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Preface

More than half a century has passed since the pioneering books by Flory [1] and
by Huggins [2] dealing with some of the most important features concerning
the thermodynamics of polymer containing systems. This volume of “Advances
in Polymer Science” has been composed to update our knowledge in this field.
Although most of the experimental observations referring to macromolecular
systems could already be rationalized on the basis of the well-known Flory—
Huggins theory, quantitative agreement between experiment and theory is normally
lacking. The reason for this deficiency lies in several inevitable simplifying
assumptions that had to be made during this ground-breaking period of research.

In the meantime, valuable progress could be achieved, thanks to modern com-
puters, improvements of experimental methods, and data handling. This situation
has among others provoked a new textbook [3] focusing on polymer phase dia-
grams. It is the central purpose of this volume to present some further examples for
recent developments that were made possible by the above-described improve-
ments. The individual contributions to this issue of the Advances in Polymer
Science are grouped according to the degree they are connected with the previous
text books.

The first part (B.A. Wolf) deals with a straightforward extension of the Flory—
Huggins theory to account for some aspects of chain connectivity and for the fact
that chain molecules may react on changes in their molecular environment by
conformational rearrangements. In this manner, several hitherto unconceivable
experimental observations (like pronounced composition dependencies of interac-
tion parameters or their variation with chain length) can be understood and modeled
quantitatively. This contribution is followed by a chapter devoted to progress in the
field of polyelectrolyte solutions (G. Maurer et al.); it focuses on the calculation of
vapor/liquid equilibria and some related properties (e.g. osmotic pressures) using
sophisticated models for the Gibbs energy. Such thermodynamic knowledge is
particularly needed for different industrial application of polyelectrolytes, for
instance in textile, paper, food, and pharmaceutical industries.

An interesting example for the development and advancement of experimental
methods is presented in the third chapter (J.-P. E. Grolier et al.), dedicated to the

ix



X Preface

measurement of interactions between gases and polymers based on gas sorption,
gravimetric methods, calorimetry, and a “coupled vibrating wire-pV7T”’ technique.
Information in this field is of particular interest for polymer foaming and for the
self-assembling of nanoscale structures. The fourth section (S. H. Anastasiadis) is
concerned with interfacial phenomena in the case of polymer blends and reports the
current state of the art on measuring and modifying interfacial tensions as well as
different possibilities for its modeling. Such information is indispensible for the
development and optimization of tailor-made materials based on two-phase polymer
blends. The fifth contribution (S. Enders) formulates a theory for the simulation of
copolymer fractionation in columns with respect to molecular weight and chemical
composition. Narrowly distributed polymers are often required for basic research and
the removal of harmful components is sometimes essential for special applications.

All previously discussed methods are primarily based on phenomenological
considerations, in contrast to chapter six (K. Binder et al.), which starts from statis-
tical thermodynamics. This section reviews the state of the art in fields of Monte—
Carlo and Molecular Dynamics simulations. These methods are powerful tools for
the prediction of macroscopic properties of matter from suitable models for effec-
tive interactions between atoms and molecules. The final chapter (G. Sadowski)
makes use of the results obtained with simulation tools for the establishment of
molecular-based equations of state for engineering applications. This approach
enables the description and in some cases even the prediction of the phase behavior
as a function of pressure, temperature, molecular weight distribution and for
copolymers also as a function of chemical composition.

The Editors are well aware of the fact that the above selection is not only far
from being complete, but also to some extent subjective. However, in view of the
importance of polymer science (worldwide annual production [4] in 2008: 2.8°10% t
with a growth rate of approximately 12% per year) and accounting for the signifi-
cance of thermodynamics in this area, further volumes of the “Advances in Polymer
Science” covering missing thermodynamic aspects and presenting further progress
in this field are expected.

Berlin Sabine Enders
Mainz Bernhard Wolf
Summer 2010
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Obituary

Prof. Dr. Ronald Koningsveld, for several decades leader in thermodynamics of
polymer solutions and blends, was born on April 15, 1925 in Haarlem. In his teen
years when he was living in Rotterdam, he was seized by science and music and he
started studies of orchestral conducting, piano, and composition at Rotterdam
Conservatory. Music remained his love for his whole life. However, following
the advice of his father to do something more “practical”, he entered the Technical
University of Delft to study chemical engineering. After graduation in 1956, Ron
joined the Central Research of Dutch State Mines (DSM) in Geleen and in his first
years there he was engaged in polymer characterization. In parallel, he started his
PhD studies at the University of Leiden under the guidance of A. J. Staverman in
the area of phase equilibria in polydisperse polymer solutions with application to
polymer fractionation. He obtained the title of Doctor of Mathematics and Natural
Sciences in 1967. The papers based on these results rank among the most cited ones
of Ron’s almost 200 publications cited about 3,000 times (according to WoS).
Ron continued working in DSM Research until his retirement in 1985 in various
positions including Head of Department of Fundamental Polymer Research (1963—
1980) and Managing Director of General Basic Research (1980-1985). In the latter
position, Ron also managed external research funded by DSM. He stimulated signi-
ficantly collaborative fundamental research on polymers in Europe and overseas.
The collaboration extended to other countries including Belgium, Czechoslovakia,
Germany, United Kingdom, and U.S.A.

Koningsveld is the name well known in the Academia — he was teaching
polymer thermodynamics as a guest professor in the University of Essex, Universi-
ty of Massachusetts, Catholic University of Leuven, and ETH Zurich, and for
18 years he was a Professor of Polymer Science in the University of Antwerp.
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xii Obituary

He received honorary doctorates from the University of Bristol and Technical
University of Dresden. Also, he was a consultant to Max-Planck Gesellschaft,
Institute of Polymer Research in Mainz. In 2002, Ron’s scientific achievements
were appreciated by the Paul Flory Research Prize.

It would be difficult to enumerate all Ron’s scientific achievements in the field of
polymer thermodynamic. One can name the generalizations of the Flory—Huggins
Gibbs energy leading to the prediction and experimental verification of coexistence
of three phases in pseudobinary system with sufficiently broad distribution; or, the
analysis of the functional form of the interaction term leading to the appearance of
“off-zero critical concentration”, at variance with zero critical concentration asso-
ciated with theta-temperature. Thanks largely to Ron, polymer scientists realize that
the cloud point curve is not the binodal and its maximum or minimum are not
identical with the critical temperatures.

Ron had many good friends in the scientific society and some of them
(Berghmans, Simha, Stockmayer) are coauthors of his last paper on correlation
between two critical polymer concentrations — c¢* for the coil overlap and c;
assigned to the maximum/minimum of the spinodal (J. Phys. Chem. B 2004, 108,
16168—-16173). Unfortunately, Robert and Stocky are no longer with us as well.
The scientific community can share Ron’s knowledge in phase equilibria in the
monograph Polymer Phase Diagrams, Oxford (2001) published with coauthors
W. H. Stockmayer and E. Nies.

This reminiscence would not be complete without mentioning the second Ron’s
love — the music. Already in Delft as a student, Ron was engaged in Dutch College
Swing Band as a pianist and arranger. During his work for DSM, Ron composed a
number of pieces inspired by research of polymers: Microsymposium Music per-
formed during Microsymposia on Polymers held every year in the Institute of
Macromolecular Chemistry in Prague, Polymer Music in six movements for two
pianos, To Science (inspired by Edgar Allan Poe, Staudinger March (commemor-
ating Staudinger’s 100th birthday), and Short Communication. Some of the readers
may remember the “ouverture” to ITUPAC Macro in Amherst in 1982, where
polymer scientists (Stockmayer, MacKnight, Kennedy, Janeschitz-Kriegel and
Ron as pianist) performed Polymer Music.

Ron passed away in Sittard on November 26, 2008. We grieve over a famous
scientist known all over the world in the thermodynamic community, an outstand-
ing academic teacher and a great personality.

Karel Dusek
Prague
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Making Flory—-Huggins Practical:
Thermodynamics of Polymer-Containing
Mixtures

Bernhard A. Wolf

Abstract The theoretical part of this article demonstrates how the original Flory—
Huggins theory can be extended to describe the thermodynamic behavior of
polymer-containing mixtures quantitatively. This progress is achieved by account-
ing for two features of macromolecules that the original approach ignores: the
effects of chain connectivity in the case of dilute solutions, and the ability of
polymer coils to change their spatial extension in response to alterations in their
molecular environment. In the general case, this approach leads to composition-
dependent interaction parameters, which can for most binary systems be described
by means of two physically meaningful parameters; systems involving strongly
interacting components, for instance via hydrogen bonds, may require up to four
parameters. The general applicability of these equations is illustrated in a compre-
hensive section dedicated to the modeling of experimental findings. This part
encompasses all types of phase equilibria, deals with binary systems (polymer
solutions and polymer blends), and includes ternary mixtures; it covers linear and
branched homopolymers as well as random and block copolymers. Particular
emphasis is placed on the modeling of hitherto incomprehensible experimental
observations reported in the literature.

Keywords Modeling - Mixed solvents - Phase diagrams - Polymer blends -
Polymer solutions - Ternary mixtures - Thermodynamics

B.A. Wolf

Institut fiir Physikalische Chemie der Johannes Gutenberg-Universitdt Mainz, 55099 Mainz,
Germany

e-mail: bernhard.wolf@uni-mainz.de
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a Exponent of Kuhn—Mark—Houwink relation (29)

a Intramolecular interaction parameter (47) for blend component A

A,B,C Constants of (13)
A, A3 Second and third osmotic virial coefficients

8
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Bl 25535;m QM
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Activity of component i

Intramolecular interaction parameter (47) for blend component B
Concentration in moles/volume

Constant of interrelating o and {4 (34)

Gibbs free energy — free enthalpy

Integral interaction parameter

Enthalpy

Constant of the Kuhn—-Mark—Houwink relation (29)
Lower critical solution temperature

Molar mass

Number-average molar mass

Weight-average molar mass

Number of segments

Number of moles

Vapor pressure

Ideal gas constant

Entropy

Molecular surface

Absolute temperature

Ternary interaction parameter (61)

Melting point
UCST Upper critical solution temperature
\% Volume

<

Molecular volume
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w Weight fraction

X Mole fraction

Z Parameter relating the conformational relaxation to f§ (53)
Greek and Special Characters

» Parameter quantifying strong intersegmental interactions (42)
[n]  Intrinsic viscosity

@,  Volume fraction of polymer segments in an isolated coil (27)
(¢ Theta temperature

o Parameter of (23), first step of dilution

b Degree of branching (52)

x Flory—Huggins interaction parameter

0 Parameter of (57)

P Parameter of (57)

Y Surface-to-volume ratio of the segments in binary mixtures (24)
) Segment fraction, often approximated by volume fraction

K Constant of (30)

A Intramolecular interaction parameter (23)

u Chemical potential

\ Parameter of (23)

T Any parameter of (23)

Tosm Osmotic pressure

0 Density

T Parameter of (44)

14 Differential Flory—Huggins interaction parameter for the polymer
14 Conformational relaxation (second step of dilution) (23)
Subscripts

1,2,3 ... Low molecular weight components of a mixture

AtoP High molecular weight components

B Branched oligomer/polymer

c Critical state

cr Conformational relaxation

fc Fixed conformation

g Glass

H Enthalpy part of a parameter

i,j, k Unspecified components i, j, k

L Linear polymer

lin Linear oligomer/polymer

m Melting

S Entropy part of a parameter
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S Saturation
0 Quantity referring to a pure component, to an isolated coil, or to high
dilution
Superscripts
Molar quantity

Segment-molar quantity

Excess quantity

Residual quantity (with respect to combinatorial behavior)
Infinite molar mass of the polymer

g mm | |

1 Introduction

The decisive advantage of the original Flory—Huggins theory [1] lies in its simplic-
ity and in its ability to reproduce some central features of polymer-containing
mixtures qualitatively, in spite of several unrealistic assumptions. The main draw-
backs are in the incapacity of this approach to model reality in a quantitative
manner and in the lack of theoretical explanations for some well-established
experimental observations. Numerous attempts have therefore been made to extend
and to modify the Flory—Huggins theory. Some of the more widely used approaches
are the different varieties of the lattice fluid and hole theories [2], the mean field
lattice gas model [3], the Sanchez—Lacombe theory [4], the cell theory [5], different
perturbation theories [6], the statistical-associating-fluid-theory [7] (SAFT), the
perturbed-hard-sphere chain theory [8], the UNIFAC model [9], and the
UNIQUAC [10] model. More comprehensive reviews of the past achievements in
this area and of the applicability of the different approaches are presented in the
literature [11, 12].

This contribution demonstrates how the deficiencies of the original Flory—
Huggins theory can be eliminated in a surprisingly simple manner by (1) accounting
for hitherto ignored consequences of chain connectivity, and (2) by allowing for the
ability of macromolecules to rearrange after mixing to reduce the Gibbs energy of
the system. Section 2 recalls the original Flory—Huggins theory and describes the
composition dependence of the Flory—Huggins interaction parameters resulting
from the incorporation of the hitherto neglected features of polymer/solvent sys-
tems into the theoretical treatment. This part collects all the equations required for
the interpretation of comprehensive literature reports on experimentally determined
thermodynamic properties of polymer-containing binary and ternary mixtures
(polymer solutions in mixed solvents and solutions of two polymers in a common
solvent). In order to ease the assignment of the different variables and parameters
to a certain component, the low molecular weight components are identified
by numbers and the polymers by letters. The high molecular weight components
comprise linear and branched samples, homopolymers, binary random copolymers,
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and block copolymers of different architecture; the phase equilibria encompass
liquid/gas, liquid/liquid and liquid/solid. The only aspects that are excluded are the
coexistence of three liquid phases and the demixing of mixed solvent.

This theoretical section is followed (Sect. 3) by a recap of the measuring
techniques used for the determination of the thermodynamic properties discussed
here. The subsequent main part of the article (Sect. 4) outlines the modeling of
experimental observations and investigates the predictive power of the extended
Flory—Huggins theory. Throughout this contribution, particular attention is paid to
phenomena that cannot be rationalized on the basis of the original Flory—Huggins
theory, like anomalous influences of molar mass on thermodynamic properties or
the existence of two critical points (liquid/liquid phase separation) for binary
systems. In fact, it was the literature reports on such experimental findings that
have prompted the present theoretical considerations.

2 Extension of the Flory—-Huggins Theory

2.1 Binary Systems

2.1.1 Polymer Solutions
Organic Solvents/Linear Homopolymers

The basis for a better understanding of the particularities of polymer-containing
mixtures as compared with mixtures of low molecular weight compounds was laid
more than half a century ago [13—17], in the form of the well-known Flory—Huggins
interaction equation. By contrast to the form used for low molecular weight
mixtures, this relation is usually not stated in terms of the molar Gibbs energy G;
for polymer-containing systems one chooses one mole of segments as the basis (in
order to keep the amount of matter under consideration of the same order of
magnitude) and introduces the segment molar Gibbs energy G. For polymer solu-
tions, where the molar volume of the solvent normally defines the size of a segment,
this relation reads:

AG

77 = (1 =@/l =) + L inp+gp(1 - ¢) M

AG stands for the segment molar Gibbs energy of mixing. The number N of
segments that form the polymer is calculated by dividing the molar volume of the
macromolecule by the molar volume of the solvent. The composition variable ¢,
representing the segment molar fraction of the polymer, is in most cases approxi-
mated by its volume fraction (neglecting nonzero volumes of mixing), and g stands
for the integral Flory—Huggins interaction parameter. In the case of polymer
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solutions, we refrain from using indices whenever possible (i.e., we write g instead of
g1p, p instead of wp and N instead of Np) for the sake of simpler representation. Only
if g does not depend on composition does it becomes identical with the experimen-
tally measurable Flory—Huggins interaction parameter y, introduced in (5).

The total change in the Gibbs energy resulting from the formation of polymer
solutions is, according to (1), subdivided into two parts, the first two terms repre-
senting the so-called combinatorial behavior, ascribed to entropy changes:

—com

AG
RT

= (1= ¢)In(l = ¢) ++ Ing @

All particularities of a certain real system (except for the chain length of the
polymer) are incorporated into the third term, the residual Gibbs energy of mixing,
and were initially considered to be of enthalpic origin. The essential parameter of
this part is g, the integral Flory—Huggins interaction parameter:

—_Tres
AG

W:gQ@(l - ) 3

In the early days, the Flory—-Huggins interaction parameter was considered to
depend only on the variables of state, but not on either the composition of the
mixture or on the molar mass of the polymer. Under these premises, it is easy to
perform model calculations — for instance with respect to phase diagrams — along
the usual routes of phenomenological thermodynamics on the sole basis of the
parameter g. In this manner, most characteristic features of polymer solutions can
already be well rationalized, even though quantitative agreement is lacking. How-
ever, as the number of thermodynamic studies increased it was soon realized that
(1) is too simple. Above all, it became clear that the assignment of entropy and of
enthalpy contributions to the total Gibbs energy of mixing is unrealistic. Maintain-
ing for practical reasons the first term unchanged, as a sort of reference behavior,
this means that all particularities of a real system must be incorporated into the
parameter g.

This change in strategy has important consequences, the most outstanding being
the necessity to distinguish between integral interaction parameters g, introduced
by (1) and referring to the Gibbs energy of mixing, and differential interaction
parameters, referring either to the chemical potential of the solvent or of the solute.
The partial segment molar Gibbs energies and the corresponding integral quantity
are interrelated by the following relation:

Gi=G—piy— @

where the subscripts i and k stand for either the solvent or the polymer. The partial
molar Gibbs energies G; are customary referred to as chemical potentials y;.
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The partial expressions for the solvent (index 1) read:

A, _ AG:

1
=——=1In(l —  Q— 1’ =1
T = rr <ﬂ)+< N)<p+w na Q)

and yield the differential parameter y, the well known original Flory—Huggins
interaction parameter, which is related to the activity a; of the solvent as formulated
above; a; can in many cases be approximated (sufficiently low volatility of the
solvent) by the relative vapor pressure:

D1
a =
Pilo

(6)

where p , is the vapor pressure of the pure solvent. Otherwise, one needs to correct
for the imperfections of the equilibrium vapor.

The Flory—Huggins interaction parameter constitutes a measure for chemical
potential of the solvent, as documented by (6) and (5); it is defined in terms of the
deviation from combinatorial behavior as:

—res

AG
1= (7)
RT p?

In the original theory, y was meant to have an immediate physical meaning, because
of the normalization of the residual segment molar Gibbs energies of dilution to the
probability * of an added solvent molecule to be inserted between two contacting
polymer segments. This illustrative interpretation does, however, rarely hold true in
reality. Even for simple homopolymer solutions in single solvents, it fails in the
region of high dilution because the overall polymer concentration becomes mean-
ingless for the number of intermolecular contacts between polymer segments.
Despite this lack of a straightforward interpretation of the Flory—Huggins interac-
tion parameter in molecular terms, the knowledge of () is indispensable for the
thermodynamic description of polymer-containing mixtures. This information can be
converted to integral interaction parameters g [cf. (25)] and gives access to the
calculation of macrophase separation (e.g., via a direct minimization of the Gibbs
energy of the systems [18—20] and to the chemical potentials of the polymer [cf. (11)].

For practical purposes, the use of volume fractions (instead of the original
segment fractions) as composition variable is not straightforward because of the
necessity to know the densities of the components and (in the case of variable
temperature) their thermal expansivities. For that reason, ¢ is sometimes consis-
tently replaced by the weight fraction w, and N calculated from the molar masses as
Mp/M,. The y values obtained in this manner according to (8):

—_—Tres

wAG

Wt =" ®)
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are indicated by the subscript w and may differ markedly in their numerical values
from y. The expression for the residual Gibbs energy of dilution is also given an
index as a reminder that weight fractions were used to calculate its combinatorial
part. Despite the practical advantages of ,,y, we stay with volume fractions for all
subsequent considerations, because they account at least partly for the differences
in the free volume of the components and because most of the published thermo-
dynamic information uses this composition variable.

One of the consequences of composition-dependent interaction parameters lies
in the necessity to distinguish between different parameters, depending on the
particular method by which they are determined. The Flory—Huggins interaction
parameter y relates to the integral interaction parameter g as:

198
r=g—(1 w)aw )

The expression analogous to (5), referring to the solvent, reads for the polymer
(index P):

Aip N AGy
RT =~ RT

=Ing+ (1 —=N)(1 — ) +EN(1 —p)? (10)

This relation defines the differential interaction parameter ¢ in terms of the chemi-
cal potential of the polymer and is calculated from g by means of:

0
€=g+s08—g (1)
"2

Out of the three types of interaction parameters, it is almost exclusively y that is
of relevance for the thermodynamic description of binary and ternary polymer-
containing liquids, as will be described in the section on experimental methods
(Sect. 3). The integral interaction g parameter is practically inaccessible, and the
parameter ¢, referring to the polymer, suffers from the difficulties associated with
the formation of perfect polymer crystals, because it is based on their equilibria
with saturated polymer solutions.

Measured Flory—Huggins interaction parameters soon demonstrated the neces-
sity to treat y as composition-dependent. A simple mathematical description con-
sists of the following series expansion:

L= o F 110+ 120 (12)

A more sophisticated approach [21] accounts for the differences in the molecular
surfaces of solvent molecules and polymer segments (of equal volume) and
formulates y(y) as:
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A

— _4C 13
(I_B(P)pt (13)

X:

where these differences are contained in the parameter B. A and C are considered to
be further constants for a given system and fixed variables of state.

The thermodynamic relations discussed so far were, above all, formulated for
the description of moderately to highly concentrated polymer solutions. The
information acquired in the context of the determination of molar masses, on the
other hand, refers to dilute solution and is usually expressed in terms of second
osmotic virial coefficients A, and higher members of a series expansion of the
chemical potential of the solvent with respect to the polymer concentration
¢ (mass/volume). For the determination of osmotic pressures, T, the
corresponding relation reads:

AG Tos c
- — = L AP A+ 14
RTV, RT M, 3¢ (14

Performing a similar series expansion for the logarithm in (5), inserting y from (12)
into this relation, and comparing the result with (14) yields [21]:

1 —
fo=75=PpVid (15)
and:
| g
1n=3- V14 (16)

where j, represents the Flory—Huggins interaction parameter in the limit of pair
interactions between polymer molecules. V| is the molar volume of the solvent and
pp is the density of the polymer.

The need for a different view on the thermodynamics of polymer solutions
became, in the first place, obvious from experimental information on dilute sys-
tems. According to the original Flory—Huggins theory, the second osmotic virial
coefficient should without exception decrease with rising molar mass of the poly-
mer. It is, however, well documented (even in an early work by Flory himself [22])
that the opposite dependence does also occur. Based on this finding and on the fact
that the Flory—Huggins theory only accounts for chain connectivity in the course of
calculating the combinatorial entropy of mixing and for concentrated solutions, we
attacked the problem by starting from the highly dilute side.

The central idea of this approach is the treatment of a swollen isolated polymer
coil — surrounded by a sea of pure solvent — as a sort of microphase and applying the
usual equilibrium condition to such a system. In a thought experiment, one can
insert a single totally collapsed polymer molecule into pure solvent and let it swell
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until it reaches its equilibrium size. Traditionally, the final state of this process is
discussed in terms of chain elasticity. Here, we apply a phenomenological thermo-
dynamic method and equate the chemical potential of the solvent inside the realm
of the polymer coil to the chemical potential of the pure solvent surrounding it. In
doing so, we “translate” the entropic barrier against an infinite extension of the
polymer chain into a virtual semi-permeable membrane. This barrier accounts for
chain connectivity and represents a consequence of the obvious inability of the
segments of an isolated polymer molecule to spread out over the entire volume of
the system. The condition for the establishment of such a microphase equilibrium
reads:

1m1—¢g+<1—%)@ﬁw¢§=o 7

This relation differs from that for macroscopic phase equilibria [resulting from (5)]
only by the meaning of the concentration variable @, and of the interaction para-
meter A. @, stands for the average volume fraction of the polymer segments
contained in an isolated coil, and A represents an intramolecular interaction param-
eter, which raises the chemical potential of the solvent in the mixed phase up to the
value of the pure solvent.

By means of the considerations outlined above, we have accounted for chain
connectivity. However, there is another aspect that the original Flory—Huggins
theory ignores, namely the ability of chain molecules to react to changes in their
environment by altering their spatial extension. One outcome of this capability is,
for instance, the well-known fact that the unperturbed dimensions of pure polymers
in the melt will gradually increase upon the addition of a thermodynamically
favorable solvent. These changes are particularly pronounced in the range of high
dilution, where there is no competition of different solute molecules for available
solvent, due to the practically infinite reservoir of pure solvent.

In order to incorporate both features neglected by the original Flory—Huggins
theory into the present approach, we have conceptually subdivided the dilution
process into two separate steps as formulated in (18). Such a separation is permis-
sible because the Gibbs energy of dilution represents a function of state.

Yo = de + 1 (18)

The first term (the superscript fc stands for fixed conformation) quantifies the effect
of separating two contacting polymer segments belonging to different macromole-
cules by inserting a solvent molecule between them without changing their confor-
mation. The second term (the superscript cr stands for conformational relaxation) is
required to bring the system into its equilibrium by rearranging the components
such that the minimum of Gibbs energy is achieved.

In order to give the second term a more specific meaning, we formulate ;' as the
difference in the interaction before and after the conformational relaxation as:
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X(c)r _ Xafler o Xbefore (19)
Choosing 4, the interaction between polymer segments and solvent molecules in the
isolated state, as a clear cut reference point for the contribution of the rearrange-

ment in the second step of dilution, and assuming that the effect will be proportional
to A, we can write:

1= (20)

where the negative sign in the above expression has been chosen to obtain positive
values for this parameter in the great majorit of cases. Denoting:

I =u 1)

(18) and (20) yield the following simple expression for the Flory—Huggins interac-
tion parameter in the limit of high dilution:

Yo =0 — (A (22)

For sufficiently dilute polymer solutions, the only difference between the new
approach and the original Flory—Huggins theory is in the second term. According
to theoretical considerations and in accord with experimental findings, { becomes
zero under theta conditions (where the coils assume their unperturbed dimensions)
and the conformational relaxation no longer contributes to y,,.

In order to generalize (22) to arbitrary polymer concentrations, we assume that
the composition dependence of its first term can be formulated by analogy to (13).
The necessity of a composition dependence for the second term results from the fact
that the insertion of a solvent molecule between contacting polymer segments
(belonging to different polymer chains) opens only one binary contact within the
composition range of pair interactions, whereas there are inevitably more segments
affected at higher polymer concentrations. For the second term, we suppose a linear
dependence of the integral interaction parameter g on (. Comparing the coefficients
of this ansatz (as they appear in the expression for differential interaction parame-
ter) with (22) for y, results in (23):

1= — L4201 = 2)p) (23)
(1 —vp)

The symbol v instead of B (13) in the above relation indicates that this parameter is
related to y [21], the geometrical differences of solvent molecules and polymer
segments as formulated in the next equation, but not identical with y;

(S/V) polymer

y=1-
(S/V)solvent

(24)
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Fig. 1 Assignment of the
parameters of (23) to the
individual steps of dilution:
Two contacting segments
belonging to different
macromolecules are
separated by the insertion of
a solvent molecule (shaded)
between them

dilution at conformational
fixed conformation relaxation

The parameters s and v are the molecular surfaces and volumes of the components,
respectively. In the limit of ¢ — 0, (23) reduces to (22).

The essentials of the considerations concerning the composition dependence of
the Flory—Huggins interaction parameter are visualized in Fig. 1, demonstrating
how the dilution is conceptually divided into two separate steps and how these steps
contribute to the overall effect. The first step maintains the conformation of the
components as they are prior to dilution and does not change the volume of the
system; measurable excess volumes are attributed to the conformational rearrange-
ment taking place during the second step of mixing.

By means of the expression:

I—¢

g=—1—/“dso (25)
—¢
1

resulting from phenomenological thermodynamics, the Flory—Huggins interaction
parameter y of (23) yields the following expression for the integral interaction

parameter g, required for instance to calculate phase equilibria using the method of
the direct minimization of the Gibbs energy [19] of a system:

o )
= Ty - 29) 6)
This relation contains four adjustable parameters; even if they are molecularly
justified these are too many for practical purposes. For this reason, it would be
helpful to be able to calculate at least one of them independently. The most obvious
candidate for that purpose is 4 (17) because it refers to the spatial extension of
isolated polymer coils. Radii of gyration would be most qualified for calculation of
the required volume fractions of segments, @, inside the microphase formed by
isolated polymer molecules. Unfortunately, however, it is hard to find tabulated
values for different polymer/solvent systems in the literature. For this reason, we
use information provided by the specific hydrodynamic volume of the polymers at
infinite dilution, i.e., to intrinsic viscosities [7]. The volume of the segments is
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given by M/pp, and [n]M yields the hydrodynamic volume of one mole of isolated
polymer coils so that @, becomes:

:M/PP: 1

D, 27

Upon the expansion of the logarithm in (17) up to the second term (which suffices in
view of the low @, values typical for the present systems), we obtain the following
expression for A:

s L [nlew 28)

Relating the intrinsic viscosity to N by means of the Kuhn—Mark—Houwink relation:
[n] = KnN¢ (29)
the intramolecular interaction parameter becomes:

1
2 :§+KN‘“‘”) (30)

where Kk = Knpp.

The insertion of (30) into (22) and employing (15) enables the rationalization of
the experimental finding that the A, values for the solutions of a given polymer of
different chain length do not exclusively decrease with rising M in good solvents,
but might also increase. The resulting equation reads:

Ay = AT +%N’(l’“) G1)
PV
where A5° is the limiting value of A, for infinite molar mass of the polymer. The
reason for an anomalous molecular weight dependence of the second osmotic virial
coefficient lies in the sign of {, which is positive in most cases, but may also become
negative under special conditions. For theta systems, A, = 0, irrespective of M, and
{ becomes zero. One consequence of the present experimentally verified consider-
ation concerns the way that A,(M) should be evaluated. Equation (31) requires plots
of A, as a function of M —(=9 instead of the usual double logarithmic plots, and
does not — in contrast to the traditional evaluation — automatically yield zero second
osmotic virial coefficient in the limit of infinitely long chains.
Another helpful consequence of (30) lies in the fact that its second term is almost
always negligible (with respect to 1/2) for polymers of sufficient molar mass. This
feature allows the merging of the parameters { and / into their product {/, and the
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replacement of the isolated A by 1/2, as formulated below for the differential
interaction parameter y:

o

~
=
L

The analogous relation for the integral interaction parameter reads:

o

S (R g R LR (33)
By this means, the number of adjustable parameter reduces to three. As will be
shown in the section dealing with experimental data (Sect. 4), further simplifica-
tions are possible, for instance because of a theoretically expected interrelation
between the parameters o (first step of mixing) and {4 (second step of mixing) for a
given class of polymer solutions. In its general form this equation reads:

(=EQx—1) (34)

where E is a constant, typically assuming values between 0.6 and 0.95. Equation
(34) is in accord with the typical case of theta conditions where { — 0 and o — 0.5.
As long as such an interrelation exists, the number of parameters required for the
quantitative description of the isothermal behavior of polymer solutions reduces to
two. Like with the expression for y, (high dilution), the contributions of chain
connectivity and conformational relaxation are in (32) (arbitrary polymer concen-
tration) exclusively contained in the second term. Another aspect also deserves
mentioning, namely the fact that (32) is not confined to the modeling of polymer-
containing systems but can also be successfully applied to mixtures of low molecu-
lar weight liquids, as will be shown in Sect. 4.

According to expectation, and in agreement with measurements, all system-
specific parameters 7 (namely a, v, {, and 1) vary more or less with temperature
(and pressure). The following relation is very versatile to model n(T):

m= o+ o+ T (35)

where either 7, or 7, can be set to zero in most cases.

Up to now, it was the chemical potential of the solvent that constituted the object
of prime interest. The last part of this section is dedicated to the modeling of liquid/
liquid phase separation by means of the integral Gibbs energy of mixing in the case
of polymer solutions. The equations presented in this context can, however, be
easily generalized to polymer blends and to multinary systems. Such calculations
are made possible by using the minimum Gibbs energy a system can achieve via
phase separation as the criterion for equilibria, instead of equality of the chemical
potentials of the components in the coexisting phases. The method of a direct
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minimization of the Gibbs energy [19] works in the following way: The segment
molar Gibbs energy of mixing for the (possibly unstable) homogeneous system is
calculated by means of (1), where the integral interaction parameter g is in the
present case taken from (26). For different overall compositions, it is then checked
on a computer by means of test tie lines (connecting arbitrarily chosen data points
of the function AG) which values lead to the maximum lowering of the Gibbs
energy. In this manner, it is possible to model the binodal curves if g(7T) is known.
Spinodal curves are also easily accessible by means of these test tie lines, if they
are chosen to be very short. In this manner, it is possible to monitor at which
concentration the test tie lines change their location with respect to the function

AG /RT(ip): Within the unstable range they lie below that function, and within the
metastable and stable ranges they are located above it, indicating that homogeniza-
tion would lead to a further reduction in G. The criterion that (sufficiently short) test
tie lines must become parallel to the spinodal line at the critical point gives access to
critical data.

Under special conditions, it possible to calculate system-specific parameters
from experimentally determined critical concentrations ¢.. The condition for the
degeneration of the tie lines to the critical point is that the second and the third
derivative of the Gibbs energy with respect to composition must become zero. The
application of this requirement to (1) in combination with (26) yields:

1 1
42— 3p(A—1)] =0 36
1—</>C+N<pc+(wc—1)3Jr t=3e2 = 1) 0

and:

1 1 6

For the sake of completeness, the coexistence of a pure crystalline polymer with
its saturated solution is also considered. Taking the change in the chemical potential
of the polymer upon mixing from (10), the equilibrium condition (T < T,,,) reads:

= _AH,
AHn =T 4 RT(In o+ (1= N) o, +NoE(1 = 0)°) =0 (38)

m

where the entropy term of the segment molar Gibbs energy of melting [the second
term of (38)] is approximated by A Hy,, the segment molar heat of melting, and the
melting temperature T, of the pure crystal; ¢, denotes the saturation volume
fraction of the polymer in the solution.

So far, we have not dealt with the question of how the Flory—Huggins interaction
parameters are made up of enthalpy and entropy contributions for different systems.
This information is accessible by means of (39) and (40) (which neglect the
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temperature influences on the volume fraction of the polymer, caused by different
thermal expansivities of the components). The enthalpy part reads:

oy
I = —T< ) (39)
ar ),

and the corresponding entropy part is given by:

oy
As = X+ T<—) (40)
ar ),

In the above equations, y can be substituted by any parameter of the present
approach to determine its enthalpy and entropy parts, except for the parameter v,
which is not a Gibbs energy by its nature.

Organic Solvents/Branched Homopolymers

The different molecular architectures of branched polymers do not require mod-
ifications of (32); the particularities of branched polymers only change the values of
the system-specific parameters as compared with those for linear analogs in the
same solvent [24], as intuitively expected.

Organic Solvents/Linear Random Copolymers

Despite the fact that these solutions represent binary systems, at least three Flory—
Huggins interaction parameters are involved in their modeling, like with ternary
mixtures. Because of the necessity to account for the interaction of the solvent with
monomer A and with monomer B, plus the interaction between the polymers A and
B, one should expect the need for a minimum of two additional parameters.
Experimental data obtained for solutions of a given copolymer of the type
A-ran-B with a constant fraction f of B monomers can be modeled [25] by
means of (32), with one set of «, v, and {4 parameters. For predictive purposes,
it would of course be interesting to find out how these parameters for the copoly-
mer solution (subscripts AB) relate to the parameters for the solutions of the
corresponding homopolymers in the same solvent (subscripts A and B, respec-
tively) at the same temperature.

Measured composition-dependent interaction parameters [25] for solutions of
the homopolymers poly(methyl methacrylate) (PMMA) and polystyrene (PS)
in four solvents on one hand, and for the corresponding solutions of random
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copolymers with different weight fractions f of styrene units on the other hand, are
well modeled by the following relation:

RAB:TCA(I —f)+7CBf+7IEf(1 —f) (41)

in which 7 stands for the different system-specific parameters a, v, and {4. Experi-
mental data indicate [25] that the contribution of the excess term nE might become
negligible for one of the three parameters a, v, or {4, but not for the other two.

Polymer Solutions: Special Interactions

The common feature of one group of systems that deviate from normal behavior lies
in the solvent, water. The present examples refer to mixtures of polysaccharides and
water, which cannot be modeled in the usual manner. Aqueous solutions of poly
(vinyl methyl ether) (PVME), exhibiting a second critical concentration, fall into
the same category. Solutions of block copolymers in a nonselective solvent repre-
sent another instance of the need to extend the approach beyond the state formu-
lated in (32).

Water/Polysaccharides

For the systems characterized by strong interactions between two monomeric
units via hydrogen bonds, it is necessary to account for the energy of these very
favorable contacts when inserting a solvent molecule between them in the first
step of mixing (the parameter « is too unspecific to account for that particularity).
This idea has lead to the following extension [26] of (26) for the integral interac-
tion parameter:

o — 2
g§=r—— 7=+ (1 -Ap)+top (42)
(I=v) (1 —vgp)
where the quadratic term in ¢ is due to the fact that only two macromolecules are
involved in the formation of such energetically preferred intersegmental contacts;
o quantifies the strength of these interactions.
The corresponding expression for y [obtained according to (9)] reads:

1= 4201 = 2)p) + D (3 — 2) 43)
(I—vp)

Comparison of this relation with experimental data demonstrates that the para-
meters { and /4 can again be merged without loss of accuracy, as shown in (32).
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Organic Solvents/Block Copolymers

This is a further kind of system that cannot be modeled by means of the simple (32),
referring to typical homopolymer solutions. Like with aqueous solutions of poly-
saccharides, the reason lies in special interactions between the segments of the
different polymer chains. With block copolymers, the interactions are due to the
high preference of contacts between like monomeric units over disparate contacts in
cases where the homopolymers are incompatible. There is, however, a fundamental
difference, namely in the number of segments that are involved in the formation of
the energetically preferred structures. Two units are required for the polysacchar-
ides (two segments are involved in the formation of a hydrogen bond), but with
block copolymers of this type the interaction of at least three like monomeric units is
on the average indispensable to form a microphase. This is another consequence of
chain connectivity. For low molecular weight compounds, the number of nearest
neighbor molecules is approximately six in the condensed state. The corresponding
number of contacting polymer segments on the other hand is only about half
this value, because of the chemical bonds connecting these segments to a chain
molecule.

Based on these considerations, postulating the simultaneous interaction of three
like segments for the establishment of a microphase, we can formulate the follow-
ing relation for the integral interaction parameter g, by analogy to (42), increasing
the power of the composition dependence of the third term from two to three:

% 3

A s — {(I+(1=Ap)+1e (44)

The system-specific parameter t accounts for the degree of incompatibility of
homopolymer A and homopolymer B.

Equation (44) yields, by means of (9), the following expression for the experi-
mentally accessible Flory—Huggins interaction parameter y:

(1—vp)?

Like with normal polymer solutions, it is also possible to merge { and A for
solutions of block copolymers, i.e., to eliminate one adjustable parameter.

1= — {2421 = D)p) + 1’ (4 = 3) (45)

2.1.2 Polymer Blends

For mixtures of two types of linear chain molecules, A and B, the segment molar
Gibbs energy of mixing is usually formulated as:

AGas _ (1 —p)
RT Na

In(1 — ) +}3—‘; Ings + ganps(l — ) (46)
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where N4 is the number of segments of component A and Ny is the number of
segments of component B. The above equation shows the indices of the variables
and parameters to indicate that it refers to a polymer blend. For such systems, the
definition of a segment is not as evident as for polymer solutions, where the solvent
usually fixes its volume. Sometimes the monomeric unit of one of the components
is chosen to specify a segment, but in most cases it is arbitrarily defined as 100 mL
per mole of segments, a choice that eases the comparison of the degrees of
incompatibility for different polymer pairs.

In the case of polymer solutions, only one component of the binary mixtures
suffers from the restrictions of chain connectivity, namely the macromolecules,
whereas the solvent can spread out over the entire volume of the system. With
polymer blends this limitations of chain connectivity applies to both components. In
other words: Polymer A can form isolated coils consisting of one macromolecule A
and containing segments of many macromolecules B and vice versa. This means
that we need to apply the concept of microphase equilibria twice [27] and require
two intramolecular interaction parameters to characterize polymer blends, instead
of the one A in case of polymer solutions.

The conditions for the establishment of microphase equilibria in the case of
polymer blends [27], analogous to (17) for polymer solutions, yields two para-
meters. One, called a, quantifies the restrictions of the segments of a given polymer
B to mix with the infinite surplus of A segments surrounding its isolated coil
(microphase equilibrium for component A) and an analogous parameter b, referring
to the restrictions of the segments of a given polymer A to mix with the infinite
surplus of B segments. The following relations hold true for @ and b:

1 1
- 47
¢ T INs " Nobos @D
and:
1 1
b 48
2Ng * Na®Do A (“48)

where the @ values are volume fractions of segments in isolated coils, by analogy to
those introduced in (17).

For the calculation of phase diagrams by means of the minimization of the Gibbs
energy of the systems [19], we need to translate the information of (47) and (48),
based on the chemical potentials of the components, into the effects of chain
connectivity as manifested in the integral interaction parameter g. This expression
reads [27]:

OAB . (2a+b b—a >
= ¢ + (49)
8AB (l — VAB) (1 — VABSOB) AB( 3 3 ¥B
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For the partial Gibbs energies [cf. (4)] of the component i one obtains:

AE- 11

where i and k are the components A and B. The composition dependencies of the
differential interaction parameters, y;, can again be calculated from g (49) by
analogy to (9) and (11).

Equation (49) formulated for blends of linear macromolecules also provides the
facility to model blends of linear polymers (index L) and branched polymers (index
B) synthesized from the same monomer [28]. If the end-group effects and dissim-
ilarities of the bi- and trifunctional monomers can be neglected, the parameter o
becomes zero. This means that the integral interaction parameter is determined by
the parameter (i p, i.e., the conformational relaxation, in combination with the
intramolecular interaction parameters of the blend components. Because of the
low values of @, and Pg, the first terms in (47) and (48) can be neglected with
respect to the second terms (for molar masses of the polymers that are not too low)
so that one obtains the following expression:

__hw( 2 1 (] : (51)
SLB = 73" \Np®g ' NLdL | \N &, Npdg ) ®

It is obvious that the conformational relaxation must be proportional to the degree
of branching and approach zero upon the transition of the branched polymer to a
linear polymer. For the sake of consistency and simplicity, we define the degree of
branching, f3, again in terms of intrinsic viscosities (cf. (27)) as:

*

p=1 % (52)
= (PB
where @7 is the volume fraction of segments in an isolated linear coil consisting of
the same number of segments as the branched polymer under consideration. We can
then write, expanding {; g in a series with respect to f and maintaining only the first
term for the following calculations, referring to moderately branched polymers:

(g =ZB(+HP +--) (53)

Under the premises formulated above and eliminating the different @ values by
means of (27) and (29) as before, the expression for g becomes:

1+<PB+2—<PB_[3(2_<PB)>
VNL VNB VNB
where « is a constant, which can be calculated from the parameter K g of the

Kuhn-Mark—Houwink relation (29) of the linear polymer for theta conditions and
the density of this polymer as:

gB = —KZf ( (54)
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K
= L0 PL

3 (55)

The only information required for model calculations concerning the incompatibil-
ity of linear and branched polymers on the basis of (54) concerns f3, the degree
of branching of the nonlinear component, x (i.e., the viscosity—molecular weight
relationship for the linear polymer under theta conditions) and the polymer density,
plus Z = {p/p, the conformational response of the system normalized to f
[cf. (53)].

2.1.3 Mixed Solvents

For the modeling of ternary systems(the topic of the next section), the applicabil-
ity of (26) to mixtures of low molecular weight liquids would be very helpful,
because of the possibility to describe all subsystems by means of the same
relation. First experiments [29], presented in Sect. 4, show that this is indeed
possible. This means that (26) remains physically meaningful upon the reduction
of the number of segments down to values that are typical for low molecular
weight compounds. With respect to A one must, however, keep in mind that this
parameter loses its original molecular meaning.

2.2 Ternary Systems

The segment molar Gibbs energy of mixing for three component (indices 7, j, and k)
with N;, N;, and N; segments, respectively, as formulated on the basis of the Flory—
Huggins theory reads in its general form:

AG

Pi Pj Pr
RN, et ﬁj Ing; + 5 @+ gieips + Supien + 8ikeieu
+ tijk i Pj Pr (56)

The first three terms stand for the combinatorial part of the Gibbs energy, the next
three terms represent the residual contributions stemming from binary interactions,
and the last term accounts for ternary contacts.

The double-indexed g parameters are for binary interaction parameters. The first
line of the above relation represents the combinatorial part, and the second line the
residual part of the reduced segment molar Gibbs energy of mixing. This relation
also contains a ternary interaction parameter #;; that accounts for the expectation
that the interaction between two components of the ternary mixture may change in
the presence of a third component.
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Because of the well-documented composition dependencies of the individual
binary interaction parameters, an unmindful use of (56) would lead to totally
unrealistic results. This feature requires twofold adaption.

First of all, it is necessary to account for the fact that the contribution of a certain
binary contact to the total Gibbs energy of mixing depends on its particular
molecular environment, which in the general case also contains the third compo-
nent. We can allow for that circumstance by multiplying g;; with the factor (¢; + ¢,)
=(1-p) <L

Secondly, we need to specify whether the composition dependencies of the g;;
parameters are formulated in terms of ¢; or of ¢;, because the resulting mathemati-
cal expressions are not identical.

In order to enable a straightforward application of the new approach to the most
interesting ternary systems (polymer solutions in mixed solvents and solutions of a
polymer blend in a common solvent), it is expedient to express the binary interac-
tion parameters for polymer solvent systems (26) and that for polymer blends (49)
in the same form. This requirement is met by the relation:

o ij

(1 — Vij) (1 — v,-jcpj

8ij = ) =y (51‘/‘ + & %) (57)

For polymer solutions:
o0=1 and e=(1-24) (58)

whereas the corresponding equation for a polymer blend (the composition depen-
dence being expressed in terms of ) reads:

2a+b b—
at and ¢= a

5:
3 3

(59)

By means of (57) and the required modification formulated at the beginning of this
section, one obtains the following expression for the reduced residual segment
molar Gibbs energy of mixing of ternary systems, if one neglects ternary interac-
tions (#;x = 0) for the time being:

o2

|: 1— V12 l — V124P2(1 — @3)) n (12(512 t+én 902(1 - 903)):| P1$2
023

v =)~ 20 el =) ere

J{ 31
(1= v31)(1 = v310,(1 — 05

) — (31(031 + 310 (1 — @2))} P341
(60)
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As one of the three composition variables becomes zero, this relation simplifies
to the expression for binary mixtures (57). The extension of (60) to multicomponent
systems is unproblematic and enables the calculation of phase diagrams for such
mixtures of great practical importance if one calculates the composition of the
coexisting phases by a direct minimization of the Gibbs energy [19]. In this manner,
it is possible to evade the laborious and sometimes even impossible calculation of
the chemical potential for each component.

The implementation of ternary interactions by simply adding the last term of
(56) to (60) does not suffice. The reason lies in the fact that the three options to form
a contact between all three components out of binary contacts (1/2 + 3, 1/3 + 2, and
2/3 + 1) might differ in their contribution to the Gibbs energy of the mixture. This
supposition results in the necessity to introduce three different ternary interaction
parameters. Furthermore, it requires a weighting of these contribution to account
for the fact that they must be largest in the limit of the first addition of the third
component 3 (highest fraction of 1/2 contacts) and die out as component 3 becomes
dominant (vanishing fraction of 1/2 contacts). The simplest possibility to account

—_—res
for AG, , the extra contributions of ternary contacts to the residual Gibbs energy, is
formulated in (61), where the negative sign was chosen by analogy to the second
term of (57):

=Tres

AG
o =~ = @) + 0l =) + 11— 3)lp) 02 03 61

t; quantifies the changes associated with the formation of a ternary contact 1/2/3 out
of a binary contact 2/3 by adding a segment of component 1. The meaning of #, and
t3 is analogous.

Equation (61) makes allowance for differences in the genesis of ternary contacts
but it does not yet consider that the number of segments of the third component in
the coordination sphere of a certain binary contact might deviate from that expected
from the average composition due to very favorable or unfavorable interactions
(quasi chemical equilibria). One way to model such effects consists of the intro-
duction of composition-dependent ternary interaction parameters, as formulated in
the following equation:

==+ 1) (1= @) + (2 + 122005) (1 = p2) (62)
+ (1 4+ 133 03)(1 = 93010203

The relations presented for ternary mixtures open the possibility for investigation of
the extent to which their thermodynamic behavior can be forecast (neglecting
possible contributions of ternary interaction parameters) if the binary interaction
parameters of the three subsystems are known as a function of composition from
independent experiments. For such calculations, it is important to make sure that
the size of a segment is identical for all subsystems. The fact that most of the
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experimental information available for polymer solutions uses the molar volume of
the particular solvent to fix the size of a segment, requires a conversion in the case of
polymer solutions in mixed solvents. If one chooses the molar volume of solvent 1 to
define the common segment, this means that the binary interaction parameter for the
solvent 2 must be divided by the ratio of the molar volumes V| / Vs.

3 Measuring Methods

Experimental information concerning the thermodynamic properties of mixtures is
primarily accessible via phase equilibria [30]. In the case of polymer solutions,
vapor pressure measurements (liquid/gas equilibria) constitute the most important
source of data because of the nonvolatility of the solutes and because of the
comparatively large composition interval (typically ranging from some 25% to
almost pure polymer) over which this method yields reliable data. In order to obtain
a complete picture from infinitely dilute solutions up to almost pure polymer melt,
these data need to be complemented by further methods. Osmometry (liquid/liquid
equilibria) provides y,, the Flory—Huggins interaction parameter in the limit of pair
interaction between the polymer molecules; this information is also accessible via
scattering methods (light or neutrons), which monitor the composition dependences
of the chemical potentials. Most published data refer to dilute and moderately
concentrated solutions. It is difficult to study the range of vanishing solvent
concentration because of the high viscosity of such mixtures. Inverse gas chroma-
tography (IGC) is one of the few sources of information. Thermodynamic informa-
tion for polymer blends is usually based on small angle neutron scattering. The
following sections (Sects. 3.1-3.3) outline how the different methods work and cite
some recent relevant publications in this area.

3.1 Vapor Pressure Measurements

The classical method consists of the quantitative removal of air from polymer
solutions coexisting with a gas phase and measurement of the equilibrium pressures
of the solvent above the solution by means of different devices. Such experiments
are very time consuming because the liquid mixtures must be frozen-in and the air
that accumulates in the gas phase must be pumped off. In order to obtain reliable
data this procedure must be repeated several times to get rid of all gases. By means
of this approach it is practically impossible to accumulate comprehensive informa-
tion for a large number of systems.

For the reasons outlined above, alternative methods were developed that avoid
the measurement of absolute vapor pressures. One procedure combines head space
sampling with conventional gas chromatography (HS—GC) [31] and yields relative
vapor pressures, normalized to the vapor pressure of the pure solvent. A well-
defined volume of the equilibrium gas phase is taken out from a thermostated vial
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sealed with a septum by means of a syringe and transferred to a gas chromatograph.
The amount of the solvent is registered either in a flame ionization detector (FID) or
by means of a cell measuring the thermal conductivity of the gas stream. Such
measurements yield the ratio p/p,, which in many cases can be taken as the activity
of the solvent. Whether corrections for the nonideality of the gas are required or not
must be checked in each case. The main work required with this method consists of
the optimization of the HS—GC, i.e., determination of the best operation procedures
for gas sampling, gas chromatography, and data evaluation. However, once these
parameters have been determined, HS—GC offers quick access to thermodynamic
data because the method is automated.

Another possibility for avoiding the measurement of absolute vapor pressures is
provided by sorption methods. In most cases, the polymer is positioned on a quartz
balance and the amount of solvent it takes up via the vapor phase is weighted. The
so-called “flow-through” variant [32] works with an open system in contrast to the
previous method.

Isopiestic [33] experiments also offer access to chemical potentials. This method
monitors the conditions under which the vapor pressures above different solutions
of nonvolatile solutes (like polymers or salts) in the same solvent become identical,
where one of these solutions is a standard for which the thermodynamic data are
known. These experiments can be considered to be a special form of differential
osmometry (cf. Sect. 3.2) where the semi-permeable membrane, separating two
solutions of different composition, consists of the gas phase.

3.2 Osmometry and Scattering Methods

Measurements performed to determine the molar masses of polymers yield — as a
valuable byproduct — information on the pair interaction between the macromole-
cules [30]. The composition dependence of the osmotic pressure 7., observed
via membrane osmometry is directly related to the chemical potential of the solvent
[cf. (14) of Sect. 2] and provides the second osmotic virial coefficient A,, from
which y,, the Flory—-Huggins interaction parameter in the limit of high dilution
becomes accessible [cf. (15)]. Such data are particularly valuable because they can
be measured with higher accuracy than the y values for concentrated polymer
solutions and because they represent a solid starting point for the sometimes very
complex function y(y). In principle, membrane osmometry can also be operated
with polymer solutions of different composition in the two chambers (differential
osmometry) to gain data for higher polymer concentrations; however, little use is
made of this option.

Scattering methods represent another route to A, and y,,; these experiments do not
monitor the chemical potential itself but its composition dependence. Light scattering
— like osmosis — can in principle also yield information for polymer solutions beyond
the range of pair interaction, but corresponding reports are seldom. In contrast, small
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angle neutron scattering is an important source of thermodynamic information for
polymer blends over the entire composition range.

3.3 Other Methods

In addition to the experiments briefly discussed above, two further equilibrium
methods and two nonequilibrium procedures are sometimes employed to obtain
thermodynamic information.

The most frequently used additional method is the evaluation of data for liquid/
liquid phase separation, i.e., of critical points and of binodal curves [21]. This
information is normally obtained by means of cloud point measurements (either
visually or turbidimetrically) and the analysis of the composition of coexisting
phases. Critical data give access to the system-specific parameters via the critical
conditions, as formulated in (36) and (37) for the present approach or by means of
equivalent expressions of other theories. If the critical data (temperature, pressure,
and composition) are known for a sufficiently large number of polymer samples
with different molar mass, and the number of parameters required for a quantitative
description of g(¢) is not too high, this method yields reliable information. Similar
consideration also hold true for the evaluation of binodal curves. In both cases it is
very helpful to formulate a theoretically justified temperature dependence of the
system-specific parameters.

Liquid/solid equilibria also offer access to thermodynamic information. In this
case, it is the differential interaction parameter ¢ of the polymer that is obtained
according to (38) from the known molar mass of the polymer, its melting tempera-
ture in the pure state, and the corresponding heat of melting plus the polymer
concentration in the solution that is in equilibrium with the pure polymer crystals.
Because of the well-known problems in obtaining perfect crystals in the case of
macromolecules, special care must be taken with the evaluation of such data.

Vapor pressure osmometry [34-36] constitutes a very helpful nonequilibrium
method for obtaining thermodynamic information for solutions of oligomers and
polymers of low molar mass, for which osmometry and light scattering experiments
do no longer yield reliable data. Such experiments are based on the establishment of
stationary states for the transport of solvent via the gas phase from a drop of pure
solvent fixed on one thermistor to the drop of oligomer solution positioned on
another thermistor. Because of the heats of vaporization and of condensation,
respectively, this transport process causes a time-independent temperature differ-
ence from which the required information is available after calibrating the
equipment.

Inverse gas chromatography (IGC) represents another nonequilibrium method; it
yields valuable information on polymer—solvent interactions in the limit of vanish-
ing solvent content [37, 38]. In experiments of this type, a plug of solvent vapor is
transported in a column over a stationary phase consisting of the pure polymer melt.
The more favorable the solvent interaction with the polymer, the longer it takes



Thermodynamics of Polymer-Containing Mixtures 27

until the plug leaves the column. An adequate evaluation of the observed retention
times yields access to the chemical potentials of the solvent, i.e., to Flory—Huggins
interaction parameters in the limit of ¢ — 1.

4 Experimental Results and Modeling

4.1 Binary Systems

4.1.1 Polymer Solutions
Organic Solvents/Linear Homopolymers

This section gives examples for the typical thermodynamic behavior of polymer
solutions. The first part deals with homogeneous mixtures and discusses the molec-
ular weight dependence of second osmotic virial coefficients, the role of glass
transition for the determination of interaction parameters, and the reasons for
changes in the sign of the heat of dilution with polymer concentration. The second
part of this section is dedicated to liquid/liquid phase separation and — among other
things — explains in terms of the present approach, why 1,2-polybutadiene is
completely miscible with n-butane but 1,4-polybutadiene is not.

One of the major consequences of the thermodynamic approach used here is the
postulate that the second osmotic virial coefficients may increase with rising molar
mass of the polymer, even for good solvents (better than theta conditions), in
contrast to the statements of current theories. Figure 2 shows an example of this
behavior, which was already observed by Flory and coworkers [22] in the 1950s and
confirmed by independent measurements [39].
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As postulated by (31), the molecular weight dependence of A, should not be
represented in double logarithmic plots, but as a function of M~ =%, where « is the
exponent of the Kuhn—Mark—Houwink relation. In contrast to the customary evalu-
ation (in double logarithmic plots), this procedure does not in the general case lead
to zero AS° values; in most cases they are very small but, outside experimental
errors, different from zero.

The following example of the composition dependence of the Flory—Huggins
interaction parameter pertains to the system cyclohexane/poly(vinyl methyl ether)
(CH/PVME) [23]. Except for y,, obtained via osmometry, all data stem from vapor
pressure measurements [40]. This system does not fit into the normal scheme
because CH is a good solvent for PVME, despite uncommonly large y, values of
the order of 0.5. For good solvents, y, is usually considerable less than 0.5; for theta
solvents, ¥, is typically equal to 0.5 and it increases upon the approach of phase
separation. The curves combining the data points in Fig. 3 were calculated by
adjusting the parameters of (32). Within the scope of the present approach, the high
solvent quality results from fact that the y values decrease considerably as ¢
increases so that they are favorable within the range of moderate polymer concen-
trations, where the system becomes very susceptible to phase separation.

The minima of x(¢) shown in Fig. 3 represent a consequence of the dissimilar
contributions of the dilution in two steps, as demonstrated in Fig. 4. The first term,
quantifying the effects of contact formation, is Gibbs energetically very unfavor-
able and increases with rising polymer concentration because of the parameter v.
By contrast, the second term, standing for the contributions of the conformational
relaxation, is highly favorable and the more so, the larger ¢ becomes. The observed
minimum in y(¢p) is caused by the fact that the first summand increases more than
linearly, whereas the second decreases linearly.

Figure 4 also documents the general observation that the contributions of the two
terms of (32) to the measured functions y(p) are markedly larger than y itself; this
situation is very similar to the build up of the Gibbs energy from enthalpy and
entropy contributions. However, it is not permissible to interpret these terms in this
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that the M, of the PVME ¢
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manner: Both terms can be split into their enthalpy and entropy parts, as will be
shown later.

Another point of view on the contributions of the two terms of (32) deserves
special attention. Namely, the expectation according to the present approach that
their leading parameters, o and {, should not be independent of each other.
The reason for this surmise lies in the fact that contact formation and conforma-
tional relaxation share the same thermodynamic background, i.e., the effects of the
conformational relaxation of the components should strongly correlate with the
effects of contact formation, as discussed in Sect. 2.

The results shown in Fig. 5 demonstrate that there indeed exists such a general
interrelation, where each data point represents a certain system and temperature.
The results of this graph demonstrate the consistency of the approach because the
data [39] obtained from the evaluation of the molecular weight dependence of A,
(cf. Fig. 2) and from the composition dependence of () (an example [40] is shown
in Fig. 3) lie on the same line [here {4 = (0.957 4+ 0.00027) x (o — 0.5)], despite the
fundamentally different experimental methods used for their determination. For the
common representation of the data, the { values reported in table 2 of [39] were
multiplied by —0.5 (i.e., 4 was set at 0.5), which is permissible for sufficiently large
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molar masses of the polymer. The negative sign of this factor results from the fact
that { of [39], used for the evaluation of A,(M), was defined with the opposite sign
of { as compared with the modeling of y(p). The reason lies in the interrelation
between y, and A, formulated in (15).

It appears interesting that the interrelation between the leading parameters of the
present approach shown in Fig. 5 for simple systems, i.e., for absence of special
interactions between the components, is generally valid and holds true for all
hitherto studied polymer solutions.

The modeling of homogeneous systems has so far been exemplified by means of
solutions of polymers that are liquid at the temperatures of interest. Such systems
are, however, the exception rather than the rule, because of the comparatively high
glass transition temperatures of most polymers. Typical polymer solutions solidify
upon a sufficient augmentation of polymer concentration and the question arises of
how this feature is reflected in the thermodynamic data. To study the importance
of this loss in the mobility of the polymer chains for the determination of Flory—
Huggins interaction parameters, we have studied solutions of PS in different
solvents [41] within the temperature range of 10-70°C. These experiments demon-
strate that the consequences of the freezing-in of the polymer motion at high
polymer concentrations for the measured vapor pressures depend on the thermo-
dynamic quality of the solvent and on the experimental method employed for the
measurement.

Figure 6 shows the reduction of the vapor pressures of toluene (TL, a good
solvent) and of CH (a marginal solvent) as the concentration of PS rises. As
long as the mixtures are liquid these curves display the interaction in the usual
manner, i.e., the reduced vapor pressure of TL is considerable lower than that of CH
because of the more favorable interaction with the polymer. In the case of CH, this
dependence continues smoothly into the glassy range, whereas a discontinuity is
observed for TL.

Based on the results shown in Fig. 6, one is tempted to postulate that the solvent
quality loses its importance once the solutions become glassy. However, the situa-
tion is more complicated under nonequilibrium conditions, as discussed by means
of Fig. 7. This graph contains two types of experimental data, one set obtained via
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HS-GC as usual and another set [32] obtained by means of the so-called “flow
through” method, which differs fundamentally.

The vapor pressure data obtained by means of HS—GC measurements for the
solutions of PS (below the glass transition temperature of the polymer) in the
favorable solvent TL resemble closely the results for the solutions of polyethylene
oxide (PEO) in chloroform (below the melting temperature of the polymer), as
shown later. The common denominator of these processes lies in the loss of
mobility of the macromolecules. The results presented in Fig. 7 can be interpreted
in the following manner: The composition range of constant vapor pressure (¢~ < ¢
< ¢") observed with HS—GC measurements reflects the coexistence of two kinds of
microphases, one in which the polymer mobility is identical with that in the liquid
state at the composition ¢/, and a glassy microphase of composition ¢”, where the
segmental mobility is fully frozen-in. The reason why this sort of “tie line” can be
observed with HS—GC but not with flow-through experiments lies in the fact that
the former method uses a closed system, in contrast to the latter in which additional
vapor is always available. Because it is the vapor pressure that is constant in flow-
through experiments and not the composition of the mixture, the amount of solvent
taken up by the polymer can be constantly replaced. This process comes to an end
either as the equilibrium vapor pressure of the liquid mixture is reached at the
composition ¢’ or as kinetic impediments become too large. The two methods
under consideration complement each other: HS—GC monitors the upper limit " of
the solidification interval, whereas the flow-through method displays its lower limit
¢'. Concerning the evaluation of vapor pressures measured via HS—GC above
solidified polymer solutions, it is obvious from the present results that such infor-
mation must not be used to establish y(¢) dependencies, particularly in the case of
thermodynamically favorable solvents.

To conclude the treatment of homogenous solutions of polymers in organic
solvents, we deal with the temperature dependencies of the parameters of (32).
The knowledge of these changes enables their separation in enthalpy and entropy



32 B.A. Wolf

contributions as formulated in (39) and (40) for y. In this context, it is of particular
interest to check whether the approach helps the rationalization of observed
changes in the sign of the heat of dilution upon a variation of the polymer
concentration. Solutions of PS in fert-butyl acetate (TBA) were chosen for this
purpose because of the large temperature interval that was studied for this system.
The combination of three different methods was used to obtain interaction para-
meters in all composition regions of interest: (1) light scattering measurements for
dilute solutions in closed cells [42], (2) the determination of absolute vapor
pressures (not HS—GC, quantitative removal of air) up to temperatures well above
the boiling point of the pure solvent [43], and (3) IGC [37] close to the polymer
melt.

The analysis [44] of the thus-obtained temperature dependencies of the system-
specific parameters of (32) with respect to the individual enthalpy contributions of
the two steps of dilution (cf. Fig. 1), yields yp ¢ and yg ... How these heat effects
depend on polymer concentration is shown for the system TBA/PS at 110°C in
Fig. 8.

This graph makes it immediately obvious that the insertion of a solvent molecule
between contacting segments at constant conformation of the components consti-
tutes an exothermal process (jp ¢ < 0) at high dilution, whereas the conformational
relaxation is endothermal (g, > 0). In both cases, the absolute values of the heat
effects increase with rising polymer concentration. However, the slopes of these
two dependencies differ in such a manner that the total heat of dilution is exother-
mal for low ¢ values, but endothermal for high polymer concentrations. With the
present example, this finding can be rationalized qualitatively in terms of the
composition dependence of free volumes and excess volumes. The pure solvent is
already highly expanded and the polymer molecules may fill some of the existing
voids (this should lead to negative excess volumes and to the evolution of heat, due
to the formation of new molecular interfaces). The pure melt, on the other hand, is
still densely packed at the same temperature and the addition of a solvent molecule
might cause an expansion in volume (resulting in positive excess volumes and in
the consumption of heat).
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(32)]. The experimental data TBA ¢ PS 110
were taken from [43]

enhthalpy parameters
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There exist other examples for inversions in the heats of dilution; in these cases
an analogous straightforward molecular interpretation appears difficult. For
instance, the system TL/PS shows an inversion [44] from endothermal in the
range of moderate polymer concentrations to exothermal at high ¢ values at
37°C. In this case, the sign of the heat contributions of the two steps of dilution
are the same as in the previous case. However, here it is only yg ., which increases
(linearly) with rising polymer concentration, whereas jp . decreases (more than
linearly). This combination of the two contributions leads to the opposite inversion,
namely from endothermal to exothermal upon an augmentation of . Concerning
the molecular reasons for this behavior, one may speculate on the basis of the
present findings that the insertion of a TL molecule between two contacting PS
segments (belonging to different molecules) becomes energetically particularly
favorable in the limit of high polymer concentration.

So far, we have dealt exclusively with homogeneous systems; the following
considerations concern the possibilities of obtaining the parameters of the present
expression for y(p, T) from demixing data. The results will demonstrate that the
present approach is capable of modeling liquid/liquid equilibria and liquid/gas
equilibria with the same set of parameters, in contrast to traditional theories.

The first example refers to solutions of PS in CH. This is probably the system for
which the phase separation phenomena are studied in greatest detail [45], namely in
the temperature range from ca. 10 to 240°C and for molar masses from 37 to 2700
kg/mol. Figure 9 displays the experimental data [45] together with the modeling,
using (32) to describe the Flory—Huggins interaction parameter as a function of
composition.

The system-specific parameters used for the modeling of the phase diagrams
were calculated from the critical data (T, and ¢.) measured [45] for PS samples of
different molar mass. For this purpose, the critical conditions resulting for the
present approach [cf. (36) and (37)] were first simplified: The parameter 1 was
set at 0.5 (this does not imply a loss of accuracy for the system of interest) and the
interrelation between o and {4 [cf. (34)] was used to eliminate the parameter o;
setting £ = (0.847 (an average value for solutions of vinyl polymers in organic
solvents). This procedure reduces the number of parameters from four to only two
({ and v) and enables the calculation of their values from the critical temperature by
inserting the known numbers of segments N and the critical composition ¢, in the
two critical conditions and solving these equations. Because of the large number of
different molar masses, yielding different critical data, it is possible to model the
temperature dependencies of the parameters { and v. The observed maximum in {(T)
is expected because of the transition from an upper critical solution temperature
(UCST) behavior at low temperatures to a lower critical solution temperature
(LCST) behavior at high temperatures, in combination with the fact that { = 0 at
the theta temperature, irrespective of the sign of the heat of mixing; v(T) also passes a
maximum but at a much lower temperature (in the vicinity of the endothermal theta
temperature). Within the range of LCSTs, both parameters decrease with rising
temperature. The binodal and spinodal curves shown in Fig. 9 for the different PS
samples were calculated from the thus-obtained system-specific parameters using
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Fig. 9 Phase diagram
(demixing into two liquid
phases) of the system CH/PS
for the indicated molar
masses of the polymer (kg/
mol). Cloud points (open
symbols) and critical points
(stars) are taken from the
literature [45]. The data for
the high temperatures refer to
the equilibrium vapor
pressure of the solvent.
Binodals (solid lines) and
spinodals (dotted lines) were
calculated as described in the
text by means of the
temperature-dependent
parameters [46] { and v

the method of the direct minimization of the Gibbs energy [19], instead of equality of
the chemical potentials of the components as the equilibrium condition.

The agreement of information concerning the composition dependence of the
Flory—Huggins interaction parameter obtained from different sources is demon-
strated by means of Fig. 10. The data points display the results of vapor pressure
measurements and the dashed line stems from the evaluation of critical demixing
data described above. The interaction parameter is calculated according to (6), (5),
and (32) by reading the { and v values from figure 2 of [46] for 308 K, setting 1 =
0.5 and E = 0.847. To the author’s knowledge, this is the first time that liquid/gas
and liquid/liquid phase equilibria have been modeled accurately by the same set of
parameters, where only two were adjusted to the experimental data in the present
case.

For some technical processes and polymer applications, pressure represents an
important variable. For this reason, the extent to which the present approach is
suited to describe pressure effects was checked. By means of demixing data as a
function of pressure published for the system trans-decalin/PS [49] it was shown
[46] that (32) is also apt for that purpose.

The systems n-butane/1,4-polybutadiene (98% cis) [1n-C,4/1,4-PB] and n-butane/
1,2-polybutadiene [n-C,/1,2-PB] are the next examples for the modeling of Flory—
Huggins interaction parameters [50]. In this case, it appeared particularly interest-
ing to understand why 1,2-PB is totally miscible with n- C4 but 1,4-PB is not.
In these experiments we measured the absolute vapor pressures (i.e., not using
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0.0 0.2 0.4 0.6 0.8 1.0
CH ¢ PS
Fig. 10 Comparison of the composition dependence of the Flory—Huggins interaction parameter

determined for the CH/PS system at 308 K either from liquid/gas equilibria (triangles [47] and
circles [48]), jointly represented by the solid line, or from liquid/liquid equilibria [46] (dashed line)

Fig. 11 Isochoric phase 80
diagram for the system B i 81b
n-C4/1,4-PB [50]. The L O 8.4 bar
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4 ~ 6.4b
drawn as stars and those 601 @ o
calculated by means of the O '5_ 49b,
interaction parameters I: - Q o asbar
. =
obtained from the vapor 40 =
pressure measurements as N "In-C4/1,4PB |
circles -
- 2.8 bar
20 T T T
0.0 0.2 0.6 0.8 1.0

HS-GC) because of the high volatility of n- C,4, and studied the segregation of a
second liquid phase for the solutions of 1,4-PB under isochoric conditions (instead
of the usual isobaric procedure). Figure 11 shows the thus-obtained phase diagram
together with the miscibility gap calculated from the measured vapor pressures.
Here, it is worth mentioning that the Sanchez—Lacombe theory [4, 51] models the
vapor/liquid equilibria for the present systems very well but fails totally when the
parameters obtained from such measurements are applied for the calculation of
liquid/liquid equilibria.

The good agreement between the prediction of the miscibility gap from liquid/
gas equilibria with the actual behavior is a further example of the utility of
this approach. The extension of the Flory—Huggins theory by incorporating fur-
ther contributions of chain connectivity and accounting for the phenomenon of
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conformational relaxation also enables the rationalization of the fundamentally
different solubilities of 1,4-PB and 1,2-PB. The 1,2-isomer interacts favorably
with n-C4 because the flexibility of the polymer backbone (pending double
bonds) enables the establishment of suitable contacts with the surrounding solvent
molecules. With the 1,4-isomer, on the other hand, such a rearrangement is largely
impeded because the double bonds are now located in the main chain and make the
conformational response much more difficult.

All examples shown so far refer to solutions of noncrystalline polymers. We will
now discuss the solutions of a crystalline polymer, namely PEO in chloroform.
Figure 12 gives an example of the primary data that can be obtained by measuring
the reduced vapor pressure of the solvent by means of HS—GC.

According to the present results, it is possible to distinguish three clearly
separable composition ranges, I-III (see Fig. 12). Only for range III do the data
not depend on the details of film preparation, i.e., yield equilibrium information.
The situation prevailing in the other ranges is discussed in terms of the addition of
CHClI; to solid PEO. Within range I (1 > w > w"), the vapor pressure increases
steadily up to a characteristic limiting value located well below that of the pure
solvent. Within range IT (w” > w > w'), p| remains constant, despite the addition of
further solvent. Finally, within range III (W' > w > 0), the vapor pressure rises again
and approaches the value of the pure solvent. Range I should be absent for fully
crystalline polymers; its existence is due to the amorphous parts of PEO, which can
take up solvent until w' is reached. Range II results from the coexistence of the
saturated solution with variable amounts of polymer crystals. Finally, no solid
material is available in range III and we are back to the normal situation encoun-
tered with the solutions of amorphous polymers. According to the present results, it
is practically impossible to reach thermodynamic equilibria within range I. Vapor
pressures and degrees of crystallinity depend markedly on the details of sample
preparation. Measurements within range III do not present particular problems with

1 .0 T T T
0.8 1 R
0.6 25°C w' w"
Fig. 12 Reduced vapor Q.? ’ 0 l l
pressure of chloroform above >~ o )
solutions of PEO at 25°C as a % 0.4 N ; -
function of the weight : N
fraction w of the polymer : 5
[52]. The three composition 0.2 1 m 1 ! T
ranges are labeled /7, /1, and - : i RN
I11. The dotted line 00 : : )
extrapolates the behavior of 00 02 04 06 08 10
the homogeneous mixtures CHCI, w PEO

into the two-phase range
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the attainment of equilibria. Range II assumes an intermediate position in this
respect.

The observed nonequilibrium behavior at high polymer concentrations can be
interpreted in terms of local and temporal equilibria, which are frozen-in during
film preparation, i.e., in the course of solvent removal or quenching of the polymer
melt. For discussion of these effects it is helpful to compare the fraction of the
polymer that does not participate in the liquid/vapor equilibrium with the degree of
crystallinity as obtained from DSC measurements. The general findings that the
former is always larger than the latter, and that the differences decrease upon
dilution, are tentatively interpreted as a trapping of amorphous PEO inside the
crystalline material during sample preparation and its gradual release by the addi-
tion of solvent. This hypothesis is supported by micrographs showing the existence
of such occlusions.

For systems of the present type it is possible to obtain equilibrium information
from two sources: in the usual manner via the vapor pressures of the solvent above
the solutions within range III (chemical potential of the solvent) and additionally
from the saturation composition w’ of the polymer (chemical potential of the
polymer). The thermodynamic consistency of these data was documented [52] by
predicting w’ (liquid/solid equilibrium) from the information of liquid/gas equili-
bria. This match of thermodynamic information from different sources is a further
argument for the suitability to the present approach for the modeling of polymer-
containing mixtures.

Organic Solvents/Nonlinear Homopolymers

This section deals with the extent to which differences in the molecular architecture
of the polymer affects its interaction with a given solvent. In particular, the
comparison of linear and branched macromolecules is of interest. In order to obtain
a clear-cut answer and for a straightforward theoretical discussion it is important to
exclude special end-group effects (i.e., to keep the chemistry of the terminal group
as similar as possible to that of the middle groups) and to apply the same criteria
to the branching sites. The example [24] chosen refers to solutions of linear and
branched polyisoprene (PI) in CH and fulfills the above criteria reasonably well.
The number of branching points per molecule of the nonlinear product lies between
six and seven. Figure 13 shows the composition dependence of the Flory—Huggins
interaction parameter for the two types of systems obtained from HS—GC measure-
ments and from vapor pressure osmometry.

Linear PI interacts with CH considerably more favorably than does the branched
analog in the temperature range from 25 to 65°C according to these results,
irrespective of polymer concentration. This finding agrees well with the expectation
based on the present approach, which states that the first term of (32) (quantifying
the first step of dilution, cf. Fig. 1) should only be affected marginally by a
transition from a linear to a branched architecture of the polymer, in contrast to
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1.0 T=45°C

0.0 0.2 0.4 06 08 1.0
CH ¢ PI

Fig. 13 Flory—Huggins interaction parameters for solutions of linear PI (circles, M,, = 23.2 kg/
mol) and of branched PI (stars, M,, = 21.6 kg/mol) in CH as a function of polymer concentration

the second term (resulting from the conformational relaxation). This second sum-
mand is determined by the parameters A and {, both of which depend on the
molecular architecture of the polymer: A higher degree of branching leads to a
reduction in the intramolecular interaction parameter A (accumulation of the seg-
ments in a smaller volume) as well as in { (diminished possibilities to readjust to a
changing molecular environment by conformational relaxation). Because of the
negative sign of the second term, these changes lead to larger y values for the
branched polymer. In other words, in the absence of special effects, the thermo-
dynamic quality of a given solvent declines upon an increase in the degree of
branching. Another feature worth mentioning is the observation that the interrela-
tion between the parameters {4 and o, established for linear macromolecules
(cf. Fig. 5), remains valid for branched materials.

Organic Solvents/Linear Random Copolymers

With systems of this type, a new feature comes into play: In spite of the fact that we
are dealing with binary systems, we need three different interaction parameters to
describe the thermodynamic behavior. This makes the modeling considerably more
difficult and is the reason why the present approach requires more adjustable
parameters, and the theoretical understanding is far from being satisfactory.

For reasons outlined in the theoretical section (Sect. 2) (8) the study reported here
uses weight fractions w instead of the usual volume fractions . It was carried out for
solutions of poly(styrene-ran-methyl methacrylate [P(S-ran-MMA)], with different
weight fractions f of styrene units, in CHCl3, acetone (AC), methyl acetate (MeAc),
and TL at 50°C [25]. Analogous measurement for the solutions of the corresponding
homopolymers, PMMA and PS, were also performed for comparison.
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For practical purposes, the possibility of predicting the thermodynamic behavior
of random copolymers in a given solvent from knowledge of the corresponding
homopolymers would be extremely helpful. The present results demonstrate that
this is a difficult task and that the choice of the particular solvent plays a decisive
role. For all systems under investigation, ,,x varies considerably with the composi-
tion of the mixture. With one exception [CHCl3/P(S-ran-MMA) and f = 0.5] the
dependencies y(w) of the copolymers do not fall reasonably between the data
obtained for the corresponding homopolymers. In most cases, the incorporation of a
small fraction [25] of the monomer that interacts less favorably with a given solvent
suffices to reduce the solvent quality for the copolymer, approximately to that for
the worse soluble homopolymer. Figure 14 shows an example for which this effect
is particularly obvious.

In terms of the ,,y values measured for a given constant polymer concentration,
the polar solvents CHCl3, AC, and MeAc are expectedly more favorable for PMMA
than for PS, whereas the nonpolar TL is a better solvent for PS than for PMMA. The
shape of the functions ,y(w) varies considerably. For AC/PMMA and MeAc/PS,
 increases linearly and for AC/PS more than linearly, whereas it decreases linearly
for CHCI;/PS. With three of the systems, one observes minima in ,y(w), namely for
TL/PMMA, TL/PS, and CHCI5/PS; only MeAc/PMMA exhibits a maximum. On
the basis of (32), this diversity of composition influences is easily comprehensible if
one keeps in mind that the composition dependence of Flory—Huggins interaction
parameters are made up of two separate contributions. The normally nonzero
parameter v of the first term of this relation (which is primarily determined by the
differences in the shapes of monomeric units and solvents molecules) leads to a
nonlinear composition dependence of y, where the magnitude of this contribution
increases as the absolute values of the parameter o rise. The second term of (32)
adds a linear dependence, quantified by the parameter {4. In agreement with the
great diversity of the systems concerning the functions y(w), all three parameters
of the present approach may be positive, negative, or zero.

P(S-ran-MMA)  PMMA
f=05

0.75 1
w#
Fig. 14 Composition 0.50 g
dependence of the Flory—
Huggins interaction
parameters [based on weight 0.25 1
fractions wp, cf. (8)] for the 50°C

solutions of PS, PMMA, and
of a random copolymer
containing 50 wt% of these
monomers in TL at 50°C [25] L We P
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The next aspect that deserves discussion concerns the quality of a given solvent
for copolymers of different comonomer content, as compared with its quality for
the corresponding homopolymers. The naive interpolation of the ,y values for the
copolymers between the data of the homopolymers according to their composition
is at variance with the experimental observations. Only for the system CHCI;/
P(S-ran-MMA) with f = 0.5 does the composition dependence lie reasonably
between the y(w) curves for the homopolymers. All other solvents are
approximately as poor for the copolymer (f = 0.5) as for the less favorably
interacting homopolymer (PS in the case of AC and MeAc; PMMA in the
case of TL). For the system TL/P(S-ran-MMA), studied in greater detail, the
presence of only 10 wt% of styrene units suffice to raise y to values that
are within the range of high polymer concentration, even larger than that of
the TL/PMMA system (see Figure 11 of [25]).

The dependencies of the system-specific parameters 7 on the weight fraction f of
the styrene units in the copolymers can be well modeled by (41) for the different
solvents. Linear functions, corresponding to 7° = 0, are exceptions and only
observed for the parameters o and {4 with CHCl; and for v with MeAc. For the
polar solvents AC and MeAc, a(f) and {A(f) exhibit maxima, whereas minima are
observed for TL. The comparison of these excess parameters 7" obtained for the
different solvents discloses another interesting feature, namely the fact that all
excess parameters 7= exhibit the same sign for the three systems for which the
behavior of the copolymer is dominated by the monomeric unit showing the less
favorable interaction with the solvent. For o and (4, this means that an adverse
excess contribution for contact formation is counteracted by a favorable conforma-
tional relaxation (AC and MeAc) or conversely, that a favorable excess contact
formation goes along with an adverse conformational relaxation (TL).

In conclusion of this section, it is worthwhile noting that the interrelation of the
system-specific parameters established for homopolymer solutions (cf. Fig. 5) also
holds true for all copolymer solutions studied here (as demonstrated in Figure 15
of [25]).

Aqueous Solutions of Poly(vinyl methyl ether)

This example and the next (cellulose; Sect. 4.1.1.5) concern systems with uncom-
monly large « values (i.e., very unfavorable contact formation between the solvent
and polymer segments) in combination with a similarly favorable conformational
relaxation. Literature reports a very uncommon phase behavior [54, 55] for the
system H;O/PVME: The most striking feature is the occurrence of two minima in
the cloud point curves instead of one. In addition to the normal critical point at low
polymer concentration, the authors report a second critical point at high polymer
concentrations for high molar masses of the polymer. Furthermore, they describe a
three-phase line occurring at a certain characteristic temperature, even for strictly
binary mixtures. The authors used a three-membered series expansion of the
integral Flory—Huggins interaction parameter g with respect to ¢ for the modeling
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[55] of their results and confined the temperature influences to the composition-
independent term, assuming a linear dependence on 1/T to reproduce the observed
phase separation upon heating.

The following considerations [53] deal with the question of which criteria (in
terms of the system-specific parameters of the present approach) a certain system
must fulfill to reproduce the anomalous phase separation phenomena reported in the
literature. To that end, the condensed parameter {/ is eliminated from the critical
conditions calculated on the basis of (33) to yield expressions analogous to (36) and
(37). This procedure provides the following relation, containing the parameters o
and v, the number of segments N of the polymer, and the critical composition ¢, of
the system:

[603(N — 1) + @2(11 = 2N) — 4¢, — 1](1 — vip,)* )
O( fry
6<p§N(1 — <p§)(4vgoc +v—1)

Plotting o according to (63) as a function the critical composition (. for a given
polymer (i.e., constant value of N) with v as independent variable gives access to
the combination of o and v values, yielding more than one solution for ¢.. Figure 15
shows the results for two v values; this graph merely specifies which parameter
combinations result in critical conditions, it does not yet refer to a certain tempera-
ture. The horizontal lines indicate the first appearance of an additional critical point
upon an augmentation of «. Under these special circumstances, a stable and an
unstable critical point [53] coincide and form a double critical point. In the general
case, the three solutions for the critical conditions correspond to different tempera-
tures and one of them is an unstable critical point.

The minimum « value required for the occurrence of a double critical point is
considerably higher for v = 0.4 than for v = 0.5. A more detailed mathematical
analysis [53] of (63) yields a border line for the combination of parameters, which
separates the normal from anomalous behavior. For ordinary systems, the combi-
nation of o and v values required to produce multiple critical points has so far not
been observed. However, for water/PVME systems, such data may well be realistic

Fig. 15 Modeling of polymer 2.01 |
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anomalous double critical
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because of the large surface of water as compared with that of the polymer segment,
making large y values and hence also large v values plausible [cf. (24)]. In view of
the pronounced chemical dissimilarities of water and PVME, this should lead to
large o values.

The phase diagram shown in Fig. 16 was calculated [53] choosing a combination
of o and v values inside the range of multiple critical points. For this modeling it
was (unrealistically but for the sake of simplicity) assumed that only o depends on
temperature and that this dependence can be formulated as:

o =0y + (T —Ty) (64)

where a4, o5, and T, are constants. From this graph it is clear that the central features
of the phase diagram observed for the water/PVME system can be adequately
modeled by the present approach.

An interesting result of the present modeling is an uncommon option to realize
theta conditions. Maintaining its definition in terms of A, = 0, leading to y, = 0.5:

1
oo =5 =% = (CA)o (65)

it is obvious that this relation cannot only be fulfilled in the normal way, with {s = 0
and o = 1/2, but also via an adequate combination of « and {4 # 0.5. For such
exceptional systems, the unperturbed state results from an exact compensation of an
uncommonly unfavorable contact formation between the components (« > 0.5) by
an extraordinarily advantageous conformational response ({4 > 0). In the case of
H,O/PVME, the plausibility of large « values has already been mentioned. From
reports [56] on the formation of a complex between water and PVME and the fact
that the system exhibits LCST behavior, one can infer that large { values are caused
by the very favorable heat effects associated with that process.
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Swelling of Cellulose in Water

The water/cellulose system is unique in several ways. First of all it is so far the only
one for which we have observed that the vapor pressures above homogeneous
mixtures depend on the particular manner in which the samples were prepared.
The results reported here [57] were obtained by means of thin cellulose films
(approximately 2025 pm thick) cast from cellulose solutions in the mixed solvent
LiCl + dimethylacetamide. After careful removal of the components of the mixed
solvent, these films were kept in a surplus of water at 80°C until the weight of the
swollen cellulose film no longer changed. The solvent was then removed stepwise
by vacuum treatment and the resulting samples were kept in the measuring cell of
the HS—GC until the vapor pressure no longer changed, which was typically after
1 day. The experimental data are highly reproducible but not identical with the
results of measurements (of equally reproducibility; not yet published) with cellu-
lose films that were cast from a different solvent. From these findings, one is forced
to conclude that at least one set of data does not refer to the macroscopic equilib-
rium of the system. It looks as if the final arrangement of the polymer chains after
total removal of the solvent (e.g., with respect to the degree of crystallinity) could
depend on the chemical nature of the solvent employed for film preparation. Under
this assumption, and in view of the high viscosity of swollen cellulose, one can then
speculate that the molecular environment established upon the removal of a partic-
ular solvent is more or less preserved in the swollen state and permits only the
establishment of local equilibria.

Figure 17 shows the results for a cellulose sample with 2940 segments (defined
by the molecular volume of water) prepared from a solution in LiCl plus dimethy-
lacetamide [57]. The most striking feature is the enormously large range that the
Flory—Huggins interaction parameter spans as a function of composition. It falls
from y, = 6 (for worse than theta conditions, the typical y, values are in the order of
0.6) to a minimum of approximately —3.6 (much less than the lowest values
observed so far) for ¢ values around 0.6, and increases again up to —1.7 in the
limit of the pure polymer.

Fig. 17 Composition
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For the modeling of the function () of Fig. 17, it is essential to use (26) and not
(33) because the intramolecular interaction parameter A deviates strongly from the
usual value of 0.5. This observation is conceivable considering the fact that
cellulose is not noticeably soluble in water under the prevailing conditions, which
means that isolated polymer coils should be widely collapsed. Under these condi-
tions, the average volume fraction @, of the segments within the realm of such a
macromolecule will become very high and so consequently will 4 [cf. (27) and
(17)]. The evaluation of the present data yields A = 1.34. All other parameters
required for the modeling of the measured Flory—Huggins interaction parameter
also lie well outside the normal range. The leading parameter o of the first term of
(26) is positive and very large — like with the example of multiple critical points
discussed in the previous section (Sect. 4.1.1.4). However, this time the large value
is not only due to the chemical dissimilarity of the components, but is also caused
by very favorable intersegmental contacts (H-bonds) that must be broken upon the
insertion of a solvent. In agreement with the general interrelation of the parameters
{4 and o, this adverse contribution via o is counteracted by a comparable advanta-
geous conformational relaxation via {. The unique behavior of the water/cellulose
system is also demonstrated by the value of v, which is negative, in contrast to
almost all other polymer solutions studied so far. The only negative value of similar
magnitude was observed for the butane/1,4-polybutadiene system [50], which also
exhibits a large solubility gap. One might therefore speculate that the pronounced
self-association tendencies of the components (due to the unfavorable mutual
interaction) causes effective surface-to-volume ratios [cf. (24)] that differ consid-
erably from those expected on the basis of the molecular shapes of the components.

A further, immediately obvious particularity of the present system is the anoma-
lous swelling behavior of cellulose in water, as shown in Fig. 18. To the author’s
knowledge it is the only case where a high molecular weight polymer takes up more
of the pure coexisting liquid than does a sample of lower molar mass.

The results shown in Fig. 18 demonstrate that the miscibility gap of cellulose and
water, predicted from the vapor pressures measured above the homogeneous mixture

Fig. 18 Composition of the
phases coexisting for the
system water/cellulose at
80°C as a function of the
number of segments N of the
polymer determined in
swelling experiments [57].
Symbols indicate experimental
data; the solid line was
calculated by means of (26) as
described in the text; the two
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(liquid/gas equilibrium), matches the observed swelling behavior (liquid/liquid
equilibrium) reasonably well. Above all, it correctly models the observed diminution
of the two-phase region with rising molar mass of the cellulose. The lack of
quantitative agreement should not be overestimated because of the sensitivity of
the calculated swelling with respect to the exact value of the central parameter o; a
reduction of « by less than 3% would suffice for quantitative matching.

In an attempt to rationalize this unique behavior, we recall that the y, values of
the present system are about ten times larger than normal, which means that the
tendency to form dilute solutions is practically nil. When adding increasing
amounts of water to pure cellulose, the extent of chain overlap (stabilizing the
homogenous state) will surpass a critical value below which a cellulose molecule
can no longer evade the formation of extremely adverse contacts between its
segments and water. At this point, the segregation of a second phase consisting of
practically pure water sets in. From simple considerations concerning the chain-
length dependence of the size of polymer coils, one can conclude that this critical
overlap will be reached at higher dilution by larger molecular weight samples than
by smaller molecular weight samples, thus explaining the anomalous swelling
behavior of cellulose in water.

The last two examples have dealt with systems for which the first step is
uncommonly unfavorable and goes along with a favorable second step. For the
mixtures described in the next section, the opposite is the case: here a very
favorable first step is followed by a correspondingly adverse second step.

Aqueous Solutions of Pullulan and Dextran

These systems exhibit a common feature, which becomes noticeable in the primary
data, i.e., in the composition dependence of the vapor pressures. Unlike normal
polymer solutions, p(¢) shows a point of inflection in the region of high polymer
contents, as demonstrated in Fig. 19. This peculiarity and the necessity to introduce
an additional term in the expression for the integral interaction parameter g [cf.
(42)] is interpreted in terms of hydrogen bonds between the monomer units of the
polymer, on one hand, and between water and the monomers, on the other hand.

The opening of intersegmental contacts — a prerequisite for the dilution of the
mixture — is Gibbs energetically adverse and modeled in terms of positive @
parameters. The subsequent insertion of solvent molecules between these polymer
segments is, in contrast, very favorable and quantified by negative « values. The
reason why the total contribution of the first step of dilution cannot be modeled by a
single common parameter lies in the different composition dependencies of the
effects of opening and of insertion.

According to the details of the dilution process discussed above, the point of
inflection in the vapor pressure curve shown in Fig. 19 can be given an illustrative
meaning: In the region of low polymer concentration it is practically only “bulk”
water that it transferred into the vapor phase. This situation changes, however, as ¢
approaches unity; under these conditions the vapor is increasingly made up of
solvent molecules taken from the “bound” water (located between two polymer
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segments). The intersection of the tangent at the point of inflection with the abscissa
can be taken as an estimate of the amount of “bound” water.

Another feature that is immediately visible from Fig. 19 is the higher solvent
quality of water for pullulan as compared with dextran. Within the composition
range 0.25 > ¢ > 0.75, the reduced vapor pressure is considerable lower in the
former than in the latter case. This situation leads to rather complicated composition
dependencies of the Flory—Huggins interaction parameter for the solutions of pull-
ulan, as shown in Fig. 20. From the dotted line of this graph it becomes obvious that
a modeling is impossible without an additional term in the relation for the integral
interaction parameter (42). The uncommonly low y values of the system for large
volume fraction of the polymer are another outcome of a very stable “intercalation”
of a solvent molecule between two segments of the polysaccharide.

Nonselective Solvent/Block Copolymers

The modeling of block copolymers solutions is necessarily much more difficult
than the modeling of solutions of random copolymers. Again, the binary system



Thermodynamics of Polymer-Containing Mixtures 47

s
0.4 e NGO L iprB
02] . TUEEEL
= 00;
L02] C e ]
—0.4] 1Ps60°C

00 02 04 06 08 10
THF ) P

Fig. 21 Composition dependence of the Flory—Huggins interaction parameter for the solutions
of a diblock copolymer of styrene and butadiene (solid line) in THF at 55°C. The information
for the corresponding homopolymer solutions (dotted lines) refers to 55°C for PB, and to 60°C
for PS [58]

requires three different interaction parameters for its adequate description, but this
time a possible incompatibility of the homopolymer blocks is much more conse-
quential. The examples discussed for block copolymers are a diblock copolymer of
styrene and butadiene (SB), the corresponding triblock copolymer formed by
joining two SB blocks at their butadiene ends (SB)2, and a four-arm block copoly-
mer (SB)4 in which the inner blocks consist of polybutadiene. The investigations
reported in [58] use the nonselective tetrahydrofuran (THF) as solvent in all cases.
Figure 21 presents — as an example — the composition dependence of the Flory—
Huggins interaction parameter measured for the diblock copolymer at 55°C. The
results for the other two types of block copolymers and different temperatures look
qualitatively very similar.

Like with the aqueous solutions of the polysaccharides discussed in Sect. 4.1.1.6,
the present systems require an extra term in the integral interaction parameter g to
account for the effect of the first step of dilution, where a solvent molecule is
inserted between two polymer segments. With the block copolymers of present
interest, the situation is different from that encountered with the polysaccharide
solutions because of the microphase separation induced by the incompatibility of
the blocks. In this case, the number of segments required for special interactions is
larger than two. Geometrical considerations suggest that contacts between more
than three segments belonging to different polymer chains are very unlikely, even
in the pure melt. This means that the insertion of a solvent molecule will typically
destroy advantageous ternary contacts between segments. By analogy to the
reasoning in the context of the aqueous solutions of pullulan or dextran, this implies
that the extra contribution to g should depend on the third power of ¢ in the case of
block copolymers, as formulated in (44).

Despite these dissimilarities in the molecular details, the o parameters required
for the modeling of the experimental findings are in both cases negative. In the case
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of the block copolymer solutions, it is not the formation of favorable contacts
resulting from the addition of solvent that makes o« < 0, but the destruction of
very unfavorable contacts between the two types of monomeric units. Figure 21
shows that the Flory—Huggins interaction parameter is smallest in the limit of ¢ — 1,
where the solvent is practically exclusively incorporated into the interphase separ-
ating the coexisting microphases. In this concentration range y can in some cases
even fall below the y value of the THF/PS system. With progressive dilution, the
interaction parameters for the block copolymer increase because the solvent is
now more and more incorporated into the microphases until they pass a maximum
in the range of semidilute solutions. The reason for this thermodynamically worst
situation can be rationalized by the fact that the polymer concentration is no longer
high enough to enable microphase separation and not yet low enough for intramo-
lecular clustering of the segments of the different blocks. Maxima in y(y) of the
type shown in Fig. 21 might cause (macro)phase separation. Calculation for the
present copolymer solutions and temperatures under investigation with respect to
liquid/liquid demixing by means of (36) and (37) and the interaction parameters
obtained from liquid/gas equilibria did not, however, result in miscibility gaps, in
agreement with the direct experimental observation of the mixtures. According to
these calculations, the thermodynamic quality of THF for the block copolymers is
already marginal so that one can expect the occurrence of macrophase separation in
addition to microphase separation at low enough temperatures.

Before leaving the area of polymer solutions to deal with polymer blends and
mixtures of low molecular weight compounds, it appears worthwhile to document
once more an experimental finding that is very helpful for the modeling of new
systems. This is the existence of a very general interrelation between the leading
parameters o and (/1 of the present approach. Even for systems that behave in a very
anomalous manner at higher polymer concentrations, the parameters o and {4
suffice for the description of the dilute state of pair interaction between the solutes
and interrelate in the usual way [cf. (34)]. Figure 22 shows the data for the studied
polymer solutions with specific interactions, together with some typical data for
ordinary polymer solutions that do not need an extension of (32) for the integral
interaction parameter. The general validity of the function {4 (o) reduces the
number of adjustable parameters by one and eases the modeling and qualitative
predictions considerably.

4.1.2 Polymer Blends
Poly(vinyl methyl ether)/Polystyrene

Out of the many polymer blends investigated so far, PVME/PS is probably the one
for which the molecular weight dependence of the critical conditions has been
studied in most detail (cf. citations in [59]). The critical temperatures span more
than 60°C, and the critical volume fractions of PS lie between 0.13 and 0.68. The
comprehensive experimental information that is available makes this system
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Fig. 22 Interrelation between the parameters {/ and o [the vertical line at oo = 0.5 is drawn
according to (34)]. The data for solutions of several typical polymers in organic solvents are almost
exclusively located in the first quadrant (open symbols); they only extend into the third quadrant
for systems close to their demixing. Data for anomalous systems (half-closed symbols), where the
first step of dilution represents the main driving force to homogeneity, are entirely located in the
third quadrant

particularly suited for modeling of interaction parameters on the basis of critical
conditions.

The modeling presented here still uses the expression for the integral interaction
parameter as formulated for polymer solutions (26), which leads to the critical
conditions specified in (36) and (37). According to the extension of the approach to
polymer blends (which had not yet been carried out when this study was per-
formed), (49) should have been used for that purpose because it accounts for the
fact that the polymer coils A are accessible to the segments of polymer B and vice
versa. Both expressions employ a linear dependence of the parameter { on the
composition of the mixture; the differences between polymer solution and polymer
blends only lie in the numerical values of the constants.

Figure 23 shows how the molar masses of the blend components influence the
experimentally obtained critical compositions of the mixture. The two curves
shown in this graph were obtained by adjusting five parameters, namely v and 1
(which were considered to be temperature independent), plus two parameters for
the temperature dependence of «. The fifth parameter concerns {, which was either
kept constant (variant 1) or set proportional to o (variant 2). Both assumptions
model the experimental data with comparable accuracy. In view of the expectation
that all system-specific parameters should depend on temperature, the quality of the
description with only five parameter is surprising. It must, however, be kept in mind
that a naive molecular interpretation of the system-specific parameters is not
permissible in the present case.

Despite the similarity of the two variants of modeling presented in Fig. 23,
the detailed phase diagrams calculated from the two sets of parameters differ
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Fig. 23 Combination of numbers m of PVME segments with numbers n of PS segments leading to
the critical compositions .. The experimental data, taken from the literature [60-62], were
obtained by mixing one PS sample (n = 1060, open circles) with PVME of different molar
mass or, vice versa, one PVME sample (m = 986, closed circles) with different samples of PS.
The curves are calculated using two modeling variants as described in the text [59]. Solid lines:
the conformational relaxation does not depend on temperature; dashed lines: it varies linearly
with T

fundamentally if both components become high in molar mass. In both variants, «
was considered to depend on temperature but variant 1 keeps { independent of T,
whereas variant 2 applies the proportionality between o and (, i.e., treats { as a
function of 7. Variant 1 yields two stable and one unstable critical points [59] (as for
the system water/PVME), whereas the demixing behavior remains normal for
variant 2. Defining theta conditions for polymer blends by analogy to the usual
definition for polymer solutions in terms of critical temperature for infinite molar
mass of the polymer according to:

lim7, =0 (66)

m, n— oo

one obtains two different theta temperatures, where the corresponding critical
concentration is either zero or unity. Conversely, { proportional to o yields only
one theta temperature, and the corresponding critical composition remains indefi-
nite, like in the original Flory—Huggins theory. The question of which of the
predictions comes closer to reality can only be answered by directed experiments.

Shape-Induced Polymer Incompatibility

Demixing of polymer blends consisting of macromolecules synthesized from the
same monomers and differing practically only in their molecular architecture plays
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an important role in the polyolefin industry [63—65]. Numerous experimental and
theoretical studies have therefore been performed to investigate this phenomenon;
for pertinent literature see [66]and [67]. The present approach offers a particularly
simple theoretical access because the first term of the expression for the integral
interaction parameters [(49), corresponding to the first step of mixing] can be set
to zero.

For the special case of linear and branched polymers of the same chemistry, one
obtains a very simple relation if the degree of branching f is introduced in terms of
the intrinsic viscosity of the branched polymer as compared with that of the linear
analog [(27) and (52)] and the conformational relaxation is set proportional to
f (53), which means that it approaches zero as the degree of branching becomes
vanishingly small. Under these conditions, one single parameter suffices to model
the phase behavior (54); the parameter x of (54) can either be estimated from the
Kuhn—Mark—Houwink relation for the linear polymer and theta conditions [(29)
and (55)] or it can be merged with the parameter Z (54). Figure 24 shows an
example of the critical conditions calculated for blends of chemically identical
linear and branched polymers with k¥ = 0.27, which is the typical value for vinyl
polymers.

Model calculations [28] along the described lines indicate that the sensitivity to
phase separation is particularly pronounced for blend partners of comparable
numbers of segments. In Fig. 24 this can, for instance, be seen from the frontmost
curve (ff = 0.1) passing a maximum in this range of Ny. Each of the data points on
the critical surface of this graph corresponds to a different phase diagram, which
can be represented in terms of Z(y), by analogy to the more customary theoretical
diagrams y(¢) or g(¢). In order to transform such general phase diagrams into the
directly measurable phase diagrams T(y) (phase separation temperatures as func-
tion of composition), it is necessary to know how the parameters Z, y, or g depend
on T. There are literature reports [65] on phase separation upon heating as well as

Fig. 24 Three-dimensional
representation of the critical
surface calculated for blends
of a branched polymer
consisting of 1000 segments
but differing in its degrees of
branching f, with its linear
analogs varying in the number
Ny of their segments. Phase
separation may set in
(depending on the
composition of the blend) if Z
falls below its critical value
Ziiv The area of possible
demixing is located below the
critical surface [28]
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upon cooling. In view of the fact that the first term of (49) is for the present
calculations set at zero (¢ = 0), one might think that shape-induced demixing
should be entirely due to unfavorable entropies of mixing and should always be
of the LCST type. This interpretation is, however, not permissible because both
steps of dilution contribute to the residual Gibbs energy via enthalpy and entropy, as
discussed earlier.

4.1.3 Mixtures of Low Molecular Weight Liquids

For the modeling of systems containing more than one low molecular weight
component, like polymer solutions in mixed solvents, it would be very advanta-
geous to be able to use the same mathematical expressions for the mixtures of the
low molecular weight liquids. Experiments performed to investigate these possibi-
lities have demonstrated that (32) can indeed describe the thermodynamic behavior
quantitatively [29], as demonstrated in Fig. 25 for the system water/N-methyl
morpholin N-oxide monohydrate [NNMO*H,O]. This graph shows the measured
reduced vapor pressures of water as a function of composition, and the curves
calculated by means of (32) and the adjusted parameters o, v, and {A-

It is obvious that the parameter A of (32) (introduced via considerations
concerning the establishment of microphase equilibria with polymer-containing
systems) loses its physical meaning for the low molecular weight mixtures because
the segments of the components are geometrically strictly separated. This is unlike
the situation with polymer solutions, where the solvent enters the polymer coil, or

1.0

0.8 1 80°C
1

0.6
<£
Q n

0.4 90°Ci

0.2 1 A

100°C
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H,O ¢ NMMO*H,0

Fig. 25 Equilibrium vapor pressures, p, of water above mixtures of NMMO*H,0 normalized to
Do, the equilibrium vapor pressure of pure water, as a function of the volume fraction of NMMO
hydrate for the indicated temperatures [29]. The curves are calculated according to (32), where
Nnmmosn,o = 6.35
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with polymer blends, where both components are accessible for segments of the
other polymer. The meaning of the parameter {, on the other hand, remains
unchanged because molecular rearrangements, similar to those occurring with
polymer solutions and polymer blends, will also take place in low molecular weight
mixtures, due to preferentially interacting sites of the components. According to the
present results, a linear composition dependence of the conformational part of the
interaction parameter should suffice to describe reality.

4.2 Ternary Systems

The material presented so far has demonstrated the ability to model the thermody-
namic behavior of binary systems accurately by means of the present approach. For
the description of polymer solutions, it is normally possible to eliminate one of the
three parameters of (32) thanks to a general interrelation between o and {4 (34). For
polymer blends and mixtures of low molecular weight components, a similar
general simplification is presently not known. Notwithstanding this situation, it is
possible to model the principle features [27] of all types of phase diagrams observed
for ternary systems using only two parameters for each binary subsystem.

This section deals with the phase-separation behavior of ternary systems, where
a distinction is made between polymer solutions in mixed solvents (Sect. 4.2.1) and
solutions of two polymers in a single solvent (Sect. 4.2.2). Furthermore, the systems
are classified according to the way the thermodynamic properties of the ternary
systems are made up from the properties of the corresponding binary subsystems:
Simplicity denotes “smooth” changes in the phase behavior of the binary subsys-
tems upon the addition of the third component in its pure form or in mixtures (see
later). Cosolvency means that the thermodynamic quality of mixture of two com-
ponents is higher with respect to the third component than expected by simple
additivity, i.e., cosolvency reduces the extension of the two-phase region with
respect to that expected from additivity. Cononsolvency, finally, denotes the oppo-
site behavior, i.e., an extension of the two-phase region beyond expectation.

4.2.1 Mixed Solvents

The use of mixed solvents is widespread, because it offers the possibility to tailor
desirable thermodynamic conditions by mixing two liquids with sufficiently differ-
ent qualities in adequate ratios, instead of the often inconvenient or even impossible
variation of temperature. The combination of good solvents with precipitants is the
basis of many industrial processes, like membrane production or fiber spinning. In
order not to go beyond the scope of the present contribution, the following con-
siderations are limited to complete miscibility of the components of the mixed
solvent. There is, however, no particular difficulty to extend the treatment to
incompletely miscible components of mixed solvents.
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Fig. 26 Phase diagram of the
NMMO/H,O/Solucell 400

system at 80°C [68]. Shaded o
area shows the calculated §

unstable composition range; 3

open squares calculated tie

lines, open stars experimental

tie lines, closed square 1.00 .
calculated critical point, 0.00 025 0.50 , 0.75 1.00
closed star experimental NMMO WH,0 H>O

critical point

Simplicity

The following example for simplicity refers to a technically important ternary
system, namely cellulose solutions in mixtures of the favorable solvent NMMO
with the precipitant water. Fibers are formed as thin threads as homogeneous
cellulose solutions are spun into water. Figure 26 shows how experimental data
for this ternary mixture compares with the modeling [68] on the basis of (60). On
the theoretical side, it is important to take care of the fact that the information
concerning the binary subsystems usually differs by a diverging definition of the
size of a segment.

The unstable area, the critical point, and the tie lines shown in Fig. 26 were
calculated by means of the independently determined parameters for the binary
subsystems NMMO/water [29] and cellulose/water [57]. The corresponding infor-
mation for NMMOY/cellulose is inaccessible along the present routes, because the
vapor pressure of both components is negligibly small. For that reason, it was
necessary to adjust the parameters o and { for this binary subsystem to the
experimentally observed ternary phase diagram; v was equated to y (obtained
from group contributions) and /. was set at 0.5, the typical value for polymer
solutions. This procedure enables the modeling of the phase diagram for the ternary
system, which matches the measurements within experimental error. Even if this
procedure is not predictive, it helps the discrimination of metastable and unstable
compositions and enables assessment of the effects of different molar masses of
cellulose on demixing [68].

In another, very abundant form of simplicity the miscibility gaps existing for the
polymer solution in either of the two solvents transform smoothly into each other as
the composition of the mixed solvent changes.

Cosolvency

A much higher quality of mixed solvents as compared with either of its components
is not uncommon; since the first report [69] it has been described in the literature
many times. This phenomenon can be easily modeled [27] by means of (60) using
physically meaningful combinations of parameters. The example shown in Fig. 27



Thermodynamics of Polymer-Containing Mixtures 55

Fig. 27 Cosolvency as a Np=1000
result of unfavorable
interactions between
components 1 and 2. The
numbers of segments of the
different components are
given at the corners of the
phase diagram and the
characteristic parameters for
the binary subsystems are
indicated on its edges. Open
symbols composition of
coexisting phases, closed
symbols critical points,
shaded areas unstable
regions [27]
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applies to sufficiently unfavorable 1/2 interactions; in their absence the miscibility
gap would extend from one binary subsystem to the other throughout the ternary
system, i.e., this would be an example of simplicity.

The reason for the complete miscibility of the polymer with mixed solvents
containing comparable fractions of their components shown in Fig. 27 lies in the
adverse interactions between them. Within a certain range of compositions, the
ternary system can avoid these unfavorable contacts between components 1 and
2 by inserting a polymer segment between them and forming homogeneous
mixtures.

Cononsolvency

The creation of a miscibility gap by mixing two favorable solvents was reported a
long time ago [70] and many examples have been described since. Figure 28
shows a typical modeling of this behavior. For that purpose, we assume that
the components 1 and 2 are markedly better solvents for the polymer P than
in the case of cosolvency, and that they mix in a combinatorial manner (g, =
112 =; 0).

The reason why the present combination of parameters for the binaries leads to a
miscibility gap for the ternary system lies in the particularly favorable interactions
1/P and 2/P as compared with the more or less “neutral” interactions 1/2. Under
these conditions, the Gibbs energy of the total system can be lowered by phase
separation such that the polymer-lean phase contains practically low molecular
weight components only and that many favorable 1/P and 2/P contacts can be
formed in the polymer-rich phase.
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Fig. 28 Formation of an
island of immiscibility in the
ternary system, caused by
favorable 1/P and 2/P
interactions [27]. For details,
see legend to Fig. 27

Fig. 29 Phase diagram of the
CH/AC/PI* system at 25°C.
The polymer sample PI* (M,
= 5kg/mol, M,, = 12 kg/mol)
consists of a mixture of
branched and linear chains.
Crossed circles cloud points,
half-closed circles overall
composition of the
coexistence experiments,
open circles compositions of
the polymer-lean phases,
closed circles compositions
of the polymer-rich phases,
closed square swelling point
of PI* in AC. The
composition area of possible
demixing is hatched [71]
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Phase diagrams for polymer solutions in mixed solvents can look much more
complicated than shown so far. Figure 29 gives an example observed in the course
of a study concerning differences in the thermodynamic behavior of branched as

compared with linear polymers [71].

The reason for uncommon phase diagram often lies in the polydispersity of the
polymer sample, which means that we are strictly speaking no longer dealing with
ternary but with multinary systems, for which the representation of phase diagrams
requires a projection into a plane. In the present case, the polydispersity is due to the
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presence of linear and branched PI in addition to the usual nonuniformity of molar
masses. The consequences of broad molecular weight distributions of linear poly-
mers for the shape of phase diagrams are not negligible, but are usually consider-
ably less pronounced than nonuniformities with respect to the molecular
architecture of the macromolecules. The reason is that polymers of different
chain length are usually completely miscible, whereas this needs not be the case
for linear and branched macromolecules, as exemplified when dealing with their
solutions in a common solvent.

The strange peninsular of the miscibility gap shown in Fig. 29 is caused by the
fact that the PI sample contains both linear and branched material; neither the
solution of the linear product nor that of the branched polymer in the same mixed
solvent show this particularity [71]. It is, however, very probable that particular
interactions between the components of the mixed solvent also play a role in the
occurrence of the anomalous peninsula of the phase diagram. This consideration
rests on the fact that the CH/AC system exhibits an upper critical solution tempera-
ture [72] at —29°C. The low mixing tendency of these components might increase
the possibilities of the quaternary system to reduce its Gibbs energy via demixing.

4.2.2 Blend Solutions

Solutions of chemically dissimilar polymers in a common solvent play an important
role in the processing of polymer mixtures, where this is particularly true for
incompatible polymer pairs but also for the production of homogeneous films
consisting of two compatible polymers. Like with polymer solutions in mixed
solvents, one can observe all the deviations from additive behavior discussed
earlier.

Simplicity

The modeled example given in Fig. 30 for this behavior shows the gradual dis-
appearance of a miscibility gap existing between two moderately incompatible
polymers upon the addition of a solvent of comparatively low thermodynamic
quality.

The phase diagram of Fig. 30 looks very similar to the one measured for the
solutions of linear and branched PI in CH and shown in Fig. 31. For these experi-
ments, the originally synthesized branched material (PT* of Fig. 29) was to a large
extent freed from the linear components by means of the large-scale method of spin
fractionation [73]. Despite the fact that the boundary between the homogeneous and
the two-phase area was only mapped, instead of the usual cloud point measure-
ments, the results of Fig. 31 testify to the existence of shape-induced incompatibil-
ity of polymers. It is remarkable that this phenomenon can be observed for
comparatively low molar masses of the components.
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Fig. 30 Phase diagram for a
moderately incompatible
polymer pair and a solvent of
moderate quality that
dissolves polymer A and
polymer B equally well. Open
symbols composition of
coexisting phases, closed
symbol critical point, shaded
area unstable region [27]

Fig. 31 Phase diagram of the
CH/branched PI/linear PI
system at 25°C obtained by
mapping homogeneous (open
symbols) and inhomogeneous
(closed symbols) mixtures.
The M,, of the linear polymer
is 21.6 kg/mol and that of the
branched material is 18 kg/
mol. The two-phase region is
hatched [71]
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According to model calculations, the phenomenon of cosolvency should also occur
for solutions of polymer blends in a common solvent. For the example shown in
Fig. 32, the components of the blend were chosen to be highly incompatible, and the
solvent to be bad for polymer B but favorable for polymer A.
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Fig. 32 Phase diagram
calculated according to (60)
by means of the parameters
indicated on the edges of the
triangle for the ternary
mixture solvent 1/polymer
A/polymer B. Open symbols
composition of coexisting
phases, closed symbols
critical points, shaded areas
unstable regions [27]

As with the example presented for cosolvency in the case of polymer solutions in
mixed solvents (Fig. 27), the origin of cosolvency for polymer blends in a common
solvent can be interpreted as a dissection of a miscibility gap that would normally
bridge the Gibbs phase triangle from one binary subsystem to the other binary
system (here from 1/B to A/B) by special interactions between the completely
miscible components (here 1/A). With the example of Fig. 32, the thermodynamic
quality of the solvent for polymer A is almost marginal; in this manner polymer B
becomes completely miscible with certain solutions of polymer A in solvent 1.

Cononsolvency

This phenomenon is generally characterized by the existence of islands of immis-
cibility inside the Gibbs phase triangle, i.e., phase separation is absent for all binary
mixtures. According to model calculations along the present lines, closed misci-
bility gaps should be comparatively abundant for solutions of two favorably inter-
acting polymers in a common solvent that is sufficiently favorable for both
polymers; Fig. 33 shows an example of the outcome of such calculations. A slight
modification of the binary interaction parameters for the polymer solutions changes
the size of the miscibility gap and its location inside the Gibbs phase triangle
considerably. This is, for instance, made evident by the fact that the island dis-
appears by increasing both j, values from 0.482 to 0.483, i.e., a slight reduction in
the thermodynamic quality of the solvent brings the polymer solutions closer to
phase separation.

The explanation for the occurrence of islands of immiscibility under the
conditions specified in Fig. 33 lies in the high preference of 1/A and 1/B contacts
over A/B contacts (even if A and B interact favorably), as demonstrated by the
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Fig. 33 Phase diagram N4=
calculated under the 0.00
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position of the tie lines. Under these circumstances, the Gibbs energy of the ternary
system can be reduced as compared with the homogeneous mixture by forming two
liquid phases, one preferentially containing polymer A and the other polymer B.
This phase separation leads to a reduction in the number of A/B contacts (associated
with lower entropies of mixing than the corresponding 1/A and 1/B contacts) and in a
corresponding increase in number of the more favorable polymer/solvent contacts.

The predictions of model calculations of the type shown in Fig. 33 were checked
[74] by means of the systems THF/PS/PVME and CH/PS/PVME. This choice was
made because of the availability of the thermodynamic information for all binary
subsystems. One of the questions to be answered by this comparison between
theory and experiment concerns the extent to which the phase behavior of the
ternary system can be predicted if the corresponding information for the binary
subsystems is available.

Figure 34 shows how experiment and the prediction by means of (60) compare in
the case of THF; the data for THF/PS and THF/PVME were taken from [75] and
that for the polymer blend from [59].

It is obvious from Fig. 34 that the modeling predicts the phenomenon of
cononsolvency but fails to capture the details of demixing. The extension of the
calculated island is considerably larger than experimentally observed. If
the solvent THF is replaced by CH (which is less favorable for both polymers),
the extension of the measured island is considerably increased. Again, the model-
ing does predict an island, but its size and location in the phase triangle are at
variance with reality.

From these results, it must be concluded that the interaction between two
chemically different segments is influenced by the vicinity to a segment of the
third component. In other words, it is necessary to account for ternary interaction



Thermodynamics of Polymer-Containing Mixtures 61

Fig. 34 Measured and THF
calculated phase diagram for 0.00
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Fig. 35 Phase diagram of the
PS/PVME/THF system at
20°C. Circles measured cloud
points, closed stars calculated
critical points, open stars
calculated tie lines. The
values of the specific ternary
interaction parameters (61)
are indicated on the edges; the
binary interaction parameters
are the same as in Fig. 34 [74]
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parameters. Figure 35 shows the experimentally determined phase behavior of the
system THF/PS/PVME at 20°C, again along with the results of model calculations
on the basis of (61) and (60) by means of the ternary interaction parameters stated at
the edges of the triangle.

The agreement between the actually measured demixing behavior and that
modeled on the basis of binary interaction parameters plus composition-indepen-
dent ternary interaction parameters is surprisingly good. However, the results also
demonstrate how sensitive the calculated phase diagrams can be with respect to the
details of some interaction parameters. For instance, the analogous experiments
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performed with CH (less favorable solvent) instead of THF using a molecularly
disperse PS sample require at least one composition-dependent ternary interaction
parameter for their modeling. Indications exist that this complication is due to the
presence of PS molecules differing markedly in their molar mass.

One important consequence of the results presented for solutions of compatible
polymers in a common solvent is this: The suggested idea to prepare homogeneous
polymers films containing both types of macromolecules from joint solutions by
solvent evaporation will probably not work. The reason is that solutions containing
comparable amounts of polymers A and B need to pass the unstable area of the
phase diagram upon the removal of solvent, which means that they inevitably
demix into two phases: one rich in polymer A and the other in polymer B. Despite
the fact that the system enters the one-phase region again as the solvent content falls
below a certain value, the high viscosity of the coexisting liquids will normally
prevent homogenization.

5 Conclusions

The theoretical concepts presented in this chapter and the experimental examples
given for their validity demonstrate how the Flory—Huggins theory can be made
practical with reasonable effort. The central features of the approach are the
provision for chain connectivity in dilute polymer-containing systems (by means
of microphase equilibria) and the variability of macromolecules with respect to
their spatial extension (expressed in terms of conformational relaxation after mix-
ing). Both particularities contribute to the Flory—Huggins interaction parameters
and are quantified in a second, additive term, which becomes zero for most of the
theta systems. In contrast to the original Flory—Huggins theory, the interaction
parameters are no longer independent of concentration; complicated functions
1(p) are sometimes necessary to model experimental data, including minima and
maxima in this dependence. It is therefore no wonder that several parameters are
needed to gather the particularities of a certain system. In many cases, two para-
meters suffice for the quantitative description because of some possible simplifica-
tions and interrelations, as described in Sect. 2. With complex systems (like water/
cellulose) up to four parameters might, however, be required.

There is one finding that speaks strongly for the validity of the present approach,
namely the fact that several types of phase equilibria can be described quantita-
tively by means of the same set of parameters (cf. the systems n- C,/1,4-PB and
CHCI3/PEO). Another eminent advantage of the present approach is its general
applicability to very different classes of polymers (including branched macromo-
lecules and copolymers of different architecture); furthermore, there is no obvious
reason why it should fail for multicomponent systems.

So far, the extension of the Flory—Huggins theory has enabled the modeling of
several hitherto unexplainable anomalous phenomena, like uncommon molecular
weight dependencies of second osmotic virial coefficients, the existence of multiple
critical points for binary systems, or the odd swelling behavior of cellulose in water.
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Furthermore, it has helped a better understanding of ternary mixtures with respect
to the conditions that the subsystems must fulfill for the occurrence of cosolvency
or cononsolvency, as well as concerning the necessity for the use of ternary
interaction parameters. Suggested further investigations concern mixtures contain-
ing charged macromolecules and a more detailed analysis of the predictive power
of the present approach.
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Abstract This chapter reviews the thermodynamic properties of aqueous solutions
of polyelectrolytes, concentrating on properties that are related to phase equilibrium
phenomena. The most essential phenomena as well as methods to describe such
phenomena are discussed from an applied thermodynamics point of view. There-
fore, the experimental findings concentrate on the vapor-liquid phase equilibrium
phenomena, and the thermodynamic models are restricted to expressions for the
Gibbs energy of aqueous solutions of polyelectrolytes.
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Abbreviations
A Inverse length (in model of Lifson and Katchalsky)
A Repeating unit (in model of Lammertz et al.)
Ay Debye-Hiickel Parameter
Agy Second osmotic virial coefficient for interactions between solutes
S in water
Asss Third osmotic virial coefficient for interactions between solutes S in
water
a Anion
a Radius
al@ Activity of species i normalized according to composition scale k
a,, Activity of water
al(f)L) Binary interaction parameter between species (groups) i and L
aE.IL) Binary interaction parameter between species (groups) { and L
(11(3;)( Binary interaction parameter between cations M and anions X
a}(é)){ Binary interaction parameter between cations M and anions X
app Binary interaction parameter between repeating units
ap cl Binary interaction parameter between repeating units and the
chloride ion
b Distance between two electrolyte groups in a polyelectrolyte
backbone
b Numerical value in Pitzer’s model (b = 1.2)
b* Configurational parameter
bk Ternary interaction parameter between groups i, L and k
BaPSS Poly(barium styrene sulfonate)
C Repeating unit that will never dissociate (in model of Lammertz
et al.)
c Cation
Ci Concentration of species i
Ci Molarity of species i
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CI

Counterion

Molarity of monomeric groups saturated with counterion k
Molarity of repeating units

Concentration of polyelectrolyte P

Molarity of salt S

Mass density of solute i

Calcium salt of copolymer of acrylic acid and acrylamide
Repeating unit undergoing a chemical reaction (in model of
Lammertz et al.)

Differential membrane osmometry

Degree of substitution

Proton charge

Electromotive force measurement

Equilibrium dialysis

Dissociated repeating unit (in model of Lammertz et al.)
Free energy

Short-range parameter

Function in the theory of Lifson and Katchalsky
Functions (in model of Lammertz et al.); i = 1, 2
Freezing point depression

Molecular mass distribution function

Gibbs energy

Binary interaction parameter (in model of Nagvekar and Danner)
Interaction parameter (in model of Nagvekar and Danner)
Energy parameter (in model of Nagvekar and Danner)
Gel deswelling method

Length of a polyion

Poly(acrylic acid)

Poly(2-acrylamido-2-methyl-1-propane sulfonic acid)
Poly(anethole sulfonic acid)

Poly(ethylene sulfonic acid)

Poly(methacrylic acid)

Poly(methyl styrene sulfonic acid)

Poly(phosphoric acid)

Poly(vinyl benzoic acid)

Poly(vinyl sulfuric acid)

Poly(vinyl sulfonic acid)

Poly(styrene sulfonic acid)

Ionic strength

Tonic strength (on molality scale)

Tonic strength (on molality scale) of an aqueous solution of MX
Ionic strength (on molarity scale)

Isopiestic experiments

Abbreviation

Component

Chemical reaction constant (in model of Lammertz et al.)
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NaCMC
NaDS
NaPA
NaPAM
NaPAMA

NaPAMS
NaPES
NaPMAA
NaPP
NaPSS
NaPVAS
NH4PA
NMR

P

P
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Boltzmann’s constant

Component

Concentration scale

Degree of counterion condensation at infinite dilution (in model of
Lammertz et al.)

Poly(potassium acrylate)

Potassium salt of copolymer of acrylic acid and acrylamide
Bjerrum length

Lithium carboxymethylcellulose

Cation

Molecular mass

rth moment of distribution function for molecular mass
Number-averaged molecular mass

Mass-averaged molecular mass

Relative molecular mass of water divided by 1,000

Molality of species i

Unit of molality m° = 1 mol/(kg water)

Modified molality of species j (in model of Pessoa and Maurer)

Magnesium salt of copolymer of acrylic acid and acrylamide
Membrane osmometry

Salt (cations M and anions X)

Mole number

Avogadro’s number

Number of moles of dissociated repeating units

Number of moles of counterions originating from P (in Manning’s
theory)

Number of moles of counterions originating from § (in Manning’s
theory)

Total mole number

Sodium carboxymethylcellulose

Sodium dextran sulfate

Poly(sodium acrylate)

Sodium salt of copolymer of acrylic acid and acrylamide
poly(sodium acrylamido-co-trimethyl ammonium methyl methacry-
late)

Sodium salt of HPAMS

Poly(sodium ethylene sulfate)

Poly(sodium methacrylate)

Poly(sodium phosphate)

Poly(sodium styrene sulfonate)

Poly(sodium vinyl sulfate)

Poly(ammonium acrylate)

Nuclear magnetic resonance

Polyelectrolyte

Polydispersity (M/M.,,)
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p

Pw

PAAm
PDADMAC
PEI
PMETAC
PTMAC
PVA
PVAm
PVBTMAC
q

qgl

qi

Qmax

qst

= =

NS oY

UV/VIS

Pressure

Vapor pressure of water

Poly(allylamino hydrochloride)

Poly(diallyldimethyl ammonium chloride)
Poly(ethyleneimine)

Poly(2-(methacryloyloxy) ethyl trimethyl ammonium chloride)
Poly(trimethyl ammonium methyl methacrylate)

Poly(vinyl alcohol)

Poly(vinyl amine)

Poly(vinyl benzene trimethyl ammonium chloride)

Number of charges

Surface parameter of the globular form of the polyelectrolyte
Surface parameter of species 7 (in model of Lammertz et al.)
Maximum number of charges

Surface parameter of the stretched polyelectrolyte

Universal gas constant

Radius of a cylindrical cell around a polyion

Exponent

Distance

Volume parameter of species i (in model of Lammertz et al.)
Temperature

Ultraviolet/visible light

Volume

Volume in Manning’s theory

Vapor pressure osmometry

Mole fraction of species i

Anion or counterion

Modified mole fraction of component j

Salt (with counterion X) of dextran phosphate

Salt (with counterion X) of dextran sulfate

Absolute valency of counterion

Absolute valency of ion j

Modified absolute valency of ions j (in model of Pessoa and Maurer)

Absolute valency of cation M
Absolute valency of anion X
Absolute valency of a repeating unit of polyelectrolyte P

Greek Symbols

o Constant (o« = 2) in Pitzer’s model
o Total degree of dissociation of the repeating units (in model of
Lammertz et al.)
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oji Nonrandomness parameter (in model of Nagvekar and Danner)

i ki Nonrandomness parameter (in model of Nagvekar and Danner)

p Dimensionless parameter

r Salt-exclusion parameter

I; Activity coefficient (on molality scale) of species i (in model of Lammertz
et al.)

Iz Activity coefficient (on molality scale) of species / in state Z (in model of
Lammertz et al.)

Y Activity coefficient

YLK Dimensionless parameter in the theory of Lifson and Katchalsky

A Difference

ATgp  Freezing point depression

€ Relative permittivity of pure water

£ Permittivity of vacuum

d Osmotic coefficient

D, Osmotic coefficient (for pressure)

CI)S Osmotic coefficient (for pressure) at infinite dilution

Or Osmotic coefficient (for temperature)

® Osmotic coefficient (for pressure) on molarity scale due to salt S
@ Osmotic coefficient (for pressure) on molarity scale due to salt S and

polyion P
©p Volume fraction of the polyelectrolyte
¢(r)  Electrostatic potential that depends on radius r
O Degree of condensation of a counterion k
0, Ratio in Manning’s theory
0\ Limit for 6, in Manning’s theory
K Inverse radius of the ionic cloud (Debye—Hiickel theory)
A Charge density parameter
Aij Binary interaction parameter (in model of Pessoa and Maurer)
il(/@ Binary interaction parameter (in model of Pessoa and Maurer)
)“/(i1> Binary interaction parameter (in model of Pessoa and Maurer)
Wi Chemical potential of component i
=) Volume fraction of polyelectrolyte (in model of Lammertz et al.)
v Number of repeating units of a polyelectrolyte molecule
v* Number of dissociated repeating units of a polyelectrolyte molecule
iy Stoichiometric coefficient for cation M in salt MX
Vx Stoichiometric coefficient for anion X in salt MX
v Osmotic pressure
(O Surface fraction of the polyelectrolyte in its globular shape
(O)3 Surface fraction of group L
O Surface fraction of the polyelectrolyte in its stretched shape
pi Specific density of pure solvent i

Molar density of pure solvent i
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o Parameter of species i (in model of Pessoa and Maurer)

Tjj Binary interaction parameter (in model of Nagvekar and Danner)
Tji ki Interaction parameter (in model of Nagvekar and Danner)

l); Molar volume in Manning’s theory

Uspure  Molar volume of pure solvent s

w©®  Configurational parameter

@) Configurational parameter

Subscripts

A Repeating unit (in model of Lammertz et al.)

a Anionic component

c Cationic component

C Repeating unit that will never dissociate (in model of
Lammertz et al.)

CI Counterion

Cl Chloride ion

COI Coion

cond. CI contribution due to condensed counterions

D Repeating unit undergoing a chemical reaction (in model of
Lammertz et al.)

F Dissociated repeating unit (in model of Lammertz et al.)

Free CI Free counterions

Free COI Free coions

id.lig.mix.  Ideal liquid mixture

id.mix. Ideal mixture

H Hydrogenium ions

K Potassium ion

k Contribution

local Local

LK Lifson and Katchalsky

M Cations

m Solvent component

Ma Manning’s theory

Mg Magnesium ion

MX Salt (cations M and anions X)

Na Sodium ions

p Polyelectrolyte

Pb Lead ions

pure liquid  Pure liquid component
pure water  Pure water
p Repeating unit of polyelectrolyte
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sym Symmetrical convention
w Water
W+ ) In an aqueous solution of the salt

(w+ s+ p) Inan aqueous solution of (salt + polyelectrolyte)
X Ton X

Superscripts

(c) On molarity scale

Comb. Combinatorial

E Excess

el Contribution from electrostatics
fv Free volume

id.mix. Ideal mixture

(k) Characterizes the concentration scale
LR Long-range

(m) On molality scale

ref Reference state

SLE Solid-liquid equilibrium

SR Short-range

vdW Van der Waals

x) On mole fraction scale

00 Infinite dilution

Aconf  Caused by a difference in the configuration (in model of Lammertz et al.)

1 Introduction

Polyelectrolytes are polymers of a single repeating unit (monomer) that is an
electrolyte or of several repeating units (monomers), where at least one of the
repeating units is an electrolyte. That electrolyte can dissociate in water and in
aqueous solutions resulting in negative or positive charges on the polymer back-
bone. Polyelectrolytes are very soluble in water, particularly when, in addition to
the ionic monomers, the other monomers are also hydrophilic. The large variety of
monomers means that there is a huge variety of polyelectrolytes. The number of
different repeating units and the number of each of those repeating units deter-
mines the primary structure of a polyelectrolyte, i.e., the chemical nature and the
molecular mass. However, that information is not sufficient to characterize a
polyelectrolyte. As typical of polymers, polyelectrolyte samples reveal a molecu-
lar mass distribution (polydispersity). Furthermore, when a polymer consists of
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more than a single repeating unit, the secondary structure is important for its
properties: the different repeating units might be statistically distributed or
arranged in, more or less uniform, blocks. The polymer can be a linear structure
or a branching one. It might have a certain shape in space (tertiary structure) that
can depend on the surrounding solution. All these parameters influence the proper-
ties of an aqueous solution of polymer, but there are more parameters when the
polymer has electrolyte groups. These electrolytes can be weak or strong electro-
lytes, resulting in different degrees of dissociation/protonation. The electrolyte
groups of the backbone might be all cationic or all anionic, but they might also be
partially cationic and partially anionic. Such polyelectrolytes are called polyam-
pholytes. There is another parameter that has an important influence on the proper-
ties of polyelectrolytes in aqueous solutions: the distance between the electrolyte
groups in the polymer backbone. When that distance is small, the attractive electro-
static forces between the ionic groups in the backbone and their counterions in the
aqueous solutions become so strong that, even if the repeating unit is a strong
electrolyte, one observes an ion pairing, i.e., some of the counterions condensate
(at least partially) with the ions of the backbone. Therefore, even at high dilution in
water such polyelectrolytes are not completely dissociated and the degree of disso-
ciation might depend on the composition of the surrounding aqueous phase. The
large number of parameters that influence the properties of aqueous solutions of
polyelectrolytes is reflected in the variety of areas where such solutions are found
and applied. Table 1 gives some typical examples of applications. These applica-
tions take advantage of the particular thermodynamic properties of aqueous solu-
tions of polyelectrolytes. Therefore, there is a need for methods to describe such
properties. In applied thermodynamics, the properties of solutions are described by
expressions for the Gibbs energy as a function of temperature, pressure, and
composition. From such equations all other thermodynamic state functions can
be derived.

There are many well-established models for the Gibbs energy of nonelectrolyte
solutions and also several methods to describe conventional polymer solutions.
However, the state of the art for modeling thermodynamic properties of aqueous
solutions of polyelectrolytes is far less elaborated. This is partly due to the particu-
lar features of such solutions but is also caused by insufficiencies in the knowledge
of the parameters that characterize a polyelectrolyte, for example, the polydisper-
sity and the different structures (primary, secondary etc.) of the polyelectrolytes.
The development and testing of thermodynamic models has always been based on
reliable experimental data for solutions for which all components are well char-
acterized. Such characterization is particularly scarce for biopolymers and biopo-
lyelectrolytes. Furthermore, such polymers are generally more complex than
synthetic polymers. Therefore, the present contribution is restricted to a discussion
of the thermodynamic properties of aqueous solutions of synthetic polyelectrolytes
that consist of only two different repeating units that are statistically distributed.
Furthermore, it is restricted to systems where sufficient information on the poly-
electrolyte’s polydispersity is available.
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Table 1 Applications of polyelectrolytes

Application Product References

Stabilization of colloid Poly(acrylic acid), gelatin, sodium [1-6]
systems as dispersing carboxymethylcellulose
agents

Sludge dewatering, Acrylamidecopolymers, Poly(diallyldimethyl [7, 8]
flocculating agents ammonium chloride)

Retentions aids in paper Poly(ethyleneimine), cationic starches, poly [9, 10]
industry (diallyldimethyl ammonium chloride)

Thickeners Gelatin, Sodium carboxymethylcellulose, pectin, [11]

arab gum, carrageenan
Gelling agents Gelatin, pectin, carrageenan [12]

Temporary surface coatings for:

Textile industry Poly(acrylic acid) sodium salt, Sodium [12]
carboxymethylcellulose, poly(acrylic acid)
ammonium salt

Capsules in pharmaceutical Gelatin, Sodium carboxymethylcellulose, cellulose  [12]

applications acetate phthalate, copolymers of methacrylic acid
Corrosion-protecting coatings Poly(styrene sulfonic acid), poly(acrylic acid) [12]
Cosmetic industry Copolymers of acrylic acid
Antistatic coatings Copolymers with styrene sulfonate units, cationic

polyelectrolytes

Adhesives for:

Food industry Gelatin [13]
Paper industry Sodium carboxymethylcellulose [14]
Dental material/dental Zinc polycarboxylate, polyacrylic acid-glass [15, 16]
composites cements, poly(methyl methacrylate)
Controlled release of drugs Cellulose acetate phthalate, poly(dimethylamino [15, 16]
and responsive delivery ethyl methacrylate-co-tetracthyleneglycol
systems dimethacrylate) gels
Polymeric drugs Poly(N-vinyl pyrollidone-co-maleic acid), [15, 16]

sulfonated polysaccharides

2 Structure and Characterization of Polyelectrolytes

Polyelectrolytes are primarily characterized by the backbone monomers and the
electrolyte and/or proton-accepting groups attached to those monomers. Table 2
gives an overview of some of the most important anionic and cationic synthetic
polyelectrolytes. Styrene, the vinyl group, cellulose, and dextran are the most
important backbone monomers for hydrocarbonic polyelectrolytes. The most
important dissociating groups in synthetic, organic polyelectrolytes are sulfonic,
acrylic, benzoic, phosphoric, and sulfuric acid. By dissociation, such polymers
become electrically charged species, carrying negative charges. Therefore, such
polymers are also called “anionic polyelectrolytes,” whereas “cationic polyelec-
trolytes” have proton-accepting groups. By protonation, such formerly neutral
groups can be positively charged. The most important proton-accepting groups
are NR7and NH; . Short nomenclatures are often used to abbreviate the chemical
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Table 2 Important anionic and cationic polyelectrolytes (cf. Scranton et al. [16])
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OR CH,0R

R=H or CH,CO,Na

Polyelectrolyte Repeating unit | Polyelectrolyte Repeating unit
(Abbreviation) (Abbreviation)
Poly(acrylic Poly(vinyl
acid) ‘ECHT":H?E] sulfuric acid) ‘ECHZ‘TH}H
HPVAS
(HPAA) coon |¢ ) 0SO;H
Poly(methacrylic CH;, Poly(vinyl _ECHZ_CH}
acid) —E | % sulfonic acid) | n
HPMAA CHy-C HPVS SO;H
( ) | N ( ) 3
COOH
Poly(styrene _IECHz_CH} Poly(2- CH3
carboxylic acid) n acrylamido-2- CH C
methyl-1-propane 7
sulfonic acid)
HPAMS
COOH ( ) H—C—CH3
C|JH2
SO;H
Poly(styrene —ECHZ_CHEI_ Poly(phosphoric 0
o id) I
sulfonic acid) n acy O—P
(HPSS) (HPF) on”
SO;H
Poly(vinyl *IECHz—CH} Sodium dextran —I:_OCHZ
benzoic acid) n sulfate o)
(HPVB) (NaDS) HO o}
n
HO  0SO;Na
CH,COOH
Sodium ROCH,
carboxymethyl-
cellulose EI_
(NaCMC)
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Polyelectrolyte

Repeating unit

Polyelectrolyte

Repeating unit

(Abbreviation) (Abbreviation)
Poly(ethylene- ‘IENH*CHTCHZEI‘ Poly(vinyl amine) ~|ECH27CHE|>
imine) n (PV Am) ‘ n
(PEI) NH,
Poly(trimethyl (‘3H3
ammonium
H,—CH
methyl ~|EC 2 (‘: }; cH
methacrylate) ‘C=O .
(PTMAC) O_CH27CH27NC_1’CH
CH
Poly(allylamino {CHZ,CH} Poly(diallyldimethyl ‘ECHZ CH
hydrochloride) | —n ammonium chloride) \CH—CfI n
(PAAm) CHy (PDADMAC) ) -
NH, HCI I
N, Cl”
H3C/ CHj,
Poly(vinylbenzene ~ECH2—CH} Poly(2-(meth- CHj
trimethyl n acryloyloxy) ~ECH 7(‘}[
ammonium ethyl trimethyl z | ~n
chloride) ammonium chloride) (‘3=0
(PVBTMAC) . (PMETAC) (‘)
.2 . H,C
HyCN-CHy I |
CH
CHj |+ 2 -
H3C-N—CH;  Cl
CHj

formula. The abbreviation usually consists of two parts: one part stands for the
backbone and electrolyte group (cf. Table 2), the other for the (approximate)
molecular mass. A polyelectrolyte material rarely consists of one single type of
molecule, but of a variety of molecules of different molecular masses.

In principle, a distribution function f{(M) has to be used to characterize that material:
fIiM) dM is the fraction of polymers with a molecular mass between M — dM/2 and
M + dM/2, with the normalization:

Joof(M)dM ~ 1 )

However, as such distributions are difficult to determine, it is common practice
to characterize a polymer sample by the number-average (M,) and the mass-
average (M,) molecular masses, which are the first members in a series of
moments:
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M f (MM dM

TR FMe dM

r

) 2

with M; = M,, and M, = M, or by using one of those average molecular masses
and the polydispersity P, which is the ratio of M, to M,

P=2 3)

There might be a variety of different counterions in a polyelectrolyte, therefore,
the quota of different counterions can be used to further characterize a polyelectro-
lyte. That quota can undergo some changes, e.g., when a polyelectrolyte is dis-
solved in an aqueous solution of electrolytes or of other polyelectrolytes. The
degree of dissociation of a polyelectrolyte is also often used for characterization.
However, from the view of thermodynamics, that property depends on the sur-
roundings and therefore it is more suited for characterizing the state of a polyelec-
trolyte instead of characterizing the polyelectrolyte itself.

Various experimental methods such as potentiometric titration, conductometry,
polarography, electrophoresis, spectroscopy (NMR, UV/VIS), osmometry, light
scattering (static and dynamic laser light scattering, X-ray scattering, and neutron
scattering), viscometry, sedimentation, and chromatography (e.g., size exclusion
chromatography and gel electrophoresis) have been used to characterize polyelec-
trolytes in aqueous solutions (for a recent review cf. Dautzenberg et al. [12]).
Experimental information on the average molecular mass of a polyelectrolyte is
mostly derived from laser light scattering, osmometry or viscometry, i.e., from
methods that are also used to determine the thermodynamic properties of polyelec-
trolyte solutions, e.g., the activity of water. The polydispersity of polyelectrolytes is
usually determined by size-exclusion chromatography. Potentiometric titration is
often used to determine the degree of functionalization and the chemical reaction
equilibrium constants for the dissociation/protonation reactions, i.e., properties
characterizing the number of anionic groups saturated by hydrogen ions (in an
anionic polyelectrolyte) or the number of protonated groups (in a cationic polyelec-
trolyte). The number of ionic groups in an anionic polyelectrolyte is sometimes
determined by atomic absorption spectroscopy. X-ray structural analysis and neu-
tron scattering are typical methods for investigating the structure of polyelectro-
lytes. From the viewpoint of thermodynamics, a polyelectrolyte should be
characterized by all single polymers comprising the polyelectrolyte sample, the
number of functional groups (ionic as well as neutral groups), the state of the ionic
groups (e.g., number and nature of dissociable counterions of anionic groups as well
as the number of protonated cationic groups), the secondary structure, and the
concentration of any single polyelectrolyte in the sample. However, that informa-
tion is almost never available. In most cases, the chemical nature of such polyelec-
trolyte samples is only characterized by the backbone monomers and the kind of
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ionic groups, as well as an estimate of the ratio of electrolyte groups to backbone
monomers. The accessible information on the counterions is often limited to the
chemical nature and a more or less rough estimate for the ratio of different counter-
ions, e.g., the ratio of hydrogen counterions to sodium counterions of an anionic
polyelectrolyte. Very often, the degree of polymerization is given only as an
estimate of either the number-averaged or the mass-averaged molecular mass, but
detailed information on the polydispersity is missing. Thus, the characterization of
the polyelectrolyte is often far from satisfactory (at least from the viewpoint of
thermodynamics) and, consequently, reported thermodynamic data are often of very
limited use, e.g., for testing and developing of models for describing and predicting
the thermodynamic properties of such solutions.

3 Experimental Data for the Vapor-Liquid Equilibrium
of Aqueous Polyelectrolyte Solutions

Because polyelectrolytes are nonvolatile, the most important thermodynamic prop-
erty for vapor + liquid phase equilibrium considerations is the vapor pressure of
water p,, above the aqueous solution. Instead of the vapor pressure, some directly
related other properties are used, e.g., the activity of water a,,, the osmotic pressure
7, and the osmotic coefficient @. These properties are defined and discussed in
Sect. 4. Membrane osmometry, vapor pressure osmometry, and isopiestic experi-
ments are common methods for measuring the osmotic pressure and/or the osmotic
coefficient. A few authors also reported experimental results for the activity coeffi-
cient yc; of the counterions (usually determined using ion-selective electrodes) and
for the freezing-point depression of water ATgp. The activity coefficient is the ratio
of activity to concentration:

() “E:kl)
Yer = k 4)
where k in the denominator is used to express a certain concentration scale (e.g.,
mole fraction x, molarity ¢ or molality m2). Superscript (k) indicates that the activity
coefficient and the activity are defined using a certain reference state, which
depends on the selection of the scale used to express the composition of the
solution. Some authors report experimental data for the freezing point depression
of an aqueous solution:
AT — TSLE _ SLE (5)

purewater’
and convert that data to an osmotic coefficient (I)¥< )by:

(D(Tk) _ AT
ATW)

id.liq.mix.

; (6)
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where ATi((f)hq'mix' is the freezing point depression of an ideal aqueous solution of the
polyelectrolyte. Subscript T to the osmotic coefficient @ indicates that the osmotic
coefficient is here defined with the freezing point depression. Superscript (k) is
again used to indicate that the definition of the ideal mixture depends on the chosen
concentration scale. However, it also depends on an assumption about the dissocia-
tion of the polyelectrolyte. It is common practice to assume that in an ideal mixture
the polyion is completely dissociated.

3.1 Agqueous Solutions of a Single Polyelectrolyte

Tables 3—6 give a survey of literature data for the vapor-liquid equilibrium of
aqueous solutions of a single polyelectrolyte with various counterions. Abbrevia-
tions (shown in Table 2) are used to characterize the polyelectrolyte and the experi-
mental procedures (MO membrane osmometry; DMO differential membrane
osmometry; VO vapor pressure osmometry; ISO isopiestic experiments; EMF
electromotive force measurements including also measurements with ion-selective
electrodes as well as titration; FPD freezing point depression; GDM gel deswelling
investigations). Table 3 gives a survey for aqueous solutions of poly(styrene
sulfonic acid).

Table 3 Survey of literature data for thermodynamic properties of aqueous solutions of polyelec-
trolytes with styrenesulfonic acid as the backbone monomer (without any other salt)

Molecular Counterion Counterion Method Exp. References

mass molality prop.

(x 1079

0.4 and 5 Na*; H* 0.01-1.4 VO P, [17]
0.8-7.54 1SO P,

5 H*,Li*,Na", K", Cs*, NH], 0.05-1.1 DMO P, [18]

N+R1; [R= (CH3)a,
(CyHs)4, (C4Hy)4l

0.4-5.2 Na*, HY, Ca**, Cu™, Cd*™ 107°-102 MO o, [19]
0.4-5.2 Cu™, Na* 107°-1072 MO o, [20]
0.2-1.0 Na*, TI*, Cd**, Ca** 5x 1071072 MO, EMF &,; yo; [21]
04 Li*, Na*, K*, Cs* 6 x 107°-0.3 FPD b [22]
0.4 cd+, Mgt 6 x 107°-0.15 FPD & [23]
4.6 H*, Li*, Na*, K*, Ca™, 0.04-3.3 ISO @, [24]

Ba*™*, NH;, N'R;;
[Ri= C3Hy, (C3Hs)4,
(CHs)4, CHyCeHs]

A

5 Na 0.7-1.44 MO, VO = [25]
43 Na* 4 x 107°-037 MO T [26]
5 Na* 0.4-2.7 ISO n [27]
1.3 Na* 5% 107% 1SO a, [28]

4 %1073
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Fig. 1 Osmotic coefficient of aqueous solutions of NaPSS of varying molecular mass (M) at 25°C
(unless otherwise indicated): open triangles 4 X 10* (0°C) [22]; times 4 x 10* [19]; right-point-
ing triangle 4 x 10* [17]; star 4.3 x 10° [26]; closed circles 5 x 10° [17]; open diamonds
5 x 10° [27]; open squares 5 X 10° (35°C) [25]; open circles 5 x 10° (no temperature given)
[18]; closed triangles 5 x 10° [19]

Figure 1 shows some typical experimental results for the osmotic coefficient of
aqueous solutions of poly(sodium styrene sulfonate) (NaPSS). The osmotic coeffi-
cient (DI()’"> is plotted versus the concentration of the polyelectrolyte (expressed as
the molality of the “repeating units” or “monomer groups”). The figure reveals that
the osmotic coefficient of a diluted aqueous solution of a polyelectrolyte is well
below unity even at very small concentrations, e.g., at monomer-group molalities
below about 0.001 mol/kg. It also reveals that, at low polymer concentrations, the
influence of the concentration of the polyelectrolyte on the osmotic coefficient is
rather small (e.g., when the monomer-group molality is increased from about
0.0002 to about 0.1 mol/kg, the osmotic coefficient of an aqueous solution of
high molecular weight NaPSS increases only from about 0.2 to about 0.25), whereas
at higher concentrations the osmotic coefficient increases strongly with increasing
polymer concentration (e.g., from about 0.4 to about 0.8, when the monomer-group
molality is increased from about 1 to 10 mol/kg). Furthermore, experimental results
from different sources often do not agree with each other, but it seems that most
experimental results confirm that there is only a very small influence of the
molecular mass (M) of the polyelectrolyte on the osmotic coefficient.

Table 4 gives a similar survey for other polyelectrolytes. Figure 2 shows the
influence of the backbone monomer of the polyelectrolyte on the osmotic coefficient.
At constant polyelectrolyte concentration (again expressed as the molality of the
repeating units), the osmotic coefficients might differ by, for example, a factor of
five. For example, at 25°C, the osmotic coefficient of a 1 mol/kg aqueous solution of
monomer groups of poly(sodium ethylene sulfate) (NaPES) is about 0.22, whereas
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Table 4 Survey of literature data for thermodynamic properties of aqueous solutions of a single
polyelectrolyte at around 300 K (without any other salt)

Polymer Molecular ~ Counterion Counterion Method Exp. References
mass/ molality prop.
(x 1079
HPMSS 1.5 Na*, H*, Ag*, TI*, Zn*™, 4 x 107*-0.1 EMF  y¢  [29]
Cd**, Pb*™ [30]
HPAA 2.6 Na™/H* 0.28-0.77 MO, T [25]
VO
HPAA 0.012 Na* 0.1-3.1 ISO @, [31]
HPAA 0.46 Na*/H", N* (n-C4Ho)s/  0.2-4.5 ISO @, [32]
H', Li*, K", N'Ry;
[Ri= (CoHs)s,

+(CH3)45 (n-C3H7)4 ]

HPAA 1.2 Na 4 % 107>- EMF  yo  [33]
0.23
HPAA 1.2 Na* 17 x 1072~ EMF  ypo  [34]
0.25
CMC 2.5 Na®, Li*, K*, N'Ry; 0.16-2 ISO o, [32]
[Ri= (CoHs)s,
(CH3)s,
(n-C4Hy) 4]
PMETAC 1.7 cl- 0.38-1.1 MO, =, &, [25]
VO
PAAm 0.5 Ccl- 0.44-1.9 MO, =, @, [25]
VO
HPVB Na* 0.32-0.77 MO, =, &, [25]
VO
HPVAS 2.5 Na®, Lit, K*, Ca™, Ba** 0.11-2.5 ISO o, [35]
HPP 0.61 Na* 0.13-2.3 ISO o, [36]
HPES 1 H*, Li*, Na*, K*, NH}, 0.19-6.1 ISO o, [37]
N+R1; [Ri= (C;Hs)y,
(CH3)4, ("'C3H7)4,
(n-C4Ho)y,
(CH3);CH,CgHs]
PVA/ 1.7 Co, Ni, Cu** 5% 107* GDM a, [38]
HPVAS -0.12
PVA/ 0.7-0.9 Na*, Cu**, Li*, La, 5% 107*02 GDM a4, [39]
HPVAS Cs*, Mg**
HPAS 0.1 Na*, Li*, Cs* 1 x 107303 VO/ @,  [40]
MO
HPAA 0.03; 0.07 Na*, NH,* 7 x 107 ISO a, [41]
4 x 1073
HPMAA  0.06;0.14 Na' 7 x 107% ISO a, [41]
3% 1073
HPES 0.02; 0.07 Na* 4x 107~ ISO a, [41]

5% 1073
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Fig. 2 Osmotic coefficient of aqueous solutions of a polyelectrolyte from isopiestic measurements
at 25°C [32, 35-37]: open triangles NaPVAS, M = 2.5 x 105; open diamonds NaCMC, M = 2.5
x 10°, DS = 0.95; open squares NaPP, M = 6.1 x 10% open circles NaPES, M = 1 x 10°. DS
degree of substitution (carboxymethyl groups per glucose unit)
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Fig. 3 Influence of counterion on the osmotic coefficient of aqueous solutions of poly(acrylates) at
25°C from isopiestic measurements (Asai et al. [32]): open squares —N(n-C4Ho)4; open diamonds
—N(n-C3H7)4; open triangles —N(n-C,Hs)4; open circles —N(n-CHs)g; closed circles —Li; closed
diamonds —K

it is about 0.44 when ethylene sulfate is replaced by phosphate (i.e., for NaPP),
and is 0.6 and 0.8 for sodium carboxymethylcellulose (NaCMC) and poly(sodium
vinyl sulfate) (NAPVAS), respectively.
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3

m (monomol polymer - kg™! water)

Fig. 4 Influence of counterion on the osmotic coefficient of aqueous solutions of poly(ethylene
sulfonates) at 25°C from isopiestic measurements by Ise and Asai [37]: open squares —N(n-
C4Ho)y4; open diamonds —N(n-CsHy)y; open triangles —N(n-CyHs)y; times —N(n-CHs)y; open
circles N(CH;3)3;CH,C¢Hs; +, —NHy; filled diamonds —H; closed circles —Li; closed triangles —K

Figures 3 and 4 show some typical examples of the influence of the nature of the
counterion of a polyelectrolyte on the osmotic coefficient. The osmotic coefficient is
typically very small for inorganic counterions, but it can be increased by a factor of
about 10 by organic counterions, for the same temperature and polyelectrolyte
monomer-group molality. Figure 4 shows that the osmotic coefficient of an aqueous
solution of a poly (ethylene sulfonate) increases in the counterion series K™, Li*, HY,
NH;, N*(CH;);CH,C¢Hs, N*(CH3)4, N*(CoHs)4, N*(n-C5H7)4, and N*(n-C4Ho),.

3.2 Agqueous Solutions of a Single Polyelectrolyte and a Low
Molecular Weight Strong Electrolyte

There have been many investigations on the influence of a low molecular weight
strong electrolyte on the thermodynamic properties of an aqueous solution of a
polyelectrolyte. A survey on literature data is given in Table 5. The experimental
methods already mentioned above are also common for investigating aqueous solu-
tions of both a polyelectrolyte and a salt. However, also equilibrium dialysis (EQDIA)
and EMF-measurements with ion-selective electrodes have been used in such experi-
mental investigations. In EQDIA, an aqueous polyelectrolyte solution and an aqueous
solution of a low molecular weight salt are separated by a membrane that is permeable
to water as well as to the ions of the salt and the counterions of the polyelectrolyte. In
phase equilibrium, the concentration of the free ions in the coexisting phases are
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determined, e.g., by titration or by ion chromatography. The results are often reported
as the “degree of condensation” 6, of a counterion k or the “salt-exclusion parameter”
I'. 0, is the degree of electrolyte groups in the polymer that are neutralized by ionic
species k:

0 =2 ™)

b
vep

where ¢, ,, is the molarity of monomeric electrolyte groups saturated with counterion
k, v is the number of repeating units, and ¢, is the molarity of the polyelectrolyte. The
salt-exclusion parameter I" is the ratio of the difference in the molarity ¢, of the
counterion on both sides of the membrane to the molarity of (monomer) electrolyte
groups of the polyelectrolyte ¢, in the aqueous phase:

r— Cs,(w+s) — Cs,(wts+p) 8)
Cp

When ion-selective electrodes have been used, the activity coefficient of the
counterions is sometimes presented as a function of the “charge density parameter”
A (from the theory of Lifson and Katchalsky):

62

- - 9
AmeeokTh’ ©)

where e, ¢y, ¢, k and b are the proton charge, permittivity of vacuum, relative
permittivity of pure water, Boltzmann’s constant, and the distance between two
electrolyte groups in a polyelectrolyte backbone, respectively.

Figure 5 shows some typical results for the osmotic pressure n of aqueous
solutions of NaPSS and NaCl. At high ionic strength, the slope of the ratio of
osmotic pressure to the (monomer) molarity ¢, does not depend on the concentra-
tion of the polyelectrolyte. That slope increases with decreasing ionic strength and —
at constant, but lower ionic strength — with increasing polymer concentration. In
such experiments, the ionic strength is adjusted by the amount of dissolved NaCl; a
high ionic strength causes a condensation of sodium ions to the polyelectrolyte
backbone. The osmotic pressure is primarily caused by the added salt, and small
amounts of the polyelectrolyte cause a change in the osmotic pressure very similar
to that observed in an ideal solution. The strong increase of the osmotic pressure
with decreasing ionic strength, but constant polymer concentration, is at least
partially due to the increasing degree of dissociation of electrolyte groups of the
polymer.

When a low molecular weight salt MX is dissolved in an aqueous solution of an
anionic polyelectrolyte of counterions CI, both cations (CI and M) compete for the
anionic groups in the polymer. Such competition could result in a change in the
degree of dissociation of the ionic groups, i.e., the ratio of charged to neutral
repeating units in the backbone. Some examples are shown in Fig. 6. When the
lead ion concentration is increased in an aqueous solution of 0.001 mol/dm®
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Fig. 5 Reduced osmotic pressure vs. polymer concentration for NaPSS at 25°C in aqueous NaCl
solutions of various ionic strength I: open squares I = 0.005 mol/dm®; open circles 1= 0.01 mol/
dm’; open triangles 1 = 0.02 mol/dm?; open diamonds 1 = 0.05 mol/dm?; open inverted triangles
I =0.1 mol/dm?; crosses 0.5 mol/dm® [26]

sulfonic acid groups at constant ionic strength [fixed by a mixture of NaNO; + Pb
(NO3),], the relative amount of sulfonic acid groups neutralized by lead ions (Opy)
also increases and, consequently, the relative amount of sulfonic acid groups
neutralized by sodium ions (fy,) decreases. However, the decrease of Oy, is not
completely compensated by the increase of Op,, and, therefore, the relative amount
of dissociated sulfonic groups increases. 0p, decreases and fy, increases when the
ionic strength is increased at constant lead concentration. The sum (0pp, + On.) also
increases because at the higher ionic strength more ionic species compete for the
charged repeating units of the backbone. When, at constant ionic strength, sodium
nitrate is replaced by nitric acid, Opy, increases and Oy, decreases and the sum (Opy, +
On.) Teveals a small change.

There are also many reports on the application of low angle static light scatter-
ing, particularly laser light scattering, in investigations of aqueous polyelectrolyte
solutions. Light scattering experiments are common for determining the mass-
averaged molecular mass of a polymer, but the technique has also been applied to
the determination of osmotic virial coefficients in aqueous solutions.

Osmotic virial coefficients are commonly used to express the osmotic pressure 7
as a function of solute concentrations. For an aqueous solution of a single solute the
osmotic virial equation is:

RiT = ACZ PAyy+ By + o (10)
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Fig. 6 (a) Degree of condensation of univalent counterions vs. molar concentration cpy, of divalent
Pb ions in NaPSS at 25°C, M = 3.54 x 10°, Cuuifonated groups = 0.001 mol/dm?. Closed diamonds
PSS/Pb/Na, I = 0.02 mol/drn3 ; open diamonds PSS/Pb/H, I = 0.02 mol/drn3 ; closed triangles
PSS/Pb/Na, I = 0.01 mol/dm?; open triangles PSS/Pb/H, I = 0.01 mol/dm® [46]. (b) Degree of
condensation of divalent counterions vs. molar concentration cpy, of divalent Pb-ions in NaPSS at
25°C, M = 3.54 x 10%, ¢cquifonated groups = 0.001mol/dm?>. Closed diamonds PSS/Pb/Na, I = 0.02
mol/dm3; open diamonds PSS/Pb/H, I = 0.02 mol/dm3; closed triangles PSS/Pb/Na, I = 0.01
mol/dm?®; open triangles PSS/Pb/H, I = 0.01 mol/dm?> [46]
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where ¢; is the mass density of solute s and A, and Ay, are the second and third
osmotic virial coefficients, respectively, of solute s in the solvent. In nearly all light
scattering experiments of aqueous solutions of a polyelectrolyte, the solvent was
not only pure water but an aqueous solution of a salt, and the experimental results
were interpreted using (10). Then, the evaluated data for the osmotic virial coeffi-
cients depend on the nature and the concentration of that salt. Table 6 gives a survey
of literature sources for the second osmotic virial coefficients of a single polyelec-
trolyte in an aqueous solution from light scattering experiments. The second
osmotic virial coefficient is determined by extrapolating experimental results to
infinite dilution. Light scattering is particularly suited for the investigation of such
highly diluted mixtures.

However, even when the polymer contains no ionic groups the extrapolation
might be rather difficult (e.g., Hasse et al. [70], Kany et al. [71, 72]). Figure 7 shows
a typical example of the influences of the molecular mass and the concentration of a
salt on the second osmotic virial coefficient of a polyelectrolyte in water. The
second osmotic virial coefficient increases considerably with decreasing salt con-
centration. The influence of the molecular mass is less distinct and often hidden by
the scattering of the experimental data, particularly if that data is from different
literature sources. In an aqueous solution of a strong electrolyte, the second osmotic
virial coefficient of polyelectrolytes with different backbone monomers can vary by
about one order of magnitude.

Table 6 Survey of literature data for the second osmotic virial coefficients of a single electrolyte
in an aqueous solution from light scattering investigations

Polymer Polymer Salt Salt References
concentration ¢, concentration c¢;
(g/dm®) (mol/dm?>)
NaPSS 0.5-3 NaCl 0.0054.2 [57]
Na/HPSS <0.8 Na/H/NO; 0.005-3.7 [47]
NaPSS; Pb/ 04-3 NaNOj;, HNO;3, 0.005-2 [58]
HPSS Pb(NO3),
KPSS KCl 0.1 [59]
NaPA 0.1-2 NaCl 0.01-1 [59]
HPAA 0.1-3 NaCl 0.01-1 [60, 61]
NaBr 1.5
CaCl 0.1

NaCMC 0.1-4 NaCl 0.001-0.5 [62]
NaCMC 0.2-0.8 NaCl 0.005-0.5 [63]
NaPAMS - NaCl 0.01-5 [64]
NaPAMA - NaCl 1 [65]
PDADMAC - NaCl 0.5 [66]
PDADMAC - NaCl 1 [67]
PAAm 1.87 NaCl 0.05-3 [68]
PTMAC - NaCl 1 [65]

PTMAC - NaCl 0.14 [69]
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Fig. 7 Second osmotic virial coefficient of sodium poly(styrene sulfonate) of varying molecular
mass (M) vs. the concentration of added NaCl: squares (23.4 x 105); diamonds (22.8 x 105);
triangles (15.5 x 10°); circles (10 x 10%); crosses (3.9 x 10°); plus (3.2 x 10°) data from
Takahashi et al., 25°C [57]; half-closed triangles (12.2 x 10%); stars (7.3 x 10%); inverted
triangles (3.2 x 105) data from Nordmeier, 20°C [58]

4 Gibbs Energy of Aqueous Solutions of Polyelectrolytes

For several reasons, it is rather difficult to develop a reliable method for describing
(i.e., correlating and predicting) the thermodynamic properties of aqueous solutions
of polyelectrolytes. The thermodynamics of polymer solutions in nonaqueous
systems as well as of aqueous electrolyte solutions are still major areas of research
and, consequently, the situation is less satisfactory for aqueous solutions of poly-
electrolytes, for which the dissociation reactions have to be taken into account. This
section reviews the most important features of some methods of modeling the Gibbs
energy of aqueous polyelectrolyte solutions. The Gibbs energy of an aqueous
solution is the sum of contributions from all (solute plus solvent) species i:

G=> mu, (an

where n; and ; are the number of moles and the chemical potential of component i
(i.e., of the solvent and the solutes), respectively. It is common to split the Gibbs
energy into two parts, a contribution from ideal mixing and an excess contribution:

G = Gidmix. + GE. (12)
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As the Gibbs energy is the sum of contributions from all components, G'4™* and
GF are also sums of contributions by all components:

Gid.mix. — Z niﬂj'd'mix', (13)
G* = muf (14)

or
G =Y m(u" +RTna). (15)

Therefore, the following relation holds:

id.mix.

p; = it oy = it 4 RT Ina. (16)

By definition, component i experiences in an ideal mixture the same inter-
molecular forces as in the reference state and therefore all differences between

u?d'mix' and ,u?efare caused by differences in the concentration (i.e., dilution) only:
M}dmlx. _ 'ulr'ef + RTIn a}d.mlx.. (17)
Consequently, the activity of component 7 in an ideal mixture, a}d‘mi"', is known

from the composition of the real solution. However, the actual expression for @M

depends on the choice of reference states and the concentration scale applied. The
reference state for the solvent (in this case water) is usually the pure liquid at the
temperature and pressure of the mixture:

:u‘l;ef = :us, pure liquid (T7 p) . (18)

However, various reference states are used for a dissolved component. One
common reference state is a hypothetical solution of that component in water at a
concentration of 1 mol/kg water (i.e., a one molal solution) where the solute
experiences interactions only with water, i.e., as if infinitely diluted in water.
With that reference state, it is also common practice to replace the activity of a
solute species i by the product of molality m; and activity coefficient y§m> :

a™ =my", (19)

i i

where superscript (m) indicates both the reference state and the concentration scale.
The activity coefficient of a solute species i becomes unity in an ideal solution and,
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consequently (as follows from the Gibbs—Duhem equation), the activity of the
solvent (represented by subscript s) in an ideal mixture is:

m 1000
I a3 i, = =7 DM (20)
s ks

where i represents any (but only) solute species.

Another common reference state for a solute is a hypothetical solution of one
mole of that solute in one liter of water (i.e., a one molar solution) where the solute
experiences interactions only with water, i.e., as if infinitely diluted in water. With
that reference state, it is also common practice to replace the activity of a solute
species i by the product of molarity ¢; and activity coefficient yf.”):

af) = e, @1
where superscript (¢) indicates both the reference state and the concentration scale.

The activity coefficient of a solute species i becomes unity in an ideal solution
and, consequently (following again from the Gibbs—Duhem equation), the activity
of the solvent s is:

. 1
hmix, = —= 3¢, (22)

l_f‘k i#s

where p; is the molar density of water (in moles per liter).
As usual, the following relations also hold for the excess part of the chemical
potential of a solute i and a solvent s:

uE :RTln( di ) , (23)
diid.mix. /
E s
) = RTIn(—% ). (24)
A id.mix.

One has to keep in mind that the excess parts of the chemical potentials depend
on the selection of the reference state for a solute component, as both the activity of
a solute component and the activity of the solvent in an ideal mixture depend on
the reference states of the solutes. The activity coefficients of a solute on molality
scale, yf'm, and on molarity scale, ygc), are related by:

c m) M %
n ="l (25)

i

where p; is the specific density of the pure solvent in kg/dm?.
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Most methods assume that there are several contributions to the excess Gibbs
energy:

G" =Y Gf, (26)
k

where k represents such a contribution. More details on such contributions are given
below.

For describing the thermodynamic properties of aqueous electrolyte solutions
one often uses the osmotic pressure 7:

RT

n=— In ay, 27

ﬁs,pure
where U; pure is the molar volume of the pure solvent and the osmotic coefficient @,

I
O, =—" = (28)

Tidmix. 1N dsidmix.

The numerical value of the osmotic coefficient depends on the selection of the
reference state of the solutes, whereas the number for the osmotic pressure does not
depend on that reference state.

5 Thermodynamic Models

The fundamentals of the thermodynamic modeling of aqueous solutions of poly-
electrolytes were established by Lifson and Katchalsky [73, 74]. Their model was
extended by various authors. For example, Dolar and Peterlin [75] extended it to
polyelectrolytes with two different counterions. One of the most important exten-
sions was presented by Manning in a series of papers. The new fundamental idea
introduced by Manning is the so-called counterion condensation concept. That
theory was further extended by Manning [76—78] and others. Manning’s theory of
counterion condensation was adopted in more recent work, where his results were
applied in a more or less straightforward manner. Manning’s concept has been
supported by molecular dynamic simulations of polyelectrolyte solutions, showing
the changes in the polymer backbone configuration and the counter ion condensa-
tion, e.g., by Stevens and Kremer [79].There are other examples for the solution of
the Poisson—Boltzmann equation, which use other hypotheses about the boundary
conditions for which the equation is solved. The examples are more or less related
to the work cited before. The model by Feng et al. [80], who considered the
presence of salts in the aqueous solution, is an interesting example. There are
other interesting examples of extensions, such as those presented by Ospeck and
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Fraden [81], who solved the Poisson-Boltzmann equation for a system of two
cylinders confined between two plates, and by Dahnert and Huster [82, 83], who
solved the Poisson—Boltzmann equation for a plate-like polyelectrolyte immersed
in a salt solution. Rodenbeck et al. [84] solved the same equation using the
approximation of elementary cells around a symmetrically charged central body.
The use of cavity-correlation functions was investigated by Jiang et al. [85, 86].
However, using the Poisson-Boltzmann equation for such systems has also
attracted some criticism. For example, Blaul et al. [87] compared results derived
using the Poisson-Boltzmann equation with experimentally determined osmotic
pressure data, and concluded that the difference between the predicted and the
experimental behavior is due to some deficiencies of the model, for example, an
insufficient treatment of ion—ion correlations. Deserno et al. [88] found that the cell
model systematically overestimates the osmotic coefficient. Colby et al. [89]
showed that, in the semidilute range of concentrations, the hypotheses used to
solve the equations are no longer valid. Diehl et al. [90] mentioned that short-
range interactions between the polymer backbones might not be negligible. Many
other investigations, for example, by Monte Carlo simulations (Chang and Yethiraj
[91]), by molecular dynamic simulations (Antypov and Holm [92]) and by field-
theoretical methodologies (Baeurle et al. [93]) were conducted to achieve a better
understanding of the behavior of polyelectrolyte solutions. Such investigations are
important from a more theoretical point of view. However, it is very difficult either
to apply them directly or to use their results in a more indirect way for engineering
calculations. That statement particularly holds for aqueous solutions containing a
polyelectrolyte and other compounds such as salts and/or neutral polymers. The
difficulties are related to computational issues (which may still be an impediment),
as well as to the absence of sufficient information. Therefore, despite the large
amount of theoretical work, there is still a great need for simplified models that can
be applied to the description of phase equilibrium in polyelectrolyte aqueous
solutions at medium and high polyelectrolyte concentrations. A similar statement
holds for the so-called scaling-law approach (cf. [94-100]).

This contribution is therefore restricted to the models introduced by Lifson and
Katchalsky as well as by Manning on one side, and to the extensions and modifica-
tions of these models by Danner et al. [101, 102] and by members of our own
research group as they seem to have the most potential for applications in chemical
engineering.

5.1 Cell Model of Lifson and Katchalsky

The model of Lifson and Katchalsky [74] is an extension of the Debye—Hiickel
theory of highly diluted aqueous solutions of strong (low molecular weight) elec-
trolytes to polyelectrolyte solutions. Lifson and Katchalsky start from the idea that
an aqueous solution of a polyelectrolyte reveals a microscopic structure. That
structure is caused by two competing effects: the electric charges on the backbone
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Fig. 8 Cell model of Lifson - - o
and Katchalsky [74] showing
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monomers (that tend to stretch the polyelectrolyte) and the tendency of the poly-
electrolyte to increase its entropy by forming globular or entangled coils (at low or
high polymer concentrations, respectively). As shown in Fig. 8, the polyelectrolyte
backbone is modeled as a stretched cylinder of radius a and length /. That cylinder
is surrounded by another cylindrical cell (radius R and length /). The electrical
charge on the backbone is approximated by a uniform charge on the surface of the
inner cylinder. The counterions are dissolved in the cylindrical space between radii
a and R, where they form an ionic cloud. The radius R depends on the concentration
of the polyelectrolyte. It is low in highly concentrated solutions and increases with
decreasing concentration to reach infinity in an infinitely diluted solution. The
electrostatics in that cloud are described by the Poisson—Boltzmann equation. In a
manner analogous to the Debye—Hiickel theory, the electrostatic potential caused
by the interactions between the stretched backbone on one side and the surrounding
counterions on the other side is calculated by solving the Poisson—-Boltzmann
differential equation. The electrostatic potential ¢(r) in the cylindrical space
between the radii ¢ and R (a < r < R) is:

k 27 r?
o(r) = ?T ln{ﬁ—;L msmh2 B ln(Ar)]}7 (29)

where 4 is a (dimensionless) charge density parameter that describes the charge
density on the polyelectrolyte’s backbone. When the repeating unit is a 1:1 electrolyte,
that parameter becomes:

Ig
l== 30
b (30)
where /g is the Bjerrum length:
2
e
g =—— 31
B dmeeokT’ (b

which characterizes the solvent through its relative dielectric constant ¢. Parameters
b, e, and g, are the length of that repeating unit, the elementary charge, and the
permittivity of vacuum, respectively, The two other parameters A (which is an
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inverse length) and 5 (which is dimensionless) are determined from the condition of
electroneutrality in the cylindrical cell of radius R and from the condition that at
r = R, the electrostatic potential ¢(r) has to reach an extreme (for symmetry
reasons). As long as the charge density parameter 4 is “small” parameter f§ is a
real number (between zero and one), whereas it is an imaginary number (between
zero and 1.01) for “large” charge densities. The distinction between “small” and
“large” depends on the polyelectrolyte concentration. When f becomes imaginary,
f has to be replaced by || in (29). Consequently there are two different regions
where the remaining parameters (A and f) have to be determined:
When f is real:

1—p2
A= — ., (32)
1 + Beoth(Byk)
1 + fcoth[fIn(AR)] = 0. (33)
When f is imaginary:
1 2
_ + 1Bl 7 (34)
1+ |l cot(|BlyLk)
fInA + |f|InR + arctan|f| = 0, (35)
where y; x is another dimensionless parameter:
R
g = In— (36)

a

that is related to the volume fraction ¢, of the polyelectrolyte in the aqueous
solution:

a 2
¢, =In (1?) . (37)

Unfortunately, there is no analytical solution to determine A and /5. But at infinite
dilution (i.e., when y; x — oo ) one finds from (32) and (33):

p=10-2 for 2<1 and B=0.0 for A>1. (38)

Figure 9 shows the results for S(4, yrx ) as calculated from (33) to (35).

Lifson and Katchalsky [74] determined the influence of the electrostatic poten-
tial o(r) on the thermodynamic properties of an aqueous solution of a single
polyelectrolyte through an expression for the change of the Helmholtz energy
AFthat is due to the presence of the electrostatic potential by:
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Fig. 9 Theory of Lifson and Katchalsky: Integration constant 5 as a function of the charge density
parameter A for several parameters ;g

AFix = ¢, VRTf® (39)

with:

v o )2 2 @2 2,
1= Ak tn {202 12)1((1 ) - (14 )7k — InY 11);2_13 ;o (40)

where ¢, is the molarity of the polyelectrolyte in the solution, and V is the volume of
the solution (i.e., ¢,V is the number of moles of polyelectrolyte in the solution) and
v is the number of repeating units of the polyelectrolyte.

The osmotic pressure 7 is split into two contributions:

T = Migmix. + AT, (41)
where the osmotic pressure of the ideal mixture ;4 ;. is calculated assuming that
the polyelectrolyte is completely dissociated. When the repeating unit is a 1:1
electrolyte that contribution is:

Tiamix. = (1 +V)c,RT. (42)

The second contribution Az is caused by the electrostatic potential. It is
calculated from the contribution of the electrostatic forces to the Helmholtz energy:

Fel
An® = — (6 ) : (43)
ov T ,composition
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The final result for the osmotic coefficient (I);,") (on molarity scale) is:

o) = ¥ for 4 < 1 (44)
P 2), =
and:
1+ g .
() _
{ 5 for . > 1. (45)

Figure 10 shows the osmotic coefficient of an aqueous solution of a single
polyelectrolyte as a function of the molarity of the repeating units c¢,,=vc, and
the charge density parameter A. In a highly diluted aqueous solution (i.e., when
YLk — 00), the final result is:

)
@ _1_7%
) =1 5 for <1, (46)
00 =L for i1, 47)
P 2)

For the calculation of the osmotic pressure of an aqueous solution of a single
polyelectrolyte where the repeating unit is a 1:1 electrolyte one needs:

— For the polyelectrolyte: the radius of the hard polymer rod a, the length of the
polymer rod 4 (or the length of a cylindrical monomer b and the number of such
monomers in a polyelectrolyte molecule v)

1.0 A=0.5
A=1.0
0.8 1 A=15
| A=2.0
cD:f’
0.6 -
0.4 -
02 T T T T T T T
0 0.5 1.0 1.5 2.0
cp/ mol cm °

Fig. 10 Theory of Lifson and Katchalsky: Osmotic coefficient of an aqueous solution of a single
polyelectrolyte as a function of the charge density parameter 4
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— The concentration of the polyelectrolyte in the aqueous phase (or the radius R of
a cylindrical cell surrounding each polyelectrolyte molecule)
— The relative dielectric constant of water ¢

The equations only hold for an aqueous solution of a single polyelectrolyte that
consists of monovalent repeating units (1:1 electrolytes). There are publications on
extensions. For example, Dolar and coworkers treated polyelectrolytes with two
counterions (Dolar and Peterlin, [75], Dolar and Kozak, [103]), and Katchalsky
[104] extended the theory to aqueous solutions of a polyelectrolyte and a low
molecular weight salt. Katchalsky just superimposed the contributions from the
polyelectrolyte with those from the added salt. The osmotic pressure of an aqueous
solution of a single polyelectrolyte then becomes:

n=m,+ An® + An,. (48)

The first term on the right-hand side, 7, is the contribution for an ideal aqueous
solution (on molarity scale) of the undissociated polyelectrolyte:

7, = cpRT. 49)

The second term, An®, results from the dissociation of the polyelectrolyte. It is
expressed by combining (42), (45) and (47). When B is real:

1 _ 2
An®! = 5 f ve,RT (50)
and when J is imaginary:
1 2
At = LB R (51)
24

The third term, Am,, is approximated by the osmotic pressure of an aqueous
solution of the single, low molecular weight strong electrolyte S, that consists of
vy cations M and vy anions X:

Amy = (v + vx)e;RTOY) (52)

where ¢; and d)éc) are the molarity of the strong electrolyte S and the osmotic
coefficient (on molarity scale) of an aqueous solution of the single strong electrolyte
S. Then, the osmotic coefficient of an aqueous solution of a polyelectrolyte P (of
monovalent repeating units) and a low molecular weight strong electrolyte S
becomes:

T + An®! + Amg _ ¢+ (I)I(,C>V6'p + (v + VX)qu)§C> 53)

(I)(C)
Tlid. mixture Cp +vep + (VM + Vx)Cs

pts
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Fig. 11 Osmotic coefficient of an aqueous solution of a polyelectrolyte (charge density parameter

/= 1.5) and NaCl (salt molarity c,) at 25°C for several values for the molarity c, of the
polyelectrolyte (the data for the polyelectrolyte-free solution are taken from [105])

As commonly v >> 1 that equation can be simplified to:

o) ve, + (v + vX)csCDA(Y">

o) —_» 54
vep + (v + vx)cs (54

p+s

Figure 11 shows a typical example for the osmotic coefficient of an aqueous
solution of a polyelectrolyte and NaCl calculated with (54).

An extension to multisolute aqueous solutions with a polyelectrolyte, nonelec-
trolyte solutes, and low molecular weight salts might start from (48) using (49)
together with (50) and (51) for the contributions of the polyelectrolyte, but repla-
cing (52) by the osmotic pressure of an aqueous solution of the polyelectrolyte-free
solutions, i.e., an aqueous solution of the low molecular weight salts and the other
nonelectrolyte solutes. However, such an extension always suffers from neglecting
the interactions between the other solutes and the polyelectrolyte.

5.2 Counterion Condensation Theory of Manning

Manning [76—78] modified and extended the Lifson—Katchalsky model to include
the effects caused by the presence of strong, low molecular weight electrolytes in
the aqueous polyelectrolyte solution. The polyelectrolyte is described as a linear
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chain of N monomers that contain an electrolyte group. Dissociation results in
ionic groups on the polymer backbone, resulting in a charged polymeric backbone
and counterions. The electric charge is considered to be evenly distributed over
the whole backbone and the dissociated counterions are considered as point
charges in the solvent of relative dielectric constant ¢. Similarly to Lifson and
Katchalsky, Manning also assumes that the number of repeating units in the
polyelectrolyte chain is very large and, therefore, chain-end effects are neglected.
The excess Gibbs energy results from interactions between the charged chain
and all other ions (counterions as well as ions from some added low molecular
weight strong electrolytes) in the surrounding solution. The properties of that
surrounding electrolyte solution are approximated by the Debye-Hiickel theory.
Manning assumes that some counterions might form ion pairs with some mono-
mers of the backbone. These ion pairs are not really fixed to the backbone but
can move in a certain volume around the backbone, i.e., these “condensed counter-
ions” have an additional mobility that increases the entropy of the system.
Manning neglects all interactions between all backbone groups of the poly-
electrolyte molecule.

In the following description, the molarity scale is used. The reference states are:

— For the solvent: the pure liquid

— For the polyion: the completely dissociated polyion that experiences no electro-
static interactions, but otherwise behaves like at infinite dilution in water

— For an added salt: the completely dissociated salt that also experiences interac-
tions as if at infinite dilution in water.

As an example, we discuss here an aqueous solution of one polyelectrolyte P and
one strong electrolyte S (=M,,,X,,), where P and S share a common counterion X.
Some of the counterions that originate from the polyelectrolyte are assumed to be
located in a small volume V), around the polyelectrolyte backbone (the phenomenon
is called “counterion condensation’). The polyelectrolyte, “condensed” counter-
ions, “free” counterions, free coions, and water contribute to the Gibbs energy of
the solution:

G = Gy + Geond.c1 + Gireect + Gireecor + G- (55)

Each contribution consists of a contribution from the reference state and a
contribution from mixing:

G, = nl-('ulr.ef + RT In a,—). (56)

The reference state for a solute is always based on the molarity scale (at unit
molarity in water but with interactions as if infinitely diluted in water) whereas for
water the reference state is pure liquid water. The contributions are described
below.
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5.2.1 Contribution from the Polymer
Manning assumed that there are only contributions from electrostatic interactions.

He approximated these contributions from the cylindrical version of the Debye—
Hiickel theory:

Gy = npus’ + G5! (57)
with
GE?/(RT) = —npv(1 — zc10:)*A1n[1 — exp(—xb)). (58)

n, and v are the number of moles of the polyion and the number of dissociable
repeating units in that polyion, respectively (i.e., n,v is the total mole number of
dissociable electrolytic groups in the backbone). z¢y is the (absolute) valency of the
counterions of the polyelectrolyte. zc10,is the ratio of charges carried by those
counterions that are “condensed” to the backbone to the maximum number of
charges on that backbone. That ratio is also called the “neutralization fraction of
the polyion”. Thus (1 — z¢;6.) is the ratio of the actual number of charges ¢ to the
maximum number ¢nyax0f charges on the backbone of the polyelectrolyte.

q

Gmax

= (1 —z¢16,). 59)
Consequently, the number of moles of dissociated repeating units, 7, giss is:
1y giss = MpV(1 — zcr0y,). (60)

A is the charge density parameter [cf. (30)]. When the charge density is small (i.e.,
the distance b between two dissociable groups is large so that 1 < 1) the poly-
electrolyte is completely dissociated. Thus, the first part on the right-hand side of
(58) [i.e., n,v(1 — ZCIGZ)ZA] is the number of moles of dissociated polymer groups
times the charge density parameter. Parameter x is the inverse of the radius of the
ionic cloud in the aqueous solution, as introduced in the Debye—Hiickel theory:

2

eeokT

k2 = 2N, Is = 8nNlslg, (61)
where [ is the ionic strength of the aqueous solution on the molarity scale.

When a single polyelectrolyte and a single low molecular weight salt M,, X, are
dissolved in water, that ionic strength is:

I = [(szi,, + vxz)z()cs + zaizp (1 — ZCIQZ)VC,,]7 (62)

N =
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where zy, zx, and z, are the charge numbers of cations M, anions X and the
monomer electrolyte group, respectively and ¢, and ¢, are the molarity of the low
molecular weight salt and of the polyelectrolyte, respectively. Thus, the last term on
the right-hand side of (58) describes the influence of the ionic cloud of the solution
on the Gibbs excess energy of the polyelectrolyte.

5.2.2 Contribution from Condensed Counterions

Those counterions that do not dissociate from the polyion are treated as a further
solute:

ref
GcondACI = Necond.CI1Hcond.CI + AGcondACI- (63)

AG ona.c1 results from a transfer of the condensed counterions from the real
solution (i.e., at molarity ccr) to a volume V, near the polyelectrolyte. In that
volume, the concentration of the counterions differs from the concentration in the
surrounding aqueous solution as that volume contains all condensed counterions,
i.e., n,0.z, counterions. The molarity of the counterions in that volume is the
“local” molarity CCllocal *

Neond.CI npvozzp

Vp Vp

CCllocal = (64)

V,, is the (unknown) volume of the condensate. The change of the Gibbs energy
encountered in that transfer is approximated by the corresponding change of the
entropy:

C oca
AGcond‘CI/(RT) = Neond.c1 1N (CCI:(IZII) (65)
resulting in:
0.z,
AGcond.CI/<RT) = npvzp02 In ; s (66)
UPCCI

where v; is an unknown molar volume:

v, = ﬁ 67)

npv

That molar volume v; is estimated by Manning in the following way. As a
decrease in the degree of dissociation (i.e., an increase of 6,) results in an increase
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of GE ¢l and a decrease of AG cond.cI. Manning assumed that the condensation process
reaches an equilibrium when the sum (GE ! 4+ AG ond.cr) Teaches a minimum:

6(G]’f‘°l + AGcond.Cl)
00.

=0. (68)

This equation is evaluated for the aqueous solution of the single polyion, also
assuming that the influence of 0, on the ionic strength can be neglected. The molar
volume vy, is calculated from:

0.z
1+1In ( & ) +229)(1 = z¢40.) In[1 — exp(—xb)] = 0. (69)
L CCI Zp
For low concentrations of the polyelectrolyte (i.e., when ccy— 0) that equation
can only be fulfilled when:

0© = lim 0. = 1 ( - Z”) (70)

cc1—0 ZC1 ZCI)u

As QEO)ZCI is the ratio of the number of actual charges on the polyelectrolyte
backbone to the max1mum number of charges on that backbone, i.e.,
0< (6 ZCI) <1, then 0 zcr is positive as long as z,/(zcid) < 1. The poly-

electrolyte is completely dissociated when z,/(zcid) = 1, ie., H(O)ZC[ 0.
0”cannot be negative even if zp/(zci4) > 1. Therefore, two cases have to be
distinguished:
Case A:
2 Jal) <1, 00 =L (1 _ Zf’) an
? -7z zcih
Case B:
2/ (zcih) > 1, 0% =0. (72)

vy, is calculated from (69) by replacing 0, by 0 , which is taken from (71). As
for the case when 9 = 0, no counterion condensatlon occurs and therefore there is
no contribution from condensed counterions to the Gibbs energy.

The result for the molar volume U; is:

A
v, = 47‘CNAZ,2,b3(Z§I — 1)exp(1). (73)

P
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5.2.3 Contribution from Free Counterions
The aqueous phase contains “free” (or “dissolved”) counterions. These ions are

either dissociated from the polyelectrolyte or result from the dissolution of the salt
S. Their contribution to the Gibbs energy of the solution is:

Gireec1 = nfreeCl,ui‘fefeCI + AGtreect, (74)
AGireect/(RT) = [n7) Ol ) 75
freeCI/( ) Nfreect + Npreect | 1N ChreeCTVcT (- (75)

The mole number nf(fe)ea of the counterions that originate from the polyelec-
trolyte is:

(p) n V(l — ZCIOZ)
Nreect = £ o Zp (76)

and the mole number of the same counterionic species from the added salt is:

”E‘rsgeCI = sV, 77

where n; and v¢y (either vy, or vy) are the mole number of the dissolved salt S and
the stochiometric coefficient of the counterion of S, respectively. The molarity
crreect Of the counterions in the aqueous solution surrounding the polyelectrolyte is:

CfreeCl = (”E‘fe)eCI + ng‘rse)eCI)/ 14 (78)
or:
zv(1 — zc10,
CfreeCl = I?(Tlak)cp + veics. (79)
Therefore:

y4
AGieect/(RT) = [chs + Z—; (1- ZCIHZ)vnp:|

X ln{)’(ccl) [VCICs + ip—v (1— ZCIQZ)C[I:| } (80)
c

ygl) is the activity coefficient of the counterions in the aqueous solution of ionic
strength Ig (on molarity scale) [cf. (62)]. That activity coefficient might be set to
unity or be approximated by the Debye—Hiickel theory.
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5.2.4 Contribution from Coions

When a neutral salt S is dissolved in the aqueous polyelectrolyte solution there is
also a contribution to the Gibbs energy of the aqueous solution by the other ions,
here called coions. When vcoy is the stoichiometric coefficient of that coion in S,
following the same ideas as explained before for the free counterions, that contri-
bution is:

GfreeCOI = nfreeCOI,“?f;CO] + AGfreeCOIa (81)
where:
AGreecor/(RT) = veoins In (VCOICng&)' (82)

The activity coefficient yg%lof the coions (on molarity scale) is treated in the

same way as the activity coefficient 7/ of the counterions (i.e., it is either set to
unity or expressed through the Debye—Hiickel expression).

5.2.5 Contribution from Water

The final contribution to the Gibbs energy results from the presence of water
(subscript w):

Gy = myi™™ + n,RT Ina,. (83)

The activity of water is approximated by using the osmotic coefficient (Dz(f) on the
molarity scale:

(I)(L> o In ay, _ In ay, (84)

P iy Ccat ceon/7

where p;, is the molar density of water in the aqueous solution in moles per liter:

Ina, = —(D[(f) (ver + veon)ns + . (1 = zci0:)vny | . (85)
e

The osmotic coefficient (I);f) is again either set to unity (that is the common
approach) or taken from the Debye—Hiickel theory for an aqueous solution contain-
ing n; moles of salt S and ng’e)ea moles of counterions dissociated from the
polyelectrolyte.
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For highly diluted solutions, the results of Manning’s theory agree with the
results of Lifson and Katchalsky [cf. (46) and (47)]. For example, Manning [106]
gives for the osmotic coefficient of an aqueous solution of a single polyion where
the counterions have the (absolute) charge number zcy:

!
lim ) =1 - 577 for Azpzcr < 1 (86)
and:
lim @) = for Azpzcr > 1. (87)

cp—0 P 2)LZ[; ZCl

Manning [106] gives for the limiting activity coefficient of the counterions in
such an aqueous solution:

c z )
lim Inyg = ~Sazer for izza <1 (88)
L'p—b

and:

lim In y(&) =5~ In(Azpzcr)  for Azpzer > 1. (89)

cp—0

The equations (88) and (89) are only appropriate when a single polyelectrolyte is
dissolved in an aqueous solution of a single salt and a single polyelectrolyte with a
common counterion. Manning has also given extensions for cases in which several
low molecular weight salts are dissolved and when those salts and the polyelectro-
lyte have no common ions [78].

5.3 Modifications of Manning’s Theory

There have been some efforts (for example, by Nordmeier [107] and by Hao und
Harvey [108]) to modify Manning’s model. Here, only the modification by Hao and
Harvey will be discussed. Hao and Harvey applied statistical thermodynamics for a
linear lattice to derive an improved expression for the “neutralization fraction of the
polyion” 6, that can be used to avoid the approximation 6, = QE,O). For an aqueous
solution of a single salt and a single polyion (both having a common ion — the
counterion), that result is:

-1 N
0.— L (1 - Z”) —In(f) [m Uee) | In (jecr) (90)

ZCI/l Z%I/l (Zc])v — 1)(2%1/1 — ZC[)» + 1) ’
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where j stands for:
j= AN b1y (Z%:IVC[ + ZéOIVCOI) ©n

and f is a “short-range” parameter. Hao and Harvey did not use the concept of a
volume V,, where the condensed counterions are located, but introduced a binding
constant to describe the counterion condensation phenomenon. They expressed that
binding constant using an adjustable, dimensionless (positive) parameter f. For
f=1, (90) reduces to Manning’s approximation (8, = 0§0)), whereas for f # 1
the correction term on the right-hand side of (90) does not vanish.

5.4 NRTL Model of Nagvekar and Danner

Nagvekar and Danner [101] tried to overcome the limitations of the theoretical
expression by combining Manning’s result for highly diluted aqueous solutions of a
polyion with the semiempirical electrolyte—NRTL (nonrandom two liquid) equa-
tion of Chen and Evans [109]. Their expression for the Gibbs energy of an aqueous
solution of a polyion consists of three parts. The first part describes the ideal
mixture, the two other parts describe the excess Gibbs energy G, which results
from short-range (superscript SR) as well as from long-range (superscript LR)
electrostatic interactions:

G= > mygms + G+ GHR (92)

all components j

The chemical potential of a component ; in an ideal mixture y; ;g mix is defined on
the mole fraction scale using the unsymmetrical convention, i.e., the reference state
for the solvent (water) is the pure liquid solvent. For any solute species, the
reference state is a hypothetical pure liquid where the species experience interac-
tions as if at infinite dilution in water.

As the activity coefficient yj(-x) of component j is:

" OGE
RTIny! b= (2L , 93)
! 8”’ Nicjp,T

y;x) is a product of a short-range and a long-range contribution:

X SR,(x) LR,(x
y) = R E, 94)

Danner et al. express the short-range contribution using a modification of the
electrolyte-NRTL equation of Chen and Evans [109] and take the long-range
contribution from Manning’s model (for the case of infinite dilution of a
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polyelectrolyte in water). For example, they treat an aqueous solution of a single
polyelectrolyte as a three-component mixture consisting of the solvent, the coun-
terion, and the polyion backbone that is approximated by its charged repeating
units. As the electrolyte-NRTL model is a “local composition” model, such a
solution is described by cells. There are as many types of cells as there are different
species in the mixture. Each cell type consists of a single species surrounded by its
nearest neighbors. There are three different cells in an aqueous solution of a single
polyion, i.e., with a water molecule, a counterion, or a repeating unit, in the center
The cell with water as the central species might be surrounded by other water
molecules, counterions, and repeating units of the polyion. The nearest neighbor-
hood of a cell with a central counterion also contains water and repeating units of
the polyion, but it is assumed that there are no further counterions. The nearest
neighborhood of a cell with a central repeating unit consists of two further repeating
units (its neighbors in the polyion), counterions, and water molecules. In contrast to
Chen and Evans, Danner and coworkers [101, 102] do not assume that the criterion
of electroneutrality is fulfilled in each cell. Because the electrolyte-NRTL model is
commonly given for a symmetrical convention, whereas polyelectrolyte systems
are normalized according to the unsymmetrical convention, Danner et al. use the
following expression for GESR of a multicomponent solution:

GEA,SR GESR,sym

s oy 1 SR,(x),oo 95
mRT _ niRT >y ’ ©3)

all solutes j

where GESRYM 5 the excess Gibbs energy in the symmetrical convention, n is
the total mole number of the solution:

nr = Z nj j=w,a,c (96)

all components j

and yJSR’(X)’OO is the contribution of the short-range interactions to the activity
coefficient of solute j (i.e., either a cation ¢ or anion a, in the symmetrical
convention, on the mole fraction scale at infinite dilution in water).

'SR.(X)A,oo

T ,\SRA,(X)
; = lim y; , 97

n—0

where subscript k stands for all solutes and:

aGE,SR,sym
RTIny®® — (22~ . 98
ny; on, e 93)

The mole fraction of species in a shell of nearest neighbors around a central
species is expressed using a Boltzmann term as a weighting factor. Danner et al.
give the following expression for the contributions of short-range forces to the
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excess Gibbs energy of a multisolute and multisolvent mixture in the symmetrical
convention:

@ — Z E Xj G”T/S Z X Z Xq Zj#(‘ XiGje.acTje.ac
l’LTRT Z/x Xkag' - C - Z(l’ Xa/ Zk#(‘ Xkac,ac
X, Z i#a XiGja.c'aTja,ca
+2 X o, (99)
za: (Z Zc’ XU’ Zk;ﬁg Xkaa‘,ca

where subscript s refers to a solvent component, and subscripts ¢ and a refer to
anionic and cationic species, respectively, regardless of their source (either from a
polyion or from an added salt). Subscripts j and k stand for any of the species in the
mixture and primes are used to distinguish different species of the same type. The
composition of the mixture is described by “modified mole fractions” X;:

Xj = Xjzj, (100)

where x; is the mole fraction of species j and z; is (for a charged species) its
(absolute) charge number, and for any uncharged species z; = 1

There are two types of interaction parameters that are distinguished by the
number of subscripts: Gj; and 7;; on one side and Gj;t; and 7j;; on the other side,
which are expressed using binary parameters g;; for interactions between species
j and i and by binary and ternary nonrandomness parameters oj; and oj; z;:

Gj,' = exp(—ocj,-rji) (101)

with:

8ji — &ii

T = ’RT (102)

and:
Giixi = exp(—%jixiTjisi) (103)

with:
Tji ki = % (104)

Danner et al. used Manning’s results for the long-range contribution to the
activity coefficient of the counterions in an aqueous solution of a single polyion:

A
In y‘a(.(C) _ _EZPZCI for Azpzer <1 (105)
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and

1
Inye® = — 5~ In(zz) for izyzer > 1, (106)

where A is a charge density parameter [see (30) and (31)] and z, and z¢; are the
(absolute) numbers of elementary charges on a dissociated repeating unit and on the
counterion, respectively. The osmotic coefficient on the molarity scale is:

© Ina, ln(xwy{;R'(x)yi,R ’(X>) ln(xwy{;R’(x)) In yva’<x>
=G = @ =T 0 o 19
In awy,id.mix. In aw,id.mix In awA,idAmixA In aw;id.mixA
where, as in (22):
(0) 1
Iy = — = > Cie (108)
’ Pw iz

The long-range contribution is described using Manning’s results and one
obtains for the osmotic coefficient (on the molarity scale):

0 = lim @), — p’ ot (109)
r =0 P " Zall solutes j Cj
. In ySR.(X)
OO = lim @), — pr—" (110)
P S0 PM cp(1+2Lv)
where
lim @), = 1— %zpza for Jzyzct < 1 (111)
L'[)—> 7
and
1
lim @), = for Azpzcr > 1. (112)

¢p,—0 pMa 2)L,ZPZCI

As above, ¢, and v are the molarity of the polyion and the number of repeating
units of that polyion. The short-range part of the activity coefficient of water is
calculated using (98).

The model needs numerical values for interaction parameters and nonrandom-
ness parameters. Danner et al. mention that the nonrandomness parameters o;; and



Aqueous Solutions of Polyelectrolytes 113

oji ,iwere arbitrarily set to 0.20, except when the central species in the cell is a
repeating unit and its nearest neighbors are also repeating units. Then, the nonran-
domness parameter was set to 0.33. They finally adjusted four interaction para-
meters to experimental results for the osmotic coefficient of an aqueous solution of
a single polyelectrolyte. However, no parameters have been published and all
comparisons were given only in graphical form. But, the method is obviously suited
for a good correlation of experimental data for the osmotic coefficient of aqueous
solutions of a single polyelectrolyte.

Danner et al. did not report results from their method to describe the influence of
an added salt on the osmotic coefficient of aqueous solutions that contain a single
polyion.

5.5 Pessoa’s Modification of the Pitzer Model

Pessoa and Maurer [110] assume that a polyion might not completely dissociate in
an aqueous solution and that the degree of dissociation is independent of the
composition of the aqueous solution. They propose the use of experimental data
for the osmotic coefficient of an aqueous solution of the single polyelectrolyte
at infinite dilution to determine that degree. On the molality scale the osmotic
coefficient is:

Ina,
e
nig.lmix. In awr"jid.mix.
where
m % m;
G = —My D L (114)
all solutes j

M;, is the relative molecular mass of water divided by 1,000 (i.e.,
M}, = 0.01806), m; is the molality of species j and m° = 1 mol/(kg water).
The ideal solution is defined so that all counterions are completely dissociated:

o vmpzz—", (115)
CI

where m,, is the molality of the polyion. The activity of water in an ideal aqueous
solution of a single polyelectrolyte is:

naly o = —M, (1 v Zz—é’l) ';i’o’ (116)
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Taking into account that, in a real solution, the polyion is not completely
dissociated, the equation gives at high dilution in water:

na™ = —M, (1 v Z”) o (117
Zcr)/ m

The ratio v* /v is the degree of dissociation of the repeating units of the polyion.
Combining (116) and (117) results in:

s 118
N e

Zcl

lim @) = %"

Mp—0 p

When the repeating unit is a 1:1 electrolyte and the number of repeating units is
large, the limiting value of the osmotic coefficients equals the degree of dissociation:

*

o0 — L, (119)
v

A real aqueous solution of a single polyion is considered to be a mixture of
water, (partially dissociated) polymer chains, and the dissolved counterions. In an
ideal mixture all solutes only experience interaction with water, whereas in a real
solution there are also interactions between the solutes. The deviations that are
caused by these interactions are taken into account through an expression for the
excess Gibbs energy. Pessoa and Maurer [110] started from Pitzer’s equation [105,
111] for the excess Gibbs energy of aqueous solutions of low molecular weight
strong electrolytes. That method was extended previously to describe the Gibbs
energy of aqueous solutions that contain both a strong electrolyte and a neutral
polymer [112—114]. As in the work by Danner et al. [101, 102], the Gibbs energy of
an aqueous solution is split into a contribution from ideal mixing and contributions
from long-range and short-range interactions. The contributions are expressed
using the unsymmetrical convention. However, Pitzer’s equation applies the molal-
ity scale to express the composition of the aqueous solution:

G= Y nam + G5+ GER, (120)

all components j

For a solute component j, the chemical potential in an ideal mixture ;g pix iS:
£, m;
s = 0"+ RTIn 2, (121

where ,uff’(mis the chemical potential of solute j in an one molal aqueous solution
(i.e., mj = m° = 1 mol/(kg water)). In that reference state, the solute experiences
similar interaction as in infinite dilution in water. For the solvent (i.e., water) the
reference state is the pure liquid solvent and the difference between the chemical
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potential in the real mixture and that of the pure liquid is expressed via the activity
of water:

Iy = My pure + RTIna". (122)

Pitzer uses a modification of the limiting law by Debye and Hiickel to account
for long-range interactions that are caused by Coulomb forces:

GE LR 4

7an;RT —Ay—= In(1 + byV/I). (123)

b

A, is the Debye-Hiickel parameter (at 298.2 K A,= 0.3914), I, is the ionic
strength (on molality scale), and b is a numerical value (b = 1.2). This expression is
very well suited to describe the activity coefficient of ions at high dilutions, but
cannot directly be applied to polyelectrolyte solutions because the Debye-Hiickel
term was developed for punctual electric charges (such as small mobile ions). It is
not valid for highly charged polymer backbones. Pessoa and Maurer [110] replaced
the contribution of the polyion in the expression for the ionic strength:

1 mj* *\2
W3 TR, (124

where for all solute species (with the exception of the polyion) m; = m; and z; = z,
whereas for a polyion (j = p) m;, = v'm;, and z, = z,, i.e., for the calculation of
the ionic strength the polyelectrolyte is replaced by its dissociated repeating units.
The activity coefficient of a solute caused by the long-range interactions is:

Iy = 4 g2 ( In(1+ bvin) + 1+\/blj/“> (125)

where g; = 1 for all solutes, with the exception of the polymer where g; = v*.
The long-range contribution to the activity coefficient of the solvent is:

12/2
InytRm) — 24 ppr T
Tw ”1+b\/_

The short-range contributions are described with a virial-type equation for the
excess Gibbs energy that was adapted from Pitzer [105]. It is applied here neglect-
ing ternary and higher interactions between solute species:

(126)

GE SR

A 3 S8 e

i#w jEw
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where n,, is the number of moles of water and 4;;(I;,) is an osmotic virial coefficient
for interactions between solute species i and j that depends on the ionic strength Iy,
through:

2
Jij(Im) = 2" A,,”m(l—(1+aﬂ;)exp<—wi;>). (128)

Equation (127) applies the same definition for the molality m; of a solute species
i as (124) for the ionic strength. )( Jand )»( Jare binary parameters for interactions
between the solutes, for example, between a repeating unit of the polyion and a
dissolved counterion. No distinction is made — as far as the interaction parameters
are concerned — between neutral and dlssoc1ated repeating units. The binary para-
meters are symmetrical (/1 29 and /1 = )L )) and o is a constant (& = 2). For
a solute species, the contrlbutlon of the short range interactions to the activity
coefficient is:

In %™ _20,2;,, —+ —0, 22 M,
J#w
m;
RO SNEE
JFEW kFw

(129)
and for the solvent:
lny R,(m) (Z Z () + /llj exp(— oc\/_)) —L —) (130)
i#w j#EwW

The final equation for the activity of a solute i and of the solvent (water) is
obtained by coupling the above expressions through:

a; = miyfRyR. (131)
a, = exp (—M:, ZZ ))&RW/VSVR, (132)
i#w

where the sum is over all solute species, i.e., in an aqueous solution of a single electro-
lyte, i stands for the polyion (m; — m;,,) and for the counterion (n; — v* ﬁmp)

Modeling the osmotic coefficient of an aqueous solution of a single homo-
polymer polyion (i.e., a polyion that consists of a single repeating unit and a single
counterion) requires:

— The osmotic coefficient of an aqueous solution of the polyelectrolyte at infinite
dilution (D[(:'V”)

— The number of repeating units of the polyion v

— The binary interaction parameters /1;) and ;ngl)
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(I)g"<m) is either determined from experimental results for the osmotic coefficient
or estimated using the results of Manning’s theory (in that case the length of a
repeating unit has to be known). For a polyion that consists only of a single
repeating unit, the number of repeating units v is calculated from the number-
averaged molecular mass of the polyion and the molecular mass of the repeating
unit. It is assumed that binary interaction parameters between species carrying
electrical charges of the same sign can be neglected (i.e., they are set to zero).
Therefore, there are only two, nonzero binary parameters for interactions between a
repeating (subscript p) unit and the counterion /1[@(2 and Xélcg These interaction
parameters are fitted to some experimental properties such as the osmotic coeffi-
cient. Figure 12 shows a typical example for a correlation. The model can be
straightforwardly extended to aqueous solutions of a single polyion and a single
low molecular weight strong electrolyte (cf. Fig. 13) but also to aqueous solutions
of a polyion and a neutral polymer. Such mixtures often form aqueous two-phase
systems. Figure 14 gives a typical example.

5.6 VERS-PE Model

Lammertz et al. [116] extended the Virial-Equation with Relative Surface Fractions
(VERS) model of GroBmann et al. [112-114] for the excess Gibbs energy of
aqueous solutions of neutral polymers and low molecular weight electrolytes to
the treatment of aqueous solutions that also contain polyions. That extension is

1.0

0.8 o

0.6

(m)

0.4 - =}

0.2 +

0 T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5

.q!
Whapa(8°97)

Fig. 12 Osmotic coefficient of aqueous solutions of NaPA at 298.15 K. Experimental data [41]:
closed squares NaPA 5; open squares NaPA 15. Lines show the modeling
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Fig. 13 Activity of water in aqueous solutions of NaPA 5 and NaCl. Symbols experimental data
[28]; dashed line modeling of systems without salt; dotted line modeling of systems without
polyelectrolyte; solid lines correlation results
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Fig. 14 Liquid-liquid equilibrium of aqueous solutions of NaPA 5 and PEG 34. Symbols experi-
mental equilibrium compositions [115]; dotted lines experimental tie lines; solid lines correlation

results

called VERS model for polyelectrolytes (VERS-PE model). Like the model of
Pessoa and Maurer, the VERS model is based on Pitzer’s equation [105] for the
Gibbs excess energy of aqueous solutions of low molecular weight, strong electro-
lytes. GroBmann et al. introduced two modifications to allow for the treatment of
neutral polymers: the molality scale was replaced by a surface fraction scale, and
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the interactions with a polymer are described via interactions with groups of that
polymer, i.e., the polymer was split into groups. The groups commonly consist of the
repeating units of the polymer. The extension of the model to polyions also considers
the phenomenon of counterion condensation by a chemical reaction equilibrium
approach. For convenience, the extension of the model for the excess Gibbs energy
to aqueous solutions of polyions is described here first for an aqueous solution of a
single polyelectrolyte (designated by subscript p) where only a single counterion
might dissociate from a repeating unit and that repeating unit is a 1:1 electrolyte.
The reference state for the chemical potential of the solvent (water) is the pure
liquid, whereas for the solute (polyelectrolyte) it is a hypothetical one molal solution
of the undissociated polyelectrolyte in water (m, = m°® = 1 mol/(kg water)), where
it experiences interactions with water molecules only, i.e., in that reference state the
undissociated polyelectrolyte is infinitely diluted in water (m,= O in pure water).
The difference between the chemical potential of the polyelectrolyte in the real

solution ,up(T, my,) and in its reference state ,u;ef is calculated in five steps:

Wy — ll;,ef = Anp, + Aosp, + Asaps, + Assp, + Ase (133)

In the first step (A1), only the molality of the polyelectrolyte is changed to its
molality m,, in the real solution:

Apopt, = RTln(%). (134)

This contribution accounts for the change from the reference state to an ideal
dilution (assuming that at state 2 the interactions are the same as in the reference
state) and there is still no dissociation.

The second contribution (A;3) describes the change in the chemical potential due
to splitting the polyelectrolyte into its monomers. This change is the sum of two
contributions: a free volume contribution (superscript fv) caused by the increase of
the number of particles, and a combinatorial contribution (superscript comb) caused
by the increase of the number of degrees of freedom:

Agsp, = Agap T (135)

In state 3, the aqueous polyelectrolyte solution has been replaced by an aqueous
solution of the nondissociated repeating units. The repeating units still experience
only interactions with water. As one polyelectrolyte molecule consists of v mono-
mer units (characterized by subscript A), the molality of species A, iy, is:

my = vm, (136)

and the chemical potential of the polyelectrolyte in state 3 is:

foa :v(,uﬁff—I—RTln(%)). (137)
9 mO
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1 is the chemical potential of nondissociated repeating units in their reference
state. That reference state is defined in the same way as the reference state for a
polyelectrolyte.

In the next step (Asz4), all monomer units A are split into two groups. Subscript C
designates all repeating units that will never dissociate while subscript D designates
repeating units that are assumed to undergo a dissociation reaction. The condition
of mass balance requires that for the chemical potential of the polyelectrolyte in
state 4 is:

Upa = Va4 Uca T VD4 Upa- (138)

For the sake of simplicity, vc 4 and vp 4 are expressed through a new property &,
that is directly related to the degree of counterion condensation at infinite dilution of
the polyelectrolyte in water.

k=4 (139)
v

The chemical potential of the polyelectrolyte in state 4 is:

Jerm, T
oy = vk</f§f +RT1n(anOC’4>) (1 — k)

X <;f5f L RTIn (V(l_k)’"f’r“)) . (140)

mO

I'c4 and I'p 4 are the activity coefficients (on molality scale) of species C and D,
respectively, in state 4. But, as there is at this stage no difference between the
natures of groups A, C, and D:

I'ca=Tps=Tuys (141)
and
Het = upt = (142)
Consequently,
k(1 — k), T
g = v<u£ff+RT1n <V (1=K _ Tt ad) ) (143)
' m

The change of the chemical potential of the polyelectrolyte caused by the
transition from step 3 to 4 is:

Asspt, = vRT In (k"(l _ k)“’k)FA_A). (144)
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In the next step (A4s), the partial dissociation of species D is achieved (to
account for the phenomenon of counterion condensation). The dissociation is
expressed by a chemical reaction:

D= CI+F,

where CI and F stand for the counterion and for the dissociated monomer unit,
respectively. The chemical potential of the polyelectrolyte in state 5 is (as only a
single counterion dissociates from one monomer unit):

tys = (kv +vps)pas + vers Hers + Versie s (145)

For convenience, the total degree of dissociation of the repeating units o is
introduced:

a:% where 0 < o < (1 — k). (146)

As there is no difference between species C and D (all are designated by A):
Hes = Hps = Has:

tys =V (tas+ o(ters + tps — lips))- (147)
Because in dissociation equilibrium:
Hers +Ups —tps =0 (148)

the chemical potential of the polyelectrolyte in state 5 is:
_ ref k (1—k) mP
W5 = vty +RTIn{vk"(1 —k — o) %FA,s . (149)

When furthermore (as another approximation), the difference between the activ-
ity coefficients of the undissociated repeating units in states 4 and 5 is neglected, the
change of the chemical potential of the polyelectrolyte caused by the transition
from 4 to 5 is:

Assit, = v(1 —k)RTln(l —%{) (150)

The fifth contribution to the chemical potential is to account for the repolymer-
ization of the charged and noncharged monomers. This difference is approximated
by reversing the change from state 2 to state 3, but applying a correction term
Ases that accounts for the difference in the conformation of the polymer chain
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from a more globular structure in state 2 (where the polymer is neutral) to a more
stretched structure in state 6 (where the polymer backbone is charged):

A56,Up — _A23u1f)v+comb 4 ASG,uﬁconf' (151)

It is assumed that the fraction of polyions in a stretched configuration equals the
total degree of dissociation o of the repeating units. Furthermore, the difference
between the chemical potentials of a polyion in its stretched and its globular
structures is approximated using the combinatorial part of the UNIQUAC (univer-
sal quasichemical) model of Abrams and Prausnitz [117] for the excess Gibbs
energy of nonelectrolyte solutions. In the UNIQUAC model, the shape of a mole-
cule i is described by a volume parameter r; and a surface parameter ¢;. A change in
the polyelectrolyte’s conformation changes only its surface parameter resulting in:

Asok s o = (ge1 =45t —_
;6T1’ = 5¢ (ln(((@g;;qgl = (4 qs)) +(1—E)(qa — %))- (152)

gs and gy are the polyelectrolyte’s surface parameters in the stretched and the
globular configuration, respectively. Similarly, ®y and ®g are the polyelectro-
lyte’s surface fractions in the stretched and the globular configuration, respectively,
and E is the volume fraction of the polyelectrolyte in the aqueous solution. The
polyelectrolyte’s surface fraction is:

mp
o b I ITPEt] « 7
Oup = da for “ab” either “st” or “gl”, (153)

oo " Gab T 55.5- qw

me

where g\, is the surface parameter of water. The surface parameter of the stretched
polyion is calculated using the surface parameter ¢, of a repeating unit and the
number v of repeating units which form that polyion:

st = Vqrp- (154)

The surface parameter of the globular polyion is smaller than that of the
stretched polyion. It is approximated by introducing a configurational parameter
b*(that is close to, but smaller than 0.5):

qet = V" qrp. (155)

The polyelectrolyte’s volume fraction is:

My .
Ve T
n,

:v-—-rrp—&—SS.SrW’

me

[1]

(156)

where 7y, and 7, are the volume parameters of a repeating unit of the polyion and of
water, respectively.
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Summing up the contributions from the five steps gives the chemical potential of

the polyion in an aqueous solution. The chemical potential of the polyion on the
molality scale is also given by:

i, —,uref+RT1n( j,”ﬂ) (157)

and the activity coefficient is:

Iny(" = v1n</<k(1 k oc)“_k)l"Aﬁ)
@g st
+ 50 <In<((®3qgl E(%“qﬂ)) +(1-8) (qgl — qs[)>. (158)
g

The model requires pure-component surface (g, and g,) and size (1, and r,,)
parameters for the monomer unit and for water, the degree of counterion dissocia-
tion in infinite dilution (k), the total degree of dissociation of the repeating units (o),
the configurational parameter (b*), and interaction parameters (in the expressions
for the activity coefficients in state 5 where the solution is a mixture of water,
undissociated as well as dissociated repeating units and counterions).

Surface and size parameters are either available in the literature or are calculated
following the proposals by Bondi [118]. The degree of counterion dissociation in
infinite dilution is estimated from experimental data for the limiting osmotic
coefficient of an aqueous solution of the polyion. Following the ideas outlined in
the description of the Pessoa and Maurer model above, one finds when the repeating
unit is a 1:1 electrolyte:

1+ kv
@O — ~
p 1+v

(159)

The activity coefficients in state 5 (I'; 5, where i is any solute that is present in
state 4, i.e., the neutral repeating unit A, the dissociated repeating unit F and the
counterion CI) are calculated using the VERS model of Grolmann et al. [112—114].
The activity coefficient I'; is assumed to consist of contributions from van der
Waals-like interactions I' leW and electrostatic interactions I" ?l:

I =Tvre, (160)

The electrostatic contribution is expressed in a similar way as the long-range
contribution in the model of Pessoa and Maurer [cf. (125)] from the Debye—Hiickel
parameter A, the charge number z; of groups/species i and the ionic strength /;;, (on
molality scale):

11—k (2 Vi
InTe = —A_z — In(1+1.2vV1 161
n 3 (12“(Jr In) + 12\/) (161)



124 G. Maurer et al.

The ionic strength is:

gy (162)

The contribution from short-range interactions to the activity coefficient of
solute species (i.e., groups) i, F}’dw, is taken from the VERS model:

2 g (C]
A PR RIS

all groups L ~ %
2
Zj ®L ®k
- (M*>f2([m> Z Z _aaLl,[)( (163)

all groups L all groups k "

3 4 O, 6 b
— ——bi1x
(M;kv>2 9w an groups L all groups k — "W 0,
with:
1
fillm) = 7 [1 — (1 + 2\/I;) exp{—Z\/[;}] and (164)
1
Follm) = 777 [1 = (14 2V + 20 exp{ =2V }] (165)

The sum in (163) is over all solute species, i.e., nondissociated repeating units C,
nondissociated repeating units D, dissociated repeating units F and counterions CI.
M, is the relative molar mass of water divided by 1,000 (M}, = 0.018016). Sub-
script w stands for water and ¢; is the surface parameter of species i. The surface
fraction of a group L is abbreviated by ®;. As the mixture consists of species C, D,
F, CI and water, the following relative surface ratios are required:

)
®—C = Mk 2 (166)
w m-qy,
e
®—D:M;,v(1 —k—a)ZZ—Z‘P, (167)
)
2 _ Mty e (168)

(169)
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a,(-UL) and aEIL) denote binary interaction parameters between species (groups)
; : 0 1

i and L. These interaction parameters are symmetric, i.e., ¢;; = a;; and a;;/ =
(1) : '

a; ;. They form a set of adjustable model parameters. The degree of dissociation a is
calculated assuming chemical equilibrium between monomers D and its dissocia-

tion products F and CI in state 5:

g = mere Fale v my TG T by g (170)
- o - o v CI+ F»
mpm® Tp — 1—k—oame TV

where all molalities are those in state 5. Chemical reaction equilibrium constant K is
one of the adjustable parameters of the model.

When there is also an additional single 1:1 salt MX in the aqueous solution, (162)
(for the ionic strength) and (163) (for the van der Waals contribution to the group
activity coefficient) have to be extended; the sums must also include the ions M and
X. The extension requires the relative surface ratios for M and X:

Ou _ M:L mMXQM, (171)
0, meq,,
(O)% mMyxqx
—— =M ——= 172
O, " mq, e

Furthermore, as well as the chemical potential of the polyelectrolyte, the chemi-
cal potential of MX is also required (for the calculation of the activity of water, see
below). That chemical potential is given by the sum of the chemical potentials of
cations M and anions X:

my 'y mxrx)

Hax = Ha + by =u3‘}f+u§?f+RTln( P (173)

Finally, the activity of water ayy is calculated from the chemical potentials of the
solutes (either a single polyelectrolyte or a binary solute mixture of a polyelectro-
lyte and a low molecular weight salt) by applying the Gibbs—Duhem equation:

mj

du,, = d(.“w _ ’uwPureliquid) — _M; E — - dy;. (174)
m()
i#w

Integration at constant temperature for an aqueous solution containing a poly-
electrolyte P and a salt MX results in:

Au, = RT Ina, = —M:;J ™ d, — M, J TX gy (175)

0 w
water 171 water
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The right-hand side is solved in two steps. In the first step, the integration is
carried out starting from pure water to a polyelectrolyte-free but salt-containing
solution:

A:”W,l _ _mMX+ ImMXl-S
2RTM, m TYTEL 2\ /Twx
m 2
- (,,TX) { Ak T @k exp(—2 Im,Mx)], (176)

where a,%)( and a,ﬁ,};( are binary interaction parameters between ions M and X~ and

I, mx is the ionic strength (on molality scale) of the polyelectrolyte-free aqueous
solution of MX.

In the second step, the molality of the salt is fixed at my;x and the molality of the
polyelectrolyte increases from zero to m,,:

e ow, m,
Ay o = =M, U mp 5mp d(m]o)]
» Mmyx

m, (177)
« MMx
- w—o[llMx(mMX»mp) - #Mx(mMX»mp = 0)]»
where
m, o my, In» (m)
J my d(m”) — RT m—’;+J m, [ 21000 d(@) . (78)
m=0  Omy, . m =0 omy, - me

The integral is solved numerically using (158) for the activity coefficient of the
polyelectrolyte.

The final equation for the activity of water in an aqueous solution of a strong
electrolyte MX and a polyelectrolyte P (where both MX and the repeating unit of the
polyion are 1:1 electrolytes) is:

1 myx m Lymx "
Ing, = 2" _Tr 9.4, MM
M;, me  me 714+ 1.2/ Tmx
2
— 2(%) [a,%)( + a,(t,}))( exp(—2 Inz,MX)]
muyx

~°RT [HMx(mMXv mp) — Hx (M, my, = 0)]

i Jln yém) m,
- dl—=) 1. 179
Jmp_o g ( 8m,, (m”) ( )
myx
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It is worth mentioning that the chemical potential uyx (myx,m,) is calculated
from (173) where the activity coefficients of both ions M and X are calculated for an
aqueous solution in which the polyelectrolyte is cut into its repeating units and the
species [nondissociated repeating units (D), counterions (CI),and dissociated
repeating units (F)] are in chemical reaction equilibrium.

For the example treated here (an aqueous solution of a strong electrolyte MX and
a polyelectrolyte P where the salt and the repeating unit of the polyion are 1:1
electrolytes) the activity of water in an ideal solution is:

(m ) MMX gy T (180)

me me

M* In awzdmn

The following parameters must be known when the activity of water (or the
osmotic coefficient) of an aqueous solution of a single polyelectrolyte is to be
calculated:

The number of monomer units v is estimated from the number-averaged molec-
ular mass of the polymer and the molecular mass of a repeating unit.

— UNIQUAC surface (g;) and volume (7;) parameters of water and the nondisso-
ciated repeating units are calculated by the method of Bondi [118]. No distinc-
tion is made between those parameters for the dissociated and nondissociated
repeating units. The surface parameter of water (g,, = 1.4) is also assigned to all
counterions.

— The degree of counterion condensation k at infinite dilution in water is deter-
mined from experimental data for the osmotic coefficient at infinite dilution (as
forv>>1) @9 =1 — k.

— The chemical reaction (dissociation) constant K is one of the adjustable para-
meters of the model. It is assumed that, at constant temperature, K is a constant
for a certain repeating unit.

— Parameter b* that is used to describe the configurational change from a globular
to a stretched conformation of the polyelectrolyte is also an adjustable model
parameter.

— Binary parameters (a ) and a ) are used for interactions between all solute
species in water. As these parameters are symmetric and as there are three solute
species, there are 12 such parameters. However, all parameters a(1> are
neglected, (a;; W = 0) and all parameters at ,) for interactions with the counterron
are also neglected (a; C)I = 0 for all solutes i). The parameter for interactions
between dissociated repeating units is also neglected (aF% = 0). With these
assumption, there are only two parameters: one for interactions between non-
dissociated repeating units (C or A) and one for interactions between these
nondissociated monomers and the dissociated repeating units. The distinction
between these binary parameters is also neglected, resulting in a single, adjus-
table binary interaction ggarameter that characterizes the polyelectrolyte’s
repeating unit A: a/‘f A=dyp =0dpp
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Fig. 15 Osmotic coefficient of aqueous solutions of poly(sodium methacrylate) at 298.2 K with
two different molecular masses. Experimental results: closed squares NaPMA 6; open squares
NaPMA 15. Correlation results: solid line NaPMA 6; dashed line NaPMA 15 [116]

Figure 15 shows a typical example for correlation of experimental results for the
osmotic coefficient (on molality scale) of aqueous solutions of poly(sodium meth-
acrylate).

For the calculation of the thermodynamic properties of an aqueous solution of a
single polyion that additionally contains a low molecular weight strong electrolyte,
some more model parameters are required. The volume and surface parameters of
the ions of the strong electrolyte are also approximated by the parameters of water.
Therefore, for an aqueous solution of the single salt the model does not differ from

Pitzer’s model, and for a large number of salts the binary interaction parameters
‘11(8))( and al(vlﬂ)( are available in the literature. All further interaction parameters (i.e.,
between cations and anions of the salt on one side and groups and counterions from
the polyion on the other side) are also set to zero, with the exception of a single
parameter. That parameter accounts for interactions between that ion of MX that
carries an electrical charge of the opposite sign as the counterion of the polyion on
one side, and the neutral group of the polyelectrolyte (i.e., A or C) on the other side.
For example, if NaCl is added to an aqueous solution of poly(sodium methacrylate),
the only additional interaction parameter is a AO a(=ap c1). Because the configuration
of the polyion in the aqueous salt-containing solution might differ from that in the
salt-free solution, it might be advantageous to consider the influence of the low
molecular weight salt on the polyion’s configuration parameter b*. An empirical
relation such as:

(1) "Mtmx

b =o¥ +w
mD

) (181)
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Fig. 16 Osmotic coefficient of aqueous solutions of NaPA 15 and NaCl at 298.2 K. Experimental
results are shown with symbols. (a) Prediction results. (b) Correlation results setting al) = 0.
(¢) correlation results setting @(!)# 0. Dashed lines corresponds to systems without salt; dotted
lines systems without polyelectrolyte; solid lines lines of constant water activity [116]
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where w%is the configurational parameter for the polyion when it is dissolved in
pure water and w!!)is an adjustable parameter, proved to be sufficient to describe
that influence.

Predictions from the model for the osmotic coefficient can be made when the
binary parameter between nondissociated repeating units and the counterion of the
low molecular weight salt, as well as the influence of that salt on the configurational
parameter b* are neglected. Figure 16 shows comparisons between experimental
data and calculation results for the osmotic coefficient for aqueous solutions of a
sodium poly(acrylate) (NaPA 15) and NaCl. The osmotic coefficient (on molality
scale) is plotted versus the “overall solute molality” > /7; that is defined as:

> iy = 2myx + (1 +v)m,. (182)

The experimental results for the mixed solute systems are shown for a constant
activity of water. The results extend from the polyelectrolyte (i.e., salt-free) system
to the (NaCl + water) system. The top diagram of Fig. 16 shows the comparison
with prediction results, i.e., the calculations were performed setting @, ¢; = 0 and
@) = 0. The middle diagram of Fig. 16 shows the comparison with correlation
results when the influence of NaCl on the configurational parameter b* is neglected
(i.e., adjusting only a,c;). The bottom diagram of Fig. 16 shows that the best
agreement is achieved by adjusting both parameters. With those parameter an
essential improvement is achieved, in particular at high concentrations (i.e., at
low water activities). Figure 17 shows a comparison between the correlation results
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Fig. 17 Osmotic coefficient of aqueous solutions of NH4PA 10 and NaCl at 298.2K. Experimental
results are shown with symbols. Dashed line correlation results for system without salt; dotted line

correlation results for system without polyelectrolyte; solid lines lines of constant water activity
[116]
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and the experimental data for the osmotic coefficient of aqueous solutions of
ammonium poly(acrylate) (NH4PA 10) and NaCl. For this particular system it
was not necessary to consider an influence of NaCl on the configurational para-
meter. The comparisons reveal that the model is well suited for the correlation of
the vapor—liquid equilibrium of aqueous solutions of polyelectrolytes with and
without an added low molecular weight salt.

6 Summary

A literature review is given on the liquid—vapor phase equilibrium of aqueous
solutions of polyelectrolytes. Experimental findings as well as selected thermody-
namic models for the prediction and correlation of such phase equilibria are
reviewed. The treatment of the thermodynamic models starts with theories and
later focuses on combining the results from such theories with engineering models
for the excess Gibbs energy. Such combinations allow for a good correlation of
experimental data, for example, the osmotic coefficient (and related properties) of
aqueous solutions of a single polyelectrolyte with and without an added salt.
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Abstract Gas—polymer interactions play a pivotal role in the formation of different
molecular organizations/reorganizations of polymeric structures. Such structural
modifications can have a negative impact on the material properties and should be
understood in order to prevent them or these modifications are of engineering interest
and they should be purposely tailored and properly controlled. Two newly developed
techniques, gas-sorption/solubility and scanning transitiometry, are shown to be well
adapted to provide the necessary (key) data to better understand and monitor the
polymeric modifications observed under the triple constraints of temperature, elev-
ated pressure, and gas sorption. This article illustrates the major contribution of gas—
polymer interactions in different interconnected applied and engineering fields of the
petroleum industry, polymer science, and microelectronics.

Keywords Gas sorption - Glass transition - High pressure - Self-assembling -
Solubility - Transitiometry - Vibrating-wire technique

Contents

I INErOAUCHION . ..ottt ettt ettt e 138

2 Experimental TeChNIQUES ... .......ooiuiiinii it 140
2.1 Gas Sorption and Solubility ............iiiiiiii e 140
2.2 pVT—Calorimetry: Scanning Transitiometry ..............c.cccoiiiiiiiiiiiiniineeeaes 144

3 Gas-Polymer Interactions and Practical Applications ..............cccooiiiiiiieiiinnn... 149

J.-P.E. Grolier (D<)

Laboratoire de Thermodynamique des Solutions et des Polymeres, Université Blaise Pascal de
Clermont-Ferrand, 63177 Aubiére, France

e-mail: j-pierre.grolier@univ-bpclermont.fr

S.A.E. Boyer

Centre de Mise en Forme des Matériaux (CEMEF), Mines ParisTech, 06904 Sophia Antipolis,
France

e-mail: severine.boyer@mines-paristech.fr; severine.boyer@univ-bpclermont.fr



138 J.-P.E. Grolier and S.A.E. Boyer

3.1 Evaluation of Gas Solubility and Associated Swelling ..............c...coooiiinn. 150
3.2 Gas—Polymer Interaction Energy .............ccoooiiiiiiiiiiiiiiiiiiiiiiiii 153
3.3 Thermophysical Properties at High Pressures ... 153
3.4 Phase Transition at High Pressures ...........c..ooiiiiiiiiiiiiiiiiiiiiiiiinnee, 161
4 CONCIUSION ...ttt et 174
REfEIENCES ...ttt e 175

1 Introduction

Gas—polymer interactions play a pivotal role in polymer science for the develop-
ment of new polymeric structures for specific applications. Typically, this is the
case for polymer foaming [1] and for self-assembling of nanoscale structures [2, 3].
Not only the nature of the gas, but also the thermodynamic conditions, are essential
factors in control of the processing operations. For this, the amount of gas solubi-
lized has to be accurately determined together with the possible associated swelling
of the polymer due to the gas sorption. Another important applied field in which gas
sorption in polymers has to be documented through intensive investigations con-
cerns the (non)controlled sorption of light gases in polymers that are used in
industry for items such as seals, containers, flexible hosepipes, and pipelines.
Nowadays, polymer-based materials are at the center of applications in which
they are frequently subjected to temperature variations and also to gas pressures
ranging from a few megapascal to 100 MPa or even more. An important example of
the large-scale use of polymer materials is in the transport of petroleum fluids [4]
using flexible hosepipes; these hosepipes are made of extruded thermoplastic or
rubber sheaths and reinforcing metallic armor layers. The type of transported fluids
(which might contain important amounts of dissolved gases) and the operating
temperature and pressure dictate the composition of the hosepipe sheath. However,
these thermoplastic polymers, like elastomers, are not entirely impermeable and
undergo sorption/diffusion phenomena. A rupture of the thermodynamic equilib-
rium after a sharp pressure drop could eventually damage the polymer components.
Gas concentration in the polymer, together with temperature gradients, can cause
irreversible “explosive” deterioration of the polymeric structures. This blistering
phenomenon, usually termed “explosive decompression failure” (XDF), is actually
very dramatic for the material. The resistance to physical changes is related to the
influence of the gas—polymer interactions on the thermophysical properties of the
polymer. The estimation of the gas sorption and of the concomitant polymer
swelling, as well as the measurement of the thermal effect associated with the
gas—polymer interactions, provide valuable and basic information for a better
understanding and control of polymer behavior in different applications in which
temperature and pressure, in combination with gas sorption, might deeply affect
polymer stability and properties. The striking effect of gas sorption is particularly
observed when the gas is in a supercritical state, depending on the thermodynamic
conditions.
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Other numerous industrial activities deal with polymer modifications and trans-
formations, through different processes like extrusion, injection, and molding.
Polymer foaming, among others, is currently achieved in various ways, but typi-
cally involves elevated temperatures and pressures as well as the addition of
chemicals, mostly gases that are used as blowing agents. Thermal, barometric,
and/or chemical stress can shift, even permanently, the polymer glass transition
temperature, T, which consequently modifies the physical properties of the mate-
rial. Sorption of fluids such as gases in the supercritical state induces significant
plasticization, resulting in a substantial decrease of T,. If such an effect is rather
weak when using helium or nitrogen, due to their low solubility in polymers,
sufficiently high pressure should induce higher gas sorption by polymers. In this
respect, gases such as carbon dioxide or hydrofluorocarbons (HFCs) are known to
be good fluids for plasticization of a polymer like polystyrene (PS). As a result of
international regulations, the blowing gases intensively used in the foaming indus-
try have to be replaced by blowing agents that are less harmful to the ozone layer.
Knowledge of the influence of gas sorption and concomitant swelling on the T, of a
{gas—polymer} system is of real importance in generating different types of foams.
In the context of the above applications, the thermophysical properties of gas-
saturated thermoplastic semicrystalline polymers are key elements for the develop-
ment of several engineering applications.

Typically, thermophysical properties feature the most important information
when dealing with materials submitted to thermal variations and/or mechanical
constraints. The properties of interest are of two types: bulk properties and phase
transition properties. The bulk properties are either caloric properties like heat
capacities Cp, or mechanical properties like isobaric thermal expansivities op,
isothermal compressibilities xt, and isochoric thermal pressure coefficients fy.
The need for accurate control of thermodynamic properties concerns the two main
phase transitions: the first-order transitions of melting and crystallization, and the
glass transition. All these properties are now accessible thanks to recent progress in
various technologies that allow measurements in the three physical states over
extended ranges of pressure (p) and temperature (7), including in the vicinity of
the critical point. In this respect, knowledge (i.e., measurement) of the thermo-
physical properties of polymers over extended ranges of temperature and pressures
and in different gaseous environments is absolutely necessary to improve the use
and life-time of end-products made of polymeric materials.

Examples have been selected in three main domains: oil exploitation and
transport, polymer foaming and modification, and self-assembling nanostructures.
These examples are directly connected to industrial activities in the petroleum
industry, the insulating material industry, and the microelectronic industry.
In many cases, gases and polymers of different types intimately interact under
external conditions of T and p. In the subsequent examples, the {gas—polymer}
systems selected for a targeted industrial purpose (e.g., foaming materials and
material processing) are polymeric materials in contact with {gas—liquid} systems
(e.g., pipes or tanks in the gas and petroleum industry), or are used as intermediate
materials to elaborate templates for making 3D electronic circuitry.
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The foaming materials industry is a rapidly growing area where constant inno-
vation and added-value products are key factors for economic success in the face of
high international competition. The mastering of polymer degradation (typically
blistering) by high pressure dissolved gases is another key issue. Microelectronics
is presently the most competitive industrial activity. The focus of the present article
is thus on the behavior of {gas—polymer} systems from the point of view of gas
solubility and associated thermal effects. Depending on the temperature and pres-
sure ranges, polymers are either in the solid or molten state, i.e., at temperatures
between T, and the temperature of melting, T,,; in most cases, gases are supercriti-
cal fluids (SCFs). The present contribution, essentially based on current activities of
the authors, is split into two main parts: experimental measurements (Sect. 2) and
evaluation of gas-polymer interactions (Sect. 3) through experimental measure-
ments of gas solubility (Sect. 3.1), thermal effects reflecting interaction energies
(3.2), thermophysical properties of polymers (3.3) and phase transitions (3.4).
In addition, the importance of such data for engineering applications is stressed.

This article illustrates the contribution of two techniques in providing accurate
information to meet the demand for the data described above: the vibrating-wire
(VW)—pressure-volume-temperature (pV7T) technique for gas sorption and polymer
swelling; and scanning transitiometry for simultaneous thermal and mechanical
measurements. Two complementary thermodynamic approaches have been devel-
oped to characterize gas—polymer interactions in evaluating either gravimetric and
volumetric changes or thermally energetic changes associated with gas sorption (up
to saturation) in a polymer. The first approach is based on a “weighing technique”
using a VW sensor coupled with a pVT method. The second approach is based on
the coupling of a calorimetric detector with a p, V, or T scanning technique.

2 Experimental Techniques

2.1 Gas Sorption and Solubility

Gas solubility in polymers can be measured using different techniques, i.e.,
gravimetric techniques, including vibrating or oscillating techniques; pVT techni-
ques with the pressure decay method; and gas-flow techniques. A brief review of
existing techniques is given below, followed by the description of a technique we
recently developed that couples a new gravimetric technique with a pVT—pressure
decay technique.

2.1.1 Gravimetric Techniques

These techniques consist in precisely weighing a polymer sample during gas
sorption. They are very sensitive at low-to-moderate gas pressures [5, 6], and use
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of a magnetic coupling to transmit the weight to a balance [7, 8] has permitted the
pressure range to be extended up to 35 MPa.

With vibrating or oscillating techniques, the change of mass of a polymer sample
is calculated from the resonance characteristics of a vibrating support, either a
piezoelectric crystal [9, 10] or a metal reed [11], to which the polymer sample is
fixed (very often this support is a spherical quartz resonator on which a thin polymer
film is wrapped). Depending on the type of oscillator, the maximum pressure can be
between 15 and 30 MPa.

With the pVT techniques based on the pressure decay method [12, 13], a polymer
sample is seated in a container of known volume acting as equilibrium cell; the
quantity of gas initially introduced in this cell is evaluated by pVT measurements in
a calibrated cell from which the gas is transferred into the equilibrium cell in a
series of isothermal expansions. The pressure decay in the equilibrium cell during
sorption permits evaluation of the amount of gas penetrating into the polymer. The
pressure decay principle allows a sensitivity of few hundredths of milligram of
absorbed gas per gram of polymer [14].

With the glass flow techniques, the solubility of gases in polymers is obtained
from gas flow measurements by inverse gas chromatography [15]. In this proce-
dure, the polymer sample (glassy or molten) acts as the chromatographic stationary
phase to measure retention times.

2.1.2 Coupled VW—pVT Technique

In all the techniques where the polymer sample is immerged in the penetrating gas,
the associated swelling of the polymer due to the gas sorption is an important
phenomenon that needs to be accurately evaluated. Swelling can affect the buoyancy
force exerted by the gas on the polymer sample in the case of gravimetric measure-
ments, as well as the internal volume in the case of pVT measurements. Usually,
swelling is determined separately by techniques using direct visual observation and
estimation of the volume change and is in the order of 0.3% of the volume of the
initially degassed polymer [16]. Alternatively, swelling has been estimated using a
theoretical model like the Sanchez—Lacombe molecular theory [17].

Recently, Hilic et al. [18, 19] designed an original technique to evaluate the gas
solubility in polymers that permits simultaneous determination in situ of the amount
of gas penetrating the polymer and the concomitant change in volume of the
polymer due to gas sorption. This technique associates a VW force sensor, acting
as gravimetric device, and a pressure decay installation to evaluate the amount of
gas penetrating into the polymer.

Vibrating-Wire Sensor

The VW sensor (Fig. 1) is employed as a force sensor to weigh the polymer sample
during the sorption: the buoyancy force exerted by the pressurized fluid on the
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Fig. 1 The coupled VW—pVT technique. Left: Photograph of the inside of the experimental setup
showing the three high-pressure cells. Right: Equilibrium cell that houses the VW sensor and the
holder containing the polymer sample

polymer depends on the swollen volume of the polymer due to the gas sorption.
This VW sensor is essentially a high-pressure cell in which the polymer sample is
placed in a holder suspended by a thin tungsten wire (diameter 25 pm, length 30
mm) in such a way that the wire is positioned in the middle of a high magnetic field
generated by a square magnet placed across the high-pressure cell. Through appro-
priate electric circuitry and electronic control, the tungsten wire is activated to
vibrate. The period of vibration, which can be accurately measured, is directly
related to the mass of the suspended sample. The working equation (1) for the VW
sensor relates the mass mg, of gas absorbed (solubilized) in the polymer to the
change in volume AV, of the polymer. The natural angular frequency of the wire,
through which the polymer sample holder is suspended, depends on the amount of
gas absorbed. The physical characteristics of the wire are accounted for in (1) as:

AL2R?pg

ng +p(VC+Vpol) . (1)

Msol = Pg AVpol + ((1)2]3 - CO%)

The volume of the degassed polymer is represented by V1, and p, is the density
of the fluid. The terms wq with wg represent the natural (angular) frequencies of the
wire in vacuum and under pressure, respectively, and V¢ is the volume of
the holder. The symbols L, R, and p, are, respectively, the length, the radius, and
the density of the wire.

pVT Method and Pressure Decay Measurements

For pVT measurements, the three-cell principle of Sato et al. [14] has been used
(Fig. 2) to determine the amount of gas solubilized in the polymer. The experimen-
tal method consists of a series of successive transfers of the gas by connecting the
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Fig. 2 Three-cell principle for pVT measurements, after Sato et al. [14]. The high-pressure line
connects the three cells: the high-pressure reservoir cell (V;), the high-pressure equilibrium cell
housing the VW sensor (V,), and the high-pressure calibrated transfer cell (V3)

calibrated transfer cell V; to the equilibrium cell V,, which contains the polymer.
Initial p; and final p; pressures are recorded between each transfer. The initial
methodology was based on the iterative calculation described by Hilic et al. [18,
19]. The (rigorous) working equation (2) for the pVT technique gives the amount of
gas entering the polymer sample during the first transfer, once equilibration is
attained:

M, py My pi e

= AV, - Vo+V3 =V . 2
R T; Z; pol+R Z T, 3 Zfo( 2+ V3 pol) (2

Equation 2 permits calculation of the mass mg, of gas dissolved in the
polymer. M, is the molar mass of the dissolved gas. Z; and Z¢ are the compression
factors of the gas entering the polymer at the initial and final equilibrium sorption
conditions, respectively. Volume of the degassed polymer and the volume change
due to sorption are represented by Vo and AV, respectively. The total amount
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of gas absorbed by the polymer after completion of the successive transfers is
given by (3):

k k
W Mgt AVyg
Aol =R 70
zoT
(0 ey AVETDY @
M, | p"'Vs Pr (VZ_VP_ Vol ) pi (Va+V3—Vy)
R Zi(k) Ti(k) Zﬁk—l)Tf(k—l) ng) Ttgk) ’
where Amiﬁf is the increment in dissolved gas mass resulting from the transfer

k, and AVS;? is the change in volume after transfer £.

2.2 pVT-Calorimetry: Scanning Transitiometry

Certainly, calorimetry is a major technique for measurement of the thermodynamic
properties of substances and for following phase change phenomena. In most
applications, calorimetry is carried out at constant pressure, while the tracked
phenomenon is observed with increasing or decreasing temperature. The possibility
of controlling the three most important thermodynamic variables (p, V, and T)
during calorimetric measurements makes it possible to perform simultaneous
measurements of both thermal and mechanical contributions to the thermodynamic
potential changes caused by the perturbation. Calorimetric techniques provide
valuable additional information on transitions in complex systems. Their contribu-
tion to the total change of thermodynamic potential not only leads to the complete
thermodynamic description of the system under study, but also permits the investi-
gation of systems with limited stability or systems with irreversible transitions. By a
proper external change of the controlling variable, the course of a transition under
investigation can be accelerated, impeded, or even stopped at any degree of its
advancement and then taken back to the beginning, all with simultaneous recording
of the heat and mechanical variable variations. The seminal presentation by Rand-
zio [20] of thermodynamic fundamentals for the use of state variables p, V, and T in
scanning calorimetric measurements opened the path [21-23] from pVT—calorime-
try to the now well-established technique of scanning transitiometry [24, 25]. The
main characteristics of scanning transitiometry are reviewed in this section.
Practically, the technique utilizes the principle of differential heat flux calorim-
etry, with which it is possible to operate under four thermodynamic situations
where the perfectly controlled variation (or perturbation) of one of the three state
variables (p, V, or T) is simultaneously recorded with the thermal effect resulting
from the generated perturbation of the system under investigation. The principle of
scanning transitiometry [23] offers the possibility to scan, in the measuring calori-
metric cell, one of the three independent thermodynamic variables (p, V, or T)
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while keeping another one constant. During this scan, the variation of the (third)
dependable variable (i.e., the mechanical output) and the calorimetric energy
generated (i.e., the thermal output) are recorded simultaneously in situ in the
measuring cell. From these two quantities, associated to a given scan, two thermo-
dynamic derivatives, mechanical and thermal, are thus determined. The derivatives
perfectly characterize the evolution of the thermodynamic potential of the investi-
gated system, particularly any undergone transition or state change induced by the
variable scan. As illustrated in Fig. 3, making use of the rigorous Maxwell relations
between thermodynamic derivatives, it is possible to directly obtain the ensemble
of the thermophysical properties; undoubtedly this shows the potentiality of the
technique. During measurements, it is essential that the different scans be per-
formed with sufficiently slow rates in order to keep the investigated system at
equilibrium over the entire scan and so that the (Maxwell) thermodynamic relations
remain valid.

The four possible thermodynamic situations (Fig. 3) are obtained by simulta-
neous recording of both the heat flux (thermal output) and the change of the
dependent variable (mechanical output). Then, making use of the respective related
Maxwell relations, one readily obtains the main thermophysical properties as
follows: (a) scanning pressure under isothermal conditions yields the isobaric
thermal expansivity o, and the isothermal compressibility xr as functions of
pressure at a given temperature; (b) scanning volume under isothermal conditions
yields the isochoric thermal pressure coefficient iy and the isothermal compress-
ibility ot as functions of volume at a given temperature; (c) scanning temperature
under isobaric conditions yields the isobaric heat capacity C,, and the isobaric
thermal expansivity o, as functions of temperature at a given pressure; (d) scanning
temperature under isochoric conditions yields the isochoric heat capacity Cy and
the isochoric thermal pressure coefficient fiy as function of temperature at a given
volume.

In the present work, two different operating modes were used: (1) the use of
pressure as scanned variable along different isotherms while recording (versus time ¢)

|

(aV/aP); > i
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p

p = f(t)
V= fit)

Fig. 3 Thermodynamic scheme of scanning transitiometry showing the four possible modes of
scanning. Each of these modes delivers two output derivatives (mechanical and thermal), which
in turn lead to four pairs of the different thermomechanical coefficients, namely o, k1, fv, C
and Cy
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simultaneously the associated thermal effect (8Q/df)r and the mechanical effect
(OV/df)7; and (2) the use of temperature as scanned variable along isobars while
recording simultaneously the associated thermal effect (8Q/d¢),, and the mechanical
effect (OV/dr),,.

In the case of the first mode, the straightforward thermodynamic relation [23]:

dH(T,p) = (8H/3T)pdT + (0H/0p)dp ()]
with:
dH(T,p) = 6Q + Vdp, ©)

allows one to express finally that the thermal effect g(p) along the scan is:

qr(p) = (6Q/dt);= a[(OH /Op);~V] = aT(S/0p); ©

= —al(0V/IT),= —alVay,
where H, S, a, and «,, are the enthalpy, entropy, pressure scanning rate and isobaric
thermal expansion, respectively. In addition, the associated mechanical effect (0V/
df)z, (or equivalently (0V/Op)y) allows one to obtain the isothermal compressibility
K. Similarly, in the second mode, from (4) and (5), at constant pressure (e.g., dp = 0)
one obtains for the thermal effect g,(T) an equation equivalent to (4), C,, being the
heat capacity:

4p(T) = b(0H /OT), = bC,. %)

In the same way as above, the mechanical effect (0V/ ar),, allows one to obtain
the isobaric thermal expansion o,,.

The transitiometric technique can be used for fluids (gases and liquids) as well as
for solid materials (polymers and metals). Remarkably, measurements can be
performed in the vicinity of and above the critical point. Concretely, the investi-
gated polymer samples are placed in ampoules, i.e., open mini test-tubes seated in
the transitiometric measuring vessel in such a way that the sample is in direct
contact with the pressurizing fluid. More details on the technique can be found
elsewhere [24, 25]. The transitiometers (from BGR TECH, Warsaw) used in these
studies of polymers, built according to the above principle, can be operated over the
following ranges of temperature and pressure: 173 K < T < 673 K and 0.1 MPa <
p < 200 MPa (or 400 MPa). A detailed description of a basic scanning transiti-
ometer is given elsewhere [26].

A schematic representation of the instruments is shown in Fig. 4. The transi-
tiometer itself is constructed as a twin calorimeter with a variable operating
volume. It is equipped with high-pressure vessels, a pVT system, and Lab-
VIEW-based virtual instrument software. Two cylindrical fluxmeters or calori-
metric detectors (internal diameter 17 mm, length 80 mm), each made from 622
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Fig. 4 Scanning transitiometry setup for in situ simultaneous determination of the thermal and
mechanical derivatives. For convenience, two types of cells are shown: on the /eft is the standard
high pressure cell and on the right is a reaction-type cell that can accommodate various accessories
(stirrer, reagents feeding, capillaries, optical fibers or probes for UV/Vis/near-IR spectroscopic
analysis)

thermocouples (chromel-alumel), are mounted differentially and connected to a
nanovolt amplifier, which functions as a noninverting amplifier, whose gain is
given by an external resistance (with 0.1% precision). The calorimetric detectors
are placed in a metallic block, the temperature of which is directly controlled by a
digital feedback loop of 22 bits resolution (~10~* K), being part of the transiti-
ometer software. The calorimetric block is surrounded by a cooling/heating
jacket, which is connected to an ultracryostat (Unistat 385 from Huber, Ger-
many). The temperature difference between the block and the heating/cooling
jacket is set at a constant value. In addition, the jacketed calorimetric block is
embedded in an additional electrically heated shield. The temperature difference
between the block and the heated shield is set to a constant value (5, 10, 20, or 30
K) and is controlled by an analogue controller. The temperature measurements,
both absolute and differential, are performed with calibrated 100 Q Pt sensors; a
Pt100 temperature sensor is placed between the sample and the reference calori-
metric detectors. The heaters are homogeneously embedded on the outer surfaces
of both the calorimetric block and the cooling/heating shield. The whole assembly
is thermally insulated and enclosed in a stainless steel body.

The stainless steel body is fixed on a sliding support (Fig. 5 shows the main
elements of a scanning transitiometer), which can be moved up and down along two
guiding rails. This is part of a mechanical displacement system consisting of a
winch and counterweight that allows the calorimetric body to easily move vertically
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Fig. 5 Photograph of a standard scanning transitiometer (from BGR TECH, Warsaw). The
calorimetric detector, which can be moved up and down over the measuring and reference
calorimetric vessels (in twin differential arrangement), is shown in its upper position. In this
position, the calorimetric vessels, which are firmly fixed on the stand table, are then accessible for
loading

over the two calorimetric vessels (i.e., the measuring and reference vessels). These
two vessels are firmly fixed on a stand, to which the displacement system is itself
attached in such a way that the vessels always find the same positions inside the
calorimetric detectors when the calorimetric body is moved down to its working
position (see Fig. 5). When performing measurements near 0°C or below, dry air is
pumped through the apparatus in order to prevent the condensation of water vapor
from air.

The variable volume is realized with a stepping motor-driven piston pump. The
resolution of the volume detection is ca. 5.24 x 10~® cm® per step (as found by
measurement of the piston displacement for given numbers of steps) and the total
variable volume is 9 cm®. The calorimetric block can then be lifted to load the
sample into the cell, or for cleaning.

The pressure sensors are connected close to the piston pump. Pressure can
be detected with a precision of £4 kPa. The connection between the cryostat
and the heating/cooling shield of the calorimetric block is made via two flexible
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thermo-isolated hoses. The Hiiber cryostat/thermostat connected to the calorimeter
can be operated over the temperature range from —90 to 200°C, with = 0.02°C
temperature stability at — 10°C, and has cooling power at 0, —20, —40, —60 and
—80°Cof5.2,5,4.2, 3.1, and 0.9 kW, respectively.

The maximum delivery of the circulating pump is 40 L min~' and the maximal
delivery pressure is 1.5 bars. The cryostat is microprocessor-controllable and
equipped with an RS232 interface. The cryostat is PC-controlled thanks to Lab-
worldsoft 3.01 graphical software. The software allows building the temperature
program (up to 99 sequences), controls the temperature with high accuracy, and
performs data acquisition into a file, with a selectable frequency.

A striking (patented [25]) feature of scanning transitiometry is, for the investi-
gation of gas—polymer interactions, the possibility to use different pressurizing or
pressure-transmitting hydraulic fluids. Depending on the type of measurement, the
sample under investigation can either be confined in a closed supple ampoule, itself
immerged in the hydraulic fluid, or positioned directly in contact with the hydraulic
fluid. In the latter case, the energetic interaction upon the possible sorption of the
fluid with the sample can be directly evaluated and documented.

Transitiometry is at the center of different types of utilization since, with such
techniques, bulk properties, transitions, and reactions can all be advantageously
studied. In the case of polymer synthesis, a scanning transitiometer was used as an
isothermal reaction calorimeter, the advancement of a polymerization reaction
being accurately monitored through rigorous control of the thermodynamic para-
meters [27, 28]. To gather additional information, the measuring cell can be
coupled with other analytical devices (e.g., on-line FTIR, particle sizing probes,
turbidity probes, pH or other ion selective probes) [29]. For studying chemical
reactions, the scanning calorimeter has been also used as a temperature oscillation
calorimeter, and the high-pressure cells replaced by specially designed reaction
vessels. These vessels allow stirring, different dosing profiles for one or two
reactants, and can accommodate a small optical probe coupled to a miniaturized
spectrophotometer (for more details see [28—31]).

3 Gas-Polymer Interactions and Practical Applications

The performance and advantages of combining scanning transitiometry and the gas
sorption—swelling technique are well demonstrated by typical applications in sev-
eral important fields: (a) transitions of polymer systems under various constraints
(temperature, pressure, gas sorption) including first-order phase and glass tran-
sitions; (b) polymer thermophysical properties and influence of gas sorption (blis-
tering phenomena); (c¢) thermodynamic control of molecular organization in
polymeric structures (foaming process, self-assembling nanostructures). Some
illustrative examples have been chosen for their impact in polymer science, in the
petroleum industry, and in microelectronics.
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3.1 Evaluation of Gas Solubility and Associated Swelling

3.1.1 Coupled VW—pVT Method: Theory and Modeling

The VW—pVT procedure allows one, in principle, to obtain simultaneously two
unknowns from the two rigorous equations (1) and (2): the gas solubility m, and
the change in volume AV, (the swelling) of the polymer due to sorption at
pressures up to 100 MPa and from room temperature to 473 K. However, despite
its evident advantages, the coupled technique needs further improvement [32]. The
change in volume associated with high pressure gas sorption is not a simple
phenomenon. On the one hand, the chemical structures of both the polymer and
the gas play a major role in terms of thermal energy of gas—polymer interactions
during sorption; on the other hand, pressure also plays an important role, depending
again on the polymer structure. For example, with the two polymers, medium
density polyethylene (MDPE) and poly (vinylidene fluoride) (PVDF), it has been
demonstrated (see Sect. 3.2) that supercritical carbon dioxide (scCO,) substantially
affects the cubic expansion coefficient of the polymers, especially at pressures
ranging from 10 to 30 MPa, where the gas—polymer interactions are more marked.
It appears that, at lower pressures, the main interactions correspond to the exother-
mic sorption of CO, by the surface and amorphous phase, and possibly by some
interstitial sites of the crystalline part of the polymer. At higher pressures, CO, is
forced to enter deeply inside the interstitial or other voids in the polymer and cause
their mechanical distortion, which is associated with an endothermic effect. At high
pressures (above 30 MPa), the polymers saturated by CO, behave as pseudohomo-
geneous phases and their cubic thermal expansion coefficients are only slightly
higher, because of absorbed CO,, than for pure polymers. Heats of interaction of
CO, with PVDF are higher than with MDPE, demonstrating that CO, preferentially
penetrates more into PVDF than into MDPE. Undoubtedly, gas solubility in poly-
mers is a complex phenomenon and, most likely as a consequence, it has been
observed that the two characteristic working equations (1) and (2) of the VW—pVT
technique do not converge [32]; thus solubility and swelling cannot be obtained
simultaneously by direct experimental determination. Effectively, a common term,
the density p, of the gas (8), appears in both working equations (1) and (2):

:Mg 143
Pe =R T, Z

®)

and, despite the other terms being different, (1) and (2) can be both expressed by
the same reduced (9), having the same slope given by (8) :

Amlt) = p, AVpy +d. ©9)
The term d represents the apparent concentration of gas in the polymer, i.e.,

when the change in volume AV, is zero. The main source of uncertainty in
evaluating the gas concentration comes from the first term of (9), which contains
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Fig. 6 Comparison of the total masses in grams of dissolved CO, in 4 g of MDPE at 333.15 K at
different pressures, as obtained with the two techniques of pVT (open circles) and VW (open
triangles). Error bars are shown for the VW results

the density of the gas and the change in volume of the polymer. It was thus
necessary to elaborate a procedure to estimate the apparent solubility of the gas
and the associated change in volume.

At this stage, it appears that the VW sensor technique is more precise than the pVT
technique because there are no cumulative errors like in the case of the pVT method,
when the successive transfers are performed during an isothermal sorption. Figure 6
compares the mass in grams of CO, dissolved in 4 g of MDPE at 333.15 K obtained
with the two methods, VW and pVT. With the pressure decay method, after the critical
zone (7.65 MPa), uncertainties in the mass dissolved become too large. Evidently, in
the critical region, a small variation of pressure leads to a significant variation of the
compressibility factor. The VW technique does not require extensive calibrations.
Essentially, uncertainties come from the experimentally measured resonance frequen-
cies. Errors are reduced in the data acquisition, which permits recording simulta-
neously the phase and the frequency: effectively, the phase angle is better suited than
the amplitude (the half-width) to detect the natural resonant frequency [32]. Figure 7
shows as an example the data obtained by the VW technique with a MDPE polymer
sample in the presence of scCO, at 338.15 K. Experimental amplitude and phase are
correctly fitted by the fluid-mechanical theory [18] of the vibrating wire. Standard
deviations for both amplitude and phase are also shown.

3.1.2 Selected Example: The {CO, + MDPE} System

To estimate the change in volume (swelling), AV}, the Sanchez—Lacombe equa-
tion of state SL-EOS [17, 33-35] (10, 11) using the equation of DeAngelis [36] (12)
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Key Thermodynamic Data and Thermophysical Properties 153

has been selected. Then, only one binary adjustable interaction parameter &, of the
SL-EOS has to be calculated by fitting the sorption data as follows:

Apx = kia\/p] P3- (10)

P1

Wi =—"""""<75>+
o+ (1—¢) 0%

) Y

where Ap* is the parameter characterizing the interactions in the mixture; wy is the
mass fraction of permeant gas at equilibrium; ¢ is the volume fraction of the gas in
the polymer; and (p; *, p, *, T1 * ) and (p, *, p, ¥, T» x ) are the characteristic
parameters of pure compounds. The volume change is then calculated by following:

AVpol 1 i

Vpol 715/)* (1_W1) 6%7

12)

where p* and p are respectively the mixture characteristic and reduced densities,
and 1) is the specific volume of the pure polymer at fixed temperature, pressure, and
composition. According to the procedure, the solubility data are obtained through
combined experimental measurements and theoretical estimation of the volume
change of the polymer due to the sorption. Figure 8 shows the results obtained by
the pVT technique using the SL-EOS for the sorption of CO, in MDPE at 333 K to
estimate AV, In this figure, comparison is made with literature values for a low
density polyethylene LDPE at 308 K [5].

3.2 Gas-Polymer Interaction Energy

Scanning transitiometry has been used to determine the gas—polymer interaction
energy, for instance upon CO, sorption in MDPE and in PVDF samples (Fig. 9).

Measurements have been made under either compression or decompression runs
realized by pressure jumps Ap between 6 and 28 MPa. The most striking result is
that CO,—PVDF (exothermic) interactions are larger than CO,—~MDPE interactions
for CO, pressures lower than 30 MPa, whereas above this pressure an inversion is
observed, with CO,—MDPE interactions being larger than CO,—PVDF interactions.

3.3 Thermophysical Properties at High Pressures

As mentioned in the “Introduction” (Sect. 1), the thermophysical properties of
thermoplastic semicrystalline polymers are essential for the development of numer-
ous engineering applications. Such data have to be documented over extended
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Fig. 9 Thermal energy of CO,—polymer interactions at 353 K: comparison between the two
polymers MDPE (solid line) and PVDF (dashed line) at increasing CO, pressures. Measurements
have been made under pressure jumps Ap, between initial pressures p; and final pressures p;. The
differential exothermal heat fluxes are of the order of a few milliwatts per cubic centimeter of

polymer



Key Thermodynamic Data and Thermophysical Properties 155

ranges of p and T for polymers in the presence or absence of fluids (liquids, gases, or
SCFs), which can enter the polymeric structures by natural (at atmospheric pres-
sure) or forced sorption (under high pressures). As seen previously, the fluids will
have, depending on their respective characteristics (inert, neutral, or chemically
active), more or less significant impact on the polymer molecular organization. In
this context, until recently most of the investigations of gas—polymer interactions
have concerned sorption properties of glassy polymers. In such systems, the dual-
mode sorption concept is generally accepted. According to this model, part of the
sorbate is dissolved in a molecular environment described by the Henry law,
whereas another part is absorbed (as described by a Langmuir-type sorption iso-
therm) in preexisting voids or free volume resulting from extremely long segmental
relaxation times between chains in the polymer glassy state [37]. In semicrystalline
polymers, it was widely accepted from the early studies of Michaels and Parkers
[38] and Michaels and Bixler [39] that the gas sorption takes place only in the
amorphous phase (following the Henry law), while the crystallites form impenetra-
ble barriers that even prevent diffusion in the amorphous phase. More recent studies
have established that low molecular diluents might also penetrate the crystalline
regions, where interstitial free spaces could accommodate small molecules like
CO, or methane (CH,4) [40—44]. However, all the above studies were realized at
rather low pressures of a few megapascals. In the mid-1990s, thanks to scanning
transitiometry, it was possible to initiate a systematic investigation of gas—polymer
interactions.

A new experimental and theoretical approach has been proposed to study
transitions in {gas—polymer} systems in terms of the heat involved [45]. Scanning
transitiometry, which combines a calorimetric detector with a pVT scanning tech-
nique, offers advantageous features for such study. The differential mode of
operation permits precise control of both temperature and pressure, keeping them
exactly identical in the two calorimetric (reference and measuring) vessels. The
pVT technique allows the scanning of pressure or volume during sorption (fluid-
pressurization) and desorption (fluid-depressurization). The calorimetric detector
measures the differential heat flux (between reference and measuring vessels)
resulting from the physicochemical effects occurring during the sorption/desorption
runs. From the determination of the heat involved in the measuring vessel (contain-
ing the polymer sample) and by virtue of the Maxwell relation, (9S/dp);=
—(ov/ 8T)p, the global cubic thermal expansion coefficient of the gas-saturated

polymer o,1g.in¢ i Obtained at different isothermal conditions, according to (13):

(Quitr, ss — Ouir, pot) + Vss,r ass T Ap

1
Vpol T A[) ( 3)

Opol—g—int =

Opol and QO represent the heat fluxes corresponding to the polymer sample and
to the inert sample (made of stainless steel and having the same size and geometry
as the polymer sample), respectively placed in the measuring and reference vessels;
ass is the cubic expansion coefficient of the stainless steel of which the vessels are
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made; and Ap is the variation of gas-pressure change under investigation at constant
temperature T. Volumes Vgg and V,, are those of the stainless steel inert reference
and of the polymer sample, respectively. In (13), it was assumed for simplicity faute
de mieux that the volume of the polymer did not change significantly upon gas
sorption. This assumption may be justified in the sense that the pressure is much
higher (~100 MPa) in calorimetric measurements than in the VW—pVT technique
(~40 MPa); the hydrostatic pressure must probably compensate for a large part of
the swelling effect due to gas sorption, as a result of the equilibrium between the
plasticization effect and the hydrostatic effect.

Three differential modes were investigated, taking into account the differential
principle of the instrument (Fig. 10): thermal I differential without reference
sample, thermal II differential with reference sample, and thermal II differential
comparative mode. With the thermal I differential mode, in an initial experiment
the polymer sample is placed in the measuring cell, which is connected to the gas
line. The reference cell, not connected to the gas line, acts as a thermal reference.
An additional blank experiment (under identical conditions) is performed in which
the polymer sample is replaced by an inert-metal (stainless steel) sample of similar
volume. Then, the difference in the heat effects between polymer and blank
experiments allow quantification of the thermal effect due to the gas—polymer
interactions. In the thermal II differential mode, the polymer sample is placed in
the measuring cell while an inert-metal sample of equal dimensions is seated in the
reference cell, both cells being connected to the gas line which serves to pressurize.
Then, under gas pressure, the calorimetric differential signal is proportional to the
thermal effect due to the gas—polymer interactions. The third and last mode

rmm-®»n
muoUoO=
mo<wv

{fluid-polymer} {fluid-polymer} {fluid-polymer}
INTERACTIONS INTERACTIONS INTERACTIONS
THERMODYNAMIC II THERMODYNAMIC 1l

THERMAL | DIFFERENTIAL DIFFERENTIAL DIFFERENTIAL COMPARATIVE

Fig. 10 Three differential modes of scanning transitiometry according to the differential principle
of the calorimetric detector, taking into account the respective roles of the measuring (M) and
reference (R) vessels and the content of the reference vessel. (a) Thermal I differential without
reference sample mode. (b) Thermal II differential with reference sample mode. (¢) Thermal II
differential comparative mode: in this case a direct comparison between two polymers (MDPE and
PVDF) samples is possible
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corresponds to a validation of the two previous modes through the thermal II
differential comparative mode. This allows direct comparison of the response and
behavior of two polymer samples, MDPE and PVDF, in similar supercritical
conditions. A MDPE polymer sample was placed in the measuring vessel while a
PVDF polymer sample of equal size and volume was placed in the reference vessel.
Both cells were connected to the gas line. The calorimetric signal, i.e., the differen-
tial heat flux, was thus directly proportional to the thermal effect due to the
difference in the gas—polymer interactions between the two polymers interacting
with the same gas. In that case, the differential heat flux between the measuring and
the reference vessels is small, because calorimetric signals of {gas-MDPE} and
{gas-PVDF} systems have relatively close amplitudes; the detection sensitivity of
the apparatus was then optimal. For each thermal II differential with reference
sample and thermal II differential comparative mode, the data were corrected
through a blank standard calibration. Under identical conditions of 7 and p, and
under the assumption that there were no interactions between the stainless steel rod
and the gas, blank experiments were performed in which the polymer samples were
replaced by a metal sample of identical dimensions.

Investigations of polymer behavior [4] consist typically of measuring the physi-
cochemical properties in the solid state, i.e., at temperatures between T, and T,
MDPE and PVDF were submitted to gas pressure of either CO, or N, at different
temperatures between 333 and 403 K, under pressure steps or scans in the range
between 0.1 and 100 MPa. The polymer samples were extruded MDPE (reference
Finathene 3802) and PVDF (reference Kynar SOHD, polymer without additives like
plasticizers or elastomers). Their transitions temperatures T, and T, were, respec-
tively, 163.0 K and 400.0 K for MDPE, and 235.0 and 440.9 K for PVDF. The two
polymers had degrees of crystallinity X, of 49% and 48%, respectively. The masses
of samples were about 2—5 mg, and thermograms were obtained under a continuous
flow of N, at 15 mL min~'. Measurements were performed on cylindrical rod
samples (75.0 mm in height, 4.4 mm in diameter) having a relatively small mass,
i.e., about 1.0 g for the MDPE sample and 1.9 g for the PVDF sample; measure-
ments were taken from 352.38 to 401.50 K. For each investigation, a new sample
was used. More details are given elsewhere [4]. Using the thermal II differential
mode with reference sample, pressure changes of CO, and N, were performed on
MDPE and PVDF samples at 352 and 372 K under pressure jumps of 628 MPa in
the pressure range between 0.1 and 100 MPa. The CO,-pressurizing pressure jumps
manifest themselves by exothermic heat fluxes [29, 45], whereas CO,-depressuri-
zation pressure jumps exhibit endothermic heat fluxes, both passing through a
minimum around 20 MPa (see Fig. 11).

Interestingly, the heat flux minimum is reflected in the isotherms of tpoi_g-int
coefficients of the fluid-saturated polymers plotted as functions of the feed pressure.
The global cubic thermal expansion coefficients otoi-g-ine Of saturated polymer were
obtained through the procedure previously described [45]. Comparison of these
coefficients for both polymers (MDPE and PVDF) under CO, and N, i.e., the
corresponding curves for the {CO,-MDPE}, {CO,-PVDF} and {N,-PVDF} sys-
tems, show a clear difference (Fig. 11). Additional investigations of {Hg-MDPE}
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Fig. 11 Global cubic thermal expansion coefficients oo1_g-in¢ at 372.02 K of MDPE and PVDF
samples, under either CO, or N, during (a) sorption and (b) desorption under jumps in pressure,
obtained with the thermal II differential mode. The variations in o1_g-inc in the presence of either
N, or CO, are compared to those of samples in the presence of Hg (considered as an inert fluid)

and {Hg-PVDF} systems have been made using Hg as an “inert” pressure-trans-
mitting fluid [4, 45]. High Hg-pressure runs permit the decoupling of hydrostatic
pressure effects from solvent solubility effects, whereas high N,-pressure runs
permit separation of the preferential interaction effects between polymers with
respect to CO,. Under CO,, the thermal expansivity o,01_g-inc Shows minima around
14-18 and 21-25 MPa for MDPE and PVDF, respectively. This is in contrast to
what is observed under N, or Hg, i.e., the isotherms of interaction vary ‘“monoto-
nously” (Fig. 11). Below 30 MPa, more energetic interactions are observed with
PVDF compared to MDPE, which is demonstrated by higher global ot,1_g-in for the
{CO,-PVDF} system. Above 30 MPa, CO,—MDPE interactions are larger than
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CO,—PVDF interactions, and the global oq.g.ine for the {CO,-MDPE} system is
higher than the global o,_g.in for the {CO,-PVDF} system. As shown by Fig. 11,
in the case of PVDF, N, acts as a “relatively neutral” fluid like Hg, but with
stronger interactions. The values of %,01.g.inc With N, are smaller than those with
CO; [vtpor-g-int {N2-PVDF} < 0t01.0.inc {CO,.PVDF}], demonstrating that interac-
tions of PVDF with N, are weaker than with CO,. With N, (a relatively neutral
fluid) the heat effects reflect the sorption under pressure and parallel the remarkable
plasticization efficiency of N, in PS, particularly at elevated pressure [46, 47] (see
Sect. 3.4.3). The PVDF values during decompression under N, and/or CO, are
similar, which is satisfactory as regards the reversibility of the sorption/desorption
phenomena. The minimum of ¢popg.ine Observed with {CO,-MDPE} and {CO,-
PVDF} systems at about 15 MPa corresponds to the supercritical domain of CO,.
The dependency of oo p.ine COefficients on the nature of the pure gas (i.e., a
minimum corresponds in a mirror-image to the maximum in the temperature
dependence of «, for pure CO, gas) is a striking feature of previous studies [45].
This clearly shows the influence of supercritical sorption on the thermophysical
properties of the polymers. With the semicrystalline polymers, low pressures most
probably induce a first adsorption of CO, in the amorphous part and in some
interstitial sites of the crystalline part, with the possible formation of a microorga-
nized domain generated in the amorphous phase of the polymer [44] (see also Sect.
3.1.1). High pressures favor the absorption into the whole polymer matrix (i.e., deep
inside the interstitial or other voids in the polymer) with a mechanical distension,
the CO,-saturated polymer behaving as a pseudohomogeneous state [45]. Further-
more, the minimum would mean that supercritical gas—polymer interactions are
favored. The lowering of molecular polymer—polymer interactions is concomitantly
associated with the ease of CO, dissolution into the polymer matrix, thus inducing
an increase of free volume together with an increase in polymer chain mobility [48].
This plasticization effect is shown by the minimum of o,o1_g.in @s a function of
pressure. Quantitatively, this is confirmed by the net increase of gas sorption into
the polymer and the swelling of the polymer due to the sorption around 15 MPa (as
investigated by the gravimetric—volumetric VW—pVT method) [49, 50]. As a matter
of fact, around this pressure there is compensation between plasticization and
hydrostatic pressure effects upon high CO,-pressure sorption into the polymer.
The supercritical hydrostatic pressure corresponding to the minimum for MDPE
is slightly smaller than that for PVDF.

The thermal II differential comparative mode is conveniently adapted to com-
pare two different polymer samples submitted to the same gas under pressure. This
mode was used to measure the differential heat flux obtained when a MDPE and a
PVDF sample (of identical size and volume, each placed in one of the two calori-
metric vessels) were simultaneously submitted to the same gas pressure at an
identical temperature (372.59 K). The experimental signal, the differential heat
flux dQ (mppE-PvDE}, compares directly the interactions of the two polymers in the
same gas/supercritical environment at constant temperature. The calorimetric
responses were collected during pressure jumps and during continuous volume
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Fig. 12 Differential heat flux dQ{mppE-pvpr; Observed when two samples (MDPE and PVDF) are
submitted to CO, at 372.59 K, with the thermal II differential comparative mode. Above about 30
MPa, positive values of dQmppe-pvpr), shown in boxed region, indicate stronger interactions of
CO, with MDPE than with PVDF. Measurements were taken during either sorption or desorption
under jumps in pressure (circles), continuous changes in volume dV = 1.364 em® (triangles), and
continuous changes in pressure dp = 15 MPa (squares)

and pressure scans. Figure 12 shows the plots of heat flux ( in 107> W MPa™")
versus pressure for the two samples.

Below 30 MPa, calorimetric signals are endothermic, with dQ(mppe-pvDF)/
dp < 0, i.e., PVDF exhibits higher interactions with CO, than does MDPE.
Above 30 MPa, calorimetric signals become exothermic, with dQmppe-pvpr;/dp
> 0, i.e., the differential heat flux of interactions for the {CO,-MDPE} system
becomes larger than for the { CO,_ PVDF} system. This direct comparative method,
which permits differentiation of the interactions between both polymers (MDPE
and PVDF) submitted to the same supercritical CO, pressure, reproduces exactly
the results obtained with the two preceding methods. At low pressures, more
energetic interactions are observed with PVDF than with MDPE.

The gas—polymer interactions being stronger than the interactions between the
chains segments suggests that incorporation of CO, in PVDF is easier and stronger
than in MDPE, which was confirmed with the experiments of sorption and of
swelling using VW—pVT. In addition, this is confirmed by measurements at high
pressure, which show that thermal expansion coefficients are smaller for highly
condensed {CO,-PVDF} systems than for less condensed { CO,-MDPE} systems.
As shown in Fig. 11, at high pressure, say above 30 MPa, the global cubic thermal
expansion coefficient is smaller for {CO,-PVDF} (for which the gas—polymer
interactions are larger) than for {CO,-MDPE}. All the above observations show
that CO, sorption is higher in PVDF than in MDPE. Both polymers have the same
volume fraction of amorphous state, ¢, = 0.53 [48, 51], and thus solubility is
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favored by the presence in the PVDF main chain of polar groups C—F, which can
form strong dipolar interactions with polarizable CO, [51-54]. This explains why
CO,—-PVDF interactions are stronger than CO,—~MDPE interactions. The extent of
the gas—polymer interactions is fully documented through the thermophysical
properties of gas-saturated polymers, directly measured, in conjunction with exper-
imentally measured gas solubility in polymers.

3.4 Phase Transition at High Pressures

3.4.1 First-Order Transitions
Melting/Crystallization at High Pressures (Hydrostatic Effect)

The investigation of a classic first-order phase transition is illustrated by the
melting/crystallization of a semicrystalline polymer like MDPE. Chemically inert
Hg was used as pressure-transmitting fluid, the polymer sample being completely
surrounded by the fluid inside the detecting calorimetric zone; in fact, the polymer
sample was simply floating on the Hg.

Isobaric scans were performed at the temperature rate of 0.833 mK s~ ', both on
heating and cooling, at different pressures from 50 to 200 MPa. Remarkably, the
associated heat flux and volume variations were simultaneously recorded with a
scanning transitiometer. Both the melting temperature T, and crystallization tem-
perature 7., were ascribed from the conventional method, taking the onset transition
temperature (namely the intercept of the largest slope of the measured signal with the
baseline) for each recorded peak. Very good concordance of temperatures obtained
by either heat flux signals or volume variation signals was observed; for example, at
200 MPa, heat flux and volume variation yield the same value of 456.2 K for T,,.
Figure 13 shows the pressure effect on melting and crystallization temperatures,
which are both shifted toward higher values by increasing pressure. The above
measurements also allowed, at 200 MPa for example, evaluation of the variations
of volume and of enthalpy for the melting transition, giving 0.0573 cm® g~
and —88.54 J g, respectively. The value of 0.297 K MPa ' was found for the
Clapeyron slope A T,,/Ap, in good agreement with literature values [55, 56].

Gas-Assisted Melting/Crystallization at High Pressures (Plasticizing Effect)

Scanning transitiometry was also adapted to study the influence of a SCF on first-
order phase transitions. In that case, the pressure-transmitting fluid was a gas in
supercritical state. Inside the measuring vessel, the polymer sample is placed in an
open ampoule (either glass or stainless steel) resting on top of a spring that
maintains it in the central zone of the calorimetric detector and in direct contact
with the SCF. The vessel is connected to a pressure detector and to the high pressure
pump through a stainless high pressure capillary. The hydraulic fluid contained in
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Fig. 13 Heat flux thermograms obtained under different pressures from 50 to 200 MPa during
isobaric T scans at 0.833 mK s~ on heating (downward exothermic peaks) and cooling (upward
endothermic peaks) for a Hg-pressurized MDPE sample. The base lines are shifted for the sake of
clarity to show the effect of pressure on melting/crystallization temperatures

the pump and in the pressure detector is separated from the SCF by a Hg column.
This arrangement can conveniently be used to investigate pressure effects on
transitions of the type (solid + fluid) to fluid.

The { CH4-MDPE} system, the 1, 1-difluoroethylene + poly(vinylidene fluoride)
{CoH,F,-PVDF} system, and the {N,-PVDF} system (all binary asymmetric sys-
tems) have been selected to illustrate the use of supercritical scanning transitiome-
try [26, 29, 56]. These systems are of interest because they exhibit a pronounced
nonideal behavior at elevated pressures due to the large differences in the molecular
sizes of components.

Interestingly, CH, modifies the MDPE structure but is easily removed from the
modified polymer. Since the upper critical solution pressure of the {MDPE-CH,}
system is rather high (>250 MPa [57]), CH,4 can be a plasticizer of MDPE up to
elevated pressures. Experimentally, an MDPE sample (density 938 kg m>; degree of
crystallinity 0.55; number-average molar mass M, = 16.100 x 10°g mol™! and
weight-average molar mass M,, = 83.720 x 10° g mol ™, respectively) was placed
in an open stainless steel ampoule, positioned in the high-pressure measuring vessel,
and flushed with supercritical methane (scCH,) for a few minutes. After closing the
vessel, the scCH, was initially compressed to 25-30 MPa, and then the pressure
modified up to 300 MPa. At a given pressure, isobaric scans (at 0.833 mK s~ ') were
performed in heating and cooling. Remarkably, pressure remained constant within
£0.1%, even during the rapid volume changes occurring during phase transitions. It
was then possible to perform several successive melting/crystallization experiments
while recording the corresponding thermograms.

As illustrated in Fig. 14, typical thermograms show the influence of scCH, on
the two (first-order) transitions by comparing “original” and “final” states of a
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Fig. 14 Heat flux thermograms obtained under 100 MPa during isobaric T scans at 0.833 mK s !
on heating (downward exothermic peaks) and cooling (upward endothermic peaks) for a MDPE
sample pressurized under supercritical methane (scCH, initial and scCH, final) and under Hg
(original)

MDPE sample being, respectively, native or saturated with scCH,4. Figure 14 shows
recorded thermograms at 100 MPa: “Original” thermograms were obtained with a
native (virgin) MDPE sample pressurized under inert Hg as pressure-transmitting
fluid (see Sect. 3.4.1.1). “scCHy-final” thermograms were obtained with the MDPE
sample that was submitted to repeated melting/crystallization cycles. “scCHy-
initial” thermograms were obtained during the first heating and cooling of the
native (virgin) MDPE sample under compressed scCHj.

Comparison of the shapes and magnitudes between “original” and “scCHy-
initial” thermograms show the extent of the effect of scCH, on both melting and
crystallization. The “scCHy-final” thermograms were obtained as the very last
thermograms after repeated melting/crystallization cycles under compressed
scCHy, when the thermograms no longer changed with subsequent melting/crystal-
lization cycles. The striking result is the similarity between “scCHy-final” and
“original” thermograms, whereas the respective melting and crystallization tem-
peratures of the scCHy-saturated sample are significantly shifted toward lower
values. Physical and textural analyses also show important differences between
initial and modified samples [56], attesting to a permanent rearrangement of the
organization of the long chain molecules. A simple qualitative explanation of such
modification is the entropically better alignment of the polymeric structures favored
by scCH,, which acts as a “lubricant” between the chains.

For the polymer PVDF (in the solid state), the monomer C,H,F, is a good
solvent even at high 7 and p (over 500 K and 200 MPa, respectively); in this respect
the comparison with the solubilization thermodynamics of inert N, in PVDF is of
practical interest since PVDF is a major polymeric material in numerous industrial
applications. Furthermore, because the monomer C,H,F; is the major component of
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the PVDF polymerization, it is essential to document the thermodynamics of the
{C,H,F,-PVDF} system to better control the polymerization industrial process.
Melting/crystallization under high pressure (i.e., supercritical) CoH,F, has been
investigated through isobaric temperature scans on PVDF samples (M, = 113.100 x
10* g mol ™" and M,, = 330.000 x 10° g mol ', respectively) at different pressures
between 0.1 and 180 MPa [55]. Isobaric temperature scans on PVDF samples under
high pressure N, have been performed between 0.1 and 30 MPa.

This study shows, like in the case of the {MDPE-CH,} system, the significant
influence of the “active” supercritical solvent on the melting/crystallization of the
polymer. Figure 15 shows the influence of supercritical C,H,F, and of supercritical
N, on the T, and T.. of PVDF. Obviously, both temperatures increase with
increasing N, pressure. In the investigated pressure range (0.1-30 MPa), the
(Clapeyron) slope of the two plots Ty/p and T../p were 0.108 + 0.002 K MPa ™!
and 0.115 + 0.002 K MPa ', respectively. By contrast, C,H,F, depresses first the
melting/crystallization temperatures upon sorption of the gas by the polymer, up to
30 MPa. Then, the antiplasticization effect of the hydrostatic pressure of C,H,F,
takes over above 30 MPa, which confirms the usual competition between plastici-
zation and hydrostatic effects of a (chemically) “active” SCF on the melting/
crystallization phenomena: the hydrostatic pressure increases the temperature of
the first-order transitions, while the increase of solubility of the SCF in the polymer-
rich phase depresses this temperature.

3.4.2 Isotropic Transitions (Self-Assembling of Polymeric Structures
Under High-Pressure Gas Sorption)

Different fields of application require the knowledge of interfacial phase behavior
between gaseous molecules and polymers. New application fields appear with the
rapid growth of information technology, for which ongoing downscaling of micro-
electronics evolves into nanoelectronics. The development of highly ordered
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Fig. 15 Pressure—temperature phase diagram for the two systems {C,H,F,-PVDF} (open sym-
bols) and {N,-PVDF} (closed symbols) showing the depression by about 20 K of melting
temperature (right) and crystallization temperature (l/eft) at pressures up to 30 MPa for PVDF
under supercritical CoH,F,
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nanostructures in the macroscopic area has attracted increasing interest through
nanoscience and nanotechnology breakthroughs in the new generation of micro-
electronic and optical devices. Since liquid crystals exhibit a rich variety of phases
and phase transitions, block copolymer systems are promising candidates for
building periodic nanostructures at low cost by simple self-assembly [58]. Modifi-
cation of nanoordered structures formed by block copolymers is currently a key
technology in nanoscience. An important feature of self-ordered structures is their
possible reorganization by modification of the interface between the two compo-
nents of block copolymers by a pressurizing fluid. In this context, we have inves-
tigated the interactions between diblock copolymers and different pressurizing
fluids [2, 3, 59, 60]. For this purpose, our study was focused on phase diagrams
of such systems as functions of the thermodynamic independent variables (p, T, V)
and the respective volume fractions f; of the two components of block copolymers
of various types.

Liquid crystalline amphiphilic diblock copolymers poly(ethylene oxide)-block-
11-[4-(4-butylphenyl-azo)phenoxy]-undecyl methacrylate, PEO,,-b-PMA(Az),, as
shown in Fig. 16, prepared by atom transfer radical polymerization [61], were
composed of hydrophilic PEO,, sequences and hydrophobic PMA(Az),, with
azobenzene moieties such as mesogen connected by a flexible spacer. The synthesis
of such amphiphilic liquid crystal block copolymers has been recently reported
[62]. In diblock copolymers PEO,,-b-PMA(Az),, m and n indicate the degree of
polymerization of PEO and PMA(Az) components, respectively. Differential scan-
ning calorimetry (DSC) of PEO,,-b-PMA(Az), gives a clear picture of the thermal
properties of these liquid crystalline polymers, as shown in Fig. 17, for PEO;4-b-
PMA(Az), [58, 61].

Four phase transitions are ascribed to the melting of PEO, the glass transition of
azobenzene moieties PMA(Az), the smectic (hardly visible), and the isotropic
transitions.

High-pressure technology using gases plays an important role in nucleation of
materials, and particularly interesting are current developments and applications in
soft matter science with typical modifications and tailoring of liquid crystals,
colloids, and polymers (including block copolymers) by means of supercritical
gases [63-68]. In this respect, the thermodynamic investigation of diblock copoly-
mers connecting incompatible polymers by covalent bonds is illustrative from both
fundamental and applied aspects [69—73]. Typically, copolymers PEO,,-b-PMA
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Fig. 16 Amphiphilic diblock copolymers of PEO,,-b-PMA(Az),, where m and n indicate the
degree of polymerization of PEO and PMA(Az) components, respectively
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Fig. 17 DSC heating and cooling curves (heat flux in mW mg~" vs temperature) for PEO, 4-b-
PMA(Az),o showing the high temperature isotropic transition

(Az), generate at the interface between PEO and PMA(Az) moieties well-ordered
structures of one in the other, depending on their respective volume fractions f;. The
ordered structures can be of three different types: spheres, cylinders, or lamellae, as
illustrated in Fig. 18 for an AB-type diblock copolymer [A and B standing,
respectively, for PEO and PMA(Az) components].

Obtaining a given molecular organization of these structures as regards their
type, size, and arrangement is directly controlled by the thermodynamic conditions,
i.e., p, T, and the nature of the hydraulic fluid used to pressurize. To this end, the
isotropic transition of the diblock copolymer at which well-defined self-organized
nanoscale structures form is the main thermodynamic property to document.

In the series of PEO,,-b-PMA(Az), copolymers, PEO self-organized entities in
the form of highly ordered periodic hexagonal-packed PEO cylinders are formed in
the PMA domain by annealing at the isotropic state. This shows that controlling the
phase changes at the interface allows tailoring of the nanoscale structures, as
illustrated in Fig. 19.

Scanning transitiometry has been used to evaluate the pressure dependence of
the isotropic transition temperature Ty, as well as the transition enthalpy AH,, and
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corresponding volume AV/,. The role of the nature of the pressurizing fluid on the
transition thermodynamics was also evaluated therefrom. For this, the rigorous
Clapeyron equation was advantageously used to document the pressure effect
because this equation relates the slope (d7/dp) of the phase boundary on the p—T
surface to the changes in volume AV,, and enthalpy AH,, at the transition, as given
by (14):

(dp/dT)tr: AHtr/TtrAVtr == AStr/AVn—, (14)

where AS,; is the change of entropy during the transition at temperature T,
Remarkably, the transition entropy AS;, decreases with increasing pressure when
the pressurizing fluid is Hg; this is typically the manifestation of a pure hydrostatic
effect, which restricts molecular motions under inert Hg. In complete contrast, AS,,
increases when the pressure is exerted by N, and CO,. In this respect, as observed
previously, N, is a “neutral” fluid as compared to “chemically active” CO, and,
consequently, the large increase in AS,, shows that the organization of nanostruc-
tures is easiest the more “active” is the fluid, in particular when the fluid is in
supercritical state [2, 59, 60]. The influence of the pressure-transmitting fluid on the
transition temperature Ty, is well illustrated (see Fig. 20) in the case of PEO4-b-
PMA(Az),o copolymer by the increase of the Clapeyron slope (dp/dT), in the
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Fig. 20 Relationship between pressure and the temperature of the isotropic transition Ty, for
PEO;4-b-PMA(Az) 49 under CO, (closed circles) and N, (open circles), and for PEO, 4-b-PMA
(Az),9 under Hg (open squares) for comparison. The different lines represent the Clapeyron
slopes, depending on the pressure-transmitting fluid. Note the significant shift by CO, of Ty, to a
lower temperature

sequence Hg < CO, < N,. In addition, the strong influence of supercritical CO, on
the transition is spectacularly demonstrated by the significant shift of the isentropic
transition temperature T, to lower temperatures. Figure 20 illustrates the relation-
ship between the isotropic transition temperature and pressure for PEO,4-b-PMA
(Az)40 under N, [2] and CO, [3]. The isotropic transition temperature for PEO 4-b-
PMA(Az),o under Hg pressure [60] is also shown for comparison. The hydro-
static effect under N, and CO, pressure is dominative above 20 and 40 MPa,
respectively. The dP/dT values under N, and CO, pressure are 10.2 and 8.8 MPa
K, respectively. The dP/dT value of PEO,4-b-PMA(Az), under Hg pressure is
2.85 MPa K ~'. The larger dP/dT (14) value under N, and CO, pressure than under
Hg pressure suggests that the transition volume AV, under N, and CO, pressure is
smaller than under Hg pressure. The N, and CO, adsorbed in PEO;14-b-PMA(Az)49
reduces the free volume. Because the compressibility of gaseous molecules is much
smaller than that of the free volume, the volume change under N, and CO, is
smaller than the change under Hg pressure. The larger value of dP/dT under N,
pressure than under CO, pressure shows that the volume change at the isotropic
transition is larger under CO, pressure than under N, pressure. Furthermore,
because the interaction between the PMA(Az) domain and CO, by dipole—
quadrupole interactions is stronger than the physical interaction between the PMA
(Az) domain and N,, the space (the molecular distance) between the PMA(Az)
domain and CO, is smaller than under N,. Therefore, the free volume under
CO, pressure is larger than under N, pressure with, consequently, a larger volume
change and greater ease of molecular reorganization at the entropic transition.
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3.4.3 Glass Transitions
Glass Transitions at High Pressures (Hydrostatic Effect)

Evidently, from the above observations, the T, of semicrystalline polymers is
similarly affected by pressure because an increase of pressure induces a decrease
in the total volume and, as a consequence of the decrease of free volume, a shift to
higher values of T, is expected. This aspect is particularly important in engineering
operations such as molding or extrusion, when operations at close to T, can result in
stiffening of the material. Investigation of the pressure effect on the T, of polymers
is thus of major importance in an industrial context. Particularly, the T, of elasto-
mers whose T, are often well below the ambient temperature is of practical interest
when performing experimental measurements by scanning transitiometry. In this
case, Hg, which is conveniently utilized as pressure-transmitting fluid, must be
replaced because its crystallization temperature is relatively high, i.e., 235.45 K.
Selecting a substituting fluid is a challenging problem because the fluid should be
chemically inert with respect to the investigated sample (with respect to all its
constituents). Also, the values of its thermophysical properties, isothermal com-
pressibility, xr, and isobaric thermal expansivity, oy, should be smaller than those
of investigated samples. Another difficulty in the investigation of second-order-
type transformations is the relatively weak thermal effect measured. It is well
known that the amplitude of the heat flux at T, increases with the temperature
scanning rate, whereas the time constant of differential heat flux calorimeters
imposes relatively low temperature scans rates. However, using an ultracryostat
coupled to the transitiometer, it was possible with the help of a temperature
program to accurately determine T, at relatively high scanning rates [29].

In a typical run (see Fig. 21a), the temperature of the thermostatic liquid is lower
than that of the calorimetric block during the stabilization periods (isothermal
segments), and higher during the dynamic segment. In such a way, the scanning
rate can be increased up to 1.166 mK s~ ', always maintaining a minimal difference
between the target and real temperatures of the calorimetric block. Because the
temperature gradient between the thermostatic heating fluid and the calorimetric
block is kept constant (20 K), the power uptake of the heating elements is quasi-
constant, thus avoiding the interference of sudden changes of power uptake on the
calorimetric signal. For the reported results, measurements were performed using
silicon oil instead of Hg as the hydraulic pressurizing fluid, and the polymer sample
was placed in a lead (soft metal) ampoule. Test measurements were made on
polyvinyl acetate (PVA) for which the AT,/Ap coefficient was found to be 0.212
4+ 0.002 K MPa ™', in good agreement with the literature value of 0.22 K MPa ™'
[73]. The calorimetric traces obtained [31] with the same method for a poly
(butadiene-co-styrene) vulcanized rubber during isobaric scans of temperatures
ranging from 218.15 to 278.15 K at the rate of 0.666 mK s ' are shown in
Fig. 21b. This figure also shows the evolution of T, at pressures of 0.25, 10, 30,
50, and 90 MPa: T, increases linearly with pressure, with a ATg/Ap coefficient of
0.193 + 0.002 K MPa .
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Fig. 21 Scanning transitiometry technique for the investigation of polymer T, at low temperature
and high pressure. (a) Experimental thermogram recorded during an isobaric temperature scan
under 50 MPa (on a styrene—butadiene rubber sample of 1.56 g; scanning rate 0.666 mK s™'). The
inset shows the temperature programs for the transitiometer (solid line) and for the cryostat
(dashed line). (b) Typical thermograms (heat flux vs temperature) for the transition domain of
the vulcanized rubber are shown for different pressures. The inset shows the change of T, with
pressure, and the slope gives the pressure coefficient AT,/Ap
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Fig. 22 Effect of pressure on the T, of vulcanized rubber under isobaric conditions. Typical
volume variations (AV vs T) are shown for the transition domain at 10, 70, and 90 MPa; the
scanning conditions are the same as used for the measurements reported in Fig. 21

It should be noted that T, is expressed as the temperature corresponding to the
peak of the first derivative of the heat flux (i.e., at the inflexion point of the heat
flux). The volume variations associated with the glass transition, which are also
simultaneously measured by scanning transitiometric measurements, are depicted
in Fig. 22. In accordance with the heat flux curve, T, increases with increasing the
pressure. Above T, there is an increase of the slope of the variation of the specific
volume versus temperature. However, the change in the slope is gradual and T, can
be determined at the point where the two lines intersect.
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Gas-Assisted Glass Transitions at High Pressures (Plasticizing Effect)

There is not much information available in the literature on calorimetric study of
plasticization of polymers at high pressures, above say 50 MPa, induced by gases.
Plasticization is well characterized by the shift to lower values of T,. Actually,
when pressure is induced by a gas, both plasticization and hydrostatic effects
contribute to the shift of T,. If plasticization tends to lower T, because of the gain
of mobility of the polymeric chains, the hydrostatic effect raises it in diminishing
the free volume. CH, is assumed to be a nonplasticizing gas, but our results show
that in the case of PS, at higher pressures, plasticization overtakes the hydrostatic
effect, probably due to a higher solubility of the gas in PS at higher pressures; this
kind of behavior has been suggested for high-enough pressures [74]. The plastici-
zation of PS using CH, seems to be possible, but it is necessary to apply high
pressure (i.e., 200 MPa) in order to obtain approximately the same shift of the T, as
with ethylene (C,H,4) under 9.0 MPa! In this respect, CH, cannot be considered as a
good plasticizing gas.

An important aspect of polymer foaming is certainly the “ease” with which the
blowing agent can enter, dissolve, and diffuse into the polymer matrix. Control of
two parameters, T and p, is essential to control these phenomena. The nature and
properties of the polymer and of the fluid evidently play a major role. In this
context, the physical state of the polymer must be appropriately modified to
undergo plasticization; this optimal condition for having the “blowing” effect
taking place depends upon the T,. Plasticization depends on all the thermody-
namic variables and parameters listed above. In particular, it is necessary to know
to what extent T, is advantageously decreased in order to optimize the foaming
process. From a practical point of view, the AT, shift should be accurately
determined or predicted. Moreover, many properties can be correlated with the
T, depression AT, due to plasticization. In order to predict the variation AT, the
model of Chow [75] was selected. The calculations using the model of Chow
were made using experimental data of solubilities directly measured with the new
technique combining a VW weight sensor and a pVT setup [46], as described in
Sect. 2.1.2.

Chow has proposed a relation based on the Gibbs and Di Marzio principle (the
entropy of the glassy state is zero) [76, 77] to account for the change in T, due to the
sorbed component, as follows:

T
ln(T—g> =B [(1-6)In(1 —0)+61n6), 15)
go
where:
g = zR M, w
C MLAC,” T Mg 1—w’

T, and Ty, are the glass transition temperatures for the {gas—polymer} system
and the pure polymer, respectively; M,, is the molar mass of the polymer repeat unit;
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M is the molar mass of the (diluent) gas; R is the gas constant; w the mass fraction
of the gas in the polymer; AC,, is the heat capacity change associated with the glass
transition of the pure polymer; and z is the lattice coordination number. All
parameters of the model have physical meanings, except the number z. The value
of this parameter changes according to the state of the diluent: z = 2 when the
diluent is in the liquid state and z = 1 when it is gas.

In order to compare the model calculations with experimental calorimetric data,
PS samples were modified in a transitiometer used, in this case, as a small reactor to
modify PS under equilibrium conditions in the presence of a chosen fluid. Mod-
ifications of PS have been done in the presence of N, and CO,, along isotherms at a
given pressure. For these two fluids, a final temperature of 398.15 K and a final
pressure of 80 MPa have been attained. The T, of modified and nonmodified PS
samples were determined by temperature-modulated DSC (TMDSC). The solubi-
lities of the different gases were measured using the VW—pVT sorption technique
[48, 49] along different isotherms, and the mass fraction of the gas in the polymer
was then determined with the following equation:

s
i +1’ (16)
where s is the solubility of the fluid in the polymer, in milligrams of fluid per
milligram of polymer.

Using the values of w determined for each gas—PS system, the Chow equation
(15) allows estimation of the variation, AT, of the temperature of the glass transition
with pressure, along the different isotherms of the sorption measurements.

The use of the Chow model is delicate because the choice of the value of z, i.e.,
the state of the diluent, significantly influences the results. The T\, shift under CO,
pressures is spectacular, showing the high plasticizing effect of CO,. The good
agreement of the literature data for the { CO,—PS} system with the calculated values
[78-80] (as seen in Fig. 23) can certainly be explained by the state of the diluent,
which is most probably in the critical state in the ranges of T and p considered.
Effectively, the critical temperature T, and critical pressure p. of CO, support the
hypothesis of the gas being in the near-critical region. Depending on the experi-
mental conditions in the vicinity of the critical point, the fluid can exist in one or the
other state (gas or liquid), or even in both. In the present case, literature data for the
{CO,—PS} system have been obtained under a pressure p < p. and at a temperature
T > T, for CO,; then two phases of the diluent can coexist in different proportions.
Despite the difficulty in determining exactly the variation of T, particularly under
supercritical conditions of a diluent fluid, the model of Chow is a useful guide for
prediction of the variation of the glass transition of a polymer modified by a high
pressure fluid. However, the exact determination of the glass transition depression,
AT, becomes more difficult when the pressure increases, especially near and above
the critical point of the diluent fluid. This means that when plotting AT, as a
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Fig. 23 Variation of T, with pressure for the { CO,—PS} system. Calculations have been made for
338.22, 362.50, 383.22, and 402.51 K. Solid symbols represent results for z = 1 and open symbols
for z = 2. Inset: Literature values are represented by crosses in a magnified section of the graph (the
same scale of temperature is kept). Lines are hand-drawn through the points

function of pressure, the temperature of measurement plays a major role. If we do
not take into account this temperature, it is preferable to represent AT, as a function
of the mass fraction of the fluid in the polymer.

Compared to polar CO, and because of its non-polarizability, N, should be a
weaker plasticizing agent although, as shown in Fig. 24, it induces significant shifts
of T, with increasing pressures [46]. However, N,, which should also be a good
foaming agent, is not currently used in the foaming industry because of the need of
too high a pressure to attain the desired depression in T,. Figure 25 shows the
scanning electronic microscopy (SEM) images of PS microstructures modified by
high pressure gases (CO, or N,) in the VW—pVT technique instrument at a similar
temperature (~315 K) close to, but below, T, (380 K). The modified PS exhibits
different patterns depending on the use of CO, or N, as blowing agents. For the
{N,—PS} system, there is no appearance of a foam structure; the surface is only
damaged by the gas pressure. For the {CO,—PS} system, a foam structure is
apparent. Further increase of temperature has shown that the observed microcel-
lular structure is highly temperature-dependent. Below T, the microcellular struc-
ture is obtained with perfect spherical bubbles, and the diameter of the bubbles
tends to increase with increasing 7. At temperatures higher than T, this organized
structure disappears and the foam becomes more homogeneous.

The sorption of compressed gases in polymers can now be well documented. Our
results with CH,4, CO,, and N, confirm earlier studies of Condo et al. [81, 82] and
more recent investigations of Handa et al. [83, 84] on retrograde vitrification of
polymers observed when a decrease of T, is observed at gas pressures high enough
to overcome the purely hydrostatic effect.
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Fig. 24 Variation of T, as a function of pressure for the {N,—PS} system. Calculations have been
made for 313.11, 333.23, and 353.15 K, using z = 1. Lines are hand-drawn through the points

Fig. 25 SEM pictures (50 pm definition) of modified PS samples under CO, or N, gas pressure.
The structure of the modified PS presents different aspects depending on the use of CO, or N, as
blowing agent. Left: For the {CO,—PS} system at 317.15 K, the structure of foam is apparent.
Right: For the {N,—PS} system at 313.12 K, there is no appearance of a foam structure; the surface
of the PS is only damaged by the gas pressurization

4 Conclusion

An experimental setup coupling a VW detector and a pVT technique has been used
to simultaneously evaluate the amount of gas entering a polymer under controlled
temperature and pressure and the concomitant swelling of the polymer. Scanning
transitiometry has been used to determine the interaction energy during gas sorption
in different polymers. The technique was also advantageously used to determine the
thermophysical properties (like isobaric thermal expansivity) of polymers in the
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presence and absence of gas sorption under pressure. Scanning transitiometry has
also been used to evaluate the thermodynamic control of essential transitions in
polymer science, first-order transitions, and glass transitions. The influence and the
role of gas sorption on such transitions can be fully documented. Of particular
interest is the tailoring of nanostructures at the isotropic transitions in amphiphilic
diblock copolymers. The striking effect of gas sorption is particularly observed
when the gas is in supercritical state, depending on the thermodynamic conditions.
The main conclusion is that a rigorous thermodynamic approach is possible through
appropriate experimental techniques in which the three main thermodynamic vari-
ables (p, V, and T) as well as the nature of pressurizing fluids are properly
controlled. Evidently, applications of engineering interest are now at hand, as
illustrated by examples taken from the petroleum and microelectronic industries.
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Interfacial Tension in Binary Polymer
Blends and the Effects of Copolymers
as Emulsifying Agents

Spiros H. Anastasiadis

Abstract The structure and the thermodynamic state of polymeric interfaces are
important features in many materials of technological interest. This is especially
true for multiconstituent systems such as blends of immiscible polymers, where the
interface structure can affect greatly their morphology and, thus, their mechanical
properties. In this article, we first present a review of the experimental and theore-
tical investigations of the interfacial tension in phase-separated homopolymer
blends. We emphasize the effects of temperature and molecular weight on the
behavior: interfacial tension y decreases with increasing temperature (for polymer
systems exhibiting upper critical solution temperature behavior) with a temperature
coefficient of the order of 1072 dyn/(cm °C), whereas it increases with increasing
molecular weight. The increase follows a y =y (1 — kiyM ) dependence (with
z = 1 for high molecular weights), where 7., is the limiting interfacial tension at
infinite molecular weight and M,, the number average molecular weight. Suitably
chosen block or graft copolymers are widely used in blends of immiscible polymers
as compatibilizers for controlling the morphology (phase structure) and the inter-
facial adhesion between the phases. The compatabilitizing effect is due to their
interfacial activity, i.e., to their affinity to selectively segregate to the interface
between the phase-separated homopolymers, thus reducing the interfacial tension
between the two macrophases. The experimental and theoretical works in this area
are reviewed herein. The effects of concentration, molecular weight, composition,
and macromolecular architecture of the copolymeric additives are discussed. An
issue that can influence the efficient utilization of a copolymeric additive as an
emulsifier is the possibility of micelle formation within the homopolymer matrices
when the additive is mixed with one of the components. These micelles will
compete with the interfacial region for copolymer chains. A second issue relates
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to the possible trapping of copolymer chains at the interface, which can lead to
stationary states of partial equilibrium. The in-situ formation of copolymers by the
interfacial reaction of functionalized homopolymers is also discussed.

Keywords Polymer interfaces - Interfacial tension - Compatibilizers - Interfacial
partitioning - Emulsifying agents

Contents
I INtrodUCHION .....uviii i 180
2 Methods of Measuring Interfacial Tension .............ccooiiiiiiiiiiiiiiiiii .. 183
3 Interfacial Tension in Binary Polymer Blends ..................ccooiiiiiiiiiiiiii... 189
3.1 Experimental Studies of Polymer Interfacial Tension .............................. 189
3.2 Theories of Polymer—Polymer Interfaces .................coooiiiiiiiiiiiiii.t. 196
4 Copolymers as Emulsifying Agents in Polymer Blends .....................cooiiii. 225
4.1 Copolymer Localization at the Polymer Blend Interface ........................... 225
4.2 Experimental Studies on the Effect of Additives on Polymer—Polymer Interfacial
TenSION .....oiiiii 228
4.3 Theories of the Interfacial Behavior in Homopolymer/
Homopolymer/Copolymer Blends ..............oooiiiiiiiiiiiiiiiiiiiiiiii e 238
5 Concluding Remarks .........coooiuiuniiit i 254
References .......ooouiiiiiii i 258

1 Introduction

The increasing need of the modern world to create materials with new fascinating
properties and better performance, that are more easily processable and, hopefully,
more environmentally friendly has forced polymer scientists to face the challenge
of developing new macromolecular systems with such characteristics. Realistically,
however, industry would prefer to keep using the traditional commodity polymers
because of the accumulated know-how and the significant investments made over
the years. Between those two trends, scientists have found a way to satisfy both
demands. Improving the performance of polymeric materials for many important
scientific and industrial applications can be achieved by mixing different compo-
nents with complementary properties. Polymer blending is a high-stakes game in
the plastics industry, whereby basic resins are manipulated into becoming new
polymer systems with properties beyond those available with the individual resin
components [1, 2].

The development of compounds and blends of polymers dates back almost two
centuries to the early rubber and plastics industry, when rubber was mixed with
substances ranging from pitch [3] to gutta percha [4]. As each new plastic has been
developed, its blends with previously existing materials have been explored. Thus,
synthetic rubbers, in the early period of the plastics industry, were mixed into
natural rubber and found to produce superior performance in tire components.
Polystyrene (PS) was blended with natural and synthetic rubbers after its commer-
cialization, and this led to high impact polystyrenes (HIPS), which now hold a
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stronger position in the market place than the bare plastic. Attention has been
especially focused on blends since the commercialization of General Electric’s
Noryl, a blend of HIPS with poly(2,6-dimethyl-1,4-phenylene oxide). We are now
in a period of investigating both the new blends and related compound systems and
the scientific principles underlying blend characteristics [1, 2].

When the two (or more) blend components are compatible, the performance of
the final product is straightforwardly controlled by the properties of the individual
materials and their mixing ratio. In the most frequently encountered situation of
immiscible polymer/polymer dispersions, however, one is faced with the problem
of controlling the morphology (phase structure) and the interfacial adhesion
between the phases in order to obtain an optimized product [1, 2]. The phase
structure (e.g., the dispersed particle size) in such systems is controlled by the
chemical character of the individual components and their rheological properties
[5] as well as by the deformation and/or thermal history; these factors affect how the
phase morphology evolves. A number of experimental investigations have clearly
shown that the characteristic size of the dispersed phase in incompatible polymer
blends is directly proportional to the interfacial tension [6], whereas the equilibrium
adhesive bond strength between the two phases depends strongly on the interfacial
tension. For example, the characteristic size of the dispersed phase obtained during
melt extrusion of an incompatible polymer blend is related to the interfacial tension
between the two phases (},), the viscosities of the dispersed phase and the matrix (n4
and 7, respectively), and the process characteristics (shear rate, ¢) by the empirical

relationship [7]:
s dy +0.84
4 "m

where d,, is the number-average particle diameter. The plus (+) sign applies for
P = Na/Mm > 1 and the minus (—) sign for p < 1. Moreover, the rate of phase growth
during the later stages of phase separation increases with increasing interfacial
tension [8]. It is noted that the size of the dispersed phase is an important factor that
influences the mechanical properties of incompatible polymer blends.

Therefore, interfacial tension is an important, if not overriding, factor in the
formation of a phase boundary and in the development of phase morphology in
incompatible polymer blends. Interfacial tension, y, is defined as the reversible
work required to create a unit of interfacial area at constant temperature, T,
pressure, P, and composition, #, i.e., [9—18]:

0G
= (31).0, >

where G is the Gibbs free energy of the system and A the interfacial area. Interfacial
tension is, thus, a thermodynamic property of the system and can be calculated
directly from statistical thermodynamic theories. Experimental investigation of
interfacial tension is, therefore, a straightforward means for evaluating the validity
of such theories.



182 S.H. Anastasiadis

For a certain polymer—polymer pair, interfacial tension generally decreases
linearly with temperature with a temperature coefficient of the order of 102
dyn/(cm °C) [10, 19-24]. Increasing the molecular weight of either polymer leads
to an increase in the interfacial tension; it is now recognized that, for high enough
molecular weights, interfacial tension shows a M~ dependence on the molecular
weight [20, 21, 23-26] with z = 1, although there are reports for z = 2/3 or even
0.5 for lower molecular weights (M|, is the number average molecular weight).
Moreover, interfacial tension was found to decrease with increasing polydispersity
[22, 23, 26]. A number of thermodynamic theories have appeared from very early
on [27-29] until more recently [25, 30-35], which predict the interfacial tension of
blends of immiscible polymers and its temperature and molecular weight depen-
dencies. Both the experimental and the theoretical investigations of polymer—
polymer interfacial tension will be thoroughly reviewed in Sect. 3.

Suitably chosen block or graft copolymers are widely used by the polymer
industry as emulsifiers in multiconstituent polymeric systems in order to improve
the interfacial situation and, thus, obtain an optimized product [1, 2, 36]. This is due
to their interfacial activity, i.e., to their affinity to preferentially segregate to the
interface between the phase-separated homopolymers [37—44]. This partitioning of
the block copolymers at the interface is responsible for the significant reduction of
the interfacial tension between the two macrophases [45-59], aids droplet breakup,
and inhibits coalescence of the dispersed phases [60, 61]. This leads to a finer and
more homogeneous dispersion during mixing [52, 62—-66], and improves interfacial
adhesion [67, 68] and mechanical properties via the significant increase in the
interfacial thickness between the macrophases [38, 69]. For a block or graft
copolymer to be effective as an emulsifier, it is, thus, important that it is localized
to the polymer—polymer interface [37, 38, 40—44], with each block preferentially
extending into its respective homopolymer phase [39, 70-74]. Because block and
graft copolymers are likely to be expensive, it is of great importance to maximize
their efficiency so that only small amounts are required. The efficiency of interfacial
partitioning is predicted to depend on the molecular weights of the copolymer
blocks relative to those of the homopolymers [70, 75-79], on the macromolecular
architecture/topology and composition of the copolymers [80-98], as well as on
the interaction parameter balance between the homopolymers and the copolymer
blocks [99, 100].

However, a crucial issue that could severely influence the efficient utilization of
a copolymeric additive as an emulsifier is the possible formation of copolymeric
micelles within the homopolymer phases when the additive is mixed with one of the
components [101]. The micelles will compete with the interfacial region for
copolymer chains, and the amount of copolymer at the interface or in micelles
depends on the relative reduction of the free energy, with much of the premade
copolymer often residing in micelles for high molecular weight additives. The
effect of the existence of micelles on the interfacial partitioning of diblock co-
polymers at the polymer—polymer interface has received some attention in the
literature [54, 56, 75, 77, 102—105]. As an alternative, in-situ formation of copoly-
mers (usually grafts) is utilized [61, 106—117] in order to overcome “wasting” of the
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additive into micelles. A second issue relates to the possible trapping [71] of
copolymer chains at the interface, which can lead to partial equilibrium situations.
Finally, since in a typical preparation of homopolymer/copolymer blends the
system can be diffusion-controlled, the optimal conditions for the molecular design
of interfacially active copolymers obtained from equilibrium considerations might
have to be modified.

The experimental and theoretical investigations of the effects of copolymeric
additives on polymer—polymer interfacial tension will be reviewed in Sect. 4.

2 Methods of Measuring Interfacial Tension

Various techniques have been developed to measure surface and interfacial tensions
of liquids and melts and an early extensive discussion was presented by Padday
[118]. In principle, all the standard techniques can be used to measure the surface
and/or interfacial tension of polymer liquids and melts; however, due to the high
viscosity and viscoelastic character of the polymers, only a few methods are
suitable. In general, equilibrium static techniques seem completely satisfactory.
Due to the high equilibration times involved with polymeric materials, it has not
been possible to demonstrate that pull, detachment, or bubble pressure measure-
ments can always be made slowly enough to yield accurate results with highly
viscous liquids. Extensive reviews on the suitability of the various methods applied
to polymeric systems have been given by Frisch et al. [119], Wu [10, 120],
Koberstein [121], Anastasiadis [122], Xing et al. [123], and Demarquette [124].

Only methods based on drop profiles are suitable for both surface and interfacial
tension measurements. These include the pendant drop method [125-127], the
sessile bubble or drop method [128, 129], and the rotating drop or bubble method
[130, 131]. These methods are independent of the solid-liquid contact angle but
require accurate knowledge of the density difference across the interface. The
demand of accurate density data becomes even greater when the two phases have
similar densities. The rotating drop or bubble method is particularly suited for the
determination of very low surface and interfacial tensions.

Although the capillary rise [132, 133] is one of the static methods, the very slow
attainment of equilibrium (because of the resistance to flow in the narrow capillary)
makes it unsatisfactory for highly viscous materials. The Wilhelmy plate technique
[134, 135] has the advantage that density data are not required; however, the
requirement of zero contact angle makes it suitable only for surface tension
measurements. Other standard techniques, such as the detachment methods (Du
Noiiy ring [136-138], drop weight methods [118]), and the maximum bubble
pressure method [133] are severely limited by viscosity. Although these methods,
except the drop weight methods, have been used to measure the surface tension of
low-viscosity polymeric liquids, they are impractical for viscous fluids because of
the extremely slow rates of attaining equilibrium. Most importantly, in this case,
they are not suitable for measurements at the liquid—liquid interface.
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Surface light scattering methods from thermally induced capillary waves at the
interface [139-141] or from electric-field-induced surface waves [142, 143] have
appeared. The technique is limited by the viscosities of the two phases; if the
viscosities are too large, then the spatial damping of the surface capillary waves
is too rapid to be detected by the technique. The applicability of this method for
highly viscous polymeric interfaces has not been verified yet.

Two dynamic methods that have attracted the interest of the scientific commu-
nity are the breaking thread method and the imbedded fiber retraction (IFR)
method. Although they are dynamic methods and, thus, suffer from the high
viscosities and viscoelastic character of polymers, they possess an important
advantage in that they can be used to measure the interfacial tension between two
phases of similar densities. The breaking thread method [144—147] involves the
observation of the evolution of the shape of a long fluid thread imbedded in another
fluid. Due to Brownian motion, small distortions of arbitrary wavelength are
generated at the surface of the thread; this leads to a pressure difference between
the inside and the outside of the thread, which induces important deformations
caused by the effect of the interfacial tension that tends to reduce the interfacial
area. It is possible to infer interfacial tension between the polymer forming the
thread and the matrix from the study of the time evolution of the disturbances.
However, the breaking thread method suffers from a major drawback related to
residual stresses during the preparation of the threads; these fibers distort faster and
lead to interfacial tension values much higher than the real value. Moreover, the
fiber should be formed with the material that has the lowest viscosity and, at the
same time, the higher softening temperature. Palmer and Demarquette [148] pro-
posed a methodology for the improvement of the accuracy of the method by
utilizing simultaneously the original theory of Tomotika [144], which evaluates
the growth rate of the sinusoidal instabilities growing exponentially with time, with
that of Tjahjadi et al. [146], which consists of fitting the dynamics of amplitude
growth using curve-fitted polynomials, which are calculated from numerically
generated results of the transient shape using boundary integral techniques.

The IFR method is a dynamic technique that has been widely used to measure the
interfacial tension for blends comprising high molecular weight and/or high viscos-
ity polymers, for which it is difficult or impossible to measure the interfacial tension
using direct equilibrium techniques such as the sessile or pendant drop methods. The
IFR method involves the analysis of the microscopic shape change of a fiber of one
polymer embedded in a matrix of a second polymer [25, 149—151]. In general, the
IFR studies are made on matrix polymers that are solid at room temperature and
have high viscosities, which are obtained directly by compression molding or cut
from large compression-molded samples. These systems require a melting and
embedding step at a temperature below the retraction temperature. However, matrix
polymers that are liquid at room temperature have been used as well [24].

The most versatile, convenient, and reliable technique for determining the
surface and interfacial tension of polymer melts is the pendant drop method
[19, 20, 45, 54, 56, 122, 126, 127, 152—-155]. The results obtained by the pendant
drop method constitute the bulk of the available data [10, 120]. The method is
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based on the principle that the shape of the profile of a drop of one fluid into a
matrix of another is governed by a force balance between interfacial tension and
gravity or buoyancy forces: a drop is pendant if the resultant force tends to pull it
away from the supporting surface and sessile otherwise. The shape of the drop is
described by the Bashforth—Adams equation [156], which in dimensionless form is
given by:

dp 2 7 sin ¢

dS B X

dX

d—S—cosqS 3)
dzZ

ﬁ: Sin (}’)

X(0) =2(0) = ¢(0) =0

where ¢ is the angle measured between the tangent to the drop profile at the point
(x, z) and the horizontal axis and s the distance of point (x, z) from the drop apex along
the drop contour. The dimensionless reduced parameters are defined as X = xv/c,
Z = zy/c, and S = s4/c. The shape of the drop is controlled by the shape parameter
B = a+/c, where a is the radius of curvature at the drop apex, g is the gravitational
constant, y is the interfacial tension, Ap is the density difference across the interface,
and ¢ = gAp/y. Thus, the profile of a pendant drop at hydrodynamic and interfacial
equilibrium provides the value of the interfacial tension.

Continuous monitoring of the drop profile can provide a criterion for hydro-
dynamic equilibrium of the drop by verifying conformity to the differential
equation (3). The technique does not require any particular solid—liquid contact
angle (except that the contact angle should be constant over the surface from
which the drop is suspended, so that the drop shape will constitute a figure of
revolution). Because of the minimal solid—liquid contact, the pendant drop offers
the fastest equilibration among the various methods. One potential difficulty is
that an initially stable drop might detach if sufficient reduction in interfacial
tension occurs during the measurement.

Andreas et al. [157] first proposed that measurements of two diameters of the
drop could be used to determine 7. Their procedure involved the determination of
the maximum diameter d. and a second diameter d, located at distance d,, above the
drop apex. The ratio S = dy/d. was used to determine a correction factor H from
tabulated values. The interfacial tension was then calculated by y = gApd2/H.
More accurate tables of 1/H versus S were compiled later [158, 159] by numerical
solution of the fundamental differential equations. Roe et al. [125] proposed the use
of not one but several characteristic ratios for determining the drop shape by
defining a series of diameters d,, (n = 8, ...12) measured at heights Z,, = (n/10)d,
(n =38, ...12) and the corresponding characteristic ratios S,, = d,/d. (n =8, .. .12).
They suggested that, when a series of the 1/H values determined from the several S,
values are nearly identical, the drop can be considered to have attained its equili-
brium shape and the interfacial tension can be calculated.
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Fig. 1 Typical digitized drop images. Original gray level image (/eft); thresholded binary image
(center); segmented drop profile (right) [155]

Advances in both data acquisition and analysis improved the precision and
accuracy of axisymmetric fluid drop techniques. Digitizer palettes to efficiently
record and store profile coordinates from enlarged photographic drop images were
first used [19, 160, 161], but were eliminated entirely by the change to direct
digitization of drop images with the aid of video frame grabbers or direct digital
cameras [155, 162-164]. Digital processing of the drop images leads to rapid
acquisition and analysis, thus, providing a simple means of detecting the attainment
of equilibrium, a distinct advantage for viscous fluids such as polymer melts.

Figure 1 shows typical digital images of a pendant drop (left), the same drop
following global thresholding (center) that reduced the 256 gray level image to a
binary image, and the resultant segmented drop profile (right) [155].

Sophisticated algorithms for the analysis of drop profiles were developed con-
currently [155, 160, 162, 165]. These methods either eliminate or minimize the
necessity of specifying extremal drop dimensions, thereby reducing the inherent
statistical error. Different optimization procedures have appeared. Girault et al.
[162] and Huh and Reed [160] used a least squares optimization with exhaustive
search through the shape parameter B, whereas Rotenberg et al. [165] utilized a
sophisticated least squares optimization procedure using the Newton—Raphson
method with incremental loading. Alternatively, Anastasiadis et al. [155] developed
a robust shape analysis algorithm, which utilized the repeated median concept of
Siegel and coworkers [166—168]. This algorithm has the advantages of robustness
and resistance, namely that outlying points that are not consistent to the trend do not
influence the fit. Such outlying points could result from inaccuracies in the compu-
terized drop profile discrimination procedure.

The process of comparing the experimental drop profile to the theoretical profile,
generated by numerical integration of (3), involves a five-parameter optimization.
A total of three parameters are required for the alignment of the imaging system to
the coordinate system of the dimensionless drop: an x- and y-translation, and a
rotational angle. The two final parameters are the scale or magnification factor of
the drop, \/c, and the shape parameter B. As in all regression problems, the drop
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analysis procedure involves comparing N points {(x;,y;)} from an experimental
profile to N homologous points {(i;,v;)} from a theoretical profile. The theoretical
points must be rotated by an angle 0, translated by a vector (o,f3), and scaled by a
factor 7 in order to effect this comparison. The transformed theoretical coordinates

are given by:
w\ _ [« cos —sin0\ [ u;
(V;>(ﬁ>+f(sin0 COSH)(VI-> @

and are compared to {(x;,y;)} for each value of the shape parameter B. The value of
the shape parameter, which yields the minimum overall error, provides the optimal
fit. The interfacial tension is, then, obtained from the associated optimal scaling
factor 7, recognizing that:

. 1/2
()

In least squares regression methods, the values of all the shape parameters
(i.e., 7, o, f§, 6) must be chosen simultaneously in order to minimize the sum of
the squared residuals:

N
sum = > [ (x5 = )+ (31 =)’ ©)
=1

In contrast, with the robust shape comparison method, each of the optimal
parameter values can be evaluated independently. In the case of rotation and
magnification variables, this is accomplished using the concept of repeated medians
as represented by the relationships:

T = med {mg:d {‘cl;,»}} (7a)

where

(7b)

and

0" = med {ml@d {0,-]-}} ®)
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where 0;; is the rotation required for the vector from point i to point j in the
theoretical shape in order to have the same attitude as the homologous vector in
the experimental profile. The translational parameters are calculated from the
simple (nonrepeated) medians as:

o = med {x; — 7" [u; cos 0* — v; sin 0°]} (9a)
B = med {y; — v*[u; sin 0" + v; cos 0"]} (9b)

The advantages of double median robust techniques over traditional least
squares regression methods have been discussed by Siegel et al. [166]. One
particular advantage specific to the shape comparison problem can be understood
by comparing (6) with (7)—(9). The least squares minimization is sensitive to local
residuals between individual points, which are, however, only remotely related to
the overall shapes of the two profiles being compared. The robust method affects a
more global shape comparison, as can be seen from examining (7) and (8). Instead
of comparing individual points of the two curves, the method compares vectors or
line segments between all points i and j on the experimental profile With the
correspondmg vectors on the theoretical profile. In addition, the values of 7, 0",
o, and B" for each shape comparison (i.e., for each value of the shape parameter B)
are specified directly by the robust relationships (7)—(9). Thus, the five-parameter
optimization is reduced to a single variable optimization of the shape parameter
B [155].

The application of the robust shape analysis algorithm is illustrated in Fig. 2 for a
drop of polystyrene (PS, M,, = 10,200; M,/M, = 1.07) in a poly(ethyl ethylene)

Fig. 2 Quality of the fit
obtained by the application of
the algorithm to an
experimental profile for a PS
10,200 drop in a PBDH 4080 g
matrix at 147°C. Solid line is R
the theoretical profile, and the S
data points denote the
original segmented
experimental drop profile

[20]. The interfacial tension is
2.6 dyn/cm Drop X Coordinate

Drop Y Coordinate
T
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(PBDH M,, = 4,080; M,/M, = 1.04) matrix at 147°C. The analysis of the drop was
performed using 23 data points for the shape comparison. The correspondence of
the theoretical profile to these data points and to the original digitized drop profile is
excellent [20].

The experimental setup, the digital image processing routines, and the robust
shape analysis algorithm have been widely used to study the polymer—polymer
interfacial tension [20], the effects of copolymeric additives on polymer—polymer
interfacial tension [45, 48] and the influence of copolymer molecular weight [54]
and architecture [56], the surface tension of homopolymers [169] and of miscible
polymer blends [170], the effects of end-groups on the polymer surface tension and
its molecular weight dependence [171], the effects of end groups on polymer—
polymer interfacial tension [172], the work of adhesion of polymer—wall interfaces
[173], etc. Moreover, the analysis algorithm was utilized by a different group in the
development of another pendant drop instrumentation [164] and their measure-
ments of polymer—polymer interfacial tension [21].

3 Interfacial Tension in Binary Polymer Blends

3.1 Experimental Studies of Polymer Interfacial Tension

Although knowledge of the interfacial tension in polymer/polymer systems can
provide important information on the interfacial structure between polymers and,
thus, can help the understanding of polymer compatibility and adhesion, reliable
measurements of surface and interfacial tension were not reported until 1965 for
surface tension [135, 138] and 1969 for interfacial tension [127, 154] because of the
experimental difficulties involved due to the high polymer viscosities. Chappelar
[145] obtained some preliminary values of the interfacial tension between molten
polymer pairs using a thread breakup technique. The systems examined included
nylon with polystyrene, nylon with polyethylene (PE), and poly(ethylene tere-
phthalate) with PE; the values are probably only qualitatively significant [174].

Determinations by Roe [154] and Wu [127, 152, 153] using the pendant drop
method and by Hata and coworkers [128, 175] using the sessile bubble technique
have yielded values for a number of polymer pairs as a function of temperature.
Gaines [174] and Wu [10, 120, 176] provided extensive reviews of the early work in
the area of surface and interfacial tension of polymer liquids and melts.

In general, and for polymers that exhibit a miscibility gap at lower temperatures
(blends that show upper critical solution temperature, UCST, behavior), interfacial
tension is found to decrease linearly with increasing temperature, with temperature
coefficients of the order of 102 dyn/(cm °C) [10]. This is about one half of the values
observed for the temperature coefficients of polymer surface tension [10, 120, 176].

An increase in the molecular weight of either polymer leads, in general, to an
increase in interfacial tension [10, 19, 20, 120, 176]; however, there are few
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systematic experimental studies of the effects of molecular weight on polymer—
polymer interfacial tension. Bailey et al. [177] have examined the effect of molec-
ular weight and functional end groups on the interfacial tension between poly
(ethylene oxide), PEO, and poly(propylene oxide), PPO. The interfacial tension
was found to increase with increasing PPO molecular weight but to decrease
slightly with increasing the molecular weight of PEO. This dependence was
attributed to the adsorption of the hydroxyl end groups of PPO to the interface.
When these end groups were replaced by methoxy groups, the adsorption no longer
took place and the interfacial tension increased with increasing molecular weight.
Experimental interfacial tensions measured by Gaines and coworkers [178, 179] for
the systems n-alkanes/perfluoroalkane C;, sF,7, poly(dimethyl siloxanes)/Cy, sF»;
or CgF g, and alkanes/poly(ethylene glycols) all exhibited an increase with increas-
ing molecular weight following an apparent M, % dependence, similar to that
observed for homopolymer surface tension [10]. This similarity was predicted by
several empirical theories that relate interfacial tension to the pure component
surface tensions [153, 180], whereas no thermodynamic theory explicitly accounts
for this dependence (see Sect. 3.2 below).

Anastasiadis et al. [20] utilized digital image processing of pendant fluid drops to
investigate the effects of temperature and molecular weight on the interfacial
tension for three blends of immiscible polymers. Interfacial tension was found to
decrease almost linearly with increasing temperature for all systems (which exhibit
a UCST behavior) and to increase with increasing molecular weight. The interfacial
tension data for blends of polybutadiene (PBD 1000; M, = 980; M/M,, = 1.07)
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Fig. 3 Experimental interfacial tension as a function of temperature for PBD/PDMS pairs. Open
squares PBD 1000/PDMS 3780; open diamonds PBD 1000/PDMS 2000; filled squares PBD 1000/
PDMS 1250; filled diamonds PBD 1000/PDMS 770 [20]
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Fig. 4 Experimental interfacial tension at 25°C between PDMS and PBD 1000 as a function of
the M, of PDMS. Solid line represents the best fit to a M, ' dependence and the dotted line is the
fit for a Mn’o'5 dependence [19, 20]

with four poly(dimethyl siloxanes), PDMS, are shown in Fig. 3 as a function of
temperature. Interfacial tension decreases almost linearly with temperature with
temperature coefficients of 0.75 x 107%to 1.2 x 10~ 2 dyn/(cm °C).

The effect of PDMS molecular weight on the interfacial tension at constant
temperature for a constant molecular weight of PBD (M, = 980, M,/M,, = 1.07)
is illustrated in Fig. 4. The molecular weight dependence was obtained by perfor-
ming nonlinear least-squares regression of the data to an expression of the form
Y =V (1 — kjyM ) This analysis yielded z = 0.54 for the present PDMS/PBD
system of the specific range of low molecular weights.

The interfacial tension data for blends of PS of various molecular weights versus
a poly(ethyl ethylene) (PBDH 4080; M,, = 4800, M /M, = 1.04) exhibited a similar
behavior with temperature, with temperature coefficients 0.9 x 10 *to 1.5 x 102
dyn/(cm °C), and, qualitatively, with molecular weight. However, fitting the data to
the expression y = yoo(l — kineM Z) yielded z = 0.68 for PS molecular weights
between 2200 and 10,200.

The measurements for the blends of PS and poly(methyl methacrylate) (PMMA,;
M, = 10,000, M,/M, = 1.05) cover the broadest range of molecular weights
(Fig. 5). For this system, nonlinear fit of the data to the expression
Y = Voo (1 — kineM Z) resulted in z = 0.90 for PS molecular weights between 2200
and 43,700.

These values for the exponent z should be taken with caution because of
experimental errors. However, it was pointed out [20] that the smallest value for z
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Fig. 5 Experimental interfacial tension between PS and PMMA 10,000 as a function of PS M,, at
199°C. The solid line represents the best fit to a M,,~' dependence and the dotted line is the fit for a
Mn’o'5 dependence [20]

(z = 0.54) was obtained for the system with the lowest molecular weights and
highest polydispersities (M/M,, = 2 for the PDMS samples), whereas the largest
value for z (z = 0.9) was observed for the system with the highest molecular
weights. A smaller exponent for PDMS/PBD could be explained by the occurrence
of surface segregation of the polydisperse PDMS according to molecular weight.
Surface tension data for mixtures of PDMS oligomers suggest that the lower
molecular weight species are concentrated at the surface [176]. Alternatively, the
PDMS/PBD system is closest to its critical point, where a M, *> dependence of
interfacial tension has been predicted [181] (discussed in Sect. 3.2.4). The interme-
diate molecular weight system of PS/PBDH shows good correspondence with the
M, " dependence. A similar dependence for the surface tension was explained by
using a simple lattice analysis [182] that incorporated the contribution of the end
groups at the interface. For these moderate molecular weights, the end-group
effects are important and a M, > dependence might be expected.

The PS/PMMA blends, on the other hand, contain the highest molecular weight
constituents and should, thus, conform best to the limit of high molecular weights.
In this limit, the exponent z apparently approached unity. The fact that the estimated
exponent is 0.90 probably suggests that the asymptotic regime (the M, behavior)
was not yet reached even for those molecular weights. The nonlinear regression
results, therefore, suggest that the exponent z of the molecular weight dependence
of polymer—polymer interfacial tension increases as the molecular weights of the
constituents increase.
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Ellingson et al. [25] investigated the molecular weight dependence of the
interfacial tension between a PMMA (M,, = 24,400, M /M, = 1.10) and a series
of polystyrenes (M, = 2140 to 191,000, M/M,, = 1.06 to 3.26) utilizing an IFR
method, which allowed them to study even larger molecular weights. Figure 6
shows the experimental data at a temperature of 190°C (slightly lower than for the
measurements of Anastasiadis [20]). The data were analyzed with the expression
Y= Voo (1 — k,v,,,Mn’Z), yielding a best fit value of z = 0.73 + 0.24; however, equal
quality fits were obtained for z = 0.50 or z = 1.0.

Kamal et al. [21, 22] used a similar pendant drop apparatus to determine the
interfacial tension between polypropylene (PP, M,, = 54,000 and M,,/M,, = 5.54)
and a series of polystyrenes (M,, from 1600 to 380,000 and M /M, = 1.04—1.06).
Interfacial tension decreased almost linearly with temperature (Fig. 7) for this
UCST-type system, with temperature coefficients of 3.7 x 1072 to 4.4 x 1072
dyn/(cm °C).

Figure 8 shows the effect of the PS molecular weight on the interfacial tension
with PP [21, 22]. The interfacial tension increases as the PS molecular weight
increases, in agreement with earlier works. The precision of the data, however, does
not allow the unequivocal determination of the functional form of the molecular
weight dependence. The data can be equally well fitted with the expression
Y =Yoo (1 — k,-,,,M;"), with the exponent z being 0.5, or 0.68 or 1.

Arashiro and Demarquette [23] investigated the effects of temperature, molecu-
lar weight, and molecular weight polydispersity on the interfacial tension between
low density PE and PS. Figure 9 shows the temperature dependence for three PE/PS
pairs; interfacial tension decreases linearly with temperature for all three UCST-
type systems. The temperature coefficient [3.0 x 10~% to 4.4 x 102 dyn/(cm °C)]
was found to decrease with increasing molecular weight, whereas it was higher for
the polydisperse than for the monodisperse system, in agreement with earlier
studies [21, 22].
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Fig. 7 Experimental
interfacial tension as a
function of temperature for
PP/PS pairs. Filled squares
PP/PS 380,000; open inverse
triangles PP/PS 86,438; filled
circles PP/PS 19,417; open
circles PP/PS 4755 [21, 22]

Fig. 8 Experimental
interfacial tension for PP/PS
pairs as a function of PS
molecular weight. Open
circles 186°C; filled circles
213°C [21, 22]
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The effect of molecular weight polydispersity is shown in Fig. 10 for blends of
one PE with two different series of polystyrenes with constant M, (18,100 and
107,200) and different polydispersities. The interfacial tension decreased with
increasing polydispersity in both cases, and the influence of polydispersity was
higher for lower PS molecular weights. The decrease in interfacial tension could be
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due to the migration of the short chains of the polydisperse systems to the interface
(see Sect. 3.2.3). Thus, the short chains act similarly to a surfactant in that they
lower the interfacial tension and broaden the thickness of the interface. Similar
results have been shown by Nam and Jo [26] for PBD (M,, = 4100, M/M,, = 1.4)
and PS (average M, =~ 5500). Nam and Jo [26] also showed that the temperature
coefficients increased linearly with increasing polydispersity in the range 1.1-1.5.

The interfacial tension between PE and PS increased with increasing PS molec-
ular weight, whereas the influence of molecular weight decreased significantly
when the PS molecular weight exceeded a certain value of the order of 45,000
[23]. The experimental data of interfacial tension as a function of molecular weight
could be fitted to a type of power law if two molecular weight ranges were
considered: one below and the other above this characteristic molecular weight.
Moreover, the influence of PS molecular weight on the interfacial tension between
PE and PS was shown to be smaller for lower molecular weights than for higher
molecular weights of PE [23]. These are clearly shown in Fig. 11.
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3.2 Theories of Polymer—Polymer Interfaces

It is not adequate to describe the junction between two homogeneous bulk phases as
a simple two-dimensional plane without thickness. Because of the finite range of
intermolecular forces, the interface can more properly be regarded as a region of
finite thickness across which the density, the energy, or any other thermodynamic
property changes gradually. Because this region has both area and thickness, it may
be considered as an interphase that exists in either the solid or the liquid states.
These interphases are usually referred to as two-dimensional phases, since the
thickness parameter cannot be varied at will by the experimenter; indeed, it is
controlled by the thermodynamics of the system [9].

Consider two homogeneous bulk phases, o and B, and separating them is an
interfacial layer or interphase S (Fig. 12) [9, 183]. The boundary between the
interphase and the bulk phase « is the plane AA’, and that between the interphase
and the bulk phase 3 is the plane BB'. The properties of the interphase are assumed
to be uniform in any plane parallel to AA’ or BB/, but not in any other plane in the
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Fig. 11 Experimental interfacial tension as a function of temperature for PE/PS pairs. Filled
squares PE 82,300 (M/M, = 4.00)/PS (M /M, = 1.03-1.12); open squares PE 3500 (M, /M, =
2.00)/PS (M /M, = 1.03-1.12). The lines indicate the fits for the two different molecular weight

regimes [23]
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interphase [9, 183] phase B
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interphase. At and near the plane AA’, the properties of S are identical with those of
the bulk phase o.. However, moving from AA’ to BB’ within the region S represents
a gradual change in the properties of the interphase, from those corresponding to
phase o to those corresponding to phase p.

In the bulk phases, the force across any unit area is equal in all directions, as is
the hydrostatic pressure P. In the interphase, the force is not the same in all
directions. However, if a plane of unit area is chosen parallel to AA’ or BB’, the
force across the plane is the same for any position of the plane whether it lies in o, [3,
or S, because hydrostatic changes are assumed negligible. In contrast, the force
balance for planes that cross the interphase, i.e., perpendicular to AA/, is altered by
the inclusion of an additional term due to the interfacial tension, y. This force is
associated with the anisotropic nature of intermolecular forces that result from the
concentration gradient within the interphase.

The influence of the interfacial tension term on the thermodynamics can be
illustrated by considering the work, W, performed on the interphase when addi-
tional interphase is formed. If the interphase volume increases by dV°, ie., a
thickness increase of dx and an area increase of dAS, the force balance leads to:

W =PASdx — (Px —y)dAS (10a)
or:
W=—PdVS+ydAS (10b)

This last expression is the analogous work term for an interphase, which
corresponds to the three-dimensional —PdV term for a bulk phase. Incorporation
of this term into the first and second laws of thermodynamics for multiconstituent
open systems results in:

dU=TdS—PdVS+ydA +> pdn; (an

where T is the thermodynamic temperature, S is the entropy, U is the internal
energy, and y; and n; are the chemical potential and number of moles of type i.
Integration of the above equation, at constant intensive variables, produces the
corresponding Euler relationship:

y = <U+PVS—TS—Zuidn,->/AS (12)

Therefore, y is the excess free energy per unit area arising from the formation of
the interphase; it is equal to the difference between the Gibbs free energy of the
system with the interphase, (U + PV — TS), and that of an identical system without
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the interphase, Zi u; d n;, divided by the interfacial area AS. Substitution of (11
into the total derivative of (12) results in:

—dy= (SdT—VSdP+Zn,-d,u[>/AS (13)

which is a modified Gibbs—Duhem equation for the interphase.

The quantity of the components adsorbed at the interphase is a significant
parameter, whereas the relationship between the extent of adsorption and the
interfacial tension is particularly of interest; this is studied in terms of the Gibbs
adsorption isotherm. At constant temperature and pressure, the Gibbs—Duhem
relationship for an interphase is:

—dy=) mdw/A =) Tidy, (14)

where I'; = n;/AS is the quantity of the i-th constituent contained per unit area of the
interphase. Equation (14) indicates that spatial partitioning of constituents occurs at
an interface (i.e., one constituent adsorbs preferentially at the interface) and that the
extent of this adsorption is a function of the interfacial tension. The definition of I,
however, is not exact because it depends on the concentration gradients present
within the interphase, and its magnitude depends on the choice of the dividing
boundary, often referred to as the Gibbs dividing surface.
For a two component system, the Gibbs adsorption isotherm is written as:

—dy=T1dpu +Tadu, (15)

Although recognizing that the interfacial region is best considered as an interphase,
the alternative mathematical model is to consider the interface as a plane of
infinitesimal thickness situated between AA’ and BB’ of Fig. 12. This dividing
surface can be considered to be positioned so as to give rise to a simplification of
(15). Gibbs [183] defined the position of the dividing surface such that the surface
excess of constituent 1 is zero, and hence:

—dy=Tdu (16)

where I, is the surface excess of constituent 2 with the dividing surface so defined.
The equation relates the reduction in interfacial tension directly to the enrichment
of one component within the interphase.

Although the thermodynamic description of an interphase is an invaluable tool,
it is rarely used. The traditional approach of Gibbs requires the use of a dividing
surface to which interfacial properties are referenced. This method is burdened with
notational and conceptual difficulties [184]. As alternative but equivalent method of
treating interphase thermodynamics was developed by Cahn [185], which avoided
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the pitfalls of the traditional approach by eliminating the arbitrary selection of the
dividing surface. The development was based upon writing the Gibbs-Duhem
relationship in a manner that made it independent of the definition of the dividing
surface. However, Cahn’s approach has not received much attention, although
Sanchez [184] suggested that it would be useful because of its conceptual simplicity.

3.2.1 Semiempirical Theories of Polymer Interfaces

A number of semiempirical treatments have appeared over the years to develop
“theories” relating the interfacial tension between a pair of incompatible substances
to the surface tensions of the pure components. The first attempt to present a theory
for interfacial tension is attributed to Antonoff [186—188]. He proposed an empiri-
cal rule that states that the interfacial tension, 7y, is equal to the difference between
the pure component surface tensions, ¢, and o:

y=01—02 17

when ¢; > ¢,. This can be correct only when phase 2 spreads on phase 1, and phase
2 is a small-molecule liquid. This empirical relationship is not applicable to
polymer systems [120].

It is more appropriate to write the interfacial tension as:

y=o01+0—W, (18)

W, is the work of adhesion, which is equivalent to the Gibbs free energy decrease
(per unit area) when an interface is formed from two pure component surfaces. The
work of adhesion increases as the interfacial attraction increases, leading to a
decrease in interfacial tension. It is apparent from (18) that, if the two components
are identical, an expression can be obtained that relates the surface tension a; to the
work of cohesion (W;) for component i:

W = 20; (19)
The interfacial tensions can, then, be related to the pure-component surface tensions

by expressing W, in terms of the Good-Girifalco [180, 189—-192] interaction
parameter dgg:

dc = Wa/ (We,We,)' (20)
The resulting equation of Good—Girifalco is:

7 =01 + 02 — 2¢6g(0102) " Q1)



200 S.H. Anastasiadis

The interaction parameter, Ggg, can be given [189—192] in terms of the molecu-
lar constants of the individual phases, including polarizabilities, ionization poten-
tials, dipole moments, and molar volumes. The utility of the approach is limited by
the lack of information about those molecular parameters for most polymer sys-
tems. Another difficulty arises from the fact that a ~10% error in ¢pgg will result in
a ~50% error in calculating 7y, because for polymers the surface tensions are very
similar. Thus, the ¢gg values must be accurately known. Values of ¢gg between
some polymer pairs have been calculated from the measured interfacial and surface
tensions [193, 194], and are found to be in the range 0.8—1.0. Empirically, it has
been shown [194] that:

Ica _
o =0 (22)

An alternative treatment [153, 195] is based upon (18), where the work of
adhesion is calculated using the theory of fractional polarity. Intermolecular
energies are assumed to consist of additive nonpolar (i.e., dispersive) and polar
components. Thus, the work of adhesion and the pure-component surface tensions
can be separated into their dispersive (superscript d) and the polar (superscript p)
components, such that:

o =0+ aF (23)
and:

W, =W+ WP (24)

The various polar interactions (including dipole energy, induction energy, and
hydrogen bonding) are combined into one polar term.

Relationships between (23) and (24) have been obtained for two limiting cases.
For low energy surfaces, characteristic of most polymer systems, the harmonic-
mean approximation is valid for both the dispersive and the polar terms. This,
combined with (18) gives:

400§ 46'0h
=01+ 0y — — 25
Y 1 2 0_(11 T O_g o_]]) + 0_12) ( )

which has been found to give good results for polymers. Equation (25) can
be rewritten in terms of (21); the interaction parameter ¢gg is then given
by [195]:

_ 2x9x4 2258
gix{ +gx§  gix] 4+ g5

bce (26)
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The fractional polarity is defined as x” = ¢//o =1 — x with g; = = (0,/02)"* = 1/g5.
For interfaces between a low and a high energy material, the geometric-mean
approximation was used to give:

y=01+0, —2 0'62 2 0'162 27

When polar contributions are neglected, (27) reduces to the Fowkes equation
[196]. In terms of the Good—Girifalco equation (21), the interaction parameter is
given by:

b = \/xx8 + 24 /208 (28)

The generalized Good—Girifalco equation provides a framework for calculating
the temperature and molecular weight dependence of interfacial tension. Differen-
tiation of (21) with respect to temperature, taking into account (22), results in [120]:

d'y—do-] dO’z do-] d0-2:| (29)

AT~ dT ' dT (pGG{g‘ at 8ar

Although good agreement has been found for most of the cases originally reported by
Wu [193-195], (29) should only be used for guiding the plots of interfacial tension
versus temperature [120]. The molecular weight dependence derives directly from
the incorporation of the empirically found relationship for the pure-component
surface tensions [197, 198], ¢ = 6o — k/M* (where M is the number-average
molecular weight) to the Good—Girifalco relationship. One then obtains:

ki k
- 30
M; M (30)

V=700 —

where M, M, are the number-average molecular weights of the two polymers, and
the term 7y is given by:

ki 1/2 k 1/2
Yoo = 01+ 02 — 2006 {01 —ﬁj ) _1\75 (3D

and is practically independent of molecular weight [178].

Although these semiempirical treatments can be useful in predicting interfacial
tensions, they are not successful from a fundamental standpoint and cannot be used
to predict the interfacial composition profile. Furthermore, these theories neglect the
entropy effects associated with the configurational constraints on polymer chains in
the interfacial region. These effects are unique in polymers and arise because the
typical thickness of the interfacial region between polymer phases is less than the
unperturbed molecular coil dimensions of a high polymer. Major perturbations of
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the spatial arrangement of polymer molecules must, then, occur in order for the
interfacial thickness to become less than the unperturbed chain dimensions. Chain
perturbations will also occur at a polymer—air interface for the same reason, i.e., the
thickness of a polymer surface region (the region between unperturbed bulk polymer
molecules and air) will also typically be less than the chain dimensions of the polymer
molecules. Such chain perturbations contribute to the excess energy of surfaces or
interfaces, and are reflected in the values of surface and/or interfacial tension. Since
there is no direct relationship between the chain perturbations that occur at the
polymer—air surfaces of the two individual polymers and the perturbations that
would occur at the interface in a demixed polymer blend, there can be no direct
fundamental relationship between the properties of polymer surfaces (surface tension)
and polymeric interfaces (interfacial tension). Therefore, “theories” that attempt to
present relationships for polymeric systems must be looked upon only as empirical.

3.2.2 Microscopic Theories of Polymer Interfaces

A number of thermodynamic theories have appeared that take a more fundamental
approach, and, specifically, address the question of interfacial structure and its
relation to interfacial tension.

Helfand and Tagami [27] formulated a statistical mechanical theory of the
interface between two immiscible polymers, A and B. The approach is based on a
self-consistent field, which determines the configurational statistics of the polymer
molecules in the interfacial region. At the interface, energetic forces (determined
essentially by the polymer A/polymer B segmental interaction parameter, y) tend to
drive the A and B molecules apart. This separation, however, must be achieved in
such a way as to prevent a gap from opening between the polymer phases. The
energetic force on, say, an A molecule must be balanced by an entropic force
describing the tendency of A molecules to penetrate into the B phase, because of the
numerous configurations of the A molecule which do so.

The theory was originally developed for symmetric systems, i.e., for similar
polymers A and B that possess identical degrees of polymerization (Z), effective
lengths of the monomer units (»), monomer number densities (pg), and isothermal
compressibilties (k). The authors recommended the use of the geometric mean
when these properties are not actually the same.

In the Helfand-Tagami mean field formulation, the effective mean field Wa(r)
on a segment of polymer A, which is the reversible work of adding the segment at
position r, where the densities are pA(r) and pg(r), less the work of adding the
segment to bulk A, is given by:

Walr) _ pu() [palt) o) (32)
kT Po Po Po

with { = (kpoksT) ' —Z~!, where kg is the Boltzmann constant. The first term
arises from the relatively unfavorable interaction of the A polymer segments with
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the B polymer segments it encounters. The second term comes from the tendency of
the system to pull polymer into regions where the total density (pa + pg) is less
than po, and push it out of regions of density greater than p(. The inverse compress-
ibility has been proven to be the proper account for this tendency [27, 28].

To obtain the self-consistent configurations of this system, one should focus on
the quantity ga(r,r), which is essentially the ratio of the density at r of the ends of
polymer molecules of type A and length Ztb with 0 < ¢ < 1, to the end density in the
bulk A. Since the segment at Z¢ is the origin of two independent random walks, one
of length Ztb and one of length Z(1 — #)b, the relative density is ga(r,1 — 1) ga(r,?).
By summing over all segments, or integrating over ¢, the overall segment density of
A atris:

1
/qA (r,1 — 0)ga(r,t)dt (33)
0

The quantity g(r,f) can also be regarded as the ratio of the partition function of a
polymer molecule that starts at r and has Z ¢ steps in the effective mean field W (r),
to that of a polymer in a zero field region, i.e., in the bulk phase. This ratio satisfies a
modified diffusion equation, which, for the dividing surface at x = 0 and the A-rich
phase at x > 0, can be written as:

lan(r,t)_bz 2 pp(r) pa(r) | pp(r)
ZT—EV qA(r,t)—[x 26 +C< o0 + oo —1>}QA(1'J) (34)

By symmetry, the equation for gg(r.,?) is:

1 9gg(r,t) b*_, _pa(r) pa(r)  pg(r)
Z o 6V QB(r’I)_{A Po H( o po _lﬂ%(m) G

with initial conditions:

ga(r,0) = gg(r,0) =1
QA(Oovt) = CIB(Oovt) =1 (36)
ga(—00,t) = gg(—00,t) =0

where it is assumed that the asymptotic regions are pure A or B. Thus, (33)—(36) are
the self-consistent set of equations for the density profile calculation.

These equations have been solved asymptotically for effective infinite degree of
polymerization of the chains, and low isothermal compressibility (x/ — 0), to yield
the density profiles:

pAGZ) _ 1[1 + tanh(2x/ay)]
P Z? %) ? -
T 3 [1 — tanh(2x/ay)]
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where a; is a measure of the effective interfacial thickness and:

Po 2b
ap = = (38)
dpa/dxl_y (67)'2
The interfacial tension was calculated as:
k T 1 +0o0
=== / d’. / dxpa (6 47) P (5 47) (39)
0
0 —00

where p;(x;Ay) is determined from the self-consistent equations by replacing y with
Ay. Using (37), one gets:

7= (2)" popot (40)

The theory was originally compared to three polymer pairs, namely PS/PMMA;
PMMA /poly(n-butyl methacrylate), PnBMA; and PnBMA/poly(vinyl acetate),
PVA. The calculated interfacial tension agreed exactly with the experimental
value for PnBMA/PVA; it compared well for PMMA/PnBMA and differed by
50% for PS/PMMA. Helfand and Tagami suggested that, if y is too large, then
the characteristic interfacial thickness is too small for the mean-field theory to be
appropriate. The theory has been widely used to estimate the interfacial tension in
many different polymer—polymer systems with acceptable success.

However, the theory cannot be used if the asymmetry between A and B is too
severe. Helfand and Sapse [29] refined the theory of Helfand and Tagami so as to
remove the restrictive approximation of property symmetry of the two polymers.
For a Gaussian random walk in a mean field, they obtained:

Ba + Py _'_l (Ba — Ba)’

y = kBToc'/2
2 6 Ba+Ps

(41)

o is the mixing parameter, o = y(poapos)’> and ﬁl-z = pOib? /6. It was assumed that
there was no volume change upon mixing and that the isothermal compressibility
was small and independent of composition. The theory makes reasonable predic-
tions, which are slightly improved when nonlocal interactions are considered.
Inclusion of these nonlocal interactions gave:

Ba+Ps l(ﬂA_ﬂB)z 1 2 _z(ﬁA_ﬁB)z
( 2 "8 Butha )*18“<ﬁA+ﬁB 5(/3A+/33)3>+m]

y = kgTo'/?

(42)
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where 1 is a measure of the range of nonlocality, with 1* being the second moment
of the direct correlation function [199]. The interfacial thickness is predicted to be:

1/2

2 2
o — 2(%) 43)

Tagami [200, 201] extended the theories of Helfand and coworkers to the case of
compressible nonsymmetric polymer mixtures. A slight decrease in the predicted
interfacial tension was found, due to the presence of finite compressibility of the
polymers. This tendency was particularly apparent in the case of nearly symmetric
polymer pairs, when the intersegmental interactions are of nonlocal nature. The
results reduce to the results of Helfand and Sapse in the appropriate limits. How-
ever, the resulting equations are much too complicated, although the results do not
differ significantly from those predicted by (41).

The difficulty in applying the above-mentioned theories is the paucity of accu-
rate data for the physical parameters required by the theories. In particular, data for
g or o are not generally available, and the Hildebrand regular solution theory
expression:

2
oy (01 ;T52) (44)

has frequently been used, where J; is the solubility parameter of the i-th constituent.
The fact that solubility parameters are normally available at only one temperature
necessitates the additional assumption that they are temperature independent. Use
of this expression for « yields interfacial tensions of reasonable magnitude, but
gives the wrong sign for the temperature coefficient. Indeed, substitution of (44) in
(40) or (41) results in an effective 7" dependence, whereas a linear decrease with
temperature is experimentally observed. However, a proper temperature depen-
dence can be obtained if a small entropic term is added to the expression for « [19];
an apparent interaction density parameter of the form o = ay/T + og gives a good
agreement between theory and experiment.

The Gaussian random coil model is appropriate when the scale of inhomogeneity
(e.g., the interfacial thickness) is large compared with the length of a bond, b, and
the range of interactions, . To handle the case where this is not true, a lattice model
has been proposed by Helfand [202-205], in the spirit of the Flory-Huggins
approach [206]. For infinite molecular weights, he obtained:

kT

7=5 (}5m)1/2 I+ (1+ X)x’l/z arctan(xl/z)} (45)
where a is the cross-sectional area of a lattice cell and m is a lattice constant, defined
such that the number of nearest neighbors of a cell in the same layer parallel to the

interface is z(1 — 2m) and in each of the adjacent layers is zm, where z is the number
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of nearest neighbors (coordination number) of a cell. Neglecting the nonlocality of
interactions, Helfand obtained:

== (ym)'"? (46)

which is consistent with the self-consistent mean field (SCMF) theory in that they
both predict y o 3"

Roe [207] used a quasi-crystalline lattice model to determine the properties of
the interface between two coexisting liquid phases, where one or both of the
components are of polymeric nature. For y much larger than the critical value y_,
the composition transition at the interface is expected to be sharp. In this limit, Roe

predicted that:

kT
y=—

=201 — 1/r) In(l 4 m) — 2¢2<1 +“ﬁ7/};)’”2>] 7)

where [ = 1 — 2m, r is the degree of polymerization, and qﬁg is given by:

)= Iy + (1—1/r) {HLm—ln{m/(Hm)}} 48)

When y — y. < 1, the interface is diffuse and the composition varies smoothly
across the interface. In the limit, ¥ — y. < 7%, Roe found:

_ ksT my 3/2,1/2,
y =" (3) =2V 49)

For an interface between polymers, and assuming infinite molecular weight, Roe
obtained:

4 . kgT
V:§2 1/4BTm1/2X3/4 (50)

that predicts y o< ¢*'*, which is different from the results of Helfand and coworkers.
For the thickness of the interfacial thickness, Roe predicted that for infinite molec-
ular weight:

ap =4 x 27 VAam' 2y 14 (51)

where d is the separation between adjacent lattice layers.

Helfand [202, 208] suggested that Roe’s work contained a number of assump-
tions, which made it difficult to appraise the applicability of the theory. Helfand
suggested that Roe’s lattice theory did not treat the conformational entropy properly
by assuming that the chances of going from a cell site to any empty neighboring cell
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were equally likely, thus neglecting the fact that bond orientations are inherently
anisotropic. As a measure of the effect of Roe’s assumptions on the qualitative
nature of his results, Helfand pointed out that, when a gradient expansion of Roe’s
equation was made, the Gaussian random-walk equations [27, 28] were not recov-
ered. Experimental verification of the lattice theories, however, has not been
possible, because the lattice parameters a, m, and d are unknown a priori.

Kammer [209] examined the interfacial phenomena of polymer melts from a
thermodynamic point of view. A system of thermodynamic equations has been
derived to describe the temperature, pressure, and composition dependence of
interfacial structure. Starting from the fundamental equations of Guggenheim
[210], Kammer employed the Gibbs—Duhem equation of intensive parameters
(13) to find that the interfacial composition is given by:

. (dV/dT)P"‘(dU /dT)P
= (dal/dT)PJrO.S(dlaz/dT)P (52)

where xg is the molar fraction of component 2 at the interfacial region, and ¢, and
o, are the surface tensions of the two components against air. Assuming that the
interfacial layer is predominantly occupied by component 2 (i.e., x; — 0), he
obtained:

s
e}
=== 53
=5 (53)
where 3is the chemical potential of component 2 and A is the molar area of the
interface. Use of the Flory-Huggins formula of the chemical potential leads to:

RT
7 =7+ (g3 + (1= ra/r)g] + raz ()] (54)

where 7° is a constant, and r;, y, and (;S,-Sare the degrees of polymerization, the Flory-
Huggins interaction parameter, and the volume fraction of component i at the
interphase. The interfacial thickness was shown to be:

L Y — 02

— (55)
RT rx((bf)z—l- In d)‘;

ay; =

with v the mean molar volume of the polymers.

Hong and Noolandi [211] have developed a theory for an inhomogeneous
system, starting from the functional integral representation of the partition function
as developed by Edwards [212], Freed [213], and Helfand [199]. The theory has
been used to determine the interfacial properties and microdomain structures of a
combination of homopolymers, block copolymers, monomers, and solvents. In that
approach, the general free energy functional was optimized by the saddle-function
method, subject to constraints of no volume change upon mixing and constant
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number of the individual particles, to obtain equations for the mean field acting on
the polymers. They used this general theory to calculate the interfacial tension for
polymer/polymer/solvent systems [214], where good agreement was obtained with
experiment [215] for the PS/PBD/styrene ternary system. Their final results, how-
ever, are in integral form, which requires numerical integration. The application of
the theory to the ternary systems polymer A/polymer B/diblock copolymer AB will
be presented in Sect. 4.3.1.

Helfand and coworkers [30] responded to the experimental interest on the molec-
ular weight effects on interfacial tension (see Sect. 3.1) by solving the equations
they had derived earlier [27, 28, 199, 208] for the case of finite molecular weights;
these equations were solved only in the infinite molecular weight limit earlier
[27, 28]. The leading correction to the interfacial tension, which is of order ot
(where r is the degree of polymerization of the two polymers in a symmetric system),
is solely due to the placement entropys, i.e., it originates from the gain in translational
entropy for finite chains, which can penetrate slightly more into the other phase.
The interfacial tension for a symmetric system (polymers A and B with the same
properties when pure) of large but finite molecular weights is, thus, calculated as:

2
Y =Yoo {1 —an;} (56)

The leading correction to the concentration profile is also of the order of 7' and
is due to the entropic attraction of the chain ends to the interfacial region and the
necessary readjustment of the remainder of the molecule. The authors gave a
nonanalytic expression for the interfacial width. The concentration correction
does not contribute to the interfacial tension at leading order because the free
energy is calculated within a mean field approximation, where any change in the
concentration can affect it in the second order, producing in this case a correction to
the interfacial tension of the order of r 2.

Tang and Freed [32] used density functional theory to investigate the effects of
molecular weight on polymer—polymer interfacial tension. They considered possi-
ble reasons for the discrepancy between the theories available at that time and the
experimental investigations on interfacial tension and concentration profiles across
the interface. They postulated that certain approximations in the density functional
previously used might be appropriate only in certain limited domains and, conse-
quently, that higher order contributions to free energy functionals could contribute
significantly to interfacial properties. Moreover, they considered the possible com-
position dependence of the Flory-Huggins interaction parameter. Tang and Freed
calculated the interfacial tension for a symmetric blend for the entire two-phase
region (from the weak to the strong segregation regime); it is given as:

3/2

2 2\*
Y= Voo [1 -0.90—-0.10 (;) ] (57a)

Y
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whereas the interfacial width is given by:

s2 172\
— 124 (= 58
ar = i [ 47 + 7 <X”> ] (58a)
It is interesting that (57) shows an almost linear dependence on (Xr)fz/ ? over a wide

range of 2.5 < yr < 20, consistent with experimental observations for intermediate
molecular weights.
The asymptotic expressions for very high molecular weights are:

R [1 —1.35 2} (57b)
xr
2
ar = ajs [1 4—§ —] (58b)
8 yr

The coefficient 5/8 ~ 0.625 in (58b) is very close to that (In2 = 0.693) of Broseta
in (87) (to be discussed later), whereas the coefficient of 1.35 in (57b) is about
50% larger than that (1:2/ 12 = 0.82) in (86) and about twice as large as the value of
In2 = 0.693 in (56).

The respective equations in the weak segregation limit (WSL) are:

N 2 yr 3/2.
70 [7 - 1} . (WSL) (57¢)
2 2 —1/2

3.2.3 Square-Gradient Approach

A conceptually different approach to the calculation of interfacial tensions is the
use of the generalized square-gradient approach as embodied in the work of Cahn
and Hilliard [216]. The Cahn-Hilliard theory provides a means for relating a
particular equation of state, based on a specific statistical mechanical model, to
surface and interfacial properties. The local free energy, g, in a region of nonuni-
form composition will depend on the local composition as well as the composition
of the immediate environment. Thus, g can be expressed in terms of an expansion in
the local composition and the local composition derivatives. Use of an appropriate
free energy expression derived from statistical mechanics permits calculation of the
surface or interfacial tension.



210 S.H. Anastasiadis
Generalized Gradient Theory of Fluids

Ideas that go back to van der Waals [217, 218] and Lord Rayleigh [219] on
inhomogeneous systems were applied by Cahn and Hilliard [216] to the interface
problem. In inhomogeneous fluids, the Helmholtz free energy is a functional of the
component density distributions. Although exact formal expressions for this func-
tional have been derived [220, 221] from statistical mechanics, they are impractical
without approximation [222]. In the gradient approximation, this functional has
been expressed as the sum of two contributions: one is a function of the local
composition and the other is a function of the local composition derivatives [216,
223, 224]. The free energy for a binary system is postulated to have the form:

G- / ¢($, V.V, ) dV (59)

where the free energy density, g, is assumed to be a function of the local composi-
tion, ¢, and all its derivatives, Vo, V2¢, etc. Assuming that the composition
gradient is small compared to the reciprocal of the intermolecular distance, g can
be expanded in a Taylor series about ch]) =0, k=1, 2,... and, truncating the
expansion after terms of order V3 ¢, one obtains for a fluid:

§=28(¢, Vo, V?¢p,...)

o my P 1 (2)90¢ 0¢
_ Li—— S S R St 60
go + Z axi + ; KU 8)(,'8)(1‘ + 2 ; KU 0)(,' 8x, ( )

where g is the free energy density of a uniform system of composition ¢, and:

L=
I 8(847/53(1) 0
m_ 08
T 0@ oxdx)|, 61
@ 0’g

K

T 00/ 0x) (04/0x))

For an isotropic medium, g is invariant to the symmetry operations of reflections
(x; — —x;) and of rotation about a fourfold axis (x; — —x;). Therefore:

0

Li=0

)= 8g/6V2¢|0 fori=j
0 fori#j

)

2 . .
K2 = {’Cz = 0g/0|V eI, for i = 62)

v 0 fori#j
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Hence, (60) reduces to:

g =g0(¢) + K1V2h + 12 (V) + . .. (63)

Integrating over a volume V of the system, the total free energy of this volume is:

G = [[av(an(@) + V2o + ka(Ver..) (64)

Application of the divergence theorem, results in:
/dV(K1V2¢) /(d;q/dq,’) (Vo) dV+/ K1V -n)dS (65)
s
where S is an external surface with a normal vector n. Since one is not concerned
with effects at the external surface, by choosing a boundary of integration in (65)

such that V-n = 0 at the boundary, the surface integral vanishes. Using (65) to
eliminate the termV2<b from (64) one obtains:

G= [av(s@) +(T9)’+...) (66)
where:

k=—dii/dd+1r,=

8¢8V2¢‘0+ (67)

k(V$)? is the additional positive contribution to the free energy, which arises from
the local composition gradient. The coefficient of the square gradient term is related
to the inhomogeneous fluid structure [220, 221]. It is essentially the second moment
of the Ornstein—Zernike direct correlation function, C(s,$), of a uniform fluid of
composition ¢. The relationship is:

k(p) = % /s4C(s, $)ds (68)

C(s,d) depends on the range of correlation and is a function of the composition ¢ of
the system.

Following the derivation of Cahn—Hilliard, the total free energy for the case of a
one-dimensional composition gradient and a flat interface of area A becomes:

+00

G:A/ [go((b)—f—;c(i{f)z] dx (69)
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Interfacial tension is, by definition, the difference per unit interfacial area
between the actual free energy of the system and that which it would have if the
properties of the phases were homogeneous throughout. Thus, the interfacial
tension is given by:

+o0

-

2
Ag(o) + K<%> ] dx (70)

where Ag(d) is the free energy density of the uniform system of composition ¢ with
respect to a standard state of an equilibrium mixture of the two phases, o and B,
without the interface, and is given by:

Ag(¢) = Ago(¢) — [naldun(Pe) + neAug ()] (71)

where n, and ng are the number densities of molecules of type A and B, Ay, and
Aug are the changes in the chemical potentials of A and B, and ¢, is equal to either
of the compositions ¢, and ¢g of the two phases o and B at equilibrium.

According to (70), the more diffuse the interface is, the smaller will be the
contribution of the gradient energy term to 7. But this decrease in energy can only
be achieved by introducing more material at the interface of nonuniform composi-
tion and, thus, at the expense of increasing the integrated value of Ag(dh). At
equilibrium, the composition variation will be such that the integral in (70) is a
minimum. Substitution of the integrand of (70) into the Euler equation will produce
the differential equation whose solution is the composition profile corresponding
to the stationary values (i.e., minima, maxima, or saddle points) of the integral.
Since the integrand does not explicitly depend on x, the appropriate form [225] of
the Euler equation is:

dp( o\
=3 (s ra) =0 7

where [ represents the integrand. Thus:

2
Ag(¢) — K(i]f) = const. (73)

The constant in this equation must be zero, since both Ag(¢) and d¢/dx tend to zero
as x — Foo. Hence:

ae(o) =w(92) 74)
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Equation (74) can be used to calculate the composition profile across the
interface. Using (74) with (70), and changing the integration variable from x to ¢,
interfacial tension is given as:

bp

=2 / kAg(¢)]d b (75)
¢,

where ¢, and ¢ are the compositions of the two coexisting phases at equilibrium.
The square-gradient approach has been widely used to model the surface tension of
liquids [220, 223, 224] and polymer melts [226, 227], diffusion at interfaces and thin
films [222], polymers at the liquid—liquid interface of binary regular solutions [228],
interfacial tensions between low and high molecular weight liquid mixtures [229]
and demixed polymer solutions [230], and spinodal decomposition in polymer
blends [231-235]. Sanchez [184] has shown that the gradient theory is “in harmony
with the microscopic theory of Helfand and coworkers [27-29, 200, 201] although
the latter treats polymer interfaces from a completely different point of view.”

The Square-Gradient Theory Applied to Polymer Interfaces

The gradient approach was first applied to calculate the interfacial tension between
demixed polymer solutions by Vrij [230]. The polymer solution model, used by
Debye [236] in his calculation of the light scattering from a polymer solution near
the critical point, was used with the assumption of an interfacial thickness of the
order of a polymer coil, thus misrepresenting the change in configurational entropy
for the chains in the interface. Assuming that the Gaussian statistics is not distorted
by the overlapping of the different polymer coils, even in the interfacial region, and
for T < T, (where T, is the critical temperature of demixing), he also predicted the
interfacial tension between two homopolymers to be given by:

Qb s T
= 1/2 _ — R —
y=r 5 (321/2 0.426 Tc) (76)

where Q is a form of the interaction parameter, which is related to the Flory-
Huggins interaction parameter, y, by Q = 2ykgT/v, with v being the segment
volume. Because of the many inappropriate assumptions, the theory has not been
utilized to predict polymer—polymer interfacial tensions. The theory predicts that 7y
o 2, which is not followed by the experimental data.

Kammer [209] used the Cahn-Hilliard approach with the Flory-Huggins free

energy of mixing and the assumption of a symmetric system to obtain:

RT © 0602 0.459
PSP _ 08 77
y ” () (8 pm (m2> (77)
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where v is the mean molar volume, r is the degree of polymerization, and « is the
square gradient coefficient, which is considered a constant given by x = yrb*/6. To
estimate r in the interfacial region, he chose the expression yr = 2.093T/T, with T
being an adjustable parameter. Thus, (74) leads to:

RT To\ '/ T T\?
y = 0.464— by /222 1-0.733——0.267( — (78)
v T T() To

However, Kammer incorrectly assumed that the interfacial tension is the free
energy of mixing per unit area, instead of the correct expression that defines
interfacial tension as the excess free energy per unit interfacial area. Although
interfacial tension is predicted to decrease with temperature, the results are not
accurate fundamentally and the derivations should be recalculated.

Poser and Sanchez [229] used the generalized density gradient theory of inter-
faces [216] in conjunction with the compressible lattice fluid model of Sanchez and
Lacombe [237-240] to approximate the interfacial tension and thickness between
two immiscible high molecular weight polymer liquids. The theory is not expected
to apply near the critical point, where the lattice fluid theory incorrectly describes
the coexistence curve, or for highly polar polymers. Furthermore, the theory
neglects intramolecular correlation effects present in long polymer chains, as well
as changes in the configurational entropy at the interface. Due to the fact that the
calculated phase diagrams, using the lattice fluid model, are extremely sensitive to
the values of the two interaction parameters inherent in the model, and the assump-
tion that the entropy in the interfacial region is independent of concentration
gradients, Poser and Sanchez suggested that “in its present form, the theory is
being pushed to its limits when applied to a polymer—polymer interface.”

The resultant equations yield predictions comparable to those of Helfand and
Sapse [29]. Formally the two theories look quite similar. Conceptually, however,
they are quite different. Gradient effects arise only from energetic considerations in
the Poser—Sanchez theory, whereas they arise from the intrinsic connectivity of the
polymer chain in the theory of Helfand—Sapse. In the simplest version of the
Helfand—Sapse theory, compressibility effects are ignored whereas they play an
important role in the Poser—Sanchez formulation. Poser and Sanchez suggested that
a proper theory for polymeric interfaces should not ignore the compressible nature
of polymer liquids (even though it is very small), nor can it ignore the intrinsic
connectivity of a polymer chain.

Anastasiadis et al. have also developed a theory for polymer—polymer interfacial
tension [20, 122], based upon the generalized square-gradient theory of Cahn and
Hilliard [216] in conjunction with the Flory-Huggins theory of the free energy of
mixing [206]. The free energy is calculated as:

Ago(d) & l-¢ Yo
T 1n¢>+—rBUB In(1 ¢)+UA<;’>(1 o) (79)
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where ¢ is the volume fraction of polymer A, y is the Flory-Huggins interaction
parameter, 75 and rg are the degrees of polymerization of polymers A and B,
respectively, va and vy their specific monomeric volumes, T is the thermodynamic
temperature, and kg the Boltzmann constant. Moreover, the changes in chemical
potentials, calculated from (79), are:

A r
121;7;‘/5) =lng+ (1 - ¢) (1 - ”;ZZ) +ra(l — ¢)’ (80a)
AHB(¢) _ 'BUB _2UB
= -¢)+ ¢><1 . rADA> + e’ (80b)

The compositions ¢* and ¢P of the coexisting phases o and P at equilibrium were
calculated by equating the chemical potentials, such that:

App(d%57) = Aua(¢’37)
Aug (9™ 7) = Aug(¢; 7)

The coefficients of the square gradient terms were derived using linear response
theory within the framework of the random phase approximation [231, 241, 242].
de Gennes [242] suggested that the coils remain nearly ideal on the scale of one
coil, even in the case of a dense mixture of interacting chains. Therefore, ideal
single chain approximations can be employed to the calculation of the scattering
function, S(g), where ¢ is the scattering vector. The scattering function is related to
the volume fractions and the chain lengths by [231, 242, 243]:

1)

L : + 1 2 (82)
S(q)  dvarafo(ra.q) (1 — ¢)osrafo(rs,q) va

where fp(r,q) is the Debye function [244], f(r, q) = 2u~*[u + exp(—u) — 1], with
u=q*rb*/6 = ¢*(r3) /6 = ¢*R%; b is the Kuhn statistical segment length; (r§) the
mean-squared end-to-end distance; and Rg the radius of gyration of the coil.

Two limiting expressions for S(g) can be calculated for gRg > 1, and for

gRg < 1. The first corresponds to a sharp interface, and the second to a relatively
diffuse interface. For gRg > 1, fp(r,q) ~ 2/u* = 12/(¢*(r})) and:

17 <<"5>A o)y ) 2 (83a)

S(q) 12\ pvara (1 — ¢)vprs VA

whereas for gRg < 1, fp(r,q) =~ r(1 — ¢*(r})/18), and using the equation for the

spinodal curve 2y, (¢p)/va = 1/[prava] + 1/[(1 — ¢)rpvp], the scattering function
is given by:

(83b)

1 20() =) [ (rd)a (rd)s
S(q) VA + 18 ((j)vArA + (1- ¢>)vBrB>
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Using the Ornstein—Zernike relationship between the direct correlation function
and the static structure factor, the gradient terms for the two different limits are
given by:

i 2 2
K0 (), (rd) g

K . qRG > 1 84
KT~ 2dgoara | 24(1 — dogrg’ 176~ (84a)

O _ )
K 0/A 0/B

_ CgRg < 1 84b
KT~ 36¢uars | 36(1 — Pyoprg’ 17C < (84b)

for sharp and broad interfaces, respectively. Equation (84b) and its equivalent
for a symmetric system were widely used by de Gennes [231], Ronca and
Russell [232], Pincus [233], and Binder and coworkers [234] to model the
dynamics of concentration fluctuations near the critical point, whereas (84a)
had been used by Roe [243] to study the micelle formation in homopolymer/
copolymer mixtures.

There are different objections to the application of the square-gradient approach
that arise from the assumptions inherent to the theory. Halperin and Pincus [228]
pointed out that, because the Cahn-Hilliard theory is a mean field theory, its
validity near the critical point can only be qualitative. On the other hand, the theory
assumes weak composition gradients that may be realized only close to the critical
region. Binder [234, 235] suggested that, for gRg > 1, an additional correction term
should be included in the gradient terms, which arises from the finite range of
interactions and is proportional to x> (V)% where 1 is the range of interactions.
For y < 1, however, this correction is negligible, as suggested by de Gennes. [231].
Moreover, de Gennes argued [231] that (84b) describes well the additional positive
contribution to the free energy from the local concentration gradients, even in the
case y > y. (x. is the value of the interaction parameter at the critical point), i.e.,
when the attention is focused on the strong segregation regime.

The expressions for interfacial tension thus obtained were, in principle, similar
to those of Helfand and Sapse [29]; however, the correct temperature coefficient
was obtained, and the molecular weight effects were included via the use of the
Flory-Huggins expression for the free energy [206] and the random phase approxi-
mation [231, 241, 242] for the gradient terms.

Numerical evaluation of the theoretical expression for the interfacial tension
allowed the comparison of the theory to the experimental data of Anastasiadis et al.
[20]. In general, a good agreement was obtained between theory and experiment for
the interfacial tension and its temperature dependence, especially for higher molec-
ular weights. Figure 13 shows the comparison for a blend of a polystyrene with
M, = 10,200 (PS 10200; M /M, = 1.07) and a poly(ethyl ethylene) with M, = 4080
(PBDH 4080; M/M,, = 1.04), which was prepared by hydrogenation of poly(vinyl
ethylene), PVE. The interaction parameter values used, y = 0.0057 + 21/T, were
evaluated by analyzing small-angle X-ray scattering data from homogeneous PS-
b-poly(ethyl ethylene) diblock copolymers [245]; the blend exhibits a UCST
behavior.
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Fig. 13 Comparison of experimental interfacial tension for PS 10,200/PBDH 4080 with the
square-gradient theory where the square-gradient coefficient is given by (84a) (solid line) and
(84b) (dotted line). Adjustable parameters were not allowed in this comparison [20]

The predictions of the theory with respect to the molecular weight dependence of
interfacial tension are compared to the experimental data for PS/PBDH 4080 data in
Fig. 14. The representation in terms of the an/3 dependence was adopted [20]
because it conformed closely to the result from nonlinear regression for this
particular range of molecular weights. At high molecular weights, the theoretical
curve corresponds well with the extrapolated empirical relationship for the experi-
mental data when (84b) is used for the square-gradient coefficient, while use of
(84a) leads to an overestimation of interfacial tension by ca. 20%. The theory does
predict an apparent dependence of interfacial tension on M,*>; however, it deviates
considerably from the experimental data for low molecular weights. The theory
erroneously indicates complete miscibility (i.e., y = 0) for a PS molecular weight of
ca. 2400, whereas two phases were always present under these conditions and
appreciable mixing was not observed. It was discussed that the discrepancy was
probably due to the inappropriate use of the interaction parameter determined from
diblock copolymers to describe the interactions in polymer blends within the
framework of Flory-Huggins theory.

Broseta et al. [31] extended the work of Anastasiadis et al. [20] and provided
analytical expressions for the finite molecular weight corrections to the interfacial
tension and interfacial thickness, and also studied the effects of polydispersity.
Broseta first considered two strongly segregated monodisperse homopolymers A
and B with comparable (high) incompatibility degrees wa = yra and wg = yrg,
with each of the two phases at equilibrium being nearly pure in one of the two
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Fig. 14 Comparison of experimental interfacial tension for PS/PBDH 4080 at 171°C with the
square-gradient theory where the square-gradient coefficient is given by (84a) (solid line) and
(84b) (dotted line). The dashed line is a linear fit to the data. Adjustable parameters were not
allowed in this comparison [20]

polymer species. Actually, Broseta estimated that the compositions of the two
coexisting phases are given by:

¢% =1—¢% =~ 1 —exp(—yrp) (85a)
Of =1 — ¢ ~ exp(—yra) (85b)

The interfacial tension for high but finite molecular weights was, then, calculated to

be given as:
w1 1
Y=V |l =z —+— +... (86)
12\yra 18

where 7. is the interfacial tension for infinite molecular weights as calculated by
Helfand—Tagami, (40). As discussed by Broseta, this equation should be the
asymptotic behavior of the theory of Anastasiadis and coworkers [20]; however,
that regime was apparently not explored in the numerical calculations of Anasta-
siadis [20]. Moreover, the interfacial width was estimated as:

alaloo[l+ln2(i+i>+..} 87

Ara X'B
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Fig. 15 Reduced interfacial tension y/y., as a function of the inverse incompatibility I/w (solid
line). The dashed line is the asymptotic linear behavior (86) valid for large incompatibilities. Near
the critical point (I/w = 0.5), the dotted line represents the more exact solution of Joanny and
Leibler [246] (see Sect. 3.2.4)

where ay., is the interfacial thickness of Helfand—Tagami (38). The results are
expected to be valid for strongly incompatible systems where the interface is
smaller than the chain radii of gyration, whereas the analysis should not hold for
weakly incompatible systems where the interface becomes of the order of Rg or
larger.

Figure 15 shows the numerically calculated interfacial tension plotted as a
function of the inverse incompatibility 1/w, assumed to be the same for both
polymers. The asymptotic behavior of (86) is a good approximation for a wide
range of incompatibilities w > 5 (or I/w < 0.2). However, the increase in interfacial
tension with molecular weight is predicted to be weaker for smaller molecular
weights, in agreement with the experimental data of Anastasiadis [20].

Broseta also calculated the effect of molecular weight polydispersity on the
interfacial tension [31]. He considered a specific case of polydispersity where the
two polymer melts are binary mixtures with the same bimodal distribution of
molecular weights, with r; being the length of the small chains, r, the length of
the long chains (r; < r,), and xq the volume fraction of monomers belonging to
small chains. Broseta analyzed the strong segregation regime, i.e., large values of
w; = yr;. The theory predicted a selective partitioning of the small chains to the
polymer—polymer interface, which leads to a reduction of the interfacial tension.
The enrichment of the small chains to the interface decreases when the chain length
ratio wo/w; decreases to 1 and when both chain lengths simultaneously increase.
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When both chains become very long, the difference in chain lengths does not play
any role. When the incompatibilities w; are large but the difference Aw is small,
interfacial tension was predicted to be given by:

7'[2
v=vm[1—6w +} (88)

where w, = [xo/wy + (1 —xo)/ws]”" is the number-averaged incompatibility
degree. Since the number-average molecular weight is most heavily weighted by
the smallest molecular weights, (88) shows that the interfacial tension is lowered by
the presence of small chains, with the small chains in fact acting as surfactants.

Ermonskin and Semenov [33] utilized the square gradient approach in combina-
tion with the Flory-Huggins model for calculation of the structure of the interface
between two immiscible polymers. They derived the conformational free energy
including a correction of the order of 1/r to the dominant gradient term following
the lines first proposed by Lifshitz [247]. The interfacial tension was obtained by
minimization of the interfacial free energy. For strong segregation (y7; > 1) and
sharp interfaces, interfacial tension is given by:

1 1
yyw[1—21n2( +):| (89)
A XTB

where 7, is the interfacial tension for infinite molecular weights as calculated by
Helfand-Tagami, (40). Moreover, they derived an approximate analytical expres-
sion for the free energy of an inhomogeneous blend of two homopolymers valid for
both high and moderate values of y7; and they calculated numerically the depen-
dence of interfacial tension on homopolymer molecular weight. Semenov pointed
out that the prefactor 2In 2 ~ 1.39 is very similar to the one predicted by Tang and
Freed, 3[1 — (1/6)"/%] ~ 1.35 [32] in (57b), whereas it can be compared to the value
of 0.82 of Broseta et al. [31] in (86) and In 2 = 0.69 of Helfand et al. [30] in (56),
with the difference being due to the various approximations used.

Figures 16-18 show the comparison of the Semenov theory to the interfacial
tension data of Anastasiadis et al. [20] for three different polymer systems, PDMS/
PBD 1000, PS/PBDH 3080 and PS/PMMA 10,000. The agreement is very good for
the PDMS/PBD and PS/PBDH systems, whereas it is poor for the PS/PMMA blend.
Actually, Semenov argued that the disagreement for PS/PMMA is far beyond
possible errors due to approximations of the theory and that it might indicate that
the model based on the Flory-Huggins interaction term may be inadequate for the
PS/PMMA system, with higher order terms being important in the excess free
energy of interaction.

Kamal et al. [22] compared the predictions of these thermodynamic theories to
experimental data on the effect of temperature, molecular weight, and molecular
weight polydispersity on the interfacial tension for polypropylene/polystyrene
blends. Once more, the importance of an accurate estimation of the Flory-Huggins
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Fig. 16 Comparison of experimental interfacial tension for PDMS/PBD 1000 at 25°C [20]
with the theory of Ermonskin—Semenov [33]. The interaction parameter o = y/v was adjusted to
3.35 x 1073 mol/cm® (v is the effective monomer volume)

interaction parameter y emerged. It was shown again that the relationship correlat-
ing y to the Hildebrand solubility parameter (44) was not suitable for evaluating the
theoretical predictions. The theoretical interfacial tensions of Broseta et al. [31] or
Helfand et al. [30] were found to increase with increasing temperature, which is
opposite to the behavior of the experimental interfacial tension data; this discrep-
ancy was also observed earlier [19]. Alternatively, the interaction parameter was
expressed as a sum of an enthalphic and an entropic contribution, y = /T + ¥s, as
suggested earlier by Anastasiadis [19]. The two coefficients were evaluated by
fitting the interfacial tension data at two different temperatures to the expression of
Broseta (83); these coefficients were then used to predict the interfacial tension for
other temperatures and different molecular weights with moderate success. Finally,
the theoretical predictions on the effects of molecular weight polydispersity on
interfacial tension [31] are in qualitative agreement with the data.

Lee and Jo [34] proposed a square-gradient theory combined with the Flory—
Orwoll-Vrij equation of state theory [248]. The theory was used to calculate the
interfacial tension between PS and PBD, and between PS and PMMA. For
the PS/PBD system, they utilized an experimental cloud point curve to determine
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Fig. 17 Comparison of experimental interfacial tension for PS/PBDH 4080 at 184°C [20] with the
theory of Semenov [33]. The interaction parameter « = /v was adjusted to 0.93 x 10~ mol/cm®
(v is the effective monomer volume)

the equation of state interaction parameter. The authors calculated the temperature
and molecular weight dependence of interfacial tension for different molecular
weights of PS (5000-30,000) and a fixed molecular weight of PBD (PBD 1000).
The dependence of interfacial tension on temperature shows a linear decrease,
except near the upper critical solution temperature. The interfacial tension increases
with increasing PS molecular weight and approaches an asymptotic limit. The
predicted interfacial tension follows a M, > dependence for moderate molecular
weights, whereas it follows the M, ' dependence for high molecular weights.
The theory was compared to the experimental data of Anastasiadis [20] for
the PS/PMMA system: although the apparent trend with molecular weight is
correctly predicted, the theory overestimates the values of interfacial tension
when the interaction parameter was determined by fitting the equation of state
theory for the binodal curve to the maximum temperature of an experimental
cloud point curve.

3.2.4 Theories Near the Critical Point

The theories discussed up to now do not hold rigorously near the critical point of
demixing, and an alternative approach is, thus, required. Nose [249] studied the
interfacial behavior for both polymer mixtures and polymer solutions near the
critical point. The theory was based on the Cahn—Hilliard theory [216] and takes
into account the dimensions of the polymer coils at the interfacial region. For a
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Fig. 18 Comparison of experimental interfacial tension for PS/PMMA 10,000 at 199°C [20] with
the theory of Semenov [33]. The interaction parameter o = y/v was adjusted to 0.45 x 10~ mol/
cm? (v is the effective monomer volume)

symmetric polymer/polymer system, as the temperature, T, approaches the critical
temperature, T, the interfacial tension and interfacial width behave as:

y o Ter 12632 (90a)
ay o< r'/2g1? 91)

where r is the number of polymer segments and ¢ = (T, — T)/T,, with T the critical
point of demixing. Because for a symmetric system, 7. varies with molecular
weight as T, o r, (90a) reduces to:

y oc rl/2g32 (90b)

Thus, both interfacial tension y and interfacial width a; were predicted to vary
with molecular weight to the 1/2 power, i.e., proportionally to the unperturbed
dimension of the polymer coil. Furthermore, the theory predicts the classical mean
field exponents of 3/2 and —1/2 for the dependencies of y and ay, respectively, on
reduced temperature. Besides, Nose predicted a first order transition from a diffuse
to a relatively sharp interface that results in a change in the slope of the y versus
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T curve. The transition temperature reduced by T increases with increasing molec-
ular weight.

Joanny and Leibler [246] predicted the same critical exponents for the tempera-
ture dependence; however, they found that the interfacial tension decreases with
increasing chain length r as 7~ /2, while the dependence of the interfacial width on
chain length is the same as that of Nose [249]. For a symmetric system, their final
expressions were:

2
y = §I<BTZ7*2;*1/283/2 92)

a; = %hrl/ze*/z (93)

where b is the Kuhn statistical segment length of the polymers.

Sanchez [181] used a Taylor expansion of the Flory-Huggins equation for the
free energy density, and the Cahn—Hilliard theory with a constant coefficient for the
gradient terms. He found the same classical mean field exponents for the tempera-
ture dependence of interfacial tension and thickness, but he predicted that, for the
symmetric case, both the interfacial tension and the thickness are independent of
chain length. Sanchez explained this result to be due to the fact that, in his approach,
chain connectivity was only implicitly taken into consideration through the entropy
of mixing. The theories of Nose [249] and Joanny and Leibler [246] take explicitly
into account chain connectivity in various approximations.

Ronca and Russell [232] calculated the interfacial tension near the critical point.
They used the Cahn—Hilliard expansion of the free energy with the Flory-Huggins
approximation in modeling the spinodal decomposition in polymer mixtures. For
a symmetric system, the interfacial tension was found to follow the classical
dependence:

y o Tr= 12632 h(r) %94)

where the function A(r) depends on the chain length [232].

de Gennes [250] has argued that a polymer blend should behave nearly classi-
cally; thus, the predicted classical behavior of 7 o< &% and a; o ¢~ /* may be very
close to being correct. With respect to the molecular weight dependence, the
situation is not clear. The results of Joanny and Leibler [246] and Ronca and
Russell [232] would be similar to those of Nose if the temperature, T, appearing
in (92) and (94), respectively, were equated to the critical temperature, T., as
suggested by Sanchez [181]. Our opinion is that Sanchez’s suggestion is correct.
In that case, the theories would predict that, near the critical point, the interfacial
tension increases with molecular weight to the 1/2 power, as:

y o 1232 (95)

except for a correction introduced in the Ronca and Russell derivation [232].
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4 Copolymers as Emulsifying Agents in Polymer Blends

4.1 Copolymer Localization at the Polymer Blend Interface

It is widely understood that the use of block or graft copolymers as emulsifying
agents or compatibilizers in polymer blends is due to their affinity to selectively
partition to the polymer—polymer interface. The segments of the compatibilizer can
be chemically identical with those in the respective homopolymer phases [37, 38,
40, 45, 48, 54, 56] or can be miscible with or adhering to one of the homopolymer
phases [251-254]. Figure 19 depicts ideal configurations of copolymer chains at the
interface, with each block preferentially extending into the respective homopoly-
mer phase [39, 70, 71, 73, 74]. Other conformational models are possible, such as
segments adsorbed onto the surface of one polymer rather than penetrating it.
Conformational restraints are important [255, 256], and, on this basis, a block
copolymer is expected to be superior to a graft [257, 258]. A graft with one branch
is shown in Fig. 19 for the case of graft copolymers; however, multiple branches
restrict the opportunities of the backbone to penetrate its homopolymer phase. This,
of course, would not preclude adhesion of the backbone to this phase. For the same
reasons, diblock copolymers are more effective than triblocks [87]. The block or
graft copolymer can localize itself at the blend interface only if it has the propensity
to segregate into two phases. It is the repulsion of the unlike segments of the
copolymer and the two homopolymers that leads to the localization of the copoly-
mer at the interface. Therefore, the tendency in block and graft copolymers to
migrate at the interface depends on the balance of the interaction parameters as well
as on their molecular weights.

Fayt et al. [259, 260] used transmission electron microscopy (TEM) to study the
localization of the copolymer at the polymer—polymer interface. Staining a short
mid-block (isoprene) with OsO,4 permitted the direct observation of the location of
the added PS-b-PI-b-PBDH triblock copolymer to the interface between PS and low
density PE; TEM images showed the localization of the copolymer to the blend
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interface. In contrast, when a PS-b-PMMA copolymer was added to the polyvinyl
chloride (PVC)/PS blend (the PMMA sequences are miscible with PVC), dispersion
of the copolymer within the PVC phase was observed instead of a preferential
adsorption to the interface. It was pointed out that a properly tailored decrease in the
interaction of the PMMA block with PVC (i.e., by controlling microstructure,
molecular weight, and composition) would restore a more favorable situation but
at the cost of a long optimization process. Thus, an important requirement for the
copolymer is that it should not be miscible as a whole molecule within one of the
homopolymer phases, because this would increase the amount of the copolymer
required to reach interesting sets of properties.

Shull et al. [38] used forward recoil spectrometry to quantify the interfacial
segregation of diblock copolymers consisting of deuterated polystyrene (dPS) and
poly(2-vinylpyridine) (P2VP) at interfaces between PS and P2VP homopolymers.
Figure 20 shows the equilibrium distribution of the diblock copolymer to the PS—
P2VP interface after the appropriate annealing. The interfacial excess, estimated as
the hatched area in Fig. 20, increased with increasing copolymer concentrations
within the PS layer and was compared to mean-field theory predictions, which
were quantitatively accurate for copolymer concentrations below the limiting value
associated with the formation of block copolymer micelles. The segregation behav-
ior in the regime where micelles were present was complicated by a strong tendency
for micelles to segregate to the free PS surface and by a weaker tendency for
micelles to segregate to the interfacial region. The effects of micelle formation
within the bulk homopolymer phases on the interfacial behavior will be discussed
further in the following sections.

Elastic recoil detection (ERD) was used by Green et al. [40] to study the
segregation of low molecular weight symmetric copolymers of PS, and PMMA to
the interface between PS and PMMA homopolymers. Bilayer films of PS and
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PMMA mixed with a few percent of diblock copolymer were spin coated separately
and, using the floating method, the assembly was built. The films were annealed to
let the copolymer migrate to the interface and reach thermodynamic equilibrium.
Figure 21 shows the volume fraction profile of a dPS-b-PMMA copolymer (262
segments) with a deuterated PS sequence at the interface between PS (18,000
segments) and PMMA (13,000 segments). At the concentrations studied, the excess
number of copolymer chains per unit area at the polymer—polymer interface varied
linearly with ¢., the volume fraction of copolymer chains in the bulk. The results
were compared with predictions based on a modification of the mean field argu-
ments of Leibler [75] (discussed in Sect. 4.3.3). For low density of copolymer
chains at the interface, the predictions are in a good agreement with the experimen-
tal behavior.

Neutron reflectivity was used to investigate the segment density distribution of
symmetric diblock copolymers of PS and PMMA [39] (molecular weights of about
100,000) at the interface between PS and PMMA homopolymers (molecular
weights of about 100,000). Selective deuterium labeling of either a block of the
PS-b-PMMA or of the PS or PMMA homopolymers provided the contrast neces-
sary to isolate the distribution of the segments of the individual components at the
interface. Results from a series of experiments were used simultaneously to yield
the density profiles of the PS and PMMA segments of the homopolymers, and of the
copolymer blocks at the interface (Fig. 22).

It was found that the effective width of the interface between the PS and PMMA
segments was 75 fA, i.e., it was 50% broader than that found between the PS and
PMMA homopolymers in the absence of the diblock copolymer (50 + 5 A [261))
and between the PS and PMMA lamellar microdomains of the pure PS-6-PMMA in
the bulk (50 £ 4 10\) [261,262]. The area occupied by the copolymer at the interface
between the homopolymers is 30% larger than that of the copolymers in the bulk
lamellar microstructure [39]. In that study, the amount of diblock copolymer at the
interface was (approximately) equivalent (~200 A) to half of the long period of
the neat ordered copolymer. The same PS/PS-b-PMMA/PMMA system was subse-
quently investigated by a lattice-based self-consistent field model that was extended
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Fig. 22 Volume fraction profiles of the PS and PMMA homopolymers (thin solid lines), the PS
and PMMA blocks of the PS-b-PMMA copolymer (dashed lines), and the total PS and PMMA
segments summed over the homopolymer and the respective copolymer blocks (thick solid lines).
The results were obtained by simultaneous analysis of neutron reflectivity experiments with
different deuterium labeling of copolymer and homopolymer segments [39]

to incorporate chain conformational stiffness [73]. Excellent qualitative and quan-
titative agreement with the experimental data (Fig. 22) was obtained for the volume
fraction profiles of both homopolymers and of both blocks of the copolymer at the
interface [73].

In a subsequent study [263], it was shown that the width of the interface between
the PS and PMMA segments broadened as the number of PS-b-PMMA chains
added to the interface between PS and PMMA homopolymers increased. The width
varied from the 50 A thick interface between the PS and PMMA homopolymers up
to ~85 A at interfacial saturation (effective copolymer thickness of ~256 A).

The organization of PMMA-b-PS-b-PMMA triblock copolymers at the interface
of immiscible homopolymers [87] was studied by dynamic secondary ion mass
spectrometry. Selective labeling of either the two end blocks or the central block
provided the contrast necessary to determine the spatial arrangements of the blocks
at the interfaces. It was found that the triblock copolymer chains were organized
such that the central block preferentially segregated to one homopolymer, whereas
the end blocks segregated to the other, thus adopting a “hairpin” type of conforma-
tion as indicated in Fig. 19.

4.2 Experimental Studies on the Effect of Additives
on Polymer—Polymer Interfacial Tension

The effective interfacial tension between the two homopolymer phases in blends of
immiscible homopolymers can be altered appreciably by adding different types of
materials that can behave as interfacially active agents.
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Interfacial tension between two incompatible homopolymers can be reduced by
adding homopolymers containing functional side or end groups. In 1971, Patterson
etal. [264] investigated the effect of functionalized poly(dimethyl siloxane), PDMS,
additives on the interfacial tension between a commercial methyl-terminated PDMS
and a commercial polyoxyethylene/polyoxypropylene copolymer, P(OE-OP). Start-
ing with a high interfacial tension (8.3 dyn/cm), the presence of 10% carboxyl
groups on alkyl side chains attached to the PDMS molecules reduced the interfacial
tension by 63%. Doubling the number of carboxyl groups made this additive slightly
less, rather than more, effective (57% reduction). Incorporation of carboxyl end
groups on the PDMS chain provided a material that was capable of reducing
interfacial tension in the same system by 49%. In contrast, hydroxyl end groups
had no significant effect on the interfacial tension. Amino groups on the silicone
additives had only a small effect on the interfacial behavior: 1% amino groups on
alkyl side chains reduce interfacial tension by 28%, whereas increasing the amount
of polar substituents to 6% produced a higher rather than lower interfacial tension
value (18% reduction). In general, the interfacial activity of these additives is probably
due to specific interactions between the additive and the homopolymers; these
interactions increase compatibility and, consequently, reduce interfacial tension.

Patterson et al. [264] reported the effect of addition of PDMS-b-POE copoly-
mers on the interfacial tension between PDMS and P(OE-OP) as well. A 72%
reduction in interfacial tension was obtained with the addition of 2% of a 60/40
PDMS-b-POE block copolymer, as shown in Fig. 23. Increasing the level of polar
polyether substitution from 40 to 75% did not result in any further reduction; it
rather showed less interfacial activity (64% reduction). This agreed with the
proposed maximum efficiency of symmetric copolymers [257, 258, 265]. Substitu-
tion of a POP for the POE in the 25/75 copolymer additive reduced its capability for
reducing interfacial tension (51% reduction).

The effect of the concentration of the copolymer emulsifier was studied for the
60/40 PDMS-b-POE (Fig. 23). A major reduction in interfacial tension (55%) took
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place with addition of 0.17% of the copolymer, whereas 68% reduction was
observed with 1% additive. Increasing the copolymer amount to 2% led only to a
4% further reduction. That is, only a few percent of block copolymer additive is
required to essentially saturate the interface and reach the limiting interfacial
tension. A linear correlation was obtained when interfacial tension was plotted
versus the logarithm of the concentration of the additive, expressed as grams of
additive per liter of mixed liquids.

Gailard and coworkers [215, 266] demonstrated the surface activity of block
copolymers by studying the interfacial tension reduction in demixed polymer
solutions. Addition of a PS-b-PBD diblock copolymer to the PS/PBD/styrene
ternary system showed first a characteristic decrease in interfacial tension followed
by a leveling off, which is similar to the evolution of interfacial tensions for
oil-water systems in the presence of surfactants. The early investigations were
more of case studies that demonstrated the phenomenon without giving the funda-
mental detail required to help the understanding of the emulsification process and
the factors that govern it.

Anastasiadis et al. [45] investigated the compatibilizing effect of an anionically
synthesized model PS-b-PVE diblock copolymer on the interfacial tension between
PS and PVE model polymers as a function of the concentration of the copolymer
additive. They utilized the pendant drop method [155] to measure the interfacial
tension between the immiscible polymer fluids. A sharp decrease in interfacial
tension was observed with the addition of small amounts of copolymer (Fig. 24),
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Fig. 24 Effect of the addition of a PS-b-PVE copolymer on the interfacial tension between PS and
PVE at 145°C [45]
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followed by a leveling off as the copolymer concentration increased above a certain
concentration. This was attributed to an apparent critical micelle concentration
(CMC). For concentrations lower than this critical concentration, the interfacial
tension reduction was essentially linear with the copolymer content, a behavior that
compared well with that predicted by Noolandi and Hong [70, 267].

Hu et al. [48] studied the addition of PS-b-PDMS diblock copolymer to the
PS/PDMS blend. A maximum interfacial tension reduction of 82% was achieved at
a critical concentration of 0.002% diblock added to the PDMS phase. At a fixed PS
homopolymer molecular weight, the reduction in interfacial tension increases with
increasing the molecular weight of PDMS homopolymer. Moreover, the degree of
interfacial tension reduction was found to depend on the homopolymer the diblock
is mixed with: when the copolymer was mixed into the PS phase, the interfacial
tension reduction was much less than that when the copolymer was blended into the
PDMS phase. This behavior suggested that the polymer blend interface may act as a
kinetic trap that limits the attainment of global equilibrium in these systems.

Retsos et al. [54] investigated the effects of the molecular weight and concen-
tration (¢,qq) of compositionally symmetric PS-b-PI diblock copolymer additives
on the interfacial tension between PS and PI immiscible homopolymers. The
dependence of the interfacial tension on the additive concentration agreed with
previous investigations: a sharp decrease with addition of a small amount of
copolymer followed by a leveling off at higher copolymer concentrations (illu-
strated in Fig. 25). However, the reduction of the interfacial tension was a non-
monotonic function of the copolymer additive molecular weight at constant
copolymer concentration in the plateau region. The emulsifying effect, Ay = y5 — 7,
increased by increasing the additive molecular weight for low molecular weights,
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Fig. 25 Interfacial tension for the PS/PS-b-PI/PI systems as a function of copolymer concentration
(Wt%) added to PS at constant temperature (140 £ 1°C) for different diblock molecular weights
with different numbers of segments (N) as shown. Filled square denotes the PS—PI interfacial
tension in the absence of the diblock, yo. The lines are fits to an expression y = (o — Vsar) €XP
(—Wadd/Wehar) + Vsar [65], where yg,, is the interfacial tension at the plateau and wep,, is the
concentration needed to achieve the 1/e of the maximum reduction yo—7, [54]
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Fig. 26 Interfacial tension for the PS/PS-b-PI/PI systems as a function of the number of segments
(N) of the copolymers at a constant temperature of 140 + 1°C and constant 2 wt% copolymer
added to the PS phase (open inverse triangles). For the N = 1127 diblock, data are also shown
when 2 wt% copolymer is added to PI (filled triangle), and when 1 wt% is added to PS and 1 wt%
is added to PI (open diamond). The PS—PI interfacial tension in the absence of the diblock is
denoted by a filled square [54]

whereas it decreased by further increasing the copolymer molecular weight, thus
going through a maximum (Fig. 26).

The results were understood by considering the possibility of micelle formation
as the additive molecular weight increased, leading to a three-state equilibrium
between copolymer chains adsorbed at the interface, chains homogeneously mixed
with the bulk homopolymers, and copolymer chains at micelles within the bulk
phases. A simple model was presented that qualitatively showed a similar behavior
(see Sect. 4.3.3). The presence of micelles for high molecular weight additives and
their absence for low molecular weights was supported by small-angle X-ray
scattering data [55, 268].

Wagner and Wolf [46] investigated the effects of the addition of PDMS-b-PEO-
b-PDMS triblock copolymers on the interfacial tension between PDMS and PEO
homopolymers. In agreement with earlier investigations, interfacial tension was
found to fall rapidly to ~10% of its initial value and level off as the effective CMC
was surpassed. Moreover, the effect of the molecular weight of the PDMS block of
the triblock copolymer was studied; this effectively studied the effect of copolymer
composition without, however, keeping the copolymer molecular weight constant.
The data (Fig. 27) showed that the interfacial tension decreased as the molecular
weight of the PDMS block approached that of the PEO block.

Subsequently, Wolf and coworkers [49] investigated the effect of copolymer
architecture on the interfacial tension reduction for the PDMS/PEO blend utilizing
PDMS-b-PEO diblocks, PDMS-b-PEO-b-PDMS triblocks, and ‘“bottle-brush”
copolymers consisting of PDMS backbone and PEO brushes. The study showed
that for the range of molecular weights investigated, the total number of PDMS
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Fig. 27 Interfacial tension of a phase-separated mixture of PEO 35 containing 2 wt% PDMS,,,-b-
PEO,-b-PDMS,,, and PDMS 100 as a function of m for n = 37 at 100°C; n and m are the numbers of
monomeric units of the copolymer blocks [46]

segments was the most important parameter in determining the efficiency of the
copolymer, irrespectively of their architecture or of the size of the PEO block.

Retsos et al. [56] investigated the effect of the macromolecular architecture and
composition (f) of block copolymer additives on the interfacial tension between
immiscible homopolymers. The systems investigated were PS/PI blends in the
presence of PLLPS (I,S) and PS,PI (S,I) graft copolymers. The series of grafts
possessed constant molecular weight and varying composition. A decrease in
interfacial tension was observed with the addition of small amounts of copolymer
followed by a leveling off (plateau) as the copolymer concentration (¢aqq)
increased, illustrating the surfactant-like behavior of the graft copolymers. The
interfacial tension at interfacial saturation (plateau regime) was found to be a
nonmonotonic function of the copolymer composition f exhibiting a minimum
versus f (Fig. 28). The dependence on f was understood as a competition between
the decreased affinity of the copolymer within the homopolymer phase when the
size of the “other” constituent increased, which increased the driving force of the
copolymer towards the interface, and the possibility of micellar formation. These
ideas were supported by small-angle X-ray scattering measurements, which indi-
cated the formation or absence of micelles.

Another observation in Fig. 28 concerns the fact that the interfacial tension for
the I,S graft with fp; = 0.36 is lower than that for the symmetric linear diblock
copolymer of the same total molecular weight (all in the plateau region of the
interfacial tension reduction). It appeared that the old rule of thumb “diblocks better
than triblocks better than grafts” should be reconsidered in the general case. The
graft with fp; = 0.36 had very similar composition with diblock SI (fp; = 0.41) and
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Fig. 28 Interfacial tension for the PS/I,S/PI systems as a function of the composition of the graft
copolymers at a constant temperature of 140°C and constant 2 wt% copolymer added to the PS
(open circles), or to the PI phase (filled circles), or when 1 wt% was added to the PS and 1 wt% to
the PI phases (black and white circle). Also shown are the interfacial tension data for PS/SI/PI at
140°C, i.e., with the addition of 2 wt% of the SI diblock copolymer to the PS (open inverse
triangle), or to the PI phase (filled inverse triangle), or when 1 wt% was added to PS and 1 wt% to
the PI phases (black and white inverse triangle). The squares are the interfacial tension data
for PS/S,1/PI at 140°C when 2 wt% of S,I was added to the PS phase (filled square) or to the PI
phase (open square). The dashed line indicates the PS/PI interfacial tension in the absence of
additives [56]

very similar molecular weight, but it was more interfacially active, which most
probably was an architecture effect. The better efficiency of the graft copolymer
versus that of the diblock was not anticipated theoretically [85] (when micelles
were not considered) but it was in agreement with an early study [269] on PS(PEO),
grafts versus PS-b-PEO diblocks of similar molecular weights added to water/
organic solvent systems. It is believed that this is due to the higher tendency of
the diblock to form micelles.

Furthermore, an important finding was that the final interfacial tension at
saturation depended on the side of the interface to which the I,S graft copolymer
was added. When the I,S was added to the Pl homopolymer, the interfacial tension
reduction was more significant, i.e., the apparent interfacial activity of the additive
was higher. This pointed to a local equilibrium that can only be attained in such
systems: the copolymer reaching the interface from one homopolymer phase does
not diffuse to the other phase. For the symmetric SI diblock, the interfacial tension
at saturation does not depend on whether the additive is premixed with the PS or to
the PI phase, i.e., in that case adding the copolymer to the drop or the matrix phase
did not make any difference. Thus, the SI data allowed the authors to rule out one of
the possible explanations discussed by Hu et al. [48], who had suggested that such
an effect could be due to the presence of a larger reservoir of diblock when added to
the matrix phase, versus a depletion when it is added to the drop phase. When using
the respective S,I graft copolymers, a mirror image behavior was obtained, i.e.,
addition of the S,I graft to the PS side followed the behavior of the I,S added to PI
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and vice versa. The result signified that this behavior was not a kinetic effect but
was rather due to a trapping of the system to a stationary state of local equilibrium,
with the additive not crossing to the other side of the interface. Such an explanation
was also discussed by Hu et al. for the PS-b-PDMS case [48]. It was suggested that,
in the case of graft copolymers, it is the asymmetric architecture of the graft
copolymers that leads to the great disparity between the two cases, whereas it
should probably be the asymmetry in the statistical segment lengths of the two
blocks in the PS-b-PDMS case that leads to an asymmetry in the CMC and, thus, in
the interfacial tension reduction.

Wedge and Wolf [54] discussed similar “stationary states” to be due to larger
thermodynamic driving forces and more pronounced back-damming when the
PEO-b-PPO-b-PEO triblock was added to the PPO phase. This was attributed to a
lower affinity of the additive to the PPO. Actually, the authors generalized their
finding by suggesting that, in order to achieve the highest possible reduction of the
interfacial tension by means of a given amount of compatibilizer, it should be added
to the phase with the lower affinity to this component. The study of Retsos et al. [56]
agreed with the statement that the effectiveness of the interfacial modifiers is
controlled by the unfavorable interactions, which drive more of the additive
towards the interface and thus reduce the interfacial tension further. However, the
study pointed to the important effect of the formation of micelles within the bulk
phase to which the compatibilizer is added, which is specifically important for
nonsymmetric copolymer architectures. One should aim at adding the compatibili-
zer to the phase where it would form micelles with greater difficulty [56].

As was pointed out in the article of Retsos et al. [55], it should be noted that the
concentration dependence of the surface tension in solvent/additive systems has
been traditionally used for the estimation of the CMC in either small-molecule
[270] or polymeric [265, 269, 271, 272] surfactant solutions. In those measure-
ments [265, 269, 271, 272], the surface tension decreases with increasing concen-
tration for concentrations up to a certain value, and then attains an almost constant
value. The break in the y4,¢ versus log ¢ (c is the additive concentration) curve is
used to denote the CMC. In the studies discussed above, however, it was found
that even for concentrations in the plateau region (higher than the break) of the
interfacial tension (or surface tension [55]) versus concentration curve, micelles
are not present for low additive molecular weights, whereas they are present only
for higher molecular weights (or equivalently for the graft copolymer case [56]).
Therefore, it is apparent that the break in the interfacial tension versus concentra-
tion curve should denote interfacial saturation and not necessarily micellization.
This statement is supported by an early study of solutions of PS-b-poly(hexyl
methyl siloxane)-b-PS triblock copolymer in benzene [273], where, although the
surface tension data exhibited the break discussed above, no micellization was
established by static light scattering. No aggregation was expected since benzene
is a good solvent for both blocks. The situation when both surface segregation
(adsorption at a solid surface) and micellization might occur was investigated
theoretically [274]. It was found that, depending on the incompatibility of the
surface active block with the (monomeric or polymeric) solvent and its
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(attractive) interactions with the surface, one may have only adsorption onto the
surface, only micellization, or an equilibrium of chains adsorbed onto the surface
and chains in a micelle. This competition has not been investigated in detail in
copolymer/solvent and copolymer/homopolymer systems.

Chang et al. [58] investigated recently the effect of copolymer composition on
the interfacial tension reduction in PI/PDMS blends utilizing PI-b-PDMS addi-
tives. The authors utilized a series of diblock copolymers possessing constant
molecular weight of the PI block and different molecular weights of the PDMS
block (thus, different compositions) added to the PDMS phase. Ultralow values of
interfacial tension of the order of 10~ dyn/cm were obtained for almost symmetric
diblock copolymers for additive concentrations in the plateau region. Such low
interfacial tensions had never been measured previously in polymeric systems,
whereas they had been obtained in systems of balanced small molecule surfactants,
for which the thermodynamically preferred form of aggregation is a surfactant
monolayer with no spontaneous curvature. The interfacial tension increased with
increasing PDMS block, going from a symmetric to asymmetric diblocks. At
certain copolymer composition, a discontinuity was observed with the interfacial
tension exhibiting a jump. For highly asymmetric additives, the behavior was
accounted for by a theory [105] that considered equilibrium between a PDMS
phase containing swollen spherical micelles and a phase of nearly pure PI. The
self-consistent field theory (SCFT) discussed the behavior of systems of nearly
balanced copolymers, which tend to form highly swollen micelles, within the
context of the Helfrich theory of interfacial bending elasticity [275], using elastic
constants obtained from SCFT simulations of weakly curved monolayers.

Besides the considerations regarding the thermodynamic factors that determine
the efficiency of a compatibilizer, the question of how and whether a state of
equilibrium is reached in such systems is still open. In principle, in all experimental
measurements, interfacial tension data are taken for long periods of time; “equilib-
rium” is considered to have been accomplished when the extracted values of the
interfacial tension do not change with time. These times can be very or extremely
long in the case of polymer—polymer interfaces due to the normally very high
viscosities of the components of the mixtures. Actually, in these systems, one can
study the kinetics with which time-independent interfacial tensions are established.
Note that in the ternary systems it is the combined influence of hydrodynamic
relaxation and interfacial segregation of the additive that determines the kinetics of
equilibration measured. The time-dependent interfacial tension data of Stammer
and Wolf [276] for random copolymers added to the polymer—polymer interfaces
were fitted with a double exponential function, with the two characteristic times
attributed to the viscoelastic relaxation and the compatibilizer transport to the
interface. Cho et al. [53] studied the segregation dynamics of PS-b-PDMS diblock
copolymer to the PS/PDMS polymer blend interface. The data were analyzed
within diffusion-limited segregation models proposed by Budkowski et al. [277]
and Semenov [278], as modified to treat interfacial tension data. The estimated
apparent block copolymer diffusion coefficients obtained were close to the esti-
mated self-diffusion coefficient of the PDMS homopolymer matrix. Shi et al. [57]
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studied the time evolution of the interfacial tension when polyisobutylene (PIB)-b-
PDMS was introduced to PIB/PDMS blend, with the copolymer added to the PIB
phase; in that study both homopolymers were polydisperse. The time dependence of
the interfacial tension was fitted with an expression that allowed the evaluation of
the characteristic times of the three components. The characteristic time of the
copolymer was the longest, whereas the presence of the additive was found to delay
the characteristic times of the blend components from their values in the binary
system. The possible complications of slow diffusivities on the attainment of a
stationary state of “local equilibrium” at the interface were thoroughly discussed by
Chang et al. [58] within a theoretical model proposed by Morse [279]. Actually,
Morse [279] suggested that the optimal system for measuring the equilibrium
interfacial tension in the presence of a nearly symmetric diblock copolymer
would be one in which the copolymer tracer diffusivity is much higher in the
phase to which the copolymer is initially added than in the other phase because
of the possibility of a quasi-steady nonequilibrium state in which the interfacial
coverage is depleted below its equilibrium value by a continued diffusion into the
other phase.

In order to avoid the complications of micelle formation or the diffusion of the
copolymer to the opposite side of the interface, the in-situ formation of copolymers
has been utilized [61, 106, 107, 109, 112, 117, 172]. In a review article, Jérome and
coworkers [106] wrote that they found no evidence of commercial blends compa-
tibilized with premade block copolymers, and indicated that the in-situ method is
superior in compatibilization. Macosco and coworkers [107] have compared
directly the effects of premade versus reactively formed compatibilizers; it was
concluded that the premade copolymers are less capable of compatibizing polymer
blends than the in-situ formed ones because of the possibility of micelle formation
by the former.

Fleischer et al. [172] measured the interfacial tension reduction credited to the
complexation between carboxy-terminated PBD and amine-terminated PDMS,
which were added to an immiscible blend of PBD and PDMS. The changes in
interfacial tension resembled the behavior observed for block copolymer addition to
homopolymer blends: there is initially a linear decrease in interfacial tension with
the concentration of functional homopolymer up to a critical concentration, at
which the interfacial tension becomes invariant to further increases in the concen-
tration of functional material. However, the formation of interpolymer complexes
depends on the equilibrium between associated and dissociated functional groups
and, thus, the ultimate plateau value for interfacial tension reduction is dependent
on the functional group stoichiometry. A reaction model for end-complexation was
developed in order to reproduce the interfacial tension reduction data with Fourier
transform infrared spectroscopy applied to determine the appropriate rate constants.
The model provided a reasonable qualitative description of the interfacial tension
results, but was not able to quantitatively predict the critical compositions observed
experimentally.

Recently, the kinetics of interfacial reaction between two end-functionalized
homopolymers was investigated by Chi et al. [117] utilizing interfacial tension
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measurements. The authors measured the changes in the interfacial tension between
PDMS and PBD during the reaction between amino-terminated PDMS and car-
boxyl-terminated PBD, which can react at the interface and form diblock copoly-
mers that compatibilize the blend. The concentration of the reaction product was
inferred from an application of Gibbs adsorption equation, justified for an insignifi-
cant degree of conversion of reactants in either phase. The obtained time-dependent
copolymer concentration was found to follow a single-exponential growth function
at low copolymer coverage, indicating first order kinetics.

Favis and coworkers [51, 52] critically examined the relationship between the
interfacial tension reduction in the presence of diblock copolymer additives and
the dispersed phase morphology evolution as a function of the concentration of the
interfacial modifier. Blends of PS/PE in the presence of PS-b-hydrogenated poly-
butadiene-h-PS (Kraton, SEBS) [51] and of PE/PVC in the presence of PI-b-poly
(4-vinyl pyridine) or PS-b-poly(acrylic acid) [52] were investigated. The authors
unambiguously confirmed directly the relationship between interfacial tension and
phase size, as predicted by the Taylor theory [280].

4.3 Theories of the Interfacial Behavior in Homopolymer/
Homopolymer/Copolymer Blends

Statistical thermodynamic theories have been formulated to understand and predict
the emulsifying behavior of block copolymers at the polymer—polymer interface
[70-75, 77-80, 95, 98, 99, 105, 267, 279, 281, 282]. Noolandi and Hong [70, 71,
281] utilized their theory of inhomogeneous systems in order to investigate the
segment density profiles at the interface for the system homopolymer A/homopol-
ymer B/diblock copolymer AB/common solvent. They investigated the effect of the
molecular weight and the concentration of the diblock on the interfacial tension,
under the assumption that the copolymer is either localized at the interface or is
randomly distributed in the bulk homopolymer phases, i.e., for concentrations
below the CMC. Shull and Kramer [77] developed and applied the Noolandi—
Hong theory for the case without solvent and also discussed the possibility of
micelle formation in view of their earlier experimental observations [38, 102].
Semenov [103] developed an analytical mean-field theory for the equilibrium of
block copolymers in a homopolymer layer between an interface with another
homopolymer and the free surface, and the results were compared to the data of
Shull et al. [38]. Semenov also analyzed the situation for concentrations above
CMC and found that micelles are attracted to both the free surface and (more
weakly) to the polymer—polymer interface, but he did not investigate the interfacial
tension reduction due to copolymer segregation to the polymer—polymer interface.

The effects of copolymer architecture on the interfacial efficiency of the com-
patibilizers have been investigated in a series of papers by Balazs and coworkers
[80, 85] using a combination of SCMF calculations, analytical theory, and Monte
Carlo simulations as well as by Dadmun [95, 98] using computer simulations.
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Lyatskaya et al. [85] investigated the interfacial tension reduction due to the
localization of AB block copolymers at the interface between two immiscible
homopolymers A and B as a function of the copolymer architecture. For the same
total copolymer molecular weight, for symmetric copolymers (= 0.5) and for very
high molecular weight homopolymers, both analytical arguments and SCMF theory
agreed in that diblock copolymers are the most efficient at reducing the interfacial
tension, followed by the simple grafts, the four-armed stars, and the n-teeth combs.
The trade-off between total molecular weight and number of teeth was discussed
when combs and diblocks of different molecular weights were compared, i.e., long
combs are more efficient than short diblocks.

Retsos et al. [55, 56] made an attempt to provide a semiquantitative analysis of
the interfacial activity of block copolymers at the polymer—polymer interface; the
emphasis was on understanding the nonmonotonic dependence of the interfacial
tension reduction on diblock molecular weight as well as the effects of macromo-
lecular architecture and composition when graft copolymers were utilized as
additives. The attempt was based on a modification of the analysis of Leibler
[75], where the possibility of micellar formation was also taken into account. The
thermodynamic equilibrium under consideration was, thus, that between copolymer
chains adsorbed at the interface, chains homogeneously distributed in the bulk
homopolymers, and chains at micelles formed within the homopolymer phases.

4.3.1 The Noolandi and Hong Theory

Hong and Noolandi constructed a general theory [211, 283] of inhomogeneous
systems, beginning with the functional integral representation of the partition
function as introduced by Edwards [212]. The free energy functional is minimized
by the saddle-function method (including the constraints of no volume change upon
mixing and a constant number of molecules of each component) to obtain the mean-
field equations for the fundamental probability distribution functions that charac-
terize a system of two immiscible homopolymers A and B diluted with solvent in
the presence of a diblock copolymer AB. These equations were, then, solved
numerically to obtain the polymer density profiles through the interfacial region.
The difference between the total free energy and that of the bulk polymers was used
to evaluate the interfacial tension.

For homopolymer A/homopolymer B/diblock copolymer AB/solvent system,
six distribution functions were needed [70, 267] to describe the mixture: two for the
two homopolymers A and B, and four for the copolymer. However, the expressions
for the mean-field simplified to two functions [267] if the volume fractions of the
homopolymer and the respective block of the copolymer were added together. The
mean-field expressions then reduce to those for a ternary system: homopolymer
A/homopolymer B/solvent [211, 283]. The assumption was made that the part of
the copolymer that does not localize itself at the interface will be randomly
distributed in the bulk of the homopolymers.
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There are a number of factors that determine the state of the block copolymer in
a phase-separated system. The entropy of mixing of the block copolymers with the
homopolymers favors a random distribution of the copolymers. On the other hand,
localization of the block copolymers to the interface displaces the homopolymers
away from each other, thus, lowering the enthalpy of mixing. In addition, each
block of the copolymer will prefer to extend into its compatible homopolymer to
lower the block copolymer—homopolymer enthalpy of mixing. Besides suffering an
entropy loss as a whole because of the confinement to the interphase, there is a
further entropy loss for the blocks of the copolymer arising from the restriction of
the blocks into their respective homopolymer regions. Finally, extension of the
copolymer chains, as well as the effect of the excluded volume at the interphase for
the homopolymers, lead to further loss of entropy. In their theoretical development,
Noolandi and Hong [70] included the contributions to the free energy from all these
effects, and obtained the concentration of the block copolymer at the interface as
well as the associated reduction in the interfacial tension.

It is clear that similar considerations for the enthalpy and entropy of mixing of
block copolymers could favor micellar aggregation rather than random distribution
in the bulk of the homopolymers. In this case, the micelles could compete with the
interfacial region for copolymer chains and the amount in each state would depend
on the relative reduction in the free energy as well as the surface area. Since no
complete treatment of this complicated case was given in the Noolandi and Hong
paper [70], their results should be reliable only for low copolymer concentrations
below the CMC. Their mean-field calculation cannot adequately describe the
critical crossover regime from a random copolymer distribution to aggregation
(micelle formation) and, thus, they only gave a rough estimate of the CMC.

The reduction in interfacial tension with increasing block copolymer concentra-
tion was calculated for a range of copolymer and homopolymer weights as well as
for different initial concentrations of solvent in their systems. The calculated
interfacial density profiles showed greater exclusion of the homopolymers from
the interfacial region as the molecular weight of the copolymer increased. This
greater localization of the copolymer resulted in a greater reduction in the interfa-
cial tension as the block molecular weight increased for both infinite and finite
molecular weights of the corresponding homopolymers.

The theory, however, generally overestimates the interfacial tension reduction
upon addition of the copolymer. An attempt to model the exact polymer system
studied by Gaillard et al. [215, 266] (PS/PBD/styrene/PS-b-PBD, discussed in Sect.
4.2) showed a disagreement between theory and experiment. The calculated inter-
facial tension fell to zero for a copolymer concentration (weight fraction with
respect to one of the two homopolymers of equal weight) of ca. 10~*, while the
measurements indicated that interfacial tension decreased much more slowly with
increasing block copolymer concentration, and reached a constant value for ca. 5%.
Possible reasons for this discrepancy were discussed in the original paper [70]. The
use of the spinning drop method to measure the interfacial tension for the demixed
polymer solutions and the effect of the rotational speed on possible shift in the
position of the block copolymer at the interphase were emphasized, together with
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the assumption of the random distribution of the copolymer chains in the bulk
copolymers. The fact that the theory was unable to describe the crossover regime
from a random distribution to the micelle formation was also discussed [70].

In another study, Noolandi and Hong [71] attempted to identify the relative
importance of the various contributions that affect the interfacial tension reduction
(as discussed earlier). The equations of their model were solved numerically in a
“computer experiment” and the various contributions to the free energy and the
interfacial tension were evaluated to determine their relative importance. The
results were also discussed in another publication [281]. For a symmetric diblock
copolymer, homopolymers of infinite molecular weight, and a symmetric solvent,
they found that the interfacial tension reduction, Ay, with increasing copolymer
molecular weight and concentration arose mainly from the energetically preferred
orientation of the blocks at the interface into their respective compatible homo-
polymers. The main counterbalancing term in the expression for Ay was the entropy
loss of the copolymer that localizes at the interface. The loss of conformational or
“turning back” entropy of both copolymer and homopolymer chains at the interface
was shown to contribute little to Ay.

Neglecting the loss of conformational entropy, Noolandi and Hong were able to
obtain an analytical expression for the interfacial tension reduction for infinite
homopolymer molecular weights, given by:

d x 1 1
A“/:V—“/ozgdk{ fp‘i‘ﬁ—ﬁeXP(N}{f/’p/z)} (96)

whereas the amount of copolymer at the interface is:

$.(0) = g exp (N1, /2) ©7)

where d is the full width at half height of the copolymer profile and b is the Kuhn
statistical segment length. Numerical calculations showed that d was almost
constant for varying copolymer molecular weight. ¢. = $p(c0) = d(—o0) is the
copolymer volume fraction in the bulk homopolymer phases, which is very close
to the nominal amount of the block copolymer present because the material
segregated to the interface is negligible [71] compared to the total amount for a
large system; ¢.(0) is the copolymer volume fraction at the interface. ¢,, is the
bulk volume fraction of polymer A or B (assumed equal), N is the degree of
polymerization of the symmetric copolymer, and, y is the Flory-Huggins interac-
tion parameter between A and B segments. It was assumed that the interaction
parameters between segments A and B and the solvent are yas = yps = 0,
respectively. d is a parameter that was not determined by the simplified theory.
For Ny¢, < 1, (96) reduces to:

d
Ay =7 =50 = =7 dNL $y/8; Nugp < 1 98)
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The important features of the approximate relationships (96) and (98) were
verified by the exact numerical calculations. An exponential dependence of the
interfacial tension reduction on the block copolymer molecular weight as well as on
the total homopolymer volume fraction was predicted that can explain the remark-
able effectiveness of using large molecular weight diblocks as surfactants for
concentrated mixtures of immiscible homopolymers. For small N, a linear depen-
dence of Ay on N (98) was also predicted by the exact numerical calculations.
Moreover, a linear dependence of Ay on the block copolymer volume fraction was
predicted by the exact numerical solution, as shown by (96) and (98).

The homopolymer profile thickness was calculated numerically to increase
exponentially with copolymer molecular weight and linearly with copolymer con-
centration. The increasing width (or decreasing slope) of the homopolymer profiles,
as compared to the total polymer profiles (homopolymer plus copolymer segments),
reflected the necessity to accommodate the increased amount of the copolymer at
the interface.

Noolandi (personal communication) suggested that the theory can be applied to
the experimental system PS/PS-b-PVE/PVE of [45], i.e., to a concentrated system
without solvent, by letting the total polymer volume fraction, ¢, go to 1 in (96) and
(98). For the temperature of 145°C in the experiments, y = 0.0388 [245], and for the
degree of polymerization of the diblock (N = 261), (98) becomes:

d
Ay = 05837 ¢ (99)

with d being the width at the half height of the copolymer profile, which is a
parameter related to the thickness of the interface but it was not determined by the
simplified theory.

In order to compare the data with the theory, Noolandi and Hong, Anastasiadis
et al. [45] assumed that the same volume fraction of copolymer exists in both bulk
phases and, by using the bulk densities of PS and PB, they plotted the interfacial
tension increment, Ay = y — 7y, as a function of the copolymer bulk volume
fraction, as shown in Fig. 29.

The interfacial tension increment, Ay = y — 7,, was linear with the copolymer
volume fraction, calculated for low concentration of the copolymer additive as
suggested by theory for concentrations below the CMC. The slope of the fitted line
was —37.0, and thus d was estimated to be 38 nm, or 63.5b when the geometric
mean of the Kuhn statistical segment lengths of the two segments was used as
0.6 nm. This value of d (~63.5 monomer units) was about 24% of the contour
length of the copolymer chains and, thus, indicated an extended configuration of the
copolymer chains.

Noolandi and Hong [71, 281] pointed out that both copolymer concentration
and molecular weight are equally important in reducing the interfacial tension.
They noted, however, that the interfacial tension surface (y plotted against N and
¢.) is bounded by a CMC curve because blocks of large molecular weights tend
to form micelles in the bulk of the homopolymers rather than segregating to the
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Fig. 29 Interfacial tension increment (Ay) versus copolymer volume fraction (¢.) for the PS/PS-b-
PVE/PVE system at 145°C. Solid line is the linear fit of the data for concentrations below the
CMC, according to the theory of Noolandi and Hong. From [45]

interface. Their theoretical treatment is valid for concentrations well inside the
CMC boundary.

Whitmore and Noolandi [101] derived the structural parameters of monodis-
persed AB diblock copolymer micelles within an A homopolymer by minimizing a
simple free energy functional. The CMC was calculated and shown to be dominated
by an exponential dependence on yNp (y is the Flory-Huggins interaction parameter
and Np the degree of polymerization of the B block of the copolymer). The
importance of diblock copolymer composition was emphasized as well. The
CMC was calculated as:

Ti XN =
P = 0_3()@ exp(E) (100)
where:
1 1.56
2= — yNg + 1.65(;(NB)1/3+§ 1.65(7Ng)'/*+ —— —
(xNg) (101)

[, 2
- =3
+2[aA+aA ]

N is the total degree of polymerization of the copolymer and o4 the stretching
parameter for the block A of the copolymer, which is related to the molecular
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weights and the interactions and is calculated by the model. Good agreement was
observed between the predicted micelle core radii and experimental data [284] for
PS-b-PBD within PBD, obtained using small angle neutron scattering.

Shull and Kramer [77] developed and applied the Noolandi—Hong theory for the
case of polymer A/polymer B/diblock copolymer AB, but without solvent. They
found that, at a given value of the chemical potential of the copolymer in the bulk
phases ., the ability of a copolymer to reduce y is highest for small N and small y.
However, at a given value of ¢, higher values of N result in much higher values
of Ay due to the exponential dependence of . on yN and because an increase in
1 results in an increase in the density of copolymer chains at the interface.
Theoretical determination of the limiting value of p. associated with the formation
of micelles was made separately [38], since the possibility of micelle formation was
not explicitly introduced in the theory. A good agreement was found with
the experimental data [38] for the total amount of copolymer segregating to a
polymer—polymer interface for concentrations below CMC using only y as an
adjustable parameter. Using the best-fit value of y, they estimated Ay for con-
centrations when micelles are not present. For concentrations higher than the
CMC, more micelles will be formed without, however, significantly increasing
the copolymer chemical potential; thus, the interfacial tension will not decrease
further. For the copolymer molecular weights used, a significant increase in the
total copolymer amount adsorbed at the interface was observed at higher copoly-
mer concentrations, which was attributed [38, 102] to segregation of micelles to
the polymer—polymer interface (as well to the polymer—air surface [38, 102,
285]). The location of the upturn was used to estimate the copolymer chemical
potential at the CMC, which was in good agreement with a full self-consistent-
field theoretical estimate [286].

4.3.2 Leibler Theory for Nearly Compatible Systems

Leibler [282] developed a simple mean-field formalism to study the interfacial
properties of nearly compatible mixtures of two homopolymers, A and B, and a
copolymer AB. The free energy was expressed in terms of monomer concentration
correlation functions, which were calculated in a self-consistent way within the
random phase approximation introduced by de Gennes [242]. For the very broad
interface of nearly miscible systems, a gradient expansion was carried out giving a
generalization of the Cahn—Hilliard theory [216]. As mentioned by Noolandi and
Hong [71], with the gradient expansion in the theory of Leibler, the diblock
copolymer was effectively treated as a small-molecule solvent compared to the
large width of the interfacial region, and the structure of the copolymer became
irrelevant. The system, thus, behaved as a mixture of two homopolymers driven to
the consolute point by the addition of an excess of solvent. As pointed out by
Leibler, for nearly compatible species (2 < yN < 4,/2), two mechanisms of the
interfacial activity of the copolymer chains had to be distinguished: (1) the species
A and B are more closely mixed as copolymer chains and are present in both phases,
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and (2) the copolymer chains have a certain tendency to localize to the interface. In
the case of nearly miscible species (near the consolute point), the first mechanism
dominates whereas, for the highly incompatible case, the second dominates. Thus,
for nearly miscible systems, the mechanism involved is quite different from that
invoked for highly immiscible species. The dominant effect is the presence of
copolymer chains in both the A-monomer-rich and B-monomer-rich phases: in
consequence, when the copolymer amount increases, the difference between the
total volume fractions of monomer A in the B-rich phase and B-rich phase
decreases. The interfacial tension was found to consist of two parts:

V=7 — "1 (102)

The first term, 7y, represents the interfacial energy due to the inhomogeneity of
the overall concentration of B monomer:

70 = Yo(0)R(¢) (103)
where:
21/2k TN71/2
70(0) = =g (v —2)"? (104)
and:

R(@) = (1= @) [IN(1 = §) = 22 (N — 2) /2
1/2
x [1=N*¢(1 - ¢)/8]

Here yN is the degree of incompatibility of the species, kg is the Boltzmann
constant, T is the absolute temperature, ¢ is the average copolymer volume fraction,
and b is the Kuhn statistical segment length. Formally, the same expression for
70 would be obtained if there were no copolymer chains in the system.

The second contribution, y;, expresses a decrease in the interfacial tension due to

the effect of the preferential localization of the copolymers at the interface. Near the
critical region, y; may be approximated by:

(105)

3
=560 (106)

Calculations showed that, near the critical point, the contribution of 7y, to the
interfacial tension was almost negligible. However, for higher incompatibility
degrees, i.e., higher values of yN, the term y; could be comparable with y,.
Therefore, it is the localization of the copolymer at the interface that is important.

To summarize, the mechanisms involved in the two different cases of highly
immiscible systems and nearly compatible blends are quite different. In the first
case, it is the surfactant activity of the block copolymer chains that cause the
interfacial tension reduction whereas, in the second case, it is the presence of
copolymer molecules in the bulk homopolymer phases that causes the compatibi-
lizing behavior.
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4.3.3 Leibler Theory for Strongly Incompatible Systems and Its Modification
Diblock Copolymer Additives

Leibler [75] considered a flat interface with surface area A between phase-separated
A and B homopolymers. The thickness of the interfacial region o = b(6)"/? and
the interfacial tension yy, = kgTh 2 (;(/6)”2 are independent of the number of
segments P, and Pg of the two homopolymers [27] for a highly incompatible
situation of yP; > 1 (where kgT is the thermal energy). It was assumed that
both types of links have the same segmental volume v = b>. Suppose that O
copolymer chains with number of segments N = N, + N and composition
fi = N;/N are adsorbed at the A—B interface (for most practical situations, yN; >
1). It was expected that the copolymer joints will be localized in a thin interfacial
layer of thickness [103] d’ = (n/2)a; (independent of N; and P;); d' is equal to
the semiempirical parameter d of Noolandi et al. [71, 281] in (98), as discussed
by Semenov [103]. The blocks A and B extend towards the respective bulk
layers and form two “adsorbed layers” of thicknesses L, and Lg, respectively.
Since d' < L;, each side of the interfacial film resembles a layer of polymers
anchored by one end onto a wall. The free energy of the interfacial film can, thus,
be approximated as [75]:

Fintert.film = 7oA + O(ga + gB) (107)

where 7, is the A-B interfacial tension in the absence of the additive, A is the
interfacial area, and g, gg represent the free energies per A—B chain of the A and B
layers, respectively. The number of copolymer chains per unit interfacial area is
given by o = Q/A.

In most of the experimental studies, the copolymer chains are not so long relative
to the homopolymers. Thus, mixing of the copolymer and homopolymer chains
should be taken into account due to the penetration of homopolymers into the layer
of chains anchored at the interface, whereas the copolymer chains can be either
stretched (wet brush regime) or not (wet mushroom). Neglecting the composition
gradients in the brush (Flory approximation), g; is given by [40, 75, 287]:

8i
kgT

= In(N;b*c) +L

3
(1 =) In(l — 7)) 4> 108
ab3P,»( n) In(l —m;) +5 — (108a)

where 7, = 6N;b? /L; is the average volume fraction of monomers of the A block in
the layer and (1 — n,) is that of the P, monomers. The first two terms in (108a)
approximate the entropy of mixing between copolymer and homopolymer chains,
which tend to swell the copolymer blocks; the first term is associated with the
translational freedom of the copolymers in the two-dimensional film, whereas the
second term originates from the translational entropy of the homopolymer chains
and has a standard excluded volume form [287]. The last term represents the elastic
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entropy term, which limits the swelling. For low values of n, < 1, (108a) can be
written as [40, 75]:

2 P, 2N

i
kT

=In(N;b’c) + (109a)

For stretched chains, the brush thickness L; and the block monomer concentra-
tion 7); are obtained from (109a) by minimization with respect to L;. In that case,
L = 6" PNb(ob?) p 13 = 6'3(6b*)*2P,'3 and:

4/3
25/%

8i
ksT

= In(N;p20) + 2 (ab?)**N:P7** (wet brush) (110a)
which is valid for PI-N,-73/2 <ob*< Pfl/z. For nonstretched chains, L; =~ N,—l/zb and
the last term of (109a) can be neglected; this applies for ob* < P,Nf3 /21287]. Then,
N = 0'sz,~”2 and:

1 N3 /2

2 P;

8i
ksT

=In(N;b’c) + (wet mushroom ) (111a)

The interfacial tension in the presence of the copolymer is calculated as':
OF intert film 0 0

Finert |, - (ﬁ+ﬁ> (112)
0

TS 0A

do  Oo

Therefore, the interfacial tension reduction, Ay = y, — 7, is given by:

Ay pe—7 0[2 +32(o b2)2/3< P’ —i—NBP];z/S)} (wet brush)

ksT  ksT 0{24_%5192( 3/2P 1—|—N3/2P )] (wet mushroom).
(113a)

At equilibrium, ¢ is determined by equating the chemical potential of the
copolymer chains at the interface with that of the copolymer chains either
homogeneously mixed with the homopolymers or at micelles formed within the

"It is noted that Noolandi [288] objects to the use of (107) and (112) because he claims that the
main contribution to the interfacial tension reduction is of enthalpic and not entropic origin (as
(112) suggests), i.e., that it is due to the favorable energetics of the orientation of the copolymer
blocks into their respective homopolymers and that entropic effects are second order. He suggests
that (107) should be corrected by adding the contributions of the orientational entropy of the
blocks and their entropy of localization. The latter was introduced by Shull and Kramer [77] by
replacing yo by i, = 7o + 0kgT In[(Ls + Lg)/d’]. In the present analysis, the expression of Leibler
[75, 76, 40] is utilized.



248 S.H. Anastasiadis

homopolymer phases. The chemical potential of a copolymer chain at the interface
is calculated using (107) as:

Mm=éﬂg§ﬁﬁ=gA+m+m(%?+%§> (114)
Therefore, with (110a) and (111a):
:B} = 2+ In(Nach?) + In(Npob?)
2271(0?) (NaPR +NsPg™?)  (wetbrush) (1150
ab’ (Ni/ngl +N133/2P1§1) (wet mushroom)

The free energy density of a homogeneous mixture of an AB copolymer with a B
homopolymer is [278]:

kT N

Four _ & 1n<§> s m(%) L —fad)  (116)

irrespective of the copolymer architecture. Thus, the chemical potential of a copoly-
mer chain homogeneously distributed within the bulk B homopolymer, u =
N[(1 — ¢)OFbui /O + Fpui], is:

%Zlmﬁ_‘f’_(l_‘f’)pﬁﬂLXNfA(l%fw +/ad?) (117a)
B B

where ¢ = ¢(c0) is the copolymer volume fraction in the B-rich homopolymer
phase.

The chemical potential of a copolymer chain in a micelle was evaluated by
Semenov [278] for long homopolymer chains (P > N), which do not penetrate the
micelles. Depending on the diblock copolymer composition, the micelle morphol-
ogy could be spherical, cylindrical, or lamellar [278, 289]. The chemical potential
of a diblock copolymer chain in a micelle formed within the B phase is then given
by [55, 56, 278]:

spherical

! 1/3
P = (32 174 1]

A)1/3
T IN)

\

cylindrical

e — 1.19(4,N) P [1.64 — Infy]/?
ksT

Smic  — 0.669(xN)"/3(5.64 — fr)'/? (118a)



Interfacial Tension in Binary Polymer Blends and the Effects of Copolymers 249

The expression for spherical micelles is the same as equation A-8 of Shull et al.
[38] and is consistent with equation 21 of Lyatskaya et al. [85] and equation 36 of
Semenov [103]. That for cylindrical micelles is the same as equation A-12 of Shull
et al. [38] and as equation 36 of Semenov [103]. Finally, the equation for the
chemical potential of lamellar micelles is the same as equation A-12 of Shull et al.
[38] and somehow different from equation 36 of Semenov [103], as is also
acknowledged by him [103].

When micelles are not present, the equilibrium is established between copoly-
mer chains homogeneously distributed within the homopolymer phase and copoly-
mer at the interface. The surface density o is, then, determined by:

Hint (03 N) = foyic (P45 N) (119a)

where, in this case, it is assumed that ¢ = ¢ ~ d,qq- When micelles are present,
then at thermodynamic equilibrium ¢ is determined by the equation:

:uim(O-;N) = :umic(N) = ﬂbulk(d)i;N) (]19b)

which also determines the volume fraction ¢ of copolymers remaining homo-
geneously distributed in the bulk A or B phases.

For calculation of the interfacial tension reduction, one evaluates first the che-
mical potentials Hmic and Houlk for (b = d):lz = q)add- If ,ubulk((badd) < Hmics then the
equilibrium is established between copolymers at the interface and copolymers
homogeneously mixed within the B-rich phase. The interfacial excess ¢ is, then,
determined by (119a) together with (115a) and (117a), and the interfacial tension
reduction Ay by (113a). If ppu(Pagd) > Hmic> €quilibrium is established among the
three different states of the copolymer and ¢ and ¢ are determined by (119b)
together with (115a), (117a), and (118a); Ay is evaluated by (113a).

The semiquantitative model was compared with the data on the effects of the
molecular weight of symmetric diblock copolymers on the polymer—polymer
interfacial tension; the data showed a nonmonotonous dependence of the interfacial
tension increment on the additive molecular weight in the plateau region. Although
the assumptions involved in the model do not allow a quantitative comparison, the
behavior of Ay when the copolymer molecular weight increases at constant additive
concentration resembles the response seen experimentally. Figure 30 shows the
estimated surface density of copolymers at the A-B interface, g, together with
the interfacial tension reduction, Ay = y, — 7, as a function of the number of
segments of the copolymeric additive for ¢,qq = 0.02. The parameters used were
Pa = Pp; =81, Pg = Pps = 112, and y = 0.04. Moreover, for the present range of
values of P; and N;, the wet-mushroom configuration for the adsorbed copolymer
chains was assumed, which was then verified by the extracted ¢ values.

It was found that the magnitude of Ay increases with copolymer molecular
weight, as long as the copolymer chains at the interface are at equilibrium with
only homogeneously mixed chains and micelles do not exist (regime I). At higher
molecular weights, when micelles are also present, Ay decreases with further
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Fig. 30 Theoretically estimated interfacial tension reduction, Ay = yg — 7, (solid line), and
estimated surface density (¢) of copolymer chains adsorbed at the interface (dotted line), for the
PS/PS-b-PI/PI systems as a function of the number of segments (N) of the copolymer at constant
2 wt% copolymer concentration and for constant y = 0.04 [55]

increasing molecular weight (regime II). The values for Ay are in the range of the
experimental values, although the functional form of the curve is different from the
experimental one. For example, the copolymer molecular weight at the minimum is
underestimated, indicating that micelles are calculated to form earlier than in the
experimental system, whereas the minimum is much sharper than in the experi-
ment; both are related to the functional form used for the free energy of the micelles
(assumed lamellar) and the inherent assumptions made therein. The value of the
interaction parameter used affects both the location of the minimum (with respect to
N) and the values of Ay; no fitting was attempted because the aim of the theoretical
analysis was to obtain only the trends in order to understand the behavior of the
experimental data. Indeed, the calculation indicated a behavior very similar to that
seen experimentally. The origin of this trend is evidently related to the behavior of
the estimated interfacial density of adsorbed chains, ¢ (shown in Fig. 30). Increas-
ing the copolymer molecular weight when micelles are not present (for the low
molecular weight side, regime I) rapidly drives more copolymer chains to the
interface (o increases), thus leading to an increase in Ay. On the other hand, further
increase inf the copolymer molecular weight when micelles are present (regime II)
leads to a decrease in the surface density of copolymers, o, thus reducing Ay.

Graft Copolymer Additives

Lyatskaya et al. [85] extended the arguments of Leibler [75] for the case of comb
and star copolymers. The homopolymers were considered to be highly incompati-
ble, whereas the copolymer chains were assumed to form dry brushes at the
interface and to be at equilibrium with chains homogeneously distributed in the
bulk. For the case of simple graft copolymers, which were denoted as T-grafts and
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were considered as combs with n = 1 teeth, the interfacial tension reduction Ay for a
AB, graft copolymer (one A block and two B blocks) was predicted as:

Avb? o — )2 N /2 3/2 B )
k;T :(/okB;) - (E) (5) NP (4= 3fa) 72 (120)

where 7, is the A-B interfacial tension in the absence of the additive, y is the
Flory-Huggins interaction parameter, N is the number of segments of the graft
copolymer, f = fioon = fa 1s the volume fraction of the tooth block A, b is the
statistical segment length (it is assumed that both types of links have the same
segmental volume v = b), and kgT is the thermal energy. Upyx iS the chemical
potential in the bulk and py = In ¢, + yNfa if the copolymer is added to the
B-homopolymer phase, where ¢, is the copolymer volume fraction in the bulk
B-homopolymer phase (which is very close to the nominal amount of copolymer
present, ¢,qq). Note that within the same assumptions, the respective interfacial
tension reduction for a diblock copolymer is:

3/2
AYaibtockh” _ (- Vdiblock)D” _(2)\ (2 / N-1/2,3/2 (121)
T kT \x)\3 Hoik

Retsos et al. [56] made an attempt to extend these arguments for finite homopol-
ymer molecular weights of simple graft copolymers by allowing for mixing of the
graft copolymer and homopolymer chains (wet brush or mushroom regimes) and by
explicitly including in the considerations the possibility of micelle formation,
similarly to the earlier attempt for diblock copolymers [55].

In accordance with the case of diblock copolymer additives, the free energy of
the interfacial film is calculated from (107), where now g4 and gg represent the free
energies per AB, chain of the A and B layers. For the case of AB, simple graft
copolymers, the expressions (108a)—(111a) hold for layer A, which is formed by the
single A block (with i = A). However, the analysis for the B layer should reflect the
fact that the B layer is formed by two B blocks per AB, chain. Thus, gg should be
given by:

2

1 3 L
(1 —ng)In(1 —ng) +2> —2__ (108b)

8B 2
8B In(Npb®c) + Ly —x — 2
n(Neb%o) + Ly s 2 (N3/2)b?

ksT

with ng = oNBb3/LB being the average volume fraction of monomers of B chains.
For low values of ng < 1, (108b) can be written as [40, 75]:

l (NB/2)ng + 2§ LZB
Py 2 (Ng/2)b?

8 _ )
il ln(NBb a) + >

(109b)
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As before, for stretched chains Lg and 7g are obtained from (109b) by minimization
with respect to Lg; thus, Ly = (1/2)6 *Ngb(ab®)'"*Ps~ ', ng = (2)
6'7(6b*)?*Pg'?, and:

gB 4/3

= (0b?)**NgP5?'? (wet brush) (110b)
B

= In(Ngb*s) + T

which is valid for Pg(Ng/2) ** < ab* < Py~ " For non-stretched chains, Lg ~
(Ng/2)"?b and the last term of (109b) can be neglected; this applies for ob* <
P5(Ng/2) *? [287]. Then, 1y = ob*(2Ng)"* and

1 N3/2
23/ 2 Pp

2~ =1In (NBbzo) (Wet mushroom) (111b)

ksT

The interfacial tension will then be calculated from (112), which in the AB, case
becomes:

Ay -y
kT kgT
o[24+55(o0) (NP + NpP*) | (wet brush)
_ 2 - (113b)
G {2 + Lob? (NA AL+ Ny )] (wet mushroom)

The chemical potential of a copolymer chain at the interface is calculated using
(114). Therefore, with (110b) and (111b):

Hint
ksT

=2+ In(Naob®) + In(Npob?)

2.271(ab?)*? (N PP 4 NppyY 3) (wet brush)  (115b)

ab? (Nz/ Pyl + NP ) (wet mushroom)

The free energy density of a homogeneous mixture of an AB copolymer (irre-
spectively of architecture) with a B homopolymer is given by (116) and the
chemical potential of an AB, copolymer chain homogeneously distributed within
the bulk B homopolymer by (117a). Note that, if the copolymer chain is homo-
geneously distributed within the bulk A homopolymer, its chemical potential is:

o =me-9-( _d’)PﬁJFXNfB(l — 2/ +f3¢’) (117b)
B A

where ¢ = d(—o0) is the copolymer volume fraction in the A-rich homopolymer
phase.
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For the calculation of the chemical potential of the AB, graft copolymer chains in
a micelle, one has to distinguish two different cases: (1) when the micelle is formed
within the B homopolymer, i.e., when the “tooth” A block forms the core of the
micelle and the two B blocks form the corona; and (2) when the micelle is formed
within the A homopolymer phase, i.e., when the two B blocks form the core and the
A block forms the corona of the micelle. The two cases were considered by Retsos
et al. [56] along the lines of Leibler [75] and Semenov [103] for the three different
cases of formation of spherical, cylindrical, or lamellar micelles. The chemical
potential of an AB, chain in a micelle formed within the B phase is, thus, [56]:

spherical

I B 1/3
i e T e (A )
kT
cxlindrical
Emic  — 1.89(4AN)"/?(0.41 — Infy)"/?
ksT
lamellar
Hmic _ — 1.75(;N)"(1.26 — o) (118b)
kT

whereas the chemical potential of an AB, chain in a micelle formed within the
A phase is given by [56]:

spherical

e (3/2)7(1 — £ [3.96(1 £ 1] ()
B

cylindrical

M 19(a) 16,57 — In(1 — £2))
B

lamellar

Hmic _ 1~57(XN)1/3(1~44 _fA)1/3 (118c)
kgT

When micelles are not present, the equilibrium between copolymer chains

homogeneously mixed with the respective homopolymer and chains at the interface
is established (119a) whereas, when micelles are present, (119b) determines the
thermodynamic equilibrium. The equations result in the surface density of copoly-
mer chains at the interface, o. Again, it is assumed that ¢4 =~ {yqq, With ¢ being
the volume fraction of copolymers remaining homogeneously mixed in the bulk
A or B phases.

Therefore, for the calculation of the interfacial tension reduction, one again
evaluates the chemical potentials fiyic, Upuik fOr @ = O = Oaqq. If fpui(Padd) < Umics
then the equilibrium is established between copolymers at the interface and
copolymers homogeneously mixed within the B-rich (or A-rich) phase. The inter-
facial excess ¢ is, then, determined by (119a) together with (115b) and (117a)
(or 117b, respectively), and the interfacial tension reduction Ay by (113b). If
Houk(Paga) > Umics equilibrium is established among the three different states of
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the copolymer and ¢ and ¢ are determined by (119b) together with (115b), (117a)
(or 117b), and (118b) (or (118c), respectively); Ay is evaluated by (113b). Due to
the asymmetric architecture of the graft copolymers and in view of the respective
experimental data [56], two situations were considered: (1) when the AB, diblock is
added to the B homopolymer (e.g., an I,S graft added to the PI phase [56]); and (2)
when it is added to the A homopolymer (I,S added to PS [56]).

Although the assumptions involved did not allow a quantitative comparison with
the data [56], the behavior of the estimated Ay when graft copolymers of varying
compositions were introduced into the PI or PS homopolymer phase (at constant
additive concentration) resembled the experimental data for the molecular para-
meters of the experimental systems [56]. When the I,S graft copolymers are added
to the PI homopolymer, there are no micelles formed for high values of fp;, and the
copolymer chains at the interface are at equilibrium with chains homogeneously
mixed within the PI phase. The surface density of chains increases with decreasing
fp1 (from its high value) and the interfacial tension decreases. At lower values of fpy,
micelles are also present and ¢ does not increase (and even decreases) as fp;
decreases further; as a result the interfacial tension does not decrease further (and
even increases). Similarly, when the I,S copolymer is added to the PS homopoly-
mer, there are no micelles formed for low values of fp;, and the copolymer chains at
the interface are at equilibrium with chains homogeneously mixed with PS. The
surface density of chains increases with increasing fp; and the interfacial tension
decreases. At higher values of fp;, micelles are also present and ¢ ceases to increase
as fpr increases further; as a result the interfacial tension does not decrease further.
The Ay values were more or less in the range of the experimental values, although
the apparent functional forms of the curves were different from the experimental
ones [56]. For example, the dependencies in the region where micelles are present
are apparently different to the experimental values. This is most probably due to the
assumptions involved in the estimation of the chemical potentials for the copolymer
chains in micelles (dry brush behavior was assumed). Even more, the value of the
interaction parameter used affects both the location of the minimum (with respect to
fpp) and the values of Ay. No fitting was attempted because the aim of the theoretical
analysis was to obtain only the trends in order to understand the behavior of the
experimental data. Indeed, it is evident that the calculation indicates a behavior very
similar to that shown by the experimental data, with the origin of this trend evidently
related to the behavior of the estimated surface density of adsorbed chains.

S Concluding Remarks

Mixing two or more components that have complementary properties is largely
utilized to improve the performance of polymeric materials for many important
industrial applications. In spite of the great interest in homogeneous blends, a more
desirable situation is that of a non-miscible system, i.e., a heterophase mixture
wherein each of the constituents retains its own properties. In addition, the final
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product might also display some new features triggered by the particular phase
morphology.

In such systems, a satisfactory overall physico-mechanical behavior will cru-
cially depend on two demanding structural parameters: (1) a proper interfacial
tension leading to a phase size that is small enough to allow the material to be
considered as macroscopically “homogeneous”; and (2) an interfacial adhesion
strong enough to assimilate stresses and strains without disruption of the established
morphology. Both these structural parameters critically depend on the interfacial
tension between the two macroscopic phases. Block or graft copolymers are widely
used as emulsifying agents or compatibilizers in blends of immiscible polymers due
to their affinity to selectively partition to the polymer—polymer interface, thus
reducing the interfacial tension. In this article, an attempt has been made to present
a review of the experimental and theoretical investigations of polymer—polymer
interfacial tension in the absence and in the presence of block copolymer emulsify-
ing agents.

The variety of experimental methods that have been utilized to efficiently
measure the polymer—polymer interfacial tension have been briefly reviewed,
with emphasis on the static methods (pendant drop, with the approach being very
similar to the case of sessile drop) that have been widely used for polymeric liquids.
The breaking thread method and the IFR method have been frequently used as well,
especially for high molecular weight polymers.

Polymer—polymer interfacial tension measurements showed that interfacial ten-
sion decreases with increasing temperature (for polymer systems that exhibit USCT
behaviorz), with a temperature coefficient of the order of 1072 dyn/(cm °C).
Interfacial tension increases with increasing molecular weight and exhibits a
y = yoo(l — kipM Z) dependence, with )., being the interfacial tension in the
limit of infinite molecular weight. It is generally found that the exponent z — 1 in
the limit of high molecular weights.

We have reviewed the theories of polymer—polymer interfaces. We began by
presenting the early semiempirical attempts. Then, we discussed in some detail the
microscopic theories of polymer interfaces, with emphasis on the theories of
Helfand and coworkers as well as on subsequent theories. One should emphasize
here the significant influence of the original Helfang—Tagami theory on the field of
polymer interfaces. The expression for the interfacial tension in the limit of infinite
molecular weights, y = (X/6)”2p0kaT (40), has been utilized extensively for
evaluation of the polymer—polymer interfacial tension; the same holds for the
expression for the width of the interface (38), again in the limit of infinite molecular
weights. The rest of the theoretical section on polymer—polymer interfaces focused
on the square-gradient approach and its utilization to predict the temperature and

%For polymer blends exhibiting lower critical solution temperature (LCST) behavior, e.g., the
system polystyrene/poly(vinyl methyl ether), one may anticipate the opposite behavior for purely
phenomenological reasons. Interfacial tension should increase with increasing temperature in the
two-phase region since the tie lines become longer with increasing temperature in that case
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molecular weight effects on polymer interfacial tension. All the theories that
address the effect of molecular weight predict that interfacial tension exhibits a
Y =Yoo (1 — kiyM 1) dependence for high molecular weights, i.e., it increases with
increasing molecular weight, with the exponent z = 1, in agreement with the current
view from experiment. We then presented briefly the theoretical works that
addressed the behavior of interfacial tension near the critical point of demixing,
where interfacial tension is predicted as y o< 7/%¢*?, with r being the chain length
and ¢ the reduced distance from the critical temperature.

The emulsifying effect of diblock copolymers additives on the interfacial tension
between two immiscible homopolymers was then reviewed. Early studies as well
as studies on model systems demonstrated the surfactant-like behavior of the
block copolymers added to the polymer—polymer systems: a sharp decrease with
addition of a small amount of copolymer followed by a leveling off at higher
copolymer concentrations. The dependence of the interfacial tension reduction on
the copolymer molecular weight for symmetric diblocks apparently exhibits two
different regimes: (I) for low molecular weights, the interfacial tension increment,
Ay = yo — 7y, at saturation (in the plateau region) increases by increasing the
additive molecular weight, and (II) it decreases by further increasing the copolymer
molecular weight, thus going through a maximum. This was understood by consid-
ering the possibility of micelle formation for high molecular weights, leading to a
three-state equilibrium between copolymer chains adsorbed at the interface, chains
homogeneously mixed in the bulk phases, and copolymers at micelles within the
bulk phases. The effects of copolymer architecture and composition were also
investigated utilizing triblock, graft, and comb copolymers. For a systematic series
of I,S simple graft copolymers, with constant molecular weight and varying
composition, the interfacial tension at interfacial saturation was found to be a
nonmonotonic function of the copolymer composition fp;. This was understood to
be due to the competition betwe