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Preface

Ludwig Prandtl, with his fundamental contributions to hydrodynamics, aero-
dynamics, and gas dynamics, greatly influenced the development of fluid me-
chanics as a whole, and it was his pioneering research in the first half of the
last century that founded modern fluid mechanics. His book Führer durch
die Strömungslehre, which appeared in 1942, originated from previous publi-
cations in 1913, Lehre von der Flüssigkeit und Gasbewegung, and 1931, Abriß
der Strömungslehre. The title Führer durch die Strömungslehre, or Essentials
of Fluid Mechanics, is an indication of Prandtl’s intentions to guide the reader
on a carefully thought-out path through the different areas of fluid mechan-
ics. On his way, the author advances intuitively to the core of the physical
problem, without extensive mathematical derivations. The description of the
fundamental physical phenomena and concepts of fluid mechanics that are
needed to derive the simplified models has priority over a formal treatment
of the methods. This is in keeping with the spirit of Prandtl’s research work.

The first edition of Prandtl’s Führer durch die Strömungslehre was the
only book on fluid mechanics of its time and, even today, counts as one of
the most important books in this area. After Prandtl’s death, his students
Klaus Oswatitsch and Karl Wieghardt undertook to continue his work, and to
add new findings in fluid mechanics in the same clear manner of presentation.

When the ninth edition went out of print and a new edition was desired
by the publishers, we were glad to take on the task. The first four chapters of
this book keep to the path marked out by Prandtl in the first edition, in 1942.
The original historical text has been linguistically revised, and leads, after the
Introduction, to chapters on Properties of Liquids and Gases, Kinematics of
Flow, and Dynamics of Fluid Flow. These chapters are taught to science and
engineering students in introductory courses on fluid mechanics even today.
We have retained much of Prandtl’s original material in these chapters, but
added a section on the Topology of a Flow in Chapter 3 on Flows of Non-
Newtonian Media and Aerodynamics in Chapter 4. Chapter 5 on Fundamental
Equations of Fluid Mechanics enlarges the material in the original, and forms
the basis for the treatment of different branches of fluid mechanics that appear
in subsequent chapters.

The major difference from previous editions lies in the treatment of addi-
tional topics of fluid mechanics. The field of fluid mechanics is continuously
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growing, and has now become so extensive that a selection had to be made.
I am greatly indebted to my colleagues K.R. Sreenivasan, U. Müller, J. War-
natz, U. Riedel, D. Etling, and P. Erhard, who revised individual chapters in
their own research areas, keeping Prandtl’s purpose in mind and presenting
the latest developments of the last seventy years in Chapters 6 to 12. Some of
these chapters can be found in some form in Prandtl’s book, but have under-
gone substantial revisions; others are entirely new. The original chapters on
Wing Aerodynamics, Heat Transfer, Stratified Flows, Turbulent Flows, Mul-
tiphase Flows, Flows in the Atmosphere and the Ocean, and Turbomachinery
have been revised, while the chapters on Instabilities and Turbulent Flows,
Flows with Chemical Reactions, Microflows and Biofluid Mechanics are new.
References to the literature in the individual chapters have intentionally been
kept to those few necessary for comprehension and completion. The extensive
historical citations may be found by referring to previous editions.

Essentials of Fluid Mechanics is targeted to science and engineering stu-
dents who, having had some basic exposure to fluid mechanics, wish to attain
an overview of the different branches of fluid mechanics. The presentation
postpones the use of vectors and eschews the use integral theorems in order
to preserve the accessibility to this audience. For more general and compact
mathematical derivations we refer to the references. In order to give students
the possibility of checking their learning of the subject matter, Chapters 2
to 5 are supplemented with problems. The book will also give the expert in
research or industry valuable stimulation in the treatment and solution of
fluid-mechanical problems.

We hope that we have been able, with the treatment of the different
branches of fluid mechanics, to carry on the work of Ludwig Prandtl as he
would have wished. Chapters 1–5, 7, and 12 were written by H. Oertel, Chap-
ter 6 by K.R. Sreenivasan and H. Oertel, Chapter 8 by U. Müller, Chapter
9 by J. Warnatz and U. Riedel, Chapter 10 by D. Etling, and Chapter 11 by
P. Erhard. Thanks are due to those colleagues whose numerous suggestions
have been included in the text.

I thank Katherine Aswaf for the translation and typesetting of the English
manuscript and K. Fritsch-Kirchner for the completion of the text files. The
extremely fruitful collaboration with Springer-Verlag also merits particular
praise.

Karlsruhe, July 2009 Herbert Oertel
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1. Introduction

The development of modern fluid mechanics is closely connected to the name
of its founder, Ludwig Prandtl. In 1904 it was his famous article on fluid
motion with very small friction that introduced boundary-layer theory. His
article on airfoil theory, published the following decade, formed the basis
for the calculation of friction drag, heat transfer, and flow separation. He
introduced fundamental ideas on the modeling of turbulent flows with the
Prandtl mixing length for turbulent momentum exchange. His work on gas
dynamics, such as the Prandtl–Glauert correction for compressible flows, the
theory of shock waves and expansion waves, as well as the first photographs
of supersonic flows in nozzles, reshaped this research area. He applied the
methods of fluid mechanics to meteorology, and was also pioneering in his
contributions to problems of elasticity, plasticity, and rheology.

Prandtl was particularly successful in bringing together theory and ex-
periment, with the experiments serving to verify his theoretical ideas. It was
this that gave Prandtl’s experiments their importance and precision. His fa-
mous experiment with the tripwire, through which he discovered the turbu-
lent boundary layer and the effect of turbulence on flow separation, is one
example. The tripwire was not merely inspiration, but rather was the result
of consideration of discrepancies in Eiffel’s drag measurements on spheres.
Two experiments with different tripwire positions were enough to establish
the generation of turbulence and its effect on the flow separation. For his
experiments Prandtl developed wind tunnels and measuring apparatus, such
as the Göttingen wind tunnel and the Prandtl stagnation tube. His scientific
results often seem to be intuitive, with the mathematical derivation present
only to serve the physical understanding, although it then does indeed deliver
the decisive result and the simplified physical model. According to Werner
Heisenberg, Prandtl was able to “see” the solutions of differential equations
without calculating them.

Selected individual examples aim to introduce the reader to the path to
understanding of fluid mechanics prepared by Prandtl and to the contents and
modeling in each chapter. As an example of the dynamics of flows (Chapter
4), the different regimes in the flow past a vehicle, an incompressible flow,
and in the flow past an automobile, a compressible flow, are described.

1H. Oertel (ed.), Prandtl-Essentials of Fluid Mechanics,  
Applied Mathematical Sciences 158, DOI 10.1007/978-1-4419-1564-1_1,
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2 1. Introduction

In flow past a vehicle, we differentiate between the free flow over the
surface and the flow between the vehicle moving with velocity U∞ and the
street which is at rest. At the stagnation point, where the pressure is at its
maximum, the flow divides, and is accelerated along the hood and past the
spoiler along the base of the vehicle. This leads to a pressure drop and to a
negative downward pressure on the street, as shown in Figure 1.1. The flow
again slows down at the windshield, and is decelerated downstream along
the roof and the trunk. This leads to a pressure increase with a positive lift,
while the negative downward pressure on the street along the lower side of
the vehicle remains.

Viscous flow (Section 4.2) on the upper and lower sides of the vehicle
is restricted to the boundary-layer flow, which becomes the viscous wake
at the back edge of the vehicle. In the wind tunnel experiment the flow is
made visible with smoke, and this shows that downstream from the back of
the automobile, a backflow region forms. This is seen in the figure as the
black region. Outside the boundary layer and the wake, the flow is essentially
inviscid (Section 4.1).

In order to be able to understand the different flow regimes, and therefore
to establish a basis for the aerodynamic design of a motor vehicle, Prandtl
worked out the carefully prepared path (Chapters 2 to 4) from the properties
of liquids and gases, to kinematics, and to the dynamics of inviscid and viscous
flows. By following this path, too, the reader will successively gain physical
understanding of this first flow example.

The second flow example considers compressible flow past a wing with a
shock wave (Sections 4.3 and 4.4.5). The free flow toward the wing has the

Sichtbarmachung im Nachlauf

boundary layer

wake

inviscid flow

wake flow visualization

Fig. 1.1. Flow past a vehicle



1. Introduction 3

velocity of a civil aircraft U∞, a large subsonic velocity. Figure 1.2 shows
the flow regimes on a cross-section of the wing and the negative pressure
distribution, with the flow again made visible with small particles. From the
stagnation point, the stagnation line bifurcates to follow the suction side
(upper side) and the pressure side (lower side) of the wing. On the upper
side, the flow is accelerated up to supersonic velocities, an effect that is con-
nected with a large pressure drop. Further downstream, the flow is again
decelerated to the subsonic regime via a compression shock wave. This shock
wave interacts with the boundary layer and causes it to thicken, leading to
increased drag.

On the lower side the flow is also accelerated from the stagnation point.
However, in the nose region the acceleration is not as great as on the suction
side, and so no supersonic velocities occur along the pressure side. From
about the middle of the wing onwards, the flow is again decelerated. The
pressures above and below then approach one another, leading to the wake
region downstream of the trailing edge.

A thin boundary layer is formed on the suction and pressure sides of the
wing. The suction and pressure side boundary layers meet at the trailing edge
and form the wake flow downstream. As in the example of the flow past a
motor vehicle, both the flow in the boundary layers and the flow in the wake
are viscous. Outside these regions the flow is essentially inviscid.

The pressure distribution in Figure 1.2 results in a lift, which, for the
wing of the civil aircraft, has to be adapted to the number of passengers to
be transported. In designing the wing, the design engineer has to keep the

Strömungssichtbarmachungflow visualization

Fig. 1.2. Flow past a wing



4 1. Introduction

drag of the wing as small as possible to save fuel. This is done by shaping
the wing appropriately.

Different equations for computing each flow result from the different prop-
erties of each flow regime. To good approximation, the boundary-layer equa-
tions hold in the boundary-layer regime. In contrast, computing the wake
flow and the flow close to the trailing edge is more difficult. In these regimes,
the Navier–Stokes equations have to be solved. The inviscid flow in the re-
gion in front of the shock can be treated using the potential equation, a
comparatively simple task. The inviscid flow behind the shock outside the
boundary layer has to be computed with the Euler equations, since the flow
there is rotational. In the shock boundary-layer interaction region, again the
Navier–Stokes equations have to be solved.

In contrast to Prandtl’s day, numerical software is now available for solv-
ing the different partial differential equations. Because of this, in Chapter
5 we present the fundamental equations of laminar and turbulent flows as a
basis for the following chapters dealing with the different branches of fluid
mechanics. Following the same procedure as Prandtl, the mathematical so-
lution algorithms and methods may be found by referral to the texts and
literature cited.

As will be shown in Chapters 6 to 12, no withstanding of numerically
computed flow fields, it is necessary to consider the physical modeling in
the different regimes. There are still no closed theories of turbulent flows,
of multiphase flows, or of the coupling of flows with chemical reactions out
of thermal or chemical equilibrium. For this reason, Prandtl’s method of
intuitive connection of theory and experiment to physical modeling is still
very much up-to-date.

The fascinating complexity of turbulence has attracted the attention of
scientists for centuries (Chapter 6). For example, the swirling motion of fluids
that occurs irregularly in space and time is called turbulence. However, this
randomness, is not without some order, as is apparent from casual observa-
tion. Turbulent flows are a paradigm for spatially extended nonlinear dissi-
pative systems in which many length scales are excited simultaneously and
coupled strongly. The phenomenon has been studied extensively in engineer-
ing and in such diverse fields as astrophysics, oceanography, and meteorology.

Figure 1.3 shows a turbulent jet of water emerging from a circular orifice
into a tank of still water. The fluid from the orifice is made visible by mixing
small amounts of a fluorescing dye and illuminating it with a thin light sheet.
The picture illustrates swirling structures of various sizes amidst an avalanche
of complexity. The boundary between the turbulent flow and the ambient is
usually rather sharp and convoluted on many scales. The object of study is
often an ensemble average of many such realizations. Such averages obliterate
most of the interesting aspects seen here, and produce a smooth object that
grows linearly with distance downstream. Even in such smooth objects, the
averages vary along the length and width of the flow, these variations being a
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measure of the spatial inhomogeneity of the turbulence. The inhomogeneity is
typically stronger along the smaller dimension of the flow. The fluid velocity
measured at any point in the flow is an irregular function of time. The degree
of order is not as apparent in time traces as in spatial cuts, and a range of
intermediate scales behaves like fractional Brownian motion.

In contrast, Figure 1.4 shows homogeneous and isotropic turbulence pro-
duced by sweeping a grid of bars at a uniform speed through a tank of still
water. Unlike the jet turbulence of Figure 1.3, turbulence here does not have
a preferred direction or orientation. On average, it does not possess signifi-
cant spatial inhomogeneities or anisotropies. The strength of the structures,
such as they are, is weak in comparison with such structures in Figure 1.3.
Homogeneous and isotropic turbulence offers considerable theoretical simpli-
fications, and is the object of many studies.

In many fluid-mechanical problems, the onset of turbulent flow is due to
instabilities. An example of this is thermal cellular convection in a horizontal
fluid layer heated from below and under the effect of gravity. The base be-
neath the fluid has a higher temperature than the free surface. If a critical
temperature difference between the free surface and the base is exceeded, the
fluid is suddenly set into motion and, as in Figure 1.5, it forms hexagonal
cell structures in the center of which fluid rises and on whose edges the fluid
sinks. The phenomenon is known as thermal cellular convection. If the fluid

Fig. 1.3. Turbulent jet of water Fig. 1.4. Homogeneous and isotropic
turbulent flow
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is covered by a plate, instead of hexagonal cells periodically spaced rolling
structures are formed without surface tension. The reason for the instabil-
ities is the same in both cases. Cold, denser fluid is layered above warmer
fluid, and this tends to flow toward lower layers. The smallest perturbation
to this layering leads to the onset of the equalizing motion, providing critical
temperature difference is exceeded.

The transition to turbulent convection flow takes place with increasing
temperature difference via several time-dependent intermediate states. The
size of the hexagonal structures or the long convection rolls changes, but the
original cellular structure of the instability can still be seen in the turbulent
convection flow.

Convection flows with heat and mass transport are treated in Chapter 7.
These occur frequently in nature and technology, and it is via such flows that
heat exchange in the atmosphere determines the weather. The example of
a tropical cyclone is shown in Figure 1.10. The extensive heat adjustment
between the equator and the North Pole leads to convection flows in the
oceans, such as the Gulf Stream (Figure 1.11). Convection flows in the center
of the Earth are also the cause of continental drift and are responsible for the
Earth’s magnetic field. In energy technology and environmental technology
flows are connected with heat and mass transport, and with phase transitions,
as in steam generators and condensers. Convection flows are used in cooling

free surfaces

rigid boundaries

hexagons

rolls

Fig. 1.5. Thermal cellular convection
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towers to transport the waste heat from power stations. Other examples of
convection flows are the propagation of waste air and gas in the atmosphere
and of cooling and waste water in lakes, rivers, and oceans, heating systems
and air-conditioning in buildings, circulation of fluids in solar collectors and
heat accumulators.

Figure 1.6 shows experimental results on thermal convection flows. In
contrast to forced convection flows, these are free convection flows, where
the flow is due to only lift forces. These may be caused by temperature or
concentration gradients in the gravitational field. A heated horizontal circular
cylinder initially generates a rising laminar convection flow in the surrounding
medium, which is at rest, until the transition to turbulent convection flow
is caused by thermal instabilities. Similar thermal convection flows occur at
vertical and horizontal heated plates.

Multiphase flow (Chapter 8) is the flow form that appears most frequently
in nature and technology. Here the word phase is meant in the thermodynamic
sense and implies either the solid, liquid, or gaseous state, any of which can
occur simultaneously in a one-component or multicomponent system of sub-
stances. Impressive examples of multiphase flows in nature are storm clouds
containing raindrops and hailstones, and snow dust in an avalanche or a cloud
of volcano ash.

In power station engineering and chemical process engineering, multiphase
flows are an important means of transporting heat and material. Two-phase,
or binary, flows determine the processes in the steam generators, condensers,
and cooling towers of steam power stations. The rain from the cooling water of
a wet cooling tower is shown in Figure 1.7. The water drops lose their heat by
evaporation to the warmed rising air. Multiphase, multicomponent flows are
used in the extraction, transportation, and processing of oil and natural gas.
Such flow forms are also very much involved in distillation and rectification

vertical plateheated cylinder horizontal plate

Fig. 1.6. Thermal convection flows
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Fig. 1.7. Wet cooling tower

processes in the chemical industry. They also appear as cavitation effects on
underwater wing surfaces in fast flows. The example in Figure 1.8 shows a
cavitating underwater foil. Phenomena of this kind are highly undesirable in
flow machinery since they can lead to serious material damage.

Turbulent reactive flows (Chapter 9) are very important for a great num-
ber of applications in energy, chemical, and combustion technology. The op-
timization of these processes places great demands on the accuracy of the
numerical simulation of turbulent flows. Because of the complexity of the in-
teraction between turbulent flow, molecular diffusion, and chemical reaction
kinetics, there is a great need for improved models to describe these processes.

Turbulent flames are characterized by a wide spectrum of time and length
scales. The typical length scales of the turbulence extend from the dimen-
sions of the combustion chamber right down to the smallest vortex in which
turbulent kinetic energy is dissipated. The chemical reactions that cause the
combustion have a wide spectrum of time scales. Depending on the overlap-
ping of the turbulent time scales with the chemical time scales, there are
regimes with a strong or weak interaction between chemistry and turbulence.
Because of this, a joint description of turbulent diffusion flames generally
always requires an understanding of turbulent mixing and combustion.

Fig. 1.8. Cavitation at an underwater
foil
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A complete description of turbulent flames therefore has to resolve all
scales from the smallest to the largest, which is why a numerical simulation
of technical combustion systems is not possible on today’s computers and
why averaging techniques in the form of turbulence models have to be used.
However, if turbulence models are to describe such aspects of technical ap-
plication as mixing, combustion, and formation of emissions realistically, it is
necessary to be able to better determine the parameters of such models from
detailed investigations.

One promising approach is the use of direct numerical simulation, the
generation of artificial laminar and turbulent flames with the computer. For
a small spatial area, the conservation equations for reactive flows are solved,
taking all turbulent fluctuations into account, and thus describing a small
but realistic section of a flame. This can then be used to describe real flames.

The formation of closed regions of fresh gas that penetrate into the ex-
haust are an interesting phenomenon of turbulent premixed flames. The time
resolution of this transient process can be investigated by means of direct nu-
merical simulation and is important in determining the region of validity of
current models and in the development of new models to describe turbulent
combustion. Figure 1.9 shows the concentration of OH and CO radicals, as
well as the vortex strength in a turbulent methane premixed flame.

Many different flows in nature (Chapter 10) can be seen on Earth and in
space. The flow processes in the atmosphere range from small winds to the
tropospherical jet stream of strong winds surrounding the globe. One par-
ticularly impressive atmospheric phenomenon is the tropical cyclone, known
in the Caribbean and the United States under the name hurricane. Hur-
ricanes form in the summer months above the warm waters off the African
coast close to the equator and move with a southeasterly flow first toward the
Caribbean and then northeastwards along the east coast of the United States.
Wind speeds of up to 300 km/h can occur in these tropical wind storms, with
much resulting damage on land. An example of a cyclone is shown in Figure
1.10. This figure shows the path and a satellite image of Hurricanes Ivan and

OH concentration CO concentration vorticity

Fig. 1.9. Turbulent premixed methane flame
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Fig. 1.10. Path of Hurricanes Ivan and Charley 2004

Charley which passed over the Caribbean islands and the southeast coast of
the United States in 2004, and continued their path as a low-pressure region
across the Atlantic as far as Europe.

The flow processes in the ocean extend from small phenomena such as
water waves to large sea currents. An example of the latter is the Gulf Stream,
which as a warm surface current can be tracked practically from the African
coast, past the Caribbean to western and northern Europe. Thanks to its
relatively high water temperature, it ensures a mild climate along of the
coast of Britain and Norway. In order to compensate the warm surface current
directed towards the pole, a cold deep current forms, and this flows from the
north Atlantic along the east coast of North and South America, toward the
south. Both of these large flow systems are shown in Figure 1.11.

Microflows, a new area of fluid mechanics, are discussed in Chapter 11.
Through advances in manufacturing technology, the flow processes and trans-
port processes through microchannels and past micro-objects are becoming
relevant for technical applications. Modern manufacturing methods permit
very small structures considerably less than one millimeter in size to be made

ice field

gulf stream

Fig. 1.11. Large ocean currents in the Atlantic



1. Introduction 11

from various materials such as silicon, glass, metal or plastic. Complex fluidic
functions then take place in tiny spaces.

An inkjet printer head is an example of a microfluidic system. The ink is
ejected through a matrix of apertures about 45 µm diameter and generates
points of color on the paper. Figure 1.12 shows the ejection of a single droplet
of ink from the printer head. The pressure is built up in the cavity by piezo
crystals or through application of heat and evaporation. Similar systems are
used for highly precise dosage in process engineering.

In a second example, the favorable surface to volume ratio in microchan-
nels is used to construct a compact micro heat exchanger. Figure 1.12 shows
a crossflow heat exchanger made of a pile of metal sheets with microchan-
nels of cross-section 100 x 200µm etched onto it. In a cube of side 14mm at
temperature differences of up to 80K, heat can be transferred at rates of up
to 14kW. The large transfer surface is advantageous not only for heat trans-
fer, but can also be used in catalytic coating to improve material transfer
in chemical reactions. Similar heat exchangers can be used as microreactors,
where the temperature of the chemical reaction in a passage can be controlled
very precisely by a heat carrier in a second passage. Chemical reactions that
otherwise would be quite impossible can thus be made possible or optimized.

Depending on the fluid, flows through and past very small geometries
cannot be treated using continuum mechanics. Corrections to the continuum
mechanical equations or even molecular methods are necessary to represent
correctly the physics of flows at these small length scales.

2004C. Maier 2001K. Schubert et al.

Fig. 1.12. Examples of microfluidic components
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In contrast to the previous examples of flows, biofluid mechanics in Chap-
ter 12 deals with flows that are characterized by flexible biological surfaces.
One distinguishes between flows past animals in the air or in water, such as
a bird in flight or a fish swimming, and internal flows, such as the closed
human blood circulation.
The human heart consists of two separate pump chambers, the left and right
ventricles. The right ventricle is filled with blood low in oxygen from the
circulation around the body, and on contraction it is emptied into the lung
circulatory system. The reoxygenated blood in the lung is passed into the
circulation around the body via the left ventricle. A simple representation
of the flow throughout one cardiac cycle is shown in Figure 1.13. The atria
and ventricles of the heart are separated by the atrioventricular valves, which
regulate the flow into the ventricles. They prevent backward flow of the blood
during contraction of the ventricles. During relaxation of the ventricles, the
pulmonary valves prevent backward flow of the blood out of the lung arteries,
while the aortic valves prevent backward flow out of the aorta into the left
ventricle.
During the cardiac cycles, the ventricles undergo periodic contraction and
relaxation, ensuring the pulsing blood flow in the circulatory system around
the body. This pump cycle is associated with changes in pressure in the ven-

ventrical relaxation
outward flow

aortic valve open
ventrical conctraction

mitral valve open

inward flow

Flow simulation of the left heart ventricle, atrium and aorta

Fig. 1.13. Flow of the human heart
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tricles and arteries. The pressure differences control the opening and closing
of the cardiac valves. In a healthy heart, the pulsing flow is laminar and does
not separate. Defects in the pumping behavior of the heart and heart failure
lead to turbulent flow regimes and backflow in the ventricles, increasing flow
losses in the heart.
The flow simulation of Figure 1.13 shows the streamlines of the inward flow
in the left ventricle accompanied by a ring vortex. The mitral valve is open
and the aortic valve closed. Large inward flow velocities directed downward
and with a maximal velocity of about 0.5 m/s can be seen. After a quarter
of the cardiac cycle the ring vortex branches, and the blood begins to flow
through the top of the ventricle. When the ventricle contracts, the aortic and
mitral valves are closed. The left ventricle is completely filled with blood, and
the flow velocities calculated are very small. As the blood flows out of the
ventricle, the mitral valve is closed and the aortic valve open. The streamlines
show the blood flow jet into the aorta. As the ventricle relaxes, both cardiac
valves are closed. The flow into the left atrium can be seen.



2. Properties of Liquids and Gases

2.1 Properties of Liquids

Liquids are distinguished from solids by the fact that their particles are read-
ily displaced. Whereas forces of finite magnitude are required to deform a
solid, no force at all is required to alter the shape of a liquid, provided only
that sufficient time is allowed for the change of shape to take place. When
the shape is altered quickly, liquids do display a resistance, but this vanishes
very quickly after the motion is finished. This ability of liquids to oppose
a change in shape is called viscosity. We will discuss viscosity in depth in
Section 4.2. As well as the usual liquids that are easy to move, there are also
very viscous liquids whose resistance to change of shape is considerable, but
which vanishes again at rest. Starting out from the viscous state, all phase
transitions to (amorphous) solid bodies are possible. Heated glass, for exam-
ple, passes through all possible transitions; in asphalt and similar substances
these transitions occur at normal temperatures. For example, depending on
the temperature, if a barrel of asphalt is tipped over, the asphalt will flow
out within a few days or weeks. The mass that flows out forms a flat cake.
Although it continually flows, one can walk on it without making footprints.
Footprints will be left, however, if one stands still for a longer time on the
asphalt. Hammering on the asphalt causes the mass to shatter like glass.

In the study of the equilibrium of liquids, we consider states of rest or
sufficiently slow motion. The resistance to change of shape may then be set to
zero, and we obtain a definition of the liquid state: In a liquid in equilibrium,
all resistance to change of shape is equal to zero.

According to the kinetic theory of material, atoms or molecules are in
constant motion. The kinetic energy of this motion is observed as heat. From
this point of view, liquids differ from solids in that the particles do not os-
cillate about fixed positions, but rather more or less frequently swap places
with neighboring particles. If the liquid is in a state of stress, such exchanges
of place are favored. They cause the material to yield in the direction of the
stress differences. In the state of rest this yielding causes the stress differences
to vanish. During the change of shape, stresses arise that are larger the faster
the change of shape takes place.

The gradual softening of amorphous bodies with increasing temperature
may be explained as follows: If the body is heated, i.e. the energy of the
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16 2. Properties of Liquids and Gases

molecular motion is increased, initially some particles situated where the
oscillation amplitudes just happen to be particularly large change place. On
further heating, the exchange of place becomes more and more frequent, until
eventually it occurs everywhere. For crystalline solid bodies the transition
from a solid to a liquid state takes place discontinuously by melting, i.e. by
the disintegration of the regular crystal structure.

A further property of liquids is their great resistance to change in volume.
It is not possible to force 1 liter of water into a container half a liter in size.
If the same amount of water is placed in a container 2 liters in size, only half
of the container is filled. However, water is not fully incompressible. At high
pressures it can be pressed together by noticeable amounts (4% reduction in
volume at a pressure of about 100 bar). Other liquids behave in a similar
way.

2.2 State of Stress

We now consider more closely the state of stress of a liquid in equilibrium.
We first note that forces are always interactions between masses. For

example, if one mass m1 attracts another mass m2 with a force F , this force
F also acts on m1 as the effect of m2, as an attraction in the direction of m2.
The two forces act in opposite directions (Newton’s principle of action and
reaction). For a system of masses separated from other masses, we distinguish
between two types of force: the internal forces, which act between two masses
belonging to the system, and which therefore always act opposite in pairs, and
the external forces, which act between each system mass and a mass situated
outside the system, and which therefore occur only once in the system. If we
sum over all the forces acting on the masses in the system, the internal forces
always cancel each other out in twos, so that only the external forces remain.

For the equilibrium of the system it is necessary that the sum of all the
forces acting on each individual mass vanish (vector sum). If we sum this
over all masses of the system, only the sum of all the external forces remains.
Because each individual sum vanishes because of the equilibrium, the sum of
the external forces on the system also vanishes. This law, which assumes no
more about the mass system than that it is in equilibrium, is highly useful
in many different applications. We obtain three statements:

Fig. 2.1. Forces on a mass system
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∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0,

with the components Fx, Fy, Fz of the external forces in the x, y, and z
directions.

As well as the above law, there is an analogous law for the torques of the
external forces. Their sum also must vanish in equilibrium.

For both elastic solid bodies and liquid bodies we are interested in the
state of stress inside the body. This arises via the internal forces that act
between the smallest particles of the body. In general, we are content with
knowing the average state in a region that already contains a large number of
particles. Imagine the body cut and one of the two pieces (labeled I in Figure
2.1) to be part of a mass system. Then all forces that came from a particle
in region II and acted on a particle in region I, and which were previously
internal forces, have now become external forces. If the whole body was in
an external state of stress (indicated in Figure 2.1 by two arrows), internal
stresses also occur. Imagining the cut carried out, forces act through the
interface from the particles to the right of the cut on particles to the left
of the cut. We add all these forces together to a resultant force, which then
exactly maintains the equilibrium of the forces acting on part I. This gives us
a clear statement on the resultant of the forces in the section. This approach
could equally well have been applied to part II. We would have obtained an
equally large resultant force pointing in the opposite direction (precisely the
force acting from part I on part II).

By stresses we mean forces per unit area in a section. In the above exam-
ple, we obtain the mean stress in the section when we divide the resultant
force in the section due to equilibrium by the surface area of the section. We
see that the stress in a surface is a vector, just as the force is.

The method of sections, i.e. the manner of transforming internal forces to
external forces by imagining a cut, has further applications. With a number of
planes of section through a body whose state of stress is to be investigated,

Fig. 2.2. Stress forces on a tetrahedron
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we can select a small body (parallelepiped, prism, tetrahedron, etc.) and
investigate its equilibrium. In the simplest case, all forces that hold a body
in equilibrium are stress forces. From the equilibrium of such a body, we can
derive several important laws; one is proved here as an example.

If we know the stress vectors for three planes of section that together form
a corner of a body, then the stress vectors for all other planes of section are
also known.

As proof, we cut the corner with a fourth plane, whose stress is to be
determined. This gives rise to the tetrahedron shown in Figure 2.2. The forces
1, 2, and 3 are then obtained by multiplication of the given stress vectors by
the surface areas of the associated triangles. There is only one direction and
magnitude of the force 4 that maintains equilibrium with the sum of forces
1, 2, and 3. This force divided by the associated triangular surface area is the
desired stress. For the calculation it is useful to select the surfaces 1, 2, and
3 as the coordinate planes.

We menely note that the state of stress, which represents the whole of the
stress vectors in all possible cut directions through a point, can be related
to an ellipsoid, and is therefore a tensor. According to the derived law, the
state of stress in a point (and also its ellipsoid) is given if the stress vectors in
three planes of section are known. Corresponding to the three principal axes
of every ellipsoid, three orthogonal planes of section can be given for every
state of stress to which the associated stress vectors are normal. The three
stresses distinguished in this manner are called principal stresses.

2.3 Liquid Pressure

The state of stress of a liquid in equilibrium is particularly simple. A resis-
tance to change of shape, thus against displacement of the particles against
each other, can be compared to the friction of solid bodies. If there is no
friction between two bodies that are in contact, the force must always be
perpendicular to the contact surface between both bodies, so that no work

Fig. 2.3. Forces on the front side of a prism and force equilibrium
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is done by a sliding motion along this surface. Similarly, the absence of a
resistance to change of shape is distinguished by the fact that the stress, here
called the pressure, is always perpendicular to every plane of section. This
property, that the pressure is perpendicular to the associated surface, can
be taken as a definition of the liquid state. It is completely equivalent to the
definition given in Section 2.1.

By a simple equilibrium approach, a further property of the liquid pressure
may immediately be derived. We cut a small three-sided prism out of the
liquid. The faces of the prism are perpendicular to the edges of the prism.
We consider the equilibrium of the forces that act on the prism from the
rest of the liquid. The pressure forces on the faces are equal and directed
opposite to each other. They therefore maintain equilibrium and do not have
to be considered further. The forces on the side surfaces are perpendicular to
the surfaces, and are therefore in a plane perpendicular to the prism’s edges.
Figure 2.3 shows a front view of the prism with the forces, as well as the
triangle that the forces must form so that they are in equilibrium. Since the
sides of the force triangle are perpendicular to the sides of the prism, both
triangles have the same angles and are therefore similar. This means that
the three pressure forces behave like the associated prism sides. In order to
determine the pressures relative to the unit surface area, the pressure forces
have to be divided by the respective prism surface areas. The prism surface
areas all have the same height and are therefore in the same ratio to each
other as their base lines and as the associated forces. Therefore, the pressure
per unit area is equally large on all three prism surfaces. Since the prism was
arbitrarily chosen, we can conclude that the pressure at one point in the liquid
is equally large in all directions. The stress ellipsoid is a sphere in this case. In
order to describe a state of stress of this kind, also called the hydrostatic state
of stress, we need only the numerical value of the pressure p. The pressure p
means the force acting on a unit surface area.

Pressure Distribution of a Liquid without Gravity

Every liquid is subject to the force of gravity. In many cases, in particular at
high pressures, the effect of gravity can be neglected, thereby simplifying mat-
ters greatly. Again we set up the force equilibrium on a prism, this time with
a longitudinal shape. We consider the change in equilibrium on displacement
along the prism axis. The pressure varies with position. The cross-section of
the prism is the same as its front surface, here again assumed perpendicular
to the axis of the prism, and is denoted by A (see Figure 2.4). This cross-
section is assumed to be so small that the change in pressure within A can be

Fig. 2.4. Pressure forces on a longitu-
dinal prism
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neglected. If the pressure at one end of the prism is p1 and at the other p2,
the forces A ·p1 and A ·p2 act in opposite directions parallel to the axis of the
prism. All pressure forces on the side faces of the prism are assumed to be
perpendicular to these faces and are therefore also perpendicular to the prism
axis. They do not contribute to the force component parallel to the prism
axis, irrespective of how the pressure is distributed along it. Equilibrium de-
mands that the forces A · p1 and A · p2 in the direction under consideration
must balance each other. We must have

A · p1 = A · p2 or p1 = p2.

Since the position of the prism was chosen arbitrarily, in the absence of gravity
(and other external forces) the pressure at all positions in the liquid is equal.

If the liquid fills narrow, curved spaces, so that it is not possible to place
a prism between two arbitrary points in the liquid, the above procedure can
be repeated as often as necessary. We start out from point 1 to point 2, from
this point in another direction to point 3, etc., until the required endpoint n
is reached. From p1 = p2, p2 = p3, etc., we then obtain p1 = pn.

In extremely narrow spaces, after a change in the liquid pressure, e.g.
following an external stress, considerable time may pass until equilibrium is
reached. For plastic potter’s clay (consisting of very fine solid particles, with
the spaces between filled with water), this time may be days, or, in the case
of layers of clay in the earth, even years. During this time the water flows
from positions of higher to those of lower pressure (see Section 4.2.8), while
the solid frame yields elastically.

We summarize as follows: The pressure in a liquid in equilibrium is ev-
erywhere perpendicular to the surface on which it acts and in the absence of
gravity and other mass forces is everywhere and in all directions equal.

Whatever holds for the pressure inside the liquid is also true for the pres-
sure on the walls of the vessel containing the liquid. To clarify this, we imagine
a cut through the liquid very close to the wall and at some distance from it,
and connect these two faces with a cylindrical surface perpendicular to the
cut (see Figure 2.5). The equilibrium of the body of water enclosed in this
manner yields the force component F that the section of wall perpendicular
to the plane of section experiences, that is, the force A · p. This approach has

Fig. 2.5. Pressure force on the wall of a vessel
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the advantage that we immediately see that uneven parts of the wall do not
change the result. Figure 2.5 shows the force F acting from the wall onto the
body of liquid under consideration. The pressure force of the liquid on the
wall has the opposite direction.

Pressure Distribution with Gravity

The effect of gravity on a given mass m is caused by a force of attraction
to the center of the Earth of magnitude m · g, where g, the gravitational
acceleration, is equal to 9.81 m/s2 at a latitude of 50◦ N. This value is not
exact as the rotation of the Earth has been neglected. In fact, the force of
gravity is due to the force of attraction and the centrifugal force. In the
northern hemisphere, the direction of a plumb line intersects the axis of the
Earth somewhat south of the center of the Earth.

The force m · g is called the weight of the mass m. Because the amount of
a liquid is frequently measured according to its volume, the term density ρ is
introduced for the mass of a unit volume. An amount of a liquid of volume V
and density ρ therefore has a mass of ρ·V and a weight of g ·ρ·V . The product
g · ρ is therefore the weight of a volume unit and is called the specific weight
γ. Because the gravitational acceleration g is not the same at all positions
on the Earth, the magnitude of the specific weight also varies from place to
place. On the other hand, the density is independent of the strength of the
gravitational force.

The basic task of hydrostatics, i.e. the study of the equilibrium of liquids,
is to determine the pressure distribution of a homogeneous liquid.

We again consider the equilibrium of a bounded prism in a liquid to
displacement in the axial direction and initially use the prism of Figure 2.4.
Its axis is horizontal and is therefore at right angles to gravity. Therefore, the
weight of the prism has no component in the axial direction, and so all the
arguments from Section 2.3 may be repeated. Here again we obtain p1 = p2.
By repeating this procedure for many prisms lined up with horizontal axes,
we find that in all points in a horizontal plane the pressure must have the
same value.

Fig. 2.6. Balance of forces on a vertical cylinder element



22 2. Properties of Liquids and Gases

A relation between different horizontal planes is obtained by consider-
ing the equilibrium of a prism or cylinder with vertical axis in respect of
displacement in the vertical direction. In this case the weight of the prism
has to be taken into account in the equilibrium of the forces. Corresponding
to Figure 2.6, the pressure force p1 · A on the upper face and the weight
G = γ · V = γ · A · h are directed downward. The pressure force p2 · A acts
upward on the lower face. Equilibrium requires that

γ ·A · h+ p1 · A = p2 · A.

Therefore,

p2 − p1 = γ · h. (2.1)

The pressure difference between the positions 1 and 2 is equal to the weight
of the vertical column of liquid of cross-section 1 between them. Repeated
application of this procedure leads to the following result: The pressure in-
creases in the direction of the force of gravity by the amount γ for each unit
of length. It is constant in every horizontal plane.

If we introduce an x, y, z coordinate system whose z axis points vertically
upward in the opposite direction to gravity, and if p0 is the pressure in the
horizontal plane z = 0, the pressure p at an arbitrary position is given by

p = p0 − γ · z. (2.2)

This relation holds in large spaces filled with liquid, in communicating ves-
sels, in arbitrary pipe systems, in the gaps in gravel or sand, etc. The only
assumption is a homogeneous, connected liquid at rest.

We determine the force that a body submerged in a liquid experiences
due to liquid pressures as follows. We first imagine the body replaced by
liquid. The new section of liquid has the same shape as the body and has
the same specific weight as the remaining liquid. It is kept in equilibrium by
the pressure forces on its surface. The resultant of the pressure forces must
point vertically upward, through the center of gravity of the new part of
liquid. The size of this resultant force, called the lift, is equal to the product
of the displaced volume V and the specific weight γ of the liquid. This law
was discovered by Archimedes and reads thus: The loss of weight of a body
submerged in a liquid is equal to the weight of the fluid it displaces. If a body
is weighed in a submerged state and in air, where it also experiences a small
lift, there is a reduction in weight of Gliq −Gair = V · (γ liq − γ air). This can

Fig. 2.7. Balance of forces on two hori-
zontally displaced cylinder elements
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be determined for a known specific weight γ liq or a known volume V . The
quantity γ air can be computed using the concepts introduced in Section 2.5.

If the liquid is inhomogeneous (e.g. at different positions in a liquid with a
nonuniform temperature distribution, salt solution with different salt content
at different positions), the procedure with the prism with the horizontal axis
can be applied without any change. Here, too, the pressure is the same in all
horizontal planes. Two such horizontal planes a (not too large) distance h a
part are selected (see Figure 2.7), with the upper plane at pressure p1 and
the lower at pressure p2. We consider two vertical prisms with height h and
mean specific weights of γ1 and γ2 for the left and right prisms, respectively.

The balance of forces requires that on the left p2 − p1 = γ1 · h and on
the right p2 − p1 = γ2 · h. This is possible only if γ1 = γ2. Otherwise, there
would be no equilibrium, and the liquid would be set in motion. We can re-
fine this approach by assuming the height h to be very small and carrying
out the procedure for arbitrarily many pairs of neighboring horizontal planes.
We obtain the result that in an inhomogeneous liquid, equilibrium is possible
only if the density is constant in every horizontal layer. This result already
contains the answer to the question of the equilibrium of two liquids of dif-
ferent densities that are layered above one another and do not mix. Their
equilibrium requires that the interface must be a horizontal surface. We can
directly apply the approach of Figure 2.7 to two homogeneous liquids layered
above one another, whose interface is between the two horizontal planes and
is initially unknown, and again we arrive at the same result.

Considering the stability of such a layering of liquids, we note that the
liquid with the lower density always must be situated above the denser liquid.
The reverse stratification is unstable. The smallest disturbance will put it into
motion.

The proof of this can again be drawn from Figure 2.7. We assume a
disturbed, slightly inclined interface between the two horizontal planes and
determine the pressure differences in the interface. In the stable case, this
inclination of the interface tends to decrease, whereas in the unstable case it
tends to increase.

Similar statements hold for densities that vary continuously. The system
is stable if the density everywhere decreases as we move upward. In contrast
to the stable, layered inhomogeneous liquid, the homogeneous liquid is a case
of neutral equilibrium. Any parts of the liquid may be arbitrarily displaced
without generating any forces that would disturb the equilibrium.

For the pressure distribution in the inhomogeneous liquid, for every layer
in which the density is sufficiently inhomogeneous, (2.1) in differential form
holds:

dp = −γ · dz. (2.3)

If γ is given as a function of the height z, integration leads to the relation
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p = p0 −
z∫

0

γ · dz. (2.4)

2.4 Properties of Gases

Gases differ from liquids in that at large pressures they can be pressed to-
gether into a very small space. If more space become available than in the
initial state, the gas always fills it uniformly, with a corresponding drop in
pressure. Apart from this, their behavior is very similar to that of liquids.
For gases at rest, all resistance to change of shape also vanishes, and they
also have a certain viscosity to internal displacement. As long as there is no
change in volume, the behavior of a gas is qualitatively no different from that
of a liquid that fills the same space without having a free surface.

The most important gas is the air in our atmosphere. Other gases have
essentially the same behavior. As we will discuss in more detail in what
follows, the air on the surface of the Earth is under approximately constant
pressure of around 1 bar or 105 N/m2. At higher altitudes the air pressure is
lower (cf. Section 2.5).

There are several devices available to measure air pressure (gas pressure).
Devices that show pressure differences are called manometers. If they show
absolute pressures of the surrounding gas, they are called barometers. Liquid
columns can be used for both sorts of measurement (see Section 2.6). Devices
in which the pressure to be measured acts on a spring are also frequently used.
In order to measure the absolute pressure of the air, one can, for example,
connect a metal can that has been pumped empty of air to a flexible lid with
a strong spring, so that the tension of the spring just prevents the lid from
being pushed in by the external air pressure. If this device is brought to a
position with a different air pressure, the pressure change can be read from
the deflection of the pointer (aneroid barometer).

The law according to which the pressure of the gas changes for a given
change in volume was first discovered by R. Boyle in 1662 and then inde-
pendently by Mariotte in 1679, and is therefore called the Boyle-Mariotte
law. According to this law, at constant temperature the pressure is inversely
proportional to the volume. Therefore, if a fixed amount of gas is pressed
together to half of its volume, its pressure doubles. If the volume is doubled,
the pressure sinks by half. This law is expressed by the equation

p · V = p1 · V1, (2.5)

where p1 is the initial pressure, V1 the initial volume, and p and V the values
of these quantities for the gas in some given state.

The volume of a gas also changes greatly with temperature. Gay-Lussac
found in 1816 that the expansion of a gas for a change in temperature of
1 ◦C at constant pressure is always 1/273.2 of its volume at 0 ◦C. This is
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valid to good approximation for all gases and temperatures. This behavior is
described by the equation

V = V0 · (1 + α · ϑ) , (2.6)

where V0 is the volume at 0 ◦C, ϑ the temperature in ◦C and α = 1/273.2 ◦C
the coefficient of expansion. At moderate pressures, this value of α is valid
not only for air, but also to good approximation for other gases, such as steam
and helium.

Since (2.6) is independent of the pressure, it may be combined with (2.5).
We therefore obtain an equation applicable at all pressures and temperatures:

p · V = p0 · V0 · (1 + α · ϑ) . (2.7)

Here p0 is an arbitrary but fixed initial pressure and V0 the volume at the ini-
tial pressure p0 and at 0 ◦C. Equation (2.7) is frequently called the Mariotte–
Gay-Lussac law. It is also called the equation of state, since it connects the
three state variables pressure, volume, and temperature. It is called the equa-
tion of state of the ideal gas, since the behavior of real gases deviates some-
what from this equation. For gases at normal densities these deviations may
be neglected, but they are very important if the gas is greatly compressed,
and particularly if the temperature is reduced so far that the gas begins to
condense.

These deviations are treated in detail in thermodynamics. Here we men-
tion only one of the deviations. According to (2.5), at very high pressures the
gas volume is very small. Equation (2.7) can be used to calculate at which
pressure the density of water, or that of gold, is reached. However, in reality
this is impossible. There is a limiting volume below which the gas cannot be
compressed, however large the pressure, i.e. a volume at which the molecules
have attained their densest possible structuring. This fact can be included in
equation (2.7), by writing

p · (V − V ′) = p0 · (V0 − V ′) · (1 + α · ϑ) ,

with the small limiting volume V ′. For every finite p, V is somewhat larger
than V ′. For volumes V that are large compared to V ′, the results of this
equation are essentially no different from those of (2.5) or (2.7).

As a gas is compressed, heat is generated. The Boyle–Mariotte law, which
is valid only for constant temperatures, can be observed only if the gas has
enough time during compression to release the heat generated and to assume
the surrounding temperature. The same is true for the cooling associated with
expansion. If the gas is not given enough time to equalize its temperature
differences, the ratio of the pressure to the initial pressure increases more
strongly than the ratio of the volumes decreases. Thermodynamics states
that in the case in which there is no exchange of the heat generated, i.e.
when the compression or expansion takes place quickly, instead of (2.5) we
have the equation

p · V κ = p1 · V κ
1 , (2.8)
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where κ = cp/cv is the ratio of the specific heat at constant pressure to the
specific heat at constant volume. For dry air, κ = 1.4. Whereas a compression
or expansion that obeys (2.5) is an isothermal change of state, a change
according to (2.8) is called adiabatic compression or expansion. Heating is
associated with adiabatic compression, and this can be calculated from (2.7)
and (2.8), while cooling is associated with adiabatic expansion.

The behavior of gases discussed in this section can be explained by the
assumption of gas kinetics that the molecules of the gas move at large veloci-
ties, colliding with each other and with their surrounding walls. The pressure
is the summation of these collisions, and the temperature is the same as the
kinetic energy of the particles. The temperature increases on compression, as
the velocity of the particles is increased due to elastic reflection as the walls
move together.

2.5 Gas Pressure

The condition for the equilibrium of a gas is the same as that for the equilib-
rium of a liquid. The relations of Section 2.3 can therefore be carried over. In
many cases, e.g. for moderate vertical extensions of a gas, the specific weight
of the gas can be assumed to be spatially constant. Equations (2.1) and (2.2)
of the previous section can be applied; i.e. the gas may be considered to be a
homogeneous liquid. For greater vertical extensions (to the order of kilome-
ters) this is no longer permissible. The pressure differences are so great here
that, because of the compressibility of the gas, the densities above and below
are different. Temperature differences are also frequently important. Here the
equation for inhomogeneous liquids must be used. Equation (2.3) is divided
by γ and integrated. We obtain

p0∫

p

dp

γ
= z. (2.9)

Depending on how the temperature depends on the height, this integral yields
different results. The most important case is that of constant temperature.
According to the Boyle–Mariotte law (p · V = const), the specific weight γ is
directly proportional to the pressure:

γ = γ0 ·
p

p0
. (2.10)

Therefore,
p0∫

p

dp

γ
=
p0

γ0
·

p0∫

p

dp

p
=
p0

γ0
· ln
(
p0

p

)
, (2.11)

As can be seen from (2.1), p0/γ0 is the height of a column of liquid with
constant specific weight γ0, and with pressure p0 at the lower end and a
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pressure of zero at the upper end. This height is called the height of the
uniform atmosphere. With regard to the real atmosphere, it is nothing more
than a computational quantity.

As an example we determine its numerical value. We therefore require
the value of γ0. In order to determine γ0 we proceed as follows: We weigh
a container with a faucet out of which the air has been pumped. We then
open the faucet and wait for the temperature to equalize, as the air in the
container is initially heated by the work done by the external atmosphere
as it flows into the container. We then weigh the container a second time.
Since it was empty before and is now filled with air, its weight has increased
by the weight G of the air inside it. We then determine the volume V of
the container, by, for example, pumping the air out of the container again,
opening the faucet under water and again weighing the container filled with
water. The measured quantities give us the value γ0 = G/V associated with
the pressure p0 on the ground. For every other ground pressure p0, γ0 can
be calculated similarly. Assuming that p0 is equal to 1 bar, for moderately
damp air of temperature ϑ, the Gay-Lussac law yields

γ0 =
12.45

1 + α · ϑ N/m3. (2.12)

In dynamics, the density ρ = γ/g is used as a measure of the mass inertia.
At room temperature, we can choose a mean value of 11.8 N/m3 for γ. With
g = 9.81 m/s2 we then obtain a mean value for ρ of 1.20 Ns2/m4.

In order to compute p0/γ0 in (2.11), p0 has to be expressed in the same
mass system as γ0. With 1 bar = 105 N/m2, we obtain

p0

γ0
=

100000

12.45
· (1 + α · ϑ) = 8030 · (1 + α · ϑ) .

The unit of p0/γ0 is m. The height of the uniform atmosphere for moderately
damp air is (independent of the pressure but dependent on the temperature)
8030 · (1 + α · ϑ) m. We set this equal to H0. Equation (2.9) applied to two
different heights yields

z1 = H0 · ln
(
p0

p1

)
, z2 = H0 · ln

(
p0

p2

)
.

Therefore,

z1 − z2 = H0 · ln
(
p2

p1

)
. (2.13)

This is the so-called barometric height formula. By inverting (2.13), we obtain
the dependence of the pressure on the height:

p = p1 · e−
z−z1
H0 . (2.14)

Considering the balance of the forces, in analogy to Figure 2.6, we see that
the weight of a column of air with base area A that extends from position z
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upward to the edge of the atmosphere is equal to A ·p. Therefore, p is directly
equal to the weight of the column of air with cross-section 1 situated above
position z. Figure 2.8 shows (2.14) graphically. The pressure decreases con-
tinuously but ever more weakly with increasing height. For large heights the
pressure is equal to zero. The pressure decrease with height can be measured
in the free atmosphere with a pressure-measuring device (barometer) on a
tower or mountain. It can even be measured in a multistoried house. If the
air temperatures are also measured, the observed pressure differences can be
used to determine the difference in height. This method is used in aircraft
to determine the altitude. If this height difference is known, this method can
also be used to determine the mean specific weight of the air layer situated
between two positions. If the temperature of the mass of air is not constant,
the height equation can still be applied to height sections in which the tem-
perature differences are not very large. The height H0 associated with each
height section is then determined for the mean value of the temperature in
this section.

Finally, we turn to the question of when the equilibrium of a layered
mass of gas is stable and when it is unstable. The condition that the specific
weight of the upper layers must be smaller than that of the lower layers is not
sufficient, because as a mass of gas moves upward or downward the pressure
and thus the density of the mass of gas changes. The correct answer to the
question is the following: The system is stable if a part of the gas at a greater
height and at the new pressure is denser than its new surroundings, or if a part
of the gas at a lower height and at the new pressure has a lower density than
its new surroundings. In these cases the part of the gas will tend to return
to its original position. There is a stratification (temperature distribution)
in a mass of gas that corresponds to a homogeneous liquid, which therefore
implies neutral equilibrium for the mass of gas. In order for this to hold, each
part of the gas taken from an arbitrary position must have the same density
as its surroundings after displacement, as if it had always belonged there. A
part of a gas behaves adiabatically under a change of pressure as long as it has

Fig. 2.8. Pressure distribution in an atmosphere of
constant temperature
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no possibility to exchange heat. If the stratification is such that pressure and
density satisfy the equation of state (2.8) at all heights (i.e. p is proportional
to γκ), every raised or lowered gas part always reaches a neighborhood with
the temperature that it has itself due to its own adiabatic change of state.
Therefore, it has no possibility to exchange heat with its surroundings. It can
be shown that this adiabatic stratification has the following in common with a
homogeneous liquid: It can be made by strong mixing of an originally different
type of stratification, such as an inhomogeneously layered salt solution.

In the air of the atmosphere, adiabatic stratification is characterized by
the fact that the temperature decreases by 1 ◦C with an increase of height
of 100 m. A lesser temperature decrease already indicates stability, while a
temperature increase with height indicates even stronger stability. A larger
temperature decrease than 1 ◦C per 100 m generally does not occur in the
free atmosphere, since it would correspond to an unstable state. However,
it is found close to the surface of the earth if the ground is hotter than the
air. The air is then not in equilibrium, but rather is in motion with vertical
upward and downward streams.

The pressure distribution in the adiabatically layered atmosphere can also
be computed with (2.9), by setting γ = γ0 · (p/p0)

1/κ. Integration yields

z =
κ ·H0

κ− 1
·


1 −

(
p

p0

)κ−1
κ


 or p = p0 ·

(
1 − κ− 1

κ
· z

H0

) κ
κ−1

.

The equation of state p/ρ = R · T , with the density ρ = γ/g, the absolute
temperature T = (273.2 + ϑ/1 ◦C) K and the gas constant R, with p0/γ0 =
H0, yields

R · T
g

=
p

γ
= H0 −

κ− 1

κ
· z, and so

dz

dT
= −H0 ·

κ

κ− 1
· R
g
.

For moderately damp air, R/g = 29.4 m/K and dz/dT = −102 m/K.
If we replace κ in the above equations by a different number n, we obtain

an interpolation formula that describes states of layering that actually occur
in the atmosphere. These states of layering are called polytropic. For stable
stratification, n < κ.

2.6 Interaction Between Gas Pressure and Liquid
Pressure

As long as the pressure difference between the air in a container and the
external air in the atmosphere is not too large, it can be measured with a U-
tube manometer (cf. Figure 2.9). Neglecting the weight of the air, we obtain
the following relations. At position A, the liquid pressure is equal to the air
pressure p1 in the container. In the other limb of the U-tube, the pressure
at the same height B is the same (communicating containers). Say the free
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liquid surface in this limb is at C. There the liquid pressure is equal to the
pressure p0 of the atmosphere. According to the relations in Section 2.3,

p1 = p0 + γ · h
if the height BC is set equal to h. A U-tube filled with liquid is therefore
suitable for measuring such pressure differences. It is used in various different
forms. In order not to have to read the liquid heights at two positions (A and
C in Figure 2.9), one of the limbs is frequently reshaped as a large pot in
which the movement of the surface becomes very small (see Figure 2.10). To
zero the device, both openings have to be connected to the atmosphere. For
very small pressure differences the reading of the heights is refined using, for
example, a moveable microscope, or with a magnifying projection of a scale
swimming on the surface of the liquid, according to A. Betz.

The use of the liquid manometer has led to a particular type of pres-
sure units, where the pressure is expressed by the height of a liquid column.
For example, 1 mm WC (water column, or WG water gauge) is equal to
1 kp/m2 = 9.81 Pa.

Water is not very suitable as a measurement liquid, since it wets the walls
of the glass pipe very irregularly. All fat-soluble liquids (alcohol, toluol, xylol,
etc.) are much more suitable. For larger pressure differences mercury is recom-
mended, as in its pure state it permits very precise adjustment in a glass tube
that is not too narrow. Because of specific weight of 133.370 N/m3 at 0 ◦C,
1 mm Hg (mercury) is equal to 13.6 kp/m2 = 133.4 Pa. The pressure unit
1 mm Hg is also called 1 torr, in honor of Torricelli. In recent times, mem-
brane pressure gauges with digital data memory and piezopressure gauges
that exploit the piezoelectric effect have been used.

If we pump some air out of the container in Figure 2.9, so that the pressure
there becomes lower than the atmospheric pressure, the liquid in limb A of
the U-tube will be higher than the liquid in limb B. Figure 2.11 shows a
somewhat altered arrangement for the same experiment. The setup in Figure
2.9 is called an overpressure manometer, while that in Figure 2.11 is called a
vacuum manometer. The pressure is measured from the height h.

Here we mention something about the history of pressure measurement:
The question arose of how high a liquid can be sucked. In the middle ages,

Fig. 2.9. Hydrostatic pressure mea-
surement (U-tube manometer)

Fig. 2.10. Liquid manometer
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the rising of a column of liquid due to suction was explained by the idea of
horror vacui, that “nature abhors a vacuum.” No investigations had been
carried out into whether the horror vacui was arbitrarily strong, or whether
it had a limit. It was the misfortune of Florentine pump makers, who built a
water pump with the suction valve more than 10 m above the water surface
and were unable to pump water as high as they wanted, that encouraged
Galileo to look into the problem. Meanwhile, it was his pupil Torricelli who
first recognized the facts, and this because of an experiment with mercury
that he prompted his friend Viviani to perform in 1643. From our point of
view, the answer to the question above is not difficult. Suction is merely
compressing more weakly than the atmosphere compresses. The pressure in
the container in Figure 2.11 is at its lowest when all the air has been pumped
out of the container. Then it is equal to zero. The column of liquid can rise
only so high that its height h corresponds to the air pressure p0 (h = p0/γ).
Viviani’s experiment was as follows: He took a glass tube two ells (120 cm)
in length with a glass bubble blown on one end, and filled it completely with
mercury from the other open end, closing this end with his finger. He then
turned the tube upside down and placed the closed end in a flat container
filled with mercury, and removed his finger. The column of mercury sank
to a height of 1 1/4 ell (75 cm) above the surface of the mercury in the
container and left an empty space behind. Torricelli correctly recognized that
the mercury column retained the equilibrium with the outer air pressure. He
observed that the mercury column did not always have the same height and
concluded that the air pressure undergoes certain fluctuations. This fact is
today of great importance for meteorology. Torricelli already concluded that
the air pressure on a mountain must be higher than that in the valley, and
that therefore the height of the mercury column is lower on the summit than
down below. This was demonstrated several years later by Perrier, on the
encouragement of Pascal, whereby he measured the height of the mercury
column on the Puy de Dome and at the foot of this 975 m high mountain
and noted a difference of 3 inches. The name barometer for this pressure

Fig. 2.11. Barometer
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gauge comes from Pascal. The word (derived from the Greek barys, meaning
heavy) indicates that the weight of the air column above the liquid is what
is measured.

At this point we mention another unit of pressure based on the barometer,
the physical atmosphere. The mean level of a barometer at sea level is about
760 mm Hg. It has been agreed to define this barometer level at 0 ◦C mercury
temperature as the normal state of the atmosphere and to call the associated
air pressure one “physical atmosphere”. The qualifier “physical” is used be-
cause the technical atmosphere used by engineers is equal to 1 kp/cm2. Since
the specific weight of mercury at 0 ◦C is equal to 13.595 p/cm3 and 1 cm3

therefore weighs 13.595 p, a mercury column of 76 cm therefore corresponds
to a pressure of

76 cm · 13.595 p/cm3 = 1033.2 p/cm2 = 1.0132 · 105 Pa.

This pressure also corresponds to a water column of height 10.332 m (water
barometer). The suction height of pumps must therefore be lower than this
value.

Since the force of gravity plays a role in the definition of the physical
atmosphere, and this does not have the same value at all positions on Earth,
for greater precision in the definition of pressure units a particular value of the
acceleration due to gravity g has been chosen. The value 980.665 cm/s2 has
been determined as the normal value of gravitational acceleration at the 45th
degree of latitude at sea level. For a different acceleration due to gravity g,
the pressure of the normal atmosphere is (1.0332 · 980.665)/g local kiloponds
per square centimeter. To get away from this somewhat arbitrary setting,
a pressure unit was introduced to the CGS system: one million times the
pressure unit 1 dyn/cm2 is called the bar. At the normal value of gravitational
acceleration, one bar corresponds to a mercury column of height 750.06 mm.

2.7 Equilibrium in Other Force Fields

In Sections 2.3 to 2.6, a homogeneous gravitational field was used; i.e. the
acceleration due to gravity was assumed to be everywhere equally strong and
orientated in the same direction. This assumption suffices for most appli-
cations. However, if we consider regions of Earth that are no longer small
compared to Earth’s radius, the variations of the acceleration due to gravity
in its magnitude and direction have to be taken into account. For a liquid
at rest relative to a uniformly rotating container, in addition to the acceler-
ation due to gravity, the centrifugal acceleration also has to be considered.
In what follows we consider the quite general question of the equilibrium of
a homogeneous or inhomogeneous liquid in a general force field, whose force
per unit mass (i.e. acceleration) varies in strength and direction from place
to place.
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The considerations for a general force field lead directly from the ideas
in Section 2.3. It follows from this section that the pressure cannot change
in every direction perpendicular to the force field at hand (equilibrium of
a small prism according to Figure 2.4 with the axis perpendicular to the
direction of the force). Condensing all directions perpendicular to the force
direction to one point, the pressure on the surface element perpendicular to
the force direction must be constant. For the case in which the adjoining
surface elements can be integrated into one finite surface, i.e. when the force
field has normal surfaces, the pressure is constant along all such normal
surfaces. If a force field has no normal surface, then equilibrium is not possible
in a liquid in this force field.

In contrast to the previous sections, where g denoted the strength of the
gravitational field of the Earth, g will now denote the strength of a general
force field. From the equilibrium at a small prism as in Figure 2.6 with height
dh parallel to the force direction and pressure increase dp, we find that the
pressure in the direction of the force increases according to the equation

dp = g · ρ · dh. (2.15)

In the discussion below, we assume that the force field has normal surfaces.
We consider two such normal surfaces with pressures p and p + dp. At two
positions 1 and 2 in Figure 2.12, according to (2.15) we have on the one hand
dp = g1 ·ρ1 ·dh1, and on the other hand dp = g2 ·ρ2 ·dh2. If ρ is either constant
or a function of p (homogeneous liquid or homogeneous gas, cf. Sections 2.3
and 2.5), then p1 = p2 and ρ1 = ρ2. This yields g1 ·dh1 = g2 ·dh2, where g ·dh
is the work done by the force in the transition from one normal surface to
the other. This work has the same value at all positions between the normal
surfaces. The force field has a potential. The normal surfaces are therefore
surfaces of constant potential. Introducing the potential U at a point with
the equation

dU = −g · dh (2.16)

(the minus sign because in (2.15) dh in the direction of g is assumed positive),
we obtain

Fig. 2.12. Normal surfaces of a force
field
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dp = −ρ · dU, or dU = −dp

ρ
. (2.17)

This yields the potential difference between two points A and B:

UA − UB =

B∫

A

dp

ρ
. (2.18)

In the case of a homogeneous liquid or a homogeneous gas assumed here, the
right-hand side can be computed, and we obtain the pressure directly as a
function of the potential. These results may be summarized as follows:

In the case of a homogeneous liquid or a homogeneous gas, equilibrium is
possible only if the force field has a potential. The surfaces of constant po-
tential that lie perpendicular to the force are simultaneously surfaces of con-
stant pressure. The pressure increases in the direction of the force. We have
dp = −ρ · dU .

For an inhomogeneous liquid, it may happen that although g1 ·dh1 is not
equal to g2 · dh2, by suitable distribution of the density, we still have

ρ1 · g1 · dh1 = ρ2 · g2 · dh2.

It is seen that the equilibrium is unstable, as if the liquid were displaced
along the normal surface, an action requiring no work, the distribution of the
density would be changed and the equilibrium disturbed. Therefore, if we
want to restrict ourselves to stable states, we may consider only force fields
that have a potential. However if g1 ·dh1 is equal to g2 ·dh2, for equilibrium to
exist we must have ρ1 = ρ2. Therefore, we can make the following assertion:

A stable state of an inhomogeneous liquid is possible only if the force field has
a potential. The surfaces of constant potential are simultaneously surfaces of
constant pressure and constant density.

Equations (2.17) and (2.18) may therefore be applied here too. The con-
ditions for stability of the stratification are the same as those discussed for
the homogeneous gravitational field in Sections 2.3 and 2.5.

Apart from magnetic force fields, the force fields that occur in physics
almost always have a potential. However, the demand that the density ρ be
constant on all surfaces of constant potential is of importance. This condition
can be violated if the liquid or gas is locally heated, with a reduction in density
at that region. In this case equilibrium is no longer possible, and the heated
fluid and its surroundings are set into motion. This process comes to rest
only if the warmer parts lie above the colder layers, and so the condition of
constant density on surfaces of constant potential is again satisfied.

The free surface of a liquid or the interface between two immiscible liquids
of different densities always follows a surface of constant potential. For this
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reason, surfaces of constant potential (equipotential surfaces) are also called
level surfaces (free surface or level of an imaginary liquid). In surveying, the
surface of the sea forms the level surface to which all heights are referred.

The discussions above will now be clarified in a simple example. Inside
a container rotating uniformly about a vertical axis is a homogeneous liquid
that is at rest relative to the rotating motion. We consider the equilibrium
of this liquid. We first determine an expression for the potential, which is
additively made up of a part due to gravity and a part due to the centrifugal
force. Using cylindrical coordinates r and z (see Figure 2.13), we see that the
contribution to the potential from gravity is U1 = U0 + g · z, where g is the
acceleration due to gravity and U0 an arbitrarily chosen starting potential.
In order to determine the contribution to the potential from the centrifugal
force, we note that the strength of the centrifugal force field is ω2 ·r, where ω
is the angular velocity with which the container and the liquid both rotate.
Integrating in the direction of the centrifugal acceleration, i.e. in the direction
of r, we obtain the second contribution to the potential:

U2 = −ω
2 · r2
2

.

This yields the potential at a point of the liquid:

U = U1 + U2 = U0 + g · z − ω2 · r2
2

.

The equipotential surfaces are found with the condition U = const:

z = const +
ω2 · r2
2 · g .

The free surfaces and all surfaces of equal pressure are paraboloids with the
same parameter g/ω2. Integration of (2.17) leads to the relation p = p0−ρ ·U
for the pressure. With ρ · g = γ we obtain

Fig. 2.13. Liquid in a rotating container
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p = const + γ ·
(
−z +

ω2 · r2
2 · g

)
.

2.8 Surface Stress (Capillarity)

Free surfaces of liquids tend to shrink and form minimal surfaces. This be-
havior can be explained with a stress state in the surface that would be taken
on by a uniformly stretched thin skin. The origin of this tendency to shrink is
as follows: Each liquid molecule close to the surface is pulled into the interior
of the liquid by the attraction of the neighboring molecules (intermolecular
forces). Because of this, only as many molecules as are absolutely necessary
to form the surface remain on the surface. The same behavior is also found
on interfaces between two liquids that do not mix. The stress that keeps the
surface in equilibrium is called surface stress. On flat interfaces the surface
stress causes no pressure differences, since the resulting surface stress force is
equal to zero. At curved surfaces pressure differences are necessary to estab-
lish equilibrium. We consider a small rectangle of a curved surface with sides
of length ds1 and ds2 (see Figure 2.14). The pressure difference p1−p2 on the
surface ds1 · ds2 leads to a force (p1 − p2) · ds1 · ds2. The surface stress is the
force per unit length that keeps the surface in equilibrium. It has the magni-
tude C (C = capillary constant). Therefore, on the four edges of the rectangle
we obtain two forces C ·ds1 on the sides ds1 and two forces C ·ds2 on the sides
ds2. The two forces on the sides ds2 are at an angle dα = ds1/R1 to each
other. This leads to a resultant C · ds2 · dα = C · ds2 · ds1/R1. The two other
forces, which form the angle dβ = ds2/R2, yield a resultant C · ds1 · ds2/R2.

Fig. 2.14. Surface stress and pressure
on a curved liquid surface
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From the equilibrium of the three forces we obtain

p1 − p2 = C ·
(

1

R1
+

1

R2

)
. (2.19)

As seen in Figure 2.14, R1 and R2 are the radii of curvature of the curves
of section of the surface with two orthogonal planes perpendicular to the
tangential plane. Equation (2.19) leads to the geometric relation that the
sum 1/R1+1/R2 is independent of the direction, since the pressure difference
p1 − p2 does not depend on the direction.

In liquids that are in equilibrium, the pressure dependent on the specific
weight varies with height, according to the law p = p0 − γ · z. Therefore,
at the interface of two liquids with specific weights γ1 and γ2, we find that
the associated pressures are p1 = p0 − γ1 · z and p2 = p0 − γ2 · z. With
(2.19) we then obtain the relation between the curvature and the height at
the interface:

1

R1
+

1

R2
=
γ2 − γ1

C
· z. (2.20)

Figure 2.15 shows two examples of such surfaces. The capillary constant C
can be determined by measurement of the geometries occurring.

It can be seen from (2.20) that for very small differences in the spe-
cific weights, we find an n-fold geometrically similar increase in the dif-
ferent surface forms (R1, R2 and z are n times as large) if the term
(γ2 − γ1)/C is reduced by the factor 1/n2. For γ2 = γ1 the effect of gravity
vanishes. These surfaces are the so-called minimal surfaces. If for γ2−γ1 → 0
we simultaneously set the plane z = 0 at infinity, we find from (2.20) that
1/R1 + 1/R2 is constant. This result yields minimal surfaces with a given
volume content, the simplest example of which is the sphere. These mini-
mal surfaces may be obtained experimentally using soap films. In the in-
terior of spherically shaped soap bubbles is an overpressure of magnitude
p1 − p2 = 4 · C/R (There are two surfaces of the soap solution in air to be

Fig. 2.15. Capillary surfaces of a liquid Fig. 2.16. Equilibrium of three surface
stresses
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taken into account, which is why the factor 2 · C instead of C is used in
(2.19).)

If three liquids meet along an edge, the balance of forces of the three
surface stresses C12, C13, and C23 yields certain angles at which the three
interfaces join (see Figure 2.16). It may happen that C13 is larger than the
sum of C12 and C23. In this case no equilibrium is possible. For example, this
happens when air, mineral oil, and water meet. The mineral oil then coats
the entire surface, possibly with a very thin layer. This behavior is observed
in the spreading of drops of motor oil on wet roads. If the oil is replaced by
melted fat, this assumes the shape of flat lenses between the water and the
air (globules of fat in soup). Figure 2.16 shows this case. If one of the three
materials is solid, the balance of forces of the three surface stresses can be
set up only with the components in the possible direction of displacement,
parallel to the solid surface. Using the wetting angle α (see Figure 2.17), we
obtain C12 · cos(α) + C23 = C13, i.e.

cos (α) =
C13 − C23

C12
. (2.21)

If C12 (surface stress at the interface of the two liquids 1 and 2) is already
known and α is measured, we can obtain the difference C13 −C23. However,
C13 and C23 cannot be individually determined. If the difference is negative,
the angle α is greater than π/2 as with, for example, air, mercury, and glass.
The lower picture in Figure 2.15 shows such a drop of mercury. The case C13−
C23 > C12 may also occur. Then the entire solid body is coated by liquid 2.
This occurs in the case of petroleum. Liquids are observed to rise considerably
in narrow tubes. If r is the inner radius of the tube, then, simplifying the
liquid surface as a spherical shell (r small compared to h), we see from Figure
2.18 that the spherical radius is R = r/ cos(α), with the wetting angle α.
Therefore, according to (2.20), we obtain

Fig. 2.17. Wetting angle on a solid sur-
face

Fig. 2.18. Capillary rise in a tube
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h =
2 · C12

γ2 − γ1
· cos (α)

r
. (2.22)

The height h can become very large if r is very small (suction effect of blotting
paper, fine clay, etc.).

In (2.22) we can eliminate cos(α) using (2.21) and multiply both sides by
π · r2 · (γ2 − γ1). This yields the equation

(γ2 − γ1) · π · r2 · h = (C13 − C23) · 2 · π · r.
The weight of the column of liquid, reduced by its lift, is equal to the resulting
tensile force on the tube wall. If the tensile force is negative, i.e., α > π/2
as in the case of mercury, h becomes negative (Figure 2.18 reflected in the
horizontal plane). For wetted surfaces C13−C23 may be replaced by C12. Then
cos(α) = 1; i.e., α = 0. This yields the maximum value of h. On measurement
of h and r we obtain

C12 =
1

2
· (γ2 − γ1) · h · r.

Another method of determining C12 is the measurement of capillary waves,
to be discussed in Section 4.1.8.

Values of C12 at 20◦C: water to air 0.073 N/m,
oil to air 0.025 to 0.030 N/m,
mercury to air 0.472 N/m.
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2.9 Problems

2.1

Three identical U-tubes are connected
in a row. In each U-tube is a liquid
with density ρ. The levels of the liq-
uids show the height differences h1,
h2, and h3. The effect of gravity on
the air may be neglected. How great
is the pressure difference ∆p = p3−p1

between the free ends of the first and
third tubes?

∆p = p3 − p1 = ρ·g ·(h1 + h2 + h3) .

2.2

An open water container and a con-
tainer that is closed to the atmo-
sphere by a manometer are con-
nected by a U-tube, whose lower
part is filled with carbon tetrachlo-
ride (tet) (CCl4). The height of the
water column (density of water ρw =
1000 km/m3) is h1 = 0.4 m, the
column of oil (density of oil ρoil =
950 kg/m3) has the height h3 =
0.13 m, and the height h2 of the CCl4
column is h2 = 0.1 m.

What is the density ρtet of the CCl4 filling if an excess pressure compared to
the atmospheric pressure of 1200 N/m2 is read from the manometer?

ρtet = 1541.76 kg/m3.
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2.3

The pressure p0 and the temperature T0 are known for the atmosphere at
sea level z = 0 (specific gas constant of air R = 287 m2/(s2 · K), p0 =
101300 N/m2, T0 = 283 K).
(a) Assuming that the state of the gas in the atmosphere changes isother-
mally, determine the dependence of the pressure and the density of the at-
mosphere on the height z.

p = p0 · e−
z

H0 , ρ = ρ0 · e−
z

H0 , H0 =
R · T0

g
.

(b) Assuming that the state of the gas in the atmosphere changes poly-
tropically, determine the dependence of the pressure and the density of the
atmosphere on the height z:

p

p0
=

(
ρ

ρ0

)n

,
p

p0
=

(
1 − n− 1

n
· z

H0

) n
n−1

,
ρ

ρ0
=

(
1 − n− 1

n
· z

H0

) 1
n−1

.

2.4

A balloon is suspended in an isothermal atmosphere (air pressure on the
ground p0 = 1.013 bar, air density on the ground ρ0 = 1.225 kg/m3) at a
height z0 = 500 m. How far will the balloon sink if a change in the weather
causes the air density on the ground to change to ρ′0 = 1.0 kg/m3 while the
air pressure remains the same? The volume V of the balloon is not to change
as the height varies.

zx = H ′

0 ·
[
ln

(
ρ′0
ρ0

)
+
z0
H0

]
, ∆z = 272.41 m.
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2.5

A stratospheric balloon is partially
filled with the buoyant gas hydrogen
H2 on the ground. As the balloon
rises, it inflates with an increase in
volume of the filling. This leads to
an additional lift. On the ground, the
balloon has volume V0 = 450 m3,
while its maximum volume is V1 =
1400 m3.

(a) What is the greatest possible weight of the load Gmax that can be lifted
(the balloon itself is part of the weight, but the buoyant gas is not) if the
stratospheric balloon is to reach a maximum height of zmax = 1.2 km in a
polytropic atmosphere? On the ground, the air pressure is p0 = 1.013 bar
and the air density is ρ0 = 1.234 kg/m3. The density of hydrogen in the
balloon has the value ρH2,0 = 0.087 kg/m3 on the ground. The temperature
T1km = 280 K at an altitude of 1 km, and the specific gas constant of the air
R = 287 m2/(s2 · K) are also known.

Gmax = 3955.8 N.

(b) At what height z1 does the balloon reach its largest volume V1 = 1400 m3?
Until the maximum volume is reached, the hydrogen in the balloon is to have
the same temperature and pressure as the atmosphere at all heights.

z1 = H0 ·
n

n− 1
·
[
1 −

(
V0

V1

)n−1
]
, z1 = 10224.1 m.

2.6

A number of small solids are moving on the surface of a liquid. Show that
the surface stress causes the solids to move toward each other, whether they
are wetted by the liquid or not. They move away from each other if one solid
is wetted and the other is not wetted by the liquid.

2.7

How much work W must be done to atomize a volume V of liquid into
spherically shaped droplets of radius R? The surface energy of the volume V
before the atomization is assumed to be negligible.

W =
3C

R
· V.



3. Kinematics of Fluid Flow

The flows of liquids and gases have so much in common that it is practical to
treat them together. In contrast to liquids, gases are compressible. However,
whether the compressibility is important depends on the flow process under
consideration. At small velocities and for moderate height dimensions of the
gas, the pressure changes remain small compared to the mean pressure. The
volume changes are then so small that they can be neglected. Gas flows are
then no different from flows of incompressible liquids. If we neglect volume
changes of 1%, we can apply the equations for incompressible flows to flows
in the atmosphere at mean temperatures. This remains the case for velocities
of up to 50 m/s and for height dimensions of up to 100 m (cf. Sections 2.5 and
4.1.2). At flow velocities of 150 m/s, the volume changes are about 10%. If the
flow velocities reach the magnitude of the velocity of sound (about 340 m/s),
the volume changes become so large that the flow is greatly affected by them.
At flow velocities that are greater than the velocity of sound, the flow has a
completely different character from that of an incompressible liquid.

In this chapter we mainly consider incompressible flows. In order not to
have to speak of liquids and gases, we use the word fluid as a collective term
for liquids and gases. For the purposes of this usage, gases are referred to as
compressible fluids (Section 4.3).

The kinematics of a flow describes the motion of the fluid without taking
into account the forces that cause this motion. The goal of kinematics is to
describe the dependence of the motion of the fluid elements on time for a
given velocity field.

3.1 Methods of Representation

The flow of a fluid can be described by determining the position of every
fluid particle at every point in time. A particle’s change of position in time
then yields its velocity and acceleration. To distinguish between the different
particles, we mathematically introduce a particular coordinate system, fixed
to the fluid particles but moving in space. We first consider a family of surfaces
with a = const, where a is given as some initial position as a function of the
spatial coordinates x, y, and z. We select two further families of surfaces
b = const and c = const such that a surface with a = const, a surface with
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b = const, and a surface with c = const meet only at a single point. A fluid
particle at this point of intersection is then fully defined by the values of
a, b, and c at a fixed but arbitrary time. A fluid particle retains these fluid
coordinates a, b, and c as its initial or rest position throughout its motion.
This means that each surface a = const, b = const, or c = const as an
initial position is always made up of the same fluid particles. The original
choice of the fluid coordinates is arbitrary and is determined only by practical
considerations. For example, Cartesian coordinates may be chosen in some
initial or rest position as the fluid coordinates. The paths of the fluid particles
in the flow are called particle paths.

Another manner of describing flows is by means of streaklines. These are
the lines connecting all positions reached by the particle paths of all particles
that passed through a single point in the flow field at a given point in time.
In an experiment, a certain point in the flow field can be defined by color or
smoke. Snapshots of the color or smoke filaments are then streaklines.

In order to determine the motion, i.e. the change in position of all fluid
particles, the values of the current position coordinates x, y, z of the particles
have to be stated as functions of time and of the fluid coordinates a, b, c of
the initial position of the particle. We obtain

x = F1(a, b, c, t), y = F2(a, b, c, t), z = F3(a, b, c, t). (3.1)

To fully describe the state of the flowing fluid, we need to know the pres-
sure p and, in the case of a compressible flow, the density ρ. In general, we
use a simpler representation that describes the flow state at every position
and time more closely, without having to consider each individual particle.
If the flow is steady, it is sufficient to state the magnitude and direction of
the velocity at each position in the space through which the fluid flows, and
to make corresponding statements about the pressure and, if necessary, the
density. However, if the flow changes in time, this information is necessary
for the unsteady flow at all times. Mathematically, we state the three orthog-
onal velocity components u, v, w (and the pressure p and the density ρ, if
necessary) as functions of the spatial coordinates x, y, z and the time t. For
u, v, w we obtain the equations

u = f1(x, y, z, t), v = f2(x, y, z, t), w = f3(x, y, z, t). (3.2)

The system of equations (3.1) is named for Lagrange (fluid particle reference
frame), and the system (3.2) for Euler (spatially fixed reference frame), al-
though both systems were known to Euler. The systems of equations (3.1) and
(3.2) are called the fundamental equations of kinematics. For the calculation
of a fluid particle path, the three equations

dx = u · dt, dy = v · dt, dz = w · dt (3.3)

have to be integrated, using the system of equations (3.2). Since the three
constants of integration may be directly interpreted as the fluid coordinates
a, b, c, we again obtain the system of equations (3.1).
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For another representation of the instantaneous state of the flow of a fluid,
streamlines are used. These run in the direction of the flow at all points; i.e.
their tangents everywhere have the direction of the velocity vector.

The differential equations of the streamlines read

dz

dy
=
w

v
,

dz

dx
=
w

u
,

dy

dx
=
v

u
. (3.4)

In a steady flow, the streamlines are the same as the paths of the fluid parti-
cles. This is not the case in an unsteady flow, since the streamlines provide an
illustration of the instantaneous velocity directions, while the particle paths
illustrate the velocity directions held by one particle over time. Streamlines
of a single flow, just like pathlines, look completely different if the reference
frame is changed. For example, if the observer of the motion of a body through
a fluid is at rest relative to the undisturbed fluid, or if the observer moves
with the body such that the body is at rest and the fluid flows toward it,
then two quite different streamline portraits will be seen.

Streamlines can be made visible by sprinkling small particles onto the
surface of the fluid or mixing them in with the fluid. These particles then
follow the motion of the fluid. In snapshot with a short exposure time, each
particle generates a short dash on the film. If the sprinkled particles are dense
enough, these dashes provide a streamline portrait. A picture of the pathlines
is found if a long exposure time is used and the number of sprinkled particles
is small. Figures 3.1 and 3.2 show simultaneous shots of the motion of a plate
through a fluid at rest in two different reference frames. Figure 3.1 was taken

Fig. 3.1. Flow past a moving plate,
camera at rest. The path of the plate
can be seen from the tracks of the side
walls, F. Ahlborn 1909

Fig. 3.2. Flow past a moving plate,
camera moving with the plate, F.
Ahlborn 1909



46 3. Kinematics of Fluid Flow

by a camera at rest, while Figure 3.2 was taken by a camera moving with the
plate. The shots are by F. Ahlborn, 1909. Club moss was used to make the
flow visible.

A further example of an unsteady flow is shown in Figure 3.3. This shows
the streaklines, particle paths, and streamlines of the periodic vortex separa-
tion of a cylinder moving with constant velocity U∞ through a fluid at rest.
The first three flow portraits of the so-called Kármán vortex street (see also
Figure 4.91) are shown for an observer at rest. The periodically separating
vortices move past the observer with velocity c. An observer moving with the
vortices in the very same flow sees a completely different portrait, observing
streamlines similar to cat’s eyes.

If the velocity field is continuous everywhere, on taking a streamline
through all points on a small closed curve, we can form a tube. This has the
particular property that by definition, at the time under consideration the
fluid inside it flows parallel to the streamlines, as in a solid tube. If the fluid
were to flow through the wall of the tube, this would assume that a velocity
component is perpendicular to the wall, i.e. perpendicular to the streamlines,
thereby contradicting their definition. Such tubes are called stream tubes, and
their contents are called stream filaments. In steady flows, the stream tubes

Fig. 3.3. Kármán vortex street, observer at rest and moving observer
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do not change, and the fluid particles inside them flow as if in a solid tube. In
contrast, in general, in unsteady flows at a later instant in time different par-
ticles from those earlier are joined together in stream tubes. We can imagine
the entire space filled with the fluid divided up into such stream tubes, and
hence obtain a vivid picture of the fluid flow.

In many simpler cases of flows, particularly flows through pipes and chan-
nels, it is permissible to consider the entire space filled with the fluid as a
single stream filament. It is then not the different velocities in a cross-section
that are of interest, but only the mean velocity, which we can calculate. This
idea is used by engineers in practical calculations (see Section 4.1). The rep-
resentation of the change in flow quantities along a stream filament permits
the development of the one-dimensional theory of flows.

3.2 Acceleration of a Flow

In the last section we saw that the flow picture is dependent on the frame of
reference. We now consider the two different ways of treating a flow math-
ematically. In the Euler picture we assume a fixed observer. This manner of
description corresponds to using a measuring apparatus that is fixed in posi-
tion to measure local flow quantities, and will be used exclusively in deriving
the fluid-mechanical fundamental equations in the following chapters.

The Lagrange picture assumes a frame of reference moving with a particle
or fluid element. The mathematical relationship between the two pictures is,
for example for the acceleration of the flow a = dv/dt = d2x/dt2, the total
differential of the given velocity vector v = (u, v, w). For the u component
u(x, y, z, t) of the velocity vector we have

du =
∂u

∂t
· dt+ ∂u

∂x
· dx+

∂u

∂y
· dy +

∂u

∂z
· dz.

So the total time derivative of u is

du

dt
=
∂u

∂t
+
∂u

∂x
· dx

dt
+
∂u

∂y
· dy

dt
+
∂u

∂z
· dz

dt
,

with

dx

dt
= u,

dy

dt
= v,

dz

dt
= w,

from which we obtain

du

dt︸︷︷︸
S

=
∂u

∂t︸︷︷︸
L

+ u · ∂u
∂x

+ v · ∂u
∂y

+ w · ∂u
∂z︸ ︷︷ ︸

C

, (3.5)

where
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S is the substantial rate of change (Lagrange picture),
L is the local rate of change at a fixed position (Euler picture),
and C is the convective spatial changes due to convection from place to place
(effect of the velocity field v = (u, v, w)).

For the acceleration a of the flow field, which we will need in the following
chapters, we obtain

a =
dv

dt
=
∂v

∂t
+ u · ∂v

∂x
+ v · ∂v

∂y
+ w · ∂v

∂z
=
∂v

∂t
+ (v · ∇)v, (3.6)

with the nabla operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z) and (v ·∇) the scalar prod-
uct of the velocity vector v and the nabla operator ∇.

For Cartesian coordinates this yields

a =




ax

ay

az


 =




du
dt
dv
dt
dw
dt


 =




∂u
∂t

+ u · ∂u
∂x

+ v · ∂u
∂y

+ w · ∂u
∂z

∂v
∂t

+ u · ∂v
∂x

+ v · ∂v
∂y

+ w · ∂v
∂z

∂w
∂t

+ u · ∂w
∂x

+ v · ∂w
∂y

+ w · ∂w
∂z


 ,

and for (v · ∇)v,

v · ∇ =




u

v

w


 ·




∂
∂x
∂
∂y
∂
∂z


 = u · ∂

∂x
+ v · ∂

∂y
+ w · ∂

∂z
,

(v · ∇)v =

(
u · ∂

∂x
+ v · ∂

∂y
+ w · ∂

∂z

)



u

v

w




=




u · ∂u
∂x

+ v · ∂u
∂y

+ w · ∂u
∂z

u · ∂v
∂x

+ v · ∂v
∂y

+ w · ∂v
∂z

u · ∂w
∂x

+ v · ∂w
∂y

+ w · ∂w
∂z


 .

In the case of a steady flow, all partial derivatives with respect to time vanish,
so ∂/∂t = 0, while the substantial derivative with respect to time d/dt can
indeed be nonzero when convective changes occur. In unsteady flows both
∂/∂t 6= 0 and d/dt 6= 0 occur.

3.3 Topology of a Flow

The original text by Prandtl will now be supplemented by some conclusions
drawn from the kinematic fundamental equations (3.2), which, besides the
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streamlines, particle paths, and streaklines, permit in particular an improved
description of three-dimensional flows. Analysis of the topology of a flow
serves to provide an understanding of the critical points (singularities) that
are produced by the velocity vector field and their relations to each other.
A critical point is characterized by the fact that the direction of the veloc-
ity vector is undetermined at that point. For the flow portrait in Figure 3.2
we use the terminology of critical points and obtain the description of the
structure of the flow field (Figure 3.4) with two half-saddle points S′, the
stagnation points of the flow, and a saddle point S that divides the backflow
region of periodically separating vortices from the wake flow. In what fol-
lows, the vortices themselves will be called foci F. Following the description
of Figure 3.2, as a moving observer we see a snapshot of foci (vortices) pe-
riodically swimming downstream from a plate in a perpendicular flow. Thus
the unsteady wake flow is uniquely described in the moving reference frame.

The theory of critical points (x0, y0, z0) of a steady flow takes the three-
dimensional vector field v(x, y, z) = (u, v, w) as its starting point. We assume
that this is continuous and twice differentiable.

At a critical point, the direction field of the vector quantity under consid-
eration is undetermined. As we consider the velocity vector v in what follows,
we mean that at a critical point the magnitude of the velocity vanishes and
that in these points no direction is associated with the streamlines according
to (3.4). Closer investigation of the space directly surrounding a critical point
is possible, however, if the vector field can be approximated by a series ex-
pansion (3.7) about the singular point (x0, y0, z0). Without loss of generality,
we now assume that (x0, y0, z0) = (0, 0, 0). In critical points, the components
of the velocity vector v are analytic functions of the spatial coordinates:

ẋ = u =
N∑

i=0

N−i∑

j=0

N−i−j∑

k=0

Ui, j, k · xi · yj · zk + O1(N + 1),

ẏ = v =
N∑

i=0

N−i∑

j=0

N−i−j∑

k=0

Vi, j, k · xi · yj · zk + O2(N + 1), (3.7)

ż = w =

N∑

i=0

N−i∑

j=0

N−i−j∑

k=0

Wi, j, k · xi · yj · zk + O3(N + 1),

with

Fig. 3.4. Structure of the flow past a
moving plate, snapshot in the moving ref-
erence frame
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Ui, j, k =
1

(i + j + k)!
· ∂i+j+ku

∂xi · ∂yj · ∂zk
,

Vi, j, k =
1

(i + j + k)!
· ∂i+j+kv

∂xi · ∂yj · ∂zk
,

Wi, j, k =
1

(i + j + k)!
· ∂i+j+kw

∂xi · ∂yj · ∂zk
,

where the Oi are error functions that are determined by terms of order N+1.
We first consider the case of a critical point in the free flow. It suffices to

carry out a series expansion from (3.7) up to order N = 1. This leads to a
system of first-order differential equations:

ẋ = A · x, x = (x, y, z), ẋ =
dx

dt
,




ẋ

ẏ

ż


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 ·




x

y

z


 . (3.8)

The coefficients aij are the components of the gradients of the velocity vector.
In the general case, the trajectories of the system of equations (3.8) are the
pathlines of the flow field, which are identical to the streamlines in the steady
case.

To consider critical points on solid walls we now assume that the velocity
v is given in coordinates normal to the wall, where z is the direction normal to
the wall. In contrast to points in the free flow, the condition v = 0 on a solid
wall is no longer a sufficient criterion for the existence of a critical point, since
the no-slip condition means that v = 0 is identically satisfied there anyway.
However, in identifying a critical point, lack of knowledge of the direction of
the integral curves of the vector field is decisive. As the direction field of the
velocity passes over to the direction field of the wall shear stress vector τw in
the limiting case of vanished distance z from the wall, τw is now the relevant
quantity. Therefore, critical points on the wall require the vanishing of the
wall shear stress τw.

It follows from the no-slip condition that the quantity v/z tends toward
a constant value for z → 0 and that the vector field of this quantity has the
same integral curves as the field of the wall shear stress.

It is therefore practical to avoid considering the critical character of the
surface z = 0 and instead to consider the Taylor expansion of the quantity
v/z.

With x′ = ẋ/z, (3.7) with N = 2 leads to the following series expansion:
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x′ =
u

z
= U1,0,1 · x+ U0,1,1 · y + U0,0,2 · z + O1(3),

y′ =
v

z
= V1,0,1 · x+ V0,1,1 · y + V0,0,2 · z + O2(3),

z′ =
w

z
= W0,0,2 · z + O3(3).

Because of the relation Ui, j, 0 = Vi, j, 0 = Wi, j, 0 = 0, this expansion also
takes the no-slip condition into account.

In contrast to (3.8), second-order derivatives of the velocity field now
appear. If we restrict ourselves to the linear terms in the spatial directions x,
y, and z, we obtain, in complete analogy to the free flow, again a system of
first-order differential equations with a different matrix of coefficients A:

x′ = A · x,




x′

y′

z′


 =




ẋ

z

ẏ

z

ż

z




=




a11 a12 a13

a21 a22 a23

a31 a32 a33


 ·




x

y

z


 . (3.9)

Classification of critical points in the given flow field has therefore been re-
duced to investigation of the singular points of ordinary differential equations
with constant coefficients, whose mathematical theory is well understood. The
difference between critical points in the free flow and those on solid walls is
merely in the different matrices of coefficients A ((3.8) or (3.9)).

Calculating the eigenvalues of this matrix according to det[A− λ · I] = 0
leads to the characteristic polynomial

λ3 + P · λ2 + Q · λ+ R = 0, (3.10)

Fig. 3.5. Real and complex eigenvalues
of the characteristic polynomial (3.10)
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with the three real-valued matrix invariants

P = −tr(A) = −(λ1 + λ2 + λ3),

Q =
1

2
·
[
P2 − tr(A2)

]
= λ1 · λ2 + λ2 · λ3 + λ3 · λ1,

R = − det(A) = −λ1 · λ2 · λ3.

The solutions of the cubic equation (3.10) may initially be classified according
to the value of the discriminant D, with

D = 27 · R2 + (4 · P2 − 18 · Q) · P · R + (4 · Q − P2) · Q2. (3.11)

For D > 0 we obtain one real eigenvalue and a pair of complex conjugate
eigenvalues, while for D < 0 we have three real eigenvalues. This is shown
in Figure 3.5. The surface defined by the condition D = 0 divides the space
spanned by the three invariants P, Q, and R into two half-spaces.

A first overview of the flow behavior close to the critical points is obtained
by considering the eigenvectors for the two-dimensional flow with R = 0. The
associated characteristic equation λ2 + P · λ+ Q = 0 leads to the simplified
discriminant ∆ = 4 ·Q−P2. This divides the P-Q plane into a region of real
eigenvalues and a region of complex eigenvalues in the shape of a parabola.
Figure 3.6 shows the eigenvectors associated with the critical points in the
P-Q plane.

The eigenvectors associated with each eigenvalue determine the direction
of the tangent to the streamline running into or out of the critical point. If
the real eigenvalue or the real part of the complex eigenvalue is negative, the
trajectories move toward the critical point, while positive real values mean
that the trajectory runs away from the critical point.

Fig. 3.6. Eigenvectors of the critical
points for R = 0, two-dimensional flow
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If there are two real eigenvalues with different signs (Q < 0), two tangents
of the eigenvectors lead into the critical point and two lead out of it. The
critical point is therefore a saddle point. When Q is positive, for ∆ > 0 we
obtain a node with two real eigenvalues with the same sign. For ∆ < 0 we
obtain a focus with two complex conjugate eigenvalues.

On the boundary lines between the various regions, i.e. the axes P = 0
or Q = 0 or the parabola P2 = 4 · Q, degenerate cases are found, such as
vortices, sinks, and sources (degenerate nodes). For example, for P = 0 only
saddle points (Q < 0) or vortex points (Q > 0) are kinematically possible.
For P = 0 and Q = 0 the critical point is degenerate, so that further terms
in the expansion (3.7) are required for its description.

For three-dimensional flows, flow states are also associated with the eigen-
values in Figure 3.5. Figure 3.7 shows some selected examples. For example,
the node focus structure is found in whirlwinds; saddle foci and unstable vor-
tices occur in the vortex formation in the atmosphere; while nodes and node
saddle points appear in numerous technical problems involving separation of
bodies in a flow, as well as in the human heart of Figure 1.13.

As a supplement to Figure 3.4, the flow past an automobile is shown in
Figure 3.8. In the vertical plane A1, in the wake we can identify three half-
saddle points S′ (stagnation and separation points) on the rear and a saddle
point S in the flow field. The backflow regime is characterized by two foci F.
If we place the plane of section A2 into the wake of the automobile, we see a
focus, a saddle point, and a node. The superposition of the flow structure of

Fig. 3.7. Examples of the structure of three-dimensional flows
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both planes initially looks confusing. With some visual imagination, however,
it is possible to construct the three-dimensional structure of the automobile
flow out of the planes shown. On the lid of the trunk a horseshoe vortex
forms, which then passes into the wake flow. The shear layer between the
street and the underbody of the automobile forms the backflow regime of
wind tunnel experiments, bounded downstream by the saddle point in the
plane A1.

Another example describes the flow structure at a delta wing at an angle
of attack, found on supersonic aircraft (see Section 4.4.8). The aerodynamic
lift is essentially generated by the underpressure inside the separated vortex
at the leading edge of the wing. Figure 3.9 shows the primary vortex separa-
tion (foci) as well as the reattachment lines on the wing, made visible by the
convergence of the wall streamlines. Downstream from the primary leading
edge separation, the three-dimensional transverse flow on the wing causes
secondary separation to occur. This leads to two further foci F and one sad-
dle S on each half of the wing. Therefore, the structure of the flow indicates
a total of three foci, one saddle, and the half-saddle of the separation and
reattachment lines on the upper side of each half-wing. However, the vortex
strength of the secondary separation is small compared to that of the pri-

Fig. 3.8. Structure of the wake flow of an automobile
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Fig. 3.9. Wall streamlines and structure of the flow past a delta wing at an angle
of attack

mary vortices, so that it is these that essentially determine the aerodynamic
properties of the delta wing.

These very complex examples of separated flows show how useful it can
be in describing these flows to analyze the topology of the critical points
solely on the basis of the kinematic fundamental equations (3.2). This is not
only a description of the flow field, but a well-defined classification of the
description.

3.4 Problems

3.1

A two-dimensional flow field is described by the velocity components u = a ·x
and v = −a · y (a is a positive constant).
(a) Compute the streamlines of the flow field

y =
C

x
, C = constant of integration.

(b) What is the rotation ω of the flow field?

ω = 0 for all (x, y).

(c) A particle of dust is placed at time t0 = 0 on the point (x0, y0) on an
arbitrary streamline. At what time te does the dust particle reach the point
(x1, y1) of the streamline? It is assumed that the dust particle has a very
small mass, so that no slippage occurs between it and the flow.

te =
1

a
· ln
(
x1

x0

)
.
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3.2

The unsteady two-dimensional flow of an incompressible fluid in the x, y plane
for x > 0 and y > 0 is given by the velocity components

u(x, t) = −[A+B · sin(ω · t)] · x, v(y, t) = −[A+B · sin(ω · t)] · y,
with the constants A > B > 0.
(a) Determine the component y(t) of the trajectory vector for the fluid par-
ticle that at time t = 0 is situated at the point P(xP, yP).

y(t) = yP · exp

(
A · t+

B

ω
· [1 − cos(ω · t)]

)
.

(b) Determine the equation of the streamline that passes through the point
P.

y(x) =
xP · yP
x

.

(c) Determine an implicit equation for the time difference ∆t that elapses as a
fluid particle passes from point P(xP, yP) to point Q(xQ, yQ) with yQ = 3 ·yP.

A ·∆t+
B

ω
· [1 − cos(ω ·∆t)] = ln(3).

(d) Determine the dependence on space and time of the x and y components
ax and ay of the substantial acceleration in the flow field.

ax = −B · ω · cos(ω · t) · x+ [A+B · sin(ω · t)]2 · x,
ay = B · ω · cos(ω · t) · y + [A+B · sin(ω · t)]2 · y.

3.3

The steady irrotational two-dimen-
sional flow of an incompressible fluid
along an inside corner has the veloc-
ity components

u = α · y, v = α · x,
with α > 0. The boundary of the
semi-infinite flow field is given by the
two straight lines y = +x and y =
−x, for x ≥ 0.

(a) How many stagnation points exist in the flow field? State their coordi-
nates.
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One stagnation point in the flow field with xs = 0, ys = 0.

(b) Determine the equation y = f(x) of the streamline that passes through
the point P1(x1 = 1, y1 = 0).

y = ±
√
x2 − 1.

(c) Consider another point P2 with x-coordinate x2 = 2 on the same stream-
line as passes through P1. How much time ∆t elapses as a fluid element moves
along this streamline from point P1 to P2?

∆t =
1

α
· ln(2 +

√
3).

3.4

The velocity components of a steady three-dimensional incompressible flow
field with dimensionless velocity vector v = (u, v, w) are given in a Cartesian
(x, y, z) coordinate system as u = x2 + 2 · z2 and w = y2 − 2 · y · z.
(a) For the case in which the velocity field v = (u, v, w) satisfies the continuity
equation, calculate the general form of the component v of the velocity field
in the y-direction.

v(x, y, z) = −2 · x · y + y2 + C(x, z), C(x, z) an arbitrary function.

(b) Investigate whether the flow in question is irrotational for all (x, y, z).
(c) Calculate the acceleration ax(x, y, z) of the flow in question in the x-
direction.

ax = 2 · x3 + 4 · x · z2 + 4 · y2 · z − 8 · y · z2.

3.5

A gap of length l and time-depen-
dent height h(t) is filled with an
incompressible fluid. The up-
per boundary moves downward with
constant velocity V0. The velocity
distribution at the outlet is

u(y) = 4·U0 ·
(

y

h(t)
−
(

y

h(t)

)2
)
.

(a) Determine the function of the gap height for h(t = 0) = h0.

h(t) = −V0 · t+ h0.
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(b) Using the continuity equation, calculate the maximum velocity U0 at the
outlet of the gap.

U0 =
3

4
· l

h(t)
· V0.

3.6

A two-dimensional flow field satisfies the following differential equation

dy

dx
=
x+ y

x
.

(a) Determine the characteristic polynomial of the equation.

λ2 − 2 · λ+ 1 = 0.

(b) What type of singularity is at hand?

A node.

(c) What is the equation for the family of integral curves?

y = x · ln |x| + C · x.



4. Dynamics of Fluid Flow

4.1 Dynamics of Inviscid Liquids

4.1.1 Continuity and the Bernoulli Equation

In flows material does not vanish, nor does new material appear. The velocity
fields therefore have to satisfy the law of conservation of mass. This law is
easiest to formulate for steady flows if the shape of the streamlines is already
known. We consider a stream filament through every cross-section of which
the same amount of mass flows per unit time. If this mass were not the same in
two cross-sections, the mass content of the stream filament between two cross-
sections would have to decrease or increase, contradicting the idea of a steady
state. If A is the cross-section of the stream filament at a certain position, w
the mean velocity in this cross-section, and ρ the associated density, then per
unit time, the fluid volume A · w flows through the cross-section. The fluid
mass flowing through the cross-section per unit time is ρ · A · w. Continuity
requires that ρ · A · w must have the same value in all cross-sections of a
stream filament. This implies that a stream filament of a steady flow cannot
terminate in the interior of the fluid. It may extend from one boundary of
the fluid space under consideration to the other boundary of the space, or it
can turn back on itself.

If we consider an incompressible flow, the relations for the mass flowing
through a cross-section also hold for the volume. Since more volume cannot
pass through one cross-section of a stream filament than through another
cross-section at any time, the restriction to steady flows may be dropped. In
general, for incompressible flows we have

A · w = const. (4.1)

i.e. the velocity is inversely proportional to the cross-section of the stream
filament. If we divide the space through which the fluid flows into a large
number of stream tubes through which the same amount of fluid passes per
unit time, at large velocities many stream filaments will crowd together, and
in places where the velocity is small, the stream filaments will expand out
further. The number of stream filaments that pass through a unit of area
is proportional to the velocity at this position. Therefore, in incompressible
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flows it is not only the direction of the stream tubes but also their density
that serve to illustrate the flow.

The relations that are discussed here are particularly useful if the entire
flow may be treated as a single stream filament. The prescribed cross-sections
correspond to the stream filament cross-section. From the relation

A · w = V̇

we can determine the mean velocity at every position of such an incompress-
ible flow. Here V̇ indicates the volume transported per unit time.

Similarly, for compressible flows we have

ρ · A · w = Ṁ,

with the mass transported per unit time Ṁ . Since in this case the density ρ
generally can be determined only in connection with the pressure, the velocity
cannot be determined from the continuity alone (cf. Section 4.3).

In dealing with steady, incompressible flows, this representation leaves
us with only one independent variable, namely the distance of the relevant
cross-section along the central line of the tube from some given starting point.
The treatment of the flow is then one-dimensional, in contrast to the three-
dimensional treatment where the spatial variation of the velocity and the
other quantities is taken into account. For water, all one-dimensional flows
come under the collective name hydraulics. In contrast, three-dimensional
flows are grouped under the name hydrodynamics. For flows that occur in air
travel and in other areas of application of air flows, the term aerodynamics
is used.

If the fluid is bounded at one position by a solid body or by another
fluid, continuity requires that no hole may form at this position, nor may the
two fluids seep into each other. In order to avoid both of these situations, the
velocity components perpendicular to the bounding surface must be identical
on both sides of this bounding surface. If we consider a body at rest in
a moving fluid, or fixed solid walls, the velocity components of the fluid
perpendicular to the surface of the body or to the wall must vanish at the
boundary. According to continuity alone, the velocity components parallel to
the wall may take on any value.

We now consider the forces acting in a flowing fluid. We have learned
that there are two forces acting on a fluid at rest: gravity (and other mass
forces) and pressure force. These two forces are also to be found in a moving
liquid. Whereas the two forces are in equilibrium in a fluid at rest, in a
moving liquid this is not the case. In addition, the liquid friction, to be
regarded as a resistance to change of shape, appears. This will be discussed
in depth in Section 4.2 but will be neglected in this section. The fluids that
are technically most important (water, air, etc.) have a very small viscosity
and in some cases demonstrate only very small friction drag, so that it is
justified to neglect this. For this reason we first develop the fundamental flow
laws for inviscid fluids and will only later consider the alterations in these
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laws when friction is present. For this reason the following discussions are
based on inviscid liquids. Initially, we consider an incompressible flow.

In order to develop the dynamic relation between the pressure and the
mass force on the one hand, and the state of motion on the other hand, we go
back to Newton’s equation force = mass · acceleration, the basis of dynamics.
We compute the simultaneous states along a stream filament. To do this we
need the component of acceleration in the direction of motion, as presented
in Section 3.2 for three-dimensional flow. In the case of one-dimensional flow,
we denote the arc length along the streamline by s, the time by t, and the
velocity by w. The change in velocity as s changes by ds and t changes by dt
is then

dw =
∂w

∂s
· ds+

∂w

∂t
· dt.

Here ∂w/∂t is the partial derivative (at fixed s), and dw/dt the total deriva-
tive (for a fixed fluid element).

This yields the acceleration

dw

dt
= w · ∂w

∂s
+
∂w

∂t
. (4.2)

The term w · (∂w/∂s) is the part of the acceleration that arises from the fact
that the particle moves to positions with different velocities, and ∂w/∂t is
the part due to the change in time of the flow state at one position. In steady
flows the second term is equal to zero. The first term can also be written in
the form ∂(w2/2)/∂s.

In order to apply the equation force = mass · acceleration, a cylindrical
element with cross-section dA and length ds is again selected from the flowing
liquid. The discussion of equilibrium in Section 2.3 was performed on a similar
cylindrical element. The axis of the cylindrical element is in the direction of
flow (Figure 4.1). The mass of the cylindrical element is ρ · dA · ds.

Fig. 4.1. Balance of forces on a cylinder element
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If the motion is inviscid, the following forces act on the cylinder element:
a force of pressure, due to the pressure difference, and a mass force. Let the
pressure on the end of the cylinder element lying upstream have the value p. It
then acts on that end surface area dA with a force p ·dA. On the downstream
end the pressure has the value p + (∂p/∂s) · ds, so that the resultant of the
two pressure forces is p · dA − (p + (∂p/∂s) · ds) · dA = −(∂p/∂s) · ds · dA.
In addition, a mass force also acts on the liquid, with an effect on a unit of
mass equal to g (e.g. the force of gravity). If the direction of the mass force
and the direction of flow form an angle α, the mass ρ · dA · ds experiences
the following force component in the direction of flow:

ρ · dA · ds · g · cos(α).

In the equation force = mass · acceleration, every term now has the factor
dA · ds, which can thus be canceled (i.e. the volume of the arbitrarily chosen
cylinder element has no effect on the result). Dividing by ρ, we obtain

−1

ρ
· ∂p
∂s

+ g · cos(α) =
∂

∂s

(
w2

2

)
+
∂w

∂t
. (4.3)

Usually, the only mass force is gravity. Then g’s magnitude and direction are
constant, and for cos(α) we can write −∂z/∂s using the vertical coordinate
z (Figure 4.1).

If the flow is steady (∂w/∂t = 0) and the density ρ is assumed to be
constant, then all terms are derivatives with respect to s. Equation (4.3) can
then be integrated along the stream filament. From

1

ρ
· ∂p
∂s

+ g · ∂z
∂s

+
∂

∂s

(
w2

2

)
= 0

we obtain

p

ρ
+ g · z +

w2

2
= const. (4.4)

This equation, which is known as the Bernoulli equation, is the fundamental
equation for the one-dimensional treatment of inviscid flows. If we divide all
terms of (4.4) by g, the terms have the dimensions of a length and can be
interpreted as heights. Introducing the weight of the unit volume ρ · g = γ,
as in the previous chapter, we obtain the Bernoulli equation in the form

p

γ
+ z +

w2

2 · g = const. (4.5)

According to Section 2.3, p/γ is the height of the liquid column that gener-
ates the pressure p by its weight, and is therefore called the pressure height.
Here z is the height of the position under consideration above an arbitrarily
fixed horizontal plane and is called the position height, and w2/(2 · g) is the
height that a body would have to fall to achieve the velocity w by free-fall,
and is therefore called the velocity height. According to the Bernoulli equa-
tion, the sum of the pressure height, the position height, and the velocity
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height is constant along a streamline. The value of the constant may change
from streamline to streamline. This occurs in particular when the stream-
lines originate in different places. However, if all streamlines come from one
region where static conditions reign (i.e. rest or uniform, rectilinear motion),
the constant is the same for all streamlines. The Bernoulli equation is then
also valid perpendicular to the streamlines in the entire space. According to
Section 2.3, in a fluid at rest p/γ + z = const. This is in agreement with the
Bernoulli equation for w = 0 or w = const. The special flow state described
here is identical to the steady potential motion to be described later.

Integration can also be carried out for other mass forces if they have a
potential U , since g · cos(α) can then be set equal to −∂U/∂s. If the flow is
compressible, integration is also possible as long as the flow is homogeneous,
i.e. if the density depends only on the pressure. Then

∫
(dp/ρ) = F(p) is a

function of the pressure, and we have (1/ρ) · (∂p/∂s) = ∂F/∂s. Integration
with respect to s yields the general form of the Bernoulli equation for steady
motion:

F + U +
w2

2
= const. (4.6)

4.1.2 Consequences of the Bernoulli Equation

The Bernoulli equation can solve a great number of applications in a very
simple manner. We present some important examples below.

Discharge from a Vessel Under the Effect of Gravity

Following the streamlines in the vessel in Figure 4.2 from the flow outlet B,
we see that they lead to the surface of the water A, whose level sinks as the
water flows out of the vessel. The water particles at A, like the particles in
the free jet at B, are under atmospheric pressure p0. The weight of the air
has been neglected. This is possible if it suffices to state the pressure to the
second decimal place. If the surface area of the water is large compared to
the outlet at B, the velocity at A is so small that its square may be neglected

Fig. 4.2. Discharge from a vessel
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compared to that of the velocity at B. With zA and zB the position heights
of A and B, the Bernoulli equation states that

p0

ρ
+ g · zB +

w2
B

2
=
p0

ρ
+ g · zA + 0.

Therefore, with zA − zB = h we have

w2
B

2 · g = zA − zB = h,

or

wB =
√

2 · g · h. (4.7)

The velocity at B is thus as large as if the water particles had free-fallen
from the height h. The relation given in (4.7) is called Torricelli’s discharge
formula.

The cross-section of the jet is generally not the same as that of the outlet.
For a jet that exits from a circular opening in a thin wall, the jet cross-section
is about 0.61 to 0.64 times the outlet cross-section. This behavior, also called
contraction, is due to the fact that the liquid inside the vessel flows radially
toward the outlet and at the edge of the outlet cannot be suddenly deviated
from the radial direction to the direction of the jet axis. Such flows are shown
in the upper illustrations in Figure 4.3. In the case of a rounded opening,
the deviation of the stream filament can take place within the outlet, and
the contraction is approximately equal to 1. The discharge V̇ (volume per
second) through an opening of cross-section A is

V̇ = α · A ·
√

2 · g · h,
with the contraction α. If the opening in a thin wall is not circular, α deviates
only slightly from the value of the circular outlet, but the jets that form have
in general a much more complicated form. For example, a jet that comes out
of a square outlet forms a thin cross-shaped cross-section. A jet that comes
out of a rectangular outlet forms a band perpendicular to the long side of the
rectangle.

Discharge from a Vessel Under the Effect of Internal Overpressure

The vessel in the lower picture in Figure 4.3 is under pressure p1. In the outer
region, the pressure is atmospheric pressure p0. For a streamline that runs
horizontally, we have zA = zB. If again the velocity at A can be taken to be
negligibly small, the Bernoulli equation yields

p0

ρ
+
w2

2
=
p1

ρ
+ 0,

i.e.
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w =

√
2 · (p1 − p0)

ρ
=

√
2 · g · (p1 − p0)

γ
. (4.8)

We denote the height (p1 − p0)/γ by h. This is the height of a liquid column
with the specific weight γ between whose upper and lower ends the pressure
difference is p1 − p0. Then (4.8) again yields w =

√
2 · g · h.

Equation (4.8) permits us to estimate the magnitude of the velocity up
to which it is possible to treat a gas as an incompressible liquid. The limiting
velocity w1 depends of the size of the density fluctuations that can be per-
mitted. Because of p ·V κ = const or p = const ·ρκ, we have ∆p/p ≈ κ ·∆ρ/ρ.
Therefore, ∆p ≈ κ ·p0 ·∆ρ/ρ. If we select the admissible density change to be
∆ρ/ρ = 0.01, for air at a normal pressure of p0 = 1 bar = 105 N/m2 we ob-
tain a pressure difference of ∆p = 1.405 ·105 ·0.01 N/m2 = 1405 N/m2. With
a mean value of ρ = 1.21 Ns2/m4 we obtain the following limiting velocity:

w1 =

√
2 ·∆p
ρ

=
√

2322 m2/s2 ≈ 48 m/s .

If we permit density variations of 10%, we obtain a velocity
√

10 times larger,
i.e. about 150 m/s. The density variations have two effects. Kinematically,
the stream filament cross-sections change, and dynamically, the magnitude
of the pressure change associated with an acceleration is affected.

Fig. 4.3. Different discharges
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Stagnation Point Flow

If an obstacle is situated in a uniform liquid flow of velocity w0, the flow dams
up directly in front of the obstacle and branches out to all sides in order to
pass the obstacle (Figure 4.4). In the central point of the stagnation region,
the stagnation point, the flow comes completely to rest. For the streamline
that passes through the stagnation point, with the pressure pS at the stag-
nation point and the unperturbed pressure p∞ in the free flow at the same
height, the Bernoulli equation therefore yields

pS

ρ
+ 0 =

p∞
ρ

+
w2

∞

2
, and so pS = p∞ + ρ · w

2
∞

2
.

The pressure increase pS−p∞ = ρ ·w2
∞/2 is known as the stagnation pressure

or dynamic pressure. Measurement of this pressure increase is a method of
determining flow velocities. If a body with velocity U∞ is moved through air
(or liquid) at rest, the above flow is observed in the reference frame moving
with the body. The velocity w∞ is directed in the opposite direction to U∞,
and its magnitude is equal to U∞. In this case, a pressure increase of ρ ·U2

∞/2
is also observed. If the obstacle at the stagnation point has a bore hole, the
pressure pS passes through this into the interior and can be led to a measuring
device. In order to measure the pressure pS = p+ ρ ·w2/2 in a flow, we need
only a simple bent tube as an obstacle (Figure 4.5). This is called the Pitot
tube after its inventor.

To every point in the flowing liquid, as well as the pressure at hand p
(which a pressure gauge moving with the liquid would measure) we can also
assign the pressure pS that a Pitot tube would measure. The pressure p is
called the static pressure, the pressure pS the total pressure. Therefore, we
have total pressure = static pressure + dynamic pressure. From the Bernoulli
equation

p

ρ
+ g · z +

w2

2
= const

we can introduce the total pressure pS = p+ ρ · w2/2, and so obtain

pS

ρ
+ g · z = const; or pS + γ · z = const.

Fig. 4.4. Stagnation point flow
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i.e. pS is distributed according to static laws. This means that pS is constant
in all horizontal planes if all streamlines have the same constant.

In order to use the derived relations to determine flow velocities, as well
as knowing pS, we also have to measure the static pressure p. This is much
more difficult than determining pS, since the static pressure is disturbed by
introducing a probe at the place where it is to be measured. For details on
carrying out such pressure measurements, see Section 4.1.3.

The following investigations are not restricted to inviscid liquids but
rather (if need be with small alterations) also hold for moderately strongly
viscous liquids. However, our first investigation assumes an incompressible
fluid of constant density.

The pressure in such a liquid can be decomposed into two parts, one
of which represents the pressure that would arise if the liquid were at rest.
This equilibrium pressure is denoted by p′, and p′ = const − γ · z. If we set
the pressure that actually acts in the flowing liquid to p = p′ + p∗, then p∗

represents the difference in the pressure in the case of motion compared to
the case at rest. If the Bernoulli equation may be applied, i.e. if p + γ · z +
ρ · w2/2 = const, and if we take the value of p′ into account, it follows that
p∗+ρ ·w2/2 = const. Therefore, p∗ is distributed as in the case of a weightless
liquid with an inert mass. The position height z has no effect on p∗. Every
particle of a liquid under the effect of gravity experiences just enough lift
from its neighboring particles to be suspended. This result can be carried
over to viscous flows. In the following approach we will therefore not take the
effect of gravity into motions in water or in air. This means that instead of
the pressure p, the pressure difference p∗ is always taken into account. For
simplicity we will again write p instead of p∗.

If the pressure of an air or water flow is determined by external pressure
gauges at rest, to which tubes from a moving pressure sampling point (probe)
lead, the weight of the liquid in the tubes acts just so that the indicated pres-
sure is independent of the height of the pressure sampling position. Therefore,
the device indicates a pressure of type p∗. If the probe is a Pitot tube directed
against the flow, the device at rest indicates constant pressure on a stream-
line. If all streamlines have the same constant, the pressure reading is the
same for the entire region.

Fig. 4.5. Pitot tube
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Spiral Flow

The Bernoulli equation treats pressures along a streamline. We can also ob-
tain statements about the pressure differences in the direction perpendicular
to the flow if we consider the transverse acceleration instead of the longitu-
dinal acceleration. This has the direction of the principal normal vector to
the trajectory and the magnitude w2/r. Here r is the radius of curvature of
the trajectory. If we consider the force on a prism element whose axis lies in
the direction of the principal normal vector, the component in the direction
of the radius r yields

w2

r
=

1

ρ
· ∂p
∂s′

. (4.9)

Here ds′ is an element of arc in the direction of the principal normal vector,
and p is to be interpreted as p∗. Equation (4.9) expresses the effect of the
centrifugal force in a curvilinear flow. The pressure increases in the radial
direction by ρ · w2/r per unit length. This relation connects neighboring
stream filaments. It is important to note that for a rectilinear flow (r = ∞)
there is no pressure difference perpendicular to the direction of flow. In the
above special case where the constants of the Bernoulli equation have the
same value for all streamlines, a particularly simple result is found for a
curvilinear flow. From

∫
(dp/ρ)+w2/2 = const. (4.4), on differentiation with

respect to s′ we can obtain a second expression for (1/ρ) · ∂p/∂s′, namely,
(1/ρ) · ∂p/∂s′ = −w · ∂w/∂s′. Inserting this into (4.9), we obtain

∂w

∂s′
+
w

r
= 0. (4.10)

As will also be shown later, in Section 4.1.5, it follows from this that the
individual liquid elements experience no rotation in a curvilinear flow. The
circulation along a rectangle formed by two radial sections of length ds′ and
two streamline arcs vanishes if (4.10) is satisfied.

An example is the flow in a spiral casing (see Figure 4.6). All streamlines
start in the parallel flow at A. The velocity is to be equal on all stream
filaments, so that if the pressure is the same in the parallel flow, the Bernoulli
constant is identical on all streamlines. The radii of curvature of the individual
streamlines can be approximately set to the radius r from the midpoint O,

Fig. 4.6. Spiral casing
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and the element of arc ds′ can be set equal to dr. Then dw/dr+w/r = 0, or
dw/w = −dr/r. Integration yields ln(w) = ln(C) − ln(r), i.e. w = C/r, with
the constant of integration C. The velocity increases toward the midpoint.
If the height of the spiral casing is constant, continuity implies that the
radial component of the velocity is also proportional to 1/r. Therefore, the
angle between the streamlines and the radii is everywhere the same, and
the streamlines are logarithmic spirals. The pressure is obtained from the
Bernoulli equation as p = const − ρ · C2/(2 · r2). If the liquid exits into the
surroundings at the internal radius r1 of the casing with pressure p0, the
pressure at another part of the spiral casing can be calculated with

p = p0 + ρ · C2

2
·
(

1

r21
− 1

r2

)
.

Very large overpressures can occur at A if the radius of the outlet is small.

Unsteady Flow

For unsteady flows, a change in the flow state results in an additional pressure
term to the previous pressures. This investigation is restricted to longitudi-
nal acceleration, where, according to (4.2), the term ∂w/∂t (rate of change
of velocity at a fixed place) also appears. Using the ideas that led to the
Bernoulli equation, starting from the full equation (4.3), we see that the
term

∫ s

0 (∂w/∂t) · ds is added to the left-hand side of (4.4). If the flow is in
a pipe with constant cross-section in which the velocity is the same at every
cross-section (the velocity across the cross-sections is also assumed constant,
since we assumed an inviscid flow), ∂w/∂t is independent of the position. The
integral can be set equal to (dw/dt) · s.

An example is the start of discharge through a faucet pipe of length l
(Figure 4.7). Along the pipe axis, assumed to be horizontal, we have

p

ρ
+
w2

2
+

dw

dt
· s = const =

p∞
ρ

+ g · h.

Fig. 4.7. Start of discharge
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As long as dw/dt is nonzero, the pressure p sinks along the pipe in pro-
portion to s. The pressure at the end of the pipe (s = l) is equal to the
ambient pressure p∞. We obtain:

p∞
ρ

+
w2

2
+

dw

dt
· l =

p∞
ρ

+ g · h,

i.e.

dw

dt
=

1

l
·
(
g · h− w2

2

)
. (4.11)

At the start of the discharge, we have the simple relation dw/dt = g · h/l at
w = 0. As w increases, dw/dt decreases more and more and tends to zero
for large values of t; i.e. the flow becomes steady and w becomes equal to√

2 · g · h. The precise rate of increase of w is obtained by integrating (4.11),
although this will not be considered here. An estimation of the time T that
approximately elapses until the steady state is reached is obtained as follows:
We assume a constant acceleration dw/dt until w reaches the value w1 =√

2 · g · h. Therefore, w1/T can be introduced into (4.11) instead of dw/dt.
At time t = 0 we obtain

T =
w1 · l
g · h =

2 · l
w1

.

Another example of unsteady flow of a liquid is the oscillation of a column
of liquid in a bent pipe open at both ends under the effect of the Earth’s
gravitational field (Figure 4.8). The pipe has a constant cross-section. The
length of the liquid column measured along the axis of the pipe is l. The
deflection at some point in time in the direction of the pipe axis is x. Because
of continuity, the deflection at both ends and at any point in the middle
is the same. The velocity is the same everywhere, namely, w = dx/dt; i.e.
w ·∂w/∂s = 0. Therefore, the acceleration is d2x/dt2. The right end is raised
h1 = x · sin(α) above the zero level, and the other end is lowered by h2 =
x · sin(β). The height difference between the levels of the liquid at the ends
is h1 + h2 = x · (sin(α) + sin(β)). The pressure at both ends is the ambient
pressure p∞. The extended Bernoulli equation applied to both ends yields

g · x · (sin(α) + sin(β)) + l · d2x

dt2
= 0.

Fig. 4.8. Oscillation of a water col-
umn
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The solution of this differential equation, in agreement with the result for
elastic oscillations, is x = A · cos(ω · t+ϑ), with ω =

√
g · (sin(α) + sin(β))/l.

This yields a period of oscillation of

T =
2 · π
ω

= 2 · π ·
√

l

g · (sin(α) + sin(β))
.

For a vertical U-tube (sin(α) = sin(β) = 1) we obtain T = 2 · π ·
√
l/(2 · g).

This corresponds to the period of a pendulum of half the length of the liquid
column.

4.1.3 Pressure Measurement

The slot in a flow shown in Figure 4.9 is of interest for pressure measurement.
At the start of motion, a flow occurs in the slot (Figure 4.9 left). Vortices
and interfaces initially form at the edges. After the vortices have floated
off, assuming that the distance between both edges is small enough, a flow
corresponding to the right-hand side of Figure 4.9 forms. Inside the slot, the
fluid is essentially at rest. The pressure in the slot is the same as the pressure
in the flowing fluid, since it is constant in the part at rest and must pass
continuously over to that of the flowing fluid at the interface. If the interior
of the slot is connected to a pressure gauge via a pipe, it is possible to measure
the pressure in the flowing liquid. Instead of a slot, any shape of hole, such
as one with a circular cross-section, can be used. The edges of the hole or
the slot must be smooth. No sharp edge may stand in the way of the flow,
since the pressure in the arched interface that would then occur would be
considerably different from the pressure in the neighboring parts of the fluid.
A slight rounding of the edges of the hole is permissible.

The left picture of Figure 4.10 shows a practical arrangement for a pres-
sure measurement setup at the wall of a pipe. In order to measure the pressure
in the interior of the fluid, a very thin disk (Ser disk, Figure 4.10) with a hole
through the middle can be applied to the end of a thin pipe. Although this
measurement uses the same ideas, it is very sensitive to a change in direction
of the air stream to the plane of the disk. A manometric capsule is less sensi-
tive. It correctly measures the pressure up to an angular deviation of about
5◦. At larger angles it indicates a pressure that is too low.

By relating such a pressure measurement to the measurement of the total
pressure in Figure 4.5, we can measure the velocity pressure (dynamic pres-

Fig. 4.9. Flow at a slot
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Fig. 4.10. Pressure measurement

sure or stagnation pressure) as the pressure difference pd = ρ · w2/2. When
the density ρ is known, we can then compute the velocity w. In the atmo-
sphere at normal pressure with a density of ρ = 1.21 Ns2/m4, the stagnation
pressure at w = 10 m/s is pd = 60.5 N/m2. In water at the same velocity
with ρ = 1 050 Ns2/m4 the stagnation pressure is considerably larger, namely,
pd = 50 000 N/m2.

The manometric capsule in Figure 4.10 can be combined with the Pitot
tube in Figure 4.5 in one device. This is the Prandtl stagnation tube for
velocity measurement (Figure 4.11). It is relatively insensitive to deviations
of its axis to the direction of flow.

Pressure measurement via bore holes is used in many flows. The pressure
difference on the surface of a body in a flow (e.g. the wing of an airplane)
is measured through a series of boreholes like those in Figure 4.10, each
connected to a pressure gauge.

Figure 4.12 shows a very famous early attempt to demonstrate the pres-
sure difference in a pipe that first contracts and then expands. This experi-
ment illustrates the Bernoulli equation. The pressure can be adjusted by the
faucet at the end of the pipe. If the faucet is opened, an underpressure occurs
at b. The pressure recovery in the pipe behind the narrowest cross-section is
somewhat smaller when friction is taken into account than for the inviscid
theory.

Fig. 4.11. Prandtl stagnation tube
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Fig. 4.12. Pressure decrease in a con-
traction

4.1.4 Interfaces and Formation of Vortices

If two liquids meet behind an edge (Figure 4.13), in general the constant of
the Bernoulli equation is not the same for both flows. Since the pressure is the
same along the surface that divides the two flows (interface), the magnitude of
the velocity is different in both flows. Even if the Bernoulli constant for both
flows is the same, the direction of the flows can be different on both sides.
The velocity changes discontinuously across the interface. In the first case,
the jump in velocity is longitudinal, and in the second case, transversal. Such
interfaces are frequently observed. However, they are unstable and therefore
do not remain in their original form for very long. Small perturbations can
amplify quickly, so that the velocity differences increase in some positions and
decrease in others. This causes the interface to decay into a great number of
vortices. This is an important process in understanding the motion of fluids,
and will be investigated more closely.

Fluctuations in the free stream cause the interface in Figure 4.13 to ac-
quire a slightly wavy shape, sketched in Figure 4.14. The waves move forwards
with the average velocity of the two streams, indicated in Figure 4.13 by the
dashed line. In Figure 4.14 a reference frame has been chosen that moves
with this average velocity, and so the crests and troughs of the waves are
fixed in space. In this reference frame, the upper liquid flows to the right,
and the lower to the left. If we analyze the pressure ratios in this flow, both
the Bernoulli equation and (4.9) state that the transversal pressure increase
is such that there is overpressure in the wave crests and underpressure in
the wave troughs, assuming steady flow (indicated in Figure 4.14 by + and
−). This pressure distribution shows that the flow cannot be steady. The

Fig. 4.13. Confluence of two liquids
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Fig. 4.14. Development of vortices from waves

liquid in the overpressure regions is set into motion, and it flows toward the
neighboring underpressure region. This causes the waves to become stronger
which leads to an instability. The subsequent behavior of such an interface is
shown in Figure 4.14. It ends in decay into individual vortices.

The flapping of a flag in the wind has a similar origin. The pressure
distribution in Figure 4.14 does not change if the direction of the lower flow
is opposite, i.e. if it has the same direction as the upper flow. A slight bulge
in the flag tends to strengthen (since the bulges move slightly with the wind,
the process is actually somewhat more complicated).

At this point we consider yet another type of interface whose formation
coincides with the formation of a vortex. If a fluid flows past an edge, at the
start there is a flow around the edge, as shown in the left sketch in Figure
4.15. The velocity at the edge is very large. According to the theory for
inviscid liquids, it would be infinitely large. It is observed that the velocity
at the edge decreases with the formation of a vortex. This behavior can be
considered as a particular principle, that the flow attempts to avoid infinite
velocities and instead forms interfaces. In Section 4.2.6 we will show that it is
the friction in the fluid, affecting the flow close to solid walls, that is behind
this principle. If we assume a vortex behind the edge, so that fluid passes
around the edge from behind, the conditions for merging of two flows at the
edge are satisfied, and an interface forms (Figure 4.15 right). The interface
is rolled up by the vortex, and fluid is supplied to it so that it can grow. In
fact, both the vortex and the interface form a single unit that starts off very
small (Figure 4.16). As it grows, the vortex moves away from the edge, and
the interface decays into individual vortices, as described above, while new
pieces of the interface continue to form at the edge.

Analogous processes occur at the edges of a round hole in a flat wall.
The front edge of the interface rolls up and forms a vortex ring, which moves
downstream forming a bounding liquid jet (Figure 4.17). Vortex rings can
be produced by taking a box with a flexible rear wall and with a circular
hole in the front wall, filling it with smoke and then hitting the rear wall.

Fig. 4.15. Flow past an edge
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Fig. 4.16. Development and decay of
an interface

A momentary flow out of the hole is generated, and so a jet is not formed,
but rather only a vortex ring, which moves onwards and is seen as a smoke
ring. Such vortex rings are very stable structures and decay only when their
energy is almost completely dissipated by friction.

Transversal jumps in the velocity occur as a flow merges behind a finite
plate that is tilted at a small angle to the direction of motion. On the pressure
side, the streamlines move apart to the left and right under the effect of
the overpressure that forms. On the suction side, the streamlines then bend
inwards, due to the underpressure. Viewed from the middle of the plate, at the
trailing edge perpendicular to the flow direction the flow on the pressure side
has a velocity component toward the side edges, while on the suction side the
flow is directed toward the middle. In the steady case the requirement that
the pressure be continuous and the fact that all streamlines have the same
origin means that the magnitude of the velocity is the same on both sides
of the interface. The velocity jump is therefore wholly transversal. We know
from experience that such interfaces roll inward from the ends of the plate
and that two vortices arise that extend along the entire length passed by the
plate. Figure 4.18 indicates this process. It shows the shape of the interface
at different sections behind the plate. These processes are very important

Fig. 4.17. Jet formation
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Fig. 4.18. Interface behind a tilted
plate

in understanding the flow past the wing of an airplane (Section 4.4). The
vortices can be made visible by producing balls of smoke from cigar smoke
in air at rest, taking a ruler tilted at a small angle and moving its free end
quickly through the balls of smoke.

4.1.5 Potential Flow

In the previous sections, essentially only the average values of the flow vari-
ables were determined. However, the aim of hydrodynamics is to be able to
determine the velocity at every point in space of the homogeneous inviscid
flow. More mathematics than is assumed here is required to understand the
relevant methods, and so in what follows we present only some more general
explanations of the properties of inviscid flows and some simple examples.
First of all, some concepts have to be explained.

By liquid lines and liquid surfaces we mean those lines and surfaces that
are continually formed by the same liquid particles.

A line integral along a given line between points A and B is the integral
over the product of the velocity components in the direction of ds with the
line element ds; i.e.

Λ =

B∫

A

w · ds · cos(α) =

B∫

A

w · ds

(α is the angle between w and ds, while w · ds is the scalar product of w

and ds). For an unsteady flow, these line integrals are to be formed for an
instantaneous state of the velocity distribution.

The magnitude of the line integral of a closed line is called the circulation
Γ ; i.e. with the sign

∮
for an integral along a closed line we have

Γ =

∮
w · ds. (4.12)

Thomson’s law reads: In an inviscid homogeneous liquid, the circulation along
a closed liquid line remains constant in time.

From this law we can draw the following important consequences:
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If the motion of a liquid starts from rest, before the start of motion the
circulation for every closed liquid line is equal to zero. Therefore, it remains
zero at all times for this line. If the line integral along every closed line in
some region is equal to zero, then the line integral from a point A to a point B
is independent of the path, whatever path is chosen inside this region. We can
move back along the previous integration path from B to A (the magnitude
of the line integral from A to B is then canceled out, since the direction of

ds is opposite), and take another path to B. We obtain
∫ B

A plus an integral

along a closed line, which is equal to zero. This again yields the integral
∫ B

A ,

as was to be proved. If the point A is fixed, the line integral
∫ B

A w ·ds assigns
a numerical value to every point B. This value is denoted by Φ and is called
the potential at point B. Moving from B to a point C a distance ds away, to

form the integral
∫ C

A we can select the path via B. This yields

C∫

A

=

B∫

A

+ w · ds or ΦC = ΦB + w · ds · cos(α) = ΦB + w · dh (4.13)

if dh is the projection of ds onto the direction of w. For α = 90◦ we have
cos(α) = 0 and furthermore ΦC = ΦB. The segment ds = BC is therefore
always perpendicular to the direction of w if ΦC = ΦB. All points for which
Φ = ΦB form a surface that passes through the point B. This surface divides
the region where Φ > ΦB from the region where Φ < ΦB. The tangential
plane to this surface at the point B is perpendicular to the velocity vector
w at point B. Therefore, in general, the streamlines, which always have the
direction of the velocity vector, are everywhere perpendicular to the surfaces
Φ = const.

For arbitrary values of α, (4.13), with ΦC − ΦB = dΦ, yields

∂Φ

∂s
= w · cos(α), (4.14)

or

dΦ

dh
= w, (4.15)

where dh is perpendicular to the surface Φ = const. In vector notation this
is written as

w = gradΦ. (4.16)

This combines (4.15) with the statement that w is perpendicular to the sur-
faces Φ = const. The magnitude and direction of the velocity are equal to the
greatest ascent of Φ, i.e. to its gradient.

These geometric interpretations of the potential and the gradient match
those of the force potential U in physics, and it is from here that the name
potential has been taken. Now, the gradient of the force potential is a field
strength, while the gradient of the potential defined here is a velocity. This
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potential is therefore also called the velocity potential. Another difference is
that the field strength is g = − gradU , while we set w = + gradΦ. From the
above discussions and using the potential and the circulation it follows that
every motion of a homogeneous inviscid fluid from rest has a potential. Such
motion is called a potential flow. It is characterized by the fact that the fluid
particles experience no rotation. The circulation along a small closed curve
is a measure of the rotation, and according to Thomson’s law, this is equal
to zero.

In a contrasting example, we consider a liquid that rotates like a rigid
body with an angular velocity ω. For a circle with radius r centered at the
origin of the reference frame, the velocity is equal to ω · r. Any motion of
translation does not contribute to the circulation, and so does not have to be
taken into account in computing the circulation. The direction of the velocity
is tangential to the circumference of the circle. The line integral along the
circumference is Γ = 2 ·π · r ·ω · r = 2 ·π · r2 ·ω. Dividing this equation by the
area of the circle A = π · r2, we obtain Γ/A = 2 · ω. Thus Γ/A is a suitable
measure for rotation. If the surface A is arbitrarily placed in space and forms
an angle α with the axis of rotation, we obtain Γ/A = 2 · ω · sin(α), which is
a maximum if the axis of rotation is perpendicular to A.

In potential flow the circulation for lines in the interior of the flow field is
equal to zero. The flow in the interior is irrotational. In spite of this, vortices
can occur in the motion of a homogeneous inviscid liquid from rest. If we
consider the processes in the formation of an interface (Section 4.1.4), we see
that all lines drawn at rest in the interior of the liquid move and deform to
avoid the interface. None of the lines intersects the interface. Thomson’s law
makes no statement about the relations of the regions on either side of an
interface to each other. Therefore, the fact that interfaces and vortices can
arise in an inviscid liquid is not a contradiction of Thomson’s law.

In real liquids, which have some friction, a shear layer forms instead of
an interface. However, this is frequently very thin. The particles in the shear
layer always come from the immediate neighborhood of the surface of the
solid body, where, even for small viscosity, the friction may not be neglected.
Exact analysis of the processes in shear layers must therefore take the friction
into account. However, in general, considering an interface instead of a shear
layer suffices in investigating the external processes. The effects of friction
are explained in Section 4.2.

In Section 4.1.2 we derived (4.10) from the pressure drop perpendicular
to the streamline for flows where the constant of the Bernoulli equation has
the same value for all streamlines in a region. If the radius of curvature of
the streamline is r, we can obtain the circulation about a small quadrilateral
element formed from two streamlines and two normals (Figure 4.19):
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Fig. 4.19. Circulation around an in-
finitesimal quadrilateral

w · r · dϕ−
(
w +

∂w

∂s′
· ds′

)
· (r + ds′) · dϕ

= − ds′ · dϕ ·
(
r · ∂w

∂s′
+ w +

∂w

∂s′
· ds′

)
.

The normals do not contribute to the circulation. The last term in parentheses
is of higher order and so can be discarded. The remainder of the parenthetical
expression on the right-hand side is equal to zero, according to (4.10). This
means that the above flows, for which the Bernoulli constant has the same
value on all streamlines in a region, are motions with circulation equal to zero
for every small element; i.e. they are potential flows. Conversely, the Bernoulli
equation also holds perpendicular to the streamlines in every steady potential
flow.

Potential Equation

The derivation of the potential equation of a general three-dimensional flow
is carried out using the angular velocity. The angular velocity ω has three
components (rotations about the coordinate axes):

ωx =
1

2
·
(
∂w

∂y
− ∂v

∂z

)
,

ωy =
1

2
·
(
∂u

∂z
− ∂w

∂x

)
, (4.17)

ωz =
1

2
·
(
∂v

∂x
− ∂u

∂y

)
.

If all three of these contributions to the rotation are to be zero, we must
have ∂v/∂x = ∂u/∂y, etc. If a velocity potential Φ is introduced, i.e. if we
set u = ∂Φ/∂x, v = ∂Φ/∂y, and w = ∂Φ/∂z, these conditions are identically
satisfied. We have ∂(∂Φ/∂y)/∂x = ∂(∂Φ/∂x)/∂y, etc. This is always satisfied
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for regular multivariable functions. With ∂v/∂x = ∂u/∂y and ∂w/∂x =
∂u/∂z, (3.5) leads to

du

dt
=
∂u

∂t
+ u · ∂u

∂x
+ v · ∂u

∂y
+ w · ∂u

∂z
=
∂u

∂t
+ u · ∂u

∂x
+ v · ∂v

∂x
+ w · ∂w

∂x

=
∂u

∂t
+

∂

∂x

(
u2 + v2 + w2

2

)
.

We obtain similar equations for dv/dt and dw/dt. Inserting these expres-
sions into the three Euler equations (5.76), multiplying each by dx, dy, and
dz, respectively and adding them, all terms may be integrated without any
restriction of the path of integration. With

∫
(dp/ρ) = F(p) we have

∂Φ

∂t
+
u2 + v2 + w2

2
+ F + U = const. (4.18)

The constant on the right-hand side still depends on the time, since the
integration was carried out at a fixed time (e.g. the pressure may change in
time due to external effects). It is therefore better to replace const with f(t).

Fig. 4.20. Elementary solutions of potential flows
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The expression ∂Φ/∂t is obtained from Φ =
∫

(u · dx + v · dy + w · dz) and∫
(∂u/∂t) · dx = ∂(

∫
u · dx)/∂t, etc. For steady flows, (4.18) becomes the

ordinary Bernoulli equation (4.4).
The relation of the velocity components u, v, and w to the potential Φ

arises from (4.14); ds is replaced by dx, dy, and dz in turn; and we obtain

u =
∂Φ

∂x
, v =

∂Φ

∂y
, w =

∂Φ

∂z
. (4.19)

Using (4.19), the continuity equation for incompressible flows ∂u/∂x+ ∂v/∂y+
∂w/∂z = 0 (4.48) yields

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0. (4.20)

This equation is called the Laplace equation. This is a linear second-order
partial differential equation, and so solutions may be represented as linear
superpositions of elementary solutions. Figure 4.20 shows a summary of those
elementary solutions applied in the following flow examples. The Laplace
equation also appears in connection with electrostatic potentials and is valid
in the parts of the field that have no charge and for which the dielectric
constant is constant. Solutions of (4.20) known from electrostatics can also
be applied here, such as the solution for a point charge or a dipole.

Stagnation Point Flow

One of the simplest forms of a potential is Φ = 0.5 · (a · x2 + b · y2 + c · z2). It
follows from (4.20) that a+b+c = 0 must hold. If the system is rotationally
symmetric with respect to the z axis, we can set b = a. Then (4.20) says that
c = −2 · a, and so the potential is

Φ =
a

2
· (x2 + y2 − 2 · z2),

with u = a · x, v = a · y, and w = −2 · a · z. The streamlines in the y-z plane
(x = 0) are given by the differential equation

dz

dy
=
w

v
= −2 · z

y
,

which when integrated yields

ln(z) = const − 2 · ln(y), or y2 · z = const

(cubic hyperbolas, Figure 4.21).
If the motion is steady, i.e. if a is constant in time, then the pressure is

p = const − ρ

2
· (u2 + v2 + w2) = const − ρ · a2

2
· (x2 + y2 + 4 · z2).

The pressure is a maximum for x = y = z = 0. The surfaces of equal pressure
are ellipsoids with axial ratio 1 : 1 : 0.5 (Figure 4.21).
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Fig. 4.21. Stagnation point flow (streamlines and iso-
bars (dashed))

Sources and Sinks

According to the note following (4.20), known solutions of electrostatic po-
tentials are also solutions for possible potential flows, as long as the boundary
conditions can be satisfied. In fact, the electrostatic field of a point charge
leads to an important flow, the source or sink flow. The potential reads
Φ = ± C/r, where r is the distance from a point O, and C is a constant.
The potential is therefore constant on spheres with center 0. The velocity is
always in the radial direction, since it is perpendicular to surfaces of constant
potential. It has magnitude |C|/r2. The amount of fluid that flows through a
sphere of radius r (surface 4·π·r2) per unit time is Q = 4·π·r2 ·C/r2 = 4·π·C.
For a source at point 0, this amount appears per second, while for a sink, this
amount vanishes per unit time. This case is physically impossible. However,
a thin tube, for example, can be used to suck fluid at the point O, and a
flow approximating that described then occurs close to the suction site (only
approximately, since the finite volume of the pipe affects the flow).

A further very useful application of the source and sink flow is the follow-
ing: If a rod-shaped body moves forward in the direction of the rod axis with
velocity U∞, fluid is constantly being displaced at its front end, while at its
trailing end, fluid flows together in the space that has become free (Figure
4.22). The flow in the neighborhood of the front part therefore behaves as if
a source were placed there. From the flow close to the back part of the rod

Fig. 4.22. Potential flow past a moving
body, reference frame at rest
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Fig. 4.23. Potential flow and pressure distribution past a moving body, reference
frame moving with the body

it appears as if there is a sink. In fact, the flow is described by the equation

Φ = C ·
(

1

r2
− 1

r1

)
.

In order that this equation delivers the exact solution of the flow, the ends of
the rod have to have a certain rounded form. However, even if the ends have
another form, this equation is still a useful equation. The strength Q of the
source and the sink is equal to A ·U∞. Here A is the cross-section of the rod,
i.e. C = A · U∞/(4 · π). The flow is unsteady due to the forward motion of
the rod and the velocity distribution around the rod. However, if we consider
the flow from a reference frame that moves with the body, it is steady.

For this flow, the body is at rest and the fluid moves past the body.
Mathematically, this flow is described by the potential Φ′ = Φ + U∞ · x. Its
streamlines are shown in Figure 4.23. The pressure distribution along the
surface of the body is qualitatively sketched below, as obtained from the
Bernoulli equation.

The flow past other slender rotationally symmetric bodies can be de-
scribed by continuous distributions of sources along the axis. If the distance
between the source and the sink is reduced and the source strength is in-
creased to the same degree as its distance is decreased, we obtain a dipole
as the limiting case. The flow from Figure 4.23 then becomes the flow past a
sphere (Figure 4.24). With the radius of the sphere R, the associated poten-

Fig. 4.24. Potential flow past a sphere
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tial is Φ = U∞ · x · (1 + R3/(2 · r3)). In a real flow past a sphere, the effects
of friction mean that the wake looks different (see Section 4.2.6).

Two-Dimensional Motion

If all streamlines are two-dimensional curves in parallel planes and if the flow
state is the same on a straight line perpendicular to the family of planes,
the flow is called a planar flow. If one of these planes is chosen to be the x-y
plane, the velocity component w = 0 and the velocity components u and v are
functions of x and y only. It can be shown that both the real and imaginary
parts of every analytic function of the complex variable x+ i ·y is a potential
that satisfies (4.20). Let the complex variable be called z = x+ i · y, and the
function F(z), with real part Φ and imaginary part Ψ . We have

∂F

∂x
=

dF

dz
· ∂z
∂x

and
∂F

∂y
=

dF

dz
· ∂z
∂y
.

Because of

∂z

∂x
= 1 and

∂z

∂y
= i,

we also have

dF

dz
=
∂F

∂x
=

1

i
· ∂F

∂y
.

With F = Φ+ i · Ψ this yields

∂Φ

∂x
+ i · ∂Ψ

∂x
=

1

i
· ∂Φ
∂y

+
∂Ψ

∂y
.

Both the real and imaginary parts of this equation must hold. With 1/i = −i,
it follows that

∂Φ

∂x
=
∂Ψ

∂y
= u and

∂Φ

∂y
= −∂Ψ

∂x
= v, (4.21)

and we obtain

∂2Φ

∂x2
+
∂2Φ

∂y2
=

∂2Ψ

∂y∂x
− ∂2Ψ

∂x∂y
= 0;

i.e. the Laplace equation (4.20) is identically satisfied. The function Ψ also sat-
isfies ∂2Ψ/∂x2+∂2Ψ/∂y2 = 0, and so Ψ is also a flow potential. It follows from
(4.21) that the flows associated with the potentials Φ and Ψ are orthogonal to
each other at all positions and their velocities have the same magnitude. The
two gradient directions α and β are given by tan(α) = (∂Φ/∂y)/(∂Φ/∂x) =
v/u and tan(β) = (∂Ψ/∂y)/(∂Ψ/∂x) = u/(−v), i.e. tan(β) = −1/ tan(α).
The magnitude of the gradient in both cases is equal to

√
u2 + v2. The lines

of constant potential of one flow are therefore streamlines of the other flow.
The velocity is always perpendicular to the potential surface. The function
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that is constant on streamlines is called the stream function. If Φ is the
potential, then Ψ is the stream function. The stream function has another
graphical meaning: The difference in the function value of two points repre-
sents the amount of volume flowing between both points per unit time in a
layer of thickness 1.

The properties of the lines of equal potential and equal stream function
present us with a graphical method of determining both systems of lines for
given boundary conditions. We begin with a rough draft of the streamlines,
draw an orthogonal system onto this draft, and improve the sketch until
the mesh is everywhere sufficiently square. Characteristic of this are equal
lengths of the midlines in the squares and the orthogonality of the two families
of diagonal curves, satisfying the equations Φ + Ψ = const. and Ψ − Φ =
const., drawn through the corners of the squares. Figures 4.23, 4.26, 4.27 and
4.30 were all sketched in this manner. Figure 4.25 shows an example of a
graphically constructed solution.

We now present simple examples of two-dimensional flows. The plane
stagnation point flow is given by the function F = (a/2) · z2:

Φ+ i · Ψ =
a

2
· (x2 + 2 · i · x · y − y2),

i.e.

Φ =
a

2
· (x2 − y2) and Ψ = a · x · y.

The streamlines Ψ = const are equal-sided hyperbolas. The velocity compo-
nents u and v satisfy the equations

u =
∂Φ

∂x
= a · x, v =

∂Φ

∂y
= −a · y.

The two-dimensional source flow is obtained from F = b · ln(z), with ln(z) =
ln(r) + i · ϕ, with radius r and central angle ϕ in polar coordinates (i.e.
Φ = const. on circles r = const., and Ψ = const. on radial straight lines
ϕ = const.).

Another example is the flow at two walls that form an angle α with each
other. If the point of intersection is at the origin and the first wall is along
the x axis, the function reads F = (a/n) ·zn, with n = π/α. Introducing polar
coordinates, we have z = x+ i · y = r · (cos(ϕ) + i · sin(ϕ)) and

Fig. 4.25. Graphical construction of Φ
and Ψ



86 4. Dynamics of Fluid Flow

zn = rn · (cos(n · ϕ) + i · sin(n · ϕ)).

This yields a stream function Ψ = (a/n) ·rn ·sin(n ·ϕ). For ϕ = 0, π/n, 2 ·π/n,
. . . , i.e. for ϕ = 0, α, 2 · α, . . . we have Ψ = 0. The shape of the streamlines
for different values of α is seen in Figure 4.26. For α < π the velocity at the
origin is 0, while for α > π, it is ∞. Taking the limit to α = 0 leads to the
function

F = a′ · eµ·z = a′ · eµ·x · (cos(µ · y) + i · sin(µ · y)).
The distance between the two walls is h = π/µ. The flow deviated about a
right angle F′ = a′ · e−i·µ·z = a′ · eµ·y · (cos(µ · x) − i · sin(µ · x)) can be used
to describe wave processes (Figure 4.40).

The flow past a circular cylinder of radius R is given by F = U ·(z+R2/z).
The stream function is then found to be Ψ = U · sin(ϕ) · (r−R2/r). For the x
axis on which sin(ϕ) = 0 and for the circle of radius R for which r−R2/r = 0,
the value of the stream function is Ψ = 0. The streamline portrait and the
potential line portrait of this flow are very similar to those in Figure 4.25.

There are a great many further examples of potential flows, and a great
number of different methods can be used to find suitable solutions. For ex-
ample, the complex relation z = f(ζ), where ζ = ξ + i · η is another complex
number, assigns to every ξ, η a pair of values x, y. To each point in the ξ-η
plane there is an associated point in the x-y plane. This is called a mapping.
One line corresponds to one line; the point of intersection of two lines cor-
responds to the point of intersection of the associated lines. Specifically, the
relations analogous to (4.21) hold. A right-angular mesh is again mapped onto
a right-angular (but in general curvilinear) mesh. The scale of the mapping
is the same in both directions, so that infinitely small scales are mapped in a
geometrically similar manner. This type of mapping is therefore also called a
conformal mapping. The previous examples of two-dimensional flows are also
conformal mappings if Φ and Ψ are replaced by ξ and η. The last example
(a flow past a circular cylinder) shows how half of the Φ-Ψ plane is mapped
onto a region bounded by two pieces of the x axis with a semicircle of radius
R between them.

If F is an analytic function of z, and z is an analytic function of ζ, then
F is also an analytic function of ζ; i.e. F = Φ + i · Ψ also yields a possible

Fig. 4.26. Flows F = A · zn
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flow in the ζ plane. Any flow in the x-y plane can be mapped by any map-
ping of the x-y plane to the ξ-η plane to a new flow in the ξ-η plane. The
process can be repeated as often as required. This is an important concept
for hydrodynamics.

There are different methods of mapping the outer region of a airfoil-like
contour to the outer region of a circle. Therefore, the flow past the circle can
also yield a flow past a wing, etc.

The differential quotient dF/dz is equal to u − i · v (the conjugate value
of the complex velocity u+ i · v). Calling this quantity w, then w = dF/dz is
also an analytic function of z or of F. The relation of the Φ-Ψ plane to the
u-v plane is also a conformal mapping. There are cases in which statements
can be made about the velocities that suffice to completely determine the
region in the w plane. If a liquid jet exits through a gap between two walls
(Figure 4.27), the direction is given for the limiting streamline as long as it
flows along a flat wall. The direction is not known for the boundaries of the
free jet, but the magnitude of the velocity is known. Because of the Bernoulli
equation this must be constant if the pressure is constant. This yields a
boundary to the region (Figure 4.27, right). It now remains only to correctly
describe the singularities that occur in order to obtain F as a function of
w. We determine the inverse function w = w(F). From dF/dz = w(F) we
obtain z =

∫
(dF/w(F)). Separating the real and imaginary parts, we finally

determine the x and y values to each value of Φ and Ψ and thus obtain the
streamline portrait.

This brief overview gives an idea of the complex methods used in deter-
mining potential flows.

Although the circulation vanishes in all small regions of all potential flows,
there are flows in which a circulation occurs in the entire flow field. The
condition for this is that the region in which the flow occurs is multiply
connected. This multiple connection is characterized by the fact that there are
curves that cannot be pulled together to zero by continuous changes without
leaving the region. Examples of multiply connected spaces are a room with
a column in the middle, or the space surrounding a ring. If the circulation
along such a curve is equal to Γ , the circulation along every other curve that

Fig. 4.27. Flow and velocity field in the discharge from a gap
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arises from continuous change of this curve without leaving the region is also
equal to Γ if the flow is otherwise irrotational (i.e. the circulation in every
simply connected region vanishes). The potential found from the line integral
between a fixed point and each point in space is ambiguous in such flows. For
every turn it increases by the amount Γ .

The simplest case of a two-dimensional flow of this type is described by
the potential Φ = C·ϕ. Here ϕ is a central angle (Figure 4.28). This potential,
which also satisfies (4.20) in complex notation F = −i · C · ln(z), increases
by 2 · π ·C for each turn (ϕ2 = ϕ1 + 2 · π). The value by which the potential
increases is the circulation Γ . The surfaces of constant potential in this case
are planes through the axis, and the streamlines are therefore circles. The
velocity w = dΦ/ds is found with ds = r · dϕ to be w = C/r. The flow
therefore corresponds to the flow in the example in Figure 4.6. For r = 0 we
would obtain w = ∞, and so the flow has physical meaning only outside a
core of finite diameter (Figure 4.28). The core can either be formed by a solid
body or can consist of rotating liquid (in which there is no potential). It can
also consist of another (lighter) nonrotating liquid, such as air, if water forms
the surrounding liquid (hollow vortex). The effect of Earth’s gravity causes
the surface of such a hollow vortex to assume a shape as in Figure 4.29. Its
form is found from the Bernoulli equation to be

z = z0 −
w2

2 · g = z0 −
C2

2 · g · r2 .

Such funnels can be observed in flowing bodies of water, or on emptying a
bathtub. In these cases the flows already had circulation from other causes.

4.1.6 Wing Lift and the Magnus Effect

A further application of potential flows with circulation is in determining the
lift of wings (Section 4.4.3). The flow past a wing in Figure 4.30 (top picture)
can be generated by superposition of an ordinary potential flow (without
circulation) and a flow with circulation around the wing. The flow past the

Fig. 4.28. Potential flow with circula-
tion
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Fig. 4.29. Hollow vortex

wing itself therefore has a circulation. Even without any calculation we see
that the flow with circulation on the upper side of the wing strengthens the
potential flow, and that on the lower side acts against the potential flow.
According to the Bernoulli equation, this implies a pressure decrease on the
wing and a pressure increase on the lower side of the wing; i.e. a lift occurs.
M. W. Kutta and N. Y. Joukowski independently discovered that this force
is proportional to Γ . Its size per unit length is equal to ρ · Γ · U∞, with the
free-stream velocity U∞ of the wing. This law will be proved in Section 4.1.7.

According to Thomson’s law, no circulation can occur in a motion from
rest even in multiply connected spaces, since at rest the circulation on every
line is equal to zero. Therefore, even in motion the circulation remains zero.
In fact, the circulation generally occurs over an interface. For example, in the

Fig. 4.30. Flow past a wing
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spiral casing in Figure 4.6, a vortex forms on the sharp edge at the start of
motion, as shown in Figure 4.15. The vortex later floats away at O, and only
its circulation remains for the duration of the flow.

In the flow past a wing the solution is similar. At the start of motion
an interface forms at the trailing edge, as shown in Figure 4.31. Later, the
vortex arising from the interface moves downstream. A circulation remains
at the wing, and this is equal to but in the opposite direction of that of the
vortex. The lines that contain both the wing and the vortex still retain the
circulation zero, as Thomson’s law requires.

In order that the wing generates a doubly connected flow region, the wing
has to be bounded on the sides by two parallel walls, or it must be assumed
that it is infinitely extended out to both sides. In real wings neither one nor
the other is true. The circulation about the wing, which is present here, too,
and is necessary to bring about the lift, is generated by an interface with a
transversal velocity jump.

A circulation like that at the wing also occurs at a rotating circular cylin-
der in a flow parallel to its axis. This time, the occurrence is due to friction.
It produces a force per unit length perpendicular to the flow that is equal to
ρ ·Γ ·U∞ and is called the transverse drive. In cases of triangular and quadri-
lateral prisms that rotate about their longitudinal axes, and of spheres, etc.,
this force occurs. The action of the force always takes place from the side
where rotation and flow are orientated opposite to each other, to the side
where they have the same direction. This effect is named after its discoverer
H. G. Magnus (1852) as the Magnus effect.

Spherically shaped bullets often acquire an unintentional rotation about
transverse axes, and their flight paths deviate to one side. This behavior
was the origin of the investigations into the Magnus effect. Such sideward
deviations can be seen in the flights of sliced tennis and golf balls in the
air. A. Flettner (1926) exploited the effect in his rotor ship to drive ships
by the wind. Instead of a sail, a perpendicular, rapidly rotating cylinder was
used. Disks are applied at the ends (Figure 4.32, left), since otherwise, the
air that does not pass around at the ends of the cylinder would penetrate the
underpressure region on the suction side and partially destroy the flow there.
The experiments with such ships were successful. However, the regular motor
ship was economically superior, so that the Flettner drive did not catch on.

The effect of the Flettner rotor can be understood with a simple experi-
ment. A rotating cylinder by a small electric motor driven is found on a cart
running on tracks. If air is blown toward the cylinder from a small ventila-
tor perpendicular to the tracks, the cart moves forward on the tracks. If the
ventilator is turned so that the wind forms a different angle with the tracks,

Fig. 4.31. Start-up vortex of a wing
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Fig. 4.32. Rotating cylinder

the behavior of the cylinder sail can be investigated under different angles of
attack. It is possible to make the cart move at an acute angle to the wind.
If the direction of rotation of the cylinder is reversed, the cart travels in the
opposite direction.

A light cylinder rotating rapidly about a horizontal axis does not fall down
vertically if it is allowed to drop, but rather its flight path becomes a flat
gliding flight. Apart from the lift A perpendicular to its path, it experiences
a drag W in the direction of the flight path, which in the most favorable
case (longitudinal cylinder with end disks) is considerably smaller than the
lift. The resultant of these two forces keeps the weight G of the cylinder in
equilibrium (Figure 4.32, right) and prevents it from falling vertically.

4.1.7 Balance of Momentum for Steady Flows

The balances of momentum of general mechanics, known as the law of center
of mass and the law of areas, are also applied to steady and unsteady flows of
liquids whose time averages can be considered to be steady motion. The value
of these balances of momentum lies in the fact that they contain statements
only about the states on the boundaries of a region, and so processes can be
predicted without the necessity of fully understanding their details.

The momentum of a mass is the product of mass and velocity. The mo-
mentum is a vector and, like the velocity, has three components. The rate of
change of the momentum is equal to the resultant force acting on the mass. In
Section 2.2 we saw that in summing over all masses of a mechanical system,
all internal forces cancel out according to the principle of action and reaction,
and only the external forces, acting from masses outside the system, remain.

In a steadily flowing liquid mass with arbitrary boundaries, the momentum
changes only when the boundaries of the liquid mass shift due to the flow.
Inside the liquid mass, each particle has been replaced by another, which
has taken on its velocity. What happens on the boundaries can be shown by
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considering a stream filament. The balance of momentum states that every
partial mass that belongs to the system remains in the system, and no new
partial masses are added to the system. The bounding surfaces selected for
the application of the balance of momentum therefore move with the flow. For
the stream filament in Figure 4.33, at 1 the mass dm1 = ρ ·A1 ·w1 ·dt vanishes
in time dt. At 2 the mass dm2 = ρ ·A2 ·w2 ·dt appears. Because of continuity
we must have dm1 = dm2 = dm. In the time dt the stream filament at
2 therefore contributed the positive amount dm · w2 to the total change of
momentum, thus per unit time (dm/dt) · w2 = ρ · A2 · w2

2 (in the direction
of w2). Similarly, at 1 the negative amount −(dm/dt) · w1 = −ρ · A1 · w2

1 is
contributed (in the opposite direction to w1). The vector sum of these changes
in momentum per unit time is equal to the resultant of all the external forces
acting on the stream filament. Instead of the changes in momentum, we can
also look at their reactions, i.e. the forces of the same magnitude but in the
opposite direction. The vector sum of these reaction forces is in equilibrium
with the forces acting on the stream filament. This procedure is the same as
that used in the introduction of the inertial forces in d’Alembert’s principle of
the mechanics of rigid bodies. The liquid flow in Figure 4.33 at 1 corresponds
to a reaction force ρ · A1 · w2

1 in the direction of the incoming flow, and at
2 it corresponds to a reaction force ρ · A2 · w2

2 in the opposite direction to
the outgoing flow. This formulation completes the transition to a surface
fixed in space. The changes in momentum (or their reaction forces) and the
pressure forces are carried over to the boundary surface fixed in space. In
order to apply the balances of momentum correctly, it is practical to surround
the liquid mass with a closed surface, the control surface. This is shown in
bold in some of the following figures. For all incoming and outgoing stream
filaments, the reaction forces must form an equilibrium system with all the
external forces that act on the liquid inside the control surface, according to
the laws of statics. This means that both the sum of the forces and the sum
of the moments of the forces must be equal to zero for all coordinate axes.
In practice, it is often the forces that the liquid causes to act on the walls of
its container rather than the forces acting on the liquid that are of interest.
Very frequently, only the equation of one component is needed to solve the
particular problem.

In the case of unsteady flows there is an additional term in the balance
of forces. This is due to the change of momentum inside the liquid. If the
unsteady flow has a constant average value of momentum, as is often the case

Fig. 4.33. Change of momentum in a
stream filament
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in turbulent flows, these contributions inside the liquid cancel each other out
on average, and so the balances of momentum can be applied as for steady
flows.

Reaction Forces in Curved Channels

A liquid flows with a velocity w1 and a pressure p1 into the curved channel
(Figure 4.34). The transport of momentum through the surface A1 is equal
to ρ · A1 · w2

1. This is the same as a force acting from the inflowing liquid in
the direction of flow. A pressure force p1 · A1 in the same direction also has
to be taken into account. A corresponding reaction force A2 · (ρ ·w2

2 +p2) acts
as the liquid flows out of the channel. It is directed opposite to the velocity
(therefore always toward the interior of the control surface). The resultant of
the two forces is the actual force acting from the liquid flow onto the channel
through the pressure forces at the wall.

Reaction Forces in Jets

A jet that exits a region with pressure p1 through an opening into a region
with pressure p2 has a momentum of magnitude J = ρ ·A ·w2 per unit time,
where A is the cross-section of the jet. With w =

√
2 · (p1 − p2)/ρ (Section

4.1.2) we obtain J = 2 ·A · (p1 −p2). This corresponds to twice the force that
would act on a piston of the size of the jet cross-section from the pressure
difference p1 − p2. This momentum must have an equivalent in the pressure
distribution. It follows that a loss in the wall pressure arises, compared to that
of the closed vessel, by the vanishing of the overpressure p1 at the opening
and the pressure reduction close to the opening due to the outgoing flow. This
loss corresponds to the pressure on twice the jet cross-section. The vanishing
of the pressure is expressed as a reaction force of the exiting jet. This reaction
force can be detected by placing a vessel with a side opening on a moveable
cart. The cart with the vessel moves in the opposite direction to the exiting
jet.

Fig. 4.34. Reaction forces at a curved
pipe
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A similar experiment can be performed using the Segner waterwheel (Fig-
ure 4.35). A weight can be lifted by the exiting water, or it can carry out
other work.

In the case of the Borda outlet (Figure 4.36), the so-called contraction
coefficient, the ratio of the jet cross-section to the hole cross-section, can be
determined from the magnitude of the momentum. Since the entire overpres-
sure p1 acts on all wall surfaces whose pressure forces have components in the
jet direction, the vanishing of the overpressure in the outlet cross-section A
must be equal to the jet momentum. We have A · (p1 − p2) = 2 ·AS · (p1 − p2)
or AS = (1/2) · A.

Sudden Expansion

If a liquid flow with velocity w1 exits a cylindrical pipe section into a larger
cylindrical pipe, the jet mixes with the surrounding liquid. After the mixing,
it flows downstream almost uniformly with a mean velocity w2. We can use
the balance of momentum to compute the pressure increase p1−p2 associated
with the mixing, without having to know the details of the mixing process.
In the liquid at rest in the larger pipe that surrounds the incoming jet, the
same pressure p1 is at hand as in the jet (cf. Section 4.3.5, free jet). For the
control surface sketched in Figure 4.37, of which only the forces on the two
facing surfaces contribute to the force balance, we have

dm

dt
· (w1 − w2) = A2 · (p2 − p1).

With dm/dt = ρ ·A2 · w2 we obtain

p2 − p1 = ρ · w2 · (w1 − w2).

Fig. 4.35. Segner waterwheel Fig. 4.36. Borda outlet



4.1 Dynamics of Inviscid Liquids 95

Fig. 4.37. Sudden expansion (diffusor)

In a pipe that expands gradually, the Bernoulli equation would yield
p2 − p1 = 0.5 · ρ · (w2

1 − w2
2) for the pressure difference. However, for sudden

expansion, the pressure loss is p′2 − p2 = 0.5 · ρ · (w1 −w2)
2. This equation is

the same as the equation for the loss of kinetic energy in an inelastic collision
between solid bodies, and for this reason the loss on sudden expansion is
often called the impact loss even though no impact takes place. It is only the
mixing of the velocities that collision and sudden expansion have in common.

Suspension of Heavy Bodies in Air

In order to keep a load suspended in air at rest, it is necessary to keep
accelerating new masses of air downwards. Let w be the final velocity with
which the air moves downwards, for simplicity assumed to be uniform. Here
dm/dt = ṁ is the mass of air set into motion per unit time. If there are no
great pressure differences in the mass moving downward, the resulting force
is equal to the momentum J = ṁ ·w. To good approximation, this approach
can be carried out for a freely suspended helicopter propeller at a sufficient
distance from the ground. An air jet with momentum J = ṁ · w directed
vertically downward then forms. If the helicopter is far enough above the
ground, the air jet mixes with the surrounding air at rest and is slowed down.
The momentum is unchanged as the moving mass increases correspondingly.
As the jet hits the ground, it transfers the weight of the propeller to the
ground as a pressure force, thereby losing its momentum.

In the case of an airplane, the mass of air moving downward is formed by
the vortex system remaining in the air. However, in this case, the pressure
field is also important. Whether the equivalent of the lift is found as a mo-
mentum force or as a pressure force is dependent on the shape of the control
surface. A pressure increase occurs on the ground below the airplane, namely,
the transfer of the weight of the airplane to the ground.

Cascade, Kutta–Joukowski Theorem

In order to investigate the interaction between the blades of a turbine or of a
propeller with fluid flowing past, we first consider the simpler case of a two-
dimensional cascade. The two-dimensional cascade consists of many equally
large infinitely long blades oriented parallel to each other. The balances of
momentum for the force components parallel and perpendicular to the plane
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of the cascade, together with the Bernoulli equation and the continuity equa-
tion, yield information on the relation of the blade forces to the flow velocity.
Figure 4.38 shows a cascade with a flow as seen by an observer at rest with
respect to the blades. The row of blades shown is that of a propeller. The
camber of the turbine blades is inverted, and the force components point
in the opposite direction. However, the following discussion holds for both
blade forms. The velocity components parallel and perpendicular to the cas-
cade are u and v, with the corresponding forces per unit length of a blade
Fx and Fy (positive in the directions shown in Figure 4.38). Index 1 refers to
the incoming flow, and index 2 to the outgoing flow.

It is assumed that there are no losses in the flow. It is then a potential
flow with circulation about the blades. In the balance of momentum we make
use of the fact that the velocities at some distance behind and in front of the
cascade are almost constant. The flow between the blades does not need to
be known in more detail. We need only to ensure that no separation occurs,
as can happen on ineffectively shaped blades.

With the distance between the blades a, continuity requires that

Q = v1 · a = v2 · a.
Here Q is the amount of liquid that passes between two blades per unit time
in a layer of depth a parallel to the blade axis. Thus v1 = v2, and so in

Fig. 4.38. Cascade
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what follows we denote this velocity component only by v = v1 = v2. With
w2 = u2 + v2 (resultant velocity w), the Bernoulli equation yields

p1 +
ρ

2
· (u2

1 + v2) = p2 +
ρ

2
· (u2

2 + v2),

or

p2 − p1 =
ρ

2
· (u2

1 − u2
2). (4.22)

For the balance of momentum, we select a control surface whose boundaries
in the cascade consist of two identical streamlines lying a distance a apart.
The rest of the boundary consists of two straight lines of length a parallel to
the plane of the cascade. The control surface is shown in bold in Figure 4.38.
Let the depth of all surfaces be 1. Nothing flows through the two stream-
line surfaces. Because of their equal length with respect to the cascade, all
quantities on these streamlines are the same, and so they also have the same
pressure distribution. For this reason they contribute neither to the momen-
tum nor to the resultant of the pressure forces. Only the contributions from
the surfaces parallel to the cascade plane have to be computed for the force
balance. The mass flowing through the cascade per unit time is ρ ·Q = ρ ·a ·v.
We obtain

Fx = 0 + ρ · a · v · (u1 − u2) = ρ · a · v · (u1 − u2), (4.23)

Fy = a · (p2 − p1) + 0 = a · (p2 − p1). (4.24)

It makes sense to introduce the circulation about a blade into these equations.
We again use the bold line to compute this. The two streamlines run in
opposite directions and yield two equally large but opposite contributions.
However, the two straight pieces yield a ·u1 and −a ·u2, and so the circulation
becomes

Γ = a · (u1 − u2). (4.25)

Using (4.22) and the relation

u2
1 − u2

2 = (u1 − u2) · (u1 + u2),

(4.23) and (4.24) yield

Fx = ρ · Γ · v, (4.26)

Fy = ρ · Γ · u1 + u2

2
. (4.27)

The ratio Fy/Fx = ((u1 + u2)/2)/v shows that the resultant of Fx and Fy

is perpendicular to the velocity resulting from (u1 + u2)/2 and v. This can
easily be seen by considering the similar triangles in Figure 4.38. Calling the
resultant force FR and the resultant mean velocity wm, we also obtain

FR = ρ · Γ · wm. (4.28)

This is the theorem of Kutta and Joukowski. It can also be proved otherwise.
Joukowski derived it by using a control surface for the balance of momentum
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Fig. 4.39. Water turbine

that consisted of a circular cylinder with a very large radius. The axis of the
airfoil is the axis of the cylinder. Half of FR is then obtained as the momentum
force and the other half as the resultant of the pressure forces. This theorem
is important because it allows us to determine the circulation associated with
a given lift through which the vortices behind the airfoil are determined.

Moments of Momentum, Euler’s Turbine Equation

As well as moments of forces in statics, we can also form moments of mo-
mentum forces. A principle analogous to the center-of-gravity principle holds
here: The rate of change of the moment of momentum is equal to the resulting
moment of the forces. This principle is also called the conservation of angu-
lar momentum. As for the conservation of momentum, in the case of steady
liquid flows it passes over to the principle of equilibrium of the moments of
the external forces and the moments of the reaction forces of the liquid.

As an example we derive Euler’s turbine equation. An amount of water
ṁ flows through a turbine per unit time (Figure 4.39). The absolute entry
velocity is w1, its angle with the direction of motion of the turbine is β1,
and the entry radius is r1. The water flows through the rotating turbine
in a direction given approximately by the blades. The relative exit velocity
at radius r2 together with the circumferential velocity of the turbine at that
point gives the absolute exit velocity w2 in the direction β2. The torque acting
from the water on the turbine is therefore equal to

ṁ · (w1 · r1 · cos(β1) − w2 · r2 · cos(β2)). (4.29)

Instead of considering the moment of momentum of the unit mass to be a
product of the velocity w with r · cos(β), the moment of momentum can also
be seen as a product of the circumferential component w · cos(β) with the
radius r.
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The best working conditions of the turbine occur when the flow exits in
the radial direction, i.e. when cos(β2) = 0. Then the lost kinetic energy of
the exiting water is smallest. The work output for this case is found from the
product of the torque with the angular velocity w of the turbine:

L = ṁ · r1 · ω · w1 · cos(β1). (4.30)

If we apply the same principle to a circular fluid motion in which there is no
turbine wheel, the torque must be equal to 0. We obtain

w1 · r1 · cos(β1) = w2 · r2 · cos(β2). (4.31)

If the angles β are small enough, we can set cos(β) = 1 and we have w · r =
const. This result was already obtained in another manner in Section 4.1.2.

4.1.8 Waves on a Free Liquid Surface

Plane Suspension Waves

In most cases in dealing with a free liquid surface it is permissible to neglect
the mass of the air particles set into motion by the liquid compared to the
mass of the liquid. In order to do this, the pressure of the free surface must be
equal to the air pressure p∞. Observations have shown that in the simplest
form of wave motion the individual particles of the water surface describe
paths that are approximately circles. In a reference frame that moves with
the translational velocity of the wave crests and troughs, the flow is a steady
flow to which the Bernoulli equation can be applied (Figure 4.40). The radius
of the circular path of a particle lying on the surface is r, and the period of
revolution is T . Therefore, the velocity on the circle is 2 · π · r/T . If the
translational velocity of the wave is equal to c, the flow velocity on the crest
of the wave in the above reference frame is w1 = c − 2 · π · r/T and that in
the trough is w2 = c+2 ·π ·r/T . The difference in height is h = 2 ·r. Because
the pressures are equal, we have

Fig. 4.40. Wave motion
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w2
2 − w2

1 = 2 · g · h = 4 · g · r.
The left-hand side yields 8 · π · c · r/T , and so we obtain

c = g · T

2 · π . (4.32)

The radius r cancels out; i.e. the wave velocity does not depend on the height
of the crest of the wave. If the wavelength λ is given instead of the period
T , we also need a relation between the translation of the crests and troughs
with the velocity c and the period of oscillation. This is

λ = c · T. (4.33)

Eliminating T from (4.32) using (4.33), we obtain

c =

√
g · λ

2 · π . (4.34)

In contrast to sound waves, in water waves the wave velocity depends greatly
on the wavelength. Longer waves move faster than short waves. The waves
can interfere with each other without being essentially perturbed. When short
and long waves are superimposed, the short waves remain behind the long
waves. The streamlines of the wave motion in a reference frame at rest rel-
ative to the unperturbed water are shown in the lower picture in Figure
4.40. The streamlines show that the motion of water decreases greatly with
exp(−2 · π · (z1 − z)/λ) with increasing depth below the surface. At a depth
of one wavelength, the motion is only about 1/500 of that at the surface.

The surface waves are potential motions, according to the ideas pre-
sented in Section 4.1.5. For waves with small amplitudes, the potential is
Φ = a1 · eµ·z · cos(µ · (x − c · t)), with µ = 2 · π/λ. For finite amplitudes, a
Fourier series appears in place of the cosine. The amplitudes of each term
follow from the condition that the pressure must be constant at all points
on the surface. A more precise theoretical approach shows that (4.34) holds
only for shallow waves and that the translational velocity is independent of
the wave height. For high waves the wave velocity becomes somewhat larger.
In this case, the paths of the water particles are no longer closed, and the
particles move further forwards in the crest of the wave than they do back-
wards in the trough (Figure 4.40, lower right). Water transport occurs in the
wave. According to G. G. Stokes (1847), the highest possible steady form of
a wave has a summit with an angle of 120◦. When more energy is supplied
to the wave, the crest begins to foam.

For short wavelengths, the surface stress acts in addition to gravity. As
this smooths the wavy surface, it leads to an increase of the translational
velocity. For the capillary constant C (tensile stress in the surface) we have

c =

√
g · λ
2 · π +

2 · π · C
ρ · λ . (4.35)
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In the case of long waves, only the first term is important. If the wave-
length is very short, the second term dominates. For the wavelength λ1 =
2 · π ·

√
C/(g · ρ), c has a minimum c1 = 4

√
4 · g · C/ρ. For water with

ρ = 1000 Ns2/m4 and C = 0.073 N/m we can determine that λ1 = 1.71 cm
and c1 = 23.1 cm/s (simultaneously group velocity). Waves with a wave-
length larger than λ1 are called gravity waves, while those whose wavelength
is shorter than λ1 are called capillary waves.

Wave Groups

We distinguish between the velocity with which the wave fronts progress, the
so-called phase velocity c, and the translational velocity of a wave group,
the so-called group velocity c∗. To derive the group velocity, we consider the
superposition of two waves with the same amplitude but slightly different
wavelengths. This holds not only for water waves, but quite generally for
waves whose phase velocity depends on the wavelength, i.e. for which there
is dispersion. Consider a simple sine wave:

y = A · sin(µ · x− ν · t).
If x is increased by 2 · π/µ or t by 2 · π/ν, the sine function has the same
value as before. Therefore, λ = 2 · π/µ is the wavelength and T = 2 · π/ν is
the period of oscillation. For µ · x − ν · t = const, i.e. x = const + (ν/µ) · t,
the argument of the sine function is constant in time. Therefore, y is also
constant in time. This means that the entire wave form moves with velocity
c = ν/µ. We now superimpose a second wave y′ on this wave. It has the
same amplitude, but slightly different values of µ and ν, denoted by µ′ and
ν′. Therefore, y′ = A · sin(µ′ · x− ν′ · t) and

y + y′ = A · [sin(µ · x− ν · t) + sin(µ′ · x− ν′ · t)]
is the result of the superposition. At positions where the two oscillations act
in the same direction, the amplitude is equal to 2 ·A. At positions where the
oscillations are in opposite directions, the total amplitude is equal to 0. This
process is called a beat. By applying the equation

sin(α) + sin(β) = 2 · sin
(
α+ β

2

)
· cos

(
α− β

2

)
,

we obtain

y + y′ = 2 ·A · sin
(
µ+ µ′

2
· x− ν + ν′

2
· t
)
· cos

(
µ− µ′

2
· x− ν − ν′

2
· t
)
.

Fig. 4.41. Beats
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In this expression the factor sin(. . . ) represents a wave with the average values
of µ and µ′, and ν and ν′. The factor 2 · A · cos(. . . ), which changes only
slowly for small µ− µ′ and ν − ν′, can be considered as a varying amplitude
(cf. Fig. 4.41). The wave group comes to an end when the cosine is equal to 0.
The translational velocity at this position, the group velocity c∗, is therefore
equal to (ν − ν′)/(µ− µ′). For long groups (slow beats), we have

c∗ = dν/dµ. (4.36)

Since no energy transport can take place through the nodes of the beats, the
translational velocity of the wave energy is identical to the group velocity.
This can be strictly proven for simple wave trains.

For water waves determined by gravity, (4.32) yields

ν =
2 · π
T

=
g

c
.

According to (4.34),

c =

√
g · λ
2 · π =

√
g

µ
.

This leads to the relation

ν =
√
g · µ.

Therefore, with (4.36), we have the group velocity

c∗ =
dν

dµ
=

1

2
·
√
g

µ
=

1

2
· c. (4.37)

The wave group progresses with velocity 0.5 · c, or in other words, the
wave fronts move at twice the speed of the progression of the wave group.
At the back end of the group new waves keep forming, to vanish again at
the front end. This can be seen well for the waves that occur when a stone is
thrown into water at rest.

Ship Waves

Ship waves belong to another type of wave group. We can produce a figure
very similar to the waves of a ship by considering the waves generated when a

Fig. 4.42. Wave system of a pressure
perturbation moving uniformly across
the surface of water
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point pressure perturbation moves with constant velocity over the surface of
a still, deep body of water. According to the calculations of Lord Kelvin, V.
W. Ekman (1905), and others, a wave system such as that shown in Figure
4.42 is obtained. The lines extending outward in this figure represent wave
crests. This wave system moves with the pressure perturbation. According to
(4.35), the wavelength of the transverse waves is λ = 2 ·π · c2/g. Here c is the
translational velocity of the pressure perturbation. The length of the wave
group is equal to half the distance covered by the pressure perturbation.

When a ship moves through water, one such wave system is generated at
its bow and another at its stern, and these systems interfere with each other.

The group velocity of capillary waves is analogous to the group velocity of
gravity waves. It is larger than the phase velocity, about 1.5 times in the case
of very small waves. For a pressure perturbation moving with constant veloc-
ity, the wave group leads the position of generation. In fact, a fishing line or
some other obstacle at rest in water flowing at more than 23.3 cm/s generates
capillary waves upstream and gravity waves downstream. The gravity waves
have approximately the shape shown in Figure 4.42. The capillary waves fill
the space in front in an arc-like manner. At velocities below 23.3 cm/s no
waves occur.

Interfaces Between Two Liquids

If two liquids with different specific weights are layered on top of each other,
the interface can carry out wave motion. For two liquids at rest with densities
ρ1 and ρ2 layered on top of each other, the theory yields a phase velocity

c =

√
g · λ
2 · π · ρ1 − ρ2

ρ1 + ρ2
+

2 · π · C
λ · (ρ1 + ρ2)

.

If the upper liquid flows with a velocity w1 above the lower liquid, ac-
cording to the theory only the longer waves are stable. The shorter waves are
unstable, as shown in Section 4.1.4 for the motion of two streams of liquid
along an interface. This can lead to a mixing of the two liquids in an interme-
diate zone, whereby the flow becomes stable again. With increasing velocity
w1, the boundary between instability and stability shifts toward longer wave-
lengths. Such waves can occur between two layers of air of different densities,
as can occur in the atmosphere. This is sometimes made visible by cloud
formation (Helmholtz waves).

Fig. 4.43. Surge on the surface of water
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Surge

The equations given in this section are valid for waves in deep water. The
relations are altered when the depth of the water becomes small compared
to the wavelength. For water depths of more than half a wavelength, the
previous equations are precise enough. For shallower water, the water parti-
cles move on elliptical paths. The relations between the wavelength and the
translational velocity become more complicated. For very shallow water, or
for very large wavelengths, the water particles on the surface essentially move
back and forth horizontally, and rise and fall only very slightly in comparison.
In this case we can obtain new simple relations. Periodic waves with an ap-
proximately sinusoidal form are again considered. For the very flat elliptical
paths of the particles, the effect of the vertical accelerations on the pressure
distribution can be neglected. The pressure changes only statically in every
vertical line, and the differences in level of the water cause only horizontal
accelerations.

We now carry out an even simpler approach. We consider a low surge
(Figure 4.43). This approach is closely related to the treatment of pressure
expansion in a compressible medium (Section 4.3.1). We assume that a surge,
in which the height of the water over the flat ground increases from h1 to h2,
expands to the right with a velocity c. Before the arrival of the surge, the
water is at rest, and after the water level has risen, it has the velocity w to
the right.

This velocity is necessary to increase the water level from h1 to h2

by sideward compression of the water mass in the transition region of
width b. For simplicity, we assume that the water level in the transition
region has a constant slope (h2 − h1)/b. If the velocity w is small com-
pared to the expansion velocity c, the water level increases with a velocity
v = c · (h2 − h1)/b.

On setting the depth perpendicular to the plane of Figure 4.43 to 1,
continuity requires that h2 · w = b · v, or

h2 · w = c · (h2 − h1). (4.38)

The width of the surge b has canceled out of this equation, and it does not
depend on this quantity. Equation (4.38) is also correct if the profile of the
surge is not linear. The surge can then be decomposed into a number of
surges with linear profiles. Adding the continuity equations of each surge, on
the right-hand side of the equation we again obtain h2 − h1, and on the left-
hand side the individual velocity differences again sum to w. However, this
is true only when the differences of each h2 can be neglected. It also follows
from (4.38) that for a very small velocity w, h2 −h1 also must be small. This
equation is therefore valid only for low surges, where the previous neglecting
is indeed permissible.

As well as the kinematic relation (4.38) we also need a dynamic relation,
obtained in the following discussion. The water mass of width b is in accel-
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erated motion, since its particles have velocity 0 on the right boundary and
velocity w on the left boundary. The time in which the surge moves past a
particle is τ = b/c. Thus the acceleration of a particle is w/τ = w · c/b. The
water mass of width b and depth 1 perpendicular to the plane of the figure
is ρ · b · hm (hm is the mean water level). The pressure at the same height
on both sides of the surge differs by the amount γ · (h2 − h1). The horizontal
total force on the water mass below the surge is (neglecting small quantities)
equal to hm ·γ · (h2−h1). With the equation force = mass · acceleration, and
γ = ρ · g, we obtain

w · c = g · (h2 − h1). (4.39)

Here, too, the width of the surge b has canceled out. It can again be shown
that (4.39) is also valid for a surge with another profile, if h2 − h1 is small
compared to h1 and h2.

For simplicity we now replace h2 in (4.38) by hm. This is also permissible
within the range of neglect already carried out. Then dividing (4.39) by (4.38),
we obtain

c2 = g · hm. (4.40)

Positive and negative surges following one another form waves. The trans-
lational velocity of such waves is independent of the form of the wave. It
is obtained from (4.40). As with sound waves, there is no dispersion, and
thus c∗ = c. Long waves in shallow water progress with velocity c =

√
g · h

(fundamental wave velocity).
When several low surges follow one another, with each one leading to a

further increase in the water level, because of the greater water depth, the
velocity

√
g · h of the subsequent surge is larger than that of the previous

surge. What is of more importance is that the subsequent surge moves in a
water mass that is already in motion with velocity w. Therefore the subse-
quent surge overtakes the previous one, and a surge with a large amplitude
occurs. This approach can also be applied to the form of a single surge. For
example, the surge with the form shown in Figure 4.43 can be taken as a
series of very many small surges that fill up the interval b. From the above
consideration it follows that the interval b becomes smaller and smaller until
a steep step occurs. This can also be seen in nature: For waves in shallow
water, the crests of the waves move faster than the troughs of the waves, and
they collapse on top of each other (breakers).

Surges of finite height can also be treated in a similar manner using the
conservation of momentum, as in the example of the flow with sudden ex-
pansion in Section 4.1.7. The flow is then considered from a reference frame
moving with the surge, so that the process is steady. The velocity of the
finitely high surge is larger than that of the fundamental wave. Here, too,
there is a loss in kinetic energy, equivalent to the foaming of a collapsing
water mass.



106 4. Dynamics of Fluid Flow

Open Channel

When water flows in a river, the velocity of the surge and fundamental waves
are apparent in a similar manner to the velocity of sound in gas flows (com-
pare Sections 4.3.1 and 4.3.3). If the flow velocity is smaller than the velocity
of surge, banking up the water in the river (e.g. by means of a weir) leads to
an increase in the water level upstream. If the flow velocity is greater than
the fundamental wave velocity, a finitely high steady surge occurs in front of
the weir or at the weir, a so-called water jump. Upstream from this surge,
the water flow is completely unaffected by the banking. Unevenness at the
sides of the channel generates small oblique waves that are very similar to the
oblique sound waves discussed in Section 4.3.3. The two types of motion in
a water channel with flow velocities larger or smaller than the fundamental
wave velocity are called streaming and shooting.

For a given volume flux V̇ per unit width, we compute the water depth
in Figure 4.44, and obtain the drop in water level from the level at rest from
the Bernoulli equation as h = w2/(2 · g). The local water depth necessary
for a volume flux V̇ per unit width follows from continuity as a = V̇ /w. The
distance to the associated channel point below the water level at rest is

z = h+ a =
w2

2 · g +
V̇

w
.

For a certain value of the velocity w, z is a minimum. A similar result is
found for the stream filament cross-section of a gas flow (cf. Section 4.3.1).
This minimum is found by differentiating the equation with respect to the
velocity:

w1

g
− V̇

w2
1

= 0, i.e. w1 =
3

√
V̇ · g.

We obtain

h1 =
1

2
· 3

√
V̇ 2

g
and a1 =

3

√
V̇ 2

g
= 2 · h1.

Therefore, w1 =
√
g · a1; i.e. w1 is equal to the surge velocity at the water

depth a1. If water flows over a flat weir crest, the water depth a1 above the
highest point of the crest of the weir is equal to 2/3 the depth z1 of the weir
crest below the surface of the water. The velocity there is

√
2 · g · z1/3. The

volume flux is found to be

Fig. 4.44. Flow over the crest of a weir
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V̇ = a1 · w1 =
2

3
· z1 ·

√
2

3
· g · z1. (4.41)

The water shoots downstream from the crest of the weir. This generally passes
over to streaming motion again via a water jump.

For strongly curved weirs we can no longer assume that the flow velocity is
the same in the entire cross-section. However, the qualitative relations remain
valid.

These equations derived for open channels can also be used in a much
more extensive application. For a slightly tilted but otherwise arbitrary chan-
nel floor (Figure 4.45), and taking a family of heights of the water surface
(dashed-dotted lines), we can sketch the water depths a (two each for each
position and each water level) associated with a fixed value of the volume
flux V̇ . This yields the given forms of the water surface. Only the line pass-
ing through the double point from I to IV, which corresponds to the lowest
possible water level at rest, yields the flow shown in Figure 4.44. The lines
associated with the higher water levels, those passing from I to II and from
III to IV, also occur in practice. The dashed curves shown in Figure 4.45,
associated with lower water levels at rest, can occur behind a water jump as
they move upward. This is associated with a loss in energy.

In the left-hand picture in Figure 4.45, the velocity is smaller than the
expansion velocity of the fundamental wave. At the peak of the rise in the
ground, there is a drop in the water level. In the middle picture the velocity
is greater than the fundamental wave velocity. The water surface then rises
more than the rise in the ground. In the case of a water jump (right-hand
picture), the flow velocity from the crest of the weir to the water jump is larger
and then subsequently smaller than that of the associated fundamental wave.
As changes in the flow state can progress only with the fundamental wave

Fig. 4.45. Further examples of the flow over the crest of a weir



108 4. Dynamics of Fluid Flow

velocity, the shooting flow between the weir crest and the water jump cannot
be changed by a rise in the water level, and a sudden transition occurs.

In the above discussions, the effect of vertical acceleration was ignored.
In shooting flow, taking the vertical acceleration into account leads only to
slight quantitative corrections. However, in the streaming motion the char-
acter changes as standing waves occur downstream from the perturbation
position. The wavelength satisfies (4.34), where the local flow velocity re-
places the translational velocity c.
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4.1.9 Problems

4.1

A U-tube manometer filled with
water is connected to a wind tun-
nel nozzle with contraction ra-
tio A1/A2 = 4 in front of the con-
traction. When in operation, the
manometer indicates a height differ-
ence of h = 94 mm. What is the exit
velocity w2 at the cross-section A2 if
the density of water in the U-tube is
ρw = 1000 kg/m3 and the density of
air is ρa = 1.226 kg/m3?

w2 =

√√√√√2 · ρw

ρa
· g · h(

1 −
(

A2

A1

)2
) = 40 m/s.

4.2

A large container is filled to heightH
with water. A long diffusor of length
l is attached to the container. The
diameter of the diffusor entry cross-
section is d, and that of its exit cross-
section is D. At time t = 0 the diffu-
sor is closed at the exit point 2. For
t > 0 the diffusor is suddenly opened
at position 2 so that the water can
flow out.

(a) Compute the steady exit velocity w2,e at position 2, which is w2(t) for
t→ ∞.

w2,e =
√

2 · g ·H.
(b) Calculate the exit velocity w2(t) for t > 0.

w2(t)

w2,e
= tanh

(
d

D
· t
τ

)
, τ =

2 · l
w2,e

.



110 4. Dynamics of Fluid Flow

4.3

Pressure measurements are carried
out in a tornado. In the center of
the tornado at position r0 a pressure
p0 = 0.8 bar is measured. At another
point 1 at a distance r1 = 50 m from
the center, a pressure p1 = 0.85 bar
is measured. The pressure a large
distance away from the tornado is
p∞ = 1 bar.
(a) What is the maximum circumfer-
ential velocity wmax occurring in the
tornado and how large is the pres-
sure pm at this point? The flow is
incompressible, the streamlines are
concentric circles, and the external
flow in the tornado is inviscid.

At the center of the vortex there is a viscous rigid body rotation with constant
angular velocity. Gravity is not to be taken into account.

wmax =

√
p∞ − p0

ρ
= 127.7 m/s, pm =

p∞ + p0

2
= 0.9 bar.

(b) At what distance rm from the center of the tornado does the maximum
circumferential velocity wmax occur?

rm = r1 ·
√

p∞ − p0

2 · (p1 − p0)
= 70.7 m.

4.4

A two-dimensional flow field is described by the velocity components
u = U · y

L , v = U · x
L , where U and L are constants, U having the dimensions

of velocity and L the dimensions of length.
Investigate whether the given flow field is a potential flow and determine

the associated potential function Φ. What is the stream function Ψ for the
given flow field?

Φ(x, y) = U · x · y
L

, Ψ(x, y) =
U

2 · L · (y2 − x2).
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4.5

A section through a ridge of
height H , whose extension per-
pendicular to the plane of the
figure can be taken to be in-
finite, has the form of a two-
dimensional semibody in the x, y
plane. The flow past the ridge is
a potential flow and has velocity
U∞.

(a) What source strength Q must be chosen to mathematically reproduce the
flow?

Q = 2 ·H · U∞.

(b) In what region of the x, y plane must a glider with vertical descent velocity
vs (relative to the air) remain so that it does not drop in altitude?

x2
s +

(
ys −

Q

4 · π · vs

)2

=

(
Q

4 · π · vs

)2

.

(c) What is the highest position (xmax, ymax) at which the glider can use the
up-current of air without losing altitude?

xmax = 0, ymax =
Q

2 · π · vs
.

4.6

A model to describe the invis-
cid flow past the ridge of a roof
is obtained by superimposing a
flow with velocity U∞ (U∞ =
120 km/s) past a circular cylin-
der of radius R on the flow of a
potential vortex. The radius R of
the roof ridge is R = 7.5 cm; the
ridge angle α is α = 120◦.

(a) What circulation Γ of the potential vortex must be chosen to correctly
model the inviscid flow past the ridge?
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Γ = 2 · π · U∞ · R.
(b) What is the force FA acting on the ridge if the pressure of the flow below
the ridge is p∞ and the ridge has length b = 1 m (b perpendicular to the
plane of the figure)? The density ρ of the flow is ρ = 1.226 kg/m3.

FA =

(√
3 +

4

3
· π
)
· ρ · U2

∞ ·R · b = 604.9 N.

4.7

A two-dimensional water jet with
density ρ = 1000 kg/m3 exits
with velocity w = 20 m/s from a
rectangular nozzle of height H =
25 mm and width b = 20 mm. It
is deviated by a guide plate by
α = 135◦. What is the force F
that the water jet applies to the
guide plate?

F = −
(

1 +

√
2

2

)
· ρ · w2 · h · b

= 341.42 N.
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4.8

The sketch shows an elbow bend
with constant cross-section A1 fit-
ted to a pipe at position 1 by
means of a flanged joint. At posi-
tion 2, water with density ρ exits
the pipe with velocity w into the
open air. What is the moment M
acting on the flanged joint?

M = ρ · l · w2 ·A1.

4.9

A characteristic of the linear theory of wave motion is that waves with the
same amplitude but opposite directions of propagation produce a standing
wave. Determine the velocity potential of the standing surface wave in a deep
body of water, where the vertical extension of the free surface can be written
as

h(x, t) = A · ei·ω·t · cos(a · x).
Show that the streamlines of the motion assume the following form:

ea·z · sin(a · x) = const.
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4.2 Dynamics of Viscous Liquids

4.2.1 Viscosity (Inner Friction), the Navier–Stokes Equation

All liquids and gases have a viscosity. This is expressed as an internal friction
when the shape of the fluid is changed. Particularly viscous liquids are honey,
glycerin, and thick oils. In order to understand viscosity, we consider the flow
between two parallel plates, where the upper plate moves with velocity U
while the lower plate remains at rest (Figure 4.46). Because of the friction,
the liquid at the plates has the same velocity as the plates themselves (no-slip
condition). The layers between the plates glide over each other with velocities
u(y) that are proportional to the distance y from the lower plate:

u = U · y
a
.

The liquid friction is expressed as a force that causes a resistance to the
motion of the upper plate and has magnitude τ = µ · U/a per unit surface
area. In general, for the shear stress we have

τ = µ · du

dy
, (4.42)

where µ indicates the dynamic viscosity. The ansatz (4.42) is valid for New-
tonian media.

With this knowledge we can already treat some examples of laminar flows.
One of these is the flow of a viscous liquid in a straight pipe with a circular
cross-section. The pressure difference p1 − p2 causes the force (p1 − p2) ·π · r2
on a cylindrical liquid element of radius r (Figure 4.47). The countervailing
force is produced by the friction on the surface shell 2 · π · r · l. This is τ per
unit area and yields in total 2 ·π · r · l · τ . Setting both forces equal, we obtain

−τ =
p1 − p2

l
· r
2
, (4.43)

where τ has been given a minus sign because the frictional force acts to
oppose the flow. Equation (4.42) yields du/dr = τ/µ. Integrating this and
using the no-slip condition, we obtain

u(r) =
p1 − p2

4 · µ · l · (R
2 − r2), (4.44)

Fig. 4.46. Shear flow between parallel
plates
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Fig. 4.47. Laminar pipe flow

with the radius of the pipe R. The velocity distribution is a paraboloid of
revolution (cf. Figure 4.53). The volume per unit time flowing through the
pipe is found to be

Q =

R∫

0

u · 2 · π · r · dr =
π · R4

8 · µ · p1 − p2

l
. (4.45)

If the amount flowing through the pipe is measured, this equation allows us
to determine the dynamic viscosity µ precisely. The flux is proportional to
the pressure drop per unit length and the fourth power of the pipe’s radius.
G. H. L. Hagen (1839) and J. L. M. Poiseuille (1840) both obtained (4.45)
by experiment independently of each other, and for this reason it is called the
Hagen–Poiseuille law. We note here that the Hagen–Poiseuille law is valid
only for laminar pipe flow. The law for turbulent pipe flow will be found in
Section 4.2.5.

Navier–Stokes Equation

The general theory of liquid friction tells us that when the shape of a single
liquid element is changed, stresses arise that are similar to those of elastic
bodies. The difference lies in the fact that these stresses are not proportional
to the changes of shape, but rather to the velocities of the changes of shape.
The equations for the nine stress components (three each on the three surfaces
perpendicular to the coordinate axes (Figure 4.48)) therefore read

Fig. 4.48. Normal and shear stress at
volume element dV = dx · dy · dz
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σxx = 2 · µ · ∂u
∂x
, τxy = τyx = µ ·

(
∂u

∂y
+
∂v

∂x

)
,

σyy = 2 · µ · ∂v
∂y
, τyz = τzy = µ ·

(
∂v

∂z
+
∂w

∂y

)
, (4.46)

σzz = 2 · µ · ∂w
∂z

, τzx = τxz = µ ·
(
∂w

∂x
+
∂u

∂z

)
.

Forces per volume arise with the components f ′
x, f

′
y, f

′
z. The component f ′

x

satisfies

f ′

x =
∂σxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
. (4.47)

Similar equations are obtained for f ′
y and f ′

z. With (4.46), for Newtonian
media and constant values µ and ρ, and using the continuity equation for
incompressible flow (Section 5.1)

∂u

∂x
+
∂u

∂y
+
∂u

∂z
= 0, (4.48)

(4.47) yields

f ′

x = µ ·
(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
.

Analogous expressions hold for f ′
y and f ′

z.
In viscous liquids, the frictional forces f ′ per volume occur in addition to

the pressure forces of inviscid flow discussed in the previous section, and in
addition to any mass forces f present. These forces determine the acceleration
of the liquid particle. By taking into account the frictional forces on the right-
hand side of the Euler equations, we obtain the Navier–Stokes equations
of viscous flow. Employing the ∆-operator ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, the
Navier–Stokes equations for incompressible flow read (Section 5.2.1)

ρ · du

dt
= fx − ∂p

∂x
+ µ ·∆u ,

ρ · dv

dt
= fy − ∂p

∂y
+ µ ·∆v , (4.49)

ρ · dw

dt
= fz −

∂p

∂z
+ µ ·∆w .

Here du/dt, for example, means

∂u

∂t
+ u · ∂u

∂x
+ v · ∂u

∂y
+ w · ∂u

∂z
.

For a flow in which the u component predominates and that changes most
in µ · (∂2u/∂y2) in the y direction, τxy = µ · ∂u/∂y is the dominant stress.
Therefore, the term µ · (∂2u/∂y2) of the frictional force f ′

x will predominate.
This, then, interacts with the pressure gradient −∂p/∂x, the inertial force
−ρ · (∂u/∂t), and, if present, the mass force f per volume.
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Non-Newtonian Fluids

The Navier–Stokes equations derived above are valid for Newtonian fluids.
These differ from non-Newtonian fluids such as liquid tar, magma, plastic
melts, polymer solutions, and suspensions like blood. In non-Newtonian fluids
the frictional stresses acting on the fluid element can be dependent on both
the instantaneous state of motion and the motion of the fluid in the past.
The fluid can therefore have a memory.

In order to characterize the flowing properties of the fluid, e.g. for the
shear flow of Figure 4.46, the shear stress τxy is plotted as a function of
the shear velocity du/dy. Some examples of Newtonian and non-Newtonian
fluids are shown in Figure 4.49. To contrast with Newtonian fluids, we speak
of non-Newtonian fluids when the functional relation (4.42) is nonlinear. The
curves for fluids that cannot resist a shear rate pass through the origin. For
so-called yielding fluids, a finite shear stress occurs even when the velocity
gradient vanishes. These fluids behave partly as solid bodies and partly as
fluids. The curve for pseudoplastic fluids such as melts or high polymers have
a reduction in the slope as the shear stress grows. In contrast, dilatant fluids
such as suspensions indicate an increase in the slope with increasing shear
stress. The behavior of an idealized Bingham medium occurs for toothpaste
or mortar. The finite value of τxy at du/dy = 0 follows the linear course
of a Newtonian fluid. In addition, some non-Newtonian fluids show a time
dependence of the shear stress. Even if the shear rate is kept constant, the
shear stress changes. A frequently used ansatz for non-Newtonian media is

τxy = K ·
∣∣∣∣
du

dy

∣∣∣∣
n

, (4.50)

where K and n are material constants. For n < 1 we have the pseudoplastic
fluid, n = 1 with K = µ is the Newtonian fluid, and n > 1 is the dilatant
fluid. Note that ansatz (4.50) yields unrealistic values for the origin of Figure
4.49.

Fig. 4.49. Shear stress τ for Newtonian
and non-Newtonian fluids
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Numerous other laws have been derived for non-Newtonian fluids, mostly
from experimental results. Selected flow examples are presented in Section
4.2.11. In what now follows we assume that the fluid at hand is Newtonian.

4.2.2 Mechanical Similarity, Reynolds Number

The question arises of when flows will be geometrically similar for similar
geometries (geometrically similar channels, geometrically similar bodies in a
flow). This means that when the mass force is neglected, the ratios between
the pressure force, the frictional force, and the inertial force are the same in
both flows. Because the forces are in equilibrium, it suffices to consider one
ratio. We select the ratio of inertial force to frictional force. The different
geometrically similar flows are to be characterized by characteristic lengths
l1, l2 (e.g. diameter or length of a body, diameter of a pipe) and by charac-
teristic velocities u1, u2 (e.g. velocity of a body or mean velocity in a certain
pipe cross-section). The different densities and viscosities are denoted by ρ1

and ρ2, and µ1 and µ2, respectively. The x component of the inertial force
reads

−ρ · du

dt
= −ρ ·

(
u · ∂u

∂x
+ · · ·

)
.

For similar flows this behaves according to ρ1 · u2
1/l1 to ρ2 · u2

2/l2. At cor-
responding positions, the u values behave like the characteristic velocities
u1, u2. The lengths x and y behave like the characteristic lengths l1 and l2.
The frictional forces, on the other hand, behave according to the expression
µ · (∂2u/∂y2) like µ · u/l2, where ∂2u indicates a small velocity difference of
second order. It behaves like the velocity u. The quantity ∂y2 is the square
of a small length difference and behaves like l2.

The demand for mechanical similarity requires that ρ · u2/l and µ · u l2
be in a fixed ratio to one another:

ρ · u2

l
/
µ · u
l2

=
ρ · u · l
µ

.

Therefore, mechanical similarity of the two systems 1 and 2 is expected when

ρ1 · u1 · l1
µ1

=
ρ2 · u2 · l2

µ2
(4.51)

holds. The ratio of the inertial forces to the viscous forces is called the
Reynolds number. The ratio µ/ρ is called the kinematic viscosity and is de-
noted by ν.

The flow drag of a viscous liquid can be characterized by the value of its
Reynolds number Re = ρ · u · l/µ = u · l/ν. Small Reynolds numbers indicate
predominating frictional forces, and large Reynolds numbers predominating
inertial forces.

In the limit of very small Reynolds numbers the flow is called creeping
flow. For this case, an analytical solution of the Navier–Stokes equations
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(4.49) is known for the flow past a sphere. These flows are characterized by
the fact that the acceleration terms drop away, and only the pressure and
frictional forces are in equilibrium with each other, as in the case of very
viscous motor oils or in very small geometric dimensions.

The frictional forces at a volume element are proportional to µ · u/l2.
Because they are in equilibrium, the pressure forces obey the same rela-
tion, so that here geometrical similarity always implies mechanical similarity.
Comparable volumes behave like l3, so that the total drag forces must be
proportional to µ · u · l. The drag of a sphere flow is computed according to
the Stokes solution of the Navier–Stokes equations as

W = 6 · π · µ · u · R. (4.52)

In the case of small drops falling to earth, the drag is to be set equal to the
difference between weight and lift. Therefore, for drops with radius R and
density ρt in a surrounding fluid of density ρ, we have

6 · π · µ · u ·R =
4 · π

3
· (ρt − ρ) · g · R3.

This corresponds to a rate of fall of

u =
2

9
· (ρt − ρ)

µ
· g ·R2. (4.53)

This equation is valid for Reynolds numbers smaller than 1. For water
droplets in air we obtain u = 1.2 · 108 · R2, which is valid for droplets whose
radius is smaller than 10−2 mm, i.e. for fine mist.

4.2.3 Laminar Boundary Layers

In the limit of very large Reynolds numbers, the inertial force dominates. A
thin boundary layer forms on the surface of a body, and in this boundary
layer the velocity of the inviscid outer flow is decelerated to the value zero at
the wall (no-slip condition). The boundary layer is thinner, the smaller the
viscosity. In the boundary layer the frictional forces are of the same order of
magnitude as the inertial forces.

Fig. 4.50. Velocity distribution close
to the wall
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Figure 4.50 shows the velocity distribution in a boundary layer. If the
dimension of the body in the flow direction is of order of magnitude l and the
thickness of the boundary layer of order of magnitude δ, then the frictional
force on the volume element µ · (∂2u/∂y2) is of order of magnitude µ ·U∞/δ

2.
The inertial force is of order of magnitude ρ ·U2

∞/l. The order of magnitude
of both expressions is the same if

δ ∝
√

µ · l
ρ · U∞

. (4.54)

An estimate leading to the same result is also obtained by considering the
momentum for the boundary-layer flow along a flat plate. Let the length of
the plate be l, the width b, the velocity of the outer flow U∞, the thickness of
the boundary layer δ (Figure 4.51). The mass transported per second in the
boundary layer is proportional to ρ · b · δ · U∞. In the free stream this mass
has velocity U∞, while in the boundary layer it loses a certain amount of this
velocity. The corresponding momentum loss is computed from mass times
velocity loss and is proportional to ρ · b · δ ·U2

∞. The momentum loss must be
equal to the frictional force acting from the wall on the liquid. According to
(4.42), this frictional force is proportional to l·b·µ·U∞/δ. The proportionality
of these two expressions leads to

δ ∝
√

µ · l
ρ · U∞

=

√
ν · l
U∞

.

The ratio δ/l is therefore proportional to
√
ν/(U∞ · l). With U∞ · l/ν = Rel

and U∞ · δ/ν = Reδ we obtain δ/l ∝ 1/
√

Rel and Reδ ∝
√

Rel.
We can also introduce the time during which the individual liquid element

flows along the body. For elements that are not too close to the surface, this
time is of order of magnitude t ∝ l/U∞, so that

δ ∝
√
ν · t. (4.55)

This equation can also be applied to unsteady boundary-layer flows of bodies
suddenly set into motion. It shows that the boundary-layer thickness at the
start of motion increases in proportion to the square root of the time.

Fig. 4.51. Flow along a plate
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Local shear stresses at the wall cause a friction drag corresponding
to the flow in Figure 4.50. For the plate (Figure 4.51), the shear stress
τw = µ · (∂u/∂y)y=0 is of order of magnitude

τw ∝ µ · U∞

δ
∝
√
µ · ρ · U3

∞

l
.

If b is the width of the plate, then the total surface area is given by A = 2 ·b ·l.
Therefore, the drag is

W ∝ 2 · b · l · τw = K · b ·
√
µ · ρ · l · U3

∞, (4.56)

with the constant K.
Boundary-layer theory can be traced back to L. Prandtl (1904). In his

famous paper on the motion of liquids with very small friction, he presented
the mathematical basis of flows for very large Reynolds numbers. His stu-
dent H. Schlichting (1950) set out its application to almost all areas of fluid
mechanics in his book Boundary-Layer Theory.

In a boundary-layer flow, the pressure gradient perpendicular to the wall
may be neglected. Similarly, the velocity gradient along the wall is neglected
compared to the velocity gradient perpendicular to the wall. Of the terms on
the right-hand side of (4.49) only the term µ · (∂2u/∂y2) remains. This is of
the same order of magnitude as ρ · u · ∂u/∂x.

In a two-dimensional flow, small curvature in the boundary layer may also
be neglected. The x coordinate is set equal to the arc length of the streamline
along the wall. We obtain the Prandtl boundary-layer equation for the velocity
component in the x direction:

∂u

∂t
+ u · ∂u

∂x
+ v · ∂u

∂y
= −1

ρ
· dp

dx
+ ν · ∂

2u

∂y2
, (4.57)

∂u

∂x
+
∂v

∂y
= 0. (4.58)

Since the vertical pressure gradient may be neglected, the pressure p of the
outer flow is impressed on the boundary layer. This follows from (4.49) for
the velocity component in the y direction. At the wall with u = 0 and v = 0,
the left side of (4.57) vanishes. Therefore, we have

∂2u

∂y2

∣∣∣∣
y=0

=
1

µ
· ∂p
∂x
. (4.59)

If there is a pressure drop in the flow direction (∂p/∂x negative), the velocity
profile is convexly curved. On the other hand, if there is a pressure rise (∂p/∂x
positive) the velocity profile close to the wall is concave and thus has a turning
point. If the pressure increase is too large, a backflow can occur close to the
wall, and the boundary-layer flow separates. The separation point where the
boundary-layer flow leaves the wall is given by the condition (∂u/∂y)y=0 = 0.
Since the profile must have concave curvature for flow separation to occur,
the separation point lies in the pressure increase region.
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The boundary-layer thickness δ is introduced as the distance from the wall
where u = 0.99 · U∞. The displacement thickness δ1 of a boundary layer is
calculated from

δ1 =

∞∫

0

(
1 − u

U∞

)
· dy. (4.60)

This is the distance the external inviscid flow is displaced from the wall of
the body by the presence of the boundary layer. The momentum thickness

δ2 =

∞∫

0

u

U∞

· (1 − u

U∞

) · dy (4.61)

is a measure of the relative momentum loss of the fluid compared to the
inviscid flow.

4.2.4 Onset of Turbulence

Pipe Flow

In the flow of viscous liquids through long straight pipes, at higher velocities
and thus at larger Reynolds numbers the Hagen–Poiseuille law given in (4.45)
is replaced by another law. The pressure drop becomes considerably larger
and is approximately proportional to the second power of the flux. Simul-
taneously, velocity fluctuations are superimposed on the flow. In a laminar

Fig. 4.52. Laminar and turbulent pipe flow, O. Reynolds 1883
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flow a colored filament forms a straight line. At larger Reynolds numbers the
colored filament is torn apart, and downstream the color is spread uniformly
throughout the liquid. The linear motion is called laminar, and the swirled
motion is called turbulent.

This experiment was first performed by O. Reynolds (1883). Figure 4.52
shows the colored filament in laminar and turbulent pipe flow. The main mo-
tion of the flow takes place in the direction of the axis of the pipe. Because
of the flow fluctuations, a great amount of mixing occurs in the turbulent
flow, leading to a transverse motion perpendicular to the main motion. This
transverse motion causes an exchange of momentum in the transverse direc-
tion. For this reason, the velocity distribution across the diameter of the pipe
is much more uniform and full for turbulent flow than for laminar pipe flow
(see Figure 4.53).

In his experiments, O. Reynolds (1883) discovered that the transition
from laminar to turbulent flow always takes place at almost exactly the same
Reynolds number Red = um ·d/ν, where um = V̇ /A is the mean flow velocity
(d pipe diameter, V̇ volume flux, A pipe cross-sectional area). The numerical
value of the critical Reynolds number at which the transition occurs is

Recrit =

(
um · d
ν

)

crit

= 2300. (4.62)

Therefore, pipe flows whose Reynolds number is Re < Recrit are laminar,
and those for which Re > Recrit are turbulent. The numerical value of the
critical Reynolds number depends greatly on the pipe intake and the incom-
ing flow. O. Reynolds (1883) already suspected that the critical Reynolds
number will be larger if the disturbances in the incoming flow are smaller.
This was confirmed experimentally. Values of Recrit up to 40 000 were able
to be measured. On the other hand, a lower limit to the critical Reynolds
number of about 2000 was measured. Below this Reynolds number the flow
remains laminar, even for very strong disturbances. We now know from re-
sults from stability theory that the laminar–turbulent transition is caused
by three-dimensional disturbances. Pipe flow is stable with respect to two-
dimensional disturbances.

Associated with the laminar–turbulent transition is also a change in the
pipe drag law. Whereas for laminar flow the pressure drop is proportional to
the first power of the mean flux velocity um, for turbulent flows this pressure

Fig. 4.53. Velocity distributions of laminar and turbulent pipe flow
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drop is almost proportional to the square of the mean flux velocity. This large
flux drag is due to the turbulent mixing motion.

The laminar–turbulent transition is a stability problem. The laminar flow
is influenced by small perturbations, which, in the case of pipe flow, can be
caused by the intake. At small Reynolds numbers, i.e. at large enough values
of ν, the damping action of the viscosity is large enough to permit these per-
turbations to die away again. It is only at large enough Reynolds numbers
that the damping does not suffice, so that the perturbations are amplified
and finally the transition to the turbulent flow form is started. In the next
section we will see that, first of all, two-dimensional perturbations occur in
two-dimensional boundary layers, to be followed by three-dimensional per-
turbations later on in the transition.

As already mentioned, stability theory investigations of the parabolic ve-
locity profile of the pipe flow show that this is stable with respect to two-
dimensional perturbations. In contrast to the boundary-layer flows treated in
the following section, the laminar–turbulent transition in pipe flows begins
with three-dimensional perturbations.

Reynolds Ansatz

The mathematical description of turbulent flows can be derived from the
experimental results in Figure 4.52. The flow quantities, such as the u com-
ponent of the velocity, can be written down as a superposition of the time-
averaged velocities u(x, y, z) and the additional fluctuations u′(x, y, z, t).

From Figure 4.54, the Reynolds ansatz for turbulent flows can be written
as

u(x, y, z, t) = u(x, y, z) + u′(x, y, z, t). (4.63)

With the velocity component u taken as an example, the definition of the
time average at a fixed position reads

u =
1

T
·

T∫

0

u(x, y, z, t) · dt. (4.64)

Fig. 4.54. Reynolds ansatz for the x
component of the velocity u
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The time T is a suitably large time interval with the condition that an in-
crease in T leads to no further change in the time-averaged value u. From
the definition of the time average we can determine that the time-averaged
values of the fluctuation quantities must vanish:

u′ = 0, v′ = 0, w′ = 0. (4.65)

Boundary-Layer Flow

The appearance of turbulence is not restricted to flows in pipes and chan-
nels. It is also seen in boundary layers. The Reynolds number U∞ ·δ/ν is now
formed with the boundary-layer thickness δ and the velocity U∞ outside the
boundary layer. For bodies in a flow, the boundary-layer thickness close to
the stagnation line is very thin. The flow is initially laminar and becomes
turbulent downstream, as a critical Reynolds number is exceeded. The thick-
ness of the laminar boundary layer on the plate increases with

√
x, where x

is the distance from the leading edge. The critical Reynolds number of the
plate boundary layer is

Recrit =

(
U∞ · x
ν

)

crit

= 5 · 105. (4.66)

In the case of a plate in a longitudinal flow, as in the case of pipe flow, the
critical Reynolds number can also be raised when the incoming flow is less
perturbed (lower intensity of turbulence).

The experimental results of the investigations into the laminar–turbulent
transition in the boundary layer are summarized in Figure 4.55. The lam-
inar boundary-layer flow is superimposed with two-dimensional perturbing
waves at a critical Reynolds number Recrit. These waves are called Tollmien–
Schlichting waves. Further downstream, three-dimensional perturbations are
imposed on the flow. This leads to characteristic Λ-vortex formation with

Fig. 4.55. Sketch of the laminar–turbulent transition in the boundary layer of a
flat plate in a longitudinal flow
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local shear layers in the boundary layer. The decay of the Λ-vortices causes
turbulent spots, which begin the transition to a turbulent boundary-layer flow.
At Ret the transition process is completed, and downstream from this point
the boundary layer is turbulent.

As can be seen in Figure 4.55, the boundary-layer thickness grows greatly
at the laminar–turbulent transition.

Stability Theory

The onset of the laminar–turbulent transition can be treated with stability
theory. The attempts to do this began in the nineteenth century and even-
tually led to success in 1930. The theoretical investigations are based on the
idea that small perturbations are present in the laminar flow. In the case of a
pipe flow this can be due to the intake, whereas for boundary layers of bodies
in a flow they can be caused by roughness of the wall or by perturbations in
the outer flow. The theory follows the behavior in time of such perturbations
superimposed on the laminar flow, whose shapes in each case must still be
determined more precisely. The decisive question is whether the perturbation
motion dies away or is amplified. If the perturbations die away in time, the
basic flow is said to be stable. If the perturbations grow in time, the basic
flow is unstable; i.e. the transition to turbulent flow is possible.

In this manner a stability theory of laminar flow can be developed, whose
aim is to calculate theoretically the critical Reynolds number for a given
laminar flow (see Section 6.2). In this stability investigation, the motion is
decomposed into the basic flow whose stability is to be investigated and the
superimposed perturbation motion. The basic flow, which can be taken to
be steady, will now be denoted by the velocity components U0, V0,W0 and
the pressure P0. This basic flow is a solution of the Navier–Stokes equa-
tions (4.49). The time-varying perturbation motion has associated quantities
u′, v′, w′, and p′. The resulting flow is obtained with the perturbation ansatz

u = U0 + u′, v = V0 + v′, w = W0 + w′, p = P0 + p′. (4.67)

In most cases it is assumed that the perturbation quantities are small com-
pared to the values of the basic flow.

For a two-dimensional incompressible basic flow (U0 and V0) and a two-
dimensional perturbation (u′ and v′), the flow resulting from (4.67) satisfies
the two-dimensional Navier–Stokes equations. The basic flow U0(y) is cho-
sen to be particularly simple, so that U0 depends only on y. The velocity
component V0 vanishes. The boundary-layer flow approximately satisfies this
condition, since the dependence of the basic flow U0 on the longitudinal co-
ordinate x is much smaller than on the transverse coordinate y. This is called
the parallel flow assumption. For the pressure of the basic flow P0(x, y), the
dependence on x also has to be taken into account, since it is the pressure
drop ∂P0/∂x that produces the flow. Therefore, the basic flow at hand has
the form
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U0(y), V0 = 0, P0(x, y). (4.68)

Onto this basic flow is superimposed a two-dimensional perturbation mo-
tion (Figure 4.56), which is also dependent on time. The associated velocity
components and the pressure are

u′(x, y, t), v′(x, y, t), p′(x, y, t). (4.69)

From (4.67) we obtain the resulting flow as

u = U0 + u′, v = v′, p = P0 + p′. (4.70)

The basic flow (4.68) is a solution of the Navier–Stokes equations by assump-
tion. The resulting flow (4.70) also has to satisfy the Navier–Stokes equations.
The superimposed perturbation motion (4.69) is assumed to be small; i.e. all
square terms of the perturbation motion are neglected compared to the lin-
ear terms. The aim of the stability investigation is to determine whether the
perturbation motion dies away or is amplified for a given basic flow, in which
case the basic flow is called stable or unstable.

Inserting (4.70) into the Navier–Stokes equations, and neglecting square
terms in the perturbation velocities, we obtain

∂u′

∂t
+ U0 ·

∂u′

∂x
+ v′ · dU0

dy
+

1

ρ
· ∂P0

∂x
+

1

ρ
· ∂p

′

∂x
= ν ·

(
d2U0

dy2
+∆u′

)
,

∂v′

∂t
+ U0 ·

∂v′

∂x
+

1

ρ
· ∂P0

∂y
+

1

ρ
· ∂p

′

∂y
= ν ·∆v′,

∂u′

∂x
+
∂v′

∂y
= 0.

Here ∆ is the Laplace operator ∂2/∂x2 + ∂2/∂y2.
Note that the basic flow satisfies the Navier–Stokes equations (approx-

imately, in the case of the boundary layer), and so this equation simplifies
to

Fig. 4.56. Basic flow U0(y) and pertur-
bation wave v′(x, y) of the plate bound-
ary layer
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∂u′

∂t
+ U0 ·

∂u′

∂x
+ v′ · dU0

dy
+

1

ρ
· ∂p

′

∂x
= ν ·∆u′,

∂v′

∂t
+ U0 ·

∂v′

∂x
+

1

ρ
· ∂p

′

∂y
= ν ·∆v′, (4.71)

∂u′

∂x
+
∂v′

∂y
= 0.

These are three equations for u′, v′, and p′. The associated boundary condi-
tions require that the perturbation velocities u′ and v′ vanish at the bounding
walls (no-slip condition) and at infinity. The pressure p′ may be eliminated
from (4.71), so that together with the continuity equation, we obtain two
equations for u′ and v′.

In order to describe the components of the perturbation velocities for the
Tollmien–Schlichting waves we use the wave ansatz

u′ = û(y) · exp (i · a · x− i · ω · t), v′ = v̂(y) · exp (i · a · x− i · ω · t), (4.72)

with the wave number a, the angular frequency ω, and the amplitude func-
tions û, v̂ of the perturbation waves. For the time-amplified stability problem
at hand, ω is complex:

ω = ωr + i · ωi,

with the real part of the angular frequency ωr and the rate of amplification
in time ωi. If ωi < 0, the perturbation wave is damped, and the laminar
boundary-layer flow is stable. With ωi > 0 the boundary layer is unstable, and
the Tollmien–Schlichting waves are amplified in time. It is useful, in addition
to a and ω, to introduce the phase velocity of the perturbation wave:

c =
ω

a
= cr + i · ci.

Inserting the wave ansatz (4.72) into the perturbation differential equation
for u′ and v′, we obtain, for example, the Orr–Sommerfeld equation for the
amplitude function v̂(y):

(a · U0 − ω) · d2v̂

dy2
+ a ·

(
a · ω − a2 · U0 −

d2U0

dy2

)
· v̂

+ i · 1

Red
·
(

d4v̂

dy4
− 2 · a2 · d2v̂

dy2
+ a4 · v̂

)
= 0. (4.73)

Quantities made dimensionless with the characteristic velocity at the edge
of the boundary layer Uδ, the characteristic length d =

√
ν · x/Uδ and the

characteristic time d/Uδ are introduced. The Orr–Sommerfeld equation is a
fourth-order ordinary differential equation that with the boundary conditions
at the wall and in the unperturbed free stream
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y = yw : v̂ = 0,
dv̂

dy
= 0,

(4.74)

y → ∞ : v̂ = 0,
dv̂

dy
= 0,

is an eigenvalue problem with the Reynolds number Red as parameter. This
is generally solved numerically with spectral methods. The solutions of the
eigenvalue problem are presented in the form of stability diagrams (Figure
4.2.4). The stability diagram is produced by plotting the wave number a
against the Reynolds number Red. The pairs of values (Red, a) associated
with the roots of the imaginary part of the complex eigenvalue ω are drawn
in the diagram. This neutral curve divides the stable perturbations from the
unstable perturbations. It is also called the indifference curve, since in the
case ωi = 0, the perturbation amplitudes retain their original value. In the
region inside the indifference curve ωi > 0 holds; i.e. the flow is unstable. In
the region outside the indifference curve ωi assumes negative values, and the
basic flow under investigation is stable at the Reynolds number at hand to
perturbations with the associated wave number a.

Thus a critical Reynolds number Recrit can be determined, above which
a given laminar flow becomes unstable. A tangent to the indifference curve is
drawn in Figure 4.57 parallel to the a axis. The point of intersection of this
tangent with the abscissa yields the value of the critical Reynolds number
Recrit. For a Blasius boundary layer, the critical Reynolds number formed
with the length along the plate is

Recrit =

(
Uδ · x
ν

)

crit

= 5 · 105. (4.75)

With the critical Reynolds number Recrit = 5 · 105, Figure 4.57 yields the
critical wave number acrit = 2·π/λcrit, with which the critical wavelength λcrit

of the perturbations at hand can be calculated. This means physically that the
laminar basic flow is stable with respect to perturbations of any wavelength
for Reynolds numbers smaller than Recrit, since in this Reynolds number
regime ωi < 0 holds for all wave numbers. Forming the critical Reynolds

Fig. 4.57. Stability diagram of the
plate boundary layer
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number with the characteristic length d =
√
ν · x/Uδ, we obtain the value

Recrit =
Uδ · d
ν

= 302. (4.76)

This value also makes sense for comparisons with the instability of compress-
ible boundary layers. The onset of Tollmien–Schlichting waves in a compress-
ible boundary-layer flow at an adiabatic wall also yields Recrit = 302. It is
only for isothermal boundaries that differences occur.

Laminar–Turbulent Transition Control

H. Schlichting (1968) presented a summary of how to influence the laminar–
turbulent transition in two-dimensional boundary-layer flow. Certain mea-
sures can be taken to shift the transition downstream. This leads to a reduc-
tion in the drag. The laminar–turbulent transition can be influenced using
moving surfaces, acceleration of the boundary layer by blowing or by a pres-
sure gradient, suction of the boundary layer, and cooling of the surface. In
what follows we investigate the effect of the pressure gradient that occurs on
a wing profile on acceleration.

Whereas in the flow past a plate, similar velocity profiles form at different
distances from the leading edge of the plate, the pressure gradient ∂p/∂x
along the wing profile causes different laminar boundary-layer profiles. In the
region where the pressure decreases, ∂p/∂x < 0, the velocity profiles have no
turning point, and in the region of increasing pressure, ∂p/∂x > 0, velocity
profiles with a turning point are found. Whereas all velocity profiles on a plate
in a longitudinal flow have the same critical Reynolds number Recrit = 302,
the limit of stability for each boundary-layer profile on a wing is different.
In the region of decreasing pressure the critical Reynolds numbers Recrit are

Fig. 4.58. Stability diagram for lami-
nar boundary-layer profiles for pressure
decrease Λ > 0 and pressure increase
Λ < 0
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larger than those of the flow past a plate, while they are smaller in the region
of increasing pressure.

The pressure gradient on the wing profile can be described using the form
parameter Λ:

Λ = − δ2

µ · Uδ
· ∂pδ

∂x
=
δ2

ν
· ∂Uδ

∂x
,

with the boundary-layer thickness δ and the velocity at the edge of the bound-
ary layer Uδ. The form parameter Λ takes on values between Λ = +12 and
Λ = −12, where the laminar boundary-layer flow separates for Λ = −12.

At the front stagnation point of the profile Λ = 7.05 and at the pressure
minimum Λ = 0, Λ > 0 means a decrease in the pressure, and Λ < 0 a pressure
increase. The velocity profiles for Λ < 0 have a turning point. Figure 4.58
shows the stability diagram of laminar boundary-layer profiles with pressure
decrease and increase. For the velocity profile in the region of decreasing
pressure Λ > 0, both branches of the indifference curve tend to zero for
Red → ∞, as well as for the plate boundary layer with Λ = 0. On the other
hand, for the velocity profile in the region of increasing pressure, Λ < 0, the
upper branch of the indifference curve has a nonzero asymptote, so that a
finite wavelength regime of amplified perturbations is present even for Red →
∞. It can be seen that for boundary layers in the pressure increase region
the unstable region of perturbation wavelengths enclosed by the indifference
curve is much larger than in the region of decreasing pressure.

Fig. 4.59. Propagation of a turbulent
perturbation
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Propagation of Turbulent Perturbations

Up until now we have treated the onset of the laminar–turbulent transition
using stability theory. In what follows, perturbations in the transition region
will be considered, as have already been introduced in Figure 4.55 as turbulent
spots.

Figure 4.59 shows the propagation of local turbulent perturbations in the
transition regime of the laminar–turbulent transition on the plate boundary
layer. The time sequence of the turbulent perturbation propagation shows
that turbulence generated from a perturbation propagates further down-
stream of its own accord. The perturbation was introduced into the boundary
layer by momentarily sucking some fluid out of the boundary layer. The cam-
era traveled with the perturbation, so that the same group of vortices could
be observed at all times. Spatially, new vortices keep forming downstream,
until eventually the turbulent boundary-layer flow is fully developed. There
is as yet no theory of the propagation process of turbulent perturbations, just
as there is as yet no exact theory of the fully developed turbulent state (see
Chapter 6).

4.2.5 Fully Developed Turbulence

Many technical flows are turbulent. According to the Reynolds ansatz (4.63),
this means that the time-average primary motion is overlaid with turbulent
fluctuations. By way of illustration, Figure 4.60 shows some shots of turbulent
flow in a water channel.

velocity of the moving camera

12 cm/s

20 cm/s

25 cm/s

28 cm/s

Fig. 4.60. Turbulent flow in a water channel, moving camera. Shots taken by
J. Nikuradse (1929), published by W. Tollmien (1931)
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One and the same flow portrait was taken at the same flux velocity and
at different camera velocities. In the four pictures it can be seen whether the
longitudinal velocity of the flow is larger or smaller than that of the camera.
When the camera velocity is smaller, the turbulence structure at the wall can
be seen. At larger camera velocities the turbulence structures within the flow
become visible. We can see the positions at which the longitudinal velocity
of the flow instantaneously coincides with the camera motion.

The longitudinal and transverse momentum exchange of turbulent flow
shown in the figure causes a turbulent mixing motion that is essentially re-
sponsible for the larger drag of the turbulent flow.

Prandtl Mixing Length

The velocity fluctuations cause apparent stresses, e.g. the turbulent shear
stress τ ′ = −ρ · u′ · v′. This must be related to the distribution of the mean
velocities, and to do this, the so-called Prandtl mixing length is essential.
This is the path on which a fluid element loses its individuality by turbulent
mixing with the surrounding liquid.

In Figure 4.61 a liquid element in the boundary layer under considera-
tion is displaced from position y with mean velocity u(y) by distance l. The
velocity difference from the velocity at the new position is u(y + l) − u(y).
To first approximation, this can be written as l · (∂u/∂y). This value is of
the order of magnitude of the fluctuation u′. The size of v′ is obtained using
the assumption that two fluid elements that enter the layer under considera-
tion from different sides approach each other or move away from each other
with relative velocity 2 · l · (∂u/∂y). For reasons of continuity, the transverse
velocity is of the same order of magnitude. Therefore, v′ also has order of
magnitude l · (∂u/∂y). In forming the average u′ · v′ we must pay attention
to the signs of the u and v components. Negative u′ are associated with
positive v′, and positive u′ with negative v′. The product u′ · v′ is therefore
always negative. The apparent shear stress becomes positive and is of order
of magnitude ρ · (l · (∂u/∂y))2.

Fig. 4.61. Prandtl mixing length



134 4. Dynamics of Fluid Flow

For the turbulent shear stress τ ′ we obtain

τ ′ = ρ · l2 ·
∣∣∣∣
∂u

∂y

∣∣∣∣ ·
∂u

∂y
. (4.77)

It follows from (4.77) that the apparent stresses of the turbulent mixing
motion vary in proportion to the square of the velocity. In fact, all hydraulic
drags demonstrate essentially this behavior. The length l, called the Prandtl
mixing length, has a certain similarity to the mean free path of kinetic gas
theory. There the momentum transport due to molecular motion is considered
in a similar manner to the momentum transport of fluid elements in the case
of turbulent flow. The mixing length l of the turbulent motion is in general
dependent on the position. There is as yet no general theory to predict its
size in each case. However, suitable assumptions can be found for a number of
individual cases, which then lead to well-confirmed results (see Section 6.3).

Free Jet

In the case of a free jet with sufficiently large Reynolds number (see Figure
1.3), it is advisable to set the mixing length l in each cross-section propor-
tional to the jet width at that point, i.e. l = α·b. Here b is the half-diameter of
a parabolic velocity distribution whose maximum velocity and volume flux are
those of the actual flow, and α is a constant of proportionality with α ≈ 0.125.
Such a manner of determining a velocity profile is necessary because the vis-
cous flow passes over diffusely into the external liquid. The velocity of the
round free jet decreases with increasing distance from the orifice, with the
velocity distribution bell-shaped in all cross-sections (see Figure 4.62). Since
the pressure in the jet is approximately that of the surroundings, it is mainly
the apparent shear stresses that reduce the velocity with the distance and
simultaneously sweep along more and more liquid at rest with the jet. The
apparent shear stress τ ′ increases radially from zero at the center of the free
jet to a maximum value, and then decreases to zero again.

Because of the approximately constant pressure, it makes sense to assume
that the momentum of the jet J = ρ ·

∫
u2 ·dA is equally large for all x values.

Then J is proportional to ρ · u2
1 · π · b2, where u1 is the maximum velocity in

the cross-section A of the free jet. Since J is constant, it follows that u1 is
proportional to 1/b and therefore also proportional to 1/x. The flow is shown
in Figure 4.62. If b is the half-value diameter, for which u/u1 = 0.5, then
for x/d > 10 (d is the jet diameter at x = 0) we have b/x = 0.0848 and

Fig. 4.62. Streamlines of an expanding
free jet
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further u1(x)/u1(x = 0) = 6.57 · d/x. The amount of liquid flowing in the
axial direction

∫
u ·dA is proportional to u1 ·π · b2 and increases linearly with

the distance x. The liquid in the space therefore flows with radial velocity
v ∝

√
J/ρ/r toward the jet.

With l = α · b the shear stress τ ′ from (4.77) has mean value τ ′m over the
cross-section when ∂u/∂y is approximated by −2 · u1/b. We obtain

τ ′m = −4 · ρ · l2 ·
(
u2

1

b

)
= −4 · α2 · ρ · u2

1.

Shear Layer

Another case of turbulent expansion is the dispersion of the edge of the jet
flow past a corner (Figure 4.63). Here u1 is constant. With l = α · b, τ ′m is
proportional to α2 · ρ · u2

1 and thus also constant. In what follows we set the
width of the jet perpendicular to the plane of the figure equal to 1, and so
the momentum loss of the approaching flow is proportional to ρ · u2

1 · b. The
associated drag is proportional to τ ′m · x; i.e. b ∝ α2 · x, as in the case of
the free jet. The liquid at rest in the surroundings experiences an increase in
momentum of equal size.

Wall Turbulence

In flows along a wall, the mixing length must tend to zero as we come closer
to the wall. This implies that ∂u/∂y becomes very small inside the flow, but
takes on large values close to the wall. The no-slip condition holds at the
wall with y = 0. Because of this, a thin friction layer (viscous sublayer) forms
directly at the wall, in which ∂u/∂y = τw/µ holds approximately where τw
is the wall shear stress.

To treat this theoretically, we assume that the wall is smooth and the
shear stress constant τ = τw. For simplicity, the wall is assumed to extend to
infinity in the x and z directions. We then have

τ = τw = µ · du

dy
− ρ · u′ · v′. (4.78)

The mean velocity is dependent only on y and is completely determined by τw,
ρ, and ν. This relation can be stated in dimensionless form. We introduce the
shear stress velocity uτ =

√
τw/ρ. The ratio ν/uτ is a characteristic length.

Fig. 4.63. Streamlines of corner flow
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The total shear stress in the layer close to the wall consists of the mean value
of the friction stresses and the apparent stresses of the turbulence, and for
positive gradient du/dy it is

τw = µ · du

dy
+ ρ · l2 ·

(
du

dy

)2

. (4.79)

The first term of (4.79) holds in the viscous sublayer, while the second term
is valid in the layer above this close to the wall. The velocity distribution can
be written in the form

u

uτ
= f
(y · uτ

ν

)
, (4.80)

where f is a function of y · uτ/ν. Within the viscous sublayer y · uτ/ν ≤ 1 we
have f(y · uτ/ν) = y · uτ/ν. At large distances from the wall, y · uτ/ν > 50,
µ · (du/dy) tends to zero and − u′ · v′ becomes approximately u2

τ . The flow
is determined only by the quantities uτ and y. Assuming that l = κ · y, we
obtain

du

dy
=

1

κ
· uτ

y
, (4.81)

where κ is the Kármán constant. The experimental value of κ is approxi-
mately 0.4. Integrating (4.81) yields

u = uτ ·
(

1

κ
· ln(y) + C

)
, (4.82)

or, using (4.80),

u

uτ
= f
(y · uτ

ν

)
=

1

κ
· ln
(y · uτ

ν

)
+ C1. (4.83)

Equation (4.83) is known as the logarithmic wall law. According to measure-
ments by J. Nikuradse (1932), for smooth pipes the value κ = 0.4 with a
constant of integration C1 = 5.5 is found.

Fig. 4.64. Logarithmic wall law
and velocity distribution in the vis-
cous sublayer
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Figure 4.64 shows experimentally determined velocity distributions. The
logarithmic wall law can be seen for values greater than y · uτ/ν = 50 (curve
2). Curve 1 shows the velocity distribution u/uτ = y · uτ/ν of the viscous
sublayer.

In the turbulent flow past a rough wall, as well as the viscous shear stress
µ · (du/dy), there are also additional forces on the wall due to the roughness.
These are summarized as a resultant frictional force whose mean value is now
represented as a wall shear stress τw. A direct effect of the wall roughness on
the viscous sublayer can be seen if its thickness is of the order of magnitude of
the height of the roughness. There is an alteration in the value of the constant
of integration C1. The spatially averaged roughness height k introduces a
further characteristic length. Of importance here is the Reynolds number
Rek = k · uτ/ν formed with the roughness. If Rek is large, ν/uτ may be
neglected compared to k. Equation (4.82), together with C = C2−(1/κ)·ln(k),
yields

u

uτ
=

1

κ
· ln
(y
k

)
+ C2. (4.84)

For small values of Rek, instead of C2 we obtain a function of k ·uτ/ν, which
for very small values of Rek has the form C1 + (1/κ) · ln(k · uτ/ν). Equation
(4.84) then becomes (4.83). A wall with little roughness is called hydraulically
smooth.

Pipe Flows

For turbulent flow through pipes with constant cross-section, the shear stress
velocity uτ is also the characteristic velocity:

uτ =

√
τw
ρ

=

√
p1 − p2

2 · ρ · R
l
. (4.85)

In the interior of the pipe flow the viscosity is of no importance, and so the
radius of the pipe R is the only characteristic length. We obtain

umax − u(y) = uτ · F
( y
R

)
, (4.86)

with the universal function F, maximum velocity umax in the middle of the
pipe, and distance from the wall y = R− r. This law is true for both smooth
and rough pipes at very large Reynolds numbers. The function F has to be
determined experimentally. For the mean flux velocity w, we can derive the
following relation from (4.86):

w = umax − 2 · uτ ·
1∫

0

(
1 − y

R

)
· F
( y
R

)
· d
( y
R

)
. (4.87)

As we approach the wall, (4.82) is again valid outside the viscous sublayer. We
set C = (umax/uτ)− (1/κ) · ln(R)+A. The value A is a further characteristic
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number of the turbulent pipe flow. With A = −0.6, and for very small values
y/R, we have

umax − u = uτ ·
(
0.6 − 2.5 · ln

( y
R

))
. (4.88)

Equations (4.85) and (4.88) are sufficient to calculate the velocity distribution
and the pressure drop in smooth and rough pipes with (4.83) and (4.84) for
the wall law.

Boundary-Layer Flows

Turbulent boundary layers are bounded on one side by a fixed wall and on the
other side by the inviscid outer flow. As the thickness of the boundary layer
increases in the direction of flow, liquid keeps entering the boundary layer
from the outer flow and free turbulence forms at the edge of the boundary
layer. Depending on the surface (smooth or rough), the wall flow treated
above forms close to the wall.

In the plate boundary layer, the wall law (4.83) is valid only in the layer
close to the wall. In the outer part of the plate boundary layer, the deviations
from the wall law are always greater than those in pipe flows. An outer law
has therefore been formulated for the plate boundary layer in the form

U∞ − u

uτ
= G

(y
δ

)
, (4.89)

with the function G, the boundary-layer thickness δ, and the velocity U∞ in
the outer flow. For turbulent boundary layers we have

U∞ − u

uτ
= − 1

κ
· ln
(y
δ

)
+
π(x)

κ
·
(
2 − w

(y
δ

))
.

This equation is also valid in the wake flow. The wake function w(y/δ) and
the parameter π(x) have to be determined empirically, with the parameter
π(x) dependent only on p(x) and possibly the turbulence of the outer flow.

Instead of using the boundary-layer thickness, we prefer to use the refer-
ence length δ1 ·U∞/uτ formed with the displacement thickness δ1. Equation
(4.89) then becomes

U∞ − u = uτ · F
(
y · uτ

δ1 · U∞

)
,

where F is a dimensionless function, which, because of the definition of δ1
(4.60), satisfies the condition

∞∫

0

F

(
y · uτ

δ1 · U∞

)
· d
(
y · uτ

δ1 · U∞

)
= 1.

Figure 4.65 shows the experimentally determined outer law of the plate
boundary-layer flow. The validity of this outer law is not quite as natural
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as the validity of the same law (4.86) for the pipe flow, since in this case the
shear stress distribution is dependent on the velocity distribution. For this
reason F in the plate boundary layer depends on the local friction coefficient
expression place cf = 2 · (uτ/U∞)2. The velocity distribution is dependent on
the turbulence of the outer flow. As we approach the wall, the velocity dis-
tribution becomes that of the logarithmic wall law (4.82). After determining
the constant of integration C, (4.89) takes on the form

U∞ − u = uτ ·
(
− 1

κ
· ln
(
y · uτ

δ1 · U∞

)
+ K

)
. (4.90)

The constant K has a value of about −1.5. If we join (4.90) to the logarithmic
wall law (4.83), we obtain an equation for the local friction coefficient cf as
a function of the Reynolds number Re1 = U∞ · δ1/ν:

1√
cf

2

=
1

κ
· ln
(
U∞ · δ1
ν

)
+ C1 + K. (4.91)

After inserting numerical values from experiment, we obtain for smooth plates

1√
cf

2

= 2.5 · ln
(
U∞ · δ1
ν

)
+ 3.7. (4.92)

In the same manner, the friction coefficient for rough surfaces can also be
computed. We introduce the quantity

I =

∞∫

0

F2 · d
(
y · uτ

δ · U∞

)
.

From the function in Figure 4.65, we obtain the value I = 6.2. We thus derive
the relation

δ2 = δ1 ·
(

1 −
√
cf
2

· I
)

(4.93)

Fig. 4.65. Outer law of the
turbulent plate boundary layer
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between the momentum thickness δ2 (4.61) and the displacement thickness
δ1. With (4.92) and (4.93) we can integrate the momentum equation of the
laminar boundary layer and compute the friction drag of plates in turbulent
flow.

The outer law can also be applied to boundary layers with variable pres-
sure. It has been observed that the velocity profiles at different pressure
distributions behave approximately like a single-parameter family of curves
corresponding to (4.90) for small y values. Only the constant K is different.
Thus we have a fixed relation between K and the integral I.

Since the wall law (4.83) can also be applied at different pressure distri-
butions, (4.91) and (4.93) are valid with the correct numerical values for K
and U∞ even when the pressure along the wall varies. The friction coefficient
decreases in boundary layers as the pressure rises. Ludwieg and Tillmann
(1949) derived the equation

cf = 0.246 · 10(−0.678·H) · Re−0.268
2 (4.94)

from their measurements, with H = δ1/δ2 and Re2 = U∞ · δ2/ν.
The velocity profiles of turbulent boundary layers where the pressure

varies can be approximately characterized by the shape parameterH = δ1/δ2.
However, a further relation between the pressure distribution and the shape
parameter is required. We obtain a second differential equation for the change
of H with the local pressure gradient:

δ2 ·
dH

dx
= −M · δ2

U∞

· dU∞

dx
− N. (4.95)

Here M and N are functions of H and Re2 (for rough surfaces they are also
functions of k/δ2), which have to be determined experimentally.

4.2.6 Flow Separation and Vortex Formation

The decelerated friction layers on the surfaces of bodies can form free in-
terfaces or vortices (cf. Section 4.1.4). If the outer flow is accelerated by a
pressure drop in the direction of flow, the liquid particles in the friction layer
also experience an acceleration in the direction of motion. The flow will there-
fore retain its direction along the surface of the body in the entire boundary
layer. On the other hand, if the pressure decreases in the direction opposite
to the flow direction, the outer flow is decelerated. Slower fluid elements of
the friction layer are then slowed down even more. If the deceleration is large
enough, the flow separates from the wall, and a backflow region appears.
Figure 4.66 illustrates the steady separation process for a given pressure dis-
tribution p. The interface that occurs due to the separation rolls up into one
or more vortices. Because of the backflow close to the wall, the streamline
portrait of the boundary-layer flow close to the separation position A indi-
cates a great thickening of the boundary layer. Related to this is the transport
of fluid mass out of the boundary layer into the outer flow. At the separation
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Fig. 4.66. Separation process
(velocity maximum M , separa-
tion point A)

point the wall streamline departs the wall at a certain angle. The position of
the point of separation is that point on the wall where the velocity gradient
perpendicular to the wall vanishes, i.e. the point where the wall shear stress
τw becomes zero:

τw = µ · ∂u
∂y

∣∣∣∣
w

= 0 (separation). (4.96)

Figure 4.67 shows a sequence of photos depicting the onset of flow separation
at a circular cylinder set into motion in a liquid. At the start of motion, a
potential flow arises. At a later point in time, the flow separates from the

Fig. 4.67. Development of the vortex system behind a nonrotating cylinder
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Fig. 4.68. Flow past a corner

cylinder. A backflow region with pronounced vortices forms in the wake flow.
The interface in the liquid can be seen clearly where the aluminum specks
gather. If we analyze the structure of the snapshots of the flow past a cylin-
der introduced in Section 3.3, we see the four half-saddles S′, the stagnation
points, and the separation points on the cylinder, as well as the saddle point
S and the two foci F of the wake flow. The sequence of photos shows that the
vortices of the backflow region grow as time passes and eventually become
unstable. After a critical time, a Kármán vortex street with periodically de-
parting vortices forms. The structure of the vortex street is characterized by
a succession of foci F and saddles S. The same separation process also occurs
in the flow in a channel that expands in the direction of flow (diffusor, see
Figure 4.72). In front of the narrowest cross-section the pressure in the flow
direction decreases. Here the flow is attached to the walls. After the narrow-
est cross-section the channel widens, and the pressure in the flow direction
increases. This causes the boundary layer to separate from the two walls and
a backflow region to form. The actual flow then takes place only in the core
region of the channel cross-section.

If liquid flows past a turning in a channel, a pressure drop perpendicular
to the direction of flow occurs in the curved part. The velocity on the outer
wall then decreases, and the flow separates, as shown in Figure 4.68. Further
downstream, the pressure drop caused by the turning dies away, the velocity
on the outer wall increases, and the flow attaches itself to the wall again.

Similar flow separations also form in the intake into an elbow bend, as
well as in front of a sudden contraction in a channel. In both the case of a
house in a wind flow (see Figure 4.69) and that of a pillar in a river, flow
separation occurs on the ground upstream of the obstacle and in the wake.

Fig. 4.69. Flow past a house
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In industry one attempts to avoid a separation of the flow in spite of
the pressure rise, in order to keep flow losses small. This is achieved by
permitting channels to expand only gradually, or by designing the shape of
bodies sufficiently narrow so that the acceleration of the outer flow prevails
over the pressure rise. This is generally successful when the boundary layer
in the decelerated part is turbulent.

In a flow with pressure increase, the flow past a body can remain lam-
inar up to the point of separation if the surface is very smooth and the
approach flow free of turbulence. Just in front of the separation point, the
boundary-layer profile has a turning point. This is a sufficient criterion for the
onset of the instability in the boundary layer. The laminar–turbulent transi-
tion begins, leading to a reattachment of the turbulent boundary-layer flow
downstream if the Reynolds number is large enough. The reattachment of the
turbulent boundary-layer flow depends both on the Reynolds number formed
with the radius of curvature and on the change in the surface curvature of the
wall. Laminar flow separation with turbulent reattachment frequently occurs
on thin wing profiles with sharp nose curvature and sufficiently large angles
of attack. Figure 4.70 shows the transition from the separating boundary-
layer flow at low Reynolds numbers to the attached flow at larger Reynolds
numbers. The photos correspond to values 2 · 104, 5 · 104, and 6 · 104 for the
Reynolds number U · r/ν formed with the radius of curvature r.

In a turbulent flow, the turbulent mixing causes the separation point of a
body in a flow to be displaced downstream. Thus the backflow region in the
wake of the body becomes considerably smaller. Related to this is a consid-
erable reduction in the pressure drag, seen as a jump in the drag coefficient
cw = f(Re). L. Prandtl (1914) was able to show this in his famous experi-
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.

Fig. 4.70. Laminar separation and turbulent reattachment with increasing
Reynolds number
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ment in which he laid a thin tripwire on a sphere and artificially caused the
laminar boundary layer to become turbulent at a smaller Reynolds number.
He achieved a reduction in the drag that without the tripwire would have
occurred only at a larger Reynolds number.

Influencing the Flow Separation

Rotation

Flow separation is generally undesirable, since it causes losses. There are
many different ways of artificially influencing the boundary layer so that
separation is prevented. For example, by causing a cylinder in a transverse
flow to rotate, so that the circumferential velocity is equal to or larger than the
maximum flow velocity at the circumference of the cylinder, an acceleration
of the boundary layer occurs on the side in which the liquid and the wall move
in the same direction. No separation then occurs on this side. On the other
side, the wall moves against the liquid and decelerates the boundary layer, so
that first backflow and then separation of a vortex is observed. A vortex with
opposite circulation remains at the cylinder. The vortex formation at the
start of formation can be seen in Figure 4.71. The flow structure is sketched
for the last three snapshots of the vortex separation.

Fig. 4.71. Development of the flow past a rotating cylinder
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Suction

Another very effective method of avoiding boundary-layer separation is suc-
tion. In this case, the fluid in the boundary layer is sucked into the interior of
the body through small slits or pores in the wall of the body in the backflow
region. If the suction is sufficiently strong, the accumulation of decelerated
fluid is avoided, and the boundary-layer separation can be prevented. An ex-
ample of the effect of boundary-layer suction is shown in Figure 4.72. The
flow in a strongly divergent channel is observed. Without suction, separation
occurs. If the backflow region is sucked away on both sides of the diffusor, the
flow fills the entire channel cross-section, and the flow separation is avoided.

Tangential Blowing

The separation of the boundary layer can also be prevented by tangential
blowing into the boundary layer. A wall jet blown into the boundary layer
through a slit in the contour parallel to the main flow direction can supply
enough kinetic energy to the boundary layer to prevent separation. According
to this principle, for example, the maximum lift of a wing can be greatly
increased, although at the expense of a large drag.

The arrangement of the flap on the wing in Figure 4.73 can also prevent
separation. In this case, the pressure increase to be overcome by the boundary
layer of the wing is smaller than without the flap, and separation is prevented
up to considerably larger angles of attack.

This arrangement is somewhat related to the application of auxiliary
wings to improve flows in pipe bends. This is exemplified by the usual de-
viation blades in wind tunnels. Auxiliary wings are also used in other flows

without suction

with suction at the wall

The white marks indicate the position
of the invisible suction slits

Fig. 4.72. Flow in a strongly divergent
channel
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Fig. 4.73. Slotted wing Fig. 4.74. Deviation by auxiliary wings

to achieve sharp bends without large losses (Figure 4.74). No separation oc-
curs, because the pressure distribution along the auxiliary wing causes the
pressure on the wall, which the pressure sides of the auxiliary wings face, to
be larger than in the flow without auxiliary wings. The pressure rise that the
boundary layer has to overcome is therefore smaller.

Paint Visualization

The streamlines of separated flows directly at the wall can be made visible
using paint visualization. In water flows, oil-bound paint is used, while in air
flows a mixture of dyes and petroleum is applied. If the flow is permitted
to act on the paint of the wall for a characteristic time (for water about 5
minutes), a pattern forms in the direction of the mean velocity of the viscous
layer close to the wall. This allows conclusions to be drawn about the course
of the flow, in particular, separation points. Such paint visualization indicates
only the streamlines in the layers close to the wall and not those in the core
flow.

Figures 4.75 and 4.76 show two portraits of water flows taken by A. Hin-
derks. Figure 4.75 shows the flow at the bottom of a channel that contains
a flat plate placed perpendicular to the flow. The wide white stripe that is
drawn around the plate indicates a horseshoe vortex that evades the over-
pressure region in front of the plate. The two foci of the vortex indicate a
spiral flow directed inward behind the plate that displays two vortices ex-
tending into the core flow.

Fig. 4.75. Paint visualization and structure of a wall flow perturbed by a vertical
plate (horseshoe vortex) A. Hinderks
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Fig. 4.76. Paint visualization and structure of the flow through an elbow bend
A. Hinderks

Figure 4.76 shows the wall flow in a curved rectangular channel. The
deviation of the wall layer to the inner side of the curve can be seen clearly.
The convergence of the wall streamlines downstream from the bend indicate
the separation at the inner side due to the pressure increase.

4.2.7 Secondary Flows

Elbow Bends

We consider the flow of a fluid along a plane wall. It is deviated by a sideward
pressure gradient parallel to the wall. The layers close to the wall are deviated
more strongly than the outer flow because of their lower velocity. This leads
to a secondary flow, superimposed onto the main flow in the pipe.

For inviscid flow, (4.9) yields the ratio of the radii of curvature r1/r0 =
w2

1/w
2
0. In fact, the flow is viscous. The friction at the wall, in combination

with the sideward pressure gradient, causes a deviation of the boundary layer
in the direction of the lower pressure. The deviation in the laminar case has
maximum 45◦ and in the turbulent case maximum 25◦ to 30◦. As liquid flows
through a curved pipe, because of its greater velocity the core flow attempts
to flow as straight as possible. In contrast, the slower edge layers are greatly
deviated and tend toward the inner side of the arc of the bend. The main

Fig. 4.77. Secondary flows
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flow (parallel to the center line of the pipe) in the curved stretch of the pipe
is therefore superimposed with a perpendicular secondary flow. This flows
inward in the edge layers and outward in the core. The left illustration of
Figure 4.77 shows the secondary flow in an elbow bend. It causes the position
of maximum velocity to be displaced in the direction of the external arc of
the bend.

In the natural course of rivers, the secondary flow in curves also has the
effect that sediments (sand, pebbles) that move with the bottom current are
transported away from the outer side of the curve and accumulate on the
inner side. The outer bed of the river is deepened, and the inner bed made
shallower. The larger flow velocity at the outer bank causes the curvature of
the river to keep increasing, and so natural rivers tend whenever possible to
have a very sinuous course (meander formation).

Rotating Vessel

Another example of a secondary flow is the flow that occurs at the bottom of
a round rotating vessel (Figure 4.77, right). Because of the lower velocity in
the ground layer, the centrifugal force there is less than that in the middle of
the vessel. This causes the bottom current to be directed inward. Everyday
observation shows that small particles at the base of the vessel move toward
the middle of the base and accumulate there. This can be explained with the
bottom current.

Channels with Rectangular and Triangular Cross-Sections

The flow through straight channels of noncircular cross-section also causes
secondary flows. These cause transverse flow in the corners of the channels, as
shown in Figure 4.78. The occurrence of the secondary flows can be explained
by the fact that liquid is conveyed into the interior of the channel from points
of larger shear stress and therefore at positions of smaller shear stress, e.g.
in the corners, liquid flows from the interior to the wall. Thus at large wall
shear stress positions the velocity is decreased, and at positions of lower wall
shear stress the velocity is increased. This leads to a leveling out of the wall
shear stress.

Oscillating Bodies

Secondary flows also occur at oscillating bodies. If U(x) · cos(ω · t) is the
velocity outside the boundary layer, according to H. Schlichting (1932) there
is an additional velocity u′ with the following magnitude close to the wall
outside the boundary layer:

u′ =
3

4
· U
ω

· ∂U
∂x

.
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Fig. 4.78. Secondary flows in channels with triangular and rectangular cross-
sections

It is directed from positions of larger velocity toward those of smaller velocity.
Figure 4.79 shows a snapshot of the water flow around a circular cylinder that
oscillates back and forth. The camera is moving with the cylinder. The metal
particles that make the flow visible generate wide bands over a long exposure
time. The flow approaches the cylinder from above and below and moves away
in the direction of oscillation at both sides. The asymmetry of this picture is
due to a weak eigenmotion of the water in the experimental vessel.

4.2.8 Flows with Prevailing Viscosity

As was also discussed in Section 4.2.2, at large viscosity and small Reynolds
numbers, the inertial forces may be neglected compared to the frictional
forces. These creeping flows have a flow drag proportional to the first power
of the velocity. The groundwater flow and the bearing lubrication will be
discussed in more detail in this section.

Groundwater Flow

An example of a flow with prevailing viscosity is the groundwater flow in soil.
The flow between the individual grains of sand is, in analogy to the Hagen–
Poiseuille law for pipe flows, a creeping flow proportional to the pressure drop

Fig. 4.79. Secondary flows at an oscillating body, after H. Schlichting 1932
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and inversely proportional to the dynamic viscosity µ:

u = −k
µ
· ∂p
∂x
, v = −k

µ
· ∂p
∂y
, w = −k

µ
· ∂p
∂z
. (4.97)

The permeability k has the dimension of a surface and depends only on the
porous medium. With the continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

we obtain

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
= 0. (4.98)

The same relation holds for the pressure p as for the velocity potential Φ of the
inviscid flow. Groundwater flows are therefore potential flows, as discussed in
Section 4.1.5. The essential difference is that the pressure pmust be physically
single-valued and continuous, whereas Φ can be discontinuous at interfaces,
and in flows with circulation is multivalued.

Equations (4.97) and (4.98) can be used to treat the groundwater flow
close to a well, for example. The removal of water is taken into account; i.e.
as well as the velocity distribution, the drop in the water table close to the
well is also considered.

The proportionality assumed between the velocity and the pressure drop
is true only as long as the Reynolds number formed with the diameter of the
grains d remains sufficiently small. The limit is at Red = u · d/ν ≈ 10.

Bearing Lubrication

A further example of flows with prevailing viscosity is the flow in lubricated
bearings and guides in machines. In between machine parts that move against
one another (journals and bearings, or sliding blocks and guides) are gap flows
of thin layers of oil. These protect the solid bodies from touching each other.
The ability of a journal bearing and a guide shoe to take on large loads at
low friction is the result of the flow process in the oil layer.

A first example is the sliding block on a flat guide. For simplicity we as-
sume that the sliding surfaces are infinitely extended perpendicular to the
direction of motion. This is the assumption of a plate flow. We select a refer-
ence frame at rest with respect to the sliding block. The guide of the sliding
block moves to the right with velocity v, and so we assume a steady flow.

We first consider the flow through a gap of height h with an upper wall at
rest (sliding block) and a parallel lower wall moving with velocity v (guide).
The x axis points in the direction of motion, while the y axis is perpendicular
to the walls. The pressure increase dp/dx is abbreviated by p′. Because the
layer is so thin, p′ is independent of h. The flow velocity in the x direction is u.
According to the remarks in Section 4.2.1, the inertial force can be neglected,
as can ∂2u/∂x2 compared to ∂2u/∂y2:
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µ · ∂
2u

∂y2
= p′. (4.99)

Integration yields

µ · ∂u
∂y

= p′ · y + C1,

µ · u = p′ · y
2

2
+ C1 · y + C2. . (4.100)

The no-slip condition for y = 0, that u is equal to the relative velocity U of
the guide compared to the sliding block, is satisfied by C2 = µ ·U . For y = h
we must have u = 0. Thus C1 satisfies

C1 = −
(
µ · U
h

+
p′ · h

2

)
.

This yields the velocity distribution in the gap:

u =
p′

2 · µ · (y2 − h · y) +
U

h
· (h− y). (4.101)

The positive frictional force per unit area at the lower wall is

τ0 = −µ · ∂u
∂y

∣∣∣∣
y=0

= −C1 =
µ · U
h

+
p′ · h

2
, (4.102)

and at the upper wall is

τh = −µ · ∂u
∂y

∣∣∣∣
y=h

=
µ · U
h

− p′ · h
2

. (4.103)

In discussing these results we note that a pressure increase in the direction
of the positive x axis corresponds to a positive p′. A negative p′ means a
pressure drop.

The amount of liquid per unit depth of the gap flow can be calculated
using

Q =

h∫

0

U · dy.

This yields

Q =
u · h

2
− p′ · h3

12 · µ . (4.104)

We now calculate the load-bearing sliding block with varying pressure gradi-
ent p′ in the x direction (see Figure 4.80). Since v is the constant velocity of
the sliding block, continuity (Q = const) requires that the gap height must
change with x. If h varies in the x direction, (4.104) gives us

p′ =
dp

dx
= 12 · µ ·

(
U

2 · h2
− Q

h3

)
. (4.105)
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Then p(x) is obtained by integrating this equation. At the beginning and the
end of the sliding block the pressure p is set equal to the surrounding pressure
p0. This yields the unknown value for Q, and so p(x) is determined. If l is
the length of the gap, further integration allows us to calculate the resultant

pressure force of the flow in the sliding block with
∫ l

0 p · dx, as well as the

moment
∫ l

0
p · x · dx. The ratio of the moment to the force determines the

distance of the working point of the force from the position x = 0. The viscous

force is calculated using (4.102) with
∫ l

0
τ0 · dx, and so we can determine the

magnitude, direction, and position of the resultant force on the sliding block
for any given function h of the gap height. Frequently it is the resultant
pressure force that is given, and the gap height is to be calculated.

The viscous force can also be calculated using τh. Here we must recall
that the pressure p on the surface inclined to the direction of motion by
tan δ = dh/dx generates a force component in the direction of motion. Since
the pressure at the end of the sliding block is p0, this force component is equal

to −
∫ l

0(p − p0) · (dh/dx) · dx. Partial integration with p = p0 for x = 0 and

x = l yields the force component +
∫ l

0
p′ · h · dx. Taking (4.102) and (4.103)

into account, this is in agreement with the viscous force calculated from τ0.
The simplest case of a varying gap height occurs when the sliding block

and the guiding surface are flat but inclined at a small angle δ to each other.
The sliding block extends from x = 0 to x = l. The two planes meet at a
distance a from the leading edge of the sliding block at x = 0 (Figure 4.80).
The height of the gap is

h = (a− x) · δ.
Integrating (4.105) yields the two integrals

x∫

0

dx

h3
=

1

2 · δ3 ·
(

1

(a− x)2
− 1

a2

)
=

2 · a · x− x2

2 · δ3 · a2 · (a− x)2

and
x∫

0

dx

h2
=

1

δ2
·
(

1

a− x
− 1

a

)
=

x

δ2 · a · (a− x)
.

Therefore, the pressure distribution is

p = p0 +
6 · µ · x

δ2 · a · (a− x)
·
(
v − Q · (2 · a− x)

δ · a · (a− x)

)
. (4.106)

According to (4.106), p = p0 at the position x = 0. Since p = p0 at x = l,
too, the expression in parentheses in (4.106) must vanish:

Q =
U · δ · a · (a− l)

2 · a− l
. (4.107)

Again replacing δ · (a− x) by h, we obtain
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p = p0 +
6 · µ · U · x · (l − x)

h2 · (2 · a− l)
. (4.108)

To estimate the mean pressure, the pressure p1 is assumed in the center
of the sliding block (x = l/2). This pressure is not the pressure maximum,
since h varies with x. However, if the variation in the x direction is not too
large, it is of the correct order of magnitude of the maximum. According to
(4.108) we use h = δ · (a− l/2) = hm to obtain

p1 − p0 =
3

2
· µ · U · l2
h2

m · (2 · a− l)
.

If the pressure distribution is approximated by a parabola, the mean over-
pressure pm is approximately 2 · (p1 − p0)/3, i.e.

pm =
µ · U · l2

h2
m · (2 · a− l)

. (4.109)

This equation shows that even at relatively small µ, very small mean gap
thicknesses hm can generate very large pressures. According to (4.108), the
reduction of h in the direction of flow means that the pressure maximum lies
behind the center. Therefore, the point of application of the resultant force
is also behind the center. Figure 4.80 shows such a distribution according to
(4.108). Below this pressure distribution is a sketch of the associated velocity
distribution in the gap, the different curvature of which makes the pressure
difference clearly visible.

The pressure distribution and the position of the pressure force depend on
the ratio l/a. Therefore, A. G. M. Mitchell (1905) had the idea of applying a
flexible attachment to the sliding block somewhat behind the middle of the
guide surface (Figure 4.81). This causes a certain inclined position to occur
automatically (or more precisely, a certain a). For a larger inclination, the

Fig. 4.80. Flow in the gap between sliding block and guide
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pressure middle point is further back, and at a weaker inclination it is further
forward, and so the correct position is particularly stable. In this manner A.
G. M. Mitchell was able to achieve a sliding block that worked equally well
under all loads. In fact, a certain amount of the oil that passes the leading
edge of such sliding blocks flows out through the side edges. This causes a
reduction in the pressure in the interior. Qualitatively, however, the process
may still be described as above.

The shear stresses at the sliding block are, because of the pressure dis-
tribution, smaller at the entrance and larger at the exit than in simple gap
friction. The shear stresses on the sliding track are opposite. The correspond-
ing values can be determined from (4.102), (4.103), (4.105), and (4.107).

We will now estimate the viscous force. This estimation is more precise
the larger the ratio a/l is chosen to be. The distribution of the shear stress is
assumed to be approximately trapezoidal. The mean viscous force per unit
area can therefore be set equal to the viscous force in the middle. There the
magnitude of p′ is very small, and (4.102) yields

τm ≈ µ · U
hm

.

Equation (4.109) is used to eliminate the lubrication layer thickness hm:

hm =

√
µ · U · l2

pm · (2 · a− l)
. (4.110)

This leads to

τm =

√
µ · U · pm

l
·
√

2 · a− l

l
. (4.111)

The expression µ · v/l is the very small shear stress that occurs in a layer
of oil of thickness l. According to the order of magnitude, the actual shear
stress is the geometric mean of this small shear stress and the mean load of
the sliding block. This slippage resistance varies for fixed values of l and a in
proportion to the square root of the viscosity, the load, and the velocity. This
law does not only hold for the mean values considered, but is also obtained
with a more precise calculation.

The friction coefficient is given by

Fig. 4.81. Sliding block, A. G. M.
Mitchell (1905)



4.2 Dynamics of Viscous Liquids 155

Cf , g =
τm
pm

.

For fixed values of l and a, i.e. when the dimensions of the sliding block
are given according to Figure 4.80, it is proportional to

√
µ · U/(pm · l). The

relations are more complicated for a journal in a bearing, where bearing play
occurs. Two further unknowns appear due to the displacement of the center
of the bearing in the horizontal and vertical directions. Essentially, a wedge-
like layer of oil is formed here too, through which the oil from the rotating
journal is transported from the wide side to the narrow side (Figure 4.82).
The calculation is simplified by assuming that the eccentricity of the journal
e is small compared to the bearing play s. This is valid for fast-running and
moderately loaded journals in completely closed bearings. In this case,

h = s+ e · cos(ϕ+ α),

with the central angle ϕ and the angle α between the force direction and the
direction of the connecting line between the center of the bearing and the
center of the journal. The angle α is about 90◦. The point of the smallest dis-
tance between the journal and the bearing is in front of this, in the direction
of rotation opposite the direction of the journal pressure.

An analogous calculation to that of the sliding block leads to the result
that e/s is proportional to the dimensionless size L = (pm · s2/(µ · v · r).
Here pm is the mean bearing pressure, r is the radius of the journal, and v
the circumferential velocity. The bearing coefficient L can be derived from
(4.109) for the sliding block:

l

2 · a− l
=
pm · h2

m

µ · U · l .

The left-hand side of this equation corresponds to e/s. On the right, hm

appears in place of s, and l in place of r.
The effects of varying bearing load, different bearing play, different oil

viscosity, and circumferential velocity are taken into account in the bearing

Fig. 4.82. Journal in a bearing
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coefficient. The friction coefficient Cf , g of a bearing (circumferential force to
bearing load) can be expressed analogously to that for the sliding block. We
obtain Cf , g ∼

√
µ · U/(pm · r). O. Walger (1932) experimentally found the

value 2.4.
Until now we have assumed that in the bearing, the oil film wets the jour-

nal completely, preventing any metallic contact. Because of the production
tolerances with which bearing and journal, or sliding block and guide, can be
manufactured, metallic contact does occur if the gap width h is too small.
Similarly, in applying the derived equations we must rule out the possibility
that negative pressures occur in the oil film. In this case, the oil film will
separate. Separation of the oil film generally occurs in bearings under a great
load. Similar conditions occur as for a journal only partially surrounded by
a bearing. We will not, however, further investigate the extended theory of
such bearings.

At heavy loads, heating of the oil leads to considerable deviations com-
pared to the derived equations. G. Vogelpohl (1938) showed that oils whose
viscosity decreases to a lesser degree with increasing temperature are more
suitable for heavily loaded bearings. He also indicated that a great part of the
bearing load is hydrodynamically carried by so-called mixed friction, by the
oil contained between the two-sided surface roughness. Only a very small part
of the load is carried by the peaks of the roughness in mechanical contact.

4.2.9 Flows Through Pipes and Channels

The mean value of the wall shear stress τw for the turbulent channel flow
can be calculated from λ′ · ρ · w2/2. Here λ′ is a number and w the mean
velocity. The pressure drop in a pipe or channel of length l must keep the
shear stresses in the wall in equilibrium. With the cross-sectional area A and
the wetted cross-sectional circumference U we have

(p1 − p2) · A = τw · l · U = λ′ · ρ · w
2

2
· l · U, (4.112)

i.e.

p1 − p2

l
= λ′ · U

A
· ρ · w

2

2
. (4.113)

In an open channel or river, the free surface is not part of the wetted circum-
ference. The quotient A/U is called the hydraulic radius rh. For a body of
water flowing under the effect of gravity, such as a river, a drop in the water
level i = (z1 − z2)/l is given (Figure 4.83). This is dependent on the pressure
drop along a horizontal line via the relation p1−p2 = g ·ρ ·(z1−z2) = g ·ρ ·l ·i.
Therefore, (4.112) yields

τw = g · ρ · rh · i, (4.114)

and from (4.113),
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i =
1

g · ρ · p1 − p2

l
=
λ′

rh
· w

2

2 · g . (4.115)

This leads to

w =

√
2 · g
λ′

· rh · i.

For rivers and channels, this equation is written in the form

w = C ·
√
rh · i (4.116)

and is known as the Chézy equation. The value of C, which is a function of
the hydraulic radius and the wall roughness, varies at water depths of 0.5 m
to 3 m from 80 m(1/2) ·s−1 for channels of smooth wood or smoothly plastered
masonry to 30 to 50 m(1/2) · s−1 for walls of earth, to 24 to 49 m(1/2) · s−1 for
shingle.

Pipes with Circular Cross-Section

For pipes with radius R, the hydraulic radius rh is

rh =
A

U
=

π · R2

2 · π ·R =
R

2
=
d

4
. (4.117)

Inserting 4/d for U/A and λ for 4 · λ′ in (4.113), we obtain

p1 − p2

l
=
λ

d
· ρ · w

2

2
, (4.118)

where λ is called the loss coefficient. The loss coefficient for laminar and
turbulent pipe flows is shown in Figure 4.84 as a function of the Reynolds
number Red. Laminar pipe flow satisfies the Hagen–Poiseuille law (4.45).
With the flux Q, the mean velocity is w = Q/(π · R2). This leads to a
pressure loss in the pipe of

p1 − p2

l
=

8 · µ · w
R2

= 32 · µ · w
d2
. (4.119)

Comparison with (4.118) leads to an expression for the loss coefficient λ:

Fig. 4.83. Flow in a channel
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λ =
64 · µ
ρ · w · d =

64

Red
. (4.120)

There are many experimental results on the behavior of turbulent flows. Up
to a Reynolds number of about 80 000, the Blasius law is valid:

λ =
0.3164

Re
1
4

. (4.121)

Stability theory for the Hagen–Poiseuille pipe flow (see Section 4.2.4) shows
that the laminar–turbulent transition occurs at the critical Reynolds number
Recrit = 2300, so that in Figure 4.84, (4.120) passes over to (4.121) in a
transition region.

L. Prandtl (1932) stated an implicit equation for the loss coefficient of
smooth pipes for Reynolds numbers smaller than 106:

1√
λ

= 2 · lg(Red ·
√
λ) − 0.8. (4.122)

To obtain this equation the equations in Section 4.2.5 are used, taking into
account the logarithmic wall law (4.83).

Using (4.84), the evaluation of experimental results for rough pipes with
fully developed flow yields the following extension to (4.122):

1√
λ

= 1.74 − 2 · lg
(

18.7

Red ·
√
λ

+
2 · k
d

)
. (4.123)

Here the roughness k is the spatial average of the surface roughness of the
pipe walls. For very large Reynolds numbers, the loss coefficient becomes
independent of the Reynolds number. The viscous sublayer of the turbulent
pipe boundary layer then covers the roughness of the pipe surface.

Fig. 4.84. Nikuradse diagram: loss coefficient λ for smooth and rough pipes
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The first measurements of losses in rough pipes were carried out by J.
Nikuradse (1933). Filtered sand of different grain sizes was stuck onto the
inside of pipes. These experiments by J. Nikuradse (1933) gave the diagram
of Figure 4.84 its name.

Intake Flow

Equations (4.119) to (4.123), as well as Figure 4.84, are valid for fully devel-
oped pipe flow. This is approximately the case from a distance of about 60
pipe diameters d from the intake of a pipe. In the intake cross-section of the
pipe, the velocity is almost uniformly distributed. The deceleration caused by
the friction begins at the wall of the pipe. In the flow, which is initially lam-
inar, a growing layer of decelerated liquid forms downstream (Figure 4.85).
The velocity then has to increase in the core flow, so that the same mass
flows through every cross-section. This acceleration of the core flow in the
intake stretch of the pipe is associated with a pressure decrease along the
pipe axis that can be calculated with the Bernoulli equation. Further down-
stream, the friction zone encompasses the entire pipe cross-section, and the
well-known Hagen–Poiseuille flow occurs. According to observations by L.
Schiller (1922), this occurs after a distance of l = 0.03 · d · Red. When the
critical Reynolds number Recrit = 2300 is exceeded, the laminar–turbulent
transition occurs, and a turbulent fully developed pipe flow forms.

If the flow at the intake cross-section of the pipe is already turbulent,
the distance l until the onset of the fully developed pipe flow is considerably
shorter.

Pipe Flow with Cross-Sectional Variation

When a pipe suddenly contracts (Figure 4.86), as well as the inviscid pressure
drop there are also viscous pressure losses. A sharp-edged contraction in
the pipe or an orifice causes a contraction of the flow. According to J. L.
Weisbach (1845), the contraction coefficient can be calculated using α =
0.63 + 0.37 · (A1/A0)

3. If the contraction is followed by a sudden expansion
(orifice), the associated pressure loss is

Fig. 4.85. Velocity distribution of the intake flow
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Fig. 4.86. Contraction in a pipe

p0 − p2 =
ρ · w2

0

2
·
(

A0

α ·A1
− 1

)2

.

Orifices as in Figure 4.86 or Venturi nozzles as in Figure 4.87 are used to
measure volume fluxes. For the orifice, the inviscid pressure loss calculated
with the Bernoulli equation is

p0 − p1 =
ρ · w2

0

2
·
[(

A0

α · A1

)2

− 1

]
.

If the pressure difference p0 − p1 is measured with boreholes in front of and
behind the contraction, a known contraction coefficient α allows w0 and thus
the volume flux A0 ·w0 to be computed. Experimentally, the following equa-
tion is obtained for A1/A0 < 0.7:

α = 0.598 + 0.4 ·
(
A1

A0

)2

.

For the gradual expansion of the Venturi nozzle in Figure 4.87, the pressure
recovery is considerably larger than for the sudden expansion of the aperture.
The pressure loss in the nozzle can be described with

p0 − p2 = ξ · ρ
2
· (w2

1 − w2
2),

where ξ is an empirical drag coefficient to be determined for every nozzle. The
values for Venturi nozzles lie between 0.15 and 0.2. The contraction coefficient
α can be set equal to 1 if flow separation is avoided.

Cross-sectional expansion in diffusors leads to pressure recovery. Assum-
ing that the flow is inviscid, the velocity is constant at all cross-sections.

Fig. 4.87. Venturi nozzle Fig. 4.88. Jet pump
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Under the effect of friction, the flow close to the wall is decelerated. If the
opening angle of the diffusor is too large, flow separation will occur.

The pressure increase p2 − p1 in a sudden or gradually expanding pipe
is used to draw off liquid in jet pumps, as shown in Figure 4.88. In order to
attain a pressure difference of 1 bar for a water jet air pump, the jet velocity
w1 must be about 20 m/s. Another example is the Bunsen burner, where a
gas jet exiting from a nozzle draws in air and mixes with it.

4.2.10 Drag of Bodies in Liquids

Newton Drag Law

I. Newton concluded that the drag of a body moving in a liquid must be
proportional to the surface area A of the body, the density ρ of the liquid, and
the square of the velocity v. This result may be understood in the following
simple approach. The body must displace a fluid mass M = ρ · A · v per
second. Here each mass element obtains a velocity that is set proportional to
the velocity of the body. The drag is therefore proportional to the momentum
imparted per second

M · v = ρ ·A · v2.

Newton’s theory assumes that the drag of a body in a liquid can be treated
using the collision laws of solid bodies. Newton considered the medium to be
made up of mass particles at rest that are pushed away by the moving body.
However, the resulting drag does not take into account the hydrodynamic
flow past the body and the wake flow of the body.

This will be explained using this example of the flow past a dihedron
(Figure 4.89). The flow past a dihedron must differ from the flow past two
plates that are far apart and inclined in the same manner as the plates of
the dihedron. In this latter case, the flow can pass between the two plates,
while it cannot in the flow past a dihedron. The drag of a dihedron in a flow
is about 60% of the drag of two isolated plates, according to experiments by
G. Eiffel (1907). However, according to the Newtonian theory, both objects
ought to have the same drag.

Another example is the flow past a circular disk and past two circular
cylinders of the length of one diameter and of twice the diameter. Drag coef-
ficients of 1.12, 0.91, and 0.85 respectively were measured. The reason that
the longer cylinder has a smaller drag than the shorter is due to the fact
that the flow along the surface of the cylinder reattaches itself and the wake
becomes smaller. The suction effect of the wake flow on the rear end surface
is smaller than in the other two cases.

Pressure Drag and Friction Drag

Hydrodynamic drag is made up of a pressure part and a friction part. The
associated drag coefficients are therefore
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Fig. 4.89. Flow past a dihedron

cw = cd + cf . (4.124)

The total drag coefficient cw is defined by

cw =
W

ρ
2 · v2 ·A,

with the drag forceW , the dynamic pressure (ρ/2)·v2, and the cross-sectional
area A. The pressure drag coefficient cd and the global friction drag coefficient
cf are

cd =
Wd

ρ
2 · v2 · A, cf =

Wf
ρ
2 · v2 · A,

where Wd is the pressure force and Wf the force due to friction,
The drag coefficient cw is in general a function of the Reynolds number

Rel = v · l/ν:
cw = f(Rel). (4.125)

If the friction may be neglected, as in the example of a plate in a transverse
flow, there is for Reynolds number ReD > 103 no dependence on the Reynolds
number, and the cw value is constant. For a circular plate, the cw value is
1.12. For a plate in a longitudinal flow, on the other hand, the friction drag
coefficient cf dominates, and the pressure drag coefficient cd is small enough
to be neglected.

The total drag can always be decomposed into pressure and friction parts.
Assuming that the pressure drag depends greatly on the shape of the body,
while the friction drag depends essentially on the size of the surface of the
body and not on the shape of the surface, the drag can also be decomposed
into a shape drag and a surface drag. Strictly speaking, the friction drag
also depends on the shape of the surface, so that this decomposition is only
approximately valid.

For bodies that move on the free surface of a liquid, there is an additional
particular kind of pressure drag, the wave drag. This is caused by the wave
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system generated by the body. Since the wave motion is under the effect
of gravity (the surface forces are not taken into account), the dimensionless
characteristic number is the Froude number. It is formed with the velocity v,
the length l, and the gravitational acceleration g:

Fr =
v√
g · l . (4.126)

The expected wave system will be geometrically similar for, for example, two
different-sized versions of a ship (e.g. model and ship) if the Froude number
has the same value.

The wave drag varies with small changes in the shape of a ship and in the
velocity. If the body of the ship is made longer, the wave drag may increase
or decrease, depending on how the stern and bow waves interfere with each
other. The drag becomes larger if the stern lies in a trough of the bow wave
system, and smaller if it is at a crest of the bow system.

Potential Flow

A potential flow of an inviscid liquid causes no drag in the direction of motion
and no lift in the perpendicular direction. This can be proved using the
balance of momentum if the control volume surrounds the body in the flow at
some distance from it. The perturbation velocities caused by the displacement
effect of the body die away quickly to all sides of the body. If the control
volume is allowed to grow to infinity, the contributions to the momentum
tend to zero. Since the balance of momentum must have the same result for
all control volumes, the drag is therefore zero.

Of the different attempts to treat the drag within the framework of the
theory of inviscid liquids, we consider the Kirchhoff flow past a plate and the
Kármán vortex street.

Kirchhoff Flow past a Plate

In inviscid flow past a flat plate (Figure 4.90), the flow divides at the stagna-
tion point and forms the discontinuity surfaces introduced in Section 4.1.4.
In the wake of the plate, the liquid is at rest and forms the so-called dead wa-
ter. In this region the pressure is constant. Therefore, we have the condition
that the pressure on the interface must also be constant. According to the
Bernoulli equation, the velocity on the interface is therefore also constant.
If this condition is met, the inviscid theory leads only to those solutions in
which the interfaces extend to infinity and the velocity on the interface is
equal to the velocity of the unperturbed flow at infinity. The pressure distri-
bution has a maximum at the stagnation point and tapers off at the edges
to the pressure of the unperturbed flow. In the wake the pressure is the con-
stant pressure of the unperturbed flow. The pressure drag coefficient cd is
proportional to the surface area of the plate and to the stagnation pressure.
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G. R. Kirchhoff (1869) calculated the constant value cd = 2 ·π/(4+π) = 0.88
for an infinitely long plate.

In reality, the interfaces are unstable, and they decay, forming vortices
(see Section 4.1.4). In the wake of the plate, a time-averaged backflow region
forms with a considerably lower pressure than the unperturbed pressure. This
leads to a suction effect in the wake, generating a considerably larger drag
than the inviscid Kirchhoff calculation. For the infinitely long plate, the total
drag coefficient is cw = 1.98. For a square plate, liquid flows over the side
edges into the wake and thus greatly reduces the underpressure. The resulting
total drag coefficient is cw = 1.17.

Therefore, the Kirchhoff drag calculation does not agree sufficiently with
reality. A better agreement with the calculation is obtained for the case in
which, because of the low pressure and at a sufficiently high velocity, cavita-
tion causes the wake to fill with liquid vapor. For this case the interfaces are
stable, and the conditions of the inviscid theory are approximately satisfied.

Kármán Vortex Street

In certain circumstances, in the longitudinal flow past a plate, periodic sepa-
ration of vortices takes place at the trailing edge (Figure 4.91). This observa-
tion prompted T. von Kármán (1912) to investigate the stability of parallel
vortex filaments. Stability was obtained for a ratio of the distance h between
the two vortex rows to the separation l of h/l = 0.281. The vortex rows actu-
ally observed come very close to this given ratio h/l of the inviscid stability
theory. Figure 4.91 shows that the friction causes the vortices to move further
apart downstream.

The periodic separation of vortices generates a drag that was also calcu-
lated by T. von Kármán (1912). It is a success for the inviscid theory that
from a photographic measurement of the vortex system and a measurement
of the vortex velocity the drag coefficient of the vortex-generating body can
be determined.

Fig. 4.90. Kirchhoff flow at a flat plate
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Friction Drag of the Flow past a Plate

The friction drag of the plate is referred to the total surface area of the body
A. The drag force is

Wf =

∫

A

τw · sin(x,n) · dA = cf · A · ρ · v
2

2
. (4.127)

Here x is the direction of the free stream, n is the local normal vector to
the surface, and cf is the friction drag coefficient. For a rectangular plate of
width b and length l in a longitudinal flow, A = 2 · b · l.

The friction drag for the laminar plate boundary-layer flow is proportional
to

√
l. For turbulent flow and smooth surfaces, and sufficiently large Reynolds

numbers, it is proportional to about l0.8 to l0.85, while for rough surfaces it is
proportional to l0.65 to l0.75. Introducing the Reynolds number formed with l,
Rel = v · l/ν, we obtain the curves shown in Figure 4.92, in which cf and Rel

are plotted logarithmically. The unbroken and dashed lines indicate different
equations for the calculation of the friction drag coefficient. For laminar flow,
curve 1 is valid:

cf =
1.33√
Rel

. (4.128)

If the plate boundary layer is turbulent from the start, it is curve 2 that
holds:

cf =
0.074

Re0.2
l

. (4.129)

If the boundary-layer flow starts off laminar and becomes turbulent at the
critical Reynolds number 5 · 105, curve 3 holds:

cf =
0.074

Re0.2
l

− 1700

Rel
. (4.130)

This equation can be applied for Reynolds numbers up to 5·106. For Reynolds
numbers up to 5 · 108, H. Schlichting (1934) presented the following interpo-
lation formula (curve 4):

vortex street behind a plate computed streamlines
1912T. von Kármán

Fig. 4.91. Kármán vortex street



166 4. Dynamics of Fluid Flow

cf =
0.455

(log(Rel))2.58
. (4.131)

Curve 5 is the interpolation equation adapted to experiments by T. von
Kármán and K. Schönherr (1932):

√
cf =

0.242

log(Rel · cf )
. (4.132)

The behavior of turbulent flows on rough surfaces discussed in Section 4.2.9
also permits calculation of the friction drag of rough plates. It is to be expected
that the drag for a given length and a given roughness height k for fully
developed flow is proportional to the square of the velocity. The friction drag
coefficient cf is larger the larger the ratio k/l. As for a fixed k, this ratio
sinks with increasing length, cf decreases for increasing Reynolds numbers
at constant velocity.

The calculation of the drag of rough plates was initially carried out by
L. Prandtl and H. Schlichting (1934) based on measurements of J. Nikuradse
(1922) on rough pipes. The results are shown in Figure 4.93 for smooth and
rough surfaces.

Relation of the Drag to the Situation in the Wake

Figure 4.94 shows the time-averaged wake profile for a body moving with
velocity U∞. The frame of reference is at rest. The wake flow contains the
liquid set into motion by the drag of the body. The liquid flows past the
front of the body to all sides as in a source flow (Section 4.1.5). The source
strength Q is the same as the strength of the wake and is closely related to
the drag. With the wake velocity w, relative to the liquid at rest, we obtain
the source strength at a sufficiently large distance from the body:

Q =

∫

N

w · dA. (4.133)

Fig. 4.92. Dependence of the friction drag cf of smooth plates on the Reynolds
number Rel
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Fig. 4.93. Dependence of the friction drag cf of smooth and rough plates on the
Reynolds number Rel

The integration takes place over the wave surface N . Applying the balance
of momentum to the source and wake flows, we obtain

W = ρ ·Q · U∞. (4.134)

It can be seen from (4.133) and (4.134) that the drag can be determined by
measuring the wake. W. Betz (1925) was the first to indicate this possibility
to measure the drag.

The velocity relative to the body is U∞ − w in the wake. With a Pitot
tube (see Section 4.1.3) at rest relative to the body, the total pressure pg =
p + (ρ/2) · (U∞ − w)2 is measured. If pg0 is the unperturbed total pressure
p0 +(ρ/2) ·U2

∞, then the drag at a sufficiently large distance behind the body
is calculated from (4.133) and (4.134) as

W =

∫

N

(pg0 − pg) · dA. (4.135)

The term (ρ/2) · w2 is neglected.
The inviscid consideration of the flow past a body with drag also permits

us to draw an important conclusion about the pressure field. This is generated
by the source. The radial velocity is wr = Q/(4 · π · r2) for the point source
or Q1/(2 · π · r) for the line source of the plane flow with source strength Q1

Fig. 4.94. Wake flow of a moving body,
reference frame at rest
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per unit length. Restricting ourselves to first-order precision, in forming the
square of the resultant velocity at a large distance from the source, we only
need consider the x component u = wr · cos(ϕ). Neglecting the second-order
term, the expression (ρ/2) · (U∞ + u)2 −U2

∞ = (ρ/2) · (2 ·U∞ · u+ u2) in the
Bernoulli equation yields

p− p0 = −ρ · U · u = −ρ · Q · U∞

4 · π · r2 · cos(ϕ) or − ρ · Q1 · U∞

2 · π · r · cos(ϕ).

Using (4.134), it then follows that

p− p0 = −W · cos(ϕ)

4 · π · r2 or − W1 · cos(ϕ)

2 · π · r .

Here W1 is the drag per unit length for the line source of the plane flow. The
contributions are still considerable at large distances, particularly for the line
source. This must be taken into account in measurement if, for example, a
fixing device for the measuring apparatus perturbs the flow transverse to its
direction. The wake flow, in which, since it is a viscous flow, the Bernoulli
equation does not hold, delivers a lower-order contribution to the pressure
field.

We note the following with respect to the viscous wake flow. For Reynolds
numbers Red < 1 there exist analytic solutions by C.W. Oseen (1910) for the
sphere and by H. Lamb (1911) for the cylinder. These solutions are in good
agreement with the measurements shown in Figure 4.96. With increasing
Reynolds numbers, a steady backflow region initially forms behind the cylin-
der (Figure 4.95), then becoming the laminar Kármán vortex street. The
statements about the drag are then valid for the time-averaged velocity pro-
file in the wake. The drag coefficients cw as functions of the the Reynolds

32

101

71

65

55

Red

Fig. 4.95. Kármán vortex street behind a circular cylinder, F. Homann (1936)
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number Red formed with the diameter of the body d are shown in Figure
4.96 for a sphere, cylinder, and disk. The drag coefficient is determined by
the position of the separation point on the body. Whether the boundary-layer
flow on the body is laminar or turbulent is of importance. For the turbulent
boundary layer, the separation point is displaced downstream, causing the
drag to be greatly decreased (see Section 4.2.6).

This behavior was first determined in the investigation of the drag of
spheres. This drops at the Reynolds number 4 · 105 to values cw = 0.12.
With increasing Reynolds number, the cw value increases again to about
0.18. L. Prandtl in his famous tripwire experiment showed that it is indeed
the transition to a turbulent boundary layer that is responsible for the reduc-
tion in drag. If a thin wire (thickness the order of magnitude of the viscous
sublayer) is placed around a sphere somewhat upstream of the point where
separation would occur in laminar flow, the lower drag is observed even below
the Reynolds number 4 · 105. Because of the forced turbulent boundary-layer
flow, the separation point is displaced by the wire from about 80◦ to between
111◦ and 120◦.

For a creeping flow Red < 1, the Stokes law cw = 24/Red is valid for the
flow past a sphere.

For a circular cylinder, the transition from large drag values to small drag
values is at about Red = 5 · 105. The drag drops from cw = 1.2 to cw = 0.3.
For a creeping flow, instead of the Stokes solution, it is the Lamb solution
that is valid:

Fig. 4.96. Dependence of the drag coefficient cw of sphere, cylinder, and disk on
the Reynolds number Red



170 4. Dynamics of Fluid Flow

cw =
8 · π

Red · (2 − ln(Red))
.

In the case of a circular disk, the separation point is fixed, so that the laminar–
turbulent transition plays no role in the boundary layer of the body. For this
reason, the drag coefficient remains at a value of cw = 1.18.

Low Drag Airships

In aircraft technology, bodies with small air drag are of particular impor-
tance. This has led to the design of body shapes where flow separation is
avoided, to so-called streamline bodies. For streamline bodies, the pressure
distribution calculated with the potential equation is in very good agreement
with the measured pressure distribution (see Figure 4.97). There have to be
deviations at the trailing edge. Here the boundary layer of the body becomes
the shear layer of the wake flow, and so the measured pressure distribution
lacks the inviscid pressure increase to the stagnation pressure. The experi-
mentally determined drag coefficient is cw = 0.04. This is 1/28 of the drag of
a circular disk with the same diameter.

As well as avoiding flow separation, attempts are also made to keep the
friction drag small. This is possible if the flow remains laminar on a large
part of the surface. It is useful to note that an accelerated flow can be kept
laminar more easily than a decelerated flow. The acceleration on the body
must take place in such a way that the velocity maximum is as far as possible
downstream. This is achieved by placing the widest point of the profile as far
downstream as possible. However, the surface must be completely free from
roughness, since otherwise the laminar–turbulent transition would be caused
too soon.

4.2.11 Flows in Non-Newtonian Media

In Section 4.2.1 we treated nonlinear flow properties of non-Newtonian fluids.
As an example of a non-Newtonian flow, we now consider a fully developed
circular pipe flow whose shear strength obeys the power law (4.50).

Fig. 4.97. Pressure distribution on an
airship model, G. Fuhrmann (1910)
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Pipe Flow

The driving force of the fully developed pipe flow is the constant pressure
difference ∆p. As in the flow of a Newtonian liquid, the pressure gradient
along the pipe is constant, dp/dz = −∆p/l. To determine the solution we
use the continuity equation for incompressible liquids (Section 5.1)

∇ · v = 0 (4.136)

and the Navier–Stokes equation for steady flows with a gravitational field
(Section 5.2.1)

ρ · (v · ∇) · v = −∇p + ∇ · τ . (4.137)

Here τ is the tensor of the normal and shear stresses. The ansatz

vr = 0, vϕ = 0, vz = u(r), p = p(z) (4.138)

satisfies the continuity equation, and the left-hand side of (4.137) is equal to
zero, and τ has only two nonvanishing components. For τrz = τzr and using
(4.50), we have

τzr = τrz = K ·
∣∣∣∣
du

dr

∣∣∣∣
n−1

· du

dr
. (4.139)

With this, the z component of (4.137) alone yields a contribution:

0 = −dp

dz
+

1

r
· d

dr
(r · τrz). (4.140)

The r and ϕ components of (4.137) are identically satisfied. On integrating
(4.140) we obtain

τrz =
dp

dz
· r
2

+
C1

r
.

The shear stress τrz has a finite value for r = 0. This implies that the constant
of integration C1 must be equal to zero. With the ansatz (4.139) we obtain

K ·
∣∣∣∣
du

dr

∣∣∣∣
n−1

· du

dr
=

dp

dz
· r
2
.

As the pressure decreases in the direction of the z axis, dp/dz = −∆p/l is
negative, and so du/dr must also be negative:

du

dr
= −

(
∆p

2 ·K · l

) 1
n

· r 1
n .

Integrating this we obtain

u(r) = − n

n+ 1
·
(

∆p

2 ·K · l

) 1
n

· r n+1
n + C2,

where C2 is determined from the no-slip condition at the wall u(R) = 0, with
the radius of the pipe R. This yields
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u(r) = − n

n+ 1
·
[
Rn+1

2 ·K · ∆p
l

] 1
n

·
[
1 −

( r
R

)n+1
n

]
. (4.141)

For n = 1, (4.141) is identical to the velocity profile of a Newtonian liquid.
For n < 1, there is a steeper velocity gradient, as shown in Figure 4.98. The
volume flux Q is calculated from (4.141) as

Q =

2·π∫

0

R∫

0

u(r) · r · dr · dϕ =
n

3 · n+ 1
· π ·R3 ·

(
R

2 ·K · ∆p
l

) 1
n

. (4.142)

This yields the mean velocity um:

um =
Q

π ·R2
=

n

3 · n+ 1
·R ·

(
R

2 ·K · ∆p
l

) 1
n

.

For n = 1 and K = µ we again obtain the Hagen–Poiseuille law for the pipe
law of a Newtonian liquid.

Weissenberg Effect

Shear flows of liquids with high molecular weights have non-Newtonian effects
that can be associated with the normal stresses. As an example we consider
the Weissenberg effect. A non-Newtonian fluid moves between two concentric
cylinders with radii R1 and R2 (Figure 4.99), of which the inner cylinder
rotates with constant angular velocity ω. The liquid has a free surface on
which the surrounding pressure acts. The height of the liquid surface is so
large that the flow on the bottom of the cylinder has no effect on the form
of the free surface.

In cylindrical coordinates, only the ϕ component of the velocity vϕ(r)
is nonzero. There is therefore a shear flow between the two cylinders. The

Fig. 4.98. Velocity distribution of a non-Newtonian
liquid in a circular pipe
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pressure is dependent only on r. The stress tensor of the non-Newtonian fluid
is to have the following form:

τ =




0 τrϕ 0

τϕr σϕϕ 0

0 0 0


 , (4.143)

where σϕϕ and τrϕ are dependent only on r. The r and ϕ components of the
Navier–Stokes equation for steady flows (4.137) are

−ρ ·
v2

ϕ

r
= −dp

dr
− σϕϕ

r
, (4.144)

0 =
1

r
· d

dr
(r · τrϕ) +

τrϕ

r
=

1

r2
· d

dr
(r2 · τrϕ). (4.145)

The z component of (4.137) is satisfied identically. Using the Newtonian
ansatz in cylindrical coordinates for the shear stress τrϕ = µ·(dvϕ/dr−vϕ/r),
(4.145) yields

0 = µ · d

dr

(
1

r
· d

dr
(r · vϕ)

)
. (4.146)

Integration of this expression allows us to determine the velocity distribution.
This is identical to the corresponding velocity distribution of a Newtonian
liquid:

vϕ(r) = A · r + B · 1

r
. (4.147)

With the boundary conditions vϕ(r = R1) = ω · R1 and vϕ(r = R2) = 0 we
obtain the constants

A = − ω · R2
1

R2
2 −R2

1

and B =
ω · R2

1 · R2
2

R2
2 −R2

1

.

Fig. 4.99. Flow between two concentric cylinders, rotat-
ing inner cylinder
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Equation (4.144) yields an equation for the pressure:

dp

dr
=

d(ln(r))

dr
· dp

d(ln(r))
= −σϕϕ

r
+ ρ ·

v2
ϕ

r
,

or

dp

d(ln(r))
= −σϕϕ + ρ · v2

ϕ. (4.148)

Formally, we can replace σϕϕ by the normal stress difference σϕϕ − σrr. By
assumption, the constant external pressure acts on the free surface. Therefore,
the change in liquid height h is proportional to the pressure gradient:

dh

dr
=

1

ρ · g · dp

dr
. (4.149)

For liquids with high molecular weights, σϕϕ − σrr > 0. For sufficiently large
values of the difference in the normal stresses, (4.148) and (4.149) declare
that the surface level of the liquid h at the rotating inner cylinder is greater
than that at the outer cylinder at rest. This rise of the liquid at the rotating
inner cylinder was described by K. Weissenberg (1947) and can be observed
in many viscoelastic liquids.

Jet Expansion

Another normal stress effect occurs when a viscoelastic liquid exits as a free
jet from a nozzle or an opening in a cylindrical pipe. A non-Newtonian liquid
jet exiting downward from a vertical pipe (Figure 4.100) first expands before
gravity causes it to contract again. Assuming that the flow at the cross-section
of the opening is a fully developed Hagen–Poiseuille flow, the Navier–Stokes
equation in the radial direction reduces to

d(p− σrr)

dr
= −1

r
· (σϕϕ − σrr). (4.150)

With (4.150), together with a balance of momentum around the opening
and the normal stress functions, the jet expansion can be related to the
normal stresses of the non-Newtonian fluid, as in the case of the Weissenberg
effect. The expansion of the jet is larger, the smaller the pipe radius. This
corresponds to the aspect of the Weissenberg effect in which the rise of the
liquid at the rotating cylinder is greater, the smaller the diameter of the inner
cylinder.

Fig. 4.100. Expansion of a liquid jet



4.2 Dynamics of Viscous Liquids 175

4.2.12 Problems

4.10

In a vertical channel a fluid with con-
stant density ρ and dynamic viscos-
ity µ flows under the effect of gravity
g. The channel has width h, and its
depth b perpendicular to the plane
of the figure is much larger than h
(two-dimensional flow). At position
1 (x = 0) there is a pressure bore-
hole at which the static pressure p1

of the flow can be measured. The dis-
tance between the pressure borehole
and the exit cross-section is l. At the
exit cross-section, the pressure is the
surrounding pressure p0.

It is assumed that the channel flow is a fully developed, steady, laminar flow
with a pressure gradient. The following are to be determined:

(a) The dependence of the velocity profile u(x, y) on the pressure gradient
∂p/∂x.

u(y) =
h2

8 · µ ·
(
ρ · g − dp

dx

)
·
(

1 − 4 ·
( y
h

)2
)
.

(b) The pressure p = f(x, y).

p(x) =
p0 − p1

l
· x+ p1.

(c) The pressure p1,ṁ at position 1 that is necessary to move a given mass
flux ṁ.

p1,ṁ = p0 + l ·
(

12 · µ · ṁ
ρ · h2 · b − ρ · g

)
.
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4.11

A machine part is set at rest above
a horizontal plane wall that moves
with the constant velocity U in such
a manner that the left part of the
lower side and the moving wall form
a two-dimensional gap with length l,
height s, and depth b (perpendicular
to the plane of the figure).

The gap and the attached chamber K contain oil (Newtonian medium with
constant dynamic viscosity µ). The moving wall drags the oil in the lower
part of the gap into the chamber K, which then flows back into the upper
part of the gap out of the chamber.

No oil can exit at the sealing lip (position 3). The pressure at the left end
of the gap at position 1 is pa, and that at the right end at position 2 is the
chamber pressure pi. The flow over the entire length l is fully developed and
laminar.
(a) What is the differential equation for the velocity u(x, y) and the relation
for the dependence of the pressure p on pa and pi?

d2u

dy2
=

1

µ
· dp

dx
, p(x) =

pi − pa

l
· x+ pa.

(b) Determine the velocity profile u(y) and the pressure pi.

u(y) =
1

2 · µ · pa − pi

l
· s2 ·

[
y

s
−
(y
s

)2
]

+ U ·
[
1 − y

s

]
,

pi =
6 · µ · l
s2

· U + pa.

4.12

In order to determine whether a given steady, incompressible fundamental
velocity profile U0(z) is stable or unstable, we need the perturbation differen-
tial equations. These can be derived from the Navier–Stokes equations using
the following perturbation ansatz:

u = U0(z) + u′, w = w′, p = p0 + p′.

Inserting this ansatz into the Navier–Stokes equations and then linearizing,
we obtain the linearized perturbation differential equations to determine the
flow quantities u′, w′, and p′. They read
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∂u′

∂x
+
∂w′

∂z
= 0,

∂u′

∂t
+ U0 ·

∂u′

∂x
+ w′ · dU0

dz
= −1

ρ
· ∂p

′

∂x
+ ν ·

(
∂2u′

∂x2
+
∂2u′

∂z2

)
,

∂w′

∂t
+ U0 ·

∂w′

∂x
= −1

ρ
· ∂p

′

∂z
+ ν ·

(
∂2w′

∂x2
+
∂2w′

∂z2

)
,

The perturbation quantities u′, w′, and p′ are modeled using the wave trial
solution:

u′(x, z, t) = û(z) · ei·(a·x−ω·t), w′(x, z, t) = ŵ(z) · ei·(a·x−ω·t),

p′(x, z, t) = p̂(z) · ei·(a·x−ω·t),

with a the complex wave number and ω the complex angular frequency.
(a) Insert the wave trial solution into the perturbation differential equations
and determine a system of differential equations for the unknowns û, ŵ, and
p̂.

a · û+
dω̂

dz
= 0,

(a · U0 − ω) · û− i · dU0

dz
· ŵ = −1

ρ
· a · p̂+ i · ν ·

(
a2 · û− d2û

dz2

)
,

(a · U0 − ω) · ŵ = i · 1

ρ

dp̂

dz
+ i · ν ·

(
a2 · û− d2ŵ

dz2

)
.

(b) Transform the differential equations obtained to express the unknown
wave amplitudes û, ŵ, and p̂ in a single equation to determine ŵ.
[
(a · U0 − ω) ·

(
d2

dz2
− a2

)
− a · d2U0

dz2
+ i · ν ·

(
d2

dz2
− a2

)2
]
ŵ = 0 .

4.13

Air (kinematic viscosity ν, density ρ) flows with velocity U∞ past a thin plate
of length l and width B. The flow is two-dimensional and incompressible.

A laminar boundary layer forms on
the forward part of the plate, while
downstream, after the critical Rey-
nolds number Relcrit

is exceeded, a
turbulent boundary layer develops.

(a) How is the total drag of the boundary-layer flow made up and what is
the relative contribution of each individual drag?

pressure drag Wd(≈ 0%) and friction drag Wf (≈ 100%).
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(b) Calculate the position xcrit of the laminar–turbulent transition if the
critical Reynolds number is Relcrit

= 5·105. (U = 10 m/s, ρ = 1.2 kg/m3, ν =
1.511 · 10−5 m2/s, l = 2 m, B = 2 m.)

xcrit =
Relcrit

· ν
U

= 0.76 m.

(c) Calculate the total drag W on the upper side of the plate if the drag
coefficient can be approximated by cfl

= 0.664/
√

Rex up to the position xcrit

and by cft = 0.0609 · (Rex)−1/5 after the position xcrit.

W =




xcrit∫

0

0.644√
u·x
ν

· dx+

L∫

xcrit

0.0609

(u·x
ν )

1
5

· dx


 · 1

2
· ρ∞ · c2∞ ·B,

W = 0.379 N.

4.14

The turbulent Couette flow of con-
stant density ρ between two in-
finitely extended plates moving with
velocity U in opposite direc-
tions has a time-averaged velocity
profile u(y). The turbulent Reynolds
shear stresses are calculated using
the Prandtl mixing length:

l(y) = K(h2 − y2).

(a) Determine the constant K such that the condition

− d l

dy

∣∣∣∣
y=±h

= ±κ

is satisfied.

K =
κ

2h
.

(b) Determine the equation of the turbulent shear stresses τt for the given
distribution of the Prandtl mixing length.

τt = −ρu′v′ = ρ
[ κ
2h

(h2 − y2)
]2(du

dy

)2

.

(c) For the Couette flow p = const, this means that µ(du/dy) − ρu′v′ is also
constant. Outside the viscous sublayer, the viscous shear stress µ(du/dy) may
be neglected compared to the turbulent shear stress. Calculate the velocity
profile u(y) at the upper wall y′ = y + h.



4.2 Dynamics of Viscous Liquids 179

u(y′)

u∗
=

1

κ
ln

(
y′/h

2 − (y′/h)

)
, with u∗ =

κ

2h
(h2 − y2)

du

dy
.

4.15

A stream of air of velocity U =
1.62 m/s flows past the entire length
of a factory smokestack of height
H = 100 m whose diameter de-
creases linearly from bottom dl =
6 m to top du = 0.5 m, where
the index l stands for lower and u
for upper (kinematic viscosity of air
ν = 15 · 10−6 m2/s, density of air
ρ = 1.234 kg/m3). To determine
the wind load on the smokestack,
the drag coefficient cw of a segment
of height dy is assumed to depend
on Red as for the circular cylinder
cw = f(Reα).
With the idealized assumption that
the drag coefficient has the constant
numerical value cw,l = 1.2 in the
subcritical regime (Red < 3.5 · 106)
and jumps discontinuously to the
constant numerical value cw,u = 0.4
in the supercritical regime (Red >
3.5 · 106), determine the wind load
W on the smokestack.

W =
ρ

2
· U2

∞ ·
[
cw,u ·

(
du − dl

2 ·H · y2
crit + du · ycrit

)

+ cw,l ·
du − dl

2 ·H · (H2 − y2
crit) + cw,l · dl · (H − ycrit)

]
,

W = 331.2 N.
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4.16

A non-Newtonian Bingham material
flows through a pipe of length l. The
flow function du/dr = f(τ) of the
Bingham medium is written as

f(τ) = 0 for 0 ≤ τ

τf
≤ 1,

f(τ)

µ

(
τ

τf
− 1

)
for

τ

τf
≥ 1.

Below the flow stress τf the Bingham material behaves like a solid elastic
body, and above τf it behaves like a Newtonian medium. Two zones form
in the pipe. In the edge zone the Newtonian medium flows with a parabolic
velocity profile. The core zone behaves like a solid body.
(a) Calculate the dependence of the volume flux Q on the general flow func-
tion f(τ).

Q =
πR3

τ3
w

·
τw∫

0

r2f(τ)dτ, with τw = τ(R) =
R

2

dp

dτ
.

(b) Insert the flow function of the Bingham medium for f(τ) and calculate
the volume flux Q.

Q =
πR4(p1 − p2)

8µ l
· f(ξ), with ξ =

(p1 − p2)R

µ l
,

f(ξ) = 1 − 4

3

(
2

ξ

)
+

1

3

(
2

ξ

)4

.
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4.3 Dynamics of Gases

Considerable density or volume changes occur in flows of gases and vapors
where large pressure differences appear. Volume changes and the pressure
differences necessary to cause them occur basically in the following cases:

Large height extensions of gas masses under the effect of gravity

Such flows occur in the free atmosphere. They will be treated in Section 10.2.

Large velocities in a gas flow

These occur in pressure compensation between two containers of different
pressures, or when a body moves with a very large velocity in a gas. In prac-
tice, these flows occur in vapor and gas turbines and similar flow machinery.
On the other hand, they are also found in the motion of rockets and air-
planes, as well as in airplane propellers and jet engines. The fluid mechanics
of compressible media is also called gas dynamics.

Large acceleration

This occurs in gases that are at rest or in motion if parts of the wall or
body carry out greatly accelerated motion. Examples are the consequences
of the sudden opening and closing of flaps and valves, and the expansion of
explosions.

Large temperature differences

These can occur when heat is transferred, even at small flow velocities. Such
flows with heat transfer will be treated in Chapter 7.

4.3.1 Pressure Propagation, Velocity of Sound

We consider a gas at rest in a pipe. A piston is moved and causes a pressure
increase that propagates in the gas at rest as shown in Figure 4.101. We as-

Fig. 4.101. Pressure wave in a pipe
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sume that the pressure distribution and the entire flow state move to the right
with velocity c without any change in their form. As the gas is compressed,
it has the flow velocity w behind the pressure increase. We assume that the
pressure increase p1 − p0 is small compared to the pressure p0. Similarly, we
assume that the density change ρ1−ρ0 and w are small. The increase of mass
per unit time in the pipe is A · (ρ1 − ρ0) · c, and the mass flowing into the
pipe per unit time is A · ρ1 · w. From continuity it follows that

ρ1 · w = (ρ1 − ρ0) · c. (4.151)

With the approaching momentum flux per unit time A ·w ·ρ1 ·w, the increase
in momentum per unit time A ·w · ρ1 · c and the resulting force A · (p1 − p0),
the equation of motion leads to

p1 − p0 + ρ1 · w2 = ρ1 · w · c. (4.152)

The assumptions made above mean that the square term ρ1 · w2 can be
neglected. Using (4.151), (4.152) yields

c2 =
p1 − p0

ρ1 − ρ0
.

The expression on the right-hand side depends only on the compression law
of the fluid. Assuming that the disturbances are small, it can be replaced by
the differential quotient dp/dρ:

c2 =
dp

dρ
. (4.153)

The propagation velocity c of small pressure perturbations is therefore inde-
pendent of the size of the pressure change and of the width of the transition
region. It is dependent only on the compression law of the fluid. The quan-
tity c is called the velocity of sound of small pressure perturbations (sound
waves).

According to the isentropic law p = const · ρκ, gases satisfy

c2 =
dp

dρ
= κ · const · ρ(κ−1) = κ · p

ρ
. (4.154)

With the equation of state of ideal gases p = R ·ρ ·T (R the material-specific
gas constant) we have

c =

√
κ · p

ρ
=

√
κ · R · T .

Therefore, the velocity of sound in a gas is dependent only on the tempera-
ture. For air at 0◦ C, i.e. T = 273 K, we obtain

c =

√
κ · p0

ρ0
= 331

m

s
.
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Expansion of Pressure Waves

In a reference frame moving with the flowing gas, the pressure perturbation
expands with the velocity of sound c relative to the gas. Relative to the
flow velocity w, the pressure perturbation moves downstream with velocity
c + w and upstream with velocity c − w. If w is larger than c, the pressure
perturbation will not propagate upstream.

If the flow velocity w is smaller than the velocity of sound c, the pertur-
bations expand in the form of a spherical wave in all directions. If the flow
velocity is greater than the velocity of sound, all spherical waves move within
a cone downstream of the position A where the perturbation first appeared
(Figure 4.102). If a sound source A moves with velocity w > c through a
gas at rest, the situation is similar. The perturbations expand inside a cone
downstream of the sound source. The apex angle of this so-called Mach cone
can be determined as follows. Within the time interval τ , a point-shaped per-
turbation will develop to a sphere of radius c · τ , whose midpoint has moved
a distance w · τ away. The cone touches the spheres tangentially, so that

sin(α) =
c · τ
w · τ =

c

w
=

1

M
, (4.155)

where α is called the Mach angle and M the Mach number. For M < 1 the
flow is said to be subsonic, for M ≈ 1 transonic, and for M > 1 supersonic.

The same relations can also be applied to the motion of bodies in air at
rest. If the body moves with supersonic velocity, the perturbations caused by
the body expand within a Mach cone. Figure 4.103 shows an example of the
head wave of a bullet flying with supersonic velocity. The pressure differences
are so large that the approximation of small perturbations is no longer valid,
and the head wave propagates with supersonic velocity. The angle of the head
wave is therefore larger than the Mach angle α.

The continuity equation (4.151) and the equation of motion (4.152) for
the propagation velocity of a wave front are based on the assumption of

Fig. 4.102. Expansion of a pressure wave
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unchanging wave shape. This is satisfied for small perturbations of the free-
stream state, or in the case of the shock waves treated in Section 4.3.4. Finite,
continuous pressure changes, on the other hand, alter their wave form as they
propagate. This can be explained by considering the finite pressure change
to be a series of many small changes. Each perturbation then moves in the
state altered by the previous wave. If w0 is the flow velocity in front of the
wave, the change in the flow velocity is computed by (4.151) to be

w1 − w0 =
c · (ρ1 − ρ0)

ρ1
. (4.156)

The change in density dρ = ρ1 − ρ0 is related to the change in pressure dp
and the change in the velocity of sound dc. Equation (4.154) leads to an
expression for dc:

2 · c · dc = 2 · c · (c1 − c0) = κ · dp

ρ
− κ · p

ρ2
· dρ

=
dp

dρ
· (κ− 1) · dρ

ρ
=
c2 · (κ− 1) · (ρ1 − ρ0)

ρ1
.

The density change ρ1 − ρ0 is thus related to the change in the velocity of
sound c1 − c0, and (4.156) leads us to

w1 − w0 =
2

κ− 1
· (c1 − c0). (4.157)

In a two-dimensional sound wave, the flow velocity changes 2/(κ− 1) times
(for air five times) as much as the magnitude of the change of the velocity of
sound. This result is valid also for strong perturbations.

For the compression wave shown in Figure 4.104, the velocity of sound in
the wave is larger than the velocity of sound in front of the wave. According
to (4.157), the flow velocity is therefore also larger. The propagation velocity
of each part of the wave is equal to the sum of the local velocity of sound and
the local flow velocity c + w. Therefore, the perturbation moves ever faster
as the depth of the wave increases. The wave becomes steeper with time and
forms a vertical jump, the shock wave, to be treated in Section 4.3.4.

Fig. 4.103. Schlieren photograph of a
bullet, C. Cranz (1926)
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On the other hand, if, as in Figure 4.104, an expansion wave moves to
the right into a medium at rest, w0 = 0, the gas in the wave flows to the left.
Following (4.157), because c1 < c0, w1 becomes negative. The perturbations
behind the wave front move slower, the smaller the pressure becomes. Such
an expansion wave becomes flatter with time.

4.3.2 Steady Compressible Flows

In a compressible, inviscid flow, the generalized Bernoulli equation (4.4) is
valid for a stream filament. Neglecting the effect of gravity, this reads

f +
w2

2
= f0 = const, (4.158)

with the pressure function f(p) =
∫

(dp/ρ). For isentropic changes of state

ρ = ρ0 ·
(
p

p0

) 1
κ

,

the evaluation of the integral yields

f =
κ

κ− 1
· p0

ρ0
·
(
p

p0

)κ−1
κ

. (4.159)

If p0 is the reservoir pressure at w0 = 0, e.g. the reservoir pressure in a vessel
where exit processes are to take place, then

w =
√

2 · (f0 − f) =

√√√√ 2 · κ
κ− 1

· p0

ρ0
·
(

1 −
(
p

p0

)κ−1
κ

)
. (4.160)

Fig. 4.104. Expansion of compression and expansion waves
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If the gas is expanded as far as a vacuum (p = 0), (4.160) yields the maximum
velocity as

wmax =

√
2 · κ
κ− 1

· p0

ρ0
=

√
2

κ− 1
· c0. (4.161)

For air at 0◦C the expansion has a maximum velocity of

wmax = 740
m

s
.

This is a hypothetical limiting value. Because a temperature and a conden-
sation of the gas at absolute zero cannot be attained, this value cannot be
reached. In hypersonic wind tunnels driven with air, a limiting value is ob-
tained that is about 10% smaller than the theoretical value (4.161).

The relationship between w and p is shown in Figure 4.105. The figure
also contains the dependence of the specific volume v = 1/ρ on the pressure
as follows from the isentropic equation. The shaded area

∫ p0

p
v · dp indicates

the difference F0 − F. For steady, compressible flow (see Section 4.1.1), the
continuity equation states that the same mass flows through all cross-sections
of a stream filament per unit time. Along the stream filament we have

A · ρ · w = const. (4.162)

The dependence of the stream filament cross-section A on the pressure p is
given by the dependence of the function 1/(ρ·w) = v/w. This can be explained
as follows, using (4.160) and (4.162). At p = p0, w = 0 and therefore A = ∞.
If p is reduced, w increases gradually, initially without much of a change in ρ.
If p is very small and is reduced even further, w approaches the value wmax

and then changes only slightly. However, ρ also decreases without limit as p
decreases without limit; i.e. A must increase and tend toward ∞.

Between the regime where A decreases and that where the stream filament
cross-section increases, there must clearly exist a minimum of A. This is found
at the point where the relative increase of the velocity dw/w is just as large
as the relative decrease of the density −dρ/ρ. This is the case at the point

Fig. 4.105. Dependence of the specific volume v, velocity w, and v/w on the
pressure p
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where the flow velocity is equal to the velocity of sound. Because of the
isentropic cooling that has taken place, this velocity of sound is not that
of the initial state. It is smaller, corresponding to the reduced temperature
(about 315 m/s in air at rest at 20◦C). After the minimum is exceeded, the
flow velocity is larger than the velocity of sound. In such a flow, a reduction
of the pressure (increase in velocity) causes an increase in the cross-section.
If the pressure is raised (decrease in velocity), the cross-section decreases. A
continuous acceleration of the gas from the subsonic state to the supersonic
state initially requires a contraction and, after the velocity of sound has been
passed, an expansion of the stream tube. Such an arrangement is called a
Laval nozzle.

In the case of a simple opening without expansion, as soon as the back
pressure is small enough, the fluid in the opening flows with the velocity of
sound. In air, the critical pressure ratio of back pressure to reservoir pressure
is about 0.53 of the reservoir pressure. In general, the critical pressure ratio
of an ideal gas is

p′

p0
=

(
2

κ+ 1

) κ
κ−1

.

The associated velocity is

w′ = c′ =

√
2 · κ
κ+ 1

· p0

ρ0
.

The discharge amount is therefore independent of the back pressure. Outside
the outlet, the cross-section of the gas jet expands due to the inertia of the
gas flow to such a large degree that an underpressure occurs within it. This
underpressure causes the flow to become convergent, and it compresses again
to a pressure that is about that of the pressure in the outlet. This process
repeats itself periodically (Figure 4.106).

The outlet pressure pm can be measured with a borehole in the nozzle
close to the outlet (cf. Figure 4.107). For external pressures p2 that are smaller
than the critical pressure p′ it is constant and is equal to the critical pressure.
For higher back pressures p2, pm is the same as p2. If p2 is gradually reduced
from the value p0, the discharge amount

Q = A · ρm · wm = A ·
(
p2

p0

) 1
κ

·

√√√√ 2 · κ
κ− 1

· p0 · ρ0 ·
(

1 −
(
p2

p0

)κ−1
κ

)
(4.163)

Fig. 4.106. Supersonic jet, L. Mach
(1897)
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Fig. 4.107. Dependence of the discharge and the outlet pressure on p2, measure-
ment of the outlet pressure

increases gradually to a maximum value at the critical pressure

Qmax =

(
2

κ+ 1

) 1
κ−1

· A ·
√

2 · κ
κ+ 1

· p0 · ρ0. (4.164)

For further reduction of p2, Q = Qmax remains constant. The dependence
of pm and Q on p2 are shown in Figure 4.107. This behavior can be under-
stood with the pressure expansion discussed in Section 4.3.1. A chamber is
connected to the end of the outlet of the nozzle in which the pressure can
be regulated by means of a throttle (Figure 4.108). Let the pressure in the
chamber p2 be larger than the critical pressure p′. If p2 is lowered by further
opening of the throttle, an expansion wave moves into the nozzle and causes a
new flow state. For further reduction of p2 the velocity of sound is eventually
reached in the outlet. If the pressure p2 is further reduced, the perturbations

Fig. 4.108. Throttle
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that expand with the velocity of sound can no longer propagate upstream
into the outlet. The state there remains constant.

Laval Nozzle Flow

In order to attain regulated expansion at supercritical pressure ratios, the
Swedish engineer G. de Laval (1883) applied the form of delivery nozzle shown
in Figure 4.109 in the construction of his steam turbine. If the pressure in front
of the nozzle p0 is given, associated values of w and v/w can be determined
for every lower pressure p corresponding to Figure 4.105 for the inviscid flow.
With the relation Q = A · ρ · w = A · w/v for the flow, for every given value
of Q we can determine the value of v/w associated with every cross-section
A. Figure 4.105 can be used to determine the associated pressure. In the flow
through the Laval nozzle, the minimum of the stream filament cross-section
is at the same point as the minimum of the cross-section of the nozzle. At
this point the delivery has a maximum and can be calculated as in the case
of a simple outlet from (4.164). The pressure in the nozzle is shown as the
heavy line in Figure 4.109 that leads to the lower final pressure pu. Since two
pressures are always associated with one value of v/w from Figure 4.105, the
pressure may take a second path at the narrowest point, leading to the upper
final pressure po, the outer pressure p2.

If we determine the pressure course associated with smaller delivery
amounts, we obtain the lines above po. The dependence of the delivery Q on
the pressure p2 at the end of the nozzle is shown in the right-hand diagram in
Figure 4.109. The delivery grows from zero to Qmax. Moving down from the
pressure po, the velocity of sound is reached in the narrowest cross-section,
and the delivery remains constant for further reduction in the pressure.

It turns out that the flow for outer pressures between po and pu is not
loss-free. Observations by A. Stodola showed that in this regime discontinuous
compression (compression shock waves) occur, to be treated in Section 4.3.4.

Fig. 4.109. Flow through a
Laval nozzle
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To do this, as well as the continuity and Bernoulli equations, we also need
the conservation of energy.

4.3.3 Conservation of Energy

There are many different ways in which flows can be associated with losses
in mechanical energy. The losses can be caused by friction, turbulence, or
discontinuous processes such as shock waves. The mechanical energy that is
destroyed is converted to heat energy. In the case of gases this heat energy
can be of use in further expansion.

The conservation of energy needed to describe the losses will be derived in
analogy to the derivation of the conservation of momentum in Section 4.1.7
for one-dimensional inviscid flows.

We consider the change in energy of a bounded part of a steady gas flow.
Here we consider a part of a stream filament (Figure 4.33). The change in
the bounded gas volume in the time dt consists of the vanishing of the mass
particle dm = ρ1 · A1 · w1 · dt at A1 and the addition of a mass particle
dm′ = ρ2 · A2 · w2 · dt at A2. From continuity it follows that dm = dm′. As
the gas mass is shifted, there is a change in the energy content that must be
equal to the energy supplied from outside in the time interval dt. The energy
content of a mass particle consists of its kinetic energy, its potential energy
and its heat energy e. If the potential energy is due only to gravity, the energy
content of the mass dm is equal to dm · (w2/2+g ·z+e). The energy transfer
to the mass contained in the stream filament consists of the pressure work on
the end surfaces and the heat transfer through the side surface. The friction
work is neglected. The pressure work on the surface A1 is A1 ·p1 ·w1 ·dt. With
the specific volume v1 and dm = ρ1 · A1 · w1 · dt = A1 · w1 · dt/v1 this yields
dm ·p1 ·v1, and for the pressure work on the surface A2, similarly dm ·p2 ·v2.
The heat transfer between A1 and A2 is denoted by q1,2 · dm. The change in
the energy content is therefore

dm·
(
w2

2

2
+ g · z2 + e2

)
− dm ·

(
w2

1

2
+ g · z1 + e1

)

= dm · (p1 · v1 − p2 · v2 + q1,2).

This yields

w2
2

2
+ g · z2 + e2 + p2 · v2 =

w2
1

2
+ g · z1 + e1 + p1 · v1 + q1,2

or at an arbitrary position of the end cross-section

w2

2
+ g · z + e+ p · v = const + q. (4.165)

In differential form we obtain the equation

w · dw + g · dz + de+ d(p · v) = dq, (4.166)
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where e + p · v is the enthalpy h. For ideal gases with constant specific heat
we have

e =
1

κ− 1
· p · v = cv · T,

h = e+ p · v =
κ

κ− 1
· p · v = cp · T,

where cv and cp are the specific heats at constant volume and pressure,
respectively. For a steady flow without heat transfer the total energy remains
constant, because the friction energy present is wholly changed into heat.
Gravity may be neglected for stratification flows, so that the energy equation
takes on the following form:

h+
w2

2
= const. (4.167)

According to the first law of thermodynamics, for every mass element of
the gas, the heat supplied through heat conduction and the friction work
transformed into heat are used to raise the internal energy and to carry out
expansion work. The friction work dWR done on a mass element satisfies

dq + dWR = de+ p · dv. (4.168)

Adding (4.168) and (4.166), and using d(p · v) = p · dv + v · dp, we obtain

w · dw + g · dz + v · dp+ dWR = 0. (4.169)

After integration we obtain the Bernoulli equation extended by the friction
term WR:

w2

2
+ g · z +

∫
v · dp+WR = const. (4.170)

4.3.4 Theory of Normal Shock Waves

In a parallel flow of velocity w1 and pressure p1, the specific volume v1 is
compressed discontinuously to the smaller specific volume v2 by means of a
steady normal shock wave in the plane AA (Figure 4.110), with reduction of
the velocity to w2 and increase of the pressure to p2. The following equations
hold for the change of the state quantities and the velocity across the normal
shock wave:

Continuity equation:

m =
w1

v1
=
w2

v2
, (4.171)

Momentum equation:

m · (w1 − w2) = p2 − p1, (4.172)

Energy equation (without heat transfer q):
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w2
1

2
+ h1 =

w2
2

2
+ h2, (4.173)

where m is the mass flux per unit area. The enthalpy h is a function of p
and v. With (4.171), w1 and w2 can be eliminated in (4.172). This yields
p2 − p1 = (v1 − v2) ·m2. With the energy equation (4.173) we obtain

(p2 − p1) ·
v1 + v2

2
= h2 − h1.

This dependence of p2 on v2 for given p1 and v1 is called the Hugoniot curve.
If three state quantities, e.g. p1, v1, and p2, are given, we can then de-

termine the fourth, v2. Thus we obtain m and also the velocities w1 and w2.
The normal shock wave satisfies

w1 · w2 = c′
2
,

with the critical velocity of sound c′ of the approaching flow. One of the ve-
locities w1 and w2 is larger than the velocity of sound c′, while the other is
smaller. Theoretically, (compression) shock waves and discontinuous expan-
sion processes are both possible. However, it is only the compression shock
wave in which the entropy increases, and so, according to the second law of
thermodynamics, only this is physically possible.

Equations (4.171) to (4.173) for the steady shock wave can also be applied
to an unsteady compression wave by changing the frame of reference. If we
superimpose the velocity w1 onto the flowing fluid in Figure 4.110, the velocity
of the shock plane becomes zero. The shock moves with velocity U = w1 to
the left, and the gas behind the shock follows with velocity w = w1 − w2.

The momentum equation for unsteady shock motion yields p2 − p1 =
ρ · U · w. The velocity of propagation U of the shock is always greater than
the velocity of sound and can become arbitrarily large for arbitrarily large
pressure differences. Such large propagation velocities can be observed in
explosions.

Fig. 4.110. Normal shock wave
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In shock waves, the quantity (w2
1 − w2

2)/2 contained in h1 − h2 leads to
increases in the heat content. For a curved shock wave, such as the head waves
in Figures 4.103 or 4.111, the different stream filaments experience different
heating, so that the gas mass behind the flow is no longer homogeneous and
therefore no longer irrotational.

Shock in Front of Blunt Bodies

In the supersonic flow past blunt bodies a steady shock appears in front of the
body (Figure 4.111). It can be calculated close to the stagnation streamline
using the equations of the normal shock wave. The pressure jump across
the shock propagates sideways as an oblique shock wave. With increasing
distance from the body the pressure increase in the shock wave becomes less,
and the oblique shock wave passes over to a normal conical wave. At large
velocities the shock lies close to the body, while at lower free-stream velocities
the distance to the shock becomes larger.

The flow portrait looks similar for a body moving with supersonic velocity.
The shock wave is heard as the sonic boom of supersonic aircraft or of the
bullet in Figure 4.103. The pressure increase at the stagnation point S is
proportional to the square of the velocity for both large and small velocities:

ps − p∞ =
ρ∞ · w2

∞

2
· cp.

The pressure coefficient cp is a function of the Mach number. The pressure
increase consists of two parts, a continuous part behind the shock and a
discontinuous part across the shock (shock part). For comparison, we consider
the pressure coefficient cp0 of an imaginary isentropic (loss free) deceleration
of the flow up to the stagnation point. The dependence of the values of cp of
the shock part and of cp0 on the Mach number can be read from the following
table:

Fig. 4.111. Shock
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M = w/c 0 0.5 1.0 1.5 2 3 ∞
cp 1 1.065 1.275 1.53 1.655 1.75 1.85

shock part - - 0 0.92 1.25 1.48 1.65

cp0 1 1.065 1.275 1.69 2.48 4.85 ∞

We draw an analogy to the behavior of the stagnation pressure and note
that the drag at even very large velocities is again proportional to the square
of the velocity.

Normal Shock in the Laval Nozzle

If the outer pressure p2 at the end of a Laval nozzle (Figure 4.109) is between
po and pu, a normal shock occurs in the nozzle. This leads from supersonic
flow to subsonic flow. The pressure distributions in Figure 4.109 with the
same mass fluxes and the same total energy can be extended, and they are
shown in Figure 4.112. The transition of the normal pressure distribution
from p1 to pu to the pressure distribution depending on the outer pressure
p2 is caused by the shock. The position of the shock is uniquely determined
by the momentum equation. In fact, the processes inside the Laval nozzle are
more complicated. Instead of the normal shock, shock branching with oblique
shocks can also occur. The sudden pressure increase that occurs when the
shocks interact with the wall boundary layer can lead to flow separation.

Figure 4.113 shows schlieren photographs by L. Prandtl (1907) for dif-
ferent pressure ratios at the end of the nozzle. The first pictures shows the
unperturbed acceleration of compressed air from an initial pressure p0 = 7 bar
to atmospheric pressure. The nozzle walls have been roughened so that the
crossed perturbations (characteristic lines) of steady sound waves are made
visible in the supersonic part of the nozzle. The second picture shows the
density through the nozzle when the velocity of sound is not attained. The

Fig. 4.112. Pressure distribution in a Laval nozzle with shock waves
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density drops up to the narrowest cross-section, and then increases again.
Even for this roughened wall, there are no perturbations seen in the flow
field. The third picture shows a shock wave downstream of the narrowest
cross-section of the nozzle. The steady sound waves in the supersonic part in
front of the shock and the continued increase in density of the decelerated
subsonic flow are seen. If the outer pressure p2 is further reduced, the shock
wave moves toward the end of the nozzle. Because of the interaction with the
wall boundary layer, shock branching and separation of the boundary layer
occur, as seen in the fourth picture of Figure 4.113.

4.3.5 Flows past Corners, Free Jets

Supersonic Flow past a Corner

We first consider a supersonic flow in which a small pressure drop occurs
discontinuously at a point A of the wall (Figure 4.114). This pressure drop
propagates with the Mach angle α and leads to an acceleration of the flow
in the direction normal to the pressure jump. This causes an increase in the
flow velocity and a simultaneous deviation of the flow. If a further continuous
pressure drop occurs at point A, this propagates in the altered flow with a

supercritical,
characteristics

subcritical,

normal shock

shock branching

w > c

w < c

Fig. 4.113. Schlieren photograph of Laval
nozzle flows, L. Prandtl (1907)
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Fig. 4.114. Supersonic flow with pres-
sure drop

different Mach angle α′ < α and causes a further increase and deviation of
the flow velocity.

This Prandtl–Meyer expansion, which in reality takes place continuously,
can be theoretically treated as a potential flow. Along any ray (characteristic)
originating from point A, the pressure as well as the magnitude and the
direction of the velocity are constant. Each characteristic forms the Mach
angle with the flow direction. The velocity component perpendicular to the
characteristic is equal to the velocity of sound associated with the flow state
at hand.

The course of the expansion flow from the velocity of sound to the max-
imum velocity (expansion into the vacuum) is shown in Figure 4.115. The
deviation of the ray is 129◦. Since the characteristics are rays along which
the pressure and velocity are constant, sections of the flow enclosed by two
characteristic free jets can be combined with straight-lined flows. If, for ex-
ample, a supersonic flow moves parallel to a wall with velocity w1, and the
pressure p2 after the end of the wall (A in the right-hand picture of Figure
4.115) is smaller than the pressure p1 in the parallel flow, the flow prop-
agates in an unchanged fashion as far as characteristic 1, which forms the
Mach angle α1 with the flow direction (sin(α1) = c1/w1). Downstream from
this characteristic, an expansion between characteristics 1 and 2 leads from

Fig. 4.115. Prandtl–Meyer corner flow
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Fig. 4.116. Flow along a curved wall

pressure p1 to p2. After the pressure p2 has been attained on characteristic 2,
the flow continues uniformly and in a straight line. The flow direction forms
the angle α2 with characteristic 2, with which w2 is associated.

If a wall with one or more convex corners is at hand, the flow here also
takes place as a combination of linear flows and expansion regimes that always
adjoin each other at the Mach angle. Even the flow along a continuously
curved wall can be represented as a composition of individual elements. The
wall can also be concavely curved for this approach. However, in this case, the
solution of the potential equation is correct only as long as the jets forming
each Mach angle do not intersect (Figure 4.116). If this does occur, the flow
at this position becomes discontinuous, and a shock ensues.

In the case of a concave corner, associated with a pressure rise, as well as
in the case of outgoing flow into a space with higher pressure, the flow always
becomes unsteady. Oblique shocks (Figure 4.117) form. The characteristic 2
in Figure 4.117 would lie upstream from characteristic 1, and this is not
possible. Instead, unsteady compression takes places, with the shock plane
lying between directions 1 and 2. The equations for the velocity components
perpendicular to the shock plane are the same as those for the normal shock
wave in Section 4.3.4. The remaining transversal velocity component that is
unchanged by the shock is simply superimposed. The three upper schlieren
photographs in Figure 4.119 are examples of this theoretical superposition
for the corner flow with expansion, or with oblique shocks at the outlet from
a nozzle.

Fig. 4.117. Oblique shock wave
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Fig. 4.118. Wave figures of free jets

Free Jets

In a supersonic free jet, a periodic structure of shock waves and expan-
sion waves forms. The oblique expansion and compression waves penetrate
each other without mutual disturbance. They are completely reflected at the
boundaries of the free jet in such a manner that an expansion wave is reflected
as a compression wave and vice versa. For a parallel supersonic flow where
the pressure at the outlet is lower than in the jet, an expansion wave arises
at every outlet edge, as seen in the left-hand picture of Figure 4.118. These
intersect and are reflected as compression waves at the opposite jet bound-
aries. They propagate downstream and are again reflected at the opposite jet
boundary as expansion waves. This process repeats itself periodically. The
pressure p3 in the middle of the wave is lower than the outer pressure p2, by
a similar amount as p1 is larger than p2.

If the outer pressure is larger than that in the jet, oblique shock waves
initially occur (Figure 4.118). These are reflected at the edge of the jet as
expansion waves, which then propagate as shown in the first picture of Figure
4.119. If the initial velocity is equal to the velocity of sound, the Mach angle at
the outlet is α = 90◦, and the characteristic node structure with normal shock

supersonic flow at overpressure

supersonic flow at underpressure

supersonic flow at equal pressure

transonic flow

Fig. 4.119. Free jet structures at different outlet conditions, L. Prandtl (1907)
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waves shown in the right-hand picture of Figure 4.118 occurs. The schlieren
photographs of Figure 4.119 show the free jet structures for overpressure,
equal pressure, and underpressure at the outlet. The outlet velocity is the
same for the first three photographs. The fourth picture shows the case in
which the outlet velocity is the same as the velocity of sound. In all these
schlieren photographs, the light areas indicate expansion and the dark areas
compression. If the jet is not a parallel jet as it departs the outlet, the wave
pictures become more complex. The wavelength remains almost constant.
Using (4.155), for two-dimensional motion it is

λ = 2 · dm · cot(αm) = 2 · dm ·
√(w

c

)2

m
− 1.

Here dm is the mean jet diameter, while αm and (w/c)m are the mean values
of α and w/c.

The node structure in round free jets, more complicated because of the
conical intersection of the waves, is shown in Figure 4.106. The wavelength
in these free jets, where the outlet velocity is equal to the velocity of sound,
was determined experimentally by R. Emden for compressed air to be

λ = 0.89 · d ·
√
p0 − 1.9 · p2

p2
.

Here d is the diameter of the outlet, p0 the reservoir pressure, and p2 the
outlet pressure.

4.3.6 Flows with Small Perturbations

In this section we treat inviscid steady flows in which both the magnitude
and the direction of the velocity deviate only slightly from a given velocity
u0, which may be a subsonic or a supersonic velocity. The small deviations
of the velocity from u0 are denoted by u and v. All derivations are carried
out only to first order in u and v. The magnitude of the velocity of the flow
is w =

√
(u0 + u)2 + v2.

The generalized Bernoulli equation (4.158) is valid:
∫

dp

ρ
+
w2

2
= const.

or else in differential form,

dp

ρ
+ w · dw = 0.

With dp/ρ = (dp/dρ) · dρ/ρ = c2 · dρ/ρ we obtain the equation

dρ

ρ
= −w

2

c2
· dw

w
= −M2 · dw

w
, (4.174)

which is valid for all flows with a unique Bernoulli constant, i.e. for irrota-
tional flows. The relative change of the density dρ/ρ vanishes for small Mach
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numbers. For Mach numbers smaller than 0.2 we can therefore calculate the
flow as an incompressible flow. At M = 1 the relative change of the density
is exactly the opposite of the relative change of the velocity. This means that
ρ · w is approximately constant, or a constant stream filament cross-section.

The continuity equation yields

∂

∂x
(ρ · (u0 + u)) +

∂

∂y
(ρ · v) = 0.

Since w2 = (u0 + u)2 + v2, the velocity perturbation is given by the u per-
turbation to first order, and linearization of the continuity condition with
(4.174) yields

(1 −M2
0 ) · ∂u

∂x
+
∂v

∂y
= 0. (4.175)

This is the linear gas-dynamic equation with Mach number M0 = u0/c0. This
equation is not valid for the transonic regimeM ≈ 1, where the perturbations
are no longer small and where linearization is not possible. Introducing a
perturbation position ϕ (see Section 4.1.5), we set

u =
∂ϕ

∂x
and v =

∂ϕ

∂y
,

and obtain from (4.175)

(1 −M2
0 ) · ∂

2ϕ

∂x2
+
∂2ϕ

∂y2
= 0. (4.176)

The factor in front of ∂2ϕ/∂x2 alters its sign at M0 = 1. For subsonic Mach
numbers M0 < 1, the differential equation, like the potential equation, is of
elliptical type. For supersonic Mach numbers it has the form of the vibration
differential equation; i.e. it is hyperbolic. For M0 > 1 every continuous and
twice-differentiable function F with argument (y± x · tan(α)) is a solution of
(4.176), where α is to be suitably determined. We obtain

∂2ϕ

∂x2
= F′′ · tan2(α) and

∂2ϕ

∂y2
= F′′.

In order to satisfy (4.176),

(M2
0 − 1) · tan2(α) = 1

must hold, i.e.

tan(α) = ± 1√
M2

0 − 1
.

This yields

sin(α) =
tan(α)√

1 + tan2(α)
= ± 1

M0
.
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The solution represents waves of arbitrary wave form, whose straight fronts
(y = ±x · tan(α) + const) are inclined to the left or the right toward the x
axis in the entire flow field with the constant Mach angle α.

For subsonic flows we obtain characteristic solutions of the following form:
The compressible flow with weak perturbations is compared with the corre-
sponding incompressible flow under the same conditions. The small deviations
of the velocity of u0 of the incompressible flow are denoted by U and V and
the associated coordinates by X and Y . According to Section 4.1.5, the in-
compressible flow with the associated potential Φ must satisfy the potential
equation

∂2Φ

∂X2
+
∂2Φ

∂Y 2
= 0. (4.177)

Comparison with the compressible flow is carried out by setting the potentials
ϕ and Φ proportional to one another:

ϕ(x, y) = a · Φ(X,Y ), (4.178)

where a is a numerical factor.
So that both ϕ can satisfy the differential equation (4.176) and Φ the

equation (4.177), the ratios of x to X and y to Y must be different. If Y/y =
b · X/x is set to scale with the factor b, a suitable choice of b allows us to
obtain the association of the potentials according to (4.178). For simplicity
we arbitrarily set x = X , so that Y = b · y. With this relation and with
(4.178), (4.176) leads to

a · ∂
2Φ

∂X2
· (1 −M2

0 ) + a · b2 · ∂
2Φ

∂Y 2
= 0. (4.179)

This equation becomes identical to (4.177) if we set b2 = 1 −M2
0 .

The angle δ that forms a streamline with the x axis satisfies

tan(δ) =
v

u0 + u
.

To first order this is also tan(δ) = v/u0 = (1/u0)·∂ϕ/∂y. Similarly, we obtain
the angle∆ between the streamline and the X axis of the incompressible flow:

tan(∆) =
V

u0
=

1

u0
· ∂Φ
∂Y

.

If the same body is placed in both flows, tan(δ) = tan(∆) must be satisfied
on the bounding streamline. This yields ∂ϕ/∂y = ∂Φ/∂Y . With (4.178) and
Y = b · y we obtain a · b = 1, i.e. the condition

a =
1

b
=

1√
1 −M2

0

. (4.180)

To compare the pressure distributions of both flows we merely need to con-
sider the pressure gradient in the x direction. The finite pressure differences
in both flows behave like their gradients. From the nonlinear term of the Euler
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equation ρ·(u0+u)·∂u/∂x, to first order we have ρ·u0·∂u/∂x = ρ·u0·∂2ϕ/∂x2.
This term is to be compared with the term ρ · u0 · ∂2Φ/∂X2 of the incom-
pressible flow. The ratio is a. To first order in the Euler equation we have
∂p/∂x = −ρ · u0 · ∂u/∂x. This means that the pressure differences of the
compressible flow are, to first order, 1/

√
1 −M2

0 times larger than those in
the incompressible comparison flow.

Flow past an Airfoil

This relation can be applied approximately for narrow wings at a small angle
of attack, as long as the velocity of sound is not reached on the wing (Figure
4.120). The lift for compressible flow past a wing is in the same ratio as that
in (4.180) compared to that for the incompressible flow (Prandtl’s rule).

The question as to the value of a in (4.178) can also be formulated differ-
ently. How must a body be shaped so that the pressure differences in the com-
pressible flow and in the incompressible comparison flow are equally large?
This question is of importance for the case in which the pressure distribution
for the incompressible comparison flow is at the limit of flow separation. In
this case, a = 1 must be selected. Then tan(δ) = b · tan(∆). The body in the
compressible flow must be narrower, the closer u0 approaches the velocity of
sound if separation of the flow is to be avoided.

Wavy Wall

A flow with mean velocity u0 flows along a slightly wavy wall. The contour
of the wall is given by the equation

y1 = a · sin(µ · x), with µ =
2 · π
λ

.

Here λ is the wavelength. From v/u0 = dy1/dx and close to y = 0 we obtain

v0 = u0 · a · µ · cos(µ · x).
In the incompressible comparison fluid, V0 = v0 at Y = 0. The associated
potential is

Φ = −u0 · a · cos(µ ·X) · e−µ·Y .

This corresponds to the following potential in the incompressible flow:

Fig. 4.120. Flow past a slender airfoil
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Fig. 4.121. Flow past a wavy wall

ϕ = −A · cos(µ · x) · e−µ·y·
√

1−M2
0 . (4.181)

For y = 0 we thus obtain v0 = ∂ϕ/∂y = A·µ·
√

1 −M2
0 ·cos(µ·x). Comparison

with the incompressible flow leads to A = u0·a/
√

1 −M2
0 . Figure 4.121 shows

the flow past a wavy wall for incompressible flow (u0 ≪ c), compressible
subsonic flow (u0 = 0.9 · c), and compressible supersonic flow (u0 = 1.25 · c).

4.3.7 Flows past Airfoils

Supersonic Flow

For airfoils that are sufficiently slender and peaked, the characteristic method
can also be applied to two-dimensional supersonic flow past airfoils. The
pressure on every surface element of the airfoil is given by the free-stream
velocity and the inclination of the surface element, neglecting small losses of
the front shock wave. For the airfoil shown in Figure 4.122, an oblique shock
wave (head wave) occurs at the tip of the airfoil, generating an overpressure.
The convex curvature of the surface of the airfoil causes expansion waves to
be formed, through which the overpressure is reduced, until an underpressure
occurs at the rear part of the airfoil. The two flows along the upper and lower
sides meet at similar angles at the trailing edge of the airfoil. This leads to
a further shock wave (trail wave). After this, the pressure is approximately
the same as the unperturbed pressure of the free stream. The expansion
waves travel divergently. The waves originating from the front part of the
airfoil meet at the front shock wave, while those originating from the rear
part meet at the trail wave. The strength of these shock waves therefore
becomes gradually weaker in the flow field. This theoretically determined
image is confirmed by the schlieren photograph in Figure 4.122. The schlieren
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aperture was positioned so that lighter areas indicate an increase in density,
while darker areas imply a reduction in density.

In order to investigate the effect of the independence of the thickness of
the airfoil of the incidence, we first consider a thin plate inclined at an angle,
as shown in Figure 4.123.

A shock wave occurs on the pressure side, while an expansion wave occurs
on the suction side. Both deviate the flow direction by the angle α, the angle
of inclination of the plate toward the outgoing flow direction. As long as the
direction of the flow remains constant, the pressure and the velocity do not
change.The resulting force therefore acts on the center of the plate. At the
trailing edge the pressure is equalized, leading to a shock wave on the suction
side and an expansion wave on the pressure side. The resulting force at small
angles of inclination is approximately proportional to the angle of inclination
α and, for inviscid flow, is exactly perpendicular to the plate. The equivalent
of the lift is included in the transverse velocities generated in both waves.
The transverse velocity becomes smaller after a certain distance, because the
expansion waves join with the shock waves. However, its magnitude in the
perpendicular direction increases to the same degree, so that at every cross-
section perpendicular to the direction of flow behind the plate, the lift is still
imparted as momentum.

A thin plate, peaked at the front and the rear, possibly with a slightly
arched suction side, is the most favorable airfoil profile for supersonic flows.

schlieren photograph

characteristics

Fig. 4.122. Supersonic flow at a slender airfoil, p0 reservoir pressure, p′

0 reservoir
pressure after the shock wave
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The usual wing profiles that are thick at the front are not suitable for super-
sonic flows because of their large drag. The best ratio of drag to lift W/A is
therefore, in contrast to subsonic flows, never smaller than tan(α).

Approximate solutions of the supersonic flow past the profiles in Fig-
ures 4.122 and 4.123 can be determined with the differential equation
(4.176). Each potential ϕ = F(x − y · cot(α′)) yields a possible pertur-
bation flow to the basic flow u0. Here α′ is the Mach angle of the free
stream. If F′ is the derivative of the potential with respect to the argument
x − y · cot(α′), we obtain the perturbation components u = ϕx = F′ and
v = ϕy = −F′ · cot(α′), or

u = − v

cot(α′)
. (4.182)

Since the flow angle is approximately given by tan(δ) = v/u0, and the pres-
sure differences are proportional to u, the pressure coefficient is cp:

cp =
p− p0

1
2 · ρ0 · u2

0

= 2 · tan(δ) · tan(α′). (4.183)

An overpressure occurs for airfoils with a positive angle of attack, while at
negative angles of attack an underpressure occurs. Therefore, a wing in an
inviscid supersonic flow also has a drag.

In order to obtain dimensionless coefficients of the forces, we divide the
forces by the product of pressure and surface area. The stagnation pressure
ρ0 · u2

0/2 is used for the pressure. At higher Mach numbers the stagnation
pressure ρ0·u2

0/2 is half the oncoming momentum associated with the pressure
rise in the head wave. The surface A is chosen to be the largest projection
surface area of the profile. Therefore we set

FA = ca ·A · ρ0 · u2
0

2
, W = cw ·A · ρ0 · u2

0

2
. (4.184)

Fig. 4.123. Supersonic flow at an inclined plate, numbers by A. Busemann (1931)
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The plate at an angle of incidence in supersonic flow in Figure 4.123 has a
constant underpressure on the upper side and a constant overpressure on the
lower side. The quantities ca on the pressure and suction sides each corre-
spond to (4.183) if the flow angle δ is replaced by the angle of attack α:

ca =
4 · α√
M2

0 − 1
. (4.185)

Since the tangential force in the supersonic regime (M0 > 1) vanishes, the
drag coefficient is

cw = ca · tan(α) =
4 · α2

√
M2

0 − 1
. (4.186)

Equations (4.185) and (4.186) were first presented by J. Ackeret (1925).

Transonic Flow

The balance of energy (4.167) can be used to derive the following exact
relation for ideal gases of constant specific heat, after introducing the velocity
of sound instead of the temperature in the enthalpy:

1

M2
− 1 =

κ+ 1

2
·
(
c′

2

w2
− 1

)
. (4.187)

Here c′ is the critical velocity of sound. If w is only slightly different from c′,
as in the case of flow close to the speed of soundM ≈ 1, then the perturbation
component u approximately satisfies

1 −M2 = (κ+ 1) ·
(

c′

u0 + u
− 1

)
+ · · · (4.188)

= (κ+ 1) ·
(

1 − u0 + u

c′

)
+ · · · .

The difference 1 −M2 is therefore proportional to c′ − (u0 + u).

static pressure 1.6 bar barstatic pressure 1.89

Fig. 4.124. Local supersonic regions
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As we approach M0 = 1 from a supersonic free-stream regime, the shock
separates from the tip of the airfoil and moves upstream away from the body.
The trail wave, on the other hand, remains in the supersonic region at the
end of the airfoil. The closer M0 is to 1, the weaker the head wave, until
at M0 = 1 it finally vanishes. The pressure distribution now has a subsonic
character in the stagnation region at the nose of the airfoil and a supersonic
character with a trail wave in the underpressure region on the body. This trail
wave is still retained for M0 < 1. The local supersonic regions that occur on
airfoils for transonic subsonic free streams are shown in Figure 4.124. Here
the supersonic characteristics in the local supersonic regimes have been made
visible by disturbances on the surface of the airfoil. A flow drag is generated
by the suction peak that has been displaced downstream and the final shock
wave.

When the free stream is close to the velocity of sound, there is a Mach
number distribution almost independent of M0, particularly on the front part
of the airfoil. This is because for a slightly supersonic free stream the shock
is an almost perpendicular shock far in front of the airfoil that generates
an approximately parallel subsonic flow. For this reason, the Mach number
distributions on an airfoil differ only slightly, whether the free stream has
M0 = 0.90 or M0 = 1.10. This effect is called freezing of the Mach number
distribution.

Equation (4.188) yields the pressure coefficient to first order:

cp =
p− p0

1
2 · ρ0 · u2

0

= −2 · u
u0

= −2 ·
(
u0 + u

c′
− 1

)
(4.189)

= − 2

κ+ 1
· (M2 −M2

0 ).

Therefore, the change of cp with M0 at M0 = 1 is

Fig. 4.125. Pressure on airfoils with a subsonic free stream



208 4. Dynamics of Fluid Flow

dcp
dM0

∣∣∣∣
M0=1

=
4

κ+ 1
. (4.190)

This allows us to determine the change in drag at M0 = 1.
The pressure distributions on the airfoil for free streams in the linear and

transonic subsonic regimes are shown in Figure 4.125. The appearance of
shock waves that complete the local supersonic regime downstream cause the
pressure drag to increase.

The flow past transonic wings will be treated in detail in Section 4.4.5.

4.3.8 Problems

4.17

The maximum flow velocity U1 at
the edge of the boundary layer of a
wing is 1.7 times the free-stream ve-
locity U∞.

How large is the local Mach number M1 at the position of the largest velocity
U1 if the free-stream Mach number M is equal to 0.5 (κ = 1.4)? Treat the
outer flow at the edge of the boundary layer as inviscid.

M1 =
1√√√√κ− 1

2
·
[(

1

1.7

)2

− 1

]
+

(
1

1.7

)2

· 1

M2

= 0.893.

4.18

For the operation of a supersonic
measuring track, an air flow with
pressure p1, temperature T1, and
Mach number M1 is led through a
pipe with cross-sectional areaA1 and
a Laval nozzle.

This expands the flow to the pressure p2 in the measuring track, so that
the flow there is a supersonic parallel jet. The experiment in this parallel jet
consists of a blunt displacer that causes a shock wave that can be considered
in the region of interest in front of the stagnation point of the displacer to be
a normal shock. The nozzle flow is steady, one-dimensional, and, apart from
the shock, isentropic.

The following numerical values are given: p1 = 6.5 bar, T1 = 440 K, M1 =
0.5, A1 = 160 cm2, p2 = 1.0 bar, specific gas constant R = 287 m2/(s2 · K),
isentropic exponent κ = 1.4.
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Determine the following quantities for the experimental setup.
(a) What Mach number M2 is reached in the measuring track?

M2 = 2.0.

(b) How large must the areas A∗ and A2 be?

A∗ =
A1 ·M1

[
1 +

κ− 1

κ+ 1
· (M2

1 − 1)

] κ+1
2·(κ−1)

= 119.4 cm2,

A2 =
A∗

M2
·
[
1 +

κ− 1

κ+ 1
· (M2

1 − 1)

] κ+1
2·(κ−1)

= 201.5 cm2.

(c) How large is the mass flux through the experimental setup?

ṁ = 17.33 kg/s.

(d) What are the values of the Mach number M3, the pressure p3, and the
temperature T3 directly downstream from the shock, and how large is the
temperature Ts at the stagnation point of the displacer?

M3 = 0.577 , p3 = 4.5 bar , T3 = 433.16 K , Ts = T0 = 462 K.

4.19

Air flows through a Laval nozzle out
of a large container where the pres-
sure is p0 and the temperature T0

into an atmosphere with pressure pu.
At the narrowest cross-section with
areaA∗, the velocity is that of sound,
and further downstream, at the posi-
tion with the cross-sectional area Av,
there is a normal, steady shock.

The following quantities are given: p0 = 5 bar, T0 = 273.15 K, A∗ =
2 cm2, Av = 3.1 cm2, A2 = 4.0 cm2, κ = 1.4, R = 287 m2/(s2 · K).

Determine the following quantities:
(a) the density ρ0 in the container.

ρ0 =
p0

R · T = 6.378 kg/m3.

(b) the state quantities pv, Tv, ρv of the air as well as the flow velocity cv
directly in front of the shock.
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Tv =
T0

1 +
κ− 1

2
·M2

v

= 158.9 K, pv =
p0(

1 +
κ− 1

2
·M2

v

) κ
κ−1

= 0.75 bar ,

ρv =
ρ0

(
1 +

κ− 1

2
·M2

v

) 1
κ−1

= 1.646 kg/m3, cv = 479.1 m/s.

(c) the total pressure p0,v and the total temperature T0,v directly in front of
the shock.

p0,v = p0 = 0.5 bar, T0,v = T0 = 273.15 K.

(d) the state quantities p′v, T
′
v, ρ

′
v of the air and the flow velocity c′v directly

after the shock.

M2′

v =
1 +

κ− 1

κ+ 1
· (M2

v − 1)

1 +
2 · κ
κ+ 1

· (M2
v − 1)

= 0.3557,

p′v
pv

= 1 +
2 · κ
κ+ 1

· (M2
v + 1) = 4.03,

T ′
v

Tv
=

[
1 +

2 · κ
κ+ 1

· (M2
v + 1)

]
·
[
1 − 2

κ+ 1
·
(

1 − 1

M2
v

)]
= 1.605,

ρ′v
ρv

=
p′v
pv

Tv

T ′
v

= 2.51,

ρ′0,v

ρ0,v
=

[
1 +

2 · κ
κ+ 1

· (M2
v + 1)

]− 1
κ−1

·
[
1 − 2

κ+ 1
·
(

1 − 1

M2
v

)]− κ
κ−1

= 0.7692,

M ′

v = 0.596, p′v = 3.023 bar, T ′

v = 255 K,

ρ′v = 4.13 kg/m3, c′v = 190.8 m/s.

4.20

An approximately normal shock oc-
curs in front of a supersonic propul-
sion (M1 = 2, p1 = 0.3 bar, T1 =
250 K). Between states 2 and 3, the
heat Q̇ is supplied in the combustion
chamber, so that the Mach number
in state 3 becomes M3 = 1.

In the divergent part of the drive nozzle an isentropic supersonic flow occurs
with the outlet pressure p4 = p1 (A2 = A3 = 0.4 m2, A4 = 0.56 m2, κ =
1.4, R = 287 J/kg K, cp = 104.5 J/kg K).
(a) Calculate p2, T2, u2 after the shock as well as the mass flux ṁ.
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p2 = 1.35 bar , T2 = 421.8 K , u2 = 237.5 m/s , ṁ = 106 kg/s.

(b) Calculate M4, T4, and u4 at the outlet of the nozzle.

M4 = 1.76 , T4 = 379.9 K , u4 = 687.6 m/s.

(c) With the energy equation determine the heat transfer Q̇ between 2 and
3.

T3 = 512.9 K , u3 = 454 m/s , Q̇ = 17630 kJ/s.

4.21

A shock forms in front of a reen-
try aircraft as it enters the atmo-
sphere. This can be treated approxi-
mately as a normal shock. With the
exception of the shock, the flow is an
ideal, isentropic gas (κ = 1.4, R =
287 J/kg K).

(a) What are the maximum Mach number M1, velocity u1, and density ρ1

allowed so that the maximum permissible temperature T0,max = 840 K in the
stagnation point of the orbiter is not exceeded (T1 = 200 K, p1 = 0.1 bar)?

M1,max =

√
2

κ− 1
·
(
T0,1

T1
− 1

)
= 4 , u1,max = a1 ·M1,max = 1133.9 m/s.

(b) Using the above result, calculate the Mach number M2, the velocity u2,
the pressure p2, and the density ρ2 for the flight state directly behind the
shock. Determine the stagnation pressure p0,2 at this position.

M2 =

√√√√1 + κ−1
κ+1 · (M2

1,max − 1)

1 + 2·κ
κ+1 · (M2

1,max − 1)
= 0.435,

p2 = p1 ·
[
1 +

2 · κ
κ+ 1

· (M2
1,max − 1)

]
= 1.85 bar,

ρ2 =
p1

1 − 2·κ
κ+1 ·

(
1 − 1

M2
1,max

) = 0.08 kg/m3,

p0,2 =

(
1 +

κ− 1

2
·M2

2

) κ
κ−1

· p1 ·
[
1 +

2 · κ
κ+ 1

· (M2
1,max − 1)

]
= 2.11 bar.
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4.4 Aerodynamics

The aim of aerodynamics is to predict the forces and moments acting on
bodies in a flow, such as airfoils, wings, fuselages, engines cells, or the whole
airplane. Aerodynamics also includes prediction of wind forces on buildings,
motor vehicles, and ships, as well as prediction of the aerodynamic heating
of reentry vehicles on entry into Earth’s or another planet’s atmosphere.
Further aims are the computation of losses and heat transfer in airplane
engines, rocket engines, and pipelines.

In this section we restrict ourselves to the basics of the aerodynamics of
airplanes and in particular to the aerodynamics of wings, which is greatly
determined by the Mach number of the unperturbed free stream M∞.

According to D. Küchemann’s (1978) vision, any place in the world can
be reached within the same flight time as long as the wing form is adapted to
the flight Mach number M∞ required. Figure 4.126 shows the dependence of
different airplane shapes on M∞ for distances D referred to the circumference
of the Earth. For short distances, unswept wings at subsonic Mach numbers
are used. Intermediate distances are covered using swept transonic wings.
Supersonic flight is used for long distances. The vision of hypersonic flight
could be realized with waveriders.

Eventually, it was the swept wing at transonic flight Mach numbers
(M∞ = 0.8) that prevailed for civil aircraft. This allows wide-bodied jets
to transport a large number of passengers at flight times of up to 16 hours
over distances of 14 000 km. In supersonic flight (M∞ = 2), only possible over
the sea or desert regions because of the supersonic boom from the head and
tail shock waves, the flight time is halved.

Fig. 4.126. Dependence of airplane
forms on the flight Mach number M∞
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4.4.1 Bird Flight

In the last 108 years, evolution has developed flight in different ways in in-
sects, bats, saurians, and birds. Because rotation about an axis is biologically
impossible, the necessary lift and propulsion to fly are attained by the back
and forth movement of the flap of a wing. The propulsion arises because the
downward flap is carried out with great force while the upward flap takes
place with as low a drag as possible. In birds, the largest part of the propul-
sion is due to the outer part of the wing, which completes the greatest vertical
motion, as shown in Figure 4.127. The angle of inclination of different sections
of the wing is changed during one period of oscillation by the deformation of
the wing. The lift is essentially generated by the inner part of the wing. The
functions of the wing and driving propeller of an airplane are integrated into
a bird’s wing, but this is paid for by the fact that the lift and propulsion vary
in the course of one oscillation.

The stability problems related to this are counteracted by the aerody-
namic forces on the tail surfaces that balance the oscillations as a horizontal
rudder. The largest bird of passage, the albatros, has a span of 3.8 m, a top
speed of up to 110 km/h, and a gliding number (lift to drag) of 20.

The qualitative dimensionless pressure distribution cp (4.193) of a char-
acteristic section of a bird wing is shown in Figure 4.128. Because of the
different curvatures of the upper and lower sides of the wing, the flow is
greatly accelerated, leading to a larger pressure drop on the upper suction
side of the wing. Downstream from the point of suction the flow is decel-
erated, leading to a corresponding pressure increase. Because of the strong
curvature of the profile, the flow tends to separate in the decelerated region,
and this is prevented by the unsteady flap of the bird wing.

The first successful technical application of bird flight was carried out by
Otto Lilienthal (1891) with his glider. Figure 4.129 shows the birdlike shape of
the rigid wing with integrated vertical and horizontal surfaces, which ensured

Fig. 4.127. Wing cross-sections and pathlines of bird flight
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Fig. 4.128. Profile and pressure distri-
bution of a bird’s wing

stability. The hang-glider was controlled by shifting the weight of the body
underneath the glider.

Prior to this, in 1889, Lilienthal had published a book with the title Bird
Flight as the Basis of the Art of Flying, which contained all the aerodynamic
data of that time. Even modern civil aircraft 100 years later still use rigid
wings (see Figure 4.130). The flap of the bird’s wing has been replaced by
fan engines, which, because of their size, are placed under the wings. The
fuselage holds the passengers, and the side and upper tails provide the re-
quired stability. What has changed compared to bird flight is the speed. The
endeavor to fly from one place to the next as fast, comfortably, and econom-
ically as possible has led to transonic flight speeds of 950 km/h at a Mach
number 0.8 and an altitude of 10 km. Flow losses are reduced at transonic
flow Mach numbers using swept wings, to be treated in Section 4.4.5. The
winglets at the ends of the wings are modeled on the tip of a bird’s wing,
and these reduce the strength of the edge vortex and thus the wing drag.

Fig. 4.129. Lilienthal’s hang-glider
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Fig. 4.130. Civil airplane

4.4.2 Airfoils and Wings

If an airplane moves with constant velocity V∞, it experiences the resultant
aerodynamic force R (Figure 4.131). The component of this force in the free-
stream direction is the drag W , and the component perpendicular to this is
the lift A. The inclination of the resultant R to the free-stream velocity and
therefore the ratio of lift to drag essentially depends on the geometric shape
of the wing and the free-stream direction. A large value of the ratio A/W is
desirable. For steady gliding of an airplane without an engine, the resulting
force R must be equal and opposite to the weight G. Thus the gliding angle
α is defined by the relation

tan(α) =
W

A
. (4.191)

A wing of a civil airplane swept with the angle φ is sketched in Figure 4.131.
Each vertical cut through the wing is called a profile. The camber line, the
average of the distance between the upper and lower sides of the wing, is a
particular profile line that is needed in describing inviscid design methods.
The angle of the profile to the unperturbed free stream V∞ is denoted by α.
As was explained in Section 4.2.10, the aerodynamic forces lift A, dragW , and
the resultant R are caused by the pressure distribution and the distribution
of the wall shear stresses on the surfaces of the wing. In addition, a moment
M is also produced, and this is responsible for the rotation of the wing. The

Fig. 4.131. Sketch of wing and airfoil
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relevant dimensionless coefficients are

ca =
A

q∞ · S , cw =
W

q∞ · S , cm =
M

q∞ · S · l , (4.192)

with q∞ = 0.5 · ρ · V 2
∞ and the wing area S. The pressure and friction

coefficients are

cp =
p− p∞
q∞

, cf =
τ

q∞
, (4.193)

with the pressure of the unperturbed free stream p∞. All coefficients are
functions of the free-stream Mach number M∞, the Reynolds number Rel,
the angle of attack α, and the sweep angle φ.

Profile Flow

Typical profiles of different Mach number regimes are sketched in Figure
4.132. In contrast to the thin bird profiles in Figure 4.138, L. Prandtl showed
in 1917 that subsonic profiles of thickness d/l = 13% (e.g. the Göttingen
profile 298) have a larger lift coefficient ca at a smaller drag coefficient cw.

According to Figure 4.132 the profiles for transonic free streams have
to be thinner, so that the transition to supersonic flow takes place as far
downstream on the profile as possible. Oblique shock waves occur on profiles
in supersonic flow, so that the drag can be kept small with sharp leading and
trailing edges.

The various flow regimes are shown in Figure 4.133 for transonic subsonic
and supersonic Mach numbers. Transonic subsonic Mach numbers are those
for which, as in the first figure, the acceleration on the profile passes over to
the supersonic regime. The supersonic regime is then concluded with a shock
wave, which in turn leads to an additional pressure drag cs. The shock waves
are shown in bold in Figure 4.133, and the sonic lines M = 1 dashed. The
deceleration of the flow on the profile causes a pressure increase up to the
trailing edge. The pressure that occurs here is slightly above the pressure of
the unperturbed free stream.

Fig. 4.132. Characteristic profile shapes for subsonic, transonic subsonic, and su-
personic Mach numbers
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If the transonic free-stream Mach number is increased to a value greater
than 0.8, the supersonic regime extends over the entire upper side of the
profile, as in the second picture. The shock wave moves to the trailing edge,
while a local supersonic regime with a shock wave also occurs on the lower
side. The shock at the trailing edge provides the necessary pressure increase,
which is carried over into the pressure of the wake flow.

The limiting case of a free stream with Mach number M∞ = 1 is sketched
in the third drawing in Figure 4.133. The shock waves on the upper and lower
sides of the profile move down as far as the wake and branch into two oblique
shock waves and one vertical shock wave at the trailing edge. The sonic line
extends through the entire flow field, and almost the entire profile is in a
supersonic flow. If the free-stream Mach number is slightly higher than 1, a
separated head wave forms far in front of the profile.

For a supersonic free stream M∞ ≥ 1, the head wave distance decreases.
A subsonic regime forms between the shock and the profile. The oblique
shock waves move out of the wake at the trailing edge of the profile. If
the free-stream Mach number is increased further, attached oblique shock
waves, corresponding to those at the trailing edge, form at the sharp lead-
ing edge. Figure 4.134 shows the dependence of the lift and drag coefficients
on the Mach number for a given profile. At subsonic Mach numbers, the

lift coefficient increases with increasing Mach number, corresponding to the
Prandtl–Glauert rule (see Section 4.4.8):

ca =
2 · π√

1 −M2
∞

, M∞ < 1. (4.194)

Here the pressure coefficient of the profile computed with the linear theory is

cp =
cp0√

1 −M2
∞

,

Fig. 4.133. Mach number distribution in transonic profile flows
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where cp0 is the pressure coefficient of the incompressible flow.
A decrease in the lift coefficient is found with the linear supersonic theory

corresponding to the Ackeret rule:

ca =
4√

M2
∞ − 1

, M∞ > 1. (4.195)

The lift coefficient passes through a maximum in the transonic subsonic
regime. The sudden drop in the lift coefficient is due to the appearance of
the supersonic regime and the second shock wave on the lower side of the
profile. The Mach number distribution shown in Figure 4.133 causes the lift
coefficient to decrease drastically, only to increase again for Mach numbers
greater than 0.9. The renewed increase in the lift coefficient occurs whenever
the shock waves have moved from the wave to the trailing edge of the profile,
to weaken because of the small shock angle. It is only with the appearance
of the head wave and the subsonic regime between the shock wave and the
profile that the lift coefficient in the supersonic regime decreases again, in
accordance with the Ackeret equation (4.195).

In designing the profile of a civil airplane, the flight Mach number in the
transonic subsonic regime is chosen to be around the maximum of about 0.8.

The drag coefficient cw behaves similarly to the lift coefficient, except
that the second maximum in the transonic subsonic Mach number does not
appear. Until the point where the supersonic regime appears on the upper side
of the profile, the drag coefficient remains essentially constant with increasing
free-stream Mach number. When the shock wave on the lower side of the
profile occurs, the drag coefficient increases considerably. Up until the drag
maximum is reached at the Mach number M∞ = 1, local Mach numbers up
to M = 2 may be reached in the supersonic regimes. The shock waves on the
profile are so strong that the pressure increase causes flow separation, with
the drag increasing even further.

Fig. 4.134. Dependence of lift coefficient ca and drag coefficient cw on the free-
stream Mach number M∞
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This leads to the design of supercritical profiles (Figure 4.135) with the
aim of increasing the transonic flight Mach number at as low a drag as pos-
sible. Here the thickest point of the profile lies close to the leading edge,
and the extended supersonic regime on the profile is concluded with a weak
shock wave as far upstream as possible. In contrast to conventional transonic
profiles, the suction peak in the front region of the profile is avoided. The
dependence of the lift coefficient ca on the angle of attack α is shown in
Figure 4.136 for a given subsonic profile. The lift initially increases linearly
with increasing angle of attack, as long as the flow remains attached. Even
for the angle of attack α = 0◦, the asymmetry of the profile means that the
lift coefficient is positive. The lift coefficient passes through a maximum at
a critical angle of attack αcrit and then decreases sharply for larger α. The
snapshot of the flow in Figure 4.136 shows that the flow on the entire upper
side of the profile separates unsteadily. The collapse of the lift coefficient is
accompanied by an increase in the drag of the profile.

In order to be able to take off and land with a wing, the surface area of
the wing is increased at low velocities with front and rear flaps. This leads
to the dashed lift curve in Figure 4.136, yielding higher lift values.

A tool that is useful in the design of profiles is the polar diagram (Figure
4.137), where the lift coefficient ca is plotted against the drag coefficient cw
for different angles of attack α. The polar curves are so called because the
forces acting on the profile can be directly read off from Figure 4.137. The
vector from the origin to a point on the polar curve shows the resultant
force R. For the supercritical profile of Figure 4.135, the increase of the lift
coefficient with increasing angle of attack is large, while the maximum value
of ca is small compared with subsonic profiles. The drag coefficient remains
small for a large range of angles of attack. At the free-stream Mach number
M∞ = 0.76, the design yields a lift coefficient of ca = 0.57.

In order to be able to analyze the effect of friction on the flow past a profile,
consider the pressure distributions for different types of separation for inviscid
and viscous flow for a subsonic profile set at an angle, as shown in Figure

Fig. 4.135. Pressure distribution cp on a
supercritical profile



220 4. Dynamics of Fluid Flow

attached flow

separation

Fig. 4.136. Dependence of the lift coefficient ca and flow portraits on the angle of
attack α

4.138. As long as the boundary-layer flow remains attached to the profile, the
displacement action of the viscous part of the pressure distribution causes the
pressure to increase. If the flow separates, a time-averaged backflow region
with constant pressure forms on the profile, causing this lift to be decreased.

If separation begins already at the leading edge, reattachment of the flow
can occur on the profile. The region of constant pressure then lies in the
suction peak of the profile, and the lift collapses. The flow is determined
by the gray viscous part of the pressure distribution, so that the theory of
inviscid flow past a profile treated in Section 4.4.3 remains restricted to the
region of inviscid outer flow of the attached profile boundary layer.

Fig. 4.137. Polar diagram of a transonic
profile
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Flow past Wings

In what follows we transfer the results of the flow past profiles to the finite
wing in Figure 4.131. The flow past a wing is three-dimensional.

A third velocity component in the direction of the wing span is super-
imposed onto the two-dimensional flow past a profile. The explanation for
this is to be found in Figure 4.139. On the upper side of the wing there is
underpressure, and on the lower side, overpressure. This leads to a flow past
the edges of the wing, which leads to a vortex in the wake in each case. These
vortices cause a velocity component directed downward behind the wing. The
additional vortex formation at the edges of the wing changes the pressure dis-
tribution such that an additional pressure drag arises, known as the induced
drag. The drag balance (4.124), consisting of the pressure and friction drag,
is extended in the case of a wing by the induced pressure drag ci:

cw = cd + cf + ci + cs. (4.196)

In the case of a transonic wing, there is also the additional pressure drag of
the shock wave on the upper side of the wing, and this is known as the wave
or shock drag cs. The contributions to the drag for a wing with supercritical
profile are 51% the friction drag cf , 35% the induced drag ci, 10% the pressure
drag cd, and 4% the shock drag cs (see Figure 4.155).

These are the figures for a swept transonic wing. It lowers the local free-
stream Mach number of the profile in such a manner that the increase in drag
in Figure 4.134 is postponed to higher Mach numbers. The fact that the sweep
φ causes the effective profile Mach number to be lowered by Mn = M∞·cos(φ)
was first noted by A. Betz (1939) (Figure 4.140). He considered that the free-
stream pressure drag is generated only by the normal component vn. If the
free stream is directed tangentially to the span of the wing with velocity vt,

Fig. 4.138. Pressure distributions for inviscid and viscous flow past a profile
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Fig. 4.139. Edge vortex at a finite wing

this flow cannot cause a pressure change at the wing, and only friction drag
occurs.

4.4.3 Airfoil and Wing Theory

The basis of Prandtl’s airfoil and wing theory was the discovery that aerody-
namic lift is caused by the circulation distribution around the wing. For large
Reynolds numbers it is assumed that the pressure and circulation distribu-
tion of the wing can be approximately computed with the potential equation
∆Φ = 0 (4.20) of inviscid flow.

There are two different mathematical ways of calculating the inviscid
flow past an airfoil: The method of conformal mapping and the singularity
method. In what follows we will discuss the singularity method, in particular
with regard to the calculation of the three-dimensional flow past a wing.

We begin with the particular solution of the linear potential equation, as
discussed in Section 4.1.5. The flow past a vaulted profile with finite thickness

Fig. 4.140. Effect of the sweep angle φ
on the drag coefficient cw
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at angle of attack α can be calculated using linear superposition of sources,
sinks (thickness), vortices (angle of attack), and the additional superposition
of a translation velocity (free stream). These are shown in Figure 4.141.
With the circulation Γ =

∮
v · ds, and the Kutta–Joukowski condition at the

trailing edge and using linear superposition of individual solutions, a lift per
unit length A can be computed for the inviscid flow past a profile in Figure
4.142:

A = ρ · Γ · V∞. (4.197)

The onset of circulation at a wing is explained in Figure 4.143. As the
wing begins to move, a startup vortex with negative circulation −Γ forms at
the trailing edge. According to Thomson’s law (Section 4.1.5) the circulation
must be conserved, and so the same circulation but with a positive sign forms
around the wing. This is called the attached vortex. Combining the attached
vortex, the startup vortex and the edge vortex of Figure 4.139 together,
we have the closed vortex system shown in Figure 4.144, since according to
Helmholtz’s law, no vortex can end in free flow. The lift of the attached vortex
is linked to the induced drag ci of (4.196).

We now present the fundamentals of Prandtl’s theory, since even today it
is used to carry out the initial design of a wing for subsonic flow. L. Prandtl’s
theoretical starting point in 1920 was to assume that to compute the lift,
the slender wing can be replaced by a lift line (camber line) superimposed
with a circulation distribution. The simplest vortex system of a finite wing
consists of the attached vortex of strength Γ and two edge vortices with the
same vortex strength (Figure 4.145). Since the lift distribution decreases as
we move toward the edges of the wing, this distribution can be approximately
represented with a vortex system of infinitesimal strength across the span s of

Fig. 4.141. Singularity distribution of a profile of finite thickness at an angle of
attack
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the wing. For the vortex system in Figure 4.145, there is in the center of the
wing a vortex extending infinitely far forward and backward with strength Γ .
At distance d we obtain the velocity w = Γ/(2 ·π · d). For symmetry reasons,
a vortex extending only backward from the cutting plane has only half the
velocity Γ/(4 · π · d). In the middle of the wing, d = s/2, the velocity from
the right and left vortices is combined, yielding

w0 = 2 · Γ

4 · π · s2
=

Γ

π · s .

With the Kutta–Joukowski condition Γ = A/(ρ · s ·V∞) for a wing with span
s we obtain

w0 =
A

π · ρ · V∞ · s2 .

Around the center of the wing larger velocities are found, increasing to infinity
close to the ends of the wing. This means that the assumption of a constant
lift as far as the ends of the wing is inadmissable. Assuming the elliptical lift
distribution shown in Figure 4.146, we obtain the constant vertical velocity
w over the wing. In the center, the circulation is 4/π times larger than the
average circulation, and so the individual vortex filaments are on average
closer to the center, and w becomes larger than w0. Integration over all
vortex filaments yields

w = 2 · w0 =
2 · A

π · ρ · V∞ · s2 , (4.198)

Fig. 4.142. Lift generation at a wing profile (potential flow, see Figure 4.30)
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Fig. 4.143. Startup vortex and attached
vortex of a wing profile, L. Prandtl, O.G.
Tietjens (1934)

and so

tan(α) =
w

v∞
=

2 ·A
π · ρ · V 2

∞ · s2 =
A

π · ps · s2
,

with impact pressure ps. Since w is constant over the span for an elliptical
lift distribution, tan(α) is also constant. Therefore, the induced drag Wi =
A · tan(α) is

Wi =
A2

π · ps · s2
. (4.199)

Equation (4.199) shows that the induced drag becomes smaller, the larger
the span over which the lift is distributed, and so for airplanes in a subsonic
free stream the wings have a large span. The wing chord l does not appear in
equation (4.199). Only the flow state behind the wing is of importance, not
the distribution of circulation over the chord of the wing.

The distribution of the vortex strength along the camber line of a slender
profile is obtained from the kinematic condition that the camber line must

Fig. 4.144. Vortex system around a wing
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Fig. 4.145. Simplified vortex system of a wing

be a streamline. The translation velocity V∞, which forms the angle of at-
tack α with the chord, is superimposed onto the vortex distribution (Figure
4.147). At all points on a streamline the vertical velocity component must
vanish. For a slender profile, the camber line can be replaced by the chord,
by approximation, so that to first order we obtain

V∞ ·
(
α− dz

dx

)
+ w(x) = 0. (4.200)

The vortex strength per unit length (vortex density) is denoted by γ(x). An
infinitesimal vortex element of strength γ(x′) · dx′ at position x′ generates
the infinitesimal velocity

dw = − γ(x′) · dx′
4 · π · (x− x′)

. (4.201)

Integration over the chord of the wing l yields the vertical velocity

w(x) = − 1

4 · π ·
l∫

0

γ(x′) · dx′
x− x′

. (4.202)

Equation (4.200) with vertical velocity (4.202) is the fundamental equation
for slender profiles, which arises from the requirement that the camber line
be a streamline. This can also be used to compute the increase of the lift
coefficient ca in Figure 4.136:

dca
dα

= 2 · π. (4.203)

Fig. 4.146. Elliptical lift distribution
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To transfer this result to the wing, we look again at the vortex filaments, the
attached and free boundary vortices of Figure 4.145, also called horseshoe
vortices.

A vortex filament extending to infinity in both directions, as in Figure
4.148, generates for each infinitesimal vortex element dl the following velocity
at the point P:

dv =
Γ

4 · π · dl × r

|r3| . (4.204)

The relation is known as the Biot–Savart law. Integration along the vortex
filament yields

v =

∞∫

−∞

Γ

4 · π · dl × r

|r3| . (4.205)

Using the definition of the vector product, we see that the direction of the
velocity vector w = |v| is downward, and

Fig. 4.147. Vortex strength distribu-
tion along the camber line and chord of
a slender profile
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w =
Γ

4 · π ·
∞∫

−∞

sin(Θ)

r2
· dl. (4.206)

With the vertical distance h to the vortex element dl, integration for a semi-
infinite vortex filament delivers

w =
Γ

4 · π · h. (4.207)

The concept of a vortex filament was first introduced by H. Helmholtz to
compute inviscid incompressible flows. The Helmholtz vortex laws state that
the vortex strength Γ along a vortex filament is constant and that a vortex
filament may not end in the flow field. However, the end of a vortex filament
may indeed lie at infinity, where closure with the startup vortex (Figure 4.139)
takes place. As already discussed, L. Prandtl extended the concept of the
horseshoe vortex with the attached vortex and two edge vortices extending
to infinity to tackle the computation of induced lift on a wing. Here the
circulation distribution over the finite wing is taken into account (see Figure
4.146).

If we consider the single horseshoe vortex in Figure 4.149, we see that the
attached vortex of span s does not give rise to a velocity component along
the vortex filament. The vertical component is w(y). The edge vortices are
also superimposed onto a vertical component of the velocity. With (4.207) we
obtain the contribution of the semi-infinite edge vortex:

w = − Γ

4 · π ·
(
s
2 + y

) − Γ

4 · π ·
(
s
2 − y

) = − Γ

4 · π · s

s2

4 − y2
. (4.208)

Note that w tends to −∞ at the ends of the wing ±s/2. Because of this,
L. Prandtl considered not just a single horseshoe vortex on the wing, but
rather a large number of horseshoe vortices of different lengths of the attached
vortex. These are arranged along a line called the lift line. Figure 4.150 shows
first the superposition of three horseshoe vortices. The first horseshoe vortex,
of strength dΓ1, encompasses the entire attached vortex from point A (y =
−s/2) to point F (y = +s/2). Superimposed on this is the second horseshoe

Fig. 4.148. Velocity v at the point P of
a straight vortex filament
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vortex, of strength dΓ2, from B to E, covering only a part of the attached
vortex. The third horseshoe vortex dΓ3 is superimposed from C to D. This
means that the vortex strength Γ (y) varies along the attached vortex (lift
line). Along AB and EF the strength is dΓ1, along BC and DE it is dΓ1+dΓ2,
and along CD it is dΓ1 + dΓ2 + dΓ3. Two edge vortices are assigned to each
vortex element along the lift line. The vortex strength of each edge vortex is
equal to the change in circulation along the lift line.

If we extrapolate the superposition to infinitely many horseshoe vortices
of infinitesimal vortex strength dΓ , we obtain a continuous distribution of
the vortex strength Γ (y) along the span of the wing. Let the maximum value
of the circulation be Γ0. The finite number of horseshoe vortices has become
a continuous vortex street parallel to the free stream V∞. Integration of the
vortex strength perpendicular to the vortex street is zero, since the boundary
vortices are paired with the same vortex strength but opposite signs.

If we consider an infinitesimal element dy on the lift line with vortex
strength Γ (y), the variation along the element is dΓ = (dΓ/dy) · dy. The
vortex strength of the edge vortex at position y is equal to the change in
vortex strength dΓ . At position y′, following the Biot–Savart law (4.204),
each element dx of the boundary vortex causes the vertical velocity

dw =

dΓ
dy · dy

4 · π · (y′ − y)
. (4.209)

Integration along all edge vortices yields

w(y′) =
1

4 · π ·

s
2∫

−
s
2

dΓ
dy

y′ − y
· dy. (4.210)

The circulation distribution Γ (y) for a given wing and thus the induced
lift and drag still have to be calculated. The notation for the derivation of
the Prandtl wing theory is indicated in Figure 4.151. The geometric angle of

Fig. 4.149. Distribution of the vertical
velocity w(y) for a single horseshoe vor-
tex
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attack from Figure 4.131 is supplemented by the induced angle of attack αi,
with the free-stream velocity V∞. This results in the effective angle of attack
αeff between the profile chord and the local free stream:

αeff = α− αi. (4.211)

From this we can compute one component of the local lift vector in the
direction V∞, called the induced drag Wi. Denoting the position of the profile
by y′, we see that the induced angle of attack is

αi(y
′) =

1

tan

(
−w(y′)
V∞

) . (4.212)

In general, w is one order of magnitude smaller than V∞, so that (4.212)
yields

αi(y
′) = −w(y′)

V∞
. (4.213)

Using (4.210) we obtain a relation between the induced angle of attack αi

and the circulation distribution Γ (y):

αi(y
′) =

1

4 · π · V∞
·

s
2∫

−
s
2

dΓ
dy

y′ − y
· dy. (4.214)

As shown in Figure 4.151, αeff is the effective angle of attack for the local
profile at position y′. As the downward directed vertical velocity varies over
the wing span, the effective angle of attack αeff also changes. Therefore, the
lift coefficient at the position y = y′ is

ca = a′ · (αeff (y′) − αA=0) = 2 · π · (αeff (y′) − αA=0). (4.215)

Here the increase a′ of the lift coefficient has been replaced by the value 2 ·π,
where the angle αA=0 at the lift A = 0 varies along a wing with wash with y′.
For a wing without wash αA=0 is constant and is thus a known quantity for

Fig. 4.150. Superposition of horseshoe vortices along the lift line
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a given wing. With the Kutta–Joukowski condition we obtain the following
lift for the local profile with length l(y′):

A′ =
1

2
· ρ∞ · V 2

∞ · l(y′) · ca = ρ∞ · V∞ · Γ (y′). (4.216)

Therefore, the lift coefficient is

ca =
2 · Γ (y′)

V∞ · l(y′) . (4.217)

The effective angle of attack is found using (4.215):

αeff =
Γ (y′)

π · V∞ · l(y′) + αA=0. (4.218)

With αeff = α− αi and (4.214) we obtain the fundamental equation of the
Prandtl wing theory:

α(y′) =
Γ (y′)

π · V∞ · l(y′) + αA=0(y
′) +

1

4 · π · V∞
·

s
2∫

−
s
2

dΓ
dy

y′ − y
· dy. (4.219)

This integrodifferential equation uses the fact that the geometric angle of
attack is equal to the sum of the effective angle of attack and the induced
angle of attack. The only unknown is the circulation distribution Γ . All other
quantities α, l, V∞, and αA=0 are known for a given wing. The solution of
(4.219) yields Γ = Γ (y′), where y′ varies across the wing span from y = −s/2
to y = s/2. Using the Kutta–Joukowski condition we can therefore obtain
the induced lift:

A′(y′) = ρ∞ · V∞ · Γ (y′), (4.220)

and the total lift

A = ρ∞ · V∞ ·

s
2∫

−
s
2

Γ (y) · dy. (4.221)

Using (4.192) we obtain the lift coefficient:

Fig. 4.151. Geometric α, induced αi and
effective αeff angle of attack of a local
wing profile
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ca =
A

1
2 · ρ∞ · V 2

∞ · S
=

2

V∞ · S ·

s
2∫

−
s
2

Γ (y) · dy, (4.222)

with the wing surface area S.
Integration over the wingspan yields the induced total drag:

Wi = ρ∞ · V∞ ·

s
2∫

−
s
2

Γ (y) · αi(y) · dy. (4.223)

The drag coefficient is then

cwi
=

Wi

1
2 · ρ∞ · V 2

∞ · S
=

2

V∞ · S ·

s
2∫

−
s
2

Γ (y) · αi(y) · dy. (4.224)

Prandtl’s wing theory therefore delivers all aerodynamic properties of a given
wing. The methods of solution of (4.219), such as the vortex-filament method
(J.D. Anderson Jr. 1991), are treated in depth in the aerodynamic literature,
and so will not be discussed further here.

The different shapes of subsonic wings are shown in Figure 4.152. The
wing with elliptical area leads to a minimal induced drag. However, since
elliptical wings are difficult to produce, in practice, tapered wings are used,
which approximately realize an elliptical lift distribution.

An important result of wing theory is that the induced drag is inversely
proportional to the wing span s. In order to keep the induced drag as low
as possible, the span s must be chosen as large as possible when the wing is
being designed. This was confirmed experimentally on rectangular wings of
aspect ratio s/l from 1 to 7 by L. Prandtl (1915). The results are summarized

Fig. 4.152. Different shapes of a flat wing
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in Figure 4.153. The lift and drag coefficients on the rectangular wing were
scaled here with the aspect ratio s/l = 5.

Wing Computation

The extension of Prandtl’s wing theory to wings with finite thickness and
the computational methods of, for example, the pressure distribution, are
described in the aerodynamics books of J.D. Anderson jr. (1991) and D.
Küchemann (1987). Figure 4.154 shows typical pressure distributions over
the surface of subsonic wings. The almost elliptical span distribution is due
to the fact discussed above. The large acceleration downstream of the leading
edge of the wing leads to different pressure peaks on the upper and lower sides.
This is ultimately responsible for the lift of the wing. For the swept subsonic
wing, treated in Section 4.4.5, the pressure distribution changes considerably
over the wingspan. The pressure peaks are more distinctive at the ends of
the wing, a fact that is undesirable in the design of wings.

Until now, we have treated only inviscid wing theory. We know from
(4.130) that the total drag cw and the lift ca have a friction contribution cf
as well as pressure and induced contributions cd and ci. Figure 4.155 presents
an overview of the different contributions along the span of a swept subsonic
wing at the Reynolds number Rel = 1.7 · 106 with a given lift coefficient
ca = 0.56 of a civil aircraft.

Fig. 4.153. Polar coefficients and lift coefficients of rectangular wings with aspect
ratios of s/l = 1 to 7, L. Prandtl (1915)
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Fig. 4.154. Pressure distributions of long wings D. Küchemann (1978)

Numerical Wing Computation

These days, both educational and commercial fluid-mechanics software pack-
ages are available to calculate the viscous flow past a wing (in particular,
see H. Oertel Jr. 2003). These numerically solve the Navier–Stokes equations
(5.65) in the laminar flow regime and the Reynolds equations (5.95) in the
turbulent regime. The development of numerical methods in fluid mechanics
has ranged from finite difference methods (FDM), to finite volume meth-
ods (FVM), to adaptive finite element methods (FEM) for unsteady three-

Fig. 4.155. Drag contributions along
the span of a swept subsonic wing Rel =
1.7 · 106, D. Küchemann (1978)
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dimensional flow problems. In parallel to this, spectral methods (SM) have
also been developed, to deal particularly with the solution of fluid-mechanical
stability problems and direct flow simulation. Of the many different solution
algorithms, we have selected the finite volume method (FVM) for the numer-
ical calculation of the wing. As an example we take the transonic wing of a
civil airplane. This is treated in detail in the next section. Figure 4.156 shows
the procedure in designing and calculating a wing. The preliminary design of
the wing is carried out using the inviscid Prandtl wing theory. The curvature
of the wing profile, the aerodynamic coefficients, and the pressure distribu-
tion (as sketched) are fixed provisionally. The second step is the calculation of
the designed wing, taking into account the sweeping and the warping of the
transonic wing. The first calculation of the wing will generally not attain the
desired lift coefficient ca, or else the drag coefficient cw may still be too large.
A further iteration step is then needed, to permit an improved preliminary
design with the calculated data. These design iterations are carried out in
several steps.

When the required aerodynamic coefficients are satisfied, the third step
of the design process takes place, namely the verification and validation of
the wing design in the wind tunnel. Verification is the comparison of the
experimental results with the numerical results, as well as the adaptation

wind tunnel experiment

calculation

preliminary design

Fig. 4.156. Wing design
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of the numerical methods and the instrumentation in the wind tunnel (see
Section 4.4.4). Validation requires the further development of the physical
models, in particular of turbulence models, in the fundamental equations.
This is a very time-consuming process, which has a great influence on the
development time of an airplane.

In the verification and validation phases, the calculation, or the prelimi-
nary design, is corrected in a few iteration steps, until the initial requirements
are satisfied. In each iteration step, a new wind tunnel model has to be built,
and the time-consuming measurements in the wind tunnels repeated. The
fewer the number of iteration steps that have to be carried out, the more
successful the design process. The more precise the numerical methods for
calculation, the more efficient the design.

The result of the calculation for the Mach number M∞ = 0.78, the
Reynolds number Rel = 26.6 · 106, and the sweep angle φ = 20◦ is shown
as isobars in Figure 4.157. The numerical solution shows the supersonic field
and the denser isobars in the region of the shock wave that concludes this
supersonic regime upstream. For the given lift coefficient ca = 0.0506 of a
transonic model wing, we calculate a drag coefficient cw = 0.0184. This small
drag coefficient is obtained for a laminar wing, where the laminar–turbulent
transition on the upper side of the wing is displaced into the shock–boundary-
layer region while that on the lower side is moved to the thickest part of the
wing. This is attained with a continuously accelerating pressure distribution

pressure distribution isobars

φ

l

φ trans

p 8

= 0.58
p

0.53

0.48

8

=
p
p 0.53

0.48

0.58

Fig. 4.157. Isobars in profile sections and on the surface of a swept transonic wing,
M∞ = 0.78, Rel = 26.6 · 106, angle of attack α = 2◦, and angle of sweep φ = 20◦
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and is associated with a reduction in the drag coefficient (see Figure 4.164).
The isobars on the upper side of the wing can be obtained from the load
distribution on the wing.

4.4.4 Aerodynamic Facilities

In this section we will not discuss the many different types of wind tunnel and
methods of measurement, but rather we will present the Prandtl-constructed
wind tunnel. Transonic, supersonic, and hypersonic wind tunnels, as well as
the associated measuring techniques are treated in the books referred to at the
end of the text. The Prandtl, or Göttingen, wind tunnel consists of a closed
circuit with open test tracks, where the wing or airplane model to be measured
is placed on a scale. Figure 4.158 shows a sketch of the Prandtl wind tunnel.
The air is supplied from the ventilator in a continually expanding channel
with deflectors of the nozzle of 2 m diameter. The accelerated air reaches
the open measurement track, from there moves to the collecting funnel, is
decelerated in the diffuser that follows, and is then led back to the blower. The
wind tunnel was designed for a wind velocity of 40 m/s, the speed reached
by airplanes of that time. The air is smoothed in front of the nozzle by
means of a rectifier and screens. These are shown in Figure 4.159. In order
to achieve a homogeneous air flow in the measurement track with uniform
velocity over the cross-section, the contraction ratio of the nozzle must be
chosen appropriately. The pressure drop p1 − p2 causes the same increase in
kinetic energy in all air particles.

Relative fluctuations are essentially compensated by the nozzle contrac-
tion. If the ratio of velocities is 1 : 5, that of the stagnation pressure is 1 : 25.
Any vortex strength of the free stream has to be reduced by rectifiers, systems
of parallel channels. The angular velocity of a mass of air rotating around

Fig. 4.158. Prandtl-constructed subsonic wind tunnel, L. Prandtl (1915)
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Fig. 4.159. Nozzle with rectifier and screens

an axis parallel to the direction of flow increases n times for a cross-section
contraction to 1/n of its size.

Since the diameter perpendicular to the streamline is reduced in the ratio
1/

√
n, there is an increase in the transverse velocity (r · ω) in the ratio

√
n,

while the longitudinal velocity increases in the ratio n. In contrast, a rotation
about an axis perpendicular to the streamline yields a decrease in the angular
velocity ω proportional to the decrease in radius r; i.e. it is reduced 1/

√
n

times. The perturbation velocity r · ω is reduced 1/
√
n times. To compen-

sate the longitudinal velocity fluctuations, additional wire mesh screens are
used. In addition to these local velocity fluctuations, the turbulent flow also
causes velocity fluctuations in time. Uniform fine-meshed screens are placed
behind the rectifier to dampen the approaching turbulence. Because of the
contraction of the nozzle, the turbulence is also reduced by similar processes
to those used in compensating the spatial velocity fluctuations. The longi-

tudinal component of the fluctuation velocity
√
u′2 is reduced much more

than the transverse components
√
v′2 and

√
w′2, so that anisotropic turbu-

lence is present directly after the nozzle, although it becomes isotropic again
downstream. It is to be noted that the damping screens themselves introduce
turbulence into the flow again, although this decreases downstream. It can be
reduced by providing a calming track between the last screen and the nozzle.

4.4.5 Transonic Aerodynamics, Swept Wings

Civil airplanes with jet engines fly in the transonic subsonic Mach number
regime. A typical flight envelope of a civil airplane is shown in Figure 4.160.
The flight speed v∞ in climbing flight is limited by the breaking point of
the airplane, although it may not fall below a certain minimum speed, the
so-called stalling point. At high altitudes the flight speed is determined by
the design Mach number M∞ = 0.8. Below 11 km in altitude, the velocity
of sound decreases, leading to higher flight speeds at constant Mach number.
Above 11 km the speed of sound is constant. The upper limit of the altitude
is set by the design of the pressure cabin.

At transonic subsonic Mach numbers of M∞ = 0.8, the flow is compress-
ible, and the supersonic regime on the wing is concluded by a shock wave.
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Fig. 4.160. Flight envelope of a
civil airplane

The wings of civil aircraft are swept, for the reasons mentioned in Section
4.4.2. This leads to a reduction in the total drag cw (Figure 4.140). The ef-
fect of the sweep was already known in 1939, as documented in Figure 4.162.
Because of the sweep, the boundary layer becomes three-dimensional, which
also affects the laminar–turbulent boundary-layer transition.

Transonic flows past wings are nonlinear. For example, the linear increase
in the lift coefficient ca with the angle of attack α for subsonic flows in (4.203)
is replaced by a nonlinear progression. In addition, potential theory may no
longer be applied to the nonlinear flow, so that numerical methods of solution
of the Navier–Stokes and Reynolds equations have to be applied to compute
the transonic flow past a wing. The shock wave associated with the shock–
boundary-layer interaction on the wing changes the flow field compared to
subsonic flow in such a way that the lift coefficient ca can no longer be
computed inviscidly. Figure 4.161 shows the comparison of an inviscidly and
a viscously computed flow past a profile at the transonic Mach number M∞ =

Fig. 4.161. Inviscid and viscous tran-
sonic flow past a profile, M∞ = 0.82
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0.82. The pressure distribution computed with the linear potential theory has
nothing in common with the transonic pressure distribution. Figure 4.162
shows the polar curves of the swept wing in comparison to those of the
unswept wing for the Mach number M∞ = 0.9. Because of the sweep, the
streamlines in the wing boundary layer are curved. Applying the Bernoulli
equation transverse to the streamline at the edge of the boundary layer, we
obtain approximately

∂p

∂n
= ρ · u

2
δ

R
, (4.225)

with n the direction normal to the streamline, uδ the velocity at the edge
of the boundary layer, and R the local radius of curvature. Because of the
no-slip condition we have v = 0 at the wall. The pressure is imposed onto
the boundary layer, yielding approximately

∂p

∂n

∣∣∣∣
z=δ

=
∂p

∂n

∣∣∣∣
z=0

.

This pressure gradient perpendicular to the streamline causes a cross-flow
component v(z), sketched in Figure 4.163. The laminar–turbulent transi-

Fig. 4.162. Polar curves of the unswept and swept wing at the transonic Mach
number M∞ = 0.9, H. Ludwieg (1939)
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Fig. 4.163. Three-dimensional bound-
ary layer profile of a swept wing,
Tollmien–Schlichting waves TS and
cross-flow waves CF

tion in the three-dimensional boundary layer is determined not only by the
Tollmien–Schlichting waves TS. Because of the cross-flow component, ad-
ditional cross-flow instabilities CF occur, to be treated in Section 6.2. The
streamline curvature is greatest downstream in the streamlines, so that it
can be assumed that the transition to turbulence in the boundary layer takes
place in the front region of the transonic wing. The transition line has to be
determined suitably when the flow past a wing is computed. At the Mach
number M∞ = 0.8 a shock wave occurs on the wing. The pressure distri-
butions of a swept transonic wing are sketched in Figure 4.164 for a con-
ventional transonic profile. A strong shock wave, known from Figure 4.133,
occurs on the upper side of the wing. Further compression waves, or shock
waves, occur from the wing tip or wing–fuselage region. These deflect the
three-dimensional supersonic flow in the front region of the wing to a super-
sonic flow parallel to the camber line (Figure 4.165), and this flow becomes
subsonic by means of an almost perpendicular shock wave on the wing. For
the pressure distributions shown in Figure 4.164, the laminar–turbulent tran-
sition in the three-dimensional wing boundary layer is to be expected at the

Fig. 4.164. Pressure distributions of a
swept wing in a transonic free stream, D.
Küchemann (1978)
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Fig. 4.165. Shock position on a swept
wing in a transonic free flow

pressure peak on the lower side and in the shock–boundary-layer interaction
region on the upper side.

Because of the high wave drag cs of strong shock waves, the supercritical
profile shown in Figure 4.135 was introduced. The shape of the front region of
the wing was chosen so that the subsonic regime is extended downstream and
a weakened shock wave occurs in the rear region of the wing. The resultant
pressure distribution for a free-stream Mach number of 0.75 is shown as a
dashed line in Figure 4.166. If the friction drag cf of the wing is to be reduced,
the wing has to be shaped so that the laminar–turbulent transition in the
wing boundary layer is shifted downstream. In addition, the suction tip on
the upper side of the wing has to be avoided and a continuous acceleration
as far as the shock wave achieved. Such a pressure distribution is shown
in Figure 4.166 as a heavy line. It leads to smaller leading-edge radii and
steeper pressure increases at the trailing edge. The shape of the profile is
chosen so that the onset of the Tollmien–Schlichting waves TS is shifted

Fig. 4.166. Conventional supercritical
profile and laminar profile, M∞ = 0.75,
ca = 0.5, Rel = 25 · 106
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Fig. 4.167. Drag contributions of a civil
airplane

downstream into the shock–boundary-layer interaction region. The sweep of
the wing also has to be reduced so that no cross-flow instabilities occur at
the leading edge. The solution of the Navier–Stokes and Reynolds equations
(5.65) and (5.95) for such a laminar wing of the transonic free-stream Mach
number 0.78 is shown in Figure 4.157. A sweep angle of φ = 20◦ is chosen, at
which the amplification rate of the cross-flow instabilities close to the leading
edge is considerably smaller than the amplification rate of the Tollmien–
Schlichting instabilities. The laminar boundary-layer flow is retained right
into the shock–boundary-layer interaction region. The extended supersonic
region on the transonic wing is concluded by a weak shock wave, seen in
Figure 4.157 as the compression of the isobars. The drag contributions for
the entire airplane are summarized in Figure 4.167. The contribution due to
the wing is 46%. By making the selected wing laminar, a decrease of 15%
in the drag is attained. For the airplane this means a reduction potential of

Fig. 4.168. shock–boundary-layer inter-
action with flow separation, pressure and
wall shear stress distribution
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about 7%. Further possibilities to reduce the drag are suction of the boundary
layer on the wing, influencing the viscous sublayer of the turbulent wing
boundary layer with so-called riblets, and influencing the shock–boundary-
layer interaction region with a bulge on the wing, to be discussed in the
following section.

4.4.6 Shock–Boundary-Layer Interaction

The interaction of the shock wave with the turbulent wing boundary layer
leads to an increase in the boundary-layer thickness already in front of the
shock wave (Figure 4.168). The thickening of the boundary layer causes pres-
sure perturbations in front of the shock that can lead to an oblique shock
wave and then to a branching of the shock. Behind the shock, the bound-
ary layer grows further, which, because of the displacement effect, leads to
an additional acceleration of the flow. In the interaction regime the pressure
at the wing wall increases in front of the shock. This pressure increase is
related to a decrease in the wall shear stress. If the shock wave is strong,
the wall shear stress becomes negative, and the boundary layer separates.
Because of the acceleration behind the shock and the compensation by the
turbulent mixing, both due to the boundary-layer thickening, the separation
bubble is reattached. The pressure at the wing wall in the separation bubble
is almost constant. There are two fundamentally different ways of calculat-
ing the shock–boundary-layer interaction. On the one hand, we can use the
numerical methods of wing calculation introduced in the previous section,
with a fine resolution of the interaction region. Results based on the shock–
boundary-layer interaction are presented at the end of the section. On the
other hand, there is the possibility to derive approximate solutions of the
shock–boundary-layer interaction using semianalytical methods and a zonal

Fig. 4.169. Flow model in the shock–boundary-layer interaction regime
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division of regions of the two-dimensional turbulent boundary layer of a tran-
sonic wing (see R. Bohning 1982).

In order to make the shock–boundary-layer interaction accessible to an
analytical calculation, the zonal flow model in Figure 4.169 is used. The two-
dimensional Navier–Stokes equations may then be simplified according to the
physical properties of each region.

In the inviscid outer region of the turbulent boundary-layer flow, the
nonlinear potential equation of transonic flow holds. The turbulent bound-
ary layer is divided into two further subregions according to the discussions
in Section 4.2.5. The outer part 2 of the boundary layer is modeled by a
turbulent, compressible shear layer in which the effect of friction appears
only via a given time-averaged velocity profile u0(z) in the otherwise inviscid
perturbation equations. Region 3 close to the wall is the viscous sublayer of
thickness δµ. Friction acts in this layer, and so it is here that the complete
Navier–Stokes equations must be solved. The name perturbation equation is
due to the fact that the basic flow 0 is perturbed by a weak vertical shock
wave. In what follows we treat the approximate solution of this inviscid per-
turbation equation in the boundary layer region 2, leading us ultimately to
the application of the analytical method of separation.

We first determine the basic flow u0(z). The dependence of the basic flow
quantities on the downstream coordinate x is neglected. This is permissi-
ble only if the curvature of the wing profile may be assumed to be suitably
small and the region under discussion in the x direction of length L not too
large. This leads to a two-dimensional discussion of the interaction region.
The compressible steady basic flow profile is then given by the time-averaged
turbulent quantities: the velocity u0(z), the density ρ0(z), the temperature
T 0(z), as well as the pressure p0. Apart from the pressure, in this local discus-
sion all quantities depend on the z coordinate normal to the wall. According
to the boundary-layer approximation ∂p0/∂z, the pressure of the basic flow
p0 is a constant.

In deriving the perturbation differential equations, we start out from the
two-dimensional compressible boundary-layer equations

∂(ρ · u)
∂x

+
∂(ρ · w)

∂z
= 0, (4.226)

ρ ·
(
u · ∂u

∂x
+ w · ∂u

∂z

)
= − ∂p

∂x
+ µ · ∂

2u

∂z2
. (4.227)

Because of the shock wave encroaching into the boundary layer, a pressure
gradient ∂p/∂z in the z direction normal to the wall must be taken into
account. Figure 4.169 shows, however, that the characteristic length region
in the x direction and the boundary layer thickness δ in region 2 are of the
same order of magnitude. Therefore, in the boundary-layer case at very large
Reynolds numbers Rel and for δ/L ≈ 1, the friction terms in the z direction
vanish. The equation of motion in the z direction then becomes
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ρ ·
(
u · ∂w

∂x
+ w · ∂w

∂z

)
= −∂p

∂z
. (4.228)

Using the energy equation

cp · T +
u2

2
= const (4.229)

and the equation of state of the ideal gas

p

ρ
= R · T, (4.230)

we obtain five equations to determine the five dependent variables u, w, p,
ρ, and T . With the perturbation ansatz

u = u0(z) + u′, w = w′,

p = p0 + p′, ρ = ρ0(z) + ρ′, T = T 0(z) + T ′, (4.231)

and neglecting the product of perturbation quantities (linearization), we ob-
tain the perturbation differential equations

ρ0 ·
∂u′

∂x
+ u0 ·

∂ρ′

∂x
+
∂(ρ0 · w′)

∂z
= 0, (4.232)

ρ0 · u0 ·
∂u′

∂x
+ ρ0 · w′ · du0

dz
= −∂p

′

∂x
+ µ ·

(
d2u0

dz2
+
∂2u′

∂z2

)
, (4.233)

ρ0 · u0 ·
∂w′

∂x
= −∂p

′

∂z
. (4.234)

The dashed flow quantities u′, w′, p′, ρ′, and T ′ are the perturbations in the
flow field due to the shock. In contrast to the quantities of the basic flow,
they are dependent on both spatial coordinates x and z.

After linearization, the energy equation and the equation of state yield
the equations

u0 · u′ + cp · T ′ = 0, (4.235)

ρ0 · T ′ + ρ′ · T 0 = p′ · ρ0 · T 0

p0

. (4.236)

Introducing the critical values of both Mach numbers M = 1 as reference
values, with the critical speed of sound ak and pk, ρk, Tk, we obtain the
dimensionless perturbation differential equations

ρ0 ·
∂u′

∂x
+Mk · ∂ρ

′

∂x
+
L

δ
· ∂(ρ0 · w′)

∂z
= 0, (4.237)

ρ0 ·Mk · ∂u
′

∂x
+ ρ0 · w′ · L

δ
· dMk

dz
= − 1

κ
· ∂p

′

∂x

+
1

Reδ
· L
δ
·
(

d2Mk

dz2
+
∂2u′

∂z2

)
, (4.238)

ρ0 ·Mk · ∂w
′

∂x
= − 1

κ
· L
δ
· ∂p

′

∂z
, (4.239)
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with the characteristic length L for the flow coordinate x and the boundary-
layer thickness δ for the coordinate normal to the wall z. The dimensionless
characteristic numbers Reδ = ak · ρk · δ/µ and Mk = u0/ak with the critical
velocity of sound a2

k = κ · pk/ρk appear. In region 2, L and δ are of the same
order of magnitude, so that L/δ = 1 may be set. For Reδ ≫ 1, therefore,
the frictional terms in the perturbation differential equations (4.237)–(4.239)
may be neglected. The friction enters only indirectly via the velocity profile
u0(z) of the given basic flow. This yields a simplified system of differential
equations for region 2:

ρ0 ·
(
1 + ρ0 · (κ− 1) ·M2

k

)
· ∂u

′

∂x
+ ρ0 ·Mk · ∂p

′

∂x
+
∂(ρ0 · w′)

∂z
= 0, (4.240)

ρ0 ·Mk · ∂u
′

∂x
+ ρ0 · w′ · dMk

dz
= − 1

κ
· ∂p

′

∂x
, (4.241)

ρ0 ·Mk · ∂w
′

∂x
= − 1

κ
· ∂p

′

∂z
. (4.242)

We also have the dimensionless energy equation and equation of state

T ′ + (κ− 1) ·Mk · u′ = 0, (4.243)

ρ0 · T ′ + ρ′ · T 0 = p′. (4.244)

By eliminating u′, ρ′, T ′, the system of equations (4.240)–(4.242) may be
transformed to a system of two equations in the two unknowns p′ and w′, to
which the analytical method of separation may be applied:

1

κ
· (M2

0 − 1) · ∂p
′

∂x
− ρ0 · w′ · dMk

dz
+ ρ0 ·Mk · ∂w

′

∂z
= 0, (4.245)

1

κ
· ∂p

′

∂z
+ ρ0 ·Mk · ∂w

′

∂x
= 0. (4.246)

The boundary value problem for p′ and w′ still has to be formulated for
(4.245), (4.246). On the one hand, this is because boundary values are given
by the shock on the outer edge of the boundary layer of region 2, while on
the other hand, the viscous sublayer of region 3 has boundary conditions

Fig. 4.170. Boundary conditions of the
perturbation problem
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at the wall that have to be satisfied. As derivatives of both perturbation
quantities p′ and w′ with respect to x and to z appear, we need to formulate
four boundary conditions, as shown in Figure 4.170. At the outer edge of the
boundary layer between region 2 and region 1, the pressure distribution of the
outer flow is imposed on region 1. The pressure perturbation p′ is therefore
given at position z = 1 for all x:

p′ = p′(x, 1) for z = 1. (4.247)

At a sufficiently large distance upstream and downstream of the shock, at the
dimensionless coordinates x = ±l, the perturbation velocity w′ must vanish,
to guarantee a continuous transition to the basic flow. We obtain the two
boundary conditions

w′ = 0 for x = +l,

w′ = 0 for x = −l. (4.248)

For the viscous sublayer in region 3 we have the known boundary condition
that the pressure along the wall coordinate z is constant for all x:

∂p′(x, z0)

∂z
= 0 for z = z0 =

δµ
δ
.

It then follows from (4.246) that ∂w′/∂x = 0. Together with the condition
(4.248), we obtain the fourth boundary condition:

w′(x, z0) = 0 with z0 =
δµ
δ
. (4.249)

Figure 4.171 shows the calculated pressure distribution, plotted against the
downstream coordinate x/δ. The diagram shows the distribution of the wall
pressure for z = 0 compared to experimental results. It can easily be seen
how the pressure jump in the outer flow caused by the shock wave is spread
out by the effect of friction. A weak shock wave was assumed, so that the
flow separation sketched in Figure 4.168 does not occur.

Shock–Boundary-Layer Control

The thickening of the turbulent boundary layer in the interaction regime
causes an increase in the total drag of the wing. In order to reduce this in-

Fig. 4.171. Calculated pressure distribu-
tion −cp at the wall of a transonic profile
compared to experimental results •
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crease in drag, attempts were initially made to weaken the shock and thus
reduce the wave drag using a pressure compensation chamber in the wing.
Figure 4.172 shows the effect of the chamber. The passive pressure com-
pensation takes place at a porous part of the wall in the shock region. Be-
hind this wall is the compensation chamber, which permits partial pressure
compensation in the shock–boundary-layer interaction region via self-induced
ventilation flow. The ventilation affects the displacement effect of the bound-
ary layer so that the structure of the shock wave is altered, and instead of a
strong shock wave, a weakened shock wave is formed. As a consequence of the
shock weakening, the wave drag and friction drag are reduced and separation
bubbles close to the wall avoided.

The isomach lines in the shock regime computed with the Reynolds equa-
tions (5.95) show shock-induced thickening for the uninfluenced transonic
profile, as well as the postexpansion regime already discussed. In front of the
shock a pre-compression takes place, which leads to the shock branching de-
scribed. This branching is stronger, the higher the chosen chamber pressure.
The oblique shock wave occurs at the start of the ventilation chamber. This
has the additional effect that the shock is fixed at the start of the influenc-
ing zone. Because of the pressure difference in front of and behind the shock
branching, a secondary flow through the wall perforation and into the ven-
tilation chamber occurs. This has the consequence that air is blown out of
the front region of the compensation chamber, and the displacement thickness
and turbulence intensity in the boundary layer increase at that point. Behind
the oblique shocks, the flow is sucked, reducing the growth of the boundary
layer downstream. Since the entropy and thus the wave drag increase with
the third power of the shock strength, the wave drag across two weakened
oblique shock waves is smaller than that across a single vertical shock. In
this manner the pressure compensation chamber achieves the desired drag
reduction.
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Fig. 4.172. Isomach lines of the shock–boundary-layer interaction, effect of a com-
pensation chamber M∞ = 0.76, Rel = 6 · 106, α = 2◦
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One further method to reduce the drag is a specific change in the contour
in the shock regime. This is simpler to construct on a wing than a pressure
compensation chamber. By means of a slight arching, a streamline such as
that formed by the passive ventilation at a compensation chamber is copied.

Figure 4.173 shows the wing solution of Figure 4.157 with a bulge. Again
shock-wave branching takes place. With the bulge the boundary layer is not
perturbed by an additional flow out of the compensation chamber, and so
the turbulence intensity in the interaction regime remains smaller and the
boundary layer does not thicken so much. As with the compensation cham-
ber, the bulge prevents shock-induced separation. The curvature increase at
the bulge causes the postexpansion regime to be extended, further reducing
the separation tendency. Altogether, a reduction in the total drag of 8% is
achieved, and the lift of the wing additionally slightly improved.

4.4.7 Flow Separation

It has already been shown in Section 4.4.2 that the flow on the wing separates
above a critical angle of attack αcrit (Figure 4.136). The increased displace-
ment leads to an increase in the pressure and friction drag, while the lift
simultaneously drops (Figure 4.138). As the angle of attack α increases, flow
separation on the wing takes place with a separation bubble that is steady

0.70.6

wing with bulge

1.0
1.12

bulgebulge

M 8 = 0.96

0.1

0.2

z/l

x / l

0.96

1.0

M 8 = 1.12

= 0.66y/ssectionsketch

Fig. 4.173. Isomach lines of the shock–boundary-layer interaction, effect of a bulge
M∞ = 0.78, Rel = 27 · 106, Φ = 20◦, α = 2◦
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in the time average. The separation line A and the reattachment line W are
half-saddle lines S′ (Figure 4.174), following the notation from Section 3.3.
As the angle of attack is increased, a secondary separation takes place, lead-
ing to two further half-saddles. At the front part of the wing, the separation
initially remains steady, in the time average. However downstream, an open
flow surface forms that is part of an unsteady three-dimensional flow separa-
tion, also called buffeting. The third illustration in Figure 4.174 shows all flow
surfaces in the flow field. The separation surfaces roll up and form a vortex
street. The secondary separation now leads to a second vortex street, since
the flow close to the wall can no longer move against the pressure gradient
caused by the primary vortex separation.

In earlier chapters we have already used Prandtl’s separation criterion,
according to which the wall shear stress τw is zero on both the separation
and reattachment lines. This is related to a branching of the wall stream-
lines, leading to a singular half-saddle S′. However, this separation criterion
is restricted to two-dimensional flow. For three-dimensional flow, the discus-
sion of flow separation at a delta wing (Figure 3.9) has already shown that
the wall streamlines on the wing converge to a separation line that forms a
separation surface in the flow field. The Prandtl separation criterion τw = 0
for three-dimensional flow separation is therefore replaced by the criterion of
convergence of the wall streamlines.

Figure 4.175 shows two possibilities of three-dimensional separation. The
first illustration shows the three-dimensional separation bubble, and the sec-
ond the formation of a free shear surface that leads to a vortex street. In
the separation bubble case, the backflow in the bubble is separated from
the main flow by a three-dimensional shear layer. This shear layer leads to
Kelvin–Helmholtz instabilities, which do not, however, change the position
of the separation bubble in the time average. The free shear surface of the
second figure leads to a flow surface bifurcation line at the wall and the sep-
aration surface that rolls up downstream as in Figure 4.174 and forms an
unsteady vortex street. Prandtl’s separation criterion τw = 0 cannot be ap-
plied for three-dimensional flow separation, and an additional theory of flow
surface bifurcation is necessary. Many three-dimensional separation criteria

Fig. 4.174. Flow separation on a wing at increasing angle of attack α
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Fig. 4.175. Three-dimensional flow separation

are mentioned in the references, but they have not yet led to a conclusive
theory.

4.4.8 Supersonic Aerodynamics, Delta Wings

The aerodynamics of supersonic flight is fundamentally different from that of
subsonic flight. This is because of the shock waves at the tip and end of the
profile, as discussed in Section 4.4.2. The shape of the wing for supersonic
flight is to be chosen so that the wave drag and thus the shock strength are
kept as small as possible. This can amount to up to half of the total drag.
The oblique shocks in the head and tail waves are weaker, the smaller the
sweep angle of the wing and the sharper the leading edge of the wing. In the
supersonic case this leads to delta wings. Their aerodynamics are determined
by the shock waves as well as the leading edge separation and the resulting
vortex system on the wing (Figure 4.176). This causes the additional lift,
which becomes larger with increasing angle of attack.

If we consider the dependence of lift-to-drag coefficient ratio ca/cw on the
flight Mach number in Figure 4.177, three airplane shapes are seen. The civil
airplane with swept wings in the transonic subsonic regime was considered in
the previous section. At Mach number 0.7 the value of ca/cw is 16. At Mach
number M∞ = 1 the ratio of ca/cw drops, because of the increasing wave
drag. A slender supersonic airplane with delta wings can reach ca/cw values
of up to 8 at the Mach number M∞ = 2.

In the supersonic flow of a delta wing (Figure 4.176), two different situa-
tions can occur. If the Mach line (see Section 4.3.1) lies in front of the wing
edge, as in Figure 4.178, the normal component of the free-flow velocity vn

is smaller than the speed of sound a∞. We then have a subsonic leading edge
with α′ > φ and vn < a∞. On the other hand, if the Mach line lies behind
the wing edge, the situation is that of a supersonic leading edge with α′ < φ
and vn > a∞. This division into subsonic and supersonic is important not
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only for the leading edge, but also for the trailing edge of the wing. If there
is a subsonic trailing edge, the Kutta condition can be applied, and pressure
compensation occurs between the lower and upper sides of the wing. In the
case of a supersonic trailing edge, oblique shock waves occur, and these lead
to an unsteady change in the flow quantities. A finite pressure difference ex-
ists between the upper and lower sides of the wing. There is a sharp bend
in the pressure distribution along the chord of the wing, as shown in Figure
4.178.

Assuming weak shock waves (small perturbations), the linearized poten-
tial equation (4.20) can be applied for inviscid supersonic flow, as for subsonic
flow:

(1 −M2
∞) · ∂

2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0. (4.250)

Again the flow behaves linearly. We have already used the Prandtl–Glauert
rule in the subsonic regime and the Ackeret rule in the supersonic regime
in Section 4.4.2. In order to derive these similarity rules, we carry out a
transformation of the potential equation (4.250). This transformation should
be such that the Mach number of the free flow no longer appears explicitly in
the transformed potential equation. We assume a transformed reference flow
as follows:

x′ = x, y′ = C1 · y, z′ = C1 · z, Φ′ = C2 · Φ. (4.251)

The factor C1 is determined so that the Mach number drops out. This yields
C1 =

√
1 −M2

∞ for subsonic velocities M∞ < 1 and C1 =
√
M2

∞ − 1 for

Fig. 4.176. Vortex formation and pres-
sure distribution at a section of a delta
wing
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Fig. 4.177. Dependence of the lift to
drag coefficient ratio ca/cw on the Mach
number

supersonic velocities M∞ > 1. The transformed potential equation of the
reference flow for subsonic flow yields

∂2Φ′

∂x′2
+
∂2Φ′

∂y′2
+
∂2Φ′

∂z′2
= 0, (4.252)

and that for supersonic flow yields

∂2Φ′

∂x′2
− ∂2Φ′

∂y′2
− ∂2Φ′

∂z′2
= 0. (4.253)

The transformed equation of subsonic flow is identical to the potential equa-
tion for incompressible flow. The transformed equation for supersonic flow
is identical to the linearized potential equation (4.250) for the Mach num-
ber M∞ =

√
2. The transformation shows that the calculation of supersonic

flows for arbitrary Mach numbers may be reduced to that for M∞ =
√

2. The
transformation (4.251) is called the Prandtl–Glauert–Ackeret similarity rule
in wing theory.

Fig. 4.178. Pressure distribution along the wing chord l and lift distribution along
the wing span s of a delta wing
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For a given delta wing, we obtain the transformed wing by shrinking or
increasing its dimensions transverse to the free flow direction by the factor C1

corresponding to (4.251). Figure 4.179 shows the transformation of a given
delta wing for different Mach numbers. The transformed wings for subsonic
Mach numbers M∞ < 1 were computed for incompressible flow M∞ = 0 and
for supersonic Mach numbers M∞ > 1 at the Mach number M∞ =

√
2.

The Prandtl–Glauert–Ackeret rule may also be carried over to the profile
section and the angle of attack. The transformed thickness ratio d′/l′ and the
transformed angle of attack α′ are computed from

d′

l′
=
d

l
·
√
|1 −M2

∞|, α′ = α ·
√
|1 −M2

∞|. (4.254)

For M∞ <
√

2, the transformed wing has a smaller thickness as well as a
smaller angle of attack than the given wing. For M∞ >

√
2 a greater thickness

and angle of attack are found.
The transformation of the pressure distribution is obtained from (4.251)

and

cp = −2 · u

u∞
= − 2

u∞
· ∂Φ
∂x

, c′p = −2 · u
′

u∞
= − 2

u∞
· ∂Φ

′

∂x′
, (4.255)

where the free flow u∞ is the same size for the given and the transformed
wings. With (4.251) we obtain

cp = C2 · c′p. (4.256)

The transformation factor C2 is determined from the streamline analogy of
both wings. From w = ∂Φ/∂z and w′ = ∂Φ′/∂z′, we obtain

Fig. 4.179. Application of the Prandtl–Glauert–Ackeret rule at a delta wing
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C2
1 · C2 = 1,

and with C1 =
√
|1 −M2

∞| we obtain

C2 =
1

|1 −M2
∞| .

This leads to the pressure distribution

cp =
c′p

|1 −M2
∞| . (4.257)

If we carry out the transformation in such a way that only the dimensions
in the y direction (wingspan) are distorted, while the dimensions in the z
direction (profile and angle of attack) remain unchanged, the transformation
in (4.254) is inverted. We then obtain the pressure coefficient

cp =
c′p√

|1 −M2
∞|
. (4.258)

This relation, already used in Section 4.4.2, is shown in Figure 4.180.
A delta wing designed for supersonic flight also has to have good slow-

flight properties for takeoff and landing in the subsonic regime. The vortex
system on the delta wing, discussed in Section 3.3 (Figures 3.9 and 4.176),
has to be stable in the entire Mach number range, in order to guarantee
continuous lift. This requires a subsonic leading edge of the delta wing, for
example at a flight Mach number of M∞ = 2. The sweep angle of the wing
is chosen so that an approximately conical flow forms (Figure 4.181), which
causes a wave drag as small as possible. The angle of attack of the delta
wing is restricted by the occurrence of unsteady vortex separation or the
bursting of the wing. This limiting angle is reached at about α ≈ 40◦, so
that a stable vortex system occurs in a large angle of attack range, compared
to subsonic wings. The stable vortex system in Figure 4.182 exists both in

Fig. 4.180. Transformation of pressure
coefficients



4.4 Aerodynamics 257

Fig. 4.181. Steady vortex separation at
the leading edge of a delta wing

the subsonic regime and the supersonic regime, as long as a subsonic leading
edge is realized. This occurs for a span-to-chord ratio of about s/l ≈ 0.5.

Figure 4.182 shows the lift-to-drag ratio of a wing-fuselage configuration
at a flight Mach number of M∞ = 2 and a given angle of attack. The maxi-
mum value of ca/cw for this example is 7.4, at a lift coefficient of ca = 0.15.
For the subsonic flight at takeoff and landing, ca/cw = 11.6 at the same lift
coefficient. In contrast to the swept wing of transonic subsonic flight, which
requires high-lift flaps to sustain the lift at takeoff and landing, these high-lift
aids are not needed for delta wings. Because of the stable vortex system, the
values of ca/cw for the delta wing in subsonic flight are higher than those in
supersonic flight.

The supersonic airplane Concorde was designed using the concept de-
scribed for the flight Mach number M∞ = 2. The airplane has a length of
l = 62 m and a span of s = 26 m (Figure 4.183). This yields a ratio of
s/l = 0.42, thus approximately realizing the slender, conical flow of the vor-
tex trail with a conical head wave in supersonic flight, which was described
above. The head wave heats up the flowing gas, so that temperatures of
128◦ C in the stagnation point and 105◦ C at the leading edge of the wing
are attained in supersonic flight. As well as the mechanical strains, there are
also additional thermal strains on the cell structure of a supersonic airplane.

The dependence of the drag contributions to the total drag cw of the
supersonic airplane on the flight Mach number are shown in Figure 4.184. In
subsonic flight the friction drag cf caused by the vortex trail dominates. At
Mach number M∞ = 2, the wave drag cs and the wave drag of the vortex
trail csi dominate.

Fig. 4.182. Ratio of lift to drag coeffi-
cient ca/cw for a slender supersonic air-
plane with delta wings
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Fig. 4.183. Supersonic airplane Concorde, M∞ = 2

Fig. 4.184. Contributions to the total drag cw of the supersonic airplane Concorde
plotted against the Mach number M∞
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4.4.9 Problems

4.22

The simplest representation of the
inviscid flow past a wing is a horse-
shoe vortex with circulation Γ .

(a) Using the Biot–Savart law, com-
pute the vertical velocity component
w along the line x = a, −s/2 ≤ y ≤
s/2. The contribution of each vortex
filament is to be computed.

w = −(w1 + w2 + w3),

w1 =
Γ

4Π

1

s/2 + y

(
1 +

a√
a2 + (s/2 + y)2

)
,

w2 =
Γ

4Π

1

a

(
s/2 − y√

a2 + (s/2 − y)2
+

s/2 + y√
a2 + (s/2 + y)2

)
,

w3 =
Γ

4Π

1

s/2 − y

(
1 +

a√
a2 + (s/2 − y)2

)
.

(b) Compute the induced velocity along the x-axis for a→ ∞.

w(y = 0, a) = − Γ

4Π

(
4

s
+

4

as

√
a2 + (s/2)2

)
,

w(y = 0, a→ ∞) = − 2Γ

Πs
.
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4.23

Assuming an elliptical circulation
distribution

Γ (y) = −Γ0

√

1 −
(

y

s/2

)2

,

one obtains a wing flow with minimal
induced drag. Because of the first
Helmholtz vortex law, an infinitesi-
mal free vortex with vortex strength
dΓ = (dΓ/dy′)dy′ is induced at ev-
ery point y′ in the flow field.

(a) Compute the induced vertical ve-
locity w(y) that is induced by the
free vortex at the position of the at-
tached vortex.

w(y) =
Γ0

2s
= const.

(b) Compute the induced angle of attack αi = w/U∞ and the lift of the
wing at the position of the attached vortex.

αi =
Γ0

2sU∞

, Ai = ρΓ0U∞s
Π

4
,

ca =
Π

2

Γ0s

2U∞S
, S = wing surface area.

(c) Compute the induced drag wi.

wi =
Π

8
ρΓ 2

0 , cw =
c2a

Πs2/S
.

4.24

The camber line of a slender airfoil
can be computed with a given vor-
tex strength distribution γ(x). This
is called the inverse design method.

With the direct computation method, the vortex strength distribution
can be computed from a given geometry of the camber line.
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(a) Determine the equation of the camber line for the given vortex strength
distribution γ(x) = 2U∞C = const.

f(x) = α(x − 1) +
C

Π
((x− 1) ln (1 − x) − x ln x) .

(b) Calculate the vortex strength distribution and the lift coefficient for the
given camber line z = f(x) = ǫx(1 − x/α).

γ(x) = 4
√
x(1 − x)

( α
2x

+ ǫ
)
,

ca = Π(2α+ ǫ).

4.25

In order to calculate the turbulent shock–boundary-layer interaction of
a transonic airfoil, the interaction regime is divided into three zones: (1)
the inviscid outer flow, close to the speed of sound; (2) the boundary-layer
region, with the inviscid flow differential equations with shearing; and (3) the
viscous sublayer. In the boundary-layer zone 2, the effect of friction is taken
into account only by a given time-averaged velocity profile u0(z), which is
perturbed by the pressure perturbation of the shock p′.
(a) Using the perturbation ansatz

u = ū0(z) + u′, w = w′, p = p̄0 + p′,

ρ = ρ̄0(z) + ρ′, T = T̄0(z) + T ′′,

the linearized perturbation differential equations are to be determined from
the two-dimensional boundary-layer equations

∂(ρ · u)
∂x

+
∂(ρ · w)

∂z
= 0,
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ρ

(
u · ∂u

∂x
+ w · ∂u

∂z

)
= − ∂p

∂x
+ µ

∂2u

∂z2
,

ρ

(
u · ∂w

∂x
+ w · ∂w

∂z

)
= −∂p

∂z
,

cp · T +
u2

2
= const, p = RρT.

Note that because of the shock, the term ∂p/∂z in the boundary-layer equa-
tion has to be taken into account, but because δ/L ∝ 1, the friction terms
may be neglected.

ρ0

∂u′

∂x
+ u0

∂ρ′

∂x
+
∂(ρ0 · w)

∂z
= 0,

ρ0u0 ·
∂u′

∂x
+ ρ0 · w′ · ∂u0

∂z
= −∂p

′

∂x
+ µ

(
∂2u0

∂z2
+
∂2u′

∂z2

)
,

ρ0 · u0 ·
∂w′

∂x
= −∂p

′

∂z
,

u0 · u′ + cp · T ′ = 0, ρ0 · T ′ + ρ′ · T 0 = p′
ρ0T 0

p0

.

(b) Make the perturbation differential equations dimensionless with the criti-
cal values k at M = 1 and eliminate u′ to obtain two perturbation differential
equations for p′ and w′. These can then be analytically solved using, for ex-
ample, a separation trial solution.

1

κ
(M2

0 − 1)
∂p′

∂x
− ρ0 · w′ · dMk

dz
+ ρ0 ·Mk · ∂w

′

∂z
= 0,

1

κ
· ∂p

′

∂z
+ ρ0 ·Mk · ∂w

′

∂x
= 0,

with M0(z) = Mk(z)
√
ρ0(z), Mk = u0/ak, and Reδ ≫ 1.

4.26

An airfoil of width b whose contours
on the upper and lower sides are
given by two parabolic equations is
placed in supersonic free stream with
Mach number M∞:

z

l
= 4 · h1

l
· x
l
·
(
1 − x

l

)
,

z

l
= 4 · h2

l
· x
l
·
(
1 − x

l

)
.
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(a) Determine the x dependence of the cp value along the upper and lower
sides of the airfoil.

cp,u =
8 · h1

l ·
(
1 − 2·x

l

)
√
M2

∞ − 1
, cp,l =

8 · h2

l ·
(
1 − 2·x

l

)
√
M2

∞ − 1
.

(b) How large is the torque MD acting on the point D that results on the
pressure distributions on the upper and lower sides of the airfoil: M∞ =
1.4, l = 4 m, b = 15 m, h1 = 0.1 m, h2 = 0.05 m, ρ∞ = 0.265 kg/m3, U∞ =
413 m/s.

MD =
2 · ρ∞ · U2

∞ · b · (h1 + h2) · l
3 ·
√
M2

∞ − 1
= 276.8 kNm.
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5.1 Continuity Equation

The mass conservation at a volume element dV = dx · dy · dz for steady,
incompressible flow

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

with velocity components u, v, w of the velocity vector v, was introduced in
Section 4.2.1. In this chapter we again consider the derivation of the conti-
nuity equation at a volume element dV , but now extended to unsteady and
compressible flows.

In general, the conservation of mass at a volume element may be formu-
lated as follows:

The rate of change of mass in a volume element
=
∑

the mass fluxes into the volume element
− ∑ the mass fluxes out of the volume element.

Figure 5.1 shows the volume element dV . Its edges have lengths dx, dy,
and dz. The mass flux ρ · u · dy · dz flows in through the left surface of the
volume element with surface dy ·dz. The quantity ρ ·u changes its value from
position x to position x+dx in the x direction by ∂(ρ ·u)/∂x ·dx. Therefore,

Fig. 5.1. Mass fluxes
entering and exiting
the volume element dV
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the mass flux exiting the volume element through the right surface dy · dz
can be written as(

ρ · u+
∂(ρ · u)
∂x

· dx
)
· dy · dz.

In the y and z directions, analogous expressions can be computed for the
surfaces dx · dz and dx · dy.

According to the conservation of mass, the rate of change of mass inside
the volume element under consideration corresponds to the difference between
the mass fluxes entering and exiting. The term

∂(ρ · dx · dy · dz)
∂t

=
∂ρ

∂t
· dx · dy · dz

is the mathematical expression for the rate of change of mass in the volume
element. According to the discussion above, we have

∂ρ

∂t
· dx · dy · dz =

(
ρ · u− (ρ · u+

∂(ρ · u)
∂x

· dx)
)
· dy · dz

+

(
ρ · v − (ρ · v +

∂(ρ · v)
∂y

· dy)
)
· dx · dz

+

(
ρ · w − (ρ · w +

∂(ρ · w)

∂z
· dz)

)
· dx · dy.

This leads us to the continuity equation for compressible flows:

∂ρ

∂t
+
∂(ρ · u)
∂x

+
∂(ρ · v)
∂y

+
∂(ρ · w)

∂z
= 0. (5.1)

For an incompressible fluid, this simplifies to

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (5.2)

Using vector notation, these equations in a general coordinate system read

∂ρ

∂t
+ ∇ · (ρ · v) = 0 and ∇ · v = 0, (5.3)

where the operator ∇· denotes the divergence of the vector. The Nabla op-
erator ∇ has the following components:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)T

.

5.2 Navier–Stokes Equations

5.2.1 Laminar Flows

The Navier–Stokes equation results from the conservation of momentum at a
volume element dV . It was derived for viscous, incompressible flow in Section



5.2 Navier–Stokes Equations 267

4.2.1. We now consider the derivation for compressible flow. As with the
derivation of the continuity equation at the volume element in Figure 5.1,
we consider the rate of change of momentum in such a volume element. The
momentum is the product of mass and velocity. The fluid inside the volume
therefore has the momentum ρ · dx · dy · dz · v, and its rate of change can be
written as

∂(ρ · dx · dy · dz · v)

∂t
=
∂(ρ · v)

∂t
· dx · dy · dz. (5.4)

In general, we can say:

The rate of change of momentum in a volume element
=
∑

the momentum fluxes entering the volume element
− ∑ the momentum fluxes exiting the volume element
+
∑

the shear and normal stresses acting on the volume element
+
∑

the forces acting on the mass of the volume element.

Initially, we consider only one component of the momentum vector ρ ·dx ·
dy · dz · v, namely, the component that points in the x direction. Its rate of
change can be expressed as follows:

∂(ρ · dx · dy · dz · u)
∂t

=
∂(ρ · u)
∂t

· dx · dy · dz. (5.5)

Just as in consideration of the mass fluxes, momentum enters or exits the
volume through the surfaces of the volume element per unit time. In deriving
the continuity equation, the quantity ρ (mass per unit volume) was used. Now
we consider the quantity (ρ · u) (momentum per unit volume). As with the
derivation of the continuity equation, we write down the momentum fluxes
entering and exiting the volume element.

Again we consider the volume element shown in Figure 5.2 together with
the momentum fluxes. Initially, we restrict ourselves to the x direction of the
rate of change of the momentum ρ · dx · dy · dz · v.

The momentum flux

(ρ · u) · u · dy · dz = ρ · u · u · dy · dz (5.6)

enters through the left surface dy · dz of the volume element. The quantity
ρ · u · u changes its value in the x direction by

∂(ρ · u · u)
∂x

· dx, (5.7)

so that the momentum flux exiting the volume element through the right
surface dy · dz may be denoted by

(
ρ · u · u+

∂(ρ · u · u)
∂x

· dx
)
· dy · dz. (5.8)

The momentum ρ ·u acting in the x direction also enters and exits the volume
element through the remaining surfaces dx · dz and dx · dy, but then with
velocity components v and w, respectively.
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Similar expressions can be written down for the y and z directions, so
that in total three momentum fluxes can be given on each surface (Figure
5.2).

Now, the momentum fluxes entering and exiting are not the only cause of
the rate of change of momentum within the volume element. The momentum
inside the volume element is also changed by the forces acting on this volume
element. These forces include the normal stresses and shear stresses, which
are shown in Figure 5.3. These stresses vary in the x, y, and z directions, and
the figure shows each quantity and its corresponding change at each of the
positions x+ dx, y + dy, and z + dz.

The normal stresses and shear stresses are denoted in the same manner
as in Section 4.2.1: The first index indicates on which surface the stress acts.

Fig. 5.2. Momentum fluxes en-
tering and exiting the volume
element dV
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For example, if the normal to the surface on which the stress acts points in
the x direction, then this stress is given an x as its first index. The second
index indicates in which coordinate direction the force resulting from the
stress acts (Figure 5.3).

In deriving the equations, the signs of the stresses are determined as fol-
lows: A force is positive if the surface normal points in the positive coordinate
direction, and is negative if the normal points in the negative coordinate di-
rection.

The volume forces act on the mass of the volume element. They include
gravity as well as the electric and magnetic forces that act on a flow, and are
denoted by f = (fx, fy, fz)

T .

Fig. 5.3. Normal stresses and shear
stresses at the volume element dV
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Corresponding to the basic principle at the start of this chapter, the rate
of change of momentum ρ · dx · dy · dz · u is

∂(ρ · u)
∂t

· dx · dy · dz =

(
ρ · u · u− (ρ · u · u+

∂(ρ · u · u)
∂x

· dx)
)
· dy · dz

+

(
ρ · u · v − (ρ · u · v +

∂(ρ · u · v)
∂y

· dy)
)
· dx · dz

+

(
ρ · u · w − (ρ · u · w +

∂(ρ · u · w)

∂z
· dz)

)
· dx · dy

+ fx · dx · dy · dz (5.9)

+

(
−τxx + (τxx +

∂τxx

∂x
· dx)

)
· dy · dz

+

(
−τyx + (τyx +

∂τyx

∂y
· dy)

)
· dx · dz

+

(
−τzx + (τzx +

∂τzx

∂z
· dz)

)
· dx · dy.

This yields

∂(ρ · u)
∂t

+
∂(ρ · u · u)

∂x
+
∂(ρ · u · v)

∂y
+
∂(ρ · u · w)

∂z

= fx +
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
. (5.10)

The following equations are obtained for the y and z directions:

∂(ρ · v)
∂t

+
∂(ρ · v · u)

∂x
+
∂(ρ · v · v)

∂y
+
∂(ρ · v · w)

∂z

= fy +
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
,

∂(ρ · w)

∂t
+
∂(ρ · w · u)

∂x
+
∂(ρ · w · v)

∂y
+
∂(ρ · w · w)

∂z

= fz +
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
.

The pressure p can be written as the trace of the stress tensor:

p = −τxx + τyy + τzz

3
. (5.11)

The minus sign takes into account the fact that the pressure acts as a negative
normal stress.

The three normal stresses τxx, τyy, and τzz can each be split up into two
parts, the pressure p and the contributions due to the friction of the fluid,
σxx, σyy, and σzz :

τxx = σxx − p, τyy = σyy − p, τzz = σzz − p. (5.12)
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Inserting τxx, τyy, and τzz from (5.12) into (5.10), we obtain

∂(ρ · u)
∂t

+
∂(ρ · u2)

∂x
+
∂(ρ · u · v)

∂y
+
∂(ρ · u · w)

∂z

= fx − ∂p

∂x
+
∂σxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
, (5.13)

∂(ρ · v)
∂t

+
∂(ρ · v · u)

∂x
+
∂(ρ · v2)

∂y
+
∂(ρ · v · w)

∂z

= fy − ∂p

∂y
+
∂τxy

∂x
+
∂σyy

∂y
+
∂τzy

∂z
, (5.14)

∂(ρ · w)

∂t
+
∂(ρ · w · u)

∂x
+
∂(ρ · w · v)

∂y
+
∂(ρ · w2)

∂z

= fz −
∂p

∂z
+
∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
. (5.15)

For Newtonian fluids the following relations hold:

σxx = 2 · µ · ∂u
∂x

− 2

3
· µ ·

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,

σyy = 2 · µ · ∂v
∂y

− 2

3
· µ ·

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,

σzz = 2 · µ · ∂w
∂z

− 2

3
· µ ·

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, (5.16)

τyx = τxy = µ ·
(
∂v

∂x
+
∂u

∂y

)
, τyz = τzy = µ ·

(
∂w

∂y
+
∂v

∂z

)
,

τzx = τxz = µ ·
(
∂u

∂z
+
∂w

∂x

)
,

with the symmetry condition

τyx = τxy, τyz = τzy , τzx = τxz . (5.17)

Inserting the normal stresses and shear stresses according to equations (5.16)
into the conservation of momentum equations (5.13), (5.14), and (5.15), we
obtain the Navier–Stokes equations:

∂(ρ · u)
∂t

+
∂(ρ · u2)

∂x
+
∂(ρ · u · v)

∂y
+
∂(ρ · u · w)

∂z

= fx − ∂p

∂x
+

∂

∂x

[
µ ·
(

2 · ∂u
∂x

− 2

3
· (∇ · v)

)]

+
∂

∂y

[
µ ·
(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ ·
(
∂w

∂x
+
∂u

∂z

)]
,
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∂(ρ · v)
∂t

+
∂(ρ · v · u)

∂x
+
∂(ρ · v2)

∂y
+
∂(ρ · v · w)

∂z

= fy − ∂p

∂y
+

∂

∂x

[
µ ·
(
∂u

∂y
+
∂v

∂x

)]

+
∂

∂y

[
µ ·
(

2 · ∂v
∂y

− 2

3
· (∇ · v)

)]
+

∂

∂z

[
µ ·
(
∂v

∂z
+
∂w

∂y

)]
,

∂(ρ · w)

∂t
+
∂(ρ · w · u)

∂x
+
∂(ρ · w · v)

∂y
+
∂(ρ · w2)

∂z

= fz − ∂p

∂z
+

∂

∂x

[
µ ·
(
∂w

∂x
+
∂u

∂z

)]

+
∂

∂y

[
µ ·
(
∂v

∂z
+
∂w

∂y

)]
+

∂

∂z

[
µ ·
(

2 · ∂w
∂z

− 2

3
· (∇ · v)

)]
.

For incompressible flows, we can use the continuity equation ∇ · v = 0 (5.2)
to obtain the Navier–Stokes equations:

ρ ·
(
∂u

∂t
+
∂(u · u)
∂x

+
∂(v · u)
∂y

+
∂(w · u)
∂z

)

= fx − ∂p

∂x
+

∂

∂x

[
2 · µ · ∂u

∂x

]

+
∂

∂y

[
µ ·
(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ ·
(
∂w

∂x
+
∂u

∂z

)]
,

ρ ·
(
∂v

∂t
+
∂(u · v)
∂x

+
∂(v · v)
∂y

+
∂(w · v)
∂z

)

= fy − ∂p

∂y
+

∂

∂x

[
µ ·
(
∂u

∂y
+
∂v

∂x

)]
(5.18)

+
∂

∂y

[
2 · µ · ∂v

∂y

]
+

∂

∂z

[
µ ·
(
∂v

∂z
+
∂w

∂y

)]
,

ρ ·
(
∂w

∂t
+
∂(u · w)

∂x
+
∂(v · w)

∂y
+
∂(w · w)

∂z

)

= fz − ∂p

∂z
+

∂

∂x

[
µ ·
(
∂w

∂x
+
∂u

∂z

)]

+
∂

∂y

[
µ ·
(
∂v

∂z
+
∂w

∂y

)]
+

∂

∂z

[
2 · µ · ∂w

∂z

]
.

Using the continuity equation (5.2), these may be rewritten in nonconserva-
tive form, assuming constant viscosity:
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ρ·
(
∂u

∂t
+ u · ∂u

∂x
+ v · ∂u

∂y
+ w · ∂u

∂z

)

= fx − ∂p

∂x
+ µ ·

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

ρ ·
(
∂v

∂t
+ u · ∂v

∂x
+ v · ∂v

∂y
+ w · ∂v

∂z

)

= fy − ∂p

∂y
+ µ ·

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
,

(5.19)

ρ·
(
∂w

∂t
+ u · ∂w

∂x
+ v · ∂w

∂y
+ w · ∂w

∂z

)

= fz − ∂p

∂z
+ µ ·

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
.

These equations can be summarized using vector notation as follows

ρ ·
(
∂v

∂t
+ (v · ∇)v

)
= f −∇p+ µ ·∆v, (5.20)

where ∇p is the gradient of p, and (v · ∇) the scalar product of the velocity
vector and the Nabla operator. This is a convection operator that can be
applied to each component of the velocity vector v. Here ∆v denotes the
Laplace operator applied to v:

∇p =

(
∂p

∂x
,
∂p

∂y
,
∂p

∂z

)T

, v · ∇ = u · ∂
∂x

+ v · ∂
∂y

+ w · ∂
∂z
,

(5.21)

∆v =
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
.

Together with the continuity equation (5.2), equations (5.19) form a system
of four nonlinear second-order partial differential equations for the four un-
knowns u, v, w, and p. This system has to be solved for given initial and
boundary conditions.

On the other hand, if we consider a compressible fluid, the density ρ has
to be taken into account as an additional unknown. A further equation, the
energy equation, is then needed. This is discussed for laminar flows in Section
5.3.1.

5.2.2 Reynolds Equations for Turbulent Flows

For turbulent flows, the Reynolds ansatz (4.63) introduced in Section 4.2.4
holds. In order to be able to apply this to turbulent compressible flows too,
we introduce mass-averaged quantities:



274 5. Fundamental Equations of Fluid Mechanics

ũ =
ρ · u
ρ
, ṽ =

ρ · v
ρ
, w̃ =

ρ · w
ρ

. (5.22)

The line over the products denotes time averaging according to equation
(4.64):

ρ · u =
1

T
·

T∫

0

(ρ · u) · dt, (5.23)

also known as Favre averaging.
The velocity components u, v, etc., are now made up of the time-averaged

values according to equations (5.22) and a fluctuating quantity, which will
now be denoted by two dashes. The pressure p and the density ρ do not have
to be mass averaged. Their fluctuating quantities are denoted by one dash
only. Thus we have the Reynolds ansatz for compressible flows:

ρ = ρ+ ρ′, p = p+ p′,

u = ũ+ u′′, v = ṽ + v′′, w = w̃ + w′′.
(5.24)

It is important to note that the time-averaged quantities f ′′ (where f ′′ is one
of the fluctuating quantities u′′, v′′, etc.) are nonzero. On the other hand, the
quantity ρ · f ′′ is equal to zero.

The following computational rules hold for any two quantities f and g:

∂f

∂s
=
∂f

∂s
, f + g = f + g, ρ′ · ũ = 0, ρ · u′′ = 0. (5.25)

The time average of the continuity equation (5.1) is written as

1

T
·

T∫

0

(
∂ρ

∂t
+
∂(ρ · u)
∂x

+
∂(ρ · v)
∂y

+
∂(ρ · w)

∂z

)
· dt = 0,

or

∂ρ

∂t
+
∂(ρ · u)
∂x

+
∂(ρ · v)
∂y

+
∂(ρ · w)

∂z
= 0. (5.26)

Inserting the quantities u, v, and w according to equations (5.24) into equa-
tion (5.26), we use the computational rules (5.25) and ρ · f ′′ = 0 to obtain

∂ρ

∂t
+
∂[ρ · (ũ+ u′′)]

∂x
+
∂[ρ · (ṽ + v′′)]

∂y
+
∂[ρ · (w̃ + w′′)]

∂z
= 0,

∂ρ

∂t
+
∂[ρ · (ũ+ u′′)]

∂x
+
∂[ρ · (ṽ + v′′)]

∂y
+
∂[ρ · (w̃ + w′′)]

∂z
= 0,

∂ρ

∂t
+
∂[ρ · (ũi + u′′i )]

∂xi
= 0.

The second term contains the abbreviated notation for the three coordinate
and velocity directions (i = 1, . . . , 3); i.e.
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∂[ρ · (ũi + u′′i )]

∂xi
=
∂(ρ · ũi)

∂xi
+
∂(ρ · u′′i )

∂xi
=
∂(ρ · ũi)

∂xi
.

Therefore, the time-averaged continuity equation for compressible flows reads

∂ρ

∂t
+
∂(ρ · ũ)
∂x

+
∂(ρ · ṽ)
∂y

+
∂(ρ · w̃)

∂z
= 0. (5.27)

It now no longer contains the quantities ρ and ui, but rather ρ and ũi.
For incompressible flows the continuity equation reads

∂(u)

∂x
+
∂(v)

∂y
+
∂(w)

∂z
= 0. (5.28)

The time averaging of the Navier–Stokes equations is carried out in the same
manner as the averaging of the continuity equation. First, we consider the
equation for the x direction. Equation (5.13) yields

∂(ρ · u)
∂t

+
∂(ρ · u2)

∂x
+
∂(ρ · u · v)

∂y
+
∂(ρ · u · w)

∂z

= fx − ∂p

∂x
+
∂σxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
,

with (5.16)

σxx = µ ·
(

2 · ∂u
∂x

− 2

3
· (▽ · v)

)
, τij = µ ·

(
∂ui

∂xj
+
∂uj

∂xi

)
.

Using the computational rules (5.25) we obtain

∂(ρ · u)
∂t

+
∂(ρ · u2)

∂x
+
∂(ρ · u · v)

∂y
+
∂(ρ · u · w)

∂z

= fx − ∂p

∂x
+
∂σxx

∂x
+
∂τyx

∂y
+
∂τ zx

∂z
. (5.29)

According to the definition of ũ, ρ · u = ρ · ũ. Therefore, all the time-averaged
terms on the left- and right-hand sides of equation (5.29) are known, apart
from the three terms on the left-hand side that contain the spatial partial
derivatives. These will be considered further in what follows. By inserting the
Reynolds ansatz (5.24) for u, v, and w, we obtain

∂[ρ · (ũ+ u′′)2]

∂x
+
∂[ρ · (ũ+ u′′) · (ṽ + v′′)]

∂y
+
∂[ρ · (ũ+ u′′) · (w̃ + w′′)]

∂z

=
∂(ρ · ũ2)

∂x
+
∂(ρ · u′′2)

∂x
+
∂(2 · ρ · ũ · u′′)

∂x

+
∂(ρ · ũ · ṽ)

∂y
+
∂(ρ · ũ · v′′)

∂y
+
∂(ρ · u′′ · ṽ)

∂y
+
∂(ρ · u′′ · v′′)

∂y

+
∂(ρ · ũ · w̃)

∂z
+
∂(ρ · ũ · w′′)

∂z
+
∂(ρ · u′′ · w̃)

∂z
+
∂(ρ · u′′ · w′′)

∂z
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=
∂(ρ · ũ2)

∂x
+
∂(ρ · u′′2)

∂x
+
∂(ρ · ũ · ṽ)

∂y
+
∂(ρ · u′′ · v′′)

∂y

+
∂(ρ · ũ · w̃)

∂z
+
∂(ρ · u′′ · w′′)

∂z
.

Inserting this result into equation (5.29), we obtain the Reynolds equation for
the x direction:

∂(ρ · ũ)
∂t

+
∂(ρ · ũ2)

∂x
+
∂(ρ · ũ · ṽ)

∂y
+
∂(ρ · ũ · w̃)

∂z

= fx − ∂p

∂x
+
∂σxx

∂x
+
∂τyx

∂y
+
∂τ zx

∂z

−
(
∂(ρ · u′′2)

∂x
+
∂(ρ · u′′ · v′′)

∂y
+
∂(ρ · u′′ · w′′)

∂z

)
. (5.30)

A simple additional calculation leads to the following equations for the time-
averaged normal and shear stresses σxx, τyx, and τzx:

σxx = µ ·
(

2 · ∂ũ
∂x

− 2

3
· (∇ · ṽ)

)
+ µ ·

(
2 · ∂u

′′

∂x
− 2

3
· (∇ · v′′)

)
, (5.31)

τ ij = µ ·
(
∂ũi

∂xj
+
∂ũj

∂xi

)
+ µ ·

(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
. (5.32)

The expressions ∇ · ṽ and ∇ · v′′ denote the divergences

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
,

∂u′′

∂x
+
∂v′′

∂y
+
∂w′′

∂z
.

Compared to the Navier–Stokes equation for laminar flows (5.18), equation
(5.30) contains additional terms on the right-hand side that take into account
the fluctuating motion of the flow. The additional terms in (5.30) have to be
modeled suitably, since no closed theory of turbulence modeling is known.

The same holds for the y and z directions, so that the Reynolds equations
for turbulent compressible flows can be modeled suitably:

∂(ρ · ũ)
∂t

+
∂(ρ · ũ2)

∂x
+
∂(ρ · ũ · ṽ)

∂y
+
∂(ρ · ũ · w̃)

∂z

= fx − ∂p

∂x
+
∂σxx

∂x
+
∂τyx

∂y
+
∂τ zx

∂z

−
(
∂(ρ · u′′2)

∂x
+
∂(ρ · u′′ · v′′)

∂y
+
∂(ρ · u′′ · w′′)

∂z

)
, (5.33)
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∂(ρ · ṽ)
∂t

+
∂(ρ · ṽ · ũ)

∂x
+
∂(ρ · ṽ2)

∂y
+
∂(ρ · ṽ · w̃)

∂z

= fy − ∂p

∂y
+
∂τxy

∂x
+
∂σyy

∂y
+
∂τzy

∂z

−
(
∂(ρ · v′′ · u′′)

∂x
+
∂(ρ · v′′2)

∂y
+
∂(ρ · v′′ · w′′)

∂z

)
, (5.34)

∂(ρ · w̃)

∂t
+
∂(ρ · w̃ · ũ)

∂x
+
∂(ρ · w̃ · ṽ)

∂y
+
∂(ρ · w̃2)

∂z

= fz − ∂p

∂z
+
∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z

−
(
∂(ρ · w′′ · u′′)

∂x
+
∂(ρ · w′′ · v′′)

∂y
+
∂(ρ · w′′2)

∂z

)
, (5.35)

with

σii = µ ·
(

2 · ∂ũi

∂xi
− 2

3
· (▽ · ṽ)

)
+ µ ·

(
2 · ∂u

′′
i

∂xi
− 2

3
· (▽ · v′′)

)
, (5.36)

τ ij = µ ·
(
∂ũi

∂xj
+
∂ũj

∂xi

)
+ µ ·

(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
. (5.37)

For incompressible flows, equations (5.22) and (5.24) simplify to

ũ = u, ṽ = v, w̃ = w,

u = u+ u′, v = v + v′, w = w + w′, p = p+ p′.
(5.38)

The continuity equation reads

∂(u)

∂x
+
∂(v)

∂y
+
∂(w)

∂z
= 0. (5.39)

The time-averaged Navier–Stokes equations for incompressible flows are

ρ ·
(
∂(u)

∂t
+
∂(u2)

∂x
+
∂(u · v)
∂y

+
∂(u · w)

∂z

)

= fx − ∂p

∂x
+
∂σxx

∂x
+
∂τyx

∂y
+
∂τ zx

∂z

−ρ
(
∂(u′2)

∂x
+
∂(u′ · v′)

∂y
+
∂(u′ · w′)

∂z

)
, (5.40)
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ρ ·
(
∂(v)

∂t
+
∂(v · u)
∂x

+
∂(v2)

∂y
+
∂(v · w)

∂z

)

= fy − ∂p

∂y
+
∂τxy

∂x
+
∂σyy

∂y
+
∂τzy

∂z

−ρ
(
∂(v′ · u′)
∂x

+
∂(v′2)

∂y
+
∂(v′ · w′)

∂z

)
, (5.41)

ρ ·
(
∂(w)

∂t
+
∂(w · u)
∂x

+
∂(w · v)
∂y

+
∂(w2)

∂z

)

= fz − ∂p

∂z
+
∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z

−ρ
(
∂(w′ · u′)

∂x
+
∂(w′ · v′)

∂y
+
∂(w′2)

∂z

)
. (5.42)

5.3 Energy Equation

5.3.1 Laminar Flows

The energy equation for steady inviscid fluids has already been used in Section
4.3.3. The principle on which the three-dimensional energy balance at the
volume element dV in Figure 5.4 is based is as follows:

The rate of change of the total energy in a volume element
=
∑

the energy fluxes entering and exiting with the flow
+
∑

the energy fluxes entering and exiting by means of heat conduction
+
∑

the work done on the volume element per unit time due to the
pressure forces, normal stress forces and shear stress forces

+ the energy supply from outside
+ the work done per unit time due to the effect of volume forces.

The total energy E found within the volume element is made up of the
internal energy ρ ·e ·dx ·dy ·dz and the kinetic energy ρ · (V 2/2) ·dx ·dy ·dz =
0.5 · ρ · (u2 + v2 +w2) · dx · dy · dz (where v · v = V 2). The rate of change of
energy in the volume element is

∂[ρ ·
(
e+ V 2

2

)
· dx · dy · dz]

∂t
=

∂[ρ ·
(
e+ V 2

2

)
]

∂t
· dx · dy · dz. (5.43)

The energy in the volume element is changed by the internal energy trans-
ported into and out of the volume element per unit time with the flow. This
part is denoted by dĖ. Figure 5.4 shows the energy fluxes flowing inward and
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outwards. Using a similar approach to that used in deriving the Navier–Stokes
equation, we consider the term dĖ:

dĖ=


ρ·
(
e+

V 2

2

)
·u−


ρ·

(
e+

V 2

2

)
·u+

∂(ρ·
(
e+ V 2

2

)
·u)

∂x
·dx





·dy ·dz

+


ρ·
(
e+

V 2

2

)
·v −


ρ·

(
e+

V 2

2

)
·v +

∂(ρ·
(
e+ V 2

2

)
·v)

∂y
·dy





·dx·dz

+


ρ·
(
e+

V 2

2

)
·w −


ρ·

(
e+

V 2

2

)
·w +

∂

(
ρ·(e+ V 2

2

)
·w)

∂z
·dz





·dx·dy,

dĖ = −



∂(ρ ·

(
e+ V 2

2

)
· u)

∂x
+

∂(ρ ·
(
e+ V 2

2

)
· v)

∂y

+

∂(ρ ·
(
e+ V 2

2

)
· w)

∂z


 · dx · dy · dz. (5.44)

The energy in the volume element is also changed by the transport of energy
that enters or exits the volume per unit time by means of heat conduction.
This part of the change in energy will be denoted by dQ̇ in what follows.
According to the Fourier heat conduction law, heat energy flows in the direc-
tion of decreasing temperature. For example, the equation q̇ = −λ · (dT/dx)
holds for the one-dimensional heat conduction problem, q̇ stands for the heat

Fig. 5.4. Convective energy fluxes at the volume element dV
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flux per unit area, and λ for the thermal conductivity, which is in general
dependent on the particular fluid the pressure, and the temperature. Using
the Fourier heat conduction law to determine the term dQ̇, we obtain the
following expression for the total energy flux due to heat conduction into or
out of the volume element:

dQ̇ =

(
−λ · ∂T

∂x
−
[
−λ · ∂T

∂x
+

∂

∂x

(
−λ · ∂T

∂x

)
· dx

])
· dy · dz

+

(
−λ · ∂T

∂y
−
[
−λ · ∂T

∂y
+

∂

∂y

(
−λ · ∂T

∂y

)
· dy

])
· dx · dz

+

(
−λ · ∂T

∂z
−
[
−λ · ∂T

∂z
+

∂

∂z

(
−λ · ∂T

∂z

)
· dz
])

· dx · dy, (5.45)

dQ̇ =

(
∂

∂x

(
λ · ∂T

∂x

)
+

∂

∂y

(
λ · ∂T

∂y

)
+

∂

∂z

(
λ · ∂T

∂z

))
· dx · dy · dz. (5.46)

In what follows we will determine the relations for the work done on the
volume element by the pressure, normal stress, and shear stress forces. On
each surface of the volume element three stresses that are due to the friction
act, as does the static pressure. The forces resulting from the pressure and
the stresses perform work on the volume element. The work per unit time,
also called the power, is computed from the product of the velocity and the
force that acts in the direction of the velocity component at hand. The work
per unit time is given a positive sign when the velocity component points in
the direction of the pressure, normal stress, or shear stress force. If this is not
the case, the work per unit time is given a negative sign.

First, we consider the work per unit time dȦx done on the volume element
through the two surfaces with area dy · dz:

dȦx = p · dy · dz · u−
(
p · dy · dz · u+

∂(p · dy · dz · u)
∂x

· dx
)

−σxx · dy · dz · u+

(
σxx · dy · dz · u+

∂(σxx · dy · dz · u)
∂x

· dx
)

−τxy · dy · dz · v +

(
τxy · dy · dz · v +

∂(τxy · dy · dz · v)
∂x

· dx
)

−τxz · dy · dz · w +

(
τxz · dy · dz · w +

∂(τxz · dy · dz · w)

∂x
· dx

)
, (5.47)

dȦx =

(
−∂(p · u)

∂x
+
∂(σxx · u)

∂x
+
∂(τxy · v)

∂x
+
∂(τxz · w)

∂x

)
· dx· dy · dz. (5.48)

In the y and z directions, we obtain similar expressions for dȦy and dȦz :

dȦy =

(
−∂(p · v)

∂y
+
∂(τyx · u)

∂y
+
∂(σyy · v)

∂y
+
∂(τyz · w)

∂y

)
· dx· dy · dz, (5.49)
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dȦz =

(
−∂(p · w)

∂z
+
∂(τzx · u)

∂z
+
∂(τzy · v)

∂z
+
∂(σzz · w)

∂z

)
· dx· dy · dz. (5.50)

Then dȦ is the sum of dȦx, dȦy, and dȦz .
Now, according to the guiding principle and the equations (5.43), (5.44),

(5.46), (5.48), (5.49), (5.50) as well as (f ·v) ·dx ·dy ·dz for the power of the
volume forces, the balance of energy reads

∂(ρ ·
[
e+ V 2

2

]
)

∂t

= −



∂(ρ ·

[
e+ V 2

2

]
· u)

∂x
+

∂(ρ ·
[
[e+ V 2

2

]
· v)

∂y
+

∂(ρ ·
[
e+ V 2

2

]
· w)

∂z




+

(
∂

∂x

[
λ · ∂T

∂x

]
+

∂

∂y

[
λ · ∂T

∂y

]
+

∂

∂z

[
λ · ∂T

∂z

])

+

(
−∂(p · u)

∂x
+
∂(σxx · u)

∂x
+
∂(τxy · v)

∂x
+
∂(τxz · w)

∂x

)
(5.51)

+

(
−∂(p · v)

∂y
+
∂(τyx · u)

∂y
+
∂(σyy · v)

∂y
+
∂(τyz · w)

∂y

)

+

(
−∂(p · w)

∂z
+
∂(τzx · u)

∂z
+
∂(τzy · v)

∂z
+
∂(σzz · w)

∂z

)
+ f · v + ρ · q̇s.

Using the ansatz for normal and shear stresses (5.16) and the continuity
equation (5.1), and neglecting the radiation, we can obtain the following
expression:

ρ ·
(
∂e

∂t
+ u · ∂e

∂x
+ v · ∂e

∂y
+ w · ∂e

∂z

)

=

(
∂

∂x

[
λ · ∂T

∂x

]
+

∂

∂y

[
λ · ∂T

∂y

]
+

∂

∂z

[
λ · ∂T

∂z

])
− p · (∇ · v) + µ · Φ, (5.52)

with the dissipation function Φ:

Φ = 2 ·
[(

∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+

(
∂v

∂x
+
∂u

∂y

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2

− 2

3
·
(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2

. (5.53)

This contains only quadratic terms and is therefore greater than or equal to
zero at all points in the flow field.

In deriving the energy equation no restrictions were made. This equation
is valid in general, and describes the energy budget in a very small volume
element, even for flows in which chemical or, equivalently, combustion pro-
cesses take place. It was assumed that the flow is homogeneous and that the
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fluid is a Newtonian medium. In what follows we shall set down the energy
equation for caloric ideal gases.

In a caloric ideal gas, the specific heat capacities cp and cv are temperature
independent, and the following thermodynamic relations hold:

e = cv · T, h = e+
p

ρ
= cp · T, (5.54)

or

e = cp · T − p

ρ
. (5.55)

Inserting the left side of equation (5.55) into equation (5.52) for e, and using
the continuity equation (5.1), we obtain the energy equation for a caloric ideal
gas:

ρ · cp ·
(
∂T

∂t
+ u · ∂T

∂x
+ v · ∂T

∂y
+ w · ∂T

∂z

)

=

(
∂p

∂t
+ u · ∂p

∂x
+ v · ∂p

∂y
+ w · ∂p

∂z

)

+

(
∂

∂x

[
λ · ∂T

∂x

]
+

∂

∂y

[
λ · ∂T

∂y

]
+

∂

∂z

[
λ · ∂T

∂z

])
+ µ · Φ. (5.56)

5.3.2 Turbulent Flows

For the time average of the energy equation, the mass-averaged flow quantities
(5.22) are extended by

T̃ =
ρ · T
ρ

, ẽ =
ρ · e
ρ
, (5.57)

and the Reynolds ansatz (5.24) by

T = T̃ + T ′′, e = ẽ+ e′′. (5.58)

This yields the energy equation, neglecting the dissipation:

∂(ρ · ẽtot)
∂t

+
∂[ũ · (ρ · ẽtot + p)]

∂x
+
∂[ṽ · (ρ · ẽtot + p)]

∂y
+
∂[w̃ · (ρ · ẽtot + p)]

∂z

=
∂(τxx · ũ+ τxy · ṽ + τxz · w̃)

∂x

+
∂(τyx · ũ+ τyy · ṽ + τyz · w̃)

∂y
+
∂(τ zx · ũ+ τzy · ṽ + τ zz · w̃)

∂z
(5.59)

−
3∑

l=1

[
τml · u′′l − ũm · ρ · ˜u′′l · u′′m − 1

2
· ρ · ˜u′′l · u′′l · u′′m

]

−p · u′′m − ρ · e′′ · u′′m − qx − qy − qz.
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The turbulent total energy ẽtot per volume is made up of the average inter-
nal energy ẽ, the kinetic energy of the average flow, and the kinetic energy
contained in the turbulent fluctuations:

ẽtot = ẽ+
1

2
· (ũ2 + ṽ2 + w̃2) +

1

2
·
(
˜u′′ · u′′ + ˜v′′ · v′′ + ˜w′′ · w′′

)
. (5.60)

The Reynolds-averaged pressure can be calculated from the equation of state
of the ideal gas:

p = R · ρ · T = R · ρ · T̃ ,
where the Favre-averaged temperature appearing on the right-hand side can
be determined directly from the Favre-averaged internal energy:

T̃ =
ẽ

cv
.

Since the heat flux is Reynolds-averaged, whereas the temperature is Favre-
averaged, additional terms appear in the calculation:

qx = −λ ·
(

∂T̃
∂x + ∂T ′′

∂x

)
,

qy = −λ ·
(

∂T̃
∂y + ∂T ′′

∂y

)
, (5.61)

qz = −λ ·
(

∂T̃
∂z + ∂T ′′

∂z

)
.

Similarly for the stresses:

τml = µ ·
(
∂ũl

∂xm
+
∂ũm

∂xl

)
− δml ·

2

3
· ∇ · ṽ

+ µ ·
(
∂u′′l
∂xm

+
∂u′′m
∂xl

)
− δml ·

2

3
· ∇ · v′′ . (5.62)

The energy equation for an incompressible flow with c = cv and neglecting
the dissipation reads

ρ · c ·
(
∂(T )

∂t
+
∂(T · u)
∂x

+
∂(T · v)
∂y

+
∂(T · w)

∂z

)

=
∂

∂x

(
λ · ∂T

∂x
− ρ · c · T ′ · u′

)
+

∂

∂y

(
λ · ∂T

∂y
− ρ · c · T ′ · v′

)
(5.63)

+
∂

∂z

(
λ · ∂T

∂z
− ρ · c · T ′ · w′

)
.

In the calculation of incompressible flows, the energy equation is decoupled
from the continuity equation and the Navier–Stokes equations; i.e. equations
(5.40) to (5.42) may be solved first, and then used in the energy equation,
together with the knowledge of u, v, w, and p, to determine the temperature
field.
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5.4 Fundamental Equations as Conservation Laws

5.4.1 Hierarchy of Fundamental Equations

The continuum mechanical conservation equations for mass, momentum, and
energy, which were derived in Sections 5.1 to 5.3, are found as shown in Figure
5.5, by formation of the moments of the Boltzmann equation that describes
the flow as a collection of fluid particles that move and collide with each
other.

The Navier–Stokes equations are obtained for Newtonian media, and time
averaging leads to the Reynolds equations for turbulent flows. The calculation
of small perturbations in the flow field is carried out via a perturbation ansatz
with the perturbation differential equations.

The Boltzmann equation is the transport equation of the distribution func-
tion f that describes the statistical distribution of the particles in velocity
space c = cm and in physical space x = xm:

∂f

∂t
+ c · ∂f

∂x
+

F

m
· ∂f
∂c

=

(
∂f

∂t

)

coll

. (5.64)

The left-hand side of the Boltzmann equation is the substantial derivative
of the distribution function f with respect to time in six-dimensional phase
space, where the term F

m
df
dc

describes the change in the distribution function
by the acceleration of the particles due to external force fields F . The right-
hand side represents the change in the distribution function as a consequence
of the collisions between the particles.

In the microscopic description of a flow, the spatial coordinate system is
specified. The velocities of the molecules inside the volume element dV =

Fig. 5.5. Hierarchy of fluid-mechanical fundamental equations
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dx · dy · dz generally differ in their magnitude and direction. To characterize
the velocities, velocity space is also introduced. Both spaces are shown in
Figure 5.6. A point in this six-dimensional space representing a molecule is
identified by specifying its Cartesian coordinates x = (x, y, z) and velocity
c = (cx, cy, cz).

A fluid with N particles is therefore represented by N points in the six-
dimensional space. Therefore one mole of a fluid has 6 · 1023 image points. In
order to describe the particle density in six-dimensional space, the distribu-
tion function is defined as

f(x, c) =
dN

dx · dc
. (5.65)

This describes the statistical distribution of the particles in physical space
and velocity space. dN is the number of image points in the volume element
dx ·dy ·dz ·dcx ·dcy ·dcz . Integrating the distribution function over all velocity
and space coordinates yields the total number of particles as the sum of all
image points:

N =

∫

c

∫

x

f(x, c, t) · dx · dc . (5.66)

Knowing the microscopic structure of the flow in the form of the scalar dis-
tribution function f(x, c, t), the dependence of all fluid properties on time
can be derived. In velocity space, a distribution function can be defined by
the relation

dN=N · f(c) · dc (5.67)

Macroscopic quantities at a particular point in time are interpreted as aver-
ages of the molecular properties. The macroscopic quantities are obtained by
averaging the molecular quantities Q, weighted according to the distribution
function f :

Fig. 5.6. Physical space x and velocity space c
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Q̄=
1

N
·
∫

N

Q · dN , with equation (5.66)

Q̄=
1

N
·
∫ +∞

−∞

Q · f(c) ·N · dc , (5.68)

Q̄=

∫ +∞

−∞

Q · f(c) · dc .

The procedure described is called formation of the moments of the distribu-
tion function. The most important moments of the distribution function are
the mean flow velocity

c =

∫ +∞

−∞

c · f(c) · dc , (5.69)

the pressure p

p =

∫ +∞

−∞

m

3
· c2 · f(c) · dc (5.70)

and the temperature T

T =
2

3 · n · k ·
∫ +∞

−∞

m

2
· c2 · f(c) · dc , (5.71)

with the particle density n (number of particles per unit volume), the par-
ticle mass m and the Boltzmann constant k. Equations (5.69) – (5.71) are
used to establish the relationship between the microscopic and macroscopic
approaches.

The simplified model equations, represented in Figure 5.7, can be derived
from the Navier–Stokes equations. The Euler equation is obtained for in-
viscid flows. If the flow is also irrotational, it is the potential equation that
holds. Flows at low Mach numbers lead to the Navier–Stokes equations for
incompressible fluids. If the density of the fluid is dependent only on the

Fig. 5.7. Simplified model equations
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temperature and not on the pressure, the buoyancy is taken into account and
the Boussinesq equation obtained. For flows at large Reynolds numbers, the
thickness of the boundary layer close to the wall is small compared to the geo-
metric dimensions of the body, so that certain terms may be neglected inside
the boundary layer. This leads to the parabolized Navier–Stokes equations
and the boundary-layer equations.

5.4.2 Navier–Stokes Equations

In order to compute flow numerically, it is advantageous to rewrite the funda-
mental equations (5.1), (5.18), and (5.52) from the previous Sections in con-
servative form. This means that the conserved quantities mass, momentum,
and energy are written as the divergence of these quantities. For example, the
continuity equation then contains the divergence ∇ · (ρ · v), the momentum
equation contains the expression ∇ · (ρ · vv), and finally the energy equation
contains the divergence ∇ · (ρ ·E · v) with the total energy E.

Introducing dimensionless quantities (∗), the dimensionless Cartesian co-
ordinates become

x∗m =
xm

l
, m = 1, 2, 3,

where l is a reference length characteristic for the entire flow field.
Here x∗m stands for

x∗ =




x∗1

x∗2

x∗3


 =




x∗

y∗

z∗


 ,

and the dimensionless time is

t∗ =
t · u∞
l

,

where u∞ is a reference velocity characteristic for the entire flow field. The
quantities x∗m and t∗ are the four independent variables in which the differ-
ential equations are formulated. The dependent variables are summarized in
the solution vector

U∗(x∗m, t
∗) =




ρ∗

ρ∗ · u∗1
ρ∗ · u∗2
ρ∗ · u∗3
ρ∗ · E∗




, (5.72)

with the dimensionless density
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ρ∗ =
ρ

ρ∞
,

where ρ∞ is a reference density characteristic for the entire flow field. The
components ρ∗ · u∗m of the dimensionless momentum vector per unit volume
are

ρ∗u∗ =
ρ · u

ρ∞ · u∞
=




ρ∗ · u∗1
ρ∗ · u∗2
ρ∗ · u∗3


 ,

and with the dimensionless specific total energy of the fluid per unit volume
E,

ρ∗ · E∗ =
ρ · E

ρ∞ · u2
∞

The quantity u denotes the velocity vector, and E is the total energy per unit
mass (internal energy + kinetic energy 1/2 · u2).

The dimensionless Navier–Stokes equations for a compressible fluid in
conservative form (mass, momentum, and energy conservation) read

∂U∗

∂t∗
+

3∑

m=1

∂F ∗
m

∂x∗m
− 1

Rel
·

3∑

m=1

∂G∗
m

∂x∗m
= 0. (5.73)

This conservative form of the equations is so called because the system of
differential equations (5.73) was derived at a control volume fixed in space, so
that each equation expresses the mass, momentum, and energy conservation
directly. Each line of the solution vector (5.72) contains the conservative
variable, referred to the volume, i.e. mass per unit volume ρ∗, momentum
per unit volume ρ∗ ·u∗, and total energy per unit volume ρ∗ ·E∗. In contrast
to the conservative variables are the primitive variables velocity, pressure,
and temperature, used in the previous sections.

In equation (5.73), F ∗

m is the vector of convective fluxes in the direction
m,

F ∗

m =




ρ∗ · u∗m
ρ∗ · u∗m · u∗1 + δ1m · p∗

ρ∗ · u∗m · u∗2 + δ2m · p∗

ρ∗ · u∗m · u∗3 + δ3m · p∗

u∗m · (ρ∗ ·E∗ + p∗)




, (5.74)

where (δij = 1 for i = j; δij = 0 for i 6= j), and G∗
m is the vector of dissipative

fluxes in the coordinate direction m,
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G∗

m =




0

τ∗m1

τ∗m2

τ∗m3
3∑

l=1

u∗l · τ∗lm + q̇∗m




, (5.75)

with the dimensionless internal energy

e∗ = E∗ − 1

2
·

3∑

m=1

u∗2m ,

the dimensionless pressure

p∗ = (κ− 1) · ρ∗ · e∗ =
p

ρ∞ · u2
∞

,

the dimensionless temperature

T ∗ = (κ− 1) · κ ·M2
∞ · e∗ =

T

T∞
,

the dimensionless stresses

τ∗ij = µ∗ ·
(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
− 2

3
· µ∗ ·

3∑

k=1

∂u∗k
∂x∗k

· δij ,

and the dimensionless heat flux in the direction m,

q̇∗m =
µ∗

(κ− 1) ·M2
∞ · Pr∞

· ∂T
∗

∂x∗m
=
µ∗ · κ
Pr

· ∂e
∗

∂x∗m
=

λ∗

(κ− 1) ·M2
∞ · Pr∞

· ∂T
∗

∂x∗m
.

These equations contain the following material properties: the Prandtl num-
ber Pr∞ = ν∞/k∞, the ratio of specific heat capacities κ = cp/cv, the di-
mensionless dynamic viscosity µ∗. For air under atmosphere conditions these
have the values Pr∞ = 0.71, κ = 1.4, and the Sutherland formula

µ∗ = (T ∗)
3
2 · 1 + S

T ∗ + S
, S =

110.4 K

T∞
.

The reference quantity T∞ is again characteristic for the flow. The following
dimensionless characteristic numberscharacterize the flow field:

M∞ =
u∞
a∞

Mach number,

Rel =
ρ∞ · u∞ · l

µ∞

Reynolds number,

Pr∞ =
ν∞
k∞

Prandtl number.
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Here a∞ is a characteristic velocity of sound, and µ∞ a characteristic viscos-
ity.

The Navier–Stokes equations are a system of five coupled nonlinear
second-order partial differential equations. Because they contain the time
as an independent variable and describe spatially directed transport mecha-
nisms, the equations are parabolic.

If steady flows are of interest, the time derivatives are neglected. The
equations are then elliptic in subsonic regimes, and hyperbolic in supersonic
regimes. For this reason they are also said to be of mixed type.

The following boundary conditions have to be taken into account:
At a solid wall, the no-slip condition holds,

u∗ = 0

as well as either the temperature boundary condition at an isothermal wall

T ∗ = T ∗

W ,

with a given dimensionless wall temperature T ∗
W , or the temperature bound-

ary condition at an adiabatic wall,

∂T ∗

∂n∗
=
∂T ∗

∂x∗1
· n∗

1 +
∂T ∗

∂x∗2
· n∗

2 +
∂T ∗

∂x∗3
· n∗

3 = 0 ,

with the dimensionless coordinate n∗ in the direction normal to the wall.
A further boundary is the far-field boundary, the outer edge of the compu-

tational region in problems involving flow past bodies. If the far-field bound-
ary is far enough away from the body, the flow there is the unperturbed outer
flow u∞, i.e. the boundary condition of inviscid flow from Section 5.4.3.

If it is not possible to determine the far-field boundary in this way so
that the friction does not play a role, e.g. if a boundary layer, a separation
bubble, or a wake flow leaves the region of integration, no mathematically
exact boundary condition can be given. In this case, extrapolation is used to
determine the flow quantities at the outer edge.

The solution vector t = t0 = 0 is determined by the initial condition

U∗(x∗i , 0) = U∗

0 (x∗i ).

5.4.3 Derived Model Equations

As shown in Figure 5.7, by neglecting the term G∗ in the Navier–Stokes
equations (5.73), we obtain the dimensionless Euler equation in conservative
form for laminar compressible flows

∂U∗

∂t∗
+

3∑

m=1

∂F ∗

m

∂x∗m
= 0 , (5.76)

where the solution vector U∗ and the convective fluxes F ∗

m are as previously
defined ((5.72) and (5.74), respectively).
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We now have a system of five coupled nonlinear first-order differential
equations. The Euler equations describe inviscid flows in which curved shock
waves can occur. The flow field is characterized by the Mach number M∞.

At a solid wall, the slip condition is the boundary condition

u∗ · n = 0, (5.77)

with n the vector normal to the wall. This condition states that the flow
cannot pass through the wall and that the velocity vector is directed parallel
to the wall.

At the edge of the flow field, the expansion of information is vital in
determining the boundary conditions. In order to do this, we have to dis-
tinguish between inflow and outflow boundaries (depending on the direction
of the flow), and between supersonic and subsonic boundaries (depending
on whether the local Mach number is larger or smaller than one). Neither
too much nor too little information may be given at each boundary, be-
cause otherwise the problem would be mathematically overdetermined or
underdetermined. The number of boundary conditions leads to the theory of
characteristics.

Inflow boundary Outflow boundary

supersonic subsonic supersonic subsonic

Number of variables to
be specified

5 4 0 1

Number of variables to
be computed

0 1 5 4

A further simplification is obtained if we assume that the flow is additionally
isentropic. In this case, the flow may no longer contain any straight or curved
shock waves. It can be shown that such flows are irrotational:

ω∗ = rotu∗ =




∂u∗3
∂x∗2

− ∂u∗2
∂x∗3

∂u∗1
∂x∗3

− ∂u∗3
∂x∗1

∂u∗2
∂x∗1

− ∂u∗1
∂x∗2




= 0,

or in vector notation,

ω∗ = ∇× u∗ = 0.

For irrotational flows it makes sense to introduce the potential function Φ∗:
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∂Φ∗

∂x∗1
= u∗1,

∂Φ∗

∂x∗2
= u∗2,

∂Φ∗

∂x∗3
= u∗3. (5.78)

Inserting this into the Euler equations and after simplifying, we obtain the
dimensionless linearized potential equation

∂2Φ∗

∂x∗21

+
∂2Φ∗

∂x∗22

+
∂2Φ∗

∂x∗23

= 0, ∆Φ∗ = 0. (5.79)

This scalar equation is linear, of second order, and elliptic. Flows that can
be described using the potential equation are also known as potential flows,
already introduced in Section 4.1.5.

Conservation of momentum for an incompressible flow is automatically
satisfied by the assumption that it is irrotational. This energy equation is an
additional decoupled equation.

As in the case of the Euler equation, the slip condition is the boundary
condition at a solid wall:

∂Φ∗

∂x∗1
· n∗

1 +
∂Φ∗

∂x∗2
· n∗

2 +
∂Φ∗

∂x∗3
· n∗

3 = 0, (5.80)

with the components of the vector normal to the wall n∗
1, n

∗
2, and n∗

3. Each
streamline can be considered to be a solid wall.

At the far-field boundary, any perturbations due to a body must have
died away, i.e.

∂Φ∗

∂x∗1
=
∂Φ∗

∂x∗2
=
∂Φ∗

∂x∗3
= 0. (5.81)

These boundary conditions determine the solution only up to a constant,
since only derivatives of the potential function appear in (5.75). Therefore,
the value of Φ∗ has also to be determined at some position in the flow field.

The advantage of the potential equation is that it is linear. This means
that any linear combination of known solutions (e.g. parallel flow, source,
sink, potential vortex) is also a solution.

For incompressible laminar flows, the Navier–Stokes equations (5.20) hold.
These, together with the continuity equation (5.3), are given below:

∇ · u∗=0 ,

∂u∗

∂t∗
+ (u∗ · ∇)u∗=−∇p∗ +

1

Rel
·∆u∗ . (5.82)

The no-slip condition holds at solid walls:

u∗ = 0. (5.83)

The pressure level has to be determined at some point (x∗1, x
∗
2, x

∗
3):

p∗(x∗1, y
∗

1 , z
∗

1) = p∗1.

The direction or magnitude can be prescribed at inflow or outflow boundaries,
but in doing so we must ensure that the continuity equation is satisfied.
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It may be desirable to prescribe the pressure at an inflow or outflow
boundary, e.g. prescribing a certain pressure difference between two cross-
sections of a pipe flow. Here it must be noted that the velocity profile can
take on any shape at these cross-sections. It is only in exceptional cases that
both the velocity and the pressure may be prescribed at the same boundary.

In Chapters 6 and 7 we will treat flows with heat transfer. In many appli-
cations of such flows, the density change as a result of pressure change can
be neglected. However, because of heat expansion, the density does change
with the temperature. For example, in convection flows this is the origin of
a buoyancy ρ∗(T ) · g.

Within the framework of the Boussinesq approximation, the density
change will be taken into account only in the lift term and will be neglected
in all other terms. The ansatz used for the density is then

ρ(T ) = ρ0 · [1 − α · (T − T0)], (5.84)

where α is the coefficient of heat expansion, ρ0 is a reference density, and
T0 a reference temperature. The viscosity is assumed to be constant, and in
addition, the dissipation is neglected. Inserting these assumptions into the
Navier–Stokes equations (5.18) and the energy equation (5.56) and taking
into account the dimensionless quantities

x∗m=
xm

l
, t∗ =

k∞ · t
l2

, u∗ =
l

k∞
· u,

T ∗=
T − T∞
TW − T∞

, p∗ = (p+ ρ∞ · g · x3) ·
l2

ρ∞ · ν∞ · k∞
,

we obtain the dimensionless Boussinesq equations

∇ · u∗ = 0,

1

Pr∞
·
(
∂u∗

∂t∗
+ (u∗ · ∇)u∗

)
= Ra∞ · T ∗ ·




0

0

1


−∇p∗ +∆u∗, (5.85)

∂T ∗

∂t∗
+ u∗ · ∇T ∗ = ∆T ∗,

with the dimensionless Rayleigh number

Ra∞ =
g · l3

k∞ · ν∞
· α · (T − T∞) .

Different steady or unsteady behavior of the flow is expected depending on
the size of the Prandtl number Pr∞. If Pr∞ is small (e.g. 0.71 for air, 10−2

for liquid metals), then the flow is unsteady. If Pr∞ is large (7 for water, 103

for oil), we obtain a steady flow in the form of convection rolls. In this case,
the unsteady term has only a minor effect, since it is multiplied by the small
factor 1/Pr∞.
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If we also take the mass diffusion in a two-component liquid layer (e.g.
salt solution) into account, the concentration gradient means that we obtain
a second part to the lift.

To describe the mass exchange inside a multicomponent mixture consist-
ing of N species, N mass-balance equations can be written down. If mk is the
mass of species k, then the quantity ρk is called the partial density of species
k in the mixture. The density of the mixture ρ is defined as

ρ =

N∑

k=1

ρk. (5.86)

As well as this, each species has its own velocity uk. In analogy to a single-
component fluid (N = 1) in the presence of mass sources or mass sinks, N
mass balances can be formulated:

∂ρk

∂t
+ ∇ · (ρk · uk) = 0, k = 1, . . . , N. (5.87)

Summing these component continuity equations and introducing the mass
concentration ck = ρk/ρ of the species k (

∑N
k=1 ck = 1) we obtain the follow-

ing dimensionless relation for the mixture density:

∂ρ∗

∂t∗
+ ∇ ·

(
ρ∗ ·

N∑

k=1

u∗

)
= 0, (5.88)

with the dimensionless flow velocity of the mixture

u∗ =

N∑

k=1

ck · u∗

k. (5.89)

Together with the dimensionless total pressure p∗ =
∑N

k=1 p
∗

k and the linear
thermal equation of state ρ∗ = 1 − (αm · (T ∗ − Tm)) · (T ∗ − Tm)− (βm · (c−
cm)) · (c − cm) (β concentration expansion coefficient, m mean temperature
or concentration) we obtain the following dimensionless Boussinesq equations
for the two-component mixture:

∇ · u∗ = 0,

Le∞ ·
(
∂c

∂t∗
+ (u∗ · ∇c

)
= ∆c,

1

Pr∞
·
(
∂u∗

∂t∗
+ (u∗ · ∇)u∗

)
= ∆u∗ −∇p∗ (5.90)

+ (Ra∞ · T ∗ + RaD∞ · c) ·




0

0

1


 ,

∂T ∗

∂t∗
+ u∗ · ∇T ∗ = ∆T ∗,
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with the following dimensionless characteristic numbers: The diffusion Ray-
leigh number RaD∞ = −βm · (c− cm) · g · l3/(km · νm) and the Lewis number
Le = km/Dm (coefficient of diffusion D).

If we look at a salt solution, it is easy to see that for c = 0 (pure water)
or c = 1 (i.e. RaD∞ = 0) (salt water at its solubility limit) the above system
of equations goes over to the system describing Rayleigh–Bénard convection.

The Euler equation (5.76) forms the basis for some incompressible flow
problems with freely movable interfaces, to be treated in (Chapter 8). Here
it is assumed that the flow on both sides of the interface is irrotational. In-
tegrating the Euler equation over the spatial coordinates and simultaneously
introducing a velocity potential u = −∇Φ leads to the generalized Bernoulli
equation in the form

−∂Φ
∂t

+
1

2
· (∇Φ)2 +

p

ρ
+ g · x = Ck, (5.91)

where Ck is a constant of integration that can vary on both side of the
interface for different phases k. The Bernoulli equation (5.91) is the starting
point for the description of wave processes in layered incompressible media.
In addition, it can be used to describe the dynamics of starting phases of
pressure-induced bubble growth.

For spherically shaped bubbles, a differential equation for the radius RB

of a single bubble under the effect of a pressure field was derived from the
Bernoulli equation by J. W. S. Rayleigh (1917) and by M. Plesset and S. A.
Zwick (1954). A spherically shaped bubble in an infinitely extended liquid
was considered. Using a time-varying bubble volume, the mass balance yields
the following relation for the velocity u(RB, r, t) at a radius r outside the
bubble:

u(RB, r, t) =
R2

B

r2
· dRB

dt
. (5.92)

The velocity can be assigned a potential in the form

Φ =
R2

B

r
· dRB

dt
.

Inserting this relation into the Bernoulli equation (5.87), we obtain the
Rayleigh–Plesset equation connecting the states at the edge of the bubble
and at a great distance from the edge, i.e. for r → ∞,

RB · d2RB

dt2
+

3

2
·
(

dRB

dt

)2

=
1

ρk
· (pR − p∞). (5.93)

Here the index k denotes the liquid phase, and the indices R and ∞ the
pressure states at the edge of the bubble and at infinity, respectively. The
equation has to be modified if phase transitions occur at the edge of the
bubble, if surface stresses or viscous forces act, or if the gas and the liquid
are not in thermodynamic equilibrium.
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For flows at large Reynolds numbers, the fact that the factor G∗
m (5.73)

in front of the 1/Rel term is small does not necessarily permit the dissipative
fluxes to be neglected. For flows with boundary-layer character, the size of the
viscous terms depends on whether velocity gradients parallel or perpendicular
to the contour of the body are considered.

Since the contour of the body does not in general run parallel to one of the
coordinate axes, the Navier–Stokes equations (5.73) first have to transformed
to body-fitted curvilinear coordinates. The curvilinear coordinates ξ∗1 , ξ∗2 , ξ∗3
are given by the transformation equations

ξ∗1 = ξ∗1(t∗, x∗m) , ξ∗2 = ξ∗2(t∗, x∗m) , ξ∗3 = ξ∗3(t∗, x∗m) , t∗ = τ∗ ,

∂

∂t∗
=

∂

∂τ∗
+
∂ξ∗1
∂t∗

· ∂

∂ξ∗1
+
∂ξ∗2
∂t∗

· ∂

∂ξ∗2
+
∂ξ∗3
∂t∗

· ∂

∂ξ∗3
,

∂

∂x∗m
=

∂ξ∗1
∂x∗m

· ∂

∂ξ∗1
+
∂ξ∗2
∂x∗m

· ∂

∂ξ∗2
+
∂ξ∗3
∂x∗m

· ∂

∂ξ∗3
.

The transformed equations read

∂Û
∗

∂t∗
+

3∑

m=1

∂F̂
∗

m

∂ξ∗m
− 1

Rel
·

3∑

m=1

∂Ĝ
∗

m

∂ξ∗m
= 0 , (5.94)

with

Û
∗

= J · U∗ ,

F̂
∗

m = J ·
(
∂ξ∗m
∂t∗

· U∗ +
∂ξ∗m
∂x∗1

· F ∗

1 +
∂ξ∗m
∂x∗2

· F ∗

2 +
∂ξ∗m
∂x∗3

· F ∗

3

)
,

Ĝ
∗

m = J ·
(
∂ξ∗m
∂x∗1

· G∗

1 +
∂ξ∗m
∂x∗2

· G∗

2 +
∂ξ∗m
∂x∗3

· G∗

3

)
,

with the Jacobi determinant

J−1 =
∂x∗1
∂ξ∗1

· ∂x
∗
2

∂ξ∗2
· ∂x

∗
3

∂ξ∗3
+
∂x∗1
∂ξ∗3

· ∂x
∗
2

∂ξ∗1
· ∂x

∗
3

∂ξ∗2
+
∂x∗1
∂ξ∗2

· ∂x
∗
2

∂ξ∗3
· ∂x

∗
3

∂ξ∗1

−∂x
∗
1

∂ξ∗1
· ∂x

∗
2

∂ξ∗3
· ∂x

∗
3

∂ξ∗2
− ∂x∗1
∂ξ∗2

· ∂x
∗
2

∂ξ∗1
· ∂x

∗
3

∂ξ∗3
− ∂x∗1
∂ξ∗3

· ∂x
∗
2

∂ξ∗2
· ∂x

∗
3

∂ξ∗1
.

The terms in G∗ that contain derivatives parallel to the body contour are in
general small (except in the case of flow separation). This means that they
may be neglected.

Perturbations generally expand downstream only, corresponding to a
parabolic expansion mechanism. This property is passed on to the steady
Navier–Stokes equations by impressing the pressure onto the boundary layer.
The pressure gradient in the direction normal to the wall ξ∗3 is neglected.

This yields the dimensionless parabolized Navier–Stokes equations for
steady boundary-layer flows:

3∑

m=1

∂
ˆ̂
f∗

m

∂ξ∗m
− 1

Rel
·
∂

ˆ̂
G∗

3

∂ξ∗3
= 0, (5.95)
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with

ˆ̂
f∗

m = J−1 ·




ρ∗ · û∗m
ρ∗ · û∗m · u∗1 +

∂ξ∗

m

∂x∗

1
· p∗s

ρ∗ · û∗m · u∗2 +
∂ξ∗

m

∂x∗

2
· p∗s

ρ∗ · û∗mu ·∗3 +
∂ξ∗

m

∂x∗

3
· p∗s

û∗m · (ρ∗ · e∗tot + p∗s)




, (5.96)

ˆ̂
G∗

3 = J−1 ·




0
3∑

l=1

∂ξ∗

3

∂x∗

l

· τ∗l1
3∑

l=1

∂ξ∗

3

∂x∗

l

· τ∗l2
3∑

l=1

∂ξ∗

3

∂x∗

l

· τ∗l3
3∑

l=1

∂ξ∗

3

∂x∗

l

·
(

3∑
m=1

u∗m · τ∗m3 + q̇∗3

)




, (5.97)

and

û∗m =
∂ξ∗m
∂x∗1

· u∗1 +
∂ξ∗m
∂x∗2

· u∗2 +
∂ξ∗m
∂x∗3

· u∗3, m = 1, 2, 3.

If the effect of the curvature of the contour is also neglected, the order of
magnitude estimation carried out by Prandtl leads to all the derivatives with
respect to x1 and x2 in the friction terms of (5.95) being neglected. This is
justified for high Reynolds number flows if the boundary-layer thickness is
small compared to the dimensions of the body. Since the pressure is impressed
onto the boundary layer (∂p∗/∂x∗3 = 0), the third momentum conservation
equation drops away, and we obtain the Prandtl boundary-layer equations in
Cartesian coordinates x∗m:

∂(ρ∗ · u∗1)
∂x∗1

+
∂(ρ∗ · u∗2)
∂x∗2

+
∂(ρ∗ · u∗3)
∂x∗3

= 0,

ρ∗ ·
(
u∗1 ·

∂u∗1
∂x∗1

+ u∗2 ·
∂u∗1
∂x∗2

+ u∗3 ·
∂u∗1
∂x∗3

)
= − ∂p∗s

∂x∗1
+

1

Rel
· ∂

∂x∗3

(
µ∗ · ∂u

∗
1

∂x∗3

)
,

ρ∗ ·
(
u∗1 ·

∂u∗2
∂x∗1

+ u∗2 ·
∂u∗2
∂x∗2

+ u∗3 ·
∂u∗2
∂x∗3

)
= − ∂p∗s

∂x∗2
+

1

Rel
· ∂

∂x∗3

(
µ∗ · ∂u

∗
2

∂x∗3

)
,

ρ∗ ·
(
u∗1 ·

∂T ∗

∂x∗1
+ u∗2 ·

∂T ∗

∂x∗2
+ u∗3 ·

∂T ∗

∂x∗3

)
=

µ∗

(κ− 1) · Rel · Pr∞
· ∂

2T ∗

∂x∗23

+
µ∗
Rel

·
[(

∂u∗1
∂x∗3

)2

+

(
∂u∗2
∂x∗3

)2
]

+ u∗1 ·
∂p∗s
∂x∗1

+ u∗2 ·
∂p∗s
∂x∗2

. (5.98)
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5.4.4 Reynolds Equations for Turbulent Flows

Writing the Reynolds equations (5.27), (5.33)–(5.35), (5.59) in conservative
form as in Section 5.4.2, and using mass-averaged flow quantities, we obtain
the time-averaged fundamental equations for dimensional flow quantities:

∂U

∂t
+

3∑

m=1

∂fm

∂xm
− 1

Rel

3∑

m=1

∂Gm

∂xm
+

3∑

m=1

∂Rm

∂xm
= 0, (5.99)

with the solution vector

U(xm, t) =




ρ

ρ · ũ1

ρ · ũ2

ρ · ũ3

ρ · Ẽ




. (5.100)

Compared to the Navier–Stokes equations in conservative form (5.73), the
Reynolds ansatz and the time averaging have introduced the term Rm.

The vector of the time-averaged convective fluxes is

fm =




ρ · ũm

ρ · ũm · ũ1 + δ1m · p
ρ · ũm · ũ2 + δ2m · p
ρ · ũm · ũ3 + δ3m · p
ũm · (ρ · ẽtot + p)




, (5.101)

the vector of the average dissipative fluxes is

Gm =




0

τm1

τm2

τm3

3∑
l=1

ũl · τ lm + q̇m




(5.102)

and the additional vector of the turbulent fluxes is

Rm =




0

ρ · ˜u′′1 · u′′m
ρ · ˜u′′2 · u′′m
ρ · ˜u′′3 · u′′m
Rm,E




, (5.103)
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where

Rm,E =

3∑

l=1

(
τml · u′′l + ũm · ρ̄ · ˜u′′l · u′′m − 1

2
· ρ̄ · ˜u′′l · u′′l · u′′m

)

−p · u′′m − ρ · e′′ · u′′m ,

with the total energy

Ẽ = ẽ+
3∑

m=1

ũ2
m

2
+K ,

K =
3∑

m=1

˜u′′m · u′′m
2

,

where K is the turbulent kinetic energy.
The fluctuating quantities appearing in the additional term Rm are un-

known. It is clear that the system of equations has more unknowns than
equations and is therefore not closed. The related closure problem of the
Reynolds equations for turbulent flows means that the individual terms in
Rm have to be modeled using empirical assumptions for each flow problem.

5.4.5 Turbulence Models

Momentum and heat transport take place on a microscopic scale in all flows
as a consequence of molecular diffusion processes. They are represented by
molecular viscosity and thermal conductivity respectively. It is useful to
model the exchange processes due to turbulence in an analogous manner
and to introduce a turbulent viscosity and a turbulent thermal conductivity.
For simple one-dimensional flows this is realized by means of the classical
mixing length approach due to Prandtl (see Section 4.2.5).

Following this idea, we model the Reynolds stresses using the Boussinesq
ansatz:

−ρ · ˜u′′i · u′′j = µt ·
(
∂ũi

∂xj
+
∂ũj

∂xi

)
− 2

3
· ρ ·K · δij . (5.104)

Here µt is the turbulent viscosity or eddy viscosity. The right-hand term in
equation (5.104) represents the turbulent pressure (with δij = 1 for i = j and
δij = 0 for i 6= j), assumed proportional to the turbulent kinetic energy per
unit mass

K =
1

2
· ˜u′′i · u′′i =

1

2
·
(

˜u′′21 + ũ′′22 + ˜u′′23

)
(5.105)

This may be neglected in what follows.
The analogy to molecular exchange processes, as well as characteristic

length scales of turbulent flows under normal conditions, are illustrated in
Figure 5.8, where the left-hand picture shows the continuum mechanical ve-
locity as the average of the molecular motion, while the right-hand picture
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sketches the mean velocity as the average of the turbulent instantaneous ve-
locity. In both cases, the velocity to be considered is taken as the average
value of numerous individual velocities (of molecules or of eddies). In each
case a relevant length scale is observed; the mean free path or a turbulent
length scale.

Turbulence models that apply the eddy viscosity approach described
above are called eddy viscosity models. Compared to the independent model-
ing of all six Reynolds stresses, the effort involved is less for only one further
quantity, the eddy viscosity. The eddy viscosity is not a material property of
the fluid but rather is a property of the turbulence of each flow.

According to the analogy, we may also model the turbulent heat fluxes
with the Fourier law of thermal conductivity, i.e. with the ansatz

−ρ · cv · u′i · T ′ = λt ·
∂T

∂xi
, −u′i · T ′ = at ·

∂T

∂xi
. (5.106)

Therefore, the turbulent heat fluxes are assumed proportional to the gradient
of the mean temperature. The quantity λt is called the turbulent thermal
conductivity and at = λt/(ρ·c) the turbulent thermal diffusivity. One of these
quantities must be modeled. In most cases the turbulent heat transport is
considerably larger than the molecular heat transport, and, independently of
the material properties, it is this which determines the effect of the turbulence
on the mean flow.

Fig. 5.8. Analogy of the detailed and averaged point of view in turbulence
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The eddy viscosity and the turbulent thermal diffusivity are not indepen-
dent of each other. In analogy to the molecular Prandtl number, we also define
a turbulent Prandtl number as the ratio of the two transport coefficients:

Prt =
νt
at

. (5.107)

This has approximately the value one. In practice, for fluids of low thermal
conductivity (air, water), Prt = 0.9 is generally applied. Fluids with very
high thermal conductivity compared to viscosity, i.e. fluids with very flow
molecular Prandtl number (e.g. liquid metals), are an exception to this. Here
the turbulent fluctuations of the velocity field have a lesser effect on the
turbulent thermal conductivity and diffusivity than on the turbulent viscosity.
Therefore a higher turbulent Prandtl number is to be selected for such fluids,
with a value of about Prt = 3 for Pr = 0.01.

This reduces turbulent modeling to modeling the dependence of the eddy
viscosity on the mean flow. If νt is known, at may be computed using the
assumed turbulent Prandtl number.

If we insert the ansatz for the eddy viscosity into the Reynolds equations
for incompressible flows (5.40 - 5.42) and the energy equation, after dividing
by the density we obtain

∂ui

∂t
+

∂

∂xj
(uj · ui) = − ∂p

∂xi
+

∂

∂xj

[
(ν + νt) ·

(
∂ui

∂xj
+
∂uj

∂xi

)]
, (5.108)

∂T

∂t
+

∂

∂xj

(
uj · T

)
=

∂

∂xj

[(
a+

νt
Prt

)
· ∂T
∂xj

]
. (5.109)

Therefore as well as the molecular transport coefficients we also have the
turbulent transport coefficients; the turbulent pressure is neglected.

The idea that the intensity of the turbulent mixing is represented by a
single quantity, the eddy viscosity, assumes that the turbulent fluctuations
are the same in all spatial directions. The turbulence is hence isotropic. How-
ever, isotropic turbulence seldom occurs in practice, at best in the turbulent
parallel flow behind a grid. Close to a wall and in free-shear layers, the turbu-
lence is anisotropic to a greater or lesser degree. For example, in a turbulent
boundary layer the fluctuations in the direction parallel to the wall are twice
as large as those in the direction normal to the wall, as the wall suppresses
normal motions.

The reproduction of the Fourier heat conduction law for the turbulent
heat flux implies that temperature gradients once present in the flow are
leveled out by the mixing processes. The turbulent heat flux is therefore
orientated in the opposite direction to the temperature gradient. Only flows
with greatly anisotropic turbulence permit anti-gradient heat transport, e.g.
a fluid layer with internal heat sources. The turbulent heat flux then moves
in the direction of the higher temperature. This cannot be modeled using the
above approaches, as the thermal conductivity would be negative.
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However, for many flows with heat transport, which will be considered
in Chapter 7, the approach using the turbulent Prandtl number and the
assumption of eddy viscosity has shown itself to be reliable in practice.

Algebraic Turbulence Models

The algebraic eddy viscosity models are the simplest class of turbulence mod-
els. In some shear flows along solid walls, e.g. in fully developed pipe flow or
in boundary-layer flow along a flat plate, the spatial dependence of the eddy
viscosity can be reduced to a single coordinate, namely the distance from the
wall. This is because turbulent boundary layers, just as laminar boundary
layers, are similar and the boundary-layer equation may be solved using a
similarity transformation. Only the dependence of the eddy viscosity on the
distance from the wall must be given.

This was carried out by Prandtl with the help of the mixing length ansatz
(see Section 4.2.5):

−ρ · u′ · v′ = −ρ · l · ∂u
∂z

· l · ∂u
∂z

= µt ·
∂u

∂z
, (5.110)

from which, neglecting the sign of the eddy viscosity, it follows that:

µt = ρ · l2 ·
∣∣∣∣
∂u

∂z

∣∣∣∣ . (5.111)

Here u is the mean velocity component parallel to the wall and z the distance
from the wall. l is called the Prandtl mixing length, and is thus the distance
downstream covered by a turbulence ball until it has completely mixed with
its surroundings.

Numerous measurements for different shear flows have shown that the
mixing length may be assumed proportional to the distance from the wall to
good accuracy:

l = 0.41 · z , (5.112)

where the pre-factor 0.41 is called the von Kármán constant. Close to the
wall (up to about 1/3 of the thickness of the boundary layer) this even holds
for boundary layers with pressure gradient, for channel and pipe flows, as
well as for other shear flows attached to a wall.

The Baldwin-Lomax turbulence model was developed for flows with boun-
dary-layer character past bodies, e.g. the calculation of wing flows (Figure
5.9). The model assumes that the outer flow is inviscid. The flow is divided
into two layers depending on the distance from the wall. In the inner layer,
which includes the zone close to the wall and the viscous sublayer, a modified
mixing length ansatz is used:

(µt)inner = ρ · l2mod · |ω| . (5.113)

Instead of the velocity gradient, the magnitude of the rotation of the mean
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flow appears:

|ω| = |∇ × u|

=

√(
∂u2

∂x3
− ∂u3

∂x2

)2

+

(
∂u3

∂x1
− ∂u1

∂x3

)2

+

(
∂u1

∂x2
− ∂u2

∂x1

)2

, (5.114)

The modified mixing length reads:

lmod = 0.41 · z ·
[
1 − exp

(
− z+

A+

)]
, (5.115)

with the van Driest damping factor (the expression in square brackets). z+ =
uτ/ν · z is the dimensionless coordinate, with uτ =

√
τw/ρw. The model

constant has the value A+ = 26. Outside the viscous sublayer, the damping
factor has approximately the value one, and so hardly changes the eddy
viscosity in the zone close to the wall. In this viscous sublayer, however, this
factor takes into account the changed conditions as it reduces lmod and hence
also the eddy viscosity.

In the outer layer the strength of the turbulence depends on the state of
the outer flow. The ansatz for the eddy viscosity reads:

(µt)outer = ρ · K̃ · CCP · Fwake · FKleb , (5.116)

with the constant K̃ = 0.0168 and the Clauser parameter CCP = 1.6. Apart
from FKleb at the position x, all quantities in this ansatz are constant.

In order to calculate the constant Fwake, we consider the function

F(z) = z · |ω| ·
[
1 − exp

(
− z+

A+

)]
, (5.117)

in which the van Driest damping factor is approximately one. Whereas the
factor z increases with increasing distance from the wall, the mean rotation
decreases to zero, and so this function has a maximum Fmax at the position
xmax. For subsequent modeling, this may be written as follows:

Fig. 5.9. Example of application of the Baldwin-Lomax turbulence model: flow
past a wing with wake
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Fwake = min(zmax · Fmax, zmax ·
u2

dif

Fmax
) , (5.118)

with the maximum velocity difference

udif = |u|max − |u|min .

Because of the no-slip condition, the quantity |u|min has the value zero at the
wall. Baldwin and Lomax also applied the turbulence model to wake flows
of wings. The velocity in the center of the wake profile is then taken (Figure
5.8).

The Klebanoff intermittence factor

FKleb =

[
1 + 5.5 ·

(
CKleb · z
zmax

)6
]−1

, CKleb = 0.3 (5.119)

ensures that the eddy viscosity falls outwards to zero. In takes into account
the fact that in the outer regime of a boundary layer laminar and turbu-
lent phases alternate, as the laminar outer flow can briefly extend into the
boundary layer, or the turbulent structures can move with spatial and time
shifts into the outer flow and only there dissipate (intermittence). The data
measured in a boundary layer without pressure gradient are assumed here for
all boundary layers. The quantity zmax is used instead of the boundary-layer
thickness.

In the inner layer, the eddy viscosity increases with distance from the
wall, while in the outer layer it decreases with distance from the wall. The
boundary between the inner and outer layers is at the point of intersection
of these two progressions. In practice the eddy viscosity is calculated in both
regions and the minimum is taken.

If the boundary layer is not turbulent from the leading edge onwards, but
rather it starts off laminar and only becomes turbulent within a transition
region, the turbulent model is only used from the end of the transition re-
gion. However, the laminar-turbulent transition cannot be determined using
a turbulence model. Determining the transition is a stability problem of the
laminar flow (see Section 4.2.4). If the end of the transition region is not
known from experiment, a transition model is necessary to determine the
position where the transition region ends (see H. Oertel jr., J. Delfs (1996),
(2005)).

Transport Models

The assumption made above, that the turbulence at one position in the flow
field is only dependent on the local conditions, is a considerable restriction.
Frequently the mechanisms by which turbulence is transported must also be
taken into account. It often happens in technical flows that turbulence arises
in certain regions of the flow field and is then transported to other regions,
where it affects the mean flow. It may then die away again in other regions of
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the flow field. Turbulence models that take these transport mechanism into
account are generally known as transport models.

In the Prandtl one-equation model, the eddy viscosity is modeled with:

µt = Cµ · ρ · l ·
√
K , Cµ = 0.09 (5.120)

where l = 0.41 · z is again the Prandtl mixing length, but the shearing is now
replaced by the square root of the turbulent kinetic energy in accordance
with equation (5.105).

The transport of the turbulent kinetic energy K can be derived from
the Reynolds equations (5.40)–(5.42). The ith component of the Reynolds
equation is multiplied by the velocity fluctuation u′i:

ρ · ∂(ui + u′i)

∂t
· u′i + ρ · (uj + u′j) ·

∂(ui + u′i)

∂xj
· u′i =

− ∂(p+ p′)

∂xi
· u′i + µ · ∂

2(ui + u′i)

∂x2
j

· u′i . (5.121)

All terms are now multiplied out and then time-averaged. The first term
in each case is identical with the corresponding term from the Reynolds
equation and can be cancelled out. The transport equations are then added,
and transformed using the identities:

∂u′i
∂t

· u′i =
∂

∂t

(
1

2
· u′2i

)
,

∂u′i
∂xj

· u′i =
∂

∂xj

(
1

2
· u′2i

)
, (5.122)

∂2u′i
∂x2

j

· u′i =
∂

∂xj

(
∂u′i
∂xj

· u′i
)
−
(
∂u′i
∂xj

)2

(5.123)

The equation for K is then formulated:

ρ · ∂K

∂t
+ ρ · uj ·

∂K

∂xj
= −∂ui

∂xj
· ρ · u′i · u′j

+
∂

∂xj

(
µ · ∂K

∂xj
− 1

2
· ρ · u′i · u′i · u′j − p′ · u′j

)
− µ · ∂u

′
i

∂xj
· ∂u

′
i

∂xj
. (5.124)

The terms on the left-hand side are the convection terms. The first term on
the right-hand side does not contain the transport quantity K, and is there-
fore called a production term (source term). The further terms in brackets
are the molecular diffusion, the turbulent diffusion and the pressure diffu-
sion. The last term is always negative, and so this represents a sink term. It
describes the draining away and decay (dissipation) of the turbulence. Terms
that contain unknown fluctuation quantities have to be modeled.

We begin with the production term. As both i and j appear twice, we
have to sum over both indices (9 terms). Each term consists of the product of
a shear component and a Reynolds stress. The Reynolds stresses have already
been modeled in (5.104) using the eddy viscosity, and we employ this again:

−∂ui

∂xj
· ρ · u′i · u′j = µt ·

∂ui

∂xj
·
(
∂ui

∂xj
+
∂uj

∂xi

)
. (5.125)
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According to this model, turbulence is produced where the mean flow has a
velocity gradient. This is in good agreement with the idea that shear layers
generate turbulence because of their instability.

The turbulence diffusion has the form of a triple product, where we sum
over i and j (9 terms). The expansion of turbulence takes place because of its
own dynamics. These processes are very complex and can only be modeled
for each geometrical class in a very simplified manner. It makes sense to
consider the diffusion as a gradient transport. This means that differences
in the turbulence intensity, i.e. gradients in K, are equalized. The necessary
transport coefficient is proportional to the eddy viscosity:

−1

2
· ρ · u′i · u′i · u′j − p′ · u′j =

µt

σk
· ∂K
∂xj

, (5.126)

where σk is the ratio between the eddy viscosity and the turbulent diffusion
coefficient, in analogy to the Prandtl number. This model constant can be
assumed to be one. The pressure diffusion is not modeled separately, but
rather is included in the model of the turbulent diffusion.

Modeling the dissipation is done in an entirely empirical manner. The tur-
bulence in a parallel flow behind a lattice decreases with increasing distance
from the lattice because of the internal friction of the turbulent structures.
Experiments have shown that the dissipation is proportional to K3/2. In the
one-equation model we therefore use

µ · ∂u
′
i

∂xj
· ∂u

′
i

∂xj
= CD · ρ · K

3
2

l
, CD = 0.09 . (5.127)

Here l is again the Prandtl mixing length, and is introduced to strengthen
the dissipation close to solid walls.

Therefore the model equation for the turbulent kinetic energy reads:

ρ · ∂K
∂t

+ ρ · uj ·
∂K

∂xj
= (5.128)

µt ·
∂ui

∂xj
·
(
∂ui

∂xj
+
∂uj

∂xi

)
+

∂

∂xj

(
µ · ∂K

∂xj
+
µt

σk
· ∂K
∂xj

)
− CD · ρ · K

3
2

l
.

In order to determine K(x1, x2, x3) boundary conditions are necessary. The
turbulent kinetic energy vanishes at a solid wall because of the no-slip con-
dition. K has to be specified at a boundary where a turbulent flow arises.

From the theoretical point of view there is some criticism of the appli-
cation of the mixing length l. In the layer close to the wall the transport
processes are not important. If the corresponding terms are neglected, the
remaining equation makes clear that l must be modified in order that the
ansatz used here passes over to the Prandtl mixing length model and hence,
for a flat plate without pressure gradient, for example, to the logarithmic law
of the wall. In addition it is to be noted that without neglecting the transport
terms there is no crossover to the mixing length ansatz, and thus the use of
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a mixing length in connection with a one-equation model is also meaning-
less. Instead of this it is two-equation models that have gained acceptance
for practical calculations.

With the two-equation model (K-ε model) we calculate the eddy viscosity
using the ansatz:

µt = ρ · Cµ · K
2

ε
, Cµ = 0.09 . (5.129)

We do not have the problem of having to fix a characteristic length.

ε = ν · ∂u
′
i

∂xk
· ∂u

′
i

∂xk
(5.130)

is the dissipation, for which a transport equation also must be solved. This
can be derived or modeled in a similar manner from the Reynolds equations.
The two transport equations read:

ρ · ∂K
∂t

+ ρ · uj ·
∂K

∂xj
= µt ·

∂ui

∂xj
·
(
∂ui

∂xj
+
∂uj

∂xi

)
+

∂

∂xj

(
µ · ∂K

∂xj
+
µt

σk
· ∂K
∂xj

)
− ρ · ε , (5.131)

ρ · ∂ε
∂t

+ ρ · uj ·
∂ε

∂xj
= Cε1 ·

ε

K
· µt ·

∂ui

∂xj
·
(
∂ui

∂xj
+
∂uj

∂xi

)
+

∂

∂xj

(
µ · ∂ε

∂xj
− µt

σε
· ∂ε
∂xj

)
− Cε2 · ρ ·

ε2

K
, (5.132)

with further model constants of the ε-equation Cε1 = 1.44, Cε2 = 1.92 and
σε = 1.3. As a boundary condition, the derivative of ε perpendicular to
the wall is set to zero. Calculation of the value of ε at the wall is then not
necessary. In an intake cross-section, ε, just as K, must be prescribed.

The characterization of the turbulence by the two transport quantities
K and ε can be understood if we consider the processes of the onset and
decay of turbulent structures (eddies) as energy cascades (see Section 6.4.5).
As a consequence of instability of the mean flow, large-scale structures ini-
tially arise. However, these are unstable and decay into smaller structures,
which themselves decay, and so on. The largest part of the kinetic energy
is associated with the large-scale eddies. In contrast, the dissipation mainly
takes place at the smallest scales. The energy-carrying eddies may therefore
be associated with the transport quantity K in the K-ε model, whereas the
small eddies are connected to ε.

There are numerous variants of the K-εmodel known. One example is the
low Reynolds number K-ε model. If the wall shear stress, the wall heat flux
or flow separation have to be calculated, the layer close to the wall and the
viscous sublayer must be modeled. With increasing Reynolds number, these
layers become even smaller and thus their solution ever more important.
Hence we are restricted to flows with low Reynolds numbers. To contrast
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with the standard K-εmodel, we speak of a low Reynolds number K-ε model.
Modifications of the eddy viscosity ansatz and the transport equations must
be employed to approximate the layer close to the wall.

The ansatz for eddy viscosity can also be extended by the damping func-
tion fµ:

µt = ρ · fµ · Cµ · K
2

ε
. (5.133)

We have already seen one way of doing this with the van Driest damping
function. However, as this is a function of the distance from the wall, we
need to look for alternatives, as the distance from the wall is not uniquely
defined for complex geometries. Functions that depend only on K or ε are
more suitable as damping functions.

Equations (5.131) and (5.132) may only be applied in the layer close to
the wall with some modification. It can be shown that the most important
Reynolds stress ρ·u′1 · u′3 must drop off at the wall with z4. Yet the K-εmodel
yields a decay that goes as z3. In addition, ε has a relative maximum at the
edge of the viscous sublayer, and this would not be reproduced correctly
without further modification. There are numerous low Reynolds number K-ε
models that employ a modified damping function and an additional term in
the ε-equation in order to remedy these deficiencies.

For example, the damping function

fµ = exp

(
−3.4

(
1 + Rt

50

)2

)
, Rt =

K2

ν · ε , (5.134)

with the further term

D = 2 · ν ·
(
∂
√
K

∂z

)2

(5.135)

as the additional dissipation on the right-hand side of the K equation (5.131)
is used.

Reynolds Stress Models

In flows with strongly anisotropic turbulence, the ansatz of an eddy viscosity
can no longer be used, as the turbulence, in both its structure and effect on
the mean flow, is dependent on the direction. The turbulent kinetic energy is
not suitable for turbulence modeling as this does not take into account the
directional dependence.

Secondary flows in, for example, non-circular pipes, can be a direct con-
sequence of the anisotropy of the turbulence. The onset of the secondary flow
sketched in Figure 5.10 cannot be explained by an increase in the viscosity,
as in the eddy viscosity ansatz. Rather, it is due to directionally dependent
Reynolds stresses.
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Fig. 5.10. Fully developed flow in a square pipe

Two-equation models are also no longer suitable if the curvature of the
streamlines plays a role. This curvature can either strengthen or weaken the
turbulence, depending on whether it is destabilizing or stabilizing (see Figure
5.11). This is taken into account in a turbulence model via the production
term, a positive or negative term. In the K-ε model the positive parts gen-
erally dominate, so that the predicted eddy viscosity is therefore too large in
the case of stabilizing curvature, e.g. in a rotating system or an eddy.

The effect of streamline curvature causes damping of the turbulent fluctu-
ations along a convex surface. For flows along a concave surface, the fluctua-
tions are amplified. Therefore, the streamline curvature can indeed reduce the
Reynolds stresses, a point that is not represented in the eddy viscosity ansatz.
For this reason eddy viscosity models break down if angular momentum is
present.

The solution to this problem lies in the calculation of the individual com-
ponents of the Reynolds stress tensor. We consider isothermal flows and ne-

Fig. 5.11. Stabilizing and destabilizing effect of the streamline curvature
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glect the energy equation. Thus, instead of an eddy viscosity, six Reynolds
stresses, three normal stresses and three shear stresses have to be computed.

Among the Reynolds stress model are algebraic models like the eddy vis-
cosity models, where all Reynolds stresses are modeled only as a function
of the geometry. In addition there are transport equation models where each
Reynolds stress is integrated into its own transport equation.

The transport equation of the Reynolds stresses is obtained from the
Navier-Stokes equations

N(ui) = ρ · ∂ui

∂t
+ ρ · uk ·

∂ui

∂xk
+
∂p

∂xi
− µ · ∂

∂xj

(
∂ui

∂xj
+
∂uj

∂xi

)
= 0 (5.136)

by multiplication of the equation for the ith component with the fluctuation
velocity u′j and time averaging:

u′i ·N(uj) + u′j ·N(ui) = 0 . (5.137)

The equation for the mean flow, the Reynolds equation, is subtracted. All
terms in which the fluctuation velocity appears only once vanish because
of the averaging. The remaining double products of the fluctuation velocity
are the Reynolds stresses, thus the dependent variables of the associated
equation.

Therefore the transport equations of the Reynolds stresses read

∂τ t
ij

∂t
+ uk ·

∂τ t
ij

∂xk
=

− τ t
ik · ∂uj

∂xk
− τ t

jk ·
∂ui

∂xk
− εij +Πij +

∂

∂xk

(
ν ·

∂τ t
ij

∂xk
+ Cijk

)
. (5.138)

These are nine combinations of the indices i and j; however for symmetry
reasons there are only six different equations. The mathematical operations
carried out above are known as the formation of the second moments of the
Navier-Stokes equations. For this reason Reynolds stress transport equations
are also called second moment closures.

As well as the double products that we have identified as the Reynolds
stresses, there are further terms, namely the dissipation tensor:

εij = 2 · µ · ∂u
′
i

∂xk
·
∂u′j
∂xk

, (5.139)

the pressure-shear correlation or the pressure dilatation:

Πij = p′ ·
(
∂u′i
∂xj

+
∂u′j
∂xi

)
(5.140)

and the turbulent diffusion correlation:

Cijk = ρ · u′i · u′j · u′k + p′ · u′i · δjk + p′ · u′j · δik , (5.141)

which consists of the turbulent diffusion and the pressure diffusion.
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The convection of the Reynolds stresses with the mean flow (Figure 5.12)
appears on the right-hand side of the transport equation. The first two terms
on the right-hand side

Pij = −τ t
ik · ∂uj

∂xk
− τ t

jk ·
∂ui

∂xk
(5.142)

are source terms and represent the production, i.e. the amplified or damping
effect of the mean flow on the individual Reynolds stresses. These terms can
be positive or negative. The term εij denotes the turbulent dissipation, i.e.
the draining away of the turbulence. In contrast to most laminar flows, in
turbulent flows the dissipation as a result of fluctuations must be taken into
account. These two terms also appear in the K-equation.

According to (5.140), the pressure dilatation Πij is the interaction of the
pressure with the velocity fluctuations. This term dropped out in the deriva-
tion of the K-equation, and so is not to be interpreted as a source or sink
of the turbulence, but rather only describes a redistribution of the Reynolds
stresses among one another. The redistribution can lead to certain Reynolds
stresses increasing or decreasing at the expense of others. Redistribution takes
place in all flows apart from those with homogeneous turbulence.

The last term on the right-hand side of equation (5.138) consists of the
diffusion of the Reynolds stresses due to the molecular viscosity, as well as a
term Cijk that also contains triple products. This term describes the diffusion
of the Reynolds stresses due to the turbulent mixing and can be separated
into the so-called turbulent diffusion and the pressure diffusion.

It is now a matter of modeling the unknown terms in equations (5.139)
- (5.141). The dissipation and the diffusion are already known from the K-
equation. The difference here is that these quantities now must be formulated
separately for each Reynolds stress.

In contrast to these, the pressure-shear correlation is new. The pressure
can be eliminated from this term and it can be shown that it is made up of
two parts with respect to the velocities: one part (Πij)1 that contains only
fluctuation velocities and another part (Πij)2 that contains both fluctuations
and the mean flow.

The first (slow) part, which is independent of the mean flow, is generally
modeled:

Fig. 5.12. Interpretation of the transport equations for the Reynolds stresses
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(Πij)1 = −C1 ·
ε

K
·
(
τRe
ij − 2

3
· δij ·K

)
, C1 = 1.4 , (5.143)

where C1 is a model constant and ε/K is the inverse of a decay time of the
turbulence characteristic for the pressure dilatation. K and ε are defined in
the usual manner. The signs are chosen so that the term always results in a
return to isotropy. Therefore this means that we assume any deviation in the
turbulence from the isotropic state is reduced and the turbulence will slowly
become isotropic if left to itself. This is in good agreement with observations
far from solid walls.

The second (fast) term depends on the mean flow and its dependence on
this must be modeled, e.g. by means of

(Πij)2 = −C2 ·
(
Pij −

2

3
· Pk · δij

)
, C2 = 0.6 , (5.144)

where Pij is the production tensor according to (5.142) and Pk the produc-
tion term of the turbulent kinetic energy. Therefore the dependence of the
redistribution on the Reynolds stresses is modeled. In particular close to a
wall, this effect dominates the mean flow.

It is known of boundary-layer flows that the Reynolds normal stresses are
approximately twice as large in the downstream direction compared to those
in the direction normal to the wall, while the normal stress in the transverse
direction lies roughly between these values. This is due to the fact that the
wall inhibits most strongly the normal components of the fluctuations. Trans-
port processes play only a minor role close to the wall, and so this anisotropy
can influence the turbulence by modification of the pressure-shear correlation
close to the wall, e.g. by mean of the wall-effect term:

(Πij)
w
2 =

[
0.125 · ε

K
·
(
ui · uj −

2

3
·K · δij

)
+ 0.015 · (Pij −Dij)

]
· f(z) , (5.145)

with

Dij = −τ t
ik ·

∂uk

∂xj
− τ t

jk · ∂uk

∂xi
, (5.146)

where f(z) is a function of the distance from the wall z (the weighting func-
tion), which drops off outwards from a value of one at the wall. The expression
in brackets is constructed so that the non-isotropic turbulence close to the
wall is reproduced as it is known from experiments.

The turbulent diffusion and the pressure diffusion of the Reynolds stresses
read:

∂Cijk

∂xk
=
∂(ρ · u′i · u′j · u′k)

∂xk
+
∂(p′ · u′i · δjk + p′ · u′j · δik)

∂xk
. (5.147)

There are hardly any known ways of modeling the second term, the pressure
diffusion, and so this term is generally neglected. The first term consists of a
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triple correlation, whereby we sum over the index k. This can be modeled in
many different manners, e.g. according to C. C. Shir (1973):

ρ · u′i · u′j · u′k = −Cs ·
K2

ε
· ∂ui · uj

∂xk
, (5.148)

according to B. J. Daly and F, H. Harlow (1970):

ρ · u′i · u′j · u′k = −Cs ·
K

ε
· uk · ul ·

∂ui · uj

∂xl
(5.149)

or according to G. L. Mellor and H. J. Herring (1973):

ρ · u′i · u′j · u′k = −Cs ·
K2

ε
·
(
∂uj · uk

∂xi
+
∂uk · ui

∂xj
+
∂ui · uj

∂xk

)
, (5.150)

where Cs is again a model constant and K/ε represents the timescale of
the turbulent diffusion. The turbulent diffusion is therefore reduced to the
Reynolds stresses themselves. The model by Shir is equivalent to the ansatz
for the K-ε model. No one of this alternatives has as yet gained overall
acceptance.

Although in modeling all the Reynolds stresses it is the directional depen-
dence of the turbulence that is the most important property, in modeling the
dissipation the assumption of isotropic turbulence is indeed sensible. This is
in agreement with the idea that the directional dependence is lost as large
structures decay into smaller structures. The modeling of the dissipation ten-
sor using the scalar dissipation is therefore:

εij =
2

3
· δij · ε . (5.151)

Such a model is known as a τ-ε model. The same transport equation as that
in the K-ε model (5.132) can be used to calculated ε.

Each Reynolds stress is generated separately, dependent on the mean flow,
and is transported by convection. At high Reynolds numbers transport by
diffusion plays only a minor role. However, only the normal stresses are dissi-
pated, so that the shear stresses are primarily reduced via redistribution. In
Reynolds stress models the pressure-shear correlation is of particular impor-
tance, so that the various transport equation Reynolds stress models differ
mainly in this term. Further variations are obtained by modeling mechanisms
that cause precisely this redistribution and thus the deviation from isotropy,
e.g. the effect of a wall in a three-dimensional flow.

Large-Eddy Simulation and Fine-Structure Models

If we divide turbulent structures in flows with high Reynolds numbers into
two types, large-scale and fine-scale (Figure 5.13), we approach a different
method of modeling. The temporal and spatial development of large-scale
structures of a turbulent flow are directly calculated and only the fine struc-
tures are modeled. This method is known as Large-Eddy Simulation LES.
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Fig. 5.13. Decomposition of the turbulence into large-scale and small-scale struc-
tures in the example of the mixing layer, A. Roshko (1976)

A typical logarithmic energy turbulence spectrum E at high Reynolds
numbers (Figure 5.14) is subdivided into different regimes. The regime of
low frequencies f or wave numbers a is generated by the large-scale energy-
carrying eddies. This regime also contains the generation of turbulence. These
structures have the strongest anisotropy, as at their onset they are strongly
related to the geometry of the flow regime. These structures are simulated
with large-scale eddy simulations, that is, without a turbulence model.

The regime of moderate frequencies or wave numbers is known as the
inertial regime. In this regime further decay into ever small structures takes
place. It can be shown that the nonlinear inertial terms are responsible for this
behavior, while the friction plays a minor role. During decay, the turbulence
becomes more and more isotropic and the geometry of the flow regime is
less important. The theory of isotropic turbulence developed by Kolmogorov
states that the energyE decreases with the wave number a as E ∼ a−5/3. This
has been experimentally confirmed for numerous flows. The inertial regime

Fig. 5.14. Energy spectrum of turbulence
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is thus greater the higher the Reynolds number. This regime also contains
the boundary between large-scale and small-scale structures from the point
of view of Large-Eddy Simulations.

In the high frequency or high wave number regime, the inertial regime
passes gradually into the dissipation regime, where the loss of energy with
wave number increases to E ∼ a−7/3 in magnitude. The turbulent dissipation
also plays a role, as decreasing eddy size means the friction effects dominate
the inertial effects more and more. This regime is modeled with respect to its
effects on the large-scale structures using a fine-structure turbulence model.

To describe the method, we consider in Figure 5.15 the spatial distribution
of an experimental signal along a coordinate x. We see from the sketch that
both large-scale and fine-scale structures are present. In order to separate
them, we employ mathematical filtering, i.e. at each position x we multiply
the flow quantity f with a filter function G(x′) and then integrate over ∆x

f(x, t) =
1

∆x
·

∆x
2∫

−
∆x
2

f(x − x′, t) · G(x− x′) · dx′ . (5.152)

Here x′ is the associated integration variable. The filtered signal corresponds
to the dashed line. This is not a steady quantity, as in Reynolds averaging,
but rather the filtered value is itself a function of time. Different filter func-
tions have been suggested, of which we consider here the Gauß filter (other
filter functions lead to similar results). Filtering is carried out in all three di-
rections in space. The difference between filtering and averaging is that here
we multiply with the filter function before carrying out the integration.

As in Reynolds averaging, we consider each local flow quantity as the sum
of the filtered value and the fluctuation value. For example, for the velocity
components we obtain:

Fig. 5.15. Filtering of a flow quantity
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um(x, t) = um(x, t) + u′m(x, t) , (5.153)

where the filtered value is indicated with a bar. In contrast to averaging, the
filtered fluctuation does not vanish:

u′m 6= 0 . (5.154)

Taking this difference into account, the derivation of the fundamental equa-
tions of the large-scale simulation can now be carried out in analogy to the
derivation of the Reynolds equations, e.g. for incompressible flows with heat
transfer. The averaging operator implies filtering, and we obtain the filtered
continuity equation:

∂ui

∂xi
= 0 , (5.155)

the filtered Navier-Stokes equations:

ρ ·
(
∂ui

∂t
+
∂ (uj · ui)

∂xj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ ·
(
∂ui

∂xj
+
∂uj

∂xi

)
− ρ ·

(
u′i · u′j + ui · u′j + u′i · uj

)]
(5.156)

and the filtered energy equation:

ρ · c ·
(
∂T

∂t
+
∂
(
uj · T

)

∂xj

)
=

∂

∂xj

[
λ · ∂T

∂xj
− ρ ·

(
u′j · T ′ + uj · T ′ + u′j · T

)]
.

(5.157)

The equations are formally the same as the Reynolds equations. However the
fine-structure stresses appear as additional terms:

−ρ · u′i · u′j . (5.158)

The additional terms of the energy equation are the fine-structure heat fluxes:

−ρ · u′i · T ′ , (5.159)

which represent the effect of the fine-structure turbulence on the filtered
model (large-scale). These quantities are unknown and must be modeled with
a fine-structure turbulence model.

Further terms, the so-called cross terms

−ρ ·
(
ui · u′j + u′i · uj

)
and − ρ ·

(
uj · T ′ + u′j · T

)
(5.160)

are also unknown. These quantities are neglected in most large-scale simula-
tions. The remaining system of equations, without the cross terms, therefore
corresponds formally to the Reynolds equations.

The simplest fine-structure turbulence model is the Smagorinski model,
where the fine-structure stresses are modeled using the fine-structure eddy
viscosity:



5.4 Fundamental Equations as Conservation Laws 317

u′i · u′j = νSGS · 2 · Sij = νSGS ·
(
∂ui

∂xj
+
∂uj

∂xi

)
. (5.161)

Similarly for the heat fluxes

u′i · T ′ = aSGS · ∂T
∂xi

, P rSGS · νSGS

aSGS
≈ 0.4 . (5.162)

The eddy viscosity is determined algebraically from the fine-structure shear-
ing

νSGS = (Cs · h)2 ·
√
Sij · Sij , h = 3

√
∆x ·∆y ·∆z . (5.163)

Here Cs = 0.17 is the Smagorinski constant and h is a measure of the grid
size of a structured numerical grid. It is assumed that structures not resolved
by the numerical grid (size of sub-grid scale, index SGS) have to be modeled.

The theoretical value for the Smagorinski constant has been shown not
to be universally applicable. Rather it has been seen that the value of this
model constant can vary greatly from flow to flow, so that a suitable choice
is indeed a problem. For this reason other models have been suggested where
this parameter is adapted to each turbulence field (dynamic model). Fine-
structure transport equation models have also been formulated.

An introduction to the theory of Large-Eddy Simulation is given in the
book by P. Sagaut (2001).

5.4.6 Multiphase Flows

For multiphase flows, which will be treated in detail in Chapter 8, the con-
servation equations are formulated for each individual phase k. In a Euler
representation, every quantity Ψk that is transported with velocity uk satis-
fies the following conservation equation:

∂(ρk · Ψk)

∂t
+ ∇ · (ρk · uk · Ψk) = ρk · fk + ∇jk. (5.164)

The rate of change of a volume specific conservation quantity ρk · Ψk with
the convective flux ρk · uk · Ψk is determined by a volume-specific source
or sink ρk · fk and the dissipative fluxes jk. The meanings of fk and jk in
equation (5.164) are listed below for the conservation quantities ρk · Ψk of
mass, momentum and energy:
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Φk Quantity Source/sink Flux Jump

Ψk fk jk Mi

Mass 1 0 0 0

Momentum uk g Tk = −pk · I + τk mσ
i

Energy Ek = g · uk +Qk qk = (−pk · I + τk) γσ
i

ek + 1
2 · u2

k ·uk + qw

Here g is the gravity vector, I the unit tensor, pk the hydrodynamic
pressure, τk the shear stress tensor, Qk a volume heat source and and qk and
qw the energy and heat fluxes.

In addition to the usual conditions at the edges of the multiphase flow
region, there are also further conditions at the interfaces between the indi-
vidual phases, given in the form of discontinuity or jump relations between
specific phase properties. Thus the fluxes at the interfaces must satisfy the
following jump conditions:

[(ρk · Ψk) · (uk − vi) − jk) · nk] = M i . (5.165)

Here M i denotes the jump that the conservation quantity on the left-hand
side of the equation undergoes at the phase interface. vi denotes the local
velocity of a point on the phase interface, and nk is the unit vector normal to
the interface. The jump M i depends on the local deformation of the interface
and the liquid-specific interface stress σ. The terms mσ

i and γσ
i describe the

specific jumps of momentum and energy.
The analytical treatment of multiphase flows requires the introduction of

averaged state quantities. In terms of a generally valid statistical approach,
it is convenient to apply ensemble averaging. In fluid mechanics, however,
experimental considerations mean that temporal, spatial or spatiotemporal
averaging processes are introduced in modeling complex flows. In the follow-
ing, these replace ensemble averaging in flows whose states are statistically
independent in time and space and whose averaging intervals tend to ∞. This
assumption is generally not satisfied. Therefore the degree of approximation
must be checked in each case.

By introducing a weighting function Xk(x, t) for each individual phase,
the spatiotemporal average of a quantity Φk in the phase k can be defined as
follows:



5.4 Fundamental Equations as Conservation Laws 319

Φk(x, t)
k

=

1

V
·
∫

V


 1

∆t
·

∆t∫

0

Xk · Φk · dt


 · dV

1

V
·
∫

V


 1

∆t
·

∆t∫

0

Xk · dt


 · dV

. (5.166)

The integration is carried out over a control volume V that is small compared
to the entire flow region, and over a time interval ∆t that is small compared
to the total time of the flow process under consideration. The length and
time scales for the averaging process are to be selected according to the flow
phenomena to be described. In multiphase flows it is difficult to determine
average values for each phase at a certain position, as several phases may
appear in different flow states at the same position at different times. Multi-
phase flows are generally unsteady to a great degree. It is therefore convenient
to introduce a phase indicator function in the form of a Heaviside function:

Xk(x, t) =





1 ; x ∈ Vk , t ∈ tk ⊂ ∆t

0 ; x /∈ Vk , t /∈ tk ⊂ ∆t
. (5.167)

In particular, a volume fraction ǫk of the phase k may be defined as the
spatiotemporal average of the phase indicator function as

ǫk = X
k

k =
1

V
·
∫

V

1

∆t
·

∆t∫

0

Xk · dt · dV . (5.168)

For turbulent multiphase flows with specific turbulence time scales, for prac-
tical reasons spatial and temporal averaging are frequently applied in succes-
sion.

The general form of the conservation equations for the averaged state
functions is derived by multiplying the conservation equation (5.164) term
by term with the phase indicator function and then carrying out an aver-
aging procedure corresponding to the definition in (5.166). Transformation
laws between volume and surface integrals, known as the Leibnitz and Gauß
relations, need to be applied. The averaged conservation equation (5.164) can
then be brought to the following form:

∂(X · ρk · Ψk
k
)

∂t
+ ∇ · (X · ρk · uk · Ψk

k
) − 1

V
·
∫

Ai

ρk · Ψk · ((vi − uk) · nk) · dS
∆t

− 1

V
·
∫

AWk

ρk · Ψk · ((vi − uk) · nk) · dS
∆t

= X · fk

k
+ ∇ ·X · jk

k − 1

V
·
∫

Ai+Awk

(jk · nk) · dS
∆t

. (5.169)
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Here the horizontal lines with the superscript ∆t denote a time average
of the surface integrals. The boundaries of the flow region of phase k consists
of free interfaces between the phases in the core of the flow with an instan-
taneous total surface Ai and of liquid-solid boundaries between the phase k
and the solid edges of the entire multiphase flow region with instantaneous
total surface Awk.

The free interfaces move in general with a velocity vi that is different
from the velocity uk of phase k. The velocity uk vanishes at solid walls. The
time averaged first surface integral on the left-hand side of equation (5.169)
therefore reflects, with the factor vi−uk, the relative motion of phase k to the
interface. The second surface integral vanishes at stationary solid walls. The
right-hand side of the equation describes, in the order in which the terms
appear, the phase-specific body force, the phase-specific divergence of the
diffusion fluxes and the time averaged diffusion fluxes over all the interfaces
of phase k, i.e. over the surfaces Ai +Awk. In averaging the jump conditions
(5.165) it must be noted that the sum of the mass fluxes over all interfaces
Ai must cancel out to zero. However the jump values remain for the averaged
values of the interface stresses and the interface energies.

In averaging certain conservation quantities, it has been found convenient
to use the product ρk · Xk(x, t), rather than Xk(x, t), as a weighting func-
tion in the definition (5.166). This corresponds to mass-weighted or Favre
averaging, known from the treatment of turbulent compressible flows. In the
relevant literature the following set of definitions for the averages of state and
constitutive quantities has become accepted:

ρk
k =

Xk · ρk
k

ǫk
density,

u
ρk
k =

Xk · ρk · uk
k

ǫk · ρk
k

velocity,

E
ρk

k =
Xk · ρk ·Ek

k

ǫk · ρk
k

energy,

−pkk · I + τ k
k =

Xk · (−pk · I + τ k)
k

ǫk
pressure and molecular shear stresses,

qk
wk =

Xk · qwk

k

ǫk
energy flux,

Q
ρk

k =
Xk · ρk ·Qk

k

ǫk · ρk
k

energy sources and energy sinks.

With these definitions for the averages of the relevant quantities, the
conservation equations for mass, momentum and energy can be written in
the following form:
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∂(ǫk · ρk
k)

∂t
+ ∇ · (ǫk · ρk

k · uρk
k ) = Γk , (5.170)

∂(ǫk · ρk
k · uρk

k )

∂t
+ ∇ · (ǫk · (ρk · uk · uk

k + pk
k · I − τ k

k))

= ǫk · ρk
k · g + Mk + uik · Γk

k
, (5.171)

∂(ǫk · ρk
k ·Eρk

k )

∂t
+ ∇ · (ǫk · (ρk · Ek · uk

k
+ pk · uk

k − τ k · uk
k + qk

wk))

= ǫk · ρk
k · uρk

k · g + ǫk · ρk
k ·Q

ρk

k +Wk + Fk + Eik · Γk
k
. (5.172)

The following abbreviations have been introduced for surface integrals:

Γk =
1

V
·
∫

Ai

ρk · ((vi − uk) · nk) · dS
∆t

interface mass
sources,

Mk = − 1

V
·
∫

Ai

((τ i − pk · I) · nk) · dS
∆t

interface momen-
tum sources,

uik · Γk
k

=
1

V
·
∫

Ai

ρk · (uk · ((vi − uk) · nk)) · dS
∆t

interface energy
sources,

Wk = − 1

V
·
∫

Ai

(((τ i − pk · I) · uk) · nk) · dS
∆t

work done by the in-
terface stresses,

Fk =
1

V
·
∫

Ai+AWk

(qk · nk) · dS
∆t

heat sources at inter-
faces and edges,

Eik · Γk
k

=
1

V
·
∫

Ai

ρk · (Ek · (vi − uk) · nk) · dS
∆t energy sources at in-

terfaces during mass
transfer.

By averaging the jump conditions (5.165) and using the above definition,
we reach the following set of necessary conditions at the interfaces:

∑

k

Γk = 0 ,

∑

k

(Mk + uik · Γk
k
) = mσ

i , (5.173)

∑

k

(Wk + Fk + Eik · Γk
k
) = γσ

i .

Here mσ
i represents the jump in the stresses and γσ

i the jump in the energy
at the interfaces.
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In order to describe the exchange processes at phase boundaries, e.g.
evaporation and condensation processes in single-component systems, it is
has been found to be convenient, within the framework of the spatiotemporal
averaging, to define an interface concentration using the integral

ai =
1

V
·
∫

Ai

dS

∆t

Locally averaged exchange fluxes, such as mass and heat fluxes at the inter-
faces, can then be represented as products of the average values of the flux
densities and the interface concentration. For two-phase or multiphase flows
that vary on microscopic scales, this approach is a significant simplification
when modeling local exchange processes. However it implies that a conserva-
tion equation may also be set up for the interface concentration ai and solved
simultaneously with the other conservation equations for mass, momentum
and energy for the problem at hand. This has the form:

∂ai

∂t
+ ∇ · (ai · vi) =

4∑

j=1

Φj + Φph + Φn . (5.174)

Here vi are the locally averaged velocities of the interface, Φj are the rates of
change of the interface concentration due to particle decay and coalescence
and Φph are the rates of change due to phase transitions. The relationship
between the density averaged velocity of the particle phase vi and the inter-
face concentration ai is vi = vp · ai · ρi. The final source term Φn represents
possible nucleation processes.

In order to solve practical problems, the conservation equations (5.170) to
(5.172) with the additional equation (5.174) must be supplemented by further
constitutive relations for mass and heat transfer at the interfaces and edges.
This represents a substantial part of the modeling of multiphase flows. This
is now a closure problem, where the number of quantities to be determined
must be aligned with the number of available equations.

Special models have been developed for highly dilute two-phase flows
consisting of a continuous substrate phase and a small admixture of disperse
particles, as found for example in technical spray systems, in the atmospheric
transport of aerosols and in sandstorms. In these models the substrate is
treated using the conservation equations for mass, momentum and energy in
Eulerian form. The motion of the individual particles, in contrast, is described
in the Lagrangian manner using Newton’s force law that relates the local
particle acceleration to the reaction forces between particle and substrate.
The trajectories of all particles, or at least of a representative group, can be
determined by double time integration of the particle’s acceleration, starting
with a defined initial state for each individual particle.

We forgo the representation of the conservation equations for the sub-
strate, as this aspect is discussed in detail for single phase flows in Sections
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5.1 to 5.4.5. Of course, they may also be derived by simplification of the above
conservation equations (5.170) to (5.172). However, we expressly point out
that the conservation equations for the substrate must be supplemented by
source terms if the effect of the particle motion on the substrate is to be taken
into account; this is the case for higher particle concentrations or where the
effect of the particles on the turbulence of the substrate is significant. The
balance of forces for an individual particle with mass mp, volume Vp and
velocity vp at position xp(t) in a substrate flow with velocity uc and density
ρc may be given in the following form:

mp · dvp

dt
= −Vp · ∇pc −

1

2
· ρc · Vp · CA · d

dt
(vp − uc)

−1

2
· ρp · Vp · CD · |vp − uc| · (vp − uc) − ρc · Vp · CL · (vp − uc) × ω

−3

2
· d2

p · ρc ·
√
νc · CH ·

t∫

t0

1√
t− t′

· d(vp − uc)

dt′
· dt′ + F i . (5.175)

∇pc denotes the local pressure gradient in the continuous phase and ω is
a vortex strength that is generally made up of the local vortex strength in
the continuous phase ωc = ∇ × uc and a part of the innate rotation of the
particle ωp. F i are potential forces under the effect of external force fields
such as gravitational force and electromagnetic fields. The physical meaning
of the different terms in equation (5.175) is as follows: The term on the
left-hand side describes the acceleration force of the particle. The first term
on the right-hand side describes the effect of the pressure gradient in the
substrate on the particle. The second term represents a force that displaces
the substrate and accelerates the virtual additional mass close the the particle
relative to the core flow of the continuum. This additional mass is equal to
half the mass of the continuous phase with a volume half that of the particle.
The third term describes the resistance of the particle in the surrounding
flow due to its relative velocity. The fourth term is a force transverse to the
direction of motion of the particle. It is known as the Saffmann lift force. As
already mentioned, it is caused by the vortex strength of the substrate and
the innate rotation of the particle relative to the flow. The effect of the latter
property is also known as the Magnus effect. The fifth term represents the
so-called Basset force. It describes the effect of the viscosity when the particle
is accelerated compared to the fluid and has a relaxing effect on the motion
of the particle along the trajectory.

The coefficients CA, CD, CL and CH generally depend on the specific flow
conditions in the continuous phase and on the size of the particles. This means
that they are a functions of particle Reynolds number Rep = |vp−up| ·dp/νc.
The functional dependencies have to be modeled on the basis of the fluid
mechanical conditions.

Equation (5.175) for the motion of the individual particle is of course
subject to considerable constraints. First, for the dilute disperse phase ǫp ≪
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1 must hold. Further, for the velocity |vp − uc|/|uc| ≪ 1 holds and the
characteristic particle diameter dp is small compared to the distance over
which significant variations in state take place in the continuous phase. This
means that it is smaller than the Kolmogorov microlength dp < (ν3

c /εc)
1/4,

with εc the rate of dissipation of the turbulent kinetic energy in the continuous
phase.

The relation (5.175) also does not take into account any forces that are
due to a direct or indirect interaction between individual particles. Even
the dependence on the particle concentration ǫp is absent in this relation.
Thus phenomena such as cluster formation of particles, particle coalescence
or particle decay cannot be described by the above Euler-Lagrange model for
a disperse two-phase flow.

In order to remedy such serious deficiencies in a Euler-Lagrange model,
advanced statistical models are being developed based on the distribution
functions for groups of particles and associated transport equations. Such
models are principally suitable for the description of direct particle collisions
and conglomerations and decays. Further details on such modeling is to be
found in the text books by C. T. Crowe et al. (1998) and W. A. Sirignano
(1999).

In many technical processes and in numerous geophysical events, turbu-
lent motions determine the transport and exchange processes in multiphase
flows. Examples of this are steam-water flows in thermal power plants, tech-
nical spray flows, bubble flows, dust storms and the transport and deposit
of sediment in rivers and bays. The modeling of turbulence in single phase
flows was described in Section 5.4.5. It is characterized by a large range of
length and time scales of the flow vortices. In multiphase flows, the number
of length and time scales multiplies, because of the number of possible phase
distributions. A well-founded theoretical treatment of turbulent multiphase
flows is in general possible if it is possible to separate the turbulent time and
length scales from those of the phase distribution. This is true for dilute dis-
perse two-phase flows with a turbulent continuous phase and with a volume
fraction of the disperse phase of ǫp ≪ 1. The above examples fall into this
class of flows.

The turbulence in the substrate is generally due to strong shearing effects
in inhomogeneous high-velocity flows or to pulsing flows through grids or past
corners and edges. The particles of the disperse phase can, depending on their
size and weight, have purely passive behavior in convective transport or can
affect the substrate phase through their own dynamics and thence either in-
crease or dampen the level of turbulence in the substrate flow. The effect that
will prevail depends to a great extent on a set of characteristic parameters
of the disperse two-phase flow. The most important particle parameters can
be easily identified using the equation for particle motion (5.174). These are
the mass-density ratio of the phases βp = ρp/ρc, a particle Reynolds number
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Rep = |vp − uc| · dp/νc and a time measure for the particle, defined as the
relaxation time of a particle in a viscous Stokes flow:

τp =
ρp

ρc
·

d2
p

18 · νc
.

These quantities are to be related to the relevant parameters of the tur-
bulent substrate flow. These are the flow Reynolds number Rec = U0c ·Dc/νc
with a volume flux density U0c and a characteristic hydraulic diameter Dc
and the turbulence Reynolds number Rect = u′ · L/νc with u′ the square
root of the variance of the fluctuation velocities and L a specific length for
the energy-filled vortex. This corresponds to an integral length measure of
the turbulence. In addition there are two relevant time measures: the vortex
circulation time τe = L/u′ and the dissipation time of the smallest vortices
according according to Kolmogorov τk = νc/εc, with εc the rate of dissipa-
tion of the continuous phase. For turbulent dilute disperse two-phase flows in
general Rep ≪ Rec holds and Rect ≥ 1. In order to describe the interaction
between the phases it is convenient to introduce the particle volume fraction
ǫp and the ratio of the above characteristic time scales τp/τk and τp/τe. The
latter time ratio is called the Stokes number. Figure 5.16 shows the main
interaction mechanisms between the phases. For very small volume fractions
ǫp < 10−6 the particles behave passively. Any effect of the movement of the
particles on the turbulence of the continuous phase may be neglected (one-

Fig. 5.16. Classification of the interaction of particles in a turbulent substrate, S.
E. Eglobashi (1994)
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sided coupling between the phases). In the region 10−6 < ǫp < 10−3 of the
volume fraction, the particles affect the degree of turbulence of the contin-
uous phase; it is increased for τp/τe > 1 or τp/τk > 102. For τp/τe < 1 or
τp/τk < 102 the particles dampen the turbulence by increasing the rate of
dissipation εc (mutual coupling). The region ǫp < 10−3 is classified as a dilute
suspension. Here there are no interactions between particles. Beyond this re-
gion with ǫp > 10−3, the mean distance Lp between the particles, which may
be defined with the relation dp = Lp · (6 · ǫp/π)1/3 decreases, so that finally
the ratio becomes dp/Lp > 0.1. Under such conditions the particles interact
with each other, either indirectly via the spatial effect of their boundary lay-
ers and wake flows, or via direct contact between individual particles. This
parameter regime is known as dense suspension. Modeling a two-phase flow
in this regime requires four-fold coupling between particles and substrate,
which can no longer be provided by a simple mechanical model such as that
on which equation (5.174) is based.

One criterion for limiting the region of turbulence amplification and
damping, as indicated in Figure 5.16 for τp/τe = 1, has been suggested by
S. Hosokawa and A. Tomiyama (2004) on the basis of experimental inves-
tigations. They introduce the ratio of two turbulent viscosities νtp and νtc
as a characteristic number, whereby the first describes the contribution of
particle motion to the total turbulence and the second the contribution to
the turbulence generated only by shearing in the continuous phase. This ratio
νtp/νtc is equivalent to the ratio of the Reynolds numbers for the particles
and for the turbulence Rep/Rect as defined above. In the case of channel
flows, the authors introduce quantities averaged over the cross-section and
use the known relation between the integral turbulence length measure Lc

and the channel diameter D in the form Lct = 0.2 ·D. The criterion has the
form:

νtp
νtc

=
|vp − uc|

k · dp
k

0.2 · u′
c ·D

=





≤ 1 damping

≥ 1 amplification
.

In calculations of technical applications, methods such as those developed
for the treatment of single phase turbulent flows in Sections 5.2.2 and 5.4.4
have also proved valuable for the description of turbulent disperse multiphase
flows. The derivation of the equations is based on the averaged conservation
equations (5.170) to (5.172). The Reynolds ansatz for multiphase flows may
be written as

ρk = ρk
k + ρ′k , uk = uk

ρk + u′

k , pk = pk
k + p′k , Ek = E′

k

ρk
+ E′

k .(5.176)

Inserting these expressions into the averaged conservation equation (5.169), a
new set of double and tripple correlations of the fluctuating quantities arises.
Typical examples are Xk · ρ′k · u′

k
k, Xk · ρ′k · (u′

k · u′

k)
k and Xk · ρ′k · p′k k.

The turbulent density fluctuations ρ′k may be replaced by the corresponding
fluctuations in the volume fraction ǫ′k via the relation ρ′k = ρk

k ·ǫ′k, where ρk
k
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is the material density of the component k. For turbulent disperse multiphase
flows, we obtain the Reynolds equations in the following form:

∂(ǫk · ρk
k)

∂t
+ ∇ · (ǫk · ρk

k · uρk
k + jRe

k ) = Γk , (5.177)

∂(ǫk · ρk
k · uρk

k )

∂t
+ ∇ · (ǫk · (ρk

k · uρk
k · uρk

k + pkk · I − τ k
k − τRe

k ))

= ǫk · ρk
k · g + M∗

k + uik · Γk
k

, (5.178)

∂(ǫk · ρk
k · (E

ρk

k + ERe
k ))

∂t
+∇· (ǫk · (ρk

k ·uρk
k · (Eρk

k +ERe
k )+pk

k ·uρk
k +p′k · u′

k

k

− (τ k
k + τRe

k ) · uρk
k + qk

wk + qRe
k ))

= ǫk · ρk
k · (uρk

k · g +Q
ρk

k ) +W ∗

k + F ∗

k + Eik · Γk
k
. (5.179)

Here terms with a superscript Re denote contributions of the turbulence
to the fluxes that are explicitly given by double or triple correlations. The
additional turbulent mass flux j

Re
k , the turbulent Reynolds shear stresses

τRe
k , the turbulent kinetic energy ERe

k and the turbulent heat fluxes qRe
k are

defined as

jRe
k = ρ′k · u′

k

ρk
= ρk

k · ǫ′k · u′

k

ρk
, τRe

k =
ρk · u′

k · u′
k

k

ǫk
,

ERe
k =

ρk · (u′

k)
2
k

2 · ǫk · ρk
k

, qRe
k =

ρk · E′

k · u′

k

k
+ p′k · u′

k

k − τ ′

k · u′

k

k

ǫk
.

Further contributions of the turbulent fluctuations are present in the vol-

ume and surface source terms M∗

k, F
∗
k , W ∗

k , uik · Γk
k

and Eik · Γk
k

on the
right-hand side of the equations, but for simplicity are not stated here explic-
itly. Their relevance needs to be discussed in relation to the problem at hand
and accordingly taken into account in the representation. Clearly the num-
ber of unknown quantities in the conservation equations exceeds the number
of equations. Thus we have a closure problem. As in the procedure for sin-
gle phase turbulence flows, to solve the problem closure relations must be
provided for all constitutive quantities on the basis of physical deliberations
and rational demands on the representation of functional dependencies. In
analogy to single phase turbulence flows, for multiphase flows multiple cor-
relations are also given in the form of algebraic relations using gradients of
the primitive variables and dimensionless characteristic numbers. This means
essentially that fluxes are modeled as diffusion processes. This will now be
explained for a two-phase particle flow using the example of the mass flux jRe

k

in equation (5.177). Using a gradient ansatz, the particle flux in, for example,
a dilute suspension may be represented as
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jRe
k = ρp

k · ǫ′p · u′
p

k
= ρp

k ·Dp · ∇ǫp ,

where Dp denotes a turbulent particle diffusion coefficient. Dp will generally
still depend on the relevant characteristic numbers introduced above, such as
Rep, St, Rec. In the literature it is suggested thatDp be related to a turbulent
vortex viscosity of the continuous phase νct and a turbulent particle mass
diffusion characteristic number, the Schmidt number Scp, as Dp = νct/Scp
needs to be determined empirically. Now the above ansatz is incomplete in
terms of a rational mechanical approach, as the necessary dependence on
gradients of the velocity uk

ρk has not been demonstrated. Therefore physical
arguments must be used in each case to see if this latter dependence may be
neglected.

In the relation for the diffusion coefficient Dp, the vortex viscosity νct
either may be expressed using a mixing path approach with gradients of
the mean velocities, or may be related to the turbulent kinetic energy ERe

K

and the turbulent dissipation εc in the continuous phase using the Prandtl-
Kolmogorov relation νct ∼ ERe

K /εc .
An algebraic gradient ansatz of the kind described in the example is fre-

quently insufficient to describe more complex flows. This is the case, for
example, for recirculation flows behind steps and in regions where channels
suddenly widen, where the dimensions of the energy-carrying vortices become
comparable to distances over which the particle concentration changes sig-
nificantly. In such situations a fundamentally different approach is needed,
one that describes the spatiotemporal development of the particle mass flux
with its own transport equation. This approach itself presents further com-
plications, as new double correlations, such as the variance of the particle
concentration ǫ′2p

k, appear in the corresponding transport equations in addi-
tion to the multiple correlations that already appear in the basis equations
(5.177) – (5.179).

Following the description of turbulent single phase flows, a multiple equa-
tion method has also been developed to solve the closure problem for multi-
phase flows. This is based on the introduction of further transport equations
for relevant turbulent quantities, such as the turbulent kinetic energy, the
Reynolds shear stresses and the dissipation in the individual phases. Further
details on this will be introduced in Section 8.6 on multiphase flows.

In principle, the multifluid model in the Eulerian description presented
here is capable of treating turbulent dispersion flows with mutual coupling
between the phases. Thus it may be applied for problems with particle con-
centrations ǫp ∼ 10−3 and beyond, according to Figure 5.16. Events such
as coalescence or decay of particles, as in bubble or drop flows, require an
extension of the model to groups of particle quantities with corresponding
source and sink terms in the transport equations for the different groups.
Such models are currently under development.

The fluid-particle model in the Euler-Lagrange form presented at the start
of the section can also be adapted for turbulent flows, by using the Reynolds
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equations to describe the continuous phase. The damping or amplification of
turbulence in the substrate flow by particle motion may be taken into account
by additional source or sink terms in the Reynolds equations. These source
or sink terms depend by nature on the relevant characteristic numbers of the
suspension flow Rep, Rec, St and need to be formulated as closure conditions
on the basis of physical deliberations.

Equation (5.175) for the particle motion in the substrate formulates only a
dependence on the current velocity uc of the substrate. Within the framework
of a turbulence model for the substrate, such as the K-ε model, in order to
close the problem the current velocity introduced in equation (5.175) must
be reconstructed from the mean velocity uc and the turbulent kinetic energy
ERe

c,kin = 0.5 · u′2
c . This is achieved by introducing a suitable distribution

function for the velocity fluctuations u′
c, such as a Gauß distribution, with

a variance that corresponds to the value of the turbulent kinetic energy.
Application of this model to dilute suspension flows is restricted to weak
coupling between the phases. In order to describe the interaction between
the particles, the Euler-Lagrange model must be extended based on statistical
methods with the introduction of distribution functions for particle groups
and the preparation of the associated evolution equations.

To describe dense suspension flows with ǫp > 10−3, the above Euler-
Lagrange models should be used based on conservation equations extended
by turbulence effects.

For the sake of completion, we note that direct numerical simulation
(DNS) and Large-Eddy Simulation (LES), described in Section 5.4.5, are
used to investigate basic phenomena of turbulent disperse multiphase flows.
DNS is used to describe the motion of the phase boundary, while LES de-
scribes the transport of the vortex with an additional transport equation.
Naturally these methods are only of restricted usefulness for technical appli-
cations because of the limit of numerical resolution for large spatial regions,
but may be of great practical use in deriving and validating closure condi-
tions for the model equations.

5.4.7 Reactive Flows

As well as the conservation equations for mass, momentum and total energy
introduced in Sections 5.1 to 5.3, the description of laminar and turbulent
reactive flows also requires balance equations for the partial mass density
ρi of each reactive particle type i in the flow. The local flow velocity ui of
particle type i is made up of the mean flow velocity u of the center of gravity
and a so-called diffusion velocity U i for particle type i that represents the
relative velocity of type i to the center of gravity of the system of particles.

Since species are changed into one another by chemical reaction, a source
term appears. This is made up of the product of the molar masses Mi of the
species and the rate of formation ω̇i on a molar scale (e.g. in mol/(m3 · s)).
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If we denote ρi · U i = ji as the diffusion flow density or diffusion flux, in
analogy to relation (5.177) in Section 5.4.6 we obtain:

∂ρi

∂t
+ ∇ · (ρi · u) + ∇ · ji = Mi · ω̇i . (5.180)

From the conservation equation for the total energy ρ ·E = ρ ·e+(1/2) ·ρ ·u2

we can, using the momentum equation, derive the conservation equation for
the specific internal energy e, neglecting gravity, in the form

∂(ρ · e)
∂t

+ ∇ · (ρ · e · u) + ∇ · jq + τ : ∇u = 0 (5.181)

where “ : ” is the double contraction of the two tensors τ und ∇u. Using
the relation ρ·h = ρ·e+p this relation can be transformed into a conservation
equation for the specific enthalpy:

∂(ρ · h)
∂t

− ∂p

∂t
+ ∇ · (ρ · h · u) + ∇ · jq + τ : ∇u −∇ · (p · u) = 0 .(5.182)

Detailed models to calculate the diffusion flux ji, the heat flux jq of the shear
stress tensor τ and the viscosity µ for multi-component flows are presented
in Chapter 9. The enthalpy and the internal energy are also determined there
as functions of temperature and composition of the mixture.

For turbulent flows, if it is time averaged values rather than the fluctu-
ations in time that are of interest, the averaged Reynolds equations can be
derived. As in the treatment of compressible flows in Section 5.2.2 and mul-
tiphase flows in Section 5.4.6, for reactive flows it is also convenient to use
density-weighted Favre averaging.

For the conservation of particle i, using the constitutive relation ji =
−Di · ρ · ∇ωi we obtain:

∂(ρ · ω̃i)

∂t
+ ∇ · (ρ · ũ · ω̃i) + ∇ · (−ρ ·Di · ∇ωi + ρ · u′′ · ω′′

i ) = Mi · ω̇i .

(5.183)

For the conservation of energy (5.182) using the ansatz jq = −λ · ∇T we
obtain

∂(ρ · h̃)
∂t

− ∂p

∂t
+ ∇ · (ρ · ũ · h̃) + ∇ · (−λ · ∇T + ρ · u′′ · h′′) = 0 . (5.184)

Here the terms τ : ∇u and ∇ · (p · u) have been neglected as they are only
important when shock waves or detonations occur, i.e. at extreme pressure
gradients. In analogy to the unaveraged equations, we need a thermal equa-
tion of state. From p = ρ · R · T ·∑i(ωi/Mi), averaging yields:

p̃ = R ·
N∑

i=1

(
(ρ · T̃ · ω̃i + ρ · T ′′ · ω′′

i ) · 1

Mi

)
. (5.185)

If the molar masses are similar, an approximate assumption is that the mean
molar mass barely fluctuates. After averaging the ideal gas equation we ob-
tain:
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p̃ =
ρ ·R · T̃
M

, (5.186)

whereby in this equation M is the averaged mean molar mass of the mixture
under consideration.

Source terms appear in the particle conservation equations, and their
treatment is frequently very difficult. For this reason it is convenient to con-
sider element conservation equations. In chemical reactions elements are nei-
ther created nor destroyed, and so the source terms in conservation equations
for the elements vanish. We introduce the element mass fraction:

Zi =

N∑

j=1

(µij · ωj) , i = 1, ...,M (5.187)

where N is the number of substances, M the number of elements in the
mixture under consideration and µij denotes the mass fraction of element
i in substance j.

If it is assumed approximately that all diffusion coefficients Di in (5.183)
are equal, the conservations equations can be multiplied by µij and summed
and we obtain the simple relation:

∂(ρ · Zi)

∂t
+ ∇ · (ρ · Zi · u) −∇ · (ρ ·D · ∇Zi) = 0 . (5.188)

Because of the conservation of elements
∑

(µij ·Mi ·ωi) = 0, this equation no
longer contains any reaction terms; this is used to advantage in Chapter 9.
Following time averaging, (5.188) also leads to a source free equation:

∂(ρ · Z̃i)

∂t
+ ∇ · (ρ · ũ · Z̃i) + ∇ · (−ρ ·D · ∇Zi + ρ · u′′ · Z ′′

i ) = 0 . (5.189)

Whereas the Navier-Stokes equations are closed when classical constitutive
relations are used for the flux densities and so can be solved numerically, for
the averaged conservation equations terms of the form ρ · v′′ · q′′ appear and
these are not known explicitly as functions of the averaged values. Thus there
are more unknowns than determining equations. This is the closure problem
of turbulence that is described in Section 5.4.4.

In order to find a solution to the problem, models are used that describe
the dependence of the Reynolds stress terms ρ · v′′ · q′′ on the averaged values.
The turbulence models generally used today (see for example B. E. Launder
and D. B. Spalding (1972), W. P. Jones and J. H. Whitelaw (1985)) interpret

the term ρ · v′′ · q′′ with q = wi,v, h, Zi) in (5.181) as turbulent transport and
thus model it in the framework of the Boussinesq approximation in analogy
with the laminar case by means of a gradient approach, according to which
the term is proportional to the gradient of the averaged value of the quantity
under consideration:

ρ · v′′ · q′′

i = −ρ · νT · ∇q̃i , (5.190)
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where νT is called the turbulent exchange coefficient. However, for certain
flow situations this approach breaks down. Indeed experiments indicate that
turbulent transport can also take place against the gradient (J. B. Moss
(1979)).

The turbulent transport is generally much faster than the molecular diffu-
sive transport processes in laminar flow. For this reason, the averaged laminar
transport terms may be neglected in very many cases.

The conservation equations for turbulent reactive flows can be solved nu-
merically if the turbulent exchange coefficient νT is known. It can be assumed
that it takes on different values for the different equations. In order to deter-
mine the exchange coefficient numerous models exist (see Section 5.4.5). Gen-
erally the K-ε turbulence model (B. E. Launder and D. B. Spalding (1972),
W. P. Jones and J. H. Whitelaw (1985)) is used. This uses an equation for
the turbulent kinetic energy K and the rate of dissipation ε of the kinetic
energy. The turbulent exchange coefficient νT is then

νT = Cν · K̃
2

ε̃
. (5.191)

If we neglect the laminar transport in the conservation equations, and use
the gradient approach and assume that the turbulent exchange coefficient is
the same for all transport quantities, together with the momentum equation
and the equations for k̃ and ε̃, we obtain the averaged conservation equations
for reactive flows:

∂(ρ · ω̃i)

∂t
+ ∇ · (ρ · ũ · ω̃i) −∇ · (ρ · νT · ∇ω̃i) = Mi · ω̇i , (5.192)

∂(ρ · h̃)
∂t

− ∂p

∂t
+ ∇ · (ρ · ũ · h̃) −∇ · (ρ · νT · ∇h̃) = 0 , (5.193)

∂(ρ · Z̃i)

∂t
+ ∇ · (ρ · ũ · Z̃i) −∇ · (ρ · νT · ∇Z̃i) = 0 . (5.194)

These equations are then closed in the framework of the model assumptions
discussed above if the averaged source term for the individual species equa-
tions can be determined. For this there are again numerous models of differing
complexity, which are presented in Section 5.4.5.

5.5 Differential Equations of Perturbations

Fluid mechanical instabilities are treated in Chapter 6. The necessary per-
turbation differential equations are obtained using the trial ansatz:

u∗(x, y, z, t) = U∗

0 (x, y, z) + ǫ · u∗′(x, y, z, t). (5.195)

Here U∗
0 is the dimensionless basic flow, which is perturbed by the small

disturbance u′ (fluid mechanical instability), and ǫ≪ 1 is the expansion pa-
rameter, a measure for the small perturbing quantity. The initial perturbation
at time t∗ = 0 is normalized to 1:



5.5 Differential Equations of Perturbations 333

|ǫ · u∗′|t∗=0 = ǫ ⇒ |u∗′|t∗=0 = 1.

The dimensionless flow quantities u∗, p∗, ρ∗, T ∗ are then written using the
perturbation ansatz:

u∗ = U∗

0 + ǫ · u∗′, p∗ = p∗0 + ǫ · p∗′,
ρ∗ = ρ∗0 + ǫ · ρ∗′, T ∗ = T ∗

0 + ǫ · T ∗′. (5.196)

Inserting these into the dimensionless fundamental equations of compressible
flows (5.1), (5.18), (5.56)

∂ρ∗

∂t
+ u∗ · ∇ρ∗ = −ρ∗ · ∇ · u∗, (5.197)

ρ∗ ·
(
∂u∗

∂t
+ u∗ · ∇u∗

)
= − 1

κ ·M2
∞

· ∇p∗ (5.198)

+
1

Rel
·
(
∇ · (µ[∇u∗ + t∇u∗]) − 2

3
· ∇(µ · ∇ · u∗)

)
,

ρ∗ ·
(
∂T ∗

∂t
+ u∗ · ∇T ∗

)
= −(κ− 1) · p∗ · ∇ · u∗ (5.199)

+
κ

Rel
·
(

1

Pr∞
· ∇ · (λ ·∇T ∗) − (κ− 1) ·M2

∞ · Φ∗
)
,

Φ∗ = µ ·
(

1

2
· (∇u∗ + t∇u∗)2 − 2

3
· (∇ · u∗)2

)
,

we obtain the perturbation differential equations (see also H. Oertel, J. Delfs
(1996), (2005)):

∂ρ′

∂t
+ u′ · ∇ρ0 + U0 · ∇ρ′ + ρ′ · ∇ · U0 + ρ0 · ∇ · u′

= −ǫ · [∇ · (ρ′ · u′)], (5.200)

ρ0 ·
(
∂u′

∂t
+ u′ · ∇U0 + U0 · ∇u′

)
+ ρ′ · (U0 · U0)

+
1

κ ·M2
∞

· ∇(ρ0 · T ′ + T0 · ρ′) −
1

Rel
·
[
∇ · (µ0 · [∇u′ + t∇u′]

+ µǫ
′ · [∇U0 + t∇U0]) −

2

3
· ∇(µ0 · ∇ · u′ + µǫ

′ · ∇ · u′)

]

= ǫ ·
(
− ρ′ ·

(
∂u′

∂t
+ u′ · ∇U0 + U0 · ∇u′

)
− ρ0 · u′ · ∇ · u′ (5.201)

− 1

κ ·M2
∞

· ∇(ρ′ · T ′) +
1

Rel
·
[
∇ · (µǫ

′ · [∇u′ + t∇u′]

+ µǫǫ
′ · [∇U0 + t∇U0]) −

2

3
· ∇(µǫ

′∇ · u′ + µǫǫ
′ · U0)

])
,
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ρ0 ·
(
∂T ′

∂t
+ u′ · ∇T0 + U0 · ∇T ′

)

+ (κ− 1) · [(T0 · ρ′ + ρ0 · T ′) · ∇ · U0 + T0 · ρ0 · ∇ · u′]

+
κ

Rel
·
[
(κ− 1) ·M2

∞ · Φǫ
′ − 1

Pr∞
· ∇ · (λ0 · ∇T ′ + λǫ

′ · ∇T0)

]

= ǫ ·
(
− ρ′ ·

(
∂T ′

∂t
+ u′ · ∇T0 + U0 · ∇T ′

)
− ρ0 · u′ · ∇T ′ (5.202)

− (κ− 1) · [(T0 · ρ′ + ρ0 · T ′) · ∇ · u′ + T ′ · ρ′ · ∇ · U0]

− κ

Rel
·
[
(κ− 1) ·M2

∞ · Φǫǫ
′ − 1

Pr∞
· ∇ · (λǫ

′ · ∇T ′ + λǫǫ
′ · ∇T0)

])
.

The index (∗) for the dimensionless perturbation quantities has been omit-
ted, and the temperature dependence of the viscosity µ(T ) and the thermal
conductivity λ(T ) have been taken into account according to the Sutherland
equation

µ = λ = T
2
3 · 1 + S

T + S
, S =

110.4 K

T∞
.

Perturbations in the density ρ and the temperature T also lead to pertur-
bations in these functions. The functions µ and λ are expanded in a Taylor
series about the ground state µ0, λ0:

(µ, λ)=(µ, λ)0 +

(
d(µ, λ)

dT

)

0

· (T − T0) +
1

2!
·
(

d2(µ, λ)

dT 2

)

0

· (T − T0)
2 + · · ·

=(µ, λ)0 + ǫ ·
(

d(µ, λ)

dT

)

0

· T ′+ ǫ2 · 1

2!
·
(

d2(µ, λ)

dT 2

)

0

· T ′2+ · · · . (5.203)

Here it can be seen that deviations of the transport coefficient from the
ground state (µ−µ0) or (λ−λ0) contain not only terms of order of magnitude
ǫ. They also contain terms of higher orders of ǫ. We introduce the notation

(µ− µ0, λ− λ0) = ǫ · (µ′

ǫ, λ
′

ǫ) + ǫ2 · (µ′

ǫǫ, λ
′

ǫǫ) + · · · ,
where

(µ′

ǫ, λ
′

ǫ):=
1

1!
·
(

d(µ, λ)

dT

)

0

· T ′,

(µ′

ǫǫ, λ
′

ǫǫ):=
1

2!
·
(

d2(µ, λ)

dT 2

)

0

· T ′2.

Similarly, deviations in the dissipation function Φ due to the perturbation
ǫ · u′ are defined as

Φ− Φ0 = ǫ · Φ′

ǫ + ǫ2 · Φ′

ǫǫ + · · · . (5.204)

We insert the perturbed flow state u = U0 +ǫ ·u′ and the perturbed viscosity
into the dissipation function (5.199) and sort for powers of ǫ:
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Φ− Φ0 = ǫ

[
µǫ

′ ·
(

1

2
· (∇U0 + t∇U0)

2 − 2

3
· (∇ · U0)

2

)
(5.205)

+2 · µ0 ·
(

1

2
· (∇U0 + t∇U0) · (∇u′ + t∇u′) − 2

3
· (∇ · U0) · (∇ · u′)

)]

+ǫ2 ·
[
µǫǫ

′ ·
(

1

2
· (∇U0 + t∇U0)

2 − 2

3
· (∇ · U0)

2

)

+2 · µǫ
′ ·
(

1

2
(∇U0 + t∇U0) · (∇u′ + t∇u′) − 2

3
· (∇ · U0) · (∇ · u′)

)

+µ0 ·
(

1

2
· (∇u′ + t∇u′) − 2

3
· ∇(∇ · u′)2

)]
,

with

Φǫ
′ = µǫ

′ ·
(

1

2
· (∇U0 + t∇U0)

2 − 2

3
· (∇ · U0)

2

)

+2 · µ0 ·
(

1

2
· (∇U0 + t∇U0) · (∇u′ + t∇u′) − 2

3
· (∇ · U0) · (∇ · u′)

)
,

Φǫǫ
′ = µǫǫ

′ ·
(

1

2
· (∇U0 + t∇U0)

2 − 2

3
· (∇ · U0)

2

)

+2 · µǫ
′ ·
(

1

2
(∇U0 + t∇U0) · (∇u′ + t∇u′) − 2

3
· (∇ · U0) · (∇ · u′)

)

+µ0 ·
(

1

2
· (∇u′ + t∇u′) − 2

3
· ∇(∇ · u′)2

)
.

After inserting the perturbation ansatz u = U0 + ǫ ·u′, the pressure terms of
the fundamental equations also generate an expression that is of second order
in ǫ. After Taylor expanding, only one exact term with a simple product-like
dependence of the pressure on the density and pressure, as in the ideal gas
law, remains:

p− p0=ǫ ·
(
∂p

∂ρ

)

0

· ρ′ + ǫ ·
(
∂p

∂T

)

0

· T ′ + ǫ2 ·
(

∂2

∂ρ · ∂T

)

0

· (ρ′ · T ′)

=ǫ · (T0 · ρ′ + ρ0 · T ′) + ǫ2 · ρ′ · T ′ . (5.206)

The system of perturbation differential equations (5.200)–(5.202) describes
the behavior of an arbitrary perturbation u′(x, y, z, t) of the steady ground
state flow U0(x, y, z). The nonlinear terms are on the right-hand sides. If small
but finite perturbations are assumed, the powers of ǫ may be interpreted as
an order-of-magnitude division of the nonlinear effects on the perturbation
expansion. If we consider infinitesimally small perturbations, i.e. ǫ → 0, the
right-hand sides vanish in the limit, and we obtain linear differential equa-
tions. If we increase ǫ as a measure of the size of the perturbations, these
terms increase in importance, and nonlinear effects affect the expansion of
the perturbation.
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We note that the third- and higher-order terms in the momentum equa-
tions (5.201) and the fourth- and higher-order terms in the energy equation
(5.202) (independent of the size of ǫ) are only a consequence of the generally
very weak second- and higher-order derivatives of the transport coefficients
µ and λ with respect to the temperature. They may be justifiably neglected,
even for moderate perturbations.

In Chapter 6 the fluid-mechanical instabilities of infinitesimally small per-
turbations with ǫ → 0 are treated. The linear perturbation differential equa-
tions of compressible flows that describe such perturbations are obtained by
neglecting the right-hand sides of (5.200)–(5.202).

As in every flow, the perturbing flow u′ also has to satisfy boundary
conditions. First, the no-slip condition has to be satisfied at solid walls.
The boundary condition that is additionally required for the tempera-
ture perturbation will be briefly discussed here. For simplicity, we begin
with the case of an isothermal wall. According to the perturbation ansatz,
T0(xw , yw, zw) + ǫ · Tw

′(xw , yw, zw) = Tw must hold. This yields the temper-
ature condition

Tw
′ = 0

for arbitrary ǫ. The calculation for adiabatic walls is carried out in a similar
manner, yielding

n · ∇T ′ = 0.

No explicit boundary condition may be demanded of the density pertur-
bation, since only its second derivative appears in the equations. Instead, the
density is determined from the continuity equation (5.200) evaluated at the
boundary.

In the treatment of problems involving flows past a body, we also require
that all perturbations die away to zero in the far field, i.e. at infinite distances
from the walls.

For incompressible flows, the fundamental equations at constant density
ρ and constant dynamic viscosity µ as in (5.82) simplify to

∇ · u∗=0, (5.207)

∂u∗

∂t
+ u∗ · ∇u∗=−∇p∗ +

1

Rel
·∆u∗. (5.208)

The perturbation ansatz

u = U0 + ǫ · u′, p = p0 + ǫ · p′

leads to the perturbation differential equations for incompressible fluids

∇ · u′=0, (5.209)

∂u′

∂t
+ U0 · ∇u′ + u′ · ∇U0 + ǫ · u′ · ∇u′=−∇p′ + 1

Rel
·∆u′. (5.210)
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For small perturbations with ǫ → 0, the left-hand side of (5.210), with the
factor ǫ, is neglected, and so the linear perturbation differential equations are
written

∇ · u′=0, (5.211)

∂u′

∂t
+ U0 · ∇u′ + u′ · ∇U0=−∇p′ + 1

Rel
·∆u′. (5.212)

The perturbation differential equations for small perturbations of the Boussi-
nesq equation (5.89) are similarly found to be

∇ · u′=0, (5.213)

1

Pr∞
·
(
∂u′

∂t
+ U0 · ∇u′ + u′ · ∇U0

)
=

−∇p′ +∆u′+Ra∞ · T ′ ·




0

0

1


 , (5.214)

∂T ′

∂t
+ U0 · ∇T ′ + T ′ · ∇U0=∆T ′. (5.215)

For double diffusion–convection (temperature and concentration gradients),
equation (5.90) is used to write the perturbation differential equations as

∇ · u′=0, (5.216)

Le∞ · ∂c
′

∂t
=∆c′ + Le∞ · ω′, (5.217)

1

Pr∞
·
(
∂u′

∂t
+ U0 · ∇u′ + u′ · ∇U0

)
=

−∇p′ +∆u′ + (Ra∞ · T ′+RaD∞ · c′) ·




0

0

1


 , (5.218)

∂T ′

∂t
+ U0 · ∇T ′ + T ′ · ∇U0=∆T ′. (5.219)
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5.6 Problems

5.1

Given an ideal gas (p = ρRT,R = const), as well as the continuity equation

dρ

dt
+ ρ · (∇ · v) = 0,

(a) Show that the following relation for the total time derivative of the pres-
sure can be derived from the continuity equation:

1

p
· dp

dt
=

1

T
· dT

dt
−∇ · v.

(b) For the dimensionless velocity field

v(x, y, z) =


u
v


 = V0 ·

√
x2 + y2·


sin(ω · t)

cos(ω · t)


 ,

with the constant V0 as well as the constant angular velocity ω and the
dimensionless temperature distribution

T (x, y) = A0 ·
√
x2 + y2 + T0

with the constants A0 and T0, determine the relative substantial temperature
change (1/T ) · (dT/dt) as well as the divergence (∇ · v) of the velocity field.
In doing so, first transform the substantial change in T into the local change
and the convective part.

1

T
· dT

dt
=

V0 ·A0

A0 ·
√
x2 + y2 + T0

· [x · sin(ω · t) + y · cos(ω · t)] ,

∂u

∂x
+
∂v

∂y
=

V0√
x2 + y2

· [x · sin(ω · t) + y · cos(ω · t)] .
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5.2

A cylinder with radius r1 is sur-
rounded by an outer cylinder with
radius r2. The inner cylinder rotates
with angular velocity ω1, and the
outer cylinder with angular veloc-
ity ω2. There is a fluid between the
cylinders. Determine the laminar in-
compressible velocity profile of the
fluid between the two cylinders. Use
the Navier–Stokes equations in polar
coordinates:

Continuity equation:

∂ur

∂r
+
ur

r
+

1

r
· ∂uϑ

∂ϑ
= 0.

Navier–Stokes equations:

ρ ·
(
ur ·

∂ur

∂r
+
uϑ

r
· ∂ur

∂ϑ
+
u2

ϑ

r

)

= −∂p
∂r

+ µ ·
(
∂2ur

∂r2
+

1

r
· ∂ur

∂r
− ur

r2
+

1

r2
· ∂

2ur

∂ϑ2
− 2

r2
· ∂uϑ

∂ϑ

)
+ fr,

ρ ·
(
ur ·

∂uϑ

∂r
+
uϑ

r
· ∂uϑ

∂ϑ
+
ur · uϑ

r

)

= −1

r
· ∂p
∂ϑ

+ µ ·
(
∂2uϑ

∂r2
+

1

r
· ∂uϑ

∂r
− uϑ

r2
+

1

r2
· ∂

2uϑ

∂ϑ2
− 2

r2
· ∂ur

∂ϑ

)
+ fϑ.

Simplify the Navier–Stokes equations and determine u(r).
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dur

dr
+
ur

r
=0,

ρ · u
2

r
=−dp

dr
,

d2u

dr2
+

1

r
· du

dr
− u

r2
=0,

u(r)=
1

r22 − r21
·
[
r · (ω2 · r22 − ω1 · r21) −

r21 · r22
r

· (ω2 − ω1)

]
.

5.3

The Reynolds equations for compressible media with constant material values
µ and cv contain terms of the following form:

∂(ρ · u · w)

∂z
,

σzz = 2 · µ · ∂w
∂z

− 2

3
· µ ·

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
,

ρ · cv ·
(
∂T

∂t
+ w

∂T

∂z

)
,

(
∂u

∂x
+
∂v

∂y

)2

.

The turbulent flow under consideration is quasi-steady. The turbulent fluc-
tuation quantities, the velocity components, and the temperature are to be
mass-averaged (Le Favre averaging) and the density simply averaged. The
following assumptions hold:

u = ũ+ u′′, v = ṽ + v′′, w = w̃ + w′′,

T = T̃ + T ′′, ρ = ρ̄+ ρ′.

Insert these assumptions into the terms of the Reynolds equations and carry
out the time-averaging.

∂(ρ · u · w)

∂z
=
∂(ρ · ũ · w̃)

∂z
+
∂(ρ · u′′ · w′′)

∂z

=
∂(ρ · ũ · w̃)

∂z
+
∂(ρ · u′′ · w′′)

∂z
+
∂(ρ′ · u′′ · w′′)

∂z
,

σzz =2 · µ · ∂w̃
∂z

− 2

3
· µ ·

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)

+ 2 · µ · ∂w
′′

∂z
− 2

3
· µ ·

(
∂u′′

∂x
+
∂v′′

∂y
+
∂w′′

∂z

)
,
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ρ · cv ·
(
∂T

∂t
+ w

∂T

∂z

)
= cv ·

(
ρ · w̃ · ∂T

∂z
+ w̃ · ρ · ∂T

′′

∂z
+ ρ · w′′ · ∂T

′′

∂z

)
,

(
∂u

∂x
+
∂v

∂y

)2

=

(
∂ũ

∂x

)2

+ 2 · ∂ũ
∂x

· ∂ṽ
∂y

+

(
∂ṽ

∂y

)2

+

(
∂u′′

∂y

)2

+ 2 · ∂u
′′

∂x
· ∂v

′′

∂y
+

(
∂v′′

∂y

)2

+ 2 · ∂ũ
∂x

· ∂u
′′

∂x
+ 2 · ∂ũ

∂x
· ∂v

′′

∂y
+ 2 · ∂ṽ

∂y
· ∂u

′′

∂x
+ 2 · ∂ṽ

∂y
· ∂v

′′

∂y
.

5.4

Consider the energy equation for the mass-specific internal energy e with
e = cvT for a compressible medium with constant material properties cv and
λ, neglecting the effects of radiation:

ρ · cv ·
(
∂T

∂t
+ u · ∂T

∂x
+ v · ∂T

∂y
+ w · ∂T

∂z

)

= λ ·
(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
− p ·

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ µ · Φ.

Write down the Favre-averaged energy equation for a quasi-steady turbulent
flow. For simplicity, the time average of the dissipation term may be written
as µ · Φ and need not be decomposed into its individual terms.

cv · ρ ·
(
ũ · ∂T̃

∂x
+ ṽ · ∂T̃

∂y
+ w̃ · ∂T̃

∂z

)

+ cv ·
(
ρ · u′′ · ∂T

′′

∂x
+ ρ · v′′ · ∂T

′′

∂y
+ ρ · w′′ · ∂T

′′

∂z

)

= λ ·
(
∂2T̃

∂x2
+
∂2T̃

∂y2
+
∂2T̃

∂z2

)
+ λ ·

(
∂2T ′′

∂x2
+
∂2T ′′

∂y2
+
∂2T ′′

∂z2

)

− p ·
(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)
+ µ · Φ

− p ·
(
∂u′′

∂x
+
∂v′′

∂y
+
∂w′′

∂z

)
−
(
p′ · ∂u

′′

∂x
+ p′ · ∂v

′′

∂y
+ p′ · ∂w

′′

∂z

)
.

5.5

For the numerical computation of compressible turbulent flow fields, it is
useful to write down the fundamental equations in dimensionless conservative
form for the mass-averaged flow quantities:
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∂U∗

∂t∗
+

3∑

m=1

∂f∗
m

∂x∗m
− 1

Rel
·

3∑

m=1

∂G∗
m

∂x∗m
+

3∑

m=1

∂R∗
m

∂x∗m
= 0.

Explain the difference between these equations and the laminar form of the
conservation equations

∂U∗

∂t∗
+

3∑

m=1

∂f∗
m

∂x∗m
− 1

Rel
·

3∑

m=1

∂G∗
m

∂x∗m
= 0,

and explain the necessity of the turbulence modeling.

5.6

Starting from the general form of the multiphase flow equations (5.169),
derive the one-dimensional two-fluid model equations (8.14)–(8.19). In par-
ticular, express the constitutive variables in these equations using the area
and line-averaged primitive variables. Using the table in Section 5.4.6, reduce
the surface integrals to line integrals in a cross-section.

5.7

What is the rate of formation (change in concentration per unit time) of
species H for each of the following reactions? Assume that the rate constants
(k1, k2, . . .) are known:

H + H + M
k1−→ H2 + M,

H2 + M
k2−→ H + H + M,

H + H + H
k3−→ H2 + H,

H + O2 + M
k4−→ OH + O,

H + O2
k5−→ HO2 + M.

For an elementary reaction r given by

S∑

s=1

ν(a)
rs As

kr−→
S∑

s=1

ν(p)
rs As,

the rate of formation of species i in the reaction r is
(
∂ci
∂t

)

chem,r

= kr

(
ν

(p)
ri − ν

(a)
ri

) S∏

s=1

c
ν(a)

rs
s ,

where ν
(a)
rs and ν

(p)
rs are the stoichiometric coefficients of reactants and prod-

ucts, and cs are the concentrations of the species s (s = 1, . . . , S).
This leads to the rate of formation

d[H]

dt
= k1(0 − 2)[H][H][M] = −2k1[H]2[M].
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5.8

Formulate the flow differential equations of the stability analysis in general
form, so that they can also be applied to multiphase flows and flows with
chemical reactions.
Write the conservation equations in the form

NI

(
∂

∂t
U

)
+ NS(U) = 0.

Here U is the solution vector, NI acts on the unsteady terms in the conser-
vation equations, NS represents the nonlinear differential expression of the
steady terms.
(a) With the flow ansatz

U = U0 + ǫ · u′,

transform the conservation equations into the flow-differential equations by
expanding NI and NS as Taylor series in ǫ.
Using the linear differential expressions

LI(
∂

∂t
u′)=NI(

∂

∂t
u′)ǫ=0,

LS(u′)=

(
d

dǫ
NS

)

ǫ=0

,

note that for infinitesimal perturbations (ǫ→ 0),

LI(
∂

∂t
u′)+LS(u′) = 0.

(b) Apply this formal procedure of stability analysis to the dissipation func-
tion Φ− Φ0 from Section 5.5. The same result is obtained

Φǫ
′ = µǫ

′ ·
(

1

2
· (∇U0 + t∇U0)

2 − 2

3
· (∇ · U0)

2

)

+ 2 · µ0 ·
(

1

2
· (∇U0 + t∇U0) · (∇u′ + t∇u′) − 2

3
· (∇ · U0) · (∇ · u′)

)
.
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6.1 Fundamentals of Turbulent Flows

When a viscous fluid flows through long straight tubes at reasonably high
speeds, the Hagen–Poiseuille law (4.45), according to which the pressure drop
is linearly proportional to the volume of fluid flowing through the pipe, is
replaced by another law, in which the pressure drop is significantly greater,
and almost proportional to the square of the volume flow rate of fluid. At the
same time it is found that the flow field, which is smooth and straight (or
laminar) in the Hagen–Poiseuille regime, becomes at higher velocities full of
irregular eddying motions (or turbulent). This may be seen clearly in the case
of a fluid flowing through glass tubes if a dye is introduced through a small
injector at the inlet (Figures 6.1, 4.52). The colored filament is straight and
smooth for low speeds but breaks off and disperses almost uniformly when
turbulence develops. As a second example, introduced in Chapter 1, consider
a jet of water that emerges from a circular orifice into a tank of still water. At

turbulent

Laminar and turbulent pipe flow Turbulent jet of water

laminar

Fig. 6.1. Laminar and turbulent flows
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very low speeds of the fluid the jet is smooth and steady. For higher speeds,
it develops swirls of various sizes amidst avalanches of complexity.

The two figures, being static, do not do justice to the dynamical inter-
actions occurring within the flow. Observation suggests that parcels of fluid
get stretched, folded, and tilted as they evolve, in turn losing shape by ag-
glomeration and breakup, while new ones are constantly being created. This
evolution and development of the flow does not repeat itself in full detail. To-
gether, these features have a profound influence on the ability of the turbulent
flow to transport heat, mass, and momentum. Under suitable conditions, tur-
bulence occurs in such varied flow configurations as boundary-layers, wakes
behind objects, thermal convection, and geophysical and astrophysical flows.
The turbulence in each of these contexts is different in detail but similar in
its function.

As a practical matter, turbulence plays an important role in technology
and control phenomena such as weather and climate that have a large ef-
fect on human activities. Without turbulence, the mixing of air and fuel in
an automobile engine would not occur on useful time scales. The transport
and dispersion of heat, pollutants, and momentum in the atmosphere and
oceans would be far weaker. In short, life as we know it would not be possible
on Earth. Turbulence also has undesirable consequences. It increases energy
consumption of pipelines, aircraft, ships, and automobiles and is an aspect to
be reckoned with in air-travel safety, and it distorts the propagation of elec-
tromagnetic signals, and so forth. A major goal of a turbulence practitioner
is the prediction and control of the effects of turbulence in various applica-
tions such as industrial mixers and burners, nuclear reactors, aircraft intakes,
around ships, and inside of rocket nozzles. A major goal of a physicist work-
ing in turbulence is to understand the dynamical origin of this complexity,
describe and quantify its features, and understand the universal properties
embedded in features that are specific to a flow. A larger goal is to under-
stand whether the statistical complexity of turbulence is shared in a serious
way by other phenomena such as granular flows, fracture, and earthquakes.

In summary, then, turbulence is a rich problem both as a paradigm of
spatiotemporal complexity and as a matter of practical importance. There
are three major aspects to be considered: the origin of turbulence, the phe-
nomena of flows in which turbulence is already developed, and the control of
turbulence in a given situation.

6.2 Onset of Turbulence

During the last 120 years or so a great deal of ingenuity has been expended,
on both mathematical and experimental fronts, on answering the question of
how turbulence arises, and a reasonable picture has emerged, at least in some
instances (see Section 4.2.4). Qualitatively, the transition from the laminar to
the turbulent state occurs if the momentum exchange by molecular transport
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cannot compete sufficiently effectively with the transport due to macroscopic
fluctuations in flow velocity. Making use of the ideas of dynamic similarity,
O. Reynolds (1883), (1894) argued that the transition from the laminar to
the turbulent state occurs when a dimensionless parameter, now bearing his
name, exceeds a certain critical value. The Reynolds number (4.51) is defined
as Ul/ν, where U is a characteristic velocity of the flow, l its characteristic
size, and ν the kinematic viscosity of the fluid.

The situation is more complex than was originally presumed by Reynolds.
For instance, the numerical value of the critical Reynolds number depends on
the flow and a number of other factors such as the initial disturbance level
(besides the obvious dependence on the precise definitions selected for the
velocity and length scales). The notion that flows are laminar and stable up
to a certain critical Reynolds number, becoming turbulent thereafter, turns
out to be somewhat naive in practice.

6.2.1 Fluid-Mechanical Instabilities

A generic case of instability to consider in a carefully prepared experiment
is one in which the perturbations are small. This idea has prompted a vast
development of linear stability theory, the theory that calculates the Reynolds
number at which laminar motion becomes unstable to small perturbations.
Starting with Lord Rayleigh in the 1880s, O. Reynolds (1883), W. M. F. Orr
(1907), A. Sommerfeld (1908), G. I. Taylor (1923), W. Heisenberg (1924), C.
C. Lin (1955), S. Chandrasekhar (1961), and others (see, for example, P. G.
Drazin and W. H. Reid (1981), H. Oertel Jr. and J. Delfs (1996), (2005) for
details) have made lasting contributions to the subject.

Since the instabilities grow only at relatively high Reynolds numbers (or
equivalently, small viscosities), it appears reasonable at first to treat the prob-
lem as essentially inviscid. Indeed, inviscid instability is often able to explain
certain observations concerning the behavior of fluids with finite viscosity.
This turns out to be the case particularly for flows for which the maximum
vorticity occurs within the bulk of the fluid instead of on the boundaries.
An excellent example is the so-called mixing layer, the flow formed when
two parallel streams with different velocities come together (see A. Michalke
(1970)).

Inviscid instability yields implausible answers for certain other flows. For
instance, the theory yields the result that the flow between two parallel plates,
one of which is stationary while the other moves with finite velocity, called
plane Couette flow, is stable at all Reynolds numbers. Experiments, on the
other hand, show that the flow does indeed become unstable at some finite
Reynolds number on the order of a thousand (when based on the velocity of
the moving plate and the distance between the plates). This phenomenon is
puzzling at first sight because, if a flow is stable in the absence of viscosity,
the additional damping provided by viscosity may be thought reasonably to
make it even more stable, not less so. However, viscosity plays a subtle role,



348 6. Instabilities and Turbulent Flows

as explained by W. Tollmien (1929), and more fully by C. C. Lin (1955), and
can promote instability (see P. G. Drazin and W. H. Reid (1981)).

These issues are best explained for the case of a boundary-layer on a thin
flat plate, for which extensive literature is available (see Section 4.2.4). This
is an important flow in practice because it will be seen that turbulence often
arises within a boundary-layer. To study the initial growth of the perturba-
tion in the boundary-layer of a viscous fluid, W. M. F. Orr (1907) and A.
Sommerfeld (1908) derived from the Navier–Stokes equations a linear differ-
ential equation (4.73) that is now named after them. The solutions of this
equation are of the form shown in Figures 6.2 and 4.57. Inside the neutral
curve (ωi = 0), the two-dimensional wave perturbations are unstable (ωi > 0),
and outside, they are stable (ωi < 0). In regions of instability, the perturba-
tions grow exponentially with time if they are spatially homogeneous. The
perturbations grow exponentially with space if introduced at some point in
space and allowed to grow as they propagate, or in both space and time if
the perturbations are in the form of a wave packet.

Further investigation shows that a second characteristic layer is formed
at the position in the flow where the velocity of the main flow is the same as
the phase velocity of the oscillation. In the absence of friction this would lead
to singularities in the motion of fluid particles, since they are subject to the
same pressure gradient for a very long time. However, if viscosity is postu-
lated in this second layer also, then the disturbance is free from singularities.
With the presence of viscosity, the phase displacement of longitudinal motion
produces a damping effect, which, in conjunction with the amplification due
to the secondary boundary-layer, gives a critical value for the Reynolds num-
ber. Here we have only hinted at the basic physics, but it was the notable
achievement of W. Tollmien (1929) to carry out the calculation needed to
compute the critical Reynolds number.

The so-called Tollmien–Schlichting waves are spatially amplified down-
stream. Via several intermediate states in the transition regime, the state of
fully developed turbulence is reached, as described in Section 4.2.5. Above a
second critical Reynolds number, plane Tollmien–Schlichting waves initially
become unstable to cross-wave perturbations. Downstream, they form the so-
called lambda structures with local shear layers in the boundary-layer. It is

Fig. 6.2. Stability diagram of Tollmien-
Schlichting waves in a flat plate boundary-
layer
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only when these shear layers lose their identity that the turbulent boundary-
layer flow is fully developed (see Figures 6.3 and 4.56).

In three-dimensional boundary-layers, such as those that occur on a swept
wing of a civil aircraft, the cross flow along the wing can also lead to further
instabilities as well as the Tollmien–Schlichting transition. These cross-flow
instabilities occur downstream from the stagnation line of the wing. They
form traveling waves and a steady vortex pattern along the cross-flow com-
ponent of the three-dimensional boundary-layer. This pattern decays with
the same mechanisms as the Tollmien–Schlichting transition and passes over
to the turbulent boundary layer close to the stagnation line.

There are other flows for which the linear stability theory gives excel-
lent results for the loss of stability. This loss of stability is often expressed
in terms of dimensionless parameters that are related to a suitably defined
Reynolds number. For instance, the theory predicts rather well the so-called
Taylor number at which the flow between concentrically rotating cylinders
loses stability and begins to form toroidal vortices (G. I. Taylor (1923)). The
Taylor number is the square of the Reynolds number based on the angular
velocity of the rotating cylinder, the gap between the two cylinders, and the
viscosity.

The theory similarly predicts well the so-called Rayleigh number (Lord
Rayleigh (1916)) at which the heat transfer changes from a steady conductive
case to a structured form involving hexagonal or roll patterns (Figure 1.5, see
also Section 7.2.1). The Rayleigh number is a measure of the ratio of the effect
of buoyancy, which tends to accelerate a fluid parcel against gravity, to the
viscous and diffusive effects that tend to slow it down. For the fluid between
a pair of infinitely extended horizontal plates, with the bottom plate heated
and the top plate cooled, the heat transport ceases to be purely conductive
at Ra = 1708. In engineering literature on so-called free convection problems,
the Grashof number Gr = Ra · Pr is often used, where the Prandtl number
is Pr = ν/κ, κ being the thermal diffusivity of the fluid.

In a broad class of flows, a few of which were just mentioned, the loss of
linear stability of the laminar state is a significant first step in the formation
of turbulence. The next step in the process of complexity is the nonlinear
stage, at which the perturbations have grown to a sufficiently large ampli-
tude at which they begin to interact with the mean flow and cease to grow
exponentially as a result.

Fig. 6.3. Transition process in a flat plate boundary-layer
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From the variety of fluid mechanical instabilities the boundary-layer in-
stabilities are considered in some detail here. The classical linear stability
analysis of two- and three-dimensional boundary-layer follows. A more de-
tailed summary of the theory of fluid mechanical instabilities is given in the
second edition of Prandtl-Essentials of Fluid Mechanics (H. Oertel (2004))
and in the 11th German edition (H. Oertel (2002)).

6.2.2 Linear Stability Analysis

The definition of fluid mechanical instability depends on whether one consid-
ers temporal or spatial perturbation development. Figure 6.4 shows the steady
laminar convection flow as an example on a vertical, heated plate. The flow
field is perturbed with a harmonic periodic perturbation wave w′ with small
amplitude:

w′(x, z, t) = ŵ(x) · exp(i · a · z − i · ω · t). (6.1)

For a given wavelength λ = 2 · π/a, the laminar initial state is regarded as
temporally unstable with respect to this wavelength if the flow causes the
wave amplitude to be amplified in time (Im(ω(a)) > 0). If the perturbing
wave is damped in time (Im(ω(a)) < 0), the laminar initial flow is temporally
stable with respect to the given wavelength. The temporally neutral state is
the limiting case of a temporally constant perturbation amplitude. Instead
of temporal perturbation development, the concept of stability can also be

Fig. 6.4. The concept of stability in fluid
mechanics: thermal convection at a vertical
wall boundary-layer with Tw > T∞
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defined with respect to the purely spatial (ω real, a complex), or, more gener-
ally, the spatiotemporal (ω, a complex) development of perturbations. In the
latter case, the division into so-called absolute and convective instabilities is
convenient. A convective instability is present when the temporally amplify-
ing perturbation energy moves downstream with the flow. On the other hand,
if the perturbation remains in one place, the instability is absolutely unstable.

In the mathematical definition of stability, we assume a steady flow state
U0 = (x, y, z), which is completely defined by, for example, its dimensionless
density distribution ρ0, temperature distribution T0, and the three compo-
nents of the velocity vector (u0, v0, w0) at each spatial position (x, y, z). The
state U0 = (ρ0, u0, v0, w0, T0) satisfies the fluid-mechanical equations. The
question is whether further solutions, that is, additional equilibrium states of
the system, exist. In order to be able to answer this question, we disturb the
flow state U0 out of its basic state with a small perturbation u′(x, y, z, t). This
disturbance must be physically possible; i.e., the new flow state u(x, y, z, t)
occurring at the time t = 0 must satisfy the boundary conditions of the flow
problem.

We obtain the ansatz introduced in Section 4.2.4, equation (4.67):

u(x, y, z, t) = U0(x, y, z) + u′(x, y, z, t). (6.2)

The size of the perturbation is introduced with

|u′| =

∫

V

|u′(x, y, z)2| · dV. (6.3)

This is a measure of the deviation of the perturbed flow u from the basic flow
U0 in the entire flow field V . The quantity |u′| will be called the perturbation
energy in the flow field.

The basic flow is stable as long as the size of a perturbation remains
smaller than a given number ǫ for all times t ≥ 0:

|u′|t < ǫ with t ≥ 0, (6.4)

for all initial perturbations u′(x, y, z, t = 0) with perturbation energy smaller
than a constant. Otherwise, the basic flow is unstable. Figure 6.5 shows ex-
amples that can be divided into stable and unstable flows by applying the
above definition to the temporal behavior of the perturbation energy in the
flow. On the fundamental flows U0 we superimpose various initial pertur-
bations, e.g. u′

1(t = 0), u′
2(t = 0), u′

3(t = 0), u′
4(t = 0). We note that, of

the infinitely many possible perturbations, there are those excited in unsta-
ble flow that then die away over time, such as the perturbation u′

3(t = 0).
In general, flows U0 are investigated for asymptotic stability, which is then
present when any given perturbation dies away over time:

lim
t→∞

|u′(t)| = 0. (6.5)

In this case the perturbed system again takes on its temporally asymptotic
initial state U0. This case is sketched in Figure 6.6.
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Fig. 6.5. The definition of stability

Note that the definition of stable and unstable flow is not a statement
about the spatiotemporal expansion of unstable perturbations.

To clarify the problem, we compare two unstable basic flows U0, which
have qualitatively different behaviors after the onset of the perturbation. Un-
der the idealizing assumption of freedom from perturbations, a steady wake
behind a body in the flow could be generated even for supercritical Reynolds
numbers, so that no Kármán vortex street would occur, in contrast to the
situation in Figure 6.7. Similarly, an ideal perturbation-free longitudinal flow
past a flat plate would be laminar, although unstable, even at supercritical
Reynolds numbers.

In the example of the wake flow, if a local perturbation is quickly placed
close to the steady wake region of the body at time t0, over time, a Kármán
vortex street will form. Such a perturbation in the unstable plate boundary-
layer flow behaves qualitatively quite differently. The size of the perturbation
also grows here, but the perturbation simultaneously moves downstream, as
in the sketch. Clearly, the instability in the wake flow leads to a self-excited
oscillation of the system at a fixed position while, in the boundary-layer flow,
perturbations at a fixed position vanish over time. Perturbation energy at a
fixed position can be observed here only if continuous perturbation energy is
introduced upstream, from outside the system.

Fig. 6.6. Behavior of perturbations in asymptotically stable flow
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Fig. 6.7. Expansion of unstable perturbations in convective and absolute instability

In order to be able to make a statement regarding the spatial behavior of
the perturbation, we clearly have to introduce a measure for the local size of
the perturbations. To do this, we shrink the region of integration V to one
small region. This shrinking is carried out until the region of integration has
been reduced to an infinitesimally small size dV . From (6.3) we then have

d|u′| = |u′|2dV.
Dividing by the volume element dV , we obtain a perturbation energy density
A with

A(x, y, z, t) =
d|u′|
dV

= |u′|2, (6.6)

which will be defined in what follows as a measure of the size of the pertur-
bation at position x, y, z at time t. If the perturbation energy density A in
an initially perturbation-free unstable flow dies away time-asymptotically at
the position where the perturbation was introduced, this flow is convectively
unstable. Otherwise, the flow is absolutely unstable. The wake flow shown in
Figure 6.7 is therefore absolutely unstable, while the plate boundary-layer is
convectively unstable.

Boundary-Layer Instabilities

The description of the laminar–turbulent transition in boundary-layers was
first met in Section 4.2.4. In the plate boundary-layer, the instability occurs
with two-dimensional Tollmien–Schlichting waves at the critical Reynolds
number Rex,crit = 5 · 105 or, with d =

√
ν · x/Uδ at Red,crit = 302, which

corresponds to the displacement thickness Reynolds number Reδ∗,crit = 520.
The wave fronts are shown in Figure 4.55 and 6.3. The primary perturbation
amplitudes grow downstream, and so the flow in this region becomes unstable
to three-dimensional secondary perturbations (region (2) in Figure 6.8). The
vortex lines are deformed in a wavelike shape. Further downstream, the vor-
tex tubes deformed with the vortex lines are stretched and form the lambda
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structures (3). The subsequent decay of these structures and the spatial and
temporal irregular appearance of quickly growing turbulent spots (4) com-
pletes the transition process at position xt, called the position of complete
transition. Following this is the developed turbulent state (5). Even fully de-
veloped turbulence is not without structure, since longitudinal stripe-shaped
regions with greatly reduced downstream components of the velocity (streaks)
are observed close to the wall. Other structures also exist.

Throughout the entire transition process (1)–(4), there is a significant
increase in the thickness of the boundary-layer. This is because the ever
growing perturbation amplitudes, particularly the vertical oscillations, result
in distributing the time average of the downstream momentum more evenly
within the boundary-layer. The greatest oscillation intensity initially takes
place directly at the surface, causing the time-averaged wall shear stress in
the transition regime to take on an even higher value than that in the region of
full turbulence. Note particularly that the transition described does not take
place at one position, but rather over an extended distance xcrit < x < xt.

The unstable primary perturbation (1) of the laminar flow (0) causes
lasting change to the flow field only downstream of the critical position xcrit.
Upstream of this position, the flow remains laminar. If a local perturbation
is introduced into the boundary-layer at a point x > xcrit, the perturbing
wave packet expands downstream with a characteristic velocity and simul-
taneously disintegrates, while the perturbation intensity due to the instabil-
ity grows. If such an unstable wave packet does not continue to affect the
original position of the perturbation, the instability is convectively unsta-
ble (see Figure 6.7). Thus, the primary perturbation of the boundary-layer
is convectively unstable. Therefore, the turbulence does not occur abruptly,
as for the Taylor instabilities, but rather develops within a transition region
that extends downstream. The onset of the Tollmien–Schlichting waves in
the two-dimensional plate boundary-layer was described in Section 4.2.4 as
an eigenvalue problem of the Orr–Sommerfeld equation (4.73). The stability
diagram and the critical Reynolds number Recrit and wave number acrit are
shown in Figure 4.2.4 for the Blasius boundary-layer flow. In the following
section we extend the stability analysis to three-dimensional perturbations.

(0)

x xt

(1) (3) (4)(2) (5)

crit

Fig. 6.8. Transition process in the boundary-layer of a rotationally symmetric
body, F. N. M. Brown (1957)
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The stability analysis begins with the determination of the basic flow.
Usually, it consists of solving the Navier–Stokes or boundary-layer equations
by numerical methods.

In the stability analysis of boundary-layers the increase of the boundary-
layer thickness δ in the downstream direction x has to be considered. The flow
quantities are therefore not only dependent on the position z in the normal
direction on the boundary-layer, but also on x and y. Therefore, as well as
z, x and y are also inhomogeneous directions.

However, if boundary-layer flows are considered in the large Reynolds
number regime, the boundary-layer thickness δ(x, y) typically varies only
moderately (for example, in the case of a plate, δ ∼ x/

√
Rex), and so the

dependence of the flow velocity on x, y is considerably weaker than that on
z.

It is known from experimental results that the dependence of the per-
turbations on the parallel directions x, y is, in contrast to the basic flow,
not at all weak. All perturbation velocities are referred to the free stream
velocity U∞, the lengths to δ, and the perturbation pressure to ρU2

∞. The
perturbation ansatz for the incompressible boundary-layer reads

u=U∞ · (u0(x, y, z) + ǫ · u′) ,

v=U∞ · (v0(x, y, z) + ǫ · v′) ,

w=U∞ · (ǫ · w0(x, y, z) + ǫ · w′) , (6.7)

p=ρ · U2
∞ · (p0(x, y, z) + ǫ · p′) .

Here, ǫ is a suitable expansion parameter, chosen for the boundary layer
after careful consideration to be ǫ = 1/Reδ. The problem depends on two
different length scales, namely, a long scale d = δ/ǫ and the much shorter
scale δ. Because these scales are so different, it is appropriate to formulate
the general dependence of the solution on x or y as separate dependencies on
both long-scale variables x and y and on short-scale variables x̃ and ỹ. This
method is called the method of multiple scales. Their relation to the original
variable x or y is found as follows:

x̃=x , x = ǫ · x ,

ỹ=y , y = ǫ · y . (6.8)

It is understood that all perturbation quantities are functions of both vari-
ables, for example u′ = u′(t, x, y, z) = u′(t, x̃, x, ỹ, y, z). Derivatives with re-
spect to x are then written in the form ∂u′/∂x = (∂u′/∂x̃)·dx̃/dx+(∂u′/∂x)·
dx/dx = ∂u′/∂x̃+ ǫ · ∂u′/∂x.

This yields the linearized perturbation differential equations

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
=0 , (6.9)
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∂u′

∂t
+ u0 ·

∂u′

∂x
+ v0 ·

∂u′

∂y
+

du0

dz
· w′+

∂p′

∂x
(6.10)

− 1

Red
·
(
∂2u′

∂x2
+
∂2u′

∂y2
+
∂2u′

∂z2

)
= 0 ,

∂v′

∂t
+ u0 ·

∂v′

∂x
+ v0 ·

∂v′

∂y
+

dv0
dz

· w′+
∂p′

∂y
(6.11)

− 1

Red
·
(
∂2v′

∂x2
+
∂2v′

∂y2
+
∂2v′

∂z2

)
= 0 ,

∂w′

∂t
+ u0 ·

∂w′

∂x
+ v0 ·

∂w′

∂y
+
∂p′

∂z
(6.12)

− 1

Red
·
(
∂2w′

∂x2
+
∂2w′

∂y2
+
∂2w′

∂z2

)
= 0 .

It is essential that the coefficients, e.g. u0(x, y, z), of this homogeneous linear
system of partial differential equations in the variables t, x̃, ỹ, z depend only
on the variables x, y, z and not on the small-scale variables x̃, ỹ. It can
be seen that no explicit derivatives with respect to x or y appear in (6.9)–
(6.12). Within the framework of the above approximation, the solution of
the system of differential equations is therefore only algebraically dependent
on the spatial variables x, y and not differentially dependent. This stability
analysis is then called a local stability analysis. The constant basic solution
with respect to the short-scale parallel coordinates x̃, ỹ is given at the fixed
selected position x, y, and the stability analysis is carried out locally here.
We also note that the perturbation differential equation is homogeneous in
t, x̃, and ỹ.

In deriving the perturbation differential equations, the dependence on the
normal component w0 of the basic flow drops away. This is called the parallel
flow assumption. Its validity was confirmed by T. Herbert and F. P. Bertolotti
(1987) for the plate boundary-layer flow.

The perturbations satisfy the boundary conditions

u′(x, y, z = zw, t) = v′(x, y, z = zw, t) = w′(x, y, z = zw, t) = 0 , (6.13)

at the wall z = zw, and additionally, the far-field boundary conditions

v′(x, y, z → ∞, t) = 0 , p′(x, y, z → ∞, t) = 0 . (6.14)

The system of perturbation differential equations (6.9)–(6.12) is homogeneous
in x̃, ỹ, and t. We can carry out a separation trial solution (wave ansatz)



ũ′(x̃, ỹ, z, t;x, y)

ṽ′(x̃, ỹ, z, t;x, y)

w̃′(x̃, ỹ, z, t;x, y)

p̃′(x̃, ỹ, z, t;x, y)




=Fx(x̃;x, y)· Fy(ỹ;x, y)· Ft(t;x, y) ·




û(z;x, y)

v̂(z;x, y)

ŵ(z;x, y)

p̂(z;x, y)



, (6.15)
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because the boundary conditions depend only on z. Inserting (6.15) into the
continuity equation (6.9), we obtain

(
1

Fx
· dFx

dx̃

)
· û+

dŵ

dz
+

(
1

Fy

dFy

dỹ

)
· v̂ = 0 ,

where the two terms on the right are independent of x̃, and the two terms on
the left are independent of ỹ, so that the expressions in parentheses are each
constants with respect to x̃ and ỹ. The same procedure can be carried out
with the function Ft. Inserting the separation ansatz into equation (6.12), we
obtain

1

Fx
· dFx

dx̃
= i · a(x, y), 1

Fy
· dFy

dỹ
= i · b(x, y), 1

Ft
· dFt

dt
= −i · ω(x, y) ,

where the three separation parameters a, b, and ω have been introduced, and
these are still functions of the long-scale variables. From the equations for
Fx, Fy, and Ft it follows that




ũ′(x̃, ỹ, z, t)

ṽ′(x̃, ỹ, z, t)

w̃′(x̃, ỹ, z, t)

p̃′(x̃, ỹ, z, t)




= exp(i · a · x̃+ i · b · ỹ − i · ω · t)




û(z)

v̂(z)

ŵ(z)

p̂(z)




, (6.16)

where the dependence of the functions on x and y has not been indicated
here. The exponent a(x, y) · x̃+ b(x, y) · ỹ−ω(x, y) · t is also called the phase.
The separation parameters a, b, and ω are initially any, generally complex,
numbers.

Inserting the wave ansatz (6.16) into the system of equations (6.9)–(6.12),
we obtain

a · û+ b · v̂ = i · dŵ

dz
, (6.17)

(a · u0 + b · v0 − ω)· û− i · du0

dz
· ŵ = −a · p̂+

i

Red
·
(
a2 + b2 − d2

dz2

)
û, (6.18)

(a · u0 + b · v0 − ω)· v̂ − i · dv0
dz

· ŵ = b · p̂+
i

Red
·
(
a2 + b2 − d2

dz2

)
v̂, (6.19)

(a · u0 + b · v0 − ω) · ŵ = i · dp̂
dz

+
i

Red
·
(
a2 + b2 − d2

dz2

)
ŵ. (6.20)

With the boundary conditions (6.13) and (6.14),

û(z = zw) = v̂(z = zw) = 0 , ŵ(z = zw) = 0 , (6.21)

v̂(z → ∞) = 0 , p̂(z → ∞) = 0 , (6.22)

where we have formulated the eigenvalue problem for the wave instabilities.
It is a linear system of homogeneous differential equations that contains the
four parameters Red, a, b, and ω. The Reynolds number is given as a real



358 6. Instabilities and Turbulent Flows

number. Apart from the trivial solution, the system of equations is solvable
only for certain a, b, and ω. This defines a mutual relation among these three
relations, called the dispersion relation:

D(a, b, ω) = 0 . (6.23)

In the eigenvalue problem described, two of the quantities a, b, and ω are
given, and the remaining one is to be computed as an eigenvalue from the
equations.

The stability analysis is concerned with the variation of the perturbation
amplitude |u′| of a perturbation u′ introduced into a flow U0. As seen in the
beginning of the section, the stability is defined via the temporal amplification
of the perturbation amplitudes. In boundary-layers the perturbations are
represented as waves that run along the directions x and y:

u′(x, y, z, t) = u(z) · exp(i · a · x+ i · b · y − i · ω · t). (6.24)

The tilde above the x and y has again been left out for clarity. Accord-
ing to the definition of stability, an eigenform is given by the wave number
components a and b, and the associated value ω = ωr + i · ωi is computed
from the eigenvalue problem. If spatially periodic waves (i.e. real a = ar and
b = br) are given, the problem concerns the temporal stability analysis. Since
the system can develop further only in the positive time direction, a wave
perturbation with given a = ar and b = br is then temporally unstable only
if its amplitude is amplified in time, i.e. if ωi > 0. Here ωi is the temporal am-
plification rate. A perturbation for which ωi = 0 holds is called an indifferent
or neutral perturbation. The quantity ω may also be given and the associated
eigenform (represented by a and b) computed. The problem becomes one of
spatial stability analysis if ω = ωr is given as a real value (i.e. consideration
of all possible waves with a given frequency), and, for example, a is computed
for a given b. The real part ar of the computed number a is then the wave
number, and the imaginary part ai is a measure for the spatial amplification
in x. An explicit definition for spatial amplification is clearly obtained only
when a direction of consideration is given. Let it be represented by the unit
vector eφ = ex · cos(φ) + ey · sin(φ) (Figure 6.9).

The variation in the amplitude |u′| = |û| · exp(−ai · x − bi · y + ωi · t) of
the wave is determined along the given direction φ as d|u′|/dxφ = eφ ·∇|u′|.
It is found that d|u′|/dxφ = −(ai · cos(φ) + bi · sin(φ)) · |u′|. The amplitude
grows along eφ if d|u′|/dxφ is positive. The wave is amplified with respect to
the direction φ if

ai · cos(φ) + bi · sin(φ) < 0 .

The quantities ai and bi are also called spatial amplification rates. It is noted
that the necessity to specify a direction φ is to a certain degree arbitrary. For
this reason it is necessary to check whether the wave with the phase velocity
vector c = (cx, cy, 0) = ωr/(a

2
r + b2r) · (ar, br, 0) moves in the direction of in-

creasing amplitude. The direction of consideration eφ is allowed to lie along
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the direction of motion of the wave ecrit = (ar, br, 0) · sgn(ωr)/
√
a2

r + b2r,
where sgn(ωr) = ωr/|ωr| (cf. Figure 6.9). A temporally periodic wave expe-
riences an increase in amplitude along its direction of motion if

ωr · (ar · ai + br · bi) < 0 .

A two-dimensional wave (b = 0) can be called spatially amplified if for ωr > 0,
the imaginary part satisfies ai < 0. However, which wave actually contributes
to the spatial amplification of perturbations can be answered precisely within
the framework of the concept of the stability analysis of local perturbations
for convective instabilities.

The eigenvalue problem can deliver either a for a given b = br + i · br
and ω = ωr or b for a given a = ar + i · ar and ω = ωr. Rather than
specifying a complex wave number, it is clearer in the spatial analysis to
determine, for example, the amplification φ = 1/ tan(bi/ai). This corresponds
to determining the ratio of the imaginary parts ai and bi of a and b.

We note that the temporal stability analysis is simpler to carry out than
the spatial stability analysis. In the eigenvalue problem (6.17)–(6.20), ω ap-
pears only linearly, whereas a and b appear quadratically. The solution of a
quadratic eigenvalue problem requires considerably more computational ef-
fort than the solution of a linear problem. Therefore, a method by which
temporal amplifications could be transformed into spatial amplifications was
examined. Such a relation was given by M. Gaster (1962) for b = 0. The
transformation of the temporal amplification ωi of a spatially periodic wave
with given real wave number ar and associated frequency ωr to a temporally
periodic wave (i.e. ωi = 0) with the same wave number ar and frequency ωr

is performed using

ai ≈ − 1

∂ωr

∂ar

· ωi .

This yields the spatial amplification of the wave from the temporal amplifi-
cation of the associated wave using the group velocity ∂ωr/∂ar. The above
relation is called the Gaster transformation. It is valid only for small ampli-

Fig. 6.9. Expansion of a wave perturbation
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fication rates ai, ωi, since it is based on a Taylor expansion of the dispersion
relation D(a, ω) = 0 about the neutral state ai = 0, ωi = 0.

The system of perturbation differential equations (6.17)–(6.20) has a re-
markable property. It can be summarized by a single fourth-order differential
equation that represents an extension to the Orr–Sommerfeld equation (4.73)
for obliquely traveling waves, with û, v̂, and p̂ eliminated. Using the Squire
transformation

aϕ · u0,ϕ = a · u0 + b · v0 , a2
ϕ = a2 + b2 ,

which represents a coordination rotation in the direction of expansion, we
obtain the Orr–Sommerfeld equation

[
(aϕ · u0,ϕ − ω) ·

(
d2

dz2
− a2

ϕ

)
− aϕ · d2u0,ϕ

dz2
(6.25)

+ i · 1

Red
·
(

d2

dz2
− a2

ϕ

)2
]
ŵ = 0 ,

with the following boundary conditions for ŵ:

ŵ = 0 ,
dŵ

dz
=0 for z = zw, (6.26)

ŵ = 0 ,
dŵ

dz
=0 for z → ∞ . (6.27)

If in equation (6.25), aϕ is replaced by a, and aϕ ·u0,ϕ by a ·u0, this represents
the two-dimensional case (4.73). In Figure 6.10, the stability diagram has
been supplemented by a typical eigenfunction. We point out that the vertical
component |ŵ| of the perturbation velocity has been enlarged 10 times. It is
very small compared to the amplitude of the downstream component |û|. The
largest perturbation amplitudes for û are assumed to be largest directly at
the wall. Now, the perturbations have not died away when the boundary-layer
thickness is reached. They extend far out of the boundary-layer. The sharp
minimum of |û| at a distance from the wall of about 2/3 of the boundary-layer
thickness δ is only a consequence of forming the magnitude of û. In fact, the

Fig. 6.10. Stability diagram for real a, b = 0 for the flat plate and eigenfunction
for a = 0, 16, b = 0, Red,crit = 302
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Fig. 6.11. Unstable waves for boundary-layers with and without cross-flow com-
ponent V0(z)

function û passes through zero at this position, a fact that is related to a
phase change of the wave of 180◦.

In three-dimensional boundary-layers, Tollmien–Schlichting waves occur
and also, because of the cross-flow component of the basic profile, do the
cross-flow instabilities. Which waves have cross-flow instabilities is shown in
the wave number diagram of Figure 6.11, using the instability region for fixed
Reynolds number. Tollmien–Schlichting waves occur downstream only when
the critical Reynolds number is exceeded. Note, however, that the Reynolds
number in this regime is very small, and therefore there is a strong viscous
effect, in this case damping. For comparison, an instability region for the
two-dimensional velocity profile U0(z) is also included. It is typical that in-

Fig. 6.12. Unstable cross-flow vortex in a three-dimensional boundary-layer, Y.
Kohama (1989)



362 6. Instabilities and Turbulent Flows

stability waves with considerably larger king pin inclinations ϕ = 1/ tan(b/a)
exist than in the three-dimensional boundary-layer. Because of its charac-
teristic form, the neutral curve ωi = 0 in the wave number diagram for
two-dimensional boundary-layers is also called a kidney curve.

Equally typical for cross-flow instabilities is the appearance of standing
perturbation vortices. Since the angular frequency of these standing per-
turbation waves is ωr = 0, they are also called 0-Hertz modes. Their wave
normal is almost perpendicular to the downstream direction at the edge of
the boundary-layer. These standing waves can be made visible in experi-
ment, with, for example, smoke introduced into the flow, and then have a
clear structure in the downstream direction (see Figure 6.12). The perturba-
tion waves that are amplified the most are, however, generally unsteady and
travel at a large angle ϕ transverse to the downstream direction x.

Secondary Instabilities

Until now we have considered primary instabilities. The ground state U0 was
replaced by the instability, denoted by U1. The new ground state for the sec-
ondary instability is U1, which can in turn become unstable to perturbations.
The perturbation ansatz for the secondary instabilities is u = U1 + ε ·u′′. In
the plate boundary-layer, the two-dimensional Tollmien–Schlichting wave is
replaced by the three-dimensional Λ-structures. The vortex lines, still straight
lines in the case of the primary perturbation, are deformed to a wave form
in the span direction y. This curvature of the vortex lines is the origin of an
abrupt onset of vortex-dynamic induction and self induction, which further
deforms and stretches the vortex lines. During this process the characteristic

W.S. Saric 1994

subharmonic transition type

H. Bippes 1972

fundamental transition type

Fig. 6.13. Secondary instabilities in the transitional plate boundary-layer
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Λ structures form (Figure 6.13). The secondary instabilities can be analysed
with the Floquet analysis.

Just as was done for the primary stability analysis, the first step in a sec-
ondary stability analysis is to compute the basic flow U1(x, y, t). In order to be
accessible to a secondary stability analysis, U1 must be periodic with respect
to a spatial direction parallel to the wall eϕ = ex · cos(ϕ) + ey · sin(ϕ) = eξ′

with the coordinate ξ′, and homogeneous to the second parallel direction
eϕ+90◦ = −ex · sin(ϕ) + ey · cos(ϕ) = eη, i.e. U(ξ′, η, t) = U(ξ′ + λ, t).
In addition, the basic flow must be able to be written down as a steady
flow in a suitable coordinate system ξ = ξ′ − c · t (Figure 6.14), i.e.
U1(ξ

′, t) = U1(ξ) = U1(ξ + λ). In this way, such basic flows U1(z) =
〈U1〉(z) + U

p
1 (ξ, z), consisting of a parallel boundary-layer flow, spatially av-

eraged with respect to ξ, 〈U1〉(z) = 1/λ ·
∫ ξ+λ

ξ U1(ξ, z) · dξ, and a spatially

periodic part U
p
1 (ξ, z), can be investigated for secondary instabilities. The

periodic part does not have a spatial average, but rather has a finite ampli-

tude A(z) = (1/λ ·
∫ ξ+λ

ξ |Up
1 (ξ, z)|2 · dξ)0.5, i.e. it is not assumed that A is

infinitesimally small. The basic flow is given in a coordinate system (x, y, z)
in which, as usual, the x axis points along the direction of the main flow
〈U1〉(z) (in three-dimensional boundary-layer flows, typically at the edge of
the boundary-layer). A coordinate system adapted to the periodic direction
eϕ = eξ is then chosen. This is obtained from the transformation




ξ

η

z


 =




cos(ϕ) sin(ϕ)0

− sin(ϕ)cos(ϕ)0

0 0 1


 ·




x

y

z


−




c · t
0

0




︸ ︷︷ ︸
= c · t

. (6.28)

Therefore, in the (ξ, η, z) coordinate system, U1(x, y, z, t) appears as a
steady flow U1(ξ, z). In contrast, in a two-dimensional boundary layer U0(z),
c = (cTS, 0, 0) is a downstream traveling wave perturbation with phase veloc-

Fig. 6.14. Coordinate system used to describe secondary instabilities
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ity cTS . Such a wave perturbation can occur in the course of the amplitude
growth of a Tollmien–Schlichting wave (Figure 6.8). Although the basic flow
U1 is not actually periodic (weak growth in the boundary-layer thickness
downstream, weak spatial amplitude growth of perturbation waves), period-
icity is assumed.

The perturbation differential equation of the secondary instabilities will
not be explicitly given here. They may be found in, for example, H. Oertel, J.
Delfs (1996), (2005). They are inhomogeneous in t and η, and so exponential
trial solutions may be assumed in these directions:

u′′ = V (ξ, z) · exp(i · β · η) · exp(σ · t) . (6.29)

Here β = βr is a given real number. This determines the period of the per-
turbation to be computed with respect to η, i.e. perpendicular to the wave
normal of the primary instability (Figure 6.15). The value β = 0 indicates
the special case of a two-dimensional secondary instability. The constant
σ = σr + i · σi is in general complex. In analogy to the primary stability
analysis, the real part σr denotes a temporal amplification rate.

Characteristic of the perturbation differential equations of the secondary
instability is the ξ periodicity of the coefficients. The period is λ = 2 · π/aϕ

with aϕ =
√
a2

r + b2r. In analogy to linear differential equations with con-
stant coefficients, linear differential equations with periodic coefficients can
be solved using a general Floquet ansatz:

V (ξ, z) = exp(i · α · ξ) · Ṽ (ξ, z) , Ṽ (ξ, z) = Ṽ (ξ + λ, z) . (6.30)

The solution clearly consists of a function Ṽ (ξ, z), to be determined, with
the same period as the coefficients of the differential equation, multiplied by
an exponential ansatz exp(i · α · ξ), in which a generally complex constant
α appears. The function Ṽ (ξ, z) is expanded as a Fourier series, and the
perturbation flow written as

u′′ = exp(i · α · ξ + i · β · η) · exp(σ · t) ·
∞∑

j=−∞

V̂j(z) · exp(i · j · aϕ · ξ). (6.31)

Fig. 6.15. The parameter β in secondary instabilities in the boundary-layer
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Inserting the components (u′′, w′′) of u′′ into the system of perturbation dif-
ferential equations and sorting according to the different exponential terms
exp(i · (j · aϕ + α) · ξ), we obtain a system of infinitely many homogeneous

ordinary differential equations in z for the Fourier coefficients V̂j(z). This
system of equations has nontrivial solutions only for certain combinations
(α, β, σ), again called eigenfunctions of the secondary stability theory. To
actually compute this eigenvalue problem of the secondary stability theory,
the Fourier series in (6.31) is interrupted after finitely many terms N. Numer-
ical investigations have shown that for ϕ = 0 only two terms j = 0, 1 deliver
results that are sufficiently accurate. In the case of oblique primary waves, in
particular in cross-flow waves, several modes have to be used.

In analogy to the primary stability theory, we distinguish between tem-
poral and spatial analysis. A temporal stability calculation is carried out by
specifying real α and β and determining σ as a generally complex number
from the eigenvalue problem. The real part σr of the temporal eigenvalue
σ denotes the temporal amplification rate. The basic flow U1 is unstable to
secondary perturbations if the eigenvalue problem of the secondary stability
analysis delivers a value σr > 0. The imaginary part is the total angular
frequency of all modes of the secondary eigenfunction u′′ in the moving ref-
erence frame (ξ, η, z). For σi = 0, all modes of the secondary eigenfunction
are standing waves with respect to (ξ, η, z). They do not move relative to the
primary wave.

A spatial stability analysis is carried out when no temporal amplification
is permitted in the system at rest (ξ + c · t, η, z), but rather a temporally
periodic process is assumed. In the moving system, σr is not set to zero, but
rather σr = αi · c. The frequency Ω that occurs in the coordinate system
at rest appears in the moving coordinate system as σi = Ω − αr · c and is
inserted into the equations as such.

Fundamental modes of secondary instabilities (Figure 6.13) are present in
the following Fourier series ansatz:

u′′

f = exp(−αi · ξ + i · β · η) · exp(σ · t) ·
∞∑

j=−∞

V̂j(z) · exp(i · j · aϕ · ξ). (6.32)

It is typical for this form of instabilities that they have the same period with
respect to ξ as the basic flow.

With the ansatz below we see the subharmonic transition type

u′′

s = exp(−αi ·ξ + i·β ·η)·exp(σ · t)·
∞∑

j=−∞

V̂j(z)·exp

(
i·
(
j+

1

2

)
·aϕ ·ξ

)
. (6.33)

This secondary instability has double the period of the primary.
The temporal secondary eigenvalue analysis shows that the largest rate of

amplification and therefore the dominant eigensolution occurs in both cases
for σi = 0. The entire system of waves given by the modes V̂j of the secondary
eigenfunction is steady with respect to the primary Tollmien–Schlichting wave
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Fig. 6.16. Amplification rate at fundamen-
tal and subharmonic resonance of a two-
dimensional boundary-layer

of finite amplitude. The secondary modes are coupled with the motion of
the primary waves, where they clearly can take up the most perturbation
e5nergy. This state is also called phase-coupled. Which of the eigenforms is
actually taken on at the start of the transition process depends greatly on the

initial perturbation spectrum. For small amplitudes A
<∼ 2% of the Tollmien–

Schlichting wave, the amplification rates of the subharmonic secondary insta-
bility are largest and those of the fundamental type smallest (Figure 6.16).
These proportions change as soon as the amplitudes of the primary pertur-

bation become large A
>∼ 2%. The fundamental resonance then dominates

over the other forms.
The typical maximal amplification rates of secondary instabilities are con-

siderably larger than primary amplification rates, even at small amplitudes
A ≈ 1%. Therefore, it is justified to consider the primary perturbation to be
locally periodic with frozen amplitude A, since A varies only a little, while
the secondary modes are greatly amplified. What is important is the size of
the primary amplitude, and less so its variation.

According to Figure 6.17, the secondary instability exists for an entire
band of the transverse wave number β, whose width grows with increasing
primary amplitude A. The width of the transitional flow structures deter-
mined by β is therefore in no way uniquely determined; rather, it can be
completely different depending on the perturbation. It can clearly be seen
that for too small β, the secondary amplification rates for the Blasius plate
boundary-layer flow fall drastically to zero.

In contrast to the other modes, the fundamental modes from (6.32) con-
tain an aperiodic part. This partial wave is independent of ξ, and its wave
normal points in the direction of the η coordinate. This means that it repre-

Fig. 6.17. Growth of the secondary amplifica-
tion rate with the primary amplitude
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sents a periodic longitudinal vortex in η. These vortices are ordered in pairs
rotating in opposite directions, as follows from the symmetry of the flow field
U1 with respect to the ξ-z plane. The structure of the longitudinal vortex is
also called a peak–valley structure. In the planes η = ηp, in which the vortices
induce upward velocities, slow-moving fluid close to the wall is transported
in high layers z with relatively large mean velocities. This leads to strong
shearing, favoring the perturbation development. For this reason, the η = ηp

plane is called the peak plane. The planes displaced from the peak planes by
half a width π/β at η = ηv = ηp ± π/β are called valley planes, to indicate
that the perturbation development here is much weaker than in the peak
plane.

The secondary stability analysis in three-dimensional boundary-layers
shows that in the case of cross-flow vortices in the boundary-layer of a mov-
ing wing, the temporal secondary amplification σr is of the same order of
magnitude as the primary amplification rate. In addition, the boundary-layer
thickening and the wall curvature have a great influence on the stability prop-
erties of this flow close to the leading edge, so that the corresponding results
are essentially only qualitative. Figure 6.18 shows the instantaneous stream-
lines of a sequence of the oscillatory secondary instability in the direction of
expansion of the cross-flow waves. It is seen that the secondary perturbation
waves oscillating about the primary cross-flow angle weaken and strengthen
periodically.

Fig. 6.18. Sequence of a period of instanta-
neous streamlines of the secondary cross-flow
waves in section along the expansion direction
of the primary perturbation waves and perpen-
dicular to the wall, T.M. Fischer (1987)
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Stability of Nonparallel Boundary-Layer Flows

Until now we have described the local stability analysis. The change in the
boundary-layer in the direction of the flow was neglected. In this section,
the stability analysis will be extended to nonparallel flows. Note that the
effect of the flow relations that change in the direction parallel to the layer
on the perturbation development strongly depends on the type of pertur-
bation. What is important in the effect of the change in the basic flow on
the perturbation is how great a change occurs in one perturbation wave-
length. For example, consider the Blasius plate boundary-layer flow in Fig-
ure 6.19 whose boundary-layer δ(x) thickens in the flow direction x. For a
given wavelength λ = 2 · π/

√
a2

r + b2r, the boundary-layer thickening has a
greater effect on the perturbation wave, the larger the king pin inclination,
ϕ = 1/ tan(br/ar), of the wave with respect to x. This is because the wave-
length section λx = 2 · π/ar = λ/ cos(ϕ) in the flow direction x increases
greatly with ϕ. In particular, in the limiting case of transverse traveling
perturbation waves, i.e. ϕ = 90◦, the parallel flow assumption of the local
analysis infringes greatly the actual physical facts.

Two fundamentally different procedures to investigate the stability of non-
parallel flows have been developed. One of these approaches is a direct exten-
sion of the local stability analysis with analytical methods. It builds on the
previously described method of multiple scales and yields correction terms
from taking the nonparallel effects only at the position under consideration.
The second approach involves parabolizing the fundamental equations (5.91)
and the perturbation differential equations derived from them. This approach
has the advantage that the history of the perturbation development upstream
of the position under consideration is taken into account. Both procedures
contain the special case of the local analysis for parallel basic flows.

Fig. 6.19. Thickening effect with inclined waves
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The analysis shows that the boundary-layer thickening has a generally
destabilizing effect on perturbation waves especially in the low Reynolds-
Number regime (see Figure 6.20). This means that for a given frequency, the
spatial amplification is greater when the basic flow is taken to be nonparallel
than when the parallel flow assumption is used. This is particularly true
for obliquely traveling waves moving opposite to the main flow direction,
where the wavelength component in the downstream direction is large. The
effect is strong for perturbation waves whose wave normal is perpendicular
to the main flow in the span direction y. A nonparallel basic flow also has
a greatly amplifying effect on the cross-flow instability. The amplification
rate of unstable perturbation waves in compressible boundary-layer flows is
similarly greatly increased, since compressible boundary-layers thicken more
than incompressible boundary-layers, due to the heating of the medium close
to the wall and the consequent volume expansion.

It can be shown that effects due to wall curvature and curvature of the
wave fronts (divergence or convergence of the wave normals) frequently affect
the spatial amplification rate just as much as a nonparallel basic flow. For
example, the curvature has a considerable effect on the cross-flow instabili-
ties close to the leading edge of a moving wing, where a strong convex wall
curvature is present. The convex wall curvature stabilizes such perturbation
waves and, in this case, acts to oppose the effect of the nonparallel basic flow
that strengthens the amplification. For a consistent theory, both effects have
to be taken into account simultaneously.

In addition to the stability analysis, direct simulation of the transition
process up to turbulent boundary-layer flow by numerical solution of the
complete Navier–Stokes equations (5.65) has also been also performed. Figure
6.21 shows the simulation results of the Tollmien–Schlichting transition and

Fig. 6.20. Stability diagrams of Tollmien-Schlichting waves for parallel and non-
parallel boundary-layer flows
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the transition of the cross-flow vortices in a three-dimensional wing boundary-
layer at Mach number M∞ = 0.62 and Reynolds number Rel = 26 ·106. Con-
tour surfaces of the rotation ω = ∇ × u are shown. The transition process
of the Tollmien–Schlichting waves begins with downstream traveling plane
waves. As in Figure 6.8, three-dimensional perturbations are superimposed,
and Λ-structures (fundamental transition type) form. The Λ-structures are
regions of local shearing and excess velocity in the peaks. They are lined
up periodically in the span and form several rows periodically ordered be-
hind each other. The occurrence of the Λ-structures is associated with the
appearance of strong free-shear layers. These are prominent local maxima
of the shear stress far from the wall. As the transition proceeds, the high
shear rates decay into increasingly smaller structures, leading eventually to

transition of Tollmien−Schlichting waves

transition of cross−flow vortices

Fig. 6.21. Laminar–turbulent transition in the compressible wing boundary-layer,
M∞ = 0.62, Rel = 26 · 106
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the turbulent state. The decay of the shear layers takes place within a few
wavelengths of the Tollmien–Schlichting waves.

The mechanisms of the transition process of cross-flow vortices are similar.
Figure 6.21 shows the formation of the Λ-structures associated with high
shear rates and fluctuation in the perturbation quantities in the peaks. In
the final state of the transition they decay within a short distance into the
turbulent boundary-layer flow.

Local Perturbations

Figure 6.22 shows a sketch of local perturbations of the Tollmien–Schlichting
transition and the transition of cross-flow instabilities in the three-dimensional
boundary-layer of a swept transonic wing. Both instabilities are convectively
unstable in the boundary-layer.

In what follows we will briefly analyze the behavior of three-dimensional
wave packets in a three-dimensional compressible boundary-layer. In contrast
to the investigation into two-dimensional perturbations, the transverse wave
number b now also appears in the dispersion relation function D(ω, a, b),
whose roots are indeed given by those combinations (ω, a, b), representing the
solutions of the stability eigenvalue problem for complex ω, a, b. We consider
the change in amplitude of a perturbation wave packet in the plane reference
frame, moving with the group velocity (U , V ). The frequency observed is
then

ω′ = ω − a · U − b · V . (6.34)

As in the two-dimensional case, we again have to find those waves whose
group velocity vector (∂Ω/∂a, ∂Ω/∂b) is real. The complex frequency func-
tion Ω(a, b) is then defined by D(Ω(a, b), a, b) ≡ 0. The relative temporal
amplification ω′

i is then plotted, not just as a function of U = ∂Ω/∂a, but
also against the group velocity plane (U, V ). The line of height ω′

i = 0 is of
particular interest, since it encloses the region in the (U, V ) plane in which
ω′

i > 0. Therefore, this region represents the parts of the perturbation that

Fig. 6.22. Local cross-flow (CFI) and
Tollmien–Schlichting instabilities (TSI)
in the three-dimensional boundary-layer
of a swept wing
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contribute time-asymptotically to the wave packet. Figure 6.23 contains di-
agrams with the regions of temporal amplification at two representative po-
sitions on a swept wing. The lower diagram in the figure shows a typical
curve ω′

i = 0, which is computed for a position close to the leading edge of
the swept wing, i.e. in the cross-flow instability region. The upper diagram
shows the same curve at a position further downstream on the wing, where
Tollmien–Schlichting instabilities are present. We see that both instabilities
have convective character, since in both cases the origin (U, V ) = (0, 0) is
not contained in the ω′

i > 0 region. The growing perturbation energy is
transported downstream in both cases. The tangents at the curves ω′

i = 0
determine the angular region within which these amplified perturbations re-
main. In the case of the cross-flow instabilities, the angular range is very
narrow and lies essentially downstream. Note that the associated instabilities
are waves that travel practically perpendicular to the downstream direction.
This clearly indicates the fundamental difference between group velocity and
phase velocity.

Now that we have determined that the cross-flow instabilities are con-
vective in nature and that they induce a spatially extended transition pro-
cess downstream, the associated spatial wave packet amplification rates
(gmax = [(ωi − ai · U − bi · V )/

√
U2 + V 2]max) for the transonic swept-

wing boundary-layer have been computed. Figure 6.24 shows the eigenvalues,
eigenfunctions, and unstable regions of wave packet perturbations for angles
of sweep from 15◦ to 25◦. In developing a swept laminar wing, it is essen-
tial to avoid cross-flow instabilities, since they induce a transition process
already directly at the leading edge. Using the methods of stability analy-
sis, the region of the design parameters of a swept wing can be determined
within which active influencing measures are not needed (corresponding to
the natural laminar behavior). One of these parameters is the angle of sweep.

Fig. 6.23. Regions of relative temporal amplification of the Tollmien–Schlichting
instabilities (TSI) and cross-flow instabilities (CFI) in the group velocity plane
(U, V )
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Fig. 6.24. Eigenvalues, eigenfunctions, and unstable regions of the cross-flow insta-
bility in the compressible boundary-layers of swept wings, M∞ = 0.78, Rel = 26·106

In an otherwise identical free stream, there is a critical range of angle of
sweep within which the transition process changes from TSI-dominated to
CFI-dominated (Figure 6.22). Stability theory therefore leads us to a limit
for the angle of sweep of a laminar wing.

6.2.3 Transition to Turbulence

Other fascinating advances have been made with respect to successive in-
stabilities potentially leading to turbulence. L. D. Landau proposed a quasi-
periodic route to turbulence (see L. D. Landau, E. M. Lifschitz (1991)) in
which successive instabilities occur at ever faster rates and culminate in tur-
bulence at their accumulation point. Possibilities such as the few-step route
(D. Ruelle, F. Takens (1971)) and the period-doubling route (e.g. M. J.
Feigenbaum (1978)) have been proposed for the generation of temporal com-
plexity (or chaos) in a variety of nonlinear systems. Indeed, these scenarios
have been observed in many nonlinear systems including a restricted class
of fluid flows (and are thus believed to be universal in scope), but the ap-
pearance of turbulence is an issue of both temporal and spatial complexity.
Here, progress is attained more or less on a case-by-case basis, although some
generality of concepts does exist.
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In particular, the route to turbulence is not unique, because, among other
things, the process is not merely one of successive instabilities but also one
of flow receptivity to a variety of background fluctuations that are invariably
present. For instance, for the flat plate boundary-layer, unless the distur-
bance level is carefully controlled, some steps described earlier in the process
of transition may be bypassed altogether, and pointlike disturbances may
evolve into three-dimensional wave packets that grow quickly into spots of
turbulence. These spots coalesce to form turbulence as we know it.

Let us summarize some aspects of what we have already covered in earlier
sections. For the boundary-layer, when the background noise level and initial
conditions are carefully controlled, a variety of details can be reproduced, and
the following sequence of events occurs (Figures 4.55, 6.8). Once the modes
of primary instability, the Tollmien–Schlichting waves, grow to finite ampli-
tudes, the flow develops spanwise variations. These spanwise variations ap-
pear rather slowly in wind tunnels, and are better studied when induced arti-
ficially, as was done by P. S. Klebanoff et al. (1962), who attached small strips
of tape at equal intervals across the plate (Figure 6.25). Their measurements
revealed the appearance of counterrotating vortices, and the development of
definite peaks and valleys in the fluctuation velocity. As spanwise variation
intensifies, a thin layer of high shear appears, especially at the peak, consis-
tent with the observations of L. S. G. Kovasznay et al. (1962). J. T. Stuart
(1963) has shown that the convection and vortex-stretching in the presence
of large spanwise variations produce small layers of high intensity, resembling
those observed experimentally. These layers possess inflection points and are
inviscidly unstable, thus leading to further high-frequency modes and the
formation of new vorticity in both longitudinal and spanwise directions. The
passage of the vortex structures results in spikes in velocity signals, as seen
in the extensive studies of M. Nishioka et al. (1990) for the case of a two-

Fig. 6.25. Transition in the plate boundary-layer, M. Nishioka et al. (1990) and
P. S. Klebanoff et al. (1962)
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dimensional boundary-layer (Figure 6.25). Near where the spikes occur, spots
of turbulence are born. Turbulent spots (H. W. Emmons (1951)) have a well-
defined shape within which the fluid is in nearly turbulent motion, and are
surrounded by essentially laminar flow (Figure 6.26). The spots grow as they
propagate and merge with other spots to become fully developed turbulent
flow. The growth rate of isolated spots is proportional to the square root of
the difference between the Reynolds number of the flow and the Reynolds
number at which spots are born.

For a more detailed description of laminar–turbulent transition in the
boundary layer, reference may also be made to R. Narasimha (1985) and A.
V. Boiko et al. (2002).

The combination of stability theory and experiment has been able to
advance our understanding of the origin of turbulence in certain broad classes
of flows. However, there are other circumstances for which linear stability
is an unsuitable starting point for understanding the onset of turbulence.
In those instances the onset of turbulence is sudden, and a fundamentally
different sequence of events is involved. In particular, the many scales of
turbulence appear more or less at the same time. Flow through pipes is an
excellent example of this kind of transition. Typically, flows of this kind are
stable to all linear perturbations, and one of their strong characteristics is
that the transition has no reproducible critical Reynolds number, as would
be characteristic of linear instability. The Reynolds number at which the
transition to turbulence occurs depends on the type, form, and magnitude of
the disturbance. For the onset of turbulence, the initial disturbance and the
Reynolds number need to be large enough, and play complementary roles,
where a smaller disturbance level is needed at larger Reynolds numbers, and
vice versa. If the pipe is joined to a smooth-walled vessel by a sharp edge,
the critical Reynolds number is about 2800. If the inlet is well rounded and
the flow there is prepared to be relatively free of disturbances, transition
values as high as 105 can be observed. If the inflow is very irregular, it may
fall to about 2300 (see Section 4.2.4). In fact, in the last case, the transition
Reynolds number is representative of the conditions at which large initial
disturbances just manage to regenerate continually. In contrast to pipe flow,
which is linearly stable for asisymmetric perturbations and for all Reynolds
numbers, channel flow is expected to become linearly unstable at a finite
critical Reynolds number of 5772 (C. C. Lin (1945), S. A. Orszag (1971)).

Fig. 6.26. Turbulent spot, R. Falco (1980)
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However, experiments show that the transition does not usually wait until
that Reynolds number is reached, but occurs at lower Reynolds numbers.

The mechanism of transition in these cases is called subcritical because
it occurs below the linear stability value. W. M. F. Orr (1907) knew that
linear disturbances of a shear flow could grow for some time even if they are
stable (since the concept of stability is related to the asymptotic growth of
perturbations, see Section 6.2.2). Many later authors have expanded on this
theme (for a summary see S. Grossmann (2000)).

Figure 6.27 shows a schematic plot of subcritical transition. With increas-
ing initial disturbance amplitudes A the transition to turbulence occurs at
smaller Reynolds numbers Rel. The transition line should be interpreted as
the envelope of all stability lines for possible types of disturbances.

It is now clear that the nonnormality of eigenfunctions of the linear op-
erator for the perturbation equation is the essential property responsible for
the transient growth of disturbances. This, together with the proper action
of the nonlinear interactions between finite disturbances of sufficient am-
plitude, leads to the onset of turbulence. The nonnormality of the linear
dynamics quite generally implies a bunching of the eigendirections. Those
disturbances that fit into the bundle decay with time, while those that do
not do so first grow algebraically at a rate that depends on the nonnormality
and the Reynolds number. Only after this transient increase do they decay.
But if there is sufficient transient amplification, the nonlinearity, which can
no longer be neglected, drastically modifies the dynamics, and the appearance
of an irregularly fluctuating velocity field can be expected.

The transition process can be divided qualitatively into different stages.
The first is usually the receptivity stage, which is associated with disturbances
in the flow. Receptivity is often the most difficult process to conclude the tran-
sition prediction for realistic flow situations. It entails knowledge about the
ambient disturbance environment and the mechanisms by which disturbances
are projected into growing eigenmodes.

Fig. 6.27. Subcritical transition
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The next stage is the linear growth stage of primary instabilities as
Tollmien-Schlichting waves in the boundary-layer, where small disturbances
are amplified until they reach a size where nonlinear interactions become
important. This amplification can be in the form of exponential growth of
eigenmodes, nonmodal growth of optimal disturbances, or nonmodal response
to forcing.

Once a disturbance has reached a finite amplitude, it often saturates and
transforms the flow into a new state. Only in a few cases does the primary
instability lead the flow directly into a turbulent state. Instead, the new
unstable flow becomes a base flow on which secondary instabilities can grow,
as was shown in Section 6.2.2.

The secondary instability stage can be viewed as a new instability of a
more complicated flow. This stage of the transition process is in many cases
more rapid than the stage where primary instabilities prevail.

The last stage is the breakdown stage where nonlinearities and higher
instabilities excite an increasing number of scales and frequencies in the flow.
This stage is often more rapid than both the linear stage and the secondary
instability stage.

Dividing the transition process into these five stages, receptivity, linear
growth, nonlinear saturation, secondary instability, and breakdown certainly
idealizes the transition process, because all stages cannot always be expected
to occur in an unambiguous manner. However, they often provide a good
framework to view transition even for complicated flows.

Figure 6.28 shows one example of a transition scenario at high free-stream
turbulence level in comparison with the flat plate transition process described
in Figure 6.3 of Section 6.2.1. In the first stage the formation of streaks
by free-stream-localized vortical disturbances in the boundary-layer can be
observed in the experiments of P. H. Alfredson et al. (1996). The streaks
modulate the boundary-layer in the spanwise direction. The second stage

Fig. 6.28. Transition scenario at low and high free-stream turbulence, P. H. Al-
fredson et al. (1996)
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includes the following streak development accompanied by the generation of
high-frequency wave packets and incipient spots due to different nonlinear
mechanisms including the interaction with Tollmien-Schlichting waves and
secondary instability. The third stage of the transition includes development
and interaction of the turbulent spots which completes the laminar-turbulent
transition in the boundary-layer.

6.3 Developed Turbulence

6.3.1 The Notion of a Mixing Length

The two flows with which we started this chapter are examples of developed
turbulence. In practice, we do not need to know all the details of turbulent
flows, but are often content to obtain answers, for example, to questions such
as, how fast does a jet grow on the average? How much power is required to
pump a fluid at a certain rate through a pipe? How much power is required
to fly an aircraft? How much fuel is consumed in providing a required amount
of thermal energy in a combustion chamber?

It is useful for these purposes to decompose the velocity into mean and
fluctuating parts (called Reynolds decomposition after Osborne Reynolds
(4.63); see Section 4.2.4), and to obtain the Reynolds equation (5.95) for the
mean part. The Reynolds shear stress term appears in addition to the viscous
stress. Mathematically, the source of this new term is the nonlinearity of the
advection term in the Navier–Stokes equations. Physically, turbulent fluctua-
tions give rise, on average, to increased transport of momentum by transport-
ing it from place to place in the flow. The turbulent, or the Reynolds shear
stress has the form τt = −ρu′v′, where u′, v′ are deviations of the velocity
components from their average values u and v, respectively, and the overline
indicates the average over time. In order to solve the Reynolds equations
and obtain formulas of practical use, we must express τ in terms of quanti-
ties related to the mean velocity. The situation, called the closure problem,
is analogous to that in kinetic theory in which the momentum transport of
molecular theory is seen as a macroscopic viscosity, which must be prescribed.
However, viscosity is a property of a fluid that can be measured once and
for all. Such simplicity does not exist in turbulence for reasons that we shall
mention presently, and so a variety of methods has been devised to express
the Reynolds stresses in terms of the distribution of the mean velocity (see
Section 5.4.5). The methods developed have varying levels of success but are
not universally applicable to all turbulent flows. Approaches vary from the
application of sophisticated statistical mechanical principles or hypotheses,
whose physical content is not immediately apparent, to the use of more or
less transparent physical ideas, which cannot always be justified.

The simplest intuitive physical picture of L. Prandtl has historically al-
lowed us to make some progress by assuming that fluid parcels (or eddies) of
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a certain size transport momentum through the fluid by means of their seem-
ingly random motion (see Section 4.2.5). If so, it is appropriate to associate
one length scale with the “diameter” of these eddies, and another for the dis-
tance through which they remain intact as they propagate relative to the rest
of the fluid. We cannot say a priori that these two lengths are the same, but
we might speculate that they would be proportional to each other. We now
assume that the flow is such that the mean velocity varies in a direction at
right angles to the streamlines (as in pipe flows). If, as shown in Figure 4.61,
a fluid parcel is displaced from a position y where the mean velocity is u(y)
by a distance l in a direction transverse to the flow, the difference between
its old and new velocities is u(y + l) − u(y). As a first approximation, we
may write this as l∂u/∂y. This gives an estimate of the order of magnitude
of the fluctuation u′. The value of v′ is found from the assumption that two
parcels of fluid, which enter the layer in question from opposite sides and
subsequently move on after each other, approach or recede from one another
with relative velocity 2l∂u/∂y. This gives rise to transverse velocities of the
same order of magnitude as u′. Thus, in forming the average value u′v′, we
have still to consider the signs of the corresponding u and v components.
It is easy to see, however, that in crossing a control surface parallel to the
boundary, the fluid particles moving away from the boundary are relatively
slow compared to those moving toward the boundary. Therefore, in general,
negative values of u′ are associated with positive values of v′, and positive
values of u′ with negative values of v′. Thus the product u′v′ tends to be
negative in both cases, and the new shearing stress is positive and of order
ρ(l∂u/∂y)2. If we arbitrarily take the unknown factor of proportionality as
unity, we merely make a slight change in the meaning of l. To make the for-
mula accurately express the fact that a positive shearing stress corresponds
to positive values of ∂u/∂y and a negative shearing stress to negative values
of ∂u/∂y, we must write

τ ′ = ρ l2
∣∣∣∣
∂u

∂y

∣∣∣∣
∂u

∂y
. (6.35)

From this approximate expression, we infer that the Reynolds stresses due
to turbulent motion are proportional to the square of velocity increments,
leading to the notion that fluid resistance varies roughly as the square of the
velocity in a turbulent flow. The length l, called Prandtl’s mixing length, is
not unlike the molecular mean free path λ in the kinetic theory of gases. In
the latter, the transfer of momentum due to motion of molecules is discussed
in a way similar to our present account of the transfer of momentum by
the large-scale motion of fluid parcels. As in the present case, the deviation
from the mean velocity of particles, moving upward or downward, is given
by u′ = ±λ∂u/∂y. The transverse velocity v′, however, is not proportional
to u′, but is equal to the molecular velocity, effectively a constant. Thus, the
shearing stresses due to molecular motion (the viscous stresses) are linearly
proportional to ∂u/∂y. In gases, the mean free path λ is inversely proportional
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to the density ρ, so that the factor ρλ present in the definition of viscosity is
independent of the density.

If we insert µt = ρl2|∂u/∂y| into (6.35), we obtain the equation τ ′ =
µt∂u/∂y. This is of the same type as the equation for the viscous shearing
stress τ = µ∂u/∂y, and µt has the dimensions of viscosity. Unlike the molec-
ular viscosity coefficient, however, µt, known as the eddy viscosity coefficient,
depends on the details of the flow and its Reynolds number. Another impor-
tant difference from ordinary viscosity is that µt is not a unique property of
the fluid and varies from point to point in the flow. For example, it tends to
zero as the boundary wall is approached. In practice, these attributes limit
the usefulness of the concept of eddy viscosity. Neither is the notion as com-
pelling as in the molecular case, where there is a large separation of scales
between the molecular mean free path and the length scale characterizing the
mean flow gradient. Indeed, in turbulence, the mixing length is often not a
negligibly small fraction of the flow size. In spite of these basic limitations,
the notion of mixing length is qualitatively ingrained even in sophisticated
theories of turbulence.

6.3.2 Turbulent Mixing

The effects of turbulence include not only increased momentum transport,
but also the transport by convection of all the properties of moving matter
(heat content, quantity of admixed matter, etc). With some exceptions, the
transport of a given property will occur, on average, from regions rich in that
property to those that are lacking in that property. In the case of temperature
differences, this means that some type of turbulent heat conduction; in the
case of differences in concentration, a type of turbulent diffusion, will result.
Thus, since the quantity of heat contained in unit mass of a fluid is cpT ,
where T is the temperature and cp the specific heat at constant pressure, the
net quantity of heat flowing across unit area per unit time is given by

Q = −cpκt
∂T

∂y
= −cpρl2

∣∣∣∂u
∂y

∣∣∣∂T
∂y

. (6.36)

That is, cpκt is the effective thermal diffusivity (λt = cp · ρκt). In the case of
a chemical or mechanical admixture of concentration c, the mass of admixed
substance transferred across unit area in unit time is given by

M = −ρDt
∂c

∂y
. (6.37)

There remains the question of whether κt and Dt agree numerically with
νt = µt/ρ, considering that the mechanism of transfer of a property of matter,
or of an admixed substance, is not quite the same as that of transfer of
momentum. The ratios νt/κt and νt/Dt are known as the turbulent Prandtl
number and turbulent Schmidt number, respectively (see Section 7.4). Their
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numerical values depend on whether one is considering turbulence near a
solid boundary, or in regions away from it (the so-called free-shear flow).

This difference between free shear flows and wall-bounded flows is con-
nected with differences in the eddy structure between the two classes of flows.
Loosely speaking, eddies with their axes parallel to the direction of flow pre-
dominate near a solid boundary, whereas the eddies with their axes nearly at
right angles to the flow direction predominate in free-shear flows. Eddies of
the first kind make no contribution to the transport of momentum, whereas
eddies of the second kind make a very considerable contribution. Therefore,
the distributions of mean velocity and of mean temperature or concentration
exhibit marked differences. That the heat exchange is more dominant than
the momentum exchange in the case of free turbulence has also been shown
by experiments on the smoothing out of temperature and velocity distribu-
tions in the rear of lattices of heated rods, where the temperature differences
vanishes much more rapidly than the velocity differences.

In general, since turbulent transport and mixing depend largely on the
motion of parcels of fluid, one may imagine that they become essentially
independent of molecular properties. It may be expected that the momentum
transport far away from the wall becomes asymptotically independent of
the fluid viscosity. The situation very near the wall is that the viscosity
always plays an important role because turbulent fluctuations are small there.
Turbulent mixing of admixtures does seem to retain a weak dependence on
the molecular Prandtl or Schmidt number (as appropriate). This seems to be
the result of the fact that parcels moving through the turbulent background
develop transient boundary-layers on their front side, and reintroduce the
molecular Prandtl or Schmidt number effects indirectly.

6.3.3 Energy Relations in Turbulent Flows

Work is done on a fluid element by the Reynolds stresses and the corre-
sponding pressure differences. This work serves to maintain the turbulent
motion within the element. In the very simple picture considered above, the
work done on unit volume per second is τ ′∂u/∂y. This work enables the ed-
dying motion to maintain itself against the resistance that it encounters in
its motion. The initial forward motion of the individual eddy, relative to its
surroundings, is itself a turbulent motion, which, if its Reynolds number is
sufficiently high, gives rise to a turbulence of the second-order with smaller
eddies of turbulence. These, in turn, produce turbulence of the third-order.
This process continues until the final eddies are so small that they cannot
become turbulent. What is left of the kinetic energy of these smallest eddies
is transformed into heat as a result of viscosity. This suggests that a large
range of scales can be created in turbulence, and that this range is larger if
we start out with a larger Reynolds number. This notion has been formalized
by L. F. Richardson (1920) and, particularly, A. N. Kolmogorov (1941). In
describing this work, it is customary to speak loosely of scales of turbulence,
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Fig. 6.29. Turbulent cascade

which, while being another word for sizes of turbulent eddies, conveys a far
less specific picture than balls of fluid moving about in a cohesive manner.
For instance, in a Fourier representation of the turbulent velocity, the scale
size would be the wavelength of a given mode. The Kolmogorov picture is
that the turbulent energy is introduced at the largest scale, say L, which
then cascades down to smaller and smaller scales without dissipation (see
Figures 6.29 and Figure 6.30, neither of which should be taken too literally)
until a certain smallest scale is reached, where the velocity gradients are so
large that dissipation is large enough to damp out the generation of further
smaller scales. While the velocity gradients of the small scale are very large,
their amplitudes are rather small.

Figure 6.31 shows the spectrum of turbulence energy E connected with
wave numbers, a, of turbulent eddies with the cascade regime at intermediate
wave numbers and the dissipation regime at large wave numbers correspond-
ing to such wavelengths of the turbulent eddies. The energy associated with
the motion of eddies is dissipated and converted to thermal energy. This per-
manent dissipation process results in a consecutive kinetic energy loss. The
stretching work on large eddies, done by the mean flow, provides the energy to
maintain turbulence. In a stationary state, it is precisely the energy produced
at the large scale that is dissipated at small scales. Thus, though viscosity
is responsible for dissipating the energy, it does not control the amount of

Fig. 6.30. Cascading decay of a vortex ring, H.J. Lugt
(1983)
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energy dissipated; this is set instead by the action of the large scales. This
important property is characteristic of turbulence away from the boundary.

The amount of energy transformed into heat per unit volume per unit
time, denoted by ǫ, is made up of the mean values of the squares and products
of the partial derivatives of u′, v′, and w′ with respect to x, y, and z. One
can use ǫ and ν to define the characteristic length and velocity scales of these
smallest scales as

lk = (ν3/ǫ)1/4 , vk = (ν · ǫ)1/2 . (6.38)

These are known as Kolmogorov length and velocity scales, respectively. It
is easy to verify that the Reynolds number based on these scales is exactly
unity, consistent with the idea that their order of magnitude corresponds to
the smallest dynamical scale in turbulence.

The energy of the intermediate scales between L and lk, which form a
hierarchy, is given entirely by the consideration that their function is sim-
ply to transmit energy to the next smallest scales. Their amplitudes adjust
themselves to the requirement that the rate of energy transmission be in-
dependent of the scale. Since the time scales associated with smaller length
scales is shorter, the energy accordingly diminishes with decreasing scale size
in a self-similar manner. Kolmogorov also postulated that the scales will be-
come increasingly isotropic (i.e. direction-independent) as their size becomes
smaller. This picture of turbulence is the basis for Large Eddy Simulation
(LES) in turbulence modeling, Chapter 5.4.5.

Following the discussion above, the standard understanding is that there
are only two length scales of intrinsic interest in turbulence, namely L and
lk. This is not expected to be true near the boundary or if there are multiple

Fig. 6.31. Energy spectrum of turbulence, F. H. Champagne (1978)
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mechanisms for the generation of turbulence. Even if the simple picture might
be true, one can define other length scales. The most popular one is the so-
called Taylor microscale λ:

((
∂u′

∂x

)2
)

=
(u′2)

λ2
const. (6.39)

In the case of isotropic turbulence (described in Section 6.4.4), G.I. Taylor
showed that ǫ is given by the expression

ǫ = 7.5 · µ · (∂u′/∂y)2.
For other forms of turbulence (wall turbulence, free-shear flow turbu-

lence), it is not clear that the dissipation can be related to the gradient of
a single velocity gradient through a universal numerical coefficient as above,
but the proportionality is still quite frequently used. If, for brevity, we write

u′ instead of

√
(u′)2, we may put ǫ = konst. ·µ ·(u′/λ)2. Since u′ = l · |∂u/∂y|,

we can put u′/l as an approximation for |∂u/∂y| and replace |τ | by ρ · u′2 in
the equation ǫ = τ ′ · |∂u/∂y|. We thus have

µ ·
(
u′

λ

)2

· const. = ρ · u
′3

l
,

and so

λ = const ·
√

(νl/u′).

If Rel = u′ · l/ν is introduced as the Reynolds number for the motion of an
eddy, we have

λ ≈ l√
Rel

.

Thus, the Taylor microscale Reynolds number u′λ/ν is proportional to
the square root of the large-scale Reynolds number u′l/ν.

6.4 Classification of Turbulent Flows

The mixing length l in turbulent motion in general varies from place to place.
As yet, no general theory is available regarding its magnitude, although in a
number of particular cases it has been found possible to make assumptions
leading to results in good agreement with experiment. In many cases it is
permissible to neglect the actual shearing stresses arising from the viscosity
in comparison with the apparent shearing stresses (see remarks above on
turbulent transport and mixing). In other instances, the more far-reaching
assumption is made that the effect of viscosity on the magnitude of l is
negligible. In these cases, therefore, one may well be inclined to deal with
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the turbulence of an ideal fluid with zero viscosity. If the Reynolds number
is sufficiently large, this point of view may well justified for certain purposes
away from the walls.

We shall first discuss two cases in more detail, the so-called free turbu-
lence and the turbulence that arises along a smooth boundary (Sections 6.4.1
and 6.4.2). The effect of viscosity in the latter case, the flow along a rough
boundary and the flow past a plate, are discussed in Section 6.4.2. Section
6.4.3 deals with stratified fluid and the flow in curved flows, Section 6.4.4
with turbulence in wind tunnels (including some mention of isotropic tur-
bulence), and Section 6.4.5 deals with two-dimensional turbulence. Finally,
Section 6.4.6 contains a few elementary comments on the role of structures
in turbulent flows.

6.4.1 Free Turbulence

In cases such as the mixing of a free jet (see Figure 4.62) having a sufficiently
high value of Reynolds number with the fluid surrounding it at rest, it seems
reasonable to take the mixing length for every cross-section as being propor-
tional to the width of the jet there (l = α · b). By b we may, for example,
mean half the base of a parabolic or paraboloidal distribution of velocity,
in which the maximum velocity and quantity of fluid moving coincide with
those of the actual flow considered. Some such assumption is necessary, since
the actual flow passes, in an average sense, smoothly into the external fluid
without any perceptible boundary. Making an assumption of this kind, we
get values for α of approximately 1/8 far away from the origin of the jet.

Observation shows that free round jets, for example of Figure 6.1, in a
sufficiently large space full of fluid at rest spread out in such a way that
except in the immediate neighborhood of the outflow, the width of the jet
is proportional to the distance from the point of outflow, while the velocity
is inversely proportional to that distance. Throughout the jet the pressure is
nearly the same as in the surrounding fluid.

In discussions of an ordinary liquid spray, the assumption is sometimes
made that there is a rise of pressure in the air jet as the velocity decreases, by
Bernoulli’s theorem, and that the pressure at the point of outflow is therefore
reduced, thus causing fluid to be sucked up. This is incorrect: Bernoulli’s
theorem is true only when frictional stresses are absent, which is certainly
not the case here. On the contrary, the suction is due to the flow around the
edge of the tube that projects into the jet at right angles. In the spreading
jet the pressure is practically the same as in the surrounding air at rest.

The decrease in velocity with increase of distance from the point of out-
flow is therefore due to the frictional stresses alone. Further, the decrease in
velocity does not take place in such a way that the same quantity of fluid
flows across all cross-sections. That this cannot be the case is clear because,
during the advance of the flow, fresh masses of fluid at rest are carried along
with it. This is called entrainment of the outer fluid into the jet. On the other
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hand, the momentum of the jet, I = ρ ·
∫∫

u2 da, is constant on account of the
constant pressure. We have I = ρ ·u2

1 ·π · b2 · const, where u1 is the maximum
velocity in the cross-section. It follows from the fact that I is constant that
u1 is proportional to 1/b, i.e. to 1/x.

Another important case is that of the spread of the edge of a jet (Figure
6.32) as it exits from, say, a two-dimensional orifice; this is the so-called
mixing layer. Here u1 = const. If we put l = α · b, we have, as before,
τ ′ ∼ α2 ·ρ ·u2

1; i.e. τ ′ is also constant. The loss of momentum of the part of the
flow coming from the orifice is proportional to ρ ·u2

1 ·b, and the corresponding
resistance is proportional to τ ·x, so that b ∼ α2 ·x, as in the previous example.
The loss of momentum and the resistance are calculated for a cross-section
of unit depth in the direction perpendicular to the plane of the paper. The
fluid entrained from the surrounding region at rest shows an equal gain of
momentum. The slope of the boundary between the undisturbed portion of
the jet and the turbulent zone is of practical importance. It may be taken as
1 : 10.

Fig. 6.32. Jet perturbation, H. Oertel sr. and H. Oertel jr. (1989)
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Yet another case is that of the wake in the rear of a moving body (Figures
4.94 and 4.95). These and other canonical flows have been studied in detail,
and a summary can be found in books such as J.O. Hinze (1975).

An important development to which we should draw attention is that
the instantaneous boundary between the turbulent and nonturbulent parts
of free-shear flows (see, for example, Figure 6.1) is quite well defined and
relatively sharp at high Reynolds numbers. The instantaneous boundary is
dynamic and is distinct from the average boundary of the flow, no matter
how one defines the latter. This is also true of wall-bounded flows on the
side exposed to the free stream (Figure 6.33). The turbulent transport is
reasonably constant within this dynamic boundary, whereas it makes a sharp
transition to zero as one cross it into the outside stream. Such boundaries,
or interfaces, also exist for admixtures. In a given flow, the interfaces for
turbulence itself and those for admixtures of various kinds do not necessarily
match, either on the average or instantaneously. But all these interfaces have
convolutions on many scales, from the largest possible to the smallest allowed
by viscous or diffusive effects. The stochastic geometry of these boundaries
in a range of scales can be described in terms of fractals (see, for example,
K.R. Sreenivasan (1991)).

An observer placed near the free boundary of a turbulent flow will find
himself sometimes immersed within the turbulent region and sometimes out-
side of it. If he stays close to the solid surface, he may be expected to remain
within the turbulent region nearly all the time, whereas the fraction of time
that this happens becomes increasingly smaller as one moves away from the
surface. The average fraction of time one encounters the turbulent region is
called the outer intermittency factor γ. Its behavior is shown on the right of
Figure 6.38. δR is an effective thickness of the boundary layer obtained by
equalizing the shaded areas above and below the intermittency factor. It is
quite distinct from the intermittency of small scales to which we will return
in Section 6.5.

Fig. 6.33. Intermittency factor γ in the turbulent boundary-layer, P. S. Klebanoff
(1955), y is now the wall-normal distance.
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6.4.2 Turbulence near Solid Boundaries

In cases of flow along solid boundaries, which represents an important class,
the mixing length must tend to zero as the boundaries are approached, as is
clear from the definition of the mixing length. It follows that ∂u/∂y reaches
large values in the neighborhood of the boundaries, in relation to that in the
interior of the flow. Figure 4.53 shows the differences between the distribu-
tions of velocity for turbulent flow and laminar flow in a tube.

Following Section 4.2.5, we might consider that a layer of fluid immedi-
ately next to the boundary lacks in its ability to transport mass, momentum
and heat by turbulent mechanisms, even if the overall boundary layer is
turbulent, because of the damping of wall-normal fluctuations imposed by
the boundaries. This thin sublayer is formed according the rough definition
∂u/∂y = τwall/µ, provided that the boundary is smooth. It should be stressed
that the viscous sublayer is highly disturbed and is far from being laminar,
as it once was thought to be. For large values of the Reynolds number, the
value of τwall is quite considerable, owing to the vigorous mixing in the inte-
rior of the flow, so that the rate of increase ∂u/∂y is extremely rapid near the
boundary of the viscous sublayer, which is accordingly very thin. Because the
sublayer is so thin, to a superficial and global observation it might appear as
if, in turbulent motion, the velocity has a finite value at the boundary itself,
which is often used for technical turbulence modeling (Section 5.4.5).

From the theoretical point of view, a general idea may be obtained simply
if we assume that the shearing stress is constant throughout the region outside
the viscous sublayer. In reality, τ decreases continuously as the distance from
the boundary increases beyond a point. (For the pipe, τ becomes zero on the
axis.) Nevertheless, the formulas obtained by putting τ = const = τwall give
very useful approximations at least up to a wall-normal distance that is not
directly affected by the outer intermittency. For pipes, the formulas below
hold nearly to the axis. The total shearing stress (τ = τ + τ ′, the mean value
of the viscous stress plus the apparent shearing stress due to turbulence) is
then given by

τ = µ · ∂u
∂y

+ ρ · l2 ·
(
∂u

∂y

)2

. (6.40)

The first term is important only for very small distances from the boundary.
Outside this region, the second term is so much greater than the first if the
Reynolds number is large, that the first may be neglected in comparison with
it. Taking the square root of the resulting simplified form of equation (6.40),
we have√

τ

ρ
= l · ∂u

∂y
. (6.41)

From the right-hand side we readily see that
√

(τ/ρ) has the dimensions
of a velocity. For simplicity, we introduce the symbol uτ and call it the fric-
tion velocity. It is of the same order of magnitude as the velocities u′, v′
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due to turbulence (or, more accurately, uτ is of the order of

√
(u′v′)). With

the assumption we have made here, however, uτ is a constant for a given
streamwise position along the flow.

We shall now suppose that y = 0 represents a smooth wall, and, for
simplicity, regard it as extending to an infinite distance in both horizontal
directions. We shall assume that another wall is at an infinite distance in y
away from the first wall. Then u depends on y only. In what follows, there-
fore, we shall write du/dy for ∂u/∂y, and since we shall momentarily not be
concerned with fluctuations, we shall also drop the averaging symbol.

We have now to find a reasonable law for the mixing length l, i.e. one that
gives the correct dimensions. If we make the further assumption (suggested
by observation) that l is unaffected by fluid viscosity, the only length we have
at our disposal is the distance from the wall y. The only dimensionally correct
formula for l is then

l = κ · y. (6.42)

The numerical factor κ is essentially a universal constant of this problem in
turbulent flow. It is known as the Kármán constant, due to Th. von Kármán.
From equation (6.41) we then have

uτ = κ · y · du
dy

. (6.43)

Since uτ is constant, this can be immediately solved, giving (4.82)

u = uτ

( 1

κ
· ln y + C

)
. (6.44)

For large values of the Reynolds number this expression is in reasonable
agreement with observation, with 0.41 as the accepted value of the Kármán
constant. It is true that for y = 0 the formula gives the value −∞ instead
of the value 0, but we know already that our simplified calculation will not
apply at or near y = 0; instead, we have to use the more accurate equation
(6.40) and set up a modified formula for l involving the second length ν/uτ .
We shall discuss the role of this second length scale later.

We can also obtain an expression for C, the constant of integration in
equation (6.44), from the fact that the viscosity becomes important in the im-
mediate neighborhood of the wall. The expression in parentheses in equation
(6.44) must be a pure number and must not depend on the units employed.
This is achieved if we subtract from ln y the logarithm of the length ν/uτ

mentioned above, i.e. if we put

C = C1 −
1

κ
· ln ν

uτ
. (6.45)

Then C1 is a second universal number, and we have (4.83)

u = uτ

( 1

κ
· ln y · uτ

ν
+ C1

)
. (6.46)
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Since the greatest velocity differences occur in the immediate neighborhood
of the wall, equation (6.46) may also be used as a good approximation in cases
in which the shearing stress τ depends mildly on y. We have merely to set
uτ =

√
(τwall/ρ), and obtain values of the velocity that are found to lie very

close to the observed values. For these cases that deviate from the theory, e.g.
for flow in pipes, the observed values of u/uτ can be plotted against log10

yuτ

ν .
The curve obtained is almost a straight line. If equation (6.46) is used in this
way as an approximation to the distribution of velocity in smooth-walled
straight pipes, Nikuradse’s experiments (J. Nikuradse (1932)) give κ = 0.40
and C1 = 5.5. Passing from natural logarithms to ordinary logarithms, we
obtain

u = uτ ·
(
5.75 · log10(

y · uτ

ν
) + 5.5

)
. (6.47)

M.V. Zagarola and A.J. Smits (1998) have extended the range of pressure
drop measurements in a pipe up to about 36 million in the Reynolds number
based on the pipe diameter, thus extending Nikuradse’s range by a factor
of about 10. They confirm the existence of a logarithmic region (though the
Kármán constant in these measurements is a few percent different).

It should be mentioned that there is a different scheme of describing the
velocity distribution in pipe flows (and, in general, in wall-bounded flows).
This scheme, in its modern form, is due primarily to G.I. Barenblatt (1993).
It proposes that (6.43) is not strictly valid because the influence of the sec-
ond length scale, namely ν/uτ , never strictly disappears but remains intact,
though perhaps only weakly. Loosely speaking, this expectation is in keeping
with the spirit of the behavior of condensed matter near the critical point.
Instead of equation (6.43), one then has

du

dy
=

1

κ
· uτ

y
·
(y · uτ

ν

)β

, (6.48)

where β is an undetermined constant. Integrating the equation, one can see
that a power law emerges for the velocity distribution. Barenblatt and his col-
laborators have examined the data of Nikuradse, and also those of Zagarola
and Smits in the lower range of Reynolds number, and concluded that the
power law provides a better fit to the velocity distribution than the loga-
rithmic law. They have determined the constants in the power-law velocity
distribution by empirical fit to the data.

The question is not merely one of which of the two forms fits the data
better, but is one of principle. Even at high Reynolds numbers, and not too
close to the wall, does the influence of the second length scale ν/uτ disappear
altogether, or remain weakly present? A firm answer to this question will
seriously influence our thinking on how one quantity scales with another in
wall-bounded flows.
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6.4.3 Rotating and Stratified Flows

So far, we have not considered the effects of rotation and density stratification
that are evident in most natural flows (see Chapter 10). Such effects are par-
ticularly important in geophysical flows. Large-scale flows such as hurricanes
are clearly affected by both Earth’s rotation and density stratification. These
effects are sometimes important even on the laboratory scale. One need only
consider the bathtub vortex and the direction of rotation of the fluid as it
nears the drain.

The main effect of rotation is to introduce centrifugal and Coriolis forces.
The centrifugal force always acts perpendicular to the axis of rotation, and is
similar in structure to the pressure gradient, with which it is often considered
together. In the case of the flow past curved objects, turbulence is diminished
or increased as a result of the centrifugal forces, according to whether the
velocity increases or decreases from the center of curvature outwards. Here
the variation in magnitude of the centrifugal forces plays the same role as
that played by variation of the force of gravity in the flow of layers differing
in density.

The Coriolis force, which acts perpendicular to the axis of rotation and
is perpendicular to the relative velocity, may be explained as follows. If a
fluid mass moves from Earth’s equator to the north, it crosses latitudes with
decreasing radius. To preserve its angular momentum, the fluid parcel has
to spin faster and thus move to the right. A fluid parcel moving toward the
equator will have to slow down and move, relative to Earth, to the left. The
movements in the Southern Hemisphere are just the opposite. The Coriolis
force, which thus depends on the latitude, is proportional in magnitude to
the sine of the latitude, and is a source of additional vorticity and turbulence
in rotating systems.

The precise circumstances in which the Coriolis force is important depend
on the relative magnitude of other forces. The ratio of inertial to Coriolis
forces is called the Rossby number. A second parameter, called the Ekman
number, is the ratio of frictional forces to the Coriolis force. In most geophys-
ical flows, which include atmospheric and oceanic motions, the inertial force
is by far stronger than the frictional force, so it is often the Rossby number
that is important. In the boundary-layers, of course, the Ekman number is
also of consequence.

An additional effect is due to density stratification. In a flow that is pre-
dominantly horizontal, if the density of the medium diminishes rapidly up-
ward as, for example, in a mass of air with the temperature increasing up-
ward, or where there is a layer of fresh water superimposed on salt water,
the process of turbulent mixing must cause heavier layers to be moved above
the lighter, and lighter layers to be pushed down below the heavier. That is,
part of the work available for the maintenance of turbulence, derived from
the main flow, is used up against gravity. This may cause the turbulent mo-
tion to be diminished and possibly die out altogether. This is the explanation
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of the cessation of turbulence and dying down of the wind at night in the
lower layers of the atmosphere, with the wind still continuing unabated at
a higher level. Conversely, turbulence is increased by irradiation from the
ground, which causes a reversal of the stratification, resulting in dense layers
higher than less dense ones. This is what happens, for example, in so-called
Rayleigh–Bénard convection, in which a fluid layer contained between two
horizontal plates is heated at the lower plate and cooled at the top plate (see
Section 7.2.1 and Figure 1.5).

6.4.4 Turbulence in Wind Tunnels

Much attention has been devoted to turbulence in wind tunnels, in which
turbulence is undesirable, since one purpose of experiments in wind tunnels
is to simulate the state of the flow past a body moving at a uniform speed
through air at rest. Such tests are rather important for the development of
new designs of automobiles to aircraft, as well as stationary objects such as
bridges and towers that are exposed to winds. Turbulence, however, cannot
be entirely avoided in wind tunnels. Residual turbulence exists even after
the air has passed through a honeycomb and screens at the entrance section
of the tunnel (see Figure 6.34). This particularly affects the occurrence of
turbulence in the boundary-layers on bodies under investigation, and also the
separation of the flow from the bodies. Separation changes the character of
the flow near the wall and affects transport properties immensely. Needless to
say, controlling the wind-tunnel turbulence is especially important in studies
of laminar–turbulent transition in boundary-layers and other flows.

The earliest way of measuring turbulence in a wind tunnel was by the
fall in the drag of a sphere due to the onset of turbulence in the boundary-
layers. Later, G. B. Schubauer, H. K. Skramstad (1947), and H. L. Dryden
(1948) worked out methods using hot-wire anemometers, by which numerical
values for the small fluctuations of velocity could be obtained quite reliably.
It was found that wind-tunnel turbulence (or, more generally, any turbulence
arising from flow through a grid of bars) has simple properties at sufficient
downstream distances from it. It is found to be nearly homogeneous and
isotropic; that is, the fluctuations of velocity are of the same magnitude across

Fig. 6.34. Turbulent flow behind a
wind-tunnel honeycomb, M. Lesieur
(1997), picture by J. L. Balint et al.



6.4 Classification of Turbulent Flows 393

the wind tunnel cross-section (except very close to the wind tunnel walls),
and their average measures are the same in all directions as well.

The simplest statistical quantity is the mean energy of fluctuation

E =
1

2
· ρ ·

(
(u′2) + (v′2) + (w′2)

)
=

1

2
· ρ · q2 . (6.49)

From a series of measurements made for a grid of mesh-width m through
which fluid moves with mean velocity U , it is now known that q decays,
over some intermediate distance from the grid, as a power of that distance.
Equivalently, in situations where the turbulence is generated by sweeping
a grid of bars at velocity U through a fluid medium at rest, the decay of
the energy follows a power law in time. The power-law exponent is roughly
−1.25. It is not clear whether this exponent is universal (experiments yield a
value roughly between 1 and 1.4), or depends weakly on a number of features
such as m, the diameter of the rod, the geometry of the rod itself, and on
whether the grid is passive or has some moving elements in it. The constant
of proportionality in the formula is indeed nonuniversal and depends strongly
on the details just mentioned.

Isotropic Turbulence

As the name suggests, isotropic turbulence (see Figure 1.4) has no directional
preference and is a mathematical construct. In fact, turbulence can be gener-
ated only in the presence of local shear or near boundaries, and the process
of generation of turbulence tends to maintain a preferred direction. However,
the turbulence that is found far enough away from the boundary where the
mean velocity gradients are small is often approximately isotropic. The tur-
bulence generated behind grids is roughly isotropic sufficiently away from the
grid. Further, small scales of turbulence in all flows tend to be statistically
isotropic though individual structures do show deviations from isotropy. For
all these reasons, isotropic turbulence is of some interest. In any case, this is
the form of turbulence most accessible to theoretical development, and has
consequently assumed an importance in its own right. Isotropic turbulence
is also homogeneous, though the mention of the latter is often omitted for
brevity.

Homogeneous and isotropic turbulence is a paradigm that can be dealt
with up to a point by statistical theory and by experiments suggested by
theoretical work. Special reference should be made to the work by G. I. Taylor
(1935, 1936), who introduced the concept, and Th. von Kármán (1948), who
was responsible for deriving an important equation for statistical quantities
from the Navier–Stokes equations. A detailed discussion can be found in A.
S. Monin, A. M. Yaglom (1975).

An indication of the spatial character of velocity fluctuations may be
obtained by studying the correlation between the velocities at neighboring
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points 1 and 2. For isotropic turbulence there is only one independent corre-
lation function, which is a function of the distance r. In Figure 6.35, R is the
correlation between the components of velocity at 1 and at 2 parallel to r:

R(r) =
u′1 · u′2√
u′21 ·

√
u′22

. (6.50)

From the graph of R the characteristic length of turbulence can be defined
as

∞∫

0

R(r) · dr = L .

It is closely related to the mixing length l. The value of L in Figure 6.33 is
a measure of the large eddies in the turbulence motion, in which the energy
of turbulence is controlled by the manner in which turbulence is produced.
According to G. I. Taylor (1936), the statistical mean value of the dissipation
is proportional to

µ · q2 ·
(d2R

dr2

)
r=0

, (6.51)

where
(d2R

dr2

)
r=0

=
1

λ2
.

The Reynolds number based on λ, the Taylor microscale introduced in Sec-
tion 6.3.3, and the root-mean-square fluctuation velocity u′, is often used to
compare properties among different flows for which the characteristic large
scale depends on the geometry, and is thus not a useful scale of comparison.

Fig. 6.35. Correlation of velocity fluctu-
ations. The integral in the figure extends
only up to the first crossing of the correla-
tion, as is often done experimentally, and
the shaded areas above and below the cor-
relation function are equal.
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It should be remembered that λ does not represent the smallest scales of
turbulence. That function is served by the A. N. Kolmogorov scale lk (6.58).

The main dynamical problems in isotropic turbulence are the nonlinear
transfer of energy from one scale to another, and its eventual dissipation to
heat. On average, the energy transfer occurs from large scales to small scales,
though instantaneously, there is some two-way transfer, whose details are
not fully understood. The average transfer is assumed to proceed from one
scale to a neighboring smaller scale in the form of an energy cascade. When
the scales involved are large, that is, their characteristic Reynolds numbers,
based on their own size, are sufficiently high, it is assumed that the scales
merely transmit energy to the next smaller ones without dissipating any part
of the energy. When the energy reaches the smallest scales, it is presumed to
be dissipated there. If the cascade picture holds for any type of turbulence
at all, isotropic turbulence is the most likely candidate.

One consequence of the energy cascade is that when the scales that contain
most of the energy (of order L) and the scales that dissipate most of the
energy (of order lk) are significantly disparate, the energy dissipation rate
is the same as the rate at which energy is being pumped into turbulence
at large scales—as already discussed. This equality has been verified both
experimentally in grid turbulence and by solving the equations of motion
on a high-speed computer, as long as the Reynolds number of turbulence
is sufficiently high for the said scale separation to exist. Thus arises the
notion that the energy dissipation rate in high-Reynolds-number turbulence
is independent of fluid viscosity. This seemingly anomalous behavior is of
great consequence, and shows that the limit of high Reynolds number (or
vanishing viscosity) is not the same as the case of zero viscosity. It may be
recalled that this feature is common to all singular perturbation problems
including boundary-layers.

A significant contribution related to energy cascades is due to A. N. Kol-
mogorov (1941), which is the basis of turbulence modeling in Chapter 5.4.5.
Since this work is related strongly to scales that are considerably smaller than
that at which turbulence is produced, a somewhat more detailed description
is postponed to the later section on small scales of turbulence. One result
may, however, be worth presenting here. This result is thought to hold even
for general anisotropic turbulence for the so-called inertial range of scales,
which is smaller than the energy-containing scales L and larger than the dis-
sipating scales lk. In this range, the energy transfer process adjusts itself so
that the spectral distribution of energy is given by (see Figure 6.31)

E(a) = Ck · ǫ2/3 · a−5/3 , (6.52)

where Ck is the so-called Kolmogorov constant and ǫ is the rate of energy
dissipation. The integral of E(a) over all wave numbers a gives the total
turbulent kinetic energy. Here, the wave number a takes the role of distin-
guishing different scales of turbulence: Small values of a correspond to large
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scales, and large a represent small scales. The constant Ck cannot be deduced
theoretically but is known from experiment to be a constant of about 1.5 at
high Reynolds numbers. Note that Figure 6.31 indeed corresponds to a flow
that is anisotropic on the large scale.

As already remarked, isotropic turbulence has been studied in wind tun-
nels behind a grid of bars, or by pulling a grid of bars through a stationary
mass of fluid. Recently, as computer power has increased, the Navier–Stokes
equations of Section 5.2 have been solved numerically in periodic boxes, start-
ing with an initial realization of a prescribed random field. In due course, the
computer solutions attain properties that are essentially independent of the
initial conditions and replicate those of measured turbulence. Such simula-
tions have provided a powerful tool for understanding turbulence in general,
and isotropic turbulence in particular. An interesting result to emerge is that
the structure at small scales is in the form of intense vortex tubes that are
long compared to their diameter. The vortex tubes form mosaics of several
different scales. It is not yet clear whether this observation is of fundamental
consequence to the theory of turbulence.

6.4.5 Two-Dimensional Turbulence

A study of the appropriate equations shows that, as a rule, the components
of turbulent fluctuating velocities in all three directions tend to be of the
same order of magnitude except close to solid surfaces (where there is a
preferential damping of the wall-normal velocity), or when certain types of
body forces act on the flow. This is true even in flows that are two-dimensional
on average such as boundary-layers on extended flat plates, or wakes behind
long cylinders, which do not have significant average variations along the
span. There are circumstances, however, in which the turbulence fluctuations
are close to being two-dimensional (i.e. fluctuations are largely planar).

Examples are atmospheric and oceanic flows (see Chapter 10), which of-
ten have a very large spatial extent in two directions and a relatively short
extent in the direction of their depth. Such flows occur in a stratified, of-
ten rotating, environment and are central to understanding and predicting
weather, dispersion of particles and chemicals in the atmosphere and oceans,
and other natural phenomena. A laboratory realization of two-dimensional
turbulence is the turbulent flow on a soap film, which is shown in Figure 6.36.

While these examples are not purely two-dimensional, there is promis-
ing evidence that the strictly two-dimensional mathematical approximation
will allow us to make some headway. On the experimental front, there has
been some success in generating in the laboratory close approximations to
two-dimensional flows that compare well to both natural flows and the math-
ematical ideal. Two-dimensional turbulence is also studied with the expec-
tation that it could provide insight into the three-dimensional problem. For
instance, the two problems have in common fundamental properties such as
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energy transfer between scales, dissipation mechanisms, and structure forma-
tion and evolution.

Major Theoretical Results

The relative simplicity of the two-dimensional Navier–Stokes equation allows
several fundamental properties to be derived. The first result can be derived
in a straightforward manner by taking the curl of the Navier–Stokes equation
for an incompressible fluid, and taking the inviscid (Euler) limit. We obtain
the Helmholtz theorem

∂ω

∂t
+ v · ∇ω = 0 , (6.53)

where the vorticity ω = ∇×v is always along the axis normal to the plane.
Here arises a fundamental difference from the situation in three dimensions:
The Helmholtz equation means that vorticity of a fluid parcel is conserved
through the lifetime of turbulence. In contrast, three-dimensional turbulence
permits an additional vortex-stretching term (ω∇v), which is nonzero due
to the presence of the additional degree of freedom in the third dimension.
Furthermore, the restriction of the flow to the plane results in the following
equations for energy E = 1

2 〈v2〉 and enstrophy Ω = 〈ω2〉 in two-dimensional
homogeneous turbulence:

dE

dt
= −ν ·Ω ,

dΩ

dt
= −ν · 〈(∇ω)

2〉 . (6.54)

Here, the angular brackets imply suitable averaging and their distinction from
the overbar used in earlier sections is not important for present purposes. For
three-dimensional turbulence, the zero-viscosity limit is known to lead to an
increase of enstrophy, because, in that limit, viscous diffusion of vorticity
decreases and stretching of vortex lines is less restrained. Thus, as already
mentioned, the rate of energy dissipation for three-dimensional turbulence
remains finite even in the inviscid limit. In two dimensions, however, the
enstrophy changes only due to viscous effects, and thus can only decrease.
This leads to zero rate of energy dissipation in the inviscid limit (6.54). G. K.

Fig. 6.36. Turbulent flow on a soap film, P. Voro-
bieff, R. E. Ecke (2003)
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Batchelor (1948) provided arguments that the rate of dissipation of enstrophy
is nonzero in the inviscid limit in the two-dimensional case; this is the so-
called enstrophy dissipation anomaly.

The final picture, then, is that two-dimensional systems do not dissipate
energy in small scales. The energy is transported to larger scales and even-
tually gets dissipated by friction at the boundaries of a finite system. On the
other hand, enstrophy is allowed to cascade down the scales to be dissipated
in the small scales. Therefore, there appears to be some value to casting
the two-dimensional enstrophy (vorticity) as analogous to three-dimensional
energy (velocity). This was the approach of R. H. Kraichnan (1967).

The Energy and Enstrophy Cascades

R.H. Kraichnan (1967) recognized that the enstrophy and the energy cas-
cades can exist simultaneously in two dimensions. From the study of the con-
servation equations and triadic wave number interactions, it can be shown
that energy is transferred, on average, toward small wave numbers (large
scales), while the enstrophy is transferred toward large wave numbers (small
scales). The prediction for the energy spectrum in the inverse cascade is
a scaling law E(a) ∼ a−5/3, which has been verified in numerical simula-
tions (G. Boffetta (2007)) and experiments (J. Somméria (1986), P. Tabeling
(1997)). The inverse energy cascade implies a mechanism by which large ed-
dies are created from small eddies instead of the other way around, as in
three-dimensional turbulence.

The phenomenological picture is that the initial vortices, formed by the
forcing, get conjoined to other vortices to form larger ones during their life-
time, i.e. in the time it takes for friction at the boundary to damp them out
by depleting all their energy. The three-dimensional Richardson cascade of
the breakup of eddies is replaced by an aggregation process among vortices in
two dimensions. The Kraichnan conjecture for a (stationary) inverse cascade
seems to hold only if there is a sink for energy at large scales. While the fluid
itself has no such property, the boundary conditions in both simulations and
experiments provide the artificial sink for energy, for example, the friction
at the walls. This allows for observation of a sustained (stationary) inverse
energy cascade.

The enstrophy Ω, as already mentioned, is dissipated in the small scales in
the inviscid limit. In a forced two-dimensional system the enstrophy cascades
from the energy injection scale down to small scales. The enstrophy spectrum
in the inertial range, according to the theories of G. K. Batchelor and R. H.
Kraichnan, has the behaviorΩ(a) ∼ a−1. The corresponding energy spectrum
in the inertial range follows to be E(a) ∼ a−3. Experimental observations of
the decaying energy spectrum have yielded slopes ranging from −3 to −4
over varying times and ranges of initial conditions. A full description of these
aspects is summarized by P. Tabeling (2002).
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6.4.6 Structures and Statistics

Both forced and decaying two-dimensional turbulence have a well-documented
tendency to form coherent structures. The remarkable feature of the two-
dimensional coherent structures observed in both numerical and experimen-
tal work is their long life-times. Generally speaking, much energy has been
put into identifying the coherence in vortical structures, determining their
stability properties, and analyzing the dynamics of vortex interactions in-
cluding merging. The goal is to provide a satisfactory link between statistical
theories and coherent structures of turbulence. This approach has been more
successful in two dimensions than in three.

G. K. Batchelor (1969) was the first to propose self-similarity in time of
the decay process in two dimensions. A dimensional argument led him to the
following estimate of the decay rate of the vortex density ρ,

ρ ∼ E−1 · t−2, (6.55)

where E is the kinetic energy density. The same dimensional analysis shows
that both vortex size and intervortex spacing grow at a rate linear in time t.
This was the initial attempt at a statistical description. It was soon discovered
in numerical simulations (J. C. McWilliams (1990)) that although power laws
seem to hold, the exponents of the decay deviated from Batchelor’s prediction.
The vortex density decayed more slowly, as did the growth of their size and
spacing. These numerical observations have more recently been supported
by experimental data. G. F. Carneve et al. (1991) proposed that another
invariant must be present in the system in addition to E. This invariant is
the global maximum vorticity of the system. While the physical justification
for this quantity as an invariant of a decaying system is not rigorous, it
seems to derive reasonable numerical support. On recalculation of the scaling
exponents , good agreement with empirical evidence is achieved, supporting
this framework, known as the universal decay theory.

The subject of structures in three-dimensional turbulence is less well de-
veloped, despite considerable effort. That large scale structures do exist is
clear even to a casual observer but what is not clear is the degree of their
temporal coherence at very high Reynolds numbers. They are, of course, far

Fig. 6.37. Coherent structures near the exit of an axisymmetric turbulent jet
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Fig. 6.38. Coherent structures in a turbulent
flame (see Section 9.3.6)

more evident in special cases such as the mixing regions near the jet exit (Fig-
ure 6.37) and in low-Reynolds-number flames (see Figure 6.38 which shows a
laser-induced fluorescence sheet (LIF) of the OH concentration of a turbulent
premixed air–gas flame). There is considerable discussion as to whether the
largest scales, which give the shape to a flow, are efficient in transporting
heat, mass and momentum. The same questions apply for reacting flows, and
examples of coherent structures in turbulent flames are discussed in detail in
Chapter 9.

On the other hand, it is quite clear that the small-scale and intense vor-
tical linking structures to statistical theories do tend to arrange themselves
coherently, with a diameter that scales on the Kolmogorov scale and length
somewhere between the Taylor microscale and the integral scale. While one
would imagine that they, too, play a role in turbulence dynamics, we have
to emphasize that the relation between the observed structure and the dy-
namical quantities that one usually measures is not fully clear. We should
reemphasize, that a central problem in turbulence is to connect the structure
and dynamics in some fundamental and systematic way. In this context, con-
cepts such as helicity (which is the volume integral of the scalar product of
the velocity and vorticity, see H. K. Moffatt (1969)) and reconnections (see
S. Kida, M. Takayoka (1994)) play an important role.

6.5 Some New Developments in Turbulence

6.5.1 Decomposition into small and large scales

The past few decades have seen an increased interest in the statistical de-
scriptions of turbulence, and the desire to incorporate the observed structure
in such descriptions. While turbulence involves the creation and interaction
of structures and patterns of different length scales, some of them coherent,
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its vast spatial and temporal complexity necessitates a stochastic description.
It is hoped that a probabilistic description will yield a simplified picture of
its universal properties. The length scales within which universality may be
applicable are smaller than the large scale L that characterizes the size of
the system, or of the manner in which turbulence is generated. The focus on
small scales, while offering plenty of promise, tends to gloss over large-scale
phenomena such as structure formation and coherence, and the sweeping ef-
fects on the small structures. Certain properties of the large-scale motion
have their origin in flow instability, but they are nonuniversal in that their
shapes, onset, and precise manifestation differ from flow to flow. The two
regimes of turbulence, namely the small and large scales, have often been ex-
amined independently of each other, based on the assumption that sufficient
separation between them offers independence from each other. In reality, of
course, this independence is to be regarded only as a convenient model.

We first present a summary of the experimental methods in use, and then
discuss some recent work.

Experimental Methods

The measurement of small-scale, rapidly fluctuating quantities such as ve-
locity and velocity derivatives is still most successfully done using thermal
anemometry and hotwire probes (see, e.g. H. H. Brunn (1995) for a survey of
the methods). Data from such measurements are used to calculate statistics of
flows ranging from mean properties to high-order moments such as Reynolds
stress and structure functions (which are moments of velocity differences be-
tween two neighboring points in space). A limitation of hotwire data is that
their spatial information is often obtained by some means of surrogation,
for instance the use of Taylor’s hypothesis, which assumes that the flow is
swept past a probe without any distortion, at the local flow speed. Of course,
multiple probes can be, and have been, used to transcend this limitation but
there is a limit beyond which this escalation becomes both cumbersome and
invasive. In its simplest form, laser Doppler velocimetry (LDV) again yields
single-point measurements. The advantage of LDV is that it is noninvasive
(see F. Durst (1980)) and can be used in hostile environments such as flames.
The need for full spatial information has led to the development of particle
image velocimetry (PIV); see Raffel et al. (2007). However, the advantage of
PIV over hotwire (or LDV) is sometimes constrained by the present technol-
ogy, which places limits on the temporal resolution attainable, and hence on
resolution of the fluctuations at high Reynolds numbers. A recent effort to
remedy this constraint of classical PIV has been made. High-energy particle
detectors have been modified to serve as optical imaging devices for tracking
particles in a high-Reynolds-number flow (G. A. Voth et al. (1998)). Finally,
the incentive to create very high Reynolds number flows under controlled lab-
oratory conditions has motivated the use of low-viscosity cryogenic helium
as a test fluid (see, e.g. K. R. Sreenivasan, R. J. Donnelly (2000)). (Helium
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below the so-called λ-point, roughly 2.3 K, is bestowed with the property
of superfluidity and generates quantized vortices. Tangles of quantized vor-
tices, called quantum or superfluid turbulence, possess properties which are
analogous to those of classical turbulence; see C. F. Barenghi et al. (2001).)
Facilities based on highly compressed air M. V. Zagarola, A. J. Smits (1998)
and that being built in Göttingen using compressed sulfur-hexafluoride are
also noteworthy for their versatility. In all these methods, very high Reynolds
numbers can be achieved in a moderately sized apparatus but their quanti-
tative measurements are still not satisfactory because of limitations of the
instrumentation.

Small-Scale Turbulence

To study small-scale turbulence, one needs measures that are independent of
the large-scale motion on which small scales are thought to be superimposed.
A simple such measure is the velocity difference between two points separated
by a distance r that is small compared to the large scale L. It is generally
assumed that such quantities, for r ≪ L, behave as in isotropic turbulence.
This is the assumption of local isotropy. The rate at which anisotropic effects
of the large scale diminish with the reduction in scale is a subject of much
study and practical interest, and a survey can be found in S. Kurien, K. R.
Sreenivasan (2001).

One exact relation valid at high Reynolds numbers is the so-called Kol-
mogorov’s law, according to which the following relation holds in the inertial
range lk ≪ r ≪ L:

〈
(u(x+ r) − u(x))3

〉
= −4

5
· 〈ǫ〉 · r . (6.56)

This law has provided the basis for an enormous volume of work. The classical
interpretation of equation (6.56) (e.g. A. S. Monin, A. M. Yaglom (1975))
is that the energy flux from large to small scales is unidirectional on av-
erage. Other attempts have been made to extract more information from
this equation. The equation fixes the extent of the inertial range in experi-
ments and estimates 〈ǫ〉 with less ambiguity than the local isotropy relation
〈ǫ〉 = 15 · ν ·

〈
(∂u/∂x)2

〉
.

Extrapolating the implications of Kolmogorov’s arguments for higher-
order moments of velocity increments, we have

〈(u(x+ r) − u(x))n〉 = Cn · (ǫ · r) n
3 , (6.57)

The spectral equivalent of (6.57) for the special case with n = 2 is the one-
dimensional version of (6.52) which we have already encountered. It can be
written as

φ(a1) = CK · 〈ǫ〉2/3 · a−5/3
1 , (6.58)

where φ(a1) is the one-dimensional spectrum (We have already encountered
the value of the Kolmogorov constant for three-dimensional spectrum in
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(6.52)) of the wave number component a1, and C is the Kolmogorov con-
stant in one-dimensional spectrum. H. L. Grant et al. (1962) verified equation
(6.58) adequately for the first time. Subsequent investigators have also found
the spectral slope to be close to 5/3. The value of C, determined empirically,
is about 0.5.

In the dissipation range, Kolmogorov’s arguments yield the following re-
sult for the spectral density:

φ(a1) = f(A) · 〈ǫ〉2/3 · a−5/3
1 , (6.59)

where A = a1 · lk is the wave number normalized by the Kolmogorov length
scale lk = (ν3/〈ǫ〉)1/4, and the universal function f(A) is unknown (ex-
cept that it approaches C for small A). From numerical simulations at
low Reynolds numbers, it appears that the spectral density is of the form
Aa′

exp(−g · a1η), where a′ ≈ 3.3 and g ≈ 7.1, though it appears to be
smaller at higher Reynolds numbers. Experimental data support equation
(6.59) to some extent, but the situation is not fully satisfactory because of
data scatter. A different type of spectral universality in the dissipation re-
gion has been proposed on the basis of multifractality of the small scale. For
a discussion of this approach, see U. Frisch (1995).

The present situation is such that it is not possible to state that (6.57)
works exactly, even for second-order statistics. There certainly appear to be
departures from (6.57) for large enough n. In atmospheric boundary-layers, in
high-Reynolds-number air and helium flows, the probability density functions
of the velocity increments in the inertial range vary continuously with scale
separation r. If fitted by stretched exponentials exp [∆um

r ], the stretching
exponent m varies smoothly with r, from about 0.5 in the dissipative range
to about 2 as r approaches integral-scale separations (i.e. the distribution
becomes Gaussian). If Kolmogorov’s arguments were right, m would be a
constant independent of r. Given the empirical evidence, one is forced to
modify the Kolmogorov universality in its broadest sense, though it remains
of considerable value in making estimates at most finite Reynolds numbers.

Intermittency in the Inertial and Dissipation Ranges

It is now believed, following A. M. Obukhov (1962), that the reason for the
inadequacy of Kolmogorov’s universality is the strong spatial variation of the
energy dissipation rate, a phenomenon known as intermittency. Note that
this intermittency of the small scales is quite distinct from the outer inter-
mittency we encountered in Section 6.4.2. Obukhov suggested replacing the
(global) mean energy dissipation rate 〈ǫ〉 in Kolmogorov’s formulas by the
local average value ǫr defined over a ball of radius r. For r ≪ L, where
L is a characteristic large scale, the variable ǫr/〈ǫ〉 is a fluctuating quan-
tity and, according to Obukhov’s suggestion, a function of the ratio r/L. In
this way, whenever averages are taken over regions containing varying lev-
els of energy dissipation rate, the large scale enters inertial-range statistics
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explicitly, in contrast to the previously held understanding that L would
not appear explicitly in inertial range properties. A. N. Kolmogorov (1962)
made Obukhov’s suggestion more explicit by assuming that the dissipation
rate is lognormally distributed. He also refined his original hypotheses in an
essential way by taking note of Obukhov’s suggestion. This gave rise to the
so-called refined similarity hypothesis. The resulting modification is that one
may expect power laws of the form

〈∆un
r 〉 ∼ ·(r/L)ζn , (6.60)

where the factors of proportionality, omitted here, are nonuniversal, but the
exponents ζn, although different from n/3, are presumed to be universal.
The deviation of the exponents ζn from n/3 is the hallmark of inertial-range
intermittency. Inertial range intermittency is also inferred from the empiri-
cal fact that the probability density functions of wave number bands show
increasingly flattened tails for increasing midband wave numbers.

G. K. Batchelor and A. A. Townsend (1949) showed that the non-
Gaussian behavior of the probability density of dissipation quantities in-
creases with decreasing scale. In a complementary sense, dissipation quan-
tities become increasingly non-Gaussian as the Reynolds number increases.
These are the two hallmarks of dissipation-scale intermittency. The scaling
exponents νq for the energy dissipation are defined as

〈ǫqr〉 ∼ (r/L)−νq . (6.61)

The proportionality constants omitted here are not expected to be universal.
The rationale for writing this power law can be explained in terms of the
so-called breakdown coefficients or multipliers, which are supposed to rep-
resent the fractions in which the energy dissipation is shared when an eddy
of size r is broken into two eddies, say, of size r/2. It is not clear that the
multipliers, although quite useful, are fundamental to turbulence. Nontrivial
scaling implies that νq is a nonlinear function of q.

Indeed, there exist a broad class of models that attempt to explain the
observed intermittency of the dissipative and inertial scales. These models are
cast best in terms of multifractals (see M. S. Borgas (1992) for a summary),
which provide a convenient superstructure. Kolmogorov’s original model is
a degenerate case, as are other later models described in A. S. Monin and
A. M. Yaglom (1975). The connection of these models to the Navier–Stokes
equations is tenuous, and since the detailed physics of the models cannot be
tested directly, their success should be evaluated chiefly on the basis of how
well they agree with experiments.

Several efforts have been made to measure the exponents νq in (6.61), in
both high and low Reynolds number flows. Given the difficulties in measuring
them, the agreement among various data sets is surprisingly good.

Some other measures of the dissipation range intermittency include the
scaling exponents for vorticity and circulation. The conclusion is that en-
strophy is more intermittent than the energy dissipation rate, at least at
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moderate Reynolds numbers. Similarly, the dissipation rate exponents for
the passive scalar appear to also be more intermittent than the energy dissi-
pation field in the inertial–convective range (between L and lk). By contrast,
in the viscous–convective range, it has been found that the scaling exponents
are trivial (that is, there is no intermittency, and all intermittency exponents
are essentially zero). A summary of this discussion can be found in K. R.
Sreenivasan and R. A. Antonia (1997).

Computation of Turbulent Flows

Computing power has increased exponentially with time in the last few
decades. One can in principle start with suitable initial conditions and com-
pute the evolution of a turbulent flow, subject to appropriate boundary con-
ditions, by solving the Navier–Stokes equations without any further physical
approximations. These are called direct numerical simulations (DNS) (see,
e.g. P. Moin, K. Mahesh (1998)). The DNS has been used in Section 6.2
by simulating the transition process in three-dimensional boundary-layers.
Another field of application of DNS is combustion, which is described in
Chapter 9.

The hope is that it will be possible to compute many of the technologically
important flows by DNS, though it is clear that some others, such as the flow
around an entire aircraft or ship, or in the ocean and the atmosphere, will
remain out of bounds for many years to come, if they ever become amenable
to direct numerical simulations. Note that the range of scales needing to
be resolved increases nominally as the third power of the Reynolds number.
Thus, some inventiveness in our ability to calculate flows will be needed. It
is also clear that the physics of turbulence cannot be understood merely by
computing, though that step will help immensely if combined with organizing
principles of the sort illustrated in this chapter. In one sense, we are still in the
early stages of organization of our knowledge of turbulence. Vortex methods
(see, e.g. A. J. Chorin (1994)), based on the representation of the turbulence
by means of the vorticity field, offer an alternative in some cases, especially
in two dimensions.

On the other end of the spectrum, since we are interested quite often in
the mean characteristics of turbulent flow, one can write down the Reynolds
equations (5.33)–(5.35) for the mean quantities of interest by averaging the
Navier–Stokes equations. It is clear from the discussion of Section 6.3 that
additional terms will appear. For the equations describing the mean veloc-
ity these terms are the standard Reynolds stress terms, which need to be
modeled suitably (see Section 5.4.5, Section 5.4.6 for multiphase flows and
Section 5.4.7 for combustion). This aspect of research has been important
in practice, and is motivated by the need to adapt our partial understand-
ing of turbulence dynamics to obtain predictions of acceptable accuracy in
engineering problems. One account of these models can be found in C. G.
Speziale (1991).
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In between these two extremes lies the scheme that computes only the
large scale in temporal and spatial detail, while not resolving the small scales.
The notion is that the large scales (not just the largest ones that give shape
and form to a flow) carry larger share of burden in the transport of heat, mass,
and momentum, while the effects of the unresolved small scales (or subgrid
scales), which need not be known in detail for most purposes, can be mod-
eled by suitable parameterizations. A sensible modeling of small scales is in
principle attainable because of their nearly universal properties. This scheme
of computation is known as Large Eddy Simulations (LES) of turbulence
which is introduced in Section 5.4.5. Here, one writes down the equations for
large scales only, and models the new terms that appear. These new terms are
similar to the Reynolds stress terms in the mean flow equations. Part of the
reason for studying small-scale structure is indeed the understanding of its
universal properties, so it can be suitably modeled and parameterized, thus
allowing the computation of the large scale correctly. The biggest bottleneck
in using the LES methods extensively is the complexity of turbulence near
the wall. For reviews of these methods, see M. Lesieur, O. Metais (1996) and
S. B. Pope (2000).

In recent years, a numerical scheme based on microscopic models and
mesoscopic kinetic equations has been successfully employed to compute sev-
eral turbulent flows. The models are based on what is now called the lat-
tice Boltzmann methods (LBM), which has been used in Chapter 11 for
microflows. In conventional computational methods of fluid dynamics, one
discretizes the macroscopic continuum equations on a suitably defined fine
mesh before solving them. In LBM, on the other hand, one constructs sim-
plified microscopic models that incorporate the essential physics. The basic
premise is that the macroscopic dynamics, which are the result of a collective
behavior of microscopic particles, are insensitive to the precise details of the
microscopic physics, as long as one satisfies certain conservation properties.
These methods are particularly suitable for fluid flows involving interfacial
dynamics in Chapter 8 and 11 and complex boundaries as airplanes, ships
and cars. A summary of the methods can be found in S. Chen, G. D. Doolen
(1998).

6.5.2 Lagrangian Investigations of Turbulence

Since the transport properties of turbulence are dominated by the advection
of infinitesimal fluid elements, it is natural to resort to the Lagrangian view-
point of Section 3.2, following the motion of the fluid elements. Lagrangian
stochastic models have become important for the prediction of turbulent mix-
ing and dispersion, with a particular emphasis on reacting flows in Chapter
9, see S. B. Pope (2000). A convenient reference for early theoretical devel-
opment in Lagrangian methods is A. S. Monin, A. M. Yaglom (1975), and
an idea of the recent work can be had from P. K. Yeung (2002).
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Among the activities currently being pursued, one of the important ones
is the use of DNS data, obtained in the Eulerian frame, to construct La-
grangian trajectories and compute selected properties, including velocity, ac-
celeration, time scales, velocity gradients, dissipation of energy, properties of
the scalar passively carried along Lagrangian trajectories, and so forth. La-
grangian concepts have been usefully employed in subgrid scale modeling. At
a fundamental level, they have been used to solve aspects of a model for pas-
sive scalars (see Section 6.5.3), and also to study the influence of geometry on
scaling considerations by following Lagrangian clusters. There is, of course,
the thought that Lagrangian studies may be more natural for studying the
properties of coherent structures in turbulence. Finally, using some clever
experimental methods initially developed for data acquisition in high-energy
physics, G. A. Voth et al. (1998) have measured Lagrangian acceleration of
particles and shown that the distributions have tails that spread to many
standard deviations.

6.5.3 Field-Theoretic Methods

The turbulence problem, more than once described as the last unsolved prob-
lem in classical physics, perhaps no longer appears to be as exceptional as it
once did, for other important strong-coupling problems have since been faced
in theoretical physics. Some of these, such as color confinement in quantum
chromodynamics, are still with us. For others, such as critical phenomena
in three spatial dimensions, the critical scaling exponents have been calcu-
lated successfully by several methods, although other nonuniversal quantities
of significant interest, such as critical temperatures, cannot yet be readily
calculated for physical systems found in nature or realized in laboratories.

It is only natural to attempt to use these methods, employed with some
success in similar problems, to address the basic problem of nonlinear cou-
pling among scales of turbulence. Unfortunately, none of these methods that
enabled breakthrough successes in the theory of critical phenomena have yet
yielded results of comparable significance in understanding or predicting tur-
bulent flows. Nevertheless, considerable progress has been made, and the ap-
plication of such methods to turbulence has yielded some important insights.
In particular, field-theoretic techniques have scored a significant success in
calculating turbulent scaling exponents in a simplified model of a white-noise
advected passive scalar (for a review, see G. Falkovich et al. (2001)).

6.5.4 Outlook

Turbulence is perhaps the most complex form of motion that fluid flows
take. It contains structures and strong fluctuations, one embedded in the
other. Consideration of one, and the neglect of the other, does not provide a
full picture valid in all instances.
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Our understanding of turbulence is still imperfect. In attempting to un-
derstand it, one needs to employ a combination of tools that consist of novel
experiments, advanced computations and theoretical understanding of the
behavior of the equations of motion. This is a long-drawn process and no fast
success can be expected. On the other hand, one now knows many general
features of turbulence and compute some of them. Since one cannot wait for
a full understanding has been attained, practical flows are being computed
by various turbulence modeling. Modeling and fundamental studies will no
doubt continue to exist side by side.

Many fascinating aspects of turbulence come to the fore when combined
with some other physical aspect. We briefly drew attention to the effects
of rotation and stratification. To these two topics one can add the effects
of turbulence in the presence of magnetic fields, particle and bubble load-
ing, polymers, complex boundaries including rough walls, combustion, and
so forth. There is a gold mine of problems to be explored in this vast domain.

We have implied that it is convenient to think of a scale separation be-
tween the large scales that provide the shape and form for a given turbulent
flow and the dissipative small scales, and that the interaction between them is
weak. This feature renders the small scales nearly universal, and amenable to
a study independent of too many details of the flow. However, this is merely a
working model of turbulence, whose elucidation has taken much work. Details
are emerging slowly.

It is often said that each turbulent flow is different. The large scales are
indeed different. There is a varying degree of coherence in the large-scale
motion, depending on initial and boundary conditions. The effects of this
coherence can (and should) be captured eventually by appropriate statistics,
but it is not clear that the statistics one uses, and constructs for reasons of
mathematical convenience, are necessarily best adopted for taking faithful
account of this observed coherence.

Another remark often made is that turbulence has nothing to do with sta-
bility. It is indeed the case that the instability caused by linear disturbances
of negligible amplitude plays very little role in maintaining a turbulent flow,
but stability arguments have been used consistently and often successfully
to describe the observed coherent structures. The nature of this instability,
which is described at the beginning of the chapter for laminar flows, remains
unclear in the turbulent context. However, it is clear that a good student of
turbulence ought to be versed in different aspects of hydrodynamic stability,
and the variety of structures that can be generated by this mechanism.

Ultimately, turbulence dynamics consists of incorporating stability and
multi-scale structure into the framework of statistical theories and universal-
ity.



7. Convective Heat and Mass Transfer

This chapter on convective heat and mass transfer starts out from Prandtl’s
original chapter Heat Transfer in Flowing Liquids. We will treat free convec-
tion flows, caused by the density changes in the fluid due to temperature and
concentration gradients. These cause a lift in the gravitational field, which
in turn causes convection flows. Examples of free convection flows at heated
cylinders and plates were shown in the introductory chapter in Figure 1.6.
The Rayleigh–Bénard convection of Figure 1.5 and diffusion convection are
also examples of free convection flows.

Forced convection flows occur when an external force, such as a pressure
gradient, also acts on the flow. Forced convection flows occur, for example,
in heated or cooled pipes such as those used in heat exchangers.

Heat and mass exchange processes are found in the ocean and in many
different processes in chemical technology, such as absorption, adsorption,
extraction, and distillation. When water evaporates on the surface of the
oceans, a high salt concentration remains, and an unstable density layer with
diffusion instabilities occurs. The expansion of substances in solvents and
the separation of substances in centrifuges are further examples. Examples
of biological mass exchange processes are the supply of oxygen to the blood
and absorption of food in the body.

Fig. 7.1. Basalt columns caused by cellular convection at the solidification contour
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7.1 Fundamentals of Heat and Mass Transfer

7.1.1 Free and Forced Convection

Instabilities occur in free convection flow with unstable thermal straification.
In Rayleigh–Bénard convection, the ground state is given as heat conduction.
It is replaced by thermal cellular convection at the critical Rayleigh num-
ber. The convection flow causes the heat flow in a horizontal liquid layer to
increase.

A Rayleigh–Bénard instability is also observed in the cooling process of
molten magma. The surface cools, and an unstable thermal boundary layer
forms in the magma. In the region of the unstable thermal boundary layer,
gravity causes a convection flow structured in hexagonal cells to occur. After
solidification, these leave typical basalt columns (Figure 7.1).

In diffusion convection the ground state is a concentration profile that
is caused by diffusion and heat conduction in a horizontal fluid layer with
several components. At the critical diffusion Rayleigh number, the mass and
heat flux increase because of the free convection flow.

The density differences causing the convection flow can also be due to
concentration gradients in the fluid. Just as with the Bénard convection,
hexagonal flow cells also form on free surfaces. An example of such a situa-
tion is the drying up of a salt lake. The water evaporating from the surface
leaves high salt concentrations with corresponding density increases. Heavy
unstable fluid is therefore layered over lighter fluid. When a critical concen-
tration difference is exceeded, convection flow forms and lifts up sand and
dust particles from the ground, where the flow is in the direction of the cell
centers. These particles are then carried through the lift zone in the center
of the cell and are distributed at the edges of the cell, according to the flow
sketched in Figure 1.5. Here the convection motion causes the particles even-
tually to sink to the ground, where they are finally deposited. In this manner

Salt lake Soda lake

Fig. 7.2. Cellular convection due to concentration gradients
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the structures shown in Figure 7.2 are formed at the bottom of dried-up salt
lakes.

A further example and introduction to the chapter on heat transfer is
the free convection flow at a heated vertical plate (Figure 1.6), which will
be treated in Section 7.2.1. Figure 7.3 shows the velocity and temperature
profiles in the air with Prandtl number Pr = 0.71 for an isothermal wall. The
wall temperature Tw is higher than the ambient temperature T∞. The heat
transferred from the plate to the fluid causes a temperature increase in the
fluid close to the wall and, because of the temperature dependence of the
density, to a change in the density. If the density decreases with increasing
temperature, lift forces occur close to the wall and warmer fluid rises along
the plate. The effect of the plate is restricted to the wall boundary layer. The
ratio of the thickness of the viscous boundary layer δ to the thickness of the
thermal boundary layer δT behaves like

√
Pr. Now in the boundary layer of

the perpendicular plate, the laminar–turbulent transition takes place above
a critical dimensionless characteristic number. Since the heat transport also
has to be taken into account, the transition to turbulent boundary-layer flow
is initiated at the critical Rayleigh number.

Forced convection is the cause of other external forces in addition to the
lift forces. An example of this is the pipe flow of Section 4.2.1 with heat
transport, which will be discussed in Section 7.3.1. Figure 7.4 shows the
parabolic velocity profile in the intake of laminar pipe flow and also the
formation of the temperature profile for an isothermal pipe wall.

In the intake region, the velocity and temperature distributions depend
on the radial coordinate r and on x. For viscous intake and uniform flow,
we can assume l ≈ 0.05 · ReD. The ratio of the thermal intake length to the

Fig. 7.3. Convection flow at a heated
vertical plate
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viscous intake length again depends on the Prandtl number of the fluid. For
liquid metals, because δT ≫ δ, the thermal intake can be neglected compared
to the viscous intake. This is the other way round for highly viscous oils with
δT ≪ δ.

7.1.2 Heat Conduction and Convection

Energy transport at temperature gradients that do not act parallel to the
gravitational field is due to heat conduction and superimposed thermal con-
vection flow. A critical Rayleigh number for the onset of cellular convection
exists only for horizontal fluid layers heated from below. The heat radiation
will be neglected in what follows. The amount of heat transferred to a wall
per unit area and time is

qw = h · (Tm − Tw), (7.1)

where h is the coefficient of heat transfer, Tw the wall temperature, and Tm

the mean temperature of the flowing medium. In the case of a body in a flow,
the temperature of the unperturbed free flow T∞ is chosen. The dimensionless
number that characterizes the heat transport is the Nusselt number

Nul =
qw · l

λ · (Tm − Tw)
=
h · l
λ

. (7.2)

It describes the ratio of the heat transfer due to heat conduction and con-
vection to the heat conduction of the fluid at rest.

Since we have initially no given reference velocity for free convection flow,
we have to find a characteristic number for convection flow instead of the
Reynolds number, namely, the Grashof number

Fig. 7.4. Development of the veloc-
ity and temperature profiles of cooled
pipe flow
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Grl =
α · g · (Tm − T∞) · l3

ν2
. (7.3)

Comparing this with the square of the Reynolds number, Re2
l = w2 · l2/ν2,

we obtain the following characteristic velocity for free convection flow:

w =
√
α · g · (Tm − T∞) · l . (7.4)

The relation with the Prandtl number Pr = cp ·µ/λ = ν/k yields the Rayleigh
number for free convection flow.

Ra = Pr · Gr . (7.5)

If the heat flux into or from the wall is given, the Grashof number can be
written as

Grq =
α · g · qw · l4

ν2 · λ . (7.6)

At the heated vertical plate, the thickening of the thermal boundary layer
causes the heat flux qw and the coefficient of heat transfer h to vary in
proportion to l−1/4.

In forced convection, a further independent characteristic number is the
Eckert number

Ec =
w2

cp · (Tm − Tw)
. (7.7)

Here the kinetic energy of the flowing medium is referred to the thermal
enthalpy difference in the fluid.

For a given heat transport problem we therefore have the dimensionless
relation

Nu = f(Re,Pr,Ec) (7.8)

and this can be determined either numerically by solving the fluid-mechanical
fundamental equations of Section 5.4 or experimentally. For flow velocities
that are not too large, the Eckert number is so small that the relation (7.8)
reduces to Nu = f(Re,Pr).

There is no characteristic velocity given for free convection flow, so that
(7.8) is to be replaced by

Nu = f(Gr,Pr) (7.9)

Therefore, the Grashof number in free convection corresponds to the Reynolds
number in forced convection flow. Whereas the Reynolds number, the Eckert
number, and the Grashof number all depend on the geometric, dynamic,
and thermodynamic parameters of the heat transport problem, the Prandtl
number is a characteristic number that is substance-specific.
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7.1.3 Diffusion and Convection

In convection flows caused by diffusion processes, there are similar laws to
those that describe heat transport. The mass transport takes place along
the largest concentration gradients. The coefficient of thermal expansion α =
(1/ρ)·dρ/dT is now replaced by the coefficient of concentration expansion β =
(1/ρ) · dρ/dc, and the heat conduction number k by the diffusion coefficient
D. Similarly, the Rayleigh number for free diffusion convection is replaced by
the diffusion Rayleigh number

RaD =
β · g · (cm − c∞) · l3

ν ·D , (7.10)

with a mean mass concentration cm and the reference concentration c∞. The
Prandtl number is replaced by the Schmidt number

Sc =
ν

D
. (7.11)

In analogy to the heat flux, we specify the diffusion flux at the wall jw =
D · ∂cw/∂n with wall normal n, and we obtain the relation

GrD =
β · g · jw · l4
ν2 ·D (7.12)

for the diffusion Grashof number in diffusion-caused free convection, and the
Nusselt number

NuD =
jw · l

D · (cm − cw)
. (7.13)

for mass transfer. For a given diffusion problem we have to determine the
relation

NuD = f(GrD, Sc) (7.14)

for free convection flow, and for forced convection flow, the relation

NuD = f(Re, Sc) (7.15)

The question arises of how large the Schmidt number Sc is compared to the
thermal Prandtl number. For gases, the Schmidt number, like the Prandtl
number, has order of magnitude 1, since k and D are only slightly different.
For the diffusion of steam in air, the value is Sc ≈ 0.62 at a mean temperature
of 8◦ C. For the diffusion of CO2 in air at 0◦ C Sc ≈ 1.1. Therefore, in gases
with the same Reynolds or Grashof numbers, the Nusselt numbers have the
same order of magnitude for heat and mass transport. On the other hand,
in aqueous solutions, the Schmidt numbers are considerably larger than the
Prandtl numbers. For the diffusion of macromolecules in aqueous solutions
we obtain Schmidt numbers of order of magnitude 104, while the Prandtl
number of water is 7. Mass exchange in aqueous solutions is therefore related
to heat exchange in viscous oils.
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7.2 Free Convection

7.2.1 Rayleigh–Bénard Convection

We now consider thermal unstable Rayleigh–Bénard convection in a horizon-
tal liquid layer under the effect of gravity, heated from below. Let the layer be
infinitely extended in the horizontal plane and have height h. Its lower side is
heated to temperature T1 and its upper side kept at the temperature T2 < T1

(Figure 7.5). When a critical temperature difference ∆T = (T1−T2) between
the upper and lower boundaries of the liquid layer is exceeded, straight con-
vection rolls form in the horizontal liquid layer. The longitudinal axes of these
steady convection rolls are horizontal and ordered periodically next to one
another. This process is known as thermal cellular convection.

Because of the additional thermal exchange processes, convection results
in a increase in the heat flux q̇, compared to the case of heat conduc-
tion. The Nusselt number Nu equal to (q̇conduction + q̇convection)/q̇conduction,
as the dimensionless heat flux is plotted against the Rayleigh number Ra =
α·∆T ·g·l3/(ν·k) in Figure 7.6, with the coefficient of thermal expansion α, the
kinematic viscosity ν, and the thermal conductivity number k of the medium.
The diagram shows that the Nusselt number remains constant (Nu = 1) up
to a critical Rayleigh number of Racrit = 1708. Clearly, it is pure heat conduc-
tion at play in this regime. When this critical Rayleigh number is exceeded,
the dimensionless heat flux branches, and there is a strong dependence on
the Rayleigh number and the Prandtl number Pr = ν/k of the medium. This
sudden process is clearly connected with a fluid-mechanical instability. The
original state (pure heat conduction, medium at rest) can no longer be re-
tained. It becomes unstable and is replaced by a new state (heat conduction
+ convection, medium in motion). The critical Rayleigh number is indepen-

Fig. 7.5. Thermal cellular convection
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Fig. 7.6. Branching diagram of the dimensionless heat flux Nu against the Rayleigh
number Ra

dent of the medium, since the branching point (Nu,Racrit) = (1, 1708) is
independent of the Prandtl number Pr.

Thermal cellular convection is important in many technical problems. On
the one hand, an engineer endeavors to design heat insulation out of air layers
(e.g. thermopane layers) so that thermal cellular convection is prevented. On
the other hand, the construction of a heat regenerator requires convection
processes that are as strong as possible.

Let us briefly look at the origin of the instability because of the higher
temperature a liquid particle from a lower layer z1, has a lower density than a
particle in a higher layer z2 > z1. This is called an unstable stratification. If the
particle in z1 is relocated to a layer above, it experiences a lift force in the new
surroundings of less dense fluid and is accelerated upwards. Frictional forces
and heat conduction act against this tendency, which tries to compensate the
driving temperature difference and density difference of the particle.

Let the fluid element under consideration have size d (Figure 7.7). Let the
element move with a perturbation velocity v from z = z0 to a layer above
at z0 + d. This takes place within the time interval ∆t = d/v. The density

Fig. 7.7. The physical inter-
pretation of thermal cellular
convection
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difference ∆ρ ∼ ρm ·αm ·∆T causes a lift A = ∆ρm ·g ·Vk ∼ ρm ·αm ·∆T ·g ·d3.
Simultaneously, at a small perturbation velocity, Stokes’s law states that the
drag W ∼ µ · d2 · v/d = µ · d2/∆t occurs. What is important is the degree
to which the heat conduction in time interval ∆t balances out the driving
temperature difference between the fluid element and its new surroundings.
The difference in internal energy of Ek ∼ ρ · cv · ∆T · d3 is transferred to
the surroundings through a cross-sectional area ∼ d2 by means of the heat
conduction q̇ ∼ λ · ∆T/d. The time scale for this process is therefore ∆t =
Ek/q̇·d2 ∼ d2/k, and it can be inserted into the proportionality considerations
above.

The system clearly becomes unstable when the lift dominates the drag:

A ≥W ⇐⇒ ρ · α ·∆T · g · d3 ≥ µ · d2 · k
d2

· C ,

or, with d = l,

α ·∆T · g · l3
k · ν = Ra ≥ C = Racrit . (7.16)

The Rayleigh number is clearly the ratio of lift force to frictional force.

Stability Analysis

The fundamental equations of thermal cellular convection (5.85), assuming
the Boussinesq approximation, were introduced in Section 5.4.3 The pertur-
bation ansatz (5.196) yields the perturbation differential equations (5.213)–
(5.215). The ground state U0, p0, T0, whose stability is to be investigated, is
the state of rest with U0 = 0. The energy equation (5.215) then yields

∆T0 = 0 . (7.17)

This is the steady heat conduction problem. For the state of rest, it is neces-
sary that the temperature gradient be parallel to ez = (0, 0, 1). The boundary
condition for Rayleigh–Bénard convection is

T0(x, y, z = −1

2
) = T1 , T0(x, y, z =

1

2
) = T2 . (7.18)

The ground state is dependent only on the vertical direction z:

d2T0

dz2
= 0 , T0(z) = C1 · z + C0 . (7.19)

The constants (C1,C2) follow from the boundary conditions (7.18), yielding
C1 = −1, C0 = (T1 + T2 − 2 · Tm)/∆T , with Tm = (T1 + T2)/2. For the heat
conduction ground state, we obtain

T0 = −z . (7.20)

The momentum equations (5.214) yield
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0 = −dp0

dz
+Ra · T0 ,

with (7.20) and hence the pressure

p0 = −1

2
· Ra · z2 + p∞ , (7.21)

with the ambient pressure p∞. The temperature distribution determined
above, and therefore the entire heat conduction problem, is independent of
p∞. It is not the pressure p∞ itself that affects the stability problem, but
rather its gradient alone.

For the boundary conditions for the perturbation quantities, we distin-
guish between free and fixed horizontal boundaries of the liquid layer. On
free boundaries (liquid surface), z = ±1/2 is the kinematic flow condition of
impermeability of the surface, with

w′(x, y,±1

2
) = 0 , (7.22)

assuming that the deformation due to small perturbations may be neglected.
On fixed boundaries, the no-slip conditions holds:

u′(x, y,±1

2
) = 0 . (7.23)

We also distinguish between isothermal (5.70) and adiabatic (5.71) bound-
aries. If the horizontal boundary has a large thermal conductivity, it behaves
isothermally, and the temperature perturbations vanish:

T ′(x, y,±1

2
) = 0 . (7.24)

At adiabatic boundaries, there is a constant heat flux. Changes q̇′ = −λ ·
∂T ′/∂z to this heat flux by means of temperature perturbations are zero if
the thermal conductivity of the bounding medium is very small.

Let the local changes in the temperature of the bounding medium associ-
ated with the fixed heat flux also be small, and effects on the basic solution
negligible, as usual. This leads to the thermal boundary condition

∂T ′

∂z
(x, y, zr) = 0 . (7.25)

The perturbation differential equations (5.213)–(5.215) with their boundary
conditions lead to an eigenvalue problem that allows the critical Rayleigh
number Racrit and wave number acrit of the periodic cell structures of the
Rayleigh–Bénard convection to be computed. Summarizing the variables of
the solutions vector u′ = (u′, v′, w′, p′, T ′) in the perturbation differential
equations, the separation trial solution

u′ = u′

x(x, y, z, ω) · exp(−i · ω · t) (7.26)

can be used to separate the time and space dependence. If we further elimi-
nate u′, v′, and p′ (see, for example H. Oertel and J. Delfs (1996)), we obtain
the perturbation differential equations as
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 . (7.27)

Eliminating w′ and with u′ = T ′, we obtain the eigenvalue problem
{[

−∆3 + Ra ·
(
∂2

∂x2
+

∂2

∂y2

)]
− i · ω ·

[(
1 +

1

Pr

)
·∆2

]

+ ω2 ·
[

1

Pr
·∆
]}

T ′

x = 0. (7.28)

In the eigenvalue problem for T ′
x, the eigenvalue ω appears quadratically.

For an infinitely extended liquid layer of the Rayleigh–Bénard stability
problem, the periodic cell structure permits the following separation ansatz:

(u′, v′, w′, p′, T ′)(x, y, z) = F(x, y) ·
(
û(z), v̂(z), ŵ(z), p̂(z), T̂ (z)

)
. (7.29)

We note that this ansatz is no longer possible if there are boundaries at
the sides of the container, since in this case explicit boundary conditions at
the side walls are required. Substituting ansatz (7.29) into the steady energy
equation (5.215) initially yields the relation of the function F(x, y) to the
arbitrarily chosen separation parameter a2:

d2T̂
dz2 + ŵ

T̂
= −

∂2F
∂x2 + ∂2F

∂y2

F
= a2 = const. (7.30)

In the separated differential equation for T ′ (7.28), a2 then appears in relation
to the assumption ω = 0 (neutral state):

(
d2

dz2
− a2

)3

T̂ (z) + Ra · a2 · T̂ (z) = 0. (7.31)

With the boundary conditions we again define an eigenvalue problem in
which, for a given a of the periodic cell structure, the Rayleigh number Ra
appears as an eigenvalue. The eigenvalue problem (7.31) describes the onset
of thermal cellular convection of a fluid. For a given wave number a, the

Fig. 7.8. Interpretation of the
separation parameter a as wave
numbers
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associated Rayleigh number Ra(a) is determined. The spatially periodic cell
structure then satisfies

F(x, y) = exp(i · ax · x+ i · ay · y), (7.32)

with

a2 = a2
x + a2

y. (7.33)

For real numbers ax, ay, expression (7.32) describes a spatially periodic plane
wave with the partial wave numbers ax = 2 · π/λx and ay = 2 · π/λy (Figure
7.8). It can be seen that the choice of a partial wave number ax (or ay) is
restricted only by the condition a2

x ≤ a2 (or a2
y ≤ a2). The other partial wave

number then follows from (7.33). The separation parameter a is clearly a
characteristic wave number. The stability problem is determined only by the
wavelength λ = 2 · π/a of the associated characteristic perturbation wave,
and not by the orientation of its wave normal ϕ = 1/ tan(ay/ax) in the x-y
plane.

Because there is no characteristic direction, we may choose, for example,
ax ∈ [0, a/

√
2] without any loss of generality. The x-y structure of the solution

is also independent of the particular solution T̂ (z) determined from (7.31). If
we determine, for example, the critical wave number acrit from the eigenvalue
problem (7.31), there are infinitely many possibilities to construct this out of
partial waves using (7.33).

Therefore one-dimensional (e.g. ax = 0, ay = a) roll structures are
just as likely as two-dimensional hexagonally shaped cell structures. An
example is shown in Figure 7.9, where the function f(x, y) = cos(a · y) +
cos
(√

3/2 · a · x+ 0.5 · a · y
)

+ cos
(√

3/2 · a · x− 0.5 · a · y
)

with a = 2 · π is
plotted.

According to the linear theory, it is solely the initial conditions that de-
termine which of the possible structures forms. In reality, however, it is seen
that the hexagonal cells are preferred for free boundaries, even for different
initial perturbations, while for fixed boundaries it is roll structures that are
observed.
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Fig. 7.9. Occurrence of hexagonal cell
structures (contours) by superposition of
three eigensolutions
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Stability Diagram

In this section we discuss three solutions of the eigenvalue problem (7.31) for
different boundary conditions (7.22)–(7.25).

In the case of two free isothermal boundaries, the solution of the eigen-
value problem may be written down in closed form. We have the boundary
conditions

T̂

(
z = ±1

2

)
= 0,

d2T̂

dz2

(
z = ±1

2

)
= 0,

d4T̂

dz4

(
z = ±1

2

)
= 0. (7.34)

Every even function T̂ e(z) = cos((2 · n + 1) · π · z) satisfies these boundary
conditions. The same holds for the odd functions T̂ o(z) = sin(2 · n · π · z).
Inserting T̂ e into the eigenvalue problem (7.31) leads to the eigensolution

Ra(a) =
((2 · n+ 1)2 · π2 + a2)3

a2
. (7.35)

This is the desired relation between the Rayleigh number Ra and the wave
number a on the indifference curve Ra(a). Looking closely at (7.35), we see
that there is an infinite number of such indifference curves, because the order
n can be given arbitrarily. It is easy to see that the lowest (and therefore the
most relevant) Rayleigh numbers for all a are those for the fundamental mode
n = 0. The critical Rayleigh number Racrit is obtained from the condition
that the derivative of the function Ra(a) must vanish at its minimum:

Racrit =
27

4
· π4 = 658, for acrit =

π√
2

= 2.22. (7.36)

Inserting the odd eigenfunctions T̂ o, we see that the lowest lying Ra(a) curve
is far above that for the even eigenfunctions. It has a critical Rayleigh number
of Racrit = 108 · π4 ≈ 10520 at a =

√
2 · π ≈ 4.44. It can be seen from this

that the odd solution is physically irrelevant, because an even eigensolution
will always become unstable first. The lowest-order indifference curve for
even and odd eigensolutions is shown in Figure 7.10. At the critical Rayleigh
number, long convection rolls or hexagonal cells occur. Their appearance in
meteorology will be treated in Chapter 10.

The boundary conditions of thermal cellular convection at two fixed
isothermal boundaries are

T̂

(
z = ±1

2

)
=0,

d2T̂

dz2

(
z = ±1

2

)
= 0, (7.37)

(
d2

dz2
− a2

)
dT̂

dz

(
z = ±1

2

)
=0.

The eigenvalue problem is given by the linear sixth-order ordinary differential
equation in z with constant coefficients (7.31). Using an eλ·z-ansatz, this
equation is reduced to the characteristic equation
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(
λ2 − a2

)3
+ Ra · a2 = 0. (7.38)

The constants Ci of the general solution T̂ (z) =
∑6

i=1 Ci · e(λi·z) have to be
fitted nontrivially to the six homogeneous boundary conditions (7.37). Non-
trivial solutions T̂ (z) 6= 0 exist only if the determinant of the corresponding
6 × 6 matrix vanishes. This condition leads to the desired relation between
the Rayleigh number Ra and the wave number a, which is solved numerically.

The indifference curve ωi = 0 is shown in the stability diagram in Figure
7.10. A negative rate of amplification ωi < 0 indicates that the perturbations
die away in time. The heat conduction ground state remains stable. Posi-
tive amplification rates ωi > 0 lead to instability. The indifference curve has
a minimum Rayleigh number Racrit below which perturbations of all wave-
lengths die away. This limit is computed as the minimum of the function
Ra(a) as

Racrit = 1708 , acrit = 3.12 . (7.39)

The eigensolutions are longitudinal convection rolls, as already shown in the
introductory chapter in Figure 1.5. The solution for the odd (asymmetric)
eigenfunctions fui (z) would also yield an indifference curve as in Figure 7.10.
However, the critical Rayleigh number in this case is about 10 times higher
than in the case of even (symmetric) perturbation functions (Racrit ≈ 17610
at acrit ≈ 5.37). The odd perturbation functions are therefore amplified in
time only when the even functions are already unstable.

For the case of one free and one fixed isothermal boundary, the condition
(7.34) is to be satisfied at z = 0.5, while the condition (7.37) is to be satisfied
at z = −0.5. This problem can be reduced to the preceding problem of two
fixed boundaries. Because an odd function always vanishes with all its even
derivatives at z = 0, the odd eigensolution satisfies precisely the conditions
of the free isothermal boundary at z = 0. Therefore, the upper half 0 < z ≤
0.5 of the Rayleigh–Bénard convection with doubly fixed boundaries can be
removed from the problem. The Rayleigh number and the dimensionless wave
number a merely have to be referred to a layer of thickness l that has been
reduced by half. To do this, we halve the temperature difference ∆T and in

Fig. 7.10. Indifference curve of Rayleigh–Bénard cellular convection



7.2 Free Convection 423

the definition of the Rayleigh number substitute l by l/2: Ra(∆T/2, l/2) =
2−4 ·Ra. Since the wave number a was made dimensionless by multiplication
by l, it has to be halved: a(l/2) = 0.5 · a. This yields

Racrit =
17610

24
= 1101 at acrit =

5.37

2
= 2.68. (7.40)

At the critical Rayleigh number hexagonal convection cells are observed. On
the free liquid surface these are caused by the temperature dependence of the
surface stresses. Examples are shown in Figures 1.5 and 7.1.

Effect of Container Boundaries

In the stability problems treated until now, the basic flow was inhomogeneous
in only one spatial direction (z). It was only in this direction that explicit
boundary conditions were required. In the homogeneous directions (without
explicit boundary conditions), wave trial solutions (separation ansatz) could
be used, leading to ordinary homogeneous differential equations. However, if
the Rayleigh–Bénard instability is observed in containers with finite cross-
sections, explicit boundary conditions have to be satisfied at all walls, and
separate consideration of given wave perturbations is no longer permitted.
The numerical solution of the eigenvalue problem (7.28) for ωi = 0 becomes
more difficult.

Results of the numerical solution of the eigenvalue problem show that the
vertical boundaries act to stabilize the onset of cellular convection, because
the no-slip condition introduces additional friction. This is clear from Fig-
ure 7.11, where the critical Rayleigh number is plotted against the ratio of
container length lx to container height l. For a given ratio ly/l = 4 the crit-
ical Rayleigh number tends toward the value 1815 for large lx/l. It can also
be seen from Figure 7.11 that the asymptotic value of the critical Rayleigh
number is reached already at relatively low values of the ratio lx/l. As the
container length lx/l is reduced to very small values, the critical Rayleigh
number increases greatly. The frictional force due to the no-slip condition on
the sides acts in the entire flow field and completely prevents the formation

Fig. 7.11. Critical Rayleigh numbers of rectangular containers with finite size
ly/l = 4
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of convection rolls. In general, the longitudinal axes of the convection rolls
orient themselves parallel to the shorter sides of the container. The flow field
is fundamentally three-dimensional. The effect of the boundaries acts as far
as a depth of about one characteristic length l of the flow field. The inner part
of the flow field can be computed as if no boundaries were present. This leads
to the surprising result that even in the middle of a circular container time-
asymptotically straight roll structures form, and not, as had been suspected
earlier, concentric ring cells.

Secondary Instabilities

Until now, we have treated the onset of thermal cellular convection. For
supercritical Rayleigh numbers, a great number of different branch solutions
occur, depending on the initial and boundary conditions. (see Section 6.2.1).
Steady three-dimensional and time-dependent oscillatory cell structures, as
well as turbulent cellular convection, occur.

The theory of these secondary instabilities is described in H. Oertel and
J. Delfs (1996). Here it is assumed that the ground state U0 is replaced by
the unstable steady cellular convection at the critical Rayleigh number. This
cellular convection is now denoted by U1 and is taken to be the new ground
state. In analogy to the primary stability analysis, a small perturbation ε ·u′′

is superimposed on the periodic basic flow U1. This leads to the perturbation
ansatz

u = U1 + ε · u′′ (7.41)

Fig. 7.12. Stability regime for convection rolls between two fixed horizontal bound-
aries. Secondary eigensolutions: os: oscillatory, sv: oblique–varicose, zz: zigzag, qr:
cross-rolls, kn: nodes, Racrit: critical Rayleigh number of primary instability
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and the perturbation differential equations for the secondary instabilities u′′.
F. H. Busse’s (1978) theoretical and experimental results are summarized

in Figures 7.12 and 7.13. Extensive parameter variations have shown that for
given Rayleigh and Prandtl numbers and the same fundamental wavelength
λ of the Bénard cells, several different unstable secondary eigenforms u′′ can
exist. The appear secondary instabilities different depending on the combina-
tion Pr, Ra, a = 2 ·π/λ. In the very small Prandtl number regime, convection
rolls, for example, are unstable to unsteady oscillatory perturbation forms.
This has the following plausible explanation. The local acceleration ∂u/∂t
is divided by the Prandtl number in the fundamental Boussinesq equations
(5.85), and therefore, the smaller the Prandtl number, the greater the effect
of the unsteady terms.

The states in which this oscillatory instability occurs on the convection
rolls are also shown in Figure 7.12, for the case of an infinitely extending
fluid layer with fixed horizontal boundaries. It shows the three-dimensional
regime in (a,Pr,Ra) space for which all secondary perturbations die away
in time. The convection rolls characterized by the parameter inside the sta-
bility region are therefore stable to small perturbations. The shape of this
region is indicated with five cross-sections, each at a constant Prandtl num-
ber. Depending on where we depart the region of stability, the convection
rolls will become unstable to different perturbation forms. The entire insta-

sv: oblique−varicose instabilityzz: zigzag instability

qr: cross−roll instability kn: node (bimodal) instability

Fig. 7.13. Snapshots of the time-dependent cellular convection, original state:
convection rolls with given wavelength, F. H. Busse (1978)
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bility regime touches the line Ra = Racrit, a = acrit, Pr, which represents the
critical state Racrit = 1708, acrit = 3.12 of the primary instability. The criti-
cal Rayleigh number Racrit becomes independent of the Prandtl number Pr.
In the Pr = 300 cross-section, the instability regime of the primary stability
analysis (Figure 7.10) is also indicated in Figure 7.12, to show that the sta-
bility regime for secondary instabilities is embedded within it. The stability
diagram is unable to say whether a secondary instability eventually will form
a flow state that corresponds to the eigenform of this instability in the course
of a perturbation development. It can say only that the convection rolls be-
come unstable to infinitesimally small perturbations as the critical surface
surrounding the stability regime is passed over. The secondary stability anal-
ysis also indicates the spatiotemporal character of the amplified perturbation
forms, as long as they still have an infinitesimally small amplitude.

In addition to the oscillatory instabilities os, we also distinguish between
three types of time-dependent secondary instabilities (Figure 7.13), the zigzag
instability zz, the oblique–varicose instability sv, and the cross-roll instability
qr. The zigzag instability occurs when the given wavelength of the convection
rolls is too large at that Reynolds number and the wavelength is reduced by
the formation of zigzags. The oblique–varicose instability forms a spatially
periodic variation in both horizontal directions with a periodic displacement
of the rolls from one roll to the next. The cross-roll instability eventually leads
to a complete displacement of the convection rolls, which are then oriented
at right angles to each other with different wavelengths.

For liquids with Prandtl numbers greater than 7, the three-dimensional
flow at Rayleigh numbers greater than 2 · 104 is steady. This instability is
called a node (bimodal) instability (fourth picture in Figure 7.13). In gases
with Prandtl number 0.71, the convection rolls begin to oscillate at the
Rayleigh number 1 · 104, and no steady node instabilities are observed. A
further increase in the Rayleigh number leads to an increase in the oscilla-
tion amplitude. The time-dependent structure of the convection cells becomes
increasingly irregular until the transition to turbulent convection flow is even-
tually complete. In liquid metals with Prandtl numbers of order of magnitude
10−2, the Rayleigh number regime of steady convection flow is very small,
and turbulent flow is reached already for a Rayleigh number of 2500.

7.2.2 Convection at a Vertical Plate

Figure 7.14 shows the velocity and temperature profiles of laminar convection
flow of a heated vertical plate. From the Boussinesq equations (5.85), estima-
tion of the orders of magnitude yields the two-dimensional boundary-layer
equations. With the boundary-layer transformation
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x∗=
x

l
· Gr

1
4
z , z∗ =

z

l
,

u∗=
u√

g · α · l · (Tm − T∞)
· Gr

1
4
z ,

w∗=
w√

g · α · l · (Tm − T∞)
, (7.42)

T ∗=
T − T∞
Tm − T∞

,

the boundary-layer equations are made independent of the Rayleigh and
Grashof numbers. Dropping the ∗ denoting dimensionless quantities, we ob-
tain the following system of equations:

∂u

∂x
+
∂w

∂z
=0, (7.43)

u · ∂w
∂x

+ w · ∂w
∂z

=
∂2w

∂x2
+ T, (7.44)

u · ∂T
∂x

+ w · ∂T
∂z

=
1

Pr
· ∂

2T

∂x2
. (7.45)

The energy and momentum balances are coupled via the temperature in
the buoyancy term. The temperature distribution of the free convection flow
therefore induces a velocity distribution.

The velocity and temperature profiles of the heated vertical plate are
similar, so that they may be transformed into one another with a suitable
coordinate transformation. The system of equations (7.43)–(7.45) yields two
ordinary differential equations for the velocity w and the temperature T ,
which have to be solved numerically.

The computed velocity and temperature profiles for different Prandtl
numbers are shown in Figure 7.14 for an isothermal boundary at constant

Fig. 7.14. Velocity and temperature profiles at a vertical heated plate at constant
wall temperature Tw



428 7. Convective Heat and Mass Transfer

wall temperature Tw. The characteristic velocity w0 =
√
g · α · l · (Tm − T∞)

corresponds to the transformation equation (7.42). For Pr ≤ 1 the viscous
boundary-layer thickness δ and the thermal boundary-layer thickness δT are
about the same size. For Pr ≫ 1 the thermal boundary-layer is restricted to
a layer close to the wall. The heat transfer at the wall follows from

qw = −λ ·
(
∂T

∂x

)

w

= −λ · (Tw − T∞) · C

z
1
4

·
(

dT

dη

)

w

, (7.46)

with the dimensionless vertical coordinate

η = −x
z
·
(

Grz

4

) 1
4

and the constant C. Here

Grz =
α · g · (Tw − T∞) · z3

ν2
(7.47)

is the local Grashof number formed with the z coordinate.
The local Nusselt number

Nuz =
h · z
λ

= −
(

Grz

4

) 1
4

·
(

dT

dη

)

w

(7.48)

is shown plotted against the Prandtl number in Figure 7.15. The numerical
solution can be approximated by the relation

Nuz
(

Grz
4

) 1
4

=
0.676 · Pr

1
2

(0.861 + Pr)
1
4

. (7.49)

As well as the local Nusselt number, the mean Nusselt number is also of
interest:

Nul
(

Grl
4

) 1
4

=
0.902 · Pr

1
2

(0.861 + Pr)
1
4

. (7.50)

Fig. 7.15. Local Nusselt number at the vertical heated plate at constant wall
temperature Tw
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The solution functions for the velocities yield the friction coefficient

cf = 2 ·
(

Grz

4

)−
1
4

·
(

dw

dη

)

w

. (7.51)

If the heat flux qw is prescribed, rather than the wall temperature Tw, we
obtain the Grashof number (7.6). The system of equations (7.43)–(7.45)
remains unchanged, and it can be solved with the boundary condition
(∂T/∂x) = qw(z)/λ (heat conduction at the position x = 0). For the bound-
ary layer thickness δ we obtain δ ∼ ν2/5, rather than δ ∼ √

ν for a given wall
temperature Tw.

The region of validity of the laminar boundary-layer flow with heat trans-
port described until now is restricted to 104 < Ral = Grl · Pr < 108. For
Rayleigh numbers smaller than 104, the boundary-layer approximation is
no long valid, and for Rayleigh numbers greater than 108 the transition to
turbulence-free convection flow takes place.

Using the linear stability theory of Section 6.2.2, we use the basic profiles
of the system of equations (7.43)–(7.45) to obtain a critical Grashof number
Grcrit of 3 · 106 for air with Pr = 0.71. This is considerably smaller than that
found in experiment at the end of the transition process. This indicates that
the small-amplitude perturbation waves are not recognized in experiment and
are measured only upstream from the completion of the transition process.
Figure 7.16 shows a differential interferogram in air of the laminar convection
flow at the vertical plate at constant wall temperature Tw for the Grashof
number 8 · 106, which is stable in experiment. The interference stripes show
approximately lines of equal temperature gradient.

For the region of turbulence-free convection flow the Reynolds equations
(5.40)–(5.42) and the energy equation (5.63) have to be solved numerically

Fig. 7.16. Differential interferogram of the vertical heat-
ed plate, Grz = 8 · 106
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with the buoyancy term and the Boussinesq approximation (5.85) in the
boundary-layer approximation.

The dimensional system of equations of the two-dimensional turbulent
boundary layer yields

u · ∂u
∂x

+ w · ∂u
∂z

=ν ·
(
∂2u

∂x2
+
∂2u

∂z2

)
− ∂u′2

∂x
− ∂(u′ · w′)

∂z
, (7.52)

u · ∂w
∂x

+ w · ∂w
∂z

=ν ·
(
∂2w

∂x2
+
∂2w

∂z2

)
− ∂(u′ · w′)

∂x
− ∂w′2

∂z
(7.53)

+ α · z · (T − T∞),

u · ∂T
∂x

+ w · ∂T
∂z

=k ·
(
∂2T

∂x2
+
∂2T

∂z2

)
− ∂(u′ · T ′)

∂x
− ∂(w′ · T ′)

∂z
, (7.54)

with the turbulent oscillation quantities u′, w′, T ′ of the Reynolds ansatz.
The turbulent velocity profile at the vertical heated plate is sketched in

Figure 7.17. It can be divided into three regions. At a large enough distance
from the wall we find the region of fully developed turbulent flow. Directly
at the wall is the region of the viscous sublayer, introduced in Section 4.2.5.
Between these is a transition region where the velocity changes only very
little.

We use the Boussinesq ansatz to compute the wall shear stress as

τw = (µ+ µt) ·
(
∂w

∂x

)

x=0

(7.55)

and the heat flux at the wall

Fig. 7.17. Turbulent velocity
profile at the vertical heated plate
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Fig. 7.18. Turbulent temperature pro-
file at the vertical heated plate in air
Pr = 0.71 at a given wall temperature
Tw

qw = (λ+ λt) ·
(
∂T

∂x

)

x=0

. (7.56)

The time-averaged temperature profile in air is shown in Figure 7.18. For the
averaged heat flux we obtain the correlation

Nuz ∼ (Pr · Grz)
1
3 (7.57)

for large values of Pr · Grz.
The turbulence production due to buoyancy leads to considerably im-

proved heat transfer. This is true for fluids with large Prandtl numbers. For
media with small Prandtl numbers such as air, the turbulence production
due to lift may be approximately neglected. The dependence of the local
heat transfer for air and water is shown in Figure 7.19.

In practice, interpolation formulas are used to estimate the heat trans-
fer of the heated vertical plate. For the mean heat flux in the region
0 < Pr · Grz < 1012 we obtain

√
Nuz = 0.825 +

0.387 · (Pr · Grz)
1
6

(
1 +

(
0.492
Pr

) 9
16

) 8
27

. (7.58)

Fig. 7.19. Local heat transfer at the vertical heated plate
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Fig. 7.20. Local heat transfer on the cir-
cumference of a horizontal circular cylin-
der in air Pr = 0.71 at a given wall tem-
perature Tw

7.2.3 Convection at a Horizontal Cylinder

The free convection flow around a heated horizontal cylinder is shown in Fig-
ure 1.6. The system of equations (7.43)–(7.45) again leads to similar solutions
for the velocity and temperature distributions, so that all the conclusions of
the previous section may be used here, too. The laminar–turbulent transition
is also completed here at a critical Grashof number of 108.

Figure 7.20 shows the local Nusselt number Nuθ over the circumference
of the horizontal circular cylinder for air at a given wall temperature Tw.
Here Nu0 denotes the heat transfer at the stagnation point. Integrating the
Nusselt number Nuθ over the circumference yields the mean Nusselt number
Nu · Gr(−1/4) = 0.372. Figure 7.21 shows a plot of the mean Nusselt number
against the Rayleigh number Ra = Pr · Gr. For large Grashof numbers this
behaves like Nu ∼ Ra(1/4), where the dependence on the Prandtl number for
Pr > 0.71 is small.

Fig. 7.21. Mean Nusselt number of a
heated horizontal circular cylinder in
air Pr = 0.71 for a given wall temper-
ature Tw
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7.3 Forced Convection

7.3.1 Pipe Flows

Fully developed pipe flow (Figure 7.4) has the following parabolic velocity
profile, as treated in Section 4.2.1:

u

umax
= 1 −

( r
R

)2

, (7.59)

with the pipe radius R, the maximum velocity umax is equal to ∆p · R2/(4 ·
µ · l) = 2 · um, and the constant pressure gradient is ∆p/l. The thermal fully
developed temperature profile is computed with the energy equation

u · ∂T
∂x

= k · 1

r
· ∂
∂r

(
r · ∂T

∂r

)
. (7.60)

The mean velocity um and the mean temperature Tm are found from

um=
1

π ·R2
·

R∫

0

2 · π · r · u · dr,

Tm=
1

um · π · R2
·

R∫

0

2 · π · r · u · T · dr.

We will compute the temperature profile for the two cases of constant heat
transfer qw and constant wall temperature Tw.

In the case of constant heat transfer qw = h · (Tw − Tm), for thermally
fully developed pipe flow the coefficient of heat transfer h is constant:

h =
qw

Tw − Tm
=
λ

R
·


 ∂

∂
(
z
R

) ·
(
Tw − T

Tw − Tm

)


w

. (7.61)

The (Tw − Tm) is constant, leading to

∂T

∂x
=

dTw

dx
=

dTm

dx
.

Inserting this into the energy equation (7.60), we obtain

u

k
· dTm

dx
=

1

r
· ∂
∂r

·
(
r · ∂T

∂r

)
for qw = const. (7.62)

The case of constant heat flux density is found in many technical applications,
such as electrical heating, nuclear heating, and heat exchangers.

For the thermally fully developed pipe flow with a given wall temperature
Tw, we have

∂T

∂x
=

Tw − T

Tw − Tm
· dTm

dx
.
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Therefore, the energy equation (7.60) becomes

u

k
·
(
Tw − T

Tw − Tm

)
· dTm

dx
=

1

r
· ∂
∂r

·
(
r · ∂T

∂r

)
for Tw = const. (7.63)

The solutions of (7.62) and (7.63) are shown in Figure 7.22. In the case in
which qw = const, the temperature difference is (Tw − Tm) = const. In the
case Tw = const, (Tw −Tm(x)) decreases with the pipe length x, since Tm(x)
increases because of the energy supply. For qw = const we obtain the Nusselt
number Nu = 4.36, and for Tw = const, the value is Nu = 3.66.

If we take the intake flow (Figure 7.4) into account, we obtain the local
Nusselt number along the pipe with diameter D = 2 · R. Figure 7.23 shows
Nul for qw = const and Tw = const, together with the limiting cases for
hydrodynamically and thermally fully developed pipe flow of air with Pr =
0.71. It is seen that the thermal intake stretch l can be approximated by

lT
D

≈ 0.05 · ReD · Pr. (7.64)

The ratio of the intake stretches is lT /l ≈ Pr. Highly viscous oils therefore
have large thermal intake stretches.

The heat transfer coefficient is larger in the intake stretch than in the
fully developed region. This is understandable because the boundary layer
grows in the intake region and therefore, the local heat transfer drops.

For practical application, the mean Nusselt number is of interest:

Nu =
1

l
·

l∫

0

Nux · dx. (7.65)

Comparison with experiment yields variation at large temperature differ-
ences. These originate in the material constants that have been assumed
constant until now. At large temperature differences, the viscosity and the
thermal conductivity vary across the radius of the pipe. Figure 7.24 shows

Fig. 7.22. Mean temperature Tm and wall temperature Tw, and heat flux qw at a
heated pipe wall
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Fig. 7.23. Local Nusselt num-
ber in the intake of a pipe flow

the effect of varying viscosity on the velocity profile. For µw > µm the in-
crease in viscosity close to the wall caused by cooling a liquid or heating a
gas leads to a more slender velocity profile. For µw < µm the viscosity close
to the wall is smaller for heated liquids or cooled gases, so that the velocity
profile becomes broader.

Similar results are obtained for pipe cross-sections that are not circular or
that vary. The rotational symmetry is then lost, and the complete system of
equations for laminar incompressible flow (5.85) has to be solved numerically.

Turbulent pipe flow without heat supply has already been described in
Section 4.2.5. With heat transport, the Reynolds equations (5.40)–(5.42) and
(5.63) have to be solved numerically. The following simplifications can be
applied to rotationally symmetric pipe flow with constant cross-section. For
the shear stress τ(r) of turbulent pipe flow we obtain

τ(r) = τw · r
R

= −µ · ∂u
∂r

+ ρ · u′ · v′ = −(µ+ ρ · ǫτ ) · ∂u
∂r
, (7.66)

with τw = −(dp/dx) · R/2, and for the heat flux we obtain

q(r) =
2 · qw

um · r · R ·
r∫

0

u · r · dr=λ · ∂T
∂r

− ρ · cp · T ′ · v′ (7.67)

=(λ + ρ · cp · ǫq) ·
∂T

∂r
,

with the turbulent exchange quantities ǫτ and ǫq.

Fig. 7.24. Effect of varying viscosity
on the parabolic velocity profile
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Fig. 7.25. Temperature profiles of fully developed turbulent pipe flow for qw =
const

Using the simplifying assumption of a given heat flux qw = const at the
pipe wall and thus neglecting the convective terms in the energy equation
(5.63), no information about the time-average velocity profile is needed. We
obtain the solution of the simplified energy equation:

−(λ+ ρ · cp · ǫq) ·
dT

dr
= −µ · cp ·

(
1

Pr
+

ǫτ
ν · Prt

)
· dT

dr
. (7.68)

With the dimensionless variables

z+ =
r · uτ

ν
, T+ =

(Tw − T ) · ρ · cp · uτ

qw
, uτ =

√
τw
ρ
, (7.69)

and empirical trial solutions for Prt and ǫτ , we obtain the temperature dis-
tributions of fully developed pipe flow (Figure 7.25) for a given heat flux

Fig. 7.26. Nusselt number for fully
developed turbulent pipe flow for
qw = const.
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Fig. 7.27. Ratio of boundary-layer thicknesses δT , δ for different Prandtl numbers

qw = const. In the logarithmic regime of the time-averaged velocity profile,
molecular exchange can be approximately neglected compared to turbulent
exchange. With increasing Prandtl number, this regime moves ever closer to
the pipe wall. This viscous sublayer becomes thinner. The drag increases com-
pared to the heat conduction, and the temperature profiles become broader,
leading to an increase in the heat transfer. The dependence of the Nusselt
number Nu on the Reynolds number ReD and the Prandtl number Pr is
shown in Figure 7.26.

There is a series of empirical relations for the Nusselt number to be found
in the literature. These may be used both for constant heat flux qw and for
constant wall temperature Tw. An example of such a relation is

Nu =

(ReD − 1000) · Pr · τw
ρ · u2

m

1 + 12.7 ·
√

τw
ρ · u2

m

· (Pr
2
3 − 1)

·
(

1 +

(
D

l

) 2
3

)
, (7.70)

Fig. 7.28. Velocity and temperature profiles of the flat plate flow for Pr = 1 and
given wall temperature Tw = const
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with τw = (dp/dx) ·R/2.

7.3.2 Boundary-Layer Flows

In forced convection flow in the boundary layer of a plate placed longitudi-
nally in a flow, the pressure gradient in the boundary-layer equation for free
convection flow (7.44) has to be extended. The pressure work is not taken
into account in the energy equation (7.45). Similarly, in what follows, the
dissipation will be neglected, a fact that is approximately satisfied for in-
compressible flows. The ratio of thermal to flow boundary-layer thicknesses
is that of free convection flow:

δτ
δ

∼ 1√
Pr
. (7.71)

If the convective heat transport and the heat conduction are of the same
order of magnitude, we obtain

δτ
δ

∼ 1√
Rex · Pr

. (7.72)

For different Prandtl numbers, we obtain the ratios sketched in Figure 7.27.
Liquid metals, with Pr ≪ 1, have very good thermal conductivity at small
viscosity. Gases, with Pr ≈ 1, have a comparably small viscosity and thermal
conductivity, whereas oils with Pr ≫ 1 conduct heat badly but have a high
viscosity.

For liquid metals, the flow boundary layer may be neglected. In order
to compute the thermal boundary layer, the velocity profile can be approx-
imately determined on the edge of the boundary layer Uδ(x). For gas flows,
the thicknesses of the thermal and flow boundary layers are of the same order
of magnitude, and the complete boundary-layer equations have to be solved.
Corresponding to (7.43)–(7.45), these are written for incompressible forced
convection flow as

∂u

∂x
+
∂w

∂z
=0, (7.73)

u · ∂u
∂x

+ w · ∂u
∂z

=−dp

dx
+

1

Rel
· ∂

2u

∂z2
, (7.74)

u · ∂T
∂x

+ w · ∂T
∂z

=
1

Pr · Rel
· ∂

2T

∂z2
. (7.75)

In order for the boundary-layer equations to be valid, and because of the
requirement Rel ≫ 1, we also demand that Rel ·Pr ≫ 1. The continuity and
momentum equations (7.73) and (7.74) are now decoupled from the energy
equation (7.75), and so the flow boundary layer can be computed indepen-
dently of the thermal boundary layer.

For Pr = 1, the boundary-layer equations (7.73)–(7.75) can be solved
exactly. As well as the Blasius flow, the solution of the energy equation is
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also given. Figure 7.28 shows the computed velocity and temperature profiles
for a given wall temperature Tw. Since the temperature and velocity profiles
are identical, there is a direct proportionality between the heat transfer and
the wall shear stress. This is called the Reynolds analogy between momentum
and heat exchange, with the Stanton number

St =
cf
2
, (7.76)

St =
qw

ρ · cp · (Tw − T∞) · u∞
and the coefficient of friction cf = 2 · τw/(ρ · u2

∞). For the heat transfer, we
obtain the exact solution

St ·
√

Rex =
Nux√
Rex

= 0.332, (7.77)

and for the mean Nusselt number,

Nu =
h · l
R

= 0.664 ·
√

Rel. (7.78)

The numerical solutions of the system of equations with the Stanton number
(7.73)–(7.75) show that, in contrast to previous estimates, the ratio of the

boundary-layer thicknesses for Pr > 1 is proportional to Pr(−1/3):

δT
δ

=
0.975

Pr
1
3

. (7.79)

Therefore, the local Nusselt number is

Nux√
Rex

= 0.332 · Pr
1
3 . (7.80)

For liquid metals with Pr ≪ 1 we again obtain the dependence on
√

Pr,

Fig. 7.29. Dependence of the local Nusselt number on the Prandtl number for the
flat plate with constant wall temperature Tw
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δT
δ

=
0.58√

Pr
, (7.81)

and the local Nusselt number
Nux√
Rex

= 0.5 ·
√

Pr. (7.82)

Figure 7.29 summarizes the results of the dependence of the local heat transfer
on the Prandtl number.

Dissipation

At high flow velocities the dissipation

Φ = µ ·
(
∂u

∂z

)2

(7.83)

of two-dimensional boundary-layer flow cannot be neglected. For the case of
an adiabatic wall with qw = 0 the temperature profile in Figure 7.30 is ex-
pected. The dissipation is largest close to the wall. Therefore, the temperature
Tqw will have a maximum at the wall, called the recovery temperature. Fig-
ure 7.31 shows the temperature profiles for different Prandtl numbers for the
adiabatic wall. The dissipation causes the temperature profiles to become
broader. The adiabatic wall temperature (recovery factor) shows that for
Pr > 1 a temperature Tqw is obtained that is larger than the adiabatic stag-
nation temperature. The adiabatic wall temperature can be approximated
by

cp · (Tqw − T∞)
1
2 · u2

∞

≈





√
Pr for 0.6 < Pr < 1.5,

1.9 · Pr
1
3 for Pr ≫ 1.

(7.84)

For the case of constant wall temperature Tw, the temperature T∞ is
replaced by Tqw in the definition of the heat transfer coefficient h. Therefore,
we have, also with dissipation, the relation (7.80):

Nux√
Rex

= 0.332 · Pr
1
3 for 0.6 < Pr < 10.

Fig. 7.30. Temperature profile due to dissipation at an adiabatic wall
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Compressibility

Because the stagnation temperature grows quadratically with the Mach num-
ber in gases, compressibility effects very soon have to be taken into account.
As well as the Mach number, the Eckert number

Ec =
u2
∞

cp · (Tm − Tw)
(7.85)

is also a measure for the compressibility, since Ec ∼ M2. The Reynolds
analogy (7.76) is also valid for compressible flow, in the form

St =
cf

2 · Pr
. (7.86)

For compressible boundary-layer flows, there is a coupling between tempera-
ture and velocity

T

T∞
=
Tw

T∞
+
T∞ − Tw

T∞
· u

u∞
+ Pr · κ− 1

2
·M2

∞ ·
(

1 − u

u∞

)
, (7.87)

as given by L. Crocco (1932) and A. Busemann (1935). The effect of com-
pressibility is seen in the third term and the effect of heat transfer in the
second term of the relation (7.87).

Figure 7.32 shows the velocity and temperature profiles at the adiabatic
flat plate for Pr = 1. The boundary-layer thickness grows with increasing
Mach number, and the velocity profile takes on an almost linear form for large
Mach numbers. For strong cooling of the wall, the thickening and therefore
the displacement effect of the boundary layer is reduced, and the velocity
profiles become broader. Heating the wall increases the displacement effect
of the compressible plate boundary layer.

Turbulent Boundary-Layer Flow

Our knowledge of turbulent pipe flow can also be applied to the flat plate
boundary-layer flow. The starting point is the boundary-layer equations

Fig. 7.31. Temperature profile and adiabatic wall temperature at the flat plate for
constant fluid properties
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(7.73)–(7.75). The Reynolds ansatz yields the time-average boundary-layer
equations, neglecting the pressure work and the dissipation:

∂u

∂x
+
∂w

∂z
=0, (7.88)

u · ∂u
∂x

+ w · ∂u
∂z

=−1

ρ
· dp

dx
+
∂2u

∂z2
− ∂(u′ · w′)

∂z
, (7.89)

u · ∂T
∂x

+ w · ∂T
∂z

=k · ∂
2T

∂z2
− ∂(w′ · T ′)

∂z
, (7.90)

with the Reynolds heat flux

qt = ρ · cp · w′ · T ′.

For Pr = 1 we also have the Reynolds analogy for plate boundary-layer flow:

St =
Nux

Rex · Pr
=
cf
2
. (7.91)

In the Prandtl analogy, the flow field is divided into the viscous sublayer and
the fully turbulent region. This yields

St =

cf
2

1 + 5 ·
√
cf
2 · (Pr − 1)

. (7.92)

For Pr = 1, the Prandtl analogy is identical to the Reynolds analogy (7.91).
Von Kármán built on Prandtl’s ideas and divided the boundary layer into

three regimes. Between the viscous sublayer and the fully turbulent regime,
he considered a transition layer (5 < z+ < 30) in which the molecular and
turbulent exchange quantities are of the same order of magnitude. He formu-
lated the von Kármán analogy

Fig. 7.32. Velocity and temperature distributions at the adiabatic flat plate for
Pr = 1
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St =

cf
2

1 + 5 ·
√
cf
2 ·
(
Pr − 1 + ln

(
5 · Pr + 1

6

)) , (7.93)

which is again identical to the Reynolds analogy for Pr = 1.
The local coefficient of friction for the flat plate is

cf = const · Re
−

1
5

x . (7.94)

The local Nusselt numbers for the turbulent boundary layer of the flat plate
are shown in Figure 7.33. For all analogies it is assumed that the turbulent
Prandtl number is set to Prt = 1. For this reason, they cannot be applied for
liquid metals where Pr ≪ 1.

For the fully developed turbulent pipe flow it was assumed that the ratio of
heat flux density to shear stress in the central flow is approximately constant
over the cross-section of the pipe. This is also approximately true for plate
flow. With the dimensionless quantities u+ = u/uτ and T+ = (Tw − T ) · ρ ·
cp · uτ/qw as well as z+ = z · uτ/ν we obtain the temperature profiles shown
in Figure 7.34.

7.3.3 Bodies in Flows

The simplest case of a body with heat transfer in a flow is the circular cylinder
in a transverse flow. In a large range of Reynolds numbers, the heat transfer
takes place mainly in the boundary layer, so that the relations from the
previous section can be applied to the cylinder boundary layer.

According to experiments by R. Hilpert (1933), the dependence of the
mean Nusselt number in air and at constant cylinder temperature Tw can be
divided into different Reynolds number regimes:

Fig. 7.33. Local Nusselt number of the
turbulent flat plate boundary-layer flow
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Fig. 7.34. Temperature profile of
the turbulent flat plate boundary-
layer flow

40 < ReD < 4000, Nu=0.615 · Re0.466
D ,

4000 < ReD < 4 · 104, Nu=0.174 · Re0.618
D , (7.95)

4 · 104 < ReD < 2.5 · 105, Nu=0.0239 · Re0.805
D .

The exponent increases from 0.46 to 0.8 at Reynolds numbers larger than 4 ·
104. This indicates that the Kármán vortex street in the wake flow contributes
ever more to the heat transfer for increasing Reynolds number. Relations
(7.95) hold for turbulence-free streams. If the turbulence intensity in the free
flow is increased to 2.5%, the mean Nusselt number rises by up to 80%. This
explains why the Nusselt numbers measured in wind tunnels are generally
higher than those given in (7.95).

7.4 Heat and Mass Exchange

Heat and mass exchange processes occur in boundary layers if, for example,
coolant gas is supplied to the boundary-layer flow. Blowing a light gas from
the wall reduces the heat transfer. Evaporated liquid layers at the wall assist
the cooling. As well as momentum and heat exchange, there is also mass
exchange due to diffusion. As well as the velocity and thermal boundary
layers, there are also concentration boundary layers.

7.4.1 Diffusion Convection

In analogy to Rayleigh–Bénard convection, a concentration gradient can be
responsible for an unstable density layering in a mixture, even at constant
temperature. For example, in a salt solution the density increases with the
concentration. If water evaporates at the free surface of a salt solution (Figure
7.35), a high salt concentration remains, and an unstable density layering
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arises. We will see that the treatment of a convection flow in a binary mixture
driven by concentration differences is identical to the analysis of Rayleigh–
Bénard convection. Only the characteristic temperature difference ∆T has to
be replaced by the concentration difference ∆c, the heat expansion coefficient
α = ρ−1 · dρ/dT by the concentration expansion coefficient β = ρ−1 · dρ/dc,
and the thermal conductivity k by the diffusion coefficient D. Similarly, the
diffusion Rayleigh number RaD = βm ·∆·cm ·g·l3/(ν ·D) replaces the Rayleigh
number Ra, and the Schmidt number Sc = ν/D replaces the Prandtl number
Pr, where g is again the gravitational acceleration, l the thickness of the
liquid layer, and ν the kinematic viscosity. All results from thermal cellular
convection may therefore be directly carried over to diffusion convection.

In what follows we will therefore treat the double diffusion instability. The
single diffusion instability is then a special case. Double diffusion phenom-
ena are processes in which two diffusion effects occur simultaneously: mass
diffusion and heat diffusion (heat conduction). We will treat the stability of
a double diffusion system that is due to the superposition of mass diffusion
(e.g. saltwater solution in the ocean) with heat conduction. Depending on the
case, these two different diffusion processes may interact either to introduce
an instability or to stabilize a liquid layer.

The upper side of the liquid layer is kept at a higher temperature T2 than
the base T1 (see Figure 7.35). Let the salt concentration c2 on the surface also
be greater than that on the base c1. Here c indicates the mass concentration
c = ρs/ρ with the partial density of the salt ρs and the total density of the
solution ρ. Both a stable and an unstable density layering can exist in this
arrangement.

Fig. 7.35. Double diffusion instability, J. Turner (1985)
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If the unstable concentration difference ∆c = c2 − c1 exceeds a critical
value, the horizontal liquid layer will become unstable, even if the thermal
stratification is stable. Salt fingers form, which evolve into narrow high con-
vection cells.

In analogy to Rayleigh–Bénard convection, we consider a liquid element
of characteristic size l that rises with a small vertical velocity w because of a
small perturbation (Figure 7.36). In the new layer it has a lower temperature
and a lower salt content compared to the surroundings. It rises with velocity
w and passes along the temperature gradient ∆T/l in the surrounding fluid
layer. The associated change in internal energy in the volume l3 of the particle
is Ėk = ρm · cv · w · (∆T/l) · l3. This change is achieved by the energy flow
through the particle surface ∼ l2 due to heat conduction q̇ ∼ λ · ∆Tw/l.
The effective temperature gradient ∆Tw was introduced to indicate that it is
generally not the entire temperature gradient∆T in the layer that acts during
the process. If the upward velocity w of the particle is large, the particle
does not have enough time to adapt itself to the ambient temperature. The
balance Ėk = q̇ · l2 is an estimate for the effective ∆Tw = w · l ·∆T/k, with
the thermal conductivity k = λ/(ρm · cv). If the particle velocity were such
that temperature equilibrium is just achieved, ∆T and ∆Tw would be the
same. The associated thermal diffusion velocity wT would then be wT = k/d.

While the particle is exposed to the concentration gradient of the layer
∆c/l it accumulates salt. The change in concentration that it experiences
while rising with velocity w is therefore w ·∆c/l. This corresponds to a mass
change of ṁ = ρm · w · (∆c/l) · l3. The salt accumulation takes place as a
diffusion flux j = ρm · D · (∆cw/l) · l2 flowing through the surface l2 of the
particle. Here D denotes the diffusion coefficient. Again we have introduced
the effective concentration difference ∆cw, since the speed of the fluid particle
means that it does not have enough time to experience the full concentration
difference ∆c. Setting ṁ = j we obtain the effective concentration gradient

Fig. 7.36. Physical explanation of the
double diffusion instability
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as ∆cw = w ·l ·∆c/D. If the particle velocity were such that the concentration
compensation is just attained, ∆c and ∆cw would be equal. The associated
mass diffusion velocity wD would then be wD = D/l.

A statement about the instability of the state is reached in the same way
as with Rayleigh–Bénard convection, by comparing the lift force A acting on
the fluid element to the drag force W . The lift force A = AT +AD is made up
of a thermal part AT and a diffusion part AD. The density change of the fluid
element due to the temperature change is ∆ρT ∼ ρm ·αm ·∆Tw. The part of
the lift force due to this effect is AT ∼ ρm · αm ·∆Tw · g · l3, with the mean
coefficient of thermal expansion αm. The density change due to diffusion is
∆ρD ∼ ρm ·βm ·∆cw, which leads to the lift force AD ∼ −ρm ·βm ·∆cw ·g · l3.
Here βm denotes the mean coefficient of concentration expansion. The minus
sign was introduced so that AT and AD point in the same direction when
∆cw and ∆Tw have the same sign. The motion of the particle acts against the
drag force W . For creeping flows (small perturbation velocities w), Stokes’s
law states that W ∼ µ ·w · l = µ · l2/∆t. The condition for instability is clearly
given by the domination of lift over drag:

A = AT +AD≥W,
ρm · αm ·∆Tw · g · l3 − ρm · βm ·∆cw · g · l3≥µ · w · l · C.

The constant C summarizes all the factors of proportionality used in the
above estimates. Using the above relations for ∆Tw and ∆cw and dividing
by µ · w · l, we obtain

αm ·∆T · g · l3
k · ν︸ ︷︷ ︸
Ra

− βm ·∆c · g · l3
D · ν︸ ︷︷ ︸

Le · RaD

≥ C. (7.96)

The first dimensionless collection of quantities on the left-hand side is simply
the Rayleigh number again. The second dimensionless collection is generally
written as the product of the diffusion Rayleigh number RaD = βm ·∆c · g ·
l3/(k · ν) and the Lewis number Le = k/D. The Lewis number is the ratio
of the characteristic thermal diffusion velocity wT and the material diffusion
velocity wD: Le = wT /wD.

We note that the onset of Rayleigh–Bénard convection is a special case
of the above stability criterion. Without the effect of diffusion, RaD = 0, and
we obtain the stability criterion (7.16). We also note that the constant C,
which has the meaning of the value of a critical characteristic number, can
simply be read off the analysis of Rayleigh–Bénard convection (RaD = 0),
i.e. C = Racrit. From this phenomenological discussion we can write

Ra − Le · RaD ≥ Racrit. (7.97)

The relation (7.97) for Ra − Le · RaD = Racrit is the equation for a straight
line in the Ra(RaD) diagram. This critical straight line has slope Le (see
Figure 7.37).
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For positive Ra there is thermally unstable density stratification, and for
negative RaD, diffusively unstable density stratification. For example, for a
given RaD < 0, the density stratification becomes unstable already at values
of Ra < Racrit.

Also note that the thermal and diffusion density gradients ∆ρT = ρm ·
αm · ∆T and ∆ρD = ρm · βm · ∆c of the layer cancel each other out for
Ra = RaD. The condition Ra > RaD states that the denser medium lies
above the lighter medium. Beyond the point where the critical straight line
from (7.97) cuts the straight line Ra = RaD (such a point exists for Le 6= 1),
instability is also possible for stable density stratification.

Although (7.97) is an exact stability criterion, we also mention that, in the
regime of very large positive diffusion Rayleigh numbers RaD, this equation
is no longer valid. The stratification is already unstable at smaller thermal
Rayleigh numbers Ra than predicted by (7.97). The strong density changes
of the particle at relatively strong concentration and temperature gradients
are responsible for this. These density changes ensure that the inertial force,
as well as the lift and frictional forces, also affects the equilibrium. The insta-
bilities that then occur are unsteady. A further dimensionless characteristic
number that then appears is the Prandtl number Pr = ν/k. Until now, the in-
ertial forces have been neglected in Rayleigh–Bénard convection. These forces
are necessary to describe the onset of the steady instabilities correctly. They
occur in the form of narrow high convection cells, and are generally known
as finger instabilities (cf. Figure 7.35).

Stability Analysis

The fundamental equations of double diffusion convection (5.90) (concentra-
tion and temperature gradients) and the perturbation differential equations
(5.216)–(5.219) are given in Section 5.4.3 and 5.5.

The ground state of the double diffusion convection instability U0 =
(c0,u0, p0, T0) is obtained from the continuity equation and energy equation
(5.90):

∆c0 = 0, ∆T0 = 0. (7.98)

A state of rest u = 0 is also possible here if the temperature gradient ∇T0

is not parallel to the direction of the force of gravity ez . Taking the curl of
the momentum equation (5.90) and inserting u = 0, we obtain the condition
(∇T0 − RaD/Ra · ∇c0) × ez = 0. The requirement that these vectors be
parallel is now more generally valid for the vector sum of the temperature and
concentration gradients. Here RaD/Ra = −∆ρD/∆ρT is to be interpreted as
the ratio of the density change due to temperature gradients∆ρT = −ρm·αm ·
∆T to the density change due to concentration gradients ∆ρD = ρm ·βm ·∆c.
For ∆ρD/∆ρT = 1, the density is the same at every position, since in this
case the density changes due to temperature and concentration just cancel
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each other out. The situation of neutral density stratification is therefore
given by Ra = RaD.

For a layer that is infinitely extended in the horizontal directions x and
y, the ground state is independent of x and y. Let the temperature and the
concentrations at the two horizontal boundaries of the liquid layer be constant
and given by

T0

(
x, y, z = −1

2

)
= T1, T0

(
x, y, z =

1

2

)
= T2,

c0

(
x, y, z = −1

2

)
= c1, c0

(
x, y, z =

1

2

)
= c2.

Along the homogeneous parallel directions x, y, the ground state is dependent
only on the vertical direction z. From the above Laplace equations for T0 and
c0 we obtain

T0(z) = CT
1 · z + CT

0 , c0(z) = Cc
1 · z + Cc

0.

The constants (CT
0 , CT

1 ) and (Cc
0, Cc

1) follow from the boundary conditions,
since CT

1 = −1, CT
0 = (T1 + T2 − 2 · Tm)/∆T and Cc

1 = −1, Cc
0 = (c1 + c2 −

2 · cm)/∆c. With Tm = 0.5 · (T1 +T2) as in Rayleigh–Bénard convection, and
cm = 0.5 · (c1 + c2) we obtain the fundamental solution

T0 = c0 = −z. (7.99)

From the first two Boussinesq equations (5.85), we obtain p0 = p0(z). The z
Boussinesq equation yields

0 = −dp0

dz
+ (Ra · T0 − RaD · c0),

or, using (7.98) for the pressure,

p0 = −1

2
· (Ra − RaD) · z2 + p∞. (7.100)

Here p∞ is the ambient pressure. The temperature and concentration dis-
tributions, and thus also the entire heat conduction diffusion problem, are
independent of p∞. It is not the magnitude of the pressure p0 that influences
the problem, but only its gradient dp0/dz.

The linear stability analysis again yields a stability diagram (Figure 7.37).
The procedure corresponds to that of Rayleigh–Bénard covection in Section
7.2.1. For a horizontal two-component layer with free boundaries, the finger
instability may be either steady or oscillatory. The indifference curve for the
steady double diffusion instability is calculated with (see H. Oertel and J.
Delfs (1996))

Π(a) = Ra − Le · RaD =
(a2 + π2)3

a2
. (7.101)

Here Π(a) describes the same curve as Ra(a) in Rayleigh–Bénard convection.
For the indifference curve for oscillatory finger instabilities we obtain
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Π̃(a) =
Pr · Le2 · Ra − Pr · Le · 1 + Pr · Le

1 + Pr · RaD

Pr · Le2 + Le · (1 + Pr) + 1
=

(a2 + π2)3

a2
. (7.102)

The characteristic number Π̃ in the oscillatory case corresponds to the char-
acteristic number Π for the steady instability. Further, Π̃ has the same form
as Ra(a) in Rayleigh–Bénard convection. In noting this we have reduced
the double diffusion problem for a liquid layer with free boundaries without
temperature and concentration perturbations to the much simpler steady
Rayleigh–Bénard convection.

The minimum of the function Π(a) = Π̃(a) yields the critical values (cf.
free liquid layer in Rayleigh–Bénard convection) Πcrit = (27/4) · π4 = 658
and the critical wave number acrit = π/

√
2 = 2.22.

In doing this we have determined the critical states of the liquid layer.
Because the Lewis number Le and the Prandtl number Pr can be taken to be
constant, fixed material properties, it makes sense to depict the critical states
in a diagram of the Rayleigh numbers Ra(RaD). From (7.101) we obtain the
linear equation

Ra = Πcrit + Le · RaD, (7.103)

and from (7.102) then

R̃a = Πcrit ·
(

1 +
1

Le

)
·
(

1 +
1

Le · Pr

)
+

1
Le + Pr

1 + Pr
· RaD. (7.104)

Both straight lines are shown in Figure 7.37. The diagram also shows that the
limits of stability Ra and R̃a generally cut the median line Ra = RaD that
is the left-hand boundary of the Rayleigh number regime in which a stable
density stratification (lighter fluid above heavier) exists. This shows that
double diffusion instabilities are also possible in stable density stratification.

Fig. 7.37. Critical states of a liquid layer of a two-component mixture with free
boundaries
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Even if heavier fluid is lying above lighter fluid, the state of the liquid layer
can still be stable.

7.4.2 Mass Exchange at a Flat Plate

The forced convection flow of the flat plate with mass exchange in a longitu-
dinal flow is sketched in Figure 7.38. Cool air with velocity component w(x)
in the direction normal to the wall is superimposed on a hot gas flow. In this
section the simplest case of a flat incompressible boundary-layer flow of an
inert binary mixture will be treated. The cool gas 1 with mass concentration
c1 = c diffuses through the porous surface into the flowing gas 2 with mass
concentration c2 = 1 − c1. The two-dimensional boundary-layer equations
with heat transport (7.73)–(7.75) discussed until now are extended by the
mass transport equation:

∂u

∂x
+
∂w

∂z
=0, (7.105)

u · ∂u
∂x

+ w · ∂u
∂z

=− ∂p

∂x
+

1

Rel
· ∂

2u

∂z2
, (7.106)

u · ∂T
∂x

+ w · ∂T
∂z

=
1

Pr · Rel
· ∂

2T

∂z2
, (7.107)

u · ∂c
∂x

+ w · ∂c
∂z

=
1

Le
· ∂

2c

∂z2
, (7.108)

with the Lewis number Le = D/k = Pr/Sc. Here coupling effects such as
thermodiffusion, as is used in the separation of isotopes, are neglected. The
physical values of a binary mixture are dependent not only on the tempera-
ture and pressure, but also on the concentration. This dependence, however,
is small and is neglected, as is the pressure dependence. Within the Boussi-
nesq approximation, the physical values are assumed to be constant at the
mean temperature Tm. In the energy equation (7.107), the energy diffusion
term has been neglected compared to the heat conduction term, a fact that is
approximately satisfied for inert gas mixtures. Therefore, the mass exchange
influences the velocity profile only via the boundary condition ww(x). The
continuity equation (7.105) and the momentum equation (7.106) remain un-
changed.

Fig. 7.38. Mass exchange in the flat
plate boundary layer
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The system of equations for the flat plate boundary layer has the boundary
conditions at the wall w = ww, the given wall temperature Tw, and the wall
concentration c = cw. At the edge of the far field we have T = T∞ and c = c∞.
Figure 7.39 shows the computed temperature and concentration profiles at
different blowing rates for the Prandtl and Schmidt numbers 0.7. Because of
the mass transport to the wall with ww < 0, the profiles become broader.
Suction is generally used in practice to prevent flow separation in boundary
layers with pressure gradients. The mass transport in blowing allows the
profile to become flatter, causing flow separation to be favored. The profiles
have a turning point, which also causes the laminar–turbulent transition in
the boundary layer.

The ratios of the flow and thermal boundary layers can also be applied
to mass transport. The statement δ/δT ≈ Pr(1/3) for Pr ≥ 1 corresponds to

δ

δD
≈ Sc

1
3 for Sc ≥ 1. (7.109)

For the diffusion Nusselt number NuD we have

NuD√
Rex

= 0.332 · Sc
1
3 for Sc ≥ 1, (7.110)

as long as the blowing velocity is very small. The constant in (7.110) has to
be suitably adapted for arbitrary blowing rates.

For turbulent mass transport, the Reynolds equations (7.88)–(7.90) of the
flat plate boundary layer are extended by the Reynolds transport equation

u · ∂c
∂x

+ w · ∂c
∂z

= D · ∂
2c

∂z2
− ∂(w′ · c′)

∂z
, (7.111)

with the Reynolds mass flux

Fig. 7.39. Temperature and concentration profiles at the flat plate with mass
transport, Pr = Sc = 0.7
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jz = ρ · w′ · c′ = −ρ · ǫD · ∂c
∂z

and the turbulent exchange quantity ǫD for the mass exchange. Following on
from the molecular Prandtl and Schmidt numbers, we define the turbulent
Prandtl and Schmidt numbers as

Prt =
ǫτ
ǫq

=
u′ · w′

w′ · T ′
·
∂T
∂z
∂u
∂z

, (7.112)

Sct =
ǫτ
ǫD

=
u′ · w′

w′ · c′
·
∂c
∂z
∂u
∂z

. (7.113)

This yields the turbulent Lewis number

Let =
Sct

Prt
=

ǫq
ǫD

=
w′ · T ′

w′ · c′
·
∂c
∂z
∂T
∂z

. (7.114)

The value Let = 1 may be set approximately in shear layers, and so all
statements on turbulent momentum exchange can be applied to turbulent
mass exchange.

Laminar and turbulent mass transport with chemical reactions will be
discussed in Chapter 9.



8. Multiphase Flows

8.1 Fundamentals of Multiphase Flows

Multiphase flow is the kind of flow that occurs most frequently in nature and
technology. The concept of a phase is to be understood in the thermody-
namic sense as a solid, liquid, or gaslike state that can occur simultaneously
in one-component or many-component systems. Storm clouds drifting with
rain drops and hailstones, a raging current in the mountains, a snow-dust
avalanche, and the cloud of a volcano are impressive examples of multiphase
flows in nature.

In power station and chemical technology, multiphase flows are often an
important method of heat and material transport. Two-phase flows determine
the processes in steam generators, condensators, and cooling towers of steam
power stations. Multiphase multicomponent flows are used in the extraction,
transport, and treatment of oil and natural gas. These types of flows are
also greatly involved in distillation and rectification processes in chemical
industry.

The importance of these flow processes for the environment and technol-
ogy demands that we have a fundamental physical understanding of transport
processes and interactions in flowing multiphase multicomponent mixtures.

Multiphase flows generally manifest themselves as unsteady processes
with a chaotic character. Therefore, to a much greater extent than for tur-
bulent flows, a formal description requires the use of average states and sta-

statements about the expected phenomena, such as pressure drops and phase
distributions.

The very different forms and structures that are seen even in the simplest
geometries such as pipes and channels of constant cross-section in gas–liquid
or gas–solid flows make a consistent mathematical physical description of
multiphase flows difficult. The effect of gravity is considerable. In addition,
interfacial tensions and electrostatic forces in solids are of central importance.
Examples of such typical, repeatedly observed flow forms for a gas–liquid flow
in the horizontal pipe are shown schematically in Figure 8.1.

Multiphase flows can fundamentally be described in two different ways.
On the one hand, a multiphase flow can be considered as a moving continuum
of phases penetrating into each other, whereby each phase is present at every
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location to a certain extent. This model is useful if the large-scale behavior
of a multiphase fluid is to be described. On the other hand, the motion in
each phase can be described separately, with the coupling between the phases
at the interfaces of particular importance. This is expressed mathematically
by computing the motion of the interfaces in detail by specific mathematical
methods (for details, see W. Shyy et al. (1996)). This kind of consideration is
advantageous if the processes are governed by interactions at the interfaces,
such as mass fluxes. The attention here is on small-scale effects.

In Section 5.4.6 the fundamental equations of two-phase flow and simpli-
fied models in the sense of the first method of consideration are presented.
The second method of consideration, which was presented by way of example
in Section 5.4.3 with the Rayleigh–Plesset equation, will not be applied in
this chapter.

8.1.1 Definitions

Using the definition of average values introduced in Section 5.4.6, some fun-
damental quantities and concepts of multiphase flows will now be introduced.

The void or the volume fraction ǫk(x, t) of the phase k in the flow denotes
the amount of the volume of the flow channel in space and time that is
occupied by the phase k (gas or liquid). The volume fraction ǫ can be defined
as a local quantity averaged over the time, over a chord length L, over the
channel cross-sectional area A, or over a channel volume ∆V . Accordingly,
the time fraction, surface fraction, and volume fraction of the phase k are
defined by the simple relations

Fig. 8.1. Flow patterns in horizontal pipes
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ǫk,t =
∆tk
∆t

, ǫk,A =
Ak

A
, ǫk,V =

Vk

∆V
, (8.1)

where ∆tk, Ak, and Vk are to be understood as the corresponding averages
of the phase indicator function X(x, t). The surface and volume fractions can
additionally be time-averaged.

For the velocities of the phases, time-averaged flow values uk(x, t)
k
, cross-

sectionally averaged 〈uk(x, t)〉k,A, and spatially averaged values 〈Uk(x, t)〉k,V

are similarly introduced. For simplicity, further discussion will be for one
velocity component only.

A superficial velocity is the product of the phase fraction ǫk and the phase
velocity uk, and is defined as

Uk = ǫk · uk.

The averaged values are then

Uk
k

= ǫk · uk
k, 〈Uk〉k,A = 〈ǫk · uk〉k,A, 〈Uk〉k,V = 〈ǫk · uk〉k,V . (8.2)

In particular, the cross-sectionally averaged velocity can then also be inter-
preted as the mean volumetric flux of the phase k and written in the form

〈Uk〉 =
V̇k

A
. (8.3)

The velocity defined in this manner is called the volumetric flux or superficial
velocity. Here V̇k is the volumetric flow rate of the phase k. The volumetric
flux of the phase k is therefore to be physically interpreted as if the phase
k were flowing alone in the channel. At this point we also define the total
velocity by the relation

U =
∑

k

Uk, (8.4)

which can be used in the local form as here, or in the cross-sectionally aver-
aged form 〈U〉 =

∑
k〈Uk〉. The nature of averaging is such that the following

relation holds between the mean quantities 〈Uk〉, 〈uk〉, and 〈ǫk〉:
〈Uk〉 = 〈ǫk · uk〉 = C · 〈ǫk〉 · 〈uk〉, (8.5)

with C as the correlation factor. This permits the cross-sectionally averaged
phase velocities 〈Uk〉 to be represented by 〈ǫk〉 and 〈uk〉. It is useful to intro-
duce the ratio of the phase velocities:

S =
〈ui〉
〈uk〉

=
〈ǫi〉 · 〈Uk〉
〈ǫk〉 · 〈Ui〉

· C0,i

C0,k
. (8.6)

This ratio is frequently called the slip. This is misleading, and we shall call
it rather the velocity ratio. Using the velocities and the densities ρk of the
phases as defined, we can write down the mass flux densities ṁk and the
mass flow rates Ṁk. We have the relations

ṁk = ρk · 〈uk〉, Ṁk = ρk · 〈Uk〉 · A. (8.7)
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The mass flux density is also known as the mass velocity. For the total mass
flow rate, the balance of mass implies Ṁ =

∑
Ṁk.

In order to characterize multiphase flows, as well as the volume fraction
(void) ǫk, we also use a mass fraction χ as the ratio of the mass flow rate of
the phase k to the total mass flux:

χk =
Ṁk

Ṁ
, with Ṁ =

∑
Ṁk. (8.8)

For gas–liquid flow this ratio is called the quality. It is thermodynamically
determined by the enthalpy of the phases for one-component two-phase flows
such as water-water vapor (cf. Section 8.4). There is a functional dependence
between the phase velocities, mass flow rates, and densities. For two-phase
flows, gas–liquid, the dependence can be given in the form

χG

χL
=
ρG

ρL
· S · ǫG

ǫL
, (8.9)

whereby, because of mass conservation, for any type of averaging, χL = 1−χG

and ǫL = 1 − ǫG hold. In particular, it is clear from this relation that the
volume fraction ǫ quite generally depends on the velocity ratio, on the density
ratio, and on the quality of a two-phase flow.

Because two-phase flows are of particular importance in applications, fur-
ther expressions for velocities have been introduced to describe transport
processes. The drift velocity is the deviation of the actual phase velocity uk

from the total volumetric flux U = UG + UL. For example, for a gas–liquid
flow it is defined as

uG,U = (uG − U), uL,U = (uL − U). (8.10)

These drift velocities are simply related to the relative velocity uG − uL be-
tween the two phases. We have

uG,U = (1 − ǫG) · (uG − uL), uL,U = −ǫG · (uG − uL). (8.11)

This relation is also valid for all types of averaging. For this reason, we do
not denote the averaging here with a particular symbol. In analogy to the
volumetric fluxes Uk, in deriving some models describing two-phase flows, we
also introduce referred drifts, called drift fluxes. They are defined as

UG,U = ǫG · uG,U , UL,U = (1 − ǫG) · uL,U . (8.12)

A further characteristic parameter for two-phase flows was introduced by R.
Lockhart and R. Martinelli (1949). It is given by the ratio of the friction
pressure losses, for the cases in which gas and liquid each flow alone through
the channel. If the pressure losses of the averaged liquid and gas volumetric
fluxes are given by (dp/dz)L and (dp/dz)G, respectively, then the Martinelli
parameter is defined as

X2 =

(
dp
dz

)
L(

dp
dz

)
G

. (8.13)
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This parameter is in general a measure for the volume fraction of the flow.
For X2 ≫ 1 the two-phase flow consists essentially of liquid, and for X2 ≪ 1,
of gas.

8.1.2 Flow Patterns

Two-phase flows can take different forms, depending on the different types
of interface interaction at different volumetric fluxes of the phases. At very
different densities of the phases, gravity has a considerable effect. In order to
characterize the effect of gravity, it has been useful to classify the flow forms
for horizontal and vertical pipe flows. The typical flow patterns are sketched
for both cases in Figures 8.1 and 8.2.

The flow patterns shown occur in this order as the gas fraction ǫ and the
gas velocity are increased. The transitions between the patterns are not sharp
and are influenced by the flow turbulence in each phase, the volume fraction,
and the stability of the interfaces.

8.1.3 Flow Pattern Maps

In order to distinguish between different flow patterns, flow charts have been
developed using experimental observations. A greatly simplified representa-
tion of the states can be obtained for a given gas–liquid mixture, such as air
and water, using the volumetric fluxes of liquid and gas as control parame-
ters. Such a flow chart or flow map was produced from a large database of
experimental results by J. M. Mandhane et al. (1974). It was derived from a
variation of liquid and gas volumetric fluxes in a horizontal test pipe. Figure
8.3 shows the Mandhane flow map.

Fig. 8.2. Flow patterns in vertical pipes, cocurrent upward flows
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Similar maps have also been given by G. Govier and K. Aziz (1972) and
Y. Taitel et al. (1980) for air–water flows in vertical pipes. The boundaries
between the flow patterns are not sharply marked and in some cases show
hysteresis. In vertical pipe flows, the pipe length and the flow intake, for
example, considerably affect the transition between plug flows and churn
flows. Using a linear scaling of the volumetric fluxes for air–water mixtures
with property parameters that take into account the density and the surface
tension, G. Govier and K. Aziz (1972) and J. M. Mandhane et al. (1974)
were able to generalize their flow maps for other gas–liquid mixtures. They
introduced the density ratios between gas and air ρG/ρair, liquid and water
ρL/ρwater, and the ratio of the surface tensions σ/σair/water for alternative
mixtures and for air and water. They define

Y =

(
ρL

ρwater
· σair/water

σ

) 1
4

and X =

(
ρG

ρair

) 1
3

· Y.

As modified volumetric fluxes for the alternative mixture they set U∗
G =

X · Uair and U∗
L = Y · Uwater.

Y. Taitel and A. Dukler (1976) and Y. Taitel (1990) derive flow maps from
purely theoretical considerations. They distinguish between three classes of
flow: stratified flows in smooth or wavelike form, intermittent flows in the form
of slug and plug flows, and dispersed flows in the form of bubbly or annular-
droplet flows. A condition for the transition from stratified to intermittent
flow is derived from the instability condition for a soliton wave. The limiting

horizontal air−liquid flow vertical air−liquid flow

Fig. 8.3. Flow map by J. M. Mandhane et al. (1974) for a horizontal air–water
flow with experimental data: pressure 0.1 MPa, pipe diameter 2.5 cm. Flow map by
Y. Taitel et al. (1980) for vertical air–water flow with experimental data: pressure
0.1 MPa, pipe diameter 5.1 cm, l/D denotes the ratio of pipe length to pipe diameter
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curve is given by a modified Froude number,

F =

√
ρG

ρL − ρG
· UG√

D · g · cos(β)
,

as a function of the Martinelli parameterX . Here β is the angle of inclination
of the pipe, and D the diameter of the pipe. The transition from smooth
to wavelike stratified flow is determined by the Kelvin–Helmholtz instability
condition. After some simplifying assumptions it can be given the form

K =
UG√

D · g · cos(β)
·
√

ρG

ρL − ρG
·
√
UL ·D
νL

>∼ 20 · √ǫL · ǫG

where νL is the kinematic viscosity of the liquid. A correlation to the Mar-
tinelli parameter can be determined for the volume fractions, so that the
limiting curve can be obtained in the form K(X).

The transition from annular flow to intermittent flow in not too strongly
inclined pipes is given by the minimum possible liquid fraction in a slug in-
terspersed with gas bubbles. According to Y. Taitel and A. Dukler (1976),

intermittent slug flows occur for ǫL
>∼ 0.24. This corresponds approximately

to the value X ≈ 1.6 for the Martinelli parameter. The state of dispersed
bubbly flow and intermittent flow is determined by turbulent agitation, by
gravity, and by the collapse and coalescence of bubbles. The turbulence in-
tensity in the liquid phase may be characterized by the pressure drop in the
liquid phase. Y. Taitel and A. Dukler (1976) introduce the ratio of the super-
ficial pressure drop of the liquid phase and the hydrostatic lift of the bubbles
as a characteristic number, in the form

T 2 =

∣∣∣∣
(

dp

dz

)∣∣∣∣
L

· 1

(ρL − ρG) · g · cos(β)

The transition between the two regimes can be given as the function T
of the Martinelli parameter X . After evaluating the functional relations, the
flow map of Y. Taitel and A. Dukler (1976) has the form shown in Figure
8.4, where each of the limiting curves K(X), F (X), and T (X) is assigned
separately to an axis.

Y. Taitel (1990) generalized the theory of the flow regime boundaries
so that two-phase flows in pipes can be classified with arbitrary angles of
inclination. The transition conditions are then either given graphically or
can be numerically determined point by point.

The different state quantities of the two-phase flow as well as their deriva-
tives, such as the pressure gradient, the volume fraction, and the heat transfer
coefficient are greatly dependent on the flow pattern. Therefore, in general,
computational methods for two-phase flows have to be developed individually
for each characteristic flow pattern. This is a major and complex task. The
different computational models are then linked via flow maps or computer-
supported transition conditions, in order to determine sufficient accurately
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the two-phase states for technical systems, such as steam generators. The
computation of two-phase flows with respect to the different regimes has
still not been satisfactorily solved. Currently, for certain technically relevant
quantities, such as pressure drop and heat flux, correlations are still being
used that were derived based on extensive experimental data. The modeling
of two-phase flows will be discussed in the following sections.

8.2 Flow Models

For any model development it is very useful to divide two-phase flows ac-
cording to the scheme of Y. Taitel and A. Dukler (1976) into three classes:
separate flows, such as stratified flows, wavy flows and annular flows; inter-
mittent or transition flows in the form of elongated bubble flows, slug flows,
and plug flows; and dispersed flows like bubble flows, churn flows, and droplet
or mist flows. In order to describe two-phase flow, the mechanical coupling of
the state variables velocity, pressure, and temperature is usually carried out
in a Euler form of the conservation equations for mass, momentum, and en-
ergy. In the general case, the balance for each phase is taken separately, and
the description of the two-phase flow is then called a two-fluid model. This
procedure can generally also be applied to describe a flow with N fluids, and
it yields an N-fluid model. This has already been presented in general form
in Section 5.4.6. Next, we discuss the one-dimensional form of the two-fluid
model.

Fig. 8.4. Flow map in horizontal and slightly inclined pipe, after Y. Taitel and A.
Dukler (1976), with the characteristic numbers K, F , and T as a function of the
Martinelli parameter X
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8.2.1 The One-Dimensional Two-Fluid Model

It is expedient to derive the one-dimensional two-fluid model by utilizing the
idea of a stratified flow in a pipe, as shown in Figure 8.1 in Section 8.1.2, and
here schematically depicted in Figure 8.5 to clarify some specific quantities.

In order to obtain the one-dimensional two-fluid equations from the gen-
eral fundamental equations for multiphase flows, some fundamental assump-
tions are made with regard to the spatial (cross-sectional) averaging and the
time averaging.

In the spatial or time averaging of a product of state variables f and g
we have in general 〈f · g〉 = c · 〈f〉 · 〈g〉 or f · g = c · f · g. In the simplest
representation of the two-fluid model we set c = 1.

The thermodynamic equations of state and the constitutive relations for
local quantities also hold for the averaged quantities.

The heat conduction and the change of the shear stresses in the direction
of flow, as well as the dissipation of the frictional forces in each phase, are
neglected.

Local thermodynamic equilibrium in each phase is assumed. However, the
phases do not have to be in thermodynamic equilibrium with each other.

In vertical two-phase flows the pressure over the cross-section of the pipe
is assumed to be constant. In many applications this is also valid to good
approximation for horizontal flows.

The effect of the interfacial stresses can initially be neglected. However, it
frequently reappears when interfacial stresses enter the constitutive relations
needed to close the system of model equations.

In order to present the one-dimensional balance equations, we use the
following notation for the averaged quantities:

Fig. 8.5. Control space for a separate two-phase flow
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geometry: AG, AL, A cross-sectional areas, AG +AL = A,

PG, PL, P circumferential segments, PG + PL = P ,

Pi circumferential sections,

ǫG = AG/A, cross-sectional fractions, ǫG + ǫL = 1,

ǫL = AL/A

state variables: uG, uL velocities,

pG, pL pressures,

ρG, ρL densities,

ṁG = ρG · uG, mass flux densities

ṁL = ρL · uL (or mass velocities),

eG, eL specific internal energy,

hG, hL specific enthalpy,

constitutive variables: τw,G, τw,L wall shear stress,

qw,G, qw,L wall heat flux density,

τi,G, τi,L shear stresses at phase interface,

qi,G, qi,L heat flux densities at phase interface,

ΓG, ΓL mass source densities at phase interface,

ui velocity at phase interface,

pi pressure at phase interface,

in phase transitions: M
(ΓG)
G , M

(ΓL)
L momentum source term due to

mass exchange at phase interface,

Lτ,G, Lτ,L power source densities due to

wall shear stresses at interface,

L
(ΓG)
G , L

(ΓL)
L power source densities due to

mass exchange at interface.

Lg, Lq power source densities due to

gravity and heat supply.

Because of the local equilibrium we have the following relations between
the constitutive variables at the interface:
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ΓG − ΓL=0,

τi,G − τi,L=0,

qi,G − qi,L=0,

M
(ΓG)
G −M

(ΓL)
L =0,

L
(ΓG)
G − L

(ΓL)
L =0.

The momentum source densities M
(ΓG)
G and M

(ΓL)
L and the power den-

sities can be specified further (cf. M. Ishii (1975), M. Ishii und T. Hibiki
(2006) and J. Delhaye et al. (1981)). Those parts of the quantities that are
due to mass exchange sum to zero, as already stated above. However, if sur-
face stresses play a role, there are further terms in the balance equations for
the phase mixture that take into account the surface stresses. For simplic-
ity, the surface stress effects will not be taken into account here. Using the
assumptions discussed here, the one-dimensional balance equations for the
two-fluid model can be written in the following form:

Mass:

∂

∂t
(ρG · ǫ ·A) +

∂

∂z
(ṁG · ǫ · A)=ΓG, (8.14)

∂

∂t
[ρL · (1 − ǫ) ·A] +

∂

∂z
[ṁL · (1 − ǫ) · A]=ΓL. (8.15)

Momentum:

∂

∂t
(ṁG · ǫ ·A)+

∂

∂z
(ṁG · uG · ǫ · A) = −ǫ ·A · ∂

∂z
pG − τw,G · PG

−τi,G · Pi − ǫ ·A · ρG · g · sin(α) +M
(ΓG)
G , (8.16)

∂

∂t
[ṁL · (1 − ǫ) · A] +

∂

∂z
[ṁL · (1 − ǫ) ·A · uL] = −(1 − ǫ) ·A · ∂

∂z
· pL

−τw,L · PL − τi,L · Pi − (1 − ǫ) ·A · ρL · g · sin(α) +M
(ΓL)
L , (8.17)

with ǫG = ǫ. Here the assumption pL = pG = p can be introduced.
Energy:

∂

∂t
(ρG · EG · ǫ · A) +

∂

∂z

[
ṁG ·

(
hG +

u2
G

2

)
· ǫ ·A

]

= Lτ,G + Lg,G + L
(ΓG)
G + Lq,G. (8.18)

Here EG = eG+u2
G/2 is the energy density, hG the specific enthalpy of the gas,

and on the right-hand side of the equation we have written down, without
closer specification, the power contributions of shear stress, of gravity, of
momentum exchange due to mass exchange between the phases, and of heat
fluxes. Similarly, the energy equation for the liquid phase can be written as
follows:
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∂

∂t
(ρL · EL · (1 − ǫ) · A) +

∂

∂z

[
ṁL ·

(
hL +

u2
L

2

)
· (1 − ǫ) · A

]

= Lτ,L + Lg,L + L
(ΓL)
L + Lq,L. (8.19)

For the simplest case of an incompressible flow, the equations contain the six
variables of state uG, uL, eG, eL, p, ǫ. As well as these, there is a great number
of constitutive variables, which, in stringent derivation of the momentum and
energy equations, may be reduced to the following independent variables: Γ ,
(τw,G ·PG), (τw,L ·PL), (τi,G ·PG), (qw,G · PG), (qw,L ·PL), (qi,L · PL) (cf. G.
Yadigaroglou and J. R. T. Lahey (1976)). Correlations between the constitu-
tive variables and the state variables have to be set up, based on experimental
evidence or theoretical ideas, in order to close the balance equations and to
apply them to solving two-phase flow problems. The model correlations for
the constitutive variables are to be developed individually for the different
flow regimes. A set of specific correlations has been given by M. Ishii and K.
Mishima (1984) and in a more general form by M. Ishii and T. Hibiki (2006).

8.2.2 Mixing Models

The two-fluid model can be simplified if, for technical reasons, only integral
states of the two-phase flow, such as total mass flow rate, total pressure drop,
and total heat transport, are of interest. By adding the same kind of balance
equations for the individual phases, we obtain three balance equations for the
total mass flow rate, the total momentum, and the total energy of the two-
phase mixture. These equations can be written in a form that corresponds to
the form of the one-dimensional fluid-mechanical equations for compressible
media if the densities, the wall shear stress, and the wall heat flux of the
mixture are introduced as weighted quantities. Using the general definitions
from Section 8.1, simple algebraic manipulation leads to the following three
conservation equations for the two-phase mixture:

Mass:

∂ρH

∂t
+

1

A
· ∂Ṁ
∂z

= 0, (8.20)

with

ρH = ǫ · ρG + (1 − ǫ) · ρL. (8.21)

Momentum:

∂

∂t
Ṁ +

∂

∂z

(
1

ρI
· Ṁ

2

A

)
= −A · ∂p

∂z
− 〈τw〉 · P −A · ρH · g · sin(α), (8.22)

with χ = χG and
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1

ρI
=

χ2

ǫ · ρG
+

(1 − χ)2

(1 − ǫ) · ρL
, 〈τw〉 = τw,G · PG + τw,L · PL. (8.23)

Energy:

∂

∂t
E +

1

A
· ∂
∂z

[
Ṁ

(
h+

1

ρ2
E

· Ṁ2

2 ·A2

)]
= Lτ,w + LG + Lq,w, (8.24)

with the total energy E = ρG · EG + ρL · EL and the total enthalpy

h = χ · hG + (1 − χ) · hL and
1

ρ2
E

=
χ3

ǫ2 · ρ2
G

+
(1 − χ)3

(1 − ǫ)2 · ρ2
L

. (8.25)

It can be seen that the densities of the individual phases are differently
weighted in the different balance equations and therefore have different ef-
fects compared to single-phase flows. The mixture equations can be used to
define mixture densities, which are occasionally used to evaluate signals of a
two-phase flow instrumentation. The definitions are set out in the following:

Definitions of mixture densities based on mixture balances

Mass ρH = ǫ · ρG + (1 − ǫ) · ρL homogeneous density

Momentum ρI =

(
χ2

ǫ · ρG
+

(1 − χ)2

(1 − ǫ) · ρL

)−1

momentum density

Energy ρE =

(
χ3

ǫ2 · ρ2
G

+
(1 − χ3)

(1 − ǫ)2 · ρ2
L

)−1/2

energy density

Although the model for the mixture flow has been simplified by a reduc-
tion of the number of equations, we now encounter the new problem that the
volume fraction ǫ has to be correlated with the steam quality χ by an empir-
ical relation in order to be able to use the simplified model for the solution
of problems. In general, ǫ is correlated to χ via the velocity ratio S = uG/uL

of the phases (cf. (8.9)). Therefore, empirical relations are sometimes deter-
mined for the velocity ratio S, and the ǫ(S, χ)-relation is inserted into the
mixture equations.

The mixture equations are naturally suited to applied calculations if dis-
persed flow patterns such as bubble or droplet flows are present. They can
be even further simplified if we assume mechanical equilibrium between the
phases, i.e. if the dispersed phase has the same velocity as the homogeneous
phase. A mixing model simplified in this manner is also called a homogeneous
flow model. Because of its simplicity, it can be conveniently used and can be
applied to dispersed flows with very small volume fractions of the dispersed
phase. With the assumption S = 1 we obtain a unique relation between ǫ
and χ according to (8.9). It reads
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ǫH =
1

1 +
1 − χ
χ · ρG

ρL

. (8.26)

The subscript H denotes the homogeneous model. Using this relation, all
remaining density definitions ρI and ρE can be simply transformed alge-
braically to the expression ρH = ǫ · ρG + (1 − ǫ) · ρL in the mixture balance;
i.e. ρH = ρI = ρE holds. The one-dimensional homogeneous flow model is
therefore described by the equations

∂

∂t
ρH +

1

A
· ∂Ṁ
∂z

=0, (8.27)

∂Ṁ

∂t
+

∂

∂z

(
1

ρH
· Ṁ

2

A

)
=−A · ∂p

∂z
− τ · P −A · ρH · g · sin(α), (8.28)

if the phases are in thermodynamic equilibrium, i.e. TG = TL. The homoge-
neous model is the simplest of all two-phase flow models. It can be extended
to dispersed flows with evaporation and condensation processes that are not
in thermal equilibrium.

Dispersed two-phase flows with larger fractions of the dispersed phase
are in general not in mechanical equilibrium. In order to take this fact into
account and still use the simplifying idea of well-mixed phases, the drift-flow
model has been developed. This will be described in what follows.

8.2.3 The Drift-Flow Model

The drift-flow model was suggested by H. Zuber and J. A. Findley (1965); it
is based on the fundamental idea that both phases are well mixed together,
but move relative to each other and, in general, have different thermodynamic
states. The range of application of the model is therefore mainly for dispersed
flows, that is, bubble, churn, and droplet flows. However, attempts have been
made to extend the model to plug and annular flows.

The model is based on a density-weighted mixture velocity

uM =
ǫ · ρG · uG + (1 − ǫ) · ρL · uL

ǫρG + (1 − ǫ) · ρL
(8.29)

and takes into account the relative velocities by means of so-called drift ve-
locities, which are initially introduced as a local property in the form

u
(l)
G,U =u

(l)
G − U (l), (8.30)

u
(l)
L,U =u

(l)
L − U (l), (8.31)

where U (l) is the local total volumetric flux, given by the relative local ve-

locities U (l) = U
(l)
G +U

(l)
L . By cross-sectional averaging, these definitions can

be used to relate the average values of the volume fraction 〈ǫ〉, the total vol-
umetric flux 〈U〉, and a still to be defined mean drift velocity. This is carried
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out by multiplication of the relation (8.30) by the local volume fraction ǫ,
and subsequent cross-sectional averaging. It is to be noted that, as discussed
in Section 8.1, in general we have 〈ǫ ·U〉 = C0 · 〈ǫ〉 · 〈U〉. After some algebraic
transformations we obtain the relation.

〈ǫ · uG,U〉 = 〈ǫ · uG〉 − C0 · 〈ǫ〉 · 〈U〉. (8.32)

Using the definitions uG,U = 〈ǫ · uG,U〉/〈ǫ〉 and UG = 〈ǫ · uG〉 as the cross-
sectionally weighted drift velocity and average volumetric gas flow, equation
(8.32) yields the cross-sectionally averaged volume fraction of gas as

〈ǫ〉 =
UG

C0 · U + uG,U
. (8.33)

In order to define a mean drift velocity, we now introduce the volume-weighted
quantities uG,U and uG = 〈ǫ · uG〉/〈ǫ〉. To write down the balance equations,
we use the relations

uG,U = uG − U, uL,U = uL − U. (8.34)

For simplicity, we will drop the averaging symbol ‘ ’ in what follows. The
drift velocity can therefore be considered as the velocity of a phase relative
to a surface moving with the mixture velocity U (the total volumetric flux).
With the relation for the mixture velocity U = ǫ ·uG+(1−ǫ) ·uL, the relation
of the drift velocity and relative velocity can immediately be given as

uG,U = (1 − ǫ) · (uG − uL), uL,U = ǫ · (uG − uL). (8.35)

From this relation and the defining equation (8.29), we obtain a relation
between uG, uM , and ug,U in the form

uG = uM +
ρL

ρH
· uG,U , uL = uM − ρL

ρH
· ǫ

1 − ǫ
· uG,U . (8.36)

Similar relations interrelate uG and uL with uM and uL,U .
The expressions (8.36) are inserted into the balance equation for the mix-

tures, and the mass balance equation for the gas phase, which is also retained
to describe phase transitions. After some algebraic transformations we obtain
four balance equations for the state variables mean velocity uM , pressure p,
mean enthalpy hM and volume fraction ǫ.

The equations have the following form:
Mass:

∂

∂t
· ρH +

1

A
· ∂
∂z

(ρH · uM ·A)=0, (8.37)

∂

∂t
(ǫ · ρG) +

1

A
· ∂
∂z

(ǫ · A · ρG · uM )

+
1

A
· ∂
∂z

(ǫ · A · ρG · ρL

ρH
· uG,U )=

ΓG

A
, (8.38)

Momentum:
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∂

∂t
(ρH · uM ) +

1

A
· ∂
∂z

(A · ρH · u2
M ) +

1

A
· ∂
∂z

(
A · ǫ

1 − ǫ
· ρG · ρL

ρH
· u2

G,U

)

= −∂p
∂z

− τw · P
A

− ρH · g · sin(α). (8.39)

After some further transformations and using the momentum balance equa-
tions for the individual phases, we obtain the energy equation

∂

∂t
(ρH · hM ) +

1

A
· ∂
∂z

(A · ρH · hM · uM )

=
1

A
· (qw,G · PG + qw,L · PL) +

∂p

∂t
+ uM · ∂p

∂z
+ uG,U · ρL − ρG

ρH
· ∂p
∂z

− 1

A
· ∂
∂z

(
A · ǫ · ρL · ρG

ρH
· uG,U ·∆hLG

)
+

1

A
· Ldiss. (8.40)

Here hM is the density-averaged enthalpy. It is defined as

hM =
ǫ · ρG · hG + (1 − ǫ) · ρL · hL

ǫ · ρG + (1 − ǫ) · ρL
. (8.41)

Here ∆hLG is the heat of evaporation in phase transitions.

Successful application of the simple drift-flow model depends essentially
on whether constitutive relations can be developed for the drift velocity uG,U .

8.2.4 Bubbles and Drops

The motion of bubbles and drops in a moving liquid or gas is a fundamental
element for the modeling of two-phase flows and the representation of the
drift velocity. Extensive investigations into this topic have been carried out,
and these are presented in great detail in the book by R. Clift et al. (1978).
Heuristic considerations show that the relative velocity of bubbles and drops
in a continuum depends on the type of interaction between the phases, their
interaction with the boundaries, and the effect of the external field forces, e.g.
the gravitational force. This fact can be expressed by the following functional
relation:

ur = uG − uL = f

(
µG

µL
,
ρG

ρL
, σ, ǫ,

ρL − ρG

ρL
· g, DB

d

)
. (8.42)

Here µG and µL are the viscosities of the gas and the liquid, ρG and ρL

their densities, σ the surface tension, g the gravitational acceleration, DB

the bubble or drop diameter, and d a typical container dimension.
The statements that follow concentrate on the behavior of bubbles. With

certain modifications they are also true for drops.
In quasi-steady dispersed two-phase flows, the effect of acceleration forces

on single bubbles can frequently be neglected. The equilibrium velocity u∞
of a single bubble in the fluid continuum is then determined by the balance
of the drag and field forces. In the case of the lift force we have
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u2
∞ =

4 · (ρL − ρG) · g
3 · ρL

· DB

cw
. (8.43)

Here cw is the drag coefficient in the definition cw = W/(0.5 ·ρG ·u2
∞ ·A) with

W the drag force and A the cross-sectional area of a sphere with the equivalent
volume of the bubble. The equivalent bubble radius is found from the relation
DB = 2 · (3/(4 ·π) ·VB)(1/3) with VB the bubble volume. The introduction of
the equivalent bubble radius permits us also to consider deformed bubbles and
to associate a drag coefficient with them from experiments on a solid sphere
in a single-phase flow. However, the deformation of the bubbles under the
effect of relative motion can be so great that comparison with a moving solid
sphere yields incorrect results. Therefore, in many experiments the terminal
rise velocity of single bubbles in the gravitational field has been measured,
where in particular, the shape of the bubble was investigated as an additional
effect. R. Clift et al. (1978) presented the results in a graph, ordered by
dimensionless characteristic numbers. They introduced the following bubble
characteristic numbers:

Fig. 8.6. Form of ascending bubbles in a liquid, R. Clift et al. (1978)



472 8. Multiphase Flows

ReB =
u∞ ·DB · ρL

µL
Reynolds number,

EöB =
g · (ρL − ρG) ·D2

B
σ Eötvös number,

MoB =
g · µ4

L · (ρL − ρG)
ρ2

L · σ3 Morton number.

The Eötvös number describes the interaction between gravitational and cap-
illary forces, while the Morton number essentially relates viscous, capillary,
and gravitational forces. The graph is shown in Figure 8.6. It allows the de-
pendence of the equilibrium velocity u∞ to be determined as a function of
all other quantities appearing in the characteristic numbers, and it also gives
qualitative insight into the form of the bubble. Some experimentally observed
bubble shapes are sketched in Figure 8.7.

The effect of finite containers and neighboring bubbles on the equilibrium
velocity uB of a single bubble is frequently modeled with a power product
ansatz of the influencing quantities ǫ, 1 − ǫ, DB/d in the form

uB = u∞ ·
(

1 + α · DB

d

)m

· (1 − ǫ)n · ǫp (8.44)

(see R. Collins (1967), G. Wallis (1969)), with the parameters α, m, n, and
p to be determined from experiment. For example, R. Collins corrected the
bubble ascent velocity of single bubbles in a vertical pipe with diameter d in
the form

uB = u∞ ·
(

1 + α · DB

d

)−1

,

with α = 1.6 for deformed soft gas bubbles and α = 2.4 for spherical hard
gas bubbles.

G. Wallis (1969) states a fundamental relation for the representation of
the drift velocity uG,U as a function of the equilibrium velocity and the gas
volume fraction in the form

uG,U = u∞ · (1 − ǫ)n.

He determines the exponent n using the experimental data of F. N. Peebles
and H. J. Garber (1953) for different bubble shapes and bubble Reynolds

spherical ellipsodial wobbly spherical cap

Fig. 8.7. Dependence of different bubble shapes on the bubble volume and bubble
characteristic numbers, see Figure 8.6
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numbers. In what follows we present the results of his investigations into the
terminal rise velocity of single bubbles:

u∞ n Region of validity bubble form

D2
B · (ρL − ρG) · g

18 · µL
2 ReB < 2

rigid spherical
bubble

0.33 · 2 · νL
DB

·
(
g ·D3

B

8 · ν2
L

)0.76

1.75 2 <ReB < 4.02·G−0.214
1

spherical bub-
ble with inner
flow

1.18 ·
(
g · σ
ρL

)0.25

1.5
3.10 ·G−0.25

1 < ReB

5.75 < G2

oscillating el-
liptical bubble

1.00 · √g ·DB 0 < n < 1

√
g · ρL ·D2

B
σ > 4 cap bubble

The Galileo number G1 is

G1 =
g · µ4

L

ρL · σ3
, (8.45)

and G2 is defined as

G2 =
1

16
·G1 · Re4

B =
g · u4

∞ · ρ4
L ·D4

B

16 · σ3
.

Further details have been outlined by R. Clift et. al. (1978).
Using the representation of the drift velocity for different bubble shapes

according to G. Wallis (1969), the drift flow model for dispersed two-phase
flows is closed.

H. Zuber and J. A. Findley (1965) and M. Ishii (1977) have applied the
drift-flow model to other flow forms such as plug, annular, and turbulent
churn flows. Their papers contain details of the relevant constitutive param-
eters.

A computationally supported description of the mass and heat exchange
processes of multidimensional two-phase flows frequently requires a precise

Fig. 8.8. Sequence of different bubble forms until bubble decay, under the effect
of a turbulent liquid flow, F. Risso and J. Fabre (1998)
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examination of the development of the phase interfaces in the flow. In the
framework of a two-fluid model, this takes place on the basis of a balance
equation for the interface concentration αi, as shown briefly in Section 5.4.6.
The development of the phase interface in disperse bubble or drop flows is
then essentially determined by the coalescence and decay processes of in-
dividual particles as they interact. The physical understanding of these two
processes is therefore centrally important and is has been the subject of many
individual investigations. The complexity of these processes can be seen in
Figures 8.8 and 8.9 from the sequence of deformation states of the particles
in the decay of a bubble and the coalescence of a drop.

Observations show that the coalescence and decay of bubbles and drops
essentially takes place in three steps.

In bubble flows, the bubbles move towards each other and collide, and a
thin liquid film forms between them. The liquid film must be displaced by
the motion of the bubbles until the film thickness reaches a critical size. The
film then tears and coalescence begins. The process can be characterized by
three time scales. There is a mean collision time of the bubbles, an effective
contact time in which the liquid film thins, and the opening time of the tear
in the film.

The collision time is essentially determined by the convective motion and
concentration of the bubbles in the continuous phase. The motion is apparent
in relative velocities of the bubbles in laminar shear flows, in fluctuation
velocities of turbulent flows or in the different lift velocities of bubbles of
different shapes and sizes. Bubble concentration, relative bubble velocity and
an effective collision cross-section fixed by the effective bubble cross-section
determine the collision frequency of the process. Similar considerations hold
for drops in gas flows.

Fig. 8.9. Sequence of different drop forms after a binary, non-central drop collision,
until stable drop coalescence, J. Quian und C. R. Law (1997)
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Not every collision process ends in the coalescence or decay of the par-
ticles. Rather it depends on whether and in which topological drop form an
equilibrium between interface and motion energies of the particles can be
reached after the collision.

The energy due to friction dissipation or lifting work is generally less im-
portant. As a measure of the ratio of kinetic to surface energy of a bubble
or a drop, we can use a Weber number in the form We = u2

p · dp · ρL/σ,
where up is the particle velocity, dp is an equivalent particle diameter, ρL the
density of the liquid phase and σ the interface stress. A rough approximation
for upper and lower limits for coalescence and decay can be introduced with
the static equilibrium condition We = 1, leading to a critical particle ve-
locity ucp =

√
σ/(dp · ρL). For the technically relevant turbulent two-phase

flows, a stochastic relative motion of the particle is essentially produced by
the turbulent fluctuation velocities |u′c| of the continuous phase filled with
vortices. These velocities are determined by the total energy supply and the
viscous dissipation in the fluid system (see H. Tennekes and J. L. Lumley
(1972)). The critical particle diameter dcp for coalescence and decay can
therefore be directly associated with these quantities using the condition
We = 1. This simplified criterion is extended by a further characteristic
quantity if the fluids involved have significant viscosity. J. O. Hinze (1955)
adds a further characteristic number, the so-called Ohnesorge number, in the
form Oh = µL/

√
ρp · σ · dp or sets up an empirical relation Oh(We) as a pro-

cess criterion. The coalescence or decay is essentially determined by whether
the particle with a diameter dp reaches the region of influence of a suffi-
ciently energetic turbulent vortex with comparable diameter with a certain
probability, i.e. if it “collides” with it. If the kinetic energy transferred in the
interaction 0.5 · ρL · |u′c|2 exceeds the critical amount 0.5 · σ/(ρL · dcp), decay
will occur, or coalescence if the transferred energy remains smaller. The ratio
of the energies Ei = |u′i|2/u2

cp may be seen as a measure of the efficiency of
the processes. The literature contains distribution functions for the efficiency
to quantify the measure of decay or coalescence. A particularly simple dis-
tribution function was suggested by C. A. Coulaloglon and L. L. Tavlarides
(1977) in the form βi = exp(−ucp/|u′i|2) (for more recent developments see
C. Tsouris and L. L. Tavlarides (1994); H. A. Jakobsen et al. (2005)).

The product of the number of collisions of the particles and the efficiency
of the collision can serve as a rate for the generation and destruction of
bubbles and drops with a certain diameter. Suitable summing over all drop
sizes in the flow space that are available to decay or coalesce can be used to
derive a measure of the source or sink rates of the interface concentration (cf.
G. Kocamustafaogullari and M. Ishii (1995), H. A. Jakobsen et al. (2005)).

8.2.5 Spray Flows

Dispersed droplet flows with very low liquid fraction are frequently called
spray flows. They are of great technical importance for the generation of
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optimal combustion mixtures in motors, gas turbines, and furnaces. Other
important areas of application are the cooling of thermally stressed surfaces
and containments by evaporation and gas scrubbers in process plants. There
are two crucial questions in the treatment of spray flows: the generation of
drop clusters and the transport of the drops in the flowing carrier gas. Both
aspects have recently been presented in overview articles and books, such
as those by S. P. Lin and R. D. Reitz (1998), L. Bolle und J. C. Moureau
(1982), C. Crowe et al. (1998). Here only some basic facts will be presented.

The decomposition of liquid into drops requires energy. This is propor-
tional to the surface tension and to the increase in surface area during the
formation of drops. The necessary supply of energy frequently comes from
pressure drop in nozzle flow, from centrifugal forces in film flow on rotating
disks, or from shear forces that act on liquid films or jets via shearing gas
flows. In the generation of drops in nozzels, the nozzle geometry, the liquid
properties, viscosity, surface stress, and the flow velocity affect the size of the
drops. The dependencies can be formulated using the dimensionless charac-
teristic Weber and Reynolds numbers that are based on a characteristic nozzle
diameter D. The shape of the nozzle exit is generally circular, annular, or
slit-shaped. Consequently, either liquid free jets or thin conelike or fan-shaped
liquid disks initially form at the nozzle exit. The objects then decay into drops
in further steps by the action of flow instabilities. If the decay of the liquid
jet or disk is determined by inertial forces and surface tension, i.e. by capil-
lary waves, the liquid is said to splatter. If turbulent shear forces determine
the drop formation inside the liquid jet and at its edge at high velocities, it

turbulent
shear forces

capillarity
forces

capillarity
forces

capillarity waves,
shear forces
aerodynamic

S. P. Lin and 
R. D. Reitz (1998)

Fig. 8.10. Drop formation in the decay of liquid jets and lamellae via different flow
instabilities
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is called atomization. In the relevant literature the different forms of drop
formation are frequently represented in graphical form using the Reynolds
number and the Ohnesorge number Oh = µL/

√
(ρL · σ · dp). Typical phe-

nomena of drop formation in free jets are shown in Figure 8.10. Figure 8.11
shows an ordering chart for the different drop formation processes.

For specific technical applications, the nozzle geometry and the hydraulic
characteristic data, i.e. the driving pressure drop, have to be selected such
that atomization occurs at the desired mean drop diameter and into a re-
quired spatial angle. The Sauter diameter is usually taken as a measure for
the drop diameter. It is defined as the ratio of the total volume of the drop
to its total surface area.

The development of spray flows from the drop formation stage to the fully
developed, weakly concentrated, dispersed droplet flow is extremely complex
and inaccessible to a simple general description. One key question is the rep-
resentation of further drop disintegration under the effect of the flow forces
until at a certain drop size distribution an equilibrium is achieved. Differ-
ent decay mechanisms of free drops in shear flows have been observed in
experiments. Either simple drop oscillations, Rayleigh inertial instabilities,
Kelvin–Helmholtz wave instabilities, or pure shear flow instabilities play a
role. The observed decay phenomena have been characterized and summa-
rized by S. P. Pilch and R. D. Erdmann (1987), L. Bolle and J. C. Moureau
(1982), C. Crowe et. al. (1998) and are displayed in Figure 8.12, ordered by
increasing Weber numbers.

The mathematical description of fully developed spray flows starts from
the concept of a dilute droplet distribution in the carrier gas. It is assumed
that there is a relevant interaction only between the gas and the droplets
and not between the drops themselves. The quality of the interaction is de-
termined by the so-called Stokes number St. It characterizes the temporal
reaction of the droplet to a change in the gas flow, and is therefore defined
as the time ratio St = τp/τe (where the subscript d indicates disperse, c

Fig. 8.11. Graph of drop decay pro-
cesses according to W. von Ohnesorge
(1936)
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continuous) with τp = ρp · d2
p/(18 · µc), where d is the drop diameter and

τe = Ltc/Uc. Here Ltc is the characteristic length of the flow domain and
Uc the characteristic velocity of the continuous phase. Therefore, very small
Stokes numbers indicate an almost inertia-free motion of the droplets with
the gas, whereas values of order one imply a considerable interaction between
the phases.

In constructing the model, the gas flow, a continuum in the Euler rep-
resentation, is treated as an inviscid, viscous, or fully turbulent fluid, with
additional locally acting flow forces and mass sources or sinks from the drop–
gas interaction (see Section 5.4.6.). The droplet motion takes place along

< 12We

12 < We < 50

50 < We < 100

> 350

> 350

8U

wave crest stripping,

sheet stripping,

bag and stamen breakup,

vibration breakup,

catastrophic breakup,

bag breakup,

100 < < 300We

We 

We 

Fig. 8.12. Breakup mechanisms, according to M. Pilch and C. A. Erdmann (1987)
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trajectories in the Lagrangian description, and is determined by the acting
flow forces: drag, lift and gravity. The key problem of the modeling is the
representation of the interaction between the phases by simple physical mod-
els in algebraic form. This is an area of active research, in particular with a
view to the interaction of turbulence and droplet dispersion. Here we refer to
the recent relevant literature, e.g. C. Crowe, et. al. (1998), W. A. Sirignano
(1999). The hybrid Euler–Lagrange model is a significant alternative to the
two-fluid model treated earlier (see Section 5.4.6 and 8.2 ) for the case of
dilute, dispersed two-phase or two-component flows.

8.2.6 Liquid–Solid Transport

The transport of solid particles in gases or liquids occurs in various techni-
cal applications and in a series of geological phenomena. Examples are the
pneumatic or hydraulic transportation of bulk goods in pipes, the trans-
port of sediment in rivers and processes in mudslides and powder and snow
avalanches.

Solid–liquid mixtures behave like a fluid if the particles appear in sus-
pended form in the flow of the mixture and interact essentially indirectly via
viscous friction forces or through turbulent shear forces in the liquid phase.
Such mixture flows are called dilute suspension flows. If the mean distance
between the solid particles becomes comparable with a mean particle diam-
eter dp as the volume fraction of the solids ǫp grows, the mixture flow is
increasingly determined by the direct momentum exchange of colliding par-
ticles, whereby the solid friction as the particles touch each other and the
surrounding edges also significantly affects the processes. This situation is
also called a dense suspension flow. Ultimately an increase of the volume
fraction of the solid above the value ǫp = 0.4 leads to locking of the solid
particles in the transport channel as a consequence of the excessively high
solid friction between the particles and the channel wall. An immobile par-
ticle bed forms, through which the gas or liquid seeps if there is a pressure
drop present.

The essential phenomena will be briefly clarified using the example of
transport of solids in horizontal pipelines. The design of such a transport
channel requires that a maximum particle transport efficiency is achieved at
a propulsion power for the substrate that is as low as possible.

As with liquid–gas flows, patterns also develop in solid suspension flows,
and these depend on the relevant system parameters such as the mean particle
diameter dp, the diameter of the pipe D, the mass density ratio of the solid
to the fluid phase ρp/ρf , the mass flux density ratio ṁ∗ = ρp · up/(ρf · uf ),
the particle volume fraction ǫp, the pressure difference ∆p for the mixture
propulsion, the turbulent fluctuation velocity in the substrate u′f and finally,
for the fluid dynamic characterization of the particles, the characteristic sink
rate ws∞ of the particles in the stationary substrate. A progression of typical
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flow patterns as well as schematic distributions of the velocity and the particle
fraction is shown in Figure 8.13, following M. Weber (1974).

For the homogeneous and saltation transport states, the velocity of the
substrate is large enough to keep the particles in suspension and well mixed,
due the effect of the turbulence, the lift forces and the elastic collisions with
the wall. If the gas velocity decreases, some of the particles settle on the
base of the channel. First moving particle strands form and, as the velocity is
further decreased, stationary deposits form. On the surface of the deposits the
gas flow causes wave-like grooves and eventually dune-like clusters, if the mass
flux ratio exceeds limits of ṁ∗ > 30. At even greater particle concentrations,
with values ṁ∗ ≫ 30, particle plugs form and finally a compact, immobile
bed of particles. Such states are to be avoided in the use of transport systems.

The driving pressure drop in the transport channel has a characteristic
dependence on the volume flux Uf of the substrate and on the mass flux ratio

Ṁs = Ṁp/Ṁ , with Ṁ = Ṁp + Ṁf . This dependence is shown schematically
in Figure 8.14, whereby the volume flux density and the pressure are each
made dimensionless with the relevant fall velocity vg =

√
g ·D.

For finite loads Ṁs, the pressure drop in the substrate increases, both for
high and for low volume flux densities, and becomes a minimum for a certain
intermediate value. The higher the particle load, the more this minimum

Fig. 8.13. Sketch of observed states in pneumatic solid transport in horizontal
pipes. Parameters used: Up, Uf relative particle and fluid velocities, ws∞ sink rate
of the particles in the stationary substrate, ǫp particle volume fraction, ṁ∗ mass
flux density fraction
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pressure drop is displaced to higher volume flux densities, and observations
show the formation of strands and depositions on the base of the transport
pipelines. Therefore the associated volume flux of the substrate can be taken
to be a conservative critical condition for stable transport. The increase of the
pressure drop at low volume fluxes and increasing particle loads reflects the
increasing effect of strand formation to the point of development of particle
plugs and a solid bed of particles, and is a feature of the hydraulics of seeping
flows in porous containers.

Pressure loss diagrams and correlations have been empirically developed
for different classes of granular and powder-like materials such as sand, coal,
corn, flour and ores and can be found in the relevant textbooks (see for
example G. Govier and K. Aziz (1972), M. Weber (1974), O. Molerus (1982).
Because of the great variation in the geometric and mechanical properties of
the different transport goods, until now there is no generally valid relation for
the transport pressure drop. The minimum pressure drop can be determined
easily, and roughly marks the transition from suspended particle transport to
strand formation. In order to make this pressure criterion more exact, another
significant quantity for the formation of strands, namely the sink rate of the
particles in the substrate, has been investigated more exactly. We discuss
the example of one of many empirical relations used as a design criterion
for the onset of strand formation in transport channels. According to the
observations and measurements of R. A. Duckworth (1971), the minimum
velocity Ufmin

for suspended particle transport under the effect of gravity
depends essentially on the mass load ṁ∗, the ratio of mean particle diameter
to pipe diameter dp/D and the settling velocity of a particle in the stationary
substrate.
As a measure of the latter, we have the relation

Fig. 8.14. Pressure loss as a function of the velocity of the substrate and the
particle load
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ws∞ =

√
4 · g · dp · (ρ∗ − 1)

3 · CD
,

with ρ∗ = ρp/ρf , CD the hydrodynamic drag coefficient of the particles
in the flow and g the acceleration due to gravity. Taking the free fall ve-
locity as a measure of the velocity, the critical, minimal transport velocity
Fc min = Ucmin/

√
g ·D can be represented generally as a dimensionless func-

tion of the form Fc min = f(dp/D, ṁ
∗, Up∞/

√
ρ · g). R. A. Duckworth (1971)

suggests the following empirical relation:

Fc min = C · (ṁ∗)0.2 ·
(
dp

D

)−0.6

·
√

ws∞√
g ·D ,

where C as a constant of proportionality includes other specific material
properties of the particles, such as particle shape and surface properties.

In the case of vertical transport pipes, similar patterns are found in the
form of suspension, strand and plug flows to the point of solid particle bed
flows. However, as gravity only acts in the direction of transport, the velocities
and particle concentrations are symmetrically distributed over the flow cross-
section.

8.2.7 Fluidization of Particle Beds

In process engineering, aerated or vented particle beds are frequently used in
chemical reactors and separating apparatus. These are generally particle fills
in a container into which gas or fluid can be introduced from below through
a grid of nozzels. Depending on the magnitude of the volume flux of the
injected gas or liquid, different flow forms can form in the fill, and these are
important for the efficiency of the apparatus concerned. Figure 8.15 shows
some frequently observed states at increasing volume fluxes.

For very small volume fluxes, the particle bed remains compact and its
weight is mainly carried by the perforated base wall. If the volume flux in-
creases, a flow state occurs where the weight of the fill is compensated by the
resisting force of the flow in the collection of particles. At even larger volume
fluxes, the particle bed becomes ever looser, until the particles are finally
freely suspended in the substrate and as the volume flux is increased even
further, the particles are finally carried out of the container as a suspension.
The floating of the particle bed is called fluidization. As sketched in Figure
8.15, the fluidization state can occur in different forms that depend mainly on
the shape of the container, the type of injection of the carrier fluid, and the
geometric and material properties of the particles. A crucial control quantity
for the use of fluidization systems is the critical pressure drop at the onset of
the fluidization process. This can be determined from measurements of the
dependence of the pressure drop on the volume flux density in the fill. Figure
8.16 shows this relationship schematically.
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For the flow in a compact particle bed, the Ergun linear relation (S. Ergun
(1952)) holds between the pressure gradient and the local volume flux density,
i.e. the relative velocity, in the form ∇p = k ·Uf . The pressure drop remains
constant over a fully fluidized particle bed without particle removal as the
volume flux density of the substrate increases. However, a small transition
zone with hysteresis behavior occurs, with slightly increased or reduced pres-
sure values for increasing or decreasing volume fluxes. This effect is caused
by shape effects of the particles and segregation effects among the particle
quantities. The critical quantities for the onset of fluidization can be deter-
mined from the intersection of the extrapolated linear pressure–volume flux
curves for the regions of compact and fluidized beds.

Each fluidization state sketched in Figure 8.15 can be observed in a certain
region of volume flux densities. Empirical relations have been developed for
the transitions between the different states and these can be found in the
relevant textbooks (D. Kunii and O. Levenspiel (1991), J. R. Grace (1982)).

D. Geldert (1973) investigated in detail the effect of particle and fluid
properties, such as the mean diameter and the density of the particles and
the viscosity of the substrate, on the fluidization states. He introduced four
size classes of particles: very fine powder with mean particle diameters dp <
20µm, two sand groups with 20µm ≤ dp ≤ 90µm and 90µm ≤ dp ≤ 650µm,
and granular fills with dp > 650µm.

He discovered that controlled fluidization for fine powders is very difficult
to achieve, as electrostatic and van der Waals forces and, in the case of
liquid substrate flows, interface stresses greatly influence the pure mechanical
interaction between the particles. In contrast, sands can easily be fluidized
into all different states. In rough particle beds, a state with continuous flow
channels tends to occur, in which particles are transported to the surface,
while in the regions between the channels the particle bed sinks down. For the
sake of completion, we mention that it is possible to reproduce the fluidization
states with newly developed numerical methods of multiphase fluid dynamics

Fig. 8.15. Schematic representation of typical phenomena in the gaseous aeration
of a particle bed with increasing volume flux of the substrate
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Fig. 8.16. Schematic representation of the dependence on pressure drop and vol-
ume flux density in compact and fluidized particle beds, definition of the critical
quantities ∆pfc and Ufc for the onset of fluidization

(see Section 5.4.6). A critical evaluation of this possibility has been presented
by J. R. Grace and F. Taghipour (2004).

8.3 Pressure Loss and Volume Fraction in Hydraulic
Components

Pressure losses in two-phase flows are of great importance in power and pro-
cess engineering. Therefore, robust empirical pressure loss correlations, like
those for single-phase flow hydraulics, have been developed on the basis of
measurements and simple models. These relations do not distinguish between
specific flow regimes. Yet the concept of a dispersed flow on the one hand and
that of a separate two-phase flow on the other hand has led to two different
variants for pressure drop relations. The total pressure drop in a pipe or chan-
nel consists quite generally of the losses due to friction, due to acceleration,
and due to gravity. Symbolically, we can write

(
dp

dz

)

tot

=

(
dp

dz

)

f

+

(
dp

dz

)

a

+

(
dp

dz

)

g

, (8.46)

with the subscripts f for friction, a for acceleration, and g for gravity. While
in horizontal straight pipes of constant cross-section, only the friction acts,
in contracting or expanding elements, such as valves or junctions and bends,
the acceleration predominates as in single-phase flow, but to a much greater
degree. First we consider here the horizontal straight pipe.
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8.3.1 Friction Loss in Horizontal Straight Pipes

The Homogeneous Model

Assuming a horizontal pipe with constant cross-section, we obtain the fol-
lowing representation, as in the single-phase flow:

−
(

dp

dz

)

f

= −τw · 4

d
, τw =

1

4
· cf,2Ph · 1

2
· ρH · u2 (8.47)

with d the hydraulic diameter, cf,2Ph the friction coefficient of the two-phase
flow, and the homogeneous density ρH . The friction coefficient is given as
a function of a still to be defined Reynolds number for the two-phase flow.
Frequently, the known relations for the friction coefficient of single-phase flow
are taken, such as the Stokes law for laminar flow and the Blasius law for
turbulent flow. The friction coefficient can then be chosen depending on the
flow form. For an annular-droplet flow, the value for rough pipe walls is chosen
as cf,2Ph ≃ 0.02. If the volume fraction of the gas is large, i.e. (1 − ǫ) ≪ 1,
the single-phase value cf = cf,G can be selected. If ǫ ≪ 1, then cf = cf,L,
at which the viscosity of the gas or the liquid is selected for the Reynolds
number. Frequently, following the classical implicit relation of Prandtl for
single-phase fully turbulent flows, the following relation is also used:

1

4
· cf,2Ph = 0.0014 + 0.125 · Re−0.32

2Ph . (8.48)

In order to form the Reynolds number, the total mass flux density and a
mixture viscosity are used. The simplest relations for the weighted viscosities
are

µ2Ph=
UG

U
· µG +

UL

U
· µL,

µ2Ph=χ · µG + (1 − χ) · µL, (8.49)

1

µ2Ph
=
χ

µG
+

1 − χ

µL
.

For mixtures such as water and vapor that can be condensed, a so-called two-
phase multiplier is frequently used for practical calculations. This multiplier
is defined as the ratio of the pressure drop in the actual two-phase flow with
mass-flow rate Ṁ to the pressure drop of the overall condensed liquid flow
through the same pipe cross-section and with the same mass-flow rate:

Φ2
L0 =

(
dp
dz

)
2Ph(

dp
dz

)
L0

. (8.50)

The subscript L0 indicates that the pressure drop of a pure liquid flow with
the same mass flux as that of the two-phase flow was chosen as the reference
measure. Correlations are given that are essentially a function of the gas–
liquid properties and of the vapor content, and so have the general form
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Φ2
L0 = f(µG/µL, ρG/ρL, χ). W. Idsinga et al. (1977) give a relation of the

form

Φ2
L0 =

ρL

ρH
·
[
1 + χ ·

(
ρL − ρH

ρG

)]
. (8.51)

It is valid for flows with very small gas volume fraction ǫ ≪ 1 for which
µ2Ph = µL can be assumed. Similar relations are found when other relations
for the mixture viscosity are used.

The Separate Model

The separate model is based on the idea that both phases flow in two separate
regions of the pipe, as in stratified flow or annular flow, but that both phases
are in a pressure equilibrium independent of the flow pattern. The total pres-
sure drop is then described by the momentum equation for the two-phase
mixture according to (8.22). For the horizontal pipe of constant cross-section
and for steady flows we have

−dp

dz
= 〈τw〉 ·

P

A
+
Ṁ2

A2
· d

dz

(
χ2

ǫ · ρG
+

(1 − χ)2

(1 − ǫ) · ρL

)
. (8.52)

For the case in which no heat is supplied across the edge of the pipe, χ and
ǫ do not change along the pipe. The wall shear stress is in equilibrium with
the pressure force. R. Lockhart and R. Martinelli (1949) introduce two-phase
multipliers to form the ratio of the pressure drop in the two-phase flow and
the pressure drop in the gas or liquid phase when either of each flows alone
in the pipe.

The multipliers of R. Lockhart and R. Martinelli (1949) are defined as
follows:

Φ2
G =

(
dp
dz

)
2Ph(

dp
dz

)
G

, Φ2
L =

(
dp
dz

)
2Ph(

dp
dz

)
L

. (8.53)

Based on experimental data, the authors place them in a relation with the
so-called Martinelli parameter (cf. definition (8.13)), the pressure drop ra-
tio. It can be computed explicitly if the volumetric fluxes of the two-phase
flow and their laminar or turbulent flow states are known. The turbulent
states are determined by the Reynolds number of the gas or liquid flow. For
ReG,L > 2000 a turbulent state is assumed, and for ReG,L < 2000 the flow
is assumed to be laminar. Therefore, there are four possible forms of the
Martinelli parameter, depending on whether the gas and liquid phases are
laminar or turbulent. The dependencies in the classical representation of R.
Lockhart and R. Martinelli (1949) are shown in Figure 8.17. An analytical
representation of the graphs was given by D. Chisholm (1967). He states the
relations
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Φ2
G = 1 + C ·X +X2, Φ2

L = 1 +
C

X
+

1

X2
, (8.54)

where the parameter C takes on the values 20, 12, 10, and 5 for these four
cases, and with 20 determines the doubly turbulent case, and with 5 the
doubly laminar case.

The pressure loss relation of R. Lockhart and R. Martinelli is based on
a relatively limited set of data of system pressures (p < 0.4 MPa) and pipe
diameters (d < 3 · 10−2 m). Therefore, calculations using this model may be
affected by an uncertainty up to an order of 40%. However, the relation is
very simple and is therefore frequently used for initial estimations.

R. Martinelli and D. Nelson (1948) extended the pressure correlation of
R. Lockhart and R. Martinelli to flows with higher system pressures, up to
critical system pressures. They represent the two-phase multiplier in the form
ΦL0 (see (8.50)), which utilizes the single-phase liquid flow as the reference
state and displays it as a function of the vapor quality χ. This relation is still
used to compute pressure losses in liquid–vapor flows.

For more exact calculations, empirical pressure loss correlations have been
developed by D. Chisholm (1973) and L. Friedel (1978), based on a large
amount of data (2 · 104 experimental measurements). These relationships
take into account further specific dependencies on the two-phase mass flux
(Reynolds number), the surface tension (Weber number) and gravity (Froude
number). They are complex functional relations between dimensionless char-
acteristic numbers that represent different physical phenomena. For example,
we discuss here the Friedel correlation. L. Friedel (1978) chooses the form in
the definition (8.50) for the two-phase multiplier with dependence on different
characteristic numbers. His correlation reads

Φ2
L0 = E +

3.24 · F · H
Fr0.045 · We0.035 , (8.55)

with the expressions

Fig. 8.17. Correlations according to R. Lockhart and R. Martinelli (1949): tt both
phases turbulent; lt fluid laminar, gas turbulent; ll both phases laminar; tl fluid
turbulent, gas laminar
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E=(1 − χ)2 + χ2 · ρL

ρG
· cf,G0

cf,L0
,

F=χ0.78 · (1 − χ)0.24,

H=

(
ρL

ρG

)0.91

·
(
µG

µL

)0.19

·
(

1 − µG

µL

)0.7

,

Fr=
ṁ2

g ·D · ρ2
H

, We =
ṁ2 ·D
ρH · σ .

For application of the different empirical pressure loss relations, P. B. Whalley
et al. (1981) have carried out extensive comparative calculations and have
given recommendations.

Correlations for the Volume Fraction

Of equal importance for the calculation of the pressure drop is a quantitative
estimation of the volume fraction in a two-phase flow. Independently of the
possibility to calculate this from the two-fluid model, models and correlations
were developed from experimental data to determine this quantity. Within
the framework of the drift-flow model, the volume fraction was referred to
the correlation coefficient C0, the drift velocity uG,U , and the volumetric
fluxes (8.3), where C0 and uG,U are determined according to experiments
and physical relations for each flow regime.

R. Lockhart and R. Martinelli (1949) developed an empirical relation for
volume fractions associated with their pressure drop measurements that is
independent of the flow patterns. This is shown graphically in Figure 8.18.
D. Chisholm (1967) gives a simple algebraic relation for the graph in Figure
8.18 in the form

1 − ǫ =
χ√

χ2 + 20 · χ+ 1
. (8.56)

A. Premoli et al. (1970) derived a correlation (called the CISE correlation)
for ǫ that is based on an empirical relation for the velocity ratio S = uG/uL.

Fig. 8.18. Liquid volume fraction, according to R. Lockhart and R. Martinelli
(1949)
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According to (8.9), ǫ can be written in the form

ǫ =
1

1 + S · 1 − χ
χ · ρG

ρL

. (8.57)

They developed the following empirical relation for the velocity ratio:

S = 1 + E1 ·
√

Y

1 + Y · E2
− Y · E2, (8.58)

with the expressions

Y =
V̇G

V̇L

,

E1=1.578 · Re−0.19

(
ρL

ρG

)0.22

,

E2=0.0273 · We · Re−0.51

(
ρL

ρG

)−0.08

,

Re=
ṁ ·D
µL

, We =
ṁ2 ·D
ρL · σ .

Here V̇G and V̇L are the volumetric flow rates of the phases. This correlation
has also been developed independently of flow regimes. We also mention here
a more complex relation by B. Chexal et al. (1997), which was developed
according to the ideas of the drift flow model and which can also be applied
to two-phase flows moving in opposite directions. Because of its complex
form, we do not further outline this relation here.

8.3.2 Acceleration Losses

To a much greater degree than in single-phase flow, acceleration losses occur
in pipe expansions or contractions, in pipe bends, and in pipe junctions. In
designing apparatus, the pressure loss relations have to be given, in analogy
to similar correlations for single-phase flows neglecting the wall friction. In
pipe expansions there is generally a deceleration of the flow, and so in two-
phase flows a separation of the phases is to be expected. Therefore, we use

Fig. 8.19. The separate flow in the Carnot diffusor
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the separate model in the form of the mixture balance equations to calculate
a pressure change. Using the mixture equations for the separate model, a
relation for the pressure gain in the Carnot diffusor can easily be written
down neglecting the wall friction. For the control volume shown in Figure
8.19, P. A. Lottes (1961) derived the relation.

p2 − p1 = ṁ2
1 ·
A1

A2
·
(

1

(ρI)1
− A1

A2
· 1

(ρI)2

)
. (8.59)

Here (ρI)1,2 is the momentum density defined in (8.23). If we go over to
single-phase flow, i.e. we choose χ = 0 or χ = 1, the momentum density
changes to the density of the single-phase flow, as does the expression for
the pressure recovery. Of course, expression (8.59) can be evaluated only if
the volume fraction and the steam qualities of the cross-sections 1 and 2 can
be related to each other. At low system pressures, if p ≪ pcrit, and there
are no phase transitions by evaporation, the volume fraction of the gas ǫ
and the quality χ essentially do not change (cf. B. Richardson (1958), L.
Velasco (1975)). In this case the analogy to single-phase flows is evident,
since ρI1 ≡ ρI2 holds. Observations show that downstream an equilibrium of
the two-phase flow is attained only after a relatively long distance of about
30 − 70 pipe diameters. This fact requires a pressure-dependent correlation
for the change of the vapor content (cf. M. Patric and B. Swanson (1950))
for more exact calculations. In vapor–liquid flows with phase transitions,
empirical relations between the volume fraction ǫ and the vapor quality χ
are used (J. Weisman et al. (1976)).

In pipe contractions, there is an acceleration of the two-phase flow that
leads to an improved mixing, and therefore a pressure loss calculation can be
carried out using the homogeneous flow model to good approximation. Since
the laws of the single-phase flow are valid for the homogeneous model, with
the homogeneous density ρH as the only characteristic quantity, we obtain
the known relation of the single-phase flow, which is easily confirmed using
the schematic representation in Figure 8.20. We have

p2 − p1 =
ṁ2

2

2 · ρH
·
[
1 −

(
1

σc

)2

+

(
1

σc
− 1

)2
]
, (8.60)

with σc = Ac/A2 as the contraction ratio. Here the σc values for single-phase

Fig. 8.20. The flow through a pipe contraction
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flow according to W. Archer (1913) are used. The two terms in the square
brackets can be identified as the irreversible and reversible contributions to
the pressure loss. The contraction number reflects the local narrowing of the
flow as a consequence of the separation of the flow at the edge (see Figure
8.20).

A separation bubble can also be observed in pipe bends at high-speed
flows. In case of two-phase flow, a demixing of the phases occurs due to
centrifugal forces. The effect is sketched in Figure 8.21. The gas phase collects
on the inner side, while the liquid flows in the outer region of the bend.
Dispersed flows change locally to stratified flows.

A new equilibrium between the phases, corresponding to the stationary
intake conditions, is achieved only after 30 − 70 pipe diameters. This means
that in the design of apparatus, only seldom can fully developed two-phase
flows be assumed. Relations for the pressure drop in pipe bends have been
developed by D. Chisholm (1967) on the basis of empirical two-phase multi-
pliers.

The behavior of two-phase flows in pipe junctions is essentially deter-
mined by the branching angle and the orientation of the branching and the
intake section with regard to the gravity vector. For any asymmetric orienta-
tion of the outlet and the branching to the intake section or to gravity, there
is a redistribution of the phases that in particular cases can lead to com-
plete phase separation. Because of the weaker inertial force, the gas phase
follows curved trajectories more readily. Depending on the orientation of the
branching to the gravity vector, this trend may be supported or compen-
sated. This separation phenomenon is shown schematically for the example
of a bend with horizontal intake and run but differently orientated branch in
the graphs of Figure 8.22. The phase redistribution is here represented by the
ratio of the steam quality χ3 in the branch to that in the intake χ1 plotted
against the mass flux density ratio ṁ3/ṁ1, for three different orientations of
the branch to the direction of gravity: opposite, in the direction of gravity,
and perpendicular.

The graph shows that an almost complete separation of the phases occurs
for a branch directed vertically upward. In case of a horizontal branch, the

Fig. 8.21. Flow separation and phase separation in a pipe bend
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Fig. 8.22. Phase redistribution in a T-junction with different orientations to gravity

gas phase accumulates more strongly in the branch in the entire parameter
regime ṁ3/ṁ1, namely, with a maximum at ṁ3/ṁ1 ∼ 0.25. For the case of
a downward branch and for small branching mass fluxes, gravity causes the
liquid to follow the branch. Only when the inertial forces of the denser phase
dominate gravity, in the example for ṁ3/ṁ1 ∼ 0.6, does the steam quality
in the branch become greater than that in the intake. The gas accumulates
in the branch.

With regard to the pressure change, the branching behaves from the intake
to the run like the cross-section expansion in the diffusor. From the intake
to the branch, a flow acceleration occurs, as in a flow contraction. This is
qualitatively in agreement with the observations for single-phase flows. In
T-junctions extensive separation zones are observed which lead to a local
cross-section contraction of the active two-phase flow. This is indicated in the
sketch of Figure 8.23. Based on visual observations, a pseudoseparation line is
frequently introduced to mark transmitted and branched mass flux densities.

Fig. 8.23. Schematic representation of the phase redistribution in a T-junction.
Denoted by pseudostreamlines and obvious separation regions
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Fig. 8.24. Pressure variation in a T-junction, 1 intake, 2 outlet, 3 branch. The
branch is horizontal. The following control values hold: p1 = 0.6 Pa, UL1 = 1.5 m/s,
UG1 = 14.5 m/s, ṁ3/ṁ1 = 0.51, air–water flow

With this assumption, pressure loss calculations for each partial mass flux
can be carried out according to the separate model or the homogeneous two-
phase flow model. Adaptation parameters in the pressure correlations are
taken into account by means of experimental data. In the two-phase flow,
the absolute pressure changes are significantly larger. An example of this
behavior is shown in Figure 8.24. Further details of two-phase flows in pipe
junctions are summarized by B. J. Azzopardi and E. Hervieu (1994).

For a detailed analysis of the phase redistribution in pipe-branchings
three-dimensional computer calculations based on a two-fluid model have
been carried out more recently (cf. R. T. Lahey (1990)). The calculations
show good agreement with experimental observations.

8.4 Propagation Velocity of Density Waves and Critical
Mass Fluxes

8.4.1 Density Waves

When a two-phase mixture flows out of a pressure reservoir through an exit of
narrow cross-section, above a certain critical pressure difference of container
and ambient pressure p1−p0, there occurs a limitation of the mass flow rate.
A further reduction of the ambient pressure leads to no further increase in
the mass flux. A similar phenomenon is to be seen in compressible flows. The
compressible flow in the Laval nozzle is the classical example for mass flow
rate limitation as a consequence of the compressibility of the gas. The physical
cause of this phenomenon is the same in both cases. Above the critical pres-
sure difference, wavelike pressure and density perturbations in the liquid can
move only downstream, because the flow velocity has become greater than
the propagation velocity of small perturbations. Influencing the flow regime
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upstream by a change of state further downstream is not possible. In the
case of compressible flow, the small perturbations are sound waves or Mach
waves, whereas in the two-phase flow, they are small changes in the volume
fraction of the gas phase. In both cases, the propagation velocity of these
small perturbations can be represented by the same thermodynamic change
of state, namely, by an isotropic variation of the density with the pressure.
In the approximation of small wave amplitudes we get for the velocity of the
wave propagation

a2 =

(
∂p

∂ρ

)

s

. (8.61)

In gas dynamics this is the propagation velocity of sound waves. In two-
phase flows this is the propagation of density perturbations, primarily as a
consequence of changes in the steam quality, and secondly due to changes
in the densities of each phase with pressure. The term velocity of sound in
connection with the propagation of small density perturbations in two-phase
flows is therefore misleading.

To compute the critical mass flux in a pipe contraction, as in gas dynamics,
we use the balance equations for mass and momentum, with certain equations
of state for the gas and liquid phases. We begin with the equations for the two-
phase mixture, (8.20)–(8.25), or with the simplified form (8.27) and (8.28). A
simple calculation, analogous to that in gas dynamics, leads to the statement
that the critical mass flux is given by the propagation velocity of the density
wave at the narrowest point of the flow constriction, and is written in the
form

ṁcrit = A∗ · a∗ · ρ∗, (8.62)

with a in the definition (8.61). The symbol ∗ denotes the narrowest cross-
section, which in some cases such as orifices, because of flow separation, is
not the same as the geometrically narrowest cross-section. Its precise deter-
mination may be difficult. However, this notation immediately indicates the
typical problem in two-phase flow. The critical mass flux depends on the def-
inition of the two-phase density ρ2Ph which, depending on the mixing model
(separate or homogeneous model), can have different forms. Since the flow is
always accelerating when it flows out of or past a body, it is generally assumed
that the phases are well mixed and that the homogeneous density ρH(χ) de-
scribes the mixture well. A formal derivation of the expression for the density
at constant entropy, i.e. in the approximation in which the changes of state
are adiabatic in each phase, but where phase changes occur at the phase
boundaries, then yields
(

1

a2
2Ph

)

H

=

(
∂ρH

∂p

)

s

= ρ2
H ·
[

1

ρ2
L ·a2

L

+ χ·
(

1

ρ2
G ·a2

G

− 1

ρ2
L ·a2

L

)
−
(
∂χ

∂p

)

s

·
(

1

ρG
− 1

ρL

)]
. (8.63)
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Here the index H indicates that the result refers to the homogeneous flow
model. The velocities of sound in the gas a2

G = (∂p/∂ρG)s and in the liquid
a2

L = (∂p/∂ρL)s were also introduced. Here we may also assume that the
velocity of sound in the liquid is considerably larger than that in the gas
(a2

L ≫ a2
G). After some algebraic manipulation, and using the definitions,

this leads to a relation of the form

(a2
2Ph)H = a2

G ·
(
χ+

ρG

ρL
· (1−χ)

)2

·
[
χ−
(
∂χ

∂p

)

s

· a2
G · ρG

ρL
· (ρL−ρG)

]−1

. (8.64)

It can clearly be seen that the propagation velocity of the density wave es-
sentially depends on the steam quality and its change under isentropic ther-
modynamic equilibrium conditions. In many technically relevant flows, an
evaporation process in thermodynamic equilibrium does not take place by
pressure reduction at the narrowest flow cross-section, because the pressure
drop occurs too fast and it is too small. This means that the relaxation time
for the evaporation is considerably larger than the time the flow takes to
pass through the constriction. Cases such as these are called metastable or
frozen thermodynamic equilibrium. This occurs when (∂χ/∂p)s = 0. If we
replace in the further simplified expression (8.64) the steam quality χ by the
volume fraction ǫ, we obtain the following expression for the frozen density
wave propagation velocity in a homogeneous two-phase flow:

(a2
2Ph)H = a2

G · 1

ǫ ·
(
ǫ+

ρL
ρG

· (1 − ǫ)
) ≈ a2

G · ρG

ρL
· 1

ǫ · (1 − ǫ)
. (8.65)

The final relation holds with the assumption ρG/ρL ≪ 1. We note that
the velocity of the density wave is considerably smaller than the velocity of
sound in the gas and has its smallest value for ǫ = 0.5. This behavior has
been confirmed experimentally for air–water flows. Figure 8.25 shows that
experiments confirm this behavior well at system pressures that are not too
high. The low value of the wave propagation velocity compared to the velocity

Fig. 8.25. Wave velocity of small perturbations in water–air mixtures, assuming a
homogeneous mixture, compared to experiments by P. von Böckh (1975)
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of sound in the gas is surprising. Its minimum is less than 10% of the velocity
of sound in the gas. As a consequence of this and relation (8.62), the mass flow
limitation at the geometrically narrowest points of the flow occurs already at
very low two-phase mass fluxes. This is technically extraordinarily important
with regard to the release of gas–liquid mixtures from pressurized containers.

If we take the momentum density of the separate model as the charac-
teristic density for the two-phase mixture, after a tedious derivation process
we obtain a complicated expression for the density wave velocity. However,
this is dependent on both variables of state, the vapor quality χ and the vol-
ume fraction ǫ. However, since these quantities are coupled together via the
velocity ratio, the wave propagation velocity is not only dependent on ther-
modynamic changes of state, but also on the kinematic quantity S = uG/uL

and its change with pressure. Thus in general, one gets

(a2
2Ph)sep = f

(
aG, aF , χ,

(
∂χ

∂p

)

s

, S,

(
∂S

∂p

)

s

)
. (8.66)

The derivative (∂S/∂p)s expresses the momentum transfer between the
phases. Several authors have attempted to develop model relationships for
(∂S/∂p)s in bubbly flows with different bubble shapes; see, for example, R.
Henry et al. (1971). However, these complex models have not endured. The
general analytic relations are therefore more likely to be based on the simpler
homogeneous density model.

8.4.2 Critical Mass Fluxes

Analytical models to compute critical mass fluxes can be roughly classified ac-
cording to whether they assume thermodynamic and mechanical equilibrium

Fig. 8.26. Schematic representation of the outflow of a two-phase mixture from a
pressure container, on the left under frozen thermodynamic equilibrium and on the
right under complete thermodynamic equilibrium
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between the phases. Flow experiments show that in general there is neither
thermodynamic nor mechanical equilibrium in a flow process through a pipe.
In flashing evaporation, temperature differences form between the phases
that do not equilibriate via heat transfer at the interfaces during the short
expansion process. Simultaneously, there is a difference velocity between the
phases. This may be illustrated by a flow out of a reservoir with low vapor
quality (χ0 < 0.05) through short (L/D < 3) or long (L/D ≤ 12) pipe studs.

Figure 8.26 illustrates the process. In the flow out of a reservoir through
a short stud (left sketch), there is in general no thermodynamic equilibrium
in the separated free jet, and there is no significant vapor formation in the
center of the free jet. This leads to a sharp pressure drop at the pipe inlet
with a subsequent pressure plateau in the free jet regime.

Long pipes between pressure reservoirs lead, however, after a certain dis-
tance, to reattachment of the free jet to the wall, and independently of this,
after a certain relaxation distance, to thermodynamic equilibrium with con-
siderable vapor formation rates. The great increase of the vapor quality in the
flow then leads to a significant two-phase friction and acceleration pressure
drop. This is shown schematically in the right sketch of Figure 8.26.

The two situations can each be roughly described by a one-dimensional
homogeneous two-phase flow that is thermodynamically fully frozen or that
is in complete equilibrium. Because thermodynamic effects in the outlet flow
can essentially be determined via the evaporation, we briefly outline the ther-
modynamic changes of state using a real gas equation.

In a p−(1/ρ) diagram for real gases and liquids (see Figure 8.27), the two-
phase regime is separated from the liquid state by the so-called boiling-point
curve and from the vapor state by the so-called dew-point curve. The boiling-
point and dew-point curves meet in the critical point TK , which limits the

Fig. 8.27. Schematic representation of a state diagram for a real gas. The dotted
line shows the apparent change in nonequilibrium. The two-phase regime is shaded.
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two-phase regime to higher pressures. The isothermal lines in the two-phase
regime typically have a maximum and a minimum. The line that joins all the
minima is called the liquid spinodale, while the line that joins all maxima is
called the vapor spinodale. When the pressure is reduced, the liquid changes
its state from, for example, point A on an isothermal line to the boiling-
point curve at point B. There it attains the saturation value of the pressure
psat and the temperature Tsat. If thermodynamic equilibrium is guaranteed
by small, slow changes of state, evaporation of the liquid phase at constant
pressure takes place by increasing the volume of the mixture until the dew-
point curve is reached (point C). The straight line that joins these points
BC is the equilibrium isothermal line in the two-phase regime. On the other
hand, if the pressure reduction is large and sudden, the boiling-point curve
is not in thermodynamic equilibrium, and the pressure reduction follows the
real isothermal line into the two-phase regime without evaporation occurring.
This is a change of state in a metastable or fully frozen thermal equilibrium.
An isothermal expansion of the liquid phase can take only place as far as the
spinodale, point B′. If it is attained, or almost attained in a real system, the
system passes discontinuously through an explosion-like evaporation to an
equilibrium state along the two-phase isothermal line, for example, to point
E. The thermodynamic nonequilibrium on the isothermal line between the
boiling-point curve and the spinodale can be characterized by comparison
with the corresponding equilibrium state on the boiling-point curve. This
liquid has been overheated by the sudden expansion around the temperature
range T − Tsat. Overheating typically occurs in boiling processes in liquids
with heat supply. Overheating is necessary to activate boiling centers in the
formation of vapor bubbles. Therefore, in evaporation processes via pressure
reduction or heat supply there are a series of comparable phenomena; for de-
tails see the relevant literature (e.g. J. G. Collier and J. R. Thome (1994), C.
E. Brennen (1995)). Of course, in nonisothermal expansion with partial evap-
oration, other nonequilibrium states can be reached in the regime between
the boiling curve and the liquid spinodale. However, in reality, it is difficult
to control such nonequilibrium transients or to describe them by physical
models. This is an area of current research. Therefore, in what follows we
discuss the limiting cases. We do mention that in the transition from the
vapor phase to the liquid phase in the regime between the dew-point curve
and the gas spinodale, namely, via vapor condensation, similar phenomena of
thermal nonequilibrium can occur. They are not important in what follows
and so will not be discussed.

Both limiting cases of complete equilibrium and complete nonequilibrium
are described using a simplification of (8.64) for the critical propagation ve-
locity of a homogeneous two-phase flow. Using the assumption that for the
velocities of sound in the vapor and liquid phases we have a2

G ≪ a2
L, we

obtain the following simplified expression for the critical or maximum mass
flux:
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ṁ∗
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)
s

)∗
. (8.67)

The outflow at complete frozen thermal equilibrium is characterized by
(∂χ/∂p)s = 0. Complete thermal equilibrium is given by the total expression
of (8.67). The interrelation of the states at the narrowest flow cross-section
to the stagnation values in the pressurized reservoir is obtained by using
the equation of state of the corresponding vapor–liquid mixture (e.g. from
the steam tables). Comparison with experimental data for short pipes shows
that mass fluxes computed according to the homogeneous equilibrium model
(HEM) are in general far too low, while those values computed according to
the frozen equilibrium model (FEM) yield better results (see Figure 8.30).

In order to compute systematically the maximum mass flux, we need to in-
tegrate the balance equations for the two-phase mixture, taking into account
the friction losses from the intake to the narrowest cross-section or to the
exit of the connecting channel. Integration of the momentum balance equa-
tion for the mixture in (8.22), assuming mechanical equilibrium with S = 1
and the additional condition (∂ṁ/∂p)s = 0, leads to a tabulated or graphi-
cal representation of the critical mass flux. Figure 8.28 shows the graphical
representation of the critical mass fluxes for the case of thermodynamical
and mechanical equilibrium dependent on the reservoir stagnation values for
pressure p0 and enthalpy h0.

Fig. 8.28. Critical mass fluxes according to the homogeneous equilibrium model
(HEM), dependent on the stagnation values,. pref = 689.5 kN/m2, href =
232.6 kJ/kg, ṁref = 4.882 kg/(m2s)
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If we drop the assumption of mechanical equilibrium, a maximum mass
flux density can be determined by integrating the momentum or energy bal-
ance equation for the mixture ((8.22) and (8.24)) under the additional con-
ditions (∂ṁ/∂S)s = 0.

This procedure yields relations for the critical mass flux with given veloc-
ity ratios, which have the value S =

√
ρL/ρG for the integrated momentum

balance equation, and the value S = (ρL/ρG)1/3 on integration of the energy
balance equation. These simple models for critical two-phase mass fluxes were
first derived by K. Fauske (1963) and F. J. Moody (1965) and presented in
the form of diagrams. As an example, the graph computed by F. J. Moody
is shown in Figure 8.29. Comparison with experiment has shown that the
critical mass flux computed by F. J. Moody (1965) from an energy balance is
considerably higher than the values obtained from experiments. For this rea-
son, the Moody model is frequently used in safety analyses for conservative
estimates of leakage rates.

For further illustration, Figure 8.30 shows the model calculations dis-
cussed here compared to experimental data obtained with short-outlet pipe
studs.

In summary, we have seen that the assumptions made in the simple mod-
els concerning thermodynamical and mechanical equilibrium give insufficient
accuracy for a quantitative comparison of experimental data and model cal-
culations.

In order to describe the actual processes in two-phase flow through noz-
zles, apertures, or pipes under high pressures, the local and temporal devi-
ations from thermodynamic equilibrium and the mechanical interaction be-
tween the phases have to be taken into account.

Fig. 8.29. Critical mass fluxes according to F. J. Moody (1965), dependent on the
stagnation values
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Based on the relation for the homogeneous equilibrium model, (8.67), H.
Henry and H. Fauske (1971) developed an empirical nonequilibrium model
supported by experiment. In this relationship they replace the equilibrium
vapor fraction χeq by a real vapor fraction χ, which depends nonlinearly on
χeq and on the velocity ratio S. They succeed in finding a function that
satisfactorily describes the experimental data in a certain parameter range.
This is, however, a more formal adaptation of the relationship (8.67) to the
experimental facts.

For a model of nonequilibrium processes that is physically better founded,
the full set of steady one-dimensional conservation equations (8.14)–(8.19) of
the two-fluid model has to be integrated in principle along the outlet path.

In particular, in modeling the source terms in the mass balance equations,
the deviation from thermodynamic equilibrium has to be taken into account.
This has still not been achieved satisfactorily for deviations that are very
large, as in the case of very strong depressurizations. However, it is generally

Fig. 8.30. Comparison between model calculations and experimental data accord-
ing to different models (G. B. Wallis (1980))
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observed that the phenomena at high pressures are predominantly determined
by the effects of the thermodynamic nonequilibrium and less by the changing
relative velocity between the phases. In this case, knowledge of vapor nuclei
within the fluid that may be activated is of great importance.

In order to consider thermodynamic nonequilibrium in phase transitions
quantitatively, H. Lemonnier und Z. Bilicki (1994), among other authors,
have suggested an evolution equation for the actual steam quality χ com-
pared to the thermodynamic equilibrium steam quality χeq as a supplement
to the balance equations and the equation of state for the system. The re-
lationship links the vapor production rate dχ/dt linearly to the deviation
of the actual steam quality from its equilibrium value χ − χeq via a relax-
ation time parameter Θ. The steam quality difference depends directly on the
superheating of the liquid. The evolution equation has the form

dχ

dt
=
∂χ

∂t
+
ṁG

ρG
· ∂χ
∂z

=
χ− χeq

Θ
. (8.68)

Starting out from the stagnation states, simultaneous integration of the con-
servation equations (8.14)–(8.19) and the relaxation differential (8.68) then
yields the actual states in the pressure reduction channel. The remaining dif-
ficulty now concerns the determination of the relaxation parameter Θ for a
specific arrangement and a specific fluid. In principle, Θ embodies the physics
of a real homogeneous or heterogeneous vapor formation process. In the ab-
sence of any general known physical interrelation for Θ, H. Lemonnier and Z.
Bilicki (1994) take a pragmatic view and determine Θ simultaneously with
the calculation of the pressure and the mass flux along the integration path
from a prescribed measured gas volume fraction and the liquid overheat. In
their model equations they assume mechanical equilibrium, that is, homo-

Fig. 8.31. Pressure p and relaxation coefficient Θ as a two-phase mixture passes
through a narrow nozzle with supercritical pressure difference. For example ṁ =
6526 kg/(m2s), pa = 0.123 MPa, pex measured pressure, pth calculated pressure
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geneous flow conditions. Compared to simple analytical models, they find
good agreement with the measured pressure distribution in narrow expan-
sion nozzles (cf. Figure 8.31). The calculation of Θ offers a new approach to
the understanding of fundamental nonequilibrium processes. Independently
of the particular requirements in the physical modeling, in the numerical
integration of the differential equations there are difficulties related to the
singular behavior at the narrowest cross-section. Further details are given by
H. Lemonnier and Z. Bilicki (1994).

8.4.3 Cavitation

In liquid flows at high velocity, a pressure drop in the flow past bodies and
corners can lead to locally bounded vapor or gas formation. This phenomenon
is called cavitation. It is a locally bounded flashing vaporization with subse-
quent condensation, or otherwise the release of dissolved foreign gases from
the liquid by pressure reduction. It occurs occasionally in hydraulic flow ma-
chinery such as pumps and turbines and in other hydraulic components like
valves or injection nozzles of combustion engines. Undesirable side effects such
as deterioration of operation control, noise development, mechanical oscilla-
tions and local material wear and tear are observed. Avoidance and control
of cavitation is therefore of great importance in hydraulic engineering. Cav-
itation processes have been investigated intensively for many years with the
aim of deriving criteria for its onset and extent. Many articles and books
summarize the area of cavitation, such as those by T. Knapp et. al. (1970),
A. J. Acosta and B. R. Parkin (1975),C. E. Brennen (1995), Y. Lecoffre
(1999), J. P. Franc and J. M. Michel (2004).

In single-component flows, cavitation may occur if the local static pressure
in the flow reaches and falls below the thermodynamic saturation pressure
psat of the fluid. This necessary condition for the onset of cavitation is char-
acterized in an inviscid, incompressible flow by a dimensionless cavitation
number σ. This characteristic number is defined as

σ = 2 · (p− psat)

ρ · u2
, (8.69)

where ρ is the density and u the local velocity. For values of σ ≤ 0, vaporiza-
tion of the fluid can occur. Because of mechanical and thermodynamic real
effects, the “ideal” critical value of the cavitation number σi = 0 for the onset
of cavitation can shift to positive or negative values. The relevant quantities
that influence such deviations will be discussed in what follows.

The types of cavitation observed are as diverse as the flow patterns in two-
phase flows in pipes (see Section 8.2). They are always highly unsteady. They
may be classified according to increasing vapor content, as cloud cavitation,
bubble cavitation, stratified cavitation, and supercavitation. Collections of
small bubbles in the micron and submicron region, which can form in greatly
sheared boundary layers, are called cloud cavitation. Extended bubble crowds
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develop in the low-pressure regimes of separation flows behind body edges, on
the suction side of airfoils at an angle of attack, and in regions of separated
flows. This is then called bubble cavitation. The formation of coherent vapor
or gas films occurs in some parts of an airfoil or the edge of a body when
bubbles coalesce, if the vapor or gas volume fraction exceeds a critical amount
of ǫ ∼ 0.5. This form is called stratified cavitation. If the body, at very high
flow velocities and low local pressures, is covered by a vapor film on all or part
of its contour surface, this is called supercavitation. Such extreme conditions
are occasionally attained on the propellers of speedboats. Figure 8.32 shows
these cavitation forms, in experiments by J. P. Franc and J. M. Michel (1985)
on an NACA-foil in a water channel.

These investigations have shown that, as well as the cavitation coefficient
σ already introduced, the following properties have considerable influence on
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Fig. 8.32. Different cavitation patterns on an airfoil of type NACA 16012 at an
angle of attack in a water channel, according to J. P. Franc and J. M. Michel (1985)
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the cavitation: the shape of the body, such as its degree of slenderness and
angle of attack, as well as fluid properties such as viscosity, surface stress,
parameters of the real gas equations, thermal conductivity, heat capacity,
latent heat, and concentration of foreign material in the fluid in the form of
foreign gases or particles.

The onset and the dynamic behavior of the cavitation process are also
greatly affected by thermal microprocesses in the activation of the nucleation
centers, and by the degree of turbulence of the flow.

The effects of the different parameters can in principle be described in
the form of dimensionless fluid-mechanical and thermodynamic characteris-
tic numbers, such as the Reynolds, Weber, and Stefan numbers. In hydraulic
engineering, attempts have been made to develop a relationship that is as
simple as possible between the cavitation coefficient and a normalized volu-
metric flux. In shipbuilding, relations between cavitation coefficient, angle of
attack, propulsion, and drag coefficient have been derived for certain classes
of hydrofoils and propellers. Experimental investigations show, however, that
the metrological determination of these correlations depends greatly on the
quality of the test liquid. The quality of the liquid is characterized by the
concentration of dissolved foreign substances, and the concentration and size
distribution of finely distributed undissolved foreign particles, since these de-
termine the tensile load limit of a fluid without vapor formation and thus the
onset of cavitation. Therefore, in recent cavitation experiments, the effect of
the water quality is taken into account by a specified addition of gas or solid
particles to the test liquid.

Coherent structures in turbulent flow may significantly promote the gen-
eration of individual vapor bubbles and, moreover, lead to the formation
of bubble collectives. Bubble growth and collapse is influenced by pressure
fluctuations associated with small scale high intensity vortices. Bubble accu-
mulation occurs preferentially in the core region of vortices of major extent
where even coherent vapor tubes may be formed by bubble coalescence.

Fig. 8.33. Free cavitation tube at the tip of a wing, ending in vapor intake from a
wing-cavitation layer (R. E. A. Arndt and V. H. Arakeri (1991))
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Figure 8.33 demonstrates such a process in form of a wing tip caviation
tube. The same mechanism may also explain the observed initiation of cav-
itations and formation of cavitation clouds within boundary layers and free
shear layers, contrasting the expectations that cavitation originates from rigid
boundaries of fluid flow domains.

Unsatisfactory results in the description of cavitation by power law cor-
relations between simple flow characteristic numbers have recently increased
efforts for the mathematical–physical modeling of the two-phase processes.
The same basic physical concepts are used as for the computation of criti-
cal mass fluxes. Cavitation generally occurs in bounded regions of the flow,
and therefore, two- or three-dimensional computations are certainly neces-
sary. A starting point is given by the general equations for two-phase flows in
Section 5.4.6. For simplification, a homogeneous two-phase flow is frequently
assumed.

In order to compute the vapor volume fraction ǫ, the balance equation for
the vapor phase, (8.14), with a source term for evaporation and condensation,
is used. The central point of this modeling is the representation of the source
term. For a given distribution of nucleation centers in the fluid, the space
term can be computed from the growth of individual bubbles in the pressure
field of the homogeneous two-phase flow. This can be performed using the
Rayleigh–Plesset equation (5.89) of Chapter 5, or other similar descriptions
of individual bubble dynamics. One method has been presented by Y. Chen
and S. D. Heister (1994), and independently by J. Sauer and G. H. Schnerr
(2000). Figure 8.34 shows an example of a computation of cavitation in an
injection nozzle.

In spite of remarkable advances in the numerical computation of cav-
itation processes in channels, there are several significant effects, such as
mechanical nonequilibrium between the phases, turbulence effects in the ho-
mogeneous phase, and thermodynamic nonequilibrium during the formation

Fig. 8.34. Numerically computed cavitation regime in the contraction region of a
nozzle, according to J. Sauer and G. H. Schnerr (2000)
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computed bubble contoursexperiment

Fig. 8.35. Collapse of a vapor bubble close to a solid wall in the phase of jet
formation toward the wall: left, experiment; right, computed sequence of bubble
contours by J. R. Blake et al. (1986)

of bubbles and their collapse by condensation, that have not yet been de-
scribed adequately, since relevant physical models are lacking.

In contrast, the modeling of cavitation in the form of the growth and
collapse of individual vapor bubbles is presently well understood. Experi-
mental investigations (such as those by W. Lauterborn and H. Bolle (1975))
show that cavitation bubbles close to walls collapse asymmetrically with the
formation of a high-velocity liquid jet directed toward the wall (Figure 8.35)
associated with an intensive pressure wave. It has been shown experimentally
by A. Phillip and W. Lauterborn (1998) that wall material damage is caused
by high-frequency pressure shock waves and high-velocity jets. The compu-
tation of this process was first performed by S. Plesset and R. B. Chapman
(1971). Their calculations were later completed by, among others, J. R. Blake
et. al. (1986). Figure 8.35 shows the time development of a bubble collapse
with bubble contour lines.

8.5 Instabilities in Two-Phase Flows

Two-phase flows may occur in different patterns in pipe and channel flows
(see Section 8.1). Each of these patterns exists in a certain range of the control
parameters such as mass fluxes of the phases and volume fraction. On vari-
ation of the control parameters there are transitions between these patterns.
The transitions are frequently triggered by flow instabilities at the interfaces.
They are essentially wave instabilities caused by the effect of the relative ve-
locity between the phases, surface tension, and acceleration forces. They are
known as Kelvin–Helmoltz and Rayleigh–Taylor instabilites. These instabili-
ties also play a central role in the deformation and disintegration of bubbles,
drops, liquid lamellae, and liquid films. Figure 8.36 shows the situation. If
the gas and the liquid move with velocity uG − uL relative to one another at
a smooth interface, small wavelike perturbations are amplified in time under
the effect of surface tension and acceleration forces, such as gravity, acting
from outside on the interface. The rate of amplification generally depends on
the wavelength of the perturbation. The perturbation wavelength λm with
the largest amplification rate leads to the decay of the smooth interface, such
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as that of gas and liquid jets, and to the formation of a new spatial phase
distribution that is characterized by the new intrinsic length scale λm. This
length scale also determines the size of drops and bubbles after the transition
process.

A linear stability analysis for an inviscid infinitely extended two-layer flow
yields an amplification rate ci of the form

ci =
1

a
·
√
ρ1 · ρ2 · (u1 − u2)2 · a2

ρ1 + ρ2
− σ · a2 − g · (ρ1 − ρ2) · a

ρ1 + ρ2
. (8.70)

Here u1 and u2 are the velocities of each phase, a is the wave number defined
as a = 2π/λ, and the other quantities have the same meanings as introduced
earlier. The acceleration is the acceleration due to gravity, although any other
acceleration with corresponding effect could take its place. The maximum of
the amplification rate as a function of the wave number can be determined
from the condition ∂ci/∂a = 0. For the following discussion, the wavelength
λ = 2 ·π/a is introduced. For the case in which there is no velocity difference
between the phases and u1 − u2 = 0, the maximally amplified perturbation
has wavelength

λm = 2 · π ·
√

3 · σ
g · (ρ1 − ρ2)

. (8.71)

Here it is assumed that the denser fluid is accelerated in the direction of
the less-dense fluid. Otherwise, only a damped oscillation will occur. This is
called the Rayleigh–Taylor instability. The critical wavelength for amplified
perturbations is given by a vanishing amplification rate ci:

λc = 2 · π ·
√

σ

g · (ρ1 − ρ2)
. (8.72)

From this we conclude that the interface is stable to small perturbations with
small wavelength and experiences no lasting deformation, since the surface
tension is in equilibrium with the acceleration forces. For perturbations with
larger wavelengths, the interface will be deformed permanently. A visible
example of this interface instability is the prevention of an outflow of liquids
from containers with small enough apertures at the bottom, or the decay-free
rise of gas bubbles with diameter dB ≤ λc in a liquid.

If the acceleration is not strong, but nevertheless significant velocity dif-
ferences u1 − u2 occur between the phases and surface tension is present, the
amplified perturbations of the wavelength λ are bounded from below by the
critical wavelength

Fig. 8.36. Stability of an interface be-
tween two layered fluids, velocity of the
phases u1, u2
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λc = 2 · π ·
(

σ

ρ1 · (u1 − u2)2

)
. (8.73)

Here it is assumed that the densities of the phases are very different at normal
conditions, i.e. ρ2 ≪ ρ1, as in the case of gas and liquid. The perturbation
with the greatest amplification has wavelength λm = 1.5 · λc.

For two-phase flows, the consequence of this capillary instability is that
the shear velocities at the interface cause undamped capillary waves that lead
to the decay of the interface. For example, large drops break up into smaller
components if the drop diameter is larger than the critical wavelength λc. This
instability of interfaces to shearing motion is a Kelvin–Helmholtz instability. It
substantiates the well-known Weber number criterion for the decay of liquid
jets and drops (see Section 8.2.4). This empirical criterion claims that a decay
of moving volumes of liquid with free surfaces occurs if the Weber number
WeL formed with the characteristic length L of the drop volume exceeds the
value one:

WeL =
ρ1 · (u1 − u2)

2 · L
σ

> 1. (8.74)

The phases 1 and 2 are identified with a gas and a liquid, respectively.
Both instabilities introduced here have a great effect on the bubble and

drop formation in two-phase flows and explain several significant phenomena
in boiling and condensation processes. For example, the breakdown of nucle-
ate boiling and film boiling are due to the Rayleigh–Taylor instability. The
formation of wavy stratified flows and of homogeneous bubbly and droplet
flows is directly related to the Kelvin–Helmholtz instability, and its initiation
can be described by using a Weber number criterion.

The simple representation of the instabilities discussed here can be com-
pleted by taking further effects into account, such as the viscosity of the
phases and geometric dimensions of the containers and channels. This can be
looked up in detail in the textbooks by C. H. Yih (1980) or S. Chandrasekhar
(1968).

Apart from the small-scale interface instabilities, which are significant for
the phase distribution, there are further fundamental large-scale instability
mechanisms that determine the temporal behavior of the two-phase flow in
hydraulic systems with phase transitions. Since such instabilities can lead to
uncontrolled mechanical pressure and shock loads and moreover to thermally
induced stresses in the channel walls of the system, the stability bounds of
such processes represent practical design and operation criteria for such sys-
tems. These include chemical reactors, nuclear steam generators, refrigerating
sets, fluid flow engines etc.

A typical two-phase instability can occur in a system that consists of two
pressure reservoirs and two hydraulic components arranged in series between
them, namely, a centrifugal pump and an evaporator tube with constant heat
supply. The system is shown in Figure 8.37.
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The stability behavior of this system is determined by the different pres-
sure to mass-flux dependencies of the pump and evaporator tube. Whereas
the pressure head of a centrifugal pump typically drops monotonically with
increasing mass-flux, the two-phase pressure drop in the evaporator tube
typically shows nonmonotonic cubic behavior in its dependence on the mean
mass-flux. The nonmonotonic behavior is essentially due to the different con-
tributions of the frictional and accelerational pressure drop to the overall
pressure loss of the two-phase flow in the evaporator tube. The monotonic
branches of the pressure loss curve are determined by the high vapor fraction
at low mass-fluxes, and by the high liquid volume fraction at high mass-
fluxes. Therefore, in general, the system can assume three steady states of
operation as the mass-flux is varied. They are given by the intersecting points
P, P′, P′′ of the two pressure–mass-flux curves for the centrifugal pump and
the evaporator tube. Assuming a small variation of the quantities ∆p and
ṁ in a neighborhood of the steady states, it can easily be shown that the
states P′ and P′′ are stable, whereas a pressure and mass-flux variation close
to P results in a change in the power of the pump and thence to a change in
pressure loss with exactly opposite sign. This leads to a transition to one of
the two stable states of operation P′ or P′′.

The simple approaches show that the condition ∂∆p/∂ṁ > 0 is necessary
for stability of an operating point, where ∆p is the driving system pressure.
This temporal behavior is caused by the instability and is characterized by
a simple transient from an unstable to a steady stable state; hence it is
called statically stable or unstable. M. Ledinegg (1938) first investigated this
instability, and it is named after him. We do not present a precise analytical
model for this instability at this point, but instead refer to the literature (G.
Yadigaroglou (1981, 2006), M. Ozawa (1999)).

The static behavior of the system may lead to dynamic, i.e. oscillatory,
behavior if a pressurizer is added to the component chain consisting of reser-
voirs, pump and evaporator tube (see the dashed component in Figure 8.37).
When the two-phase flow pressure loss decreases, the pressurizer temporarily
stores the excess pump power as compression energy and passes it back to

Fig. 8.37. A two-phase system with possible instability. Left: flow system; right:
pressure–mass-flux diagram for the radial pump and evaporator tube
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the system after a time offset. The buffer effect of the pressurizer means that
the characteristic line of the driving pressure in the diagram in Figure 8.37
oscillates in time. This leads to a displacement of the points of intersection P’,
P” on the characteristic line of operation. In the case of strong oscillations,
such a system can in principle carry out a relaxation oscillation between all
three original static states. This is undesirable for the operation of a tech-
nical system. Such operative fluctuations are prevented by the addition of
throttling components, in the form of screens or other flow constrictions.

A typical two-phase instability driven by pressure dependent evaporation
processes is found in nature in geysers. Heat is supplied to a cavern filled
with supercooled water that is connected to a higher-lying water reservoir
via a narrow channel. The water heats to saturation temperature and begins
to boil. The steam formed leaves the cavern in the form of a two-phase mix-
ture via the connecting channel. Because of the increasing steam content, the
hydrostatic pressure in the cavern is reduced. This leads to further amplifi-
cation of the evaporation and to further water discharge out of the cavern.
As the water deficit increases, the steam development is reduced and super-
cooled water can penetrate into the cavern from the upper reservoir against
a reduced flow of steam. This completely cuts off the boiling process. The
continuing heat supply to the cavern again heats to saturation temperature
the water that has penetrated and the process repeats itself. If the external
conditions, the heat supply to the cavern and the heat removal from the reser-
voir remain the same, a periodic process with a typical relaxation character
is set up. Similar phenomena can also occur in technical steam generators if
certain operative failures occur (cf. M. Ozawa (1999)).

Similar flow instabilities also occur if steam is introduced to supercooled
water reservoirs via pipe chambers. The instabilities are generated by the
condensation of large bubbles of steam in the reservoir and in the entry

Fig. 8.38. Left: sketch of the formation of the density-wave instability; right: feed-
back effects
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chambers, and can lead to unacceptable material strain on the pipe and
container walls.

Another system-covering two-phase instability that can be observed in the
form of oscillations of the gas volume fraction is the so-called density wave in-
stability. This instability occurs frequently in systems with phase transitions
and is based on a feedback mechanism between mass flux, vapor formation or
condensation rate, and pressure drop in the boiling or condensation region.
This instability can be analytically described for a system with constant heat
supply or removal using the one-dimensional two-fluid model (8.14)–(8.18)
and a classical linear stability analysis (see G. Yadigaroglou (1981)). Here
we do not present the analytical model, but describe the essential mecha-
nism using a simple evaporator tube connecting two pressure reservoirs with
constant pressures p0 and p1. Figure 8.38 shows a sketch of the situation.

Adding a small periodic perturbation to the mass flux ∂ṁ at the inlet of
the evaporator tube, the location of the saturation temperature and there-
fore the location of the onset of evaporation inside the tube will follow the
fluctuation, since mass-flux oscillations in single-phase flow regimes include
enthalpy oscillations. Changes in the mass flux and changes in the length of
the single-phase flow section in the pipe cause pressure fluctuations ∂∆p1 in
the single-phase flow regime. In the two-phase regime, an enthalpy pertur-
bation acts as a perturbation of the vapor volume fraction ǫ, which moves
in the direction of flow as a density wave. The change in the vapor content,
together with the mass-flux and length perturbations, leads to an increased
pressure perturbation ∂∆p2 in the two-phase regime. Since the total pressure
difference of the system acting on the evaporation tube is constant, the indi-
vidual pressure fluctuations ∂∆p1 and ∂∆p2 have to cancel each other. This
implies a feedback between the two-phase and single-phase regimes, which,
for a suitable phase relation between the perturbations, leads to a resonant
amplification of the small initial perturbation. The consequence is massive
oscillations that affect the whole boiling regime and in particular, change
the vapor fraction in the evaporator tube. In technical systems this must be
prevented in order to avoid uncontrolled thermal stresses at the heated wall.
Therefore, the prediction of limits for the density-wave instability is impor-
tant in the design of tube-type steam generators. The tendency to unstable
behavior increases if several evaporator tubes are arranged in parallel.

A similar instability may be observed in a cavitating radial fluid flow en-
gine. Under certain conditions, local cavitation regimes in the blade channels
of the rotor move from one channel to the next at a particular frequency. The
situation is analogous to the system of parallel evaporator tubes. In the ra-
dial machine there is a certain pressure difference between the inlet and exit
of the blade channel, determined by the rotation rate. The phase transition
in the blade channel takes place as explained in Section 8.4.3, at the posi-
tion where the hydrodynamic pressure drops below the evaporation pressure,
i.e. the saturation vapor pressure of the liquid. Small perturbations of the
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mass flux in the individual blade channels can therefore cause the same res-
onant feedback mechanism as in evaporator tubes, and lead to inadmissible
oscillations and a deterioration of the efficiency of the fluid flow engine.

8.6 Turbulence in Dispersed Two-Phase Flows

8.6.1 General Aspects

A cruical issue for the analysis of dispersed two-phase flow in technical sys-
tems is the spatio-temporal distribution of particles such as bubbles, drops
and solid granules in turbulent carrier flows. Experiments have shown that
even for the simple situation of two-phase flows in vertical ducts distinctly
different particle distributions occur depending on the overall flow direction
and the phase density ratio ρp/ρc. Two typical examples from measurements
of T. L. Liu and S. G. Bankoff (1992) and X. Sun et. al. (2004) are shown
in Figures 8.39 and 8.40. For instance, for turbulent upward bubble flow a
concentration peak of the volume fraction ǫp is observed in the vicinity of the
duct walls, while for downward flow the maximum of the particle concentra-
tion is generally located in the pipe center.

Observations and measurements indicate that bubbles do not enter the
viscous wall region in turbulent pipe flow. E. Moursali et. al. (1995) have ob-
served this behavior also in turbulent bubbly flow along vertical flat plates.
Furthermore, non-uniformities in the distribution of particles have been real-
ized in the free shear layers of two-phase flow jets occuring in spray or aerating
systems. A typical vortex induced structural phenomenon in a dilute particle
jet flow is demonstrated in Figure 8.41 according to investigations of E. K.
Longmire and J. K. Eaton (1992).

Fig. 8.39. Upward bubbly air-water flow in a vertical pipe after T. J. Liu and S. G.
Bankoff (1993), pipe diameter D = 38 mm, bubble diameter db ≤ 5 mm, volumetric
water flux ūc = 1.087 m/s, volumetric gas flux ūp = 0.027, 0.112, 0.230, 0.347 m/s
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The vortex structures in the gas jet are visualized by smoke tracers. Obvi-
ously there are particle accumulations in zones of low vorticity between vor-
tex centers. Characteristic features are summarized in the schematic sketch
of Figure 8.41.

Preferential concentration and rarefaction of particles within specific re-
gions of a homogenous turbulent flow field is a general feature of high
Reynolds-number dilute particle flows. These phenomena have also been real-
ized and predicted by direct numerical simulations using the model equations
for dilute two-phase flow as presented in Section 5.4.6 (see J. D. Kulick et.
al. (1994), K. D. Squires and J. D. Eaton (1990)).

The outlined phenomena can be explained by forces acting on an individ-
ual particle moving in a fluid continuum. Under the influence of centrifugal,
Coriolis, lift and body forces the particle trajectories generally cross the path
and streamlines lines of the carrier flow. This is sketched for an axisymmetric
rotation in Figure 8.42. Particles heavier than the carrier fluid (ρp/ρc > 1)
are removed from the vortex center by centrifugal and Coriolis forces and,
as a consequence, lead to a local thinning of particles. In a system of several
vortices the particles will accumulate near flow stagnation points or lines, re-
gions with high shear and moderate vorticity. This situation is sketched for a
two-dimensional stagnation flow in Figure 8.42. For particle slighter than the
carrier fluid (ρp/ρc < 1) the situation is reversed. Bubbles accumulate near
vortex centers and escape from stagnation zones. Regions of preferential con-
centration thus originate from vortex formation and interaction of vortices in
the continuous phase.

In one-dimensional pipe flow mainly gravity and lift forces are responsible
for non-uniformities of the particle distribution (see 5.4.6). The elevated vol-
ume fraction ǫp near the wall in upward vertical pipe flow and the increased
level of ǫp in the center of the pipe in downward flow can indeed be explained

Fig. 8.40. Downward bubbly air-water flow in a vertical pipe after X. Sun et al.
(2004), pipe diameter D = 25.4 mm, water flux velocity ūc = 1.25 m/s, air flux
velocity ūp = 0.02; 0.10; 0.29 m/s



8.6 Turbulence in Dispersed Two-Phase Flows 515

by the acting lift force. According to (5.111) this force is proportional to the
relative velocity vp − uc between particle and the carrier phase and to the
local vorticity of the carrier flow expressed by the transversal gradient of the
mean velocity ωc = −∂uc/∂n with n as a coordinate perpendicular to the di-
rection of flow. For particles lighter than the carrier fluid with ρp/ρc < 1 and
for upward bubbly flow vp −uc > 0 holds because of buoyancy forces. Thus,
the lift force is directed away from the center and towards the wall, resulting
in an accumulation of bubbles near the pipe wall. The direction of the hy-
drodynamic lift force is reversed for downward bubbly flow with vp−uc < 0,
as buoyancy effects reduce the particle velocity vp. As a consequence, the
bubbles migrate towards the pipe center forming an enhanced concentration
at this location. For particles heavier than the carrier fluid, i. e. ρp/ρc > 1
the scenario is reversed with concentration peaks of particles near walls for
downward flow and accumulations near the center for upward flow.

There is yet another vorticity related force that inhibits particles from
touching the wall. When rising bubbles approach the wall, the flow around
the individual bubble becomes non-uniform. Due to the non-slip condition at
the wall the drainage rate on the wall side of the bubble is much smaller than
on the opposite side. This gives rise to an asymmetric relative incident flow
to the bubble creating a lift force away from the wall. Utilizing analytical
considerations together with numerical simulations S. P. Antal et. al. (1991)
derived the repulsive wall force on the particle in the form:

F c
p = ǫp · ρc ·

2

dp
· (vp − uc)

2 ·
(
cw1 + cw2 ·

dp

2 · y

)
. (8.75)

Fig. 8.41. Above: Flow visualization of a single phase pulsed gas-jet by smoke
tracers at Rec = 23000; middle: visualization of the dilute concentration of glass
particles carried by the jet for the same carrier gas flow rate, particle diameter
dp = 0.55 µm; below: schematic sketch of the phenomena, after E. K. Longmire
and J. K. Eaton (1992)
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Here y is the distance from the wall, vp − uc the relative velocity parallel to
the wall and cw1 and cw2 are coefficients obtained from numerical adjustments
to experimental observations with cw1 = −0.104− 0.06 · |vp −uc| and cw2 =
0.147. The effect of wall repulsive forces is evident in Figure 8.39 as the
measured volume fraction decreases steeply towards zero close to the pipe
wall. It should be mentioned here that any deformation of the particle by
acting fluid dynamic forces feeds back on the quantity of the particle drag
and lift force and has to be taken into account if necessary (see Section 8.2.4).

There is the obvious question of what is the kinematic and dynamic struc-
ture of a dispersed two-phase flow in the proximity of walls. Measurements
of the wall shear stress and velocity of the continuous phase have shown that
similar to single-phase fully developed boundary-layer flow three character-
istic zones exist: a viscous sublayer, an intermediate inertial layer with a
logarithmic velocity distribution and an outer region with wake flow charac-
ter, as described in Section 4.2.5. This can be seen in Figure 8.43. The graph
shows the dependence of measured wall-parallel mean velocities in bubbly
flows along a vertical plate on the wall distance, displayed in standard vari-
ables U∗ = u/v∗ and y∗ = v∗ · y/νc with v∗ = τw/ρc the shear-stress-velocity
scale, νc and ρc the kinematic viscosity and density of the continuous phase
respectively (for details see J. L. Marie et. al. (1997)).

It is obvious from Figure 8.43 that parameters in a generalized logarithmic
law of the wall for dispersed particle flow should depend on the particle
fraction and also take into account body forces such as gravity. J. L. Marie
et. al. (1997) have derived a generalized law of the wall for bubbly flow from
their measured data.

It was outlined already in Section 5.4.6 by Figure 5.16 that particle mo-
tion and turbulent fluctuations in the continuous phase may interact in a
complex way. In dispersed two-phase flows the dynamics of particles may
either surpress or enhance turbulence at all turbulence length scales (wave-
lengths) of energetic vortices. They even may do this selectively in a limited

Fig. 8.42. Particle trajectories in simple two-dimensional flows, after K. D. Squires
and K. J. Eaton (1990)
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range of wavelengths. It has been repeatedly observed in experiments under
various turbulent flow conditions that collections of small particles extract
energy from large energetic vortices and transfer this dispersively to smaller
turbulence vortices which finally dissipate all energy by friction. This be-
comes evident from evaluated power density spectra of the fluid velocity of
turbulent bubbly flow. Figure 8.44 shows such spectra evaluated by M. Lance
and J. Battaille (1991). The measurements were taken in bubbly flows behind
grids.

As outlined in Section 5.4.6, essentially four parameters govern the fea-
tures of turbulent two-phase flow: the Reynolds number of the continuous
phase Rec = ūc ·Dc/νc, the particle Reynolds number Rep = ūr · dp/νc with
ūr the relative particle velocity, the Stokes number St = τp/τe and the mass
loading ratio φ = ṁp/ṁc. The fluid Reynolds number determines mainly the
turbulence level induced by the macro-scale shearing character of the fluid
velocity profiles. The particle Reynolds number may serve as an indicator
for either additional viscous damping in the continuous phase or for par-
ticle induced small-scale turbulence production owing to vortex formation
and shedding in the wakes of moving particles. These effects generally occur
for Rep ≤ 1 and Rep > 100 respectively. The Stokes number describes the
available relative time for momentum exchange when a particle crosses the
domains of energetic vortices in a turbulent flow field, and thus may be used
to qualify the interaction process between particles and continuous phase as
depicted in Figure 5.16, Section 5.4.6. The mass loading ratio φ quantifies the
mass portion of the dispersive phase and quantifies the integral interaction
process regarding its spatial distribution and its dynamic intensity.

After the discussion of several characteristic phenomena in turbulent dis-
persed two-phase flow in the following two sections some principle ideas will

Fig. 8.43. Velocity profiles displayed in standard inner variables for different vol-
ume fractions ǫ as indicated and for a volumetric fluid flux ūc = 1 m/s. For com-
parison the logarithmic law of the wall for single-phase flow (ǫ = 0) is shown in
Figure 4.64: u+ = 2.51 · ln(y+) + 5.5 after J. L. Marie et al. (1997)



518 8. Multiphase Flows

be outlined on how to describe these complex flows by physico-analytical
modeling which extends the considerations of Section 5.4.6.

8.6.2 The Mixing Length Concept

It is reasonable to apply Prandtl’s mixing length concept also to dispersed
two-phase flow in order to describe the relevant integral quantities in turbu-
lent two-phase flow, such as pressure drop∆ρTP, shear-stresses τ , mean veloc-
ities ūc, and void-fraction ǫp in a most simple way. Y. Sato and K. Sekoguchi
(1975) proposed that the shear stress in fully developed two-phase pipe flow
is composed of three independent constituents, a viscous Newtonion part, a
shear-flow induced turbulent part, and a particle induced pseudo-turbulent
part. Using a gradient-diffusion ansatz and introducing eddy diffusivities ν′

and ν′′ for the two turbulence portions they write for the shear stress in the
continuous phase

τc = (1 − ǫ) · ρc · (νc + ν′ + ν′′) · dūc

dy
. (8.76)

Here νc is the kinematic viscosity and ūc the local mean velocity of the
continuous phase, y is a coordinate perpendicular to the flow direction. They
next utilize Prandtl’s mixing length concept for shear flows and for turbulent
wake flows and correlate the eddy diffusivities ν′ and ν′′ to mean velocitiy ūc

of pipe or boundary layer flows. They propose

ν′ = κ · y2 · dūc

dy
, ν′′ = K1 · ǫp · dp

2
· ūr . (8.77)

Fig. 8.44. Influence of the gas fraction on the one-dimensional spectrum of the
velocity fluctuations in the liquid phase after M. Lance and J. Battaille (1991).
Liquid mean velocity ūc = 0.9 m/s; spectrum 1, ǫp = 0 %; spectrum 2, ǫp = 1 %;
spectrum 3, ǫp = 2.5 %; spectrum 4, ǫp = 4 %. Ratio of bubble diameter to grid
spacing: db/D = 0.125; probe-distance from the grid: L = 36 · D
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Here κ = 0.4 is the Karmán mixing length constant, dp is a mean particle
diameter, ūr = ūp − ūc the relative particle velocity and ǫp the particle
volume fraction which accounts for the bulk effect of the particle induced
turbulence. K1 is an empirial constant. This has been determined as K1 = 1.2
by integrating (8.76) for ūc using measured values of the volume fraction in
an upward bubbly pipe flow and adapting the calculated values ūc to the
measurements. A similar approach was taken by D. A. Drew and R. T. Lahey
(1980) when they derived a consistent predictive model for the velocity and
volume fraction distribution in fully developed upward and downward channel
and pipe flow. The proximity of rigid walls results in low velocities in the
continuous phase due to repulsion forces in a depleted particle concentration
near walls. Thus, the particle induced pseudo-turbulence is negligible in this
region and for the flow close to vertical flat walls a balance between shear
stress and particle related buoyancy forces exists. This is expressed as

τ = τw − g · ρc ·
y∫

0

(ǫ− ǫE) · dy . (8.78)

Here τw is the wall shear stress, ǫ the local void fraction and ǫE the equilib-
rium free stream void fraction. J. L. Marie et. al. (1997) proposed that the
buoyancy term may be approximated by introducing the bubble diameter dp

as the relevant length scale and the peak void fraction ǫmax as the relevant
concentration measure in the wall region and obtained the relation

τ∗w = τw − g · ρc · (ǫp − ǫmax) · dp . (8.79)

Using the mixing length model, the velocity distribution in the wall region can
be evaluated. In the particle free viscous sublayer the velocity varies linearly
with the distance from the wall. It is matched by a logarithmic distribution
in the turbulent boundary layer region, which is still influenced by void and
buoyancy effects. J. L. Marie et. al. (1997) have shown that the velocity of
continuous phase near the wall can be represented in the generalized form

ūc

u∗τ
=

1

K∗
· log

(
y · u∗τ
νc

)
+ C∗ . (8.80)

Here u∗τ =
√
τ∗w/ρc is the wall shear stress velocity and K∗ and C∗ are

constants of integration which themselves depend weakly on τw and the free
steam velocity or, in case of channel flows, the center line velocity. Moreover,
in bubbly flow they also depended on buoyancy effects due to non-uniform
void distributions. This is validated by the experimental data displayed in
Figure 8.43. J. L. Marie et. al. (1997) have also derived analytical expressions
for K∗ and C∗ in terms a Froude number, accounting for buoyancy effects, and
a ratio of wall shear stresses related to a two-phase and a single-phase flow
respectively. Details are omitted here, but it is emphasized that these findings
are fundamental for satisfying wall boundary conditions in multi-dimensional
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two-phase flow calculations, using the Eulerian approach outlined in Section
5.4.6.

8.6.3 Transport Equation Models for Turbulence

For more complex, non-homogeneous situations such as two-phase flows in
pipe branchings, container intake flows or wake flows simple algebraic clo-
sure relationships such as those in (8.76) – (8.78) for turbulence quantities
based on a mixing length concept and defined eddy viscosities are insufficient
for a realistic simulation of phase redistribution and separation effects. As for
single-phase flow, the associated three-dimensional phenomena can be under-
stood properly only by solving transport equations for the crucial turbulence
properties together with the conservation equations for mass, momentum
and energy as formulated in Section 5.4.6. In this context the relevant tur-
bulent quantities in the momentum equation are the Reynolds shear stresses
τRe

t = u′ · u′. Another relevant quantity, the turbulent dissipation ǫRe
diss ap-

pears in the energy equation. For two-phase flows the transport equations for
these quantties can be derived by the very same procedure as used for single-
phase flow (see B. E. Launder et al. (1975)). However, one has to start from
the balance of momentum (5.170) – (5.173) for two-phase flow. For a general
discussion, details are omitted here and the two transport equation for the
Reynolds stresses τRe

t = u′ · u′ and the dissipation ǫRe
diss = νc · (∇u′ : ∇u′)

are given here in symbolic forms for the continuous phase as derived by
L.Bertodano et. al. (1990) and R. T. Lahey (1990). The equations read as:

(1 − ǫ) ·
(
∂

∂t
τRe

c + ūc · ∇τRe
c

)
=∇

[
(1 − ǫ) ·

(
νc · ∇τRe

c − u′ · u′ · u′
)]

+(1 − ǫ) ·
(
P + Φ − 2 · ǫRe

diss · I + Si

)
,

(8.81)

(1 − ǫ) ·
(
∂

∂t
ǫRe
diss + ūc · ∇ǫRe

diss

)
=∇

[
(1 − ǫ) ·

(
νc · ∇ǫRe

diss − u′ · ǫ′Re
diss

)]

+(1 − ǫ) ·
(
PE − ǫRe

Ediss + SEi

)
. (8.82)

The characters P and PE represent the production of stresses and dissipation,
Φ symbolizes a momentum source originating from pressure–velocity correla-
tions. ǫRe

diss and ǫRe
Ediss describe the dissipation of momentum and energy. The

terms Si and SEi are specific for an activation of turbulence by the particles
of the dispersed phase. In order to solve the extended set of model equations
for turbulent two-phase flow for specific conditions, additional model corre-
lations are required for all terms on the right side of (8.81) and (8.82). Most
of these terms are of the same structure as in the case of single-phase flow.
Therefore, closure relationships similar to the ones derived by B. E. Launder
et al. (1975) for single-phase flow may be utilized (see also Section 5.4.5).
However, the source terms, Si und SEi, associated with contributions from
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the dispersed phase, have to be specifically modeled. Based on physical and
mathematical deliberations L. Bertodano et al. (1990) proposed the following
relationships:

Si=Ci ·
〈 4

5 0 0

0 3
5 0

0 0 3
5

〉
· 3

4
· CD · ρc · ǫp

dp
· |ūr|3 , (8.83)

SEi=CEi ·
ǫRe
diss

1
2 · u′ · u′

· 3

4
· CD · ρc · ǫp

dp
· |ūr|3 . (8.84)

Here CD is suitable drag coefficient for the particle moving with the relative
velocity ūr = vp −uc in the continuous phase, dp is a representative particle
diameter and Ci is an empirical small constant set as Ci = 0.02 to account
for the small contribution of the particle induced pseudo-turbulence. K =
0.5 ·u′ · u′ is the turbulent kinetic energy and CEi another empirical constant
set as CEi = 1.92 according to L. Bertodano et al. (1990).

Together with properly defined boundary conditions (5.113) – (5.115) in
Section 5.4.6 and the transport equations (8.81) and (8.82) supplemented by
the closure relationship, (8.83) and (8.84) form a complete set of differen-
tial equations to calculate three-dimensional turbulent, dispersed two-phase
flows. For rigid walls the same approximation as in single-phase flow may be
applied in determining the conditions at the inertial sublayer where a modi-
fied logarithmic law of the wall (8.80) holds for the tangential component of
the velocity while the normal component can be assumed to approach zero.



9. Reactive Flows

9.1 Fundamentals of Reactive Flows

The use of combustion processes, the most important example of a chemi-
cally reactive flow, is one of the oldest and at the same time one of the most
successful technologies to serve humans. In spite of all efforts made in the
development of alternative sources of energy, currently more than 80 % of
the energy supplies of the world still rely on combustion processes. Because
of their broad spectrum of application (heat, electricity, transport and chem-
istry), the fossil fuels that are currently used annually worldwide have taken
about one million years of the Earth’s history to form. The pollutants that
are produced through this, such as CO2, nitrogen oxides and soot, lead to
undesirable changes in the atmosphere and biosphere of the Earth, as will be
described in Section 10.4.

Reactive flows and thus also combustion processes are determined by a
complex multi-dimensional and time-dependent interaction between a large
number of chemical elementary reactions and transport processes for mass,
momentum and energy, as well as phase boundary effects. Empirical methods
to develop or improve environmentally friendly and efficient new processes
have been largely exhausted. Rather a new approach is necessary. This ap-
proach no longer consists of describing reactive flows summarily, rather of
assembling the microscopic processes and thereby deriving the visible macro-
scopic processes. In this manner it is possible, for example, to explain the
origin of the formation of pollutants, the incomplete progression of combus-
tion or the mode of functioning of catalysts.

Both non-intrusive analysis of combustion processes with the assistance
of optical spectroscopy, and mathematical modeling and simulation play a
central role. By means of advances in laser technology it has become possi-
ble quantitatively to record the chemically unstable particles that frequently
appear only momentarily in combustion with laser light. Thereby insights
are obtained into the microscopic progression of reaction in the flame. There
are many reasons for the increasing interest in a mathematical description
of combustion processes (modeling) and the solution on computers of the
model equations developed (simulation). Simulations reduce the effort of ex-
perimental investigations by providing indications of possible advantageous
conditions and thereby permit targeted design of experiments and targeted
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experimentation. On the basis of reliable simulations, systems in which ex-
periments are very difficult or impossible can then be optimized. In addition,
simulations permit the recognition of systematic errors and the interpretation
of indirect test results (parameter identification).

Modeling and simulation yield a detailed view into the physical-chemical
processes on which combustion is based. Simulation yields distributions of
all system quantities resolved in space and time, such as the temperature
and concentration of the species undergoing the combustion process. In addi-
tion, comparison of detailed and simplified models allows the effect of certain
simplifications to be understood, by switching on and off physical-chemical
effects.

The interaction of flow, diffusion and release of heat by reaction that
is typical of reactive flows can be illustrated in a simple manner with the
example of a Bunsen burner (Figure 9.1). Fuel streams out of a nozzle into
air that is at rest. By means of molecular transport (diffusion), the fuel and
air mix and combust in the reaction zone. For this simple geometry the height
of a flame can easily be estimating using a simplified approach.

Fig. 9.1. Bunsen burner flame
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Let the radius of the jet be r, the height of the flame z and the velocity
in the direction of the jet v. At the center of the cylinder, the time required
for the fuel to reach the tip of the jet can be estimated from the height of the
nonpremixed flame and the intake velocity (t = z/v). This time corresponds
to the time required for the fuel and air to mix. This mixing time can be
estimated from Einstein’s displacement law for the depth of penetration by
diffusion (r2 = 2 ·D ·t, D = coefficient of diffusion). Setting the time t in both
expressions equal we obtain the equation z = r2 ·v/(2 ·D). Now if we replace
the velocity v by the volume flux V̇ = π·r2 ·v, we obtain z = V̇ /(2·π·D). From
this it follows that the flame height z depends only on the volume flux V̇ and
not on the dimensions of the nozzle r. The height is inversely proportional
to the coefficient of diffusion, which is why, for example, a hydrogen flame is
about 2.5 times lower than a carbon monoxide flame.

The general aim of this chapter on chemically reactive flows is to describe
the coupling between chemical reactions and flows. It is divided into sections
on the fundamentals of reaction kinetics, laminar and turbulent flows and
hypersonic flows. For each of these classes of reactive flows, typical applica-
tions will be presented, with the development of models in the foreground,
supported by experimental observations.

The focus is on specific aspects of the fluid mechanics of reactive flows,
such as the change in density from reactions and the release of heat. These are
complemented by specific questions of reaction kinetics, such as the oxida-
tion of hydrocarbons, the analysis of reaction mechanisms and heterogeneous
chemical reactions.

Beyond a purely phenomenological description, in all parts of the chapter
indications are given of how the different flows can be modeled and how these
models can be translated into equations.

9.1.1 Rate Laws and Reaction Orders

The rate law for a chemical reaction, given in general notation as

A + B + C+ · · · k(f)

−→ D + E + F + · · · , (9.1)

where A, B, C, . . . are different species involved in the reaction, is understood
as an empirical ansatz for the reaction rate, i.e. the rate at which a species
involved in the reaction is formed or consumed. Considering species A, for
example, the reaction rate can be written in the form

d [A]

dt
= −k(f) · [A]

a · [B]
b · [C]

c · · · . (9.2)

Here a, b, c, . . . are the reaction orders with respect to the species A, B,
C, . . ., and k(f) is the rate coefficient of the chemical reaction. The sum of all
exponents is the overall reaction order of this reaction.

Frequently, there is an excess of some species. In this case, their con-
centrations change only imperceptibly. For example, if [B], [C], . . . remain
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approximately constant during the reaction, the rate coefficients and the
concentrations of the excess species can be used to define an effective rate
coefficient. With, for example, k = k(f) · [B]

b · [C]
c · · · we obtain

d [A]

dt
= −k · [A]a . (9.3)

Integrating the rate law (solving the differential equation), we can determine
the temporal change of the concentration of species A.

For first-order reactions (a = 1) integration of (9.3) yields the first-order
rate law

[A]t
[A]0

= −k · (t− t0) , (9.4)

where [A]0 and [A]t denote the concentrations of species A at times t0 and t,
respectively.

Similarly, second-order reactions (a = 2) yield the rate law

1

[A]t
− 1

[A]0
= k · (t− t0) , (9.5)

and for third-order reactions (a = 3) we obtain the rate law

1

[A]
2
t

− 1

[A]
2
0

= 2 · k · (t− t0) . (9.6)

If the temporal change of the concentration during a chemical reaction is
experimentally determined, we can obtain the reaction orders. A logarithmic
plot of the concentration against time for first-order reactions, or a plot of
1/[A]t against time for second-order reactions, is linear (Figure 9.2).

9.1.2 Relation Between Forward and Reverse Reactions

The reverse reaction of reaction (9.1) has, in analogy to (9.2), the rate law

Fig. 9.2. Time histories of the concentration for first- and second-order reactions
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d [A]

dt
= −k(r) · [D]

d · [E]
e · [F]

f · · · . (9.7)

In chemical equilibrium, microscopic forward and reverse reactions have the
same rate (the forward reaction is denoted by the superscript (f), the re-
verse reaction by the superscript (r)). Macroscopically, no conversion can be
observed. For this reaction in chemical equilibrium the following holds:

k(f) · [A]a · [B]b · [C]c · · · = k(r) · [D]d · [E]e · [F]f · · · , (9.8)

or

[D]d · [E]e · [F]f · · ·
[A]

a · [B]
b · [C]

c · · ·
=
k(f)

k(r)
. (9.9)

The expression on the left-hand side corresponds to the equilibrium con-
stant Kc of the reaction, which can be determined from thermodynamic
data. Therefore, the relation between the rate coefficients for the forward
and reverse reaction is

Kc =
k(f)

k(r)
= exp

(
−∆RF

0

R · T

)
. (9.10)

9.1.3 Elementary Reactions and Reaction Molecularity

An elementary reaction is a reaction that occurs on the molecular level pre-
cisely as described by the reaction equation. For example, the essential reac-
tion involved in the combustion of hydrogen, the reaction of hydroxy radicals
(OH) with hydrogen molecules (H2) to form water and hydrogen atoms,

OH + H2 −→ H2O + H, (9.11)

is such an elementary reaction. Through the motion of the molecules in the
gas, hydroxy radicals collide with hydrogen molecules. If they collide nonre-
actively, the molecules collide and then fly apart again. In reactive collisions,
however, the molecules react and the products H2O and H are formed. On
the other hand, the reaction

2H2+O2 −→ 2H2O (9.12)

is not an elementary reaction, since on detailed investigation it is seen that
the reactive particles H, O, and OH are formed as intermediate products, in
addition to traces of end products other than H2O. Such reactions are called
net reactions or overall reactions. These global reactions generally have quite
complicated rate laws of the form (9.2) or of an even more complex form.
The reaction orders a, b, c, . . . are generally not whole numbers, can also
have negative values (inhibition), and depend on the time and on the exper-
imental conditions. Moreover, extrapolation of the results to regimes where
no measurements have been made is extremely unreliable or even wrong. A
reaction-kinetic interpretation of these rate laws is normally impossible.
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However, in all cases, global reactions may be decomposed into a number
of elementary reactions, at least in principle. This is generally very difficult.
For example, the formation of water (9.12) can be described by 38 elementary
reactions, shown below in the H2–O2 system at p = 1 bar:

Reaction A β E

[cm · mol · s] [-] [kJ/mol]

H2–O2 reactions (excluding HO2, H2O2)

O2 + H = OH + O 2.00 · 1014 0.00 70.30

H2 + O = OH + H 5.06 · 1004 2.67 26.30

H2 + OH = H2O + H 1.00 · 1008 1.60 13.80

OH + OH = H2O + O 1.50 · 1009 1.14 0.42

H + H + M⋆ = H2 + M⋆ 1.80 · 1018 −1.00 0.00

O + O + M⋆ = O2 + M⋆ 2.90 · 1017 −1.00 0.00

H + OH + M⋆ = H2O + M⋆ 2.20 · 1022 −2.00 0.00

HO2 formation/consumption

H + O2 + M⋆ = HO2 + M⋆ 2.30 · 1018 −0.80 0.00

HO2 + H = OH + OH 1.50 · 1014 0.00 4.20

HO2 + H = H2 + O2 2.50 · 1013 0.00 2.90

HO2 + H = H2O + O 3.00 · 1013 0.00 7.20

HO2 + O = OH + O2 1.80 · 1013 0.00 −1.70

HO2 + OH = H2O + O2 6.00 · 1013 0.00 0.00

H2O2 formation/consumption

HO2 + HO2 = H2O2 + O2 2.50 · 1011 0.00 −5.20

OH + OH + M⋆ = H2O2 + M⋆ 3.25 · 1022 −2.00 0.00

H2O2 + H = H2 + HO2 1.70 · 1012 0.00 15.7

H2O2 + H = H2O + OH 1.00 · 1013 0.00 15.0

H2O2 + O = OH + HO2 2.80 · 1013 0.00 26.8

H2O2 + OH = H2O + HO2 5.40 · 1012 0.00 4.20

The rate coefficients are given in the form k = A · T β · exp (−E/R · T ),
while [M⋆] = [H2]+ 6.5·[H2O]+ 0.4·[O2] + 0.4·[N2] and the rate coefficient of
the reverse reaction is calculated with (9.10).

The concept of using elementary reactions has great advantages. The re-
action order of elementary reactions is always the same (in particular, it is
independent of the time and of any experimental conditions), and it is easy to
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determine. We consider the molecularity of a reaction as the number of species
leading to the reaction complex, that is, the transition state of the molecules
during the reaction. In practice, there are only three essential values of the
reaction molecularity:

Unimolecular reactions describe the decay or the dissociation of a molecule

A −→ products. (9.13)

They have a first-order rate law. When the initial concentration is doubled,
so too is the reaction rate.

Bimolecular reactions are the type of reaction most frequently encoun-
tered. They proceed according to the reaction equations

A + B −→ products (9.14)

or

A + A −→ products.

Bimolecular reactions always have a second-order rate law. Doubling the
concentration of any one of the reaction partners causes the reaction rate to
double.

Trimolecular reactions are generally recombination reactions. They basi-
cally satisfy a third-order rate law,

A + B + C −→ products (9.15)

or

A + A + B −→ products

or

A + A + A −→ products.

In general, for elementary reactions the reaction order is equal to the
reaction molecularity. The rate laws can be derived from this. Let the equation
of an elementary reaction r be given by

S∑

s=1

ν(a)
rs · As

kr−→
S∑

s=1

ν(p)
rs · As. (9.16)

The rate of formation of species i in reaction r is then

(
∂ci
∂t

)

chem,r

= kr ·
(
ν

(p)
ri − ν

(a)
ri

)
·

S∏

s=1

c
ν(a)

rs
s . (9.17)

Here ν
(a)
rs and ν

(p)
rs are stoichiometric coefficients for the initial reactants and

products, and cs the concentrations of the S different species s.
For example, we consider the elementary reaction H + O2 −→ OH + O,

and obtain the rate laws
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d [H]

dt
=−k · [H] · [O2] ,

d [O2]

dt
= −k · [H] · [O2] ,

d [OH]

dt
=k · [H] · [O2] ,

d [O]

dt
= k · [H] · [O2] .

For the elementary reaction OH + OH −→ H2O + O (or 2OH −→ H2O +
O) we obtain

d [OH]

dt
= −2 · k · [OH]

2
,

d [H2O]

dt
= k · [OH]

2
,

d [O]

dt
= k · [OH]

2
.

For reaction mechanisms consisting of sets of elementary reactions, the rate
laws can then always be determined. If the mechanism covers all possible
elementary reactions of the system (complete mechanism), then it is valid
for all possible conditions, i.e. for all temperatures and compositions. For a
mechanism consisting of R reactions of S species given by

S∑

s=1

ν(a)
rs · As

kr−→
S∑

s=1

ν(p)
rs · As with r = 1, . . . , R, (9.18)

we obtain the rate of formation of a species i by summation over the rate of
formation (9.17) in the individual elementary reactions:

(
∂ci
∂t

)

chem,r

=

R∑

r=1

kr ·
(
ν

(p)
ri − ν

(a)
ri

)
·

S∏

s=1

c
ν(a)

rs
s with i = 1, . . . , S. (9.19)

Fig. 9.3. Energy diagram for a chemical elementary reaction. The relation E
(f)
a −

E
(r)
a = Uproducts − Ureactants is a consequence of (9.10). The reaction coordinate is

the path of minimal potential energy between reactants and products with respect
to the varying interatomic distances (see, e.g. W. P. Atkins (1990))
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9.1.4 Temperature Dependence of Rate Coefficients

One very important and typical characteristic of chemical reactions is that
their rate coefficients depend very strongly and nonlinearly on the tempera-
ture. In this manner they determine the typical abrupt course of combustion
processes. According to S. A. Arrhenius (1889), this temperature dependence
can be described relatively simply with the Arrhenius equation:

k = A · exp

(
− Ea

R · T

)
. (9.20)

In precise measurements, a temperature dependence of the pre-exponential
factor A that is small compared to the exponential dependence is frequently
observed:

k = A′ · T b · exp

(
− E′

a

R · T

)
. (9.21)

The activation energy Ea corresponds to an energy threshold that must be
exceeded during the course of the reaction (see Figure 9.3). Its highest value
corresponds to the binding energies involved (e.g. the activation energy in
dissociation reactions is approximately equal to the binding energy of the
chemical bond split), but can also be considerably smaller (or zero) if new
bonds are formed at the same time as bonds are broken.

Fig. 9.4. Temperature dependence k(T ) for the reaction of halogen atoms with
H2, K. H. Homann et al. (1970)
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Figure 9.4 shows an example of the temperature dependence of some
elementary reactions (reactions of halogen atoms with hydrogen molecules).
The logarithms of the rate coefficients k are plotted against the inverse of
the temperature. According to (9.20), we find a linear dependence (log(k) =
log(A)−const/T ). Any temperature dependence of the pre-exponential factor
is hidden by experimental errors.

When the activation energy vanishes, or at very high temperatures, the
exponential term in (9.20) approaches the value 1. The reaction rate is then
determined only by the pre-exponential factor A, or A′ · T b. This factor has
different physical interpretations for unimolecular, bimolecular, and trimolec-
ular reactions.

For unimolecular reactions the inverse of A corresponds to a mean lifetime
of a reactive (activated) molecule. In dissociation reactions this lifetime is de-
termined by the frequency with which the atoms involved in the molecular
bond vibrate. The pre-exponential factor is thus given by twice the oscilla-
tion frequency of the bond involved. From usual oscillation frequencies in
molecules we find that A ≈ 1014 − 1015 s−1.

For bimolecular reactions the pre-exponential factor A corresponds to a
collision number, i.e. the number of collisions between two molecules per unit
time and volume. This is because the collision number fixes an upper limit
to the reaction rate when there is no activation threshold or at very large
temperatures. Kinetic gas theory yields numerical values for A of between
1013 and 1014 cm3/(mol · s).

In trimolecular reactions, a third partner must meet a bimolecular colli-
sion complex. This third partner takes on the energy set free by the reaction
(collision partner). For example, if two hydrogen atoms collide, the momen-
tarily formed hydrogen molecule will immediately decay because of the large
energy present. Since it is very difficult to define when the collision of three
molecules occurs simultaneously, numerical values can be calculated only with
great difficulty.

9.1.5 Pressure Dependence of Rate Coefficients

The pressure dependence of reaction rate coefficients of dissociation and re-
combination reactions is based on the fact that complex sequences of reactions
are treated as elementary reactions. In the simplest case, the relations can
be understood using the Lindemann model (1922). Unimolecular decay of a
molecule is possible only if the molecule has enough energy to break a bond.
For this reason it is necessary that energy be supplied to the molecule by
another particle before the actual breaking of the molecular bond. The inter-
nal oscillation of the molecule, for example, can serve as an excitation. The
excited molecule can then decay into the reaction products, with collision
partner M:

A + M
ka−→ A∗ + M (activation),
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A∗ + M
k−a−→ A + M (deactivation), (9.22)

A∗ ku−→ products (unimolecular reaction),

According to Section 9.1.3, the rate equations for this reaction mechanism
are

d [P]

dt
=−ku · [A⋆] , (9.23)

d [A⋆]

dt
=ka · [A] · [M] − k−a · [A⋆] · [M] − ku · [A⋆] . (9.24)

Assuming that the concentration of the reactive intermediate product [A⋆] is
quasi-steady,

d [A⋆]

dt
≈ 0, (9.25)

we obtain the following expressions for the concentration of the activated
species A⋆ and the formation of the reaction product P:

[A⋆]=
ka · [A] · [M]

k−a · [M] + ku
, (9.26)

d [P]

dt
=
kuka · [A] · [M]

k−a · [M] + ku
. (9.27)

We can now pick out two extreme cases: reactions at very low pressure and
reactions at very high pressure.

In the low pressure regime the concentration of collision partner M is very
small. With k−a ≪ ku we obtain the simplified second-order rate law

d [P]

dt
= ka · [A] · [M] . (9.28)

The reaction rate is therefore proportional to the concentrations of species
A and the collision partner M, since at low pressure the activation of the
molecule is slow and hence determines the rate.

Fig. 9.5. “Falloff” curves for the unimolecular decay C2H6 −→ CH3 + CH3
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In the high pressure regime the concentration of collision partner M is
very high, and with k−a ≫ ku we obtain the simplified second-order rate law

d [P]

dt
=
ku · ka

k−a
· [A] = k∞ · [A] . (9.29)

The reaction rate here is independent of the concentration of the collision
partner, since at high pressure, collisions take place frequently, and so it is
not the activation but rather the decay of the activated particle A⋆ that
determines the rate.

The Lindemann mechanism is a simple example of a case in which the
reaction order of a complex reaction depends on the current conditions. How-
ever, the Lindemann mechanism itself is a simplified model. Precise results
for the pressure dependence of unimolecular reactions can be obtained using
the theory of unimolecular reactions (see, e.g. P. J. Robinson, K. A. Holbrook
(1972), H. Homann (1975)). This theory takes into account the fact that in
reality, it is not only a single activated particle A⋆ that is present, but rather,
depending on the energy transfer in activation, different degrees of activation
result. Writing the rate law of a unimolecular reaction as d [P] /dt = k · [A],
we see that the rate coefficient k is dependent on the pressure and the tem-
perature. The theory of unimolecular reactions yields so-called falloff curves
that describe the dependence of the rate coefficient k on the pressure for
different temperatures. Generally, the logarithm of k is plotted against the
logarithm of p. Figure 9.5 shows typical falloff curves. For p → ∞, k ap-
proaches the limiting value k∞; i.e. the rate coefficient becomes independent

Fig. 9.6. Temperature dependence of the rate coefficient for the pressure-dependent
reaction CH3 + CH3 −→ products
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of the pressure (9.29). At low pressures the rate coefficient k is proportional
to the pressure (9.28) with a linear dependence. As can be seen in Figure
9.5, the falloff curves are greatly dependent on the temperature. For this rea-
son the rate coefficients of unimolecular reactions often have greatly different
temperature dependence for different values of the pressure (see Figure 9.6).

9.1.6 Characteristics of Reaction Mechanisms

Reaction mechanisms have some characteristic properties that are indepen-
dent of the particular problem. Knowledge of these characteristics contributes
to an understanding of the chemical reactions and can deliver extremely valu-
able indications for the subsequent simplification of reaction mechanisms. Of
particular note in combustion process are quasi-steady states and partial equi-
libria, treated in detail in what follows.

Quasi-Steady States

We consider a simple reaction consisting of a sequence of two steps, which
will also be used as an example in the following sections:

S1
k12−→ S2

k23−→ S3. (9.30)

The rate laws for the species are then given by the expressions

d [S1]

dt
= −k12 · [S1] , (9.31)

d [S2]

dt
= k12 · [S1] − k23 · [S2] , (9.32)

d [S3]

dt
= k23 · [S2] . (9.33)

Fig. 9.7. Precise temporal behavior of the reaction S1 −→ S2 −→ S3; τ = lifetime
of S1 (time for the decay of [S1] to [S1] / e)
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We assume that S2 is a very reactive species that therefore has a very short
lifetime (k23 ≫ k12). Figure 9.7 shows the change in the concentrations for
the ratio k12/k23 = 0.1. The initial species S1 decreases with time, while the
final product S3 is formed. Since k23 ≫ k12, the intermediate product S2

occurs only at a very small concentration. As soon as it is formed in the slow
first step of the reaction sequence, it is consumed by the very fast secondary
reaction. This leads to a quasi-steady state of the intermediate product.

Since S2 is very reactive, the consumption rate of S2 must be approxi-
mately the same as the formation rate of S2 (quasi-steady state assumption),
so that we can write approximately

d [S2]

dt
= k12 · [S1] − k23 · [S2] ≈ 0. (9.34)

The temporal behavior of the concentration of S1 can be determined, since
(9.31) is integrable. We obtain

[S1] = [S1]0 · exp (−k12 · t). (9.35)

If we are interested in the rate of formation of the final product S3, (9.33)
yields a statement of only limited usage, as only the concentration of the
intermediate product S2 appears in the rate law for S3. Using the quasi-
steady state assumption (9.34), however, we obtain a relationship that is
easy to apply:

d [S3]

dt
= k12 · [S1] . (9.36)

Inserting (9.35) into this expression, we obtain the differential equation

d [S3]

dt
= k12 · [S1]0 · exp (−k12 · t), (9.37)

which can be integrated. The solution of this equation is

[S3] = [S1]0 · [1 − exp (−k12 · t)] . (9.38)

Fig. 9.8. Time development of the reaction S1 → S2 → S3 when [S2] is quasi-steady
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The results for the example above are shown in Figure 9.8. Comparing Fig-
ures 9.7 and 9.8, we see that the assumption of quasi-steadiness is a good
approximation for the process. It is only at the beginning of the reaction
that small deviations are present.

Partial Equilibrium

We consider the mechanism for the combustion of hydrogen discussed in
Section 9.1.3. Analysis of experiments or simulations show that for high tem-
peratures (T > 1800 K at p = 1 bar) the reaction rates for forward and
reverse reactions are so fast that for the reactions

OH + H2 = H2O + H,

H + O2 = OH + O,

O + H2 = OH + H,

a so-called partial equilibrium is established, in which each individual reaction
pair is in equilibrium. Forward and reverse reaction rates are therefore equally
fast. Setting the reaction rates equal, we obtain

Fig. 9.9. Mole fractions of O in a premixed stoichiometric C3H8-air flame at p =
1 bar, Tu = 298 K, calculated with a detailed mechanism, with the assumption of
partial equilibrium and with the assumption of complete equilibrium
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[H]=

(
k2
1 · k3 · k5 · [O2] · [H2]

3

k2 · k4 · k6 · [H2O]
2

) 1
2

, (9.39)

[O]=
k1 · k3 · [O2] · [H2]

k2 · k4 · [H2O]
, (9.40)

[OH]=

(
k3 · k5

k4 · k6
· [O2] · [H2]

) 1
2

. (9.41)

The concentrations of the unstable species (which are hard to measure, since
calibration is difficult) can therefore be reduced to those of the stable species
H2, O2, and H2O, which are easy to measure.

Finally, Figure 9.9 shows spatial profiles of the mole fractions of oxygen
atoms in a premixed stoichiometric C3H8-air flame at p = 1 bar, Tu = 298 K,
calculated with a detailed mechanism, with the assumption of partial equi-
librium and with the assumption of complete equilibrium. Whereas the as-
sumption of complete equilibrium leads to unsatisfactory results at all tem-
peratures, partial equilibrium describes the mole fractions of oxygen atoms
well, at least for sufficiently high temperatures. We note that the amount of
oxygen atoms considered here greatly affects the formation of nitrogen oxides
in a reaction system.

Sensitivity Analysis

The rate laws for a reaction mechanism of R reactions with S species involved
can be written in the form of a system of ordinary differential equations
(compare Section 9.1.3):

dci
dt

= Fi(c1, . . . , cs; k1, . . . , kR) , ci(t = t0)=c
0
i (i = 1, 2, . . . , S). (9.42)

The time t is the independent variable, the concentrations ci of the species i
are the dependent variables, and the kr are the parameters of the system. The

Fig. 9.10. Time development of the relative sensitivity coefficients for the reaction
S1 → S2 → S3
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c0i denote the initial conditions. Here only the rate coefficients of the chem-
ical reactions are considered as the parameters of the system. However, in
complete analogy we could identify the initial conditions, the pressure, etc.,
as the parameters of the system. The solution of the system of differential
equations (9.42) depends both on the initial conditions and on the param-
eters. The question now arises of how the solution (i.e. the concentrations
at time t) changes when the system parameters, i.e. the rate coefficients of
the chemical reactions, are varied. The answer to this question delivers infor-
mation about the rate-determining reaction steps and indicates what effect
inaccuracy in the rate coefficients has on the total reaction (some of the el-
ementary reactions that take place in reactive flows are known only to their
order of magnitude).

The sensitivity of a reaction is the dependence of the solution ci on the
parameters kr. We distinguish between absolute and relative (normalized)
sensitivities:

Ei,r =
∂ci
kr

or Erel
i,r =

kr

ci
· ∂ci
∂kr

=
∂ ln ci
∂ ln kr

. (9.43)

Again we consider the simple reaction made up of a sequence of two steps
(9.30). The time development of the relative sensitivity coefficients are plotted
in dimensionless form together with the concentration of the final product
in Figure 9.10, where k12 = τ−1, k23 = 100 · τ−1 and τ = lifetime (see
Figure 9.7). The result of the sensitivity analysis is that with respect to
the slow (i.e. rate-determining) reaction (S1

k12−→ S2) there is a large relative
sensitivity of the formation of S3, whereas for the fast reaction (which is

Fig. 9.11. Sensitivity analysis for the flame velocity vL in premixed stoichiometric
CH4-air (black) and C2H6-air flames (white) at p = 1 bar, Tu = 298 K
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not rate-limiting) (S2
k23→ S3) there is a small relative sensitivity. A sensitivity

analysis can therefore identify the rate-determining reactions. Such analyses
are therefore valuable tools in understanding complex reaction mechanisms.

Figure 9.11 shows an example of a sensitivity analysis for the flame veloc-
ity vL in premixed stoichiometric CH4-air and C2H6-air flames. The elemen-
tary reactions not shown in the diagram have negligibly small sensitivity. It
can be seen that only a few of the many elementary reactions are sensitive. In
addition, very different systems (CH4 and C2H6) give qualitatively the same
picture, indicating that in combustion processes some elementary reactions
in the H2-O2-CO system are always rate-determining, independent of the fuel
under consideration.

9.2 Laminar Reactive Flows

9.2.1 Structure of Premixed Flames

We now present a comparison of experimental (when available) and calculated
data on the structure of laminar flat flames. The numerical simulations are
based on a detailed mechanism, solving the Navier–Stokes equations.

It turns out that at flame conditions (T > 1100 K) the oxidation of large
aliphatics R-H (such as octane C8H18, see Figure 9.12) begins with the attack
of H, O, or OH on a C-H bond with the formation of a radical R•,
H, O, OH + RH −→ H2, OH, H2O + R• (H-atom abstraction), (9.44)

that then leads to an alkene and a smaller radical R′ by thermal decomposi-
tion,

Fig. 9.12. Schematic reaction mechanism for the radical pyrolysis of large aliphatic
hydrocarbons to form CH3 and C2H5
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Fig. 9.13. Schematic mechanism of the oxidation of C1 and C2 hydrocarbons

R′−CH2−H−C−R′′ → •R′ + CH2 =CHR′′ (β decay), (9.45)

until the relatively stable radicals methyl (CH3) and ethyl (C2H5) are formed;
these are then slowly oxidized. In this way, the problem of alkane oxidation
can be reduced to the relatively well understood oxidation of methyl and
ethyl radicals (see Figure 9.13).

CH3 mainly reacts with O atoms with the formation of formaldehyde (the
role of the oxidation of CH3 by OH is not yet fully understood). The CHO
radical is then formed by H-atom abstraction. CHO can decompose thermally
to CO and H, or the H atom can by abstracted from H or O2.

This result, which is quite simple until this point, is then made compli-
cated by the recombination of CH3 radicals. In stoichiometric CH4-air flames,
this reaction path consumes about 30% of the CH3 (neglecting recombination
with H atoms). In fuel-rich flames, the proportion of recombination increases
to about 80%.

The oxidation of CH3 and C2H5 is the rate-determining (i.e. the slowest)
step in this oxidation mechanism (see Figure 9.18) and is therefore the reason

Fig. 9.14. Hierarchical structure of the reaction mechanism describing the com-
bustion of aliphatic hydrocarbons
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for the similarity of the combustion of all alkanes and alkenes. Related to this
is the fact that the reaction mechanism for the combustion of hydrocarbons
has a hierarchical structure, as shown in Figure 9.14 (C. K. Westbrook, F. L.
Dryer (1981)).

Figure 9.15 shows an example of the flame structure of a propane–oxygen
flame diluted with argon to reduce the temperature (H. Bockhorn et al.
(1990)) at pressure p = 100 mbar. For other hydrocarbons the results are sim-
ilar. The concentration profiles are determined with mass spectrometry (ex-
cept for OH, which is determined with UV-light absorption measurements),
while the temperature is measured using Na-D line inversion.

Another example is an ethyne (acetylene)–oxygen flame at sooting con-
ditions. The appearance of CO and H2 as stable products and the formation
of higher hydrocarbons in connection with the formation of soot precursors
(e.g. C4H2) are typical.

9.2.2 Flame Velocity of Premixed Flames

The pressure and temperature dependence in the case of a single-step reaction
(Y. B. Zeldovich, D. A. Frank-Kamenetskii (1938)) is

Fig. 9.15. Structure of a laminar premixed propane–oxygen flame (diluted with
Ar) at p = 100 mbar, H. Bockhorn (1990). Points: experiments; lines: simulations
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vL ≈ p
n
2 −1 · exp

(
− E

2 ·R · Tb

)
. (9.46)

Here n is the reaction order, E is the activation energy of the single-step
reaction, and Tb is the burnt gas temperature.

Figure 9.16 shows the dependence of the flame velocity on the pressure
and temperature Tu for the example of a methane–air mixture. In addition,
Figure 9.17 shows the dependence of the flame velocity on the composition
for different fuels.

Figure 9.16 clearly indicates the weaknesses of the single-step model (Tu

is the temperature of the unburned gas). For the rate-determining steps (see
next section), the reaction order is 2 or 3, and the simplified model predicts
either pressure independence or even a positive pressure dependence. The
numerical results, on the other hand, indicate a negative pressure dependence
of the flame velocity.

9.2.3 Sensitivity Analysis

Sensitivity analyses (see Section 9.1.6) yield quite similar results for all
hydrocarbon–air mixtures for the flame velocity, U. Nowak (1988) (see Fig-
ures 9.18 and 9.19). In addition, the results are reasonably independent of the
equivalence ratio. We note in particular that the number of reactions with
sensitivity is low.

In all cases, the elementary reaction H + O2 −→ OH + O is greatly rate-
determining as the slowest chain-branching reaction, while H + O2 + M −→
HO2+M has a negative sensitivity because of its chain-terminating character.

Fig. 9.16. Pressure dependence of vL for Tu = 298 K (left) and temperature
dependence of vL for p = 1 bar (right) in stoichiometric CH4-air mixtures. Points:
experiments; lines: simulations
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The reaction CO + OH −→ CO2 + H determines a large part of the release
of heat and for this reason is also rate-determining.

In a similar way, in the combustion of large aliphatic hydrocarbons, the
reactions H+O2 → OH+O, H+O2+M → HO2+M and CO+OH → CO2+H
are rate-determining, as demonstrated in Figure 9.20. Again it is seen that
the fuel-specific reactions have essentially no sensitivity.

9.2.4 Nonpremixed Counterflow Flames

Nonpremixed flames are flames in which fuel and oxidizer are mixed together
only in the combustion region. In practical devices, fuel and air are brought
together by convection and then mixed as a result of a diffusion process. In
general, this is a three-dimensional problem.

Deeper understanding of nonpremixed flames has therefore come from
experiments in which the processes can be considered to be spatially one-
dimensional. An example of a suitable simple burner counterflow is generated
by two burners, in which a directed laminar fuel flow encounters a laminar

Fig. 9.17. Mixture composition dependence (at p = 1 bar, Tu = 298 K) of vL in
different fuel–air mixtures. Points: experiments; lines: simulations
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Fig. 9.18. Sensitivity analysis with respect to the rate coefficients of the elementary
reactions involved for the laminar flame velocity of a methane–air flame

counterflow of the oxidizer in the opposite direction (see Figure 9.21). The
mathematical treatment can be greatly simplified by restricting oneself to
the flow properties in the stagnation point plane (see Figure 9.21). Using the
boundary-layer approximation of Prandtl (i.e. neglecting the diffusion in the
direction orthogonal to the stream line, in Figure 9.21 in the x direction), the
problem is reduced to one spatial coordinate, namely, the distance from the
stagnation point. In this manner the tangential gradients of the temperature
and the mass fractions and the velocity components vx can be eliminated.

If we consider solutions only along the y axis, the symmetry axis de-
termined by the stagnation point, we obtain a system of equations that is

Fig. 9.19. Sensitivity analysis with respect to the rate coefficients of the elementary
reactions involved for the laminar flame velocity of a propane–air flame
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Fig. 9.20. Sensitivity analysis with respect to the rate coefficients of the elementary
reactions involved for the laminar flame velocity of a stoichiometric n-heptane–air
flame at p = 1 bar, Tu = 298 K

dependent only on the time t and the spatial coordinate y as independent
variables. The pressure gradient J is an eigenvalue of the system; i.e. for given
boundary conditions, J must have a value such that a solution of the problem
exists. This permits the profiles of temperature, concentration, and velocity
in laminar nonpremixed counterflow flames to be calculated and compared
to experimental results. Figure 9.22 shows an example of calculated and ex-
perimentally determined temperature and concentration profiles (determined
using CARS spectroscopy) in nonpremixed methane–air counterflow flames
at a pressure of p = 1 bar. In the experiment the temperature of the inflowing
air (right in the figure) is 300 K.

Fig. 9.21. Schematic depiction of a counterflow burner setup
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As an example we consider a comparison between measured and calcu-
lated velocity profiles as shown in Figure 9.23. The velocities are determined
experimentally from the tracking of added MgO particles. The shape of the
velocity profile can easily be explained. A nonreactive flow is characterized by
a monotonic transition between the velocities at the two boundaries. How-
ever, in combustion a strong change in density also occurs (caused by the
high temperature of the burnt gas), and close to the flame front (around
y = 3 mm) this causes a deviation from the monotonic behavior.

9.2.5 Nonpremixed Jet Flames

In order to describe this type of flame correctly, a treatment that is at least
two-dimensional is necessary. This is very important, since such flames are
widely used (Bunsen burner). The fuel streams out of a nozzle into air at
rest. By molecular transport (diffusion) the fuel and the air mix and burn in
the reaction zone.

The structure of such a nonpremixed Bunsen flame is shown in Figures
9.24 and 9.25 in examples. The results were calculated by complete numerical
solution of the spatially two-dimensional conservation equations. The diame-
ter of the fuel nozzle is 1.26 cm in this example, while the height of the flame
shown is 30 cm. Temperature and concentration scales each start with the
lowest of the grey scales. The maximum temperature is about 2000 K, while
the maximum OH concentration corresponds to a mole fraction of 0.35%.

Fig. 9.22. Left: calculated (line) and experimentally determined (points) temper-
ature profiles in a nonpremixed methane–air counterflow flame at a pressure of
p = 1 bar; y denotes the distance from the burner (V. Sick et al. (1991)). Right:
calculated (line) and experimentally determined (points) mole fraction profiles of
methane and oxygen in a nonpremixed methane–air counterflow flame at a pressure
of p = 1 bar, y denotes the distance from the burner (T. Dreier et al. (1987))
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9.2.6 Nonpremixed Flames with Fast Chemistry

When the chemistry is infinitely fast (in practice, when it is very fast), the
reaction can be written in the form of a single-step reaction of fuel and
oxidizer to the reaction products:

F + Ox −→ P. (9.47)

This corresponds to the simplification “mixed = burnt,” suggested in the
thirties by K. Rummel (1937). In analogy to the mass fractions wi, an element
mass fraction Zi can be defined that gives the mass fraction of a chemical
element i and the total mass as (see (5.187))

Zi =

S∑

j=1

µij · wj , i = 1, . . . ,M. (9.48)

Here S is the number of species, and M is the number of elements in the
mixture under consideration. The coefficients µij denote the mass proportion
of the element i in the species j.

The element mass fractions are of particular importance, since in a reac-
tive flow they can be altered by neither convective nor chemical processes.

For simple nonpremixed flames, which can be treated as a two-flow prob-
lem, where one flow is the fuel (F) and the other the oxidizer (Ox), the
element mass fractions Zi can be used to define a mixture fraction ξ (the
subscripts 1 and 2 denote the two flows):

ξ =
Zi − Zi2

Zi1 − Zi2
. (9.49)

Fig. 9.23. Calculated (line) and experimentally determined (points) velocity pro-
files in a nonpremixed methane–air counterflow flame; y denotes the distance from
the burner
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Fig. 9.24. Calculated temperature field (left) in a nonpremixed jet flame. The re-
sults can be directly compared with the corresponding results from LIF-experiments
(right) (M. D. Smooke et al. (1989))

The advantage of this new concept is that because of (9.48) and (9.49), ξ
is related in a linear manner to the mass fractions (see Figure 9.26). If the
diffusion coefficients of the different chemical species are the same (often
approximately true except for a few exceptions), then the mixture fraction
defined in this manner is also independent of the choice of the element under
consideration i (i = 1, . . . ,M).

Fig. 9.25. Calculated hydroxyl-radical concentration (left) in a nonpremixed jet
flame. The results can be directly compared with the corresponding results from
LIF experiments (right) (M. D. Smooke et al. (1989))
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Fig. 9.26. Linear relations between mixture fraction and mass fractions for a simple
reaction system

9.2.7 Exhaust Gas Cleaning with Plasma Sources

Increased efforts to protect the climate and use resources more efficiently
has meant that the upper emission limits of internal combustion engines in
street traffic are becoming ever stricter. To attain these statutory limits, in
addition to primary measures to avoid pollutants during combustion, the
after-treatment of exhausts is also being investigated intensively.

Three-way catalytic converters that simultaneously reduce NOx, unburnt
hydrocarbons, and CO have an efficiency of about 90% for an Otto engine
if it is driven by a stoichiometric fuel–air mixture. Diesel engines and also
direct injection Otto engines burn lean fuel–air mixtures and generate exhaust
gas with an oxygen content of typically 5% for the Otto engine, and up to
20% for the Diesel engine. In noble-metal catalysts, oxidation processes take
place only under these conditions with O2, whereby only CO and unburned
hydrocarbons (HC) are reduced, while there is no reduction of NOx. Plasma-
chemical processes are therefore increasingly used to supplement three-way
catalytic converters in the treatment of exhaust gas. One plasma-chemical
process that has low operational expense is the exhaust after-treatment with
dielectric barrier discharges.

Figure 9.27 shows a sketch of a reactor. Such plasma reactors have been
intensively investigated in recent times in order to determine their potential

Fig. 9.27. Sketch of a plasma reactor for exhaust gas cleaning (1 inner electrode,
2 outer electrodes, 3 dielectric)
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with regard to the oxidation of unburned hydrocarbons and the reduction of
NOx in the exhaust. It has been observed that the reduction of hydrocarbons
is possible and depends specifically on the unburned hydrocarbon (I. Orlan-
dini, U. Riedel (2000)). Figure 9.28 shows the attainable decrease for a model
exhaust gas consisting of 72% N2, 18% O2, 10% H2O, and 440 − 540 ppm
unburned hydrocarbons (depending on the experimental conditions). The
hydrocarbons investigated are ethane (C2H6), propane (C3H8), and ethene
(C2H4).

The differing levels of reduction are due to reaction-kinetic effects in the
flow, explained by reaction flux analyses and sensitivity analyses. Further-
more, it has been seen that in oxygen-rich exhausts NO is mainly oxidized
to NO2. Less than 10% of the NO initially present is reduced to N2. Fur-
ther measures are therefore necessary to remove the NO2, such as catalytic
reduction or reduction with ammonia.

Figure 9.29 shows the reduction of C2H4 by the plasma source for an
exhaust composition of 72% N2, 18% O2, 10% H2O, and 500 ppm of unburnt
ethene and an exhaust flow rate of 500 liters per minute. The distribution
after the first four pulses in the reactor is shown. The reduction of ethene
is inhomogeneous perpendicularly to the direction of flow, since the radicals
generated in the plasma discharge needed for reduction are also distributed
nonuniformly.

9.2.8 Flows in Etching Reactors

In the manufacture of semiconductors, etching processes are used in a large
number of production steps. Wet-etching with liquid chemicals is being re-
placed more end more by dry-etching processes with reactive gases. The etch-

Fig. 9.28. Simulation of the decomposition of C2H6, C3H8, and C2H4 in a plasma
reaction as a function of the number of discharge pulses with which the exhaust is
treated
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ing gases are frequently generated upstream from the actual reactor by means
of a plasma source and are then fed to the reactor. Figure 9.30 shows the basic
construction of a reactor. In order to attain uniform etching over the wafer,
the reactor is operated at low pressures and with small flow velocities, since
diffusion prevails over convection and reaction in these conditions and ensures
an almost uniform distribution of the reactants.

The processes on the surface are closely coupled to the flow and diffusion
from the gas phase. Some of the particles reaching the wafer are adsorbed
and can react with other species from the gas phase or with other particles
already adsorbed onto the surface. The reaction products formed in this way
can then desorb and return to the gas phase.

Figure 9.31 shows the reaction product SiF4 for an etching gas composi-
tion of 70% F atoms and 30% N2 molecules in an axially symmetric reactor.
The SiF4 forms in surface reactions and, because of the low pressure in the
reactor, rapidly diffuses away from the surface.

The etching rate is increased by about 3.5% at the edge of the wafer, which
has a diameter of 200 mm (Figure 9.32). The acceleration of the flow close to
the edges of the wafer toward the outlet of the reactor causes the convective
flux of fluorine atoms here to be greater than close to the symmetry axis.
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Fig. 9.30. Sketch of an etching reactor

9.2.9 Heterogeneous Catalysis

In heterogeneously catalyzed gas phase reactions the reactants and products
are gases, while the reaction takes place on the surface of a solid, the catalyst.
The catalyst enhances the rate of the reaction. The principle of catalytic
reactions is based on the reduction in the activation energy necessary for a
certain reaction, as shown schematically in Figure 9.33. Many reactions have
reaction rates on surfaces that are orders of magnitude faster than in the
gas phase. This permits the reaction to be carried out at considerably lower
temperatures.

A catalyst has no effect on the thermodynamic equilibrium. However, the
selectivity of the products can be changed by a catalyst. This is done by
suitably selecting the time spent by the mixture in the chemical reaction
or by isolating intermediate products. A large number of chemical synthesis
methods are based on this procedure.

Heterogeneous-catalytic reactions can be divided into five steps:

1. Diffusion of the reactants to the catalyst,
2. Adsorption of the reactants onto the catalyst surface,
3. Reaction between the reactants,
4. Desorption of the products from the catalyst surface,
5. Diffusion of the products away from the catalyst.

The concentration of the reactants and products on the surface depends on
those in the gas phase via the adsorption and desorption equilibria. On the
other hand, these depend on changes due to chemical gas-phase reactions

0.60

0.65

0.70

Fig. 9.31. Distribution of the reaction product SiF4 in the reactor for the etching
of silicon with fluorine at a pressure of 40 Pa
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Fig. 9.32. Normalized etch rate as a function of the distance to the center of the
wafer

and transport processes. Because of this, depending on the external condi-
tions (temperature, pressure, concentration, flow conditions), different par-
tial processes (mass transport, reaction-kinetic) are rate-determining for the
global reaction system. In order to achieve a quantitative understanding of
heterogeneous reaction systems it is therefore necessary to couple all the par-
tial processes taking place and to describe the process by detailed models.
In analogy to the gas phase, heterogeneous reactions can also be modeled
with detailed reaction mechanisms consisting of molecular processes (M. E.
Coltrin et al. (1990)). The mean-field approximation is used, where the cat-
alytic surfaces are described by the temperature and the average degree of
coverage with the adsorbed species.

In contrast to gas-phase reactions, only a few of the mechanisms of surface
reactions are understood. In the past, a great number of spectroscopic and mi-
croscopic investigations into the interactions of molecules with single-crystal
surface at low pressures have been used to investigate various elementary
processes. Since the direct application of these results to higher pressures
(pressure gap) and polycrystalline catalyst species (material gap) is not with-
out its difficulties, recently, nonlinear optical methods such as sum-frequency

Fig. 9.33. Principle of catalytic reactions. Ea is the activation energy for the
noncatalytic reaction and Ecat

a that for the catalytic reaction
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spectroscopy (U. Metka et al. (2000)) have been used to investigate the cat-
alytic surface under these technically relevant conditions. The first detailed
heterogeneous reaction mechanisms have been put together, such as those de-
scribing catalytic combustion processes (O. Deutschmann et al. (1996)) and
the partial oxidation of lower alkanes (D. K. Zerkle et al. (2000)).

These reaction mechanisms are coupled to the reactive flow via the bal-
ance equations at the gas surface interface (M. E. Coltrin et al. (1990), O.
Deutschmann et al. (1996)). In particular, this concept has been applied
successfully to the description of the laminar flow behavior in monolithic
catalysts (D. K. Zerkle et al. (2000)).

9.3 Turbulent Reactive Flows

9.3.1 Overview and Concepts

Turbulent reactive flows play an important role in many industrial combustion
processes. In contrast to laminar flow, turbulent processes are characterized
by rapid fluctuations of velocity, density, temperature, and composition. This
chaotic nature of turbulence is due to the high nonlinearity of the underlying
physical-chemical processes. Even small variations in the parameters of a flow
field can lead to instabilities and hence to the formation of turbulence.

The complexity of turbulent combustion processes (as a standard exam-
ple for turbulent reactive flows) is the reason why the mathematical models
describing them are not as highly developed as the models describing laminar
systems. In the following sections we present general patterns of turbulent re-
active flows as well as some methods to describe them mathematically. These
methods have recently become established in commercial computer programs.

Turbulent nonpremixed flames (see Section 9.3.5) are of great importance
in practical applications. They are found in jet engines, diesel engines, steam
generators, furnaces, and hydrogen–oxygen rocket engines. Since the fuel and
oxidizer mix only in the combustion zone, nonpremixed flames are easier to
handle than premixed flames from a safety perspective. It is precisely their
practical importance that is the reason why many mathematical models have
been developed to simulate these combustion processes.

As will be shown below, the understanding of laminar nonpremixed flames
forms the basis for the understanding of turbulent nonpremixed flames. Such
flames were previously called diffusion flames, since the diffusion of fuel and
oxidizer takes place slowly (and is thus rate determining) compared to the
chemical reaction. However, since diffusion is also a requirement for the com-
bustion of premixed flames, we use the more precise terms “premixed” and
“nonpremixed” flames.

In (ideal) turbulent premixed flames (see Section 9.3.6) the unburnt gas is
mixed thoroughly before the chemical reaction begins. The chemical reaction
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causes a rapid transition from unburnt to burnt gas at an interface. This
interface moves with velocity vL.

The motion of a premixed flame is a superposition of flame propagation
and (possibly turbulent) flow. In short, this means that quantitative under-
standing of turbulent premixed flames presents a far greater challenge than
the modeling of nonpremixed flames.

Frequently, it is not possible to distinguish clearly between premixed and
nonpremixed flames if the time scales of mixing and chemical reaction are of
the same order of magnitude. Local flame quenching in nonpremixed flames,
for example, causes the fuel and air to mix before they are ignited by the
surrounding nonpremixed combustion zone (leading to partial premixed com-
bustion).

9.3.2 Direct Numerical Simulation

There are no indications that the Navier–Stokes equations are invalid even for
turbulent reactive flows, as long as the turbulent length scale (see below) is
large compared to the intermolecular distances. This is generally satisfied in
combustion processes at atmospheric pressure, so that a turbulent flow could
in principle be described by the solution of the Navier–Stokes equations.
However, in direct numerical simulation (DNS, W. C. Reynolds (1989)) even
the smallest length scales have to be resolved in the spatial discretization.
Therefore, the problem lies in the computational effort required. At the cur-
rent rate of development, a solution is to be expected only in 20 or 30 years.
This can be demonstrated simply as follows. The ratio of the largest to the
smallest turbulent length is given by

l0
lK

≈ R
3
4

l , (9.50)

where Rl is a turbulence Reynolds number for which in general Rl < Re holds,
l0 is the integral length scale that describes the largest length scale and is
determined by the dimensions of the system, and lK is the Kolmogorov length
scale, which represents the length scale of the smallest turbulent structures.

For a typical turbulent flow with Rl = 500, l0/lK ≈ 100, so that in or-
der to resolve the smallest structures, we require a grid with ≈ 1000 grid
points in each dimension, and so for three-dimensional problems we need 109

grid points. Taking into account that the description of an unsteady com-
bustion processes requires at least 10 000 time steps, we obtain the number
of floating point operations of order 1015. Another problem lies in the fact
that the computational time required for direct simulation is determined by
the relation (9.50) and by the fact that the time steps must be reduced in
inverse proportion to the square of the grid point distance. This means that
the computational time for direct simulation increases with approximately
the fourth power of the Reynolds number.
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In spite of these problems, direct numerical simulations (DNS) are possible
for small Reynolds numbers and simple chemical systems. These simulations
are far from practical interest, but can still deliver very useful information
on the character of turbulent combustion processes. Direct solution of the
Navier–Stokes equations (5.180) and (5.181) for practical applications is not
yet possible.

The formation of closed regions of unburnt gas that penetrate into the
burnt gas is an interesting phenomenon in turbulent premixed flames. This
transient process can be investigated using DNS. This process is of impor-
tance in determining the regimes of validity of current models and in de-
veloping new models to describe turbulent combustion. Figure 9.34 shows
the concentration distribution of OH and CO radicals, as well as the vortex
strength in a turbulent premixed methane flame, which we have already seen
in the introductory chapter (Figure 1.9).
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9.3.3 Mean Reaction Rates

For the solution of the averaged conservation equations (5.183) and (5.184)
in addition to the turbulence transport model of Section 5.4.7, the determi-
nation of the mean reaction rates ω̃i is necessary. In order to demonstrate the
problems caused here, we look at two examples (P. A. Libby, F. A. Williams
(1980)).

In the first example we consider the reaction A + B −→ products at
constant temperature, but with variable concentrations. We assume a hypo-
thetical (but similar to the character of turbulent nonpremixed combustion)
time development of the concentration as shown in Figure 9.35, where cA
and cB are never both simultaneously nonzero. In order to avoid confusion
with the turbulent kinetic energy, the rate coefficient k is denoted with the
subscript R. The reaction rate is

ωA = −kR · cA · cB and ωA = 0;

i.e. the mean reaction rate cannot be determined directly from the mean
values of the concentrations. Rather we have the relation for the average
values:

ωA = −kR · cA · cB = −kR · cA · cB − kR · c′A · c′B. (9.51)

Therefore, it is in no way permissible to calculate the reaction rates simply (or
even approximately) by replacing the current concentrations by the averaged
concentrations.

As a second example we consider a reaction at variable temperature (but
constant concentrations), where the temperature development in time is as-
sumed to be sinusoidal (see Figure 9.36). As a result of the strong nonlin-
earity of the rate coefficient kR = A · exp (−Ta/T ), kR is entirely different
from kR(T ). This is clarified with a numerical example. For Tmin = 500 K
and Tmax = 2000 K we obtain T = 1250 K. Calculating the reaction rate for
an activation temperature of Ta = 5 · 104 K (Ta = Ea/R), we obtain

kR(Tmax)=1.4 · 10−11 · A,
kR(Tmin)=3.7 · 10−44 · A,
kR(T )=4.3 · 10−18 · A,

and after calculating the time average (by, for example, numerical integration)
we obtain

Fig. 9.35. Hypothetical time development of the concentrations in a reaction A +
B −→ products
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kR = 7.0 · 10−12 ·A.

This fact is of particular interest in, for example, the treatment of nitrogen
oxide formation, which is strongly temperature dependent because of its high
activation temperature (Ta = 3.8 · 104 K). NO is therefore mainly formed
at peak values of the temperature. Determining the amount of NO at the
temperature average is therefore meaningless. Temperature fluctuations must
be included in the investigation.

One way of formulating average reaction rates is the statistical treatment
using probability density functions (PDFs). If the PDF is known, the average
reaction term can be determined by integration. For the example A + B −→
products it is found that (P. A. Libby, F. A. Williams (1980))

ω=−
1∫

0

· · ·
1∫

0

∞∫

0

∞∫

0

kR · cA · cB · P (ρ, T, w1, . . . , wS , r) · dρ · dT · dw1 · · ·dwS

=− 1

MA ·MB

1∫

0

· · ·
1∫

0

∞∫

0

∞∫

0

kR(T ) · ρ2 · wA · wB · P (ρ, T, w1, . . . , wS , r)

· dρ · dT · dw1 · · · dwS . (9.52)

The main problem in this method is that the probability density function P
must be known. There are many methods of determining it, which can be
used depending on the specific requirements of the case at hand.

PDF Transport Equations

(On this subject see, for example B. C. Dopazo, E. E. O’Brien (1974), S.
B. Pope (1991)). The solution of PDF transport equations is the most gen-
eral path. Transport equations for the time development of the PDF can be
derived from the conservation equations for the particle masses. The great
advantage of this procedure is that the chemical reaction is treated exactly
(whereas here the molecular transport still has to be modeled empirically).

Fig. 9.36. Hypothetical time development of the temperature in a reaction A +
B −→ products
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For the numerical solution of the transport equations we approximate the
probability density function by a large number of different so-called stochastic
particles, which represent individual realizations of the flow. The solution of
the PDF transport equations is carried out using a Monte Carlo method.
This is very complicated and at present confined to small chemical systems
with at most four species, so that a reduced mechanism will certainly have
to be used.

Empirical Construction of PDFs

In this method, probability density functions are constructed from empirical
data. Consistent use is made of the fact that results of the simulation of
turbulent flames generally depend only little on the precise shape of the
PDF.

One simple way of constructing a multidimensional probability density
function consists of assuming statistical independence of the individual vari-
ables. In this case the PDF can be decomposed into a product of one-
dimensional PDFs (Gutheil, Bockhorn (1987)):

P (ρ, T, w1, . . . , wS) = P (ρ) · P (T ) · P (w1) · · ·P (wS). (9.53)

Of course, this separation is not correct, since, for example, the mass fractions
w1, w2, . . . , wS are not independent of each other (since

∑
wi = 1). For this

reason, additional correlations between the individual variables have to be
taken into account.

One-dimensional PDFs can be empirically determined from experiment.
In what follows we sketch some of these results for simple geometries (P. A.
Libby, F. A. Williams (1994)).

Figure 9.37 shows a sketch of PDFs for the mass fraction of the fuel for
different points of a turbulent mixing layer. At the edge of the mixing layer

Fig. 9.37. Schematic representation of probability density functions for the mass
fraction of the fuel in a turbulent mixing layer
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Fig. 9.38. Schematic representation of probability density functions for the mass
fraction of the fuel in a turbulent jet

the probability of encountering pure fuel or pure air is very high (indicated
by arrows), while the probability of encountering a mixture of fuel and air
is only very small. Inside the mixing layer the probability of encountering
a mixture of fuel and air is high. The PDF has a maximum for a certain
mixture fraction. In spite of this, the probability here of encountering pure
fuel or pure air is high (again indicated by arrows). The reason for this is
intermittence, a phenomenon caused by the fact that the local boundaries
between fuel, mixture, and air are constantly shifting. At a certain time a
point will be in a pure fuel flow or in a pure air flow (see, e.g. P. A. Libby, F.
A. Williams (1976, 1994)). Similar results are obtained for a turbulent jet,
which can be considered as a combination of two mixing layers (see Figure
9.38).

Fig. 9.39. Schematic representation of probability density functions for the mass
fraction of the fuel in a turbulent reactor



562 9. Reactive Flows

Fig. 9.40. Cut-off Gauß function

In a turbulent reactor (Figure 9.39) the probability density function is
approximately a Gauß distribution. The further one is away from the inflow
boundary, the greater the probability of encountering a complete mixture.
The width of the Gauß function becomes ever smaller until it eventually
becomes a Dirac delta function (the probability of encountering a complete
mixture tends to one).

In order to describe one-dimensional PDFs analytically, a cut-off Gauß func-
tion or a β function may be used. The cut-off Gauß function (Figure 9.40)
consists of a Gauß distribution and two Dirac δ functions to describe the
intermittence peaks (E. Gutheil, H. Bockhorn (1987)).

An analytic representation of this frequently used function is given by
(F.A. Williams (1985))

Fig. 9.41. β function for different sets of parameters α and β. For simplicity the
normalization constant γ = 1 has been assumed
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P (Z) = α · δ(Z) + β · δ(1 − Z) + γ · exp

(
− (Z − ζ)2

2 · σ2

)
. (9.54)

Here ζ and σ characterize the position and the width of the Gauß function
(Z = wi, T, . . .). The normalization constant γ for given α and β is

γ =
(1 − α− β) ·

√
2 · σ
π

erf

(
1 − ζ√
2 · σ

)
+ erf

(
ζ√
2 · σ

) , (9.55)

where the abbreviation “erf” denotes the error function.
The β function (Figure 9.41) has the great advantage that it contains only

two parameters (α, β) but can still describe a great range of different shapes
(R. P. Rhodes (1979)):

P (Z) = γ · Zα−1 · (1 − Z)β−1 with γ =
Γ (α+ β)

Γ (α) · Γ (β)
. (9.56)

The third parameter γ is obtained from the normalization condition
∫
P (Z) ·

dZ = 1. (Note that in mathematics the integral B(α, β) =
∫ 1

0
tα−1 · (1 −

t)β−1 · dt is generally called the β function). The constants α and β can be
determined from the average and variance of Z as

Z =
α

α+ β
and Z ′2 =

Z · (1 − Z)

1 + α+ β
. (9.57)

9.3.4 Eddy-Break-Up Models

Eddy-break-up models are empirical models for the mean reaction rate at very
fast chemistry. In this case the reaction rate is controlled by the rate of the
turbulent dissipation (“mixed is burnt”). This model describes the reaction
zone as a mixture of unburnt and almost completely burnt regions.

A formulation due to D. B. Spalding (1970) describes the rate with which
regions of unburned gas break up into smaller fragments that have sufficient
contact to gas that has already been combusted. They have therefore a suf-
ficiently high temperature and hence react, in analogy to the reduction in
turbulent energy. For the reaction rate (F= fuel, CF is an empirical constant
of order of magnitude 1) it is found that

ωF = −ρ · CF

M
·
√
w

′′2
F · ǫ̃

k̃
. (9.58)

9.3.5 Turbulent Nonpremixed Flames

Nonpremixed Flames with Equilibrium Chemistry

Insight into the character of nonpremixed turbulent flames is obtained by
making the simplifying assumption that fuel and oxidizer react infinitely fast
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as soon as they have mixed. Using this assumption we have only to deter-
mine how fast the mixing takes place. An example of such a turbulent mixing
process is shown in Figure 9.42. Fuel streams into the oxidizer (oxygen, air).
Turbulent mixing causes the fuel and oxidizer to form a combustible mix-
ture that reacts immediately under the above assumption of infinitely fast
chemistry. As well as regions where the fuel predominates (rich mixture) and
regions where there is a surplus of the oxidizer (lean mixture), there is a sto-
ichiometric surface along which there is a stoichiometric mixture. The upper
part of the figure shows an example of the mole fraction a certain distance
from the burner. In many cases of turbulent nonpremixed flames, flame fronts
appear in the region very close to the stoichiometric mixture. This can be
identified by the intensive luminosity at this point.

As well as the assumption of infinitely fast chemistry, we now additionally
simplify the description of the mixing process by assuming that the diffusion
coefficients are the same. All species then mix equally fast, and we have only
to consider the behavior of a single variable. As chemical species are formed or
consumed during chemical reactions, it is easier to follow the mixing process
for the elements. We introduce the mixture fraction ξ:

Fig. 9.42. Schematic representation of the momentary picture of a turbulent non-
premixed jet flame
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ξ =
Zi − Zi2

Zi1 − Zi2
, (9.59)

where the Zi are element mass fractions. We now consider a two-stream
problem with the element mass fractions Zi1 and Zi2 in the two flows (e.g.
in a jet flame). When the diffusivities are the same, ξ is independent of the
choice of the element under consideration i (i = 1, . . . ,M) and, because of
(9.59) and Zi =

∑
µij · wj (9.48), it is linearly related to the mass fractions

wj . ξ = 1 in flow 1 and ξ = 0 in flow 2. The fraction ξ can be taken to
describe the mass fraction of the species coming from flow 1, with 1 − ξ the
mass fraction of the species coming from flow 2.

Because of the linear dependence, (9.59) and (5.188) can be used to derive
a conservation equation for the mixture fraction ξ:

∂(ρ · ξ)
∂t

+ ∇ · (ρ · v · ξ) −∇ · (ρ ·D · ∇ξ) = 0. (9.60)

It is worth noting that there is no chemical source term for ξ in the con-
servation equation. Therefore, ξ is frequently called a conserved scalar. If we
also assume that the Lewis number Le = λ/(D · ρ · cp) is equal to 1 and that
there are no heat losses, then the enthalpy or temperature field can also be
described using ξ (the kinetic energy of the flow may be neglected and so the
pressure is constant):

ξ =
h− h2

h1 − h2
. (9.61)

With the assumptions of (a) infinitely fast chemistry (equilibrium chemistry),
(b) identical diffusitivities and Le = 1, and (c) no heat losses, all scalar vari-
ables (temperature, mass fractions, and density) are well-defined functions of
the mixture fraction. These functions are given directly by the equilibrium
composition.

The problem of describing turbulent nonpremixed flames has been re-
duced to the problem of the description of a turbulent mixing process for the
mixture fraction ξ. There are numerous approaches to this problem, such as
DNS (W. C. Reynolds (1989)), LES (A. McMurtry et al. (1992)), the La-
grange integral method (LIM) (W. J. A. Dahm et al. (1995)), and the PDF
method (S. B. Pope (1991)).

After forming the averages and using the gradient ansatz for the steady
case, we obtain (compare (5.189))

∇ · (ρ · ṽ · ξ̃) −∇ · (ρ · νT · ∇ξ̃) = 0. (9.62)

If the PDF of the mixture fraction is known, we can calculate the averages of
the scalar quantities. Since the average density enters equations (5.183) and
(5.184), in this manner the system of averaged conservation equations can
be closed. In the ideal case, the PDF should be calculated via its transport
equation (S. B. Pope (1991)).

A simpler method of determining the probability density function of the
mixture fraction consists of assuming that the distribution has a certain shape
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(such as a Gauß function or a β-function) characterized by the average and
variance of ξ. Instead of the transport equation for the PDF, it is only balance
equations for the average and variance of ξ that have to be solved. From
equation (9.62) we can derive a conservation equation for the Favre variance

ξ̃′′2 = ρ · ξ′′2/ρ (multiplication of (9.62) by ξ and subsequent formation of
the average). We obtain (R. W. Bilger (1980))

∇·(ρ · ṽ · ξ̃′′2) −∇·(ρ · νT · ξ̃′′2) = 2 · ρ · νT ·∇2ξ̃ − 2 · ρ ·D · ∇2 · ξ′′ , (9.63)

where ∇2ξ denotes the square of the absolute value of the gradient (∇ξ)T ·∇ξ.
The last term of this equation is called the scalar dissipation rate χ. The
dependence of this term χ on known quantities must also be modeled, using,
for example, the simple gradient transport ansatz

χ̃ = 2 · ρ ·D · ∇2ξ′′

ρ
≈ 2 ·D · ∇2ξ̃. (9.64)

From ξ̃ and ξ̃′′2 we can now determine the probability density function P (ξ, r)
(e.g. a β-function, see Section 9.3.4). With the help of the PDF we can cal-
culate the average values of interest, since ρ, wi, and T are all known as
functions of ξ:

w̃i(r)=

∫ 1

0

wi(ξ) · P̃ (ξ; r) · dξ,

T̃ (r)=

∫ 1

0

T (ξ) · P̃ (ξ; r) · dξ,

w̃
′′2
i (r)=

∫ 1

0

[wi(ξ) − w̃i(r)]2 · P̃ (ξ; r) · dξ,

T̃ ′′2(r)=

∫ 1

0

[
T (ξ) − T̃ (r)

]2
· P̃ (ξ; r) · dξ, (9.65)

where P̃ is a Favre-averaged probability density function that can be calcu-
lated from the probability density function by integration over the density:

P̃ (ξ; r) =
1

ρ
·

∞∫

0

ρ · P (ρ, ξ; r) · dρ. (9.66)

The system of equations now consists of the conservation equations for the
density and velocity fields (e.g. using the equations of the K-ǫ model) as
well as the balance equations for the Favre average ξ̃ and the Favre variance

ξ̃′′2 of the mixture fraction ξ. From ξ̃ and ξ̃′′2 we can determine the prob-
ability density function P (ξ). Because of the well-defined relation between
ξ and all scalar quantities (i.e. the equilibrium compositions), the statistics
of every scalar can be calculated. These equations can be used to calculate
flame lengths, temperature fields, and the concentration fields of the main
components (fuel, oxygen, water, carbon dioxide).
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However, the model will never be able to simulate flame quenching, since
infinitely fast chemistry is assumed. The formation of soot and nitrogen oxides
can also not be described by the model. Model improvements will therefore
be treated that take into account the effect of finite rate chemistry.

Nonpremixed Flames with Finite Rate Chemistry

The complete conservation equations have to be considered in the case of
finite rate chemistry; i.e. as well as the balance equations for total mass,
energy and momentum, we also have to take into account all conservation
equations for the individual species of the reaction system with the source
terms Mi · ωi:

∂(ρ · wi)

∂t
+ ∇· (ρ · v · wi) + ∇· (ρ ·D · ∇wi) = Mi · ωi, i = 1, . . . , S. (9.67)

As described in Section 9.3.3, problems occur in the averaging of the source
terms, since these depend nonlinearly on both the temperature and the con-
centrations.

Averaging is possible in principle if the PDFs of the mass fractions wi

are known. The equations can then be averaged and solved (E. Gutheil, H.
Bockhorn (1987)). However, problems occur because the PDF is generally
not well known, and in addition, the great number of different species means
that the computational cost is too high.

One chemical process is first brought out of equilibrium with increasing
mixing rate. If the mixing rate continues to increase, a second process then
deviates from equilibrium. The chemical processes deviate from equilibrium
one after another until the reactions that make up the main part of the energy
balance take place on time scales comparable with that of the mixing process.

Fig. 9.43. Laser Raman scattering diagram of simultaneous measurements of the
mixture fraction and the temperature in a turbulent nonpremixed hydrogen jet
flame. The jet velocity in the right-hand picture is a factor of 3 larger (P. Magre,
R. W. Dibble (1988))
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If the mixing rate is then further increased, the temperature deviates from
its equilibrium value.

This is shown in Figure 9.43. The temperature deviates only slightly from
its equilibrium values. The diagrams on the left and on the right show the
same experiment, where only the velocity of the hydrogen jet in the right
picture has been increased by a factor of three. The laser Raman scattering
experiment simultaneously measures the mixture fraction and the tempera-
ture. Each microsecond pulse is indicated by one point on the diagram.

In the left-hand picture, the measurements aggregate around the equi-
librium line. The right-hand picture shows the decrease in the temperature
where the mixing process, corresponding to a horizontal displacement in the
diagram, competes with the release of heat by chemical reaction, correspond-
ing to a vertical displacement in the diagram. The measurements are clearly
below the equilibrium line. A further increase of the jet velocity leads to
global flame quenching.

Figure 9.44 shows a different behavior. These scattering diagrams show
local flame quenching. On the left is a nonpremixed methane–air flame with
a small mixing rate. The right-hand picture shows measurements in the same
flame but at a different position in the flame, where air mixes rapidly with the
fuel. Local flame quenching is seen by the fact that numerous experimental
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Fig. 9.44. Laser-Raman scattering diagram of simultaneous measurements of the
mixing fraction ξ and the temperature T in a turbulent nonpremixed methane jet
flame at different distances from the burner (R. W. Dibble et al. (1987)); the lines
depict flamelet calculations for a = 1 s−1 (dashed) and a = 320 s−1
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points are far from the equilibrium line. If the jet velocity is further increased,
global flame quenching is observed here, too.

An improvement in the equilibrium model presented in the last section
is obtained by calculating the rate of the first nonequilibrium process and
assuming that the remaining (fast) chemical processes are in equilibrium.
The faster the mixing takes place, the more this slow process will deviate
from equilibrium. One parameter is required to describe this deviation from
equilibrium.

The laminar counterflow flames from Section 9.2.4 have solutions that
increasingly deviate from equilibrium. The crucial parameter here is the strain
a with which the scalar dissipation rate χ = 2 ·D · ∇2ξ is connected by the
relation (W. J. A. Dahm and E. S. Bish (1993))

a = 2 · π ·D ·
[

∇2ξ

(ξ+ − ξ−)
2

]
· exp

{
2 · erf−1

[
ξ − 1

2 · (ξ+ + ξ−)

1
2 · (ξ+ − ξ−)

]}2

(9.68)

for a locally two-dimensional flow. (For the Tsuji geometry, e.g. in Figure
9.21, the strain rate is generally approximated by the solution of the potential
flow a = 2 · V/R.) This equation correctly describes the fact that the scalar
dissipation for each strain a can be large or small depending on whether the
difference between ξ+ and ξ− is large or small.

The scalar rate of dissipation is therefore a suitable parameter that can
describe the deviation from equilibrium. The scalar quantities in the flame
are then again well-defined functions of the mixing fraction, where, however,
not the equilibrium values are used, but rather the values of a strained flame.
This means that the turbulent flame is taken to be an ensemble of many
small laminar flamelets that all have the same scalar dissipation rate ξ. This
model is a great improvement. Non-equilibrium concentrations of CO, NO,
and other species are predicted. The model is further improved by permitting
the ensemble of flamelets to have a distribution of the scalar dissipation rate,
since the velocity field in the flame changes due to the motion of the vortex.
Such a model will now be presented.

Fig. 9.45. Stability diagram of a laminar nonpremixed counterflow flame, H. Tsuji,
I. Yamaoka (1967)
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Flame Quenching

Laminar nonpremixed counterflow flames have already been described in Sec-
tion 9.2.4. It turns out that characteristic parameters such as the flame tem-
perature depend very strongly on the strain. The strain (characterized by the
strain rate parameter a) here describes the velocity gradient along the flame
surface.

For sufficiently large strain, laminar nonpremixed flames are extinguished.
This behavior is shown in Figure 9.45. Above a critical strain parameter (cor-
responding to a critical free-stream velocity V of the air) the flame is “blown
out.” Here fW is a dimensionless outflow parameter that can be calculated
from the velocity V of the incoming air, the exit velocity vW of the fuel from
the porous cylinder, the Reynolds number Re, and the cylinder radius R. The
strain is then given by a = 2 · V/R.

Figure 9.46 shows calculated temperature profiles for different scalar dis-
sipation rates χ, i.e. for different strains a, in a nonpremixed counterflow
flame. Above a certain dissipation rate χq (here for χq = 20.6 s−1, where the
subscript q stands for “quenching”), flame quenching finally occurs (B. Rogg
et al. (1987)).

The temperature drops as convective–diffusive heat transport increases,
while heat generation by chemical reaction simultaneously decreases due to
the shorter time of direct contact. Flames close to quenching are sensitive to

Fig. 9.46. Calculated temperature profiles of a nonpremixed CH4-air counter-
flow flame for different scalar dissipation rates χ; flame quenching occurs for
χ > 20.6 s−1; unburnt gas temperature T = 298 K on both sides; pressure 1 bar
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the Lewis number Le = λ/(D ·ρ · cp), i.e. to the ratio of thermal diffusivity to
mass diffusivity (H. Tsuji, I. Yamaoka (1967), N. Peters, J. Warnatz (1982)).
In turbulent flames the strain of the laminar flamelet is determined by the
scalar dissipation rate at the position of the stoichiometric mixing. The scalar
dissipation rate is therefore a direct measure of the strain. If it exceeds a
critical value, local quenching of the flamelet occurs. In this manner we can
understand quenching processes in turbulent nonpremixed flames.

The flamelet model can also be used to explain the lift-off of turbulent
flames to quenching through the high strain. This is shown schematically
in Figure 9.47. At the exit of the nozzle the strain of the flame front is
largest, and so it is here that quenching most frequently occurs. The mean
luminous flame contour shows a lift-off that increases with increasing jet
velocity. The practical importance of this approach via the lifting process
lies in the possibility of carrying out quenching processes (e.g. on burning oil
wells) optimally, namely, at the foot of the flame, where the sensitivity of the
flame to quench is largest because of its high strain at this point.

In modeling turbulent nonpremixed flames, quenching processes are taken
into account by integrating only over that region of the scalar dissipation rate
in which no flame quenching occurs when the average values of the density,
temperature, and mass fractions are being determined:

Fig. 9.47. Schematic representation of the lift-off behavior of a turbulent non-
premixed free jet flame
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T̃ (r)=

1∫

0

χq∫

0

T (F)(χ, ξ) · P̃ (F)(χ, ξ; r) · dχ · dξ

+

1∫

0

∞∫

χq

Tu(χ, ξ) · P̃ (F)(χ, ξ; r) · dχ · dξ. (9.69)

Analogous expressions are obtained for the other averages in (9.65). After the
local quenching in nonpremixed flames, the reactants mix. This leads to local
regions of partially premixed flames, and a further parameter is required to
describe this premixing (B. Rogg et al. (1987)). The processes in turbulent
premixed flames will be treated in Section 9.3.6.

PDF Simulations of Turbulent Nonpremixed Flames

In this section we noted that the closure problem of the chemical source terms
is solved if the joint probability density function (PDF) of the scalar is known.
Some of the methods used assume certain analytical expressions for the PDF
(e.g. cut-off Gauß functions or β-functions). These functions are determined
by the average and variance of one variable. The balance equations for these
two variables can be derived from the Navier–Stokes equations.

Although great progress has been made with this process (see, e.g. P. A.
Libby and F. A. Williams (1994)), the fact cannot be avoided that the actual
PDFs often have properties that are only insufficiently reproduced by ana-
lytical functions. In principle, every PDF can be described by its (infinitely
many) moments. However, the derivation of the balance equations for the
higher moments and their solution is not viable from a practical point of
view.

The form of the joint probability density function of the scalar comes from
the mixing processes and the chemical reaction and is thus determined by the
Navier–Stokes equations together with the species conservation equations.
Starting out from these equations we can derive a transport equation for the
joint probability density function of velocity and scalars (S. B. Pope (1991)).
The single-point probability density function

f(vx, vy, vz, ψ1, . . . , ψn;x, y, z, t) · dvx · dvy · dvz · dψ1 · · ·dψn (9.70)

indicates the probability that the fluid has velocity components in the range
vi and vi + dvi and values of the scalars (mass fractions, density, enthalpy)
between ψα and ψα + dψα at time t and at position x, y, z. The transport
equation that describes the development of the PDF then reads (S. B. Pope
(1991))
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ρ(Ψ ) · ∂f
∂t

+ ρ(Ψ ) ·
3∑

j=1

(
vj ·

∂f

∂xi

)
+

3∑

j=1

([
ρ(Ψ ) · gj −

∂p

∂xj

]
· ∂f
∂vj

)

+

n∑

α=1

(
∂

∂Ψα
[ρ(Ψ ) · Sα(Ψ ) · f ]

)

=

3∑

j=1

(
∂

∂vj

[〈
∂p′
∂xj

−
3∑

i=1

∂τij
∂xi

∣∣v,Ψ
〉

· f
])

+
n∑

α=1

(
∂

∂Ψα

[
3∑

i=1

〈
∂Jα

i

∂xi

∣∣v,Ψ
〉
· f
])

, (9.71)

where xi denotes x, y, and z coordinates, gi the gravitational acceleration in
the x, y, and z directions, Ψ the n-dimensional vector of the scalars, vj the
components of the velocity vector v, Sα the source terms for the scalars (e.g.
chemical source terms), τij the components of the shear stress tensor, and Jα

i

the components of the molecular flux (e.g. diffusion or heat flux density) of the
scalar α in the i direction. The terms 〈q|v,Ψ 〉 denote conditional expectation
values of the variable q. Thus 〈q|v,Ψ 〉 is the average value of q under the
condition that the velocity and composition take on the values v and Ψ ,
respectively. Physically, this means that the conditional expectation values
describe the average values of the molecular fluxes for certain values of the
velocity and the scalars.

The first term on the left-hand side describes the rate of change of the
PDF, the second describes the convection (transport in physical space), the
third the transport in velocity space due to gravitation and pressure gradi-
ents, and the fourth the transport in state space due to source terms (e.g.
chemical reactions). It is important to note that here all terms on the left-
hand side of the equation appear in closed form. Therefore, the chemical
reaction is treated exactly, the great advantage of this method.

However, the conditional expectation value 〈q|v,Ψ 〉 of the molecular flux
terms on the right-hand side of the equation have to be modeled, since they
do not appear in closed form. This means that a dependence of these terms
on known (e.g. calculated) quantities has to be formulated. Such models are
necessary because of the fact that we are using only a single-point PDF to
describe the flow and therefore have no information about spatial correlations.

The transport equation (9.71) for the single-point PDF cannot be solved
simply with today’s computers. The problem is its high dimensionality.
Whereas in the Navier–Stokes equations the only independent variables are
the time and the spatial coordinates, in the transport equation (9.71) the
velocity components and the scalar variables are also independent variables.
Use of the Monte-Carlo method is one way out of this problem. Here the PDF
is approximated by a very large number (e.g. 105 in spatially two-dimensional
systems) of stochastic particles. The properties of these particles vary in time,
depending on the convection, chemical reaction, molecular transport, and ex-
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ternal forces, and hence they mimic the development of the PDF (S. B. Pope
(1991)).

In practical applications the joint probability density function of velocities
and scalars f(v, T, wi, ρ) is reduced to a PDF for the scalars (which describes
the chemical reaction exactly) and the velocity field is calculated by means of
a turbulence model (e.g. theK-ǫmodel) that is based on the averaged Navier–
Stokes equations. The two models are coupled via the density ρ. The PDF
model yields a density field that is inserted into the turbulence model. From
this a new flow field is computed, and the information is passed back to the
PDF model. This process is repeated until a convergent solution is obtained.
Such hybrid PDF/turbulence model simulations permit realistic treatment
of turbulent flames. Figure 9.48 shows exemplarily a comparison between
experimental results in a recirculating nonpremixed methane–air flame with a
simulation. The simulation is based on a hybrid method in combination with
simplified chemical kinetics (ILDM, J. Warnatz et al. (2001)). Agreement
between the results is seen to be very good. The model is considerably better
than an eddy dissipation model (improved eddy-break-up model; see Section
9.3.4), which assumes that the chemical reaction takes place much faster
than the molecular mixing. The assumption of fast chemistry overestimates

Fig. 9.48. Simulation of a nonpremixed CH4-air jet flame, (above left) configu-
ration, (above right) measured temperature profile, Tmax ≈ 1600 K, (below left)
eddy dissipation model, Tmax ≈ 1900 K, (below right) combined PDF/turbulent
flow model, Tmax ≈ 1600 K
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the formation of products and, thus, the temperature rises. In consequence,
the predicted values for the NO formation will be far too large.

9.3.6 Turbulent Premixed Flames

Figure 9.49 shows a premixed flame in a turbulent flow field. A mixture of
fuel and oxidizer flows from above and a premixed flame is stabilized by the
recirculation of hot gases behind a stagnation body. The flame propagates
from the stagnation body into the unburnt mixture. If the flow were laminar,
the flame would have a “V” shape. However, since the flow is turbulent, the
angle of the flame changes constantly, depending on the local free-stream
velocity, and the flame has the shape shown in Figure 9.49.

The three-dimensional structure increases with increasing degree of tur-
bulence. This can be understood using the Borghi diagram (R. Borghi (1984),
S. Candel et al. (1994), and T. Poinsot et al. (1991)), shown in Figure 9.50
in a double-logarithmic plot. Here v′/vL, the turbulence intensity v′ normal-
ized by the laminar flame velocity vL, is plotted against l0/lL, i.e. the largest
length scale l0 of the vortices normalized by the laminar flame thickness lL.

The diagram is partitioned into various regions by different straight lines.
If the turbulence Reynolds number Rl = v′ · l0/ν is smaller than one, Rl < 1,
laminar combustion takes place. The domain of turbulent combustion (Rl >
1) can be further subdivided. It is useful to introduce two new dimensionless
quantities, namely, the turbulent Karlovitz number Ka and also the turbulent
Damköhler number Da.

The turbulent Karlovitz number Ka describes the ratio of the time scale
tL of the laminar flame (tL = lL/vL) to the Kolmogorov time scale tK:

Ka =
tL
tK

with tK =

√
ν

ǫ̃
, (9.72)

Fig. 9.49. Schematic representation of the instantaneous state of a turbulent pre-
mixed flame stabilized with a stagnation body
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where ν is a characteristic kinematic viscosity (ν = µ/ρ), and ǫ̃ is the dis-
sipation rate of the turbulent kinetic energy. At the Kolmogorov scale, the
time that a vortex of size lK requires for one revolution is the same as the
time required for diffusion through the vortex. If the time scale of the laminar
flame is smaller than the Kolmogorov scale, local laminar premixed flames
occur, embedded in the turbulent flow. In the Borghi diagram this flamelet
regime lies below the straight line Ka = 1.

The turbulent Damköhler number Da describes the ratio between the
macroscopic time scales and the time scale of the chemical reaction:

Da =
t0
tL

=
l0 · vL
v′ · lL

. (9.73)

For Da < 1 the time needed for the chemical reaction is longer than the time
needed for physical processes. In this regime, the vortices interact directly
with the flame structure, which is spread out so much that it can hardly still
be described as a “flame front.” In the Borghi diagram, this regime lies above
the straight line Da = 1. This reaction is also called a homogeneous reactor,
perfect mixing reactor, or ideal reactor.

In between the ideal reactor regime and the flamelet regime is the dis-
tributed reaction zone, where some of the vortices are in the flame front
(vortices whose length scales lK are smaller than lL). There is a wide spec-
trum of different dissipation rates ǫ̃ in each turbulent flow, which probably
have a logarithmic-normal distribution (J. Warnatz et al. (2001), W. J. A.
Dahm and E. S. Bish (1993), W. J. A. Dahm et al. (1995)). For this rea-
son, the conditions in a turbulent flame cannot be described as a point in the

Fig. 9.50. Borghi diagram
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Borghi diagram but rather as a zone that can extend across different domains
of the diagram.

Flamelet Models

The methods described above permit the calculation of laminar premixed
flames, e.g. the profiles of temperature and concentration (including pol-
lutants) as well as the flame velocity. However, turbulent flames are three-
dimensional and unsteady. Therefore, direct numerical simulation (DNS) (see
Section 9.3.2) greatly exceeds the computational capacity available today.
The practical alternative is to develop models that permit the most impor-
tant properties of the turbulent flames to be described.

The flamelet model of turbulent premixed flames is analogous to the
flamelet model of nonpremixed flames. The turbulent flame is considered
as an ensemble of many small laminar flames in the turbulent flow field. If
the turbulence Reynolds number Rl tends to zero, the model passes over cor-
rectly to the model of a laminar flame. It is generally agreed that the flamelet
concept can be applied in the region of large Damköhler numbers where the
turbulent time scales are larger than the time scale of laminar flames. This
region is in the lower right part of the Borghi diagram (Figure 9.50).

In turbulent nonpremixed flames it was possible (at least in the case of
fast chemistry) to fully describe the concentration field through the mixture

Fig. 9.51. Laser–light-sheet LIF measurement of the OH concentration in a turbu-
lent premixed natural gas–air jet flame stabilized on a nozzle of 3 cm diameter; the
black interior shows the region of the inflowing unburnt mixture (Φ = 0.8, Rl = 857,
Ka = 0.07)
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fraction. For turbulent premixed flames this concept has no meaning, since
the fuel and oxidizer are already mixed together before the reaction. There-
fore, another variable must be chosen to describe the combustion process.
The use of a reaction progress variable c has gained acceptance. This de-
scribes the progress of the combustion in a premixed flame front and, like the
mixture fraction, has values between zero and one (K. N. C. Bray (1980)).
For example, the percentage of the formation of a final product such as

wCO2
= c · wCO2,b (9.74)

can be used, where the index b indicates the burnt gas. The profile used
may not have a maximum, since there would then be no way to uniquely
determine c. The scalars such as OH, O2, CO, CO2, etc., are then uniquely
determined at each point in the flow by the reaction progress variable c and,
if necessary, by the local dissipation of c.

Laminar premixed flames with given values of the dissipation rate can,
in the case of a counterflow arrangement, be obtained experimentally (C. K.
Law (1989)) and numerically (G. Stahl and J. Warnatz (1991)).

Justification of the application of the flamelet model in premixed turbu-
lent combustion at temporal resolution has been observed in laser–light-sheet
experiments. An example is shown in Figure 9.51. In this turbulent Bunsen
flame, the flamelet assumption seems justified. The figure shows an LIF-OH
snapshot of a turbulent natural gas–air free-jet premixed flame at a burner
in a semi-industrial scale. Again the wrinkled laminar flame structures can
be seen. In order to apply the flamelet model, a model is required to describe
the transport and the evolution of c. The flamelet model can then by used to
determine from c the temperature, species concentrations, and density, which
are then inserted into the turbulence flame model. There are many ways of
coupling the flamelet and turbulence models, described in, for example, T.
Ashurst (1995), S. Candel et al. (1994), S. B. Pope (1991), P. A. Libby and
F. A. Williams (1994), N. Peters (1987).

Turbulent Flame Velocity

We also attempt to describe the progress of a turbulent premixed flame front
(in analogy to the laminar case) by a turbulent flame velocity vT. In the

Fig. 9.52. Schematic representation of the propagation of a turbulent premixed
flame front
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simplest case, the turbulent flame front is considered to be a wrinkled laminar
flame front (G. Damköhler (1940)), using the ansatz

ρu · vT ·AT = ρu · vL · AL, (9.75)

where AL denotes the total surface area of the wrinkled laminar flame fronts,
AT the area of the mean turbulent flame front, and vL the laminar flame
velocity (see Figure 9.52). We then obtain the basic relation

vT = vL · AL

AT
. (9.76)

The ratio of vT and vL is therefore given by the area ratio of laminar and
(mean) turbulent flame surfaces. For example, Damköhler used the ansatz
AL/AT = 1 + v′/vL, where v′ indicates the turbulent fluctuation velocity
(compare Section 9.3.6). Thus we obtain the expression

vT = vL + v′ = vL ·
(

1 +
v′

vL

)
. (9.77)

This result is in agreement with experimental results as long as the turbu-
lence intensity is not too large (appearance of flame quenching). In particular,
the model describes the fact that in automotive combustion engines, an in-
crease in the piston speed (v′ is approximately proportional to the rpm) leads
to an increase in the combustion rate. Without this relation, effective auto-
motive combustion would be restricted to low rpm (J. B. Heywood (1988)).

Also in agreement with experiment (Y. Liu and B. Lenze (1988)) is the
fact that (9.75) indicates no dependence on the turbulent length scale (e.g.
on the integral length scale l0). This can be understood using a simple
schematic diagram (Figure 9.53). Although both flame fronts shown have
different length scales, the total areas of the laminar flame fronts are the
same, and hence the turbulent flame velocities are the same.

Problems occur in this simple model if the mixture is too rich or too lean
(outside the limits of combustibility, to be determined from Figure 9.55 by
extrapolation). Then the laminar flame velocity vL is zero, and, thus there is
no flame, although the model incorrectly predicts vT = v′.

Fig. 9.53. Schematic representation of two flame fronts with different length scales
but the same area
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Fig. 9.54. Dependence of the turbulent flame velocity on the turbulence intensity,
combustion of a C3H8-air mixture; gray areas: quenching region

Flame Quenching

With increasing turbulence intensity v′ we observe a maximum of the turbu-
lent flame velocity vT that is caused by local flame quenching. This has been
shown by D. Bradley and coworkers (1984), (1993) in a combustion vessel
with C3H8-air at intensive turbulence generation by many strong ventilators
(Figure 9.54). An explanation of this behavior is immediately obtained by
recalling the flamelet idea (quenching at sufficiently high strain).

Figure 9.55 shows the strain necessary for quenching as a function of the
equivalence ratio Φ for a pair of counterflow methane–air premixed flames.
Different reaction mechanisms are investigated to ensure that the discrepancy
between measurement and simulation is not due to the chemistry model. Ex-
perience shows that the small energy losses, which are difficult to quantify in
experiment, may be responsible for the discrepancy (G. Stahl and J. Warnatz
(1991)).

Fig. 9.55. Dependence of the necessary strain rate aq for flame quenching on the
mixture composition for propane-air flames
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These measurements and simulations in laminar conditions together with
a flamelet model permit the quenching observed in turbulent premixed flames
to be explained.

Furthermore, calculations show that the characteristic time for flame
quenching is only a fraction of a millisecond. The contraction of the gas
caused by sudden quenching is considered to be the source of flame noise
(together with the resonance conditions corresponding to the geometry) (G.
Stahl and J. Warnatz (1991)).

As Figure 9.55 shows, lean (and also rich) mixtures are quenched particu-
larly easily. This is one of the reasons why unexpectedly strong hydrocarbon
emissions are observed in lean combustion engines. One might have assumed
naively that the excess of oxygen would lead to complete combustion of the
fuel.

9.4 Hypersonic Flows

9.4.1 Physical-Chemical Phenomena in Re-Entry Flight

A re-entry flight begins in the outermost layers of the atmosphere (Figure
9.56). In this part of the flight, the low densities mean that we are in the
free-molecular-flow regime. In this gas kinetic regime the Boltzmann equation
(5.64) with the distribution function (5.65) must be solved. With decreasing
flight altitude and increasing air density, the mean free path of the gas parti-
cles is reduced. It is only at lower air layers that we can speak of a continuum
flow. In this regime of the re-entry trajectory, the maximum heat transfer
of the re-entry flight occurs and then the laminar-turbulent transition in the
boundary layer of the vehicle (see H. Oertel (1994), (2005)).

The characteristic number that is decisive in determining the region of
validity of the continuum-mechanical description is the Knudsen number
Kn = λ/L, the ratio of the mean free path λ in the gas to a characteris-
tic length L of the vehicle. The continuum is characterized by Kn ≤ 10−2.
For example, the mean free path at an altitude of 90 km is about 10−3 m, so

Fig. 9.56. Re-entry trajectory
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that the Navier–Stokes equations can be used to describe the flow field past
a body with a length of 0.1 m or more.

These conditions are very difficult to attain experimentally. Therefore, nu-
merical aerothermodynamics, based on the Navier–Stokes equations of con-
tinuum mechanics in combination with detailed physical-chemical models, is
a useful tool in predicting characteristic flow quantities such as heat flux,
pressure distribution, and friction coefficient.

We can classify the physical-chemical models by considering the phenom-
ena along the stagnation streamline in front of the vehicle. The supersonic
flow causes a shock wave to form, resulting in a sharp increase in pressure,
density, and temperature, related to a reduction in the flow velocity. This
increase takes place on a length scale comparable with the mean free path of
the molecules. In the shock wave, the high-velocity flow with Mach numbers
M ≫ 1 passes over to a high-enthalpy flow with M < 1.

In contrast to the translational degrees of freedom, the vibrational and
rotational degrees of freedom of the molecule and the composition of the
air past the shock initially experience no change. However, directly behind
the shock wave, triggered by collisions of particles with higher translational
temperature, the vibrational and rotational degrees of freedom are excited,
and chemical reactions occur. Typical translational temperatures behind the
shock wave that trigger these real gas phenomena are detailed below:

T < 400 K no real gas effects

400 K < T < 2000 K O2-vibrational excitation

600 K < T < 3000 K N2-vibrational excitation

2000 K < T < 5000 K O2-dissociation

4000 K < T < 10000 K N2-dissociation

1000 K < T < 5000 K NO-formation

3000 K < T < 8000 K NO-dissociation

Which of the above effects will actually occur depends on the actual re-
entry trajectory of the vehicle. This determines the maximum translational
temperature. As well as the processes presented already in the flow past
re-entry bodies, there are additionally heterogeneous physical-chemical pro-
cesses on the surface of the body that come under the collective term gas–wall
interaction. In flows that have a high degree of dissociation close to the sur-
face of the body, reactive interactions such as erosion and catalytic reactions
are important. In order to predict the maximum heat load occurring on a
re-entry body, models of the gas–wall interaction are essential.

In addition to these reaction-kinetic phenomena, mass, momentum, and
energy transport occur in the entire flow, in particular in the boundary layer
directly on the surface of the re-entry body. These processes are described by
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transport models with which the diffusion coefficient, viscosity, and thermal
conductivity can be determined. If the velocity in re-entry flight is so high that
temperatures considerably above 5000 K occur in the shock wave, ionization
of the air also occurs.

9.4.2 Chemical Nonequilibrium

The increase of the translational temperature behind the shock wave leads to
chemical reactions. The simplest reaction model is a five-component model
common in the literature (U. Riedel et al. (1993)). The onflowing air contains
oxygen and nitrogen molecules. These are dissociated by the temperature rise
behind the shock wave, and O and N atoms appear, which then form NO
molecules. The following reaction scheme for hot air is obtained. It consists
of three dissociation reactions (R1), (R3), (R5) and two exchange reactions
(R7) and (R9), as well as the associated reverse reactions (R2), (R4), (R6),
and (R8) and (R10):

reaction A β Ea

O2 + M′ −→ O + O + M′ 2.70 · 1019 −1.0 494.0 (R1),(R2)

N2 + M′′ −→ N + N + M′′ 3.70 · 1021 −1.6 941.0 (R3),(R4)

NO + M′′′ −→ N + O + M′′′ 2.90 · 1015 0.0 621.0 (R5),(R6)

O + N2 −→ NO + N 1.82 · 1014 0.0 319.0 (R7),(R8)

NO + O −→ O2 + N 3.80 · 109 1.0 173.1 (R9),(R10)

O2 N2 O N NO

M′ 1.00 0.10 2.80 0.10 0.10

M′′ 0.10 1.00 0.10 2.80 0.10

M′′′ 0.05 0.05 1.00 1.00 1.00

with k = A · T β · exp(−Ea/(R · T )). The Arrhenius parameter A is stated in
cm · mol · s and the activation energy Ea in kJ/mol. The symbol M stands
for an arbitrary species present in the reaction system that is involved in the
reaction as a collision partner but that does not itself react.

The dissociation of oxygen takes place directly via the reaction (R1).
Atomic nitrogen, on the other hand, has a triple bond with high bond energy
and associated high activation energy and therefore is mainly formed via the
two exchange reactions (R7) and (R9) and only to a very small degree via
the dissociation reaction (R3). The NO formed in (R7) then decays via the
NO dissociation reaction (R5) into N and O.

How fast and to what extent these reactions take place is a question of
time scales. If the time scale prescribed by the flow is large compared with
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the time scale of the chemical reactions, the chemical reactions take place
so fast that chemical equilibrium occurs. Formation and consumption of the
individual species in this limiting case of infinitely fast reactions are no longer
time dependent.

If the pressure and temperature are given, the equilibrium species con-
centrations are obtained by minimizing the free enthalpy of the system.
The reaction system contains five species and is described according to
Gibbs’s phase law by three linearly independent reaction pairs ((R1),(R2);
(R3),(R4);(R5),(R6)) and two components (N and O). However, we do not
further treat this case here, since in hypersonic flows the flow velocities are
typically so large that the above assumption about the time scales no longer
leads to sufficiently precise predictions of the flow state.

The typical situation in hypersonic re-entry flights is rather that the time
scale prescribed by the flow is comparable with the time scale of the chemical
reactions. Therefore, the flow is in chemical nonequilibrium, which has to be
taken into account in the physical-chemical model of the flow. In addition,
such flows are frequently also in thermal nonequilibrium (see Section 9.4.3).

The rates of formation (∂Zi/∂t)chem (rate of change of the mass fraction)
of each species in a fluid element is therefore time dependent. Assuming
that the temperature and the pressure of the fluid element are known, they
can be calculated from the rate equations presented in Section 9.1.3, a set of
coupled ordinary differential equations. In general, when the temperature and
pressure in the flow field are not only dependent on the chemical reactions
but also change because of the mass, momentum, and energy transport, the
mass fractions must be calculated coupled with the flow. However, when this
coupling is neglected, useful insights into the rate-determining reactions and

Fig. 9.57. Development of the mole fractions and the temperature for the reaction
mechanism of hot air
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the typical time scales of such a system are found, a technique known in the
literature as a volume-averaged model or a zero-dimensional model.

In order to set up the equations for the rate of change of the mass fractions
of the five components, Arrhenius parameters have to be specified for each
reaction from (9.21). The parameters as evaluated by U. Riedel (1993) are
the experimentally determined values for the reaction rates as functions of
the temperature, as available in the literature.

Figure 9.57 shows the change of the mole fractions of O2, O, N2, N, and
NO as functions of the time calculated with this reaction mechanism for an
initial translational temperature behind the shock wave of T = 17500 K. It
is assumed that the initial composition of the air is 79% N2 and 21% O2.
Trace gases are not taken into account. The total dissociation of the oxygen
molecules, completed after about 0.5 ms, is clearly seen. In contrast, only a
small part of N2 has dissociated. NO passes through a maximum at 4.1 µs.
The temperature then decreases most sharply if the change of the O and N
mole fractions has a maximum, since then the greatest amount of energy is
required for dissociation.

9.4.3 Thermal Nonequilibrium

As well as chemical reactions, there are also vibrational and rotational ex-
citations of the molecules by collisions with particles of higher translational
energy behind the shock wave. This can result in completely different behav-
ior of the physics and chemistry of the dissociated air than that predicted by
thermal models. Possible processes are the energy exchange between vibra-
tion and translation (known as V-T energy transfer), vibration and rotation
(V-R energy transfer), or vibration levels (V-V energy transfer).

Fig. 9.58. Population of ground state and selected excited states of the oxygen
molecule as a function of time
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All these possible interactions can be described in principle by so-called
master equations, which relate the change of the population number of an
internal degree of freedom to the transition probability of the V-T, V-R, and
V-V energy transfer of the O2, N2, and NO molecules. Since the rotational
degrees of freedom attain thermal equilibrium quite rapidly, on average only
three to four collisions are necessary, we can assume a common translational–
rotational temperature. On the other hand, vibrational equilibrium can take
considerably longer to be attained, and this (thermal) nonequilibrium situa-
tion must be taken into account in the description of the hypersonic flow.

One possible approach in modeling the vibrational excitation is to select
the molecules according to their excited state. All excitation and relaxation
processes associated with thermal nonequilibrium are thus mapped onto a
detailed reaction mechanism of state-selected molecules O2(v) and N2(v),
where v stands for the possible excited vibrational states and is counted from
the ground state with v = 0 up to v = vmax directly below the dissociation
limit of the molecule. If we describe the energy level that is occupied by
vibrational excitation with the model of the anharmonic oscillator

E(v) = h · c ·
[
ν0 · (v +

1

2
) − ν0 · xe · (v +

1

2
)2
]
,

for nitrogen we obtain vN2
max = 46 and for oxygen vO2

max = 36. Here ν0 is
the frequency of the ground oscillation, ν0 · xe the anharmonicity constant, c
the speed of light, and h Planck’s constant. This splitting is not carried out
for NO, since it appears only at low concentrations. Similarly, the rotational
excitation is not taken into account (assumption of a common rotational–
translational temperature).

Fig. 9.59. Comparison of the temporal behavior of the mole fraction of the O
atoms, NO molecules, and the temperature
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Within the framework of this approach the difficulty arises of determin-
ing all detailed rate coefficients for the state-selected species. Experimental
results in the literature are generally based only on the lower excited states.
Model assumptions are necessary to be able to state the Arrhenius param-
eter for dissociation and exchange reactions, as well as for the dependence
of the V-T energy transfer on the vibrational quantum number v. In total,
using this approach described in detail in U. Riedel et al. (1993), a reaction
mechanism of 87 species and 502 reactions is obtained.

Figure 9.58 shows the onset of selected vibrational states and the simul-
taneous reduction in occupation of the ground state. All excited states pass
through a maximum at a time between 1 and 10 µs, which is later, the
higher the excited state. It is assumed that initially, all oxygen and nitrogen
molecules are in the ground state, since at a typical free-stream temperature
of air of about 200 K only a small fraction of all molecules are in vibrationally
excited states. At this temperature the ratio of the O2 molecules in the first
excited state to those in the ground state is about 10−5.

Fig. 9.60. Left: mass fraction of O2 calculated with the nonthermal reaction mecha-
nism for the flow past a circular cylinder of radius 1 m with a Mach number M = 25
(U. Riedel et al. (1993))
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Figure 9.59 shows a comparison of the models. The heavy lines show the
development of the mole fraction of O2 and the temperature, calculated with
the model in U. Riedel et al. (1993). The initial temperature for this case is
22000 K at a pressure of 25.6 hPa. After 1 ms the system has cooled to a tem-
perature of 7300 K because of the energy used for the reaction and excitation
processes. For comparison, the concentration and temperature development
from Figure 9.57, obtained with the assumption of thermal equilibrium, is
also shown. The two different initial temperatures were selected for this com-
parison so that for t → ∞ the same translational temperature is attained.
In thermal nonequilibrium the development of the concentration is slowed
down. This is indicated clearly by the later rise in the O mole fraction due
to delayed dissociation of the oxygen molecules and by the later maximum
in the development of the NO mole fraction. In a thermal chemistry model
this occurs at 3 µs and in a nonthermal chemistry model only at 9 µs.

Up until now, in the discussion of chemical and thermal nonequilibrium
in hypersonic flows it was assumed that the temperature and the pressure of
each fluid element are known. However, these two quantities are obtained only
from a coupled investigation of the species masses, momentum, and energy
balances based on the Navier–Stokes equations.

The left-hand side of Figure 9.60 shows the distribution of O2 in the flow
past a circular cylinder with radius 1 m at Mach number M = 25, calculated
with the nonthermal model. The Navier–Stokes equations (see Section 5.4.7)
are solved. The free-stream velocity is 7200 m/s at a temperature of 205 K.
The mass fraction is determined by summation of all vibrationally excited
states O2(v). In both the O2 and the N2 molecules the occupation of ex-
cited states is lower than that of a Boltzmann distribution in the presence of
thermal equilibrium. This means that the lower occupation of vibrational de-
grees of freedom assumes less energy, and the translational temperature in the
shock front rises to 15330 K, which is about 15% higher than the temperature
calculated with the thermal model. In addition, the shock stand-off distance
is larger. The right-hand side of the figure shows the difference in temper-
ature distributions calculated with the nonthermal model and the thermal
model. When an assumption of thermal equilibrium is made, a mass fraction
of 6.1 · 10−2 leads to the formation of about twice as many NO molecules as
in the thermal reaction scheme. A consequence of this in the assumption of
thermal equilibrium is the steeper rise in N atoms in the region behind the
shock wave. However, the values in the region directly in front of the re-entry
body no longer differ.

9.4.4 Surface Reactions on Re-entry Vehicles

In recent years, much research has been carried out on materials that could
be used as heat shields for re-entry vehicles. These species include RCG
(reaction cured glass), investigated for the American Space Shuttle. This
consists of 94% SiO2, 4% B2O3, and 2% SiB4 and has a strong temperature
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dependence. At low temperatures the recombination probability is small, but
it increases greatly with rising temperature (O. Deutschmann et al. (1995)).
At the temperatures occurring on re-entry, the recombination of O and N
atoms on the surface contributes considerably to the heat load of the vehicle.

In order to predict the heat transfer on the vehicle it is necessary to model
the gas–wall interaction in addition to the pure gas phase reactions. The con-
cept of elementary reactions is an adequate description of the recombination
and the associated heat release. This will now be applied for both reactions in
the gas phase as well as for reactions on the surface. The gas phase reaction
mechanism is to be extended by the following surface reactions on the vehicle
surface:

reaction A Ea S0

O + (s) −→ O(s) 0.1

N + (s) −→ N(s) 0.1

O(s) −→ O + (s) 5.0 · 1011 200.0

N(s) −→ N + (s) 7.3 · 1011 215.0

O2(s) −→ O2 + (s) 1.0 · 1012 10.0

N2(s) −→ N2 + (s) 1.0 · 1012 10.0

O + O(s) −→ O2 + (s) 6.0 · 1013 60.0

N + N(s) −→ N2 + (s) 6.0 · 1013 60.0

O(s) + O(s) −→ O2(s) + (s) 2.0 · 1019 160.0

N(s) + N(s) −→ N2(s) + (s) 7.0 · 1017 160.0

Here A is given in cm · mol · s, Ea in kJ/mol, and the sticking coefficient
S0 is dimensionless. This detailed reaction scheme of the surface processes
comprises the adsorption and desorption of nitrogen and oxygen atoms as
well as the desorption of the O and N atoms and the O2 and N2 molecules
attached to the surface. The adsorption of the molecular oxygen and nitrogen
is neglected, since the high temperatures mean that these atoms immediately
desorb again. The interaction of NO with the surface is not taken into account
in the model, since no experimental data are available.

The adsorption of O and N atoms is described via sticking coefficients,
which state the probability that a particle will be adsorbed out of the gas
phase onto the surface. With the formalism described by O. Deutschmann et
al. (1995), the sticking coefficients can be transformed into Arrhenius form,
leading to a pre-exponential factor dependent on the coverage of the surface.

The actual recombination step of O and N atoms to the associated
molecule can take place via two possible reaction paths:
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1. Reaction of an O atom (N atom) of the gas phase with an O atom (N atom)
adsorbed onto the surface and subsequent desorption of the O2 molecule (N2

molecule). This path is called the Eley–Rideal reaction in the literature and
is associated with a lower energy accommodation.

2. Reaction of two O atoms (N atoms) adsorbed on the surface together and
subsequent desorption of the O2 molecule (N2 molecule). This path is called
the Langmuir–Hinshelwood reaction in the literature and is associated with
a higher energy accommodation.

The energy that contributes to heating of the surface depends both on
the number of recombined atoms and on the amount of energy released that
is accommodated by the surface. In order to quantify these two effects we
define the recombination coefficient as the ratio

γ =
jreactive
jtotal

of the total mass flux of the atoms striking the surface jtotal and the mass flux
of the recombined molecules jreactive. The energy accommodation coefficient
β is defined by

β =
jq

jreactive ·∆Dh
,

with the heat flux to the surface jq and ∆Dh the specific dissociation
enthalpy. The energy flux to the surface caused by recombination processes
therefore depends on the product γ · β. Both γ and β are temperature de-
pendent. Both coefficients can be calculated using the reaction-kinetic model
described above. Comparison with experimental heat flux measurements (O.
Deutschmann et al. (1995)) indicates the validity of the surface reaction
scheme.

Figure 9.61 shows the development of O2, N2, and the temperature in
the shock wave and along the surface of a semicylinder with radius 1 m
in a flow (free-stream velocity 7200 m/s, free-stream temperature 205 K).
The x values in the range −1.5 m ≤ x ≤ −1.0 m correspond to the line of
symmetry in front of the body. Points on the surface have an x coordinate in
the range −1.0 ≤ x ≤ 0.0. The influence of the surface reactions on the wall
temperature and the species concentrations in the region close to the wall
can clearly be seen.

Recombination of nitrogen atoms at the wall causes an increase in N2

molecules in the region directly in front of the surface (x = −1.0 m). The
same effect can be observed for O2, but at a lower level, since the degree of
dissociation of O2 is much higher than that of N2. If the gas–wall interaction
is neglected, we obtain the conditions shown in the lower part of Figure
9.59, with a decrease in nitrogen and oxygen molecules close to the wall.
In both models an increase in oxygen and nitrogen molecules is observed
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downstream along the body. This is due to the decreasing temperature and
increased recombination of the atoms, independent of wall effects.

The temperature in the stagnation point rises due to the released heat of
recombination to 1920 K and thus lies about 80 K above the result obtained
when the gas–wall interaction is neglected.

Fig. 9.61. Mass fractions of O2 and N2 and temperature along the symmetry
line and along the surface. Above: with detailed reaction model of the gas–wall
interaction; below: without gas–wall interaction



10. Flows in the Atmosphere and in the Ocean

10.1 Fundamentals of Flows in the Atmosphere and in
the Ocean

10.1.1 Introduction

The flows in Earth’s atmosphere (air flows) and in the oceans (oceanic cur-
rents) do not differ in principle from those flows in technical areas treated in
the previous chapters. These are motions of gases (atmosphere) and liquids
(ocean) that are acted on by gravity and are determined by pressure and fric-
tional forces. The atmosphere and the oceans are part of a rotating system
in which Coriolis and centrifugal forces also act.

From this point of view, a common treatment of flows in the atmosphere
and in the ocean seems sensible. In fact, the name geophysical fluid dynamics
has come to describe these flows. In particular, we refer to the textbooks of B.
Cushman-Roisin (1994), A. E. Gill (1982), and J. Pedlosky (1994). Indeed,
Ludwig Prandtl, in the original Essentials of Fluid Mechanics, considered
flows in the atmosphere and oceans at several points throughout the book.

In this chapter we point out the essential elements of the geophysical flow
processes in the atmosphere and oceans as discussed by Prandtl. Naturally,
we can present only some elements of this topic, and this chapter in no
way replaces the specialized literature from the areas of meteorology and
oceanography.

10.1.2 Fundamental Equations in Rotating Systems

The fundamental equations for liquids and gases set up in Chapter 5 are also
valid for the fluids in the ocean and the atmosphere. It is only the material-
specific properties such as density, thermal conductivity, and viscosity of the
medium under investigation that have to be set into the relevant equations.
A new aspect that must be taken into account is that the Earth, with its
atmosphere and oceans, rotates around an axis. The Navier-Stokes equations
(5.18) and Reynolds equations (5.33) - (5.37) in Chapter 5.2 are valid for an
inertial reference frame without acceleration. In meteorology and oceanogra-
phy it has become established to refer the equations of motion to the rotating
reference frame of the Earth.

H. Oertel (ed.), Prandtl-Essentials of Fluid Mechanics,  
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The coordinate transformations necessary to do this are described in detail
in textbooks (e.g. D. Etling (2002), J. Pedolsky (1994)). We now present a
short derivation. We refer to Figure 10.1, that shows a rotating coordinate
system. Here Ω is the vector of rotation of the Earth and r the distance
of the mass point. The magnitude of the rotation vector is defined as the
angular frequency of the Earth’s rotation Ω = 2 · π/T where T is the period
of rotation and so Ω = 2 · π/24 h = 0.727 · 10−4 s−1.

A fixed point on the surface of the Earth, whose position is given by
the vector r, has a velocity relative to the inertial system (indicated in the
following by the index i ) of

(
dr

dt

)

i

= vf = Ω × r . (10.1)

This velocity vf , also called the peripheral velocity, is perpendicular to the
vector of the Earth’s rotation and to the radius vector, and is directed to the
East.

If a particle of air has velocity ve relativ to the surface of the Earth (index
e for coordinate system rotating with the Earth), in the inertial system it has
velocity vi with

vi = ve + vf = ve + Ω × r . (10.2)

The relation between the rate of change of the velocity vector ve in the inertial
system and in the Earth’s system is:

(
dve

dt

)

i

=

(
dve

dt

)

e

+ Ω × ve . (10.3)

In order to obtain the relation between the accelerations in the inertial system
and in the system rotating with the Earth, we apply (10.1) to (10.3)

Fig. 10.1. Components of the Earth’s rotation Ω in a tangential phase (the x
component and the unit vector i into the figure)
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(
dvi

dt

)

i

=

(
dve

dt

)

i︸ ︷︷ ︸
+

(
d

dt
(Ω × r)

)

i︸ ︷︷ ︸

=

(
dve

dt

)

e

+ Ω × ve + Ω ×
(

dr

dt

)

e︸ ︷︷ ︸
ve

+Ω × Ω × r .

Now, dropping the index e for the coordinate system rotating with the Earth,
the relation between the two accelerations reads(

dvi

dt

)

i

=
dv

dt
+ 2 · Ω × v + Ω × Ω × r . (10.4)

The additional terms on the right-hand side of the equation are called the
Coriolis acceleration (2 · Ω × v) and centrifugal acceleration (Ω × Ω × r).

In total, the Navier-Stokes equations (5.20) for an incompressible flow,
and coordinate system rotating with the Earth may be written as

ρ ·
(
∂v

∂t
+ (v · ∇)v + 2 · Ω × v + Ω × Ω × r

)
= f −∇p+ µ ·∆v. (10.5)

For many problems in meteorology and oceanography, description of the mo-
tion in spherical polar coordinates, as would be suitable for the Earth, is not
necessary. Rather, a Cartesian coordinate system is placed on the Earth’s
surface, so that its horizontal coordinates (x, y), with the unit vectors i, j,
form a tangential plane at a certain geographical latitude φ. The vertical co-
ordinate z is then perpendicular to this plane, as shown in Figure 10.1. The
rotation vector Ω can be decomposed in this coordinate system into

Ω = Ω · cos(φ · j) + Ω · sin(φ · k) = f∗ · j + f · k,
where f∗ = Ω · cos(φ) and f = Ω · sin(φ) is called the Coriolis parameter.

Gravity acts in the atmosphere and oceans as a conservative force f in
(10.5):

f = −ρ · g · k = −ρ · ∇Φ,
where g is the acceleration due to gravity g = 9.81 m/s2. This can also be
given by the gradient of the gravitational potential Φ (Φ = g · z). Gravity
acts toward the center of the Earth, and so its component g · cos(φ) points
in the direction of the axis of rotation. The centrifugal force Ω × Ω × r

points outward from the axis of rotation and so opposes gravity. Because the
magnitude of the centrifugal force (Ω2 · r ≈ 3 · 10−2 m/s) is so small, this is
generally neglected in meteorology and oceanography compared to the force
of gravity.

Using the above simplifications, the Navier–Stokes equations (5.20) can
be written for a tangential plane as follows:

∂v

∂t
+ (v · ∇)v + f · k × v = −1

ρ
· ∇p−∇Φ+ ν ·∆v, (10.6)
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where ν = µ/ρ is the kinematic viscosity.
The additional Coriolis force in the rotating reference frame actually ought

to appear in all equations of motion, since all flow processes, including those
in technology, take place on the rotating Earth.

The Rossby number has become established as a measure for the relative
weight of the Coriolis force. This describes physically the ratio of inertial
force v · ∇v and Coriolis force f · k × v. For a flow with a typical dimension
L and a typical velocity U , the orders of magnitude can be estimated:

inertial force∼U2

L
,

Coriolis force∼f · U .

Therefore, the Rossby number is:

Ro =
inertial force

Coriolis force
=

U

f · L. (10.7)

A large Rossby number (Ro ≫ 1) therefore means that the Coriolis force
may be neglected compared to the inertial force in the equations of motion
(10.6). In the opposite case (Ro ≪ 1) the Coriolis force dominates and may
not be neglected.

The following examples clarify this. Here the value f = 10−4 s−1 was used
for the Coriolis force, as holds for a latitude of about 45◦:

flow dimension velocity Ro

cyclone 103 km 10 m/s 0.1

land–sea wind 50 km 5 m/s 1

dust devil 50 m 5 m/s 103

bathtub vortex 50 cm 5 cm/s 103

It can be seen from this table that the Coriolis force is not important
for small-scale atmospheric flows and for technical flows. However, it must
be taken into account in processes with large spatial dimensions (cyclones).
This will become clear in the following sections, where some atmospheric and
oceanic flow processes are described.

Equation (10.6) forms the basis for the formal description of the flow
processes in the atmosphere and oceans. In addition, the continuity equation
and the energy equation, as have already been treated in Chapters 5.1 and
5.3, are required. A summary of the equations is found in Section 10.4.1.

In addition, we now discuss the concept of potential temperature fre-
quently used in meteorology. This is obtained from the first law of thermody-
namics for an adiabatic process. In this case, the pressure p and temperature
T are related by

T (p0)

T (p)
=

(
p0

p

)R
cp
. (10.8)
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Here p0 is a reference pressure, generally set to p0 = 1000 hPa. The potential
temperature θ is the temperature T (p0) that an air packet with temperature T
and air pressure p assumes when its pressure is changed to p0 by an adiabatic
process:

θ = T ·
(
p0

p

)R
cp
. (10.9)

Here R = 287 J/kg/K is the gas constant for dry air, and cp = 1005 J/kg/K
is the specific heat at constant pressure. The potential temperature is a con-
served quantity for adiabatic processes, i.e. dθ/dt = 0, which is why it is
frequently used in the description of atmospheric processes.

10.1.3 Geostrophic Flow

In this section we consider the effect of the Coriolis force on flows in the
atmosphere and oceans. We assume an inviscid, horizontal flow (subscript
h). Therefore, (10.6) yields

dvh

dt
+ f · k × vh = −1

ρ
· ∇hp. (10.10)

A fluid particle can be accelerated in the horizontal plane by the Coriolis
force and the pressure force. However, if the flow has no acceleration, i.e.
dvh/dt = 0, in equilibrium we obtain

f · k × vh = −1

ρ
· ∇hp.

Transforming this, we obtain the velocity vh:

vh =
1

ρ · f · k ×∇hp. (10.11)

This is called the geostrophic velocity (or geostrophic wind in the atmosphere)
and is denoted with the subscript g (vg). As can be seen from (10.11), the flow
direction is parallel to the lines of equal pressure (isobars) or perpendicular
to the pressure gradient. This is shown in Figure 10.2. The initially surprising

Fig. 10.2. Relation between the pres-
sure field p, the pressure force D, Coriolis
force C , and the geostrophic velocity vg
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fact that a flow takes place perpendicular to the (pressure) force acting is due
to the fact that in a rotating reference frame the Coriolis force causes a com-
pensating force to appear that can lead to equilibrium (so-called geostrophic
equilibrium). According to the discussion in Section 10.1.2, this is possible
when the Rossby number satisfies Ro → 0. Because Ro = U/(f ·L), the flow
process must take place in large spatial dimensions. In fact, an approximately
geostrophic flow is observed in, for example, atmospheric high-pressure and
low-pressure regions. Here the wind blows approximately parallel to the iso-
bars, counter-clockwise in a low-pressure region and clockwise in a high pres-
sure region (Figure 10.18), as can easily be checked on a weather map of
the northern hemisphere. In the southern hemisphere the Coriolis parameter
f = 2 ·Ω · sin(φ) becomes negative. For this reason the wind blows clockwise
around a low. Therefore, the low air pressure lies to the right of the wind
direction.

The geostrophic flow law (10.11) is valid for all layers of the atmosphere
and of the ocean. Now observations have shown that the geostrophic wind in
the atmosphere changes with altitude (typically, there is an increase in the
wind velocity with height, see also Figure 10.21 in Section 10.2.5). Differ-
entiating the wind law (10.11) with respect to the vertical coordinate z and
using the equation of state for gases and the static fundamental equation (see
Sections 10.2.4 and 10.2.5) leads to the following relation:

∂vg

∂z
=

g

f · T · k ×∇T. (10.12)

In (10.12), g is the gravitational acceleration, f is the Coriolis parameter, and
T is the air temperature. This equation is also known as the thermal wind
relation, since the change of the geostrophic wind with altitude depends on
the horizontal temperature gradient. The integral of (10.12) is called the
thermal wind vT :

vT = vg(z2) − vg(z1) =

z2∫

z1

(
g

f · T · k ×∇T
)
· ∂z.

The thermal wind vT can be calculated with knowledge of the temperature
field T (x, y, z). Generally, a temperature is assumed that is independent of
height between two altitudes z1 and z2 for simplicity, so that the following
relation for the thermal wind is obtained:

vT =
g

f · T · k ×∇T · (z2 − z1). (10.13)

This thermal wind relation is very important for global atmospheric circula-
tion (see Section 10.2.5). Among other things, it explains that between regions
close to the equator and polar regions the temperature contrast practically
always causes westerly winds in higher atmospheric layers.

On the other hand, the thermal wind arises from the equilibrium between
the horizontal pressure force and the Coriolis force. An equilibrium can be
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both stable and unstable, as will be seen for convection and gravity waves
in Sections 10.2.3 and 10.2.4. In the case of the thermal wind, in certain
circumstances (e.g. large horizontal temperature gradient) the pressure and
Coriolis forces can be brought out of equilibrium leading to a so-called baro-
clinic instability, with the consequence that low-pressure regions (cyclones)
occur at Western European latitudes (see Section 10.2.5).

10.1.4 Vorticity

The flow processes in the atmosphere and oceans can be described using the
equations of motion (10.6) and the continuity equation and energy equation
introduced in Chapters 5.1 and 5.3. On large spatial scales, the flow processes
are dominated by cyclonic and anticyclonic vortices with vertical axes, the
low- and high-pressure regions (see Section 10.2.5). For this reason, in addi-
tion to the above equations, other equations are also used that describe the
vortex strength of the geophysical flows. These are related to the concepts of
vorticity and potential vorticity.

The vorticity (denoted by ω) is defined as the vertical component of the
velocity rotation:

ω = k · (∇× v) . (10.14)

Since the vorticity describes the vortex strength of flows with respect to an
Earth-fixed reference frame, it is also called the relative vorticity. Considered
from the inertial reference frame, the rotating Earth also has a vorticity,
namely 2 ·Ω or, perpendicular to the tangential plane, the value 2 ·Ω · sin(φ).
The latter is precisely the Coriolis parameter f . The sum of the relative
vorticity ω and the Coriolis parameter f is called the absolute vorticity and
is denoted by η:

η = ω + f . (10.15)

An equation for the rate of change of the absolute vorticity is obtained by
applying the operator k·∇× to the equation of motion (10.6). After neglecting
some terms and using the assumption of inviscid flow, we obtain the following
equation for the absolute or relative vorticity for large-scale atmospheric and
oceanic flow processes:

dη

dt
=

dω

dt
+ β · v = −η · ∇h · vh . (10.16)

Here β is the so-called beta parameter

β =
1

R
· ∂f
∂φ

, (10.17)

with the radius of the Earth r, which states the variation of the Coriolis
parameter f with latitude. In the special case of a two-dimensional, incom-
pressible flow in the x-y plane, instead of (10.16) we obtain
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dη

dt
=

dω

dt
+ β · v = 0 . (10.18)

With these assumptions, the absolute vorticity is a conserved quantity. Thus

η = ω + f = const.

Because of the variation of the Coriolis parameter f with latitude, according
to (10.18) the relative vorticity of a flow must increase or decrease as we move
north or south respectively. This effect of the spherical shape of the Earth on
the Coriolis force is also called the beta (β) effect (from 10.17). This leads to
the formation of large-scale oscillations in the meridional direction (Figure
10.3), and is observed in the atmosphere and oceans as so-called Rossby waves.
This is formally obtained from the linearized form of the vorticity equation
(10.18) with the assumption of a constant basic flow u (in the west–east
direction) for the simplified perturbation vorticity ω′ = ∂v′/∂x. With a wave
ansatz of the form

v′(x, t) = v0 · cos(a · (x− c · t))
(wave number a = 2 · π/λ, wavelength λ, phase velocity c), the linearized
vorticity equation leads to the following dispersion relation for the phase
velocity of the Rossby waves:

c = u− β

a2
= u− β · λ2

4 · π2
. (10.19)

The wavelength of steady waves (i.e. c = 0) can be estimated from the disper-
sion relation (10.19). For typical flow velocities in the atmosphere and oceans
we obtain approximately

atmosphere: u ≈ 15 m/s , λ ≈ 6000 km ,

ocean: u ≈ 0.5 m/s , λ ≈ 1100 km .

Rossby waves are therefore large-scale flow processes in the atmosphere
and in the ocean. Steady Rossby waves are stimulated by mountain ranges
stretching in the north–south direction. An example of atmospheric Rossby
waves is shown in Figure 10.4.

As well as vorticity and the vorticity equation, in recent years the concept
of potential vorticity has come to be widely used in the areas of meteorology

Fig. 10.3. Path of a fluid particle under
the β effect. Regions A and C: v > 0, B:
v < 0



10.1 Fundamentals of Flows in the Atmosphere and in the Ocean 601

and oceanography. The potential vorticity is generally denoted by PV and is
defined as the product of the absolute vorticity η and the vertical gradient
of the potential temperature ∂θ/∂z:

PV =
1

ρ
· ∂θ
∂z

· η . (10.20)

For the case of adiabatic processes, we can derive an equation for the potential
vorticity from the vorticity equation (10.16) and the first law of thermody-
namics (H. Ertel (1942)).

d

dt

(
1

ρ
· ∂θ
∂z

· η
)

= 0 . (10.21)

This equation is valid for large-scale three-dimensional adiabatic flow pro-
cesses. Here the potential vorticity is a conserved quantity.

In oceanography a modified form of the potential vorticity is frequently
used, valid for barotropic flows:

PV =
η

H
, (10.22)
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Fig. 10.4. Large-scale steady waves at an altitude of about 5 km in the northern
hemisphere. The formation of a lee-side trough east of the Rocky Mountains can
easily be seen
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Fig. 10.5. Trajectories of fluid particles in the flow over a two-dimensional moun-
tain (A). The influence of the divergence effect and the β-effect on the vorticity
(10.12) causes the formation of a trough in the lee (B)

where H is the depth of a column of water. The corresponding vorticity
equation reads

d

dt

( η
H

)
= 0 . (10.23)

Conservation of the potential vorticity in the form (10.21) or (10.23) causes
another large-scale phenomenon besides the formation of Rossby waves,
namely, the lee-side trough. This is the formation of a trough (region of rel-
atively low pressure) on the lee side of mountains running in a north–south
direction. This is sketched in Figure 10.5. Because of the cross-sectional con-
traction close to the mountains, there are velocity divergences and conver-
gences. As stated in the vorticity equation (10.16), this causes a change in
the relative vorticity ω, which, together with the β-effect (equation (10.17)
and Figure 10.3), leads to the formation of the lee-side trough.

10.1.5 Ekman Layer

In Section 10.1.3 geostrophic flow was derived as the equilibrium between
pressure force and Coriolis force. In this section we retain the restrictions to
horizontal acceleration-free flow but permit the action of a third force, the
frictional force. The equations of motion now read

f · k × vh = −1

ρ
· ∇hp+ ν · ∂

2vh

∂z2
. (10.24)

With the geostrophic wind relation (10.11) the pressure force may be replaced
with f · k × vg, and hence

f · k × (vh − vg) = ν · ∂
2vh

∂z2
,

or, with the velocity components u and v,
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−f · (v − vg)=ν ·
∂2u

∂z2
, (10.25)

f · (u − ug)=ν ·
∂2v

∂z2
. (10.26)

From the relations (10.25) and (10.26) and with suitable boundary conditions,
we can calculate the vertical dependence of the flow components u(z) and
v(z). We first consider an example for the atmosphere. On the ground, the
standard no-slip condition holds:

z = 0 : u = v = 0 . (10.27)

There is no fixed edge to the top of the atmosphere. However, it can be
assumed plausibly that the effect of the fixed ground compared to the friction
term becomes smaller, the further one is from the edge. For great heights
(formally for z → ∞), the flow is to match the geostrophic flow:

z → ∞ : u = ug , v = vg , (10.28)

Equations (10.25) and (10.26) together with the boundary conditions (10.27)
and (10.28) can be solved analytically. This was first done by the Swedish
oceanographer V. W. Ekman in the year 1905. For simplicity, we orient the
coordinate system so that the geostrophic wind is in the x direction, and
hence vg = (ug, 0). The solution reads

u(z)=ug ·
(
1 − exp

(
− z

D

)
· cos

( z
D

))
, (10.29)

v(z)=ug · exp
(
− z

D

)
· sin

( z
D

)
, (10.30)

with

D =

√
2 · ν
f

. (10.31)

The length D (10.31) is called the Ekman length.
In order to better represent the change of direction of the wind with

altitude, a so-called hodograph is frequently used, where the velocity vectors
are projected onto the u-v plane. This is shown in Figure 10.6. As well as the
increase in the magnitude of the velocity, a rotation of the wind with altitude
toward the geostrophic wind direction is also seen. For altitudes z > π ·D the
hodograph is a spiral, also known as the Ekman spiral. Clearly, the deviations
of the true wind vh from the geostrophic wind vg for z > π ·D are quite small,
which is why the layer below π ·D is also known as the Ekman boundary layer
or, for short, Ekman layer. This is a viscous boundary layer above a fixed
base in a rotating system.

The situation is slightly different for the ocean. Here we consider the
question of which flow occurs in the sea when no large-scale pressure gradient
is present (geostrophic flow) under the effect of the wind shear stress on the
surface. The fundamental equations then read
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Fig. 10.6. Hodograph representation of the wind distribution in the atmospheric
Ekman layer according to (10.29)–(10.31) for the case |vg | = 10 m/s, f = 10−4 s−1,
ν = 10 m2/s, vg = geostrophic wind

−f · v = ν · ∂
2u

∂z2
, f · u = ν · ∂

2v

∂z2
, (10.32)

For the boundary conditions we set

z = 0 :
τx
ρ

= ν · ∂u
∂z

,
τy
ρ

= ν · ∂v
∂z

, (10.33)

z → −∞ : u = v = 0 . (10.34)

Here τx and τy are the components of the shear stress caused by the wind
acting on the surface of the water.

The solution of this equation is again due to V. W. Ekman. For the case
in which the wind shear stress acts in the y direction (i.e. τx = 0), it reads

u(z)=
τy

ρ ·
√
ν · f · exp

( z
D

)
· cos

( z
D

+
π

4

)
, (10.35)

v(z)=
τy

ρ ·
√
ν · f · exp

( z
D

)
· sin

( z
D

+
π

4

)
, (10.36)

Fig. 10.7. Hodograph of the flow relations in the oceanic Ekman layer
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Here z is downward negative.
The hodograph of the flow in the sea according to (10.35) and (10.36)

is shown in Figure 10.7. Again an Ekman spiral is seen, similar to that in
Figure 10.6. What is surprising in this solution is that the oceanic flow close
to the surface is oriented 45◦ to the right of the wind shear stress acting. (V.
W. Ekman observed this phenomenon on board the research ship Frahm, and
this led him to derive the equations.)

In order to determine the vertical extension H = π · D of the Ekman
boundary layer in the atmosphere and ocean, we insert the respective values
of the kinematic viscosity (air: ν = 0.15 cm2/s, water: ν = 0.01 cm2/s), and
obtain for f = 10−4 s−1

atmosphere : H = 55 cm ,

ocean : H = 15 cm .

These values are far smaller than those observed. In fact, the vertical ex-
tension of the Ekman layer in the atmosphere is about 1000 m and in the
ocean about 50 m. The reason for the apparent discrepancy lies in the fact
that the atmospheric and oceanic boundary layers are turbulent, and there-
fore the turbulent diffusion coefficient νt instead of the molecular kinematic
viscosity ν must be used in equations (10.25), (10.26), and (10.32), where
νt ≈ 10 m2/s for the atmosphere and νt ≈ 0.1 m2/s for the ocean.

A further deficiency of the Ekman solution compared to observations is the
large angle of deviation of 45◦ between the ground wind and the geostrophic
wind, or between the wind shear stress and the surface flow. This is be-
cause the turbulent diffusion coefficient is not a material constant, but rather
changes with height. Numerical solutions of the Ekman equations with vari-
able diffusion coefficient yield angles of deviations around 20◦, in agreement
with observations. In fact, L. Prandtl (1949) in the third edition of his book
presented an analytical solution for a turbulent Ekman layer (see Section V.9
of the original work) that describes the observations quite closely.

10.1.6 Prandtl Layer

The Ekman layer described in the previous section describes the vertical
dependence of the flow in the entire atmospheric or oceanic boundary layer.
Close to the surface of the Earth, conditions have been investigated closely
in numerous field experiments, and the concept of a surface boundary layer,
also called the Prandtl layer, has been introduced. In short, it is assumed
that the turbulent shear stress in the Prandtl layer is constant with respect
to changes in altitude:

τ(z) = τ0 = −ρ · w′ · v′

h = ρ · u2
∗ . (10.37)

The quantity u2
∗ = |w′ · v′

n| is called the friction velocity. With the usual
gradient ansatz for turbulent flows
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w′ · v′

h = −νt ·
∂vh

∂z

and the Prandtl mixing length ansatz for the turbulent diffusion coefficient
νt = k · u∗ · z, with the von Kármán constant k = 0.4, and with the choice of
coordinate system v = (u, 0), on integrating the wind profile we obtain

u(z) =
u∗
k

· ln
(
z

z0

)
. (10.38)

This relation is known by the name logarithmic wind law (4.82). The height
z0 occurring in the logarithm is called the roughness length and is a mea-
sure of the roughness of the ground (e.g. sand surface: z0 = 0.1 mm, grass:
z0 = 5 cm). The logarithmic wind profile has been confirmed by numerous
measurements and is valid for approximately the lowest 20 − 50 m of the
atmosphere. A similar law is also found in technical flows past rough plates
or in pipes (wall law, Section 4.2.5).

One feature of the atmospheric Prandtl layer is the general simultane-
ous appearance of a vertical temperature gradient that leads to a stratified
shear flow. In order to determine the effect of the temperature layering on
the wind profile, the so-called similarity theory of A. S. Monin and A. M.
Obukhov (1954) has come into use in the last decades. This states that suit-
able normalized velocity gradients in the Prandtl layer are universal:

k · z
u∗

· ∂u
∂z

= φ
( z
L

)
. (10.39)

The dimensionless similarity function φ depends only on the normalized
height z/L. Here L is the Monin–Obukhov length, which determines the effect

of the temperature layering via the turbulent temperature flux w′ · θ′ :

L = − u3
∗

k · g
θ0

· w′ · θ′

. (10.40)

The function φ has been determined from numerous field measurements. A
usual form is, for example,

φ = 1 + 5 · z
L

,
z

L
> 0 stable stratification ,

φ = 1 ,
z

L
= 0 neutral stratification ,

φ = (1 − 15 · z
L

)−
1
4 ,

z

L
< 0 unstable stratification .

The vertical wind profile in a thermally stratified Prandtl layer is obtained
by integrating (10.39) using the empirical trial solutions for the similarity
function φ(z/L).

In principle, a Prandtl layer with a logarithmic flow profile is also to be
expected in the ocean. However, the layer of the ocean close to the surface
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is generally so greatly disturbed by waves that a velocity law analogous to
(10.38) can generally be found only in particularly favorable circumstances.
More information on boundary layers in the atmosphere and ocean and their
interaction can be found in the monograph of E. B. Kraus and J. Businger
(1994).

10.2 Flows in the Atmosphere

In the following sections we describe examples of individual flow forms in the
atmosphere more closely. Of course, our selection must be restricted to a few
typical phenomena, but it still covers all scales from small-scale dust vortices
up to global atmospheric circulation.

Since the air itself is invisible, the question arises of how to make atmo-
spheric flows visible. Clouds can help, since they naturally trace the flow. Ex-
amples are seen in the photo of the Earth taken by a weather satellite (Figure
10.8). The different atmospheric phenomena seen in the satellite photograph
are explained in the interpretation aid in Figure 10.9. In the following sec-
tions we will discuss these flow forms more closely. Details of the different
small-scale atmospheric phenomena are to be found in the monograph by
B. W. Atkinson (1981), while numerous examples of satellite photographs
and their interpretation with respect to atmospheric flows are given in R. S.
Scorer (1986).

Extensive discussions of the forms of motion in the atmosphere may also
be found in the German textbooks by H. Häckel (1999), H. Kraus (2000). The
theoretical aspect of atmospheric flows is treated in detail in, for example,
the monographs by D. Etling (2002) and H. Pichler (1997).

In the above books some detail of the treatment of the flow in the atmo-
spheric boundary layer may also be found. In this instance we restrict our-
selves to the remarks on the Ekman layer (Section 10.1.5) and the Prandtl
layer (Section 10.1.6) and so do not treat boundary-layer flows in what fol-
lows. We recommend the special monographs on the atmospheric boundary
layer by J. R. Garratt (1992) and J. C. Kaimal and J. J. Finnigan (1994) to
the interested reader.

10.2.1 Thermal Wind Systems

As already discussed in Section 10.1.2, the motion of the air is caused or in-
fluenced by the pressure force, Coriolis force, viscous force, and gravitational
force. The friction acts to weaken the flow, while the Coriolis force merely
causes a change in direction. Since the gravitational force acts just on vertical
motion, it is only the pressure force that is the actual driving force for hori-
zontal atmospheric motion. We must consider where the pressure forces come
from. Since the atmosphere is an almost ideal gas, the air pressure depends
on the air temperature.
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In what follows, such flow processes as occur from horizontal temperature
differences will be briefly sketched. These are generally known as thermal
wind systems. To this end we consider the circulation in an x-z plane. The
circulation Γ along a closed curve S is defined as

Fig. 10.8. Satellite photograph with different atmospheric phenomena (e.g. ther-
mal convection in the form of rolls and cells, vortex street, gravity waves, cyclones)
made visible by clouds
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Γ =

∮

s

v · ds =

∮

s

vs · ds. (10.41)

Here vs is the velocity component in the direction of the curve vector s. If the
evaluation of the integral in (10.41) yields a positive Γ , then the circulation is
cyclonic (counter-clockwise), while in the case in which Γ < 0, the circulation
is anticyclonic.

The rate of change of the circulation is obtained from the equation of
motion (10.6). In what follows we consider small-scale phenomena, so that
the Coriolis force may be neglected. Friction effects will also not be taken
into account. We obtain

dΓ

dt
=

d

dt

∮

s

vs · ds = −
∮

s

dp

ρ
, (10.42)

or with the equation of state for ideal gases p = ρ · R · T ,

dΓ

dt
= −

∮

s

R · T
p

· dp. (10.43)

In the case of constant air temperature, integration along a closed curve in
(10.43) yields dΓ/dt = 0. Thus, in order that there circulation occurs, spatial
temperature variations must be present. This will be clarified for the case of
the so-called land–sea wind. On sunny days the air over land heats up more

Fig. 10.9. Interpretation aid for the different flow types seen in the satellite pho-
tograph in Figure 10.8
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than that over water. This is due to the different heat conductions and heat
capacities of the ground (water or solid Earth). Since the air pressure always
decreases with altitude, as already explained in Section 2.5, the distribution
of isobars and isotherms shown in Figure 10.10 arises.

If we select the integration curve S such that it runs along the isobars
and isotherms, in Figure 10.10 we obtain

dΓ

dt
= R · (T3 − T1) · ln

(
p3

p1

)
> 0. (10.44)

A cyclonic circulation occurs that is directed from the cold water to the warm
land close to the ground, i.e. under high air pressure. This is called a sea wind.
At large altitudes (low air pressure) a compensating flow takes place from
the land to the sea (land wind).

At night, the situation is reversed. The air over the land then cools more
than that over the water. In Figure 10.10 the isotherms T1 and T3 would
be swapped, and similarly, we would obtain an anticyclonic circulation, i.e.
from the land to the sea close to the ground. In general, it may be said that
thermal circulation in the atmosphere occurs to balance out the temperature
between warmer and colder areas.

Of importance in this simple example is that atmospheric motion is caused
by horizontal temperature difference. Land–sea wind circulation is an exam-
ple of this. It occurs at practically all coasts and has a horizontal extension of
10 − 100 km. The strength of the land–sea wind depends on the land–water
temperature contrast, according to (10.44), and also on the large-scale wind
flow that is generally superimposed. A further example is the so-called slope
current. Close to slopes that are warmed during the day, an up-current oc-
curs, becoming a down-current at night when the air close to the slope cools.
Since it is colder air that flows down the slope at night, this is also called a
cold-air drain.

In the simplest case, slope currents may also be explained with the circu-
lation equation (10.42)–(10.44). In reality, the relations are somewhat more
complex, since the atmosphere already has a vertical temperature layering,

Fig. 10.10. Schematic representation
of the land–sea wind circulation for
the case where the surface of the land
is warmer than the water (sea wind).
Isotherms T1 < T2 < T3, isobars p1 <
p2 < p3
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and the isotherms therefore cannot run parallel to the slope. This was already
noted by L. Prandtl, who gave an analytical solution of the slope current in
an earlier edition of this book (third edition (1949), Section V.16). Further
details on thermal wind systems may be found in the monographs by B. W.
Atkinson (1981), and by J. E. Simpson (1994), (1997), C. D. Whitemann
(2000).

10.2.2 Thermal Convection

In Chapter 7 the phenomenon of natural convection was also considered
within the framework of heat transfer. In particular, the conditions for cel-
lular convection in horizontal layers (Section 7.2.1) are also to be found in
the atmosphere. Cellular convection is an instability in a thermally unstably
stratified medium. The basic idea may be simply explained as follows.

For an atmosphere with a constant vertical temperature gradient, the
equations of motion and the first law of thermodynamics can be used to
derive the following relation for the vertical deviation z of a particle from its
rest position:

d2z

dt2
+N2 · z = 0, (10.45)

where N is the Brunt–Väisälä frequency, named after the English and Finnish
meteorologists B. Brunt and V. Väisälä. It is defined via the vertical gradient
of the air temperature T or the potential temperature θ (10.9) as

N =

√
g

T0
·
(
∂T

∂z
+ Γ ′

)
=

√
g

θ0
· ∂θ
∂z
. (10.46)

Here Γ ′ is the dry-adiabatic temperature gradient with a value of Γ ′ = g/cp =
9.8 · 10−3 K/m, or about 1 K/100 m. If a packet of air is deviated vertically
by the height Za from its equilibrium position, we obtain as a solution of
(10.45)

Z(t) = Za · exp(N · t) for
∂T

∂z
< −Γ ′ or

∂θ

∂z
< 0,

Z(t) = Za · cos(N · t) for
∂T

∂z
> −Γ ′ or

∂θ

∂z
> 0.

In the first case, the air packet moves ever further away from its equilibrium
position, and we have an unstable equilibrium. In this case, thermal convec-
tion can occur in the air. This condition is that the air temperature decreases
faster with altitude that for the case of adiabatic (neutral) stratification.

In the second case, the air particle oscillates about its equilibrium position.
This case, known as stable, will be discussed in Section 10.2.4 in the treatment
of gravity waves.
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Fig. 10.11. Aspects and cross-sections through closed and open convection cells.
Gray: clouds; arrows: circulation

A condition for the occurrence of thermal convection in the atmosphere is
therefore heating of air layers from the ground. This form of cellular convec-
tion (rolls or hexagons) already discussed in Section 7.2.1 is also found in the
atmosphere. It is made visible by clouds that form in the upper part of the
convection cell by adiabatic cooling of the rising humid air. Figure 10.8 shows
the different types of atmospheric convection on a satellite photograph: longi-
tudinal convection rolls (cloud streets), as well as open and closed cells. The
convection flow causing this cloud pattern is shown schematically in Figure
10.11, with a satellite photograph of the same in Figure 10.12.

Fig. 10.12. Satellite photograph of open convection cells
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Although the patterns in Figure 10.8 and Figure 10.11 look similar to
the experimental flows (Section 7.2.1), there are some principal differences.
These concern both the dimensions and the physical origins. Atmospheric
convection is generally restricted to a 1 − 2 km high layer above the surface
of the Earth. The convection forms seen in Figures 10.8 and 10.9 have the
following horizontal wavelengths: cloud streets 3 − 15 km, cells 10 − 30 km.
The ratio of height to width is therefore between 1 : 3 and 1 : 10 in linear
convection patterns and from 1 : 10 to 1 : 20 in cells. In the laboratory this
ratio is about 1 : 3.

Many explanations have been given for the origin of the small aspect ratios
in atmospheric convection, such as those in the overview articles by B. W.
Atkinson and J. W. Zhang (1996) on cells and by D. Etling and R. A. Brown
(1993) on rolls. In particular, the release of latent heat in the formation of
clouds seems to play a role, an effect that of course does not occur in the
laboratory. Further aspects of thermal convection in the atmosphere can be
found in the monograph by K. A. Emanuel (1994).

10.2.3 Gravity Waves

In the previous section we treated the onset of thermal convection in an
unstably stratified atmosphere. This arose due to warming of the air from
the surface of the Earth. However, frequently the case occurs in which the
atmosphere close to the ground cools down via long-wavelength radiation
(e.g. at night) so that the air temperature increases with height. Such an
atmosphere is then stably layered.

In the solution of (10.45) for stable stratification (second case), an oscil-
lation was obtained:

Z(t) = Za · cos(N · t), (10.47)

with the Brunt–Väisälä frequency N as in (10.46). The period of oscillation
of a vertically deviated air packet is τ = 2 · π/N . Below are some numerical
values:

∂T
∂z

[
K

100 m

]
∂θ
∂z

[
K

100 m

]
N [s−1] τ [s]

−0.65 0.35 0.011 570

0 1.0 0.018 350

+1.0 2.0 0.026 240

A stably stratified atmosphere is a continuum that can carry out oscillations
and thus permits the expansion of waves whose retroactive force is gravity.
These waves are therefore also known as gravity waves. We now briefly derive
the wave equation. We start out from the Boussinesq approximation of the
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equations of motion, as given in (5.85) in Section 5.4.3. With the usual lin-
earization we obtain the form of the perturbation equations (5.213)–(5.215).

For simplicity we consider an atmosphere at rest. After bringing these
equations together, we finally obtain a differential equation for the vertical
velocity w:

∂2

∂t2

(
∂2w

∂x2
+
∂2w

∂z2

)
+N2 · ∂

2w

∂x2
= 0. (10.48)

To solve this equation we consider a wave ansatz of the form

w(x, z, t) = w0 · cos(a · x+ b · z − ω · t). (10.49)

Here a and b are the horizontal and vertical components (a = 2 · π/λx,
b = 2 · π/λz) of the wave number vector m, as shown in Figure 10.13, and ω
is the eigenfrequency of the wave. Inserting the wave ansatz (10.49) into the
wave equation (10.48), we obtain the following frequency conditions:

ω = N · a
m

= N · cos(α). (10.50)

The frequency of oscillation of the gravity waves can therefore maximally
attain the Brunt–Väisälä frequency N (for α = 0, i.e. entirely horizontal
wave expansion).

The phase velocity in the direction of expansion m is found using m·c = ω
as

c = ±N
m

· cos(α), (10.51)

or, in the case of a horizontally expanding wave (α = 0, m = a),

c = ±N
a

= ±λ ·N
2 · π .

Some numerical values: setting ∂T/∂z = 0 (∂θ/∂z = 1 K/100 m), i.e. N =
0.018 s−1, we obtain

Fig. 10.13. The wave number vector m for internal gravity waves. The oscillation
planes perpendicular to m are shown
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λ = 1 km → c ≈ 3 m/s,

λ = 3 km → c ≈ 10 m/s.

The phase velocity of gravity waves is therefore the order of magnitude
of the wind velocity occurring in the atmosphere. If the direction of the wind
and the phase velocity are opposed, steady gravity waves can occur. This
is the case when the following relation is satisfied between wind velocity U ,
wavelength λ, and Brunt–Väisälä frequency N :

λ =
2 · π
N

· U. (10.52)

Steady waves are found particularly in the lee of mountains that force the air
to rise and so cause continuous vertical excitation of the gravity waves. The
waves that occur in this case are also called lee waves.

If the air humidity is suitable, adiabatic cooling can occur in the upwind
regions of the wave and so lead to cloud formation. Therefore, lee waves (and
also gravity waves in general) become visible via periodic arrangement of
clouds transverse to the wind direction (Figure 10.14). This can frequently
be seen on satellite photographs of the type in Figure 10.15.

Since the free atmosphere is practically always stably stratified, gravity
waves are a form of motion that is more or less continually to be observed in
the atmosphere. Further details are to be found in the monographs by E. E.
Gossard and W. H. Hooke (1975), C. Nappo (2002) and in the review article
by M. G. Wurtele et al. (1996).

Fig. 10.14 Schematic representation of
lee waves made visible by cloud forma-
tion

Fig. 10.15 Satellite photograph of gra-
vity waves causing bandlike cloud for-
mation (center of figure)
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10.2.4 Vortices

As well as the processes described above, such as land–sea wind, thermal con-
vection, and gravity waves, the dynamics of the atmosphere are greatly af-
fected by vortices of many different sizes. These extend from the low-pressure
regions with a horizontal extension of a few thousand kilometers, down to
small-scale dust devils of 50 m diameter. In the following table we list ex-
amples of different vortex phenomena, with typical values of their diameter,
wind velocity, and duration.

name diameter duration velocity rotation

[km] [m/s]

low 2000 4 d 20 cyclonic

hurricane 500 10 d 80 cyclonic

orographic vortex 50 1 d 5 cycl. & anticycl.

tornado 1 1 h 100 cycl. & anticycl.

dust devil 0.1 1 min 10 cycl. & anticycl.

The examples above represent vortices with vertical axes, with the direction of
rotation of the large-scale low-pressure region and hurricane always cyclonic,
while the small-scale phenomena may be both cyclonic and anticyclonic. This
difference is due to the effect of the Coriolis force, as seen in the force diagram
in Figure 10.16.

In the ideal case of a rotationally symmetric vortex, neglecting the fric-
tional forces in the equations of motion (10.6) yields the following balance of
forces (Figure 10.16):

v2

r
+ f · v= 1

ρ
· ∂p
∂r
, (10.53)

centrifugal force + Coriolis force=pressure force,

Fig. 10.16. Balance of forces in rotationally symmetric vortices. The air pressure in
the center of each vortex is low (L). The flow velocity V , isobars P , Coriolis force
C, pressure force D, and centrifugal force Z are shown. Left: large-scale vortex
(low-pressure region), right: small-scale vortex (e.g. tornado)
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where r is the distance from the center of the vortex.
In each case, the pressure force acts toward the center of the vortex,

while the centrifugal force is directed away from the center of the vortex.
In the case of a large-scale cyclone (Figure 10.16), the centrifugal force has
the same direction as the Coriolis force, while in the case of an anticyclone
(high-pressure region, not shown here) it has the direction of the pressure
force.

We estimate the balance of forces in two examples:

v2

r f · v 1
ρ · ∂p

∂r
unit

low-pressure region 1 3 5 ·10−3 m/s

tornado 5000 5 5000 ·10−3 m/s

Whereas in the case of a large-scale vortex (low-pressure region) the Coriolis
force plays an important role, it may be neglected for a small-scale vortex
(tornado). This is sketched in the right-hand picture of Figure 10.16.

The causes of the onset of the vortex phenomena mentioned above are
complex and will be briefly mentioned in the discussion of each example.
However, all the examples have a vortex strengthening mechanism in common
that can be obtained from the vorticity equation (10.16). If the latitudinal
dependence of the Coriolis parameter f is neglected, this equation for the
relative vorticity ω may be written as

dω

dt
= −(f + ω) · ∇h · vh. (10.54)

Fig. 10.17. Schematic representation of the vortex strength increase by means
of horizontal flow convergence. The funnel-like protrusion of the cloud (shaded)
corresponds approximately to the visible part of a tornado (right picture)
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According to this equation, vortex strengthening (or weakening) occurs if a
convergence (or divergence) is present in the horizontal flow field. We take
the tornado as an example. In this case, |ω| ≫ f , and therefore

dω

dt
= −ω · ∇h · vh. (10.55)

In these vortices a flow into the vortex core close to the ground (convergence)
is always observed, so that ∇h · vh < 0. If the initially weak vortex has
a cyclonic vorticity (ω > 0), the fact that ∇h · vh < 0 means that this
will increase with time. This is sketched in Figure 10.17. In the case of an
initially anticyclonic direction of rotation (ω < 0) the same effect occurs. The
magnitude of the rotation is increased, and the direction of rotation remains
anticyclonic.

We now briefly discuss individual types of vortices.

Low-Pressure Region

Low-pressure regions are large-scale atmospheric vortices with relatively low
air pressure in the vortex core (hence the expression low-pressure region or, in
short, low). The wind blows according to the geostrophic equilibrium (see Sec-
tion 10.1.3) in the mathematically positive sense (counter-clockwise) around
the low core, which is why a low is also called a cyclone. Because of its
large spatial extension, the low can be recognized only through spiral cloud
patterns on satellite photos (as in Figure 10.18) or in the ground pressure
field on a weather map. Such a weather map with isobars characterizing the
low is shown in Figure 10.26. The low-pressure regions with their cloud and

Fig. 10.18. Satellite photograph of a cyclone (low-pressure region) characterized
by a spiral cloud pattern
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rain regions essentially determine the weather at moderate latitudes in both
hemispheres and thus are the most important type of large-scale vortex.

The cause of the onset of low-pressure regions can be explained by a cer-
tain type of instability, the so-called baroclinic instability. The theory of the
baroclinic instability is discussed in detail in the monographs of B. Cushman-
Roisin, D. Etling, A. E. Gill, J. Pedlosky, and H. Pichler mentioned earlier.
At this point we indicate only the basic idea. As explained in Section 10.1.3,
in ideal conditions (Ro → 0) there may be a balance between the pressure
force and the Coriolis force. This leads to the geostrophic wind (10.11) and on
to the thermal wind relation (10.12). The latter states that in a baroclinic at-
mosphere a horizontal temperature gradient, as well as the pressure gradient,
leads to a variation of the geostrophic wind with altitude. Therefore, in this
case, warm air masses are situated alongside cold air masses. However, this
equilibrium is not stable but leads to a vertical displacement of the air when
a critical horizontal temperature gradient is exceeded, i.e. the cold masses
of air move below the warm air. Because of the great effect of the rotation
of the Earth on large-scale motion, this leads to the formation of cyclonic
horizontal motions that eventually become cyclones.

Tropical Cyclone

The tropical cyclone, as the name implies, is a low-pressure region in tropical
areas of the atmosphere. In the western Atlantic region they are known as
hurricanes and in Asia as typhoons. A satellite photo of such a hurricane was
already shown in the introductory chapter, in Figure 1.10. The somewhat
harmless expression tropical cyclone belies one of the most powerful wind
systems of the atmosphere, which is why they are also known as tropical
vortex storms. The high wind velocities (up to 300 km/h), together with the
waves in the sea that they excite, regularly lead to massive destruction when
such a storm comes on land. As example of such tropical storm Figure 10.19
shows the Hurricane Katrina (2005).

The origin of the onset of tropical vortex storms can only be indicated
at this point: They form above the warm tropical oceans, where the air’s
humidity is very high. In the extensive thermal convection of these regions
(storm clouds with altitudes of up to 15 km) the water vapor condenses and
so releases latent heat energy. The rotation of the Earth eventually causes
the formation of a cyclone, which strengthens in its passage westward over
the wet, warm ocean, until it eventually becomes a vortex storm. Further
information on the structure and appearance of tropical cyclones and on
their onset may be found in the monograph of J. B. Elsner and A. B. Kara
(1999) or in a video of natural catastrophes (Discovery Channel (1997)) that
impressively documents the power of destruction of tropical vortex storms.
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Orographic Vortex

It is known from fluid mechanics that vortices can form behind bodies in a
flow. Such bodies are realized in the atmosphere as orographic obstacles (hills,
mountains, mountain ranges). Of the many different types of orographically
induced vortices, we discuss only the Kármán vortex street that arises in the
wake of bodies and is well known from fluid mechanics. Such vortex streets
occur in the atmosphere in the lee of large islands, as seen in Figure 10.8 in
the example of Jan Mayen. The individual cyclonic and anticyclonic vortices
have diameters of 10− 30 km, while the total length of the vortex street can
be up to 400 km.

Since islands are quite flat obstacles (height : width ≈ 1 : 10), the air
is forced to flow around the obstacle. This takes place via thermal inversion
below the height of the summit, which, because of the Archimedes lift forces,
acts as a kind of lid on the low atmosphere.

Fig. 10.19. Satellite photograph of Hurricane Katrina (2005), Gulf of Mexico
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Tornado and Dust Devil

A tornado is the general name in the USA for extremely strong tubelike
vortices that arise in connection with large storm clouds (Figure 10.17). In
contrast to the tropical vortex storms, their diameters are only a few hundred
meters. Wind velocities of up to 400 km/h and the strong underpressure in
the core of the vortex (up to 50 hPa compared to the surroundings) regu-
larly cause great destruction. This power of destruction has been impressively
documented on video (e.g. Discovery Channel (1997)).

The direction of rotation of the tornado can be both cyclonic and anticy-
clonic. However, in very strong tornados the cyclonic sense of rotation dom-
inates, as the mother-cloud generally already has cyclonic rotation because
of its large-scale wind conditions. The strengthening of this initial rotation
to a tornado is very complex and is not completely understood. Again, part
of the process may be explained using the rotation strengthening mecha-
nism (10.55). Because of continuity, strong upward and downward currents
of air (up to 40 m/s) in the storm cloud lead to strong horizontally divergent
and convergent flows, which lead to an increase in the vorticity, according to
(10.55). This is shown schematically in Figure 10.17.

Tornados also occur in Europe, but there they are generally much weaker
and are also known as wind spouts (or water spouts above the sea). Extensive
material on the appearance of tornados and their origin may be found in C.
Church et al. (1993).

The dust devil is also a tubelike vortex with a vertical axis, but one that is
not related to the presence of a cloud. Rather, it appears in connection with
thermal convection and is therefore a fair-weather phenomenon. Because of
its small size of about 10− 100 m horizontally and 100− 500 m vertically, as
well as its moderate wind velocities of 10 m/s, it is sometimes also known as
the younger brother of the tornado. Its name, dust devil, is due to the fact
that it stirs up loose ground material and transports it upward in the vortex
core. It is because of this that the vortex is visible at all.

The onset mechanism for vortices like the dust devil is not yet fully under-
stood. The main effect is certainly again the vortex strengthening mechanism
(10.55). Close to the heated ground, warm air rises in the form of thermic
tubes, causing a horizontal slipstream of air. If a certain initial rotation is
present, e.g. via an obstacle, the wind convergence close to the upwind tube
leads to rotation strengthening according to (10.55).

10.2.5 Global Atmospheric Circulation

In the previous sections we presented various individual phenomena of at-
mospheric flows. To round off these discussions we now briefly sketch the
behavior of the atmosphere on global scales. There are in particular two
things that affect the large-scale dynamics: the rotation of the Earth and the



622 10. Flows in the Atmosphere and in the Ocean

radiation from the Sun. Because of the spherical shape of the Earth, the lat-
ter means that the atmosphere close to the equator receives more radiation
energy than that in polar regions. This means that the air temperature in
equatorial regions is higher than that in regions at greater latitudes.

In Section 10.2.1 we discussed thermal circulation and noted that a hori-
zontal temperature gradient causes a vertical circulation, where the air close
to the ground flows from colder to warmer regions. For this reason, such a
circulation must also arise between the polar regions and the equator. This is
indeed the case, if only in a restricted region between the equator and about
30◦ latitude north and south. This circulation is named after the English
meteorologist G. Hadley and is called Hadley circulation (Figure 10.20).

This large-scale thermal circulation occurs on the rotating Earth, and
so the effect of the Coriolis force must be taken into account. In Section
10.1.3, in connection with geostrophic equilibrium, we noted that a horizontal
temperature gradient leads to a change with altitude of the geostrophic wind.
The wind blows so that the warm air lies to the right of the direction of flow
(thermal wind relation, (10.13)). In the case of the large-scale temperature
gradient between the equator and the poles, with the effect of the Earth’s
rotation a westerly wind must form, i.e. a flow to the east more or less parallel
to the lines of latitude. This is in fact observed, as can be seen in the zonal
mean of the horizontal wind velocity in Figure 10.21. The figure also shows
a wind maximum at an altitude of about 10 km, called the jet stream. Here
the wind velocities can be 100−300 km/h, a fact that is of importance in air
travel.

In the regions between the equator and about 30◦ latitude, the air pres-
sure contrasts close to the ground (equatorial low-pressure trough, subtrop-
ical high) mean that easterly winds corresponding to the geostrophic wind
relation (10.11) are observed. Together with the lower part of the Hadley

Fig. 10.20. Schematic representation of the global atmospheric circulation
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Fig. 10.21. Dependence of mean zonal wind velocity in m/s on the latitude and
altitude. Positive values: west winds; negative values: east winds

circulation, these form the trade winds (Figure 10.20), the most permanent
wind system of the atmosphere and one that was extremely important for
mariners in earlier times.

At mid-latitudes, the large-scale atmospheric dynamics are determined by
the formation and decay of low-pressure regions (cyclones) and high-pressure
regions (anticyclones). As already discussed in brief in Section 10.2.5, the
low-pressure regions arise via the baroclinic instability of the basic flow in
the west-wind zone. This assumes that a critical horizontal temperature gra-
dient is exceeded, as is frequently the case at moderate latitudes. These cy-
clones, together with their clouds and precipitation, essentially determine the
weather at moderate latitudes.

Somewhat simplified, we may determine that the global atmospheric cir-
culation causes temperature compensation between polar and equatorial re-
gions in the atmosphere. Because of the spherical shape of the Earth and
hence the uneven distribution of solar radiation, this temperature compen-
sation cannot take place fully. However, the global air flows mean that the
temperature difference between lower and higher altitudes is considerably
more moderate than would be the case for just the pure balance of radiation.

The discussions above can be summarized in a simple scheme of the global
atmospheric circulation, as shown in Figure 10.20. More extensive descrip-
tions of global circulation may be found in the monographs of R. Grotjahn
(1993) and of J. P. Peixoto and A. H. Oort (1992).

10.3 Flows in the Ocean

In Section 10.1 we considered different aspects that the flows in the atmo-
sphere and in the ocean have in common. Examples of these were geostrophic
flow (10.1.3), Rossby waves (10.1.4), and the Ekman layer (10.1.5). These flow
forms will not be further treated in what follows. Although the basic fluid
mechanics for both media are the same, there are several differences that
cause particular flow conditions in the ocean. One main difference is that the
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air has essentially no side boundaries; it can flow around the Earth with-
out restriction. However, the lateral motion of the oceans on our planet is
restricted by the land masses. This means that the large-scale oceanic circu-
lation is arranged in large anticyclonic vortices in the different basins (e.g.
North Atlantic, Figure 10.22).

A further difference is the free, mobile surface of the sea that forms the
upper boundary of the oceans. The atmosphere above causes a force to act on
the water’s surface via the wind shear stress. This force is the main driving
force for currents in the sea. With respect to the vertical structure we note
that not only does the water density ρ determine the pressure p and the
temperature T as in the atmosphere, but in addition, the salt content c of
the water has a great effect on the water’s density.

For the reasons mentioned above, in what follows we can present only
a brief discussion of oceanic flows, and this is in no way a replacement for
the extensive research area of oceanography. Of the numerous monographs
on oceanography, we merely mention those by J. Pedlosky (1996) and by S.
Pond and G. L. Pickard (1991), where it is more the dynamic aspects of the
currents in the sea that are treated.

10.3.1 Wind-Driven Flows

In Section 10.1.6 on the surface atmospheric boundary layer (Prandtl layer)
we explained that the wind causes a tangential force to act on the surface
of the Earth, called a tangential stress or shear stress per unit area. Experi-
ments have shown that the shear stress, generally denoted by τ (see (10.37)),
acts in the direction of the wind close to the ground and has a magnitude
proportional to the square of the wind’s velocity:

τ = ρ · cw · |v| · v. (10.56)

The coefficient cw is called the drag coefficient. A typical value is about

Fig. 10.22. Observed mean surface current conditions in the Atlantic Ocean. Full
lines: warm ocean current; dashed: cold ocean current
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cw ≈ 1.5 ·10−3. The ground shear stress (10.56) also acts on the surface of the
sea, and since the sea is movable, a current is caused close to the surface. In
the simple case of horizontal homogeneous conditions, we saw that an Ekman
spiral arises, corresponding to (10.35) and (10.36) (see Section 10.1.5), where
the flow on the surface of the sea is directed 45◦ to the right of the direction
of the ground shear stress τw or of the ground wind v. In the real ocean,
however, this angle is considerably less and is about 20◦. If we depart from
this local approach and ask how the currents close to the surface of the sea
are spatially distributed, clearly, the large-scale wind distribution must be
considered as a driving force, according to (10.35), (10.36), and (10.56).

Considering the large-scale mean state of the atmosphere and the ocean,
we noted in Section 10.2.5 that between the equatorial regions and about
30◦ N/S the trade winds dominate from easterly directions, while between
30◦ and about 70◦ the cyclones with mainly westerly winds dominate. Stated
simply, at low latitudes a wind shear stress acts in a westerly direction and at
higher latitudes in an easterly direction. This is shown in Figure 10.23. Hence
ocean currents will develop from east to west or vice versa respectively.

As already mentioned in the introduction, the zonal extension of the
oceans is obstructed by the continents running from north to south. There-
fore, at low latitudes, more water mass will be supplied to an east coast,
while at higher latitudes more water will be removed from the east coast. For
reasons of continuity, at east coasts a flow from south to north must occur.
The opposite is the case on west coasts. Therefore, in the ideal case, the wind
shear stress causes a closed anticyclonic circulation in each oceanic basin, as
shown schematically in Figure 10.23.

We note that the streamlines in the west of the basin (that is, at an east
coast) are stronger than those in the east. Therefore, the current northward
at the westerly edge of the basin is stronger than the southward, current at
the easterly edge. The exact theoretical explanation for this initially unusual
result is to be found in the monographs by J. Pedlosky and by S. Pond and
G. L. Pickard. Stated simply, the current close to the surface of the sea is

Fig. 10.23. Schematic representation of the zonal wind thrust and the surface
current caused in an oceanic basin
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in equilibrium between the frictional force and the Coriolis force. Now as in
(10.6), the Coriolis force is the product of the Coriolis parameter f and the
velocity v. However, the Coriolis parameter changes with the latitude. For
masses of water that are transported with a current from south to north, the
Coriolis force increases northward. In equilibrium the frictional force must
also increase. Since this latter is proportional to the velocity shearing action,
the zonal gradient of the meridional velocity (∂v/∂x) must increase. In the
case of a flow from north to south, the exact opposite is true. Eventually,
then, we find a strong velocity shearing action in the westerly part of a wind-
driven oceanic circulation, and a lesser shearing action in the easterly part,
as can be seen in Figure 10.23. This theoretical explanation of the idealized
oceanic circulation can also be found in real oceans, as is shown in Figure
10.24 of the North Atlantic. The strong oceanic current along the east coast
of the USA is known as the Gulf Stream (see also Figure 1.11 in Chapter 1).

Since the large-scale oceanic vortices have a large meridional extension,
the water masses have different temperatures: warm in the south and cold
in the north. The sea currents driven by the wind therefore transport warm
water in the western region to the north and cold water in the eastern part
to the south, as can be seen in Figure 10.23. This has huge consequences for
the climate of the Earth. Comparing the air temperature in January along
the 60th degree of latitude, we find in Ireland +6◦ C, and close to Labrador
−10◦ C. Therefore, the mild winter climate of Western Europe exists thanks
to the warm oceanic current of the Gulf Stream.

10.3.2 Water Waves

Like the atmosphere, the ocean is a medium that can carry out oscillations,
and these appear in many different kinds of waves (J. Pedlosky (2003)). On
a large scale, we have already treated Rossby waves in Section 10.1.4. These
occur because of the latitude dependence of the Coriolis parameter (β effect).
The dispersion relation (10.19) c = u − β/a2 is therefore valid for both the
atmosphere and the ocean. We will not further discuss Rossby waves at this
point.

In the case of a stably layered atmosphere, we considered gravity waves in
Section 10.2.4. Now, the oceans, like the atmosphere, are also stably layered
in large regions, so that the effect of the Archimedes lift force leads to the
formation of internal gravity waves. The formal treatment of these waves for
the ocean also takes place using (10.48) set up for atmospheric gravity waves.
It is only in the Brunt–Väisälä frequency N (10.46) that the vertical density
gradient in the ocean must be inserted, where this is determined by the salt
content as well as the pressure and temperature. The dispersion relation for
oceanic gravity waves is therefore identical to (10.51). The value of the Brunt–
Väisälä frequency for the ocean is typically N ≈ 0.5 · 10−2 s−1, and so the
waves have a period of about 30 minutes.
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Neither Rossby waves nor internal gravity waves are generally accessible
to the normal observer. The waves on the surface of the sea, one of the most
common forms of motion of the ocean anywhere, are well known. We now
look more closely at these surface waves.

Let us briefly consider the derivation of a dispersion relation for linear
surface waves. The water mass is assumed to be incompressible and irrota-
tional; i.e. ∇ · v = 0 and ∇× v = 0. Therefore, the waves can be described
by a potential flow, with the relations v = ∇φ and ∇2φ = ∆φ = 0 applying
for the velocity potential φ.

In contrast to classical potential flow theory (see Section 4.1.5), the upper
edge of the fluid consists of a movable surface whose height is variable; i.e.
η(x, y, z, t). In the simplified two-dimensional case, we select a wave ansatz
of the form

η(x, t) = η0 · cos(a · (x − c · t))
(wave number a = 2 · π/λ, phase velocity c). With the physical boundary
conditions

w(η) =
dη

dt
, w(z = −h) = 0,

and the depth of the base of the sea h, the linearized inviscid equations of
motion (10.6), neglecting the Coriolis force, yield a relation for the phase
velocity:

c =

√
g

a
· tanh(a · h). (10.57)

The phase velocity of the water waves clearly depends on the wavelength
(λ = 2 · π/a) and the water depth h. Depending on the values of λ and
h, we may consider the following simplified limiting cases h/λ > 0.5 and
h/λ ≤ 0.05.

For

h/λ > 0.5 → tanh(a · h) ≈ 1,

(10.57) yields

c =

√
g

a
=

√
g · λ
2 · π . (10.58)

Because of the condition h/λ ≥ 1, these waves are called short waves or deep-
water waves. This does not mean that the water depth h must be large, only
that it must be larger than the wavelength λ. Deep-water waves behave dis-
persively. According to (10.58), long waves move faster than short waves. For
example, the occurrence of swell on the strand means that we can conclude
that water waves have been excited by the wind of a storm that is still far
offshore. Some numerical examples for the expansion velocity of deep-water
waves are found below:
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Fig. 10.24. Waves on the surface of the sea and resulting orbital motion of water
particles for different water depths. Phase velocity c

λ = 10 m → c ≈ 4 m/s,

λ = 100 m → c ≈ 12 m/s.

For

h/λ ≤ 0.05 → tanh(a · h) ≈ a · h,
(10.57) yields

c =
√
g · h. (10.59)

Because h/λ ≪ 1, these waves are known as long waves or shallow-water
waves. In contrast to the deep-water waves, these are not dispersive, and the
phase velocity depends only on the water depth. Examples are

h = 10 m, λ = 200 m → c ≈ 10 m/s,

h = 1000 m, λ = 20 km → c ≈ 200 m/s.

In the free ocean (large water depths), the relation (10.59) describes
the phase velocity for very long waves, such as those caused by seaquakes
(tsunamis).

In addition to the phase velocity (10.57), the solution of the potential flow
equations also yields the velocity field in the water that is induced by the

Fig. 10.25. Water waves on the surface
of the sea
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surface waves. The precise analytical solutions may be found in J. Lighthill
(1987). At this juncture we merely sketch the orbital motion of the water
particles (Figure 10.24) that arises from the velocity fields.

The water waves described above are found for the idealized case of an
inviscid liquid. In particular, if we include the surface stress as a further force,
this dominates over the gravity effect in the case of very short waves (about
λ < 0.2 m). These waves are visible as small ripples on the surface of the
water and are also called capillary waves.

Now, the observer rarely sees the real surface of the sea in the form of one
harmonic wave with a fixed wavelength. Rather, the superposition of many
waves of different amplitudes, wavelengths, and phases is observed (Figure
10.25). At this point, we do not further discuss this so-called sea spectrum
but refer to the more extensive literature on water waves (e.g. J. Lighthill
(1987), F. R. Young (1999)).

10.4 Application to Atmospheric and Oceanic Flows

In addition to the fluid-mechanical phenomena in the atmosphere and the
ocean, in recent times, the problems of weather forecasting, anthropogenic
climate change, and ozone loss (ozone hole) have gained in importance. In
order to take these into account, in addition to the actual fluid-mechanical
topics we dedicate one short section to these long-term problems.

10.4.1 Weather Forecast

Even those who are not experts in the area of fluid mechanics are confronted
with atmospheric flows almost daily via weather reports in the media. In the
foreground of weather forecasting is the time development of the air temper-
ature and the air pressure, as well as of clouds and precipitation. The pre-
diction of wind strength and wind direction are additional fluid-mechanical
components of the problem.

Weather forecasting has developed in the last 100 years from a some-
what empirical approach to the application of mathematical-physical meth-
ods based on the the dynamic and thermodynamic laws of fluid mechanics.
The equations as set up in Chapter 5 are the basis for this. In a form common
for the description of flows in the atmosphere and ocean, these equations read
as follows:
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Structure of equations describing the atmospheric–oceanic system

local change advection forces/ diffusion

in time sources

∂v/∂t + v · ∇v = fi + Kµ · ∇2v, (10.60)

∂ρ/∂t + v · ∇ρ = Qρ, (10.61)

∂T/∂t + v · ∇T = QT + KT · ∇2T , (10.62)

∂qi/∂t + v · ∇qi = Qqi
+ Kq · ∇2qi, (10.63)

∂cn/∂t + v · ∇cn = Qcn
+ Kc · ∇2cn, (10.64)

with the velocity v and f i = −ρ · f · k × v −∇p− ρ · ∇φ in the equation of
motion (10.60); the density ρ and Qρ = −ρ · ∇ ·v for a compressible medium
in the continuity equation (10.61); the temperature T and heat sources and
sinks QT (e.g. adiabatic compression (Q = −(1/(ρ · cp)) · dp/dt), divergence
of long-wave and short-wave flows of radiation, phase change of water (latent
heat) in the equation for the internal energy (10.62); the phase water vapor
q1, liquid water q2, and ice q3 and the phase changes Qq (e.g. condensation,
evaporation, freezing) in the balance equation for water phases qi (10.63); and
the gases, e.g. c1 = CO2, c2 = NO, c3 = O3, etc., the salt content c in the
ocean and the sources and sinks as well as the chemical transition of trace
elements Qc in the balance equation for material cn (n = 1, 2, 3, · · · ) (10.64).
In the diffusion terms of the equations, Kµ, KT , Kq, Kc are the turbulent
diffusion coefficients for each flow property. The thermodynamic variables
pressure p, density ρ, and temperature T are still included via equations of
state. In the atmosphere, p = R · ρ · T , and in the ocean, ρ = ρ(p, T, c) with
the salt content c.

In addition to the equation of motion (10.60), the continuity equation
(10.61) and the energy equation (10.62), there are also transport equations
for water vapor and liquid water (clouds and raindrops) (10.63) as well as
for atmospheric trace elements (10.64). It can be seen from the structure
of the equations that atmospheric flows distribute air admixtures via both
large-scale wind (advection) and small-scale turbulence (diffusion).

With equations (10.60)–(10.64), in principle, the time development of the
variables wind, temperature, and precipitation in space can be predicted if
the initial values are known. In practice, the initial values must be obtained
from simultaneous worldwide measurements of the atmospheric variables.
The solution of the equations cannot be obtained analytically because of their
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nonlinearity. Instead of this, numerical methods of solution are applied that
are usual in other areas of fluid mechanics. In the science of the atmosphere,
a specialist area with the name numerical weather prediction has developed,
where the physical equations (10.60)–(10.64) are solved using the methods of
numerical mathematics.

In fact, current weather prediction in the media is based on the results of
the numerical solution of the fluid-mechanical equations (10.60)–(10.64). An
example is the calculated prediction of the air pressure field on the ground
shown in Figure 10.26. In summary, modern weather forecasting can be con-
sidered as the practical application of the laws of fluid mechanics to the
atmosphere. The description of the fundamentals of weather forecasting and
examples of its practical realization may be found in the monographs of K.
Balzer et al. (1998), and E. Kalnay (2003).

10.4.2 Greenhouse Effect and Climate Prediction

Equations (10.60)–(10.64) for the atmosphere and ocean system can in prin-
ciple be integrated over longer periods of time into the future than the few
days taken for weather forecasting. Because of the nonlinearity and the known
chaotic behavior of the system of equations, predictions over longer periods
of time are no longer exact. The results of the numerical integration may

Fig. 10.26. Example of a 48-hour ground pressure prediction for the region
Atlantic–Central Europe
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therefore be interpreted only as spatial or temporal mean values for the dif-
ferent variables (e.g. mean air temperature in January). For observers, this
corresponds to the mean conditions of the atmosphere, called the climate.

The fluid-mechanical equations (10.60)–(10.64) are therefore suitable for
the prediction of the climate on the Earth. In the periods of time now con-
sidered (months, years, decades), the thermodynamic effects in the energy
equation (10.62) dominate, in particular, the divergences of short-wave and
long-wave radiation. The latter is greatly dependent on the spatial and tem-
poral distribution of the radiation-affecting air admixtures (e.g. water vapor,
carbon dioxide). The transport equations for these substances ((10.63) and
(10.64)) therefore become more important in climate prediction. The sim-
plest example here is the so-called greenhouse effect, which plays a large role
in the discussion of a future change in climate.

In Section 10.2.5, on the global atmospheric circulation, we noted that the
main origin of the large-scale motion can be seen in the different heating of the
surface of the Earth by the short-wave solar radiation at different latitudes.
These air flows, together with the temperature and water vapor distribution,
determine the climate on our planet. The mean temperature of the surface of
the earth T0 is determined in the case of no atmosphere from the equilibrium
between solar radiation So and long-wave blackbody radiation σ · T 4

0 :

So

4
· (1 − α) = σ · T 4

0 . (10.65)

Here So = 1360 W/m2 is the solar constant, α the albedo of the Earth
(amount of sun radiation reflected), and σ = 5.67·10−8 W/m2/K4 the Stefan–
Boltzmann constant.

If we set the mean albedo of the Earth at α = 0.3, we obtain from (10.65)
T0 ≈ 255 K, corresponding to −18◦ C. However, the observed mean air
temperature close to the ground is about +15◦ C, or 288 K. This is because
the long-wave radiation does not come from solid bodies (such as the surface
of the Earth) but also from certain gases. Of the gases present in the Earth’s
atmosphere, particularly water vapor H2O, carbon dioxide CO2, and ozone
O3 are known as absorbers and emitters of long-wave radiation. Depending
on their temperature, these gases radiate both in the direction of space and
in the opposite direction, i.e. toward the surface of the Earth. This part of
the long-wave radiation is also called the counter-radiation. It reduces the
effective long-wave radiation away from the surface of the Earth, so that
instead of (10.65) we have

So

4
· (1 − α) = σ · T 4

0 − λg . (10.66)

Here λg symbolizes the long-wave counter-radiation of the atmosphere. Fi-
nally, this counter-radiation is added to the solar radiation, so that a higher
temperature T0 must be found for (10.66) than that found from (10.65). This
effect of the atmospheric counter-radiation on the global mean air temper-
ature, that makes up about +33◦C, is also called the greenhouse effect. In
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fact, it is the gases with their radiation that are present in the atmosphere
that permit the climate necessary for life.

The anthropogenic change of the climate can firstly be described via the
radiation as the driving force for the conversion of energy in the atmosphere–
ocean–earth system. If additional amounts of greenhouse gases (e.g. CO2,
methane) are added to the atmosphere and if the long-wave atmospheric
counter-radiation is strengthened (λg in (10.66)), according to the simple
balance of radiation (10.65) the mean global ground temperature T0 will rise.
This effect of the greenhouse gases is partially compensated by the radia-
tion effect of the aerosols (small droplets and particles, e.g. mineral dust or
volcano ash, of a few µm diameter). These reflect a part of the short-wave
solar radiation, meaning that the albedo α in equation (10.65) is increased.
This causes the ground air temperature T0 to be somewhat reduced. In spite
of the cooling effect of the aerosols, currently, an increase of the global air
temperature T0 of about 1◦ − 3◦ C is assumed in the next 50 years.

Two aspects are emphasized in this section: the role of the atmosphere
as a transport medium of trace gases and aerosols, and the estimation of the
anthropogenic greenhouse effect by numerical simulation models.

We consider as an example the greenhouse gas CO2. Since the beginning of
industrialization, the combustion of fossil fuels has emitted additional carbon
dioxide (as well as the CO2 naturally present) into the atmosphere. Initially,
CO2 is carried from the sources close to the ground into the higher layers of
air, and there it is distributed more or less uniformly over the entire atmo-
sphere with the large-scale air flows (Figure 10.27). The formal description
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Fig. 10.27. Calculated global concentration distribution of aerosol (in µg/m3) at
an altitude of 20 km for November 15, 1991, five months after the eruption of the
volcano Mt. Pinatubo
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of transport and diffusion of CO2 (and other greenhouse gases) in the atmo-
sphere can be carried out using (10.64). The global atmospheric circulation
(see Section 10.2.5) therefore causes a mixing of the atmosphere with CO2

and other released radiating trace gases that contribute to the greenhouse
effect.

Volcano eruptions are an example of the natural introduction of aerosols
into the atmosphere. One of the greatest events in this century took place on
June 15, 1991, with the eruption of Mt. Pinatubo. This volcano, situated in
the Philippines (15.14◦N, 120.35◦E) shot sulphur aerosols up into the lower
stratosphere at altitudes of between 20 and 25 km. There they dispersed
rapidly over the globe with the atmospheric flows, and several months later
were spread over the entire northern hemisphere and even in regions south
of the equator. The dispersion of the volcano aerosols was calculated with a
global transport model that used equations (10.60)–(10.64) (C. Timmreck et
al. (1999)). The calculated aerosol concentration at an altitude of about 20 km
is shown in Figure 10.27 for the date November 15, 1991, five months after
the volcano erupted. As mentioned for the radiation properties of aerosols
(reflection of solar radiation), in fact, in the one to two years after the erup-
tion there was a reduction in the ground air temperature in the northern
hemisphere of about 0.5◦ C.

The equations (10.60)–(10.64) of geophysical fluid mechanics yield infor-
mation about the consequences of the greenhouse effect on the global flows in
the atmosphere and also in the ocean. In the energy equation (the first law of
thermodynamics), the divergences of the short-wave and long-wave radiation
currents appear as heat sources, whose effect again depends on concentration
and spatial distribution of trace gases and aerosols. If the latter is known,
statements about the global temperature distribution and thus about the air
flows caused by temperature gradients can be made. As has already been dis-
cussed in Section 10.4.1 on weather forecasting, the equations for the system

Fig. 10.28. Change in time of the globally averaged ground air temperature cal-
culated with a climate model compared to that of an atmosphere without anthro-
pogenic load with greenhouse gases and aerosols. Simulation G: only greenhouse
gases; simulation G+A: greenhouse gases and aerosols
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atmosphere–ocean can be solved only numerically. The prognosis of future
climate changes caused by the anthropogenic greenhouse effect can therefore
be carried out consistently only by discretizing equations (10.60)–(10.64) on
a mesh and subsequently solving the initial–boundary value problem using
numerical methods.

An example of the results of such a climate model is the rate of change
of the globally averaged ground air temperature due to the anthropogenic
increase of greenhouse gases and aerosols, shown in Figure 10.28. With the
coupled models of atmosphere and ocean of the Max-Planck Institute for
Meteorology in Hamburg, two scenarios were calculated (E. Roeckner et al.
(1999)). In one case, G only, the natural and anthropogenic greenhouse gases
were taken into account. In a second case, G+A, the radiation effect of the
natural and anthropogenic aerosols was also calculated. An anthropogenically
caused increase in the global air temperature of about 2.6◦ C in the next 50
years can be seen for the case of the pure greenhouse effect. This temperature
increase is reduced to 1.6◦ C when the anthropogenic emission of aerosols
(generally sulphur compounds) is taken into account.

Of the vast number of publications on climate issues, as well as the funda-
mentals of climate and climate change we mention only the monograph of J.
Houghton (1997) and the report of the Intergovernmental Panel on Climate
Change (IPCC) (2007). The latter also contains results from calculations with
climate models. The principles of modeling the different parts of the climate
system (atmosphere, ocean, biosphere, etc.) are given the the collected works
by K. E. Trenberth (1992).

10.4.3 Ozone Hole

Besides the greenhouse effect, the ozone hole also plays a role in global climate
change. This is a phenomenon in the stratosphere above the North Pole and
South Pole. As winter passes, in spring there is a considerable reduction in
concentration of the gas ozone O3 at altitudes between 20 and 30 km. This
is not a hole in the sense that the ozone has completely vanished. However,
the reduction over the South Pole from typically 400 DU (Dobson units, a
measure of the total ozone content in one column of air) in the year 1979
to 180 DU in 1992 is very obvious. The ozone hole denotes the more or less
circular region with greatly reduced ozone concentration around the South
Pole (Figure 10.29).

In the lower and middle stratosphere between 15 and 30 km altitude, there
is a layer of maximal ozone concentration. Because of the ability of ozone to
absorb short-wave solar radiation (ultraviolet (UV) radiation), this ozone
layer protects life on Earth from harmful UV rays. The ozone O3 is formed
from molecular O2 and atomic oxygen O via the absorption of ultraviolet
solar radiation with wavelengths < 242 nm.

The ozone is then destroyed by short-wave solar radiation with wave-
lengths less than 1200 nm and split into molecular and atomic oxygen.
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In total, these reactions form a photochemical equilibrium, and neither
permits a loss mechanism for ozone. This occurs only via a further catalytic
degradative reaction:

X + O3 → O + O2, (10.67)

OX + O → X + O2. (10.68)

The catalyst X (e.g. chlorine, hydrogen, nitrogen oxides) is set free in this
reaction and can destroy more ozone.

The decomposition of ozone in the polar stratosphere is due to such cat-
alytic reactions. In particular, those materials that are in part of anthro-
pogenic origin, e.g. nitrogen oxides (NO, NO2), hydrogen radicals (OH, HO2),
chlorine Cl, chlorofluorocarbons (CFCs), seem to play a role. In the literature
more than 30 different reaction mechanisms may be found that lead to a net
reduction in the ozone of the atmosphere.

The reference to the previous sections lies in the mechanisms that trans-
port the chemical substances into the middle stratosphere via the Antarctic
and the North Pole. With the synoptic systems (low-pressure regions) and
via the Hadley circulation, the particles are distributed more or less uni-
formly over the northern hemisphere. They must then overcome the barrier
of the tropopause, which greatly obstructs the vertical exchange. By means
of vertically extended thermal convection in the tropics and fronts of the low-
pressure regions, at certain points tropospheric air reaches the stratosphere
(Figure 10.30). The latter flows as (zonal) wind systems more or less paral-
lel to the lines of latitude that permit particle distribution in the east–west
direction. However, in order that the anthropogenic trace elements can enter
the polar stratosphere, a meridional circulation is necessary. Such a mecha-
nism indeed exists and is called Brewer–Dobson circulation after those who
discovered it. The scheme of the meridional circulation in the troposphere

Fig. 10.29. Total ozone content of the atmosphere in Dobson units over the south-
ern hemisphere in October 1979 and 1992
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and stratosphere is shown in Figure 10.30. The period of revolution of this
circulation, i.e. the transport of tropospheric air to the polar regions of the
stratosphere, is several months. Therefore, only those chemical substances
that have a long lifetime can contribute to the destruction of ozone. Indeed,
the CFCs with their lifetimes of several years are among the candidates.
Although the destruction of ozone is a purely photochemical process, the
atmospheric transport methods are needed to explain the ozone hole in the
Antarctic stratosphere.

In connection with the ozone hole, a further fluid-mechanical effect comes
into play, which we briefly discuss here. In the processes of destruction of
ozone the air temperature also plays an important role, in particular in rela-
tion to reactions via hydrogen. A lowest possible temperature (e.g. −90◦ C)
favors the reaction times of different processes that play a role in ozone chem-
istry. The stratospheric air above the South Pole must have the chance to
cool down. This is guaranteed when it is not mixed with the relatively warm
air from moderate latitudes, and in fact, this mixing is prevented by the
very stable polar cyclonic vortex that forms in the winter months above the
Antarctic. This vortex is characterized by high values of potential vorticity
(see Section 10.1.4). Recent theoretical and numerical studies have shown that
such a vortex permits essentially no mixing of external air masses (here from
moderate latitudes). A potential-vorticity barrier is present. This property
of the polar vortex also explains why the ozone layer appears less obviously
above the North Pole than above the South Pole. The northern hemisphere
polar vortex is variable, and there the polar air mixes more easily with air
from middle latitudes.

Fig. 10.30. Schematic representation of the meridional circulation in the tropo-
sphere (∼ 0 − 10 km) and stratosphere (∼ 10 − 50 km), as well as main transport
paths (thick arrows) of atmospheric trace elements
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In total, we can determine that the destruction of ozone in the polar
stratosphere is a photochemical process that is caused by anthropogenic trace
substances. Without the different transport processes in the atmosphere, from
small-scale turbulent diffusion to vertically extensive thermal convection to
stratospheric Brewer–Dobson circulation that first carry the substances to
their reaction point, and the polar stratospheric vortex that essentially en-
closes these substances in winter, the destruction of ozone would not even be
possible.

Further information on the ozone hole may be found in the monographs
by P. Fabian (1992), T. E. Graedel and P. J. Crutzen (1994), K. Labitzke
(1999) or in the review article by S. Solomon (1999).



11. Microflows

11.1 Fundamentals of Microflows

With advances in manufacturing technology, flow and transport processes in
microchannels or past micro-objects have become relevant for technical ap-
plications. Modern manufacturing methods permit the construction of tiny
structures of considerably less than one millimeter in different materials such
as silicon, glass, metal or plastic. This results in microchannels and micro-
objects, through which and past which flow and transport processes take
place, thus realizing complex functions in tiny spaces. It is found that, de-
pending on the fluid, a continuum-mechanical treatment of flows through and
past very small geometries is no longer necessarily possible in many cases. To
correctly represent the physics of the flow at such small length scales, correc-
tions to the continuum-mechanical equations or even molecular methods are
sometimes necessary.

On the one hand, the term microflow can be defined quite formally as a
flow through a microchannel of width d or past a micro-object of dimension d,
where 1 < d < 1000µm. On the other hand, depending on the fluid, the flow
at such length scales possibly can be described perfectly well by a continuum
model. The term microflow is only then justified when the boundaries of the
continuum-mechanical treatment are reached, or when certain effects, which
play a less important role in macroscopic flows, become important. It is this
physically-based concept of a microflow that we will discuss in this chapter.

11.1.1 Application of Microflows

In the Introduction (Chapter 1), we described the examples of the print head
of an inkjet printer and a micro heat exchanger that have already been real-
ized. We will now discuss two applications of microflows that point towards
the future. The discussion of these examples is not meant to be complete;
rather we wish to indicate the extensive application possibilities of microflows.

In physical, biological and chemical analysis a vision has developed of the
assembly of a complete analysis laboratory on one chip in the not too distant
future (cf. A. Manz and H. Becker (1999)): a lab on a chip or a micro-total-
analysis system, µTAS. There are many advantages of miniaturization: (i)
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only small specimen volumes are needed; (ii) the favorable ratio of fluid sur-
face and volume permits efficient heat and mass transfer, catalytic reactions,
and detection and separation processes; (iii) mechanical, optical and electri-
cal components can be integrated; and (iv) the cost-effective mass production
of such chips in bio-compatible and chemically compatible materials permits
disposability. All these advantages lead us to expect that analysis, providing
it is sensitive and reproducible, will be considerably more cost-effective and
will be able to take place to a great degree in parallel. Such a miniaturized
analysis lab requires the integration of a series of building blocks that provide
fluid preparation, fluid transport, mixing of fluids, biological and/or chemical
reactions, as well as separation and detection processes. A great number of
these functions are closely connected to the flow and transport processes in
the corresponding building blocks.

The combination of electronic and mechanical components in systems
of considerably less than one millimeter in size (so-called micro-electro-
mechanical systems, MEMS) are also opening up new possibilities in flow

Fig. 11.1. Analysis laboratory for blood testing, S. Zheng and C. Tai (2006)
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instrumentation (cf. L. Löfdahl and M. Gad-el-Hak (2002)). First, this is
based on sensors for the flow velocity. The miniaturization of sensors based
on the thermal principle (e.g. hot-wire probes) for one or more components
of the velocity, or, further, the application of many such sensors in arrays,
opens up new possibilities in turbulence research. Here, as well as the im-
proved time resolution of small sensors and their cost-effective production,
a fundamental improvement in the quality of the data is to be expected,
because measurement is possible in many places at fine spatial resolution.
Second, indirect or direct measurement of the shear stress is possible at sim-
ilarly good spatial and time resolution. Indirect measurement of the shear
stress is possible via similar thermal methods as those for the velocity. Di-
rect measurement of the shear stress, through inserts embedded elastically
into the wall, is now also possible at high spatial resolution with new (mi-
cro) production technologies. Third, it is possible to embed small, mainly
capacitive pressure sensors in the wall. Here too, miniaturization promises
high time and especially spatial resolution. These are the smallest structures
in turbulent flows whose measurement resolution is possible with the help
of micro-sensor-arrays. Accordingly, at least at moderate Reynolds numbers,
the aim is for sensor surfaces with the dimensions of the Kolmogorov length.

A spatial collection of coherent structures in turbulent boundary-layers
close to the wall can also serve as a starting point for the local control and
suppression of turbulence. Additional arrays of miniaturized actors are neces-
sary to induce the necessary reaction at the wall at the correct place and time.
Such actors can also be manufactured as MEMS according to different prin-
ciples and embedded cost-effectively as arrays in the wall. The perspectives
of local turbulence control are qualitatively more far-reaching than those of
global methods (such as surface suction) and may even yield an economical
method of active turbulence control.

11.1.2 Fluid Models

The continuum mechanical description of the motion of fluids is the basis
for conventional fluid mechanics (see Section 5.4.1). In conventional fluid
mechanics the detailed character of the fluid as a collective of molecules is ig-
nored and instead averaged flow quantities are used. The individual molecules
have, for example, a random statistical Brownian motion which is superim-
posed by a translation. If we average the motion over a volume element
with many molecules, only the translation remains; it is this that determines
the continuum mechanical velocity vector. The Brownian motion of many
molecules, whose amplitude incidentally is related to the temperature, is sta-
tistically independent and vanishes on averaging. Continuum mechanics thus
describes the time and spatial change of flow quantities such as density, ve-
locity, pressure and temperature averaged over a volume element. Such a
representation is of course only reasonable if the averaging can be carried
out over a sufficient number of molecules. In other words, the diameter of
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the averaging volume must be much larger than the mean distance of the
molecules. At the same time, the diameter of the averaging volume must be
small compared to the dimensions of the flow region. Thus there are clearly
limits to continuum mechanics, such as when the number of molecules per
averaging volume becomes very small (rarefied gases) or when the dimen-
sion of the flow region and thus the averaging volume becomes very small
(microflows).

A further assumption in continuum mechanics is usually the following:
in order to obtain an approximately linear relation between the stresses and
the shear rates (Newtonian fluid), the fluid must be close to thermodynamic
equilibrium. This assumption incidentally also means there is a linear relation
between the heat fluxes and the temperature gradients (Fourier fluid) and
between the mass flows and the concentration gradients (Fick’s law). At the
molecular level, thermodynamic equilibrium is present if there are enough
interactions between the molecules per unit time. Simultaneously, this time
interval must remain small compared to the time scale of the flow. If the fluid
is far from thermodynamic equilibrium, discontinuous behaviour of the flow
quantities may arise within the fluid. At the walls thermodynamic equilibrium
is also responsible for there being no discontinuities in the velocity (no-slip
condition) or temperature. For this, sufficient interactions between the fluid
and wall molecules are necessary. If there is no thermodynamic equilibrium at
the wall, discontinuities of the velocity (slip condition) and the temperature
are possible there. The breakdown in the continuum mechanical treatment
under certain (extreme) conditions makes it necessary to extend the spectrum
of fluid models.

An overview of the basic equations and fluid models is given in Section
5.4.1 and Figures 5.5 and 5.7. Depending on the effect of friction, continuum
models can be classified into the Euler equations, the Navier-Stokes equations
for Newtonian fluids and the Burnett equations. The Burnett equations result
from an approximation solution of the Boltzmann equation by introducing
an expansion for very small Knudsen numbers Kn (the Chapman-Enskog ex-
pansion). Therefore they are also valid close to thermodynamic equilibrium.
Formally, the Burnett equations have the appearance of the compressible mo-
mentum equations (5.13) – (5.15). However, the normal and shear stresses
contain nonlinear terms of the velocity gradient as well as an inherent cou-
pling with the energy equation (see S. Chapman and T.G. Cowling (1970)).
For very small values of Kn the Burnett equations pass over to the compress-
ible Navier Stokes equations (5.18). On the other hand there are molecular
models, which use deterministic or statistical methods. Molecular dynamic
simulation (MDS) is a deterministic method based on Newton’s law, while
Monte Carlo simulation (MCS) is of statistical nature and is based on the
Boltzmann equation (5.64) (see H. Oertel (1994), (2005)).

In general continuum models are preferred over molecular models, as long
as the Knudsen number range allows for this. This is because the mathemat-
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ical or numerical effort needed for the treatment of the partial differential
equations of continuum models is considerably less than the effort needed
for molecular models: (i) molecular dynamic simulations and Monte-Carlo
simulations require a description of the interaction and motion of all or of
many selected molecules; (ii) the Boltzmann equation is an integro-differential
equation whose (numerical) solution is difficult, particularly when the colli-
sion integral is present. Molecular dynamic simulations for technically rele-
vant microflows, simply because of the number of molecules, remain highly
extensive. Therefore is it important to define the limits of validity of the fluid
models as precisely as possible, in order to be able to make substantiated
decisions for any fluid model.

Gases and liquids differ essentially in the mean distance between their
molecules. In gases the bond to neighboring molecules is broken and the large
molecular distance permits quite free motion of the molecules, interrupted by
collisions with other molecules. Therefore in gases the mean free path of the
molecules between two collision is an important parameter. The theoretical
treatment of gases within the framework of kinetic gas theory is relatively
well developed. In contrast, in liquids the distance between the molecules is
considerable smaller, so that the molecules are in constant interaction with
neighboring molecules. Because the validity of the continuum models is es-
sentially based on the molecular properties, in the following sections we will
discuss gases and liquids separately.

11.1.3 Microflows of Gases

The mean free path in a gas is related to the frequency of collisions and thus
also to the question of whether thermodynamic equilibrium has been attained
in the gas (cf. S. A. Schaaf and P. L. Chambré (1961)). For an ideal gas of
spherical molecules, for example, the mean free path has the form

λ̄ =
kB · T√

2 · π · p · σ2
(11.1)

and so is dependent on pressure p and temperature T ; kB is the Boltzmann
constant (kB = 1.38 · 10−23 J/K) and σ is the scattering cross section, which
is identical with the diameter of the molecules for the case of elastic spheres.
Thermodynamic equilibrium is reached when the mean free path λ remains
considerably smaller than the length scale L of the flow. The length scale of
the flow may be the width of the channel; in general it is the length scale over
which there are gradients in (macroscopic) flow quantities such as pressure,
density, velocity or temperature. From the velocity profile u(z) in a plane
shear flow, say, the length scale is

L ∼ u

|du/dz| . (11.2)
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The ratio of the mean free path to the length scale of the flow is a dimen-
sionless number called the Knudsen number

Kn =
λ̄

L
. (11.3)

For Kn ≪ 1 the flow is clearly in thermodynamic equilibrium. The mean
free path, and therefore the Knudsen number, also characterizes the num-
ber of molecules (per averaging volume) to which a continuum-mechanical
description may be applied. This may even be a large number of molecules
(per averaging volume) if the mean free path is small, i.e. if Kn ≪ 1. There-
fore the Knudsen number permits a gas flow to be characterized according
to thermodynamic equilibrium and according to the continuum assumption.

The definition of the Knudsen number makes it clear that deviations from
Kn ≪ 1 can occur for both large mean free paths and small length scales of
the flow. Large λ̄ occurs for flows of rarefied gases, while small L is found
in microchannels. The flow of rarefied gases and the flow of gases past or
through small geometries are therefore similar with respect to the Knudsen
number. Therefore we may use the well-founded literature on flows of dilute
gases to characterize the flow through or past small geometries. Using the
Knudsen number, we find the following regimes (cf. H. Oertel (1994), (2005)
M. Gad-el-Hak (1999)):

Kn → 0 (Re→ ∞) Euler equations

Kn ≤ 10−2 Navier-Stokes equations with no-slip condition

10−2 < Kn ≤ 10−1 Navier-Stokes equations with slip condition

10−1 < Kn ≤ 10 transition region

10 < Kn free molecular flow

The conventional continuum-mechanical equations and boundary condi-
tions may be used for Knudsen numbers Kn ≤ 10−2. Increasing the Knudsen
number means that a correction to the kinematic (and thermal) boundary
conditions becomes necessary: discontinuities occur in the velocity (and tem-
perature) at the wall. The region 10−1 ≤ Kn ≤ 10 is a transition region. In
this region, for small Knudsen numbers the Burnett equations may still be
used, and otherwise Monte-Carlo simulations are suitable. Finally, the region
10 < Kn is characterized by free molecular flow, which is described by the
Boltzmann equation.

We now clarify the Knudsen number regimes with a concrete example:
consider air under normal conditions (288 K, 1 bar). The mean free path is
then λ̄ = 65 nm. A flow in a microchannel of L = 1µm width therefore has
Kn = 0.065. This is already a flow where the slip of the gas at the wall has
to be taken into account. If the pressure in the same channel were 0.1 bar,
then λ̄ = 650 nm and so Kn = 0.65. Therefore the flow could no longer be
described using a continuum model.
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In summary we may state that for gases with increasing Knudsen number,
first thermodynamic equilibrium between the gas and the wall is lost and the
gas slips at the wall. A further increase of the Knudsen number leads to loss
of thermodynamic equilibrium inside the gas – the gas no longer behaves as
a Newtonian fluid and the Navier-Stokes equations may no longer be used.
Finally, at very large Knudsen numbers the continuum models completely
break down and the gas must be treated as a collection of molecules.

11.1.4 Microflows of Liquids

Whereas for gases there is kinetic gas theory, a well-established (molecular)
model that allows the regime beyond the limits of continuum mechanics to be
characterized, for liquids the regime beyond the limits of continuum mechan-
ics is much more difficult to deal with. The concept of the mean free path and
the Knudsen number is not useful for liquids. As the molecules in a liquid
are in constant interaction with neighboring molecules, molecular dynamic
simulations (MDS) are preferable as a molecular model. In addition, exper-
iments may be used to characterize the limits of the continuum-mechanical
treatment of liquids.

From experiments with extremely thin liquid films between plates that
are smooth to a molecular level (cf. D. Y. C. Chan and R. G. Horn (1985),
M. L. Gee et al. (1990)), it is known that it is only at film thicknesses below
about 10 molecule layers (∼ 5nm) that the liquid may no longer be treated as
a continuum. Non-smooth changes in the normal and shear stresses are then
observed — clear indications that the number of molecule layers is having
an effect on the behaviour of the liquid. Furthermore, these experiments
already show changes in the viscosity for liquid films below 100 molecule
layers (∼ 50nm) — an indication that the liquid no longer has a Newtonian
character. Similar indications are found in the molecular dynamic simulations
of W. Loose and S. Hess (1989). These authors observe a shear layer of
about 10 molecule layers of idealized, spherical molecules and for shear rates
satisfying

γ̇ ≥ 1.4 ·
√

ǫ

σ2 ·m (11.4)

they find non-smooth behaviour of the flow quantities over the shear layer,
while smooth behaviour is observed for small shear rates. The shear rate
in a two-dimensional problem is related to the gradient of the velocity by
γ̇ = du/dz. In (11.4) ǫ is the binding energy, m is the mass and σ is the
diameter of molecules. For water molecules under normal conditions, the
binding energy is ǫ ∼ 3.5 · 10−21J , the mass of a molecule is m ∼ 3 · 10−26kg
and the diameter of a molecule is σ ∼ 3 · 10−10m. The estimation according
to (11.4) is therefore γ̇ ≥ 1.6 · 1012s−1. The water molecule is of course a
non-spherical complex molecule, for which the simple model of W. Loose and
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S. Hess (1989) cannot necessarily be directly applied. Nevertheless, it may
serve as an estimate of the order of magnitude. Although the shear rates for
simple molecules with small molecule mass and small molecule diameter may
seem exorbitantly large, complex (heavy, large) molecules yield smaller crit-
ical shear rates, according to (11.4), that can indeed be reached in technical
systems.

As well as the question of the continuum-mechanical treatment and the
thermodynamical equilibrium of the liquid, there is also the question, as
with gases, of whether discontinuities in the velocity (or the temperature)
can occur at the wall (z = 0). For this it is useful to formulate the Navier
slip condition in the form

u(z = 0) − uw = LS · γ̇ (z = 0) (11.5)

In (11.5) the discontinuity in the velocity tangential to the wall is proportional
to the shear rate. The constant of proportionality LS has the dimensions of a
length and is called the slip length. A vanishing slip length (LS → 0) gives of
course the no-slip condition. In the literature we find contradicting statements
from experiments on the slipping of liquids at extremely smooth walls: (i)
slip lengths of only LS ≤ 20nm are found by V. S. J. Craig et al. (2001) in
aqueous Newtonian liquid, and the slip length is observed to be dependent
on the shear rate and the viscosity; (ii) slip lengths of up to LS ∼ 1µm are
found by D. C. Tretheway and C. D. Meinhart (2002) at hydrophobic walls
of channels through which water is flowing, while at hydrophilic walls no
noticeable slipping is observed; (iii) slip lengths of LS < 100nm are found by
P. Joseph and P. Tabeling (2005) for water at hydrophilic and hydrophobic
channel walls, whereby the experimental accuracy is given in the same range
as ±100nm. Although the values are considerably scattered, it remains true
that in all cases a (small) slipping of the liquid is observed at the wall. The
experimental results can be supported by molecular dynamic simulations, at
least at moderate shear rates. In an isothermal Couette shear flow, P. A.
Thompson and C. M. Troian (1997) find a constant slip length of LS ≤ 17σ
for simple spherical molecules and for γ̇ < γ̇c. Therefore, slip lengths of up
to LS ∼ 5nm are to be expected for water, although the value depends in
detail on the interaction and compatibility of the wall and liquid molecules.
For γ̇ < γ̇c the Navier slip condition is therefore confirmed. The critical shear
rate γ̇c is in the range

γ̇c = 0.025 . . .0.4 ·
√

ε

σ2 ·m, (11.6)

where again there is a dependence on the interaction and compatibility of
wall and liquid molecules. For water molecules (with the restrictions discussed
above), this leads to shear rates of γ̇c = 0.3 . . . 4.5 ·1011s−1. Such exorbitantly
large shear rates are hardly to be expected in technical systems. Here too it
is to be noted that heavy and large liquid molecules lead to smaller critical
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shear rates γ̇c. For γ̇ > γ̇c the slip length increases dramatically, and so the
molecules slip freely. In this range the Navier slip condition is clearly no
longer valid.

In summary, we may state that simple liquids at small shear rates slip
according to the Navier slip model with small slip lengths. In this range their
rheological behaviour corresponds to that of a Newtonian fluid. If a (very
large) critical shear rate is exceeded, complete decoupling of the wall and
liquid velocities can occur. The continuum assumption remains valid as long
as there are at least 10 molecule layers and as long as exorbitantly high shear
rates are not reached. For liquid films with fewer than 100 molecule layers,
gradual deviation from Newtonian behaviour can occur.

11.2 Molecular Models

11.2.1 Fundamentals of Molecular Models

With a view to the methods of calculation still to be described for carrying
out direct numerical simulation of the distribution function f , the gas-kinetic
equations of the single particle collisions will be treated. In rarefied gases
it is mainly collisions between two molecules that occur. For the gas-kinetic
approach it is therefore generally sufficient to consider only two-particle col-
lisions. The description of the process consists of calculation of the velocity
vectors c′1 and c′2 and the internal energies ǫi, 1′ and ǫi, 2′ after collision be-
tween two individual particles.

The simplest case of a collision between particles is an elastic collision.
Only translational energies are exchanged between the molecules; there is no
exchange between translational energies and internal energies of the parti-
cles. Therefore this collision can be treated with the balance equations of
mechanics.

In Figure 11.2 and in the following equations, the indices 1 and 2 indicate
the two partners of the collision. Variables after the collision are indicated
with a dash. Conservation of mass holds

m1 +m2 = m′

1 +m′

2 . (11.7)

Conservation of momentum yields

m1 · c1 +m2 · c2 = m1 · c′1 +m2 · c′2 = (m1 +m2) · cm , (11.8)

with the velocity of the center of gravity cm. Conservation of energy may be
written as

m1 · c21 +m2 · c22 = m1 · c′12 +m2 · c′22 . (11.9)

Definining the reative velocities

cr = c1 − c2 and c′r = c′1 − c′2 ,
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it follows from conservation of momentum and energy that

c1=cm +
m2

m1 +m2
· cr ,

c2=cm − m1

m1 +m2
· cr ,

c′1=cm +
m2

m1 +m2
· c′r ,

c′2=cm − m1

m1 +m2
· c′r .

Introducing these relations into the conservation equations and using the
reduced mass

mr =
m1 ·m2

m1 +m2
,

we obtain the equations

m1 · c2
1 +m2 · c2

2=(m1 +m2) · c2
m +mr · c2

r ,

m1 · c′21 +m2 · c′22 =(m1 +m2) · c2
m +mr · c′2r ,

from which it follows immediately that the magnitude of the relative velocity
does not change in the collision.

The direction of the relative velocities after collision is given by the two
collision parameters χ and ε. We consider two particles and introduce a col-
lision plane that passes through the center of particle 1 and is perpendicular
to the relative velocity vector cr before the collision (see Figure 11.2). The
position at which particle 2 strikes particle 1 is given by the polar coordinates
b and ε. χ denotes the angle of deflection lying in the plane spanned by the
vectors cr and c′r.

Fig. 11.2. Geometry of the two-particle collision in the center of gravity reference
frame
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The description of the transport properties of a gas, such as, for example,
the viscosity µ or the thermal conductivity λ, is essentially determined by
the potential used to describe the interaction between the particles. Figure
11.3 shows different models of the interaction potentials.

The classic interaction potential of gas kinetics is that of rigid elastic
spheres, where an interaction occurs between the molecules only when they
touch. This model yields the following results for the temperature dependence
of the dynamic viscosity and the thermal conductivity

µ(T ) ∼ T 0.5 and λ(T ) ∼ T 0.5 .

These are independent of the type of gas. Further interaction potentials are
the purely repulsive interaction potential and the Lennard-Jones potential.
The purely repulsive interaction potential considers the electrostatic repulsion
between two particles with the same electrical charge. The interaction poten-
tial force is given by K = −∇Φ. As well as the electrostatic repulsion at small
relative distances r between the colliding particles, the Lennard-Jones poten-
tial also considers the attractive van der Waals multipole interaction, which
dominates at larger relative distances through the deformation of the electron
shells of the colliding molecules or atoms. For our applications the interaction
energies are so high (> 1eV ) that the so-called variable-hard-spheres (VHS)
model, which was derived from the hard-sphere model, provides a good ap-
proximation to describe the transport processes. In the variable-hard-spheres
model the total scattering cross section is assumed to be a function of the
relative kinetic energies in the form

σT ∼
(

1

2
·mr · c2r

)−ω

.

The exponent ω represents a gas-specific quantity. For ω = 0 the VHS model
describes the hard-sphere model, and for ω = 0.5 the so-called Maxwell

Fig. 11.3. Interaction potentials
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molecules. The collision probability of Maxwell molecules is independent of
the relative velocities of the molecules. In the following sections we use only
this simplified interaction model. For air typically ω = 0.25 is used.

11.2.2 Monte-Carlo-Simulation

We now consider the actual motion and the elastic and inelastic collisions of
several hundred thousand molecular particles in a given region of simulation.

The approach to the gas-kinetic simulation yields the Boltzmann equa-
tion, made dimensionless with x∗ = x/L, c∗ = c/c̄, f∗ · dc∗i = f · dci/n,
b∗ · db∗ = b · db/(

√
2π · d2) and t∗ = t/(L/c̄)

(
∂

∂t∗
+ c∗ · ∂

∂r∗

)
f∗ =

1

Kn
·
∫ ∫ ∫

(f ′∗ · f ′

1
∗ − f∗ · f∗

1 ) · c∗rel · b∗ · db∗ · dε · dc∗1 , (11.10)

that was introduced in Section 5.4.1. The dimensionless Boltzmann equation
yields identical solutions for problems with the same Knudsen number

Kn =
λ̄

L
=

1

n · σ · cr
c̄ · L

,

i.e. for a given characteristic length L, the product of scattering cross section
and particle density σ·n must be kept constant to obtain an identical solution.
The actual number of molecules in a flow can thereby be replaced by sev-
eral tens of thousands of model particles with artificially increased scattering
cross section (theorem of N. A. Derzko (1972)). However a sufficient number
of particles must be available to enable local averaging of the macroscopic
quantities.

Of the multitude of numerical simulation methods, we have selected the
direct simulation Monte-Carlo (DSMC) method and the molecular dynamics
(MD) method. In the DSMC method the particles move as free molecules
and the collision particles are statistically selected. In contrast to this, in
the MD method the trajectories of the particles are traced exactly in time.
For gases, a collision occurs only when two particles approach each other to
their scattering cross section. For liquids, a permanent interaction with the
neighboring particles is present. Because of the relatively high computational
effort for the MD method, the heuristic DSMC method is recommended for
gases. For further literature for the section on computational methods the
review article of J. N. Moss and G. A. Bird (1984) is recommended.

The direct simulation Monte-Carlo (DSMC) method was developed by G.
A. Bird (1976) and represents a powerful, heuristic method of investigating
rarefied gas flows. The essential difference to the molecular dynamics (MD)
method lies in the decoupled statistical treatment of the motion and the
collisions of the model particles.
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In the DSMC method the molecules that are actually present in the flow
field are replaced by model particles. Several hundred thousand model parti-
cles are used. The initial state is selected randomly (Figure 11.4), as for the
molecular dynamics method, and changes with the simulation time through
the motion and collisions of the particles. To determine the macroscopic quan-
tities and to guarantee correct local collision rates, the flow field is divided
into cells. This grid can be matched to any body or can be rectangular (Figure
11.5).

In the Monte-Carlo method the particle motion and the collisions are
decoupled. The central iteration step of the simulation is as follows (see Figure
11.4). The particles are moved according to a given time step ∆tm. Particles
that leave the calculation area are removed and collisions of particles with
the surface of the wall are calculated. For this, wall interaction models, as
already described, must be taken into account. At the boundaries of the flow
field new particles are generated for reasons of continuity. It is determined to
which cell each particle belongs. Conversely, for each cell it is now determined
which particle belongs in it. For each cell a number of collisions is carried out
in accordance with the time step ∆tm. The positions of the particles remain
unchanged.

In the manner in which the number of collisions per cell is determined
and carried out, the methods of G. A. Bird (1976), K. Nanbu (1992) and
M.S. Ivanov and S. V. Rogasinsky (1991) differ.

According to G. A. Bird (1976), the number of collisions per cell in the
time step ∆tm is given by

Nt =
1

2
·Nm · n ·∆tm · σ · cr , (11.11)

with the number of particles Nm per cell, the particle density n, the relative
velocity cr and the collision cross section σ of the collision partners.

Fig. 11.4. Calculation with the DMSC method



652 11. Microflows

Calculation of the product σ · cr requires considerable effort, as all possible
particle combinations in a cell must be included to form the average. G. A.
Bird (1976) therefore introduced a collision time counter tC that is increased
after every collision using the collision cross section σ and the relative velocity
cr of each collision partner by

∆tC =
2

Nr · n · σ · cr
until this counter is equal to the simulation time. In doing this the collision
number Nt required by equation (11.11) is reached on average during time
step ∆tm. The collision partners are selected randomly within the cells. From
this we find that a collision between two particles becomes more probable the
larger their collision cross sections and their relative velocity.

If a suitable pair is found, the six unknown velocity components of the
selected collision partners are calculated. For this the balance equations for
momentum and energy (11.8) – (11.9) are available. The direction of the
relative velocity vectors after the collision is determined using random num-
bers, and thus, in contrast to direct simulation methods, this method is not
deterministic.

The method of K. Nanbu (1992) differs from Bird’s method only in the
treatment of the collision process. The purely phenomenological model of G.
A. Bird (1976) is replaced by K. Nanbu (1992) by a collision mechanism de-
rived from the Boltzmann equation. In this method, only one particle changes
its state in a collision. The number of collisions during the time step ∆tm is

Nt = Nm · n ·∆tm · σ · cr .

The collisions occur with a probability

Pi =

Nm∑

j=1

n ·∆tm
Nm

· (σ · cr)ij .

For each particle the probability Pi is calculated in a cell and then a random
number is used to decide whether a collision takes place in the time interval
∆tm. If a collision takes place, a collision partner is sought for this particle.

Fig. 11.5. Grid for the Monte-Carlo simulation



11.2 Molecular Models 653

The calculation differs from the method of G. A. Bird (1976) in that only
one collision partner experiences a change of velocity.

The method of M. S. Ivanov and S. V. Rogasinsky (1991) is known as the
majorant frequency scheme. In contrast to G. A. Bird (1976), for each cell
an upper estimate of the number of collisions is calculated:

Nt,maj =
1

2
·Nm · n ·∆tm · (σ · cr)max .

Instead of the average value σ · cr, a maximum value (σ · cr)max that is simple
to determine is used. Now for each cell, Nt,maj collision pairs are determined.
The collisions occur with a probability σ · cr/ (σ · cr)max. The collisions that
are accepted are called real collisions, while those that are rejected are called
fictitious collisions. For the real collision the new velocities are determined
according to the methods of G. A. Bird (1976). The number of real collisions
yields the value required in (11.11).

The method of Ivanov has two advantages over that of Bird. The col-
lisions can be calculated in a computationally more efficient manner. This
considerably reduces the computational time. Statistically better results are
found for small numbers of particles, as in the method of G. A. Bird (1976)
improbable collisions (with small σ · cr) are allowed to push the collision time
counter far onwards. Thus over a long stretch of time no further collisions
occur. The method of M.S. Ivanov and S. V. Rogasinsky (1991) was derived
mathematically from the Boltzmann equation. Similar methods have since
been presented by other authors and are called in the literature no time
counter (NTC) schemes.

Conservation of angular momentum has not been ensured from the start in
the methods presented in this section. However it has been shown in examples
that angular momentum is conserved if enough particles are present in a cell.

11.2.3 Molecular Dynamic Simulation

The molecular dynamics method is characterised by the fact that only the
initial state is determined by statistical methods. The continued progression
is strictly deterministic, i.e. at each later point in time the state of the system
can be derived from the initial state. At the start of the calculation a given
number of model particles is positioned in the computational space with
account taken of the geometrical boundary conditions. The components of
the thermal velocity are associated with each particle. After superimposing
the macroscopic velocity, the initial state of the flow field is then determined.
These model particles are now moved with the associated velocity.

Molecular dynamic simulations are preferred when there is a constant
(not collision-like) interaction between the molecules. This is generally the
case for liquids and dense gases. An overview of molecular dynamic simula-
tions may be found in P. J. Koplik and J. R. Banavar (1995). A molecular
dynamic simulation calculates explicitly the motion of a large number of fluid
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molecules that may be interacting with their neighboring molecules (liquid,
solid). Therefore the forces between the same and different fluid molecules,
as well as between fluid and solid molecules, must be formulated. This can
be done with the help of the Lennard-Jones potential, which describes the
interaction of inert, non-ionized, non-polar, spherical atoms. According to H.
Green (1960), for distances between the atoms r that are not too small, we
obtain the approximate potential

φ(r) ∼ −C1

r6
+

C2

r12
. (11.12)

According to (11.12), at large distances the attractive forces (φ ∼ r−6)
dominate. These are due to the mutual polarization of the atoms (van der
Waals forces). At small distances the repulsive forces (φ ∼ r−12) dominate.
These come from the interaction between the electron shells. The constants
C1, C2 have been determined for many atoms by the method of J. E. Lennard-
Jones (1931). The interaction of complex fluid molecules, such as dipole
molecules or chain molecules, can be realized by the elastic bond of sev-
eral atoms. This leads to similar (generally more complicated) potentials for
their interactions.

In the interaction between liquid atoms and the solid atoms of the wall, it
must be taken into account that the solid atoms are embedded in an elastic
lattice. Integrating the elastic forces, according to F. F. Abraham (1978),
yields in the simplest case a potential of the form

φ(r) ∼ −C3

r4
+

C4

r10
. (11.13)

Here too there are more realistic models for molecules available in the lit-
erature. The derivative ∂φ/∂r of the potential is related to the force on the
molecules. In practice we restrict ourselves to the nearest neighbor molecules.
If the force on a single molecule is known, using Newton’s law and integrat-
ing the acceleration with respect to time, the position of the molecule can be
determined numerically and its path traced. Kinematic boundary conditions
are now not necessary; at the molecular level the effect of solid boundaries
on the fluid is completely described by the interaction between the solid and
fluid molecules. Thermal boundary conditions can be realized by e.g. pre-
scribing the Brownian motion of the solid molecules at the boundary. The
kinematic and thermal motion of the fluid molecules close to the boundaries
then permits conclusions to be drawn about the macroscopic boundary con-
ditions.

Therefore, with considerable numerical effort, it is possible to simulate
the motion of the fluid molecules, possibly with transitions between the liq-
uid and gas phases, as well as including the interaction with solids or other
fluids in detail. If the motion of the single molecules is known, in a natural
way the behavior of macroscopic portions of fluid becomes accessible. The
motion of the continuum is then determined by averaging over a large num-
ber of molecules, whereby the number determines the spatial resolution. A
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further averaging in time eliminates the thermal statistical motion of the
molecules. Simulations of several hundred thousand molecules are needed in
conjunction with a strict limitation of simulated real time, whereby all this
is limited by the computational time required; typically regions of several
hundred angstroms dimension are simulated for several nanoseconds. Molec-
ular dynamic simulation is therefore particularly suitable for investigating
the limit range between molecular processes and the continuum-mechanical
approach. This is of particular interest at solid walls or at (moving) phase
boundaries.

11.3 Continuum Models

The continuum-mechanical conservation equations may serve as a basis, pro-
vided that the continuum assumption holds. Compared to conventional flows,
at small length scales modifications or additional effects may need to be taken
into account. These are discussed in the following.

11.3.1 Similarity Discussion

The effect of small length scales may be formally answered using similarity
analysis. It is sensible, first of all, to estimate the dimensional quantities. We
follow the procedure of H. Herwig (2002). For microflows, we may distinguish
two typical applications: A miniaturized analysis laboratory and a micro
heat exchanger (see Figure 1.12). We first discuss the miniaturized analysis
laboratory, e.g. given in Figure 11.1. In the table below, these estimates are
given for macroflows and for microflows.

macro micro micro-macro ratio

channel width d ≈ 10−2 m ≈ 10−5 m ≈ 10−3

channel length l ≈ 1 m ≈ 10−2 m ≈ 10−2

velocity ū ≈ 1 m/s ≈ 10−3 m/s to 1 m/s ≈ 10−3 to 1

Channels or pipes in macroflows typically have a width of several cm,
while we assume a channel width of several 10µm for microflows. Similarly
we expect the channel length in macroflows to be several m and in microflows
several cm. The average velocity in macroflows is generally severalm/s, while
in microflows several mm/s is present in a miniaturized analysis laboratory.
The estimates of the quantities d, l, ū may, if desired, be shifted by a factor of
ten. This changes only the order of magnitude, but not the tendency of the
following statements. Based on these estimated quantities d, l, ū, it is possible
to estimate other quantities such as pressure drop, mass and volumetric flow
rates, force ratios and thermal quantities. We always assume that the fluid
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properties in the macroflow and in the microflow are of the same order of
magnitude. Furthermore, it is sufficient to consider the ratio of microflow
quantity to the macroflow quantity in the table below.

micro-macro ratio

pressure drop ∆p ≈ 10 to 104

volume, mass flux ṁ, V̇ ≈ 10−9 to 10−6

Reynolds number, Fi/Ff Re ≈ 10−6 to 10−3

Fg/Ff Re/Fr ≈ 10−3 to 10−6

Fc/Ff Re/We ≈ 103 to 1

The laminar pressure drop in a channel follows the relation ∆p ∼ ū ·
l/d2. Thus in microchannels a higher pressure drop is to be expected than in
macrochannels. The volumetric and mass fluxes in channels behave according
to ṁ, V̇ ∼ ū ·d2, so that drastically smaller volumetric and mass fluxes occur
in microchannels.

Dimensionless groups based on force ratios are useful to evaluate the
relevant forces in the flow. The Reynolds number characterizes the ratio of
inertial forces Fi to friction forces Ff . It behaves according to Re ∼ ū · d and
is considerably smaller in microchannels than in macrochannels. Generally,
therefore, the friction forces dominate, and a transition to turbulence is not
expected because of the weak inertial forces. Simultaneously, it is useful to
compare the other forces with the friction force. The Stokes number, which
gives the ratio of pressure forces Fp to friction forces Ff , is therefore always
Sto = Fp/Ff ≈ 1. The ratio of gravitational force Fg to friction force Ff can
be expressed using Re/Fr ∼ d2/ū using the Reynolds number and the Froude
number Fr = Fi/Fg. Therefore, in microchannels the gravitational force, and
in general all volumetric forces, are much weaker than in macrochannels.
The ratio of capillary forces Fc and friction forces Ff is expressed in the ratio
Re/We ∼ 1/ū. This expression includes the Weber number We = Fi/Fc.
In microchannels, therefore, a greater effect of the capillary forces, and in
general all interfacial forces, is to be expected. In single phase flows, after
the initial wetting there are no fluid/fluid interfaces, so in such cases there
are no capillary forces. On the other hand, at fluid/wall interfaces forces
can occur, due for example to electrical fields. Such interfacial forces also
follow the dependence ∼ Re/We. The strong influence of all interfacial forces
depends on the extremely large ratio of surface to volume in microchannels.
This leads to the conclusion that heat and mass transfer in microchannels
are also possible in a very efficient manner, as these too are determined by
the transfer surface.
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Now that we have looked at the mechanical aspects, we consider the
aspect of heat transport and heat transfer in more detail. In the table below
the corresponding ratios of microflow and macroflow are summarized.

micro-macro ratio

temperature increase ∆T ≈ (104) to 10

heat conduction part qd/qc ≈ (105) to 102

Because of the analogy between heat and mass transport, these ideas may
be directly transferred to mass transport. We now heat up the channel wall
and ask by what temperature ∆T the fluid is heated as it passes through
the channel. Here we find the dependence ∆T ∼ l/(d · ū), according to the
above table, and therefore there is a drastically higher temperature increase
∆T in the microchannel. Such a large temperature increase is of course not
sensible, because the fluid takes on the temperature of the wall in a very
short time and therefore no heat transfer takes place in the rest of the chan-
nel. It is therefore advisable to select considerable higher flow velocities of
several m/s in a microchannel for heat transfer. With such parameters, a
moderate temperature increase is achieved, as is more sensible for a heat
exchanger. Unfortunately the large flow velocity causes the pressure to in-
crease considerably. The tendency of the statements about the inertial force
Fi and the gravitational force Fg remains the same while the order of mag-
nitude is changed. The capillary and interfacial forces Fc, on the other hand,
play a lesser role with this choice of parameters. In order to characterize the
heat transport, ratios of heat fluxes may be used. The ratio of diffusively
transported heat qd to convectively transported heat qc behaves according
to qd/qc ∼ 1/(l · ū). Therefore, we may assume that the heat transported
axially through the fluid by heat conduction is considerably more important
in microchannels than in macrochannels. The same is also true for axial heat
conduction in the wall.

11.3.2 Modifications of Boundary Conditions

We have already seen in Section 11.1.3 that gases, in particular, slip at solid
walls as the Knudsen number increases. Therefore, in this section we restrict
ourselves to the details of gas flow through a microchannel. Irrespective of
this, Section 11.1.4 shows that liquids also slip at walls at high shear rates
and the slip condition (11.5) may be used for modeling. However, first the
slip length for liquids is very small; second there is little firm information in
the literature on the slipping of liquids.

For the isothermal behavior of gas molecules at solid walls, we first dis-
cuss two idealized limiting cases. J. Maxwell (1879), in the kinetic theory
of rarefied gases, characterized the behavior of spherical gas molecules at
molecularly smooth solids. According to this theory, on collision with the
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wall (z = 0) each gas molecule retains its tangential momentum through
symmetric reflection (cf. Figure 11.6). Thus only the normal momentum of
the gas molecules changes. The absent exchange of tangential momentum
between gas molecule and wall is equivalent to the perfect slipping of the gas
molecule; the gas transfers no shear stress to the wall. If we assume a very
rough wall, the situation changes fundamentally. Because of the roughness,
the reflection of the gas molecules is statistically distributed in all directions.
On average, therefore, these gas molecules no longer have any tangential mo-
mentum after reflection. The transfer of the tangential momentum to the wall
corresponds to a finite shear stress. Balancing the forces leads to the slip law

u(z = 0) − uw = λ̄ · ∂u
∂z

(z = 0) , (11.14)

with the mean free path λ̄. This reflection is called diffuse reflection, be-
cause there is no correlation between the direction of arrival and the random
direction of reflection.

Real walls are characterized by the fact that a small number of gas
molecules undergo symmetric reflection, while a large number undergo diffuse
reflection. In order to characterize the wall, we introduce a collision coeffi-
cient σv that gives the fraction of the diffusively reflected molecules from the
total number of reflections. σv for real walls is in the range σv = 0.2 − 0.8,
whereby the value 0.2 is for exceedingly smooth walls, and the value 0.8 for
technically relevant rough walls. Using σv the slip law can be generalized as

u(z = 0) − uw =
2 − σv

σv
· λ̄ · ∂u

∂z
(z = 0) , (11.15)

For σv → 1, (11.15) becomes (11.14), describing the perfect diffusively reflect-
ing wall. The limiting case σ → 0 in (11.15) leads to complete decoupling of
the slip velocity and the shear rate, implying perfect slipping.

Frequently the situation is not isothermal, so that the effect of the fluid
temperature T and the wall temperature Tw also must be taken into account.
For T 6= Tw the slip law (11.15) must be modified, and a condition for the
temperature jump must be included. According to S. A. Schaaf and P. L.
Chambré (1961) we then have

Fig. 11.6. Symmetric and diffuse reflection of gas molecules
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u(z = 0)−uw =

2 − σv

σv
· λ̄ · ∂u

∂z
(z = 0) +

3

4
· µ

ρ · T (z = 0)
· ∂T
∂x

(z = 0) , (11.16)

T (z = 0) − Tw =
2 − σt

σt
· 2 · κ
κ+ 1

· λ̄

P r
· ∂T
∂z

(z = 0) . (11.17)

In analogy to σv, the thermal collision coefficient σt also appears in (11.17).
Furthermore, the ratio of the specific heats κ = cp/cv and the Prandtl num-
ber Pr = ν/k appear. Here ν is the kinematic viscosity and k is the thermal
diffusivity of the gas. The second term on the right-hand side of the slip
law (11.16) is called thermal creeping. If, because of the wall temperature
Tw(x), a gas at the wall has a temperature gradient tangential to the wall
∂T/∂x > 0, a velocity u > uw occurs close to the wall. This fact is exploited
in a Knudsen pump, which can be used to pump rarefied gases and which,
without moving parts, delivers gas in a pipe from a cold zone to a warm zone.
We now discuss the effect of the slip law (11.15) using a simple example. We
consider an isothermal gas flow through a microgap, as sketched in Figure
11.7. The gap has a height 2 · d and the length l; to reduce the mathematical
difficulty and so that we can concentrate on the physics, in the y-direction the
gap is infinite. The flow is driven by the pressure difference (p1−p0) > 0, and
we also assume, for simplicity, a steady, plane and essentially parallel flow
(u ≫ w). These assumptions are generally satisfied to good approximation
for a narrow gap (d ≪ l). Of course, the assumption of an isothermal flow
is also an approximation, as the dissipation is neglected. For the mathemat-
ical description of the problem, we begin with the continuity equation (5.1)
and the Navier-Stokes equations (5.18). Using the above approximations we
obtain

∂(ρ · u)
∂x

≈0 , (11.18)

ρ · u · ∂u
∂x

≈− ∂p

∂x
+ µ · ∂

2u

∂z2
. (11.19)

In the case of a creeping flow (Red ≪ 1), which occurs frequently in micro-
channels, the momentum equation (11.19) loses the convective term and we

Fig. 11.7. Gas flow through a microgap
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can integrate the equation using the boundary conditions (11.15) at z = ±d,
with the result

u(x, z) = − d2

2 · µ · ∂p
∂x

·
[
1 −

(z
d

)2

+ 4 · Kn · 2 − σv

σv

]
. (11.20)

The first two terms in equation (11.20) describe the well-known Poiseuille
flow between two plates, while the third term is responsible for the slipping
of gas. The local Knudsen number Kn(x) = λ̄(x)/2 · d in equation (11.20)
depends on the pressure p(x) via the mean free path λ̄. For an ideal gas at a
given temperature T0 we have the relation

Kn =
µ

2 · d ·
√
π ·R · T0

2
· 1

p
, (11.21)

with the specific gas constant R. Because the pressure along the gap drops
continuously (∂p/∂x < 0), the Knudsen number along the gap grows corre-
spondingly. According to equation (11.21), at the entrance to the gap (x = 0)
the slipping is weak, while it is greater at the exit from the gap (x = l). The
slipping of the gas at the wall therefore increases along the gap. The corre-
sponding velocity profiles are shown qualitatively in Figure 11.7. The effects
of the modified slip boundary condition on the gas flow in a gap can be con-
firmed by experiment. J. C. Shih et al. (1995) carried out experiments with
helium in a microgap of 2 ·d = 1.2µm height and l = 4000µm length; the gap
width in the experiment is ∆y = 40µm. The authors vary the entry pressure
p1, the exit is into the atmosphere, and the pressure inside the microgap is
measured using sensors integrated into the wall. The local Knudsen number
varies for an entry pressure of p1 = 1.5 ·105Pa in the region 0.1 ≤ Kn ≤ 0.16.
Figure 11.8 shows an example of measurements of the mass flux ṁ as a func-
tion of the pressure difference p1 − p0. The mass flux can also be calculated
by integration of the solution of (11.20), as

Fig. 11.8. Gas mass flux in a microgap, according to J. C. Shih et al. (1995)
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ṁ ≈ ρ ·∆y ·
d∫

−d

u · dz , (11.22)

with ∆y = 40µm. Figure 11.8 shows the results of the theoretical model for
comparison, using the no-slip condition and using different slip conditions
σv = 0.8, 0.9, 1. We see on the one hand that the model with the no-slip
condition considerably underestimates the mass flux. On the other hand, the
experimental data and the model with slipping agree reasonably for σv =
0.9 or 1. A collision coefficient of σ ≈ 1 is equivalent to a molecularly rough
wall that causes predominantly diffuse reflection of the gas molecules. These
experimental findings in a gas flowing through a microgap prove that the use
of modified boundary conditions is necessary for Knudsen numbers in the
region of Kn ≈ 0.1.

11.3.3 Electrokinetic Effects

Electrokinetic effects are characterized by the interaction of electric fields
with charges within fluids. Charges may occur in aqueous solutions in the
form of free ions; gases can also be ionized under certain conditions. In the
following discussion, we restrict ourselves to liquids with free ions as they
may occur in a miniaturized analysis laboratory. Electrokinetic effects in-
clude electro-osmosis, electrophoresis, the flow potential and the sedimenta-
tion potential. While electro-osmosis and electrophoresis involve the effect of
electric fields on the flow and the material transport, the flow potential and
the sedimentation potential are the reverse of these effects. In these the flow
and material transport via the charge transport affect the electric field. Here
we consider only the first two effects; in parts we follow the review article of
K. V. Sharp et al. (2002).

Electrical double layer

If we have a liquid with free ions, it usually contains an equal number of neg-
ative and positive ion charges, thus it is electrically neutral. The application
of an electric field then, because of the Coulomb forces, causes both sorts
of ion to move to the oppositely charged electrode. Generally this causes no
motion of the liquid because the differently charged ions move in opposite
directions. In other words: inside an electrically neutral liquid there are no
resultant forces on the liquid.

The situation at interfaces (liquid/solid, liquid/liquid, liquid/gas) is com-
pletely different from that inside the liquid. Here an interaction between
different types of molecules (atoms) is possible, so that in general there is no
longer electrical neutrality. As an example, we consider the conditions at a
liquid/solid boundary. Depending on the chemical composition of wall and
liquid, adsorption of ions from the liquid or dissolution of molecules (atoms)
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from the wall can occur (cf. R. Hunter (1981)). Both lead to surface charges
at the wall and these attract oppositely charged ions out of the liquid and
repel identically charged ions. Thus there appears in the liquid an electri-
cally non-neutral layer, the so-called electrical double layer. It is within this
electrical double layer that electric forces act on the liquid if we apply a
wall-tangential electric field from outside. The motion of excess ions leads
via viscous effects to motion of the liquid. This motion of the liquid in the
wall-tangential direction is termed electro-osmosis. Electro-osmosis occurs of
course in both microchannels and large channels. While in microchannels the
electric forces can become important, in large channels they are generally less
important compared to the other forces. This has also to do with the fact that
the electrical double layer is very thin. In order to model the electric forces
in the Navier-Stokes equation, we need a model for the charge distribution
in the electrical double layer; an overview of the models may be found in R.
Hunter (1981). The Gouy-Chapman-Stern model assumes an immobile layer
of counter ions directly at the wall (Stern layer). In Figure 11.9 we see in
the direction normal to the wall z furthermore a shear layer with restricted
mobility and the freely moveable diffuse layer (Gouy-Chapman layer), before
the electrically neutral interior part of the liquid is reached. Conceptually the
Stern layer and the shear layer, i.e. the first two layers of molecules, are to
be associated with the immobile wall.

Fig. 11.9. Structure and charge density of the electrical double layer
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In the following we assume a plane wall and a liquid with constant prop-
erties. Within the Gouy-Chapman layer is an interplay of electrostatic forces
and diffuse thermal motion. The electric charge density q may therefore be
summed from the Boltzmann distributions of the different species of ions,
according to

q = e ·
∑

i

zi · ni,∞ · exp

(−zi · e · ϕ
kB · T

)
. (11.23)

Here e is the electron charge, zi the valence and ni,∞ the ion density of the
species i in the electrically neutral interior of the liquid; kB is the Boltzmann
constant, ϕ the electric potential and T the temperature. Furthermore, be-
tween the electric charge density q and the electric potential ϕ we have the
relation

∇ · (ǫr · ∇ϕ) = − q

ǫ0
, (11.24)

where ǫr · ǫ0 characterizes the dielectric property of the fluid. Connecting
equations (11.23) and (11.24) leads to a second order nonlinear differential
equation to determine ϕ. If the energy of the thermal motion is much larger
than that of the electrostatic forces, i.e. for |zieϕ| ≪ |kBT |, the exponential
function may be linearized and we obtain the so-called Debye-Hückel approx-
imation (cf. P. Debye and E. Hückel (1923)). Within this approximation we
obtain the solution for the charge density in the diffuse Gouy-Chapman layer
as

q(z) ≃ qζ
lD

· exp

(−z
lD

)
. (11.25)

In equation (11.25), qζ is the apparent wall charge density, which is related
by qζ = −ζ · ǫr · ǫ0/lD to the zeta potential ζ, the potential at the boundary
between the shear layer and the Gouy-Chapman layer. lD is the so-called
Debye length, which is a measure for the thickness of the electrical double
layer. We have

lD =

√√√√ ǫr · ǫ0 · kB · T
e2 ·∑

i

z2
i · ni,∞

. (11.26)

Electro-osmosis

An electro-osmotic flow can be modeled if the electric charge densities in the
electrical double layer and the interior of the liquid (q = 0) are known, by
taking an electric volumetric force into account in the Navier-Stokes equations
(cf. R. Hunter (1981)). We then have as a basis the system of equations

∇ · v=0 , (11.27)

ρ ·
(
∂v

∂t
+ (v · ∇)v

)
=−∇p+ µ ·∆v − q · ∇ϕ , (11.28)
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and the electric potential ϕ remains to be determined. In general, because of
the linear type of the underlying equations, the electric potential can be calcu-
lated from a superposition of the externally applied field and the self-induced
field in the electrical double layer. Within the Debye-Hückel approximation,
the self-induced electric field is given by the equations (11.24), (11.25). De-
pending on the electrical conductivity of the liquid, the externally applied
field may be calculated electrostatically using the Gauß law or electrody-
namically using Ohm’s law. In an electrically neutral region with constant
material properties, both laws lead to a Laplace equation for the electric po-
tential ϕ. The boundary conditions may be the potentials at electrodes or
spatial derivatives of the potential. An extensive discussion of these aspects
can be found in P. P. J. Barz (2005).

We now discuss an example of the electro-osmotic flow in a microgap.
Figure 11.10 shows this microgap with height 2 · d and length l, and with
an infinite extension in the y-direction. In order to simplify the mathemat-
ical treatment, we assume a steady, plane, fully-developed flow, driven by a
pressure difference (p1 − p0) > 0 and a homogeneous external electric field
with ∂ϕ/∂x = constant, ∂ϕ/∂z = 0. Taking the electrical double layers at
both walls (z = ±d) into account, with the above assumptions we obtain the
x-component of the Navier-Stokes equation as

0 ≈ − ∂p

∂x
+ µ · ∂

2u

∂z2
− qζ
lD

· ∂ϕ
∂x

·
[
exp

(
−z + d

lD

)
+ exp

(
z − d

lD

)]
. (11.29)

Fig. 11.10. Electro-osmotic flow in a microgap
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In (11.29) only the external field ∂ϕ/∂x appears, because the self-induced
fields only have components in the z-direction. Equation (11.29) can be solved
by observing the no-slip condition at the walls, leading to the result (cf. D.
Burgreen and F. Nakache (1964)):

u(z) =− d2

2 · µ · ∂p
∂x

·
[
1 −

(z
d

)2
]

− 2 · qζ · lD
µ

· exp

(
− d

lD

)
· ∂ϕ
∂x

·
[
cosh

(
d

lD

)
− cosh

(
z

lD

)]
. (11.30)

The first term in (11.30) corresponds to Poiseuille flow between two plates,
while the second term represents the electro-osmotic part. Figure 11.10 shows
the velocity profile u(z) according to (11.30) for different pressure gradients
∂p/∂x, different electric fields ∂ϕ/∂x and different values of lD. If there is
no pressure gradient (∂p/∂x = 0), for ∂ϕ/∂x < 0 we obtain a plug-like
velocity profile, with a sharp increase in the velocity in a thin layer close to
the wall (cf. Figure 11.10). This is because the charged liquid close to the
wall is drawn towards the oppositely charged electrode at the exit of the
channel. This is a pure electro-osmotic flow. If the flow is additionally acted
on by a pressure gradient ∂p/∂x < 0, we obtain a superposition of pressure-
driven and electro-osmotic flow. For ∂ϕ/∂x > 0, the liquid in the electrical
double layer moves to the left, against the pressure-driven flow. We obtain a
velocity profile with a backflow close to the wall. Inside the liquid we obtain
a parabolic velocity profile that is due to the pressure-driven Poiseuille flow.
For ∂ϕ/∂x < 0 we obtain the opposite effect of the electric forces close to the
wall. The thickness of the kinematic boundary layer close to the wall is linked
to the thickness of the electrical double layer lD. The kinematic boundary
layer is determined by a balance of viscous and electric forces. The profiles for
lD/d = 0.004, 0.01, 0.02 in Figure 11.10 differ from one another only within
this kinematic boundary layer. The rotationally symmetric solution for a
capillary with circular cross section may be found in C. L. Rice and R.
Whitehead (1965).

According to (11.26), the Debye length lD depends, inter alia, on the ion
densities of the species involved. In the above discussion, lD is assumed for
simplicity to be constant. The same may also be stated for the zeta potential
ζ and for qζ . Finally, the electrical conductivity of a liquid depends with great
sensitivity on the ion densities, thus influencing the calculation of the electri-
cal potential ϕ using Ohm’s law. It is reasonable to assume constant material
properties as long as the solutions are dilute and thus the concentration fields
homogeneous. This couples the electric field into the flow equations in a sim-
ple manner. For a complete treatment of electro-osmotic flows, however, the
concentration fields of all species involved must be calculated, resulting in
complete coupling of all equations. This generally takes place via the so-
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lution of the additional corresponding transport equations using numerical
methods.

The Debye length is generally in the regime lD < 100nm, so that even
in microchannels we have lD ≪ d. According to this, a one-dimensional wall-
normal charge distribution, if necessary using the Debye-Hückel approxima-
tion, remains a useful approximation, as long as there is no curvature of the
wall on the length scale lD. Such strong curvatures can only occur at cor-
ners. Thus we have the following options for treating the electrical double
layer: (1) The electrical double layer is solved numerically and no further
assumptions are made about the charge distribution; because of the widely
different length scales d and lD, this can necessitate considerable numerical
effort. (2) The charge distribution in the electrical double layer is assumed to
be one-dimensional if necessary using the Debye-Hückel approximation and
the solution for the flow close to the wall is asymptotically matched to the
solution in the electrically-neutral interior of the flow; the superposition of
both partial solutions yields an approximate solution for the flow in the entire
region (cf. I. Meisel and P. Ehrhard (2006)). (3) The extension of the elec-
trical double layer is ignored and instead a modified boundary condition is
used for the tangential velocity at the wall. According to R. Probstein (1994)
this so-called Helmholtz-Smouluchowski boundary condition is given by:

u(z = 0) − uw = − ǫr · ǫ0 · ζ
µ

· ∂ϕ
∂x

. (11.31)

Here x is the coordinate tangential to the wall and z that normal to the wall.
The wall is located at z = 0.

Electrophoresis

If we have free ions in a liquid at rest, an externally applied electric field will
cause the ions to move towards the oppositely-charged electrode (see Figure
11.11). This effect is called electrophoresis. If we consider a particle in a liquid
at rest, the situation is similar. Irrespective of whether the particle is initially
charged, surface charges arise on the particle by interaction with the liquid.
Thus an electrical double layer is formed around the particle. The particle
with the electrical double layer does not appear electrically neutral to the
environment and is therefore also subject to electrophoresis.

On the one hand, Coulomb forces act on the ion or particle, causing
motion. On the other hand, the motion of the ion or particle leads to viscous
friction with the surrounding liquid. Because of the small ion or particle
diameter d0 and the small ion or particle velocity v0, we may assume Re0 =
|v0|d0/ν ≪ 1. Therefore there is a creeping flow past the ion or particle.
Now ions are small compared to the thickness of the electrical double layer,
i.e. for ions d0 ≪ lD for various measurement techniques. The solid particles
may be single cells or plastic spheres for various measurements, with typical
diameters of several hundred nanometers. Thus for such particles d0 ≫ lD.
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The balance of forces at an ion yields

3 · π · µ · dS · v0 = −Qeff · ∇ϕ . (11.32)

Here we note that a deformed non-spherical diffuse ion-atmosphere forms
around the ion, whose shielding effect leads to |Qeff | ≤ |zi ·e|. Simultaneously,
in the friction force the Stokes diameter dS ≥ d0 is to be used, i.e. the diameter
of a sphere with identical friction. Thus for an ion we find the electrophoretic
mobility as

λ′ ≡ − v0

∇ϕ =
Qeff

3 · π · µ · dS
. (11.33)

The electrophoretic mobility of the ion is therefore directly proportional to
its charge and inversely proportional to its size.

For a solid particle with d0 ≫ lD, we may apply our knowledge of the
electrical double layer at a plane wall. The force balance between viscous and
electric forces leads to

µ · π · d2
0

4 · lD
· v0 = ǫr · ǫ0 · ζ · π · d2

0

4 · lD
· ∇ϕ . (11.34)

The electrophoretic mobility therefore becomes

λ′ = − ǫr · ǫ0 · ζ
µ

. (11.35)

Thus the electrophoretic mobility of a solid particle in this limiting case
is independent of the particle size and is directly proportional to the zeta
potential.

The cases d0/lD ≪ 1 und d0/lD ≫ 1 lead to relatively simple relations,
but it must be noted that for d0 ≈ lD or for non-spherical ions or particles,
it is difficult to determine the electrophoretic mobility theoretically. Further
approaches may be found in R. Hunter (1981). In addition, the quantities
Qeff , dS and ζ in equations (11.33) and (11.35) are not well known. Therefore
it is simpler to determine the electrophoretic mobility directly by experiment.
According to the definition in (11.33), we measure the applied electric field
∇ϕ and the velocity of the ion or particle v0 in the solution. Both quantities
appear accessible with a suitable experimental set up. It must be noted that
as well as the electrophoresis for a quasi-steady electric field, high-frequency
and inhomogeneous fields also cause forces on particles. An overview of this
so-called dielectrophoresis is found in A. Ramos et al. (1998). In order to
describe electrophoretic processes, it is desirable to have a suitable trans-
port equation. On the one hand, the motion of an ion in solution in a liquid
represents material transport, with the motion caused by electrophoresis, by
convection and by diffusion. On the other hand, the transport of the charged
ion causes an electric current through the liquid. The combination of mate-
rial transport and charge transport allows a transport equation to be inferred
(cf. R. Probstein (1994)). For dilute, conducting solutions, the electric current
density may be expressed by the Nernst-Plank equation. Using conservation
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of charge in the volume element and a relation between the electric conduc-
tivity and the ion densities, we finally obtain i transport equations for the
ion species in the form

∂ci
∂t

+ (v − λ′i · ∇ϕ) · ∇ci = Di ·∆ci + λ′i · ci ·∆ϕ+ r . (11.36)

In (11.36), ci is the concentration, λ′i is the electrophoretic mobility and
Di is the diffusion coefficient of the species i. v is the velocity of the liquid,
ϕ is the electric potential and r is a source or sink term that takes into ac-
count the change in the ion concentration due to chemical reactions. In an
electrically-neutral region the second term on the right-hand side vanishes,
because the electric potential always satisfies the Laplace equation. Equation
(11.36) makes it clear that the electrophoretic motion modifies the convec-
tive transport. There is a superposition of flow velocity and electrophoretic
velocity. In addition, for λ′i → 0, (11.36) becomes a standard transport equa-
tion, such as is used for uncharged species. Although the derivation of this
transport equation assumes free ions in a dilute solution, a similar equation
can be used for particles. In this case there is no source or sink (r = 0) and
for increasing particle size diffusion vanishes (Di → 0). This describes the
transport of particles taking into account their electrophoretic mobility.

Application to a separation channel

We now look at the example of the separation of a mixture of potassium
ions (K+), sodium ions (Na+) and lithium ions (Li+) in a micro-separation
channel. D. P. J. Barz (2005) presents both numerical (FEM) simulations
and experiments for validation. The equations (11.27) and (11.28) are used
as a basis for the flow and (11.36) for the material transport of the species
at constant material properties. The separation channel has a square cross
section of 50 µm × 50 µm and a length of 72 mm from the junction in
the channel to the detector (see Figure 11.12). The mixture of the ions in
dilute solution is initially in the form of a plug in the region of the junction,
surrounded by an aqueous solution without these ions. By application of a
potential difference of 3 kV along the separation channel, corresponding to a

Fig. 11.11. The effect of an electric field on an ion and on a particle in a liquid at
rest.
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field strength of ∂ϕ/∂x = −35.3 V/mm, an electro-osmotic flow is generated
in the positive x-direction. In addition the ions in the electric field are subject
to electrophoresis.

From the concentration fields in Figure 11.12, we see that the plug has
left the junction and the maxima of the concentration fields (arrows) are
already at different positions. The potassium ions are clearly further than
the sodium ions, which again are further than the lithium ions. Although all
ions have the same number of charges, it is the size of the ion that causes
the different mobility. The potassium ion is relatively small and therefore has
a high electrophoretic mobility. A detector downstream captures the electric
conductivity σ averaged over the cross section, which increases in the presence
of ions. As the concentration fields pass through in time, we therefore see
an increase in the conductivity. The simulated conductivities are in good
agreement with the measured conductivities. The systematic deviations are
not surprising, given the uncertain data for the zeta potential and the Debye
length, as well as to a lesser degree for the electrophoretic mobility.

Similarity of electric field and flow

Under certain conditions it can be shown, according to J. T. G. Overbeck
(1952), that the electric field and the electro-osmotic flow are similar. We
then have

v(x, y, z, t) =
ǫr · ǫ0 · ζ

µ
· ∇ϕ(x, y, z, t) . (11.37)

This means that the streamlines and the electric field lines are parallel at all
times and at all places, even for complex channel geometries. The assumptions
for this similarity to hold are a thin electrical double layer with lD ≪ d,
constant liquid properties, a constant zeta potential, electrically isolating

c K+

c Na+

c Li+

y

x

Fig. 11.12. Electrophoretic separation of an ion mixture, after D. P. J. Barz (2005)
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channel walls, no external pressure gradient, Red ≪ 1 and Red ·Str ≪ 1. Here
Red = |v| · d/ν is the Reynolds number in the channel and Str = d/(|v| · τ)
is the Strouhal number, formed with the time scale τ of the time dependent
electric field. These assumptions are frequently satisfied for electro-osmotic
flows of dilute solutions under quasi-steady conditions. It is then sufficient
to solve the Laplace equation for the external electric field, and the velocity
field is known by (11.37). As the electrophoretic velocity of ions or particles
vI,P also becomes similar to the electric field for similar conditions, it may
be calculated by superposition according to

vI,P(x, y, z, t) =

(
ǫr · ǫ0 · ζ

µ
− λ′

)
· ∇ϕ(x, y, z, t) . (11.38)

11.3.4 Wetting and Thin Films

Because of their small thickness or when wetting occurs, thin liquid films on
solids can touch the limits of conventional continuum mechanics. In these
cases possibly boundary conditions must be modified or the molecular forces
must be taken into account. A liquid-gas interface, for example, is treated
in continuum mechanics as a infinitely thin layer, across which there is a
jump in the fluid properties. However, it is in fact a zone of finite thickness,
across which these changes take place continuously. The integral properties
of this zone are taken into account in continuum mechanics via the interfacial
tension. Of course, we cannot expect that this model remains correct when,
for example, two interfaces lie close together.

Wetting

When a liquid touches a solid, different types of wetting can be observed (cf.
Figure 11.13).

On the one hand there may be partial wetting. For t → ∞, a steady
equilibrium arises between the liquid (l), the gas (g) and the solid (s). The
contact line (cl) and the contact angle αs are steady. The liquid, gas and
solid meet at the contact line. Well-wetting systems are characterized by
small contact angles, while poorly-wetting systems are characterized by large
contact angles.

Fig. 11.13. Wetting of a solid
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Fig. 11.14. Set up for electro-wetting

On the other hand there may be perfect wetting. In this case, for t→ ∞
the liquid spreads out without limit, until eventually a thin liquid film forms
on the solid. This behaviour can be considered to be the limiting case αs → 0.

At the molecular level there is a system of solid, liquid and gas molecules.
It is the interaction between the solid and liquid molecules that can drive
the wetting. As the wetting front progresses, however, gas molecules must
be displaced from the solid. The interaction between gas and solid molecules
can therefore inhibit the wetting. If the attraction between the molecules of
the liquid and the solid is greater than that between the molecules of the gas
and the solid, the wetting will progress. In contrast, the partial wetting in
Figure 11.13 is an expression of a balance of these forces. T. Young (1805)
derived the equation

σsg − σsl = σlg cosαs , (11.39)

which relates the interfacial tension at the solid-gas (σsg), solid-liquid (σsl)
and liquid-gas (σlg) interfaces (cf. Section 2.8).

The static contact angle in partial wetting can be changed by electric
forces. According to H. Vallet et al. (1996), to achieve this an electrically
conducting liquid and an electrically insulating solid must be present, into
which an electrode is embedded (cf. Figure 11.14). If an electric potential dif-
ference ∆ϕ is now applied between the liquid and the electrode, the attractive
electric forces modify Young’s equation (11.39), and, according to

cosαs =
1

σlg
·
(
σsg − σsl +

ǫr · ǫ0
2 · e0

·∆ϕ2

)
, (11.40)

we obtain a smaller contact angle αs. In this expression, ǫr · ǫ0 characterizes
the dielectric properties and e0 the thickness of the insulating solid. This
phenomenon is called electro-wetting and is applied technically e.g. for vari-
able liquid lenses. A transition from partial to perfect wetting can also be

Fig. 11.15. Wetting interface shape on the molecular length scale
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observed for a given set of materials for changes in the temperature (see P.
G. de Gennes (1985)).

The straight line progression of the liquid-gas interface to the contact
line is of course an idealization. On molecular length scales, according to P.
G. de Gennes (1985), considerable deviations from this can occur, for both
static and dynamic situations. Long-range attractive van der Waals forces
lead to interface contours, as shown in Figure 11.15. These forces are caused
by the mutual polarization of the molecules. Electrostatic forces have similar
effects, as they act between charged or polar molecules. If there is a strong
attraction between liquid and solid molecules, and at the same time a weak
attraction between gas and solid molecules, a precursor liquid film is found.
In all cases, the length scale e at which such deviations occur is of the order
of several molecule diameters. These deviations are practically invisible for
continuum mechanics. Figure 11.15 makes it clear that a macroscopic length
scale is useful to define the contact angle. The macroscopic contact angle α
is thus defined on a length scale of several micrometers. It can be accessed
optically using standard methods. On the molecular length scale the contact
angle is barely accessible and also, because of the motion of the molecules,
not sharp.

Moving and contact line

To calculate the flow near a moving contact line, we must know the macro-
scopic situation. In the continuum mechanical treatment, these are taken
account of via the boundary conditions. The kinematics of the flow on both
sides of a moving contact line have been characterized by E. B. Dussan and
S. H. Davis (1974). Without making any assumptions with respect to the ge-
ometric form of the interface and contact line, as well as with no assumptions
on the rheology of the fluid, the authors obtain flow fields that are kinemat-
ically compatible with the interface, with the moving contact line and with
the no-slip condition at the wall. These flow fields are shown in Figure 11.16
for the two basic cases. In each case the relative motion with respect to the
moving contact line is shown. In the first picture a liquid element moves
along the interface towards the contact line, so that the liquid propagates in
a rolling motion on the solid. This generates a complex flow in the gas, which
flows away along an inverse stagnation streamline. In the second picture a
liquid element moves along the interface away from the contact line. A stag-
nation streamline is therefore formed inside the liquid, leading towards to the
contact line. The gas is thus rolled away from the solid.

If we consider the velocity of the liquid on the one hand along the interface
and on the other hand along the wall, as we approach the contact line two
different limiting values are found. It is only for the contact angle α = 90◦

that this discrepancy vanishes. Therefore the velocity field is not continu-
ous for general contact angles, rather there is an infinite velocity gradient
at the contact line. Depending on the constitutive equations of the liquid,
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infinite stresses can therefore occur. This singularity is not a consequence
of simplifying assumptions, but rather is due to the continuum mechanical
formulation.

The question remains of how this singularity is to be treated. E. B. Dus-
san and S. H. Davis (1974) show that a change in the conditions at the
interface does not eliminate this singularity. One possibility is to use suitable
non-Newtonian constitutive equations. Although this does not eliminate the
discontinuity of the velocity field, it ensures finite stresses. A further possi-
bility is to relax the no-slip condition precisely at the contact line using a
slip condition. This leads to a continuous velocity field and permits the use of
Newtonian constitutive equations. The stresses remain finite. To be precise,
the Navier slip law (11.5) can be used at the wall with a slip length LS of sev-
eral molecular diameters, so that appreciable slip only occurs directly at the
moving contact line. The small slip of the liquid at the wall is not surprising
if we consider the statements in Section 11.1.4. In addition, the appreciable
slip directly at the moving contact line can be understood, as macroscopic
wetting often takes place on top of an advancing microscopic liquid film. In
the microscopic picture, therefore, the liquid slips along a microscopic liquid
film (cf. Figure 11.15).

From two series of experiments by W. Rose and R. W. Heins (1962) for
perfectly wetting material systems in a capillary tube, and using similarity
arguments, G. Friz (1965) derives the empirical expression

tanα ≈ 3.4 ·
(
µ · U
σlg

) 1
3

(11.41)

for the dynamic contact angle α. In this expression U is the velocity of the
contact line, µ is the dynamic viscosity of the liquid and σlg is the interfacial
tension between liquid and gas. The relation (11.41) was confirmed by A. M.
Schwartz and S. B. Tajeda (1972) for further material systems with different
wetting geometries. We can see a dependence of the macroscopic contact
angle α on the velocity U of the contact line and on the liquid properties
µ/σlg. For perfecly wetting systems the static contact angle αs ≈ 0. holds.
E. B. Dussan (1979) summarizes measurements of different authors taking
into account partial wetting (αs 6= 0) and finds, for advancing (U > 0) and
retreating (U < 0) contact lines, the model laws

Fig. 11.16. Kinematics of the flow at a moving contact line, according to E. B.
Dussan and S. H. Davis (1974), simplified for a plane wall
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U > 0 : U = κA · (α− αA)m , (11.42)

U < 0 : U = κR · (α− αR)m . (11.43)

In the equations (11.42) and (11.43), κA and κR are empirical constants and
αA und αR are the static contact angles after the contact line has advanced or
retreated. As αA > αR, there is hysteresis in the contact angle. Experiments
by R. L. Hoffman (1975) and L. H. Tanner (1979) for advancing contact lines
suggest an exponent of m = 3 (cf. Figure 11.17). For small contact angles
and αA, αR → 0 the model laws (11.42) and (11.43) are also consistent with
(11.41).

In summary, we may say that the macroscopic contact angle in the dy-
namic case takes on different values from that in the static case. For advancing
contact lines larger contact angles are observed, while for retreating contact
lines smaller contact angles occur. The dependence according to the model
laws (11.42) and (11.43) with m ≈ 3 seems to be confirmed experimentally,
at least for advancing contact lines.

Thin films

The stability of thin liquid films on horizontal solids can serve to clarify their
physics and particularly to indicate the limits of the continuum mechanical
treatment. We follow the description in the review article by A. Oron et al.
(1997).

A thin film is given by a liquid layer that lies between a horizontal solid
plate at z = 0 and a liquid/gas interface at z = h (cf. Figure 11.18). The ex-
tension of the film is infinite in the horizontal directions x and y. For simpler
mathematical representation, we restrict ourselves to the two-dimensional
problem in the x-z plane. A generalization to the three-dimensional problem
may be found in A. Oron (2002). The two-dimensional problem is charac-
terized by the vanishing velocity component v = 0 and vanishing gradients

Fig. 11.17. Behavior of the dynamic contact angle, according to E. B. Dussan
(1979)
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∂/∂y, so that, from the incompressible continuity equation (5.3) and the
incompressible Navier-Stokes equations (5.20), we obtain

∂u

∂x
+
∂w

∂z
= 0 , (11.44)

ρ ·
(
∂u

∂t
+ u · ∂u

∂x
+ w · ∂u

∂z

)
=− ∂p

∂x
+ µ ·

(
∂2u

∂x2
+
∂2u

∂z2

)
− ∂φ

∂x
, (11.45)

ρ ·
(
∂w

∂t
+ u · ∂w

∂x
+w · ∂w

∂z

)
=

−∂p
∂z

+ µ ·
(
∂2w

∂x2
+
∂2w

∂z2

)
− ∂φ

∂z
− ρ · g , (11.46)

for the liquid. In addition we have the boundary conditions on the solid and
at the liquid-gas interface

z = 0 :u = w = 0 , (11.47)

z = h :w = ht + u · hx , (11.48)

n · T · n = 2 ·H · σlg , (11.49)

t · T · n = t · ∇σlg . (11.50)

Here T is the stress tensor in the liquid, n and t are the unit vectors in the
normal and tangential directions (cf. Figure 11.18). The no-slip condition is
satisfied on the solid. In this section we do not consider any moving contact
lines. On the interface we use the kinematic boundary condition (11.48) to
ensure a tangential flow. Further, the continuity of the stresses in the normal
and tangential directions is retained by the dynamic boundary conditions
(11.49) and (11.50). In the normal direction, for the simplest case of vanishing
viscosity we obtain the Laplace pressure jump ∆p = 2 ·H · σlg, whereby the
mean curvature of the interface is given by

2 ·H =
hxx

(1 + h2
x)

3
2

. (11.51)

Fig. 11.18. Thin liquid films on and under horizontal plates
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In the tangential direction we obtain shear stresses if surface tension σlg is
not constant in space. This may be due to the temperature or to dissolved
species. Further, because of µgas ≪ µ, we assume implicitely in (11.50) that
the shear stresses in the surrounding gas may be neglected. This assumption
permits the flow in the liquid to be treated separately from the flow in the
gas. To simplify the notation, the partial derivatives of the function h(x, t)
are denoted by indices, i.e. hx = ∂h/∂x, ht = ∂h/∂t etc. In the Navier-Stokes
equations (11.45) and (11.46), as well as gravity we have introduced a further
volumetric force in the form of a potential φ, which will be useful to model
molecular forces.

By applying the so-called thin film approximation, the system (11.44) -
(11.51) can be considerably simplified. We leave out the mathematical details,
as they can be found in A. Oron et al. (1997). Basically it is assumed that
the mean film thickness h0 is very small compared to the wavelength λ of
the perturbations of the interface. This leads to separate length and velocity
scales in both directions, so that as well as h0 ≪ λ also w ≪ u and ∂/∂x≪
∂/∂z can be utilized. If the equations are integrated over the film thickness in
the region 0 ≤ z ≤ h, taking account of the boundary conditions, a so-called
evolution equation for the film thickness h(x, t) can be derived.

We first consider a case in which the film thickness remains large compared
to the diameter of the liquid molecules, so that we may expect to arrive at
a continuum mechanical treatment. For constant surface tension σlg and for
φ = 0 we obtain the evolution equation

µ · ht −
1

3
· ρ · g ·

(
h3 · hx

)
x

+
1

3
· σlg ·

(
h3 · hxxx

)
x

= 0 . (11.52)

In the evolution equation (11.52) the second term expresses the effect of
gravity and the third term the effect of the capillary force. We first consider
the effect of gravity. For a film on a plate a local deflection of the interface,
as shown in Figure 11.19, leads hydrostatically to an increased pressure un-
derneath the deflection. The consequence is a horizontal pressure gradient,
which transports the liquid underneath the deflection to either side and thus
reduces the deflection. Gravity therefore acts to stabilize the system. The
capillary force has a similar effect. Because of the convex curvature of the
interface, the pressure underneath the deflection is larger than that under-

Fig. 11.19. Stability of a liquid film on and under a plate
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neath the interface that is parallel to the wall. The capillary force therefore
also acts to stabilize the system. If we subject the basic solution h = h0 of
equation (11.52) to a stability analysis against small perturbations that are
periodic in x, we indeed find that all perturbations are damped in time for
ρ · g > 0 und σlg > 0. Thus the basic solution remains stable. The condition
for temporal growth of the pertubations of the film on the plate is

ρg < −σlg ·
(

2 · π
λ

)2

. (11.53)

If the film is below the plate, as shown in Figure 11.19, the condiction for
temporal growth is

ρg > σlg ·
(

2 · π
λ

)2

. (11.54)

In this case the deflection reduces the pressure above the deflection hydro-
statically, while the concave curved interface again causes a capillary pressure
increase. Because of the change in direction of g, gravity now acts to destabi-
lize the system. If (11.54) is satisfied, the destabilizing gravitational force pre-
vails and the liquid is transported into the deflection, as in Figure 11.19. This
situation is called the Rayleigh-Taylor instability, whereby equation (11.55)
shows that large wavelengths λ are particularly critical. Evaluation yields

λ > 2 · π ·
√

σlg

ρ · g (11.55)

for the unstable region of the wavelengths. It is interesting to note that all
results (11.53)-(11.55) do not depend on the mean film thickness h0.

We now consider a case in which the liquid film is only 10 - 100 molecular
layers thick, which corresponds, depending on the liquid, to several hundred
angstroms. Under such conditions long-range molecular forces can play an
important role. Inside the liquid, molecular forces are in principle be taken
into account by the properties of the continuum. At individual interfaces
the different molecular forces in both continua are also taken into account
through surface tension. However, if two interfaces occur close together, as in
the present case with the liquid-gas interface and the liquid-solid interface,
the molecular forces additionally lead to an interaction of these interfaces. In
the simplest case of parallel interfaces without the presence of ions, the force
potential

φ = φ0 +
A

6 · π · h3
(11.56)

may be used to model the system. Here φ0 is a reference potential whose value
is not relevant for the forces (cf. (11.45) and (11.46)) and A is the so-called
Hamaker constant. If A > 0 the two interfaces attract each other, while for
A < 0 they repel each other. For constant surface tension σlg and neglected
gravity g = 0, in this case we obtain the evolution equation
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µ · ht +
A

6 · π ·
(
hx

h

)

x

+
1

3
· σlg ·

(
h3 · hxxx

)
x

= 0 . (11.57)

Instead of the potential (11.56), to model the system a normal stress within
the liquid can also be superimposed, the so-called disjoining pressure. Under
the same conditions this leads to the same evolution equation.

A linear stability analysis of the basic solution h0 for spatially periodic
perturbations of the evolution equation (11.57) leads to amplification in time
for

A

6 · π · h0
>

1

3
· σlg ·

(
2 · π
λ

)2

· h3
0 . (11.58)

For A > 0 therefore an instability is possible, which can be visualized as being
due to a self-strengthening attraction between the two interfaces, leading to
a local rupture of the liquid film as h(x, t) → 0 occurs. Again it is large
wavelengths that are critical. The stability analysis yields

λ > 2 · π · h2
0 ·
√

2 · π · σlg

A
(11.59)

for the region of unstable wavelengths. For A < 0, on the other hand, because
of the repulsive interaction between the two interfaces, no instability can
occur. In both conditions (11.58) and (11.59) we can see a dependence on
the mean film thickness h0. In particular equation (11.58) indicates that for
increasing h0 the left side of the equation vanishes and the right side increases
greatly. Thus for increasing film thicknesses the long-range molecular forces
are no longer important.

The potential (11.56) is one possibility to take into account the effect of
long-range van der Waals forces between the molecules. However, if we are
to take into account ions in solution or polar molecules, or electric forces
or forces at small molecular distances, a large number of suggestions for the
potential φ(h) may be found in the literature. In addition the conditions of
the liquid film may be generalized. The literature contains a great number
of generalizations, including evaporation and condensation at the liquid-gas
interface, surface tension σlg that is not constant in space, temperature or
concentration dependent material properties, volumetric forces due to rota-
tion of the films, and wetting and dewetting processes. A discussion of these
aspects may be found in A. Oron et al. (1997) and A. Oron (2002).

11.4 Experiments

In recent years numerous experimental investigations of pressure loss, of the
laminar-turbulent transition and of heat transfer in microchannels have been
published in the literature. The sometimes surprising results deviate in part
considerably from the conventional macroscopic correlations, although the
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conditions would suggest continuum mechanical behaviour. Now it has turned
out that many of these deviations are due to erroneous interpretation, because
experiments in microchannels frequently permit no access to local informa-
tion. Thus, in general pressures and temperatures are measured in the entry
and exit chambers, because local measurements inside the microchannels are
hardly possible without causing disturbances. However, the derivation of the
pressure loss and heat transfer correlations based on this integral informa-
tion remains problematic. It is similarly difficult to detect a laminar-turbulent
transition using integral data. Even if advances are made in some areas with
local measurements, critical discussion will be necessary.

The data available in the literature can be divided into laminar flows and
turbulent flows, whereby in each case circular, rectangular and trapezoid-
shaped flow cross sections have been investigated. Here we restrict ourselves
to circular cross sections.

11.4.1 Pressure Drop

In the discussion of experimental results on pressure loss in microchannels,
we follow in part the review articles by C. Sobhan and S. V. Garimella (2001)
and G. Hetsroni et al. (2005). The pressure drop in a pipe may be given by

∆p =
ρ

2
· ū2 · λ · l

d
. (11.60)

Thus each measurement aims to determine the friction factor λ, generally rep-
resented as a function of the Reynolds number Red = ū · d/ν. Figure 11.20
shows the friction factor λ in the form of a so-called Nikuradse diagram as a
function of the Reynolds number. Supplementary to Figure 4.84, data for mi-
cro pipes from literature are included. In conventional macroscopic pipes, the
friction factor for Newtonian fluids in laminar, fully-developed flow is given
by λ = 64/Red (cf. equation (4.120)). For turbulent flows in smooth conven-

tional pipes, we have the Blasius relation λ = 0.316 · Re−1/4
d (cf. equation

(4.121)). These curves are shown as solid lines in the laminar and turbulent
regimes. Furthermore we find a family of selected results in the literature,
given by various lines. These lines are drawn through the experimental val-
ues of the various authors.

We first turn to the laminar regime. The first curve is obtained by S.
B. Choi et al. (1991) using nitrogen in pipes with diameters in the range
d = 3−81µm. The curve confirms the dependence λ ∼ Re−1 that is valid for
conventional pipes. However the curve lies about 17 % below the conventional
curve in Figure 4.84. The second curve is determined by D. Yu et al. (1995)
with nitrogen and water in pipes of d = 19−102µm diameter. The curve also
shows the dependence λ ∼ Re−1

d and lies about 20 % below the conventional
curve. The curves by J. Judy et al. (2002) are obtained for glass pipes with
diameters d = 52 − 149µm with water, isopropanol and methanol. Both
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curves confirm the dependence λ ∼ Re−1
d , with the curve for water lying

about 3 % below the conventional curve. The curves for isopropanol and
methanol cannot be differentiated and lie barely 3 % above the conventional
curve. Incidentally J. Judy et al. (2002) use pipes of different lengths, to
ensure that the entrance length, as well as the inlet and outlet effects, do not
falsify their results. The curves of D. Brutin et al. (2003) are obtained for
water in circular glass capillaries of diameter d = 321µm and 540µm. The
authors use steady and transient experimental methods and analyze carefully
the errors due to the entrance length. Both curves confirm the dependence
λ ∼ Re−1

d , and they lie about 4 % and 5 % above the conventional curve.
The experiments by S. B. Choi et al. (1991) with nitrogen in the turbulent

regime yield the dependence λ ∼ Re−0.182
d and lie about 55 % below the

Blasius correlation. The data of D. Yu et al. (1995) using nitrogen and water
in the turbulent regime confirm the relation λ ∼ Re−0.25

d , but lie about 5 %
below the Blasius correlation. For conventional flows the measurements for
real rough pipes generally lie above the Blasius correlation, as may be seen
for example from the Colebrook correlation. The location of curves below the
Blasius correlation is therefore rather strange.

All measurements above are based on pressure measurements in the entry
and exit chambers. Because of this no direct measurement of the pressure
drop in the fully-developed flow is obtained. Effects due to the transition
between the chambers and the channel, as well as to the entrance length,
are always present. These effects are only corrected in a few experiments.
Furthermore, inaccuracies in determining the pipe diameter (λ ∼ d3) and in
measuring the integral mass flux (λ ∼ ṁ−2) seem to be particularly critical.
The exact measurement of small mass fluxes is not trivial, particularly for
gases. In the turbulent case there is also a considerable effect from the wall
roughness to be expected, as the roughness depth is to be evaluated relative

Fig. 11.20. Pressure loss in smooth circular micropipes
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to the small diameters. Each inaccuracy in determining the pipe diameter and
roughness depth is therefore critical. Finally, the effects of charge transport
in the presence of ions (flow potential), of dissipative heating of the fluid,
and of loss of thermodynamic equilibrium in gases (Kn > 10−3) must be
examined critically. In summary, comparison of measurements in micropipes
with conventional correlations, at least in the turbulent regime, shows marked
discrepancies whose origins remain unexplained.

11.4.2 Laminar-Turbulent Transition

The transition from laminar to turbulent flow in micropipes has been eval-
uated in the literature using, on the one hand, integral pressure loss data.
On the other hand, more recent work uses so-called micro particle image
velocimetry (µPIV) to obtain local information about the velocity field and
from this to determine the transition regime. Figure 11.21 summarizes se-
lected results on the laminar-turbulent transition regime for smooth circular
micropipes.

D. Yu et al. (1995) use their pressure loss measurements with water and
nitrogen in micropipes with diameters d = 19−102µm to derive a transition
range of Red ≈ 2000 − 6000. Z. X. Li et al. (2003) carry out measurements
with water in micropipes with diameters d = 79.9 − 166.3µm and give the
transition range based on their pressure loss measurements as Red ≈ 1535−
2630. K. V. Sharp and R. J. Adrian (2004) carry out their measurements
with water and a 1-propanol-glycerol mixture in glass pipes with diameters
50 − 247µm. In addition to pressure loss measurements, the authors draw
on measurements of the velocity on the pipe axis (µPIV). They give the
transition range as Red ≈ 1800−2300. The measurements of K. V. Sharp and
R. J. Adrian (2004) are particularly valuable as they drawn on an objective
criterium for the velocity fluctuations on the pipe axis and thus on local
information to determine the transition regime. Comparison of the transition
regime according to K. V. Sharp and R. J. Adrian (2004) for micropipes
with those for conventional macroscopic pipe flow does not indicate that the
transition occurs in microflows at considerably smaller Reynolds numbers.
Such statements of earlier authors (cf. review articles by C. Sobhan and S.
V. Garimella (2001) or G. Hetsroni et al. (2005)) are to be evaluated very
critically.

Fig. 11.21. Laminar-turbulent transition region for circular micropipes
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11.4.3 Heat Transfer

In the discussion of experimental results on heat transfer in microchannels, we
will follow in part the review articles by C. Sobhan and S. V. Garimella (2001)
and G. Hetsroni et al. (2005)). For laminar flow in conventional circular pipes,
we have in the literature the so-called Sieder-Tate correlation for the heat
transfer

Nu

Pr
1
3

≈ 1.86 ·Re
1
3

d ·
(
d

l

) 1
3

. (11.61)

Here the Nusselt number Nu = h · d/λ may be understood as a dimension-
less form of the heat transfer coefficient h. λ is the thermal conductivity of
the fluid, d the diameter and l the length of the pipe. The Prandtl number
Pr = ν/k contains the material properties of the fluid in the form of the kine-

matic viscosity ν and the thermal diffusivity k. Figure 11.22 shows Nu/Pr1/3

as a function of the Reynolds number. The Sieder-Tate correlation for the
reference values of the parameter d/l = 0.001 and 0.005 from the experiments
is shown as two solid curves in the laminar regime in Figure 11.22. Further,
a family of experimental results is found in the literature for the laminar
and turbulent regimes, and is shown in the form of various lines. Finally the
conventional Dittus-Boelter correlation for turbulent flow

Nu

Pr
1
3

≈ 0.023 · Re0.8
d (11.62)

is shown as a solid line.
The curves by S. B. Choi et al. (1991) with nitrogen (Pr ≈ 0.7) in circu-

lar pipes with diameters d = 9.7− 81.2µm. The curve in the laminar regime

Fig. 11.22. Heat transfer in smooth circular micropipes
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shows the relation Nu ∼ Red
1.17 and is thus considerably steeper than the

conventional Sieder-Tate correlation (Nu ∼ Red
1/3). In the turbulent regime

S. B. Choi et al. (1991) obtain the relation Nu ∼ Red
1.96. This curve is also

considerably steeper than the Dittus-Boelter correlation (Nu ∼ Red
0.8). In

particular, for large Reynolds numbers S. B. Choi et al. (1991) obtain consid-
erably larger Nusselt numbers in micropipes than for macroscopic pipes. The
results of D. Yu et al. (1995) for the heat transfer in turbulent flows of water
(Pr ≈ 5) and nitrogen (Pr ≈ 0.7) show the relation Nu ∼ Red

1.2Pr0.2. On the
one hand, this yields curves that are steeper than the Dittus-Boelter correla-
tion. On the other hand, the dependence on the Prandtl number Nu ∼ Pr0.2

deviates from the Dittus-Boelter correlation (Nu ∼ Pr1/3). For this reason
the two curves for Pr ≈ 0.7 and Pr ≈ 5 do not coincide. The experiments
of T. M. Adams et al. (1998) on turbulent heat transfer of water in circular
pipes of diameters d = 760, 1090µm confirm, on the one hand, the relation
Nu ∼ Pr1/3. On the other hand, an explicit dependence on d/l remains, and
both curves are steeper than the Dittus-Boelter correlation. The upper curve
is valid for d = 760µm and the lower curve for d = 1090µm.

As well as the problems already discussed for measurements on pressure
loss (cf. Section 11.4.1), additional difficulties arise in measuring the heat
transfer. All measurements are based on the temperatures in the entry and
exit chambers. Thus effects due to the thermal entrance and the axial heat
conduction in the fluid and in the wall are superimposed. In a few cases a
correction has been carried out using numerical simulations. Comparison of
the measured heat transfer correlations with the conventional macroscopic
correlation shows considerable discrepancies, both in the laminar and in the
turbulent regimes. Measurements based on local temperature fields would be
necessary to yield precise data for pure the heat transfer.



12. Biofluid Mechanics

12.1 Fundamentals of Biofluid Mechanics

In contrast to the topics discussed in previous chapters, biofluid mechanics
is concerned with flows that are influenced by flexible biological surfaces. We
distinguish between flows past living bodies in air or in water, such as bird
flight or the swimming of fish, and internal flows, such as the closed blood
circulation of living beings. In the previous millions of years, evolution has
developed crawling, running, swimming, gliding, and flying as methods of
motion of living beings, depending on their size and weight.

The necessary propulsion for altering position requires flow control adap-
ted to the Reynolds number of the motion. The motion of bacteria and amoe-
bae takes place at very small Reynolds numbers, where friction dominates,
with cilia and flagella. Tadpoles and octopuses use the inertia of jet propul-
sion for motion. Eels move in a wavelike manner; whales use vortex separation
at the tail fin for motion at Reynolds numbers of up to 108. Fast-swimming
fish such as the shark have longitudinal grooves on their scales that affect the
viscous sublayer of the flow boundary layer so that the flow drag is reduced.

Heat and mass transport in living beings takes place in circulatory sys-
tems. These include respiration, the circulatory system of the blood, and the
lymph, as well as that of water. All biological flows have in common that
the motion is affected by external or internal highly flexible and structured
surfaces. This leads to an actively controlled flow whose losses are kept small.

Of the many different biological flows, in this chapter we will treat the fly-
ing of birds, the swimming of fishes as well as looking at the blood circulation
of the human body in depth.

Bird flight has already been introduced in Section 4.4.1. The lift and
propulsion necessary for flight are generated by the flapping of the wings.
The downward flap of the bird’s wing is carried out with great force and
the upward flap is performed with aerodynamic resistance that is as small as
possible. The outer parts of the wing that carry out the greatest part of the
vertical motion produce the greatest part of the propulsion. The orientation
and form of the wing changes continuously during one flapping period. The
inner part of the bird’s wing generates the lift.

The propulsion of swimming fish is generated by up-and-down motion of
the tail fin, or, in the case of small fish, by their side-to-side motion. The tail
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fin has a symmetric profile, so that during one flapping period it generates
continuous propulsion. Most fish control lift with a swim bladder located in
their stomach. Large fish such as the whale and the dolphin also generate lift
with the vertical motion of the tail fin. This is made possible by the horizontal
positioning of the tail fin.

When friction is present, the motion of bacteria and protozoa takes place
with cilia and flagella. Tadpoles and octopuses use the inertial force of jet
propulsion to move, while eels move in a wavelike motion.

The blood circulation of the human body is driven by the heart. A sketch
of the human circulatory system is shown in Figure 12.1. Every minute, the
heart pumps about 5 l of blood into the circulation. If the body is under
duress, the pump efficiency can increase to 20 to 30 l per minute. The blood
circulation consists of two separated partial systems, which are connected
via the heart. The first is called the systemic circulation and the second the
pulmonary circulation. The complete circulation ensures the exchange of gas
between the metabolism in the human tissue and the air in the atmosphere.

The systemic circulation begins with the aorta, which branches into large
arteries. Also belonging to the circulation are the capillaries, where the blood
gives up its oxygen and takes in carbon dioxide. The blood flows out of the
capillaries into the veins, where it is led back again to the heart. From the
heart, the blood is pumped into the pulmonary circulation, which consists of

upper extremities

aorta

lung

thorax

kidneys

lower extremities

vein valves

liver

head and throat

Fig. 12.1. Flight and swimming motion of animals and the blood circulation in
the human body
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pulmonary arteries, capillaries, and veins. In the pulmonary circulation, the
blood gives up a part of its carbon dioxide and takes in as much oxygen as
it had previously given up to the body tissues.

12.1.1 Biofluid Mechanics of Animals

Three quarters of all animals can swim or fly. In 6 · 108 years, evolution has
developed a great variety of forms of motion in water and air. The Reynolds
numbers achieved range from 10−3 for bacteria and protozoa to 108 for fast-
swimming whales. In flight in the atmosphere, Reynolds numbers of 10−1 for
the smallest insects and up to 107 for brief periods for fast-flying birds are
reached. According to the discussion in Section 4.2, the flow past animals
at Reynolds numbers Rel ≪ 1 is dominated by the friction of the fluid,
while at Reynolds numbers Rel ≫ 1 the inertia of the fluid dominates. In the
transition region 10−1 < Rel < 10 both friction and inertial effects determine
the flow past the animals.

Depending on the Reynolds number regime, different forms of propulsion
and lift have developed in nature. Bacteria and flagellates move with cilia
and flagella. The oscillating motion of the cilia propels the protozoa forwards.
In fish, this wavelike motion takes place only in the last third of the fish’s
body, so that their swimming using this method is slow. The greatest part
of the propulsion of fast-swimming fish is achieved with the periodic flap
of their tail fin. Sharks reach top speeds of up to 90km/h by switching off
the wavelike locomotion mode in the rear part of their bodies by means of
pressure-controlled stiffening of their skin. The lift of fish in water is usually
compensated by the swim bladder. Fast-swimming fish like sharks and whales
compensate the lift with pectoral fins and with a vertical fin flap (see Figure
12.1) that generates the necessary lift as well as the propulsion.

The flight of insects with flapping wings of up to 1000 times per second
developed already 3 · 108 years ago on earth, while the flight and gliding of
birds appeared first 0.5 · 108 years ago. Compared to swimming, the flap of
the wing in flight must generate both propulsion and lift at stable flight po-
sitions. This led to arched wing surfaces, whose continually varying pressure
distribution on the upper and lower sides of the wing ensures the necessary
lift. The wing flapping necessary for the propulsion of birds is stronger and
at a higher frequency than the flapping of the fish’s fin. As well as flying and
gliding, most flying animals can also hover. This is used particularly during
take-off and landing. The frequency of oscillation of the wings of the smallest
mosquito is 1000Hz, that of the bee is 200Hz, of the colibri 45Hz, while that
of the condor is 1.2Hz. In comparison, the tail fin of the blue whale oscillates
at 0.25Hz.

Figure 12.2, with Figure 4.127, shows the flap of the wing of a seagull.
At the beginning of the downward flap, the wing is at full stretch and moves
without any forward component relative to the bird. In the middle of the
downward flap, the tip of the wing is slightly turned and it generates the
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forward propulsion component. At the end of the downward flap, the wing
is at full stretch and it generates lift along the entire span of the wing. At
the beginning of the upward flap, the wing is bent, and at the same time
the angle of attack increases to compensate for the loss of lift in the outer
part of the wing. The wing moves slightly backwards and the tips of the wing
are slightly splayed. The main feathers of the wing are in resting position. In
the middle of the upward flap, the feathers are folded over each other. The
backwards motion continues and the angle of attack is increased further. At
the end of the upward flap, the wing is again stretched and the main feathers
again oscillate forwards, as the downward flap begins.

The stability of bird flight is achieved by the tail feathers. The splaying
of the tail feathers also permits abrupt flight manoeuvres such as braking,
hovering, and gliding. The wings of birds are constructed for flight at high
Reynolds numbers. The penetrability of the feathers, the slits in the front
wings and the spreading of feathers at the back of the wing control the
boundary layer and ensure that flow separation is avoided and the induced
drag is kept small. By suitable shaping of the surfaces, such as crests at the
leading edge and feather down, the friction drag is reduced and, in the case of
the night owl for example, aerodynamic noise is reduced. A summary of the
swimming and flight of animals is given in the book by M. J. Lighthill (1986).

The locomotion of protozoa takes place at a Reynolds number of 10−2

by means of transversal waves along the cilia, with increasing amplitude
towards the end of the cilia (Figure 12.3). For a wave velocity V , the wave

Fig. 12.2. Flap of the wing of a seagull, J. Gray (1968)
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Fig. 12.3. Locomotion of protozoa and threadworms

motion induces a velocity of motion of the protozoa of the order U = 0.2V .
Threadworms move in the same manner; with a length of about 1 mm, their
Reynolds number is 1. The velocity of the wave along the body is about
V = 1 mm/s and the resulting velocity of the threadworm is U = 0.4V . The
reason for the higher velocity of the threadworm compared to that of the
protozoa is that no additional head cell has to be moved (Figure 12.14). The
wave amplitude at the end of the worm is much greater than at its head.
Bigger worms with a length of 10 cm swim with Reynolds numbers of up to
103 and velocities of 10 mm/s. It is the transversal waves along the body that
generate the propulsion. Eels use the transversal motion of their dorsal fin to
swim slowly, while to swim at a greater velocity, they move their entire body
in a wave form. Round single-celled organisms can also propel themselves
forward by periodic thickening and thinning of their bodies. Changing the
direction of the wave along the body enables the organism to move forwards
and backwards.

At larger Reynolds numbers, the dominating inertial force means that
wave motion of the entire body becomes inefficient. Therefore for swimming
(Figure 12.4), only the last third of the body carries out wave motion, while
the greatest part of the propulsion is generated by the periodic motion of

∆ t = 0.04 sturning to the left, time interval

Fig. 12.4. Propulsion of fish
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Fig. 12.5. Flippers and tail fin of the shark

the tail fin. This causes periodically separating vortices in the wake and thus
flow losses. Therefore, depending on the Reynolds number, evolution has
optimized motion in water by suitable shaping of the body to reduce the
pressure drag, by adaptation of the texture of the surface of the fish’s skin
to reduce the friction drag and by suitable profiling of the tail fin to reduce
the induced drag. Thus dolphins and penguins have an optimal body shape
relative to the total drag; for the gentoo penguin the value is cw = 0.07
at a Reynolds number of Rel = 106. In spite of the bulbous body and the
stabilizing back legs of the penguin, this value is very close to the value of
the technical streamline body of a spindle of rotation, namely cw = 0.04 (W.
Nachtigall (2001)). The plumage of the penguin affects the viscous sublayer
of the boundary layer so that the friction drag is reduced.

Dolphins achieve the same effect with a mucilaginous surface that damp-
ens the laminar-turbulent transition in the boundary layer and, by the ad-
dition of tiny amounts of polymers into the water flowing past, reduces the
friction drag.

Fast-swimming fish like the shark (Figure 12.5) impede the transverse
component of the oscillating velocity in the viscous sublayer of the boundary
layer by longitudinal grooves in their scales and thus achieve momentary top
speeds of up to 90km/h.

Fish have additional flippers that equalize the rolling and yawing mo-
ments generated by the flapping of the fin. It is these that make swimming in
one direction at all possible. In spite of the dominant inertial force at large
Reynolds numbers, they also permit braking and abrupt changes of direction
during swimming.

12.1.2 Biofluid Mechanics of Humans

The human body has several circulatory systems for which fluid mechanics
is relevant. There is the respiratory system, the circulation of the blood and
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lymph and the water supply. We consider the cardiovascular circulatory sys-
tem that ensures the transport of nutrients, gases, metabolic products and
hormones between the organs of the human body. The most interesting part
of the blood circulation from a fluid mechanical viewpoint is the circulation
through the arteries, characterized by the pulsing intake flow, the secondary
flows in the curves and branches of arteries, and the quasi-steady flow in the
arterioles and capillaries with gas and material exchange.

The Reynolds numbers of the blood flow in the arteries in Figure 12.1
are between 100 and several thousand. The flow pulse of the heart causes a
periodic laminar flow in the smaller arteries and a transitional flow in the
larger arteries. The transition to the turbulent artery flow is introduced by
temporary turning-point profiles. These occur in the unsteady backflow close
to the wall of the arteries during the relaxation phase of the heart. The time
of one cardiac cycle is however too short to form a fully developed turbulent
flow. The smaller the branching of the arteries, the less the pulsing flow is
noticeable.

In the curved arteries and in particular in the aorta, because of the cen-
trifugal force secondary flows form. These were discussed in Section 4.2.7. A
velocity component perpendicular to the streamlines develops and this causes
a rotating flow in the direction of the outer wall. This acts to stabilize the
transition process. The critical Reynolds number of the time-averaged veloc-
ity profile increases from 2300 for a straight pipe to up to 6000 for a curved
pipe. The peak Reynolds numbers of the flow pulses of healthy humans are
such that the secondary flow in the curves of the aorta prevents the onset of
turbulence. In reality, the unsteady transitional flow described takes place in
the boundary layer close to the wall during the braking phase of the pump
cycle. However, the instabilities that occur are dampened after a short time
by the change in time of the velocity profile.

The blood flow that leaves the heart is subdivided in up to 30 branchings,
until we reach the microcirculation of several hundred million individual flows
in arterioles with diameters of a few hundred micrometers and in capillaries
with diameters of less than 10 micrometers.

From the exit from the ventricle into the aorta, as well as after every
branching, an intake flow forms. The intake flow in a straight pipe of diameter
D is about 0.03·ReD·D. This means that the greatest part of the arteries after
the branchings are characterized by intake flows and no averaged Poiseuille
flow forms. If we consider the large bend in the aorta in Figure 12.1, the
intake flow means that in spite of the large curvature we can expect no fully
developed secondary flow.

The pressure pulse of the heart causes expansion of the arteries by about
2 %. The velocity of propagation of the pressure wave in the visco-elastic
artery walls is about five times larger than the maximum blood velocity.

The first Fourier component of the pressure pulse (see equation (12.67))
with angular frequency ω is critically dependent on the ratio of the artery
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radius R and the oscillating boundary layer thickness
√
ν/ω. If we take the

viscosity of the blood to be 4 · 10−6m2/s and the angular frequency of the
blood pulse to be ω = 8 s−1, the boundary layer thickness ρ is about 0.7 mm.
For the n-th Fourier mode of the blood pulse, the boundary layer thickness is
to be multiplied by

√
n. For the large arteries, the ratio of the artery radius R

to the boundary layer thickness ρ is of the order of magnitude 10. This implies
that the velocity distribution over the cross-section of the arteries is almost
uniform. Changes in the velocity distribution only cause changes in the wall
boundary layer that makes up 10% of the artery radius. This means that,
according to the Euler equation (5.72), almost the entire pressure gradient of
the blood pulse is transformed into acceleration. Compared to the pressure
gradient, the flow has a phase shift of almost 90◦. In the boundary layer the
phase shift of the wall shear stress is only 45◦.

The blood pulse has an expansion velocity of 5 m/s in the aorta. It is not
simply a traveling wave going out from the heart. Every artery branching
causes reflected waves, which are superimposed on the original pressure and
velocity pulses. In the arteries this leads to an intermittent character between
a traveling and a standing wave. The consequence of this is that the aorta acts
as a volume reservoir for the heart output and ensures an almost continuous
volume flux of the blood circulation.

The blood circulation of the human body is driven by the heart. The
heart consists of two separate pump chambers, the left and right ventricles
and atria, which are made out of cardiac muscle (Figure 12.6). The right

projection of streamlines in the long axis plane

atrium contraction ventricle contraction ventricle relaxationexpulsion

Fig. 12.6. Cross-sections and flow calculation of the heart during the four phases
of the cardiac cycle
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atrium contains blood that is weak in oxygen following systemic circulation.
The right ventricle subsequently fills with blood from the right atrium, and
then empties again into the pulmonary circulation on contraction. The re-
oxygenated blood from the pulmonary circulation reaches the left atrium and
is passed along from the left ventricle into the systemic circulation. The atria
and ventricles are separated by atrioventricular valves, which regulate the
filling of the heart ventricles. The right valve has three flaps and is therefore
called the tricuspid valve. The left bicuspid valve has two flaps and is known
as the mitral valve. The flaps ensure that the atria can fill with blood be-
tween the heart beats and prevent backflow of the blood when the ventricles
contract. While the ventricles relax, the pulmonary valve prevents backflow
of blood out of the aorta into the left ventricle.

During one cardiac cycle, the ventricles carry out a periodic contraction
and relaxation. This pump cycle is associated with changes in the ventricle
and arterial pressures. Figure 12.7 shows the pressure in the left chamber of
the heart. The entire cycle can be split into four phases. The isovolumetric
ventricle contraction is called the filling phase (1) and contraction phase (2),
and the isovolumetric ventricle relaxation is called the evacuation phase (3)

Fig. 12.7. Pressure in the aorta and pulmonary artery, left and right ventricle
during one cardiac cycle, T0 = 0.8 s
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and relaxation phase (4). Phases (2) and (3) of the ventricle contraction are
called systole, and phases (4) and (1) of the ventricle relaxation are called
diastole. The ventricle is filled during phase (4). The pressure at this point is
only slightly higher in the left atrium than in the left ventricle. The mitral
valve is therefore open, and the blood flows out of the pulmonary veins into
the atrium and on into the left ventricle. As the filling volume increases and
the ventricle expands, the ventricle pressure increases. The pressure in the
aorta is considerably larger, so the aortic valve remains closed. The arterial
pressure sinks continuously during the subsequent diastole, corresponding
to the blood flow into the arterial vascular system. With the start of the
ventricular contraction, the ventricle pressure increases above that of the
atrium, so that the mitral valve closes. When the valve is closed, the ventricle
contracts to retain a constant blood volume. While this increases the ventricle
pressure to 166 mbar, the pressure decrease in the arteries continues. The
aortic valve is opened when the ventricle pressure exceeds that in the aorta.
Now a constant quantity of blood is forced out into the aorta. While the
constant blood volume in the aorta is forced, the aortic pressure increases
from its minimum value of 107 mbar to its maximum value of 160 mbar.
After ventricle relaxation has begun, the ventricle pressure drops below that
of the arteries, and the aortic and pulmonary valves close. The phase of
isovolumetric relaxation now follows. The first phase of the diastole goes

Fig. 12.8. Pressure-volume and volume diagram in the left ventricle during one
cardiac cycle
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on as long as the ventricle pressure is below the atrium pressure. Then the
bicuspid valve opens, and the cardiac cycle starts the next filling phase.

The pressure–volume diagram in Figure 12.8 shows the filling of the left
ventricle (1) along the rest expansion curve, the isovolumetric contraction
(2), as well as the evacuation (3) and the isovolumetric relaxation (4). The
enclosed surface is the systolic work done by the left heart ventricle of 1W .
When the body is under duress, the work diagram shifts along the rest expan-
sion curve to large ventricle volumes and higher pressure. Increasing the heart
filling leads to an increase in the cardiac work. When the aortic pressure is
increased, the aortic valve opens later, so that the isovolumetric contraction
phase reaches higher pressures.

The systemic circulation can be split into the blood distribution system,
consisting of the aorta, large and small arteries and arterioles. These further
divide into the capillaries, where gas and material exchange takes place in
the microcirculation by diffusion. The blood flows back to the heart via the
venules, small and large veins, and the vena cava.

The mean blood pressure on leaving the left ventricle is about 133 mbar.
This drops to 13 mbar when the blood returns to the right ventricle. Figure
12.9 shows the mean pressure and pressure variations in the different artery
regimes. Because of the elastic properties of the aorta, the pressure pulses
between 120 mbar and 160 mbar around the mean value. In the large ar-
teries, the amplitude of the pulsation initially increases, because of the wave
reflection. It then sinks drastically to a mean value of 40 mbar in the arteriole
region over a distance of a few millimeters. In the capillaries and venules, the
pressure drop continues less sharply. Eventually, there is a pressure of 13 mbar
to push the blood back to the right ventricle. In the large veins and the vena
cava, there is no pulse and no considerable pressure drop. Simultaneously,
pressure waves occur that are due to the pulsation of the right ventricle and
move in the opposite direction to the flow of blood. The systolic pressure
in the pulmonary arteries is quite small, about 20 mbar. A pressure drop of
only 13 to 7 mbar is needed in order to overcome the flow drag in the lung
volume, and so 13 to 7 mbar filling pressure remains for the left ventricle.

Fig. 12.9. Pressure in the arterial circulation
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Because of their elasticity, the aorta and the large arteries act as a volume
reservoir. The acceleration part of the blood pulse is reduced, and a higher
pressure level is retained during the diastole and systole. This means that
the flow in the arterial branches is smoother.

The wave form of the pressure and velocity pulse in the arterial branches
is shown in Figure 12.10. Between each pressure pulse, the arteries contract
by about 5% and so maintain the blood transport. The pressure pulse in
the arteries is positive, even during the diastole of the heart. In contrast, a
backflow occurs in the large arteries for a short time. The flow velocity is zero
as the aortic valve is closed. The amplitude of the flow pulse decreases with
increasing arterial branches, and the pulse width increases while a smaller
backflow occurs. The forward motion of the pressure pulse through the arte-
rial branches is initially associated with an increase in the pressure amplitude,
which is caused by the arterial branches and also by the decrease in elasticity
of the arterial walls. The flow profile in the branched arteries becomes more
uniform.

The Reynolds numbers formed with the mean velocity are 3600 for the
aorta, 500 for the large arteries, 0.7 for the arterioles, 2·10−3 in the capillaries,
0.01 in the venules, 140 in the large veins, and 600 in the vena cava. Because
of the unsteady intake flows and the secondary flows in the curves of the

Fig. 12.10. Pressure and velocity waves in the arterial branches, C. J. Mills et al.
(1970)
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vessels, as described in the beginning of the chapter, a transitional laminar
flow occurs in the vessel branches. The transition to turbulent flow takes
place over a short time in the turning points in the velocity profile, close to
the walls of the arteries.

12.1.3 Blood Rheology

The blood consists of the blood plasma, and suspended in it the red blood
corpuscles (erythrocytes), white blood corpuscles (leucocytes), and platelets
(thrombocytes). The blood plasma is the carrier fluid and is made up of 90%
water, proteins, antibodies, and fibrinogens. The task of the blood is to ensure
the supply to the cells and collection from the cells of nutrients, respiratory
gases, minerals, enzymes, hormones, metabolic products, waste products, wa-
ter, and heat. It is a transport system for the blood corpuscles that guarantees
the immune reaction of the body and safeguards the circulatory system from
injury. The mean volume of blood in a man is about 5 liters and in a woman
about 4 liters. Of the entire circulatory system about 84% is essentially in
the systemic vascular system, only 9% in the pulmonary circulation and 7%
in the heart.

The behavior of blood flow is important for the flow in the heart and in
the circulatory system. In particular, it has to be determined in which flow
regimes and at which shear rates the Newtonian properties of the plasma
or the non-Newtonian properties of the suspension have to be taken into
account. These then determine the drag of the circulation that has to be
compensated by the pump energy of the heart.

The viscosity of the blood can be considered only if the suspension occurs
as a homogeneous liquid. This is true for blood in the large vessels. In the
small vessels and particularly in the capillaries, the elastic erythrocytes with
their diameter of 8 µm have to be considered as an inhomogeneity.

While the plasma can be treated to good approximation as a Newtonian
fluid, the blood as a whole is a pseudoelastic thixotropic suspension. The
viscosity of the suspension depends on the relative volume of all the suspended
particles. The erythrocytes make up the largest part, with 99% by volume of
all the particles and 40 − 45% by volume of the blood (hemato-value). The

erythrocytes

Fig. 12.11. Dependence of the viscosity of the blood µ on the shear rate γ̇
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thrombocytes and leucocytes make up less than 1% of the volume and have
no effect on the rheology of the blood.

Figure 12.11 shows the dependence of the viscosity µ of the blood on
the shear rate γ̇. For the flow in vessels, the shear rate is γ̇ = ∂u/∂r. In
vascular branches, and in the aorta and ventricles, the dominant component
of the shear rate tensor has to be chosen for γ̇. In a wide range of varying
velocity gradients, a drop in the viscosity of up to two orders of magnitude is
noted. The region of velocity gradient in a healthy circulation varies between
8000 s−1 (arterioles) and 100 s−1 (vena cava). Therefore, in the asymptotic
region, the velocity is almost constant. In the region of very high velocity
gradients and therefore very large shear stresses, there is a deformation of
the erythrocytes, which itself affects the viscosity of the blood suspension.
At shear stresses over 50 N/m2, the erythrocytes begin to pull apart in a
spindle-like manner.

At shear rates of less than 1, such as those that occur in the backflow
regions of an unhealthy circulation, aggregation of erythrocytes occurs. The
cells pile up onto one another and form connected cell stacks that are linked
together. However, in a healthy circulation system no aggregation can take
place in the largest arteries. This is because the aggregation time is about
10 s, while the pulse is a factor of 10 shorter.

The dependence of the shear stress of the blood τ on the shear rate γ̇ can
be described to good approximation with the Casson equation

√
τ =

√
µeff · γ̇ = K ·

√
γ̇ +

√
C (12.1)

Here K is the Casson viscosity and C the deformation stress of the blood.
Fitting this equation to experimental results leads to the equation

√
τ

µp
= 1.53 ·

√
γ̇ + 2 , (12.2)

with the plasma viscosity µp = 0.012 p. For shear rates larger than 100 the
blood behaves as a Newtonian medium.

The non-Newtonian properties of the blood as it flows through the vessels
lead to a reduction of the erythrocytes close to the vessel walls and therefore
to a reduction in the viscosity. This alters the velocity profile close to the

Fig. 12.12. Effect of the hematocrit value H on the viscosity µeff of the blood
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wall and so also the drag of the blood. Segregation close to the wall leads
to a plasma zone that is almost cell-free, which can be computed with the
plasma viscosity µp. For steady Poiseuille flow, this leads to a velocity profile
as has already been described in Figure 4.98.

For shear rates 1 < γ̇ < 50 the slope n = −0.28 in (4.50) may be used
to calculate approximately, and for γ̇ > 100 the slope n = 1 (Newtonian
medium) may be used.

The Casson equation (12.1) leads to a modified ansatz for the viscosity:

µeff =
(K · √γ̇ +

√
C)2

γ̇
. (12.3)

The modified Cross model is also used for the numerical calculation of the
pulsating blood flow:

µeff = µ∞ +
µ0 − µ∞

(1 + (t0 · γ̇)b)
a . (12.4)

The constants µ∞ = 0.03 p, µ0 = 0.1315 p, t0 = 0.5 s, a = 0.3, b = 1.7 were
determined with experiments by Liepsch et al. (1991). Here µ∞ is a limiting
viscosity for high shear rates γ̇ and µ0 a limiting viscosity for small values
of γ̇.

The viscosity of blood µeff changes with the hematocrit value H of human
blood. The hematocrit value is defined as the ratio of the volume fraction of
the red blood corpuscles to the total volume of the blood. For H = 0 the
constant viscosity of the Newtonian blood plasma is found (Figure 12.12).
For the hematocrit value H = 45% we obtain the viscosity shown in Figure
12.11. The viscosity of the blood increases further for larger values of the
hematocrit value.

Nature optimizes the transport of oxygen in the circulation and in doing
so has to accommodate two opposing demands. On the one hand a large
hematocrit value is necessary to transport as much oxygen as possible. On
the other hand a small value is required so that the blood viscosity sinks and

Fig. 12.13. Dependence of the particle flux Q/Qmax on the hematocrit value H of
the blood
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the volume flux in the vessels increases. Therefore it is not the overriding goal
to achieve oxygen bonding by as many red blood corpuscles as possible. It
is more important to optimize the flowing behavior of the blood, whereby
it is essential to transport a sufficiently large amount of oxygen without
impacting the other blood functions too much. As seen in Figure 12.13, in
human circulation the maximum volume flux takes place at a hematocrit
value of H = 42%.

12.2 Swimming and Flight

The swimming and flight of animals was introduced in Sections 12.1.1 and
4.4.1. In this section, we treat the fluid mechanical fundamentals needed to
determine biofluid mechanics at small Reynolds numbers. As examples we
consider the motion of protozoa, the swimming and flow control of fish at
large Reynolds numbers, and the aerodynamics of bird flight.

12.2.1 Motion of Protozoa

The motion of swimming animals of 1mm in size or smaller at Reynolds
numbers Rel ≤ 1 is determined by friction, with the inertial forces playing
a less important role. Thus the change in momentum or angular momentum
caused by the animal may be neglected compared to the friction forces. The
relative forward motion of the center of gravity of the animal has a transla-
tional velocity U due to the periodic curvature of the animal’s body with a
wave propagation velocity V .

In every fluid element there is a pressure force −∇p in equilibrium with
the friction force µ ·∆u. The continuity equation of incompressible flow (5.3)
holds:

∇ · u = 0 . (12.5)

Neglecting the inertial forces, the Navier-Stokes equation (5.20) yields

−∇p+ µ ·∆u = 0 . (12.6)

With the assumptions stated above, the dimensionless Navier-Stokes equation
(5.82) yields

−∇p+
1

Rel
·∆u = 0 , (12.7)

where the Reynolds number is formed with the characteristic length of the
animal l.

Equations (12.5), (12.6) and (12.7) lead to the conclusion that the Laplace
equation is valid for the pressure:

∆p = 0 . (12.8)
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Therefore the pressure is a harmonic function for every inertia-free flow. From
(12.5) and (12.6) it can be derived that the velocity is a biharmonic function
that solves the equation

∇4u = 0 (12.9)

The wave motion of the animal’s body can be represented by superposition
of point forces:

f · δ(r) , (12.10)

where F is the force per unit volume, δ is the delta function and r is the
position vector from the position of the action of the force. The force equi-
librium on the fluid element for the force distribution in (12.10) yields the
Navier-Stokes equation (12.6):

−∇p+ µ ·∆u + f · δ(r) = 0 . (12.11)

With the continuity equation (12.3) we obtain

∆p = ∇ · (f · δ(r)) = 0 , (12.12)

whose solution is the classical dipole field

p = −∇ ·
(

F

4 · π · r

)
. (12.13)

If we consider a protozoa with a flagellum of length l (Figure 12.14), we can
write the form of the motion wave along the flagellum as

(x, y, z) = (X(s), Y (s), Z(s)) (12.14)

Here s is the longitudinal coordinate along the flagellum with

X ′2(s) + Y ′2(s) + Z ′2(s) = 1 . (12.15)

The locomotion wave has the wavelength

X(s+ Λ) = X(s) + λ , Y (s+ Λ) = Y (s) , Z(s+ Λ) = Z(s) , (12.16)

with Λ the wavelength along the curved flagellum, λ = αΛ the wavelength in
the direction of propulsion and α < 1 the length contraction of the flagellum
due to the wave motion.

In a reference system moving with the propulsion wave, the flagellate
moves tangentially along the wavefront (12.14) with velocity c. At time t we
have

Fig. 12.14. Locomotion with flagella
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(x, y, z) = (X(s− c · t), Y (s− c · t), Z(s− c · t)) . (12.17)

c is the velocity along the curved body of the flagellate. The relationship with
V , the wave velocity in the moving reference system U , is:

V = α · c , (12.18)

as the wave period can be described with Λ/c or λ/V = αΛ/V . The propul-
sion wave moves downstream with the relative velocity V − U . This yields the
velocity of the flagellate relative to the fluid as the vector sum of the velocity
c along the forward tangent and the velocity (V − U, 0, 0). The component
along the backward tangent is

(V − U) ·X ′(s− c · t) − c , (12.19)

while the component along the backward normal is

(V − U) ·
√

1 −X ′2(s− c · t) , (12.20)

Here X ′ and
√

1 −X ′2 denote the cosine directions of the tangent and the
normal.

The propulsion P of the protozoan can be written as the x-component of
the sum of the tangential forces Ft (12.19) and the normal forces Fn:

P =

l∫

0

(Ft((V − U) ·X ′(s− c · t) − c) ·X ′(s− c · t)

+Fn((V − U) · (1 −X ′2(s− c · t)))
)
· ds , (12.21)

with

l∫

0

X ′(s− c · t) · ds = α · l = V · l
c

,

where αl is the length of the wave motion in the direction of the propulsion.
Using the definition

l∫

0

X ′2(s− c · t) · ds = β · l

we obtain

P = Ft · l · ((V − U) · β − V ) + Fn · l · (V − U) · (1 − β) . (12.22)

This propulsion P must be in equilibrium with the drag of the head of the
protozoan moving with U . For the drag force we write

Fn · l · U · δ , (12.23)

with δ the ratio of drag of the head and drag of the normal motion of the
flagellate.
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Assuming that the head is a sphere with radius R, equation (12.22) with
(12.23) yields

U

V
=

(1 − β) · (1 − Ft
Fn

)

1 − β + Ft
Fn

· β + δ
, (12.24)

for the ratio of the velocity of motion U to the wave velocity V . As β < 1
(with no motion β = 1), U/V varies between 0 and the maximum value

(
U

V

)

max

=
1 − Ft

Fn

1 + δ
. (12.25)

The maximum value is obtained for β → 0. For a spherical head with radius
R = 1 µm, the wavelength λ = 45 µm, the amplitude 4 µm and Stokes drag
law F = 6 · π · µ · R · U we obtain the values δ = 0.11 and β = 0.65.

12.2.2 Swimming of Fish

Fish swim in the Reynolds number regime 104 < Rel < 108. Compared to
the previous section, now the inertial force dominates the friction force and,
for fast-swimming fish, a turbulent boundary layer forms downstream along
the body. As explained in the introductory section, the propulsion of a fish,
when it swims slowly, is due to the wave motion of the last third of its body,
and, when it swims quickly, to the flap of the tail (see Figure 12.15).

In a simplified view of the wave motion of the fish in a reference frame
moving with the propulsion velocity U , the propulsion force P is in equilib-
rium with the drag W of the fish. The efficiency η is formed with the average
values

η =
U · P̄

¯̇A
, (12.26)

where ¯̇A is the mean power of the fish.
The deflection of the cross-sectional area in the z-direction about the

equilibrium position of the fish is given by h(x, t). Because of the wave motion
of the end of the fish, a vertical velocity w arises:

Fig. 12.15. Flap of a fish’s tail fin
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w =
∂h

∂t
+ U · ∂h

∂x
, (12.27)

with transverse velocity ∂h/∂t. If the wave velocity V is only slightly larger
than the propagation velocity U , for a constant amplitude of the propagation
wave, we obtain

∂h

∂t
+ V · ∂h

∂x
= 0 .

This yields

w =
∂h

∂t
· V − U

V
. (12.28)

This means that to obtain a high efficiency η, the forward motion w/(∂h/∂t)
must be small. However, the value must be large enough to overcome the
drag of the fish W .

On the basis of this simplified view of the wave motion of the fish, M. J.
Lighthill (1960) developed the linear theory of the longitudinally stretched
body. He assumed that the changes in the cross-section of the fish are small
and that the wave motion perturbs the flow only slightly. However these
assumptions are only fulfilled under certain conditions for fast-swimming fish.

In order to take account of the flap of the tail fin and the turbulent wake
flow, the continuity equation (5.39) and the Reynolds equations (5.40) - (5.42)
for incompressible flow have to be solved:

∇ū=0 , (12.29)

∂ū

∂t
+ (ū · ∇)ū=−1

ρ
· ∇p̄+ ν ·∆ū −

∂u′i · u′j
∂xj

. (12.30)

Fig. 12.16. Wake flow of a fish, W. Nachtigall (2001)
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To model the Reynolds stresses (5.104), in Section 5.4.5 a nonlinear two-
equation turbulence model or a large-eddy simulation with a fine-structure
model is selected.

The tail fin with symmetric profile in Figure 12.15 moves with velocity V ,
and generates a propulsion velocity U . The fish controls the forward motion
such that the resulting outward flow relative to the tail fin Ur has a positive
angle of attack α compared to the body. The resulting lift A, whose compo-
nent in the direction of swimming A·sinα generates the propulsion, is perpen-
dicular to the relative velocity Ur. The propulsion is therefore P = U ·A·sinα.
In order to generate this propulsion, the tail fin moves sideways against the
force A · cosα, requiring a power of V ·A · cosα. For slow-swimming fish this
is only about 0.6 mW .

The vortices in the three-dimensional wake of the tail fin (Figure 12.16)
are generated in both fulcrums of the tail fin. Alternating vortices of positive
and negative directions of rotation arise. Between the fulcrums a propulsion
jet occurs that acts against the drag of the wake. The tail fin of the fish is
optimized so that the induced drag and friction drag are as small as possible,
but large enough that propulsion can be generated.

12.2.3 Flow Control

Investigations on sharks have shown that fast-swimming fish have scales with
longitudinal grooves. These prevent the onset of transverse turbulence in the
viscous sublayer of the boundary layer and lead to a relaminization of the
boundary layer and thus to a reduction of the friction drag.

Figure 12.17 shows the longitudinal grooves of the shark scales as well as
their technical application in the form of riblet foil. The riblets are triangular
ridges spaced 60 µm apart that reduce the wall shear stress τw by up to 8 %.
Figure 12.18 shows the result of the numerical solution of the Navier-Stokes
equation (5.20) directly at the surface. The dark regions have high velocity
fluctuations and the lighter regions have lower fluctuations. A picture appears
of longitudinal structures that cause an increased wall shear stress τw. The
longitudinal rills suppress the v′-component of the velocity fluctuations and

riblet foil

shark scales

100 µ m

wall shear stress

U 8

Fig. 12.17. Shark scales and riblet foil, D. W. Bechert et al. (2000)
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thus the region of high shear rate in the viscous sublayer. This leads to
relaminization of the turbulent boundary layer, permitting the shark to reach
momentarily peak speeds of up to 90km/h.

There is another method of relaminization in nature where particular
surface properties delay the onset of the laminar-turbulent transition (see
Section 4.2.4). Dolphins swim much faster than they ought to be able to
due to their muscle mass. The mucous membrane of the dolphin consists of
peg-shaped ridges in the outer skin, as shown in Figure 12.19, interspersed
with a flexible fluid-containing lower skin. This damping skin dampens all
perturbations in the boundary layer. Thus perturbations that introduce the
laminar-turbulent transition are delayed.

In technically realizing such a damping layer, liquid with an adjustable
rigidity is enclosed between a smooth and a knobbed plate. Relaminization
by an oscillating surface has been demonstrated experimentally. Figure 12.19
shows how the reduction of the drag coefficient cw of the artificial damping
skin depends on the Reynolds number. By suitable adjustment of the ampli-
tude and phase of the damping, particularly at large Reynolds numbers, the
drag coefficient of laminar flow can be attained. As would be expected, if the
artificial damping skin is placed in a turbulent flow the relaminization effect
breaks down.

Dolphins are thought to use another method to relaminize the viscous
sublayer too. By adding high-molecular polymers to a liquid, drag reductions
of over 50% can be reached. Such polymers are secreted in small amounts from
the mucous membrane of the dolphin. This relaminization effect is exploited
in, for example, the Alaska pipeline where only a few parts per million of such
polymers are added to viscous cold oil in order to reduce the pump power by
30%.

A further possibility to reduce the drag is with the introduction of air
bubbles into the boundary-layer flow. The air bubbles reduce the mean density
close to the surface and thus generate a drag reduction of over 50%. The
penguin exploits this as he swims on the surface of the water and carries air
bubbles with him in his coat, which are emitted as he swims. He reaches top

velocity fluctuationsflow structure

Fig. 12.18. Transverse turbulence of the viscous sublayer
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dolphin skin drag coefficient

Fig. 12.19. Damping skin of the dolphin, W. Nachtigall (2001)

speeds of up to 25 km/h with a drag coefficient of cw = 0.03 and Reynolds
number 1.6 · 106.

12.2.4 Bird Flight

Bird flight has already been described in Section 4.4.1 and in the introduction
12.1.1. In this section we expand on the basic relations of forward flight,
gliding flight and hovering.

The flapping of a wing during forward flight is shown in Figure 12.2 with
the example of the seagull. A slice along the profile of a pigeon’s wing is shown
in Figure 12.20. The profile of the middle part of the wing is greatly arched.
This is to generate a large lift when the wing is flapping and when the bird
is gliding. Towards the tip of the wing the profiling and the arching of the
profile of the wing decrease continuously. This promotes efficient propulsion.
Gliding is performed at an angle of attack between 3◦ and 5◦. During the flap
of the wing and during maneuvers, the entire polar diagram of Figure 12.20
is passed through (see also Figure 4.137). The bird continuously optimizes
the necessary lift with the necessary propulsion for the flight, always avoiding
exceeding the limiting angle of attack of about 25◦. Figure 12.21 shows two
characteristic pressure distributions at different angles of attack. They show
the typical form of the subsonic profile as known from Section 4.4.2.

For horizontal flight the bird needs power P to compensate the weight
G at flight velocity V . With the rate of descent Vs and the drag W , the
propulsion power is

P = G · Vs = W · V . (12.31)

The drag W of the bird and the lift A can be calculated from the coefficients
cw and ca:
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Fig. 12.20. Slices through the wing profile and polar diagram of a pigeon in gliding
flight

W =
1

2
· cw · ρ · S · V 2 ,

A =
1

2
· ca · ρ · S · V 2 ,

(12.32)

with the wing surface S.
This leads to

W =
cw
ca

· A , (12.33)

with the gliding number ca/cw introduced in Section 4.4.1. In horizontal flight
the weight G is compensated by the lift A. This yields

W =
cw
ca

·G (12.34)

and the propulsion power

P =
cw
ca

·G · V , (12.35)

Fig. 12.21. Dependence of the pressure distribution on the angle of attack
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Estimations of the necessary power for the bird lead to the conclusion that
the available muscular force cannot be sufficient to sustain flight. The same
issue is found for the swimming of the dolphin. In Section 12.2.3 this led to
the conclusion that by suitable flow control by the dolphin’s mucous mem-
brane, the drag is reduced so that swimming at high speeds is made possible
even at low muscular force. It is the same with bird flight. By spreading the
end feathers of the wing, the induced drag of the boundary vortex (see Figure
4.139) is reduced during flight. When flapping the wing, the bird’s moveable
coat permits optimal flight control that minimizes flow separation and, be-
cause of the partial porosity of the feathers during, for example, the upward
flap, also reduces the drag. This a bird can reach the flight velocity V with a
smaller muscular force than that predicted by (12.35).

In horizontal flight the lift of the wing is in equilibrium with the weight
of the bird. Therefore the flight velocity V can be expressed as a function of
the weight G and the surface of the wing S

1

2
· ca · ρ · S · V 2=G ,

V =

√
2

ca · ρ
· G
S

=K ·
√
G

S
, (12.36)

with the constant K =
√

2/caρ.
The power necessary for flight P = W ·V (12.35) is therefore proportional

to the product of the drag W and the square root of the surface load G/S.
The force balance in gliding flight is shown in Figure 12.22. The gliding

line is inclined at an angle α to the horizontal and the bird glides with
outstretched wings. The weight of the bird G acts vertically downwards and
has the components P = G · sin(α) and N = G · cos(α). Steady gliding is
found when the drag W is equal and opposite to the part of the weight that
propels the bird forwards G · sin(α), and the lift A is equal to G · cosα. At
smaller gliding angles α the lift can be set equal to the weight:

W = G · sin(α) =
1

2
· cw · ρ · S · V 2 ,

A = G =
1

2
· ca · ρ · S · V 2 .

(12.37)

Fig. 12.22. Equilibrium of forces during gliding flight
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The vector sum of the lift and the drag, F , is opposite in direction to the
weight. Therefore the gliding angle satisfies

tan(α) =
cw
ca

. (12.38)

The gliding angle is therefore independent of the weight of the bird and of
the surface area of the wing. It is only dependent on the profile of the wing.
With (12.34) we obtain the velocity of the bird

V =

√
2 ·G · cos(α)

ca · ρ · S
= K ·

√
G

S
, (12.39)

Therefore birds with a high weight and small wings glide faster than light
birds with big wings. At small gliding angles, the lift is equal to the weight
and the lift coefficient is inversely proportional to the velocity

ca =
2 ·G

S · ρ · V 2
. (12.40)

Therefore every change in the gliding angle causes a change in the flight ve-
locity. If we take into account the separating behavior of the bird’s wing in
Figure 12.20, there is a maximum lift coefficient and a corresponding mini-
mum flight velocity Vmin at which gliding is possible.

Figure 12.23 shows the dependence of the rate of descent Vs on the flight
velocity V for a buzzard. The minimum rate of descent is 0.8 m/s at a flight
velocity of 15 m/s. The buzzard then has a lift coefficient of ca = 1.8 and a
drag coefficient of cw = 0.06 at the flight Reynolds number Rel = 2 · 105.

When soaring in the rising air of a thermal, the rate of descent of the
bird is compensated by the vertical component of the wind. The circling of
the thermal permits the eagle, for example, to cover great distances. Seagulls
use the luff of a cliff to rise without muscular effort. Further examples are
lee-wave soaring in updrafts behind mountain ridges and the dynamic soaring
of the albatross who uses the updrafts in front of waves in the sea.

Fig. 12.23. Rate of descent Vs of the buzzard
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In soaring and in forward flight, the bird has a considerable range of
maneuverability, to retain the flight direction and to compensate for air tur-
bulence. The inclination and motion of the wing relative to the wind velocity
are constantly being adapted. Changes in direction in the flight demand a
turning motion of the body, so that a centrifugal force Z acts. This can be
written as a relation between the weight G and the flight velocity V :

Z =
G · V 2

r
, (12.41)

where r is the radius of the curve.
If Φ denotes the angle at which the wing is inclined, we have

tan(Φ) =
Z

G
=
V 2

r
. (12.42)

However, in all flight positions, the vertical component of the lift must be
equal to the weight of the bird. Thus the total lift of the wing must be larger
when the bird is flying in a curve than when it is flying horizontally. For angle
of inclination Φ, the total lift is A = G/ cosΦ. If the angle is Φ = 60◦, the
total lift of the wing must double in order to ensure flight in a straight line.
Therefore the surface load of the wing increases considerably during curved
flights, in order to achieve the necessary lift and increased angle of attack of
the wing.

Fig. 12.24. Hovering
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In formation flight over large distances, birds fly in a characteristic V-
formation. Each bird uses the lift zone of the boundary vortex of the preceding
bird, as in Figure 4.139, in order to fly large distances while saving energy.
The displacement of each bird relative to the next is 1/4 of the wing span. In
formation flight birds can theoretically extend their flight distance by 70 %
of the single flight distance for the same muscular effort.

As well as flying forwards and gliding, most birds are able to hover. Figure
12.24 shows the forward and backward flap of the wing during one hover cycle.
At the correct angle of attack, this forward and backward flapping ensures the
lift necessary for hovering. The entire wing rotates along the longitudinal axis.
The main feathers of the wing are tilted backwards and downwards during
the upward flap, while during the downward flap they are tilted forwards.
The action of the main feathers corresponds to the horizontal oscillating tail
fin of, for example, the whale, that was treated in Section 12.2.2.

12.3 Human Heart Flow

Following the overview of the heart functions in the circulatory system in
Section 12.1.2, this section will describe in detail the physiology and anatomy
of the human heart with the interaction of electrical impulses, the electro-
mechanical coupling, and the pulsing, three-dimensional flow.

aorta
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atriumatrium
left

ventricle

left
ventricle

vena cava

valve
pulmonary

mitral valve
valve
tricuspid

endocardium

myocardium

epicardium

papillary
muscles
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Fig. 12.25. Inner view of the heart
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12.3.1 Physiology and Anatomy of the Heart

Figure 12.25 shows an internal view of the heart as it is shown in textbooks
on medical physiology. The left and right atria of the heart are separated by
the atrium septum, while the ventricle septum divides the two ventricles of
the heart. The muscular heart wall is called the myocardium. It is surrounded
by the endocardium on the inside and by the epicardium on the outside. The
heart is in a sack of tissue called the pericardium. As shown in Figure 12.26,
three groups of muscle fibers wind around both ventricles, while a further
group of muscle fibers is wound around only the left ventricle. The cardiac
muscles cells are oriented tangentially to the the heart rather than radially.
Since the electrical resistance is lower along a muscle fiber, this effects the
electrical impulses of the heart muscles.

Filling of the left and right ventricles from the atria is controlled by the
mitral valve with two flaps and the tricuspid valve with three flaps. The
flaps of the valves are very thin, so that they close quickly at the start of the
ventricular contraction. They are held by tendon threads, which use papillary
muscles to stop the valves turning inside out at high pressure. As the ventricle
relaxes, the pulmonary valve prevents backflow of blood out of the pulmonary
artery, and the aortic valve prevents backflow out of the aorta. Both valves
are made of three semilunar sacks of connective tissue. These are more stable
than the atrioventricular flap valves, because of the higher pressure that acts
on the semilunar valves during the longest period of the heart beat.

The vena cava and the coronary sinus carry deoxygenated blood from the
systemic circulation into the right atrium. At their openings into the right
atrium there are two further valves, the Eustacian valve and the Thebesian
valve, respectively. As the atrium contracts, these prevent backflow into the
lower pressure vein circulation. Four pulmonary veins carrying oxygenated
blood from the lungs to the left ventricle empty into the left atrium. In
contrast to the right atrium, the left atrium has no backflow valves.

The total volume of the heart is about 750 ml for a man and 550 ml for
a woman. With cardiovascular fitness training and the associated increased
intake of oxygen during the load on the heart, the volume of the heart can
increase to 1400 ml to 1700 ml.

Fig. 12.26. Orientation of the cardiac muscle fibers
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This is shown in the pressure-volume diagram of Figure 12.27. With in-
creasing performance of the ventricle, the p - V curves are shifted to higher
pressures and expulsion volumes. They are bounded by the end-diastolic ED
and end-systolic ES pressure-volume curves. The area within each p - V curve
gives the work done by the ventricle. The Frank-Sterling law states that the
work done by the ventricle increases with increased filling volume of the ven-
tricle. This has to do with the mechanical properties of the cardiac muscle
and permits the heart to continuously adapt to different positions of the body,
different efforts and different frequencies of breathing.

The mechanical contraction of the cardiac muscle is controlled by peri-
odic electrical impulses. It starts with the excitation of the sinoatrial node
(Figure 12.28), which carries out cyclical electrical depolarization and po-
larization, and therefore has the function of the primary pacemaker. During
the depolarization phase, the discharge extends across the conduction paths
with a velocity of 1 m/s into the surrounding muscles of the atria, which
then contract. The electrical impulse of the sinoatrial node is delayed in the
ventricular node. This delay permits optimal filling of the ventricles during
contraction of the atria. The impulse passes along the His nerve fibers and
the sides of the chamber with a velocity of 1−4 m/s and reaches the ventricle
muscles after about 110 ms. In the direction of the ventricle, the bundle of
His divides into the left and right sides of the chamber.

These branch out in Purkinje fibers, which run right below the epicardium
in each heart chamber. They first pass along the septum toward the apex of
the heart and from there along the ventricle walls to the base of the heart. As
the ventricles begin to contract, the contraction in the atria is finished, thanks
to the delay of the conduction in the ventricular nodes. At this point all nerve
cells in the impulse conduction system, apart from the impulse-forming cells
in the sinoatrial nodes and ventricular nodes, can be spontaneously depolar-

Fig. 12.27. Pressure-volume diagram for the left ventricle
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ized. The ventricular depolarization in the electrocardiogram in Figure 12.28
takes less than 0.1 s.

Nerve cells and hormonal influences outside the heart affect the electri-
cal impulses and cause different pulse frequencies. They modify the electrical
conductivity and therefore the velocity of the depolarization wave through
the heart. The cycle of depolarization and polarization generates a small
electrical potential, which can be measured on the surface of the body. Fig-
ure 12.28 shows a typical electrocardiogram. The depolarization of the atria
causes a small deflection, called the P-wave. After a pause of about 0.2 s, this
is followed by a strong deflection due to the depolarization of both ventri-
cles (QRS). The T-wave then follows, caused by renewed polarization of the
ventricles.

As the mitral valve closes, the pressure in the left ventricle rises. This is
associated with a sound wave that is detected as the first heart beat. This
induces the systole, the contraction of the ventricle. At the second heart beat
the diastole, the phase of ventricle relaxation, begins.

12.3.2 Structure of the Heart

In order to calculate the flow in the heart, a model of the geometry of the
ventricles and of the cardiac valves during one cardiac cycle is needed. This
is worked out using the methods of structural mechanics.

ventricular
node

fibers
Purkinje

ventricular
muscles

septum

sinoatrial

HIS bundle

node

atrium muscles

excitation potential, ECG and heart beats

Fig. 12.28. Electrical impulse conductors exitation potential and echocardiogram
(ECG) in the heart
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Figure 12.29 shows a simplified model of the ventricular motion as well
as real horizontal sections of human heart. During the contraction phase,
the mitral and tricuspid valves are closed. The aortic and pulmonary valves
are open. The muscle fibers of both ventricles contract. The left ventricle
pumps blood low in oxygen into the lung. The pressure in the left ventricle
is much larger than that in the right ventricle, as shown in Figure 12.7. For
this reason, the left ventricle retains an almost elliptical cross-section during
the contraction phase, while the right ventricle arranges itself around the left
ventricle.

The motion of the ventricle walls is mainly radial, and because of the
higher pressure in the left ventricle, it is greater in the left than in the right
ventricle. The radial motion is accompanied by a shortening of the heart in
the longitudinal direction. Because of the spiral-like arrangement of some of
the muscle fibers (Figure 12.26), a rotating motion is superimposed onto the
longitudinal motion. The shear stress distribution in the ventricles is therefore
inhomogeneous and anisotropic (Figure 12.31).

The basis of the mathematical description of the ventricular motion is the
equation of motion of structural mechanics. This is then numerically solved
with finite element methods. The deformation velocity vector v = (v1, v2, v3)
is

ρ

(
∂vi
∂t

+ vi ·
∂vi
∂xi

)
=
∂σij

∂xj
+ fi , (12.43)

with the stress tensor σij, the external volume specific force fi, and density ρ of
the myocardium. The stress tensor σij can be written down for an elastic body,
assuming small deformations as a linear function of the rate of deformation
tensor ekl:

σ = σij = cijkl · ekl . (12.44)

Here cijkl is the tensor of the elastic constants that have to be determined for
the heart.

For biological bodies, including the heart and the blood vessels, the stress
tensor (12.44) can be taken to be approximately quasi-linear. The elastic
deviation of each point in the body can then be determined relative to a

Fig. 12.29. Forms of ventricular contraction
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ground state. For the details of tensor notation, we refer to the book by Y.
C. Fung (1990).

For an elastic biological body that is undergoing a finite deformation ui =
xi − ai (coordinate ai before and xi after the deformation), a strain–energy
function ρ0·W (E11, E12, · · · ) exists. Its derivative leads to the Kirchhoff stress
tensor

Sij =
∂ (ρ0 ·W )

∂Eij
, (12.45)

with the Green’s strain

Eij =
1

2
·
(
δαβ · ∂xα

∂ai
· ∂xβ

∂aj
− δij

)
=

1

2
·
(
∂uj

∂ai
+
∂ui

∂aj
+
∂uα

∂ai
· ∂uβ

∂aj

)
.(12.46)

The Kirchhoff stress tensor Sij can be transformed into the Cauchy stress
tensor σij using the following relation:

σij =
ρ

ρ0
·
(
Sij ·

(
δiβ · ∂uj

∂aα
+ δjα · ∂ui

∂aβ
· ∂uj

∂aα

)
· Sαβ

)
. (12.47)

Here ρ and ρ0 are the material densities in the deformed state and in the
ground state.

According to Y. J. Fung (1993), the following simplified strain–energy
function can be used for the heart during the filling phase:

ρ0 ·W =
c

2
·
(
eQ −Q− 1

)
+
q

2
(12.48)

Here c is a constant, and q,Q are quadratic forms of the Green’s tensor:

Q=k11 · E2
11 + k22 · E2

22 + k33 ·E2
33 + 2 · k′12 ·E11 · E22 + 2 · k′23 · E22 · E33

+2 · k′31 ·E33 · E11 + k12 · E2
12 + k23 ·E2

23 + k31 · E2
31 ,

q=b11 ·E2
11 + b22 ·E2

22 + b33 ·E2
33 + 2 · b′12 · E11 ·E22 + 2 · b′23 · E22 · E33

+2 · b′31 · E33 ·E11 + b12 ·E2
12 + b23 ·E2

23 + b31 ·E2
31 ,

with the material constants kij, bij. The units of c and bij are those of
stress; kij are dimensionless. For c = 0 the linear Hooke’s law is obtained.

Fig. 12.30. Muscle layer in the ventricle, and axial stress-strain diagram
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Structure-mechanical modeling of the myocardium is based on the stress
measurements on thin muscle fiber layers of animal hearts. The myocardium
has nonlinear and anisotropic stress–strain behavior. Figure 12.30 shows the
axial stress–strain curves in a thin layer of muscle along the muscle fiber, in
the muscle layer and normal to the muscle layer. The greatest variation in
material properties of the myocardium is in the maximum strain aii along
the selected axes. If the myocardium probe along the muscle fibers is ex-
tended, the limiting value of the strain is 1.3. In the direction perpendicular
to the muscle fibers in the muscle layer, the limiting value 1.5 is found. The
stress values perpendicular to the muscle layer are considerably smaller than
those along the horizontal axis. Allowance must be made for these nonlinear
anisotropic material properties of the myocardium in modeling the structure
of the heart.

Numerous simplifications for the heart have been published. J. P. Hunter
et al. (1997) and J. P. Hunter and B. H. Smaill (2000) used the following
simplified ansatz of the strain–energy function for their simulations:

W =k11 ·
E2

11

|a11 − E11|b11
+ k22 ·

E2
22

|a22 − E22|b22
+ k33 ·

E2
33

|a33 − E33|b33

k12 ·
E2

12

|a12 − E12|b12
+ k13 ·

E2
13

|a13 − E13|b13
+ k23 ·

E2
23

|a23 − E23|b23
.

(12.49)

Here the strain–energy function is separated into the individual parts of the
stresses along each material axis. The aij are the poles of the limiting strains,
the bij the curvature of the stress–strain curve for each deformation axis, and
the kij the weighting factors of each deformation mode. Equation (12.49) con-
sists of the six parts of the deformation modes of the Green’s strain Eij . The
first three terms are the axial modes of the deformation and the remaining
terms are the shear deformations between the material axes.

The strain-energy function (12.49) is the first order of an expansion about
the poles of the limiting strains, where the vector product between the differ-
ent modes of the axial and shear deformations is neglected. Further expansion
of the myocardium structure model where the vector product is taken into
account requires more extensive measurements of the myocardium.

muscles fibersventricles principal strains

Fig. 12.31. Finite element model of the heart structure, J.P. Hunter (2001)
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Figure 12.32 shows the finite element model of the heart ventricles, the
orientation of the muscle fibers, and the principal strains at the end of dias-
tole. The finite element model was developed by J. P. Hunter et al. (1993,
1997, 2000) on the basis of finite elasticity theory and the energy function
(12.49). Stress measurements on active muscles fibers have shown that the
muscle fiber forces behave more isotropically in the orthogonal direction than
in the transverse direction.

Using the further developed model of the extension–energy function
(12.49), the stress distribution on the surface of the heart was numerically
computed with finite element discretization. The regions of larger and smaller
muscle fiber stress are shown in Figure 12.32 with isolines for different phases
of the cardiac cycle. Solid lines show large extension stresses, dashed lines
large compression stresses. Initially, the heart muscle is relaxed, and the
stresses are small. The progress of the compression stress from the atria
during the filling phase can easily be seen. The stress then passes into the
ventricles during the expulsion phase.

12.3.3 Excitation Physiology of the Heart

In addition to the description of the electrophysiology of the heart in Sec-
tion 12.3.1, Figure 12.28 also shows the electric excitation potential in the
individual region of the heart. The action potential U inside and outside the
muscle cells was measured with microelectrodes.

At the start of the electrical excitation (0), the cardiac muscle cells are
depolarized, and the potential difference across the cell membranes increases
from −90 mV to +20 mV (1). The depolarization of the cardiac muscle cells
is based on the opening of ion channels in the cell membrane (see, for exam-
ple, J. Malmivno, R. Plonsey (1995)). The activation of the depolarization
takes place within 1 ms. The mechanical contraction of the cardiac muscle
cells is time delayed. There is a rapid drop of the activation potential, and
repolarization is induced. This is delayed in phase (2) and reaches the original
value via the drop (3). In this phase the action potential in the muscles is
initiated, and the maximum of the muscular contraction is reached in phase
(3). Repolarization takes place within 0.3 s, while the depolarization pulse
lasts only 1 ms.

ventricle contractionintake flow outward flow ventricle relaxation

Fig. 12.32. Stress distribution in the muscle fibers on the surface of the heart,
J.P. Hunter (2000)
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Figure 12.33 shows a longitudinal section of the excitation in the heart in
relation to an echocardiogram ECG. The excitation of the heart begins at the
sinoatrial node and then propagates over the atria. This is associated with the
T-wave in the ECG. The PQ time interval follows with the delayed excitation
of the His conduction system. The excitation of the ventricles begins at the
left side of the ventricular septum with the negative Q-deflection in the ECG.
A short time later the walls of the right and left ventricle are excited from
the inside out, including the apex of the heart. This leads to the R-spike
in the ECG with positive polarity. The propagation of the excitation in the
ventricles ends at the base of the left ventricle with the negative S-spike.
After the excitation of the ventricles is complete, the entire surface of the
heart is negatively charged. This phase in the excitation cycle is associated
with the ST-stretch in the ECG. The repolarization phase of the heart begins
in the subendocardial layers of the myocardium and progresses towards the
endocardium and there is a field strength component that points away from
the negative endocardial layers that are still excited towards the already
positive regions that are no longer excited. The positive T-wave is associated
with the repolarization phase.

Electrochemical investigations of the cardiac muscle cells show that the
different regimes of the action potential are related to sodium Na+ and potas-
sium Ka+ ion channels in the cell. Calcium Ca2+ ions in the cell membranes
cause stimulation of the contraction in the muscle cells. In this manner, the
form of the action potential affects the contraction behavior of the cardiac

Fig. 12.33. Excitation of the heart and echocardiogram ECG
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muscle cells in the different regions in the heart. The depolarization wave
moves from the endocardium to the epicardium. The repolarization wave
moves in the opposite direction.

Mathematical modeling of the depolarization wave and its expansion in
the cardiac muscle cells requires modeling the nonlinear coupling of the de-
polarization excitation model with a model for the excitation expansion. Ex-
pansion with velocities between 0.03 (sinoatrial nodes) and 0.6 m/s (atrium
and ventricle) can be computed either via a system of individual coupled cells
or as a continuum.

The mathematical description of the excitation expansion in the heart is
carried out with a system of nonlinear partial differential equations:

∂ui

∂t
= fi(u1, · · · , un) +Di ·∆ui , i = 1, · · · , n . (12.50)

The ui are the n variables, fi(u1, . . . , un) the nonlinear stimulation function,
and Di ·∆ui the diffusion term.

The FitzHugh–Nagumo equations are a simple model with two variables:

∂u1

∂t
=
u1 − u3

1
3 − u2

ε
+D1 ·∆u1 ,

∂u2

∂t
= ε · (u1 + β − γ · u2) ,

(12.51)

with the parameters 0 < β <
√

3, 0 < γ < 1, and ε≪ 1.
In order to determine the excitation function fi, suitable model equations

of the ion fluxes into the individual muscle cells have to be found. A selection
of these model equations can be found in, for example, A. V. Panfilov, A. V.
Holden (1997).

Figure 12.34 shows the result of a simulation of the expansion of the exci-
tation potential on the surface of the heart. As in Figure 12.28, the potential
expands outward from the inner heart wall. On the surface of the heart, this
is expressed by a large excitation potential (dark). This moves from the sinoa-
trial nodes (1), past the two atria (2), and excites the ventricles, while the

repolarization of ventricles
excitation of ventricles
repolarization of atriaexcitation of atriabeginning of excitation

at sinoatrial node

Fig. 12.34. Excitation potential distribution on the surface of the heart, C. D.
Werner et al. (2000)
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atria are again repolarized (3). At the end of the cardiac cycle, the ventricles
are repolarized again.

12.3.4 Flow in the Heart

Calculation of the incompressible flow in the heart is carried out using the
continuity equation (5.2)

∇ · v = 0 (12.52)

and the Navier–Stokes equation for laminar, transitional flow (5.20)

ρ ·
(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µeff · ∆v + f . (12.53)

Here f is the volume force that acts on the flow from the inner walls of the
heart, v the velocity vector an p the pressure. The non-Newtonian properties
of blood are taken into account approximately with the cross model (12.4).

The volume force f is computed from the shear stress distribution inside
the heart, determined by the structure program of Section 12.3.2.

Following equation (12.43), the equation of motion of the structure me-
chanics for the velocity of deformation vi and the stress tensor σij is:

ρ · dvi
dt

= ρ ·
(
∂vi
∂t

+ vj ·
∂vi
∂xj

)
=
∂σij

∂xj
+ fi , (12.54)

with the volume specific forces fi and the density of the material ρ.
The total time derivative of the rate of deformation describes the change

in a volume element dV = dx1 · dx2 · dx3 that is moving with the flow. This
representation is called the Lagrange description. The partial time derivative
of the rate of deformation with respect to time and the convective terms
differentiated with respect to the space coordinates is called the Euler repre-
sentation (see Section 3.1).

For the flow-structure coupled calculation, the boundary conditions at the
edges of the fluid space of the ventricle are formulated using the Lagrange
representation, while the flow is calculated using the Euler representation.
This leads to the Lagrange-Euler formulation of the fundamental equations
for the structure and the flow.

The rate of deformation vi:

vi =




v1

v2

v3


⇐⇒ v =




u

v

w




corresponds to the flow vector v. The stress tensor of structure σij :

σij ⇐⇒ τij
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corresponds to the shear stress tensor of the flow τij. Therefore the equation
of motion of the structure mechanics (12.54) can be written as:

ρ · dvi
dt

= ρ ·
(
∂vi
∂t

+ vj ·
∂vi
∂xj

)
=
∂σij

∂xj
+ fi , (12.55)

and the Navier-Stokes equation of the fluid mechanics (12.53) can be written
as:

ρ · dvi
dt

= ρ ·
(
∂vi
∂t

+ vj ·
∂vi
∂xj

)
=
∂τij
∂xj

+ fi . (12.56)

For incompressible media, conservation of mass is identical for the structure
mechanics and for the fluid mechanics:

∂vi
∂xi

= 0 . (12.57)

If we bring equations (12.55) and (12.56) together to a single equation, we
obtain the Euler-Lagrange formulation of conservation of momentum for both
the structure mechanics and the fluid mechanics in vector notation:

ρ ·
(
∂v

∂t

∣∣∣∣
G

+ (v · ∇)(v − vG)

)
= ∇σ + f . (12.58)

vG is the reference velocity of the moving surface and G denotes the as-
sociated reference surface that is moving in the Lagrange formulation. The
fundamental equations of structure mechanics and fluid mechanics are given
in the Euler formulation relative to this surface. Concerning the coupling of
the structure mechanical and fluid mechanical fundamental equations via the
Lagrange representation of the moving surface, this so-called ALE (Arbitrary
Lagrange-Euler) mixed Lagrange-Euler formulation has the advantage that
the various computational grids of each region on the surface G can be cou-
pled. For the relative velocity v−vG, the continuity equation ∇·(v−vG) = 0
also holds.

In the ALE fundamental equation (12.58), ρ denotes the density of the
structure and of the flowing medium. The tensor σ stands for

σ = σij for the structure ,

with the associated ansatz for the stress–extension law, and

σ = τij for the flow ,

with the Stokes friction law for incompressible flow

τij = −p · δij + µ ·
(
∂vi
∂xj

+
∂vj
∂xi

)
. (12.59)
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The coupling takes place via the boundary conditions at the interface G.
The kinematic coupling condition states that the rate of deformation vi must
be equal to the flow velocity v at the interface:

vi|G = v|G . (12.60)

The dynamic coupling condition relates the stress tensor σ with the shear
stress vector τ at the interface with the normal vector n:

σ · n = τ · n . (12.61)

The exchange of stresses with the hydrostatic pressure and with the shear
stress components of the friction is a matter for the coupling models.

For the flow calculation, as shown in Figure 12.35, three regions are to be
distinguished. In the first region the motion of the coupling interface leads to a
substantial Lagrange description of the flow quantities. The second transition
region requires a mixed Lagrange-Euler approach and at a sufficiently large
distance from the interface in the third region the Euler formulation is used.
Figure 12.35 shows the division of regions with a characteristic computational
grid for the flow calculation of the human heart.

To calculate the interaction of the flow and the structure in the ventricle
and atrium, a material law for the myocardium of the heart is necessary (see
Section 12.3.2). The arrangement of muscle fibers and the lines of acceleration
are shown in Figure 12.36. The muscle fibers are oriented in a spiral manner
around the ventricle and cause radial and longitudinal contraction of the
ventricle.

The qualitative shapes of the stress–strain curves of the human my-
ocardium and epicardium are shown in Figure 12.37. The inner layer of the
myocardium leads to different stress–strain behavior from that of the outer

Euler

Lagrange−Euler

Lagrange

flow grid

structure grid

coupling surface

Fig. 12.35. Division of regions for the ALE Lagrange-Euler formulation of the
flow-structure coupling for the human ventricle
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Fig. 12.36. Orientation of cardiac muscle fibers, B. Jung et al. (2006)

epicardial layer. In the myocardium there are different limiting values for the
stress, depending on whether the load is along the muscle fibers or perpen-
dicular to them. The nonlinear stress–strain relationship exhibited by the
epicardial layer is more pronounced than that exhibited by the myocardial
layer. In addition, there is hysteresis in the load curve of the external muscle
layer of the cardiac ventricle.

Another ansatz for the calculation of the flow-structure coupling was in-
troduced by C. S. Peskin and D. M. McQueen (1997). It approximates the
muscle fibers of the heart as well as the cardiac valves in the Lagrangian
description, with discrete elastic fiber filaments embedded in the flow. The
discretization of the fiber filaments is chosen to be so fine that they have no
volume or mass, but can still be used for a continuum-mechanical descrip-
tion of the biological material. The filaments are oriented along the flow and
have local flow velocity v. At each point of the filament–flow combination, a
unique fiber direction is given, fixed by the unit vector e.

myocardium

endocardium

epicardium

cardiac ventricle myocardium epicardium

Fig. 12.37. Stress-strain curves for the human myocardium and epicardium
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The force F that the fiber filaments exert on the flow is computed with
the interaction equations of the filament–flow system:

F (x, t) =

∫

V

f(q, r, s, t) · δ(x − X(q, r, s, t)) · dq · dr · ds, (12.62)

with the filament coordinates q, r, s, the position of the filament in time
x = X(q, r, s, t), the unit vector e = (∂X/∂s/(|∂x/∂s|), and the integration
volume V .

Coupling with the velocity vector v takes place via

∂X

∂t
(q, r, s, t)=v(X(q, r, s, t), t)

=

∫

V

v(x, t) · δ(x − X(q, r, s, t)) · dx. (12.63)

The fiber–filament equations are

F =
∂(τ · e)

∂s
, (12.64)

τ=σ ·
(∣∣∣∣
∂X

∂s

∣∣∣∣ , q, r, s, t
)
.

Note that the flow equations (12.63) and (12.64) are written down in the
Eulerian description. Here X = (x1, x2, x3) are Cartesian coordinates fixed
in space. The variables to be computed are the velocity vector v(x, t), the
pressure p(x, t), and the filament force F (x, t). The constants ρ and µ are
the density and the viscosity of the flow.

The fiber-filament equation (12.64) and its connection to the flow (12.62),
(12.63) are given in the Lagrangian description, where q, r, s are time-
dependent curved coordinates that determine the position of the material
points of the fiber filaments. The unknowns of the system of equations, are

left ventricle aortic valve

Fig. 12.38. Fiber-filament model of the inner wall of the left ventricle and the
aortic valve, C. S. Peskin, D. M. McQueen (1994, 1997)
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the fiber configuration X(q, r, s, t), the fiber stress τ(q, r, s, t), and the La-
grangian description of the fiber forces f(q, r, s, t). The interaction equations
(12.62) and (12.63) connect the Lagrangian and Eulerian variables.

Figure 12.38 shows the simplified fiber-filament model of the heart that
corresponds to the structure model of Figure 12.31. Fiber filaments of the
inner layer of the left ventricle and the computed three sacks of the aortic
valve are shown.

Figure 12.39 shows the computed flow. Streaklines from the particles
spread through the flow are shown. The first figure shows the intake flow
process in the left and right ventricles with open mitral and tricuspid valves.
During the filling process, a ring vortex forms below the mitral valve. Par-
ticles that make the flow visible are added to the atria and ventricles of the
heart. During contraction of the ventricles, the mitral and tricuspid valves are
closed. A residual flow with low flow velocity remains. During the expulsion
process, the aortic and pulmonary valves are open, and a jet flow with high
flow velocity can be seen in the aortic and venal channels. But the details of
flow bifurcations in the ventricles cannot be described with this model. Dur-
ing relaxation of the ventricles, the cardiac valves are closed, and the intake
process begins again.

As there are only limited in vivo structural data of the human heart avail-
able to determine the constants of the strain-energy function (12.49), there
is another possibility to calculate the flow in the heart, without modeling the
structure of the myocardium. The volume force f in equation (12.53) is re-
placed by the knowledge of the time-dependent heart geometry that acts on
the flow in the ventricles. Following this idea, a geometrical surface model of
the heart for one cardiac cycle is derived from the human MRI geometry data.
Using these prescribed time-dependent geometrical boundary conditions, the
flow calculation in the ventricles is carried out.

mitral and tricuspid valve open
intake flow

aortic and pulmonary valve open
outward flow

Fig. 12.39. Flow simulation in the heart, C. S. Peskin, D. M. McQueen (1997)
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For the calculation of the pulsating flow, the continuity and Navier–Stokes
equations (12.53) are made dimensionless with the characteristic diameter D
of the aorta and the averaged velocity U in the left ventricle:

x∗ =
x

D
, v∗ =

v

U
, t∗ = t · ω, p∗ =

p

ρ · U2
.

Using the dimensionless characteristic Reynolds number ReD = U · D/νeff
and Womersley number Wo = D ·

√
ω/νeff (ω = 2 · π · f), we obtain the

dimensionless fundamental equations

∇ · v=0,

Wo2

ReD
·
(
∂v

∂t
+ (v · ∇)v

)
=−∇p+

1

ReD
·∆v. (12.65)

Figure 12.40 shows the magnetic spin resonance (MRI) data of a hori-
zontal slice through the human heart and the derived geometry model of the
heart, representing the fluid space of the ventricles and the atria. At each
point in time through one cardiac cycle, a total of 26 horizontal and vertical
planes are analyzed. Several cardiac cycles are recorded at 20 points in time,
and the data are transferred into the dynamic geometry model using image
recognition software. An ECG of the test person is used as the trigger to
record the images (H. Oertel jr. et al (2005), (2006)).

The dynamic geometry model of the heart consists of the ventricles, atria,
aorta and vena cava. The motion of the contraction and relaxation of the
ventricles and atria is given by the geometry model, while the motion of the
aorta and vena cava caused by the flow pulse is calculated. The volume flux
of the pressure controlled cardiac valves is modeled in each projection plane,
as shown in Figure 12.44.

The calculated three-dimensional flow structure in the left and right hu-
man ventricles is shown for one cardiac cycle in Figure 12.41. When the mitral

c

b

d

e

f

a

a
b
c

d

e

f

MRI images geometry model

Fig. 12.40. Dynamic geometry model of the human heart
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and tricuspid valves open at the time t = 0.76, first an intake jet forms in
the left and right ventricles during the filling process; after a quarter of the
cardiac cycle these intake jets are each accompanied by a ring vortex (three-
dimensional focus F1, see Figure 3.7). These ring vortices arise to balance the
intake jet braked in the motionless fluid. Further ring vortices, given by the
Helmholtz vortex laws (see Section 4.4.3), arise in the atria. As the diastole
progresses, the size of the vortices increases because of the motion of the
myocardium. The expansion of the vortex in the axial direction is uniform,
while in the radial direction the left side is strengthened in the left ventricle.
As the vortices enter the ventricles their velocities decrease. There is no flow
through the tops of the ventricles at this time. As the intake flow progresses,
because of the large deformation in the left ventricle, the ring vortex tends
towards the apex of the ventricle and the saddle surface S1 begins to form
at the myocardial wall, which prepares for efficient expulsion of blood in the
systole. The velocity of the three-dimensional flow decreases until finally the
intake flow process is complete and the mitral valve closes. Further defor-
mation of the vortex structure is determined by the inertia of the flow. In
parallel, the upper part of the ring vortex induces a secondary vortex in the
aortic canal F2 with the saddle point S2 on the wall of the aortic canal. At
the beginning of the diastole, the intake process in the atrium causes the
three-dimensional vortex F3.

t=0.88 t=0.05 t=0.50 t=0.63

projection of streamlines in the long axis plane

three − dimensional vortex streamlines

diastole systole

F1F1

S2
F2

F3

S1S1

F2

S2

4F

F2

Fig. 12.41. Flow in the human heart ReD = 3470, W0 = 25, T0 = 1.0 s
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Because of the more complex geometry of the right ventricle (see Figure
12.29), the intake vortex is deformed along the ventricle contour. During the
diastole, as the ring vortex rotates in the direction of the apex of the ventricle,
this deformation causes the vortex axis to tend towards the outer wall of the
myocardium and there produce a saddle surface S1. Calculation of the flow
shows that because of this the ring vortex decays before the exit flow begins
and causes a secondary flow in the apex of the ventricle F4, corresponding to
the secondary flow in the pulmonary artery canal F2. Thus the interpretation
of the three-dimensional flow structure in the right ventricle is not as clearly
defined as that in the left ventricle.

At the time t = 0.41, the aortic valve opens and the flow begins to pass
out into the aorta. The direction of motion of the vortices remains the same.
First the vortex F2 and then the ring vortex F1 are washed out. The velocity
maximum of the exit flow process is reached in the central region of the aortic
valve and at time t = 0.61 the flow pulse in the aorta is fully developed. At
the end of the systole the vortex structure in the left and right ventricles
has completely disintegrated. In a healthy human heart about 62 % of the
volume of the left ventricle is expelled.

In addition to the characteristic quantities of the dimensionless Navier-
Stokes equation (12.65) ReD and Wo, further dimensionless characteristic
numbers are defined for medical evaluation of the ventricular flow. The ejec-
tion fraction

E =
Vs

Vd
(12.66)

is the ratio of the stroke volume Vs to the end-diastolic volume Vd. It indicates
the percentage of the ventricle volume expelled into the aortic channel.

With the ventricle pumping work Ap, which is calculated from the p-V
diagram of Figure 12.27, the mixing time of the blood in the ventricle tb in

Fig. 12.42. Dependence of dimensionless pumping work O/Or on the ejection
fraction E/Er; reference values Or = 3.4 · 106, Er = 62%
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general over 2 – 3 pump cycles, the effective viscosity of the blood µeff (12.4)
and the stroke volume Vs, a dimensionless pumping work can be defined:

O =
Ap · tb
µeff · Vs

, (12.67)

where Ap · tb/µeff has the dimension of a volume and O is a ratio of volumes.
If the patient is suffering a heart attack, the pumping work of the ventri-
cle decreases and the mixing time of the blood increases. The dimensionless
pumping work assumes larger values than those of a healthy heart. Figure
12.42 plots the dimensionless pumping work O relative to the reference value
of the healthy ventricle Or for the patients with aneurysm, before and after
ventricular reconstruction and after four months’ regeneration time, over the
ejection fraction E/Er or the Reynolds number ReD. On a plot with loga-
rthimic scales on both axes a straight line is found, and therefore the linear
power law:

O

Or
=

(
E

Er

)−1

. (12.68)

he heart of an athlete also has an increased value of the dimensionless pump-
ing work and is approximately the value of the regenerated operated ventricle.
As the diagram in Figure 12.42 shows, with the dimensionless pumping work
and the power law (12.68), a quantitative fluid mechanical evaluation can be
carried out for a patient before and after surgery. In this it is assumed that
the Womersley number Wo is approximately constant.

12.3.5 Cardiac Valves

The operation of the four cardiac valves has already been described in Section
12.3.1. The modeling of flow relations in the cardiac valves of the left ventricle
will now be discussed in this section.

Figure 12.43 shows the anatomy of the pressure-controlled mitral and
aortic valves. The left mitral valve has two flaps. The mitral valve ensures
that the left atrium can fill between heart beats, but prevents backflow of
the blood during contraction of the ventricle. The tendons leading to the
papillary muscles prevent the mitral valve turning inside out during the high
pressure of the contraction phase.

The aortic valve consists of three semilunar tissue sacks. It prevents back-
flow of blood out of the aorta during the relaxation phase of the heart. Be-
cause of the higher pressure exerted on the aortic valve during the contraction
phase, the valve sacks are considerably stronger than the flaps of the mitral
valve.

In spite of the higher aortic pressure, the sacks of the aortic valve do not
touch the aortic bulb while the aortic valve is open. The flow goes past the
peaks of the sacks and forms a backflow region between the valve sack and
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the aortic bulb. The back pressure of this region prevents the sacks from
flattening and attaching.

Because of the high shear rate of the intake jet into the aorta, the tips of
the aortic valve flaps become unstable and begin to flutter while open.

To calculate the flow in the ventricles it is not necessary to reproduce every
detail of the valve motion caused by the flow. It is sufficient to model the
volume flux through the cardiac valves correctly, based on subsonic Doppler
velocity measurements and MRI flux data of the human heart. In the models
of the natural cardiac valves, we consider only their projections onto the valve
plane. The opened shape of the two-flap mitral valve and the three-flap aortic
valve are shown in Figure 12.44.

The model valves are realized by boundary conditions with which a vari-
able resistance is associated. This resistance can be varied between 0 and ∞.
By changing the resistances, the valves corresponding to their projections on
the valve plane are opened. In the closed state the valve is given the resis-
tance ∞ on the entire surface of the valve plane, while in the open state the
resistance is 0.

Modeling the tricuspid and pulmonary valves in the right ventricle is
performed in a similar manner.

Fig. 12.43. Mitral and aortic valves in the heart
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Diseases of the cardiac valves can lead to backflows into the ventricle or
atria. An aortic valve stenosis leads to calcium deposits on the valve sacks,
which then does not open fully. Whereas the flow out of the left ventricle is
still laminar, a turbulent jet flow with increased flow losses forms downstream
from the aortic valve.

Because of the stenosis, the left ventricle has to overcome higher pressure
losses. The ventricle volume increases with time, and the cardiac muscle in-
creases. The supply of oxygen to the increased cardiac muscle is possible only
to a certain degree, since the number of coronary vessels remains the same.

If the aortic valve does not close completely, backflow occurs because of
insufficence in the left ventricle, and again there is an increase in flow losses.
These are compensated by an increase in the volume of the heart and a faster
pulse.

With insufficiency of the mitral valve, the high pressure from the left
ventricle is carried over into the atrium. This leads to an extension of the left
atrium, and the volume strain of the right ventricle increases via the lung,
and consequently to a higher pressure in the vascular system of the lung.

In cases of severe cardiac valve disease, or if the cardiac muscle increase
has to be compensated after many years, operative correction is needed.

One common method of operation is an implant of an artificial cardiac
valve. For many years, back pressure valves with spherical or disk-shaped flaps
were used for the artificial aortic valve. These have high pressure peaks and
considerable backflow regions, which lead to an aggregation of erythrocytes
in the low shear rate flow regimes (Figure 12.11) and then to thrombosis.
In the high shear rate regimes, deformation of the erythrocytes and their
eventual destruction occurs.

The pendulum valve (Bjork–Shiley) was an improvement. However, be-
cause of sealing of the guiding clip and the noise from the valve, this was
not used for long. Development led to the bipartite or tripartite pendulum
valve, based on the natural aortic valve, whose pressure peaks and backflow

medium resistance no resistancelarge resistance

closed opening open

openopeningclosed
mitral valve model

aortic valve model

Fig. 12.44. Modeling the mitral and aortic valves of the heart
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Fig. 12.45. Artificial aortic valve and experimental flow simulation, F. Hirt (1994)

regions were considerably reduced, but could still not be completely elimi-
nated. The future will most likely bring genetically engineered cardiac valves
with minimized flow losses.

Figure 12.45 shows a bipartite pendulum valve with experimental and
numerical flow visualization in a heart-pressure chamber. In the laser light
cut, the streaklines of the open aortic valve show regions of high flow velocity
and large shear rates, as well as backflow regions. If the angle of inclination
of the valves in their open state is too large, the flow separates at the leading
edge of the valve and forms an extensive backflow region, which, because of
shear instabilities, becomes turbulent and therefore has higher flow losses. At
the optimized opening angle, flow separation at the leading edge is prevented,
although the wake instabilities lead to a periodic backflow downstream.

12.4 Flow in Blood Vessels

The human blood circulation has already been introduced in Section 12.1.2
with Figure 12.1. The pressure exerted by the heart in the branching arteries
is shown in Figure 12.9. The size ratios and wall strengths of the arteries and
veins are also shown in Figure 12.46. As the blood passes through one pulse,
the arteries expand, and the wall thickness decreases. The strain on the inner
wall is greater than that on the outer wall. The stress–strain relation for the
vessel walls can be approximately described with an exponential function.
Because of the nonlinearity of the stress–strain curve, the stress at the inner
wall is considerably greater than the extension.

According to Y. C. Fung (1993), the flow strain–energy function (12.49)
for the blood vessels can be simplified to

ρ0W = q + ceQ . (12.69)

where q and Q can be represented as polynomials in the strain components.
In this section we describe the flow relations in the arteries, arterial bends,

and branchings as well as the microflows in capillaries in detail. In this section
we describe the flow relations in the arteries, arterial bends, and branches as
well as the microflows in capillaries in detail.
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Fig. 12.46. Extension, stress, size ratios, and wall strengths of arteries and veins

Figure 12.47 shows the instantaneous velocity profile of a fully developed
arterial flow as well as the time development of the velocity wave. The pe-
riodic flow pulse of the heart causes a laminar, unsteady pipe flow in the
medium and small arteries, with Reynolds numbers of several hundred to a
thousand. Fully developed flows without the effect of the intake flow or ar-
terial branchings have as their time-averaged velocity profile the parabolic
Poiseuille profile from Section 4.2.7. As the aorta ascends, the pipe flow ex-
ceeds the critical Reynolds number, and the laminar–turbulent transition
begins close to the arterial walls in the turning point profiles while the heart
relaxes. Before the turbulent flow can fully develop in the aorta, the sec-
ondary flow downstream in the curve of the aorta stabilizes the flow and so
causes relamination of the flow.

Figure 12.48 shows the averaged velocity profile in the aorta bend. In the
intake region, the boundary layers at the inner and outer walls of the aorta

Fig. 12.47. Time development of the velocity wave and instantaneous velocity
profiles in a medium artery
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first develop. Since the inner curvature is greater than the outer curvature, the
lower pressure causes the boundary-layer flow to be increasingly accelerated.
Because of the centrifugal force, a secondary flow forms downstream. There is
then a velocity component perpendicular to the streamlines that induces two
secondary vortices superimposed on the main flow and rotating in opposite
directions. Superimposing the pulsing velocity profile of Figure 12.47 onto
the average profiles in the curved pipe, we find a complex three-dimensional
secondary flow with temporary backflows close to the walls.

Figure 12.48 shows, in addition to the basic sketch of the secondary flow,
the calculated velocity profiles in the model aorta during the systole shortly
after opening and before closing the aortic valve. The streamline snapshot in
the section of the descending aorta shows the structure of the secondary flow
at each point in time of the cardiac cycle. Because of the branching of the
aorta, the transverse flow velocity of the secondary flow may be neglected
compared to the maximum velocity in the descending aorta.

t / T0 = 0.25 t / T0 = 0.5t / T0 = 0.33

velocity profiles and
streamline snapshots, systole

secondary flow

Fig. 12.48. Velocity profile and structure of the secondary flow in a model aorta,
Wo = 27, T0 = 0.84 s
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Fig. 12.49. Secondary flow separation downstream from artery branches

Similar secondary flows occur downstream from arterial branchings be-
cause of the curvature of the streamlines in the branchings (Figure 12.49).
The resulting flow field depends on the ratio of the arterial diameter, the ge-
ometry of the branchings, and the volume flux. At arterial branchings at great
angles, flow separation occurs. Figure 12.49 shows two examples of separation
and reattachment lines, as well as the stagnation point. In the separation re-
gion, low shear rates occur at the wall, while the opposite wall has high shear
rates. The flow separates at the inner wall of the branching. Because of the
streamline curvature, a distinctive secondary flow again occurs downstream.

If there is arterial disease to the extent that a stenosis occurs in the artery,
flow separation will also occur downstream from the narrowing. Figure 12.50
shows the averaged velocity profiles and the separation bubble downstream
from the artery narrowing. In the region of the narrowing, acceleration of the
flow takes place. The subsequent slowing down as the artery again widens
and the associated pressure increase cause flow separation with corresponding
low shear rates at the wall. In arteries with Reynolds numbers less than 100,
the flow passes through the narrowing without separation.

In veins and vein branchings, a pulsing blood backflow towards the right
ventricle occurs, corresponding to the arterial flows. However, because of the
lower mean pressure and the smaller wall strength in the veins, the veins can
collapse above the heart. This happens when, because of muscle contractions
or when the arms are raised, the pressure difference in the vein wall P = p−pa

between the inner and outer pressure becomes negative. Figure 12.51 shows

Fig. 12.50. Flow separation due to arterial stenosis
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Fig. 12.51. Wall pressure of the aorta and cross-sectional shape of a collapsing
vena cava

the pressure difference P across the cross-sectional ratio A/A0 for the vena
cava compared to that for the aorta. The starting point is an elliptical cross
section A0 for the vena cava and a circular cross section for the aorta. At
higher pressure differences a circular cross-section occurs in the vena cava,
while at negative pressure differences the vena cava collapses and only a small
remaining volume flux of the blood remains. A partially collapsed vein occurs
when the pressure difference during the inflow into the vein is still positive
but, because of the friction downstream, a negative pressure difference oc-
curs. New flow forms such as surge flows or self-induced oscillations occur, as
described in Section 4.1.8.

The veins leading upward to the right ventricle have valves (see Figure
12.1) to prevent the blood flowing backwards at low mean pressures.

12.4.1 Unsteady Pipe Flow

There is an exact solution of the Navier–Stokes equation for the pulsing pipe
flow of a Newtonian fluid. In cylindrical coordinates the Navier–Stokes equa-
tion (5.20) for axially symmetric fully developed flow is

∂u

∂t
= −1

ρ
· ∂p
∂x

+ ν ·
(
∂2u

∂r2
+

1

R
· ∂u
∂r

)
, (12.70)

with radial coordinate r and pipe radius R. The no-slip condition holds at
the pipe wall, u(R, t) = 0, and at the pipe axis ∂u(0, t)/∂r = 0. As a further
condition it is assumed that the flow is periodic in time. Let the volume flux
V̇ (t) be given. It can be expressed as a Fourier series:

V̇ (t) ∼ −1

ρ
· ∂p
∂x

= a0 ·
∞∑

ω=1

(aω · cos(ω · t)) = F (t). (12.71)

With the separation trial solution
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u(r, t) =
∑

i

gi(t) · fi(r) (12.72)

we obtain two ordinary differential equations:

f ′′ +
1

r
· f ′ + λ2 · f = 0, (12.73)

with f(R) = 0, f ′(0) = 0, and

ġ + ν · λ2 · g = c. (12.74)

Here g(t) is a periodic function of time, and F (t) expanded in fi(r) yields

F (t) =
∑

i

ci(t) · fi(r). (12.75)

In the direction of the radial coordinate r we have a Sturm–Liouville eigen-
value problem with zeroth-order Bessel functions as the fundamental solution.
The analytical solution of the eigenvalue problem is written as

u(r, t) =
∞∑

i=1

qi ·
(
a0

σi
+

∞∑

ω=1

aω

σ2
i + ω2

· (σi cos(ω · t) + ω · sin(ω · t))
)
· I0
(
ki ·

r

R

)
, (12.76)

with eigenvalues λi = ki/R − i, the zeroth-order Bessel function I0, and the
abbreviations qi = 2/(ki · I1(ki)) and σi = r · λi.

For the periodic flow in the pipe, we assume in the simplest case the
following time-dependent pressure gradient:

−1

ρ
· ∂p
∂x

= aω · cos(ω · t). (12.77)

The reference velocity used, umax, is the maximum velocity on the pipe axis
of the steady Hagen–Poiseuille pipe flow (Section 4.2.9):

umax =
R2 · aω

4 · ν =
R2

4 · ν ·
(
− ∂p

∂x

)
. (12.78)

The solution of the eigenvalue problem is a superposition of the steady
Hagen–Poiseuille flow with a periodic oscillating flow. The characteristic num-
ber for the periodic part of the solution is the Womersley number

Wo = D · k = D ·
√
ω

ν
, (12.79)

and ω = 2 · πf with the pulse frequency f and the pipe diameter D. Here√
ω/ν is the unsteady boundary-layer thickness. For very small Wo, that is, at

very low frequencies, steady pipe flow occurs. The flow oscillates in the same
phase as the exciting periodic pressure distribution. For Womersley numbers
of order of magnitude 30, as in the case of pulsing blood flow, the flow portrait
is qualitatively that shown in Figure 12.47. Figure 12.52 shows the deviation
from the analytical solution of the time-averaged Hagen–Poiseuille flow for
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Wo = 27 and ReD = 3600. Instantaneous backflow profiles occur during the
relaxation phase of the heart, opposing the exciting pressure gradient. The
reference velocity here is the maximum velocity (12.78).

For the pulsing elastic pipe flow, the structure mechanical equation of
motion (12.43) also has to be solved. It is assumed that the elastic pipe wall is
thin, i.e. d/D ≪ 1. Radial compression effects and radial deflection gradients
inside the wall are neglected. It is also assumed that the radial displacements
ur and the axial displacements ux are small and that the material properties
of the pipe wall are isotropic and homogeneous. Linear elasticity theory is
valid, with modulus of elasticity E and the Poisson ratio m ≤ 0.5 (m = 0.5
for rigid walls). The deflection of the pipe wall is due to a periodic pressure
gradient.

The radial and axial stresses are:

σr=
E · d

1 −m2
·
(
ur

R
+m · ∂ux

∂x

)
, (12.80)

σx=
E · d

1 −m2
·
(
∂ux

∂x
+m · ur

R

)
. (12.81)

The linearized equations of motion are:

ρw · d · ∂
2ur

∂t2
=pi − pa −

σr

R
, (12.82)

ρw · d · ∂
2ux

∂t2
=
∂σx

∂x
− µ ·

(
∂u

∂r
+
∂w

∂x

)

r=R

, (12.83)

with the density of the wall ρw and the inner and outer pressures of the pipe
pi and pa.

The coupling with the fluid mechanical fundamental equations (12.86)
- (12.88) at the wall r = R + ur ≈ R is effected through the boundary
conditions

u =
∂ux

∂t
, w =

∂ur

∂t
(12.84)

Fig. 12.52. Periodic part of velocity distribution of the pulsing rigid and elastic
pipe flow at different times in a period of oscillation, Wo = 27, ReD = 3600
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and on the pipe axis r = 0:

w = 0 ,
∂u

∂r
= 0 . (12.85)

The solution of the coupled system of equations is due to J.R. Womersley
(1955). A wave ansatz for the periodic flow pulse and the periodic displace-
ment of the pipe wall leads, for rigid pipe walls, to an eigenvalue problem
whose solution can be represented by Bessel functions.

As well as the solution for the rigid wall, Figure 12.52 shows, superimposed
on the Poiseuille flow, the periodic velocity distribution of the elastic pipe
for a half period T0 = 0.61 s at Womersely number W0 = 27. Comparison
of the velocity profile with the corresponding change in time of the pressure
gradient shows a phase shift close to the center of the pipe. This is true for
both rigid and elastic walls. Differences in the solutions for rigid and elastic
walls are only visible close to the wall.

For the analytical solution of the rigid and elastic pipe flow, an infinitely
extending pipe was assumed, on which the periodic volume flux (12.71) is
superimposed. In view of the calculation of the pulsing arterial flow, however,
it is more realistic to select a finite elastic pipe section fixed at both ends. The
pressure and velocity pulse of the heart is simulated by means of a deflection
of the pipe wall at one end of the pipe section with a periodically fluctuating
block profile for the velocity. For the numerical calcuation of the pulsing
elastic pipe flow we use the flow-structure coupled formulation (12.58) of the
nonlinear structure-mechanical and fluid-mechanical fundamental equations.
The elastic pipe section has length L = 10D and wall strength d = 0.1D.
Because of the small wall strength d ≪ D, the inertia of the wall may be
neglected. For the calculation of the flow the density ρ and the viscosity µeff

of blood are used, and for the calculation of the elastic wall the modulus
of elasticity E = 106 and the transverse contraction number m = 0.4 are
used. The result of the calculation is shown in Figure 12.53 for half a period
of oscillation T0 = 0.61 at each point in time in the middle of the pipe
section. The core flow corresponds to the analytical solution of Figure 12.52.

Fig. 12.53. Periodic part of velocity distribution of the finite pulsing elastic pipe
flow Wo = 27, ReD = 3600
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As is to be expected, a phase shift of the velocity distribution at the wall
appears at a Womersley number of Wo = 27. The specification of the pulsing
velocity at the intake of the pipe section causes a transient oscillation in
the numerical solution. While at small Womersley numbers the core velocity,
wall shear stress and wall deflection are in phase, at a Womersley number of
Wo = 27 there is a constant phase shift between the core velocity and the
wall deflection that is due to the intake stretch in the finite pipe section.

12.4.2 Unsteady Arterial Flow

In calculating the flow in arteries, the elasticity of the vessels has to be taken
into account. In contrast, in the heart, where the muscle contraction acts
on the flow in the ventricles, the expansion of the arteries is caused by the
pressure pulse generated within the heart.

Figure 12.54 shows the pressure and velocity waves in the aorta and in
the descending arteries. The reflected waves from the arterial branchings of
the aorta almost double the amplitude of the pressure wave. The amplitude
increase carries on to the third arterial branching, and then decreases in
further arterial branchings, as shown in Figure 12.9. Figure 12.55 shows the
time development of the velocity profiles in a model aorta for a pulse duration
of 0.8 s. The axial velocities u are made dimensionless with their maximum
value umax = 0.77 m/s. Compared to the basic sketch in Figure 12.47, the
non-Newtonian behavior of the blood with µeff of equation (12.4) has now
been taken into account.

In order to calculate the expansion of pressure and velocity waves in large
arteries, taking the viscosity of the arterial walls into account and assuming
small perturbations, we use the linearized Navier–Stokes equations for New-
tonian blood flow (blood plasma) or non-Newtonian behavior (12.4) and the
linearized Navier equation for the wall, as well as the continuity equation.
The axially symmetric wave expansion for incompressible flow in cylindrical
coordinates yields

∂ur

∂t
= −1

ρ
· ∂p
∂r

+ ν ·
(
∂2ur

∂r2
+

1

r
· ∂ur

∂r
− ur

r2
+
∂2ur

∂x2

)
, (12.86)

∂ux

∂t
= −1

ρ
· ∂p
∂x

+ ν ·
(
∂2ux

∂r2
+

1

r
· ∂ux

∂r
+
∂2ux

∂x2

)
, (12.87)

∂ux

∂x
+
∂ur

∂r
+
ur

r
= 0. (12.88)

For the viscoelastic arterial wall, we have
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ρw

µw
· ∂

2ur

∂t2
=
∂2ux

∂r2
+

1

r
· ∂ur

∂r
− ur

r2
+
∂2ur

∂x2
− 1

µw
· ∂Ω
∂r

, (12.89)

ρw

µw
· ∂

2ux

∂t2
=
∂2ux

∂r2
+

1

r
· ∂ux

∂r
+
∂2ux

∂x2
− 1

µw
· ∂Ω
∂x

, (12.90)

∂ux

∂x
+
∂ur

∂r
+
ur

r
= 0. (12.91)

In the case of the flow, ur and ux are the velocity components, and for the
wall, ur and ux are the deviation components of the wall, µw is the stiffness
coefficient, and ρw the density of the wall. The quantity Ω is a pressure that
has to be introduced into equations (12.89) and (12.90), since the wall was
assumed to be incompressible. The boundary conditions for the flow–wall
coupling are the continuity of the shear and normal stresses, as well as the
velocities at the interface between liquid and solid. At the outer wall of the
artery, similar boundary conditions hold.

Until now, we have treated the linearized fundamental equations (12.86)–
(12.91) for small amplitudes of the perturbation waves. Blood is a non-
Newtonian medium with a nonlinear dependence on the blood viscosity. Its
effect on the pulsing flow has particularly to be taken into account in the
region of flow separation. In the equations for the vessel walls, there are
significant nonlinear effects from the finite extension and the nonlinear vis-
coelasticity.

In computing the wave expansion in large arteries, the convective terms
ui·(∂ui/∂xj) may be neglected compared to the transient acceleration ∂ui/∂t.

Fig. 12.54. Pressure and velocity waves in the aorta and descending arteries
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Let u′ be a characteristic velocity of the flow, ω the angular frequency,
and c the phase velocity of the wave relative to the mean flow. The period
of oscillation is 2π/ω, and the wavelength 2 · π · c/ω. Therefore, the transient
acceleration ∂ui/∂t is of order of magnitude u′/(2·π ·c/ω), and the convective
acceleration (uj · ∂ui)/∂xj is of order of magnitude u′ · u′/(2 · π · c/ω). The
condition that the convective acceleration may be neglected yields

u′

c
≪ 1. (12.92)

In the large arteries the maximum value of u′/c is 0.25, so that a smaller effect
of the nonlinearity is expected. In the peripheral smaller arteries condition
(12.92) is satisfied.

For inviscid flow, the wave expansion of a small pressure perturbation p′

can be calculated approximately using the one-dimensional wave equation:

∂2p′

∂t2
= c2 · ∂

2p′

∂x2
, (12.93)

with the phase velocity

c2 =
A

ρ
· d∆p

dA
. (12.94)

A denotes the cross-sectional area of the artery, ρ the blood density and
p = pi − pa the pressure in the artery wall, as shown in Figure 12.51. The
solution of the wave equation (12.93) yields waves traveling to the left and
to the right:

p′ = f1(t−
x

c0
) + f2(t+

x

c0
) . (12.95)

Assuming that the wall is thin, d/D ≪ 1, for homogenous, isotropic wall
properties with modulus of elasticity E, we obtain the phase velocity in the
wall:

Fig. 12.55. Instantaneous profiles of the axial velocity in a model aorta, S. C. Ling
and H. B. Atabek (1972)
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c0 =

√
E · d
ρ ·D , (12.96)

known as the Moens-Korteweg wave velocity. The same phase velocity of the
wave is also found in the solution of the viscous basic equations (12.82) and
(12.83) for elastic pipe flow in the limit µ→ 0 and W0 → ∞.

For the descending aorta we obtain the wave velocity c0 = 5m/s, rising
to c0 = 8m/s in the larger arteries.

The wave velocities in the wall of the aorta are 15 times larger than
the pressure wave propagation (12.94) in the blood, and in the wall of the
distal arteries 100 times larger. The wave resistance increases towards the
peripheries of the circulation, and the pulse wave velocity increases more
than the total cross-section of all branches of the arteries. This is due mainly
to the increase in the ratio of wall thickness to diameter of the arteries.

The solutions of the wave equation (12.93) for small pressure perturba-
tions have no nonlinear effects such as separation of the pressure waves or
deformation of the pressure waves in the direction of propagation. If such
effects are to be taken into account, the system of equations (12.86) - (12.92)
has to be solved numerically.

12.4.3 Arterial Branchings

At branchings of vessels the pressure pulse of the heart is reflected. Figure
12.56 shows a sketch of such a vessel branching. The pressure wave 1 with
volume flux V̇1 in the artery of cross-sectional area A1 is divided in the arterial
branching into the transmitted pressure waves 2 and 3 with volume fluxes
V̇2 and V̇3. The longitudinal coordinate of each vessel is x and the arterial
branching lies at x = 0. The incoming pressure wave in artery 1 is

p′I = p̂I · f(t−
x

c1
) , (12.97)

with the amplitude parameter p̂I. The volume flux of the incoming pressure
wave yields

V̇I = A1 · u = Y1 · p̂I · f(t−
x

c1
) , (12.98)

with Y1 = A1/(ρ · c1).
At the branching point x = 0 the reflected wave R and the transmitted

waves 2 and 3 are superimposed on the incoming wave I:

p′R = p̂R · g(t+
x

c1
) ,

p′j = p̂j · hj(t−
x

cj
) , j = 2, 3 .

(12.99)

The corresponding volume fluxes yield:
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Fig. 12.56. Artery branching

V̇R = Y1 · p̂R · g(t+
x

c1
) ,

V̇j = Yj · p̂j · hj(t−
x

cj
) , j = 2, 3 .

(12.100)

The boundary conditions at the branching point prescribe the continuity of
pressure (avoidance of large accelerations) and of volume flux (mass conser-
vation). With the assumption of large wavelengths the details of the flow
at the branching point can be neglected. This results in the wave functions
g(t) and hj(t) being equal to the incoming wave function f(t). This yields the
boundary conditions at the branching point:

p̂I + p̂R = p̂1 + p̂2 ,

Y1 · (p̂I − p̂R) =

3∑

j=2

Yj · p̂j .
(12.101)

Thus for the amplitude ratios

Fig. 12.57. Averaged velocity profiles in an artery branching, ReD = 600, V̇2/V̇1 =
0.6, M. Motomiya and T. Karino (1984)
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p̂R

p̂I
=
Y1 −

∑
Yj

Y1 +
∑
Yj

,

p̂j

p̂I
=

2 · Y1

Y1 +
∑
Yj

.

(12.102)

The pressure disturbance in the branching artery is calculated with (12.97)
and (12.99):

p′

p̂I
= f(t − x

c1
) +

p̂R

p̂I
(t+

x

c1
) (12.103)

and the volume flux with (12.97) and (12.100):

V̇ = Y1 · p̂I ·
(

f(t− x

c1
) − p̂R

p̂I
(t+

x

c1
)

)
(12.104)

For the calculation of the velocity profile in an arterial branching, again
the system of equations (12.86) - (12.92) needs to be solved numerically.
Figure 12.57 shows an example of a time averaged velocity profile. On the
opposing external artery wall of the branching, a time averaged backflow
region can be seen with an associated smaller or negative wall shear stress.
The curvature of the streamlines in turn causes a spiral-shaped secondary
flow. In the time averaged backflow region, turning point profiles arise that
are unstable and thus introduce the transition to turbulent flow. However this
unstable transition process of the shearing flow is damped by the secondary
flow, as in the case of a curved artery.

Fig. 12.58. Streamlines in an arterial branching with deposits and stress-optical
visualization, Liepsch (1996)
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If deposits on the arterial walls cause arteriosclerosis and thus lead to
increased flow separation at the arterial branchings, the distinctive turning-
point profiles will ensure that a turbulent flow with increased flow losses
occurs, in spite of fully developed secondary flow. Figure 12.58 shows such a
flow portrait in an elastic branching model. Stress-optical visualization allows
the flow separation in the model experiment to be seen.

To calculate the flow in the cardiac ventricles in Section 12.3.4, the pres-
sure boundary conditions at the exits from the arteries and the entrances to
the veins are necessary. For this, the information from this section is sum-
marized to a simplified circulation model that takes into account the blood
flow in the human circulation from the left ventricle and the aorta into the
connecting arterial system of the circulation, to the venous system, to the
right cardiac ventricle, to the lung and back to the left ventricle.

This model calculates the flow resistance in the vessels as well as different
parameters that influence the flow resistance. The subsystem of the arterial
circulation is shown in Figure 12.59 and is represented as 128 segments. Each
segment consists of a thin-walled elastic and cylindrical pipe section, where
each pipe section is associated with a specific length, a wall strength, a spe-
cific diameter and a modulus of elasticity, according to the human anatomy.
Peripheral branchings of the arterioles and capillaries with a diameter smaller
than 2 mm are taken into account by means of a total peripheral resistance
term.

The flow velocity u and the pressure p are represented by the electrical
quantities current and voltage, in analogy to the Navier-Stokes equation.
The solution of the Navier-Stokes equation for the elastic pipe flow for each
segment of the circulation model is then associated with electrical resistance,
the inductance and the capacitance, according to the physical properties of

artery model

Fig. 12.59. Circulation model, E. Nanjokat and U. Kreinke (2000)
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the arterial branching and the rheological properties (e.g. viscosity) of the
blood. In analogy to the solution of the Navier-Stokes equations, for each
pipe segment i we have the following ordinary differential equations for the
blood pressure and the flow velocity:

pi−1 − pi=
9 · ρ · l
4 · π2

· dui

dt
+

4 · µeff · l
π ·R4

· ui = I · dui

dt
+RΩ · ui , (12.105)

ui − ui+1=
3 · π ·R3 · l

2 ·E · d · dpi

dA
= C · dpi

dA
, (12.106)

with the electrical resistance RΩ, the inductance I and the capacitance C.
l is the pipe length, R the pipe radius, d the wall strength, ρ the density of
the blood and µeff the blood viscosity. E is the modulus of elasticity of the
elastic pipe segment.

The modeling of the venous and pulmonary circulations is carried out in
an analogous manner to the modeling of the arterial circulation, but with a
lesser degree of detail.

The circulation model assumes a pulsing flow through the circulatory
system, whereby the intake flow after each segment branching is not taken
into account. The flow pulse of the heart is replaced by an average velocity
in each segment.

12.4.4 Microcirculation

In the previous sections the blood flow in the large vessels was treated, in
which there is an equilibrium between the pressure force, the inertial force
and the forces of the elastic walls. The effect of friction at large Reynolds
numbers is limited to wall boundary layers, which have an intake flow down-
stream after every branching of a vessel. As the degree of branching of the
circulation system increases, the diameters and thus the Reynolds numbers
and Womersley numbers become smaller, so that even for relatively short
sections of vessels a fully developed flow forms. The inertial and centrifugal
forces become insignificantly small and the flow is determined, as for the mo-
tion of single celled animals in Section 12.1.1, by the equilibrium of pressure
gradient and friction. This flow regime is called microcirculation and it makes
up 80 % of the pressure loss between the aorta and the vena cava.

Figure 12.60 shows the branchings of the arterioles and venules in muscle
tissue with a diameter smaller than 50 µm as well as in the coronary vessels.
The diameter of the connected capillaries lies between 10 µm and 4 µm, with
Reynolds and Womersley numbers smaller than 0.01. In this region of the
microflow the deformability in particular of the red blood cells (erythrocytes)
and the exchange of the blood with the surrounding tissue have to be taken
into account. The muscle cells regulate the flow in the capillaries locally.

The erythrocytes have a biconcave form with a diameter of 8 µm. The
deformation of the visco-elastic cell membrane in the fully developed shearing
flow in the capillaries depends on the pressure gradient and the geometry of
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the capillaries. Figure 12.61 shows the deformation of the erythrocytes in a
capillary constriction from 12 µm to 6 µm.

To calculate the two-phase flow of solid particles and blood plasma flow
in the capillaries, their interaction needs to be modeled. The homogeneous
flow model introduced in Section 8.2.2 assumes that a mechanical equilibrium
exists between the particle phase and the blood plasma phase. This means
that all the particles have the same velocity as the homogeneous phase. To
determine the change of particle concentrations in the flow, a transport equa-
tion is formulated that takes into account the effect of the shearing of the
Stokes flow.

A more precise formulation of the two-phase flow of particles and blood
plasma can be made by means of separate modeling of the two phases, which
interact via exchange of momentum, that takes into account the deformation
of the erythrocytes. The blood plasma is treated as an incompressible Newto-
nian medium that, neglecting the inertial force, leads to the Stokes equations
of the fully developed capillary flow:

∇p+ µ ·∆u = 0 (12.107)

and the continuity equation:

∇ · u = 0 . (12.108)

The stresses generated in the cell membrane are in equilibrium with the
shear stresses of the Stokes flow. If we assume that the surface of the cell
membrane does not change during the deformation (valid up to a capillary
diameter of 3 µm), the components of the expansion stresses can be written
as:

T1 = B · (λ2
1 − 1) · λ1

2 · λ2
+ T0 ,

T2 = B · (λ2
2 − 1) · λ2

2 · λ1
+ T0 .

(12.109)

muscle tissue coronary vessels

Fig. 12.60. Arterioles and venules, R. Skalak et al. (1989), coronary vessels, A. J.
Pullan et al. (2005)
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Fig. 12.61. Axial velocity of the red and white blood cells in a capillary constric-
tion, R. Skalak et al. (1989)

Here λ1 and λ2 are the expansion ratios in the meridian and circumferential
directions and T0 is the isotropic stress, which takes into account the con-
stancy of the surface of the membrane. The coefficient B is a modulus of
elasticity.

The dependence of the bending moments on the curvature effects K1 and
K2 yields:

M1 = D · K1 + α ·K2

λ2
,

M2 = D · K2 + α ·K1

λ1
,

(12.110)

with the bending stiffness D and the Poisson ratio α.
Figure 12.62 shows the calculated axial velocities of the red and white

blood cells in a capillary constriction from 9 µm to 5 µm. The red blood
cells pass through the constriction without much reduction of their velocity,
whereas the white blood cells come almost to a standstill. The time scales
and the necessary shear stresses for the deformation of the white blood cells

Fig. 12.62. Deformation of the red blood cells in a capillary constriction, R. Skalak
et al. (1989)



752 12. Biofluid Mechanics

are much larger than for the red blood cells. This means that the capillary
resistance for white blood cells is two to three orders of magnitude larger.
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Wiesbaden, 2008.

H. Oertel sen., H. Oertel jr. Optische Strömungsmesstechnik. Braun Verlag, Karl-
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F. Wendt. Turbulente Strömung zwischen zwei rotierenden koaxialen Zylindern.
Ingenieur-Archiv, 4, 577–595, 1933.

P. K. Yeung. Lagrangian Investigations of Turbulence. Rev. Fluid Mech., 34,
115–142, 2002.

M. V. Zagarola, A. J. Smits. Scaling of Turbulent Pipe Flow. J. Fluid Mech., 373,
33–79, 1998.

Chapter 7 Convective of Heat and Mass Transfer

H. D. Baehr, K. Stephan. Heat and Mass Transfer. Springer, Berlin, Heidelberg,
New York, 1998.

H. Bénard. Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci. Pures
Appl., 11, 1261–1268, 1900.



764 Bibliography

C. O. Bennet, J. E. Myers. Momentum, Heat and Mass Transfer. McGraw-Hill,
New York, 1966.

R. B. Bird, W. E. Stewart, E. N. Lightfoot. Transport Phenomena. John Wiley &
Sons, New York, 1960.

E. Bodenschatz, W. Pesch, G. Ahlers. Developments in Rayleigh-Bénard Convec-
tion. Ann. Rev. Fluid Mech., 32, 709–777, 2000.

A. Busemann. Gasdynamik. L. Schiller, ed., Handbuch der Experimentalphysik,
IV, 341–460. Akademische Verlagsgesellschaft, Leipzig, 1931.

F. H. Busse. Bénard Convection in Particular. Rep. Prog. Phys., 41, 1929, 1978.

F. H. Busse. Nonlinear Properties of Thermal Convection. Rep. Prog. Phys., 41,
1929–1967, 1978.

T. Cebeci, P. Bradshaw. Physical and Computational Aspects of Convective Heat
Transfer. Springer, Berlin, Heidelberg, New York, 1988.

L. Crocco. Sulla trasmissione del calore da una lamina piana a un fluido scorrente
ad alta velocit. L’Aerotechnica, 12, 2, 181–197, 1932.
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L. Friedel. Druckabfall bei der Strömung von Gas-Dampf-Flüssigkeitsgemischen in
Rohren. Chem. Ing. Tech., 50, 3, 167–180, 1978.

D. Geldert. Types of Gas Fluidization. Powder Technology, 7, 285–292, 1973.

G. Govier, K. Aziz. The Flow of Complex Mixtures in Pipes. Reinhold Van Nos-
trand Co., 1972.

J. R. Grace. Fluidization. G. Hetsroni, ed., Handbook of Multiphase Flow Systems,
Hemisphere Publ., Washington, 1982.

J. R. Grace, F. Taghipour. Verification and Validation of CFD Models and Dynamic
Similarity for Fluidized Beds. Powder Technology, 139, 2, 99–110, 2004.

H. Henry, H. Fauske. Two-Phase Critical Flow of One-Component Mixtures in
Nozzles, Orifices and Short Tubes. Trans. ASME, J. Heat Transfer, 95, 179–187,
1971.

R. Henry, M. Grolmes, H. Fauske. Pressure-Pulse Propagation in Two-Phase One-
and Two-Component Mixtures. Technical Report ANL-7792, Argonne National
Laboratory, 1971.

J. O. Hinze. Turbulence. McGraw-Hill, New York, 2nd edition, 1987.

S. Hosokawa, A. Tomiyama. Turbulence Modification in Gas–Liquid and Solid–
Liquid Dispersed Two–Phase Pipe Flows. Int. J. Heat and Fluid Flow, 25, 489–
498, 2004.

W. Idsinga, N. Todreas, R. Bowring. An Assessment of Two-Phase Pressure Drop
Correlations for Steam-Water Systems. Int. J. Multiphase Flow, 3, 401–413,
1977.

M. Ishii. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris, 1975.

M. Ishii. One-Dimensional Drift-Flux Model and Constitutive Equations for Rel-
ative Motion Between Phases in Various Two-Phase Flow Regimes. Technical
Report ANL-7747, Argonne National Laboratory, Ill., USA, 1977.

M. Ishii, K. Mishima. Two-Fluid Model and Hydrodynamic Constitutive Relations.
Nuclear Engineering and Design, 82, 2-3, 107–126, 1984.



768 Bibliography

M. Ishii, T. Hibiki. Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New
York, 2006.

H. A. Jakobsen, H. Lindborg, C. A. Dorao. Modeling of Bubble Column Reactors:
Progress and Limitations. Ind. Eng. Chem. Res., 44, 5107–5151, 2005.

T. Knapp, J. W. Daily, F. G. Hammit. Cavitation. Mc Graw-Hill, New York, 1970.

H. A. Kocamustafaogullari, M. Ishii. Foundation of the Interfacial Area Transport
Equation and its Closure Relations. Int. J. Heat Mass Transfer, 38, 3, 481–493,
1995.

J. D. Kulick, J. R. Fessler, J. R. Eaton. Particle Response and Turbulence Modi-
fication in Fully Developed Channel Flow. J. Fluid Mech., 277, 109–134, 1994.

D. Kunii, O. Levenspiel. Fluidization Engineering. Butterworth-Heinemann,
Boston, 1991.

R. T. Lahey. The Analysis of Phase Separation and Phase Distribution Phenomena
Using Two-Fluid Models. Nuc. Eng. and Design, 122, 17–40, 1990.

M. Lance, J. Bataille. Turbulence in the Liquid Phase of a Uniform Bubbly Flow.
J. Fluid Mech., 222, 95–118, 1991.

B. E. Launder, G. E. Reece, W. Rodi. Progress in the Development of a Reynolds-
Stress Turbulence Closure. J. Fluid Mech., 68, 537–566, 1975.

W. Lauterborn, H. Bolle. Experimental Investigation of Cavitation Bubble Collapse
in the Neighbourhood of a Solid Boundary. J. Fluid Mech., 72, 391–399, 1975.

Y. Lecoffre. Cavitation: Bubble Trackers. Balkema, Rotterdam, Brookfield, 1999.
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G. Damköhler. Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in
Gasgemischen. Z. Elektrochem, 46, 601–652, 1940.

O. Deutschmann, F. Behrendt, J Warnatz. Numerical Modelling of Catalytic Com-
bustion. Proceedings of the Combustion Institute, 26, 1747–1754, 1996.

O. Deutschmann, U. Riedel, J. Warnatz. Modelling of Nitrogen and Oxygen Re-
combination on Partial Catalytic Surfaces. J. Heat Transfer (Transactions of the
ASME), 117, 495–501, 1995.

R. W. Dibble, A. R. Masri, R. W. Bilger. The Spontaneous Raman Scattering Tech-
nique Applied to Non-Premixed Flames of Methane. Combustion and Flame, 67,
189, 1987.

C. Dopazo, E. E. O’Brian. An Approach to the Description of a Turbulent Mixture.
Acta Astron., 1, 1239, 1974.

T. Dreier, B. Lange, J. Wolfrum, M. Zahn, F. Behrendt, J. Warnatz. CARS
Measurements and Computations of the Structure of Laminar Stagnation-Point
Methane-Air Counterflow Diffusion Flames. Proceedings of the Combustion In-
stitute, 21, 1729, 1987.



772 Bibliography

E. Gutheil, H. Bockhorn. The Effect of Multi-Dimensional PDFs in Turbulent Re-
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Bunsengesellschaft für Physikalische Chemie, 74, 585, 1970.

W. P. Jones, J. H. Whitelaw. Modelling and Measurement in Turbulent Combus-
tion. Proceedings of the Combustion Institute, 20, 233, 1985.

J. H. Kent, R. W. Bilger. The Prediction of Turbulent Diffusion Flame Fields
and Nitric Oxide Formation. Proceedings of the Combustion Institute, 16, 1643,
1976.

A. R. Kerstein. Linear-Eddy Modelling of Turbulent Transport - Part 7: Finite-
Rate Chemistry and Multi-Stream Mixing. J. Fluid Mech., 240, 289–313, 1992.

B. E. Launder, D. B. Spalding. Mathematical Models of Turbulence. Academic
Press, London, New York, 1972.

C. K. Law. Dynamics of Streched Flames. Proceedings of the Combustion Institute,
22, 1381, 1989.

P. A. Libby, F. A. Williams. Turbulent Flows Involving Chemical Reactions. Ann.
Rev. Fluid Mech., 8, 351–376, 1976.

P. A. Libby, F. A. Williams. Fundamental Aspects of Turbulent Reacting Flows.
P. A. Libby, F. A. Williams, eds., Turbulent reacting flows. Springer, Berlin,
Heidelberg, New York, 1980.

P. A. Libby, F. A. Williams. Turbulent Reacting Flows. Academic Press, New
York, 1994.

Y. Liu, B. Lenze. The Influence of Turbulence on the Burning Velocity of Premixed
CH4-H2 Flames with Different Laminar Burning Velocities. Proceedings of the
Combustion Institute, 22, 747, 1988.

P. Magre, R. W. Dibble. Finite Chemical Kinetic Effects in a Subsonic Turbulent
Hydrogen Flame. Combustion and Flame, 73, 195, 1988.

P. A. McMurtry, S. Menon, A. R. Kerstein. A Linear Eddy Sub-Grid Model for
Turbulent Reacting Flows: Application to Hydrogen-Air Combustion. Proceed-
ings of the Combustion Institute, 24, 271, 1992.

U. Metka, M. G. Schweitzer, H.-R.Volpp, J. Wolfrum, J. Warnatz. In-Situ De-
tection of NO Chemisorbed on Platinum Using Infrared-Visible Sum-Frequency
Generation SFG. Zeitschr. f. Phys. Chem., 214, 865–888, 2000.

J. B. Moss. Simultaneous Measurements of Concentration and Velocity in an open
Premixed Turbulent Flame. Combustion Science and Technology, 22, 115, 1979.

U. Nowak, J. Warnatz. Sensitivity Analysis in Aliphatic Hydrocarbon Combustion.
A. L. Kuhl, J. R. Bowen, J.-C. Leyer, A. Borisov, eds., Dynamics of reactive
systems. American Institute of Aeronautics and Astronautics, New York, 1988.

H. Oertel jr. Aerothermodynamik. Springer, Berlin, Heidelberg 1994, Univer-
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Karlsruhe, 2005.



782 Bibliography

H. Oertel jr., K. Spiegel, S. Donisi. Modelling the Human Cardiac Fluid Mechanics.
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Index

Λ–structures, 353, 363
β–function, 562
τ -ε model, 313
0-Hertz modes, 362

absolute instability, 351, 353
absolute vorticity, 599
acceleration losses, 489
Ackeret equation, 218
Ackeret rule, 218, 253, 255
activation energy, 531
adiabatic boundary, 418
adiabatic compression, 26
adiabatic expansion, 26
adiabatic stratification, 29
aerodynamics, 60, 212
aggregation, 698
air bubbles, 706
airfoil, 215
airships, 170
algebraic model, 310
algebraic turbulence model, 302
aliphatic, 540, 544
alkane oxidation, 541
amplification rate, 358
aneroid barometer, 24
aneurysm, 731
angle of attack, 219
angular momentum, 309
anharmonic oscillator, 586
anisotropic turbulence, 301, 308
anisotropy, 314
annular flow, 459, 462
annular-droplet flow, 460
aorta, 691
aorta bend, 735
aortic valve, 694
aortic valve stenosis, 733
approximate solution, 244
Arrhenius equation, 531
Arrhenius parameter, 583, 585

arterial
– branching, 737
– flow, 735, 742
arteriole, 695
artery, 695
asymptotic stability, 351
atmosphere, 9, 27
atrium, 692

balance
– of energy, 190, 281
– of momentum, 91
balance equation
– for material, 630
– for water phases, 630
Baldwin-Lomax turbulence model, 302
baroclinic instability, 599, 619, 623
barometer, 24, 31
barometric height formula, 27
barotropic flow, 601
basic flow, 245, 355
bearing lubrication, 150
beats, 101
Bernoulli constant, 199
Bernoulli equation, 59, 62, 63, 168, 199
beta parameter, 599
bimolecular reactions, 532
biofluid mechanics, 12, 685
Biot–Savart law, 227
bird flight, 213, 685, 707
Blasius correlation, 680
Blasius law, 158
blood
– circulation, 685, 686
– plasma, 697
– vessel, 734
blood pulse, 692
Boltzmann equation, 284, 642, 650
Borda outlet, 94
Borghi diagram, 575, 577
boundary conditions, 290, 356, 418
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boundary layer
– approximation, 545
– equations, 427
– flow, 2, 125, 138, 438, 441
– theory, 1, 121
– thickness, 122
boundary layer thickness, 692
boundary-layer, 349, 355, 367
boundary-layer equations, 287, 297
boundary-layer flow, 352
Boussinesq ansatz, 299
Boussinesq approximation, 293, 417
Boussinesq equation, 287, 293, 337
Boyle–Mariotte law, 25, 26
Boyle-Mariotte law, 24
Brewer–Dobson circulation, 636
Brownian motion, 641
Brunt–Väisälä frequency, 626
bubble cavitation, 503
bubbly flow, 459, 460
buffeting, 251
Bunsen burner, 161, 547
Bunsen flame, 547
buoyancy, 293
Burnett equations, 642

calming track, 238
capillaries, 695
capillarity, 36
capillary forces, 656
capillary waves, 101
cardiac valves, 731
cascade, 95, 96
Casson equation, 698
catalyst, 553
cavitation, 8, 503
– number, 503
cellular convection, 415, 611
centrifugal force, 148, 391, 593
Chézy equation, 157
channel, 106, 148, 157
– flow, 156
chemical equilibrium, 584
chemical nonequilibrium, 583, 584
churn flow, 459
circular cylinder, 86, 588
– in a flow, 443
circular pipe flow, 170
circulation, 76, 88
circulation model, 748
circulatory systems, 685
Clauser parameter, 303
climate, 632

climate model, 634
closed line, 76
closure problem, 331, 572
cloud cavitation, 503
coefficient of expansion, 25
coefficient of heat expansion, 293
coherence, 401
coherent structure, 399
Colebrook correlation, 680
collision coefficient, 658
collision cross section, 652
collision number, 532
collision partner, 532
collision, elastic, 647
complex reaction, 540
complexity, 401
compressibility, 441
Concorde, 257
conditional expectation value, 573
conservation
– of angular momentum, 98
conservation of energy, 190
conservative form, 287
conserved scalar, 565
constant heat transfer, 433
contact angle, 670
contact line, 670
contact line, moving, 672
continuity, 59, 182
– equation, 191, 265, 266, 630, 722
continuum flow, 581
contour change, 250
contraction, 64
control of turbulence, 346
control surface, 92
convection, 5, 412, 414
– cell, 423
– flow, 293
– rolls, 421, 422
convective fluxes, 288
convective heat transfer, 409
convective instability, 351, 353
convective mass transfer, 409
convergence of wall streamlines, 251
Coriolis force, 391, 593
Coriolis parameter, 595
corner expansion, 195
corner flow, 135
Coulomb forces, 661
counter-radiation, 632
counterflow, 544
– flame, 569, 570
counterflow flame, 544
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creeping flow, 118, 149
critical mass flux, 493, 496
critical point, 49
critical pressure, 187
critical Reynolds number, 123, 347
cross model, 699, 722
cross term, 316
cross-flow instabilities, 349
cross-flow instability, 241, 361
cross-flow vortex, 367, 370
cross-roll instability, 426
curves of the aorta, 691
cyclone, 618

d’Alembert’s principle, 92
Damköhler number, 576
damping skin, 706
Debye length, 663, 665
Debye-Hückel approximation, 663
deep-water waves, 627
delta wing, 54, 252
density, 286
density stratification, 391
density wave, 493, 494
– instability, 511, 512
density-averaged enthalpy, 470
density-weighted mixture velocity, 468
desorption, 590
developed turbulence, 378
diastole, 694
dielectrophoresis, 667
diffusion, 414
– convection, 410, 444
– flame, 555
– Rayleigh number, 414
diffusion flow density, 330
diffusion flux, 330
diffusion velocity, 329
diffusor, 95, 160
dilute gases, 644
direct numerical simulation, 556
discharge, 63, 64, 69, 87
dispersed bubbly flow, 462
dispersion, 101
– relation, 358
displacement thickness, 122
dissipation, 305, 307, 310, 440
dissipation rate, 570
dissipation regime, 315
dissociation, 583, 585
– degree, 582
– enthalpy, 590
– reaction, 583

distribution function, 285, 647
disturbance level, 375
Dobson unit, 635
dolphin, 706
double diffusion convection, 448
double diffusion instability, 445
drag, 161, 166, 215
– coefficient, 169, 217, 624
drift velocity, 458
drift-flow model, 468
dust devil, 621
dynamic model, 317
dynamic pressure, 66
dynamic viscosity, 114
dynamics, 59, 114, 181

Eötvös number, 472
Earth’s rotation, 391
eddies, 378
eddy dissipation model, 574
eddy viscosity, 299
eddy viscosity coefficient, 380
eddy viscosity model, 300
eddy-break-up model, 563
edge of a jet, 386
eigenmode, 376
eigenvalue problem, 129, 358
Ekman layer, 603
Ekman length, 603
Ekman number, 391
Ekman spiral, 603
elastic pipe flow, 740
elbow bend, 147
electrical impulse, 714
electro-osmosis, 663
electrophoresis, 666
electrophoretic mobility, 667
element conservation equations, 331
element mass fraction, 331, 548, 565
elementary reaction, 527–529
elliptical potential equation, 200
energy accommodation, 590
energy cascade, 307, 382, 395, 398
energy equation, 191
energy of turbulence, 394
energy spectrum, 398, 403
energy spectrum of turbulence, 314
energy transfer, 586
energy-carrying eddy, 314
enstrophy, 397, 398
enstrophy cascades, 398
enstrophy dissipation anomaly, 398
enstrophy spectrum, 398
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enthalpy, 191, 330
entrance length, 680
equation of motion, 182, 630, 716
equation of state, 25
equilibrium, 15, 23, 567
– chemistry, 565
– line, 568
equilibrium constant, 527
equipotential surface, 35
erythrocytes, 697
etching processes, 551
etching rate, 552
etching reactor, 551
Euler equation, 286, 290
Euler picture, 47
Euler’s turbine equation, 98
exchange coefficient, 332
exchange reaction, 583
excited state, 586
exhaust gas cleaning, 550
external forces, 16

facility, 237
falloff curves, 534
far-field boundary, 290
Favre average, 274, 566
Favre variance, 566
fiber filament, 725
filtering, 315
fine-structure heat flux, 316
fine-structure model, 313
fine-structure stresses, 316
fine-structure turbulence model, 315
finger instability, 448, 449
first-order reactions, 526
fish, 685
fixed boundary, 418, 421
flame quenching, 570, 580
flame structure, 542, 578
flame velocity, 543, 578, 580
flamelet, 569
– concept, 580
– model, 577, 578
– regime, 576
flap of the tail, 703, 704
flat plate, 451
Flettner rotor, 90
Floquet analysis, 363
Floquet ansatz, 364
flow
– forms, 459
– in the atmosphere, 593
– in the ocean, 593

– models, 462
– past wings, 2
– past a dihedron, 161
– past a plate, 165
– past a sphere, 169
– past an airfoil, 202, 203
– past an automobile, 1, 53
– past bodies, 685
– past wings, 221, 239
– pattern maps, 459
– separation, 140, 144
flow control, 705
flow instrumentation, 640
flow past curved objects, 391
fluid, 43
– coordinate, 44
focus, 53
force potential, 677
force ratio, 655
forced convection, 7, 409, 411, 433, 438
formaldehyde formation, 541
formation of water, 528
forward flight, 707
forward reaction, 526
free boundary, 421, 449
free convection, 7, 409, 410, 413, 429
free enthalpy, 584
free ions, 661
free jet, 134, 195, 385
free liquid surface, 99, 418
free turbulence, 381, 385
freezing, 207
friction coefficient, 154
friction drag, 161, 165
friction factor, 679
Froude number, 163, 656
frozen equilibrium, 499
frozen equilibrium model, 501
fully developed pipe flow, 159, 433
fundamental equations, 417

gap, 87
– flow, 153
gas, 15, 24, 43, 181
– dynamics, 181
– wall interaction, 589, 590
gases, rarefied, 647
Gaster transformation, 359
Gaußfunction, 562
Gay-Lussac law, 27
geophysical fluid dynamics, 593
geostrophic flow, 597
geostrophic velocity, 597
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gliding, 707
gliding angle, 215
gliding flight, 709
global reaction, 527
Gouy–Chapman–Stern model, 662
gradient approach, 331
Grashof number, 349, 413
gravity, 60
– waves, 101, 613, 626
greenhouse effect, 632, 635
ground state, 417, 448
groundwater flow, 149
group velocity, 101, 359
Gulf Stream, 6, 10, 626

Hadley circulation, 622
Hagen–Poiseuille law, 115, 172
Hamaker constant, 677
head wave, 203
heart, 691
heart flow, 712, 715
heat
– transfer, 657
heat conduction, 412
heat energy, 190
heat exchange, 409, 444
heat flux, 289, 429, 590
heat shield, 588
heat transfer, 6, 293, 410
helicopter propeller, 95
Helmholtz
– vortex laws, 228
– wave, 103
Helmholtz theorem, 397
heterogeneous catalysis, 553
high pressure regime, 534
high-enthalpy flow, 582
high-velocity flow, 582
hollow vortex, 88
homogeneous equilibrium model, 499
homogeneous liquid, 22
homogeneous model, 468
homogeneous reactor, 576
homogeneous turbulence, 311
horizontal cylinder, 432
horseshoe vortex, 54, 146, 227
hovering, 707
Hugh–Nagumo equations, 721
Hugoniot curve, 192
hurricane, 9, 619
hydraulically smooth, 137
hydraulics, 60
hydrocarbon combustion, 542

hydrocarbon emission, 581
hydrodynamics, 60, 76, 87
hydrostatic state of stress, 19
hydrostatics, 21
hyperbolic vibration differential

equation, 200
hypersonic flow, 581

impact loss, 95
induced drag, 221
inertial regime, 314
inhibition, 527
inhomogeneous liquid, 23, 34
instabilities, 347
instability, 5, 371, 507
instantaneous state, 76
insufficence, 733
intake cross-section, 307
intake flow, 159
integral length scale, 556
interaction equations, 726
interaction potential, 649
interface, 73, 103, 140
interfacial tension, 671
intermittence, 304, 561
intermittency, 403
intermittent flow, 462
internal energy, 289, 330, 630
internal flow, 685
internal forces, 16
inviscid liquid, 61, 163
inviscid stability, 347
irregular eddying motion, 345
irrotational, 78, 291
isothermal boundary, 418, 421
isothermal change of state, 26
isothermal wall, 290
isotropic, 301, 314
isotropic turbulence, 5, 301, 384, 393

jet
– expansion, 174
– velocity, 569
jet flame, 547, 564
jet pump, 161
jet stream, 622

K-ε turbulence model, 307, 332
Kármán
– constant, 136
– vortex street, 142, 163, 164, 620
Kármán vortex street, 46
Karlovitz number, 575
Kelvin–Helmholtz instability, 251, 461
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kinematic fundamental equations, 44
kinematic viscosity, 118
kinematics, 43
kinetic energy, 190
Kirchhoff flow past a plate, 163
Klebanoff intermittence factor, 304
Knudsen number, 581, 642, 644, 650
Knudsen number, local, 660
Kolmogorov length scale, 383, 403, 556
Kolmogorov velocity scale, 383
Kolmogorov’s law, 402
Kutta–Joukowski
– condition, 223
– theorem, 95
Kutta-Joukowski
– theorem, 97

Lagrange integral method, 565
Lagrange picture, 47
Lamb solution, 169
laminar
– boundary layer, 119
– convection, 426
– motion, 123
– pipe flow, 157
– wing, 243
laminar–turbulent transition, 130, 346
land–sea wind, 609
Laplace equation, 81, 84
Laplace pressure jump, 675
Large-Eddy Simulation, 313
large-scale turbulence, 401
Lattice Boltzmann methods, 406
Laval nozzle, 187, 189
lean combustion engine, 581
lee waves, 615
lee-side trough, 602
length scale, 556
Lennard-Jones potential, 649
leucocytes, 697
level surface, 35
Lewis number, 447
lift, 22, 54, 88, 90, 215, 224
– coefficient, 217
– distribution, 224
– line, 228
lift-off of turbulent flames, 571
Lindemann
– mechanism, 534
– model, 532
linear gas-dynamic equation, 200
linear stability analysis, 350
linear stability theory, 347

liquid, 15, 43, 60
– column, 70
– friction, 60, 115
– heavy, 67
– pressure, 18
liquid layer, 294
local flame quenching, 568
local isotropy, 402
local perturbations, 371
logarithmic wall law, 136
logarithmic wind law, 606
long waves, 628
longitudinal grooves, 705
low Reynolds number K-ε model, 307
low-pressure region, 533, 618

Mach
– angle, 183
– cone, 183
– number, 183, 199, 205
macroscopic, 285
Magnus effect, 88, 90
majorant frequency scheme, 653
manometer, 24
Mariotte–Gay-Lussac law, 25
Martinelli parameter, 458
mass
– concentration, 294
– conservation, 265
– density, 329
– exchange, 409, 444, 451
– fraction, 458
– system, 16
– transfer, 410, 657
mass transport, 6
master equations, 586
material properties, 289
Maxwell molecules, 649
mean energy of fluctuation, 393
mean free path, 581, 643
mean lifetime, 532
mean-field approximation, 554
meander, 148
methane-air flame, 568, 574
method of multiple scales, 355
method of sections, 17
micro heat exchanger, 655
micro-sensor-array, 641
microchannel, 639
microcirculation, 691, 749
microflows, 10
microscopic, 285
miniaturized actors, 641
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miniaturized analysis laboratory, 640
minimal surface, 36
mitral valve, 693
mixing
– models, 466
– rate, 567
mixing length, 378, 389, 394
mixing length ansatz, 302
mixture
– fraction, 548, 564
– layer, 561
modified mixing length, 303
molecularity, 529
moment, 215, 286
– of momentum, 98
momentum
– equation, 191
– thickness, 122
momentum transport, 378
momentum vector, 288
Monin–Obukhov length, 606
Monte Carlo method, 560, 573
Moody model, 501
Morton number, 472
multifractal, 404
multiphase flow, 7, 455
muscle fiber, 713

nabla operator, 48
Navier–Stokes equation, 114, 116, 266,

271, 277, 284, 287, 288, 556, 722
Newton’s
– drag law, 161
– equation, 61
– principle, 16
Newtonian
– fluids, 117
– media, 114
Nikuradse diagram, 158, 679
nitrogen oxide formation, 559
no time counter scheme, 653
NOx reduction, 550
no-slip condition, 114, 290
node, 53
non-Newtonian
– fluids, 117
– media, 170
nonpremixed flame, 555, 563, 567
normal shock wave, 191
numerical calculation, 235
Nusselt number, 412, 415, 682

oblique shock, 197

oblique–varicose instability, 426
ocean, 10
orifice, 160
orographic vortex, 620
Orr–Sommerfeld equation, 128, 360
oscillating bodies, 148
oscillation, 70
– frequency, 532
oscillatory
– instability, 426
– perturbation form, 425
outer law, 138
over-pressure manometer, 30
overall reaction, 527
oxidizer, 545
ozone hole, 635

paint visualization, 146
parallel flow assumption, 126, 356
partial density, 294
partial equilibrium, 535, 537
particle density, 286
particle image velocimetry, 401
particle path, 45
pathlines, 45
PDF
– simulation, 572
– transport equations, 559, 560
– turbulence model simulation, 574
peak plane, 367
peak–valley structure, 367
perfect mixing reactor, 576
perturbation, 355
– development, 350
– differential equation, 284, 332, 355
– differential equations, 245, 364, 448
perturbation amplitude, 350
phase, 357
– coupled state, 366
– fraction, 457
– law, 584
– velocity, 457
phase space, 284
physical atmosphere, 32
pipe flow, 122, 137, 156, 159, 171
Pitot tube, 66, 67, 72
plasma reactor, 552
plasma-chemical processes, 550
plate boundary layer
– flow, 165
plate boundary-layer, 353
plug flow, 459, 460
Poiseuille flow, 660, 665
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polar diagram, 219, 220
polytropic stratification, 29
position height, 62
potential, 77, 84
– energy, 190
– flow, 76, 78, 82, 88, 163
– temperature, 597
– vorticity, 599, 600
– – barrier, 637
potential equation, 79, 286, 292
potential flow, 163
Prandtl
– analogy, 442
– boundary-layer equation, 121
– layer, 605
– mixing length, 133, 134
– rule, 202
– stagnation tube, 72
– wing theory, 229, 231
Prandtl mixing length, 1, 302, 379
Prandtl number, 349, 380
Prandtl one-equation model, 305
Prandtl–Glauert rule, 217, 253–255
Prandtl–Meyer expansion, 196
pre-exponential factor, 531
preliminary design, 235
premixed
– combustion, 556
– flame, 540, 555, 575, 578
– flame front, 578
– flame methane, 557
pressure, 19
– dependence, 532
– distribution, 255
– drag, 161
– drag coefficient, 163
– force, 60
– height, 62
– propagation, 181
– waves, 183
pressure diffusion, 305, 310
pressure dilatation, 310, 311
pressure-shear correlation, 310
primary instability, 362, 377
primitive variable, 288
principal stresses, 18
probability density function, 559, 560
production term, 305
profile, 215
– flow, 216
propane-oxygen flame, 542
propeller, 95
pulmonary valve, 693

quantized vortices, 402
quantum or superfluid turbulence, 402
quasi-steady state, 535, 536

rate
– coefficient, 525, 532
– equations, 533
– of formation, 530
rate law, 525, 529
rate of dissipation, 332
Rayleigh number, 413, 415
Rayleigh–Bénard
– convection, 410, 415
– instability, 410
Rayleigh–Plesset equation, 295
Rayleigh–Taylor instability, 507
re-entry flight, 581
re-entry vehicle, 588
reaction
– flux analysis, 551
– force, 93
– mechanism, 530
– rate, 525, 558
reaction order, 525
reactive flows, 555
receptivity stage, 376
recovery temperature, 440
rectifier, 237
reference length, 287
reference velocity, 287
relative velocity, 458
relaxation time parameter, 502
repulsive, 649
return to isotropy, 312
reverse reaction, 526
Reynolds
– analogy, 439, 442
Reynolds equations, 273, 276, 284, 298
Reynolds number, 118, 472
Reynolds stress, 378
Reynolds stress model, 308
Reynolds’
– ansatz, 124
rheology, 697
rigid spheres, 649
Rossby number, 391, 596
Rossby waves, 600, 626
rotating cylinder, 144
rotating vessel, 148
rotational degree of freedom, 582, 586
rough pipes, 158
rough plate, 166

saddle point, 53
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saddle points, 53
scalar dissipation, 569
scalar dissipation rate, 566, 569, 571
scales of turbulence, 381
scattering cross section, 650
Schmidt number, 380, 414
sea spectrum, 629
sea surface, 35
second moment closure, 310
second-order reactions, 526
secondary
– flow, 147, 308, 736
– instability, 362, 424
– perturbations, 353
– reaction, 536
secondary flow, 748
secondary instability, 377
sedimentation potential, 661
Segner waterwheel, 94
sensitivity, 539
– analysis, 538, 540, 551
– coefficient, 539
separate model, 486
separation, 251, 252
– criterion, 251
– point, 121
Ser disk, 71
shallow-water waves, 628
shark scales, 705
shear flow, 114
– instabilities, 353
shear layer, 54, 135
shearing stress, 379
shock, 193
– boundary-layer interaction, 243, 250
– drag, 221
– wave, 2, 184, 241, 291, 582
shooting, 106
short waves, 627
single-point PDF, 573
single-step model, 543
sink, 53, 82
slat, 145
slender profile, 226
slip condition, 644, 661
slug flow, 460
small-scale turbulence, 402
solution vector, 287
source, 53, 82
– term, 329, 567
spatial complexity, 373
spectral density, 403
sphere model, VHS, 649

spiral casing, 68
Spiral Flow, 68
spray flows, 475
spread-out reaction zone, 576
Squire transformation, 360
stability, 23
– analysis, 356, 358, 417
– diagram, 129, 130, 348, 421, 449
– problem, 124
– theory, 126
stability analysis, 355
stable boundary-layer flow, 128
stagnation, 66
– point, 66
– point flow, 66, 82, 85
– pressure, 66
start-up vortex, 90
state of stress, 16–18
static pressure, 66
steady flow, 44, 91
sticking coefficient, 589
stochastic particles, 573
Stokes diameter, 667
Stokes law, 169
Stokes solution, 119, 169
stratified cavitation, 503
stratified flow, 391, 462
stratosphere, 635
streaklines, 44
streaks, 354
stream filament, 46, 62
stream function, 85
stream tube, 46
streaming, 106
streamline, 45, 77
streamline curvature, 309
stress, 17, 19
stroke volume, 730
structure formation, 401
subsonic flow, 201, 223
subsonic leading edge, 252
subsonic wind tunnel, 237
suction, 145
sudden transition, 375
supercavitation, 503
superficial velocity, 457
superfluidity, 402
supersonic aerodynamics, 252
supersonic airplane, 257
supersonic flow, 203, 252
supersonic free jet, 198
supersonic jet, 187
supersonic leading edge, 252
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surface fraction, 456
surface reaction, 552, 588
surface stress, 36
surface waves, 627
surge, 103, 104
suspension wave, 99
Sutherland equation, 289, 334
swept wing, 240
systemic circulation, 695
systole, 694

tangential blowing, 145
tangential plane, 595
Taylor microscale, 384
Taylor number, 349
temperature dependence, 531
temporal complexity, 373
temporal instability, 350
temporal stability, 350
tensile force, 39
thermal cellular convection, 5
thermal nonequilibrium, 584, 585
thermal wind relation, 598
thermal wind systems, 608
thermodynamic equilibrium, 642
thin film, 670, 674
thin film approximation, 676
third-order reactions, 526
Thomson’s law, 76
three-dimensional boundary layer, 239
thrombocytes, 697
throttle, 188
time fraction, 456
Tollmien–Schlichting instability, 361
Tollmien–Schlichting transition, 369
Tollmien–Schlichting wave, 125, 128,

241, 348, 353, 361, 374
topology, 48
tornado, 617, 621
Torricelli’s discharge formula, 64
total differential, 47
total energy, 288
total pressure, 66
trade wind, 623
trail wave, 203
transfer of momentum, 379
transition, 124, 346, 354, 370, 373
transition model, 304
transition process, 376
transition region, 681
transitional flow, 691
translational temperature, 582, 583
transonic flow, 206

transport equation, 572
transport equation model, 310
transport of momentum, 346
tricuspid valve, 693
tropical cyclone, 619
turbine, 95, 98
turbulence, 4, 122, 132, 346, 513
– Reynolds number, 556, 575
turbulence models, 9
turbulence spectrum, 314
turbulence-generating grid, 392
turbulent Damköhler number, 575
turbulent diffusion, 305, 310, 380
turbulent diffusion correlation, 310
turbulent energy, 382
turbulent flame, 555
turbulent flow in a tube, 388
turbulent flows, 4
turbulent fluctuations, 378
turbulent heat conduction, 380
turbulent Karlovitz number, 575
turbulent kinetic energy, 305
turbulent mixing, 380, 564
turbulent mixing process, 564
turbulent models, 331
turbulent motion, 123
turbulent perturbations, 132
turbulent pipe flow, 158, 435
turbulent Prandtl number, 301, 380
turbulent Schmidt number, 380
turbulent spots, 126, 132, 354, 375
turbulent thermal conductivity, 299
turbulent transport, 331
turbulent viscosity, 299
two-dimensional turbulence, 396
two-equation model, 307
two-flow problem, 548
two-fluid model, 463
two-phase flow, 456, 507, 513

U-tube manometer, 29
unimolecular reactions, 532, 534
universal decay theory, 399
unstable boundary layer, 128
unstable stratification, 416
unsteady Flow, 69

vacuum manometer, 30
validation, 235
van der Waals forces, 654
van Driest damping factor, 303
variance, 566
vein, 695
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velocity height, 62
velocity of sound, 181, 182, 494
velocity potential, 78
velocity space, 284
velocity vector, 288
vena cava, 695
ventricle, 692, 728
Venturi nozzle, 160
verification, 235
vertical plate, 411
vibrational degree of freedom, 582, 588
vibrational excitation, 586
viscosity, 15, 114
viscous liquids, 114
viscous sublayer, 135, 136, 302, 388
void, 456
volume fraction, 456
volume reservoir, 696
volumetric flux, 458
von Kármán analogy, 442
von Kármán constant, 302
vortex, 53, 616
– formation, 73, 140
– ring, 74
– system, 225
vortex filament, 224
vortex ring, 13
vorticity, 599

wafer, 552
wake flow, 54, 138, 304

wall temperature, 433
wall turbulence, 135
wall zone, 302
water turbine, 98
water waves, 626
wave, 99
– drag, 162, 221
– group, 101, 102
– instability, 357
– system, 102, 103
wavy wall, 202
weather prediction, 631
Weber number, 509, 656
weir crest, 106
Weissenberg effect, 172
wetting angle, 38
wetting, electro, 671
wetting, partial, 670
wetting, perfect, 671
wind spouts, 621
wind tunnel, 237
wind tunnel turbulence, 392
wing, 87, 88, 212, 215, 227, 233
– computation, 233
– theory, 222
wing theory, 1
Womersley number, 739

zeta potential, 663, 665
zig-zag instability, 426


	Prandtl–Essentials of FluidMechanics
	Preface
	Contents
	1. Introduction
	2. Properties of Liquids and Gases
	2.1 Properties of Liquids
	2.2 State of Stress
	2.3 Liquid Pressure
	2.4 Properties of Gases
	2.5 Gas Pressure
	2.6 Interaction Between Gas Pressure and Liquid Pressure
	2.7 Equilibrium in Other Force Fields
	2.8 Surface Stress (Capillarity)
	2.9 Problems

	3. Kinematics of Fluid Flow
	3.1 Methods of Representation
	3.2 Acceleration of a Flow
	3.3 Topology of a Flow
	3.4 Problems

	4. Dynamics of Fluid Flow
	4.1 Dynamics of Inviscid Liquids
	4.1.1 Continuity and the Bernoulli Equation
	4.1.2 Consequences of the Bernoulli Equation
	4.1.3 Pressure Measurement
	4.1.4 Interfaces and Formation of Vortices
	4.1.5 Potential Flow
	4.1.6 Wing Lift and the Magnus Effect
	4.1.7 Balance of Momentum for Steady Flows
	4.1.8 Waves on a Free Liquid Surface
	4.1.9 Problems

	4.2 Dynamics of Viscous Liquids
	4.2.1 Viscosity (Inner Friction), the Navier–Stokes Equation
	4.2.2 Mechanical Similarity, Reynolds Number
	4.2.3 Laminar Boundary Layers
	4.2.4 Onset of Turbulence
	4.2.5 Fully Developed Turbulence
	4.2.6 Flow Separation and Vortex Formation
	4.2.7 Secondary Flows
	4.2.8 Flows with Prevailing Viscosity
	4.2.9 Flows Through Pipes and Channels
	4.2.10 Drag of Bodies in Liquids
	4.2.11 Flows in Non-Newtonian Media
	4.2.12 Problems

	4.3 Dynamics of Gases
	4.3.1 Pressure Propagation, Velocity of Sound
	4.3.2 Steady Compressible Flows
	4.3.3 Conservation of Energy
	4.3.4 Theory of Normal Shock Waves
	4.3.5 Flows past Corners, Free Jets
	4.3.6 Flows with Small Perturbations
	4.3.7 Flows past Airfoils
	4.3.8 Problems

	4.4 Aerodynamics
	4.4.1 Bird Flight
	4.4.2 Airfoils and Wings
	4.4.3 Airfoil and Wing Theory
	4.4.4 Aerodynamic Facilities
	4.4.5 Transonic Aerodynamics, Swept Wings
	4.4.6 Shock–Boundary-Layer Interaction
	4.4.7 Flow Separation
	4.4.8 Supersonic Aerodynamics, Delta Wings
	4.4.9 Problems


	5. Fundamental Equations of Fluid Mechanics
	5.1 Continuity Equation
	5.2 Navier–Stokes Equations
	5.2.1 Laminar Flows
	5.2.2 Reynolds Equations for Turbulent Flows

	5.3 Energy Equation
	5.3.1 Laminar Flows
	5.3.2 Turbulent Flows

	5.4 Fundamental Equations as Conservation Laws
	5.4.1 Hierarchy of Fundamental Equations
	5.4.2 Navier–Stokes Equations
	5.4.3 Derived Model Equations
	5.4.4 Reynolds Equations for Turbulent Flows
	5.4.5 Turbulence Models
	5.4.6 Multiphase Flows
	5.4.7 Reactive Flows

	5.5 Differential Equations of Perturbations
	5.6 Problems

	6. Instabilities and Turbulent Flows
	6.1 Fundamentals of Turbulent Flows
	6.2 Onset of Turbulence
	6.2.1 Fluid-Mechanical Instabilities
	6.2.2 Linear Stability Analysis
	6.2.3 Transition to Turbulence

	6.3 Developed Turbulence
	6.3.1 The Notion of a Mixing Length
	6.3.2 Turbulent Mixing
	6.3.3 Energy Relations in Turbulent Flows

	6.4 Classification of Turbulent Flows
	6.4.1 Free Turbulence
	6.4.2 Turbulence near Solid Boundaries
	6.4.3 Rotating and Stratified Flows
	6.4.4 Turbulence in Wind Tunnels
	6.4.5 Two-Dimensional Turbulence
	6.4.6 Structures and Statistics

	6.5 Some New Developments in Turbulence
	6.5.1 Decomposition into small and large scales
	6.5.2 Lagrangian Investigations of Turbulence
	6.5.3 Field-Theoretic Methods
	6.5.4 Outlook


	7. Convective Heat and Mass Transfer
	7.1 Fundamentals of Heat and Mass Transfer
	7.1.1 Free and Forced Convection
	7.1.2 Heat Conduction and Convection
	7.1.3 Diffusion and Convection

	7.2 Free Convection
	7.2.1 Rayleigh–B´enard Convection
	7.2.2 Convection at a Vertical Plate
	7.2.3 Convection at a Horizontal Cylinder

	7.3 Forced Convection
	7.3.1 Pipe Flows
	7.3.2 Boundary-Layer Flows
	7.3.3 Bodies in Flows

	7.4 Heat and Mass Exchange
	7.4.1 Diffusion Convection
	7.4.2 Mass Exchange at a Flat Plate


	8. Multiphase Flows
	8.1 Fundamentals of Multiphase Flows
	8.1.1 Definitions
	8.1.2 Flow Patterns
	8.1.3 Flow Pattern Maps

	8.2 Flow Models
	8.2.1 The One-Dimensional Two-Fluid Model
	8.2.2 Mixing Models
	8.2.3 The Drift-Flow Model
	8.2.4 Bubbles and Drops
	8.2.5 Spray Flows
	8.2.6 Liquid–Solid Transport
	8.2.7 Fluidization of Particle Beds

	8.3 Pressure Loss and Volume Fraction in HydraulicComponents
	8.3.1 Friction Loss in Horizontal Straight Pipes
	8.3.2 Acceleration Losses

	8.4 Propagation Velocity of Density Waves and Critical Mass Fluxes
	8.4.1 Density Waves
	8.4.2 Critical Mass Fluxes
	8.4.3 Cavitation

	8.5 Instabilities in Two-Phase Flows
	8.6 Turbulence in Dispersed Two-Phase Flows
	8.6.1 General Aspects
	8.6.2 The Mixing Length Concept
	8.6.3 Transport Equation Models for Turbulence


	9. Reactive Flows
	9.1 Fundamentals of Reactive Flows
	9.1.1 Rate Laws and Reaction Orders
	9.1.2 Relation Between Forward and Reverse Reactions
	9.1.3 Elementary Reactions and Reaction Molecularity
	9.1.4 Temperature Dependence of Rate Coefficients
	9.1.5 Pressure Dependence of Rate Coefficients
	9.1.6 Characteristics of Reaction Mechanisms

	9.2 Laminar Reactive Flows
	9.2.1 Structure of Premixed Flames
	9.2.2 Flame Velocity of Premixed Flames
	9.2.3 Sensitivity Analysis
	9.2.4 Nonpremixed Counterflow Flames
	9.2.5 Nonpremixed Jet Flames
	9.2.6 Nonpremixed Flames with Fast Chemistry
	9.2.7 Exhaust Gas Cleaning with Plasma Sources
	9.2.8 Flows in Etching Reactors
	9.2.9 Heterogeneous Catalysis

	9.3 Turbulent Reactive Flows
	9.3.1 Overview and Concepts
	9.3.2 Direct Numerical Simulation
	9.3.3 Mean Reaction Rates
	9.3.4 Eddy-Break-Up Models
	9.3.5 Turbulent Nonpremixed Flames
	9.3.6 Turbulent Premixed Flames

	9.4 Hypersonic Flows
	9.4.1 Physical-Chemical Phenomena in Re-Entry Flight
	9.4.2 Chemical Nonequilibrium
	9.4.3 Thermal Nonequilibrium
	9.4.4 Surface Reactions on Re-entry Vehicles

	10. Flows in the Atmosphere and in the Ocean
	10.1 Fundamentals of Flows in the Atmosphere and in the Ocean
	10.1.1 Introduction
	10.1.2 Fundamental Equations in Rotating Systems
	10.1.3 Geostrophic Flow
	10.1.4 Vorticity
	10.1.5 Ekman Layer
	10.1.6 Prandtl Layer

	10.2 Flows in the Atmosphere
	10.2.1 Thermal Wind Systems
	10.2.2 Thermal Convection
	10.2.3 Gravity Waves
	10.2.4 Vortices
	10.2.5 Global Atmospheric Circulation

	10.3 Flows in the Ocean
	10.3.1 Wind-Driven Flows
	10.3.2 Water Waves

	10.4 Application to Atmospheric and Oceanic Flows
	10.4.1 Weather Forecast
	10.4.2 Greenhouse Effect and Climate Prediction
	10.4.3 Ozone Hole


	11. Microflows
	11.1 Fundamentals of Microflows
	11.1.1 Application of Microflows
	11.1.2 Fluid Models
	11.1.3 Microflows of Gases
	11.1.4 Microflows of Liquids

	11.2 Molecular Models
	11.2.1 Fundamentals of Molecular Models
	11.2.2 Monte-Carlo-Simulation
	11.2.3 Molecular Dynamic Simulation

	11.3 Continuum Models
	11.3.1 Similarity Discussion
	11.3.2 Modifications of Boundary Conditions
	11.3.3 Electrokinetic Effects
	11.3.4 Wetting and Thin Films

	11.4 Experiments
	11.4.1 Pressure Drop
	11.4.2 Laminar-Turbulent Transition
	11.4.3 Heat Transfer


	12. Biofluid Mechanics
	12.1 Fundamentals of Biofluid Mechanics
	12.1.1 Biofluid Mechanics of Animals
	12.1.2 Biofluid Mechanics of Humans
	12.1.3 Blood Rheology

	12.2 Swimming and Flight
	12.2.1 Motion of Protozoa
	12.2.2 Swimming of Fish
	12.2.3 Flow Control
	12.2.4 Bird Flight

	12.3 Human Heart Flow
	12.3.1 Physiology and Anatomy of the Heart
	12.3.2 Structure of the Heart
	12.3.3 Excitation Physiology of the Heart
	12.3.4 Flow in the Heart
	12.3.5 Cardiac Valves

	12.4 Flow in Blood Vessels
	12.4.1 Unsteady Pipe Flow
	12.4.2 Unsteady Arterial Flow
	12.4.3 Arterial Branchings
	12.4.4 Microcirculation


	Bibliography
	L. Prandtl: Selected Bibliography
	Selected Book Bibliography
	Selected Bibiliography

	Index

	78487_3_En_BookFrontmatter_OnlinePDF.pdf
	Prandtl–Essentials of FluidMechanics
	Preface
	Contents


	78487_3_En_BookFrontmatter_OnlinePDF.pdf
	Prandtl–Essentials of FluidMechanics
	Preface
	Contents





