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Institute of Macromolecular Chemistry
Czech Academy of Sciences
of the Czech Republic
Heyrovský Sq. 2
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Preface

More than half a century has passed since the pioneering books by Flory [1] and

by Huggins [2] dealing with some of the most important features concerning

the thermodynamics of polymer containing systems. This volume of “Advances
in Polymer Science” has been composed to update our knowledge in this field.

Although most of the experimental observations referring to macromolecular

systems could already be rationalized on the basis of the well-known Flory–

Huggins theory, quantitative agreement between experiment and theory is normally

lacking. The reason for this deficiency lies in several inevitable simplifying

assumptions that had to be made during this ground-breaking period of research.

In the meantime, valuable progress could be achieved, thanks to modern com-

puters, improvements of experimental methods, and data handling. This situation

has among others provoked a new textbook [3] focusing on polymer phase dia-

grams. It is the central purpose of this volume to present some further examples for

recent developments that were made possible by the above-described improve-

ments. The individual contributions to this issue of the Advances in Polymer
Science are grouped according to the degree they are connected with the previous

text books.

The first part (B.A. Wolf ) deals with a straightforward extension of the Flory–

Huggins theory to account for some aspects of chain connectivity and for the fact

that chain molecules may react on changes in their molecular environment by

conformational rearrangements. In this manner, several hitherto unconceivable

experimental observations (like pronounced composition dependencies of interac-

tion parameters or their variation with chain length) can be understood and modeled

quantitatively. This contribution is followed by a chapter devoted to progress in the

field of polyelectrolyte solutions (G. Maurer et al.); it focuses on the calculation of

vapor/liquid equilibria and some related properties (e.g. osmotic pressures) using

sophisticated models for the Gibbs energy. Such thermodynamic knowledge is

particularly needed for different industrial application of polyelectrolytes, for

instance in textile, paper, food, and pharmaceutical industries.

An interesting example for the development and advancement of experimental

methods is presented in the third chapter (J.-P. E. Grolier et al.), dedicated to the

ix



measurement of interactions between gases and polymers based on gas sorption,

gravimetric methods, calorimetry, and a “coupled vibrating wire-pVT” technique.

Information in this field is of particular interest for polymer foaming and for the

self-assembling of nanoscale structures. The fourth section (S. H. Anastasiadis) is
concerned with interfacial phenomena in the case of polymer blends and reports the

current state of the art on measuring and modifying interfacial tensions as well as

different possibilities for its modeling. Such information is indispensible for the

development and optimization of tailor-made materials based on two-phase polymer

blends. The fifth contribution (S. Enders) formulates a theory for the simulation of

copolymer fractionation in columns with respect to molecular weight and chemical

composition. Narrowly distributed polymers are often required for basic research and

the removal of harmful components is sometimes essential for special applications.

All previously discussed methods are primarily based on phenomenological

considerations, in contrast to chapter six (K. Binder et al.), which starts from statis-

tical thermodynamics. This section reviews the state of the art in fields of Monte–

Carlo and Molecular Dynamics simulations. These methods are powerful tools for

the prediction of macroscopic properties of matter from suitable models for effec-

tive interactions between atoms and molecules. The final chapter (G. Sadowski)
makes use of the results obtained with simulation tools for the establishment of

molecular-based equations of state for engineering applications. This approach

enables the description and in some cases even the prediction of the phase behavior

as a function of pressure, temperature, molecular weight distribution and for

copolymers also as a function of chemical composition.

The Editors are well aware of the fact that the above selection is not only far

from being complete, but also to some extent subjective. However, in view of the

importance of polymer science (worldwide annual production [4] in 2008: 2.8�108 t
with a growth rate of approximately 12% per year) and accounting for the signifi-

cance of thermodynamics in this area, further volumes of the “Advances in Polymer

Science” covering missing thermodynamic aspects and presenting further progress

in this field are expected.

Berlin Sabine Enders

Mainz Bernhard Wolf

Summer 2010

References

1 P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, N.Y. 1953

2 M. L. Huggins, Physical Chemistry of High Polymers, Wiley, N.Y. 1958

3 R. Koningsveld, W. H. Stockmayer, E. Nies, Polymer Phase Diagrams, Oxford University

Press, Oxford 2001

4 Statistisches Bundesamt, Fachserie 4, Reihe 3.1, Jahr 2007

x Preface



Obituary

Prof. Dr. Ronald Koningsveld, for several decades leader in thermodynamics of

polymer solutions and blends, was born on April 15, 1925 in Haarlem. In his teen

years when he was living in Rotterdam, he was seized by science and music and he

started studies of orchestral conducting, piano, and composition at Rotterdam

Conservatory. Music remained his love for his whole life. However, following

the advice of his father to do something more “practical”, he entered the Technical

University of Delft to study chemical engineering. After graduation in 1956, Ron

joined the Central Research of Dutch State Mines (DSM) in Geleen and in his first

years there he was engaged in polymer characterization. In parallel, he started his

PhD studies at the University of Leiden under the guidance of A. J. Staverman in

the area of phase equilibria in polydisperse polymer solutions with application to

polymer fractionation. He obtained the title of Doctor of Mathematics and Natural

Sciences in 1967. The papers based on these results rank among the most cited ones

of Ron’s almost 200 publications cited about 3,000 times (according to WoS).

Ron continued working in DSM Research until his retirement in 1985 in various

positions including Head of Department of Fundamental Polymer Research (1963–

1980) and Managing Director of General Basic Research (1980–1985). In the latter

position, Ron also managed external research funded by DSM. He stimulated signi-

ficantly collaborative fundamental research on polymers in Europe and overseas.

The collaboration extended to other countries including Belgium, Czechoslovakia,

Germany, United Kingdom, and U.S.A.

Koningsveld is the name well known in the Academia – he was teaching

polymer thermodynamics as a guest professor in the University of Essex, Universi-

ty of Massachusetts, Catholic University of Leuven, and ETH Zurich, and for

18 years he was a Professor of Polymer Science in the University of Antwerp.
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He received honorary doctorates from the University of Bristol and Technical

University of Dresden. Also, he was a consultant to Max-Planck Gesellschaft,

Institute of Polymer Research in Mainz. In 2002, Ron’s scientific achievements

were appreciated by the Paul Flory Research Prize.

It would be difficult to enumerate all Ron’s scientific achievements in the field of

polymer thermodynamic. One can name the generalizations of the Flory–Huggins

Gibbs energy leading to the prediction and experimental verification of coexistence

of three phases in pseudobinary system with sufficiently broad distribution; or, the

analysis of the functional form of the interaction term leading to the appearance of

“off-zero critical concentration”, at variance with zero critical concentration asso-

ciated with theta-temperature. Thanks largely to Ron, polymer scientists realize that

the cloud point curve is not the binodal and its maximum or minimum are not

identical with the critical temperatures.

Ron had many good friends in the scientific society and some of them

(Berghmans, Simha, Stockmayer) are coauthors of his last paper on correlation

between two critical polymer concentrations – c* for the coil overlap and cs
assigned to the maximum/minimum of the spinodal (J. Phys. Chem. B 2004, 108,

16168–16173). Unfortunately, Robert and Stocky are no longer with us as well.

The scientific community can share Ron’s knowledge in phase equilibria in the

monograph Polymer Phase Diagrams, Oxford (2001) published with coauthors

W. H. Stockmayer and E. Nies.

This reminiscence would not be complete without mentioning the second Ron’s

love – the music. Already in Delft as a student, Ron was engaged in Dutch College

Swing Band as a pianist and arranger. During his work for DSM, Ron composed a

number of pieces inspired by research of polymers: Microsymposium Music per-

formed during Microsymposia on Polymers held every year in the Institute of

Macromolecular Chemistry in Prague, Polymer Music in six movements for two

pianos, To Science (inspired by Edgar Allan Poe, Staudinger March (commemor-

ating Staudinger’s 100th birthday), and Short Communication. Some of the readers

may remember the “ouverture” to IUPAC Macro in Amherst in 1982, where

polymer scientists (Stockmayer, MacKnight, Kennedy, Janeschitz-Kriegel and

Ron as pianist) performed Polymer Music.
Ron passed away in Sittard on November 26, 2008. We grieve over a famous

scientist known all over the world in the thermodynamic community, an outstand-

ing academic teacher and a great personality.

Karel Dušek

Prague

xii Obituary
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Interfacial Tension in Binary Polymer Blends and the Effects

of Copolymers as Emulsifying Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Spiros H. Anastasiadis

Theory of Random Copolymer Fractionation in Columns . . . . . . . . . . . . . . . 271

Sabine Enders

Computer Simulations and Coarse-Grained Molecular Models

Predicting the Equation of State of Polymer Solutions . . . . . . . . . . . . . . . . . . . 329

Kurt Binder, Bortolo Mognetti, Wolfgang Paul,

Peter Virnau, and Leonid Yelash

Modeling of Polymer Phase Equilibria Using Equations of State . . . . . . . . 389

Gabriele Sadowski

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

xiii



.



Adv Polym Sci (2011) 238: 1–66
DOI: 10.1007/12_2010_84
# Springer-Verlag Berlin Heidelberg 2010
Published online: 13 July 2010

Making Flory–Huggins Practical:

Thermodynamics of Polymer-Containing

Mixtures

Bernhard A. Wolf

Abstract The theoretical part of this article demonstrates how the original Flory–

Huggins theory can be extended to describe the thermodynamic behavior of

polymer-containing mixtures quantitatively. This progress is achieved by account-

ing for two features of macromolecules that the original approach ignores: the

effects of chain connectivity in the case of dilute solutions, and the ability of

polymer coils to change their spatial extension in response to alterations in their

molecular environment. In the general case, this approach leads to composition-

dependent interaction parameters, which can for most binary systems be described

by means of two physically meaningful parameters; systems involving strongly

interacting components, for instance via hydrogen bonds, may require up to four

parameters. The general applicability of these equations is illustrated in a compre-

hensive section dedicated to the modeling of experimental findings. This part

encompasses all types of phase equilibria, deals with binary systems (polymer

solutions and polymer blends), and includes ternary mixtures; it covers linear and

branched homopolymers as well as random and block copolymers. Particular

emphasis is placed on the modeling of hitherto incomprehensible experimental

observations reported in the literature.
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Symbols

a Exponent of Kuhn–Mark–Houwink relation (29)

a Intramolecular interaction parameter (47) for blend component A

A,B,C Constants of (13)

A2, A3 Second and third osmotic virial coefficients

ai Activity of component i
b Intramolecular interaction parameter (47) for blend component B

c Concentration in moles/volume

E Constant of interrelating a and zl (34)

G Gibbs free energy – free enthalpy

g Integral interaction parameter

H Enthalpy

KN Constant of the Kuhn–Mark–Houwink relation (29)

LCST Lower critical solution temperature

M Molar mass

Mn Number-average molar mass

Mw Weight-average molar mass

N Number of segments

n Number of moles

p Vapor pressure

R Ideal gas constant

S Entropy

s Molecular surface

T Absolute temperature

t Ternary interaction parameter (61)

Tm Melting point

UCST Upper critical solution temperature

V Volume

v Molecular volume

2 B.A. Wolf



w Weight fraction

x Mole fraction

Z Parameter relating the conformational relaxation to b (53)

Greek and Special Characters

o Parameter quantifying strong intersegmental interactions (42)

[�] Intrinsic viscosity

Fo Volume fraction of polymer segments in an isolated coil (27)

Y Theta temperature

a Parameter of (23), first step of dilution

b Degree of branching (52)

w Flory–Huggins interaction parameter

d Parameter of (57)

e Parameter of (57)

g Surface-to-volume ratio of the segments in binary mixtures (24)

’ Segment fraction, often approximated by volume fraction

k Constant of (30)

l Intramolecular interaction parameter (23)

m Chemical potential

n Parameter of (23)

p Any parameter of (23)

posm Osmotic pressure

r Density

t Parameter of (44)

x Differential Flory–Huggins interaction parameter for the polymer

z Conformational relaxation (second step of dilution) (23)

Subscripts

1, 2, 3 . . . Low molecular weight components of a mixture

A to P High molecular weight components

B Branched oligomer/polymer

c Critical state

cr Conformational relaxation

fc Fixed conformation

g Glass

H Enthalpy part of a parameter

i, j, k Unspecified components i, j, k
L Linear polymer

lin Linear oligomer/polymer

m Melting

S Entropy part of a parameter

Thermodynamics of Polymer-Containing Mixtures 3



s Saturation

o Quantity referring to a pure component, to an isolated coil, or to high

dilution

Superscripts

– Molar quantity

¼ Segment-molar quantity

E Excess quantity

Res Residual quantity (with respect to combinatorial behavior)

1 Infinite molar mass of the polymer

1 Introduction

The decisive advantage of the original Flory–Huggins theory [1] lies in its simplic-

ity and in its ability to reproduce some central features of polymer-containing

mixtures qualitatively, in spite of several unrealistic assumptions. The main draw-

backs are in the incapacity of this approach to model reality in a quantitative

manner and in the lack of theoretical explanations for some well-established

experimental observations. Numerous attempts have therefore been made to extend

and to modify the Flory–Huggins theory. Some of the more widely used approaches

are the different varieties of the lattice fluid and hole theories [2], the mean field

lattice gas model [3], the Sanchez–Lacombe theory [4], the cell theory [5], different

perturbation theories [6], the statistical-associating-fluid-theory [7] (SAFT), the

perturbed-hard-sphere chain theory [8], the UNIFAC model [9], and the

UNIQUAC [10] model. More comprehensive reviews of the past achievements in

this area and of the applicability of the different approaches are presented in the

literature [11, 12].

This contribution demonstrates how the deficiencies of the original Flory–

Huggins theory can be eliminated in a surprisingly simple manner by (1) accounting

for hitherto ignored consequences of chain connectivity, and (2) by allowing for the

ability of macromolecules to rearrange after mixing to reduce the Gibbs energy of

the system. Section 2 recalls the original Flory–Huggins theory and describes the

composition dependence of the Flory–Huggins interaction parameters resulting

from the incorporation of the hitherto neglected features of polymer/solvent sys-

tems into the theoretical treatment. This part collects all the equations required for

the interpretation of comprehensive literature reports on experimentally determined

thermodynamic properties of polymer-containing binary and ternary mixtures

(polymer solutions in mixed solvents and solutions of two polymers in a common

solvent). In order to ease the assignment of the different variables and parameters

to a certain component, the low molecular weight components are identified

by numbers and the polymers by letters. The high molecular weight components

comprise linear and branched samples, homopolymers, binary random copolymers,
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and block copolymers of different architecture; the phase equilibria encompass

liquid/gas, liquid/liquid and liquid/solid. The only aspects that are excluded are the

coexistence of three liquid phases and the demixing of mixed solvent.

This theoretical section is followed (Sect. 3) by a recap of the measuring

techniques used for the determination of the thermodynamic properties discussed

here. The subsequent main part of the article (Sect. 4) outlines the modeling of

experimental observations and investigates the predictive power of the extended

Flory–Huggins theory. Throughout this contribution, particular attention is paid to

phenomena that cannot be rationalized on the basis of the original Flory–Huggins

theory, like anomalous influences of molar mass on thermodynamic properties or

the existence of two critical points (liquid/liquid phase separation) for binary

systems. In fact, it was the literature reports on such experimental findings that

have prompted the present theoretical considerations.

2 Extension of the Flory–Huggins Theory

2.1 Binary Systems

2.1.1 Polymer Solutions

Organic Solvents/Linear Homopolymers

The basis for a better understanding of the particularities of polymer-containing

mixtures as compared with mixtures of low molecular weight compounds was laid

more than half a century ago [13–17], in the form of the well-known Flory–Huggins

interaction equation. By contrast to the form used for low molecular weight

mixtures, this relation is usually not stated in terms of the molar Gibbs energy G;
for polymer-containing systems one chooses one mole of segments as the basis (in

order to keep the amount of matter under consideration of the same order of

magnitude) and introduces the segment molar Gibbs energy G. For polymer solu-

tions, where the molar volume of the solvent normally defines the size of a segment,

this relation reads:

DG
RT

¼ 1� ’ð Þ ln 1� ’ð Þ þ ’

N
ln’þ g’ 1� ’ð Þ (1)

DG stands for the segment molar Gibbs energy of mixing. The number N of

segments that form the polymer is calculated by dividing the molar volume of the

macromolecule by the molar volume of the solvent. The composition variable ’,
representing the segment molar fraction of the polymer, is in most cases approxi-

mated by its volume fraction (neglecting nonzero volumes of mixing), and g stands
for the integral Flory–Huggins interaction parameter. In the case of polymer

Thermodynamics of Polymer-Containing Mixtures 5



solutions, we refrain from using indices whenever possible (i.e., we write g instead of
g1P, ’ instead of ’P and N instead of NP) for the sake of simpler representation. Only

if g does not depend on composition does it becomes identical with the experimen-

tally measurable Flory–Huggins interaction parameter w, introduced in (5).

The total change in the Gibbs energy resulting from the formation of polymer

solutions is, according to (1), subdivided into two parts, the first two terms repre-

senting the so-called combinatorial behavior, ascribed to entropy changes:

DG
com

RT
¼ 1� ’ð Þ ln 1� ’ð Þ þ ’

N
ln’ (2)

All particularities of a certain real system (except for the chain length of the

polymer) are incorporated into the third term, the residual Gibbs energy of mixing,

and were initially considered to be of enthalpic origin. The essential parameter of

this part is g, the integral Flory–Huggins interaction parameter:

DG
res

RT
¼ g’ 1� ’ð Þ (3)

In the early days, the Flory–Huggins interaction parameter was considered to

depend only on the variables of state, but not on either the composition of the

mixture or on the molar mass of the polymer. Under these premises, it is easy to

perform model calculations – for instance with respect to phase diagrams – along

the usual routes of phenomenological thermodynamics on the sole basis of the

parameter g. In this manner, most characteristic features of polymer solutions can

already be well rationalized, even though quantitative agreement is lacking. How-

ever, as the number of thermodynamic studies increased it was soon realized that

(1) is too simple. Above all, it became clear that the assignment of entropy and of

enthalpy contributions to the total Gibbs energy of mixing is unrealistic. Maintain-

ing for practical reasons the first term unchanged, as a sort of reference behavior,

this means that all particularities of a real system must be incorporated into the

parameter g.
This change in strategy has important consequences, the most outstanding being

the necessity to distinguish between integral interaction parameters g, introduced
by (1) and referring to the Gibbs energy of mixing, and differential interaction
parameters, referring either to the chemical potential of the solvent or of the solute.

The partial segment molar Gibbs energies and the corresponding integral quantity

are interrelated by the following relation:

Gi ¼ G� ’k

@ G

@ ’k

(4)

where the subscripts i and k stand for either the solvent or the polymer. The partial

molar Gibbs energies Gi are customary referred to as chemical potentials mi.
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The partial expressions for the solvent (index 1) read:

Dm1
RT

¼ DG1

RT
¼ ln 1� ’ð Þ þ 1� 1

N

� �
’þ w’2 ¼ ln a1 (5)

and yield the differential parameter w, the well known original Flory–Huggins

interaction parameter, which is related to the activity a1 of the solvent as formulated

above; a1 can in many cases be approximated (sufficiently low volatility of the

solvent) by the relative vapor pressure:

a1 � p1
p1;o

(6)

where p1,o is the vapor pressure of the pure solvent. Otherwise, one needs to correct
for the imperfections of the equilibrium vapor.

The Flory–Huggins interaction parameter constitutes a measure for chemical

potential of the solvent, as documented by (6) and (5); it is defined in terms of the

deviation from combinatorial behavior as:

w � DG
res

1

RT’2
(7)

In the original theory, wwas meant to have an immediate physical meaning, because

of the normalization of the residual segment molar Gibbs energies of dilution to the

probability ’2 of an added solvent molecule to be inserted between two contacting

polymer segments. This illustrative interpretation does, however, rarely hold true in

reality. Even for simple homopolymer solutions in single solvents, it fails in the

region of high dilution because the overall polymer concentration becomes mean-

ingless for the number of intermolecular contacts between polymer segments.

Despite this lack of a straightforward interpretation of the Flory–Huggins interac-

tion parameter in molecular terms, the knowledge of w(’) is indispensable for the
thermodynamic description of polymer-containing mixtures. This information can be

converted to integral interaction parameters g [cf. (25)] and gives access to the

calculation of macrophase separation (e.g., via a direct minimization of the Gibbs

energy of the systems [18–20] and to the chemical potentials of the polymer [cf. (11)].

For practical purposes, the use of volume fractions (instead of the original

segment fractions) as composition variable is not straightforward because of the

necessity to know the densities of the components and (in the case of variable

temperature) their thermal expansivities. For that reason, ’ is sometimes consis-

tently replaced by the weight fraction w, and N calculated from the molar masses as

MP/M1. The w values obtained in this manner according to (8):

ww � wDG
res

1

RTw2
(8)
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are indicated by the subscript w and may differ markedly in their numerical values

from w. The expression for the residual Gibbs energy of dilution is also given an

index as a reminder that weight fractions were used to calculate its combinatorial

part. Despite the practical advantages of ww, we stay with volume fractions for all

subsequent considerations, because they account at least partly for the differences

in the free volume of the components and because most of the published thermo-

dynamic information uses this composition variable.

One of the consequences of composition-dependent interaction parameters lies

in the necessity to distinguish between different parameters, depending on the

particular method by which they are determined. The Flory–Huggins interaction

parameter w relates to the integral interaction parameter g as:

w ¼ g� 1� ’ð Þ @ g

@ ’
(9)

The expression analogous to (5), referring to the solvent, reads for the polymer

(index P):

DmP
RT

¼ N DGP

RT
¼ ln’þ 1� Nð Þ 1� ’ð Þ þ xN 1� ’ð Þ2 (10)

This relation defines the differential interaction parameter x in terms of the chemi-

cal potential of the polymer and is calculated from g by means of:

x¼ gþ ’
@ g

@ ’
(11)

Out of the three types of interaction parameters, it is almost exclusively w that is

of relevance for the thermodynamic description of binary and ternary polymer-

containing liquids, as will be described in the section on experimental methods

(Sect. 3). The integral interaction g parameter is practically inaccessible, and the

parameter x, referring to the polymer, suffers from the difficulties associated with

the formation of perfect polymer crystals, because it is based on their equilibria

with saturated polymer solutions.

Measured Flory–Huggins interaction parameters soon demonstrated the neces-

sity to treat w as composition-dependent. A simple mathematical description con-

sists of the following series expansion:

w ¼ wo þ w1’þ w2’
2 . . . (12)

A more sophisticated approach [21] accounts for the differences in the molecular

surfaces of solvent molecules and polymer segments (of equal volume) and

formulates w(’) as:
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w ¼ A

1� B’ð Þ2 þ C (13)

where these differences are contained in the parameter B. A and C are considered to

be further constants for a given system and fixed variables of state.

The thermodynamic relations discussed so far were, above all, formulated for

the description of moderately to highly concentrated polymer solutions. The

information acquired in the context of the determination of molar masses, on the

other hand, refers to dilute solution and is usually expressed in terms of second

osmotic virial coefficients A2 and higher members of a series expansion of the

chemical potential of the solvent with respect to the polymer concentration

c (mass/volume). For the determination of osmotic pressures, posm, the

corresponding relation reads:

� D �G1

RT V1

¼ posm
RT

¼ c

Mn

þ A2c
2 þ A3c

3 þ . . . (14)

Performing a similar series expansion for the logarithm in (5), inserting w from (12)

into this relation, and comparing the result with (14) yields [21]:

wo ¼
1

2
� r2P V1 A2 (15)

and:

w1 ¼
1

3
� r3PV1 A3 (16)

where wo represents the Flory–Huggins interaction parameter in the limit of pair

interactions between polymer molecules. V1 is the molar volume of the solvent and

rP is the density of the polymer.

The need for a different view on the thermodynamics of polymer solutions

became, in the first place, obvious from experimental information on dilute sys-

tems. According to the original Flory–Huggins theory, the second osmotic virial

coefficient should without exception decrease with rising molar mass of the poly-

mer. It is, however, well documented (even in an early work by Flory himself [22])

that the opposite dependence does also occur. Based on this finding and on the fact

that the Flory–Huggins theory only accounts for chain connectivity in the course of

calculating the combinatorial entropy of mixing and for concentrated solutions, we

attacked the problem by starting from the highly dilute side.

The central idea of this approach is the treatment of a swollen isolated polymer

coil – surrounded by a sea of pure solvent – as a sort of microphase and applying the

usual equilibrium condition to such a system. In a thought experiment, one can

insert a single totally collapsed polymer molecule into pure solvent and let it swell
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until it reaches its equilibrium size. Traditionally, the final state of this process is

discussed in terms of chain elasticity. Here, we apply a phenomenological thermo-

dynamic method and equate the chemical potential of the solvent inside the realm

of the polymer coil to the chemical potential of the pure solvent surrounding it. In

doing so, we “translate” the entropic barrier against an infinite extension of the

polymer chain into a virtual semi-permeable membrane. This barrier accounts for

chain connectivity and represents a consequence of the obvious inability of the

segments of an isolated polymer molecule to spread out over the entire volume of

the system. The condition for the establishment of such a microphase equilibrium

reads:

ln 1� Foð Þ þ 1� 1

N

� �
Fo þ lF2

o ¼ 0 (17)

This relation differs from that for macroscopic phase equilibria [resulting from (5)]

only by the meaning of the concentration variable Fo and of the interaction para-

meter l. Fo stands for the average volume fraction of the polymer segments

contained in an isolated coil, and l represents an intramolecular interaction param-

eter, which raises the chemical potential of the solvent in the mixed phase up to the

value of the pure solvent.

By means of the considerations outlined above, we have accounted for chain

connectivity. However, there is another aspect that the original Flory–Huggins

theory ignores, namely the ability of chain molecules to react to changes in their

environment by altering their spatial extension. One outcome of this capability is,

for instance, the well-known fact that the unperturbed dimensions of pure polymers

in the melt will gradually increase upon the addition of a thermodynamically

favorable solvent. These changes are particularly pronounced in the range of high

dilution, where there is no competition of different solute molecules for available

solvent, due to the practically infinite reservoir of pure solvent.

In order to incorporate both features neglected by the original Flory–Huggins

theory into the present approach, we have conceptually subdivided the dilution

process into two separate steps as formulated in (18). Such a separation is permis-

sible because the Gibbs energy of dilution represents a function of state.

wo ¼ wfco þ wcro (18)

The first term (the superscript fc stands for fixed conformation) quantifies the effect

of separating two contacting polymer segments belonging to different macromole-

cules by inserting a solvent molecule between them without changing their confor-

mation. The second term (the superscript cr stands for conformational relaxation) is

required to bring the system into its equilibrium by rearranging the components

such that the minimum of Gibbs energy is achieved.

In order to give the second term a more specific meaning, we formulate wcro as the

difference in the interaction before and after the conformational relaxation as:
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wcro ¼ wafter � wbefore (19)

Choosing l, the interaction between polymer segments and solvent molecules in the

isolated state, as a clear cut reference point for the contribution of the rearrange-

ment in the second step of dilution, and assuming that the effect will be proportional

to l, we can write:

wcro ¼ � zl (20)

where the negative sign in the above expression has been chosen to obtain positive

values for this parameter in the great majorit of cases. Denoting:

wfco ¼ a (21)

(18) and (20) yield the following simple expression for the Flory–Huggins interac-

tion parameter in the limit of high dilution:

wo ¼ a� zl (22)

For sufficiently dilute polymer solutions, the only difference between the new

approach and the original Flory–Huggins theory is in the second term. According

to theoretical considerations and in accord with experimental findings, z becomes

zero under theta conditions (where the coils assume their unperturbed dimensions)

and the conformational relaxation no longer contributes to wo.
In order to generalize (22) to arbitrary polymer concentrations, we assume that

the composition dependence of its first term can be formulated by analogy to (13).

The necessity of a composition dependence for the second term results from the fact

that the insertion of a solvent molecule between contacting polymer segments

(belonging to different polymer chains) opens only one binary contact within the

composition range of pair interactions, whereas there are inevitably more segments

affected at higher polymer concentrations. For the second term, we suppose a linear

dependence of the integral interaction parameter g on ’. Comparing the coefficients

of this ansatz (as they appear in the expression for differential interaction parame-

ter) with (22) for wo results in (23):

w ¼ a

1� n’ð Þ2 � z lþ 2 1� lð Þ’ð Þ (23)

The symbol n instead of B (13) in the above relation indicates that this parameter is

related to g [21], the geometrical differences of solvent molecules and polymer

segments as formulated in the next equation, but not identical with g;

g � 1� s=vð Þpolymer

s=vð Þsolvent
(24)
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The parameters s and v are the molecular surfaces and volumes of the components,

respectively. In the limit of ’ ! 0, (23) reduces to (22).

The essentials of the considerations concerning the composition dependence of

the Flory–Huggins interaction parameter are visualized in Fig. 1, demonstrating

how the dilution is conceptually divided into two separate steps and how these steps

contribute to the overall effect. The first step maintains the conformation of the

components as they are prior to dilution and does not change the volume of the

system; measurable excess volumes are attributed to the conformational rearrange-

ment taking place during the second step of mixing.

By means of the expression:

g ¼ � 1

1� ’

Z1�’

1

w d’ (25)

resulting from phenomenological thermodynamics, the Flory–Huggins interaction

parameter w of (23) yields the following expression for the integral interaction

parameter g, required for instance to calculate phase equilibria using the method of

the direct minimization of the Gibbs energy [19] of a system:

g ¼ a
1� nð Þ 1� n’ð Þ � z 1þ 1� lð Þ’ð Þ (26)

This relation contains four adjustable parameters; even if they are molecularly

justified these are too many for practical purposes. For this reason, it would be

helpful to be able to calculate at least one of them independently. The most obvious

candidate for that purpose is l (17) because it refers to the spatial extension of

isolated polymer coils. Radii of gyration would be most qualified for calculation of

the required volume fractions of segments, Fo, inside the microphase formed by

isolated polymer molecules. Unfortunately, however, it is hard to find tabulated

values for different polymer/solvent systems in the literature. For this reason, we

use information provided by the specific hydrodynamic volume of the polymers at

infinite dilution, i.e., to intrinsic viscosities [�]. The volume of the segments is

conformational 
relaxation

dilution at 
fixed conformation

(1-nj)2 -z(l+ 2(1 - l)j)

c = cfc+ ccr

a

Fig. 1 Assignment of the

parameters of (23) to the

individual steps of dilution:

Two contacting segments

belonging to different

macromolecules are

separated by the insertion of

a solvent molecule (shaded)
between them
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given by M/rP, and [�]M yields the hydrodynamic volume of one mole of isolated

polymer coils so that Fo becomes:

Fo ¼ M=rP
�½ �M ¼ 1

�½ �rP
(27)

Upon the expansion of the logarithm in (17) up to the second term (which suffices in

view of the low Fo values typical for the present systems), we obtain the following

expression for l:

l ¼ 1

2
þ �½ �rP

N
(28)

Relating the intrinsic viscosity to N by means of the Kuhn–Mark–Houwink relation:

�½ � ¼ KNN
a (29)

the intramolecular interaction parameter becomes:

l ¼ 1

2
þ kN� 1�að Þ (30)

where k ¼ KNrP.
The insertion of (30) into (22) and employing (15) enables the rationalization of

the experimental finding that the A2 values for the solutions of a given polymer of

different chain length do not exclusively decrease with rising M in good solvents,

but might also increase. The resulting equation reads:

A2 ¼ A1
2 þ zk

r2PV
N� 1�að Þ (31)

where A1
2 is the limiting value of A2 for infinite molar mass of the polymer. The

reason for an anomalous molecular weight dependence of the second osmotic virial

coefficient lies in the sign of z, which is positive in most cases, but may also become

negative under special conditions. For theta systems, A2 ¼ 0, irrespective ofM, and

z becomes zero. One consequence of the present experimentally verified consider-

ation concerns the way that A2(M) should be evaluated. Equation (31) requires plots

of A2 as a function of M�(1�a), instead of the usual double logarithmic plots, and

does not – in contrast to the traditional evaluation – automatically yield zero second

osmotic virial coefficient in the limit of infinitely long chains.

Another helpful consequence of (30) lies in the fact that its second term is almost

always negligible (with respect to 1/2) for polymers of sufficient molar mass. This

feature allows the merging of the parameters z and l into their product zl, and the
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replacement of the isolated l by 1/2, as formulated below for the differential

interaction parameter w:

w � a

1� n’ð Þ2 � zl 1þ 2’ð Þ (32)

The analogous relation for the integral interaction parameter reads:

g � a
1� nð Þ 1� n’ð Þ � zl 2þ ’ð Þ (33)

By this means, the number of adjustable parameter reduces to three. As will be

shown in the section dealing with experimental data (Sect. 4), further simplifica-

tions are possible, for instance because of a theoretically expected interrelation

between the parameters a (first step of mixing) and zl (second step of mixing) for a

given class of polymer solutions. In its general form this equation reads:

zl ¼ E 2 a� 1ð Þ (34)

where E is a constant, typically assuming values between 0.6 and 0.95. Equation

(34) is in accord with the typical case of theta conditions where z! 0 and a! 0.5.

As long as such an interrelation exists, the number of parameters required for the

quantitative description of the isothermal behavior of polymer solutions reduces to

two. Like with the expression for wo (high dilution), the contributions of chain

connectivity and conformational relaxation are in (32) (arbitrary polymer concen-

tration) exclusively contained in the second term. Another aspect also deserves

mentioning, namely the fact that (32) is not confined to the modeling of polymer-

containing systems but can also be successfully applied to mixtures of low molecu-

lar weight liquids, as will be shown in Sect. 4.

According to expectation, and in agreement with measurements, all system-

specific parameters p (namely a, n, z, and l) vary more or less with temperature

(and pressure). The following relation is very versatile to model p(T):

p ¼ po þ p1
T

þ p2T (35)

where either p1 or p2 can be set to zero in most cases.

Up to now, it was the chemical potential of the solvent that constituted the object

of prime interest. The last part of this section is dedicated to the modeling of liquid/

liquid phase separation by means of the integral Gibbs energy of mixing in the case

of polymer solutions. The equations presented in this context can, however, be

easily generalized to polymer blends and to multinary systems. Such calculations

are made possible by using the minimum Gibbs energy a system can achieve via

phase separation as the criterion for equilibria, instead of equality of the chemical

potentials of the components in the coexisting phases. The method of a direct
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minimization of the Gibbs energy [19] works in the following way: The segment

molar Gibbs energy of mixing for the (possibly unstable) homogeneous system is

calculated by means of (1), where the integral interaction parameter g is in the

present case taken from (26). For different overall compositions, it is then checked

on a computer by means of test tie lines (connecting arbitrarily chosen data points

of the function DGÞ which values lead to the maximum lowering of the Gibbs

energy. In this manner, it is possible to model the binodal curves if g(T) is known.
Spinodal curves are also easily accessible by means of these test tie lines, if they

are chosen to be very short. In this manner, it is possible to monitor at which

concentration the test tie lines change their location with respect to the function

DG=RTð’Þ: Within the unstable range they lie below that function, and within the

metastable and stable ranges they are located above it, indicating that homogeniza-

tion would lead to a further reduction inG. The criterion that (sufficiently short) test
tie lines must become parallel to the spinodal line at the critical point gives access to

critical data.

Under special conditions, it possible to calculate system-specific parameters

from experimentally determined critical concentrations ’c. The condition for the

degeneration of the tie lines to the critical point is that the second and the third

derivative of the Gibbs energy with respect to composition must become zero. The

application of this requirement to (1) in combination with (26) yields:

1

1� ’c

þ 1

N’c

þ 2a

ðn’c � 1Þ3 þ 2z l� 3’cðl� 1Þ½ � ¼ 0 (36)

and:

1

ð’c � 1Þ2 �
1

N’2
c

� 6an

ðn’c � 1Þ4 þ 6zð1� lÞ ¼ 0 (37)

For the sake of completeness, the coexistence of a pure crystalline polymer with

its saturated solution is also considered. Taking the change in the chemical potential

of the polymer upon mixing from (10), the equilibrium condition (T � Tm) reads:

DHm � T
DHm

Tm
þ RT ln ’s þ ð1� NÞ’s þ NPx 1� ’sð Þ2

� �
¼ 0 (38)

where the entropy term of the segment molar Gibbs energy of melting [the second

term of (38)] is approximated by DHm, the segment molar heat of melting, and the

melting temperature Tm of the pure crystal; ’s denotes the saturation volume

fraction of the polymer in the solution.

So far, we have not dealt with the question of how the Flory–Huggins interaction

parameters are made up of enthalpy and entropy contributions for different systems.

This information is accessible by means of (39) and (40) (which neglect the
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temperature influences on the volume fraction of the polymer, caused by different

thermal expansivities of the components). The enthalpy part reads:

wH ¼ �T
@w
@T

� �
p

(39)

and the corresponding entropy part is given by:

wS ¼ wþ T
@w
@T

� �
p

(40)

In the above equations, w can be substituted by any parameter of the present

approach to determine its enthalpy and entropy parts, except for the parameter n,
which is not a Gibbs energy by its nature.

Organic Solvents/Branched Homopolymers

The different molecular architectures of branched polymers do not require mod-

ifications of (32); the particularities of branched polymers only change the values of

the system-specific parameters as compared with those for linear analogs in the

same solvent [24], as intuitively expected.

Organic Solvents/Linear Random Copolymers

Despite the fact that these solutions represent binary systems, at least three Flory–

Huggins interaction parameters are involved in their modeling, like with ternary

mixtures. Because of the necessity to account for the interaction of the solvent with

monomer A and with monomer B, plus the interaction between the polymers A and

B, one should expect the need for a minimum of two additional parameters.

Experimental data obtained for solutions of a given copolymer of the type

A-ran-B with a constant fraction f of B monomers can be modeled [25] by

means of (32), with one set of a, n, and zl parameters. For predictive purposes,

it would of course be interesting to find out how these parameters for the copoly-

mer solution (subscripts AB) relate to the parameters for the solutions of the

corresponding homopolymers in the same solvent (subscripts A and B, respec-

tively) at the same temperature.

Measured composition-dependent interaction parameters [25] for solutions of

the homopolymers poly(methyl methacrylate) (PMMA) and polystyrene (PS)

in four solvents on one hand, and for the corresponding solutions of random
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copolymers with different weight fractions f of styrene units on the other hand, are

well modeled by the following relation:

pAB ¼ pA 1� fð Þ þ pB f þ pE f 1� fð Þ (41)

in which p stands for the different system-specific parameters a, n, and zl. Experi-
mental data indicate [25] that the contribution of the excess term pE might become

negligible for one of the three parameters a, n, or zl, but not for the other two.

Polymer Solutions: Special Interactions

The common feature of one group of systems that deviate from normal behavior lies

in the solvent, water. The present examples refer to mixtures of polysaccharides and

water, which cannot be modeled in the usual manner. Aqueous solutions of poly

(vinyl methyl ether) (PVME), exhibiting a second critical concentration, fall into

the same category. Solutions of block copolymers in a nonselective solvent repre-

sent another instance of the need to extend the approach beyond the state formu-

lated in (32).

Water/Polysaccharides

For the systems characterized by strong interactions between two monomeric

units via hydrogen bonds, it is necessary to account for the energy of these very

favorable contacts when inserting a solvent molecule between them in the first

step of mixing (the parameter a is too unspecific to account for that particularity).
This idea has lead to the following extension [26] of (26) for the integral interac-

tion parameter:

g ¼ a
1� nð Þ 1� n’ð Þ � z 1þ 1� lð Þ’ð Þ þ o’2 (42)

where the quadratic term in ’ is due to the fact that only two macromolecules are

involved in the formation of such energetically preferred intersegmental contacts;

o quantifies the strength of these interactions.

The corresponding expression for w [obtained according to (9)] reads:

w ¼ a

1� n’ð Þ2 � z lþ 2 1� lð Þ’ð Þ þ o’ 3’� 2ð Þ (43)

Comparison of this relation with experimental data demonstrates that the para-

meters z and l can again be merged without loss of accuracy, as shown in (32).
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Organic Solvents/Block Copolymers

This is a further kind of system that cannot be modeled by means of the simple (32),

referring to typical homopolymer solutions. Like with aqueous solutions of poly-

saccharides, the reason lies in special interactions between the segments of the

different polymer chains. With block copolymers, the interactions are due to the

high preference of contacts between like monomeric units over disparate contacts in

cases where the homopolymers are incompatible. There is, however, a fundamental

difference, namely in the number of segments that are involved in the formation of

the energetically preferred structures. Two units are required for the polysacchar-

ides (two segments are involved in the formation of a hydrogen bond), but with

block copolymers of this type the interaction of at least three like monomeric units is

on the average indispensable to form a microphase. This is another consequence of

chain connectivity. For low molecular weight compounds, the number of nearest

neighbor molecules is approximately six in the condensed state. The corresponding

number of contacting polymer segments on the other hand is only about half

this value, because of the chemical bonds connecting these segments to a chain

molecule.

Based on these considerations, postulating the simultaneous interaction of three

like segments for the establishment of a microphase, we can formulate the follow-

ing relation for the integral interaction parameter g, by analogy to (42), increasing

the power of the composition dependence of the third term from two to three:

g ¼ a
1� nð Þ 1� n’ð Þ � z 1þ 1� lð Þ’ð Þ þ t’3 (44)

The system-specific parameter t accounts for the degree of incompatibility of

homopolymer A and homopolymer B.

Equation (44) yields, by means of (9), the following expression for the experi-

mentally accessible Flory–Huggins interaction parameter w:

w ¼ a

1� n’ð Þ2 � z lþ 2 1� lð Þ’ð Þ þ t’2 4’� 3ð Þ (45)

Like with normal polymer solutions, it is also possible to merge z and l for

solutions of block copolymers, i.e., to eliminate one adjustable parameter.

2.1.2 Polymer Blends

For mixtures of two types of linear chain molecules, A and B, the segment molar

Gibbs energy of mixing is usually formulated as:

DGAB

RT
¼ 1� ’Bð Þ

NA

ln 1� ’Bð Þ þ ’B

NB

ln’B þ gAB’B 1� ’Bð Þ (46)
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where NA is the number of segments of component A and NB is the number of

segments of component B. The above equation shows the indices of the variables

and parameters to indicate that it refers to a polymer blend. For such systems, the

definition of a segment is not as evident as for polymer solutions, where the solvent

usually fixes its volume. Sometimes the monomeric unit of one of the components

is chosen to specify a segment, but in most cases it is arbitrarily defined as 100 mL

per mole of segments, a choice that eases the comparison of the degrees of

incompatibility for different polymer pairs.

In the case of polymer solutions, only one component of the binary mixtures

suffers from the restrictions of chain connectivity, namely the macromolecules,

whereas the solvent can spread out over the entire volume of the system. With

polymer blends this limitations of chain connectivity applies to both components. In

other words: Polymer A can form isolated coils consisting of one macromolecule A

and containing segments of many macromolecules B and vice versa. This means

that we need to apply the concept of microphase equilibria twice [27] and require

two intramolecular interaction parameters to characterize polymer blends, instead

of the one l in case of polymer solutions.

The conditions for the establishment of microphase equilibria in the case of

polymer blends [27], analogous to (17) for polymer solutions, yields two para-

meters. One, called a, quantifies the restrictions of the segments of a given polymer

B to mix with the infinite surplus of A segments surrounding its isolated coil

(microphase equilibrium for component A) and an analogous parameter b, referring
to the restrictions of the segments of a given polymer A to mix with the infinite

surplus of B segments. The following relations hold true for a and b:

a ¼ 1

2NA

þ 1

NBFo;B
(47)

and:

b ¼ 1

2NB

þ 1

NAFo;A
(48)

where theF values are volume fractions of segments in isolated coils, by analogy to

those introduced in (17).

For the calculation of phase diagrams by means of the minimization of the Gibbs

energy of the systems [19], we need to translate the information of (47) and (48),

based on the chemical potentials of the components, into the effects of chain

connectivity as manifested in the integral interaction parameter g. This expression
reads [27]:

gAB ¼ aAB
1� nABð Þ 1� nAB’Bð Þ � zAB

2aþ b

3
þ b� a

3
’B

� �
(49)
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For the partial Gibbs energies [cf. (4)] of the component i one obtains:

DGi

RT Ni
¼ 1

Ni
ln’i þ

1

Ni
� 1

Nk

� �
’k þ wi’

2
k (50)

where i and k are the components A and B. The composition dependencies of the

differential interaction parameters, wi, can again be calculated from g (49) by

analogy to (9) and (11).

Equation (49) formulated for blends of linear macromolecules also provides the

facility to model blends of linear polymers (index L) and branched polymers (index

B) synthesized from the same monomer [28]. If the end-group effects and dissim-

ilarities of the bi- and trifunctional monomers can be neglected, the parameter a
becomes zero. This means that the integral interaction parameter is determined by

the parameter zLB, i.e., the conformational relaxation, in combination with the

intramolecular interaction parameters of the blend components. Because of the

low values of FA and FB, the first terms in (47) and (48) can be neglected with

respect to the second terms (for molar masses of the polymers that are not too low)

so that one obtains the following expression:

gLB ¼ � zLB
3

2

NBFB

þ 1

NLFL

þ 1

NLFL

� 1

NBFB

� �
’B

� �
(51)

It is obvious that the conformational relaxation must be proportional to the degree

of branching and approach zero upon the transition of the branched polymer to a

linear polymer. For the sake of consistency and simplicity, we define the degree of

branching, b, again in terms of intrinsic viscosities (cf. (27)) as:

b ¼ 1� F�
L

FB

(52)

where F�
L is the volume fraction of segments in an isolated linear coil consisting of

the same number of segments as the branched polymer under consideration. We can

then write, expanding zLB in a series with respect to b and maintaining only the first

term for the following calculations, referring to moderately branched polymers:

zLB ¼ Zb þHb2 þ � � �� �
(53)

Under the premises formulated above and eliminating the different F values by

means of (27) and (29) as before, the expression for g becomes:

gLB ¼ �kZ b
1þ ’Bffiffiffiffiffiffi

NL

p þ 2� ’Bffiffiffiffiffiffi
NB

p � b 2� ’Bð Þffiffiffiffiffiffi
NB

p
� �

(54)

where k is a constant, which can be calculated from the parameter KL,Y of the

Kuhn–Mark–Houwink relation (29) of the linear polymer for theta conditions and

the density of this polymer as:
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k ¼ KL;Y rL
3

(55)

The only information required for model calculations concerning the incompatibil-

ity of linear and branched polymers on the basis of (54) concerns b, the degree

of branching of the nonlinear component, k (i.e., the viscosity–molecular weight

relationship for the linear polymer under theta conditions) and the polymer density,

plus Z ¼ zAB/b, the conformational response of the system normalized to b
[cf. (53)].

2.1.3 Mixed Solvents

For the modeling of ternary systems(the topic of the next section), the applicabil-

ity of (26) to mixtures of low molecular weight liquids would be very helpful,

because of the possibility to describe all subsystems by means of the same

relation. First experiments [29], presented in Sect. 4, show that this is indeed

possible. This means that (26) remains physically meaningful upon the reduction

of the number of segments down to values that are typical for low molecular

weight compounds. With respect to l one must, however, keep in mind that this

parameter loses its original molecular meaning.

2.2 Ternary Systems

The segment molar Gibbs energy of mixing for three component (indices i, j, and k)
with Ni, Nj, and Nk segments, respectively, as formulated on the basis of the Flory–

Huggins theory reads in its general form:

DG
RT

¼ ’i

Ni
ln’i þ

’j

Nj
ln’j þ

’k

Nk
ln’k þ gij’i’j þ gik’i’k þ gjk’j’k

þ tijk ’i ’j ’k (56)

The first three terms stand for the combinatorial part of the Gibbs energy, the next

three terms represent the residual contributions stemming from binary interactions,

and the last term accounts for ternary contacts.

The double-indexed g parameters are for binary interaction parameters. The first

line of the above relation represents the combinatorial part, and the second line the

residual part of the reduced segment molar Gibbs energy of mixing. This relation

also contains a ternary interaction parameter tijk that accounts for the expectation

that the interaction between two components of the ternary mixture may change in

the presence of a third component.
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Because of the well-documented composition dependencies of the individual

binary interaction parameters, an unmindful use of (56) would lead to totally

unrealistic results. This feature requires twofold adaption.

First of all, it is necessary to account for the fact that the contribution of a certain

binary contact to the total Gibbs energy of mixing depends on its particular

molecular environment, which in the general case also contains the third compo-

nent. We can allow for that circumstance by multiplying gijwith the factor (’jþ ’i)

¼ (1 � ’k) � 1.

Secondly, we need to specify whether the composition dependencies of the gij
parameters are formulated in terms of ’i or of ’j, because the resulting mathemati-

cal expressions are not identical.

In order to enable a straightforward application of the new approach to the most

interesting ternary systems (polymer solutions in mixed solvents and solutions of a

polymer blend in a common solvent), it is expedient to express the binary interac-

tion parameters for polymer solvent systems (26) and that for polymer blends (49)

in the same form. This requirement is met by the relation:

gij ¼ aij

1� nij
� �

1� nij’j

� �� zij dij þ eij ’j

� �
(57)

For polymer solutions:

d ¼ 1 and e ¼ 1� lð Þ (58)

whereas the corresponding equation for a polymer blend (the composition depen-

dence being expressed in terms of ’B) reads:

d ¼ 2aþ b

3
and e ¼ b� a

3
(59)

By means of (57) and the required modification formulated at the beginning of this

section, one obtains the following expression for the reduced residual segment

molar Gibbs energy of mixing of ternary systems, if one neglects ternary interac-

tions (tijk ¼ 0) for the time being:

DG
res

RT
¼ a12

1� n12ð Þ 1� n12’2 1� ’3ð Þð Þ � z12 d12 þ e12 ’2 1� ’3ð Þð Þ
	 


’1’2

þ a23
1� n23ð Þ 1� n23’3 1� ’1ð Þð Þ � z23 d23 þ e23 ’3 1� ’1ð Þð Þ

	 

’2’3

þ a31
1� n31ð Þ 1� n31’1 1� ’2ð Þð Þ � z31 d31 þ e31 ’1 1� ’2ð Þð Þ

	 

’3’1

(60)
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As one of the three composition variables becomes zero, this relation simplifies

to the expression for binary mixtures (57). The extension of (60) to multicomponent

systems is unproblematic and enables the calculation of phase diagrams for such

mixtures of great practical importance if one calculates the composition of the

coexisting phases by a direct minimization of the Gibbs energy [19]. In this manner,

it is possible to evade the laborious and sometimes even impossible calculation of

the chemical potential for each component.

The implementation of ternary interactions by simply adding the last term of

(56) to (60) does not suffice. The reason lies in the fact that the three options to form

a contact between all three components out of binary contacts (1/2þ 3, 1/3þ 2, and

2/3 þ 1) might differ in their contribution to the Gibbs energy of the mixture. This

supposition results in the necessity to introduce three different ternary interaction

parameters. Furthermore, it requires a weighting of these contribution to account

for the fact that they must be largest in the limit of the first addition of the third

component 3 (highest fraction of 1/2 contacts) and die out as component 3 becomes

dominant (vanishing fraction of 1/2 contacts). The simplest possibility to account

for DG
res

t , the extra contributions of ternary contacts to the residual Gibbs energy, is

formulated in (61), where the negative sign was chosen by analogy to the second

term of (57):

DG
res

t

RT
¼ � t1 1� ’1ð Þ þ t2 1� ’2ð Þ þ t3 1� ’3ð Þ½ �’1 ’2 ’3 (61)

t1 quantifies the changes associated with the formation of a ternary contact 1/2/3 out

of a binary contact 2/3 by adding a segment of component 1. The meaning of t2 and
t3 is analogous.

Equation (61) makes allowance for differences in the genesis of ternary contacts

but it does not yet consider that the number of segments of the third component in

the coordination sphere of a certain binary contact might deviate from that expected

from the average composition due to very favorable or unfavorable interactions

(quasi chemical equilibria). One way to model such effects consists of the intro-

duction of composition-dependent ternary interaction parameters, as formulated in

the following equation:

DG
res

t ’ð Þ
RT

¼� t1 þ t11’1ð Þ 1� ’1ð Þ½ þ t2 þ t22’2ð Þ 1� ’2ð Þ
þ ðt3 þ t33 ’3Þð1� ’3Þ�’1’2’3

(62)

The relations presented for ternary mixtures open the possibility for investigation of

the extent to which their thermodynamic behavior can be forecast (neglecting

possible contributions of ternary interaction parameters) if the binary interaction

parameters of the three subsystems are known as a function of composition from

independent experiments. For such calculations, it is important to make sure that

the size of a segment is identical for all subsystems. The fact that most of the
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experimental information available for polymer solutions uses the molar volume of

the particular solvent to fix the size of a segment, requires a conversion in the case of

polymer solutions in mixed solvents. If one chooses the molar volume of solvent 1 to

define the common segment, this means that the binary interaction parameter for the

solvent 2 must be divided by the ratio of the molar volumes V1=V2.

3 Measuring Methods

Experimental information concerning the thermodynamic properties of mixtures is

primarily accessible via phase equilibria [30]. In the case of polymer solutions,

vapor pressure measurements (liquid/gas equilibria) constitute the most important

source of data because of the nonvolatility of the solutes and because of the

comparatively large composition interval (typically ranging from some 25% to

almost pure polymer) over which this method yields reliable data. In order to obtain

a complete picture from infinitely dilute solutions up to almost pure polymer melt,

these data need to be complemented by further methods. Osmometry (liquid/liquid

equilibria) provides wo, the Flory–Huggins interaction parameter in the limit of pair

interaction between the polymer molecules; this information is also accessible via

scattering methods (light or neutrons), which monitor the composition dependences

of the chemical potentials. Most published data refer to dilute and moderately

concentrated solutions. It is difficult to study the range of vanishing solvent

concentration because of the high viscosity of such mixtures. Inverse gas chroma-

tography (IGC) is one of the few sources of information. Thermodynamic informa-

tion for polymer blends is usually based on small angle neutron scattering. The

following sections (Sects. 3.1–3.3) outline how the different methods work and cite

some recent relevant publications in this area.

3.1 Vapor Pressure Measurements

The classical method consists of the quantitative removal of air from polymer

solutions coexisting with a gas phase and measurement of the equilibrium pressures

of the solvent above the solution by means of different devices. Such experiments

are very time consuming because the liquid mixtures must be frozen-in and the air

that accumulates in the gas phase must be pumped off. In order to obtain reliable

data this procedure must be repeated several times to get rid of all gases. By means

of this approach it is practically impossible to accumulate comprehensive informa-

tion for a large number of systems.

For the reasons outlined above, alternative methods were developed that avoid

the measurement of absolute vapor pressures. One procedure combines head space

sampling with conventional gas chromatography (HS–GC) [31] and yields relative

vapor pressures, normalized to the vapor pressure of the pure solvent. A well-

defined volume of the equilibrium gas phase is taken out from a thermostated vial

24 B.A. Wolf



sealed with a septum by means of a syringe and transferred to a gas chromatograph.

The amount of the solvent is registered either in a flame ionization detector (FID) or

by means of a cell measuring the thermal conductivity of the gas stream. Such

measurements yield the ratio p/po, which in many cases can be taken as the activity

of the solvent. Whether corrections for the nonideality of the gas are required or not

must be checked in each case. The main work required with this method consists of

the optimization of the HS–GC, i.e., determination of the best operation procedures

for gas sampling, gas chromatography, and data evaluation. However, once these

parameters have been determined, HS–GC offers quick access to thermodynamic

data because the method is automated.

Another possibility for avoiding the measurement of absolute vapor pressures is

provided by sorption methods. In most cases, the polymer is positioned on a quartz

balance and the amount of solvent it takes up via the vapor phase is weighted. The

so-called “flow-through” variant [32] works with an open system in contrast to the

previous method.

Isopiestic [33] experiments also offer access to chemical potentials. This method

monitors the conditions under which the vapor pressures above different solutions

of nonvolatile solutes (like polymers or salts) in the same solvent become identical,

where one of these solutions is a standard for which the thermodynamic data are

known. These experiments can be considered to be a special form of differential

osmometry (cf. Sect. 3.2) where the semi-permeable membrane, separating two

solutions of different composition, consists of the gas phase.

3.2 Osmometry and Scattering Methods

Measurements performed to determine the molar masses of polymers yield – as a

valuable byproduct – information on the pair interaction between the macromole-

cules [30]. The composition dependence of the osmotic pressure posm observed

via membrane osmometry is directly related to the chemical potential of the solvent

[cf. (14) of Sect. 2] and provides the second osmotic virial coefficient A2, from

which wo, the Flory–Huggins interaction parameter in the limit of high dilution

becomes accessible [cf. (15)]. Such data are particularly valuable because they can

be measured with higher accuracy than the w values for concentrated polymer

solutions and because they represent a solid starting point for the sometimes very

complex function w(’). In principle, membrane osmometry can also be operated

with polymer solutions of different composition in the two chambers (differential

osmometry) to gain data for higher polymer concentrations; however, little use is

made of this option.

Scattering methods represent another route to A2 and wo; these experiments do not

monitor the chemical potential itself but its composition dependence. Light scattering

– like osmosis – can in principle also yield information for polymer solutions beyond

the range of pair interaction, but corresponding reports are seldom. In contrast, small
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angle neutron scattering is an important source of thermodynamic information for

polymer blends over the entire composition range.

3.3 Other Methods

In addition to the experiments briefly discussed above, two further equilibrium

methods and two nonequilibrium procedures are sometimes employed to obtain

thermodynamic information.

The most frequently used additional method is the evaluation of data for liquid/

liquid phase separation, i.e., of critical points and of binodal curves [21]. This

information is normally obtained by means of cloud point measurements (either

visually or turbidimetrically) and the analysis of the composition of coexisting

phases. Critical data give access to the system-specific parameters via the critical

conditions, as formulated in (36) and (37) for the present approach or by means of

equivalent expressions of other theories. If the critical data (temperature, pressure,

and composition) are known for a sufficiently large number of polymer samples

with different molar mass, and the number of parameters required for a quantitative

description of g(’) is not too high, this method yields reliable information. Similar

consideration also hold true for the evaluation of binodal curves. In both cases it is

very helpful to formulate a theoretically justified temperature dependence of the

system-specific parameters.

Liquid/solid equilibria also offer access to thermodynamic information. In this

case, it is the differential interaction parameter x of the polymer that is obtained
according to (38) from the known molar mass of the polymer, its melting tempera-

ture in the pure state, and the corresponding heat of melting plus the polymer

concentration in the solution that is in equilibrium with the pure polymer crystals.

Because of the well-known problems in obtaining perfect crystals in the case of

macromolecules, special care must be taken with the evaluation of such data.

Vapor pressure osmometry [34–36] constitutes a very helpful nonequilibrium

method for obtaining thermodynamic information for solutions of oligomers and

polymers of low molar mass, for which osmometry and light scattering experiments

do no longer yield reliable data. Such experiments are based on the establishment of

stationary states for the transport of solvent via the gas phase from a drop of pure

solvent fixed on one thermistor to the drop of oligomer solution positioned on

another thermistor. Because of the heats of vaporization and of condensation,

respectively, this transport process causes a time-independent temperature differ-

ence from which the required information is available after calibrating the

equipment.

Inverse gas chromatography (IGC) represents another nonequilibrium method; it

yields valuable information on polymer–solvent interactions in the limit of vanish-

ing solvent content [37, 38]. In experiments of this type, a plug of solvent vapor is

transported in a column over a stationary phase consisting of the pure polymer melt.

The more favorable the solvent interaction with the polymer, the longer it takes
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until the plug leaves the column. An adequate evaluation of the observed retention

times yields access to the chemical potentials of the solvent, i.e., to Flory–Huggins

interaction parameters in the limit of ’ ! 1.

4 Experimental Results and Modeling

4.1 Binary Systems

4.1.1 Polymer Solutions

Organic Solvents/Linear Homopolymers

This section gives examples for the typical thermodynamic behavior of polymer

solutions. The first part deals with homogeneous mixtures and discusses the molec-

ular weight dependence of second osmotic virial coefficients, the role of glass

transition for the determination of interaction parameters, and the reasons for

changes in the sign of the heat of dilution with polymer concentration. The second

part of this section is dedicated to liquid/liquid phase separation and – among other

things – explains in terms of the present approach, why 1,2-polybutadiene is

completely miscible with n-butane but 1,4-polybutadiene is not.
One of the major consequences of the thermodynamic approach used here is the

postulate that the second osmotic virial coefficients may increase with rising molar

mass of the polymer, even for good solvents (better than theta conditions), in

contrast to the statements of current theories. Figure 2 shows an example of this

behavior, which was already observed by Flory and coworkers [22] in the 1950s and

confirmed by independent measurements [39].
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As postulated by (31), the molecular weight dependence of A2 should not be

represented in double logarithmic plots, but as a function ofM�(1�a), where a is the
exponent of the Kuhn–Mark–Houwink relation. In contrast to the customary evalu-

ation (in double logarithmic plots), this procedure does not in the general case lead

to zero A1
2 values; in most cases they are very small but, outside experimental

errors, different from zero.

The following example of the composition dependence of the Flory–Huggins

interaction parameter pertains to the system cyclohexane/poly(vinyl methyl ether)

(CH/PVME) [23]. Except for wo, obtained via osmometry, all data stem from vapor

pressure measurements [40]. This system does not fit into the normal scheme

because CH is a good solvent for PVME, despite uncommonly large wo values of
the order of 0.5. For good solvents, wo is usually considerable less than 0.5; for theta
solvents, wo is typically equal to 0.5 and it increases upon the approach of phase

separation. The curves combining the data points in Fig. 3 were calculated by

adjusting the parameters of (32). Within the scope of the present approach, the high

solvent quality results from fact that the w values decrease considerably as ’
increases so that they are favorable within the range of moderate polymer concen-

trations, where the system becomes very susceptible to phase separation.

The minima of w(’) shown in Fig. 3 represent a consequence of the dissimilar

contributions of the dilution in two steps, as demonstrated in Fig. 4. The first term,

quantifying the effects of contact formation, is Gibbs energetically very unfavor-

able and increases with rising polymer concentration because of the parameter n.
By contrast, the second term, standing for the contributions of the conformational

relaxation, is highly favorable and the more so, the larger ’ becomes. The observed

minimum in w(’) is caused by the fact that the first summand increases more than

linearly, whereas the second decreases linearly.

Figure 4 also documents the general observation that the contributions of the two

terms of (32) to the measured functions w(’) are markedly larger than w itself; this

situation is very similar to the build up of the Gibbs energy from enthalpy and

entropy contributions. However, it is not permissible to interpret these terms in this
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manner: Both terms can be split into their enthalpy and entropy parts, as will be

shown later.

Another point of view on the contributions of the two terms of (32) deserves

special attention. Namely, the expectation according to the present approach that

their leading parameters, a and z, should not be independent of each other.

The reason for this surmise lies in the fact that contact formation and conforma-

tional relaxation share the same thermodynamic background, i.e., the effects of the

conformational relaxation of the components should strongly correlate with the

effects of contact formation, as discussed in Sect. 2.

The results shown in Fig. 5 demonstrate that there indeed exists such a general

interrelation, where each data point represents a certain system and temperature.

The results of this graph demonstrate the consistency of the approach because the

data [39] obtained from the evaluation of the molecular weight dependence of A2

(cf. Fig. 2) and from the composition dependence of w(’) (an example [40] is shown

in Fig. 3) lie on the same line [here zl = (0.957	 0.00027)
 (a� 0.5)], despite the

fundamentally different experimental methods used for their determination. For the

common representation of the data, the z values reported in table 2 of [39] were

multiplied by�0.5 (i.e., l was set at 0.5), which is permissible for sufficiently large
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molar masses of the polymer. The negative sign of this factor results from the fact

that z of [39], used for the evaluation of A2(M), was defined with the opposite sign

of z as compared with the modeling of w(’). The reason lies in the interrelation

between wo and A2 formulated in (15).

It appears interesting that the interrelation between the leading parameters of the

present approach shown in Fig. 5 for simple systems, i.e., for absence of special

interactions between the components, is generally valid and holds true for all

hitherto studied polymer solutions.

The modeling of homogeneous systems has so far been exemplified by means of

solutions of polymers that are liquid at the temperatures of interest. Such systems

are, however, the exception rather than the rule, because of the comparatively high

glass transition temperatures of most polymers. Typical polymer solutions solidify

upon a sufficient augmentation of polymer concentration and the question arises of

how this feature is reflected in the thermodynamic data. To study the importance

of this loss in the mobility of the polymer chains for the determination of Flory–

Huggins interaction parameters, we have studied solutions of PS in different

solvents [41] within the temperature range of 10–70�C. These experiments demon-

strate that the consequences of the freezing-in of the polymer motion at high

polymer concentrations for the measured vapor pressures depend on the thermo-

dynamic quality of the solvent and on the experimental method employed for the

measurement.

Figure 6 shows the reduction of the vapor pressures of toluene (TL, a good

solvent) and of CH (a marginal solvent) as the concentration of PS rises. As

long as the mixtures are liquid these curves display the interaction in the usual

manner, i.e., the reduced vapor pressure of TL is considerable lower than that of CH

because of the more favorable interaction with the polymer. In the case of CH, this

dependence continues smoothly into the glassy range, whereas a discontinuity is

observed for TL.

Based on the results shown in Fig. 6, one is tempted to postulate that the solvent

quality loses its importance once the solutions become glassy. However, the situa-

tion is more complicated under nonequilibrium conditions, as discussed by means

of Fig. 7. This graph contains two types of experimental data, one set obtained via
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HS–GC as usual and another set [32] obtained by means of the so-called “flow

through” method, which differs fundamentally.

The vapor pressure data obtained by means of HS–GC measurements for the

solutions of PS (below the glass transition temperature of the polymer) in the

favorable solvent TL resemble closely the results for the solutions of polyethylene

oxide (PEO) in chloroform (below the melting temperature of the polymer), as

shown later. The common denominator of these processes lies in the loss of

mobility of the macromolecules. The results presented in Fig. 7 can be interpreted

in the following manner: The composition range of constant vapor pressure (’´� ’
� ’00) observed with HS–GC measurements reflects the coexistence of two kinds of

microphases, one in which the polymer mobility is identical with that in the liquid

state at the composition ’ 0, and a glassy microphase of composition ’00, where the
segmental mobility is fully frozen-in. The reason why this sort of “tie line” can be

observed with HS–GC but not with flow-through experiments lies in the fact that

the former method uses a closed system, in contrast to the latter in which additional

vapor is always available. Because it is the vapor pressure that is constant in flow-

through experiments and not the composition of the mixture, the amount of solvent

taken up by the polymer can be constantly replaced. This process comes to an end

either as the equilibrium vapor pressure of the liquid mixture is reached at the

composition ’0 or as kinetic impediments become too large. The two methods

under consideration complement each other: HS–GC monitors the upper limit ’00 of
the solidification interval, whereas the flow-through method displays its lower limit

’0. Concerning the evaluation of vapor pressures measured via HS–GC above

solidified polymer solutions, it is obvious from the present results that such infor-

mation must not be used to establish w(’) dependencies, particularly in the case of

thermodynamically favorable solvents.

To conclude the treatment of homogenous solutions of polymers in organic

solvents, we deal with the temperature dependencies of the parameters of (32).

The knowledge of these changes enables their separation in enthalpy and entropy
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contributions as formulated in (39) and (40) for w. In this context, it is of particular

interest to check whether the approach helps the rationalization of observed

changes in the sign of the heat of dilution upon a variation of the polymer

concentration. Solutions of PS in tert-butyl acetate (TBA) were chosen for this

purpose because of the large temperature interval that was studied for this system.

The combination of three different methods was used to obtain interaction para-

meters in all composition regions of interest: (1) light scattering measurements for

dilute solutions in closed cells [42], (2) the determination of absolute vapor

pressures (not HS–GC, quantitative removal of air) up to temperatures well above

the boiling point of the pure solvent [43], and (3) IGC [37] close to the polymer

melt.

The analysis [44] of the thus-obtained temperature dependencies of the system-

specific parameters of (32) with respect to the individual enthalpy contributions of

the two steps of dilution (cf. Fig. 1), yields wH,fc and wH,cr. How these heat effects

depend on polymer concentration is shown for the system TBA/PS at 110�C in

Fig. 8.

This graph makes it immediately obvious that the insertion of a solvent molecule

between contacting segments at constant conformation of the components consti-

tutes an exothermal process (wH,fc < 0) at high dilution, whereas the conformational

relaxation is endothermal (wH,cr > 0). In both cases, the absolute values of the heat

effects increase with rising polymer concentration. However, the slopes of these

two dependencies differ in such a manner that the total heat of dilution is exother-

mal for low ’ values, but endothermal for high polymer concentrations. With the

present example, this finding can be rationalized qualitatively in terms of the

composition dependence of free volumes and excess volumes. The pure solvent is

already highly expanded and the polymer molecules may fill some of the existing

voids (this should lead to negative excess volumes and to the evolution of heat, due

to the formation of new molecular interfaces). The pure melt, on the other hand, is

still densely packed at the same temperature and the addition of a solvent molecule

might cause an expansion in volume (resulting in positive excess volumes and in

the consumption of heat).
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There exist other examples for inversions in the heats of dilution; in these cases

an analogous straightforward molecular interpretation appears difficult. For

instance, the system TL/PS shows an inversion [44] from endothermal in the

range of moderate polymer concentrations to exothermal at high ’ values at

37�C. In this case, the sign of the heat contributions of the two steps of dilution

are the same as in the previous case. However, here it is only wH,cr which increases

(linearly) with rising polymer concentration, whereas wH,fc decreases (more than

linearly). This combination of the two contributions leads to the opposite inversion,

namely from endothermal to exothermal upon an augmentation of ’. Concerning
the molecular reasons for this behavior, one may speculate on the basis of the

present findings that the insertion of a TL molecule between two contacting PS

segments (belonging to different molecules) becomes energetically particularly

favorable in the limit of high polymer concentration.

So far, we have dealt exclusively with homogeneous systems; the following

considerations concern the possibilities of obtaining the parameters of the present

expression for w(’, T) from demixing data. The results will demonstrate that the

present approach is capable of modeling liquid/liquid equilibria and liquid/gas

equilibria with the same set of parameters, in contrast to traditional theories.

The first example refers to solutions of PS in CH. This is probably the system for

which the phase separation phenomena are studied in greatest detail [45], namely in

the temperature range from ca. 10 to 240�C and for molar masses from 37 to 2700

kg/mol. Figure 9 displays the experimental data [45] together with the modeling,

using (32) to describe the Flory–Huggins interaction parameter as a function of

composition.

The system-specific parameters used for the modeling of the phase diagrams

were calculated from the critical data (Tc and ’c) measured [45] for PS samples of

different molar mass. For this purpose, the critical conditions resulting for the

present approach [cf. (36) and (37)] were first simplified: The parameter l was

set at 0.5 (this does not imply a loss of accuracy for the system of interest) and the

interrelation between a and zl [cf. (34)] was used to eliminate the parameter a;
setting E ¼ 0.847 (an average value for solutions of vinyl polymers in organic

solvents). This procedure reduces the number of parameters from four to only two

(z and n) and enables the calculation of their values from the critical temperature by

inserting the known numbers of segments N and the critical composition ’c in the

two critical conditions and solving these equations. Because of the large number of

different molar masses, yielding different critical data, it is possible to model the

temperature dependencies of the parameters z and n. The observedmaximum in z(T)
is expected because of the transition from an upper critical solution temperature

(UCST) behavior at low temperatures to a lower critical solution temperature

(LCST) behavior at high temperatures, in combination with the fact that z = 0 at

the theta temperature, irrespective of the sign of the heat of mixing; n(T) also passes a
maximum but at a much lower temperature (in the vicinity of the endothermal theta

temperature). Within the range of LCSTs, both parameters decrease with rising

temperature. The binodal and spinodal curves shown in Fig. 9 for the different PS

samples were calculated from the thus-obtained system-specific parameters using
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themethod of the direct minimization of the Gibbs energy [19], instead of equality of

the chemical potentials of the components as the equilibrium condition.

The agreement of information concerning the composition dependence of the

Flory–Huggins interaction parameter obtained from different sources is demon-

strated by means of Fig. 10. The data points display the results of vapor pressure

measurements and the dashed line stems from the evaluation of critical demixing

data described above. The interaction parameter is calculated according to (6), (5),

and (32) by reading the z and n values from figure 2 of [46] for 308 K, setting l ¼
0.5 and E ¼ 0.847. To the author’s knowledge, this is the first time that liquid/gas

and liquid/liquid phase equilibria have been modeled accurately by the same set of

parameters, where only two were adjusted to the experimental data in the present

case.

For some technical processes and polymer applications, pressure represents an

important variable. For this reason, the extent to which the present approach is

suited to describe pressure effects was checked. By means of demixing data as a

function of pressure published for the system trans-decalin/PS [49] it was shown

[46] that (32) is also apt for that purpose.

The systems n-butane/1,4-polybutadiene (98% cis) [n-C4/1,4-PB] and n-butane/
1,2-polybutadiene [n-C4/1,2-PB] are the next examples for the modeling of Flory–

Huggins interaction parameters [50]. In this case, it appeared particularly interest-

ing to understand why 1,2-PB is totally miscible with n- C4 but 1,4-PB is not.

In these experiments we measured the absolute vapor pressures (i.e., not using
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HS–GC) because of the high volatility of n- C4, and studied the segregation of a

second liquid phase for the solutions of 1,4-PB under isochoric conditions (instead

of the usual isobaric procedure). Figure 11 shows the thus-obtained phase diagram

together with the miscibility gap calculated from the measured vapor pressures.

Here, it is worth mentioning that the Sanchez–Lacombe theory [4, 51] models the

vapor/liquid equilibria for the present systems very well but fails totally when the

parameters obtained from such measurements are applied for the calculation of

liquid/liquid equilibria.

The good agreement between the prediction of the miscibility gap from liquid/

gas equilibria with the actual behavior is a further example of the utility of

this approach. The extension of the Flory–Huggins theory by incorporating fur-

ther contributions of chain connectivity and accounting for the phenomenon of
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conformational relaxation also enables the rationalization of the fundamentally

different solubilities of 1,4-PB and 1,2-PB. The 1,2-isomer interacts favorably

with n-C4 because the flexibility of the polymer backbone (pending double

bonds) enables the establishment of suitable contacts with the surrounding solvent

molecules. With the 1,4-isomer, on the other hand, such a rearrangement is largely

impeded because the double bonds are now located in the main chain and make the

conformational response much more difficult.

All examples shown so far refer to solutions of noncrystalline polymers. We will

now discuss the solutions of a crystalline polymer, namely PEO in chloroform.

Figure 12 gives an example of the primary data that can be obtained by measuring

the reduced vapor pressure of the solvent by means of HS–GC.

According to the present results, it is possible to distinguish three clearly

separable composition ranges, I–III (see Fig. 12). Only for range III do the data

not depend on the details of film preparation, i.e., yield equilibrium information.

The situation prevailing in the other ranges is discussed in terms of the addition of

CHCl3 to solid PEO. Within range I (1 > w > w00), the vapor pressure increases

steadily up to a characteristic limiting value located well below that of the pure

solvent. Within range II (w00 > w> w0), p1 remains constant, despite the addition of

further solvent. Finally, within range III (w0 > w> 0), the vapor pressure rises again

and approaches the value of the pure solvent. Range I should be absent for fully

crystalline polymers; its existence is due to the amorphous parts of PEO, which can

take up solvent until w0 is reached. Range II results from the coexistence of the

saturated solution with variable amounts of polymer crystals. Finally, no solid

material is available in range III and we are back to the normal situation encoun-

tered with the solutions of amorphous polymers. According to the present results, it

is practically impossible to reach thermodynamic equilibria within range I. Vapor

pressures and degrees of crystallinity depend markedly on the details of sample

preparation. Measurements within range III do not present particular problems with
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the attainment of equilibria. Range II assumes an intermediate position in this

respect.

The observed nonequilibrium behavior at high polymer concentrations can be

interpreted in terms of local and temporal equilibria, which are frozen-in during

film preparation, i.e., in the course of solvent removal or quenching of the polymer

melt. For discussion of these effects it is helpful to compare the fraction of the

polymer that does not participate in the liquid/vapor equilibrium with the degree of

crystallinity as obtained from DSC measurements. The general findings that the

former is always larger than the latter, and that the differences decrease upon

dilution, are tentatively interpreted as a trapping of amorphous PEO inside the

crystalline material during sample preparation and its gradual release by the addi-

tion of solvent. This hypothesis is supported by micrographs showing the existence

of such occlusions.

For systems of the present type it is possible to obtain equilibrium information

from two sources: in the usual manner via the vapor pressures of the solvent above

the solutions within range III (chemical potential of the solvent) and additionally

from the saturation composition w 0 of the polymer (chemical potential of the

polymer). The thermodynamic consistency of these data was documented [52] by

predicting w 0 (liquid/solid equilibrium) from the information of liquid/gas equili-

bria. This match of thermodynamic information from different sources is a further

argument for the suitability to the present approach for the modeling of polymer-

containing mixtures.

Organic Solvents/Nonlinear Homopolymers

This section deals with the extent to which differences in the molecular architecture

of the polymer affects its interaction with a given solvent. In particular, the

comparison of linear and branched macromolecules is of interest. In order to obtain

a clear-cut answer and for a straightforward theoretical discussion it is important to

exclude special end-group effects (i.e., to keep the chemistry of the terminal group

as similar as possible to that of the middle groups) and to apply the same criteria

to the branching sites. The example [24] chosen refers to solutions of linear and

branched polyisoprene (PI) in CH and fulfills the above criteria reasonably well.

The number of branching points per molecule of the nonlinear product lies between

six and seven. Figure 13 shows the composition dependence of the Flory–Huggins

interaction parameter for the two types of systems obtained from HS–GC measure-

ments and from vapor pressure osmometry.

Linear PI interacts with CH considerably more favorably than does the branched

analog in the temperature range from 25 to 65�C according to these results,

irrespective of polymer concentration. This finding agrees well with the expectation

based on the present approach, which states that the first term of (32) (quantifying

the first step of dilution, cf. Fig. 1) should only be affected marginally by a

transition from a linear to a branched architecture of the polymer, in contrast to
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the second term (resulting from the conformational relaxation). This second sum-

mand is determined by the parameters l and z, both of which depend on the

molecular architecture of the polymer: A higher degree of branching leads to a

reduction in the intramolecular interaction parameter l (accumulation of the seg-

ments in a smaller volume) as well as in z (diminished possibilities to readjust to a

changing molecular environment by conformational relaxation). Because of the

negative sign of the second term, these changes lead to larger w values for the

branched polymer. In other words, in the absence of special effects, the thermo-

dynamic quality of a given solvent declines upon an increase in the degree of

branching. Another feature worth mentioning is the observation that the interrela-

tion between the parameters zl and a, established for linear macromolecules

(cf. Fig. 5), remains valid for branched materials.

Organic Solvents/Linear Random Copolymers

With systems of this type, a new feature comes into play: In spite of the fact that we

are dealing with binary systems, we need three different interaction parameters to

describe the thermodynamic behavior. This makes the modeling considerably more

difficult and is the reason why the present approach requires more adjustable

parameters, and the theoretical understanding is far from being satisfactory.

For reasons outlined in the theoretical section (Sect. 2) (8) the study reported here

uses weight fractionsw instead of the usual volume fractions’. It was carried out for
solutions of poly(styrene-ran-methyl methacrylate [P(S-ran-MMA)], with different

weight fractions f of styrene units, in CHCl3, acetone (AC), methyl acetate (MeAc),

and TL at 50�C [25]. Analogous measurement for the solutions of the corresponding

homopolymers, PMMA and PS, were also performed for comparison.
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For practical purposes, the possibility of predicting the thermodynamic behavior

of random copolymers in a given solvent from knowledge of the corresponding

homopolymers would be extremely helpful. The present results demonstrate that

this is a difficult task and that the choice of the particular solvent plays a decisive

role. For all systems under investigation, ww varies considerably with the composi-

tion of the mixture. With one exception [CHCl3/P(S-ran-MMA) and f ¼ 0.5] the

dependencies ww(w) of the copolymers do not fall reasonably between the data

obtained for the corresponding homopolymers. In most cases, the incorporation of a

small fraction [25] of the monomer that interacts less favorably with a given solvent

suffices to reduce the solvent quality for the copolymer, approximately to that for

the worse soluble homopolymer. Figure 14 shows an example for which this effect

is particularly obvious.

In terms of the ww values measured for a given constant polymer concentration,

the polar solvents CHCl3, AC, and MeAc are expectedly more favorable for PMMA

than for PS, whereas the nonpolar TL is a better solvent for PS than for PMMA. The

shape of the functions ww(w) varies considerably. For AC/PMMA and MeAc/PS,

w increases linearly and for AC/PS more than linearly, whereas it decreases linearly

for CHCl3/PS. With three of the systems, one observes minima in ww(w), namely for

TL/PMMA, TL/PS, and CHCl3/PS; only MeAc/PMMA exhibits a maximum. On

the basis of (32), this diversity of composition influences is easily comprehensible if

one keeps in mind that the composition dependence of Flory–Huggins interaction

parameters are made up of two separate contributions. The normally nonzero

parameter n of the first term of this relation (which is primarily determined by the

differences in the shapes of monomeric units and solvents molecules) leads to a

nonlinear composition dependence of ww, where the magnitude of this contribution

increases as the absolute values of the parameter a rise. The second term of (32)

adds a linear dependence, quantified by the parameter zl. In agreement with the

great diversity of the systems concerning the functions ww(w), all three parameters

of the present approach may be positive, negative, or zero.
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The next aspect that deserves discussion concerns the quality of a given solvent

for copolymers of different comonomer content, as compared with its quality for

the corresponding homopolymers. The naive interpolation of the ww values for the

copolymers between the data of the homopolymers according to their composition

is at variance with the experimental observations. Only for the system CHCl3/

P(S-ran-MMA) with f ¼ 0.5 does the composition dependence lie reasonably

between the ww(w) curves for the homopolymers. All other solvents are

approximately as poor for the copolymer (f ¼ 0.5) as for the less favorably

interacting homopolymer (PS in the case of AC and MeAc; PMMA in the

case of TL). For the system TL/P(S-ran-MMA), studied in greater detail, the

presence of only 10 wt% of styrene units suffice to raise ww to values that

are within the range of high polymer concentration, even larger than that of

the TL/PMMA system (see Figure 11 of [25]).

The dependencies of the system-specific parameters p on the weight fraction f of
the styrene units in the copolymers can be well modeled by (41) for the different

solvents. Linear functions, corresponding to pE ¼ 0, are exceptions and only

observed for the parameters a and zl with CHCl3 and for n with MeAc. For the

polar solvents AC and MeAc, a(f) and zl(f) exhibit maxima, whereas minima are

observed for TL. The comparison of these excess parameters pE obtained for the

different solvents discloses another interesting feature, namely the fact that all

excess parameters pE exhibit the same sign for the three systems for which the

behavior of the copolymer is dominated by the monomeric unit showing the less

favorable interaction with the solvent. For a and zl, this means that an adverse

excess contribution for contact formation is counteracted by a favorable conforma-

tional relaxation (AC and MeAc) or conversely, that a favorable excess contact

formation goes along with an adverse conformational relaxation (TL).

In conclusion of this section, it is worthwhile noting that the interrelation of the

system-specific parameters established for homopolymer solutions (cf. Fig. 5) also

holds true for all copolymer solutions studied here (as demonstrated in Figure 15

of [25]).

Aqueous Solutions of Poly(vinyl methyl ether)

This example and the next (cellulose; Sect. 4.1.1.5) concern systems with uncom-

monly large a values (i.e., very unfavorable contact formation between the solvent

and polymer segments) in combination with a similarly favorable conformational

relaxation. Literature reports a very uncommon phase behavior [54, 55] for the

system H2O/PVME: The most striking feature is the occurrence of two minima in

the cloud point curves instead of one. In addition to the normal critical point at low

polymer concentration, the authors report a second critical point at high polymer

concentrations for high molar masses of the polymer. Furthermore, they describe a

three-phase line occurring at a certain characteristic temperature, even for strictly

binary mixtures. The authors used a three-membered series expansion of the

integral Flory–Huggins interaction parameter g with respect to ’ for the modeling
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[55] of their results and confined the temperature influences to the composition-

independent term, assuming a linear dependence on 1/T to reproduce the observed

phase separation upon heating.

The following considerations [53] deal with the question of which criteria (in

terms of the system-specific parameters of the present approach) a certain system

must fulfill to reproduce the anomalous phase separation phenomena reported in the

literature. To that end, the condensed parameter zl is eliminated from the critical

conditions calculated on the basis of (33) to yield expressions analogous to (36) and

(37). This procedure provides the following relation, containing the parameters a
and n, the number of segments N of the polymer, and the critical composition ’c of

the system:

a ¼ 6’3
c N � 1ð Þ þ ’2

c 11� 2Nð Þ � 4’c � 1
� �

1� n’cð Þ4
6’2

cN 1� ’2
c

� �
4n’c þ n� 1ð Þ (63)

Plotting a according to (63) as a function the critical composition ’c for a given

polymer (i.e., constant value of N ) with n as independent variable gives access to

the combination of a and n values, yielding more than one solution for ’c. Figure 15

shows the results for two n values; this graph merely specifies which parameter

combinations result in critical conditions, it does not yet refer to a certain tempera-

ture. The horizontal lines indicate the first appearance of an additional critical point

upon an augmentation of a. Under these special circumstances, a stable and an

unstable critical point [53] coincide and form a double critical point. In the general

case, the three solutions for the critical conditions correspond to different tempera-

tures and one of them is an unstable critical point.

The minimum a value required for the occurrence of a double critical point is

considerably higher for n ¼ 0.4 than for n ¼ 0.5. A more detailed mathematical

analysis [53] of (63) yields a border line for the combination of parameters, which

separates the normal from anomalous behavior. For ordinary systems, the combi-

nation of a and n values required to produce multiple critical points has so far not

been observed. However, for water/PVME systems, such data may well be realistic
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because of the large surface of water as compared with that of the polymer segment,

making large g values and hence also large n values plausible [cf. (24)]. In view of

the pronounced chemical dissimilarities of water and PVME, this should lead to

large a values.

The phase diagram shown in Fig. 16 was calculated [53] choosing a combination

of a and n values inside the range of multiple critical points. For this modeling it

was (unrealistically but for the sake of simplicity) assumed that only a depends on

temperature and that this dependence can be formulated as:

a ¼ a1 þ a2 T � Tsð Þ (64)

where a1, a2, and Ts are constants. From this graph it is clear that the central features

of the phase diagram observed for the water/PVME system can be adequately

modeled by the present approach.

An interesting result of the present modeling is an uncommon option to realize

theta conditions. Maintaining its definition in terms of A2 ¼ 0, leading to wo ¼ 0.5:

wo;y ¼
1

2
¼ ay � zlð Þy (65)

it is obvious that this relation cannot only be fulfilled in the normal way, with zy ¼ 0

and ay ¼ 1=2, but also via an adequate combination of a and zl 6¼ 0.5. For such

exceptional systems, the unperturbed state results from an exact compensation of an

uncommonly unfavorable contact formation between the components (a > 0.5) by

an extraordinarily advantageous conformational response (zl � 0). In the case of

H2O/PVME, the plausibility of large a values has already been mentioned. From

reports [56] on the formation of a complex between water and PVME and the fact

that the system exhibits LCST behavior, one can infer that large z values are caused
by the very favorable heat effects associated with that process.
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Swelling of Cellulose in Water

The water/cellulose system is unique in several ways. First of all it is so far the only

one for which we have observed that the vapor pressures above homogeneous

mixtures depend on the particular manner in which the samples were prepared.

The results reported here [57] were obtained by means of thin cellulose films

(approximately 20–25 mm thick) cast from cellulose solutions in the mixed solvent

LiCl þ dimethylacetamide. After careful removal of the components of the mixed

solvent, these films were kept in a surplus of water at 80�C until the weight of the

swollen cellulose film no longer changed. The solvent was then removed stepwise

by vacuum treatment and the resulting samples were kept in the measuring cell of

the HS–GC until the vapor pressure no longer changed, which was typically after

1 day. The experimental data are highly reproducible but not identical with the

results of measurements (of equally reproducibility; not yet published) with cellu-

lose films that were cast from a different solvent. From these findings, one is forced

to conclude that at least one set of data does not refer to the macroscopic equilib-

rium of the system. It looks as if the final arrangement of the polymer chains after

total removal of the solvent (e.g., with respect to the degree of crystallinity) could

depend on the chemical nature of the solvent employed for film preparation. Under

this assumption, and in view of the high viscosity of swollen cellulose, one can then

speculate that the molecular environment established upon the removal of a partic-

ular solvent is more or less preserved in the swollen state and permits only the

establishment of local equilibria.

Figure 17 shows the results for a cellulose sample with 2940 segments (defined

by the molecular volume of water) prepared from a solution in LiCl plus dimethy-

lacetamide [57]. The most striking feature is the enormously large range that the

Flory–Huggins interaction parameter spans as a function of composition. It falls

from wo¼ 6 (for worse than theta conditions, the typical wo values are in the order of
0.6) to a minimum of approximately �3.6 (much less than the lowest values

observed so far) for ’ values around 0.6, and increases again up to �1.7 in the

limit of the pure polymer.
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For the modeling of the function w(’) of Fig. 17, it is essential to use (26) and not
(33) because the intramolecular interaction parameter l deviates strongly from the

usual value of 0.5. This observation is conceivable considering the fact that

cellulose is not noticeably soluble in water under the prevailing conditions, which

means that isolated polymer coils should be widely collapsed. Under these condi-

tions, the average volume fraction Fo of the segments within the realm of such a

macromolecule will become very high and so consequently will l [cf. (27) and

(17)]. The evaluation of the present data yields l ¼ 1.34. All other parameters

required for the modeling of the measured Flory–Huggins interaction parameter

also lie well outside the normal range. The leading parameter a of the first term of

(26) is positive and very large – like with the example of multiple critical points

discussed in the previous section (Sect. 4.1.1.4). However, this time the large value

is not only due to the chemical dissimilarity of the components, but is also caused

by very favorable intersegmental contacts (H-bonds) that must be broken upon the

insertion of a solvent. In agreement with the general interrelation of the parameters

zl and a, this adverse contribution via a is counteracted by a comparable advanta-

geous conformational relaxation via z. The unique behavior of the water/cellulose
system is also demonstrated by the value of n, which is negative, in contrast to

almost all other polymer solutions studied so far. The only negative value of similar

magnitude was observed for the butane/1,4-polybutadiene system [50], which also

exhibits a large solubility gap. One might therefore speculate that the pronounced

self-association tendencies of the components (due to the unfavorable mutual

interaction) causes effective surface-to-volume ratios [cf. (24)] that differ consid-

erably from those expected on the basis of the molecular shapes of the components.

A further, immediately obvious particularity of the present system is the anoma-

lous swelling behavior of cellulose in water, as shown in Fig. 18. To the author’s

knowledge it is the only case where a high molecular weight polymer takes up more

of the pure coexisting liquid than does a sample of lower molar mass.

The results shown in Fig. 18 demonstrate that the miscibility gap of cellulose and

water, predicted from the vapor pressuresmeasured above the homogeneousmixture
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(liquid/gas equilibrium), matches the observed swelling behavior (liquid/liquid

equilibrium) reasonably well. Above all, it correctlymodels the observed diminution
of the two-phase region with rising molar mass of the cellulose. The lack of

quantitative agreement should not be overestimated because of the sensitivity of

the calculated swelling with respect to the exact value of the central parameter a; a
reduction of a by less than 3% would suffice for quantitative matching.

In an attempt to rationalize this unique behavior, we recall that the wo values of
the present system are about ten times larger than normal, which means that the

tendency to form dilute solutions is practically nil. When adding increasing

amounts of water to pure cellulose, the extent of chain overlap (stabilizing the

homogenous state) will surpass a critical value below which a cellulose molecule

can no longer evade the formation of extremely adverse contacts between its

segments and water. At this point, the segregation of a second phase consisting of

practically pure water sets in. From simple considerations concerning the chain-

length dependence of the size of polymer coils, one can conclude that this critical

overlap will be reached at higher dilution by larger molecular weight samples than

by smaller molecular weight samples, thus explaining the anomalous swelling

behavior of cellulose in water.

The last two examples have dealt with systems for which the first step is

uncommonly unfavorable and goes along with a favorable second step. For the

mixtures described in the next section, the opposite is the case: here a very

favorable first step is followed by a correspondingly adverse second step.

Aqueous Solutions of Pullulan and Dextran

These systems exhibit a common feature, which becomes noticeable in the primary

data, i.e., in the composition dependence of the vapor pressures. Unlike normal

polymer solutions, p(’) shows a point of inflection in the region of high polymer

contents, as demonstrated in Fig. 19. This peculiarity and the necessity to introduce

an additional term in the expression for the integral interaction parameter g [cf.

(42)] is interpreted in terms of hydrogen bonds between the monomer units of the

polymer, on one hand, and between water and the monomers, on the other hand.

The opening of intersegmental contacts – a prerequisite for the dilution of the

mixture – is Gibbs energetically adverse and modeled in terms of positive o
parameters. The subsequent insertion of solvent molecules between these polymer

segments is, in contrast, very favorable and quantified by negative a values. The

reason why the total contribution of the first step of dilution cannot be modeled by a

single common parameter lies in the different composition dependencies of the

effects of opening and of insertion.

According to the details of the dilution process discussed above, the point of

inflection in the vapor pressure curve shown in Fig. 19 can be given an illustrative

meaning: In the region of low polymer concentration it is practically only “bulk”

water that it transferred into the vapor phase. This situation changes, however, as ’
approaches unity; under these conditions the vapor is increasingly made up of

solvent molecules taken from the “bound” water (located between two polymer
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segments). The intersection of the tangent at the point of inflection with the abscissa

can be taken as an estimate of the amount of “bound” water.

Another feature that is immediately visible from Fig. 19 is the higher solvent

quality of water for pullulan as compared with dextran. Within the composition

range 0.25 > ’ > 0.75, the reduced vapor pressure is considerable lower in the

former than in the latter case. This situation leads to rather complicated composition

dependencies of the Flory–Huggins interaction parameter for the solutions of pull-

ulan, as shown in Fig. 20. From the dotted line of this graph it becomes obvious that

a modeling is impossible without an additional term in the relation for the integral

interaction parameter (42). The uncommonly low w values of the system for large

volume fraction of the polymer are another outcome of a very stable “intercalation”

of a solvent molecule between two segments of the polysaccharide.

Nonselective Solvent/Block Copolymers

The modeling of block copolymers solutions is necessarily much more difficult

than the modeling of solutions of random copolymers. Again, the binary system
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requires three different interaction parameters for its adequate description, but this

time a possible incompatibility of the homopolymer blocks is much more conse-

quential. The examples discussed for block copolymers are a diblock copolymer of

styrene and butadiene (SB), the corresponding triblock copolymer formed by

joining two SB blocks at their butadiene ends (SB)2, and a four-arm block copoly-

mer (SB)4 in which the inner blocks consist of polybutadiene. The investigations

reported in [58] use the nonselective tetrahydrofuran (THF) as solvent in all cases.

Figure 21 presents – as an example – the composition dependence of the Flory–

Huggins interaction parameter measured for the diblock copolymer at 55�C. The
results for the other two types of block copolymers and different temperatures look

qualitatively very similar.

Like with the aqueous solutions of the polysaccharides discussed in Sect. 4.1.1.6,

the present systems require an extra term in the integral interaction parameter g to

account for the effect of the first step of dilution, where a solvent molecule is

inserted between two polymer segments. With the block copolymers of present

interest, the situation is different from that encountered with the polysaccharide

solutions because of the microphase separation induced by the incompatibility of

the blocks. In this case, the number of segments required for special interactions is

larger than two. Geometrical considerations suggest that contacts between more

than three segments belonging to different polymer chains are very unlikely, even

in the pure melt. This means that the insertion of a solvent molecule will typically

destroy advantageous ternary contacts between segments. By analogy to the

reasoning in the context of the aqueous solutions of pullulan or dextran, this implies

that the extra contribution to g should depend on the third power of ’ in the case of

block copolymers, as formulated in (44).

Despite these dissimilarities in the molecular details, the a parameters required

for the modeling of the experimental findings are in both cases negative. In the case
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of the block copolymer solutions, it is not the formation of favorable contacts

resulting from the addition of solvent that makes a < 0, but the destruction of

very unfavorable contacts between the two types of monomeric units. Figure 21

shows that the Flory–Huggins interaction parameter is smallest in the limit of ’! 1,

where the solvent is practically exclusively incorporated into the interphase separ-

ating the coexisting microphases. In this concentration range w can in some cases

even fall below the w value of the THF/PS system. With progressive dilution, the

interaction parameters for the block copolymer increase because the solvent is

now more and more incorporated into the microphases until they pass a maximum

in the range of semidilute solutions. The reason for this thermodynamically worst

situation can be rationalized by the fact that the polymer concentration is no longer

high enough to enable microphase separation and not yet low enough for intramo-

lecular clustering of the segments of the different blocks. Maxima in w(’) of the
type shown in Fig. 21 might cause (macro)phase separation. Calculation for the

present copolymer solutions and temperatures under investigation with respect to

liquid/liquid demixing by means of (36) and (37) and the interaction parameters

obtained from liquid/gas equilibria did not, however, result in miscibility gaps, in

agreement with the direct experimental observation of the mixtures. According to

these calculations, the thermodynamic quality of THF for the block copolymers is

already marginal so that one can expect the occurrence of macrophase separation in

addition to microphase separation at low enough temperatures.

Before leaving the area of polymer solutions to deal with polymer blends and

mixtures of low molecular weight compounds, it appears worthwhile to document

once more an experimental finding that is very helpful for the modeling of new

systems. This is the existence of a very general interrelation between the leading

parameters a and zl of the present approach. Even for systems that behave in a very

anomalous manner at higher polymer concentrations, the parameters a and zl
suffice for the description of the dilute state of pair interaction between the solutes

and interrelate in the usual way [cf. (34)]. Figure 22 shows the data for the studied

polymer solutions with specific interactions, together with some typical data for

ordinary polymer solutions that do not need an extension of (32) for the integral

interaction parameter. The general validity of the function zl (a) reduces the

number of adjustable parameters by one and eases the modeling and qualitative

predictions considerably.

4.1.2 Polymer Blends

Poly(vinyl methyl ether)/Polystyrene

Out of the many polymer blends investigated so far, PVME/PS is probably the one

for which the molecular weight dependence of the critical conditions has been

studied in most detail (cf. citations in [59]). The critical temperatures span more

than 60�C, and the critical volume fractions of PS lie between 0.13 and 0.68. The

comprehensive experimental information that is available makes this system
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particularly suited for modeling of interaction parameters on the basis of critical

conditions.

The modeling presented here still uses the expression for the integral interaction

parameter as formulated for polymer solutions (26), which leads to the critical

conditions specified in (36) and (37). According to the extension of the approach to

polymer blends (which had not yet been carried out when this study was per-

formed), (49) should have been used for that purpose because it accounts for the

fact that the polymer coils A are accessible to the segments of polymer B and vice

versa. Both expressions employ a linear dependence of the parameter z on the

composition of the mixture; the differences between polymer solution and polymer

blends only lie in the numerical values of the constants.

Figure 23 shows how the molar masses of the blend components influence the

experimentally obtained critical compositions of the mixture. The two curves

shown in this graph were obtained by adjusting five parameters, namely n and l
(which were considered to be temperature independent), plus two parameters for

the temperature dependence of a. The fifth parameter concerns z, which was either

kept constant (variant 1) or set proportional to a (variant 2). Both assumptions

model the experimental data with comparable accuracy. In view of the expectation

that all system-specific parameters should depend on temperature, the quality of the

description with only five parameter is surprising. It must, however, be kept in mind

that a naive molecular interpretation of the system-specific parameters is not

permissible in the present case.

Despite the similarity of the two variants of modeling presented in Fig. 23,

the detailed phase diagrams calculated from the two sets of parameters differ

–2 –1 0 1
a

2

–2

–1

0
z l

1

2

Fig. 22 Interrelation between the parameters zl and a [the vertical line at a ¼ 0.5 is drawn

according to (34)]. The data for solutions of several typical polymers in organic solvents are almost

exclusively located in the first quadrant (open symbols); they only extend into the third quadrant

for systems close to their demixing. Data for anomalous systems (half-closed symbols), where the
first step of dilution represents the main driving force to homogeneity, are entirely located in the

third quadrant

Thermodynamics of Polymer-Containing Mixtures 49



fundamentally if both components become high in molar mass. In both variants, a
was considered to depend on temperature but variant 1 keeps z independent of T,
whereas variant 2 applies the proportionality between a and z, i.e., treats z as a

function of T. Variant 1 yields two stable and one unstable critical points [59] (as for
the system water/PVME), whereas the demixing behavior remains normal for

variant 2. Defining theta conditions for polymer blends by analogy to the usual

definition for polymer solutions in terms of critical temperature for infinite molar

mass of the polymer according to:

lim Tc
m; n! 1

� Y (66)

one obtains two different theta temperatures, where the corresponding critical

concentration is either zero or unity. Conversely, z proportional to a yields only

one theta temperature, and the corresponding critical composition remains indefi-

nite, like in the original Flory–Huggins theory. The question of which of the

predictions comes closer to reality can only be answered by directed experiments.

Shape-Induced Polymer Incompatibility

Demixing of polymer blends consisting of macromolecules synthesized from the

same monomers and differing practically only in their molecular architecture plays
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an important role in the polyolefin industry [63–65]. Numerous experimental and

theoretical studies have therefore been performed to investigate this phenomenon;

for pertinent literature see [66]and [67]. The present approach offers a particularly

simple theoretical access because the first term of the expression for the integral

interaction parameters [(49), corresponding to the first step of mixing] can be set

to zero.

For the special case of linear and branched polymers of the same chemistry, one

obtains a very simple relation if the degree of branching b is introduced in terms of

the intrinsic viscosity of the branched polymer as compared with that of the linear

analog [(27) and (52)] and the conformational relaxation is set proportional to

b (53), which means that it approaches zero as the degree of branching becomes

vanishingly small. Under these conditions, one single parameter suffices to model

the phase behavior (54); the parameter k of (54) can either be estimated from the

Kuhn–Mark–Houwink relation for the linear polymer and theta conditions [(29)

and (55)] or it can be merged with the parameter Z (54). Figure 24 shows an

example of the critical conditions calculated for blends of chemically identical

linear and branched polymers with k ¼ 0.27, which is the typical value for vinyl

polymers.

Model calculations [28] along the described lines indicate that the sensitivity to

phase separation is particularly pronounced for blend partners of comparable

numbers of segments. In Fig. 24 this can, for instance, be seen from the frontmost

curve (b ¼ 0.1) passing a maximum in this range of NL. Each of the data points on

the critical surface of this graph corresponds to a different phase diagram, which

can be represented in terms of Z(’), by analogy to the more customary theoretical

diagrams w(’) or g(’). In order to transform such general phase diagrams into the

directly measurable phase diagrams T(’) (phase separation temperatures as func-

tion of composition), it is necessary to know how the parameters Z, w, or g depend

on T. There are literature reports [65] on phase separation upon heating as well as
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upon cooling. In view of the fact that the first term of (49) is for the present

calculations set at zero (a ¼ 0), one might think that shape-induced demixing

should be entirely due to unfavorable entropies of mixing and should always be

of the LCST type. This interpretation is, however, not permissible because both

steps of dilution contribute to the residual Gibbs energy via enthalpy and entropy, as

discussed earlier.

4.1.3 Mixtures of Low Molecular Weight Liquids

For the modeling of systems containing more than one low molecular weight

component, like polymer solutions in mixed solvents, it would be very advanta-

geous to be able to use the same mathematical expressions for the mixtures of the

low molecular weight liquids. Experiments performed to investigate these possibi-

lities have demonstrated that (32) can indeed describe the thermodynamic behavior

quantitatively [29], as demonstrated in Fig. 25 for the system water/N-methyl

morpholin N-oxide monohydrate [NNMO*H2O]. This graph shows the measured

reduced vapor pressures of water as a function of composition, and the curves

calculated by means of (32) and the adjusted parameters a, n, and zl�
It is obvious that the parameter l of (32) (introduced via considerations

concerning the establishment of microphase equilibria with polymer-containing

systems) loses its physical meaning for the low molecular weight mixtures because

the segments of the components are geometrically strictly separated. This is unlike

the situation with polymer solutions, where the solvent enters the polymer coil, or
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with polymer blends, where both components are accessible for segments of the

other polymer. The meaning of the parameter z, on the other hand, remains

unchanged because molecular rearrangements, similar to those occurring with

polymer solutions and polymer blends, will also take place in low molecular weight

mixtures, due to preferentially interacting sites of the components. According to the

present results, a linear composition dependence of the conformational part of the

interaction parameter should suffice to describe reality.

4.2 Ternary Systems

The material presented so far has demonstrated the ability to model the thermody-

namic behavior of binary systems accurately by means of the present approach. For

the description of polymer solutions, it is normally possible to eliminate one of the

three parameters of (32) thanks to a general interrelation between a and zl (34). For
polymer blends and mixtures of low molecular weight components, a similar

general simplification is presently not known. Notwithstanding this situation, it is

possible to model the principle features [27] of all types of phase diagrams observed

for ternary systems using only two parameters for each binary subsystem.

This section deals with the phase-separation behavior of ternary systems, where

a distinction is made between polymer solutions in mixed solvents (Sect. 4.2.1) and

solutions of two polymers in a single solvent (Sect. 4.2.2). Furthermore, the systems

are classified according to the way the thermodynamic properties of the ternary

systems are made up from the properties of the corresponding binary subsystems:

Simplicity denotes “smooth” changes in the phase behavior of the binary subsys-

tems upon the addition of the third component in its pure form or in mixtures (see

later). Cosolvency means that the thermodynamic quality of mixture of two com-

ponents is higher with respect to the third component than expected by simple

additivity, i.e., cosolvency reduces the extension of the two-phase region with

respect to that expected from additivity. Cononsolvency, finally, denotes the oppo-
site behavior, i.e., an extension of the two-phase region beyond expectation.

4.2.1 Mixed Solvents

The use of mixed solvents is widespread, because it offers the possibility to tailor

desirable thermodynamic conditions by mixing two liquids with sufficiently differ-

ent qualities in adequate ratios, instead of the often inconvenient or even impossible

variation of temperature. The combination of good solvents with precipitants is the

basis of many industrial processes, like membrane production or fiber spinning. In

order not to go beyond the scope of the present contribution, the following con-

siderations are limited to complete miscibility of the components of the mixed

solvent. There is, however, no particular difficulty to extend the treatment to

incompletely miscible components of mixed solvents.
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Simplicity

The following example for simplicity refers to a technically important ternary

system, namely cellulose solutions in mixtures of the favorable solvent NMMO

with the precipitant water. Fibers are formed as thin threads as homogeneous

cellulose solutions are spun into water. Figure 26 shows how experimental data

for this ternary mixture compares with the modeling [68] on the basis of (60). On

the theoretical side, it is important to take care of the fact that the information

concerning the binary subsystems usually differs by a diverging definition of the

size of a segment.

The unstable area, the critical point, and the tie lines shown in Fig. 26 were

calculated by means of the independently determined parameters for the binary

subsystems NMMO/water [29] and cellulose/water [57]. The corresponding infor-

mation for NMMO/cellulose is inaccessible along the present routes, because the

vapor pressure of both components is negligibly small. For that reason, it was

necessary to adjust the parameters a and z for this binary subsystem to the

experimentally observed ternary phase diagram; n was equated to g (obtained

from group contributions) and l was set at 0.5, the typical value for polymer

solutions. This procedure enables the modeling of the phase diagram for the ternary

system, which matches the measurements within experimental error. Even if this

procedure is not predictive, it helps the discrimination of metastable and unstable

compositions and enables assessment of the effects of different molar masses of

cellulose on demixing [68].

In another, very abundant form of simplicity the miscibility gaps existing for the

polymer solution in either of the two solvents transform smoothly into each other as

the composition of the mixed solvent changes.

Cosolvency

A much higher quality of mixed solvents as compared with either of its components

is not uncommon; since the first report [69] it has been described in the literature

many times. This phenomenon can be easily modeled [27] by means of (60) using

physically meaningful combinations of parameters. The example shown in Fig. 27
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applies to sufficiently unfavorable 1/2 interactions; in their absence the miscibility

gap would extend from one binary subsystem to the other throughout the ternary

system, i.e., this would be an example of simplicity.

The reason for the complete miscibility of the polymer with mixed solvents

containing comparable fractions of their components shown in Fig. 27 lies in the

adverse interactions between them. Within a certain range of compositions, the

ternary system can avoid these unfavorable contacts between components 1 and

2 by inserting a polymer segment between them and forming homogeneous

mixtures.

Cononsolvency

The creation of a miscibility gap by mixing two favorable solvents was reported a

long time ago [70] and many examples have been described since. Figure 28

shows a typical modeling of this behavior. For that purpose, we assume that

the components 1 and 2 are markedly better solvents for the polymer P than

in the case of cosolvency, and that they mix in a combinatorial manner (g12 ¼
w12 ¼; 0).

The reason why the present combination of parameters for the binaries leads to a

miscibility gap for the ternary system lies in the particularly favorable interactions

1/P and 2/P as compared with the more or less “neutral” interactions 1/2. Under

these conditions, the Gibbs energy of the total system can be lowered by phase

separation such that the polymer-lean phase contains practically low molecular

weight components only and that many favorable 1/P and 2/P contacts can be

formed in the polymer-rich phase.
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Complex Behavior

Phase diagrams for polymer solutions in mixed solvents can look much more

complicated than shown so far. Figure 29 gives an example observed in the course

of a study concerning differences in the thermodynamic behavior of branched as

compared with linear polymers [71].

The reason for uncommon phase diagram often lies in the polydispersity of the

polymer sample, which means that we are strictly speaking no longer dealing with

ternary but with multinary systems, for which the representation of phase diagrams

requires a projection into a plane. In the present case, the polydispersity is due to the
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presence of linear and branched PI in addition to the usual nonuniformity of molar

masses. The consequences of broad molecular weight distributions of linear poly-

mers for the shape of phase diagrams are not negligible, but are usually consider-

ably less pronounced than nonuniformities with respect to the molecular

architecture of the macromolecules. The reason is that polymers of different

chain length are usually completely miscible, whereas this needs not be the case

for linear and branched macromolecules, as exemplified when dealing with their

solutions in a common solvent.

The strange peninsular of the miscibility gap shown in Fig. 29 is caused by the

fact that the PI sample contains both linear and branched material; neither the

solution of the linear product nor that of the branched polymer in the same mixed

solvent show this particularity [71]. It is, however, very probable that particular

interactions between the components of the mixed solvent also play a role in the

occurrence of the anomalous peninsula of the phase diagram. This consideration

rests on the fact that the CH/AC system exhibits an upper critical solution tempera-

ture [72] at �29�C. The low mixing tendency of these components might increase

the possibilities of the quaternary system to reduce its Gibbs energy via demixing.

4.2.2 Blend Solutions

Solutions of chemically dissimilar polymers in a common solvent play an important

role in the processing of polymer mixtures, where this is particularly true for

incompatible polymer pairs but also for the production of homogeneous films

consisting of two compatible polymers. Like with polymer solutions in mixed

solvents, one can observe all the deviations from additive behavior discussed

earlier.

Simplicity

The modeled example given in Fig. 30 for this behavior shows the gradual dis-

appearance of a miscibility gap existing between two moderately incompatible

polymers upon the addition of a solvent of comparatively low thermodynamic

quality.

The phase diagram of Fig. 30 looks very similar to the one measured for the

solutions of linear and branched PI in CH and shown in Fig. 31. For these experi-

ments, the originally synthesized branched material (PI* of Fig. 29) was to a large

extent freed from the linear components by means of the large-scale method of spin

fractionation [73]. Despite the fact that the boundary between the homogeneous and

the two-phase area was only mapped, instead of the usual cloud point measure-

ments, the results of Fig. 31 testify to the existence of shape-induced incompatibil-

ity of polymers. It is remarkable that this phenomenon can be observed for

comparatively low molar masses of the components.
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Cosolvency

According to model calculations, the phenomenon of cosolvency should also occur

for solutions of polymer blends in a common solvent. For the example shown in

Fig. 32, the components of the blend were chosen to be highly incompatible, and the

solvent to be bad for polymer B but favorable for polymer A.
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As with the example presented for cosolvency in the case of polymer solutions in

mixed solvents (Fig. 27), the origin of cosolvency for polymer blends in a common

solvent can be interpreted as a dissection of a miscibility gap that would normally

bridge the Gibbs phase triangle from one binary subsystem to the other binary

system (here from 1/B to A/B) by special interactions between the completely

miscible components (here 1/A). With the example of Fig. 32, the thermodynamic

quality of the solvent for polymer A is almost marginal; in this manner polymer B

becomes completely miscible with certain solutions of polymer A in solvent 1.

Cononsolvency

This phenomenon is generally characterized by the existence of islands of immis-

cibility inside the Gibbs phase triangle, i.e., phase separation is absent for all binary

mixtures. According to model calculations along the present lines, closed misci-

bility gaps should be comparatively abundant for solutions of two favorably inter-

acting polymers in a common solvent that is sufficiently favorable for both

polymers; Fig. 33 shows an example of the outcome of such calculations. A slight

modification of the binary interaction parameters for the polymer solutions changes

the size of the miscibility gap and its location inside the Gibbs phase triangle

considerably. This is, for instance, made evident by the fact that the island dis-

appears by increasing both wo values from 0.482 to 0.483, i.e., a slight reduction in

the thermodynamic quality of the solvent brings the polymer solutions closer to

phase separation.

The explanation for the occurrence of islands of immiscibility under the

conditions specified in Fig. 33 lies in the high preference of 1/A and 1/B contacts

over A/B contacts (even if A and B interact favorably), as demonstrated by the
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position of the tie lines. Under these circumstances, the Gibbs energy of the ternary

system can be reduced as compared with the homogeneous mixture by forming two

liquid phases, one preferentially containing polymer A and the other polymer B.

This phase separation leads to a reduction in the number of A/B contacts (associated

with lower entropies ofmixing than the corresponding 1/A and 1/B contacts) and in a

corresponding increase in number of the more favorable polymer/solvent contacts.

The predictions of model calculations of the type shown in Fig. 33 were checked

[74] by means of the systems THF/PS/PVME and CH/PS/PVME. This choice was

made because of the availability of the thermodynamic information for all binary

subsystems. One of the questions to be answered by this comparison between

theory and experiment concerns the extent to which the phase behavior of the

ternary system can be predicted if the corresponding information for the binary

subsystems is available.

Figure 34 shows how experiment and the prediction by means of (60) compare in

the case of THF; the data for THF/PS and THF/PVME were taken from [75] and

that for the polymer blend from [59].

It is obvious from Fig. 34 that the modeling predicts the phenomenon of

cononsolvency but fails to capture the details of demixing. The extension of the

calculated island is considerably larger than experimentally observed. If

the solvent THF is replaced by CH (which is less favorable for both polymers),

the extension of the measured island is considerably increased. Again, the model-

ing does predict an island, but its size and location in the phase triangle are at

variance with reality.

From these results, it must be concluded that the interaction between two

chemically different segments is influenced by the vicinity to a segment of the

third component. In other words, it is necessary to account for ternary interaction
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parameters. Figure 35 shows the experimentally determined phase behavior of the

system THF/PS/PVME at 20�C, again along with the results of model calculations

on the basis of (61) and (60) by means of the ternary interaction parameters stated at

the edges of the triangle.

The agreement between the actually measured demixing behavior and that

modeled on the basis of binary interaction parameters plus composition-indepen-

dent ternary interaction parameters is surprisingly good. However, the results also

demonstrate how sensitive the calculated phase diagrams can be with respect to the

details of some interaction parameters. For instance, the analogous experiments
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performed with CH (less favorable solvent) instead of THF using a molecularly

disperse PS sample require at least one composition-dependent ternary interaction

parameter for their modeling. Indications exist that this complication is due to the

presence of PS molecules differing markedly in their molar mass.

One important consequence of the results presented for solutions of compatible

polymers in a common solvent is this: The suggested idea to prepare homogeneous

polymers films containing both types of macromolecules from joint solutions by

solvent evaporation will probably not work. The reason is that solutions containing

comparable amounts of polymers A and B need to pass the unstable area of the

phase diagram upon the removal of solvent, which means that they inevitably

demix into two phases: one rich in polymer A and the other in polymer B. Despite

the fact that the system enters the one-phase region again as the solvent content falls

below a certain value, the high viscosity of the coexisting liquids will normally

prevent homogenization.

5 Conclusions

The theoretical concepts presented in this chapter and the experimental examples

given for their validity demonstrate how the Flory–Huggins theory can be made

practical with reasonable effort. The central features of the approach are the

provision for chain connectivity in dilute polymer-containing systems (by means

of microphase equilibria) and the variability of macromolecules with respect to

their spatial extension (expressed in terms of conformational relaxation after mix-

ing). Both particularities contribute to the Flory–Huggins interaction parameters

and are quantified in a second, additive term, which becomes zero for most of the

theta systems. In contrast to the original Flory–Huggins theory, the interaction

parameters are no longer independent of concentration; complicated functions

w(’) are sometimes necessary to model experimental data, including minima and

maxima in this dependence. It is therefore no wonder that several parameters are

needed to gather the particularities of a certain system. In many cases, two para-

meters suffice for the quantitative description because of some possible simplifica-

tions and interrelations, as described in Sect. 2. With complex systems (like water/

cellulose) up to four parameters might, however, be required.

There is one finding that speaks strongly for the validity of the present approach,

namely the fact that several types of phase equilibria can be described quantita-

tively by means of the same set of parameters (cf. the systems n- C4/1,4-PB and

CHCl3/PEO). Another eminent advantage of the present approach is its general

applicability to very different classes of polymers (including branched macromo-

lecules and copolymers of different architecture); furthermore, there is no obvious

reason why it should fail for multicomponent systems.

So far, the extension of the Flory–Huggins theory has enabled the modeling of

several hitherto unexplainable anomalous phenomena, like uncommon molecular

weight dependencies of second osmotic virial coefficients, the existence of multiple

critical points for binary systems, or the odd swelling behavior of cellulose in water.
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Furthermore, it has helped a better understanding of ternary mixtures with respect

to the conditions that the subsystems must fulfill for the occurrence of cosolvency

or cononsolvency, as well as concerning the necessity for the use of ternary

interaction parameters. Suggested further investigations concern mixtures contain-

ing charged macromolecules and a more detailed analysis of the predictive power

of the present approach.
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32. Krüger K-M, Sadowski G (2005) Fickian and non-Fickian sorption kinetics of toluene in

glassy polystyrene. Macromolecules 38:8408

33. Ninni L, Meirelles AJA, Maurer G (2005) Thermodynamic properties of aqueous solutions of

maltodextrins from laser-light scattering, calorimetry and isopiestic investigations. Carbohydr

Polym 59(3):289

34. Karimi M, Albrecht W, Heuchel M, Weigel T, Lendlein A (2008) Determination of solvent/

polymer interaction parameters of moderately concentrated polymer solutions by vapor

pressure osmometry. Polymer 49(10):2587–2594

35. Gao ZN, Li JF, Wen XL (2002) Vapor pressure osmometry and its applications in the osmotic

coefficients determination of the aqueous monomer glycol and polymer polyethylene glycol

solutions at various temperature. Chin J Chem 20(4):310–316

36. Eliassi A, Modarress H, Nekoomanesh M (2002) Thermodynamic studies of binary and

ternary aqueous polymer solutions. Iran J Sci Technol 26(B2):285–290

37. Schreiber HP (2003) Probe selection and description in Igc: a nontrivial factor. J Appl Polym

Sci 89(9):2323–2330

38. Voelkel A, Strzemiecka B, Adamska K, Milczewska K (2009) Inverse gas chromatography as

a source of physiochemical data. J Chromatogr A 1216(10):1551–1566

39. Bercea M, Cazacu M, Wolf BA (2003) Chain connectivity and conformational variability of

polymers: clues to an adequate thermodynamic description of their solutions I: Dilute solu-

tions. Macromol Chem Phys 204:1371

40. Petri H-M, Schuld N, Wolf BA (1995) Hitherto ignored influences of chain length on the

Flory–Huggins interaction parameter in highly concentrated polymer solutions. Macromole-

cules 28:4975

41. Bercea M, Wolf BA (2006) Vitrification of polymer solutions as a function of solvent quality,

analyzed via vapor pressures. J Chem Phys 124(17):174902–174907

42. Wolf BA, Adam HJ (1981) Second osmotic virial coefficient revisited – variation with

molecular weight and temperature from endo- to exothermal conditions. J Chem Phys 75:4121

43. Schotsch K, Wolf BA, Jeberien H-E, Klein J (1984) Concentration dependence of the Flory–

Huggins parameter at different thermodynamic conditions. Makromol Chem 185:2169

64 B.A. Wolf



44. Bercea M, Wolf BA (2006) Enthalpy and entropy contributions to solvent quality and

inversions of heat effects with polymer concentration. Macromol Chem Phys 207(18):1661–

1673

45. Saeki S, Kuwahara S, Konno S, Kaneko M (1973) Upper and lower critical solution tempera-

tures in polystyrene solutions. Macromolecules 6(2):246

46. Stryuk S, Wolf BA (2003) Chain connectivity and conformational variability of polymers:

clues to an adequate thermodynamic description of their solutions III: Modeling of phase

diagrams. Macromol Chem Phys 204:1948

47. Schuld N, Wolf BA (1999) Polymer–solvent interaction parameters In: Brandrup J, Immergut

EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley, New York

48. Krigbaum WR, Geymer DO (1959) Thermodynamics of polymer solutions. The polystyrene–

cyclohexane system near the Flory theta temperature. J Am Chem Soc 81:1859
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Vapor–Liquid Equilibrium and Some

Related Properties

G. Maurer, S. Lammertz, and L. Ninni Schäfer

Abstract This chapter reviews the thermodynamic properties of aqueous solutions

of polyelectrolytes, concentrating on properties that are related to phase equilibrium

phenomena. The most essential phenomena as well as methods to describe such

phenomena are discussed from an applied thermodynamics point of view. There-

fore, the experimental findings concentrate on the vapor–liquid phase equilibrium

phenomena, and the thermodynamic models are restricted to expressions for the

Gibbs energy of aqueous solutions of polyelectrolytes.
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Abbreviations

A Inverse length (in model of Lifson and Katchalsky)

A Repeating unit (in model of Lammertz et al.)

Af Debye-Hückel Parameter

As,s Second osmotic virial coefficient for interactions between solutes

S in water

As,s,s Third osmotic virial coefficient for interactions between solutes S in
water

a Anion

a Radius

a
ðkÞ
i

Activity of species i normalized according to composition scale k

aw Activity of water

a
ð0Þ
i;L

Binary interaction parameter between species (groups) i and L

a
ð1Þ
i;L

Binary interaction parameter between species (groups) i and L

a
ð0Þ
MX

Binary interaction parameter between cations M and anions X

a
ð1Þ
MX

Binary interaction parameter between cations M and anions X

ap;p Binary interaction parameter between repeating units

ap;Cl Binary interaction parameter between repeating units and the

chloride ion

b Distance between two electrolyte groups in a polyelectrolyte

backbone

b Numerical value in Pitzer’s model (b ¼ 1.2)

b� Configurational parameter

bi; L; k Ternary interaction parameter between groups i, L and k
BaPSS Poly(barium styrene sulfonate)

C Repeating unit that will never dissociate (in model of Lammertz

et al.)

c Cation

ci Concentration of species i
ci Molarity of species i
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CI Counterion

ck,b Molarity of monomeric groups saturated with counterion k
cm Molarity of repeating units

cP Concentration of polyelectrolyte P
cs Molarity of salt S
~ci Mass density of solute i
CaPAM Calcium salt of copolymer of acrylic acid and acrylamide

D Repeating unit undergoing a chemical reaction (in model of

Lammertz et al.)

DMO Differential membrane osmometry

DS Degree of substitution

e Proton charge

EMF Electromotive force measurement

EQDIA Equilibrium dialysis

F Dissociated repeating unit (in model of Lammertz et al.)

F Free energy

f Short-range parameter

fel Function in the theory of Lifson and Katchalsky

fi Functions (in model of Lammertz et al.); i ¼ 1, 2

FPD Freezing point depression

f(M) Molecular mass distribution function

G Gibbs energy

Gji Binary interaction parameter (in model of Nagvekar and Danner)

Gji;ki Interaction parameter (in model of Nagvekar and Danner)

gji Energy parameter (in model of Nagvekar and Danner)

GDM Gel deswelling method

h Length of a polyion

HPAA Poly(acrylic acid)

HPAMS Poly(2-acrylamido-2-methyl-1-propane sulfonic acid)

HPAS Poly(anethole sulfonic acid)

HPES Poly(ethylene sulfonic acid)

HPMAA Poly(methacrylic acid)

HPMSS Poly(methyl styrene sulfonic acid)

HPP Poly(phosphoric acid)

HPVB Poly(vinyl benzoic acid)

HPVS Poly(vinyl sulfuric acid)

HPVSA Poly(vinyl sulfonic acid)

HPSS Poly(styrene sulfonic acid)

I Ionic strength

Im Ionic strength (on molality scale)

Im;MX Ionic strength (on molality scale) of an aqueous solution of MX
Is Ionic strength (on molarity scale)

ISO Isopiestic experiments

j Abbreviation

j Component

K Chemical reaction constant (in model of Lammertz et al.)
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k Boltzmann’s constant

k Component

k Concentration scale

k Degree of counterion condensation at infinite dilution (in model of

Lammertz et al.)

KPA Poly(potassium acrylate)

KPAM Potassium salt of copolymer of acrylic acid and acrylamide

lB Bjerrum length

LiCMC Lithium carboxymethylcellulose

M Cation

M Molecular mass

Mr rth moment of distribution function for molecular mass

Mn Number-averaged molecular mass

Mw Mass-averaged molecular mass

M�
w Relative molecular mass of water divided by 1,000

mi Molality of species i
m� Unit of molality m� ¼ 1 mol=ðkg waterÞ
m�

j Modified molality of species j (in model of Pessoa and Maurer)

MgPAM Magnesium salt of copolymer of acrylic acid and acrylamide

MO Membrane osmometry

MX Salt (cations M and anions X)
n Mole number

NA Avogadro’s number

np;diss Number of moles of dissociated repeating units

n
ðpÞ
freeCI

Number of moles of counterions originating from P (in Manning’s

theory)

n
ðsÞ
freeCI

Number of moles of counterions originating from S (in Manning’s

theory)

nT Total mole number

NaCMC Sodium carboxymethylcellulose

NaDS Sodium dextran sulfate

NaPA Poly(sodium acrylate)

NaPAM Sodium salt of copolymer of acrylic acid and acrylamide

NaPAMA poly(sodium acrylamido-co-trimethyl ammonium methyl methacry-

late)

NaPAMS Sodium salt of HPAMS

NaPES Poly(sodium ethylene sulfate)

NaPMAA Poly(sodium methacrylate)

NaPP Poly(sodium phosphate)

NaPSS Poly(sodium styrene sulfonate)

NaPVAS Poly(sodium vinyl sulfate)

NH4PA Poly(ammonium acrylate)

NMR Nuclear magnetic resonance

P Polyelectrolyte

P Polydispersity (Mw/Mn)
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p Pressure

pw Vapor pressure of water

PAAm Poly(allylamino hydrochloride)

PDADMAC Poly(diallyldimethyl ammonium chloride)

PEI Poly(ethyleneimine)

PMETAC Poly(2-(methacryloyloxy) ethyl trimethyl ammonium chloride)

PTMAC Poly(trimethyl ammonium methyl methacrylate)

PVA Poly(vinyl alcohol)

PVAm Poly(vinyl amine)

PVBTMAC Poly(vinyl benzene trimethyl ammonium chloride)

q Number of charges

qgl Surface parameter of the globular form of the polyelectrolyte

qi Surface parameter of species i (in model of Lammertz et al.)

qmax Maximum number of charges

qst Surface parameter of the stretched polyelectrolyte

R Universal gas constant

R Radius of a cylindrical cell around a polyion

r Exponent

r Distance

ri Volume parameter of species i (in model of Lammertz et al.)

T Temperature

UV/VIS Ultraviolet/visible light

V Volume

Vp Volume in Manning’s theory

VO Vapor pressure osmometry

xi Mole fraction of species i
X Anion or counterion

Xj Modified mole fraction of component j
X-DP Salt (with counterion X) of dextran phosphate

X-DS Salt (with counterion X) of dextran sulfate

zCI Absolute valency of counterion

zj Absolute valency of ion j
z�j Modified absolute valency of ions j (in model of Pessoa andMaurer)

zM Absolute valency of cation M
zX Absolute valency of anion X
zp Absolute valency of a repeating unit of polyelectrolyte P

Greek Symbols

a Constant (a ¼ 2) in Pitzer’s model

a Total degree of dissociation of the repeating units (in model of

Lammertz et al.)
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aji Nonrandomness parameter (in model of Nagvekar and Danner)

aji;ki Nonrandomness parameter (in model of Nagvekar and Danner)

b Dimensionless parameter

G Salt-exclusion parameter

Gi Activity coefficient (on molality scale) of species i (in model of Lammertz

et al.)

Gl;Z Activity coefficient (on molality scale) of species l in state Z (in model of

Lammertz et al.)

g Activity coefficient

gLK Dimensionless parameter in the theory of Lifson and Katchalsky

D Difference

DTFP Freezing point depression

e Relative permittivity of pure water

e0 Permittivity of vacuum

F Osmotic coefficient

Fp Osmotic coefficient (for pressure)

F0
p

Osmotic coefficient (for pressure) at infinite dilution

FT Osmotic coefficient (for temperature)

FðcÞ
s

Osmotic coefficient (for pressure) on molarity scale due to salt S

FðcÞ
pþs

Osmotic coefficient (for pressure) on molarity scale due to salt S and

polyion P
’p Volume fraction of the polyelectrolyte

fðrÞ Electrostatic potential that depends on radius r
yk Degree of condensation of a counterion k
yz Ratio in Manning’s theory

yð0Þz
Limit for yz in Manning’s theory

k Inverse radius of the ionic cloud (Debye–Hückel theory)

l Charge density parameter

lij Binary interaction parameter (in model of Pessoa and Maurer)

lð0Þij
Binary interaction parameter (in model of Pessoa and Maurer)

lð1Þji
Binary interaction parameter (in model of Pessoa and Maurer)

mi Chemical potential of component i
X Volume fraction of polyelectrolyte (in model of Lammertz et al.)

n Number of repeating units of a polyelectrolyte molecule

n� Number of dissociated repeating units of a polyelectrolyte molecule

nM Stoichiometric coefficient for cation M in salt MX
nX Stoichiometric coefficient for anion X in salt MX
p Osmotic pressure

Ygl Surface fraction of the polyelectrolyte in its globular shape

YL Surface fraction of group L
Yst Surface fraction of the polyelectrolyte in its stretched shape

r�i Specific density of pure solvent i
�r�i Molar density of pure solvent i
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si Parameter of species i (in model of Pessoa and Maurer)

tji Binary interaction parameter (in model of Nagvekar and Danner)

tji;ki Interaction parameter (in model of Nagvekar and Danner)

u�p Molar volume in Manning’s theory

�us;pure Molar volume of pure solvent s

ˆð0Þ Configurational parameter

ˆð1Þ Configurational parameter

Subscripts

A Repeating unit (in model of Lammertz et al.)

a Anionic component

c Cationic component

C Repeating unit that will never dissociate (in model of

Lammertz et al.)

CI Counterion

Cl Chloride ion

COI Coion

cond. CI contribution due to condensed counterions

D Repeating unit undergoing a chemical reaction (in model of

Lammertz et al.)

F Dissociated repeating unit (in model of Lammertz et al.)

Free CI Free counterions

Free COI Free coions

id.liq.mix. Ideal liquid mixture

id.mix. Ideal mixture

H Hydrogenium ions

K Potassium ion

k Contribution

local Local

LK Lifson and Katchalsky

M Cations

m Solvent component

Ma Manning’s theory

Mg Magnesium ion

MX Salt (cations M and anions X)
Na Sodium ions

p Polyelectrolyte

Pb Lead ions

pure liquid Pure liquid component

pure water Pure water

rp Repeating unit of polyelectrolyte
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sym Symmetrical convention

w Water

(w + s) In an aqueous solution of the salt

(w + s + p) In an aqueous solution of (salt + polyelectrolyte)

X Ion X

Superscripts

(c) On molarity scale

Comb. Combinatorial

E Excess

el Contribution from electrostatics

fv Free volume

id.mix. Ideal mixture

(k) Characterizes the concentration scale

LR Long-range

(m) On molality scale

ref Reference state

SLE Solid–liquid equilibrium

SR Short-range

vdW Van der Waals

(x) On mole fraction scale

1 Infinite dilution

Dconf Caused by a difference in the configuration (in model of Lammertz et al.)

1 Introduction

Polyelectrolytes are polymers of a single repeating unit (monomer) that is an

electrolyte or of several repeating units (monomers), where at least one of the

repeating units is an electrolyte. That electrolyte can dissociate in water and in

aqueous solutions resulting in negative or positive charges on the polymer back-

bone. Polyelectrolytes are very soluble in water, particularly when, in addition to

the ionic monomers, the other monomers are also hydrophilic. The large variety of

monomers means that there is a huge variety of polyelectrolytes. The number of

different repeating units and the number of each of those repeating units deter-

mines the primary structure of a polyelectrolyte, i.e., the chemical nature and the

molecular mass. However, that information is not sufficient to characterize a

polyelectrolyte. As typical of polymers, polyelectrolyte samples reveal a molecu-

lar mass distribution (polydispersity). Furthermore, when a polymer consists of
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more than a single repeating unit, the secondary structure is important for its

properties: the different repeating units might be statistically distributed or

arranged in, more or less uniform, blocks. The polymer can be a linear structure

or a branching one. It might have a certain shape in space (tertiary structure) that

can depend on the surrounding solution. All these parameters influence the proper-

ties of an aqueous solution of polymer, but there are more parameters when the

polymer has electrolyte groups. These electrolytes can be weak or strong electro-

lytes, resulting in different degrees of dissociation/protonation. The electrolyte

groups of the backbone might be all cationic or all anionic, but they might also be

partially cationic and partially anionic. Such polyelectrolytes are called polyam-

pholytes. There is another parameter that has an important influence on the proper-

ties of polyelectrolytes in aqueous solutions: the distance between the electrolyte

groups in the polymer backbone. When that distance is small, the attractive electro-

static forces between the ionic groups in the backbone and their counterions in the

aqueous solutions become so strong that, even if the repeating unit is a strong

electrolyte, one observes an ion pairing, i.e., some of the counterions condensate

(at least partially) with the ions of the backbone. Therefore, even at high dilution in

water such polyelectrolytes are not completely dissociated and the degree of disso-

ciation might depend on the composition of the surrounding aqueous phase. The

large number of parameters that influence the properties of aqueous solutions of

polyelectrolytes is reflected in the variety of areas where such solutions are found

and applied. Table 1 gives some typical examples of applications. These applica-

tions take advantage of the particular thermodynamic properties of aqueous solu-

tions of polyelectrolytes. Therefore, there is a need for methods to describe such

properties. In applied thermodynamics, the properties of solutions are described by

expressions for the Gibbs energy as a function of temperature, pressure, and

composition. From such equations all other thermodynamic state functions can

be derived.

There are many well-established models for the Gibbs energy of nonelectrolyte

solutions and also several methods to describe conventional polymer solutions.

However, the state of the art for modeling thermodynamic properties of aqueous

solutions of polyelectrolytes is far less elaborated. This is partly due to the particu-

lar features of such solutions but is also caused by insufficiencies in the knowledge

of the parameters that characterize a polyelectrolyte, for example, the polydisper-

sity and the different structures (primary, secondary etc.) of the polyelectrolytes.

The development and testing of thermodynamic models has always been based on

reliable experimental data for solutions for which all components are well char-

acterized. Such characterization is particularly scarce for biopolymers and biopo-

lyelectrolytes. Furthermore, such polymers are generally more complex than

synthetic polymers. Therefore, the present contribution is restricted to a discussion

of the thermodynamic properties of aqueous solutions of synthetic polyelectrolytes

that consist of only two different repeating units that are statistically distributed.

Furthermore, it is restricted to systems where sufficient information on the poly-

electrolyte’s polydispersity is available.
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2 Structure and Characterization of Polyelectrolytes

Polyelectrolytes are primarily characterized by the backbone monomers and the

electrolyte and/or proton-accepting groups attached to those monomers. Table 2

gives an overview of some of the most important anionic and cationic synthetic

polyelectrolytes. Styrene, the vinyl group, cellulose, and dextran are the most

important backbone monomers for hydrocarbonic polyelectrolytes. The most

important dissociating groups in synthetic, organic polyelectrolytes are sulfonic,

acrylic, benzoic, phosphoric, and sulfuric acid. By dissociation, such polymers

become electrically charged species, carrying negative charges. Therefore, such

polymers are also called “anionic polyelectrolytes,” whereas “cationic polyelec-

trolytes” have proton-accepting groups. By protonation, such formerly neutral

groups can be positively charged. The most important proton-accepting groups

are NRþ
3 and NHþ

2 . Short nomenclatures are often used to abbreviate the chemical

Table 1 Applications of polyelectrolytes

Application Product References

Stabilization of colloid

systems as dispersing

agents

Poly(acrylic acid), gelatin, sodium

carboxymethylcellulose

[1–6]

Sludge dewatering,

flocculating agents

Acrylamidecopolymers, Poly(diallyldimethyl

ammonium chloride)

[7, 8]

Retentions aids in paper

industry

Poly(ethyleneimine), cationic starches, poly

(diallyldimethyl ammonium chloride)

[9, 10]

Thickeners Gelatin, Sodium carboxymethylcellulose, pectin,

arab gum, carrageenan

[11]

Gelling agents Gelatin, pectin, carrageenan [12]

Temporary surface coatings for:

Textile industry Poly(acrylic acid) sodium salt, Sodium

carboxymethylcellulose, poly(acrylic acid)

ammonium salt

[12]

Capsules in pharmaceutical

applications

Gelatin, Sodium carboxymethylcellulose, cellulose

acetate phthalate, copolymers of methacrylic acid

[12]

Corrosion-protecting coatings Poly(styrene sulfonic acid), poly(acrylic acid) [12]

Cosmetic industry Copolymers of acrylic acid

Antistatic coatings Copolymers with styrene sulfonate units, cationic

polyelectrolytes

Adhesives for:

Food industry Gelatin [13]

Paper industry Sodium carboxymethylcellulose [14]

Dental material/dental

composites

Zinc polycarboxylate, polyacrylic acid-glass

cements, poly(methyl methacrylate)

[15, 16]

Controlled release of drugs

and responsive delivery

systems

Cellulose acetate phthalate, poly(dimethylamino

ethyl methacrylate-co-tetraethyleneglycol

dimethacrylate) gels

[15, 16]

Polymeric drugs Poly(N-vinyl pyrollidone-co-maleic acid),

sulfonated polysaccharides

[15, 16]

76 G. Maurer et al.



Table 2 Important anionic and cationic polyelectrolytes (cf. Scranton et al. [16])

Polyelectrolyte 

(Abbreviation)

Repeating unit Polyelectrolyte 

(Abbreviation)

Repeating unit

Poly(acrylic 

acid) 

(HPAA)

CH2 CH

COOH

n

Poly(vinyl
sulfuric acid)
(HPVAS)

CH2 CH

OSO3H

n

Poly(methacrylic 
acid) 

(HPMAA) CH2 C

COOH

CH3

n

Poly(vinyl
sulfonic acid)
(HPVS)

CH2 CH

SO3H

n

Poly(styrene

carboxylic acid) n
CH2 CH

COOH

Poly(2-
acrylamido-2-
methyl-1-propane
sulfonic acid)

(HPAMS)

n
NH

C

CH2

H CH3

SO3H

CH2 C

CH3

C
O

Poly(styrene
sulfonic acid)

(HPSS)

n
CH2 CH

SO3H

Poly(phosphoric
acid)
(HPP)

OH

O

O

P
n

Poly(vinyl
benzoic acid)

(HPVB)
n

CH2 CH

CH2COOH

Sodium dextran

sulfate

(NaDS)

O

O

OCH2

OH

OH

OSO3Na

n

Sodium
carboxymethyl-
cellulose 
(NaCMC) O

O

O

ROCH2

RO O R

OROR

CH2OROROR

n

R=H or CH2CO2Na
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formula. The abbreviation usually consists of two parts: one part stands for the

backbone and electrolyte group (cf. Table 2), the other for the (approximate)

molecular mass. A polyelectrolyte material rarely consists of one single type of

molecule, but of a variety of molecules of different molecular masses.

In principle, a distribution function f(M) has to be used to characterize thatmaterial:

f(M) dM is the fraction of polymers with a molecular mass between M � dM/2 and

M þ dM/2, with the normalization:

ð1
0

f ðMÞ dM ¼ 1: (1)

However, as such distributions are difficult to determine, it is common practice

to characterize a polymer sample by the number-average (Mn) and the mass-

average (Mw) molecular masses, which are the first members in a series of

moments:

Polyelectrolyte

(Abbreviation)

Repeating unit Polyelectrolyte

(Abbreviation)

Repeating unit

Poly(ethylene-
imine) 

(PEI)

NH CH2 CH2
n

Poly(vinyl amine)

(PVAm)
CH2 CH

NH2

n

Poly(trimethyl
ammonium
methyl

methacrylate) 

(PTMAC)

n
CH2 CH

CH3

C

O

O

CH2 CH2 N
+

CH

CH

CH
Cl–

Poly(allylamino
hydrochloride) 

(PAAm)

CH2 CH

CH2

NH2

n

HCl

Poly(diallyldimethyl
ammonium chloride)

(PDADMAC)

CH2

CH

CH2

CH2

CH

H2C

N
+

H3C CH3

n

Cl–

Cl–

Poly(vinylbenzene 
trimethyl
ammonium 
chloride)

(PVBTMAC)

Cl–

n
CH2 CH

CH2

H3C N
+

CH3

CH3

Poly(2-(meth-
acryloyloxy)
ethyl trimethyl
ammonium chloride)

(PMETAC)

n
CH2 CH

CH3

C

O

O

H2C

CH2

N
+

CH3H3C

CH3

Table 2 (continued)
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Mr ¼
ÐMi¼1
M¼0

f ðMÞMr dMÐM¼1
M¼0

f ðMÞMðr�1Þ dM
; (2)

with M1 ¼ Mn and M2 ¼ Mw, or by using one of those average molecular masses

and the polydispersity P, which is the ratio of Mw to Mn:

P ¼ Mw

Mn

: (3)

There might be a variety of different counterions in a polyelectrolyte, therefore,

the quota of different counterions can be used to further characterize a polyelectro-

lyte. That quota can undergo some changes, e.g., when a polyelectrolyte is dis-

solved in an aqueous solution of electrolytes or of other polyelectrolytes. The

degree of dissociation of a polyelectrolyte is also often used for characterization.

However, from the view of thermodynamics, that property depends on the sur-

roundings and therefore it is more suited for characterizing the state of a polyelec-

trolyte instead of characterizing the polyelectrolyte itself.

Various experimental methods such as potentiometric titration, conductometry,

polarography, electrophoresis, spectroscopy (NMR, UV/VIS), osmometry, light

scattering (static and dynamic laser light scattering, X-ray scattering, and neutron

scattering), viscometry, sedimentation, and chromatography (e.g., size exclusion

chromatography and gel electrophoresis) have been used to characterize polyelec-

trolytes in aqueous solutions (for a recent review cf. Dautzenberg et al. [12]).

Experimental information on the average molecular mass of a polyelectrolyte is

mostly derived from laser light scattering, osmometry or viscometry, i.e., from

methods that are also used to determine the thermodynamic properties of polyelec-

trolyte solutions, e.g., the activity of water. The polydispersity of polyelectrolytes is

usually determined by size-exclusion chromatography. Potentiometric titration is

often used to determine the degree of functionalization and the chemical reaction

equilibrium constants for the dissociation/protonation reactions, i.e., properties

characterizing the number of anionic groups saturated by hydrogen ions (in an

anionic polyelectrolyte) or the number of protonated groups (in a cationic polyelec-

trolyte). The number of ionic groups in an anionic polyelectrolyte is sometimes

determined by atomic absorption spectroscopy. X-ray structural analysis and neu-

tron scattering are typical methods for investigating the structure of polyelectro-

lytes. From the viewpoint of thermodynamics, a polyelectrolyte should be

characterized by all single polymers comprising the polyelectrolyte sample, the

number of functional groups (ionic as well as neutral groups), the state of the ionic

groups (e.g., number and nature of dissociable counterions of anionic groups as well

as the number of protonated cationic groups), the secondary structure, and the

concentration of any single polyelectrolyte in the sample. However, that informa-

tion is almost never available. In most cases, the chemical nature of such polyelec-

trolyte samples is only characterized by the backbone monomers and the kind of
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ionic groups, as well as an estimate of the ratio of electrolyte groups to backbone

monomers. The accessible information on the counterions is often limited to the

chemical nature and a more or less rough estimate for the ratio of different counter-

ions, e.g., the ratio of hydrogen counterions to sodium counterions of an anionic

polyelectrolyte. Very often, the degree of polymerization is given only as an

estimate of either the number-averaged or the mass-averaged molecular mass, but

detailed information on the polydispersity is missing. Thus, the characterization of

the polyelectrolyte is often far from satisfactory (at least from the viewpoint of

thermodynamics) and, consequently, reported thermodynamic data are often of very

limited use, e.g., for testing and developing of models for describing and predicting

the thermodynamic properties of such solutions.

3 Experimental Data for the Vapor–Liquid Equilibrium

of Aqueous Polyelectrolyte Solutions

Because polyelectrolytes are nonvolatile, the most important thermodynamic prop-

erty for vapor + liquid phase equilibrium considerations is the vapor pressure of

water pw above the aqueous solution. Instead of the vapor pressure, some directly

related other properties are used, e.g., the activity of water aw, the osmotic pressure

p, and the osmotic coefficient F. These properties are defined and discussed in

Sect. 4. Membrane osmometry, vapor pressure osmometry, and isopiestic experi-

ments are common methods for measuring the osmotic pressure and/or the osmotic

coefficient. A few authors also reported experimental results for the activity coeffi-

cient gCI of the counterions (usually determined using ion-selective electrodes) and

for the freezing-point depression of water DTFP. The activity coefficient is the ratio
of activity to concentration:

gðkÞCI ¼ a
ðkÞ
CI

k
; (4)

where k in the denominator is used to express a certain concentration scale (e.g.,

mole fraction x, molarity c or molality m). Superscript (k) indicates that the activity
coefficient and the activity are defined using a certain reference state, which

depends on the selection of the scale used to express the composition of the

solution. Some authors report experimental data for the freezing point depression

of an aqueous solution:

DT ¼ TSLE � TSLE
purewater; (5)

and convert that data to an osmotic coefficient FðkÞ
T by:

FðkÞ
T ¼ DT

DTðkÞ
id:liq:mix:

; (6)
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where DTðkÞ
id:liq:mix: is the freezing point depression of an ideal aqueous solution of the

polyelectrolyte. Subscript T to the osmotic coefficient F indicates that the osmotic

coefficient is here defined with the freezing point depression. Superscript (k) is
again used to indicate that the definition of the ideal mixture depends on the chosen
concentration scale. However, it also depends on an assumption about the dissocia-

tion of the polyelectrolyte. It is common practice to assume that in an ideal mixture

the polyion is completely dissociated.

3.1 Aqueous Solutions of a Single Polyelectrolyte

Tables 3–6 give a survey of literature data for the vapor–liquid equilibrium of

aqueous solutions of a single polyelectrolyte with various counterions. Abbrevia-

tions (shown in Table 2) are used to characterize the polyelectrolyte and the experi-

mental procedures (MO membrane osmometry; DMO differential membrane

osmometry; VO vapor pressure osmometry; ISO isopiestic experiments; EMF

electromotive force measurements including also measurements with ion-selective

electrodes as well as titration; FPD freezing point depression; GDM gel deswelling

investigations). Table 3 gives a survey for aqueous solutions of poly(styrene

sulfonic acid).

Table 3 Survey of literature data for thermodynamic properties of aqueous solutions of polyelec-

trolytes with styrenesulfonic acid as the backbone monomer (without any other salt)

Molecular

mass

(� 10�5)

Counterion Counterion

molality

Method Exp.

prop.

References

0.4 and 5 Na+; H+ 0.01–1.4 VO Fp [17]

0.8–7.54 ISO Fp

5 H+, Li+, Na+, K+, Cs+, NHþ
4 ,

N+R1; [R1� (CH3)4,

(C2H5)4, (C4H4)4]

0.05–1.1 DMO Fp [18]

0.4–5.2 Na+, H+, Ca++, Cu++, Cd++ 10�3–10�2 MO Fp [19]

0.4–5.2 Cu++, Na+ 10�3–10�2 MO Fp [20]

0.2–1.0 Na+, Tl+, Cd++, Ca++ 5 � 10�4–10�2 MO, EMF Fp; gCI [21]

0.4 Li+, Na+, K+, Cs+ 6 � 10�3–0.3 FPD FT [22]

0.4 Cd++, Mg++ 6 � 10�3–0.15 FPD FT [23]

4.6 H+, Li+, Na+, K+, Ca++,

Ba++, NHþ
4 , N

+R1;

[R1� C3H7, (C2H5)4,

(CH3)4, CH2C6H5]

0.04–3.3 ISO Fp [24]

5 Na+ 0.7–1.44 MO, VO p [25]

4.3 Na+ 4 � 10�4–0.37 MO p [26]

5 Na+ 0.4–2.7 ISO p [27]

1.3 Na+ 5 � 10�4–

4 � 10�3
ISO aw [28]
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Figure 1 shows some typical experimental results for the osmotic coefficient of

aqueous solutions of poly(sodium styrene sulfonate) (NaPSS). The osmotic coeffi-

cient FðmÞ
p is plotted versus the concentration of the polyelectrolyte (expressed as

the molality of the “repeating units” or “monomer groups”). The figure reveals that

the osmotic coefficient of a diluted aqueous solution of a polyelectrolyte is well

below unity even at very small concentrations, e.g., at monomer-group molalities

below about 0.001 mol/kg. It also reveals that, at low polymer concentrations, the

influence of the concentration of the polyelectrolyte on the osmotic coefficient is

rather small (e.g., when the monomer-group molality is increased from about

0.0002 to about 0.1 mol/kg, the osmotic coefficient of an aqueous solution of

high molecular weight NaPSS increases only from about 0.2 to about 0.25), whereas

at higher concentrations the osmotic coefficient increases strongly with increasing

polymer concentration (e.g., from about 0.4 to about 0.8, when the monomer-group

molality is increased from about 1 to 10 mol/kg). Furthermore, experimental results

from different sources often do not agree with each other, but it seems that most

experimental results confirm that there is only a very small influence of the

molecular mass (M) of the polyelectrolyte on the osmotic coefficient.

Table 4 gives a similar survey for other polyelectrolytes. Figure 2 shows the

influence of the backbone monomer of the polyelectrolyte on the osmotic coefficient.

At constant polyelectrolyte concentration (again expressed as the molality of the

repeating units), the osmotic coefficients might differ by, for example, a factor of

five. For example, at 25�C, the osmotic coefficient of a 1 mol/kg aqueous solution of

monomer groups of poly(sodium ethylene sulfate) (NaPES) is about 0.22, whereas

Fig. 1 Osmotic coefficient of aqueous solutions of NaPSS of varying molecular mass (M) at 25�C
(unless otherwise indicated): open triangles 4 � 104 (0�C) [22]; times 4 � 104 [19]; right-point-
ing triangle 4 � 104 [17]; star 4.3 � 105 [26]; closed circles 5 � 105 [17]; open diamonds
5 � 105 [27]; open squares 5 � 105 (35�C) [25]; open circles 5 � 105 (no temperature given)

[18]; closed triangles 5 � 105 [19]
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Table 4 Survey of literature data for thermodynamic properties of aqueous solutions of a single

polyelectrolyte at around 300 K (without any other salt)

Polymer Molecular

mass/

(� 10�5)

Counterion Counterion

molality

Method Exp.

prop.

References

HPMSS 1.5 Na+, H+, Ag+, Tl+, Zn++,

Cd++, Pb++
4 � 10�4–0.1 EMF gCI [29]

[30]

HPAA 2.6 Na+/H+ 0.28–0.77 MO,

VO

p [25]

HPAA 0.012 Na+ 0.1–3.1 ISO Fp [31]

HPAA 0.46 Na+/H+, N+ (n-C4H9)4/

H+, Li+, K+, N+R1;

[R1� (C2H5)4,

(CH3)4, (n-C3H7)4 ]

0.2–4.5 ISO Fp [32]

HPAA 1.2 Na+ 4 � 10�3–

0.23

EMF gCI [33]

HPAA 1.2 Na+ 1.7 � 10�3–

0.25

EMF gCI [34]

CMC 2.5 Na+, Li+, K+, N+R1;

[R1� (C2H5)4,

(CH3)4,

(n-C4H9) 4]

0.16–2 ISO Fp [32]

PMETAC 1.7 Cl� 0.38–1.1 MO,

VO

p, Fp [25]

PAAm 0.5 Cl� 0.44–1.9 MO,

VO

p, Fp [25]

HPVB Na+ 0.32–0.77 MO,

VO

p, Fp [25]

HPVAS 2.5 Na+, Li+, K+, Ca++, Ba++ 0.11–2.5 ISO Fp [35]

HPP 0.61 Na+ 0.13–2.3 ISO Fp [36]

HPES 1 H+, Li+, Na+, K+, NHþ
4 ,

N+R1; [R1� (C2H5)4,

(CH3)4, (n-C3H7)4,

(n-C4H9)4,

(CH3)3CH2C6H5]

0.19–6.1 ISO Fp [37]

PVA/

HPVAS

1.7 Co, Ni, Cu++ 5 � 10�4

–0.12

GDM aw [38]

PVA/

HPVAS

0.7–0.9 Na+, Cu++, Li+, La,

Cs+, Mg++
5 � 10�4–0.2 GDM aw [39]

HPAS 0.1 Na+, Li+, Cs+ 1 � 10�3–0.3 VO/

MO

Fp [40]

HPAA 0.03; 0.07 Na+, NH4
+ 7 � 10�4

–4 � 10�3
ISO aw [41]

HPMAA 0.06; 0.14 Na+ 7 � 10�4–

3 � 10�3
ISO aw [41]

HPES 0.02; 0.07 Na+ 4 � 10�4–

5 � 10�3
ISO aw [41]
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it is about 0.44 when ethylene sulfate is replaced by phosphate (i.e., for NaPP),

and is 0.6 and 0.8 for sodium carboxymethylcellulose (NaCMC) and poly(sodium

vinyl sulfate) (NAPVAS), respectively.

Fig. 2 Osmotic coefficient of aqueous solutions of a polyelectrolyte from isopiestic measurements

at 25�C [32, 35–37]: open triangles NaPVAS,M ¼ 2.5 � 105; open diamonds NaCMC,M ¼ 2.5

� 105, DS ¼ 0.95; open squares NaPP, M ¼ 6.1 � 104; open circles NaPES, M ¼ 1 � 105. DS
degree of substitution (carboxymethyl groups per glucose unit)

Fig. 3 Influence of counterion on the osmotic coefficient of aqueous solutions of poly(acrylates) at

25�C from isopiestic measurements (Asai et al. [32]): open squares �N(n-C4H9)4; open diamonds
�N(n-C3H7)4; open triangles�N(n-C2H5)4; open circles �N(n-CH3)4; closed circles �Li; closed
diamonds �K
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Figures 3 and 4 show some typical examples of the influence of the nature of the

counterion of a polyelectrolyte on the osmotic coefficient. The osmotic coefficient is

typically very small for inorganic counterions, but it can be increased by a factor of

about 10 by organic counterions, for the same temperature and polyelectrolyte

monomer-group molality. Figure 4 shows that the osmotic coefficient of an aqueous

solution of a poly (ethylene sulfonate) increases in the counterion series K+, Li+, H+,

NHþ
4 , N

+(CH3)3CH2C6H5, N
+(CH3)4, N

+(C2H5)4, N
+(n-C3H7)4, and N+(n-C4H9)4.

3.2 Aqueous Solutions of a Single Polyelectrolyte and a Low
Molecular Weight Strong Electrolyte

There have been many investigations on the influence of a low molecular weight

strong electrolyte on the thermodynamic properties of an aqueous solution of a

polyelectrolyte. A survey on literature data is given in Table 5. The experimental

methods already mentioned above are also common for investigating aqueous solu-

tions of both a polyelectrolyte and a salt. However, also equilibrium dialysis (EQDIA)

and EMF-measurements with ion-selective electrodes have been used in such experi-

mental investigations. In EQDIA, an aqueous polyelectrolyte solution and an aqueous

solution of a lowmolecular weight salt are separated by amembrane that is permeable

to water as well as to the ions of the salt and the counterions of the polyelectrolyte. In

phase equilibrium, the concentration of the free ions in the coexisting phases are

Fig. 4 Influence of counterion on the osmotic coefficient of aqueous solutions of poly(ethylene

sulfonates) at 25�C from isopiestic measurements by Ise and Asai [37]: open squares �N(n-
C4H9)4; open diamonds �N(n-C3H7)4; open triangles �N(n-C2H5)4; times �N(n-CH3)4; open
circles N(CH3)3CH2C6H5; +,�NH4; filled diamonds�H; closed circles�Li; closed triangles�K
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determined, e.g., by titration or by ion chromatography. The results are often reported

as the “degree of condensation” yk of a counterion k or the “salt-exclusion parameter”

G. yk is the degree of electrolyte groups in the polymer that are neutralized by ionic

species k:

yk ¼ ck;b
ncp

; (7)

where ck, b is the molarity of monomeric electrolyte groups saturated with counterion

k, n is the number of repeating units, and cp is the molarity of the polyelectrolyte. The

salt-exclusion parameter G is the ratio of the difference in the molarity cs of the
counterion on both sides of the membrane to the molarity of (monomer) electrolyte

groups of the polyelectrolyte cp in the aqueous phase:

G ¼ cs;ðwþsÞ � cs;ðwþsþpÞ
cp

: (8)

When ion-selective electrodes have been used, the activity coefficient of the

counterions is sometimes presented as a function of the “charge density parameter”

l (from the theory of Lifson and Katchalsky):

l ¼ e2

4pee0kTb
; (9)

where e, e0, e, k and b are the proton charge, permittivity of vacuum, relative

permittivity of pure water, Boltzmann’s constant, and the distance between two

electrolyte groups in a polyelectrolyte backbone, respectively.

Figure 5 shows some typical results for the osmotic pressure p of aqueous

solutions of NaPSS and NaCl. At high ionic strength, the slope of the ratio of

osmotic pressure to the (monomer) molarity cp does not depend on the concentra-

tion of the polyelectrolyte. That slope increases with decreasing ionic strength and –

at constant, but lower ionic strength – with increasing polymer concentration. In

such experiments, the ionic strength is adjusted by the amount of dissolved NaCl; a

high ionic strength causes a condensation of sodium ions to the polyelectrolyte

backbone. The osmotic pressure is primarily caused by the added salt, and small

amounts of the polyelectrolyte cause a change in the osmotic pressure very similar

to that observed in an ideal solution. The strong increase of the osmotic pressure

with decreasing ionic strength, but constant polymer concentration, is at least

partially due to the increasing degree of dissociation of electrolyte groups of the

polymer.

When a low molecular weight salt MX is dissolved in an aqueous solution of an

anionic polyelectrolyte of counterions CI, both cations (CI and M) compete for the

anionic groups in the polymer. Such competition could result in a change in the

degree of dissociation of the ionic groups, i.e., the ratio of charged to neutral

repeating units in the backbone. Some examples are shown in Fig. 6. When the

lead ion concentration is increased in an aqueous solution of 0.001 mol/dm3
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sulfonic acid groups at constant ionic strength [fixed by a mixture of NaNO3 þ Pb

(NO3)2], the relative amount of sulfonic acid groups neutralized by lead ions (yPb)
also increases and, consequently, the relative amount of sulfonic acid groups

neutralized by sodium ions (yNa) decreases. However, the decrease of yNa is not
completely compensated by the increase of yPb and, therefore, the relative amount

of dissociated sulfonic groups increases. yPb decreases and yNa increases when the

ionic strength is increased at constant lead concentration. The sum (yPb þ yNa) also
increases because at the higher ionic strength more ionic species compete for the

charged repeating units of the backbone. When, at constant ionic strength, sodium

nitrate is replaced by nitric acid, yPb increases and yNa decreases and the sum (yPbþ
yNa) reveals a small change.

There are also many reports on the application of low angle static light scatter-

ing, particularly laser light scattering, in investigations of aqueous polyelectrolyte

solutions. Light scattering experiments are common for determining the mass-

averaged molecular mass of a polymer, but the technique has also been applied to

the determination of osmotic virial coefficients in aqueous solutions.

Osmotic virial coefficients are commonly used to express the osmotic pressure p
as a function of solute concentrations. For an aqueous solution of a single solute the

osmotic virial equation is:

p
RT

¼ ~cs
Mn

þ ~c2sAs;s þ ~c3s As;s;s þ :::; (10)

Fig. 5 Reduced osmotic pressure vs. polymer concentration for NaPSS at 25�C in aqueous NaCl

solutions of various ionic strength I: open squares I = 0.005 mol/dm3; open circles I = 0.01 mol/

dm3; open triangles I = 0.02 mol/dm3; open diamonds I = 0.05 mol/dm3; open inverted triangles
I = 0.1 mol/dm3; crosses 0.5 mol/dm3 [26]
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a

b

Fig. 6 (a) Degree of condensation of univalent counterions vs. molar concentration cPb of divalent
Pb ions in NaPSS at 25�C, M ¼ 3.54 � 105, csulfonated groups ¼ 0.001 mol/dm3. Closed diamonds
PSS/Pb/Na, I ¼ 0.02 mol/dm3; open diamonds PSS/Pb/H, I ¼ 0.02 mol/dm3; closed triangles
PSS/Pb/Na, I ¼ 0.01 mol/dm3; open triangles PSS/Pb/H, I ¼ 0.01 mol/dm3 [46]. (b) Degree of

condensation of divalent counterions vs. molar concentration cPb of divalent Pb-ions in NaPSS at

25�C, M ¼ 3.54 � 105, csulfonated groups ¼ 0.001mol/dm3. Closed diamonds PSS/Pb/Na, I ¼ 0.02

mol/dm3; open diamonds PSS/Pb/H, I ¼ 0.02 mol/dm3; closed triangles PSS/Pb/Na, I ¼ 0.01

mol/dm3; open triangles PSS/Pb/H, I ¼ 0.01 mol/dm3 [46]
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where ~cs is the mass density of solute s and As;s and As;s;s are the second and third

osmotic virial coefficients, respectively, of solute s in the solvent. In nearly all light
scattering experiments of aqueous solutions of a polyelectrolyte, the solvent was

not only pure water but an aqueous solution of a salt, and the experimental results

were interpreted using (10). Then, the evaluated data for the osmotic virial coeffi-

cients depend on the nature and the concentration of that salt. Table 6 gives a survey

of literature sources for the second osmotic virial coefficients of a single polyelec-

trolyte in an aqueous solution from light scattering experiments. The second

osmotic virial coefficient is determined by extrapolating experimental results to

infinite dilution. Light scattering is particularly suited for the investigation of such

highly diluted mixtures.

However, even when the polymer contains no ionic groups the extrapolation

might be rather difficult (e.g., Hasse et al. [70], Kany et al. [71, 72]). Figure 7 shows

a typical example of the influences of the molecular mass and the concentration of a

salt on the second osmotic virial coefficient of a polyelectrolyte in water. The

second osmotic virial coefficient increases considerably with decreasing salt con-

centration. The influence of the molecular mass is less distinct and often hidden by

the scattering of the experimental data, particularly if that data is from different

literature sources. In an aqueous solution of a strong electrolyte, the second osmotic

virial coefficient of polyelectrolytes with different backbone monomers can vary by

about one order of magnitude.

Table 6 Survey of literature data for the second osmotic virial coefficients of a single electrolyte

in an aqueous solution from light scattering investigations

Polymer Polymer

concentration ~cp

Salt Salt

concentration cs

References

(g/dm3) (mol/dm3)

NaPSS 0.5–3 NaCl 0.005–4.2 [57]

Na/HPSS < 0.8 Na/H/NO3 0.005–3.7 [47]

NaPSS; Pb/

HPSS

0.4–3 NaNO3, HNO3,

Pb(NO3)2

0.005–2 [58]

KPSS KCl 0.1 [59]

NaPA 0.1–2 NaCl 0.01–1 [59]

HPAA 0.1–3 NaCl 0.01–1 [60, 61]

NaBr 1.5

CaCl 0.1

NaCMC 0.1–4 NaCl 0.001–0.5 [62]

NaCMC 0.2–0.8 NaCl 0.005–0.5 [63]

NaPAMS – NaCl 0.01–5 [64]

NaPAMA – NaCl 1 [65]

PDADMAC – NaCl 0.5 [66]

PDADMAC – NaCl 1 [67]

PAAm 1.87 NaCl 0.05–3 [68]

PTMAC – NaCl 1 [65]

PTMAC – NaCl 0.1–4 [69]
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4 Gibbs Energy of Aqueous Solutions of Polyelectrolytes

For several reasons, it is rather difficult to develop a reliable method for describing

(i.e., correlating and predicting) the thermodynamic properties of aqueous solutions

of polyelectrolytes. The thermodynamics of polymer solutions in nonaqueous

systems as well as of aqueous electrolyte solutions are still major areas of research

and, consequently, the situation is less satisfactory for aqueous solutions of poly-

electrolytes, for which the dissociation reactions have to be taken into account. This

section reviews the most important features of some methods of modeling the Gibbs

energy of aqueous polyelectrolyte solutions. The Gibbs energy of an aqueous

solution is the sum of contributions from all (solute plus solvent) species i:

G ¼
X
i

nimi; (11)

where ni and mi are the number of moles and the chemical potential of component i
(i.e., of the solvent and the solutes), respectively. It is common to split the Gibbs

energy into two parts, a contribution from ideal mixing and an excess contribution:

G ¼ Gid:mix: þ GE: (12)

Fig. 7 Second osmotic virial coefficient of sodium poly(styrene sulfonate) of varying molecular

mass (M) vs. the concentration of added NaCl: squares (23.4 � 105); diamonds (22.8 � 105);

triangles (15.5 � 105); circles (10 � 105); crosses (3.9 � 105); plus (3.2 � 105) data from

Takahashi et al., 25�C [57]; half-closed triangles (12.2 � 105); stars (7.3 � 105); inverted
triangles (3.2 � 105) data from Nordmeier, 20�C [58]
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As the Gibbs energy is the sum of contributions from all components,Gid:mix: and

GE are also sums of contributions by all components:

Gid:mix: ¼
X
i

nimid:mix:
i ; (13)

GE ¼
X
i

nimEi (14)

or

G ¼
X
i

niðmrefi þ RT ln aiÞ: (15)

Therefore, the following relation holds:

mi ¼ mid:mix:
i þ mEi ¼ mrefi þ RT ln ai: (16)

By definition, component i experiences in an ideal mixture the same inter-

molecular forces as in the reference state and therefore all differences between

mid:mix:
i and mrefi are caused by differences in the concentration (i.e., dilution) only:

mid:mix:
i ¼ mrefi þ RT ln aid:mix:

i : (17)

Consequently, the activity of component i in an ideal mixture, aid:mix:
i , is known

from the composition of the real solution. However, the actual expression for aid:mix:
i

depends on the choice of reference states and the concentration scale applied. The

reference state for the solvent (in this case water) is usually the pure liquid at the

temperature and pressure of the mixture:

mrefs ¼ ms; pure liquidðT; pÞ: (18)

However, various reference states are used for a dissolved component. One

common reference state is a hypothetical solution of that component in water at a

concentration of 1 mol/kg water (i.e., a one molal solution) where the solute

experiences interactions only with water, i.e., as if infinitely diluted in water.

With that reference state, it is also common practice to replace the activity of a

solute species i by the product of molality mi and activity coefficient gðmÞi :

a
ðmÞ
i ¼ mig

ðmÞ
i ; (19)

where superscript (m) indicates both the reference state and the concentration scale.
The activity coefficient of a solute species i becomes unity in an ideal solution and,
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consequently (as follows from the Gibbs–Duhem equation), the activity of the

solvent (represented by subscript s) in an ideal mixture is:

ln a
ðmÞ
s;id:mix: ¼ � 1000

Ms

X
i6¼s

mi; (20)

where i represents any (but only) solute species.

Another common reference state for a solute is a hypothetical solution of one

mole of that solute in one liter of water (i.e., a one molar solution) where the solute

experiences interactions only with water, i.e., as if infinitely diluted in water. With

that reference state, it is also common practice to replace the activity of a solute

species i by the product of molarity ci and activity coefficient gðcÞi :

a
ðcÞ
i ¼ cig

ðcÞ
i ; (21)

where superscript (c) indicates both the reference state and the concentration scale.

The activity coefficient of a solute species i becomes unity in an ideal solution

and, consequently (following again from the Gibbs–Duhem equation), the activity

of the solvent s is:

ln a
ðcÞ
s;id:mix: ¼ � 1

�r�s

X
i 6¼s

ci; (22)

where �r�s is the molar density of water (in moles per liter).

As usual, the following relations also hold for the excess part of the chemical

potential of a solute i and a solvent s:

mEi ¼ RT ln
ai

ai;id:mix:

� �
i

; (23)

mEs ¼ RT ln
as

as;id:mix:

� �
: (24)

One has to keep in mind that the excess parts of the chemical potentials depend

on the selection of the reference state for a solute component, as both the activity of

a solute component and the activity of the solvent in an ideal mixture depend on

the reference states of the solutes. The activity coefficients of a solute on molality

scale, gðmÞi , and on molarity scale, gðcÞi , are related by:

gðcÞi ¼ gðmÞi

mi

ci
r�s ; (25)

where r�s is the specific density of the pure solvent in kg/dm3.
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Most methods assume that there are several contributions to the excess Gibbs

energy:

GE ¼
X
k

GE
k ; (26)

where k represents such a contribution. More details on such contributions are given

below.

For describing the thermodynamic properties of aqueous electrolyte solutions

one often uses the osmotic pressure p:

p ¼ � RT

�us;pure
ln as; (27)

where �us;pure is the molar volume of the pure solvent and the osmotic coefficientFp:

Fp ¼ p
pid:mix:

¼ ln as
ln as;id:mix:

(28)

The numerical value of the osmotic coefficient depends on the selection of the

reference state of the solutes, whereas the number for the osmotic pressure does not

depend on that reference state.

5 Thermodynamic Models

The fundamentals of the thermodynamic modeling of aqueous solutions of poly-

electrolytes were established by Lifson and Katchalsky [73, 74]. Their model was

extended by various authors. For example, Dolar and Peterlin [75] extended it to

polyelectrolytes with two different counterions. One of the most important exten-

sions was presented by Manning in a series of papers. The new fundamental idea

introduced by Manning is the so-called counterion condensation concept. That

theory was further extended by Manning [76–78] and others. Manning’s theory of

counterion condensation was adopted in more recent work, where his results were

applied in a more or less straightforward manner. Manning’s concept has been

supported by molecular dynamic simulations of polyelectrolyte solutions, showing

the changes in the polymer backbone configuration and the counter ion condensa-

tion, e.g., by Stevens and Kremer [79].There are other examples for the solution of

the Poisson–Boltzmann equation, which use other hypotheses about the boundary

conditions for which the equation is solved. The examples are more or less related

to the work cited before. The model by Feng et al. [80], who considered the

presence of salts in the aqueous solution, is an interesting example. There are

other interesting examples of extensions, such as those presented by Ospeck and
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Fraden [81], who solved the Poisson–Boltzmann equation for a system of two

cylinders confined between two plates, and by Dahnert and Huster [82, 83], who

solved the Poisson–Boltzmann equation for a plate-like polyelectrolyte immersed

in a salt solution. Rödenbeck et al. [84] solved the same equation using the

approximation of elementary cells around a symmetrically charged central body.

The use of cavity-correlation functions was investigated by Jiang et al. [85, 86].

However, using the Poisson–Boltzmann equation for such systems has also

attracted some criticism. For example, Blaul et al. [87] compared results derived

using the Poisson–Boltzmann equation with experimentally determined osmotic

pressure data, and concluded that the difference between the predicted and the

experimental behavior is due to some deficiencies of the model, for example, an

insufficient treatment of ion–ion correlations. Deserno et al. [88] found that the cell

model systematically overestimates the osmotic coefficient. Colby et al. [89]

showed that, in the semidilute range of concentrations, the hypotheses used to

solve the equations are no longer valid. Diehl et al. [90] mentioned that short-

range interactions between the polymer backbones might not be negligible. Many

other investigations, for example, by Monte Carlo simulations (Chang and Yethiraj

[91]), by molecular dynamic simulations (Antypov and Holm [92]) and by field-

theoretical methodologies (Baeurle et al. [93]) were conducted to achieve a better

understanding of the behavior of polyelectrolyte solutions. Such investigations are

important from a more theoretical point of view. However, it is very difficult either

to apply them directly or to use their results in a more indirect way for engineering

calculations. That statement particularly holds for aqueous solutions containing a

polyelectrolyte and other compounds such as salts and/or neutral polymers. The

difficulties are related to computational issues (which may still be an impediment),

as well as to the absence of sufficient information. Therefore, despite the large

amount of theoretical work, there is still a great need for simplified models that can

be applied to the description of phase equilibrium in polyelectrolyte aqueous

solutions at medium and high polyelectrolyte concentrations. A similar statement

holds for the so-called scaling-law approach (cf. [94–100]).

This contribution is therefore restricted to the models introduced by Lifson and

Katchalsky as well as by Manning on one side, and to the extensions and modifica-

tions of these models by Danner et al. [101, 102] and by members of our own

research group as they seem to have the most potential for applications in chemical

engineering.

5.1 Cell Model of Lifson and Katchalsky

The model of Lifson and Katchalsky [74] is an extension of the Debye–Hückel

theory of highly diluted aqueous solutions of strong (low molecular weight) elec-

trolytes to polyelectrolyte solutions. Lifson and Katchalsky start from the idea that

an aqueous solution of a polyelectrolyte reveals a microscopic structure. That

structure is caused by two competing effects: the electric charges on the backbone
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monomers (that tend to stretch the polyelectrolyte) and the tendency of the poly-

electrolyte to increase its entropy by forming globular or entangled coils (at low or

high polymer concentrations, respectively). As shown in Fig. 8, the polyelectrolyte

backbone is modeled as a stretched cylinder of radius a and length h. That cylinder
is surrounded by another cylindrical cell (radius R and length h). The electrical

charge on the backbone is approximated by a uniform charge on the surface of the

inner cylinder. The counterions are dissolved in the cylindrical space between radii

a and R, where they form an ionic cloud. The radius R depends on the concentration

of the polyelectrolyte. It is low in highly concentrated solutions and increases with

decreasing concentration to reach infinity in an infinitely diluted solution. The

electrostatics in that cloud are described by the Poisson–Boltzmann equation. In a

manner analogous to the Debye–Hückel theory, the electrostatic potential caused

by the interactions between the stretched backbone on one side and the surrounding

counterions on the other side is calculated by solving the Poisson–Boltzmann

differential equation. The electrostatic potential ’(r) in the cylindrical space

between the radii a and R (a � r � R) is:

’ðrÞ ¼ kT

e
ln

2l

b2
r2

ðR2 � a2Þ sinh
2 b ln Arð Þ½ 	

� �
; (29)

where l is a (dimensionless) charge density parameter that describes the charge

density on the polyelectrolyte’s backbone.When the repeating unit is a 1:1 electrolyte,

that parameter becomes:

l ¼ lB
b
; (30)

where lB is the Bjerrum length:

lB ¼ e2

4pee0kT
; (31)

which characterizes the solvent through its relative dielectric constant e. Parameters

b, e, and e0 are the length of that repeating unit, the elementary charge, and the

permittivity of vacuum, respectively, The two other parameters A (which is an

Fig. 8 Cell model of Lifson

and Katchalsky [74] showing

radii a and R
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inverse length) and b (which is dimensionless) are determined from the condition of

electroneutrality in the cylindrical cell of radius R and from the condition that at

r ¼ R, the electrostatic potential ’(r) has to reach an extreme (for symmetry

reasons). As long as the charge density parameter l is “small” parameter b is a

real number (between zero and one), whereas it is an imaginary number (between

zero and 1.0i) for “large” charge densities. The distinction between “small” and

“large” depends on the polyelectrolyte concentration. When b becomes imaginary,

b has to be replaced by bj j in (29). Consequently there are two different regions

where the remaining parameters (A and b) have to be determined:

When b is real:

l ¼ 1� b2

1þ b coth bgLKð Þ ; (32)

1þ b coth b ln ARð Þ½ 	 ¼ 0: (33)

When b is imaginary:

l ¼ 1þ bj j2
1þ bj j cot bj jgLKð Þ ; (34)

b lnAþ bj j lnRþ arctan bj j ¼ 0; (35)

where gLK is another dimensionless parameter:

gLK ¼ ln
R

a
(36)

that is related to the volume fraction fp of the polyelectrolyte in the aqueous

solution:

fp ¼ ln
a

R

� �2
: (37)

Unfortunately, there is no analytical solution to determine A and b. But at infinite
dilution (i.e., when gLK ! 1 ) one finds from (32) and (33):

b ¼ 1:0� l for l � 1 and b ¼ 0:0 for l > 1: (38)

Figure 9 shows the results for b(l, gLK ) as calculated from (33) to (35).

Lifson and Katchalsky [74] determined the influence of the electrostatic poten-

tial ’(r) on the thermodynamic properties of an aqueous solution of a single

polyelectrolyte through an expression for the change of the Helmholtz energy

DFLKthat is due to the presence of the electrostatic potential by:
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DFLK ¼ cpVRTf
el (39)

with:

f el ¼ n
l l ln

exp gLKð Þ2�1ð Þ 1�lð Þ2�b2ð Þ
2l �l� 1þ b2

� 	
gLK � ln

1�lð Þ2�b2

1�b2

h i
; (40)

where cp is the molarity of the polyelectrolyte in the solution, and V is the volume of

the solution (i.e., cpV is the number of moles of polyelectrolyte in the solution) and

n is the number of repeating units of the polyelectrolyte.

The osmotic pressure p is split into two contributions:

p ¼ pid:mix: þ Dpel; (41)

where the osmotic pressure of the ideal mixture pid.mix. is calculated assuming that

the polyelectrolyte is completely dissociated. When the repeating unit is a 1:1

electrolyte that contribution is:

pid:mix: ¼ ð1þ nÞcpRT: (42)

The second contribution Dpel is caused by the electrostatic potential. It is

calculated from the contribution of the electrostatic forces to the Helmholtz energy:

Dpel ¼ � @Fel

@V

� �
T;composition

: (43)

Fig. 9 Theory of Lifson and Katchalsky: Integration constant b as a function of the charge density

parameter l for several parameters gLK
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The final result for the osmotic coefficient FðcÞ
p (on molarity scale) is:

FðcÞ
p ¼ 1� b2

2l
for l � 1 (44)

and:

FðcÞ
p ¼ 1þ b2

2l
for l > 1: (45)

Figure 10 shows the osmotic coefficient of an aqueous solution of a single

polyelectrolyte as a function of the molarity of the repeating units cm¼ncp and

the charge density parameter l. In a highly diluted aqueous solution (i.e., when

gLK ! 1), the final result is:

FðcÞ
p ¼ 1� l

2
for l � 1; (46)

FðcÞ
p ¼ 1

2l
for l > 1: (47)

For the calculation of the osmotic pressure of an aqueous solution of a single

polyelectrolyte where the repeating unit is a 1:1 electrolyte one needs:

– For the polyelectrolyte: the radius of the hard polymer rod a, the length of the

polymer rod h (or the length of a cylindrical monomer b and the number of such

monomers in a polyelectrolyte molecule n)

Fig. 10 Theory of Lifson and Katchalsky: Osmotic coefficient of an aqueous solution of a single

polyelectrolyte as a function of the charge density parameter l
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– The concentration of the polyelectrolyte in the aqueous phase (or the radius R of

a cylindrical cell surrounding each polyelectrolyte molecule)

– The relative dielectric constant of water e

The equations only hold for an aqueous solution of a single polyelectrolyte that

consists of monovalent repeating units (1:1 electrolytes). There are publications on

extensions. For example, Dolar and coworkers treated polyelectrolytes with two

counterions (Dolar and Peterlin, [75], Dolar and Kozak, [103]), and Katchalsky

[104] extended the theory to aqueous solutions of a polyelectrolyte and a low

molecular weight salt. Katchalsky just superimposed the contributions from the

polyelectrolyte with those from the added salt. The osmotic pressure of an aqueous

solution of a single polyelectrolyte then becomes:

p ¼ pp þ Dpel þ Dps: (48)

The first term on the right-hand side, pp, is the contribution for an ideal aqueous

solution (on molarity scale) of the undissociated polyelectrolyte:

pp ¼ cpRT: (49)

The second term, Dpel, results from the dissociation of the polyelectrolyte. It is

expressed by combining (42), (45) and (47). When b is real:

Dpel ¼ 1� b2

2l
ncpRT (50)

and when b is imaginary:

Dpel ¼ 1þ b2

2l
ncpRT: (51)

The third term, Dps, is approximated by the osmotic pressure of an aqueous

solution of the single, low molecular weight strong electrolyte S, that consists of
nM cations M and nX anions X:

Dps ¼ nM þ nXð ÞcsRTFðcÞ
S ; (52)

where cs and FðcÞ
S are the molarity of the strong electrolyte S and the osmotic

coefficient (on molarity scale) of an aqueous solution of the single strong electrolyte

S. Then, the osmotic coefficient of an aqueous solution of a polyelectrolyte P (of

monovalent repeating units) and a low molecular weight strong electrolyte S
becomes:

FðcÞ
pþs ¼

pp þ Dpel þ Dps
pid:mixture

¼ cp þ FðcÞ
p ncp þ nM þ nXð ÞcsFðcÞ

s

cp þ ncp þ ðnM þ nXÞcs : (53)
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As commonly n 
 1 that equation can be simplified to:

FðcÞ
pþs ¼

FðcÞ
p ncp þ nM þ nXð ÞcsFðcÞ

s

ncp þ ðnM þ nXÞcs : (54)

Figure 11 shows a typical example for the osmotic coefficient of an aqueous

solution of a polyelectrolyte and NaCl calculated with (54).

An extension to multisolute aqueous solutions with a polyelectrolyte, nonelec-

trolyte solutes, and low molecular weight salts might start from (48) using (49)

together with (50) and (51) for the contributions of the polyelectrolyte, but repla-

cing (52) by the osmotic pressure of an aqueous solution of the polyelectrolyte-free

solutions, i.e., an aqueous solution of the low molecular weight salts and the other

nonelectrolyte solutes. However, such an extension always suffers from neglecting

the interactions between the other solutes and the polyelectrolyte.

5.2 Counterion Condensation Theory of Manning

Manning [76–78] modified and extended the Lifson–Katchalsky model to include

the effects caused by the presence of strong, low molecular weight electrolytes in

the aqueous polyelectrolyte solution. The polyelectrolyte is described as a linear

– – – – – – –

Fig. 11 Osmotic coefficient of an aqueous solution of a polyelectrolyte (charge density parameter

l ¼ 1.5) and NaCl (salt molarity cs) at 25�C for several values for the molarity cp of the

polyelectrolyte (the data for the polyelectrolyte-free solution are taken from [105])
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chain of N monomers that contain an electrolyte group. Dissociation results in

ionic groups on the polymer backbone, resulting in a charged polymeric backbone

and counterions. The electric charge is considered to be evenly distributed over

the whole backbone and the dissociated counterions are considered as point

charges in the solvent of relative dielectric constant e. Similarly to Lifson and

Katchalsky, Manning also assumes that the number of repeating units in the

polyelectrolyte chain is very large and, therefore, chain-end effects are neglected.

The excess Gibbs energy results from interactions between the charged chain

and all other ions (counterions as well as ions from some added low molecular

weight strong electrolytes) in the surrounding solution. The properties of that

surrounding electrolyte solution are approximated by the Debye–Hückel theory.

Manning assumes that some counterions might form ion pairs with some mono-

mers of the backbone. These ion pairs are not really fixed to the backbone but

can move in a certain volume around the backbone, i.e., these “condensed counter-

ions” have an additional mobility that increases the entropy of the system.

Manning neglects all interactions between all backbone groups of the poly-

electrolyte molecule.

In the following description, the molarity scale is used. The reference states are:

– For the solvent: the pure liquid

– For the polyion: the completely dissociated polyion that experiences no electro-

static interactions, but otherwise behaves like at infinite dilution in water

– For an added salt: the completely dissociated salt that also experiences interac-

tions as if at infinite dilution in water.

As an example, we discuss here an aqueous solution of one polyelectrolyte P and

one strong electrolyte S (¼MnMXnX ), where P and S share a common counterion X.
Some of the counterions that originate from the polyelectrolyte are assumed to be

located in a small volume Vp around the polyelectrolyte backbone (the phenomenon

is called “counterion condensation”). The polyelectrolyte, “condensed” counter-

ions, “free” counterions, free coions, and water contribute to the Gibbs energy of

the solution:

G ¼ Gp þ Gcond:CI þ GfreeCI þ GfreeCOI þ Gw: (55)

Each contribution consists of a contribution from the reference state and a

contribution from mixing:

Gi ¼ niðmrefi þ RT ln aiÞ: (56)

The reference state for a solute is always based on the molarity scale (at unit

molarity in water but with interactions as if infinitely diluted in water) whereas for

water the reference state is pure liquid water. The contributions are described

below.
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5.2.1 Contribution from the Polymer

Manning assumed that there are only contributions from electrostatic interactions.

He approximated these contributions from the cylindrical version of the Debye–

Hückel theory:

Gp ¼ npmrefp þ GE;el
p (57)

with

GE;el
p =ðRTÞ ¼ �npn 1� zCIyzð Þ2l ln 1� expð�kbÞ½ 	: (58)

np and n are the number of moles of the polyion and the number of dissociable

repeating units in that polyion, respectively (i.e., npn is the total mole number of

dissociable electrolytic groups in the backbone). zCI is the (absolute) valency of the
counterions of the polyelectrolyte. zCIyzis the ratio of charges carried by those

counterions that are “condensed” to the backbone to the maximum number of

charges on that backbone. That ratio is also called the “neutralization fraction of

the polyion”. Thus 1� zCIyzð Þ is the ratio of the actual number of charges q to the

maximum number qmaxof charges on the backbone of the polyelectrolyte.

q

qmax

¼ 1� zCIyzð Þ: (59)

Consequently, the number of moles of dissociated repeating units, np;diss is:

np;diss ¼ npn 1� zCIyzð Þ: (60)

l is the charge density parameter [cf. (30)]. When the charge density is small (i.e.,

the distance b between two dissociable groups is large so that l < 1) the poly-

electrolyte is completely dissociated. Thus, the first part on the right-hand side of

(58) [i.e., npn 1� zCIyzð Þ2l] is the number of moles of dissociated polymer groups

times the charge density parameter. Parameter k is the inverse of the radius of the

ionic cloud in the aqueous solution, as introduced in the Debye–Hückel theory:

k2 ¼ 2NA
e2

ee0kT
IS ¼ 8pNAISlB; (61)

where IS is the ionic strength of the aqueous solution on the molarity scale.

When a single polyelectrolyte and a single low molecular weight saltMnMXnXare

dissolved in water, that ionic strength is:

IS ¼ 1

2
nMz2M þ nXz2X
� 	

cs þ zCIzp 1� zCIyzð Þncp

 �

; (62)
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where zM, zX, and zp are the charge numbers of cations M, anions X and the

monomer electrolyte group, respectively and cs and cp are the molarity of the low

molecular weight salt and of the polyelectrolyte, respectively. Thus, the last term on

the right-hand side of (58) describes the influence of the ionic cloud of the solution

on the Gibbs excess energy of the polyelectrolyte.

5.2.2 Contribution from Condensed Counterions

Those counterions that do not dissociate from the polyion are treated as a further

solute:

Gcond:CI ¼ ncond:CImrefcond:CI þ DGcond:CI: (63)

DGcond:CI results from a transfer of the condensed counterions from the real

solution (i.e., at molarity cCI) to a volume Vp near the polyelectrolyte. In that

volume, the concentration of the counterions differs from the concentration in the

surrounding aqueous solution as that volume contains all condensed counterions,

i.e., npyzzp counterions. The molarity of the counterions in that volume is the

“local” molarity cCI;local :

cCI;local ¼ ncond:CI
Vp

¼ npnyzzp
Vp

: (64)

Vp is the (unknown) volume of the condensate. The change of the Gibbs energy
encountered in that transfer is approximated by the corresponding change of the

entropy:

DGcond:CI=ðRTÞ ¼ ncond:CI ln
cCI;local
cCI

� �
(65)

resulting in:

DGcond:CI=ðRTÞ ¼ npnzpyz ln
yzzp
u�pcCI

 !
; (66)

where u�p is an unknown molar volume:

u�p ¼
Vp

npn
: (67)

That molar volume u�p is estimated by Manning in the following way. As a

decrease in the degree of dissociation (i.e., an increase of yz) results in an increase
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of GE;el
p and a decrease of DGcond:CI, Manning assumed that the condensation process

reaches an equilibrium when the sum (GE;el
p + DGcond:CI) reaches a minimum:

@ GE;el
p þ DGcond:CI

� �
@yz

0
@

1
A ¼ 0: (68)

This equation is evaluated for the aqueous solution of the single polyion, also

assuming that the influence of yz on the ionic strength can be neglected. The molar

volume u�p is calculated from:

1þ ln
yzzp
u�pcCI

 !
þ 2

zCI
zp

l 1� zCIyzð Þ ln 1� expð�kbÞ½ 	 ¼ 0: (69)

For low concentrations of the polyelectrolyte (i.e., when cCI! 0) that equation

can only be fulfilled when:

yð0Þz ¼ lim
cCI!0

yz ¼ 1

zCI
1� zp

zCIl

� �
: (70)

As yð0Þz zCI is the ratio of the number of actual charges on the polyelectrolyte

backbone to the maximum number of charges on that backbone, i.e.,

0 � (yð0Þz zCI) � 1, then yð0Þz zCI is positive as long as zp=ðzCIlÞ < 1. The poly-

electrolyte is completely dissociated when zp=ðzCIlÞ ¼ 1, i.e., yð0Þz zCI = 0.

yð0Þz cannot be negative even if zp=ðzCIlÞ > 1. Therefore, two cases have to be

distinguished:

Case A:

zp=ðzCIlÞ � 1; yð0Þz ¼ 1

zCI
1� zp

zCIl

� �
: (71)

Case B:

zp=ðzCIlÞ > 1; yð0Þz ¼ 0: (72)

u�p is calculated from (69) by replacing yz by yð0Þz ;which is taken from (71). As

for the case when yð0Þz = 0, no counterion condensation occurs and therefore there is

no contribution from condensed counterions to the Gibbs energy.

The result for the molar volume u�p is:

u�p ¼ 4pNAz
2
pb

3ðzCIl
zp

� 1Þ expð1Þ: (73)

Aqueous Solutions of Polyelectrolytes 105



5.2.3 Contribution from Free Counterions

The aqueous phase contains “free” (or “dissolved”) counterions. These ions are

either dissociated from the polyelectrolyte or result from the dissolution of the salt

S. Their contribution to the Gibbs energy of the solution is:

GfreeCI ¼ nfreeCImreffreeCI þ DGfreeCI; (74)

DGfreeCI=ðRTÞ ¼ n
ðpÞ
freeCI þ n

ðsÞ
freeCI

h i
ln cfreeCIg

ðcÞ
CI

n o
: (75)

The mole number n
ðpÞ
freeCI of the counterions that originate from the polyelec-

trolyte is:

n
ðpÞ
freeCI ¼

npnð1� zCIyzÞ
zCI

zp (76)

and the mole number of the same counterionic species from the added salt is:

n
ðsÞ
freeCI ¼ nsnCI; (77)

where ns and nCI (either nM or nX) are the mole number of the dissolved salt S and

the stochiometric coefficient of the counterion of S, respectively. The molarity

cfreeCI of the counterions in the aqueous solution surrounding the polyelectrolyte is:

cfreeCI ¼ ðnðpÞfreeCI þ n
ðsÞ
freeCIÞ=V (78)

or:

cfreeCI ¼ zpnð1� zCIyzÞ
zCI

cp þ nCIcs: (79)

Therefore:

DGfreeCI=ðRTÞ ¼ nCIns þ zp
zCI

1� zCIyzð Þnnp
� 

� ln gðcÞCI nCIcs þ zpn
zCI

1� zCIyzð Þcp
� � �

: (80)

gðcÞCI is the activity coefficient of the counterions in the aqueous solution of ionic

strength IS (on molarity scale) [cf. (62)]. That activity coefficient might be set to

unity or be approximated by the Debye–Hückel theory.
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5.2.4 Contribution from Coions

When a neutral salt S is dissolved in the aqueous polyelectrolyte solution there is

also a contribution to the Gibbs energy of the aqueous solution by the other ions,

here called coions. When nCOI is the stoichiometric coefficient of that coion in S,
following the same ideas as explained before for the free counterions, that contri-

bution is:

GfreeCOI ¼ nfreeCOImreffreeCOI þ DGfreeCOI; (81)

where:

DGfreeCOI=ðRTÞ ¼ nCOIns ln nCOIcsg
ðcÞ
COI

� �
: (82)

The activity coefficient gðcÞCOIof the coions (on molarity scale) is treated in the

same way as the activity coefficient gðcÞCI of the counterions (i.e., it is either set to

unity or expressed through the Debye–Hückel expression).

5.2.5 Contribution from Water

The final contribution to the Gibbs energy results from the presence of water

(subscript w):

Gw ¼ nwmrefw þ nwRT ln aw: (83)

The activity of water is approximated by using the osmotic coefficient FðcÞ
p on the

molarity scale:

FðcÞ
p ¼ ln aw

ln a
ðcÞ
w;id:mix:

¼ � ln aw
ðcCI þ cCOIÞ=�r�w

: (84)

where �r�w is the molar density of water in the aqueous solution in moles per liter:

ln aw ¼ �FðcÞ
p nCI þ nCOIð Þns þ zp

zCI
1� zCIyzð Þnnp

� 
: (85)

The osmotic coefficient FðcÞ
p is again either set to unity (that is the common

approach) or taken from the Debye–Hückel theory for an aqueous solution contain-

ing ns moles of salt S and n
ðpÞ
freeCI moles of counterions dissociated from the

polyelectrolyte.
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For highly diluted solutions, the results of Manning’s theory agree with the

results of Lifson and Katchalsky [cf. (46) and (47)]. For example, Manning [106]

gives for the osmotic coefficient of an aqueous solution of a single polyion where

the counterions have the (absolute) charge number zCI:

lim
cp!0

FðcÞ
p ¼ 1� l

2
zpzCI for lzpzCI � 1 (86)

and:

lim
cp!0

FðcÞ
p ¼ 1

2lzpzCI
for lzpzCI > 1: (87)

Manning [106] gives for the limiting activity coefficient of the counterions in

such an aqueous solution:

lim
cp!0

ln gðcÞCI ¼ � l
2
zpzCI for lzpzCI � 1 (88)

and:

lim
cp!0

ln gðcÞCI ¼ � 1

2
� lnðlzpzCIÞ for lzpzCI > 1: (89)

The equations (88) and (89) are only appropriate when a single polyelectrolyte is

dissolved in an aqueous solution of a single salt and a single polyelectrolyte with a

common counterion. Manning has also given extensions for cases in which several

low molecular weight salts are dissolved and when those salts and the polyelectro-

lyte have no common ions [78].

5.3 Modifications of Manning’s Theory

There have been some efforts (for example, by Nordmeier [107] and by Hao und

Harvey [108]) to modify Manning’s model. Here, only the modification by Hao and

Harvey will be discussed. Hao and Harvey applied statistical thermodynamics for a

linear lattice to derive an improved expression for the “neutralization fraction of the

polyion” yz that can be used to avoid the approximation yz ¼ yð0Þz . For an aqueous

solution of a single salt and a single polyion (both having a common ion – the

counterion), that result is:

yz ¼ 1

zCI
1� zp

zCIl

� �
� lnð f Þ ln ðjcCIÞ�1

z2CIl
þ ln ðjcCIÞ�2

ðzCIl� 1Þðz2CIl� zCIlþ 1Þ

" #
; (90)
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where j stands for:

j ¼ 4pNAb
2lB z2CInCI þ z2COInCOI
� 	

(91)

and f is a “short-range” parameter. Hao and Harvey did not use the concept of a

volume Vp where the condensed counterions are located, but introduced a binding

constant to describe the counterion condensation phenomenon. They expressed that

binding constant using an adjustable, dimensionless (positive) parameter f. For
f ¼ 1, (90) reduces to Manning’s approximation (yz ¼ yð0Þz ), whereas for f 6¼ 1

the correction term on the right-hand side of (90) does not vanish.

5.4 NRTL Model of Nagvekar and Danner

Nagvekar and Danner [101] tried to overcome the limitations of the theoretical

expression by combining Manning’s result for highly diluted aqueous solutions of a

polyion with the semiempirical electrolyte–NRTL (nonrandom two liquid) equa-

tion of Chen and Evans [109]. Their expression for the Gibbs energy of an aqueous

solution of a polyion consists of three parts. The first part describes the ideal

mixture, the two other parts describe the excess Gibbs energy GE, which results

from short-range (superscript SR) as well as from long-range (superscript LR)

electrostatic interactions:

G ¼
X

all components j

njmj;id:mix: þ GE;SR þ GE;LR: (92)

The chemical potential of a component j in an ideal mixture mj;id:mix:is defined on

the mole fraction scale using the unsymmetrical convention, i.e., the reference state

for the solvent (water) is the pure liquid solvent. For any solute species, the

reference state is a hypothetical pure liquid where the species experience interac-

tions as if at infinite dilution in water.

As the activity coefficient gðxÞj of component j is:

RT ln gðxÞj ¼ @GE

@nj

� �
nk 6¼j;p;T

; (93)

gðxÞj is a product of a short-range and a long-range contribution:

gðxÞj ¼ gSR;ðxÞj gLR;ðxÞj : (94)

Danner et al. express the short-range contribution using a modification of the

electrolyte-NRTL equation of Chen and Evans [109] and take the long-range

contribution from Manning’s model (for the case of infinite dilution of a
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polyelectrolyte in water). For example, they treat an aqueous solution of a single

polyelectrolyte as a three-component mixture consisting of the solvent, the coun-

terion, and the polyion backbone that is approximated by its charged repeating

units. As the electrolyte-NRTL model is a “local composition” model, such a

solution is described by cells. There are as many types of cells as there are different

species in the mixture. Each cell type consists of a single species surrounded by its

nearest neighbors. There are three different cells in an aqueous solution of a single

polyion, i.e., with a water molecule, a counterion, or a repeating unit, in the center

The cell with water as the central species might be surrounded by other water

molecules, counterions, and repeating units of the polyion. The nearest neighbor-

hood of a cell with a central counterion also contains water and repeating units of

the polyion, but it is assumed that there are no further counterions. The nearest

neighborhood of a cell with a central repeating unit consists of two further repeating

units (its neighbors in the polyion), counterions, and water molecules. In contrast to

Chen and Evans, Danner and coworkers [101, 102] do not assume that the criterion

of electroneutrality is fulfilled in each cell. Because the electrolyte-NRTL model is

commonly given for a symmetrical convention, whereas polyelectrolyte systems

are normalized according to the unsymmetrical convention, Danner et al. use the

following expression for GE;SR of a multicomponent solution:

GE;SR

nTRT
¼ GE;SR;sym

nTRT
�

X
all solutes j

xj ln g
SR;ðxÞ;1
j ; (95)

where GE;SR;sym is the excess Gibbs energy in the symmetrical convention, nT is

the total mole number of the solution:

nT ¼
X

all components j

nj j ¼ w; a; c (96)

and gSR;ðxÞ;1j is the contribution of the short-range interactions to the activity

coefficient of solute j (i.e., either a cation c or anion a, in the symmetrical

convention, on the mole fraction scale at infinite dilution in water).

gSR;ðxÞ;1j ¼ lim
nk!0

gSR;ðxÞj ; (97)

where subscript k stands for all solutes and:

RT ln gSR;ðxÞj ¼ @GE;SR;sym

@nj

� �
nk 6¼j;p;T

: (98)

The mole fraction of species in a shell of nearest neighbors around a central

species is expressed using a Boltzmann term as a weighting factor. Danner et al.

give the following expression for the contributions of short-range forces to the
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excess Gibbs energy of a multisolute and multisolvent mixture in the symmetrical

convention:

GE;SR;sym

nTRT
¼
X
s

Xs

P
j XjGjstjsP
k XkGks

þ
X
c

Xc

X
a

XaP
a0 Xa0

P
j 6¼c XjGjc;actjc;acP

k 6¼c XkGkc;ac

þ
X
a

Xa

X
c

XcP
c0 Xc0

P
j 6¼a XjGja;catja;caP

k 6¼a XkGka;ca
; (99)

where subscript s refers to a solvent component, and subscripts c and a refer to

anionic and cationic species, respectively, regardless of their source (either from a

polyion or from an added salt). Subscripts j and k stand for any of the species in the
mixture and primes are used to distinguish different species of the same type. The

composition of the mixture is described by “modified mole fractions” Xj:

Xj ¼ xjzj; (100)

where xj is the mole fraction of species j and zj is (for a charged species) its

(absolute) charge number, and for any uncharged species zi ¼ 1

There are two types of interaction parameters that are distinguished by the

number of subscripts: Gji and tji on one side and Gji;ki and tji;ki on the other side,

which are expressed using binary parameters gji for interactions between species

j and i and by binary and ternary nonrandomness parameters aji and aji;ki:

Gji ¼ exp �ajitji
� 	

(101)

with:

tji ¼ gji � gii
RT

(102)

and:

Gji;ki ¼ exp �aji;kitji;ki
� 	

(103)

with:

tji;ki ¼ gji � gki
RT

: (104)

Danner et al. used Manning’s results for the long-range contribution to the

activity coefficient of the counterions in an aqueous solution of a single polyion:

ln gLR;ðcÞCI ¼ � l
2
zpzCI for lzpzCI � 1 (105)
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and

ln gLR;ðcÞCI ¼ � 1

2
� lnðlzpzCIÞ for lzpzCI > 1; (106)

where l is a charge density parameter [see (30) and (31)] and zp and zCI are the

(absolute) numbers of elementary charges on a dissociated repeating unit and on the

counterion, respectively. The osmotic coefficient on the molarity scale is:

FðcÞ
p ¼ ln aw

ln a
ðcÞ
w;id:mix:

¼ lnðxwgLR;ðxÞw gSR;ðxÞw Þ
ln a

ðcÞ
w;id:mix:

¼ lnðxwgLR;ðxÞw Þ
ln a

ðcÞ
w;id:mix:

þ ln gSR;ðxÞw

ln a
ðcÞ
w;id:mix:

; (107)

where, as in (22):

ln a
ðcÞ
w;id:mix ¼ � 1

�r�w

X
i 6¼w

ci: (108)

The long-range contribution is described using Manning’s results and one

obtains for the osmotic coefficient (on the molarity scale):

FðcÞ
p ¼ lim

cp!0
FðcÞ

p;Ma � �r�w
ln gSR;ðxÞwP
all solutes j cj

: (109)

FðcÞ
p ¼ lim

cp!0
FðcÞ

p;Ma � �r�w
ln gSR;ðxÞw

cpð1þ zp
zCI
nÞ ; (110)

where

lim
cp!0

FðcÞ
p;Ma ¼ 1� l

2
zpzCI for lzpzCI � 1 (111)

and

lim
cp!0

FðcÞ
p;Ma ¼

1

2lzpzCI
for lzpzCI > 1: (112)

As above, cp and n are the molarity of the polyion and the number of repeating

units of that polyion. The short-range part of the activity coefficient of water is

calculated using (98).

The model needs numerical values for interaction parameters and nonrandom-

ness parameters. Danner et al. mention that the nonrandomness parameters aji and
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aji;kiwere arbitrarily set to 0.20, except when the central species in the cell is a

repeating unit and its nearest neighbors are also repeating units. Then, the nonran-

domness parameter was set to 0.33. They finally adjusted four interaction para-

meters to experimental results for the osmotic coefficient of an aqueous solution of

a single polyelectrolyte. However, no parameters have been published and all

comparisons were given only in graphical form. But, the method is obviously suited

for a good correlation of experimental data for the osmotic coefficient of aqueous

solutions of a single polyelectrolyte.

Danner et al. did not report results from their method to describe the influence of

an added salt on the osmotic coefficient of aqueous solutions that contain a single

polyion.

5.5 Pessoa’s Modification of the Pitzer Model

Pessoa and Maurer [110] assume that a polyion might not completely dissociate in

an aqueous solution and that the degree of dissociation is independent of the

composition of the aqueous solution. They propose the use of experimental data

for the osmotic coefficient of an aqueous solution of the single polyelectrolyte

at infinite dilution to determine that degree. On the molality scale the osmotic

coefficient is:

FðmÞ
p ¼ p

pðmÞid:mix:

¼ ln aw

ln a
ðmÞ
w;id:mix:

; (113)

where

ln a
ðmÞ
w;id:mix: ¼ �M�

w

X
all solutes j

mj

m�: (114)

M�
w is the relative molecular mass of water divided by 1,000 (i.e.,

M�
w ¼ 0.01806), mj is the molality of species j and m� ¼ 1 mol=ðkg waterÞ.
The ideal solution is defined so that all counterions are completely dissociated:

mCI ¼ nmp
zp
zCI

; (115)

where mp is the molality of the polyion. The activity of water in an ideal aqueous

solution of a single polyelectrolyte is:

ln a
ðmÞ
w;id:mix: ¼ �M�

w 1þ n�
zp
zCI

� �
mp

m0
: (116)
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Taking into account that, in a real solution, the polyion is not completely

dissociated, the equation gives at high dilution in water:

ln aðmÞw ¼ �M�
w 1þ n�

zp
zCI

� �
mp

m0
: (117)

The ratio n�=n is the degree of dissociation of the repeating units of the polyion.

Combining (116) and (117) results in:

lim
mp!0

FðmÞ
p ¼ F0;ðmÞ

p ¼ 1þ n� zp
zCI

1þ n zp
zCI

: (118)

When the repeating unit is a 1:1 electrolyte and the number of repeating units is

large, the limiting value of the osmotic coefficients equals the degree of dissociation:

F0;ðmÞ
p ¼ n�

n
: (119)

A real aqueous solution of a single polyion is considered to be a mixture of

water, (partially dissociated) polymer chains, and the dissolved counterions. In an

ideal mixture all solutes only experience interaction with water, whereas in a real

solution there are also interactions between the solutes. The deviations that are

caused by these interactions are taken into account through an expression for the

excess Gibbs energy. Pessoa and Maurer [110] started from Pitzer’s equation [105,

111] for the excess Gibbs energy of aqueous solutions of low molecular weight

strong electrolytes. That method was extended previously to describe the Gibbs

energy of aqueous solutions that contain both a strong electrolyte and a neutral

polymer [112–114]. As in the work by Danner et al. [101, 102], the Gibbs energy of

an aqueous solution is split into a contribution from ideal mixing and contributions

from long-range and short-range interactions. The contributions are expressed

using the unsymmetrical convention. However, Pitzer’s equation applies the molal-

ity scale to express the composition of the aqueous solution:

G ¼
X

all components j

njmj;id:mix: þ GE;SR þ GE;LR: (120)

For a solute component j, the chemical potential in an ideal mixture mj;id:mix:is:

mj;id:mix: ¼ mref;ðmÞ
j þ RT ln

mi

m� ; (121)

where mref;ðmÞ
j is the chemical potential of solute j in an one molal aqueous solution

(i.e., mj ¼ m� ¼ 1 mol=ðkg waterÞ). In that reference state, the solute experiences

similar interaction as in infinite dilution in water. For the solvent (i.e., water) the

reference state is the pure liquid solvent and the difference between the chemical
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potential in the real mixture and that of the pure liquid is expressed via the activity

of water:

mw ¼ mw;pure þ RT ln aðmÞw : (122)

Pitzer uses a modification of the limiting law by Debye and Hückel to account

for long-range interactions that are caused by Coulomb forces:

GE;LR

nwM�
wRT

¼ �A’
4Im
b

lnð1þ b
ffiffiffiffiffi
Im

p Þ: (123)

A’ is the Debye-Hückel parameter (at 298.2 K A’¼ 0.3914), Im is the ionic

strength (on molality scale), and b is a numerical value (b ¼ 1.2). This expression is

very well suited to describe the activity coefficient of ions at high dilutions, but

cannot directly be applied to polyelectrolyte solutions because the Debye-Hückel

term was developed for punctual electric charges (such as small mobile ions). It is

not valid for highly charged polymer backbones. Pessoa and Maurer [110] replaced

the contribution of the polyion in the expression for the ionic strength:

Im ¼ 1

2

X
j

m�
j

m� ðz�j Þ
2; (124)

where for all solute species (with the exception of the polyion) m�
j ¼ mj and z

�
j ¼ zj,

whereas for a polyion ( j � p) m�
p ¼ n�mp and z�p ¼ zp, i.e., for the calculation of

the ionic strength the polyelectrolyte is replaced by its dissociated repeating units.

The activity coefficient of a solute caused by the long-range interactions is:

ln gLR;ðmÞ
i ¼ �A’siz2i

2

b
ln 1þ b

ffiffiffiffiffi
Im

p� 	þ
ffiffiffiffiffi
Im

p

1þ b
ffiffiffiffiffi
Im

p
� �

; (125)

where si ¼ 1 for all solutes, with the exception of the polymer where si ¼ n�.
The long-range contribution to the activity coefficient of the solvent is:

ln gLR;ðmÞ
w ¼ 2A’M

�
w

I
3=2
m

1þ b
ffiffiffiffiffi
Im

p : (126)

The short-range contributions are described with a virial-type equation for the

excess Gibbs energy that was adapted from Pitzer [105]. It is applied here neglect-

ing ternary and higher interactions between solute species:

GE;SR

nwM�
wRT

¼
X
i 6¼w

X
j 6¼w

lijðImÞm
�
i

m�
m�

j

m�; (127)
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where nw is the number of moles of water and lijðImÞ is an osmotic virial coefficient

for interactions between solute species i and j that depends on the ionic strength Im
through:

lijðImÞ ¼ lð0Þij þ lð1Þij

2

a2Im
1� ð1þ a

ffiffiffiffiffi
Im

p Þ expð�a
ffiffiffiffiffi
Im

p Þ� 	
: (128)

Equation (127) applies the same definition for the molality m�
i of a solute species

i as (124) for the ionic strength. lð0Þij and lð1Þji are binary parameters for interactions

between the solutes, for example, between a repeating unit of the polyion and a

dissolved counterion. No distinction is made – as far as the interaction parameters

are concerned – between neutral and dissociated repeating units. The binary para-

meters are symmetrical (lð0Þij ¼ lð0Þji and lð1Þij ¼ lð1Þji ) and a is a constant (a ¼ 2). For

a solute species, the contribution of the short-range interactions to the activity

coefficient is:

ln gSR;ðmÞ
i ¼ 2si

X
j 6¼w

lijðImÞ
m�

j

m� þ �siz2i M
�
w

�
X
j6¼w

X
k 6¼w

lð1Þij

1

a2I2m
1� 1þ a

ffiffiffiffiffi
Im

p þ a2Im
2

� �
expð�a

ffiffiffiffiffi
Im

p Þ
� �

m�
j

m�
m�

k

m�

(129)

and for the solvent:

ln gSR;ðmÞ
w ¼ �M�

w

X
i6¼w

X
j6¼w

lð0Þij þ lð1Þij expð�a
ffiffiffiffiffi
Im

p Þ
� �m�

i

m�
m�

k

m�

 !
: (130)

The final equation for the activity of a solute i and of the solvent (water) is

obtained by coupling the above expressions through:

ai ¼ migLRi gSRi : (131)

aw ¼ exp �M�
w

X
i6¼w

mi

m�

 !
gLRw gSRw ; (132)

where the sum is over all solute species, i.e., in an aqueous solution of a single electro-

lyte, i stands for the polyion ðmi ! mpÞ and for the counterion ðmi ! n� zp
zCI
mpÞ.

Modeling the osmotic coefficient of an aqueous solution of a single homo-

polymer polyion (i.e., a polyion that consists of a single repeating unit and a single

counterion) requires:

– The osmotic coefficient of an aqueous solution of the polyelectrolyte at infinite

dilution F0;ðmÞ
p

– The number of repeating units of the polyion n
– The binary interaction parameters lð0Þij and lð1Þij
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F0;ðmÞ
p is either determined from experimental results for the osmotic coefficient

or estimated using the results of Manning’s theory (in that case the length of a

repeating unit has to be known). For a polyion that consists only of a single

repeating unit, the number of repeating units n is calculated from the number-

averaged molecular mass of the polyion and the molecular mass of the repeating

unit. It is assumed that binary interaction parameters between species carrying

electrical charges of the same sign can be neglected (i.e., they are set to zero).

Therefore, there are only two, nonzero binary parameters for interactions between a

repeating (subscript p) unit and the counterion lð0ÞpCI
and lð1ÞpCI

. These interaction

parameters are fitted to some experimental properties such as the osmotic coeffi-

cient. Figure 12 shows a typical example for a correlation. The model can be

straightforwardly extended to aqueous solutions of a single polyion and a single

low molecular weight strong electrolyte (cf. Fig. 13) but also to aqueous solutions

of a polyion and a neutral polymer. Such mixtures often form aqueous two-phase

systems. Figure 14 gives a typical example.

5.6 VERS-PE Model

Lammertz et al. [116] extended the Virial-Equation with Relative Surface Fractions

(VERS) model of Großmann et al. [112–114] for the excess Gibbs energy of

aqueous solutions of neutral polymers and low molecular weight electrolytes to

the treatment of aqueous solutions that also contain polyions. That extension is

Fig. 12 Osmotic coefficient of aqueous solutions of NaPA at 298.15 K. Experimental data [41]:

closed squares NaPA 5; open squares NaPA 15. Lines show the modeling
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called VERS model for polyelectrolytes (VERS-PE model). Like the model of

Pessoa and Maurer, the VERS model is based on Pitzer’s equation [105] for the

Gibbs excess energy of aqueous solutions of low molecular weight, strong electro-

lytes. Großmann et al. introduced two modifications to allow for the treatment of

neutral polymers: the molality scale was replaced by a surface fraction scale, and

aw

Fig. 13 Activity of water in aqueous solutions of NaPA 5 and NaCl. Symbols experimental data

[28]; dashed line modeling of systems without salt; dotted line modeling of systems without

polyelectrolyte; solid lines correlation results

Fig. 14 Liquid–liquid equilibrium of aqueous solutions of NaPA 5 and PEG 34. Symbols experi-
mental equilibrium compositions [115]; dotted lines experimental tie lines; solid lines correlation
results
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the interactions with a polymer are described via interactions with groups of that

polymer, i.e., the polymer was split into groups. The groups commonly consist of the

repeating units of the polymer. The extension of the model to polyions also considers

the phenomenon of counterion condensation by a chemical reaction equilibrium

approach. For convenience, the extension of the model for the excess Gibbs energy

to aqueous solutions of polyions is described here first for an aqueous solution of a

single polyelectrolyte (designated by subscript p) where only a single counterion

might dissociate from a repeating unit and that repeating unit is a 1:1 electrolyte.

The reference state for the chemical potential of the solvent (water) is the pure

liquid, whereas for the solute (polyelectrolyte) it is a hypothetical one molal solution

of the undissociated polyelectrolyte in water ðmp ¼ m� ¼ 1mol=ðkg waterÞÞ, where
it experiences interactions with water molecules only, i.e., in that reference state the

undissociated polyelectrolyte is infinitely diluted in water (mp¼ 0 in pure water).

The difference between the chemical potential of the polyelectrolyte in the real

solution mpðT;mpÞ and in its reference state mrefp is calculated in five steps:

mp � mrefp ¼ D12mp þ D23mp þ D34mp þ D45mp þ D56mp: (133)

In the first step (D12), only the molality of the polyelectrolyte is changed to its

molality mp in the real solution:

D12mp ¼ RT ln
mp

m�
� �

: (134)

This contribution accounts for the change from the reference state to an ideal

dilution (assuming that at state 2 the interactions are the same as in the reference

state) and there is still no dissociation.

The second contribution (D23) describes the change in the chemical potential due

to splitting the polyelectrolyte into its monomers. This change is the sum of two

contributions: a free volume contribution (superscript fv) caused by the increase of

the number of particles, and a combinatorial contribution (superscript comb) caused

by the increase of the number of degrees of freedom:

D23mp ¼ D23mfvþcomb
p : (135)

In state 3, the aqueous polyelectrolyte solution has been replaced by an aqueous

solution of the nondissociated repeating units. The repeating units still experience

only interactions with water. As one polyelectrolyte molecule consists of n mono-

mer units (characterized by subscript A), the molality of species A, mA, is:

mA ¼ nmp (136)

and the chemical potential of the polyelectrolyte in state 3 is:

mp;3 ¼ n mrefA þ RT ln
nmp

m�
� �� �

: (137)
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mrefA is the chemical potential of nondissociated repeating units in their reference

state. That reference state is defined in the same way as the reference state for a

polyelectrolyte.

In the next step (D34), all monomer units A are split into two groups. Subscript C
designates all repeating units that will never dissociate while subscript D designates

repeating units that are assumed to undergo a dissociation reaction. The condition

of mass balance requires that for the chemical potential of the polyelectrolyte in

state 4 is:

mp;4 ¼ nC;4 � mC;4 þ nD;4 � mD;4: (138)

For the sake of simplicity, nC;4 and nD;4 are expressed through a new property k,
that is directly related to the degree of counterion condensation at infinite dilution of

the polyelectrolyte in water.

k ¼ nC;4
n

: (139)

The chemical potential of the polyelectrolyte in state 4 is:

mp;4 ¼ nk mrefC þ RT ln
nkmpGC;4

m�

� �� �
þ nð1� kÞ

� mrefD þ RT ln
nð1� kÞmpGD;4

m�

� �� �
: (140)

GC;4 and GD;4 are the activity coefficients (on molality scale) of species C and D,
respectively, in state 4. But, as there is at this stage no difference between the

natures of groups A, C, and D:

GC;4 ¼ GD;4 ¼ GA;4 (141)

and

mrefC ¼ mrefD ¼ mrefA : (142)

Consequently,

mp;4 ¼ n mrefA þ RT ln
nkkð1� kÞð1�kÞmpGA;4

m�

 ! !
: (143)

The change of the chemical potential of the polyelectrolyte caused by the

transition from step 3 to 4 is:

D34mp ¼ nRT ln kk 1� kð Þ 1�kð ÞGA;4

� �
: (144)
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In the next step (D45), the partial dissociation of species D is achieved (to

account for the phenomenon of counterion condensation). The dissociation is

expressed by a chemical reaction:

D Ð CIþ F;

where CI and F stand for the counterion and for the dissociated monomer unit,

respectively. The chemical potential of the polyelectrolyte in state 5 is (as only a

single counterion dissociates from one monomer unit):

mp;5 ¼ knþ nD;5
� 	

mA;5 þ nCI;5 mCI;5 þ nCI;5mF;5: (145)

For convenience, the total degree of dissociation of the repeating units a is

introduced:

a ¼ nCI;5
n

where 0 < a < ð1� kÞ: (146)

As there is no difference between species C and D (all are designated by A):

mC;5 ¼ mD;5 ¼ mA;5:

mp;5 ¼ n � mA;5 þ a mCI;5 þ mF;5 � mD;5
� 	� 	

: (147)

Because in dissociation equilibrium:

mCI;5 þ mF;5 � mD;5 ¼ 0 (148)

the chemical potential of the polyelectrolyte in state 5 is:

mp;5 ¼ n mrefA þ RT ln nkk 1� k � að Þð1�kÞ mp

m� GA;5

� �� �
: (149)

When furthermore (as another approximation), the difference between the activ-

ity coefficients of the undissociated repeating units in states 4 and 5 is neglected, the

change of the chemical potential of the polyelectrolyte caused by the transition

from 4 to 5 is:

D45mp ¼ n 1� kð ÞRT ln 1� a
1� k

� �
: (150)

The fifth contribution to the chemical potential is to account for the repolymer-

ization of the charged and noncharged monomers. This difference is approximated

by reversing the change from state 2 to state 3, but applying a correction term

D56mDconfp that accounts for the difference in the conformation of the polymer chain
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from a more globular structure in state 2 (where the polymer is neutral) to a more

stretched structure in state 6 (where the polymer backbone is charged):

D56mp ¼ �D23mfvþcomb
p þ D56mDconfp : (151)

It is assumed that the fraction of polyions in a stretched configuration equals the

total degree of dissociation a of the repeating units. Furthermore, the difference

between the chemical potentials of a polyion in its stretched and its globular

structures is approximated using the combinatorial part of the UNIQUAC (univer-

sal quasichemical) model of Abrams and Prausnitz [117] for the excess Gibbs

energy of nonelectrolyte solutions. In the UNIQUAC model, the shape of a mole-

cule i is described by a volume parameter ri and a surface parameter qi. A change in

the polyelectrolyte’s conformation changes only its surface parameter resulting in:

D56mp
RT

¼ 5a ln
ðYstÞqst
ðYglÞqgl X

qgl�qstð Þ
� �

þ 1� Xð Þ qgl � qst
� 	� �

: (152)

qst and qgl are the polyelectrolyte’s surface parameters in the stretched and the

globular configuration, respectively. Similarly, Yst and Ygl are the polyelectro-

lyte’s surface fractions in the stretched and the globular configuration, respectively,

and X is the volume fraction of the polyelectrolyte in the aqueous solution. The

polyelectrolyte’s surface fraction is:

Yab ¼
mp

mo � qab
mp

mo � qab þ 55:5 � qw for ‘‘ab’’ either ‘‘st’’ or ‘‘gl’’; (153)

where qw is the surface parameter of water. The surface parameter of the stretched

polyion is calculated using the surface parameter qrp of a repeating unit and the

number n of repeating units which form that polyion:

qst ¼ nqrp: (154)

The surface parameter of the globular polyion is smaller than that of the

stretched polyion. It is approximated by introducing a configurational parameter

b�(that is close to, but smaller than 0.5):

qgl ¼ n2b
�
qrp: (155)

The polyelectrolyte’s volume fraction is:

X ¼ n � mp

mo � rrp
n � mp

mo � rrp þ 55:5rw
; (156)

where rrp and rw are the volume parameters of a repeating unit of the polyion and of

water, respectively.
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Summing up the contributions from the five steps gives the chemical potential of

the polyion in an aqueous solution. The chemical potential of the polyion on the

molality scale is also given by:

mp ¼ mrefp þ RT ln
mp

m� g
ðmÞ
p

� �
(157)

and the activity coefficient is:

ln gðmÞp ¼ n ln kk 1� k � að Þð1�kÞGA;5

� �

þ 5a ln
ðYstÞqst
ðYglÞqgl X

qgl�qstð Þ
� �

þ 1� Xð Þ qgl � qst
� 	� �

: (158)

The model requires pure-component surface (qrp and qw) and size (rrp and rw)
parameters for the monomer unit and for water, the degree of counterion dissocia-

tion in infinite dilution (k), the total degree of dissociation of the repeating units (a),
the configurational parameter (b�), and interaction parameters (in the expressions

for the activity coefficients in state 5 where the solution is a mixture of water,

undissociated as well as dissociated repeating units and counterions).

Surface and size parameters are either available in the literature or are calculated

following the proposals by Bondi [118]. The degree of counterion dissociation in

infinite dilution is estimated from experimental data for the limiting osmotic

coefficient of an aqueous solution of the polyion. Following the ideas outlined in

the description of the Pessoa and Maurer model above, one finds when the repeating

unit is a 1:1 electrolyte:

F0;ðmÞ
p ¼ 1þ kn

1þ n
� k: (159)

The activity coefficients in state 5 (Gi;5, where i is any solute that is present in

state 4, i.e., the neutral repeating unit A, the dissociated repeating unit F and the

counterion CI) are calculated using the VERS model of Großmann et al. [112–114].

The activity coefficient Gi is assumed to consist of contributions from van der

Waals-like interactions GvdW
i and electrostatic interactions Gel

i :

Gi ¼ GvdW
i Gel

i : (160)

The electrostatic contribution is expressed in a similar way as the long-range

contribution in the model of Pessoa and Maurer [cf. (125)] from the Debye–Hückel

parameter A’, the charge number zi of groups/species i and the ionic strength Im (on

molality scale):

lnG el
i ¼ �A’z

2
i

1

2

1� k

an
2

1:2
ln 1þ 1:2

ffiffiffiffiffi
Im

p� 	þ
ffiffiffiffiffi
Im

p

1þ 1:2
ffiffiffiffiffi
Im

p
� �

: (161)
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The ionic strength is:

Im ¼ 1

2

X
k¼CI;F

mk

m� z
2
k : (162)

The contribution from short-range interactions to the activity coefficient of

solute species (i.e., groups) i, GvdW
i ; is taken from the VERS model:

lnGvdW
i ¼ 2

M�
w

qi
qw

X
all groups L

YL

Yw
a
ð0Þ
i;L þ a

ð1Þ
i;L � f1ðImÞ

� �

� zi
M�

w

� �2
f2ðImÞ

X
all groups L

X
all groups k

YL

Yw

Yk

Yw
a
ð1Þ
L;K

þ 3

ðM�
wÞ2

qi
qw

X
all groups L

X
all groups k

YL

Yw

Yk

Yw
bi;L;K

(163)

with:

f1ðImÞ ¼ 1

2Im
1� 1þ 2

ffiffiffiffiffi
Im

p� 	
exp �2

ffiffiffiffiffi
Im

p� �
 �
and (164)

f2ðImÞ ¼ 1

4I 2m
1� 1þ 2

ffiffiffiffiffi
Im

p þ 2Im
� 	

exp �2
ffiffiffiffiffi
Im

p� �
 �
(165)

The sum in (163) is over all solute species, i.e., nondissociated repeating units C,
nondissociated repeating units D, dissociated repeating units F and counterions CI.

M�
w is the relative molar mass of water divided by 1,000 (M�

w ¼ 0.018016). Sub-

script w stands for water and qi is the surface parameter of species i. The surface

fraction of a group L is abbreviated byYL. As the mixture consists of species C, D,
F, CI and water, the following relative surface ratios are required:

YC

Yw
¼ M�

wnk
mpqrp
m�qw

; (166)

YD

Yw
¼ M�

wnð1� k � aÞmpqrp
m�qw

; (167)

YF

Yw
¼ M�

wna
mpqrp
m�qw

; (168)

YCI

Yw
¼ M�

wna
mpqCI
m�qw

: (169)
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a
ð0Þ
i;L and a

ð1Þ
i;L denote binary interaction parameters between species (groups)

i and L. These interaction parameters are symmetric, i.e., a
ð0Þ
i;L ¼ a

ð0Þ
L;i and a

ð1Þ
i;L ¼

a
ð1Þ
L;i . They form a set of adjustable model parameters. The degree of dissociation a is

calculated assuming chemical equilibrium between monomers D and its dissocia-

tion products F and CI in state 5:

K ¼ mCImF

mDm�
GCIGF

GD
¼ na2

1� k � a
mp

m�
GvdW
CI GvdW

F

GvdW
D

Gel
CIG

el
F ; (170)

where all molalities are those in state 5. Chemical reaction equilibrium constant K is

one of the adjustable parameters of the model.

When there is also an additional single 1:1 saltMX in the aqueous solution, (162)

(for the ionic strength) and (163) (for the van der Waals contribution to the group

activity coefficient) have to be extended; the sums must also include the ionsM and

X. The extension requires the relative surface ratios for M and X:

YM

Yw
¼ M�

w

mMXqM
m�qw

; (171)

YX

Yw
¼ M�

w

mMXqX
m�qw

: (172)

Furthermore, as well as the chemical potential of the polyelectrolyte, the chemi-

cal potential of MX is also required (for the calculation of the activity of water, see

below). That chemical potential is given by the sum of the chemical potentials of

cations M and anions X:

mMX ¼ mM þ mX ¼ mrefM þ mrefX þ RT ln
mMGM

m�
mXGX

m�

� �
: (173)

Finally, the activity of water aW is calculated from the chemical potentials of the

solutes (either a single polyelectrolyte or a binary solute mixture of a polyelectro-

lyte and a low molecular weight salt) by applying the Gibbs–Duhem equation:

dmw ¼ dðmw � mw
pure liquidÞ ¼ �M�

w

X
i 6¼w

mi

mo
� dmi: (174)

Integration at constant temperature for an aqueous solution containing a poly-

electrolyte P and a salt MX results in:

Dmw ¼ RT ln aw ¼ �M�
w

ðmix

water

mp

mo
dmp �M�

w

ðmix

water

mMX

mo
� dmMX: (175)
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The right-hand side is solved in two steps. In the first step, the integration is

carried out starting from pure water to a polyelectrolyte-free but salt-containing

solution:

Dmw;1
2RTM�

w

¼ �mMX

mo
þ A’

Im;MX
1:5

1þ 1:2
ffiffiffiffiffiffiffiffiffiffiffi
Im;MX

p

� mMX

mo

� �2
a
ð0Þ
MX þ a

ð1Þ
MX exp �2

ffiffiffiffiffiffiffiffiffiffiffi
Im;MX

p� 	h i
; (176)

where a
ð0Þ
MX and a

ð1Þ
MX are binary interaction parameters between ions M and X� and

Im;MX is the ionic strength (on molality scale) of the polyelectrolyte-free aqueous

solution of MX.
In the second step, the molality of the salt is fixed at mMX and the molality of the

polyelectrolyte increases from zero to mp:

DmW;2 ¼ �M�
w

ðmp

mp¼0

mp

@mp
@mp

d
mp

mo

� �" #
mMX

�M�
w

mMX

mo
mMXðmMX;mpÞ � mMXðmMX;mp ¼ 0Þ
 �

;

(177)

where

ðmp

mp¼0

mp

@mp
@mp

d
mp

mo

� �" #
mMX

¼ RT
mp

mo
þ
ðmp

mp¼0

mp
@ ln gðmÞp

@mp

 !
mMX

d
mp

mo

� �2
4

3
5: (178)

The integral is solved numerically using (158) for the activity coefficient of the

polyelectrolyte.

The final equation for the activity of water in an aqueous solution of a strong

electrolyteMX and a polyelectrolyte P (where bothMX and the repeating unit of the

polyion are 1:1 electrolytes) is:

1

M�
W

ln aw ¼ �2
mMX

mo
� mp

mo
þ 2 � A’

Im;MX
1:5

1þ 1:2
ffiffiffiffiffiffiffiffiffiffiffi
Im;MX

p
� 2

mMX

mo

� �2
a
ð0Þ
MX þ a

ð1Þ
MX exp �2

ffiffiffiffiffiffiffiffiffiffiffi
Im;MX

p� 	h i

� mMX

moRT
mMXðmMX;mpÞ � mMXðmMX;mp ¼ 0Þ
 �

�
ðmp

mp¼0

mp
@ ln gðmÞp

@mp

 !
mMX

d
mp

mo

� �2
4

3
5: ð179Þ
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It is worth mentioning that the chemical potential mMXðmMX;mpÞ is calculated
from (173) where the activity coefficients of both ionsM and X are calculated for an

aqueous solution in which the polyelectrolyte is cut into its repeating units and the

species [nondissociated repeating units (D), counterions (CI),and dissociated

repeating units (F)] are in chemical reaction equilibrium.

For the example treated here (an aqueous solution of a strong electrolyteMX and

a polyelectrolyte P where the salt and the repeating unit of the polyion are 1:1

electrolytes) the activity of water in an ideal solution is:

1

M�
W

ln a
ðmÞ
w;id:mix ¼ �2 � mMX

mo
� ð1þ nÞ � mp

mo
(180)

The following parameters must be known when the activity of water (or the

osmotic coefficient) of an aqueous solution of a single polyelectrolyte is to be

calculated:

The number of monomer units n is estimated from the number-averaged molec-

ular mass of the polymer and the molecular mass of a repeating unit.

– UNIQUAC surface (qk) and volume (rk) parameters of water and the nondisso-

ciated repeating units are calculated by the method of Bondi [118]. No distinc-

tion is made between those parameters for the dissociated and nondissociated

repeating units. The surface parameter of water (qw = 1.4) is also assigned to all

counterions.

– The degree of counterion condensation k at infinite dilution in water is deter-

mined from experimental data for the osmotic coefficient at infinite dilution (as

for n >> 1) F0;ðmÞ
p ¼ 1� k:

– The chemical reaction (dissociation) constant K is one of the adjustable para-

meters of the model. It is assumed that, at constant temperature, K is a constant

for a certain repeating unit.

– Parameter b* that is used to describe the configurational change from a globular

to a stretched conformation of the polyelectrolyte is also an adjustable model

parameter.

– Binary parameters (a
ð0Þ
i;j and a

ð1Þ
i;j ) are used for interactions between all solute

species in water. As these parameters are symmetric and as there are three solute

species, there are 12 such parameters. However, all parameters a
ð1Þ
i;j are

neglected, (a
ð1Þ
i;j ¼ 0) and all parameters a

ð0Þ
i;j for interactions with the counterion

are also neglected (a
ð0Þ
i;CI ¼ 0 for all solutes i). The parameter for interactions

between dissociated repeating units is also neglected (a
ð0Þ
F;F ¼ 0). With these

assumption, there are only two parameters: one for interactions between non-

dissociated repeating units (C or A) and one for interactions between these

nondissociated monomers and the dissociated repeating units. The distinction

between these binary parameters is also neglected, resulting in a single, adjus-

table binary interaction parameter that characterizes the polyelectrolyte’s

repeating unit A: a
ð0Þ
A;A ¼ a

ð0Þ
A;F ¼ ap;p
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Figure 15 shows a typical example for correlation of experimental results for the

osmotic coefficient (on molality scale) of aqueous solutions of poly(sodium meth-

acrylate).

For the calculation of the thermodynamic properties of an aqueous solution of a

single polyion that additionally contains a low molecular weight strong electrolyte,

some more model parameters are required. The volume and surface parameters of

the ions of the strong electrolyte are also approximated by the parameters of water.

Therefore, for an aqueous solution of the single salt the model does not differ from

Pitzer’s model, and for a large number of salts the binary interaction parameters

a
ð0Þ
MX and a

ð1Þ
MX are available in the literature. All further interaction parameters (i.e.,

between cations and anions of the salt on one side and groups and counterions from

the polyion on the other side) are also set to zero, with the exception of a single

parameter. That parameter accounts for interactions between that ion of MX that

carries an electrical charge of the opposite sign as the counterion of the polyion on

one side, and the neutral group of the polyelectrolyte (i.e., A or C) on the other side.
For example, if NaCl is added to an aqueous solution of poly(sodium methacrylate),

the only additional interaction parameter is a
ð0Þ
A;Cl(=ap;Cl). Because the configuration

of the polyion in the aqueous salt-containing solution might differ from that in the

salt-free solution, it might be advantageous to consider the influence of the low

molecular weight salt on the polyion’s configuration parameter b*. An empirical

relation such as:

b� ¼ ˆð0Þ þˆð1Þ mMX

mo
; (181)

Fig. 15 Osmotic coefficient of aqueous solutions of poly(sodium methacrylate) at 298.2 K with

two different molecular masses. Experimental results: closed squares NaPMA 6; open squares
NaPMA 15. Correlation results: solid line NaPMA 6; dashed line NaPMA 15 [116]
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Fig. 16 Osmotic coefficient of aqueous solutions of NaPA 15 and NaCl at 298.2 K. Experimental

results are shown with symbols. (a) Prediction results. (b) Correlation results setting ˆð1Þ ¼ 0.

(c) correlation results setting ˆð1Þ 6¼ 0. Dashed lines corresponds to systems without salt; dotted
lines systems without polyelectrolyte; solid lines lines of constant water activity [116]
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where ˆð0Þis the configurational parameter for the polyion when it is dissolved in

pure water and ˆð1Þis an adjustable parameter, proved to be sufficient to describe

that influence.

Predictions from the model for the osmotic coefficient can be made when the

binary parameter between nondissociated repeating units and the counterion of the

low molecular weight salt, as well as the influence of that salt on the configurational

parameter b* are neglected. Figure 16 shows comparisons between experimental

data and calculation results for the osmotic coefficient for aqueous solutions of a

sodium poly(acrylate) (NaPA 15) and NaCl. The osmotic coefficient (on molality

scale) is plotted versus the “overall solute molality”
P

�mi that is defined as:

X
�mi ¼ 2mMX þ ð1þ nÞmp: (182)

The experimental results for the mixed solute systems are shown for a constant

activity of water. The results extend from the polyelectrolyte (i.e., salt-free) system

to the (NaCl þ water) system. The top diagram of Fig. 16 shows the comparison

with prediction results, i.e., the calculations were performed setting ap;Cl ¼ 0 and

ˆð1Þ ¼ 0. The middle diagram of Fig. 16 shows the comparison with correlation

results when the influence of NaCl on the configurational parameter b* is neglected
(i.e., adjusting only ap;Cl). The bottom diagram of Fig. 16 shows that the best

agreement is achieved by adjusting both parameters. With those parameter an

essential improvement is achieved, in particular at high concentrations (i.e., at

low water activities). Figure 17 shows a comparison between the correlation results

Fig. 17 Osmotic coefficient of aqueous solutions of NH4PA 10 and NaCl at 298.2K. Experimental

results are shown with symbols. Dashed line correlation results for system without salt; dotted line
correlation results for system without polyelectrolyte; solid lines lines of constant water activity
[116]
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and the experimental data for the osmotic coefficient of aqueous solutions of

ammonium poly(acrylate) (NH4PA 10) and NaCl. For this particular system it

was not necessary to consider an influence of NaCl on the configurational para-

meter. The comparisons reveal that the model is well suited for the correlation of

the vapor–liquid equilibrium of aqueous solutions of polyelectrolytes with and

without an added low molecular weight salt.

6 Summary

A literature review is given on the liquid–vapor phase equilibrium of aqueous

solutions of polyelectrolytes. Experimental findings as well as selected thermody-

namic models for the prediction and correlation of such phase equilibria are

reviewed. The treatment of the thermodynamic models starts with theories and

later focuses on combining the results from such theories with engineering models

for the excess Gibbs energy. Such combinations allow for a good correlation of

experimental data, for example, the osmotic coefficient (and related properties) of

aqueous solutions of a single polyelectrolyte with and without an added salt.
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Gas–Polymer Interactions: Key Thermodynamic

Data and Thermophysical Properties

Jean-Pierre E. Grolier and Séverine A.E. Boyer

Abstract Gas–polymer interactions play a pivotal role in the formation of different

molecular organizations/reorganizations of polymeric structures. Such structural

modifications can have a negative impact on the material properties and should be

understood in order to prevent them or these modifications are of engineering interest

and they should be purposely tailored and properly controlled. Two newly developed

techniques, gas-sorption/solubility and scanning transitiometry, are shown to be well

adapted to provide the necessary (key) data to better understand and monitor the

polymeric modifications observed under the triple constraints of temperature, elev-

ated pressure, and gas sorption. This article illustrates the major contribution of gas–

polymer interactions in different interconnected applied and engineering fields of the

petroleum industry, polymer science, and microelectronics.

Keywords Gas sorption � Glass transition � High pressure � Self-assembling �
Solubility � Transitiometry � Vibrating-wire technique
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1 Introduction

Gas–polymer interactions play a pivotal role in polymer science for the develop-

ment of new polymeric structures for specific applications. Typically, this is the

case for polymer foaming [1] and for self-assembling of nanoscale structures [2, 3].

Not only the nature of the gas, but also the thermodynamic conditions, are essential

factors in control of the processing operations. For this, the amount of gas solubi-

lized has to be accurately determined together with the possible associated swelling

of the polymer due to the gas sorption. Another important applied field in which gas

sorption in polymers has to be documented through intensive investigations con-

cerns the (non)controlled sorption of light gases in polymers that are used in

industry for items such as seals, containers, flexible hosepipes, and pipelines.

Nowadays, polymer-based materials are at the center of applications in which

they are frequently subjected to temperature variations and also to gas pressures

ranging from a few megapascal to 100 MPa or even more. An important example of

the large-scale use of polymer materials is in the transport of petroleum fluids [4]

using flexible hosepipes; these hosepipes are made of extruded thermoplastic or

rubber sheaths and reinforcing metallic armor layers. The type of transported fluids

(which might contain important amounts of dissolved gases) and the operating

temperature and pressure dictate the composition of the hosepipe sheath. However,

these thermoplastic polymers, like elastomers, are not entirely impermeable and

undergo sorption/diffusion phenomena. A rupture of the thermodynamic equilib-

rium after a sharp pressure drop could eventually damage the polymer components.

Gas concentration in the polymer, together with temperature gradients, can cause

irreversible “explosive” deterioration of the polymeric structures. This blistering

phenomenon, usually termed “explosive decompression failure” (XDF), is actually

very dramatic for the material. The resistance to physical changes is related to the

influence of the gas–polymer interactions on the thermophysical properties of the

polymer. The estimation of the gas sorption and of the concomitant polymer

swelling, as well as the measurement of the thermal effect associated with the

gas–polymer interactions, provide valuable and basic information for a better

understanding and control of polymer behavior in different applications in which

temperature and pressure, in combination with gas sorption, might deeply affect

polymer stability and properties. The striking effect of gas sorption is particularly

observed when the gas is in a supercritical state, depending on the thermodynamic

conditions.
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Other numerous industrial activities deal with polymer modifications and trans-

formations, through different processes like extrusion, injection, and molding.

Polymer foaming, among others, is currently achieved in various ways, but typi-

cally involves elevated temperatures and pressures as well as the addition of

chemicals, mostly gases that are used as blowing agents. Thermal, barometric,

and/or chemical stress can shift, even permanently, the polymer glass transition

temperature, Tg, which consequently modifies the physical properties of the mate-

rial. Sorption of fluids such as gases in the supercritical state induces significant

plasticization, resulting in a substantial decrease of Tg. If such an effect is rather

weak when using helium or nitrogen, due to their low solubility in polymers,

sufficiently high pressure should induce higher gas sorption by polymers. In this

respect, gases such as carbon dioxide or hydrofluorocarbons (HFCs) are known to

be good fluids for plasticization of a polymer like polystyrene (PS). As a result of

international regulations, the blowing gases intensively used in the foaming indus-

try have to be replaced by blowing agents that are less harmful to the ozone layer.

Knowledge of the influence of gas sorption and concomitant swelling on the Tg of a
{gas–polymer} system is of real importance in generating different types of foams.

In the context of the above applications, the thermophysical properties of gas-

saturated thermoplastic semicrystalline polymers are key elements for the develop-

ment of several engineering applications.

Typically, thermophysical properties feature the most important information

when dealing with materials submitted to thermal variations and/or mechanical

constraints. The properties of interest are of two types: bulk properties and phase

transition properties. The bulk properties are either caloric properties like heat

capacities CP, or mechanical properties like isobaric thermal expansivities aP,
isothermal compressibilities kT, and isochoric thermal pressure coefficients bV.
The need for accurate control of thermodynamic properties concerns the two main

phase transitions: the first-order transitions of melting and crystallization, and the

glass transition. All these properties are now accessible thanks to recent progress in

various technologies that allow measurements in the three physical states over

extended ranges of pressure (p) and temperature (T), including in the vicinity of

the critical point. In this respect, knowledge (i.e., measurement) of the thermo-

physical properties of polymers over extended ranges of temperature and pressures

and in different gaseous environments is absolutely necessary to improve the use

and life-time of end-products made of polymeric materials.

Examples have been selected in three main domains: oil exploitation and

transport, polymer foaming and modification, and self-assembling nanostructures.

These examples are directly connected to industrial activities in the petroleum

industry, the insulating material industry, and the microelectronic industry.

In many cases, gases and polymers of different types intimately interact under

external conditions of T and p. In the subsequent examples, the {gas–polymer}

systems selected for a targeted industrial purpose (e.g., foaming materials and

material processing) are polymeric materials in contact with {gas–liquid} systems

(e.g., pipes or tanks in the gas and petroleum industry), or are used as intermediate

materials to elaborate templates for making 3D electronic circuitry.
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The foaming materials industry is a rapidly growing area where constant inno-

vation and added-value products are key factors for economic success in the face of

high international competition. The mastering of polymer degradation (typically

blistering) by high pressure dissolved gases is another key issue. Microelectronics

is presently the most competitive industrial activity. The focus of the present article

is thus on the behavior of {gas–polymer} systems from the point of view of gas

solubility and associated thermal effects. Depending on the temperature and pres-

sure ranges, polymers are either in the solid or molten state, i.e., at temperatures

between Tg and the temperature of melting, Tm; in most cases, gases are supercriti-

cal fluids (SCFs). The present contribution, essentially based on current activities of

the authors, is split into two main parts: experimental measurements (Sect. 2) and

evaluation of gas-polymer interactions (Sect. 3) through experimental measure-

ments of gas solubility (Sect. 3.1), thermal effects reflecting interaction energies

(3.2), thermophysical properties of polymers (3.3) and phase transitions (3.4).

In addition, the importance of such data for engineering applications is stressed.

This article illustrates the contribution of two techniques in providing accurate

information to meet the demand for the data described above: the vibrating-wire

(VW)–pressure-volume-temperature (pVT) technique for gas sorption and polymer

swelling; and scanning transitiometry for simultaneous thermal and mechanical

measurements. Two complementary thermodynamic approaches have been devel-

oped to characterize gas–polymer interactions in evaluating either gravimetric and

volumetric changes or thermally energetic changes associated with gas sorption (up

to saturation) in a polymer. The first approach is based on a “weighing technique”

using a VW sensor coupled with a pVT method. The second approach is based on

the coupling of a calorimetric detector with a p, V, or T scanning technique.

2 Experimental Techniques

2.1 Gas Sorption and Solubility

Gas solubility in polymers can be measured using different techniques, i.e.,

gravimetric techniques, including vibrating or oscillating techniques; pVT techni-

ques with the pressure decay method; and gas-flow techniques. A brief review of

existing techniques is given below, followed by the description of a technique we

recently developed that couples a new gravimetric technique with a pVT–pressure
decay technique.

2.1.1 Gravimetric Techniques

These techniques consist in precisely weighing a polymer sample during gas

sorption. They are very sensitive at low-to-moderate gas pressures [5, 6], and use
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of a magnetic coupling to transmit the weight to a balance [7, 8] has permitted the

pressure range to be extended up to 35 MPa.

With vibrating or oscillating techniques, the change of mass of a polymer sample

is calculated from the resonance characteristics of a vibrating support, either a

piezoelectric crystal [9, 10] or a metal reed [11], to which the polymer sample is

fixed (very often this support is a spherical quartz resonator on which a thin polymer

film is wrapped). Depending on the type of oscillator, the maximum pressure can be

between 15 and 30 MPa.

With the pVT techniques based on the pressure decay method [12, 13], a polymer

sample is seated in a container of known volume acting as equilibrium cell; the

quantity of gas initially introduced in this cell is evaluated by pVTmeasurements in

a calibrated cell from which the gas is transferred into the equilibrium cell in a

series of isothermal expansions. The pressure decay in the equilibrium cell during

sorption permits evaluation of the amount of gas penetrating into the polymer. The

pressure decay principle allows a sensitivity of few hundredths of milligram of

absorbed gas per gram of polymer [14].

With the glass flow techniques, the solubility of gases in polymers is obtained

from gas flow measurements by inverse gas chromatography [15]. In this proce-

dure, the polymer sample (glassy or molten) acts as the chromatographic stationary

phase to measure retention times.

2.1.2 Coupled VW–pVT Technique

In all the techniques where the polymer sample is immerged in the penetrating gas,

the associated swelling of the polymer due to the gas sorption is an important

phenomenon that needs to be accurately evaluated. Swelling can affect the buoyancy

force exerted by the gas on the polymer sample in the case of gravimetric measure-

ments, as well as the internal volume in the case of pVT measurements. Usually,

swelling is determined separately by techniques using direct visual observation and

estimation of the volume change and is in the order of 0.3% of the volume of the

initially degassed polymer [16]. Alternatively, swelling has been estimated using a

theoretical model like the Sanchez–Lacombe molecular theory [17].

Recently, Hilic et al. [18, 19] designed an original technique to evaluate the gas

solubility in polymers that permits simultaneous determination in situ of the amount

of gas penetrating the polymer and the concomitant change in volume of the

polymer due to gas sorption. This technique associates a VW force sensor, acting

as gravimetric device, and a pressure decay installation to evaluate the amount of

gas penetrating into the polymer.

Vibrating-Wire Sensor

The VW sensor (Fig. 1) is employed as a force sensor to weigh the polymer sample

during the sorption: the buoyancy force exerted by the pressurized fluid on the
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polymer depends on the swollen volume of the polymer due to the gas sorption.

This VW sensor is essentially a high-pressure cell in which the polymer sample is

placed in a holder suspended by a thin tungsten wire (diameter 25 mm, length 30

mm) in such a way that the wire is positioned in the middle of a high magnetic field

generated by a square magnet placed across the high-pressure cell. Through appro-

priate electric circuitry and electronic control, the tungsten wire is activated to

vibrate. The period of vibration, which can be accurately measured, is directly

related to the mass of the suspended sample. The working equation (1) for the VW

sensor relates the mass msol of gas absorbed (solubilized) in the polymer to the

change in volume DVpol of the polymer. The natural angular frequency of the wire,

through which the polymer sample holder is suspended, depends on the amount of

gas absorbed. The physical characteristics of the wire are accounted for in (1) as:

msol ¼ rg DVpol þ o2
B � o2

0

� � 4L2R2rS
p g

þ r VC þ Vpol

� �� �
: (1)

The volume of the degassed polymer is represented by Vpol, and rg is the density
of the fluid. The terms o0 with oB represent the natural (angular) frequencies of the

wire in vacuum and under pressure, respectively, and VC is the volume of

the holder. The symbols L, R, and rs are, respectively, the length, the radius, and

the density of the wire.

pVT Method and Pressure Decay Measurements

For pVT measurements, the three-cell principle of Sato et al. [14] has been used

(Fig. 2) to determine the amount of gas solubilized in the polymer. The experimen-

tal method consists of a series of successive transfers of the gas by connecting the

SQUARE MAGNET
ACROSS THE MEASURING CELL

ACTIVATING THE VIBRATING WIRE

HIGH PRESSURE VESSEL HOUSING
THE MEASURING CELL EQUIPPED
WITH THE VIBRATING WIRE WHICH
SUSTAINS THE POLYMER SAMPLE

HIGH PRESSURE GAS RESERVOIR

MASSIVE METAL THERMOSTAT

HIGH PRESSURE CALIBRATING
CELL, CONNECTED TO THE 

MEASURING CELL

HOLDER WITH POLYMER SAMPLE

VIBRATING WIRE 
SUSTAINING THE POLYMER 

HOLDER

Fig. 1 The coupled VW–pVT technique. Left: Photograph of the inside of the experimental setup

showing the three high-pressure cells. Right: Equilibrium cell that houses the VW sensor and the

holder containing the polymer sample
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calibrated transfer cell V3 to the equilibrium cell V2, which contains the polymer.

Initial pi and final pf pressures are recorded between each transfer. The initial

methodology was based on the iterative calculation described by Hilic et al. [18,

19]. The (rigorous) working equation (2) for the pVT technique gives the amount of

gas entering the polymer sample during the first transfer, once equilibration is

attained:

msol ¼ Mg

R

pf
Tf Zf

DVpol þMg

R

pi
Zi Ti

V3 � pf
Zf Tf

V2 þ V3 � Vpol

� �� �
: (2)

Equation 2 permits calculation of the mass msol of gas dissolved in the

polymer. Mg is the molar mass of the dissolved gas. Zi and Zf are the compression

factors of the gas entering the polymer at the initial and final equilibrium sorption

conditions, respectively. Volume of the degassed polymer and the volume change

due to sorption are represented by Vpol and DVpol, respectively. The total amount

HIGH EQUILIBRIUM
PRESSURE CELL V2

HIGH PRESSURE
GAS RESERVOIR V1

GAS

VACUUM PUMP

CALIBRATED
CELL V3

COMPRESSOR 
MAXIMATOR

RUPTURE 
DISC

MANOMETER 9015K

MICROMETRIC VALVE

Fig. 2 Three-cell principle for pVT measurements, after Sato et al. [14]. The high-pressure line

connects the three cells: the high-pressure reservoir cell (V1), the high-pressure equilibrium cell

housing the VW sensor (V2), and the high-pressure calibrated transfer cell (V3)
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of gas absorbed by the polymer after completion of the successive transfers is

given by (3):

Dm kð Þ
sol¼

Mg

R

p
ðkÞ
f DVðkÞ

pol

Z
ðkÞ
f T

ðkÞ
f

þMg

R

p
ðkÞ
i V3

Z
kð Þ
i T

kð Þ
i

þ
p
ðk�1Þ
f V2�Vp�DV k�1ð Þ

pol

� �

Z
k�1ð Þ
f T

k�1ð Þ
f
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ðkÞ
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� �
Z

kð Þ
f T

kð Þ
f

2
4

3
5;

(3)

where Dm
kð Þ
sol is the increment in dissolved gas mass resulting from the transfer

k, and DVðkÞ
pol is the change in volume after transfer k.

2.2 pVT–Calorimetry: Scanning Transitiometry

Certainly, calorimetry is a major technique for measurement of the thermodynamic

properties of substances and for following phase change phenomena. In most

applications, calorimetry is carried out at constant pressure, while the tracked

phenomenon is observed with increasing or decreasing temperature. The possibility

of controlling the three most important thermodynamic variables (p, V, and T)
during calorimetric measurements makes it possible to perform simultaneous

measurements of both thermal and mechanical contributions to the thermodynamic

potential changes caused by the perturbation. Calorimetric techniques provide

valuable additional information on transitions in complex systems. Their contribu-

tion to the total change of thermodynamic potential not only leads to the complete

thermodynamic description of the system under study, but also permits the investi-

gation of systems with limited stability or systems with irreversible transitions. By a

proper external change of the controlling variable, the course of a transition under

investigation can be accelerated, impeded, or even stopped at any degree of its

advancement and then taken back to the beginning, all with simultaneous recording

of the heat and mechanical variable variations. The seminal presentation by Rand-

zio [20] of thermodynamic fundamentals for the use of state variables p, V, and T in

scanning calorimetric measurements opened the path [21–23] from pVT–calorime-

try to the now well-established technique of scanning transitiometry [24, 25]. The

main characteristics of scanning transitiometry are reviewed in this section.

Practically, the technique utilizes the principle of differential heat flux calorim-

etry, with which it is possible to operate under four thermodynamic situations

where the perfectly controlled variation (or perturbation) of one of the three state

variables (p, V, or T) is simultaneously recorded with the thermal effect resulting

from the generated perturbation of the system under investigation. The principle of

scanning transitiometry [23] offers the possibility to scan, in the measuring calori-

metric cell, one of the three independent thermodynamic variables (p, V, or T )
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while keeping another one constant. During this scan, the variation of the (third)

dependable variable (i.e., the mechanical output) and the calorimetric energy

generated (i.e., the thermal output) are recorded simultaneously in situ in the

measuring cell. From these two quantities, associated to a given scan, two thermo-

dynamic derivatives, mechanical and thermal, are thus determined. The derivatives

perfectly characterize the evolution of the thermodynamic potential of the investi-

gated system, particularly any undergone transition or state change induced by the

variable scan. As illustrated in Fig. 3, making use of the rigorous Maxwell relations

between thermodynamic derivatives, it is possible to directly obtain the ensemble

of the thermophysical properties; undoubtedly this shows the potentiality of the

technique. During measurements, it is essential that the different scans be per-

formed with sufficiently slow rates in order to keep the investigated system at

equilibrium over the entire scan and so that the (Maxwell) thermodynamic relations

remain valid.

The four possible thermodynamic situations (Fig. 3) are obtained by simulta-

neous recording of both the heat flux (thermal output) and the change of the

dependent variable (mechanical output). Then, making use of the respective related

Maxwell relations, one readily obtains the main thermophysical properties as

follows: (a) scanning pressure under isothermal conditions yields the isobaric

thermal expansivity ap and the isothermal compressibility kT as functions of

pressure at a given temperature; (b) scanning volume under isothermal conditions

yields the isochoric thermal pressure coefficient bV and the isothermal compress-

ibility kT as functions of volume at a given temperature; (c) scanning temperature

under isobaric conditions yields the isobaric heat capacity Cp and the isobaric

thermal expansivity ap as functions of temperature at a given pressure; (d) scanning

temperature under isochoric conditions yields the isochoric heat capacity CV and

the isochoric thermal pressure coefficient bV as function of temperature at a given

volume.

In the present work, two different operating modes were used: (1) the use of

pressure as scanned variable along different isotherms while recording (versus time t)

T = cst
p = f(t)

V = f(t)

T = f(t)

Mechanical

(∂V/∂P)T

(∂U/∂T )V

(∂H/∂T  )P

(∂S/∂P )T =-(∂V/∂T )P

(∂S/∂V )T =(∂P/∂T )V

(∂V/∂T )P

(∂P/∂T )V

kT

aP

bV

CP

CV
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A

N
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T
R

A
N

SIT
IO

M
E
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T = f(t)

p = cst

V = cst

Fig. 3 Thermodynamic scheme of scanning transitiometry showing the four possible modes of

scanning. Each of these modes delivers two output derivatives (mechanical and thermal), which

in turn lead to four pairs of the different thermomechanical coefficients, namely ap, kT, bV, Cp,

and CV
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simultaneously the associated thermal effect (dQ/dt)T and the mechanical effect

(∂V/dt)T; and (2) the use of temperature as scanned variable along isobars while

recording simultaneously the associated thermal effect (dQ/dt)p and the mechanical

effect (∂V/dt)p.
In the case of the first mode, the straightforward thermodynamic relation [23]:

dH T; pð Þ ¼ @H=@Tð ÞpdT þ @H=@pð ÞTdp (4)

with:

dH T; pð Þ ¼ dQþ Vdp; (5)

allows one to express finally that the thermal effect qT(p) along the scan is:

qT pð Þ ¼ dQ=dtð ÞT¼ a @H=@pð ÞT�V
� 	 ¼ aT @S=@pð ÞT

¼ �aT @V=@Tð Þp¼ �aTVap;
(6)

where H, S, a, and ap are the enthalpy, entropy, pressure scanning rate and isobaric

thermal expansion, respectively. In addition, the associated mechanical effect (∂V/
dt)T, (or equivalently (∂V/∂p)T) allows one to obtain the isothermal compressibility

kT. Similarly, in the secondmode, from (4) and (5), at constant pressure (e.g., dp¼ 0)

one obtains for the thermal effect qp(T) an equation equivalent to (4), Cp being the

heat capacity:

qp Tð Þ ¼ b @H=@Tð Þp¼ bCp: (7)

In the same way as above, the mechanical effect (∂V/∂T)p allows one to obtain

the isobaric thermal expansion ap.
The transitiometric technique can be used for fluids (gases and liquids) as well as

for solid materials (polymers and metals). Remarkably, measurements can be

performed in the vicinity of and above the critical point. Concretely, the investi-

gated polymer samples are placed in ampoules, i.e., open mini test-tubes seated in

the transitiometric measuring vessel in such a way that the sample is in direct

contact with the pressurizing fluid. More details on the technique can be found

elsewhere [24, 25]. The transitiometers (from BGR TECH, Warsaw) used in these

studies of polymers, built according to the above principle, can be operated over the

following ranges of temperature and pressure: 173 K < T < 673 K and 0.1 MPa <
p < 200 MPa (or 400 MPa). A detailed description of a basic scanning transiti-

ometer is given elsewhere [26].

A schematic representation of the instruments is shown in Fig. 4. The transi-

tiometer itself is constructed as a twin calorimeter with a variable operating

volume. It is equipped with high-pressure vessels, a pVT system, and Lab-

VIEW-based virtual instrument software. Two cylindrical fluxmeters or calori-

metric detectors (internal diameter 17 mm, length 80 mm), each made from 622
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thermocouples (chromel-alumel), are mounted differentially and connected to a

nanovolt amplifier, which functions as a noninverting amplifier, whose gain is

given by an external resistance (with 0.1% precision). The calorimetric detectors

are placed in a metallic block, the temperature of which is directly controlled by a

digital feedback loop of 22 bits resolution (�10�4 K), being part of the transiti-

ometer software. The calorimetric block is surrounded by a cooling/heating

jacket, which is connected to an ultracryostat (Unistat 385 from Huber, Ger-

many). The temperature difference between the block and the heating/cooling

jacket is set at a constant value. In addition, the jacketed calorimetric block is

embedded in an additional electrically heated shield. The temperature difference

between the block and the heated shield is set to a constant value (5, 10, 20, or 30

K) and is controlled by an analogue controller. The temperature measurements,

both absolute and differential, are performed with calibrated 100 O Pt sensors; a

Pt100 temperature sensor is placed between the sample and the reference calori-

metric detectors. The heaters are homogeneously embedded on the outer surfaces

of both the calorimetric block and the cooling/heating shield. The whole assembly

is thermally insulated and enclosed in a stainless steel body.

The stainless steel body is fixed on a sliding support (Fig. 5 shows the main

elements of a scanning transitiometer), which can be moved up and down along two

guiding rails. This is part of a mechanical displacement system consisting of a

winch and counterweight that allows the calorimetric body to easily move vertically

Fig. 4 Scanning transitiometry setup for in situ simultaneous determination of the thermal and

mechanical derivatives. For convenience, two types of cells are shown: on the left is the standard
high pressure cell and on the right is a reaction-type cell that can accommodate various accessories

(stirrer, reagents feeding, capillaries, optical fibers or probes for UV/Vis/near-IR spectroscopic

analysis)
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over the two calorimetric vessels (i.e., the measuring and reference vessels). These

two vessels are firmly fixed on a stand, to which the displacement system is itself

attached in such a way that the vessels always find the same positions inside the

calorimetric detectors when the calorimetric body is moved down to its working

position (see Fig. 5). When performing measurements near 0�C or below, dry air is

pumped through the apparatus in order to prevent the condensation of water vapor

from air.

The variable volume is realized with a stepping motor-driven piston pump. The

resolution of the volume detection is ca. 5.24 � 10�6 cm3 per step (as found by

measurement of the piston displacement for given numbers of steps) and the total

variable volume is 9 cm3. The calorimetric block can then be lifted to load the

sample into the cell, or for cleaning.

The pressure sensors are connected close to the piston pump. Pressure can

be detected with a precision of �4 kPa. The connection between the cryostat

and the heating/cooling shield of the calorimetric block is made via two flexible

Fig. 5 Photograph of a standard scanning transitiometer (from BGR TECH, Warsaw). The

calorimetric detector, which can be moved up and down over the measuring and reference

calorimetric vessels (in twin differential arrangement), is shown in its upper position. In this

position, the calorimetric vessels, which are firmly fixed on the stand table, are then accessible for

loading
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thermo-isolated hoses. The Hüber cryostat/thermostat connected to the calorimeter

can be operated over the temperature range from �90 to 200�C, with ± 0.02�C
temperature stability at – 10�C, and has cooling power at 0, �20, �40, �60 and

�80�C of 5.2, 5, 4.2, 3.1, and 0.9 kW, respectively.

The maximum delivery of the circulating pump is 40 L min�1 and the maximal

delivery pressure is 1.5 bars. The cryostat is microprocessor-controllable and

equipped with an RS232 interface. The cryostat is PC-controlled thanks to Lab-

worldsoft 3.01 graphical software. The software allows building the temperature

program (up to 99 sequences), controls the temperature with high accuracy, and

performs data acquisition into a file, with a selectable frequency.

A striking (patented [25]) feature of scanning transitiometry is, for the investi-

gation of gas–polymer interactions, the possibility to use different pressurizing or

pressure-transmitting hydraulic fluids. Depending on the type of measurement, the

sample under investigation can either be confined in a closed supple ampoule, itself

immerged in the hydraulic fluid, or positioned directly in contact with the hydraulic

fluid. In the latter case, the energetic interaction upon the possible sorption of the

fluid with the sample can be directly evaluated and documented.

Transitiometry is at the center of different types of utilization since, with such

techniques, bulk properties, transitions, and reactions can all be advantageously

studied. In the case of polymer synthesis, a scanning transitiometer was used as an

isothermal reaction calorimeter, the advancement of a polymerization reaction

being accurately monitored through rigorous control of the thermodynamic para-

meters [27, 28]. To gather additional information, the measuring cell can be

coupled with other analytical devices (e.g., on-line FTIR, particle sizing probes,

turbidity probes, pH or other ion selective probes) [29]. For studying chemical

reactions, the scanning calorimeter has been also used as a temperature oscillation

calorimeter, and the high-pressure cells replaced by specially designed reaction

vessels. These vessels allow stirring, different dosing profiles for one or two

reactants, and can accommodate a small optical probe coupled to a miniaturized

spectrophotometer (for more details see [28–31]).

3 Gas-Polymer Interactions and Practical Applications

The performance and advantages of combining scanning transitiometry and the gas

sorption–swelling technique are well demonstrated by typical applications in sev-

eral important fields: (a) transitions of polymer systems under various constraints

(temperature, pressure, gas sorption) including first-order phase and glass tran-

sitions; (b) polymer thermophysical properties and influence of gas sorption (blis-

tering phenomena); (c) thermodynamic control of molecular organization in

polymeric structures (foaming process, self-assembling nanostructures). Some

illustrative examples have been chosen for their impact in polymer science, in the

petroleum industry, and in microelectronics.
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3.1 Evaluation of Gas Solubility and Associated Swelling

3.1.1 Coupled VW–pVT Method: Theory and Modeling

The VW–pVT procedure allows one, in principle, to obtain simultaneously two

unknowns from the two rigorous equations (1) and (2): the gas solubility msol and

the change in volume DVpol (the swelling) of the polymer due to sorption at

pressures up to 100 MPa and from room temperature to 473 K. However, despite

its evident advantages, the coupled technique needs further improvement [32]. The

change in volume associated with high pressure gas sorption is not a simple

phenomenon. On the one hand, the chemical structures of both the polymer and

the gas play a major role in terms of thermal energy of gas–polymer interactions

during sorption; on the other hand, pressure also plays an important role, depending

again on the polymer structure. For example, with the two polymers, medium

density polyethylene (MDPE) and poly (vinylidene fluoride) (PVDF), it has been

demonstrated (see Sect. 3.2) that supercritical carbon dioxide (scCO2) substantially

affects the cubic expansion coefficient of the polymers, especially at pressures

ranging from 10 to 30 MPa, where the gas–polymer interactions are more marked.

It appears that, at lower pressures, the main interactions correspond to the exother-

mic sorption of CO2 by the surface and amorphous phase, and possibly by some

interstitial sites of the crystalline part of the polymer. At higher pressures, CO2 is

forced to enter deeply inside the interstitial or other voids in the polymer and cause

their mechanical distortion, which is associated with an endothermic effect. At high

pressures (above 30 MPa), the polymers saturated by CO2 behave as pseudohomo-

geneous phases and their cubic thermal expansion coefficients are only slightly

higher, because of absorbed CO2, than for pure polymers. Heats of interaction of

CO2 with PVDF are higher than with MDPE, demonstrating that CO2 preferentially

penetrates more into PVDF than into MDPE. Undoubtedly, gas solubility in poly-

mers is a complex phenomenon and, most likely as a consequence, it has been

observed that the two characteristic working equations (1) and (2) of the VW–pVT
technique do not converge [32]; thus solubility and swelling cannot be obtained

simultaneously by direct experimental determination. Effectively, a common term,

the density rg of the gas (8), appears in both working equations (1) and (2):

rg ¼
Mg

R

pf
Tf Zf

(8)

and, despite the other terms being different, (1) and (2) can be both expressed by

the same reduced (9), having the same slope given by (8) :

DmðkÞ
sol ¼ rg DVpol þ d: (9)

The term d represents the apparent concentration of gas in the polymer, i.e.,

when the change in volume DVpol is zero. The main source of uncertainty in

evaluating the gas concentration comes from the first term of (9), which contains
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the density of the gas and the change in volume of the polymer. It was thus

necessary to elaborate a procedure to estimate the apparent solubility of the gas

and the associated change in volume.

At this stage, it appears that the VW sensor technique is more precise than the pVT
technique because there are no cumulative errors like in the case of the pVT method,

when the successive transfers are performed during an isothermal sorption. Figure 6

compares the mass in grams of CO2 dissolved in 4 g of MDPE at 333.15 K obtained

with the twomethods, VW and pVT. With the pressure decaymethod, after the critical

zone (7.65 MPa), uncertainties in the mass dissolved become too large. Evidently, in

the critical region, a small variation of pressure leads to a significant variation of the

compressibility factor. The VW technique does not require extensive calibrations.

Essentially, uncertainties come from the experimentallymeasured resonance frequen-

cies. Errors are reduced in the data acquisition, which permits recording simulta-

neously the phase and the frequency: effectively, the phase angle is better suited than

the amplitude (the half-width) to detect the natural resonant frequency [32]. Figure 7

shows as an example the data obtained by the VW technique with a MDPE polymer

sample in the presence of scCO2 at 338.15 K. Experimental amplitude and phase are

correctly fitted by the fluid-mechanical theory [18] of the vibrating wire. Standard

deviations for both amplitude and phase are also shown.

3.1.2 Selected Example: The {CO2 þ MDPE} System

To estimate the change in volume (swelling), DVpol, the Sanchez–Lacombe equa-

tion of state SL-EOS [17, 33–35] (10, 11) using the equation of DeAngelis [36] (12)
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Fig. 6 Comparison of the total masses in grams of dissolved CO2 in 4 g of MDPE at 333.15 K at

different pressures, as obtained with the two techniques of pVT (open circles) and VW (open
triangles). Error bars are shown for the VW results
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has been selected. Then, only one binary adjustable interaction parameter k12 of the
SL-EOS has to be calculated by fitting the sorption data as follows:

Dp� ¼ k12
ffiffiffiffiffiffiffiffiffiffi
p�1 p

�
2

p
: (10)

w1 ¼ ’1

’1 þ 1� ’1ð Þ r2�r1�
; (11)

where Dp* is the parameter characterizing the interactions in the mixture; w1 is the

mass fraction of permeant gas at equilibrium; f1 is the volume fraction of the gas in

the polymer; and (r1 � , p1 � , T1 � ) and (r2 � , p2 � , T2 � ) are the characteristic

parameters of pure compounds. The volume change is then calculated by following:

DVpol

Vpol

¼ 1

~rr � 1� w1ð Þ
1

û02
; (12)

where r* and ~r are respectively the mixture characteristic and reduced densities,

and û02 is the specific volume of the pure polymer at fixed temperature, pressure, and

composition. According to the procedure, the solubility data are obtained through

combined experimental measurements and theoretical estimation of the volume

change of the polymer due to the sorption. Figure 8 shows the results obtained by

the pVT technique using the SL-EOS for the sorption of CO2 in MDPE at 333 K to

estimate DVpol. In this figure, comparison is made with literature values for a low

density polyethylene LDPE at 308 K [5].

3.2 Gas–Polymer Interaction Energy

Scanning transitiometry has been used to determine the gas–polymer interaction

energy, for instance upon CO2 sorption in MDPE and in PVDF samples (Fig. 9).

Measurements have been made under either compression or decompression runs

realized by pressure jumps Dp between 6 and 28 MPa. The most striking result is

that CO2–PVDF (exothermic) interactions are larger than CO2–MDPE interactions

for CO2 pressures lower than 30 MPa, whereas above this pressure an inversion is

observed, with CO2–MDPE interactions being larger than CO2–PVDF interactions.

3.3 Thermophysical Properties at High Pressures

As mentioned in the “Introduction” (Sect. 1), the thermophysical properties of

thermoplastic semicrystalline polymers are essential for the development of numer-

ous engineering applications. Such data have to be documented over extended
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ranges of p and T for polymers in the presence or absence of fluids (liquids, gases, or

SCFs), which can enter the polymeric structures by natural (at atmospheric pres-

sure) or forced sorption (under high pressures). As seen previously, the fluids will

have, depending on their respective characteristics (inert, neutral, or chemically

active), more or less significant impact on the polymer molecular organization. In

this context, until recently most of the investigations of gas–polymer interactions

have concerned sorption properties of glassy polymers. In such systems, the dual-

mode sorption concept is generally accepted. According to this model, part of the

sorbate is dissolved in a molecular environment described by the Henry law,

whereas another part is absorbed (as described by a Langmuir-type sorption iso-

therm) in preexisting voids or free volume resulting from extremely long segmental

relaxation times between chains in the polymer glassy state [37]. In semicrystalline

polymers, it was widely accepted from the early studies of Michaels and Parkers

[38] and Michaels and Bixler [39] that the gas sorption takes place only in the

amorphous phase (following the Henry law), while the crystallites form impenetra-

ble barriers that even prevent diffusion in the amorphous phase. More recent studies

have established that low molecular diluents might also penetrate the crystalline

regions, where interstitial free spaces could accommodate small molecules like

CO2 or methane (CH4) [40–44]. However, all the above studies were realized at

rather low pressures of a few megapascals. In the mid-1990s, thanks to scanning

transitiometry, it was possible to initiate a systematic investigation of gas–polymer

interactions.

A new experimental and theoretical approach has been proposed to study

transitions in {gas–polymer} systems in terms of the heat involved [45]. Scanning

transitiometry, which combines a calorimetric detector with a pVT scanning tech-

nique, offers advantageous features for such study. The differential mode of

operation permits precise control of both temperature and pressure, keeping them

exactly identical in the two calorimetric (reference and measuring) vessels. The

pVT technique allows the scanning of pressure or volume during sorption (fluid-

pressurization) and desorption (fluid-depressurization). The calorimetric detector

measures the differential heat flux (between reference and measuring vessels)

resulting from the physicochemical effects occurring during the sorption/desorption

runs. From the determination of the heat involved in the measuring vessel (contain-

ing the polymer sample) and by virtue of the Maxwell relation, @S=@pð ÞT ¼
� @V=@Tð Þp, the global cubic thermal expansion coefficient of the gas-saturated

polymer apol-g-int is obtained at different isothermal conditions, according to (13):

apol�g�int ¼
Qdiff; SS � Qdiff; pol

� �þ VSS; r aSS T Dp
Vpol T Dp

: (13)

Qpol and Qss represent the heat fluxes corresponding to the polymer sample and

to the inert sample (made of stainless steel and having the same size and geometry

as the polymer sample), respectively placed in the measuring and reference vessels;

aSS is the cubic expansion coefficient of the stainless steel of which the vessels are
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made; and Dp is the variation of gas-pressure change under investigation at constant
temperature T. Volumes VSS and Vpol are those of the stainless steel inert reference

and of the polymer sample, respectively. In (13), it was assumed for simplicity faute
de mieux that the volume of the polymer did not change significantly upon gas

sorption. This assumption may be justified in the sense that the pressure is much

higher (�100 MPa) in calorimetric measurements than in the VW–pVT technique

(�40 MPa); the hydrostatic pressure must probably compensate for a large part of

the swelling effect due to gas sorption, as a result of the equilibrium between the

plasticization effect and the hydrostatic effect.

Three differential modes were investigated, taking into account the differential

principle of the instrument (Fig. 10): thermal I differential without reference

sample, thermal II differential with reference sample, and thermal II differential

comparative mode. With the thermal I differential mode, in an initial experiment

the polymer sample is placed in the measuring cell, which is connected to the gas

line. The reference cell, not connected to the gas line, acts as a thermal reference.

An additional blank experiment (under identical conditions) is performed in which

the polymer sample is replaced by an inert-metal (stainless steel) sample of similar

volume. Then, the difference in the heat effects between polymer and blank

experiments allow quantification of the thermal effect due to the gas–polymer

interactions. In the thermal II differential mode, the polymer sample is placed in

the measuring cell while an inert-metal sample of equal dimensions is seated in the

reference cell, both cells being connected to the gas line which serves to pressurize.

Then, under gas pressure, the calorimetric differential signal is proportional to the

thermal effect due to the gas–polymer interactions. The third and last mode
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Fig. 10 Three differential modes of scanning transitiometry according to the differential principle

of the calorimetric detector, taking into account the respective roles of the measuring (M) and

reference (R) vessels and the content of the reference vessel. (a) Thermal I differential without

reference sample mode. (b) Thermal II differential with reference sample mode. (c) Thermal II

differential comparative mode: in this case a direct comparison between two polymers (MDPE and

PVDF) samples is possible
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corresponds to a validation of the two previous modes through the thermal II

differential comparative mode. This allows direct comparison of the response and

behavior of two polymer samples, MDPE and PVDF, in similar supercritical

conditions. A MDPE polymer sample was placed in the measuring vessel while a

PVDF polymer sample of equal size and volume was placed in the reference vessel.

Both cells were connected to the gas line. The calorimetric signal, i.e., the differen-

tial heat flux, was thus directly proportional to the thermal effect due to the

difference in the gas–polymer interactions between the two polymers interacting

with the same gas. In that case, the differential heat flux between the measuring and

the reference vessels is small, because calorimetric signals of {gas-MDPE} and

{gas-PVDF} systems have relatively close amplitudes; the detection sensitivity of

the apparatus was then optimal. For each thermal II differential with reference

sample and thermal II differential comparative mode, the data were corrected

through a blank standard calibration. Under identical conditions of T and p, and
under the assumption that there were no interactions between the stainless steel rod

and the gas, blank experiments were performed in which the polymer samples were

replaced by a metal sample of identical dimensions.

Investigations of polymer behavior [4] consist typically of measuring the physi-

cochemical properties in the solid state, i.e., at temperatures between Tg and Tm.
MDPE and PVDF were submitted to gas pressure of either CO2 or N2 at different

temperatures between 333 and 403 K, under pressure steps or scans in the range

between 0.1 and 100 MPa. The polymer samples were extruded MDPE (reference

Finathene 3802) and PVDF (reference Kynar 50HD, polymer without additives like

plasticizers or elastomers). Their transitions temperatures Tg and Tm were, respec-

tively, 163.0 K and 400.0 K for MDPE, and 235.0 and 440.9 K for PVDF. The two

polymers had degrees of crystallinity Xc, of 49% and 48%, respectively. The masses

of samples were about 2–5 mg, and thermograms were obtained under a continuous

flow of N2 at 15 mL min�1. Measurements were performed on cylindrical rod

samples (75.0 mm in height, 4.4 mm in diameter) having a relatively small mass,

i.e., about 1.0 g for the MDPE sample and 1.9 g for the PVDF sample; measure-

ments were taken from 352.38 to 401.50 K. For each investigation, a new sample

was used. More details are given elsewhere [4]. Using the thermal II differential

mode with reference sample, pressure changes of CO2 and N2 were performed on

MDPE and PVDF samples at 352 and 372 K under pressure jumps of 6–28 MPa in

the pressure range between 0.1 and 100 MPa. The CO2-pressurizing pressure jumps

manifest themselves by exothermic heat fluxes [29, 45], whereas CO2-depressuri-

zation pressure jumps exhibit endothermic heat fluxes, both passing through a

minimum around 20 MPa (see Fig. 11).

Interestingly, the heat flux minimum is reflected in the isotherms of apol-g-int
coefficients of the fluid-saturated polymers plotted as functions of the feed pressure.

The global cubic thermal expansion coefficients apol-g-int of saturated polymer were

obtained through the procedure previously described [45]. Comparison of these

coefficients for both polymers (MDPE and PVDF) under CO2 and N2, i.e., the

corresponding curves for the {CO2-MDPE}, {CO2-PVDF} and {N2-PVDF} sys-

tems, show a clear difference (Fig. 11). Additional investigations of {Hg-MDPE}
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and {Hg-PVDF} systems have been made using Hg as an “inert” pressure-trans-

mitting fluid [4, 45]. High Hg-pressure runs permit the decoupling of hydrostatic

pressure effects from solvent solubility effects, whereas high N2-pressure runs

permit separation of the preferential interaction effects between polymers with

respect to CO2. Under CO2, the thermal expansivity apol-g-int shows minima around

14–18 and 21–25 MPa for MDPE and PVDF, respectively. This is in contrast to

what is observed under N2 or Hg, i.e., the isotherms of interaction vary “monoto-

nously” (Fig. 11). Below 30 MPa, more energetic interactions are observed with

PVDF compared to MDPE, which is demonstrated by higher global apol-g-int for the
{CO2-PVDF} system. Above 30 MPa, CO2–MDPE interactions are larger than

0

5

10

15

20

25

30

{CO2-PEMD}

{CO2-PVFD]

{Hg-PEMD}
{Hg-PVDF}

SORPTION

p [MPa]
0 20 40 60 80 100

G
lo

b
al

 c
u

b
ic

 t
h

er
m

al
 e

xp
an

si
o

n
 c

o
ef

ic
ie

n
t 

o
f 

g
as

 s
at

u
ra

te
d

 p
o

ly
m

er
s 

[1
0–

4  
K

–
1 ]

0

5

10

15

20

25

30

{CO2-PVDF}

{N2-PVDF}

{Hg-PVDF}

DESORPTION
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CO2–PVDF interactions, and the global apol-g-int for the {CO2-MDPE} system is

higher than the global apol-g-int for the {CO2-PVDF} system. As shown by Fig. 11,

in the case of PVDF, N2 acts as a “relatively neutral” fluid like Hg, but with

stronger interactions. The values of apol-g-int with N2 are smaller than those with

CO2 [apol-g-int {N2-PVDF} < apol-g-int {CO2-PVDF}], demonstrating that interac-

tions of PVDF with N2 are weaker than with CO2. With N2 (a relatively neutral

fluid) the heat effects reflect the sorption under pressure and parallel the remarkable

plasticization efficiency of N2 in PS, particularly at elevated pressure [46, 47] (see

Sect. 3.4.3). The PVDF values during decompression under N2 and/or CO2 are

similar, which is satisfactory as regards the reversibility of the sorption/desorption

phenomena. The minimum of apol-g-int observed with {CO2-MDPE} and {CO2-

PVDF} systems at about 15 MPa corresponds to the supercritical domain of CO2.

The dependency of apol-g-int coefficients on the nature of the pure gas (i.e., a

minimum corresponds in a mirror-image to the maximum in the temperature

dependence of ap for pure CO2 gas) is a striking feature of previous studies [45].

This clearly shows the influence of supercritical sorption on the thermophysical

properties of the polymers. With the semicrystalline polymers, low pressures most

probably induce a first adsorption of CO2 in the amorphous part and in some

interstitial sites of the crystalline part, with the possible formation of a microorga-

nized domain generated in the amorphous phase of the polymer [44] (see also Sect.

3.1.1). High pressures favor the absorption into the whole polymer matrix (i.e., deep

inside the interstitial or other voids in the polymer) with a mechanical distension,

the CO2-saturated polymer behaving as a pseudohomogeneous state [45]. Further-

more, the minimum would mean that supercritical gas–polymer interactions are

favored. The lowering of molecular polymer–polymer interactions is concomitantly

associated with the ease of CO2 dissolution into the polymer matrix, thus inducing

an increase of free volume together with an increase in polymer chain mobility [48].

This plasticization effect is shown by the minimum of apol-g-int as a function of

pressure. Quantitatively, this is confirmed by the net increase of gas sorption into

the polymer and the swelling of the polymer due to the sorption around 15 MPa (as

investigated by the gravimetric–volumetric VW–pVTmethod) [49, 50]. As a matter

of fact, around this pressure there is compensation between plasticization and

hydrostatic pressure effects upon high CO2-pressure sorption into the polymer.

The supercritical hydrostatic pressure corresponding to the minimum for MDPE

is slightly smaller than that for PVDF.

The thermal II differential comparative mode is conveniently adapted to com-

pare two different polymer samples submitted to the same gas under pressure. This

mode was used to measure the differential heat flux obtained when a MDPE and a

PVDF sample (of identical size and volume, each placed in one of the two calori-

metric vessels) were simultaneously submitted to the same gas pressure at an

identical temperature (372.59 K). The experimental signal, the differential heat

flux dQ{MDPE-PVDF}, compares directly the interactions of the two polymers in the

same gas/supercritical environment at constant temperature. The calorimetric

responses were collected during pressure jumps and during continuous volume
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and pressure scans. Figure 12 shows the plots of heat flux ( in 10�2 W MPa�1)

versus pressure for the two samples.

Below 30 MPa, calorimetric signals are endothermic, with dQ{MDPE-PVDF}/

dp < 0, i.e., PVDF exhibits higher interactions with CO2 than does MDPE.

Above 30 MPa, calorimetric signals become exothermic, with dQ{MDPE-PVDF}/dp
> 0, i.e., the differential heat flux of interactions for the {CO2-MDPE} system

becomes larger than for the {CO2-PVDF} system. This direct comparative method,

which permits differentiation of the interactions between both polymers (MDPE

and PVDF) submitted to the same supercritical CO2 pressure, reproduces exactly

the results obtained with the two preceding methods. At low pressures, more

energetic interactions are observed with PVDF than with MDPE.

The gas–polymer interactions being stronger than the interactions between the

chains segments suggests that incorporation of CO2 in PVDF is easier and stronger

than in MDPE, which was confirmed with the experiments of sorption and of

swelling using VW–pVT. In addition, this is confirmed by measurements at high

pressure, which show that thermal expansion coefficients are smaller for highly

condensed {CO2-PVDF} systems than for less condensed {CO2-MDPE} systems.

As shown in Fig. 11, at high pressure, say above 30 MPa, the global cubic thermal

expansion coefficient is smaller for {CO2-PVDF} (for which the gas–polymer

interactions are larger) than for {CO2-MDPE}. All the above observations show

that CO2 sorption is higher in PVDF than in MDPE. Both polymers have the same

volume fraction of amorphous state, fa ¼ 0.53 [48, 51], and thus solubility is
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Fig. 12 Differential heat flux dQ{MDPE-PVDF} observed when two samples (MDPE and PVDF) are

submitted to CO2 at 372.59 K, with the thermal II differential comparative mode. Above about 30

MPa, positive values of dQ(MDPE-PVDF), shown in boxed region, indicate stronger interactions of

CO2 with MDPE than with PVDF. Measurements were taken during either sorption or desorption

under jumps in pressure (circles), continuous changes in volume dV ¼ 1.364 cm3 (triangles), and
continuous changes in pressure dp ¼ 15 MPa (squares)
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favored by the presence in the PVDF main chain of polar groups C–F, which can

form strong dipolar interactions with polarizable CO2 [51–54]. This explains why

CO2–PVDF interactions are stronger than CO2–MDPE interactions. The extent of

the gas–polymer interactions is fully documented through the thermophysical

properties of gas-saturated polymers, directly measured, in conjunction with exper-

imentally measured gas solubility in polymers.

3.4 Phase Transition at High Pressures

3.4.1 First-Order Transitions

Melting/Crystallization at High Pressures (Hydrostatic Effect)

The investigation of a classic first-order phase transition is illustrated by the

melting/crystallization of a semicrystalline polymer like MDPE. Chemically inert

Hg was used as pressure-transmitting fluid, the polymer sample being completely

surrounded by the fluid inside the detecting calorimetric zone; in fact, the polymer

sample was simply floating on the Hg.

Isobaric scans were performed at the temperature rate of 0.833 mK s�1, both on

heating and cooling, at different pressures from 50 to 200 MPa. Remarkably, the

associated heat flux and volume variations were simultaneously recorded with a

scanning transitiometer. Both the melting temperature Tm and crystallization tem-

perature Tcr were ascribed from the conventional method, taking the onset transition

temperature (namely the intercept of the largest slope of themeasured signal with the

baseline) for each recorded peak. Very good concordance of temperatures obtained

by either heat flux signals or volume variation signals was observed; for example, at

200 MPa, heat flux and volume variation yield the same value of 456.2 K for Tm.
Figure 13 shows the pressure effect on melting and crystallization temperatures,

which are both shifted toward higher values by increasing pressure. The above

measurements also allowed, at 200 MPa for example, evaluation of the variations

of volume and of enthalpy for the melting transition, giving 0.0573 cm3 g�1

and �88.54 J g�1, respectively. The value of 0.297 K MPa�1 was found for the

Clapeyron slope D Tm/Dp, in good agreement with literature values [55, 56].

Gas-Assisted Melting/Crystallization at High Pressures (Plasticizing Effect)

Scanning transitiometry was also adapted to study the influence of a SCF on first-

order phase transitions. In that case, the pressure-transmitting fluid was a gas in

supercritical state. Inside the measuring vessel, the polymer sample is placed in an

open ampoule (either glass or stainless steel) resting on top of a spring that

maintains it in the central zone of the calorimetric detector and in direct contact

with the SCF. The vessel is connected to a pressure detector and to the high pressure

pump through a stainless high pressure capillary. The hydraulic fluid contained in
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the pump and in the pressure detector is separated from the SCF by a Hg column.

This arrangement can conveniently be used to investigate pressure effects on

transitions of the type (solid þ fluid) to fluid.

The {CH4-MDPE} system, the 1, 1-difluoroethyleneþ poly(vinylidene fluoride)

{C2H2F2-PVDF} system, and the {N2-PVDF} system (all binary asymmetric sys-

tems) have been selected to illustrate the use of supercritical scanning transitiome-

try [26, 29, 56]. These systems are of interest because they exhibit a pronounced

nonideal behavior at elevated pressures due to the large differences in the molecular

sizes of components.

Interestingly, CH4 modifies the MDPE structure but is easily removed from the

modified polymer. Since the upper critical solution pressure of the {MDPE-CH4}

system is rather high (>250 MPa [57]), CH4 can be a plasticizer of MDPE up to

elevated pressures. Experimentally, anMDPE sample (density 938 kg m�3; degree of

crystallinity 0.55; number-average molar mass Mn ¼ 16.100 � 103 g mol�1 and

weight-average molar mass Mw ¼ 83.720 � 103 g mol�1, respectively) was placed

in an open stainless steel ampoule, positioned in the high-pressure measuring vessel,

and flushed with supercritical methane (scCH4) for a few minutes. After closing the

vessel, the scCH4 was initially compressed to 25–30 MPa, and then the pressure

modified up to 300 MPa. At a given pressure, isobaric scans (at 0.833 mK s�1) were

performed in heating and cooling. Remarkably, pressure remained constant within

�0.1%, even during the rapid volume changes occurring during phase transitions. It

was then possible to perform several successive melting/crystallization experiments

while recording the corresponding thermograms.

As illustrated in Fig. 14, typical thermograms show the influence of scCH4 on

the two (first-order) transitions by comparing “original” and “final” states of a

Fig. 13 Heat flux thermograms obtained under different pressures from 50 to 200 MPa during

isobaric T scans at 0.833 mK s�1 on heating (downward exothermic peaks) and cooling (upward
endothermic peaks) for a Hg-pressurized MDPE sample. The base lines are shifted for the sake of

clarity to show the effect of pressure on melting/crystallization temperatures
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MDPE sample being, respectively, native or saturated with scCH4. Figure 14 shows

recorded thermograms at 100 MPa: “Original” thermograms were obtained with a

native (virgin) MDPE sample pressurized under inert Hg as pressure-transmitting

fluid (see Sect. 3.4.1.1). “scCH4-final” thermograms were obtained with the MDPE

sample that was submitted to repeated melting/crystallization cycles. “scCH4-

initial” thermograms were obtained during the first heating and cooling of the

native (virgin) MDPE sample under compressed scCH4.

Comparison of the shapes and magnitudes between “original” and “scCH4-

initial” thermograms show the extent of the effect of scCH4 on both melting and

crystallization. The “scCH4-final” thermograms were obtained as the very last

thermograms after repeated melting/crystallization cycles under compressed

scCH4, when the thermograms no longer changed with subsequent melting/crystal-

lization cycles. The striking result is the similarity between “scCH4-final” and

“original” thermograms, whereas the respective melting and crystallization tem-

peratures of the scCH4-saturated sample are significantly shifted toward lower

values. Physical and textural analyses also show important differences between

initial and modified samples [56], attesting to a permanent rearrangement of the

organization of the long chain molecules. A simple qualitative explanation of such

modification is the entropically better alignment of the polymeric structures favored

by scCH4, which acts as a “lubricant” between the chains.

For the polymer PVDF (in the solid state), the monomer C2H2F2 is a good

solvent even at high T and p (over 500 K and 200 MPa, respectively); in this respect

the comparison with the solubilization thermodynamics of inert N2 in PVDF is of

practical interest since PVDF is a major polymeric material in numerous industrial

applications. Furthermore, because the monomer C2H2F2 is the major component of

Fig. 14 Heat flux thermograms obtained under 100 MPa during isobaric T scans at 0.833 mK s�1

on heating (downward exothermic peaks) and cooling (upward endothermic peaks) for a MDPE

sample pressurized under supercritical methane (scCH4 initial and scCH4 final) and under Hg

(original)
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the PVDF polymerization, it is essential to document the thermodynamics of the

{C2H2F2-PVDF} system to better control the polymerization industrial process.

Melting/crystallization under high pressure (i.e., supercritical) C2H2F2 has been

investigated through isobaric temperature scans on PVDF samples (Mn ¼ 113.100 �
103 g mol�1 and Mw ¼ 330.000 � 103 g mol�1, respectively) at different pressures

between 0.1 and 180 MPa [55]. Isobaric temperature scans on PVDF samples under

high pressure N2 have been performed between 0.1 and 30 MPa.

This study shows, like in the case of the {MDPE-CH4} system, the significant

influence of the “active” supercritical solvent on the melting/crystallization of the

polymer. Figure 15 shows the influence of supercritical C2H2F2 and of supercritical

N2 on the Tm and Tcr of PVDF. Obviously, both temperatures increase with

increasing N2 pressure. In the investigated pressure range (0.1–30 MPa), the

(Clapeyron) slope of the two plots Tm/p and Tcr/p were 0.108 � 0.002 K MPa�1

and 0.115 � 0.002 K MPa�1, respectively. By contrast, C2H2F2 depresses first the

melting/crystallization temperatures upon sorption of the gas by the polymer, up to

30 MPa. Then, the antiplasticization effect of the hydrostatic pressure of C2H2F2
takes over above 30 MPa, which confirms the usual competition between plastici-

zation and hydrostatic effects of a (chemically) “active” SCF on the melting/

crystallization phenomena: the hydrostatic pressure increases the temperature of

the first-order transitions, while the increase of solubility of the SCF in the polymer-

rich phase depresses this temperature.

3.4.2 Isotropic Transitions (Self-Assembling of Polymeric Structures

Under High-Pressure Gas Sorption)

Different fields of application require the knowledge of interfacial phase behavior

between gaseous molecules and polymers. New application fields appear with the

rapid growth of information technology, for which ongoing downscaling of micro-

electronics evolves into nanoelectronics. The development of highly ordered

Fig. 15 Pressure–temperature phase diagram for the two systems {C2H2F2-PVDF} (open sym-
bols) and {N2-PVDF} (closed symbols) showing the depression by about 20 K of melting

temperature (right) and crystallization temperature (left) at pressures up to 30 MPa for PVDF

under supercritical C2H2F2
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nanostructures in the macroscopic area has attracted increasing interest through

nanoscience and nanotechnology breakthroughs in the new generation of micro-

electronic and optical devices. Since liquid crystals exhibit a rich variety of phases

and phase transitions, block copolymer systems are promising candidates for

building periodic nanostructures at low cost by simple self-assembly [58]. Modifi-

cation of nanoordered structures formed by block copolymers is currently a key

technology in nanoscience. An important feature of self-ordered structures is their

possible reorganization by modification of the interface between the two compo-

nents of block copolymers by a pressurizing fluid. In this context, we have inves-

tigated the interactions between diblock copolymers and different pressurizing

fluids [2, 3, 59, 60]. For this purpose, our study was focused on phase diagrams

of such systems as functions of the thermodynamic independent variables (p, T, V)
and the respective volume fractions fi of the two components of block copolymers

of various types.

Liquid crystalline amphiphilic diblock copolymers poly(ethylene oxide)-block-
11-[4-(4-butylphenyl-azo)phenoxy]-undecyl methacrylate, PEOm-b-PMA(Az)n, as

shown in Fig. 16, prepared by atom transfer radical polymerization [61], were

composed of hydrophilic PEOm sequences and hydrophobic PMA(Az)n, with

azobenzene moieties such as mesogen connected by a flexible spacer. The synthesis

of such amphiphilic liquid crystal block copolymers has been recently reported

[62]. In diblock copolymers PEOm-b-PMA(Az)n, m and n indicate the degree of

polymerization of PEO and PMA(Az) components, respectively. Differential scan-

ning calorimetry (DSC) of PEOm-b-PMA(Az)n gives a clear picture of the thermal

properties of these liquid crystalline polymers, as shown in Fig. 17, for PEO114-b-
PMA(Az)20 [58, 61].

Four phase transitions are ascribed to the melting of PEO, the glass transition of

azobenzene moieties PMA(Az), the smectic (hardly visible), and the isotropic

transitions.

High-pressure technology using gases plays an important role in nucleation of

materials, and particularly interesting are current developments and applications in

soft matter science with typical modifications and tailoring of liquid crystals,

colloids, and polymers (including block copolymers) by means of supercritical

gases [63–68]. In this respect, the thermodynamic investigation of diblock copoly-

mers connecting incompatible polymers by covalent bonds is illustrative from both

fundamental and applied aspects [69–73]. Typically, copolymers PEOm-b-PMA

PEO
O

O
O N

N C4H9

PMA(Az)nCH3(OCH2CH2)mO

CH2(CH2)9CH2O

Fig. 16 Amphiphilic diblock copolymers of PEOm-b-PMA(Az)n, where m and n indicate the

degree of polymerization of PEO and PMA(Az) components, respectively
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(Az)n generate at the interface between PEO and PMA(Az) moieties well-ordered

structures of one in the other, depending on their respective volume fractions fi. The
ordered structures can be of three different types: spheres, cylinders, or lamellae, as

illustrated in Fig. 18 for an AB-type diblock copolymer [A and B standing,

respectively, for PEO and PMA(Az) components].

Obtaining a given molecular organization of these structures as regards their

type, size, and arrangement is directly controlled by the thermodynamic conditions,

i.e., p, T, and the nature of the hydraulic fluid used to pressurize. To this end, the

isotropic transition of the diblock copolymer at which well-defined self-organized

nanoscale structures form is the main thermodynamic property to document.

In the series of PEOm-b-PMA(Az)n copolymers, PEO self-organized entities in

the form of highly ordered periodic hexagonal-packed PEO cylinders are formed in

the PMA domain by annealing at the isotropic state. This shows that controlling the

phase changes at the interface allows tailoring of the nanoscale structures, as

illustrated in Fig. 19.

Scanning transitiometry has been used to evaluate the pressure dependence of

the isotropic transition temperature Ttr, as well as the transition enthalpy DHtr and
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Fig. 17 DSC heating and cooling curves (heat flux in mW mg�1 vs temperature) for PEO114-b-
PMA(Az)20 showing the high temperature isotropic transition
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corresponding volume DVtr. The role of the nature of the pressurizing fluid on the

transition thermodynamics was also evaluated therefrom. For this, the rigorous

Clapeyron equation was advantageously used to document the pressure effect

because this equation relates the slope (dT/dp) of the phase boundary on the p–T
surface to the changes in volume DVtr and enthalpy DHtr at the transition, as given

by (14):

dp=dTð Þtr¼ DHtr=TtrDVtr ¼ DStr=DVtr; (14)

where DStr is the change of entropy during the transition at temperature Ttr.
Remarkably, the transition entropy DStr decreases with increasing pressure when

the pressurizing fluid is Hg; this is typically the manifestation of a pure hydrostatic

effect, which restricts molecular motions under inert Hg. In complete contrast, DStr
increases when the pressure is exerted by N2 and CO2. In this respect, as observed

previously, N2 is a “neutral” fluid as compared to “chemically active” CO2 and,

consequently, the large increase in DStr shows that the organization of nanostruc-

tures is easiest the more “active” is the fluid, in particular when the fluid is in

supercritical state [2, 59, 60]. The influence of the pressure-transmitting fluid on the

transition temperature Ttr is well illustrated (see Fig. 20) in the case of PEO114-b-
PMA(Az)40 copolymer by the increase of the Clapeyron slope (dp/dT)tr in the

Spheres Cylinders Lamellae Cylinders Spheres

fA >> fB fA << fB

Fig. 18 Possible ordered structures of AB diblock copolymer, depending on the respective volume

fractions fA and fB (by courtesy of Prof. H. Yoshida)

PEO
CO2

PMA(Az)Fig. 19 Ordered periodic

hexagonal-packed PEO

cylinders formed in the PMA

domain while CO2 penetrates

the interface
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sequence Hg < CO2 < N2. In addition, the strong influence of supercritical CO2 on

the transition is spectacularly demonstrated by the significant shift of the isentropic

transition temperature Tiso to lower temperatures. Figure 20 illustrates the relation-

ship between the isotropic transition temperature and pressure for PEO114-b-PMA

(Az)40 under N2 [2] and CO2 [3]. The isotropic transition temperature for PEO114-b-
PMA(Az)20 under Hg pressure [60] is also shown for comparison. The hydro-

static effect under N2 and CO2 pressure is dominative above 20 and 40 MPa,

respectively. The dP/dT values under N2 and CO2 pressure are 10.2 and 8.8 MPa

K�1, respectively. The dP/dT value of PEO114-b-PMA(Az)20 under Hg pressure is

2.85 MPa K�1. The larger dP/dT (14) value under N2 and CO2 pressure than under

Hg pressure suggests that the transition volume DVtr under N2 and CO2 pressure is

smaller than under Hg pressure. The N2 and CO2 adsorbed in PEO114-b-PMA(Az)40
reduces the free volume. Because the compressibility of gaseous molecules is much

smaller than that of the free volume, the volume change under N2 and CO2 is

smaller than the change under Hg pressure. The larger value of dP/dT under N2

pressure than under CO2 pressure shows that the volume change at the isotropic

transition is larger under CO2 pressure than under N2 pressure. Furthermore,

because the interaction between the PMA(Az) domain and CO2 by dipole–

quadrupole interactions is stronger than the physical interaction between the PMA

(Az) domain and N2, the space (the molecular distance) between the PMA(Az)

domain and CO2 is smaller than under N2. Therefore, the free volume under

CO2 pressure is larger than under N2 pressure with, consequently, a larger volume

change and greater ease of molecular reorganization at the entropic transition.
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Fig. 20 Relationship between pressure and the temperature of the isotropic transition Ttr for
PEO114-b-PMA(Az)40 under CO2 (closed circles) and N2 (open circles), and for PEO114-b-PMA

(Az)20 under Hg (open squares) for comparison. The different lines represent the Clapeyron

slopes, depending on the pressure-transmitting fluid. Note the significant shift by CO2 of Ttr to a

lower temperature
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3.4.3 Glass Transitions

Glass Transitions at High Pressures (Hydrostatic Effect)

Evidently, from the above observations, the Tg of semicrystalline polymers is

similarly affected by pressure because an increase of pressure induces a decrease

in the total volume and, as a consequence of the decrease of free volume, a shift to

higher values of Tg is expected. This aspect is particularly important in engineering

operations such as molding or extrusion, when operations at close to Tg can result in
stiffening of the material. Investigation of the pressure effect on the Tg of polymers

is thus of major importance in an industrial context. Particularly, the Tg of elasto-
mers whose Tg are often well below the ambient temperature is of practical interest

when performing experimental measurements by scanning transitiometry. In this

case, Hg, which is conveniently utilized as pressure-transmitting fluid, must be

replaced because its crystallization temperature is relatively high, i.e., 235.45 K.

Selecting a substituting fluid is a challenging problem because the fluid should be

chemically inert with respect to the investigated sample (with respect to all its

constituents). Also, the values of its thermophysical properties, isothermal com-

pressibility, kT, and isobaric thermal expansivity, ap, should be smaller than those

of investigated samples. Another difficulty in the investigation of second-order-

type transformations is the relatively weak thermal effect measured. It is well

known that the amplitude of the heat flux at Tg increases with the temperature

scanning rate, whereas the time constant of differential heat flux calorimeters

imposes relatively low temperature scans rates. However, using an ultracryostat

coupled to the transitiometer, it was possible with the help of a temperature

program to accurately determine Tg at relatively high scanning rates [29].

In a typical run (see Fig. 21a), the temperature of the thermostatic liquid is lower

than that of the calorimetric block during the stabilization periods (isothermal

segments), and higher during the dynamic segment. In such a way, the scanning

rate can be increased up to 1.166 mK s�1, always maintaining a minimal difference

between the target and real temperatures of the calorimetric block. Because the

temperature gradient between the thermostatic heating fluid and the calorimetric

block is kept constant (20 K), the power uptake of the heating elements is quasi-

constant, thus avoiding the interference of sudden changes of power uptake on the

calorimetric signal. For the reported results, measurements were performed using

silicon oil instead of Hg as the hydraulic pressurizing fluid, and the polymer sample

was placed in a lead (soft metal) ampoule. Test measurements were made on

polyvinyl acetate (PVA) for which the DTg/Dp coefficient was found to be 0.212

� 0.002 K MPa�1, in good agreement with the literature value of 0.22 K MPa�1

[73]. The calorimetric traces obtained [31] with the same method for a poly

(butadiene-co-styrene) vulcanized rubber during isobaric scans of temperatures

ranging from 218.15 to 278.15 K at the rate of 0.666 mK s�1 are shown in

Fig. 21b. This figure also shows the evolution of Tg at pressures of 0.25, 10, 30,
50, and 90 MPa: Tg increases linearly with pressure, with a DTg/Dp coefficient of

0.193 � 0.002 K MPa�1.
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It should be noted that Tg is expressed as the temperature corresponding to the

peak of the first derivative of the heat flux (i.e., at the inflexion point of the heat

flux). The volume variations associated with the glass transition, which are also

simultaneously measured by scanning transitiometric measurements, are depicted

in Fig. 22. In accordance with the heat flux curve, Tg increases with increasing the

pressure. Above Tg, there is an increase of the slope of the variation of the specific

volume versus temperature. However, the change in the slope is gradual and Tg can
be determined at the point where the two lines intersect.
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Fig. 21 Scanning transitiometry technique for the investigation of polymer Tg at low temperature

and high pressure. (a) Experimental thermogram recorded during an isobaric temperature scan

under 50 MPa (on a styrene–butadiene rubber sample of 1.56 g; scanning rate 0.666 mK s�1). The

inset shows the temperature programs for the transitiometer (solid line) and for the cryostat

(dashed line). (b) Typical thermograms (heat flux vs temperature) for the transition domain of

the vulcanized rubber are shown for different pressures. The inset shows the change of Tg with
pressure, and the slope gives the pressure coefficient DTg/Dp
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Fig. 22 Effect of pressure on the Tg of vulcanized rubber under isobaric conditions. Typical

volume variations (DV vs T) are shown for the transition domain at 10, 70, and 90 MPa; the

scanning conditions are the same as used for the measurements reported in Fig. 21
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Gas-Assisted Glass Transitions at High Pressures (Plasticizing Effect)

There is not much information available in the literature on calorimetric study of

plasticization of polymers at high pressures, above say 50 MPa, induced by gases.

Plasticization is well characterized by the shift to lower values of Tg. Actually,
when pressure is induced by a gas, both plasticization and hydrostatic effects

contribute to the shift of Tg. If plasticization tends to lower Tg because of the gain
of mobility of the polymeric chains, the hydrostatic effect raises it in diminishing

the free volume. CH4 is assumed to be a nonplasticizing gas, but our results show

that in the case of PS, at higher pressures, plasticization overtakes the hydrostatic

effect, probably due to a higher solubility of the gas in PS at higher pressures; this

kind of behavior has been suggested for high-enough pressures [74]. The plastici-

zation of PS using CH4 seems to be possible, but it is necessary to apply high

pressure (i.e., 200 MPa) in order to obtain approximately the same shift of the Tg as
with ethylene (C2H4) under 9.0 MPa! In this respect, CH4 cannot be considered as a

good plasticizing gas.

An important aspect of polymer foaming is certainly the “ease” with which the

blowing agent can enter, dissolve, and diffuse into the polymer matrix. Control of

two parameters, T and p, is essential to control these phenomena. The nature and

properties of the polymer and of the fluid evidently play a major role. In this

context, the physical state of the polymer must be appropriately modified to

undergo plasticization; this optimal condition for having the “blowing” effect

taking place depends upon the Tg. Plasticization depends on all the thermody-

namic variables and parameters listed above. In particular, it is necessary to know

to what extent Tg is advantageously decreased in order to optimize the foaming

process. From a practical point of view, the DTg shift should be accurately

determined or predicted. Moreover, many properties can be correlated with the

Tg depression DTg due to plasticization. In order to predict the variation DTg, the
model of Chow [75] was selected. The calculations using the model of Chow

were made using experimental data of solubilities directly measured with the new

technique combining a VW weight sensor and a pVT setup [46], as described in

Sect. 2.1.2.

Chow has proposed a relation based on the Gibbs and Di Marzio principle (the

entropy of the glassy state is zero) [76, 77] to account for the change in Tg due to the
sorbed component, as follows:

ln
Tg
Tgo

� �
¼ b 1� yð Þ ln 1� yð Þ þ y ln y½ 	; (15)

where:

b ¼ z R

MpDCp
; y ¼ Mp

z Md

w

1� w
:

Tg and Tgo are the glass transition temperatures for the {gas–polymer} system

and the pure polymer, respectively;Mp is the molar mass of the polymer repeat unit;
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Md is the molar mass of the (diluent) gas; R is the gas constant; w the mass fraction

of the gas in the polymer; DCp is the heat capacity change associated with the glass

transition of the pure polymer; and z is the lattice coordination number. All

parameters of the model have physical meanings, except the number z. The value

of this parameter changes according to the state of the diluent: z ¼ 2 when the

diluent is in the liquid state and z ¼ 1 when it is gas.

In order to compare the model calculations with experimental calorimetric data,

PS samples were modified in a transitiometer used, in this case, as a small reactor to

modify PS under equilibrium conditions in the presence of a chosen fluid. Mod-

ifications of PS have been done in the presence of N2 and CO2, along isotherms at a

given pressure. For these two fluids, a final temperature of 398.15 K and a final

pressure of 80 MPa have been attained. The Tg of modified and nonmodified PS

samples were determined by temperature-modulated DSC (TMDSC). The solubi-

lities of the different gases were measured using the VW–pVT sorption technique

[48, 49] along different isotherms, and the mass fraction of the gas in the polymer

was then determined with the following equation:

w ¼ s

sþ 1
; (16)

where s is the solubility of the fluid in the polymer, in milligrams of fluid per

milligram of polymer.

Using the values of w determined for each gas–PS system, the Chow equation

(15) allows estimation of the variation,DTg, of the temperature of the glass transition

with pressure, along the different isotherms of the sorption measurements.

The use of the Chow model is delicate because the choice of the value of z, i.e.,
the state of the diluent, significantly influences the results. The Tg shift under CO2

pressures is spectacular, showing the high plasticizing effect of CO2. The good

agreement of the literature data for the {CO2–PS} system with the calculated values

[78–80] (as seen in Fig. 23) can certainly be explained by the state of the diluent,

which is most probably in the critical state in the ranges of T and p considered.

Effectively, the critical temperature Tc and critical pressure pc of CO2 support the

hypothesis of the gas being in the near-critical region. Depending on the experi-

mental conditions in the vicinity of the critical point, the fluid can exist in one or the

other state (gas or liquid), or even in both. In the present case, literature data for the

{CO2–PS} system have been obtained under a pressure p 
 pc and at a temperature

T � Tc for CO2; then two phases of the diluent can coexist in different proportions.

Despite the difficulty in determining exactly the variation of Tg, particularly under

supercritical conditions of a diluent fluid, the model of Chow is a useful guide for

prediction of the variation of the glass transition of a polymer modified by a high

pressure fluid. However, the exact determination of the glass transition depression,

DTg, becomes more difficult when the pressure increases, especially near and above

the critical point of the diluent fluid. This means that when plotting DTg as a
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function of pressure, the temperature of measurement plays a major role. If we do

not take into account this temperature, it is preferable to represent DTg as a function
of the mass fraction of the fluid in the polymer.

Compared to polar CO2 and because of its non-polarizability, N2 should be a

weaker plasticizing agent although, as shown in Fig. 24, it induces significant shifts

of Tg with increasing pressures [46]. However, N2, which should also be a good

foaming agent, is not currently used in the foaming industry because of the need of

too high a pressure to attain the desired depression in Tg. Figure 25 shows the

scanning electronic microscopy (SEM) images of PS microstructures modified by

high pressure gases (CO2 or N2) in the VW–pVT technique instrument at a similar

temperature (�315 K) close to, but below, Tg (380 K). The modified PS exhibits

different patterns depending on the use of CO2 or N2 as blowing agents. For the

{N2–PS} system, there is no appearance of a foam structure; the surface is only

damaged by the gas pressure. For the {CO2–PS} system, a foam structure is

apparent. Further increase of temperature has shown that the observed microcel-

lular structure is highly temperature-dependent. Below Tg, the microcellular struc-

ture is obtained with perfect spherical bubbles, and the diameter of the bubbles

tends to increase with increasing T. At temperatures higher than Tg, this organized
structure disappears and the foam becomes more homogeneous.

The sorption of compressed gases in polymers can now be well documented. Our

results with CH4, CO2, and N2 confirm earlier studies of Condo et al. [81, 82] and

more recent investigations of Handa et al. [83, 84] on retrograde vitrification of

polymers observed when a decrease of Tg is observed at gas pressures high enough

to overcome the purely hydrostatic effect.

Fig. 23 Variation of Tg with pressure for the {CO2–PS} system. Calculations have been made for

338.22, 362.50, 383.22, and 402.51 K. Solid symbols represent results for z = 1 and open symbols
for z = 2. Inset: Literature values are represented by crosses in a magnified section of the graph (the

same scale of temperature is kept). Lines are hand-drawn through the points
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4 Conclusion

An experimental setup coupling a VW detector and a pVT technique has been used

to simultaneously evaluate the amount of gas entering a polymer under controlled

temperature and pressure and the concomitant swelling of the polymer. Scanning

transitiometry has been used to determine the interaction energy during gas sorption

in different polymers. The technique was also advantageously used to determine the

thermophysical properties (like isobaric thermal expansivity) of polymers in the

Fig. 25 SEM pictures (50 mm definition) of modified PS samples under CO2 or N2 gas pressure.

The structure of the modified PS presents different aspects depending on the use of CO2 or N2 as

blowing agent. Left: For the {CO2–PS} system at 317.15 K, the structure of foam is apparent.

Right: For the {N2–PS} system at 313.12 K, there is no appearance of a foam structure; the surface

of the PS is only damaged by the gas pressurization
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Fig. 24 Variation of Tg as a function of pressure for the {N2–PS} system. Calculations have been

made for 313.11, 333.23, and 353.15 K, using z = 1. Lines are hand-drawn through the points
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presence and absence of gas sorption under pressure. Scanning transitiometry has

also been used to evaluate the thermodynamic control of essential transitions in

polymer science, first-order transitions, and glass transitions. The influence and the

role of gas sorption on such transitions can be fully documented. Of particular

interest is the tailoring of nanostructures at the isotropic transitions in amphiphilic

diblock copolymers. The striking effect of gas sorption is particularly observed

when the gas is in supercritical state, depending on the thermodynamic conditions.

The main conclusion is that a rigorous thermodynamic approach is possible through

appropriate experimental techniques in which the three main thermodynamic vari-

ables (p, V, and T) as well as the nature of pressurizing fluids are properly

controlled. Evidently, applications of engineering interest are now at hand, as

illustrated by examples taken from the petroleum and microelectronic industries.
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Interfacial Tension in Binary Polymer

Blends and the Effects of Copolymers

as Emulsifying Agents

Spiros H. Anastasiadis

Abstract The structure and the thermodynamic state of polymeric interfaces are

important features in many materials of technological interest. This is especially

true for multiconstituent systems such as blends of immiscible polymers, where the

interface structure can affect greatly their morphology and, thus, their mechanical

properties. In this article, we first present a review of the experimental and theore-

tical investigations of the interfacial tension in phase-separated homopolymer

blends. We emphasize the effects of temperature and molecular weight on the

behavior: interfacial tension g decreases with increasing temperature (for polymer

systems exhibiting upper critical solution temperature behavior) with a temperature

coefficient of the order of 10–2 dyn/(cm �C), whereas it increases with increasing

molecular weight. The increase follows a g ¼ g1 1� kintM
�z
n

� �
dependence (with

z � 1 for high molecular weights), where g1 is the limiting interfacial tension at

infinite molecular weight and Mn the number average molecular weight. Suitably

chosen block or graft copolymers are widely used in blends of immiscible polymers

as compatibilizers for controlling the morphology (phase structure) and the inter-

facial adhesion between the phases. The compatabilitizing effect is due to their

interfacial activity, i.e., to their affinity to selectively segregate to the interface

between the phase-separated homopolymers, thus reducing the interfacial tension

between the two macrophases. The experimental and theoretical works in this area

are reviewed herein. The effects of concentration, molecular weight, composition,

and macromolecular architecture of the copolymeric additives are discussed. An

issue that can influence the efficient utilization of a copolymeric additive as an

emulsifier is the possibility of micelle formation within the homopolymer matrices

when the additive is mixed with one of the components. These micelles will

compete with the interfacial region for copolymer chains. A second issue relates
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to the possible trapping of copolymer chains at the interface, which can lead to

stationary states of partial equilibrium. The in-situ formation of copolymers by the

interfacial reaction of functionalized homopolymers is also discussed.

Keywords Polymer interfaces � Interfacial tension � Compatibilizers � Interfacial
partitioning � Emulsifying agents
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1 Introduction

The increasing need of the modern world to create materials with new fascinating

properties and better performance, that are more easily processable and, hopefully,

more environmentally friendly has forced polymer scientists to face the challenge

of developing new macromolecular systems with such characteristics. Realistically,

however, industry would prefer to keep using the traditional commodity polymers

because of the accumulated know-how and the significant investments made over

the years. Between those two trends, scientists have found a way to satisfy both

demands. Improving the performance of polymeric materials for many important

scientific and industrial applications can be achieved by mixing different compo-

nents with complementary properties. Polymer blending is a high-stakes game in

the plastics industry, whereby basic resins are manipulated into becoming new

polymer systems with properties beyond those available with the individual resin

components [1, 2].

The development of compounds and blends of polymers dates back almost two

centuries to the early rubber and plastics industry, when rubber was mixed with

substances ranging from pitch [3] to gutta percha [4]. As each new plastic has been

developed, its blends with previously existing materials have been explored. Thus,

synthetic rubbers, in the early period of the plastics industry, were mixed into

natural rubber and found to produce superior performance in tire components.

Polystyrene (PS) was blended with natural and synthetic rubbers after its commer-

cialization, and this led to high impact polystyrenes (HIPS), which now hold a
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stronger position in the market place than the bare plastic. Attention has been

especially focused on blends since the commercialization of General Electric’s

Noryl, a blend of HIPS with poly(2,6-dimethyl-1,4-phenylene oxide). We are now

in a period of investigating both the new blends and related compound systems and

the scientific principles underlying blend characteristics [1, 2].

When the two (or more) blend components are compatible, the performance of

the final product is straightforwardly controlled by the properties of the individual

materials and their mixing ratio. In the most frequently encountered situation of

immiscible polymer/polymer dispersions, however, one is faced with the problem

of controlling the morphology (phase structure) and the interfacial adhesion

between the phases in order to obtain an optimized product [1, 2]. The phase

structure (e.g., the dispersed particle size) in such systems is controlled by the

chemical character of the individual components and their rheological properties

[5] as well as by the deformation and/or thermal history; these factors affect how the

phase morphology evolves. A number of experimental investigations have clearly

shown that the characteristic size of the dispersed phase in incompatible polymer

blends is directly proportional to the interfacial tension [6], whereas the equilibrium

adhesive bond strength between the two phases depends strongly on the interfacial

tension. For example, the characteristic size of the dispersed phase obtained during

melt extrusion of an incompatible polymer blend is related to the interfacial tension

between the two phases (g,), the viscosities of the dispersed phase and the matrix (�d
and �m, respectively), and the process characteristics (shear rate, _g) by the empirical

relationship [7]:

_g�mdn
g

¼ 4
�d
�m

� ��0:84

(1)

where dn is the number-average particle diameter. The plus (+) sign applies for

p¼ �d/�m> 1 and the minus (�) sign for p< 1. Moreover, the rate of phase growth

during the later stages of phase separation increases with increasing interfacial

tension [8]. It is noted that the size of the dispersed phase is an important factor that

influences the mechanical properties of incompatible polymer blends.

Therefore, interfacial tension is an important, if not overriding, factor in the

formation of a phase boundary and in the development of phase morphology in

incompatible polymer blends. Interfacial tension, g, is defined as the reversible

work required to create a unit of interfacial area at constant temperature, T,
pressure, P, and composition, n, i.e., [9–18]:

g ¼ @G

@A

� �
T;P;n

(2)

where G is the Gibbs free energy of the system and A the interfacial area. Interfacial

tension is, thus, a thermodynamic property of the system and can be calculated

directly from statistical thermodynamic theories. Experimental investigation of

interfacial tension is, therefore, a straightforward means for evaluating the validity

of such theories.
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For a certain polymer–polymer pair, interfacial tension generally decreases

linearly with temperature with a temperature coefficient of the order of 10�2

dyn/(cm �C) [10, 19–24]. Increasing the molecular weight of either polymer leads

to an increase in the interfacial tension; it is now recognized that, for high enough

molecular weights, interfacial tension shows a Mn
�z dependence on the molecular

weight [20, 21, 23–26] with z ffi 1, although there are reports for z ffi 2/3 or even

0.5 for lower molecular weights (Mn is the number average molecular weight).

Moreover, interfacial tension was found to decrease with increasing polydispersity

[22, 23, 26]. A number of thermodynamic theories have appeared from very early

on [27–29] until more recently [25, 30–35], which predict the interfacial tension of

blends of immiscible polymers and its temperature and molecular weight depen-

dencies. Both the experimental and the theoretical investigations of polymer–

polymer interfacial tension will be thoroughly reviewed in Sect. 3.

Suitably chosen block or graft copolymers are widely used by the polymer

industry as emulsifiers in multiconstituent polymeric systems in order to improve

the interfacial situation and, thus, obtain an optimized product [1, 2, 36]. This is due

to their interfacial activity, i.e., to their affinity to preferentially segregate to the

interface between the phase-separated homopolymers [37–44]. This partitioning of

the block copolymers at the interface is responsible for the significant reduction of

the interfacial tension between the two macrophases [45–59], aids droplet breakup,

and inhibits coalescence of the dispersed phases [60, 61]. This leads to a finer and

more homogeneous dispersion during mixing [52, 62–66], and improves interfacial

adhesion [67, 68] and mechanical properties via the significant increase in the

interfacial thickness between the macrophases [38, 69]. For a block or graft

copolymer to be effective as an emulsifier, it is, thus, important that it is localized

to the polymer–polymer interface [37, 38, 40–44], with each block preferentially

extending into its respective homopolymer phase [39, 70–74]. Because block and

graft copolymers are likely to be expensive, it is of great importance to maximize

their efficiency so that only small amounts are required. The efficiency of interfacial

partitioning is predicted to depend on the molecular weights of the copolymer

blocks relative to those of the homopolymers [70, 75–79], on the macromolecular

architecture/topology and composition of the copolymers [80–98], as well as on

the interaction parameter balance between the homopolymers and the copolymer

blocks [99, 100].

However, a crucial issue that could severely influence the efficient utilization of

a copolymeric additive as an emulsifier is the possible formation of copolymeric

micelles within the homopolymer phases when the additive is mixed with one of the

components [101]. The micelles will compete with the interfacial region for

copolymer chains, and the amount of copolymer at the interface or in micelles

depends on the relative reduction of the free energy, with much of the premade

copolymer often residing in micelles for high molecular weight additives. The

effect of the existence of micelles on the interfacial partitioning of diblock co-

polymers at the polymer–polymer interface has received some attention in the

literature [54, 56, 75, 77, 102–105]. As an alternative, in-situ formation of copoly-

mers (usually grafts) is utilized [61, 106–117] in order to overcome “wasting” of the
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additive into micelles. A second issue relates to the possible trapping [71] of

copolymer chains at the interface, which can lead to partial equilibrium situations.

Finally, since in a typical preparation of homopolymer/copolymer blends the

system can be diffusion-controlled, the optimal conditions for the molecular design

of interfacially active copolymers obtained from equilibrium considerations might

have to be modified.

The experimental and theoretical investigations of the effects of copolymeric

additives on polymer–polymer interfacial tension will be reviewed in Sect. 4.

2 Methods of Measuring Interfacial Tension

Various techniques have been developed to measure surface and interfacial tensions

of liquids and melts and an early extensive discussion was presented by Padday

[118]. In principle, all the standard techniques can be used to measure the surface

and/or interfacial tension of polymer liquids and melts; however, due to the high

viscosity and viscoelastic character of the polymers, only a few methods are

suitable. In general, equilibrium static techniques seem completely satisfactory.

Due to the high equilibration times involved with polymeric materials, it has not

been possible to demonstrate that pull, detachment, or bubble pressure measure-

ments can always be made slowly enough to yield accurate results with highly

viscous liquids. Extensive reviews on the suitability of the various methods applied

to polymeric systems have been given by Frisch et al. [119], Wu [10, 120],

Koberstein [121], Anastasiadis [122], Xing et al. [123], and Demarquette [124].

Only methods based on drop profiles are suitable for both surface and interfacial

tension measurements. These include the pendant drop method [125–127], the

sessile bubble or drop method [128, 129], and the rotating drop or bubble method

[130, 131]. These methods are independent of the solid–liquid contact angle but

require accurate knowledge of the density difference across the interface. The

demand of accurate density data becomes even greater when the two phases have

similar densities. The rotating drop or bubble method is particularly suited for the

determination of very low surface and interfacial tensions.

Although the capillary rise [132, 133] is one of the static methods, the very slow

attainment of equilibrium (because of the resistance to flow in the narrow capillary)

makes it unsatisfactory for highly viscous materials. The Wilhelmy plate technique

[134, 135] has the advantage that density data are not required; however, the

requirement of zero contact angle makes it suitable only for surface tension

measurements. Other standard techniques, such as the detachment methods (Du

Noüy ring [136–138], drop weight methods [118]), and the maximum bubble

pressure method [133] are severely limited by viscosity. Although these methods,

except the drop weight methods, have been used to measure the surface tension of

low-viscosity polymeric liquids, they are impractical for viscous fluids because of

the extremely slow rates of attaining equilibrium. Most importantly, in this case,

they are not suitable for measurements at the liquid–liquid interface.
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Surface light scattering methods from thermally induced capillary waves at the

interface [139–141] or from electric-field-induced surface waves [142, 143] have

appeared. The technique is limited by the viscosities of the two phases; if the

viscosities are too large, then the spatial damping of the surface capillary waves

is too rapid to be detected by the technique. The applicability of this method for

highly viscous polymeric interfaces has not been verified yet.

Two dynamic methods that have attracted the interest of the scientific commu-

nity are the breaking thread method and the imbedded fiber retraction (IFR)

method. Although they are dynamic methods and, thus, suffer from the high

viscosities and viscoelastic character of polymers, they possess an important

advantage in that they can be used to measure the interfacial tension between two

phases of similar densities. The breaking thread method [144–147] involves the

observation of the evolution of the shape of a long fluid thread imbedded in another

fluid. Due to Brownian motion, small distortions of arbitrary wavelength are

generated at the surface of the thread; this leads to a pressure difference between

the inside and the outside of the thread, which induces important deformations

caused by the effect of the interfacial tension that tends to reduce the interfacial

area. It is possible to infer interfacial tension between the polymer forming the

thread and the matrix from the study of the time evolution of the disturbances.

However, the breaking thread method suffers from a major drawback related to

residual stresses during the preparation of the threads; these fibers distort faster and

lead to interfacial tension values much higher than the real value. Moreover, the

fiber should be formed with the material that has the lowest viscosity and, at the

same time, the higher softening temperature. Palmer and Demarquette [148] pro-

posed a methodology for the improvement of the accuracy of the method by

utilizing simultaneously the original theory of Tomotika [144], which evaluates

the growth rate of the sinusoidal instabilities growing exponentially with time, with

that of Tjahjadi et al. [146], which consists of fitting the dynamics of amplitude

growth using curve-fitted polynomials, which are calculated from numerically

generated results of the transient shape using boundary integral techniques.

The IFRmethod is a dynamic technique that has been widely used to measure the

interfacial tension for blends comprising high molecular weight and/or high viscos-

ity polymers, for which it is difficult or impossible to measure the interfacial tension

using direct equilibrium techniques such as the sessile or pendant dropmethods. The

IFR method involves the analysis of the microscopic shape change of a fiber of one

polymer embedded in a matrix of a second polymer [25, 149–151]. In general, the

IFR studies are made on matrix polymers that are solid at room temperature and

have high viscosities, which are obtained directly by compression molding or cut

from large compression-molded samples. These systems require a melting and

embedding step at a temperature below the retraction temperature. However, matrix

polymers that are liquid at room temperature have been used as well [24].

The most versatile, convenient, and reliable technique for determining the

surface and interfacial tension of polymer melts is the pendant drop method

[19, 20, 45, 54, 56, 122, 126, 127, 152–155]. The results obtained by the pendant

drop method constitute the bulk of the available data [10, 120]. The method is
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based on the principle that the shape of the profile of a drop of one fluid into a

matrix of another is governed by a force balance between interfacial tension and

gravity or buoyancy forces: a drop is pendant if the resultant force tends to pull it

away from the supporting surface and sessile otherwise. The shape of the drop is

described by the Bashforth–Adams equation [156], which in dimensionless form is

given by:

df
d S

¼ 2

B
þ Z � sin f

X
d X

d S
¼ cos f

d Z

d S
¼ sin f

Xð0Þ ¼ Zð0Þ ¼ fð0Þ ¼ 0

(3)

where f is the angle measured between the tangent to the drop profile at the point

(x, z) and the horizontal axis and s the distance of point (x, z) from the drop apex along

the drop contour. The dimensionless reduced parameters are defined as X ¼ x
ffiffiffi
c

p
,

Z ¼ z
ffiffiffi
c

p
, and S ¼ s

ffiffiffi
c

p
. The shape of the drop is controlled by the shape parameter

B ¼ a
ffiffiffi
c

p
, where a is the radius of curvature at the drop apex, g is the gravitational

constant, g is the interfacial tension, Dr is the density difference across the interface,

and c ¼ gDr/g. Thus, the profile of a pendant drop at hydrodynamic and interfacial

equilibrium provides the value of the interfacial tension.

Continuous monitoring of the drop profile can provide a criterion for hydro-

dynamic equilibrium of the drop by verifying conformity to the differential

equation (3). The technique does not require any particular solid–liquid contact

angle (except that the contact angle should be constant over the surface from

which the drop is suspended, so that the drop shape will constitute a figure of

revolution). Because of the minimal solid–liquid contact, the pendant drop offers

the fastest equilibration among the various methods. One potential difficulty is

that an initially stable drop might detach if sufficient reduction in interfacial

tension occurs during the measurement.

Andreas et al. [157] first proposed that measurements of two diameters of the

drop could be used to determine g. Their procedure involved the determination of

the maximum diameter de and a second diameter ds located at distance de above the
drop apex. The ratio S ¼ ds/de was used to determine a correction factor H from

tabulated values. The interfacial tension was then calculated by g ¼ gDrd2e=H.

More accurate tables of 1/H versus S were compiled later [158, 159] by numerical

solution of the fundamental differential equations. Roe et al. [125] proposed the use

of not one but several characteristic ratios for determining the drop shape by

defining a series of diameters dn (n ¼ 8, . . .12) measured at heights Zn ¼ (n/10)de
(n ¼ 8, . . .12) and the corresponding characteristic ratios Sn ¼ dn/de (n ¼ 8, . . .12).
They suggested that, when a series of the 1/H values determined from the several Sn
values are nearly identical, the drop can be considered to have attained its equili-

brium shape and the interfacial tension can be calculated.
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Advances in both data acquisition and analysis improved the precision and

accuracy of axisymmetric fluid drop techniques. Digitizer palettes to efficiently

record and store profile coordinates from enlarged photographic drop images were

first used [19, 160, 161], but were eliminated entirely by the change to direct

digitization of drop images with the aid of video frame grabbers or direct digital

cameras [155, 162–164]. Digital processing of the drop images leads to rapid

acquisition and analysis, thus, providing a simple means of detecting the attainment

of equilibrium, a distinct advantage for viscous fluids such as polymer melts.

Figure 1 shows typical digital images of a pendant drop (left), the same drop

following global thresholding (center) that reduced the 256 gray level image to a

binary image, and the resultant segmented drop profile (right) [155].

Sophisticated algorithms for the analysis of drop profiles were developed con-

currently [155, 160, 162, 165]. These methods either eliminate or minimize the

necessity of specifying extremal drop dimensions, thereby reducing the inherent

statistical error. Different optimization procedures have appeared. Girault et al.

[162] and Huh and Reed [160] used a least squares optimization with exhaustive

search through the shape parameter B, whereas Rotenberg et al. [165] utilized a

sophisticated least squares optimization procedure using the Newton–Raphson

method with incremental loading. Alternatively, Anastasiadis et al. [155] developed

a robust shape analysis algorithm, which utilized the repeated median concept of

Siegel and coworkers [166–168]. This algorithm has the advantages of robustness

and resistance, namely that outlying points that are not consistent to the trend do not

influence the fit. Such outlying points could result from inaccuracies in the compu-

terized drop profile discrimination procedure.

The process of comparing the experimental drop profile to the theoretical profile,

generated by numerical integration of (3), involves a five-parameter optimization.

A total of three parameters are required for the alignment of the imaging system to

the coordinate system of the dimensionless drop: an x- and y-translation, and a

rotational angle. The two final parameters are the scale or magnification factor of

the drop,
ffiffiffi
c

p
, and the shape parameter B. As in all regression problems, the drop

Fig. 1 Typical digitized drop images. Original gray level image (left); thresholded binary image

(center); segmented drop profile (right) [155]
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analysis procedure involves comparing N points {(xi,yi)} from an experimental

profile to N homologous points {(ui,vi)} from a theoretical profile. The theoretical

points must be rotated by an angle y, translated by a vector (a,b), and scaled by a

factor t in order to effect this comparison. The transformed theoretical coordinates

are given by:

u0i
v0i

� �
¼ a

b

� �
þ t

cos y � sin y
sin y cos y

� �
ui
vi

� �
(4)

and are compared to {(xi,yi)} for each value of the shape parameter B. The value of
the shape parameter, which yields the minimum overall error, provides the optimal

fit. The interfacial tension is, then, obtained from the associated optimal scaling

factor t, recognizing that:

t ¼ 1=
ffiffiffi
c

p ¼ g
gDr

� �1=2

(5)

In least squares regression methods, the values of all the shape parameters

(i.e., t, a, b, y) must be chosen simultaneously in order to minimize the sum of

the squared residuals:

sum ¼
XN
i¼1

xi � u0i
� �2þ yi � v0i

� �2h i
(6)

In contrast, with the robust shape comparison method, each of the optimal

parameter values can be evaluated independently. In the case of rotation and

magnification variables, this is accomplished using the concept of repeated medians

as represented by the relationships:

t� ¼ med
i

med
i

tij
� �	 


(7a)

where

tij ¼
xj � xi
� �2þ yj � yi

� �2h i1=2

uj � ui
� �2þ vj � vi

� �2h i1=2 (7b)

and

y� ¼ med
i

med
i

yij
� �	 


(8)
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where yij is the rotation required for the vector from point i to point j in the

theoretical shape in order to have the same attitude as the homologous vector in

the experimental profile. The translational parameters are calculated from the

simple (nonrepeated) medians as:

a� ¼ med
i

xi � t� ui cos y� � vi sin y�½ 	f g (9a)

b� ¼ med
i

yi � t� ui sin y� þ vi cos y
�½ 	f g (9b)

The advantages of double median robust techniques over traditional least

squares regression methods have been discussed by Siegel et al. [166]. One

particular advantage specific to the shape comparison problem can be understood

by comparing (6) with (7)–(9). The least squares minimization is sensitive to local

residuals between individual points, which are, however, only remotely related to

the overall shapes of the two profiles being compared. The robust method affects a

more global shape comparison, as can be seen from examining (7) and (8). Instead

of comparing individual points of the two curves, the method compares vectors or

line segments between all points i and j on the experimental profile with the

corresponding vectors on the theoretical profile. In addition, the values of t*, y*,
a*, and b* for each shape comparison (i.e., for each value of the shape parameter B)
are specified directly by the robust relationships (7)–(9). Thus, the five-parameter

optimization is reduced to a single variable optimization of the shape parameter

B [155].

The application of the robust shape analysis algorithm is illustrated in Fig. 2 for a

drop of polystyrene (PS, Mn ¼ 10,200; Mw/Mn ¼ 1.07) in a poly(ethyl ethylene)
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Fig. 2 Quality of the fit

obtained by the application of

the algorithm to an

experimental profile for a PS

10,200 drop in a PBDH 4080

matrix at 147�C. Solid line is
the theoretical profile, and the

data points denote the
original segmented

experimental drop profile

[20]. The interfacial tension is

2.6 dyn/cm
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(PBDH Mn ¼ 4,080;Mw/Mn ¼ 1.04) matrix at 147�C. The analysis of the drop was
performed using 23 data points for the shape comparison. The correspondence of

the theoretical profile to these data points and to the original digitized drop profile is

excellent [20].

The experimental setup, the digital image processing routines, and the robust

shape analysis algorithm have been widely used to study the polymer–polymer

interfacial tension [20], the effects of copolymeric additives on polymer–polymer

interfacial tension [45, 48] and the influence of copolymer molecular weight [54]

and architecture [56], the surface tension of homopolymers [169] and of miscible

polymer blends [170], the effects of end-groups on the polymer surface tension and

its molecular weight dependence [171], the effects of end groups on polymer–

polymer interfacial tension [172], the work of adhesion of polymer–wall interfaces

[173], etc. Moreover, the analysis algorithm was utilized by a different group in the

development of another pendant drop instrumentation [164] and their measure-

ments of polymer–polymer interfacial tension [21].

3 Interfacial Tension in Binary Polymer Blends

3.1 Experimental Studies of Polymer Interfacial Tension

Although knowledge of the interfacial tension in polymer/polymer systems can

provide important information on the interfacial structure between polymers and,

thus, can help the understanding of polymer compatibility and adhesion, reliable

measurements of surface and interfacial tension were not reported until 1965 for

surface tension [135, 138] and 1969 for interfacial tension [127, 154] because of the

experimental difficulties involved due to the high polymer viscosities. Chappelar

[145] obtained some preliminary values of the interfacial tension between molten

polymer pairs using a thread breakup technique. The systems examined included

nylon with polystyrene, nylon with polyethylene (PE), and poly(ethylene tere-

phthalate) with PE; the values are probably only qualitatively significant [174].

Determinations by Roe [154] and Wu [127, 152, 153] using the pendant drop

method and by Hata and coworkers [128, 175] using the sessile bubble technique

have yielded values for a number of polymer pairs as a function of temperature.

Gaines [174] andWu [10, 120, 176] provided extensive reviews of the early work in

the area of surface and interfacial tension of polymer liquids and melts.

In general, and for polymers that exhibit a miscibility gap at lower temperatures

(blends that show upper critical solution temperature, UCST, behavior), interfacial

tension is found to decrease linearly with increasing temperature, with temperature

coefficients of the order of 10�2 dyn/(cm �C) [10]. This is about one half of the values
observed for the temperature coefficients of polymer surface tension [10, 120, 176].

An increase in the molecular weight of either polymer leads, in general, to an

increase in interfacial tension [10, 19, 20, 120, 176]; however, there are few
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systematic experimental studies of the effects of molecular weight on polymer–

polymer interfacial tension. Bailey et al. [177] have examined the effect of molec-

ular weight and functional end groups on the interfacial tension between poly

(ethylene oxide), PEO, and poly(propylene oxide), PPO. The interfacial tension

was found to increase with increasing PPO molecular weight but to decrease

slightly with increasing the molecular weight of PEO. This dependence was

attributed to the adsorption of the hydroxyl end groups of PPO to the interface.

When these end groups were replaced by methoxy groups, the adsorption no longer

took place and the interfacial tension increased with increasing molecular weight.

Experimental interfacial tensions measured by Gaines and coworkers [178, 179] for

the systems n-alkanes/perfluoroalkane C12.5F27, poly(dimethyl siloxanes)/C12.5F27
or C8F18, and alkanes/poly(ethylene glycols) all exhibited an increase with increas-

ing molecular weight following an apparent Mn
�2/3 dependence, similar to that

observed for homopolymer surface tension [10]. This similarity was predicted by

several empirical theories that relate interfacial tension to the pure component

surface tensions [153, 180], whereas no thermodynamic theory explicitly accounts

for this dependence (see Sect. 3.2 below).

Anastasiadis et al. [20] utilized digital image processing of pendant fluid drops to

investigate the effects of temperature and molecular weight on the interfacial

tension for three blends of immiscible polymers. Interfacial tension was found to

decrease almost linearly with increasing temperature for all systems (which exhibit

a UCST behavior) and to increase with increasing molecular weight. The interfacial

tension data for blends of polybutadiene (PBD 1000; Mn ¼ 980; Mw/Mn ¼ 1.07)
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Fig. 3 Experimental interfacial tension as a function of temperature for PBD/PDMS pairs. Open
squares PBD 1000/PDMS 3780; open diamonds PBD 1000/PDMS 2000; filled squares PBD 1000/

PDMS 1250; filled diamonds PBD 1000/PDMS 770 [20]
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with four poly(dimethyl siloxanes), PDMS, are shown in Fig. 3 as a function of

temperature. Interfacial tension decreases almost linearly with temperature with

temperature coefficients of 0.75 
 10�2 to 1.2 
 10�2 dyn/(cm �C).
The effect of PDMS molecular weight on the interfacial tension at constant

temperature for a constant molecular weight of PBD (Mn ¼ 980, Mw/Mn ¼ 1.07)

is illustrated in Fig. 4. The molecular weight dependence was obtained by perfor-

ming nonlinear least-squares regression of the data to an expression of the form

g ¼ g1 1� kintM
�z
n

� �
. This analysis yielded z ¼ 0.54 for the present PDMS/PBD

system of the specific range of low molecular weights.

The interfacial tension data for blends of PS of various molecular weights versus

a poly(ethyl ethylene) (PBDH 4080;Mn¼ 4800,Mw/Mn¼ 1.04) exhibited a similar

behavior with temperature, with temperature coefficients 0.9 
 10�2 to 1.5 
 10�2

dyn/(cm �C), and, qualitatively, with molecular weight. However, fitting the data to

the expression g ¼ g1 1� kintM
�z
n

� �
yielded z ¼ 0.68 for PS molecular weights

between 2200 and 10,200.

The measurements for the blends of PS and poly(methyl methacrylate) (PMMA;

Mn ¼ 10,000, Mw/Mn ¼ 1.05) cover the broadest range of molecular weights

(Fig. 5). For this system, nonlinear fit of the data to the expression

g ¼ g1 1� kintM
�z
n

� �
resulted in z ¼ 0.90 for PS molecular weights between 2200

and 43,700.

These values for the exponent z should be taken with caution because of

experimental errors. However, it was pointed out [20] that the smallest value for z
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Fig. 4 Experimental interfacial tension at 25�C between PDMS and PBD 1000 as a function of

the Mn of PDMS. Solid line represents the best fit to a Mn
�1 dependence and the dotted line is the

fit for a Mn
�0.5 dependence [19, 20]
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(z ¼ 0.54) was obtained for the system with the lowest molecular weights and

highest polydispersities (Mw/Mn ¼ 2 for the PDMS samples), whereas the largest

value for z (z ¼ 0.9) was observed for the system with the highest molecular

weights. A smaller exponent for PDMS/PBD could be explained by the occurrence

of surface segregation of the polydisperse PDMS according to molecular weight.

Surface tension data for mixtures of PDMS oligomers suggest that the lower

molecular weight species are concentrated at the surface [176]. Alternatively, the

PDMS/PBD system is closest to its critical point, where a Mn
�0.5 dependence of

interfacial tension has been predicted [181] (discussed in Sect. 3.2.4). The interme-

diate molecular weight system of PS/PBDH shows good correspondence with the

Mn
�2/3 dependence. A similar dependence for the surface tension was explained by

using a simple lattice analysis [182] that incorporated the contribution of the end

groups at the interface. For these moderate molecular weights, the end-group

effects are important and a Mn
�2/3 dependence might be expected.

The PS/PMMA blends, on the other hand, contain the highest molecular weight

constituents and should, thus, conform best to the limit of high molecular weights.

In this limit, the exponent z apparently approached unity. The fact that the estimated

exponent is 0.90 probably suggests that the asymptotic regime (the Mn
�l behavior)

was not yet reached even for those molecular weights. The nonlinear regression

results, therefore, suggest that the exponent z of the molecular weight dependence

of polymer–polymer interfacial tension increases as the molecular weights of the

constituents increase.
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Fig. 5 Experimental interfacial tension between PS and PMMA 10,000 as a function of PS Mn at

199�C. The solid line represents the best fit to aMn
�1 dependence and the dotted line is the fit for a
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�0.5 dependence [20]
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Ellingson et al. [25] investigated the molecular weight dependence of the

interfacial tension between a PMMA (Mn ¼ 24,400, Mw/Mn ¼ 1.10) and a series

of polystyrenes (Mn ¼ 2140 to 191,000, Mw/Mn ¼ 1.06 to 3.26) utilizing an IFR

method, which allowed them to study even larger molecular weights. Figure 6

shows the experimental data at a temperature of 190�C (slightly lower than for the

measurements of Anastasiadis [20]). The data were analyzed with the expression

g ¼ g1 1� kintM
�z
n

� �
, yielding a best fit value of z ¼ 0.73 � 0.24; however, equal

quality fits were obtained for z ¼ 0.50 or z ¼ 1.0.

Kamal et al. [21, 22] used a similar pendant drop apparatus to determine the

interfacial tension between polypropylene (PP, Mn ¼ 54,000 and Mw/Mn ¼ 5.54)

and a series of polystyrenes (Mn from 1600 to 380,000 and Mw/Mn ¼ 1.04–1.06).

Interfacial tension decreased almost linearly with temperature (Fig. 7) for this

UCST-type system, with temperature coefficients of 3.7 
 10�2 to 4.4 
 10�2

dyn/(cm �C).
Figure 8 shows the effect of the PS molecular weight on the interfacial tension

with PP [21, 22]. The interfacial tension increases as the PS molecular weight

increases, in agreement with earlier works. The precision of the data, however, does

not allow the unequivocal determination of the functional form of the molecular

weight dependence. The data can be equally well fitted with the expression

g ¼ g1 1� kintM
�z
n

� �
, with the exponent z being 0.5, or 0.68 or 1.

Arashiro and Demarquette [23] investigated the effects of temperature, molecu-

lar weight, and molecular weight polydispersity on the interfacial tension between

low density PE and PS. Figure 9 shows the temperature dependence for three PE/PS

pairs; interfacial tension decreases linearly with temperature for all three UCST-

type systems. The temperature coefficient [3.0 
 10�2 to 4.4 
 10�2 dyn/(cm �C)]
was found to decrease with increasing molecular weight, whereas it was higher for

the polydisperse than for the monodisperse system, in agreement with earlier

studies [21, 22].

Fig. 6 Experimental

interfacial tension between

PS and PMMA 24,400 as a

function of PS Mn at 190
�C.

The unbroken curve
represents the three-

parameter nonlinear fit

to an expression

g ¼ g1 1� kintM
�z
n

� �
. The

dashed curves represent two-
parameter fits assuming Mn

�1

or Mn
�0.5 dependencies [25]
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The effect of molecular weight polydispersity is shown in Fig. 10 for blends of

one PE with two different series of polystyrenes with constant Mn (18,100 and

107,200) and different polydispersities. The interfacial tension decreased with

increasing polydispersity in both cases, and the influence of polydispersity was

higher for lower PS molecular weights. The decrease in interfacial tension could be
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due to the migration of the short chains of the polydisperse systems to the interface

(see Sect. 3.2.3). Thus, the short chains act similarly to a surfactant in that they

lower the interfacial tension and broaden the thickness of the interface. Similar

results have been shown by Nam and Jo [26] for PBD (Mn ¼ 4100, Mw/Mn ¼ 1.4)

and PS (average Mn � 5500). Nam and Jo [26] also showed that the temperature

coefficients increased linearly with increasing polydispersity in the range 1.1–1.5.

The interfacial tension between PE and PS increased with increasing PS molec-

ular weight, whereas the influence of molecular weight decreased significantly

when the PS molecular weight exceeded a certain value of the order of 45,000

[23]. The experimental data of interfacial tension as a function of molecular weight

could be fitted to a type of power law if two molecular weight ranges were

considered: one below and the other above this characteristic molecular weight.

Moreover, the influence of PS molecular weight on the interfacial tension between

PE and PS was shown to be smaller for lower molecular weights than for higher

molecular weights of PE [23]. These are clearly shown in Fig. 11.
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3.2 Theories of Polymer–Polymer Interfaces

It is not adequate to describe the junction between two homogeneous bulk phases as

a simple two-dimensional plane without thickness. Because of the finite range of

intermolecular forces, the interface can more properly be regarded as a region of

finite thickness across which the density, the energy, or any other thermodynamic

property changes gradually. Because this region has both area and thickness, it may

be considered as an interphase that exists in either the solid or the liquid states.

These interphases are usually referred to as two-dimensional phases, since the

thickness parameter cannot be varied at will by the experimenter; indeed, it is

controlled by the thermodynamics of the system [9].

Consider two homogeneous bulk phases, a and b, and separating them is an

interfacial layer or interphase S (Fig. 12) [9, 183]. The boundary between the

interphase and the bulk phase a is the plane AA0, and that between the interphase

and the bulk phase b is the plane BB0. The properties of the interphase are assumed

to be uniform in any plane parallel to AA0 or BB0, but not in any other plane in the

phase b

phase a

interphase S

A

B

A'

B'

Fig. 12 Definition of an

interphase [9, 183]
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interphase. At and near the plane AA0, the properties of S are identical with those of

the bulk phase a. However, moving from AA0 to BB0 within the region S represents

a gradual change in the properties of the interphase, from those corresponding to

phase a to those corresponding to phase b.
In the bulk phases, the force across any unit area is equal in all directions, as is

the hydrostatic pressure P. In the interphase, the force is not the same in all

directions. However, if a plane of unit area is chosen parallel to AA0 or BB0, the
force across the plane is the same for any position of the plane whether it lies in a, b,
or S, because hydrostatic changes are assumed negligible. In contrast, the force

balance for planes that cross the interphase, i.e., perpendicular to AA0, is altered by
the inclusion of an additional term due to the interfacial tension, g. This force is

associated with the anisotropic nature of intermolecular forces that result from the

concentration gradient within the interphase.

The influence of the interfacial tension term on the thermodynamics can be

illustrated by considering the work, W, performed on the interphase when addi-

tional interphase is formed. If the interphase volume increases by dVS, i.e., a

thickness increase of dx and an area increase of dAS, the force balance leads to:

W ¼ PAS d x� ðPx� gÞ d AS (10a)

or:

W ¼ �Pd VS þ g d AS (10b)

This last expression is the analogous work term for an interphase, which

corresponds to the three-dimensional �PdV term for a bulk phase. Incorporation

of this term into the first and second laws of thermodynamics for multiconstituent

open systems results in:

d U ¼ T d S� P d VS þ g d AS þ
X
i

mi d ni (11)

where T is the thermodynamic temperature, S is the entropy, U is the internal

energy, and mi and ni are the chemical potential and number of moles of type i.

Integration of the above equation, at constant intensive variables, produces the

corresponding Euler relationship:

g ¼ U þ PVS � TS�
X
i

mi d ni

 !
=AS (12)

Therefore, g is the excess free energy per unit area arising from the formation of

the interphase; it is equal to the difference between the Gibbs free energy of the

system with the interphase, (U + PVS � TS), and that of an identical system without
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the interphase,
P

i mi d ni, divided by the interfacial area AS. Substitution of (11)

into the total derivative of (12) results in:

� d g ¼ S d T � VS d Pþ
X
i

ni d mi

 !
=AS (13)

which is a modified Gibbs–Duhem equation for the interphase.

The quantity of the components adsorbed at the interphase is a significant

parameter, whereas the relationship between the extent of adsorption and the

interfacial tension is particularly of interest; this is studied in terms of the Gibbs

adsorption isotherm. At constant temperature and pressure, the Gibbs–Duhem

relationship for an interphase is:

� d g ¼
X
i

ni d mi=A
S ¼

X
i

Gi d mi (14)

where Gi ¼ ni/A
S is the quantity of the i-th constituent contained per unit area of the

interphase. Equation (14) indicates that spatial partitioning of constituents occurs at

an interface (i.e., one constituent adsorbs preferentially at the interface) and that the

extent of this adsorption is a function of the interfacial tension. The definition of Gi,

however, is not exact because it depends on the concentration gradients present

within the interphase, and its magnitude depends on the choice of the dividing

boundary, often referred to as the Gibbs dividing surface.

For a two component system, the Gibbs adsorption isotherm is written as:

� d g ¼ G1 d m1 þ G2 d m2 (15)

Although recognizing that the interfacial region is best considered as an interphase,

the alternative mathematical model is to consider the interface as a plane of

infinitesimal thickness situated between AA0 and BB0 of Fig. 12. This dividing

surface can be considered to be positioned so as to give rise to a simplification of

(15). Gibbs [183] defined the position of the dividing surface such that the surface

excess of constituent 1 is zero, and hence:

� d g ¼ G0
2 d m2 (16)

where G0
2 is the surface excess of constituent 2 with the dividing surface so defined.

The equation relates the reduction in interfacial tension directly to the enrichment

of one component within the interphase.

Although the thermodynamic description of an interphase is an invaluable tool,

it is rarely used. The traditional approach of Gibbs requires the use of a dividing

surface to which interfacial properties are referenced. This method is burdened with

notational and conceptual difficulties [184]. As alternative but equivalent method of

treating interphase thermodynamics was developed by Cahn [185], which avoided
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the pitfalls of the traditional approach by eliminating the arbitrary selection of the

dividing surface. The development was based upon writing the Gibbs-Duhem

relationship in a manner that made it independent of the definition of the dividing

surface. However, Cahn’s approach has not received much attention, although

Sanchez [184] suggested that it would be useful because of its conceptual simplicity.

3.2.1 Semiempirical Theories of Polymer Interfaces

A number of semiempirical treatments have appeared over the years to develop

“theories” relating the interfacial tension between a pair of incompatible substances

to the surface tensions of the pure components. The first attempt to present a theory

for interfacial tension is attributed to Antonoff [186–188]. He proposed an empiri-

cal rule that states that the interfacial tension, g, is equal to the difference between

the pure component surface tensions, s1 and s2:

g ¼ s1 � s2 (17)

when s1 � s2. This can be correct only when phase 2 spreads on phase 1, and phase
2 is a small-molecule liquid. This empirical relationship is not applicable to

polymer systems [120].

It is more appropriate to write the interfacial tension as:

g ¼ s1 þ s2 �Wa (18)

Wa is the work of adhesion, which is equivalent to the Gibbs free energy decrease

(per unit area) when an interface is formed from two pure component surfaces. The

work of adhesion increases as the interfacial attraction increases, leading to a

decrease in interfacial tension. It is apparent from (18) that, if the two components

are identical, an expression can be obtained that relates the surface tension si to the
work of cohesion (Wci) for component i:

Wci ¼ 2si (19)

The interfacial tensions can, then, be related to the pure-component surface tensions

by expressing Wa in terms of the Good–Girifalco [180, 189–192] interaction

parameter fGG:

fGG ¼ Wa= Wc1Wc2ð Þ1=2 (20)

The resulting equation of Good–Girifalco is:

g ¼ s1 þ s2 � 2fGG s1s2ð Þ1=2 (21)
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The interaction parameter, fGG, can be given [189–192] in terms of the molecu-

lar constants of the individual phases, including polarizabilities, ionization poten-

tials, dipole moments, and molar volumes. The utility of the approach is limited by

the lack of information about those molecular parameters for most polymer sys-

tems. Another difficulty arises from the fact that a �10% error in fGG will result in

a �50% error in calculating g, because for polymers the surface tensions are very

similar. Thus, the fGG values must be accurately known. Values of fGG between

some polymer pairs have been calculated from the measured interfacial and surface

tensions [193, 194], and are found to be in the range 0.8–1.0. Empirically, it has

been shown [194] that:

@fGG

@T
¼ 0 (22)

An alternative treatment [153, 195] is based upon (18), where the work of

adhesion is calculated using the theory of fractional polarity. Intermolecular

energies are assumed to consist of additive nonpolar (i.e., dispersive) and polar

components. Thus, the work of adhesion and the pure-component surface tensions

can be separated into their dispersive (superscript d) and the polar (superscript p)

components, such that:

si ¼ sdi þ spi (23)

and:

Wa ¼ Wd
a þWp

a (24)

The various polar interactions (including dipole energy, induction energy, and

hydrogen bonding) are combined into one polar term.

Relationships between (23) and (24) have been obtained for two limiting cases.

For low energy surfaces, characteristic of most polymer systems, the harmonic-

mean approximation is valid for both the dispersive and the polar terms. This,

combined with (18) gives:

g ¼ s1 þ s2 � 4sd1s
d
2

sd1 þ sd2
� 4sp1s

p
2

sp1 þ sp2
(25)

which has been found to give good results for polymers. Equation (25) can

be rewritten in terms of (21); the interaction parameter fGG is then given

by [195]:

fGG ¼ 2xd1x
d
2

g1x
d
1 þ g2x

d
2

þ 2xp1x
p
2

g1x
p
1 þ g2x

p
2

(26)
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The fractional polarity is defined as xi
p ¼ si

p/s ¼ 1� xi
d with g1 ¼ (s1/s2)

1/2 ¼ 1/g2.
For interfaces between a low and a high energy material, the geometric-mean

approximation was used to give:

g ¼ s1 þ s2 � 2

ffiffiffiffiffiffiffiffiffiffi
sd1s

d
2

q
� 2

ffiffiffiffiffiffiffiffiffiffi
sp1s

p
2

q
(27)

When polar contributions are neglected, (27) reduces to the Fowkes equation

[196]. In terms of the Good–Girifalco equation (21), the interaction parameter is

given by:

fGG ¼
ffiffiffiffiffiffiffiffiffi
xd1x

d
2

q
þ 2

ffiffiffiffiffiffiffiffiffi
xp1x

p
2

q
(28)

The generalized Good–Girifalco equation provides a framework for calculating

the temperature and molecular weight dependence of interfacial tension. Differen-

tiation of (21) with respect to temperature, taking into account (22), results in [120]:

d g
d T

¼ d s1
d T

þ d s2
d T

� fGG g1
d s1
d T

þ g2
d s2
d T

� �
(29)

Although good agreement has been found for most of the cases originally reported by

Wu [193–195], (29) should only be used for guiding the plots of interfacial tension

versus temperature [120]. The molecular weight dependence derives directly from

the incorporation of the empirically found relationship for the pure-component

surface tensions [197, 198], s ¼ s1 � k=Mz (where M is the number-average

molecular weight) to the Good–Girifalco relationship. One then obtains:

g ¼ g1 � k1
Mz

1

� k2
Mz

2

(30)

where M1, M2 are the number-average molecular weights of the two polymers, and

the term g1 is given by:

g1 ¼ s1 þ s2 � 2fGG s1 � k1
Mz

1

� �1=2
s2 � k2

Mz
2

� �1=2
(31)

and is practically independent of molecular weight [178].

Although these semiempirical treatments can be useful in predicting interfacial

tensions, they are not successful from a fundamental standpoint and cannot be used

to predict the interfacial composition profile. Furthermore, these theories neglect the

entropy effects associated with the configurational constraints on polymer chains in

the interfacial region. These effects are unique in polymers and arise because the

typical thickness of the interfacial region between polymer phases is less than the

unperturbed molecular coil dimensions of a high polymer. Major perturbations of
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the spatial arrangement of polymer molecules must, then, occur in order for the

interfacial thickness to become less than the unperturbed chain dimensions. Chain

perturbations will also occur at a polymer–air interface for the same reason, i.e., the

thickness of a polymer surface region (the region between unperturbed bulk polymer

molecules and air) will also typically be less than the chain dimensions of the polymer

molecules. Such chain perturbations contribute to the excess energy of surfaces or

interfaces, and are reflected in the values of surface and/or interfacial tension. Since

there is no direct relationship between the chain perturbations that occur at the

polymer–air surfaces of the two individual polymers and the perturbations that

would occur at the interface in a demixed polymer blend, there can be no direct

fundamental relationship between the properties of polymer surfaces (surface tension)

and polymeric interfaces (interfacial tension). Therefore, “theories” that attempt to

present relationships for polymeric systems must be looked upon only as empirical.

3.2.2 Microscopic Theories of Polymer Interfaces

A number of thermodynamic theories have appeared that take a more fundamental

approach, and, specifically, address the question of interfacial structure and its

relation to interfacial tension.

Helfand and Tagami [27] formulated a statistical mechanical theory of the

interface between two immiscible polymers, A and B. The approach is based on a

self-consistent field, which determines the configurational statistics of the polymer

molecules in the interfacial region. At the interface, energetic forces (determined

essentially by the polymer A/polymer B segmental interaction parameter, w) tend to
drive the A and B molecules apart. This separation, however, must be achieved in

such a way as to prevent a gap from opening between the polymer phases. The

energetic force on, say, an A molecule must be balanced by an entropic force

describing the tendency of A molecules to penetrate into the B phase, because of the

numerous configurations of the A molecule which do so.

The theory was originally developed for symmetric systems, i.e., for similar

polymers A and B that possess identical degrees of polymerization (Z), effective
lengths of the monomer units (b), monomer number densities (r0), and isothermal

compressibilties (k). The authors recommended the use of the geometric mean

when these properties are not actually the same.

In the Helfand–Tagami mean field formulation, the effective mean field WA(r)

on a segment of polymer A, which is the reversible work of adding the segment at

position r, where the densities are rA(r) and rB(r), less the work of adding the

segment to bulk A, is given by:

WAðrÞ
kT

¼ w
rBðrÞ
r0

þ z
rAðrÞ
r0

þ rBðrÞ
r0

� 1

� �
(32)

with z ¼ kr0kBTð Þ�1�Z�1, where kB is the Boltzmann constant. The first term

arises from the relatively unfavorable interaction of the A polymer segments with
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the B polymer segments it encounters. The second term comes from the tendency of

the system to pull polymer into regions where the total density (rA þ rB) is less
than r0, and push it out of regions of density greater than r0. The inverse compress-

ibility has been proven to be the proper account for this tendency [27, 28].

To obtain the self-consistent configurations of this system, one should focus on

the quantity qA(r,t), which is essentially the ratio of the density at r of the ends of

polymer molecules of type A and length Ztbwith 0< t< 1, to the end density in the

bulk A. Since the segment at Zt is the origin of two independent random walks, one

of length Ztb and one of length Z(1 � t)b, the relative density is qA(r,1 � t) qA(r,t).
By summing over all segments, or integrating over t, the overall segment density of

A at r is:

rAðrÞ ¼
Z1

0

qAðr; 1� tÞqAðr; tÞdt (33)

The quantity qA(r,t) can also be regarded as the ratio of the partition function of a
polymer molecule that starts at r and has Z t steps in the effective mean fieldWA(r),

to that of a polymer in a zero field region, i.e., in the bulk phase. This ratio satisfies a

modified diffusion equation, which, for the dividing surface at x ¼ 0 and the A-rich

phase at x > 0, can be written as:

1

Z

@qAðr; tÞ
@t

¼ b2

6
r2qAðr; tÞ � w

rBðrÞ
r0

þ z
rAðrÞ
r0

þ rBðrÞ
r0

� 1

� �� �
qAðr; tÞ (34)

By symmetry, the equation for qB(r,t) is:

1

Z

@qBðr; tÞ
@t

¼ b2

6
r2qBðr; tÞ � w

rAðrÞ
r0

þ z
rAðrÞ
r0

þ rBðrÞ
r0

� 1

� �� �
qBðr; tÞ (35)

with initial conditions:

qAðr; 0Þ ¼ qBðr; 0Þ ¼ 1

qAð1; tÞ ¼ qBð1; tÞ ¼ 1

qAð�1; tÞ ¼ qBð�1; tÞ ¼ 0

(36)

where it is assumed that the asymptotic regions are pure A or B. Thus, (33)–(36) are

the self-consistent set of equations for the density profile calculation.

These equations have been solved asymptotically for effective infinite degree of

polymerization of the chains, and low isothermal compressibility (w/z! 0), to yield

the density profiles:

rAðx; wÞ
r0

¼ 1

2
1þ tanh 2x=aIð Þ½ 	

rBðx; wÞ
r0

¼ 1

2
1� tanh 2x=aIð Þ½ 	

(37)
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where aI is a measure of the effective interfacial thickness and:

aI ¼ r0
d rA= d xjx¼0

¼ 2b

ð6wÞ1=2
(38)

The interfacial tension was calculated as:

g ¼ kBT

r0

Z1

0

d l
Zþ1

�1
d xwrAðx; lwÞrBðx; lwÞ (39)

where ri(x;lw) is determined from the self-consistent equations by replacing w with
lw. Using (37), one gets:

g ¼ w
6

 �1=2
r0bkBT (40)

The theory was originally compared to three polymer pairs, namely PS/PMMA;

PMMA/poly(n-butyl methacrylate), PnBMA; and PnBMA/poly(vinyl acetate),

PVA. The calculated interfacial tension agreed exactly with the experimental

value for PnBMA/PVA; it compared well for PMMA/PnBMA and differed by

50% for PS/PMMA. Helfand and Tagami suggested that, if w is too large, then

the characteristic interfacial thickness is too small for the mean-field theory to be

appropriate. The theory has been widely used to estimate the interfacial tension in

many different polymer–polymer systems with acceptable success.

However, the theory cannot be used if the asymmetry between A and B is too

severe. Helfand and Sapse [29] refined the theory of Helfand and Tagami so as to

remove the restrictive approximation of property symmetry of the two polymers.

For a Gaussian random walk in a mean field, they obtained:

g ¼ kBTa1=2
bA þ bB

2
þ 1

6

bA � bBð Þ2
bA þ bB

" #
(41)

a is the mixing parameter, a ¼ w(r0Ar0B)
1/2 and b2i ¼ r0ib

2
i =6. It was assumed that

there was no volume change upon mixing and that the isothermal compressibility

was small and independent of composition. The theory makes reasonable predic-

tions, which are slightly improved when nonlocal interactions are considered.

Inclusion of these nonlocal interactions gave:

g¼ kBTa1=2
"

bAþbB
2

þ1

6

bA�bBð Þ2
bAþbB

 !
þ 1

18
c2a

2

bAþbB
�2

5

bA�bBð Þ2
bAþbBð Þ3

 !
þ . . .

#

(42)
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where c is a measure of the range of nonlocality, with c2 being the second moment

of the direct correlation function [199]. The interfacial thickness is predicted to be:

aI ¼ 2
b2A þ b2B

2a

� �1=2

(43)

Tagami [200, 201] extended the theories of Helfand and coworkers to the case of

compressible nonsymmetric polymer mixtures. A slight decrease in the predicted

interfacial tension was found, due to the presence of finite compressibility of the

polymers. This tendency was particularly apparent in the case of nearly symmetric

polymer pairs, when the intersegmental interactions are of nonlocal nature. The

results reduce to the results of Helfand and Sapse in the appropriate limits. How-

ever, the resulting equations are much too complicated, although the results do not

differ significantly from those predicted by (41).

The difficulty in applying the above-mentioned theories is the paucity of accu-

rate data for the physical parameters required by the theories. In particular, data for

w or a are not generally available, and the Hildebrand regular solution theory

expression:

a ¼ d1 � d2ð Þ2
kT

(44)

has frequently been used, where di is the solubility parameter of the i-th constituent.

The fact that solubility parameters are normally available at only one temperature

necessitates the additional assumption that they are temperature independent. Use

of this expression for a yields interfacial tensions of reasonable magnitude, but

gives the wrong sign for the temperature coefficient. Indeed, substitution of (44) in

(40) or (41) results in an effective T1/2 dependence, whereas a linear decrease with
temperature is experimentally observed. However, a proper temperature depen-

dence can be obtained if a small entropic term is added to the expression for a [19];
an apparent interaction density parameter of the form a ¼ aH/T + aS gives a good
agreement between theory and experiment.

The Gaussian random coil model is appropriate when the scale of inhomogeneity

(e.g., the interfacial thickness) is large compared with the length of a bond, b, and
the range of interactions, c. To handle the case where this is not true, a lattice model

has been proposed by Helfand [202–205], in the spirit of the Flory-Huggins

approach [206]. For infinite molecular weights, he obtained:

g ¼ 1

2

kBT

a
ðwmÞ1=2 1þ ð1þ wÞw�1=2 arctan w1=2

 �h i
(45)

where a is the cross-sectional area of a lattice cell andm is a lattice constant, defined

such that the number of nearest neighbors of a cell in the same layer parallel to the

interface is z(1� 2m) and in each of the adjacent layers is zm, where z is the number
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of nearest neighbors (coordination number) of a cell. Neglecting the nonlocality of

interactions, Helfand obtained:

g ¼ 1

2

kBT

a
ðwmÞ1=2 (46)

which is consistent with the self-consistent mean field (SCMF) theory in that they

both predict g / w1/2.
Roe [207] used a quasi-crystalline lattice model to determine the properties of

the interface between two coexisting liquid phases, where one or both of the

components are of polymeric nature. For w much larger than the critical value wc,
the composition transition at the interface is expected to be sharp. In this limit, Roe

predicted that:

g ¼ kBT

a
wm� 2 1� 1=rð Þ lnðlþ mÞ � 2f0

2 1þ 1� 1=rð Þm2

lþ m

� �� �
(47)

where l ¼ 1 � 2m, r is the degree of polymerization, and f0
2 is given by:

� ln f0
2 ¼ lwþ 1� 1=rð Þ 1

lþ m
� ln m=ðlþ mÞf g

� �
(48)

When w � wc  1, the interface is diffuse and the composition varies smoothly

across the interface. In the limit, w � wc  wc
2, Roe found:

g ¼ kBT

a

m

2

 �
w� wcð Þ3=2w1=2r (49)

For an interface between polymers, and assuming infinite molecular weight, Roe

obtained:

g ¼ 4

3
2�1=4 kBT

a
m1=2w3=4 (50)

that predicts g / w3/4, which is different from the results of Helfand and coworkers.

For the thickness of the interfacial thickness, Roe predicted that for infinite molec-

ular weight:

aI ¼ 4
 2�1=4dm1=2w�1=4 (51)

where d is the separation between adjacent lattice layers.

Helfand [202, 208] suggested that Roe’s work contained a number of assump-

tions, which made it difficult to appraise the applicability of the theory. Helfand

suggested that Roe’s lattice theory did not treat the conformational entropy properly

by assuming that the chances of going from a cell site to any empty neighboring cell
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were equally likely, thus neglecting the fact that bond orientations are inherently

anisotropic. As a measure of the effect of Roe’s assumptions on the qualitative

nature of his results, Helfand pointed out that, when a gradient expansion of Roe’s

equation was made, the Gaussian random-walk equations [27, 28] were not recov-

ered. Experimental verification of the lattice theories, however, has not been

possible, because the lattice parameters a, m, and d are unknown a priori.

Kammer [209] examined the interfacial phenomena of polymer melts from a

thermodynamic point of view. A system of thermodynamic equations has been

derived to describe the temperature, pressure, and composition dependence of

interfacial structure. Starting from the fundamental equations of Guggenheim

[210], Kammer employed the Gibbs–Duhem equation of intensive parameters

(13) to find that the interfacial composition is given by:

xS2 ¼
d g= d Tð ÞPþ d s1= d Tð ÞP

d s1= d Tð ÞPþ0:5 d s2= d Tð ÞP
(52)

where xS2 is the molar fraction of component 2 at the interfacial region, and s1 and
s2 are the surface tensions of the two components against air. Assuming that the

interfacial layer is predominantly occupied by component 2 (i.e., xS1 ! 0), he

obtained:

g ¼ mS2
A

(53)

where mS2is the chemical potential of component 2 and A is the molar area of the

interface. Use of the Flory-Huggins formula of the chemical potential leads to:

g ¼ g0 þ RT

A
lnfS

2 þ 1� r2=r1ð ÞfS
1 þ r2w fS

1

� �2h i
(54)

where g0 is a constant, and ri, w, and f
S
i are the degrees of polymerization, the Flory-

Huggins interaction parameter, and the volume fraction of component i at the

interphase. The interfacial thickness was shown to be:

aI ¼ u
RT

g� s2

rw fS
1

� �2þ lnfS
2

(55)

with u the mean molar volume of the polymers.

Hong and Noolandi [211] have developed a theory for an inhomogeneous

system, starting from the functional integral representation of the partition function

as developed by Edwards [212], Freed [213], and Helfand [199]. The theory has

been used to determine the interfacial properties and microdomain structures of a

combination of homopolymers, block copolymers, monomers, and solvents. In that

approach, the general free energy functional was optimized by the saddle-function

method, subject to constraints of no volume change upon mixing and constant
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number of the individual particles, to obtain equations for the mean field acting on

the polymers. They used this general theory to calculate the interfacial tension for

polymer/polymer/solvent systems [214], where good agreement was obtained with

experiment [215] for the PS/PBD/styrene ternary system. Their final results, how-

ever, are in integral form, which requires numerical integration. The application of

the theory to the ternary systems polymer A/polymer B/diblock copolymer AB will

be presented in Sect. 4.3.1.

Helfand and coworkers [30] responded to the experimental interest on the molec-

ular weight effects on interfacial tension (see Sect. 3.1) by solving the equations

they had derived earlier [27, 28, 199, 208] for the case of finite molecular weights;

these equations were solved only in the infinite molecular weight limit earlier

[27, 28]. The leading correction to the interfacial tension, which is of order r�1

(where r is the degree of polymerization of the two polymers in a symmetric system),

is solely due to the placement entropy, i.e., it originates from the gain in translational

entropy for finite chains, which can penetrate slightly more into the other phase.

The interfacial tension for a symmetric system (polymers A and B with the same

properties when pure) of large but finite molecular weights is, thus, calculated as:

g ¼ g1 1� ln 2
2

wr

� �
(56)

The leading correction to the concentration profile is also of the order of r�1 and

is due to the entropic attraction of the chain ends to the interfacial region and the

necessary readjustment of the remainder of the molecule. The authors gave a

nonanalytic expression for the interfacial width. The concentration correction

does not contribute to the interfacial tension at leading order because the free

energy is calculated within a mean field approximation, where any change in the

concentration can affect it in the second order, producing in this case a correction to

the interfacial tension of the order of r�2.

Tang and Freed [32] used density functional theory to investigate the effects of

molecular weight on polymer–polymer interfacial tension. They considered possi-

ble reasons for the discrepancy between the theories available at that time and the

experimental investigations on interfacial tension and concentration profiles across

the interface. They postulated that certain approximations in the density functional

previously used might be appropriate only in certain limited domains and, conse-

quently, that higher order contributions to free energy functionals could contribute

significantly to interfacial properties. Moreover, they considered the possible com-

position dependence of the Flory-Huggins interaction parameter. Tang and Freed

calculated the interfacial tension for a symmetric blend for the entire two-phase

region (from the weak to the strong segregation regime); it is given as:

g ¼ g1 1� 0:90
2

wr
� 0:10

2

wr

� �2
" #3=2

(57a)
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whereas the interfacial width is given by:

aI ¼ aI1 1� 5

4

2

wr
þ 1

4

2

wr

� �2
" #�1=2

(58a)

It is interesting that (57) shows an almost linear dependence on (wr)�2/3 over a wide

range of 2.5 < wr < 20, consistent with experimental observations for intermediate

molecular weights.

The asymptotic expressions for very high molecular weights are:

g ffi g1 1� 1:35
2

wr

� �
(57b)

aI ffi aI1 1þ 5

8

2

wr

� �
(58b)

The coefficient 5/8� 0.625 in (58b) is very close to that (ln2� 0.693) of Broseta

in (87) (to be discussed later), whereas the coefficient of 1.35 in (57b) is about

50% larger than that (p2/12 � 0.82) in (86) and about twice as large as the value of

ln2 � 0.693 in (56).

The respective equations in the weak segregation limit (WSL) are:

g ffi g1
2ffiffiffi
3

p wr
2
� 1

h i3=2
; ðWSLÞ (57c)

aI ffi aI1
2ffiffiffi
3

p 1� 2

wr

� ��1=2

; ðWSLÞ (58c)

3.2.3 Square-Gradient Approach

A conceptually different approach to the calculation of interfacial tensions is the

use of the generalized square-gradient approach as embodied in the work of Cahn

and Hilliard [216]. The Cahn–Hilliard theory provides a means for relating a

particular equation of state, based on a specific statistical mechanical model, to

surface and interfacial properties. The local free energy, g, in a region of nonuni-

form composition will depend on the local composition as well as the composition

of the immediate environment. Thus, g can be expressed in terms of an expansion in

the local composition and the local composition derivatives. Use of an appropriate

free energy expression derived from statistical mechanics permits calculation of the

surface or interfacial tension.
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Generalized Gradient Theory of Fluids

Ideas that go back to van der Waals [217, 218] and Lord Rayleigh [219] on

inhomogeneous systems were applied by Cahn and Hilliard [216] to the interface

problem. In inhomogeneous fluids, the Helmholtz free energy is a functional of the

component density distributions. Although exact formal expressions for this func-

tional have been derived [220, 221] from statistical mechanics, they are impractical

without approximation [222]. In the gradient approximation, this functional has

been expressed as the sum of two contributions: one is a function of the local

composition and the other is a function of the local composition derivatives [216,

223, 224]. The free energy for a binary system is postulated to have the form:

G ¼
Z

gðf;rf;r2f; . . .Þ d V (59)

where the free energy density, g, is assumed to be a function of the local composi-

tion, f, and all its derivatives, rf, r2f, etc. Assuming that the composition

gradient is small compared to the reciprocal of the intermolecular distance, g can

be expanded in a Taylor series about rkf ¼ 0, k ¼ 1, 2,. . . and, truncating the

expansion after terms of order r3f, one obtains for a fluid:

g ¼ gðf;rf;r2f; . . .Þ

¼ g0 þ
X
i

Li
@f
@xi

þ
X
i;j

kð1Þij

@2f
@xi@xj

þ 1

2

X
i;j

kð2Þij

@f
@xi

@f
@xj

(60)

where g0 is the free energy density of a uniform system of composition f, and:

Li ¼ @g

@ @f=@xið Þ
����
0

kð1Þij ¼ @g

@ @2f=@xi@xj
� �

�����
0

kð2Þij ¼ @2g

@ @f=@xið Þ @f=@xj
� �

�����
0

(61)

For an isotropic medium, g is invariant to the symmetry operations of reflections

(xi ! �xi) and of rotation about a fourfold axis (xi ! �xj). Therefore:

Li ¼ 0

kð1Þij ¼ k1 ¼ @g=@r2f
��
0
for i ¼ j

0 for i 6¼ j

(

kð2Þij ¼ k2 ¼ @2g=@ rfj j2��
0
for i ¼ j

0 for i 6¼ j

(
(62)
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Hence, (60) reduces to:

g ¼ g0ðfÞ þ k1r2fþ k2 rfð Þ2þ . . . (63)

Integrating over a volume V of the system, the total free energy of this volume is:

G ¼
Z

d V g0ðfÞ þ k1r2fþ k2 rfð Þ2þ . . .
 �

(64)

Application of the divergence theorem, results in:

Z
d V k1r2f
� � ¼ �

Z
d k1= dfð Þ rfð Þ2 d V þ

Z
S

k1rf � nð Þ d S (65)

where S is an external surface with a normal vector n. Since one is not concerned

with effects at the external surface, by choosing a boundary of integration in (65)

such that rf·n ¼ 0 at the boundary, the surface integral vanishes. Using (65) to

eliminate the termr2f from (64) one obtains:

G ¼
Z

d V g0ðfÞ þ k rfð Þ2þ . . .
 �

(66)

where:

k ¼ � d k1= d fþ k2 ¼ � @2g

@f@r2f

����
0

þ @2g

@ rfj j2
�����
0

(67)

k(rf)2 is the additional positive contribution to the free energy, which arises from

the local composition gradient. The coefficient of the square gradient term is related

to the inhomogeneous fluid structure [220, 221]. It is essentially the second moment

of the Ornstein–Zernike direct correlation function, C(s,f), of a uniform fluid of

composition f. The relationship is:

kðfÞ ¼ 4pkT
6

Z
s4Cðs;fÞ d s (68)

C(s,f) depends on the range of correlation and is a function of the composition f of

the system.

Following the derivation of Cahn–Hilliard, the total free energy for the case of a

one-dimensional composition gradient and a flat interface of area A becomes:

G ¼ A

Zþ1

�1
g0ðfÞ þ k

df
d x

� �2
" #

d x (69)
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Interfacial tension is, by definition, the difference per unit interfacial area

between the actual free energy of the system and that which it would have if the

properties of the phases were homogeneous throughout. Thus, the interfacial

tension is given by:

g ¼
Zþ1

�1
DgðfÞ þ k

df
d x

� �2
" #

d x (70)

where Dg(f) is the free energy density of the uniform system of composition fwith

respect to a standard state of an equilibrium mixture of the two phases, a and b,
without the interface, and is given by:

DgðfÞ ¼ Dg0ðfÞ � nADmAðfeÞ þ nBDmBðfeÞ½ 	 (71)

where nA and nB are the number densities of molecules of type A and B, DmA and

DmB are the changes in the chemical potentials of A and B, and fe is equal to either

of the compositions fa and fb of the two phases a and b at equilibrium.

According to (70), the more diffuse the interface is, the smaller will be the

contribution of the gradient energy term to g. But this decrease in energy can only

be achieved by introducing more material at the interface of nonuniform composi-

tion and, thus, at the expense of increasing the integrated value of Dg(f). At
equilibrium, the composition variation will be such that the integral in (70) is a

minimum. Substitution of the integrand of (70) into the Euler equation will produce

the differential equation whose solution is the composition profile corresponding

to the stationary values (i.e., minima, maxima, or saddle points) of the integral.

Since the integrand does not explicitly depend on x, the appropriate form [225] of

the Euler equation is:

I � df
d x

@I

@ df= d xð Þ
� �

¼ 0 (72)

where I represents the integrand. Thus:

DgðfÞ � k
d f
d x

� �2

¼ const: (73)

The constant in this equation must be zero, since both Dg(f) and df/dx tend to zero
as x ! �1. Hence:

DgðfÞ ¼ k
d f
d x

� �2

(74)
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Equation (74) can be used to calculate the composition profile across the

interface. Using (74) with (70), and changing the integration variable from x to f,
interfacial tension is given as:

g ¼ 2

Zfb

fa

kDgðfÞ½ 	 d f (75)

where fa and fb are the compositions of the two coexisting phases at equilibrium.

The square-gradient approach has been widely used to model the surface tension of

liquids [220, 223, 224] and polymer melts [226, 227], diffusion at interfaces and thin

films [222], polymers at the liquid–liquid interface of binary regular solutions [228],

interfacial tensions between low and high molecular weight liquid mixtures [229]

and demixed polymer solutions [230], and spinodal decomposition in polymer

blends [231–235]. Sanchez [184] has shown that the gradient theory is “in harmony

with the microscopic theory of Helfand and coworkers [27–29, 200, 201] although

the latter treats polymer interfaces from a completely different point of view.”

The Square-Gradient Theory Applied to Polymer Interfaces

The gradient approach was first applied to calculate the interfacial tension between

demixed polymer solutions by Vrij [230]. The polymer solution model, used by

Debye [236] in his calculation of the light scattering from a polymer solution near

the critical point, was used with the assumption of an interfacial thickness of the

order of a polymer coil, thus misrepresenting the change in configurational entropy

for the chains in the interface. Assuming that the Gaussian statistics is not distorted

by the overlapping of the different polymer coils, even in the interfacial region, and

for T  Tc (where Tc is the critical temperature of demixing), he also predicted the

interfacial tension between two homopolymers to be given by:

g ¼ r1=2
Ob
6

p
321=2

� 0:426
T

Tc

� �
(76)

where O is a form of the interaction parameter, which is related to the Flory-

Huggins interaction parameter, w, by O ¼ 2wkBT/u, with u being the segment

volume. Because of the many inappropriate assumptions, the theory has not been

utilized to predict polymer–polymer interfacial tensions. The theory predicts that g
/ r1/2, which is not followed by the experimental data.

Kammer [209] used the Cahn–Hilliard approach with the Flory-Huggins free

energy of mixing and the assumption of a symmetric system to obtain:

g ¼ 2
RT

v
ðkwÞ p

8
� 0:602

wr
� 0:459

ðwrÞ2
 !

(77)
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where v is the mean molar volume, r is the degree of polymerization, and k is the

square gradient coefficient, which is considered a constant given by k ¼ wrb2/6. To
estimate r in the interfacial region, he chose the expression wr¼ 2.093T0/T, with T0
being an adjustable parameter. Thus, (74) leads to:

g ¼ 0:464
RT

v
bw1=2

T0
T

� �1=2

1� 0:733
T

T0
� 0:267

T

T0

� �2
" #

(78)

However, Kammer incorrectly assumed that the interfacial tension is the free

energy of mixing per unit area, instead of the correct expression that defines

interfacial tension as the excess free energy per unit interfacial area. Although

interfacial tension is predicted to decrease with temperature, the results are not

accurate fundamentally and the derivations should be recalculated.

Poser and Sanchez [229] used the generalized density gradient theory of inter-

faces [216] in conjunction with the compressible lattice fluid model of Sanchez and

Lacombe [237–240] to approximate the interfacial tension and thickness between

two immiscible high molecular weight polymer liquids. The theory is not expected

to apply near the critical point, where the lattice fluid theory incorrectly describes

the coexistence curve, or for highly polar polymers. Furthermore, the theory

neglects intramolecular correlation effects present in long polymer chains, as well

as changes in the configurational entropy at the interface. Due to the fact that the

calculated phase diagrams, using the lattice fluid model, are extremely sensitive to

the values of the two interaction parameters inherent in the model, and the assump-

tion that the entropy in the interfacial region is independent of concentration

gradients, Poser and Sanchez suggested that “in its present form, the theory is
being pushed to its limits when applied to a polymer–polymer interface.”

The resultant equations yield predictions comparable to those of Helfand and

Sapse [29]. Formally the two theories look quite similar. Conceptually, however,

they are quite different. Gradient effects arise only from energetic considerations in

the Poser–Sanchez theory, whereas they arise from the intrinsic connectivity of the

polymer chain in the theory of Helfand–Sapse. In the simplest version of the

Helfand–Sapse theory, compressibility effects are ignored whereas they play an

important role in the Poser–Sanchez formulation. Poser and Sanchez suggested that

a proper theory for polymeric interfaces should not ignore the compressible nature

of polymer liquids (even though it is very small), nor can it ignore the intrinsic

connectivity of a polymer chain.

Anastasiadis et al. have also developed a theory for polymer–polymer interfacial

tension [20, 122], based upon the generalized square-gradient theory of Cahn and

Hilliard [216] in conjunction with the Flory-Huggins theory of the free energy of

mixing [206]. The free energy is calculated as:

Dg0ðfÞ
kBT

¼ f
rAuA

lnfþ 1� f
rBuB

lnð1� fÞ þ w
uA

fð1� fÞ (79)
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where f is the volume fraction of polymer A, w is the Flory-Huggins interaction

parameter, rA and rB are the degrees of polymerization of polymers A and B,

respectively, uA and uB their specific monomeric volumes, T is the thermodynamic

temperature, and kB the Boltzmann constant. Moreover, the changes in chemical

potentials, calculated from (79), are:

DmAðfÞ
kBT

¼ lnfþ ð1� fÞ 1� rAuA
rBuB

� �
þ wrAð1� fÞ2 (80a)

DmBðfÞ
kBT

¼ lnð1� fÞ þ f 1� rBuB
rAuA

� �
þ wrBf

2 uB
uA

(80b)

The compositions fa and fb of the coexisting phases a and b at equilibrium were

calculated by equating the chemical potentials, such that:

DmAðfa; wÞ ¼ DmAðfb; wÞ
DmBðfa; wÞ ¼ DmBðfb; wÞ

(81)

The coefficients of the square gradient terms were derived using linear response

theory within the framework of the random phase approximation [231, 241, 242].

de Gennes [242] suggested that the coils remain nearly ideal on the scale of one

coil, even in the case of a dense mixture of interacting chains. Therefore, ideal

single chain approximations can be employed to the calculation of the scattering

function, S(q), where q is the scattering vector. The scattering function is related to

the volume fractions and the chain lengths by [231, 242, 243]:

1

SðqÞ ¼
1

fuArAfDðrA; qÞ þ
1

ð1� fÞuBrBfDðrB; qÞ �
2w
uA

(82)

where fD(r,q) is the Debye function [244], fDðr; qÞ ¼ 2u�2 uþ expð�uÞ � 1½ 	, with
u ¼ q2rb2=6 ¼ q2 r20

� �
=6 ¼ q2R2

G; b is the Kuhn statistical segment length; r20
� �

the

mean-squared end-to-end distance; and RG the radius of gyration of the coil.

Two limiting expressions for S(q) can be calculated for qRG � 1, and for

qRG  1. The first corresponds to a sharp interface, and the second to a relatively

diffuse interface. For qRG � 1, fDðr; qÞ � 2=u2 ¼ 12= q2 r20
� �� �

and:

1

SðqÞ ¼
q2

12

r20
� �

A

fuArA
þ r20

� �
B

ð1� fÞuBrB

 !
� 2w

uA
(83a)

whereas for qRG  1, fDðr; qÞ � r 1� q2 r20
� �

=18
� �

, and using the equation for the

spinodal curve 2wsðfÞ=uA ¼ 1= frAuA½ 	 þ 1= ð1� fÞrBuB½ 	, the scattering function

is given by:

1

SðqÞ ¼
2 wsðfÞ � wð Þ

uA
þ q2

18

r20
� �

A

fuArA
þ r20

� �
B

ð1� fÞuBrB

 !
(83b)
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Using the Ornstein–Zernike relationship between the direct correlation function

and the static structure factor, the gradient terms for the two different limits are

given by:

kðiÞ

kT
¼ r20

� �
A

24fuArA
þ r20

� �
B

24ð1� fÞuBrB ; qRG � 1 (84a)

kðiiÞ

kT
¼ r20

� �
A

36fuArA
þ r20

� �
B

36ð1� fÞuBrB ; qRG  1 (84b)

for sharp and broad interfaces, respectively. Equation (84b) and its equivalent

for a symmetric system were widely used by de Gennes [231], Ronca and

Russell [232], Pincus [233], and Binder and coworkers [234] to model the

dynamics of concentration fluctuations near the critical point, whereas (84a)

had been used by Roe [243] to study the micelle formation in homopolymer/

copolymer mixtures.

There are different objections to the application of the square-gradient approach

that arise from the assumptions inherent to the theory. Halperin and Pincus [228]

pointed out that, because the Cahn–Hilliard theory is a mean field theory, its

validity near the critical point can only be qualitative. On the other hand, the theory

assumes weak composition gradients that may be realized only close to the critical

region. Binder [234, 235] suggested that, for qRG� 1, an additional correction term

should be included in the gradient terms, which arises from the finite range of

interactions and is proportional to wc2(rf)2, where c is the range of interactions.

For w < 1, however, this correction is negligible, as suggested by de Gennes. [231].

Moreover, de Gennes argued [231] that (84b) describes well the additional positive

contribution to the free energy from the local concentration gradients, even in the

case w � wc (wc is the value of the interaction parameter at the critical point), i.e.,

when the attention is focused on the strong segregation regime.

The expressions for interfacial tension thus obtained were, in principle, similar

to those of Helfand and Sapse [29]; however, the correct temperature coefficient

was obtained, and the molecular weight effects were included via the use of the

Flory-Huggins expression for the free energy [206] and the random phase approxi-

mation [231, 241, 242] for the gradient terms.

Numerical evaluation of the theoretical expression for the interfacial tension

allowed the comparison of the theory to the experimental data of Anastasiadis et al.

[20]. In general, a good agreement was obtained between theory and experiment for

the interfacial tension and its temperature dependence, especially for higher molec-

ular weights. Figure 13 shows the comparison for a blend of a polystyrene with

Mn¼ 10,200 (PS 10200;Mw/Mn¼ 1.07) and a poly(ethyl ethylene) withMn¼ 4080

(PBDH 4080; Mw/Mn ¼ 1.04), which was prepared by hydrogenation of poly(vinyl

ethylene), PVE. The interaction parameter values used, w ¼ 0.0057 + 21/T, were
evaluated by analyzing small-angle X-ray scattering data from homogeneous PS-

b-poly(ethyl ethylene) diblock copolymers [245]; the blend exhibits a UCST

behavior.
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The predictions of the theory with respect to the molecular weight dependence of

interfacial tension are compared to the experimental data for PS/PBDH 4080 data in

Fig. 14. The representation in terms of the Mn
2/3 dependence was adopted [20]

because it conformed closely to the result from nonlinear regression for this

particular range of molecular weights. At high molecular weights, the theoretical

curve corresponds well with the extrapolated empirical relationship for the experi-

mental data when (84b) is used for the square-gradient coefficient, while use of

(84a) leads to an overestimation of interfacial tension by ca. 20%. The theory does

predict an apparent dependence of interfacial tension onMn
2/3; however, it deviates

considerably from the experimental data for low molecular weights. The theory

erroneously indicates complete miscibility (i.e., g¼ 0) for a PS molecular weight of

ca. 2400, whereas two phases were always present under these conditions and

appreciable mixing was not observed. It was discussed that the discrepancy was

probably due to the inappropriate use of the interaction parameter determined from

diblock copolymers to describe the interactions in polymer blends within the

framework of Flory-Huggins theory.

Broseta et al. [31] extended the work of Anastasiadis et al. [20] and provided

analytical expressions for the finite molecular weight corrections to the interfacial

tension and interfacial thickness, and also studied the effects of polydispersity.

Broseta first considered two strongly segregated monodisperse homopolymers A

and B with comparable (high) incompatibility degrees wA ¼ wrA and wB ¼ wrB,
with each of the two phases at equilibrium being nearly pure in one of the two
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Fig. 13 Comparison of experimental interfacial tension for PS 10,200/PBDH 4080 with the

square-gradient theory where the square-gradient coefficient is given by (84a) (solid line) and
(84b) (dotted line). Adjustable parameters were not allowed in this comparison [20]
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polymer species. Actually, Broseta estimated that the compositions of the two

coexisting phases are given by:

fa
A ¼ 1� fa

B � 1� exp �wrBð Þ (85a)

fb
A ¼ 1� fb

B � exp �wrAð Þ (85b)

The interfacial tension for high but finite molecular weights was, then, calculated to

be given as:

g ¼ g1 1� p2

12

1

wrA
þ 1

wrB

� �
þ . . .

� �
(86)

where g1 is the interfacial tension for infinite molecular weights as calculated by

Helfand–Tagami, (40). As discussed by Broseta, this equation should be the

asymptotic behavior of the theory of Anastasiadis and coworkers [20]; however,

that regime was apparently not explored in the numerical calculations of Anasta-

siadis [20]. Moreover, the interfacial width was estimated as:

aI ¼ aI1 1þ ln 2
1

wrA
þ 1

wrB

� �
þ . . .

� �
(87)

Fig. 14 Comparison of experimental interfacial tension for PS/PBDH 4080 at 171�C with the

square-gradient theory where the square-gradient coefficient is given by (84a) (solid line) and
(84b) (dotted line). The dashed line is a linear fit to the data. Adjustable parameters were not

allowed in this comparison [20]
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where aI1 is the interfacial thickness of Helfand–Tagami (38). The results are

expected to be valid for strongly incompatible systems where the interface is

smaller than the chain radii of gyration, whereas the analysis should not hold for

weakly incompatible systems where the interface becomes of the order of RG or

larger.

Figure 15 shows the numerically calculated interfacial tension plotted as a

function of the inverse incompatibility 1/w, assumed to be the same for both

polymers. The asymptotic behavior of (86) is a good approximation for a wide

range of incompatibilities w> 5 (or l/w< 0.2). However, the increase in interfacial

tension with molecular weight is predicted to be weaker for smaller molecular

weights, in agreement with the experimental data of Anastasiadis [20].

Broseta also calculated the effect of molecular weight polydispersity on the

interfacial tension [31]. He considered a specific case of polydispersity where the

two polymer melts are binary mixtures with the same bimodal distribution of

molecular weights, with r1 being the length of the small chains, r2 the length of

the long chains (r1 < r2), and x0 the volume fraction of monomers belonging to

small chains. Broseta analyzed the strong segregation regime, i.e., large values of

wi ¼ wri. The theory predicted a selective partitioning of the small chains to the

polymer–polymer interface, which leads to a reduction of the interfacial tension.

The enrichment of the small chains to the interface decreases when the chain length

ratio w2/w1 decreases to 1 and when both chain lengths simultaneously increase.
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Fig. 15 Reduced interfacial tension g/g1 as a function of the inverse incompatibility l/w (solid
line). The dashed line is the asymptotic linear behavior (86) valid for large incompatibilities. Near

the critical point (l/w = 0.5), the dotted line represents the more exact solution of Joanny and

Leibler [246] (see Sect. 3.2.4)
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When both chains become very long, the difference in chain lengths does not play

any role. When the incompatibilities wi are large but the difference Dw is small,

interfacial tension was predicted to be given by:

g ¼ g1 1� p2

6wn
þ . . .

� �
(88)

where wn ¼ x0=w1 þ ð1� x0Þ=w2½ 	�1
is the number-averaged incompatibility

degree. Since the number-average molecular weight is most heavily weighted by

the smallest molecular weights, (88) shows that the interfacial tension is lowered by

the presence of small chains, with the small chains in fact acting as surfactants.

Ermonskin and Semenov [33] utilized the square gradient approach in combina-

tion with the Flory-Huggins model for calculation of the structure of the interface

between two immiscible polymers. They derived the conformational free energy

including a correction of the order of 1/r to the dominant gradient term following

the lines first proposed by Lifshitz [247]. The interfacial tension was obtained by

minimization of the interfacial free energy. For strong segregation (wri � 1) and

sharp interfaces, interfacial tension is given by:

g ¼ g1 1� 2 ln 2
1

wrA
þ 1

wrB

� �� �
(89)

where g1 is the interfacial tension for infinite molecular weights as calculated by

Helfand–Tagami, (40). Moreover, they derived an approximate analytical expres-

sion for the free energy of an inhomogeneous blend of two homopolymers valid for

both high and moderate values of wri and they calculated numerically the depen-

dence of interfacial tension on homopolymer molecular weight. Semenov pointed

out that the prefactor 2ln 2 � 1.39 is very similar to the one predicted by Tang and

Freed, 3[1� (1/6)1/3]� 1.35 [32] in (57b), whereas it can be compared to the value

of 0.82 of Broseta et al. [31] in (86) and ln 2 � 0.69 of Helfand et al. [30] in (56),

with the difference being due to the various approximations used.

Figures 16–18 show the comparison of the Semenov theory to the interfacial

tension data of Anastasiadis et al. [20] for three different polymer systems, PDMS/

PBD 1000, PS/PBDH 3080 and PS/PMMA 10,000. The agreement is very good for

the PDMS/PBD and PS/PBDH systems, whereas it is poor for the PS/PMMA blend.

Actually, Semenov argued that the disagreement for PS/PMMA is far beyond

possible errors due to approximations of the theory and that it might indicate that

the model based on the Flory-Huggins interaction term may be inadequate for the

PS/PMMA system, with higher order terms being important in the excess free

energy of interaction.

Kamal et al. [22] compared the predictions of these thermodynamic theories to

experimental data on the effect of temperature, molecular weight, and molecular

weight polydispersity on the interfacial tension for polypropylene/polystyrene

blends. Once more, the importance of an accurate estimation of the Flory-Huggins
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interaction parameter w emerged. It was shown again that the relationship correlat-

ing w to the Hildebrand solubility parameter (44) was not suitable for evaluating the

theoretical predictions. The theoretical interfacial tensions of Broseta et al. [31] or

Helfand et al. [30] were found to increase with increasing temperature, which is

opposite to the behavior of the experimental interfacial tension data; this discrep-

ancy was also observed earlier [19]. Alternatively, the interaction parameter was

expressed as a sum of an enthalphic and an entropic contribution, w ¼ wH/T + wS, as
suggested earlier by Anastasiadis [19]. The two coefficients were evaluated by

fitting the interfacial tension data at two different temperatures to the expression of

Broseta (83); these coefficients were then used to predict the interfacial tension for

other temperatures and different molecular weights with moderate success. Finally,

the theoretical predictions on the effects of molecular weight polydispersity on

interfacial tension [31] are in qualitative agreement with the data.

Lee and Jo [34] proposed a square-gradient theory combined with the Flory–

Orwoll–Vrij equation of state theory [248]. The theory was used to calculate the

interfacial tension between PS and PBD, and between PS and PMMA. For

the PS/PBD system, they utilized an experimental cloud point curve to determine
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the equation of state interaction parameter. The authors calculated the temperature

and molecular weight dependence of interfacial tension for different molecular

weights of PS (5000–30,000) and a fixed molecular weight of PBD (PBD 1000).

The dependence of interfacial tension on temperature shows a linear decrease,

except near the upper critical solution temperature. The interfacial tension increases

with increasing PS molecular weight and approaches an asymptotic limit. The

predicted interfacial tension follows a Mn
�2/3 dependence for moderate molecular

weights, whereas it follows the Mn
�1 dependence for high molecular weights.

The theory was compared to the experimental data of Anastasiadis [20] for

the PS/PMMA system: although the apparent trend with molecular weight is

correctly predicted, the theory overestimates the values of interfacial tension

when the interaction parameter was determined by fitting the equation of state

theory for the binodal curve to the maximum temperature of an experimental

cloud point curve.

3.2.4 Theories Near the Critical Point

The theories discussed up to now do not hold rigorously near the critical point of

demixing, and an alternative approach is, thus, required. Nose [249] studied the

interfacial behavior for both polymer mixtures and polymer solutions near the

critical point. The theory was based on the Cahn–Hilliard theory [216] and takes

into account the dimensions of the polymer coils at the interfacial region. For a
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theory of Semenov [33]. The interaction parameter a = w/u was adjusted to 0.93 
 10�3 mol/cm3

(u is the effective monomer volume)

222 S.H. Anastasiadis



symmetric polymer/polymer system, as the temperature, T, approaches the critical
temperature, Tc, the interfacial tension and interfacial width behave as:

g / Tcr
�1=2e3=2 (90a)

aI / r1=2e�1=2 (91)

where r is the number of polymer segments and e¼ (Tc � T)/Tc, with Tc the critical
point of demixing. Because for a symmetric system, Tc varies with molecular

weight as Tc / r, (90a) reduces to:

g / r1=2e3=2 (90b)

Thus, both interfacial tension g and interfacial width aI were predicted to vary

with molecular weight to the 1/2 power, i.e., proportionally to the unperturbed

dimension of the polymer coil. Furthermore, the theory predicts the classical mean

field exponents of 3/2 and �1/2 for the dependencies of g and aI, respectively, on
reduced temperature. Besides, Nose predicted a first order transition from a diffuse

to a relatively sharp interface that results in a change in the slope of the g versus
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T curve. The transition temperature reduced by Tc increases with increasing molec-

ular weight.

Joanny and Leibler [246] predicted the same critical exponents for the tempera-

ture dependence; however, they found that the interfacial tension decreases with

increasing chain length r as r�1/2, while the dependence of the interfacial width on

chain length is the same as that of Nose [249]. For a symmetric system, their final

expressions were:

g ¼ 2

3
kBTb

�2r�1=2e3=2 (92)

aI ¼ 1

3
br1=2e�1=2 (93)

where b is the Kuhn statistical segment length of the polymers.

Sanchez [181] used a Taylor expansion of the Flory-Huggins equation for the

free energy density, and the Cahn–Hilliard theory with a constant coefficient for the

gradient terms. He found the same classical mean field exponents for the tempera-

ture dependence of interfacial tension and thickness, but he predicted that, for the

symmetric case, both the interfacial tension and the thickness are independent of

chain length. Sanchez explained this result to be due to the fact that, in his approach,

chain connectivity was only implicitly taken into consideration through the entropy

of mixing. The theories of Nose [249] and Joanny and Leibler [246] take explicitly

into account chain connectivity in various approximations.

Ronca and Russell [232] calculated the interfacial tension near the critical point.

They used the Cahn–Hilliard expansion of the free energy with the Flory-Huggins

approximation in modeling the spinodal decomposition in polymer mixtures. For

a symmetric system, the interfacial tension was found to follow the classical

dependence:

g / Tr�1=2e3=2hðrÞ (94)

where the function h(r) depends on the chain length [232].

de Gennes [250] has argued that a polymer blend should behave nearly classi-

cally; thus, the predicted classical behavior of g / e3/2 and aI / e�1/2 may be very

close to being correct. With respect to the molecular weight dependence, the

situation is not clear. The results of Joanny and Leibler [246] and Ronca and

Russell [232] would be similar to those of Nose if the temperature, T, appearing
in (92) and (94), respectively, were equated to the critical temperature, Tc, as
suggested by Sanchez [181]. Our opinion is that Sanchez’s suggestion is correct.

In that case, the theories would predict that, near the critical point, the interfacial

tension increases with molecular weight to the 1/2 power, as:

g / r1=2e3=2 (95)

except for a correction introduced in the Ronca and Russell derivation [232].
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4 Copolymers as Emulsifying Agents in Polymer Blends

4.1 Copolymer Localization at the Polymer Blend Interface

It is widely understood that the use of block or graft copolymers as emulsifying

agents or compatibilizers in polymer blends is due to their affinity to selectively

partition to the polymer–polymer interface. The segments of the compatibilizer can

be chemically identical with those in the respective homopolymer phases [37, 38,

40, 45, 48, 54, 56] or can be miscible with or adhering to one of the homopolymer

phases [251–254]. Figure 19 depicts ideal configurations of copolymer chains at the

interface, with each block preferentially extending into the respective homopoly-

mer phase [39, 70, 71, 73, 74]. Other conformational models are possible, such as

segments adsorbed onto the surface of one polymer rather than penetrating it.

Conformational restraints are important [255, 256], and, on this basis, a block

copolymer is expected to be superior to a graft [257, 258]. A graft with one branch

is shown in Fig. 19 for the case of graft copolymers; however, multiple branches

restrict the opportunities of the backbone to penetrate its homopolymer phase. This,

of course, would not preclude adhesion of the backbone to this phase. For the same

reasons, diblock copolymers are more effective than triblocks [87]. The block or

graft copolymer can localize itself at the blend interface only if it has the propensity

to segregate into two phases. It is the repulsion of the unlike segments of the

copolymer and the two homopolymers that leads to the localization of the copoly-

mer at the interface. Therefore, the tendency in block and graft copolymers to

migrate at the interface depends on the balance of the interaction parameters as well

as on their molecular weights.

Fayt et al. [259, 260] used transmission electron microscopy (TEM) to study the

localization of the copolymer at the polymer–polymer interface. Staining a short

mid-block (isoprene) with OsO4 permitted the direct observation of the location of

the added PS-b-PI-b-PBDH triblock copolymer to the interface between PS and low

density PE; TEM images showed the localization of the copolymer to the blend

Polymer A Polymer B

Fig. 19 Ideal location of

block and graft copolymers at

the interface between the

homopolymer phases formed

by the immiscible polymers A

and B
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interface. In contrast, when a PS-b-PMMA copolymer was added to the polyvinyl

chloride (PVC)/PS blend (the PMMA sequences are miscible with PVC), dispersion

of the copolymer within the PVC phase was observed instead of a preferential

adsorption to the interface. It was pointed out that a properly tailored decrease in the

interaction of the PMMA block with PVC (i.e., by controlling microstructure,

molecular weight, and composition) would restore a more favorable situation but

at the cost of a long optimization process. Thus, an important requirement for the

copolymer is that it should not be miscible as a whole molecule within one of the

homopolymer phases, because this would increase the amount of the copolymer

required to reach interesting sets of properties.

Shull et al. [38] used forward recoil spectrometry to quantify the interfacial

segregation of diblock copolymers consisting of deuterated polystyrene (dPS) and

poly(2-vinylpyridine) (P2VP) at interfaces between PS and P2VP homopolymers.

Figure 20 shows the equilibrium distribution of the diblock copolymer to the PS–

P2VP interface after the appropriate annealing. The interfacial excess, estimated as

the hatched area in Fig. 20, increased with increasing copolymer concentrations

within the PS layer and was compared to mean-field theory predictions, which

were quantitatively accurate for copolymer concentrations below the limiting value

associated with the formation of block copolymer micelles. The segregation behav-

ior in the regime where micelles were present was complicated by a strong tendency

for micelles to segregate to the free PS surface and by a weaker tendency for

micelles to segregate to the interfacial region. The effects of micelle formation

within the bulk homopolymer phases on the interfacial behavior will be discussed

further in the following sections.

Elastic recoil detection (ERD) was used by Green et al. [40] to study the

segregation of low molecular weight symmetric copolymers of PS, and PMMA to

the interface between PS and PMMA homopolymers. Bilayer films of PS and
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distribution for a dPS-b-P2VP
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PMMAmixed with a few percent of diblock copolymer were spin coated separately

and, using the floating method, the assembly was built. The films were annealed to

let the copolymer migrate to the interface and reach thermodynamic equilibrium.

Figure 21 shows the volume fraction profile of a dPS-b-PMMA copolymer (262

segments) with a deuterated PS sequence at the interface between PS (18,000

segments) and PMMA (13,000 segments). At the concentrations studied, the excess

number of copolymer chains per unit area at the polymer–polymer interface varied

linearly with fc, the volume fraction of copolymer chains in the bulk. The results

were compared with predictions based on a modification of the mean field argu-

ments of Leibler [75] (discussed in Sect. 4.3.3). For low density of copolymer

chains at the interface, the predictions are in a good agreement with the experimen-

tal behavior.

Neutron reflectivity was used to investigate the segment density distribution of

symmetric diblock copolymers of PS and PMMA [39] (molecular weights of about

100,000) at the interface between PS and PMMA homopolymers (molecular

weights of about 100,000). Selective deuterium labeling of either a block of the

PS-b-PMMA or of the PS or PMMA homopolymers provided the contrast neces-

sary to isolate the distribution of the segments of the individual components at the

interface. Results from a series of experiments were used simultaneously to yield

the density profiles of the PS and PMMA segments of the homopolymers, and of the

copolymer blocks at the interface (Fig. 22).

It was found that the effective width of the interface between the PS and PMMA

segments was 75 Å, i.e., it was 50% broader than that found between the PS and

PMMA homopolymers in the absence of the diblock copolymer (50 � 5 Å [261])

and between the PS and PMMA lamellar microdomains of the pure PS-b-PMMA in

the bulk (50� 4 Å) [261, 262]. The area occupied by the copolymer at the interface

between the homopolymers is 30% larger than that of the copolymers in the bulk

lamellar microstructure [39]. In that study, the amount of diblock copolymer at the

interface was (approximately) equivalent (�200 Å) to half of the long period of

the neat ordered copolymer. The same PS/PS-b-PMMA/PMMA system was subse-

quently investigated by a lattice-based self-consistent field model that was extended
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Fig. 21 Volume fraction

profile of dPS-b-PMMA

copolymer chains segregated

to the PS–PMMA interface.

The shaded region indicates

the interface excess. The

volume fraction of copolymer

chains in the PS phase (x < 0)

is fc
PS ¼ 0.0033. The volume

fraction of copolymer chains

in the PMMA phase (x> 0) is

fc
PMMA ¼ 0.0044. The

sample was annealed at

162�C for 100 h [40]
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to incorporate chain conformational stiffness [73]. Excellent qualitative and quan-

titative agreement with the experimental data (Fig. 22) was obtained for the volume

fraction profiles of both homopolymers and of both blocks of the copolymer at the

interface [73].

In a subsequent study [263], it was shown that the width of the interface between

the PS and PMMA segments broadened as the number of PS-b-PMMA chains

added to the interface between PS and PMMA homopolymers increased. The width

varied from the 50 Å thick interface between the PS and PMMA homopolymers up

to �85 Å at interfacial saturation (effective copolymer thickness of �256 Å).

The organization of PMMA-b-PS-b-PMMA triblock copolymers at the interface

of immiscible homopolymers [87] was studied by dynamic secondary ion mass

spectrometry. Selective labeling of either the two end blocks or the central block

provided the contrast necessary to determine the spatial arrangements of the blocks

at the interfaces. It was found that the triblock copolymer chains were organized

such that the central block preferentially segregated to one homopolymer, whereas

the end blocks segregated to the other, thus adopting a “hairpin” type of conforma-

tion as indicated in Fig. 19.

4.2 Experimental Studies on the Effect of Additives
on Polymer–Polymer Interfacial Tension

The effective interfacial tension between the two homopolymer phases in blends of

immiscible homopolymers can be altered appreciably by adding different types of

materials that can behave as interfacially active agents.

Fig. 22 Volume fraction profiles of the PS and PMMA homopolymers (thin solid lines), the PS

and PMMA blocks of the PS-b-PMMA copolymer (dashed lines), and the total PS and PMMA

segments summed over the homopolymer and the respective copolymer blocks (thick solid lines).
The results were obtained by simultaneous analysis of neutron reflectivity experiments with

different deuterium labeling of copolymer and homopolymer segments [39]
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Interfacial tension between two incompatible homopolymers can be reduced by

adding homopolymers containing functional side or end groups. In 1971, Patterson

et al. [264] investigated the effect of functionalized poly(dimethyl siloxane), PDMS,

additives on the interfacial tension between a commercial methyl-terminated PDMS

and a commercial polyoxyethylene/polyoxypropylene copolymer, P(OE-OP). Start-

ing with a high interfacial tension (8.3 dyn/cm), the presence of 10% carboxyl

groups on alkyl side chains attached to the PDMS molecules reduced the interfacial

tension by 63%. Doubling the number of carboxyl groups made this additive slightly

less, rather than more, effective (57% reduction). Incorporation of carboxyl end

groups on the PDMS chain provided a material that was capable of reducing

interfacial tension in the same system by 49%. In contrast, hydroxyl end groups

had no significant effect on the interfacial tension. Amino groups on the silicone

additives had only a small effect on the interfacial behavior: 1% amino groups on

alkyl side chains reduce interfacial tension by 28%, whereas increasing the amount

of polar substituents to 6% produced a higher rather than lower interfacial tension

value (18% reduction). In general, the interfacial activity of these additives is probably

due to specific interactions between the additive and the homopolymers; these

interactions increase compatibility and, consequently, reduce interfacial tension.

Patterson et al. [264] reported the effect of addition of PDMS-b-POE copoly-

mers on the interfacial tension between PDMS and P(OE-OP) as well. A 72%

reduction in interfacial tension was obtained with the addition of 2% of a 60/40

PDMS-b-POE block copolymer, as shown in Fig. 23. Increasing the level of polar

polyether substitution from 40 to 75% did not result in any further reduction; it

rather showed less interfacial activity (64% reduction). This agreed with the

proposed maximum efficiency of symmetric copolymers [257, 258, 265]. Substitu-

tion of a POP for the POE in the 25/75 copolymer additive reduced its capability for

reducing interfacial tension (51% reduction).

The effect of the concentration of the copolymer emulsifier was studied for the

60/40 PDMS-b-POE (Fig. 23). A major reduction in interfacial tension (55%) took
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place with addition of 0.17% of the copolymer, whereas 68% reduction was

observed with 1% additive. Increasing the copolymer amount to 2% led only to a

4% further reduction. That is, only a few percent of block copolymer additive is

required to essentially saturate the interface and reach the limiting interfacial

tension. A linear correlation was obtained when interfacial tension was plotted

versus the logarithm of the concentration of the additive, expressed as grams of

additive per liter of mixed liquids.

Gailard and coworkers [215, 266] demonstrated the surface activity of block

copolymers by studying the interfacial tension reduction in demixed polymer

solutions. Addition of a PS-b-PBD diblock copolymer to the PS/PBD/styrene

ternary system showed first a characteristic decrease in interfacial tension followed

by a leveling off, which is similar to the evolution of interfacial tensions for

oil–water systems in the presence of surfactants. The early investigations were

more of case studies that demonstrated the phenomenon without giving the funda-

mental detail required to help the understanding of the emulsification process and

the factors that govern it.

Anastasiadis et al. [45] investigated the compatibilizing effect of an anionically

synthesized model PS-b-PVE diblock copolymer on the interfacial tension between

PS and PVE model polymers as a function of the concentration of the copolymer

additive. They utilized the pendant drop method [155] to measure the interfacial

tension between the immiscible polymer fluids. A sharp decrease in interfacial

tension was observed with the addition of small amounts of copolymer (Fig. 24),

Fig. 24 Effect of the addition of a PS-b-PVE copolymer on the interfacial tension between PS and

PVE at 145�C [45]
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followed by a leveling off as the copolymer concentration increased above a certain

concentration. This was attributed to an apparent critical micelle concentration

(CMC). For concentrations lower than this critical concentration, the interfacial

tension reduction was essentially linear with the copolymer content, a behavior that

compared well with that predicted by Noolandi and Hong [70, 267].

Hu et al. [48] studied the addition of PS-b-PDMS diblock copolymer to the

PS/PDMS blend. A maximum interfacial tension reduction of 82% was achieved at

a critical concentration of 0.002% diblock added to the PDMS phase. At a fixed PS

homopolymer molecular weight, the reduction in interfacial tension increases with

increasing the molecular weight of PDMS homopolymer. Moreover, the degree of

interfacial tension reduction was found to depend on the homopolymer the diblock

is mixed with: when the copolymer was mixed into the PS phase, the interfacial

tension reduction was much less than that when the copolymer was blended into the

PDMS phase. This behavior suggested that the polymer blend interface may act as a

kinetic trap that limits the attainment of global equilibrium in these systems.

Retsos et al. [54] investigated the effects of the molecular weight and concen-

tration (fadd) of compositionally symmetric PS-b-PI diblock copolymer additives

on the interfacial tension between PS and PI immiscible homopolymers. The

dependence of the interfacial tension on the additive concentration agreed with

previous investigations: a sharp decrease with addition of a small amount of

copolymer followed by a leveling off at higher copolymer concentrations (illu-

strated in Fig. 25). However, the reduction of the interfacial tension was a non-

monotonic function of the copolymer additive molecular weight at constant

copolymer concentration in the plateau region. The emulsifying effect, Dg ¼ g0 � g,
increased by increasing the additive molecular weight for low molecular weights,
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Fig. 25 Interfacial tension for the PS/PS-b-PI/PI systems as a function of copolymer concentration

(wt%) added to PS at constant temperature (140 � 1�C) for different diblock molecular weights

with different numbers of segments (N) as shown. Filled square denotes the PS–PI interfacial

tension in the absence of the diblock, g0. The lines are fits to an expression g = (g0 � gsat) exp
(�wadd/wchar) þ gsat [65], where gsat is the interfacial tension at the plateau and wchar is the

concentration needed to achieve the 1/e of the maximum reduction g0�gsat [54]
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whereas it decreased by further increasing the copolymer molecular weight, thus

going through a maximum (Fig. 26).

The results were understood by considering the possibility of micelle formation

as the additive molecular weight increased, leading to a three-state equilibrium

between copolymer chains adsorbed at the interface, chains homogeneously mixed

with the bulk homopolymers, and copolymer chains at micelles within the bulk

phases. A simple model was presented that qualitatively showed a similar behavior

(see Sect. 4.3.3). The presence of micelles for high molecular weight additives and

their absence for low molecular weights was supported by small-angle X-ray

scattering data [55, 268].

Wagner and Wolf [46] investigated the effects of the addition of PDMS-b-PEO-
b-PDMS triblock copolymers on the interfacial tension between PDMS and PEO

homopolymers. In agreement with earlier investigations, interfacial tension was

found to fall rapidly to �10% of its initial value and level off as the effective CMC

was surpassed. Moreover, the effect of the molecular weight of the PDMS block of

the triblock copolymer was studied; this effectively studied the effect of copolymer

composition without, however, keeping the copolymer molecular weight constant.

The data (Fig. 27) showed that the interfacial tension decreased as the molecular

weight of the PDMS block approached that of the PEO block.

Subsequently, Wolf and coworkers [49] investigated the effect of copolymer

architecture on the interfacial tension reduction for the PDMS/PEO blend utilizing

PDMS-b-PEO diblocks, PDMS-b-PEO-b-PDMS triblocks, and “bottle-brush”

copolymers consisting of PDMS backbone and PEO brushes. The study showed

that for the range of molecular weights investigated, the total number of PDMS
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Fig. 26 Interfacial tension for the PS/PS-b-PI/PI systems as a function of the number of segments

(N) of the copolymers at a constant temperature of 140 � 1�C and constant 2 wt% copolymer

added to the PS phase (open inverse triangles). For the N ¼ 1127 diblock, data are also shown

when 2 wt% copolymer is added to PI (filled triangle), and when 1 wt% is added to PS and 1 wt%

is added to PI (open diamond). The PS–PI interfacial tension in the absence of the diblock is

denoted by a filled square [54]
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segments was the most important parameter in determining the efficiency of the

copolymer, irrespectively of their architecture or of the size of the PEO block.

Retsos et al. [56] investigated the effect of the macromolecular architecture and

composition (f) of block copolymer additives on the interfacial tension between

immiscible homopolymers. The systems investigated were PS/PI blends in the

presence of PI2PS (I2S) and PS2PI (S2I) graft copolymers. The series of grafts

possessed constant molecular weight and varying composition. A decrease in

interfacial tension was observed with the addition of small amounts of copolymer

followed by a leveling off (plateau) as the copolymer concentration (fadd)

increased, illustrating the surfactant-like behavior of the graft copolymers. The

interfacial tension at interfacial saturation (plateau regime) was found to be a

nonmonotonic function of the copolymer composition f exhibiting a minimum

versus f (Fig. 28). The dependence on f was understood as a competition between

the decreased affinity of the copolymer within the homopolymer phase when the

size of the “other” constituent increased, which increased the driving force of the

copolymer towards the interface, and the possibility of micellar formation. These

ideas were supported by small-angle X-ray scattering measurements, which indi-

cated the formation or absence of micelles.

Another observation in Fig. 28 concerns the fact that the interfacial tension for

the I2S graft with fPI ¼ 0.36 is lower than that for the symmetric linear diblock

copolymer of the same total molecular weight (all in the plateau region of the

interfacial tension reduction). It appeared that the old rule of thumb “diblocks better

than triblocks better than grafts” should be reconsidered in the general case. The

graft with fPI ¼ 0.36 had very similar composition with diblock SI (fPI ¼ 0.41) and
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Fig. 27 Interfacial tension of a phase-separated mixture of PEO 35 containing 2 wt% PDMSm-b-
PEOn-b-PDMSm and PDMS 100 as a function ofm for n = 37 at 100�C; n andm are the numbers of

monomeric units of the copolymer blocks [46]
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very similar molecular weight, but it was more interfacially active, which most

probably was an architecture effect. The better efficiency of the graft copolymer

versus that of the diblock was not anticipated theoretically [85] (when micelles

were not considered) but it was in agreement with an early study [269] on PS(PEO)2
grafts versus PS-b-PEO diblocks of similar molecular weights added to water/

organic solvent systems. It is believed that this is due to the higher tendency of

the diblock to form micelles.

Furthermore, an important finding was that the final interfacial tension at

saturation depended on the side of the interface to which the I2S graft copolymer

was added. When the I2S was added to the PI homopolymer, the interfacial tension

reduction was more significant, i.e., the apparent interfacial activity of the additive

was higher. This pointed to a local equilibrium that can only be attained in such

systems: the copolymer reaching the interface from one homopolymer phase does

not diffuse to the other phase. For the symmetric SI diblock, the interfacial tension

at saturation does not depend on whether the additive is premixed with the PS or to

the PI phase, i.e., in that case adding the copolymer to the drop or the matrix phase

did not make any difference. Thus, the SI data allowed the authors to rule out one of

the possible explanations discussed by Hu et al. [48], who had suggested that such

an effect could be due to the presence of a larger reservoir of diblock when added to

the matrix phase, versus a depletion when it is added to the drop phase. When using

the respective S2I graft copolymers, a mirror image behavior was obtained, i.e.,

addition of the S2I graft to the PS side followed the behavior of the I2S added to PI
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Fig. 28 Interfacial tension for the PS/I2S/PI systems as a function of the composition of the graft

copolymers at a constant temperature of 140�C and constant 2 wt% copolymer added to the PS

(open circles), or to the PI phase (filled circles), or when 1 wt% was added to the PS and 1 wt% to

the PI phases (black and white circle). Also shown are the interfacial tension data for PS/SI/PI at

140�C, i.e., with the addition of 2 wt% of the SI diblock copolymer to the PS (open inverse
triangle), or to the PI phase (filled inverse triangle), or when 1 wt% was added to PS and 1 wt% to

the PI phases (black and white inverse triangle). The squares are the interfacial tension data

for PS/S2I/PI at 140
�C when 2 wt% of S2I was added to the PS phase (filled square) or to the PI

phase (open square). The dashed line indicates the PS/PI interfacial tension in the absence of

additives [56]
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and vice versa. The result signified that this behavior was not a kinetic effect but

was rather due to a trapping of the system to a stationary state of local equilibrium,

with the additive not crossing to the other side of the interface. Such an explanation

was also discussed by Hu et al. for the PS-b-PDMS case [48]. It was suggested that,

in the case of graft copolymers, it is the asymmetric architecture of the graft

copolymers that leads to the great disparity between the two cases, whereas it

should probably be the asymmetry in the statistical segment lengths of the two

blocks in the PS-b-PDMS case that leads to an asymmetry in the CMC and, thus, in

the interfacial tension reduction.

Wedge and Wolf [54] discussed similar “stationary states” to be due to larger

thermodynamic driving forces and more pronounced back-damming when the

PEO-b-PPO-b-PEO triblock was added to the PPO phase. This was attributed to a

lower affinity of the additive to the PPO. Actually, the authors generalized their

finding by suggesting that, in order to achieve the highest possible reduction of the

interfacial tension by means of a given amount of compatibilizer, it should be added

to the phase with the lower affinity to this component. The study of Retsos et al. [56]

agreed with the statement that the effectiveness of the interfacial modifiers is

controlled by the unfavorable interactions, which drive more of the additive

towards the interface and thus reduce the interfacial tension further. However, the

study pointed to the important effect of the formation of micelles within the bulk

phase to which the compatibilizer is added, which is specifically important for

nonsymmetric copolymer architectures. One should aim at adding the compatibili-

zer to the phase where it would form micelles with greater difficulty [56].

As was pointed out in the article of Retsos et al. [55], it should be noted that the

concentration dependence of the surface tension in solvent/additive systems has

been traditionally used for the estimation of the CMC in either small-molecule

[270] or polymeric [265, 269, 271, 272] surfactant solutions. In those measure-

ments [265, 269, 271, 272], the surface tension decreases with increasing concen-

tration for concentrations up to a certain value, and then attains an almost constant

value. The break in the gsurf versus log c (c is the additive concentration) curve is
used to denote the CMC. In the studies discussed above, however, it was found

that even for concentrations in the plateau region (higher than the break) of the

interfacial tension (or surface tension [55]) versus concentration curve, micelles

are not present for low additive molecular weights, whereas they are present only

for higher molecular weights (or equivalently for the graft copolymer case [56]).

Therefore, it is apparent that the break in the interfacial tension versus concentra-

tion curve should denote interfacial saturation and not necessarily micellization.

This statement is supported by an early study of solutions of PS-b-poly(hexyl
methyl siloxane)-b-PS triblock copolymer in benzene [273], where, although the

surface tension data exhibited the break discussed above, no micellization was

established by static light scattering. No aggregation was expected since benzene

is a good solvent for both blocks. The situation when both surface segregation

(adsorption at a solid surface) and micellization might occur was investigated

theoretically [274]. It was found that, depending on the incompatibility of the

surface active block with the (monomeric or polymeric) solvent and its
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(attractive) interactions with the surface, one may have only adsorption onto the

surface, only micellization, or an equilibrium of chains adsorbed onto the surface

and chains in a micelle. This competition has not been investigated in detail in

copolymer/solvent and copolymer/homopolymer systems.

Chang et al. [58] investigated recently the effect of copolymer composition on

the interfacial tension reduction in PI/PDMS blends utilizing PI-b-PDMS addi-

tives. The authors utilized a series of diblock copolymers possessing constant

molecular weight of the PI block and different molecular weights of the PDMS

block (thus, different compositions) added to the PDMS phase. Ultralow values of

interfacial tension of the order of 10�3 dyn/cm were obtained for almost symmetric

diblock copolymers for additive concentrations in the plateau region. Such low

interfacial tensions had never been measured previously in polymeric systems,

whereas they had been obtained in systems of balanced small molecule surfactants,

for which the thermodynamically preferred form of aggregation is a surfactant

monolayer with no spontaneous curvature. The interfacial tension increased with

increasing PDMS block, going from a symmetric to asymmetric diblocks. At

certain copolymer composition, a discontinuity was observed with the interfacial

tension exhibiting a jump. For highly asymmetric additives, the behavior was

accounted for by a theory [105] that considered equilibrium between a PDMS

phase containing swollen spherical micelles and a phase of nearly pure PI. The

self-consistent field theory (SCFT) discussed the behavior of systems of nearly

balanced copolymers, which tend to form highly swollen micelles, within the

context of the Helfrich theory of interfacial bending elasticity [275], using elastic

constants obtained from SCFT simulations of weakly curved monolayers.

Besides the considerations regarding the thermodynamic factors that determine

the efficiency of a compatibilizer, the question of how and whether a state of

equilibrium is reached in such systems is still open. In principle, in all experimental

measurements, interfacial tension data are taken for long periods of time; “equilib-

rium” is considered to have been accomplished when the extracted values of the

interfacial tension do not change with time. These times can be very or extremely

long in the case of polymer–polymer interfaces due to the normally very high

viscosities of the components of the mixtures. Actually, in these systems, one can

study the kinetics with which time-independent interfacial tensions are established.

Note that in the ternary systems it is the combined influence of hydrodynamic

relaxation and interfacial segregation of the additive that determines the kinetics of

equilibration measured. The time-dependent interfacial tension data of Stammer

and Wolf [276] for random copolymers added to the polymer–polymer interfaces

were fitted with a double exponential function, with the two characteristic times

attributed to the viscoelastic relaxation and the compatibilizer transport to the

interface. Cho et al. [53] studied the segregation dynamics of PS-b-PDMS diblock

copolymer to the PS/PDMS polymer blend interface. The data were analyzed

within diffusion-limited segregation models proposed by Budkowski et al. [277]

and Semenov [278], as modified to treat interfacial tension data. The estimated

apparent block copolymer diffusion coefficients obtained were close to the esti-

mated self-diffusion coefficient of the PDMS homopolymer matrix. Shi et al. [57]
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studied the time evolution of the interfacial tension when polyisobutylene (PIB)-b-
PDMS was introduced to PIB/PDMS blend, with the copolymer added to the PIB

phase; in that study both homopolymers were polydisperse. The time dependence of

the interfacial tension was fitted with an expression that allowed the evaluation of

the characteristic times of the three components. The characteristic time of the

copolymer was the longest, whereas the presence of the additive was found to delay

the characteristic times of the blend components from their values in the binary

system. The possible complications of slow diffusivities on the attainment of a

stationary state of “local equilibrium” at the interface were thoroughly discussed by

Chang et al. [58] within a theoretical model proposed by Morse [279]. Actually,

Morse [279] suggested that the optimal system for measuring the equilibrium

interfacial tension in the presence of a nearly symmetric diblock copolymer

would be one in which the copolymer tracer diffusivity is much higher in the

phase to which the copolymer is initially added than in the other phase because

of the possibility of a quasi-steady nonequilibrium state in which the interfacial

coverage is depleted below its equilibrium value by a continued diffusion into the

other phase.

In order to avoid the complications of micelle formation or the diffusion of the

copolymer to the opposite side of the interface, the in-situ formation of copolymers

has been utilized [61, 106, 107, 109, 112, 117, 172]. In a review article, Jérôme and

coworkers [106] wrote that they found no evidence of commercial blends compa-

tibilized with premade block copolymers, and indicated that the in-situ method is

superior in compatibilization. Macosco and coworkers [107] have compared

directly the effects of premade versus reactively formed compatibilizers; it was

concluded that the premade copolymers are less capable of compatibizing polymer

blends than the in-situ formed ones because of the possibility of micelle formation

by the former.

Fleischer et al. [172] measured the interfacial tension reduction credited to the

complexation between carboxy-terminated PBD and amine-terminated PDMS,

which were added to an immiscible blend of PBD and PDMS. The changes in

interfacial tension resembled the behavior observed for block copolymer addition to

homopolymer blends: there is initially a linear decrease in interfacial tension with

the concentration of functional homopolymer up to a critical concentration, at

which the interfacial tension becomes invariant to further increases in the concen-

tration of functional material. However, the formation of interpolymer complexes

depends on the equilibrium between associated and dissociated functional groups

and, thus, the ultimate plateau value for interfacial tension reduction is dependent

on the functional group stoichiometry. A reaction model for end-complexation was

developed in order to reproduce the interfacial tension reduction data with Fourier

transform infrared spectroscopy applied to determine the appropriate rate constants.

The model provided a reasonable qualitative description of the interfacial tension

results, but was not able to quantitatively predict the critical compositions observed

experimentally.

Recently, the kinetics of interfacial reaction between two end-functionalized

homopolymers was investigated by Chi et al. [117] utilizing interfacial tension
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measurements. The authors measured the changes in the interfacial tension between

PDMS and PBD during the reaction between amino-terminated PDMS and car-

boxyl-terminated PBD, which can react at the interface and form diblock copoly-

mers that compatibilize the blend. The concentration of the reaction product was

inferred from an application of Gibbs adsorption equation, justified for an insignifi-

cant degree of conversion of reactants in either phase. The obtained time-dependent

copolymer concentration was found to follow a single-exponential growth function

at low copolymer coverage, indicating first order kinetics.

Favis and coworkers [51, 52] critically examined the relationship between the

interfacial tension reduction in the presence of diblock copolymer additives and

the dispersed phase morphology evolution as a function of the concentration of the

interfacial modifier. Blends of PS/PE in the presence of PS-b-hydrogenated poly-

butadiene-b-PS (Kraton, SEBS) [51] and of PE/PVC in the presence of PI-b-poly
(4-vinyl pyridine) or PS-b-poly(acrylic acid) [52] were investigated. The authors

unambiguously confirmed directly the relationship between interfacial tension and

phase size, as predicted by the Taylor theory [280].

4.3 Theories of the Interfacial Behavior in Homopolymer/
Homopolymer/Copolymer Blends

Statistical thermodynamic theories have been formulated to understand and predict

the emulsifying behavior of block copolymers at the polymer–polymer interface

[70–75, 77–80, 95, 98, 99, 105, 267, 279, 281, 282]. Noolandi and Hong [70, 71,

281] utilized their theory of inhomogeneous systems in order to investigate the

segment density profiles at the interface for the system homopolymer A/homopol-

ymer B/diblock copolymer AB/common solvent. They investigated the effect of the

molecular weight and the concentration of the diblock on the interfacial tension,

under the assumption that the copolymer is either localized at the interface or is

randomly distributed in the bulk homopolymer phases, i.e., for concentrations

below the CMC. Shull and Kramer [77] developed and applied the Noolandi–

Hong theory for the case without solvent and also discussed the possibility of

micelle formation in view of their earlier experimental observations [38, 102].

Semenov [103] developed an analytical mean-field theory for the equilibrium of

block copolymers in a homopolymer layer between an interface with another

homopolymer and the free surface, and the results were compared to the data of

Shull et al. [38]. Semenov also analyzed the situation for concentrations above

CMC and found that micelles are attracted to both the free surface and (more

weakly) to the polymer–polymer interface, but he did not investigate the interfacial

tension reduction due to copolymer segregation to the polymer–polymer interface.

The effects of copolymer architecture on the interfacial efficiency of the com-

patibilizers have been investigated in a series of papers by Balazs and coworkers

[80, 85] using a combination of SCMF calculations, analytical theory, and Monte

Carlo simulations as well as by Dadmun [95, 98] using computer simulations.
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Lyatskaya et al. [85] investigated the interfacial tension reduction due to the

localization of AB block copolymers at the interface between two immiscible

homopolymers A and B as a function of the copolymer architecture. For the same

total copolymer molecular weight, for symmetric copolymers ( f¼ 0.5) and for very

high molecular weight homopolymers, both analytical arguments and SCMF theory

agreed in that diblock copolymers are the most efficient at reducing the interfacial

tension, followed by the simple grafts, the four-armed stars, and the n-teeth combs.

The trade-off between total molecular weight and number of teeth was discussed

when combs and diblocks of different molecular weights were compared, i.e., long

combs are more efficient than short diblocks.

Retsos et al. [55, 56] made an attempt to provide a semiquantitative analysis of

the interfacial activity of block copolymers at the polymer–polymer interface; the

emphasis was on understanding the nonmonotonic dependence of the interfacial

tension reduction on diblock molecular weight as well as the effects of macromo-

lecular architecture and composition when graft copolymers were utilized as

additives. The attempt was based on a modification of the analysis of Leibler

[75], where the possibility of micellar formation was also taken into account. The

thermodynamic equilibrium under consideration was, thus, that between copolymer

chains adsorbed at the interface, chains homogeneously distributed in the bulk

homopolymers, and chains at micelles formed within the homopolymer phases.

4.3.1 The Noolandi and Hong Theory

Hong and Noolandi constructed a general theory [211, 283] of inhomogeneous

systems, beginning with the functional integral representation of the partition

function as introduced by Edwards [212]. The free energy functional is minimized

by the saddle-function method (including the constraints of no volume change upon

mixing and a constant number of molecules of each component) to obtain the mean-

field equations for the fundamental probability distribution functions that charac-

terize a system of two immiscible homopolymers A and B diluted with solvent in

the presence of a diblock copolymer AB. These equations were, then, solved

numerically to obtain the polymer density profiles through the interfacial region.

The difference between the total free energy and that of the bulk polymers was used

to evaluate the interfacial tension.

For homopolymer A/homopolymer B/diblock copolymer AB/solvent system,

six distribution functions were needed [70, 267] to describe the mixture: two for the

two homopolymers A and B, and four for the copolymer. However, the expressions

for the mean-field simplified to two functions [267] if the volume fractions of the

homopolymer and the respective block of the copolymer were added together. The

mean-field expressions then reduce to those for a ternary system: homopolymer

A/homopolymer B/solvent [211, 283]. The assumption was made that the part of

the copolymer that does not localize itself at the interface will be randomly

distributed in the bulk of the homopolymers.
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There are a number of factors that determine the state of the block copolymer in

a phase-separated system. The entropy of mixing of the block copolymers with the

homopolymers favors a random distribution of the copolymers. On the other hand,

localization of the block copolymers to the interface displaces the homopolymers

away from each other, thus, lowering the enthalpy of mixing. In addition, each

block of the copolymer will prefer to extend into its compatible homopolymer to

lower the block copolymer–homopolymer enthalpy of mixing. Besides suffering an

entropy loss as a whole because of the confinement to the interphase, there is a

further entropy loss for the blocks of the copolymer arising from the restriction of

the blocks into their respective homopolymer regions. Finally, extension of the

copolymer chains, as well as the effect of the excluded volume at the interphase for

the homopolymers, lead to further loss of entropy. In their theoretical development,

Noolandi and Hong [70] included the contributions to the free energy from all these

effects, and obtained the concentration of the block copolymer at the interface as

well as the associated reduction in the interfacial tension.

It is clear that similar considerations for the enthalpy and entropy of mixing of

block copolymers could favor micellar aggregation rather than random distribution

in the bulk of the homopolymers. In this case, the micelles could compete with the

interfacial region for copolymer chains and the amount in each state would depend

on the relative reduction in the free energy as well as the surface area. Since no

complete treatment of this complicated case was given in the Noolandi and Hong

paper [70], their results should be reliable only for low copolymer concentrations

below the CMC. Their mean-field calculation cannot adequately describe the

critical crossover regime from a random copolymer distribution to aggregation

(micelle formation) and, thus, they only gave a rough estimate of the CMC.

The reduction in interfacial tension with increasing block copolymer concentra-

tion was calculated for a range of copolymer and homopolymer weights as well as

for different initial concentrations of solvent in their systems. The calculated

interfacial density profiles showed greater exclusion of the homopolymers from

the interfacial region as the molecular weight of the copolymer increased. This

greater localization of the copolymer resulted in a greater reduction in the interfa-

cial tension as the block molecular weight increased for both infinite and finite

molecular weights of the corresponding homopolymers.

The theory, however, generally overestimates the interfacial tension reduction

upon addition of the copolymer. An attempt to model the exact polymer system

studied by Gaillard et al. [215, 266] (PS/PBD/styrene/PS-b-PBD, discussed in Sect.
4.2) showed a disagreement between theory and experiment. The calculated inter-

facial tension fell to zero for a copolymer concentration (weight fraction with

respect to one of the two homopolymers of equal weight) of ca. 10�4, while the

measurements indicated that interfacial tension decreased much more slowly with

increasing block copolymer concentration, and reached a constant value for ca. 5%.

Possible reasons for this discrepancy were discussed in the original paper [70]. The

use of the spinning drop method to measure the interfacial tension for the demixed

polymer solutions and the effect of the rotational speed on possible shift in the

position of the block copolymer at the interphase were emphasized, together with
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the assumption of the random distribution of the copolymer chains in the bulk

copolymers. The fact that the theory was unable to describe the crossover regime

from a random distribution to the micelle formation was also discussed [70].

In another study, Noolandi and Hong [71] attempted to identify the relative

importance of the various contributions that affect the interfacial tension reduction

(as discussed earlier). The equations of their model were solved numerically in a

“computer experiment” and the various contributions to the free energy and the

interfacial tension were evaluated to determine their relative importance. The

results were also discussed in another publication [281]. For a symmetric diblock

copolymer, homopolymers of infinite molecular weight, and a symmetric solvent,

they found that the interfacial tension reduction, Dg, with increasing copolymer

molecular weight and concentration arose mainly from the energetically preferred

orientation of the blocks at the interface into their respective compatible homo-

polymers. The main counterbalancing term in the expression for Dgwas the entropy
loss of the copolymer that localizes at the interface. The loss of conformational or

“turning back” entropy of both copolymer and homopolymer chains at the interface

was shown to contribute little to Dg.
Neglecting the loss of conformational entropy, Noolandi and Hong were able to

obtain an analytical expression for the interfacial tension reduction for infinite

homopolymer molecular weights, given by:

Dg ¼ g� g0 ¼
d

b
fc

wfp

2
þ 1

N
� 1

N
exp Nwfp=2
 �	 


(96)

whereas the amount of copolymer at the interface is:

fcð0Þ ¼ fc exp Nwfp=2
 �

(97)

where d is the full width at half height of the copolymer profile and b is the Kuhn

statistical segment length. Numerical calculations showed that d was almost

constant for varying copolymer molecular weight. fc ¼ f(1) ¼ f(�1) is the

copolymer volume fraction in the bulk homopolymer phases, which is very close

to the nominal amount of the block copolymer present because the material

segregated to the interface is negligible [71] compared to the total amount for a

large system; fc(0) is the copolymer volume fraction at the interface. fp is the

bulk volume fraction of polymer A or B (assumed equal), N is the degree of

polymerization of the symmetric copolymer, and, w is the Flory-Huggins interac-

tion parameter between A and B segments. It was assumed that the interaction

parameters between segments A and B and the solvent are wAS ¼ wBS ¼ 0,

respectively. d is a parameter that was not determined by the simplified theory.

For Nwfp  1, (96) reduces to:

Dg ¼ g� g0 ¼ � d

b
fcNw

2f2
p=8; Nwfp  1 (98)
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The important features of the approximate relationships (96) and (98) were

verified by the exact numerical calculations. An exponential dependence of the

interfacial tension reduction on the block copolymer molecular weight as well as on

the total homopolymer volume fraction was predicted that can explain the remark-

able effectiveness of using large molecular weight diblocks as surfactants for

concentrated mixtures of immiscible homopolymers. For small N, a linear depen-

dence of Dg on N (98) was also predicted by the exact numerical calculations.

Moreover, a linear dependence of Dg on the block copolymer volume fraction was

predicted by the exact numerical solution, as shown by (96) and (98).

The homopolymer profile thickness was calculated numerically to increase

exponentially with copolymer molecular weight and linearly with copolymer con-

centration. The increasing width (or decreasing slope) of the homopolymer profiles,

as compared to the total polymer profiles (homopolymer plus copolymer segments),

reflected the necessity to accommodate the increased amount of the copolymer at

the interface.

Noolandi (personal communication) suggested that the theory can be applied to

the experimental system PS/PS-b-PVE/PVE of [45], i.e., to a concentrated system

without solvent, by letting the total polymer volume fraction, fp, go to 1 in (96) and

(98). For the temperature of 145�C in the experiments, w¼ 0.0388 [245], and for the

degree of polymerization of the diblock (N ¼ 261), (98) becomes:

Dg ffi �0:583
d

b
fc (99)

with d being the width at the half height of the copolymer profile, which is a

parameter related to the thickness of the interface but it was not determined by the

simplified theory.

In order to compare the data with the theory, Noolandi and Hong, Anastasiadis

et al. [45] assumed that the same volume fraction of copolymer exists in both bulk

phases and, by using the bulk densities of PS and PB, they plotted the interfacial

tension increment, Dg ¼ g � g0, as a function of the copolymer bulk volume

fraction, as shown in Fig. 29.

The interfacial tension increment, Dg ¼ g � g0, was linear with the copolymer

volume fraction, calculated for low concentration of the copolymer additive as

suggested by theory for concentrations below the CMC. The slope of the fitted line

was �37.0, and thus d was estimated to be 38 nm, or 63.5b when the geometric

mean of the Kuhn statistical segment lengths of the two segments was used as

0.6 nm. This value of d (�63.5 monomer units) was about 24% of the contour

length of the copolymer chains and, thus, indicated an extended configuration of the

copolymer chains.

Noolandi and Hong [71, 281] pointed out that both copolymer concentration

and molecular weight are equally important in reducing the interfacial tension.

They noted, however, that the interfacial tension surface (g plotted against N and

fc) is bounded by a CMC curve because blocks of large molecular weights tend

to form micelles in the bulk of the homopolymers rather than segregating to the

242 S.H. Anastasiadis



interface. Their theoretical treatment is valid for concentrations well inside the

CMC boundary.

Whitmore and Noolandi [101] derived the structural parameters of monodis-

persed AB diblock copolymer micelles within an A homopolymer by minimizing a

simple free energy functional. The CMCwas calculated and shown to be dominated

by an exponential dependence on wNB (w is the Flory-Huggins interaction parameter

and NB the degree of polymerization of the B block of the copolymer). The

importance of diblock copolymer composition was emphasized as well. The

CMC was calculated as:

fcrit
c ¼ 0:30

wN

wNBð Þ2=3
exp Xð Þ (100)

where:

X ¼� wNB þ 1:65 wNBð Þ1=3þ 1

2
1:65 wNBð Þ1=3þ 1:56

wNBð Þ1=6
� 3

" #

þ 1

2
a2A þ 2

aA
� 3

� � (101)

N is the total degree of polymerization of the copolymer and aA the stretching

parameter for the block A of the copolymer, which is related to the molecular

Fig. 29 Interfacial tension increment (Dg) versus copolymer volume fraction (fc) for the PS/PS-b-
PVE/PVE system at 145�C. Solid line is the linear fit of the data for concentrations below the

CMC, according to the theory of Noolandi and Hong. From [45]
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weights and the interactions and is calculated by the model. Good agreement was

observed between the predicted micelle core radii and experimental data [284] for

PS-b-PBD within PBD, obtained using small angle neutron scattering.

Shull and Kramer [77] developed and applied the Noolandi–Hong theory for the

case of polymer A/polymer B/diblock copolymer AB, but without solvent. They

found that, at a given value of the chemical potential of the copolymer in the bulk

phases mc, the ability of a copolymer to reduce g is highest for small N and small w.
However, at a given value of fc, higher values of N result in much higher values

of Dg due to the exponential dependence of mc on wN and because an increase in

mc results in an increase in the density of copolymer chains at the interface.

Theoretical determination of the limiting value of mc associated with the formation

of micelles was made separately [38], since the possibility of micelle formation was

not explicitly introduced in the theory. A good agreement was found with

the experimental data [38] for the total amount of copolymer segregating to a

polymer–polymer interface for concentrations below CMC using only w as an

adjustable parameter. Using the best-fit value of w, they estimated Dg for con-

centrations when micelles are not present. For concentrations higher than the

CMC, more micelles will be formed without, however, significantly increasing

the copolymer chemical potential; thus, the interfacial tension will not decrease

further. For the copolymer molecular weights used, a significant increase in the

total copolymer amount adsorbed at the interface was observed at higher copoly-

mer concentrations, which was attributed [38, 102] to segregation of micelles to

the polymer–polymer interface (as well to the polymer–air surface [38, 102,

285]). The location of the upturn was used to estimate the copolymer chemical

potential at the CMC, which was in good agreement with a full self-consistent-

field theoretical estimate [286].

4.3.2 Leibler Theory for Nearly Compatible Systems

Leibler [282] developed a simple mean-field formalism to study the interfacial

properties of nearly compatible mixtures of two homopolymers, A and B, and a

copolymer AB. The free energy was expressed in terms of monomer concentration

correlation functions, which were calculated in a self-consistent way within the

random phase approximation introduced by de Gennes [242]. For the very broad

interface of nearly miscible systems, a gradient expansion was carried out giving a

generalization of the Cahn–Hilliard theory [216]. As mentioned by Noolandi and

Hong [71], with the gradient expansion in the theory of Leibler, the diblock

copolymer was effectively treated as a small-molecule solvent compared to the

large width of the interfacial region, and the structure of the copolymer became

irrelevant. The system, thus, behaved as a mixture of two homopolymers driven to

the consolute point by the addition of an excess of solvent. As pointed out by

Leibler, for nearly compatible species (2 < wN < 4
ffip
2), two mechanisms of the

interfacial activity of the copolymer chains had to be distinguished: (1) the species

A and B are more closely mixed as copolymer chains and are present in both phases,
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and (2) the copolymer chains have a certain tendency to localize to the interface. In

the case of nearly miscible species (near the consolute point), the first mechanism

dominates whereas, for the highly incompatible case, the second dominates. Thus,

for nearly miscible systems, the mechanism involved is quite different from that

invoked for highly immiscible species. The dominant effect is the presence of

copolymer chains in both the A-monomer-rich and B-monomer-rich phases: in

consequence, when the copolymer amount increases, the difference between the

total volume fractions of monomer A in the B-rich phase and B-rich phase

decreases. The interfacial tension was found to consist of two parts:

g ¼ g0 � g1 (102)

The first term, g0, represents the interfacial energy due to the inhomogeneity of

the overall concentration of B monomer:

g0 ¼ g0ð0ÞRðfÞ (103)

where:

g0ð0Þ ¼
21=2kBTN

�1=2

6b2
wN � 2ð Þ3=2 (104)

and:

RðfÞ ¼ 1� fð Þ wN 1� fð Þ � 2½ 	3=2 wN � 2ð Þ�3=2


 1� w2N2f 1� fð Þ=8� �1=2
(105)

Here wN is the degree of incompatibility of the species, kB is the Boltzmann

constant, T is the absolute temperature, f is the average copolymer volume fraction,

and b is the Kuhn statistical segment length. Formally, the same expression for

g0 would be obtained if there were no copolymer chains in the system.

The second contribution, g1, expresses a decrease in the interfacial tension due to
the effect of the preferential localization of the copolymers at the interface. Near the

critical region, g1 may be approximated by:

g1 ffi
3

2
fg0 (106)

Calculations showed that, near the critical point, the contribution of g1 to the

interfacial tension was almost negligible. However, for higher incompatibility

degrees, i.e., higher values of wN, the term g1 could be comparable with g0.
Therefore, it is the localization of the copolymer at the interface that is important.

To summarize, the mechanisms involved in the two different cases of highly

immiscible systems and nearly compatible blends are quite different. In the first

case, it is the surfactant activity of the block copolymer chains that cause the

interfacial tension reduction whereas, in the second case, it is the presence of

copolymer molecules in the bulk homopolymer phases that causes the compatibi-

lizing behavior.
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4.3.3 Leibler Theory for Strongly Incompatible Systems and Its Modification

Diblock Copolymer Additives

Leibler [75] considered a flat interface with surface area A between phase-separated

A and B homopolymers. The thickness of the interfacial region aI ¼ b(6w)�1/2 and

the interfacial tension g0 ¼ kBTb
�2 (w/6)1/2 are independent of the number of

segments PA and PB of the two homopolymers [27] for a highly incompatible

situation of wPi � 1 (where kBT is the thermal energy). It was assumed that

both types of links have the same segmental volume u ¼ b3. Suppose that Q
copolymer chains with number of segments N ¼ NA + NB and composition

fi ¼ Ni/N are adsorbed at the A–B interface (for most practical situations, wNi �
1). It was expected that the copolymer joints will be localized in a thin interfacial

layer of thickness [103] d0 ¼ ðp=2ÞaI (independent of Ni and Pi); d
0 is equal to

the semiempirical parameter d of Noolandi et al. [71, 281] in (98), as discussed

by Semenov [103]. The blocks A and B extend towards the respective bulk

layers and form two “adsorbed layers” of thicknesses LA and LB, respectively.
Since d0  Li, each side of the interfacial film resembles a layer of polymers

anchored by one end onto a wall. The free energy of the interfacial film can, thus,

be approximated as [75]:

Finterf:film ¼ g0Aþ Q gA þ gBð Þ (107)

where g0 is the A–B interfacial tension in the absence of the additive, A is the

interfacial area, and gA, gB represent the free energies per A–B chain of the A and B

layers, respectively. The number of copolymer chains per unit interfacial area is

given by s = Q/A.
In most of the experimental studies, the copolymer chains are not so long relative

to the homopolymers. Thus, mixing of the copolymer and homopolymer chains

should be taken into account due to the penetration of homopolymers into the layer

of chains anchored at the interface, whereas the copolymer chains can be either

stretched (wet brush regime) or not (wet mushroom). Neglecting the composition

gradients in the brush (Flory approximation), gi is given by [40, 75, 287]:

gi
kBT

¼ ln Nib
2s

� �þ Li
1

sb3
1

Pi
1� �ið Þ ln 1� �ið Þ þ 3

2

L2i
Nib2

(108a)

where �i ¼ sNib
3=Li is the average volume fraction of monomers of the A block in

the layer and (1 � �A) is that of the PA monomers. The first two terms in (108a)

approximate the entropy of mixing between copolymer and homopolymer chains,

which tend to swell the copolymer blocks; the first term is associated with the

translational freedom of the copolymers in the two-dimensional film, whereas the

second term originates from the translational entropy of the homopolymer chains

and has a standard excluded volume form [287]. The last term represents the elastic
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entropy term, which limits the swelling. For low values of �A  1, (108a) can be

written as [40, 75]:

gi
kBT

¼ ln Nib
2s

� �þ 1

2

Ni�i
Pi

þ 3

2

L2i
Nib2

(109a)

For stretched chains, the brush thickness Li and the block monomer concentra-

tion �i are obtained from (109a) by minimization with respect to Li. In that case,

Li ¼ 6�1/3Nib(sb
2)1/3 Pi

�1/3, �i ¼ 61/3(sb2)2/3Pi
1/3 and:

gi
kBT

¼ ln Nib
2s

� �þ 34=3

25=3
sb2
� �2=3

NiP
�2=3
i ðwet brushÞ (110a)

which is valid for PiNi
�3/2 < sb2 < Pi

�1/2. For nonstretched chains, Li � Ni
1/2b and

the last term of (109a) can be neglected; this applies for sb2< PiNi
�3/2 [287]. Then,

�i ¼ sb2Ni
1/2 and:

gi
kBT

¼ ln Nib
2s

� �þ 1

2

N
3=2
i sb2

Pi
ðwet mushroomÞ (111a)

The interfacial tension in the presence of the copolymer is calculated as1:

g ¼ @Finterf:film

@A

����
Q

¼ g0 � s2
@gA
@s

þ @gB
@s

� �
(112)

Therefore, the interfacial tension reduction, Dg ¼ g0 � g, is given by:

Dg
kBT

¼ g0 � g
kBT

¼
s 2þ 31=3

22=3
sb2ð Þ2=3 NAP

�2=3
A þ NBP

�2=3
B

 �h i
ðwet brushÞ

s 2þ 1
2
sb2 N

3=2
A P�1

A þ N
3=2
B P�1

B

 �h i
ðwet mushroomÞ:

8><
>:

(113a)

At equilibrium, s is determined by equating the chemical potential of the

copolymer chains at the interface with that of the copolymer chains either

homogeneously mixed with the homopolymers or at micelles formed within the

1It is noted that Noolandi [288] objects to the use of (107) and (112) because he claims that the

main contribution to the interfacial tension reduction is of enthalpic and not entropic origin (as

(112) suggests), i.e., that it is due to the favorable energetics of the orientation of the copolymer

blocks into their respective homopolymers and that entropic effects are second order. He suggests

that (107) should be corrected by adding the contributions of the orientational entropy of the

blocks and their entropy of localization. The latter was introduced by Shull and Kramer [77] by

replacing g0 by g00 ¼ g0 þ skBT ln LA þ LBð Þ=d0½ 	. In the present analysis, the expression of Leibler
[75, 76, 40] is utilized.
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homopolymer phases. The chemical potential of a copolymer chain at the interface

is calculated using (107) as:

mint ¼
@Finterf:film

@Q

����
A

¼ gA þ gB þ s
@gA
@s

þ @gB
@s

� �
(114)

Therefore, with (110a) and (111a):

mint
kBT

¼ 2þ ln NAsb2
� �þ ln NBsb2

� �

þ
2:271 sb2ð Þ2=3 NAP

�2=3
A þ NBP

�2=3
B

 �
ðwet brushÞ

sb2 N
3=2
A P�1

A þ N
3=2
B P�1

B

 �
ðwet mushroomÞ

8><
>:

(115a)

The free energy density of a homogeneous mixture of an AB copolymer with a B

homopolymer is [278]:

Fbulk

kBT
¼ f

N
ln

f
e

� �
þ 1� f

PB

ln
1� f
e

� �
þ wffAð1� fAfÞ (116)

irrespective of the copolymer architecture. Thus, the chemical potential of a copoly-

mer chain homogeneously distributed within the bulk B homopolymer, mbulk ¼
N ð1� fÞ@Fbulk=@fþ Fbulk½ 	, is:

mbulk
kBT

¼ lnf� f� ð1� fÞ N

PB

þ wNfA 1� 2fAfþ fAf
2

� �
(117a)

where f ¼ f(1) is the copolymer volume fraction in the B-rich homopolymer

phase.

The chemical potential of a copolymer chain in a micelle was evaluated by

Semenov [278] for long homopolymer chains (P > N), which do not penetrate the

micelles. Depending on the diblock copolymer composition, the micelle morphol-

ogy could be spherical, cylindrical, or lamellar [278, 289]. The chemical potential

of a diblock copolymer chain in a micelle formed within the B phase is then given

by [55, 56, 278]:

msphericalmic

kBT
¼ ð3=2Þ4=3f 4=9A 1:74f

�1=3
A � 1

h i1=3
wNð Þ1=3

mcylindricalmic

kBT
¼ 1:19 wfANð Þ1=3 1:64� ln fA½ 	1=3

mlamellar
mic

kBT
¼ 0:669 wNð Þ1=3 5:64� fAð Þ1=3 (118a)
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The expression for spherical micelles is the same as equation A-8 of Shull et al.

[38] and is consistent with equation 21 of Lyatskaya et al. [85] and equation 36 of

Semenov [103]. That for cylindrical micelles is the same as equation A-12 of Shull

et al. [38] and as equation 36 of Semenov [103]. Finally, the equation for the

chemical potential of lamellar micelles is the same as equation A-12 of Shull et al.

[38] and somehow different from equation 36 of Semenov [103], as is also

acknowledged by him [103].

When micelles are not present, the equilibrium is established between copoly-

mer chains homogeneously distributed within the homopolymer phase and copoly-

mer at the interface. The surface density s is, then, determined by:

mintðs;NÞ ¼ mbulkðf�;NÞ (119a)

where, in this case, it is assumed that f ¼ f� � fadd. When micelles are present,

then at thermodynamic equilibrium s is determined by the equation:

mintðs;NÞ ¼ mmicðNÞ ¼ mbulkðf�;NÞ (119b)

which also determines the volume fraction f� of copolymers remaining homo-

geneously distributed in the bulk A or B phases.

For calculation of the interfacial tension reduction, one evaluates first the che-

mical potentials mmic and mbulk for f ¼ f� ¼ fadd. If mbulk(fadd) < mmic, then the

equilibrium is established between copolymers at the interface and copolymers

homogeneously mixed within the B-rich phase. The interfacial excess s is, then,

determined by (119a) together with (115a) and (117a), and the interfacial tension

reduction Dg by (113a). If mbulk(fadd) > mmic, equilibrium is established among the

three different states of the copolymer and s and f� are determined by (119b)

together with (115a), (117a), and (118a); Dg is evaluated by (113a).

The semiquantitative model was compared with the data on the effects of the

molecular weight of symmetric diblock copolymers on the polymer–polymer

interfacial tension; the data showed a nonmonotonous dependence of the interfacial

tension increment on the additive molecular weight in the plateau region. Although

the assumptions involved in the model do not allow a quantitative comparison, the

behavior of Dg when the copolymer molecular weight increases at constant additive

concentration resembles the response seen experimentally. Figure 30 shows the

estimated surface density of copolymers at the A–B interface, s, together with

the interfacial tension reduction, Dg ¼ g0 � g, as a function of the number of

segments of the copolymeric additive for fadd ¼ 0.02. The parameters used were

PA ¼ PPI ¼ 81, PB ¼ PPS ¼ 112, and w ¼ 0.04. Moreover, for the present range of

values of Pi and Ni, the wet-mushroom configuration for the adsorbed copolymer

chains was assumed, which was then verified by the extracted s values.

It was found that the magnitude of Dg increases with copolymer molecular

weight, as long as the copolymer chains at the interface are at equilibrium with

only homogeneously mixed chains and micelles do not exist (regime I). At higher

molecular weights, when micelles are also present, Dg decreases with further
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increasing molecular weight (regime II). The values for Dg are in the range of the

experimental values, although the functional form of the curve is different from the

experimental one. For example, the copolymer molecular weight at the minimum is

underestimated, indicating that micelles are calculated to form earlier than in the

experimental system, whereas the minimum is much sharper than in the experi-

ment; both are related to the functional form used for the free energy of the micelles

(assumed lamellar) and the inherent assumptions made therein. The value of the

interaction parameter used affects both the location of the minimum (with respect to

N) and the values of Dg; no fitting was attempted because the aim of the theoretical

analysis was to obtain only the trends in order to understand the behavior of the

experimental data. Indeed, the calculation indicated a behavior very similar to that

seen experimentally. The origin of this trend is evidently related to the behavior of

the estimated interfacial density of adsorbed chains, s (shown in Fig. 30). Increas-

ing the copolymer molecular weight when micelles are not present (for the low

molecular weight side, regime I) rapidly drives more copolymer chains to the

interface (s increases), thus leading to an increase in Dg. On the other hand, further
increase inf the copolymer molecular weight when micelles are present (regime II)

leads to a decrease in the surface density of copolymers, s, thus reducing Dg.

Graft Copolymer Additives

Lyatskaya et al. [85] extended the arguments of Leibler [75] for the case of comb

and star copolymers. The homopolymers were considered to be highly incompati-

ble, whereas the copolymer chains were assumed to form dry brushes at the

interface and to be at equilibrium with chains homogeneously distributed in the

bulk. For the case of simple graft copolymers, which were denoted as T-grafts and
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Fig. 30 Theoretically estimated interfacial tension reduction, Dg ¼ g0 � g, (solid line), and
estimated surface density (s) of copolymer chains adsorbed at the interface (dotted line), for the
PS/PS-b-PI/PI systems as a function of the number of segments (N) of the copolymer at constant

2 wt% copolymer concentration and for constant w = 0.04 [55]
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were considered as combs with n¼ 1 teeth, the interfacial tension reduction Dg for a
AB2 graft copolymer (one A block and two B blocks) was predicted as:

Dgb2

kBT
¼ g0 � gð Þb2

kBT
¼ 2

p

� �
2

3

� �3=2

N�1=2m3=2bulk 4� 3fAð Þ�1=2
(120)

where g0 is the A–B interfacial tension in the absence of the additive, w is the

Flory-Huggins interaction parameter, N is the number of segments of the graft

copolymer, f ¼ ftooth ¼ fA is the volume fraction of the tooth block A, b is the

statistical segment length (it is assumed that both types of links have the same

segmental volume u ¼ b3), and kBT is the thermal energy. mbulk is the chemical

potential in the bulk and mbulk � ln f+ + wNfA if the copolymer is added to the

B-homopolymer phase, where f+ is the copolymer volume fraction in the bulk

B-homopolymer phase (which is very close to the nominal amount of copolymer

present, fadd). Note that within the same assumptions, the respective interfacial

tension reduction for a diblock copolymer is:

Dgdiblockb
2

kBT
¼ g0 � gdiblockð Þb2

kBT
¼ 2

p

� �
2

3

� �3=2

N�1=2m3=2bulk (121)

Retsos et al. [56] made an attempt to extend these arguments for finite homopol-

ymer molecular weights of simple graft copolymers by allowing for mixing of the

graft copolymer and homopolymer chains (wet brush or mushroom regimes) and by

explicitly including in the considerations the possibility of micelle formation,

similarly to the earlier attempt for diblock copolymers [55].

In accordance with the case of diblock copolymer additives, the free energy of

the interfacial film is calculated from (107), where now gA and gB represent the free
energies per AB2 chain of the A and B layers. For the case of AB2 simple graft

copolymers, the expressions (108a)–(111a) hold for layer A, which is formed by the

single A block (with i¼ A). However, the analysis for the B layer should reflect the

fact that the B layer is formed by two B blocks per AB2 chain. Thus, gB should be

given by:

gB
kBT

¼ ln NBb
2s

� �þ LB
1

sb3
1

PB

1� �Bð Þ ln 1� �Bð Þ þ 2
3

2

L2B
ðNB=2Þb2 (108b)

with �B ¼ sNBb
3/LB being the average volume fraction of monomers of B chains.

For low values of �B  1, (108b) can be written as [40, 75]:

gB
kBT

¼ ln NBb
2s

� �þ 1

2

ðNB=2Þ�B
PB

þ 2
3

2

L2B
ðNB=2Þb2 (109b)
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As before, for stretched chains LB and �B are obtained from (109b) by minimization

with respect to LB; thus, LB ¼ (1/2)6�1/3NBb(sb
2)1/3PB

�1/3, �B ¼ (2)

61/3(sb2)2/3PB
1/3, and:

gB
kBT

¼ ln NBb
2s

� �þ 34=3

25=3
sb2
� �2=3

NBP
�2=3
B ðwet brushÞ (110b)

which is valid for PB(NB/2)
�3/2 < sb2 < PB

�1/2. For non-stretched chains, LB �
(NB/2)

1/2b and the last term of (109b) can be neglected; this applies for sb2 <
PB(NB/2)

�3/2 [287]. Then, �B ¼ sb2(2NB)
1/2 and:

gB
kBT

¼ ln NBb
2s

� �þ 1

23=2
N

3=2
B sb2

PB

ðwet mushroomÞ (111b)

The interfacial tension will then be calculated from (112), which in the AB2 case

becomes:

Dg
kBT

¼ g0 � g
kBT

¼
s 2þ 31=3

22=3
sb2ð Þ2=3 NAP

�2=3
A þ NBP

�2=3
B

 �h i
ðwet brushÞ

s 2þ 1
2
sb2 N

3=2
A P�1

A þ N
3=2
B P�1

B

 �h i
ðwet mushroomÞ

8<
: (113b)

The chemical potential of a copolymer chain at the interface is calculated using

(114). Therefore, with (110b) and (111b):

mint
kBT

¼ 2þ ln NAsb2
� �þ ln NBsb2

� �

þ
2:271 sb2ð Þ2=3 NAP

�2=3
A þ NBP

�2=3
B

 �
ðwet brushÞ

sb2 N
3=2
A P�1

A þ N
3=2
B P�1

B

 �
ðwet mushroomÞ

8><
>:

(115b)

The free energy density of a homogeneous mixture of an AB copolymer (irre-

spectively of architecture) with a B homopolymer is given by (116) and the

chemical potential of an AB2 copolymer chain homogeneously distributed within

the bulk B homopolymer by (117a). Note that, if the copolymer chain is homo-

geneously distributed within the bulk A homopolymer, its chemical potential is:

mbulk
kBT

¼ lnf� f� ð1� fÞ N

PA

þ wNfB 1� 2fBfþ fBf
2

� �
(117b)

where f ¼ f(�1) is the copolymer volume fraction in the A-rich homopolymer

phase.
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For the calculation of the chemical potential of the AB2 graft copolymer chains in

a micelle, one has to distinguish two different cases: (1) when the micelle is formed

within the B homopolymer, i.e., when the “tooth” A block forms the core of the

micelle and the two B blocks form the corona; and (2) when the micelle is formed

within the A homopolymer phase, i.e., when the two B blocks form the core and the

A block forms the corona of the micelle. The two cases were considered by Retsos

et al. [56] along the lines of Leibler [75] and Semenov [103] for the three different

cases of formation of spherical, cylindrical, or lamellar micelles. The chemical

potential of an AB2 chain in a micelle formed within the B phase is, thus, [56]:

msphericalmic

kBT
¼ ð3=2Þ4=3f 4=9A 4:74f

�1=3
A � 4

 �1=3
wNð Þ1=3

mcylindricalmic

kBT
¼ 1:89 wfANð Þ1=3 0:41� ln fAð Þ1=3

mlamellar
mic

kBT
¼ 1:75 wNð Þ1=3 1:26� fAð Þ1=3 (118b)

whereas the chemical potential of an AB2 chain in a micelle formed within the

A phase is given by [56]:

msphericalmic

kBT
¼ ð3=2Þ4=3ð1� fAÞ4=9 3:96 1� fAð Þ�1=3�1

h i1=3
wNð Þ1=3

mcylindricalmic

kBT
¼ 1:19 wfANð Þ1=3 6:57� ln 1� fAð Þ½ 	1=3

mlamellar
mic

kBT
¼ 1:57 wNð Þ1=3 1:44� fAð Þ1=3 (118c)

When micelles are not present, the equilibrium between copolymer chains

homogeneously mixed with the respective homopolymer and chains at the interface

is established (119a) whereas, when micelles are present, (119b) determines the

thermodynamic equilibrium. The equations result in the surface density of copoly-

mer chains at the interface, s. Again, it is assumed that f� � fadd, with f� being

the volume fraction of copolymers remaining homogeneously mixed in the bulk

A or B phases.

Therefore, for the calculation of the interfacial tension reduction, one again

evaluates the chemical potentials mmic, mbulk forf¼f�¼fadd. If mbulk(fadd)< mmic,

then the equilibrium is established between copolymers at the interface and

copolymers homogeneously mixed within the B-rich (or A-rich) phase. The inter-

facial excess s is, then, determined by (119a) together with (115b) and (117a)

(or 117b, respectively), and the interfacial tension reduction Dg by (113b). If

mbulk(fadd) > mmic, equilibrium is established among the three different states of
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the copolymer and s and f� are determined by (119b) together with (115b), (117a)

(or 117b), and (118b) (or (118c), respectively); Dg is evaluated by (113b). Due to

the asymmetric architecture of the graft copolymers and in view of the respective

experimental data [56], two situations were considered: (1) when the AB2 diblock is

added to the B homopolymer (e.g., an I2S graft added to the PI phase [56]); and (2)

when it is added to the A homopolymer (I2S added to PS [56]).

Although the assumptions involved did not allow a quantitative comparison with

the data [56], the behavior of the estimated Dg when graft copolymers of varying

compositions were introduced into the PI or PS homopolymer phase (at constant

additive concentration) resembled the experimental data for the molecular para-

meters of the experimental systems [56]. When the I2S graft copolymers are added

to the PI homopolymer, there are no micelles formed for high values of fPI, and the

copolymer chains at the interface are at equilibrium with chains homogeneously

mixed within the PI phase. The surface density of chains increases with decreasing

fPI (from its high value) and the interfacial tension decreases. At lower values of fPI,
micelles are also present and s does not increase (and even decreases) as fPI
decreases further; as a result the interfacial tension does not decrease further (and

even increases). Similarly, when the I2S copolymer is added to the PS homopoly-

mer, there are no micelles formed for low values of fPI, and the copolymer chains at

the interface are at equilibrium with chains homogeneously mixed with PS. The

surface density of chains increases with increasing fPI and the interfacial tension

decreases. At higher values of fPI, micelles are also present and s ceases to increase

as fPI increases further; as a result the interfacial tension does not decrease further.

The Dg values were more or less in the range of the experimental values, although

the apparent functional forms of the curves were different from the experimental

ones [56]. For example, the dependencies in the region where micelles are present

are apparently different to the experimental values. This is most probably due to the

assumptions involved in the estimation of the chemical potentials for the copolymer

chains in micelles (dry brush behavior was assumed). Even more, the value of the

interaction parameter used affects both the location of the minimum (with respect to

fPI) and the values of Dg. No fitting was attempted because the aim of the theoretical

analysis was to obtain only the trends in order to understand the behavior of the

experimental data. Indeed, it is evident that the calculation indicates a behavior very

similar to that shown by the experimental data, with the origin of this trend evidently

related to the behavior of the estimated surface density of adsorbed chains.

5 Concluding Remarks

Mixing two or more components that have complementary properties is largely

utilized to improve the performance of polymeric materials for many important

industrial applications. In spite of the great interest in homogeneous blends, a more

desirable situation is that of a non-miscible system, i.e., a heterophase mixture

wherein each of the constituents retains its own properties. In addition, the final
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product might also display some new features triggered by the particular phase

morphology.

In such systems, a satisfactory overall physico-mechanical behavior will cru-

cially depend on two demanding structural parameters: (1) a proper interfacial

tension leading to a phase size that is small enough to allow the material to be

considered as macroscopically “homogeneous”; and (2) an interfacial adhesion

strong enough to assimilate stresses and strains without disruption of the established

morphology. Both these structural parameters critically depend on the interfacial

tension between the two macroscopic phases. Block or graft copolymers are widely

used as emulsifying agents or compatibilizers in blends of immiscible polymers due

to their affinity to selectively partition to the polymer–polymer interface, thus

reducing the interfacial tension. In this article, an attempt has been made to present

a review of the experimental and theoretical investigations of polymer–polymer

interfacial tension in the absence and in the presence of block copolymer emulsify-

ing agents.

The variety of experimental methods that have been utilized to efficiently

measure the polymer–polymer interfacial tension have been briefly reviewed,

with emphasis on the static methods (pendant drop, with the approach being very

similar to the case of sessile drop) that have been widely used for polymeric liquids.

The breaking thread method and the IFR method have been frequently used as well,

especially for high molecular weight polymers.

Polymer–polymer interfacial tension measurements showed that interfacial ten-

sion decreases with increasing temperature (for polymer systems that exhibit USCT

behavior2), with a temperature coefficient of the order of 10�2 dyn/(cm �C).
Interfacial tension increases with increasing molecular weight and exhibits a

g ¼ g1 1� kintM
�z
n

� �
dependence, with g1 being the interfacial tension in the

limit of infinite molecular weight. It is generally found that the exponent z ! 1 in

the limit of high molecular weights.

We have reviewed the theories of polymer–polymer interfaces. We began by

presenting the early semiempirical attempts. Then, we discussed in some detail the

microscopic theories of polymer interfaces, with emphasis on the theories of

Helfand and coworkers as well as on subsequent theories. One should emphasize

here the significant influence of the original Helfang–Tagami theory on the field of

polymer interfaces. The expression for the interfacial tension in the limit of infinite

molecular weights, g ¼ (w/6)1/2r0bkBT (40), has been utilized extensively for

evaluation of the polymer–polymer interfacial tension; the same holds for the

expression for the width of the interface (38), again in the limit of infinite molecular

weights. The rest of the theoretical section on polymer–polymer interfaces focused

on the square-gradient approach and its utilization to predict the temperature and

2For polymer blends exhibiting lower critical solution temperature (LCST) behavior, e.g., the

system polystyrene/poly(vinyl methyl ether), one may anticipate the opposite behavior for purely

phenomenological reasons. Interfacial tension should increase with increasing temperature in the

two-phase region since the tie lines become longer with increasing temperature in that case
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molecular weight effects on polymer interfacial tension. All the theories that

address the effect of molecular weight predict that interfacial tension exhibits a

g ¼ g1 1� kintM
�1
n

� �
dependence for high molecular weights, i.e., it increases with

increasing molecular weight, with the exponent z¼ 1, in agreement with the current

view from experiment. We then presented briefly the theoretical works that

addressed the behavior of interfacial tension near the critical point of demixing,

where interfacial tension is predicted as g / r1/2e3/2, with r being the chain length

and e the reduced distance from the critical temperature.

The emulsifying effect of diblock copolymers additives on the interfacial tension

between two immiscible homopolymers was then reviewed. Early studies as well

as studies on model systems demonstrated the surfactant-like behavior of the

block copolymers added to the polymer–polymer systems: a sharp decrease with

addition of a small amount of copolymer followed by a leveling off at higher

copolymer concentrations. The dependence of the interfacial tension reduction on

the copolymer molecular weight for symmetric diblocks apparently exhibits two

different regimes: (I) for low molecular weights, the interfacial tension increment,

Dg ¼ g0 � g, at saturation (in the plateau region) increases by increasing the

additive molecular weight, and (II) it decreases by further increasing the copolymer

molecular weight, thus going through a maximum. This was understood by consid-

ering the possibility of micelle formation for high molecular weights, leading to a

three-state equilibrium between copolymer chains adsorbed at the interface, chains

homogeneously mixed in the bulk phases, and copolymers at micelles within the

bulk phases. The effects of copolymer architecture and composition were also

investigated utilizing triblock, graft, and comb copolymers. For a systematic series

of I2S simple graft copolymers, with constant molecular weight and varying

composition, the interfacial tension at interfacial saturation was found to be a

nonmonotonic function of the copolymer composition fPI. This was understood to

be due to the competition between the decreased affinity of the copolymer within

the homopolymer phase when the size of the “incompatible” block increases, which

increases the driving force of the copolymer towards the interface, and the pos-

sibility of micelle formation. Moreover, in certain systems possessing architectural,

molecular, or interactional asymmetry, the interfacial tension at saturation was

found to depend on the side of the interface the copolymer is added; such was the

behavior of the I2S graft copolymers (asymmetric architecture), the PS-b-PDMS

copolymer (asymmetry in segment lengths), and the PEO-b-PPO-b-PEO (asym-

metric affinity). These examples point to a local equilibrium that can only be

achieved in such systems: the copolymer reaching the interface from one homopol-

ymer phase most probably does not diffuse to the other phase. It was emphasized

that this behavior was not a kinetic effect but it was rather due to the attainment of a

stationary state of local equilibrium and a lack of global equilibrium in these

interfacial systems.

It is, therefore, evident that the effectiveness of the interfacial modifiers is

controlled by the unfavorable interactions, which drive the additive towards the

interface, and by the formation of micelles, which reduces the emulsifying activity.
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For nonsymmetric copolymer systems, the latter is affected by the side of the

interface to which the additive is introduced and, thus, in most practical situations

this should be taken seriously into consideration. Moreover, we briefly discussed

the recent observations of ultralow interfacial tension in polymer systems obtained

utilizing balanced copolymeric surfactants.

Finally, we have reviewed the theoretical approaches developed to address the

compatibizing effect of block copolymers at polymer–polymer interfaces. The

elegant theory of Noolandi and Hong was first presented in detail due to its

significance in the area of copolymers at homopolymer interfaces (originally

developed in the presence of solvent). Subsequently, we discussed the theory of

Leibler for nearly compatible systems. Finally, we discussed in detail the theory of

Leibler for highly incompatible systems with copolymer layers forming dry brushes

at the interface, and presented its extensions that allow mixing of the homopolymer

chains with the copolymer layer as well as take into account the possibility of

micelle formation within the homopolymer phases.

The later theoretical model showed the same qualitative behavior as the experi-

mental data for both the nonmonotonic dependence of interfacial tension increment

on copolymer molecular weight as well as for the influence of the composition of

graft copolymers. In both cases, however, the model fails to quantitatively account

for the effect because of the assumptions involved in the estimation of the free

energies of the various chain conformations and especially the free energies of

those conformations within the micelles of various morphologies. The importance

of the presence of micelles, either for high diblock copolymer molecular weights or

for high composition of the incompatible block, is greatly emphasized.

Finally, we would like to emphasize that, in most applications, in-situ formed

copolymers are utilized, which are formed by the reaction of appropriately functio-

nalized homopolymer additives at the polymer–polymer interface. A review article

[106] cites not a single case where a premade copolymer had been used in a real

application. Therefore, the interfacial behavior in such systems should be investi-

gated fundamentally in greater detail in order to probe the effects of the character-

istics of the reactive species on the kinetics of interfacial partitioning and the

subsequent reaction, as well as on the effect of the resultant (diblock or graft or

comb) copolymer on the interfacial tension and, thus, on the morphology of the

macrophase-separated polymer blend.
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253. Ouhadi T, Fayt R, Jérôme R, Teyssié Ph (1986) Molecular design of multicomponent

polymer systems, XI, emulsifying effect of poly(hydrogenated diene-b-methyl methacrylate)

in poly(vinylidene fluoride)/polyolefins blends. J Appl Polym Sci 32:5647–5651

254. Ruegg ML, Reynolds BJ, Lin MY, Lohse DJ, Balsara NP (2007) Minimizing the conversion

of diblock copolymer needed to organize blends of weakly segregated polymers by tuning

attractive and repulsive interactions. Macromolecules 40:1207–1217

255. Meier DJ (1969) Theory of block copolymers. I. Domain formation in A-B block copoly-

mers. J Polym Sci C 26:81–98a

256. Mason JA, Sperling LH (1976) Polymer blends and composites. Plenum, New York

257. Riess G, Jolivet Y (1975) In: Platzer NAJ (ed) Copolymers, polyblends, and composites.

Advances in chemistry series, vol 142. American Chemical Society, Washington, DC, p 243

258. Riess G, Kohler J, Tournut C, Banderet A (1967) Über die verträglichkeit von copolymeren
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weight and with respect to chemical composition, where the physical and chemical

properties depend on both polydispersities. For special applications, the two-

dimensional distribution function must adjusted to the application purpose. The

adjustment can be achieved by polymer fractionation. From the thermodynamic

point of view, the distribution function can be adjusted by the successive establish-

ment of liquid–liquid equilibria (LLE) for suitable solutions of the polymer to be

fractionated. The fractionation column is divided into theoretical stages. Assuming

an LLE on each theoretical stage, the polymer fractionation can be modeled using

phase equilibrium thermodynamics. As examples, simulations of stepwise fraction-

ation in one direction, cross-fractionation in two directions, and two different

column fractionations (Baker–Williams fractionation and continuous polymer frac-

tionation) have been investigated. The simulation delivers the distribution accord-

ing the molecular weight and chemical composition in every obtained fraction,

depending on the operative properties, and is able to optimize the fractionation

effectively.
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1 Introduction

Synthetic copolymers are always polydisperse, i.e., they consist of a large number

of chemically similar species with different molar masses and different chemical

compositions. Owing to this polydispersity, characterization of copolymers does

usually not provide the number of individual molecules or their mole fraction, mass

fraction, etc. but requires the use of continuous distribution functions or their

averages. Continuous thermodynamics, developed by Rätzsch and Kehlen [1],

can be directly applied to the calculation of thermodynamic properties, including

phase equilibria, because this theoretical framework is based completely on contin-

uous distribution functions, which include all the information about these functions

and allow an exact mathematical treatment of all related thermodynamic properties.

Continuous thermodynamics have been used for calculation of phase equilibria of

systems containing two-dimensional distributed copolymers [1–8]. The purpose of

this contribution is the application of continuous thermodynamics to copolymer

fractionation according to the chemical composition and molecular weight.

Basic research concerning the physical–chemical behavior of polymer solutions

is overwhelmingly confined to a few polymers, like polystyrene, that can be

polymerized anionically to yield products of narrow molecular weight distribution.

One of the reasons for this choice lies in the fact that most polymer properties are

not only dependent on the degree of polymerization but are also strongly affected

by the broadness of the molecular weight distribution. It is desirable to produce

nearly monodisperse polymers. One possibility for doing so is the use of polymer

fractionation. Fractionations of polymers are carried out for two different purposes.

One purpose is the analytical determination of the molar weight distribution and the

other is the preparation of fractions large enough in size to permit study of their

properties. In analytical fractionation, the amount of initial polymer is usually

small. The fractions do not need to be separated and are often characterized online

in automated fractional dissolution procedures. Some column techniques are in use

that are based on thermodynamic equilibrium principles and make use of either

liquid/liquid or liquid/solid phase separations. In preparative polymer fractionation,

scaling-up problems are the main issue, because the necessary amount of initial

polymer increases considerably when the purity requirements of the fractions are

raised [9–11].

The fractionation of copolymers presents a special problem. For a chemically

homogeneous polymer, solubility only depends on molecular weight distribution.

In the case of chemically inhomogeneous materials, such as copolymers, solubility

is determined by the molecular weight distribution, as well as by chemical compo-

sition. In the case of copolymers, both distributions can change during the course of

fractionation. The efficiency of any given copolymer fractionation can be estimated

from the data on the heterogeneity of fractions in molecular weight (molecular

heterogeneity) and in composition (composition heterogeneity).

One of the long-sought “Holy Grails” of polymer characterization has been the

simultaneous determination of polymer composition as a function of molecular
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weight distribution. The combination of a solvent evaporative interface between a

gel permeation chromatograph (GPC) and a Fourier transform infrared spectrome-

ter has provided one useful solution to the problem of determining polymer

composition as a function of molecular weight for different polymers [12]. Poly

(ethylene-co-acrylic acid) copolymers were fractionated with supercritical propane,

butane, and dimethyl ether [13]. It was possible to carry out the fractionation with

respect to the molecular weight using increasing pressure at constant temperature.

Additionally, it was possible to fractionate these acid copolymers with respect to

chemical composition by first using one of the poor quality solvents (propane or

butane) that solubilized the nonpolar ethylene-rich oligomers, and then using

dimethyl ether, a very strong solvent for these acid copolymers, to solubilized the

acid-rich oligomers. Other examples for the application of supercritical fluids can

be found in the literature [14, 15].

One of the most common methods for carrying out analytical polymer fraction-

ation is that of size-exclusion chromatography (SEC), also known as GPC. The

polymer solution is passed through a column packed with porous gel beads. The

pores have radii comparable in magnitude to the root-mean-square radius of

gyration of an average polymer molecule in the sample. The larger molecules are

preferentially excluded from the pores, inside which their more extended confor-

mations are forbidden, and are eluted from the column earlier than the smaller

molecules. Online detection of the eluent invariably involves refractivity to monitor

polymer concentration, and might include light scattering and viscosity. This

method was applied to characterize different polymers, like styrene–acrylonitrile

copolymers [16–18], a-methylstyrene–acrylonitrile copolymers [19], styrene–

methyl methacrylate copolymers [18, 20, 21], styrene–ethyl methacrylate copoly-

mer [22–24], styrene–2 methoyethyl methacrylate copolymer [25], and ethylene

terephthalate–tetramethylene ether [26]. Other methods developed for the charac-

terization of copolymers are: fractionation in demixing solvents [27–29], combina-

tion of GPC with temperature-programmed column fractionation (TPCF) [30, 31],

interaction chromatography [32], column elution method [33], temperature rising

elution fractionation (TREF) [34, 35], combination of SEC with precipitation

chromatography [36, 37], and crystallization [38, 39].

Within this contribution, we focus our attention on two methods, namely the

Baker–Williams fractionation (BW) [40, 41] and continuous polymer fractionation

(CPF) [42]. The BWmethod leads to fractions with a very low nonuniformity and is

deemed to be the most effective technique [43, 44]. CPF allows the isolation of

fractions on the 100 g scale.

Only a few papers can be found in the literature that deal with theoretical

questions on this topic. With the help of continuous thermodynamics, a theory to

model stepwise fractionation of homopolymers was developed [45–47]. This theo-

retical framework could be extended to fractionation in columns [48–50]. The

application of the developed theory was able to contribute to the improvement of

the fraction technique [49]. Folie [51] studied the fractionation of copolymers. In

his theoretical framework, the polymer was described by pseudocomponents with

respect to the molecular weight; however, the polydispersity with respect to the
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chemical composition was neglected. First, Litmanovich and Shtern [52] modeled

stepwise copolymer fractionation, where both polydispersities were considered.

Later, Ogawa and Inaba [53] also suggested a similar model.

This contribution aims at the development of a theoretical tool for optimization

of copolymer fractionation in columns, where both polydispersities are completely

taken into account.

2 Theory

2.1 Liquid–Liquid Phase Equilibrium of Copolymer Solutions

Fractionations are usually carried out using a solvent (A), a nonsolvent (B) and the

polymer to be fractionated. This means that, for phase equilibrium calculations, a

ternary system must be investigated. Due to the very large number of different

chemical species, the composition of polydisperse systems is not described by the

mole fraction of the individual components, but by a continuous distribution

function. In the case of statistical copolymers, a two-dimensional distribution

function according the molecular mass and the chemical composition must be

used. Usually in polymer thermodynamics, all molecules are imagined to be

divided into segments of equal size. With a standard segment defined as the ratio

of the van der Waals volume of the considered species and the van der Waals

volume of an arbitrary chosen species (for instance one of the solvents or one of the

monomers), a segment number r can be defined for each kind of molecule. The

introduction of the segment number leads to segment-molar physical quantities.

The chemical composition of a copolymer, built up from two different monomers,

can be described by the variable y. It is given by the ratio of the segment number of

one monomer and the sum of the segment numbers of both monomers, and hence y
is related to the amount of one monomer in the copolymer. The intensive distribution

function, W(r, y), has to fulfill the normalization condition:

ð1

0

ð1

0

Wðr; yÞdydr ¼ 1: (1)

W(r, y)dydr represents the segment fraction of all copolymer species having seg-

ment numbers between r and r + dr and chemical compositions between y and

y + dy.
Due to the polydispersity, the demixing behavior becomes much more compli-

cated for a polydisperse polymer in comparison with a monodisperse polymer, as

shown in Fig. 1. The binodal curve in this system splits into three kinds of curves: a

cloud-point curve, a shadow curve, and an infinite number of coexistence curves.

The meaning of these curves becomes clear if one considers the cooling process.
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When reaching the cloud-point curve, at lowering of the temperature, the overall

polymer content of the first droplets of the precipitated phase does not correspond to

a point on the cloud-point curve but to the corresponding point on the shadow

curve. With further lowering of the temperature, the two coexisting phases do not

change their overall polymer content according to the cloud-point curve or to the

shadow curve but according to the related branches of the coexistence curves. The

overall polymer content of the coexisting phases is given by the intersection points

of the horizontal line, at the considered temperature, with these branches (tie line in

Fig. 1). The coexistence curves are usually not closed curves but are divided into

two branches beginning at corresponding points of the cloud-point curve and the

shadow curve. Only if the composition of the initial homogeneous phase equals that

of the critical point is a closed coexistence curve obtained, whose extremum is the

critical point. Moreover, at this point, the cloud-point curve and shadow curve

intersect. It can be seen from Fig. 1 that, for solutions of polydisperse polymers, the

critical point is not located at the extremum of the cloud-point curve or of the

shadow curve. This is in contrast to strictly binary systems where the cloud-point

curve, shadow curve, and all coexistence curves become identical.

Homopolymers in coexisting phases show different molar weight distributions,

which are also different from that of the initial homogeneous system (Fig. 2). This

effect is called the fractionation effect and can be used for the production of tailor-

made polymers. The phase with a lower polymer concentration (sol phase) contains

virtually only the polymers with a lower molecular weight. Consequently, polymers

having a high molecular weight remain in the concentrated phase (gel phase). The

cloud-point curve always corresponds to the molecular weight distribution of the
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Fig. 1 Schematic liquid–liquid phase diagram for a polydisperse polymer in a solvent: Solid line
cloud-point curve, broken line shadow curve, dotted line: spinodal curve, star critical point, thick
lines coexisting curves, solid line with squares tie line, Xpolymer segment fraction of polymer
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initial polymer, but the first droplets of the formed coexisting new phase never do

(with the exception of the critical point) and, hence, they are not located at the

cloud-point curve but on the shadow curve. In the case of statistical copolymers, the

distribution function according to the chemical composition also differs in the two

phases; however, how this distribution changes cannot be predicted a priori. The

residence (sol or gel phase) of the molecules with a high value of y depends on the

thermodynamic properties of the selected solvent mixture.

To perform phase equilibrium calculations, the starting point is the segment-

molar chemical potential, mi, related to the segment-molar Gibbs free energy

of mixing. According to the well-known Flory–Huggins lattice theory [54], the

segment-molar chemical potential (mi) for the solvents A and B reads:

mi ¼ mi0ðT;PÞ þ RT
1

ri
lnXi þ 1

ri
� 1

rM

� �
þ RT ln fi i ¼ A;B; (2)

where the first term represents the segment-molar chemical potential of the pure

solvents at system temperature T and system pressure P. The second term on the

right hand side is the Flory–Huggins contribution (with fi ¼ 1), accounting for the

difference in molecular size. In order to describe the deviation from a Flory–

Huggins mixture (with fi ¼ 1), the segment-molar activity coefficients, fi, are
introduced. The number-average segment number, rM, in (2) is for a ternary system,

built up from solvent, nonsolvent, and copolymer, and is given by:

1

rM
¼ XA

rA
þ XB

rB
þ X

rN
¼ XA

rA
þ XB

rB
þ
ð1

0

ð1

0

XWðr; yÞ
r

dydr; (3)
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Fig. 2 Fractionation effect for homopolymers
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where rN is the number-average segment number of the copolymer. The segment-

molar chemical potential for the copolymer species thus depends on the segment

number, r, and the chemical composition, y [4, 6]:

mðr; yÞ ¼ m0ðT;P; r; yÞ þ RT
1

r
lnXWðr; yÞ þ 1

r
� 1

rM

� �
þ RT ln f ðr; yÞ: (4)

Similar to (2), in (4) the first term is the segment-molar chemical potential of the

pure copolymer species with the segment number r and the chemical composition y.
The second term displays the Flory–Huggins term and the last term characterizes

the deviation from the Flory–Huggins mixture, where the segment-molar activity

coefficient can, in principle, depend on the molecular weight and the chemical

composition. Whereas the dependence on molecular weight can often be neglected,

the dependence on chemical composition plays an important role [3, 6].

Rätzsch et al. [3] suggested the following model for the segment-molar excess

Gibbs free energy of mixing (GE) in order to describe the deviation from the Flory–

Huggins mixture:

GE

RT
¼ XAX

wAP
T

1þ pAXð Þ 1þ gAyWð Þ þ XBX
wBP
T

1þ pBXð Þ 1þ gByWð Þ

þ XAXB

wAB
T

; (5)

where yW is the weight-average chemical composition. This quantity can be

calculated using:

yW ¼
ð1

0

ð1

0

yWðr; yÞdydr: (6)

The influence of the chemical composition in (5) can be derived using a

simplified version of Barker’s lattice theory [55]. The most important consequence

of (5) is the fact that the segment-molar excess Gibbs free energy of mixing and,

hence, the activity coefficients depend only on the average value (yW) of the

distribution function, but not on the distribution function itself. In continuous

thermodynamics, the phase equilibrium conditions read:

mIi ¼ mIIi mIðr; yÞ ¼ mIIðr; yÞ i ¼ A;B: (7)

Here, the phase equilibrium condition for the copolymer holds for all polymer

species within the total segment number and chemical composition range of the

system. This equation is valid for the total interval of the values of the identification

variables r and y found in the system. Replacing the segment-molar chemical

potentials for the solvents in (7) according to (2) and rearranging results in:

XII
i ¼ XI

i exp ririð Þ i ¼ A;B; (8)
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where the abbreviation ri can be calculated using:

ri ¼
1

rIIM
� 1

rIM
� ln f IIi þ ln f Ii i ¼ A;B: (9)

The activity coefficients in (9) can be derived using standard thermodynamics in

combination with (5). The replacement of the segment-molar chemical potential of

the copolymer species in (7) according (4) leads to:

XIIWIIðr; yÞ ¼ XIWIðr; yÞ exp rrðyÞð Þ; (10)

where the abbreviation r is given by:

rðr; yÞ ¼ 1

rIIM
� 1

rIM
� ln f IIðyÞ þ ln f IðyÞ: (11)

Equation (10) is valid for all r and y values found in the system and permits the

calculation of an unknown distribution function, WII(r, y). The activity coefficients

in (11) can be derived using standard thermodynamics in combination with (5).

Integration of (10) and applying the normalization condition (1) results in:

XII ¼
ð1

0

ð1

0

XIWIðr; yÞ expðrrðr; yÞÞdydr: (12)

To deal with the problem of calculation of the cloud-point curve and the

corresponding shadow curve, the temperature of a given phase I is changed at

constant pressure until the second phase II is formed. Thus, the unknowns of the

problem are the equilibrium temperature, T, the composition of the second phase,

XII and XII
A, and the distribution function, WII(r, y). To calculate them, the phase

equilibrium conditions (8) and (12) are used. In this system of equations, the

unknown distribution function WII(r, y) and the other scalar unknowns T, XII, and

XII
A are connected; however, the unknown distribution functionWII(r, y) occurs only

with the average values rIIN and yIIW. This situation allows a separation of the problem

of the unknown distribution function by considering rIIN and yIIW as additional scalar

unknowns and their defining equations:

XII

rIIN
¼
ð1

0

ð1

0

XIWIðr; yÞ
r

expðrrðr; yÞÞdydr (13)

and

yIIWX
II ¼

ð1

0

ð1

0

yXIWIðr; yÞ expðrrðr; yÞÞdy dr; (14)
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as additional scalar equations. For calculation of the cloud-point curve and the

shadow curve, five equations, namely (8) and (12)–(14), must be solved simulta-

neously. Furthermore, for numerical calculations, rIIN might be eliminated by means

of (8) and (9). The unknown distribution function of the copolymer,WII(r, y), in the
shadow phase can be calculated using (10).

Rätzsch et al. [3, 6] could demonstrate that the integrals occurring in (12)–(14)

can be solved analytically under certain circumstances, namely if the Stockmayer

distribution function [56] is used:

Wðr; yÞ ¼ kkþ1

rNG k þ 1ð Þ
r

rN

� �k
exp �k

r

rN

� � ffiffiffiffiffiffiffi
r

2pe

r
exp � r y� yWð Þ2

2e

 !
: (15)

The first two factors in (15) are a generalized Schulz–Flory distribution with

respect to the segment number r. The parameters are k, describing the nonunifor-

mity, and rN the number-average segment number. G is the G function. The last two

factors are a Gaussian distribution with respect to the chemical composition y, with
a standard deviation of

ffiffiffiffiffiffiffi
e=r

p
. The parameters of the Gaussian distribution are the

weight-average chemical composition, yW, and the quantity e describing the broad-
ness of the chemical heterogeneity. They can be estimated by the kinetic copoly-

merization parameters because (15) was derived by the kinetics of statistical

copolymerization [56]. However, in reality, many copolymers show broad and

asymmetric chemical distributions that are not of the Stockmayer type (15).

Rätzsch et al. [6] suggested the replacement of the Gaussian distribution function

in (15) by the G function. The combination of the G function for the chemical

heterogeneity with the Schulz–Flory distribution for the heterogeneity of the

molecular weight reads:

Wðr; yÞ ¼ kkþ1

rNG k þ 1ð Þ
r

rN

� �k
exp �k

r

rN

� �
G aþ bþ 2ð Þ

G aþ 1ð ÞG bþ 1ð Þ y
a 1� yð Þb; (16)

where a and b are the parameters describing the distribution of the chemical

composition. For the special case a ¼ b, a symmetrical distribution function results.

The value of a indicates the broadness of the distribution, where the limiting case

a ! 1 leads to a monodisperse copolymer with respect to the chemical composi-

tion. This distribution function displays a large flexibility and allows for the

description of asymmetrical distributions. The most important difference between

both distribution functions is that in (15) the chemical heterogeneity depends on the

segment number, whereas in (16) the chemical composition does not depend on the

segment number.

An alternative approach to the calculation of the cloud-point and shadow curve

is the application of an equation of state (i.e., [7, 57–60]). The stability conditions in

terms of spinodal and critical point are given by Browarzik and Kehlen [61].
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To calculate the coexistence curve where a feed phase F splits into the coexisting

phases I and II, the mass balance of the copolymer:

XFWFðr; yÞ ¼ 1� fð ÞXIWIðr; yÞ þ fXIIWIIðr; yÞ (17)

must also be applied [3, 6]. The quantity f is the quotient of the total amount of

segments in phase II and in feed phase F and equals the fraction of the feed volume

that forms phase II. The mass balance for the solvents reads:

XF
i ¼ 1� fð ÞXI

i þ fXII
i i ¼ A;B: (18)

Additionally, two balance equations related to the moments of the distribution

function can be formulated:

XF

rFN
¼ 1� fð ÞX

I

rIN
þ f

XII

rIIN
(19)

and

yFWXF ¼ 1� fð ÞyIWXI þ fyIIWX
II: (20)

Besides the feed, two of the three variables T, P, and f have to be specified.

Starting with the phase equilibrium conditions (8) and (9), the balances (17)–(20)

can be used to eliminate the quantities referring to one of the two coexisting phases

(for instance phase I), which leads to:

XII
i ¼ XF

i

fþ 1� fð Þ exp �ririð Þ i ¼ A;B: (21)

XIIWIIðr; yÞ ¼ XFWFðr; yÞ
fþ 1� fð Þ exp �rrBðr; yÞð Þ ¼

Kðr; yÞXFWFðr; yÞ
f

; (22)

where the precipitation rate K(r,y) is defined as [46]:

Kðr; yÞ ¼ fXIIWIIðr; yÞ
XFWFðr; yÞ ¼ f

fþ 1� fð Þ exp �rrðr; yÞð Þ : (23)

Integration of (22) results in:

XII ¼
ð
r

ð
y

Kðr; yÞXFWFðr; yÞ
f

dydr: (24)
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The number-average segment number in the second phase is given by:

XII

rIIN
¼
ð
r

ð
y

Kðr; yÞXFWFðr; yÞ
rf

dydr: (25)

The weight-average chemical composition in the second phase is given by:

yIIXII ¼
ð
r

ð
y

yKðr; yÞXFWFðr; yÞ
f

dydr: (26)

In contrast to the cloud-point problem, the integrals occurring in (24)–(26)

cannot be solved analytically. In order to calculate the coexisting curves, (21) and

(24)–(26) must be solved simultaneously, where the occurring integrals must be

estimated using a numerical procedure. If the quantities of feed solution (XF,WF(r, y),
and XF

A) are known, the unknowns are the temperature T (or the quantity f); the
polymer concentration in the second phase, XII; the solvent concentration in the

second phase, XII
A; the number-average segment number in the second phase, rIIN;

and the weight-average chemical composition, yIIW. The corresponding quantities of
the first phase can be estimated using the balance equations (17)–(20). If the

selected GE model is not dependent on the segment number, a simplification is

possible. Inserting the solvent equilibrium conditions [(21) with i ¼ B] the system

can be reduced to four equations by eliminating, rIIN. The final equation reads:

0 ¼
ð
r

ð
y

Kðr; yÞXFWFðr; yÞ
rf

dydr � 1

rFM
þ XII

A

rA
þ XII

B

rB
� 1� fð Þ

� 1

rB
ln

XII
B

XI
B

� �
þ ln f IIB � ln f IB

� �
; (27)

where p(r, y) in (23) is replaced by p(y) and can be calculated by:

rðyÞ ¼ 1

rB
ln

XII
B

XI
B

� �
þ ln f IIB � ln f IB � ln f IIðyÞ þ ln f IðyÞ (28)

and

rA ¼ 1

rB
ln

XII
B

XI
B

� �
þ ln f IIB � ln f IB þ ln f IA þ ln f IIA : (29)

The coexisting-curve problem is now given by (21) with i ¼ A, (24), (26), and

(27), where (28) and (29) can be used to compute r(y) and rA.

Theory of Random Copolymer Fractionation in Columns 283



Fractionation efficiency is the central feature in the calculation of fractionation,

and must be judged by an objective criterion. For fractionation with respect to the

molar mass, the uniformity of every fraction, i, can be used. The uniformity (Ui) is

defined by:

Ui ¼ MW;i

MN;i
� 1 ¼ rW;i

rN;i
� 1: (30)

The more U deviates from zero, the less efficient is the fractionation. The

fractionation with respect to the chemical composition is characterized by the

distribution function itself.

Thermodynamic principles are relevant to separation processes that make use of

the distribution of macromolecules between two phases. These two phases may

form a partially miscible system. The diluted phase is called sol phase I, and the

polymer-rich phase is the gel phase II. The distribution coefficient depends on

molar mass and on chemical composition. Figure 2 depicts the distribution func-

tions in the sol and gel phases. Fractionation can be achieved in a single solvent by a

change of temperature, but it is often more practical to vary the solvent quality by

using a binary solvent mixture composed of a nonsolvent and a good solvent,

usually miscible in all proportions. The solvent composition can be used to fine-

tune the solvent quality at constant temperature.

2.2 Stepwise Fractionation Procedure

A classical method for fractionating a polydisperse polymer is to dissolve the

polymer completely in a good solvent and then, progressively, to add small amounts

of a poor solvent (nonsolvent). In the case of homopolymers, the high molecular

weight polymer precipitates first. As more nonsolvent is added, progressively lower

molecular weight polymer precipitates.

To obtain quantitative representation of fractionation, a model for the thermody-

namic properties of the copolymer + solvent + nonsolvent system and the original

two-dimensional distribution function are required. Rätzsch et al. [46] presented the

application of continuous thermodynamics to successive homopolymer fraction-

ation procedures based on solubility differences. This method is now applied to

copolymer fractionation. The liquid–liquid equilibria (LLE) of polymer solutions

forms the thermodynamic background for these procedures. The introduction of the

precipitation rate (23) permits calculation of the distribution functions in the sol and

gel phases of every fractionation step, i, according to:

XI
iW

I
i ðr; yÞ ¼

1� Kiðr; yÞ
1� fi

XF
i W

F
i ðr; yÞ

XII
i W

II
i ðr; yÞ ¼

Kiðr; yÞ
fi

XF
i W

F
i ðr; yÞ:

(31)
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These relations provide the unknown distribution functions WI
i ðr; yÞ and

WII
i ðr; yÞ directly.
Figure 3 presents the schemes for successive precipitation fractionation (SPF)

and successive solution fractionation (SSF). In both cases, by lowering the temper-

ature (or adding nonsolvent) a homogeneous polymer solution (called feed phase F)

splits into two coexisting phases, a polymer-lean sol phase I and a polymer-rich gel

phase II, which are then separated. In SPF (Fig. 3a), the polymer is isolated from

phase II as fraction F1. Phase I directly forms the feed phase for the next fraction-

ation step, etc.

In case of SSF (Fig. 3b), fraction F1 is obtained from phase I. Phase II is diluted

by adding solvent up to the volume of the original feed phase, corresponding, to a

very good approximation, to the same total amount of segments. This phase is used

as a feed phase for step 2, etc. In the last fractionation step, the polymer of phase I in

the case of SPF, or of phase II in the case of SSF, forms the final polymer fraction.

All coexisting pairs of phase I and II are presumed to be in equilibrium. Hence, it is

possible to apply all equations introduced above. To indicate the different separa-

tion steps 1,2, . . . , the corresponding number is added as a subscript.

According to the remarks made above, the total number of segments in SSF

(Fig. 3b) is the same to a very good approximation in all feed phases. This leads to

the following relations:

XF
iþ1W

F
iþ1ðr; yÞ ¼ fiX

II
i W

II
i ðr; yÞ rFN;iþ1 ¼ rIIN;i yFW;iþ1 ¼ yIIW;i: (32)

solvent

solvent

solvent

step 1

step 2

step 1

step 2

F1

F1

F2

F2

a

b

Fig. 3 Schemes of successive

fractionation procedures: (a)

successive precipitation

fractionation (SPF), (b)

successive solution

fractionation (SSF). F1 and

F2 are successive fractions
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Aconstant feed volume can be achieved by adding solvent or solventmixtures. The

necessary amount is given by the amount separated with the polymer-lean phase:

n�A;i þ n�B;i ¼ nIi ¼ nFi 1� fið Þ ci ¼
n�A;i
nF1

: (33)

The quantity n*A,imeans the amount of segments of solventA,whichmust be added

at every fraction step i. This must be done to ensure that the amount of segment keeps

constant at every fractionation step. The ratio c characterizes the composition of the

solvent mixture added in every fractionation step. Working without a concentration

gradient means that this ratio keeps constant during the fractionation procedure. The

composition (Z) of the solvent mixture can be expressed by:

Z ¼ XA

1� X
: (34)

The feed solvent composition for the fractionation step (i + 1) results from the

mass balance (33):

ZF
iþ1 ¼

ZII
i 1� XII

i

� �
fi þ c

iþ1

1� XII
i fi

: (35)

From (32) as applied to fractionation step i, the distribution function of the i-th
polymer fraction WI

i ðr; yÞ can be derived in a direct and explicit form:

XII
i W

II
i ðr; yÞ ¼

1� Kiðr; yÞ
1� fi

Yi�1

j¼1

Kjðr; yÞXF
1W

F
1 ðr; yÞ: (36)

This relation corresponds to the fractionation scheme depicted in Fig. 3. In steps

j ¼ 1, . . . , i � 1, the polymer-rich phase II is taken to correspond to the occurrence

of the factor Kj(r, y) for j ¼ 1, . . . , i � 1, according to (31). The polymer-lean

phase I in step i is taken to correspond to the factor (1 � Ki(r, y))/(1 � fi),

according to (31). The unknown quantities, XII
j ; Z

II
j ; r

II
N;j; y

II
W;j, and fj (or Tj) for

j ¼ 1, . . . , i � 1 can be calculated successively with the help of the equations for

LLE discussed above.

In SPF (Fig. 3a), phase I from step i is used directly as the feed phase for step

i + 1. Hence, the following relations are valid:

WF
iþ1ðr; yÞ ¼ WI

i ðr; yÞ rFN;iþ1 ¼ rIN;i yFW;iþ1 ¼ yIW;i: (37)

According to the fractionation scheme, the amount of feed segments is not

constant. In order to take this effect into account, the quantity li is defined:

li ¼ nFi
nF1

: (38)
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For i ¼ 1, l1 ¼ 1. In all other cases the material balance could be used to

calculated li:

liþ1 ¼ 1� fið Þli þ ciþ1 þ diþ1 di ¼
n�B;i
nF1

: (39)

The quantity n*B,i means the amount of segments of solvent B, which must be

added at every fraction step i. This must be done to ensure that the amount of

segment keeps constant at every fractionation step. The quantity di describes the
ratio of the added amount of solvent at every fractionation step and the amount of

segment in the feed phase for the first fractionation step.

The polymer feed concentration for every fractionation step is given by:

XF
iþ1 ¼

XI
i

1þ ciþ1þdiþ1

1�fið Þli
: (40)

If the fractionation is carried out only by lowering the temperature, then the polymer

feed concentration in the step i + 1 is directly the polymer concentration of sol phase

from step i. The composition of the solvent for the fractionation step i + 1 reads:

ZF
iþ1 ¼

ZI
i 1� XI

i

� �
1� fið Þli þ ciþ1

1� XI
i

� �
1� fið Þli þ ciþ1 þ diþ1

: (41)

The fractions are taken from the gel phase. Therefore the distribution function in

every fraction step i can be computed using:

XII
i W

II
i ðr; yÞ ¼

Kiðr; yÞ
fi

Yi�1

j¼1

1� Kjðr; yÞ
1� fj

XF
1W

F
1 ðr; yÞ: (42)

This equation permits the direct and explicit calculation of the distribution

function of the polymer fraction i from the distribution function of the original

polymer. Again, the form of this relation corresponds to the fractionation scheme

applied (Fig. 3a). In steps j ¼ 1, . . . ,i – 1, the polymer-lean phase I is taken to

correspond to the occurrence of the factor (1 � Kj(r, y))/(1 � fj) for j ¼ 1, . . . ,
i � 1, according to (31). In step i, the polymer-rich phase II is taken to correspond

to the factor Ki(r, y)/fi, according to (31). The unknown quantities, X
II
j ; Z

II
j ; r

II
N;j; y

II
W;j,

and fj (or Tj) for j ¼ 1, . . . ,i � 1 can be calculated successively with the help of the

equations for LLE discussed above.

For example, SSF and SPF were applied to styrene–acrylonitrile copolymer in

either toluene [62] or a mixture of methyl ethyl ketone and cyclohexane [63] as

solvent. These types of fractionation are also called one-direction fractionations.

The cross-fractionation (CF) of copolymers suggested by Rosenthal and White

[64] is a combination of several successive precipitation procedures and is also
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called two-direction fractionation. The original copolymer is fractionated first in a

precipitant–solvent system such that the mean content of A units of fractions, say,

increases with an increase in their molecular weights. Then, every intermediate

fraction is separated in another precipitant–solvent system, where the mean content

of A units of fractions diminishes with an increase in their molecular weight.

Rosenthal and White [64] assert that the final fractions separated in such a way

are highly homogeneous both in molecular weight and in chemical composition.

For example, this method was carried out for various copolymers, namely

styrene–methyl methacrylate copolymer [65–67], epoxide resins [68], styrene–

acrylic acid copolymer [69], styrene–2-methoxyethyl methacrylate copolymer

[70, 71], ethylene–a-olefin copolymer [72], partially modified dextran–ethyl carbonate

copolymer [73], vinyl chloride–vinyl acetate copolymer [43], styrene–acrylonitrile

copolymer [74], and styrene–butadiene copolymer [75].

The stepwise fractionation procedures (SSF and SPF) are one-direction fractio-

nations and form the basis of cross-fractionation, where first the original polymer is

fractionated in intermediate fractions using one solvent system and afterwards each

intermediate fraction is further fractionated yielding the final fractions using another

solvent system. There are four different possibilities for a fractionation strategy:

(a) SSF/SPF

(b) SSF/SSF

(c) SPF/SSF

(d) SPF/SPF

The theoretical framework introduced above can also be applied to cross-

fractionation. This can be achieved by combination of the equations according

to the selected fractionation strategy.

2.3 Baker–Williams Fractionation

Precipitation fractionation as developed by Baker and Williams [40] is one of the

best-known column fractionation procedures. The fractionation is performed in a

glass-bead-filled column with a temperature gradient down the column (Fig. 4). To

start the fractionation, the total polymer is precipitated on the glass beads in a

section at the entry of the column (or in a separate vessel). In a mixing vessel, a

nonsolvent and a solvent are mixed to form a mixture with progressively increasing

solvent power through continuous enrichment of the solvent. The polymer is

dissolved by adding the solvent mixture. The resulting sol phase moves relatively

slowly in the column, and the polymer in a given increment of the liquid sol stream

becomes less soluble due to the temperature gradient and precipitates partially on

the glass beads as a gel phase. The fractionation is achieved by the repeating

exchange of polymer molecules between the stationary gel phase and the mobile

sol phase. The superposition of a solvent + nonsolvent gradient and a temperature

gradient leads to a very high separation efficiency.
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The theoretical treatment is based on a model subdividing the column into stages

and the solution stream into parts with equal volumes. Hence, the column fractionation

is considered as a combination of many local LLEs and treated in an analogous way

as successive fractionation procedures. Rätzsch et al. [50] developed a model in

order to simulate the fractionation of homopolymers according to the molar mass in

a BW column by a number of local equilibria, similar to the model suggested by

Smith [76] and by Mac Lean and White [77].

The column is subdivided into stages, labeled with m, starting with m = 0

(Fig. 5). The liquid stream is also subdivided into increments with equal volumes,

labeled with v, starting with v ¼ 0. At time zero the volume increment v ¼ 0 fills

stage m ¼ 0; at time one the volume increment v ¼ 0 occupies stage m ¼ 1 and the

solvent

T1

T2

non -
solvent

Fig. 4 Schematic of the Baker–Williams column, showing the temperature gradient down the

column from higher temperature T1 to lower temperature T2

Fig. 5 Theoretical model of the Baker–Williams column
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volume increment v ¼ 1 occupies stage m ¼ 0, etc. Each volume increment v at

each stage m is considered to form liquid–liquid equilibrium (mv) between the sol

phase I and the gel phase II.

The gel phase II, which is coated on the surface of the small glass beads, is

stationary, i.e., it remains at the same stage m during the progress of time. However,

the moving sol phase I always remains in the same volume increment v. Figure 5

depicts this situation. Starting the fractionation, the total polymer is assumed to be

precipitated at stage m ¼ mP ¼ 0 or to be distributed evenly among the mP + 1

stages from m ¼ 0 to m ¼ mP. The temperature gradient is expressed by [50]:

Tm ¼ T0 m < mP

Tm ¼ T0 � m� mPð ÞDT m > mP:
(43)

Here Tm is the temperature of stage m and DT is the constant temperature

difference between neighboring stages. The segment fraction Z of the solvent in

the solvent + nonsolvent mixture supplied to the entry (*) of the column, Z�
v;0, is

assumed to be given by [50]:

Z�
0;v ¼ Z�

0;0 þ Z� 1� exp � v

v�
	 
	 


; (44)

where Z�
0;0, DZ

�, and v* are the parameters of this function. The polymer fractions

are obtained from the sol phase I of the last stage.

The suggested theory is based on the model described above, which subdivides

the column fractionation procedure into many local phase equilibria (Fig. 5). In this

way, the phase equilibrium relation presented above can be applied. The considered

volume increment v and the considered column stage m are indicated as subscripts

of the corresponding quantities. The feed quantities for every LLE can be calculated

by applying the above model. However, it has to be taken into account that the feed

phase is not a homogenous phase. The feed phase (m + 1, v + 1)F is the sum of the

mobile phase (m,v + 1)I and the stationary phase (m + 1, v)II. After equilibrium, the

sol phase (m + 1, v + 1)I and the gel phase (m + 1, v + 1)II are formed. Therefore,

the mass balance for the copolymer reads:

� l 1� fð ÞXIWIðr; yÞ� �
m;vþ1

þ t lfXIIWIIðr; yÞ� �
mþ1;v

þ y XFWFðr; yÞ� �
0;0

¼ lXFWFðr; yÞ� �
mþ1;vþ1

; (45)

where the parameters �, t, and y are given by:

� ¼ 0 for mþ 1 ¼ 0 � ¼ 1 for mþ 1 > 0

t ¼ 0 for vþ 1 ¼ 0 t ¼ 1 for vþ 1 > 0

y ¼ 0 for mþ 1 > mP y ¼ 0 for mþ 1 < mP and vþ 1 ¼ m:

(46)
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The quantity lm,v in (45) measures the ratio of the segments in the feed phase

(m,v)F and the feed phase (0,0)F. At stage m ¼ 0 the condition:

l0;v ¼ 1 (47)

is realized by the amount of solvent mixture added. In all other cases, lmv follows
from the phases combined, leading to:

lXF
� �

mþ1;vþ1
¼ � l 1� fð ÞXI
� �

m;vþ1
þ t lfXII
� �

mþ1;v
þ yXF

0;0: (48)

The ratio of the solvent in the solvent + nonsolvent mixture in the corresponding

feed phase is given by:

lZF 1� XF
� �� �

mþ1;vþ1
¼ � l 1� fð ÞZI 1� XI

� �� �
m;vþ1

þ t lfZII 1� XII
� �� �

mþ1;v
þ s 1� f0;v

� �
Z�
0;vþ1 (49)

with:

s ¼ 1 for mþ 1 ¼ 0 s ¼ 0 for mþ 1 > 0: (50)

The quantity Z�
0;vþ1 can be calculated using (44). The combination of (31), as

applied to the considered equilibrium, and of (45) interrelates the polymer distribu-

tions in the feeds of neighboring equilibria:

lXFWFðr; yÞ� �
mþ1;vþ1

¼ l 1� Kðr; yÞð ÞXFWFðr; yÞ� �
mþ1;v

þ lKðr; yÞXFWFðr; yÞ� �
m;vþ1

: (51)

This equation permits the direct and explicit calculation of the various copoly-

mer distribution functions WF
m;vðr; yÞ from the distribution function WF

0;0ðr; yÞ.

2.4 Continuous Polymer Fractionation

The production of sufficient amounts of narrowly distributed polymer samples,

which cannot by synthesized with narrow molecular weight distribution, has been

too laborious, except for special cases like the investigation of dilute solutions, for

which only small polymer samples are required. This situation was strongly

improved by the development of a new technique. Wolf et al. [78] suggested a

continuous polymer fractionation method for homopolymers that allows fractions

on the 100 g scale.
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The polymer to be fractionated is dissolved in a solvent + nonsolvent mixture,

and this solution (feed) is extracted continuously by a second liquid (extracting

agent, EA), which contains the same solvent components as the feed (Fig. 6). The

fractionation can be performed with a pulsed counter-current extraction apparatus.

Fractionation is achieved by the fact that the molecules are distributed over the

counter-current phases according to their chain length. The feed leaves the column

as gel and the EA as sol.

The solvent components in the feed and in the EA are chosen such that (a) the

entire system formed by the starting polymer and the solvent components exhibits a

miscibility gap at the temperature of operation; (b) that, in the Gibb’s phase

triangle, the composition of the feed corresponds to a point outside of this misci-

bility gap; and (c) that the EA is composed in such a way that the straight line drawn

between feed and EA (working line) intersects the miscibility gap (Fig. 6).

The ratio of flows of feed and EA is chosen such that the working point

(average composition of the total content of the apparatus under stationary

operating conditions) is located at higher polymer concentration than the intersec-

tion of the working line with the branch of low polymer concentration of the

demixing curve (Fig. 6). As the original feed comes into first contact with

the already polymer-loaded phase originating from the pure EA and moving in

the opposite direction, the most easily soluble low molecular weight polymer

molecules will be transferred to this dilute phase, which in turn segregates its

most sparingly soluble high molecular weight material to the more concentrated

phase in order to achieve phase equilibrium. By providing for a high number of

such equilibria in the course of the counter-current extraction (proportional to the

number of bottoms when a sieve-bottom column is used), the polymer contained in

the more concentrated phase will have lost practically all the low molecular

weight material contained in the original sample up to a certain characteristic

chain length, when it leaves the apparatus after a final extraction by the pure EA.

In an analogous manner, the molecular weight distribution of the polymer

contained in the less-concentrated phase will narrow as the counter-current extraction

proceeds. The feed leaves the column as gel and the EA as sol. The distribution of

the polymer on the sol and gel phases can be regulated by the solvent + non-

solvent ratio in the EA and by the ratio of the flux rates of feed and EA. The

fractionation efficiency can be increased by additional measures, like pulsation,

EA

feed

T,P = constant

non - solvent

copolymer solvent

Fig. 6 Scheme of the CPF in

a Gibbs phase triangle
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which leads to a higher dispersion of the phases. If the desired separation cannot

be obtained in one step, the gel can directly be used as feed, whereas in the case of

the sol the polymer must be precipitated before it can be used as feed again. This

method was applied to numerous polymers, i.e., polyethylene [79], hydroxyethyl

starch [80], polycarbonate [81], polyacrylacid [82], and polyisobutylene [83, 84].

This fractionation method was further developed in 2002 [85, 86] by employing

a spinning nozzle (Fig. 7). The new method is called continuous spin fractionation

(CSF). The feed phase is pressed through a spinning nozzle to jet threads of the

viscous polymer solution, which disintegrate rapidly because of the Rayleigh

instability. In this manner, one obtains a large amount of tiny droplets in the desired

EA. The droplets with a large ratio of surface to volume facilitate the escape of

short chains from entanglements of higher macromolecules due to the short dis-

tance of transport. For that reason, CSF not only eliminated the damming-back

problem of CPF, but can also be operated successfully at considerably higher

polymer concentrations.

The CPF was applied also to copolymers [87, 88]. For example, polycarbonate–

siloxane (PC–Si) copolymers are characterized by an outstanding thermal stability,

good weathering properties, excellent flame retardancy, and high impact resistance

at low temperature [87]. PC–Si materials are used in numerous applications includ-

ing windows, roofing, contact lenses, and gas-permeable membranes. Depending

on the siloxane-block length and domain size, the copolymers are transparent,

Fig. 7 Photograph of the CSF

apparatus
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translucent, or opaque [89]. The CPF allows fractionation according to the chemical

composition and according to the molecular weight and, hence, the tailoring of the

copolymer for a certain application purpose.

Rätzsch et al. [48, 49] proposed a theoretical treatment of the CPF similar to that

of the BW fractionation. The CPF column is divided into a number of stages m
(Fig. 8). The EA enters the column at stage m ¼ mMax and leaves it as sol at stage

m ¼ 1. The stationary state is calculated by repeating calculation of stages

m ¼ 1, . . . , mMax. At start (i ¼ 0), the column is filled with EA. For the first set

of equilibria (i ¼ 1), a certain amount of feed (FD) is added at stage m ¼ 1, and the

related phase II is transferred downwards to the next stage m ¼ 2, filled with EA.

When phase II has left the column at mMax as the first, nonstationary gel phase, all

phases I are shifted by one stage upwards, and stage mMax is filled with pure EA

again. The calculation is repeated for i ¼ 2 andm ¼ 1, . . . ,mMax etc. The stationary

state is reached when the results for i and i � 1 no longer change systematically.

Using this simulation procedure, some improvements could be suggested [48].

The pulsating sieve-bottom column was replaced by a non-pulsating column filled

with glass beads. In this manner, the number of theoretical plates could be raised

considerably. A further improvement of the fractionation efficiency results from the

reflux of part of the polymer contained in the sol phase. In practice, this situation

was realized by putting a condenser on the top of the column and introducing the

feed somewhere near of the upper third of the column (Fig. 8). These suggestions

were verified experimentally using the system dichloromethane/diethylene glycol/

bisphenol-A polycarbonate [48]. Except for the lowest molecular weight fraction,

one obtains nonuniformities on the order of 0.1.

SL

FD

EAGL

m = 1condenser

reflux
of phase”

m = 2

m = mFD

m = mmax–1

m = mmax

Fig. 8 Model of the improved

CPF column. SL sol, GL gel
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For conventional CPF, where the FD is introduced on the top, the calculation of

stationary states starts (i ¼ 0) with the entire column filled with EA. For the first set

of equilibria (i ¼ 1), a certain amount of FD, determined by the chosen working

conditions of CPF, is introduced at mFD (Fig. 6). After the equilibrium has been

calculated for this plate, phase II is transferred downwards to the next theoretical

plate filled with EA and a new equilibrium on plate mFD + 1 is determined. This

procedure is repeated until phase II leaves the column as the first (nonstationary) gel

phase at mMax. In preparation of the next step of calculation (i ¼ 2), all phases I are

shifted by one plate upwards, i.e., from m to m � 1 so that the first (nonstationary)

sol phase leaves the column at mFD. Furthermore, plate mMax is again filled with

pure EA. After the addition of another portion of FD, the determination of the next

set of equilibria (i ¼ 2) proceeds as described for i ¼ 1. This treatment is repeated

until the stationary state is reached, which means that the results for i and i � 1 no

longer change systematically.

The mass balance for the polymer transfer is formulated in terms of w(r, y), the
extensive segment-molar distributions obtained by multiplying W(r, y) by the

overall amount of polymer segments present in a given system. For the transfer

between neighboring phases, the following relation can be formulated:

wI
mþ1;i�1ðr; yÞ þ wII

m�1;iðr; yÞ ¼ wF
m;iðr; yÞ: (52)

For i ¼ 1, the first term becomes zero and for m ¼ mFD the additional term

wFD
i ðr; yÞ has to be added on the left side of the equation. Form ¼ mMax the first and

for m ¼ 1 the second term vanish. In the case of conventional CPF, mFD is equal to

unity. For the mass balance for the subdivision of the polymer among the phases

coexisting on one theoretical plate, the corresponding equation reads:

wF
m;iðr; yÞ ¼ wI

m;iðr; yÞ þ wII
m;iðr; yÞ: (53)

In the calculation outlined above, the amount of segments contained in a

theoretical plate changes with i within the nonstationary phase. For this reason, a

quantity e is introduced as the ratio of the overall amount of segments present in

plate m during step i and during step zero. From the material balance between

adjacent theoretical plates, one obtains the following relation:

em;i ¼ e 1� fð Þ½ �mþ1;i�1 þ ef½ �m�1;i (54)

with the limiting conditions em,0 ¼ 0 for m ¼ 1 up to m ¼ mFD � 1 (improved

CPF), and em,0 ¼ 1 for m ¼ mFD to m ¼ mMax. For m ¼ mFD, the extra term eFD
(which is determined by the amount of segments added with the feed, normalized to

the amount of EA present on this plate for i ¼ 0) has to be added on the right side of
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the equation. For m ¼ mMax and i > 0, the first term becomes unity and for m ¼ 1

the second term vanishes. To obtain the material balances for the polymer, (52) and

(53), in terms of the normalized distribution function W(r, y), one divides these

relations by the total amount of segments in a plate at i ¼ 0. This leads to:

e 1� fð ÞXIWIðr; yÞ� �
mþ1;i�1

þ efXIIWIIðr; yÞ� �
m�1;i

¼ eXFWFðr; yÞ� �
m;i
; (55)

where the special cases discussed in the context of (52) apply analogously, and to:

XFWFðr; yÞ� �
m;i

¼ 1� fð ÞXIWIðr; yÞ� �
m;i

þ fXIIWIIðr; yÞ� �
m;i
: (56)

As described above, the stationary state is approached by the stepwise calculation

of the composition of the coexisting phase using the equation given in Sect. 3.1, where

the information concerning all previous states is required in the actual calculation.

3 Results and Discussion

The suggested fractionation theory is based on the LLE of a copolymer solution;

therefore, first the calculation procedure related to the LLE is discussed. Addition-

ally, the calculation results are compared with experimental LLE data for ethylene

vinyl acetate copolymer (EVA) in methyl acetate taken from literature [90].

Subsequently, the theory is applied to stepwise fractionation using the cross-

fractionation procedure. After some model calculations to study the influence of

different operative fractionation parameters on the fractionation efficiency, the

theoretical results will be again compared with experimental data for the styrene–

butadiene copolymer system in two different solvent systems, namely cyclohexane +

isooctane and benzene + methyl ethyl ketone [75].

Finally, the theoretical framework is applied to the simulation of column frac-

tionation according two different methods (BW fractionation and CPF). In both

types of fractionation, the influence of operative conditions on the fractionation

effect with respect to the molecular weight and the chemical composition is

investigated. Because of the lack of experimental data, no comparison with experi-

ments was possible.

3.1 Liquid–Liquid Phase Equilibrium of Copolymer Solutions

The copolymer fractionation aims at the production of fractions having a distribu-

tion as narrow as possible. For this reason, this chapter focuses on the distributions

in the sol and gel phases. Before any calculations can be carried out, the model

parameters must be chosen. The model parameters can be divided into:
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(a) Parameters describing the feed polymer

(b) Parameters describing the selected solvent + nonsolvent system

(c) Parameters describing the operative conditions

The feed polymer can be characterized by a two-dimensional distribution func-

tion, (15) or (16). Typical values for parameters of these distribution functions are:

rN ¼ 100 k ¼ 1 e ¼ 0:25 yW ¼ 0:5 a ¼ b ¼ 4: (57)

Setting a ¼ b in (16) means that the distribution function with respect to the

chemical heterogeneity is symmetrical. The parameters describing the selected

solvent + nonsolvent system occur in the GE model [i.e., (5)]. For the model

calculation, the following parameter were chosen:

rA ¼ 1 wAP ¼ 150 K pA ¼ 0 gA ¼ 0:5

rB ¼ 1 wBP ¼ 250 K pB ¼ 0 gB ¼ 1

wAB ¼ 500 K:

(58)

The low-molecular weight component A should act as solvent. The parameter

wAP is selected in a way that no demixing with the copolymer occur. The low

molecular weight component B takes over the role of the nonsolvent and, hence, the

parameter wBP leads to a miscibility gap with the polymer. The selected operative

conditions are:

XF ¼ 0:01 ZF ¼ 0:2 T ¼ 350 K: (59)

The asymmetry of the distribution with respect to the chemical composition has

a large impact on the phase equilibria of copolymers [6]. First the influence of the

feed distribution (16), especially the symmetry, is studied. At constant mass-

average chemical composition, the maxima of the distribution according to the

chemical composition are shifted to higher values if the distribution become

unsymmetric (a ¼ 4 and b ¼ 2). The distribution W(100, y) in the sol and gel

phases are plotted in Fig. 9. The symmetry of the feed copolymer has a large impact

on the theoretical fractionation results. Caused by the shift of the maxima in the

feed distribution, the maxima in the fractions shift also to higher values. Moreover,

in the case of a symmetric feed distribution (solid lines in Fig. 9) more polymer

molecules will be in the sol phase in comparison with an unsymmetric feed

distribution (broken lines in Fig. 9). If a modified version of (16) is used, namely

ignoring the polydispersity with respect to the molecular weight, the ratio between

the amounts of sol and gel phases does not change if the parameter b is changed

from b ¼ 4 (symmetrical case) to b ¼ 2 (unsymmetrical case). This finding indi-

cates the complex interactions of both polydispersities.
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In order to verify the present theoretical framework, the calculation results are

compared with experimental data. Schirutschke [90] carried out phase equilibrium

experiments (critical point, cloud-point curves) of the system EVA + methyl ace-

tate. The distribution of the copolymer was measured using the successive fraction-

ation procedure and determination of the number-average molecular weight of

every obtained fraction. Using this data, the integral distribution function, I(r),
can be constructed (Fig. 10) and the parameter of the distribution function with

respect to the molecular weight can be estimated. Fitting of the data given in Fig. 10

results in rN ¼ 429 and k ¼ 0.758, where the ethylene monomer unit was chosen as

standard. The mass-average chemical composition yW ¼ 0.375 was measured
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Fig. 10 Fit (solid line) of the
experimental feed

distribution [90] (squares) of
EVA copolymer
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Fig. 9 Distribution of chemical composition at r ¼ 100 in the sol and gel phases, where the feed

distribution is given by (16): solid lines a ¼ b ¼ 4; broken lines a ¼ 4, b ¼ 2
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using elementary analysis. The broadness of the distribution, e, was estimated using

the Stockmayer theory [56], yielding e ¼ 0.25. The parameters occurring in the GE

model (5) were chosen as:

rA ¼ 2:08 wAP ¼ 80:75 K pA ¼ 0:1 gA ¼ 0:3: (60)

Unfortunately, Schirutschke [90] did not give any information about the chemi-

cal polydispersity in the experimentally obtained fraction. For this reason, the

comparison between the experiment and the modeling results is limited to the

fractionation according to the molecular weight. In Fig. 11, the function F(r),
which is defined as:

FðrÞ ¼
ð1

0

W r; yð Þdy (61)

is compared with the experimental data [90], where the experiment was performed

at 303.15 K. From Fig. 11, it can be concluded that the proposed theoretical

framework is able to describe the polymer distribution in the coexisting phases.

Moreover, this comparison also shows the large impact on the LLE of the chemical

heterogeneity, even if the broadness of this function is only small.

3.2 Stepwise Fractionation Procedure

Cross-fractionation as a mean of evaluating the molecular weight and chemical-

composition distribution of heterogeneous copolymer is composed of two steps.
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Fig. 11 Comparison of experimental [90] (solid line) and calculated (broken line) fractionation for
EVA in methyl acetate
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The sample is first fractionated into intermediate fractions in one solvent + non-

solvent system (solvent mixture 1). This is followed by further fractionation

of these intermediate fractions by another solvent + nonsolvent system (solvent

mixture 2).

3.2.1 Influence of the Fractionation Strategy

Using the SSF (Fig. 3b) and SPF (Fig. 3a) techniques, copolymers can be fractio-

nated using the cross-fractionation method by combining the two basic types for

fractionation in solvent mixtures 1 and 2. This situation results in four different

fractionation strategies: SSF/SPF, SPF/SSF, SPF/SPF, and SSF/SSF, where the

solvent mixture is changed for the fractionation of the intermediate fractions. The

first question arising in this situation is which strategy should be used in order to

optimize the fractionation efficiency. To answer this question, calculation of all

four strategies were performed.

In these simulations, it was assumed that both solvent mixtures are made only

from one solvent. The applied parameters in the GE model (5) for the solvent 1 are:

rA ¼ 1 wAP ¼ 250 K pA ¼ 0 gA ¼ 1 (62)

and for the solvent 2:

rA ¼ 1 wAP ¼ 220 K pA ¼ 0 gA ¼ 0:5: (63)

During the simulation, the original polymer was fractionated into five interme-

diate fractions using the solvent 1 (62), whereas every intermediate fraction was

further divided into five final fractions using the solvent 2 (63). The temperatures

for every fractionation step were selected in such a way that in every fraction the

same amounts of polymer were present. The polymer feed concentration, expressed

in segment fractions, was 0.01. Figure 12 depicts the calculated mass-average

chemical composition of every fraction using the four different fractionation

strategies. The fractions numbered 10–15 represent the chemical composition of

the final fractions, obtained from the first intermediate fraction. The fractions

numbered with 20–25 represent the chemical composition of the final fractions,

obtained from the second intermediate fraction, and so on. If the fractionation in

solvent 1 is carried out using the SPF mechanism (circles and crosses in Fig. 12), the

mass-average chemical composition of the intermediate fractions decrease with the

number of the fraction. Under this circumstance the fractionation in the solvent 2 can

be performed using SPF (circles in Fig. 12) or SSF (crosses in Fig. 12). Except for

the final fractions from the first intermediate fraction, where the SPF mechanism

leads to a decrease in the yW values and the SSF to increasing values for this

quantity, in all other final fractions the yW value increases by SSF and decreases by

SPF. If the fractionation in the solvent 1 is carried out using the SSF mechanism
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(stars and squares in Fig. 12), the mass-average chemical composition of the

intermediate fractions increases with the number of fraction. All fractions, except

the fractions obtained from the last intermediate fractions, show a similar behavior.

If the fractionation of the intermediate fractions in solvent 2 is carried out using the

SPF mechanism (stars in Fig. 12), the mass-average chemical composition

increases with the number of fraction, whereas the chemical composition decreases

if the second fractionations in the solvent 2 is performed with the SSF method

(squares in Fig. 12). Using the data in Fig. 12, it can be concluded the SSF/SSF

strategy leads to the fractionation having the highest effectivity in terms of frac-

tionation according to the chemical composition.

In Fig. 13, the fractionation results with respect to the molecular weight are

plotted in terms of the nonuniformity of the obtained fractions. Independently of the

fractionation strategy applied, all obtained final fractions have a much smaller
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nonuniformity than the original polymer. Using the SPF/SPF method (circles in

Fig. 13), the last fraction of every intermediate fraction always shows the highest

value for the nonuniformity. With increasing number of the intermediate fraction

this effects is more pronounced. Applying the SPF/SSF mechanism (crosses in

Fig. 13), the highest nonuniformity is always observed in the first final fraction of

every intermediate fraction, similar to the results for the SSF/SPF mechanism (stars

in Fig. 13). Similar to the results discussed above, the SSF/SSF (squares in Fig. 13)

leads to the most effective fractionation, also according to the molecular weight,

and hence this method can be recommended for the cross-fractionation.

3.2.2 Influence of the Solvent Mixture

The fractionation based on the LLE and the LLE depends strongly on the interac-

tions between the molecules present in the system. In connection with the effectiv-

ity of copolymer fractionation, it must be investigated by how much both solvents

used in the cross-fractionation procedure should differ in terms of solution power

for the copolymer. The quality of solvent can be expressed by the interaction

parameter occurring in the GE model (5). Calculations were done using two

different parameter sets, representing a large difference between the interactions

of the solvents 1 and 2 with the copolymer:

wAP ¼ 250 K pA ¼ 0 gA ¼ 1

wBP ¼ 350 K pB ¼ 0 gB ¼ 0:15
(64)

and representing only a small difference in these parameters:

wAP ¼ 250 K pA ¼ 0 gA ¼ 1

wBP ¼ 220 K pB ¼ 0 gB ¼ 0:5:
(65)

The calculation results are depicted in Fig. 14 in terms of the Breitenbach–Wolf

plot with respect to the segment number (Fig. 14a) and with respect to the chemical

composition (Fig. 14b). The fractionation effect can be analyzed by the slope of the

Breitenbach–Wolf plot. If the two solvents differ strongly, the Breitenbach–Wolf

plot with respect to the segment number has a larger slope meaning a higher

fractionation effect (Fig. 14a). However, analyzing the data given in Fig. 14b for

the fractionation effect according to the chemical composition, the converse can be

concluded. The reason for this finding is the difference in the parameter gA for the

solvent 2. Whereas the Flory–Huggins parameter wAP has an impact on both

fractionations types, the parameter gA only has an impact on the fractionation

with respect to the chemical heterogeneity. For practical purposes, the wAP para-

meters should have a large difference in order to make sure an effective fraction-

ation according the molecular mass, and the gA parameter should be always quite
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large in order to ensure an effective fractionation according to the chemical

composition.

For the production of the intermediate, as for the production of the final fraction,

a temperature gradient must also be established. This gradient can be chosen to be

linear or nonlinear. The nonlinear temperature gradient is selected in such a way

that every final fraction contains the same amount of copolymer segments. The

fractionation results are demonstrated in Fig. 15, where the distribution functions

with respect to the segment number for the fraction obtained from the third

intermediate fractions are shown. It can be recognized clearly that the second

approach of keeping the amount of polymer in every final fraction constant is the
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better choice, because the obtained distribution functions are narrower and the

overlapping of the distribution functions is less pronounced.

Additionally, the same calculations were performed in order to investigate

whether a more effective fractionation could be achieved using solvent mixtures

such as solvent 1 and solvent 2. This situation allows, from the theoretical point of

view, a combination of the solvent gradient and a temperature gradient. However,

the calculation results make it clear that no improvement could be seen if both

gradients were applied. The most important criterion for effective fractionation was

equal amounts of polymer in every final fraction. This criterion can be achieved by

solvent gradient or temperature gradient, or both. For the solution of a practical

fractionation problem, the search for a suitable solvent combination, in particular if
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solvent mixtures are to be used, is a very time-consuming task. This task can be

abbreviated if only two solvents and not two solvent mixtures are needed. The

criterion of equal amounts of polymer in every final fraction can be fulfilled by a

suitable nonlinear temperature gradient.

3.2.3 Cross-Fractionation

Teramachi and Kato [75] performed experimentally a cross-fractionation according

the SPF/SPF mechanism and two SPFs in different solvent systems of styrene–

butadiene copolymer. The copolymer was an industrial product that was polymer-

ized to about 100% conversion with n-butyl lithium. Teramachi and Kato used two

solvent systems, namely solvent mixture 1 (cyclohexane + isooctane) and solvent

mixture 2 (benzene and methyl ethyl ketone). During all experimental fractiona-

tions, the temperature was kept constant at 25�C. In cross-fractionation, the sample

was first fractionated into four intermediate fractions in solvent mixture 2 and then

each intermediate fraction was fractionated into five fractions in solvent mixture 1.

The SPF yield in solvent mixture 1 was 13 fractions, and ten fractions in solvent

mixture 2. The original copolymer, as well all obtained fractions, were analyzed

using a membrane osmometer for the determination of the number-average molecular

weight, and refractive index measurement for the determination of the average

chemical composition. In the experiments [75], it was found that the analysis of

both one-direction fractionations using different solvent systems led to identical

chemical composition distributions for the original polymer; however, both results

are not always true. The analysis of the cross-fractionation data gave a broader

distribution curve of the chemical heterogeneity and the molecular weight than the

one-direction fractionations. The component with low styrene contents (lower than

17 mol%) could only be found by cross-fractionation.

These experimental data give us the possibility to verify the present theory with

experiments. From the analysis of the original polymer, two parameters of the

Stockmayer distribution function (15), namely rN ¼ 884.9 and yW ¼ 0.2799, are

available. The conversion in the polymerization reaction was close to 100% and

hence the Stockmayer theory [56] cannot be applied to estimate e. The values for

e ¼ 1.9 and k ¼ 2 were estimated by fitting them to the integral distribution of the

original polymer. Next, the parameter of the GE model (5) must be estimated.

Unfortunately, Teramachi and Kato [75] gave no information about the concentra-

tion gradient used during the fractionation procedure. Model calculations indicated

that the fractionation results can be achieved by a solvent mixture or by a pure

solvent. In order to minimize the number of adjustable parameters, both solvent

mixtures were simulated by only one “mean” solvent. The fractionation gradient

was produced by varying the interaction parameters, gA, for both solvent mixtures

during the fractionation procedure. This means that these parameters were calcu-

lated for every LLE by the solution of the nonlinear system of equations describing

the LLE. This is possible because the mass of every fraction was known from the
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experiments. For the remaining parameters, the following values were assumed for

solvent mixture 1:

wAP ¼ 0:427 K pA ¼ 0:1 (66)

and for solvent mixture 2:

wAP ¼ 0:671 K pA ¼ 0:05: (67)

The theoretical frameworks were executed for the calculations of the distribu-

tions in the intermediate and in the final fractions. In Fig. 16, the calculated mass-

average chemical compositions were compared with the experimental data obtained

by the one-direction fractionation [75]. Using the solvent mixture 1, the mass-

average chemical composition decreases with increasing number of fraction. Using

the solvent mixture 2, this property increases with increasing number of fraction.

The reason for this finding is the sign of the parameter, gA, which is positive for the
solvent mixture 1 and negative for the solvent mixture 2. The agreement between

the experimental and calculated data is much better for the fractionation in the

solvent mixture 1 than in the solvent mixture 2, especially for the fractions with a

high fraction number. During the experiments [75] using the solvent mixture 2,

evaporation of the solvent was observed. This effect is not taken into account in the

theoretical calculations.

In Fig. 17, the experimental [75] and calculated number-average segment num-

bers are compared. According to the SPF mechanisms, the copolymers having the

highest molecular weight will preferentially be in the first fractions, independent of

the chosen solvent mixture. Except for the fractions having a very high molecular

weight, the proposed theoretical framework is able to model the experiment
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Fig. 16 Comparison of experimental (symbols) [75] and calculated (lines) mass-average chemical

compositions in every fraction after performing a one-direction fractionation using two different

solvents: circles and solid line solvent mixture 1; squares and broken line solvent mixture 2
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quantitatively. Next, the cross-fractionation should be simulated using the same

parameters as for the GE model. The theoretical results, together with the experi-

mental results [75], are plotted in Fig. 18. Having in mind the approximations

introduced in the theoretical framework, it can be notice that the theory is able to

model experimental fractionation routines very close to the experimental data.

The effectivity of the fractionation according to the molecular weight can be

evaluated by the nonuniformity of the obtained final fractions. This quantity is

plotted versus the number of fraction in Fig. 19 for three different fractionation

runs, where one is carried out as cross-fractionation and two as one-direction

fractionations. Comparing only the one-direction fractionations, it can be recog-

nized that the application of solvent mixture 2 (stars in Fig. 19) leads to a more

effective fractionation with respect to the molecular weight, because the fractions

have a lower nonuniformity. From the thermodynamic point of view this can be

understand by the difference in the Flory–Huggins interaction parameters, wAP (66,
67). This result demonstrates the important role of the selected solvents. However,

the execution of the cross-fraction leads to a strong improvement of the fraction-

ation effectivity, because the nonuniformity is mostly below 0.4. The remarkably

high nonuniformity in the last fractions of every intermediate fraction can be

explained by the fact that these fractions are the unfractionated remains. In order

to improve this situation, more fractionation steps must be carried out.

The enforcement of the copolymer fractionation is motivated by the experimen-

tal determination of the two-dimensional distribution function of the original

polymer. This is normally done by analysis of the fractionation data (yWi, rNi) and
construction of the integral distribution function. In Fig. 20, the calculated fraction-

ation data are used for this construction. From Fig. 20a it can be seen that the

broadness of the original distribution function with respect to the molecular weight

can only be obtained by cross-fractionation. This theoretical result agrees with the
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Fig. 17 Comparison of experimental (symbols) [75] and calculated (lines) number-average seg-

ment number in every fraction after performing a one-direction fractionation using two different

solvents: circles and solid line solvent mixture 1; squares and broken line solvent mixture 2
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experimental observation [75]. Although both one-direction fractionations lead to

very close results, they do not find the high molecular weight part of the distribution

of the original copolymer. Analyzing the fractionation according to the chemical

heterogeneity (Fig. 20b), one can find that the cross-fractionation in comparison to

the one-direction fractionation improves the obtained integral distribution function

of the original copolymer; however, the complete distribution function could not be

recovered. From the thermodynamic point of view, the reason is the selection of the

corresponding solvent mixtures. The result could be improved by using a solvent

mixture having a larger difference in the parameter gA. Again, both one- direction

fractionations lead to similar results, but they are not able to reproduce the correct

original distribution according to the chemical heterogeneity. If the copolymer
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Fig. 18 Comparison of experimental [75] (symbols) and calculated (lines) cross-fractionations: (a)
fractionation with respect to the molecular weight, (b) fractionation with respect to the chemical

composition
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fractionation is utilized for analytical purposes, cross-fractionation should be per-

formed, where not only the production of more fractions, but also the application of

two different solvent mixtures lead to a significant improvement in the determina-

tion of the distribution related to both polydispersities.

In summary, the developed method based on continuous thermodynamics to

simulate successive fractionations with respect to the molecular weight and chemi-

cal composition is verified by comparison with experimental data, and can be

applied for the optimization of a given fractionation problem for analytical and

preparative purposes.

3.3 Baker–Williams Fractionation

The most important feature of the BW fractionation method is the high effectivity,

especially for analytical purposes. Application of the computer simulation permits

the investigation of various effects in the field of column fractionation regarding the

effectivity. The simulations were carried out using a copolymer with the following

specifications:

rN ¼ 100 k ¼ 1 e ¼ 0:3 yW ¼ 0:5 a ¼ b ¼ 4: (68)

The selected parameters in the GE model (5) describing the solvent mixtures are:

rA ¼ 1 wAP ¼ 150 K pA ¼ 0 gA ¼ 0:5

rB ¼ 1 wBP ¼ 250 K pB ¼ 0 gB ¼ 1

wAB ¼ 500 K:

(69)
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Fig. 19 Comparison of three different fractionation methods: circles cross-fractionation, crosses
successive precipitation fractionation using solvent mixture 1, and stars successive precipitation

fractionation using solvent mixture 2
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For the simulation of the BW column, the operative parameters must also be

fixed:

XF
0;0 ¼ 0:02 mP ¼ 2 mMax ¼ 8 Z�

0;0 ¼ 0:1 v� ¼ 30: (70)

Because the copolymers have a different broadness of the distribution according

to the Stockmayer theory (15) or according to (16), different temperature and

concentration gradients were established in the column. If the original copolymer
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Fig. 20 Comparison of three different fractionation methods: circles cross-fractionation, crosses
successive precipitation fractionation using solvent mixture 1, and stars successive precipitation

fractionation using solvent mixture 2, with regard to the integral distribution of the original

copolymer by (a) molecular weight, and (b) chemical composition. The lines represent the

distribution of the original copolymer
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is described using the Stockmayer distribution function (15), the operative condi-

tions are:

T0 ¼ 480 K DT ¼ 2:5 vMax ¼ 33 Z� ¼ 0:25: (71)

If the original copolymer is described by the distribution function given in (16),

the operative conditions are:

T0 ¼ 400 K DT ¼ 5 vMax ¼ 75 Z� ¼ 0:4: (72)

Figure 21 represents the simulation results for the BW run, where five fractions

are formed having an equal amount of the original polymer with a distribution

according (16). The obtained fractions show a clearly lower polydispersity than the

fractions obtained by successive fractionation methods. The maxima of the distri-

bution functions for the fractions are very close to the original distribution function.

This permits an accurate determination of the original distribution function. The

last fraction in Fig. 21 has a relative large nonuniformity. However, this can be

improved very easily by making more fractions from this material. One advantage

of the BW column is the possibility to vary the amount of polymer in the

corresponding fraction arbitrarily, without any limits given by the thermodynamics

or by the operative parameters of the column. Rätzsch et al. [50] simulated the

fractionation of homopolymers having Schulz–Flory distribution functions. They

could obtain fractions having a nonuniformity smaller then 0.01. This value could

not be reached if copolymers were considered. Usually, the nonuniformities lie

between 0.01 and 0.05 for copolymers.

In Fig. 22, the fractionation effect of the BW method with respect to the

chemical composition is plotted for a copolymer having a distribution function
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Fig. 21 Simulation results for the Baker–Williams column according to the molecular weight,

where the original polymer has a two-dimensional distribution according (16)
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given in (16). Again, the application of a BW column leads to a strong improvement

in the fractionation effectivity in comparison with the stepwise methods.

The high fractionation effectivity allows correct estimation of the initial copoly-

mer distribution (15) according the molecule weight if only five fractions are

formed (Fig. 23). Copolymers distributed according to the Stockmayer distribution

function (15) are characterized by a relatively small polydispersity with respect to

the chemical composition. In contrast, copolymers showing a distribution given in
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Fig. 22 Simulation results for the Baker–Williams column according to the chemical composi-

tion, where the original polymer has a two-dimensional distribution according to (16)
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Fig. 23 Simulation results of the Baker–Williams column for a copolymer having a distribution

according to (15), where the symbols show the fractionation data and the line represents the

original distribution
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(16) have a broader distribution with respect to the chemical heterogeneity, but the

same broadness related to the molecular weight. In Fig. 24, the integral distribution

functions constructed from the fractionation data for a copolymer with this distri-

bution function is plotted. From the integral distribution function I(r, 0.5), it can be
seen that five fractions are not sufficient to yield the correct original function.

Deviation can be found at higher molecular weights (Fig. 24a). The distribution

I(100, y) obtained from the fractionation data is also too narrow in comparison with

the original distribution (Fig. 24b), where deviations occur at high and at low values

of the chemical composition. This result reflects the complex superposition of both

kinds of polydispersity.

Rätzsch et al. [50] found by the simulation of the fractionation of homopolymers

in the BW column a practical linear relationship between the number of maximal
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Fig. 24 Simulation results of the Baker–Williams column for a copolymer having a distribution

according to (16) with respect to the molecular weight (a) and the chemical composition (b), where

the symbols show the fractionation data and the lines represent the original distribution
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theoretical plates in the column, mMax, and the reciprocal of the nonuniformity of

the obtained fractions. The slope of this relationship was always positive and

increased with increasing number of the considered volume element. Figure 25

shows a plot of the reciprocal of the nonuniformity of the copolymer in the

corresponding volume element versus the number of theoretical plates established

in the column. The results (Fig. 25a) obtained with the copolymer of Stockmayer

feed distribution (15) are very similar to those found for the fractionation of

homopolymers [50]; however, the slope of the curves are smaller for copolymers

than for homopolymers. The number of theoretical plates has a larger impact on the

fractionation of homopolymers than on the fractionation of copolymers. Caused by

a broader distribution of (16) in comparison with (15), the sign of slope of the
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Fig. 25 Simulation results for the Baker–Williams column for different values of the maximal

plate number in the column using (15) (a) and (16) (b) for the feed distribution of the copolymer.

The numbers are the considered volume element
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studied relation depends, in this case, on the volume element studied (Fig. 25b).

A positive slope can only be found at the beginning of the fractionation, meaning

lower numbers of the volume element. With increasing liquid stream (increasing

number of volume element), the sign of the slope changed to negative, even though

the liquid stream was divided into more volume elements.

In order to study this unexpected phenomena further, the distribution functions

in the sol phase of a selected volume element (v ¼ 30) traveling through the BW

column was investigated. For this reason, simulations of a copolymer having a feed

distribution given in (16) for columns differing in the number of theoretical plates

(mMax) were performed. The simulation results are depicting in Fig. 26. Increasing

the length of the column leads to a more effective fractionation of both
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Fig. 26 Distribution of the sol phase with respect to the segment number (a) and the chemical

composition (b) in volume element 30 traveling through the Baker–Williams column with

different numbers of maximal theoretical plates mMax (numbers in the figure). The original

distribution matches (16)
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heterogeneities. With increasing length of the column (increasing numbermMax) the

maxima of the distribution functionW(r, 0.5) and the distribution functionW(100,y)
shift for the observed volume elements to lower values and both distribution

functions become narrower. For the volume element v ¼ 70 moving through the

column, the length of the column has the opposite effect. The practical consequence

is the relative large polydispersity in the large fraction.

Increasing the number of theoretical plates, mMax, allows establishing a more flat

temperature gradient in the column for the same fractionation results.

In summary, the suggested theoretical model can be applied to answer different

questions arising about the efficiency of copolymer fractionation performed in BW

columns. This type of column is mostly used for analytical purposes.

3.4 Continuous Polymer Fractionation

CPF has been especially developed to produce large fractions in a relatively short

time frame and can be applied for preparative purposes. All traditional procedures,

especially the stepwise methods, require a low polymer concentration for good

efficiency, and large amounts of solutions must be handled to obtain sufficient

material. With this fractionation method, the initial copolymer is divided into two

fractions, where these fractions can be used again as feed for the next fractionation

run. For homopolymers, this fractionation method is a useful tool for cutting the

short molecular weight parts or the extremely high molecular weight parts from the

desired product. In the case of copolymers, those with extremely high or low values

for the chemical composition can also be removed from the product. The simulation

method suggested above is now applied for the optimization of the CPF. This

optimization is always done by variation of the parameters describing the column

and keeping all others constant. The copolymer (68) used for the simulations and

the parameters of the GE model (69) are identical to those used for the simulation of

the BW columns. The standard parameter set for the operating conditions is:

XFD ¼ 0:11 ZFD ¼ 0:5 ZEA ¼ 0:15 nFD=nEA ¼ 0:1

mMax ¼ 6 mFD ¼ 3 T ¼ 520 K Tcondenser ¼ 500 K:
(73)

For example, the calculated fractionation data for four CPF runs are collected in

Table 1, where the initial polymer distribution was a Stockmayer distribution (15).

For the fractionation, four CPF runs were simulated in which the obtained gel

fractions were directly used as new feed phase.

The data in Table 1 make it clear that no significant fractionation according to

the chemical heterogeneity took place. However, the fractionation effect with

respect to the molecular weight is characterized by a high effectivity. Except for

the first fraction, all other fractions have a nonuniformity lower than 0.06, similar to

the results obtained for the simulation of the BW column. The nonuniformities are
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slightly higher for copolymers in comparison with homopolymers [49], showing the

influence of chemical heterogeneity on the fractionation with respect to the molec-

ular weight, even if the polydispersity with respect to the chemical composition is

small. The following optimization procedure aims for a much stronger fractionation

effect with respect to the chemical composition and, at the same time, to keep the

effectivity for the fractionation with respect to the molecular weight. Furthermore,

during the optimization it is assumed that the both solvents and the thermodynamic

properties, expressed by the parameter of the GE model, cannot be changed. This

means we focus our attention on the optimization of the operative conditions, which

can also be changed in practice.

First, the influence of the number of theoretical plates of the CPF column is

studied (Fig. 27). The discussion can be done using the nonuniformities in the

resulting sol and gel phases. Independently of the isolated phase (sol or gel), the

nonuniformity decreases with increasing number of theoretical plates present in

the CPF column. However, the decline is only very limited if the column has more

Table 1 Calculated fractionation data for CPF, where the original copolymer has a Stockmayer

distribution (15)

Fraction no. T (K) yW rN U

1 520 0.49567 74.8 0.673

2 530 0.50651 216.8 0.058

3 540 0.50696 266.0 0.039

4 550 0.50766 311.7 0.037

5 550 0.51159 427.9 0.071

Fig. 27 Influence of the number of theoretical plates, mMax, on the fractionation efficiency with

respect to the segment number of CPF, if the original copolymer distribution is given by (15). The

stars represent the values of the sol fraction and the crosses the values from the gel fractions

Theory of Random Copolymer Fractionation in Columns 317



than six theoretical plates. This result was also obtained by Rätzsch et al. [49] for

the fractionation of homopolymers.

In order to study the influence of the number of theoretical plates on the

fractionation according to the chemical composition, simulations using (16) as

feed distribution function were performed, because this type of distribution func-

tion models a broader distribution. The obtained results are given in Fig. 28. Again,

theoretical plates having numbers greater than six do not contribute strongly to the

fractionation effect in the CPF column. For practical fractionation, it can recom-

mend to use a column having six theoretical plates.

The next question arising in relation to the CPF column is where the feed phase

should be put in the column. The quantity is represented in the theoretical frame-

work by the parameter mFD.

Simulations of the CPF column were carried out for the copolymer with a feed

distribution of (16) at different places for the feed input. The results are depicted in

Fig. 29 for the fractionation with respect to the segment number and in Fig. 30 for

the fractionation with respect to the chemical composition. With increasing mFD,

the nonuniformity in the sol as well as in the gel decreases (Fig. 29). Analyzing the

fractionation according to the chemical composition leads to the same result

(Fig. 30). However, feed input at plate number 4 (mFD ¼ 4) cannot be recom-

mended because the polymer concentration on the plate above will be too small.

The most effective fractionation can be expected if the feed is added a little above

the middle of the columns. If the column with mMax ¼ 6 is used, then the feed

should be added at mFD ¼ 3.

The next operative parameter is the ratio between the amount of feed copolymer

solution and the amount of extraction solvent, meaning the working point (Fig. 6).

Fig. 28 Influence of the number of theoretical plates, mMax, on the fractionation efficiency with

respect to chemical composition of CPF, if the original copolymer distribution is given by (16).

The stars represent the values of the sol fraction and the crosses the values from the gel fractions
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The calculation results obtained by simulation of the fractionation of a copolymer

having the initial distribution function given in (16) for different values of nFD/nEA

are shown in Fig. 31. The nonuniformity decreases in the gel as well in the sol phase

if more extraction agent is used (Fig. 31a). The fractionation according to the

chemical composition shows an identical trend. The finding can be explained by

Fig. 29 Estimation of the optimal feed plate for the CPF column for the fractionation according

the molecular mass if the original polymer is described by (16). The stars represent the values of
the sol fraction and the crosses the values from the gel fractions

Fig. 30 Estimation of the optimal feed plate for the CPF column for the fractionation according

the chemical composition if the original polymer is described by (16). The stars represent the

values of the sol fraction and the crosses the values from the gel fractions
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the dilution effect. However, increasing the amount of extraction agent leads to a

decrease in the polymer amount present in the column and hence in the produced

fraction. In this situation, a compromise between high fractionation effect and the

amount of copolymer in the fractions has to be found.

The next operative parameter, which can be optimized by simulation, is the

cooling temperature at the condenser. This parameter is also optimized by simula-

tions of the CPF column, where a copolymer is fractionated with a feed distribution

Fig. 31 Influence of working point on the CPF fractionation effect with respect to the molecular

weight (a) and the chemical composition (b) for a copolymer having an initial distribution given

by (16). The stars represent the values of the sol fraction and the crosses the values from the gel

fractions
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given in (16). The simulation results are demonstrated in Fig. 32 for the fraction-

ation of both polydispersities. From this figure, it can be seen that the optimal

temperature in the condenser depends on the phase that forms the final fraction. If

the fraction is to be isolated from the sol phase, then the condenser should work at

temperatures as low as possible. However, if the fraction is to be taken from the gel

phase, the condenser should not be used. These results are of practical importance

Fig. 32 Influence of cooling temperature in the condenser on the CPF fractionation effect with

respect to the molecular weight (a) and the chemical composition (b) for a copolymer having an

initial distribution given by (16). The stars represent the values of the sol fraction and the crosses
the values from the gel fractions

Theory of Random Copolymer Fractionation in Columns 321



in the case where the CPF is applied for cutting the short or the large molecular

weight parts from a synthetic polymer in order to tailor the material properties.

From the calculation results of the stepwise fractionation methods, it is known

that the amount of polymer should by equal in all fractions. In CPF, the amount of

polymer segments depends on the chosen working point (nFD/nEA) and the temper-

ature in the column. In Fig. 33, the relationship between the temperature in the

column and the amount of polymer present in the sol phase is shown.

Using all this knowledge from the simulations above, the following so-called

optimized parameters for the CPF column:

XFD ¼ 0:11 ZFD ¼ 0:5 ZEA ¼ 0:15 nFD=nEA ¼ 0:08

mMax ¼ 6 mFD ¼ 3 Tcondenser ¼ 430 K
(74)

were used to fractionate a copolymer into five fractions by four fractionation runs.

The temperature for each fractionation run was selected in such a way that in every

fraction there was nearly the same amount of polymer.

The results for this fractionation are presented in Table 2, Fig. 34, and Fig. 35.

The differences between the original operating parameters (73) to the optimized

parameters (74) are, first, that the nFD/nEA ratio is changed slightly and, second, that

the temperature gradient is much more pronounced. The temperature at the con-

denser is changed from 520 to 430 K, whereby the temperature in the column is

raised, especially for the last fractionation run. Similar to the results found for

stepwise fractionation, the most important feature for an effective fractionation in

column is also that the polymer is equally distributed in the corresponding fractions.

The improvement can be recognized clearly if the fractionation with respect to

the chemical composition is analyzed (Table 2 and Fig. 35). The fractionation
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Fig. 33 The relationship of the amount of copolymer present in the sol phase and the temperature

in the column

322 S. Enders



Table 2 Calculated fractionation data for CPF, where the original copolymer has a feed distribu-

tion given by (16). The operating conditions are given in (74)

Fraction no. T (K) yW rN U

1 430 0.387 43.8 0.992

2 480 0.435 112.8 0.381

3 530 0.502 157.2 0.295

4 580 0.589 222.2 0.214

5 580 0.698 323.1 0.149
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Fig. 34 CPF calculations using optimized operative parameters, where the numbers indicate the

fraction number
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fraction number
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according both polydispersities can be characterized by a high effectivity, which

can been seen in Figs. 34 and 35.

In summary, both fractionation methods using columns can be applied for the

fractionation of copolymers; however, the separation efficiency for the fraction-

ation with respect to the molecular weight is lower than for the fractionation of

homopolymers. For the development of further fractionation methods for copoly-

mers, it is suggested that the CPF column is also used for fractionation in two

directions, similar to the cross-fractionation. This can be realized experimentally

very simply by changing the solvent mixture in the different runs, necessary to

produce different fractions.

4 Summary

For the first time, a theoretical framework for the fractionation of statistical copo-

lymers using successive fractionation methods and columns is introduced, taking

into account the polydispersity with respect to molecular weight and chemical

composition.

The application of this theoretical framework based on continuous thermody-

namics allows the investigation of operating parameters (solvent gradient, temper-

ature gradient, features of the fractionation column, fractionation strategy) on the

efficiency of the fractionation, where the two-dimensional distribution of statistical

copolymers is completely taken into account. From the thermodynamic point of

view, copolymer fractionation is the successive establishing of LLE for suitable

solutions of the polymer to be fractionated. Similar to the theoretical description of

distillation or extraction columns in chemical engineering, the column is divided

into theoretical stages. Assuming an LLE on each theoretical stage, the polymer

fractionation can be modeled using phase equilibrium thermodynamics.

From the results of calculations carried out for the successive cross-fractionations,

where in principal four different fractionation strategies are possible, it can be

concluded that the fractionations in both solvent mixtures should be performed

using SSF, meaning that the obtained sol phase should always be taken as a fraction.

During simulation of the fractionation in columns, such as the BW column or the

CPF column, the influence of the operative conditions on the fractionation effectiv-

ity was investigated. For the simulation of the BW column, the main focus was the

analytical purpose and in the simulation of the CPF column, the focus was the

preparative purpose. Similar to the results found for the stepwise fractionation,

the most important feature for an effective fractionation in column is also that the

polymer is equally distributed in the corresponding fractions. This can be achieved

by a suitable chosen concentration or temperature gradient, or both.
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Abbreviations and Symbols
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EPM Elementary physical model

EPM2 Second elementary physical model

FENE Finitely extensible nonlinear elastic

GEMC Gibbs ensemble Monte Carlo

LJ Lennard–Jones

MC Monte Carlo

MD Molecular dynamics

NIST National Institute of Standards and Technology

N pT Constant particle number, constant pressure, and constant tempera-

ture ensemble

NVE Constant particle number, constant volume, and constant energy

ensemble (¼ microcanonical ensemble)
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ture ensemble (¼ canonical ensemble)

PC-SAFT Perturbed-chain statistical associating fluid theory

rRESPA Reversible reference systems propagator algorithm

SAFT Statistical associating fluid theory
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TImVT Thermodynamic integration in the constant chemical potential, con-

stant volume, and constant temperature ensemble

TPT Thermodynamic perturbation theory

TPT1-MSA First-order thermodynamic perturbation theory combined with the

mean spherical approximation

1 Introduction

Knowledge of the equation of state of polymeric systems (polymer melts, solutions,

and blends) is a central prerequisite for many applications. Theoretical modeling of

the phase behavior of polymeric systems on the basis of statistical thermodynamics

has been a challenging problem for decades [1–11]. The initially [1,2] proposed lattice

model of Flory and Huggins involves many crude approximations, with well-known

shortcomings [6,10]; however, in complicated cases (e.g., ternary systems such as a

polymer solution in a mixed solvent or a polymer blend in a single solvent) this

approach might still be the method of choice [12]. One represents a (flexible) linear

macromolecule by a (self-avoiding) randomwalk on a (typically simple cubic) lattice,

such that each bead of the polymer occupies a lattice site (multiple occupancy of sites

being forbidden, of course, to model excluded volume interactions between the effec-

tive monomers). The chemical bonds between neighboring monomers of the chain

molecule then are just the links between neighboring lattice sites. Solvent molecules

are often simply represented by vacant sites (V) of the lattice. When one deals with

binary blends, two types of monomers (A and B) occur and, apart from the chain

lengths NA, NB of the macromolecules, which are proportional to their molecular

weights, several interaction parameters come into play. Even if we restrict enthalpic

forces to nearest-neighbor interactions, three types of (pairwise) interaction para-

meters eAA; eAB and eBB are introduced, which then can be translated into the well-

known Flory–Huggins parameters [6, 9]. Of course, the model can also be generalized

to other chain architectures, e.g., block copolymers [6, 9, 11, 13]. However, although

the lattice model underlying Flory–Huggins theory [1–8] and its generalizations (e.g.,

[14]) is an extremely simplified description of any polymeric material, the statistical

thermodynamics of this model is rather involved because the analytic treatments

require mean field approximations and further uncontrolled approximations [6, 15,

16]. The mean field treatment implies that critical exponents characterizing the

singularities of the equation of state near critical points are those [6] of the Landau

theory [17]. Studying the Flory–Huggins lattice model by Monte Carlo (MC) simula-

tion methods [18–20], one avoids these approximations and obtains the correct Ising-

like critical behavior [6, 15, 16, 21], which has also been established experimentally

for the critical points of both polymer solutions and polymer blends (see, e.g., [22,

23]). Also, far from the critical region, the approximate counting of nearest-neighbor

contacts between different chains (note that intrachain contacts do not contribute to

phase separation) invalidate simple relations between the basic energy parameters
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eAA; eAB and eBB and the corresponding Flory–Huggins parameters in the expression

describing the free energy of mixing [6, 15, 16]. If the latter is adjusted to describe the

simulation “data”, a nontrivial dependence of the Flory–Huggins parameter(s) on

temperature and volume fractions ðfA;fBÞ of the two types of monomers in a blend

results [9,16] (note that fA þ fB ¼ 1� fV, where fV is the volume fraction of

vacant sites, which may represent “free volume” [24] or solvent [6]).

When one fits the Flory–Huggins theory to experiment [7], nontrivial depen-

dence of Flory–Huggins interaction parameters on temperature and volume frac-

tions also result, but might have other reasons than those noted above: in particular,

it is important to take into account the disparity between size and shape of effective

monomers in a blend, and also the effects of variable chain stiffness and persistence

length [25, 26]). To some extent, such effects can be accounted for by the lattice

cluster theories [27–30], but the latter still invokes the mean-field approximations,

with the shortcomings noted above. In the present article, we shall focus on another

aspect that becomes important for the equation of state for polymer materials

containing solvent: pressure is an important control parameter, and for a sufficiently

accurate description of the equation of state it clearly does not suffice to treat the

solvent molecules as vacant sites of a lattice model. In most cases it would be better

to use completely different starting points in terms of off-lattice models.

A basic approach for the description of polymer chains in the continuum is the

Gaussian thread model [26, 31]. Treating interactions among monomers in a mean-

field-like fashion, one obtains the self-consistent field theory (SCFT) [11, 32–36]

which can also be viewed as an extension of the Flory–Huggins theory to spatially

inhomogeneous systems (like polymer interfaces in blends, microphase separation in

block copolymer systems [11, 13], polymer brushes [37, 38], etc.). However, with

respect to the description of the equation of state of polymer solutions and blends in

the bulk, it is still on a simple mean-field level, and going beyond mean field to

include fluctuations is very difficult [11, 39–42] and outside the scope of this article.

A powerful theory that combines the Gaussian thread model of polymers with

liquid-state theory is the polymer reference interaction site model [43, 44]. This

approach accounts for the de Gennes [5] “correlation hole” effect, and chemical

detail can be incorporated (in the framework of somewhat cumbersome integral

equations that are difficult to solve and need various approximations to be tracta-

ble). Also, in this theory the critical behavior always has mean field character. The

same criticism applies to the various versions of the statistical associating fluid

theory (SAFT) [45–54], which rely on thermodynamic perturbation theory (TPT)

with respect to the treatment of attractive interactions between molecules (or the

beads of polymer chains). Some of those theories [50, 52, 53] seem to perform

rather well when one restricts attention to the region far away from critical

points, as a comparison with the corresponding MC simulation shows [53, 55,

56]. We shall discuss these comparisons in Sects. 4.1 and 4.2. Other variants of this

approach, such as the perturbed chain statistical associating fluid theory (PC-SAFT)

approach [51]include additional approximations and therefore sometimes suffer

from spurious results, such as artificial multiple critical points in the phase diagram

[54]. For this reason, this approach will not be emphasized here.
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It should be clear from this brief survey of various attempts to develop theories

for the equation of state for polymeric materials that we are still far from a fully

satisfactory solution for this difficult problem. In this situation, computer simulations

of molecular models are an attractive alternative. However, this approach is also

plagued with some problems: although a small-molecule fluid, apart from the critical

region, does not develop spatial correlations on scales larger than a few nanometers

[57], a single macromolecular coil exhibits a nontrivial structure from the length

of chemical bonds (0.1 nm) over the persistence length (1 nm) to the gyration radius

(10 nm) [3, 5, 8, 25, 26, 31, 58]. As a consequence, simulational modeling must

either restrict attention to relatively short polymer chains [10, 53, 55, 56, 59–74], or

consider coarse-grained models [6, 9, 10, 15, 16, 21, 53, 55, 56, 75–83]. Even for

both small-molecule systems and for coarse-grained models it is essential that one

considers temperatures far above a possible glass transition temperature [71, 81–86],

particularly if one applies molecular dynamics (MD) simulation methods [87–91].

We note that MC methods for polymers have been devised where moves occur that

involve bond crossing or bond breaking, etc., [92–95], allowing equilibration of

dense melts for very long chains. Since we are not aware that such algorithms have

been broadly used for the study of thermodynamic properties of polymer blends,

we shall not address these advanced algorithms (as well as other specialized MC

algorithms for lattice models of polymers [96]) in the present article.

Finally, we mention the very promising idea of mapping atomistic models to

coarse-grained ones, thus putting some information on chemical details into the

effective parameters of a coarse-grained model in a systematic way [97–120]. In

Sect. 2, we shall briefly review both atomistic and coarse-grained models, as well as

mention some aspects of this systematic coarse-graining approach.

The outline of this article is as follows: after a short discussion of some of the

models (Sect. 2) we recall the basic aspects of MD and MC methods (Sect. 3).

Results of simulations of chemically detailed atomistic models for short alkanes,

polyethylene melts, and polybutadiene melts are mentioned. Section 4 is devoted to

a discussion of coarse-grained models for the description of the phase behavior

of alkanes in various solvents (Sects. 4.1 and 4.2). Also, qualitative models for

semiflexible polymers that exhibit nematically ordered phases [121–123] and

for block copolymer solutions that exhibit micelle formation [124, 125] will be

discussed. Section 5 presents our conclusions.

2 Molecular Models for Polymers and Solvents

2.1 Atomistic Models

In this article, we confine our attention to the modeling of polymeric systems in the

framework of classical statistical mechanics. Processes where electronic degrees of

freedom are involved (such as chemical reactions) are outside the scope of the
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present review. Also, we will not consider quantum fluctuations due to the nuclei

(e.g., in orthorhombic crystalline polyethylene the quantum-mechanical zero-point

motion of the atoms does affect the thermal expansion and elastic constants of the

material [126]).

Thus, the starting point of both MD [87–91] and MC methods [18–20] is a

classical potential Uðf~rigÞ (often it is referred to as force field [71, 81, 82, 127]),

which contains only the positions of all the atoms f~rig as variables. Typically,

Uðf~rigÞ is decomposed into contributions describing intramolecular forces along a

polymer chain, which are described by bond stretching potentials U‘ðj~rijjÞ;
~rij ¼~ri �~rj (where ‘ is the bond length), bond angle potentials UbendðYijkÞ
(describing local bond angles), torsional potentials Utorsðfijk‘Þ, and last but not

least nonbonded interactions Unbð~rijÞ. The latter are typically assumed to be pair-

wise additive. For example, the bond length potential is often assumed to have a

simple harmonic form:

U‘ðjrijjÞ ¼ 1

2
k‘ j~rijj � ‘0
� �2

; (1)

where k‘ is a “spring constant” for the chemical bond between the two neighboring

atoms in a polymer chain, and ‘0 is their (classical) ground-state distance. Also, the
bending potential often is assumed to be harmonic in the angleYijk formed between

two successive bonds~rij and~rjk along a chain:

UbendðYijkÞ ¼ 1

2
kYðYijk �Y0Þ2 ; (2)

where again kY is a spring constant but now for chain bending, andY0 the classical

ground state value for the bond angle. Finally, the torsional potential (defined in

terms of the angle Yijk‘ that the bond~rk‘ makes with its projection into the plane

formed by the bonds~rij and~rjk) can be parameterized as:

Utorsðfijk‘Þ ¼
1

2

Xnmax

n¼1

kn 1� cosðnfijk‘Þ
h i

; (3)

where further constants fkng, and nmax enter. For neutral polymers, for which

Coulomb interactions can be disregarded, the nonbonded interactions are often

assumed to have the simple Lennard–Jones (LJ) form:

ULJðrÞ ¼ 4e
s
r

� �12
� s

r

� �6� �
; (4)

with e describing the strength and s the range of this potential. Note that ULJðrÞ acts
both between monomers of different chains and between monomers of the same

chain if they are neither nearest, nor next-nearest, nor third-nearest neighbors along

the chain (so that none of the interactions in (1)–(3) would apply).
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Note that (1)–(4) describe the simplest case of an atomistic model of polymer

chains, and a model of this type is in fact useful for describing polyethylene melts.

In fact, a further approximation is commonly is invoked, namely the “united atom”

approximation: rather than treating all carbon and hydrogen atoms of the polymer

CnH2nþ2 explicitly, one lumps the hydrogens and carbons of the CH2 groups along

the chain interior as well as the CH3 groups at the chain ends together into

“superatoms”. This reduction of the degrees of freedom can be viewed as a first

step of “coarse-graining”. Just as in a fully atomistic model (where C atoms and H

atoms are individually considered), one must distinguish in the parameters e; s
of the LJ interaction (4) whether one considers a C–C, C–H or H–H pair of atoms;

on the united atom level one can distinguish whether one considers CH2–CH2,

CH2–CH3 or CH3–CH3 pairs.

We emphasize that the intrachain potentials written in (1)–(3) should only be

taken as simple generic examples. In cases of practical interest, the potentials are

often more complicated, and it is necessary to consider cross-couplings between

different degrees of freedom, i.e., coupling terms between bond stretching and bond

angles, or coupling between bond angles and torsional angles, etc. Although parts

of these potentials can be obtained from ab initio quantum chemistry methods [127,

128], in some cases a group of four successive monomers (i, j, k, l) already contain

too many degrees of freedom to allow a highly accurate quantum-chemical treat-

ment, and additional simplifications need to be introduced, which must be carefully

tested against suitable experimental data. Of course, potentials such as the non-

bonded LJ interaction (4) and its parameters are purely empirical. Thus, there is still

ongoing research on the construction and further improvement of suitable force

fields [127, 128]. Another important aspect is that the level of detail that is desirable

for a force field also depends on the applications that one wants to use it for. For

example, for a study of polyethylene in the melt [60, 61], it was clearly admissible

to simplify the problem by using a united atom model, as described above.

However, for a computational modeling study of crystalline orthorhombic polyeth-

ylene, an all-atom description was obviously required [126]. Despite the fact that

this polymer is the chemically simplest macromolecule, the potential that was used

[126] contained no less than 36 parameters [129], and it was found that for some

properties the accuracy was still unsatisfactory [126].

In the present article, we shall not discuss crystalline polymers further, and thus

potentials of the type described by (1)–(4) suffice. Even then, for dense melts

containing long chains, equilibration by either MD or MC methods is very difficult.

In cases such as polybutadiene, where the different conformational states are almost

isoenergetic, one can simplify the problem further by setting the torsional potential

to zero [70, 71], which leads to a considerable speed-up of the dynamics at low

temperature. It has been checked that such a bead–spring model plus bond-angle

potential is still able to reproduce both single chain structure factors and the

structure factor describing the collective scattering from the melt [70].

When one deals with an atomistically detailed description of a polymer solution,

one must also pay appropriate attention to the model used to describe the solvent

molecules [55, 56]. For example, when we describe polyethylene in terms of an
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united atom model [56, 61] and use as a generic case methane (CH4) as solvent, it

would not make sense to treat the hydrogen atoms in the model of CH4 explicitly

while the CH2 and CH3-groups of polyethylene are treated as superatoms. Thus,

when CH4 is treated as a point particle as well, the only interaction between the

solvent molecules that is left is also of the LJ type (4); remember that CH4 is

a neutral molecule that possesses neither a dipole moment nor a quadrupole

moment. If one adjusts the LJ parameters eSS; sSS for CH4 such that the experimen-

tal critical temperature Tc and experimental density rc are reproduced by the model,

Tc ¼ 190:6 K and rc ¼ 10:1 mol L�1 [130], then the vapor–liquid coexistence data

both in the temperature–density plane (Fig. 1a) and in the pressure–temperature

plane (Fig. 1b) are indeed reproduced over a wide temperature regime [56], as is the

temperature dependence of the interfacial tension (Fig. 1c). For the sake of com-

putational efficiency of the MC simulations needed to establish the phase diagram

of the considered LJ model with sufficient accuracy, it was decided [131] to

simulate a LJ model with truncated and shifted interactions rather than using the

full potential (4):

UijðrÞ ¼ ULJðrÞ þ 127eSS=4096; R � rc ¼ 27=6sss ; (5)

whereas Uijðr > rcÞ � 0. Note that the additive constant in (5) is chosen such that

the potential UijðrÞ between particles i and j is continuous at r ¼ rc. Figure 1 shows
that the united atom approximation for methane does reproduce the liquid–vapor

coexistence of this fluid with very good accuracy. When one uses the LJ parameters

eSS; sSS for this solvent (determined by the fit of the critical point as obtained from

MC simulation to the experimental critical point data) as an input for approximate

equation of state theories such as first-order TPT combined with the mean spherical

approximation (TPT1-MSA) [50, 52], one obtains [56] a reasonable agreement with

experimental data for T � 170 K. At higher temperatures deviations appear; in

particular, TPT1-MSA overestimates the critical temperature significantly, and

predicts a parabolic shape of the coexistence curve in the critical region (the

difference between the coexisting liquid and vapor densities scales as rl � rv /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=Tc

p
, while the actual coexistence curve is flatter, rl � rv / ð1� T=TcÞb

with a non-mean-field exponent b � 0:326 [132, 133]). This discrepancy between

TPT1-MSA and experiment (and simulation results) illustrates a general shortcom-

ing of all mean-field-type equation of state descriptions in the critical region, as

emphasized already in the Introduction.

The accuracy of the united atom description for polyethylene has also been

carefully tested in the literature [60, 71], both by comparison of simulation results

with experiments and with simulations dealing with an all-atom model where

hydrogen atoms are explicitly considered. Of course, for polyethylene the vapor

liquid critical point would occur at very high temperatures, where the macromole-

cule would no longer be chemically stable, and is of no physical interest; thus one

uses data for single chain and collective structure factors to gauge the accuracy of

the simulation models in this case.
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United atoms models become more involved when chemically more compli-

cated polymers are considered. Sometimes additional simplifications are also intro-

duced, e.g., one may take bond lengths j~rijj between neighboring bonds to be rigid,

rather than allowing variation according to a harmonic potential. For example, for

1,4-polybutadiene, a force field with rigid bonds was proposed [134] that has three

different rigid bond lengths, appropriate for the three distinct bonds occurring along

the backbone of the chain: ‘0 ¼ 1:53
�
A for the CH2–CH2 bond, ‘0 ¼ 1:50

�
A for the

Fig. 1 Coexistence curve for CH4 in the temperature–density plane (a), vapor pressure at coexis-

tence (b), and surface tension versus temperature (c). Dashed curves are experimental results

[130], circles show the MC results [56], while the solid curves in parts (a) and (b) show the results

of the TPT1-MSA theory using the same interaction potential (with ess ¼ 2:636� 10�21 J,

sss ¼ 3:758
�
A, in (5)) as the MC simulation. From Mognetti et al. [56]
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CH2–CH bond, and ‘0 ¼ 1:34
�
A for the CH–CH bond. In this polymer, one also

needs two different bond-angle potentials (CH–CH–CH2 and CH–CH2–CH2), and

four different torsional potentials (at the double bond differentiating cis from trans,
at the allyl bond next to the double bond in the cis and in the trans group, and at the
alkyl bond linking the monomers together).

Finally, we stress that the proper choice of atomistic model for the solvent

molecules could be a tricky problem. Consider, e.g., the case of (supercritical)

carbon dioxide (CO2), which plays an important role in chemical technology [135–

139], e.g., as a blowing agent in the production of polymeric foams [137–139].

Despite longstanding efforts, there is no consensus in the literature on the

“best” effective potential describing the interaction between CO2 molecules

[131]. Figure 2 presents data for liquid–vapor coexistence [130] and the interfacial

tension [130] of CO2, and compares them with various pertinent theoretical pre-

dictions (adapted from [131]). There have been many proposals on how to fully

parameterize all-atom potentials of this linear molecule [140–152], and coarse-

grained models have also been proposed [53, 131, 153–155]. Figure 2 presents a

counterpart to Fig. 1, where experimental data for CO2 are compared to various

theoretical predictions obtained from the computer simulation of such models

[53, 131, 156]. It is clearly seen that there still occur significant disagreements

between most of these computations and the experimental data (and there is also

disagreement between the theoretical models themselves). It is also clear that for

molecules such as CO2, which carry sizable quadrupole moment, a reduction to

ordinary point particles interacting with LJ forces and nothing else (as attempted in

[53]) is not a good choice, while amending this simple model with a (spherically

averaged) quadrupolar interaction [131] yields very satisfactory results. When

one takes the full quadrupolar interaction into account [157, 158], no significant

improvement in the description of the equation of state is achieved, although

structural properties (such as orientational correlations among molecules) can be

accounted for more accurately [158]. Alternatively, one can get very accurate

description of equation of state data from computer simulation of a two-center

LJ model [153–155], but an atomistic interpretation of such a description is

also lacking.

For solvents such as ammonia (NH3) or hydrogen sulfide (H2S), it is important to

realize that such molecules carry a dipole moment m. If one uses an all-atom model,

it amounts to work with suitable partial charges on the sites of the atoms, and to deal

with Coulomb interactions between the atoms of different molecules. If one wants

to integrate hydrogen atoms in NH3 or H2S into an united atom, as done for CH2 or

CH3 groups or methane, one can work with the Stockmayer model (SM) where the

molecules are treated as point particles interacting with LJ plus dipolar forces,

r ¼ j~ri �~rjj, ~mi being an unit vector in the direction of the dipole moment (which

has the strength m):

VSMð~rÞ ¼ 4eSS
sss
r

� �12
� sss

r

� �6� �
þ m2

r3
~mi �~mj �

3

r2
~mi �~rð Þ ~mj �~r

� �� �
: (6)
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Fig. 2 Coexistence curve for CO2 in the temperature–density plane (a), vapor pressure at coexis-

tence (b), and surface tension versus temperature (c). Dashed curves are the experimental data,

while solid curves describe the prediction of the simple (truncated and shifted) LJ model (5), where

the critical temperature and density are adjusted to coincide with experiment to fix the two

parameters ess and sss, as for Fig. 1. Stars and crosses denote the results of [131] for the parameter

qðTcÞ that controls the strength of the quadrupolar interaction being chosen as qðTcÞ ¼ 0:387 or

qðTcÞ ¼ 0:47, respectively (see Sect. 2.2). Plus symbols and triangles are the result of atomistic

models called EPM and EPM2 [146]. Small circles near the pluses are the results for flexible

monomers [146], which give essentially the same results for the thermodynamic properties as the

model for rigid molecules. Big circles and squares are simulation results [156] for two ab initio

potentials [146, 150]. Note that the interaction parameters of the EPM2models have similarly been

rescaled to fit the critical density and temperature of the experiment as done in Fig. 1, and that

no prediction for the liquid–vapor surface tension from the atomistic models is available. From

Mognetti et al. [131]
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However, the slow decay of the dipole–dipole interaction in (6) (proportional

to r�3) makes the use of Ewald summation techniques necessary when one uses (6)

in a simulation. Thus, the computational effort of working with the full Stockmayer

potential (6) is comparable to the effort needed for all-atom models with partial

charges at the atoms.

As an example for the problems in obtaining an accurate description of the

thermodynamic properties of dipolar fluids from the computer simulation of atom-

istic models, Fig. 3 presents a comparison [55] of experimental data for H2S [130]

with a coarse-grained model [55] that we shall explain in Sect. 2.3 and various

simulations of atomistic models [159–163]. Again, one concludes that simple

versions of atomistic models do a rather poor job, whereas the more complicated

recent versions can provide a reasonable description of the coexistence data,

although (due to the use of Gibbs ensemble MC, GEMC, data) they neither yield

results close to criticality nor provide any information on the surface tension. The

coarse-grained model proposed in [55], based on a mapping of the SM (6) on an

Fig. 3 Coexistence densities,

coexistence pressure, and

interface tension of hydrogen

sulfide. The dashed lines are
experimental results [130].

Symbols are MC results of a

coarse-grained model (see

Sect. 2.3) using two different

values for the dipole moment

m, m ¼ 1:5 D and m ¼ 1:1 D,

respectively, and results of

various GEMC simulations of

atomistic models [159–163].

Model 1 depicts results

tabulated in [159] for a three-

atom model of H2S [160].

Model 2 shows results where

H2S is represented by a model

with four “atoms” [161].

Model 3 is a

reparametrization of model

2 in [159] and pol is a model

[162] that includes a

polarizable site (for a total

of five interacting “atoms”

per molecule). Finally, 3
unit is a recent [163]
reparametrization of a three-

site model, which also

includes a three-center LJ

interaction. From Mognetti

et al. [55]
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effective LJ model (see Sect. 2.3) overcomes both of these limitations if the

effective dipole moment m is adequately adjusted.

2.2 Coarse-Grained Models in the Continuum and on the Lattice

For long flexible polymer chains it has been customary for a long time [1, 2] to

reduce the theoretical description to the basic aspects such as chain connectivity

and to excluded volume interactions between monomers, features that are already

present when a macromolecule is described by a self-avoiding walk (SAW) on a

lattice [3]. The first MC algorithms for SAW on cubic lattices were proposed in

1955 [164], and the further development of algorithms for the simulation of this

simple model has continued to be an active area of research [77, 96, 165–169].

Dynamic MC algorithms for multichain systems on the lattice have also been

extended to the simulation of symmetric binary blends [15, 16]; comprehensive

reviews of this work can be found in the literature [6, 81, 82]. It turns out, however,

that for the simulation both of polymer blends [6, 9, 21, 82, 170, 171] and of

solutions of semiflexible polymers [121–123], the bond fluctuation model [76, 79,

80] has a number of advantages, and hence we shall focus attention only on this

lattice model.

Using the lattice spacing of the simple cubic lattice as the unit of length, a ¼ 1,

each coarse-grained macromolecule is represented as a chain of effective mono-

mers connected by bond vectors, which can be taken from the set fð	2; 0; 0Þ;
ð	2;	1; 0Þ; ð	2;	1;	1Þ; ð	2;	2;	1Þ; ð	3; 0; 0Þð	3;	1; 0Þg, including also

all permutations between these coordinates. Altogether 108 different bond vectors

occur, which lead to 87 different angles between successive bonds. Each effective

monomeric unit is represented by an elementary cube of the lattice, blocking all

eight sites at the corners of this cube from further occupation, thus realizing the

excluded volume interaction between the monomers. Allowing for two types

of polymers (A and B) in the system, it then is natural to also allow for (attractive)

interactions of somewhat longer range between any pair of monomers ða; bÞ. These
interactions in most cases were assumed to have the simple square well (SW) form:

Uab
SWðrÞ ¼

�eab 2 � r � rc;
0 r > rc:

	
(7)

In most cases, rc ¼
ffiffiffi
6

p
was used (so all neighbors in the first-neighbor shell in a

dense melt, defined from the first peak position in the radial pair distribution

function gðrÞ between monomers, are included [170–172]). The extremely short-

range case rc ¼ 2 was also used [21]; then monomers attract each other only when

they are nearest neighbors on the lattice. Of course, (7) also includes, as a special

case, the case of a polymer solution ða ¼ bÞwhere only a simple species of polymer

is present [173].
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In this model, one can also introduce effective potentials that depend on the bond

length b such as [121]:

UbðbÞ ¼ e0ðb� b0Þ2; (8)

and on the bond angle Y between successive bonds, e.g., [121, 123]:

UbendingðYÞ ¼ �fcosYð1þ ccosYÞ: (9)

In [121–123], the constants e0; b0; f , and c were chosen quite arbitrarily as

e0 ¼ 4; b0 ¼ 0:86 and c ¼ 0:03 (e0 and f are quoted in units of absolute temperature

kBT, kB being Boltzmann’s constant). On the other hand, if one chooses a bond

length potential [174, 175] defined as UbðbÞ ¼ 0 if b ¼ ffiffiffiffiffi
10

p
and UbðbÞ ¼ 1 other-

wise, a rather good model for the glass transition of polymers is obtained [84] due

to the resulting “geometric frustration” [174, 175]. Finally, we mention that occa-

sionally one finds in the literature (e.g., [176–179]) another version of the bond

fluctuation model, in which monomers take a single lattice site only and the bond

vectors are allowed to be fð	1; 0; 0Þ; ð	1;	1; 0Þ and sometimes also [178]

ð	1;	1;	1Þg. All permutations between these coordinates are included, but this

model will not be discussed further here because it has mostly only been applied to

study mesophase ordering of block copolymers. We stress that the advantage of the

bond fluctuation model [76, 79, 80] as described above is that at a volume fraction

of 1F ¼ 0:5 of occupied lattice sites, one reproduces both the single chain structure
factor (as described by the Debye function [8]) of polymer chains as well as the

collective structure factor of dense melts [175] qualitatively in a reasonable way.

If one uses a dynamic algorithm in which monomers are chosen at random, and

a lattice direction ð	x;	y;	zÞ is chosen at random, and a move of the monomer

by one lattice unit is attempted as a trial move according to the Metropolis MC

algorithm [18–20], then a qualitatively reasonable description of the polymer

dynamics is also obtained [80, 82, 175]. For short chains, the dynamics correspond

to the Rouse model [5, 8, 31] whereas, for long chains, reptation [5, 8, 31] is

observed since for the chosen bond lengths no bond crossing is possible [79, 80]. On

the other hand, in order to allow for a fast equilibration, moves can be introduced

(such as the slithering snake algorithm [82, 83] or monomeric jumps over larger

distances that allow for bond crossing [95]) that have no counterpart in the real

dynamics of polymers, but do not alter the static properties of the model. Therefore,

the bond fluctuation model has also been broadly used (e.g., [9, 180]) to simulate

the dynamics of spinodal decomposition [181, 182] of polymer blends.

We now turn to coarse-grained off-lattice models. One strategy is to stay as close

to the atomistic model as possible but to eliminate many degrees of freedom, e.g.,

for modeling alkane chains [183–185], both the bond length ‘ of C–C bonds and

the bond angle Y is fixed (‘ ¼ 1:54
�
A;Y ¼ 112�), but the torsional angle fijk‘ (3)

is kept as a variable. The advantage of such a model (with suitable choices of the

torsional and nonbonded potentials [185]) is that one can still make a direct

connection with polyethylene melts. Both local MC moves (where two subsequent
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monomers are rotated together to new positions, thus restricting the torsional angle

to 	 60� and 180�) and nonlocal ones (slithering-snake moves or “pivot rotations”

[165]) have been implemented [185]. However, for the application of MD techni-

ques (one of the principle advantages of off-lattice models in comparison with

lattice models of polymers is [81–84] that MD accounts better for dynamic proper-

ties) models without such constraints for bond lengths and angles are more conve-

nient. To avoid the small MD time step that the (rather stiff) potentials for bond

lengths and bond angles [(1) and (2)] necessitate, one uses coarse-grained bead–

spring models with rather soft “springs”. The most commonly used “spring poten-

tial” is the finitely extensible nonlinear elastic (FENE) potential [75, 78, 186, 187]:

UFENEðrÞ ¼ � k

2
R2
0ln 1� r2=R2

0

� �
; (10)

where the parameters k;R0 can be chosen as k ¼ 7, R0 ¼ 2 [186] or as k ¼ 30;
R0 ¼ 1:5 [84], for instance when one chooses a (truncated and shifted) LJ potential
[such as (4) and (5)] and measures lengths in units of s and energies in units of epp
(we use here indices “pp” to distinguish these interactions from those of the

solvent). Note that in this model the LJ potential [(4) and (5)] acts between

any pair of monomers, including nearest neighbors along a chain; thus the total

potential for the length of an effective bond is in fact the sum of (5) and (10),

Ubond�lengthðrÞ ¼ Uij þ UFENEðrÞ, whereas between nonbonded pairs only (5)

acts. Although the minimum of (5) occurs at Uijðr ¼ rminÞ with rmin ¼ 21=6spp,
the minimum of the bond potential occurs at [84] Ubond�lengthðr ¼ r0minÞ with

r0min � 0:96spp. The fact that rmin 6¼ r0min and that the ratio rmin=r
0
min does not fit to

any simple crystal structure is responsible for the occurrence of glass-like freezing-

in of this bead–spring model at low temperatures. At densities rs3pp ¼ 1, the glass

transition occurs roughly at kBTg=epp � 0:4 [84], whereas the Y-temperature (i.e.,

the temperature at which in the dilute limit very long bead–spring chains collapse

into a dense globule) is much higher, namely kBY=epp � 3:3 [10]. Thus, for many

applications of the bead–spring model based on (4), (5) and (10), the glass-like

behavior at low temperatures does not restrict its use in computer simulations. It

has the advantage that both MC and MD methods are readily applicable for its

study [10, 84].

This bead–spring model is an appropriate description for a very flexible chain,

but an analog of the bond angle potential [(2) in the atomistic model or (9) for the

bond fluctuation model], is not included here for simplicity. However, when one

adjusts epp;spp to the vapor–liquid critical temperatures and densities of short

alkanes, as done for methane (Fig. 1), one obtains a rather good description of

vapor–liquid coexistence data and the interfacial tension over a broad temperature

range [56] (Fig. 4). Although it is known that alkanes do have a bond angle potential

for the C–C bonds, it is ignored here because the simple bead–spring model based

on (10) makes sense only if the effective monomers correspond to larger units

formed by integrating several (e.g., about n ¼ 3) carbon atoms in one unit. Thus,

the bond potential Ubond�lengthðrÞ defined above does not represent a single (stiff!)

Computer Simulations and Coarse-Grained Molecular Models Predicting 343



C–C (chemical) bond, but rather represents a (softer!) effective bond between

these effective units (Fig. 5). In this spirit, the (elongated) molecule C3H8 is

still described by an effective point particle, whereas C16H34 is represented by a

pentamer (Fig. 5). Thus, Fig. 5 gives a motivation for the use of these very simple

coarse-grained bead–spring models, which are computationally orders of magni-

tude faster to simulate than a fully atomistic model. Note that one gains a factor of

ten in the number of atoms when going from C16H34 to a pentamer, and also that for

Fig. 4 Liquid–vapor coexistence densities of short alkanes in the temperature–density plane

(a), corresponding coexistence pressure (b), and interfacial tension (c). Symbols are MC results,

solid curves are experimental results [130], and dashed curves are predictions using the TPT1-

MSA, employing the same choices of epp;spp as an input as for the MC simulations. From

Mognetti et al. [56]
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the softer potentialUbond�lengthðrÞ a significantly larger MD time step can be applied

than when one uses (2), (3), etc.

Of course, when one deals with cooperative phenomena in a system containing

a great number of very long chains, even the use of the bond fluctuation model or

the bead–spring model in simulations is a big effort. So the question arises: is even

a much coarser view of polymers useful? In the extreme case, a whole polymer

chain is represented by a (very soft) effective particle. Murat and Kremer [188]

suggested replacing the chains by soft ellipsoidal particles that can overlap strongly

in the melt to take into account the fact that in the volume V taken by one chain

of length N and radius Rg / N1=2; V / N3=2, there is space for a large number

ð/ N1=2Þ of other chains because the monomer density of the considered chain

scales as r / N=V / N�1=2.

The idea to coarse-grain the description of a system containing a very large

number of polymer chains such that each chain is represented by a single effective

particle dates back to the Asakura–Oosawa model [189–191] of polymer–colloid

mixtures. In this model, the colloidal particles (e.g., cross-linked polystyrene

spheres with radii in the size range 100 nm < Rc < 1 mm) are represented as hard

spheres, which have no other interactions than excluded volume interactions

between themselves and with the polymers. The polymers are taken as soft spheres

of radius Rp (which is thought to be of the order of the gyration radius of the chains)

and are treated like particles of an ideal gas (i.e., they may overlap with no energy

cost). The solvent molecules of these colloidal dispersions are not considered

explicitly. This model is extremely popular in colloid science (e.g., [192–194])

Fig. 5 Illustration of the interpretation of the coarse-grained models for polymers and solvent: In

the case of short alkanes, typically three C–C bonds are taken together in one effective unit (dotted
circle). The oligomer C16H34, containing 50 atoms or 16 united atoms, is thus reduced to an

effective chain of five beads. Neighboring beads along a chain interact with a combination of LJ

and FENE potentials. Nonbonded beads only interact with a single LJ potential. The solvent

molecule (CO2 in the present case) is represented by a point particle (in the case of CO2 or C6H6, it

carries a quadrupole moment; in the case of NH3 or H2S, it carries a dipole moment). From Yelash

et al. [234]
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because it predicts the phase diagram of these systems in qualitative agreement with

experiment (e.g., [194, 195]). As is well known, the depletion attraction between

the colloidal particles caused by the polymers can cause (entropically driven) phase

separation between polymers and colloids. Due to the easy observability of the

large colloidal particles, such systems have become model systems for the study of

phase separation and interfacial phenomena (see, e.g., [194–198]).

Of course, the assumption that polymer coils can interpenetrate each other in

solution with no free energy cost is approximately true at best in a solvent under

theta conditions [3–8], but not in a good solvent. Thus, there have been numerous

attempts to include the resulting soft repulsive interaction between the effective

spheres representing polymers in a good solvent [199–204]. For example, Zausch

et al. [204] made a simple choice for the polymer–polymer potential that was very

convenient from the computational point of view, namely:

Upp
ij ðrÞ ¼ epp 1� 10 r=rcð Þ3þ15 r=rcð Þ4�6 r=rcð Þ5

h i
; (11)

which vanishes at r ¼ rc; also, the force is continuous there. This potential is

essentially a polynomial expansion of a cosine function. For the colloid–colloid

and colloid–polymer interactions, standard Weeks–Chandler–Anderson potentials

[57, 87] (i.e., LJ potentials cut at the minimum and shifted to zero there) were used.

Figure 6 shows the phase diagram of this model and compares it to the corres-

ponding phase diagrams of the simple Asakura–Oosawa model [204], for the case

of Rp=Rc ¼ 0:8. One notes that both phase diagrams are very similar to each other

(and to corresponding experimental data, e.g., [195]). Thus, one sees from this

example once more that the phase behavior can be insensitive to structural details;

what matters is a sufficiently accurate description of effective potentials.

2.3 Mapping Atomistic Models to Coarse-Grained Models

In Sect. 2.1, it was argued that the use of atomistic models employing full chemical

detail might need enormous computer resources in many cases and hence would not

often be economical. In Sect. 2.2, we have seen that coarse-grained models, which

are by far more economical for use in computer simulations, can yield useful

information on the phase behavior of various systems, if one has good enough

effective potentials. In Sect. 2.2, it was also argued that a good description of the

phase behavior over a wide range of densities and temperatures is obtained if the

effective potentials are chosen such that the experimental critical temperature and

density (if known) are correctly reproduced. Although critical point data are

available [130] for small molecules and oligomers, no such information exists for

long macromolecules. Thus, it is very desirable to predict accurate effective inter-

actions by other means: one very popular approach [97–119] attempts to construct

coarse-grained models systematically from atomistic ones by integrating-out local
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degrees of freedom but keeping suitable degrees of freedom fixed at the scale of the

coarse-grained model.

This very promising approach is still under development [104–119]; for this

reason we shall not attempt to give an exhaustive review, but rather confine

ourselves to the flavor of the approach, using as a specific example the case of

1,4-polybutadiene, for which well-established atomistic potentials exist [134].

In most cases [97–119], it has been useful to define the coarse-grained repeat

units such that they comprise n ¼ 3� 5 C–C bonds along the backbone of the

chain. This approach has also been used here (Fig. 7), such that one coarse-grained

unit represents one butadiene monomer, hence containing four united atoms. The

thickness of a polybutadiene chain is roughly 4:5
�
A, which agrees with the size of

the polybutadiene monomer [111], and hence this mapping is plausible from simple

geometric considerations. In this mapping, no distinction is made between cis and
trans units on the coarse-grained scale, so that on that scale a homopolymer model

results.

One needs effective potentials for the degrees of freedom on the coarse-grained

scale: the length L of the bond between two coarse-grained monomers, the angleY
between two subsequent bonds, and the nonbonded interaction Ucg

ij ðrÞ between the
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Fig. 6 Phase diagram of colloid–polymer mixture models in the plane of variables colloid volume

fraction �c ¼ rcð4pR3
c=3Þ, where rc is the density of colloidal particles, and polymer volume

fraction �pf�p ¼ rpð4pR3
p=3Þg, where rp is the density of polymer chains, for the Asakura–

Oosawa model. In the case of soft potentials, such as (10), effective radii are obtained from the

Barker–Henderson approach, see [204]. Open circle shows the critical point of the Asakura–

Oosawa model, and the closed circle is the critical point of the model with e ¼ 0:625. Adapted
from Zausch et al. [204]
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coarse-grained (cg) effective monomers i,j. The intramolecular potentials UbondðLÞ
and UangleðcosYÞ can be found by the “Boltzmann inversion” [105–110] from the

probability distribution PðLÞ, PðcosYÞ of these degrees of freedom sampled from a

simulation of the full atomistic model. For this simulation of the full atomistic

model, a relatively short run of a relatively small system might suffice, at least in

favorable cases. Thus [117]:

UbondðLÞ ¼ �kBTln½PðLÞ
; (12)

UangleðcosYÞ ¼ �kBTln½PðcosYÞ
: (13)

Figure 8 shows the resulting potentials at three temperatures. In principle,

effective potentials obtained from the Boltzmann inversion [(12) and (13)] will

contain entropic contributions and, hence, in general must be state-point dependent;

however, Fig. 8 suggests that in favorable cases this dependence is small.

However, it is difficult to obtain the nonbonded interaction from the same route:

in addition, atomistic potentials for nonbonded interactions are often rather unreli-

able. Thus, the form of the nonbonded interaction was chosen to be a priori fixed to

be of the LJ type:

Ucg
LJðrÞ ¼ 4epp ðspp=rÞn � ðspp=rÞm


 �
(14)

C

C C

C

C

C

C

CC

CC

CC

CC

C

Fig. 7 Definition of coarse-grained repeat units (symbolized by circles) for the 1,4-polybutadiene

chain. The atomistic model is an united atom model of a random copolymer of 45% cis and 55%

trans content, without vinyl units. Bond lengths are constrained ð‘ ¼ 1:53
�
A for the CH2–CH2 bond,

‘ ¼ 1:5
�
A for the CH2–CH bond and ‘ ¼ 1:34

�
A for the CH–CH bond). From Strauch et al. [117]
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but it is no longer required that n ¼ 12 and m ¼ 6. Rather, one can argue that on the

coarse-grained level, the nonbonded interaction should also be somewhat softer,

and hence r ¼ 7;m ¼ 4 is a better choice [205]. In order to determine the para-

meters epp; spp of (14), Strauch et al. [117] referred to a simulation at zero pressure

of the full atomistic model to record the temperature dependence of the density

(Fig. 9a) [206]. Simulating also the coarse-grained model by NpT MC methods for

Fig. 8 Effective bond length potential UbondðrÞ=kBT of the coarse-grained model for 1,4-poly-

butadiene (upper graph) and effective bond angle potential UangleðcosYÞ=kBT (lower graph).
Three temperatures are included, as indicated. From Strauch et al. [117]
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Fig. 9 (a) Zero pressure isobar in the 1,4-polybutadiene melt. The line shows MD results from the

chemically realistic model. The symbols show average densities in theN pT MC simulation for the

optimal choices of parameters for different versions of the LJ-type interaction. From Strauch et al.

[117]. (b) Comparison between experimental data for polybutadiene melts in the temperature

range from 299 to 461 K (symbols) and calculations using PC-SAFT (dashed curves) or TPT1-
MSA (solid curves) models. Parameters of the fits are quoted in the figure, where m is the effective

degree of polymerization, which is also treated as a fit parameter; and s and e refer to a nonbonded
LJ (12,6) potential). The bond length potential is the FENE þ LJ potential of Sect. 2.2, and no

bond angle potential is used. Adapted from Binder et al. [120]
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various choices of epp; spp, one finds the optimal choices of parameters for different

versions (i.e., choices of n and m) of the LJ interaction. In all cases, the values

obtained for s and e are completely reasonable, s being 4:7 or 4:8
�
A, and e being

between 230 and 410 K.

Alternatively, one can try to obtain parameters for e and s through fitting data for

the density r ¼ rðp; TÞ taken from experiment to a model calculation (Fig. 9b).

One notes that the TPT1-MSA equation of state, which does not include a bond-

bending potential and uses the (12,6) LJ potential rather than the (7,4) LJ potential

of Strauch et al. [117], can fit a whole family of curves over a wide range of

temperature and pressure. Since for the large molecular weight of 1,4-polybutadi-

ene used in the experimental study, all the data fall far below the (unaccessible!)

vapor–liquid critical point of the polymer, the inaccuracy of TPT1-MSA near

the critical point (noted in Figs. 1 and 4) is irrelevant for the present purposes.

For the large chain length ðN � 1100Þ TPT1-MSA is much more convenient than

using computer simulation. The LJ parameters obtained from this treatment

ðs ¼ 4:12
�
A; e ¼ 462:7 KÞ are in the “same ball park” as those from systematic

coarse-graining (due to the use of the FENE potential as a bond length potential in

TPT1-MSA and the lack of a bond-bending potential, we cannot expect to find

precisely the same parameters, of course!).

Figure 9b also demonstrates that another approximate equation of state widely

used in the literature, namely PC-SAFT [51], provides a less satisfactory fit of the

experimental data and yields less plausible interaction parameters [120]. It has been

shown [54] that, at high pressures, the PC-SAFT calculation predicts too large a

density as a result of a spurious liquid–liquid-type phase separation inherent in this

equation of state model.

In any case, Figs. 4 and 9 give some evidence that simple coarse-grained models

can describe the equation of state of both oligomers and polymer melts reasonably

well. Being interested in polymer-plus-solvent systems, we also need (as already

discussed) a good coarse-grained model for the solvent. Figures 1–3 show that such

models exist and can describe the experimental data over a wide range of tempera-

tures and pressures rather well. In the case of methane (CH4), modeled as a simple

point particle (Fig. 1) with LJ interactions, the choice of parameters for the coarse-

grained model is a nontrivial matter when dipolar or quadrupolar interactions also

are present, as in the case of H2S (Fig. 3) or CO2 (Fig. 2). In the dipolar case, a

popular coarse-grained model is the SM (6), and an analogous model with quadru-

pole–quadrupole interactions is [131, 157, 158]:

UQQðrÞ ¼ 4ess
sss
r

� �12
� sss

r

� �6
� 3

16
qF

sss
r

� �5
fQQ Yi;Yj;fi;fj

� �� �
; (15)

where qF ¼ Q2=esss5ss is related to the quadrupole moment Q of the molecules,

and the function fQQ depends on the polar angles ðYi;fi) and ðYj;fjÞ of both

molecules (taking the direction of ~rij ¼~ri;�~rj as the z-axis). Specifically, the
function fQQðYi;Yj;fi;fjÞ can be derived to be [207]:
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fQQðYi;Yj;fi;fjÞ ¼ 1� 5 cos2 Yi � 5 cos2 Yj þ 2 sin2 Yj cos
2 ðfi � fjÞ

� 16sinYicosYisinYjcosYjcosðfi � fjÞ :
(16)

However, since for many cases of practical interest the absolute strength of the

multipolar interactions at typical nearest and next-nearest neighbor distances in

the fluid is much weaker than the LJ interactions, one can follow the idea of

Müller and Gelb [208] to treat the multipolar interaction only in spherically

averaged approximation:

UeffðrÞ ¼ �ðkBTÞln exp �Uðr; fYi;figÞ=kBT½ 
h ifYi;fig : (17)

The isotropically averaged dipolar interaction can then be cast into the form:

Ueff
D ¼ 4ess

sss
r

� �12
� 1þ lð Þ sss

r

� �6� �
; (18)

with:

l ¼ 1

12

m4

esss6sskBT
� lcTc=T ; (19)

where m is the dipole moment (cf. (6)). Similarly, the isotropically averaged

quadrupolar interaction becomes:

Ueff
Q ¼ 4ess

sss
r

� �12
� sss

r

� �6
� 7

20
q

sss
r

� �10� �
; (20)

where:

q ¼ Q4= esss10ss kBT

 � ¼ qcðTc=TÞ : (21)

Note that (18)–(21) can also be justified in terms of a perturbation expansion of

the dipole–dipole or quadrupole–quadrupole part of the interaction in second order

in inverse temperature.

Obviously (18) can be interpreted as a LJ potential with renormalized

parameters:

Ueff
D ¼ 4~e ð~s=rÞ12 � ð~s=rÞ6

h i
; (22)

with ~e ¼ essð1þ lÞ2, ~s6 ¼ s6ss=ð1� lÞ. Notice that l is proportional to

inverse temperature and hence ~e and ~s are temperature-dependent. Using the

knowledge of critical properties for the standard LJ model in three dimensions,
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T�
c ¼ kBTc=~eðTcÞ ¼ 1:312; r�c ¼ rc½~sðTcÞ
3 ¼ 0:316 [209], we can obtain immedi-

ately ~eðTcÞ and ~sðTcÞ by requiring that Tc ¼ Texp
c ; rc ¼ rexpc :

~eðTcÞ ¼ kBT
exp
c =T�

c ; ~sðTcÞ ¼ ðMmolr�c=NArexpc Þ1=3 : (23)

Here, a factor Mmol=NA was introduced, Mmol being the molar mass of the

material and NA Avogadro´s number, to convert to the units normally used. With

a little algebra, one finds from (19), (22), and (23) an equation for lc in terms of

experimental properties [55]:

lc ¼ lc0=ð1� lc0Þ; lc0 ¼ m4= 12~eðTcÞ~sðTcÞ6kBTexp
c

h i
(24)

together with:

ess ¼ ~eðTcÞð1� lc0Þ2; s6ss ¼ ½~sðTcÞ
6=ð1� lc0Þ : (25)

Of course, this spherical average of the dipolar interaction makes sense only if

the dipolar interaction is small enough in comparison with the LJ interaction: with

(25) we can now quantify this condition as lc0 � 1. Figure 10a, shows a plot of lc
versus lc0, including a number of dipolar fluids using in most cases two values for

m, one being the real dipole moment of the molecule and the other value being based

on a (larger) effective dipole moment. This yields a reasonable fit for the equation

of state. The need to “renormalize” the dipole moment to be used in the Stockmayer

potential (6), indicates the inaccuracy of the latter because of additional steric

interactions between the molecules, polarization effects, etc. As shown already in

Fig. 3, a modeling based on the simple equations (18), (19), and (22)–(25) yields a

reasonably accurate description of the equation of state of fluids with (weak) dipolar

interactions.

In the case of quadrupole–quadrupole interactions, the counterpart of (18) is:

Ueff
Q ¼ 4ess sss=rð Þ12� sss=rð Þ6�ð7=20Þq sss=rð Þ10

h i
; (26)

with:

q ¼ Q4= esss10ss kBT

 � ¼ qcTc=T: (27)

Obviously, in the quadrupolar case the effective potential is not simply a

renormalized LJ potential, as in the dipolar case, and hence the estimation of the

phase diagram cannot be reduced to the standard LJ problem. However, Mognetti

et al. [131] solved this problem by treating qc as an arbitrary additional parameter in

the Hamiltonian, and computing by MC techniques “master curves” TcðqcÞ=Tcð0Þ
versus qc and rcðqcÞ=rcð0Þ versus qc, respectively, The conditions that match the
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simulation critical point with the experimental one are fully analogous to (23),

namely:

essðqcÞ ¼ kBT
exp
c =T�

c ðqcÞ ; s3ssðqcÞ ¼ r�cðqcÞMmol=NArexpc : (28)

The self-consistent solution of (27) and (28) can again be cast in the form of a

master curve, where qc is described as a function of a parameter lexp (Fig. 10b),

with:

lexp ¼ Q4 rexpc NA=Mmol


 �10=3
=ðkBTexp

c Þ2 : (29)

In this case, the experimental values of Q typically yield a rather good des-

cription of the equation of state of the pure materials. However, when one con-

siders mixtures, one finds that a slight enhancement of Q (again possibly due to

Fig. 10 (a) Universal plot of the parameter lc of the isotropically averaged dipolar interaction

versus the material parameter lc0 (24). For a few molecules, the parameters lc and lc0 are

indicated by symbols, using both the value of lc0 based on the experimentally reported dipole

moments [130] (NH3: mexp ¼ 1:482 D; H2S: mexp ¼ 1:1 D; N2O: mexp ¼ 0:166 D; CO: mexp ¼
0:75 D) as well as the effective dipole moment proposed in [55]. All dipole moments are in

Debye units. (b) Universal plot of the model parameter qc of the isotropically averaged quad-

rupolar interaction versus the material parameter lexp (27)–(29). As an example, the estimates of qc
are shown by symbols, using the experimentally measured quadrupole moment Q of these

materials to estimate lexp. The quadrupole moments quoted in the figure are given in units of D

Å. From Mognetti et al. [55, 131]
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polarization effects, for instance) yields better results. For example, Mognetti et al.

[56] recommended for CO2 the use of qc ¼ 0:470 instead of qc ¼ 0:387 (resulting

from the experimental value of Q [130]); for benzene ðC6H6Þ the best choice is

qc ¼ 0:38 instead of qc ¼ 0:247 (resulting from the experimental value [130]).

At the end of this section, we mention the estimation of interaction parameters

between polymer and solvent, or (more generally) between two species A and B in a

binary mixture. The simplest possibility is to use the standard Lorentz–Berthelot

combining rules [210]:

sAB ¼ ðsAA þ sBBÞ=2 ; eAB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eAAeBB

p
: (30)

Of course, (30) is somewhat arbitrary and ad hoc, and many recipes to amend

(30) by correction factors can be found in the literature. For example, one may

modify the square root rule in (30) by a correction factor x that is adjusted in order

to improve the agreement with experiment [10, 53, 210]:

sAB ¼ ðsAA þ sBBÞ=2; eAB ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eAAeBB

p
: (31)

Of course, other choices of combining rules are considered in the literature [210–

214] but are not considerated here. In view of the fact that there are good reasons for

also including three-body terms into the description of intermolecular interaction

(see, e.g., [215, 216]), using simplified pair potentials of the type described in this

section should only be considered as a reasonable approximate first step on the way

towards a more rigorous modeling of interactions in real materials.

3 Basic Aspects of Simulation Methods

3.1 Molecular Dynamics

In principle, the idea of MD simulations is very simple: one solves Newton’s

equations of motion for the interacting many-body system numerically on a com-

puter. Thus, if Uðf~rigÞ is the total potential acting on particle i (with mass mi) and

position~riðtÞ at time t, one has to solve:

mi
d2

dt2
~riðtÞ ¼ �riU f~rigð Þ ; i ¼ 1; . . . ;N ; (32)

where N is the number of particles (atoms or “pseudo-atoms” such as CH2 beads,

etc.) in the system in the volume V (typically a L� L� L box with periodic

boundary conditions). Equation (32) is a description in terms of classical mechanics

but, invoking the ergodicity hypothesis of statistical mechanics [17], one expects

that time averages:
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�A ¼ ð1=tobsÞ
Z tobs

0

Aðf~riðtÞgÞdt; tobs ! 1; (33)

of observables Aðf~rkðtÞgÞ in the system are equivalent to ensemble averages in the

microcanonical ðNVEÞ ensemble [17], where E is the total internal energy of the

system:

�A ¼ hAðf~rigÞiNVE : (34)

The fact that the microcanonical ensemble average appears here is, of course,

due to the fact that the total energy E is conserved for (32). In practice, however, the

numerical integration of (32) is not exact and one has to discretize the time axis in

terms of finite time steps Dt. Thus, errors may accumulate that violate the conser-

vation law for energy in an undesirable way. These cumulative errors cannot be

suppressed entirely, but minimized using symplectic integration schemes [217],

such as the Verlet algorithm [81–83, 87], in which the system coordinates f~riðtÞg
are propagated as follows:

~riðtþ DtÞ ¼ 2~riðtÞ �~riðt� DtÞ þ~aiðtÞðDtÞ2 þOððDtÞ4Þ ; (35)

where ~aiðtÞ ¼ �rUðf~riðtÞgÞ=mi denotes the acceleration that acts at the ith
particle at time t. Of course, Dt in (35) has to be kept small enough to reach

sufficient accuracy (for an atomistic model, “small enough” means a Dt in the

range of 1–2 fs, i.e., 10�15 s!).

A useful modification of (35) is the so-called Velocity–Verlet algorithm. It

explicitly incorporates the velocity~viðtÞ of the particle:

~riðtþ DtÞ ¼~riðtÞ þ~viðtÞDtþ 1

2
~aiðtÞðDtÞ2 ; (36)

~viðtþ DtÞ ¼~viðtÞ þ 1

2
~aiðtÞ þ~aiðtþ DtÞ½ 
Dt; : (37)

This algorithm produces integration errors of the same order as the original

Verlet algorithm. Its advantage lies in symmetric coordinates for “past” and “future”,

and it also conserves the phase space volume; i.e., Liouville´s theorem [17] is obeyed.

Although energy is not conserved perfectly on a short time scale, there are no

systematic energy drifts for large time scales. There exist further suggestions (e.g.,

the “leapfrog method” [218]) or other algorithms such as predictor–corrector meth-

ods [219] that are more accurate at short times but that violate Liouville´s theorem.

As these methods are not symplectic, they are less in use today. We also note that

rigid constraints (rigid bond lengths, rigid bond angles, etc.) also require different

algorithms [87, 218], but this topic is not considered here.

We rather focus on another aspect, namely the desirable choice of statistical

ensemble. Although statistical mechanics [17] asserts that in the thermodynamic
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limit ðN ! 1Þ all statistical ensembles are equivalent and can be transformed into

each other via Legendre transformations, for finite N these ensembles are not

equivalent [220]. If one wishes to study phase transition and phase coexistence,

the use of the microcanonical ensemble is somewhat cumbersome [221].

There have been many methods suggested to carry out MD simulations at

given temperatures T rather than at given energy E. The first approach that was

used was based on velocity rescaling, e.g., the velocities were changed until all

velocities satisfied the relation following from the Maxwell–Boltzmann distribu-

tion, mih~v2i i ¼ 3kBT=2. Of course, such a velocity rescaling simulation destroys

one of the advantages of MD, namely the possibility to get detailed accurate

information on time-displaced correlation functions hAðf~riðtÞgÞAðf~rkðtþ t
0 ÞgÞi of

the variables; moreover this technique does not lead to a distribution of variables

according to the canonical NVT ensemble of statistical mechanics [87]. Alterna-

tively, one can couple the system to “thermostats” [87, 218]. Although the popular

Berendsen thermostat [222] does not correspond strictly to the NVT ensemble,

and hence we do not recommend its use, the correct NVT ensemble is obtained

implementing the Nose–Hoover thermostat [223, 224]. In this technique, the

model system is coupled to a heat bath, which represents an additional degree

of freedom represented by the variable zðtÞ. The equation of motion then

becomes:

d~ri=dt ¼~viðtÞ; mid~viðtÞ=dt ¼ �riUðf~rjgÞ � zðtÞmi~viðtÞ ; (38)

so this coupling enters like a friction force. However, zðtÞ can change sign because

it evolves according to the equation:

dzðtÞ=dt ¼ ð2MbÞ�1
XN
i¼1

mi~v
2
i � 3N kBT

 !
: (39)

Mb is interpreted as the “mass of the heat bath”. For appropriate choices of Mb, the

kinetic energy of the particles does indeed follow the Maxwell–Boltzmann distri-

bution, and other variables follow the canonical distribution, as it should be for the

NVT ensemble. Note, however, that for some conditions the dynamic correlations

of observables clearly must be disturbed somewhat, due to the additional terms in

the equation of motion [(38) and (39)] in comparison with (35). The same problem

(that the dynamics is disturbed) occurs for the Langevin thermostat, where one adds

both a friction term and a random noise term (coupled by a fluctuation–dissipation

relation) [75, 78]:

mi
d2~riðtÞ
dt2

¼ �riU f~riðtÞgð Þ � z
d~ri
dt

þ ~WiðtÞ ; (40)

h~WiðtÞ � ~Wjðt0 Þi ¼ dijdðt� t
0 Þ6kBTz : (41)
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Equation (41) ensures that the time averages resulting from (40) are equivalent to

the canonical ensemble averages. The algorithm is rather robust, and very useful if

one is just interested in static averages of the model. However, when one considers

the dynamics of polymer solutions, one must be aware that the additional terms in

(40) seriously disturb the hydrodynamic interactions, for instance. This latter problem

can be avoided by using a more complicated form of friction plus random force, the

so-called dissipative particle dynamics (DPD) thermostat [225–227].

However, in order to obtain the strictly correct dynamics of the system as it is

described by Newton´s equations, (32) in the canonical ensemble, the proper proce-

dure is to generate a number of initial states in the presence of a (correct) thermostat

(such as Nose–Hoover, Langevin, or DPD thermostats) and use these states as initial

states of trajectories generated in strictly microcanonical MD runs. Alternatively, one

also can generate a number of initial states in theNVT ensemble (typically it suffices

to average over ten such independent states) by MC methods [204, 228, 229].

Although comprehensive studies of the static and dynamic properties of binary

mixtures undergoing phase separation have been done for binary LJ mixtures [228,

229], and a soft variant of the Asakura–Oosawa model for colloid–polymer mixtures

[204], we are only aware of a single study of the dynamics of chain molecules in

binary liquid n-alkane mixtures [69]. Well-relaxed atomistic configurations of binary

mixtures of united atom models were produced with a specialized MC algorithm

including scission and fusion moves [230], and self-diffusion then was studied using

MD runs based on the Velocity–Verlet algorithm with a multiple time step method

(the reversible reference systems propagator algorithm, rRESPA [231, 232]). How-

ever, the considered mixtures are fully miscible at the temperatures of this study

[intermolecular interactions were modeled by (30)], and hence this work is somewhat

out of the scope of the present review, which focuses on the study of the equation of

state and phase diagrams of polymer-containing systems.

It should be noted that a study of phase behavior by MD methods in the NVT
ensemble is not straightforward, due to various limitations of computer simulation

methods in general [233]. If one deals with relatively small molecules and the

interactions are short range, it is nowadays possible to run a MD simulation in the

two-phase coexistence region long enough until “macroscopic” phase separation is

achieved, i.e., phase separation on the scale L of the simulation box, so that a slab-

like configuration results, see Figs. 11–13. Due to the effect of the periodic

boundary conditions of a cubic L� L� L box, in the final equilibrium configura-

tion the interfaces are (on average) planar and parallel to an L� L surface of the

simulation box, provided the volume fractions of both coexisting phases are

approximately equal, as was the case for the quench in Fig. 12. If such an

equilibrium state of coexisting bulk phases can be achieved, it is possible to record

the density profiles of both constituents across the interfaces (Fig. 13) and, there-

fore, obtain information both on the properties of the bulk coexisting phases (which

in this case have already been determined byMCmethods [10, 53], see Fig. 12) and

on interfacial properties. For example, by recording the pressure tensor across the

interface and using the virial theorem [87, 88], it is possible to estimate the

interfacial tension from the anisotropy of the pressure tensor [235]. This approach
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Fig. 11 Snapshots (a–e)of the

configuration of a mixture

resulting from simulation of

a pressure quenching

experiment, see Fig. 12, for

the model of hexadecane

dissolved in carbon dioxide,

cf. Fig. 5. In this model, the LJ

parameters of both C16H34 and

CO2 are fitted to the respective

critical temperatures and

densities, while intermolecular

interactions were described by

(31) with x ¼ 0:886 [10]. The

chosen temperature was

T ¼ 486 K, and the pressure

quench was realized by a

volume increase, so that the

density decreased from a value

r� ¼ 0:8 (in LJ units using spp
as length scale) to r� ¼ 0:45
at time t ¼ 0 (starting from a

well-equilibrated state in the

one-phase region). The

snapshots were taken at times

0 (the initial state before the

quench)(a), 10 (b), 100 (c),

1000 (d), and 4000 t (e) after
the quench. t is the MD time

unit (t ¼ sppðm=eppÞ1=2.
Masses of CO2 and effective

monomers are both taken as

m ¼ 1). The quench refers to a

mole fraction of CO2 of

x ¼ 0:6, and the simulation

box contained in total

N ¼ 435; 000 particles. The

inset in (c) shows an enlarged

region of size 20� 20� 5s3,
marked by the rectangle in the
left-bottom corner. Gray
spheres represent the solvent
molecules (CO2) and dark
spheres the effective beads
of C16H34 (for clarity no

bonds connecting these

beads are shown). From

Yelash et al. [234]
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Fig. 12 Isothermal slice through the phase diagram at T ¼ 486 K in the pressure–mole fraction

plane of the model for the C16H34–CO2 mixture as described in the caption of Fig. 11. The

coexistence curve between the polymer-rich phase (left) and CO2 supercritical vapor (near x ¼ 1,

right) has been estimated both by MC [10, 53] (curve connecting the open circles) and by TPT1-

MSA [10, 53]. Dotted curves are the spinodal curves predicted by TPT1-MSA. The closed black

circle shows the critical point obtained by MC; the gray circle shows the critical point obtained by

TPT1-MSA. Note that TPT1-MSA significantly overestimates the unmixing tendency near the

critical pressure, but is reasonably accurate for pressures p < 200 bar. The snapshots of slices

through the simulation box connected by arrows indicate the quenching experiment and the

resulting structure evolution in the system. From Yelash et al. [234]

Fig. 13 Left: Density profiles of carbon dioxide and hexadecane across the two interfaces in a box
of linear dimension L ¼ 98:88spp. Densities are quoted in LJ units ðr� ¼ rspp). The dotted
ellipses highlight the interfacial adsorption of CO2 at the polymer–CO2 vapor interface. Right:
The snapshots show L� L� 5s slices where the positions of the CO2 molecules (lower image)
and the polymer (upper image) are shown separately. Note that a few hexadecane molecules are

dissolved in the vapor phase as well (this finite solubility in the gas decreases rapidly with

increasing polymer chain length)
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of getting both bulk densities and the interfacial tension of coexisting liquid and

vapor phases has demonstrated its power for simple liquids [236], although we are

not yet aware of applications to polymer-containing systems. However, alternative

methods for estimating the interfacial tension and for analyzing the capillary wave

spectrum [237–240] of interfacial fluctuations, and the system size dependence of

interfacial widths [237–240], have been used both for the study of interfaces in

lattice models of symmetric polymer mixtures [237, 238] and for off-lattice models

of polymer solutions [239] and colloid–polymer mixtures [240]. These latter

techniques are preferable when the interfacial tension is rather small.

The technique to study phase coexistence via MD by simulating phase separa-

tion kinetics in the NVT ensemble until equilibrium is established [234] becomes

cumbersome near critical points, and in any case it requires the simulation of very

large systems over a large simulation time. In addition, this method is hardly

feasible when the model systems contains long polymers – their diffusion simply

is too slow [5, 6, 8, 9, 31]. Experience with the simulation of spinodal decomposi-

tion in lattice models of polymer mixtures [9, 180, 241] shows that only the early

stages of phase separation are accessible, meaning that the method is unsuitable for

studying the equilibrium states of well phase-separated systems.

An alternative technique to study phase coexistence in the NVT ensemble

via MD was applied by Bartke and Hentschke [242], who simulated in rather

small systems the van der Waals-like loop in the pressure versus volume isotherm

and estimated the coexisting phases from the Maxwell construction, exemplifying

the technique for the Stockmayer fluid (6). As usual, the pressure in NVT simula-

tions is accessible from the virial theorem [87, 88]. It should be noted, of course,

that this “loop” in the isotherm, for systems with short-range interactions, has

nothing to do with the loop resulting in the van der Waals equation of state from

a mean-field-type approximation, but rather reflects finite size effects on phase

coexistence [243–245], if equilibrium in the simulation box is reached. Then, a

careful analysis of finite size effects is mandatory to avoid misleading conclusions.

For polymer-containing systems, the extent to which equilibrium is reached is

rather doubtful, particularly at high densities (smaller volumes), and this problem

could invalidate the approach in such cases.

Finally, we mention that it is also possible to carry out MD simulations in

the N pT ensemble: then, the pressure p is a given externally controlled variable,

and the volume V of the system is a fluctuating variable that is sampled. The

dynamics of these volume fluctuations is controlled by coupling to a “barostat”

[246]. Although the dynamic correlations between observables are clearly no longer

faithfully represented in this approach due to the density fluctuations, and hence a

major advantage of MD is lost, MD in the N pT ensemble may nevertheless have

significant advantages for studying phase equilibria because one can restrict atten-

tion to the two coexisting phases separately. Thermodynamics tells us that two

phases I and II coexist if, apart from having the same temperature and pressure, the

chemical potential m (in a one-component system) is also equal:

mIð p; TÞ ¼ mIIð p; TÞ : (42)
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The chemical potentials in both phases can, in principle, be “measured” in

a simulation by the Widom virtual particle insertion/deletion technique [247].

Determining, for both liquid and vapor at a chosen temperature, the chemical

potentials as function of pressure, one finds the coexistence pressure pcoexðTÞ
from the intersection of both curves. This approach is readily generalized to

more-component systems. This technique was first demonstrated for simple models

of pure fluids [248, 249] and then extended to more complicated models of

molecules [153, 250] describing quadrupolar fluids, and to various mixtures

[154]. Again, this method is problematic near critical points. The angle under

which the two curves mIð p; TÞ and mIIð p; TÞ cross at p ¼ pcoex becomes very

small when T is only slightly below Tc, and one has to deal with critical slowing

down [229], finite size effects, etc. It is also problematic for large molecules, for

which the acceptance of particle insertions becomes too low.

For fully atomistic all-atom models, it is often difficult to find efficient MC

moves to relax their configurations, and then MD is normally the method of choice.

We note, however, that for chemically realistic models of polymer blends equili-

bration by MD methods is extremely difficult, if at all possible. Dealing with such

systems is still an unsolved challenge.

3.2 Monte Carlo

MC simulations aim to realize the probability distributions considered in statistical

thermodynamics numerically using random numbers and to calculate the desired

averages of various observables in the system using these distributions [18–20].

There exist numerous extensive reviews describing the specific aspects of MC

methods for polymers [77, 82, 84, 90, 96], and thus we focus here only on some

salient features that are most relevant when one addresses the estimation of the

equation of state and phase equilibria of systems containing many polymers.

These MC methods then are based on the Metropolis algorithm [251], by which

one constructs a stochastic trajectory through the configuration space (X) of the

system, performing transitions WðX ! X0Þ. The transition probability must be

chosen such that it satisfies the detailed balance principle with the probability

distribution that one wishes to study. For example, for classical statistical mechan-

ics, the canonical ensemble distribution is given in terms of the total potential

energy UðXÞ, where X � ð~r1;~r2; . . . ;~rN Þ stands symbolically for a point in config-

uration space [17]:

PNVTðXÞ ¼ Z�1exp �UðXÞ=kBT½ 
; (43)

Z being the partition function (remember that the free energy F then is [17]

FðN ;V; TÞ ¼ �kBTlnZÞ. The detailed balance principle then requires that:

PðXÞWðX ! X0Þ ¼ PðX0ÞWðX0 ! XÞ : (44)
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If it is possible to generate a Markov chain of transitions X ! X0 ! X
00 ! . . . ,

one can show that, in the limit when the number M of configurations generated is

very large, i.e., M ! 1, the canonical average of some observable AðXÞ:

hAðXÞiNVT ¼ Z�1

Z
dXAðXÞexp �UðXÞ=kBT½ 
 (45)

can be approximated by a simple arithmetic average over the M configurations

generated:

�A ¼ M�1
XM
i¼1

AðXiÞ : (46)

One of the big advantages of MC methods is that they can be readily generalized

to all statistical ensembles of interest. For example, in the grand canonical ensemble

of a single component system it is not the particle numberN that is fixed, but rather

the chemical potential m. Thus, in order to realize the distribution PNVT in the

grand canonical ensemble, the moves X ! X0 must include insertion and deletion

of particles (in practice this is easily realizable for small molecules, such as solvent

molecules, but becomes difficult for short polymers, and impossible for long

polymers because the acceptance rate of such “MC moves” becomes too small).

For polymer blends, a particularly useful ensemble is the semigrand canonical

ensemble. Suppose we have two types of polymers, A and B, having the same

chain length, NA ¼ NB (the extension to different chain lengths is discussed in [170,

171]). Then, it is possible to consider a MC move where an A chain is replaced by a

B chain (with identical configuration) or vice versa, taking the chemical potential

difference Dm ¼ mA � mB properly into account in the transition probability [6, 15,

16, 21, 82, 170–172]. An example for such an application, extending the method

to a mixture of homopolymers and block copolymers, will be presented as a case

study in Sect. 4.4. We emphasize, that neither the grand canonical nor the semi-

grand canonical ensemble can be used in MD simulations.

The random numbers (actually no strictly random numbers are used, but rather

only pseudorandom numbers, generated on the computer by a suitable algorithm

[20]) are then used for two purposes: first a trial MCmoveX ! X0 is attempted. For

example, in a simulation of a polymer-plus-solvent system in the grand canonical

ensemble, coordinates of a point in space are chosen at random, and there one

attempts to insert an additional solvent particle; or one chooses a randomly selected

bead of a polymer chain and attempts to move it to a randomly chosen neighboring

position in a small volume region dV around its previous position; etc. Then, one

needs to expose this trial configuration to the Metropolis acceptance test. In the

canonical ensemble, one simply needs to compute the change in total potential

energy DU caused by the trial move: if DU < 0, the trial move is accepted; if

DU > 0, one compares DW � exp½�DU=kBT
 with a random number x uniformly

distributed in the unit interval f0; 1g. If DW  x, the trial move is accepted, and X0
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is taken as the next configuration; otherwise, X0 is rejected, the old configuration X
is counted once more for the average, and a new trial move is attempted.

Although the basic step of MC algorithms is very simple, much know-how is

needed to carry out successful MC simulations of dense polymeric systems in

practice. One must realize that the subsequently generated configurations

X ! X0 ! X
00 ! . . . of such a stochastic trajectory in phase space are not statisti-

cally independent of each other, but in most cases strongly correlated. In fact, one

can give MC sampling a dynamic interpretation: one numerically realizes a master

equation for the probability PðX; tÞ that a state X is found at the “time” t of the
sampling process [18–20]. So, if in a multichain system in the canonical ensemble

the attempted MC moves just consist of small random displacements of the

effective monomers, one generates a chain dynamics consistent with the simple

Rouse model of polymer dynamics (or reptation model, if the chains are entangled)

[5, 8, 31]. Of course, the time scale of the MC sampling process has no a priori

interpretation in terms of physical time units and one traditionally uses dimension-

less “time” units such as Monte Carlo step (MCS) per monomer. When one wishes

to connect this “time” to physical time, one needs to use extra information (e.g.,

from the energy barriers of torsional potentials, etc.) to map the MC time onto the

physical time via a “time rescaling factor” (which depends on temperature and

density [101, 104]).

Thus, although MC applications to study the dynamics of polymers (e.g., near

their glass transition [82, 86]) exist, an important advantage of MC is that one can

abandon the possibility of studying polymer dynamics in favor of a speedup of the

sampling by using MC moves that look artificial from the point of view of the real

dynamics of polymers in the laboratory, but which are perfectly permissible as a

means of creating a trajectory through the configuration space to sample probabilities

such as (43). For example, one may allow for moves of monomers over such large

distances that the covalent bonds connecting neighboring monomers along a chain

are crossed during the move [95]. Such moves do not occur in real polymer melts,

where chains can never cross each other, but in MC simulations such moves can be

implemented such that they satisfy (44) and hence are perfectly valid to study static

equilibrium behavior. This is also true for a large variety of other “artificial” moves,

such as the “slithering snake” algorithm [82] (one chooses a chain end of one of the

chains at random, and tries to remove the end monomer and attach it to the other

chain end in a randomly chosen direction), or algorithms involving chain fission and

fusion [95, 96, 230]. However, we shall not describe these algorithms here, but rather

direct the reader to the literature [82, 83, 88, 90, 96].

Similarly, “tricks of the trade” are also needed when one wishes to realize the

grand canonical ensemble: inserting a polymer chain of moderate length even in a

semidilute polymer solution has such a low acceptance probability that a straight-

forward simulation would never work. This problem can be overcome to some

extent by the configurational bias algorithm [88]; for the bond fluctuation model

[76, 79, 80], this algorithm has allowed a successful study of the phase diagram of

polymer solutions up to a chain length of N ¼ 60 [173]. The configurational bias
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MC method can also be implemented for off-lattice models, e.g., united atom

models for alkanes [59, 252] have been studied up to C70H142. Many such studies

of liquid–vapor-type phase equilibria, however, do not use the grand canonical

ensemble but rather apply the Gibbs ensemble [253]. This method considers two

simulation boxes with volumes V1, V2 and particle numbers N 1; N 2 such that

V1 þ V2 ¼ const and N 1 þN 2 ¼ const, while both particles and volume can be

exchanged between the boxes. In this way, it is ensured that both boxes are not only

at the same temperature, but also at the same pressure and the same chemical

potential. Thus, this method has been very popular for the estimation of vapor–

liquid coexistence curves, both for small molecules [253–257] and for the alkanes

[59, 252]. However, most of this work has yielded rather inaccurate data near the

critical point, due to finite size effects. If one combines grand canonical simulations

with histogram reweighting [258, 259] and umbrella sampling [260, 261] or multi-

canonical MC [262], one can obtain precise results including in the region of the

critical point (see, e.g., [263–265]). If one uses such simulation data in a finite size

scaling analysis [18–20], one can obtain both the coexistence curve and interfacial

tension near the critical point very precisely, as has been demonstrated for many

systems (e.g., [52, 53, 55, 56, 131, 170–173, 204, 266, 267]). Since a detailed

review of these techniques can be found in the literature [10], we refer the reader to

this source for technical details on these methods. We mention, however, that in

some cases special algorithms are needed to allow the use of grand canonical

simulations. For example, for the Asakura–Oosawa model and related models of

colloid–polymer mixtures [204], in the regime of interest the density of the polymer

coils (that may overlap each other strongly with no or little energy cost) can be so

high that it is almost impossible ever to successfully insert a colloidal particle,

which must not overlap any polymer or any other colloidal particle. To allow

nevertheless successful colloid insertions, an attempted “cluster move” [268]

needs to be implemented. In this move,in a spherical region a number n of polymers

is removed and a colloidal particle inserted, or the reverse move is attempted, and

transition probabilities are defined such that detailed balance (44) is obeyed.

A completely different nonstandard technique to obtain a first overview of the

equation of state was recently proposed by Addison et al. [269], whereby a

gravitation-like potential is applied to the system, and the equilibrium density

profile and the concentration profile of the center of mass of the polymers is

computed to obtain the osmotic equation of state. In this “sedimentation equilib-

rium” method one hence considers a system in the canonicalNVT ensemble using a

box of linear dimensions L� L� H, with periodic boundary conditions in x and y
directions only, while hard walls are used at z ¼ 0 and at z ¼ H. An external

potential is applied everywhere in the system:

UexternalðzÞ ¼ �mgz ¼ �ðkBT=aÞlgz: (47)

Here, m is the mass of a monomer, g is the acceleration due to the gravity-like

potential, and a is the length unit (equal to lattice spacing if a lattice model is used).
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The dimensionless constant lg ¼ amg=kBT characterizes the strength of this

potential. For large z, the density profile of an ideal gas of monomers at the lattice

would follow the standard barometric height formula; for the monomer density

rmðzÞ or center of mass density rðzÞ:

rmðzÞ / expð�mgz=kBTÞ ¼ expð�z=xmÞ; rmðzÞ ¼ NrðzÞ; (48)

xm ¼ a=lg being a characteristic gravitational length. The variation of the density

profile for large z, where the system is very dilute and the ideal gas behavior holds,

is hence trivially known, but this knowledge serves as a consistency check of the

method. For smaller z, the density profile is nontrivial, however, and from this

profile the osmotic equation of state can be estimated if one invokes the local

density approximation, rðzÞ:

dpðzÞ
dz

¼ �NmgrðzÞ ; (49)

pðzÞ being the local osmotic pressure at altitude z. Integration of (49) yields:

pðzÞ � pðzÞ=kBT ¼ Nx�1
m

Z 1

z

rðz0Þdz0 � x�1
m

Z 1

z

rmðz0Þdz0 ; (50)

where the last step again rests on the validity of the local density approximation.

Equations (49) and (50) are plausible if xm is large enough, so that Rg=xm � 1; Rg

being the gyration radius of the polymers. The validity of (49) and (50) becomes

doubtful when phase coexistence occurs, however, because a rapid variation of rðzÞ
may occur across the interface.

This approach has been tested by Ivanov et al. [123], both for fully flexible

and for semiflexible chains. Typical data are presented in Fig. 14, for the bond

fluctuation model with the bending potential of (9), for f ¼ 8:0; N ¼ 20 and

lg ¼ 0:01. The conclusion from this study is that this approach quickly gives a

reliable equation of state in the one-phase regions, and that the gravitation-like

potential induces an additional rounding at the first-order transition.

4 Modeling the Phase Behavior of Some Polymer Solutions:

Case Studies

4.1 Alkanes in Carbon Dioxide

In Sects. 2.1–2.3 we have shown that the equation of state and the phase diagram of

important solvents such as supercritical carbon dioxide can be modeled rather well

by a coarse-grained model, where the molecule is described as a point particle
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carrying a quadrupole moment (Fig. 2). It has also been shown that the angular

dependence of the quadrupole–quadrupole interaction can be averaged, with no

significant loss in accuracy, as far as the phase behavior is concerned. Similarly, the

phase diagrams of the pure alkanes are well accounted for by a bead–spring model

(Figs. 4 and 5), ignoring bond angle and torsional potentials.

In this section, we ask the question: to what extent can one obtain a reasonable

description of the phase behavior of mixtures, when one has a accurate description

of the pure material? For a binary mixture (A,B), some information on the interac-

tions between chemically distinct species is indispensable, and we use the simplest

assumption for this purpose, namely the Lorentz–Berthelot combining rule (30).

This means that we wish to predict the phase behavior of the mixture, given some

knowledge of the pure components. The question to what extent this works is highly

nontrivial: of course, if one allows for sufficiently many additional parameters, an

accurate “fitting” of experimental vapor–liquid coexistence data clearly is achiev-

able, but such an approach is rather ad hoc and has little predictive power, and

hence is unsatisfactory.

As an example, Fig. 15 compares simulations [56] of this model for the mixture

of carbon dioxide and pentane to pertinent experimental data [270]. Two isothermal

Fig. 14 Top: Profiles of the orientational order parameter SðzÞ (s-shaped curves), and of the

volume fraction of lattice sites taken by monomeric units, fðzÞ (thick lines), for a bond fluctuation
model (see Sect. 2.2) on the 80� 80� 1000 simple cubic lattice, and chain length N ¼ 20, with

N ¼ 1; 600 chains in the system, choosing parameters f ¼ 8:0 (9) and lg ¼ 0:01. Squares indicate
the density values at coexistence and open circles indicate the order parameter at the transition.

These values were extracted from a bulk grand canonical simulation [123]. The inset shows an
enlarged plot of the transition region. Bottom: Two-dimensional xz-map of the coarse-grained

order parameter profile for a system snapshot corresponding to the graph. From Ivanov et al. [123]
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slices in the plane of variables pressure versus molar concentration of CO2 are

shown, and one can see that the two-phase coexistence regions show up as loops

extending from pure pentane to rather large CO2 content, but not reaching pure CO2

since at these temperatures CO2 is supercritical. Remarkably, the MC results agree

better with experiment than the TPT1-MSA calculation at all molar concentrations.

Although one expects that TPT1-MSA overestimates the critical pressure pc some-

what, for T ¼ 423:48 K this overestimation occurs by a factor of about two! It is

also interesting to note that TPT1-MSA is also inaccurate for the high pressure

branch of the two-phase coexistence loop, although for small CO2 content the data

are far away from any critical region. Since TPT1-MSA here is based on exactly the

same interaction parameters as the MC simulation, this discrepancy indicates some

shortcoming of TPT1-MSA beyond its inability to accurately describe the critical

region.

It also is obvious that ignoring the quadrupolar interaction among CO2 mole-

cules yields less accurate results, as expected from the experience with pure CO2.

Figure 16 now considers the behavior of the mixtures of CO2 and hexadecane,

which was already used as a generic system for testing simulation methodologies

[10,53]. However, in that work the quadrupolar interactions were ignored, and an ad

hoc correction factor x � 0:886 for the Lorentz–Berthelot combining rule was used

in order to get qualitatively reasonable results that agreed almost quantitatively with

experiment. Including the quadrupolar interactions ðqc ¼ 0:47Þ but leaving x ¼ 1

has about the same effect as choosing x ¼ 0:9 in the model without quadrupolar

effects. A rather small deviation of x from unity would clearly bring the data for

qc ¼ 0:47 further upward, and hence create agreement with the experimental data.

Of course, one cannot expect that the simple Lorentz–Berthelot combining rule (30)

Fig. 15 Isothermal slices

through the phase diagram of

the CO2 þ C5H12 system at

T ¼ 423:48 K (a) and

T ¼ 344:34 K (b). Closed
circles represent
experimental data [270],

asterisks MC results for the

coarse-grained model, and the

solid curve the corresponding
TPT1-MSA prediction. The

dashed curve shows, for
comparison, the TPT1-MSA

prediction for a CO2 model

with no quadrupole moment

(qc ¼ 0). The triangle
indicates MC results for the

critical point. From Mognetti

et al. [56]
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works exactly for our grossly simplified coarse-grained model, and thus correction

factors x that deviate from unity by 1–2% are physically reasonable.

This consideration is underlined by the analysis of isothermal slices through the

miscibility gap in the plane of variables pressure versus molar concentration of this

system (Fig. 17). It is seen that the MC results that include the quadrupolar

interactions ðqc ¼ 0:47Þ and respect the Lorentz–Berthelot rule ðx ¼ 1Þ fit to the

0.8 1 1.2 1.4 1.6
T*

0

0.1

0.2

0.3

0.4

p*

ξ=1
ξ=0.9
qc=0.387 ξ=1
qc=0.47 ξ=1
ξ=0.886

Fig. 16 Critical line of the

mixture of the system CO2

plus hexadecane, projected

onto the p�; T� plane
(pressure p and temperature T
rescaled with the LJ

parameters of the effective

monomers of hexadecane as

usual, p� ¼ pe=s3,
T� ¼ kBT=e). Data are shown
for qc ¼ 0; x ¼ 0:886 (top
curve), x ¼ 0:9 (middle
curve), and x ¼ 1 (bottom
curve). Symbols show the

simulation results for

qc ¼ 0:387 and qc ¼ 0:47,
applying x ¼ 1 in both cases.

From Mognetti et al. [56]

Fig. 17 Isothermal slice through the phase diagram of the CO2 + C16H34 system at T ¼ 486 K

showing MC results for the model with qc ¼ 0:47 (open circles) and comparing them to the results

of the model with qc ¼ 0, showing both the choice x ¼ 1 (closed circles) and the choice x ¼ 0:886
(asterisks). Squares show two sets of experimental data [271] at two temperatures that bracket the

temperature used in the simulation. Triangles are MC estimates for the location of the critical

point. From Mognetti et al. [56]
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available experimental data [271] about as well as the model predictions using

qc ¼ 0 but requiring a large violation of this rule ðx ¼ 0:886Þ.

4.2 Alkanes in Dipolar Solvents

Recently, some model calculations were performed for short alkane chains dis-

solved in ammonia (NH3) [55]. This solvent can be treated in the spirit of Sect. 2.3:

starting from the Stockmayer potential (6), one may average the angular depen-

dence of the dipole–dipole interaction to derive an effective LJ interaction (22) with

temperature-dependent LJ parameters. The physical dipole moment of ammonia

ðm ¼ 1:482 DÞ [130] already gives a reasonable first guess of the phase behavior,

although the density on the liquid branch of the coexistence curve is somewhat

underestimated. Using an enhanced value m ¼ 1:65 D, based on a similar reasoning

as in the case of H2S (see Sect. 2.3 and Fig. 3), a better description of the liquid

branch of the coexistence curve results, but the accuracy with which the vapor

branch can be described slightly deteriorates. Nevertheless, this choice has a clear

advantage for the computation of the critical line for mixtures of ammonia plus

alkane (Fig. 18), when we compare both choices with the available experimental

data [272–274]. We emphasize again that our model for alkanes is the simple bead–

spring model (Fig. 5) where nonane is a trimer of effective beads and hexadecane a

fivemer, and the LJ-interactions between ammonia and the effective beads are

chosen from the simple Lorentz–Berthelot combining rule (30). In view of the

obvious crudeness of the model, we find the rough agreement between model

Fig. 18 Critical lines for two alkanes dissolved in ammonia, namely nonane (C9H20, lower set of
points) and hexadecane (C16H34, upper set of points). MC predictions for two choices for the

effective dipole moment strength of NH3 are included: m ¼ 1:482 D is the experimental value

[130] of the true dipole moment, m ¼ 1:65 D is an enhanced value, to be used in the Stockmayer

potential (6). Solid circles are experimental data [272–274]. From Mognetti et al. [55]
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prediction and experiment that one notes from Fig. 18 quite satisfactory, thus

the model should be useful to provide the experimentalist with a rough prediction

about the miscibility behavior in such solutions. We also note that the mixtures

shown in Fig. 17 belong to “type I” phase diagrams in the Scott–Konynenburg

classification [275], i.e., an uninterrupted line of critical points connects the critical

point of pure C16H34 (or C9H20) to the critical point of the solvent, unlike the case of

C16H34 þ CO2, which has a “type III” phase diagram.

These types of coarse-grained models for alkanes in dipolar solvents can again

be used to make predictions for more specific properties, either by MC simulation

or by equation of state calculation based on approximate theories such as TPT1-

MSA (Fig. 19). As always, the latter approach overestimates the miscibility gap

near the critical pressure, but at lower pressures fair agreement with the MC

simulation results is found.

Thus, we feel that Figs. 18 and 19 demonstrate that the coarse-graining approach

described in Sect. 2.3 (where the effective intermolecular potentials of both solvent

and polymer are taken from fitting suitable experimental input on the equation of

state of the respective material, and intermolecular interactions between unlike

species are simply estimated by the Lorentz–Berthelot combining rule) is a useful

first step in obtaining a rough orientation on phase equilibria of polymer solutions,

for polar solvents such as CO2 and NH3. As a caveat, however, we mention that

cases have been found [55] where the discrepancy between the model prediction

and the experimental data is relatively large, e.g., in the case of the H2Sþ C5H12

mixture [55], although rather good models for both solvent (Fig. 2) and the alkane

Fig. 19 Isothermal slice through the phase diagram of NH3 þ C16H34 at T ¼ 542:6 K for the case

where the physical value m ¼ 1:482 D was used for ammonia, and for an even simpler model

where the dipole moment of this molecule was completely ignored (denote as MC LJ). Triangles
denote MC estimates for the critical point in the plane of variables pressure p and molar

concentration x of NH3; asterisks and circles are selected MC data for the miscibility gap of

both models. Curves are predictions derived from TPT1-MSA, for the same choice of interaction

parameters as in MC. Inset shows the critical molar concentration of NH3 for both models versus

temperature. From Mognetti et al. [55]
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oligomer (Fig. 4) have been found. Clearly, more research is necessary to under-

stand better the conditions under which this simple modeling approach is accurate.

As a final warning, we emphasize that the present approach is unsuitable for the

modeling of aqueous solutions: the strong clustering of water molecules induced by

hydrogen bonds renders a united atom description of H2O clearly unreliable, and

also polyelectrolytes will require a quite different approach.

4.3 Solutions of Stiff Polymers and the Isotropic–Nematic
Transition

In this subsection, we no longer address a specifically chosen polymer or a specifi-

cally chosen solvent, but address the generic problem of the statistical thermody-

namics of semiflexible or stiff polymers under good solvent conditions. With

increasing concentration of the polymer, a transition from an isotropic solution to

a nematic solution is expected [121–123, 276–287]. Even more interesting is the

case of semiflexible polymers in concentrated solutions under bad solvent condi-

tions, where the tendency to phase separate and the tendency for nematic order act

together [122, 288, 289]. Because only rather qualitative simulation results are

available for the latter problem [122], it will not be considered further.

We return to the bond fluctuation model on the simple cubic lattice (Sect. 2.2),

with a potential for the bond angle (9), and consider [123] the specific choice of

parameters N ¼ 20; f ¼ 8:0. For such stiff chains, one is also interested in the

global nematic order in the system (in the simulations, L� L� L boxes with

L ¼ 90 lattice spacings were used [123]), which is described by the 3� 3 order

parameter tensor (dab ¼ Kronecker delta):

Qab ¼ 1

NðN � 1Þ
XNðN�1Þ

i¼1

1

2
3eai e

b
i � dab

� �
; (51)

where eai is the ath component of the unit vector connecting monomers i and iþ 1

of a chain (the sum in (51) extends over all bonds of all chains in the system). The

largest eigenvalue of Qab can be taken as the nematic order parameter, which we

henceforth denote as S.
In the MC simulations using the grand canonical ensemble, two starting config-

urations need to be used: one box is completely empty, since the solvent molecules

in this model are not explicitly considered at all, and the other starting condition is a

box maximally dense packed, with chains placed along one coordinate axis (per-

fectly oriented) having all bond lengths b equal to b ¼ 2. For the second case, it is

possible to fill the box with a volume fraction f up to f ¼ 1, whereas this is

impossible for the box that is initially empty and then filled with chains according to

the configurational bias algorithm and the chosen value of the chemical potential

(m). As expected from experience with simulations of first-order phase transitions in

372 K. Binder et al.



general [18–20], the nematic–isotropic transition shows up via pronounced hyster-

esis in the S versus m curve (Fig. 20a) and a (weaker) hysteresis in the corresponding

density variation (Fig. 20b). In order to be able to locate the transition point from

the isotropic to the nematic solution precisely, a thermodynamic integration method

in the grand canonical ensemble (TImVT method) was used. Denoting the chemical

potential of a ideal gas of chains as mid, and defining mex ¼ m� mid, the osmotic

pressure p of the solution becomes ðkBT � 1 here) [290–293]:

p ¼ rð1þ mexÞ �
Z r

0

mexðr0Þdr0 ; (52)

where r ¼ N =V is the density of polymer chains in the system (note that

r ¼ f=ð8NÞ in our model). Of course, in practice the integral in (52) is discretized,

but for a very good accuracy clearly a large number of state points ðmi; T;VÞ need to
be simulated to render the discretization error negligible. Despite this disadvantage,

this old [290] method is still superior in accuracy to any other approach [123]. The

Fig. 20 Nematic order

parameter (a) and volume

fraction f of lattice sites

taken by monomers (b)

plotted versus the normalized

chemical potential mðkBT � 1

is chosen here), for the bond

fluctuation model on the

simple cubic lattice, for

chains with N ¼ 20 and the

bond-angle potential (9) with

f ¼ 8. The vertical lines show
the value of the chemical

potential at the transition

point, m ¼ �166	 0:5,
estimated from the analysis of

the osmotic pressure of this

polymer solution (see

Fig. 21). Triangles refer to
results obtained from the

densely packed starting

configuration, while squares
correspond to the dilute

isotropic starting

conformation. These data

were omitted in (a) because

the system relaxes into a

metastable nematic

multidomain rather than into

the stable ordered

monodomain configuration.

From Ivanov et al. [123]
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construction from (52) then should yield two branches in a p versus m plot: one for

the isotropic phase, the other for the nematic phase, intersecting at the transition

point m ¼ mt under some angle. However, since the transition is only rather weakly

of first order, on a large scale for p this intersection is not seen, and one needs to

analyze the difference pnematic � pisotropic on a magnified scale to be able to clearly

identify the transition (Fig. 21). Nevertheless, Figs. 20 and 21 demonstrate that

definite results on both the location of the transition and the associated jumps in the

monomer volume fraction and the nematic order parameter can be obtained.

Fig. 21 (a) Osmotic pressure for the model of Fig. 20 plotted versus chemical potential, obtained

from the TImVT method. The inset shows the difference pnematic � pisotropic in the region close to

the isotropic–nematic transition on enlarged scales. Triangles correspond to a densely packed

starting configuration, while squares correspond to a dilute isotropic starting configuration. (b)

Equation of state for the bond fluctuation model with N ¼ 20; f ¼ 8, as a plot of p versus f. Solid
curve refers to the dilute and dotted curve to the densely packed starting configuration, respec-

tively. Two squares indicate the densities in the coexisting phases. Note that the hysteresis region

around the transition in the simulation is controlled by the kinetics of the algorithm. It has nothing

to do with a van der Waals-like loop, and hence the hysteresis region is rather asymmetric. From

Ivanov et al. [123]
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However, if one is interested only in a rough overview of the behavior of the model,

without precise characterization of these jumps and the location of the transition,

the “sedimentation equilibrium” method (Sect. 3.2) is a conceptually simple and

straightforward alternative (Fig. 14).

It is still an open problem to extend the above analysis to models (such as studied

by Ivanov et al. [122]) where an attractive interaction between the effective mono-

mers is also present, so that variable solvent quality is implicitly modeled. Clearly it

will require a major effort to extend the techniques described for short alkanes

(Sects. 4.1 and 4.2) to coarse-grained off-lattice models for stiff chains in explicit

solvent.

4.4 Solutions of Block Copolymers and Micelle Formation

In this subsection, we return to schematic models of flexible chains again, but

consider the extension from (monodisperse) homopolymers to diblock copolymers,

i.e., we have a block of A-type monomers (chain length NA) covalently linked to a

block of B-type monomers (chain length NB), such that the total block copolymer

has the composition f ¼ NA=N where N ¼ NA þ NB. When such block copolymers

occur in a solvent, it is natural to assume that the solubility for the two blocks is

different. Of particular interest is the case in which the shorter block (say, the

A-block, so f < 1=2) is under bad solvent conditions, while the solvent is still a

good solvent for the B-block. If we then have isolated single block copolymers, the

configuration of the chain should then be a collapsed spherical A-globule, with the

A–B junction on the surface, so that the B polymer is outside the globule, in a

mushroom-like configuration. However, when one considers a (dilute) solution

containing many such block copolymers in a selective solvent, one may encounter

a transition from an (almost) ideal “gas” of single block copolymer chains to a

“gas” of so-called micelles, where in each micelle a number nAB of chains cluster

together such that the A-parts form a common “core” (of radius R) while the B-parts
form the “corona” of radius S, see Fig. 22).

The theory of micelle formation of such block copolymers (and the related case

of smaller surfactant molecules) in solution, within the framework of statistical

thermodynamics, is a longstanding and challenging problem, which is still incom-

pletely understood (see, e.g., [124, 294–303]). One wants to predict how the critical

micelle concentration (CMC) and the number nAB of chains forming a micelle (and

also geometric properties of the micelles, such as the radii R and S, Fig. 22) depend
on the parameters of the problem ( f, N, interaction parameters eAA; eAB and eBB,
chain stiffness, etc.). Depending on these parameters, the solvent is partially or

completely expelled from the micellar core, and the A–B interface between core

and corona may be sharp (as hypothesized in Fig. 22) or diffuse, etc. Thus, a variety

of scaling-type predictions exist (see [124] for a brief review), but it is very hard to

test them because simulations need to equilibrate large enough systems where many

micelles occur and are in equilibrium with a surrounding solution that still contains
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many block copolymers as single chains. Equilibrium then is established via

diffusion and condensation (evaporation) of chains in (from) the micelles, such

that all the micelles in the system and the remaining solution have the same

chemical potential. Such a chemical equilibrium between the micelles and the

solution can, in practice, be established only for rather small N, where the scaling
concepts on the micelles are not yet applicable [124]. Many of the simulations of

single micelles can be found in the literature (see [124] for some further references),

but such work that considers a constrained equilibrium where some value of nAB is

a priori imposed cannot answer the questions asked above, which address the full

equilibrium aspects of micelle formation from solution.

However, there is one special case where simulations of micelle formation for a

model containing reasonably long chains has turned out to be feasible, and this is the

case where one uses as a solvent for the AfB1�f block copolymers B-homopolymers

of the same chain length N rather than small molecules [125]. In this case, equi-

libration is achieved by working in an extension of the semigrand canonical

ensemble, using the chemical potential difference between the block copolymers

(which we shall denote as species C in the following) and the B-chains acting as a

solvent as the external control variable, dm ¼ mC � mB. Choosing NC ¼ NB, trial

moves can be attempted where a block copolymer turns into a homopolymer,

C ! B, or vice versa, B ! C. At fixed chain configuration, just a fraction f of
monomers needs to be relabeled as A or B in such a move. The chemical potential

difference dm enters the transition probability of these exchange moves in much

the same way as for the semigrand canonical algorithm for ordinary polymer blends

[6, 82, 170, 171].

Now we will discuss a few characteristic results obtained in the MC study of

Cavallo et al. [125], using the bond fluctuation model for the special case f ¼ 1=8

Fig. 22 Spherical block

copolymer micelle, assuming

strong segregation between

the A-blocks (thick lines) that
form the micellar core and the

B-blocks (chain lines) that
form the corona. The A–B

junctions (highlighted by

large dots) are localized at the
surface of the core, which

forms a sphere of radius R,
while the total micelle forms

a sphere of radius S. From
Milchev et al. [124]
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and chain lengths in the range 48 � N � 128, and the interaction of the type (7),

choosing the most symmetric case eAA ¼ eBB ¼ �eAB ¼ e. If A-monomers from

different chains are within the interaction range rc, these two chains are counted as

members of the same micelle. In this way, the number of micelles for each value of

nAB can be counted in each system configuration that is analyzed, and the probabi-

lity distribution PðNABÞ of the micellar sizes NAB is sampled (Fig. 23). As illu-

strated in Fig. 23, the CMC is estimated from the equal weight rule applied to the

distribution PðNABÞ for the region of dmwhere the distribution is bimodal. Note that

this “equal weight rule” is familiar from the MC study of ordinary first-order phase

transitions [18–20]. In such cases, however, the two peaks for L ! 1 would turn

into two delta functions, but this is not the case here: for finite N, nAB for micelles at

the CMC is also finite, so the finite size rounding of PðnABÞ is due to the finite size

of the micelles and not due to the finite simulation volume. Only when N ! 1 can

the CMC turn into a sharp thermodynamic phase transition in the standard sense.

The most advanced theoretical studies of micelle formation are based on numer-

ical versions of the SCFT [32–35, 297] of polymers, and such an approach has been

worked out by Cavallo et al. [125]. Since the same approach has previously been

used to study interfacial properties in polymer blends and compared to corres-

ponding bond fluctuation model simulations, the “translation factor” from the

interaction parameter e of the simulation to the Flory–Huggins w parameter of the

SCFT is already known, and is not an adjustable parameter. SCFT predicts that for

large enough N, the distribution PðnABÞ at the CMC should only depend on the ratio

nAB=N
1=2. Figure 24 demonstrates that, at least in the range of sizes 48 � N � 128,
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Fig. 23 Cluster size distribution PðnABÞ versus nAB for the bond fluctuation model of a mixture of

homopolymer B and block copolymer (Af B1�f ), for N ¼ 48, f ¼ 1=8, choosing a L� L� L lattice

with L ¼ 96, a volume fraction f ¼ 0:5 of occupied lattice sites, and eN ¼ 19:2 (corresponding to
a Flory–Huggins parameter wN � 100). Several values of the exchange chemical potential dm are

shown; kBT � 1 throughout. The thick curve denotes the CMC; the weight of the peak for small

nAB, corresponding to the solution of block copolymers without micelles, and the weight of the

peak near nAB � 35, due to the micelles, are equal. From Cavallo et al. [125]
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this scaling does not yet hold. One sees that the SCFT distribution is very close to

the MC result for N ¼ 128, but this is probably a coincidence with no deep meaning

(when one studies radial concentration distributions of micelles at the CMC, the

data for N ¼ 128 have not yet converged to the SCFT result). The reasons for the

strong deviations from this simple scaling implied by SCFT are not really clear

[125]. Thus, we conclude that the equation of state of block copolymer solutions at

the CMC, where micelles form, is far from being understood. Of course, there are

many other interesting questions to ask. For example, when one goes beyond the

CMC, the micelles can either grow, cluster together in cylindrical objects (some

simulation evidence for cylindrical micelles has been seen, e.g., by Viduna et al.

[303]), or form micellar mesophase lattices. The non-Gaussian character of PðnABÞ
for dm ¼ 7:0 in Fig. 23 (e.g., the tail extending to nAB ¼ 100) is also an indication

of some very large, nonspherical micelles in the system at these conditions.

5 Conclusions and Outlook

This article gives a brief review of the state of the art of the modeling of the

equation of state of the solutions of (short) polymer chains by MC and MD

simulations. Emphasis has been on the type of results that can be obtained, although
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Fig. 24 Cluster size distribution PðnABÞ at the CMC plotted versus the scaled aggregation number,

nAB=
ffiffiffiffi
N

p
. The symbols represent the simulation data (all taken for eN ¼ 19:2) for different choices

of N, as indicated. The solid lines show fits with a Gaussian function. For the largest chain length,

N ¼ 128, the SCFT result (using the equivalent choice of incompatibility between A and B,

wN ¼ 100) is shown as a dashed line. The normalization of the SCFT result was chosen such that it

agrees with the micellar peak of the MC simulation. From Cavallo et al. [125]
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for more detail on the (already rather elaborate!) technical aspects of the available

methods, the interested reader is directed to the available books on simulation

methods and to the original articles describing the work that is reviewed here.

A general conclusion is that the study of phase equilibria in polymer solutions by

simulation methods is still in its infancy. Due to the large scales of length and time

that need to be bridged when one wishes to simulate macromolecules with high

molecular weight, the simulation of polymers in general is a challenge if one insists

that the simulation reaches complete thermal equilibrium. Although special tech-

niques exist to deal with this problem, both for single-chain problems and for dense

melts, the case of solutions seems to have found somewhat less attention in the

literature. We also note that in a semidilute solution of very long macromolecules,

there exists an intermediate large length scale, the concentration correlation length

(sometimes also referred to as the radius of “concentration blobs”, i.e., the size of

regions over which, in the good solvent limit, excluded-volume interactions are

not yet screened out, unlike dense melts where the screening length of excluded-

volume interactions is only on the order of a few molecular diameters). This

incomplete screening of excluded volume in polymer solution has then an interest-

ing interplay with thermal effects when the solvent quality deteriorates, and ulti-

mately the polymer solution separates into a diluted solution of collapsed globules

and a concentrated solution of strongly overlapping chains. The critical point of

this phase separation moves towards the theta temperature of the solution (and the

critical concentration tends to zero) when the polymer chain length tends to infinity.

However, the precise character of this crossover in critical behavior, which is

associated with this limit according to theoretical predictions, cannot yet be reliably

assessed even by the study of strongly coarse-grained, qualitative models that

consider the solvent only implicitly (by postulating suitable weak effective attrac-

tions between the effective monomeric units formed from groups of successive

chemical monomers along the chain) rather than explicitly. In view of the lack of

recent progress with this interesting but difficult problem, we have not reviewed it

here, but rather focused only on the phase behavior of solutions of very short chains,

considering flexible homopolymers almost exclusively. As an example of the rich

science that emerges when this restriction is relaxed, we have pointed towards the

possibility of orientational ordering in solutions of stiff polymer chains, and on

micelle formation in solutions containing diblock copolymers. Of course, many

interesting phenomena exist in solutions containing polymers with more complex

architecture (star polymers, comb polymers and bottle brushes, multiblock copoly-

mers, etc.), giving rise to many possibilities of mesophase formation that are

outside the scope of our article.

One topic we have addressed in detail is the explicit modeling of solvent

molecules, which are described in a simplified, coarse-grained fashion in view of

the fact that even the most “atomistic” models are based on united-atom-type

approximations for the description of polymer chains, or use even coarser models

so that an all-atom modeling of solvent molecules is not warranted. We have also

emphasized that in the description of solvent–oligomer phase equilibria, the pres-

sure (in addition to the composition of the solution and its temperature) is an
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important control variable. We have shown that simulations with predictive power

are already possible, at least in favorable cases, when the effective interaction

parameters of the pure constituents (solvent, oligomer) are adjusted such that

their vapor–liquid equilibria are reasonably well described. Interactions between

unlike particles are then described by the Lorentz–Berthelot combining rule. We

have shown that dipolar solvents (such as NH3) and quadrupolar solvents (such as

supercritical CO2) can be described accurately enough by very simple potentials.

However, the described modeling of solvents does not include water, nor does the

described coarse-graining of the macromolecules in terms of very simple bead–

spring models apply to proteins or other biopolymers. Also, solutions of synthetic

polyelectrolytes (where one needs to address the effects of counterions and/or salt

ions dissolved in the solution) are completely outside the scope of this article.

Finally, we have addressed only the phase behavior of solutions, and have not

addressed either the structural properties (e.g., as described by the various pair

distribution functions or the size of polymer coils) or the interfacial structure in

phase-separated solutions (though we did pay attention to prediction of the interfa-

cial tension between coexisting phases). Also, the kinetics of phase separation (via

nucleation and growth or spinodal decomposition) has not been discussed. Thus, we

emphasize that, although a few first and promising steps towards the computational

modeling of polymer solutions via computer simulations have been taken, many

further studies are still necessary to obtain a more complete theoretical understand-

ing of polymer solutions and their properties.
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139. Krause B, Sijbesma HJP, Münüklü P, van der Vegt NFA, Wessburg W (2001) Macromole-

cules 34:8792

140. Murthy CS, Singer K, McDonald IR (1981) Mol Phys 44:135
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Modeling of Polymer Phase Equilibria

Using Equations of State

Gabriele Sadowski

Abstract The most promising approach for the calculation of polymer phase

equilibria today is the use of equations of state that are based on perturbation

theories. These theories consider an appropriate reference system to describe the

repulsive interactions of the molecules, whereas van der Waals attractions or the

formation of hydrogen bonds are considered as perturbations of that reference

system. Moreover, the chain-like structure of polymer molecules is explicitly

taken into account. This work presents the basic ideas of these kinds of models. It

will be shown that they (in particular SAFT and PC-SAFT) are able to describe and

even to predict the phase behavior of polymer systems as functions of pressure,

temperature, polymer concentration, polymer molecular weight, and polydispersity

as well as – in case of copolymers – copolymer composition.

Keywords Copolymers � Equation of state � Modeling � Polymers � Solubility �
Sorption � Thermodynamics
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Symbols

A Helmholtz energy

a Parameter of the van der Waals equation

Bab Fraction of bonds between segments a and b within a copolymer

b Parameter of the van der Waals equation

d Temperature-dependent segment diameter

g Radial distribution function

g(d+) Value of the radial distribution function at contact

k Boltzmann constant

M Molecular weight

M2p,j Molecular weight of pseudocomponent j
Mn Number average of molecular weight

Mw Weight average of molecular weight

Mz z-Average of molecular weight

Mk kth moment of the molecular weight distribution

m Segment number

�m Average segment number

N Number of molecules

N* Number of association sites per molecule or monomer unit

ni Mole number

kij Binary interaction parameter

p Pressure

R Ideal gas constant

T Temperature

V Volume

v Molar volume

v00 Segment volume (parameter of SAFT)

xi Mole fraction of component i (solvent or polymer)

x2p,j Mole fraction of pseudocomponent j within polymer

W(M) Continuous molecular weight distribution

wi Weight fraction of component i
w2p,j Weight fraction of pseudocomponent j in polymer

z Compressibility factor

za,zb Fraction of segments a or b in a copolymer

Abbreviations

HDPE High-density polyethylene

L Liquid

LL Liquid–liquid

390 G. Sadowski



LDPE Low-density polyethylene

MA Methylacrylate

MWD Molecular weight distribution

PA Propylacrylate

PC-SAFT Perturbed Chain Statistical-Associating-Fluid Theory

PR Peng–Robinson

PHCT Perturbed Hard-Chain Theory

PHSC Perturbed Hard-Sphere-Chain Theory

PSCT Perturbed Soft-Chain Theory

SAFT Statistical-Associating-Fluid Theory

SAFT-VR SAFT with Variable Range

SRK Soave–Redlich–Kwong

Greek Letters

a,b Segment type

e Dispersion energy parameter

eAA Association-energy parameter

� Reduced density

kAA Association volume parameter

r Number density (molecules per volume)

s Temperature-independent segment diameter

’i Fugacity coefficient of component i in the mixture

’2p,j Fugacity coefficient of polymer pseudocomponent j in the mixture

Superscripts

assoc Contribution due to association

chain Contribution due to chain formation

disp Dispersion (van der Waals attraction)

disp Dispersion contribution according to the PC-SAFT model

hc Hard-chain contribution

hs Hard-sphere contribution

id Ideal gas

pert Perturbation

ref Reference

res Residual

I,II Phases I and II
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1 Introduction

Mutual solubility of polymers and volatile organic substances are of importance for

many applications in polymer chemistry and polymer engineering. Polymeriza-

tions, which should be performed in homogeneous phase, require the complete

miscibility of monomer, polymer, solvent (liquid or supercritical) and other addi-

tives. Subsequently, the extraction of the polymer product from the reaction

mixture requires a phase split (into two liquid phases or into a vapor and a liquid

phase) to obtain a polymer product of high purity on one side and the remaining

monomer on the other side. In this context, the devolatilization of polymers is of

particular interest. Another example is the use of polymer membranes for the

separation of two volatile organic compounds. Here, besides the knowledge of

diffusivity, the solubility (sorption) of the different components in the polymer

membrane is also an important prerequisite for an efficient process.

However, experimental data on polymer solubility are often scarce. Considerable

experimental effort is generally required for determining these properties of polymer

systems. Thermodynamics can provide powerful and robust tools for modeling of

experimental data and even for prediction of the thermodynamic behavior.

2 Equations of State

Equations of state are traditionally equations that give the pressure p as a function

of temperature, molar mixture volume, and composition p(T, v, xi). A well-known

example is the van der Waals equation of state [1], which reads as:

p ¼ RT

v� b
� a

v2
(1)

This equation contains two parameters a and b that are related to the interaction

energy of the molecules and to the size of the molecules, respectively. Therefore,

they are called pure-component parameters and are usually determined by fitting to

experimental liquid-density and vapor-pressure data. Applying equations of states

to mixtures is, in most cases, done by applying a one-fluid theory. This means that

the parameters of a virtual “mixture molecule” are obtained by so-called mixing

rules from the model parameters of the pure components, e.g., by:

a ¼
X
i

X
j

xi xj ai aj ð1� kijÞ

b ¼
X
i

xi bi
(2)

kij in (2) is a binary parameter that corrects for deviations from the mixing rule of

the interaction energy parameter and needs to be fitted to binary data.
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The van der Waals equation of state, as well as related expressions such as the

models of Soave–Redlich–Kwong (SRK) [2] or Peng–Robinson (PR) [3], are based

on the following assumptions:

l The molecules are spherical. Introducing the acentric factor into SRK and PR

improved the modeling for nonspherical molecules. Because the critical proper-

ties as well as the vapor pressure are needed to determine the acentric factor of a

component, this is only applicable to volatile components.
l There exist no specific interactions (e.g., polar interactions, hydrogen bonding)

between the molecules, which leads to a statistical distribution of the molecules

in the mixture.

Due to these assumptions (in particular the first one), these models cannot

reasonably be applied to polymer systems. Therefore, over the last 30–40 years

different approaches have been developed that explicitly account for the chain-like

structure of polymer molecules as well as for specific interactions.

One early considered approach was to extend Flory–Huggins-like lattice models

by introducing empty lattice sites (holes) so that the number of holes in the lattice is

a measure of the density of the system. Density changes in the system are realized

via a variation of the hole number. Equations of state based on this idea are, for

example, the Lattice-Fluid Theory from Sanchez and Lacombe [4] and the Mean-

Field Lattice-Gas theory from Kleintjens and Koningsveld [5].

Another approach for obtaining an equation of state is based on the partition

function of a system derived from statistical mechanics. One of these models is the

Perturbed Hard-Chain Theory (PHCT) proposed by Beret and Prausnitz [6]. It was

subsequently extended and modified by Cotterman et al. [7] and Morris et al. [8] as

the Perturbed Soft-Chain Theory (PSCT).

An alternative is the application of so-called perturbation theories (e.g., Barker

and Henderson [9], Weeks et al. [10]). The main assumption here is that the residual

(the difference from an ideal gas state) part of the Helmholtz energy of a system Ares

(and thereby also the system pressure) can be written as the sum of different

contributions, whereas the main contributions are covered by the Helmholtz energy

of a chosen reference system Aref. Contributions to the Helmholtz energy that are

not covered by the reference system are considered as perturbations and are

described by Apert:

A ¼ Aid þ Ares ¼ Aid þ Aref þ Apert (3)

p ¼ pid þ pres ¼ pid þ pref þ ppert (4)

An appropriate reference system (at least for small solvent molecules) is the

hard-sphere (hs) system. In a hard-sphere system, the molecules are assumed to be

spheres of a fixed diameter and do not have any attractive interactions. Such a

reference system covers the repulsive interactions of the molecules, which

are considered to mainly contribute to its thermodynamic properties. Moreover,
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analytical expressions are available for Aref ¼ Ahsand pref ¼ phs for hard-sphere

systems (e.g., Carnahan and Starling [11]).

Deviations of real molecules from the reference system may occur, e.g., due to

attractive interactions (dispersion), formation of hydrogen bonds (association), or

the nonspherical shape of the molecules (which can be understood as the formation

of chains from spherical segments). These contributions are usually assumed to be

independent of each other and are accounted for by different perturbation terms.

Depending on the kind of considered perturbation and on the expression used for its

description, different models have been developed. One of the first models derived

from that idea was the Statistical-Associating-Fluid Theory (SAFT) (Chapman

et al. [12, 13]; Huang and Radosz [14, 15]).

In SAFT, a chain-like molecule (solvent molecule or polymer) is assumed to be a

chain of m identical spherical segments. Starting from a reference system of m hard

spheres (Ahs), this model considers three perturbation contributions: chain forma-

tion (Achain), attractive interactions of the (nonbonded) segments (Adisp), and asso-

ciation via a certain number of association sites (Aassoc) (Fig. 1):

Ares ¼ m Ahs þ Achain|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Ahc

þmAdisp; SAFT þ Aassoc (5)

The Carnahan–Starling formulation is used for Ahs; the segment–segment

dispersion Adisp is described using a fourth-order power series with respect to

reversed temperature (Chen and Kreglewski [16]); and the contribution of chain

formation and the association term are based on the work of Wertheim [17].

Subsequently, various perturbation theories were developed that are also based

on (5) but differ in the specific expressions used for the different types of perturba-

tions. Examples are the Perturbed Hard-Sphere-Chain Theory (PHSC) ([18, 19]),

SAFT-VR [20], and models proposed by Chang and Sandler [21], Hino and

Prausnitz [22], and Blas and Vega [23].

A widely used model of this kind is the Perturbed Chain SAFT (PC-SAFT)

model [24–26], which was particularly developed to improve the modeling of

chain-like molecules, e.g., polymers. As the main improvement, PC-SAFT con-

siders the hard chain as a reference system, which is of course much more

appropriate for polymers and other chain-like molecules than the hard-sphere

Ahs + Achain + Adisp, SAFT + Aassoc

Fig. 1 Helmholtz energy contributions of SAFT
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system (Fig. 2). The hard-chain system is obtained as in SAFT as the sum of the

hard-sphere and chain-formation contributions Ahs and Achain. Since the dispersion

term Adisp,PC-SAFT now describes the attraction of chain molecules rather than that

of nonbonded segments, it appears to be a function of chain length m:

Ares ¼ Ahc þ Adisp; PC�SAFTðmÞ þ Aassoc (6)

Modeling with PC-SAFT (as well as with original SAFT and related models)

requires three pure-component parameters for a nonassociating molecule. As for the

above-mentioned van der Waals equation, these parameters have a physical mean-

ing. The first parameter of PC-SAFT is the segment diameter s (SAFT uses the

segment volume v00), which corresponds to the van der Waals parameter b.
Parameter e is the energy related to the interaction of two segments, corresponding

to the van der Waals parameter a. The third parameter considers the deviation from

the spherical shape of the molecules: the segment number m. In the case of a

polymer molecule, the latter is proportional to the molecular weight. To describe a

binary system, again an additional binary parameter (kij) is used to correct for

deviations of the geometric mean of the energy parameter.

According to (6), different expressions are used to describe the various con-

tributions within the PC-SAFT model. The hard-chain contribution reads as:

Ahc

NkT
¼ �m

Ahs

NkT
�
X
i

xi mi � 1ð Þ ln gii dþii
� �

(7)

Ahs

NkT
¼ 1

z0

3 z1 z2
1� z3ð Þ þ

z32
z3 1� z3ð Þ2 þ

z32
z23

� z0

 !
ln 1� z3ð Þ

" #
(8)

�m ¼
X
i

xi mi (9)

zn ¼
p
6
r
X
i

xi mi d
n
i ; z3 ¼ � (10)

Ahc + Adisp, PC-SAFT + Aassoc

Fig. 2 Helmholtz energy contributions of PC-SAFT

Modeling of Polymer Phase Equilibria Using Equations of State 395



Here, g is the radial distribution function, which is a function of the distance of

two segments. In the case of chain formation, this distance is identical to the

segment diameter d. Thus, g(d+) is the value of the radial distribution function at

contact. It can be estimated as [27, 28]:

ln gij dþij
� �

¼ 1

1� z3
þ didj

di þ dj

� �
3z2

1� z3ð Þ2 þ
didj

di þ dj

� �2
2z22

1� z3ð Þ3 (11)

The (temperature-dependent) segment diameter d is calculated from the temperature-

independent one according to:

di ¼ si 1� 0:12 exp
�3ei
kT

� �	 

(12)

The expressions for gij(dij
+) and Ahs used in original SAFT as well as in PC-SAFT

are based on the work of Boublik [27] andMansoori et al. [28], who derived them for

mixtures of hard spheres. For pure substances, these expressions become identical to

the simpler one proposed byCarnahan and Starling [11]. Kouskoumvekaki et al. [29]

also applied these simplified expressions to mixtures (simplified PC-SAFT) and

obtained, in most cases, almost similar modeling results. Because for pure sub-

stances the expressions for gij(dij
+) and Ahs become identical for PC-SAFT and

simplified PC-SAFT, the pure-component parameters for PC-SAFT and simplified

PC-SAFT are identical.

The contribution due to attractive interactions of segments of different chains

Adisp,PC-SAFT is formulated as a power series with respect to reversed temperature.

Considering only the first two terms of this series and accounting for their depen-

dence on density and segment number, Adisp,PC-SAFT reads as:

Adisp;PC�SAFT

kT N
¼ A1

kT N
þ A2

kT N
(13)

A1

kT N
¼ �2prI1ð�; �mÞ

X
i

X
j

xi xj mi mj
eij
kT

� �
sij3 (14)

A2

kT N
¼ �pr �m 1þ Zhc þ r

@Zhc

@r

� ��1

I2ð�; �mÞ
X
i

X
j

xi xj mi mj
eij
kT

� �2
sij3 (15)

With:

I1ð�; �mÞ ¼
X6
i¼0

aið �mÞ�i and I2ð�; �mÞ ¼
X6
i¼0

bið �mÞ�i (16)
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and:

ai ¼ a0i þ �m� 1

�m
a1i þ �m� 1

�m

�m� 2

�m
a2i analogously for bið Þ (17)

sij ¼ 1

2
si þ sj
� �

; eij ¼ ffiffiffiffiffiffiffi
eiej

p
1� kij
� �

(18)

a0i, a1i, a2i, b0i, b1i and b2i in (17) are model constants and are given in Table 1.

kij in (18) is again a binary parameter that corrects for deviation from the geometric

mean mixing rule and has to be determined by fitting to binary experimental data.

The Helmholtz energy change due to the formation of hydrogen bonds (associa-

tion) is captured by Aassoc. A detailed description as well as the corresponding

expressions can be found, e.g., in [12]. The main assumption is that association can

be described by a short-range but very strong association potential (Fig. 3). This

leads to two more parameters required for the modeling of an associating molecule:

the association volume kAA (corresponds to the potential width rAA) and the associ-
ation strength eAA (the potential depth).

For application, one needs to define the number N* of so-called association sites,
meaning the number of donor and acceptor sites respectively, by which amolecule is

able to form hydrogen bonds. Different association sites may have different associ-

ation parameters (in most cases they are assumed to be identical). Details can be

again found in [12] and [14].

Moreover, Helmholtz energy expressions are available that can account for

interactions due to dipole moments [30–32], quadrupole moments [33–35], or

even charges [36–38] of the molecules. They have already been successfully applied

in combination with SAFT or PC-SAFT but will not be considered within this work.

Given the expression for the Helmholtz energy, other thermodynamic properties

needed for phase-equilibrium calculations can be derived by applying textbook

thermodynamics. Thus, system pressure and the chemical potentials of the mixture

components can be obtained by applying the following relations:

p ¼ � @A

@V

� �
T;ni

(19)

and

RT ln’i ¼
@Ares

@ni

� �
T;V;nj 6¼i

� RT ln z with z ¼ p V

NkT
(20)

Phase-equilibrium calculations are finally performed using the classical phase-

equilibrium conditions:
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xIi ’
I
i ¼ xIIi ’II

i (21)

which have to be fulfilled for all components i of the mixture.

3 Estimation of Model Parameters

Among the three pure-component parameters for nonassociating components there

are two parameters that are related to the size of the molecule: the segment diameter

s and the segment number m. The third parameter, the energy parameter e, decribes
the attractive interactions between two molecules. For volatile components, these

parameters are determined by simultaneously fitting to physical properties, which

can on the one hand be calulated by an equation of state and are on the other hand

related to the size and the interactions of the molecules. Such properties are, e.g.,

liquid-density data (related to molecule size) and vapor pressures (related to the

intermolecular interactions). These parameters have already been determined for a

huge number of relevant solvents and can be found in extensive parameter tables, e.

g., in [15] (SAFT) and [24, 39] (PC-SAFT).

However, polymers exhibit neither a measurable vapor pressure nor any other

property that can be directly related to the energy parameter. However, determining

all three parameters by fitting only to liquid-density data mostly does not yield

meaningful energy parameters that are suitable for binary calculations.

Considering the example of polycarbonate: in the literature only density data for

a polymer of unknown molecular weight are available [40]. Assuming the molecu-

lar weight (Mw) to be 100,000 g/mol, and fitting the three parameters for the SAFT

model to these data, one obtains m = 4043.5, e/k = 387.83 K and v00 = 17.114 cm3/mol

[41]. Since the segment number of polymers is proportional to their molecular

weight, the ratio m/M is usually fitted instead of the absolute segment number,

which led to m/M = 0.04043 for polycarbonate.

εAA

rAA

Fig. 3 Association potential as used in SAFT and PC-SAFT

Modeling of Polymer Phase Equilibria Using Equations of State 399



Using these parameters for predicting the vapor–liquid equilibrium in the poly-

carbonate/chlorobenzene system (kij = 0) at 140�C leads to results shown in Fig. 4.

It is obvious that the results are very unsatisfactory; a description of the experimen-

tal data also fails for any other value of the binary parameter kij. Therefore, the
polycarbonate parameters m (uncertain since the molecular weight for the density

data was unknown) and e/k were refitted to the binary data in Fig. 5a. Using these

new parameters m/M = 0.0080, e/k = 256.97 K and v00 = 17.114 cm3/mol, the

experimental data can now be described very well.

Although the polymer parameters were also fitted to binary data, they still have

the character of the pure-component parameters. This is confirmed by calculations

of other polymer/solvent systems, which are illustrated in Fig. 5b. Using the same

polycarbonate parameters as determined for the chlorobenzene system, the

Fig. 4 Vapor–liquid equilibrium of the polycarbonate/chlorobenzene system at 140�C. Symbols
represent experimental data; lines show predictions with SAFT [41]. Polycarbonate parameters

were fitted to density data only

Fig. 5 Vapor–liquid equilibrium in polycarbonate/solvent systems. (a) Polycarbonate/ chloroben-

zene at various temperatures. (b) Polycarbonate with various solvents at 140�C. Symbols represent
experimental data. Lines show SAFT calculations [41]
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experimental data for toluene, m-xylene, ethylbenzene, and mesitylene can also be

described using very small values for the binary parameters kij.
This approach was proven also for other equations of state, like for example PC-

SAFT. Fitting polymer parameters to liquid densities of the polymer and to one binary

polymer/solvent system is an establishedmethod for determining polymer parameters.

Table 2 summarizes the so-determined PC-SAFT parameters for a series of polymers.

PC-SAFT parameters for solvents used in this work can be found in Table 3.

4 Modeling of Homopolymer Systems

As an example for modeling of a vapor–liquid equilibrium in a polymer/solvent

system, Fig. 6 shows the results for the polyethylene/toluene binary mixture.

The experimental data shown were determined for two different (relatively low)

Table 2 PC-SAFT pure-component parameters of polymers

Polymer m/M
(mol/g)

s (Å) e/k (K) N* eAA/k (K) kAA References

LDPE 0.0263 4.0127 249.5 [25]

HDPE 0.0263 4.0127 252.0 [25]

Poly(propylene) 0.02305 4.10 217.0 [25]

Poly(1-butene) 0.014 4.20 230.0 [25]

Poly(isobutene) 0.02350 4.10 265.5 [25]

Polystyrene 0.0190 4.1071 267.0 [25]

Poly(methyl acrylate) 0.0309 3.50 243.0 [42]

Poly(methyl methacrylate) 0.0262 3.60 245.0 [42]

Poly(ethyl acrylate) 0.0271 3.65 229.0 [42]

Poly(propyl acrylate) 0.0262 3.80 225.0 [42]

Poly(butyl acrylate) 0.0259 3.59 224.0 [42]

Poly(butyl methacrylate) 0.0268 3.75 233.8 [42]

Poly(vinyl acetate) 0.03211 3.3972 204.65 [26]

Poly(acrylic acid) 0.016 4.20 249.5 2 2,035 0.33584 [43]

Poly(methacrylic acid) 0.024 3.70 249.5 2 2,610 0.07189 [43]

Poly(dimethyl siloxane) 0.0346 3.382 165.0 [44]

N* number of association sites per monomer unit

Table 3 PC-SAFT pure-component parameters of solvents used in this chapter

Solvent m/M (mol/g) s (Å) e/k (K) References

Ethene 0.05679 3.4450 176.47 [24]

Ethane 0.05344 3.5206 191.42 [24]

Propylene 0.04657 3.5356 207.19 [24]

Propane 0.04540 3.6184 208.11 [24]

1-Butene 0.04075 3.6431 222.00 [24]

Butane 0.04011 3.7086 222.88 [24]

Pentane 0.03728 3.7729 231.2 [24]

Carbon dioxide 0.04710 2.7852 169.21 [24]

Methylmethacrylate 0.03060 3.6238 265.69 [45]

Toluene 0.03055 3.7169 285.69 [24]
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molecular weights of the polymer, which are compared to predictions using the

SAFT and PC-SAFT models, respectively. The binary parameter kij is zero in both

cases. Thus, the lines are not fitted to the shown binary data but were calculated

using pure-component information only. This clearly shows that SAFT as well as

PC-SAFT are able to predict the vapor–liquid equilibrium in this system and even

correctly consider the molecular weight dependence. Moreover, it can be seen that

PC-SAFT performs slightly better than SAFT.

Whereas in the vapor–liquid equilibrium calculation at low pressures, the model

is only used to correct for the nonideality of the liquid phase, the results for liquid–

liquid equilibrium calculations and even whether a demixing is calculated or not, is

completely determined by the model used. Therefore, liquid–liquid calculations are

always much more challenging for any model. Figure 7 demonstrates the ability of

PC-SAFT to model also liquid–liquid demixing in polymer systems with high

accuracy. The calculations are performed for the system polypropylene/n-pentane
at three different temperatures. Although only temperature-independent pure-

component and binary parameters were used, the experimental data can be

described very well and the model even correctly captures the temperature depen-

dence of the miscibility gap.

As already seen in Fig. 6, polymer phase equilibria do depend on the molecular

weight of the polymer. This is even more pronounced for liquid–liquid equilibria,

where the polymer distributes to the two liquid phases (in the case of vapor–liquid

equilibria, the polymer is only present in the liquid phase whereas the vapor

contains only the pure solvent).This fact needs of course also to be accounted for

Fig. 6 Vapor–liquid equilibrium of toluene/polyethylene for different molecular weights of the

polymer (triangles 6,220 g/mol, circles 1,710 g/mol). Symbols represent experimental data [46].

Solid lines show predictions (kij = 0) with PC-SAFT and dashed lines with SAFT [25]
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in the modeling. As polymers of different molecular weight consist of the same type

of monomers (segments) and differ in the number of monomers (corresponds to

segment number) only, the only parameter that needs to be changed for polymers of

different molecular weights is the segment number. The latter is already given as

function of molecular weight (see Table 2), which makes it easy to account for

different molecular weights. Figure 8 presents solubility curves for polyethylene

(LDPE) in ethene as a function of the polymer molecular weight. The same set of

parameters for polyethylene (Table 2) was used to describe the whole range of

molecular weights using PC-SAFT. As can be seen, the model captures the influ-

ence of the molecular weight very well and is thus able to predict the phase behavior

as function of the polymer length.

Similarly to Fig. 5b for vapor–liquid equilibria, Fig. 9 illustrates the ability of

PC-SAFT to model liquid–liquid equilibria of LDPE dissolved in a variety of

solvents. The amount of polymer is about 5 wt% for all cases. Using PC-SAFT,

the experimental cloud points can be described with high accuracy. Although for

each system only one binary temperature-independent parameter is used, the model

even captures the changing slope of the cloud-point curves, from a negative slope

for ethene and ethane to the positive slope for C3 and C4 solvents.

The modeling can, of course, also be extended to systems containing more than

two components. In this case, it is assumed that the phase behavior in ternary or

higher systems is still dominated by binary interactions. This means that only

binary interactions are accounted for and the modeling is completely based on the

pure-component and binary parameters determined before for the pure substances

and binary subsystems, respectively.

Fig. 7 Liquid–liquid equilibrium of polypropylene/n-pentane at three temperatures (polypropyl-

ene: Mw = 50.4 kg/mol, Mw/Mn = 2.2). Comparison of experimental cloud points (symbols) [47]
with PC-SAFT calculations (lines) [25]. kij = 0.0137. The polymer was assumed to be monodis-

perse with Mw being the molecular weight
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Thus, calculations for ternary systems are usually pure predictions (unless binary

parameters were determined by fitting to ternary data, which is sometimes done).

Figure 10 shows the modeling results for the ternary system poly(methylmetha-

crylate) (PMMA)/methylmethacrylate (MMA) /carbon dioxide [45]. At pressures

Fig. 8 Liquid–liquid equilibrium of the polyethylene (LDPE)/ethene system as function of

polymer molecular weight. Polymer weight fraction is about 5 wt%. Symbols represent experi-
mental cloud points (Latz and Buback, 2002, personal communication), lines show predictions

with PC-SAFT. All polymers were assumed to be monodisperse

Fig. 9 Cloud-point data of different polyethylene (LDPE)/solvent systems. Symbols represent

experimental data [48, 49]. Lines show PC-SAFT calculations [26]
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of 100 bar this system exhibits a three-phase region that can be suppressed by

increasing the system pressure up to 160 bar. Moreover, this behavior strongly

depends on temperature and the molecular weight of the polymer. Using only pure-

component and binary parameters for the three subsystems the phase behavior and

even the presence or absence of the three-phase region can be described by PC-

SAFT in excellent agreement with the experimental data.

5 Extension to Copolymers

The original versions of the above-mentioned perturbation theories (e.g., SAFT or

PC-SAFT) consider a molecule as a chain of identical segments. Extensions of

these models allow for taking into account different types of segments and can

therefore describe copolymer systems [50–52]. The extension of PC-SAFT to

copolymers is referred to as copolymer PC-SAFT [53].

Now, the monomer segments are allowed to differ in size as well as in attractive

or electrostatic interactions (such as dispersion energy, association, polarity)

(Fig. 11). Thus, each of the different monomer units is described by its own

parameter set (for nonassociating and nonpolar monomers: m, s, e).
The relative amount of monomer units is usually given by the experimental

polymer characterization. The relative amount of segments a and b is described by

segment fractions za and zb (za þ zb ¼ 1) within the copolymer, which are defined

as:

za ¼ ma

m
ðanalogously for bÞ (22)
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Fig. 10 Phase behavior of the system PMMA (Mw = 18 kg/mol)/MMA/CO2 at 65
�C [45]. Squares

and circles represent experimental cloud-point data. The solid lines (phase boundary) and dashed
lines (tie lines) are calculated with PC-SAFT. Triangles represent the VLLE region. (a) p = 100

bar, (b) p = 150 bar
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whereas ma is the number of a segments in the copolymer (according to Table 2,

each polymer unit could consist of more than one segment). In addition, bond

fractions Bab are used to describe, at least to certain extent, the arrangement of the

segments in the polymer chain. Here, a bond fraction Bab is the fraction of all bonds

within the copolymer, which is a bond between a segment a and a segment b. The
bond fractions are estimated on the basis of the molecular structure of the copoly-

mer. In the case of block copolymers, the values of the respective bond fractions are

clearly defined. Out of (m�1) bonds, there is only one bond of type a–b, i.e.,

Bab ¼ 1
m�1ð Þ . The bond fraction of type a–a is simply given by Baa ¼ za m�2ð Þ

m�1ð Þ (the

same for Bbb) [52]. In the case of an alternating copolymer, there exist only one

bond type a�b, i.e., Bab =1.

The bond fractions in a random copolymer are usually not exactly known and

can only be estimated. One possibility is to assume that if segment type a is in the

majority, there exist no bonds between two b-segments. Hence, the bond fractions

for such a copolymer are [53]:

Bbb ¼ 0; Bab ¼ 2zam

m� 1ð Þ ; Baa ¼ 1� Bab (23)

Taking this into account, the expression for the hard-chain contribution can be

extended to copolymer systems [52]:

Ahc

NkT
¼ �m

Ahs

NkT
�
X
i

xi mi � 1ð Þ
X
a

X
b

Biaib ln giaib dþiaib
� �

(24)

whereas the segment number mi of a copolymer is determined by:

mi ¼
X
a

mia ¼ Mi

X
a

m

M

� �
ia
wia (25)

with wia being the weight fraction of a-segments within the copolymer. All other

expressions [(8)–(18)] are used as for the homopolymer system considering the

copolymer/solvent system consisting of three types of segments (the solvent seg-

ments and (at least) two different types of polymer segments). The concentration xia
of copolymer segments of type a is given by the product of the copolymer

concentration xi and the segment fraction zai:

Fig. 11 Copolymer chain with different segment types
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xia ¼ xi zia (26)

In copolymer PC-SAFT, the required segment parameters for a copolymer unit

are taken from the corresponding homopolymers (Table 2). The description of a

copolymer/solvent system requires three binary parameters: two for the interactions

of the solvent with the respective monomer segments a and b, and a third for the

interactions between the unlike monomer segments. Whereas the first two para-

meters can be determined from homopolymer/solvent systems, the third parameter

is the only one that has to be determined from copolymer/solvent data.

Figure 12 shows the results for the modeling of the solubility of the copolymer

poly(ethylene-co-1-butene) in propane. The pure-component parameters for poly

(ethylene) (HDPE), poly(1-butene), and propane as well as the binary parameters

for HDPE/propane and poly(1-butene)/propane were used as determined for the

homopolymer systems.

The interaction parameter for the ethylene segment/butene segment interaction

was fitted to one point of the cloud-point curve of the copolymer containing 35%

butene monomers. Using this approach, the solubility can be predicted over the

whole range of copolymer compositions.

Results of similar quality can also be obtained for copolymers in which the

segments are not as similar as in the previous example. Figure 13 shows the

solubility of ethylene-co-alkylacrylate copolymers in ethane [42]. For the poly

(ethylene-co-propylacrylate) copolymer, the solubility increases with an increasing

amount of propylacrylate monomers in the copolymer backbone (Fig. 13b). In

contrast, the poly(ethylene-co-methylacrylate) solubility first increases (cloud-

point pressure decreases) due to favorable methylacrylate–ethene interactions but,
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Fig. 12 Cloud-point pressures in the system poly(ethylene-co-1-butene)/propane for different

copolymer compositions (B is mole percent butene in the backbone; 0% B = LDPE). Polymer

weight fraction is about 0.05 wt%. Symbols represent experimental data [54]. Lines show PC-

SAFT calculations [53]
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after reaching a maximum (pressure minimum), solubility again decreases because

of the strong interactions between the methylacrylate monomers (Fig. 13a). The

homopolymer poly(methylacrylate) can not be dissolved in ethene, even at pres-

sures up to 3,000 bar. Although the two systems show this qualitatively different

behavior, the copolymer version of PC-SAFT is able to model the solubility in both

cases in almost quantitative agreement with the experimental data.

6 Accounting for the Influence of Polydispersity

So far, all polymers in this chapter were assumed to be and were modeled as being

monodisperse. However, polymers always have a certain polydispersity, which is

usually described as the ratio of the weight-average (Mw) and number average (Mn)

of the polymer molecular weight distribution. As can be seen from Fig. 6, the

influence of molecular weight on the vapor–liquid equilibrium of a polymer/solvent

system is rather small. The reason is that the polymer, as soon as it has a molecular

weight above a certain level, does not show a measurable vapor pressure and thus

does not participate in the partitioning between the liquid and the vapor phase. For

long-enough polymers this holds independently of the molecular weight, thus

polydispersity does not influence vapor–liquid equilibria to a notable amount and

usually does not need to be considered in the modeling.
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Fig. 13 Cloud-point pressures for poly(ethylene-co-alkylacrylate)/ethene systems at different

copolymer compositions (mole percent of acrylate monomer in the backbone is indicated). (a)

Solubility of poly(ethylene-co-ethylacrylate) (0% MA = LDPE). (b) Solubility of poly(ethylene-

co-propylacrylate) [0% PA = LDPE; 100% PA = poly(propylacrylate)]. Polymer content is about

5 wt%. Symbols represent experimental data and lines show PC-SAFT calculations [42]
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This changes dramatically when considering liquid–liquid equilibria. Smaller

polymers are more soluble than longer ones (see, e.g., Fig. 8). This also means that

the phase boundary of polymer systems is strongly influenced by the molecular

weight distribution of the polymer. Figure 14 shows the cloud-point curve of a

polydisperse LDPE (Mn = 43 kg/mol, Mw = 118 kg/mol, Mz = 231 kg/mol) in

ethene in comparison with PC-SAFT results obtained by monodisperse calculations

using eitherMn,Mw, orMz as the polymer molecular weight. Although PC-SAFT is

in general able to describe the phase behavior of that system (see Fig. 8), none of the

calculations is able to describe the experimental data in Fig. 14.

Obviously, the polydispersity of the polymer also needs to be considered in

the phase-equilibrium calculations. Assuming a system containing a solvent 1 and a

polydisperse polymer 2, the phase-equilibrium conditions have to be applied to the

solvent as well as to every polymer species. Equation (21) becomes:

xI1’
I
1 ¼ xII1’

II
1 for the solvent (27)

xI2x
I
2p;j’

I
2j ¼ xII2 x

II
2p;j’

II
2j for each polymer species (28)

with x2 being the mole fraction of the polymer (x2 = 1 � x1), and x2p,j meaning the

mole fraction of polymer species j within the solvent-free polymer. The latter have

to fulfill the normalization condition:

Fig. 14 Phase equilibrium in the system ethene/polyethylene (LDPE; Mn = 43,000 g/mol, Mw =

118,000 g/mol, Mz = 231,000 g/mol). Symbols represent experimental data [55]. Lines show

calculations using the SAFT model. Dashed lines show monodisperse calculations using Mn,

Mw, andMz, respectively. Solid line shows a calculation using two pseudocomponents as given in

Table 4
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X
j

x2p;j ¼ 1 (29)

which is valid in each of the phases. Rearranging (28), summing up over all

polymer components, and using (29) one obtains:

1 ¼ xI2
xII2

X
j

xI2p;j
’I
2j

’II
2j

(30)

For given temperature, pressure, and polymer distribution in one phase (xI2p;j),
equations (27) and (30) can be used to determine the unknowns xI1 and xII1 .
Depending on the expressions for the fugacity coefficients ’II

1 and ’II
2p;j, additional

unknowns, e.g., �mII
2 ¼P

j

xII2p;jm2p;j will have to be determined. The m2p,j are the

segment numbers of the various polymer species (which are of course the same in

the two phases). Additional equations can easily be obtained by multiplying (28),

e.g., with m2p,j, again rearranging, summing up over all polymer species, and using

(29) to eliminate the unknown molecular weight distribution in the second phase:

�mII
2 ¼ xI2

xII2

X
j¼1

xI2p;jm2p;j

’I
2j

’II
2j

(31)

Applying the approach given by (29)–(31), rather than the classical approach of

considering only (27) and (28), has the advantage that the number of equations to be

solved numerically is independent of the number of considered polymer species.

After solving (27), (30), and (31), the missing concentrations of the single

polymer species (molecular weight distribution) in the second phase can easily be

obtained from rearranging (28):

xII2p;j ¼
xI2
xII2

xI2p;j
’I
2j

’II
2j

(32)

A very elegant version of this approach is the so-called continuous thermody-

namics [56–59]. It can be considered as a reformulation of the classical thermody-

namic relationships that allows for using continuous molecular weight distribution

functions W(M) rather than the mole fractions of discrete polymer components.

Using this approach, e.g., (30) becomes:

1 ¼ xI2
xII2

ð
M

WðMÞ ’
I
2ðMÞ

’II
2 ðMÞ dM (33)

For certain combinations of analytical molecular weight distributions (e.g.,

Schulz–Flory distribution) and fugacity-coefficient expressions, the integral in

(33) can be solved analytically and no (time-consuming) summation is required.
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An application of this approach to describe polymer fractionations is described in

detail by Enders [60].

Direct use of (28) to (32) requires choosing a certain number of polymer

components that can be used within the calculations. One could, e.g., think of

dividing the polymer molecular weight distribution into (not necessarily equally

spaced) intervals and choosing the polymer (pseudo)components such that each of

them represents one of these intervals (Fig. 15). Depending on the shape of the

molecular weight distribution, this approach requires about 5–20 polymer compo-

nents for representing the phase boundary of the polydisperse system.

The number of pseudocomponents can be remarkably decreased by choosing

them in a such a way that they represent relevant moments Mk of the molecular

weight distribution. These moments are related to the molecular weight averages

Mn, Mw and, Mz by:

Mn ¼ M1; �Mw ¼ M2

M1
; �Mz ¼ M3

M2
; Mk ¼

X
j

x2p;jM
k
j (34)

Taking into account that each pseudocomponent is characterized by two proper-

ties (its mole fraction x2p,j and its molecular weightM2p,j), n pseudocomponents can

reproduce 2n moments of a polymer distribution. This means, that, using only two

pseudocomponents, one can exactly reproduce Mn, Mw, and Mz. It also means that

the mole fractions of the two components have to add to unity (M0). Using three

pseudocomponents, even two additional moments of the molecular weight distri-

bution can be covered.

Table 4 gives two sets of pseudocomponents (two and three components)

determined for the poly(ethylene) used in Fig. 14, which cover the given number

of moments.

The pseudocomponents differ only in molecular weight. Thus, one can assume

that all parameters except the segment number stay the same for all polymer

species. Since the segment number is directly proportional to the molecular weight

(see Table 2), it can easily be determined for each pseudocomponent.

M 

W(M ) 

Fig. 15 Molecular weight distribution W(M) and its representation by pseudocomponents
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Figure 14 contains the results obtained with PC-SAFT when using the set of two

pseudocomponents left-hand side from Table 4, in comparison with the experimen-

tal data and with the monodisperse calculations. As can be seen, the results of the

calculations can be improved remarkably when accounting for the polydispersity by

using only two pseudocomponents.

As a second example, the phase equilibrium in the system poly(ethylene-co-
acrylic acid)/ethene is illustrated in Fig. 16. The polymer has a polydispersity index

Mw/Mn of about 3.3. The solubility of this copolymer was first modeled assuming

the polymer to be monodisperse. Neither modeling using Mn nor using Mw as the

molecular weight of the polymer could satisfactorily describe the experimental data

(Fig. 16). In a second step, the polydispersity of the copolymer was accounted for

by using two pseudocomponents (see Table 6). As also shown in Fig. 16, without

changing or refitting any parameters, the modeling is now in almost perfect

agreement with the experimental data. This again demonstrates the importance of

accounting for polydispersity in the modeling as well as in the interpretation of the

experimental data [43].

Table 4 Pseudocomponents for poly(ethylene) considered in Fig. 14

Mk k = {0, 1, 2, 3} k = {�1, 0, 1, 2, 3, 4}

j M2p,j (g/mol) x2p,j M2p,j (g/mol) x2p,j

1 2.8614 � 104 0.93970 2.7676 � 103 0.54529

2 2.6717 � 105 0.06030 8.3769 � 104 0.44588

3 4.6883 � 105 0.00883

Mkmoment of molecular weight distribution,M2p,jmolecular weight of the pseudocomponent, x2p,j
mole fraction of the pseudocomponent in the solvent-free system

Fig. 16 Solubility of poly(E96.2-co-AA3.8) in ethene. Polymer properties can be found in Table 5.

Polymer concentration in the mixture is about 3 wt%. Symbols represent experimental data [61]

compared with results form PC-SAFT calculation [43]. Dashed line shows monodisperse calcula-

tion using Mn; solid line shows monodisperse calculation using Mw; and dotted line shows

calculation using two pseudocomponents given in Table 6
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Using the same pure-component and binary parameters, the phase boundary of

other poly(ethylene-co-acrylic acid) samples varying in copolymer composition,

molecular weight, and with even higher polydispersity can also be described

successfully, as demonstrated in Fig. 17.

In some cases, e.g., for polymer fractionations, not only the phase boundary, but

also the molecular weight distribution in the coexisting phases is of interest.

In this case, it is useful to use the whole molecular weight distribution (see [60])

or a higher number of pseudocomponents for the modeling. As an example, Fig. 18

shows the molecular weight distributions of polystyrene in the two coexisting

phases observed with cyclohexane/carbon dioxide solvent mixture [63]. An initially

bimodal mixture of two polystyrene samples (40 kg/mol and 160 kg/mol) was

mixed with cyclohexane and carbon dioxide at 170�C and different pressures to

generate two liquid phases.

From the experimental data shown in Fig. 18, it becomes obvious that the

shorter polymer species preferably dissolve in the polymer-lean phase whereas

the species of higher molecular weight accumulate in the polymer-rich phase. The

separation effect is best at low pressures where almost no longer polymers are

found in the polymer-lean phase. The selectivity decreases with increasing pres-

sures due to increasing solubility, also of the longer polymer species. Modeling

this system using about 30 pseudocomponents (right-hand side of Fig. 18) leads to

the same conclusion and shows an excellent agreement with the experimental

findings [64].

Table 5 Properties of poly(ethylene-co-acrylic acid) copolymer samples

Copolymer Acrylic acid content (mol%) Mn (g/mol) Mw (g/mol) Mw/Mn

Poly(E96.2-co-AA3.8) 3.8 19,090 63,250 3.3

Poly(E97.6-co-AA2.4) 2.4 22,713 258,214 11.4

Poly(E96.9-co-AA3.1) 3.1 19,930 235,146 11.8

Poly(E96.3-co-AA3.7) 3.7 23,443 227,427 9.7

Poly(E95.4-co-AA4.6) 4.6 23,730 205,024 8.6

Table 6 Pseudocomponents for the copolymers poly(ethylene-co-acrylic acid)

Copolymer Pseudocomponents j w2p,j M2p,j (g/mol)

Poly(E96.2-co-AA3.8) 1 0.5 10,400

2 0.5 116,100

Poly(E97.6-co-AA2.4) 1 0.673 15,433

2 0.327 757,509

Poly(E96.9-co-AA3.1) 1 0.673 13,554

2 0.327 692,543

Poly(E96.3-co-AA3.7) 1 0.669 158,74

2 0.331 655,259

Poly(E95,4-co-AA4,6) 1 0.666 16,023

2 0.334 582,165

M2p,j molecular weight of the pseudocomponent, w2p,j weight fraction of the pseudocomponent in

the solvent-free system
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7 Summary

State-of-the-art equations of state like SAFT and PC-SAFT are based on a sound

physical background and are able to explicitly account for various molecular

properties such as the nonspherical shape, the ability to form hydrogen bonds or

the polarity. These models usually require three (for nonassociating molecules) or

five pure-component parameters (for associating molecules) that have a physical

meaning. Whereas for solvents these parameters are usually determined from fitting

to vapor pressures and liquid densities, a different approach is applied to polymers.

Because vapor pressures are not accessible for these molecules, polymer parameters

are fitted to the experimental data of a polymer/solvent binary system. It could be

shown that although fitted to binary data, these parameters have a physical meaning

and do characterize the considered polymer molecule. Using these parameters, the

phase equilibrium of homopolymer systems can be described as a function of

temperature, pressure, polymer concentration, molecular weight, and even the

polymer molecular weight distribution.

The extension to copolymer systems is straightforward. The parameters for the

different polymer units as well as the binary parameters for their interaction with

the solvent can be used as determined for the respective homopolymer systems.

Using only one additional binary parameter that describes the interactions of the

unlike monomer units in the copolymer system, the phase behavior of copolymer

systems can be described and even predicted over a wide range of copolymer

compositions.

Fig. 17 Solubilities of poly(ethylene-co-acrylic acid) copolymers with different acrylic acid

contents in ethene. The polymer concentration is 5 wt%. The properties of the copolymers are

given in Table 5. Lines show predictions using PC-SAFT and the pseudocomponents given in

Table 6 [43]. Symbols represent experimental data [62]: Circles poly(E95.4-co-AA4.6), squares
poly(E96.3-co-AA3.7), triangles poly(E96.9-co-AA3.1), diamonds poly(E97.6-co-AA2.4)
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Polymers are often polydisperse with respect to molecular weight. Whereas this

is of minor importance for the solvent sorption in polymers (vapor–liquid equilibrium),

this fact usually remarkably influences the polymer solubility (liquid–liquid equilib-

rium). Therefore, polydispersity needs to be accounted for in interpretation and

modeling of experimental data. This can be done by applying continuous thermo-

dynamics as well as by choosing a representative set of pseudocomponents. It was

shown that a meaningful estimation of the phase boundary is possible when using

only two or three pseudocomponents as soon as they reflect the important moments

(Mn, Mw, Mz) of the molecular weight distribution.

1100

1100

1100

11001100

86.2 bar

1100

101.5 bar

1100

74.1 bar

experimental MWD in
polymer-lean and polymer-rich phase

predicted MWD in 
polymer-lean and polymer-rich phase

Fig. 18 Molecular weight distributions of polystyrene (mixture of two almost monodisperse

samples of 40 kg/mol and 160 kg/mol) in the coexisting phases of a polystyrene/cyclohexane/

carbon dioxide mixture at 170�C and varying pressures [63]. The two left-hand columns give

the GPC analysis of the polymer-lean and polymer-rich phases. The two right-hand columns
show the molecular weight distributions as calculated using the SAFT model using 30 pseudo-

components [64]

Modeling of Polymer Phase Equilibria Using Equations of State 415



Finally, one can say that the thermodynamics of polymer systems is (of course)

the same as for small molecules because all thermodynamic relationships stay the

same – but is also completely different because the models and approaches used

have to explicitly account for the fact that polymers are chain molecules and are

usually themselves mixtures.
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