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Preface

Seismic waves are nonlinear bulk and surface elastic waves that propagate 
in the nonlinear, dissipative, dispersive, and heterogeneous medium of the 
Earth’s body and on its surface. Earthquakes cause deaths and destructions 
all around the world. The main strategy for fi ghting the destructive seismic 
power has been designing reinforced building constructions and hoping that 
they will be able to withstand the tremor. Enormous progress has been made 
in this fi eld. However earthquakes continue to be a big problem because of 
their unpredictability and diverse characteristics of the seismic waves involved. 
Especially destructive are some types of surface seismic waves.

In this book a different strategy for fi ghting the destructive power of 
earthquakes is discussed—developing seismic shields of metamaterials around 
cities that are able to defl ect or dissipate the power of on-coming seismic waves. 

Earthquakes even of moderate magnitude often cause major damages 
to cities. On one hand this is due to nonlinear phenomena such as growth of 
harmonics and waves of combination frequencies, parametric amplifi cation, 
self-modulation, resonance effects, energy trapping, self-focusing, and 
wave-wave interactions and on the other hand to the strong nonlinearity 
and dispersion of the rock medium of propagation. The governing equations 
describing the wave propagation are nonlinear differential equations that can 
be solved only numerically assuming suitable approximations. One of most 
used approximation is to neglect all quadratic, cubic, and higher-order terms 
in the Piola-Kirchhoff stress tensor and keep only the fi rst-order term. This 
approximation is the basis of the linear theory of elasticity. Using the elegant 
tools of Fourier analysis exact solutions of governing equations can be provided 
assuming infi nitesimal wave amplitudes, invariance of the waveform during 
the propagation, and linear elastic response of the rock. Classical seismology 
has used continuum mechanics, linear elasticity theory, and general theory 
of scattering to describe the seismic wave behavior. However, seismic waves 
are fi nite-amplitude elastic waves and the elastic response of rocks is highly 
nonlinear. If the world were linear, there would be no earthquakes with 
characteristics we know. 

  



vi Seismic Resistant Design and Technology

The origin of seismic waves is discussed in Chapter 1. It is shown that 
nonlinearity causes growth of higher harmonics and waves of combination 
frequencies, which leads to ‘seismic beat’ and self-modulation. This explains 
the origin of ‘coda waves’ as high-frequency ‘carrier waves’ modulated by 
low-frequency body or surface elastic waves. 

In Chapter 2 linear and nonlinear body waves in non-dispersive, 
dispersive, and heterogeneous media are discussed. Nonlinear phenomena 
of parametric amplifi cation, elastic solitons, and stress-induced anisotropy 
are analyzed.

Linear and nonlinear surface elastic waves of Rayleigh, Love, Stoneley, 
Lamb, and Sezawa are discussed in Chapter 3 including body-to-surface 
and surface-to-body wave conversions, parametric amplifi cation of Rayleigh 
waves, solitary elastic waves, solitons, skimming surface waves, and wave-
wave interactions.

Experimental modelling and seismic shields for defl ecting, scattering, 
and conversion of seismic waves are discussed in Chapter 4. Tools of physical 
acoustics, acoustoelectronics, acoustooptics and nondestructive testing of 
materials are shown to be suitable techniques for studying mini quakes in 
isotropic, anisotropic, and heterogeneous media. These techniques have been 
used successfully for developing a wide range of micro-electro-mechanical 
systems (MEMS). We will show that they can be applied also to seismic waves 
propagating in the giga-electro-mechanical systems (GEMS) of the Earth. 
Seismic shields of metamaterials can be experimentally modelled using pulse-
laser generation of nonlinear body and surface elastic waves and laser-probe 
detection of their parameters.

Dentcho Ivanov
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Introduc  on

On October 17, 1989 the Loma Prieta earthquake of moment magnitude 6.9 
(‘strong’) on the Gutenberg-Richter scale and IX (‘violent’) on the Mercalli 
scale, with 19 km deep focus, and epicenter located 127 km south of San 
Francisco Bay Area in Nisene Marks State Park, California, caused the deaths 
of 63 people, injured another 3,757, and destroyed building and bridges in 
the Bay Area (Glough 1994). 

On January 17, 1994 the Northridge earthquake of moment magnitude 
6.7 (‘strong’) on the Gutenberg-Richter scale and IX (‘violent’) on the Mercalli 
scale, with 18 km deep focus, and epicenter in the middle of the densely 
populated neighborhood of Reseda in the San Fernando Valley, north-central 
Los Angeles caused the deaths of 57 people and injured another 8,700. During 
the Northridge earthquake the fastest seismic wave peak velocity of 6.59 m/
sec and the highest ground acceleration of 16.7 m/sec2 ever in North America 
were measured (Stover 1993). 

The two earthquakes had almost the same parameters on Gutenberg-
Richter and Mercalli scales, their hypocenters were almost at the same depth, 
and the damages they caused were almost at the same level. 

The only difference between them was that the epicenter of the Northridge 
earthquake was in the middle of the densely populated central residence 
area of Reseda, while the epicenter of the Loma Prieta earthquake was in 
unpopulated area of a state park 127 km south from San Francisco Bay Area. 
The Northridge earthquake is the only large earthquake to originate directly 
under a major U.S. city in modern time.

Taking into account the location of the epicenter and the depth of the 
focus, it was normal to expect that the Northridge earthquake would be the 
most devastating ever earthquake to man-made constructions, or at least 
much more destructive than the Loma Prieta earthquake. How to explain the 
puzzling fact that these two earthquakes—one with epicenter 127 km away 
from the damaged area and the other one right in the middle of the damaged 
area—caused almost the same level of destructions? Were the seismic waves 
in the Northridge earthquake somehow attenuated, or were the seismic waves 
in the Loma Prieta earthquake somehow amplifi ed? 
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There is a good reason to believe that San Fernando Valley was struck 
by body seismic waves coming directly from the 19 km deep hypocenter 
under Reseda. Simple geometrical calculation shows that San Francisco Bay 
Area could not be hit by bulk seismic waves coming directly from the 18 km 
deep hypocenter located under Nisene Marks State Park 127 km away from 
San Francisco Bay Area. It seems that during Loma Prieta and Northridge 
earthquakes different seismic phenomena caused the destructions.

The comparison of the parameters of these two earthquakes and their 
effects raises important questions. 

First question: What is the physics of seismic waves? Classical seismology 
is based on propagation of elastic waves in elastic continuum and the 
general scattering theory (Aki and Richards 1980; Houdson 1980; Ben-
Menahem and Singh 1981). The theory of continuum mechanics describes 
the deformations (strains) of objects and relate them to the resulting reaction 
forces (stresses) using linear algebra to perform coordinate constitutive 
modeling (mathematical description how the objects react to loadings based 
on 1st and 2nd laws of thermodynamics), calculate material derivatives, or 
determine principal stresses (Malvern 1969; Mase 1970; Landau and Lifshitz 
1986). Most of the analyses in the classical continuum mechanics are based 
on linear elasticity theory which is limited to infi nitesimal strains only while 
quadratic, cubic, and higher order strain terms are neglected. Applying linear 
elasticity theory to describe seismic wave propagation might be helpful to 
understand certain phenomena, but defi nitely it cannot be used to describe 
realistically an earthquake. Usually seismic wave have large amplitudes close 
to the focus, which make their propagation highly nonlinear. On the other 
hand they propagate in heterogeneous, nonlinear, dispersive media of the 
Earth’s lithosphere and mantle. The recent development of advanced computer 
simulation and numerical solutions of nonlinear equations have prompted the 
development of nonlinear continuum mechanics and the introduction of new 
approach to the formulation of constitutive equations for nonlinear continua 
(Naugolnykh and Ostrovsky 1998; Dimitrienko 2011), however no coherent 
theory of nonlinear propagation of seismic wave has been developed yet. 

Second question: How the surface seismic waves were able to keep their 
energy after traveling a long distance of 127 km and caused similar effect as the 
body waves that traveled only 19 km coming directly from the earthquake’s 
focus in the Loma Prieta and Northridge earthquakes? Since surface seismic 
waves cannot be coming directly from the hypocenter, they are created and 
powered by body waves reaching the Earth’s surface where they get converted 
into surface waves. This means that surface the seismic waves should carry 
lower energy than the body waves that power them. Comparing the parameters 
of Prieta Loma and Northridge earthquakes shows that this does not seem to 
be true. Was the attenuation on the Earth’s surface very low or were the surface 
seismic waves somehow amplifi ed due to nonlinear interactions?
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Third question: What is the mechanism of generation of surface seismic 
waves from body waves that come to the Earth’s surface? Why some body 
waves get converted into surface waves and others do not? It is well known 
that sidewinding surface waves known as Love waves are much more 
destructive than rolling surface waves known as Rayleigh waves? How Love 
and Rayleigh waves are created from body waves? Usually the tremor during 
an earthquake lasts only seconds. This hardly can be called a wave—a term 
that suggests a continuous, periodic, and lasting in time process. It would be 
more appropriate to consider this as a propagation of a pressure pulse or a 
series of pulses rather than a wave. Often the power of the pressure pulse is 
so high, especially close to the focus, that it has the characteristics of a shock 
wave. Because of the high nonlinearity of propagation wouldn’t it reasonable 
to consider the existence of seismic solitary pulses or even seismic solitons?   

Fourth question: Is there any relationship between geological structures in 
areas with seismic activities and propagation characteristics of body or surface 
seismic waves? If there is such a relationship, would it be possible to foresee the 
types of seismic waves and the amount of energy they carry if the geological 
topography of the area is known? Also, is the destruction of manmade 
constructions always due to the seismic power carried by oncoming seismic 
waves or certain geological characteristics may cause resonance phenomena, 
constructive interference, and local amplifi cation of the waves? Typical 
example is the 1985 Mexico City earthquake where the lakebed sediments 
caused resonance effects from refl ections from the edges of the basin making 
buildings from 6 to 15 stories in height to resonate in the frequency band of 
the lakebed motions (Murillo and Juan 1995). Many of these buildings had 
their upper fl oors collapsed leaving the lower fl oors undamaged. 

Fifth question: What is a better strategy to protect cities from the destructive 
power of earthquakes? Is it building reinforced constructions able to survive 
the tremor or is it developing new techniques allowing oncoming seismic 
waves to be defl ected away from the city or attenuated? Earthquake statistics 
show that many devastating earthquakes that had happened at various points 
of the Earth had not always been those of the greatest magnitude. Many 
earthquakes of moderate magnitudes had caused great amount of damage. 
It turns out that the magnitude of the earthquake is not the only factor 
causing the destruction. While the amplitude of the seismic waves certainly 
contributes to their destructiveness, the type of the seismic waves, the way 
they propagate, the direction of the displacement of ground masses and the 
nonlinear phenomena are of highest importance as well.

Today’s strategy to fi ght destructive earthquakes consists mainly in 
designing earthquake resistant building constructions in hopes that they would 
be able to survive the seismic tremor. It is not possible to know in advance 
where the hypocenter of an earthquake would happen to be and what kind of 
seismic waves would be generated during the shock. Both technical diffi culties 
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and high cost make it impossible to design and build reinforced constructions 
able to face any type of seismic waves. 

A different strategy to fi ght destructive earthquakes is discussed in this 
book, namely design of systems that redirect, attenuate, or scatter away 
oncoming seismic waves before they reach a city. Since surface seismic waves 
have proven to be much more destructive than bulk waves during earthquakes, 
the focus will be mainly on generation and propagation of surface seismic 
waves. Bulk seismic waves have been studied extensively in seismological 
research, while surface seismic waves have found less attention, especially the 
nonlinear wave propagation and nonlinear response of the rocks. Since surface 
seismic waves appear on the Earth’s surface as a result of mode conversion 
of bulk seismic waves, we will limit our attention to bulk seismic waves as a 
source of surface seismic waves. Another reason to consider bulk seismic waves 
is that under certain conditions surface seismic waves can get converted back 
into bulk seismic waves redirecting in this way their energy fl ow down into 
the Earth’s body and decreasing their destructive power on the surface. In this 
context we will discuss possibilities to create artifi cial systems for defl ecting or 
attenuating surface seismic waves using methamaterials and other techniques. 

Developing new earthquake-resistant designs and technologies for 
scattering, refl ecting, or damping of surface seismic waves can prove to be 
both technically and fi nancially more effi cient way to fi ght the destructive 
power of earthquakes than relying solely on reinforced building constructions. 
Ideas of “cloaking” buildings from seismic waves (Farhat et al. 2009; Brun et 
al. 2009) have been launched as an analogy to aircraft cloaking against radars, 
i.e., hiding from electromagnetic waves of radar to avoid detection. Ideas 
to use seismic methamaterials to infl uence seismic waves passing through 
artifi cial anisotropic continuum have been explored (Kim and Das 2012). An 
experiment has been carried out in France near Grenoble (Brûlé et al. 2014). 
Since the soil is a heterogeneous, nonlinear, dispersive medium, offering 
various uncertainties, the objective of the Grenoble experiment was to fi nd 
realistic input values for the simulations by adjusting the soil parameters, such 
as shear modulus, Q-factor, etc.

Despite the encouraging start, it seems that the task of designing universal 
seismic-wave defl ecting or seismic-energy absorbing systems able to protect 
cities from any type of seismic waves coming from any direction is a quite 
diffi cult task. The Earth’s 100 km tick lithosphere where most seismic activities 
take place is a very heterogeneous and nonlinear medium in which high-
amplitude nonlinear seismic waves propagate. The rocks that take part of the 
composition of the lithosphere have a very diverse structure and exhibit strong 
nonlinearity. Linear wave propagation in homogeneous elastic continuum 
is well understood. Nonlinear wave propagation in homogeneous elastic 
materials is a complex phenomenon which has been extensively researched, 
cumbersome mathematical model have been developed, and most of the 
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problems have been solved only numerically using various simplifying 
approximations. Nonlinear wave propagation in dispersive nonlinear media 
remains a problem of extreme complexity. Seismic wave propagation at 
long distances causing earthquakes is possible only because of nonlinear 
phenomena such as generation of higher harmonics and subharmonics, self-
modulation, parametric amplifi cation, wave-wave interactions, self-focusing, 
etc. Earthquakes with their typical characteristics as we know them can occur 
in a linear world. 

The goal of this book is to explore the possibilities to use acoustoelectronics 
and acoustooptics experimental methods and techniques for designing 
systems that are capable to protect cities by not allowing any type of seismic 
waves to reach them. The seismic waves are analyzed from the point of 
view of the nonlinear wave propagation theory and physical acoustics—a 
branch of solid state physics that studies the properties of elastic waves in 
solids and fl uids as a result of their microscopic structure. Solid state physics 
uses quantum mechanics tools to study large-scale electromagnetic, optic, 
mechanic, crystallographic, and metallurgic properties of condensed matter 
in connection with its atomic-scale properties. Physical acoustics techniques 
are used for nondestructive testing (NDT) of materials, medical ultrasonic 
imaging, signal processing, ocean acoustics, acoustoelectronics (delay lines, 
convolvers, fi lters), and acoustooptics (light modulators, laser defl ectors, and 
Q-switches of laser beams). 

Physical acoustics is a debtor to seismology. Surface acoustic waves 
(SAW) used in many acoustoelectronics devices have been discovered by 
scientists in the process of studying seismic waves. Rayleigh studying seismic 
waves published his “On Waves Propagated along the Plane Surface of an 
Elastic Solid” (Ryleigh 1885). Seismologists at that time were skeptical about 
Rayleigh’s fi ndings until 1911 when Love published “Some Problems of 
Geodynamics” (Love 1911) where he reported a mathematical model of surface 
seismic waves known as Love waves. The British seismologist Robert Stoneley 
discovered the surface interface waves Stonley waves in 1924 (Stoneley 1924).

The piezoelectric effect was discovered in 1880 by French physicists 
(Jacques and Pierre Curie 1880). Since then many works have been published 
about bulk and surface elastic waves in piezoelectric and non-piezoelectric 
solids laying out the base of physical acoustics, acoustoelectronics, and 
acoustooptics (Viktorov 1967; Farnell 1970; Farnell and Adler 1972; Auld 
1973; Dieulesaint and Royer 1974; Biryukov et al. 1995; V’yun and Yakovkin 
1990) in parallel with the development of the theory of elasticity (Landau 
and Lifshitz 1986). Theory of linear elasticity has been used in many works to 
describe seismic wave propagation (Aki et al. 2002; Ben-Menahem and Singh 
1981; Chapman 2004), but physical acoustics has found few applications in 
seismology. Maybe now it is time physical acoustics—the science of elastic 
waves in solids to return the favor to seismology—the science of seismic 
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waves in the Earth by implementing some of the theoretical and experimental 
methods and techniques that have been used for designing acoustoelectronics 
devices into developing earthquake-resistant design and technology. 

Linearity is only an approximation of nonlinearity used to simplify the 
extreme complexity of the nonlinear systems and get exact solutions of the 
governing differential equations. However, many important phenomena of 
the real world can be easily overlooked by using solely the linear theory. 
Such phenomena are ‘wave generation by wave’, self-modulation, resonance 
of high-order harmonics, self-focusing, or parametric amplifi cation of high-
amplitude elastic waves propagating in dispersive nonlinear media (Mayer 
1995; Naugolnykh and Ostrovsky 1998; Zabolotskaya 1992; Maradudin 1990; 
Lomonosov 1999). Laser techniques enabled generation of very high amplitude 
pulses with acoustic Mach numbers about 0.01 (Kolomenskii et al. 1997a, 
2003b). Such waves drive the medium into the nonlinear elastic regime and 
shock fronts can be formed during their propagation. As an intense surface 
acoustic wave (SAW) propagates, the temporal evolution of the wave shape 
provides information on the nonlinear acoustic parameters and the nonlinear 
elastic constants of the material. 

Physical acoustics usually deals with both linear and nonlinear elastic 
wave propagation in homogeneous isotropic materials (fused quartz, glass, 
etc.) homogeneous anisotropic materials such as single crystals ( -quartz 
( -SiO2), sapphire ( -Al2O3), lithium niobate (LiNbO3)), and heterogeneous 
and nonlinear materials (composites, ceramics, defected solids, etc.). The 
generation, propagation, and detection of linear and nonlinear elastic waves 
in various linear and nonlinear materials have been studied extensively in 
order to build acoustoelectronics and acoustooptics devices with wide range 
of applications in nondestructive testing of materials, signal processing, 
delay lines, mechanical fi lters, piezoelectric resonators for frequency control, 
laser-beam modulators, diffraction gratings, actuators, chemical and bio-
molecular sensors. Acoustoelectronics nonlinearities of surface acoustic waves 
resulting from couplings of displacement fi elds (V’yun and Yakovkin 1990) 
and propagation in heterogeneous media (Biryukov et al. 1995) have attracted 
great interest. In the process of studying, designing, manufacturing, and 
testing systems for nondestructive testing of materials and medical diagnostics 
signifi cant knowledge has been accumulated about the physical properties of 
various types of elastic waves and their propagation in isotropic, anisotropic, 
and heterogeneous materials. This knowledge can be used for better 
understanding of nonlinear seismic systems and developing experimental 
modelling solutions that can lead to practical applications.

  



1
Origin of Earthquakes and 

Seismic Waves

During a disturbance deep in the Earth’s crust or mantle such as faults, tectonic 
plate shifts, volcano eruptions or underground explosions, a large amount 
of energy is released as a result of which seismic longitudinal (P-waves), 
shear (S-waves), and surface waves propagate, causing an earthquake. This 
cause-and-effect process seems simple and easy to understand. However for 
describing step by step the generation and propagation of various types of 
seismic waves, many factors should be taken into consideration. Deep seismic 
disturbances cannot be directly studied, but observations of man-caused 
explosions causing tremors point to the generation of short, powerful, pressure 
pulses reaching Mega or even Giga Pascal ranges in the focus of the earthquake. 
However, a pressure pulse is not a wave. A wave is a periodic transient 
motion in a medium of propagation that requires a continuous driving force. 
The question is how a pressure pulse becomes the origin of a seismic wave? 
Of course, in an earthquake’s focus not one, but a raw of pressure pulses can 
occur. They follow each other at random intervals of time and the question of 
the origin of seismic waves is still relevant. 

In this chapter we will discuss the mechanism of the generation of various 
kinds of transient seismic waves from a high energy pressure pulse that are 
able to travel long distances in a heterogeneous, dispersive, and dissipative 
media causing what we call an earthquake. 

1.1 Statement of the problem

Seismic waves are usually assumed to be elastic waves that propagate in the 
Earth’s body. When an elastic wave propagates in some material it applies 
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periodic mechanical force per unit of surface F1

�
 (stress) resulting in a periodic 

deformation (strain). The material reacts to the deformation with a restoring 
force –F2

�
 trying to bring the material’s initial shape back to its equilibrium 

state. The theory of linear elasticity is restricted to infi nitely small deformations 
which disappear when the causing force F1

�
 stops acting and the restoring force 

–F2

�
 (where |F1

�
| = |F2

�
|) brings the elastic material back to its initial sate of 

equilibrium following a linear stress-strain relationship. An elastic wave is 
considered to be linear if its amplitude is infi nitesimal and the nonlinear terms 
of the amplitude in the governing equation describing the propagation of the 
wave can be neglected, i.e., linearizing in this way the nonlinear differential 
equation of motion. In an infi nite linear medium of propagation a plane linear 
elastic wave keeps its waveform constant during the propagation. The change 
of the internal energy (kinetic, potential, thermal, etc.) is proportional to the 
deformation that the wave causes, i.e., the change of internal energy density 
is a linear function of the deformation. 

If the elastic wave amplitude becomes larger, the linear approximation does 
not hold anymore and the wave propagation becomes nonlinear. A nonlinear 
fi nite-amplitude elastic wave propagates in a very different way than a linear 
small-amplitude elastic wave. Various portions of the wave travel at different 
velocities causing distortions of the waveform. If the medium of propagation 
is nonlinear, it can affect additionally the wave’s characteristics because of 
scattering from heterogeneities, dispersion, or dissipation. Many factors can 
cause dissipation of elastic energy—internal friction, thermal phenomena, 
absorption, scattering, etc. Dispersion is a phenomenon when the phase 
velocity of the wave depends on its frequency. Dispersion can be due either 
to specifi c geometry features in the medium of propagation—waveguide 
structures, boundaries, or layers, or to its heterogeneous structure, scattering 
characteristics, or dissipation of elastic energy. Introducing nonlinear wave 
propagation instead of linear approximation makes the problem much more 
complicated but also more realistic. 

When finite-amplitude elastic wave propagates in homogeneous, 
nondispersive, dissipative media, it is suffi cient to use quadratic nonlinearity—
keeping the second-order terms related to the wave amplitude (deformation) 
and ignoring the third, fourth and higher order terms. However, introducing 
heterogeneities in the medium of propagation such as grain structures, 
cavities, and cracks increases signifi cantly the challenge and the problem 
cannot be reduced anymore only to quadratic approximation (Naugolnykh 
and Ostrovsky 1998). In a dissipative and dispersive medium of propagation, 
a finite-amplitude elastic wave cannot keep its waveform unchanged 
during the propagation. Its shape gets distorted due to the differences in the 
velocities of various parts of the wave (Fig. 1.1.1). The nonlinearity produces 
harmonic components which interact with each other by exchanging energy 
and giving rise to more harmonics and waves of combination frequencies. If 
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the nonlinearity is weak the medium responds by generating new waves at 
combination frequencies that propagate, i.e., when the synchronism conditions 
are satisfi ed, a space-time resonance occurs. In the absence of dispersion the 
synchronism conditions are satisfi ed at even great number of frequencies and 
even more harmonics grow. 

In the presence of dispersion, low harmonics grow because they satisfy the 
linear dispersion relation and cause waveform steepening. High harmonics are 
suppressed because they deviate from the linear dispersion relation. A stable 
solution is obtained by balancing the waveform steepening due to nonlinearity 
and the dispersion effect of higher order terms where the dispersion relation 
is not linear.

Materials subjected to large deformations behave in a nonlinear way (Fig. 
1.1.2). The nonlinearity in such cases is due either to the elastic properties of 
the material or to the large forces causing the waveform deformation, as for 
example propagation of high-amplitude elastic waves. The wave front of a 
small-amplitude elastic pulse wave in heterogeneous medium of propagation 
gets quickly deformed and the wave loses its energy similarly to as it were 
propagating in a high-attenuation dissipative medium. However, elastic 
heterogeneous media such as rocks can support steady high-amplitude elastic 
waves due to wave dispersion caused by scattering with the heterogeneous 
structure (Grady 1997). Rocks in the Earth’s lithosphere, where most of the 
seismic activities take place, are heterogeneous with a highly nonlinear 
behavior due to various chemical compositions and structures. The nonlinear 

Fig. 1.1.1. Distortion of the profi le of a high-amplitude elastic wave as it propagates.
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behavior of rocks is caused by intergranular cracks, dislocations, and weak 
or failing grain contacts in poorly consolidated sediments (Fjær et al. 1992). 
Typically, rocks show nonlinear behavior for strain amplitudes exceeding 
approximately 10–6. The strain amplitudes of elastic waves in artifi cial seismic 
explorations and elastic pulse transmission experiments are usually small. 
However, sedimentary rocks may have large nonlinear elastic coeffi cients 
compared to well-ordered crystalline solids, such that nonlinear effects may 
be observable and important. Because of cracks and poor consolidation, 
rocks may have large third- and fourth-order nonlinear elastic moduli. For 
example, third-order nonlinear compressional elastic coeffi cient in Berea 
Sandstone—a sedimentary rock whose grains are predominately sand-size 
and are composed of quartz held together by silica—has been found to be 
three orders of magnitude larger than the linear coeffi cient (Sinha and Winkler 
1999) resulting in strong nonlinear elastic wave propagation (Meegan et al. 
1993). The high porosity and permeability of Berea Sandstone rock makes it a 
good reservoir of fl uids (oil or water). Also its effective Young’s modulus has 
been found to depend strongly on the elastic wave amplitude and frequency 
(Tutuncu et al. 1998a,b). The nonlinear wave propagation equation must be 
solved numerically, even in a homogeneous medium if constitutive relation 
contains third- and fourth-order nonlinear terms in addition to the linear term 
(Hokstad 2004).

Finite-amplitude elastic waves that propagate in a nonlinear, dispersive, 
and heterogeneous medium can change the medium’s elastic properties and 
vice versa—the medium can change the wave’s parameters as well. Various 
phenomena occur in these conditions that otherwise do not exist in the linear 
approximation such as scattering of elastic wave from other elastic wave, 

Fig. 1.1.2. Linear and nonlinear elastic wave propagation.
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self-modulation, parametric wave amplifi cation, self-focusing, elastic beam 
bonding, wave trapping, etc. 

Classical seismology is based on linear elastic wave propagation in linear, 
homogeneous, elastic, nondispersive, isotropic and anisotropic media as 
defi ned by the continuum mechanics theory and the general wave scattering 
theory using Green function method, so most of the phenomena related to the 
nonlinear elastic wave propagation as well as to the heterogeneous, nonlinear, 
dispersive, and dissipative properties of the medium of propagation are 
left unaccounted for. Seismic wave propagation is possible only because of 
nonlinearity. A linear nondispersive world is earthquake-free. An earthquake 
as we know it cannot originate from linear elastic waves that propagate in a 
linear, homogeneous, nondispersive medium. 

1.1.1 What causes an earthquake? 

Nonlinearity of seismic waves and rocks has not been fully understood mainly 
because the nonlinear wave processes in other scientifi c fi elds such as acoustics, 
optics, electromagnetism, atomic, and nuclear physics are in process of 
development. It would be impossible to develop reliable earthquake-resistant 
design and technology without studying seismic waves as nonlinear elastic 
waves propagating in nonlinear rock media. 

In this section we will show that various wave processes have similar 
behavior and, therefore, can be studied using equivalent circuits. Mechanical 
systems can be described using electrical equivalent circuits, optical equivalent 
circuits, or seismic equivalent circuits. This is possible because various wave 
phenomena have the same basic characteristics—wavelength, frequency, 
velocity of propagation, etc. and can interact with each other in resonance 
conditions. The only difference between various waves is that they transport 
various types of energy—elastic, electric, magnetic, optic, thermal, etc.

As it was mentioned already an earthquake is caused by a sudden 
disturbance in the Earth’s body during which a large amount of energy is 
released and a pressure pulse is generated. Note that instead of using the 
word ‘wave’ we emphasize on the word ‘pressure pulse’. The reason is, as it 
has been mentioned already, that a pressure pulse is not a wave. A wave is a 
periodic motion caused by a period driving force with specifi c parameters such 
as frequency, velocity of propagation, and wavelength bound by the relation v 
= V/ λ. The pressure pulse has neither frequency, nor wavelength (Fig. 1.1.1.1). 
It travels with the velocity of sound of the material in which it propagates, or 
faster if it is a shock pulse. An earthquake can be linked to effects similar to 
when an anvil is hit with a hammer. After the hammer makes contact with the 
anvil a primary pressure pulse will start moving into the anvil inwards from 
the point of contact. The anvil’s surface will bounce up into negative pressure 
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followed by a secondary compression with positive pressure that will vanish 
quickly without any wave being generated if the anvil is large enough. More 
visually this process can be linked to the effect of a stone thrown in water. When 
the stone hits the water surface a row of ripples start moving outwards of the 
point of contact. The ripples are caused by the water initially going up around 
the hole made by the stone when it hits the surface and then going down to 
fi ll the hole left by the stone. This up-and-down water motion is repeated a 
couple of times with decreasing amplitude and fi nally vanishes because of 
the water’s viscosity. A water wave packet moves outwards from the center of 
disturbance. A wave packet can be presented as a Fourier series—an infi nite 
set of harmonic (for example sinusoidal) waves of different frequencies (or 
wavenumbers, or wavelengths) with phases such that the waves interfere 
constructively in a narrow space and destructively everywhere else. In 
quantum mechanics a wave packet is associated to a particle. According to 
the Heisenberg uncertainty principle the position and momentum of a particle 
cannot be known simultaneously. This means that a specifi c wave with a fi xed 
wavelength cannot represent the particle. Instead a superposition of waves 
with different wavelengths ranging closely to the central wavelength value 
of a wave packet is associated to the particle. The wave packet is the wave 
function of the particle. Each constituent wave (and also the wave packet) is 
a solution of the wave equation of motion (Schrödinger’s equation). Wave 
packets having Gaussian shape have been used to analyze water waves (Mei 
1989). Wave packets and their Fourier components are always solutions to 
the corresponding equation of motion. As it will be shown in Section 1.1.3 the 

Fig. 1.1.1.1. Pressure pulse waveform at the focus. 
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Fourier transform of a Gaussian function is a Gaussian function itself. If the 
equation of motion describes nondispersive wave propagation the waveform 
of the wave packet remains constant during the propagation. In presence of 
dispersion the waveform of the wave packet changes as the packet propagates. 

While moving with constant velocity in a dispersive medium the wave 
packet is delocalizing rapidly, its width is increasing with time, so eventually 
it diffuses to an unlimited region of space. The wave packet does not have 
a driving force necessary to maintain its propagation as a continuous wave 
in the medium of propagation. So, how the seismic waves are generated and 
where are they coming from? 

We presented the two cases where pressure creates wave packets in an 
anvil hit by a hammer and in water by a stone dropped on the water surface, 
but these two cases are very different. The difference is not because the anvil is a 
solid whereas water is a fl uid, but because standing waves can be created in the 
anvil from the energy of the pressure pulse, while the wave packet in the water 
will vanish in a short distance from the point where the stone fell onto the water 
surface. The pressure pulse in the anvil undergoes multiple refl ections from 
the anvil’s side walls transferring its energy to resonance standing waves that 
vibrate at the anvil’s normal frequencies and their harmonics in a frequency 
spectrum defi ned by the shape, dimensions, and metal of the anvil. The live 
span of these standing waves is defi ned by the absorption properties of the 
anvil’s metal. A standing wave vibration is not a transient wave. After some 
time dissipation phenomena will attenuate the standing waves. However, if 
the anvil is in contact with other low-loss materials the elastic energy of the 
standing waves will be transferred to them and they will start vibrating at 
their own normal frequencies. 

It is well known that two types of seismic waves propagate through the 
Earth’s body—longitudinal bulk (or body) waves called also P-waves and shear 
(or transverse) body waves called also S-waves. Also  on the Earth’s surface 
propagate various types of surface elastic waves  displacing horizontally or 
vertically the ground.  The P-wave is usually called primary wave because it 
is the fastest wave that supposedly arrives fi rst at the seismographic station. 
The S-wave is called secondary wave because it is slower than the P-wave 
and it arrives after it. These waves are considered to be direct waves arriving 
from the focus of the earthquake. The last wave arriving at the seismic station 
is considered to be a surface seismic wave which is slower than the S-wave. 
In Fig. 1.1.1.2 a seismogram shows the vertical earth displacement with the 
supposed locations of the P- and S-waves indicated with arrows assuming 
fi rst and second arrivals. Seismograms of vertical displacement of the ground 
are not very informative about the type of seismic waves. More information 
provide seismograms of vertical, radial, and transverse components of the 
displacement because they help to identify the wave polarization (direction 
of displacement). The three seismograms in Fig. 1.1.1.3 ( Oklahoma Geological 
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Fig. 1.1.1.2. A seismogram showing the vertical earth displacement with the supposed location 
of the P- and S-waves.

Fig. 1.1.1.3. Three seismograms showing the vertical earth velocity near Leonard Oklahoma caused 
by the August 17, 1999 earthquake in Turkey (Oklahoma Geological Survey Earthquake Catalog).
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Survey Earthquake Catalog) show the vertical earth velocity near Leonard 
Oklahoma. The middle trace is the unfi ltered output of the seismometer. It 
shows P, S and LR (LR are surface Rayleigh waves). It also shows SS-waves 
(refl ected from the earths surface midway between the epicenter and Leonard) 
and SSS-waves (refl ected twice from the surface). The top trace is the same 
seismogram fi ltered to pass only waves with frequencies between 0.5 and 2.0 
Hertz. This shows only the P seismic waves. The bottom trace is the same as 
the middle trace except that it is fi ltered to only pass waves with frequencies 
below 0.01 Hertz. These extremely low frequency waves vibrate the ground so 
slowly that the time from one peak to another peak is 100 seconds or more. The 
seismograms in Fig. 1.1.1.4 show ground velocity recorded in vertical, radial 
(toward the epicenter), and transverse (at right angles to the direction of the 

Fig. 1.1.1.4. The seismograms show ground velocity recorded in vertical, radial (toward the 
epicenter), and transverse (at right angles to the direction of the epicenter) directions  registered 
during the August 17, 1999 earthquake in Turkey (Oklahoma Geological Survey Earthquake 

Catalog).
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epicenter) directions. Each trace is low-pass fi ltered to show only  waves with 
a period of 100 seconds or more. The P arrival is off the fi gure. S is clear on all 
traces. When the traces are rotated to produce vertical, radial, and transverse 
motion, the two types of surface waves are completely separated. Rayleigh 
waves (LR) show only on the vertical and radial traces. The earlier arriving 
Love (LQ) waves only show on the transverse seismogram. The vertical LR 
ground motion was about 3.8 millimeters peak-to-peak, at the underground 
vault near Leonard. This allowed the OGS to calculate an MW type magnitude 
of 7.8. It might seem that if the earth’s surface in Oklahoma moved up and 
down four millimeters, that buildings would be damaged, but they were not. 
OGS explained that there would be damage if the movement were rapid. 
However, the movement was like slowly lifting the earth over a minute or 
so, then lowering it as slowly. Such slow motion will not effect anything but 
the detection sensor of a very broadband seismometer.

Seismic waves  identifi cation by the time of their arrival seems to be an 
easy and convenient way to interpret seismograms. However, seismic wave 
propagation is a complex process and in many cases such identifi cation could 
be inaccurate. Real seismic waves are never pure P-type or pure S-type, they are 
quasi-longitudinal (qP) and quasi-shear (qS). They propagate independently 
but their phase velocities and group velocities are not collinear. The two 
velocities make an angle between them which means that the wave propagates 
in certain direction and its energy is transported in a different direction. Since 
nonlinearity and dispersion strongly modify the seismic wave propagation, the 
identifi cation of various types of seismic waves and the interpretation of the 
seismograms need to be adjusted accordingly. Later in the book we will come 
back to the seismograms in Figs. 1.1.1.3 and 1.1.1.4 when we be discussing 
nonlinear body and surface wave propagation. Beside these three types of 
waves there is another type of waves called coda waves, or just coda, seen 
at the tail of the S-wave on the seismogram in Fig. 1.1.1.5. It is interesting to 
notice that in Fig. 1.1.1.5 not only the tail, but also the whole wave packet is 
full of coda. Linear theory cannot explain coda waves. As we will see nonlinear 
theory provides a simple and plausible explanation of these waves.

The seismic coda waves are believed to result from backscattering processes 
from numerous heterogeneities distributed uniformly in the Earth’s crust (Aki 
and Chouet 1975). Looking at the seismograms shown in Figs. 1.1.1.2, 1.1.1.3 
and 1.1.1.4 two questions arise: 1) if coda waves were backscattered waves 
why the ballistic S-wave is having coda not only in its tail but also in its body 
or wave packets with same for the P-wave, and 2) since coda-like waves fi ll 
the wave packets aren’t coda waves forming the wave packets of the ballistic 
waves and moving together with them? These two questions about the origin 
of coda raise also a third question. Can the waves reaching a seismic station 
can be identifi ed unambiguously as P-, S-, or L-waves  according to the time 
of their arrival or their ‘coda’ fi lling should also be taken into consideration? 
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These three questions are relevant because it seems that ‘coda waves’ can be P-, 
S-, or LR-waves with different periods as it can be seen from the seismogram 
in Fig. 1.1.1.3.

It is known that the seismic waves’ frequencies determine how far the 
wave can travel and how damaging they are to man-made structures. The 
spectrum can go from 0.001 Hz to several hundred Hz. Low-frequency waves 
can travel longer distances, but they usually cause less damage than the high-
frequency waves that tend to dissipate fast. The most damage is caused by 
waves in the frequency band between 1 Hz and 10 Hz which can still travel 
long distances before get dissipated. So, how the frequency bands of seismic 
waves are defi ned if all of them originate from the energy of a pressure pulse 
in the earthquake’s focus? When we hit a tone on the piano board the small 
hammer under the hood hits the corresponding string generating a single 
pulse that transfers its energy to the string and force it to vibrate at the tone 
frequency. The string is attached fi rmly at its ends to the piano cast iron plate, 
so it vibrates as a standing elastic wave at its fundamental normal frequency 
defi ned by the length of the string and the velocity of the wave in the string 
material. The elastic energy of the vibrating string is transmitted from the cast 
iron plate to the piano wood soundboard and into the air as a longitudinal 
(there are no shear waves in fl uids) sound wave that we hear as a single tone. 
The frequency of the sound wave that we hear is the same as the frequency 
of the vibrating string but its wavelength and velocity of propagation are 
different in the air. 

Fig. 1.1.1.5. Coda waves.
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The mechanism of elastic waves generation when the hammer hits 
the metal anvil is the same as in the case of the piano. However, while the 
piano produces pure tone sound waves at well-defi ned frequencies, the 
anvil produces noise—a set of normal frequencies of the anvil. We can make 
a conclusion that the standing elastic wave frequency is defi ned by the 
resonator—either the anvil or the piano—but not by the hammer. 

Now we need to clarify how the standing wave vibrations are transformed 
into transient waves that propagate in the air and deliver music (or noise in the 
case of our anvil) to our ear. To generate an elastic wave a permanent driving 
periodic force is needed. For example in nondestructive testing or medical 
ultrasound imaging piezoelectric transducers are used for the generation 
of ultrasonic waves. No such force exists in the case of an earthquake. A 
short pressure pulse (or pulse train) is produced at the fault and then the 
process stops. In a simple linear system the spectrum of a pulse is its Fourier 
transform. The spectrum of the pulse in Fig. 1.1.3.1 is shown in Fig. 1.1.3.2 in 
the Section 1.1.3. The pressure pulse will undergo numerous refl ections on 
the boundaries with adjacent rocks generating local vibrations in the form of 
standing waves but apparently no transient waves will be created. Indeed, 
this could happen only if the rock were isolated—for example in a vacuum 
chamber. In this case the energy released at the fault would remain trapped in 
that rock without spreading any farther. However, the rock is not in vacuum; 
it is immerged in a medium of adjacent rocks with different elastic properties 
separated from each other by clay or sandstone forming a complex system 
of composite resonators. Standing wave vibrations will be transferred from 
rock to rock creating new sets of resonance frequencies in a wide spectrum. 
Let us consider a simple composite resonator formed by two adjacent media 
as shown in Fig. 1.1.1.6 (Miller and Bolef 1968; Lu 1974). Let assume that only 
one P-wave is traveling between the two blocks with velocities V1 and V2, 
fundamental mode resonance frequencies ω1 and ω2, and elastic impedances 
Z1 = ρ1V1 and Z2 = ρ2V2, respectively (ρ is the material density). If one assumes a 

total refl ection of waves at both end surfaces, a refl ection coeffi cient 1 2
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between the two media, and neglects the acoustic losses in both media 1 and 

2, the fundamental resonance frequency of the composite resonator νc can be 
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From Eq. 1.1.1.1 we can see that a composite resonator system resonates 
at different resonance frequencies than its components. We can imagine the 
complexity of the problem if we had a composite resonator built from a great 
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number of individual resonators each one resonating at its own resonance 
frequencies and contributing to the formation of the composite resonator 
spectrum. 

The diffuse elastic fi eld generated by a large number of individual rock 
resonators has chaotic characteristics. The Earth’s body and surface are in a state 
of a permanent vibration. During earthquakes the amplitudes of the vibrations 
increase. Nonlinearity and dispersion of the rock contribute to seismic beat 
and propagation of low-frequency wave packets that modulate high-frequency 
carrier waves of the diffuse elastic fi eld. This diffuse elastic fi eld can be defi ned 
as ‘coda’—the building component of the wave packets, not just their tails. The 
term ‘coda’ is probably not even appropriate to be used anymore in this aspect 
because, as shown in Fig. 1.1.1.5, traditionally it is used to characterize the tail 
of a body wave. Despite of these considerations will continue using the term 
‘coda wave’ or just ‘coda’ but instead of thinking of it as a ‘tail wave’ we will 
defi ne it as a diffuse elastic fi eld composed of body or surface elastic waves of 
various types forming a set of carrier waves.  Actually it is interesting to note 
that ‘coda’ (Italian for ‘tail’, plural code) is a term used in music to designate 
a passage that brings a piece to an end. In terms of the formation of a seismic 
diffuse elastic fi eld instead of being a tail, coda is a set of carrier seismic waves 
transporting most of the seismic energy. Coda gets bandpass fi ltered through 
large number of scattering processes and amplifi ed by various nonlinear 
mechanisms. Its average amplitude increases during an earthquake not only 
because of infl ux of energy but also because of various nonlinear and dispersion 
mechanisms of amplifi cation. Nonlinearity and dispersion cause the generation 
seismic waves of combination frequencies leading to seismic beat and self-
modulation. Low-frequency P-, S-, and surface waves modulate by amplitude, 
frequency, and phase high-frequency coda waves. This self-modulation 
process creates wave packets formed by wave multiplication of carrier waves 
and modulating signals that are registered on the seismograms. Body coda 
and surface coda have different origins and different characteristics. Due to 

 Fig. 1.1.1.6. Composite resonator.
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heterogeneity of the rock and variable levels of nonlinearity and dispersion, the 
modulation of the carrier waves by modulating body and surface waves can 
occur at various points located at various distances from the seismic stations 
where the seismograms are registered. This means that a modulating S-wave 
created nearby a seismic station can arrive before a modulating P-wave that 
has been created at a different point located at a farther distance from the 
seismic station. Such an S-wave can also be interpreted as an SS or SSS wave 
as well. This explains the differences observed  in seismograms registered 
during the same earthquake at different seismic stations. Figure 1.1.1.7 is 
presenting seismograms registered by different seismic stations during the 
1999 Kansas City collapse event. Three seismograms of vertical earth motion 
were recorded near Leonard, OK (above), near Vivian, OK (middle), and near 
Slick, OK (low). The three seismographs are 368 km/229 miles (Leonard), 400 
km/249 miles (Slick), and 429 km/267 miles (Vivian) from the event. It is clear 
from these three seismograms that it is hard to identify unambiguously P-, S-, 
or LR-waves according to the arrival times. However, clearly the frequencies 
of coda waves are different. Since P-, S-, and LR-waves are independently 
propagating we assume that a specifi c type of carrier waves can be modulated 
by the same type of modulating wave only. This means P-carrier waves can 
be modulated by P-waves only, S-carrier waves by modulating S-waves only, 

Fig. 1.1.1.7. A seismogram from the 1999 Kansas City collapse event. 
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and surface carrier waves can be modulated by a  modulating surface waves 
only. Figure 1.1.1.8 shows seismograms of the January 10, 2010, earthquake 
in Haiti registered by a Manitoba (Canada) station. Radial, transverse, and 
vertical ground displacements shown on these seismograms can be interpreted 
as caused by seismic waves modulating coda waves. 

Fig. 1.1.1.8. Seismograms of the January 10, 2010, earthquake in Haiti registered by a Manitoba 
(Canada) station. Radial, transverse, and vertical ground displacements shown on these 

seismograms can be interpreted as caused by seismic waves modulating coda waves. 

The processes during the earthquake are shown in Fig. 1.1.1.9. Let’s 
suppose that the earthquake’s ‘hammer’ gives a blow in the focus of the 
earthquake creating a high energy pressure pulse. Of course, there is no piano 
down there, but something that is similar to the anvil—randomly shaped 
rocks that resonate at their normal frequencies in a wide frequency spectrum 
forming a diffuse elastic fi eld or ground noise. This diffuse noise fi eld is not 
transient and, therefore, it is not coda. It is an elastic fi eld created by a large 
set of standing waves. Coda is transient waves that propagate in the medium 
and will be subjected to intensive scattering, attenuation and fi ltering by 
the heterogeneous rock and not all waves that compose the elastic fi eld will 
be able to propagate far from the focus of the earthquake. Weak waves and 
high-frequency waves will decay through scattering and absorption, but 
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some are high-amplitude nonlinear waves that will form coda and low-
frequency qP- and qS-waves that will travel long distances helped by the 
dispersion and nonlinearity of the medium of propagation. If the Earth were 
an isotropic, nondispersive, homogeneous continuum there would be no 
seismic waves; the pressure pulse will keep its original shape bouncing back 
and forth from various boundaries of the composite resonator systems until 
the whole energy gets dissipated. The dispersive and heterogeneous structure 
of the Earth composed by various rocks with diverse elastic properties form 
a large set of resonators able to generate from a single pressure energy pulse 
a whole spectrum of frequencies and waves—coda, created after passing the 
ground bandpass fi lters. Coda is composed by a great number of amplitude-, 
frequency-, and phase-modulated waves. Not all of these waves will take part 
of the earthquake or arrive to the seismic stations where the seismographs 
are located. Most of the waves will dissipate or scattered away in the rock. 
Many will continue their propagation longer time depending on various 
materials factors. Earthquakes usually last short time—a couple of seconds 
to one minute only. There could be aftershocks but the main shock is usually 
short. This is due to the ‘rock bandpass fi lters’ that let go only some waves 
and stop most of the rest. In this time window scattering processes will fi lter 
and shape modulating qP-, qS-, and surface waves that will be recorded on 
the seismograms  together with modulated carrier coda waves.  

An interesting effect is observed in Fig. 1.1.1.10 vertical velocity 
seismogram registered during the 2001 Tacoma-Olympia earthquake. The 
LR-wave time position is coming much earlier than the tail waves which 

Fig. 1.1.1.9.  Earthquake’s equivalent circuit.
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vertical velocity is much higher. A possible explanation would be that this 
is a modulated surface LR-coda that was generated somewhere near to the 
location of the recorder due to self-modulation.  

1.1.2 Self-modulation of seismic waves

In electronics and telecommunications modulations of the wave amplitude, 
frequency, or phase are used for the transportation of information. The 
electromagnetic wave ‘carrying’ the information is called carrier. An 
information-bearing electromagnetic wave is used to change some of the 
carrier wave parameters—frequency, amplitude, or phase, so the carrier will 
«carry» the information. At the other end the information is extracted from 
the modulated carrier by demodulation.

Amplitude modulation (AM) means that the amplitude of the carrier 
wave is changed by a modulating information-bearing wave that defi nes the 
envelope of the carrier waveform. In the frequency domain the amplitude 
modulation creates a wave which power is concentrated at the carrier 
frequency and two adjacent sidebands. Each sideband is equal in bandwidth to 
that of the modulating signal. In Fig. 1.1.2.1 are shown a synthetic carrier wave 
that is modulated by another modulating wave which has a longer period 

Fig. 1.1.1.10. 2001 February 28 Tacoma-Olympia earthquake seismogram.
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(or wavelength). In Fig. 1.1.2.2 is shown a seismogram and its bandpass 
and lowpass components. The carrier coda has been fi ltered and only the 
modulating waves are left. 

It seems that the waves that have the greatest impact during an earthquake 
are the coda because they carry most of the seismic energy. The modulating 
P- and S-waves seems only to defi ne when and in what form the coda 
energy will be delivered—P-wave fi rst, followed by the S-wave, followed 
by surface elastic waves. However if the modulating waves overmodulate 
coda the amplitudes of both modulating and modulated waves increase as 
shown in Fig. 1.1.2.3. The coda of the surface seismic wave modulator looks 
different because it is a surface wave coda. A typical amplitude modulation 
seismograms registered during 2010 Haiti earthquake is shown in Fig. 1.1.1.8. 
In some areas overmodulation parts can be seen. P-, S-, LQ-, and LR-waves 
have been identifi ed according to the arrival times, however, if various wave 
packets shown in the seismograms result from modulations of carrier waves 
such identifi cation risks to be incorrect without studying the nature of the 
modulated coda carriers. This is especially valid in the cases of Love and 
Rayleigh waves because the velocities of propagation of these waves can 
vary in a wide range depending on the geological characteristics. Love waves 
are dispersive waves which velocity of propagation depends on frequency, 
thickness of the layered waveguide, and the ratio between the velocities of 
the SH waves in the layer and substrate. Rayleigh waves are nondispersive 
waves that do not require layered structures to propagate. However, layered 

Fig. 1.1.2.1. Amplitude-modulated elastic wave.
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structures they become dispersive and their velocity depends on the layer 
thickness and its elastic properties. Assuming that Love waves are always 
faster than Rayleigh waves could lead to errors without studying the specifi c 
conditions. 

Some seismograms show recordings with well pronounced P-wave, 
S-wave, and L-waves as it is the case of the seismogram of the vertical 
displacement velocity (Fig. 1.1.1.10) recorded during the 2001 Tacoma-Olympia 
earthquake. In Fig. 1.1.2.2 are shown seismograms of the August 13, 2000, 
very-long-period earthquakes beneath Mammoth Mountain where it is hard to 
identify the type of the seismic waves. The second seismogram (Raw) shows a 
well defi ned wave packet built of a modulating wave pulse full of carrier coda. 
The next seismogram shows the band-passed pulse only where high-frequency 
coda has been cut out off by the fi lter. At the top is unfi ltered trace from the 
short-period (1 second, vertical seismometer) Northern California Seismic 
Network on top of Mammoth Mountain (note the spasmodic burst). Middle 
two traces are unfi ltered and fi ltered (10 to 100 second bandpass) vertical 
component records, respectively, from the CMG-3 broadband station (OMM) 
installed in a shaft of the Old Mammoth Mine (4 km (2.5 miles) southeast 
of Mammoth Mountain) and operated by the University of Nevada, Reno. 

Fig. 1.1.2.2. Filtered seismogram (Mammoth Mountain).
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Bottom is a low-pass (5-second cutoff) trace from the POP borehole dilatometer 
located 4 km (2.5 miles) due west of the Mammoth Mountain summit. These 
examples demonstrate that the modulating signals are not always regular 
P-wave and S-wave. It looks like more complex fi ltering systems in the Earth 
are modulating coda. Coda waves could be subject to some amplifi cation also  
due to local resonance effects or to a nonlinear amplifi cation. 

How does the amplitude modulation process work? Amplitude 
modulation consists in multiplication of waves (Frenzel 2008). Let us consider 
two sinusoidal waves, one called modulating and the other called modulated 
or carrier, with amplitudes Ac and Am and angular frequencies ωm and ωc, 
respectively. 

 
( ) sin
( ) sin

c c c

m m m

a t A t
a t A t

ω
ω

=
=  (1.1.2.1)

They may travel together and nothing impressive would happen. The two 
waves simply add to each other without any interaction (Fig. 1.1.2.4):

 ( ) ( ) sin sinc m c c m ma t a t A t A tω ω+ = +  (1.1.2.2)

Fig. 1.1.2.3. Modulation at 0% (left), 50% (second), 100% (third), and overmodulation 200% (right). 
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However, trigonometry we know that: 

 ( ) ( )1sin sin cos cos
2

x y x y x y⋅ = − − +⎡ ⎤⎣ ⎦ (1.1.2.3)

Using Eq. 1.1.2.3 we can rewrite Eq. 1.1.2.2 in the form:

 
( ) ( )

( ) ( ){ }

( ) ( ) cos cos
2 2

cos cos
2

c m c m
c m c m c m

c m
c m c m

A A A Aa t a t t t

A A t t

ω ω ω ω

ω ω ω ω

⋅ = − − + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

− − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (1.1.2.4)

Now we have a new phenomenon which is very different from the simple 
addition of waves traveling together in Eq. 1.1.2.2. Here with waves with 
frequencies equal to the difference and the sum of the original waves we get 
multiplication of waves (Fig. 1.1.2.1). This is the basic process that has been 
used for many years in the analog radios for sending and receiving information 
using a device called mixer. If we want to transmit a 5-kHz audio tone by 
radio, we send it into one of the mixer’s inputs and send an RF signal of, for 
example, 4555 kHz to the other mixer’s input. At the output of the mixer we 
get two radio signals—one at 4550 kHz and another at 4560 kHz. These two 
signals can be easily demodulated using again a mixer. We send the signals to 

Fig. 1.1.2.4. Summed waves.
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one of the input of the mixer, and another RF signal of 4555 kHz to the other 
mixer’s input. At the output we will get our 5-KHz tone. The fi rst mixer is 
the modulator and the second one—the demodulator. The analog signal AM 
modulation in our example is presented in Fig. 1.1.2.5. Above is an audio signal 
oscillogram looking very much like a seismogram of vertical displacement.

Fig. 1.1.2.5. Above—A seismogram from 1989 Loma Prieta earthquake looks as unmodulated coda. 
Middle—An audio signal oscillogram looks very alike seismograms of vertical displacement as 
ones shown in Fig. 1.1.1.7 and 1.1.1.8. Below—An analog signal of 5 kHz modulates a 4555 kHz 
carrier wave fed to a mixer from an oscillator and retrieved after demodulation by a second mixer. 

Loma Prieta Earthquake
October 17, 1989 • MS 7.1

Seismogram recorded at the U.S. Geological 
Survey, Menlo Park, CA from a UC-Berkeley 
instrument located in Columbia, CA.
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Usually in radio communication the amplitude of the modulating signal 
(wave) is smaller than the amplitude of the carrier Am < Ac in order to be 
avoided signal distortions. The ratio: 

 
m

c

Am
A

=  (1.1.2.5)

is called modulating coeffi cient or degree of modulation. Figure 1.1.2.2 
shows modulation at various values of the modulating coeffi cient. In the 
case of overmodulation the signal gets distorted and the amplitudes of both 
modulating and modulated signals increases. In the case of seismic waves 
the self-modulating process does not occur everywhere—only in areas with 
appropriate nonlinearity and dispersion where sesimic waves of combination 
frequencies grow followed by seismic beat. Figure 1.1.2.6 shows rail road 
damage by a localized self-modulation of a surface seismic wave. In the area 
where the modulated wave packet grew the road got a twist while the rest 
is slightly or not all damaged. It seems that the twist was done by a surface 
wave with a sidewinding displacement in the horizontal plane. Usually such 
displacement is associated of Love waves, however, we will see that other type 

Fig. 1.1.2.6. Road damage caused by a localized self-modulation of a surface seismic wave with 
displacement in the horizontal plane—above left (Byers 1976), above right (Teasdale 2010), below 

left (National Geophysical Data Center), below right (Solar Roadways). 
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of surface elastic waves with similar to Love waves behavior can be generated 
in nonlinear conditions called skimming waves. Skimming waves can occur 
more often than Love waves because they do not require specifi c dispersion 
conditions as Love waves. Values for the carrier signal and the modulating 
signal can be used in a formula to express the complete modulated wave. 
First, we keep in mind that the peak value of the carrier is the reference point 
for the modulating signal; the value of the modulating signal is added to or 
subtracted from the peak value of the carrier. The instantaneous value of either 
the top or the bottom voltage envelope can be computed by using the equation:

 1( ) ( ) sin( )c m c m ma t A a t A A tω= + = +  (1.1.2.6)

Therefore the instantaneous value of the complete modulated wave is equal to:

 [ ]2 1( ) ( )sin( ) sin( ) sin( )c c m m ca t a t t A A t tω ω ω= = +  (1.1.2.7)

Using m Eq. 1.1.2.7 can be presented in the form:

 ( )2 ( ) 1 sin( )sin( )c m ca t A m t tω ω= +⎡ ⎤⎣ ⎦ (1.1.2.8)

It seems that our examples are related to linear phenomena only. Indeed 
the mixers are designed to be linear devices. However, the amplitude 
modulation exists no matter whether the system is linear or not if the carrier 
and the modulator propagate in a nonlinear way. The mechanism underlying 
multiplication in any system (electric, elastic, or optic) is that nonlinearly 
distorts waveforms, causes combination frequencies ω1 ± ω2, and acts as a 
multiplier. Linear wave propagation does not produce waves at combination 
frequencies ω1 ± ω2. Seismic wave propagation is a strongly nonlinear process 
that produces new waves at combination frequencies which interactions with 
each other shape the characteristics of every earthquake. 

The waveform of a non-sinusoidal signal can be changed by passing 
through a system that has only linear distortion, but only nonlinear distortion 
can change the waveform of a simple sine wave. It can also produce an output 
signal whose output waveform changes as a function of the input amplitude, 
something not possible with linear distortion. We will see this effect when we 
discuss the nonlinearity of rocks. Nonlinear systems often distort excessively 
with overly strong signals. Nonlinear distortion may take the form of 
harmonic distortion, in which integer multiples of input frequencies occur, 
or intermodulation distortion, in which different components multiply to 
make new ones. Multiplying a signal by itself generates harmonic distortion 
by adding the signal’s frequency to itself. The amplitude modulation is 
a frequency-shifting system in which the original unmodulated signal 
traditionally called the carrier emerges from the mixer along with the sum 
and difference products, traditionally called sidebands.
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A linear system (Fig. 1.1.2.4) is defi ned as:

 ( ) ( ) ( )1 2 1 2 1 1 2 2( ) sin sinF a a F a F a F A t A tω ω+ = + = +  (1.1.2.9)

Equation 1.1.2.9 shows that in a linear system no combination frequencies 
appear and all waves add to each other and travel unchanged together.

A nonlinear system (Fig. 1.1.2.1) is defi ned as a series of higher orders:

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )
( ) ( )

2 3
1 2 1 1 2 2 1 2 3 1 2

1 1 2 1 1 1 2 2

1 2 1 2 1 22 2
2 1 2 2 2

1 1 2 2

...

sin sin

2 cos cos

2 1 cos 2 1 cos 2

.................................................

F a a a a a a a a

a a A t A t

A A t t
a a

A t A t

β β β

β β ω ω

ω ω ω ωββ
ω ω

+ = + + + + + +

+ = +⎡ ⎤⎣ ⎦
⎧ ⎫− − + +⎡ ⎤⎪ ⎣ ⎦ ⎪+ = ⎨ ⎬

− + −⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
...............................................

 (1.1.2.10)

The combination frequencies ω1 ± ω2 appear in the nonlinear system 
describes by Eq. 1.1.2.10. We have mentioned that mixers are designed to be 
linear devices. However, if nonlinear signals go through them combination 
frequencies appear. Combination frequencies appear also if linear signals are 
fed through a nonlinear system such as transistor or diode in an electronics 
circuit. In the case of seismic waves we have both—nonlinear elastic waves 
propagating through nonlinear rock. Therefore, wave multiplication will 
always take place in seismic systems.

An important factor regarding seismic waves and amplitude modulation 
is overmodulation. The modulation limit is reached when the sum of the 
sidebands and carrier at the modulator output reaches zero at the modulating 
waveform’s most negative peak. This situation is called 100% modulation 
Fig. 1.1.2.3. One-hundred-percent modulation (modulating coeffi cient 1) 
is a limit because an amplitude modulator cannot reduce its output to less 
than zero. Trying to increase modulation beyond the 100% point results in 
overmodulation in which the modulation envelope no longer mirrors the 
shape of the modulating wave shown in Fig. 1.1.2.1. If the unmodulated 
waves’ amplitudes is calibrated to be equal to unit, 50% modulation increases 
the amplitude of both carrier and modulating envelop up to 1.5 times the 
unmodulated wave amplitude, 100% modulation brings the modulated 
amplitudes up to 2 times the unmodulated wave amplitude, and 200% 
overmodulation not only distort the waveforms, but also increases the 
amplitudes up to 3 times the unmodulated amplitude (Fig. 1.1.2.3). 

Nonlinear effects of modulation in stability of seismic waves have been 
studied in numerical experiments (Pavlenko 2007). The results show that 
self-modulation and generation of harmonics during the propagation of high-
amplitude seismicwaves occur if resonance intensifi cation in soil layers take 
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place and cause further increase of the wave amplitude. The phenomena of 
self-modulation and amplifi cation of seismicwaves are caused by dispersion 
of propagation velocities in subsurface soils due to their nonlinear response.

1.1.3 Fourier analysis 

Fourier analysis has been developed initially for analyzing periodic in time 
function (Fourier series). Later the Fourier analysis has been extended for 
analyzing nonperiodic function (Fourier transform). It is possible to go from 
Fourier series to Fourier transform by considering nonperiodic function as a 
limiting case of periodic function with a period tending to infi nity. A discrete set 
of frequencies in the periodic case becomes a continuum of frequencies in the 
nonperiodic case—a spectrum, which make possible to analyze a signal in the 
time or space domain or in the frequency domain. A periodic function of time 
(for example a transient wave) can be presented as a sum of infi nite number 
of simple sine waves—the Fourier series. The Fourier transform decomposes 
a function of time (not necessarily a periodic one) into the frequencies that 
make it up. The Fourier transform is the frequency domain representation of 
the original signal. The inverse Fourier transform (Fourier synthesis) combines 
all different frequencies to recover the original function of time. Most of the 
applications of the Fourier analysis were for solving the fundamental linear 
differential equations of physics (heat equation, wave equation, Laplace’s 
Equation).

All waves—optic, elastic, electromagnetic, thermal, etc. are transient 
functions of time. The Fourier transform represents a transient in time wave 
as an infi nite number of harmonics with frequencies nω where n = 1,2,3,... In a 
linear system it is suffi cient to consider only one Fourier frequency component 
to fi nd a general solution as a superposition of all Fourier components. In the 
case of fi nite-amplitude waves the linear approximation breaks down and 
nonlinear effects must be taken into account. Linear theory predicts exponential 
growth of unstable waves, but nonlinear effects cause saturation and limit the 
wave amplitude at a fi nite level.

Let’s consider the pulse shown in Fig. 1.1.3.1. Since the energy pulse is 
very short in time it can be presented as a delta function of Dirac δ(t) equal to 
1 in the time interval –0.5 to +0.5 sec and 0 outside of this interval. The Dirac 
delta function is:

 ( ) ( ) ( )
, 0

and 1; 0
0, 0

t
t t dt

t
δ δ δ

+∞

−∞

+∞ =⎧
= = = +∞⎨ ≠⎩

∫  (1.1.3.1)
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For any function f(t) continuous at the point t = t0 the Dirac delta function 
at the point t = t0 is equal to the value of the function f(t) at the point t = t0: 

 ( ) ( ) ( ) ( )
00 0 tf t f t t t dt fδ δ

+∞

−∞

= − =∫  (1.1.3.2)

According to Eqs. 1.1.3.1 and 1.1.3.2 can be presented also as:

 ( ) ( ) ( )0 0 0f t t t dt f tδ
+∞

−∞

− =∫  (1.1.3.3)

Following Eq. 1.1.3.2 the Dirac delta function can be presented as a 
superposition of an infi nite number of harmonic functions with frequency 
v and amplitude 1. We remember that any twice differentiable function is a 
harmonic function. Therefore:

 2( ) i tt e dπνδ ν
+∞

−∞

= ∫  (1.1.3.4)

Harmonic functions form an orthonormal basis in the space of integrable 
functions and any physical signal can be decomposed on this basis, i.e., it can 
be presented as a sum of an infi nite number of waves:

 
2( ) ( ) i tp t P t e dtπν

+∞

−∞

= ∫  (1.1.3.5)

Fig. 1.1.3.1. Unit pressure pulse.
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To determine P(t) we can proceed with the integration of:

 
2( ) ( ) i tI f p t e dtπν

+∞
−

−∞

= ∫  (1.1.3.6)

From the Dirac delta function we get:

 2 ( ) ( )i f te dt fπ ν δ ν
+∞

−

−∞

= −∫  (1.1.3.7)

Therefore we have:

 ( ) ( ) ( )( )I f P f f d S fδ ν ν
+∞

−∞

= − =∫  (1.1.3.8)

Using the variable v we get:

 2( ) ( ) i ftP p t e dtπν
+∞

−

−∞

= ∫
 (1.1.3.9)

The Fourier transform of the pulse in Fig. 1.1.3.1 is the sinc function 
sinπν
πν

 
presented in Fig. 1.1.3.2. 

Fig. 1.1.3.2. Fourier transform of a pulse function.
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If a series of pulses repeating each other at equal intervals of time are 
generated in the earthquake’s focus they form a periodical function. According 
to Fourier’s theorem any periodic or semi-periodic function can be presented 
as a sum of sines and cosines—a Fourier series. Each sine and cosine comes 
with their own amplitude and phase—Fourier coeffi cients. 

 0
1 1

2 2( ) cos cosm n
m n

mt ntf t a a b
T T
π π∞ ∞

= =

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑  (1.1.3.10)

In one-term approximation we have: 

 0
0

( ) ( )
T

f t a f t dt= = ∫  (1.1.3.11)

Considering the second term we have:

 
0 1

2( ) sin tf t a b
T
π⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 (1.1.3.12)

where b1 is given by:

 1
0

2 2( )sin
2

T tb f t dt
T T

π π⎛ ⎞= =⎜ ⎟
⎝ ⎠∫  (1.1.3.13)

The Fourier’s coeffi cients can be presented in general form as:

 

0
0

0

0

1 ( )

2 2( )cos

2 2( )sin

T

T

m

T

n

a f t dt
T

mta f t dt
T T

ntb f t dt
T T

π

π

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫

∫

 (1.1.3.14)

For a series of pulses the Fourier’s coeffi cients are:
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= =

 (1.1.3.15)

In reality the pressure pulses are coming at random intervals of time. 
Thus they form a function of time that never repeats—an aperiodic function. 
Each aperiodic function can be considered as period function with infi nite 
period. To apply the Fourier’s theory again on these aperiodic pulses we can 
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generalize the Fourier series into an integral—Fourier transform. The Fourier 
transform presents a space-time effect such as an aperiodic function of time 
into a frequency domain. The Fourier transform is similar to the Fourier series 
with the difference that it is an infi nite sum of infi nitesimal sinusoids. The 
Fourier transform is given by:

 [ ]( ) ( ) ( ) i tF f t F i f t e dtωω
+∞

−

−∞

= = ∫  (1.1.3.16)

The reverse Fourier transform is:

 ( ){ }1 1( ) ( )
2

i tF F i f t F i e dωω ω ω
π

+∞
− +

−∞

= = ∫  (1.1.3.17)

From the Fourier transform we notice an important consequence: Short 
signals (wave packets) in the time domain occupy a wide bandwidth. Wide 
signals (wave packets) in the time domain occupy a narrow bandwidth.

Using Fourier series and Fourier transform we can make an important 
conclusion: periodic or aperiodic pressure pulses (or wave packets) can always 
be presented as elastic waves that propagate in a frequency bandwidth. The 
shorter the pulse (or wave packet) in the time domain, the wider the wave’s 
frequency bandwidth is. The wider the pulse (or wave packet) in the time 
domain, the narrow is the frequency bandwidth. 

We have mentioned that the Gaussian function’s representing the wave 
packet envelop Fourier transform is also a Gausian function. Indeed, if the 

normalized ( ( ) 1g x dx
+∞

−∞

=∫ ) Gaussian function is ( )
2

221
2

x

g x e σ

σ π

−
=  where σ is 

the standard deviation (σ2
 is the variance) its Fourier transform is ( )

2 2

2G e
ω σ

ω
−

= , 
i.e., we get again a Gaussian function.

The spectral content of seismic waves varies signifi cantly with time. 
They are non-stationary elastic waves. Fourier analysis is appropriate for 
stationary signals only. For non-stationary elastic waves we are interested in 
the frequencies that are dominant at any given time. Non-stationary elastic 
waves can be analyzed using short-time Fourier transforms. The short-time 
Fourier transform of a function at some time t is the Fourier transform of that 
function in a time window centered on t. For different time windows centered 
at different time the Fourier transforms are different. The short-time Fourier 
transform decomposes a signal into a set of frequency bands at any given time. 

As mentioned already all twice continuously differentiable functions are 
harmonic functions. The harmonic functions form a complete orthogonal basis 
in the space of all integrable functions. That means any physical signal can 
be presented as a decomposition of an infi nite number of harmonic functions 
(or waves):
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 ( ) ( ) 2i fts t S f e dfπ
+∞

−∞

= ∫  (1.1.3.18)

S( f ) represents the frequency spectrum of the signal.

Proceeding with the integration as we did in Eq. 1.1.3.18 we get:

 ( ) ( )2i ftS f e s t dtπ
+∞

−

−∞

= ∫  (1.1.3.19)

Equation 1.1.3.19 shows that the spectrum of a signal is its Fourier 
transform.
On the other hand, since any physical signal is a real function of time, we have:

 ( ) ( ) ( )2 *i ftS f e s t dt S fπ
+∞

+

−∞

− = =∫  (1.1.3.20)

Equation 1.1.3.20 shows that the real part of the spectrum of the signal is 
pair and the imaginary part is odd:

 
( ) ( )
( ) ( )

Re Re

Im Im

S f S f

S f S f

− =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
− = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (1.1.3.21)

Equation 1.1.3.21 takes us to the classic Euler’s formula: eix = cos x + i sin 
x, where cos is a pair function, while sin is an odd function. For example, if 
we have a real physical signal with frequency f0 s(t) = a(t) cos (2π f0t), which 
amplitude a(t)

 
is modulated in time, its spectrum S(t) is its Fourier transform:

 ( ) ( ) ( ) ( ) ( )0 0
1 1cos 2
2 2

S f A t t dt E f f E f fπν
+∞

−∞

= = − + +∫  (1.1.3.22)

The spectrum of s(t) = a(t) cos (2π f0t) 
is shown in Fig. 1.1.3.3.

Fig. 1.1.3.3. The spectrum of s(t) = a(t)cos(2π f0t).
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If instead a signal with an amplitude modulation we consider a signal with 
a frequency modulation by following the same procedure as above we get: 

 ( ) ( ) ( )*
0 0

1 1
2 2

S E Eω ω ω ω ω= − + +  (1.1.3.23)

Equation 1.1.3.23 yields from E(–ω) = E(ω). The spectrum of the pulse 
function shown in Fig. 1.1.3.1 is the sinc function presented in Fig. 1.1.3.2 and 
the Dirac δ-function’s spectrum is 1. 

We have demonstrated that the pressure pulse or a wave packet generate 
elastic waves. Now we will discuss the frequency response and pulse response 
of the medium of propagation.

A harmonic signal at the source can be presented as: f1(t) = eiωt. The response 
to this signal from the medium will be another signal delayed in time τ: f2(t 
+ τ) = eiω(t+τ). 

According to Eq. 1.1.3.2 any function f(t) can be presented in the form:

 ( ) ( ) ( )f t f t t dtδ τ
+∞

−∞

= −∫  (1.1.3.24)

Let assume that this function is generated at the source. We will be looking 
for the response of the rocks to that function. With the assumption that the 
medium is linear let suppose that the response to the Dirac’s delta function is 
θ(t) and the response to f(t) is the function:

 ( ) ( ) ( )g t f t dτ θ τ τ
+∞

−∞

= −∫  (1.1.3.25)

The function g(t) is called convolution between the functions f(τ) and θ(τ)
or f * θ. According to Eq. 1.1.3.24 the convolution between f(t) and δ(t) is again 
f(t). Therefore we have:

 ( )( ) ( ) ( ) ( )
0

t

f t f t d f tθ τ δ τ τ∗ = − =∫  (1.1.3.26)

If f(t) is a harmonic function f(t) = eiωt

 
its response g(t) according to Eq. 

1.1.3.25 is equal to:

( ) ( ) ( ) ( ) ( ) ( ) ( )i ti i tg t e t d e e t d t f t Hω τωτ ωθ τ τ θ τ τ ω
+∞ +∞

− −

−∞ −∞

= − = − − =∫ ∫  (1.1.3.27)

The coeffi cient H(ω)
 
in Eq. 1.1.3.27 is called transfer function:

 ( ) ( )i tH e t dtωω θ
+∞

−

−∞

= ∫  (1.1.3.28)
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The Laplace transform is similar to the Fourier transform. The difference 
between them is that the Fourier transform represents a signal as a 
superposition of harmonic functions, whereas the Laplace transform represents 
a signal as a superposition of time moments. The Laplace transform is a 
transformation from the time-domain (all inputs and outputs are functions 
of time) to the frequency-domain (the same inputs and outputs are functions 
of frequency:

 ( ) ( )
0

sts f t e dt
∞

−ℑ = ∫  (1.1.3.29)

The Laplace transform of δ (t – a) is:

 ( ) ( )
0

st ast a e t a dt eδ δ
∞

− −ℑ − = − =⎡ ⎤⎣ ⎦ ∫  (1.1.3.30)

We note that the Laplace transform of the Dirac’s delta function is 1: 

 ( ) 1tδℑ =⎡ ⎤⎣ ⎦  (1.1.3.31)

Therefore, the transfer function Eq. 1.1.3.28 is the Laplace transform Eq. 
1.1.3.30 of the impulse response:

 ( ) ( )H tω θ= ℑ  (1.1.3.32)

Any linear system is completely characterized by its impulse response. 
That means for any input the output can be calculated in terms of the input 
and the impulse response. The impulse response of a linear transformation is 
the image of Dirac’s delta function under the transformation. The impulse 
response and frequency response are very useful for characterizing linear 
time-invariant (LTI) systems. The system is linear, so it obeys the principle 
of superposition. Stated simply, if two signals are linearly combined and 
input them to the system, the output is the same linear combination of 
what the outputs would have been had the signals been passed through 
individually. The system is time-invariant, so its characteristics do not change 
with time.  A system’s impulse response is defi ned as the output signal that 
results when an impulse is applied to the system input. It allows us to predict 
what the system’s output will look like in the time domain. In a linear and time-
invariant system if we decompose the input signal into a sum of components, 
then the output is equal to the sum of the system outputs for each of those 
components. If the input signal is decomposed into a sum of impulses the 
output would be equal to the sum the impulse responses scaled and time-
shifted in the same way as the input impulses. An LTI system’s frequency 
response provides a similar function: it allows you to calculate the effect that 
a system will have on an input signal, except those effects are illustrated in 
the frequency domain.
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The impulse response of the square pulse in Fig. 1.1.3.1 as input to a LTI 
system is its Fourier transform presented in Fig. 1.1.3.2. Impulse response of 
the Bridgewater concert Hall to a single audio pulse is presented in Fig. 1.1.3.4. 
It is interesting to compare this data to the freeze-thaw resistance of concrete 
carried out by the Federal Highway Administration presented in Fig. 1.1.3.5. 
The pulse is input manually into the block. It is interesting to compare the 
seismogram in Fig. 1.1.1.5 to the impulse responses in Figs. 1.1.3.4 and 1.1.3.5.

If the rock were a LTI system the impulse or frequency response would not 
change with time. The frequency response of the rock would be the spectrum of 
its impulse response, which is also the reverse Fourier transform of the transfer 
function. Since the rock is a nonlinear medium this is not the case as shown. 

An important application of the Fourier transform has been for long 
time the construction of solutions of partial differential equations describing 
processes evolving in time from a given initial state as for example an elastic 
wave which waveform gets distorted during its propagation starting from a 
sinusoidal wave. However, Fourier analysis applications are restricted mostly 
to linear differential applications. Generalized Fourier transform can be used 
for solving some nonlinear equations, but is cannot be extended to more 
complicated problems involving higher order derivatives. This presents a 
signifi cant drawback for using the Fourier analysis tools for solving seismic 
wave propagation problems.

Fig. 1.1.3.4. Pulse response of the Bridgewater concert Hall.
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The Fourier transform is best to analyze stationary periodic functions 
which repeat themselves once per period without any modifi cations. The 
Fourier transform provides a single spectrum for the whole signal. For 
nonstationary waves frequency varies all the time, so at each moment it is 
important to know which frequency value is the dominant one. It is like to 
perceive a musical piece as a succession of single tones each one with its own 
spectrum, rather than as one big signal with an overall spectrum. In this case 
short-time Fourier transform is more appropriate. 

Short-time Fourier transform of a function at time t is the Fourier transform 
of that function analyzed through some time-limited window centered at t 
(Basford et al. 1992). By sliding the examination window along in time will 
produce a set of Fourier that constitutes short-time Fourier transform. Short-
time Fourier transform looks more appropriate for analyzing non-stationary 
elastic waves, but is has some weaknesses. If the examination window simply 
omits the signal outside the window, two problems are encountered. One 
is the sudden change in the power spectrum as a discontinuity enters or 
leaves the window, compounded by a lack of sensitivity to the position of 
the discontinuity within the window. The other problem is spectral leakage: 
if some component of the signal has a cycle time which is not an integral 
divisor of the window width, the transform exhibits spurious response at many 
frequencies. Also at high frequencies the number of waves in a window is high, 

Fig. 1.1.3.5. (a) FHWA test setup; (b) Pulse (time domain); (c) Pulse response (time domain); (d) 
Pulse response (frequency domain) (FHWA 2006).
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producing good accuracy in frequency measurement; yet the window width 
prevents good localization of signal discontinuities, which the high frequencies 
otherwise could provide. Narrowing the window width to accommodate 
more precise time-localization of discontinuities causes other problems. A 
narrow window width is inappropriate at low frequencies, because a narrow 
windowing function spans fewer cycles. It distorts the signal noticeably over 
one wavelength, degrading accuracy of frequency measurement. Indeed, 
wavelengths longer than the window width cannot be measured. From these 
considerations it seems advantageous to let the windowing function be broad 
for analyzing low frequencies and narrow for high frequencies.

An example of windowing function is the Gaussian function g(t) = e–at2

 The short-time Fourier transform at time τ can be expressed as:

 ( ) ( ) ( ), i t
gF t f t g t e dtωτ τ

+∞
−

−∞

= −∫  (1.1.3.33)

The response of the short-time Fourier transform centered at time τ = τ0 
to a pulse function δ(t – t0) 

occurring at time t = t0 is given by: 

 ( ) ( ) ( ) ( ) 0
0 0 0 0, i ti t

gF t t t g t e dt g t e ωωτ δ τ τ
+∞

−−

−∞

= − − = −∫  (1.1.3.34)

The power spectrum of the short-time Fourier transform is Fg(ω, τ0) = g2 

(t0 – τ0) 
or the power spectrum is the same for all frequencies. The cross-section 

of the transform at constant frequency produces a time-reversed copy of the 
windowing function. Thus, the width (standard deviation) of the windowing 
function limits the accuracy with which the impulse can be located in time.

The equation for Fg(t, τ) shows that the short-time Fourier transform is 
an integral of the product of the function f(t) with a set of basis functions 
g(t – τ)e–iωt which vary over frequency and time τ. All basis functions have the 
same time-amplitude envelope (Fig. 1.1.3.6). The short-time Fourier transform 
decomposes a signal into a set of frequency bands at any given time.

A wavelet transform is similar to short-time Fourier transform. It also 
decomposes a signal into a set of frequency bands (called scales), by projection 
the signal onto a set of basis functions called wavelets. Projecting the signal onto 
different scales is equivalent to bandpass fi ltering. The wavelet basis functions 
are similar to each other. They vary only by dilatation and translation (Fig. 
1.1.3.6). The wavelet transform basis functions are scaled in time to maintain 
the same number of oscillations and scaled in amplitude to maintain energy.
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1.2 Seismic wave parameters and characteristics

The elastic wave polarization is defi ned by the direction along which the wave 
displaces the ground particles during its propagation (Fig. 1.2.1).

A longitudinal elastic wave displaces the ground particles along the 
direction of its propagation, while a shear elastic wave moves the ground 
particles along some of the directions that are perpendicular to the direction of 
propagation of the wave. Two independent shear waves and one longitudinal 
wave can propagate in each direction in an isotropic infi nite solid. In plane-
wave approximation (the medium of propagation and the wave-front 
radius are considered to be infi nite) the two independent shear waves have 
fl at fronts and orthogonal polarizations. Their polarizations form a plane 
that is perpendicular to the direction of propagation (and polarization) of 
the longitudinal wave. Both shear waves propagate at the same velocity 
(degenerated waves). In anisotropic solids the two shear waves have different 
velocities of propagation—one fast and one slow shear waves. Any elastic wave 
carries some energy characterized by energy density (the amount of energy 
per unit volume) and energy vector (vector of Poynting). In isotropic solids the 
energy vectors of all three waves are parallel to the direction of propagation. 

Fig. 1.1.3.6. Wavelets.
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In anisotropic solids this happens only in certain directions called pure-mode 
axes. In any other direction of propagation the wave vector and the vector 
of energy point in different directions. The polarizations are not orthogonal 
anymore—they have overlapping components and their projections on each 
other are not zero. These waves are not purely longitudinal or shear anymore—
they are quasi-longitudinal and quasi-shear waves—qP-wave and qS-wave.

Many P- and S-waves reach the Earth’s surface and get refl ected back 
into the Earth’s interior splitting their energy among new body waves with 
different velocities and polarizations. However, some of the elastic waves reach 
the ground surface under specifi c angles of incidence called critical angles and 
get converted into surface elastic waves. The surface waves continue their 
propagation keeping their energy closely confi ned to the ground surface. 
Usually surface elastic waves are the most dangerous ones to man-made 
contractions located on the Earth’s surface because of their polarization and 
higher energy density. The specifi c conditions in which various types of surface 
elastic waves get created will be discussed later in this book.

The depth of the earthquake focus is an important parameter. In most 
earthquakes the hypocenter is located in the Earth’s crust at 10–20 km. 
Such shallow-focus earthquakes causes usually more damage to man-made 
constructions on the Earth’s surface than earthquakes with deep hypocenters 

Fig. 1.2.1. Body P-wave and S-wave, Rayleigh and Love surface elastic waves.
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located at hundreds of kilometers in the Earth’s mantle. The epicenter of 
an earthquake is the point at the Earth’s surface just above the focus of the 
earthquake. Deep earthquakes are not dangerous to man-made structures on 
the Earth’s surface because they do not create surface seismic waves and do 
not cause aftershocks. The aftershocks are observed often during earthquakes 
with sallow focus because they either come directly from the hypocenter or 
they are caused by refracted waves. 

If the earthquake’s focus happens to be located under the ocean’s bottom 
some P- and S-waves can reach the ground-water boundary. Depending on 
the angle of incidence these seismic waves could continue their propagation 
on the water-seabed interface as surface waves. In fl uids (air, water) only 
P-waves can propagate, S-waves are forbidden. Refractions at the water-
seabed boundary result in propagation in the water of P-waves only. The P- 
and S-waves reaching the water-seabed interface cannot cause a tsunami—a 
huge ocean wave that propagates on the surface across the ocean. Tsunami can 
be generated from an abrupt deformation of the seabed resulting in vertical 
displacement of huge volume of the overlying water. This abrupt deformation 
of the seabed will cause also an earthquake, so both tsunami and seismic 
waves are created independently. A tsunami can cause severe damages to the 
coastline as it happened to Fukushima, Japan, on March 11, 2011. On April 
1, 1946, a magnitude of 7.8 on Gutenberg-Richter scale earthquake occurred 
near the Aleutian Islands, Alaska. A tsunami was generated also which 
inundated Hilo on the island of Hawai'i 3,000 km away from Alaska with 
a 14-metre high surge. Both tsunami waves were caused by the moving by 
8–10 cm/year Pacific tectonic plate which was subducted and pushed 
downwards under the overriding North-American tectonic plate at the Ring 
of Fire under Alaska and under Honshu’s undelaying plate in Japan.

When P- and S-waves cross boundaries between rock masses with different 
elastic properties the get refracted (transmitted) or refl ected (sent back to the 
fi rst medium of propagation). Depending on the wave’s polarization and angle 
of incidence the refl ected wave could have the same polarization and velocity 
of propagation as the incident wave, or it could change its polarization and 
velocity of propagation. The refracted wave which starts crossing the new 
medium of propagation can keep its polarization or change it, but its velocity 
of propagation will be different because the second medium has different 
elastic properties. During all these transformations of the wave the energy is 
conserved—the newly created elastic waves with different polarizations and 
velocities of propagation share the energy of the elastic wave they originate 
from. If the elastic energy dissipation during the propagation is low the elastic 
waves can travel long distances crossing various rock masses, converting their 
polarizations, changing their velocities of propagation, and splitting their 
energy. All these waves create an elastic fi eld. This propagating strain-stress 
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fi eld is formed by bulk elastic longitudinal and bulk shears waves some of 
which could be registered by the seismic stations as aftershock P-waves and 
S-waves. 

In anisotropic solids three types of elastic waves with different 
polarizations can propagate in each direction—one longitudinal (P-wave) with 
particles moving in the direction of propagation and two transversal or shear 
waves (S1- and S2-waves) with particles moving in directions perpendicular to 
the direction of propagation and also perpendicular to each other as shown 
in Fig. 1.2.1 for a fl at-front wave (or plane-wave). The two S-waves propagate 
with different velocities and different wavelengths in an anisotropic medium 
and with the same velocity and wavelength in isotropic medium. The P-wave 
is always the fastest one followed by S1 (fast shear) and S2 (slow shear) in 
anisotropic medium. In an isotropic medium the two shear waves have the 
same velocity of propagation but the P-wave again is faster than them. In 
most cases the attenuation coeffi cient of the P-wave is slightly higher than 
the attenuation coeffi cients of the S-waves. In fl uids such as air or water only 
P-waves can propagate. Shear waves are forbidden. Boundary conditions of 
a free space do not allow propagation of S-waves. As we will see later in this 
book that the absence of shear waves in fl uids has an important consequence 
for earthquakes with epicenters in the ocean.

In isotropic medium the elastic waves could be assumed of being pure 
longitudinal or shear waves with their group-velocity vector (direction of 
energy transported by the elastic wave) and phase-velocity vectors (direction 
of propagation of the elastic wave) are parallel to each other. In anisotropic 
materials such as low-symmetry single crystals the phase and group velocities 
are parallel only in specifi c directions called pure-mode axes. In all other 
directions they are not parallel. The polarizations are not linear or orthogonal 
and the P- and S-waves are called quasi-longitudinal (qP-wave) and quasi-
shear (qS-wave). 

Various types of surface elastic waves exist. The most relevant to seismology 
are Love, Rayleigh, and Stoneley waves. The polarization of Love waves is 
always sidewinding—the particles are displaced in the plane of propagation 
of the surface wave perpendicularly to its direction of propagation. Rayleigh 
surface waves are rolling similarly to ocean waves. Their polarization is 
perpendicular to the direction of propagation and perpendicular to the surface 
of propagation. The vertical plane perpendicular of the surface of propagation 
is called sagittal plane. The ground particles follow elliptical orbitals in the 
sagittal plane. 

The surface elastic waves’ energy is confi ned close to the Earth’s surface. 
Their amplitude decreases exponentially in the bulk under the surface. 
Sometimes large rock slabs located close to the Earth’s surface can form 
boundary conditions that are similar to the boundary conditions in an acoustic 
waveguide. In these conditions Love waves are generated. The sidewinding 
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Love waves carry high energy density (W/m3) enclosed in the ‘acoustic 
waveguide’ formed by the rock slab because of the total internal refl ection that 
occurs on the slab’s boundaries. Only very small amounts of elastic energy 
could ‘leak’ to the outside ‘cladding’ of the rock ‘core’ so the wave can travel 
long distances in the waveguide keeping its energy density almost unchanged. 
Such guided surface waves are of the greatest danger to cities that happen 
to be located at their reach. Love waves require specifi c conditions to be 
created, namely a layered structure acting as a elastic waveguide. As we will 
see in Section 3.7.3, another type of Love-like surface waves exist in nonlinear 
dispersive media of propagation that do not require waveguide structures 
to grow and can be as destructive as Love waves. These waves are called 
skimming waves and they can grow only in nonlinear dispersive conditions 
which is probably the reason not to have attracted the attention of the 
seismological community. Figure 1.1.2.6  shows photos of railroad tracks near 
Bealville, California, where rails were bent and twisted by the 1952 Bakersfi eld 
earthquake caused by the White Wolf Fault (Photo: National Geophysical Data 
Center).  Many other photos of twisted railroads have been posted online 
from other more recent earthquakes around the world. At instance,  a couple 
of photos were posted by M. Teasdale after the September 4, 2010, earthquake 
in Cranbury, New Zeland (Teasdale 2010).  Assuming linear propagation of 
surface seismic waves it is diffi cult to explain why only short segments of the 
railroad were twisted and not the entire railroad. It seems that the sidewinding 
force was caused by a horizontally polarized seismic wave. It is possible that 
a Love wave twisted the rails if some geological layered structure existed in 
that location forming an elastic waveguide. It is also possible that a skimming 
surface wave grew locally because of strong local nonlinearity and dispersion 
causing a seismic beat and localized self-modulation.

Rayleigh waves are generated in a different way. They do not need 
waveguide conditions to propagate. They are generated more often than 
Love waves and cause less destruction than Love waves. Rayleigh waves 
are complex surface waves composed of one longitudinal component and 
one shear component. These two waves are coupled. This means that they 
propagate always together and cannot be exist separately and propagate 
independently. The shear wave moves the ground particles along elliptical 
trajectories laying in sagittal plane and following the longitudinal wave. They 
are called often rolling waves and look very much as ocean waves. The ocean 
waves get their energy from the wind, while Rayleigh waves get their energy 
from bulk elastic waves coming to the ground surface under a critical angle. 

The probability a bulk seismic wave to strike directly a city is much lower 
than the probability a surface elastic waves to do that. Bulk longitudinal and 
shear waves could strike and damage occasionally man-made constructions 
in the ground such as pipelines, tunnels, or water dams and cause various 
levels of damage depending on their polarization and power. 
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The frequency bands in physical acoustics are usually in the KHz, MHz, 
and GHz ranges. The seismic waves have much lower frequencies in the range 
from 0.01 Hz to 50 Hz. Human ear can detect acoustic waves (sound) from 
20 Hz to 20 KHz. Dog’s hearing frequency range is about three broader than 
human’s one—up to 60 KHz. Cats can hear sounds up to 79 KHz while bats 
up to 100 KHz. Stories have been reported that animals can register the fi rst 
seismic shakes of an upcoming earthquake and get agitated warning in this 
way humans. From the relation λ = V/ν = 2πV/ω where λ is the wavelength, 
ν is the frequency, ω = 2πν is the angular frequency, and V is the velocity of 
propagation of the seismic wave we can get some of the parameters. The 
acoustic wave velocity of propagation in solids is in the range between 2,000 m/
sec and 8,000 m/sec. Therefore the wavelength is 5.10–5 m for V = 5.103 m/sec 
at frequency of 100 MHz. The acoustic wave velocity in the air is 330 m/sec, in 
water –1,497 m/sec at temperature of 25ºC, and in granite –5.103 m/sec. These 
velocity values are for longitudinal waves only. Longitudinal waves move the 
particles of the medium of propagation along the direction of propagation. 
Only longitudinal waves can propagate in fl uids (air, water). Shear waves (or 
transverse waves) are prohibited in fl uids. Shear waves can exist only in solids. 
They move the particles of the medium of propagation perpendicularly to the 
direction of propagation. The direction of the displacement of the particles by 
an elastic wave is called polarization of the wave.

The seismic shock can last from hundreds of milliseconds to a couple 
of seconds. This means a row of elastic pulses are upcoming one after the 
other during this time period. In rare cases they can last longer—up to 
30–60 seconds—often followed by numerous aftershocks. The seismic waves 
can travel long distances before they lose their power because of the low 
attenuation coeffi cients of elastic waves in the Earth’s crust and mantle and 
also because of their low frequency. Longitudinal and shear bulk waves are 
always faster than surface elastic waves. For example, a bulk elastic wave 
with a velocity of propagation V = 4,000 m/sec and a frequency ν in the range 
between 0.05 Hz and 50 Hz the wavelength λ is in the range between 80,000 
m and 80 m. For a surface seismic wave propagating with a slower velocity 
of say 2,000 m the wavelength could vary between 40,000 m and 40 m. In 
physical acoustics usually frequency values are much higher corresponding 
to much shorter wavelengths than seismic waves. For instance, at 10 MHz a 
bulk waves with velocity of 4,000 m/sec will have a wavelength of 4.10–4 m 
(40 microns). The wavelength of a surface elastic wave propagating at 2,000 
m/sec will be 2.10–4 m/sec. The ratio between the wavelengths of 1 Hz wave 
and 10 MHz is 107. This means that a ‘microearthquake’ can be simulated in 
laboratory conditions by generating acoustic waves of 10 MHz in a 0.01 m-side 
cube cut from a rock. This would correspond to 1 Hz seismic waves generated 
in a 105 m (100 km)-side cube of Earth’s bulk. 
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1.3 The Earth’s body structure

The continental Earth crust’s thickness is about 40 km with a density estimated 
to be about 2.7 x 103 kg/m3 . The oceanic crust is thinner—5–10 km than the 
continental crust but it is denser—about 2.9 x 103 kg/m3. The Earth’s mantle 
is denser than the crust—3.3 x 103 kg/m3. The temperature of the mantle close 
to the bottom of the crust is between 500ºC and 900ºC, while on the bottom 
close to the core it is about 4,000ºC with a pressure of 136 x 109Pa. The velocity 
of propagation of a P-wave in the crust is about 6 x 103 m/sec while in the 
mantle it reached 13 x 103 m/sec. Most of seismic activities happen in the crust, 
however powerful bulk elastic waves could propagate in the Earth’s mantle 
as well. The boundary conditions between the mantle and crust are such that 
the transmission of bulk waves from the mantle into the crust is easier than 
the other way about—from the crust into the mantle. This is due to the higher 
elastic impedance of the mantle Z = ρ.V (ρ is the density than of the crust and 
V- velocity of propagation). As it will be discussed later in this book this 
means more elastic waves traveling through the crust will get refl ected back 
to it at the boundary with the mantle. The most seismically active part is the 
lithosphere where most of the seismic waves propagate. The Earth’s structure 
is shown in Fig. 1.3.1. The crust’s chemical composition is mostly silica (Si2O) 
60%, alumina (Al2O3) 15%, iron oxide (FeO and Fe2O3) 7%, lime (CaO) 5%, 
magnesia (MgO) 3%, sodium oxide (Na2O) 3%, potassium oxide (K2O) 3% 
and the rest is titanium dioxide, phosphorous pentoxide, water, and carbon 

Fig. 1.3.1. The Earth’s structure. 
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dioxide. All these oxides have very low elastic wave attenuation coeffi cients 
in the frequency range 0.5–50 Hz. 

The power loss per unit length of distance of propagation of elastic waves 
in solid media depends on many factors such as frequency, temperature, 
pressure, and attenuation coeffi cient of the medium of propagation. The 
heterogeneity of the Earth cause intense scattering of the elastic wave. Usually 
elastic waves can travel many kilometers before losing their power. 

It has been established that most rocks exhibit a strong nonlinear 
elastic response. Non-linear harmonics generation has been also observed 
in laboratory experiments (Johnson and Shankland 1989). Experimental 
investigations show that the earth’s crust is elastically nonlinear and contains 
the sources of accumulated elastic energy, so that it can be considered as a 
nonlinear active medium. The effects of stimulation of narrow- and broad-
band seismic emission and the existence of dominant frequencies for which 
the medium is transparent have been reported. The temporal evolution of 
chaotic signals results in the formation of quasi-sinusoidal steady-state wave 
trains (Beresnev and Nikolaevskiy 1993).

Dispersion is an important phenomenon which has a signifi cant impact 
on the seismic wave behavior and propagation. A pulse wave of a fi nite 
duration changes its waveform during propagation in a dispersive medium 
because its individual spectral components propagate with different velocities. 
Also resonance effects between high-order harmonics that are observed in 
nondispersive media do not occur in dispersive ones. Two types of dispersion 
can exist—dispersion associated with attenuation and scattering of the waves 
due to the structure of the medium of propagation, and dispersion which is 
due to the interference of the waves when they propagate in layered structures, 
waveguides, and free surfaces. Both types of dispersion can exist in the rocks.

In an isotropic elastic solid the energy transport velocity is equal to and in 
the same direction as the velocity of propagation of the elastic wave. In isotropic 
solids all directions are equal with respect to physical properties. All physical 
parameters involving some movement can be described with simple vectors. 
In anisotropic solids physical parameters vary depending on the direction in 
the space. Simple vectors cannot describe all physical parameters. In this case 
tensors are used to describe the physical properties. A vector is a tensor of fi rst 
rank. In an anisotropic solid tensors of higher ranks are used to describe various 
physical properties. Heterogeneous solids are not anisotropic solids. They are 
composed of various domains with different physical properties. Some of 
the domains can be isotropic or anisotropic. If an elastic wave is propagating 
initially in an isotropic domain where all physical properties are described 
by simple vectors or scalars only crosses the boundary with an anisotropic 
domain where birefringence occurs and physical properties are described by 
tensors the elastic wave will be modifi ed depending on its polarization. These 
modifi cations are very important especially for shear waves. It is interesting 
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to discuss how anisotropy can appear in the Earth’s crust. Actually anisotropy 
can be created in the crust through various mechanisms. For example an 
isotropic domain in the crust exposed to high pressure can become elastically 
anisotropic because its density in the direction of the pressure will be higher 
than in directions perpendicular to that direction. This will affect the velocity 
of propagation. There will be two different velocities in the direction of the 
pressure or perpendicularly to it. The velocity of the energy transport and 
the velocity of propagation of the elastic wave will differ by direction and 
by magnitude. Such induced seismic anisotropy is very similar to the elastic 
anisotropy of a ceramic cubic sample clamped in a vise. 

The Earth’s crust and mantle are neither purely isotropic nor anisotropic—
they are heterogeneous. Both isotropic and anisotropic materials are 
homogeneous. They are uniform in composition and their physical properties 
do not change along any direction in the space. Physical properties of 
isotropic materials are not only the same along any direction in the space but 
they are also the same for all directions in the space. Physical properties in 
isotropic media can be described by vectors and scalars. Physical properties 
of anisotropic materials are the same along any direction of the space but 
they vary with the direction in the space. Physical properties in anisotropic 
media can be described by tensors of various ranks. A tensor of fi rst rank is a 
vector. Figure 1.3.2 shows the optical indicatrices of fused quartz and trigonal 

Fig. 1.3.2. Optical indicatrices of isotropic fused quartz and anisotropic trigonal crystal of α quartz.
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single crystal of α-quartz. The optical indicatrix of fused quartz is a sphere 
with equal indices of refraction in all directions. The optical indicatrix of the 
α-quartz is ellipsoid with equal indices of refraction along the x- and y-axes 
and a different index along z-axis which is called optical axis. 

The Earth’s crust and mantle are neither purely isotropic nor anisotropic—
they are heterogeneous. A heterogeneous material is nonuniform. It is composed 
by diverse domains that can be connected or separated by other domains all 
having different physical properties. Various rocks are heterogeneous in a 
different way. Rock salt is composed by anisotropic single crystal which are 
oriented randomly in the space which makes them as a whole to behave as 
an isotropic solid. Brecca is a typical heterogeneous material composed by 
fragments of minerals cemented by material with different elastic properties. 
Flint is similar to brecca but it is composed by gig chunks of mineral quartz 
with superior elasticity behaving as an isotropic solid surrounded by soft chalk 
or limestone which has very different elastic properties that mineral quartz. 
Pumice is a porous volcanic rock composed of hard volcanic glass which as a 
uniform solid has also superior elasticity. 

All elastic waves that cross these domains with different elastic properties 
will be scattered or if transmitted they change their velocity of propagation. 
From λ = V/ν = 2πV/ω that means that the wavelength λ changes depending 
on V at constant frequency ν = const. However, in some cases the frequency 
is not constant; it changes with the velocity of the wave. When frequency 
changes when velocity changes it means that there is dispersion and the 
media is dispersive. 

Here there is something important to notice. All these different domains 
that form a heterogeneous medium are randomly oriented in the space. This 
means that at macroscopic scale the heterogeneous media have no preferential 
directions even if the domains are anisotropic. The heterogeneous medium 
would behave as an isotropic solid. 

Heterogeneity has a specifi c impact on elastic waves because these waves 
cross a great number of boundaries between adjacent domains which have 
different properties resulting in wave scattering, refl ection, and refraction. 
Here, however, is an important point. Elastic waves can get refl ected or 
transmitted only from objects that have bigger size than the wavelength. They 
get scattered from objects with equal or smaller size than the wavelength. If the 
dimensions of the randomly oriented in the space rock domains composing 
the heterogeneous Earth’s crust have dimensions smaller than the wavelength 
of the seismic waves they cause scattering but have little impact on the wave 
propagation; the seismic waves do not ‘feel’ the presence of these domains and 
propagates as in an isotropic medium. If the domains’ sizes are larger than the 
wavelength their boundaries have an impact on the waves’ propagation. The 
waves get refl ected and/or transmitted resulting in changes in polarization 
and velocity of propagation. 
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Rocks often have metal or metal oxides compositions. Metals are 
constructed by small single crystals that are oriented randomly in the space 
so their individual anisotropy does not affect the elastic waves that propagate 
in some direction. Metals and metal oxides of similar chemical composition 
form domains that have close to uniform distribution of density and elastic 
properties around the whole volume. Adjacent domains, however, could differ 
in density and elastic properties forming a heterogeneous structure. 

The boundary conditions of the domains modify not only velocity of 
propagation and polarization but also the fronts of the elastic waves. Also 
the wave’s polarization cannot be defi ned anymore as purely P- or S-type. 
The elastic waves in heterogeneous media of propagation are qP- and qS-
waves. Medium’s particles do not move on straight lines but follow complex 
trajectories that make the polarization a mixture of P- and S-modes which are 
not orthogonal to each other as it is in the case of a pure-mode plane wave.

In the hypocenter the bulk elastic wave may start its propagation as a 
longitudinal elastic wave. Through multiple refl ections, refractions, and mode 
conversions at the boundaries between domains this P-wave generates a 
multitude of new P- and S-waves. Because of the complex boundary conditions 
the fronts of the waves get distorted to the point where they cannot anymore 
be classifi ed as plane P-waves or S-waves. The elastic fi eld gets more complex 
and all incident P-waves and S-waves reach the Earth’s surface where under 
various angles of incidence laying in various planes. Many of these incident 
waves hit the surface under critical angles and form surface elastic waves 
some of which could have pretty well defi ned polarizations. The energy of the 
initial P-wave will be split among all new waves. All bulk P-, S-waves, and 
L-waves have the same frequency, but they all have different polarizations, 
wavelengths, velocities of propagation, and amplitudes. Because of the low 
attenuation in the metal oxide domains this multiplication process can continue 
longtime resulting in a great number of P- and S-waves propagating in all 
direction of the space randomly—they form an elastic fi eld. In the next section 
we will analyze the process of the elastic mode conversion that contributes 
to the formation of specifi c surface seismic waves that prove to be the most 
destructive to buildings and cities. 

1.4 Earthquake magnitude evaluation

Seismic waves with wavelengths of the order of dimensions of a building or 
shorter could cause worse damages if they hit such a building than waves 
with longer wavelengths because resonance effects. This can happen if the 
building gets in a cantilever resonance mode or standing elastic waves are 
created inside the building interior through refl ections as shown in Fig. 1.4.1. 
On the left side of Fig. 1.4.1 cantilever oscillations are shown with their fi rst, 
second, and third harmonics. On the right side a standing elastic wave is shown 
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in its fi rst harmonic. The standing wave created between the two refl ecting 
walls is formed by superposition of a great number of refl ected waves moving 
in opposite directions—from left to right and from right to left between the 
refl ecting walls. All these waves have gone through different numbers of 
refl ections from the walls but what is common to all of the waves that move 
in the same direction is that they will be all in phase if each wave changes its 
phase by 2π.n, where an n is an integer number, at each refl ection. When many 
in-phase waves move in the same direction a constructive interference occurs 
resulting in formation of a standing wave with larger amplitude than the 
amplitudes of the waves that form it. Separately twisting waves are generated 
as well rotating the building around its axis.

The cases of resonance shown in Fig. 1.4.1 can exit independently because 
they are caused by different oscillation modes. These are the simplest cases of 
resonance. There are many more possible resonance oscillations in the building 
that can occur when mechanical energy is supplied by an earthquake. For 
instance the building can also twist around its vertical axis or sidewinding. 
Being independent one from the other all these resonance conditions can 
exist individually at the same time. This means the building can oscillate as a 
cantilever, twist around is vertical axis, or be object of sidewinding motions. 
It is clear that all these modes of resonance oscillations can infl ict construction 
damages. To avoid resonance oscillations during earthquakes buildings are 
designed in such a way that resonance conditions cannot occur in the usual 
frequency range of earthquakes. 

Fig. 1.4.1. Standing elastic waves cause resonance.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18651-3&iName=master.img-028.jpg&w=251&h=186


Origin of Earthquakes and Seismic Waves 55

To fight the destructive power of seismic waves it is necessary to 
measure accurately all parameters that characterize the earthquake. In 1935 
Bruno Gutenberg and Charles Richter developed a scale that provides a 
relationship between the amplitude of oscillations measured by a seismometer 
at certain distance from the source of the earthquake and the magnitude of 
the earthquake. The seismometer measures the amplitude of the motion 
of the ground in microns (10–6 m). The Gutenberg-Richter magnitude scale 
is logarithmic which means that an earthquake of magnitude 5 is 10 times 
stronger than an earthquake of magnitude 4 and 100 time weaker than an 
earthquake of magnitude 7. The seismogram in Fig. 1.1.1.8 shows that the 
fi rst wave that has arrived to the seismometer from a distant earthquake is a 
fast P-wave followed by a slower S-wave. The slowest of all are the surface 
waves or L-waves, but their amplitude is much greater than the amplitudes 
of the P- and S-waves. 

The seismometer (called also seismograph) is a pretty simple machine. 
The principle of the detection of seismic waves has not evolved much since 
its invention in 132 AD in China. It represents a pendulum mass that moves 
when the ground shakes. The magnitude of the earthquake is estimated from 
the amplitude of the pendulum. Modern seismometers are more accurate 
since electronics and computers have been used to do the measurement. In 
modern seismometers the pendulum is kept immobile. What is measured is the 
force to keep it in its equilibrium position. During the earthquake tremor the 
force to retain the pendulum is proportional to the seismic wave’s amplitude 
in the point where the seismometer is located. In most of the models this 
force is measured as an electrical signal which is digitized and processed 
by a computer. Modern seismometers measure the pendulum force in two 
perpendicularly to each other axes in the horizontal plane and in the vertical 
axis.

The only way to fi nd out what type of seismic waves has taken part in a 
certain earthquake is the seismograms registered during the tremor. P-, S-, and 
L-waves are identifi ed from the time of their arrival knowing that P-waves are 
the fastest ones, followed by S-waves, and fi nally by L-waves. The last portion 
of the seismogram representing a series of oscillations after the passage of the 
surface waves is summarized as S-coda waves or coda (Kanamori 1978). The 
name ‘coda wave’ also is used when referring to wave trains except direct 
waves. The waves at the tails of direct P- and S-waves are called P- or S-coda. 
Continuous wavetrains between P and S arrivals and those following S-arrival 
have not been explained so far. The direct S-wave amplitude decreases with 
increasing the distance from the epicenter, while S-coda wave amplitudes 
keep almost the same level for long time irrespectively of the distance from 
the epicenter (Sato 1997). An interesting observation has been reported about 
coda wave following the direct S-wave. The coda waves are composed by 
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wavelets leaving the source region with the same slowness vector as the direct 
S-waves; however, later, S-coda waves are composed of wavelets leaving the 
source region in a variety of directions (Scherbaum et al. 1991). The transition 
between the two types takes place 1.5–2 times the S-wave travel time. It has 
also been observed that P-coda has almost the same propagation direction 
and velocity as the direct P-wave, while S-coda is composed by waves 
going in widely distributed directions of propagation and low semblance 
coeffi cient (Kuwahara et al. 1991). The data extracted from seismograms 
suggest the existence of heterogeneity in the Earth’s lithosphere. Broadening 
of the enveloped of the S-wave seismograms of earthquakes recorded at long 
distances between 100 and 300 km has been observed (Sato 1997). The source 
duration of an earthquake having local magnitude less than 5 is shorter than 
1s at close distances, while the duration of S-wave fi rst arrival packets at long 
distances is much longer than 1s. This envelop broadening has been explained 
as due to strong diffraction and multiple forward scattering caused by slowly 
varying velocity structure in the heterogeneous lithosphere. 

Table 1.4.1 summarizes the classes and magnitudes of according to 
Gutenberg and Richter scale. Earthquakes of number 9 or greater can cause 
ground topography changes resulting in devastating destruction to cities in 
the area. 

The seismic wave amplitudes are so large that it is almost impossible 
for a normal man-made structure to survive, regardless of how good the 
building design was made or how strong the construction materials were. 
Such powerful earthquakes are rare. Gutenberg and Richter noticed that the 
lower the magnitude of an earthquake the higher the number of repeating 
earthquakes. Great earthquakes repeat at much lower frequency. This 
relationship between magnitude and frequency of repeating earthquakes has 
been called Gutenberg-Richter law. 

From Table 1.4.1 we can see that there is some proportionality between the 
effect of destruction caused by an earthquake and its magnitude. However, 
earthquakes’ statistics shows that there have been many exceptions so this 
proportionality cannot be assumed as being always a rule. It has happened that 

Table 1.4.1. Gutenberg and Richter scale.

Class Gutenberg-Richter Effects Number/year

great >8 very destructive 0.1–0.2

major 7–7.9 serious damage 20

strong 6–6.9 a lot of damage in populated area 100

moderate 5–5.9 slight damage to buildings 500

light 4–4.9 felt with little damage 30,000

minor 3–3.9 felt with no damage 900,000
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earthquakes of light or moderate magnitude have caused bigger destructions 
than strong or even major earthquakes. It looks like measuring the amplitude 
using the Gutenberg-Richter scale is not enough to fully characterize an 
earthquake regarding the effects of its destructive power. For this reason 
seismologists usually describe an earthquake using both Gutenberg-Richter 
scale and Mercalli scale.

In 1884, 50 years before Gutenberg-Richter scale, the Italian volcanologist 
Guiseppe Mercalli introduced a scale that measures the effects of an 
earthquake. Originally it has been a ten-degree scale. Later the scale has been 
expanded to twelve degrees and completely redesigned. If Gutenberg-Richter 
base-10 logarithmic scale measures the ground displacement caused by the 
earthquake using a seismograph, the Mercalli scale is established by observing 
the effects of the earthquake on earth’s surface, objects, man-made structures, 
and humans (Table 1.4.1). Gutenberg-Richter scale is more technical than 
Mercalli scale but obviously it is not accurate enough to describe fully the 
parameters of an earthquake. 

The modifi ed Gutenberg-Richter scale is used to locate epicenters. This 
enables local building codes to establish standards for buildings which are 

 Table 1.4.2. Mercalli scale.

I. Instrumental Detectable by seismometers, but not felt by people.

II. Weak Felt by people only on upper fl oors of buildings.

III. Slight Felt by people, but many do not recognize it as an earthquake. Vibrations 
similar to those of a passing truck.

IV. Moderate Felt by all people. Some people wake up. Indoor objects shake. Cracking 
noise in the walls, but no damage.

V. Rather strong Felt by people indoor and outdoor. Dishes and windows may break. 
Possible slight damage to buildings. Few people are frightened. 

VI. Strong Felt by all. Frightened people run outdoors. Windows dishes break, ob-
jects fall off the shelves. Some damage to poorly designed buildings. 

VII. Very strong Diffi cult to stand. Felt by people driving cars. Slight damage in buildings 
of good design, moderate in ordinary buildings, considerable damage in 
poorly designed buildings. 

VIII. Destructive Slight damage in buildings of good design, considerable damage in nor-
mal buildings, great damage in poorly designed buildings. Heavy dam-
age in brick constructions. Heavy furniture move. 

IX. Violent People panic. Moderate damage in well-designed buildings, substantial 
damage in normal buildings with partial collapse. 

X. Intense Many well-done buildings destroyed. Most other structures destroyed 
with possibly shifted off foundations. Landslides. 

XI. Extreme Few buildings remain standing. Cracks and deformations of the ground. 

XII. Catastrophic Total destruction. Ground moves in waves. Large rocks move. Landscape 
altered. Rivers can change.
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earthquake resistant. However a series of great earthquakes were poorly 
handled by the modified Richter scale such as the 1952 Aleutian Fox 
Islands quake and the 1960 Chilean quake (Aki 1972). The diffi culties were 
explained with the size of these earthquakes that carried large amounts of 
energy. As a result, use of the modifi ed Richter scale methodology, to estimate 
earthquake energy, was defi cient at high energies (Kanamori 1978).

In 1972, Aki introduced elastic dislocation theory to improve understanding 
of the earthquake mechanism (Aki 1972). This theory proposed that the energy 
released from a quake is proportional to the surface area that breaks free, the 
average distance that the fault is displaced, and the rigidity of the material 
adjacent to the fault. 

As it was pointed out earlier the type of a seismic wave and its polarization 
can have bigger impact to man-made structures than the magnitude of the 
earthquake. Neither Gutenberg-Richter nor Mercalli scale can characterize 
accurately an earthquake if used separately, however used together they 
complement each other. Farther in this book it will become clear why the 
magnitude of an earthquake is not necessarily the most important parameter 
and why the type of the elastic wave and its polarization could cause more 
damaging effects to buildings. Studying the properties of various types of 
bulk and surface elastic waves that can be generated and can propagate in 
areas with specifi c geological structures can help to answer the question 
what strategy would be more appropriate to fi ght the destructive power of a 
specifi c earthquake: to design buildings and use construction materials that 
are expected to withhold the seismic power or to design systems around 
cities that are capable to attenuate or defl ect coming seismic waves. In certain 
geological systems it is possible to predict accurately the type of seismic waves 
and their characteristics that will occur during an eventual earthquake. In such 
cases it will be more effi cient to design defensive systems around the cities 
capable of refl ecting, diffusing, damping, or defl ecting away seismic waves 
instead of relying solely on the strength of structures. This is a new and little 
explored fi eld that could open the doors to a new world of opportunities for 
fi ghting the devastation consequences of earthquakes. Looking for solutions 
to defl ect or dissipate seismic waves before they reach cities could change 
the whole concept of planning and designing man-made structures in areas 
where earthquakes often occur. 

1.5 Linear elasticity theory

The main effect of an earthquake results in propagation of bulk longitudinal 
and shears seismic waves in the Earth’s crust or mantle as well as surface 
seismic waves on the Earth’s surface. In this chapter it will assume that all 
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seismic waves—both bulk and surface—are elastic waves that linear and 
propagate in linear, isotropic, non-dispersive media. Usually seismic waves 
are nonlinear elastic waves and propagate in nonlinear, heterogeneous, 
anisotropic, dispersive media. We note that wave dispersion may be caused 
by attenuation and scattering of the waves in the medium of propagation 
(materials dispersion), and layered structures, waveguides, and free surfaces 
causing interference of the waves. Surface elastic waves are dispersive waves 
by their nature because usually they propagate on a half-space boundary 
surface. In many cases the linear approximation is pretty close to reality 
and can help to understand various phenomena. The way rocks deform is 
important for the analysis of seismic wave propagation. With respect to their 
elastic properties materials are (Nelson 2003): 1) brittle materials with large 
range of linear elasticity and small range of ductile behavior before fracture, 
and 2) ductile materials with small range of linear elasticity and large range 
of ductile elasticity before fracture (Fig. 1.5.1). Near the surface of the Earth 
behave in a brittle manner (Fig. 1.5.2.). 

Crustal rocks are composed of minerals like quartz and feldspar which 
have high strength, particularly at low pressure and temperature. As we go 
deeper in the Earth the strength of these rocks initially increases. At a depth of 
about 15 km we reach a point called the brittle-ductile transition zone. Below 
this point rock strength decreases because fractures become closed and the 
temperature is higher, making the rocks behave in a ductile manner. At the 
base of the crust the rock type changes to peridotite which is rich in olivine. 
Olivine is stronger than the minerals that make up most crustal rocks, so the 
upper part of the mantle is again strong. But, just as in the crust, increasing 
temperature eventually predominates and at a depth of about 40 km the brittle-
ductile transition zone in the mantle occurs. Below this point rocks behave in 
an increasingly ductile manner.

The crust of the Earth is composed of a great variety of igneous, metamorphic, 
and sedimentary rocks. The oceanic crust of the sheet is different from 
its continental crust. The oceanic crust is 5 km to 10 km thick and is composed 
primarily of basalt, diabase, and gabbro. The continental crust is typically from 
30 km to 50 km thick and is mostly composed of slightly less dense rocks than 
those of the oceanic crust. Some of these less dense rocks, such as granite, are 
common in the continental crust but rare to absent in the oceanic crust. The 
seismic activities in the crust are usually the cause of earthquakes with high 
impact on the Earth’s surface because the crust’s brittle rocks a good medium 
of propagation for seismic waves. Brittle rocks form a low attenuation medium 
of propagation for longitudinal, shear, and surface elastic waves. The ductile 
rocks dissipate the elastic energy. Elastic waves cannot travel such long 
distances in ductile rocks as they do in brittle rocks. 
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1.5.1 Static elasticity. Strain-stress relationship

A seismic shock caused by some disturbance somewhere deep under the 
Earth’s surface in the crust or mantle releases great amount of mechanical 
energy per unit of volume. The surrounding rocks are static, they do not 

Fig. 1.5.1. Brittle and ductile stress-strain relationship.

Fig. 1.5.2. Brittle and ductile rock.
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move. Therefore the released mechanical energy cannot be kinetic energy; it 
is a potential energy. This potential energy is similar to the energy stored in 
compressed spring (Fig. 1.5.1.1). In this case the role of the spring is played 
by the rocks in the closest proximity to the focus. They are compressed, but 
the surrounding rocks retain them and do not let them to expand. Since the 
surrounding rocks are also immobile they will apply pressure (=force per 
unit of surface in N/m2 or stress T) to the next layer of rocks. This pressure 
will propagate farther in the rock mass as a pressure wave. The process will 
last until the stored potential energy is totally dissipated in the rock mass 
and all rocks go back to equilibrium. The pulse lasts until the equilibrium is 
established. The potential energy is converted into kinetic energy and carried 
away by the pressure pulse that propagates across the rock mass as a pressure 
wave. Usually a series of aperiodic pulses—a pulse train—are generated in 
the hypocenter. They come one after the other at various intervals of time. 
Usually each pulse lasts in the range of milliseconds to seconds. 

The rocks are not ideally rigid solids. The stress results not only in a 
pressure wave but also in a deformation or strain S. As all real solids the stress 
on the rocks results in some strain the level of which depends on where the 
rock scores between elasticity and plasticity. Elastic solid returns back to its 
initial shape when the stress stops acting. Ideally elasticity means that the solid 
will fully recover after the stress, while ideal plasticity means that the solid 
will remain deformed after the stress stops acting and will never recover to 
its initial shape. Of course there are various solids; some are more elastic than 

Fig. 1.5.1.1. Deformation of a spring. Hooke’s law. 

ELASTICITY
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others. This means that they all get strained when stress is applied to them, but 
they go back to equilibrium in a different way. This strain is translated into a 
mechanical deformation (or displacement of particles) that form the rock. Since 
the particles are displaced from their equilibrium positions the rock reacts with 
an internal force that is trying to restore the equilibrium. An ideally rigid solid 
will not get deformed under stress. Therefore there would be no relationship 
between stress and strain. Real solids, however, get deformed and resist to the 
deformation trying to go back to equilibrium. If the stress—strain relationship 
is a straight line, which means that with increasing or decreasing stress strain 
follows a straight line without any hysteresis, Hooke’s law rules in the range 
of linear elasticity only. In one dimension as the spring shown in Fig. 1.5.1.1 
Hooke’s law is F = kΔx, where F is the external force (stress) extending the 
spring and Δx is the deformation (strain) of the spring. The constant k is a 
positive number that characterizes the material of the spring. 

Often Hooke’s law is written in the form: F = –kΔx, where F is the internal 
force trying to restore the initial equilibrium status of the spring acting in the 
opposite direction.

 In the case of three-dimensional elastic solid the external force applied to 
it will cause deformation. Depending on the elastic properties of the solid this 
will result into an internal reaction force trying to restore its initial equilibrium 
state (Fig. 1.5.1.2). The stress Tij and the strain Skl are tensors of second rank. 
The Hooke’s law for a solid deformed by an external force is a linear stress-
strain relationship:

 ij ijkl klT c S=  (1.5.1.1)

Fig. 1.5.1.2. External force (stress) causes a deformation (strain) Sij expanding the solid. 
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In Eq. 1.5.1.1 the coeffi cients cijkl are called elastic stiffness coeffi cients. 
They form a tensor of rank four. We note that in the case of the one-dimensional 
spring the deformation is on the same axis X as the internal restoring force. 
In the case of a three-dimensional solid the deformation along the x-axis of 
the cube will result not only in a restoring force along the x-axis but also in all 
other directions (Fig. 1.5.1.2). The tensor equation Eq. 1.5.1.1 can be presented 
also in the following matrix form by replacing the indices cijkl = cαβ = cβα 

with α, 
β = 1, 2, 3, 4, 5, 6. We have (α, β) = (β, α) because of the index symmetry. With 
1 → 11, 2 → 22, 3 → 33, 4 → 23 = 32, 5 → 13 = 31, 6 → 12 = 21 Eq. 1.5.1.1 can 
be rewritten in matrix form:

 

1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

4 41 42 43 44 45 46 4

5 51 52 53 54 55 56 5

6 61 62 63 64 65 66 6

T c c c c c c S
T c c c c c c S
T c c c c c c S
T c c c c c c S
T c c c c c c S
T c c c c c c S

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 (1.5.1.2)

Matrix multiplication yields to the stress components:

 

1 11 1 12 2 13 3 14 4 15 5 16 6

6 61 1 62 2 63 3 64 4 65 5 66 6

......................................................................
T c S c S c S c S c S c S

T c S c S c S c S c S c S

= + + + + +

= + + + + +

The symmetry of the material will simplify the matrix. For example in the 
case of a material of cubic symmetry we have:

 

11 12 12

12 11 23

12 12 11

44

44

44

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c c
c c c
c c c

c
c

c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (1.5.1.3)

The matrix Eq. 1.5.1.3 for isotropic material is the same as for cubic crystal 
but in this case c44 = (c11 – c12)/2. In the case of a cubic crystal the matrix Eq. 
1.5.1.3 is the same but this time c44 is not necessarily related to c11 and c12. Each 
component of the stress can be obtained by multiplying the matrices of the 
compliance constants and the strain. 
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The tensor cijkl 
can be presented in the following form:

 ( )1 2ijkl ij kl ik jl il jk ij kl ik jl il jkc λδ δ μ δ δ μ δ δ λδ δ μ δ δ δ δ= + + = + +  (1.5.1.4)

with μ = μ1 + μ2 because of the symmetry of the tensor (α, β) = (β, α). λ and μ are 
called Lamé constants and δmn = 0 if m ≠ n and δmn = 1 if m = n. The isotropic 
medium tensor Eq. 1.5.1.3 will have the following components: 

 

11 22 33

12 23 13

11 12
44 55 66

2

2

c c c
c c c

c cc c c

λ μ
λ

μ

= = = +
= = =

−
= = = =

 (1.5.1.5)

Of course the stress cannot be increased infi nitely. Each real solid has an 
upper limit of stress above which the stress-strain relationship is not linear 
anymore. At this point starts the range of ductile elasticity where the stress-
strain relationship is not linear any more. Further increase of stress at the end 
of the ductile elasticity the solid will fracture (Beer 2009).

In the focus of the earthquake a stress-strain elastic fi eld is created where 
the stress is the force applied per unit surface to the surrounding rocks. 
Depending of the seismic force and elastic properties of the rocks this will 
result in strain following the linear Hooke’s law or the ductile curve. The rocks 
resist to the stressing force trying to return back to equilibrium. This situation 
is similar to the solid cube in Fig. 1.5.1.2. As a result of the stress the cube 
gets deformed (strained). Being an elastic solid if released it will stretch and 
bounce back to equilibrium retaking its initial shape. The stress-strain fi led in 
the earthquake’s focus causes the propagation of an elastic pulse wave with 
a semi-spherical front. As all solids the components of the Earth’s crust and 
mantle have their ranges of linear elasticity, ductile elasticity, and fracture. 
The size of the focus of the earthquake and the elastic properties of the rocks 
will determine the parameters of the stress wave and its amplitude. Further 
propagation of the stress wave and its attenuation will be determined by the 
scattering in the heterogeneous structure of the rocks in the adjacent areas. 
Usually the stress wave is longitudinal elastic wave because the S-waves in 
heterogeneous media have much higher attenuation.

At the hypocenter a compressional pulse (or a series of compressional 
pulses) is generated by the seismic disturbance. The compressional pulse 
applies a stress on the surrounding rocks. The stress is translated into a 
mechanical deformation or displacement of particles of the rocks. Since the 
particles get displaced from their equilibrium positions the rock reacts with 
an internal force that is trying to restore the equilibrium. Figure 1.5.1.3 shows 
the deformation of the rock between two points A and B. The displacement 
between A and A’ is →uA and between B and B’ is →uB with 

A Bu u du= +
��� ��� �

 and i
i

udu dx
x
∂

=
∂

�
�

.

  



Origin of Earthquakes and Seismic Waves 65

The displacement resulting from the application of the force is 

 ( ) ( ) ( ) ( ) ( )2 2 2
' 2 .d x d x d x du du= + +
�� � � � �

and also 

 ( ) ( )2 2
' 2 2 i k k

i i j j i j i j
j i j

u u ud x d x dx du du du dx dx dx dx
x u u
∂ ∂ ∂

− = + = +
∂ ∂ ∂

�� �
. 

Since (i, j) = (j, i)
 
which means that we get 

 ( ) ( )2 2
' 2ji k k

i j ij i j
j i i j

uu u ud x d x dx dx S dx dx
x x u u

⎛ ⎞∂∂ ∂ ∂
− = + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

�� �

with:
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ji k k
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j i i j

uu u uS
x x u u

⎛ ⎞∂∂ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (1.5.1.6)

If the deformation is small the quadratic term in Eq. 1.5.1.6 can be neglected 

because 1i

j

u
u
∂
∂
� . In this case we have the linear elasticity strain relation: 

 
1
2

ji
ij ji

j i

uuS S
x x

⎛ ⎞∂∂
= + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (1.5.1.7)

The approximation 1i

j

u
u
∂
∂
�

 

is linearizing Eq. 1.5.1.6 resulting to Eq. 1.5.1.7.

Fig. 1.5.1.3. Deformation of the medium of propagation.
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On the other hand the stress can be defi ned as the derivative of the 
compressional force applied in direction i to an element of surface a 
perpendicular to the axis k: 

 i
ik

k

dFT
da

=  (1.5.1.8)

An ideally rigid solid will not get deformed under strain; there is no 
relationship between strain and deformation. Real solids, however, get 
deformed and resist to the deformation trying to reach again equilibrium. 

Since cijkl = cklij 
stress can be expressed as a function of deformation and we 

obtain the expression of Hooke’s law (Eq. 1.5.1.1). We also have cijkl = cjikl = cijlk 
= cjilk. The stiffness constants have large values for rigid materials and small 
values for easily deformable solids.

Using Eq. 1.5.1.2 and Eq. 1.5.1.4 the stress-deformation relation can be 
expressed by: 

 i
ij ijkl

k

uT c
x
∂

=
∂

 (1.5.1.9)

The strain can be expressed as a linear function of the stress:

 ij ijkl klS s T=  (1.5.1.10)

In Eq. 1.5.1.10 the constants Sijkl are called compliance constants. They 
measure the deformability of solid. They small values for rigid materials and 
large values for easily deformable solids. Stiffness is measured in N/m2, as 
well as compliance because strain is dimensionless. Stiffness range is 109N/
m2 for soft materials like rubber and 1010N/m2 for rigid materials like crystals 
and rocks. Compliance range is 10–9 for rubberlike materials and 10–11 for rocks. 
Stress is in the range 107–108N/m2 with strain ~10–4–10–3.

Typical characteristics of a propagating elastic wave are its amplitude A, 
frequency ν, wavelength λ, phase velocity V, polarization (defi ning the wave’s 
type or mode), and group velocity G (or energy fl ux, or Poynting vector). If the 
amplitude in the point z = 0 is A0 the amplitude in the point z is A = A0e

–αz, where 
α the attenuation coeffi cient of the elastic wave in dB per unit distance. We note 
that α is a function of frequency ν, temperature T, and medium attenuation 
coeffi cient α'. In the Earth’s crust around 1 Hz α~ 10–3db/m. 

  



2
Body Elas  c Wave Propaga  on

In this Chapter we will discuss topics related to linear and nonlinear elastic 
wave propagation. Emphasis will be put on nonlinear wave propagation, 
because nonlinear phenomena are the most relevant to seismic waves and 
earthquakes. If the world were linear, there would be no earthquakes. Linear 
wave propagation will be discussed only as an approximation to the nonlinear 
wave processes. 

2.1 Dynamic elasticity 

The equation of wave propagation results from Newton’s law: F
�

 = ma
�
. Since 

the force density (=force par unit volume) with a stress Tij is given by ij
i

j

T
f

x
∂

=
∂

 

the acceleration of a rock mass par unit of volume ρ (=density) is given by:

 
2

2
iji

j

Tu
t x

ρ
∂∂

=
∂ ∂

 (2.1.1)

With the expression of the stress Tij from Hooke’s law we get the equation 
of wave propagation:

 
2 2

2
i l

ijkl
j k

u uc
t x x

ρ ∂ ∂
=

∂ ∂ ∂
 (2.1.2)

The solution of this equation for a plane wave propagating in a direction 
defi ned by n

�
(n1, n2, n3) is:

 
. j jo o

i i i

n xn xu u F t u F t
V V

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

���

 (2.1.3)
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In this expression V is the wave phase velocity and uo
i is the amplitude of 

displacement of the particles by the wave (polarization) which is parallel to 
the direction of propagation for a P-wave and perpendicular to this direction 
for an S-wave. By replacing ui in the equation of propagation we get:

 2 o o o
i ijkl j k l il lV u c n n u uρ = = Γ  (2.1.4)

This equation is called Christoffel’s equation.

 2o o
il l iu V uρΓ =  (2.1.5)

The wave phase velocity and polarization can be found from the 
Christoffel’s equation by calculating the eigenvector and eigenvalues of the 
secular equation:

 2 0il ilVρ δΓ − = 0ilδ = i l≠with if  (2.1.6)

If a plane wave propagates in an isotropic continuum by using the Lamé 
coeffi cients:

 
11 12

2
c cλ μ +

+ = 11 12

2
c cμ −

=,  (2.1.7)

Christoffel’s propagation tensor becomes:

 ( )il i l il k kn n n nλ μ μδΓ = + +  (2.1.8)

There are two possible solutions to this equation—one corresponding to 

a longitudinal wave with phase velocity 
11c /PV ρ=  and one corresponding 

to a shear wave with velocity ( )11 12 / 2SV c c ρ= − . It is clear that always 
the longitudinal wave is faster than the shear one because VS < VP. Since 
the solutions of the Christoffel’s equation are the same for any direction of 
propagation in an isotropic medium of propagation we can conclude that these 
solutions are valid for any elastic wave in an isotropic medium, not necessarily 
just the plane ones. As we know this result is valid for seismic waves as well. 
The P-waves is always faster than the S-wave. This does not mean that we can 
make the conclusion that all seismic waves are linear elastic waves, nor that 
the Earth is an isotropic continuum. However, this result confi rms that seismic 
waves are elastic waves. We will come to this discussion later in the book. 

2.2 Refl ection, refraction of elastic waves. Critical angles

In the previous section we demonstrated that in the earthquake focus the 
seismic shock generates bulk elastic waves in a certain frequency bandwidth. 
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These waves start their propagation in all directions initially with a semi-
spherical front that gets progressively deformed as the waves cross various 
rock layers which form the heterogeneous structure of the Earth’s before they 
reach the Earth’s surface. At the boundaries between the rock domains the 
elastic waves undergo refl ections, refractions, and mode conversions. Since the 
attenuation coeffi cients of metal-oxides rocks are very small a great number 
of elastic waves of various polarizations propagate in all directions forming 
diffuse elastic fi eld. Such diffuse elastic fi elds exist almost permanently in the 
Earth’s bulk without having any earthquake effects. 

In this section we will see that elastic waves refl ect and refract in a more 
complex way than light (electromagnetic waves) when crossing boundaries 
between media with different physical properties. If a plane-frontoptic wave 
crosses the boundary between two media with different optical properties 
(indexes of refraction) the refl ection and refraction create new waves following 
Snell’s law. Optic Snell’s law is simpler—the only parameter that changes 
is the refraction angle as a function of indexes of refraction and angle of 
incidence. Elastic Snell’s law is much more complicated and in certain cases 
only numerical computing can solve the problem of refl ection and refraction. 
If the direction of propagation, polarization and amplitude of the incident 
wave, and the elastic properties of both media of propagation are known the 
problem of refl ection and refraction consists in determining the directions of 
propagation, polarizations, amplitudes, and directions of group velocities. The 
starting point of the calculation is the boundary conditions between the two 
elastic media. If the two media are in contact then the boundary conditions are 
defi ned by 1) continuity of the displacement of particles at the interface, and 2) 
continuity of the elastic strain on each point of the boundary interface. In the 
simple case of free boundary of a solid in contact with air there is no refracted 
(transmitted) wave trough the boundary. There will be refl ected waves only. 
The boundary condition in this case is very simple: the elastic strain is zero at 
each point of the interface boundary. 

Consider two isotropic media 1 and 2 in contact. The boundary conditions 
are defi ned by 1) continuity of the displacement of particles at the interface, 
and 2) continuity of the elastic stress on each point of the boundary interface. 

 1 2V V=
�� ���     

1 2T n T n⋅ = ⋅
�� � ��� �

 (2.2.1)

Since plane wave is described by ( )x y zi k x k y k zik re e− + +− ⋅ =
� �

 the incident, refl ected, 
and transmitted wave should have the same component of k

�
 parallel to the 

boundary. From 
2 2k

V V
π πν ω
λ

= = =
�

 
we can obtain Snell’s law for an incident 
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elastic P- or S-wave under an angle of incidence θ formed between the 
boundary and the vertical line defi ned by n

�
. 

 1 1 2 2
1 1 2 2

sin sin sin sinP S P S
P S P SV V V V
ω ω ω ωθ θ θ θ= = =  (2.2.2)

In Eq. 2.2.2 

1 1 1
P P P

I Rθ θ θ≡ = 1 1 1
S S S

I Rθ θ θ≡ = 2 2
S S

Tθ θ≡ 2 2
P P

Tθ θ≡; ; ;

Snell’s law in electromagnetism is:

 1 1 2
1 1 2

sin sin sinI R TV V V
ω ω ωθ θ θ= =  (2.2.3)

We can see that Eq. 2.2.3 is much simpler than Eq. 2.2.2.

In the simple case of a free boundary of a solid in contact with a fl uid there 
is no transmitted (refracted) elastic wave trough the boundary. There will be 
refl ected waves only. The boundary condition in this case is very simple: the 
elastic strain is zero at each point of the interface boundary 

→
T1 

. n
�

 = 0.

Figure 2.2.1a shows the simplest case of a SH-wave polarized || to the 
boundary. Figure 2.2.1.b and Figure 2.2.1.c show the refl ection and refraction 
of an incident P-wave and an incident SV-wave (the vertical polarization 
is in the plane ┴ to the boundary, called sagittal plane). In both cases two 
refl ected and transmitted waves—one P-type and one SV-type—are created. 
The P-waves are always faster than the S-waves. The intersection point of all 
refl ected and refracted waves of a specifi c mode form a closed curve in the 
space called slowness surface. 

 Figure 2.2.2 shows the slowness surfaces on a boundary between isotropic 
fused quartz and anisotropic α-quartz (α-SiO2). The slowness surfaces of 
anisotropic solid such as α-quartz are usually three—one for the P-wave, one 
for the faster S1-wave and one for the slower S2-wave. Both S-waves have 
perpendicular polarizations and equal velocities of propagation (degenerated 
S-waves) in certain directions called pure-mode axes. In the general case the 
S1- and S2-waves are quasi shear waves and propagate with different velocities. 
At a boundary with an isotropic solid as shown in Fig. 2.2.2 their refracted 
components become degenerated waves. The slowness surfaces of isotropic 
solids are always two spheres, one with bigger radius (S-wave) than the 
slowness sphere of the P-wave. The intersection point of the slowness surfaces 
for P-waves and S-waves are shown in Fig. 2.2.1 (the vertical dashed line). Since 
P-waves are faster than S-waves their slowness surface will be enclosed in the 
slowness surface of S-waves. Their angles of refl ection and transmissions are 
bigger than the angles of refl ections of S-waves. We remind that the two media 
in Fig. 2.2.1 are isotropic. In some cases of anisotropic media the refraction is 
more complex and it not always possible to determine the slowness surfaces 
as a set of intersection points. 
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Fig. 2.2.1. (a) SH-wave incidence; (b) SV-wave incidence; (c) P-wave incidence.

a

b

c
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2.2.1 SH-, SV-, and P-wave incidence 

The simplest case of refraction is when a horizontally polarized (the 
displacement of the particles is in the plane that is parallel to the boundary 
between media 1 and 2) shear wave—a SH-wave (Fig. 2.2.1a). In this case 
the polarization does not have any component on the axis perpendicular to 
the boundary. The energy of the incident SH-wave will be split between a 
refl ected SH-wave propagation back into medium 1 under the same angle as 
the incident HS-wave and a transmitted SH-wave which angle will depend 
on the ratio of the velocities in medium 1 and medium 2. 

From the boundary conditions (Eq. 2.2.1) it follows that an incident 
to the boundary between the media 1 and 2 shear wave with a horizontal 
polarization (displacement of particles is parallel to the boundary) the refl ected 
and transmitted waves will have the same polarization. All refracted waves 
are SH-waves because there is no polarization component on the vertical line 
defi ned by n

�
. In this case the Snell’s law is:

 1

2

sin
sin

SH
I
SH

T

V
V

θ
θ

=  (2.2.1.1)

The reflection and transmission coefficients are functions of elastic 
impedances of the two media:
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 (2.2.1.2)

Fig. 2.2.2. Slowness surfaces on a boundary between isotropic fused quartz and anisotropic quartz.
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For an elastic wave falling normally to the boundary we get:
 1 2 1 2

1 2 1 2

/ 1
/ 1

SH Z Z Z ZR
Z Z Z Z
− −

= =
+ +

 
1 1 2

1 2 1 2

2 2 /1
/ Z 1

Z Z ZT R
Z Z Z

= − = =
+ +  (2.2.1.3)

If Z2/Z1 < 1 the refl ection coeffi cient will go to zero for an angle of incidence 

2

1

cos cos
critical

SH SH
I T

ZArc
Z

θ θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and no refl ection back into medium 1 will take 

place—there will be total transmission into medium 2. If V2
SH/V1

SH > 1 for all 
angles of incidence θI

SH > θSH
Icritical

 a total refl ection back into medium 1 occurs 
with an evanescent transmitted HS-wave into medium 2. In this case the 
refl ection coeffi cient goes to 1. 

In oblique incidence the reflection and transmission coefficients 
depend on the angle of incidence, therefore on the velocity ratio V2/V1 
according to Eq. 2.2.1.1, and the impedance ratio according to Eq. 2.1.2.2 
of the media 1 and 2. If V2/V1 < 1 then θt

SH > θSH
I      

and if Z2/Z1 < 1 there is 
no critical angle for the transmitted wave and for some angle of incidence 
R goes to 0. If Z2/Z1 > 1 the refl ection coeffi cient never becomes 0. For V2/
V1 > 1 there is a critical angle where total refl ection occurs. The wave is 
refl ected entirely back in medium 1 while the transmitted wave’s amplitude 
in medium 2 is evanescent. R becomes 0 only when Z2/Z1 > 1 because in this 
case θT

SH > θSH
I    

.   
The coeffi cients of refl ection and transmission of the elastic SH-waves 

depend on the angle of incidence and the impedance and velocity ratios of 
the two media 1 and 2. In the case of V2

SH/V1
SH < 1 we have θT

SH/θ SH
I       

< 1 and 
therefore there is no critical angle. If Z2/Z1 < 1 the refl ection coeffi cient will go 
to zero for an angle of incidence θSH

Icritical 
and no refl ection back into medium 1  

will take place—there will be total transmission into medium 2. If V2
SH/V1

SH < 1 
for all angles of incidence θI

SH > θSH
Icritical 

a total refl ection back into medium 1 
occurs with an evanescent transmitted SH-wave into medium 2. In this case 
the refl ection coeffi cient goes to 1. 

The SH-wave refl ection and refraction (transmission) only SH-waves are 
involved—one refl ected and one refracted (transmitted). There is no P-wave. 
The case of SV-wave (vertically polarized) as shown in Fig. 2.2.1b is different—
both SV- and P-waves are excited as refl ected and transmitted waves. The 
detailed calculation method of the refl ection and transmission coeffi cients 
can be found in Auld (Auld 1973). The calculation of critical angles and exact 
refl ection and transmission coeffi cient requires numerical computation. Similar 
is the case of an incident P-wave.

2.2.2 Free solid-fl uid boundary
In the case of a free boundary a solid is in contact with a fl uid—air, water, 
etc. There are only refl ected waves in the solid. No waves are transmitted 
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into the fl uid. P-waves are allowed to propagate in a fl uid. S-waves are 
prohibited. However the elastic impedance of a solid is much higher than the 
elastic impedance of a fl uid, so if a P-wave is incident to the free boundary 
the refl ection coeffi cient will be close to 1 because Z2/Z1 << 1. The boundary 
condition for an incident wave is simple: the perpendicular to the free surface 
component of the elastic strain on each point of the boundary interface is zero 
(Fig. 2.2.2.1a) refl ected from the free boundary. By contrast, an incident SV-
wave is not totally refl ected. Because of mode conversion it is refl ected into 
two waves—one the same and the other of the other type Fig. 2.2.2.1a. 

Fig. 2.2.2.1. (a) SV-wave incidence to a half space free boundary; (b) P-wave incidence to a half 
space free boundary.

a

b
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Figure 2.2.2.1b shows an incident longitudinal wave to the boundary 
between isotropic medium 1 and fl uid medium 2. There are only refl ected 
waves—one P-wave propagating under the same angle as the angle of incidence 
and one SV-wave polarized vertically in the plane that is perpendicular to the 
boundary. This vertical plane also contains the incident P-wave. The SV-wave 
propagates under a smaller angle than the P-wave. Since the angle of incidence 
is equal to the angle of refl ection for the P-wave the angle of refl ection of the 
SV-wave is defi ned by Snell’s law. 
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The refl ection coeffi cients for an incident SV-wave are: 
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The coeffi cient of refl ection of the SV-wave is positive for any angle of 
incidence. From Fig. 2.2.2.1b it can be seen that there is a critical angle θP

Icritical beyond which only the SV-wave is refl ected. The incident P-wave is converted 
entirely into an S-wave with vertical polarization—SV-wave. 

The refl ection coeffi cients for an incident P-wave are:
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 (2.2.2.2)

We note that in Eq. 2.2.2.1 and Eq. 2.2.2.2 θI
SV = θR

SV and θI
P = θR

P.

There are no critical angles for an incident P-wave. In both cases of SV- 
and P-wave incidence there are two angles of incidence at which the incident 
wave is totally refl ected into the other type of wave—P-wave into SV-wave 
and SV-wave into P-wave. 

Equation 2.2.2.1 and Eq. 2.2.2.2 yield to:

 P SV
P SVR R= −  (2.2.2.3)

 ( )2
1P SV P

P P SVR R R+ =  (2.2.2.4)
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2.2.3 Free isotropic plate

Let consider a plate with two free boundary conditions with a SH-wave 
propagating between them as shown in Fig. 2.2.3.1a,b,c (Auld 1973). The plate 
forms an acoustic waveguide. In order to keep on propagating all SH-waves 
going up and down should obey the transverse resonance principle, which 
means that their phase should shift of n-times of 2π every round trip where n 
is an integer. In this case all waves going up and all waves going down will be 
in phase and could interfere in a constructive way maintaining the propagation 
in the waveguide. If the condition of a phase shift equal to 2nπ is not valid 
the SH-waves will become quickly evanescent and there will be no farther 
propagation. The wave mode will have even symmetry for even n and odd 
symmetry for n odd. If the plate boundaries are loss free the amplitudes of 
the waves going up and those going down differ by the sign +/– only with a 
refl ection coeffi cient equal to 1 because we deal with horizontally polarized 
waves (polarization along the X axis only) and no transmitted waves are 
allowed. 

From Fig. 2.2.3.1b we can see that if the wave’s frequency increases the 
angle θ increases as well because we know that V = λυ = λω/2π = (2π/k)(ω/2π) 
= k/ω or 1/V = k/ω, where |k

�
| is the wave vector module. 

 The relation between velocity of propagation and frequency is called 
dispersion and the wave is called respectively a dispersive wave. For 
decreasing frequency the incidence angle θ decreases and becomes zero for 
some frequency value that is called cutoff frequency—ωcutoff = (nπ/b)VS

H. This 
means that for all ω > ωcutoff  we have propagation in the waveguide and for 
all frequencies ω < ωcutoff  the wave becomes exponentially evanescent away 
from its source of generation and there is not acoustic energy transport along 
the plate. Each SH-mode that can propagate without losses along the plate 
has a specifi c value of the integer n and has its own dispersive curve shown 
in Fig. 2.2.3.1c. 

The case of a SH-wave propagating in the free boundary plate is the 
simplest one. Other modes can also propagate along the plate such as SV-wave 
and P-wave. However the SV- and P-waves cannot propagate individually; 
they are coupled. Since the P- and SV-waves propagates at different velocities 
(P-waves are faster than SV-waves) but also they must have the same 
component of their wave vector on the axis of propagation Z their angles of 
incidence are different. The angles of incidence of the P-mode is bigger that the 
angle of incidence of the SV-mode. The propagation of these coupled waves 
called Lamb waves is shown in Fig. 2.2.3.2.

Let consider Fig. 2.2.3.2 again following the transverse resonance analysis 
(Auld 1978). The incident waves are Pik r

PA e− ⋅
� �

 and Sik r
SA e− ⋅

� �
. Since the propagation 

is along z-axis the wave number kz = β of both P- and S-wave is the same. 
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Fig. 2.2.3.1. (a) SH-wave propagating in a plate; (b) If the wave’s frequency increases the angle 
θ increases; (c) Dispersive curves.

a

b

c
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The refl ected waves are respectively Pik r
PB e− ⋅

� �
 and Sik r

SB e− ⋅
� �

. Since we consider 
the refl ections from the wall without energy leaks we have BP = ±AP and BS 
= ±AS. Taking into account the mode conversion during the refl ection at the 
boundary y = –b/2 we have:

 
/2 /2 /2

/2 /2 /2

tP tP tS

tS tP tS

ik b ik b ik b
P RR P RS S

ik b ik b ik b
S SR P SS S

A e R A e R A e

A e R A e R A e

− −

− −

± = +

± = +
 (2.2.3.1)

In Eq. 2.2.3.1 ktP and ktS are the transverse wave vector components of the 
P- and S-waves. The mode are either symmetric or antisymmetric depending 
number of refl ections. 

Solving Eq. 2.2.3.1 yields to the dispersion Rayleigh-Lamb relations:

 

2
2 2

2
2 2

tP
P

tS
S

k
V

k
V

ω β

ω β

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (2.2.3.2)

The Lamb waves are guided and strongly coupled waves, i.e., they 
can propagate only together. The P- and SV-modes shift to each other for 
both symmetric and antisymmetric modes. The dispersion curves for the 
fundamental modes are presented in Fig. 2.2.3.3. 

The wave coupling phenomenon is very important in seismic waves. 
The propagation of Lamb waves has much more complicated characteristics 
than SH-modes with 3-dimensional dispersion curves. We will return to 
Lamb waves in Section 3.2 of this book to introduce other types of surface 
elastic waves following the elastic waveguide theory. Lamb waves have many 

Fig. 2.2.3.2. Lamb waves are coupled P-modes and SV-modes.
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applications in physical acoustics in various acoustoelectronics devices where 
acoustic waveguides are needed. Since they can propagate in free boundary 
plates only they are not relevant to seismology and we will not go any further 
in a detailed study. However, as we will see in the next section, Lamb waves 
can help us to understand the nature of other type of surface acoustic waves 
called Rayleigh waves that have a big impact in the study of seismic waves. 

2.3 Elastic wave energy transport. Poynting vector

Besides on the moment magnitude of an earthquake its effects depend also 
on the type and polarization of the elastic waves that have been generated 
not only at the earthquake’s focus but also at the Earth’s surface as a result 
of elastic mode conversions. A propagating elastic wave always transports 
mechanical energy. During various mode conversions this energy is conserved. 
This means all new elastic waves created should ‘inherit’ part of the energy 
initially released at the hypocenter. Since the elastic waves propagate in various 
directions covering huge volume or surface (depending on whether they are 
bulk or surface waves) it would be more appropriate to consider the energy 
per unit volume or unit surface called energy density. The energy density at 
various points around the epicenter can vary on a large scale depending on 
the elastic energy transport and the type of elastic waves carrying this energy. 
The geophysical specifi cations of the region have a signifi cant impact on the 
elastic wave propagation and the energy transport. 

The Poynting vector represents the rate of energy transfer per unit area in 
units of watts per square meter W/m2. The fl ux of Poynting vector is defi ned by 
Poynting theorem. The energy transport can be presented as Poynting vector. 

Fig. 2.2.3.3. Dispersion curves for the fundamental modes. 
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The energy density is the energy contained in unity of volume. The total energy 
of some volume will be the sum (or integral) of the energy density over this 
volume. If the energy is transported in the space as it happens when an elastic 
wave propagates through some medium then we talk about energy fl ux which 
is the Poynting vector (=rate of energy transfer per unit area) integrated over 
the surface crossed. In vector calculus, divergence is a vector operator that 
measures the magnitude of a vector fi eld’s source or sink at a given point, 
in terms of a signed scalar. More technically, the divergence represents the 
volume density of the outwardfl ux of a vector fi eld from an infi nitesimal 
volume around a given point as shown in Fig. 2.3.1. 

Fig. 2.3.1. Power fl ow, phase velocity and Poynting vector.

Poynting vector has been used initially in electromagnetism (
→
P = 

→
E × 

→
H 

where 
→
E is the electric fi eld and 

→
H is the magnetic energy) to describe the 

electromagnetic energy fl ux vector, but since any type of energy transport is 
characterized by its direction of movement in the space as well as density later 
Poynting vector has been used to describe also mechanical energy transport. 

In the propagation of an elastic wave the energy enclosed in the volume v 
(Fig. 2.3.2) surrounded by surface s will vary as a function of time. The total 
energy carried by an elastic wave is defi ned by (Dieulesaint and Royer 1974):

 
2

v v

v+ vi
T k p i ik ik

uE E E du d T dS d
t

δ δ δ ρ ∂
= + =

∂∫ ∫  (2.3.1)

Since i
i

udu dt
t

∂
=
∂

 the kinetic energy becomes:
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The kinetic energy density Σk is equal to:

 
21

2
i

k
u
t

ρ ∂⎛ ⎞Σ = ⎜ ⎟∂⎝ ⎠
 (2.3.2)

If the variation of the potential energy is dΦ = TikdSik the total energy in 
the volume v equal to:

 ( )
v

vT k pE d d= Σ +Φ∫  (2.3.3)

During the propagation of the elastic wave the energy E in a volume v 
varies by ( )i i ik k i

S S

dE T l du ds T l du ds= =∫ ∫
�

 where T(l
�
)
 
applied in each point of the 

surface s as a function of time t: 

 
S

si
ik k

udE T l d
dt t

∂
=

∂∫  or 
S

s=0k k
dE P l d
dt

+ ∫  (2.3.4)

The vector P
�

 is the elastic Poynting vector:

 
i

k ik
uP T
t

∂
= −

∂  (2.3.5)

Equation 2.3.4 shows that the variation of the total energy in a volume v 
is due to the fl ux of the vector P

�
 across the surface s as shown in Fig. 2.3.2. If  

EV
����

 is the velocity of the energy transport (or group velocity) and Σ is the total 
energy density the Poynting vector is 

 E
P V= Σ
�� ��  (2.3.6)

Fig. 2.3.2. Poynting vector.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18651-4&iName=master.img-012.jpg&w=161&h=133


82 Seismic Resistant Design and Technology

In the case of an anisotropic medium of propagation the velocity of the 
energy transport and the velocity of propagation of a plane elastic wave do 
not have the same direction and scalar value (see Fig. 2.3.1).

The minus sign can be explained using Fig. 2.3.1. The power delivered 
to an object is the force applied multiplied by the velocity. The force applied 
through the surface dS from medium 1 to medium 2 is equal to –T

�
 . n
�

dS and, 
therefore the power through dS from medium 1 to medium 2 is –V

�
 . T
�

 . n
�

dS. 
V
�

 is in m/sec, T
�

 is in newton/m2 and P
�

 is newton/m.sec or watt/m2. The 
Poynting vector represents the power density. 

2.4 Attenuation of elastic waves in isotropic solids

Consider again Fig. 2.3.2 where a solid with a volume δv surrounded by a 
surface δs is moving under the action of a force F

�
, called traction force. The 

forces associated with the motion of the solid are the body force F
�

 δv and the 
traction forces applied to its surface δs the neighboring solids. The applied 
force is T

�
 . n
�

 acting on the surface, i.e., 

 S

T ndS
δ

⋅∫
� �

Newton’s law gives:

 

2

2
s v v

s v= vuT nd Fd d
tδ δ δ

ρ ∂
⋅ +

∂∫ ∫ ∫
�� ��

If the volume of the solid is suffi ciently small the equation of motion Eq. 
2.2.1 becomes:

 
2

2

uT F
t

ρ ∂
∇ ⋅ = −

∂

�� � �  (2.4.1)

Equation 2.1.1 describes the static elasticity of the solid, while Eq. 2.4.1 is 
more appropriate for a propagating elastic wave displacing particles in the 
medium. 

Since 

 

uV
t

∂
=
∂

��
p Vρ=

��
and

where P
�

 is the momentum density, Eq. 2.4.1 becomes:

 V pT F F
t t

ρ ∂ ∂
∇ ⋅ = − = −

∂ ∂

� �� � � �  (2.4.2)
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In a source-free fi eld F
�

 = 0 and a plane wave propagating in direction n
�

 
= n1x
�

 + n2y
�

 + n3 z
�

 is proportional to ( )i t k ne ω − ⋅
� �

. Equation 2.4.2 can be rewritten 
in the form:

 
2

2

T V F
t t t

ρ∂ ∂ ∂
∇ ⋅ = −

∂ ∂ ∂

� � �
�

or

 
2

2
i i

i j j
V Fc V
t tα αβ β ρ ∂ ∂

∇ ∇ = −
∂ ∂

 (2.4.3)

The operators iα and βj with i, j = 1,2,3 and α, β = 1,2,3,4,5,6 are defi ned 
by (Auld 1973):
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 (2.4.5)

These operators in Eq. 2.4.3 can be presented as:
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The equation of wave propagation with F
�
 = 0 becomes:

 ( )2 2 2
i j j ij j ik n c n V k V Vα αβ β ρω= Γ =  (2.4.8)

We found again Christoffel’s equation Eq. 2.1.5 with Christoffel’s matrix:

 ij i jn c nα αβ βΓ =  (2.4.9)

Let consider the propagation of a P-wave and a S-wave in isotropic solid. 
Since all directions in such a solid are equivalent we can pose n

�
 = n3 z
�

. Equation 
2.4.8 can be presented in the form:
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 (2.4.10)

From Eq. 2.4.10 we get three independent equations:
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An S-wave propagating along z-axis with polarization along x-axis is given by:

 ( )
x

i t kz
xS

V n Ve ω −=
� �  (2.4.12)

The y-axis polarized S-wave will be:

 ( )
y

i t kz
yS

V n Ve ω −=
� �

 (2.4.13)

Both Eq. 2.4.12 and Eq. 2.4.13 satisfy the fi rst dispersion relation in Eq. 
2.4.11. The general solution for a S-wave propagating in any direction is:
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with as well as  
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A P-wave propagating along z-axis can be presented in the form:

 ( )i t kz
P zV n Ve ω −=
� �  (2.4.14)

Equation 2.4.14 satisfi es the third dispersion relation in Eq. 2.4.11 and the 
general solution of P-wave propagation is written as:

 ( )i t kn r
PV nVe ω − ⋅=

� �� �  (2.4.15)

The propagation of both P- and S-waves is lossless. Let see what happens 
if the medium of propagation is absorbing elastic energy. The amplitude of 
the elastic wave that propagates in a medium with elastic losses will steadily 
decrease and its energy will be absorbed or dissipate by the medium. In this 
case for x-axis polarized wave propagating along y-axis in a medium with 
attenuation coeffi cient α the displacement can be written as:

 ( )i t kyy
xu n e e ωα −−=

� �  (2.4.16)

The strain will be:
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αωα − −∂ −
= = −

∂

The elastic losses can be introduced using complex stiffness coeffi cients 
with ηijkl being the viscosity tensor of rank 4:

 c c iαβ αβ αβωη→ +  (2.4.17)

The general equation of propagation Eq. 2.4.3 can be used with Eq. 2.4.17 
to get the Hooke’s law for a medium with elastic losses:
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ij ijkl kl ijkl
ST c S
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η ∂
= +

∂  (2.4.18)

If the medium is a cubic crystal with the coordinates are aligned with the 
cube axes the stress is (Auld 1973):

 ( )( ) ( )
12 44 44

i k i yi tT i k i c i e e αωα ωη − −= − − +  (2.4.19)

The equation of motion for x-polarized wave propagating along y-axis is:
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The stress component T12 becomes:

 ( ) 2
12 1i k i T uα ω ρ− − = −  (2.4.20)
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With Eq. 2.4.16 and Eq. 2.4.19 into Eq. 2.4.20 we get:

 ( )( ) ( )( )2 2 2 2
44 44 44 442k i c i k i k c iα ωη α α ωη ρω− + = − − + =  (2.4.21)

The real and imaginary parts of Eq. 2.4.20 are:
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Solving Eq. 2.4.21 for α and eliminating k we get the expression of the 
attenuation coeffi cient of the medium of propagation (Auld 1973):
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(2.4.23)

In the case of an isotropic lossless medium of propagation the stiffness 
matrix is given by Eq. 1.5.1.3 where c44 = (c11 – c12)/2. In the case of an isotropic 
medium of propagation with viscous losses we have η44 = (η11 – η12)/2, 
respectively. Following the same pattern as in the case of propagation in a 
lossless medium we get the Christoffel’s matrix:

 ( )2 2
44 44k c i cω ρω+ =

and

 ( )2 2
11 11k c i cω ρω+ =

Equation 2.4.11 and Eq. 2.4.22 give:
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Equation 2.4.24 is the attenuation coeffi cient of a S-waves propagation in 
a isotropic medium with losses. For the P-wave we have respectively:

 with
11

1
2P PQ
ωα = 11

11
11

P cQ
ωη

=  (2.4.25)

Q is called elastic Q-factor which is inversely proportional to the attenuation 
coeffi cient. The higher the Q-factor the lower elastic losses are. The Q-factor is 
also inversely proportional to the frequency. That means that the Q-factor is 
very high a low frequencies. For example for an S-wave propagating in a rock 
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medium with parameters c44 = 1010N/m2 and η44 = 3 × 10–4N.sec/m2
 the Q-factor 

is Q = 0.3 x 1014 at a frequency of 1 Hz. Since the Earth’s lithosphere is formed 
not only of rocks but also of many other energy absorbing components, the 
measured average Q-factor is much lower—about 5 x 102 (Sato 1998).

Equation 2.4.16 shows that the amplitude of an elastic wave that 
propagates in a medium with losses decreases exponentially with the travel 
distance. Between two points y1 and y2 the amplitude will decrease by a factor of 
eα(y2–y1). Since α(y2 – y1) is dimensionless the attenuation coeffi cient is measured 
per unit length, i.e., in nepers/meter (Np/m) or in decibels/meter (dB/m).

 201Np/m dB 8.686dB
log 10e

= ≈

 
10

11dB/m Np 0.1151Np
log e

= ≈  (2.4.26)

The attenuation coeffi cient is proportional to ω2. The Q-factors of a 
quartz resonators operating in the MHz-range vary between 104 and 106. The 
frequencies of seismic waves are about 6 orders of magnitude lower. The 
Q-factor values measured in the lithosphere are about 500 for S-waves and 
1100 for P-waves at 1 Hz (Sato and Fehler 1998). That means P- and S-waves 
can still travel thousands of miles before vanishing. As it will be discussed later 
the main factor of seismic wave attenuation in the lithosphere is not elastic 
energy absorption but wave scattering. 

Seismic wave frequency usually is in the range 0.5 Hz–50 Hz. Why seismic 
waves are generated in this frequency range? Why they are not propagating 
at higher frequencies, for example, 1 MHz or at lower frequency like 0.01 
Hz? Why do they look like waves that have been going through a bandpass 
fi lter? When discussing the Fourier theorem we noticed an important corollary 
stating that short signals (pulses) in the time domain occupy a wide bandwidth 
and wide signals (pulses) in the time domain occupy a narrow bandwidth. A 
seismic chock in the focus of the earthquake causes usually a short pressure 
pulse. Therefore all seismic waves that originate from this pulse should 
have frequencies in a wide frequency range. Indeed, they do get generated 
in a much wider spectrum than 0.5 Hz–50 Hz, but they are not ‘relevant’ to 
the earthquake’s effects because they get bandpass fi ltered. At 1 MHz, for 
example, the wavelength would be just 4.10–3 m for a velocity of propagation 
of 4,000 m/sec. At such wavelength the wave will get scattered from random 
small domains in the heterogeneous medium of the Earth’s crust or mantra 
according to Rayleigh scattering theory. As a result of the intensive scattering 
the wave will get evanescent at a very short distance and become part of the 
Earth’s vibration noise. For a very long wavelength of 0.01 Hz the wavelength 
is 400,000 m for a velocity of 4,000 m/sec. The amplitude of a seismic wave 
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with such long wavelength will be barely detected by modern seismometers. 
The 151B Rev Tec seismometer, for example, with three independent sensors, 
is capable to detect seismic signals in the range of 0.0083 Hz to 50 Hz. 

For a bulk wave propagating with a velocity of 4,000 m/sec we have 
calculated that in the range 0.5 Hz–50 Hz the wavelength of a seismic wave is 
between 80 m and 8,000 m and for a surface wave propagating with a velocity 
of 2,000 m/sec the wavelength is between 40 m and 4,000 m. In the most 
destructive frequency range of 1 Hz–10 Hz the wavelength for body waves is in 
the range between 4,000 m–400 m and for surface waves between 2,000 m–200 
m. The size of the rock slabs forming the heterogeneous structure of the Earth’s 
crust where most of the seismic activities take place act as low-pass mechanical 
fi lter to seismic waves that letting pass only waves with frequencies lower 
than the cutoff frequency and attenuates waves with frequencies higher than 
the cutoff frequency. Only seismic waves in that frequency range can travel 
at long distances causing earthquake’s effect. All other waves become part of 
the Earth’s acoustic noise (or coda)—continuous small vibrations that have 
no impact on manmade constructions unless they get amplitude modulated 
or amplifi ed by nonlinear phenomena. An analogy of this in optics is the blue 
color of the sky and its red color around the sun at sunset. The blue color of 
the sky is caused by much stronger Rayleigh scattering of blue light than 
other visible light from airborne gas molecules which size is much smaller 
than the wavelength. The blue light has the shortest wavelength of the visible 
spectrum. Red, yellow light and other components of the visible spectrum get 
less scattered by the gas molecules than the blue light because of their longer 
wavelength. They just pass unperturbed through the blue air. This is also the 
reason of the yellow/red color around the sun at sunset. As sunlight passes 
through the atmosphere, its blue component is Rayleigh scattered strongly by 
atmospheric gases but the longer wavelength (e.g., red/yellow) components 
are not. The sunlight arriving directly from the sun therefore appears to be 
slightly yellow while the light scattered through rest of the sky appears blue. 
During sunrises and sunsets, the Rayleigh scattering effect is much more 
noticeable due to the larger volume of air through which sunlight passes.

Despite that elastic wave scattering from random objects in heterogeneous 
media is more complex phenomenon than scattering of visible light the 
analogy is useful. Exact solution to Rayleigh scattering problem for spherical 
acoustic waves scattered from spherical obstacle has been reported (Godin 
2013). Despite the complexity of the general problem of elastic wave scattering 
from random objects it could be claimed that short-wave seismic waves get 
scattered from a great number of randomly dispersed small domains in the 
Earth’s crust and mantle with size comparable to the wavelength, whereas 
long-wave seismic waves pass long distances undisturbed. 
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2.5 Nonlinear elastic wave propagation 

The dependence of velocity of propagation on pressure indicates that wave 
propagation in rocks is highly nonlinear. When Landau moduli A, B, and C 
are measured in rocks they are found to be several orders of magnitude higher 
than the moduli of Al, water and other constituents of the lithosphere. These 
observations are at odds with the linear elasticity theory as well as with the 
basic starting points of the theory of nonlinear elasticity. A new theory has 
been proposed relating stress-strain measurements to density ρ and use ρ to 
fi nd the behaviors of nonlinear elastic waves in rocks (McCall 1996).

However, there are also other factors that contribute to the complexity of 
the problem. Rocks contain pockets of encapsulated elastic energy. During the 
propagation of seismic waves these pockets of higher elastic energy density 
act as additional seismic energy sources.

On September 19, 1985 Mexico City was struck by an 8.1-magnitude 
earthquake that caused the deaths of more than 10,000 people and devastated 
the whole area. The earthquake occurred in the Pacifi c Ocean, off the coast 
of the Mexican state of Michoacán, a distance of more than 350 km from the 
city, in the Cocos Platesubduction zone, specifi cally in a section of the fault 
line known as the Michoacán seismic gap. Why seismic waves coming from 
so far were so devastating? Two reasons were given to explain it. One was the 
unexpected way the Mexico City’s underlying layers of soft clay soil behaved 
during the tremor. This weak soil transmitted much more ground movement 
than engineers and planners had ever expected for such a distant earthquake 
(Peterson 1986). The second reason was the resonance in the lakebed sediments 
and the long duration of the shaking (Murillo 1995). The most damaged 
buildings were from 6 to 15 stories in height. These buildings tended to resonate 
most in the frequency band of the lakebed motions. Many buildings had their 
upper fl oors collapsed while the lower fl oors were left relatively undamaged. 
Explained in terms of nonlinear elastic wave propagation when seismic 
waves propagate through soft superfi cial alluvial layers or scatter on strong 
topographic irregularities, refraction or scattering phenomena may strongly 
increase the amplitude of the ground motion. At the scale of an alluvial basin, 
seismic effects involve various phenomena, such as wave trapping, resonance 
of the whole basin, propagation in heterogeneous media, and the generation 
of surface waves at the basin edges (Brûlé 2014). 

Strong nonlinear phenomena of fi nite-amplitude elastic waves propagating 
in solids with low attenuation causing waveform distortion and growth of 
higher harmonics have been reported in the middle of the 20th century 
(Cedroits and Krasil’nikov 1963). 

The cause of higher harmonics growth (Fig. 2.5.1a) and appearance of 
combination frequency waves (Fig. 2.5.1b) is the nonlinearity of equation of state 
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Fig. 2.5.1. (a) Nonlinear generation of harmonics; (b) Example of combination frequency waves 
generation.

a

b
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of the medium of propagation and the geometrical characteristics of the fi nite 
deformations. In acoustics this phenomenon is called beat frequency sound. 
When two tones are close in frequency, the difference in frequency generates 
a beating. Interference between the two tones occurs resulting in periodical 
variation of the volume. In Chapter 1 we have discussed this phenomenon and 
the amplitude modulation that it produces. Musical instruments tuning that 
can produce sustained tones, beats can readily be recognized. A trembling effect 
(tremolo) is produced because the volume varies as the sounds alternately 
interfere constructively and destructively. As the two tones gradually approach 
their frequencies, the beating slows down and may become imperceptible. 
This effect can be seen in Fig. 2.5.1b. It can be seen at any seismogram as well 
(for example Fig. 1.1.1.2). We can call it ‘seismic beat’. 

The nonlinearity of the equation of state of the medium of propagation 
leads to the appearance of terms containing squares and cubes of the 
displacements uij 

in the expression of elastic energy density. The nonlinearity 
due to the fi nite-amplitude deformations leads to nonlinear relationship 
between the strain tensor components and the derivatives of the displacement 
components. 

We have noted already that materials that are subjected to large 
strain behave in a nonlinear way. This is due either to nonlinearity of the 
material itself or to strain which can be for example due to a propagating 
high-amplitude elastic wave. The wave front of a small-amplitude elastic 
wave in a heterogeneous medium of propagation gets quickly deformed 
and the wave loses its energy similarly to as it were propagating in a high-
attenuation dissipative medium. However, elastic heterogeneous media can 
support steadily high-amplitude elastic waves due to the strong nonlinearity 
of the material and to the wave dispersion caused by scattering with the 
heterogeneous structure. This is exactly what happens in the rock. 

2.5.1 Nonlinear corrections to Hooke’s law

Let’ consider an isotropic solid with no elastic energy dissipation and 
dispersion. A solid is considered to be elastic if after being deformed or strained 
by external forces it returns to its initial equilibrium shape when the forces 
stop acting due to internal restoring forces. Using Fig. 1.5.1.3 we have found 
that the displacement du

�
 can be expressed using the displacement gradient 

tensor ∂u
�

/∂xi resulting from strain as:

 i
i

udu dx
x
∂

=
∂

�
�

 (2.5.1.1)
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Equation 2.5.1.1 is the second term in the Taylor’s series of the displacement ui:
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The symmetric and antisymmetric parts of the displacement gradient 
tensor are:
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From Eq. 1.5.1.9 we have:
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Developed in Taylor’s series the stress as a function of the strain is given by:
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 (2.5.1.3)

Since Tij(0) = 0
 
we get Hooke’s law (Eq. 1.5.1.1) with the second-order 

stiffness constant given by the following expression:
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 (2.5.1.4)

The third-order stiffness constants are respectively:
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 (2.5.1.5)

The nonlinear Hooke’s law can be written in the form:

 ...ij ijkl kl ijklmn kl mnT c S c S S= + +  (2.5.1.6)

The elastic strain energy density is:

 P ij ijdE T dS=  (2.5.1.7)
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From Eq. 2.5.1.7 we get the stress in the form:

 ( )/
P

ij
i j

ET
u x
∂

=
∂ ∂ ∂

 (2.5.1.8)

Developed to the third order in strain the elastic energy is given by the 
following expression (Brugger 1964):

 1 1 ...
2 6P ijkl ij kl ijklmn ij kl mnE c S S c S S S= + +  (2.5.1.9)

2.5.2 Five-constant theory

We will still be considering an isotropic solid with no elastic energy dissipation 
and dispersion. If the total energy (kinetic + potential) in unit volume is E = 
Ek + Ep the Lagrangian is defi ned by: L = Ek – Ep. The mass at the end of the 
spring shown in Fig. 1.5.1.1 that we used to discuss the Hooke’s law has a 
kinetic energy that is equal to Ek = mẍ2/2 and a potential energy is equal to Ep 
= kx2/2. Therefore, Lagrangian can be presented as:

 2 21 1
2 2

L mx kx= −�  (2.5.2.1)

The equation of motion of the mass at the end of the spring comes from 
Newton’s law F = ma:

 mx kx= −��  (2.5.2.2)

With the Lagrangian the equation of motion of the mass attached at the 
end of the spring can be written as:

 d L L
dt x x

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠�
 (2.5.2.3)

This equation is called Euler-Lagrange equation. Since the equation of 
motion and Euler-Lagrange equation are describing the same phenomenon, 
the Euler-Lagrange equation should be valid in all coordinate systems. If, 
instead of mass at the end of the spring, we consider a more general case of 
a mass moving in a fi eld with potential energy Ep(x) the Lagrangian will be:

 ( )21
2 pL mx E x= −�  (2.5.2.4)

The Euler-Lagrange equation becomes:

 pdE
mx

dx
= −��  (2.5.2.5)
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The force applied to the mass is therefore equal to:

 F = pdE
dx

−
 

(2.5.2.6)

In the more general case if a mass is moving in a potential V(x) the Euler-
Lagrange equation is:

 ( )dV x
mx

dx
= −��  (2.5.2.7)

Therefore, dV/dx is the force applied to the mass moving in the potential 
V(x). We fi nd again Newton’s law F=ma in one-dimensional systems of 
coordinates. In three-dimensional Cartesian coordinates we have accordingly: 

 ( ) ( )2 2 21 , ,
2

L m x y z V x y z= + + −� � �  (2.5.2.8)

This equation can be presented also in the form:

 ;p p
p

r x y zmr E F E F ma
F E
= + +

= −∇ ⇒ = −∇ ⇔ =
= −∇

� � �� �
�� ���� �

 (2.5.2.9)

The above once again conforms that Euler-Lagrange equation and 
Newton’s law are describing the same phenomenon. The Euler-Lagrange 
equation can be expressed in any other coordinates qi in the same way it is 
expressed in Cartesian ones if qi = qi (x1, x2, ...xN; t) and reversibly xi = xi (q1, q2, 
...qN; t), i.e.:

 2
n n

d L L
dt q q
⎛ ⎞∂ ∂

=⎜ ⎟∂ ∂⎝ ⎠�
1 n N≤ ≤;  (2.5.2.10)

We will consider now the propagation of a high-amplitude elastic wave 
in an isotropic solid. The equation of propagation of a linear elastic wave (Eq. 

2.1.1) in isotropic solid with 
2

2
i

i
u u
t

∂
=

∂
��  is:

 ij
i

j

T
u

x
ρ

∂
=
∂

��  (2.5.2.11)

From 2.5.1.8 in adiabatic approximation we have:

 
p

ij
ij

E
T

u
⎛ ⎞∂
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 (2.5.2.12)
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The relation between the displacement and the strain tensor Tij given by:

 
1
2

ji k k
ij

j i i j

uu u uT
x x x x

⎛ ⎞∂∂ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ (2.5.2.13)

On the other hand we have found in Chapter 2 that in an isotropic solid 
we have:

 ( )2ij ijkl kl kl ik il klT c S Sλδ μδ δ= = +  (2.5.2.14)

Since 

( )11 22 33 2ii iiT S S S Sλ μ= + + + ( ) 2ij ijkl kl ik jl il jk kl ijT c S S Sμ δ δ δ δ μ= = + = ( )i j≠;⇒  
(2.5.2.15)

Tii and Tij can be put together in the same expression if i ≠ j which 
corresponds to a simple volume dilatation uniformly in all directions:

 
12 2
3ij ii ij ii ij iiT S S S S Sλ μ κ μ ⎛ ⎞= + = + −⎜ ⎟

⎝ ⎠
2
3

κ λ μ= +; with  (2.5.2.16)

The equation of propagation can be rewritten as:

 ( )
2 2

2
j i

i
i j j

u uu
x x x

ρ λ μ μ
∂ ∂

= + +
∂ ∂ ∂

��  (2.5.2.17)

Equation 2.5.1.17 leads to the solutions of a longitudinal and a shear elastic 
waves propagating with velocities given by:

 ( )2 /PV λ μ ρ= + /SV μ ρ=and  (2.5.2.18)

Equation 2.5.2.17 is still the small-amplitude linear elastic wave equation 
of propagation. This means that the amplitude has been decomposed in a 
Taylor’s series and all high-order terms have been neglected. In the case of a 
high amplitude elastic wave we have to take into account these high-order 
terms as well.

If L(q, .q, t) is the Lagrangian describing a mechanical system we can defi ne 
the integral ( ), ,A L q q t dt= ∫ �  called action integral and with A=0 we have the 
Hamilton’s principle of stationary action in mechanics corresponding to the 
Fermat principle in optics. 
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The Euler-Lagrange equation is presented by:

 2 0
n n

d L L
dt q q
⎛ ⎞∂ ∂

− =⎜ ⎟∂ ∂⎝ ⎠�  (2.5.2.19)

To any velocity there is a corresponding momentum pi:

 i
i

Lp
q
∂

=
∂ �

 (2.5.2.20)

We can defi ne the Hamiltonian operator in a similar way as the Lagrangian 
operator:

( ) ( ), , , ,i i i iL q q t H p p t→� �  where ( ) ( ), , , ,i i j j i ij
H p p t q p L q q t= −∑� � �  using 

Legendre transform. 

From the Euler-Lagrange Eq. 2.5.2.19 we get H = Ek + Ep 
the Hamilton’s 

equations:

 i
i

H p
q
∂

= −
∂

� i
i

H q
p
∂

=
∂

�and  (2.5.2.21)

If the action integral depends on qi and t, i.e., 

 ( ) ( ) ( ), ,i i i i i
i

AA q t Ldt p q H dt dA q t dt p
q
∂

= = − = → =
∂∫ ∫ ∫�  (2.5.2.22)

Equation 2.5.2.22 leads to the Hamilton-Jacobi equation:

 , , 0i
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A AH q t
t q

⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂⎝ ⎠

 (2.5.2.23)

In third order nonlinear approximation the elastic potential energy density 
(=the elastic energy per unit volume) of an isotropic sold is given by (Landau 
and Lifshitz 1959):

 2 2 2 21 1
2 3 3 3P ij ll ij il jl ij ll ll
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⎝ ⎠
 (2.5.2.24)

Replacing Eq. 1.5.1.6 in Eq. 2.5.2.24 we obtain for an isotropic solid:
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(2.5.2.25)
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Equation 2.5.1.9 is the general expression for the potential energy in an 
anisotropic solid, so Eq. 2.5.2.25 is derived from it. Third-order moduli A, B, 
C (Landau moduli) are included in Eq. 2.5.2.25 together with the moduli of 
linear uniform volume compression as well as shear moduli. The fi ve moduli 
A, B, C, K, and μ in Eq. 2.5.2.25 characterize the nonlinear deformation of the 
isotropic solid known as ‘fi ve-constant theory’.

The linear equation of motion (Eq. 2.1.1) can be extended to a nonlinear 
case by inserting higher-order displacement terms and using stress tensor 
that includes quadratic terms. In Chapter 1 we defi ned the stress tensor in 
Cartesian coordinates called ‘true stress’ or Cauchy stress. In Lagrangian 
coordinates Cauchy tensor cannot be directly defi ned. By introducing a fi ctive 
action force related to the actual force in a systematic way we are able to defi ne 
a new appropriate measure of stress in the new reference coordinates called 
Piola-Kirchhoff that can be used to go back and calculate the true Cauchy 
stress. If Nij 

is a Piola-Kirchhoff tensor the equation of motions Eq. 2.1.1 can 
be presented using in the form:

 
ij

i
j

N
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x
ρ

∂
=
∂

��  (2.5.2.26)

The tensor Nij 
is defi ned by:
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Using Eq. 2.5.2.26 and 2.5.2.27 the following expression for the tensor Nij 
can be obtained (Thurston 1966):
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With Eq. 2.5.2.25 and Eq. 2.5.2.27 we get the equation of motion:
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In Eq. 2.5.2.28 Fi is presented by:
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For a longitudinal elastic wave Eq. 2.5.2.28 becomes: 
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where ( ) 2

3 13
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L
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ξ
ρ

= + + + .

In the case of a shear wave no second-order term appears, so the linear 
version of the equation of motion still can be used, however, the third-order 
term of the displacement is present which complicates the calculation. 

For example for a longitudinal wave propagating along the x1-axis the only 
nonzero displacement is along the x1-axis. The only nonzero component of the 
stress tensor is N11 ≠ 0. Accordingly with Eq. 2.5.1.8 the stress tensor is given by:
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In Eq. 2.5.2.31 we have:

 , and
4
3

Kβ μ= + 3χ γ β= + 3A B Cγ = + +,  (2.5.2.32)

μ is the shear modulus and K is the body longitudinal compression 
modulus. The nonlinear coefficients χ consists of two components—a 
coeffi cient γ to the physical nonlinearity (nonlinearity of the equation of state 
of the solid) and a coeffi cient 3β that accounts for the geometrical nonlinearity. 
The equation of motion including quadratic terms of the P-wave propagation 
in a medium without dissipation is presented by (Gol’dberg 1960a,b, 1961):
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ρ β σ∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂
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The solution of the equation of motion Eq. 2.5.2.33 shows that the 
waveform of the initially sinusoidal wave became distorted during the 
propagation. In the ratio:
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γ
β μ

+ +
=

+  (2.5.2.34)

the parameter β is known and, therefore the parameter γ can be found by 
measuring the second harmonics amplitude. ρ0 is the unstrained density.

The amplitude of the second harmonics can be calculated from the solution 
of Eq. 2.5.2.33:
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In Eq. 2.5.2.35 α01 is the amplitude of the P-wave at the source, x is the 
distance from the source, and VP is the P-wave velocity of propagation. 

From Eqs. 2.5.2.34 and 2.5.2.35 the ratio γ/β is:
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The experimental measurements of the second harmonics amplitude of 
a P-wave provide the value of the nonlinear coeffi cient γ of an isotropic solid 
which is a linear combination of Landau moduli A, B, and C. In the case of 
a solid of cubic symmetry there are six coeffi cients in the nonlinear Hooke’s 
law for quadratic strain. 

2.5.3 Nonlinear propagation in dissipative media

Nonlinear elastic wave propagation involves interactions among waves 
resulting in growing number of harmonics as well as waves of combined 
frequencies. In a nondissipative medium the number of harmonics grows fast 
taking away elastic energy from the fundamental mode. Higher harmonics 
interact with each other and with the fundamental mode often creating 
resonance conditions. Harmonics interactions distort the waveform as the 
wave propagates. 

In a dissipative medium of propagation the elastic wave attenuation 
strongly affects the growth of higher harmonics. If the attenuation is suffi ciently 
high the amplitudes of the higher harmonics are very low and the time 
waveform of the fundamental mode is not distorted as it propagates. The 
effect of variations of the relationship between attenuation and frequency 
affects strongly the higher harmonics growth. As attenuation increases with 
frequency the growth of harmonics is suppressed so is the energy depletion 
of fundamental mode (Haran and Cook 1983). 

If there is no dispersion and the attention is low Burgers equation is the 
most suitable to analyze the waveform distortions. Burgers equation is given 
by:
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∂ ∂ ∂  (2.5.3.1)

In the Burgers equation Eq. 2.5.3.1 ϑ' = 1 + B/2A with B/2A being the fi rst 
nonlinear term, ω0 and V0 are the angular frequency and velocity of propagation 
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of the fundamental mode, τ = ω0t – kx, and ζ = βu0 ω0/V2
0 α with α being the 

attenuation coeffi cient. 

Consider an elastic wave in the form:
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where ϕ is the phase and un is the amplitude of the n-th harmonic. We also 
have un = u*–n. Eqs. 2.5.3.2 and 2.5.3.1 give:
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From the linear theory of elasticity we have:
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αn is the attenuation coeffi cient of the n-th harmonic related to the corresponding 
frequency. For most nondispersive viscous fl uid media un = α0n

2, so a more 
general expression for isotropic lossy solid where the dependence cannot be 
expected to be quadratic a good approximation would be: 

 0
b

nu nα=  (2.5.3.4)

Equation 2.5.4.3 can be presented as:

 ( )0
02

0

n
bn

n m m n
n

u i n m u u n u
x V

βω α
=∞

−
=−∞

∂ ⎡ ⎤= − −⎣ ⎦∂ ∑  (2.5.3.5)

Numerical solutions of Eq. 2.5.3.5 provide the distortion of the waveform 
as a function of distance at various time moments presented in Fig. 2.5.3.1.

During the nonlinear propagation elastic waves interact with each other 
giving rise to higher harmonics and waves with combined frequencies. For 
example two elastic waves with frequencies ω1 and ω2 can create a third wave 
with frequency ω1 + ω2 = ω3 which implies k1

�
 + k2

�
 = k3

�
 because of the absence 

of dispersion. In the absence of dispersion we have kn = ωn/Vn and this triplet 
combination is possible only for collinear waves with parallel wave vectors. 
However, harmonics with frequencies nω can grow with the restriction of 
collinearity and even cascades of harmonics can be produced (Naugolnykh 
and Ostrovsky 1998). Energy transfer from the initial fundamental elastic mode 
toward higher harmonics leads to signifi cant damping of the fundamental 
wave. In physical acoustics this phenomenon is not desirable and research 
has been done to avoid it by introducing dispersion or selective damping of 
harmonics. However, in the case of seismic waves such phenomenon is highly 
desirable, because the initial fundamental seismic wave would lose its energy 
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by passing it to higher harmonics. Usually seismic waves are highly dispersive 
elastic waves and the probability such higher harmonics to grow is very low. 
Nevertheless, it is worth it to take a look at the phenomena taking place in 
low-loss nondispersive media. 

2.5.4 Propagation in dissipative and dispersive media 

As a fi nite-amplitude wave propagates, its waveform gets distorted due to 
differences of propagation velocities of its various points. In the presence of 
dispersion and attenuation these phenomena are even more pronounced. In 
dispersive medium the formation of a triplet with ω1 + ω2 = ω3 does not imply 

k1

�
 + k2

�
 = k3

�
 and these resonance conditions can be satisfi ed for selected triplets 

only. However, when satisfi ed, the interaction will be much stronger. 

Dispersion effects are due to various causes: 1) attenuation causing losses 
of elastic wave energy, 2) media with specifi c internal spatial or temporal scales, 
and 3) geometrical dispersion existing in waveguides, bounded systems, and 
resonators. Selective suppression of spectral components is not excluded. 

Fig. 2.5.3.1. Burgers equation solutions at different time moments.
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Assuming that only fi nite number of spectral components can interact with 
each other and at certain frequency ranges selective damping occurs. Here it 
is appropriate to use the nonlinear equation (Rudenko 1983):

 ( )
1

sinn n
n

u uu D u x n
x

ξ ωτ
τ

∞

=

∂ ∂
= +

∂ ∂ ∑  (2.5.4.1)

In Eq. 2.5.4.1 Dn is the dissipation parameter of the n-harmonic, 0

0

'
V
ωϑ ϑ= , 

and ( ) ( )
0

2 , ' sin ' 'nu u x n d
π

τ ωτ ωτ
π

= ∫  is its amplitude. If we assume as we did 

before that Dn ~ nb

 if the decay can be neglected the solution of Eq. 2.5.4.1 with 
Dn → 0 becomes a simple Riemann wave. We are interested in the case when 
Dn → ∞ for certain n = k when the corresponding harmonics are suppressed. 
By developing in Fourier series:

 ( )
1

sinn
n

u u x nωτ
∞

=

=∑
we can rewrite Eq. 2.5.4.1 as 

 n
n n n

du D u S
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+ =   

In Eq. 2.5.4.2 Sn is given by:
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π τ

∂
=

∂∫  (2.5.4.2)

If some Dn are large enough, so un = Sn/Dn → 0 the decaying harmonics 
do not take part in the interaction. 

In the following example two harmonics with frequencies ω and 2ω 
propagate together in a medium with Dn → ∞ for n ≥ 3 we have:

 

1
1 2

22
1

2

2

du u u
dx
du u
dx

ξω

ξω

=

= −
 (2.5.4.3)

On the other hand we have u2
1 + u2

2 = u2
0 = constant. Therefore

        20 02

0 0 20

cosh sinh
cosh sinh

u x u xu
u u x u x

χ χ
χ χ

−
=

−
( )20 2 0u u= 20 / 2uχ ξω=with and  (2.5.4.4)

If x → ∞ then u1 → 0 and u2 → –u1 which means that the elastic energy is 
transferred from the fi rst into the second harmonic. This cannot happen in a 
medium without dispersion and losses. 
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2.5.4.1 Parametric amplifi cation

An interesting situation is the case of u1(0) << u2(0). In the initial stage u2 = u20 
and Eqs. 2.5.4.3 or 2.5.4.4 yields:

 
1 10

xu u eχ=  (2.5.4.1.1)

This is called parametric amplifi cation of the elastic wave of frequency ω 
by the ‘pump’ elastic wave of frequency 2ω. If u20 > 0 from Eq. 2.5.4.4 follows 
that u1 will grow exponentially, while for u20 < 0 it will decay. This means 
that the parametric amplifi cation or decay depends on the ‘pumping’ wave 
phase. The phenomenon of parametric amplifi cation plays an important role 
in nonlinear optics. However, it can play also an important role in seismology. 
As we will see in the next Chapter it occurs in Rayleigh waves as well which 
is expected to have a great impact during earthquakes. 

The above example shows that it is possible to generate elastic waves by 
elastic waves. This cannot happen without dispersion and dissipation. It is 
interesting to see what happens in a rectangular waveguide with travelling 
waves. Such a scenario is very possible to be observed with seismic waves 
in big rock slabs which walls create waveguide boundary conditions. We 
will assume that the propagation is along x-axis of the waveguide, while 
y- and z-axis form the cross-section of the waveguide with dimensions a × b. 
A solution in the form of three interacting modes of frequencies ω1,2,3 will be 
sought (Naugolnykh and Ostrovsky 1998):

 ( ) ( ) ( )
,

,
, , s si t k x

m n s
s m n

f y z A x t e ωϕ −=∑∑  (2.5.4.1.2)

In Eq. 2.5.4.1.2 s = 1,2,3 and fm,n are the waveguide eigenfunctions 
determined by the boundary equation:

 
2 2
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,2 2 0m n m n

s m n

f f
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y z
χ

∂ ∂
+ + =

∂ ∂
 (2.5.4.1.3)

Equation 2.5.4.1.2 is a solution of the wave propagation equation in a 
homogeneous waveguide, where γ = 1 + B/A with the ratio B/A characterizing 
the nonlinearity of the system and c is a constant (Andreev 1955; Aaonsen et 
al. 1984):

 ( ) ( )2 22
2 2

1 1 1
2tt tc c t c
γϕ ϕ ϕ ϕ∂ −⎡ ⎤∇ − = ∇ +⎢ ⎥∂ ⎣ ⎦

 (2.5.4.1.4)
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The substitution of Eq. 2.5.4.1.2 into Eq. 2.5.4.1.4 with the appropriate 
eigenfunctions fm,n , keeping only the resonant terms, and integration over the 
waveguide cross-section yields the equation of the mode amplitudes:

 m m
g m

A AV G
t x

∂ ∂
+ =

∂ ∂
 (2.5.4.1.5)

In Eq. 2.5.4.1.5 we have the group velocity of the mode Vg and a nonlinear 
term of mode amplitudes. For a process that does not evolve in time ∂/∂t = 0 
and in this case Eq. 2.5.4.1.5 leads to a triplet of equations:
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 (2.5.4.1.6)

In the triplet of equations Eq. 2.5.4.1.6 B1, B2, B3 are considered real.

Let us consider the interaction of two modes of frequencies ω and 2ω. 
With the assumption that there is a small frequency difference between the 
waves ω2 = 2ω1 + Δω and k2 = 2k1 + Δk, where Δω << ω1 and Δk ~– Δωdk2/dω Eq. 
2.5.4.1.6 becomes:
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 (2.5.4.1.7)

In terms of real amplitude and phase A1,2 = a1,2 exp(iθ1,2) we get:
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 (2.5.4.1.8)

where θ = θ2 – 2θ1 – (Δk)x. 

We consider that the mode with amplitude a2 acts a ‘pump’ and transfer 
energy to the weak mode with amplitude a1 where a10 << a2.
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If Δ = 0 (exact synchronism) the amplitude a1 grows exponentially as we 
saw in Eq. 2.5.4.1.4:

 1 10
qa a e=  (2.5.4.1.9)

In Eq. 2.5.4.1.9 q = a2 Im[B1e
iθx] and K = eq is the amplifi cation factor. With 

a real B1 a maximum equal to B1a2 is attained at θ = π/2. 

The frequency band of amplifi cation can be obtained by solving the system 
Eq. 2.5.4.1.8. If assuming large detuning between the modes, i.e., Δk >> B1a2 
and setting θ = Δkx +θ0 we get (Akhmanov and Khokhlov 1964):
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1 10 1 2

sin / 2
exp

/ 2
x k

a a B a
k

Δ⎛ ⎞
= ⎜ ⎟Δ⎝ ⎠

 (2.5.4.1.10)

From Eq. 2.5.4.1.10 we can conclude that a1 is changing periodically 
along the x-axis with a period of 2π/k. When the frequency ω2 approaches a 
critical mode frequency where k → 0 the amplifi cation factor increases and 
the bandwidth narrows. 

2.5.4.2 Elastic solitons in solids

In a nonlinear dispersive system, an initial disturbance can evolve into a 
solitary wave that retains its shape over a long distance. It has been found 
that when solitons collide with each other, they resume their initial wave 
forms and speeds. 

Chiral rotational longitudinal waves or PR-waves and rotational shear 
waves SR-waves propagating faster in solid rocks and much slower in fractured 
media along tectonic faults have been observed to form rotational seismic 
solitons (Torres-Silva and Cabezas 2012). Because solitons can propagate 
without any loss of energy, these waves are extremely important carriers of 
seismic energy. 

Solitons have been also observed experimentally in solids and theoretically 
analyzed (Hao and Maris 2001). The wave equation that governs the 
propagation of a fi nite-amplitude acoustic wave in a dispersive crystalline 
solid for a wave of wavelength suffi ciently long that the effect of dispersion 
can be ignored so the standard nonlinear elasticity theory can be used can be 
written in the form:

 

22

0 2

uu uA A
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γα ε
αβγδ αβγδεζ

β δ ζ

ρ
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 (2.5.4.2.1)
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where aα is the Lagrangian coordinate in the direction α, uα is the displacement 
in the direction α, ρ0 is the unstrained density, and the coeffi cients Aαβγδ and 
Aαβγδεζ are defi ned by (Leibfried 1960):

     A Cαβγδ αβγδ= A C C C Cαβγδεζ αβγδεζ αβγδζ γε γδβζ αε εζβδ αγδ δ δ= + + +;  (2.5.4.2.2)

In Eq. 2.5.4.2.2 Cαβγδ and Cαβγδεζ are the second and third order elastic 
constants. Equation 2.5.4.2.1 is limited to quadratic nonlinearity of the 
displacement, third and higher orders are neglected. 

The Lagrangian of the systems is:

 ( )
V

vK PL E E d= −∫  (2.5.4.2.3)

The kinetic energy density is given by:
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The potential energy density is:
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 (2.5.4.2.5)

Equation 2.5.4.2.1 becomes much simpler if we consider a propagation 
of a longitudinal wave in a cubic symmetry crystal along one its principal 
directions. In this case we get:

 

2 2

0 2 32 2

u u uC C
t a a

ρ ∂ ∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂ ∂⎝ ⎠  (2.5.4.2.6)

C2 and C3 are combination of second and third order elastic constants. 

If we want to include dispersion Eq. 2.5.4.2.6 becomes:

 
2 2 4

0 2 3 02 2 42u u u uC C V
t a a a

ρ ϑρ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 

where ϑ > 0 is a constant. If we defi ne the strain η = ∂u/∂a and differentiate 
Eq. 2.5.4.2.6 with respect to a we obtain:

 
2 2 4

0 2 3 02 2 42C C V
t a a a a
η η η ηρ η ϑρ∂ ∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2.5.4.2.7)
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Equation 2.5.4.2.7 is similar to the Korteweg and De Vries (KdV) equation, 
which is an upgrade to Burgers equation for dispersive medium:
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1 2 3 3B B B
t a a a
η η η ηη∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂
 (2.5.4.2.8)

where B1, B2, B3 are constants to be determined. By differentiating Eq. 2.5.4.2.8 
with respect to time and use Eq. 2.5.4.2.8 again to replace the time-derivatives 
of the strain we get:
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 (2.5.4.2.9)

If we assume that B1 = (C2/ρ0)
1/2 = V, B2 = C3/2 ρ0B1, B3 = ϑ then Eq. 2.5.4.2.9 

becomes identical to Eq. 2.5.4.2.7 and the solutions of Eq. 2.5.4.2.8 are also 
solutions to Eq. 2.5.4.2.7. The KdV equation has two types of solutions: period 
solutions and solitons. The soliton solutions can be presented in the form 
(Whitham 1974):
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 (2.5.4.2.10)

In Eq. 2.5.4.2.10 U is the velocity of the soliton and η0 is the maximum 
amplitude of the strain. Since B2 < 0 and B3 > 0 we have η0 < 0, i.e., the pulse 
must be a compression, rather than rarefaction. The soliton velocity according 
to Eq. 2.5.4.2.10 is always larger than the velocity of the elastic wave. The 
magnitude of the dispersion does not affect the velocity, only its width.

The KdV solitons are stable and the initial pulse can evolve into one or 
more solitons. 

The experimental setup for generation and detection of solitons is shown 
in Fig. 2.5.4.2.1 (Hao and Maris 2001). An Al fi lm was deposited onto one side 
of the wafer to serve as a transducer for generating and detecting the acoustic 
pulses. To generate acoustic pulses light pulses from a Ti: Sapphire mode-
locked laser are focused on the surface of the Al fi lm with repetition time 
between pulses of 13.25 ns. The laser light absorbed in the fi lm raises the fi lm 
temperature. This sets up a thermal stress in the Al fi lm, and a longitudinal 
acoustic pulse is launched into the sample. The returning elastic pulse results 
in a change in the optical refl ectivity of the Al fi lm; this change in refl ectivity is 
detected by means of a time-delayed light pulse from the same laser—a probe 
pulse. The fractional change of refl ectivity ΔR(t)/R is of the order of 10–5. The 
travel time for the fi rst acoustic pulse ranged from 70 ns for the Si sample to 
over 600 ns for SiO2. 

  



108 Seismic Resistant Design and Technology

When a strain pulse is generated in the Al fi lm and propagates into the 
crystal, it will produce a soliton if the amplitude is suffi ciently large. As noted 
in the previous section, the soliton must have a negative strain, i.e., it must 
correspond to a compression. If this strain pulse were to be refl ected at a free 
surface of the sample, it would undergo a sign change and convert into a 
rarefaction pulse. The soliton would then be destroyed. To avoid this problem, 
a fi lm of W is deposited onto the far side of the wafer. When the strain pulse 
is refl ected at the interface between the wafer and the W fi lm, the refl ection 
coeffi cient is given by Eq. 2.5.3.1.3 where Z1 is the W elastic impedance and 
Z2 is the impedance of the sample. Since the elastic impedance of W is very 
large, the refl ection coeffi cient is very large too and no change in sign of the 
strain occurs. 

Fig. 2.5.4.2.2 shows the experimental results obtained in a sample of MgO 
and Fig. 2.5.4.2.3 shows the computer simulation (Hao and Maris 2001). 

2.5.4.3 Stress-induced anisotropy in isotropic solid

Nonlinear elastic wave propagation is considered generally in two different 
approaches. The fi rst assumes that the velocity of propagation of a fi nite-
amplitude elastic wave depends on the strain. This means that an initially 
sinusoidal waveform will get distorted during the propagation in the absence 
of large dissipation of energy because the wave crests overtake the wave 
troughs leading ultimately to a shock wave (Zarembo and Krasil’nikov 1971; 
Hamilton 1986). For a P-wave propagating in an isotropic medium: 

 ( ) ( )( )0 1P PV S V S Sβ≈ = −  (2.5.4.3.1)

Fig. 2.5.4.2.1. Experimental setup for generation and detection of elastic soliton waves (Hao and 
Maris 2001).
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where Vp(S)
 
and Vp(S = 0)

 
are the linear and nonlinear velocity of the P-wave, 

S is the strain and β is the nonlinear elastic coeffi cient. 

The second approach assumes a small wave perturbation superimposed on 
a static prestrain due to the presence of a static prestress (Pao 1984). Uniaxially 
and hydrostatically prestressed media have been analyzed (Thurston and 
Brugger 1964). In the case of uniaxial prestress the stress derivative of the 
wave modulus is given by:
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 (2.5.4.3.2)

Fig. 2.5.4.2.2. First echo in MgO sample. The solid line is the experiment performed at 30 K. The 
dashed line is the computer simulation. Laser pulse energies are labeled (Hao and Maris 2001).
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where W is the ‘natural’ velocity, i.e., the length of the elastic path in the 
unstressed state divided by the wave travel time in the stressed state, n

�
 and 

m
�

 are the unit vectors of the direction of propagation in the unstressed state 
and of the uniaxial stress. The quantities w, F, H are given by:

 

S
ijkl i k j l

T
ijkl i j k l

T
ijkl kltrsq i j t s r q

w C n n p p

F S m m p p

H S C m m n n p p

=

=

=

 (2.5.4.3.3)

Fig. 2.5.4.2.3. Computer simulation of the shape of strain pulses propagating in MgO. The upper 
part of the fi gure shows (a) the initial pulse entering the sample, (b) the pulse as it approaches 
the far side of the sample, and (c) as it returns to the Al fi lm. In the lower part, (d), (e), and (f) 

show the propagation of a pulse of larger amplitude (Hao and Maris 2001).
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In Eq. 2.5.4.3.3 CS
ijkl and ST

ijkl are the second-order isentropic and isothermal 
compliance tensors of the unstressed medium and pj are the polarization vector 
components in the unstressed state.

In the case of hydrostatic priestess applied to the medium (n
�

 
. m
�

)2

 
= 1 and 

w, F, H are given by:
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F S p p

H S C n n p p

=

=

=
 (2.5.4.3.4)

The symmetry of the stressed medium is determined by the symmetry of 
the second- and third-order compliance tensors. Therefore the elastic symmetry 
is unchanged hydrostatic stress. In materials having Cijklmn >> Cijkl the physical 
nonlinear term H in Eqs. 2.5.4.3.2, 2.5.4.3.3, and 2.5.4.3.4 will be much more 
important than the geometrical nonlinear term 2wF. This the case of strongly 
nonlinear materials such as rocks. 

We will establish the relationships between nonlinearity and elastic 
parameters assuming hydrostatically induced prestress and transverse 
anisotropy induced by uniaxial stress (Johnson and Rasolofosaon 1996). First 
we want to express the variations of the elastic properties such as S-wave 
birefringence and P-wave anisotropy induced by a uniaxial stress applied to 
the medium. If we consider that medium of propagation is initially isotropic 
the only directional parameter for the wave propagation will be the angle θ 
between the direction of propagation of the wave and the direction of the 
uniaxial stress. The S-wave birefringence BS(θ) can be expressed by:

 ( ) ( ) ( )
( )

1 2

1

S S
S

S

V V
B

V
θ θ

θ
θ

−
=  (2.5.4.3.5)

VS1 
and VS2 

are the velocities of the faster and slower S-waves, respectively. 
In this case these velocities are the velocities of SV- and SH-waves. If we assume 
that S2

ij C
2
ijklmn<< (C2

ijkl)
2, i.e., the stress is not too large, Eqs. 2.5.4.3.2, 2.5.4.3.3, and 

2.5.4.3.4 yield the value of BS(θ):

 ( ) 2sinS SB Sbθ θ≈ −  (2.5.4.3.6)

In Eq. 2.5.4.3.6 bS = (4μ + n)/8μ2 is an elastic parameter (see Eq. 2.5.2.28) 
called stress-induced S-birefringence coeffi cient. Maximum birefringence 
occurs when θ = π/2 which corresponds to the case when the two S-waves 
propagate in the same direction that is perpendicular to the uniaxial stress 
direction.
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In a similar way the P-wave anisotropy can be defi ned:

 ( ) ( )P P
P

P

V V
A

V
θ

θ
−

= �

�
 (2.5.4.3.7)

Vp|| and Vp(θ)
 
are the velocities along the stress direction (the fastest 

velocity) and in any other direction defi ned by the angle θ, respectively. If the 
prestress is not too large, as in the previous case of BS(θ)

 
the value of Ap(θ)

 
is:

 ( ) 2sinP PA Saθ θ≈ −  (2.5.4.3.8)

Here again ap = (2λ + 5μ + 2m)/[2μ (λ + 2μ)]
 
is an elastic parameter called 

stress-induced P-wave anisotropy coeffi cient. The maximum P-wave velocity 
deviation is between the propagation direction parallel and perpendicular to 
the direction of the uniaxial stress. 

Figures 2.5.4.3.1 and 2.5.4.3.2 show the experimental date for S-wave 
birefringence and P-wave anisotropy obtained in ‘natural’ and ‘thermally 
cracked’ sandstones (Zamora 1990). 

Fig. 2.5.4.3.1. S-wave birefringence as a function of uniaxial stress in ‘natural’ and ‘thermally 
cracked’ sandstones (Zamora 1990).
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2.5.5 Wave propagation in heterogeneous media

Dispersive wave propagation in heterogeneous solids is caused mainly by 
scattering of elastic waves. This situation is the closest to the propagation 
of seismic waves. The underlying physics governing fi nite-amplitude wave 
propagation in heterogeneous media will be discussed in this section. Of 
particular interest are those aspects of elastic heterogeneous solids that lead to 
structured steady shock waves. Theoretical studies based on a quasi-harmonic 
normal mode representation of the scattered wave energy have been reported. 
Elastic waves scattered in a heterogeneous solid during passage of a directed 
shock wave or transient pulse are, in principal, the same in nature as the lattice 
waves which characterize the thermal state of a solid (Grady 1997). They differ 
only in the wave frequencies which are substantially higher in thermal waves 
than microstructural elastic waves. 

Finite-amplitude compression waves in nonlinear solids become steeper 
as the wave propagates. Wave dispersion can counter the steepening process 
leading to structured steady shock waves. Heterogeneities within a solid body 

Fig. 2.5.4.3.2. Relative variation of the P-wave velocity as a function of uniaxial stress in ‘natural’ 
and ‘thermally cracked’ sandstones (Zamora 1990).
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contribute to wave dispersion and can account for structured steady shock 
waves. Typical shock wave profi le is shown in Fig. 2.5.5.1.

Experimental study of shock wave propagation in periodically layered 
composites has been reported (Zhuang et al. 2003). In heterogeneous media, 
scattering due to interfaces/microstructure between dissimilar materials could 

Fig. 2.5.5.1. Typical profi le of a shock pulse. 
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play an important role in shock wave dissipation and dispersion. Experimental 
results (obtained using velocity interferometer and stress gage) show that these 
periodically layered composites can support steady structured shock waves. 
Due to interface scattering, the effective shock viscosity increases with the 
increase of interface impedance mismatch, and decreases with the increase 
of interface density (interface area per unit volume) and loading amplitude. 
The strain rate within the shock front is found to be roughly proportional to 
the square of the shock stress. This indicates that layered composites have 
much larger shock viscosity due to the interface/microstructure scattering 
in comparison with the increase of shock strain rate by the fourth power of 
the shock stress for homogeneous metals (Grady 1998). Experimental results 
also show that due to the scattering effects, shock propagation in the layered 
composites is dramatically slowed down and the shock speed in composites 
can be lower than that either of its components.

So far our discussions have been limited to quadratic nonlinearity only, 
described in the classic terms of the fi ve-constant model. Here we want to 
extend the discussion by involving cubic nonlinearity. Cubic nonlinearity has 
barely been studied because of the much higher complexity of the governing 
equations of state. However, a logic question to ask is whether considering 
cubic nonlinearity is relevant in the case of seismic waves and is it worth it to 
extend the complexity of already complicated matter to quadratic nonlinearity? 
The cubic terms in the governing equations usually are much smaller in 
magnitude than the quadratic ones causing nonlinear waveform distortions 
in materials used in physical acoustics and acoustoelectronics. However, the 
presence of strong dispersion, as it is the case of heterogeneous media, or 
specifi c nonlinearity mechanisms as thermal phenomena may change the 
situation drastically (Naugolnykh and Ostrovsky 1998). 

For many materials including the Earth’s lithosphere much more 
complicated nonlinear characteristics have been observed including 
anomalously strong nonlinearity. The exact reasons for such strong nonlinearity 
are not well understood, but many experimental results point to heterogeneous 
structure of materials such as dislocations, micro-cracks, grains, fl uids-fi lled 
pore space of rocks, hydrocarbon-reservoir rocks, and scattered rock domains 
of high stress serving as internal sources of seismic energy ‘pumping’ passing 
P- and S-waves. Seismic waves in earth materials are subject to attenuation and 
dispersion in a broad range of frequencies and scales from free oscillations of 
the entire earth to ultrasound in small rock samples (Aki and Richards 1980). 
The third-order nonlinear constants of rocks have been found to much larger 
than the second-order nonlinear constants (Johnson and Rasolofosaon 1996). 
Contrary to homogeneous solids with constant level of nonlinearity, rocks 
exhibit wide range of nonlinearity—from weak to very strong—increasing 
always their elastic moduli with pressure. As a result of this moduli variation 
the P-wave stress-induced anisotropy and S-wave stress-induced birefringence 
can be large. 
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Including cubic nonlinearity changes signifi cantly the elastic fi elds with 
phenomena such as self-focusing, self-transparency, stimulated scattering, 
amplitude-dependent friction, etc. of elastic beams. 

Equation 2.5.1.3 shows that the stress T = T(S) is formulated as power 
series of the strain S. For media with anomalous nonlinearity the stress-strain 
relation T = T(S) can be complicated. Figure 1.1.2 shows a reversible hysteresis 
of the stress-strain relation, however, there are many cases where the stress-
strain hysteresis is not reversible as shown in Fig. 2.5.5.2.

Fig. 2.5.5.2. Irreversible stress-strain hysteresis (red line) and bilinear stress-strain relation.

In geology a phenomenon called bimodular elasticity has been observed 
in rocks when elastic moduli under compression can become smaller or 
larger than under extension (Johnson and Rasolofosaon 1996). This means 
that a propagating P-wave causing periodic compressions and extensions 
will modulate its own velocity if it travels through a bimodular rock adding 
to the already existing dispersion of the medium. 
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3
Surface Elas  c Wave 

Propaga  on

Most of the seismic energy during earthquakes is carried by body elastic 
waves in the Earth’s lithosphere. Usually body waves have little impact to 
man-made constructions on the ground. Body elastic waves could have some 
effect only on deep underground constructions such as tunnels, dams, and 
gas or oil lines. Their impact is mostly through their conversions into surface 
elastic waves. Since most of buildings, highways, power stations, bridges and 
other man-made constructions are located above the ground surfaces elastic 
waves generated by bulk elastic waves are of greatest importance. There are 
various types of surface elastic waves that originate from body waves. In this 
section we will discuss how they are excited and how they propagate as well 
as their linear and nonlinear properties.

One of the most important questions is how to determine the locations 
where surface seismic waves are created during an earthquake. In seismology 
the point on the surface above the hypocenter is called epicenter of the 
earthquake (Fig. 3.1). This point will be the fi rst to be reached by the P-waves 
coming from the hypocenter because they are the fastest ones. The P-waves 
will be followed by slower S-waves. Other waves will reach the Earth’s surface 
some time later at points located around the epicenter. The P- and S-waves 
reaching the epicenter are coming almost normally to the free surface. They 
will be either refl ected back into the bulk without forming any new waves 
capable to propagate on the surface or depending on the roughness of the 
surface they could be scattered and converted into Rayleigh surface waves. 
Waves coming to the surface under various angles will also get scattered or 
refl ected back after undergoing mode conversions or depending on their 
polarization they will form surface elastic waves that could propagate farther 
on the surface eventually reaching cities. These waves will actually ‘participate’ 
in the earthquake. The point of their formation on the Earth’s surface is not 
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necessarily located in the epicenter but somewhere else, probably far away 
from it. Many such points could exist on the Earth’s surface where surface 
elastic waves can be generated in appropriate conditions and continue their 
propagation on the surface. Many waves that cannot meet specifi c boundary 
conditions will return back into the crust as body waves or will be attenuated. 

It is relevant to ask the question where exactly the seismic waves that are 
registered by the seismological equipment are coming from and how is the 
epicenter of an earthquake determined? Usually to determine the location of 
the epicenter the measurements of at least three seismologic stations located far 
away of each other are registered and the location of the epicenter is calculated 
from the time intervals between the seismic waves arriving at the seismic 
stations knowing that P-waves are faster than S-waves and S-waves are faster 
than the surface acoustic waves (LR, LQ, or SAW). Are these waves primary 
waves coming from the hypocenter or are they secondary waves that have been 
generated by mode-conversions during multiple refl ections and refractions by 
the rock layers forming the heterogeneous crust? Self-modulation of carrier 
waves of the diffuse elastic fi eld (coda waves) as well as local amplifi cation of 
seismic waves due to nonlinear phenomena or specifi c geological properties of 
soil could affect strongly the shape of seismograms recorded at different points. 
A typical example are the three seismographs shown in Fig. 1.1.1.7 that have 

Fig. 3.1. Schematic of an earthquake focus, epicenter, and seismic wave propagation. A shied 
around the city can defl ect or absorb the upcoming elastic waves.
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been recorded during the same earthquake but at different seismic stations 
from the epicenter of the 1999 Kansas City collapse event. These seismograms 
are a clear demonstration that the registered seismic waves are not the same 
routine P-, S- or LR-waves that have travelled different distances. 

Seismogram recordings allow determining the moment magnitude of an 
earthquake on the Gutenberg-Richter scale as well as particle velocity and 
acceleration at the seismometer’s location. However, from the recordings it 
is not possible to defi ne the type of seismic waves that have reached a city 
or their characteristics. This is the main reason that both Gutenberg-Richter 
and Mercalli scales are used together. Knowing how elastic waves propagate 
it is clear that the detected waves are rarely coming directly from the focus 
of the earthquake. In most of cases they originate from the same initial 
seismic disturbance but have been modifi ed during their propagation in 
the heterogeneous nonlinear rock. This is especially true for surface seismic 
waves which always originate from body waves reaching the Earth’s surface 
under specifi c conditions. In this aspect the practical importance of the exact 
location of the epicenter of an earthquake that is located above the hypocenter 
is of lesser importance than the depth of the focus (the distance between 
the hypocenter and the epicenter) which is an important parameter for the 
characterization of the earthquake. Usually the high-amplitude primary waves 
are not a direct threat to cities unless the city happens to be located close to 
the epicenter, but they are important source of surface seismic waves which 
have the strongest impact to man-made constructions. 

In Sections 3.2, 3.3, and 3.4 three different types of surface elastic waves 
will be analyzed that are often generated during earthquakes. The damage 
caused to building by these waves depends on the seismic energy carried 
by them but mostly it depends on the polarization of the waves. We remind 
that the polarization is the direction in which ground masses get displaced. 
While vertical displacement normal to the ground surface could be damaging 
much more damaging are waves with horizontal sidewinding-snake type 
displacement SH-wave. 

3.1 Linear surface elastic wave propagation

Surface elastic waves propagating on the planar surface of a homogeneous, 
linear, elastic half-space are nondispersive. Two types of dispersion can 
exist: (1) material dispersion associated with attenuation, scattering and 
diffraction of the waves due to the structure of the medium of propagation, 
and (2) geometrical dispersion in layered structures and elastic waveguides 
which is due to wave interference. Usually material dispersion is weaker 
that geometrical dispersion. Material substrates used in physical acoustics 
for generation and propagation of surface acoustic waves (SAW) usually are 
nondispersive. 
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If the material is nonlinear and nondispersive an initially sinusoidal 
surface elastic wave creates higher harmonics which  in the absence of 
dispersion can grow indefi nitely interacting with each other and also with the 
fundamental mode. Higher harmonics of Rayleigh waves have been observed 
experimentally since 1960s (Mayer 1995). A derivation of coupled equations 
for slow variations of the envelopes of a fundamental Rayleigh wave and its 
higher harmonics had been given as early as 1973 (Reutov 1973). In nonlinear 
dispersive material the growth of higher harmonics and their interactions are 
inhibited by the dispersion.  

Equation 2.1.1 admits solutions that correspond to inhomogeneous 
dispersive plane waves satisfying the boundary conditions of surface waves 
propagating on the surface (x1, x2) of a solid occupying the space x3 ≤ 0 (Fig. 
3.1.1). The displacement can be presented as (Farnell 1970; Farnell and Adler 
1972):

 ( )Ri k x V t
i iu eα ⋅ −
=

� ��  (3.1.1)

The components k
�

 = (k1, k2, k3) in the (x1, x2)-plane are real for k1 and k2 
while k3 may be complex. For a plane wave propagating along the x1-axis k1 ≠ 
0, k2 = 0 and k3 = iξ is complex.

 ( )1,0,k k iξ=
�

 (3.1.2)

Equation 3.1.1 becomes:

 ( )1 13 i k x ti kx
i iu e e ωξα −=  (3.1.3)

Equation 2.1.2 becomes:

 2
R i ijkl j l kV c l lρ α α=  (3.1.4)

Fig. 3.1.1. Surface elastic wave propagating along x-axis. 
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lj is the unit vector of the axes xj. Christoffel’s equation Eq. 2.1.6 is now:

 ( ) 2 0 with 0 and 1 ifil R il il ilV if i l i lξ ρ δ δ δΓ − = = ≠ = =  (3.1.5)

Also we have:

 ik ijkl j l kic l lΓ = = Γ  (3.1.6)

(With substituting Eq. 3.1.3 into Eq. 3.1.5 we get:

 ( )
( )
( )

2
11 11 15 55

2
22 66 46 44

2
33 55 35 33

2
12 16 14 56 45

2
13 15 13 55 35

2
23 56 36 45 34

2

2

2

c c c

c c c

c c c

c c c c

c c c c

c c c c

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

Γ = + +

Γ = + +

Γ = + +

Γ = + + +

Γ = + + +

Γ = + + +

 (3.1.7)

Since we deal with surface elastic waves all displacement components 
should become 0 with x3 → –∞, i.e., only solutions with Im ξ < 0 are allowed 
in Eq. 3.1.3:

 
( ) ( ) ( ) ( )1 1 13 3

3 3

1 1

x R Ri k x V ts s i k x ti x
i s i s i

s s
u C e C e e ωξα α− −

= =

= =∑ ∑  (3.1.8)

The coeffi cients are chosen to satisfy the free half space boundary conditions:

 
3 0iT = 3 0x =at  (3.1.9)

From Eq. 1.5.1.6 we have:

 3
k

i kl
l

uc
x

∂
∂ 3 0x =at  (3.1.10)

Equation 3.1.8 becomes:

 
( ) ( )

3

3
1

0s s
i kl s k l

s
c C lα

=

=∑  (3.1.11)

In matrix form Eq. 3.1.11 is:

 

2
11 13 1

2
22 2

2
12 33 3

0
0 0 0

0

V
V

V

ρ α
ρ α

ρ α

⎛ ⎞Γ − Γ ⎛ ⎞
⎜ ⎟⎜ ⎟Γ − =⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟Γ Γ − ⎝ ⎠⎝ ⎠
 (3.1.11’)

From Eq. 3.1.4 and Eq. 3.1.11 the parameters VR, ξs, Cs, and αi
(s) can be 

calculated. For an isotropic substrate Eq. 3.1.7 becomes:
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( )

( )

2
11 11 44

2
22 44

2
33 44 11

12

13 11 44

23

1

0
/

0

c c

c

c c

c c

ξ

ξ

ξ

ξ

Γ = +

Γ = +

Γ = +
Γ =

Γ = −

Γ =

 (3.1.12)

With ξ = 0 we fi nd the solutions for bulk elastic P- and S-waves with 
VP = (c11/ρ)

1/2 and VS = (c44/ρ)
1/2. 

With the boundary conditions the Christoffel equation Eq. 2.1.6 allows two 
real solutions of wave propagations in the plane (x1, x2)—one corresponding 
to a surface elastic wave with polarization in the sagittal plane (Rayleigh-
like modes) and one corresponding to a surface elastic wave with horizontal 
polarization in the plane (x1, x2)—Love modes. The soliton corresponding to 
a wave that propagates along x3-axis decays fast in the direction – x3. Love 
waves are generated if the incident wave is a body SH-wave that is incident 
to the layer-substrate interface at certain critical angle of incidence such that 
the layer acts as a waveguide. Love waves are guided elastic waves that can 
propagate on the interface between free spaces and a substrate material on 
top of which there is a plate of another material which elastic properties are 
different from those of the substrate. The layer waveguide geometry makes 
them dispersive.

3.2 Rayleigh waves

Is it possible to generate some other type of surface elastic waves without 
the presence of the layer serving as a waveguide that we discussed in the 
case of Love waves in Section 3.1? Rayleigh in 1885 demonstrated that this is 
possible; however, the surface elastic wave is not linearly polarized as in the 
case of Love wave. In order to satisfy the boundary condition of a free surface 
with zero strain the polarization of the Rayleigh’s wave should be formed by 
coupled P-wave and SV-wave similar to Lamb waves. 

In Section 2.2.3 we discussed the case of a free plate with an SH-wave 
propagating and the existence of a cutoff frequency beyond which the wave 
stop propagating as well as SV-wave propagation and Lamb waves. Wave 
dispersion due to geometrical confi gurations such as half space, free plate, plate 
on top of a half space in contact with a fl uid, etc. has many similarities with 
waveguide propagation in optics. The dispersion curves for the fundamental 
symmetric and antisymmetric Lamb modes in Fig. 2.2.3.2 show that for large 
values of ωb both symmetric and antisymmetric Lamb waves reach a constant 
value VR < VS, VP. The transverse components ktP and ktS in Eq. 2.2.3.2 become 
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imaginary when ωb → ∞ and both symmetric and antisymmetric Lamb waves 
become degenerated with same velocities of propagation. The modes are 
propagating only close to the boundary without elastic waves inside the plate. 
Since the thickness of the plate does not matter in this case the solutions are 
valid for a free half space. These solutions are called Rayleigh surface waves. 
Lamb waves propagate in a waveguide formed by a free-boundary plate 
while Rayleigh waves propagate on the surface without need of the presence 
of waveguide conditions. The velocities of propagation of both P- wave 
and SV-wave approaches a constant value VR < VSV, VP. Similarly to Lamb’s 
waves Rayleigh waves are couples waves of P- and SV-waves that propagate 
together. This means that on the free surface the particles’ displacements follow 
a complex trajectory in the direction of propagation and perpendicularly to 
it. In the case of an isotropic medium of propagation the polarization of a 
Rayleigh wave is elliptical—‘ground roll’ with one longitudinal component 
and one shear component polarized perpendicularly to the free surface. The 
velocity of propagation of a Rayleigh wave is about 10% less than the velocity 
of propagation of the bulk shear wave with same polarization (see Fig. 3.2.2). 
We recall that in an isotropic medium of propagation one fast P-wave and two 
slower S-waves can propagate. The S-waves have the same velocity—they are 
degenerated. If the wave is considered to be plane wave then the polarizations 
of the two S-waves are orthogonal. If the medium of propagation is anisotropic 
Rayleigh waves can propagate on the free surface with velocity that is smaller 
than the velocity of the slowest bulk S-wave. That means the Rayleigh wave 
cannot phase match any bulk wave. Below the free surface the Rayleigh wave 
amplitude decays exponentially. Figure 3.2.1 illustrates the propagation of a 
Rayleigh wave. 

It is interesting to compare Rayleigh waves to Lamb waves. Lamb waves 
are refl ected from the two boundaries of the free plate, while Rayleigh waves 
have only one refl ecting boundary. In this case there are no incident waves 
coming from the inside of the plate, but the refl ected waves have to exist. 
This requires the refl ection coeffi cients in Eq. 2.2.3.1 to become infi nite. The 
transverse resonance condition for Rayleigh wave is the denominator Eq. 
2.2.2.1 to become equal to 0:
 ( )2 2sin 2 sin 2 / cos 2 0SV P SV

R I P S RV Vθ θ θ+ =  (3.2.1)

Also since both waves are evanescent in the depth of the plate the 
transverse components of the wave numbers are imaginary: ktS = iαtSV and 

ktP = iαtP. Also sin 2 SV R SV
R

Vβθ
ω

= , sin 2 P R P
I

Vβθ
ω

= , cos 2 SV tSV SV
R

Viαθ
ω

= − , and 

cos 2 P tP P
R

Viαθ
ω

= − . The Eq. 3.2.1 becomes (Auld 1973):

 

2 2 2
2 4 2 22 16 2 2 0R R R R

SV SV PV V V
ω ω ωβ β β β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (3.2.2)
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Lamb waves are propagating together but they are not fully coupled. 
Rayleigh waves are. In the case of Lamb waves propagating in a free plate two 
waves propagate at different velocities—one P-wave and one SV-wave. What 
exactly ‘coupled’ waves mean? This means that the two waves cannot exist 

Fig. 3.2.1. Rayleigh wave is composed by one P-wave and one SV-wave elliptically polarized.
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Fig. 3.2.2. Rayleigh wave velocity in isotropic medium as a function of the body SV-wave and 
the body P-wave (Auld 1973).
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independently without each other; they propagate together, and exchange 
energy between them. Each time when a SV-mode gets refl ected by one of the 
boundaries of the plate it splits its energy between one new P-wave and one 
new SV-wave. Still these waves can propagate pretty independently—they are 
not fully coupled. There is no such thing in the case of Love waves because 
an SH-wave refl ects into an SH-wave without mode conversion. In the case 
of Rayleigh waves an incident P-wave or SV-wave coming from the bulk hits 
the free boundary under a critical angle as a result of which a P-component 
along the free boundary is created and a S-component under certain angle to 
the free boundary. The ground particles start a roll motion following elliptical 
paths that are pushed further by the P-wave. The situation is similar to the 
propagation of ocean waves that are generated by the wind component parallel 
to the ocean surface. 

This type of surface elastic waves is the most common in earthquakes. To 
form and propagate they do not need a waveguide structure on the boundary 
surface as it is the case of Love waves. The only request to generate Rayleigh 
wave on the free surface is to get one P- and one SV-wave coming on the 
surface from the bulk seismic fi eld under the critical angle. The problem is 
that it is diffi cult to locate exactly the point where they will pop up on the 
ground surface, basically their ‘epicenter’.

3.2.1 Dispersion of Rayleigh waves 

For the isotropic solid both the wave equation and the boundary conditions 
give two independent types of solutions: surface elastic waves with horizontal 
displacement (polarization) called Love modes and surface elastic waves with 
displacement in the sagittal plane called Rayleigh waves (Farnell and Adler 
1972). Raleigh waves are not dispersive unless they propagate in a layered 
structure as shown in Fig. 3.1.1. A fi lm of thickness h and different elastic 
properties is deposited on top of the surface where Raleigh waves propagate. 
We will consider that only sagittal-plane displacements are involved. In this 
case the boundary conditions are more complex and solving the equation of 
motion requires numerical processing. If the layer thickness is small (kh << 1) 
some physics assessment can be done. In the limit case of k → 0 the solution 
is nondispersive Raleigh waves on an isotropic unlayered half space (Stonley 
1955; Victorov 1967). If kh → 0 it has been found that

 ( ) ( )
( )

1/22
2 2 2

2

1 /ˆ ˆ ˆ4 1 / 1
1 /

R P
S P S R

R S

V V
V V V V

V V

⎡ ⎤⎛ ⎞−⎡ ⎤ ⎢ ⎥− > + ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ −⎝ ⎠⎣ ⎦

 (3.2.1.1)

where ˆ 2S SV V=  and ˆ / 2P PV V= .
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Fig. 3.2.1.1. Stiffening’ and ‘loading’ for isotropic materials combinations (Farnell and Adler 1972).

STIFFENING

Equation 3.2.1.1 can be simplifi ed to
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 (3.2.1.2)

The extreme limits of the right-hand side of Eq. 3.2.1.2 are represented 
by the lines ˆ 2S SV V=  and ˆ / 2S SV V=  (Fig. 3.2.1.1) which means that for 
layer-substrate combinations lying above the ˆ 2S SV V=  line the layer is said to 
‘stiffen’ the substrate because of its presence the SAW velocity increases above 
that of Raleigh velocity on the substrate, whereas for material combinations 
below ˆ / 2S SV V=  line the layer is said to ‘load’ the substrate because the 
velocity of the free-surface Raleigh wave on the substrate decreases because 
of the presence of the layer (Fig. 3.2.1.1). 

Two cases have been studied:  ̂VS > VS and  ̂VS < VS (Farnell and Adler 1972). 
The phase and group velocities have been calculated for both cases of Si on 
ZnO where V̂S > VS is valid and ZnO on Si where  V̂S < VS is valid as function 
of increasing kh. In the fi rst case the phase velocity starts from the point 
kh = 0 (corresponding to Raleigh velocity VR in the substrate) and increase with 
increasing values of kh until it reaches the S-wave velocity VS in the substrate. 
In the second case the phase velocity starts from VR in the substrate at kh = 0 
and decreases with kh increasing until reaching the values of V̂S(>  V̂R) in the 
layer tending asymptotically with kh >> 1 to V̂R which is the Raleigh wave 
velocity on the free surface of the layer material. 
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3.3 Love waves

As mentioned above another possible solution of the wave equation and 
boundary conditions is a surface wave with displacement in the horizontal 
plane perpendicular to the sagittal plane. That could happen if the incident 
wave is a body SH-wave is incident to the layer-substrate interface at certain 
critical angle of incidence such that the layer acts as a waveguide. The velocity 
of propagation of the wave varies with frequency and its value is somewhere 
between the shear wave velocity in the thin fi lm and the velocity in the 
substrate. This dispersion is typical for this type of surface acoustic waves 
called Love waves that has a great importance for seismic phenomena. 

Love waves are guided elastic waves that can propagate on the interface 
between free spaces and a substrate material on top of which there is a plate 
of another material which elastic properties are different from those of the 
substrate (Fig. 3.3.1). They are polarized in the plane of the waveguide and their 
amplitude attenuates exponentially in the substrate. In the Section 2.2.1 it was 
mentioned that for an S-wave with a horizontal polarization SH (medium’s 
particles displacement is parallel to the boundary) if V2/V1 > 1 there is a critical 
angle of incidence beyond which total refl ection occurs. When medium 1 is a 
plate the SH-wave remain confi ned in that space as a result of total refl ection. 
Medium 1 is acting as a waveguide. This Love wave belongs to the substrate-
layer set. Love waves are dispersive with velocity of propagation dependent 
on frequency. To be generated the velocity of propagation of a horizontally 
polarized SH-wave should be slower in the layer than in the substrate. Love 
waves are polarized horizontally as is the S-wave that causes them. The 
existence of the plate fi rmly bonded to the substrate is mandatory request for 
the formation of Love waves. Following Auld’s transverse resonance analysis 
(Auld 1978) for SH-waves propagating in the plate we have the particle 
velocities for incident, transmitted, and refracted waves:
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Since RSH
SH = 1 at the free boundary y = b/2 (see Section 2.3.2):
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At the boundary y = –b/2 the refl ection and transmission coeffi cients Eq. 
2.3.1.2 are:
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The transverse resonance condition requires that the two reflection 
coeffi cients Eq. 3.3.2 and Eq. 3.3.3 are satisfi ed simultaneously:
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Fig. 3.3.1. (a) SH-type Love waves propagate in the layer carrying the waveguide; (b) SH-type 
Love waves attenuate exponentially in the depth of the waveguide.
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Equation 3.3.5 leads to:
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k(2)
tSH is a real number if the transmitted wave carries elastic energy away 

from the plate and the solution is a leaky wave. Since solutions which trap 
the elastic energy in the waveguide are of interest only k(2)

tSH = –iα(2)
tSH where 

α(2)
tSH is the attenuation coeffi cient of the SH-wave in the half space. Therefore 

Eq. 3.3.6 becomes:
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The solution gives two relations:
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Equation 3.3.9 shows that trapping of elastic energy can occur only if 
V(2)

SH > V(1)
SH. Analyzing the dispersion curves of the Love waves from Eq. 3.3.7 

Auld [13] has demonstrated that the branches of the tangent function in the 
plot of (α(2)

tSH )
2 as a function of (k (1)

tSH )
2 correspond to various Love wave modes. 

The attenuation coeffi cient (α(2)
tSH )

2 = 0 only for the fundamental Love wave 
mode n = 0 at ω = 0. All other modes are leaky waves leaking energy into the 
half space substrate. At higher frequency ω → ∞ the Love waves approach 
regular SH waves. 

These results have an important impact on the theory of the seismic Love 
waves which propagate at very low frequency. The Earth’s crust can serve as 
such a plate in which SH-waves propagate as in a waveguide because of total 
refl ection. The elastic impedance of the rock layers under the crust could easily 
be bigger than the elastic impedance of the crust. If bulk elastic waves coming 
from these rock layer reach the crust at an angle bigger than the critical one 
Love waves can form in the crust waveguide. Because of their waveguide 
propagation Love waves can carry signifi cant power at longue distances and 
cause devastating damage to buildings. However, such geological waveguide-
like structures are rare. The probability of growth of Love-like waves with 
horizontal polarization called skimming waves is much higher than that of 
Love waves because skimming waves do not require any waveguide structure. 
Skimming waves will be discussed in Section 3.7.3. 
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Trapped Love waves propagating in the waveguide are excited only if 
V(2)

SH > V(1)
SH. It is interesting to analyze also what happens in the case when SV-

waves propagate. In this case we have the so called generalized Lamb waves. 
However, as we mentioned already calculating the refl ection and refraction 
coeffi cients of SV-waves is much more complicated task than the SH-wave. 
The dispersion relations can be found in (Auld 1973). As in the case of Love 
waves, the generalized Lamb waves’ properties depend strongly on the ratio 
V(1)

SV/V(2)
SV. In the limit case when V(1)

SV >> V(2)
SV there is only one generalized Lamb 

wave solution, which reduces to a Rayleigh wave on the surface between 
the plate and the substrate when βb → 0 and exists only if ω/β < V(2)

SV. If 
V(1)

SV << V(2)
SV there is an infi nite number of solutions which can be grouped into 

two families of modes called the M1 and M2 series. The fundamental modes 
of these series—(M11, M21)—are the most interesting. For a plate thickness 
close to zero or for very low frequencies (βb → 0) the mode M11 becomes 
a Rayleigh type of wave, while the higher orders of M1 and all M2 modes 
become leaky waves. As the plate thickness increases, the fi rst trapped mode 
is the M21 called Sezawa wave. It is interesting that Sezawa waves have not 
been considered in seismology, despite that fact that there the SV-cousins of 
the SH Love waves. Often Sezawa waves are confused with Rayleigh waves, 
but there is a difference. Rayleigh waves are couples SV- and P-waves, while 
Sezawa waves are pure SV-wave without any P-wave coupled to them. For 
thick plate or high frequency (βb → ∞) the M11 mode becomes a Rayleigh wave 
on the upper boundary of the plate between the plate and the fl uid and all 
other higher modes including the M21 degenerate into SV-waves in the plate. 
For certain material impedances when V(1)

SV ≈ V(2)
SV become a bound surface wave 

on the plate-substrate interface. Waves of such type may exist not only when 
V(1)

SV ≈ V(2)
SV  but also V(1)

SV  > V(2)
SV. 

3.4 Stoneley waves

As discussed in the previous section for specifi c material parameters when 
βb → 0 the M21 mode becomes a surface wave bound to the interface between 
the plate and the half space substrate. This case corresponds to material 
combinations where V̂S ≈ VS. This interface wave is called Stonley wave. The 
Stonley wave can propagate only if its velocity is bigger than the velocity of 
Rayleigh wave’s velocity and smaller than the velocity of the S-waves in the 
denser medium. 

 ( )2 1 2
R SV SVV V V< <  (3.4.1)

As we discussed it is difficult to calculate V1
SV without numerical 

computation. However, it is certain that its value has to be between VR
(2) and V2

SV 
when ρ(2) > ρ(1). The region of existence of Stoneley wave is shown in Fig. 3.4.1.
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Fig. 3.4.2. Stoneley waves at W/Al interface.

Fig. 3.4.1. Region of existence of Stoneley wave (Farnell and Adler 1972).

The existence of Stonley waves is restricted by the elastic properties of 
medium 1 and medium 2. In homogeneous materials Stonley waves arise 
rarely. In heterogeneous materials such as the Earth’s crust composed by a great 
number of interfacing domains with different elastic properties and elastic 
wave velocities Stonley waves can be easily created. Stonley waves propagate 
on the domains’ boundaries with both P-components and S-components. They 
are exponentially evanescent on the two sides of the boundary as shown in 
Fig. 3.4.2 for W/Al interface (Farnell and Adler 1970). 
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Fig. 3.5.1. Amplitude of the transmitted Rayleigh wave normally incident on a step (Farnell 1978).

Stonley waves can also be generated at liquid-solid interface. These waves 
are called Scholte waves or borehole waves because they arise often during 
oil and gas drilling operations. 

3.5 Refl ection and transmission of SAW 

Such refl ection of the surface elastic wave can be produced by a vertical step 
on the surface such as the edge of the substrate in Fig. 3.5.1 (Farnell 1978). It 
can be calculated that 41% of the incident surface elastic wave energy will be 
transmitted around the corner and will propagate down the vertical surface, 
13% will be refl ected back as a surface elastic wave propagating away from the 
edge, and 46% of the incident wave will be converted into bulk elastic modes 
propagating down the substrate away from the edge. Figure 3.5.2 shows the 
percentage of incident surface elastic wave energy refl ected and transmitted 
as Rayleigh waves (dashed curve) and converted to bulk waves (solid curve) 
as a function of the ratio step height vs. wavelength (Farnell 1978).

With these results if we go back to Fig. 3.5.1 we can conclude that if such 
steps made of concrete, metal, plastic or other appropriate material with 
appropriate values of h are built around a city in the case of an earthquake 
cause by Rayleigh surface seismic waves almost the entire amount of seismic 
energy carried by the waves could be converted, refl ected, and attenuated. In 
the next section of this book we will continue exploring this idea. We have to 
answer the most important question: how to design such steps so they can be 
effi cient in a wide frequency band (a wide range of wavelengths). 
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3.6 Attenuation and scattering of SAW

Attenuation and scattering of surface elastic waves happens usually in 
heterogeneous media where seismic waves propagate. Rocks are strongly 
nonlinear because of their attenuation and scattering properties. These 
properties make them to be highly dispersive. The resulting nonlinear 
phenomena change dramatically the propagation of surface elastic waves. 

3.6.1 Attenuation of SAW

Bulk and surface elastic waves lose energy during their propagation. The 
energy loss depends on the composition, elastic properties, homogeneity, 
and temperature of the medium of propagation on one hand, and on the 
polarization and frequency of the elastic wave on the other hand. The 
propagation energy loss in the medium of propagation is due to a combination 
of three factors (Slobodnik 1978): 1) Interaction of thermally generated elastic 
waves; 2) Scattering by defects, inclusions, and other inhomogeneity factors; 
3) Energy loss to fl uids adjacent to the boundary surface. The fi rst factor is 
temperature dependent, the second one is temperature independent, and the 
third one is pressure dependent. 

The impact of these three factors and their combinations on the attenuation 
of bulk and surface waves is different in different frequency ranges. While the 
fi rst factor has a signifi cant impact on surface elastics waves in the microwave 

Fig. 3.5.2. Refl ected, transmitted, and converted Rayleigh waves from a step as a function of step’s 
height vs. wavelength (Farnell 1978).
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frequency range used in physical acoustics because of interactions with 
thermal phonons, this factor can be neglected for the surface seismic waves 
on the Earth’s surface except for bulk waves propagating deep in the mantle 
and core where temperatures are high. The highly inhomogeneous Earth’s 
structure has a signifi cant impact on the propagation loss of bulk and surface 
seismic waves, and little impact on elastic waves in physical acoustics which 
usually propagate in highly homogeneous materials. The third factor affects 
high-frequency surface elastic waves in physical acoustics. It has small impact 
on Love and Rayleigh surface seismic waves, but a signifi cant one on Stoneley 
surface elastic waves and bulk seismic waves propagating around the Earth’s 
liquid core. 

Surface elastic wave attenuation problem can be analyzed using the 
perturbation theory (Auld 1973). Consider attenuation of Rayleigh surface 
waves from surface roughness shown in Fig. 3.6.1.1. The surface roughness 
is characterized by a roughness function fr(z) and a roughness parameter ε. 
Also we consider that yr(z) << λR, where λR is Rayleigh wavelength, and the 
slope of the perturbed surface is small, i.e., dfr(z)/dz << 1. Therefore we have:

 ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ r
y z

df z
n z yn z zn z y z

dz
ε= + ≈ −  (3.6.1.1)

Since the surface is stress free the boundary condition is:

         ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, , , 0rdf z
T y z n z T y z y T y z z

dz
ε⋅ = ⋅ − ⋅ =

� � �
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Fig. 3.6.1.1. Rough surface characterized by a roughness function f(z) and perturbation parameter.
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By expanding T
�

(y, z) in powers of ε we get:

 ( ) ( ) ( ) ( ) ( )0 1, , , ...T y z T y z T y zε= + +
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The boundary condition Eq. 3.6.1.2 can be written as:
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(3.6.1.3)

The zero order term in Eq. 6.3.2.3 is zero because it corresponds to the 
unperturbed boundary condition and the fi rst order term is:
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The average power density loss per unit surface Ploss of the Rayleigh wave 
can be calculated using Eq. 3.6.1.4. If PR is the average Rayleigh power density 
per unit width normal the z-axis the attenuation is:

 ( )20log dB/mloss
R

R

Pe
P

α =  (3.6.1.5)

By expanding the roughening function fr(z) in Fourier series the attenuation 
coeffi cient αR can be obtained.
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In Eq. 3.6.1.6 λr is the roughness period of the surface. The attenuation 
coeffi cient αR is a sum of the attenuation coeffi cients of the individual Fourier 
components:
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For an isotropic surface the m-th Fourier component gives the attenuation 
expression of Brekhovskikh:
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where with λP, λS, and λR being the wavelengths of the P-wave, S-wave, and 
Rayleigh wave 
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 (3.6.1.9)

Figures 3.6.1.2 and 3.6.1.3 show the attenuation coeffi cient of the Rayleigh 
wave propagating on saw tooth surfaces with angles of 10º and 25º (Sabine 
1970; Rischbieter et al. 1965).

Fig. 3.6.1.2. Rayleigh wave attenuation due to saw tooth roughness function.
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Fig. 3.6.1.3. Rayleigh wave attenuation due to saw tooth roughness function.

3.6.2 Excitation of Raleigh waves by body waves 

Scattering is a physical process that causes radiation to deviate from a straight 
trajectory (Slobodnik 1978). If there are microscopic irregularities in the surface 
an incident optical beam will get diffuse instead of specular refl ection. The 
same happens for light passing through a transparent medium. If there are 
non-uniformities like particles or bubbles some of the light will deviate from 
its original trajectory. There are two types of scattering: elastic and inelastic. 
During the process of elastic scattering there is no loss or gain of energy by 
the optical wave. During the process of inelastic scattering there is a change 
in the energy of the wave. If the light is substantially extinguished by the 
interaction (losing a signifi cant proportion of its energy), the process is known 
as absorption. Refl ection of light is an elastic process. 

A single scattering happens when there is only one scattering center. 
Often many randomly located scattering centers are present in the medium 
resulting in a multiple scattering process. Since the distribution of the scattering 
centers is unknown it is diffi cult to solve the ‘inverse scattering problem’—by 
measuring the intensity of the scattered light to fi nd either the intensity of the 
incident light or the distribution of the scattering centers. 
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Light scattering and absorption are the two major physical processes 
that contribute to the visible appearance of physical objects. The spectral 
distribution of absorption determines the color of a surface, while the amount 
of scattering determines whether the surface is mirror-like or not (Fig. 
3.6.2.1). The wavelength dependence of scattering is determined by the ratio 
x = 2πr/λ of r—the characteristic length (radius of the particle) and λ—the 
optical wave wavelength. If x << 1 (the size of the particles is much smaller 
than the wavelength) is called Rayleigh scattering. If x ≈ 1 the scattering is 
called Mie scattering. If x >> 1 (the size of the particles is much larger than the 
wavelength) the shape of the scattering object becomes much more signifi cant. 
Short wavelength light is scattered by the atmosphere much more than long 
wavelength light. 

Elastic waves similarly to electromagnetic waves are scattered by 
objects, however the scattering is usually inelastic because there are always 
transmitted waves except for some special cases of critical angles when there 
is no transmission. Not only transmitted waves cause the non-linearity of 
the process, but also the refl ection itself is not linear because additionally 
to the refl ected wave of same polarization another type of wave appears. If 
the boundary surface is rough and the size of the rough areas is of the order 
of the elastic wavelength or larger scattering will complicate the process 
even more. Bulk and surface elastic wave scattering from the random rough 
boundaries between various domains in the crust occur much more often than 
refl ection and transmission of plane waves from smooth surface that have 
been discussed in the previous sections. Most of the surfaces and boundaries 
between domains in the Earth’s crust are neither plane nor smooth; they are 
rough and curved. In this case a plane elastic wave incident to that surface will 
be scattered in various directions as elastic waves with modifi ed polarizations 
and wave fronts. 

Fig. 3.6.2.1. Specular refl ection and diffuse refl ection of optical waves.
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Fig. 3.6.2.2. A triangular grove converts Rayleigh surface waves into longitudinal bulk elastic 
waves.

The problem of scattering of acoustic waves from random surfaces or solids 
dispersed in the medium of propagation has been object of active research 
during the past couple of decades both experimentally and theoretically. The 
theory of elastic waves scattering is extremely complex and to date there is no 
coherent solution to this problem. The problem of refl ection and transmission 
of elastic waves in anisotropic solids is also very complex. Only refl ection 
and transmission in isotropic media has been fully analyzed and described 
in literature. Various methods to analyze the scattering problem and various 
approximations have been proposed. A detailed review of the research done 
in this area has been done elsewhere (Ogilvy 1987).

Theoretical results (Gilbert and Knopoff 1960) confi rmed experimentally 
(Hudson et al. 1973) show that Rayleigh surface waves incident to a triangular 
grove is scattered into bulk longitudinal waves and vice versa (Figs. 3.6.2.2 and 
3.6.2.3). Figure 3.6.3.3 shows a set of triangular groves converting an incident 
Rayleigh surface wave into longitudinal bulk elastic waves. The amplitudes 
of the longitudinal waves depend on the grove angle. The amplitude of the 
scattered waves varies also with the scattering angle. 
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Rayleigh surface waves can be excited by plane bulk wave scattering at a 
surface with periodic mass loading as shown in Fig. 3.6.2.4.

Fig. 3.6.2.4. A set of triangular groves converts Rayleigh surface waves into longitudinal bulk 
waves.

Fig. 3.6.2.3. A set of triangular groves converts Rayleigh surface waves into longitudinal bulk 
waves.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18651-5&iName=master.img-015.jpg&w=251&h=196
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18651-5&iName=master.img-016.jpg&w=260&h=212


Surface Elastic Wave Propagation 141

The boundary conditions are defi ned by:
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If only mass loading is considered 
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The scattered Rayleigh waves are given by the relations (Auld 1973):
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Evaluating the wave amplitudes details from Eq. 3.6.1.10 can be found in 
(Auld 1973). Basically the power radiated from the bulk P-waves into Raleigh 
waves is:
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3.7 Nonlinear surface elastic waves in nondispersive media

Surface elastic waves that propagate on an isotropic homogeneous surface are 
nondispersive. If the medium is nonlinear the absence of dispersion allows 
the surface wave to create a great number of harmonics. Higher Rayleigh 
wave harmonics have been observed experimentally by many authors (Mayer 
1995). Using the method of multiple scales Lardner (Lardner 1984) has derived 
an evolution equation of waveform of a Rayleigh wave caused by second-
order nonlinear terms. The method has been developed further by Parker 
(Parker 1988). 

3.7.1 Equation of evolution

The Hamiltonian of a linear system is the sum of the potential and kinetic 
energy. The same is in the case of a nonlinear elastic system, however now 
the potential energy includes higher orders of the displacement as we 
discussed in Chapter 2 (Eq. 2.5.1.9). Equation 3.1.8 is a solution of the equation 
of propagation with boundary conditions corresponding to elastic wave 
propagation on the (x1, x2)—free surface and vanishing in the direction of –x3. 
If the propagation is in the direction of x1, following the analysis of Hamilton 
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(Hamilton et al. 1999) the kinetic and potential energies can be presented in 
terms of harmonic amplitudes an(t) chosen to be generalized coordinates, in 
which the corresponding momenta according to Eq. 2.5.2.10 are pi = ∂Ek/ ∂ .

ai. 
Equation 3.1.8 can be presented in the form. 
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The Hamilton equations Eq. 2.5.2.21 become:
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The kinetic energy density (per unit area) is:
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In Eq. 3.7.1.4 λ = 2πk is the wavelength corresponding to the fundamental 
mode in the Fourier expansion of ui. With Eq. 3.7.1.1, Eq. 3.7.1.4 becomes 
(Hamilton et al. 1999):

 

20

32 2
n n

k n n ni
n n

a aE a a u dx
k n

ρ ρ −
−

−∞

= =∑ ∑∫
� �

� �  (3.7.1.5)

The quadratic part of the potential energy is:
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With Eq. 2.5.2.11 and Eq. 3.7.1.1 the potential energy Eq. 3.7.1.6 becomes:
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Following the same path to determine the quadratic terms of the potential 
energy the cubic term Eq. 2.5.1.9 can be expressed as:
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We consider propagation of surface elastic waves on the free boundary of 
a solid fi lling the space x3 < 0 (Mayer 2008). The surface wave displacement 
ui will depend on the coordinates x1 and x2 and time t. Piola-Kirchhoff stress 
tensor Tij describes conveniently the nonlinear phenomena:
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The equation of motion is:
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At the stress-free surface x3 = 0 the boundary condition is Tα3 = 0 and 
because we deal with a surface wave the displacement will become 0 if x3 → –∞.

In the linear limit the solution of Eq. 3.7.1.10 will be (Mayer 2008):
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In Eq. 3.7.1.11 Ψα(x3|k) is a depth profi le function and VR is the Rayleigh 
wave phase velocity. Ψα(x3|k) is normalized in such a way that B(k) is the Fourier 
transform of gradient displacement components uαβ at the free boundary x3 = 
0. The displacement can be presented in the form (Parker 1988; Parker et al. 
1992; Mayer 1995):
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In Eq. 3.7.1.12 ε is the weak-nonlinearity asymptotic-perturbation 
expansion parameter, θ = x1 – VRt and x1

(1) = εx1 is the stretched coordinate. A 
stretched time or a spatial coordinate is introduced that represents the scale 
on which a waveform evolution takes place τ = εt = εx1/VR. 

The compatibility condition for the solvability of the system, obtained by 
projecting on a linear surface wave solution, yields the evolution equation for 
the strain amplitudes B as a function of the wave number k in the following 
form:
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The dimensionless function F in Eq. 3.7.1.5 is an overlap integral of linear 
surface waves involving cijklmn and the depth profi le function Ψα(x3|k).

In isotropic homogeneous half-space the strain amplitude B in the 
evolution Eq. 3.7.1.13 is the Fourier transform of u3,1 at the free surface, i.e., 
the local surface slope, then the dimensionless function F is imaginary. In the 
general case, however, F has both a non-vanishing real and imaginary part.

By inserting Eq. 3.3.4 into the equation of motion Eq. 3.1.11 with the surface 
wave boundary conditions and retaining terms only of fi rst order in ε we get 
a solution of the linearized equation of motion in the form:
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ϖ(x3|k) is a function of the displacement fi eld of the Rayleigh wave in the 
homogeneous half space. 

With Eq. 3.3.6 the equation of motion leads to the equation of evolution 
for the amplitude α(k, x1
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K(k, k') is given by:
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In Eq. 3.7.1.16 we have:
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Surface elastic waves propagating on the half-space surface of an 
elastic, homogeneous, and nondispersive medium are nondispersive. If the 
propagation is nonlinear because either the medium is nonlinear or the wave 
has fi nite amplitude the initially sinusoidal surface wave creates higher 
harmonics which grow without being inhibited by dispersion. 
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The theory of nonlinear acoustic waves in isotropic and anisotropic media 
has been recently developed by (Parker 1988; Zabolotskaya 1992; Hamilton et 
al. 1999; Gusev et al. 1998) using Hamiltonian formalism. 

The Hamiltonian is 

 H=Ek+Ep+Wnonlinear (3.7.1.17)

The displacement expressed in terms of harmonic functions qn(t) chosen 
to be generalized coordinates is given by:
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Also with the defi nition of qn(t) we have 
k

n
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∂ �  and the Hamilton’s 

canonical equations become Eq. 2.5.2.21.

The evolution equation in terms of particle displacement velocity rather 
than displacement as function of propagation distance is given by (Mayer 
2008):
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The nonlinearity matrix in Eq. 3.7.1.11 is given by:
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In Eq. 3.7.1.20 FS1S2S3
 is a coordinate transformation matrix for second and 

third-order stiffness constants cijkl and cijklmn. 

Equation 3.7.1.19 is useful only in the case when the waveform is known 
in time. Usually it is more important to know the evolution of the waveform 
as a function of the propagation distance. In this case vn = vn(x) for isotropic 
media Eq. 3.7.1.19 is replaced by:
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3.7.2 Wave-wave interactions in nondispersive medium 

Two elastic waves can interact with each other and create a third elastic wave 
because of the second-order nonlinearity (Mayer 2008). At least one of the 
three waves involved has to be a Rayleigh wave. There could be various 
processes of interactions such as creation of second harmonics of Rayleigh 
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waves or parametric mixing of two Rayleigh waves. Two Rayleigh waves with 
wavenumbers k1 and k2 can generate new Rayleigh waves with wavenumbers 
k1 ± k2 in a three wave process. The amplitudes of the generated waves grow 
linearly with distance according to: 

 ( ) ( ) ( ) ( ) ( )1
1 2 1 2 1 1 1 22 ,k k i K k k k x k kα α α± = − ± ±  (3.7.2.1)

Another process that can occur is a parametric amplifi cation of a weak 
sub-harmonic wave by a pump wave of large amplitude (Lardner 1984; Krylov 
1993). This process is governed by the equation:
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The amplitude of the pump wave has to be big enough to satisfy the 
condition:

 ( ) ( ) ( ) 2, 2 2K k k k k kα α − > Γ

It has been demonstrated (Krylov 1993) that for small attenuation the 
amplitude of the weak sub-harmonic wave cannot be amplifi ed more than 
2 times. If, however, the third and fourth harmonic waves are damped 
simultaneously, the maximum amplitude of initial Rayleigh wave can be 
amplifi ed via parametric amplifi cation up to 10 times. 

Nonlinear interactions between surface and bulk waves have been studied 
both experimentally and theoretically. The results can of mixing nonlinear 
waves be summarized as follow:

 i)  a surface wave and a bulk wave generate a surface wave
 ii)  two surface waves generate a bulk wave
 iii)  a surface wave and a bulk wave generate a bulk wave
 iv)  two bulk waves generate a surface wave

It is interesting to discuss how nonlinearity and dispersion affect the 
propagation of bulk and surface seismic waves. 

During distant earthquakes often two distinct stages have been observed—
the fi rst characterized by a preliminary weak motion followed by the second 
main shock characterized by a much stronger tremor. 

First Rayleigh (Rayleigh 1885) suggested that surface seismic waves play 
an important role in earthquakes. Later Oldham (Oldham 1900) recorded two 
phases in the preliminary weak motions that he identifi ed by their travel times 
as the direct bulk P- and S-waves traveling at different but almost constant 
velocities. The main shock Oldham attributed to Rayleigh surface elastic 
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wave traveling also at almost constant speed on the Earth’s surface but much 
slower than the bulk P- and S-waves. Lamb (Lamb 1904) confi rmed Oldham’s 
observations on the surface seismic waves during the main shock, but couldn’t 
explain why in some cases the ground was moving vertically which shows a 
typical Rayleigh wave and in other it moved sidewinding in the horizontal 
ground plane. The sidewinding surface elastic waves were later were explained 
by Love (Love 1911) and called Love waves. As we have discussed already, 
instead of considering homogeneous half-space Love considered a layer on 
the top of the ground half space as a boundary between the ground half space 
and the air. Under specifi c conditions this layer forms an elastic wave guide. 
The waves that propagate in the waveguide are polarized in the horizontal 
plane perpendicularly to the direction of propagation. It was found out that 
Rayleigh waves can also propagate in a layer structure and that both Love 
and Rayleigh waves in a layered heterogeneous half space are dispersive 
waves, i.e., their velocities of propagation depend on the wave’s frequency. In 
a homogeneous half space surface waves are nondispersive. In case of fi nite-
amplitude propagation resonating harmonic waves can be generated and a 
parametric amplifi cation and waveform evolution are observed. In a dispersive 
half space different phenomena arise such self-focusing, self-modulation, 
mode-conversions, and waveguide envelop solitons can occur and affect the 
propagation of surface seismic waves. 

3.7.3 Nonlinear surface waves of shear-horizontal polarization. 
Skimming waves 

The Bleustein-Gulyaev waves are surface acoustic waves which, like 
(generalized) Rayleigh waves, propagate on a planar surface of a homogeneous 
piezoelectric medium and are therefore nondispersive. The way in which 
they are infl uenced by nonlinearity is, however, quite different from that of 
sagittally polarized surface waves. This is because of the fact that like Love 
waves (De 1970), the Bleustein-Gulyaev waves excite a second harmonic of 
sagittal polarization. Due to the change of polarization, this generation of the 
second harmonic is not resonant. However, there is a resonant interaction of the 
fundamental Bleustein-Gulyaev wave with its third harmonic which is again 
of shear-horizontal polarization and is accompanied by a nonzero electrostatic 
potential. This resonant interaction is either direct through third-order 
nonlinearity or indirect via second-order nonlinearity in a two-step process 
(Mayer 1991). Since rock is not piezoelectric we will not elaborate further this 
topic about Bleustein-Gulyaev surface waves. However, it is interesting to 
discuss nonlinear surface SH-waves in the case of nonpiezoelectric materials. 
We have seen surface SH-waves only in the case of Love waves which can 
be generated only in layered waveguide systems. Love wave are highly 
destructive seismic waves because of their SH-polarization, however they 
relatively rare in the seismologic practice because of the specifi c geological 
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conditions that they need to be generate and propagate. However, if surface 
SH-waves could be generated on a regular half-space surface they would have 
a major impact during earthquakes. 

The linearized equations of motion and boundary conditions for 
surface elastic waves do not admit solutions of surface acoustic waves 
of shear-horizontal polarization propagating on a planar homogeneous, 
nonpiezoelectric, isotropic medium. However, there is a bulk wave of shear-
horizontal polarization propagating along the surface satisfying the traction-
free boundary conditions at the surface called surface skimming bulk wave. 
The question is whether nonlinearity can lead to localization of this surface 
skimming bulk wave at the surface and makes it propagate as a surface elastic 
wave. This problem has fi rst been investigated by Mozhaev (Mozhaev 1989) 
in an isotropic elastic medium. Assuming a displacement in the form: 

 
0(x, ) (z)u t U qx t  (3.7.3.1)                              

Mozhaev derived u0(y) in the case a negative nonlinear coeffi cient :  
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and a dispersive relation:
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Similar solutions of the equation of motion and boundary conditions for 
the displacement fi eld have been obtained by other authors (Kosevich (1990) 
for shear-horizontal waves localized by nonlinearity at a planar interface 
between two homogeneous elastic media. 

Skimming SH-waves located close to the surface due to nonlinearity and 
dispersion is a phenomenon that could have a great impact in seismology. 
To date only theoretical solutions have been found about the existence of 
skimming waves. Such waves have not been observed experimentally because 
of weak nonlinearity and dispersion in materials used in physical acoustics. 
However, strong nonlinearity and high dispersion in the rock media offer 
opportunity for experimental study of skimming waves and their impact as 
seismic SH-waves. Knowing how destructive seismic Love waves could be 
during earthquakes, skimming waves grab the attention because of much 
higher probability to be generated in normal geological conditions without the 
need of specifi c layers and waveguide structures as in the case of Love waves.  

  



Surface Elastic Wave Propagation 149

3.8 Nonlinear elastic waves in a dispersive medium

Indeed, as shown in Fig. 3.8.1 the crust’s strength increases linearly in the 
elastic zone with predominantly brittle rocks and reaches a maximum at a 
certain depth where a brittle-ductile transition occurs followed by non-linear 
exponential decrease of the strength with depth. 

Most of the elastic energy transport having an impact on the earthquake’s 
effect happens in the brittle elastic zone down to the brittle-ductile transition 
zone. Farther down in the non-linear elastically ductile zone the attenuation 
of the bulk waves increases. This means that all surface acoustic waves that 
will emerge on the surface will carry energy density that depends essentially 
on the specifi c geological status of the brittle elastic zone. 

We note that Fig. 3.8.1 gives only a general idea about the crust’s strength 
variation with depth. In reality the profi le of crust’s strength can strongly 
vary from area to area. In average the maximum crust’s strength is in depth 
zone between 13 km and 18 km but this certainly is not valid everywhere 
on the Earth. In many cases zones with linear elasticity are interrupted by 
mix zones of brittle-ductile rock modifying the crust at various depths and 
resulting in non-linear elasticity. The heterogeneous structure of the crust is a 

Fig. 3.8.1. The crust strength as a function of depth.
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mix of domains with linear and non-linear elasticity. The energy transport is 
different in the linear and non-linear zones and it will vary depending on the 
specifi c geophysical profi le of the crust. The lithosphere in general is highly 
dispersive continuum.

Nonlinear wave propagation in dispersive media differs from nonlinear 
propagation in nondispersive media. The growth of high harmonics cannot 
take place in dispersive media because they cannot couple resonantly between 
them and with the fundamental wave. In a medium with strong dispersion 
only the fundamental mode can propagate without any harmonic waves. 

There is a signifi cant difference between propagation of nonlinear elastic 
waves in nondispersive and dispersive media. In a nondispersive media 
high harmonics could couple to each other and to the fundamental mode in 
resonance conditions. In a dispersive media this coupling cannot happen. If the 
dispersion is strong the creation of high harmonics will be suppressed and it is 
possible to get sinusoidal solutions of the equation of motion if the nonlinearity 
is not very strong. These quasi-sinusoidal solutions are not necessarily stable. 
The theory of dispersive surface elastic waves is analogous to the theory of 
nonlinear electromagnetic waves propagating in optical waveguides. There 
are various mechanisms causing dispersion. The most relevant for seismic 
waves is the propagation of Rayleigh waves in nonlinear medium covered 
by a layer of a material with different elastic properties. The wavelength of 
the surface elastic wave λSAW = 2π/kSAW is assumed to be much larger than 
the thickness of the layer d. Maradudin and Mayer (Maradudin and Mayer 
1990) have done the calculations assuming the layer is linear with a nonlinear 
dispersive Rayleigh wave with purely sagittal polarization as well as with 
Love wave with an SH-polarization. In the case of Rayleigh waves they have 
found that the dispersion inhibits the growth of a second harmonic. However, 
in the case of Love waves there is a second harmonic with polarization in 
the sagittal plane, perpendicular to the fundamental Love-mode which is 
SH-polarization and, therefore, there is no resonance between the second 
harmonic and the fundamental mode. The layer inhibits the growth of odd 
harmonics which would couple resonantly with the fundamental mode in 
the absence of the layer. The calculations demonstrate a direct contribution 
of the third-order nonlinearity and indirect contributions of the second-order 
nonlinearity via the second harmonic with strong compensations between 
elastic moduli of different order such as negative contributions of the second-
order nonlinearity and the positive contribution of third-order nonlinearity. 
In the case of nonlinear Love waves a gradual variation of a beam profi le 
along the propagation direction can occur when nonlinearity can counteract 
diffraction and give rise to the formation of stable channels—self-channeling 
or self-focusing. No experimental confi rmation has been reported. 

Laser techniques have been used for the generation of very high amplitude 
pulses with acoustic Mach numbers about 0.01 (Kolomenskii et al. 2003). In 
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such cases it is useful to describe the SAW magnitude by a dimensionless 
acoustic Mach number M = v/VR, where v is the amplitude of the surface 
velocity and VR  is the propagation velocity of the Rayleigh surface wave. Such 
waves drive the medium into the nonlinear elastic regime and shock fronts can 
be formed during their propagation. The time evolution of the waveform shape 
depends on the nonlinear acoustic parameters of the medium of propagation. 
Kolomenskii (Kolomenskii et al. 2003) have demonstrated that a compression 
of the high-amplitude SAW pulses takes place in stainless steel. A formation 
of a relatively stable portion of the waveform has been observed of soliton-
like SAW pulses. The increase of the wave amplitude creates a possibility 
that the dispersion and nonlinearity balance each other in such a manner that 
the formation of a relatively stable portion of the wave can occur as a soliton 
(Lomonosov 2002).

Laser generation of nonlinear SAW pulses can result in strong nonlinear 
effects such as the formation of shock fronts and drastic changes of the pulse 
shape and duration (Lomonosov et al. 1999; Kolomenskii 1997). In Fig. 3.8.2 
SAW pulses with different initial amplitudes are shown after propagating a 
distance of 40 mm. At higher amplitudes a relatively stable soliton-like pulse 
is formed in the tail of the waveform. The waveforms of the pulse at different 
distances are shown in Fig. 3.8.3. The sequence of the plots shows how the 
soliton develops. 

Fig. 3.8.2. A SAW pulse distorted by dispersion and nonlinearity. The formed soliton-like portion 
of the pulse is indicated by a dashed box (Kolomenskii 2003).
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3.8.1 Parametric amplifi cation of Rayleigh waves

Weak elastic waves can be amplifi ed by strong pump elastic waves of a higher 
frequency. The phenomenon is called parametric amplifi cations. It exists also 
in optics where a weak electromagnetic wave of frequency ω gets amplifi ed 
through energy transfer from a strong pump wave of frequency 2ω. If there 
is no dispersion a great number of higher harmonics can grow. The energy of 
the strong pump wave will be distributed between them preventing in this 
way the amplifi cation of the weak elastic wave. 

In acoustoelectronics parametric amplifi cation of a weak signal is a 
desirable phenomenon, so techniques have been proposed to prevent transfer 
of energy to higher harmonics by selectively damping them. It has been 
demonstrated that signifi cant parametric amplifi cation of body elastic waves 
can be achieved if the 3rd and 4th harmonics are attenuated (Andreev 1985). 

Fig. 3.8.3. A distorted SAW pulse at various distances. The formed soliton-like portion of the 
pulse is again indicated by a dashed box (Kolomenskii 2003).
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It has been demonstrated that such high amplifi cation can be achieved with 
Rayleigh surface waves (Maradudin 1990). 

In contrast to acoustoelectronics, parametric amplifi cation of seismic 
waves is a highly undesirable phenomenon. It is interesting to see how 
high the parametric amplifi cation of bulk and Rayleigh waves can go in 
acoustoelectronics as a reference how scary this phenomenon is in the case 
of seismic waves. 

Parametric amplifi cation of Rayleigh waves has been further studied and 
ways for enhancing the parametric amplifi cation have been proposed (Krilov 
1993). Rayleigh propagating in a harmonic elastic material (only one nonzero 
Murnaghan nonlinear parameter is considered) has been considered using an 
infi nite set of coupled nonlinear evolution equations (Parker 1988) modifi ed 
by involving viscous energy dissipation ~ ω2 and dissipation of elastic energy 
from periodic surface gratings to calculate the maximum achievable values 
of parametric amplifi cation in elastic media with and without dissipation. 

Figure 3.8.1.1 shows the weak Raleigh wave amplitude (solid line) 
of frequency ω and the pump Rayleigh wave amplitude (dashed line) of 
frequency 2ω as functions of the distance X from the source for the two lower 
harmonics in presence of dissipation (denoted by index D) and in absence 
of dissipation (Krylov 1993). As a reference the distance of Rayleigh wave 

Fig. 3.8.1.1. The weak Raleigh wave amplitude (solid line) of frequency ω and the pump Rayleigh 
wave amplitude (dashed line) of frequency 2ω as functions of the distance X from the source 
for the two lower harmonics in presence of dissipation (denoted by index D) and in absence of 

dissipation (Krylov 1993).
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shock formation is Xsh = 3. The amplitudes at X = 0 are E10 = 0.01 and E20 = –1, 
respectively. Without dissipation the amplitude E1 grows until X = 29.02 where 
E1,max = 1.424226. Then the second harmonic amplitude E2 grows asymptotically 
to a value slightly above 1 while E1 tens asymptotically to 0. In the presence 
of small dissipation (Pω2 = 0.01) the amplitude E1

(D) reaches maximum E1
(D) = 

0.2997 at a long distance of X = 47.5. The pump wave amplitude goes to zero 
short beyond X = 47.5. In the presence of dissipation the amplitude E2

(D) reached 
maximum at X = 77.5 and after that point tends to 0 together with E1

(D). 

The above calculation involving two lowest harmonic have been 
extended into calculation of the maximum achievable coeffi cient parametric 
amplifi cation Kmax of Rayleigh waves. In the cases of absence of dissipation and 
in presence of dissipation Kmax has been found to be equal to K1max /E10 = 141 
and E(D)

1max/E10
(D) = 30. In the usual conditions of acoustoelectronics experiments 

the propagation of nonlinear Rayleigh waves is accompanied of the growth 
of a great number of interacting harmonics, so Kmax has not been achieved. It 
will be interesting to discuss the situation of nonlinear seismic Rayleigh waves 
propagating in highly dissipating, dispersive, and heterogeneous continuum 
of the lithosphere. Such a discussion will take place later in this Chapter.

Figure 3.8.1.2 shows E1
(D)(X) and E2

(D)(X) for twenty interacting harmonics. 
For E1

(D)(X) (solid curve A) the maximum value is only 0.03794 at X = 4.5 (close 
to the distance of Rayleigh wave shock formation). Beyond the point X = 4.5 
the amplitude decreases because the energy of the pump wave is used for 
the generation of higher harmonics. In this case Kmax = 3.794. This situation of 
small parametric amplifi cation is similar to bulk elastic waves. 

Fig. 3.8.1.2. The infl uence of the selective damping of the 3rd, 4th, and 5th harmonics (Krylov 1993).
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It is interesting to follow Krylov’s analysis on the infl uence of selective 
damping of the 3rd, 4th, and 5th harmonics shown in Fig. 3.8.1.2. The amplitude 
E1 as a function of the distance X is shown in solid lines, while the amplitude 
E2 is presented in dashed lines. Damping only the 3rd harmonic (curve 1) does 
not increase the parametric amplifi cation much in comparison to absence of 
selective damping (curve A). However damping 3rd and 4th harmonics bring 
a maximum coeffi cient of parametric amplifi cation Kmax  = 18.60 at X = 51.3. 
Damping the 5th harmonic together with 3rd and 4th does not increase any 
further Kmax. Krylov propose a technique of damping 3rd and 4th harmonics to 
use Bragg diffraction grating on the surface of propagation that will provide 
selective refl ection of these harmonics. 

3.8.2 Solitary surface elastic waves 

We have seen in Section 2.5.4.2 that in a nonlinear dispersive system, an initial 
disturbance can evolve into a bulk solitary elastic wave that retains its shape 
over a long distance. It has been found that when solitons collide with each 
other, they resume their initial wave forms and speeds. Bulk elastic soliton 
have been experimentally observed (Hao and Maris 2001). It has been stated 
that nonlinearity and dispersion are the main reasons bulk elastic solitons to 
exist. In this Section we will discuss solitary surface elastic waves, solitary 
elastic pulses, and surface elastic solitons as well as the conditions in which 
they are created. The difference between elastic solitons and solitary elastic 
pulses is that solitons survive elastic collisions with each other while solitary 
elastic pulses do not survive such collisions (Mayer 2008). Usually surface 
elastic waves are not dispersive waves except Love waves which propagate 
in a layer structures forming and elastic waveguides. Solitary acoustic pulses 
have been realized experimentally using pulsed laser excitation (Lomonosov 
and Hess 1999, Lomonosov et al. 2002). The dispersion has been generated 
artifi cially by covering the homogeneous elastic medium with a thin fi lm 
made out of a suitable material to realize normal or anomalous dispersion. 
A comprehensive presentation of the theory of surface acoustic solitary 
waves has been given by Eckl et al. (Eckl et al. 1998a,b, 2004). The agreement 
between calculations based on nonlinear elasticity theory and experimental 
results on solitary pulse shapes has been demonstrated in these works. The 
measurements were performed by pulsed laser excitation of high-intensity 
acoustic pulses in layered systems. As a main result, the anisotropy of the 
substrate was found to have a strong infl uence on the pulse shapes. It has been 
shown in numerical simulations that these solitary pulses normally perform 
highly inelastic collisions between each other. Only for a Korteweg–de Vries 
(KdV) type linear dispersion law which is realized only in specifi c elastic 
mismatch between the substrate and a coating fi lm solitary pulse collisions 
are nearly elastic. An important feature of surface acoustic solitary waves is 
their two-dimensional character. They have a nontrivial depth profi le which 
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may be constructed from their associated strain distribution at the surface. 
The latter can be determined from a one-dimensional evolution equation with 
strongly nonlocal second-order nonlinearity. The derivation of the evolution 
equation, as well as the reconstruction of the depth profi le, was done with 
the help of asymptotic methods that have an approximate character and are 
valid for weak nonlinearity and weak dispersion. Eckl et al. (Eckl et al. 2004) 
have compared different variants of the theory provided in the literature were 
compared, and it has been shown explicitly that they lead to the same evolution 
equation. With these asymptotic methods stationary periodic solutions of the 
equations of nonlinear elasticity were constructed that are uniformly valid 
up to depths of the order of a typical wavelength divided by a typical strain. 
Due to the absence of material dispersion in the acoustics of solids, there 
are several physical systems where acoustic waves are nondispersive. By 
modifi cation of the propagation geometry, dispersion can be introduced and 
tailored in a controlled way. One example is the system investigated by Eckl 
et al. of generalized Rayleigh waves propagating along the planar surface 
of a homogeneous elastic half-space. Normal and anomalous dispersion of 
the SAWs was realized by depositing a thin isotropic fi lm onto the substrate. 
The nonlinearity in the corresponding evolution equations is partly of third 
order. An important difference is the scale invariance of the nonlinearity of 
homogeneous elastic media in the acoustics context, which poses a challenge 
for future investigations. Material dispersion in physical acoustic is weak or 
nonexistent for both bulk and surface elastic waves. 

To study the process of generation and propagation of solitary elastic waves 
artifi cially controlled geometric dispersion systems have to be introduced 
in order to excite soliton waves. This is not the case of the heterogeneous 
body of the Earth where both material and geometric dispersion are normal 
phenomena. Rocks form a highly dispersive media which is very welcoming 
environment to body and surface elastic solitons. If Rayleigh solitons can 
be excited on the surfaces of materials used in physical acoustics only by 
introducing layers with matching elastic parameters, the highly dispersive 
Earth’s surface offers plenty of possibilities for the generation and propagation 
of generalized Rayleigh solitary waves. Geometrical dispersion allows Love 
solitons to propagate as well, however, as we have seen these waves require 
a layered elastic waveguide system to propagate which is relatively rare in 
the usual geological structures of the Earth. No such a restriction exists for 
Rayleigh waves making surface seismic solitons the most dangerous waves 
to man-made constructions. We have discussed the process of generation 
of Rayleigh waves from upcoming to the free-surface body waves and vice 
versa—conversion of Rayleigh waves into body waves in specifi c geometric 
characteristics of the surface. This means that solitary body waves and solitary 
Rayleigh waves can freely interact with each other in the dispersive rock. This 
creates a unique environment to study elastic solitons which does not exist in 
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physical acoustics. No such research has been done yet on seismic waves. A 
comprehensive study of the processes of generation and propagation of seismic 
solitary waves certainly will help to understand better earthquakes and will 
allow more effi cient defense against their destructive power to be developed. 

Surface waves propagating on shallow water constituted the fi rst system 
in which solitary waves have been observed and studied, and they continue 
to play an important role in the fi eld of nonlinear waves. As a result of their 
long wave lengths, tsunamis behave as shallow-water waves. A wave becomes 
a shallow-water wave when the ratio between the water depth and its wave 
length gets very small. 

Korteweg–de Vries equation (KdV equation) was derived as a nonlinear 
evolution equation for surface shallow-water waves. The question was whether 
solitons may also propagate along the surface of solids. Several experiments 
with high-intensity Rayleigh waves have revealed features of the wave 
form evolution that are very reminiscent of the soliton dynamics of the KdV 
equation. For a linear Rayleigh waves the evolution equation (Eq. 3.7.1.13) 
in the absence of dispersion, integrating by parts and using the boundary 
conditions at z → 0 and z → –∞ leads at second order of ε to the evolution 
equation for the strain amplitudes: 
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After Fourier transform with respect to the spatial coordinate for k > 0 
Eq. 3.8.2.1 leads to the Korteweg–de Vries equation for m = 3: 
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For m = 2 Eq. 3.8.2.2 represents the equation of Benjamin-Ono. Both 
equations can represent evolution equations of a nonlinear surface elastic wave. 

In Fig. 3.8.2.1 two examples compared with corresponding localized 
solutions of the KdV and the BO equations. In the limit ζ → 0 they represent 
a one-parameter family of solitary wave solutions having the same relations 
between velocity, width, and peak height as the solitons of the BO equation. 
A characteristic feature is the “Mexican hat” shape with two local minima, 
which distinguishes them from the KdV and BO solitons. 
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Fig. 3.8.2.1. (a) The strain component –u1,1 at the surface associated with a solitary pulse train 
solution of Eq. 3.8.2.1 for Si(001) (100), ζ = 0.3 (solid). Solitons of BO equation (dotted) and KdV 
equation (dashed) are presented. (b) Strain component –u1,1 (solid) and surface elevation profi le 
(u3 at z = 0, dashed) corresponding to a Rayleigh solitary wave with z - 0.5. (Eckl and Mayer 1998). 

Eckl and Mayer found an unusual consequence of the specifi c nonlocality 
of the nonlinearity. The fact that the asymptotic behavior of the solitary pulses 
does not need to be governed by the linearized version of the evolution 
equation means that it may also be infl uenced by the nonlinear terms. This 
may be demonstrated by choosing the function F in the evolution equation 
(Eq. 3.8.2.1) to be a real constant and the last term on the right-hand side to be 
replaced by –αk3Bk. This dispersion term appers when the acoustic mismatch 
between fi lm and substrate is such that the coeffi cient α R vanishes. At the limit 
→ ∞ (large wavelength) an analytic solitary wave solution has been found 

to have a Mexican hat strain profi le at the surface solution has been found to 
have a Mexican hat strain profi le at the surface solution has been found to 
have a Mexican hat strain profi le at the surface z = 0:
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where 2 = 3 K/k and X = (1 + k)x – VRt. k is a free parameter. It has been 
demonstrated that the solitary wave solutions of Eq. 3.8.2.1 for nonlinear 
Rayleigh waves are stable. 

It has been mentioned that a necessary condition for a solitary wave to 
be called soliton is the property of its collision with other solitary waves. If 
it emerges out of a collision as a stable pulse with no additional radiation 
(elastic collision) this solitary wave is a soliton. Without dispersion the 
solitary surface waves cannot survive collisions with each other. Dispersion 
is a mandatory condition for solitary surface waves to exist. In the physical 
acoustics experiments such dispersion is introduced artifi cially by coating 
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the substrate with a thin fi lm or corrugating its surface. Since seismic surface 
waves are nonlinear and propagate on heterogeneous and dispersive surfaces 
all these results obtained by studying solitary acoustic waves suggest that 
stable seismic solitons could exist and, therefore, research in this fi eld is a must. 

  



4
Modelling and 

Earthquake-Resistant Design

4.1 Statement of the problem

From the analyses of linear and nonlinear propagation of bulk and surface 
elastic waves in isotropic, anisotropic, nondispersive, dispersive, and 
heterogeneous media we can draw some conclusions about haw theoretical 
and experimental results of physical acoustics can be applied for modelling 
seismic-wave defl ecting, mode-converting, absorbing, or scattering shielding 
systems made of methamaterials.

 i)  Body and surface seismic waves are nonlinear fi nite-amplitude elastic 
waves that propagate in the nonlinear, dispersive, and heterogeneous 
continuum of the Earth. The destructiveness of an earthquake depends 
on the type of the seismic waves reaching man-made constructions and 
their power, but mostly on the rock nonlinearity and dispersion. Body 
P- and S-waves coming from the bulk of the Earth to the its surface can 
get converted into surface waves and vice versa. Raleigh, skimming, 
and Love surface seismic waves have the strongest impact on man-
made constructions. Direct body seismic waves can also cause damages, 
however, the probability for them to reach directly a city is much lower 
than the probability to get converted into surface waves, so their impact 
should be considered mainly as a power source of surface seismic waves. 

 ii)  Most of the seismic activities that have an impact to man-made structures 
happen in the lithosphere. The upper part of the lithosphere—the crust—
has mostly a brittle structure all the way down to a brittle-ductile transition 
point at about 15 km depth followed by a ductile structure reaching the 



162 Seismic Resistant Design and Technology

upper mantle where the hard crustal olivine rock brings back the brittle 
structure which continues down to another brittle-ductile transition 
point about 40 km deep. The elastic properties of brittle zones are mostly 
linear, so nonlinearity is due predominantly to nonlinear fi nite-amplitude 
seismic wave propagation. Dispersion of the heterogeneous rock mass 
together with the nonlinear propagation of the seismic waves result in 
growth of higher harmonics and waves with combination frequencies, 
phenomena such as parametric amplifi cation, self-modulation, self-
focusing, solitary wave propagation, solitons, wave-wave interactions, 
and skimming waves generation. 

 iii)  Linear elasticity theory cannot be used to describe the propagation of 
seismic waves because in most cases terms of second and third order 
in the Taylor’s series development of the seismic wave strain cannot be 
neglected. The theory of material linear elasticity and linear elastic wave 
propagation is well developed and well understood. This theory can be 
used in  cases of weak nonlinearity and weak dispersion do describe 
certain phenomena, however, seismic waves are always nonlinear waves 
that obey nonlinear state equations. In a linear system the waveform 
does not change, it remains invariant during the propagation of the 
wave. In a nonlinear wave propagation the waveform evolves during 
the propagation because different parts of it move at different velocities. 
Linearizing these equations leads to relatively simple exact solutions, but  
there is a risk to omit important phenomena that in the case of seismic 
waves are crucial to their generation and propagation. Earthquakes 
happen only in a nonlinear world and they wouldn’t exist would the 
world were linear. Therefore, as with all approximations it is necessary 
to evaluate its validity and range of errors. 

 iv)  The theory of nonlinear elasticity and nonlinear wave propagation is 
much closer to reality that the linear elastic theory and linear elastic 
wave propagation. Nonlinear elasticity has been researched extensively 
and many cases of quadratic nonlinearity have been well developed 
especially with the help of computer simulation and numerical solving 
governing equations. However, nonlinear elastic wave propagation is 
still in process of development and many phenomena have not been fully 
understood. Introducing cubic or higher order of nonlinearity increases 
exponentially the complexity of the problem. In many cases third-order 
stiffness constants are much smaller than second-order constants which 
simplifi es the problem. However, this is not the case of many rocks where 
cubic. Nonlinearity is stronger than the quadratic nonlinearity. Stress-
induced anisotropy of rocks can be caused by pockets of higher internal 
stress that can be releasing when a seismic wave passes near by, but also a 
high-amplitude wave. Can cause stress-induced anisotropy. In summary 
nonlinearity is due to two different causes: 1) nonlinear strain-stress 
relationship of the media of propagation, and 2) fi nite-amplitude elastic 
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wave that propagates in a nonlinear way even in linear media, i.e., the 
waveform evolves in time. Close to the hypocenter of the earthquake a 
fi nite-amplitude wave may have sinusoidal waveform, but because of the 
different values of the velocity of propagation at different portions of the 
wave, with increasing the distance traveled by the wave its waveform gets 
distorted. In low dissipation media during the evolution of the waveform 
the wave’s crests overtake the wave’s troughs leading to a shock wave. 

 v)  Dispersion is another important factor. An elastic wave that propagates 
in a medium with low dispersion grows high order of harmonics that 
can interact with each other as well as with the fundamental wave. 
The fundamental mode transfers its energy to higher harmonics and 
eventually decays. However, if the third and fourth harmonics are 
dissipated phenomena of parametric amplifi cation can occur and a 
strong second harmonic Raleigh wave can ‘pump’ energy into the weak 
fundamental mode amplifying it in some cases to more than two orders 
of magnitudes. If the medium of propagation is highly dispersive the 
situation is completely different. The higher harmonics cannot interact 
with each other and the fundamental mode can keep its energy and travel 
long distances in low attenuation media. This mode is not necessarily 
stable, especially if the elastic wave is weak. However, a high-amplitude 
elastic wave propagating in materials with specifi c elastic properties 
such as rocks can be very stable and can travel long distances. There are 
two types of dispersion: 1) material dispersion caused by scattering and 
energy dissipation, and 2) geometrical dispersion caused by the existence 
of specifi c boundary conditions in the medium of propagation forming 
waveguides as is the case of Love waves. In the presence of strong 
dispersion ‘anomalous’ nonlinear phenomena such as self-focusing, 
self-modulation, and elastic solitons can occur.  Often on seismograms 
P-, S-, LR-, or LQ-waves are identifi ed from the time of their arrival at 
seismic stations knowing that longitudinal waves are faster than shear 
waves which are faster than surface waves. In many seismograms this 
is what is observed, but in many others the velocity rule does not work. 
This happens because some seismic waves reaching the seismometer do 
not come directly from the focus of the earthquake; there are generated 
through mode conversion somewhere between the focus and the point 
of recording. This is especially valid in the case of surface seismic waves 
which are never direct waves; they are always generated from body 
waves. Seismograms registering vertical, transverse, or radial components 
of the seismic displacement provide more information about the type of 
the detected waves that those registering just the vertical amplitude of the 
strain. Even more informative are seismograms recording velocity and 
acceleration of strain in various directions. Carrier waves which are part of 
the diffuse seismic fi eld (coda) get modulated or overmodulated by lower 
frequency body or surface waves that often are solitary waves or solitary 
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pulses with typical shape of ‘Mexican hat’ of velocity of displacement. 
The new wave results from a multiplication of carrier and modulating 
waves and often has greater amplitude than its components. This new 
wave gets registered by the seismometer. The amplitude modulation can 
occur only because of nonlinearity of the propagation. Growth of waves 
of combination frequencies results in ‘seismic beat’.

 vi)  Heterogeneity of the medium of propagation is the most important 
factor that shapes the propagation of elastic waves in rocks. It causes 
nonlinear effects, anisotropy, and strong dispersion. Because of dispersion 
there are no interactions between higher harmonics and, therefore, 
they vanish pretty fast. Weak elastic waves vanish fast as well because 
of intense scattering, but they have low impact during earthquakes 
anyway. However, strong high-amplitude waves can become very stable 
and can travel long distances keeping their high energy density. Their 
impact during earthquakes can be signifi cant because they form the set 
of carrier and modulating waves. This is especially relevant in the case 
of Raleigh, skimming, and Love waves which have the highest impact of 
all types of seismic waves. Rock slabs in the Earth’s crust form layered 
waveguide structures that can enhance strongly the dispersion and 
set up situations suitable for the formation of Love waves and surface 
solitons. However, such geological formation are not likely to be met 
often. In contrary rock nonlinearity and dispersion can promote often 
growth of stable skimming waves with Love-wave-like polarization 
and same level of destructiveness. In ‘weak’ alluvial soil composed of 
silt and clay scattering, refraction, and attenuation phenomena strongly 
increase dispersion resulting in amplifi cation, self-focusing, trapping, and 
generating Raleigh-like surface waves at the basin edges that propagate at 
100–200 m/sec. In the seismic wave normal frequency band these values 
correspond to shorter wavelengths that those of body P- and S-waves 
or Raleigh waves on rocks. Wavelengths of 50–100 m are in the range of 
normal city building dimensions which makes them suitable of causing 
standing waves and resonance effects.

 vii)  From the properties of nonlinear propagation of seismic waves it is 
possible to make a conclusion that designing and building seismic shield 
or cloaking systems around buildings or cities able to defl ect or attenuate 
upcoming seismic waves during an earthquake is an attractive option 
for developing earthquake-resistant design and technology. Taking into 
account the complexity of the nonlinear seismic wave propagation it 
is certain that designing and implementing such defl ecting systems is 
not easy, but it is possible, especially if methamaterials are used. Recent 
development of metamaterials science provides new direction for 
controlling seismic waves. Designs of cloaking systems for controlling 
bending waves propagating in isotropic heterogeneous thin plates have 
been proposed (Farhat et al. 2009). Seismic waveguide of metamaterials has 
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been proposed for earthquake-resistant design to support conventional a 
seismic systems using metamaterials (Kim and Das 2012). The device is an 
attenuator of seismic waves based on a cylindrical shell-type waveguide 
composed of a great number of Helmholz resonators that create a stop-
band in the seismic frequency range converting the seismic energy into 
sound and heat.

 viii)  Most of the diffi culties come from nonlinear governing equations of state 
that do not have exact solutions and only numerical solutions can be 
achieved with appropriate approximations. At its present stage the theory 
of nonlinear elasticity and nonlinear elastic wave propagation cannot 
be of great practical help to civil engineers looking for real solutions to 
protect cities from seismic devastation. However, as many scientists have 
done throughout the history of the development of the nonlinear wave 
propagation theory, when facing unsurmountable mathematical problems 
using experimental methods to measure important parameters that 
cannot be calculated proves to be very helpful. Recently carried out mixed 
experimental-simulation experiments seem to be a prominent technique. 
Inserting realistic input values is a mandatory request for carrying out 
reliable simulations. Since soils possess various uncertainties providing 
realistic input values for the simulations requires in situ preliminary tests 
to adjust the soil parameters, such as shear modulus and quality factor. A 
test zone with thick homogeneousilty clay soil was selected near the alpine 
city of Grenoble (France) to carry out the experiment. The experimental 
setup and results are is shown in Fig. 4.1.1 (Brûlé et al. 2014). The depth 
of the basin with similar deposits is up to 200 m. The Rayleigh wave 
velocity was fi rst estimated to be 78 m/s by the preliminary seismic 

Fig. 4.1.1. (a) Seismic waves in an alluvium basin; (b) Seismic testing device (Brûlé et al. 2014).
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test by pointing the wave time arrivalat various offsets from the source. 
Numerical simulations with fi nite elements were performed to predict 
the stop-band frequency for elastic surface waves. Since the seismic 
metamaterial test is challenging to model in full the three-dimensional 
Navier equations in unbounded heterogeneous media an asymptotic 
model which captures the wave physics at the air-soil interface only was 
used following approximate Mindlin plate model for time-harmonic 
surface fl exural waves (Mindlin 1954). 

In order to implement the above listed conclusions in (i)–(viii) we will 
discuss now practical solutions of physical acoustics experimental modeling 
that can be used in the design of earthquake-resistant systems for protecting 
man-made structures. Carrying out large-scale experiments in natural 
conditions is certainly closer to reality, but they are much more expensive 
and offer fewer options than laboratory experiments using small samples to 
improvise earthquake conditions. The focus will be on seismic-wave defl ecting 
and attenuating systems as well as systems that prevent resonance phenomena. 
Taking into account the high level of seismic power density registered during 
many powerful earthquakes such as the 1985 Mexico City earthquake it seems 
that redirecting (or converting and redirection) the seismic waves away from 
cities or installing metamaterials preventing the occurrence of resonance 
phenomena offers better chances than absorbing or attenuating the seismic 
waves unless effi cient techniques and metamaterials are used to convert the 
seismic energy into some other type of energy. Since surface seismic waves 
have the highest impact on man-made structures during earthquakes the focus 
will be put on their experimental generation, detection, refraction, scattering, 
mode-conversion, and attenuation. Body waves will be considered as well 
mostly as a power source of generating surface waves and also as an effi cient 
way to drain out the seismic energy of surface waves by converting them back 
into body waves directed down to the Earth’s bulk. 

The experimental simulation samples can be isotropic, anisotropic, 
homogeneous, heterogeneous, nondispersive, and dispersive. Theoretical 
simulation can be carried out in parallel, however, the main attention here 
will be given to experimental modeling of systems able to defl ect, scatter, 
or attenuate elastic waves from specifi c areas of the sample. Acoustooptics, 
thermoplastic, acoustoelectronics, and laser techniques will be used for 
generation and detection of linear and nonlinear elastic waves in samples 
with various levels of nonlinearity.

4.2 Modelling of seismic wave defl ecting systems

Usually earthquakes last only a couple of seconds. There could be, of course, 
aftershocks, but the main shock is short as shown in Figs. 4.2.1 and 4.2.2 in 
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the case of a 1999 earthquake in Turkey and an explosion generated shock 
pulse in Minnesota. LR and LQ denote Rayleigh and Love waves, respectively.

We have shown that seismic waves are elastic waves that propagate in 
the heterogeneous lithosphere; however, it would be more accurate to speak 
about elastic pulses. Physically there is no difference in the propagation of 
an elastic wave and an elastic pulse. While the term ‘elastic wave’ suggests 
continuous or long lasting propagation phenomenon, the term ‘pulse’ 
suggests just a spurt of wave, or a short section of it. The correct term is 
probably ‘pulse wave’. One can say that this is a matter of semantics, but 
actually is more than that, especially in the case of nonlinear propagation. The 
propagation velocity of body elastic waves or Rayleigh-type surface waves 

Fig. 4.2.1. The 1999 Turkey earthquake ground velocity recorded by OGS in vertical, radial (toward 
the epicenter), and transverse (at right angles to the direction of the epicenter) directions.. 
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with small amplitudes propagating in homogeneous solid does not depend on 
frequency or the amplitude, i.e., there is no dispersion or nonlinearity. If also 
the attenuation in the medium of propagation is low a plane-front waves will 
retain their shape and amplitude during its travel. For elastic waves with large 
amplitudes, however, the velocity of propagation depends on the velocity of 
particle displacement of the medium and different parts of the wave profi le 
move with different velocities causing changes in the pulse waveform. As the 
pulse progresses in time it waveform will change due to the wave nonlinear 
propagation. The pulse waveform evolution in time depends on nonlinearity 
strength. In the case of weak nonlinearity the waveform evolution is differs 
from the waveform evolution if the nonlinearity is strong. To understand the 
difference let us consider laser-generated surface elastic waves propagating 
on the half space of a homogeneous isotropic solid. 

The elastic wave amplitude depends on the power of the pump laser, the 
thermo-elastic properties of the substrate, and the effi ciency of the light-to-heat 
conversion. In the next sections special attention will be given to experimental 
modeling and simulation of earthquakes in small laboratory samples using 
powerful laser beams for generation of nonlinear bulk and surface elastic 
wave pulses (Kolomenskii et al. 1997; Lomonosov et al. 1999a, 2002b; Kumon 

Fig. 4.2.2. Fired Explosions at the Minntac Iron Mine, Minnesota.
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et al. 1998). Figure 4.2.3 shows the low-passed fi ltered data from the August 
17, 1999, Ismit, Turkey earthquake (Fig. 4.2.1) (right) and the vertical and 
transverse velocities measured at 5 mm from the source of a solitary surface 
elastic pulse generated by a 50 mJ Nd:YAG laser on a Si crystal (Kumon et 
al. 1998) as a comparison to the dashed-line marked area of the seismic pulse 
vertical velocity. The two curves are very alike at that specifi c time moment of 
waveform evolution exhibiting strong nonlinearity. However, when comparing 
acoustic and seismic waves it is important to take into account the level of 
nonlinearity because the pulse waveform evolution if very different at weak 
and strong nonlinearity. At higher nonlinearity the phase shifts caused by 
the interaction between different spectral components are comparable to the 
infl uence of dispersion, and under certain conditions these two processes may 
essentially compensate each other, as found for the pulse shown in Fig. 4.2.4 
(Lomonosov and Hess 1999). The gradual frequency change in the oscillatory 
pulse essentially disappears and the pulse shape resembles two serial ‘Mexican 
hats’ (Eckl et al. 1998). 

Fig. 4.2.3. Left—Vertical velocity (above) and radial velocity (below) measured at 5 mm from 
the source of a solitary surface elastic pulse generated by a 50 mJ Nd: YAG laser on a Si crystal 
(Kumon et al. 1998); Right—The 1999 Turkey earthquake ground velocity recorded by OGS in 

vertical, radial, and transverse directions (Fig. 4.2.1).
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The above example shows that if we want the elastic wave pulses 
excited in a laboratory sample by a laser beam to propagate in a similar 
way as seismic wave pulses propagate we have to make sure that the laser 
power is high enough. We have considered so far nonlinear propagation 
in isotropic, homogenous, nondispersive, and low attenuation medium of 
propagation. Real seismic pulses propagate in high-attenuation, dispersive, 
and heterogeneous medium. In these conditions a weak pulse usually loses 
it power and gets dissipated quickly, but in some cases it can evolve into 
solitary wave pulse that retains its waveform over a long distance. This is due 
to the dispersion and cannot occur for nondispersive waves. High-amplitude 
pulses propagating in a heterogeneous and dispersive continuum add their 
nonlinearity to the nonlinearity of the medium enhancing various phenomena 
resulting from nonlinearity. Heterogeneity, elastic power absorption, and 
strong scattering make soil a strongly dispersive medium of propagation. The 

Fig. 4.2.4. (a) Waveforms of the vertical velocity measures in <112> direction of oxide coated Si 
(111) plane at 4 mm (dashed line) and 19 mm (solid line) and simulation at 19 mm (dotted line); 

(b) Waveforms measured for stronger laser excitation (Lomonosov and Hess 1999).
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nonlinear dispersive propagation of seismic waves rases the question about the 
relevance of identifying P-, S-, LR, and LQ-waves on the seismograms as shown 
in Figs. 4.2.1 and 4.2.2 on the basis of their time of arrival at the seismic station. 
Self-modulation can occur anywhere between the epicenter and the seismic 
station and an S-wave can arrive faster than a P-wave. Comparing Figs. 4.2.3 
and 4.2.4 where the vertical velocities have been registered a similarity with 
a ‘Mexican hat’ can be made which is typical for solitary pulse propagation 
or even a soliton wave.

Raleigh-like waves propagating on the half space of a homogeneous 
isotropic medium are nondispersive. However, if the half-space is covered with 
layers they become dispersive. Since the upper layer of the crust has mostly 
multilayer structure all Raleigh-like surface wave pulses will be dispersive. 
Love waves are always dispersive by default. Love waves require very specifi c 
boundary conditions with a thin rock layer where the velocity of propagation 
of the horizontally (parallel to the boundary) polarization SH-wave is slower 
than the velocity of propagation of the SH-waves in the substrate. However, 
when such boundary conditions are present, Love seismic waves can be 
very destructive to cities because they propagate in the rock layer as in an 
elastic waveguide where high level of seismic energy is confi ned. Therefore 
it is important to perform thorough geological studies around cities that are 
located in regions with a history of Love type earthquake to fi nd out if rock 
layers suitable to accommodate Love waves exist. To eliminate any possible 
danger of appearance of Love waves during eventual earthquake it would 
be probably suffi cient just to damage the waveguide structure using ground 
explosions. However, in nonlinear and dispersive rocks which is typical for 
the lithosphere skimming waves can be generated at a much higher rate than 
Love waves. Skimming waves do not need layered waveguide structures 
to propagate. Having Love-wave type of polarization and similar power of 
destructions skimming waves are much more diffi cult to detect by studying the 
geological structure of some region. In this situation it is much more effi cient 
solution to develop seismic shields that can defl ect the waves away from a 
city or mode-convertors built of metamaterials that can convert surface waves 
into bulk waves and send back down into the Earth’s body.  

Stonley waves are very similar to Love waves. They can be created only 
in certain boundary conditions between two rock layers with specifi c elastic 
properties allowing the propagation of two Rayleigh waves on both sides of 
the boundary. By eliminating such boundary conditions by destroying the 
interface the danger of having Stonley waves created during an earthquake 
could be minimized or fully eliminated. 

The most often threat to cities during an earthquake represents the 
Rayleigh waves they could be formed on the Earth’s surface easily from the 
diffuse seismic fi eld in the crust. We have seen that the Rayleigh surface elastic 
waves have one quasi-longitudinal qP-component and one vertically polarized 
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quasi-shear qVS-wave. The two waves are propagating together with a phase 
shift which in the case of isotropic medium is π/2. The qVS-wave makes the 
particles to move on quasi-elliptical patterns perpendicularly to the ground. 
Because Rayleigh wave can be formed on any free boundary it is diffi cult to 
predict their eventual epicenter which makes the task to eliminate them as 
a danger to cities more complicated. However, we have seen that Rayleigh 
waves can be refl ected pretty effi ciently by edges or be mode-converted into 
bulk elastic waves that will go back deep into the ground. 

To protect a city from the devastating power of an earthquake it is necessary 
to 1) do geological study around the city and eliminate boundary interfaces 
in the rock mass that could facilitate the creation of Love and Stonley waves, 
and 2) design and build constructions for refl ecting, attenuating, or mode-
converting Rayleigh waves. The fi rst point is straightforward; the second one is 
more complicated. The diffi culties come from the fact that the Rayleigh seismic 
waves are generated and propagate in heterogeneous media. The theoretical 
study of such elastic waves is very complicated so is the design of systems 
that are able to defl ect the seismic power away of the city is diffi cult. The old 
physical sciences technique when it is hard to calculate some parameter using 
mathematical methods then it is better to try to measure it probably could be 
applied to this challenging problem. 

Building laboratory samples with heterogeneous structures for imitating 
artifi cial earthquakes is an attractive option. The only difference with a real 
scenario would be the frequency (or the wavelength) because the velocities of 
propagation could be adjusted easily to be close to the velocities of propagation 
of elastic waves in the ground. A diffuse elastic fi eld can be generated in the 
sample using piezoelectric transducers as shown in previous section. Using 
wedged transducers as well as transducers made of specifi c cut of quartz or 
lithium niobate can be used for generating both P- and S-modes. To create 
Rayleigh surface waves on the surface of the sample interdigital grating 
electrodes can be used. Basically all techniques used in physical acoustic to 
generate and detect elastic waves with various polarizations can be used in 
this case to generate and detect qP- and qS-waves forming a diffuse ‘seismic’ 
fi eld in the sample. Also some of the techniques used in physical acoustics to 
defl ect, refl ect, diffract, or attenuate bulk and surface acoustic waves can be 
used but more as a guidance than to design real systems for preventing seismic 
energy from reaching a city because of the more complicated propagation 
in heterogeneous media. In heterogeneous medium the design of such 
preventive systems can be done more effi ciently by modelling the systems in 
our laboratory heterogeneous sample. Once the Rayleigh waves are created 
in the sample it would be necessary to install mock refl ectors or attenuators 
in the way of the Rayleigh waves and measure experimentally their effect by 
measuring the output Rayleigh waves after they have passed through the 
mock constructions. Useful techniques for doing that can be borrowed from 
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the non-destructive testing of materials—a section of physical acoustics that 
study mechanical, electric, magnetic, optical and so on properties of materials. 

One of the most used techniques to study the generation and propagation 
of elastic waves in solids is light diffraction of elastic waves. When a 
monochromatic collimated beam passes through a grating it gets diffracted. 
This is called laser probe in physical acoustics. Such effect can be observed 
when a laser beam goes through a small aperture. The result can be observed on 
a screen as a multitude of bright spots representing diffraction patterns. Similar 
effect occurs when a laser beam crosses and elastic wave that propagates in an 
optically transparent medium. The elastic wave creates of grating of refraction 
indexes by modulating the density of the medium. The density (mass per unit 
of volume) depends on elastic strain and as we know the elastic wave cause 
a periodic strain in the medium of propagation. 

The heterogeneous ground medium can be considered as composed by a 
great number of blocs each with its own elastic properties and mass densities. 
The size of the blocs are of the order of the elastic wavelength or larger. There is 
no need to take into account blocs that are smaller than the elastic wavelength 
because the elastic wave cannot “see” such blocs. During the earthquake elastic 
waves created as a result of multiple refl ections and refractions from blocs’ 
boundaries propagate in all directions. Thus a seismic diffuse fi eld is created. 
Such diffuse elastic fi elds are created inside individual blocs as a result of 
internal refl ections. In general such diffuse elastic fi eld is week. It could shake 
city’s building without causing construction damages. Only powerful elastic 
waves generated as a result of resonance effects in the diffuse seismic fi eld 
that are directed towards the city as a bulk wave or as a surface waves present 
signifi cant danger to the buildings and city’s infrastructure. If appropriate 
refl ectors and absorbers are constructed under and around cities located in 
earthquake areas they will defl ect the bulk and surface seismic waves away 
from the constructions and diffuse their power. It is impossible to predict the 
type of an earthquake, its power, and the wavelength of the elastic waves that 
will attack the city. To be effi cient in protecting the city from upcoming seismic 
waves the refl ecting and absorbing constructions need to be able to operate 
in broad spectral ranges. Shapes, critical angles, and depth in the ground are 
critical parameters that have to be determined for each specifi c case. In the 
following chapters of this book we will focus on the design of such refl ectors 
and absorbers. 

4.3 Generation and detection of elastic waves 

In the process of search for more effi cient methods to prevent damages 
caused by earthquakes scientist have developed techniques to create artifi cial 
mock earthquakes using underground explosions or mechanical systems 
generating powerful vibrations in the ground under or around experimental 
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buildings. A large number of sensors are used to detect various parameters of 
the artifi cially induced elastic waves and their impact. The research is costly; 
it requires massive installations, heavy equipment, and a signifi cant deal of 
human resources. 

In this chapter we will demonstrate that by using techniques developed in 
physical acoustics and acoustoelectronics micro-earthquake seismic waves can 
be generated and detected in laboratory samples smaller than 10–3 m3 imitating 
mock heterogeneous ground. Working with micro-earthquakes in an optics 
laboratory offers the advantage of using sophisticated electronics and laser 
optics to study complex seismic effects in small volumes and design systems 
that can be applied to the macro-world with real earthquakes. 

4.3.1 Piezoelectric transducers

The most common technique to generate and detect acoustic waves in solids 
is by using the reverse and direct piezoelectric effect. Some anisotropic single 
crystal materials possess the property to get electrically polarized when a 
mechanical force is applied to them. This is the direct piezoelectric effect. 
These piezoelectric anisotropic single crystals possess also the property to 
get deformed when an electrical fi eld is applied to them. This is the reverse 
piezoelectric effect. We remember that mechanical deformations in solids are 
described by the strain fi eld tensor with components Sij and are caused by the 
stress fi eld tensor with components Tij.

This may look as a complicated experiment but in really it is pretty simple 
to be done in practice. A large class of single crystals that do not have a center of 
symmetry possesses piezoelectric properties. If a plate cut of such piezoelectric 
crystal is put between two metal electrodes to which a voltage is applied the 
plate will deform. Depending on the crystallographic orientation of the plate 
this deformation can be parallel to the electrical fi eld or perpendicular to it. 
If the electrical fi eld is an alternative voltage the plate will expand or shrink 
according to the AC voltage. If the plate is fi rmly attached to a solid an elastic 
longitudinal wave will start propagating in that solid. Same thing will happen 
if the plate deforms in directions perpendicular to the electrical fi eld. A shear 
wave will be generated in the solid to which this plate is attached. We make 
the conclusion from the above said that the reverse piezoelectric effect can be 
used to generate P- and S-waves in solids. 

Beside single crystals of noncentrosymmetric classes some ceramics 
can possess piezoelectric properties. Here is how piezoelectricity works in 
ceramics. Ceramics are isotropic materials. However, their isotropy is similar 
to that one of metal. Ceramics like metals have grain structure. This difference 
between ceramic and metal grains is that metal grains are single crystals formed 
of metal atoms having cubic symmetry while ceramic grains are formed of 
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metal oxides some with complex chemical composition which are electrical 
dipoles. Grains of metals do not form dipoles. Many ceramics do not have grain 
dipoles either. Ceramics which grains are electrical dipoles are not piezoelectric 
because the dipoles are oriented randomly in the space making the overall 
ceramic block electrically neutral. If the ceramic is heated at Curie temperature 
(specifi c for each ceramic) when the dipoles become mobile and an electrical 
fi eld is applied all the dipoles get their electrical moments oriented along the 
direction of the electrical fi eld. The fi eld should be applied during the cooling 
process until temperature goes under Curie point. The dipole moment will 
freeze and the ceramic becomes a piezoelectric material. 

In the same way the direct effect can be used to detect elastic waves that 
have been generated in a solid by attaching the same type of piezoelectric 
plate on the opposite wall of the solid. When the propagating acoustic waves 
reach this plate they will deform it and the plate will be polarized electrically. 
If the plate is located between two metal electrodes the electrical signal coming 
from them can be measured with a voltmeter or better with an oscilloscope 
on the screen of which we will see the electrical signal displayed in time. We 
can make a conclusion again that the direct piezoelectric effect can be used 
to detect P- and S-waves in solids. We note that piezoelectric ceramics can be 
used only for generation and detecting of P-waves. As will see they can be used 
for generating S-waves in mode conversion wedges. However, they cannot be 
used for detecting S-waves. The devices that are used in practice to generate 
and detect elastic waves are called piezoelectric transducers.

Of course, implementing such a generator or detector of P- or S-waves 
into practice will require some optimizations to be made. For example if the 
velocities of propagation of P- and S-waves are known in the direction of the 
crystal which is perpendicular to the plate then the plate can be cut in a way that 
its thickness to be equal to half of the acoustic wavelength corresponding to the 
voltage frequency. This means that the plate will be in mechanical resonance at 
the frequency of the voltage signal. If the plate operates as a generator it will 
produce acoustic waves with higher intensity. If the plate is used as a detector 
its sensitivity will be much higher if it operates under resonance conditions. 
Another parameter that needs to be taken into account in this experiment is 
the matching of the elastic impedances of the plate and the solid. They need 
to have close values if we want to avoid getting refl ected acoustic waves. 

Piezoelectric transducers for generating and detecting P-waves in solids 
are available commercially. They have a wide range of applications in non-
destructive testing, medical ultrasonics, underwater acoustics, etc. Fig. 4.3.1.1 
shows how such a transducer is used to generate P-waves in a medium. These 
transducers are using piezoelectric ceramic materials (PZT) which chemical 
composition is a combination of metal oxides such as PbZrO3 or PbTiO3. The 
composition of the PZT ceramic is formed by single-crystalline micro-domains 
with a constant dipole momentum. The domains are randomly oriented in 
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space so the ceramic is not polarized. At high temperatures above 1100ºC if a 
strong electric fi eld is applied the mobile domains will get oriented along the 
electric fi eld in same direction; the ceramic is polarized and ready to be used 
as a transducer. The resonance frequency νR of the transducer is determined 
by the thickness d of the PZT applying an AC voltage on the metal electrodes 
the ceramic transducer expands and contracts in the direction of propagation 
with the frequency of the electrical fi eld –νE. If the AC signal is tuned at νE = 

2 P
R

V
d

ν =  the system is in resonance and standing waves are formed in the 

volume of the transducer. The elastic impedance Zi = Vi. ρi, where ρi is mass 
density, of the transducer and the medium of propagation should have close 
values in order to ensure adequate transfer of elastic power from the transducer 
into the medium of propagation. If ZT >> ZM most of the elastic power of the 
transducer will be refl ected back from the boundary. 

If a bulk elastic S-wave has to be generated in the medium or propagation, 
a different type of transducer has to be used. Piezoelectric effect in non-cubic 
low-symmetry single crystal such as α-quartz or LiNbO3 from the trigonal 
crystal symmetry can be used as transducers of S-waves. Both crystals are 
anisotropic and an AC electric fi eld applied in certain direction is resulting into 
generation of S-wave. A piezoelectric transducer can be fabricated using such 
single crystal in a similar way as the ceramic PZT. In this case it is necessary 
fi rst to orient the crystal using X-ray diffraction and then using a diamond saw 
to cut a slice from it with appropriate orientation for S-waves. The thickness of 
the slice has to be determined in the same way as in the case of the PZT to get 
the desired resonance frequency for S-waves. We note that elastic impedance 
and velocity of propagation will be different.

Fig. 4.3.1.1. Ceramic PZT transducers generating and detecting P-waves in a solid.
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Here we will discuss a different approach to generate S-waves that is more 
appropriate for our micro-earthquake discussion. Let us consider Fig. 4.3.1.2. 
We notice that our transducer from Fig. 4.3.1.1 is used in this new system 
formed by a PZT and two different mediums of propagation each with its 
own elastic impedance.

Fig. 4.3.1.2. A wedged PZT transducer generating P-waves, S-waves, and SAW in a solid. 

4.3.2 Piezoelectric generation of surface waves

We have discussed the case of SV-wave incident to a free boundary surface 
under the critic angle. Such wave mode can be converted into surface elastic 
wave of Rayleigh. A wedge piezoelectric transducer as shown in Fig. 4.3.1.2 
can be used to generate Rayleigh surface elastic waves if the wedge is tuned 
to produce a critical angle of incidence to the free boundary surface. This 
technique to generate surface acoustic waves is not very effi cient because of 
the low energy output. Using interdigital electrodes on a piezoelectric surface 
has been proved to be much more effi cient way to generate Rayleigh waves 
because of the possibility to use resonance amplifi cation. Figure 4.3.2.1 shows 
such an interdigital transducer. Each pair of interdigital electrodes produces 
a mechanical deformation upon applying electrical voltage to the electrodes 
because of the reverse piezoelectric effect. The space of a half wavelength 
between the interdigital electrodes provides the possibility all these mechanical 
deformations to propagate in phase in the same direction. The resulting 
surface elastic waves generated by each electrode pair will form a resonance 
system and an amplifi ed wave will emitted be emitted from the aperture of 
the transducer. 

The generation of a Rayleigh surface acoustic wave was possible using 
the interdigital transducer in Fig. 4.3.2.1 because of the reverse piezoelectric 
effect. The reverse piezoelectric effect produces mechanical deformation when 
electrical fi eld (voltage) is applied to the electrodes. The direct piezoelectric 
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effect provides the opposite—a voltage is generated if a mechanical deformation 
is produced. The propagating surface acoustic waves are producing such 
periodic deformation that if reaching an identical interdigital transducer will 
generate voltage on the electrodes. If an electrical pulse is sent to the interdigital 
electrodes in Fig. 4.3.2.1 a pulse surface elastic wave will be generated. An 
identical interdigital transducer on the other side can detect SAW the same 
way as we saw with bulk waves. If refl ected back by some refl ecting boundary 
this surface elastic wave can be detected by the same interdigital transducer 
that had generated it. The fi rst and second wave pulses will be separated by a 
time interval that is proportional to the velocity of propagation of the surface 
elastic wave and it can be observed on the screen of an oscilloscope.

4.4 Diffraction of light from elastic waves. Laser probe

When an optical beam crosses an acoustic beam a diffraction effect occurs 
similar to this one from a diffraction grating. The acoustic beam represents a 
series of more dense and less dense areas moving in the solid that has the same 
effect on the optical beam as a moving diffraction grating. The optical refractive 
index of most materials depends linearly of density. The higher the material 
density, the higher the refractive index is. We note that there is no strict linear 
relationship between density and optical refractive index. The experiments 
with various optical glasses however show that some semi-linear correlation 
between these two parameters exists. At the output of the elastic wave aperture 
a diffraction pattern can be observed similar to that of a mechanical diffraction 
aperture Fig. 4.4.1. The incident laser beam gets diffracted by SAW (surface 
acoustic waves) as well by BAW (bulk acoustic waves). In the case of BAW the 
laser wavelength has to be selected in such a way that the medium of elastic 
wave propagation to be transparent. The zero diffraction order corresponds 

Fig. 4.3.2.1. An interdigital metal electrode generates a Rayleigh wave on a piezoelectric surface.
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to the refl ected for SAW and transmitted for BAW beams. The +1 and –1 are 
the fi rst order diffraction beams. There are higher orders also (not shown in 
Fig. 4.4.1) - +2, +3,…. as well as –2, –3,… If a screen is installed to collected the 
diffracted beams diffraction maxima will be seen arranged on a straight line 
parallel to the direction of propagation for both SAW and BAW. The incident 
beam, direction of elastic wave propagation, and diffraction maxima all lie 
in the same plane. Usually a light stopper is used to prevent the zero order 
laser beam, which is the most intense, from getting close to the photo-detector 
in order to avoid optical noise. An interesting observation is the dependence 
of the diffraction angle on the acoustic wavelength and, respectively, on the 
velocity of propagation. In the case of a diffuse elastic fi eld formed by P- and 
S-waves propagating in all direction the diffraction maxima will be located on 
close curves representing the slowness surfaces of all elastic waves. This can 
be used to identify all bulk elastic waves propagating in the sample. 

4.4.1 Optical indicatrices

Figure 1.3.2 shows the optical axes and optical indicatrices (surfaces of optical 
indexes) of isotropic and anisotropic materials. The general equation of the 
optical indicatrix is an ellipsoid which main axes are the three optical indices: 

 

22 2
31 2

2 2 2
1 2 3

1xx x
n n n

+ + =  (4.4.1.1)

The ellipsoid has to circular sections. The axes that are perpendicular to 
these circular sections are called optical axes. The crystal shown in Fig. 1.3.2 
has one optical axis and the ellipsoid’s equation is:

Fig. 4.4.1. Diffraction of a laser beams from BAW and SAW.
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nO is the optical index along the axes x1 and x2 called ordinary index, while nE 
is the optical index along the x3-axis called extraordinary index. The isotropic 
case has in all direction the same refraction index. 

The general formula of an indicatrix can be presented as:

 1ij i jB x x =

If the crystal is strained by some external stress the indicatrix will be 
deformed:

 ij ijkl klB p SΔ =  (4.4.1.3)

The dimensionless coeffi cients pijkl form a tensor of rank 4 called elasto-
optical tensor. Skl is the strain tensor.

ΔBij can be presented also as function of the stress tensor Tkl:

 ij ijkl klB TπΔ =  (4.4.1.4)

The tensor πijkl is called piezo-optical tensor. 

Since Tkl = cklmn Smn we get:

 ijmn ijkl klmnp cπ=  (4.4.1.5)

ΔBij can be presented also using the dielectric permittivity constant εil because 

r rn ε μ= , where εr = ε/ε0 and μr = μ/μ0 are the dielectric and magnetic 
permittivity constants. For a nonmagnetic material μr = 1 and, therefore, 

rn ε=  or 

 ij jk ikBε δ=  (4.4.1.6)

Differentiating Eq. 4.4.1.6 yields to:

 0ij jk ij jkB Bε εΔ + Δ =

or

 il ij jkmn kl mnp Sε ε εΔ = −  (4.4.1.7)
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Since the dielectric tensor (and the optical index tensor) are functions 
of the strain elastic wave that propagates through the material will cause a 
periodical changes of the indicatrix. If a light beam goes though that material 
and crosses the elastic beam an elasto-optic interaction will occur. Depending 
on the incidence angle there are two possible cases: 1) Raman-Nath diffraction 
for an incidence normal and 2) Bragg diffraction for an incidence under 
Bragg’s angle. 

4.4.2 Raman-Nath diffraction

The geometry of the case of a normal incidence is presented in Fig. 4.4.2.1. 
The frequencies of diffracted light at various diffraction orders are sums or 
differences from the frequencies of the incident light and the elastic wave. The 
diffraction angle is defi ned by 

 sin L
m

EW

m λθ
λ

= ±  (4.4.2.1)

where m = ±1, ±2, ±3,.... the diffraction orders.

The intensity of the light in various diffraction orders follows Bessel 
functions as shown in Fig. 4.4.2.2.

Fig. 4.4.2.1. Raman-Nath diffraction at normal incidence. 
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4.4.3 Bragg diffraction

The Bragg diffraction creates only one diffracted maximum. The angle of 
incidence θB allows constructive interference of the fi rst diffraction order 
only as shown in Fig. 4.4.3.1. The fi rst order beams are in-phase and interfere 
constructively if the angle of incident is equal to Bragg’s angle defi ned by:

 sin
2

L
B

EW

λθ
λ

=  (4.4.3.1)

For an isotropic material the elasto-optic tensor is:
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Fig. 4.4.2.2. Intensity of the diffraction orders in Raman-Nath elasto-optic interaction.
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From Eq. 4.3.1.7 for a strain S11 (a P-wave propagating along the x-axis) 
in an isotropic material Δεil = – ε2pilmnSmn = – – ε2pil11S11 the only elasto-optic 
coeffi cient pil11 ≠ 0 are p1111 = p11, p2211 = p21, p3311 = p31. Therefore we have Δε11 
= –ε2p11S11 and Δε22 = Δε33 = – ε2p12S11 with Δεil = 0 if i ≠ l. The refractive indices 

are respectively equal to 1 11n ε ε= + Δ  and 2 3 22n n ε ε= = + Δ . Since ε >> Δεil  
we can develop the refractive index in Taylor series:
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Therefore we have:
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In the case of an S-wave propagating along the x-axis with a polarization 
along the z-axis the strain is S13. 

 13 13il ij jkmn kl mn ii ll ilp S p Sε ε ε ε εΔ = − = −

The only non-zero component of the elasto-optic tensor is p1313 = p55 and 
the tensor Δεil is:
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Fig. 4.4.3.1. Bragg Diffraction in Elasto-Optic Interaction.
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The power density of the elastic wave is (Dieulesaint and Royer 1974):

 3 21
2EW EWP V Sρ=  (4.4.3.5)

From ( )0

2 EW

L

d nπϕ
λ

Δ = Δ  and Eq. (4.4.3.5) we get:
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In Eq. 4.4.3.5 M is called merit factor of the material.

The intensity of the diffracted light from the elastic wave is:
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 (4.4.3.7)

Equation 4.4.3.7 shows that the higher the merit factor of the material the 
lower is the elastic power necessary to defl ect the optical beam. 

4.5 Laser generation of elastic waves

Using piezoelectric transducer in contact with the medium of propagation 
is an effective technique to generate bulk shear and longitudinal waves in 
a narrow frequency bands. Seismic waves that propagate in heterogeneous 
media could have wide frequency spectrum. For better modelling systems for 
refl ection of elastic waves it would be more appropriate to use wide spectrum 
transducers or operate the piezoelectric transducers in a pulse mode. Instead 
of sending to the electrodes a continuous signal with a frequency that is close 
to the resonance frequency of the transducer the electrical signal’s amplitude 
could be modulates in form of pulses full of high frequency signal. There are 
also other optical techniques that can be used to generate elastic wave pulses 
in solids imitating seismic wave pulses in a better way. 

If a laser pulse reaches the surface of a solid that absorbs light with the 
laser’s wavelength the absorbed optical energy will create a pulse of heat in 
the point of absorption. The resulting thermal expansion will cause a local 
deformation and an elastic wave pulse will propagate through the solid. 
Thermo-elastic effect is based on expansion of elastic materials when heat is 
absorbed. The most effi cient way to transfer heat to a material substrate is by 
using a focused laser beam that gets absorbed on the surface raising locally 
temperature and thus causing thermal expansion (Fig. 4.5.1). If the laser beam’s 
intensity is modulated the thermal expansion will be also modulated resulting 
in pulse waves propagation through the material. Any laser which wavelength 
is absorbed by the sample can be used. If the material does not absorb well 
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the laser beam at that wavelength an absorbing material can be coated on the 
sample surface such as ink. Using pulsed lasers such as solid state infrared 
Q-switched Nd:YAG (Neodymium: Yttrium Aluminum Garnet  Nd:Y3Al5O12) 
or gas lasers—Excimers (UV), CO2 lasers is an effi cient way to generate elastic 
pulses in a solid. High intensity lasers can produce signifi cant thermo-elastic 
effect or even ablation (evaporation of the substrate by the heat pulse). 

Bulk longitudinal elastic waves can be generated in a solid as well as 
Rayleigh surface elastic waves. Bulk waves have spherical fronts and can be 
generated from a point source. Rayleigh surface waves can be generated more 
effi ciently from a line thermo-elastic source. In this case instead of spherical 
optical lens a cylindrical lens can provide a thin laser line source. If the surface 
of the solid sample is covered with a fi lm with elastic properties matching 
the conditions of waveguide propagation the laser can generate Love waves. 

4.5.1 Laser-generated solitary surface pulses

Pulsed laser beam is the most effi cient way to generate powerful surface elastic 
pulses. This technique has been used widely in the study of the nonlinear 
properties of surface elastic waves and the waveform evolution during 
the wave propagation. Elastic solitary surface pulses cannot be excited in 
nondispersive media of propagation. With a fi nite-amplitude elastic wave we 
can get into a nonlinear regime of propagation in a nondispersive solid with 
evolution of the waveform, but we cannot get a solitary pulse. We have seen 
that Raleigh waves get dispersive if the surface of the substrate of propagation 
is coated with a layer with different elastic properties. The level of dispersion 
can be controlled by selection materials with appropriate elastic impedances. 

Fig. 4.5.1. Experimental setup for generation of elastic pulses using photothermal effect.
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To create a solitary pulse the amplitude of the elastic strain fi eld should 
be high enough. For example to obtain nonlinear regime of propagation with 
uncoated nondispersive material the Mach number should be of the order of 
M ≈ 3.10–3 (Lomonosov and Hess 1999). At higher amplitudes in nondispersive 
substrates shock waves cause cracks. M ≈ 2.10–2 is the upper strength limit 
for most materials. The dispersion suppresses the formation of shock waves, 
so the crack threshold is higher in a dispersive substrate coated with a layer. 
(Lomonosov et al. 2002). 

The experimental setup for exciting solitary elastic surface pulses is shown 
in Fig. 4.5.1.1 (Lomonosov et al. 2002). A Q-switch Nd:YAG 8nsec laser pulsed 
beam with wavelength 1.064 μm is focused through a cylindrical lens to a 7 
mm long and 30 μm wide line. The laser pulse energy is between 30–60 mJ. 
To increase the effi ciency of the photoelastic process a light absorbing carbon 
fi lm is applied in the laser focus area (Lomonosov and Hess 1999; Lomonosov 
et al. 1999). The resulting thermoelastic shock launches a powerful surface 
elastic pulse. The propagated pulse is detected using an optical probe (Section 
4.4). The output signal of the position-sensitive detector is proportional to the 

surface slope 3 3

1

1

R

u u
x V t

∂ ∂
= −

∂ ∂
 in the direction of propagation x1 (Fig. 4.5.1.1) 

with u3 being the vertical displacement along the x3-axis and VR - the Raleigh 
velocity. The typical characteristic of ‘Mexican hat’ is observed for surface 
pulse propagation on the Si (100)-plane in the direction <100>. The pulse 
propagation on Si (111)-plane in the <112>-direction the shape of the pulse is 
very different from the case of Si (100)-plane with direction of propagation 
<100>. The difference between the two geometries demonstrates the strong 
infl uence of the anisotropy of the substrate on the shape of the solitary surface 
pulses (Lomonosov et al. 2002).

Fig. 4.5.1.1. Experimental setup for pulsed laser excitation of solitary pulses (Lomonosov et 
al. 2002).
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4.6 Experimental modelling of SAW defl ectors

If the medium of propagation shown in Fig. 4.5.1 has a heterogeneous structure, 
the laser probe can be used in various points of the sample to identify the type 
and intensity of elastic waves (Fig. 4.6.1). 

Fig. 4.6.1. Laser generation of simulated mini-earthquake in a heterogeneous sample.

Figure 4.6.2 presents an experimental setup to evaluate the effi ciency of an 
earthquake defensive system for Love waves. Love waves are generated in the 
thin layer on top of the basic substrate if the HS-wave in the layer has slower 
velocity of propagation than the HS-wave in the substrate. At a certain point 
the waveguide structure is interrupted by a set of groves. We want to compare 
the elastic amplitudes of the Love waves before they reach the interrupting 
groves of the shield and after the shield. A shield stopping Love waves can 
be a simple interruption of the waveguide layer—for example a grove dug 
into the medium of propagation with a depth and width of the order of the 
Love wave wavelength and fi lled with some metamaterial having a different 
elastic impedance. 

Figure 4.6.3 presents similar experimental setup as Fig. 4.6.2 that can be 
used for the design of a shield for defl ecting Raleigh surface acoustic waves. 
The shield can be designed to refl ect back Rayleigh waves or convert them 
into body waves directed down the Earth’s crust. The effi ciency of the shield 
can be determined experimentally by using a signal comparator providing 
data about the intensity of the Rayleigh waves before and after the shield. 
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The experimental data obtained with help of the acoustooptics experiments 
shown in Figs. 4.6.2 and 4.6.3 can be used as an input to computer simulation 
models optimizing the design of the shield as well as testing the effi cient of 
metamaterials used. 

Similar experimental modelling setups with laser generation of elastic 
pulses and laser probe detection can be constructed using surface-to-body 

Fig. 4.6.2. Experimental setup to evaluate the effi ciency of an earthquake defensive system for 
Love waves.

Fig. 4.6. 3. Experimental setup to measure refl ected Rayleigh waves in a heterogeneous sample.
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mode conversion groves and scattering periodic structures shown in Figs. 3.5.1, 
3.6.2.2, 3.6.2.3, and 3.6.2.4. Since the calculations are very complex in the case 
of nonlinear SAW propagation on heterogeneous, dispersive, and dissipative 
substrates such experimental modelling techniques can lead to useful practical 
applications and shield construction designs. As shown in Fig. 3.5.1 a simple 
concrete step with a height equal to half of Rayleigh wavelength built around 
a city can reduce the amplitude of upcoming Rayleigh waves by 75%. 

A schematic presentation of the idea to shield a city from upcoming 
seismic waves is shown in Fig. 4.6.4. A great number of design solutions exist 
for refl ecting back, absorbing, or redirecting down into the crust upcoming 
body or surface seismic waves. Various metamaterials can be developed 
to achieve these goals. The simplest solutions are to look for appropriate 
refl ecting structures and metamaterials with appropriate elastic impedances, 
but also more sophisticated designs could include development of nonlinear 
metamaterials able to suppress nonlinear parameters in the seismic wave 
propagation that contribute to earthquakes. 

Fig. 4.6.4. Seismic shield.
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Conclusion

Seismic wave are highly nonlinear elastic waves that propagate in a highly 
nonlinear, heterogeneous, and dispersive media. Using the tools of the classical 
seismology—continuum mechanics and general scattering theory—leave many 
questions about seismic wave propagation unanswered because these theories 
are linear and neglect parameters of second, third, and higher orders. Rock is a 
highly nonlinear medium where quadratic and cubic terms often are dominant 
factor in shaping elastic properties of rocks. Seismic waves are high-amplitude 
elastic waves that change their waveform as they propagate, so linear Fourier 
analysis is not suitable to describe their behavior. During their propagation 
they cause uniaxial deformation of the rock making the rock to behave as an 
anisotropic medium. Nonlinearity of elastic wave propagation cause the growth 
of higher harmonics, subharmonics, and waves of combination frequency that 
are critical for self-modulation, self-focusing, parametric amplifi cation, soliton 
generation, wave-from-wave scattering and other phenomena that contribute 
to the seismic wave propagation. These phenomena are specifi c to nonlinear 
wave propagation and are left undetected by the linear theories. The generation 
and propagation of coda waves cannot be explained without taking into 
consideration nonlinear phenomena such as combination frequency wave 
generation and self-modulation. If a seismic wave were decomposable in an 
unlimited number of high harmonics that interact with each other, according 
to the linear theory that would cause an unlimited growth of harmonics that 
interact with each other which will end to a shock wave, which never happens 
in reality because of the nonlinearity of the propagation that suppresses the 
interaction among the harmonics. Earthquakes with characteristics as we know 
them cannot occur in a linear world. This means that they have to be analyzed 
using the tools of the nonlinear elastic theory of elastic wave propagation. 
Rock is a highly nonlinear medium also that affect the fi nite-amplitude 
elastic wave propagation. Nonlinearity phenomena due to cracks full of fl uid, 
random heterogeneities, cavities, pockets of high strain storing signifi cant 
amounts of potential energy that can be released into a passing seismic wave 
increasing its energy density, and soil basins able to create local resonance 
conditions contribute signifi cantly to the dispersion, dissipation, trapping, 
scattering, or amplifi cation of seismic waves. The problem is that the nonlinear 
wave propagation theory is still under development and many nonlinear 
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phenomena have not been fully understood. However, advanced computer 
simulation, experimental modelling complimentary to acoustoelectronics and 
acoustooptics experimental modelling techniques using laser generation and 
detection of elastic waves, as well as the development of metamaterials can 
accelerate the progress of the development of earthquake-resistant design and 
technology. From many earthquakes in the past it has become clear that just 
building reinforced man-made constructions is not enough to fi ght destructive 
seismic forces. Instead of facing the overwhelming power of seismic waves 
developing shield systems around cities and towns located in frequent-
earthquake areas could prove to be an effi cient strategy to prevent loss of 
life and destruction. Shield constructions able to redirect or absorb seismic 
body and specifi cally surface waves can be developed using combination of 
computer simulation, experimental design, and metamaterials. Metamaterials 
designed with specifi c nonlinear and dispersion characteristics can be inserted 
in some geological structures around cities with known seismic resonance or 
amplifi cation parameters to prevent strengthening of crossing seismic waves. 
Since body seismic waves rarely affect directly man-made constructions, most 
of the attention should be put on the mechanisms of generation of surface 
elastic waves by body waves as well as the geological conditions enabling 
mode conversion and energy transfer. Many problems of SAW generation 
and propagation as well as body-to-surface and surface-to-body wave 
conversions have been solved in acoustoelectronics and can be successfully 
implemented in practical seismic solutions, however many others need to be 
addressed. An example are Love seismic waves. These waves with horizontal 
polarization in the plane of propagation are notoriously destructive to man-
made constructions. However, Love waves are dispersive waves that require 
specifi c geometric structures forming elastic waveguides to exist. Natural 
waveguides are rare in the Earths geological systems. No other surface waves 
with horizontal polarization have been considered in the linear seismology 
theory. However, nonlinearity and material dispersion allow the generation 
of surface elastic waves with Love-like polarization which do not require any 
geometrical dispersion structures such as layered elastic waveguide to exist 
—skimming waves. These waves can be generated anywhere on the Earth’s 
surface similarly to Rayleigh waves with much higher probability than Love 
waves and carry out destructions to man-made constructions similar to Love 
waves. Another example are solitary seismic waves and seismic solitons. These 
types of body and surface  waves can exist only in conditions of nonlinearity 
and dispersion. Water tsunami waves which have soliton characteristics are 
notorious with their distinctiveness. Seismic solitons has not been proven to 
exist, but mathematical solutions to the governing equations of waveform 
evolution show that solitons can exist on solid surfaces in conditions of high 
nonlinearity and dispersion, are stable, and can travel long distances surviving 
collisions with each other. Taking into account the complexity of the problem it 
will take a while until the propagation of nonlinear dispersive seismic waves 
are fully understood. Meanwhile simple effi cient seismic-wave shielding 
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constructions can be designed using experimental modelling and offered  to 
city planning organization, developers, and civil engineering companies for 
implementation around cities with frequent earthquake activity. 

During the past decade nonlinear wave propagation and nonlinear theory 
of elasticity have been in process of intense research in various scientifi c fi elds 
such as medical imaging, optoelectronics, electrical engineering, and modern 
seismology. Some problems have been solved, but many others remain 
unsolved, so the research on nonlinear phenomena will grow exponentially. 
Earthquake-resistant design and technology can be developed only if nonlinear 
seismic wave propagation phenomena are taken into consideration despite the 
thorny road toward solving nonlinear governing equations. Linear theories 
are simple and elegant, however our world is nonlinear and so are the seismic 
waves causing earthquakes.
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