp = 1 p ∈ Pongoing ∪ Pmust (4.5)

zp ∈ {0, 1} p ∈ P̃ (4.6)

ŷkpst ≥ 0
k ∈ K, p ∈ P̂suit

k ,

s ∈ Smatch
kp , t ∈ Tp

(4.7)

Objective function (4.1) maximizes the benefit of the project portfolio. Constraint
set (4.2) ensures that each requirement rpst of project p is satisfied if project p is selected.
The requirement rpst for skill s in period t is satisfied by contributions of workers who
master skill s. The coefficient lks takes into account that the workers k ∈ Ks master skill s
at different levels.
Constraint set (4.3) guarantees that a worker k does not spend more time for projects

in a period t than the time he is available in this period. Constraint set (4.4) assures
that the workers of every department have enough remaining availability to accomplish
the departmental workload in every period. On the left-hand side of Constraint (4.4), we
calculate for each worker k ∈ Kd of department d the time that remains of his initial avail-
ability Rkt in period t when contributions to projects are considered. The total remaining
time of all workers of department d must be large enough to cover the departmental
workload.
Constraint set (4.5) fixes the variables zp, p ∈ Pongoing∪Pmust, to 1, because we have to
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include these projects in the portfolio. Constraint sets (4.6) and (4.7) state the domains
of the actual decision variables.
By variables ŷkpst in conjunction with Constraints (4.2)–(4.4), we model the allocation

of workload and the availabilities for each worker explicitly. This is necessary because we
consider cases where at least two workers master more than one skill each and where for at
least one of these skills different levels are distinguished. Otherwise, i.e., especially if only
homogeneous skill levels were considered, it would be possible to aggregate the capacity of
the workers and to spare all variables ŷkpst. Though, such an aggregation would lead to a
model of exponential size in the number of skills S (cf. Grunow et al., 2004, Section 3.3).
Grunow et al. (2004, Section 3.3) and Grunow et al. (2002, Section 4.2) show how

capacities of multi-skilled resources can be aggregated if skill levels are homogenous. In
the instances of their problems, the number of skills must have been relatively small so
that model size did not became critical. We will give an example that shows how their
aggregation could be applied in our case if skill levels were not differentiated. In this
example, we also show why this aggregation is not applicable in the case of heterogeneous
skill levels.

Example 4.1 Assume an instance A with K = S = 2, T = {t} and several projects that
can be selected. Let Sk1 = {s1} and Sk2 = {s1, s2} with lks = 1, k ∈ K, s ∈ Sk, and let
Rkt = 10, k ∈ K. Furthermore, assume that there is no departmental workload at all.1
Let us denote the demand of the projects for skill s ∈ S that must be satisfied in period t
by rst where rst :=

∑
p∈Pongoing∪Pmust∪P̃ | t∈Tp rpstzp. For instance A, Constraint sets (4.2)

and (4.3) can then be replaced by the following constraints, which ensure that the skill
requirements of all selected projects are satisfied and that the availabilities of all workers
are regarded: rs1t ≤ 20, rs2t ≤ 10, and rs1t + rs2t ≤ 20. In general, we would require that
the following Constraint set must hold, where S ′ represents any non-empty subset of S:∑

s∈S′

rst ≤
∑

k|Sk∩S′ 	=∅

Rkt S ′ ⊆ S, S ′ 
= ∅, t ∈ T (4.8)

Since the number of non-empty subsets of S is equal to 2|S| − 1, Constraint set (4.8)
comprises an exponential number of constraints what makes this aggregation unattractive
when there is a large number of skills.
Now, let us turn to the case of heterogeneous skill levels. Consider an instance B

which is identical to instance A except that now Sk1 = Sk2 = {s1, s2} with lk1s1 = 0.5 and
lk1s2 = lk2s1 = lk2s2 = 1 holds. Here, the capacity of worker k1 depends on the skill that she
performs. We will consider two possibilities to adjust Constraints (4.8) to this situation.
As we will see, both possibilities do not work. One possibility is to replace the right-
hand side of Constraint set (4.8) by

∑
k|Sk∩S′ 	=∅ (Rkt ·maxs∈Sk∩S′ lks). Then, we obtain

the constraints rs1t ≤ 15, rs2t ≤ 20, and rs1t + rs2t ≤ 20. According to these constraints,
a project portfolio with rs1t = 15 and rs2t = 1 is a feasible solution of the selection
problem, but there exists no corresponding feasible solution for the variables ŷkpst, i.e.,
there exists no feasible disaggregation. A second possibility is to replace the right-hand
side of Constraint set (4.8) by

∑
k|Sk∩S′ 	=∅ (Rkt ·mins∈Sk∩S′ lks). This replacement yields

the constraints rs1t ≤ 15, rs2t ≤ 20, and rs1t + rs2t ≤ 15. These constraints render the
1This assumption is no loss of generality because we could interpret the requirements of each department
as a project, as explained in Subsection 4.3.2 on page 64.
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solution rs1t = rs2t = 10 infeasible, although there exists a disaggregation leading to
feasible values for the variables ŷkpst. �

As Example 4.1 indicates, capacities of workers cannot be aggregated when skill levels
are heterogeneous because the capacity of a worker depends on the skill or, to be more
precise, on the skill mix which he performs. However, this skill mix is not known in ad-
vance, i.e., not before the model is solved. Hence, we must explicitly model the allocation
of workload and the availabilities for each worker.

4.3 Models for the workforce assignment problem and
their limitations

In this section, we consider models for the problem of assigning workers to projects and al-
locating project workload to workers. In Subsection 4.3.1, we will present two MIP models
for this problem. The two models are alternative fomulations of the workforce assignment
problem. Since this problem is in the focus of this thesis, we point out limitations of the
models in Subsection 4.3.2 and outline potential extensions that mitigate these limitations.

4.3.1 Two alternative models for the workforce assignment problem
In this subsection, we will present two MIP models for the problem of assigning workers to
projects and allocating project workload to workers. The first model is termed standard
model, it can be intuitively derived from the problem definition in Section 3.3. The second
model is named network model, because it implies for each period t ∈ T a network flow
model. In such a network flow model, working time is assumed to flow from workers to
projects and departments in order to cover their requirements.
To obtain a sparse formulation of both MIP models, we introduce one further identifier,

analogously to the previous section. Remember that the set Psuit
k ⊆ P includes those

projects p that are suitable for worker k due to matching skills. Let Psuit
k (t) ⊆ Psuit

k ,
t ∈ T , denote the set of projects that are suitable for worker k and that are carried out
in period t. Put another way, Psuit

k (t) contains those projects p of the set Psuit
k for which

tstart
p ≤ t ≤ tfinish

p holds.
The standard model is given by (4.9)–(4.16). The decision variables of the standard

model are the binary variables xkp, k ∈ K, p ∈ P suit
k , which indicate whether worker k

is assigned to project p or not, and the non-negative continuous variables ykpst, k ∈ K,
p ∈ Psuit

k , s ∈ Smatch
kp , t ∈ Tp, which record the workload that worker k accomplishes for

project p and skill s in period t.

Min.
∑
k∈K

∑
p∈Psuit

k

xkp (4.9)

s. t.
∑
k∈Ks

(lksykpst) = rpst p ∈ P , s ∈ Sp, t ∈ Tp (4.10)

∑
s∈Smatch

kp

ykpst ≤ Rktxkp

p ∈ P , k ∈ Ksuit
p \ Kassigned

p ,

t ∈ Tp

(4.11)
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∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst ≤ Rkt k ∈ K, t ∈ T (4.12)

∑
k∈Kd

⎛
⎝Rkt −

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst

⎞
⎠ ≥ rddt d ∈ D, t ∈ T (4.13)

xkp = 1 p ∈ Pongoing, k ∈ Kassigned
p (4.14)

xkp ∈ {0, 1} p ∈ P , k ∈ Ksuit
p \ Kassigned

p (4.15)

ykpst ≥ 0
k ∈ K, p ∈ Psuit

k ,

s ∈ Smatch
kp , t ∈ Tp

(4.16)

Objective function (4.9) minimizes the total number of assignments of workers to
projects and, thus, the average team size. The total number of assignments includes the
assignments that have already been made for ongoing projects. Constraints (4.10) ensure
that the requirement rpst, p ∈ P , s ∈ Sp, t ∈ Tp, is satisfied by contributions from workers
who master skill s. The coefficient lks takes into account that these workers k ∈ Ks master
skill s at different levels.
Constraints (4.11) link the variables xkp and ykpst. These constraints guarantee that

worker k can only contribute to project p if he is assigned to project p. A contribu-
tion ykpst > 0 for any skill s ∈ Smatch

kp in any period t ∈ Tp requires xkp = 1. Simul-
taneously, Constraints (4.11) force xkp = 1 if worker k contributes to project p for any
skill s ∈ Smatch

kp in any period t ∈ Tp. Hence, if worker k contributes to project p, he is
automatically assigned to project p.
Constraints (4.11) are so called “big-M constraints”, which allow to model logical

conditions (cf. Bosch and Trick, 2005, pp. 77–78; Williams, 1999, pp. 154–160). In a
general form, the right-hand side of Constraints (4.11) would be written as Mxkp, where
M is a sufficiently large constant. We chose Rkt for M , as Rkt is an upper bound for∑

s∈Smatch
kp

ykpst and, hence, sufficiently large.
Constraints (4.12) take care that the working time which worker k spends for projects

in period t does not exceed his availability Rkt. Constraints (4.13) ensure for each de-
partment d ∈ D that the remaining availabilities of all workers of department d are large
enough in every period t ∈ T to accomplish the departmental workload rddt.
For each ongoing project p ∈ Pongoing, a team Kassigned

p of workers exists already. For
each member k of this team, Constraint set (4.14) fixes the corresponding variable xkp

to 1. Constraint sets (4.15) and (4.16) state the domains of the actual decision variables.
Let us briefly discuss the big-M constraints (4.11). We could have replaced Con-

straints (4.11) by

ykpst ≤ Rktxkp p ∈ P , k ∈ Ksuit
p \ Kassigned

p , s ∈ Smatch
kp , t ∈ Tp (4.17)

or by

∑
s∈Smatch

kp

∑
t∈Tp

ykpst ≤

⎛
⎝∑

t∈Tp

Rkt

⎞
⎠ xkp p ∈ P , k ∈ Ksuit

p \ Kassigned
p . (4.18)
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To assess the three alternatives (4.11), (4.17), and (4.18), we scrutinize the number
of constraints resulting from each constraint set and the tightness of each constraint set
for the linear programming (LP) relaxation of the corresponding MIP. The LP relaxation
of the standard model is obtained when the binary variables xkp ∈ {0, 1} are replaced by
continuous variables xkp ∈ [0, 1]. This relaxation is commonly used to solve the model
by branch-and-bound or branch-and-cut methods. The higher the number of constraints
which define the feasible region of the LP relaxation, the more time is generally required
for solving the LP relaxation. The tighter the relaxation, the closer does the feasible
region of the relaxation come to the convex hull of feasible integer points of the MIP.
The tightness of the relaxation is vitally important and more important than the number
of constraints. In general, the drawback of additional constraints is outweighed by far if
these constraints tighten the relaxation (cf. Williams, 1999, pp. 190–197).
The largest number of constraints exhibits Constraint set (4.17). It comprises |Smatch|

times as much constraints as Constraint set (4.11), where |Smatch| denotes the average
number of matching skills between a project p ∈ P and a worker k ∈ Ksuit

p \Kassigned
p . The

smallest number of constraints are contained in Constraint set (4.18), where a constraint
for project p covers the whole duration of project p. Constraint set (4.11) has |T proj| times
as much constraints as Constraint set (4.18), where |T proj| denotes the average duration
of a project p ∈ P .
We will use the following example to gain insight in the tightness of the three constraint

sets:

Example 4.2 Consider worker k and project p with Smatch
kp = {s1, s2}, Tp = {t1, t2},

Rkt1 = 50, and Rkt2 = 100. Let ykps1t1 = ykps2t1 = 25 and ykps1t2 = ykps2t2 = 0 be a feasible
solution for the MIP. Then xkp ≥ 1 satisfies (4.11), xkp ≥ 0.5 satisfies (4.17) and xkp ≥ 1

3

satisfies (4.18) in the LP relaxation of the corresponding MIP. �

In Example 4.2, Constraint set (4.11) is the tightest out of the three alternatives.
Indeed, Constraint set (4.11) is always at least as tight as Constraint sets (4.17) and
(4.18) and tighter than (4.17) and (4.18) in general.
From our considerations we concluded that Constraint set (4.11) is the best choice.

Numerical tests supported our conclusion. These numerical tests are presented in Sec-
tion 7.3.2
The network model is an alternative way to represent the same problem as the standard

model. Since the properties of network structures can often be exploited to design efficient
solution methods, it seems worthwhile to pursue this alternative approach. The network
model regards in each period t ∈ T each worker k ∈ K as a source of working time. This
source is represented by a node in the network model that supplies an amount of Rkt hours
of working time. Projects and departments are regarded as sinks, i.e., as nodes that ask
for working time. Project p asks for rpst hours of working time for each skill s ∈ Sp in
period t. Department d demands rddt hours of working time in period t. In the network
of period t, working time can flow from source nodes along arcs via intermediate nodes to
the sinks which represent the demand nodes. In any period t ∈ Tp, working time can flow
from worker k ∈ Ksuit

p to project p only if worker k is assigned to project p. Our aim is to
determine the minimum number of assignments of workers to projects that allow a flow
of working time which satisfies all demands of projects and departments in every period.

2For a tighter formulation of the big-M Constraints (4.11) and (4.17) see Subsection 6.1.1.
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The underlying network of a period is sketched in Figure 4.1, which also depicts
additional flow variables, which are required for the network model. For Figure 4.1, we
assume that projects p1 and p2 are executed in period t and that workers k1 and k2 belong
to department d1. Furthermore, we assume that worker k1 and k2 master the skills s1 and
s2, which are required by project p1. Note that Figure 4.1 illustrates only a section of the
total network of period t in order to clarify the concept. A demand for working time is
represented by a negative supply.

Stage 1 Stage 2 Stage 3 Stage 4

k1t

Rk1t

k2t

Rk2t

...

k1tp1

k1tp2
...

· · ·
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· · ·

f
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k1p1t

k1tp1s1

k1tp1s2
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· · ·

k2tp1s1
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...

· · ·

yk1p1s1t
lk1s1

lk2s1

p1s1t
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−rp1s1t

d1t
...

−rdd1t

lk1s1yk1p1s1t

f
dep
k1t

Key: node i
supplyi
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supplyj

gainij
flowij gainij · flowij

Figure 4.1: Section of the underlying network flow model for period t

Like the network of period t in Figure 4.1, the network of each period t ∈ T comprises
four stages, with supply nodes at the first stage and demand nodes at the fourth stage. At
the first stage of the network, the source nodes represent the workers k ∈ K, who supply
a flow of Rkt hours of working time. This flow from worker k is divided into flows fproj

kpt to
projects p ∈ Psuit

k (t) at the second stage and into a flow fdep
kt to the department to which

worker k belongs.
The flow fproj

kpt to project p is split up into flows ykpst, s ∈ Smatch
kp , to project demand

nodes on the final stage. Before the flow ykpst reaches the sink node that represents the
project requirement rpst, the flow is multiplied by a gain of lks. This gain weights the
time that worker k spends for skill s of project p with his skill level lks. Since lks 
= 1 is
possible, we obtain a network with gains (cf. Ahuja et al., 1993, pp. 566–568; Bertsekas,
1998, pp. 360–365). Problems on networks with gains are termed generalized network
problems.
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The network model requires two types of additional variables, which have already
been introduced in Figure 4.1. First, variable fproj

kpt ∈ R≥0, k ∈ K, p ∈ Psuit
k , t ∈ Tp,

records the flow between stage 1 and 2 from worker k to project p in period t. Second,
the variable fdep

kt ∈ R≥0, k ∈ K, t ∈ T , represents the flow between stage 1 and 4 from
worker k to his department d in period t.
For each worker k ∈ K and all projects p ∈ Psuit

k , the flow variables fproj
kpt of all

periods t ∈ Tp and hence the networks of all these periods are coupled by the binary
decision variable xkp. Each variable fproj

kpt , t ∈ Tp, must equal 0 if worker k is not assigned
to project p, i.e., if xkp = 0.
Although additional variables are required for the network model, it is worthwhile

to consider this model, because underlying network structures can often be exploited by
specialized network algorithms. These algorithms facilitate an efficient solution of the
underlying problems (cf. Ahuja et al., 1993, pp. 402–403, for example).
The network model is given by (4.19)–(4.29). The decision variables of the network

model are the binary variables xkp, k ∈ K, p ∈ P suit
k , which indicate whether worker k

is assigned to project p or not, and the non-negative continuous variables ykpst, k ∈ K,
p ∈ Psuit

k , s ∈ Smatch
kp , t ∈ Tp, which record the workload that worker k performs for

project p and skill s in period t. Auxiliary variables are the non-negative continuous
variables fproj

kpt , k ∈ K, p ∈ Psuit
k , t ∈ Tp, which represent the flow from worker k to

project p in period t, and the non-negative continuous variables fdep
kt , k ∈ K, t ∈ T , which

represent the flow from worker k to his department in period t.

Min.
∑
k∈K

∑
p∈Psuit

k

xkp (4.19)

s. t. Rkt = fdep
kt +

∑
p∈Psuit

k (t)

fproj
kpt k ∈ K, t ∈ T (4.20)

fproj
kpt =

∑
s∈Smatch

kp

ykpst k ∈ K, p ∈ Psuit
k , t ∈ Tp (4.21)

∑
k∈Ks

(lksykpst) = rpst p ∈ P , s ∈ Sp, t ∈ Tp (4.22)

∑
k∈Kd

fdep
kt ≥ rddt d ∈ D, t ∈ T (4.23)

fproj
kpt ≤ Rktxkp p ∈ P , k ∈ Ksuit

p \ Kassigned
p , t ∈ Tp (4.24)

xkp = 1 p ∈ Pongoing, k ∈ Kassigned
p (4.25)

xkp ∈ {0, 1} p ∈ P , k ∈ Ksuit
p \ Kassigned

p (4.26)

fproj
kpt ≥ 0 k ∈ K, p ∈ Psuit

k , t ∈ Tp (4.27)

fdep
kt ≥ 0 k ∈ K, t ∈ T (4.28)
ykpst ≥ 0 k ∈ K, p ∈ Psuit

k , s ∈ Smatch
kp , t ∈ Tp (4.29)

Objective function (4.19) minimizes the total number of assignments and, hence, the
average team size. The total number of assignments includes the assignments that have
already been made for ongoing projects.
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Constraints (4.20)–(4.22) are flow conservation constraints. Constraints (4.20) demand
that the flow of working time from worker k to his department and to projects in period t
must equal the supply Rkt of working time in period t. Constraints (4.21) ensure that
the working time which worker k spends for all skills s ∈ Smatch

kp of project p in period t
equals the flow from worker k to project p in period t. Constraints (4.22) assure that
requirement rpst of project p for working time concerning skill s in period t is covered by
contributions from suitable workers k. Their contributions are weighted with their skill
levels lks.
Constraints (4.23) guarantee that the flow of working time from those workers who

belong to department d ∈ D to their department d in period t is sufficiently large to cover
the requirement rddt. Constraint set (4.23) allows that an excessive supply of working time
is absorbed by the departments. As a consequence, the variable fdep

kt does not specify the
departmental workload that worker k must accomplish in period t, but is only an upper
bound on the departmental workload that must be accomplished by worker k in period t.
Constraints (4.24) link the variables xkp and fproj

kpt . These constraints guarantee that
worker k can only contribute to project p if he is assigned to project p. A contribu-
tion fproj

kpt > 0 in any period t ∈ Tp and, hence, a contribution ykpst > 0 for any
skill s ∈ Smatch

kp requires xkp = 1. Simultaneously, Constraints (4.24) force xkp = 1 if
worker k contributes to project p in any period t ∈ Tp. Thus, if worker k contributes to
project p, he is automatically assigned to project p.
For each ongoing project p ∈ Pongoing, a team Kassigned

p of workers exists already. For
each member k of this team, Constraint set (4.25) fixes the corresponding variable xkp

to 1. Constraint sets (4.26)–(4.29) state the domains of the actual decision variables. The
decision variables whose domains are defined in (4.27) and (4.28) can be considered as
auxiliary variables, which are required to model the network flows in each period t ∈ T .
Constraints (4.24) are big-M constraints. They are equivalent to the big-M Con-

straints (4.11) of the standard model. Constraint set (4.24) can also be replaced by
Constraint sets (4.17) or (4.18).

4.3.2 Limitations of the assignment models and potential remedies
and extensions

We have already discussed limitations of our approach to project selection in Section 3.2
and limitations of our approach to leveling hours worked by allocating departmental
workload in Section 3.4. Now, we will elaborate on limitations of the two models that
we introduced in the previous Subsection 4.3.1. Both models have identical scope and
seek for a solution to the same problem. They search for an assignment of workers to
projects and for an allocation of project workload to workers. Since this problem is in
the focus of this thesis, we dedicate a separate subsection to limitations of our models for
this problem. The limitations that we discuss are the neglect of overtime, the neglect of
learning effects3, the neglect of the role of project managers, and the neglect of worker
compatibility.
In many firms, workers are allowed to work overtime. If a worker works overtime,

his regular availability is exceeded. Usually, the amount of extra hours per period is

3The consideration of learning effects would result in dynamic skill levels.



64 Chapter 4 Optimization models and complexity analysis

limited. Firms prescribe extra hours to meet peak demands. Workers are compensated
for extra hours either by monetary means or by days off in other periods. If days off
are granted instead of monetary rewards, many employment contracts prescribe that the
average hours worked per period must not exceed the average regular availability per
period. This means that extra hours must be completely compensated in the course of a
year or so.
Our models (4.9)–(4.16) and (4.19)–(4.29) do not consider overtime. They regard the

regular availability Rkt of worker k in period t as a hard constraint, which must not be
violated. Hence, our modeling approach does not meet the conditions that prevail in
many firms.
In the project management literature, overtime is rarely considered in models. A

model that takes overtime into account is the model of Heimerl and Kolisch (2010a).
Heimerl and Kolisch (2010a) want to minimize costs for wages. They associate wage rates
with extra hours that are higher than wage rates for regular hours. In their model, extra
hours are explicitly registered by distinct variables.
The integration of overtime into our models is possible as well. If extra hours are

compensated by additional payments and need not be balanced over the planning horizon
but are limited for each period, then we would just have to increase the availability Rkt.
For example, assume that the regular availability of worker k in period t is given by
Rkt = 160 and that 20 extra hours are allowed for worker k in period t, then we would
set Rkt := 180. Since we do not consider variable costs, nothing else must be done. If we
want to take variable costs for overtime into account, additional variables are necessary
to record the extra hours of each worker in each period (cf. Heimerl and Kolisch, 2010a).
If extra hours must be compensated by days off in the course of the planning horizon,

our models require three changes. First, we have to increase Rkt, k ∈ K, t ∈ T , by the
number of extra hours that are allowed per period. For example, if the regular availability
of worker k is given by Rkt = 160 for each period t ∈ T and if 20 extra hours were allowed
per period, we would set Rkt := 180 for each period t ∈ T .
Second, a new set of constraints must be added to our models. These constraints must

demand that the number of hours worked by worker k ∈ K during the whole planning
horizon does not exceed the number of regular hours that the labor contract allows for
the planning horizon. In our example, worker k would not be allowed to work more than
160 ·T hours during the planning horizon T = {1, . . . , T}. Constraint (4.30) imposes this
limit on the total working time of worker k during the planning horizon.∑

t∈T

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst ≤ 160 · T (4.30)

Third, the workload of each department must be interpreted as a project. The first
two changes, which we presented for the standard model and the network model, are not
in line with Constraints (4.13) and Constraints (4.23), respectively, which ensure that
the remaining availability after project work is sufficiently large to cover departmental
workloads in each period. The issue is that Constraint (4.30) does not register the time
that worker k spends for departmental work. To fix this issue, the workload of each
department d ∈ D has to be interpreted as a project. This interpretation results in D ad-
ditional projects. The project that corresponds with department d has a requirement of
rddt man-hours in period t ∈ T . This workload can only be accomplished by members of
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department d. Thus, department membership must be interpreted as a skill, resulting in
D additional skills. Such an additional skill is mastered only by the members of the corre-
sponding department. The skill level with which each member masters his departmental
skill is equal to 1. Additional binary assignment variables that indicate whether worker k
is assigned to the project that corresponds to his department or not, can be fixed to 1.
These three changes of our models would allow to integrate overtime that is compensated
by days off.
A consideration of overtime in a model raises the question how worked extra hours

should be taken into account in the objective function of the model. If a firm grants
monetary compensation for extra hours, it seems natural to minimize the payments for
overtime. Though it is difficult to integrate this cost objective and the objective of a
minimum average team size into a single objective function, because both objectives are
expressed in different units. Natural weights for the two objectives are not apparent.
Hence, it would make more sense to consider both objectives separately and to determine
a set of pareto-optimal solutions. If the firm compensates extra hours by days off, the
same difficulties arise if the firm wants to minimize the number of extra hours in order to
achieve leveled working times for its workforce. If the firm does not aim at minimizing
extra hours, extra hours need not be taken into account in an objective function.
We do not consider overtime in our models for two reasons. First, extra hours are

rather an ad hoc measure to cover unforeseen workload peaks. Although flexible working
time agreements have become more common, especially labor unions and works councils
urge the management of firms to stick to regular working times and are opposed to the
planned use of extra hours. Therefore, overtime is often not deemed a suitable way to
expand capacity or to form small teams. The second reason for neglecting overtime is
owed the novelty of our approach. Since this approach is the first of its kind, we restrict
our models to the most essential elements and parts of the underlying problem in order to
get good insight into basic properties of the problem. Effects that appear when input data
or solution methods are changed stand out more clearly in case of a plain and compact
model.
Furthermore, our models assume that the skill levels lks, k ∈ K, s ∈ Sk, are static. We

ignore that skill levels might change due to effects of learning and forgetting. Learning
and forgetting a skill is closely linked to performing the skill. When skill s is performed by
worker k, the learning effect increases the skill level lks. The increase can be derived from
a nonlinear learning curve (cf. Wright, 1936; Yelle, 1979). Forgetting appears when skill s
is not performed for some time and decreases the skill level (cf. Chen and Edgington,
2005, p. 287).
In the literature, models exist that incorporate learning and forgetting (cf. Wu and

Sun, 2006; Gutjahr et al., 2008, 2010; and Heimerl and Kolisch, 2010b, for example).
These models apply nonlinear expressions to integrate the concept of the learning curve.
The resulting models feature dynamic skill levels. Some of the models aim at allocating
workload such that targets for skill levels are met at the end of the planning horizon.
The integration of dynamic skill levels into our models would require significant

changes, which lead to nonlinear models. Though, in our opinion, the merit of con-
sidering dynamic skills is small in our case. We argue that the merit is small for two
reasons. First, it is difficult and cumbersome to derive learning rates for each worker
and each skill, especially because for some skills it can be costly to measure skill levels
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at short intervals to construct a learning curve. Estimations of learning rates tend to be
error-prone. Secondly, the typical length of our planning horizon of one year is relatively
short compared to the duration of project tasks, which are quite complex and can last
several months. Thus, learning effects within some periods should be rather small, as the
number of units of output is small.4 That is why we recommend to use static skill levels
and evaluate skill levels once a year. Then, models for the next planning horizon can be
fed with updated skill levels. Periodically updates of skill levels are also used by Süer and
Tummaluri (2008).
If a firm aims at allocating project workload such that skills of workers are developed to

meet skill level targets at the end of the planning horizon, a model featuring dynamic skill
levels is advantageous. Nevertheless, if the firm wants that worker k gathers experience
in skill s, we could simply add a constraint to our models. Assume that worker k is
said to perform at least 100 hours of work for skill s during the planning horizon, then
Constraint (4.31) would guarantee this experience.∑

t∈T

∑
p∈Psuit

k (t) | s∈Sp

ykpst ≥ 100 (4.31)

The third limitation concerns the role of the project manager. Usually, each project
has one project manager. She is the head of the project team, coordinates the team
members, and is responsible for a successful implementation of the project (Kerzner,
2013, pp. 14–15).
While our models do not take the role of project managers into account, Yoshimura

et al. (2006) and Patanakul et al. (2007) published models that explicitly consider the
role of the project manager.
For our approach, we can imagine at least two ways to assign exactly one project

manager to each project. First, project managers might be assigned in advance, i.e.,
before the assignment model is solved that determines the project teams. Second, the task
of assigning one project manager to each project could be integrated into our assignment
models. We would define a set KPM

p ⊆ Ksuit
p , p ∈ P , of workers that are qualified to act

as project manager for project p. Then, Constraint (4.32) would ensure that at least one
worker out of the set KPM

p is selected for managing project p.∑
k∈KPM

p

xkp ≥ 1 (4.32)

If in a solution more than one worker out of the set KPM
p was assigned to project p,

one of them must be selected as project manager. If it is not deemed suitable to include
more than one potential project manager into a project team, we could demand that the
left-hand side of Constraint (4.32) must equal 1.
Project managers have to accomplish special tasks for their project, e.g., administra-

tive tasks. To model these requirements we could associate a distinct skill s with the

4It may even be difficult to define an appropriate unit of output. Though, a definition of a unit of
output is required to measure a learning rate. Such a definition is obvious for manufacturing firms (cf.
Nembhard and Uzumeri, 2000). For a software development organization, Boh et al. (2007) defined
completed modification requests and software releases as units of output, which were accumulated over
a time span of 14 years.
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qualification to head a project team. Then, a requirement rpst for this special skill s
could model the tasks that must be accomplished by the project manager of project p in
period t.
Finally, we address the compatibility between workers. Compatibility between workers

means how well two workers cooperate. Compatibility is a complex matter, as it is affected
by various personality traits and the work situation (cf. Tett and Murphy, 2002).
Findings about the relationship between worker compatibility and team performance

are ambiguous. Intuitively, one would expect compatibility to be positively correlated to
performance, as found by Reddy and Byrnes (1972) in an experimental study. However,
Hill (1975) found in an empirical study of teams within an IT department that rather
incompatibility than compatibility is associated with performance and effectiveness. Hill
(1975) suggested that the nature of a task may impact the relation between worker com-
patibility and effectiveness: The more cooperation the task requires, the more important
is compatibility. Though, if “synergistic gains are not possible, incompatibility may lead
to higher total accomplishment through the channeling of energy into individual efforts”
(Hill, 1975, p. 218).
Our models do not take care of worker compatibility. We assume that workers are

equally compatible to one another, i.e., that they are indifferent to the selection of their
co-workers.
In the literature, models have been proposed that consider worker compatibility. For

example, Kumar et al. (2013) have formulated a MIP model for a problem where tasks
must be assigned to workers and where some tasks depend on other tasks. If task j
depends on task i, the workers that are assigned to these tasks must cooperate. The
more the workers are compatible with each other, the better is their cooperation and the
smoother is the corresponding work flow. The objective of the model of Kumar et al.
(2013) is to assign tasks to workers such that the total pairwise compatibility of workers
who must cooperate is maximized.
We could adopt the approach of Kumar et al. (2013) to modeling compatibility and

we could integrate compatibility into our models in two ways. First, we could integrate
compatibility into the objective function by adding a term that measures total pairwise
compatibility of an assignment of workers to project teams. Second, we could integrate
compatibility into the constraints of our models if we wish that total pairwise compatibility
within project teams does not fall below a certain level. Both ways imply terms that are
nonlinear in the decision variables xkp or ykpst, respectively. Alternatively, additional
binary variables would allow to stick to a linear model.
Measuring total pairwise compatibility of a solution to the assignment problem can be

done more or less detailed. We could merely consider the xkp variables to measure com-
patibility solely based on project team membership. Alternatively, we could consider the
ykpst variables to weight the compatibility of workers based on actual cooperation. If, for
example, worker k contributes to project p only in period t = 1, and worker k′ contributes
to project p only in period t = 2, the compatibility between k and k′ will not matter
much. Although worker k and worker k′ join the same project team, the ykpst variables
reveal that the need for face-to-face interaction between k and k′ is presumably small.
Considering compatibility would require a large quantity of personal data. It might be

difficult to obtain these data and to obtain correct data, because workers would have to
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reveal the quality of their working relationship to colleagues and are likely to give biased
judgements.
If we only want to avoid that two workers k and k′ are assigned to the same project,

because they are likely to impede project work due to interpersonal conflicts, Constraint
set (4.33) can be added to our models. Constraints (4.33) ensure for each project p ∈
Psuit

k ∩ Psuit
k′ that at most one worker of the pair (k, k′) is assigned to project p.

xkp + xk′p ≤ 1 p ∈ Psuit
k ∩ Psuit

k′ (4.33)

If, on the other hand, worker k and worker k′ are an inseparable team and neither of
them can work without the other, Constraints (4.34) can be added to our models. For
each project for which both k and k′ are suitable, Constraints (4.34) guarantee that either
both are assigned to this project or neither of them.

xkp = xk′p p ∈ Psuit
k ∩ Psuit

k′ (4.34)

4.4 Two alternative models for the utilization leveling
problem

At the last stage of our three-stage hierarchical planning approach, we want to level the
hours worked for the members of each department d ∈ D in each period t ∈ T . The hours
worked by employee k in period t comprise the time that he spends for projects and the
time that he devotes to his department. At the last stage, the time that worker k will spend
for projects in each period t ∈ T is already known and given by

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp
ykpst.

The time ydkt that worker k must work for his department in a period t is yet to be
determined such that the hours worked by worker k and his colleagues are leveled in this
period.
In leveling problems, loads must be determined such that the loads are as equal as pos-

sible. Various objective functions for leveling problems have been proposed and considered
in the literature, e.g., (1) minimizing the sum of squared loads (cf. Burgess and Killebrew,
1962), (2) minimizing the weighted sum of underloads and overloads (cf. Shanker and
Tzen, 1985), (3) minimizing the maximum load (cf. Berrada and Stecke, 1986), (4) mini-
mizing the absolute deviations between desired loads and planned loads (cf. Easa, 1989),
(5) minimizing the difference between maximum and minimum load (cf. Guerrero et al.,
1999), and (6) minimizing the total pairwise difference of loads or the average pairwise
difference of loads (cf. Jang et al., 1996; and Kumar and Shanker, 2001, respectively).
Objective functions (1), (2), (4) and (6) are suitable for our problem. We will consider
two typical objective functions: a quadratic one, which follows (1), and a linear one, which
follows (6).
A quadratic objective function for leveling problems sums the squares of the loads

that are to be leveled. In our case loads are hours worked. The sum of loads has to be
minimized. Loads that are disproportionately large are punished in the objective function
by squaring.

Example 4.3 Assume that department d has two workers k1 and k2 whose project con-
tributions in period t are 0. Let rddt = 4 and let yd2

k1t
+ yd2

k2t
be the objective function,
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which must be minimized. Then ydk1t = ydk2t = 2 is the optimal solution with an ob-
jective function value of 8. An allocation with ydk1t = 1 and ydk2t = 3, which is less
balanced, would result in an objective function value of 10. �

For a quadratic objective function, our problem of allocating departmental workload
is given by (4.35)–(4.38). The aim of model (4.35)–(4.38) is to level the total workload
of workers who belong to department d in period t. This model has to be solved for each
department d ∈ D in each period t ∈ T , i.e., it has to be solved D ·T times. The decision
variables of the quadratic leveling model are the non-negative continuous variables ydkt,
k ∈ Kd, which represent the departmental workload that is allocated to worker k in
period t.

Min.
∑
k∈Kd

⎛
⎝ydkt +

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst

⎞
⎠

2

(4.35)

s. t.
∑
k∈Kd

ydkt = rddt (4.36)

ydkt ≤ Rkt −
∑

p∈Psuit
k (t)

∑
s∈Smatch

kp

ykpst k ∈ Kd (4.37)

ydkt ≥ 0 k ∈ Kd (4.38)

Objective function (4.35) minimizes the sum of squared working times of workers
from department d in period t. Constraints (4.36) ensure that the entire departmental
workload is distributed among department members. Constraints (4.37) guarantee that
the time that worker k spends for his department and for projects does not exceed his
availability Rkt. Constraints (4.38) state the domains of the decision variables.
Model (4.35)–(4.38) can be transformed into an LP by linearizing the quadratic ob-

jective function (cf. Williams, 1999, pp. 136–142). Objective function (4.35) is separa-
ble, because it can be stated as a sum of terms dependent on a single variable. Each
quadratic term yd2

kt, k ∈ Kd, of the objective function can be approximated by a piece-
wise linear function. Introducing such a piecewise linear function to the model requires
additional variables to represent the line segments of the piecewise linear function: For
n line segments, n+ 1 continuous variables are required; for each line segment, two vari-
ables correspond to the endpoints of the interval for which the line segment approximates
the quadratic function. Since objective function (4.35) is convex and we minimize this
function, the sketched way of linearization, which leads to a linear program, works (cf.
Williams, 1999, pp. 139-140). This means that the linearized model matches every feasible
value of a variable ydkt with the correct point on the correct line segment.
An optimal solution to the linearized model can deviate from an optimal solution to

the original quadratic model. In general, the finer the approximation, i.e., the more line
segments are used to describe a quadratic function, the closer the solution of the LP comes
to the solution to the original problem.5

5If all load variables ydkt, k ∈ Kd, were restricted to integer values, an exact linearization would be
possible, though, it would result in a MIP (cf. Rieck et al., 2012).
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For our problem, it is also possible to apply a linear objective function, which minimizes
the total absolute difference between the working times of all pairs (k, k′) of workers,
k ∈ Kd, k′ ∈ Kd \ {k}. The absolute difference between working times of two workers k
and k′ can be calculated by the absolute value function. The absolute value function is
not a linear function but can be linearized. This linearization is exact, in contrast to the
linearization described for the quadratic model. Before we turn to the linearization of the
absolute value function, let us consider an example that shows how the absolute value
function evaluates different allocations of departmental workload. Our example takes up
Example 4.3.

Example 4.4 Assume that department d has two workers k1 and k2 whose project con-
tributions in period t are 0. Let rddt = 4 and let

∣∣ydk1t − ydk2t

∣∣ be the objective function,
which must be minimized. Then ydk1t = ydk2t = 2 is the optimal solution with an ob-
jective function value of 0. An allocation with ydk1t = 1 and ydk2t = 3, which is less
balanced, would result in an objective function value of 2. �

Let us consider the absolute value function from Example 4.4 to demonstrate how an
absolute value function can be linearized. For linearization of the function |ydkt − ydk′t|,
we have to introduce a variable Δkk′ ∈ R≥0. If we require Δkk′ ≥ ydkt − ydk′t and
Δkk′ ≥ ydk′t − ydkt, then minimizing Δkk′ is equivalent to minimizing |ydkt − ydk′t|.
Now, the linear leveling model can be formulated. It is given by model (4.39)–(4.44).

The aim of model (4.39)–(4.44) is to level the total workload of workers who belong to
department d in period t. This model has to be solved for each department d ∈ D in
each period t ∈ T , i.e., it has to be solved D · T times. The decision variables are the
non-negative continuous variables ydkt, k ∈ Kd, t ∈ T , which represent the departmental
workload that is allocated to worker k in period t. Auxiliary variables are the non-negative
continuous variables Δkk′ , k ∈ Kd \

{
k|Kd|

}
, k′ ∈ Kd, k′ > k, which represent the absolute

difference between the hours worked by workers k and k′. Here, k|Kd| denotes that worker
of department d whose index k is the largest among all department members.

Min.
∑

k∈Kd\
{
k|Kd|

}

∑
k′∈Kd | k′>k

Δkk′ (4.39)

s. t. Δkk′ ≥ ydkt +
∑

p∈Psuit
k (t)

∑
s∈Smatch

kp

ykpst

−

⎛
⎜⎝ydk′t +

∑
p∈Psuit

k′ (t)

∑
s∈Smatch

k′p

yk′pst

⎞
⎟⎠ k ∈ Kd \

{
k|Kd|

}
,

k′ ∈ Kd, k
′ > k

(4.40)

Δkk′ ≥ ydk′t +
∑

p∈Psuit
k′ (t)

∑
s∈Smatch

k′p

yk′pst

−

⎛
⎝ydkt +

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

ykpst

⎞
⎠ k ∈ Kd \

{
k|Kd|

}
,

k′ ∈ Kd, k
′ > k

(4.41)

∑
k∈Kd

ydkt = rddt (4.42)
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ydkt ≤ Rkt −
∑

p∈Psuit
k (t)

∑
s∈Smatch

kp

ykpst k ∈ Kd (4.43)

ydkt ≥ 0 k ∈ Kd (4.44)

Objective function (4.39) minimizes the sum of pairwise absolute differences between
working times of members of department d in period t. Constraints (4.40) assure that the
difference in working times is registered for each pair (k, k′), k > k′, where worker k works
more hours than worker k′. Constraints (4.41) register the difference in working times for
each pair (k, k′), k > k′, where worker k works less than worker k′. Constraints (4.42)
ensure that the entire departmental workload is distributed among department members.
Constraints (4.43) guarantee that the time worker k spends for his department and for
projects does not exceed his availability Rkt. Finally, Constraints (4.44) state the domains
of the decision variables ydkt. The domains of the auxiliary variables Δkk′ are implicitly
defined in Constraints (4.40) and (4.41).
An optimal solution for the quadratic model is also optimal for the linear model and

vice versa. Hence, both models are equivalent. Though, from a computational point of
view, the linear model seems preferable.

4.5 A monolithic model for all three problems
After we presented models for each stage of the hierarchical planning approach, we will
show an integrated, monolithic model for our three problems. The monolithic model can
serve as a reference point, which enables us to assess the efficiency of the hierarchical
planning approach.
In Section 4.1 we outlined two roads to integrate multiple objectives into a mono-

lithic model. The first road was to consider a weighted sum of the single objectives; the
alternative was to optimize a vector of objective functions, where each single objective
constituted a component of the vector. The monolithic model that we present here fea-
tures an objective function that is a weighted sum of the objectives of our three problems.
Let w1, w2 and w3 denote the weights of our three objectives. Weight w1 corresponds

to the objective of selecting the most beneficial project portfolio. Weight w2 refers to the
goal of minimizing the number of assignments of workers to selected projects. Finally,
factor w3 weights the impact of the aim to level working times of workers.
Note that the weight ratios w1/w2 and w2/w3 must be carefully chosen to obtain desired

and sensible results. If the ratio w1/w2 is too low, the number of assignments might
be minimized by selecting no project at all. In the integrated model, working times
cannot only be leveled by allocating departmental workload, but also by allocating project
workload. If the ratio w2/w3 is too low, the working time could be balanced optimally by
allocating project workload to many workers leading to a high number of assignments. If
the weight ratios are sufficiently high, the three objectives are lexicographically ordered
as in the hierarchical approach.
The monolithic model is given by (4.45)–(4.57). Model (4.45)–(4.57) is a MIP model

that comprises two types of binary decision variables and three types of non-negative
continuous variables. Binary decision variables are the variables zp, p ∈ P̃ , which indicate
whether project p is selected or not, and the variables xkp, k ∈ K, p ∈ P̂suit

k , which
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indicate whether worker k is assigned to project p or not. The first type of non-negative
continuous decision variables are the variables ŷkpst, k ∈ K, p ∈ P̂suit

k , s ∈ Smatch
kp , t ∈ Tp,

which represent the workload that worker k performs for project p and skill s in period t.
The second type of non-negative continuous decision variables are the variables ydkt,
k ∈ K, t ∈ T , which represent the departmental workload that is allocated to worker k in
period t. The third and last type of the non-negative continuous decision variables are the
auxiliary variables Δkk′t, k ∈ Kd \

{
k|Kd|

}
, k′ ∈ Kd, k′ > k, d ∈ D, t ∈ T , which represent

the absolute difference in working times in period t between workers k and k′ who belong
to the same department d. Again, k|Kd| denotes that worker of department d ∈ D whose
index k is the largest among all members of department d.
With respect to the decision variables, there are three differences compared to the

hierarchical models: First, one set of variables obtains an additional index. All vari-
ables used in the hierarchical models are also used in the monolithic model except for
the variables Δkk′t. Because leveling cannot be done any longer for each period t ∈ T
separately, we must add a time index to the variables Δkk′ , resulting in the variables Δkk′t.
Both variables have the same meaning. They represent the absolute difference between
the hours worked by workers k and k′ in the considered period t. The second difference
is that the number of the variables xkp increased, because the number of projects that
come into question for staffing increased from |P| to

∣∣Pongoing ∪ Pmust ∪ P̃
∣∣. Finally, the

variables ŷkpst do not state the preliminary, but the final allocation of project workload.

Min. − w1

∑
p∈P̃

bpzp + w2

∑
k∈K

∑
p∈P̂suit

k

xkp + w3

∑
d∈D

∑
k∈Kd\

{
k|Kd|

}

∑
k′∈Kd | k′>k

∑
t∈T

Δkk′t (4.45)

s. t.
∑
k∈Ks

(lksŷkpst) = rpstzp
p ∈ Pongoing ∪ Pmust ∪ P̃ ,

s ∈ Sp, t ∈ Tp

(4.46)

∑
s∈Smatch

kp

ŷkpst ≤ Rktxkp

p ∈ Pongoing ∪ Pmust ∪ P̃ ,

k ∈ Ksuit
p \ Kassigned

p , t ∈ Tp

(4.47)

Δkk′t ≥ ydkt +
∑

p∈P̂suit
k (t)

∑
s∈Smatch

kp

ŷkpst

−

⎛
⎜⎝ydk′t +

∑
p∈P̂suit

k′ (t)

∑
s∈Smatch

k′p

ŷk′pst

⎞
⎟⎠ k ∈ Kd \

{
k|Kd|

}
, k′ ∈ Kd,

k′ > k, d ∈ D, t ∈ T
(4.48)

Δkk′t ≥ ydk′t +
∑

p∈P̂suit
k′ (t)

∑
s∈Smatch

k′p

ŷk′pst

−

⎛
⎝ydkt +

∑
p∈P̂suit

k (t)

∑
s∈Smatch

kp

ŷkpst

⎞
⎠ k ∈ Kd \

{
k|Kd|

}
, k′ ∈ Kd,

k′ > k, d ∈ D, t ∈ T
(4.49)

∑
k∈Kd

ydkt = rddt d ∈ D, t ∈ T (4.50)
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ydkt +
∑

p∈P̂suit
k (t)

∑
s∈Smatch

kp

ŷkpst ≤ Rkt k ∈ Kd, t ∈ T (4.51)

zp = 1 p ∈ Pongoing ∪ Pmust (4.52)
xkp = 1 p ∈ Pongoing, k ∈ Kassigned

p (4.53)

zp ∈ {0, 1} p ∈ P̃ (4.54)

xkp ∈ {0, 1}
p ∈ Pongoing ∪ Pmust ∪ P̃ ,

k ∈ Ksuit
p \ Kassigned

p

(4.55)

ŷkpst ≥ 0
k ∈ K, p ∈ P̂suit

k ,

s ∈ Smatch
kp , t ∈ Tp

(4.56)

ydkt ≥ 0 k ∈ K, t ∈ T (4.57)

Objective function (4.45) minimizes the weighted sum of our three objectives. Note
that maximizing the weighted portfolio benefit is achieved by multiplying the weighted
portfolio benefit by −1 and by minimizing the resulting term.
Constraint set (4.46) ensures that each requirement rpst of project p is satisfied if

project p is selected. Constraints (4.47) link the variables xkp and ŷkpst. These constraints
guarantee that worker k can only contribute to project p if he is assigned to project p.
A contribution ŷkpst > 0 for any skill s ∈ Smatch

kp in any period t ∈ Tp requires xkp = 1.
Simultaneously, Constraints (4.47) force xkp = 1 if worker k contributes to project p for
any skill s ∈ Smatch

kp in any period t ∈ Tp. Hence, if worker k contributes to project p, he
is automatically assigned to project p.
Constraints (4.48) and (4.49) assure that the absolute difference in working times is

registered for each pair (k, k′) of workers within each department d in each period t.
Constraints (4.50) ensure that the entire departmental workload is distributed among
department members for each department d in each period t. Constraints (4.51) guarantee
that the time that worker k spends for his department and for projects in period t does
not exceed his availability Rkt.
Constraint set (4.52) fixes the variables zp, p ∈ Pongoing ∪Pmust, to 1, because we have

to include these projects in the portfolio. For each ongoing project p ∈ Pongoing, a team
Kassigned

p of workers exists already. For each member k of this team, Constraint set (4.53)
fixes the corresponding variable xkp to 1. Eventually, Constraint sets (4.54)–(4.57) state
the domains of the actual decision variables. The domains of the auxiliary variables Δkk′t,
which are required to obtain a linear term for the leveling goal in the objective function,
are implicitly defined in Constraints (4.48) and (4.49).

4.6 Complexity analysis
In this section, we will draw upon complexity theory and use its findings and methods
to judge whether our three problems are computationally easy or hard to solve. If we
can show that a problem can be classified as a hard problem according to complexity
theory, there is almost no hope to find an exact algorithm that solves any instance of
the problem to optimality in adequate time. Then, heuristic solution methods can be a
resort. Hence, the results of this section can guide our search for solution methods. We
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will first introduce the key concepts of complexity theory in Subsection 4.6.1, before we
analyze each of our three problems in the following Subsections 4.6.2–4.6.4 separately.
The results are summarized in Subsection 4.6.5.

4.6.1 Basic concepts of complexity theory
In this subsection, we will give an overview of basic concepts of complexity theory. Com-
plexity theory deals with—among other things—the complexity of algorithms and the
complexity of problems. Algorithms can be classified according to their running time.
We will distinguish polynomial-time from exponential-time algorithms. Problems can be
assigned to different complexity classes according to their hardness. We will explain the
most common complexity classes and sketch how membership of a problem in these classes
can be proved.
Complexity theory comprises two main branches (cf. Garey and Johnson, 1979; We-

gener, 2003). The first branch addresses running times and memory requirements of
algorithms. The running time of an algorithm is also called its time complexity. The
second branch entails the hardness of problems. The hardness of problems is also called
its complexity. As we will see, both branches are related. The roots of complexity theory
lie in the areas of computer science, mathematics, and operations research and started to
flourish in the late 1960s (cf. Ahuja et al., 1993, p. 788).
It was said that the first branch of complexity theory addresses running times and

memory requirements of algorithms. Nowadays, often the running time of an algorithm is
in the spotlight, while memory requirements of an algorithm are less important, because
memory space has become abundant and cheap. Since fast solution processes can save
money and since algorithms can be enormously complex, the running time of an algorithm
remains an important issue, even though processor speed has drastically increased, while
processor prices have not increased in the recent decades.
With respect to running times of algorithms, complexity theory seeks to determine

the minimum, average, and maximum running time that is required by an algorithm to
solve any instance of a problem for which the algorithm was developed. For meaningful
statements, the time required is expressed in relation to the instance size (cf. Garey and
Johnson, 1979, p. 5). To compare different algorithms for the same problem, usually
the maximum time required is considered (cf. Ahuja et al., 1993, pp. 56–57; Wegener,
2003, pp. 25–27; Nemhauser and Wolsey, 1999, p. 119), i.e., comparisons are based on
worst-case time complexity.
The maximum time that an algorithm requires to solve instances of a given size is

represented by an upper bound O on the number of elementary computational operations
that are executed by the algorithm to solve such an instance. The upper bound O is
an asymptotic upper bound, which only holds when instance size approaches infinity
(Nemhauser and Wolsey, 1999, p. 119; Wegener, 2003, pp. 25–27, cf.). It is assumed that
every elementary operation takes one unit of time (cf. Wegener, 2003, p. 22; Schirmer,
1995, p. 3). The number of elementary operations is expressed as a function f of the
instance size or, in other words, as a function of the amount of information necessary to
represent the instance. The instance size is given by one or more parameters. For our
problem, the number of workers K and the number of projects P are parameters that
impact instance size.
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If only one parameter n specifies the size of an instance, Ahuja et al. (1993, p. 59)
define that “an algorithm is said to run in O(f(n)) time if for some numbers c and n0, the
time taken by the algorithm is at most cf(n) for all n ≥ n0”. As an example, consider the
time complexities O(n2), O(2n) and O(n!). For O(n2) the function f(n) is a polynomial
in n. An algorithm whose running time is bounded by a polynomial in the instance size
is called polynomial-time algorithm. If for some algorithm the function f(n) is not a
polynomial in n, as it is the case with O(2n) and O(n!), the algorithm is said to run in
exponential time and is termed exponential-time algorithm (cf. Garey and Johnson, 1979,
p. 6).
If more than one parameter describes the size of an instance, the definitions of the

previous paragraph apply analogously. As an example, let K and P define the instance
size of a problem. Running times of O(K+P 2) or O(KP ) are called polynomial, whereas
running times of O(KP ) or O(KP !) are called exponential.
The second branch of complexity theory addresses the hardness of problems and classi-

fies problems as computationally easy or hard to solve by assigning them to different com-
plexity classes. Before we outline the most important complexity classes for our work, we
will briefly distinguish decision problems from optimization problems and consider what
their difference implies for complexity analysis, because the division of problems into
different complexity classes is primarily done for decision problems, whereas our three
problems are optimization problems.
Decision problems are problems whose solution is either “yes” or “no” (cf. Garey and

Johnson, 1979, p. 18). For example, let us consider an instance of the problem of allocating
project workload to workers. The following questions state decision problems: Does a
feasible solution exist for the given instance? Does a feasible solution with an objective
function value of 5 or less exist for the given instance?
We are, however, concerned with optimization problems, which belong to the broader

class of search problems. We want to answer questions such as the following one: “Which
feasible allocation of project workload for a given instance requires the least number of
assignments of workers to projects?”
Before we explain how the hardness of a decision problem can be related to the hardness

of an optimization problem, we define two phrases that are used in the following:

(1) an optimization problem and its corresponding decision problem, and

(2) a decision problem and its corresponding optimization problem.

Let us define the phrases by examples in a rather informal way. For (1) assume that the
optimization problem “Max. (Min.) b subject to some constraints” is given. Then, the cor-
responding decision problem is defined as “Is there a feasible solution for the optimization
problem with b ≥ c (b ≤ c)?”. Vice versa, for (2) consider the following decision problem:
“Is there a solution with b ≥ c (b ≤ c) that observes all constraints of a given problem?”
Then, the corresponding optimization problem is defined as “Max. (Min.) b subject to all
constraints of the given problem”. Based on our definition, the corresponding optimiza-
tion problem of a decision problem is uniquely defined, while the corresponding decision
problem of an optimization problem is uniquely defined except for the value of c. Since
the value of c is not relevant for our purposes, we consider the corresponding decision
problem of an optimization problem as uniquely defined.
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Garey and Johnson (1979, pp. 109–117) andWegener (2003, pp. 50–53) use the concept
of Turing reducibility, also called polynomial reducibility (cf. Schirmer, 1995, pp. 18–20),
to show how results for the complexity of a decision problem can be transferred to the
corresponding optimization problem. Later, we will consider this concept in more detail.
For now, we content ourselves with the fact that the concept of Turing reducibility allows
to conclude that an optimization problem is hard if its corresponding decision problem is
hard. Hence, we can examine the decision problems that correspond to our optimization
problems in order to obtain insights into the complexity of the optimization problems.
A focus of complexity theory is on the class NP (non-deterministic polynomial-time),

which contains all decision problems that can be solved by a non-deterministic algorithm
in polynomial time. Such an algorithm is a theoretical type of algorithm that decomposes
the process of solving a problem into two stages: a guessing stage and a checking stage.
At the first stage, a solution to the problem is guessed. The solution is also called
instance. This is the non-deterministic guessing stage. At the second stage, it is checked
in polynomial time if the solution is feasible (yes-instance) or not (no-instance). This is
the polynomial-time checking stage. The statement that a problem that is in NP can be
solved in polynomial time by this theoretical type of algorithm refers only to the checking
stage and only to the case where a yes-instance is checked (cf. Nemhauser and Wolsey,
1999, pp. 128–129). The decision problems that correspond to our three optimization
problems belong to the class NP what we will prove for each problem in the following
subsections.
A major contribution of complexity theory is the classification of decision problems

that belong to the class NP into three different subclasses. These three main subclasses
are the class P (deterministic polynomial-time) of “easy” problems, the class NPC (NP-
complete) of “hard” problems, and the class NPI (NP-intermediate) of problems whose
complexity is between the complexities of the classes P and NPC (cf. Garey and Johnson,
1979, pp. 154–161). Problems in class P can be solved by polynomial-time algorithms.
For problems of class NPC only exponential-time algorithms are known, but until now
it could not be ruled out that polynomial-time algorithms for these problems might be
developed. If a polynomial-time algorithm was found for one problem out of NPC, every
problem of the class NPC could be solved in polynomial time. This would imply P = NP.
Though, a majority of researchers supposes that the conjecture P 
= NP is true. A proof
or a falsification of this conjecture, however, remains to be presented and is currently the
presumably greatest challenge in the field of complexity theory.
Among the problems that belong to the class NPC, there is a special type of problems

called number problems (cf. Garey and Johnson, 1979, pp. 90–106). Some of these number
problems are computationally better tractable than other number problems and non-
number problems. We will succinctly treat this special type of problems in order to be
able to draw potential conclusions for our problems.
Number problems are problems where the largest number that appears within the

instance data cannot be bounded by a polynomial in the instance size. As an example for
a number problem, consider the knapsack problem, where a subset from n items has to
be selected that has maximum total utility and a total weight not exceeding the knapsack
capacity c. An instance comprises n weights, n utility values and the capacity value c.
Without loss of generality, let c be the largest number of the instance. The instance
size, i.e., the amount of information necessary to represent the instance is bounded by
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O(n log2 c) if numbers are encoded using the binary representation. Because the maximum
number c cannot be bounded by O(n log2 c), the knapsack problem is a number problem.
Another number problem, which also belongs to NPC, is the traveling salesman prob-

lem. In this problem, we seek a tour of minimum length through n cities. The distance
between any two cities cannot be bounded by a polynomial in the instance size.
In contrast, the minimum cover problem6, which also belongs to NPC, is not a number

problem, i.e., it is a non-number problem. In the minimum cover problem, a set C is
given consisting of sets Ci, i = 1, . . . , |C|, where each set Ci is a subset of a finite set F .
Additionally, a positive integer b ≤ |C| is given. The question is whether C contains
a cover of F that has a size of at most b, i.e., whether there is a subset C ′ ⊆ C with
|C ′| ≤ b such that every element of F is contained in at least one set Ci ∈ C ′ (cf.
Garey and Johnson, 1979, p. 222). The only and thus largest number that appears in
an instance of the minimum cover problem is the integer b. The instance size is bounded
by O(|C||F | + log2 b). Since b ≤ |C| holds by definition, b is bounded by a polynomial
in C and hence by a polynomial in the instance size. Consequently, the minimum cover
problem is not a number problem.
As for all NP-complete problems, no algorithms for number problems have been found

whose running time is bounded by a polynomial in the instance size. However, for some
number problems, algorithms exist whose running time is bounded by a polynomial in
the instance size and in the maximum number of the instance. These algorithms are
called pseudopolynomial-time algorithms. Those number problems that can be solved by
pseudopolynomial-time algorithms are better tractable than all other problems in NPC,
be it number problems or not.
As an example for a number problem that can be solved in pseudopolynomial time,

consider the knapsack problem. It can be solved by dynamic programming in O(nc) time
by filling in a table with nc cells (cf. Garey and Johnson, 1979, pp. 90–92; Martello and
Toth, 1990, p. 7). This time complexity implies that instances of the knapsack problem
can be solved in polynomial time with respect to instance size if the largest number c of
these instances is rather small such that c can be bounded by a polynomial in the number
of items n.
On the other side, there are number problems for which no pseudopolynomial-time

algorithm is known, e.g., the traveling salesman problem. Even if all numbers within an
instance of the traveling salesman problem are small, it takes exponential time to solve the
instance. Even if all intercity distances are either 1 or 2, for example, no polynomial-time
algorithm is known.
Due to the existence of these two types of number problems, the class NPC is further

divided. All problems that belong to the class NPC are called NP-complete. Number prob-
lems for which no pseudopolynomial-time algorithm is known and all non-number prob-
lems in NPC are called NP-complete in the strong sense and belong to the subclass sNPC
(strongly NP-complete) (cf. Garey and Johnson, 1979, p. 95). For instance, the traveling
salesman problem and the minimum cover problem are strongly NP-complete, whereas
the knapsack problem is only NP-complete.
The distinction of number problems from non-number problems is relevant for our

work, because arbitrarily large numbers can appear in instances of our three problems.
Consider the workforce assignment problem, for example. For the decision and opti-

6The minimum cover problem is also called set-covering problem.
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mization version of this problem, instance size is bounded by O(KT log2(maxk,t Rkt) +
KS log2(maxk,s lks) + DT log2(maxd,t rddt) + PST log2(maxp,s,t rpst)). Thus, the worker
availabilities Rkt, the departmental requirements rddt, and the project requirements rpst
are not bounded by a polynomial in the instance size. Recall that we bounded the skill
levels lks by 2.
In the following three subsections we will prove that the decision problems that corre-

spond to our three optimization problems belong to P, NPC or even sNPC. To prove mem-
bership in the class P for a decision problem Π, it is sufficient to state a polynomial-time
algorithm which solves Π. For a detailed description of proving techniques with regard to
membership in the classes NPC and sNPC see Garey and Johnson (1979, pp. 63–74 and
95–106). We will only sketch how membership in these two classes is proved by giving
two formal proof definitions. Additionally, we briefly explain a proving technique called
restriction, which facilitates the application of the rather theoretical and formal proof
definitions.
To prove that a problem Π belongs to the class NPC, two steps are necessary. We

first have to show that Π belongs to NP. Finally, a problem ΠNPC that is known to
be in the class NPC must be polynomially transformed to Π such that a yes-instance
(no-instance) of ΠNPC is transformed into a yes-instance (no-instance) of Π. If such a
polynomial transformation exists and if an algorithm existed that would solve Π, this
algorithm would also solve ΠNPC. Since no polynomial-time algorithm exists for ΠNPC if
P 
= NP is true, there exists no polynomial-time algorithm for Π and thus Π must belong
to NPC.
To prove that a number problem ΠNum belongs to the class sNPC, two alternative

ways are possible. Both ways are closely related to the way just outlined for proving
NP-completeness. The first alternative requires two steps. First, we have to restrict
problem ΠNum to a problem ΠNum

p where all numbers are bounded by a polynomial p
in the instance size. Second, we must show that this problem ΠNum

p is NP-complete.
The second alternative requires to show that ΠNum belongs to the class NP and that
a problem ΠsNPC that is known to be strongly NP-complete can be pseudopolynomially
transformed to ΠNum.7
To apply the proof definitions, which essentially rely on a transformation of one prob-

lem into another, proving techniques have emerged. A common technique for proving
that a problem Π is (strongly) NP-complete uses the principle of restriction (cf. Garey
and Johnson, 1979, pp. 63–66). If a (strongly) NP-complete problem exhibits a one-to-
one correspondence to the problem Π, it can be easily transformed to Π. Though, often
it is difficult to find such a (strongly) NP-complete problem. Then, it might be possi-
ble to restrict Π to a special case for which a transformation from a known (strongly)
NP-complete problem can easily be constructed. Restricting Π to a special case means
that Π is restricted to a proper subset of all its instances. If it can be shown that the
restricted problem is (strongly) NP-complete, so its generalization Π is, because there is
no algorithm that solves any instance of Π in (pseudo)polynomial time. We will apply
the principle of restriction in the following subsections.
The classes NP, P, NPC, and sNPC refer to decision problems only, but for optimization

problems a comparable classification is common. If a decision problem is NP-complete,
the corresponding optimization problem is called NP-hard, and if a decision problem is

7For the definition of a pseudopolynomial transformation see Garey and Johnson (1979, pp. 101–106).
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strongly NP-complete, the corresponding optimization problem is called NP-hard in the
strong sense or just strongly NP-hard (cf. Schirmer, 1995, p. 20 and p. 26). The term
(strongly) NP-hard means that a (strongly) NP-hard optimization problem is at least as
hard as any decision problem that is (strongly) NP-complete.
To show that a (strongly) NP-hard optimization problem is at least as hard as any

(strongly) NP-complete decision problem, the aforementioned concept of Turing reducibil-
ity can be applied. A Turing reduction of a problem Π to a problem Π′ is similar to a
polynomial transformation except for the fact that a Turing reduction allows to solve
Π by repeatedly calling a subroutine to solve different instances of Π′ (cf. Garey and
Johnson, 1979, p. 111; Schirmer, 1995, pp. 118–120). An optimization problem Πopt is
(strongly) NP-hard if there is an NP-complete problem ΠNPC (strongly NP-complete prob-
lem ΠsNPC) that Turing-reduces to Πopt. Since any decision problem Turing-reduces to
its corresponding optimization problem, an optimization problem is (strongly) NP-hard if
the corresponding decision problem is (strongly) NP-complete. Hence, we can derive com-
plexity results for our optimization problems from the complexity results that we obtain
for their corresponding decision problems.

4.6.2 Complexity of the project selection problem
In this subsection, we prove that our project selection problem is NP-hard in the strong
sense.
The project selection problem was described in Section 3.2 and modeled in Section 4.2.

The corresponding decision problem asks whether there is a feasible portfolio with a total
benefit of at least b, b ∈ N \ {0}.
To simplify our presentation, we abbreviate our optimization problem as MPSWSopt

(multi-project skilled workforce selection problem) and its corresponding decision problem
as MPSWSdec. Additionally, let the vector z represent values for all variables zp, p ∈
Pongoing ∪ Pmust ∪ P̃ , and let the matrix ŷ represent values for all variables ŷkpst, k ∈ K,
p ∈ P̂suit

k , s ∈ Smatch
kp , t ∈ Tp.

Lemma 4.1 MPSWSdec ∈ NP. �

Proof Let (z, ŷ) be a (guessed) solution for an arbitrary instance ofMPSWSdec. We can
check in polynomial time if this solution is feasible and if the portfolio that is associated
with z has a total benefit of at least b. The feasibility check requires that we test whether
the solution satisfies Constraint sets (4.2)–(4.7). The number of constraints within these
sets is bounded by a polynomial in the instance size. �

Theorem 4.1 MPSWSdec is strongly NP-complete. �

Proof (Polynomial transformation from Minimum Cover)
Problem: Minimum Cover
Instance: Set C containing sets Ci, i = 1, . . . , |C|, where each set Ci is a subset of a finite
set F ; positive integer b ≤ |C|.
Question: Does C contain a cover of F that has a size of at most b, i.e., is there a
subset C ′ ⊆ C with |C ′| ≤ b such that every element of F is contained in at least one
set Ci ∈ C ′?
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Minimum Cover is NP-complete in the strong sense even if |Ci| ≤ 3 holds for
all Ci ∈ C with |Ci| = 3 for at least one Ci (cf. Garey and Johnson, 1979, p. 222).
For this proof, we restrictMPSWSdec to the case where T = 1; Rkt = 1, k ∈ K, t = 1;

rddt = 0, d ∈ D, t = 1;
∣∣Pongoing

∣∣ = |Pmust| = 0 and
∣∣P̃∣∣ = K+1, i.e., where K+1 projects

can be selected.
We assume that the set of skills S is a union of two disjoint sets SF and Sunique with∣∣Sunique

∣∣ = K. Each unique skill s ∈ Sunique is mastered by exactly one worker and each
worker k ∈ K masters one unique skill s ∈ Sunique and between one and three additional
skills from SF . For each skill s ∈ S and each worker k ∈ K, we presume lks = 1.
From the set P̃ of projects, K projects are assumed to require only one skill, namely,

a unique skill s ∈ Sunique, but no two of these projects p, p = 1, . . . , K, require the same
unique skill, i.e., each unique skill s ∈ Sunique is required by exactly one project. For each
project p, p = 1, . . . , K, its requirement is given by rpst = 1, s ∈ Sp, t = 1, and the benefit
is given by bp = 1. The remaining project p = K + 1 requires all the skills s ∈ SF , but
no skill from Sunique. Let project p = K + 1 have requirements 0 < rpst ≤ 1

3
, s ∈ SF ,

t = 1, and a benefit bp = K+1. Note that our restriction ofMPSWSdec leads to problem
instances in which all numbers are bounded by a polynomial in the instance size.
To tie an instance of Minimum Cover to an instance of MPSWSdec, we associate

the set F with the set SF of skills that are required by project p = K + 1. Let each
subset Ci be associated with a worker k and let the elements in Ci correspond to the skills
in Sk ∩ SF that are mastered by the associated worker apart from his unique skill. Then
there exists a cover of F that has size b or less if and only if a feasible portfolio can be
selected with a total benefit of at least K + 1 + (K − b).
Note that a feasible portfolio with a total benefit of K + 1 + (K − b) necessitates

that K − b workers must spend their entire time to accomplish the project that requires
their unique skill s ∈ Sunique. This necessity leaves only b workers who can contribute to
project p = K + 1. Together with Lemma 4.1 our proof is complete. �

Corollary 4.1 MPSWSopt is strongly NP-hard. �

To be more precise, the proof has shown that MPSWSopt is strongly NP-hard if every
worker masters at least one unique skill and if at least one worker masters four skills or
more in total. By a second proof, we will show that not only instances where each worker
masters a unique skill and some other skills are strongly NP-hard but also instances where
each worker masters only one skill. In addition, the second proof points to a special case
that can be solved in pseudopolynomial time. Our second proof for Theorem 4.1 reads as
follows.

Proof (Pseudopolynomial transformation from Multidimensional Knapsack)
Problem: Multidimensional Knapsack (cf. Kellerer et al., 2004, pp. 235–238)
Instance: Set J of n items; set I of m dimensions such as weight, volume and concen-
tration; benefit pj, j ∈ J ; size wij, i ∈ I, j ∈ J , of item j with respect to dimension i;
positive integer ci, i ∈ I, that represents the capacity with respect to dimension i; positive
integer b.
Question: Is there a subset J ′ ⊆ J such that

∑
j∈J ′ wij ≤ ci, i ∈ I, and

∑
j∈J ′ pj ≥ b?

Multidimensional Knapsack is NP-complete, because it comprises the NP-
complete (one-dimensional) knapsack problem as a special case (m = 1). Multidi-
mensional Knapsack can be solved by dynamic programming in O (n (maxi ci)

m) time
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by filling a table with n× c1 × c2 × · · · × cm cells (cf. Kellerer et al., 2004, pp. 248–252).
Hence, if the number of dimensions m is bounded by a constant, Multidimensional
Knapsack can be solved in pseudopolynomial time, but in general,Multidimensional
Knapsack is strongly NP-complete (cf. Kaparis and Letchford, 2008, p. 91).
To prove NP-completeness ofMPSWSdec by transformation fromMultidimensional

Knapsack, we restrictMPSWSdec to the special case where Pongoing = Pmust = ∅; T = 1;
rddt = 0, d ∈ D, t = 1; Sp = S, p ∈ P̃ ; and |Sk| = 1, k ∈ K, i.e., where each worker
masters only one skill. Additionally, we assume lks = 1, k ∈ K, s ∈ Sk.
Let each project p ∈ P̃ be associated with an item j and let each skill s out of the

finite set of skills be associated with a dimension i. Let for all projects p ∈ P̃ each
requirement rpst, s ∈ Sp, t = 1, be associated with the corresponding item size wij

and let the knapsack capacities ci, i ∈ I, correspond to the total workforce availability
with regard to the associated skill s given by

∑
k∈Ks

Rkt, t = 1. Then, an instance of
Multidimensional Knapsack is a yes-instance if and only if the associated instance
of MPSWSdec is a yes-instance. Together with Lemma 4.1 our proof is complete. �

Corollary 4.2 MPSWSopt is strongly NP-hard even if each worker masters only one out
of several skills. The special case of MPSWSopt that corresponds to the restricted decision
problem outlined in the second proof of Theorem 4.1 can be solved in pseudopolynomial
time for any fixed number of skills |S|. �

However, this special case ofMPSWSopt where only mono-skilled workers with homo-
geneous skill levels are considered is far off those practical cases that we are interested in.
The project selection problem that prevails in practice is NP-hard in the strong sense.

4.6.3 Complexity of the workforce assignment problem
In this subsection, we show that our optimization problem of assigning workers to projects
and allocating project workload to workers is NP-hard in the strong sense.
The problem was described in Section 3.3 and modeled in Subsection 4.3.1. The corre-

sponding decision problem asks whether there is a feasible allocation of project workload
that results in no more than b assignments of workers to projects, b ∈ N \ {0}.
To shorten our presentation, we abbreviate our optimization problem as MPSWAopt

(multi-project skilled workforce assignment problem) and its corresponding decision prob-
lem as MPSWAdec. Additionally, let the matrix x represent values for all variables xkp,
k ∈ K, p ∈ Psuit

k , and let the matrix y represent values for all variables ykpst, k ∈ K,
p ∈ P suit

k , s ∈ Smatch
kp , t ∈ Tp.

Lemma 4.2 MPSWAdec ∈ NP. �

Proof Let (x,y) be a (guessed) solution for an arbitrary instance of MPSWAdec. We
can check in polynomial time if the solution is feasible and if the number of assignments
of workers to projects that is associated with x does not exceed b. A check whether the
solution is feasible requires to test if the solution satisfies Constraint sets (4.10)–(4.16).
The number of constraints within these sets is bounded by a polynomial in the instance
size. �

Theorem 4.2 MPSWAdec is strongly NP-complete. �
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Proof (Polynomial transformation from Minimum Cover)
We restrict MPSWAdec to the special case where P = 1; Sp = S, p = 1; T = 1; rddt = 0,
d ∈ D, t = 1. Let us assume that Rkt = ∞, k ∈ K, t = 1, i.e., that the workers’
availabilities are unbounded.8
Now, let the set F of an instance of Minimum Cover (see page 79) be associated

with the set S of skills. Let each subset Ci be associated with a worker k and let the
elements of Ci correspond to the skills in Sk that are mastered by the associated worker.
Then there is a cover of F that has size b or less if and only if there is a feasible allocation
of the workload of project p = 1 with a team size of b or less. Together with Lemma 4.2
our proof is complete. �

Remark 4.1 If the unbounded version of the decision problem is strongly NP-complete,
all the more is the bounded version. �

Remark 4.2 Minimum Cover can be solved in polynomial time by matching techniques
if |Ci| ≤ 2 holds for all Ci ∈ C. We will succinctly outline an efficient solution procedure
that incorporates matching techniques, but first we will give some definitions on which
the procedure is founded.
An undirected graphG(N,E) is a setN of nodes and a set E of edges. Each edge e ∈ E

joins two nodes u and v. Both nodes u and v are said to be incident with e. A matchingM
in graph G is a subset of edges in E such that every node v ∈ N is incident with at most
one edge in M (cf. Burkard et al., 2009, p. 2; Jungnickel, 2005, p. 205). A matching M
is a maximum matching if its cardinality |M | is maximal, i.e., if there is no matching M ′

with |M ′| > |M |.
To tackle an instance of Minimum Cover by a matching technique, we construct a

graph G by establishing a node v for each element f ∈ F that is given in the instance of
Minimum Cover. For each subset Ci ∈ C with |Ci| = 2, an edge e is established that
joins those two nodes u and v that correspond to the elements f ∈ Ci.
To find a cover of F , a maximum matching M is determined for this graph G, e.g.,

by the algorithm of Edmonds (cf. Edmonds, 1965; Jungnickel, 2005, pp. 374–396). If the
number of nodes |N | is even and |M | = |N |

2
, then the matching M represents a cover of

F . Otherwise, M represents only a partial cover. If M represents only a partial cover of
F , we extend this partial cover step by step, until all elements of F are covered. In each
step, we either extend the partial cover by a subset Ci with |Ci| = 2 whose corresponding
edge does not belong to M or by a subset Ci with |Ci| = 1 whose element f has not been
covered yet.
The minimum number of subsets Ci necessary for a cover of F is given by the sum

of the cardinality |M | of the matching and the number of subsets Ci that are required to
extend the partial cover to a full cover. This minimum number can be compared to b to
answer the question whether there is a cover of size b or less. �

8Instead of unbounded worker availabilities we could alternatively choose the project requirements rpst
for the sole project p = 1 so small that every worker k could accomplish the workload for all skills s ∈
Smatch
kp of his matching skills if he was assigned to the project. In consequence, the largest number

that appears in an instance of the restricted version of MPSWAdec is bounded by a polynomial in the
instance size.
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Remark 4.2 is relevant for instances of our assignment problem where no worker mas-
ters more than two skills and where the project requirements are very small when com-
pared to the availabilities of workers. For these instances, the solution procedure that was
outlined in Remark 4.2 can be applied to find the minimum team size if only one project
must be staffed. If more projects must be staffed, say P ≥ 2 projects, then the solution
procedure must be applied P times, once for each project.
For a clearer picture of the complexity of MPSWAdec with respect to its subprob-

lems, we will provide a second proof showing that MPSWAdec is strongly NP-complete.
Our second proof is not redundant in so far, as it shows that there are even instances
of MPSWAdec that feature only one skill but cannot be solved in polynomial or pseu-
dopolynomial time. Our first proof did only show that instances with |Sk| ≥ 3 for at least
one worker k are intractable. The following second proof, which relies on transformation
from 3-Partition, will reveal conditions where instances with |S| = 1 are intractable.
Our second proof does not render our first proof redundant, as the first proof shows that
MPSWAdec is strongly NP-complete even if worker availabilities are unbounded. Hence,
both proofs shed precious light on the frontier between hard and easy problems (cf. Garey
and Johnson, 1979, pp. 80–90).
As a vehicle for the second proof, we use the network model, which was introduced in

Subsection 4.3.1, to represent our assignment problem. Before we will present the proof,
let us shortly turn towards two variants of a network design problem that are related to
our assignment problem and that led us the way to our proof. The two variants are the
fixed-charge network flow problem and the minimum edge-cost flow problem.
Both the fixed-charge network flow problem (cf. Kim and Pardalos, 1999; Cruz et al.,

1998; Magnanti and Wong, 1984) and the minimum edge-cost flow problem (cf. Garey
and Johnson, 1979, p. 214) seek for a minimum cost origin-destination flow on a network
with bounded arc capacities where fixed arc costs are incurred whenever an arc transports
a positive flow.
There are only slight differences between the two network design problems. The fixed-

charge network flow problem considers not only fixed arc costs, but in addition also
variable arc costs which linearly depend on the amount of flow shipped on the arc. Fur-
thermore the flow variables are continuous variables, whereas the minimum edge-cost flow
problem presumes integral flow variables.
Both network design problems are NP-complete in the strong sense. For the fixed-

charge network flow problem, Guisewite and Pardalos (1990) prove this problem complex-
ity by transformation from 3-Satisfiability (abbreviated 3SAT, cf. Garey and John-
son, 1979, p. 259). For the minimum edge-cost flow problem, strong NP-completeness is
indicated by Garey and Johnson (1979, p. 214), who refer to a transformation from Ex-
act Cover by 3-Sets (abbreviated X3C, cf. Garey and Johnson, 1979, p. 221). This
transformation from Exact Cover by 3-Sets is shown by Benoist and Chauvet (2001,
pp. 2–3), for example.
To recognize the relation of our assignment problem to network design, see that we

could restrict our problem to a special case of the fixed-charge network flow problem. For
our proof, however, we will exploit the relation to the minimum edge-cost flow problem.
Our proof follows Benoist and Chauvet (2001, pp. 5–6), who show that the minimum
edge-cost flow problem remains strongly NP-complete for a special case which they call
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bipartite minimum edge-cost flow problem.9 Their proof relies on transformation from 3-
Partition. We will take on this transformation to prove that MPSWAdec is intractable
even if it features only one skill.

Theorem 4.3 MPSWAdec is strongly NP-complete even if restricted to one skill, i.e.,
even if |S| = 1. �

Proof (Pseudopolynomial transformation from 3-Partition)
Problem: 3-Partition
Instance: Set C that contains 3m elements, m ≥ 3, m ∈ N; a positive integer B;
a size s(c) ∈ N \ {0} for each c ∈ C such that B

4
< s(c) < B

2
for all c ∈ C and∑

c∈C s(c) = mB.
Question: Can C be partitioned in m disjoint subsets C1, C2, . . . , Cm such that∑

c∈Ci
s(c) = B holds for i = 1, . . . ,m? (If so, every subset Ci must contain exactly

three elements from C.)
3-Partition is NP-complete in the strong sense (cf. Garey and Johnson, 1979, p. 224).
To prepare a transformation, we picture an instance of 3-Partition by a bipartite

graph G(N,A) with node set N and arc set A. Graph G is depicted in Figure 4.2. The
set N of nodes is a union of the disjoint node sets U and V . Arcs run only from nodes
in U to nodes in V and arc capacity is not bounded. The graph G represents a directed
network with a set of supply nodes, namely, the set U , and a set of demand nodes, namely,
the set V . Concretely, for each element c ∈ C a node u is established whose supply is
equal to the size s(c). The node set V comprises m nodes, which have an identical supply
of −B, i.e., a demand of B units of flow. The arc set comprises the arcs 〈u, v〉, u ∈ U ,
v ∈ V .

u3m

s(c3m)

...

...

u2

s(c2)

u1

s(c1)

vm

−B

...

...

v1

−B

Key:

i

supplyi
j

supplyj

Figure 4.2: Network representation of an instance of 3-Partition for transformation
to MPSWAdec

9The bipartite minimum edge-cost flow problem was formulated by Benoist and Chauvet (2001) for a
problem in construction industry. This problem is described in detail by Benoist (2007).
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A solution to an instance of 3-Partition is represented by a flow from nodes u ∈ U to
nodes v ∈ V that does not exceed the supply of nodes in U and that satisfies all demands
of nodes in V and that does not require more than 3m arcs to transport the flow units.
For our proof, we restrict MPSWAdec to the special case where T = 1; D = 1;

P = m− 1; S = 1; and lks = 1, k ∈ K, s = 1. In this case, all workers belong to the same
unique department and all projects require the same unique skill.
For a transformation from 3-Partition to MPSWAdec, let each element c, i.e., each

node u, correspond to a worker k and let the supply of node u, i.e., s(c), be associated
with the availability Rkt, t = 1, of the corresponding worker k. Furthermore, we associate
each of the m − 1 projects with a demand node v and we associate the requirement rpst
of a project p for the unique skill s in period t = 1 with the demand of the correspond-
ing node v. Finally, let the sole department d = 1 correspond to a node v and let its
requirement rdt, t = 1, correspond to the demand of the node v. This demand amounts
to B units of flow.
Then, an instance of 3-Partition is a yes-instance if and only if there is an allocation

of project workload such that the number of assignments of workers to projects does not
exceed 3(m − 1). Note that 3(m − 1) assignments imply that each project is staffed
with three workers, who spend their entire available time for this project, while three
workers who are not assigned to any project spend their entire time to accomplish the
departmental workload. Together with Lemma 4.2 our proof is complete. �

Remark 4.3 Since 3-Partition remains strongly NP-complete as long as m ≥ 3,
MPSWAdec is NP-complete in the strong sense if two projects must be staffed and a unique
department has a positive requirement, or if at least three projects must be staffed. �

Remark 4.4 The special case where two projects must be staffed and no departmental
workload arises, is NP-complete. This complexity result can be concluded from equiv-
alent proofs of Guisewite and Pardalos (1990) and Benoist and Chauvet (2001). Both
contributions show by transformation from Subset Sum (cf. Garey and Johnson, 1979,
p. 223) that the corresponding fixed-charge network flow problem and the corresponding
minimum edge-cost flow problem, respectively, are NP-complete if there are only two de-
mand nodes. By their proofs, both works help to clarify the sight on the boundary line
between NP-completeness and strong NP-completeness for the respective problem.
Note that the conclusion for our assignment problem does not hold if only one project

must be staffed and a positive requirement of one department must be satisfied. Although
this case results in two demand nodes, transformation from Subset Sum is not possible
in this case. �

To sum up, we have the following three complexity results for the optimization version
MPSWAopt of our assignment problem.

Corollary 4.3 MPSWAopt can be solved in polynomial time if workers master at most
two skills and worker availabilities are “unbounded”. �

Corollary 4.4 MPSWAopt is NP-hard if two projects must be staffed and worker avail-
abilities are bounded. �
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Corollary 4.5 MPSWAopt is NP-hard in the strong sense if at least one worker masters
three or more skills that are required by a project, or if at least three projects must be
staffed and worker availabilities are bounded, or if two projects must be staffed and in the
sole department some work must be accomplished and worker availabilities are bounded.�

4.6.4 Complexity of the utilization leveling problem
In this subsection, we state that the utilization leveling problem is solvable in polynomial
time.
Our optimization problem of allocating workload of a department such that the work-

ing times of workers who belong to the department are leveled as well as possible was
described in Section 3.4 and modeled in Section 4.4. The corresponding decision problem
asks whether there is a feasible allocation of departmental workload such that the sum of
pairwise absolute differences in working times is not greater than b, b ∈ N \ {0}.

Theorem 4.4 The decision problem of our leveling problem is in P. �

Proof The decision problem of our leveling problem can be solved in polynomial time.
A polynomial-time algorithm that solves the optimization problem in O(K2) time is pre-
sented in Section 6.1.2. �

Corollary 4.6 The optimization version of our leveling problem can be solved in polyno-
mial time. �

4.6.5 Summary of results
Table 4.1 summarizes the main results of the complexity analysis that we conducted for
our three problems.

Table 4.1: Main results of the complexity analysis for the three problems considered in
this thesis

Problem Complexity

Project selection NP-hard in the strong sense
Workforce assignment NP-hard in the strong sense
Utilization leveling Solvable in polynomial time
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Literature review
In this chapter, we review the literature that is related to the three problems introduced
in the previous two chapters. For the project selection and the workforce assignment
problem, a broad overview of related work has already been given in Section 2.1. Here,
we narrow our view on publications that have close links to our problems and we review
solution methods for related problems in more detail. Close links to our problems exist, for
example, when multi-skilled workers are considered or when objective functions take team
size or workload leveling into account. In Section 5.1, work that is closely related to the
project selection problem is reviewed. Section 5.2 gives an overview of contributions that
deal with staffing problems where the number of required workers plays an important part.
In Section 5.3, we look at articles that contain approaches to leveling worker utilization.

5.1 Work related to the project selection problem
A broad choice of literature related to static project selection problems has been presented
and classified in Table 2.1 in Section 2.1. Here, we concentrate on methods for composing
a portfolio of projects and on works that are closely related to our selection problem.
First, we will give a brief overview of methods that have been used for portfolio selection.
Then, we will consider two works in detail that explicitly take multi-skilled workers with
heterogeneous skill levels into account.
Various quantitative approaches to project portfolio selection have been outlined by

Martino (1995) and Graves and Ringuest (2003), for example. An overview has been given
by Heidenberger and Stummer (1999). Although, Heidenberger and Stummer focus on
the selection of research and development projects, their classification is applicable for a
wide range of project selection problems. Our short presentation of methods follows their
classification. Heidenberger and Stummer distinguish six classes of methods: (1) benefit
measurement methods, (2) mathematical programming approaches, (3) methods from the
realms of decision theory and game theory, (4) simulation models, (5) heuristic methods,
and (6) cognitive emulation approaches. Selection procedures that are applied in practice
often combine methods from several of these classes. In the following, we describe each
class in more detail.

ad (1): Benefit measurement methods comprise comparative methods, scoring ap-
proaches, economic models, and group decision techniques. Comparative methods
are based on numerous comparisons between projects, whereas projects are rated
separately in scoring approaches. An example for a comparative method is the
analytic hierarchy process (AHP), which is described by Saaty (1994). When

M. Walter, Multi-Project Management with a Multi-Skilled Workforce, Produktion
und Logistik, DOI 10.1007/978-3-658-08036-5_5, © Springer Fachmedien Wiesbaden 2015
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applied to project selection, the AHP uses pairwise comparisons between criteria
to determine criteria weights and pairwise comparisons between projects with re-
spect to each criterion in order to derive a ranking of projects. The AHP method
was applied to project selection by Muralidhar et al. (1990), Lai and Xue (1999),
and Tavana (2003), for example. In typical scoring approaches, decision makers
agree on a set of selection criteria and a weight for each criterion. Then, they
assess for each project and each criterion on a point scale how well the project
meets the criterion. The weighted sum of all points that a project obtained repre-
sents the project score and allows a ranking of the projects. Economic models are
based on cost-benefit analyses or on net present value calculations, for instance.
An example for a group decision technique is the Delphi method.

ad (2): Mathematical programming approaches include linear, nonlinear, integer, and
goal programming approaches among others. Integer programming has been used
by Ghasemzadeh et al. (1999) and Kolisch et al. (2008), for example. Our model
for project selection, which is a mixed-integer program, belongs also to the cat-
egory of integer programming approaches. Among many others, Taylor et al.
(1982) and Santhanam et al. (1989) have illustrated how goal programming can
be applied to project selection.

ad (3): Examples for approaches from decision theory and game theory are decision-tree
approaches and leader-follower models, respectively.

ad (4): Monte Carlo simulation is an example for a simulation technique that can be ap-
plied to project portfolio selection. This simulation technique allows, for instance,
to depict a distribution of portfolio outcomes when project success is uncertain
(cf. Souder and Mandakovic, 1986, p. 39; Martino, 1995, Chapter 6).

ad (5): Heuristic solution approaches are applied when instances of selection problems
become too large and too demanding for exact methods. Many heuristic meth-
ods exist and have been applied to selection problems. Escudero and Salmeron
(2005), for example, apply a relax-and-fix approach and Doerner et al. (2004)
apply ant colony optimization, simulated annealing, and a genetic algorithm to a
multiobjective selection problem.

ad (6): The last class covers cognitive emulation approaches. These approaches include
statistical approaches among others. Statistical approaches are based on historical
data. By regression analysis, for example, it is tried to identify crucial factors that
affect project success.

Several of the aforementioned selection methods are applied in two works that are
closely related to our project selection problem. The first of these two works is the work
of Yoshimura et al. (2006). They consider a single-period project selection problem that
integrates the assignment of workers to projects. Their problem setting is similar to
ours, as workers belong to different departments and can form cross-departmental project
teams. However, the departments themselves do not play a role in their approach, whereas
we consider departmental workloads. In their approach, workers master different skills
with levels of 0, 0.5, 1, and 2. Hence, they distinguish similar discrete levels as we do.
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Yoshimura et al. outline a two-stage approach that applies a binary programming
model at the first stage where candidate project portfolios are composed. At the second
stage, a genetic algorithm is used for assigning workers to projects. The authors consider
four objectives; one objective refers to the first stage, the others refer to the second stage.
Their approach determines heuristically a set of efficient solutions with respect to the
four objectives. From these efficient solutions, a decision maker can choose his favorite
solution.
At the first stage, a binary program is formulated to determine not only one but

several project portfolios. The objective function considers two aspects of a portfolio: the
profit and the importance of the included projects. A weighted sum of portfolio profit
and importance is maximized. Binary variables indicate whether a project is included in
the portfolio or not. The binary program comprises only a single set of constraints. For
each skill, it must be ensured that the workforce can satisfy the skill requirements of the
portfolio. Though, the availabilities of workers are ignored at this stage. It is assumed
that each worker contributes to the requirements of all matching skills of all projects.
Consequently, it must only be guaranteed for each skill that the sum of the skill levels
of all workforce members satisfies the skill requirement of the project portfolio. For the
binary program, a set of different solutions, i.e., several project portfolios, are determined.
Though, Yoshimura et al. do not outline how this is accomplished. When the first stage
has been completed, each project portfolio that has been selected, is treated separately
but in the same way.
In a step between the first and second stage, a project leader is determined for each

project within a portfolio. A leader of a project must master the core skill of the project
with a level of 2 and must be qualified for the job of a project leader. Yoshimura et al.
do not indicate whether a worker can lead more than one project and whether a project
leader must contribute to skill requirements of his project at all.
At the second stage, the problem of assigning workers to projects is formulated using

variables xkp ∈ {0, 0.1, 0.2, . . . , 1} where xkp indicates for worker k the percentage of
his total availability that he devotes to project p. The availabilities of all workers are
identical. Since a worker cannot work overtime and can thus spend at most 100% of his
time for project work, he can contribute to at most ten projects. The size of a project
team is not limited; theoretically, the complete workforce can be assigned to a project.
Three objectives are pursued at the second stage. The first is to satisfy skill require-

ments of projects as well as possible. In contrast to the first-stage constraint set, now the
actual contribution xkp of a worker k to project p is taken into account when the fulfillment
of a skill requirement for project p is considered. The second objective is related to future
career paths of the workers. A parameter specifies for each project p and each worker k
how useful a contribution xkp is for the development of worker k. The objective function
that is associated with the second objective maximizes the total usefulness of assignments
with respect to career considerations. The third objective regards workers’ priorities for
projects and compatibilities between members of each project team. The corresponding
objective function integrates both aspects in a weighted sum that is maximized.
For the assignment problem at the second stage, solutions that are pareto-optimal

with respect to the three second-stage objective functions are determined by a genetic
algorithm. A solution for the variables xkp that are associated with worker k is coded
as a sequence of zeros and ones. Each zero represents a time budget of 10%; the bit
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sequence of each worker hence contains 10 zeros. The ones are used as separators between
two adjacent projects. To give an example, consider a case where the selected portfolio
contains three projects. Let the bit sequence of a worker be “000 1 0 1 000000”. This
sequence indicates that the worker devotes 30% of his time to the first project, 10% of
his time to the second project, and the remaining 60% to the third project. Other parts
and procedures of the genetic algorithm remain untold; Yoshimura et al. (2006) outline
neither how a crossover operation works or how mutation is done nor how parents are
selected for recombination or how a new generation is built.
The efficient second-stage solutions that have been generated for a project portfolio are

reassessed with respect to the first-stage objective. However, a refined variant of the first-
stage objective function is used for the reassessment. The refined variant assumes that
the assignment of workers influences project profits and hence takes the actual assignment
of workers to projects into account.
Finally, the solutions of all portfolios that were selected at the first stage are considered.

From these solutions, an efficient set with respect to the refined first-stage objective
function and all three second-stage objective functions is determined. For the case where
the resulting set is too large and confusing for a decision maker, reduction techniques are
proposed.
Applying their approach to an instance of small size, Yoshimura et al. provide an

illustrative example for their method. However, they do not present numerical results for
larger-sized instances.
Compared to our approach, Yoshimura et al. (2006) model worker availabilities and

project requirements less detailed. In their approach, all workers have identical avail-
abilities and contributions of workers to projects are rather unspecified, as there is no
proper allocation of workload. Here, the resolution of our selection model and our as-
signment model is more detailed. Furthermore, the matrix organization that Yoshimura
et al. mention is not reflected in their approach, as the workload that arises in functional
departments is ignored.
On the other hand, Yoshimura et al. take the effect of an assignment on project profits

into account, whereas in our model the benefit bp of a project p is independent from the
project team and the workload allocation. Moreover, our approach does not consider
career goals for workers, priorities of workers, and compatibilities between workers. These
aspects are taken into account by Yoshimura et al. in the second and third objective
function at the assignment stage. Considering these aspects implies, however, that a huge
amount of data has to be collected before planning can start. The amount of data may
be deterrent, but in practice the type of the required data, which belong to the category
of personal information, may be even more problematic than their amount. In particular,
it will be difficult to elicit reliable and undistorted information from workers about their
compatibility with colleagues.
The second work that is closely related to our approach is the work of Gutjahr et al.

(2008). They outline a multi-period problem that integrates project selection, scheduling,
and staffing. In contrast to our approach, they model dynamic skills that vary over time
due to learning and forgetting. Considering dynamic skills renders the objective function
and some constraints of their formulation nonlinear. The objective of Gutjahr et al. is to
determine a solution that maximizes project portfolio benefit and that results in a desired
development of workers’ skill levels.
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Gutjahr et al. (2008) formulate a nonlinear mixed-integer program with various sets
of decision variables. For each project, a benefit parameter is given and a binary variable
indicates whether the project is selected or not. The projects are constituted of tasks.
Each task j has a release date and a due date between which the respective workload
has to be accomplished for each skill that is required by the task. The contribution of a
worker k to a skill s required by task j in period t is denoted by a continuous variable xjkst.
The contributions of worker k in period t must observe his availability. The skill level
or efficiency of worker k in skill s in period t is expressed by the variable γkst ∈ [0, 1],
whose value depends on the prior contributions of worker k to skill s. Since variables γkst
are defined by terms that are nonlinear in the corresponding variables xjkst and in t, a
nonlinear model results. The objective function of the model is a weighted sum of portfolio
benefit and skill improvements.
To solve their nonlinear problem, Gutjahr et al. (2008) outline two alternative heuristic

solution approaches, one based on ant colony optimization, the other based on a genetic
algorithm. The two meta-heuristics are used to generate project portfolios; both heuristics
call the same staffing subprocedure for each portfolio in order to staff project tasks and
to schedule the workload.
In the ant colony optimization approach, artificial ants construct project portfolios

step by step. All projects are ordered in a sequence and each step of the portfolio con-
struction process of an ant is associated with the project at the corresponding position
in the sequence. In each step, an ant makes a stochastic decision whether to include the
respective project in its current portfolio. The selection probability of a project depends
on the pheromone value of the project. The pheromone values of projects are updated
after each iteration when all ants have constructed their portfolio. For the pheromone
updates, only the best portfolio of an iteration is relevant. Whenever an ant adds a
project to its current portfolio and this additional project leads to an infeasible solution
of the corresponding staffing subproblem, the ant just drops the project and continues
the construction process with the next project in the sequence.
The genetic algorithm uses a binary string to represent a portfolio. Feasibility of a

portfolio is assessed by the staffing subprocedure. If the subprocedure fails to find a (pos-
sibly existing) feasible staff assignment, a repair mechanism is invoked, which repeatedly
removes a randomly chosen project from the portfolio until the staffing subprocedure re-
turns a feasible allocation of workload. A string and a corresponding workload allocation
constitute an individual. Fitness values of individuals are identical to the corresponding
objective function values. For recombination, parent individuals are chosen by a roulette
wheel selection. A one-point crossover is applied to their strings in order to create chil-
dren. The children replace their parents in the population. Mutation is realized by a
random bit flip and applied to each position in every newly created binary string.
The staffing subprocedure, which schedules and allocates workload, is a heuristic based

on priority rules. This rather simple heuristic cannot guarantee to find an existing feasible
solution for the variables xjkst given a portfolio. A succinct description of the heuristic
is provided on page 128 in Subsection 6.2.1, where we outline a related procedure for the
workforce assignment problem. For the staffing subprocedure of Gutjahr et al. (2008), it
remains unclear how and to which extent dynamic skills are considered.
Gutjahr et al. (2008) present additional constraint sets for their model in order to

adapt the model to more realistic problem settings. One of these constraint sets limits
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the maximum number of workers that can contribute to the skill requirements of a task.
It requires additional binary variables. As motivation for this constraint set, they refer
to the insight of Brooks (1982, p. 25) that increasing team size does not increase but
decrease the probability of meeting a deadline.
Gutjahr et al. (2008) test their solution approaches for a real-life instance with 18 can-

didate projects, which comprise 20 tasks in total, 28 workers, 80 skills, and 24 periods
and a slightly smaller-sized instance with 14 projects and 40 skills. For the smaller-sized
instance without additional constraints, both solution approaches, the ant colony opti-
mization algorithm and the genetic algorithm, exhibit a substantial gap compared to
an exact solution of a linear approximation. Gutjahr et al. show that this gap can be
attributed in a large part to the staffing subprocedure.
Compared to our approach with static skill levels, the resolution of skill levels is

considerably higher in the model of Gutjahr et al. (2008). Their approach facilitates
to pursue strategic goals with respect to the development of competencies. But again,
additional input data are necessary to model learning and forgetting. Another difference
between their and our approach is the extent of integration. We give priority to the project
selection problem and solve it first. Then, we make or adjust staffing decisions in order to
obtain small teams. Team size is a criterion that is less important than portfolio benefit
in our view. Gutjahr et al., however, simultaneously decide about the portfolio and the
assignment of workers to project tasks. They attach greater importance to staffing and
skill development.
Gutjahr et al. (2008) also show how parts of their model and their complete model

can be linearized. The linearizations lead to a quadratic and linear model, respectively.
Though, they do not really exploit linearization but apply heuristic solution approaches
instead. Only in Gutjahr et al. (2010), a follow-up paper, which treats an almost identical
problem, linearization is actually deployed and comes into effect. In this paper, goals such
as portfolio benefit and skill development are not integrated into a single objective func-
tion; instead, a vector of objective functions is considered where each objective function
represents a single goal. Gutjahr et al. (2010) determine an approximation to the set of
non-dominated solutions with respect to this vector of goals.
The selection procedures of Yoshimura et al. (2006) and Gutjahr et al. (2008) take

multi-skilled workers with heterogeneous skills into account and compose a team of workers
for each selected project. However, team size is of no particular concern in these works.
In the following section, we review staffing approaches that explicitly consider team size.

5.2 Work related to the workforce assignment problem
In this section, we review the literature related to the workforce assignment problem. Note
that a broad selection of related publications on scheduling and staffing has already been
compiled and classified in Tables 2.2 and 2.3 in Section 2.1. Now, we take a closer look
at approaches to scheduling and staffing where team size or workforce size is minimized.
Our review is divided into two parts. In the first part, we consider problems that involve
unrelated tasks or tasks that belong to a single project; in these problems, one main
decision has to be taken for each worker, namely, the decision whether the worker is used or
not. In the second part, we deal with multi-project problems where the important decision
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about the use of a worker must be made for each project and where the assignment of a
worker to one project can affect the team size of other projects. We begin the first part
with a succinct review of the fixed job scheduling problem (FJSP) and some of its variants
such as the FJSP with machine availabilities. In the FJSP, one seeks for the minimum
number of workers or machines that is required to process a set of jobs whose start times
have already been fixed. Next, we look at two works that tackle enriched variants of the
FJSP and that are more closely related to the workforce assignment problem. Then, we
turn to two works that focus on the effects of multi-skilling on workforce size and personnel
costs, before we conclude the first part with the single-project problems of Li and Womer
(2009a,b). At the beginning of the second part, we consider two articles that deal with
single-period multi-project staffing problems and that limit the number of projects per
worker and the number of workers per task via constraints. Then, we discuss the works of
Grunow et al. (2004) and Heimerl and Kolisch (2010a) in greater detail because they are
concerned with staffing multiple projects in a multi-period setting and are hence closely
linked with our staffing approach. For a staffing subproblem in Grunow et al. (2004) which
resembles the workforce assignment problem, we prove strong NP-hardness by reduction
from FJSP with Machine Availabilities.
A well studied problem where the number of required resource units has to be mini-

mized is the fixed job scheduling problem, which is also known as the interval scheduling
problem (cf. Kolen et al., 2007). The FJSP can be described as follows. Given are identi-
cal machines that are always available and n jobs where each job j = 1, . . . , n has a start
time sj ≥ 0 and a finish time fj > sj and must be processed during the interval [sj, fj) by
a single machine. Each machine can process every job but at most one job at a time. The
problem is to determine the minimum number of machines which is required to process all
jobs and a corresponding assignment of jobs to machines. In such an assignment, which is
also called a schedule, no two jobs whose intervals overlap must be assigned to the same
machine.
The FJSP can be solved in polynomial time. Gupta et al. (1979) outline an algorithm

that requires O(n log n) time; it sorts the 2n start and finish times associated with the
n jobs in non-decreasing order and initializes a stack with n available machines. Then it
scans the ordered list of start and finish times. When a start time is encountered, the
corresponding job is assigned to the next available machine popped from the stack; when
a finish time is encountered, the machine occupied by the corresponding job is released
and pushed onto the stack. The initial sorting operation takes O(n log n) time, while the
subsequent operations can be accomplished in O(n) time.
When machines are non-identical, the corresponding fixed job scheduling problems

become NP-hard, in general. We succinctly treat three basic variants of the FJSP with
heterogeneous machines. The first variant is the FJSP with machine availabilities. Here,
each machine i is associated with an interval or track [ai, bi) during which it is available (cf.
Kolen et al., 2007, section 4). The second variant is called FJSP with given machines or
k-track assignment problem. In this variant, k machines that have individual availability
periods or tracks as in the first variant are given and the problem is to determine a
schedule with the greatest number of assigned jobs (cf. Brucker and Nordmann, 1994).
Both variants are strongly NP-hard as Kolen et al. (2007, section 4.1) and Brucker and
Nordmann (1994, p. 98) show by reduction from the problem of coloring circular arcs.
That circular arc coloring is NP-complete has been proved by Garey et al. (1980).
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The third variant arises when machines are identical with regard to availabilities but
non-identical with regard to capabilities. In this case, each machine can process only
an arbitrary subset of jobs. Again, an assignment of jobs to machines has to be found
that uses a minimum number of machines. This variant, which we denote by FJSP with
machine capabilities, is related to Minimum Cover; Kroon et al. (1997, section 3) prove
by a reduction from 3-Dimensional Matching that this variant is strongly NP-hard
even if preemption is allowed, i.e., even if it is allowed to interrupt the processing of a job
on a machine and to continue the job on another machine.
The first and third variant, i.e., the FJSP with machine availabilities and the FJSP

with machine capabilities, which both seek for the minimum number of required machines,
are related to our workforce assignment problem. In the workforce assignment problem,
the schedule of each project is fixed, just as the schedule in both variants of the FJSP.
When we restrict the workforce assignment problem to the case where only one project
has to be staffed, then minimizing the number of assignments of workers to the project is
equivalent to minimizing the number of required workers. However, there are differences
between the two variants of the FJSP on the one hand and the workforce assignment
problem on the other hand. In the latter problem, the schedule of a project is not fixed
within a period. A skill requirement can be accomplished any time within the correspond-
ing period; a requirement does not have a defined start and finish time. Likewise, the
availability of a worker in a period is not defined by a start and finish time but only by
a time budget. With regard to capabilities of resources, there are also correspondences
and differences. In both problems, a job or a skill requirement, respectively, can only
be accomplished by a qualified resource. Yet, since skill levels are distinguished in the
workforce assignment problem, the processing time of a skill requirement depends on the
resource to which the requirement is assigned. Furthermore, a skill requirement can be
assigned to several workers, i.e., preemption is allowed. Although there are significant
differences, solution approaches to the FJSP with machine availabilities or to the FJSP
with machine capabilities may provide helpful clues.
The second variant of the FJSP, the k-track assignment problem, which seeks for a

job portfolio of maximum size, is related to the project selection problem tackled in this
thesis. The given set of machines in the k-track assignment problem corresponds to the
set of workers in the project selection problem and the jobs correspond to the projects.
A most beneficial choice of jobs that can be processed by the machines can be associated
with a feasible project portfolio of maximum benefit.
The works that we consider in the remainder of this section have been listed in Ta-

bles 2.2 and 2.3 in Section 2.1 but are considered in more detail now. We begin with two
enriched variants of the FJSP.
Valls et al. (1996) consider a problem where the minimum number of workers has to

be determined that is necessary to execute a machine load plan. A machine load plan is
defined as a set of jobs with fixed start and finish times that have already been assigned
to machines. The workforce is partitioned into worker classes. A subset of machines is
associated with each worker class. The subset associated with a worker class indicates
to which machines and thus to which jobs a worker of this class can be assigned. It is
assumed that an unlimited number of workers is available from each worker class.
Valls et al. formulate the problem as a restricted vertex coloring problem. The for-

mulation is based on a graph whose nodes represent the jobs and where an edge between
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two nodes indicates that the intervals of the corresponding jobs overlap and that the jobs
must not be assigned to the same worker. Each worker class is associated with a color c
and each worker of a class is related to a unit of the color of his class. A node or vertex
that corresponds to a job j must be colored by exactly one unit of a color c whose corre-
sponding worker class contains job j in its set of assignable jobs. Furthermore, if any two
adjacent nodes are colored by the same color c, they must be colored by different units of
this color. The goal is to find a coloring that uses the smallest number of units of colors.
To solve this coloring problem, Valls et al. outline a branch-and-bound algorithm

that applies problem-specific branching strategies, several upper and lower bounds, and
dominance rules. They could solve instances with up to 15 worker classes, 300 jobs
assigned to 15 machines, and on average 6 worker classes capable of operating a machine.
We adopted the ideas behind two lower bounds outlined by Valls et al. for lower bounds

that we apply to the workforce assignment problem. We considered their lower bounds Lc

and L1 and derived a lower bound on the number of workers needed to accomplish the
requirements of a project for a skill and a lower bound on the number of workers needed
to staff a complete project. In Subsection 6.1.1 we introduce global and local versions of
these bounds, which are termed LBglob

ps , LB
loc
ps , LB

glob
p , and LB loc

p . The lower bound Lc of
Valls et al., which is related to LBglob

ps and LB loc
ps , determines for those nodes that can only

be colored by a color c the minimum number of required units of color c. Analogously, we
determine for each skill s that is needed by a project p the minimum number of workers
needed by project p to cover its workload of skill s. The lower bound L1, which is related
to LBglob

p and LB loc
p , is a lower bound on the total number of units of colors needed to

color all nodes in the graph considered by Valls et al. Analogously, we determine for each
project p the minimum number of workers required to satisfy all skill requirements of
project p.
Krishnamoorthy et al. (2012) tackle the FJSP with machine availabilities and capa-

bilities for a workforce of limited size. For each worker that is required, fixed costs are
incurred. In their mixed-integer programming formulation, Krishnamoorthy et al. min-
imize the sum of fixed costs over all required workers. For their computational study,
however, they use identical cost values for all workers, so that they minimize the number
of required workers.
To find a solution to their problem, Krishnamoorthy et al. have devised a heuristic

approach that can be interpreted as a drop method. For a given workforce size, a two-
stage procedure heuristically checks if a feasible assignment of jobs to workers exists. If
the procedure finds an admissible assignment, a worker is removed or dropped from the
workforce and the two-stage procedure is invoked again. Hence, the two-stage procedure
can be regarded as the feasibility check for a drop operation. Note that we also outline
a drop heuristic for our workforce assignment problem (see Subsection 6.2.3). In their
paper, Krishnamoorthy et al. do not specify how the worker that is to be removed is
chosen.
At the first stage of their two-stage procedure, the LP relaxation of the MIP model is

considered and is further relaxed by a Lagrangian approach. For the resulting relaxation,
an approximate solution is determined by a special subgradient algorithm. The solution
provides Lagrangian multipliers, which are used at the second stage.
At the second stage, a Lagrangian relaxation of the original MIP is considered. Since

the same constraint set as at the first stage is transferred into the objective function, the
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Lagrangian multipliers determined at the first stage can be used as initial values for the
multipliers at the second stage. The resulting Lagrangian relaxation decomposes into 1-
track assignment problems, one for each worker. A 1-track assignment problem, which is
a k-track assignment problem with k = 1, can be represented as a shortest path problem.
These shortest path problems are solved by a label correcting algorithm. As long as the
solutions, which are associated with single workers, do not constitute a feasible solution
of the original MIP, the Lagrangian multipliers are adjusted by systematic perturbation
and the 1-track assignment problems are solved again until a stopping criterion is met.
In a computational study, Krishnamoorthy et al. compared their approach to the exact

MIP solver of the solver package CPLEX 11.2 for medium-sized instances and larger-sized
instances with up to 2000 jobs and 420 workers capable of performing up to 66% of all
jobs. For medium-sized instances, CPLEX reached an average gap of 6.7%, whereas
the approach of Krishnamoorthy et al. comes off with an average gap of only 2.9%. For
those larger-sized instances for which CPLEX 11.2 failed to provide an admissible solution
within half an hour, the heuristic approach provided feasible solutions with an average
gap of 10.1% to a lower bound provided by CPLEX.
Next, we consider the approaches of Brusco and Johns (1998) and Gomar et al. (2002),

which minimize personnel costs that depend on workforce levels. Both works present MIP
models for which solutions are determined by commercial solvers. The models are used to
assess cross-training strategies; the corresponding results have been summarized in this
thesis on pages 23–24 in Section 2.2, which deals with multi-skilling strategies.
The problem of Brusco and Johns (1998) features different worker classes. Workers

that belong to the same class are identical in regard to skill sets and corresponding skill
levels. For each skill and for each period of the planning horizon, a skill requirement
is given that must be satisfied by workers. Costs are incurred for each worker that is
deployed during the planning horizon; the costs can depend on the class of the worker.
Moreover, a break period must be granted to each worker that is used. In the model,
three decisions must be made. First, it must be decided how many workers from each
worker class are required to accomplish all requirements such that costs are minimized.
Second, for each period and for each skill, it must be determined how many workers of
each class contribute to the respective skill requirement. Third, for each period and each
worker class, the number of workers who rest in the period must be determined.
Brusco and Johns apply their model to a daily workload allocation problem of a

U.S. paper mill, which involved 4 skills, 17 periods of half and hour length, and 4 worker
classes comprising 200 workers in total. Since information on fixed costs for workers of
the different classes was not available for the authors, they assumed identical costs across
all worker classes and thus minimized the number of required workers.
Gomar et al. (2002) consider a problem that comprises short-term employment and

assignment decisions for a construction project, which spans a few weeks. Given a set
of mono- and multi-skilled workers, it must be decided for each day which workers are
employed and which workers from those on the payroll are assigned to which skill require-
ment such that all skill requirements can be accomplished. A skill is associated with a
craft and hence with a crew, e.g., with the crew of bricklayers, carpenters, or electricians.
We term such a crew a skill crew or a crew for short.
The objective function defined by Gomar et al. integrates three components. These

components are the sum of daily worker wages, the costs for hiring workers, and penalty
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costs for cases where a worker is not assigned to the same skill crew as on the previous
day. The first two components represent conflicting goals because they reflect the trade-off
between costs incurred for idle resources on one side and costs for high turnover on the
other side. The third component explicitly considers the detrimental effects of switch-
ing between skill crews and tries to reduce the variance in crew composition. However,
switching between crews, which is enhanced through multi-skilling, can be beneficial when
it reduces the number of new hires. To analyze multi-skilling strategies, an instance with
50 workers, 4 skills, and 16 days is considered.
The third component of the objective function in the model of Gomar et al. penalizes

each switch of a worker between skills. Our model, in contrast, appreciates switching of
a worker between skills within a project but penalizes switching between projects.
Li and Womer (2009a) consider a project scheduling problem that is associated with

the mission of a naval ship. Shipboard operations, which must be executed by sailors,
correspond to project tasks that must be scheduled within a deadline and subject to
general temporal constraints. Each task requires a set of skills. Exactly one sailor must
be assigned to each skill requirement of a task. Each sailor can be assigned to at most
one skill requirement at a time and needs rest periods during the mission. The skill set of
a sailor is not predefined but subject to optimization; at most four different skills can be
assigned to a sailor. The problem is modeled as a MIP and the goal is to find a schedule
that requires the minimum number of sailors.
Li and Womer (2009a) have outlined a three-phase decomposition approach to solve

the problem heuristically. Their approach can be interpreted as an add method because
the three-phase sequence is passed repeatedly, each time with an additional sailor. The
first phase presumes that the number of available sailors is given. At the beginning, the
number of available sailors is derived from a lower bound calculation. The first phase
considers only the scheduling part of the problem and regards the sailors as homogeneous
resources. A constraint programming approach is used to determine a feasible schedule.
If no feasible schedule exists, the number of sailors is increased by one; sailors are added
until a feasible schedule has been found.
In the second phase, the first-phase schedule is adjusted by a resource leveling proce-

dure. A tabu search heuristic is applied in order to minimize the number of overlapping
tasks. The resulting schedule constitutes the starting point of the third phase where a
feasible assignment of skills to sailors and of sailors to skill requirements must be deter-
mined. This assignment problem is formulated as a special bin packing problem where
each sailor corresponds to a bin and skill requirements and rest periods correspond to the
items that must be packed into the bins. If no feasible solution is found, the number of
sailors is increased by one and the first phase is invoked again. The three-phase sequence
is repeated until a feasible solution to a third-phase assignment problem has been found.
In a computational study, Li and Womer (2009a) solved instances with up to 60 tasks,

8 skills, and 60 sailors that could be deployed. The decomposition approach found op-
timal or near-optimal solutions for smaller-sized instances. For larger-sized instances, it
outperformed CPLEX 9.0, which was applied to the MIP formulation of the problem.
Li and Womer (2009b) consider a slightly modified version of the problem where the

skill sets of workers are predefined and costs have to be minimized that are incurred for
each worker used to staff the project. In their computational study, they chose identical
costs for all workers and thus minimized the number of required workers. To solve the cost
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minimization problem, Li and Womer (2009b) developed a two-phase decomposition ap-
proach. The first phase determines a minimum-cost solution to the assignment part of the
problem by solving a binary program using CPLEX. The second phase uses a constraint
programming approach to determine a feasible schedule for the given assignment. If a
feasible schedule does not exist, cuts are derived and added to the first-phase assignment
problem and the procedure starts anew. It is repeated until a feasible schedule has been
found in the second phase.
The cuts that are derived from an assignment solution which cannot be extended to

a feasible schedule include globally and locally valid cuts. Globally valid cuts exclude
only infeasible solutions of the assignment problem from the search space, whereas locally
valid cuts can exclude feasible and optimal solutions from the search space. A global cut
derived by Li and Womer (2009b) inhibits that a worker is assigned to two tasks that
must run in parallel. A locally valid cut prevents that a worker is assigned to two tasks
that can overlap but need not overlap.
The previously mentioned three-phase approach of Li and Womer (2009a) is an add

method. We devised a simple add method for the workforce assignment problem but
preliminary computational tests marked it inferior compared to our drop method (see
also Subsection 6.2.3.1). It may be more promising to devise a more sophisticated add
method seizing ideas from Li and Womer (2009a,b). We will elaborate on this idea in the
outlook in Chapter 9.
The works considered up to this point have dealt with staffing unrelated tasks or

tasks of a single project; in the remainder of this section, we address staffing problems
that feature multiple projects. First, we refer to two approaches to multi-project staffing
where the number of different types of assignments is limited by constraints. Both ap-
proaches deal with single-period problems in which the workload of concurrent projects
must be covered. In Patanakul et al. (2007), the problem of assigning project managers
to projects is considered. For each manager, two side conditions limit the number of his
assignments. The first condition implies an individual upper bound on the number of
concurrent projects that a manager can head effectively. The second condition takes into
account that a manager who is assigned to more than one project needs time to switch
over from one project to another. The total switch-over time required by a manager in-
creases with the number of projects that he leads. The second constraint considers this
switch-over time of a manager together with the workload of his projects and ensures that
his availability is not exceeded. Patanakul et al. have formulated the assignment problem
as a MIP and use a commercial solver to obtain a solution.
In Certa et al. (2009), skill requirements of projects must be allocated to multi-skilled

workers with heterogeneous skill levels. A greater skill level does not reduce the time
needed to accomplish a certain amount of workload but increases outcome quality. To
maximize overall outcome quality is the first out of three objectives. The second objective
is related to learning that occurs whenever a skill is executed. For each skill, the average
skill level across all workers that results at the end of the planning period is considered;
the minimum of these resulting average skill levels is maximized. The third objective
maximizes the preferences for collaboration over all pairs of workers. Here, additional
assignments of workers to skill requirements can increase the objective function value.
Though, three types of constraints limit the number of assignments for workers to the
skill requirements of projects.
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The first type of constraints prescribes that the contribution of a worker to a skill
requirement must be either zero or greater than a predefined percentage of the workload.
The reason for these constraints is the assumption that a small contribution hampers the
efficient use of an employee’s working time. In order to concentrate a worker’s attention
on a few projects, the second type of constraints limits the number of projects to which
each worker can contribute. The third constraint set demands that each skill requirement
must be accomplished by at most two workers in order to avoid scattering workload across
workers.
Certa et al. have devised a two-step approach to solve their nonlinear staffing model.

In the first step, various methods are applied to generate non-dominated solutions for the
multi-objective problem. In the second step, the ELECTRE III method1 is used to rank
the solutions according to the preferences of a decision maker.
We refrain from modifying our original formulation of the workforce assignment prob-

lem by adding an upper bound on the size of each project team because these bounds
could render an optimal solution of the original problem infeasible. In case of an instance
with high workforce utilization, it is quite difficult to specify consistent upper bounds
for all projects that are reasonably small but not so restrictive that the resulting set of
feasible solutions is empty.
Multi-period multi-project staffing problems are considered by Grunow et al. (2004)

and Heimerl and Kolisch (2010a). Grunow et al. (2004) consider a problem where clinical
studies must be scheduled over a day such that the tasks of all studies can be satisfied
by properly qualified employees. Scheduling decisions must only be taken for the start
times of studies. The start times of the tasks that belong to a study are coupled to the
beginning of the study and are automatically fixed as soon as the study start time has
been chosen. For each task and each period of task duration, a predefined number of
qualified employees must be assigned to the task and those employees that contribute to
a task must be assigned to it for its complete duration. Each employee is presumed to be
qualified for a subset of all tasks. He can be assigned to at most one task in each period
and can only work in those periods that belong to the shift to which he is assigned. Each
shift spans a set of contiguous periods and an employee can be assigned to at most one
shift. If an employee is assigned to a shift, costs are incurred that depend on the employee
or his qualification and on the shift. The goal is to find a schedule and an assignment
that minimize the sum of fixed costs incurred for required employees.
Grunow et al. apply a hierarchical planning approach and decompose the problem

into two subproblems. In the subproblem at the first stage, only the start times of
the studies and the duty periods of employees are determined but it is ensured that a
feasible assignment of employees to tasks will exist. To ensure this feasibility, Grunow
et al. represent task requirements, availabilities of employees, and availabilities of their
qualifications in an aggregated fashion. At the second stage, an admissible assignment
must be determined. For this feasibility problem, the goal is introduced to minimize the
number of assignments of employees to studies, i.e., an employee shall concentrate his
contributions on tasks that belong to as few studies as possible. Hence, the average size
of a team that accomplishes the tasks of a clinical study is minimized.
In the following, we present the optimization model of the second-stage problem be-

1ELECTRE is the abbreviation for élimination et choix traduisant la realité which means elimination
and choice expressing reality.
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cause this problem is quite similar to our workforce assignment problem and because we
want to check whether it is NP-hard. Grunow et al. (2004, p. 313) stress that their second-
stage “assignment model is computationally very efficient due to its pure binary nature”.
The good computational behavior is underpinned by the results of their numerical study.
Though, their problem is obviously related to strongly NP-hard problems such as Min-
imum Cover. Since Grunow et al. do not analyze the complexity of their assignment
problem, we are interested in settling the complexity question.
For the presentation of the model, let P denote the set of studies; J the set of tasks; K

the set of scheduled employees; Kj, j ∈ J , the set of those employees that can contribute
to task j because they are qualified for task j and they are on duty during the periods
in which task j must be performed; and let J overlap denote the set that contains all
pairs (j, j′) of tasks whose processing intervals overlap.
Two types of parameters are given and two types of decision variables are used. The

parameter aj, j ∈ J , indicates the number of employees required to perform task j and
the parameter αpj, p ∈ P , j ∈ J , is equal to 1 if task j belongs to study p, and 0 otherwise.
The binary decision variable xkj, j ∈ J , k ∈ Kj, takes on a value of 1 if employee k is
assigned to task j, and a value of 0 otherwise. Likewise, the binary decision variable ykp,
k ∈ K, p ∈ P , equals 1 if employee k contributes to study p. With these identifiers, the
second-stage problem of Grunow et al. (2004, section 4.2) reads as follows.

Min.
∑
k∈K

∑
p∈P

ykp (5.1)

s. t.
∑
k∈Kj

xkj = aj j ∈ J (5.2)

xkj + xkj′ ≤ 1 (j, j′) ∈ J overlap, k ∈ Kj ∩ Kj′ (5.3)
ykp ≥ xkjαpj j ∈ J , k ∈ Kj, p ∈ P (5.4)
xkj ∈ {0, 1} j ∈ J , k ∈ Kj (5.5)
ykp ∈ {0, 1} k ∈ K, p ∈ P (5.6)

Objective function (5.1) minimizes the number of assignments of employees to clinical
studies. Constraints (5.2) ensure that the required number of properly qualified employees
is assigned to each task. Constraint set (5.3) guarantees that no employee has to perform
two or more tasks simultaneously. Constraints (5.4) record the assignments of employees
to studies. The domains of the decision variables of this staffing subproblem are defined
in Constraint sets (5.5) and (5.6).
Let us term optimization problem (5.1)–(5.6) the multiple clinical studies staffing

problem (MCSSPopt) and let us abbreviate the decision problem that corresponds to
MCSSPopt by MCSSPdec. Decision problem MCSSPdec asks whether there is a solution
with at most b assignments of employees to studies, b ∈ N \ {0}. In the following, we
will show that MCSSPopt is NP-hard in the strong sense by reduction from the fixed job
scheduling problem with machine availabilities.

Lemma 5.1 MCSSPdec ∈ NP. �

Proof Let xkj, j ∈ J , k ∈ Kj, and ykp, k ∈ K, p ∈ P , be a (guessed) solution for
an arbitrary instance of MCSSPdec. We can check in polynomial time if the solution is
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feasible and if the number of assignments of workers to studies that is associated with
this solution does not exceed b. A check whether the solution is feasible requires to test if
the solution satisfies Constraint sets (5.2)–(5.6). The number of constraints within these
sets is bounded by a polynomial in the instance size. �

Theorem 5.1 MCSSPdec is strongly NP-complete. �

Proof (Pseudopolynomial transformation from FJSP with Machine Availabilities)
Problem: FJSP with Machine Availabilities
Instance: Set of n jobs where each job j = 1, . . . , n must be processed in the inter-
val [sj, fj); set of m machines where each machine i = 1, . . . ,m is continuously available
in the interval [ai, bi).
Question: Does there exist a feasible schedule that uses not more than m machines,
i.e., does there exist an assignment of all jobs to the m machines such that each job is
processed by one machine and no pair of jobs whose intervals overlap is processed by the
same machine?

FJSP with Machine Availabilities is NP-complete in the strong sense (cf. Kolen
et al., 2007, section 4.1).
We restrict MCSSPdec to the special case where only one study must be staffed, each

task requires only one worker, and each worker is qualified to perform every task. That
is, we assume |P| = 1; aj = 1, j ∈ J ; and that the set Kj, j ∈ J , contains all employees
whose availability periods cover the processing interval of task j.
Now, let each job j of an instance of the FJSP with Machine Availabilities be

associated with a task of the study and let the processing interval of each task be defined
by the processing interval [sj, fj) of the respective job j. Associate each machine i with
an employee and let the availability interval [ai, bi) of machine i define the duty period
of the respective employee. Then, there exists a feasible assignment of jobs to machines
that uses at most m machines if and only if there is a feasible assignment of employees
to the tasks of the sole study such that at most m employees are assigned to the study.
Together with Lemma 5.1 our proof is complete. �

Corollary 5.1 MCSSPopt is NP-hard in the strong sense. �

Although their second-stage staffing subproblem MCSSPopt is strongly NP-hard,
Grunow et al. (2004) can solve most of their 11 test instances for both the first- and
second-stage problem with the exact branch-and-cut method of CPLEX 8.1 within min-
utes. The instances comprise up to 14 studies, 593 tasks, 480 periods of 3 minutes length,
and 54 employees. Grunow et al. ascribe the good computational behavior of their staffing
subproblem to its pure binary nature.
Despite many similarities, our workforce assignment problem differs from MCSSPopt

in several points. First, in MCSSPopt the number of employees required for a task is pre-
defined, whereas the number of workers necessary for a skill requirement is not prescribed
in the workforce assignment problem. Second, the workforce assignment problem is mod-
eled as a mixed-integer program; it cannot be modeled as a pure binary program. Third,
in MCSSPopt no skill levels are distinguished. Finally, in MCSSPopt an employee can
contribute only to one task in a period, whereas a worker can contribute to several skill
requirements in a period in the workforce assignment problem. Consequently, it seems
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very likely that it will be more time-consuming to solve an instance of the workforce
assignment problem than to solve a comparable instance of MCSSPopt. In case of the
workforce assignment problem, it seems also very likely that we have to rely on heuristics
for instances of realistic size with more than 100 workers, 50 projects, and 10 skills.
Another strongly NP-hard multi-project scheduling and staffing problem is modeled

by Heimerl and Kolisch (2010a). The model describes a problem that originates from the
IT department of a semiconductor manufacturer. As in the model of Grunow et al. (2004),
start periods of projects must be determined, while start times of activities are coupled to
their respective project start time; thus, all skill requirements of a project are scheduled
as soon as the project start time has been fixed. As in our model, an arbitrary subset of
workers can accomplish a skill requirement and skill levels are distinguished. Skill levels
of workers lie in the interval [0.5, 1.5]. Heimerl and Kolisch (2010a) pursue the goal of
minimizing costs for workers. The costs for a worker depend on the amount of time the
worker contributes to skill requirements. Heimerl and Kolisch distinguish between regular
working time and overtime, which is more expensive. Outsourcing of workload to external
resources is also possible, but it is relatively expensive and internal resources must provide
a prescribed share of the total contribution to a skill requirement. Test instances with
20 projects, each with 2 potential start time periods on average; 100 workers; 25 skills,
10 skills per worker, 4 skills per project; and 12 periods were solved by the MIP solver of
CPLEX 10.1 within a few minutes.
The workforce assignment problem and the problem outlined by Heimerl and Kolisch

(2010a) share many commonalities. However, there are two important differences: The
workforce assignment problem does not include scheduling decisions and, more important,
its objective function minimizes fixed costs that are incurred when a worker contributes
to a project—how much so ever—and that are identical for each combination of a project
and a worker. In contrast, Heimerl and Kolisch (2010a) minimize variable costs that are
linear in the amount of time that a worker contributes to a skill requirement. Their objec-
tive function leads to relatively large project teams, as is demonstrated in an exemplary
comparison at the beginning of Section 7.3.
In a follow-up paper, Kolisch and Heimerl (2012) consider an almost identical problem

where not only project start times but also activity start times are subject to optimization.
Kolisch and Heimerl (2012) devise a solution approach that includes a genetic algorithm
followed by a tabu search heuristic. The two meta-heuristics are used to generate sched-
ules. In the genetic algorithm, a schedule is coded as a chromosome whose genes take
on integer values. Each integer value represents the realized start-to-start time lag be-
tween an activity and its direct predecessor. In the tabu search procedure, a schedule
is represented by a vector of activity start times. Each schedule, independent from its
representation, implies a staffing subproblem, which is a linear program. To solve these
staffing subproblems, Kolisch and Heimerl (2012) apply the generalized network simplex
method. For their numerical analysis, Kolisch and Heimerl (2012) solved instances with
up to 10 projects, 6 activities per project, activity start time windows of 5 periods length,
10 workers, and 4 skills.
The coding schemes of both meta-heuristics outlined by Kolisch and Heimerl (2012)

refer to the scheduling part of their problem and thus cannot be simply adapted to our
assignment problem. However, we also use the generalized network simplex method to
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solve a subproblem that is similar to their staffing subproblem (see Subsections 6.2.3.2
and 6.2.3.3).
To the best of our knowledge, the problem of assigning multi-skilled workers with

heterogeneous skill levels to projects such that average team size is minimized has not
been considered so far. Though, our literature review demonstrates that related problems
have been tackled. The staffing subproblem presented by Grunow et al. (2004) comes
closest to the workforce assignment problem. However, Grunow et al. have not outlined
heuristic solution methods for their problem. For large-sized instances of the workforce
assignment problem, heuristics are needed. Kolisch and Heimerl (2012) have outlined two
meta-heuristics for a problem that is also similar to the workforce assignment problem
but integrates scheduling decisions and does not take project team size into account.
The meta-heuristics, which are adjusted to their problem, cannot be readily applied to
our assignment problem. However, an exact method to solve a staffing subproblem was
adopted from Kolisch and Heimerl (2012). Beyond that, other solution approaches which
we have summarized in this review have—as indicated throughout this section—inspired
our solution approaches, which we present in Chapter 6.

5.3 Work related to the utilization leveling problem
In this section, we provide a brief review of contributions that are concerned with lev-
eling the utilization of resources, which is a hard problem in general. We have noted in
Section 3.4 that utilization can be measured in absolute and relative terms but that it
does not matter for our methods which of both ways is applied. Hence, we do not dis-
tinguish whether utilization, workload, or hours worked are leveled and use these terms
interchangeably in this section. We have already mentioned several alternative objective
functions for leveling problems in Section 4.4. Here, we cover some of those approaches
to leveling that deal with projects or multi-skilled workers. Although our utilization lev-
eling problem is a rather easy problem that can be solved by a standard linear program-
ming solver and although the problem does not involve skills because only departmental
workload must be allocated, the following review is valuable for two reasons. First, it
emphasizes the importance of leveling for firms and their workers. Second, it provides an
overview of approaches that may be adopted if the goal is pursued to find an allocation
of project and departmental workload that levels the hours worked by employees. The
review is divided into two parts. In the first part, we present leveling problems that re-
quire scheduling decisions. In these problems, workload can be shifted from one period
to another by manipulating activity start times. In the second part, we consider leveling
problems where the total workload in each period is already fixed but must be distributed
evenly across resources, as it is the case in our problem. In both parts, we begin with
works that stress the importance of leveling. Then, we address works that are related to
project management or multi-skilled resources.
Lee and Ueng (1999) emphasize that leveling the workload of employees is crucial

in order to satisfy the desire for equity and fairness. They consider a vehicle routing
problem with a single depot and a fleet of vehicles that must deliver a homogeneous good
to customers. The objective function of their optimization model is a weighted sum of
two terms, which are both minimized. The first term represents the classical goal of
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minimizing the total travel time of all vehicles; the second term targets at leveling the
travel times of the vehicles. The travel times of the vehicles are assumed to correspond
to the working times of the respective drivers. For each driver, the difference between
his travel time and the minimum travel time among all drivers is determined. The sum
of these differences constitutes the second term of the objective function. To solve their
problem, Lee and Ueng devise a construction heuristic where the next customer that is
added to a route is selected according to a savings calculation and assigned to a vehicle
whose current route is of minimum length.
The leveling goal of Lee and Ueng, which is represented by the second term in their

objective function, is equivalent to the objective of minimizing the “average difference
from minimum workload”. The balancing effectiveness of this objective has been proven
to be rather low (cf. Kumar and Shanker, 2001, Sections 2.1 and 4). To demonstrate the
low balancing effectiveness, we consider two solutions of an instance with three drivers
whose travel times are (0, 15, 15) and (0, 10, 20), respectively. Although the first solution
is intuitively perceived as better leveled, the objective function of Lee and Ueng (1999)
signals indifference because the leveling term is equal to 30 for both solutions.
In the realm of project scheduling, resource leveling has a long tradition, but most ap-

proaches consider leveling problems that feature mono-skilled resources with homogeneous
skill levels. In these problems, the load of a resource must be leveled over time. Often,
a quadratic objective function is used because it guarantees effective balancing. For a
classical resource leveling problem with a quadratic objective function, Rieck et al. (2012)
outline two linearizations that lead to mixed-integer linear programming formulations.
For the same problem, Gather (2011) provides a problem-specific branch-and-bound algo-
rithm. In his literature review, several references to other exact methods and to heuristic
solution approaches can be found (cf. Gather, 2011, section 1.4).
A project scheduling problem that features not only multi-skilled workers who master

skills at different levels but also a leveling objective is presented by Valls et al. (2009).
They consider a problem that arises in call centers. When customer inquiries and the
related tasks cannot be dealt with by first-level call center agents, these tasks must be
assigned to second-level service workers and scheduled subject to general temporal con-
straints including due dates. Due dates result from service agreements with business
clients. Each task must be processed by one service worker who masters the required
skill. The service workers differ in their skill sets and can be assigned to at most one task
in each period. Three skill levels are distinguished; a higher level reduces task processing
times.
For this problem, three goals are pursued in lexicographical order. The most important

goal is to schedule the tasks such that priorities are observed as well as possible. The
second objective is to assign a highest-skilled worker to each task. The last objective is
the leveling objective: For each worker, his total workload over the planning horizon is
determined. The leveling objective function minimizes the sum of the absolute deviations
of all these workloads from the average workload. To solve the scheduling and staffing
problem with the three mentioned objectives, Valls et al. outline a genetic algorithm
where scheduling and staffing decisions are encoded as priority lists, which are decoded
by a serial schedule generation scheme.
The balancing effectiveness of the leveling objective applied by Valls et al. is only

moderate. To illustrate this moderateness, consider four workers and let their workloads
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in two solutions be given by (9, 9, 11, 11) and (8, 10, 10, 12), respectively. By intuition,
one may rate the first solution as better leveled. However, the leveling objective function
of Valls et al. is indifferent towards both solutions.
A scheduling problem where the workload of teams must be leveled is presented by Ho

and Leung (2010). They consider the problem of transporting meals for airline passengers
from an airport building to aircrafts that are parked at the gates or on the tarmac of
the airport. Teams of two workers must deliver the meals regarding the aircrafts’ time
windows, which result from the flight schedule. Each worker can serve only the aircraft
types he is qualified for and an aircraft, which can be interpreted as a customer in a
delivery problem, must be served by a team in which at least one worker has the skill
to load this aircraft. The problem is to form two-person teams and to assign a route
to each team such that a weighted sum of several objectives is minimized. The most
important goal is to minimize the number of aircrafts that are not part of a route and
are hence not served. Another goal is to level the number of aircrafts that have to be
visited by the teams. This goal is incorporated by a quadratic objective function. Ho and
Leung solve the catering problem by a two-stage heuristic. At the first stage, a matching
approach is used to form teams such that the joint skill sets of the teams are as large as
possible and such that rare skills are not accumulated within teams but distributed across
teams. At the beginning of the second stage, a route is composed for each team. This
initial solution is improved by a tabu search procedure or, alternatively, by a simulated
annealing approach.
In situations where a schedule has already been fixed such that the total workload in

each period is known and where only decisions about workload allocation must be taken,
leveling the workload over resources and leveling the workload of single resources over
time, remains a hard problem in general. This hardness can be observed for three out
of the four works that we consider in the remainder of this review. Only the problem of
Slomp and Molleman (2002) can be modeled as a linear program (LP) and can thus be
classified as easy.
Huang et al. (2006) address the problem of assigning airlines to the cargo terminals

of an international airport. The cargo flights of an airline are associated with a known
amount of workload for loading, unloading, and handling operations. To ease airport
operations, all cargo flights of an airline must be assigned to the same cargo terminal.
Huang et al. consider a problem with two identical terminals and formulate a MIP model
with a leveling objective function that is a weighted sum of two balancing goals. The first
goal is to minimize the peak workload that occurs among both terminals over all periods.
The second goal is related to the absolute workload difference between both terminals
in each period. The sum of these differences shall be minimized. Furthermore, a side
condition demands that the workload that is allocated to one of the two terminals over
all periods must make up between 45% and 55% of the total workload. Huang et al.
also formulate a model where workloads for airlines are uncertain. The authors assume
that a set of possible scenarios is known and that each scenario specifies a workload for
each airline and period. In this case, their goal is to find an assignment of airlines to
terminals such that the expected value of the leveling objective function is minimized. To
solve large-sized instances of this problem, Huang et al. apply a Benders decomposition
approach.
Huang et al. emphasize two advantages of balancing workloads in cargo handling.
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First, balancing workloads between terminals avoids congestion at one terminal, while
another one is void. Second, balancing workloads at a terminal over time allows the
terminal management to efficiently operate with a constant supply of labor, i.e., with
constant workforce levels and with regular working times. When loads are not leveled over
time, workers may be idle in one period and overburdened in another. Both advantages
of leveling hold in principle also for other situations.
A project staffing problem that takes workload leveling into account is presented by

LeBlanc et al. (2000). In their problem, managers must be assigned to construction
projects. Each project requires one manager, while each manager can lead more than one
project. The workload that arises from assigning a manager to a project depends on the
travel distance between the manager’s home and the site of the construction project. The
goal of the corresponding MIP model, which LeBlanc et al. have formulated, is to find
an assignment that minimizes the total workload of all managers. The actual leveling
is accomplished via constraints of the MIP model. In these constraints, the workload of
each manager is restricted to lie between a lower and an upper bound in each period. The
bounds are loose in the first optimization run. As long as a feasible solution is found, the
bounds are tightened (the lower bounds are increased by one unit, the upper bounds are
decreased by one unit) and the model is resolved. LeBlanc et al. select the solution that
was found for the tightest bounds as the final solution.
Slomp and Molleman (2002) consider a workload allocation problem with multi-skilled

workers in order to assess different cross-training strategies. One criterion for the assess-
ment of a strategy is the workload balance that the strategy facilitates. In their problem,
the skill requirements of a single period must be allocated to workers who differ in their
skill sets and whose availability is unlimited. Skill levels are not distinguished. Slomp
and Molleman outline a three-step approach, which serves different purposes. In the first
step, they solve an LP in order to determine an allocation that minimizes the workload
of a bottleneck worker. A bottleneck worker is a worker to whom the maximum workload
among all workers has been allocated. The second step aims explicitly at leveling the
workload across workers. A bottleneck worker of the first-step solution is identified; this
worker and his workload are removed from the LP and the reduced LP is solved, again
with the objective of minimizing the workload of a bottleneck worker. The removal of a
bottleneck worker and his workload and the reoptimization of the reduced LP are repeated
until a single worker remains. For the case that a solution features more than one bottle-
neck worker, Slomp and Molleman do not specify which of them is removed. However, a
bad choice can lead to a suboptimal solution. The purpose of the third step is to adapt
a solution when a change in skill requirements occurs. The goal is to determine a new
solution in which workers execute preferably only those skills that they had to execute in
the old solution, because then the need for coordination is assumed to be relatively low.
A problem where multi-skilled employees with heterogeneous skill levels must be as-

signed to tasks is modeled by Eiselt and Marianov (2008). In their problem, each task
needs some skills and for each needed skill a required skill level is specified. Only an
employee who masters all needed skills and who meets the required skill levels can be
assigned to the task. The skill levels of an employee do not affect the processing time
of a task but are related to the boredom that he experiences when executing a task.
The greater the distance of his skill levels from the required levels, the less challenging is
the task and the greater is the boredom of the employee. The assignment decisions are
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evaluated by an objective function that is a weighted sum of three goals. One goal is to
minimize the boredom of employees. A second goal is to minimize costs for overtime and
outsourcing of tasks. These costs may be incurred because all tasks must be accomplished
but the regular working time and extra hours of each employee are limited. The third
goal is to balance the workload of employees. For each employee, Eiselt and Marianov
determine the absolute difference between his workload and the average workload. The
sum of all differences is minimized. The whole problem is formulated as a MIP and solved
with CPLEX.
This review of approaches to workload leveling underlined the importance of workload

balancing in practice and justifies our aim to level worker utilization by an appropriate
allocation of departmental workload. Furthermore, the review revealed that workload
leveling is often not the goal with highest priority. Frequently, it is only one goal among
others or a secondary goal. This holds also for our approach, where leveling is placed at
the last stage of the hierarchical planning model.



Chapter 6

Solution methods

In this chapter, we will outline solution methods for the three optimization problems
modeled in Chapter 4. We concentrate on solution methods for the problem of assigning
workers to projects, because this problem is in the focus of our work. Methods for the
selection and the leveling problem will be considered only in brief.
We present exact and heuristic solution methods. Exact methods determine an optimal

solution to a problem instance if an optimal solution exists; otherwise, they prove that
no optimal solution exists. Heuristic solution methods apply promising rules to find
solutions, but do not explore the whole solution space. Heuristics are supposed to find
good solutions in short time. Heuristic methods cannot guarantee to find an optimal
solution if an optimal solution exists, and may even fail to find an existing feasible solution
for an instance. The major advantage of heuristic solution methods, however, is their
speed when large-sized problem instances are tackled; for such instances, heuristics tend
to be much faster than exact methods. Furthermore, in case of hard problems, good
heuristic methods tend to provide better solutions than exact methods when solution
time is limited. Solution time is often limited, because problem owners, e.g., a firm’s top
management as in our case, tend to prefer short solution times.
In regard to our three optimization problems, heuristic solution methods come into

question for the selection and the assignment problem, as these are hard problems. The
complexity analysis in Section 4.6 revealed that the project selection problem and the
problem of assigning workers to projects are NP-hard in the strong sense. This complexity
result implies that the time that is necessary to determine an optimal solution for these
problems is exponential in the instance size. This exponential time complexity may render
exact solution methods for these two problems unattractive when it comes to large-scale
instances. Furthermore, strong NP-hardness of a problem implies that no fully polynomial-
time approximation scheme exists for this problem (cf. Garey and Johnson, 1979, pp. 121–
151, especially pp. 140–142; Wegener, 2003, pp. 105–116, especially pp. 114–115; Gomes
and Williams, 2005). This means that for our strongly NP-hard problems no heuristics
exist that can guarantee for any instance to find a solution with an arbitrarily small
relative gap ε and that have a running time bounded by a polynomial in the instance size
and in 1

ε
.

Nevertheless, we will outline exact methods not only for our leveling problem but also
for our selection and our assignment problem for two reasons. First, for instances of small
size, the solution time of exact methods may be acceptable for the problem owners. Even
for large-sized instances, the solution quality that is reached within a certain time limit
can be acceptable. Second, exact methods are required for an assessment of heuristic
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methods, because exact methods can provide optimal solutions for small-sized instances.
These solutions can serve as a benchmark for solutions found by heuristic methods.
In Section 6.1 we present exact solution methods for our three problems. For the

project selection problem and for the workforce assignment problem, we resorted to a
solver package that offers a branch-and-cut method. In preliminary tests, we found that
this exact method provided satisfactory results for the project selection problem. For the
workforce assignment problem, we devised valid inequalities to support the branch-and-
cut method. Finally, we present a specially tailored exact algorithm for the utilization
leveling problem.
Section 6.2 is devoted to heuristic methods for the workforce assignment problem.

Since the exact methods did not provide satisfying results for this problem, we developed
four heuristic methods, which differ in the extent to which solvers for mixed-integer linear
programs and linear programs are used.

6.1 Exact solution methods and their support
In this section, we will state the exact solution methods that we applied to our three
optimization problems and describe measures that support these methods. Our three op-
timization problems comprise the project selection problem and the workforce assignment
problem, which were modeled as mixed-integer linear programming (MIP) models, and
the utilization leveling problem, which was modeled as a linear program (LP).
An exact state-of-the-art approach to solve LPs is the simplex method. An exact state-

of-the-art approach to solve MIP models are branch-and-cut methods. Branch-and-cut
methods combine classical branch-and-bound and cutting plane algorithms.
For the following, we presume that the reader is familiar with the simplex method. For

a comprehensive treatment of the simplex method, see Dantzig (1963), Chvátal (1983),
or Neumann and Morlock (2002, pp. 35–171), for example. The simplex method is also
applied as a subroutine when MIP models are solved by branch-and-bound or branch-
and-cut.
We also presume that the reader is familiar with the principle of branch-and-cut meth-

ods. The two main building blocks of branch-and-cut methods are branch-and-bound and
cutting plane algorithms. For a thorough treatment of the branch-and-bound method
we refer to Nemhauser and Wolsey (1999, pp. 349–367), Winston and Goldberg (2004,
pp. 475–545), and Neumann and Morlock (2002, pp. 392–402). Cutting plane algorithms
try to generate cutting planes, which are specific valid inequalities. Both valid inequalities
and cutting planes are used to tighten the LP relaxation. At the beginning of Subsec-
tion 6.1.1, we will briefly review valid inequalities and cutting planes. Integrating cutting
plane algorithms into branch-and-bound methods has, in general, a positive impact on
solution times, as documented in Bixby and Rothberg (2007). The integration of cutting
plane algorithms into branch-and-bound methods leads to branch-and-cut methods and is
described by Wolsey (1998, pp. 157–160) and Neumann and Morlock (2002, pp. 529–535).
Examples for branch-and-cut methods can be found in Obreque et al. (2010) and Gicquel
et al. (2010).
Both the simplex method and branch-and-cut methods are well-established and have

been included in readily available solver packages. For example, the commercial solver
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package CPLEX from IBM ILOG features LP solvers which are based on the simplex
method and a MIP solver which is based on a branch-and-cut method. With regard to
the LP solvers, CPLEX offers the primal and the dual simplex method among others.
A preliminary comparison between the LP solvers of CPLEX for our solution methods
revealed that there is no significant difference in solution speed. Hence, we chose to apply
the default LP solver of CPLEX, which is the dual simplex method, for our computational
tests. Whenever we refer to the LP solver of CPLEX in the following, we mean the dual
simplex method of CPLEX; the term the simplex method includes both the primal and
the dual simplex method.
We used the branch-and-cut method offered by CPLEX to solve the project selection

problem. As the results obtained with CPLEX were satisfactory, we did not see the
need for additional effort and we abstained from measures supporting CPLEX and also
refrained from developing heuristic methods.
We also applied the branch-and-cut method offered by CPLEX to the MIP model

of the workforce assignment problem. The results obtained were only satisfactory for
instances of small size. In order to support the branch-and-cut procedure, we devised
valid inequalities that tighten up the formulation of the MIP model for the workforce
assignment problem. In Subsection 6.1.1, we will succinctly introduce the concept of valid
inequalities and their potential for cutting planes, and then present our valid inequalities
for the workforce assignment problem and discuss their potential acting as cutting planes.
In Subsection 6.1.2, we will present an exact solution method for the utilization lev-

eling problem, i.e., for the problem of leveling working times by allocating departmental
workload. For this LP, the simplex method can serve as an exact method. However,
the worst-case running time of the simplex method is not polynomial. This time com-
plexity result holds for all variants of the simplex method such as the primal and dual
variant. Alternative general-purpose methods for LPs exist that have polynomial time
complexity. Though, in practice the simplex method performs well and often outpaces
the polynomial-time methods. We will present a polynomial-time algorithm for our lev-
eling problem whose worst-case running time is shorter than the worst-case running time
of the general-purpose polynomial-time algorithms for LPs. Furthermore, our algorithm
outperforms the simplex method when applied to test instances that come close to real-life
instances.

6.1.1 Valid inequalities for the workforce assignment problem
This subsection starts with a succinct review of valid inequalities and cutting planes. The
idea that lies behind these two types of inequalities is to enhance the solution of mixed-
integer linear programming (MIP) models and pure integer linear programming (PIP)
models by tightening the model formulation, i.e., by tightening the feasible region of the
LP relaxation. At the end of the review, we will distinguish local cuts and locally valid
inequalities from global cuts and globally valid inequalities, respectively.
Then, we will turn to the workforce assignment problem, for which we formulated MIP

models, and derive three types of valid inequalities that tighten its LP relaxation. The
first type of valid inequalities addresses the minimum number of workers that is necessary
to satisfy the requirements of a project p for a skill s ∈ Sp. The second type addresses the
minimum number of workers that is necessary to satisfy all requirements of a project p.
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Finally, the third type of valid inequalities are tighter formulations of big-M constraints
of the standard and the network model. For all three types of valid inequalities, we will
present globally valid inequalities. For the first two types of valid inequalities, we will also
present locally valid inequalities. At the end of this subsection, we will briefly discuss the
potential of the presented inequalities for acting as cutting planes.
For our review of valid inequalities and cutting planes, we consider problems that can

be formulated either by a MIP or a PIP model. Let Π be an arbitrary problem modeled
as a MIP or a PIP. May S denote the set of feasible solutions for Π and may P ⊇ S
denote the feasible region for the LP relaxation of problem Π. P is also termed the search
space of the LP relaxation.
A constraint that is satisfied by all points in S is called a valid inequality for S (cf.

Nemhauser and Wolsey, 1999, p. 88). Adding valid inequalities to the constraint set of a
problem can significantly reduce the number of LP relaxations that must be solved and
the number of branching steps that are necessary in order to find an optimal solution for
the problem.
To give an example for a valid inequality and to indicate how a valid inequality can

reduce the number of LP relaxations that must be solved, we consider the knapsack
problem, which was introduced on page 76 in Section 4.6.

Example 6.1 Let the set J = {1, . . . , n} contain n items, let the parameter wj denote
the weight of item j ∈ J , and let a knapsack with capacity c be given. A subset of items
whose total weight must not exceed the capactiy c has to be selected. The set of feasible
solutions is given by S = {x ∈ {0, 1}n |

∑
j∈J wjxj ≤ c}, where the binary decision

variable xj, j ∈ J , indicates whether we select item j (xj = 1) or not (xj = 0). Let
P = {x ∈ [0, 1]n |

∑
j∈J wjxj ≤ c} denote the feasible region of the corresponding LP

relaxation. P is also called knapsack polytope.
To state a valid inequality, let there be a set C ⊂ J with

∑
j∈C wj > c. Such a set C

is called a cover. Then,
∑

j∈C xj ≤ |C| − 1 is a valid inequality for the knapsack polytope
(cf. Nemhauser and Wolsey, 1999, pp. 215–216, 265–270; Balas, 1975). This inequality,
called cover inequality, states that not all items from C can be selected. Note that a
solution xLP that is feasible for the LP relaxation can imply

∑
j∈C xLP

j > |C|− 1. Adding
our valid inequality to the knapsack polytope P would exclude the solution xLP from the
resulting tightened polytope and would thus make xLP infeasible for the tightened LP
relaxation. �

The example shows how valid inequalities can tighten a model formulation and how
a tight formulation improves the chance to find an integer-feasible solution by excluding
integer-infeasible solutions from the feasible region of the LP relaxation.
Transferring this insight to our problem Π leads to the convex hull of the solution

space S. If problem Π is formulated as tight as possible, the feasible region of the LP
relaxation of Π coincides with the convex hull of S. The convex hull of S, denoted by
conv(S), are all points that are convex combinations of points in S (cf. Nemhauser and
Wolsey, 1999, p. 83). If the feasible region of the LP relaxation coincides with conv(S),
an optimal solution for the LP relaxation that is determined by the simplex method is
also an optimal solution for the original problem Π. Hence, a description of the convex
hull conv(S) is precious, as such a description accelerates the solution process.
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For the description of the convex hull of S, special valid inequalities are necessary.
Unfortunately, the LP relaxation of a MIP or PIP model is not as tight as possible in
general, i.e., conv(S) ⊂ P holds in general. Then, a description of the convex hull conv(S)
can be obtained by adding distinguished valid inequalities that are called facets to the
LP relaxation of problem Π. Let conv(S) be n-dimensional, then a facet is a (n − 1)-
dimensional face of conv(S), i.e., a hyperplane that is an (n−1)-dimensional boundary of
conv(S) (cf. Nemhauser and Wolsey, 1999, pp. 88–92; Conforti et al., 2010, Chapter 11,
Section 2.7).
Although determining all facets for the feasible region of a problem may be too ex-

pensive, it can be helpful to determine some facets or weaker valid inequalities and add
them to the constraint set. For mixed-integer linear and pure integer linear optimization
problems that are NP-hard, no efficient way is known to determine all facets of conv(S).
If an efficient way was known, P = NP would hold. The cover inequalities that we intro-
duced in Example 6.1 on the preceding page are no facets in general (cf. Wolsey, 1998,
pp. 147–150; Balas, 1975). Nevertheless these valid inequalities help to accelerate the
solution process. Generally, it can be worthwhile to search for valid inequalities that cut
off parts from the set P \S in order to tighten the description of S. Such valid inequalities
lead to a tighter LP relaxation, which comes closer to the convex hull of S. This idea
of tightening the LP relaxation is pursued by cutting planes, which are valid inequalities
that are generated on demand.
Cutting planes, also called cuts, are valid inequalities that cut off solutions in P \ S

from the solution space S of a problem Π. Suppose that a solution to the LP relaxation
of problem Π contains fractional values for at least one integer variable. This solution is
a point that lies in P \ S. A cutting plane separates this point from the set S of integer-
feasible solutions. If we add such a cutting plane to P , the resulting search space P ′ is a
tighter description of S than P . In this way, cutting planes decrease the size of the search
space P and thus accelerate the search for an optimal solution.
This concept of tightening the description of S leads to cutting plane approaches that

solve linear problems featuring integer variables by repeatedly solving the LP relaxation
and adding cutting planes until the solution of the LP relaxation is integer-feasible. Go-
mory (1958) introduced such an approach for pure integer programs, where so called
Gomory fractional cuts were generated. Again Gomory (1960) presented such an ap-
proach for mixed-integer linear programs, where so called Gomory mixed integer cuts
were generated (cf. also Balinski, 1965).
Cutting planes are generated by cutting plane algorithms, which try to find a valid

inequality that separates a fractional solution of the LP relaxation from S. This problem
of determining a violated inequality is called separation problem. Each cutting plane
algorithm is a procedure that tries to generate cutting planes of a certain class. For
example, Gomory (1958) presented a procedure that generates cuts from the class of
Gomory fractional cuts. Another class of cuts are cover cuts. Cover cuts are cover
inequalities that cut off non-integer points from a knapsack polytope. Nemhauser and
Wolsey (1999, pp. 459–460) outline a cutting plane algorithm that generates cover cuts.
While cover cuts apply to sets of binary variables only, the class of flow cover cuts applies
to mixed-binary sets. Flow cover cuts can be derived from flow conservation constraints
at nodes in flow networks (cf. Padberg et al., 1985; Nemhauser and Wolsey, 1999, pp. 281–
290).
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There exist many other classes of cuts for which cutting plane algorithms have been
devised. Many of these cutting plane algorithms have been integrated into branch-and-
bound methods to form branch-and-cut methods. These branch-and-cut methods are
included in solver packages such as CPLEX.
For branch-and-cut methods as well as for branch-and-bound methods, we must dis-

tinguish global from local cuts (cf. Balas et al., 1996) and globally from locally valid
inequalities. A cut (valid inequality) that is valid for the root node of a branch-and-cut
or branch-and-bound tree is called a global cut (globally valid inequality). A global cut
(globally valid inequality) is valid for the original problem Π and all its subproblems, which
are created by branching. A local cut (locally valid inequality), in contrast, is only valid
for a certain subproblem Πsub and for the subproblems of Πsub. A local cut (locally valid
inequality) exploits local information of a node in a branch-and-cut or branch-and-bound
tree and is hence only valid for this node and its subnodes.
In the following, we present three types of valid inequalities for the workforce assign-

ment problem. Among these valid inequalities are globally and locally valid inequalities.
We derived the three types of valid inequalities, which tighten the LP relaxation of the
workforce assignment problem, by exploiting the structure of this problem.
The first type of valid inequalities that we consider is based on a lower bound for

the number of workers that are necessary to satisfy the requirements of a project p for a
skill s ∈ Sp in all periods during project execution. The following example demonstrates
our idea.

Example 6.2 Assume that in an instance of the workforce assignment problem only
two workers k1 and k2 master skill s, which is the only skill required by project p. For
k ∈ {k1, k2}, let lks = 1 and Rkt = 10. Let project p last only for one period t and let
rpst = 11. Then, in an optimal solution to the LP relaxation, xk1p + xk2p = 1.1 holds,
e.g., with xk1p = 1, yk1pst = 10, xk2p = 0.1 and yk2pst = 1. Though, it is obvious that
xk1p+xk2p ≥ 2 must hold in an integer-feasible solution, because both workers are needed
to accomplish the requirements of project p. Here, 2 is a lower bound on the number of
workers that must be assigned to project p for skill s. �

A globally valid inequality like the one in Example 6.2 can be derived for each project
and each required skill. Let LBglob

ps , p ∈ P , s ∈ Sp, denote a lower bound for the number
of workers that is necessary to satisfy the requirements of project p for skill s. Then, the
following set of globally valid inequalities can be formulated.∑

k∈Ks

xkp ≥ LBglob
ps p ∈ P , s ∈ Sp (6.1)

For each project p ∈ P and each skill s ∈ Sp, Constraint set (6.1) requires that at least
LBglob

ps workers from those workers who master skill s must be assigned to project p.
The lower bounds LBglob

ps in the valid inequalities (6.1) can be calculated by Algo-
rithm 6.1. To compute the lower bound LBglob

ps for project p and skill s, we calculate for
each period t ∈ Tp the minimum number of workers n∗ that is necessary to accomplish
the requirement rpst (cf. line 12 of Algorithm 6.1). To calculate n∗ for a period t ∈ Tp, we
first sort all workers who master skill s in order of non-increasing maximum hours that
they can accomplish from the required hours rpst. Then, we assign worker by worker in
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this order to project p until the assigned workers can satisfy the complete skill require-
ment rpst. From the results for n∗ for all periods t ∈ Tp, we select the maximum value as
lower bound LBglob

ps . Algorithm 6.1 runs in O(TK2) time if the sorting algorithm quicksort
is used to sort the vector vecSkillCap. Quicksort has a worst-time complexity of O(K2).

Algorithm 6.1 Calculation of the lower bound LBglob
ps on the number of assignments of

workers to project p for skill s
1: Input: Project p, skill s ∈ Sp, instance data
2: Output: Lower bound LBglob

ps

3:
4: LBglob

ps := 0;
5: Declare a vector vecSkillCap of length |Ks|;
6: for all t ∈ Tp do
7: i := 1;
8: for all k ∈ Ks do
9: vecSkillCap[i] := Rktlks;

10: i := i+ 1;
11: Sort the entries in vecSkillCap in order of non-increasing values;
12: n∗ := min {n ∈ N | rpst −

∑n
i=1 vecSkillCap[i] ≤ 0};

13: LBglob
ps := max(LBglob

ps , n∗);

The same idea that led to globally valid inequalities (6.1) also leads to related locally
valid inequalities. Let us consider a project p and a skill s ∈ Sp. Suppose that some
variables xkp, k ∈ Ks, have already been fixed to either 0 or 1, e.g., in the course of a
branch-and-cut procedure. Let Kp0

s ⊆ Ks and Kp1
s ⊆ Ks denote the set of workers that

master skill s and whose variables xkp have already been fixed to 0 and 1, respectively.
Let the set KpNF

s := Ks \ (Kp0
s ∪ Kp1

s ) contain those workers whose variable xkp has not
been fixed so far. The case that the sets KpNF

s and Kp0
s ∪ Kp1

s are non-empty occurs
regularly in nodes of a branch-and-cut tree, for example. In such a case, we can calculate
a locally valid lower bound LB loc

ps on the number of workers from the set KpNF
s that must

be assigned to project p in order to accomplish the requirements of project p for skill s.
This leads to the following set of locally valid inequalities.∑

k∈KpNF
s

xkp ≥ LB loc
ps p ∈ P , s ∈ Sp (6.2)

For each project p ∈ P and each skill s ∈ Sp, Constraint set (6.2) requires that at least
LB loc

ps workers who master skill s and whose variable xkp has not been fixed so far must
be assigned to project p.
The lower bounds LB loc

ps in the valid inequalities (6.2) can be calculated by Algo-
rithm 6.2. In Algorithm 6.2, we assume for each period t of project execution that as
much workload of project p and skill s as possible is allocated to those workers that have
already been assigned to project p (cf. lines 8–9 of Algorithm 6.2). For the resulting
remaining requirement rrem

pst of project p for skill s in period t, we determine the minimum
number of workers n∗ that is necessary to satisfy this remaining requirement. We take into
account that only workers in KpNF

s can satisfy this requirement. From the results for n∗
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for all periods t ∈ Tp, we select the maximum value as lower bound LB loc
ps . Algorithm 6.2

requires O(TK2) time if quicksort is used to sort the vector vecSkillCap.

Algorithm 6.2 Calculation of the lower bound LB loc
ps on the number of assignments of

workers to project p for skill s

1: Input: Project p, skill s ∈ Sp, Kp0
s , Kp1

s , KpNF
s , instance data

2: Output: Lower bound LB loc
ps

3:
4: LB loc

ps := 0;
5: Declare a vector vecSkillCap of length |KpNF

s |;
6: for all t ∈ Tp do
7: rrem

pst := rpst;
8: for all k ∈ Kp1

s do
9: rrem

pst := rrem
pst −Rktlks;

10: if rrem
pst > 0 then

11: i := 1;
12: for all k ∈ KpNF

s do
13: vecSkillCap[i] := Rktlks;
14: i := i+ 1;
15: Sort the entries in vecSkillCap in order of non-increasing values;
16: n∗ := min

{
n ∈ N | rrem

pst −
∑n

i=1 vecSkillCap[i] ≤ 0
}
;

17: LB loc
ps := max(LB loc

ps , n
∗);

See that a lower bound LB loc
ps calculated by Algorithm 6.2 is equal to the corresponding

lower bound LBglob
ps if Kp0

s = Kp1
s = ∅. Furthermore, see that locally valid inequalities (6.2)

are at least as tight as globally valid inequalities (6.1), because LB loc
ps + |Kp1

s | ≥ LBglob
ps

holds.
The second type of valid inequalities that we consider is based on a lower bound for

the number of workers that are necessary to satisfy all requirements of a project p. The
following example demonstrates our idea.

Example 6.3 Consider an instance of the workforce assignment problem where a
project p lasts only for one period t and requires two skills s1 and s2. For s ∈ {s1, s2},
let rpst = 11 and Ks = {k1, k2, k3}. For each worker k ∈ Ks, let Rkt = 10 and lks = 1,
s ∈ {s1, s2}. Assume that globally valid inequalities (6.1) must hold for p and s ∈ Sp,
i.e.,

∑
k∈Ks

xkp ≥ 2 must hold for s ∈ {s1, s2}. Then, in an optimal solution to the LP
relaxation, xk1p + xk2p + xk3p = 2.2 holds, e.g., with xk1p = 1, xk2p = 1 and xk3p = 0.2.
Though, it is obvious that xk1p+xk2p+xk3p ≥ 3 must hold in an integer-feasible solution,
because all three workers are needed to accomplish all requirements of project p. Here,
3 is a lower bound on the number of workers that must be assigned to project p. �

Following the idea of Example 6.3, we can derive globally and locally valid inequalities
that are similar to the valid inequalities (6.1) and (6.2), respectively. For the sake of
brevity, we will only outline the globally valid inequalities in detail. Let LBglob

p , p ∈ P ,
denote a lower bound on the number of workers that is necessary to satisfy all requirements
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of project p. Then, the following set of globally valid inequalities can be formulated.∑
k∈Ksuit

p

xkp ≥ LBglob
p p ∈ P (6.3)

For each project p ∈ P , inequalities (6.3) require that at least LBglob
p workers from those

workers who are suitable for project p must be assigned to project p.
The lower bounds LBglob

p in valid inequalities (6.3) can be calculated by Algorithm 6.3.
To compute a lower bound LBglob

p , Algorithm 6.3 determines for each period t ∈ Tp

the minimum number of workers n∗ that is necessary to accomplish all requirements of
project p in period t, i.e., to accomplish the sum of all skill requirements of project p in
period t. This sum of skill requirements is denoted by rpt. From the results for n∗, the
maximum value over all periods is selected as lower bound LBglob

ps .
To calculate n∗ for a period t, we first calculate for each worker k who is suitable for

project p how many hours of the required total hours rpt he can accomplish if he spends all
his time for project p. For this calculation, we assume that worker k contributes to match-
ing skills in the order of non-increasing skill levels until his remaining availability Rrem

kt

in period t is depleted. The result for the hours of rpt that worker k can accomplish is
stored in the vector vecProjCap for each worker k ∈ Ksuit

p . Then, the vector vecProjCap
is sorted in order of non-increasing values and we assign worker by worker in this order
to project p until the assigned workers can satisfy the sum of skill requirements rpt. The
number of workers that satisfy rpt is stored in the variable n∗. Algorithm 6.3 runs in
O (KS2 + T (KS +K2)) time if quicksort is used for sorting operations.
The locally valid inequalities that correspond to the globally valid inequalities (6.3)

read as: ∑
k∈KpNF

xkp ≥ LB loc
p p ∈ P (6.4)

The set KpNF contains those workers k ∈ Ksuit
p whose variable xkp has not been fixed so far.

From the set KpNF at least LB loc
p workers must be assigned to project p in a subproblem.

The lower bound LB loc
p can be calculated analogously to Algorithm 6.2.

Both globally valid inequalities, (6.1) and (6.3), are complementary. None dominates
the other. This holds also for the corresponding locally valid inequalities. In Example 6.3,
it was shown that valid inequalities (6.3) can exclude integer-infeasible solutions from the
feasible region of the LP relaxation that are not excluded by valid inequalities (6.1). Vice
versa, valid inequalities (6.1) can also exclude integer-infeasible solutions that are not
excluded by valid inequalities (6.3), as the following example demonstrates.

Example 6.4 Consider an instance of the workforce assignment problem where a
project p lasts only for one period t and requires two skills s1 and s2. Let rps1t = 11
and rps2t = 1. Assume that only workers k1 and k2 master skill s1 and that only worker k3
masters skill s2. Let lk1s1 = lk2s1 = lk3s2 = 1 and let Rkt = 10, k ∈ {k1, k2, k3}. Assume
that globally valid inequalities (6.3) must hold for project p, i.e.,

∑
k∈Ksuit

p
≥ 2 must hold.

Then, in an optimal solution to the LP relaxation, xk1p+xk2p+xk3p = 2 holds, e.g., with
xk1p = 1, xk2p = 0.1 and xk2p = 0.9. Though, it is obvious that xk1p+xk2p+xk3p ≥ 3 must
hold in an integer-feasible solution, because all three workers are needed to accomplish all
requirements of project p. The latter inequality results from xk1p+xk2p ≥ 2 and xk3p ≥ 1,
which are the valid inequalities (6.1) for project p. �
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Algorithm 6.3 Calculation of the lower bound LBglob
p on the number of assignments of

workers to project p
1: Input: Project p, instance data
2: Output: Lower bound LBglob

p

3:
4: LBglob

p := 0;
5: Declare a vector vecProjCap of length |Ksuit

p |;
6: for all t ∈ Tp do
7: rpt :=

∑
s∈Sp

rpst;

8: i := 1;
9: for all k ∈ Ksuit

p do
10: Rrem

kt := Rkt;
11: vecProjCap[i] := 0;
12: for all s ∈ Smatch

kp in order of non-increasing skill levels lks do
13: if Rrem

kt > 0 then
14: maxHours := min(rpst, R

rem
kt lks);

15: vecProjCap[i] := vecProjCap[i] +maxHours ;
16: Rrem

kt := Rrem
kt − maxHours

lks
;

17: i := i+ 1;
18: Sort the entries in vecProjCap in order of non-increasing values;
19: n∗ = min {n ∈ N | rpt −

∑n
i=1 vecProjCap[i] ≤ 0};

20: LBglob
p := max(LBglob

p , n∗);

Valid inequalities (6.1) and (6.3) are two members of a greater family of valid inequali-
ties. This family comprises all valid inequalities that can be derived when all combinations
of skills in Sp are considered, i.e., when all 2|Sp|−1 non-empty subsets of Sp are considered.
For each subset of skills, a minimum number of workers can be determined that is neces-
sary to accomplish the requirements of those skills belonging to the subset. To determine
the minimum number for a subset of skills, all workers are considered that master at least
one skill from the skills in this subset, because these workers can help to accomplish the
requirements for the skills in the subset.
The valid inequalities that we presented have a weak point that cannot be remedied

easily. The weak point is that our lower bounds LBglob
ps , LB

loc
ps , LB

glob
p , and LB loc

p are
not very tight. Consider the lower bound LBglob

ps , for example. It is determined by
Algorithm 6.1 and represents a lower bound on the number of assignments of workers to
project p that are necessary to satisfy the requirements of project p for skill s. For our
calculation of LBglob

ps , we assumed that every worker who masters skill s can spend all his
available time to accomplish the requirements of project p for skill s. However, all feasible
solutions to an instance of the workforce assignment problem may require that a worker
has to spend some time for other skills of project p or for other projects. Our calculation
in Algorithm 6.1 ignores this circumstance. If we took such circumstances into account,
we would obtain tighter bounds. Though, in our opinion, the effort to incorporate all
those circumstances into the calculation of a lower bound is too high. Hence, we have to
content ourselves with lower bounds and valid inequalities that might not be very tight.
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The same and another, more serious drawback hold for a second family of valid in-
equalities. We will introduce and discuss this family only in brief. For this family of valid
inequalities, we consider the sum of skill requirements over several projects p ∈ P . Let
us introduce two representatives of this family. Both representatives are valid inequalities
that take all projects into account. First, a valid inequality can be formulated for each
skill s ∈ S by computing a lower bound on the number of workers that is necessary to
accomplish all requirements of skill s. Second, a valid inequality can be imposed that
demands a minimum number of workers required to accomplish the total workload of all
projects. Preliminary tests suggested that the family of valid inequalities is not very help-
ful for boosting the performance of a MIP solver based on branch-and-cut. Let us explain
this outcome by an example that refers to both representatives of the family. Consider
an instance with K = P = 10 and S = T = 1 where the sole skill is denoted by s and the
unique period by t to simplify notation. Assume that each worker k masters the unique
skill s with a level of lks = 1. Let Rkt = 10, k ∈ K, and rpst = 1, p ∈ P . Then, one
worker is enough to accomplish the total workload of all projects, i.e., a lower bound on
the number of assignments equal to 1 is calculated. Though, it is obvious that one worker
must be assigned to each project, i.e., that 10 assignments are necessary. In general, this
family of valid inequalities tends to be very weak. Hence, we did not apply it.
The third type of valid inequalities that we consider are tighter versions of those big-M

constraints that we used in the standard and in the network model in Subsection 4.3.1.
All big-M constraints, be it tighter or less tighter versions, are globally valid inequalities.
For the sake of a short presentation, we will outline tighter formulations only for the
standard model. These formulations can be easily transferred to the big-M constraints
of the network model. For the standard model, we presented three alternative big-M
constraints: (4.11), (4.17) and (4.18). In Example 4.2 on page 60 we demonstrated that
these three big-M constraints differ in their tightness: (4.11) was tighter than (4.17), and
(4.17) was tighter than (4.18). We also pointed out that greater tightness is preferred, as it
brings the feasible region of the LP relaxation closer to the convex hull of integer-feasible
solutions.
In the following, we consider only big-M constraints (4.11) and (4.17), and ignore the

weakest Constraint set (4.18). Constraint set (4.11) requires
∑

s∈Smatch
kp

ykpst ≤ Rktxkp for
each project p ∈ P , each worker k ∈ Ksuit

p \ Kassigned
p , and each period t ∈ Tp. Constraint

set (4.17) requires ykpst ≤ Rktxkp for each project p ∈ P , each worker k ∈ Ksuit
p \ Kassigned

p ,
each skill s ∈ Smatch

kp , and each period t ∈ Tp. In both (4.11) and (4.17), the availability Rkt

of worker k limits her contribution to a project in period t.
Apart from the availability Rkt, there are two other limiting factors for the contribution

of a worker k to a project p. These other two factors can be used to tighten the big-M
constraints. The first additional limiting factor originates from the requirements rpst for
the skills s ∈ Smatch

kp and from the corresponding skill levels lks. The requirements and the
skill levels can limit the contribution of worker k to project p, as can be seen from the
following example.

Example 6.5 Consider an instance where worker k and project p share only the skill s
as a matching skill. Let rpst = 10 be the requirement of project p for skill s in period t,
let Rkt = 100 and lks = 2. Then, the contribution ykpst of worker k to project p is limited
to min

(
Rkt,

rpst
lks

)
= min(100, 5) = 5. �
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The second limiting factor originates from the workload of department d(k) to which
worker k belongs and from the availabilities of her colleagues in department d(k). The
following example shows how the departmental workload and the availabilities can limit
the contribution of worker k to project p.

Example 6.6 Consider an instance with three workers: K = {k1, k2, k3}. Let k1 and k2
belong to department d1 and let k3 be the sole worker of department d2, i.e., Kd1 = {k1, k2}
and Kd2 = {k3}. Let department d1 have a requirement rdd1t = 120 in period t and let
rdd2t = 80. Let Rkt = 100, k ∈ K. Furthermore, let k1, k2, and k3 master skill s, which is
the only skill required by project p. Assume that rpst = 100 in period t and that lks = 1,
k ∈ K. Then, the contribution ykpst of each worker k ∈ Kd1 to project p is limited to
min

(
Rkt, Rkt −

(
rdd(k)t −

∑
k′∈Kd(k)\{k} Rk′t

))
= min

(
Rkt,

(∑
k′∈Kd(k)

Rk′t

)
− rdd(k)t

)
=

min(100, 80) = 80. Likewise, the contribution ykpst of worker k = k3 is limited to
min(100, 20) = 20. �

Hence, we can tighten big-M constraints (4.11) to

∑
s∈Smatch

kp

ykpst ≤ min

⎛
⎝Rkt,

∑
s∈Smatch

kp

rpst
lks

,

⎛
⎝ ∑

k′∈Kd(k)

Rk′t

⎞
⎠− rdd(k)t

⎞
⎠ xkp

p ∈ P , t ∈ Tp,

k ∈ Ksuit
p \ Kassigned

p

(6.5)

and big-M constraints (4.17) to

ykpst ≤ min

⎛
⎝Rkt,

rpst
lks

,

⎛
⎝ ∑

k′∈Kd(k)

Rk′t

⎞
⎠− rdd(k)t

⎞
⎠ xkp

p ∈ P , k ∈ Ksuit
p \ Kassigned

p ,

s ∈ Smatch
kp , t ∈ Tp

(6.6)

In Subsection 4.3.1, we realized that big-M constraints (4.11) are tighter than big-M
constraints (4.17). In general, the corresponding statement does not apply to (6.5) and
(6.6). If rpst

lks
≤ Rkt holds for at least one skill s, (6.6) can be tighter than (6.5).

For the network model, the big-M constraints can be tightened in the same way as for
the standard model. Especially, big-M constraints (4.24) can be tightened analogously to
(4.11).
Having outlined the three types of valid inequalities, we will briefly discuss the po-

tential of these valid inequalities to act as cutting planes when the MIP model of the
workforce assignment problem is solved by a branch-and-cut method. The globally valid
inequalities that we devised for all three types of valid inequalities can be added to the
model as constraints before the start of the branch-and-cut method. Since the total num-
ber of globally valid inequalities is not greater than P · S + P +K · P · T +K · P · S · T
and they replace around K ·P · T big-M constraints, the increase in the size of the model
is moderate. Consequently, the globally valid inequalities can be added to the model and
do not come into question as candidates for cutting planes.
The locally valid inequalities, which were devised only for the first and second type of

valid inequalities, do not seem well suited for acting as cutting planes. This pessimistic
statement holds for the case where we seek for a maximally violating cut among these
locally valid inequalities in a node of a branch-and-cut tree as well as for the case where
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we seek for an arbitrary cut among these valid inequalities. If a maximally violated
valid inequality shall be found in a node of a branch-and-cut tree, it is necessary to
compute all local lower bounds LB loc

ps , p ∈ P , s ∈ Sp, and LB loc
p , p ∈ P . For each local

lower bound, it must be checked to which extent the corresponding valid inequality is
violated. If an arbitrary cut shall be found in a node, it is sufficient to compute local
lower bounds one by one until the first one is encountered for which the corresponding
valid inequality is violated, but in the worst case all local lower bounds and their valid
inequalities are enumerated. There seems to be no obvious heuristic that quickly spots a
violated inequality. Moreover, as we already indicated, the valid inequalities are rather
weak. Hence, we suppose that integrating the locally valid inequalities into a branch-
and-cut does not accelerate, but slow down the solution process. The conjecture will be
checked in the numerical analysis in Subsection 7.3.1.

6.1.2 A polynomial-time algorithm for the utilization leveling
problem

In this subsection, we will present a polynomial-time algorithm for the utilization leveling
problem. The utilization leveling problem was described in Section 3.4 and modeled in
Section 4.4. The objective of this problem is to allocate departmental workload in a period
to department members such that their resulting working times are as equal as possible.
The utilization leveling problem is tackled after project workload has been allocated to
the workers of each department. One instance of this problem must be solved for each
department d ∈ D and each period t ∈ T . In Section 4.6, we argued that this problem is
solvable in polynomial time (see Theorem 4.4 on page 86) but omitted a corresponding
algorithm. Now, we will provide such an algorithm.
We developed an efficient algorithm for the utilization leveling problem, which we

modeled in Section 4.4 as a linear program. We could apply a general-purpose method
for linear programs in order to solve the leveling problem. The simplex method is such
a general-purpose method. However, the simplex method has an exponential time com-
plexity (cf. Goldfarb and Todd, 1989, pp. 130–133). There are other general-purpose
methods, whose time complexity is polynomial, e.g., the ellipsoid method (cf. Chvátal,
1983, pp. 443–454; Neumann and Morlock, 2002, pp. 161–166) and interior point meth-
ods, also called projection methods (cf. Winston and Goldberg, 2004, pp. 190–191 and
597–605; Neumann and Morlock, 2002, pp. 166–171). However, as our leveling problem
is quite simple, we developed a specially tailored algorithm that outperforms the afore-
mentioned general-purpose methods with respect to worst-time complexity. Furthermore,
for test instances our algorithm runs faster than the simplex method, which performs
well in practice in spite of its exponential-time complexity (cf. Goldfarb and Todd, 1989,
pp. 130–133).
We developed Algorithm 6.4 to solve the utilization leveling problem for a department d

in a period t in polynomial time. Algorithm 6.4 levels the working times of all members
of department d. The working time of a worker comprises the time that he spends for
projects and the time in which he accomplishes departmental workload. The time that a
worker spends for project work is already fixed at the point in time when the utilization
leveling problem is considered. At this point in time, only the allocation of departmental
workload can impact working times. We assume that departmental workload is arbitrarily



122 Chapter 6 Solution methods

divisible, as discussed in Section 3.4. In Algorithm 6.4, the departmental workload rddt

is allocated to the workers k ∈ Kd who belong to department d. For the allocation, we
take into account the project workload of each worker k ∈ Kd. We assign a departmental
workload ydkt to worker k for period t such that the working times of the department
members are as equal as possible.
The basic idea of Algorithm 6.4 is to identify those workers in the department with the

minimum working time. Then, departmental workload is steadily and equally allocated to
those workers until one of the following three cases occurs: (1) no departmental workload
remains for allocation, (2) the remaining availability of a worker becomes zero, (3) the
working time of a worker reaches the level of another worker whose working time was
above the minimum. This procedure of identifying workers with minimum working time
and allocating departmental workload to these workers is repeated until no departmental
workload is left for allocation.
At the outset of Algorithm 6.4, we initialize the remaining departmental work-

load rd rem
dt that must be allocated with rddt. For each worker k in department d, we

initialize his working time WT kt in period t with the time he spends for project work,
and his remaining availablity Rrem

kt with his remaining availability after project work (cf.
line 8 of Algorithm 6.4, see also page 48). Next, all workers with positive remaining
availability are identified and added to the set Kavail (cf. line 9).
As long as the departmental workload has not been completely allocated, the following

steps are repeated. We determine the minimum working time WTmin among the working
times of workers in Kavail and identify those workers whose working time is equal to
the minimum working time WTmin. We add those workers to the set Kavail

min . Given the
set Kavail

min , we calculate an amount depW of departmental workload that is allocated to
each worker in Kavail

min .
For the calculation of the amount depW , we distinguish two different situations.

Firstly, if all workers in Kavail have identical working times, i.e., if Kavail
min = Kavail, the

amount depW is limited by the remaining departmental workload rd rem
dt that must be allo-

cated and by the smallest remaining availability among workers in Kavail
min (cf. line 14). Sec-

ondly, if the working times of workers in Kavail are not identical, i.e., if Kavail
min ⊂ Kavail, the

amount depW is additionally limited by the difference between the working time WTmin

of workers in Kavail
min and the next higher working time among workers in Kavail (cf. line 16).

After the departmental workload depW was allocated to workers in Kavail
min , the remain-

ing availability of some workers may have reached zero. These workers are removed from
the set Kavail (cf. line 22).
When the complete departmental workload has been allocated, Algorithm 6.4 has

found an optimal solution and terminates. Termination with an optimal solution is guar-
anteed because the existence of a feasible solution is secured and Algorithm 6.4 constructs
a best solution among all feasible solutions. The existence of a non-empty set of feasible
solutions is inherent in the solution of the workforce assignment problem which provides
input data for the utilization leveling problem and assures that the departmental require-
ments can be accomplished.
Algorithm 6.4 runs in O(|Kd|2) time assuming that the total time that each worker

spends for project work is given. It levels the absolute working times of the department
members. If we want to level the relative working times instead, only slight modifications
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Algorithm 6.4 Algorithm to level working times within department d in period t by
allocating departmental workload
1: Input: d; t; values of all variables ykpst for period t, k ∈ Kd; instance data
2: Output: Allocated departmental workloads ydkt, k ∈ Kd, for period t
3:
4: rd rem

dt := rddt;
5: for all k ∈ Kd do
6: ydkt := 0;
7: WT kt :=

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp
ykpst;

8: Rrem
kt := Rkt −WT kt;

9: Kavail := {k ∈ Kd | Rrem
kt > 0};

10: while rdrem
dt > 0 do

11: WTmin := mink∈Kavail WT kt;
12: Kavail

min :=
{
k ∈ Kavail | WT kt = WTmin};

13: if Kavail
min = Kavail then

14: depW := min

(
rdrem

dt

|Kavail
min | , min

k∈Kavail
min

Rrem
kt

)
;

15: else // Kavail
min ⊂ Kavail

16: depW := min

(
rdrem

dt

|Kavail
min | , min

k∈Kavail
min

Rrem
kt , min

k∈Kavail\Kavail
min

WT kt −WTmin
)
;

17: for all k ∈ Kavail
min do

18: ydkt := ydkt + depW ;
19: WT kt := WT kt + depW ;
20: Rrem

kt := Rrem
kt − depW ;

21: if Rrem
kt = 0 then

22: Kavail := Kavail \ {k} ;
23: rd rem

dt := rd rem
dt − depW ;

of Algorithm 6.4 are necessary. Absolute and relative working times rely on the definitions
of absolute and relative utilization in Section 4.4.
The worst-case time complexity of Algorithm 6.4 is clearly better than that of general-

purpose methods for solving LPs. Let n denote the number of variables and m the
number of constraints of an LP. While the simplex method has an exponential time
complexity, the time complexity of the ellipsoid method is of order n4 (cf. Goldfarb and
Todd, 1989, pp. 138–140) and the time complexity of Karmarkar’s projection method
is of order (m + n)4 (cf. Goldfarb and Todd, 1989, pp. 146–149). For the LP that we
formulated for the utilization leveling problem, i.e., for model (4.39)–(4.44) on page 70,
n = |Kd|2 holds. Hence, for the utilization leveling problem the time complexity of the
ellipsoid method is of order |Kd|8, whereas Algorithm 6.4 runs in O(|Kd|2) time.
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6.2 Heuristic solution methods for the workforce
assignment problem

In this section, we will outline four heuristics that we developed for the workforce as-
signment problem modeled in Subsection 4.3.1. Heuristics are solution methods that are,
at least to some extent, specially tailored to a problem. Specially tailored means that
heuristics exploit properties of a problem to find “good” solutions in acceptable time (cf.
Aarts and Lenstra, 2003; Burke and Kendall, 2005, Chapters 4–8, 12–14, and 16–19; Neu-
mann and Morlock, 2002, pp. 402–406; Domschke and Drexl, 2007, pp. 129–133). Usually,
heuristics find good solutions, which may even be optimal. Though, heuristics for strongly
NP-hard problems cannot guarantee to find arbitrarily good solutions in acceptable time.
Some heuristics even cannot guarantee to find a feasible solution if the set of feasible
solutions is non-empty.
Heuristics can be classified into construction heuristics and improvement heuristics.

Construction heuristics systematically try to build a feasible solution for a problem. If a
construction heuristic is deterministic, it can generate only one solution. If a construc-
tion heuristic entails stochastic decisions, it is randomized and can be embedded in a
multi-start procedure to generate multiple solutions, from which a best solution can be
picked. Improvement heuristics, in contrast to construction heuristics, cannot start from
scratch. Improvement heuristics start with one or several solutions and try to derive
better solutions.
We developed four construction heuristics. We also devised improvement heuristics,

but so far we have not found a promising one. We tested a drop-add interchange heuris-
tic and a genetic algorithm, but obtained disappointing results. In the following Sub-
sections 6.2.1–6.2.4, we present our four construction heuristics, each of them can be
embedded in a multi-start procedure.
In Subsection 6.2.1, we outline a greedy randomized assignment procedure, called

GRAP. GRAP is similar to what a manual solution procedure may look like: Project
by project is selected; workers are assigned to the currently selected project and project
workload is allocated to the workers until all workload of the project is covered. Then,
the next project is considered. We outline also a modified version of GRAP, which we
term ModGRAP.
In Subsection 6.2.2, we describe an iterated simultaneous assignment procedure, called

ISAP, which is an advanced version of GRAP. ISAP assigns in each iteration to each
project a worker such that no worker is assigned to more than one project. The assignment
is based on a perfect matching of maximum suitability between projects and workers,
where dummy projects or dummy workers ensure the existence of a perfect matching.
Subsection 6.2.3 deals with the third construction heuristic, which is a drop procedure

where at the outset each worker is assigned to every suitable project and then assign-
ments are dropped, i.e., cancelled, one by one until any further cancellation would lead
to infeasibility. This procedure is called DROP.
Finally, a rounding heuristic called ROUND is unrolled in Subsection 6.2.4. ROUND

iteratively solves the linear programming relaxation of the workforce assignment problem.
In each iteration, some binary variables with fractional values are rounded up and fixed
to 1 until an integer-feasible solution is reached. In Subsection 6.2.4, we also sketch a
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relax-and-fix approach. Since the performance of this approach was disappointing, the
approach is abandoned thereafter.
Each solution method for the workforce assignment problem must determine values

for the variables x and y. The four heuristics GRAP, ISAP, DROP, and ROUND differ
from one another in the extent to which a solver is used to determine values for x and
y. Here, the term solver means any exact optimization algorithm. For example, the
LP solver and the MIP solver of CPLEX are exact optimization algorithms. If we apply
the MIP solver of CPLEX to optimally solve an instance of the workforce assignment
problem, the branch-and-cut method of CPLEX determines optimal values for x and y.
This exact method can be considered an extreme in the spectrum of our solution methods.
The extreme on the opposite side is the heuristic GRAP, which determines values for x
and y in a greedy, myopic fashion without a solver.
Table 6.1 summarizes how the solution methods determine values for the variables x

and y. The entry “CPLEX” in Table 6.1 refers to the branch-and-cut method of the solver
package CPLEX and represents an exact method, whereas the other entries represent
heuristic methods. We listed the solution methods in order of increasing solver usage.
While GRAP does not use a solver at all, ISAP applies a solver to determine values
for x. Though, it is not guaranteed that globally optimal values for the variables x are
determined, because in each iteration of ISAP the solver is only used to greedily expand
a partial solution. Such a greediness is documented in the column headed “rigor” for each
variable type in Table 6.1. In regard to variables y, the rigor is exact if the respective
solution method finds an existing feasible solution for the variables y given values for the
variables x. The rigor is greedy if the solution method can fail to find an existing feasible
solution for the variables y. Among the heuristics, ROUND exhibits the greatest solver
usage.

Table 6.1: Solution methods for the workforce assignment problem and characteristics
of their way to determine values for the variables x and y

x y

solver rigor solver rigor

GRAP − greedy − greedy
ISAP � greedy − greedy
DROP − greedy � exact
ROUND (and relax-and-fix) � greedy � exact
CPLEX (branch-and-cut) � exact � exact

With respect to the determination of variables x, the heuristics GRAP, ISAP, and
ROUND are similar, as they start from a point with no assignments and then greedily
assign workers to projects. However, the assignments of ROUND are less greedy than
those of GRAP and ISAP, because ROUND exploits information from the LP relaxation
to decide about every assignment. The philosophy of DROP is contrary to that of GRAP,
ISAP, and ROUND, because DROP starts with all possible assignments and tries to cancel
these assignments one by one.
With respect to the determination of variables y, two different ways are followed by

the heuristics. On the one hand, GRAP and ISAP greedily allocate project workload for
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each assignment of a worker k to a project p. For an assignment (k, p), both heuristics
allocate as much workload of project p as possible to worker k and this allocation is fixed.
On the other hand, there are DROP and ROUND, where an allocation of project workload
is never fixed during the respective procedure even if the corresponding variable xkp has
already been fixed to 1. Until the very end of the procedure, the allocation can be
changed in order to adjust the allocation of project workload to changes in the values of
the variables x that have not been fixed so far.
GRAP and ISAP are construction heuristics which may fail to find a feasible solution,

but which are very fast. DROP and ROUND, in contrast, are construction heuristics
that guarantee to find a feasible solution if any exists. DROP can also be used to seek
for better solutions in the neighborhood of a given solution, but it would go too far to
classify DROP as an improvement heuristic. Especially in case of instances characterized
by high workforce utilization, GRAP and ISAP often fail to find an existing feasible
solution, which is always found by DROP and ROUND. Although the computation times
of DROP and ROUND are not negligible, these are methods that can find a feasible
solution for larger-sized instances in acceptable time, whereas branch-and-cut methods
frequently fail to find a feasible solution within acceptable time.
We embedded each of our four heuristics in a multi-start procedure. For each heuristic,

the multi-start procedure is the same in principle and follows the randomized multi-start
algorithm outlined by Martí et al. (2013, p. 3, Algorithm 4). Multi-start procedures are
also called multi-pass procedures. In every pass, it is tried to construct a solution. The
best solution constructed is returned.
Algorithm 6.5 summarizes our multi-start procedure, which applies a heuristic repeat-

edly in order to construct several solutions. Randomness is incorporated by stochastic
choices during construction of a solution. If a solution is better than every solution con-
structed so far, this solution is stored as the incumbent solution (x∗,y∗). The incumbent
solution is at any point in time the best integer-feasible solution found until this point
in time. Solutions are constructed until a stopping criterion is satisfied. Several stopping
criteria can be applied simultaneously, e.g., a time limit and a limit on the number of
passes, which limits the number of solutions that are constructed.

Algorithm 6.5 Multi-start procedure for heuristics for the workforce assignment problem
1: Input: Instance data, heuristic H ∈ {GRAP, ISAP, DROP, ROUND}
2: Output: A feasible solution (x∗,y∗) for the workforce assignment problem and its
objective function value f ∗ or no solution

3:
4: f ∗ :=

∑
k∈K

∣∣Psuit
k

∣∣+ 1; // Initialize f ∗ with the worst-case value increased by 1
5: (x∗,y∗) := (0,0); // Mark (x∗,y∗) initially as infeasible
6: while none of the stopping criteria is met do
7: Construct a random solution (x,y) with heuristic H;
8: if (x,y) is feasible then
9: if f((x,y)) < f ∗ then

10: f ∗ := f((x,y));
11: (x∗,y∗) := (x,y);

Our multi-start procedure can be classified as memory-less, randomized, and build-
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from-scratch according to the classification scheme of Martí et al. (2010, pp. 273–274).
They identified three key attributes of multi-start methods, namely, (1) memory, (2) ran-
domization, and (3) degree of rebuild. Each attribute ranges between two poles. These
poles are (1) memory-less vs. memory-based, (2) randomized vs. systematic, and (3) build-
from-scratch vs. rebuild, respectively. A memory-based multi-start method can, for exam-
ple, store and exploit information about common characteristics of the best solutions that
have been constructed so far. A systematic multi-start method would ensure a minimum
level of diversity in solutions that are constructed, while a randomized method, which also
aims at diversity, cannot guarantee a prespecified level of diversity. The third attribute,
namely, the degree of rebuild, measures the extent to which variables are fixed to values
they took on in solutions of previous passes. The two poles of this attribute are build-from
scratch, where no variables are fixed, and rebuild, where all variables are fixed to values
derived from known solutions. Our methods DROP and ROUND actually exhibit a small
degree of rebuild. For every heuristic that we describe in the following subsections, we
will state in more detail how the multi-start procedure was implemented.
To give a concise description of the four heuristics in the following subsections, we

cut our presentation short at two points. First, we will present pseudo code only for the
heuristics themselves and omit all overhead that is required for a multi-start version. The
essence of this overhead was presented in Algorithm 6.5. Nevertheless, we describe how
the multi-start procedure was implemented. Second, we assume that there are no workers
who have already been assigned to an (ongoing) project, in other words, we assume that
Kassigned

p = ∅ holds for all p ∈ P . Without much effort, our heuristics can be extended
to the case where Kassigned

p 
= ∅ holds for all or some p ∈ P . In fact, we developed and
implemented our heuristics to deal with the situation where workers have already been
assigned to projects.

6.2.1 A greedy randomized assignment procedure (GRAP)
In this subsection, we will present a construction heuristic that we call greedy randomized
assignment procedure (GRAP). Its basic idea is to select for each project p worker by
worker and to allocate as much workload of project p to each worker until all workload
of project p is covered. The heuristic is called greedy randomized, because when decisions
are made, e.g., about the worker that is assigned to a project next, we randomly select
an alternative with a certain probability. This probability is proportional to a local or
myopic attractiveness of the alternative. Randomness is incorporated in order to facilitate
an extension of this heuristic to a multi-start method.
At the beginning of this subsection, we will give a short overview of the heuristic and

explain the idea behind. Then, we will briefly judge the relevance of this heuristic for
firms and for our work. After that, we will describe the heuristic in detail and provide
two algorithms that illuminate essential calculations of the GRAP method. A multi-start
version of GRAP will be explained in brief. Eventually, we will discuss the drawback that
GRAP can fail to find an existing feasible solution. We outline and discuss a modified
version of GRAP that overcomes the drawback but yields solutions of minor quality than
GRAP on average.
In short, GRAP works as follows. It starts with an initially infeasible solution where

neither any departmental nor any project workload has been allocated and where no
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worker is assigned to any project. Project by project is randomly selected and for each
project p worker by worker is randomly selected to cover requirements of project p. For
each worker k that is selected for project p, matching skill by matching skill is randomly
selected. For each selected matching skill, as much workload of this skill as possible is
allocated to worker k until either the workload of all matching skills is allocated or until
worker k cannot cover any more workload of project p. In this case, the next worker
is selected for project p. When all workload of project p is covered, the next project is
selected.
This procedure of extending a partial solution, i.e., the procedure of selecting a project,

selecting workers, and allocating project workload is repeated until a feasible solution is
constructed, in which all projects are staffed, or until a point is reached where it is
detected that the partial solution cannot be extended to a feasible solution. This point
is reached when there is a project with uncovered workload and no suitable worker has
sufficient remaining availability to accomplish this workload. In this case, GRAP has
failed to construct a feasible solution due to a misallocation of workload in the course of
constructing a solution.
A procedure similar to GRAP is used by Gutjahr et al. (2008, pp. 293–294) to assign

project workloads that require different skills to multi-skilled workers. However, their
procedure is not randomized and not aimed at minimizing the number of assignments.
Their objective for the procedure is merely to quickly find a feasible allocation of workload.
They consider project by project in order of non-decreasing project due dates, and for
each project they consider skill by skill in order of non-increasing workload. For allocating
workload of each skill, the workers are considered in order of non-increasing skill levels.
This procedure tends to lead to a large number of assignments, but this tendency does
not contradict their objective to find a feasible allocation of workload. Yet, the procedure
of Gutjahr et al. (2008) can fail to find an existing feasible solution like GRAP can.
The idea behind GRAP is the assumption that in good solutions, i.e., in solutions with

a small number of assignments, a worker contributes as much as possible to each project
he is assigned to. From the myopic view of GRAP, it seems advantageous if a worker k
spends his entire time for one project p, because this concentration of worker k on project p
results in only one assignment for worker k. At the same time, for project p, the number
of required additional workers tends to be as small as possible if worker k accomplishes
as much workload as possible. This local advantage of assigning as much workload as
possible to a worker was our motivation for GRAP. However, this local advantage paired
with the strategy of sequential assignments may be globally disadvantageous and lead to
solutions of low quality.
In our opinion, a heuristic like GRAP is of interest for both practice and theory,

in spite of being a rather simple heuristic that may provide solutions of minor quality.
In practice, many firms are confronted with some variant of our workforce assignment
problem. Planners in these firms who want to form small teams are likely to apply a
procedure similar to GRAP in order to determine a staffing plan and to assign work
packages to workers. Hence, our heuristic GRAP mimics a procedure that a planner may
intuitively follow if he has to figure out a solution to his workforce assignment problem
and lacks other methods. If the planner plans manually, then GRAP will be a great
support for the planner and save him time. From a theoretical point of view, the GRAP
heuristic can be used to determine a minimum standard with respect to solution quality.
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If another method does not meet the solution quality of GRAP, it is most likely of no
interest for a firm.
In the subsequent paragraphs, we will describe the GRAP heuristic in detail. We will

divide our description into two parts. The first part deals with preparatory initializations,
the second part describes the main part of GRAP.
The first part of GRAP is outlined in Algorithm 6.6. At the beginning of the GRAP

procedure, a number of declarations and initializations are necessary. We have to define
sets and variables that we need in order to track remaining unstaffed projects, remaining
availabilities of workers, remaining requirements of projects, and so on. Algorithm 6.6
summarizes all these preparatory declarations and initializations.
The initializations start by setting all variables xkp and ykpst to 0 (cf. line 4 of Algo-

rithm 6.6). The list PtoStaff that contains all remaining unstaffed projects is initialized
with all projects p ∈ P .
For each project p ∈ P , we define the set Srem

p that contains all skills which are required
by project p and for which uncovered workload exists. Additionally, we initialize the set
of remaining suitable workers Ksuit,rem

p with the set Ksuit
p of all workers that are suitable

for project p. For each worker k in the set Ksuit
p , we define the set Smatch,rem

kp that includes
all matching skills between k and p for which uncovered remaining requirements exist.
For each period t of execution of project p and for each required skill s of project p, we
initialize the variable rrem

pst that records the residual requirement of project p for skill s in
period t.

Algorithm 6.6 Initializations for the heuristic GRAP
1: Input: Instance data
2: Output: Data required by the main part of the heuristic GRAP
3:
4: x := 0, y := 0;
5: P toStaff := P ;
6: for all p ∈ P do
7: Srem

p := Sp;
8: Ksuit,rem

p := Ksuit
p ;

9: for all k ∈ Ksuit
p do

10: Smatch,rem
kp := Smatch

kp ;

11: for all t ∈ Tp do
12: for all s ∈ Sp do
13: rrem

pst := rpst;

14: for all t ∈ T do
15: for all k ∈ K do
16: Rrem

kt := Rkt;
17: for all d ∈ D do
18: totRrem

dt :=
∑

k∈Kd
Rkt;

Furthermore, we define for each period t ∈ T two additional types of variables that
are required to track residual quantities. The first type of variables is denoted by Rrem

kt ,
k ∈ K. Variable Rrem

kt records for worker k her remaining availability in period t. The
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second type of variables is denoted by totRrem
dt , d ∈ D. Variable totRrem

dt records the total
residual availability of all members of department d in period t. We need this last type
of variables to ensure that the departmental requirements can be satisfied at any time
during the GRAP procedure. Algorithm 6.6 requires O(KPST + TDK) time.
The main part of the GRAP procedure is summarized in Algorithm 6.7 which tries to

construct a feasible solution for the workforce assignment problem. Algorithm 6.7 can be
broken down into four parts: a selection part (lines 4–11 of Algorithm 6.7), an allocation
part (lines 12–14), a part for updates of variables (lines 15–21), and a part for updates of
sets (lines 22–34).
In the selection part, the construction of a solution starts with the non-empty

list PtoStaff, which contains the projects that must be staffed. We randomly select a
project from this list, where the selection probability is the same for each project. Of
course, other selection probabilities can be assigned to the projects. For example, one
could bias the selection towards projects with a small number of remaining suitable work-
ers or towards projects with a high number of required skills.
After selection of a project p and as long as the selected project p has skills with

uncovered remaining requirements, we randomly select a worker k in order to allocate
workload of project p to worker k. If no suitable worker is left for project p, a feasible
solution cannot be reached and the GRAP procedure is terminated. Otherwise, we prepare
the selection of a worker by calculating a non-negative suitability value suitkp for each
worker k ∈ Ksuit,rem

p who can be assigned to project p. Then, we apply a roulette wheel
selection where the probability for the selection of worker k ∈ Ksuit,rem

p is proportional
to suitkp. How we actually calculate the values suitkp will be explained after the overview
of Algorithm 6.7.
After we selected worker k for project p, a skill s from the set of remaining matching

skills between k and p is chosen, as long as this set is not empty. From the remaining
requirement of project p for skill s, we will allocate as much as possible to worker k. But
let us first explain the selection of a skill in more detail. For the selection of a skill, we
consider only the “best skills”, which are those skills in Smatch,rem

kp that have the highest skill
level among all the skills in Smatch,rem

kp . To each of these “best skills”, we assign the same
selection probability. Then, one skill is chosen randomly. For example, let s1, s2, and
s3 be the remaining matching skills between worker k and project p, and let lks1 = 1.5,
lks2 = 1, and lks3 = 1.5 be the respective skill levels of worker k. We select s1 or s3,
both with a probability of 0.5. This greedy and myopic selection procedure for a skill
outperformed several other simple selection procedures in preliminary tests.
After we selected skill s, the allocation part of GRAP starts. We allocate for each

period t ∈ Tp as much of the remaining requirement rrem
pst as possible to worker k (cf.

line 14).
When workload has been allocated, the part for updates of variables begins. We

update the variables that track remaining quantities and use the variable totSkillContr to
store the total time that worker k contributes to skill s over all periods t ∈ Tp. If workload
was allocated to worker k, totSkillContr is positive and we assign worker k to project p
by setting xkp := 1. Furthermore, we calculate the total remaining requirement totReq rem

ps

of project p for skill s over all periods t ∈ Tp. This variable totReq rem
ps is required for the

following update of sets.
The last part of Algorithm 6.7 deals with updating sets that are necessary to track
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Algorithm 6.7 Main part of the heuristic GRAP
1: Input: Instance data, output of Algorithm 6.6
2: Output: A feasible solution (x,y) for the workforce assignment problem or no solu-
tion

3:
4: while P toStaff 
= ∅ do
5: Randomly select a project p from the list PtoStaff;
6: while Srem

p 
= ∅ do
7: if Ksuit,rem

p = ∅ then
8: terminate; // GRAP failed to construct a feasible solution
9: Randomly select a worker k from the set Ksuit,rem

p ;
10: while Smatch,rem

kp 
= ∅ do
11: Randomly select a skill s from the set Smatch,rem

kp ;
12: totSkillContr := 0;
13: for all t ∈ Tp do
14: ykpst := min

(
rrempst

lks
, Rrem

kt , totRrem
dt − rddt

)
;

15: rrem
pst := rrem

pst − lksykpst;
16: Rrem

kt := Rrem
kt − ykpst;

17: totRrem
dt := totRrem

dt − ykpst;
18: totSkillContr := totSkillContr + ykpst;
19: totReq rem

ps :=
∑

t∈Tp r
rem
pst ;

20: if totSkillContr > 0 then
21: xkp := 1;
22: Smatch,rem

kp := Smatch,rem
kp \ {s};

23: if Smatch,rem
kp = ∅ then

24: Ksuit,rem
p := Ksuit,rem

p \ {k};
25: if totReq rem

ps > 0 then
26: break; // Abort the while-loop started in line 10, i.e., select
another worker

27: if totReq rem
ps = 0 then

28: for all k′ ∈
(
Ksuit,rem

p ∩ Ks

) ∣∣ k′ 
= k do
29: Smatch,rem

k′p := Smatch,rem
k′p \ {s};

30: if Smatch,rem
k′p = ∅ then

31: Ksuit,rem
p := Ksuit,rem

p \ {k′};
32: Srem

p := Srem
p \ {s};

33: if Srem
p = ∅ then

34: P toStaff := P toStaff \ {p};

remaining matching skills, remaining suitable workers, and so on. This part starts with
removing skill s from the set Smatch,rem

kp of remaining matching skills between worker k
and project p. Skill s can be removed, because the maximum possible workload of skill s
was allocated to worker k. If skill s was the only remaining matching skill, worker k
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is removed from the set Ksuit,rem
p of remaining suitable workers for project p, because

worker k cannot make any further contribution to project p. If worker k cannot make
any further contribution and if project p has positive remaining requirements for skill s,
i.e., if totReq rem

ps is positive, another worker must be selected to whom workload can be
allocated.
If project p has no remaining requirements for skill s, because worker k could cover all

remaining requirements of project p for skill s, we make two updates. First, we remove
skill s from the sets of remaining matching skills of all other workers k′ who may be able
to cover requirements of project p for skill s. If skill s was the only remaining matching
skill between worker k′ and project p, we remove worker k′ from the set of remaining
suitable workers for project p. Second, we remove skill s from the set of remaining skills
which are required by project p and for which uncovered requirements exist. If skill s
was the last skill with uncovered requirements, we remove project p from the list PtoStaff,
because all requirements of project p are covered.
After the updates, GRAP continues in one of three ways. The first way is that another

remaining matching skill between worker k and project p is selected. The second way is
that another worker for project p is selected. The third way is that another project is
selected for staffing if there is any left. Algorithm 6.7 runs in O(PK2ST ) time, and hence,
GRAP requires O(PK2ST ) time because D ≤ K holds.
Having given an overview of GRAP, we come back to the suitability values suitkp,

k ∈ Ksuit,rem
p , which are calculated before a worker k ∈ Ksuit,rem

p is selected for a project p ∈
P toStaff. Manifold possibilities exist to calculate the values suitkp. We will suggest two
possibilities.
Our first way to calculate the value suitkp considers the sum of the skill levels that are

associated with the remaining matching skills between worker k and project p. Addition-
ally, it considers the number of projects to which worker k is already assigned. We denote
this suitability value by suitA

kp, p ∈ P toStaff; its calculation is given in Definitions (6.7).

suitA
kp :=

∑
s∈Smatch,rem

kp

lks

1 +
∑

p′∈Psuit
k

xkp′
k ∈ Ksuit,rem

p (6.7)

In case of suitability values suitA
kp, the selection probability of worker k is the greater

the greater the sum of the skill levels that are associated with the remaining matching
skills between worker k and project p. And, the probability is the greater the lower the
number of projects to which worker k has already been assigned. The probability of
selecting worker k for project p is dynamic and hence can change in the course of the
GRAP procedure.
Definitions (6.7) ignore the remaining availabilities of worker k as well as the extent

of remaining requirements of project p measured in man-hours. Though, remaining avail-
abilities and remaining requirements seem to be a reasonable indicator for the suitability
of a worker for a project. That is why these indicators are taken into account by our
second way to calculate the value suitkp.
Our second way regards the remaining availabilities of worker k and the man-hours

that are required by project p but that have not been allocated so far. The resulting
suitability value is deonoted by suitB

kp. The computation of suit
B
kp is given in Algorithm 6.8.
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Here, suitB
kp is defined as the share of all remaining requirements of project p that can

be covered by worker k. Algorithm 6.8 computes for each period t ∈ Tp the maximum
number of man-hours of the remaining matching requirements that can be accomplished
by worker k and cumulates these man-hours over all periods of project duration. At the
end, the cumulated man-hours are divided by the sum of all remaining requirements of
project p to obtain the share that worker k can cover (cf. line 13 of Algorithm 6.8).

Algorithm 6.8 Calculation of the suitability value suitB
kp

1: Input: Project p ∈ P toStaff, worker k ∈ Ksuit,rem
p

2: Output: Suitability value suitB
kp

3:
4: maxHours := 0
5: for all t ∈ Tp do
6: avail rem := min

(
Rrem

kt , totRrem
d(k)t − rdd(k)t

)
;

7: for all s ∈ Smatch,rem
kp in order of non-increasing skill levels lks do

8: maxHoursSkill := min
(
rrem
pst , avail

remlks
)
;

9: maxHours := maxHours +maxHoursSkill ;
10: avail rem := avail rem − maxHoursSkill

lks
;

11: if avail rem = 0 then
12: break; // Abort the for-loop over the skills s ∈ Smatch,rem

kp

13: suitB
kp :=

maxHours∑
s∈Srem

p

∑
t∈Tp rrempst

;

Let us explain in more detail how we determine the maximum number of required
man-hours of project p that worker k can cover. This maximum number of man-hours is
denoted by maxHours . It is the sum of the maximum numbers of man-hours that worker k
can accomplish in the periods t ∈ Tp. To obtain the maximum contribution of worker k
in a period t ∈ Tp, we first determine the remaining availability avail rem of worker k
(cf. line 6). This remaining availability takes into account that worker k must accomplish
departmental workload in cases where the remaining availabilities Rrem

k′t of all other depart-
ment members k′ are not sufficiently large to fully cover the departmental requirement.
To take into account the requirement rddt of the department d to which worker k belongs,
the variable totRrem

dt is considered. This variable tracks the total remaining availability of
all department members and was introduced on page 130.
Given the remaining availability avail rem of worker k, we determine the maximum

number of required man-hours of project p that worker k can cover in period t. We iterate
over all remaining matching skills between k and p in order of non-increasing skill levels.
For a remaining matching skill s, we calculate the maximum number of man-hours of the
remaining requirement rrem

pst that worker k can cover, store it in the variablemaxHoursSkill ,
add it to the variable maxHours , update the remaining availability avail rem of worker k,
and continue with the next skill. The calculation of the maximum contribution of worker k
in period t stops if the remaining availability avail rem of worker k is depleted. This
calculation is done for each period. Finally, the cumulated number of man-hours that
worker k can accomplish is divided by the total number of remaining required man-hours
that include also remaining requirements for skills that do not belong to the matching
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skills of k and p. Algorithm 6.8 requires O(S2 + TS) time if quicksort is used for sorting
operations.
For a multi-start version, we directly embedded GRAP in the generic multi-start pro-

cedure outlined in Algorithm 6.5 on page 126. We directly inserted Algorithms 6.6 and
6.7 in Algorithm 6.5. This multi-start version of GRAP constructs different solutions, be-
cause projects, workers, and skills are randomly selected within GRAP leading to different
assignments and workload allocations.
Having outlined the GRAP procedure and its multi-start version, we will turn to an

important drawback of GRAP. The drawback is that there are instances where GRAP is
unable to find an existing optimal or feasible solution even if GRAP is executed an infinite
number of times. Even if all possible orders are considered in which projects, workers,
and skills can be selected by GRAP, GRAP can fail to construct an existing optimal or
feasible solution. Though, this drawback can be overcome by a modified version of GRAP
that we call ModGRAP. The heuristic ModGRAP has another drawback, however. Its
expected average solution quality is worse than the solution quality of GRAP.
In the following, we will prove the unpleasant property that GRAP can miss an existing

optimal or feasible solution. Then we will present the modified version ModGRAP and
prove that it cures the drawback of GRAP. Finally, we will suggest that this cure comes
at a high cost, as solution quality suffers.

Proposition 6.1 The heuristic GRAP can fail to find an existing optimal or feasible
solution even if GRAP is applied repeatedly in order to select projects, workers, and skills
in all possible orders. �

Proof For our proof, we will present an instance for which GRAP cannot construct a
feasible solution. This instance features two workers k1 and k2, two skills s1 and s2, and
two projects p1 and p2, which last only for one period t. Both projects require both skills.
The requirements are identical: rp1s1t = rp1s2t = rp2s1t = rp2s2t = 1. Both workers master
both skills with contrary skill levels: lk1s1 = 2, lk1s2 = 0.5, lk2s1 = 0.5, lk2s2 = 2. While
worker k1 is very experienced in skill s1 and a beginner in skill s2, the opposite holds for
worker k2. Let Rkt = 1, k ∈ {k1, k2}. There is no departmental workload.
Assume that GRAP selects project p1 and worker k1 first. Then, the corresponding

allocation outcome is yk1p1s1t = 0.5 and yk1p1s2t = 0.5. Worker k1 cannot contribute to any
further project, because her remaining availability is zero. Now, skill s2 is the only skill of
project p1 with a positive remaining requirement, this remaining requirement amounts to
rrem
p1s2t

= 0.75. This remaining requirement is completely allocated to worker k2 resulting in
yk2p1s2t = 0.375. But now the remaining availability Rrem

k2t
= 0.625 of worker k2 is not large

enough to cover the requirements of project p2. Only a remaining requirement Rk2t ≥ 2.5
would be large enough. Hence, a feasible solution cannot be constructed.
Every other selection of a project and a worker at the beginning of GRAP leads to

the same situation of a gap between required and available working time. GRAP ends up
at a point where at most three assignments can be made, whereas every feasible solution
to this instance requires four assignments, namely, xkp = 1, k ∈ {k1, k2}, p ∈ {p1, p2}.
The sole feasible and hence optimal allocation of workload is yk1p1s1t = yk1p2s1t = 0.5 for
worker k1 and yk2p1s2t = yk2p2s2t = 0.5 for worker k2. �

Algorithm 6.9 sketches a modified version of GRAP that can find a feasible solution
to the instance that we described in the proof of Proposition 6.1. The modified version of
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GRAP, called ModGRAP, randomly chooses a project p ∈ P toStaff, a worker k ∈ Ksuit,rem
p ,

a skill s ∈ Ksuit,rem
p , and a period t ∈ Tp with a positive remaining requirement rrem

pst . As
much of the remaining requirement rrem

pst as possible is allocated to worker k. Updates of
variables including the variable xkp and updates of sets are executed similarly to GRAP.
Then, the next quadruplet (p, k, s, t) is randomly determined and for the corresponding
variable ykpst the maximum value is calculated. This procedure is repeated as long as
projects with positive remaining requirements exist, i.e., as long as the list P toStaff is not
empty.

Algorithm 6.9 Sketch of the heuristic ModGRAP
1: Input: Instance data, output of Algorithm 6.6
2: Output: A feasible solution (x,y) for the workforce assignment problem or no solu-
tion

3:
4: while P toStaff 
= ∅ do
5: Randomly select a project p from the list PtoStaff;
6: if Ksuit,rem

p = ∅ then
7: terminate; // ModGRAP failed to construct a feasible solution
8: Randomly select a worker k from the set Ksuit,rem

p ;
9: Randomly select a skill s from the set Smatch,rem

kp ;
10: Randomly select a period t ∈ Tp | rrem

pst > 0;
11: Allocate as much of the remaining requirement rrem

pst as possible to worker k;
12: Make all necessary updates of variables and sets;

Theorem 6.1 The heuristic ModGRAP can find an optimal solution to any instance of
the workforce assignment problem if there is an optimal solution. �

Proof ModGRAP can construct only a subset of all feasible solutions for an instance
of the workforce assignment problem. In our proof, we will show that all those solutions
that cannot be constructed by ModGRAP can be transformed into solutions that can be
constructed by ModGRAP and that this transformation does not deteriorate the objective
function value. For a clearer presentation of our proof, we assume without loss of generality
that all departmental requirements are zero.
First, realize that ModGRAP can construct only a proper subset of all feasible solu-

tions in general. When a solution for an instance of the workforce assignment problem is
determined by ModGRAP, each variable ykpst is set to min

(
rrempst

lks
, Rrem

kt

)
in the course of

ModGRAP, i.e., whenever workload is allocated to a worker k, as much workload as possi-
ble is allocated to k. In fact, ModGRAP can construct any feasible solution where as much
workload as possible is allocated to a worker, because ModGRAP randomly selects the
quadruplet (p, k, s, t) for each allocation of workload from a remaining requirement rrem

pst

to a worker k. Though, since ykpst is never set to a value less than min
(

rrempst

lks
, Rrem

kt

)
, Mod-

GRAP cannot construct all feasible solutions, but only a subset of all feasible solutions.
To verify this characteristic of ModGRAP, assume that the following instance is given:

P = {p}, K = {k1, k2}, S = Sp = Sk1 = Sk2 = {s}, T = {t}. Additionally, let rpst = 10,
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Rk1t = Rk2t = 10, and lk1s = lk2s = 1. Then, a feasible solution with yk1pst = 5 and
yk2pst = 5 is an example for a solution that cannot be constructed by ModGRAP, because
in at least one allocation step less workload than possible was allocated. If ModGRAP is
used to construct a solution for this instance, yk1pst = 10 or yk2pst = 10 must hold.
Based on the described characteristic of ModGRAP, two types of solutions of the

workforce assignment problem can be distinguished. If the set of feasible solutions for
an instance of the workforce assignment problem is non-empty, this set can be divided
into two disjoint sets A and B. Let set A contain all feasible solutions that can be
constructed by ModGRAP and let set B contain all feasible solutions that cannot be
constructed by ModGRAP. Let us denote a solution of set A by (xA,yA) and a solution
of set B by (xB,yB). Each solution (xA,yA) can be generated by ModGRAP by selecting
the quadruplets (p, k, s, t) in the right order and by setting the corresponding variables
yAkpst := min

(
rrempst

lks
, Rrem

kt

)
. In contrast, each solution (xB,yB) can only be generated by a

variant of ModGRAP that sets at least one variable yBkpst < min
(

rrempst

lks
, Rrem

kt

)
.

In the following, we outline a five-step approach that transforms a solution (xB,yB)
into a solution (xA,yA) whose objective function value is not worse than that of (xB,yB).
We consider in our proof only one period t. The five-step approach must be executed for
each period t ∈ T to construct a solution (xA,yA). Within the five-step approach,
we gradually exclude requirements rpst and variables yBkpst from consideration, while we
build up solution (xA,yA) simultaneously. To track the exclusion of variables yBkpst, we
maintain a reduced solution (xB,red,yB,red). At the beginning of our transformation, we
set (xB,red,yB,red) := (xB,yB) and xA := 0; an initialization of yA is not necessary.
Whenever a variable yB,red

kpst is excluded from consideration, this variable is removed from
yB,red. When all variables yB,red

kpst that are associated with worker k in period t are excluded
from consideration, we say that worker k is excluded from consideration.
Before the start of the five-step approach, we initialize two types of variables that

track two important quantities. The first type of variables tracks remaining project re-
quirements that have not been covered by variables yA during the five-step approach.
These variables are denoted by rrem

pst . We set rrem
pst := rpst for all requirements of all

projects before the five-step procedure begins. The second type of variables tracks re-
maining availabilities of workers during the five-step approach. These tracking variables
are denoted by Rrem

kt and are initialized by setting Rrem
kt := Rkt for all workers. After these

initializations, the five-step approach can be started.

Step 1: For each variable yB,red
kpst for which yB,red

kpst = 0 holds, set yAkpst := 0, and exclude
variable yB,red

kpst from further consideration.

Step 2: For each variable yB,red
kpst for which yB,red

kpst =
rrempst

lks
holds, set yAkpst := yB,red

kpst ,
Rrem

kt := Rrem
kt − yB,red

kpst , r
rem
pst := 0, update xA, and exclude variable yB,red

kpst and
requirement rrem

pst from further consideration.

Here, the whole requirement rrem
pst was allocated to worker k to obtain

(xB,red,yB,red). Hence, these allocations can also be made by ModGRAP.

Step 3: For each variable yB,red
kpst for which y

B,red
kpst = Rrem

kt holds, set yAkpst := yB,red
kpst , R

rem
kt := 0,

rrem
pst := rrem

pst − lksy
B,red
kpst , update x

A, and exclude variable yB,red
kpst from further con-
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sideration. Since yB,red
kpst was the last positive variable of worker k in the solu-

tion yB,red, worker k is excluded from further consideration.

Here, as much of the remaining requirement rrem
pst as possible was allocated to

worker k to obtain (xB,red,yB,red). Hence, these allocations can also be made by
ModGRAP.

Exclude all workers from consideration for which all variables yB,red
kpst have been

excluded from consideration.

Step 4: Repeat Steps 1 to 3 until a repetition occurs where no variable yB,red
kpst can be

excluded in any of the three steps.

If all variables yB,red
kpst have been excluded from consideration: Stop, the transfor-

mation is completed.

Otherwise, there are variables yB,red
kpst that have not been excluded so far. For

these variables, yB,red
kpst < min

(
rrempst

lks
, Rrem

kt

)
holds. Each remaining requirement rrem

pst

that has not been excluded so far is accomplished by at least two workers in
solution (xB,red,yB,red).

If each worker that is still considered accomplishes workload of at least two posi-
tive remaining requirements in solution (xB,red,yB,red), go to Step 5.

Else, select a worker k who contributes only to one remaining requirement rrem
pst

and an arbitrary worker k′ who also contributes to the remaining requirement rrem
pst .

Then, reallocate workload of the requirement rrem
pst from worker k′ to worker k by

increasing yB,red
kpst by δ and decreasing yB,red

k′pst by
lks
lk′s

δ. Choose δ such that yB,red
kpst

becomes as large as possible, i.e., set

δ := min

(
Rrem

kt − yB,red
kpst ,

lk′s
lks

yB,red
k′pst

)
.

Set yB,red
kpst := yB,red

kpst + δ, Rrem
kt := Rrem

kt − δ, yB,red
k′pst := yB,red

k′pst − lks
lk′s

δ, and Rrem
k′t :=

Rrem
k′t + lks

lk′s
δ.

Now, either the equation yB,red
kpst = Rrem

kt or the equation yB,red
k′pst = 0 holds or both

equations hold. If yB,red
k′pst = 0 holds, go to Step 1. Otherwise, go to Step 3.

Step 5: At this point, each remaining requirement rrem
pst that has not been excluded so far is

accomplished by at least two workers in solution (xB,red,yB,red), and each worker
that is still considered accomplishes workload of at least two positive remaining
requirements in solution (xB,red,yB,red). Since

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp
yB,red
kpst = Rrem

kt

can hold for each worker that is still considered, the following reallocation of
workload ensures that availabilities are regarded.

We increase an already positive contribution yB,red
kpst of a worker k by δ and reduce

another contribution yB,red
kp′s′t of the same worker by δ. Here, p = p′ or s = s′ is

possible. Note that the variable that is increased cannot be selected arbitrarily,
as we will see later on. The changes in the variables yB,red

kpst and yB,red
kp′s′t must

be compensated by changes of other variables. The simplest possible way of
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compensation that may exist features only one other worker k′ whose contribution
to project p and skill s is decreased and whose contribution to project p′ and skill s′
is increased. In this simplest case, only two workers are involved in reallocating
workload and only two skill requirements are affected by the reallocation. Though,
it may be necessary that three or more workers are involved in the reallocation. In
general, the reallocation involves n workers and affects n skill requirements, n ≥ 2.
The reallocation requires for each worker who is involved that two contributions
are changed. One contribution is increased, the other is decreased.

For all workers involved in reallocation, we have to ensure that their remaining
availabilities are observed. In order to observe remaining availabilities, the con-
tribution that is increased cannot be chosen arbitrarily in general, as we will see
in two examples. We will give an example involving two workers and an example
involving three workers. From these examples it is easy to see how the changes in
contributions must be made in cases where more than three workers are involved
in reallocation.

For the first example, assume that worker k1 and worker k2 accomplish the require-
ments rrem

pst and rrem
p′s′t. Without loss of generality, we assume that no other workers

contribute to these requirements. If lk1s ≥
lk1s′

lk2s′
lk2s holds, we select variable y

B,red
k1pst

in order to increase this variable. Otherwise, we increase variable yB,red
k1p′s′t

. To
show why this selection of the variable that is increased works, we consider the
case where yB,red

k1pst
is increased. The underlying situation and the corresponding

changes of the variables are illustrated in Figure 6.1. In this figure, the white
boxes represent the variables yB,red

k1pst
and yB,red

k1p′s′t
, which are the contributions of

k1, and the black boxes represent the variables yB,red
k2pst

and yB,red
k2p′s′t

, which are the
contributions of k2.

covers rpst

+δ −
lk1s

lk2s
δ

covers rp′s′t

−δ +
lk1s′

lk2s′
δ

Key:

variable of k1

variable of k2

Figure 6.1: Changes in variables in Step 5 if two workers k1 and k2 are involved in the
reallocation of workload

The increases of contributions, which are indicated by “+” in Figure 6.1, must
be compensated by decreases, which are indicated by “−”. For each worker who
is involved, the net change in contributions must be less than or equal to 0 in
order to observe the worker’s availability. For worker k1, the net change is equal
to δ − δ and thus zero. For worker k2, the restriction − lk1s

lk2s
δ +

lk1s′

lk2s′
δ ≤ 0 must
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hold, i.e., the restriction

lk1s ≥
lk1s′

lk2s′
lk2s ⇔ lk1s

lk2s
≥ lk1s′

lk2s′
(6.8)

must be satisfied.

If Restriction (6.8) holds, i.e., if worker k1 has a comparative advantage in ex-
ercising skill s, or, strictly speaking, no comparative disadvantage, we increase
variable yB,red

k1pst
.1 If Restriction (6.8) does not hold, worker k1 has a comparative ad-

vantage in skill s′ and we increase variable yB,red
k1p′s′t

. Since in this case lk2s ≥
lk2s′

lk1s′
lk1s

automatically holds (even with >), availabilities are observed.

The amount δ of the increase in the selected contribution is set to the maximum
value that guarantees that no contribution becomes negative. Hence, we set δ
to the minimum value where at least one contribution that is decreased becomes
zero.

For the second example, let three workers k1, k2, and k3 accomplish three require-
ments rrem

pst , rrem
p′s′t, rrem

p̄s̄t , as depicted in Figure 6.2. Assume that variable y
B,red
k1pst

is
selected in order to increase this variable. The resulting changes in other variables
are given in Figure 6.2, which illustrates the reallocation of workload.

covers rpst

−
lk1s

lk3s
δ +δ

covers rp′s′t

−δ +
lk1s′

lk2s′
δ

covers rp̄s̄t

+
lk2s̄lk1s′

lk3s̄lk2s′
δ −

lk1s′

lk2s′
δ

Key:

variable of k1

variable of k2

variable of k3

Figure 6.2: Changes in variables in Step 5 if three workers k1, k2, and k3 are involved
in the reallocation of workload

Again, the net change in time that a worker contributes to the three requirements
must not be positive for each of the three workers who are involved, because

1The term “comparative advantage” was coined in the field in economics for the case of bilateral trade
with two commodities, see e.g., Krugman et al. (2012, pp. 54–79), Behrens and Kirspel (2003, pp. 48–
52), and Bofinger (2011, pp. 31–44).
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otherwise a worker’s availability could be exceeded. For workers k1 and k2, the
net change is obviously zero. For worker k3 the net change is not positive if

lk1s ≥
lk2s̄lk1s′

lk3s̄lk2s′
lk3s (6.9)

holds. If Restriction (6.9) does not hold, we decrease variable yB,red
k1pst

by δ and
increase variable yB,red

k1p′s′t
by δ, because the resulting changes do not lead to a pos-

itive net change for any of the three workers who are involved in the reallocation
of workload.2 Again, the value of δ is set to the minimum value where at least
one contribution becomes zero.

As can be concluded from our two examples, Step 5 is executed in the general
case as follows. Select a variable yB,red

kpst of a worker k. Assume that yB,red
kpst is

increased by δ > 0. Select another variable yB,red
kp′s′t of the same worker k and assume

that it is decreased by δ. Propagate the resulting changes in other variables
until a cycle is closed. A cycle is closed when every increase (decrease) in a
variable is compensated by a decrease (increase) in another variable and when all
requirements are covered. When a cycle is closed, for each worker who is involved
in the reallocation, two of his variables are changed, and for each requirement that
is affected by the reallocation, two related variables are changed. Let the worker
that closes the cycle be denoted by k̄. Worker k̄ is the worker that accomplishes
the requirement rrem

pst together with worker k. Check for worker k̄ if the net
change in his two variables that are affected is not positive. If the net change
is positive, reverse the direction of change for each variable of all the workers
who are involved in reallocation, i.e., instead of increasing (decreasing) a variable
decrease (increase) the variable by the same amount. The amount of the change
in each variable depends on δ. Calculate δ such that at least one variable becomes
zero, but no variable becomes negative. Change the variables accordingly and go
to Step 1.

The five-step approach transforms a solution (xB,yB) into a solution (xA,yA) whose
objective function value is not worse than that of solution (xB,yB). In the five-step
approach, a variable yAkpst will be set to a positive value if and only if the corresponding
variable yB,red

kpst is positive at the time when its value is assigned to yAkpst. In addition,
especially in Steps 4 and 5, only variables yB,red

kpst whose corresponding variables yBkpst are
positive are increased. Thus, the objective function value of the solution (xA,yA), which is
obtained by transformation from the solution (xB,yB), cannot be worse than the objective
function value of (xB,yB).
Any solution from the set B can be transformed to a corresponding solution from the

set A by the five-step approach as just described. Since every solution from the set A

2As in the first example, we have to determine whether worker k1 should concentrate on skill s or on
skill s′. It is guaranteed that one of these two alternatives is feasible with respect to worker availabilities.
Restriction (6.9) represents the condition for a “comparative advantage” of worker k1 in skill s over
skill s′ for the given assignment of workers to skill requirements in our three-worker, three-requirement
case. Restriction (6.9) is analog to the condition for a “comparative advantage” in the multi-country,
multi-commodity case in international trade (cf. Jones, 1961, especially Section 5).
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can be constructed by ModGRAP, it is guaranteed that ModGRAP can find an existing
optimal solution. �

Although ModGRAP can find an existing optimal solution for any instance, we expect
that its average solution quality is far worse than the average solution quality of GRAP,
because the probability of scattering workers across projects is relatively high for Mod-
GRAP in comparison with GRAP. The performance of ModGRAP will be evaluated in
Subsection 7.3.2.

6.2.2 An iterated simultaneous assignment procedure (ISAP)
In this subsection, we will outline a second construction heuristic for the workforce assign-
ment problem. We call this heuristic iterated simultaneous assignment procedure (ISAP).
In ISAP, we calculate for each potential assignment (k, p) of a worker k to a project p a
(dynamic) value suitkp that represents the suitability of k for p or the fit between k and
p. The basic idea of ISAP is to simultaneously select one worker for each project with
unallocated workload such that no worker is selected for more than one project and such
that the overall fit of the resulting pairs of projects and workers is maximized. Then,
for each pair (k, p) as much workload of project p as possible is allocated to the selected
worker k. The procedure of calculating the values suitkp, selecting workers and allocating
workload is iterated until the requirements of all projects are covered or until a partial
solution cannot be extended to a feasible solution.
In the following, we will first explain the motivation for ISAP and its relation to GRAP.

Thereupon, we will describe ISAP in a formal way before we focus on the calculation of the
values suitkp and on the problem of selecting one worker for each project with uncovered
workload. Then, a multi-start version of ISAP will be outlined in brief. Finally, we will
discuss some properties of ISAP.
ISAP can be thought of as an advancement of GRAP. The sequential staffing of

projects in GRAP is replaced by a simultaneous, parallel staffing of all projects in ISAP.
All other parts of both heuristics are essentially the same. In both heuristics, each project
is staffed gradually, because workers are assigned step by step to a project. ISAP requires
the same variables and sets as GRAP to track remaining requirements, remaining avail-
abilities, and so on. The allocation of workload of a project p to a worker k and the
subsequent updates in ISAP are also essentially identical with GRAP. The main differ-
ence between ISAP and GRAP are the simultaneous assignments of workers to all projects
with remaining requirements in ISAP compared to the sequential staffing of projects in
GRAP.
To see that simultaneous assignments to all projects can be advantageous, consider

the following example.

Example 6.7 Imagine an instance of the workforce assignment problem with two
projects p1 and p2, and two workers k1 and k2. For this instance, we make four as-
sumptions:

(1) Worker k1 can completely cover project p1 if only workload of p1 is allocated to him.

(2) Worker k1 can completely cover project p2 if only workload of p2 is allocated to him.
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(3) Worker k2 can completely cover project p1 if only workload of p1 is allocated to him.

(4) Worker k2 cannot completely cover project p2.

Assume that the suitability values for the pairs of projects and workers are as follows:
suitk1p1 = 10, suitk1p2 = 7, suitk2p1 = 9, suitk2p2 = 4. The corresponding problem of
selecting at most one worker for each project such that the total suitability is maximized
can be formulated as a classical assignment problem. This assignment problem is illus-
trated in Figure 6.3. An assignment with maximum total suitability where each project
is assigned to at most one worker and each worker is assigned to at most one project is
given by the pairs (k1, p2) and (k2, p1). For each of these two pairs, ISAP allocates as
much workload of the project as possible to the respective worker. Hence, ISAP yields a
feasible solution for the instance with an objective function value of 2.
Now, assume that we apply GRAP. Let GRAP select project p1 as the first project

to staff. For the selection of a worker, let the selection probability be proportional to the
suitability values. Thus, let the selection probabilities of worker k1 and k2 be 10

19
and 9

19
,

respectively. Then, rather k1 than k2 is selected for project p1. If GRAP selects worker k1
and allocates as much workload of p1 as possible to k1, then k1 and k2 must be assigned
to project p2. In total, GRAP is likely to obtain a solution whose objective function value
is 3. For the given instance, GRAP is likely to generate a solution that is worse than the
solution generated by ISAP. �

k1

k2

p1

p2

10

7

9
4

Key:

k p
suitkp

Figure 6.3: Illustration of the assignment problem encountered by ISAP in the instance
of Example 6.7

Example 6.7 indicates that ISAP is less myopic than GRAP. GRAP selects a “best
pair” (k, p) for a single project p, but ignores the impact of this selection on staffing
possibilities of other projects. ISAP, in contrast, takes all projects into account and
determines a set of best pairs.
Having explained the idea behind ISAP, we will outline this procedure in a more for-

mal way now. ISAP can be divided into two parts: a preparatory part and a main part.
The preparatory part starts just as the one of GRAP with declarations and initializations
of tracking variables and sets. Hence, at the outset of ISAP, Algorithm 6.6 is invoked.
Additionally, the preparatory part entails declarations and initializations that are neces-
sary for repeatedly solving a selection problem in the main part of ISAP. In the solution
of a selection problem, at most one worker is selected for each project with unallocated
workload.
The main part of ISAP is summarized in Algorithm 6.10. The main part iterates the

process of simultaneously selecting at most one worker for each project in P toStaff and
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allocating workload to the selected workers, as long as there are projects with uncovered
requirements. At the outset of each iteration, we check if the current partial solution can
be extended to a feasible solution. If there is a project p ∈ PtoStaff in a current partial
solution for which no worker is left that can cover remaining requirements of project p, this
partial solution cannot be extended to a feasible solution and Algorithm 6.10 terminates
without returning a feasible solution.

Algorithm 6.10 Main part of the heuristic ISAP
1: Input: Instance data, output of Algorithm 6.6, further initializations
2: Output: A feasible solution (x,y) for the workforce assignment problem or no solu-
tion

3:
4: while P toStaff 
= ∅ do
5: for all p ∈ P toStaff do
6: if Ksuit,rem

p = ∅ then
7: terminate; // ISAP failed to construct a feasible solution
8: for all k ∈ Ksuit,rem

p do
9: Calculate a suitability value suitkp; // Call Algorithm 6.8, for example

10: Formulate and solve the problem of selecting at most one worker for each
project p ∈ PtoStaff;

11: for all p ∈ P toStaff do
12: if a worker k ∈ Ksuit,rem

p was selected for project p then
13: while Smatch,rem

kp 
= ∅ do
14: Randomly select a skill s from the set Smatch,rem

kp ;
15: totSkillContr := 0;
16: Allocate as much of the remaining requirements of project p for skill s
as possible to worker k;

17: Record the time that worker k contributes to skill s in the vari-
able totSkillContr;

18: if totSkillContr > 0 then
19: xkp := 1;
20: Make all necessary updates of variables and sets;

If there is at least one remaining suitable worker for each project p ∈ P toStaff, we calcu-
late a non-negative suitability value suitkp for all remaining potential assignments (k, p),
p ∈ PtoStaff, k ∈ Ksuit,rem

p (cf. line 9 of Algorithm 6.10). The same suitability values as in
GRAP can be applied, for example. We will elaborate on the suitability values after our
overview of Algorithm 6.10. Right now, we proceed with the overview.
Given the suitability values, we formulate the problem of selecting at most one worker

for each project p with remaining requirements such that no worker is selected for more
than one project (cf. line 10). The objective of the problem is to find a selection that has
maximum total suitability. The solution to this selection problem can exhibit projects for
which no remaining suitable worker was selected. This can happen if and only if there
is a subset P̄ toStaff ⊂ PtoStaff for which

∣∣⋃
p∈P̄toStaff Ksuit,rem

p

∣∣ < ∣∣P̄toStaff
∣∣ holds. To give an

example for this case, assume that there are two projects p1 and p2 and that worker k is
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the last remaining suitable worker for both projects. Then, worker k is selected for either
p1 or p2.
For each project p ∈ PtoStaff for which a worker k ∈ Ksuit,rem

p was selected, we allocate
as much workload of project p as possible to worker k. This workload allocation is done
in the same way as in GRAP. We repeatedly select one remaining matching skill between
k and p (cf. line 14). Like in GRAP, we choose one of the best remaining matching skills,
say skill s. For this skill s, we allot for each period t ∈ Tp as much workload as possible
to worker k (cf. lines 13–19 of Algorithm 6.7 on page 131). If in any period a positive
amount of workload can be allocated to worker k, the allocation is carried out and we
set xkp := 1. Then, we update all other variables and sets as in GRAP (cf. lines 22–
34 of Algorithm 6.7). After the updates, Algorithm 6.10 continues either with selecting
another remaining matching skill, or with allocating workload of the next project for that
a worker was selected, or with formulating the new selection problem if there are projects
with unallocated workload. We will evaluate the time complexity of Algorithm 6.10 when
we have elaborated on the formulation and solution of the selection problem.
The suitability values suitkp, p ∈ P toStaff, k ∈ Ksuit,rem

p , must be calculated for each
selection problem that is formulated in the course of ISAP (cf. line 9 of Algorithm 6.10).
The purpose of the values suitkp is to indicate how helpful an assignment of worker k to
project p would be in order to yield a solution with as few assignments in total as possible.
Since we do not know in advance which assignments are helpful and which are not, we can
only estimate how helpful or suitable an assignment is at a certain point during the ISAP
procedure. Manifold possibilities exist to make these estimates, hence many possibilities
exist to calculate the values suitkp. We decided to use the same suitability values as for
GRAP, i.e., we use either suitA

kp, which is specified in Definitions (6.7), or suit
B
kp, which is

computed by Algorithm 6.8.
Given the suitability values suitkp, we can formulate the problem of selecting at most

one remaining suitable worker for each project in the list P toStaff (cf. line 10 of Algo-
rithm 6.10). We provide two formulations for this selection problem. The first formulation
is an intuitive formulation that can be solved by the simplex method. We used a general-
purpose LP solver from the solver package CPLEX that applies the dual simplex method.
The second formulation models the selection problem as a classical assignment problem.
The classical assignment problem can be solved by the standard simplex method, but also
by more efficient methods, which exploit its special structure. For both formulations, we
need non-negative continuous decision variables akp ∈ [0, 1] that indicate whether worker k
is selected for project p (akp = 1) or not (akp = 0).
The first formulation of the selection problem is given by (6.10)–(6.13).

Max.
∑

p∈PtoStaff

∑
k∈Ksuit,rem

p

(4SP + suitkp) akp (6.10)

s. t.
∑

k∈Ksuit,rem
p

akp ≤ 1 p ∈ PtoStaff (6.11)

∑
p∈PtoStaff | k∈Ksuit,rem

p

akp ≤ 1 k ∈
⋃

p∈PtoStaff

Ksuit,rem
p (6.12)

akp ∈ [0, 1] p ∈ P toStaff, k ∈ Ksuit,rem
p (6.13)
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Objective function (6.10) maximizes the total suitability of all selected pairs (k, p).
The constant term 4SP that we add to each suitability value ensures that the maximum
number of assignments is realized, i.e., that the maximum number of pairs is selected.3
Without such a term, it might be better to select one very suitable pair (k, p) instead
of two pairs (k, p′) and (k′, p) whose total suitability is less than that of the pair (k, p).
Constraints (6.11) ensure that for each project p ∈ PtoStaff at most one worker is selected
who belongs to the set of remaining suitable workers for project p. Constraints (6.12)
guarantee that each worker k who can cover unallocated workload is selected for at most
one project to which he can contribute. The domain of the decision variables is stated in
Constraint set (6.13).
Note that we need not demand the decision variables akp to be binary variables, because

special properties of model (6.10)–(6.13) ensure that all solutions that are considered by
the simplex method, i.e., all basis solutions, are integer. The special properties that are
responsible for integer basis solutions lie in the Constraint sets (6.11) and (6.12), which
can be expressed as Ax ≤ b. Since for (6.11) and (6.12) matrix A is totally unimodular,
the right-hand side b is integer, and the decision variables are bounded by integers, all
basis solutions of model (6.10)–(6.13) are integer (cf. Burkard et al., 2009, pp. 29–30 and
74–75; Neumann and Morlock, 2002, pp. 310 and 384–386).
The second formulation of the selection problem represents the problem as a classical

assignment problem in order to exploit efficient solution methods that were developed
for the classical assignment problem. Burkard et al. (2009, pp. 73–144) give an overview
of solution methods for the classical assignment problem, which they call linear sum
assignment problem. A formulation of our selection problem within ISAP as a classical
assignment problem requires that we select exactly one worker for each project and that
each worker is selected exactly once. Hence, we must assure that the number of projects
is equal to the number of workers. To fulfill this prerequisite, we introduce the sets P̄
and K̄ that contain all projects p ∈ P and all workers k ∈ K, respectively. If |P| < |K|
(|K| < |P|) the set P̄ (K̄) is stocked up by dummy projects (dummy workers) such that
|P̄| = |K̄| holds.
Additionally, we assure that each project p ∈ P̄ can be assigned to each worker k ∈ K̄.

Consequently, we must define a suitability value suitkp for each pair (k, p), p ∈ P̄ , k ∈ K̄.
For all pairs (k, p), p ∈ P toStaff, k ∈ Ksuit,rem

p , the suitability values are calculated as in
the first formulation of the selection problem. For all other pairs (k, p), we set suitkp :=
−4SP . This large negative value ensures that as many projects as possible are assigned
to real workers. Without the large negative value, it might be advantageous to make the
assignments (k, p) and (k′, p′) where worker k′ is a dummy worker for project p′, although
the assignments (k, p′) and (k′, p) would represent pairs of real workers and real projects.
The formulation of the selection problem as a linear sum assignment problem is given

by (6.14)–(6.17).

3The constant term 4SP takes into account the maximum possible difference in suitability values, which
is bounded by 2S. This bound applies to suitAkp, which exhibits the maximum possible difference among
our suitability values. The additional factor 2 considers the perturbation of suitability values that is
deployed for the multi-start approach (cf. Equation 6.18 on page 147). Eventually, the factor P regards
the extreme case where P − 1 pairs, each with maximum suitability value, would be selected instead
of P pairs, each with minimum suitability value.
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Max.
∑
p∈P̄

∑
k∈K̄

suitkpakp (6.14)

s. t.
∑
k∈K̄

akp = 1 p ∈ P̄ (6.15)

∑
p∈P̄

akp = 1 k ∈ K̄ (6.16)

akp ∈ [0, 1] p ∈ P̄ , k ∈ K̄ (6.17)

Objective function (6.14) maximizes the total suitability of all assignments (k, p).
Constraints (6.15) ensure that each real project and each dummy project (if there is any)
is assigned to exactly one worker, be it a real or a dummy worker. Constraints (6.16)
guarantee that each real worker and each dummy worker (if there is any) is assigned to
exactly one project, be it a real or a dummy project. The domain of the decision variables
is stated in Constraint set (6.17). Again, we need not demand akp ∈ {0, 1}, because the
same special properties hold for (6.14)–(6.17) as for (6.10)–(6.13).
The linear sum assignment problem (6.14)–(6.17) can also be represented by a bipar-

tite graph whose edges connect nodes that represent projects with nodes that represent
workers. The weight of an edge is given by the corresponding suitability value. Then, an
optimal solution of our linear sum assignment problem corresponds to a perfect matching
of maximum suitability in this bipartite graph.
Many methods have been proposed for solving the linear sum assignment problem. The

standard simplex method and the network simplex method suffer from a high number of
degenerate pivot operations when applied to the assignment problem (cf. Barr et al., 1977;
Engquist, 1982, p. 371; Burkard et al., 2009, pp. 31, 104, and 106–112). An efficient class
of methods are so called successive shortest path methods (Burkard et al., 2009, pp. 93–
104). We implemented the successive shortest path method that has been outlined by
Glover et al. (1986, pp. 12–19) in the first part of their paper. For a neat presentation of
this method, see Neumann and Morlock (2002, pp. 294–300).
To apply the successive shortest path algorithm of Glover et al. (1986, pp. 12–19), the

assignment problem under consideration is represented by a bipartite directed graph G =
(N,A) with node set N and arc set A. In our case, we establish one node for each
project p ∈ P̄ . We call these nodes project nodes. Additionally, we establish one node
for each worker k ∈ K̄. These nodes are called worker nodes. Hence, the node set N is
given by P̄ ∪ K̄. From each project node, arcs run to all worker nodes, thus, the arc set A
contains |P̄||K̄| arcs. The length of an arc 〈p, k〉 from project node p to worker node k is
set to suitkp. At the outset, no assignments between projects and workers exist. Put in
other words, no assignments between project nodes and worker nodes exist.
Then, at most |P̄| iterations are executed in each of which the number of assign-

ments increases by at least one. However, assignments—except for those made in the
final iteration—are provisional because in an iteration reassignments are possible. In
each iteration, we apply a label correcting procedure to determine shortest paths to all
unassigned worker nodes among those paths that start from unassigned project nodes.
Based on shortest paths information, at least one additional assignment and potential
reassignments are made. Before the next iteration starts, some arcs are reversed and
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their length value is updated. The iterations stop when each project node is assigned to
a worker node. At this point an optimal solution of the assignment problem has been
constructed. For details of the successive shortest path method, we refer to Glover et al.
(1986, pp. 12–19) and Neumann and Morlock (2002, pp. 294–300). The running time
of our successive shortest path algorithm is O

(
(|P̄|+ |K̄|)4

)
= O ((2 ·max(P,K))4) (cf.

Neumann and Morlock, 2002, p. 300).
Now, as all parts of Algorithm 6.10 have been outlined, we can evaluate the time

complexity of Algorithm 6.10. We formulated the selection problem in Algorithm 6.10
as a linear sum assignment problem and applied the outlined successive shortest path
algorithm to solve this problem. With these specifications and assuming—as for the time
complexity of GRAP—that suitability values are randomly determined and that matching
skills are randomly selected, Algorithm 6.10 runs in O (K (PSTK + (2 ·max(P,K))4))
time.
For a multi-start version, we directly embedded ISAP in the generic multi-start proce-

dure outlined in Algorithm 6.5 on page 126. This multi-start version of ISAP constructs
different solutions, because remaining matching skills are randomly selected for allocation
of workload within ISAP. Though, these solutions are quite similar to one another; they
are not scattered across the solution space. A diversification strategy helps to explore re-
gions of the solution space that may be ignored otherwise. In case of ISAP, perturbing the
suitability values is an example for a diversification strategy. Perturbing suitability values
leads to a stronger randomization of ISAP. We implemented this perturbation strategy
as follows. Immediately after having calculated a suitability value suitkp (cf. line 9 of
Algorithm 6.10), we set

suitkp := [0.5 + 1.5 · rand(0, 1)] · suitkp (6.18)

where rand(0, 1) represents a random number that is uniformly distributed in the inter-
val [0, 1). Note that this perturbation is only applied to suitability values suitkp where
p ∈ P toStaff and k ∈ Ksuit,rem

p .
Finally, an important property of ISAP shall be mentioned. Like GRAP, the heuristic

ISAP can fail to construct any existing feasible solution for instances of the workforce
assignment problem, even if arbitrary suitability values are allowed during the whole
course of ISAP. The instance that we described in the proof of Proposition 6.1 on page 134
is an example for an instance for which ISAP cannot find an existing feasible solution.
Unlike GRAP, there is no modified version of ISAP that overcomes this drawback without
sacrificing the key feature of ISAP. This key feature are simultaneous assignments. Assume
a modified version of ISAP that still features simultaneous assignments, but that allocates
only the workload of one skill and one period from each project to the selected worker, as
it is done in ModGRAP. In the following example, we present an instance for which the
unique feasible solution cannot be found by such a modified version of ISAP.

Example 6.8 Consider an instance with three projects p1, p2, p3, three workers k1, k2,
k3, and three skills s1, s2, s3. All projects last only for one period and must be executed
in period t. Let projects p1 and p2 require only skill s1 with rp1s1t = rp2s1t = 5, while
project p3 requires only skills s2 and s3 with rp3s2t = rp3s3t = 10. Let Sk1 = {s1} with
lk1s1 = 1, Sk2 = {s1, s2} with lk2s1 = lk2s2 = 1, and Sk3 = {s1, s3} with lk3s1 = lk3s3 = 1.
For the availabilities of the workers, assume Rk1t = Rk2t = Rk3t = 10.
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The unique feasible solution of this instance requires that worker k1 accomplishes the
complete workload of projects p1 and p2, while workers k2 and k3 accomplish the whole
workload of project p3.
If the modified version of ISAP that we outlined above is applied to this instance,

the unique feasible solution cannot be found. In the first iteration, the modified version
of ISAP would assign either worker k2 or worker k3 to a project out of the set {p1, p2}
and allocate workload. Since in the unique feasible solution only worker k1 is assigned
to projects p1 and p2, the assignments made by the modified version of ISAP in the first
iteration cannot lead to this solution. �

The two heuristics that we present next overcome the drawback of GRAP and ISAP that
existing feasible solutions can be missed. If the set of feasible solutions for an instance is
non-empty, the following two heuristics always return a feasible solution.

6.2.3 A drop procedure (DROP)
In this subsection, we will present a drop procedure to heuristically solve the workforce
assignment problem. We call the procedure DROP, because this procedure applies the
principle of drop methods. The basic idea of DROP is to start with a feasible solution
in which each worker is assigned to every project for which he is suitable. Then, assign-
ments (k, p) are repeatedly dropped, i.e., canceled, until dropping any further assignment
would lead to infeasibility. To check whether dropping an assignment is feasible or not, it
is sufficient to solve an LP with constant objective function value. This LP results from
the fact that all binary variables xkp are fixed to either 0 or 1 in the course of DROP.4
In Subsection 6.2.3.1, we will address the origin of drop methods and discuss related

methods before we give an overview of our heuristic DROP. Subsequently, we will elabo-
rate on the probability of selecting an assignment (k, p) for dropping and on two extensions
of DROP that can considerably accelerate this heuristic. Finally, we succinctly describe
a multi-start version of DROP. In Subsections 6.2.3.2 and 6.2.3.3, another way of acceler-
ating DROP is presented. This acceleration comprises two intertwining steps. In the first
step, we formulate the linear programs that must be solved within DROP as generalized
network flow problems. The second step concerns solution methods for this type of prob-
lems. For generalized network flow problems, the generalized network simplex method is
a very efficient solution method. We describe how to formulate generalized network flow
problems for our case in Subsection 6.2.3.2. In Subsection 6.2.3.3, we will outline the
generalized network simplex method and its integration into DROP. For the generalized
network simplex method, we will provide detailed pseudo code for its pivot operations,
which are based on manipulating network structures. To the best of our knowledge, such
detailed pseudo code has not been published before. Some aspects of our implementation
of the generalized network simplex method are critically discussed in Subscection 6.2.3.4.
In Subsection 6.2.3.5, we discuss some properties of DROP and present a refinement of
DROP derived from one property discussed.

4Actually, for a single LP, all xkp are parameters, not variables, because the values of all xkp are fixed.
Nevertheless, we will stick to the term variable for xkp, k ∈ K, p ∈ Psuit

k , because xkp can be considered
as a decision variable for the heuristic DROP.
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6.2.3.1 Origin and outline of DROP

In this subsection, we will briefly look at the original drop method, which was applied to
a location problem. Our heuristic DROP follows its idea. Furthermore, we will address
methods that are closely related to drop methods and discuss their applicability to our
problem. Eventually, we will outline DROP.
Our heuristic DROP was inspired by the famous drop method that Feldman et al.

(1966) outlined for a warehouse location problem. The warehouse location problem is
also termed plant location or facility location problem. In the classical warehouse location
problem a subset of potential warehouse locations must be selected that minimizes fixed
warehouse operating costs and variable shipping costs (cf. Domschke and Drexl, 1996,
pp. 41–120). The drop method of Feldman et al. (1966) starts with a solution in which
all warehouses are opened, i.e., in which all locations are selected. When a warehouse
is closed (dropped), savings are achieved if the resulting increase in shipping costs is
overcompensated by the resulting decrease in fixed warehouse operating costs. Hence, the
drop method closes one warehouse at a time until no further savings are possible.
The warehouse location problem has some similarities to our workforce assignment

problem. If we restrict the workforce assignment problem to a single period t, we can in-
terpret each potential assignment (k, p) as a warehouse that can supply only one customer,
namely, project p. Working time can be shipped from a warehouse (k, p) to project p.
Though, in our case shipping costs are zero and, if we consider a worker k, there are no
separate capacity limits for each warehouse (k, p), but there is a joint capacity limit for
the warehouses (k, p), p ∈ Psuit

k . This joint capacity limit is given by the availability Rkt

of worker k in the sole period t. Like the workforce assignment problem, the warehouse
location problem is strongly NP-hard (cf. Cornuéjols et al., 1991, pp. 289–290).
Other methods that have been devised for the warehouse location problem can also

be adopted for our problem. The drop method of Feldman et al. (1966) was developed
as an alternative to the add method of Kuehn and Hamburger (1963). The add method
starts with a solution in which all warehouses are closed. If warehouse capacities must be
observed, only a fictitious warehouse with zero fixed cost, but prohibitive shipping costs
is open at the outset. Then, one warehouse at a time is opened until no further savings
can be achieved. In our case, a drop method offers—compared to an add method—
the advantage that we can exploit information from a feasible solution to decide about
the next assignment that will be dropped. In a preliminary test of an add method for
our problem, we found that the results did not surpass the results obtained by DROP.
Improvement heuristics that combine add and drop concepts were also devised for the
warehouse location problem (cf. Jacobsen, 1983; Whitaker, 1985). However, a preliminary
test of such an interchange heuristic for our problem was not promising. Hence, we adhered
to DROP.
To give an overview of DROP, we split the heuristic into a preparatory part and a

main part. For both parts, we consider the network model (4.19)–(4.29) as the underlying
formulation of the workforce assignment problem, however there would be no essential
difference if we based DROP on the standard model. As for the description of the other
heuristics, we assume that there are no workers that have already been assigned to an
(ongoing) project, i.e., we assume that Constraint set (4.25) is empty.
The preparatory part of DROP is outlined in Algorithm 6.11. At the beginning, we
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set each variable xkp, k ∈ K, p ∈ Psuit
k , to 1 and insert the corresponding assignment (k, p)

in the list C. The list C contains all pairs (k, p) for which dropping, i.e., setting xkp to 0,
is considered later on in the main part of DROP. For now, all variables xkp are tentatively
fixed to 1, i.e., we have x = 1.

Algorithm 6.11 Preparatory part of the heuristic DROP (based on the network
model (4.19)–(4.29))
1: Input: Instance data
2: Output: Data required by the main part of the heuristic DROP
3:
4: C := ∅;
5: for all k ∈ K do
6: for all p ∈ Psuit

k do
7: xkp := 1;
8: C := C ∪ {(k, p)};
9: for all t ∈ T do

10: Formulate and solve the remaining linear program LPrem
t ;

11: Store the values of all variables fproj
kpt and ykpst;

12: Algorithm 6.13; // Drop assignments without contribution
13: for all p ∈ P do
14: Algorithm 6.14(p); // Compute LBDrop

p and remove pairs from C if possible
15: for all s ∈ Sp do
16: Algorithm 6.15(p, s); // Compute LBDrop

ps and remove pairs from C if
possible

Before any drop operation is executed, we determine a feasible solution for the vari-
ables ykpst given x = 1. Assuming that an feasible solution exists, there exists a feasible
solution with x = 1. To find corresponding values for the variables ykpst, we solve the
network model (4.19)–(4.29). Since all binary variables xkp are fixed, the objective func-
tion of the network model becomes a constant function, because objective function (4.19)
depends only on variables xkp. Hence, it is sufficient to determine any solution that satis-
fies all constraints of the network model to obtain values for the variables ykpst. A second
consequence from fixed binary variables xkp is that the MIP model (4.19)–(4.29) becomes
a linear program, as all remaining variables are continuous variables.
The linear program that results from fixing all binary variables xkp decomposes into

T linear programs, one for each period t ∈ T , because the variables xkp are the only
elements of the MIP that couple the periods. Let LPrem

t denote the linear program that
remains for period t if all variables xkp are fixed to either 0 or 1. For problem LPrem

t , the
objective function value is also fixed, thus problem LPrem

t is a feasibility problem.
We formulate and solve the remaining linear program LPrem

t for each period t ∈ T
using the solver package CPLEX to get values for the variables fproj

kpt and ykpst of period t.
Because we presume that our set of projects P is a feasible portfolio, we obtain a feasible
solution for each linear program given x = 1. The values of all variables fproj

kpt and ykpst
are stored, as they are needed later on (cf. line 11 of Algorithm 6.11).
At the end of the preparatory part, two extensions occur, which can considerably

accelerate the heuristic. The first extension calls Algorithm 6.13, the second extension
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invokes Algorithm 6.14 for all projects p ∈ P and Algorithm 6.15 for all required skills of
each project p. We will explain these extensions after the overview of DROP.
The main part of DROP is outlined in Algorithm 6.12. The main part starts with a

non-empty list C and terminates when C is empty. As long as C is not empty, we compute
for each pair (k, p) in C an unsuitability value uskp. This value uskp is intended to indicate
how dispensable worker k is for project p. How the unsuitability values are calculated will
be explained immediately after the overview of DROP. Given the unsuitability values, we
determine a selection probability of each pair (k, p) in the list C that is proportional to
the corresponding unsuitability value uskp. According to the selection probabilities, we
select a pair (k, p) ∈ C by a roulette wheel selection.

Algorithm 6.12 Main part of the heuristic DROP (based on the network model (4.19)–
(4.29))
1: Input: Instance data, output of Algorithm 6.11
2: Output: A feasible solution (x,y) for the workforce assignment problem
3:
4: while C 
= ∅ do
5: for all (k, p) ∈ C do
6: Calculate an unsuitability value uskp; // Use Equations 6.19, for example
7: Randomly select a pair (k, p) ∈ C with a probability proportional to uskp;
8: xkp := 0;
9: DropFailed := false;

10: for all t ∈ Tp do
11: Update the remaining linear program LPrem

t ; // Require fproj
kpt = 0

12: Solve LPrem
t ;

13: if no feasible solution for LPrem
t was found then

14: DropFailed := true;
15: break; // Abort the for-loop
16: if DropFailed = true then
17: xkp := 1;
18: for all t ∈ Tp do
19: Update the remaining linear program LPrem

t ; // Require fproj
kpt ≤ Rkt

20: C := C \ {(k, p)};
21: else
22: for all t ∈ Tp do
23: Store the values of all variables fproj

kpt and ykpst;

24: C := C \ {(k, p)};
25: Algorithm 6.13; // Drop assignments without contribution
26: Algorithm 6.14(p); // Compute LBDrop

p and remove pairs from C if
possible

27: for all s ∈ Smatch
kp do

28: Algorithm 6.15(p, s); // Compute LBDrop
ps and remove pairs from C if

possible

For the selected pair (k, p), we test whether setting xkp := 0 still yields a feasible
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solution. Only periods in which project p is executed are affected by this drop operation.
Hence, we update the problem LPrem

t in each period t ∈ Tp (cf. line 11 of Algorithm 6.12).
If at least one updated problem LPrem

t , t ∈ Tp, becomes infeasible, we undo the drop
operation by resetting xkp := 1 and adjust all problems LPrem

t , t ∈ Tp, accordingly. Now,
xkp is finally fixed to 1. Since xkp is finally fixed, the pair (k, p) is removed from the list C.
If the drop operation succeeds, i.e., if all updated problems are feasible, we will store

the new values of the variables fproj
kpt and ykpst; xkp is finally fixed to 0 and the pair (k, p)

is removed from the list C. In case of a successful drop operation, two extensions are
processed before the next drop operation starts. The two extensions are similar to those
extensions of the preparatory part and they can also considerably accelerate the removal
of pairs from the list C. The first extension comprises Algorithm 6.13, the second exten-
sion comprises the Algorithms 6.14 and 6.15. In contrast to the preparatory part, the
Algorithms 6.14 and 6.15 are only processed for that project p for which the drop oper-
ation associated with worker k succeeded and for the matching skills between project p
and worker k.
Eventually, when the list C is empty, matrix x and the stored values of matrix y

provide a solution for the workforce assignment problem.
The running time of Algorithm 6.12 depends on the method that is applied for solving

the linear programs LPrem
t . If a polynomial-time method is applied, then Algorithm 6.12

will run in polynomial time. However, we apply the simplex method or, alternatively, the
generalized network simplex method. Both methods have exponential time complexity.
Thus, Algorithm 6.12 has an exponential worst-case time complexity in our case. In
practice, the simplex method and the generalized network simplex method are very fast.
Hence, the average-case performance of Algorithm 6.12 is expected to be acceptable.
Solving the linear programs LPrem

t for those periods t that are affected by a drop
operation plays a central role in DROP, because it is a recurring, time-consuming part
of DROP. This part is required to check whether the variables y can be made consistent
with the given values for the variables x. Within DROP, the variables y are more flexible
than the variables x. If a variable xkp is finally fixed to 1, the corresponding variables ykpst
will not be fixed until the very end of DROP. Only if a variable xkp is finally fixed to 0,
the corresponding variables ykpst will be fixed immediately to 0. The flexibility of the
variables ykpst in the case where xkp is finally fixed to 1 gives more leeway for further drop
operations, as the values of the variables ykpst can be adjusted by a solver to changes in
x.
Having given an overview of DROP, we will have a closer look at the unsuitability

values uskp. The unsuitability values uskp are an important element of DROP. They have
a major impact on the order in which assignments are dropped, because they determine
the selection probabilities of those assignments that belong to the list C. One can think of
many ways on how to calculate the unsuitability values uskp. A first source of inspiration
can be the suitability values suitkp that were devised for GRAP and ISAP. The reciprocal
of such a suitability value can be a good starting point for an unsuitability value. We
tapped this source and tested static and dynamic unsuitability values, for which we will
give three examples in the following.
Our first example is an example for a static unsuitability value. The computation of
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this unsuitability value is stated in Definitions (6.19).

usA
kp :=

1∑
s∈Smatch

kp

lks
(k, p) ∈ C (6.19)

The definition of usA
kp assumes that project p can the better dispense with worker k, the

smaller the sum of the levels of the matching skills between worker k and project p.
Our second example is an example for a dynamic unsuitability value. This unsuitability

value is specified by Definitions (6.20).

usB
kp :=

∑
p′∈Psuit

k

xkp′∑
s∈Smatch

kp

lks
(k, p) ∈ C (6.20)

For usB
kp, we additionally take into account the number of projects to which worker k is

currently assigned. The definition of usB
kp results from the view that a great number of

current assignments renders worker k unattractive for project p. The underlying assump-
tion of this view is that the greater the number of assignments of worker k, the less his
potential contribution to project p.
Definitions (6.19) and (6.20) can be modified by replacing the sum of the skill levels of

the matching skills by the number of matching skills. Though, this and other modifications
led to solutions of worse quality.
Our third and last example for a possible calculation of an unsuitability value consid-

ers a dynamic unsuitability value that exploits information from the values of the vari-
ables ykpst in the current solution. Definitions (6.21) show how this dynamic unsuitability
value usC

kp is calculated.

usC
kp :=

1∑
s∈Smatch

kp

∑
t∈Tp | rpst>0

lksykpst
rpst

(k, p) ∈ C (6.21)

In Definitions (6.21), the denominator considers each positive skill requirement rpst of
project p to which worker k can contribute and the actual contributions of worker k
to these requirements in the current solution y. The ratios of contributions to require-
ments are summed up over all relevant periods for all matching skills between project p
and worker k. The reciprocal of this sum defines the unsuitability value, which deems
worker k the more unsuitable for project p, the smaller his relative contributions are in
the current solution. Note that Definitions (6.21) cannot be applied in the case where∑

s∈Smatch
kp

∑
t∈Tp ykpst = 0 holds; though, Algorithm 6.13 guarantees that this case cannot

occur, as we will see in the next paragraph.
Algorithm 6.13 is the first of our two extensions that help to accelerate DROP. We

invoke Algorithm 6.13 whenever a new feasible solution of the workforce assignment prob-
lem was found. This algorithm scans the list C and spots pairs (k, p) where worker k does
not accomplish any workload of project p in the current solution. Each spotted assign-
ment (k, p) where worker k does not contribute to project p is immediately dropped, i.e.,
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Algorithm 6.13 Subprocedure of Algorithm 6.12: Cancellation of assignments without
contribution
1: for all (k, p) ∈ C do
2: if

∑
t∈Tp f

proj
kpt = 0 then // If

∑
s∈Smatch

kp

∑
t∈Tp ykpst = 0

3: xkp := 0
4: C := C \ {(k, p)}
5: for all t ∈ Tp do
6: Update the remaining linear program LPrem

t ; // Require fproj
kpt = 0

xkp is set to 0. As xkp is finally fixed now, the pair (k, p) is removed from C. Algorithm 6.13
runs in O(KPT ) time.
The concept that we applied in Algorithm 6.13 has also been applied by Di Gaspero

et al. (2007). They have outlined a drop method for the problem of finding the minimum
number of shifts that are required to meet staff requirements in a firm. In their drop
method, which is called GreedyMCMF, they drop one shift at a time and solve a minimum
cost maximum flow problem to check if a drop operation is feasible. The underlying flow
network contains for each shift an edge. All shifts to which no worker is assigned, i.e.,
all corresponding edges with zero flow, are immediately dropped whenever a solution has
been determined.
The second extension, which can also reduce the number of pairs (k, p) in the list C in

the course of DROP, comprises two lower bounds. In the following, we will describe these
two bounds and how they can be utilized to remove assignments from the list C without
the need to check feasibility by solving the remaining linear program.
The first lower bound is denoted by LBDrop

p , p ∈ P . It is a lower bound on the
number of assignments of workers to project p that are needed to cover all requirements
of project p. The bound LBDrop

p is a local lower bound, as for its computation only
workers who are currently assigned to project p are considered. The computation of the
lower bound LBDrop

p is similar to the computation of the local version of the global lower
bound LBglob

p , which was outlined in Algorithm 6.3 on page 118.
The lower bound LBDrop

p can be used to remove assignments from the list C. If in a
current solution x exactly LBDrop

p workers are assigned to project p, dropping any further
assignment (k, p′) ∈ C with p′ = p will lead to infeasibility of the remaining LP. Hence,
we can remove all assignments that contain project p from the list C; the corresponding
binary variables can be finally fixed to 1.
Algorithm 6.14 describes how the lower bound LBDrop

p for project p is calculated and
how it is utilized to remove those pairs (k, p) from the list C for which the corresponding
variable xkp must not be set to 0, because setting xkp to 0 would render the current
solution x infeasible. Algorithm 6.14 requires O (K(S2 + TS +K + P )) time if quicksort
is used for sorting operations.
Within the heuristic DROP, Algorithm 6.14 is called several times and the value of

LBDrop
p can change. In the preparatory part of DROP, Algorithm 6.14 is called for all

projects p ∈ P after an initial solution for y has been calculated. In the main part of
DROP, Algorithm 6.14 is called for a project p whenever a drop operation associated with
project p succeeded, because only when dropping a pair (k, p), k ∈ Ksuit

p , succeeded, the
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Algorithm 6.14 Subprocedure of Algorithm 6.12: Calculation of the lower bound LBDrop
p

on the number of assignments of workers to project p
1: Input: Project p
2:
3: LBDrop

p := 0;
4: Declare a vector vecProjCap of length

∑
k∈Ksuit

p
xkp;

5: for all t ∈ Tp do
6: rpt :=

∑
s∈Sp

rpst;

7: i := 1;
8: for all k ∈ Ksuit

p | xkp = 1 do
9: Rrem

kt := Rkt;
10: vecProjCap[i] := 0;
11: for all s ∈ Smatch

kp in order of non-increasing skill levels lks do
12: if Rrem

kt > 0 then
13: maxHours := min(rpst, R

rem
kt lks);

14: vecProjCap[i] := vecProjCap[i] +maxHours ;
15: Rrem

kt := Rrem
kt − maxHours

lks
;

16: i := i+ 1;
17: Sort the entries in vecProjCap in order of non-increasing values;
18: n∗ = min {n ∈ N | rpt −

∑n
i=1 vecProjCap[i] ≤ 0};

19: LBDrop
p := max(LBDrop

p , n∗);

20: if LBDrop
p =

∑
k∈Ksuit

p
xkp then

21: for all (k, p′) ∈ C do
22: if p′ = p then
23: C := C \ {(k, p′)};

value of LBDrop
p can change. The value of LBDrop

p monotonically increases in the course
of DROP.
The second lower bound is denoted by LBDrop

ps , p ∈ P , s ∈ Sp. It is a lower bound on
the number of workers mastering skill s that must be assigned to project p in order to
satisfy all requirements of project p for skill s. The bound LBDrop

ps is also a local lower
bound, as for its computation only workers who are currently assigned to project p are
considered. The computation of the lower bound LBDrop

ps resembles the computation of
the local lower bound LB loc

ps , which was outlined in Algorithm 6.2 on page 116.
The lower bound LBDrop

ps can be exploited to clear assignments from the list C. If in
a current solution x exactly LBDrop

ps workers who master skill s are assigned to project p,
dropping any further assignment (k, p′) ∈ C with p′ = p and k ∈ Ks will lead to infea-
sibility of the remaining LP. Thus, we can eliminate all these assignments from C; the
corresponding binary variables can be finally fixed to 1.
Algorithm 6.15 outlines how the lower bound LBDrop

ps for project p and skill s is com-
puted and how it is used to erase those pairs (k, p) from the list C for which the corre-
sponding variable xkp must not be set to 0, because setting xkp to 0 would render the
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current solution x infeasible. Algorithm 6.15 runs in O(TK2 +KP ) time if quicksort is
used for sorting operations.

Algorithm 6.15 Subprocedure of Algorithm 6.12: Calculation of the lower bound LBDrop
ps

on the number of assignments of workers to project p for skill s
1: Input: Project p, skill s ∈ Sp

2:
3: LBDROP

ps := 0;
4: Declare a vector vecSkillCap of length

∑
k∈Ks

xkp;
5: for all t ∈ Tp do
6: rrem

pst := rpst;
7: i := 1;
8: for all k ∈ Ks | xkp = 1 do
9: vecSkillCap[i] := Rktlks;

10: i := i+ 1;
11: Sort the entries in vecSkillCap in order of non-increasing values;
12: n∗ := min

{
n ∈ N | rrem

pst −
∑n

i=1 vecSkillCap[i] ≤ 0
}
;

13: LBDrop
ps := max(LBDrop

ps , n∗);

14: if LBDrop
ps =

∑
k∈Ks

xkp then
15: for all (k, p′) ∈ C do
16: if p′ = p and k ∈ Ks then
17: C := C \ {(k, p′)};

Algorithm 6.15 is called repeatedly within the heuristic DROP and the value of LBDrop
ps

can change in the course of DROP. In the preparatory part of DROP, Algorithm 6.15 is
called for each project p ∈ P and for each skill s ∈ Sp required by project p, after an
initial solution for y has been computed. In the main part of DROP, Algorithm 6.15 is
called whenever a drop operation for a pair (k, p) succeeded. Then, Algorithm 6.15 is
called for each skill s that is required by project p and mastered by worker k. Only when
dropping a pair (k, p), k ∈ Ks, succeeded, the value of LBDrop

ps can change. The value of
LBDrop

ps monotonically increases in the course of DROP.
Algorithms 6.14 and 6.15 were implemented in a more efficient way than in the way

presented here for reasons of clarity. In our actual implementation, static values such as rpt
in line 6 of Algorithm 6.14 and entries in the vector vecSkillCap in line 9 of Algorithm 6.15
are not computed every time the corresponding algorithm is called, but only once.
For a multi-start version, we embedded DROP in the generic multi-start procedure

outlined in Algorithm 6.5 on page 126. This multi-start version of DROP constructs
different solutions, because assignments to cancel are randomly selected within DROP.
However, we do not build a solution from scratch in each pass of the multi-start method.
This means that we do not start with a solution where each worker is assigned to every
suitable project. To save time, we execute Algorithm 6.11, the preparatory part of DROP,
before the multi-start procedure outlined in Algorithm 6.5 is started. In the preparatory
part, the remaining linear programs are solved once for each period. Then, assignments
without contribution are canceled and further assignments are canceled for each project p
if indicated by the bounds LBDrop

p and LBDrop
ps , s ∈ Sp. The resulting solution is stored
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and used as the starting point for each pass of the multi-start method. Hence, in each
pass, some variables xkp are kept fixed to the same values as in all previous passes.
The fact that some variables remain fixed during the multi-start procedure constitutes

a small degree of rebuild according to Martí et al. (2010, p. 274). The actual idea behind
a certain degree of rebuild is to start from a good starting point and not to save time.
In our case, starting each pass with some variables already fixed did save time, but also
raised the question whether solution quality would suffer, because fixing some variables
to the same values in each pass narrows the solution space that is explored. Preliminary
tests revealed that solution quality suffered, but the tests also revealed a substantial gain
in solution time, which justifies the approach in our opinion.
So far, we suggested to solve the remaining linear programs LPrem

t , t ∈ T , by the
standard simplex method using a solver from the package CPLEX. In the following two
subsections, we will show how the remaining linear programs LPrem

t , t ∈ T , can be
solved more efficiently by two means. One mean is to apply the generalized network
simplex method, because the remaining linear programs can be formulated as generalized
maximum flow problems. The generalized network simplex method is more efficient than
the standard simplex method for generalized network flow problems. Another mean is
to reformulate the remaining linear programs as generalized minimum cost flow problems
in order to facilitate warm starts of the generalized network simplex method. From
these two means, we first consider the reformulation of a remaining LP as a generalized
minimum cost flow problem in the next Subsection 6.2.3.2. Thereafter, we will outline
the generalized network simplex method in Subsection 6.2.3.3.

6.2.3.2 Representation of a remaining LP as a generalized minimum cost flow
problem

In this subsection, we will formulate the remaining linear program LPrem
t , t ∈ T , which

must be solved within DROP, as a generalized maximum flow problem and then reformu-
late this problem as a generalized minimum cost flow problem. We will demonstrate how
the reformulation can accelerate the DROP procedure.
To prepare the formulation of a remaining linear program LPrem

t as a generalized
minimum cost flow problem, we will first show that LPrem

t can be formulated as a general-
ized maximum flow problem. The term generalized indicates that the corresponding flow
problem arises for a network with gains. Both the minimum cost flow and the maximum
flow formulation require that the network model, which we presented in Subsection 4.3.1,
is used as the underlying formulation of the workforce assignment problem. Fixing all
assignment variables xkp to either 0 or 1 leads to a linear program LPrem

t for each pe-
riod t ∈ T .
To see that a remaining linear program LPrem

t that originates from the network model
can be transformed into a generalized maximum flow problem, consider Figure 4.1 on
page 61. In Figure 4.1, we sketched a section of the network model for a single period t. A
solution that satisfies all constraints for period t requires a sufficiently large flow emanating
from the workers. This flow must satisfy the demands of projects and departments. The
complete model, which is only indicated in Figure 4.1, can be interpreted as a generalized
maximum flow problem. To make this interpretation obvious and to facilitate the use of
computational methods, we slightly modify the network flow model that is sketched in
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Figure 4.1. We introduce a source node and a terminal node that are connected to nodes
at stage 1 and at stage 4, respectively. Additionally, we replace supplies and demands
of nodes by arc capacities, i.e., by upper flow bounds. Details of these modifications are
described in the following two paragraphs. We call the resulting network maximum flow
network.
To obtain the maximum flow network, we first introduce a source node, which consti-

tutes stage 0. From this source node, an arc runs to each node at stage 1. The capacity
of such an arc running to the node of worker k ∈ K at stage 1 is set to the availability Rkt

of worker k. The supply of all nodes at stage 1 is set to 0.
An almost mirror-image modification is applied to the opposite side of the network

depicted in Figure 4.1. We introduce a terminal node, which constitutes stage 5, and link
every node at stage 4 to this terminal node. Recall that each node at stage 4 is a demand
node. The upper flow bound of an arc that runs from a node at stage 4 to the terminal
node at stage 5 is set to the demand of the from-node. In case of a project demand node
that is associated with project p and skill s, the upper flow bound is set to rpst and in
case of a demand node that is associated with department d, the upper flow bound is set
to rddt . The demands of all nodes at stage 4 are set to 0.
To solve the remaining linear program LPrem

t that corresponds to the maximum flow
network, we determine a maximum flow from the new source node to the new terminal
node. For this determination, we implicitly assume that the source node has an infinite
supply and that the terminal node has an infinite demand. A feasible solution for LPrem

t

exists if there is a maximum flow that saturates all arcs running from stage 4 to stage 5
and that observes the capacities of all arcs running from stage 0 to stage 1. Such a flow
corresponds to a solution where the requirements of all projects and all departments in
period t are satisfied and where the availabilities of all workers are not exceeded. Hence,
we can solve a generalized maximum flow problem to decide whether a feasible solution
exists for LPrem

t or not.
The transformation of the maximum flow problem that is associated with LPrem

t , t ∈ T ,
into a minimum cost flow problem is not difficult. Ahuja et al. (1993, pp. 6–7) describe
how to formulate a maximum flow problem as a minimum cost flow problem. Figure 6.4
illustrates how the generalized minimum cost flow network of a period t looks like for an
example with two workers k1 and k2. Worker k1 masters the skills s1 and s2, worker k2
masters skill s1. Both workers can contribute to the projects p1 and p2, where p1 requires
the skills s1 and s2 and p2 requires only s1. The network is a directed graph G = (N,A)
with node set N and arc set A. As the network for the generalized maximum flow problem,
the network for the generalized minimum cost flow problem features a source node (node 0,
stage 0) and a terminal node (node 18, stage 5). In addition, there is an arc running from
the terminal node to the source node. This backward arc induces a cycle. And, there are
two self-loops running from node 0 to node 0. They are also network arcs.
The network arcs 〈i, j〉 ∈ A feature upper flow bounds uij, costs cij, and gains μij.

For all arcs 〈i, j〉 ∈ A, we set the upper bound uij := +∞, the costs cij := 0, and the
gain μij := 1 if we do not explicitly mention other values in the following paragraphs.
The parameters whose values deviate from the default values will be first described for
the backward arc and the two self-loops, then for the other arcs.
The backward arc, which runs from the terminal node to the source node, has infinite

capacity. Its cost are −1 making this arc the only arc with non-zero costs in the network.
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Figure 6.4: Example for a generalized minimum cost flow network representing a re-
maining linear program LPrem

t (if not indicated otherwise, then upper flow
bounds uij := +∞, costs cij := 0 and gains μij := 1; index t has been
omitted for node names)

The backward arc allows flow to circulate through the network; hence we do not have to
assume infinite supply and demand for the source node and the terminal node, respectively.
Out of the two self-loops that were added to node 0, one is a gainy self-loop (gain

μ00 = 2) which can generate flow and the other one is a lossy self-loop (gain μ00 = 0.5)
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which can absorb excessive flow.5 The self-loops are required to balance the network flow,
as they enable flow conservation constraints to hold for each node i ∈ N . Flow imbalances
can occur due to the gains in the network.
For each arc running from node 0 at stage 0 to node k ∈ K at stage 1, we set the

upper bound u0k := Rkt, which represents the limited capacity of worker k in period t.
Stage 4 of the network in Figure 6.4 comprises those nodes that represent the demands

of projects and departments. A project demand node at stage 4 that corresponds to
project p ∈ P and skill s ∈ Sp represents the requirement rpst. A departmental demand
node at stage 4 that corresponds to department d ∈ D represents the requirement rddt.
For each arc running from a project demand node or a departmental demand node at
stage 4 to the terminal node 18 at stage 5, the upper bound was set to the demand rpst
or rddt, respectively.
The flow on each arc emanating from a node at stage 3 and going to a node at stage

4 represents the time spent by worker k ∈ K for project p ∈ Psuit
k (t) on skill s ∈ Smatch

kp .
Hence, we set the gain of these arcs to the associated skill levels lks.
Note that a minimum cost flow in the outlined network contains a maximum flow from

the source node to the terminal node. This coincidence of maximum flow and minimum
cost flow results from the special cost structure of the network. A minimum cost flow is
reached in this network when the maximum number of flow units circulates through the
network and hence passes the backward arc, which generates cost savings due to its costs
of −1.
Compared to the generalized maximum flow problem, the generalized minimum cost

flow problem has the advantage for our application that warm starts are possible. Assume
that a feasible flow f in a period t is known for a given assignment x of workers to projects
and let the flow from stage 1 to stage 2 on the arc 〈k′, p′〉 between worker k′ and project p′
in period t be greater than 0, i.e., let fk′p′ > 0. If xk′p′ is switched from 1 to 0 to obtain
a new solution x′, the flow f becomes infeasible for period t in case of a maximum flow
problem, because we have to set the upper bound of arc 〈k′, p′〉 to 0. In case of a minimum
cost flow problem, though, only the costs ck′p′ of arc 〈k′, p′〉 are increased from zero to a
(prohibitively) high positive value and the flow f is still feasible, even though not optimal
in general. To check feasibility of the new solution x′ with xk′p′ = 0, we must find a flow f ′

with f ′
ij = 0 for all arcs 〈i, j〉 between stage 1 and stage 2 with cij > 0. The existence

of such a flow can be checked by searching for a minimum cost flow in the generalized
minimum cost flow network with increased costs ck′p′ . The search can be started from the
flow f , since f is a primal feasible solution for the modified network.
The advantage of warm starts can be exploited many times. If we consider a remaining

linear program LPrem
t as a generalized minimum cost flow problem, a feasible flow f for

LPrem
t is always a primal feasible solution for a remaining linear program LPrem′

t that
arises in a succeeding drop operation and affects the same period t. Thus, the flow f
can be used as a start solution for a succeeding LP. In the course of the heuristic DROP,
many succeeding LPs must be solved. A warm start can be made many times. Hence,
the formulation of the remaining LPs as generalized minimum cost flow problems may
considerably accelerate DROP.
Kolisch and Heimerl (2012) have exploited this advantage of a generalized minimum

5The gains of the self-loops and the self-loops themselves are distinguished by their respective arc
numbers, which will be introduced in Subsection 6.2.3.3.
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cost flow formulation in the same way when repeatedly solving a staffing subproblem. To
solve a single staffing subproblem they used the generalized network simplex method. We
also applied the generalized network simplex method to solve our generalized minimum
cost flow problems. We will describe this method and our implementation of this method
in the next subsection.

6.2.3.3 Implementation of the generalized network simplex method

In this subsection, we will outline the generalized network simplex method and show
how it can be used to efficiently check if a feasible solution exists for a remaining linear
program LPrem

t that must be solved in the course of DROP. During our description of the
generalized network simplex method we will introduce some basic definitions and data
structures from graph theory when needed to understand the description. Although the
generalized network simplex is a well-known solution method, this description is valuable
for two reasons. First, it explains how the generalized network simplex can be applied
to solve our subproblems LPrem

t . Second, the description provides detailed pseudo code
of key procedures of this solution method. The pseudo code allows the reader to easily
implement the procedures himself. This subsection will be complemented by a short
discussion of our implementation in Subsection 6.2.3.4.
The generalized network simplex is a special version of Dantzig’s simplex method

adapted to network structures with gains. Dantzig (1963, Chapter 17) already outlined
an adaptation to network structures without gains (see also Dantzig and Thapa, 1997,
Section 9.8). Our implementation for the case with gains follows Ahuja et al. (1993,
Chapter 15) and Bazaraa et al. (2010, Chapter 9).6 Bazaraa et al. (2010, Chapter 9) have
only sketched tree updates that are required at the end of every pivot operation. For
these tree updates, we provide detailed pseudo code that has not been published so far
to the best of our knowledge.
The network that we consider is a directed graph G = (N,A) with node set N and arc

set A. For each network arc 〈i, j〉 ∈ A, a gain μij is given. Each arc 〈i, j〉 ∈ A can also be
identified by an arc number a. Then μij can also be denoted by μa; the same holds for
other arc quantities. If μij < 1, arc 〈i, j〉 is called lossy, if μij > 1, it is called gainy. The
arc gains μij on the arcs between stage 3 and 4 are used to represent the different skill
levels lks, as illustrated in Figure 6.4 on page 159.
The network simplex method applies only to networks where the gain μij is equal to 1

for each arc 〈i, j〉 of the network. The method moves from one basis solution to another,
where all basis solutions correspond to spanning trees of G.
In contrast, for the generalized network simplex method, each basis solution corresponds

to a collection of 1-trees. A 1-tree, also called augmented tree, is a spanning tree of a
graph with one additional arc 〈α, β〉 ∈ A, called extra arc, hence, a 1-tree contains exactly
one cycle. Because α = β is possible, the cycle may be a self-loop. A collection of 1-trees
is called augmented forest.7 Each 1-tree tr of an augmented forest, which represents a
basis solution, spans a subgraph Gtr = (N tr , Atr) of G = (N,A) with N tr ⊆ N and
Atr ⊂ A, where Atr does not include the extra arc 〈α, β〉. The graph Gtr and the extra

6For an alternative presentation of the generalized network simplex method, see Jensen and Barnes
(1987, Chapters 9 and 10).

7Confer Ahuja et al. (1993, pp. 574–576). A forest is a collection of trees (cf. Jungnickel, 2005, p. 8).
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arc 〈α, β〉 constitute the 1-tree tr. Since α ∈ N tr and β ∈ N tr , the extra arc induces a
cycle. If the augmented forest consists of two or more 1-trees, for each pair (tr, tr′) of
1-trees, N tr ∩N tr ′ = ∅ holds, while the union of all the nodes of all 1-trees coincides with
N . Actually, a basis solution is represented by good 1-trees which are 1-trees with a lossy
or gainy cycle. These 1-trees constitute a good augmented forest (cf. Ahuja et al., 1993,
pp. 574–576).
Our implementation draws upon data structures from graph theory. We will briefly

introduce these data structures before they are used throughout the remainder of this
subsection. To represent a 1-tree, we fall back to the representation of a spanning tree
and additionally save information about the extra arc. We save the number of the extra
arc, aextra, its from-node α, and its to-node β. For a spanning tree, usually one node is
specified as root node. Likewise, we specify one node of a 1-tree tr as the root node rtr .
We chose the root node to be incident with the extra arc aextra

tr , i.e., rtr := α or rtr := β,
hence, the root node is part of the cycle. We used eight node-length vectors to store
information about a 1-tree.8 Fewer vectors would have been sufficient, but the more
information stored, the faster some operations can be executed, though at the expense
of higher memory demand. However, in practice, memory capacity is not a bottleneck,
whereas time must be considered scarce. The eight node-length tree indices are:

(1) Predecessor index (pred(i), i ∈ N tr): For each node i ∈ N tr \ {rtr}, there is a
unique path from i to the root node rtr . The immediate predecessor node of node i
on this path is saved as pred(i). For the root node, we set pred(rtr) := −1.

(2) Depth index (depth(i), i ∈ N tr): The depth index of node i records the number of
arcs in the path from i to the root node. It is also called distance index.

(3) Thread index (thread(i), i ∈ N tr): The thread indices allow to traverse a 1-tree in
a depth-first fashion visiting all nodes, starting from and returning to the root node.
They also allow to visit all successors of an arbitrary node i ∈ N tr . The successors of
node i are those nodes in the 1-tree that are joined via node i to the root node rtr .
Node i and its successors constitute the subtree tr(i). Starting from the thread index
of an arbitrary node i ∈ N tr , all successors of node i can be visited following the
thread indices until the first node j is reached with depth(j) ≤ depth(i), i.e., the first
node j /∈ N tr(i). Note that usually the thread traversal is not unique.

(4) Reverse thread index (revThread(i), i ∈ N tr): The reverse thread indices allow to
traverse a tree in reversed order compared to the thread traversal. If thread(i) = j,
then revThread(j) = i. During the reverse thread traversal, the next visited node is
always a leaf node of the tree which is constituted by those nodes that have not been
visited so far.

(5) Final node index (final(i), i ∈ N tr): The index final(i) stores the successor of node i
that is the last one visited during thread traversal of tr(i).

(6) Number of subtree nodes index (SubtreeNodes(i), i ∈ N tr): The index
SubtreeNodes(i) saves the number of nodes belonging to the subtree tr(i). This
number is the number of successors of node i increased by 1.

8Some additional node-length vectors were used for saving further information that does not refer to
spanning trees but to 1-trees only. These vectors will be introduced later on (see page 167).
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(7) Arc number and orientation index (ArcAndOrient(i), i ∈ N tr): For each
node i ∈ N tr\{rtr}, the index ArcAndOrient(i) saves the arc number of the arc linking
node i and its predecessor node pred(i). This arc is either the arc 〈pred(i), i〉 or the
arc 〈i, pred(i)〉. For the root node, the index ArcAndOrient(rtr) is set to the number of
the extra arc. The sign of the index is used to specify the orientation of the arc. If the
arc ArcAndOrient(i) points from the root node away, i.e., in case of an arc 〈pred(i), i〉
(outbound arc), the sign of the index is positive. If the arc ArcAndOrient(i) points
in direction of the root node, i.e., in case of an arc 〈i, pred(i)〉 (inbound arc), the sign
of the index is negative.

(8) Root node index (Root(i), i ∈ N tr): The root node index records for a node i
the root node of the 1-tree or tree to which node i currently belongs. This index is
relevant if a tree is split into two trees or, more generally speaking, if a set of trees
or 1-trees is considered. Through this index not only the root node can be identified,
but also the 1-tree itself if a 1-tree is identified by the number of its root node.

Example 6.9 For an illustrative example for the eight types of indices, consider the
spanning tree given in Figure 6.5 with 14 nodes and 13 arcs. The corresponding indices
are stated for two different choices of the root node rtr in Table 6.2. The indices are given
for rtr = 0 in the upper half and for rtr = 8 in the lower half of Table 6.2. �
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Figure 6.5: Example for a spanning tree; the tree indices for rtr = 0 and for rtr = 8 are
given in Table 6.2

An initial feasible solution is required to start the generalized network simplex. Such
an initial feasible solution, which is an initial good augmented forest, could be obtained
by adding artificial self-loops with high costs cii to each node i in the initial network
except for the source node 0, which has got two self-loops already (cf. Ahuja et al., 1993,
p. 584). Then, each node forms a 1-tree with its self-loop representing the extra arc, while
for each basic (and nonbasic) arc the arc flow is 0. However, this is a poor start solution,
because all artificial self-loops do not belong to the basis of a solution that is feasible for
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Table 6.2: Tree indices for the spanning tree given in Figure 6.5: in the upper half for
rtr = 0, in the lower half for rtr = 8

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

rtr = 0

pred(i) −1 0 0 1 1 1 5 5 4 4 9 8 8 2
depth(i) 0 1 1 2 2 2 3 3 3 3 4 4 4 2
thread(i) 1 3 13 4 8 6 7 2 11 10 5 12 9 0
revThread(i) 13 0 7 1 3 10 5 6 4 12 9 8 11 2
final(i) 13 7 13 3 10 7 6 7 12 10 10 11 12 13
SubtreeNodes(i) 14 11 2 1 6 3 1 1 3 2 1 1 1 1
ArcAndOrient(i) – −1 2 −3 4 5 6 7 −8 9 10 11 −12 13
Root(i) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rtr = 8

pred(i) 1 4 0 1 8 1 5 5 −1 4 9 8 8 2
depth(i) 3 2 4 3 1 3 4 4 0 2 3 1 1 5
thread(i) 2 3 13 5 9 6 7 0 11 10 1 12 4 8
revThread(i) 7 10 0 1 12 3 5 6 13 4 9 8 11 2
final(i) 13 13 13 3 13 7 6 7 13 10 10 11 12 13
SubtreeNodes(i) 3 8 2 1 11 3 1 1 14 2 1 1 1 1
ArcAndOrient(i) 1 −4 2 −3 8 5 6 7 – 9 10 11 −12 13
Root(i) 8 8 8 8 8 8 8 8 8 8 8 8 8 8

the original network, which does not feature artificial self-loops. Hence, many degenerate
pivot operations are necessary to transfer the artificial self-loops to the set of nonbasic
arcs.
In our case, though, it is possible to construct a better initial feasible good augmented

forest. Starting with an arc flow of 0 for every arc, too, we build one initial 1-tree
containing all network nodes. To build the initial 1-tree, we conduct a depth-first search
that commences from the root node 0. The gainy self-loop of node 0 is stored as the
extra arc of the initial 1-tree. For the network illustrated in Figure 6.4 on page 159, the
resulting initial good augmented forest is depicted in Figure 6.6.
All arcs that belong to the initial 1-tree including the extra arc constitute the initial set

of basic arcs, while all other arcs in A belong to the initial set of nonbasic arcs. Nonbasic
arcs carry flow at their lower or upper bound. At the outset, the flow on every basic and
nonbasic arcs is at its lower bound and thus is zero.
For a pivot operation of the generalized network simplex method, we add a nonbasic

arc to the set of basic arcs and remove an arc from the resulting set of basic arcs. The
latter arc is transferred to the set of nonbasic arcs. Each pivot operation is a move from
one basis solution to another one that is as good as or better than the one before. We
will summarize such a move in the remainder of this paragraph before we elaborate on
intermediate steps of this move in the following paragraphs. For a pivot operation, a
nonbasic arc which violates its optimality condition is selected. Let 〈k, l〉 denote this arc,
which enters the basis. If the current flow on 〈k, l〉 is at its lower (upper) bound, we
increase (decrease) the flow on 〈k, l〉 and propagate this change through the augmented
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Figure 6.6: Initial good augmented forest derived from the network in Figure 6.4 on
page 159 (if not indicated otherwise, then upper flow bounds uij := +∞,
costs cij := 0 and gains μij := 1; index t omitted for node names)

forest. The maximum absolute change δ of the flow on the entering arc is bounded by
the flow bounds of arc 〈k, l〉 itself and by the flow bounds of other basic arcs. One arc
bounding the increase or decrease of the flow on the entering arc is picked as the leaving
arc 〈p, q〉, which leaves the basis. This arc 〈p, q〉 is added to the set of nonbasic arcs. In
the following, we will describe the parts of a pivot operation in more detail.
The optimality condition of an arc 〈i, j〉 carrying flow at its lower (upper) bound is

violated if its reduced costs cred
ij < 0 (cred

ij > 0), where the reduced costs are computed
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from the dual variables πi, i ∈ N , as follows: cred
ij = cij −πi+μijπj (cf. Ahuja et al., 1993,

p. 577).
The dual variables πi, i ∈ N , also called node potentials, can be calculated exploiting

that cred
ij = 0 holds for all basic arcs 〈i, j〉. Algorithm 6.16 is a description in pseudo

code of the algorithm we implemented to compute the node potentials. It is based on
the procedure outlined in Ahuja et al. (1993, p. 578) to compute the node potentials
of a 1-tree tr. Demanding cred

ij = cij − πi + μijπj = 0 to hold for every arc 〈i, j〉 in
the 1-tree tr leads to a system of linear equations in πi, i ∈ N tr . To solve this linear
system, Algorithm 6.16 sets the potential πrtr of the root node rtr equal to θ, i.e., πrtr :=
θ = frtr + grtr θ with frtr := 0 and grtr := 1. The value of θ is unknown and must
be determined. To this aim, the 1-tree is traversed following the thread indices. For
each node i that is visited, the node potential πi is described by the linear expression
πi = fi + giθ. The value of the coefficients fi and gi can be calculated from the equation
cij−πi+μijπj = cij−(fi+giθ)+μij(fj+gjθ) = 0. After the traversal, we calculate the value
of θ considering the equation cαβ−πα+μαβπβ = 0 that corresponds to the extra arc 〈α, β〉,
where the wheel comes full circle and the potential must be balanced. Knowing θ, the
dual variables can be computed in a second thread traversal. Algorithm 6.16 runs in
O (|N tr |) time.

Algorithm 6.16 Algorithm to compute the node potentials of a 1-tree
1: Input: 1-tree tr belonging to a basis solution
2: Output: πi, i ∈ N tr

3:
4: j := rtr // Initialize j with the root node of 1-tree tr
5: fj := 0, gj := 1;
6: j := thread(j);
7: while j 
= rtr do
8: i := pred(j);
9: a := |ArcAndOrientation(j)|; // Get the arc number

10: if ArcAndOrientation(j) > 0 then // If arc 〈i, j〉 ∈ Atr

11: fj :=
fi − ca
μa

, gj :=
gi
μa

12: else // If arc 〈j, i〉 ∈ Atr

13: fj := μafi + ca, gj := μagi;
14: j := thread(j);

15: θ =
cαβ − fα + μαβfβ

gα − μαβgβ
;

16: i := rtr ;
17: do
18: πi := fi + gi θ;
19: i := thread(i);
20: while i 
= rtr

Given the node potentials πi, i ∈ N , we apply the candidate list pivoting rule (cf.
Ahuja et al., 1993, p. 417) to select a nonbasic arc 〈k, l〉 as the entering arc. Our pivoting
rule is based on a candidate list of nonbasic arcs violating their optimality condition. The
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rule selects an arc with maximum violation among all arcs in the candidate list as the
entering arc. At the outset and from time to time, the candidate list is reconstructed
from scratch. For a reconstruction from scratch, the nonbasic arcs are considered in a
wraparound fashion beginning with the nonbasic arcs emanating from that node i that
would have been the next one in the previous reconstruction step. For a nonbasic arc,
its reduced costs are computed and the arc is added to the candidate list if it violates its
optimality condition. After having considered the outgoing arcs of node i, the outgoing
arcs of the next nodes i+1, i+2, . . . are checked. Nodes are considered until the predefined
capacity of the candidate list is exhausted or already exceeded or until node i, the starting
point, is reached again. If the candidate list is empty after reconstruction, an optimal
solution was found. If the candidate list is not empty, an arc in the list with maximum
violation is selected as the entering arc 〈k, l〉.
The nodes k and l, which are incident with the entering arc, belong either to one

1-tree or to two different 1-trees of the augmented forest. Let us term the first case “one
old 1-tree” and the second case “two old 1-trees”. In both cases, the addition of arc 〈k, l〉
to the basis, i.e., to the good augmented forest, forms a so called bicycle. A bicycle is a
spanning tree with two additional arcs. Thus, a bicycle contains exactly two cycles. The
graph that is formed by the updated set of basic arcs contains a bicycle, as this graph
now contains a subgraph with two cycles.
In the first case (one old 1-tree), two different types of bicycles can originate. An

example for each type is given in Figure 6.7(a) and 6.7(b), respectively. The first type
of a bicycle features two separate cycles (cf. Figure 6.7(a)). Note that separate cycles
require that no node belongs to both cycles, i.e., both cycles are separated by a path that
contains at least one arc. The second type of bicycle features two cycles that overlap.
Overlapping cycles share one or more nodes (cf. Figure 6.7(b)).
In the second case (two old 1-trees), only one type of a bicycle originates. This type

features separate cycles. An example of such a bicycle is given in Figure 6.7(c). Here, the
two cycles cannot overlap.
After having determined the entering arc and before determining the leaving arc,

we identify those arcs on which the flow changes if the flow is changed on the entering
arc 〈k, l〉. The change in flow on arc 〈k, l〉 affects the flow on those arcs that belong to a
cycle of the bicycle which was created by 〈k, l〉. It also affects the flow on those arcs that
belong to the path between the two cycles if there is such a path (cf. Ahuja et al., 1993,
pp. 587–589). The flow does not change on all other arcs. Exploiting this information
about arcs without flow changes helps to avoid unnecessary computations. Consequently,
we identify those arcs of the bicycle that belong to a cycle or to the path between the two
cycles if such a path exists. To be more precise, we do not identify those arcs directly,
but identify the nodes that are incident with those arcs. Three node-length vectors are
maintained that record information about cycle and path membership:

(1) Old cycle membership index (onOldCycle(i), i ∈ N): If node i ∈ N belongs to
the cycle of its 1-tree, the value of onOldCycle(i) is true, and false otherwise.

(2) New cycle membership index (onNewCycle(i), i ∈ N): If node i ∈ N belongs to
the new cycle that was induced in the current pivot operation by the entering arc,
the value of onNewCycle(i) is true, and false otherwise.
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Figure 6.7: Examples for bicycles

(3) Path membership index (onPath(i), i ∈ N): If node i ∈ N belongs to the path
between the two cycles of the bicycle, the value of onPath(i) is true, and false other-
wise.

To detect cycle membership and compute the indices onOldCycle(i) and
onNewCycle(i), i ∈ N , we adapted the procedure given by Ahuja et al. (1993, p. 577,
Figure 11.9).

Example 6.10 As an example for cycle and path membership, consider the bicycle in
Figure 6.7(a): Nodes 0, 1, 2 and 3 belong to the old cycle; nodes 5, 6 and 7 belong to the
new cycle; node 4 belongs to the path between both cycles. Since nodes 3 and 5 are part
of a cycle, they are not counted as path nodes. In the bicycle depicted in Figure 6.7(c),
all nodes belong to one of the two old cycles or to the path between these cycles, except
node 6. Hence, the flow does not change on arc 〈5, 6〉 if the flow is changed on the entering
arc 〈7, 8〉. �

In order to compute how the flow on the affected basic arcs changes when the flow on
the entering arc is increased or decreased, we apply Algorithm 6.17 for the 1-trees that
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form the bicycle. This means the algorithm is applied either once if one old 1-tree forms
the bicycle, or twice if two old 1-trees form the bicycle. For a 1-tree tr, Algorithm 6.17
computes for each arc 〈i, j〉 ∈ Atr the value change ij that indicates how the flow changes
on arc 〈i, j〉 if the flow on the entering arc 〈k, l〉 is changed by one unit of flow (changekl :=
±1). Our algorithm follows the procedure sketched in Ahuja et al. (1993, pp. 585–586).
To determine the flow changes change ij, 〈i, j〉 ∈ Atr , an excess value e(i) is introduced
for each node i of the 1-tree. This excess value e(i) is described by the linear expression
e(i) = fi + giθ depending on the unknown value of θ, which has to be computed. At the
outset, Algorithm 6.17 sets the excess value of every node i to zero by setting fi := 0 and
gi := 0.
If the flow on the entering arc 〈k, l〉 is increased, we assume an increase by one unit

of flow (changekl := 1) in Algorithm 6.17. The increase in flow leads to a negative excess
(demand) of −1 at node k and to a positive excess (supply) of μkl at node l. If the flow
on the entering arc 〈k, l〉 is decreased, we assume changekl := −1 leading to analogous
excesses at node k (supply) and node l (demand). This demand and this supply must be
balanced by an arc flow within the bicycle. Note that a bicycle can generate and absorb
flow by means of its gainy and lossy cycle, respectively.
To compute a balancing flow change ij, 〈i, j〉 ∈ Atr , we set the flow on the extra

arc 〈α, β〉 of the 1-tree tr equal to θ by setting changeαβ := θ = Fαβ+Gαβθ with Fαβ := 0
and Gαβ := 1. The excess values e(α) and e(β) are updated accordingly (lines 15 and 16
of Algorithm 6.17). Then, we traverse the 1-tree using the reverse thread index. During
reverse thread traversal, each visited node is a leaf node of the 1-tree if we ignore nodes that
have already been visited. For a visited leaf node j, its excess e(j) is compensated by a flow
on the arc which connects node j to its predecessor node i = pred(j). After the traversal,
the excess of the root node is compensated by choosing θ such that e(rtr) = frtr +grtr θ = 0
(line 28 of Algorithm 6.17). Knowing θ, the flow changes can be computed in a final
traversal of the 1-tree tr . Algorithm 6.17 requires O (|N tr |) time.
Given the flow changes change ij, we can identify the leaving arc denoted by 〈p, q〉 and

update the flow values. The flow changes change ij allow us to compute the maximum
absolute change δ for the flow on the entering arc for which one or more arc flows of the
affected arcs reach their lower or upper bound. According to the value of δ, we update
the flows on the arcs. One of those arcs for which the flow reaches a bound is selected as
the leaving arc 〈p, q〉 which leaves the bicycle. Note that 〈p, q〉 = 〈k, l〉 is possible.
Deleting the leaving arc from the bicycle leads to either one or in some cases to two

new 1-trees that belong to the new basis. If, for example, in Figure 6.7(a) on the preceding
page arc 〈1, 2〉 is the leaving arc, one new 1-tree will emerge. However, if arc 〈3, 4〉 is the
leaving arc, for instance, two new 1-trees will emerge. For the bicycle in Figure 6.7(b),
only one new 1-tree can emerge, because the leaving arc must be part of either one cycle or
both cycles of the bicycle, as there is no path between them. One or two new 1-trees can
arise again for the bicycle in Figure 6.7(c). Thus, depending on the type of bicycle and
on the position of the leaving arc, various cases are possible for the number of emerging
1-trees. To distinguish these various cases, we exploit the records about cycle membership.
The indices describing the 1-tree(s) forming the bicycle must be updated after the

leaving arc was deleted from the basis. Only if the leaving arc coincides with the entering
arc, an update is not needed. As already noted, for some bicycle types, different cases
are possible for the transition from the bicycle to either one or two new 1-trees. In



170 Chapter 6 Solution methods

Algorithm 6.17 Algorithm to compute the changes of arc flows in a 1-tree caused by a
unit flow change on the entering arc
1: Input: Entering arc 〈k, l〉, 1-tree tr with k ∈ N tr or l ∈ N tr

2: Output: change ij, 〈i, j〉 ∈ Atr

3:
4: for all i ∈ N tr do
5: fi := 0, gi := 0;
6: if arc 〈k, l〉 is at its lower bound then
7: changekl := 1;
8: fk := −1, gk := 0;
9: fl := fl + μkl, gl := 0; // k = l is possible

10: else // If arc 〈k, l〉 is at its upper bound
11: changekl := −1;
12: fk := 1, gk := 0;
13: fl := fl − μkl, gl := 0; // k = l is possible
14: Fαβ := 0, Gαβ := 1;
15: gα := gα − 1;
16: gβ := gβ + μαβ;
17: j := revThread(rtr); // Initialize j with a distinguished leaf node of the 1-tree tr
18: while j 
= rtr do // Visit all nodes i ∈ N tr \ {rtr}, trailing the reverse thread
index

19: if onOldCycle(j) = true or onNewCycle(j) = true or onPath(j) = true then
20: i := pred(j);
21: if arc 〈i, j〉 ∈ Atr then

22: Fij := − fj
μij

, Gij := − gj
μij

;

23: fi := fi +
fj
μij

, gi := gi +
gj
μij

;

24: else // If arc 〈j, i〉 ∈ Atr

25: Fji := fj, Gji := gj;
26: fi := fi + fjμji, gi := gi + gjμji;
27: j := revThread(j);

28: θ = −frtr
grtr
; // The root node rtr is either α or β

29: i := rtr ;
30: do
31: if onOldCycle(i) = true or onNewCycle(i) = true or onPath(i) = true then
32: a := |ArcAndOrientation(i)|; // Get the arc connecting node i and pred(i)
33: changea := Fa +Gaθ;
34: i := thread(i);
35: while i 
= rtr

the following, we will first present an example that features four main procedures for
updating indices (Algorithms 6.18, 6.19, 6.20, and 6.21). Then, we will integrate these
four procedures into one algorithm (Algorithm 6.22) that outlines the update of tree
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indices during a pivot operation for all types of bicycles and for all types of positions of
the leaving arc. Algorithm 6.22 combines the four main update procedures for each case.
Note that in some cases not all of the four update procedures are necessary and that in
some cases some update procedures are applied more than once.
To illustrate the update of the tree indices, we provide an example that refers to the

bicycle given in Figure 6.7(a) on page 168, which originated from only one old 1-tree tr.
This bicycle features two cycles separated by a path. The bicycle is depicted again in
Figure 6.8(a) on the current page supplemented with arc numbers. The tree indices are
reported in Part 1 of Table 6.3, which is headed with rtr = 0. Let us assume that the
leaving arc 〈p, q〉 is the arc 〈1, 2〉. Under this assumption, the leaving arc is part of the old
cycle. Hence, only one new 1-tree tr′ will emerge. The old extra arc aextra

tr = 8 will become
an ordinary arc of the new 1-tree. The cycle of the new 1-tree tr′ will be formed by the
nodes 5, 6, and 7, which form the new cycle in the bicycle, and we choose the entering
arc 〈k, l〉 as the new extra arc, i.e., aextra

tr ′ := 9 (cf. Figure 6.8(b)). Whether node k = 6,
as shown in Figure 6.8(b), or node l = 7 will become the new root node will be decided
later. In the subsequent paragraphs, we will work through this example for a tree update
step by step.
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Figure 6.8: Example for a tree update (arc 〈1, 2〉 is the leaving arc)

The leaving arc causes the old spanning tree Gtr = (N tr , Atr) to break into two parts.9
Let tr1 denote the part or subgraph that contains the root node of the old 1-tree tr. In the
example, the part tr1 contains the root node 0, node 1, and arc 〈0, 1〉. The second part,
called tr2, contains the nodes 2 to 7 and the arcs 3 to 7. In the following four steps, we
construct the new 1-tree for which both parts are rejoined via the old extra arc aextra

tr = 8.
In a first step, we have to identify the two parts tr1 and tr2. From the fact that

node q = 2 is farther away from the root node 0 of the old 1-tree than node p = 1
(depth(2) > depth(1)), we can conclude that node p = 1 belongs to the first part tr1,

9Note that Atr includes neither the extra arc aextra
tr nor the entering arc 〈k, l〉.
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Table 6.3: Tree indices in the course of the update of the 1-tree illustrated in Figure 6.8:
Part 1: indices for the old 1-tree, Part 2 and 3: indices for the intermediate
trees tr1 and tr2, Part 4: indices for the new 1-tree tr′. The values that
changed from step to step are printed in boldface.

i 0 1 2 3 4 5 6 7

Part 1: rtr = 0

pred(i) −1 0 1 2 3 4 5 5
depth(i) 0 1 2 3 4 5 6 6
thread(i) 1 2 3 4 5 6 7 0
revThread(i) 7 0 1 2 3 4 5 6
final(i) 7 7 7 7 7 7 6 7
SubtreeNodes(i) 8 7 6 5 4 3 1 1
ArcAndOrient(i) 8 1 2 3 4 5 6 7
Root(i) 0 0 0 0 0 0 0 0

Part 2: rtr1 = 0 rtr2 = 2

pred(i) −1 0 −1 2 3 4 5 5
depth(i) 0 1 0 1 2 3 4 4
thread(i) 1 0 3 4 5 6 7 2
revThread(i) 1 0 7 2 3 4 5 6
final(i) 1 1 7 7 7 7 6 7
SubtreeNodes(i) 2 1 6 5 4 3 1 1
ArcAndOrient(i) 8 1 2 3 4 5 6 7
Root(i) 0 0 2 2 2 2 2 2

Part 3: rtr1 = 0 rtr2 = 6

pred(i) −1 0 3 4 5 6 −1 5
depth(i) 0 1 4 3 2 1 0 2
thread(i) 1 0 6 2 3 7 5 4
revThread(i) 1 0 3 4 7 6 2 5
final(i) 1 1 2 2 2 2 2 7
SubtreeNodes(i) 2 1 1 2 3 5 6 1
ArcAndOrient(i) 8 1 −3 −4 −5 −6 6 7
Root(i) 0 0 6 6 6 6 6 6

Part 4: rtr ′ = 6

pred(i) 3 0 3 4 5 6 −1 5
depth(i) 4 5 4 3 2 1 0 2
thread(i) 1 6 0 2 3 7 5 4
revThread(i) 2 0 3 4 7 6 1 5
final(i) 1 1 2 1 1 1 1 7
SubtreeNodes(i) 2 1 1 4 5 7 8 1
ArcAndOrient(i) −8 1 −3 −4 −5 −6 9 7
Root(i) 6 6 6 6 6 6 6 6

which contains the root node, and is placed just before the breakage. This node p = 1,
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the node belonging to the first part tr1, is termed n1. Furthermore, we can conclude
that tr2 = tr(q) = tr(2), i.e., that the second part is given by the subtree tr(2) including
node 2 and its successors. We denote the node q = 2, the node which is placed immediately
behind the breakage, by n2.
In a second step, we update the tree indices of both parts tr1 and tr2 such that each

part is correctly described by its indices. To update the indices of the tree tr1 we apply
Algorithm 6.18, which is the first of the four main update procedures. This algorithm
updates final nodes, thread indices, reverse thread indices and numbers of subtree nodes
of the nodes belonging to tr1, whereas predecessors and depth indices do not change
for all nodes i ∈ N tr1 . Our implementation follows the outline of Bazaraa et al. (2010,
p. 487) and uses their notation for identifiers that have not already been introduced in
this thesis.10

From line 4 to 20 of Algorithm 6.18, the index final(i), i ∈ N tr1 , is updated. The
parameter σ is set to the final node of n1 if the final node of n1 belongs to tr1. Otherwise,
σ is set to the reverse thread of node n2, where revThread(n2) ∈ N tr1 . For our example,
the latter case holds and we set σ := revThread(n2 = 2) = 1. The node σ becomes the
new final node of each node on the path from n1 in direction of the root node up to the last
node i with final(i) ∈ tr2. This last node i is identified with the help of the parameter γ.
If γ = −1, as in our example, we set the final node of every node on the path including
the root node to σ. Otherwise, only the final nodes of the nodes up to node γ but not
including node γ are set to σ.
From line 21 to 23 of Algorithm 6.18, one thread index and the corresponding reverse

thread index are updated: φ denotes the node from which the thread enters the tree tr2,
while θ identifies the node of re-entrance of the thread into tr1. For our example, φ = 1 and
θ = 0. The updated thread directly connects the nodes φ and θ. Finally, Algorithm 6.18
decreases the number of subtree nodes for each node i ∈ N tr1 that lies on the path from
n1 to rtr1 by |N tr2 |. Algorithm 6.18 runs in O (|N tr1 |+ |N tr2 |) time.
To update the indices of the second tree tr2, we apply Algorithm 6.19, which is the

second of the four main update procedures. This algorithm makes node n2 the root node
of tr2 and starts with updating the thread index of the final node of node n2, which still
points to a node of tr1. Thus, for our example in Figure 6.8, the thread index of node 7 is
set to 2. After having updated the corresponding reverse thread index, the depth values
of n2 and its successors are corrected. Additionally, Algorithm 6.19 sets the root node
index for each node that belongs to tr2 to node n2. Algorithm 6.19 requires O (|N tr2 |)
time.
For our example, the updated indices of tr1 and tr2 are stated in Part 2 of Table 6.3

on the facing page.11 The values that changed are printed in boldface in this table.
In a third step on our way to the new 1-tree tr ′, we make either node k or node l

the new root node and reroot the corresponding tree to this node. In the case of one old
1-tree with non-overlapping cycles where the leaving arc belongs to the old cycle, node k
and l belong either to tree tr1 or to tree tr2. The question to which tree k and l belong
is answered by the indices Root(k) and Root(l), because either Root(k) = Root(l) = rtr

10With respect to identifiers that have already been introduced, our notation differs from the notation
of Bazaraa et al. (2010).

11Unlike Algorithm 6.19, we set the predecessor index of node 2 to -1 in Table 6.3 on the preceding page
to indicate the two separate parts tr1 and tr2.
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Algorithm 6.18 Algorithm to update the indices of tree tr1 containing the old root
node rtr
1: Input: Root node rtr of the old 1-tree tr, nodes n1 and n2

2: Output: Updated tree indices for the nodes of tree tr1
3:
4: γ := pred

(
thread(final(n2))

)
;

5: σ := final(n1)
6: for i := n2, j := 0; j < SubtreeNodes(n2); ++j do
7: if i = σ then
8: σ := revThread(n2);
9: break; // Abort the for-loop

10: i := thread(i);
11: i := n1;
12: if γ = −1 then
13: while i 
= rtr do
14: final(i) := σ;
15: i := pred(i);
16: final(rtr) := σ;
17: else
18: while i 
= γ do
19: final(i) := σ;
20: i := pred(i);
21: φ := revThread(n2);
22: θ := thread(final(n2));
23: thread(φ) := θ, revThread(θ) := φ;
24: i := n1;
25: while i 
= rtr do
26: SubtreeNodes(i) := SubtreeNodes(i)− SubtreeNodes(n2);
27: i := pred(i);
28: SubtreeNodes(rtr) := SubtreeNodes(rtr)− SubtreeNodes(n2);

or Root(k) = Root(l) = n2 holds. The latter is true for our example in Figure 6.8, i.e., k
and l belong to tree tr2. To decide whether node k or node l becomes the new root node
of tree tr2, the length of the so called stem is considered. The stem is the path between
the old and the new root node. The shorter the stem, the less effort is necessary to reroot
the tree (cf. Bazaraa et al., 2010, pp. 487–488). In our example, the two stems are the
paths from node n2 = 2 to node k = 6 and to node l = 7, respectively. Both stems have
equal length (depth(6) = depth(7)). To break the tie, we select the from-node k = 6 of
the entering arc to become the new root node of tree tr2. Now, we reroot tree tr2 from
its old root node n2 = 2 to its new root node rnew

tr2
=6.

For rerooting a tree and updating the tree indices accordingly, Algorithm 6.20 is
applied, which is the third of the four main update procedures. Algorithm 6.20 describes
how indices of a tree tr must be updated when the tree tr is rerooted from his old root
node rold

tr to a new root node rnew
tr . We derived this algorithm from the outline in Bazaraa
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Algorithm 6.19 Algorithm to update the indices of tree tr2, which will be rooted at
node n2

1: Input: Root node n2 of the tree tr2
2: Output: Updated tree indices for the nodes of tree tr2
3:
4: thread(final(n2)) := n2, revThread(n2) := final(n2);
5: Δdepth := depth(n2);
6: depth(n2) := 0;
7: Root(n2) := n2;
8: i := thread(n2);
9: while i 
= n2 do

10: depth(i) := depth(i)−Δdepth;
11: Root(i) := n2;
12: i := thread(i);

et al. (2010, pp. 487–488). The algorithm requires the old root node rold
tr and the new root

node rnew
tr as input.

For the following description of Algorithm 6.20, we refer to the tree sketched in Fig-
ure 6.9, where the stem is given by the node sequence rnew

tr –s1–s2–s3–rold
tr (Figure 6.9 is

adopted from Figure 9.19(c) on page 486 in Bazaraa et al. (2010), which illustrates the
underlying tree structure along the stem).

rnew
tr

s1 s2 s3 rold
tr

u v

f(u) f(v)

Key:

arc

subtree

f(i) final(i)

new thread link

Figure 6.9: Sketch of the tree structure along the stem between the new root node rnew
tr

and the old root node rold
tr (adopted from Figure 9.19(c) on page 486 in

Bazaraa et al. (2010))

At the outset, Algorithm 6.20 saves a copy of the vectors thread(i) and
SubtreeNodes(i), i ∈ N tr , because at some points within the algorithm old values
of these indices are required when they have already been updated. Next, the algorithm
sets the thread index of the final node of rnew

tr to the predecessor of rnew
tr , which is the

node that is adjacent to rnew
tr and that is on the stem. This node is node s1. To update

the depth indices, we use the distance of the new root node from the old root node. The
distance is stored in the old value of the depth index of the new root node. In line 8
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of Algorithm 6.20, we initialize the variable Δdepth with this distance. Then, the depth
indices of the new root node and its successors are updated, i.e., decreased by Δdepth.

Algorithm 6.20 Algorithm to reroot a tree tr

1: Input: Old root node rold
tr of the tree tr, new root node rnew

tr

2: Output: Updated tree indices for the nodes of tree tr
3:
4: for all i ∈ N tr do
5: oldThread(i) := thread(i);
6: oldSubtreeNodes(i) := SubtreeNodes(i);
7: thread(final(rnew

tr )) := pred(rnew
tr ), revThread(pred(rnew

tr )) := final(rnew
tr );

8: Δdepth := depth(rnew
tr );

9: for i := rnew
tr , j := 0; j < OldSubtreeNodes(rnew

tr ); ++j do
10: depth(i) := depth(i)−Δdepth;
11: i := thread(i);
12: j := rnew

tr ;
13: newDepth := 0;
14: do // First traversal of the stem
15: i := pred(j);
16: newDepth := newDepth+ 1;
17: depth(i) := newDepth;
18: Δdepth := Δdepth − 2;
19: SubtreeNodes(i) := 1; // Initialization of SubtreeNodes(i)
20: RelevSubtreeNodes := OldSubtreeNodes(i);
21: if RelevSubtreeNodes > OldSubtreeNodes(j) + 1 then // If node i has
immediate successors that do not lie on the stem

22: u := oldThread(i);
23: if u 
= j then // If node u does not lie on the stem
24: thread(i) := u, revThread(u) := i;
25: else
26: u := oldThread(final(u));
27: thread(i) := u, revThread(u) := i;
28: for c := u, d := 0; d < OldSubtreeNodes(u); ++d do
29: depth(c) := depth(c)−Δdepth;
30: c := thread(c);
31: SubtreeNodes(i) := SubtreeNodes(i) +OldSubtreeNodes(u);
32: while RelevSubtreeNodes > OldSubtreeNodes(j) + 1 do // While not all
immediate successors of node i have been considered

33: if u 
= j then // If node u does not lie on the stem
34: RelevSubtreeNodes := RelevSubtreeNodes−OldSubtreeNodes(u);
35: if RelevSubtreeNodes > OldSubtreeNodes(j) + 1 then
36: v := oldThread(final(u));
37: if v 
= j then // If node v does not lie on the stem
38: thread(final(u)) := v, revThread(v) := final(u);
39: else
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40: v := oldThread(final(v));
41: thread(final(u)) := v, revThread(v) := final(u);
42: for c := v, d := 0; d < OldSubtreeNodes(v); ++d do
43: depth(c) := depth(c)−Δdepth;
44: c := thread(c);
45: SubtreeNodes(i) := SubtreeNodes(i) +OvdSubtreeNodes(v);
46: else
47: if i 
= rold

tr then
48: thread(final(u)) := pred(i), revThread(pred(i)) := final(u);
49: else
50: thread(final(u)) := rnew

tr , revThread(rnew
tr ) := final(u);

51: NewFinal := final(u);
52: break; // Abort the while-loop started in line 32
53: u := v;
54: else // Corresponds to the “if” in line 21
55: if i 
= rold

tr then
56: thread(i) := pred(i), revThread(pred(i)) := i;
57: else
58: thread(rold

tr ) := rnew
tr , revThread(rnew

tr ) := rold
tr ;

59: NewFinal := rold
tr ;

60: j := i;
61: while j 
= rold

tr // End of do-loop started in line 14
62: j := rnew

tr ;
63: final(rnew

tr ) := NewFinal;
64: i := pred(j);
65: k := i;
66: NewArc := ArcAndOrient(j);
67: do // Second traversal of the stem
68: OldArc := ArcAndOrient(i);
69: ArcAndOrient(i) := −NewArc;
70: NewArc := OldArc;
71: final(i) := NewFinal;
72: i := pred(i);
73: pred(k) := j;
74: j := k;
75: k := i;
76: while j 
= rold

tr

77: pred(rnew
tr ) := −1;

78: j := rold
tr ;

79: do // Third traversal of the stem
80: i := pred(j);
81: SubtreeNodes(i) := SubtreeNodes(i) + SubtreeNodes(j);
82: j := i;
83: while j 
= rnew

tr
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In the remainder of Algorithm 6.20, the stem is traversed three times to update in-
dices. The first traversal runs from the new to the old root node. In this traversal, the
indices depth(i), thread(i), and revThread(i) are updated, and the update of the index
SubtreeNodes(i) of those nodes i that lie on the stem is begun.
Let us describe this preliminary update of the number of subtree nodes during the first

traversal more precisely. For each node i on the stem except for rnew
tr , we update depth(i)

and decrease Δdepth by 2 reflecting that approaching rold
tr means moving away from rnew

tr

during traversal of the stem. Additionally, we initialize for each node i on the stem its
number of subtree nodes with 1 and we check if node i has immediate successors that do
not lie on the stem, which we term immediate non-stem successors. For example, consider
node s2 on the stem, which has nodes u and v as immediate non-stem successors. We
can conclude that node s2 has at least one immediate non-stem successor if its subtree
nodes do comprise more than node s2 and the subtree nodes of s1. Hence, we compare
SubtreeNodes(s2) and SubtreeNodes(s1) to find out whether node s2 has at least one
immediate non-stem successor (cf. line 21 of Algoritm 6.20).
If we find out that s2 has at least one immediate non-stem successor, we select an

immediate successor and denote this successor by u (line 22). If node u happens to lie
on the stem, i.e., if u = s1, we just select another immediate successor and denote it
by u. This successor cannot lie on the stem with certainty. We link s2 with u by the
thread index of s2. For the successors of u, we update their depth values using Δdepth.
The current number of subtree nodes of s2 is increased by the number of subtree nodes
of u. If there is another immediate non-stem successor of s2, say node v, we link the final
node of u with v via the thread index of final(u), then we update the depth values of the
successors of node v and increase SubtreeNodes(s2) by SubtreeNodes(v). In this way, we
treat all immediate non-stem successors of s2. For the last immediate non-stem successor
of node s2, say node u, we link the final node of u via the thread index with s3 (line 48).
If we find out that s2 does not have any immediate non-stem successor, we directly

link s2 with s3 via the thread index of s2 (line 56).
When the first traversal reaches the old root node rold

tr , the same procedure as for s2
applies. However, we additionally record the new final node of rnew

tr as NewFinal, either
in line 51 if rold

tr has at least one immediate non-stem successor or in line 59 otherwise.
The second traversal of the stem runs again from the new to the old root node. During

this traversal, we update the indices final(i), pred(i), and ArcAndOrient(i) of those nodes i
that lie on the stem. The index final(i) of these nodes i is set to NewFinal. For pred(i)
and ArcAndOrient(i), the update corresponds to a reversion of the indices. For instance,
for node s2 node s1 becomes the new predecessor replacing node s3. The arc 〈s2, s1〉,
which was an outbound arc with respect to rold

tr , becomes an inbound arc with respect to
rnew
tr .
Finally, the stem is traversed in opposite direction, from rold

tr to rnew
tr , to finish

the update of the index SubtreeNodes(i) of those nodes i that lie on the stem. For
node s2, for example, the number of subtree nodes is increased by SubtreeNodes(s3) and
SubtreeNodes(rold

tr ), as recorded after the first traversal.
Since during each traversal each node of the tree tr is visited at most once, Algo-

rithm 6.20 runs in O (|N tr |) time.
Two examples illustrate the outcome of Algorithm 6.20. For our example shown in

Figure 6.8 on page 171, the updated indices of tr2 are stated in Part 3 of Table 6.3 on
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page 172. Table 6.2 on page 164 gives a further example, this time for a larger tree, which
is depicted in Figure 6.5 on page 163. This larger tree is rerooted from node 0 to node 8.
In a fourth step, which is the final step of constructing the new 1-tree, the two parts tr1

and tr2 are rejoined again to form the new 1-tree tr′. The arc that links both parts is
the old extra arc 〈α, β〉, which will become an ordinary arc of the new 1-tree tr′. In our
example in Figure 6.8 on page 171, the old extra arc is arc 〈0, 3〉 and we graft tree tr1
onto node β = 3, which belongs to tree tr2. Together, both trees form the new 1-tree tr′
with root node rtr ′ = 6. In general, either node α or node β belongs to the part tr(rtr ′)
that contains the root node of the new 1-tree. Let nonto denote the node of the tree tr(r′tr)
onto which the other part trtoGraft will be grafted:

nonto :=

{
α if α ∈ N tr(rtr′ )

β otherwise

The part tr toGraft that must be grafted onto node nonto contains either node β or α. Let
ntoGraft denote the node that will be grafted together with the tree tr toGraft onto node nonto:

ntoGraft :=

{
β if nonto = α

α otherwise

For our example, we have nonto := 3 and ntoGraft := 0. Before we can graft the part tr toGraft

that contains node ntoGraft onto the part tr onto that contains nonto, we have to reroot the
part tr toGraft to node ntoGraft if it is not already rooted at this node. In our example,
tree tr toGraft = tr1 is already rooted at node 0, what renders rerooting unnecessary.
For the grafting process, we apply Algorithm 6.21, which is the final of the four main

update procedures. This algorithm follows the description of Bazaraa et al. (2010, pp. 486–
487). Since the tree tr toGraft is joined to the node nonto, we update the depth indices of
the nodes i ∈ N tr toGraft based on the depth index of nonto. Root(i), i ∈ N tr toGraft , saves the
root node of the tree tr onto as the root node for the joined 1-tree tr ′. The node ntoGraft is
considered the last immediate successor of nonto. Hence, we link the old final node of nonto,
node x, via the thread index with ntoGraft (cf. line 15 of Algorithm 6.21). The final node
of ntoGraft, node z, becomes the new final node of nonto and must therefore be linked with
the thread node y of the old final node of nonto (line 16). Next, we update the number of
subtree nodes for the nodes on the path from nonto to the root node of the tree tr onto. At
the same time, the index final(i) is updated, either for all nodes on this path if node x was
the old final node of the root node (case γ = 1) or only for those nodes i on this path that
had x as their final node (case γ 
= 1). Algorithm 6.21 requires O

(∣∣∣N tr toGraft
∣∣∣+ ∣∣N tronto∣∣)

time.
To complete the grafting operation, we set pred(ntoGraft) := nonto, adjust

ArcAndOrient(ntoGraft), and update information about the extra arc of the new 1-tree,
e.g., the index ArcAndOrient(rtr ′) of the new root node. For our example, the resulting
indices of this final step are stated in Part 4 of Table 6.3 on page 172. The corresponding
new 1-tree tr ′ is shown in Figure 6.8(b) on page 171.
The way of updating the indices during a pivot operation depends on the bicycle that

has been induced by the entering arc 〈k, l〉 and on the position of the leaving arc 〈p, q〉.
For all possible cases of bicycle types and of positions of leaving arcs, the four main
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Algorithm 6.21 Algorithm to graft a tree tr toGraft onto node nonto of another tree tr onto

1: Input: Root node ntoGraft of the tree tr toGraft, node nonto and root node rtronto of the
other tree tr onto

2: Output: Tree indices for the joined tree
3:
4: depth(ntoGraft) := depth(nonto) + 1;
5: Root(ntoGraft) := rtronto ;
6: i := thread(ntoGraft);
7: while i 
= ntoGraft do
8: depth(i) := depth(pred(i)) + 1;
9: Root(i) := rtronto ;

10: i := thread(i);
11: x := final(nonto);
12: γ := pred(thread(x));
13: y := thread(x);
14: z := final(ntoGraft);
15: thread(x) := ntoGraft, revThread(ntoGraft) := x;
16: thread(z) := y, revThread(y) := z;
17: i := nonto;
18: if γ = −1 then
19: do
20: final(i) := z;
21: SubtreeNodes(i) := SubtreeNodes(i) + SubtreeNodes(ntoGraft);
22: i := pred(i);
23: while i 
= −1
24: else
25: while i 
= γ do
26: final(i) := z;
27: SubtreeNodes(i) := SubtreeNodes(i) + SubtreeNodes(ntoGraft);
28: i := pred(i);
29: do
30: SubtreeNodes(i) := SubtreeNodes(i) + SubtreeNodes(ntoGraft);
31: i := pred(i);
32: while i 
= −1

update procedures, which are Algorithms 6.18, 6.19, 6.20, and 6.21, must be composed in
a special way for the update of the indices. Algorithm 6.22 outlines how the four main
update procedures must be composed in each case. Note that in some cases not all of the
four update procedures are necessary and that in some cases some update procedures are
applied more than once.
To keep Algorithm 6.22 clear, we outsourced pseudo code to Algorithms 6.23, 6.24,

and 6.25, and we abbreviated the four main update procedures. A call of Algorithm 6.18
is denoted by UpdateTreeWithRoot(rtr , n1, n2), Algorithm 6.19 is invoked by Up-
dateSubtree(n2), Algorithm 6.20 is invoked by RerootTree(rold

tr , rnew
tr ), and a call

of Algorithm 6.21 is denoted by GraftTree(ntoGraft, nonto, rtronto). Furthermore, we
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omitted statements for updates of the indices onOldCycle(i), onNewCycle(i), onPath(i),
ArcAndOrient(i) and Root(i) for the sake of readability. The implemented version of
Algorithm 6.22 features a set that contains the indices of the root nodes of all 1-trees,
which form the good augmented forest. In our presentation, we omitted statements that
are required to update this set of 1-tree root nodes, again for the sake of readability.
The complexity of Algorithm 6.22 is a linear combination of the complexities of the

Algorithms 6.18, 6.19, 6.20, and 6.21. Let the bicycle that is formed by the entering arc
be denoted by bicycle and let N bicycle be the set of nodes that belong to this bicycle.
Then, Algorithm 6.22 runs in O

(∣∣N bicycle
∣∣) time.

After having updated the tree indices, we complete the pivot operation by the following
operations. We call Algorithm 6.16 for the new 1-tree(s) to compute the node potentials
of the corresponding nodes. We remove the entering arc 〈k, l〉 from the candidate list
and from the set of nonbasic arcs that emanate from node k. In return, the leaving
arc 〈p, q〉 is added to the set of nonbasic arcs that emanate from node p. Finally, we
update the candidate list by removing those arcs that do not violate their optimality
condition anymore.
Pivot operations are repeated until an optimal solution has been reached. An optimal

solution is reached when the reconstruction of the candidate list results in an empty list.
Having outlined the generalized network simplex method, we will succinctly describe

how it can be applied within our heuristic DROP. Assume that we reformulated a re-
maining linear program LPrem

t as a generalized minimum cost flow problem. For each
pair (k, p) that has already been dropped in the course of DROP, the costs of the corre-
sponding arc between stage 1 and 2 in the network that is associated with LPrem

t were set
to a prohibitively high value. The flow on this arc between stage 1 and 2 represents the
time which worker k spends for project p. Due to the high costs of this arc, in an optimal
solution there will be no flow on this arc. This zero flow is desired, because worker k is
no longer assigned to project p. Nevertheless, we must check if an optimal solution to the
generalized minimum cost flow problem is feasible for the corresponding remaining linear
program LPrem

t . The solution is only feasible for LPrem
t if the flow on the backward arc

from the terminal node to the source node is equal to the total demand of projects and
departments, i.e., if the arcs between stage 4 and the terminal node are saturated.

6.2.3.4 Discussion of the implementation

In this subsection, we briefly discuss our implementation of the generalized network sim-
plex method for the heuristic DROP. We consider potential problems such as cycling,
highlight efficient strategies within our implementation, and indicate possible improve-
ments.
As with the standard simplex method, two problems can arise when the generalized

network simplex method is applied, namely, cycling and stalling. Cycling means, in the
context of the generalized network simplex method, that pivot operations step from one
good augmented forest to the next, but the forest of each step describes the same basis
solution, and finally a forest is reached that has been encountered before. From this forest,
the cycle starts anew and the generalized network simplex method does not terminate,
but executes degenerate pivot operations infinitely.
Cycling can be prevented by special rules for selecting the entering and the leaving
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Algorithm 6.22 Algorithm to update tree indices during a pivot operation
1: Input: From-node k and to-node l of the entering arc 〈k, l〉, from-node p and to-node q
of the leaving arc 〈p, q〉

2: Output: Updated tree indices for the nodes of the bicycle induced by arc 〈k, l〉
3:
4: if akl = apq then // If 〈k, l〉 = 〈p, q〉
5: goto End in line 38;
6: FirstOldOneTree := Root(k), SecondOldOneTree := Root(l);
7: boolTwoOldOneTrees := false, boolOverlappingCycles := false;
8: if FirstOldOneTree = SecondOldOneTree then // If k and l belong to the same
1-tree

9: Update the index onNewCycle(i), i ∈ N ;
10: if the old cycle of the 1-tree FirstOldOneTree and the new cycle overlap then
11: boolOverlappingCycles := true;
12: else // There is a path between the old and the new cycle
13: Update the index onPath(i), i ∈ N ;
14: else
15: boolTwoOldOneTrees := true;
16: Update the index onPath(i), i ∈ N ;
17: if boolTwoOldOneTrees := false then // If k and l belong to the same 1-tree
18: if apq = aextra

FirstOldOneTree then // If 〈p, q〉 is the extra arc of the first old 1-tree
19: Make arc 〈k, l〉 the extra arc of the emerging new 1-tree;
20: if k 
= Root(FirstOldOneTree) and l 
= Root(FirstOldOneTree) then
21: RerootTree(Root(FirstOldOneTree), k); // Or reroot to l if faster
22: goto End in line 38;
23: else
24: if boolOverlappingCycles := true then // If old and new cycle overlap,
only one new 1-tree will emerge

25: Algorithm 6.23;
26: goto End in line 38;
27: else // If the old and the new cycle do not overlap (corresponds to the “if”
in line 24)

28: Algorithm 6.24;
29: goto End in line 38;
30: else // If k and l belong to different 1-trees
31: if Root(p) = FirstOldOneTree then // If 〈p, q〉 belongs to the first old 1-tree
32: boolLeavingArcInFirstOldOneTree := true;
33: TreeOfLeavingArc := FirstOldOneTree;
34: else // If 〈p, q〉 belongs to the second old 1-tree
35: boolLeavingArcInFirstOldOneTree := false;
36: TreeOfLeavingArc := SecondOldOneTree;
37: Algorithm 6.25;
38: End :
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Algorithm 6.23 Subprocedure of Algorithm 6.22: One old 1-tree, overlapping cycles
1: if depth(p) < depth(q) then
2: n1 := p, n2 := q;
3: else
4: n1 := q, n2 := p;
5: UpdateTreeWithRoot(Root(FirstOldOneTree), n1, n2);
6: UpdateSubtree(n2);
7: if onNewCycle(p) = false or onNewCycle(q) = false then // If 〈p, q〉 belongs to
the old cycle only, make 〈α, β〉 an ordinary arc and 〈k, l〉 the new extra arc

8: if α = Root(FirstOldOneTree) then // If α belongs to tr 1
9: ntoRerootTo := β; // Reroot tr 2 = tr(n2) to β

10: else // If β belongs to tr 1
11: ntoRerootTo := α; // Reroot tr 2 = tr(n2) to α
12: RerootTree(n2, ntoRerootTo);
13: GraftTree(ntoRerootTo, Root(FirstOldOneTree), Root(FirstOldOneTree));
14: RerootTree(Root(FirstOldOneTree), k); // Or reroot to l if faster
15: else // If 〈p, q〉 belongs to either the new cycle only or to both cycles, keep 〈α, β〉
as extra arc and make 〈k, l〉 an ordinary arc

16: if Root(k) = n2 then // If k belongs to tr 2
17: ntoRerootTo := k, nonto := l;
18: else // If l belongs to tr 2
19: ntoRerootTo := l, nonto := k;
20: RerootTree(n2, ntoRerootTo); // Reroot tr 2 = tr(n2) to ntoRerootTo

21: GraftTree(ntoRerootTo, nonto, Root(FirstOldOneTree));

arc. An example for such a pivoting rule is Bland’s smallest-subscript rule (cf. Chvátal,
1983, pp. 37–38). Another way of avoiding cycling is to restrict the forests that are visited
to so called strongly convergent bases (cf. Elam et al., 1979). A strongly convergent basis
is a good augmented forest that features a special topology. To facilitate this special
topology, an artificial mirror arc must be established for each network arc. A mirror arc
points into opposite direction of its corresponding ordinary arc. To maintain the special
topology when a pivot operation is executed, a unique arc must be selected as the leaving
arc.
Since cycling seldom appears in practical applications (cf. Chvátal, 1983, p. 33) and it

did not occur for the instances that we tested, we did not take up the concept of strongly
feasible bases in our implementation. Moreover, we did not apply Bland’s pivoting rule,
but applied a more promising rule with respect to average solution time.
Stalling, the second potential problem, terms a sequence of degenerate pivot operations

where the length of this sequence is finite, but not bounded by a polynomial in the instance
size. For the (non-generalized) minimum cost flow problem, Cunningham (1979) showed
that stalling can occur even if cycling is prevented. He outlined anti-stalling rules that
prevent stalling by choosing the entering arc according to certain rules. For the generalized
minimum cost flow problem, no anti-stalling rules are known, but stalling is not supposed
to be of relevance in practice (cf. Orlin, 2013).
Two strategies within our implementation save computational effort. The first strategy
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Algorithm 6.24 Subprocedure of Algorithm 6.22: One old 1-tree, cycles do not overlap
1: boolLeavingArcBelongsToOldCycle := false;
2: if onOldCycle(p) = true and onOldCycle(q) = true then // If 〈p, q〉 belongs to
the old cycle

3: boolLeavingArcBelongsToOldCycle := true;
4: if depth(p) < depth(q) then
5: n1 := p, n2 := q;
6: else
7: n1 := q, n2 := p;
8: UpdateTreeWithRoot(Root(FirstOldOneTree), n1, n2);
9: UpdateSubtree(n2);

10: if boolLeavingArcBelongsToOldCycle = true then // 〈α, β〉 becomes an ordinary
arc, make 〈k, l〉 the new extra arc

11: if Root(k) = Root(FirstOldOneTree) then // If k and l belong to tr 1
12: rold := Root(FirstOldOneTree); // Reroot tr 1 to k or l
13: rtrtoGraft := n2; // Graft tr 2 onto α or β
14: else // If k and l belong to tr 2
15: rold := Root(FirstOldOneTree); // Reroot tr 2 to k or l
16: rtrtoGraft := Root(FirstOldOneTree); // Graft tr 1 onto α or β
17: RerootTree(rold, k); // Or reroot to l if faster
18: FirstNewOneTree := k; // Or FirstNewOneTree := l
19: if Root(α) = rtrtoGraft then // If α belongs to the tree tr toGraft

20: ntoRerootTo := α, nonto := β;
21: else // If β belongs to the tree tr toGraft

22: ntoRerootTo := β, nonto := α;
23: RerootTree(rtr toGraft , ntoRerootTo);
24: GraftTree(ntoRerootTo, nonto, FirstNewOneTree);
25: else
26: if onNewCycle(p) = true and onNewCycle(q) = true then // If 〈p, q〉
belongs to the new cycle, 〈α, β〉 is kept as extra arc, 〈k, l〉 becomes an ordinary arc

27: if Root(k) = n2 then // If k belongs to tr 2 and l to tr 1
28: ntoRerootTo := k nonto := l;
29: else // If l belongs to tr 2 and k to tr 1
30: ntoRerootTo := l nonto := k;
31: RerootTree(n2, ntoRerootTo); // Reroot tr 2
32: GraftTree(ntoRerootTo, nonto, Root(nonto)); // Graft tr 2 onto tr 1
33: else // If 〈p, q〉 belongs to the path between the old and new cycle,
two new 1-trees will emerge, 〈α, β〉 is kept as extra arc for the first new 1-tree (tr 1),
〈k, l〉 becomes the extra arc of the second new 1-tree (tr 2)

34: RerootTree(n2, k); // Or reroot to l if faster

applies when we traverse the bicycle to determine the leaving arc. If we encounter an arc
whose flow cannot be changed, i.e., an arc that results in δ = 0, this arc renders the
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Algorithm 6.25 Subprocedure of Algorithm 6.22: Two old 1-trees
1: if onOldCycle(p) = true and onOldCycle(q) = true then // If 〈p, q〉 belongs to
a cycle, only one new 1-tree will emerge

2: if apq 
= aextra
TreeOfLeavingArc then // If 〈p, q〉 is not the extra arc of the 1-tree

TreeOfLeavingArc
3: if depth(p) < depth(q) then
4: n1 := p, n2 := q;
5: else
6: n1 := q, n2 := p;
7: UpdateTreeWithRoot(Root(TreeOfLeavingArc), n1, n2);
8: UpdateSubtree(n2);
9: if ArcAndOrient(Root(TreeOfLeavingArc)) > 0 then // If the extra
arc aextra

TreeOfLeavingArc (〈α, β〉) is outbound
10: ntoRerootTo := β; // Reroot tr 2 to β
11: else // If the extra arc aextra

TreeOfLeavingArc (〈α, β〉) is inbound
12: ntoRerootTo := α; // Reroot tr 2 to α
13: RerootTree(n2, ntoRerootTo);
14: GraftTree(ntoRerootTo, Root(TreeOfLeavingArc), TreeOfLeavingArc);
// Graft tr 2 onto tr 1 via 〈α, β〉

15: if boolLeavingArcInFirstOldOneTree = true then // If 〈p, q〉 belongs to the
first old 1-tree (associated with k)

16: TreeWithNewRoot := SecondOldOneTree;
17: ntoRerootTo := k nonto := l;
18: else // If 〈p, q〉 belongs to the second old 1-tree (associated with l)
19: TreeWithNewRoot := FirstOldOneTree;
20: ntoRerootTo := l nonto := k;
21: RerootTree(Root(TreeOfLeavingArc), ntoRerootTo);
22: GraftTree(ntoRerootTo, nonto, TreeWithNewRoot);
23: else // If 〈p, q〉 lies on a path between both cycles, two new 1-trees will emerge
24: if depth(p) < depth(q) then
25: n1 := p, n2 := q;
26: else
27: n1 := q, n2 := p;
28: UpdateTreeWithRoot(Root(TreeOfLeavingArc), n1, n2);
29: UpdateSubtree(n2);
30: if boolLeavingArcInFirstOldOneTree = true then // If 〈p, q〉 belongs to the
first old 1-tree (associated with k)

31: TreeWithNewRoot := SecondOldOneTree;
32: ntoRerootTo := k nonto := l;
33: else // If 〈p, q〉 belongs to the second old 1-tree (associated with l)
34: TreeWithNewRoot := FirstOldOneTree;
35: ntoRerootTo := l nonto := k;
36: RerootTree(n2, ntoRerootTo);
37: GraftTree(ntoRerootTo, nonto, TreeWithNewRoot);
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pivot operation degenerate.12 We immediately make this arc the leaving arc and abort
the traversal to save time (cf. Brown and McBride, 1984, p. 1508).
The second strategy is applied whenever a pair (k, p) was successfully dropped, i.e.,

when the corresponding remaining linear programs LPrem
t , t ∈ Tp, are found to be feasible.

Then, we consider each network that corresponds to a period t ∈ Tp where rpst > 0 holds
for at least one skill s ∈ Smatch

kp . In such a period t, worker k could contribute to project p
if he was assigned to p. Hence, the network of period t contains an arc that runs from the
node at stage 1 which represents worker k to the node at stage 2 that represents worker k
and project p. For this arc and all its successors that run from stage 2 to stage 3 and from
stage 3 to stage 4, we check if the respective arc is a nonbasic arc. If so, the arc must carry
zero flow now. We delete this arc from the set of nonbasic arcs, because the arc cannot
enter the basis anymore, as the pair (k, p) was dropped. The deletion of these nonbasic
arcs saves time, as reduced cost calculations are saved when the network is reoptimized
in later drop operations.

Example 6.11 To give an example for the second time-saving strategy, consider the
network in Figure 6.4 on page 159 and assume that the pair (k2, p1) was successfully
dropped. Then, we check whether arcs 〈2, 5〉, 〈5, 10〉, 〈5, 11〉, 〈10, 13〉, and 〈11, 14〉 are
nonbasic arcs. Those that are nonbasic arcs are removed from the set of nonbasic arcs. �

There are other possibilities for improving our approach, e.g., applying a polynomial-
time algorithm to the generalized minimum cost flow problem or parallelizing computa-
tions. Although our implementation is straightforward and efficient from a practical point
of view, its worst-case time complexity is exponential (cf. Ahuja et al., 1993, p. 590). There
are combinatorial algorithms that exploit the underlying network structure and that run
in polynomial time, e.g., the minimum ratio circuit-canceling algorithm of Wayne (2002).
Furthermore, versions of the generalized network simplex method were outlined that ex-
ploit the enhancements offered by parallel computing (cf. Chang et al., 1988; Clark et al.,
1992). For example, pivot operations that affect different 1-trees can be parallelized. In
our case, we could apply parallelization also at a higher level. During the drop operation
for a pair (k, p), the remaining linear programs LPrem

t , t ∈ Tp, can be solved in parallel.
We did not try to exploit parallelization for any of our heuristics. Parallelization might
be an avenue for future work.

6.2.3.5 Properties and modifications of DROP

In this subsection, we consider two properties of DROP. The first property is that the
objective functions of the remaining linear programs are constant functions. This property
is the starting point for a modification of DROP. The modification applies primarily to
those variants of DROP that use the standard or the network model; it should not be
applied to the variant that uses the generalized minimum cost flow model. The second
property of DROP that we consider is the capability to find a feasible solution for any
instance and the principal capability to find an optimal solution for any instance.
Be it for the standard or the network model: Fixing all binary variables x leads to a

linear program with a constant objective function value, because the remaining variables y
appear only within the constraint sets. If the linear program is decomposed into a set
12The identifier δ was introduced on page 165. How δ is computed was explained on page 169.
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of remaining linear programs LPrem
t , t ∈ T , each of these LPs also features a constant

objective function value. Hence, for each drop operation a set of feasibility problems must
be solved.
Walter and Zimmermann (2010) proposed to replace the objective function of constant

value in each linear program LPrem
t by a surrogate objective function that contains the

corresponding variables ykpst. Such a surrogate objective function has an impact on the
values of the variables y, which, in turn, may have two important impacts. First, the
number of assignments (k, p) where worker k does not contribute to project p can change.
Such a change may allow Algorithm 6.13 to delete more or other pairs (k, p) from the list C,
especially at the outset of the drop procedure when Algorithm 6.13 is called for the first
time. Second, the selection probabilities of pairs (k, p) in the list C may change. Though,
this impact on the selection probabilities can only occur if a dynamic unsuitability value
is applied that takes the values of the variables ykpst into account. Such a dynamic
unsuitability value is defined in Equations (6.21) on page 153, for example.
As an example for a surrogate objective function for a remaining linear program LPrem

t ,
t ∈ T , consider the following objective function.

Min.
∑
k∈K

∑
p∈Psuit

k (t)

∑
s∈Smatch

kp

lks
|Smatch

kp |2 ykpst (6.22)

Surrogate objective function (6.22) can be considered as a cost function which must
be minimized. The costs arise for accomplishing the project workloads in period t. For
each worker k ∈ K, each project p ∈ Psuit

k (t), and each skill s ∈ Smatch
kp , we consider the

workload lksykpst that is accomplished by worker k for skill s of project p. The costs for
this contribution of worker k to project p amount to 1

|Smatch
kp |2 . Hence, costs decline with

an increasing number of matching skills between k and p.
The purpose of objective function (6.22) is to favor solutions for the corresponding

remaining linear program in which each worker tends to contribute primarily to projects
whose set of required skills matches his set of skills. The hope that these solutions lead to
solutions of high quality for the underlying workforce assignment problem was the reason
for designing this surrogate objective function.
Let us put forward two arguments why the solutions provided by objective func-

tion (6.22) should lead to relatively good solutions for the underlying problem in the
course of DROP. First, an optimal solution for objective function (6.22) tends to enable
Algorithm 6.13 to delete those pairs (k, p) from C where the number of matching skills
between k and p is small, i.e., pairs (k, p) for which we expect xkp = 0 in a high-quality
solution for the underlying problem.
The second argument applies only if a dynamic unsuitability value uskp is used that

takes the values of the variables ykpst into account. Hence, assume that we use unsuit-
ability value usC

kp, which is calculated based on Equations (6.21). Generally speaking,
unsuitability value usC

kp deems worker k the more unsuitable for a project p, the less time
he spends for this project. In an optimal solution for objective function (6.22), worker k
tends to spend the less time for a project p, the smaller the number of matching skills is
between k and p. Then, in consequence, the selection probability of a pair (k, p) is the
greater, the greater our expectation is that xkp = 0 holds in a high-quality solution for
the underlying problem.
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Note that surrogate objective function (6.22) and similar surrogate objective functions
must be applied with great care if the remaining linear programs LPrem

t , t ∈ T , are
formulated as generalized minimum cost flow problems; we recommend to abstain from
the use of surrogate objective functions in this case. The reason for this limitation is that
the generalized minimum cost flow formulation of a remaining linear program does not
explicitly demand that project requirements must be satisfied. If no surrogate objective
function is applied and if the satisfaction of all project requirements is possible, the
satisfaction is achieved, because the specific configuration of arc costs implicitly demands
the fulfillment of project requirements. The specific configuration of arc costs guarantees
that total flow costs are the less, the more flow reaches the terminal node of the flow
network. A surrogate objective function such as (6.22) modifies the costs of the arcs
that run somewhere between the source node and the terminal node of the flow network.
This modification can imply that a flow which is not a maximum flow is cheaper than any
maximum flow. Hence, if we apply (6.22) in conjunction with a generalized minimum cost
flow network model, we may get wrong answers to the question whether an assignment x
is feasible or not. The following example demonstrates how modified arc costs can lead
to a wrong answer.

Example 6.12 Consider the following instance with K = {k1, k2}, D = {d}, P =
{p1, p2}, S = {s1, s2, s3}, and T = {t}. Project p1 requires only skill s1, whereas project p2
requires only the skills s2 and s3. The skill requirements are given by rpst = 2, p ∈ P ,
s ∈ Sp. Worker k1 masters all three skills, his respective skill levels are lk1s1 = 2 and
lk1s2 = lk1s3 = 0.5. Worker k2 masters the skills s1 and s2 with lk2s1 = lk2s2 = 1. The
availabilities are Rk1t = 8 and Rk2t = 1. Assume that rddt = 0 holds, that each worker is
assigned to each project, and that the corresponding remaining linear program of period t
is formulated as a generalized minimum cost flow problem.
Let the contributions of workers be associated with costs according to (6.22) and let

the costs for one flow unit on the backward arc from the terminal node to the source node
be −1.1 in order to ensure that each flow that circulates through the network has negative
cost. There exist feasible solutions of the remaining LP, i.e., feasible flows that saturate
the arcs that are associated with project requirements. A minimum cost solution among
the feasible solutions incurs costs of −3.225 and is given by yk1p1s1t = 1, yk1p2s2t = 3,
yk1p2s3t = 4, and yk2p2s2t = 0.5, for example. However, there are feasible network flows
that do not correspond to feasible solutions of the remaining LP but that incur less costs
than any feasible solution. The minimum cost flow accrues cost of −3.5 and is specified
by yk1p2s2t = yk1p2s3t = 4 and yk2p1s1t = 1. Note that this flow does not completely satisfy
the requirement of project p1 for skill s1.
For the instance in this example, it would be necessary to set the costs per unit flow

on the backward arc to a value less than −1.375 in order to ensure that every minimum
cost flow is a maximum flow. �

The second property of DROP concerns the ability of this solution method to find an
existing feasible solution and to find an existing optimal solution. DROP has this property
regardless of whether a surrogate objective function is applied or not. If a feasible solution
exists for an instance, DROP finds a feasible solution, because the start solution, where
each worker is assigned to every suitable project, must be feasible. If no feasible solution
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exists for an instance, DROP approves that no feasible solution exists, as soon as DROP
has confirmed that the start solution x = 1 is infeasible.
Furthermore, DROP can find an optimal solution for any instance if a feasible solution

exists. Though, this statement is only valid if DROP is executed without the extension
outlined in Algorithm 6.13, i.e., if we do not cancel assignments without contribution
outside of drop operations, and if the selection probabilities of all pairs (k, p) ∈ C are
always positive. If these conditions hold, all feasible solutions can be constructed by
DROP, because all sequences of pairs (k, p) in C can be generated, since a sequence is
generated randomly.
The ability of DROP to find an existing feasible solution distinguishes DROP from

GRAP and ISAP. The latter two heuristics can fail to find an existing feasible solution,
whereas DROP always finds an existing feasible solution. As an example for an instance
where GRAP and ISAP fail, but DROP succeeds, consider the instance that we described
in the proof of Proposition 6.1 on page 134.

6.2.4 A rounding procedure (ROUND) and a relax-and-fix approach
In this subsection, we present a rounding procedure for the workforce assignment problem.
We call this procedure ROUND. Additionally, we will sketch and discuss a relax-and-fix
approach.
The basic idea of ROUND is to solve the LP relaxation of the workforce assignment

problem and to round for each project p a large fractional variable xkp to 1. All variables
that are rounded up to 1 are fixed to this value before the LP relaxation is solved again.
Solving the LP relaxation and rounding and fixing variables is repeated until a solution
is obtained in which all variables xkp are integer.
In the following, we will first classify rounding heuristics as MIP-based heuristics.

Next, we briefly report on applications of rounding heuristics that are documented in
the literature, before we outline our heuristic ROUND, succinctly describe a multi-start
version of ROUND, and highlight some properties of ROUND. Finally, we sketch and
discuss a relax-and-fix approach to our problem.
Rounding heuristics, which are also called dive-and-fix heuristics, belong to the class of

MIP-based heuristics (cf. Wolsey, 1998, pp. 214–217). MIP-based heuristics are heuristics
that solve relaxations of the original MIP several times. Each time after having solved a
relaxation, the solution is exploited to obtain a relaxation with a reduced search space.
A MIP-based heuristic terminates when the solution to a relaxation is feasible for the
original MIP or when the reduced search space is empty and no feasible solution can
be returned. An empty search space can occur in the course of a MIP-based heuristic,
although a feasible solution for the original MIP may exist. If the relaxation that is
repeatedly solved is the LP relaxation, the heuristic is also called LP-based heuristic.
Our rounding procedure is an LP-based heuristic.
The rationale for the use of MIP-based heuristics is the fact that they exploit the

power of mathematical programming by solving relaxations. An optimal solution for the
relaxation of a problem can often provide insight in the shape of an optimal solution of
the original problem. If the LP relaxation is considered, the shape of an optimal integer-
feasible solution is the clearer the tighter the relaxation is, i.e., the closer the feasible
region of the LP relaxation comes to the convex hull of the original problem. When the
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feasible region of the LP relaxation coincides with the convex hull, an optimal solution
for the LP relaxation is also an optimal solution for the original MIP. As we tightened our
two models of the workforce assignment problem by valid inequalities, we were optimistic
that an LP-based rounding procedure may determine solutions of good quality.
Rounding heuristics have been successfully applied in order to solve MIPs in different

fields such as capacitated lot-sizing (cf. e.g. Maes et al., 1991; Alfieri et al., 2002), facility
location (cf. Bloemhof-Ruwaard et al., 1996), and data association, i.e., matching elements
of two data sets (cf. Zhang et al., 2005). Wallace (2010) outlines a very simple, but fast
rounding heuristic that was integrated in a MIP solver to determine upper (lower) bounds
for minimization (maximization) problems. Though, his heuristic is not appropriate for
our problem, because the simplicity of his heuristic would lead to solutions of poor quality
for our problem.
In the field of workforce management, the following two publications amongst others

feature rounding heuristics. Fowler et al. (2008) designed two rounding heuristics to solve
a multi-period problem where for each period the number of workers that are hired, fired,
and cross-trained must be determined such that total costs are minimized. In each period
and for each skill s, a demand for workers that master skill s is given. If the demand is
not satisfied, penalty costs are incurred. The two rounding heuristics are compared to a
genetic algorithm. The rounding heuristics clearly outperform the genetic algorithm with
respect to solution time, while solution quality is almost the same.
Miller and Franz (1996) consider a multi-period assignment problem where one task

must be assigned to each worker in each period and several constraints must be observed.
In their approach, Miller and Franz (1996) carefully select binary variables with fractional
values in the solution of the LP relaxation and round these variables up to 1. A conser-
vative selection rule is applied in order to avoid infeasibility. For our problem, however,
rounding up a fractional variable xkp is always feasible.
In the references for rounding heuristics that we just mentioned, deterministic proce-

dures are applied. Though, also randomized rounding procedures have been developed
(cf. Bertsimas and Vohra, 1998). An example for a deterministic procedure for a problem
with binary variables is a procedure with the rule to round up a fractional variable x if
x ≥ 0.5, and to round down x otherwise. In case of a randomized rounding procedure, a
probability of rounding up the variable x is determined. This probability usually depends
on the value of x. For example, the probability of rounding up (down) increases with
increasing (decreasing) value of x. Our procedure ROUND is a mixture of deterministic
and randomized rounding. Incorporating randomness in ROUND facilitates a multi-start
procedure.
Both rounding and relax-and-fix heuristics are applied by Kimms and Müller-Bungart

(2007) to a problem where a television channel must select orders for advertising spots
and where the spots of selected orders must be assigned to commercial breaks.
All the references mentioned show that rounding heuristics can be applied to differ-

ent problems that can be modeled as a MIP. Though, adjustments of the simple basic
scheme of a rounding heuristic are necessary in order to cope with special properties and
constraints of the problems. Only such adjustments lead to a promising solution method.
Many possibilities exist to design a rounding heuristic for the workforce assignment

problem. The manifold possibilities result from the manifold answers that can be given
to design questions such as “How many variables shall be rounded in an iteration?” and
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“Which variables shall be rounded (with which probability)?” We implemented and tested
several variants. The variant which we present here and which we call ROUND performed
best with respect to average solution quality for our test instances.
Algorithm 6.26 summarizes the heuristic ROUND. The heuristic starts by initializing

for each project p the set Kfrac
p . This set contains every worker k who is suitable for

project p and whose corresponding variable xkp has not been fixed to either 0 or 1 so
far, i.e., whose variable xkp can be fractional in the solution of the LP relaxation. At the
outset, no variable xkp, k ∈ Ksuit

p , is fixed and the set Kfrac
p contains all workers who are

suitable for project p.
After this initialization, the LP relaxation of the original MIP is solved. The LP

relaxation in ROUND is based on a tightened version of the standard or the network
model. To clarify the term tightened version, we describe the tightened version of the
network model. To tighten the network model (4.19)–(4.29), big-M constraints (4.24)
were replaced by big-M constraints (6.5) and big-M constraints (6.6) were added. While
big-M constraints (6.5) restrict all variables fproj

kpt , big-M constraints (6.6) restrict all vari-
ables ykpst. Furthermore, valid inequalities (6.1) and (6.3) were added. Valid inequali-
ties (6.1) require for each project p ∈ P and each skill s ∈ Sp that a minimum number of
workers who master skill s must be assigned to project p. Valid inequalities (6.3) require
for each project p ∈ P that a minimum number of workers who can contribute to project p
must be assigned to project p. The tightened version of the standard model is created
analogously.
The solution (x,y) of the LP relaxation is stored and analyzed. If all variables xkp

are integer in this solution, an optimal solution for the original MIP has been found and
Algorithm 6.26 terminates. If there is at least one fractional variable xkp in the solution
of the LP relaxation, the iterations of rounding variables, fixing them, and solving the
new LP relaxation are started. These iterations are continued until a solution of the LP
relaxation is reached in which all variables xkp are integer. This integer-feasible solution
can be an optimal solution for the original MIP, but it need not.
At the beginning of each iteration, after solving the current LP relaxation, each vari-

able xkp that has not been fixed and that takes on an integer value in the current solution
is fixed to this value (cf. lines 11–15 of Algorithm 6.26). Fixing these variables reduces the
size of the LP relaxation and, thus, speeds up the solution procedure. Each variable xkp

that was fixed to its current integer value is removed from the corresponding set Kfrac
p .

We round up at most one fractional variable per project in each iteration. All projects p
for which variables xkp with non-integer values exist in the current solution are gathered
in the set P toRound. For each project p in this set, we will round up a fractional variable
and fix it to 1 if some conditions are met. We will specify these conditions later. If the
conditions are not met, no variable that is associated with project p will be rounded up
and fixed. Hence, for each project p ∈ P toRound at most one fractional variable that is
associated with project p is rounded up and fixed. No more than one variable is rounded
up and fixed, because rounding up and fixing one variable may drive all other fractional
variables that are associated with project p to 0 in the solution of the new LP relaxation.
For each project p in P toRound, the largest and the second largest fractional variable

associated with p are considered for rounding up, but at most one of them is actually
rounded up. The projects in P toRound are considered in random order. The probability
for being the project considered next is set to 1

|PtoRound| for each project. Assume that
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Algorithm 6.26 The heuristic ROUND
1: Input: Instance data
2: Output: A feasible solution (x,y) for the workforce assignment problem
3:
4: for all p ∈ P do
5: Kfrac

p := Ksuit
p ;

6: Solve the LP relaxation;
7: Store the values of all variables xkp and ykpst;
8: while ∃(k, p) | xkp /∈ {0, 1}, p ∈ P , k ∈ Kfrac

p do
9: P toRound := ∅;

10: Krounded := ∅;
11: for all p ∈ P | Kfrac

p 
= ∅ do
12: for all k ∈ Kfrac

p do
13: if xkp is equal to 0 or 1 then
14: Fix xkp to its current value;
15: Kfrac

p := Kfrac
p \ {k};

16: if Kfrac
p 
= ∅ then

17: P toRound := P toRound ∪ {p};
18: while P toRound 
= ∅ do
19: Randomly select a project p from the set PtoRound;
20: P toRound := P toRound \ {p};
21: ktoRound := −1;
22: k′ := arg max

k∈Kfrac
p

xkp;

23: if k′ /∈ Krounded then
24: ktoRound := k′;
25: if

∣∣Kfrac
p

∣∣ > 1 then
26: k′′ := arg max

k∈Kfrac
p \{k′}

xkp;

27: if k′′ /∈ Krounded then
28: if ktoRound = −1 then
29: ktoRound := k′′;
30: else
31: if rand(0, 1) ≤ xk′′p

xk′p+xk′′p
then

32: ktoRound := k′′;
33: if ktoRound 
= −1 then
34: Fix xktoRoundp to 1;
35: Kfrac

p := Kfrac
p \ {ktoRound};

36: Krounded := Krounded ∪ {ktoRound};
37: Solve the LP relaxation;
38: Store the values of all variables xkp and ykpst;

project p is selected from the set P toRound for being considered next. For rounding up and
fixing to 1, we consider the largest fractional variable xk′p that is associated with project p,
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and the second largest fractional variable xk′′p if there is more than one fractional variable
associated with project p. Ties are broken by the smallest-subscript rule with respect to
subscript k.
However, variable xk′p comes into question for rounding up and fixing only if no other

variable xk′p′ , p′ ∈ Psuit
k′ ∩ P toRound, that is associated with worker k′ has already been

rounded up and fixed in this iteration. The same holds for the variable xk′′p. To check for
a worker k if a variable xkp′ , p′ ∈ Psuit

k ∩P toRound, has already been rounded up and fixed
for this worker in the current iteration, the set Krounded is scrutinized. This set records
the indices of all workers for whom a variable has been rounded up and fixed to 1 in the
current iteration.
In the following description of the actual rounding operation, we consider the most

general case: Let there be two fractional variables that are associated with project p in
the current solution, namely, xk′p and xk′′p with xk′p ≥ xk′′p. If both workers k′ and k′′ are
in the set Krounded, no variable is rounded up and fixed for project p. If only one of these
workers belongs to the set Krounded, we round up and fix the variable that is associated
with the other worker that is not in Krounded. The worker for which the corresponding
variable is rounded up and fixed to 1 is denoted by ktoRound.
If both variables xk′p and xk′′p come into question for rounding up and fixing to 1,

we randomly select one of them. The probability of selecting variable xk′p (xk′′p) takes
into account the value of xk′p (xk′′p) in comparison to the value of xk′′p (xk′p); selection
probabilities are given by xk′p

xk′p+xk′′p
and xk′′p

xk′p+xk′′p
, respectively. A random number that

is uniformly distributed in the interval [0, 1) and generated by the function rand(0, 1)
decides according to the probabilities whether xk′p or xk′′p is rounded up and fixed. The
worker whose variable is selected for rounding up is also denoted by ktoRound.
If a variable xktoRoundp was specified for project p, this variable is rounded up and fixed

to 1 (cf. lines 33–34). Worker ktoRound is removed from the set Kfrac
p and added to the

set Krounded in order to prevent that another fractional variable that is associated with
worker ktoRound is rounded up and fixed in this iteration.
When all projects in P toRound have been considered, the new LP relaxation is solved

and the new solution values are stored. The old values are overwritten. If the new solution
is not integer-feasible, the next iteration is started.
The variables ykpst that correspond to variables xkp that were fixed to 1 are not fixed

until the very end of ROUND. As in DROP, this flexibility of the variables y allows the
LP solver to adjust the values of these variables to changes in x.
For a multi-start version, we embedded ROUND in the generic multi-start procedure

outlined in Algorithm 6.5 on page 126. This multi-start version of ROUND constructs
different solutions, because projects are considered in random order in each iteration
within a pass of ROUND and variables for rounding up and fixing are selected randomly
from a candidate set that contains up to two candidates. However, like in DROP, we do
not build a solution from scratch in each pass of the multi-start method. To save time, we
solve the initial LP relaxation only once and fix all variables xkp that take on an integer
value in the solution of this relaxation to the respective value. The resulting solution,
which is integer-infeasible in general, is stored and used as the starting point for each pass
of the multi-start method. Hence, in each pass, some variables xkp are kept fixed to the
same value as in all previous passes.
That some variables are fixed during the multi-start procedure implies a small degree
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of rebuild according to Martí et al. (2010, p. 274). The actual purpose of a certain degree
of rebuild is not to save time but to start each pass from a promising point. In our case,
beginning each pass with some variables already fixed did save time, but also comes along
with the danger of a drop in solution quality, because fixing a variable to the same value
in each pass constrains the solution space that is explored. However, preliminary tests
have shown that solution quality did not decline in our case.
In the following, four properties of the heuristic ROUND shall be discussed. First,

the heuristic ROUND excludes that in an iteration more than one fractional variable that
is associated with a worker k is rounded up and fixed. The advantage of this cautious
approach can be demonstrated by the following example. Let xkp′ and xkp′′ be two vari-
ables that are associated with worker k and that take on fractional values in the solution
of the LP relaxation. Rounding up at most one fractional variable per worker k, say
variable xkp′ , enables a reallocation of workload such that the time of worker k may be
completely occupied by working for project p′, while xkp′′ becomes 0. Hence, it may be
detrimental to round up and fix both xkp′ and xkp′′ to 1. This is why at most one variable
is rounded up per worker in each iteration of ROUND.
Second, ROUND does not only consider the largest fractional variable that is associ-

ated with project p for rounding up, but also the second largest fractional variable. This
may be detrimental if only one solution is constructed. Though, if ROUND is embedded
in a multi-start procedure, this variant of randomized rounding examines a greater part
of the solution space and leads to better results, as preliminary tests revealed.
Third, ROUND finds always a feasible solution for the original MIP. Since a positive

variable xkp is never rounded down to 0, the way to a feasible solution is never obstructed.
Only variables that are equal to 0 in a solution for the LP relaxation are fixed to 0. Fixing
a variable to 0 that is equal to 0 in the solution of the LP relaxation does not jeopardize
feasibility, because rounding up all variables xkp for which xkp > 0 holds in the current
solution provides always an integer-feasible solution.
Fourth, ROUND can fail to find an optimal solution even if ROUND is executed an

infinite number of times within a multi-start procedure. Three scenarios may demonstrate
how a way to an optimal solution is obstructed in the course of ROUND. Firstly, fixing a
variable xkp to 0 for which xkp = 0 holds in the solution of the initial LP relaxation means
that an optimal solution in which xkp = 1 holds cannot be reached anymore. This optimal
solution might have been reached if xkp had not been fixed to 0 but had been allowed
to take on a positive value in later iterations. Secondly, likewise, fixing a variable xkp

to 1 that is equal to 1 in the initial solution of the LP relaxation obstructs the way to
an optimal solution if xkp = 0 holds in every optimal solution. If other variables than
xkp were fixed to 1, the value of xkp might have dropped down to 0 in a later iteration.
Thirdly, if there are more than two fractional variables xkp that are associated with a
project p in the solution of the initial LP relaxation and the variables related to the other
projects are integer, the consideration of the two largest variables associated with p for
rounding up and fixing to 1 may render it impossible to reach an optimal solution if both
considered variables equal 0 in every optimal solution.
To overcome the drawback that ROUND can fail to find an optimal solution even

when a multi-start procedure is used, the subsequent modifications would be necessary. A
variable must never be fixed to 0 and every variable that has not been fixed so far must be
considered as a candidate for rounding up and fixing to 1. Consequently, variables whose
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value is equal to 0 in the solution of an LP relaxation are candidates and variables whose
value is fractional or equal to 1 in the solution of an LP relaxation are also candidates.
From all these candidates, only one variable is randomly selected for rounding up and
fixing to 1 in each iteration. These modifications would enable ROUND to find an optimal
solution. Though, the information contained in the solution of the LP relaxation, i.e.,
the information about the shape of an optimal solution for the original MIP, would be
ignored. The application of the modifications has two consequences. First, computation
times increase, because each time after solving the LP relaxation only one variable is
rounded up and fixed. Second, the expected solution quality given a limited number
of passes would deteriorate compared to ROUND. This is why these modifications have
virtually no practical benefit.
Eventually, let us turn to relax-and-fix heuristics and let us consider our relax-and-fix

heuristic for the workforce assignment problem. Like rounding heuristics, relax-and-fix
heuristics belong to the class of MIP-based heuristics and exploit the power of mathemat-
ical programming.
The basic idea of a relax-and-fix heuristic for a PIP or MIP is to relax integrality

constraints only for some integer variables in each iteration, while other integer variables
are considered as truly integer such that a reduced MIP can be solved in each iteration.
To be more precise, integer variables are divided into three groups in each iteration. The
first group comprises variables for which the integrality constraints are relaxed, whereas
the integrality constraints must be observed for the variables of the second group. The
third group contains those variables that are finally fixed. This group is empty at the
beginning of a relax-and-fix procedure, when no variable is fixed. These three groups are
associated with a reduced MIP that has less truly integer variables than the original MIP.
When the reduced MIP has been solved, the variables of the second group are fixed to
their solution values and are transferred to the third group. For the next iteration, some
variables of the first group are transferred to the second group. Two outcomes are possible
for a relax-and-fix heuristic. Either an integer-feasible solution is obtained at the latest
when all integer variables have been transferred to the third group or at some point no
feasible solution can be found for the reduced MIP, although a feasible solution may exist
for the original problem.
Relax-and-fix heuristics and variants thereof have been successfully applied in order

to solve MIPs in different fields, especially in the field of capacitated lot-sizing (cf. Dil-
lenberger et al., 1994; Sürie and Stadtler, 2003; Förster et al., 2006; Sahling, 2010). In
the area of project management, Escudero and Salmeron (2005) apply a relax-and-fix
approach to a problem that comprises project selection and scheduling of project start
times. Binary variables xpt are used for modeling. A variable xpt equals 1 if project p is se-
lected and started in period t. Escudero and Salmeron (2005) examine different strategies
that differ with respect to the question in which iteration which of the binary variables
belong to the second group. The binary variables of the second group are considered as
truly binary variables. One strategy assigns for each iteration the binary variables that
are associated with a certain period to the second group. The periods are considered in
chronological order. In another strategy, the second group contains those variables whose
objective function coefficients lie in a certain interval. The intervals are considered in the
order of decreasing attractiveness with respect to the objective function. Finally, as al-
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ready mentioned, relax-and-fix heuristics (and rounding heuristics) are applied by Kimms
and Müller-Bungart (2007) to a problem of selecting and scheduling advertising spots.
At the beginning of our relax-and-fix procedure, the LP relaxation of the original MIP

is solved and all integer-valued variables xkp are fixed to their current value. Then, in
each upcoming iteration of this procedure, a reduced MIP is solved. In each iteration, the
binary variables of only one project p are considered as truly binary variables (variables
in the second group), while all other binary variables are relaxed or have already been
fixed (variables in the first or third group, respectively). A solver is invoked to solve the
reduced MIP within a prescribed time limit. If no integer-feasible solution for the reduced
MIP is found, the relax-and-fix heuristic terminates without returning a solution.
If a solution for the reduced MIP is found, the variables xkp associated with project p

are fixed to their values in the current solution. For the next iteration, the variables xkp′

of another project p′ are transferred from the first to the second group and thus are
considered as truly binary. The order of projects in which the corresponding variables
are considered as truly binary is randomly determined. When all variables xkp have been
fixed, the relax-and-fix procedure terminates. The variables ykpst are never fixed during
the procedure but at the very end when an integer-feasible solution has been found.
The outcomes of preliminary tests of our relax-and-fix procedure were not promising.

If the time granted for solving the reduced MIPs was short, solution quality was poor.
Sometimes, feasible solutions for a reduced MIP were not found within the time limit.
In this case, the procedure could not provide a solution and was aborted. When more
time was granted, solution quality improved. Though, the increase in time that was
required to obtain competitive solutions for large-sized instances was prohibitive. This is
why we abandoned the relax-and-fix approach and do not consider this approach in the
performance analysis in the next chapter.



Chapter 7

Numerical analysis

In this chapter, we will report how we generated test instances, how we used them to
test the solution methods, and what results we obtained. The tests had three major
aims. First, we wanted to find out up to which instance sizes exact methods could
provide acceptable solutions in acceptable time for the project selection problem and
for the workforce assignment problem, which are strongly NP-hard. Second, we wanted
to reveal the impact of certain parameters on solution time and quality. Among these
parameters are the number of workers and the ratio of project workload to the availability
of the workforce. Third, we wanted to assess the four heuristics that we devised for the
workforce assignment problem and we wanted to conclude which one is the most suitable.
We implemented all solution methods in the C++ programming language, which is

a widely used object-oriented programming language (cf. Josuttis, 2001, 2002). The
program code was compiled using the C++ compiler of Microsoft Visual Studio 2010
Premium. For solving optimization problems with the LP solver or the MIP solver of
IBM ILOG CPLEX, we used the CPLEX Concert Technology C++ library. This library
offers classes and functions to implement an optimization model in C++ and provides an
interface to the CPLEX solvers. We used the Concert Technology library and the solvers
of CPLEX 12.4 (cf. IBM, 2011).1 Data input and output is handled by the C++ programs
via text files. A parser reads in instance data from a text file and results are written to
another text file.2
We wrote a C++ program to automatically generate test instances for the project

selection problem and the workforce assignment problem. This program allows to gener-
ate instances of various sizes and with various characteristics for systematic tests. The
program, called instance generator, will be described in Section 7.1 in more detail. For
the utilization leveling problem, we used instances of the workforce assignment problem
together with corresponding solutions as input data.
All programs were executed on personal computers that operated under Microsoft

1The optimization models for our three problems as well as Algorithm 6.4 for the utilization leveling
problem were also implemented in the modeling system GAMS (cf. GAMS Development Corporation,
2013). The code required to implement optimization models in GAMS is quite simple and easier to
maintain than C++ code. Furthermore, GAMS allows to switch from one solver to another without
great effort.

2We also developed an application with Microsoft Access based on Visual Basic for Applications (cf.
Albrecht and Nicol, 2007). This application provides a graphical user interface and calls GAMS to
solve our three optimization problems. GAMS, in turn, reads instance data via SQL queries from an
Microsoft Access database, invokes CPLEX for solving MIPs, and writes results to the database. The
Microsoft Access based application can easily be integrated within the software environment of many
firms. The application was developed to serve as a vehicle for testing and discussing with practitioners.

M. Walter, Multi-Project Management with a Multi-Skilled Workforce, Produktion
und Logistik, DOI 10.1007/978-3-658-08036-5_7, © Springer Fachmedien Wiesbaden 2015
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Windows 7 and that featured an Intel Core i7 processor with 4 cores. Each core had
a clock rate of 3.6 GHz and could handle 2 threads. Every computer was equipped
with 32 GB RAM. The algorithms that we devised use only 1 thread, as they are not
parallelized. The solvers of CPLEX 12.4, however, can use all 8 threads. As we used a
32 bit version of CPLEX, memory was limited to 4 GB RAM. In order to illustrate the
potential of CPLEX, we will also present selected results for a 64 bit version of CPLEX,
which could exploit 32 GB RAM.
For each of our three problems, we will describe the sets of test instances and the results

that the different solution methods provided for these test sets. In Section 7.2, test sets
and results for the project selection problem are presented, before the instances and the
corresponding results for the workforce assignment problem are outlined in Section 7.3.
Finally, test sets for the utilization leveling problem and the performance of our solution
methods for this problem will be presented in Section 7.4.

7.1 Generation of test instances
In this section, we will describe how we created instances for our three problems in order
to test our solution methods. At the beginning, we will briefly discuss two alternative
methods to obtain instance data, namely, (1) gathering data from real-life cases and
(2) randomly generating coherent artificial data. We chose the second method and wrote
a program that generates artificial instances for the project selection and the workforce
assignment problem. Henceforth, this program will be called instance generator. We will
describe the input parameters of the instance generator, which define key characteristics of
the instances to generate, and we describe how instance data such as project requirements
and skill levels of workers are determined by the instance generator. We will specify the
values (default values) of those input parameters that were kept fixed for all test sets
(most of the test sets) presented in this chapter. For a resulting instance, we will define
a measure that relates the size of a skill requirement to the availability of those workers
that master the corresponding skill.
In general, two distinct sources for instance data exist. Instance data can be obtained

from real-life problems or can be fictitious (cf. Salewski et al., 1997, pp. 102–103). For
the case of fictitious data, we assume that an instance is systematically constructed with
the help of random number generators.
Both real-life instances and artificial instances have advantages and disadvantages.

While real-life data represent real problems for which our solution methods are intended,
artificial data may not provide a realistic picture of practical cases. However, it is costly
and of limited use to collect data from real-life cases. It is costly, because in a firm data
may not have been recorded or may be scattered across several departments. Even if
data of a firm are easily accessible, they are of limited use, because the corresponding
records usually provide data of one instance per year. Since data records may go back
only some years, there is a limited number of instances per firm and these instances tend
to closely resemble one another. Even if instances of several firms can be obtained, it is
highly improbable that the instances are representative for the complete set of real cases.
Hence, results of a numerical analysis that is based on a limited set of real-life instances
can hardly be generalized.
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A systematic generation of artificial instances, on the other hand, is inexpensive,
fast, and can provide a large set of diverse instances that facilitate a thorough testing
of solution methods. An appropriate set of artificial instances can reflect the range of
instances that exist and arise in practice across hundreds of firms. Thus, in our opinion,
reasonably constructed artificial instances are more suitable for testing solution methods.
Consequently, we decided to generate artificial instances.
Nevertheless, it is fruitful and necessary to get insight into real-life instances in order

to construct fictitious instances reasonably. For the IT center that triggered our research,
we got information about characteristics of its project selection problem and its workforce
assignment problem. We used this information to design our instance generator.
The instance generator has 22 main input parameters, which are specified in Table 7.1.

In this table, also default values are stated for those parameters that were kept fixed for
generating most of our test instances. We will explain the parameters and their role
during instance construction in the following paragraphs.
We begin with the first five input parameters in Table 7.1 to give a first impression

of the operating principle of the instance generator. Assume that we choose K = 40,
D = 5, P̂ = 20, S = 8, and T = 12 for the first five input parameters. Then, the instance
generator outputs a desired number of instances that feature 40 workers partitioned into
5 departments, 20 projects, 8 skills that are mastered by the workforce in total, and
12 periods. While the numbers of workers, departments, projects, skills, and periods
are the same for all instances of the generated test set, data such as skills mastered by a
single worker, skill levels, and project requirements are randomly generated and vary from
instance to instance. In the following, we will explain the other main input parameters and
elaborate on how the random data are generated. Whenever we state in the description
of the instance generator that a value is randomly determined, the value is drawn from a
discrete uniform distribution, unless otherwise indicated. For all generated test instances,
the planning horizon was set to T = 12.
For each department d ∈ D, a random number of members |Kd| is determined

such that the equation
∑

d∈D |Kd| = K holds. For department d = 1, . . . , D −
1, the instance generator randomly chooses the value of |Kd| from the discrete set{
round(0.8 · K

D
), round(0.8 · K

D
) + 1, round(0.8 · K

D
) + 2, . . . , round(1.2 · K

D
)
}
, where the

function round(a) returns the integer that is closest to a. The remaining workers are
assigned to department d = D. If at some point no workers remain that can be assigned
to the next department, the procedure is repeated until a feasible partition of the work-
force is reached. Finally, workers k = 1, . . . , |Kd1 | are assigned to department d = 1,
workers k = |Kd1 |+ 1, . . . , |Kd1 |+ |Kd2 | are assigned to department d = 2, and so on.
The availabilities Rkt, k ∈ K, t ∈ T , are drawn from a discrete uniform distribution

between KminR and KmaxR. We set KminR := 120 and KmaxR := 160. The latter value
represents an availability of 160 hours per period, which is a typical number of contracted
hours per month and corresponds to a daily working time of 8 hours. We assumed that
the times for vacation, routine jobs and other individual tasks sum up to at most 40 hours
per worker and month, leading to a minimum availability of 120 hours.
The assignment of skills to workers is controlled by two basic decisions. The first

decision is about whether members of a department share a common skill or not. If
all members master a common skill (input parameter boolSameSkill = true), we assign
skill s1 to each worker of department d1 and skill s2 to each worker of department d2, and so
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Table 7.1: Main input parameters of the instance generator and their default values

Parameter Domain Value∗ Description

K N – Number of workers
D N – Number of departments
P̂ N – Number of projects including ongoing projects

and must projects
S N – Number of skills
T N 12 Number of periods
KminR N 120 Minimum availability of a worker in a period
KmaxR N 160 Maximum availability of a worker in a period
boolSameSkill {true, false} true Indicates whether all workers of a department

master a common skill or not
boolNumSkillsRand {true, false} true Indicates whether each worker masters a ran-

dom number of skills or whether the number
of skills mastered by a worker depends on the
group he belongs to

KminS N 1 Minimum number of skills mastered by a
worker

KmaxS N 3 Maximum number of skills mastered by a
worker

probS1 [0, 1] (0.6) Probability for a worker to master exactly one
skill (group 1)

probS2 [0, 1] (0.3) Probability for a worker to master exactly two
skills (group 2)

probS3or4 [0, 1] (0.1) Probability for a worker to master either three
or four skills (group 3)

ρdep [0, 1] 0.2 Desired ratio of a departmental requirement to
the corresponding total availability of depart-
ment members

PminDur N 3 Minimum duration of a project
PmaxDur N 9 Maximum duration of a project
sharePongoing [0, 1] 0 Share of ongoing projects
sharePmust [0, 1] 0 Share of projects that must be selected
PminS N 5/– Minimum number of skills required by a project
PmaxS N 7/– Maximum number of skills required by a

project
ρproj

R≥0 2.5/0.6 Desired ratio of total project requirements to
the corresponding total availability of the work-
force

∗Default values used for the generation of the instances tackled in this chapter. A dash (–)
means that no default value exists; bracketed values did not come into effect due to
boolNumSkillsRand = true; for an entry a/b, a refers to instances of the project selection
problem and b to instances of the workforce assignment problem.

forth.3 The case where department members share a common skill reflects the situation in
3If D > S and skill sS was assigned to a department d < D, we assign skill s1 to each worker of
department d+ 1, skill s2 to each worker of department d+ 2, and so on.
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a firm that exhibits a functional structure. To give an example, let a functional structure
of a manufacturing firm feature a construction department and a sales department. Each
member of the sales department will typically have specific knowledge of sales operations
and distribution channels. In the construction department, none of the workers may have
this knowledge, or at most a few workers, e.g., due to prior job experiences. The level lks
with which a member of department d masters the common skill s is randomly selected
from the set {1, 1.5, 2} for each k ∈ Kd. The skill level 0.5 is not awarded, because a
worker is supposed to have already gained some experience in his core area of work.
If we do not require that the members of a department share a common skill

(boolSameSkill = false), the skill set of each worker is randomly composed. This case
can reflect the situation of a consultancy firm, for example, where the departments repre-
sent the subsidiaries in different cities. Within each subsidiary, the consultants may have
arbitrary skill sets.
The second basic decision is about the number of skills that are assigned to each worker.

The instance generator offers two possibilities. The first possibility (input parameter
boolNumSkillsRand = true) is that for each worker k the number of skills |Sk| that he
masters is randomly selected from the set {KminS , . . . ,KmaxS}. Then, |Sk| skills are
randomly selected from the set S and assigned to worker k. If a skill shared by all
department members has already been assigned to worker k, i.e., if boolSameSkill = true,
only |Sk| − 1 additional skills will be selected. For each (additional) skill s, the skill
level lks is randomly selected from the set {0.5, 1, 1.5, 2}.
The second possibility (boolNumSkillsRand = false) pursues the purpose to meet the

conditions that prevail in the IT center that instigated our research. That is why this
second possibility was implemented only for the case where boolSameSkill = true holds,
i.e., where workers within a department share a common skill, as it is the case in the
IT center. The prerequisite boolSameSkill = true is not a severe limitation, though,
because the distribution of skills in the IT center reflects the situation in many firms
with a functional structure. In the IT center, there are three groups of workers: some
workers master only one skill (group 1), other workers master two skills (group 2), while
the remaining workers master either three or four skills (group 3). These cardinalities
of skill sets are typical for many firms with a functional structure if skills are defined in
an aggregate fashion. To reflect these three groups, the parameters probS1 , probS2 , and
probS3or4 determine the probability with which each worker is assigned to the respective
group. Hence, the expected share of workers in the total workforce that master only one
skill is equal to probS1 . The expected shares of workers who belong to group 2 and 3
are given by probS2 and probS3or4 , respectively. The sum of these three parameters is
supposed to equal 1. We chose probS1 := 0.6, probS2 := 0.3, and probS3or4 := 0.1
whenever we opted for the second possibility.
Since the second possibility presumes that each worker masters the skill that is asso-

ciated with his department, only the additional skills and the corresponding skill levels
for the workers of group 2 and 3 must be determined. For each worker who belongs to
group 2 or 3 and whose first skill is skill s, the second skill is either skill s+1 or skill s−1,
i.e., the second skill is a skill of a neighboring department.4 This choice of the second
skill reflects the situation that the competencies of multi-skilled workers tend to lie in
related areas. For example, a member of the sales department may also be deployable

4For skill s = 1, we set s− 1 := S, and for skill s = S, we set s+ 1 := 1.
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in the marketing department and vice versa, but members of these departments may not
be suited for the construction department. In this example, the sales department and
the marketing department are neighboring departments. The level of the second skill is
randomly chosen from the set {0.5, 1, 1.5, 2}.
Each worker k in group 3 masters three or four skills; the probability for each of the

two possibilities is equal. For the third and fourth skill, we do not demand that the
skills are associated with a neighboring department. The corresponding skill levels are
randomly selected from the set {0.5, 1, 1.5}. Since the third and the fourth skill are likely
to be farther away from the core work area of a worker in group 3, we do not award the
highest skill level of 2.
After skills and skill levels have been assigned to workers, it is checked if each skill s ∈ S

is mastered by at least one worker. If there is a skill that is not mastered by any worker,
the instance generator stops the construction of the instance and starts a new try. If all
skills are covered by the workforce, the departmental requirements are determined.
The input parameter ρdep determines the magnitude of the departmental requirements.

This parameter represents for each department d ∈ D and each period t ∈ T the desired
ratio of the departmental requirement rddt to the total availability of the members of
department d in period t. The value of rddt is drawn from a discrete uniform distribution
between

⌊
0.8 · ρdep ·

∑
k∈Kd

Rkt

⌋
and

⌊
ρdep ·

∑
k∈Kd

Rkt

⌋
, where �a� denotes the largest

integer that is less than or equal to a. For generating our test sets, we set ρdep := 0.2. A
value of 0.2 implies that the utilization of the workforce caused by departmental workload
lies between 16% and 20%.
The generation of projects and their requirements is controlled by several input pa-

rameters. For each project p out of the P̂ projects that are generated, a random dura-
tion dur p between PminDur and PmaxDur is determined. We set PminDur := 3 and
PmaxDur := 9. The benefit bp of each project p is drawn from a discrete uniform dis-
tribution between 1 and 30. The first

⌊
sharePongoing · P̂

⌋
projects that are generated

are designated as ongoing projects, which must be continued. These projects consti-
tute the set Pongoing. Their start period is period t = 1, i.e., we set tstart

p := 1 for each
project p ∈ Pongoing. The next

⌊
sharePmust · P̂

⌋
projects are designated as mandatory

projects, which must be selected. These projects form the set Pmust. For the mandatory
projects and all remaining projects, the respective start period of such a project p is
randomly selected from the set {1, . . . , T − dur p + 1}. The finish period tfinish

p of every
project p including ongoing projects results from the calculation tstart

p + dur p - 1. So, a
project p with a duration dur p = 1 that starts at the beginning of period 12 (tstart

p := 12)
ends at the end of period 12 (tfinish

p := 12). For the generation of our test sets, we set
sharePongoing := 0 and sharePmust := 0 as this allows a clearer presentation of results
and a straightforward interpretation.
The skill requirements of all P̂ projects are randomly determined. For each project p,

the number of required skills |Sp| is chosen between PminS and PmaxS . Then, |Sp| differ-
ent skills are randomly selected from the set S. The selected skills constitute the set Sp.
For each skill s ∈ Sp, a random number of periods is determined in which the skill re-
quirement is zero. The number of periods with zero requirement for skill s lies between
0 periods and dur p − 1 periods. The periods for which we set rpst := 0 are randomly
selected from the set {tstart

p , . . . , tfinish
p }.

Now, we will outline how the skill requirements are generated for periods t with rpst >
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0. We will only sketch the generation of these values in this paragraph and the next two
paragraphs, before we will give more details in the subsequent paragraphs. The magnitude
of the non-zero skill requirements of a project p is affected by two factors. The first factor
is the size of project p. We distinguish three project sizes: small, medium, and large. For
each project, its size is randomly determined. Based on the project size provisional values
for the skill requirements rpst are determined.
Then, the second factor comes into play. The second factor is the input parameter ρproj

that represents for each period t the desired ratio of total project requirements of all
projects in period t to the total availability of the workforce in period t. If necessary, all
provisional values for the project requirements rpst in period t are adjusted in order to meet
the desired ratio ρproj (first adjustment). This adjustment preserves relative differences
in project requirements due to project size. After the adjustment, the instance generator
considers for each skill s and each period t the workload of skill s and the availability
of the workers who master skill s, i.e., the instance generator computes the utilization
of the workers on a per-skill basis. If this utilization exceeds the parameter ρproj for
skill s in period t, the requirements rpst of all concerned projects p are adjusted (second
adjustment). Again, relative differences in project requirements due to project size are
preserved.
The first adjustment ensures that a desired utilization of the workforce is reached.

Note that the desired utilization can be an overload. An overload leads to an instance
of the project selection problem. For ρproj = 2, for example, about one project out of
two can be selected if no departmental workload must be accomplished. For ρproj = 50,
approximately one project out of 50 can be selected. An instance with an overload would
be an infeasible instance of the workforce assignment problem. The second adjustment
ensures that the desired utilization is not exceeded on a per-skill basis. If a second
adjustment is carried out, the utilization of the workforce decreases and can fall below
the desired utilization that was reached by the first adjustment.
The provisional values for the positive project requirements are determined as follows.

For each positive requirement rpst, a value is drawn from the discrete uniform distribution
between �a ·KminR� and �b ·KminR�. For small-, medium-, and large-sized projects the
pair of parameters (a, b) is defined as (0.2, 0.3), (0.3, 0.4), and (0.4, 0.6), respectively.
For the first adjustment of the provisional values, we calculate for each period t ∈ T

the current utilization utilproj
t of the workforce by project requirements as follows:

utilproj
t :=

∑
p∈Pongoing∪Pmust∪P̃ | tstartp ≤t≤tfinish

p

∑
s∈Sp

rpst

∑
k∈K

Rkt

The value utilproj
t is only an approximation for the utilization of the workforce in pe-

riod t by project work. The true utilization depends on the allocation of project workload
and on the skill levels of the workers. For the calculation of utilproj

t , we implicitly assume
that all skill levels are equal to 1.
If the current utilization utilproj

t does not lie in the interval [0.98 ·ρproj, ρproj], we adjust
all project requirements rpst in period t by setting rpst :=

⌊
rpst · ρproj

utilproj
t

⌋
.

For the potential second adjustment, we calculate for each skill s and each period t
the ratio utilproj

st that relates the sum of all requirements for skill s in period t to the
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availability of those workers who master skill s in period t. For the availability of each
worker k ∈ Ks, his skill level lks is taken into account:

utilproj
st :=

∑
p∈Pongoing∪Pmust∪P̃ | tstartp ≤t≤tfinish

p ∧ s∈Sp

rpst

∑
k∈Ks

Rktlks

If utilproj
st is greater than ρproj, we adjust the requirements for skill s in period t by

setting rpst :=
⌊
rpst · ρproj

utilproj
st

⌋
.

In the final part of the construction of an instance, some workers are assigned to each
ongoing project if there are any, i.e., each set Kassigned

p , p ∈ Pongoing, is composed. This
composition works for an ongoing project p as follows. For each skill s ∈ Sp, a worker k is
randomly selected from the set Ks and added to the set Kassigned

p . Since the same worker
can be selected for different skills s and s′ that are required by project p, |Sp| workers or
less form the set Kassigned

p .
Eventually, the generated instance data are written to a text file and can be used for

testing. The data are written to the text file in a standardized format such that they can
be read in again easily.
To characterize an instance beyond the input parameters, a measure denoted by rRlμ is

calculated for the instance. This measure rRlμ deals with the size of a skill requirement rpst
in relation to the availability of those workers that master skill s. In the following we refer
to an instance of the project selection problem. In case of an instance of the workforce
assignment problem, the definition is analog. For the measure rRlμ, we consider each
positive skill requirement rpst > 0, p ∈ Pongoing ∪ Pmust ∪ P̃ , s ∈ Sp, t ∈ Tp. Let rnum

denote the number of these positive skill requirements in an instance. For the availability
of the workers, we take into account their skill levels, i.e., a worker k with Rkt = 150
and lks = 2 has an availability of 300 man-hours with respect to skill s in period t. The
measure rRlμ represents the average of the ratios of all positive skill requirements to the
average availability across all suitable workers in the corresponding period, where the
availability is adjusted for skill levels.

rRlμ :=

∑
p∈Pongoing∪Pmust∪P̃

∑
s∈Sp

∑
t∈Tp

rpst
1

|Ks|
∑

k∈Ks

Rktlks

rnum (7.1)

If the average ratio rRlμ is greater than 1, an average worker cannot fully accomplish
an average skill requirement in a period even if he devotes all his time to this require-
ment. If rRlμ is considerably lower than 1, an average worker can accomplish several skill
requirements within a period. The average ratio rRlμ depends on the values of several in-
put parameters of the instance generator. It increases, for example, when, ceteris paribus,
ρproj increases, the number of projects decreases, or the number of workers increases.
All test instances that we generated and used for the performance analyses which we

present in the three following sections can be downloaded as text files from the internet
website http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/
forschung/benchmark-instances/. Other researchers are invited to develop alternative
solution methods for the three problems that we tackle and to use our instances for
performance tests of their methods such that results are comparable.
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7.2 Analysis for the project selection problem
For the numerical analysis of the project selection problem, we ran the MIP solver of
CPLEX 12.4 on various sets of instances. We tested different solver settings, e.g., different
search strategies. With respect to instances, we varied instance parameters such as the
number of projects. One goal of parameter variation was to explore the impact of these
parameters and to explore the limits of the instance size up to which solutions of acceptable
quality can be found in acceptable time. Additionally, we investigated two concepts
that enhance workforce flexibility, namely, multi-skilling and skill chaining. To examine
the effect of multi-skilling, which is also called cross-training, we varied the number of
skills mastered by the workers. Skill chaining requires a specific distribution of skills in
the workforce and allows to accommodate shifts in skill requirements. To examine the
advantage of skill chaining, we compared different skill distributions. For this comparison,
we developed a new flexibility measure.
The following list gives an overview of the objects of the analysis.

• Solver settings: maximum number of threads, search strategy (best bound vs. depth-
first), time limit

• Instance parameters: P̃ , K, ρproj

• Flexibility concepts: multi-skilling, skill chaining
The starting point of our analysis is a test set of ten instances, which were constructed

by the instance generator. To generate these ten instances, we set K = 100, D = 10,
P̂ = 150, S = 10, and T = 12. Since we set the share of ongoing and of mandatory
projects to 0, P̃ = P̂ = 150 holds, i.e., a subset of 150 projects can be selected for
the portfolio, while |Pongoing| = |Pmust| = 0. The members of each department share
a common skill (boolSameSkill = true) and each worker k ∈ K masters between 1 and
3 skills (boolNumSkillsRand = true with KminS = 1 and KmaxS = 3). Each project
requires between PminS = 5 and PmaxS = 7 skills. The input parameter ρproj was set to
2.5.
The data of an instance instantiated our MIP model (4.1)–(4.7) for project selection.

The respective model was solved by the MIP solver of CPLEX; we selected the dual sim-
plex method of CPLEX for solving LP relaxations within the branch-and-cut procedure.5
For each instance, we set a time limit tmax of 300 seconds (5 minutes) and restricted the
optimization process to 1 thread. For all other parameters of the MIP solver, we chose the
default settings. The default settings imply that the best bound rule is applied for node
selection. This rule prescribes that the node with the most promising bound is selected
from those nodes that wait for processing during branch-and-cut, i.e., from those nodes
of the branch-and-cut tree that have been generated but that have not been explored yet.
The bound of a node is the objective function value of the solution to the LP relaxation
which is associated with that node. Since the project selection problem is a maximization
problem, a node with the highest bound is selected for processing, because the higher the
bound of a node, the more promising is the node.
Results for each of the ten instances are given in Table 7.2. In the column headed “P ”,

the number of selected projects is stated and the column “Objective” reports the objective
5See on page 111 in Section 6.1 why we chose the dual simplex method.
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function value of the corresponding solution. The column “Solution status” indicates that
a feasible solution was found for each instance, but only for eight instances the solver
could prove optimality of the respective solution within the time limit. The solutions of
instances 3 and 10 can be optimal, but need not. When the time limit was hit for these
instances, there remained at least one unexplored node whose bound was greater than the
best objective function value found so far, i.e., greater than 1785 and 1870, respectively.
For instances 3 and 10, the column headed “Gap” reports the relative deviation of the
best solution found from the best bound. This deviation is very small in both cases. For
the other instances, the deviation is zero. A value of zero is indicated by a dash (–) in
Table 7.2 and all following tables.

Table 7.2: Results for the instances of a test set with P̃ = 150 projects (K = 100,
D = S = 10, tmax = 300 s, 1 thread, search strategy: best bound)

Instance Solution status Time [s] P Objective Gap [%]

1 optimal 144.0 103 1867 –
2 optimal 114.1 95 1876 –
3 feasible 300.0 102 1785 0.19
4 optimal 138.0 98 1847 –
5 optimal 200.5 97 1856 –
6 optimal 250.5 96 1744 –
7 optimal 210.2 104 1888 –
8 optimal 168.6 100 1870 –
9 optimal 24.2 105 1985 –
10 feasible 300.0 91 1870 0.34

Mean (μ) 185.0 99.1 1858.8 0.05

To calculate the relative deviation, let BestBound denote the value of the best bound
at the time when the time limit is hit and let ObjBestSol denote the objective function
value of the best integer-feasible solution that was found within the time limit. Then, our
definition of the relative gap, which we denote by Gap, reads as follows.

Gap :=
|BestBound −ObjBestSol |

BestBound
· 100%

If optimality is proven, Gap is set to 0.
The last row of Table 7.2 shows how we summarize results of a test set. For several

quantities, we calculate the mean μ in order to represent the distribution of the quantity
across the instances of a test set. For the mean, the results of all ten instances are
considered, i.e., the mean is always calculated by averaging over all ten instances. Let xi,
i = 1, . . . , n, denote a result for instance i. Then, the mean μ is defined as follows.

μ :=
1

n

n∑
i=1

xi

We use this aggregate measure in the following to present and compare results of
different test sets.
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For a first comparison, we varied the number P̃ of projects that are considered for the
project portfolio. The number P̃ =

∣∣P̃∣∣ determines the number of binary variables zp,
p ∈ P̃ , of an instance and is thus supposed to have a major impact on solution time
and quality. To generate the instance sets that are listed in the left-most column of
Table 7.3, we kept all input parameters of the instance generator constant except for P̂ =
P̃ . Consequently, the values of the parameters associated with workers and departments,
e.g., Rkt, lks, and rddt, are the same in instance 2 of the test set P̃ = 25 and in instance 2
of the test set P̃ = 50, for example. Note that the amounts of the skill requirements rpst of
the first 25 projects differ in both instances, because they are adjusted to meet a required
ratio ρproj of 2.5. The time limit of the solver was set to 5 minutes for every instance.
The results of this first comparison are presented in Table 7.3. The first column of

this table denotes the number of projects P̃ that can be selected in every instance of
the corresponding test set. The second column headed opt . states for how many out of
the ten instances belonging to the respective test set a proven optimal solution could be
determined within the time limit. In the third column, the average solution time timeμ
per instance for the test set is reported. The average number of selected projects Pμ

is given in the fourth column, the average objective function value obj μ of the selected
portfolio is listed in the fifth column. Finally, information about the average relative
gap gapμ of the solutions are summarized in the last column of the table.

Table 7.3: Results for test sets with different numbers of projects P̃ , tmax = 300 s,
1 thread, search strategy: best bound (K = 100, D = S = 10)

P̃ opt . timeμ [s] Pμ obj μ gapμ [%]

25 10 2.7 13.3 244.0 –
50 10 27.6 30.0 558.8 –
100 9 100.1 64.8 1199.4 0.04
150 8 185.0 99.1 1858.8 0.05
200 1 290.6 131.8 2508.1 0.18
250 0 300.0 165.1 3156.7 0.20
500 0 300.0 325.1 6194.2 5.65
750 0 300.0 412.6 7926.7 20.14
1000 0 300.0 139.4 2699.3 80.02
1500 0 300.0 105.8 2047.6 90.01
2000 0 300.0 275.9 5293.3 80.01
2500 0 300.0 360.8 6780.5 80.01
3000 0 out of memory

Table 7.3 shows for small-sized instances that the mean computation time sharply
increases with an increase in the number of projects P̃ . For all solutions of the instances
that belong to the test set P̃ = 250, optimality could not be proved. Though, gaps are
very small, i.e., the solutions are either optimal or almost optimal. In the following, we
term these solutions with gaps of less than 3% near-optimal. For larger-sized instances,
the solver cannot guarantee to find near-optimal solutions within the time limit tmax. For
one instance in the set P̃ = 500, the relative gap amounts to 55%, while the average gap
of the remaining nine instances is equal to 0.2% only. In the set P̃ = 1000, for eight
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instances the gap is equal to 100%, because z = 0 was the only feasible solution found,
i.e., z = 0 was the only leaf of the branch-and-cut tree reached within the time limit. For
all instances of the set P̃ = 3000, the required memory exceeded the available memory
before the time limit was hit.6 The memory shortage occurred after the LP relaxation
of the root node had been solved, but before the root node was branched. The memory
shortage forced CPLEX to abort the solution procedure.
Two settings of the solver have considerable impact on solution time and solution

quality for instances of the project selection problem. These two settings are the number
of threads available to the solver and the search strategy. When CPLEX was allowed
to use up to the maximum number of threads, i.e., up to 8 threads, we obtained the
results that are listed in Table 7.4. Solution times for small-sized instances decreased
compared to the solution times we observed when only 1 thread could be used. Though,
the use of several threads increases the memory demand and led to out-of-memory errors
for instances with P̃ ≥ 750 projects.7

Table 7.4: Results for test sets with different numbers of projects P̃ , tmax = 300 s, up to
8 threads, search strategy: best bound (K = 100, D = S = 10)

P̃ opt . timeμ [s] Pμ obj μ gapμ [%]

25 10 2.3 13.3 244.0 –
50 10 22.1 30.2 558.8 –
100 10 62.1 64.8 1199.5 –
150 9 139.7 99.1 1858.8 0.03
200 7 260.4 132.0 2508.6 0.05
250 1 299.3 165.1 3156.9 0.16
500 0 300.0 339.5 6548.2 0.22
750 0 out of memory

Next, we compared the search strategies best bound search and depth-first search, using
only 1 thread for both strategies. Outcomes were twofold. On the one hand, solution times
for small-sized instances were considerably higher in case of the depth-first strategy (cf.
Table 7.5), because the first integer-feasible solution z 
= 0 that is found by a best bound
search tends to be better than the first non-trivial feasible solution encountered by a
depth-first search. The earlier such a solution is found and the better such a solution is,
the larger parts of the branch-and-cut tree can be fathomed early on.
On the other hand, the depth-first search performed better than the best bound search

for instances of larger size with P̃ ∈ {500, 750}, because the depth-first search quickly
reaches leafs of the branch-and-cut tree, whereas the best bound search can spend all

6When we ran the 64 bit version of CPLEX, which could exploit 32 GB RAM in our case, the memory
limit was not hit for any instance of the test set P̃ = 3000. Solution quality reached by CPLEX 64 bit
for instances of smaller size was the same as the quality reached by CPLEX 32 bit.

7When we ran the 64 bit version of CPLEX, which could access 32 GB RAM, memory was sufficient
even for instances of the test set P̃ = 3000. Though, for test sets P̃ ≥ 750, CPLEX 64 bit returned the
trivial solution z = 0 for at least one instance of the respective test set. In case of P̃ = 3000, z = 0
was returned for all instances after 300 seconds. For P̃ = 500, solution quality of CPLEX 64 bit and
CPLEX 32 bit was almost identical.
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Table 7.5: Results for test sets with different numbers of projects P̃ , tmax = 300 s,
1 thread, search strategy: depth-first (K = 100, D = S = 10)

P̃ opt . timeμ [s] Pμ obj μ gapμ [%]

25 10 2.5 13.3 244.0 –
50 10 34.2 30.0 558.8 –
100 7 162.1 64.9 1199.2 0.29
150 2 256.7 99.1 1854.0 0.68
200 1 299.1 131.1 2502.4 0.55
250 0 300.0 165.1 3153.2 0.40
500 0 300.0 339.1 6539.5 0.36
750 0 300.0 514.0 9887.5 0.28
1000 0 300.0 477.2 8997.5 32.93
1500 0 300.0 60.0 950.7 95.34
2000 0 300.0 275.9 5293.3 80.01
2500 0 300.0 360.8 6780.5 80.01
3000 0 out of memory

the time for processing nodes that lie between the root node and leaf nodes of the tree.
For P̃ = 500, the best bound search found near-optimal solutions for nine out of ten
instances. For the remaining instance, a solution with a gap of 54.66% was reached.
Hence, the average gap amounts to 5.65% (cf. Table 7.3). For P̃ = 750, the best bound
search reached near-optimal solutions for eight out of ten instances, but reached only the
trivial leaf z = 0 for the two remaining instances resulting in an overall average gap of
20.14%. The depth-first strategy, in contrast, led to near-optimal solutions for all test
instances of the sets P̃ = 500 and P̃ = 750, resulting in an average gap of only 0.36%
and 0.28%, respectively (cf. Table 7.5).
For P̃ = 1000, both search strategies cannot provide solutions of acceptable quality

within the time limit. The best bound search returned z = 0 for eight instances and
found near-optimal solutions for only two instances resulting in an average gap of 80.02%,
whereas the depth-first search returns z = 0 only for one instance and near-optimal
solutions with gaps less than 0.3% for six instances. For three instances, the gaps lie
around 75% resulting in an average gap of 32.92%.
Given the time limit of 300 seconds and 1 thread only, acceptable solution quality

was achieved for P̃ ≤ 250 in case of the best bound search and for P̃ ≤ 750 in case
of the depth-first search. The available memory of 4 GB RAM could accommodate the
memory demand of both search strategies in the first 300 seconds for instances with up
to 2500 projects. Out-of-memory errors occurred for both strategies for all ten instances
with P̃ = 3000.
To see how solution quality improves if more time is granted, we increased the time

limit for the best bound search with 1 thread from 300 seconds to 3600 seconds, i.e., from
5 minutes to 1 hour. The corresponding results for the test instances are summarized in
Table 7.6.
Out-of-memory errors occurred for all instances of the test set P̃ = 3000 within the first

three minutes, as we had already observed from the results in Table 7.3. For nine instances



210 Chapter 7 Numerical analysis

Table 7.6: Results for test sets with different numbers of projects P̃ , tmax = 1 h, 1 thread,
search strategy: best bound (K = 100, D = S = 10)

P̃ opt . timeμ [s] Pμ obj μ gapμ [%]

100 10 132.8 64.9 1199.5 –
150 10 284.9 99.1 1858.8 –
200 10 804.3 131.8 2508.6 –
250 8 1767.6 165.2 3158.0 0.02
500 1 3408.5 340.1 6555.5 0.08
750 0 3600.0 514.9 9905.3 0.09
1000 0 3600.0 689.4 13 283.3 0.08
1500 0 3600.0 1047.0 20 097.6 0.07
2000 0 3600.0 1364.4 25 803.2 4.52
2500 0 out of memory
3000 0 out of memory

of the test set P̃ = 2500, the memory demand led to an out-of-memory error, because
the branch-and-cut tree required too much memory.8 The out-of-memory error occurred,
on average, after 50 minutes when 348 nodes had been processed and 346 nodes waited
for processing. When the out-of-memory error occurred, for five out of the nine instances
only the trivial solution z = 0 had been found, for two instances a poor integer-feasible
solution with a large gap had been determined, and for the remaining two instances
near-optimal integer-feasible solutions had been found.9 These results indicate that it
takes considerable amounts of memory and time to determine near-optimal solutions for
instances of very large size.
Within 1 hour, an optimal solution was found and verified for each instance of the test

sets with P̃ ≤ 200. Let us call solutions whose relative gap is at most 3% high-quality
solutions, i.e., proven optimal and near-optimal solutions are high-quality solutions. Such
high-quality solutions were found for all instances with P̃ ≤ 1500. Since 1 hour solution
time is deemed acceptable for a long-term planning problem at the strategic level of a
firm, high-quality solutions were found for instances with P̃ ≤ 1500 in acceptable time.
For P̃ = 2000, gaps were negligibly small for all instances but for one.
A closer look at the branch-and-cut solution process reveals that the upper bound on

the optimal objective function value is tight from the very beginning on. The upper bound,
which is derived from the solution of the LP relaxation of the root node, is already close to
the optimal objective function value. The tightness of the upper bound is documented in
Figure 7.1(a) for a medium-sized instance with P̃ = 250 and in Figure 7.1(b) for a large-
sized instance with P̃ = 2000. Both figures show how the respective value of the upper
bound and the respective objective function value of the incumbent solution change over

8Whenever for at least one instance of a test set an out-of-memory error occurred, we report “out of
memory” in our tables, although the available memory may have been sufficient for some instances of
the test set.

9When we ran CPLEX 64 bit for P̃ = 2000, P̃ = 2500, and P̃ = 3000, out-of-memory errors did not
occur. Using 1 thread, average relative gaps after 1 hour amounted to 0.04%, 37.97%, and 34.57%,
respectively. Using up to 8 threads led to gaps of 10.04%, 0.04%, and 17.75%, respectively.
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time. The incumbent solution is at any point in time the best integer-feasible solution
found until this point in time. For the medium- and the large-sized instance, the first
integer-feasible solution z 
= 0 that is encountered is already very close to the upper
bound and is hence a near-optimal solution. The difference between both instances is the
time required to spot this first non-trivial integer-feasible solution. The time required to
determine such a solution tends to increase with instance size.
In a second experiment, we varied the number of workers K to examine the impact of

this parameter on solution time and quality. Besides the number of projects P̃ , the number
of workers plays a central role for the project selection problem, as the parameter K
influences model size. The higher the number of workers, the higher is the number of
variables ŷkpst and the higher is the number of Constraints (4.3), which ensure that the
availability of every worker is observed in every period.
We found that an increase in the number of workers has a less severe impact on solution

time and quality than an increase in the number of projects. Nevertheless, an increase
in K has a substantial impact on solution time. The impact on solution quality is less
intense.
An increase in the number of workers raises the number of continuous variables ŷkpst,

but does not increase the number of binary variables zp. In general, binary variables
have a larger impact on solution time, as they affect the size of the LP relaxation and,
in particular, the number of nodes in the branch-and-cut tree, whereas the number of
continuous variables only impacts the size of the LP relaxation that must be solved at
each node. However, since the variable ŷkpst is a four-index variable, the number of the
continuous variables ŷkpst is already large for modest numbers of workers, projects, skills,
and periods. On the basis of three exemplary instances, Table 7.7 shows how the numbers
of variables zp, the numbers of variables ŷkpst, and the numbers of constraints change for
the project selection model (4.1)–(4.7) when the number of projects is doubled and when
the number of workers is doubled.

Table 7.7: Numbers of variables zp, variables ŷkpst, and constraints for three instances
of different size (D = S = 10, T = 12)

Instance #zkp #ŷkpst #constraints

K = 100, P̃ = 100 100 39 674 3396

K = 200, P̃ = 100 100 83 471 4596

K = 100, P̃ = 200 200 81 958 5628

To examine the effect of the number of workers on solution time and quality, we
conducted test series for two different time limits and for different numbers of projects.
We considered 5 minutes and 1 hour as time limits. For each time limit, we carried out
test series for three values of P̃ . For each test series, we generated test sets with different
numbers of workers (cf. Tables 7.8 and 7.9).
For a time limit of 5 minutes, instances with 250 workers and 50 projects as well

as instances with 50 workers and 100 projects were solved to optimality (cf. Table 7.8).
When there were 750 workers or more, only the trivial solution z = 0 could be found for
some instances with 75 and 100 projects.
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Figure 7.1: Value of the best bound and objective function value of the incumbent
solution during branch-and-cut for a medium- and a large-sized instance

For a time limit of 1 hour, the number of high-quality solutions and the average
relative gap are presented for each test set in Table 7.9. Solution quality decreases with
the number of workers and the number of projects. For instances with 150 projects and
K ≥ 1750, the available memory was not sufficient to store the branch-and-cut tree.
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Table 7.8: Average solution times timeμ [s], numbers of proven optimal solutions opt .,
and average relative gaps gapμ [%] for test sets with different numbers of
workers K and projects P̃ , tmax = 300 s (D = S = 10, 1 thread, search
strategy: best bound)

P̃ = 50 P̃ = 75 P̃ = 100

K timeμ opt . gapμ timeμ opt . gapμ timeμ opt . gapμ

25 2.6 10 – 4.7 10 – 25.1 10 –
50 4.6 10 – 15.0 10 – 39.8 10 –
100 16.3 10 – 62.7 10 – 117.7 9 0.04
250 72.9 10 – 166.5 8 0.19 225.9 5 0.36
500 190.0 8 0.48 272.1 3 2.03 300.0 0 2.40
750 254.9 5 1.29 300.0 0 31.01 300.0 0 50.97
1000 258.2 1 3.14 300.0 0 70.57 300.0 0 80.35

Table 7.9: Numbers of high-quality solutions and average relative gaps gapμ [%] for
test sets with different numbers of workers K and projects P̃ , tmax = 1 h
(D = S = 10, 1 thread, search strategy: best bound)

P̃ = 50 P̃ = 100 P̃ = 150

K h.-q. sol. gapμ h.-q. sol. gapμ h.-q. sol. gapμ

100 10 – 10 – 10 –
250 10 – 10 – 10 –
500 10 – 10 0.11 10 0.10
750 10 – 10 0.22 10 0.27
1000 10 – 10 0.46 10 0.38
1250 10 – 10 0.88 8 10.66
1500 10 0.09 10 0.92 7 30.84
1750 10 0.31 10 1.79 out of memory
2000 10 0.23 9 1.46 out of memory

In another experiment, we varied the desired ratio of total project requirements to
the corresponding availability of the workforce across test sets. For the generation of
the test sets, we fixed K to 100 and P̂ to 100. With |Pongoing| = |Pmust| = 0, i.e.,
with sharePongoing := sharePmust := 0, this led to P̃ = 100 projects. All other input
parameters of the instance generator were set to the same values as before. Only the pa-
rameter ρproj was varied by choosing ρproj ∈ {1, 2, . . . , 14, 15, 20, 25, . . . , 45, 50}. Hence,
for example, the data of instance 2 of each test set are identical except for the the values
of the positive project requirements rpst. The greater the value of ρproj, the greater are the
project requirements rpst and the less projects can be selected, because workforce capacity
was held constant.
The value of the parameter ρproj has a notable impact on solution time. Average

solution times for the instances of all test sets are depicted in Figure 7.2 along with the
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average number of projects that were selected in the proven optimal solutions. Since
corresponding instances are identical across test sets except for the magnitude of project
requirements, the respective optimization models exhibit identical numbers of variables
and constraints. The instances differ only with respect to the number of feasible solutions
and the number of top-quality solutions, whose objective function values are not far away
from the optimal objective function value. The number of feasible portfolios decreases
as ρproj increases, while the number of top-quality portfolios is expected to peak at that
value of ρproj where an optimal portfolio contains around P̃

2
projects. The difference in

the number of top-quality portfolios across test sets causes differences in solution time.
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Figure 7.2: Average solution times timeμ and average numbers of selected projects Pμ

for test sets with different ratios of project requirements to workforce avail-
ability ρproj (P̃ = 100, K = 100, D = S = 10, tmax = 1 h, 1 thread, search
strategy: best bound)

If the project requirements are so small that all projects can be selected as in the case
of our test set ρproj = 1, the solution to the LP relaxation of the root node is integer-
feasible and, thus, the optimal solution is found quickly. In this case, there is only one
top-quality portfolio. If the project requirements are so large that all feasible portfolios
contain at most one project, there are at most 100 top-quality solutions for an instance
of our test sets. Among these solutions, an optimal one can be found in short time.
If the portfolio can contain up to P̃

2
projects, i.e., if a medium value was chosen for

ρproj, then around
(
P̃
P̃
2

)
=

P̃ !
P̃
2
! P̃
2
!
top-quality solutions may exist, e.g., in our case with

P̃ = 100, there may exist approximately 1029 top-quality solutions. The branch-and-
cut procedure has to process more nodes than for extremely small or large values of the
parameter ρproj. For our test sets, on average 345 nodes had to be processed in case
of ρproj = 2 per instance, 2113 nodes in case of ρproj = 9, and only 102 nodes in case
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of ρproj = 40. Solution time peaked when an optimal portfolio comprised between 15
projects (ρproj = 14) and 50 projects (ρproj = 4).
In our last two experiments for the project selection problem, we considered two

concepts that are related to workforce flexibility: multi-skilling, which is also called cross-
training, and skill chaining. Skill chaining refers to a particular allocation of skills to
workers that allows to shift workload from a highly utilized worker via a chain of workers
to a worker that is not fully occupied. The concept of skill chaining will be explained in
more detail below. Multi-skilling and skill chaining increase workforce flexibility. This
flexibility facilitates a higher capacity utilization, i.e., it raises the capacity of the work-
force without extending the working time limit that is agreed upon in labor contracts.
The aim of our experiments was to determine the advantage of flexibility gained through
multi-skilling and skill chaining. To this aim, we simulated workforces with different
degrees of multi-skilling and we considered different skill configurations that represent
different skill chaining strategies.
The scope of the advantage that both flexibility concepts provide is not obvious in our

case. In regard to multi-skilling, there is no doubt about the existence of an advantage of
a higher degree of multi-skilling in our case. A firm whose workforce is more flexible due
to a high degree of multi-skilling can always select a project portfolio which is at least
as beneficial as that portfolio that a firm with a less flexible workforce can select. The
question is whether the advantage of multi-skilling is only marginal or so substantial that
investments in cross-training are justifiable. In general, one might expect that an optimal
portfolio exhibits a high level of utilization of the workforce. So, every worker may spend
almost his complete time for project work. It is not obvious whether an additional skill
for each worker makes it possible to select a portfolio that is considerably more beneficial.
In regard to skill chaining, there is no doubt that longer chains provide more flexibility in
the simple case where each worker masters two skills and the number of skills equals the
number of workers. But again, the magnitude of the effect is not obvious. Moreover, in
our problem setting the number of workers tends to exceed the number of skills by far. In
this case, it is difficult to estimate the effects that different skill configurations will have.
In Section 2.2, we have reported on several studies that investigated the value of multi-

skilling or resource flexibility and the value of chaining. The studies yielded consistent
results for various problems: The marginal return of flexibility decreases and chaining
tends to be advantageous. However, to the best of our knowledge, the value of multi-
skilling has not been investigated for a project selection problem so far, and with respect
to chaining, in most cases only simple chaining strategies have been considered. In the
following, we will examine the value of multi-skilling and of chaining with respect to
project selection. First, we look at the impact that different degrees of multi-skilling
have. Then, we will compare different skill configurations that are characterized by the
same degree of multi-skilling. Among the skill configurations, there is a simple and an
advanced chaining strategy.
To assess the advantage of multi-skilling for project selection, we carried out four

test series, one for each combination of two different instance sizes and two different
parameter settings. With respect to instance size, we varied the number of workers and
projects; with respect to parameter settings, the value of the parameter ρproj was varied (cf.
Table 7.10). For each test series, we generated six test sets by setting KminS := KmaxS
with KmaxS ∈ {1, 2, . . . , 6}, i.e., we generated one set of instances where each worker
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masters exactly one skill, another set where each worker masters exactly two skills, and
so on. For a test set with KmaxS = 3, |Sk| = 3 holds for all k ∈ K. From now on, we refer
to such a test set as test set |Sk| = 3. The instances of the test sets that belong to a series
differ only in the number of skills mastered by the workers. For example, in an instance
of the test set with |Sk| = 3, every worker masters three skills, and in the corresponding
instance of the test set with |Sk| = 4, every worker masters four skills, namely, the same
skills at the same levels as in the test set with |Sk| = 3 plus an additional skill. All other
data, e.g., the availabilities Rkt and the project requirements rpst, are identical in these
two instances and in all corresponding instances across the six test sets of a series.
These identical data are necessary to compare the different degrees of multi-skilling. To

obtain these identical data across test sets, the instance generator was slightly modified.
The modification affected the impact of parameter ρproj on the skill requirements rpst. In
the unmodified version, adjustments of skill requirements rpst take into account the skill
sets of the workers in order to achieve the desired ratio ρproj of project requirements to
workforce availability. The modified version of the instance generator ignores the skill sets
and returns identical requirements rpst for any degree of multi-skilling, i.e., for different
values of |Sk|.
Our results confirm the finding of other researchers that marginal returns of flexibility

decrease. The results for our test series are summarized in Table 7.10. We determined
optimal solutions for all instances of all four test sets. First of all, note that solution time
increases with increasing number of skills per worker. Increasing computation times are a
disadvantage of greater flexibility and can even be a pitfall, as documented by Walter and
Zimmermann (2012), who called the phenomenon of increasing computation times the
curse of flexibility. Average objective function values obj μ increase strictly monotonically
with increasing flexibility of workers. Though, marginal benefits diminish when flexibility
increases. The additional value of a fifth skill is almost negligible. For our test sets,
limited flexibility, say three or four skills per worker, is almost as beneficial as maximum
flexibility with six skills per worker.
The average total utilization utilμ of workers for the test sets from Table 7.10 is

displayed in Figure 7.3. The utilization utilμ is the average utilization across the ten
instances of a test set. It considers project work and departmental workload; that is
why we call it total utilization. The mean total utilization util of a solution for a single
instance is computed as the ratio of the total time spent for project and departmental
work to the total availability:

util :=

∑
k∈K

∑
p∈P̂suit

k

∑
s∈Smatch

kp

∑
t∈Tp

ŷkpst +
∑
d∈D

∑
t∈T

rddt

∑
k∈K

∑
t∈T

Rkt

The mean utilization due to departmental requirements is about 18% for each instance.
Figure 7.3 discloses that worker utilization is small for a mono-skilled workforce. Uti-

lization increases sharply when one or two secondary skills are mastered by the workers.
With two or three secondary skills, considerably better portfolios can be selected. These
portfolios tend to contain more projects. The additional skills enable the workforce to
cope with unbalanced skill requirements. Further skills do not help to select substantially
better portfolios. Thus, utilization does not increase further. Note that the number of
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selected projects P and the utilization util can decrease with additional skills, because
the benefit bp of a project p ∈ P̃ is not proportional to project size. However, the optimal
objective function value increases with increasing flexibility.
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Figure 7.3: Average total utilization utilμ of a worker depending on the number of skills
per worker |Sk| (D = S = 10, ρdep = 0.2)

To analyze the impact of chaining, we investigated three skill chaining strategies. The
analysis comprised three approaches to assess the quality of the chaining strategies: We
solved instances of the project selection problem, ran a simulation experiment, and applied
simple flexibility measures. The three different skill chaining strategies are illustrated in
Table 7.11 for an example with K = 12 workers, D = 6 departments, and S = 6 skills.
For all strategies, |Sk| = 2, k ∈ K, holds and each worker k ∈ K masters a primary skill
that depends on his department and a secondary skill. We assume that all skill levels lks,
k ∈ K, s ∈ Sk, are equal to 1. Strategy or configuration A, called “short chains”, features
several chains, which involve two skills and two workers only. Configuration B, termed
“long identical chains”, contains long chains with an identical sequence of skills. Each
chain involves all skills and all workers. This configuration is a classical, simple chaining
strategy. Configuration C, called “diverse chains”, is a representative for an advanced
chaining strategy where the secondary skill of each worker is selected such that chains are
created that feature more diverse skill sequences.
For the first approach, we solved instances of the project selection problem that repre-

sent the different skill chaining strategies. We prepared three test series and for each test
series we generated one test set for each chaining strategy. The three test series differ in
the parameters K, P̃ , and ρproj (cf. Table 7.12). With respect to the number of skills per
worker and skill levels, all instances follow the general pattern in Table 7.11, i.e., |Sk| = 2,
k ∈ K, and lks = 1, k ∈ K, s ∈ Sk, holds in all instances.
Our computational results, which are outlined in Table 7.12, approve the advantage
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Table 7.11: Skill configurations of three different skill chaining strategies

Sk, k ∈ Kd

Config. A Config. B Config. C
d Kd (short chains) (long identical chains) (diverse chains)

d1 {k1, k2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,3}
d2 {k3, k4} {1,2} {1,2} {2,3} {2,3} {2,3} {2,4}
d3 {k5, k6} {3,4} {3,4} {3,4} {3,4} {3,4} {3,6}
d4 {k7, k8} {3,4} {3,4} {4,5} {4,5} {4,5} {4,1}
d5 {k9, k10} {5,6} {5,6} {5,6} {5,6} {5,6} {5,2}
d6 {k11, k12} {5,6} {5,6} {6,1} {6,1} {6,1} {6,5}

of longer chains compared to short identical chains and beyond that deepen the current
knowledge about chaining strategies. For the three test series, the ranking of the three
skill configurations or chaining strategies is consistent. With respect to solution quality,
which is denoted by obj μ, configuration C, which features diverse chains, performs best,
followed by configuration B with long identical chains. Skill configuration A with its short
chains leads to solutions of inferior quality in all test series. The following two examples,
which refer to the sample data in Table 7.11, explain this ranking. The first example,
Example 7.1, indicates that skill configurations B and C are superior to A. Example 7.2
explains the different outcomes for configurations B and C.

Example 7.1 Assume that the data in Table 7.11 represent the situation of a firm with
K = 12 and D = 6 where the workforce masters S = 6 skills in total; let the firm consider
the three skill configurations A, B, and C. Additionally, let T = 1, Rkt1 = a > 0, k ∈ K,
and lks = 1, k ∈ K, s ∈ Sk. Assume that the total requirement for each skill amounts
to 2a. For all skill configurations, let the two workers of department d1 accomplish the
requirement for skill 1, let the two workers of department d2 do the workload of skill 2,
and so forth. Each of the three skill configurations can satisfy all skill requirements.
Now, let there be a shift in skill requirements such that the requirement for skill 2

drops to 0, while the requirement for skill 4 doubles to 4a. Skill configurations B and
C can accommodate this shift, whereas configuration A cannot meet all requirements
anymore.
In case of configuration A, the members of department d3 can accomplish the addi-

tional requirements of skill 4, but then the requirement of skill 3 is not accomplished. At
the same time, the workers in department d2 are idle. In consequence, either workload of
skill 3 or skill 4 or some workload of both skills cannot be allocated, because there is no
chain that links workers who master skill 2 with workers mastering skill 4.
In case of skill configuration B, such chains exist. For example, the workers k5 and k6

of department d3 can accomplish the additional requirement for skill 4. Their workload
of skill 3 is shifted to the workers of department d2 who would be idle otherwise. Put
differently, the chains s2–k3–s3–k5–s4 and s2–k4–s3–k6–s4, for instance, can be exploited.
If skill configuration C is in force, the chain s2–k3–s3–k5–s4 and worker k4, i.e., the

chain s2–k4–s4, can be used to accommodate the shift in requirements. �
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The following example indicates that skill configuration C is, on average, superior
to B.

Example 7.2 (continued from Example 7.1) Assume that the first shift in skill re-
quirements persists and that a second shift occurs, where the requirement for skill 1 falls
from 2a to 0 and the requirement for skill 6 doubles to 4a.
In case of skill configuration B, each demand shift can be absorbed if it occurs on its

own, as there are corresponding chains. However, both shifts cannot be handled if they
occur simultaneously. If a chain is used to reallocate workload for one demand shift, every
chain that is capable to absorb the other shift is blocked. Then, only one of the shifts can
be fully accommodated. Alternatively, both shifts can be partially accommodated. If the
first shift concerning skills 2 and 4 is accommodated as in Example 7.1, the chains from
the workers who master skill 1 to those workers who master skill 6 are blocked. Likewise,
exploiting a chain from skill 1 to skill 4 blocks a chain from skill 2 to skill 6.
Configuration C can accommodate one demand shift completely and the other partially

at the same time. Assume that the first shift is accommodated as in Example 7.1. For
the second shift in skill requirements, the chain s1–k2–s3–k6–s6 from skill 1 to skill 6 can
be exploited to adapt to the demand shift.
The advantage of configuration C compared to B is that the skill sequences in the

chains of configuration C are more diverse. This diversity increases the probability that
there is an unblocked chain that can accommodate a further shift of skill requirements.�

In a second approach to evaluating the skill configurations A, B, and C, we conducted
a simulation. Our aim was to assess the skill configurations from Table 7.11 on a broader
basis than in Example 7.2. We ran a simulation with randomly generated skill demands
and recorded for each demand scenario the maximum demand which could be fulfilled by
each skill configuration. The maximum was determined by solving a simple LP. For all
12 workers we set their availability to 1. This corresponds to a = 1 in Example 7.2. A
demand scenario was generated as follows. For each of the six skills, a requirement value
was randomly selected from the set {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. If the sum of all skill
requirements, the total demand, exceeded 12, the total availability of the workforce, we
repeatedly selected a skill with a positive requirement and reduced its requirement by 0.5
until a total demand of 12 was reached.
The simulation comprised 100 000 randomly generated demand scenarios. We did not

exclude duplicate scenarios. The same demand scenarios were imposed on each skill con-
figuration. The average total demand amounted to 10.732. The results of the simulation
are summarized in Table 7.13, which confirms the ranking C, B, A that we expected from
Example 7.2.
Note that there are even better skill configurations than configuration C. We randomly

generated 1000 skill configurations, including duplicates, and tested each configuration
against the 100 000 demand scenarios. The best configuration found could fulfill a demand
of 10.585 on average. Like configuration C, the best configuration profits from chains with
diverse skill sequences.
To assess the three skill configurations using a third approach, we applied a fast method

that is based on simple flexibility measures. Simulation, which we used for the second
approach, is one way to compare the quality of skill configurations; though, this way can
be time-consuming. In Section 2.2, we introduced simple but well thought out measures
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Table 7.13: Results of the simulation with 100 000 randomly generated skill demand
scenarios for different skill configurations

Average demand . . .

. . . of all scenarios 10.732

. . . fulfilled by skill configuration A 9.348

. . . fulfilled by skill configuration B 10.302

. . . fulfilled by skill configuration C 10.541

. . . fulfilled by the best configuration found 10.585

proposed by Iravani et al. (2005) and Chou et al. (2011). We applied their measures to
evaluate the three skill configurations A, B, and C from Table 7.11. The capacity and
demand data required for the measures of Chou et al. were chosen in accordance with
the data used for the simulation. This means that we assumed ck = 1 for the capacity
or availability of each worker k ∈ K and E

[
d̃s
]
= 1.789 ≈ 10.732

6
for the expected demand

for each of the six skills s ∈ S. In the simulation, 10.732 was the average demand for all
six skills per scenario. The values of the measures ϕarc, ϕmean, and ϕeigenvalue devised by
Iravani et al. (2005) and the values of the measures δnode

i and δpairwise
ii′ developed by Chou

et al. (2011) are presented in Table 7.14.

Table 7.14: Values of different flexibility measures for the three skill configurations from
Table 7.11, which represent different skill chaining strategies (a bracketed
value for ϕeigenvalue indicates that this value was computed—contrary to
recommendation—for a disconnected graph)

Skill configurations from Table 7.11

Config. A Config. B Config. C
Flexibility measure (short chains) (long identical chains) (diverse chains)

ϕarc 24 24 24
ϕmean 1.33 4 4
ϕeigenvalue (8) 24 24

ϕpairwise
mean 3.2 5.33 5.91

Lowest δnode
i 2.24 2.24 2.24

Lowest δpairwise
ii′ 1.12 1.68 1.68

Second lowest δpairwise
ii′ 1.12 1.68 1.79

In addition, Table 7.14 contains a new flexibility measure, ϕpairwise
mean , that we developed

based on the measure ϕmean of Iravani et al. (2005). We devised ϕpairwise
mean because all the

measures of Iravani et al. are indifferent with respect to skill configurations B and C.
Their measures are indifferent because both configurations feature an identical structure
flexibility matrix. The identity MB = MC of the structure flexibility matrices reflects the
reasoning in Example 7.1. When only the demand for one skill is increased and the de-
mand for another one is decreased, capacity can be shifted to accommodate the imbalance



7.3 Analysis for the workforce assignment problem 223

in case of both skill configurations. However, when the demand for two skills rises, while
the demand for two other skills falls, skill configuration C outperforms configuration B
as explained in Example 7.2. The flexibility measure ϕpairwise

mean captures this performance
difference. ϕpairwise

mean is calculated similar to ϕmean. The latter requires to compute max-
imum flows between two single nodes, whereas ϕpairwise

mean requires to determine maximal
flows between two pairs of nodes.
The exact computation of ϕpairwise

mean works as follows. For each quadruple (s, s′, s̄, s̄′) ∈
S4 with s < s′, s < s̄, s′ 
= s̄, s̄ < s̄′, and s′ 
= s̄′, we calculate the maximum number of
non-overlapping paths that run from skill nodes s and s′ through the bipartite graph G
that represents the skill configuration to skill nodes s̄ and s̄′. The maximum number
of non-overlapping paths is equal to the maximum flow that can be shipped from skill
nodes s and s′ to skill nodes s̄ and s̄′ when for all edges in G a maximum capacity of 1 is
assumed. Given the maximum flow for all quadruples, we calculate the average number
of paths per quadruple. ϕpairwise

mean is defined as this average value.
When the measures ϕmean and ϕeigenvalue are indifferent, the new measure ϕpairwise

mean may
be able to distinguish the flexibility of two skill configurations. The configuration for
which ϕpairwise

mean is larger, is the more flexible one. As can be seen from Table 7.14, ϕpairwise
mean

distinguishes skill configuration B from C and ranks the three configurations A, B, and C
in the same order that resulted from the simulation experiment.
The set of measures provided by Chou et al. (2011) provides the same ranking. How-

ever, note that the measures of Chou et al. distinguish configuration B from C also only
when pairs of nodes are considered. For all three configurations, the single node expansion
ratio of each skill node equals 2.24 and the ratio of each worker node is equal to 3.58. In
regard to configurations B and C, ties are not broken by the lowest pairwise expansion
ratio but by the second lowest.
We can sum up the analysis of the three chaining strategies as follows. Results obtained

from CPLEX for test instances, the simulation experiment, a refined version of a flexibility
measure from Iravani et al. (2005), and the measures of Chou et al. (2011) confirm for
the project selection problem that a skill configuration with diverse chains outperforms a
configuration that follows the classical chaining strategy.

7.3 Analysis for the workforce assignment problem
In this section, we present the results of our numerical analysis for the workforce as-
signment problem. We compare our modeling approaches and analyze the performance of
exact branch-and-cut methods provided by the solver package CPLEX in Subsection 7.3.1.
In Subsection 7.3.2, the performance of our heuristic methods is analyzed. Before we look
at the results, though, we will briefly show the potential of explicitly considering the
number of assignments in order to emphasize the importance of our approach once more
and we will give a short description of the test instances on which our analysis is founded.
Models that do not explicitly consider the number of assignments of workers to projects

can provide solutions that imply a very large average team size, which may impede smooth
project execution. To give an example for the potential of minimizing average team size,
we compared the number of assignments for three models. The first model is model (4.1)–
(4.7) for the project selection problem. In a solution of this model, the variables ŷkpst
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implicitly constitute project teams for the selected projects. The second model is a linear
program whose objective function minimizes the total working time. Since the time that
must be spent for department work is given, this objective function can be written as
Min.

∑
k∈K

∑
p∈Psuit

k

∑
s∈Smatch

kp

∑
t∈Tp ykpst. The secod model can be seen as a model that

minimizes variable costs which are incurred for every minute a worker is accomplishing
project workload. Hence, the second model imitates some aspects of the model of Heimerl
and Kolisch (2010a). The third model is model (4.19)–(4.29), i.e., the network model
for the workforce assignment problem. This model explicitly minimizes the number of
assignments.
To compare the outcomes of the three models, we first solved all instances of the test

set K = 50, P̃ = 50 from Table 7.8 on page 213 applying the first model, i.e., the model
for project selection (cf. Table 7.15). From the solution of this model for each instance, we
derived an instance for the other two models. Such a derived instance contained exactly
those projects that were selected by the first model. The second column in Table 7.15
states for each instance the number of projects P that were selected by the first model.
Hence, P projects were staffed by each of the three models, e.g., 29 projects in case of
instance 1.

Table 7.15: Numbers of assignments of workers to projects for three different models,
namely, maximization of portfolio benefit (project selection), minimization
of variable costs, and minimization of the number of assignments (workforce
assignment) (test set K = 50, P̃ = 50 from Table 7.8 on page 213 with
D = S = 10)

Number of assignments

Instance P Mod. project sel. Mod. variable costs Mod. workforce assignm.

1 29 551 521 217
2 30 619 592 239
3 29 527 520 213
4 31 547 549 227
5 27 533 490 202
6 32 625 606 273
7 27 482 439 196
8 31 620 586 249
9 26 510 457 180
10 32 598 559 224

Mean (μ) 561 532 222

Table 7.15 shows that the number of assignments can be drastically reduced if team
size is considered explicitly. The solutions of the project selection problem feature an
average project team size of about 19 workers. Average team size amounts to 18 workers
for the second model, whereas average team size could be reduced to 7.5 workers for
the third model.10 Compared to the first and the second model, this is a reduction by

10In case of the third model, the time limit was set to 2 hours for each instance. The average gap of the
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around 60%. In the first and the second model, requirements of each skill s ∈ S are
primarily allocated to those workers that master skill s with the greatest skill level. Such
an allocation leads to scattering the workers across projects.
Having realized that it is necessary to explicitly consider the number of assignments

in order to obtain small and efficient project teams, we will describe the instances that
we generated to test our solution methods for the workforce assignment problem.
The basis of our performance analysis are three collections of test sets. We call these

three collections testbed 1, testbed 2, and testbed 3. These three testbeds were used for
both exact and heuristic approaches. Every test set of each testbed comprises 10 instances.
As before, for all instances of a test set, the values of the input parameters of the instance
generator were kept constant.
Testbed 1 comprises six test sets (cf. Table 7.16 on page 227, for example). The

instances of these test sets range from small- to medium-sized instances. The numbers of
workers K and projects P range from 10 to 100 each, the numbers of departments D and
skills S are varied between 3 and 10. For all other parameters that are required by the
instance generator, we used the default values.
Testbed 2 comprises instances of medium and large size (cf. Table 7.28 on page 243, for

example). For testbed 2, we generated six test series. Across the test series, the number
of workers K ranges from 40 to 1500, the number of projects is varied between 40 and
500, and the number of departments D and skills S lies between 6 and 75. Each test
series is defined by a combination of the number of workers K, the number of projects P ,
the number of departments D, and the number of skills S. For each combination, i.e., for
each test series, we chose appropriate values for the parameters PminS and PmaxS which
define the range for the number of skills that are required by each project. We created
three test sets for each test series. For the first set of instances, we used our default values
for the remaining input parameters of the instance generator. For the second set, we
increased the parameters KminS and KmaxS , i.e., we changed the range from which the
number of skills |Sk| for each worker k is selected. The second set is thus characterized
by a more flexible workforce. For the third set of test instances, we changed the value
of ρproj from 0.6 to 0.8 leading to a higher utilization of the workforce. In total, 18 test
sets were generated, three for each of the six test series of testbed 2.
Testbed 3 was designed to test the impact of the parameter ρproj, which influences

the ratio of total project requirements to the corresponding availability of the workforce.
As in the case of the project selection problem (cf. Figure 7.2 on page 214), we found
that this parameter has a notable impact on solution time. However, the relationship
between ρproj and solution time is different from the relationship that we observed for the
project selection problem. To generate test sets, we fixed K to 15, P to 15, and S to 4
(cf. Figure 7.6 on page 241, for example). For each ρproj ∈ {0.05, 0.1, 0.15, . . . , 0.85}, a
test set was created. In total, these are 17 test sets in testbed 3. From ρproj = 0.9 on,
some instances of the respective test set are infeasible, because workforce availability is
not sufficient to cover project and departmental workloads. In every instance, each worker
masters at least one skill and at most three skills, while each project requires man-hours
for all four skills. As in the case of the project selection problem, the corresponding

solutions to all ten instances in Table 7.15 amounts to 18.2%; the minimum gap amounts to 13.2%.
For the other models, optimality of the solutions was proved fast.
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instances of two arbitrary test sets are identical except for project requirements rpst,
which monotonically increase with ρproj.
In the following, we will report on the results that we obtained when testing the

solution methods on the instances of these three testbeds.

7.3.1 Analysis of exact methods and of their support
In this subsection, we analyze alternative approaches to model the workforce assignment
problem as a MIP. Furthermore, we analyze measures to support the solution process,
which is delegated to a branch-and-cut solver. All those approaches and measures were
described in Subsections 4.3.1 and 6.1.1. To be more precise, we test the various sets of
big-M constraints, compare the standard to the network model, and check the effectiveness
of the globally and locally valid inequalities that are based on lower bounds on the number
of assignments of workers to single projects. Besides, we also examine the impact of
solver and parameter settings. Our criteria are solution time and quality. Our goal of
the analysis is to derive specifications of the MIP model and the solver that facilitate a
solution process which is as efficient as possible. Additionally, we explore boundaries of the
instance size up to which solutions of acceptable quality can be found in reasonable time.
Two important results shall be mentioned in advance: First, instances of the workforce
assignment problem cannot be solved as efficiently as instances of the project selection
problem. Second, a high level of workforce utilization, which is a property that is common
for real-life instances, makes instances particularly hard.
The following list summarizes which alternative model components and which solver

and parameter settings are analyzed in which order in this subsection.

• Different sets of big-M constraints

• MIP formulations: standard model vs. network model

• Solver settings: search strategy (best bound vs. depth-first), time limit

• Globally and locally valid inequalities

• Instance parameters: ρproj, instance size (K, D, P , S)

In Subsection 4.3.1, we outlined three alternative sets of big-M constraints for the
standard model, namely, Constraint sets (4.11), (4.17), and (4.18). Analogous constraint
sets can be applied to the network model. With Example 4.2 on page 60, we demonstrated
that Constraints (4.11) are tighter than (4.17), which in turn are tighter than (4.18).
In Subsection 6.1.1, we presented tighter versions of the big-M constraints (4.11) and
(4.17), namely, Constraints (6.5) and (6.6), respectively. These tighter versions do not
only consider the availability of a worker, but also the project requirements and the
departmental workloads. A universal ranking of (6.5) and (6.6) with respect to tightness
is not possible. Depending on the instance, Constraint set (6.5) can be tighter than (6.6)
or vice versa. Hence, it may be beneficial to include both constraint sets in the workforce
assignment model. The inclusion of both sets will be denoted by “(6.5)+(6.6)” in the
following.
To get a deeper insight into the tightness of the different big-M constraint sets and

into their impact on solution time and quality, we tested the constraint sets including
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the case (6.5)+(6.6) for the test sets of testbed 1. For each test set of testbed 1, we
conducted three computational tests. In the first test, we solved the LP relaxation of the
respective standard model using the dual simplex optimizer of CPLEX (cf. Table 7.16).
In the second test, we solved the respective MIP model with a time limit of 5 minutes (cf.
Table 7.17). For the third test, the time limit was increased to 1 hour (cf. Table 7.18).

Table 7.16: Average optimal objective function values obj μ and average solution
times timeμ in brackets for the LP relaxation of the standard model with
different big-M constraints for testbed 1 (ρproj = 0.6, 1 thread)

Standard model, LP relaxation

obj μ
(timeμ [s])

for big-M constraints . . .Instance set

K P D = S . . . (4.11) (4.17) (4.18) (6.5) (6.6) (6.5)+(6.6)

10 10 3 12.0 9.2 6.5 14.3 13.3 15.3
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

10 20 3 13.2 9.7 6.3 22.2 23.0 24.5
(0.01) (0.03) (0.01) (0.08) (0.12) (0.15)

20 10 3 24.4 18.4 12.3 25.0 19.9 25.7
(0.03) (0.05) (0.01) (0.03) (0.08) (0.06)

20 20 5 26.0 20.6 12.8 35.2 37.3 40.2
(0.06) (0.10) (0.02) (0.15) (0.32) (0.38)

50 100 10 61.7 45.5 30.9 209.1 265.4 267.0
(1.11) (3.53) (0.27) (7.27) (34.95) (37.01)

100 50 10 122.0 91.5 64.0 145.1 145.8 167.7
(5.63) (15.75) (0.32) (8.68) (27.69) (33.06)

The results displayed in Table 7.16 confirm the tightness ranking for (4.11), (4.17), and
(4.18). The big-M constraints (6.5) and (6.6) dominate (4.11) and (4.17), respectively.
Constraints (4.18) are dominated by all other constraint sets with respect to tightness.
Constraints (6.5) tend to be tighter than (6.6) for greater ratios of K

P
, i.e., for greater

values of the measure rRlμ, which was defined by Equation (7.1) on page 204. For smaller
ratios of K

P
, (6.6) tends to be tighter than (6.5), because (6.6) is more efficient when

project requirements are small compared to the availability of workers. The combina-
tion (6.5)+(6.6) results always in tighter bounds than (6.5) and (6.6) at the cost of longer
solution times. While solutions times are moderate for the Constraint sets (4.11) and
its tightened version (6.5), they are quite large for (4.17), its tightened version (6.6),
and (6.5)+(6.6).
To see how the results for the LP relaxation are reflected in case of the MIP with

a small time limit, consider Table 7.17. For some instances with up to 20 workers and
20 projects, proven optimal solutions were found with all big-M constraint sets except
for the Constraint set (4.18). For small-sized instances, the combination (6.5)+(6.6)
worked best, especially in regard to the average relative gap gapμ and the average solution
time timeμ. For the test sets with 50 and 100 workers, i.e., for instances of medium size,
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gaps are enormous for all tested big-M constraint sets and average objective function
values differ widely across these test sets.

Table 7.17: Average optimal objective function values obj μ, average relative gaps gapμ,
and average solution times timeμ for the standard model with different
big-M constraints for testbed 1 (ρproj = 0.6, 1 thread, search strategy: best
bound)

Standard model, tmax = 300 s

obj μ
〈gapμ [%]〉
(timeμ [s])

for big-M constraints . . .
Instance set

K P D = S . . . (4.11) (4.17) (4.18) (6.5) (6.6) (6.5)+(6.6)

10 10 3 18.5 18.5 18.5 18.5 18.5 18.5
〈–〉 〈0.9〉 〈1.3〉 〈–〉 〈1.5〉 〈–〉
(2.1) (36.2) (33.5) (2.0) (32.4) (1.7)

10 20 3 28.5 28.6 28.7 28.5 28.7 28.5
〈0.3〉 〈4.9〉 〈6.0〉 〈0.3〉 〈5.4〉 〈0.3〉
(65.7) (189.4) (200.9) (65.7) (189.9) (60.3)

20 10 3 30.3 30.4 30.4 30.3 30.4 30.3
〈2.9〉 〈9.2〉 〈10.4〉 〈2.9〉 〈9.0〉 〈1.2〉

(125.9) (254.4) (291.3) (125.9) (249.3) (89.0)
20 20 5 47.7 47.4 48.1 47.8 47.9 47.5

〈3.1〉 〈6.2〉 〈11.0〉 〈3.3〉 〈7.3〉 〈2.8〉
(204.2) (258.0) (300.0) (204.1) (251.3) (164.9)

50 100 10 730.9 505.3 515.9 730.9 ∗ 575.5
〈166.8〉 〈84.3〉 〈93.1〉 〈166.8〉 ∗ 〈109.6〉
(300.0) (300.0) (300.0) (300.0) ∗ (300.0)

100 50 10 496.2 598.3 397.6 496.2 583.2 519.9
〈185.1〉 〈255.6〉 〈150.8〉 〈185.1〉 〈246.7〉 〈199.3〉
(300.0) (300.0) (300.0) (300.0) (300.0) (300.0)

∗For one out of the ten instances, no integer-feasible solution was found within the
time limit.

This fluctuation in average objective function values for medium-sized instances dis-
appears when more computation time is granted. The results for a time limit of 1 hour
are given in Table 7.18. For some small-sized instances, the branch-and-cut tree quickly
grows beyond the memory limit of 4 GB, whereas the memory limit is not hit within
1 hour for larger-sized instances. However, in case of larger-sized instances, the tree size
exceeds memory limits after longer computation times as well.
From our results for different big-M constraint sets for the standard model, we con-

clude that the combined Constraint set (6.5)+(6.6) is the best choice. The combina-
tion (6.5)+(6.6) provides the tightest LP relaxation and leads to the shortest average
computation times for the MIP model. If the time limit is hit in case of larger-sized in-
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Table 7.18: Average objective function values obj μ, average relative gaps gapμ, and av-
erage solution times timeμ for the standard model with different big-M con-
straints for testbed 1 (ρproj = 0.6, 1 thread, search strategy: best bound)

Standard model, tmax = 1 h

obj μ
〈gapμ [%]〉
(timeμ [s])

for big-M constraints . . .
Instance set

K P D = S . . . (4.11) (4.17) (4.18) (6.5) (6.6) (6.5)+(6.6)

10 10 3 18.5 18.5 18.5 18.5 18.5 18.5
〈–〉 〈–〉 〈–〉 〈–〉 〈–〉 〈–〉
(2.1) (50.7) (91.8) (2.1) (230.3) (1.7)

10 20 3 28.5 ∗∗ ∗∗ 28.5 ∗∗ 28.5
〈–〉 ∗∗ ∗∗ 〈–〉 ∗∗ 〈–〉

(94.6) ∗∗ ∗∗ (94.8) ∗∗ (64.9)
20 10 3 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

20 20 5 47.2 ∗∗ 47.3 47.2 ∗∗ 47.2
〈0.7〉 ∗∗ 〈6.2〉 〈0.7〉 ∗∗ 〈1.5〉

(1311.0) ∗∗ (3101.4) (1311.9) ∗∗ (1484.9)
50 100 10 300.9 299.4 301.7 300.9 298.7 298.8

〈8.9〉 〈7.9〉 〈10.5〉 〈8.9〉 〈7.7〉 〈7.6〉
(3600.0) (3600.0) (3600.0) (3600.0) (3600.0) (3600.0)

100 50 10 221.0 225.6 266.1 221 227.6 214.7
〈24.2〉 〈32.3〉 〈57.3〉 〈24.2〉 〈33.4〉 〈21.6〉

(3600.0) (3600.0) (3600.0) (3600.0) (3600.0) (3600.0)
∗∗For at least one out of the ten instances, an out-of-memory error occurred.

stances, big-M Constraint set (6.5)+(6.6) is competitive with respect to objective function
values and gap values. In the following, we use this combined big-M constraint set for
both the standard and the network model.11

When comparing the standard with the network model, the standard model turned
out to be superior on average. For both models, we considered the same test sets as before
and solved the corresponding LP relaxation (cf. Table 7.19) and the respective MIP with
a time limit of 5 minutes and 1 hour (cf. Tables 7.20 and 7.21, respectively).
Table 7.19 reflects that the feasible region of the LP relaxation is identical in regard

to x and y for both models. For most of the test sets, however, it takes more time to
determine an optimal solution to the LP relaxation in case of the network model than in
case of the standard model.

11For the network model, the left-hand side of Constraint set (6.5), i.e., the sum
∑

s∈Smatch
kp

ykpst, can be

replaced by the flow variable fproj
kpt .
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Table 7.19: Average solution times timeμ [s] and average optimal objective function
values obj μ for the LP relaxation of the standard model and the network
model for testbed 1 (ρproj = 0.6, 1 thread)

LP relaxation

Instance set Standard model Network model

K P D = S timeμ obj μ timeμ obj μ

10 10 3 0.02 15.3 0.02 15.3
10 20 3 0.15 24.5 0.16 24.5
20 10 3 0.06 25.7 0.08 25.7
20 20 5 0.38 40.2 0.35 40.2
50 100 10 37.01 267.0 52.65 267.0
100 50 10 33.06 167.7 36.16 167.7

When we compare both MIP models for a time limit of 5 minutes, we considered
only the small-sized instances, because it became obvious from the results displayed in
Table 7.17 that a time limit of 5 minutes is not sufficient to reach an acceptable solution
quality for the test sets K = 50 and K = 100. Table 7.20 shows that it is more time-
consuming to solve the network model than to solve the standard model and that the
network model performs worse than the standard model with respect to the number of
proven optimally solved instances and the average relative gap.

Table 7.20: Average solution times timeμ [s], numbers of proven optimal solutions opt .,
and average relative gaps gapμ [%] for the standard model and the network
model for the small-sized instances of testbed 1 (ρproj = 0.6, 1 thread, search
strategy: best bound)

tmax = 300 s

Instance set Standard model Network model

K P D = S timeμ opt . gapμ timeμ opt . gapμ

10 10 3 1.7 10 – 2.0 10 –
10 20 3 60.3 9 0.31 85.2 9 0.31
20 10 3 89.0 8 1.22 127.1 6 2.54
20 20 5 164.9 6 2.78 185.7 5 3.70

Also for a time limit of 1 hour, the standard model outperforms the network model
on average (cf. Table 7.21). Note that the network model found better solutions to some
instances than the standard model within the time limit. In case of the standard model,
the memory limit of 4 GB was hit for one instance, leading to an out-of-memory error.
In case of the network model, the memory limit was hit for three instances. When we
applied a depth-first search to both models, the memory demand shrunk and the limit
was not hit for any instance (cf. Table 7.21).
The memory demand of the depth-first search strategy was considerably less than the
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demand of the best bound strategy, e.g., for some instances of the test setK = 20, P = 10,
less than 1 MB instead of more than 1 GB RAM was required. Though, especially for
the larger-sized instances, solution quality of the depth-first search strategy was worse
than that provided by the best bound search strategy. From these and other experiments
we concluded to stick to the best bound search strategy. When we wanted to determine
proven optimal solutions for subsequent analyses and suffered from memory shortage, we
stuck to the best bound strategy and transferred excessive tree data to the hard disc. The
depth-first search was considered the last resort.
The computational advantages of the standard model compared to the network model

can be attributed to differences in model size. The formulation of the network model
requires more continuous variables and more constraints than the formulation of the stan-
dard model, as can be seen from the statistics for three exemplary instances in Table 7.22.
Additional continuous variables of the network model are the flow variables fproj

kpt and f
dep
kt .

Additional constraints are the flow conservation constraints (4.21), which link the vari-
ables fproj

kpt and ykpst, s ∈ Smatch
kp . These additional model components are a computational

burden for the simplex method, which is used to solve the LP relaxations during branch-
and-cut.

Table 7.22: Numbers of binary variables xkp, continuous variables, and constraints for
three instances of different size (D = S = 3, T = 12)

Instance Standard model Network model

K P #xkp #cont. var. #constr. #xkp #cont. var. #constr.

10 10 97 632 1446 97 1184 1730
10 20 196 1250 2722 196 2250 3329
20 10 193 1040 2404 193 1998 2823

Both the standard and the network model suffer from quasi-symmetry of solutions
and from a relatively weak LP relaxation. These unfavorable characteristics lead to long
computation times for the corresponding MIP model. Quasi-symmetry means that there
are many integer-feasible solutions which have an identical objective function value and
that among these solutions of identical quality, many solutions resemble each other. The
only difference between two solutions may be that in the first solution worker k1 is as-
signed to project p1 and k2 to p2, for example, while these assignments of k1 and k2 are
swapped in the second solution. These two solutions are quasi-symmetrical.12 If the first
solution cannot be fathomed when a new best solution, i.e., a new incumbent solution,
is found, neither can the second. Hence, many solutions whose objective function values
are identical or almost identical must be enumerated. Unfortunately, there is no apparent
answer to the problem of quasi-symmetry if it is desired to determine a proven optimal
solution.13 If optimality is not demanded, the negative consequences of quasi-symmetry
12The term quasi-symmetrical is used instead of the term symmetrical, because, in general, workers are

not identical, especially with respect to their availability values. Nevertheless, quasi-symmetry and
symmetry have the same detrimental effects on the performance of a branch-and-cut solver. Bosch and
Trick (2005, pp. 83–85), for example, portray these effects for the case of symmetry.

13Bosch and Trick (2005, pp. 83–85) describe some ways to remedy the problem of symmetry to a certain
extent. Though, those remedies cannot be readily transferred to the case of quasi-symmetry.
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might be mitigated by specifying a maximum gap which must not be exceeded by a solu-
tion to be considered acceptable. However, this remedy requires a relatively tight lower
bound, i.e., a tight LP relaxation in our case.
The LP relaxation of the workforce assignment models is not as tight as the LP

relaxation of the project selection model. The relative weakness of the LP relaxation of
the workforce assignment problem can be realized when comparing the results for the
small-sized instances in Tables 7.16 and 7.18. The former table reports results for the
LP relaxation of the standard model, the latter for the corresponding MIP model given
a time limit of 1 hour. For an example, consider the instance set K = 10, P = 20 in
conjunction with the combined big-M constraint set (6.5)+(6.6). The average lower bound
derived from the LP relaxation is equal to 24.5, whereas the average optimal number of
assignments amounts to 28.5: a deviation of 16.3%. Compare this relative deviation to
the deviations for the test sets K = 25, P̃ = 100 and K = 50, P̃ = 100 of the project
selection problem (cf. Table 7.8 on page 213). Here, the deviations equal only 1.7%
and 1.2%, respectively.
Additionally, for the workforce assignment problem, the first integer-feasible solutions

encountered during branch-and-cut are far off the lower bound that is provided by the LP
relaxation. This considerable gap can be seen in Figure 7.4, where the branch-and-cut
process is documented for a small-sized instance with K = 20, P = 20 in Figure 7.4(a)
and for a medium-sized instance with K = 100, P = 50 in Figure 7.4(b). Both figures
show how the respective value of the lower bound and the respective objective function
value of the incumbent solution change over time. Recall that the incumbent solution is
at any point in time the best integer-feasible solution found thus far.
Valid inequalities can be a remedy against a weak LP relaxation. We outlined valid

inequalities in Subsection 6.1.1. The purpose of valid inequalities is to tighten the LP
relaxation. In a first step, we analyze globally valid inequalities (6.1) and (6.3), before we
turn to locally valid inequalities (6.2) and (6.4).
Table 7.23 shows how globally valid inequalities (6.1) and (6.3) affected the solution

of the LP relaxation of the standard model. Our point of reference is the LP relaxation
of the standard model that features the combined set of big-M Constraints (6.5)+(6.6).
The results for this reference model are listed in the column titled “none”. Adding valid
inequalities (6.1) to the reference model affects only a minor improvement: The objective
function value increases by 1.06% on average. Valid inequality (6.3) lifts the lower bound
to a larger extent; it causes an average increase of 6.74%. The combination of inequali-
ties (6.1) and (6.3), denoted by (6.1)+(6.3), does not expose substantial synergies in case
of the LP relaxation.
The power of the valid inequalities is revealed in Tables 7.24 and 7.25, which display

results for the MIP model with a time limit of 5 minutes and 1 hour, respectively. Es-
pecially valid inequalities (6.3) are effective. For the short time limit, inequalities (6.3)
allow to solve all instances of the set K = 20, P = 10 to optimality within a very short
average solution time of only 5.8 seconds (cf. Table 7.24).
Overall, the combination (6.1)+(6.3) has positive synergies in case of the MIP. For

example, the combination allowed to solve one instance of the set K = 50, P = 100 to
optimality (cf. Table 7.25). The combination featured relatively small gaps. An exception
is the average gap for the test set K = 50, P = 100, where the best solution found after
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Figure 7.4: Value of the best bound and objective function value of the incumbent
solution during branch-and-cut for a small- and a medium-sized instance

1 hour is of poor quality in case of four instances. On the other hand, for one instance of
this test set, the combination (6.1)+(6.3) provides the best solution across all models.
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Table 7.23: Average optimal objective function values obj μ and average solution
times timeμ in brackets for the LP relaxation of the standard model with
different globally valid inequalities for testbed 1 (ρproj = 0.6, 1 thread)

Standard model, LP relaxation

obj μ
(timeμ [s])

for globally valid inequalities . . .Instance set

K P D = S . . . none (6.1) (6.3) (6.1)+(6.3)

10 10 3 15.3 15.8 17.4 17.5
(0.02) (0.04) (0.03) (0.03)

10 20 3 24.5 24.6 26.4 26.4
(0.15) (0.26) (0.15) (0.15)

20 10 3 25.7 26.2 29.1 29.1
(0.06) (0.18) (0.11) (0.10)

20 20 5 40.2 40.4 43.1 43.2
(0.38) (0.56) (0.88) (0.71)

50 100 10 267.0 267.0 269.0 269.0
(37.01) (52.31) (96.36) (65.16)

100 50 10 167.7 168.4 170.8 171.4
(33.06) (55.53) (157.60) (160.06)

In case of the larger-sized instances in Table 7.25, none of the four models dominates
the other. For an example, consider the test set K = 50, P = 100. While the relative
gap is smallest for (6.1)+(6.3) with 5.7%, the average objective function value is best
when none of the valid inequalities is applied. At the same time, each of the four models
provides the best solution found for at least one of the ten instances out of this test set.
Altogether, we recommend to apply the globally valid inequalities (6.1)+(6.3), although
their benefit seems to vanish for larger-sized instances. From now on, these inequalities
were applied, unless otherwise indicated.14

In Subsection 6.1.1, we also outlined locally valid inequalities, namely, inequalities (6.2)
and (6.4). Each of these inequalities can be added as a local cut to the subproblem related
to a node of the branch-and-cut tree if the solution to of the LP relaxation at that node
violates the inequality. We implemented this cutting plane approach by two callback
functions: one for (6.2) and one for (6.4). A callback function, also called cut callback, is
invoked by the solver CPLEX during its branch-and-cut procedure. The callback function
checks whether an inequality is violated. If so, the respective cut is added before the
branch-and-cut procedure continues.
In case of the solver CPLEX, the use of cut callbacks requires special solver settings.

14When we ran the 64 bit version of CPLEX, which could exploit 32 GB RAM in our case, and replicated
the experiments of Table 7.25, we obtained almost identical results, regardless of whether CPLEX 64 bit
could use 1 thread or up to 8 threads. When we repeated the experiments of Table 7.24, CPLEX 64 bit
yielded significant time savings for the first three test sets listed in this table, especially when using up
to 8 threads.
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Table 7.24: Numbers of proven optimal solutions opt ., average relative gaps gapμ, and
average solution times timeμ for the standard model with different globally
valid inequalities for testbed 1 (ρproj = 0.6, 1 thread, search strategy: best
bound)

Standard model, tmax = 300 s

opt .
〈gapμ [%]〉
(timeμ [s])

for globally valid inequalities . . .
Instance set

K P D = S . . . none (6.1) (6.3) (6.1)+(6.3)

10 10 3 10 10 10 10
〈–〉 〈–〉 〈–〉 〈–〉
(1.7) (1.4) (0.2) (0.3)

10 20 3 9 10 10 10
〈0.3〉 〈–〉 〈–〉 〈–〉
(60.3) (64.2) (49.5) (60.1)

20 10 3 8 7 10 10
〈1.2〉 〈2.4〉 〈–〉 〈–〉
(89.0) (95.8) (5.8) (8.7)

20 20 5 6 7 6 7
〈2.8〉 〈2.7〉 〈2.6〉 〈2.0〉

(164.9) (155.2) (161.8) (153.8)

Table 7.25: Numbers of proven optimal instances opt ., average relative gaps gapμ, and
average solution times timeμ for the standard model with different globally
valid inequalities for testbed 1 (ρproj = 0.6, 1 thread, search strategy: best
bound)

Standard model, tmax = 1 h

opt .
〈gapμ [%]〉
(timeμ [s])

for globally valid inequalities . . .
Instance set

K P D = S . . . none (6.1) (6.3) (6.1)+(6.3)

20 20 5 6 8 8 9
〈1.5〉 〈0.9〉 〈0.8〉 〈0.5〉

(1484.9) (1016.3) (881.5) (603.2)
50 100 10 0 0 0 1

〈7.6〉 〈6.0〉 〈7.4〉 〈5.7〉
(3600.0) (3600.0) (3600.0) (3569.2)

100 50 10 0 0 0 0
〈21.6〉 〈21.6〉 〈23.0〉 〈73.1〉

(3600.0) (3600.0) (3600.0) (3600.0)
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We had to change the setting for the search method from the default dynamic search to
traditional branch-and-cut.15 For a fair comparison, we compared the (potential) use of
locally valid inequalities to the case where only globally valid inequalities are applied and
the search method is set to traditional branch-and-cut (cf. Table 7.26). Our results reveal
that the search method traditional branch-and-cut performs considerably worse than the
method dynamic search for some test sets.
We conducted preliminary tests in order to find an adequate frequency for searching

violated locally valid inequalities and to determine which cuts to add to the model. For
inequality (6.2), we concluded that it is adequate to check for violated inequalities every
10th node. For inequality (6.4), we inferred that searching at every node is suitable.
Furthermore, we decided based on the tests to neither add only a maximally violated cut
nor the first cut encountered, but all violated inequalities.16

We examined the effect of locally valid inequalities (6.2) and (6.4) on solution time
and quality for a time limit of 1 hour. Table 7.26 shows for both (6.2) and (6.4) that their
effect is positive for some test sets, but negative for others. Inequality (6.4) tends to be
more effective than inequality (6.2). For the set K = 20, P = 20, the average number of
local cuts added per instance amounts to 134 in case of (6.2) and to 867 in case of (6.4).
Let us put these numbers in relation to the number of tries to find a violated inequality:
There were 0.03 cuts added per callback in case of (6.2) and 0.04 in case of (6.4). The
use of inequalities (6.4) outperformed the dynamic search method on average only in case
of test set K = 20, P = 10. Altogether, both locally valid inequalities are no reliable
support for solving the workforce assignment problem. We verified this result also for the
combined use of both inequalities.
Having analyzed the performance impact of globally and locally valid inequalities, we

go on with testing the impact of parameter settings. First, we will test the impact of
the parameter ρproj. Finally, we consider the impact of instance size examining especially
instances of large size.
Parameter ρproj influences the ratio of total project requirements to the corresponding

availability of the workforce. As in the case of the project selection problem (cf. Figure 7.2
on page 214), we found that this parameter has a notable impact on solution time in case
of the workforce assignment problem. However, the relationship between ρproj and solution
time is different from the relationship that we observed for the project selection problem.
To scrutinize the impact of ρproj, we ran CPLEX for the standard model on the

instances of testbed 3. The instances of testbed 3 are partitioned in 17 test sets.
Each test set was generated with a distinct value of ρproj, which was chosen from the
set {0.05, 0.1, 0.15, . . . , 0.85}. When we solved the 17 test sets, the time limit of the
solver was set to 1 hour for each instance.
The results for the test sets of testbed 3 are presented in Figure 7.5, which illustrates

the impact of the parameter ρproj on the average solution time timeμ and on the aver-
age number of assignments denoted by obj μ. As expected, the number of assignments
increases with increasing workload. The sharp increase in average computation time for

15The search method (dynamic search vs. traditional branch-and-cut) must not be confused with the
search strategy (best bound vs. depth-first, for example)

16It should be more effective to add violated inequalities at nodes at the same depth of the branch-and-cut
tree. Unfortunately, the solver CPLEX does not readily support such a strategy.
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test sets with ρproj ≥ 0.55 is rather counter-intuitive, though.17 Since the number of fea-
sible solutions, i.e., the number of feasible assignments x, decreases with ρproj, one could
expect solution time to decrease as well. However, the average number of nodes processed
increases with ρproj. For all instances of the test set ρproj = 0.3, only the root node was pro-
cessed, because heuristics that are applied by CPLEX during root node processing found
a solution whose optimality could be verified. For ρproj = 0.5, 818 nodes per instance were
processed on average, while 65 588 nodes were processed in case of ρproj = 0.85.
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Figure 7.5: Average solution times timeμ and average numbers of assignments obj μ
for the test sets of testbed 3, which feature different ratios of project re-
quirements to workforce availability ρproj (K = 15, P = 15, D = S = 4,
tmax = 1 h, 1 thread, search strategy: best bound)

The difference in the number of nodes processed can be traced to at least two roots.
First, the number of top-quality solutions increases with ρproj. Recall that a top-quality
solution is a solution whose objective function value is not far away from the optimal
objective function value. Second, the LP relaxation tends to become less tight when ρproj

increases and additional assignments are necessary. We elaborate on these causes one by
one.
To see how the number of top-quality solutions for the test sets K = 15, P = 15

increases with ρproj, we make a rough estimation of the maximum number of top-quality
solutions for a small and a large value of ρproj. As can be seen from Figure 7.5, for a small
value of ρproj, e.g., ρproj = 0.1, there are about two workers in a project team on average.

Since each worker is suitable for every project, there are
(
15
2

)
= 105 possibilities to select

2 workers out of the workforce, which comprises 15 workers. Assuming that any pair (k, k′)
can accomplish the workload of all 15 projects, there are 10515 ≈ 2.08 · 1030 potential
17For the test sets ρproj ≥ 0.7, the time limit was hit for some instances, i.e., for these instances a proven

optimal solution could not be determined within 1 hour.
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top-quality solutions. For a large value of ρproj, e.g., ρproj = 0.8, about three workers
form a project team on average. Assuming that any triple (k, k′, k′′) can execute all
15 projects, there are 45515 ≈ 7.42 · 1039 potential top-quality solutions. Even if—due to
limited availabilities and large project requirements—a considerable number of infeasible
solutions is among these 7.42 · 1039 solutions, the number of top-quality solutions is likely
to increase with ρproj, until the average team size exceeds K

2
workers.

To see that the LP relaxation tends to become less tight when ρproj increases and
additional assignments are necessary, regard the following example.

Example 7.3 Consider the case where K = 3, P = 3, S = 3, and T = 1. Given these
data, we will construct two instances A and B. For our example, workers k1 and k2,
projects p1 and p2, and skills s1 and s2 play the central role. Worker k3, project p3, and
skill s3 are only required to ensure that both instances A and B satisfy certain conditions.
Instances A and B differ only in the requirements of p1 and p2, all other data are identical.
Let Rk1t = Rk2t = 10 and let lk1s1 = lk2s2 = 2 and lk1s2 = lk2s1 = 1 for both instances.
Let worker k3 master each skill s with lk3s = 2 and let Rk3t = 20. Project p3 may require
only skill s3 with rp3s3t = 40 so that the availability of k3 is just sufficient to cover the
workload of project p3. Skill s3 is required neither by p1 nor by p2. For instance A,
rp1s1t = rp1s2t = rp2s1t = rp2s2t = 1 holds, and for instance B, all these requirements are
equal to 8.
Next, we look at the lower bounds that are used in globally valid inequalities (6.1)

and (6.3), especially at those lower bounds that are associated with p1 and p2. Due to
worker k3, these lower bounds are of identical value for instances A and B: LBglob

p1s1
=

LBglob
p1s2

= LBglob
p2s1

= LBglob
p2s2

= LBglob
p1

= LBglob
p2

= 1.
From now on, let us consider only projects p1 and p2 and workers k1 and k2. Note that

the total minimum number of assignments necessary for p1 and p2 is equal to 2 in case of
instance A and equal to 4 in case of instance B. For instance A, the LP relaxation of the
MIP model provides a tight lower bound of 2. For instance B, however, the relaxation
is less tight: The optimal solution of the LP relaxation has an objective function value
of 3. Table 7.27 shows for instances A and B a corresponding solution (x,y) of the LP
relaxation.
For the solutions of both instances, which are given in Table 7.27, all the corresponding

big-M constraints (6.6) can be satisfied with fractional values for variables xkp. In case of
instance A, starting from an optimal integer-feasible solution with xk1p = 1 and xk2p = 0,
p ∈ {p1, p2}, a decrease in the value of xk1p must be compensated by an increase in xk2p,
and vice versa. In case of instance B, however, starting from an optimal integer-feasible
solution with xk1p = 1 and xk2p = 1, p ∈ {p1, p2}, this compensation with regard to
variables xkp is not required. Thus, a less tight LP relaxation results in case of instance B.�

To illustrate the relation between ρproj and the tightness of the LP relaxation, we
recorded the optimal objective function values of the LP relaxation and of the corre-
sponding MIP model for a set of 20 instances with different values of ρproj. To create
the instances, we set K = 3, P = 3, S = 3, and T = 1. Each worker k has an avail-
ability of Rkt = 30 and masters all three skills. Skill levels lk1s1 , lk2s2 , and lk3s3 are equal
to 2, while all other skill levels are equal to 1. Each project p requires every skill. For
instance a, a ∈ {1, 2, . . . , 20}, we set rpst = a, p ∈ P , s ∈ Sp, t = 1. This variation of the
requirements rpst is equivalent to varying ρproj; in fact, rpst is proportional to ρproj here.
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Table 7.27: Solutions for the LP relaxation of instances A and B in Example 7.3

Variable Instance A Instance B

yk1p1s1t 0.25 3
yk1p1s2t 0.5 2
yk1p2s1t 0.25 3
yk1p2s2t 0.5 2

yk2p1s1t 0.5 2
yk2p1s2t 0.25 3
yk2p2s1t 0.5 2
yk2p2s2t 0.25 3

xk1p1 0.5 0.75
xk1p2 0.5 0.75

xk2p1 0.5 0.75
xk2p2 0.5 0.75

Departmental requirements were neglected. To simulate weak lower bounds LBglob
ps and

LBglob
p , we removed globally valid inequalities (6.1) and (6.3) from the LP relaxation. The

results of the 20 instances, which are displayed in Figure 7.6, show that the LP relaxation
is less tight whenever additional assignments of workers to projects are necessary.
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Figure 7.6: Optimal objective function values of a (weak) MIP model and the corre-
sponding LP relaxation for 20 instances with different ratios of project re-
quirements to workforce availability ρproj realized by different values for the
project requirements rpst (K = 3, P = 3, D = 1, S = 3, T = 1)
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For the test sets K = 15, P = 15 from Figure 7.5, every increase in ρproj requires
additional assignments. For each increase in ρproj from ρproj = 0.5 onwards, at least one
additional assignment per instance is necessary on average. Especially for ρproj ≥ 0.7, the
deviation of the lower bound of the root node from the best integer-feasible solution found
within 1 hour increased steadily. The weak LP-based lower bound is the second cause for
the high number of nodes that must be processed in case of large values for ρproj.
In addition to the high number of nodes that must be processed, the time that is

required to process a node increases with ρproj, because a larger amount of workload
requires a greater number of variables ykpst with positive values. Hence, the simplex
algorithm tends to require more pivot operations. This increase in the number of pivot
operations and the resulting increase in computation time can be observed for the test
sets K = 15, P = 15 from Figure 7.5. On average, it takes 4 times more pivot operations
and 18 times longer to solve the LP relaxation for ρproj = 0.85 than for ρproj = 0.3.
In summary, we noticed a serious drawback of the branch-and-cut approach. For

increasing values of ρproj, we observed that computation time massively increases and, if a
time limit is given, solution quality decreases. We call this phenomenon the computational
curse of high workforce utilization. This phenomenon is of particular importance for
firms and stresses the need for heuristic methods. Firms face real-life instances and
these real-life instances are usually characterized by a high utilization of the workforce,
because firms usually fully exploit capacities in order to realize the most profitable project
portfolio. With regard to the parameter ρproj, utilization increases with ρproj. Hence, real-
life instances tend to be just those instances that are relatively hard to solve. Solving
these hard instances by a branch-and-cut solver is time-consuming, as our experiments
confirmed. Thus, especially firms are in need of heuristic methods that provide solutions
of equal or better quality in less time than a branch-and-cut solver.
Before we turn to the heuristics that we designed, we will present results obtained by

CPLEX for the test sets of testbed 2, which contains instances of larger size. To be more
precise, testbed 2 contains six test series. One test series contains instances of medium
size, while five test series comprise instances of large size. The purpose of testbed 2 and
the corresponding results is twofold. First, the results reveal up to which instance size
CPLEX can provide solutions on a common personal computer. Second, the results serve
as a basis for the assessment of our heuristic methods.
Recall that each of the six test series of testbed 2 comprises three test sets. The

first test set of each series was generated with default parameter values and serves as a
point of reference for the other two test sets of the series. The second test set of each
series represents a more flexible workforce as, on average, the number of skills |Sk| that a
worker k masters is greater for instances of this test set. The third test set was created
with a greater value for ρproj resulting in a higher utilization of the workforce. Table 7.28
summarizes the results that we obtained for the test series of testbed 2 when we set the
time limit of the solver CPLEX to 5 minutes and 1 hour.
For the test series K = 40, which comprises medium-sized instances, the improvement

of objective function values that is achieved when the time limit is raised from 5 minutes to
1 hour is more pronounced for the second and third set than for the first set. Conversely,
this means that solution quality for the second and third test set is rather low for the
short time limit. In case of the second set where the workforce is more flexible, the
large improvement points to the computational curse of flexibility: To obtain acceptable
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Table 7.28: Average objective function values obj μ and average relative gaps gapμ of the
standard model with different time limits tmax for the test sets of testbed 2
(1 thread, search strategy: best bound)

Standard model

Instance set tmax = 300 s tmax = 1 h

K P D = S |Sk| ρproj obj μ gapμ obj μ gapμ

40 40 6 1–3 0.6 112.6 21.4 105.7 11.2
2–3 0.6 130.9 49.1 96.3 6.8
1–3 0.8 234.2 125.0 127.5 18.5

200 100 20 1–3 0.6 ∗ ∗ 1015.5 143.0
3–5 0.6 16510.8 n.a. 4053.1 n.a.
1–3 0.8 ∗ ∗ 1217.3 151.5

400 150 30 1–3 0.6 ∗ ∗ 1812.4 152.9
3–5 0.6 ∗ ∗ ∗ ∗

1–3 0.8 ∗ ∗ ∗ ∗

800 200 50 1–3 0.6 ∗ ∗ ∗ ∗

3–5 0.6 ∗ ∗ ∗ ∗

1–3 0.8 ∗ ∗ ∗ ∗

1250 300 60 1–3 0.6 ∗ ∗ ∗ ∗

3–5 0.6 out of memory out of memory
1–3 0.8 ∗ ∗ ∗ ∗

1500 500 75 1–3 0.6 out of memory out of memory
3–5 0.6 out of memory out of memory
1–3 0.8 out of memory out of memory

∗For none of the ten instances, an integer-feasible solution was found within the
time limit.
n.a. (not available): A gap value was not available for at least one instance.

solution quality, long computation times are necessary (cf. Table 7.10 on page 217 and the
corresponding analysis as well as Walter and Zimmermann, 2012). In case of the third
set, the computational curse of high workforce utilization is responsible for poor solution
quality in the case where tmax = 5min. This curse was also observed when the impact of
the parameter ρproj was examined (cf. Fig. 7.5 on page 239).
For the first and third set of the test series K = 200, integer-feasible solutions were

not found within the short time limit. In case of the second test set, only solutions of poor
quality were found. The corresponding gap values could not be computed, because lower
bound values were not available. The integer-feasible solutions were found by heuristics
that CPLEX applies to the root node before the LP relaxation of this node is solved. For
two instances, the poor heuristic solution could not be improved when the time limit was
increased to 1 hour leading to an average objective function value of 4053.1. Without these
two instances, the average objective function value amounts to 924.6 assignments. For
the two instances with outlier objective values, a lower bound was not available even after
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1 hour, because CPLEX spent the complete time on processing the root node inclusively
applying heuristics.
For all instances with K ≥ 200, root node processing was not finished until the time

limit of 1 hour was reached. For these instances, the heuristics applied by CPLEX could
provide integer-feasible solutions only for the second set of the test series K = 200. For
all other test sets K ≥ 200, an integer-feasible solution could not be determined within
1 hour.
Model size became critical for the test series K = 1250 and K = 1500. For the second

set of the test series K = 1250 and for all sets of the series K = 1500, the memory
required to load the model of each instance exceeded the available memory of 4 GB and
caused CPLEX to report an out-of-memory error.18

To summarize the results of Table 7.28, we have to register that the exact solution
method branch-and-cut, which we applied, is not suitable for solving large-sized instances
and cannot even provide solutions of low quality in acceptable time for these instances.
To tackle large-sized instances, heuristics might be a better choice. If the heuristics that
we designed are a better choice is analyzed in the next subsection.

7.3.2 Analysis of heuristic methods
In this subsection, we analyze the performance of the heuristics that we developed for the
workforce assignment problem. We present results for the heuristics GRAP and Mod-
GRAP, ISAP, DROP, and ROUND, which were outlined in Subsections 6.2.1–6.2.4. For
some of these heuristics, we compare variants of the respective heuristic, e.g., the variants
of ISAP that result from different ways to calculate suitability values, and we compare
alternative implementations, e.g., the two implementations of ISAP that differ in the way
how the recurring problem of selecting workers is solved. Additionally, we consider for
each heuristic the relation between the number of passes, i.e., the number of solutions
constructed, and the quality of a best solution among those that were constructed. Fur-
thermore, we consider the effect of parameters that determine important characteristics of
an instance. The basis of our performance analysis are the three testbeds that we already
used for testing the exact approach. As before, our criteria for evaluating performance are
solution time and quality. Our goal of the analysis is to find out which heuristic among
our four heuristics is the most suitable or, if an overall best heuristic does not exist, to
find out when to apply which heuristic.
The following list summarizes which objects are analyzed in this subsection.

• Different heuristics: GRAP and ModGRAP, ISAP, DROP, ROUND

• For each heuristic:
– Different variants (e.g., different suitability or unsuitability values)

– Different implementations (e.g., usage of a general-purpose LP solver provided
by CPLEX or of a specially tailored algorithm to solve subproblems)

18When we applied CPLEX 64 bit to the test series K = 200 and K = 400 with both tmax = 300 s
and tmax = 1h, we obtained basically the same results as in Table 7.28, i.e., for many instances an
integer-feasible solution could not be provided within the time limit. In contrast to CPLEX 32 bit, the
64 bit version did not suffer from memory shortage and could load the model for every instance of the
test series K = 1500. Though, within 1 hour no solutions could be provided for these instances.
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– The trade-off between the number of passes or solution time and solution qual-
ity

– Instance parameters: ρproj, instance size (K, D, P , S)

The first heuristics that we look at are GRAP and ModGRAP. GRAP staffs projects
one at a time. For a project p, a roulette wheel process repeatedly selects an additional
worker for p. The selection probability of a worker k in the roulette wheel selection is pro-
portional to a suitability value suitkp. Given the selected worker, as much of the remaining
workload of project p as possible is allocated to him. Since this greedy randomized as-
signment procedure cannot guarantee to find any existing feasible solution, we developed
a modified version of GRAP, which is called ModGRAP. ModGRAP can always find an
existing feasible solution, though, its average performance is expected to be much worse
than that of GRAP.
In a first experiment, we tested GRAP and ModGRAP against the test sets of

testbed 1. For GRAP and ModGRAP, we set the number of passes, which is denoted
by passmax, to 1000. Hence, the multi-start approach that was outlined in Algorithm 6.5
on page 126 tries 1000 times to construct a feasible solution and records a best solution en-
countered if a feasible solution can be constructed. In case of GRAP, we applied suitability
value suitA

kp, which is specified by Definitions (6.7), and also the second variant suit
B
kp,

which is defined in Algorithm 6.8. Additionally, we tested a variant of GRAP where the
probability of selecting a worker for a project p is equal for all workers k ∈ Ksuit,rem

p .
This variant is denoted by GRAP(suit rand

kp ), although we do not calculate a suitability
value actually. The purpose of this variant with its random choice of a worker is to check
whether the dedicated suitability values suitA

kp and suitB
kp have any positive impact. In

case of ModGRAP, we report only on the outcomes for suitA
kp. The results of the test

runs for testbed 1 are summarized in Table 7.29. As a benchmark, the results obtained
by the MIP solver of CPLEX for the standard model are also listed in this table.
From Table 7.29, we can see that GRAP provides solutions of low quality, but is

very fast. With respect to solution quality, the utterly random choice of a worker for a
project, which is marked by suit rand

kp , is clearly outperformed by the variants that apply
more sophisticated suitability values. GRAP is particularly fast when the procedure of
selecting a worker for a project is rather simple, as it is the case for the variants that apply
suit rand

kp or suitA
kp. Suitability value suit

B
kp is computationally more expensive than suit rand

kp

and suitA
kp, because the calculation of suit

B
kp is more complex. The calculation requires

sorting operations and processes more data. In exchange, using suitB
kp tends to provide

better solutions. Though, the quality of these solutions exhibits a substantial gap to
the solution quality obtained by CPLEX for the standard model. Averaged across all
test sets of testbed 1, the deviation of objective function values of GRAP(suitB

kp) from
the corresponding lower bounds that CPLEX provides for the standard model amounts
to 51.0%. The average deviation of CPLEX itself amounts to 13.2%.
The solution quality of ModGRAP is much worse than that of GRAP. The devia-

tion with respect to the best bounds provided by the exact approach averages to 304%.
ModGRAP could not outperform GRAP for a single instance. Computation times of
ModGRAP(suitA

kp) are higher than that of GRAP(suit
A
kp). This is mainly because the

process of selecting a worker, which requires calculation of the suitability values, has
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to be passed more often in case of ModGRAP. More passes are necessary because per
iteration ModGRAP allocates only the workload of one requirement rpst to a worker.
In a second experiment, we tested GRAP against the larger-sized instances of testbed 2

(cf. Table 7.30). Again, we compared the alternatives suitA
kp and suitB

kp for the suitability
values. In addition, we examined how solution quality changes when the number of passes
is changed.
The results in Table 7.30 reveal two important properties of GRAP, one property

being an advantage, the other being a drawback. The advantage is that GRAP can
provide solutions for large instances within seconds or minutes, whereas a branch-and-cut
approach based on the standard model cannot deliver an integer-feasible solution within
an hour or cannot even load the model due to shortage of memory. On the other side,
GRAP can fail to deliver a feasible solution when workforce utilization is relatively high,
as can be seen from the entries for the six test sets with ρproj = 0.8. Even if 1000 tries
are undertaken to construct a solution, GRAP(suitA

kp) fails for 5 out of 60 instances
with ρproj = 0.8 and GRAP(suitB

kp) fails in case of 11 instances.
Another finding is that GRAP outperforms CPLEX for larger-sized instances given

the time limit of 1 hour. For the first test set of the series K = 200 and K = 400, CPLEX
found integer-feasible solutions within the time limit. These solutions of CPLEX are
dominated by those of GRAP. For GRAP(suitB

kp), the average objective function values
are 14% and 8% lower than those of CPLEX for the first test set of the series K = 200
and K = 400, respectively. While the average gap in case of CPLEX amounts to 143%
and 153%, respectively, the average gap of GRAP(suitBkp) with respect to the best bound
determined by CPLEX amounts to only 109% and 131%, respectively.
In regard to workforce flexibility, we can observe that computation times of GRAP

rise with increasing flexibility. When the average number of skills mastered by a worker
increases, i.e., when the bounds of the range from which the number of skills |Sk| is se-
lected for a worker k shifts towards greater values, more computational effort is necessary.
Additional effort is necessary for selecting a worker k and for selecting a best matching
skill during an iteration of GRAP in which workload is allocated to k. When a worker
is selected for a project, more workers come into question when |Sk| increases. Hence,
more suitability values must be calculated. When a best matching skill is selected, again,
the number of candidates is the greater the greater |Sk|. The additional computational
effort is not compensated for by the reduced number of iterations per pass. The number
of iterations reduces, because more flexible workers can cover a greater share of remaining
project workload and thus enable a smaller number of assignments. Yet, GRAP cannot
escape the curse of flexibility.
When the number of passes passmax is reduced for GRAP, solution time decreases

and solution quality declines. Solution time decreases proportionally. When reducing
the number of passes from 1000 via 100 to 10, the number of assignments increases on
average by 1.1% and 2.7%, respectively, compared to the number of assignments for
1000 passes. With respect to the 60 instances with ρproj = 0.8, GRAP(suitB

kp) failed
to construct a feasible solution in case of 11 instances given 1000 passes. For 100 and
10 passes, GRAP(suitB

kp) failed in case of 26 instances and 43 instances, respectively.
From the observation that GRAP does not reliably provide solutions for instances

with a large value of ρproj, i.e., for instances with a high utilization of the workforce,
we can draw two conclusions. First, GRAP is not an appropriate solution method when
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workforce utilization is high. Especially firms should consider this drawback, because real-
life instances faced by firms tend to feature a high utilization of the workforce. Second,
manual planning with the goal of small project teams is an extremely difficult task given
instances with a high level of workforce utilization. This second conclusion can be derived
from the interpretation of GRAP as a proxy for a manual planning approach.
The results of GRAP for testbed 3, where ρproj is varied across test sets, are analyzed

together with the results of ISAP for testbed 3. Before we turn to these results, we report
on the performance of ISAP with respect to testbeds 1 and 2.
In each iteration of ISAP, all potential assignments (k, p), p ∈ PtoStaff, k ∈ Ksuit,rem

p , are
considered simultaneously. For each potential assignment (k, p), a suitability value suitkp
is calculated. Then, for each project at most one worker is selected such that no worker
is selected for more than one project, such that the number of selected pairs of workers
and projects is as large as possible, and such that the total suitability of all selected pairs
is maximized. For each selected pair (k, p), as much remaining workload of project p as
possible is allocated to worker k.
The results for testbed 1 that we obtained when executing 1000 passes of ISAP are

shown in Table 7.31. As suitability values we used suitA
kp and suitB

kp. In order to test
whether the suitability values suitA

kp and suitB
kp have a positive impact on solution quality

at all, we also conducted runs with a random suitability value, which is denoted by suit rand
kp .

To determine this random suitability value for a pair (k, p), we drew a random number
from a uniform distribution between 0 and 1 and assigned this random number to suit rand

kp .
For all three suitability values, we ran the variant ISAP(SSP). For the alternative variant
ISAP(CPLEX), we present results only for suitB

kp. The variant ISAP(CPLEX) calls the
dual simplex method of CPLEX as LP solver to solve the subproblems of selecting workers
for projects, whereas ISAP(SSP) applies the successive shortest path algorithm of Glover
et al. (1986, pp. 12–19) to solve the recurrent selection problems. For both variants, the
suitability values were perturbed after 100 passes according to Equation (6.18).
From Table 7.31, we made five observations. The first observation is that suitability

values suitA
kp and suitB

kp clearly outperform the random suitability value suit
rand
kp and that

suitB
kp leads to substantially better solutions than suit

A
kp. For ISAP, there is a considerable

difference in outcomes, whereas the advantage of suitB
kp over suit

A
kp was much smaller in

case of GRAP. A smaller number of assignments for suitB
kp than for suit

A
kp goes hand in

hand with a smaller number of selection problems that must be solved by ISAP(suitB
kp)

than by ISAP(suitA
kp). Here, the reduction of calls of the solver for the selection problem

is so significant that the advantage of suitA
kp with respect to computation time diminishes.

Second, solution quality of ISAP(suitB
kp) is better than that of GRAP(suit

B
kp). How-

ever, for small-sized instances, solution quality of ISAP is still far worse than that of the
exact approach. The time required per pass is higher for ISAP than for GRAP, since the
solution of the recurrent selection problems places an additional burden on ISAP.
Third, although the same suitability value and the same seed for the random number

generator were applied, ISAP(CPLEX, suitB
kp) and ISAP(SSP, suit

B
kp) do neither provide

identical solutions nor solutions of identical quality. This phenomenon can be attributed
to different solutions of the selection problem. Within a pass, the solution process of both
ISAP(CPLEX) and ISAP(SSP) is identical until the point where the solutions to a selec-
tion problem differ. The solutions do not differ in their objective function values, but in
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their values of the variables. From such a point on, the solution processes of both variants
proceed in two different directions that can lead to solutions of the workforce assignment
problem that are of different quality. As one might expect, no variant dominates the
other. For some instances, ISAP(CPLEX) found better solutions than ISAP(SSP); for
other instances, ISAP(SSP) provided better solutions.
The fourth observation is the significant difference in computation times between

ISAP(CPLEX) and ISAP(SSP). ISAP(SSP) is much faster than ISAP(CPLEX). The re-
current calls of the LP solver of CPLEX are on average nine times more time-consuming
than the calls of the successive shortest path algorithm.
Finally, for the test set K = 100, ISAP(suitA

kp) and ISAP(suit
B
kp) could outperform the

exact approach, which was constrained by a time limit.
To facilitate a comparison between solution methods, we consider the average deviation

of objective function values of ISAP(SSP, suitB
kp) from the corresponding lower bounds

obtained for the standard model. The deviation amounts to 24.9%. Compare this to the
value of 51.0% for the average deviation of GRAP(suitB

kp) and to the deviation of 13.2%
for the exact approach.
Results of ISAP for testbed 2 are displayed in Table 7.32, where only the variant

ISAP(SSP, suitB
kp) is considered, because suit

B
kp turned out to be the best choice as suitabil-

ity value and solution times of ISAP(CPLEX, suitB
kp) are unacceptably high for large-sized

instances. To keep solution times under 1 hour, we admitted only 100 passes. We exam-
ined the effect of reducing the number of passes from passmax = 100 to passmax = 10. Per-
turbations of suitability values according to Equations (6.18) were executed after 10 passes
in case of passmax = 100 and after 5 passes in case of passmax = 10. For a convenient
assessment, Table 7.32 lists also results of the exact approach for the standard model and
of GRAP(suitB

kp).
Table 7.32 shows that ISAP can provide better solutions than GRAP even if less passes

for ISAP than for GRAP are executed. This implies that ISAP outperforms the exact
approach for the test series K ≥ 200 when a time limit of 1 hour must be observed. The
average objective function values of ISAP(SSP, suitB

kp) are 41% and 40% lower than those
of the MIP solver CPLEX in conjunction with the standard model for the first test set of
the series K = 200 and K = 400, respectively. While the gap in case of CPLEX amounts
to 143% and 153%, respectively, the gap of ISAP(SSP, suitB

kp) with respect to the best
bound determined by CPLEX amounts to only 43% and 52%, respectively, whereas the
gap of GRAP(suitB

kp) amounts to 109% and 131%, respectively.
However, ISAP is also unreliable. Like GRAP, ISAP fails to construct a feasible

solution for many instances where project workload is relatively high, i.e., where ρproj = 0.8
holds.
In regard to workforce flexibility, we can record an interesting result: ISAP lifts the

curse of flexibility. When the workers are more flexible, as they master more skills on
average, computation time does not increase but decreases for ISAP. In case of ISAP,
the number of assignments can be reduced significantly when flexibility increases. This
significant reduction of assignments reduces the number of calls to the solver for the
recurrent selection problem. The time saved is sufficient to compensate for the additional
time that is necessary to compute more suitability values before each selection problem
can be formulated. The additional time for computing suitability values is the main
reason why GRAP suffers from the curse of flexibility, whereas ISAP can compensate
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for this additional time and can avoid it partly, because less selection problems must be
formulated and solved compared to instances with a less flexible workforce.
When the number of passes passmax is decreased for ISAP, computation times fall

proportionally and solution quality declines. When the number of passes is reduced
from 100 to 10, the number of assignments increases slightly by 0.4% on average. With
respect to the 60 instances with ρproj = 0.8, ISAP(SSP, suitB

kp) failed in case of 28 instances
given 100 passes and in case of 40 instances given 10 passes.
As for GRAP, we can conclude for ISAP that this heuristic is adequate for firms only

to a limited extent, because it can fail to provide feasible solutions, especially for instances
with a high utilization of the workforce, which is typical for instances of firms.
This conclusion is confirmed by the results that we obtained for testbed 3, whose

test sets differ in the amount of project workload and are thus characterized by different
utilization rates for the workforce. The results of GRAP(suitB

kp) and ISAP(SSP, suit
B
kp)

for testbed 3 are depicted in Figure 7.7.
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Figure 7.7: Average solution times timeμ and average objective function values obj μ of
GRAP(suitB

kp) and ISAP(SSP, suit
B
kp) with passmax = 1000 for testbed 3,

average objective function values obj μ of the standard model are plotted
additionally (K = 15, P = 15, D = S = 4)

The data in Figure 7.7 approve our previous results. They indicate once more that
GRAP and ISAP provide solutions that tend to be far from optimal and that GRAP
and ISAP fail when utilization is high, although both methods undertake 1000 tries to
construct a feasible solution for an instance. GRAP cannot construct a feasible solution
for all instances of the test sets ρproj = 0.8 and ρproj = 0.85. ISAP cannot build a feasible
solution for one instance of the test set ρproj = 0.8 and for four instances of the test
set ρproj = 0.85.
Additionally, Figure 7.7 confirms that ISAP needs more time than GRAP, but provides
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better solutions, in general. Only for small values of ρproj, GRAP constructs better
solutions than ISAP. To see that the low solution quality provided by ISAP for small values
of ρproj is a consequence of simultaneous assignments, consider the following example.

Example 7.4 Assume an instance of the workforce assignment problem with K = 2 and
P = 2 where worker k1 can completely cover both project p1 and project p2 and where
worker k2 can cover each of the two projects only partly. Let ISAP select worker k1 for
project p1 and worker k2 for project p2. Worker k1 must also be assigned to p2 resulting
in three assignments. GRAP, on the other hand, can construct a solution that features
only two assignments, namely, those of worker k1 to both projects. �

The solution times of GRAP and ISAP increase only slightly with ρproj. The increase
is caused by additional iterations in which workers are assigned to projects. When ρproj in-
creases, additional iterations are necessary, because more assignments are required. For
example, ISAP had to solve on average 3.7 selection problems per instance for ρproj = 0.2
and 5.4 selection problems per instance for ρproj = 0.6. For the exact approach based on
the standard model, we observed a massive increase in computation time for large values
of ρproj (cf. Figure 7.5 on page 239). We termed this massive increase the computational
curse of high workforce utilization. GRAP and ISAP do not suffer from this curse; their
curse is unreliability.
Our drop method DROP, in contrast, is reliable. DROP starts with a feasible solution

in which each worker k ∈ K is assigned to all her suitable projects p ∈ Psuit
k . Then,

assignments (k, p) are canceled until canceling any further assignment would result in an
infeasible solution. To assess whether canceling an assignment (k, p) is feasible, we must
check if all the associated remaining linear programs LPrem

t , t ∈ Tp, are feasible.
For the checks, we outlined two alternatives. One is to apply the dual simplex method

of CPLEX as LP solver. Since the objective function of each remaining linear program
is constant, CPLEX has to solve feasibility problems only. Alternatively, we can apply
the generalized network simplex method for the checks. This method, however, requires
a transformation of each remaining linear program into a generalized minimum cost flow
problem whose objective function is not constant anymore. When the LP solver of CPLEX
is used, the objective function of a remaining LP can be replaced by a surrogate objective
function, which may help DROP to generate better solutions for the underlying workforce
assignment problem. Objective function (6.22), which was introduced on page 187, is an
example for a surrogate objective function.
When CPLEX is applied to solve the remaining linear programs, we can formulate such

an LP either according to the standard model or according to the network model. We call
the resulting solution methods DROP(CPLEX, stand.) and DROP(CPLEX, netw.), re-
spectively. DROP(CPLEX) refers to both of these methods. The solution method that re-
sults when the generalized network simplex (GNS) is applied, is denoted by DROP(GNS)
in the following.
For the implementation of the methods DROP(CPLEX), we considered two options

to realize drop operations. In case of DROP(CPLEX, stand.), one option is to ma-
nipulate the right-hand side of Constraints (4.11), the other option is to exclude Con-
straints (4.11) from the remaining linear program and directly manipulate the upper
bounds of the variables ykpst. The latter option proved to be advantageous from a compu-
tational point of view, as solution times were considerably shorter for this option. Like-
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wise, in case of DROP(CPLEX, netw.), we can either manipulate the right-hand side of
Constraints (4.24) or exclude these constraints and directly manipulate the upper bounds
of the variables fproj

kpt . Again, we chose the second option.
Our assessment of the performance of DROP is divided in three parts. First,

we compare the performance of DROP(CPLEX, stand.), DROP(CPLEX, netw.), and
DROP(GNS) and look at the extensions of the simple drop scheme that we described in
Subsection 6.2.3.1 and at an improvement of the generalized network simplex that we men-
tioned in Subsection 6.2.3.4. In the second part, we compare the alternative unsuitability
values that we proposed for guiding the drop process. Additionally, we examine the effect
of modifying the objective function of the remaining linear programs for DROP(CPLEX),
i.e., we examine the effect of using the surrogate objective function (6.22). As explained in
Subsection 6.2.3.5, objective function (6.22) cannot be used together with DROP(GNS).
From the experiments in the first two parts, we deduce best variants of DROP and test
them against the instances of testbeds 1 and 2, as we did before for GRAP and ISAP.
Testbed 3 will be considered later together with ROUND.
In the first part of our performance analysis of DROP, we consider the variants

DROP(CPLEX, stand.), DROP(CPLEX, netw.), and DROP(GNS) in conjunction with
remaining linear programs whose objective function is not modified. In the first experi-
ment of this part, we solved only the initial linear programs LPrem

t , t ∈ T . In DROP, these
LPs are solved before the first drop operation is executed (cf. line 10 of Algorithm 6.11
on page 150). Our goal was to compare the efficiency with which the underlying LPs are
solved. Here, we measure efficiency in terms of time. The solution times of the three
variants are shown in Table 7.33 for the test sets of testbed 1 and for two test sets of
testbed 2. The fastest variant is the variant that uses CPLEX to solve the initial remain-
ing LPs based on the standard model. CPLEX in conjunction with the network model
is the second fastest variant. Only for small-sized instances, it is outperformed by the
variant that applies GNS. The time required by GNS increases drastically for larger-sized
instances compared to CPLEX.
There may be several reasons for the inferiority of our generalized network simplex

method GNS. The two reasons that are the most plausible for us shall be mentioned.
One reason is that GNS requires substantially more pivot operations than CPLEX. For
some instances of the set K = 200 in Table 7.33, GNS needs up to three times more
pivot operations than CPLEX to solve an initial remaining linear program. Even if we
use surrogate objective function (6.22) for the two variants of CPLEX, these variants
require less pivot operations than GNS for the corresponding original objective function.
Different pivoting rules may be a cause for the deviation in the number of pivot operations.
Pivoting rules, also called pricing algorithms, can have a significant impact on the number
of pivots and, hence, on solution time (cf. Chvátal, 1983, pp. 49–51; Pan, 2008). The
default pivoting rule applied by CPLEX was steepest-edge pricing. In GNS, we used the
priority rule outlined in Subsection 6.2.3.3 on page 166. Values for the parameters of this
rule were taken from Kolisch and Heimerl (2012, p. 119) and fine-tuned. However, there
may be better pivoting rules for our GNS.
A second reason for the inferiority of GNS is that the LP solver of CPLEX is supposed

to be implemented much better than our GNS from a technical point of view. The solver
package CPLEX is a well-established commercial product that has been refined by experts
for more than two decades, whereas our implementation of the generalized network simplex
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Table 7.33: Average solution times timeμ [s] and average objective function values obj μ
of the solver CPLEX in conjunction with the standard model and the net-
work model and of the generalized network simplex (GNS) method for solv-
ing the initial linear programs for test sets of testbed 1 and 2 (ρproj = 0.6,
Sk: 1–3)

Solving the initial linear programs LPrem
t , t ∈ T , only

CPLEX GNS

Instance set Standard model Network model

K P D = S timeμ obj μ timeμ obj μ timeμ obj μ

10 10 3 < 0.001 95.7 0.003 95.7 0.001 95.7
10 20 3 0.003 189.0 0.005 189.0 0.003 189.0
20 10 3 0.003 191.7 0.005 191.7 0.003 191.7
20 20 5 0.005 356.4 0.007 356.4 0.009 356.4
50 100 10 0.044 4042.0 0.054 4042.0 0.489 4042.0
100 50 10 0.038 4037.5 0.057 4037.5 0.445 4037.5
200 100 20 0.100 11 078.2 0.130 11 078.2 2.648 11 078.2
400 150 30 0.205 26 969.5 0.315 26 969.5 12.346 26 969.5

may not be as efficient as possible. In addition, be aware that the generalized minimum
cost flow formulation which underlies GNS needs—like the network model—more variables
and constraints than the standard model.
When we take a closer look at GNS and analyze the performance of its various parts,

we realized that the tree manipulations, i.e., Algorithms 6.18–6.21, are executed very
fast. The most time-consuming function among those functions that are directly related
to the tree updates was the implementation of Algorithm 6.20, which consumed on average
0.5% of the total time required by GNS to solve the initial remaining linear programs.
In contrast, four other functions required 97% of the total time. These functions were
Algorithm 6.17 for computing the changes in arc flows depending on the entering arc
(48%), the function that determines the maximum absolute change δ for the flow on the
entering arc (22%), the function that updates the flows on the arcs according to the value
of δ (19%), and Algorithm 6.16 for computing node potentials (8%). The large share in
total time for these four functions seems reasonable, as these functions are burdened with
multiplications and divisions of floating point numbers.
The inferiority of GNS is partly compensated when integrated into the simple drop

scheme without extensions. This can be seen from the first of the three parts in Table 7.34.
The first part of this table compares for the three variants of DROP a version that
applies neither the extension provided by Algorithm 6.13 nor the extension provided by
Algorithms 6.14 and 6.15. In this version of DROP, a pair (k, p) is only removed from the
list C when a drop operation has been executed for this pair. Hence, if an identical seed is
used for all three variants and if an unsuitability value is applied that does not consider
the values of the variables ykpst, the best solutions found by these variants are identical,
because the drop sequences are identical. With respect to solution times, DROP(GNS)
outperforms the other two variants for small-sized instances and DROP(CPLEX, netw.)
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also for larger-sized instances. Here comes the advantage of DROP(GNS) to light. This
advantage is based on the underlying generalized minimum cost flow problem, which
allows warm starts because a feasible solution of a remaining LP is always feasible for
the subsequent remaining LP that is associated with the next drop operation. Solutions
stay feasible because a drop operation modifies only arc costs within the network. The
advantage of a warm start is a fast reoptimization.

Table 7.34: Average solution times timeμ [s] and average objective function values obj μ
of the DROP variants DROP(CPLEX, stand.), DROP(CPLEX, netw.), and
DROP(GNS) with and without extensions for testbed 1 (unsuitability value:
usAkp, passmax = 100)

DROP(CPLEX) DROP(GNS)

Instance set Standard model Network model

K P D = S timeμ obj μ timeμ obj μ timeμ obj μ

DROP without Algorithms 6.13, 6.14, and 6.15

10 10 3 0.5 19.6 0.7 19.6 0.3 19.6
10 20 3 1.2 33.0 1.7 33.0 0.8 33.0
20 10 3 1.2 33.7 1.7 33.7 0.8 33.7
20 20 5 2.6 55.8 4.2 55.8 2.2 55.8
50 100 10 117.0 387.0 257.2 387.0 138.7 387.0
100 50 10 86.1 276.2 206.5 276.2 173.1 276.2

DROP with Algorithm 6.13 but without 6.14 and 6.15

10 10 3 0.2 23.0 0.2 23.0 0.1 23.6
10 20 3 0.3 37.8 0.4 36.1 0.3 36.7
20 10 3 0.4 35.7 0.4 36.0 0.4 37.0
20 20 5 0.6 61.1 0.9 61.6 0.9 60.0
50 100 10 9.9 414.9 32.5 393.9 51.4 398.9
100 50 10 8.5 281.7 29.7 284.0 51.7 287.2

DROP with Algorithms 6.13, 6.14, and 6.15

10 10 3 0.2 22.8 0.2 23.0 0.1 22.2
10 20 3 0.3 37.8 0.3 35.7 0.3 37.1
20 10 3 0.3 36.0 0.4 36.3 0.4 36.7
20 20 5 0.5 60.7 0.8 61.4 0.9 59.5
50 100 10 9.1 411.3 27.2 396.9 47.9 398.6
100 50 10 8.4 283.0 28.6 282.3 52.7 287.7

Nevertheless, DROP(GNS) is outperformed by DROP(CPLEX, stand.) for the larger-
sized instances. The inferiority of DROP(GNS) can be explained by an observation from
the experiments and by a systematic disadvantage of DROP(GNS). In our experiments,
we observed that the number of remaining linear programs that must be solved in the
course of DROP is higher for DROP(GNS) than for DROP(CPLEX). Across all test sets
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of testbed 1, DROP(CPLEX, netw.) solved 1.6% and DROP(GNS) even 25.4% more re-
maining linear programs than DROP(CPLEX, stand.). These numbers indicate that for a
drop operation concerning a pair (k, p) in case of DROP(CPLEX, stand.) less reoptimiza-
tions are necessary. A reoptimization for a period t ∈ Tp is not necessary if worker k does
not contribute to project p in period t in the solution that preceded the drop operation.
Unlike DROP(CPLEX), DROP(GNS) seems to scatter the workload of a project p in
each period t ∈ Tp across the set of suitable workers that have not been dropped.
The systematic disadvantage of DROP(GNS) is that the size of the underlying net-

works does not significantly shrink even if assignments are dropped. Admittedly, when-
ever a variable xkp is finally fixed to 0, arcs that cannot enter the basis anymore are
deleted from the sets of nonbasic arcs which are associated with the networks of the pe-
riods t ∈ Tp. However, the set of nodes that is associated with each period t ∈ T does
not change in the course of DROP(GNS). The solver CPLEX can shrink the size of the
underlying models to a larger extent by deleting all variables ykpst that are associated with
a dropped pair (k, p). Decreasing model size allows CPLEX to solve the remaining linear
programs LPrem

t faster and faster in the course of DROP(CPLEX). The two advantages
of DROP(CPLEX) become even more apparent if Algorithm 6.13 is integrated into the
drop procedure.
Algorithm 6.13 accelerates DROP considerably. After every successful (re)optimiza-

tion, Algorithm 6.13 seeks for pairs (k, p) in the list C where worker k does not contribute
to project p at all in the current solution. If such pairs are found, they are deleted from C
without executing a drop operation. The use of Algorithm 6.13 within the heuristic
DROP speeds up all three variants of this heuristic significantly, as can be seen from the
second part of Table 7.34. For both variants of DROP(CPLEX), solution times decrease
by 79% averaged over the test sets of testbed 1. The decrease for DROP(GNS) amounts
to only 59% on average. Compared to DROP(CPLEX), the scattering of workload across
workers that we observed for DROP(GNS) reduces the number of pairs (k, p) that can be
removed from the list C by Algorithm 6.13.
Numbers verify that the difference in the decrease in solution times between

DROP(CPLEX) and DROP(GNS) is caused in great part by a difference in the num-
ber of pairs removed from the list C by Algorithm 6.13. The number of removals from C
at the very beginning of DROP is the most important one. The more pairs (k, p) can be
removed from C early on, the less drop operations must be executed and the faster model
size decreases, especially in case of DROP(CPLEX). Hence, we compare the number of
removals due to Algorithm 6.13 that occur in the preparatory part of DROP, which is
outlined in Algorithm 6.11. The average number of removals per instance, averaged over
the test sets of testbed 1, is for DROP(CPLEX, netw.) 2% and for DROP(GNS) 20% less
than for DROP(CPLEX, stand.). Note that the best solutions found by the three variants
can differ for this version of DROP, because drop sequences can differ when different sets
of pairs (k, p) are removed from C.
The price of the speed-up due to Algorithm 6.13 is a potential decline in solution

quality. In our experiment, the number of assignments increased by about 9% for each
of the three variants. The increase in the number of assignments is a consequence of
Algorithm 6.13, since canceling a pair (k, p) in the preparatory part of DROP means that
an optimal solution with xkp = 1 cannot be reached anymore.
The last part of Table 7.34 shows the results that were obtained for the fully extended
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version of DROP which also includes Algorithms 6.14 and 6.15. These algorithms com-
pute the lower bounds LBDrop

p and LBDrop
ps , respectively. With the help of these bounds,

additional pairs (k, p) might be removed from C. Applying these lower bounds decreases
computation times of DROP(CPLEX, stand.), DROP(CPLEX, netw.), and DROP(GNS)
by 6%, 8%, and 3%, respectively. Since computing the dynamic bounds LBDrop

p and
LBDrop

ps is time-consuming, but may help to save time not until enough assignments have
been canceled, Algorithms 6.14 and 6.15 are more effective when used together with Al-
gorithm 6.13 than when used without Algorithm 6.13. Note that the best solutions found
can differ from those found when Algorithms 6.14 and 6.15 are not used, because remov-
ing pairs from the list C can change the sequence of drop operations. In our experiment,
the best solutions found differ sometimes, but there was no significant change in solution
quality.
The time-saving strategy for DROP(GNS) to delete irrelevant nonbasic arcs was ap-

plied when we conducted the test runs for Table 7.34. Whenever a variable xkp is finally
fixed to 0, this strategy deletes those arcs from the set of nonbasic arcs of each period t ∈ Tp

that are associated with worker k and project p, because these arcs do no longer come
into question to enter the basis. To see that this strategy helps to reduce computational
effort, Table 7.35 compares computation times for the case where the strategy is applied
with computation times for the case where it is not applied, i.e., where irrelevant nonbasic
arcs are not deleted. Deleting these arcs decreases computation times by 13% on average.
Though, as we saw, this time saving did not make DROP(GNS) faster than the variant
DROP(CPLEX, stand.), which performed best.

Table 7.35: Average solution times timeμ [s] and average objective function values obj μ
of DROP(GNS) without Algorithms 6.13, 6.14, and 6.15 for the strategies to
delete and to not delete arcs from the set of nonbasic arcs if they cannot enter
the basis anymore, comparison for the test sets of testbed 1 (unsuitability
value: usAkp, passmax = 100)

Strategy of DROP(GNS) for irrelevant nonbasic arcs

Instance set Deletion No deletion

K P D = S timeμ obj μ timeμ obj μ

10 10 3 0.27 19.6 0.30 19.6
10 20 3 0.75 33.0 0.85 33.0
20 10 3 0.83 33.7 0.92 33.7
20 20 5 2.16 55.8 2.44 55.8
50 100 10 138.73 387.0 171.13 387.0
100 50 10 173.11 276.2 201.22 276.2

The second part of our analysis of DROP begins with an experiment in which we exam-
ined the effect of using alternative unsuitability values uskp. An unsuitability value uskp
is calculated for each pair (k, p) in the list C before a pair is selected for the next drop
operation. The value of uskp determines the selection probability of the pair (k, p). In
our experiment, we compared the performance of DROP(CPLEX, stand.) in conjunction
with the three promising suitability values that were defined in Equations (6.19)–(6.21)
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in Subsection 6.2.3.1. The first unsuitability value usA
kp is a static value, which does not

change in the course of DROP, whereas usB
kp and usC

kp are dynamic unsuitability values.
The value usB

kp considers the current number of assignments of worker k and the levels of
the matching skills between worker k and project p, but is independent from the current
contribution of worker k to project p, whereas the value usC

kp takes the values of the vari-
ables ykpst, s ∈ Smatch

kp , t ∈ Tp, into account and hence depends on the current solution
for y.
To test whether the three unsuitability values have a positive impact on solution

quality at all, we also conducted test runs in which the pairs (k, p) were randomly selected.
In this case, the selection probability was the same for each pair (k, p) ∈ C. We denote
this selection strategy by usrand

kp , although we did not calculate an unsuitability value for
this utterly random selection strategy. The results that we obtained for the different
unsuitability values are summarized in Table 7.36.

Table 7.36: Average solution times timeμ [s] and average objective function val-
ues obj μ of DROP(CPLEX, stand.) for different unsuitability values uskp
for testbed 1 (passmax = 100)

DROP(CPLEX, stand.)

Instance set usrand
kp usA

kp usB
kp usC

kp

K P D = S timeμ obj μ timeμ obj μ timeμ obj μ timeμ obj μ

10 10 3 0.2 22.7 0.2 22.8 0.2 22.0 0.2 22.8
10 20 3 0.3 38.1 0.3 37.8 0.3 37.2 0.3 38.7
20 10 3 0.3 37.3 0.3 36.0 0.4 35.5 0.3 36.0
20 20 5 0.5 62.5 0.5 60.7 0.5 61.5 0.5 62.5
50 100 10 8.7 421.1 9.1 411.3 8.7 404.8 9.4 423.4
100 50 10 8.0 289.8 8.4 283.0 8.2 278.0 8.2 286.5

The figures in Table 7.36 reveal that the impact of promising unsuitability values on
solution quality is only modest. For each of the promising selection strategies associated
with usA

kp, usB
kp, and usC

kp, the random selection strategy denoted by us rand
kp provides better

solutions for at least one test set. Nevertheless, in total, the unsuitability values usA
kp

and usB
kp outperform usrand

kp . The value usB
kp performs best on average.

The weak performance of usC
kp is not surprising. The definition of this unsuitability

value is based on values of the variables ykpst. However, the variables ykpst are not part
of the objective function of the remaining linear programs. Thus, feasible but arbitrary
values are assigned to these variables what makes usC

kp to a random selection strategy
like us rand

kp . This similarity of usC
kp and usrand

kp is reflected in similar solution quality.
Suitability value usC

kp should perform better if the variables ykpst are explicitly considered
in the objective functions of the remaining linear programs.
The surrogate objective function (6.22) takes the variables ykpst explicitly into account

and can replace the original objective function of a remaining linear program in case of
DROP(CPLEX). Objective function (6.22) should not be combined with DROP(GNS),
as we have shown in Example 6.12 in Subsection 6.2.3.5. The goal of objective func-
tion (6.22) is to favor solutions of a remaining linear program LPrem

t , t ∈ Tp, where
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ykpst = 0, s ∈ Smatch
kp , tends to hold if the number of matching skills between worker k and

project p is relatively small. We examined the effect of using surrogate objective func-
tion (6.22) for DROP(CPLEX, stand.) and DROP(CPLEX, netw.). Again, the variant
DROP(CPLEX, stand.) performed best. For this variant, we present the results for the
different unsuitability values in Table 7.37.

Table 7.37: Average solution times timeμ [s] and average objective function values obj μ
of DROP(CPLEX, stand.) with surrogate objective function (6.22) for dif-
ferent suitability values uskp for testbed 1 (passmax = 100)

DROP(CPLEX, stand.) with objective function (6.22)

Instance set usrand
kp usA

kp usB
kp usC

kp

K P D = S timeμ obj μ timeμ obj μ timeμ obj μ timeμ obj μ

10 10 3 0.2 22.0 0.2 21.7 0.2 21.2 0.2 21.2
10 20 3 0.3 34.2 0.3 34.0 0.4 34.6 0.4 35.6
20 10 3 0.4 35.5 0.4 35.5 0.4 34.8 0.4 35.1
20 20 5 0.7 55.9 0.7 55.9 0.7 56.4 0.7 55.1
50 100 10 9.0 353.3 9.4 352.4 9.2 351.2 9.4 352.3
100 50 10 11.4 261.4 11.5 263.0 11.9 257.5 11.7 261.7

The results in Table 7.37 show that the usage of surrogate objective function (6.22)
leads to substantially better solutions than the usage of the original objective function
(cf. Table 7.36). The impact of the choice of the unsuitability value is modest again. On
average, the random selection strategy usrand

kp is outperformed only by a narrow margin. In
total, the unsuitability value usB

kp performs best. The surrogate objective function allows
unsuitability value usC

kp to better tap its potential. On average, the value usC
kp performs

second best and reaches solutions that are almost as good as solutions reached with usB
kp

and slightly better than solutions attained with usA
kp and us rand

kp . The difference in solution
times between all four unsuitability values is negligible. DROP spends the greatest share
in total computation time by far for solving the remaining linear programs. This dom-
ination conceals variations in computation times that arise from different unsuitability
values.
The analysis of DROP finishes with the third part, which considers results for

testbeds 1 and 2. From the first two parts of our analysis, we concluded that
DROP(CPLEX, stand.) in conjunction with surrogate objective function (6.22) and un-
suitability value usB

kp is the best variant of DROP. Hence, we ran this variant against
the test sets of testbeds 1 and 2. Additionally, we ran the variant DROP(GNS) with
unsuitability value usB

kp. An advantage of this variant is that it is less memory-intensive,
as will become apparent from the results for testbed 2.
For testbed 1, we ran both variants of DROP for 1000 and 100 passes. The correspond-

ing results are shown in Table 7.38. As we have already seen before, DROP(CPLEX,
stand.) with (6.22) clearly outperforms DROP(GNS) with respect to solution quality
and time. Even the solution quality of DROP(CPLEX, stand.) with (6.22) after only
100 passes is better than that of DROP(GNS) after 1000 passes. For both variants, com-
putation time is approximately proportional to the number of passes. When the number
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of passes is decreased from 1000 to 100 passes, average objective function values increase
by about 3% for both variants.
Comparing the results of DROP(CPLEX, stand.) with (6.22) and those of ISAP(suitB

kp)
for testbed 1 (cf. Table 7.31 on page 250), the drop method has a slight advantage with
respect to solution quality, although it does not dominate ISAP(suitB

kp). For 1000 passes,
though, it takes DROP(CPLEX, stand.) with (6.22) six times the computation time that
is required by ISAP(SSP, suitB

kp). However, the big advantage of all DROP variants is
that they reliably provide feasible solutions, whereas ISAP and also GRAP can fail to
find an existing feasible solution.
As ISAP, both variants of DROP outperform the exact approach that is based on the

standard model for the test set K = 100. Note that we imposed a time limit on the exact
approach. Averaged over all test sets of testbed 1, the deviation of objective function
values of DROP(CPLEX, stand.) with (6.22) for passmax = 1000 from the corresponding
lower bounds provided by the exact approach amounts to 19.7%. For ISAP(SSP, suitB

kp),
the deviation amounted to 24.9%; for the exact approach it amounted to 13.2%.
For testbed 2, the results are displayed in Table 7.39. We ran DROP(CPLEX, stand.)

with surrogate objective function (6.22) for 100 and 10 passes. DROP(GNS) was run for
10 passes only, because computation times would have been unacceptably long otherwise.
For both variants of DROP, unsuitability value usB

kp was used and a time limit of 1 hour
was applied. DROP stopped when the time limit or the maximum number of passes was
hit, whatever happened first. For DROP(CPLEX, stand.) with (6.22), the case that the
time limit was hit before 100 passes could be completed occurred only for two instances
of the test set K = 1250, ρproj = 0.8. In these two cases, 95 and 92 passes could be
completed. For DROP(GNS), however, even 10 passes could not be completed within
1 hour for some larger-sized instances. In case of DROP(GNS), we report for each test set
the average number of passes that had been completed before the time limit was reached.
This average number of completed passes is denoted by passμ.
Also for testbed 2, DROP(CPLEX, stand.) with (6.22) clearly outperforms

DROP(GNS) in terms of solution time and quality. Though, for three out of four
test sets for which DROP(CPLEX, stand.) with (6.22) fails due to excessive memory
demand, DROP(GNS) does not fail. The memory demand of DROP(GNS) exceeds the
available memory of 4 GB only in case of the second set of the test series K = 1500.
This test set features a relatively flexible workforce and, hence, contains the largest-sized
instances of testbed 2.
When the results of DROP are compared to the results of ISAP and GRAP, two

observations can be made. First, DROP provides solutions for test sets with ρ = 0.8. The
instances of these test sets are characterized by a high workforce utilization. ISAP and
GRAP could not provide solutions for many of these instances.
The second observation concerns the remaining test sets which feature ρ = 0.6. With

respect to solution quality, the results are ambivalent for these test sets. ISAP(SSP, suitBkp)
outperforms DROP(CPLEX, stand.) with (6.22) for those test sets where the instances
feature a very flexible workforce, i.e., where |Sk| ∈ {3, 4, 5}, k ∈ K, while it is the other
way round for those test sets with |Sk| ∈ {1, 2, 3}, k ∈ K. DROP(GNS), however, is
clearly outperformed by ISAP(SSP, suitB

kp). On the other hand, DROP(GNS) outperforms
GRAP(suitB

kp) for ρ = 0.6 and ρ = 0.8. This is especially noteworthy for the test set K =
1500, ρ = 0.8, where DROP(GNS), GRAP, and a variant of ROUND were the only
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methods that could provide feasible solutions. For this test set, DROP(GNS) provides
the best solutions. The solutions of DROP(GNS) are better than those of GRAP(suitB

kp)
for nine out of ten instances, although DROP(GNS) could not complete a single pass
in the case of three instances and although GRAP(suitB

kp) had 1000 tries to construct a
solution.
We also compare the heuristic DROP to the exact approach that applies the MIP

solver of CPLEX to the standard model. The average objective function values of
DROP(CPLEX, stand.) with (6.22) are 44% and 43% lower than those of the exact
approach for the first test set of the test series K = 200 and K = 400, respectively. When
the MIP solver of CPLEX tackles the standard model, the gap for these two test sets
amounts to 143% and 153%, respectively. The gap of DROP(CPLEX, stand.) with (6.22)
with respect to the best bound determined for the exact approach amounts to only 37%
and 45%, respectively. For comparison, the gap of ISAP(SSP, suitB

kp) amounts to 43%
and 52%, respectively.
When the number of passes is decreased from 100 to 10 for DROP(CPLEX, stand.)

with (6.22), computation time decreases proportionally. Objective function values increase
by approximately 3% averaged over all test sets of testbed 2.
In regard to workforce flexibility, DROP suffers from the curse of flexibility. If work-

force flexibility, which is associated with |Sk|, k ∈ K, is increased, computation time
increases considerably, as Table 7.39 reveals. The more skills a worker masters on aver-
age, the more potential assignments exist, i.e., the more pairs (k, p) belong to the list C at
the outset of DROP. However, after the initial remaining linear programs are solved, more
pairs (k, p) can be removed from C due to zero contribution of worker k to project p. We
observed that less drop operations are executed and less remaining linear programs are
solved in case of greater flexibility. The reason for higher computation times is that more
time is required to solve a remaining linear program due to increased model size. Greater
flexibility implies that a worker masters more skills and can, hence, contribute to more
skill requirements and perhaps to more projects. This in turn means that a remaining LP
contains more variables ykpst and may comprise more variables xkp and more constraints.
When workforce utilization is increased, i.e., when instances with ρ = 0.8 instead

of ρ = 0.6 are considered, solution time rises substantially in case of DROP(CPLEX,
stand.) with (6.22). Two causes are responsible for this rise. First, more pairs (k, p)
remain on the list C after the initial removal and, hence, more drop operations must be
executed, i.e., more remaining LPs must be solved. Second, solving a remaining LP is more
time-consuming than in case of a relatively low workforce utilization. We have already
observed this effect for the LP relaxations in case of the exact approach (cf. Figure 7.5 on
page 239 and the corresponding analysis). For the test series K = 200 in Table 7.39, for
example, where the average computation time increases from 36.6 seconds to 62.8 seconds
when utilization is raised, the average number of remaining LPs that must be solved per
instance increases by 37% and the time for solving the initial remaining LPs increases
by 61%. Thus, we must record that DROP(CPLEX, stand.) with (6.22) suffers from the
computational curse of high workforce utilization.
In conclusion, DROP(CPLEX, stand.) with (6.22) is a solution method that reliably

provides relatively good solutions in acceptable time as long as instance size is not too
large such that memory limits are reached.
ROUND is another reliable heuristic that we developed for the workforce assignment
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problem. In ROUND, the LP relaxation of a MIP formulation for the workforce assign-
ment problem is repeatedly solved and manipulated until a solution of the LP relaxation
is reached where all variables xkp, k ∈ K, p ∈ Psuit

k , take on integer values. Given the so-
lution of the LP relaxation, the manipulation works as follows: Each variable xkp, k ∈ K,
p ∈ Psuit

k , whose value is integer in the given solution is fixed to this value. Additionally,
for each project p that features variables xkp, k ∈ Ksuit

p , with fractional values in the given
solution of the LP relaxation, the variable taking on the largest fractional value, say vari-
able xk′p, or the variable taking on the second largest fractional value, say xk′′p, is rounded
up and fixed to 1. However, rounding up and fixing of one of these two variables is not
carried out if for both workers k′ and k′′ another variable in the given solution has already
been rounded up and fixed to 1. The manipulation that we described does not include
rounding down a variable of positive value and fixing it to 0. This is why the heuristic
ROUND guarantees to determine a feasible solution if any exists. This guarantee makes
ROUND a reliable heuristic.
We implemented several variants of ROUND. Two basic variants that we implemented

are ROUND(CPLEX, stand.) and ROUND(CPLEX, netw.). The former variant applies
the LP relaxation of the standard model, whereas the latter uses the LP relaxation of
the network model. For a limited number of passes, ROUND(CPLEX, stand.) slightly
outperformed ROUND(CPLEX, netw.) with respect to solution time. The best solu-
tions found by both variants are not identical, but average solution quality is—generally
speaking—the same. For some instances, ROUND(CPLEX, stand.) determines slightly
better solutions than ROUND(CPLEX, netw.). For other instances, the reverse is true.
In the following, we only consider the basic variant ROUND(CPLEX, stand.), because it
is the faster variant.
We implemented different variants of the basic variant ROUND(CPLEX, stand.).

These variants differ in the big-M constraints and in the globally valid inequalities that
are used for the LP relaxation. We show results for three variants that represent the broad
range of possible variants. These variants are named ROUND(Tight LP), ROUND(Weak
LP, (4.11)), and ROUND(Weak LP, (4.18)). The variant ROUND(Tight LP) applies the
combined big-M constraint set (6.5)+(6.6) as well as the globally valid inequalities (6.1)
and (6.3) for its LP relaxation. When we tackled the MIP, the corresponding model per-
formed best with respect to solution time and quality. The variant ROUND(Tight LP)
provides a relatively tight LP relaxation; hence, we hope that this variant provides good
solutions for the workforce assignment problem, because an optimal solution of a tight
LP relaxation may come close to an optimal solution of the corresponding MIP.
On the other hand, solving a tight LP relaxation tends to require substantially more

time than solving a weak LP relaxation, as we have seen from Table 7.16 on page 227
and from Table 7.23 on page 235. To analyze the trade-off between solution quality and
solution time, we also tested the variants ROUND(Weak LP, (4.11)) and ROUND(Weak
LP, (4.18)). The variant ROUND(Weak LP, (4.11)) applies big-M constraint set (4.11)
instead of the combined set (6.5)+(6.6), i.e., it applies weaker big-M constraints. More-
over, it applies neither (6.1) nor (6.3), i.e., ROUND(Weak LP, (4.11)) forgoes globally
valid inequalities that tighten the model formulation. The variant ROUND(Weak LP,
(4.18)) does also without globally valid inequalities (6.1) and (6.3). This variant applies
Constraints (4.18) as big-M constraints. These big-M constraints are even weaker than
big-M constraints (4.11).
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For testbed 1, results of the variants ROUND(Tight LP) and ROUND(Weak LP,
(4.18)) are shown in Table 7.40. We ran ROUND(Tight LP) for 100 and for 10 passes in
conjunction with a time limit of 1 hour. The variant ROUND(Weak LP, (4.18)) was run
for 10 passes. The dual simplex method of CPLEX was used to solve the LP relaxations.
Let us first look at the results of ROUND(Tight LP) for passmax = 100. The so-

lution quality of this variant is better than that of any other heuristic that we tested.
ROUND(Tight LP) with passmax = 100 outperforms DROP(CPLEX, stand.) with (6.22)
with passmax = 1000. The average deviation of objective function values of ROUND(Tight
LP) with passmax = 100 from the corresponding lower bounds provided by the exact ap-
proach amounts to 12.7%. This deviation is smaller than the deviation of 19.7% for
DROP(CPLEX, stand.) with (6.22) with passmax = 1000 and smaller than the deviation
of 13.2% for the exact approach itself. However, solution times of ROUND(Tight LP)
are far worse than those of DROP(CPLEX, stand.) with (6.22), especially for larger-
sized instances. On average, ROUND(Tight LP) could complete only two thirds of the
100 passes for the instances of the test sets K = 50 and K = 100 within 1 hour, whereas
DROP(CPLEX, stand.) with (6.22) could perform 1000 passes for the instances of these
test sets within 2 minutes.
When we reduced the maximum number of passes to 10, ROUND(Tight LP) provided

still good solutions. Solution time fell proportionally and the number of assignments
increased by 3%, averaged over all instances of testbed 1. The solutions obtained by
ROUND(Tight LP) for passmax = 10 are better than those of DROP(CPLEX, stand.)
with (6.22) with passmax = 100 and, on average, even better than those of DROP(CPLEX,
stand.) with (6.22) with passmax = 1000. Though, even if only 10 or less passes of
ROUND(Tight LP) are executed, solution times are relatively high.
Significantly shorter computation times are achieved by the variant ROUND(Weak

LP, (4.18)). The speed-up is paid for by a deterioration of objective function values.
Solution times of ROUND(Weak LP, (4.18)) with passmax = 10 are similar to those of
DROP(CPLEX, stand.) with (6.22) with passmax = 100, but solution quality is much
worse. Unlike ROUND(Tight LP), DROP, and ISAP, the variant ROUND(Weak LP,
(4.18)) does not provide better solutions for the test set K = 100 than the exact approach
does within 1 hour.
To shed light on the difference in solution times between ROUND(Tight LP) and

ROUND(Weak LP, (4.18)) in case of passmax = 10, we scrutinized the solution process of
these two variants. For the test sets K = 20 and K = 100, we recorded the number of
LP relaxations that had to be solved until an integer-feasible solution for the underlying
workforce assignment problem was reached. In case of ROUND(Tight LP), 6.8 LP relax-
ations per pass had to be solved for the instances of test set K = 20 and 10.7 iterations
of rounding were required for instances of the set K = 100. In case of ROUND(Weak
LP, (4.18)), 11.9 and 17.1 LP relaxations, respectively, had to be solved. Even though
ROUND(Tight LP) requires less iterations to reach an integer-feasible solution, it requires
more time than ROUND(Weak LP, (4.18)). This implies that it takes much more time to
solve a single LP relaxation in case of ROUND(Tight LP) than in case of ROUND(Weak
LP, (4.18)). One reason for the higher computational effort of ROUND(Tight LP) is the
greater number of constraints that the corresponding LP relaxation exhibits.
To understand, why ROUND(Tight LP) requires a smaller number of iterations to

yield an integer value for each variable xkp, we looked at the subsequent solutions for
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the LP relaxation within a single pass. In the solution of the initial LP relaxation, there
are more variables that are equal to 1 in case of ROUND(Tight LP) than in case of
ROUND(Weak LP, (4.18)). The number of variables that equal 0 is virtually the same for
both ROUND(Tight LP) and ROUND(Weak LP, (4.18)). Since more variables are fixed
to 1 for ROUND(Tight LP) after the initial solution has been obtained, more variables
are equal to 0 in the second solution. Consequently, less fractional variables occur in the
second solution in case of ROUND(Tight LP) facilitating ROUND(Tight LP) to reach an
integer-feasible solution in a smaller number of iterations than ROUND(Weak LP, (4.18)).
To give an example, we consider the test set K = 100. In the initial solution of

ROUND(Tight LP), on average, 10 variables xkp are equal to 1, 3489 variables xkp are
equal to 0, and 539 variables xkp are fractional. For ROUND(Weak LP, (4.18)), no
variable equals 1, 3477 variables equal 0, and 561 variables are fractional. For the following
numbers that refer to the solution of the second LP relaxation, we take only variables into
account that were not fixed after the first solution had been obtained. For ROUND(Tight
LP), the solution of the second LP relaxation features on average 4 additional variables
that equal 1, 149 additional variables that equal 0, and 343 fractional variables. For
ROUND(Weak LP, (4.18)), no additional variable is equal to 1, 56 additional variables
are equal to 0, and 469 variables are fractional in the second solution. For ROUND(Tight
LP), almost three times more variables xkp are equal to 0 than for ROUND(Weak LP,
(4.18)).
For testbed 2, we ran all three variants of ROUND(CPLEX, stand.). The variants

ROUND(Tight LP) and ROUND(WEAK, (4.11)) were run for 1 pass only, in order to
keep computation times in an acceptable range. The variant ROUND(Weak LP, (4.18)),
which is faster, was run for 10 passes. The results of these runs are summarized in
Table 7.41.
Table 7.41 unveils that the variants ROUND(Tight LP) and ROUND(WEAK, (4.11))

are not suitable for large-sized instances. ROUND(Tight LP) cannot complete a single
pass for the second and the third test set of the series K = 200 and for all test sets
K ≥ 400 within 1 hour. For almost all instances for which ROUND(Tight LP) could not
determine a feasible solution, the LP solver of CPLEX could not find a feasible solution
to the initial LP relaxation within 1 hour. Only for two instances of the second test set
of the series K = 200 and for four instances of the first test set of the series K = 400, the
process of rounding up and fixing variables and reoptimizing was started, but it could not
be completed. The demand for memory exceeded the available memory of 4 GB RAM for
the second test set of the series K = 800 and for all test sets K ≥ 1250. ROUND(Weak
LP, (4.11)) could provide feasible solutions for larger-sized instances than ROUND(Tight
LP), but also failed for all test sets K ≥ 800.
Up to the points where these two variants fail to provide feasible solutions within

the time limit, their solution quality is competitive; though, their computation times
are relatively high. ROUND(Tight LP) outperforms DROP(CPLEX, stand.) with (6.22)
with passmax = 100, and ROUND(Weak LP, (4.11)) returns almost as good solutions
as DROP(CPLEX, stand.) with (6.22) with passmax = 10; however, ROUND(Weak LP,
(4.11)) requires more time than DROP(CPLEX, stand.) with (6.22) with passmax = 100.
In order to determine solutions for the largest-sized instances of testbed 2 by a rounding

procedure within the time limit, we had to resort to the variant ROUND(Weak LP, (4.18)).
The corresponding LP relaxation is solved so fast that 10 passes could be completed within



270 Chapter 7 Numerical analysis
T
ab

le
7.

41
:
Av
er
ag
e
so
lu
ti
on
ti
m
es

ti
m
e
μ
[s
],
av
er
ag
e
ob
je
ct
iv
e
fu
nc
ti
on
va
lu
es

ob
j μ
,a
nd
av
er
ag
e
nu
m
be
rs
of
co
m
pl
et
ed
pa
ss
es

pa
ss

μ

of
R
O
U
N
D
(C
P
LE
X
,
st
an
d.
)
w
it
h
di
ffe
re
nt
LP

re
la
xa
ti
on
s
of
th
e
st
an
da
rd
m
od
el
an
d
w
it
h
di
ffe
re
nt
nu
m
be
rs
of

pa
ss
es

pa
ss

m
ax
fo
r
te
st
be
d
2;
ou
tc
om
es
ar
e
co
m
pa
re
d
to
th
e
re
su
lt
s
of
th
e
st
an
da
rd
m
od
el

tm
ax

=
1

h

St
an

da
rd

m
od

el
R

O
U

N
D

(C
P

LE
X

,s
ta

nd
.)

T
ig

ht
LP

W
ea

k
LP

,(
4.

11
)

W
ea

k
LP

,(
4.

18
)

In
st

an
ce

se
t

pa
ss

m
ax

=
1

pa
ss

m
ax

=
1

pa
ss

m
ax

=
10

K
P

D
=

S
|S

k
|

ρ
pr

oj
o
bj

μ
ga
p
μ

ti
m
e
μ

o
bj

μ
ti
m
e
μ

o
bj

μ
ti
m
e
μ

pa
ss

μ
o
bj

μ

40
40

6
1–

3
0.

6
10

5.
7

11
.2

47
.7

12
1.

4
2.

6
14

1.
9

16
.6

10
.0

16
0.

6
2–

3
0.

6
96

.3
6.

8
81

.6
11

3.
3

2.
2

13
0.

5
7.

0
10

.0
14

5.
0

1–
3

0.
8

12
7.

5
18

.5
59

.1
14

1.
1

5.
7

16
1.

3
24

.9
10

.0
18

1.
1

20
0

10
0

20
1–

3
0.

6
10

15
.5

14
3.

0
10

93
.1

53
4.

9
94

.5
61

9.
5

33
.8

10
.0

79
4.

0
3–

5
0.

6
40

53
.1

n.
a.

∗
∗

20
7.

0
51

4.
1

11
2.

7
10

.0
63

9.
3

1–
3

0.
8

12
17

.3
15

1.
5

∗
∗

35
7.

4
71

1.
5

51
.2

10
.0

89
5.

0

40
0

15
0

30
1–

3
0.

6
18

12
.4

15
2.

9
∗

∗
73

9.
3

11
13

.4
13

5.
5

10
.0

14
73

.5
3–

5
0.

6
∗

∗
∗

∗
20

21
.1

93
8.

1
50

4.
7

10
.0

12
35

.5
1–

3
0.

8
∗

∗
∗

∗
∗∗

∗∗
20

7.
3

10
.0

16
71

.8

80
0

20
0

50
1–

3
0.

6
∗

∗
∗

∗
∗

∗
60

8.
2

10
.0

29
41

.3
3–

5
0.

6
∗

∗
ou

t
of

m
em

or
y

∗
∗

28
75

.7
10

.0
24

86
.8

1–
3

0.
8

∗
∗

∗
∗

∗
∗

93
6.

4
10

.0
33

41
.2

12
50

30
0

60
1–

3
0.

6
∗

∗
ou

t
of

m
em

or
y

∗
∗

27
93

.6
10

.0
48

19
.6

3–
5

0.
6

ou
t

of
m

em
or

y
ou

t
of

m
em

or
y

ou
t

of
m

em
or

y
36

00
.0

2.
6

41
44

.6
1–

3
0.

8
∗

∗
ou

t
of

m
em

or
y

∗
∗

36
00

.0
7.

5
54

50
.2

15
00

50
0

75
1–

3
0.

6
ou

t
of

m
em

or
y

ou
t

of
m

em
or

y
ou

t
of

m
em

or
y

36
00

.0
3.

4
87

03
.2

3–
5

0.
6

ou
t

of
m

em
or

y
ou

t
of

m
em

or
y

ou
t

of
m

em
or

y
ou

t
of

m
em

or
y

1–
3

0.
8

ou
t

of
m

em
or

y
ou

t
of

m
em

or
y

ou
t

of
m

em
or

y
36

00
.0

1.
9

94
79

.7
∗ F

or
no

ne
of

th
e

te
n

in
st

an
ce

s,
an

in
te

ge
r-

fe
as

ib
le

so
lu

ti
on

w
as

fo
un

d
w

it
hi

n
th

e
ti

m
e

lim
it

.
∗∗

Fo
r

at
le

as
t

on
e

ou
t

of
th

e
te

n
in

st
an

ce
s,

a
fe

as
ib

le
so

lu
ti

on
co

ul
d

no
t

be
co

ns
tr

uc
te

d
w

it
hi

n
th

e
ti

m
e

lim
it

.
n.

a.
(n

ot
av

ai
la

bl
e)

:
A

ga
p

va
lu

e
w

as
no

t
av

ai
la

bl
e

fo
r

at
le

as
t

on
e

in
st

an
ce

.



7.3 Analysis for the workforce assignment problem 271

the time limit for all instances but the very large-sized ones. And only for one test set,
namely, for the second test set of the series K = 1500, ROUND(Weak LP, (4.18)) failed
to provide feasible solutions because of a memory shortage. However, solution quality of
ROUND(Weak LP, (4.18)) is not competitive. DROP(CPLEX, stand.) with (6.22) and
DROP(GNS) provide better solutions in less time.
From comparing ROUND(WEAK, (4.11)) and ROUND(Weak LP, (4.18)) to the ex-

act approach, we can also conclude that these two rounding variants are inferior to
DROP(CPLEX, stand.) with (6.22). For the first test set of the test series K = 200 and
K = 400, average objective function values of ROUND(WEAK, (4.11)) are 39% lower
than those of the exact approach. Average objective function values of ROUND(WEAK,
(4.18)) are only about 20% lower than those of the exact approach, whereas average
objective values of DROP(CPLEX, stand.) with (6.22) are about 43% lower. When
the exact approach runs for 1 hour, the average gap for these two test sets amounts
to 143% and 153%, respectively. The gap of ROUND(WEAK, (4.11)) with respect to
the best bound determined by the exact approach amounts to 48% and 55%, respec-
tively. The gap of ROUND(Weak LP, (4.18)) is equal to 90% and 106%, respectively.
For DROP(CPLEX, stand.) with (6.22) the gap amounts to only 37% and 45%, respec-
tively.
Like DROP, ROUND suffers from the curse of flexibility. When workforce flexibility,

which is associated with the numbers of skills |Sk| mastered by workers k ∈ K, is raised,
computation time of ROUND(Weak LP, (4.18)) tends to increase substantially. This
increase occurs, although the number of LP relaxations that must be solved per pass
decreases. The reason for the increase in overall solution time is the rise in time required
to solve a single LP relaxation. In case of greater workforce flexibility, model size increases,
because an average worker can contribute to more skills and projects than before. Hence,
the number of variables xkp and ykpst and the number of constraints tends to increase for
ROUND with increasing flexibility.
Also the degree of workforce utilization, which is represented by parameter ρproj, has

an impact on solution time. Solution time of ROUND(Weak LP, (4.18)) increases, when
ρproj is increased from 0.6 to 0.8, but the increase in computation time is less sharp than
the increase that is induced by higher workforce flexibility. An increase in ρproj does not
change model size. Reasons for the rise in computation time are an increase in the time
required to solve a single LP relaxation and a slight increase in the number of iterations
per pass that are necessary to yield an integer-feasible solution.
To sum up, ROUND(Tight LP) provides very good solutions but is so time-consuming

that it is not practical for larger-sized instances. The variant ROUND(Weak LP, (4.18))
is less time-consuming but still not very fast. Moreover, this variant is not competitive
with respect to solution quality.
Eventually, we will analyze the results of DROP and ROUND for testbed 3 in order to

examine the impact of workforce utilization on solution time and quality. We have already
realized for DROP(CPLEX, stand.) with (6.22) and for ROUND(Weak LP, (4.18)) that
computation times increase when ρproj is increased from 0.6 to 0.8. The 17 test sets
of testbed 3 can provide more information on the impact of ρproj, because they were
created for 17 different values of the parameter ρproj, which determines the ratio of project
workload to total availability. The corresponding instances of the 17 different test sets
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are identical except for the values of the project requirements rpst. These requirements
are the larger, the larger the value of ρproj is.
For testbed 3, we compare the best variants of DROP and ROUND to the exact

approach. We executed 1000 passes of DROP(CPLEX, stand.) with (6.22) using unsuit-
ability value usB

kp and 100 passes of ROUND(Tight LP). The results of our experiments
are depicted in Figure 7.8.
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Figure 7.8: Average solution times timeμ and average objective function values obj μ
of DROP(CPLEX, stand., usB

kp, passmax = 1000) with (6.22) and
ROUND(Tight LP, passmax = 100) for testbed 3, average objective func-
tion values obj μ of the standard model are plotted additionally (K = 15,
P = 15, D = S = 4)

Figure 7.8 reveals that the solution quality of DROP(CPLEX, stand.) with (6.22) and
ROUND(Tight LP) is better than that of GRAP and ISAP (cf. Figure 7.7 on page 253).
ROUND(Tight LP) provides better solutions than DROP(CPLEX, stand.) with (6.22)
except for the test sets ρproj ≤ 0.25. We have noticed this advantage of ROUND(Tight
LP) with respect to solution quality already for testbed 1.
The solution times of ROUND(Tight LP) and DROP(CPLEX, stand.) with (6.22)

behave quite differently. For both heuristics, solution times increase with increasing ρproj.
However, the increase in solution time for DROP(CPLEX, stand.) with (6.22) is moderate
compared to the sharp rise in computation time for ROUND(Tight LP). This increase in
computation time of ROUND(Tight LP) is also sharper than the increase that we observed
for ROUND(Weak LP, (4.18)), when ρproj was raised from 0.6 to 0.8 in testbed 2.
We examined the discrepancy in solution times between DROP(CPLEX, stand.)

with (6.22) and ROUND(Tight LP) for the test sets of testbed 3 in more detail by com-
paring the results for the test sets ρproj = 0.3 and ρproj = 0.8. For DROP(CPLEX, stand.)
with (6.22), the average computation time per instance rises from 3.2 seconds to 7.1 sec-
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onds. This increase is caused by a doubling in the number of drop operations, which
comes along with a doubling in the number of remaining LPs that must be solved. While
on average 41 remaining LPs must be solved per pass for ρproj = 0.3, 79 must be solved
for ρproj = 0.8.
For ROUND(Tight LP), it takes 2.8 seconds on average to execute 100 passes for an

instance of the test set ρproj = 0.3, but it takes 47.3 seconds in case of test set ρproj = 0.8.
The average number of LP relaxations that must be solved per instance and per pass is
nearly the same for both values of ρproj. It rises only slightly from 6.0 to 7.3. The cause
for the drastic rise in computation time with increasing ρproj is the drastic increase in time
that is required to solve a single LP relaxation.
The implications of these results are important when it comes to tackling real-life

instances. Recall that instances with a high workforce utilization prevail in practice.
Hence, the variant ROUND(Tight LP) may not be applicable in practice if time is a
scarce resource. This and other implications of our results that we obtained for the
different solution methods for the workforce assignment problem will be considered in the
discussion in Chapter 8. Before starting the discussion, we will complete the numerical
analysis with computational results for the utilization leveling problem, which emerges
from a feasible solution of the workforce assignment problem.

7.4 Analysis for the utilization leveling problem
In this section, we consider computational results for the utilization leveling problem.
First, we describe how we generated test instances for this problem. For the generated
test instances, we compare the results of two solution methods. One method applies the
dual simplex optimizer of CPLEX to determine an optimal solution for model (4.39)–
(4.44). The simplex method, which is a general-purpose LP solver, has an exponential
worst-case time complexity. The other method is Algorithm 6.4, which is a specially
tailored leveling algorithm that runs in polynomial time.
We did not systematically create artificial instances for the utilization leveling problem,

but simply considered feasible solutions for instances of the workforce assignment problem
as instances of the utilization leveling problem. The resulting instances are artificial,
too. The instances that we use for the performance analysis in this section were derived
from solutions of DROP(CPLEX, stand.) with (6.22) for instances of testbed 2. To
be more precise, the instances were derived from those solutions that were obtained for
unsuitability value usB

kp and passmax = 100 (cf. Table 7.39). The derived test sets are listed
in Table 7.42. Since DROP(CPLEX, stand.) with (6.22) could not determine solutions for
the second test set of the series K = 1250 and for all three test sets of the series K = 1500,
the corresponding test sets are missing in Table 7.42. Each test set that is listed comprises
ten files and each file comprises D · T instances of the utilization leveling problem. The
ten files of a test set correspond to the ten instances of the associated test set for the
workforce assignment problem.
In Table 7.42, we present results for both solution methods, which are denoted by

CPLEX and Algorithm 6.4, respectively. For both methods, we report on objective func-
tion values and computation times that were averaged over the ten files of a test set. The
value timeμ states the average time in milliseconds that was required to solve the D · T
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Table 7.42: Average objective function values obj μ and average solution times timeμ [ms]
of CPLEX for model (4.39)–(4.44) and of Algorithm 6.4 for instances of
the utilization leveling problem that were derived from solutions for the
corresponding instances of testbed 2 (T = 12)

Instance set obj μ timeμ [ms]

K P D = S |Sk| ρproj CPLEX Algorithm 6.4

40 40 6 1–3 0.6 63 036.2 31 < 1
2–3 0.6 58 407.5 31 < 1
1–3 0.8 58 390.1 32 < 1

200 100 20 1–3 0.6 437 344.6 154 < 1
3–5 0.6 435 077.6 153 < 1
1–3 0.8 441 502.5 143 < 1

400 150 30 1–3 0.6 1 184 331.3 352 < 1
3–5 0.6 1 183 607.4 340 < 1
1–3 0.8 1 225 500.5 335 < 1

800 200 50 1–3 0.6 2 897 401.4 800 1
3–5 0.6 2 925 118.5 775 1
1–3 0.8 3 031 812.2 750 1

1250 300 60 1–3 0.6 6 059 730.3 1695 1
1–3 0.8 6 387 157.1 1544 1

instances of a file from the test set under consideration. For each of the D · T instances
of a file, we applied objective function (4.39) to calculate the objective function value of
the optimal solution provided by the method under consideration. The value obj μ repre-
sents the sum of these D · T objective function values, averaged over the ten files of the
respective test set.
Both methods, i.e., the simplex method provided by CPLEX and Algorithm 6.4, deter-

mine solutions of identical quality. That is why the average cumulated objective function
value obj μ is stated only once. With respect to solution time, Algorithm 6.4 clearly
outperforms CPLEX.



Chapter 8

Discussion

In this chapter, we discuss the results of the numerical analysis focusing on the hard
problems of project selection and workforce assignment. Main results for the project
selection problem were that an exact standard solver can provide good solutions even
for large-sized instances, that marginal returns of multi-skilling are decreasing, and that
skill chaining is advantageous, especially if diverse chains are implemented. Key results
with respect to the workforce assignment problem were that only small-sized instances
are computationally tractable by exact methods, that our tighter model formulation could
accelerate the solution process but left medium- and large-sized instances still intractable,
and that the heuristic DROP showed the overall best performance among all heuristics
tested. Minor results refer to the impact of workforce utilization and multi-skilling on
computation times. Throughout the following discussion, we will consider implications of
our results for researchers and practitioners and we will point to limitations of our work.
Eventually, we will indicate a further area where our approach can be applied.
The performance analysis for the project selection problem in Section 7.2 revealed

a good computational behavior of the corresponding MIP model. Even when instance
size was large, gaps of solutions were very small. Hence, we saw no need to outline
heuristics. However, if instances of very large size are tackled, solution times may grow
beyond acceptable limits. In this case, the high resolution of capacity supply, which
results from modeling each single worker individually, becomes a burden, especially when
the ratio ρproj, the ratio of capacity demanded from all selectable projects to the capacity
supplied by the workforce, is in a medium range. Ratios ρproj that lie in this range are
associated with longer computation times than low or high ratios ρproj (cf. Fig. 7.2 on
page 214). For these burdensome instances, heuristics may be necessary. A starting
point for a heuristic may be a MIP model that applies the aggregation of capacity supply
outlined by Grunow et al. (2004, Section 3.3). Although this approach does not allow for
heterogeneous skill levels and requires a constraint set whose size can be exponential in
the number of skills, it may reduce computation times significantly and may lead to a
good portfolio, which can possibly be improved by other methods.
Our formulation of the project selection problem has in particular two limitations.

First, we consider only human resources. Other resources like budget, machinery, or
other equipment are not considered. However, it would be simple to take these resources
into account because the MIP model of the problem can be easily extended. Second,
project selection is often a multi-objective problem, whereas our formulation features
only a single objective and the solution approach is designed for the single-objective case.
Though, solution methods that determine efficient solutions for a multi-objective problem
are abundant and could be adopted to a multi-objective version of our problem.
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In the test runs where we varied workers’ flexibility by changing the number of skills
per worker, we observed that marginal returns of flexibility decrease. The increase in
portfolio benefit made possible by more flexible workers decreased with increasing flexi-
bility of workers. This result is in line with the literature. Campbell (1999), Gomar et al.
(2002), Vairaktarakis (2003), and Heimerl and Kolisch (2010a), for example, also observed
diminishing returns of flexibility for their respective problems. Diminishing returns of flex-
ibility have far-reaching implications for staff development strategies of human resource
managers. A limited number of skills mastered by each worker is sufficient to cope well
with fluctuations in skill requirements. The marginal additional benefits of fully flexible
workers, who tend to be very expensive, render their employment not cost-efficient under
most circumstances. Human resource managers should capitalize on these insights.
A further important implication of our work for human resource managers arises from

the results concerning alternative skill configurations. When the number of skills per
worker is limited but greater than one, it is crucial how skills are distributed across work-
ers. Our experiments revealed that parallel chains derived from the classical chaining
strategy of Jordan and Graves (1995) are a good but suboptimal choice. A strategy pro-
moting diverse chains is a better choice to accommodate fluctuations in skill requirements.
Our finding that diverse chains are superior to classical parallel chains confirms recent
findings of Chou et al. (2011) who demonstrated that there are skill configurations which
are superior compared to configurations based on classical chaining principles. For the
first time, we determined superior configurations for a setting with a large number of par-
allel resources. Such a setting is typical for many firms. Implementing a skill configuration
with diverse chains, however, may be more demanding than implementing a configuration
with long parallel chains. It may be much easier to equip all members of a department
with the same skills and design many identical chains across departments than to assign
different skill sets to workers that belong to the same department. Consequently, hu-
man resource managers should preferably follow a chaining strategy but carefully ponder
whether the cost-benefit ratio for parallel or diverse chains is better.
For the workforce assignment problem, computational tractability was much worse

compared to the project selection problem. The standard model was better tractable
than the network model, which is less lean, and tractability of the standard model was
improved by tight big-M constraints and by globally valid inequalities that are based
on lower bounds on the number of required workers for single skill requirements and
single projects. Nevertheless, only for small-sized instances with up to 20 projects and
20 workers high-quality solutions could be determined within one hour. Reasons for long
computation times and large gaps are quasi-symmetry and an LP relaxation that is—
despite its tightening—still weak. Tighter lower bounds that strengthen the LP relaxation
would be rewarding and should hence be an area of future research. The heuristics DROP
and ROUND would also profit from tighter bounds.
Among the heuristics, DROP(CPLEX, stand.) with (6.22) performed best, followed

by ROUND(Tight LP) and ISAP(SSP). ISAP is a very fast heuristic like GRAP, but
provides higher solution quality than GRAP. Solving subproblems in ISAP not with a
standard LP solver but with a problem-specific method, namely, with a successive short-
est path method, drastically accelerated ISAP. However, GRAP and ISAP often fail to
return a feasible solution when workforce utilization is high and can make a planner er-
roneously believe that additional workers are necessary to cover the workload that arises
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from projects and departments. When workforce utilization is high, only DROP and
ROUND reliably provide feasible solutions. The solution quality of ROUND(Tight LP)
is superior to all other heuristics, but solution times are unacceptably high for larger-
sized instances. ROUND(Weak LP, (4.18)), on the other hand, is much faster but cannot
provide solutions of acceptable quality. These drawbacks of ROUND make DROP the
overall best choice. The solution quality of DROP is slightly better than that of ISAP for
instances where ISAP can provide feasible solutions. Solving subproblems of DROP with
the generalized network simplex method did not pay off. Only for a set of very large-sized
instances, DROP(GNS) could provide the best solutions because other DROP variants
ran out of memory.
For large firms whose project staffing problems represent large-sized instances of

the workforce assignment problem, DROP(CPLEX, stand.) with (6.22) is currently the
best method to form small project teams. In our experiments, DROP(CPLEX, stand.)
with (6.22) solved instances with up to 1250 workers, 300 projects, 60 skills in total, and
3 skills per worker for a planning horizon that comprised 12 periods. The limited memory
access of CPLEX 32 bit hindered DROP to solve instances of larger size. When we used
CPLEX 64 bit, solutions could be determined for these instances. Since DROP is embed-
ded in a multi-start approach, solution time and solution quality can be traded off against
each other conveniently. To illustrate the trade-off, consider the following results. For
instances of the mentioned size with 1250 workers it took 4 minutes to execute 10 passes.
100 passes required half an hour and improved solution quality by 3.5%.
The heuristic DROP profits from four features. Three of them counteract the drawback

of DROP that for each drop operation a large LP must be solved. The first feature
is decomposition. Decomposing the feasibility check of a drop operation in feasibility
checks for each period means to decompose the large LP into several small LPs; this
decomposition reduces checking time considerably. The second feature is the immediate
removal of workers who do not contribute to a project from the respective project team.
This strategy, which follows an idea of Di Gaspero et al. (2007), reduces the number of
feasibility checks and drastically accelerates DROP. Third, lower bounds on the number
of needed workers help to reduce the number of required drop operations. Finally, the
surrogate objective function (6.22), which is used for the small LPs, steers the drop
procedure effectively and improves solution quality.
In our experiments, solution methods exhibited different reactions to changes in work-

force utilization and to changes in the degree of multi-skilling. When workforce uti-
lization rose, i.e., when the ratio ρproj rose, solution methods suffered from increasing
solution times to a different degree. The exact branch-and-cut approach of CPLEX and
ROUND(Tight LP) suffered seriously. GRAP and ISAP suffered only little but recall
that both methods often fail to provide feasible solutions when levels of workforce uti-
lization are high. So actually, GRAP and ISAP suffer most. DROP suffered moderately.
Altogether, the computational curse of high workforce utilization was observed for all
methods.
With respect to the impact of different degrees of multi-skilling, we can make only pre-

liminary conclusions, because our computational experiments were not as comprehensive
as the experiments that we conducted to test the impact of cross-training for the project
selection problem. The exact branch-and-cut method of CPLEX and all heuristics except
one seem to require more computation time to cope with the complexity of additional
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flexibility. The exception is ISAP, which needed less time when workers mastered more
skills. Hence, ISAP overcomes the curse of flexibility.
Our approach to the workforce assignment problem has also limitations and offers

room for improvements. So far, we have outlined only construction heuristics and these
heuristics cannot guarantee to provide high-quality solutions; even for small-sized in-
stances, gaps can be relatively large. Improvement heuristics, e.g., local search methods
or evolutionary algorithms, may have the potential to reduce these gaps.
Moreover, our staffing model pursues a single goal, the goal of minimizing average

team size. Our literature review, however, has indicated that other aspects can play
an important role when teams are formed. Among these aspects is the compatibility of
team members, for example. Consequently, it should be worthwhile to include additional
objectives into our staffing approach.
Another limitation applies to the project selection and the workforce assignment prob-

lem. The models associated with these problems are deterministic models. For both mod-
els, we assume that all required data are known and that there is no uncertainty about
parameter values. In our opinion, this assumption is justifiable for two reasons. First, we
have done fundamental research and it is good practice for basic research to start with
the deterministic case. Frequently, insights from a deterministic model can be exploited
later when a stochastic model is considered. Furthermore, the allocation of workload in
our models can be considered as a rough planning approach. Since our typical period
length is one month and since a solution does not prescribe a sequence in which work
packages must be accomplished, there is in most cases room for coping with situations
where an unexpected increase in skill requirements occurs or where a worker is absent
for a day or two. Nevertheless, it would be rewarding to search for robust solutions that
guarantee relatively smooth operations even when unexpected changes occur as long as
these changes stay within predefined limits.
Despite these limitations, the presented approach can already support human resource

managers and other decision makers. All our methods are ready to use; detailed pseudo
code is outlined in this work. However, human resource professionals will need support
when integrating the methods into their software environment and when adapting the
methods to their specific needs. Here, IT professionals and operations research experts
are required to put the computational procedures into operation.
Finally, we want to sketch another area where our staffing approach, which aims at

small teams, can be applied. So far, we have presumed that our approach is applied
by firms where projects are internal improvement projects or customer orders, for exam-
ple. However, small teams can also be beneficial in other areas. Consider, for example,
a rehabilitation facility where the therapy of each patient comprises several treatments.
Treatments are provided by medical employees of the facility, e.g., by physicians, nurses,
physiotherapists, and other healthcare professionals. Each medical employee is charged
to carry out some types of treatments for which he acquired the necessary qualifications.
Many treatments such as back massages or special medical gymnastics involve one or
more medical employees but only one patient. For reasons of health care quality, it is
advantageous when these individual treatments of a patient are carried out by a small
and stable team of medical employees and when a medical employee treats a small number
of patients frequently and does not treat many patients but each very seldom. Hence, it
is advantageous to minimize the number of assignments of medical employees to patients.
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Health care quality benefits from small treatment teams because they ease building a
familiar relationship between a patient and the treating health care professionals. Addi-
tionally, this assignment policy enables a health care professional to pay greater attention
to each of her patients and it eases the discussion about the health situation of a patient
among those who are involved in caring for this patient.
In this health care setting, our optimization model can be applied to find an assignment

of medical employees to patients such that the average number of medical employees that
treat a patient is minimized. To transfer our model to the health care setting, consider a
patient as a project and assume a period length of one week, for instance. The treatments
needed by the patient in each week correspond to the skill requirements of a project. We
presume that the treatments needed by a patient have been defined by the physician
who admitted the patient to the rehabilitation facility and are thus known in advance.
Medical employees correspond to workers. They have different qualifications and each
qualification, which is associated with a skill of a worker, allows a medical employee to
accomplish a corresponding type of treatments. Here, it may not be necessary or adequate
to distinguish different levels of qualifications. A solution of our model returns for each
patient a list that states for each required treatment which employees are responsible for
the treatment. Upon receipt of the list, the patient can contact these employees in order
to make appointments. Because the solution does not prescribe times for treatments, it
leaves freedom to the patient and the health care professionals to plan their time also
according to their preferences. Note that a solution can split a treatment among medical
employees. So, five hours of medical gymnastics that are needed by a patient may be
assigned to two physiotherapists. Although such a split may be unfavorable for a single
patient, it may be the only way to obtain a feasible assignment when medical staff is
highly utilized.
Altogether, our approach to forming small teams makes a novel contribution that closes

a long-standing gap. Different areas exist where the model and our solution methods can
be applied and where the fruits of this contribution, which appear in form of productive
and efficient teamwork, can be reaped.



Chapter 9

Summary and outlook

In this work, we have outlined a hierarchical planning approach to solve three problems
that arise in many firms at the interface of multi-project management and human resource
management. The problem at the top level is a static project selection problem. The goal
of this problem is to determine a project portfolio of maximum benefit that complies with
the availabilities and the skills of a given workforce. At the second level, a project team
must be composed for each selected project such that all skill requirements of a project
can be accomplished by the respective team. The goal of this workforce assignment
problem is to minimize average team size. At the bottom level, a utilization leveling
problem is considered; after workload of all selected projects has been allocated to workers,
departmental workload must be distributed among the workers of each department such
that the working times of employees within a department are leveled. Finding good
solutions to these problems has great impact on the success of a firm and on the well-
being of its employees.
For all three problems, we have formulated mathematical optimization models and

analyzed problem complexity. We have proved that the project selection problem and
the workforce assignment problem are NP-hard in the strong sense and have shown that
the utilization leveling problem can be solved in polynomial time by a specially tailored
leveling algorithm. For the project selection problem, we examined the impact that the
degree of multi-skilling has on portfolio benefit and found diminishing marginal returns
of multi-skilling. Furthermore, we compared different skill configurations for a constant
degree of multi-skilling. The tested configurations included alternative chaining strategies.
A strategy that features diverse chains performed best; its superiority was verified by
established flexibility measures and by a new one. The MIP solver of CPLEX could
provide solutions of acceptable quality in reasonable time even for large-sized instances of
the project selection problem. For the workforce assignment problem, however, the exact
branch-and-cut method of CPLEX performed much worse, even though we tightened the
model formulation by globally valid inequalities.
In order to determine solutions for large-sized instances of the workforce assignment

problem in acceptable time, we have devised four construction heuristics: a greedy ran-
domized assignment procedure (GRAP), an iterated simultaneous assignment procedure
(ISAP), a drop method (DROP), and a rounding heuristic (ROUND). These heuristics
have been embedded in a multi-start approach and were thoroughly tested in a compre-
hensive numerical analysis. For this analysis, an instance generator was devised to create
artificial test instances systematically. The heuristic DROP performed best against the
test instances and is recommended because it guarantees to find a feasible solution if
any exists and because it strikes a good balance between solution time and quality. For
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solving subproblems within DROP, we compared the dual simplex method of CPLEX to
our implementation of the generalized network simplex method. Here, the LP solver of
CPLEX performed better.
Our work has made four novel contributions. First of all, we have provided methods to

assemble small project teams of multi-skilled workers with heterogeneous skill levels. The
importance of forming small teams has been emphasized in the literature for more than
three decades but an approach to this team formation task in a multi-project environment
where skill levels of workers are distinguished has been lacking so far. Second, we have
outlined detailed pseudo code for implementing the generalized network simplex method.
Up to now, textbooks have only sketched the underlying operations.
The other two contributions concern the project selection problem. We analyzed the

impact of different skill configurations on portfolio benefit. In particular, we compared
a classical skill chaining strategy to an alternative skill chaining strategy, which features
diverse chains. Our numerical analysis has shown that the latter strategy is superior. So,
our third contribution is the finding that a workforce which exhibits diverse skill chains
is highly flexible. The fourth contribution is related to the way how we compared and
assessed skill configurations. We used several flexibility measures to assess the quality of
skill configurations. One of these measures was newly defined. It is based on a measure of
Iravani et al. (2005). Like their measure, our new measure is very lean because it does not
require information about the magnitude of skill requirements and about availabilities of
workers. However, our new measure has higher discriminatory power than their measure
and can serve as a valuable supplementation of their measure.
Especially the workforce assignment problem offers interesting areas for future work.

With regard to the tested solution methods, the results of our performance analysis have
shown that there is room for improvement. This holds for the exact approach with
CPLEX as well as for the heuristics. Our future research will be directed at a genetic
algorithm and at an advanced add method. We plan to integrate the genetic algorithm
with GRAP or ISAP. Our aim is to combine the speed of these two construction heuristics
with the learning strategy of an evolutionary improvement heuristic. For the advanced
add method, we plan to follow ideas of Li and Womer (2009a,b) and think of a two-stage
decomposition approach. At the first stage, small project teams are formed such that
the joint skill set of each team covers all skills required by the corresponding project and
such that the number of assignments is leveled across workers. The workload of projects,
availabilities of workers, and skill levels are neglected at this stage. At the second stage,
a linear program checks whether a feasible allocation of workload exists given the first-
stage team assignments. For this check, the objective function of the linear program
minimizes the amount of uncovered project workload. If uncovered workload remains, the
project with the greatest amount of uncovered workload is identified and for this project
an additional worker is demanded in the first-stage problem.
Another avenue for future research emanates from the fact that our hierarchical plan-

ning approach has considered only the deterministic case so far. We assumed the absence
of uncertainty about data. Though, parameter values that are required for the models
can often be estimated only roughly. Then, a robust optimization approach is of interest
for risk-adverse decision makers.
A robust approach to our project selection problem should hedge against estimation

errors with respect to project benefits and with respect to capacity demand and supply.
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If it is not possible to obtain reliable point estimates for the benefit parameters bp of
each project p ∈ P , the portfolio selection approach of Liesiö et al. (2007), which allows
range estimates for parameters, can be a starting point for a modified approach. If skill
requirements of projects and availabilities of workers are uncertain, it may be helpful
to plan with capacity buffers, e.g., by increasing each skill requirement rpst by a certain
percentage.
A robust approach to the workforce assignment problem should at least partially hedge

against the absence or departure of a worker. A partial hedge could mean that each skill
required by a project is mastered by at least two members of the project team or by even
more—depending on the size of the skill requirement.
Multi-objective approaches can be another rewarding area of future work, as we have

already indicated in the discussion in Chapter 8. Managers that decide about the project
portfolio for the upcoming year may not only seek for a portfolio of maximum benefit
but may also wish to level the utilization of the workforce across the months in order to
facilitate smooth operations. For the workforce assignment problem, it seems interesting
to consider the strategic development of skills of workers as an additional goal, as it has
been done by Gutjahr et al. (2008, 2010), Certa et al. (2009), and Süer and Tummaluri
(2008), for example. The interesting point is that the goal of a flexible workforce where
each worker masters several skills and where the skill levels of each worker are balanced
and the goal of small teams have synergies because workers in small teams have greater
opportunities to apply all their skills than workers in large teams.
For the inclusion of additional goals into our approach, it may also be beneficial to

seize ideas from the works of Lai and Xue (1999), Lopes et al. (2008), Yoshimura et al.
(2006), Doerner et al. (2004), Graves and Ringuest (2003), Gutjahr et al. (2008, 2010),
Taylor et al. (1982), Valls et al. (2009), Corominas et al. (2005), Eiselt and Marianov
(2008), and Certa et al. (2009), whose models feature either multiple objective functions
or an objective function that is a weighted sum of multiple objectives. These works can
provide inspiration for additional relevant objectives and for suitable solution techniques.
Finally, we want to suggest two further fields of future research. The first field is

the integration of scheduling decisions into our hierarchical planning approach. If it is
possible to postpone the start times of projects or even of work packages, the outcomes
of our approach can be improved by exploiting this degree of freedom. The second field
comprises the consideration of more flexible working time regimes that are common in
many firms and the consideration of related aspects that are relevant in practice. If, for
example, vacation entitlements of workers must be regarded, the concept of partially re-
newable resources may be helpful for modeling this practice-oriented aspect (cf. Böttcher
et al., 1999; Salewski, 1999; Schirmer and Drexl, 2001). Frequently, working time regimes
include arrangements that allow for extra hours or for unbalanced monthly hours worked
as long as the hours worked during a whole year match the number of contracted hours.
In Subsection 4.3.2, we have shown how both arrangements can be represented by con-
straints in a MIP model. However, in case of the latter arrangement, where hours worked
can vary from month to month, only two of our heuristics for the workforce assignment
problem, namely, DROP and ROUND, can exploit this flexibility. Though, the tempo-
ral decomposition of DROP would no longer be applicable and solution times of DROP
would increase considerably. Hence, the development of fast and reliable heuristics that
can exploit flexible working times would be another path for future work. Exploiting flex-
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ible working times would allow to select even better portfolios and to form even smaller
teams.
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