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I want to climb this ladder up to the stars
I feel no fear, from this height

Though there’s no rescue in sight
A hollow yearning, and nothing learning
An ancient look at the watch on my wrist

My life has just been dismissed

I’m about to die, and I think I will
Have nothing left to loose, as I never had any skill



Preface

At some point earlier I would probably have named this book f-electron methods
applied to nanoscale systems, which is a formally correct statement, however, it
feels less relevant nowadays. Why? Because, although it is appealing to make the
connection to the tradition of strongly correlated electron system and related issues,
there are many questions traditionally considered in a textbook on strong electron
correlations, that will not be covered within the present text. The intention with this
book is not give an account of strongly correlated systems as such. Rather, the inten-
tion is to present a formulation of the non-equilibrium physics in nanoscale systems
in terms of many-body states and operators and, in addition, discuss a diagrammatic
approach to Green functions expressed by many-body states. Thus, the issues fo-
cused on in this book are results of typical questions that arise when addressing
nanoscale systems from a practical point of view, e.g. current-voltage asymmetries,
negative differential conductance, spin-dependent tunneling, local vibrations, and
coupling to superconducting leads.

The use of many-body states and operators constructed of such states was pre-
viously introduced by, e.g. Hubbard 1963, but others have preceded him and many
more will doubtlessly pick up ides along those lines. It is my aim to give a reason-
able introduction to a formalism of non-equilibrium Green functions (NEGFs) ex-
pressed in terms of many-body operators. It is, however, more interesting to provide
meaningful reasons for considering and using many-body states and many-body op-
erator Green functions (MBGFs) in studies of localized electrons interacting with a
de-localized environment. The strengths of any method based on many-body states
becomes best visualized in systems where the localized electrons interact via e.g.
Coulomb repulsion, hopping/tunneling, and exchange, and where the energy scales
of these interactions are comparable. In other words, in systems where it does not
make sense to pick out a single energy scale and consider it large in comparison with
the others, it is often preferable to transform the localized subsystem into, e.g. its
many-body eigenstates. Such a formulation gives a freedom in varying the energy
scales of the localized subsystem without worrying about their mutual relationship.
In short, the focus will be on nanoscale systems constituted of complexes of sub-
systems interacting with one another, under non-equilibrium conditions, in which
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viii Preface

the local properties of the subsystems are preferably being described in terms of its
(many-body) eigenstates.

Although the content of this book is discussed from the perspective of the
physics, the book may still be considered as a book on a technique, or combina-
tions of techniques. The discussion above mentions the many-body operator Green
functions, which will be introduced and discussed at length. The discussion will,
however, be focused on non-equilibrium conditions, which means that only little
space will be spent on special techniques that may be used under strict equilibrium
conditions. For those interested in strongly correlated electrons in the equilibrium
case I refer to the excellent book by Ovchinnikov and Val’kov. Here, the technique
will, thus, be set in the framework of non-equilibrium Green functions (NEGFs) and
the formalism developed by Kadanoff and Baym, and Keldysh.

In order to develop a systematic approach that we can both apply to non-
equilibrium conditions while still being efficient in the treatment of correlated states,
one should be working with imaginary time contour ordered averages of operators.
This enables a systematic diagrammatic expansion of our averages, expansions that
usually are necessary to conduct in the class of systems under considerations. The
diagrammatic expansions discussed here, are outlined by means of functional dif-
ferentiations of averages.

My aim is that this book can be read by graduate students that have some expe-
rience in quantum mechanical field theory, Dirac formalism, second quantization,
and quantum statistical methods. I certainly hope that experienced researcher will
take up this book as well. Much of the content will be presented in a basic language,
such as equation of motion and expansions, and I will not go into the deeper aspects
given in a path integral approach. With this said, I thus hope that the present text
will be accessible to many more readers that only to those who have a very deep
fundamental understanding of the intricate world of quantum field theory.

The organization of this book is thought of as a bit evolutionary, in the sense that
it begins with a class of problems where one encounters problems when working
with conventional field theoretical methods. Then, the concept of many-body states
and many-body operators is introduced and the Green functions are constructed
and discussed. Only after this, the systems are being simplified in order to better
illustrate the technique itself. This is meant to turn focus on the technique rather than
on the complexity of the physical system. As the concepts are becoming familiar we
can again add complexity

Finally, it is with a great pleasure I thank I. Sandalov for teaching me about non-
equilibrium, Green functions, many-body operators, and strongly correlated elec-
tron systems. I would also like to thank A.V. Balatsky and J.-X. Zhu for introducing
me into STM techniques and spin dynamics in non-equilibrium. Further, I am grate-
ful to M. Galperin for sharing his views on extensions of the Hubbard operator
scheme to include electron-vibron coupled systems. My Ph.D. student P. Berggren
has done a good job in proof reading parts of the text, for which I thank him. I am
indebted to O. Eriksson and L. Nordström for being understanding and patient with
my questions, discussions, and ideas concerning correlated electron systems and the
use of Hubbard operators in various possible and impossible instances. Last but not
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least, I want to express my gratitude towards my wife Johanna, and my children
Eugenia, Elmer, Wilbur, and Werner, which have been and still are tremendously
patient with me.

Uppsala Jonas Fransson
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Chapter 1
Many-Body Representation of Physical Systems

Abstract We begin the discussion with a consideration of the type of nanoscale
systems that we are interested in. Using those we introduce the concept of many-
body operators through and discuss some reasons for taking this route.

1.1 Many-Body States

In a nanoscale system, e.g. quantum dot or molecule coupled to leads, or atomic
cluster on surface, one often has to simultaneously deal with different energy and
length scales. That these different scales meet at the same playground can be re-
garded as one of the hallmarks of nanoscale science, since it gives the opportunity
to, atom by atom, engineer structures with properties that would never occur natu-
rally. It is, however, one of the obstacles with nanoscale systems, which also leads
to the great challenges and possibilities. Here, we will not dwell on the possibilities
with nanoscience, but rather discuss a technique and ways to theoretically treat some
problems that arise in non-equilibrium nanoscale systems from a physical point of
view.

Suppose that we are interested in the electronic and magnetic properties of a
cluster of Mn atoms lying on a Cu surface, and suppose that we want to make
a systematic study with respect to the number of Mn atoms in the cluster. Such
issues were addressed experimentally by, e.g. Hirjibehedin et al. [1]. One of the
major challenges in giving a theoretical description of such a system is the mod-
eling of the cluster of Mn atoms itself. But also, this cluster is interacting with
the substrate surface, in the present case a metallic Cu surface. In the experiment
[1], there was also a layer of insulating CuN in between the cluster and surface.
These additional interactions provide further complications to the description, nev-
ertheless, the question still remains, i.e. how do we model the cluster on the sur-
face?

Another example is found by considering quantum dots being coupled to one an-
other by electrostatic forces, tunneling, and spin interactions. Here, we have already
given a view point of how the model will appear. However, we need to go to more

J. Fransson, Non-Equilibrium Nano-Physics,
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2 1 Many-Body Representation of Physical Systems

detail when actually writing down the model used for calculations. We assume, for
instance, that the quantum dot creates a quantum well which carries a number of
electron levels. Will the electrons in the different levels interact through Coulomb
forces, tunneling and exchange? Which interactions between the quantum dots shall
we consider. In the end, all comes down to which properties we are interested in
describing.

Therefore, let us do it more tangible. Suppose that the quantum dots each carry a
set of localized levels, labeled ενiσ , where ν is the quantum dot label, i some state
label, and σ a spin label. Also, assume that we include the Coulomb and tunneling
interactions within the quantum dots. We can thus model one of the quantum dots
as

Hν =
∑

iσ

ενiσ d
†
νiσ dνiσ +

∑

i

Uνinνi↑nνi↓ − 2
∑

ij

Jνij sνi · sνj

+
∑

ij

(Uνij − Jνij /2)(nνi↑ + nνi↓)(nνj↑ + nνj↓)

+
∑

νijσ

(tνijσ d
†
νiσ dνjσ + H.c.). (1.1)

Here, d
†
νiσ (dνiσ ) creates (annihilates) an electron at the energy level ενiσ , nνiσ =

d
†
νiσ dνiσ is the number operator, Uνi (Uνij ) is the intra-level (inter-level) Coulomb

interaction, and Jνij and tνijσ is the exchange and tunneling interaction, respec-

tively. The spin operators sνi =∑σσ ′ d†
νiσ τ̂σσ ′dνiσ ′ , where τ̂ is the vector of Pauli

matrices.
One can see that already at this level, where we only consider electronic inter-

actions within a single quantum dot, that the model becomes quite involved. How
about joining the quantum dots together? Which interactions will be relevant to
include between the quantum dots? Then, in the end we would also like to con-
nect the ensemble of quantum dots to some external bath, perhaps through leads,
in order to establish a non-equilibrium situation. In a realistic system, we should
also have to worry about electrons interacting with local vibrational modes, or other
sources of inelastic scattering. In short, the systems we want to study grow in com-
plexity each time we add another (fermionic or bosonic) degree of freedom to the
system.

The way that will be pursued in this text is through diagonalization, i.e. finding
the many-body eigenstates, of the subsystem under main interest. The diagonaliza-
tion of the subsystem leads to a many-body representation of the localized states in
which all internal parameters become implicit in the model, and only the interactions
with the environment appear explicitly. Thus, one benefit of this new representation
is that we can think of the subsystem as an effective unit in presence of external
fields.

Explicitly, the model given in (1.1) has an associated system of eigenenergies
EνNn and eigenstates |νNn〉 with N electron in the nth state. Thus, the intricate
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Hamiltonian can be replaced by the diagonal form

Hν =
∑

Nn

EνNn|νNn〉〈νNn|. (1.2)

One has to be aware that this is merely a change in representation and that there is
no simplification made going from the models in (1.1) and (1.2).

The system of eigenstates satisfy the closure relation
∑

Nn |νNn〉〈νNn| = 1.
Thus, the transformation between the two representations can expanded as

dνiσ =
∑

NN ′nn′
|νNn〉〈νNn|dνiσ |νN ′n′〉〈νN ′n′|. (1.3)

The operator dνiσ removes one electron in the ith level with spin σ from the n′th
state in the N ′ electron configuration. Hence, the above relation will only make
sense if N ′ = N + 1 which admits us to write

dνiσ =
∑

Nnn′
〈νNn|dνiσ |νN + 1n′〉|νNn〉〈νN + 1n′|. (1.4)

Note that the single annihilation Fermi operator dνiσ is represented by the sum of
removing an electron from all states within the local subsystem. This is natural,
partly since we do not know a priori from which state the electron is removed,
hence we need to include all possibilities, but also since this is exactly one of the
strengths with the Fermi operator representation, one does not have to keep track of
the individual states.

In the diagonal representation, which henceforth will be referred to as the many-
body representation, the operators are the outer products (projection operators)
|νNn〉〈νN ′n′|. In this representation we must keep track of the individual states,
which is a price we have to pay for the benefits of other advantages. Nevertheless,
sometimes it is desirable to keep track of the individual states and to have an ex-
plicit record of what is going on between the states. Therefore, the transition matrix
elements 〈νNn|dνiσ |νN + 1n′〉 play a crucial role in the many-body operator rep-
resentation, which will become clear in Sect. 1.4.

The matrix element 〈νNn|dνiσ |νN + 1n′〉 describes the single electron transition
between the states |νNn〉 and |νN + 1n′〉 when removing an electron in the ith level
with spin σ . This need not be possible at all, of course, but then this matrix element
vanishes. For instance, the logics that led to (1.4), i.e. trowing away all the matrix
elements that do not represent a single electron transition from an N + 1 to an N

electron state, is the result of not writing lots of vanishing matrix elements, which
vanish due to impossible transitions. Any matrix element that is non-zero, however,
represents a physical single electron transition that can and will occur within the
subsystem. The probability for this process to take place may be large or small, a
real number between 0 and 1, and is given by the square of the probability amplitude
|〈νNn|dνiσ |νN + 1n′〉|2.

In this section, we have used the quantum dot term in a rather non-precise manner
and we will continue in this way. Henceforth, we shall, thus, discuss correlated



4 1 Many-Body Representation of Physical Systems

(sub-) systems in terms of a general abstract quantum dot concept when we want to
avoid any reference to specific types and classes of systems. This is a quite common
approach in literature, here we might bend the concept a little further.

1.2 Two-Level System

For the sake of being explicit, we consider a concrete example constituted of a dou-
ble quantum dot system coupled to external leads. We assume that the level sepa-
ration in the quantum dots is sufficiently large in order to neglect influences from
all levels but one in each quantum dot. Thus, we have a two level system where the
levels are spatially separated and located in different quantum dots. We assume that
electrons in the two levels are interact through tunneling and charging interactions.
We may also assume that the electrons interact through direct spin-spin interactions.

We realize that the above physics is very well captured by the model given
in (1.1), however, reduced to

H =
∑

σ

εAσ d
†
Aσ dAσ + UAnA↑nA↓ +

∑

σ

εBσ d
†
Bσ dBσ + UBnB↑nB↓

+ (U ′ − J/2)(nA↑ + nA↓)(nB↑ + nB↓) − 2J sA · sB

+ t
∑

σ

(d
†
Aσ dBσ + H.c.). (1.5)

Our goal is to transform this Hamiltonian model into a diagonal form H =∑
Nn ENn|Nn〉〈Nn|, where the states |Nn〉 are eigenstates of the Hamiltonian. By

including spin into the treatment, we find that there are 16 eigenstates of the model;
one state with no electrons (N = 0, n = 1), four states with one electron (N = 1,
n = 1, . . . ,4), and so on, i.e. (N = 2, n = 1, . . . ,6), (N = 3, n = 1, . . . ,4), (N = 4,
n = 1).

We can find the eigenstates through different means. The present model is suf-
ficiently small to be reasonable for analytical calculations. The empty and the four
electron states are trivial to find, and we can write them as |01〉 = |0〉A|0〉B and
|41〉 = |↑↓〉A|↑↓〉B in terms of the Fock states |p〉A|q〉B , p,q = 0,↑,↓,↑↓, of the
quantum dot.

Throughout this book we will use the following conventions for the Fock
states:

|p〉A|q〉B = d
†
Bqd

†
Ap|0〉, (1.6a)

|↑↓〉A(B) = d
†
A(B)↓d

†
A(B)↑|0〉, (1.6b)

where |0〉 denotes the vacuum state. Hence, |↑↓〉A|↑↓〉B = d
†
B↓d

†
B↑d

†
A↓d

†
A↑|0〉

etc.
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The energies for these states are E01 = 0 and E41 =∑σ (εAσ + εBσ ) + UA +
UB + 4(U ′ − J/2), respectively.

The one-electron states |1n〉 are found by acting with the one-electron Fock states
onto the Hamiltonian, e.g.

H|↑〉A|0〉B = εA↑|↑〉A|0〉B + t |0〉A|↑〉B,

H|0〉A|↑〉B = εB↑|0〉A|↑〉B + t |↑〉A|0〉B,

and analogously for the spin down states. These equations lead to the one-electron
states

|1n〉 = αn|↑〉A|0〉B + βn|0〉A|↑〉B, n = 1,3, (1.7)

|1n〉 = αn|↓〉A|0〉B + βn|0〉A|↓〉B, n = 2,4. (1.8)

These states are clearly seen to be superpositions of the available states for each
spin projection. Such states are also known as coherent states, although such a ter-
minology is not quite correct in Fermi systems. By also allowing for spin-flip in
the tunneling between the levels, these superpositions would consist of all four one-
electron Fock states.

The expansion coefficients are subject to normalization of the eigenstates, and
here given by

α2
n = 1

2

ξ2
n

1 + ξ2
n +√1 + ξ2

n signΔε
,

β2
n = 1

2

(1 +√1 + ξ2
n signΔε)2

1 + ξ2
n +√1 + ξ2

n signΔε
,

n = 1,2, (1.9a)

α2
n = 1

2

ξ2
n

1 + ξ2
n −√1 + ξ2

n signΔε
,

β2
n = 1

2

(1 −√1 + ξ2
n signΔε)2

1 + ξ2
n −√1 + ξ2

n signΔε
,

n = 3,4, (1.9b)

where ξn = 2t/Δε, whereas Δε = εAσ − εBσ , which difference is assumed to be
spin-independent. The corresponding eigenenergies are given by

E11 = 1

2

(
εA↑ + εB↑ −

√
(εA↑ − εB↑)2 + 4t2

)
, (1.10a)

E13 = 1

2

(
εA↑ + εB↑ +

√
(εA↑ − εB↑)2 + 4t2

)
, (1.10b)

and analogously for n = 2,4 (spin-↓).
Before continuing, it is worth to briefly discuss the physical interpretation of the

eigenstates. In the case when the dimensionless parameters |ξn| → ∞, the energy
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levels |εAσ − εBσ | → 0, or t → ∞. Both situations lead to that αn, βn → 1/2,
which is a mathematical representation of resonant conditions of the quantum dot,
although the first may be more reasonable to think of in realistic nanoscale systems.
Physically, resonance of the quantum dot means that the electron (wavefunction) is
more or less equally distributed throughout the whole structure, i.e. the eigenstates
are being equally weighted in both quantum dots (equally weighted on both Fock
states constituting the eigenstate). In the other limit, i.e. |ξn| → 0 and Δε > 0, we
find that α1(2) → 0 and β1(2) → 1, while α3(4) → 1 and β3(4) → 0. The ground state
of the quantum dot becomes localized on the level εBσ , whereas the first excited
state is localized on εAσ . Reversing the conditions to Δε < 0 switches the order of
the ground state and the first excited state.

The three electron states are found to have analogous characteristics as the one-
electron states, which is expected by symmetry. We thus write the three electron
states as |3n〉 = γn|↑〉A|↑↓〉B + κn|↑↓〉A|↑〉B , n = 1,3 and similarly for n = 2,4
(spin-↓). The three-electron energy eigenvalues are given by

E31 = 1

2

( ∑

i=A,B

(2εi↑ + εi↓ + Ui) + 4(U ′ − J/2)

−
√

(εA↓ + UA − εB↓ − UB)2 + 4t2

)
, (1.11a)

E33 = 1

2

( ∑

i=A,B

(2εi↑ + εi↓ + Ui) + 4(U ′ − J/2)

+
√

(εA↓ + UA − εB↓ − UB)2 + 4t2

)
, (1.11b)

and similarly for n = 2,4.
The two electron states, finally are separated into three states with spin S = 0 and

three states with spin S = 1. The S = 1 states are in the spin-degenerate case, i.e.
εAσ = εA and εBσ = εB , easily found as

|21〉 = |↑〉A|↑〉B, (1.12a)

|22〉 = |↓〉A|↓〉B, (1.12b)

|23〉 = [|↑〉A|↓〉B + |↓〉A|↑〉B ]/√2. (1.12c)

These states are known as the triplet states since their energies coincide, and are
given by

E21 = E22 = E23 = εA + εB + U ′ − J. (1.13)

This triplet configuration will, on the other hand, separate as soon as the quantum dot
is subject to, e.g. magnetic fields which lift the spin degeneracy of the single elec-
tron levels. It may be noted that the triplet states are always uniformly distributed
between the two quantum dots, independently of the tunneling. This may be re-
garded as a consequence of the Pauli exclusion principle, since for example two
electrons with spin ↑ cannot simultaneously rest in one of the quantum dots, but
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have to be located at different sites. This is to say, that a single level cannot acquire
the total spin S = 1.

The S = 0 states must, in the spin-degenerate case, be written as a superpo-
sition of the three Fock states |ΦAB

S=0〉 = [|↑〉A|↓〉B − |↓〉A|↑〉B ]/√2, |ΦA
S=0〉 =

|↑↓〉A|0〉B , and |ΦB
S=0〉 = |0〉A|↑↓〉B . The eigenenergy equation becomes cubic,

but although it is analytically solvable, the solutions are non-transparent and are
therefore not displayed here. It is, nonetheless, worth mentioning that the state
with the lowest energy is often referred to as the singlet state. The energy of
this state is in the present model lower than the triplet state energy under the
assumption that the spin-spin interaction parameter J ≤ 0, giving rise to anti-
ferromagnetic coupling between the quantum dots. Whenever the charging energy
UA(B) > εA(B)↑ + εA(B)↓, the singlet state is mainly weighted on the combination
|ΦAB

S=0〉 = [|↑〉A|↓〉B − |↓〉A|↑〉B ]√2, which extends evenly on both quantum dots.
The energies E21,E22 can be found analytically within the present model, as well

as the corresponding states. The other two-electron energies and their corresponding
eigenstates are generally given by solving the system

⎛

⎜⎜⎝

E − γ1 J/2 −t t

J/2 E − γ2 −t t

−t t E − γ3 0
−t t 0 E − γ4

⎞

⎟⎟⎠

⎛

⎜⎜⎝

|↑〉A|↓〉B
|↓〉A|↑〉B
|↑↓〉A|0〉B
|0〉A|↑↓〉B

⎞

⎟⎟⎠= 0, (1.14)

where γ1 = εA↑ − εB↓ −U ′, γ2 = εA↓ − εB↑ −U ′, γ3 = εA↑ − εA↓ −UA, and γ4 =
εB↑ − εB↓ −UB . Here, we allow for spin-dependent levels achieved for instance by
magnetic fields.

We now have a full many-body description of the two level system represented
by the quantum dot, and we can write the resulting Hamiltonian as

H =
∑

Nn

ENn|Nn〉〈Nn|. (1.15)

We have also seen that there are many lessons to learn about the system just by ex-
tracting the electronic structure of the quantum dot through the procedure of finding
the many-body states. This is, of course, not surprising since the problem of finding
the electronic structure for a given system, is perhaps one the most challenging prob-
lems in materials science, which has led to the invention of e.g. density functional
theory.

1.3 Many-Body Operators

The notation of the many-body states in terms of kets is sometimes inconvenient,
e.g. when making algebraic manipulations, or when one introduces Green functions
in terms of the many-body states. It is therefore motivated to introduce another no-
tation of the projection operators in, e.g. (1.4). Following the Hubbard [2, 3], we
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introduce the X-operators

Xnn′
NN ′ = |Nn〉〈N ′n′|, (1.16)

also known as Hubbard operators. We will, however, introduce some more nota-
tion. The usage of the X-operators will mainly be restricted to represent transitions
between states differing by and odd number of electrons. We shall refer to such
transitions as Fermi-like. The expansion in (1.4) is made strictly out of Fermionic
transitions. Transitions between states differing by an even number of electrons will
be referred to as Bose-like and denoted by Z, e.g. Znn′

NN±2 = |Nn〉〈N ± 2n′|. Finally,
one often encounters |Nn〉〈Nn|, which can be regarded as a transition from one state
to the state itself. Such diagonal transitions are certainly Bose-like, but since they
are frequently occurring we reserve the notation hn

N = |Nn〉〈Nn| (= Znn
NN) for the

diagonal cases. In cases when the change in the number of electrons is not known,
we will only use the X-operators.

There is an algebra emerging around the introduced operators and, while every-
thing resides on the properties and consequences of the eigenstates used for the
construction of the projection operators, we summarize a few important properties
here for convenience.

First, we have multiplication and commutator relations, i.e.

Xnn′
NN ′Xmm′

MM ′ = δn′mδN ′MXnm′
NM ′, (1.17a)

[Xnn′
NN ′ ,Xmm′

MM ′ ]± = δn′mδN ′MXnm′
NM ′ ± δnm′δNM ′Xmn′

MN ′, (1.17b)

and the closure relation
∑

Nn

hn
N = 1. (1.17c)

As a consequence, one finds that multiplication of a Fermi-like and Bose-like
transitions always results in a Fermi-like transition. Likewise, multiplication
of two Fermi-like, or two Bose-like, transitions results in a Bose-like transi-
tion. We shall take as convention to always have anti-commutation between
two Fermi-like operators while using commutation for all other possible com-
binations, that is, between two Bose-like operators and between one Fermi-
and one Bose-like operator.

1.4 Transition Matrix Elements

From the expansion (1.4) we see that the Fermi operator, e.g. dAσ is given in terms
of the Hubbard operators Xnn′

NN+1 with expansion coefficients 〈Nn|dAσ |N + 1n′〉.
These matrix elements are important quantities that have to be treated with some
care. For example, we cannot assume that they can be replaced by a single value,
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since some matrix elements are identically zero, while all the others are real numbers
between 0 and 1. On the other hand, if we gain knowledge about all matrix elements,
we will be able to provide a closer description of the physics in that we can decide
which transitions that contribute to the processes of interest.

What we need is a systematic way to calculate the matrix elements. We can
certainly always make direct calculations. Borrowing the states and notation from
Sect. 1.2 we have, for example

〈11|dA↑|21〉 =
[
α1 B〈0|A〈↑| + β1 B〈↑|A〈0|

]
dA↑|↑〉A|↑〉B = −β1. (1.18)

This procedure works well whenever the eigenstates are sufficiently simple to
handle. A more involved example is 〈11|dA↓|24〉, where |24〉 = A4|ΦAB

S=0〉 +
B4|ΦA

S=0〉 + C4|ΦB
S=0〉. The operator dA↓ acting on |ΦB

S=0〉 gives zero contribution.
The non-zero contribution is calculated through

〈11|dA↓|21〉 =[α1 B〈0|A〈↑| + β1 B〈↑|A〈0|]dA↓
[
A4|ΦAB

S=0〉 + B4|ΦA
S=0〉

]

=β1A4 B〈↑|A〈0|dA↓|ΦAB
S=0〉 + α1B4 B〈0|A〈↑|dA↓|ΦA

S=0〉
=β1A4 + α1B4. (1.19)

Obviously, we have to consider the transition matrix element between each of the
Fock states in order to acquire information about the matrix elements between the
eigenstates. We want to avoid unnecessary repetition of our calculations, hence, we
should make the calculations more systematic.

Thus, consider the set of eigenstates {|Nn〉} expressed in terms of the Fock states
{|a〉}, where n denotes the state in the N electron configuration, whereas a are dif-
ferent states possible on the level εA. Any given matrix element 〈Nn|da|N ′n′〉 can
be expressed through

〈Nn|da|N ′n′〉 =
∑

a′a′′
〈Nn|a′〉〈a′|da|a′′〉 〈a′′|N ′n′〉 . (1.20)

This expression provides a systematic approach to calculating the matrix elements
between the eigenstates, since the matrix elements 〈a′|da|a′′〉 between the Fock
states can be calculated once and for all, since we do not change the Fock basis that
has been introduced. The overlap integrals 〈a|Nn〉 establish projections of the eigen-
states onto the Fock basis, and these are also needed to be calculated only once. No-
tice that the overlap integrals 〈a|Nn〉 equal the weight, or expansion, coefficient of
the eigenstate |Nn〉 in terms of the Fock state |a〉. To see this, let |Nn〉 =∑a Can|a〉,
for some coefficients Can in the Fock basis of N -electron states. Hence,

〈a|Nn〉 = 〈a|
∑

a′
Cna′ |a′〉 =

∑

a′
Cna′ 〈a|a′〉 =

∑

a′
Cna′δaa′ = Cna. (1.21)

As an example, we have the transitions between the one-electron and two-
electrons states when an electron in quantum dot B is removed. Using the one and
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two electron bases previously defined, we have (omitting the subscripts A, B)

〈1n|dBσ |2m〉

= 〈1n|

⎛

⎜⎜⎝

|↑〉|0〉
|↓〉|0〉
|0〉|↑〉
|0〉|↓〉

⎞

⎟⎟⎠

T ⎛

⎜⎜⎝

〈0|〈↑|
〈0|〈↓|
〈↑|〈0|
〈↓|〈0|

⎞

⎟⎟⎠dBσ

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

|↑〉|↑〉
|↓〉|↓〉

[|↑〉|↓〉+|↓〉|↑〉]√
2[|↑〉|↓〉−|↓〉|↑〉]√
2|↑↓〉|0〉

|0〉|↑↓〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

〈↑|〈↑|
〈↓|〈↓|

〈↓|〈↑|+〈↑|〈↓|√
2〈↓|〈↑|−〈↑|〈↓|√
2〈0|〈↑↓|

〈↑↓|〈0|

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

|2m〉

= (αn↑ αn↓ βn↑ βn↓
)

⎛

⎜⎜⎜⎝

δσ↑ 0 δσ↓√
2

δσ↓√
2

0 0

0 δσ↓ δσ↑√
2

− δσ↑√
2

0 0

0 0 0 0 0 δσ↓
0 0 0 0 0 −δσ↑

⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎜⎜⎜⎝

δm1
δm2
δm3∑

n=4,5,6 δnmAm∑
n=4,5,6 δnmBm∑
n=4,5,6 δnmCm

⎞

⎟⎟⎟⎟⎟⎟⎠

= αn↑δσ↑δm1 + αn↓δσ↓δm2 + αn↑δσ↑ + αn↓δσ↓√
2

δm3

+
∑

m′=4,5,6

δmm′
(

αn↑δσ↑ − αn↓δσ↓√
2

Am + [βn↑δσ↓ − βn ↓δσ↑]Cm

)
. (1.22)

The calculation may look somewhat elaborate, however, all these steps are in prin-
ciple necessary for the calculations of the matrix elements.

More generally, we can calculate the matrix element e.g. 〈Nn|dAσ |N + 1m〉 ac-
cording to the following consideration. Let {|a〉} and {|b〉} be Fock bases for the N -
and N + 1-electron configurations such that |Nn〉 =∑a Cna |a〉 and |N + 1m〉 =∑

b Dmb|b〉, for some coefficients Cna and Dmb, which we allow to be complex
for the sake of generality. The matrix element 〈Nn|dAσ |N + 1m〉 can, thus, be ex-
panded according to

〈Nn|dAσ |N + 1m〉 =
∑

ab

C∗
naDmb〈a|dAσ |b〉, (1.23)

where 〈a|dAσ |b〉 is the a × b-matrix of the transitions between the N + 1- and
N -electron Fock states that occur by removing a spin σ electron in quantum dot A.

We have, thus, seen how we, after defining the properties of the quantum dot sys-
tem, can evaluate the eigenstates and eigenenergies and transition matrix elements.
Those are calculated once and for all, under the given conditions, and can now be
considered as being know through the remainder of this text.
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Chapter 2
Occupation Number Formalism

Abstract We introduce our systems into a perturbing environment and study the
equations for properties of the local subsystems. An occupation number formalism
for the localized states is discussed.

2.1 Perturbing the Local Levels

The perturbations we have in mind here, are perturbations that enable transport of
e.g. charge carriers, spin, thermal energy, etc., through a single quantum dot or a
network or quantum dots. Typically, we will consider charge transport. The pertur-
bations may then be called leads, however, they would have the character of thermal
baths coupled to the quantum dots. In either case, the important effects on the trans-
port that we are interested in arise in the quantum dots when coupled to the leads.
Hence, the leads typically have non-interesting features and are described in a free
electron-like model like

Hχ =
∑

kσ

εkσ c
†
kσ ckσ , kσ ∈ χ, (2.1)

where χ labels the lead, however any degree of complicated structure may be as-
cribed to the leads. The operators c

†
kσ (ckσ ) denotes creation (destruction) of an

electron in the lead at the energy εkσ with spin σ . In what follows and when appro-
priate, we will usually discuss in terms of left and right leads and use the symbols
L and R to denote the left and right lead, respectively, with chemical potentials μL

and μR . The electron energy εkσ is given relative to the chemical potential in the
corresponding lead.

The leads are meant to be coupled to the quantum dots such that a transport may
be conducted between the leads. While the coupling is taken to be rather simple
minded here, there is no limit to the possible complexity that may be present. As-
suming that we have a network of quantum dots, each of which may be described by
the model in (1.1) or (1.2). The coupling between the quantum dot ν and a number
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of χ leads may be modeled by

Hν
T =

∑

iσ

χ∑

r=1

∑

k∈χr

vkiσ c
†
kσ dνiσ + H.c. (2.2)

Converting the d operators in the tunneling term into Hubbard operators, us-
ing (1.4), the tunneling Hamiltonian becomes

Hν
T =

∑

Nnm

[
∑

iσ

χ∑

r=1

∑

k∈χr

vkiσ c
†
kσ (dνiσ )nm

NN+1

]
Xnm

NN+1 + H.c., (2.3)

where (dνiσ )nm
NN+1 ≡ 〈Nn|dνiσ |N + 1m〉. Again, we see that the Hubbard operator

does not care about from which level in the quantum dot the electron is removed,
or added, and that all such information is taken care of in the transition matrix el-
ements. Also, notice that each Hubbard operator couples to all leads, which illus-
trates the fact that the many-body states are extended throughout the quantum dot
and hence are influenced by the perturbations of all levels, irrespective of whether
some of the levels are not connected to all leads.

2.2 Occupations Numbers

The occupation and occupation numbers of electron levels, or particle levels in gen-
eral, is an important notion within quantum physics. Through the occupation num-
bers we can determine the state of the system. The state of the system can be ex-
pressed in terms of the eigenstates, which in the present formulation is the most
convenient. Using this information about the quantum dot, we can for instance cal-
culate the charge current through the quantum dot, when the quantum dot is coupled
to leads, or to deduce the spin state of the quantum dot.

The occupation numbers NNn = 〈hn
N 〉 is the average of the diagonal Hubbard

operators. The occupation numbers can be determined through the equation of mo-
tion with respect to the Hamiltonian system we consider. For instance, suppose that
the quantum dot is coupled to leads as discussed above, but to no other external
perturbations. Let the system be described by the Hamiltonian H =∑χ

r=1 Hχr +∑
Nn ENnh

n
N +∑ν Hν

T , with Hν
T as in (2.3). Then, the occupation number NNm

satisfies the equation

i�
∂

∂t
NNn = 〈[hn

N, H]〉 =
∑

ν

〈[hn
N, HT ]〉, (2.4)

since [hn
N,hm

M ] = 0 for all Nn,Mm. The dynamics of the occupation numbers is
determined by the tunneling between the quantum dot and the leads. This equation
expresses the dynamics of the occupation under influence of the perturbative baths
in the leads, and since an electron being in the state |Nn〉 may tunnel in to the leads,
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we realize that this state is coupled to all the states |N − 1n′〉. On the other hand,
an electron may certainly also tunnel into the quantum dot from the baths, thus also
coupling the state |Nn〉 to all the states |N + 1n′〉. Hence, all the configurations with
N electrons couple to all N ± 1-electron configurations through the baths, and we
find that the dynamics of the occupation numbers is solved through a coupled system
which dimensions scale as 22N , where N is the number of levels in the quantum dot
(considering the possibility of 2 electrons per level, spin ↑ or spin ↓). In order to be
concrete and to start build our intuition, we consider two simple examples.

2.3 Single-Level System

Assume a single quantum dot with a single level. This can be described with HQD =∑
σ εσ d†

σ dσ +Un↑n↓, where εσ is the energy for the spin-projection σ , whereas U

is the charging energy. We rewrite the quantum dot in terms of Hubbard operators,
i.e. HQD =∑p=0,σ,2 Ephp , where E0 = 0, Eσ = εσ , and E2 = ε↑ + ε↓ + U . Cou-
pling the quantum dot to left and right leads, we can write the total system as

H =
∑

kσ∈L∪R

εkσ c
†
kσ ckσ +

∑

p

Ephp +
∑

kσ

[vkσ c
†
kσ (X0σ + σXσ̄2) + H.c.], (2.5)

since dσ = X0σ + σXσ̄2, where the factor σ = ±1. This model is the so-called
Anderson model [1], here extended to include two electron baths (the left and right
leads).

The equation for the occupation number N0 is, thus, given by

i�
∂

∂t
N0(t) =

∑

kσ

[vkσ 〈c†
kσ [h0,X0σ ](t)〉 + v∗

kσ 〈[h0,Xσ0]ckσ (t)〉]

=
∑

kσ

vkσ 〈c†
kσ (t)X0σ (t)〉 − c.c. = i2 Im

∑

kσ

vkσ 〈c†
kσ (t)X0σ (t)〉,

(2.6a)
where c.c. denotes complex conjugate. Similarly, we have the equations for the
numbers Nσ and N2 given by

i�
∂

∂t
Nσ (t) = −2i Im

∑

k

[vkσ 〈c†
kσ (t)X0σ (t)〉 − σ̄ vkσ̄ 〈c†

kσ̄ (t)Xσ2(t)〉], (2.6b)

i�
∂

∂t
N2(t) = −i2 Im

∑

kσ

σvkσ 〈c†
kσ (t)X0σ̄ (t)〉. (2.6c)

As we expected from the previous general discussion, the dynamics of the occu-
pation number Np depends on all transitions to and from the state |p〉. The next
step is to derive suitable equations for the averages on the right hand sides of
the equations. Using the equation of motion for the averages to linear order in
the tunneling, along with the rate of change of the Hubbard operator i∂tX

pq =
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[Xpq, H] = ΔqpXpq + [Xpq, HT ], where Δqp = Eq − Ep is the energy for the
transition |q〉 → |p〉, we find

(
i�

∂

∂t
− Δσ0 + εkσ

)
〈c†

kσ X0σ 〉 = −v∗
kσ 〈h0〉 +

∑

k′σ ′
[−vkσ̄ 〈c†

kσ c
†
kσ̄ Z02〉

+ v∗
k′σ ′ 〈c†

kσσ (h0δσ ′σ + Zσ ′σ )ck′σ ′ 〉]. (2.7)

The second term on the right hand side of this equation contains the two electron
process describing tunneling of two electrons from the quantum dot to the leads.
Such processes are typically important when the leads are superconducting, how-
ever, considering normal metallic leads these processes are negligible. The last term
accounts for spin-flip tunneling (σ ′ = σ̄ ) and since such processes are not contained
in the Hamiltonian, this contribution vanishes exactly in the linear order approxima-
tion. Hence, the equation for the average becomes

(
i�

∂

∂t
− Δσ0 + εkσ

)
〈c†

kσ X0σ 〉 = −v∗
kσ 〈hσ 〉 +

∑

k

v∗
kσ 〈c†

kσ (h0 + hσ )ckσ 〉. (2.8)

Approximating the last average by (N0 + Nσ )〈nkσ 〉 = (N0 + Nσ )f (εkσ ), where
f (εkσ ) = [eβ(εkσ −μχ ) + 1]−1 is the Fermi distribution function with β−1 = kBT

(see Sect. 3.5 for a derivation), we find that

〈c†
kσ X0σ 〉(t) = −iv∗

kσ

∫ t

−∞
[f (εkσ )N0 − {1 − f (εkσ )}Nσ ]e−i(Δσ0−εkσ )(t−t ′)dt ′.

(2.9)
Assuming, further, that we are considering stationary conditions only, we can apply
the Markovian approximation (neglecting memory effects) giving

〈c†
kσ X0σ 〉(t) = v∗

kσ

f (εkσ )N0 − {1 − f (εkσ )}Nσ

εkσ − Δσ0 + iδ
, (2.10)

where δ > 0 has been added for convergence. Putting this expression into (2.6a), we
obtain

∂

∂t
N0 = −2π

�

∑

kσ

|vkσ |2(f (εkσ )N0 − [1 − f (εkσ )]Nσ

)
δ(εkσ − Δσ0). (2.11)

Making the analogous derivations for the other averages in (2.6a)–(2.6c), defin-
ing Γ

χ
0σ = 2π

∑
k |vkσ |2δ(εkσ − Δσ0)/� and Γ

χ
σ2 = 2π

∑
k |vkσ̄ |2δ(εkσ̄ − Δ2σ )/�,

f +
χ (ω) = f (ω − μχ) and f −

χ (ω) = 1 − f +
χ (ω), and using that ∂tNp = 0 under
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stationary conditions, we write the equation for the occupation numbers as

∂

∂t
N0 = 0 =

∑

χσ

Γ
χ

0σ [N0f
+
χ (Δσ0) − Nσ f −

χ (Δσ0)], (2.12a)

∂

∂t
Nσ = 0 =

∑

χ

[Γ χ
0σ N0f

+
χ (Δσ0) − {Γ χ

0σ f −
χ (Δσ0) + Γ

χ
σ2f

+
χ (Δ2σ )}Nσ

+ N2Γ
χ

σ2f
−
χ (Δ2σ )], (2.12b)

∂

∂t
N2 = 0 =

∑

χσ

Γ
χ
σ2[Nσ f +

χ (Δ2σ ) + N2f
−
χ (Δ2σ )]. (2.12c)

Within the given approximation, those four equations completely describe the dy-
namics of the electron occupation in the quantum dot in terms of the electron flow
between the leads and the quantum dot. The solution can be written in analytical
form (left to the reader) which can be used for calculation of e.g. the charge current
through the system under non-equilibrium conditions.

Both Np and the Fermi function describe the occupation in the corresponding
subsystem, whereas the couplings Γ

χ
0σ and Γ

χ
σ2 account for the transfer of electrons

between the subsystems. Hence, physically the above rate equations describes the
electron (im-)balance between the leads as being coupled through the quantum dot.
By increasing the chemical potential in, say, the left lead relative to the right (which
corresponds to a bias voltage applied between the leads), electrons begin to flow
from the left to the right. The presence of the quantum dot makes this flow more
complicated than it would be in e.g. a simple metal-insulator-metal junction, since
not only the occupation in the leads but also the occupation in the quantum dot has to
be calculated. In particular only one electron at the time can be transferred between
the left lead and the quantum dot, and between the quantum dot and the right lead.
By varying the bias voltage we obtain a variation of the quantum dot occupation.
The quantum dot occupation also depends on the position of the level relative to the
chemical potentials of the leads. Shifting the position of the level or the chemical
potentials of the leads correspond to experimentally applying a gate voltage over the
quantum dot.

2.4 Two-Level System in the Pauli Spin Blockade

We take the procedure from the previous discussion to the two-level system intro-
duced in Sect. 1.2, that is, two quantum dots coupled in series, where each of the
quantum dots is coupled to one lead. The coupling may be modeled by

HT =
∑

pσ

vpσ c†
pσ dAσ +

∑

qσ

vqσ c†
qσ dBσ + H.c., (2.13)

where vp(q)σ is the tunneling (or hybridization, or hopping) between the left (right)
lead, and where we have taken indices p (q) in the left (right) lead.



18 2 Occupation Number Formalism

Converting the d operators in the tunneling term into Hubbard operators, us-
ing (1.4), the tunneling Hamiltonian becomes

HT =
∑

Nnm

[∑

pσ

vpσ c†
pσ (dAσ )nm

NN+1 +
∑

qσ

vqσ c†
qσ (dBσ )nm

NN+1

]
Xnm

NN+1 + H.c.,

(2.14)
where (dA(B)σ )nm

NN+1 ≡ 〈Nn|dA(B)σ |N + 1m〉. We again see that the Hubbard op-
erator does not care about in which quantum dot the electron is removed, or added,
and that all such information is taken care of by the transition matrix elements.

Considering the occupation numbers NNn to the same level of approximation as
in the single-level system, we obtain the following set of equations (owing to the
condition ∂tNNn = 0)

�∂tN01 = −
∑

χn

Γ
χ

01,1n[f +
χ (Δ1n,01)N01 − f −

χ (Δ1n,01)N1n], (2.15a)

�∂tNNn =
∑

χn′

(
Γ

χ

N−1n′,Nn
[f +

χ (ΔNn,N−1n′)NN−1n′ − f −
χ (ΔNn,N−1n′)NNn]

− Γ
χ

Nn,N+1n′,[f +
χ (ΔN+1n′,Nn)NNn − f −

χ (ΔN+1n′,Nn)NN+1n′ ]),
N = 1,2,3, (2.15b)

�∂tN41 =
∑

χn

Γ
χ

3n,41[f +
χ (Δ41,3n)N3n − f −

χ (Δ41,3n)N41], (2.15c)

where Γ
χ

Nn,N−1n′ = 2π
∑

kσ |vkσ (dA(B)σ )n
′n

N−1N |2δ(ΔNn,N−1n′ − εkσ ).
We make a brief analysis of the occupation numbers under conditions studied

experimentally by Ono et al. [2], for a particularly interesting case from a physical
point of view, namely the Pauli spin-blockade phenomenon.

Following the experimental estimates we take εA(B)σ = εA(B) and UA = UB =
U = 2U ′ = 2Δε, where Δε = εA − εB > 0, assume weakly coupled quantum dots,
i.e. 2t � Δε, and that the direct Heisenberg exchange J ≈ 0. We further assume
that εA − μ = −U/2, where μ is the equilibrium chemical potential in the system.
The one-electron transition energies for this set-up are depicted in Fig. 2.1. Under
the given conditions we find that only |Δ2n,1n′ − μ| � U/2 for n = 1, . . . ,5, and
n′ = 1,2, and |Δ3n,26 − μ| � U/2 for n = 3,4. For all other transitions we have
|ΔNn,N−1n′ − μ| � U/2. Those estimates allow for a reasonably simple analytical
analysis of the occupation numbers.

By letting the bias voltage eV = μL − μR ∈ [0.1,1]U adjust the left and right
chemical potentials symmetrically around μ, it is easily found that

f +
χ (Δ1n′,01) = 1, ∀n′, (2.16a)

f +
L (Δ2n,1n′) = 1 and f +

R (Δ2n,1n′) = 0, n = 1, . . . ,5, n′ = 1,2, (2.16b)

f +
χ (Δ2n,1n′) = 1, n = 1, . . . ,5, n′ = 3,4, (2.16c)
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f +
χ (Δ26,1n′) = 0, ∀n′, (2.16d)

f +
χ (Δ3n′,2n) = 0, n′ = 1, . . . ,4, n = 1, . . . ,5, (2.16e)

f +
χ (Δ3n′,26) = 1, n′ = 1,2, (2.16f)

f +
L (Δ3n′,26) = f −

R (Δ3n′,26) = 1, n′ = 3,4, (2.16g)

f +
χ (Δ41,3n′) = 0, ∀n′. (2.16h)

Using these observations we directly deduce that N01 = N41 = 0, as expected since
the transition energies Δ1n′,01 and Δ41,3n′ lie far from resonance, that is, outside the
window between the left and right chemical potentials opened by the bias voltage.
It also follows that N26 vanishes, since Δ26,1n′ − μ � U/2. Therefore, there cannot
occur any transition between the state |2,6〉 and any of the three-electron states, al-
though the transition energies Δ3n′,26 ∈ [μR,μL], n′ = 3,4. Taking this observation
along with the fact that Δ3n′,2n � U/2, n = 1, . . . ,5, n′ = 1, . . . ,4, it is clear that the
occupation numbers N3n′ = 0 for all n′. This, further, implies that the one-electron
occupation numbers N1n′ = 0, n′ = 3,4. Hence, the only non-vanishing occupation
numbers are N1n′ , n′ = 1,2, and N2n, n = 1, . . . ,5, which leads to the equations

N1n′ =
∑5

n=1 Γ R
1n′,2n

N2n

∑5
m=1 Γ L

1n′,2m

, n′ = 1,2, (2.17a)

0 =
∑

n′=1,2

[Γ L
1n′,2nN1n′ − Γ R

1n′,2nN2n], n = 1, . . . ,5. (2.17b)

Under spin-degenerate conditions the triplet configurations |2, n〉, n = 1,2,3,
have to have equal probability, hence, N2n = NT /3, for n = 1,2,3. For the same

Fig. 2.1 Equilibrium
distribution of the
one-electron transition
energies ΔNn,N−1n′ in terms
of Δε, for εA = −U/2,
Δε = U/2 = U ′, 2t/Δε � 1,
and J = 0. In absence of
magnetic fields we have
degenerate transitions
Δ12,01 = Δ11,01,
Δ14,01 = Δ13,01,
Δ26,12 = Δ26,11, and
Δ26,14 = Δ26,13. [From [3]]
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Table 2.1 Matrix elements for the transitions Xn′n
12 given in terms of the eigenstates of the model,

where αn = α and βn = β , n = 1,2, and where |2, n〉 = An|ΦAB
S=0〉 + Bn|ΦA

S=0〉 + Cn|ΦB
S=0〉

|(dA↑)11
12|2 |(dA↓)22

12|2 β2

|(dA↑)12
12|2 |(dA↓)21

12|2 0

|(dA↑)13
12|2 |(dA↓)23

12|2 β2/2

|(dA↑)1n
12 |2 |(dA↓)2n

12 |2 (βAn/
√

2 + αBn)
2, n = 4,5

|(dB↑)11
12|2 |(dB↓)22

12|2 α2

|(dB↑)12
12|2 |(dB↓)21

12|2 0

|(dB↑)13
12|2 |(dB↓)23

12|2 α2/2

|(dB↑)1n
12 |2 |(dB↓)2n

12 |2 (αAn/
√

2 + βCn)
2, n = 4,5

reason, the non-vanishing one-electron occupation numbers have to be equal as
well, i.e. N11 = N12 = N1/2, which can also be deduced from the matrix elements
(dA(B)σ )n

′n
12 , see Table 2.1, when putting α1 = α2 = α and β1 = β2 = β . We thus

find that N1 and N2n, n = 4,5 are related to NT through the equations

N1 = 2

3

Γ R

Γ L

(
α

β

)2

NT , (2.18a)

N2n = 1

3

(
Ln

Rn

· α

β

)2

NT , n = 4,5, (2.18b)

where Γ χ = 2π
∑

kσ |vk|2δ(ω − εkσ ), while Ln = βAn/
√

2 + αBn and Rn =
αAn/

√
2+βCn which are bounded and finite for all ξ = 2t/Δε, and slowly varying

functions of ξ . Thus, by the normalization condition (closure relation), here reduced
to 1 = N1 + NT + N24 + N25, we obtain

NT =
{

1 + 1

3

(
α

β

)2[
2
Γ R

Γ L
+
∑

n=4,5

(
Ln

Rn

)2]}−1

. (2.19)

The probability for occupying the two-electron triplet in the restricted bias voltage
interval can, thus, be given in terms of the internal parameters of the quantum dot
and the couplings to the leads. Especially, we observe that NT approaches 1 for
ξ � 1, since then α2 = ξ2/[(1 +√1 + ξ2)2 + ξ2] ≈ 0 and β2 = (1 +√1 + ξ2)2/

[(1 +√1 + ξ2)2 + ξ2] ≈ 1. This is consistent with N2n → 0, n = 4,5, in the same
limit. The important conclusion then is that the occupation of the two-electron triplet
state strongly depends on the ratio between the interdot tunneling t and the relative
level separation Δε, and that the probability of a fully occupied two-electron triplet
is approached as ξ → 0.

The above analysis of the Pauli spin blockade achieved in the serial weakly cou-
pled quantum dot can be interpreted in terms of transition matrix elements. Namely,
when the quantum dot has a one electron it can host a second electron in several
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different configurations, and in the considered bias regime it is most likely that the
second electron enters the quantum dot from the left lead. The quantum dot may
make a transition into any of the triplet or singlet states, all transitions occur with a
rather high probability. Transitions between the singlet and the one-electron states
may, however, occur with finite, and reasonably large, probability by letting one
electron out to the right lead. The occupation of the singlet states therefore become
small, since once any such state is occupied, it immediately leaks electron density
to the right lead. In contrast, transitions between the triplet and one-electron states
by letting one electron out to the right lead has a small probability. Therefore, the
electron density tends to accumulate in the triplet states, for which the occupation
eventually approach unity. As the triplet has become fully occupied, no more trans-
port of electrons from or to either the left or right lead can occur—the system has
entered the Pauli spin blockade.

We learn an important lesson from this analysis. In the quantum dot, the lowest
two-electron singlet state has an energy which is lower than the triplet state energy.
Using equilibrium arguments, one would then have concluded that this singlet state
had become occupied since its energy is the lowest among the two-electron energies.
Under non-equilibrium conditions, however, one cannot use simple ground state
arguments. The reasons is that, if there are states that can mediate electron density
from one state to another, these states will be, at least fractionally, occupied by
electrons.
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Chapter 3
Many-Body Operator Green Functions

Abstract The formalism is extended to propagators, Green functions, in equilib-
rium and non-equilibrium. The contoured ordered Green functions, used in non-
equilibrium, are introduced and we discuss the analytical continuation to real time
correlation functions.

3.1 Basic Definitions

In general we shall be interested in describing the behavior of many-electron sys-
tems at finite temperatures. For an open system in thermodynamic equilibrium the
expectation value of an operator ψ is computed using the grand canonical ensemble
of statistical mechanics. We have

〈ψ〉 =
∑

n〈n|ψ |n〉e−β(En−μN)

∑
n e−β(En−μNn)

= tr e−β(H−μN)ψ

tr e−β(H−μN)
, (3.1)

where {|n〉,En} represents an ortho-normal eigensystem of the many-electron sys-
tem, and Nn the number of particles in state |n〉, whereas μ is the chemical potential.
In the expression to the far right, H =∑n Enh

n is the Hamiltonian of the system
with N electrons.

The Green functions, which from now on shall form the basic tool in our discus-
sions of many-electron systems, are thermodynamic averages of products of oper-
ators. Usually, the one-electron Green function is defined as the propagation of an
electron created at position r′ and time t ′, denoted ψ†(r′, t ′), and annihilated at r
and t , denoted ψ(r, t), e.g. G(r, r′; t, t ′) = (−i)〈Tψ(r, t)ψ†(r′, t ′)〉, where T is the
time-ordering operator. The time-ordering operator acts on the other operators in the
average such that

G(r, r′; t, t ′) =
{

(−i)〈ψ(r, t)ψ†(r′, t ′)〉, t > t ′,
(∓i)〈ψ†(r′, t ′)ψ(r, t)〉, t < t ′,

(3.2)
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where the plus (minus) sign in the second row refers to Fermionic (Bosonic) opera-
tors.

When working in terms of Hubbard operators, we will have to regard the cre-
ation of an electron as a transition |N + 1, n′〉〈N,n| to a state |N + 1, n′〉 with
one more electron than the initial state |N,n〉. The annihilation is thus regarded
as the transition to a state with one electron less. Moreover, due to the identity
in (1.4), any one-electron Green function written in terms of Fermi operators, e.g.
Gαα′(t, t ′) = (−i)〈Tdα(t)d

†
α′(t ′)〉, has to be expanded in the whole set of Hubbard

operator, i.e.

Gαα′(t, t ′) = (−i)〈Tdα(t)d
†
α′(t ′)〉

=
∑

pp′qq ′
(dα)pq(d

†
α′)q

′p′
(−i)〈TXpq(t)Xq ′p′

(t ′)〉. (3.3)

As we know from the earlier sections, the transition matrix elements (dα)pq take
care of the amplitude/importance of each of the propagators (−i)〈TXpq(t)Xq ′p′

(t ′)〉.
From time to time it will be inconvenient to use the four index notation. We

therefore define the Latin multi-indices a, b, c, . . . , such that Xa = Xpq , and the
conjugate indices ā, b̄, c̄, . . . , such that Xā = Xqp = (Xpq)†. Then, we can write
the Hubbard operator Green functions as Gab̄(t, t

′) = (−i)〈TXa(t)Xb̄(t ′)〉, such
that the above identity becomes

Gαα′(t, t ′) =
∑

ab

(dα)a(d
†
α′)b̄Gab̄(t, t

′). (3.4)

We shall, however, not be so strict with the notation, but rather use any notation that
is convenient for the moment. Nonetheless, whenever we are to discuss generali-
ties or whenever there is no desire to refer to specific states, we will resort to this
auxiliary notation.

We have omitted all explicit r dependence in the Green functions above. We have
done this in order to keep notation to its minimal. Whenever we will be interested
in spatial dependence of some quantity we will include this into the description,
however, the main interest lie at the moment on the time dependence of the propa-
gators.

We finally notice that the time-ordering acts on the Hubbard operators according
to the scheme

(−i)〈TXa(t)Xb̄(t ′)〉 =
{

(−i)〈Xa(t)Xb̄(t ′)〉, t > t ′,
(∓i)〈Xb̄(t ′)Xa(t)〉, t < t ′,

(3.5)

where, again, the plus (minus) sign in the second row refers to Fermi-like (Bose-
like) transitions.
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3.2 Equilibrium

Although most of the content in this book is devoted to non-equilibrium conditions,
it will be useful to briefly consider the equilibrium case. For concreteness, we take
a single localized level interacting with a conduction channel, e.g.

H =
∑

kσ

εkσ c
†
kσ

ckσ +
∑

p=0σ2

Ephp +
∑

kσ

[vkσ c
†
kσ

(X0σ + σXσ̄2) + H.c.]. (3.6)

The conduction channel is described by the Hamiltonian
∑

kσ εkσ c
†
kσ

ckσ , where the
energy εkσ is related to the momentum k by some dispersion relation.

We are to study the evolution of the localized electron, and therefore we are
interested in the Green functions Gab̄(t, t

′), with a, b = {0σ, σ̄2}. The equation of
motion for G0σ ā(t, t

′) becomes

i∂tG0σ ā(t, t
′) = δ(t − t ′)〈{X0σ ,Xā}(t)〉 + (−i)〈T[X0σ , H](t)Xā(t ′)〉. (3.7)

Here and henceforth, we will use units such that � = 1. We introduce the nota-
tion P0σ ā(t) = 〈{X0σ ,Xā}(t)〉, the end-factor, which provides the amplitude of the
Green function. In case of ā = σ0, it simply provides the sum of the occupation
numbers in the states |0〉 and |σ 〉. This interpretation becomes slightly awkward in
all other cases, since it might be strange to talk about transitions, like e.g. Zσ̄σ , as
states. In the present case, averages of all such off-diagonal transitions, or coher-
ences, vanish. There may, however, be situations when the averages of those transi-
tions are finite, e.g. when such transitions are explicitly present in the Hamiltonian.

By performing the commutator [X0σ , H] the resulting equation of motion be-
comes

(i∂t − Eσ + E0)G0σ ā(t, t
′)

= δ(t − t ′)P0σ ā(t) −
∑

k

σ̄ vkσ̄ (−i)〈T(c
†
kσ̄ Z02)(t)Xā(t ′)〉

+
∑

k

[vkσ (−i)〈T(h0 + hσ )(t)ckσ (t)Xā(t ′)〉

+ vkσ̄ (−i)〈T(Zσ̄σ ckσ̄ )(t)Xā(t ′)〉. (3.8)

Here, the second and third terms on the left hand side of the above equation provides
the transition energy between the states |0〉 and |σ 〉. The second term on the left hand
side is negligible unless the conduction channel is in the superconducting state. The
third term, i.e.

∑

k

vkσ (−i)〈T(h0 + hσ )(t)ckσ (t)Xā(t ′)〉 ≈
∑

k

vkσ P0σσ0(t)Fkσ ā(t, t
′), (3.9)
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by simple de-coupling. Here, Fkσ ā(t, t
′) = (−i)〈Tckσ (t)Xā(t ′)〉 describes the trans-

fer, or tunneling, of an electron between the localized state and the conduction chan-
nel. The last term in the equation of motion vanishes to this order of approximation,
i.e. (−i)〈T(Zσ̄σ ckσ̄ )(t)Xā(t ′)〉 ≈ P0σ σ̄0(t)Fkσ̄ ā(t, t

′) = 0. In terms of this approxi-
mation, we thus have the two equations

(i∂t − Δσ0)G0σ ā(t, t
′) = δ(t − t ′)P0σ ā(t) + P0σσ0

∑

k

vkσ Fkσ ā(t, t
′), (3.10a)

(i∂t − Δ2σ̄ )Gσ̄2ā(t, t
′) = δ(t − t ′)Pσ̄2ā(t) + σPσ̄22σ̄

∑

k

vkσ Fkσ ā(t, t
′), (3.10b)

where Δqp = Eq −Ep is the transition energy for the process |q〉 → |p〉, and where
we used the same approach for the Green function Gσ̄2ā(t, t

′). The equation of
motion for the transfer Green function Fkσ ā(t, t

′) is given by

(i∂t − εkσ )Fkσ ā(t, t
′) = vkσ [G0σ ā(t, t

′) + σGσ̄2ā(t, t
′)]. (3.11)

We Fourier transform the above equation of motions, i.e. we use

G(iωn) =
∫ −iβ

0
G(t, t ′)eiωn(t−t ′)dt,

ωn =
⎧
⎨

⎩

i 2n
β

π + μ, Bose-like,

i 2n+1
β

π + μ, Fermi-like, n ∈ Z,
(3.12a)

G(t, t ′) = i

β

∑

n

G(iωn)e
−iωn(t−t ′),

{
0 ≤ it ≤ β,

0 ≤ it ′ ≤ β,
(3.12b)

which is allowed since the propagators only depend on the time difference t − t ′ in
equilibrium. It should be noticed that the time-integration is taken along the contour
that begins and terminates at 0 and −iβ , respectively, and circumventing the positive
real axis. We, thus, obtain

Fkσ ā(iω) = vkσ [G0σ ā + σGσ̄2ā]/(iω − εkσ ). (3.13)

Keeping in mind that the Fourier frequency ωn here is an odd integer of iπ/β , we
shall omit the subscript n. Using this result in the aligns for the localized states, we
arrive at the solvable set of aligns
(
iω − Δσ0 − P0σσ0Vσ (iω)

)
G0σ ā(iω) = P0σ ā + σP0σσ0Vσ (iω)Gσ̄2ā(iω), (3.14a)

(
iω − Δ2σ̄ − Pσ̄22σ̄ Vσ (iω)

)
Gσ̄2ā(iω) = Pσ̄2ā + σPσ̄22σ̄ Vσ (iω)G0σ ā(iω). (3.14b)
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Here, the propagator Vσ (iω) =∑k |vkσ |2/(iω − εkσ ) provides a broadening to the
localized state due to the interaction between electrons in the localized state and the
conduction channel. In order to make the notation shorter, we put Gpq = Gpqqp and
Ppq = Ppqqp .

We are now in position to solve for the diagonal Green functions. It is evident,
in the equations above, that we also need to find the equations for the off-diagonal
Green functions G0σ2σ̄ and Gσ̄2σ0. Although they describe mysterious sequences
of transitions, these propagators are non-zero, and are given by

G0σ2σ̄ (iω) = σ
P0σ Vσ (iω)

iω − Δσ0 − P0σ Vσ (iω)
Gσ̄2(iω), (3.15a)

Gσ̄2σ0(iω) = σ
Pσ̄2Vσ (iω)

iω − Δ2σ̄ − Pσ̄2Vσ (iω)
G0σ (iω). (3.15b)

We thus have

G0σ (iω) = P0σ

iω − Δσ0 − P0σ Vσ (iω) − P0σ Vσ (iω)Pσ̄2
iω−Δ2σ̄ −Pσ̄2Vσ (iω)

Vσ (iω)
, (3.16a)

Gσ̄2(iω) = Pσ̄2

iω − Δ2σ̄ − Pσ̄2Vσ (iω) − Pσ̄2Vσ (iω)P0σ

iω−Δσ0−P0σ Vσ (iω)
Vσ (iω)

. (3.16b)

If we were to solve for the localized level using Fermi operator notation, we
would have been interested in the Green function Gσ (t, t ′) = (−i)〈Tdσ (t)d†

σ (t ′)〉.
Expanding this Green function in terms of Hubbard operators, i.e. Gσ = G0σ +
σ [G0σ2σ̄ + Gσ̄2σ0] + Gσ̄2, we find that the Green function for the localized level is
given by

Gσ (iω) = [iω − Δ2σ̄ ]P0σ + [iω − Δσ0]Pσ̄2

[iω − Δσ0 − P0σ Vσ (iω)][iω − Δ2σ̄ ] − [iω − Δσ0]Pσ̄2Vσ (iω)
. (3.17)

This expression is complicated and not very appealing. However, we shall remember
that, cf. Sect. 2.3, Δσ0 = Eσ − E0 = εσ and Δ2σ̄ = E2 − Eσ̄ =∑σ εσ + U − εσ̄ =
εσ +U . Furthermore, the end-factors P0σ = 〈h0 + hσ 〉 = N0 +Nσ and, analogously,
Pσ̄2 = Nσ̄ + N2. By the closure relation, (1.17c), we have 1 =∑p〈hp〉 =∑p Np ,

hence, P0σ + Pσ̄2 = 1. The expansion nσ = d†
σ dσ = hσ + h2 also suggests that

Pσ̄2 = 〈nσ̄ 〉, giving P0σ = 1 − 〈nσ̄ 〉. We can thus rewrite the expression above as

Gσ (iω) = iω − Δσ0 − UP0σ

[iω − Δσ0 − Vσ (iω)][iω − Δ2σ̄ ] − Pσ̄2Vσ (iω)U

= iω − εσ − (1 − 〈nσ̄ 〉)U
[iω − εσ − Vσ (iω)][iω − εσ − U ] − 〈nσ̄ 〉Vσ (iω)U

, (3.18)

where the expression on the second line is the usual self-consistent Hartree-Fock
approximation found in literature. Finally, the end-factors may be calculated using
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the spectral theorem, noting that

N0 = 〈h0〉 =
∑

σ

〈X0σ Xσ0〉 = − 1

π

∫
[1 − f (ω)] Im

∑

σ

Gr
0σ (ω)dω, (3.19a)

Nσ = 〈hσ 〉 = 〈Xσ0X0σ 〉 + 〈Xσ2X2σ 〉
= − 1

π

∫
[f (ω) ImGr

0σ (ω) + [1 − f (ω)] ImGr
σ2(ω)]dω, (3.19b)

N2 = 〈h2〉 =
∑

σ

〈X2σ Xσ2〉 = − 1

π

∫
f (ω)

∑

σ

ImGr
σ2(ω)dω. (3.19c)

In this way we obtain the self-consistent aligns for the localized level. The sum-
mations appear since the occupation numbers are coupled to the other states in the
system through the transitions in the Green functions. We must simply account for
all density of electrons that couple to each occupation number.

Using Hubbard operators for this model up to the mean field approximation may
seem as making the mathematics only more complicated. On the other hand, the
derivation was performed in order to illustrate some important questions that may
arise when working in terms of Hubbard operators, namely interpretation of the
transition energies Δqp = Eq − Ep and the end-factors Ppqq ′p′ .

3.3 Contour Ordered Green Functions

We are now entering the non-equilibrium formalism of the many-body operator
Green functions. We generalize the single-electron Green function to the complex
contour [t0, t0 − iβ], where t0 is arbitrary, through

G(r, r′; t, t ′;U) = (−i)〈Tψ(r, t)ψ†(r′, t ′)〉U ≡ (−i)
〈TSψ(r, t)ψ†(r′, t ′)〉

〈TS〉 ,

(3.20)
where T means imaginary time, or contour, ordering and the action operator S is
given by

S = exp

(
−i

∫ t0−iβ

t0

H′(t ′)dt ′
)

, (3.21)

where H′(t ′) is a disturbance potential defined on the space and times on the contour
[t0, t0 − iβ].

There is a major difference between the non-definitions of the propagators, ac-
tions, Hamiltonians, etc. in equilibrium and non-equilibrium. In the former case,
there is always a ground state defined with respect to which we can perform all
our calculations. This ground state is defined for all times t , which implies that we
may define the complex time contour [t0, t0 − iβ] arbitrarily. Especially, we may put
t0 = 0.
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The situation is very different under non-equilibrium conditions, however, since
there is no ground state defined with respect to which we can undertake our calcula-
tions. It is, therefore, important that we include some arbitrary time t0 in the defini-
tion of the complex time contour [t0, t0 − iβ], in order not to restrict our treatment
to equilibrium. On the other hand, in all our considerations of non-equilibrium, we
shall assume that there was a ground state defined at t0 → −∞. By taking this math-
ematical construction for granted, we can refer all our calculations to the ground
state at t0 → −∞, simply by extending the complex time contour to both begin and
terminate at −∞ and circumventing the positive real axis.

The exact form of the disturbance potential H′(t ′) may vary from case to case.
Generally, this potential will be of the form H′(t ′) =∑ξ Uξ (t

′)Zξ , where ξ is a
Bose-like transition index, and where Uξ(t

′) is an external source field acting on the
system. In the following, we shall denote the integration over the imaginary time
interval [t0, t0 − iβ], or some equally appropriately defined imaginary time contour,
by the subscript C, e.g. S = exp {−i

∫
C

H′(t ′)dt ′}.
The single-electron Green functions defined for equilibrium and non-equilibrium

conditions satisfy the boundary conditions G(t, t ′;U)|t=t0 =−eβμG(t, t ′;U)|t=t0−iβ

[1]. This is easily derived under equilibrium conditions using the definition of the
average, since

G(t, t ′;U)|t=0 = i〈ψ†(t ′)ψ(0)〉

= i
tr e−β(H−μN)ψ†(t ′)ψ(0)

tr eβ(H−μN)
= i

trψ(0)e−β(H−μN)ψ†(t ′)
tr eβ(H−μN)

= i
tr e−β(H−μN)[eβ(H−μN)ψ(0)e−β(H−μN)]ψ†(t ′)

tr eβ(H−μN)
, (3.22)

where we have used that the trace is invariant under even permutations of the op-
erators. The number operator N = ψ†ψ commutes with the Hamiltonian, hence,
eβ(H−μN) = eβHe−βμN . Moreover, due to the fact that [ψ,N] = ψ , it is a straight
forward exercise to show that e−βμNψ(0)eβμN = eβμψ(0). By finally using the
property that ψ(t) = eiHtψ(0)e−iHt , we arrive at the relation

G(t, t ′)|t=0 = −eβμ(−i)
tr e−β(H−μN)ψ(−iβ)ψ†(t ′)

tr eβ(H−μN)
= −eβμG(t, t ′)|t=−iβ .

(3.23)
This derivation can be straight forwardly generalized to non-equilibrium, where we
have

G(t, t ′;U)|t=t0 = −eβμG(t, t ′;U)|t=t0−iβ . (3.24)

In terms of Hubbard operators, however, these boundary conditions become
slightly altered in that the exponent eβμ is replaced by e0·βμ = 1. The transi-
tion Xa = Xqq ′

commutes with the number operator N = ∑
p hp according to

[Xa,N ] = ∑
p[Xqq ′

, hp] = ∑
p[δpq ′Xqp − δpqXpq ′ ] = 0, which leads to that
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e−βμNXaeβμN = Xa . It is then easy to derive

Gab(t, t
′;U)t=t0 = i〈Xb̄(t ′)Xa(0)〉 = −(−i)〈Xa(−iβ)Xb̄(t ′)〉

= −Gab(t, t
′;U)t=t0−iβ . (3.25)

Our generalized non-equilibrium Green functions satisfy similar equations of
motion as the corresponding equilibrium Green functions. Taking the single level
system, for instance, we have the equations of motion (dropping the reference U to
the disturbance potential in the Green functions Gpqq ′p′ )

(
i∂t − Δσ0 − ΔUσ0(t)

)
G0σ ā(t, t

′) − Uσσ̄ (t)G0σ̄ ā(t, t
′)

= δ(t − t ′)P0σ ā(t) +
∑

k

vkσ (−i)〈T([h0 + hσ ]ckσ )(t)Xā(t ′)〉U

+
∑

k

vkσ̄ (−i)〈T(Zσ̄σ ckσ̄ )(t)Xā(t ′)〉U , (3.26a)

(
i∂t − Δ2σ̄ − ΔU2σ̄ (t)

)
Gσ̄2ā(t, t

′) + Uσσ̄ (t)Gσ2ā(t, t
′)

= δ(t − t ′)Pσ̄2ā(t) + σ
∑

k

vkσ (−i)〈T([hσ̄ + h2]ckσ )(t)Xā(t ′)〉U

+ σ̄
∑

k

vkσ̄ (−i)〈T(Zσ̄σ ckσ̄ )(t)Xā(t ′)〉U , (3.26b)

where ΔUqp(t) = Uq(t)−Up(t). We derive those equation exactly in the same way
as in the previous discussion. The new features that appear are the source fields
Uξ(t), which are generated by the time-derivative of the Green functions, and here
using the disturbance potential H′(t ′) = U0(t

′)h0 +∑σ [Uσ (t ′)hσ + Uσσ̄ (t ′)Zσσ̄ ].
This is most easily seen on the time contour [t0, t0 − iβ] by noting that

TSXa(t) = T
{
e−i

∫ t0−iβ
t H′(t ′)dt ′Xa(t)e

−i
∫ t
t0

H′(t ′)dt ′}
, (3.27)

which, upon time differentiation, gives

i
∂

∂t
TSXa(t) = T

{
e−i

∫ t0−iβ
t H′(t ′)dt ′ [−H′(t)Xa(t)

+ i
∂

∂t
Xa(t) + Xa(t)H′(t)]e−i

∫ t
t0

H′(t ′)dt ′
}

= TS[Xa(t), H + H′(t)]. (3.28)

Then, for instance, the commutator [X0σ , H′] = (Uσ − U0)X
0σ + Uσσ̄ X0σ̄ , which

explains the presence of the Green function G0σ̄ ā in the equation for G0σ ā .
We did introduce the auxiliary source fields Uξ(t) for a reason, which we shall

discuss in more detail below. Further consequences of introducing these fields will
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also be discussed in Chap. 5. We notice in (3.26a), (3.26b) the presence of three-
operator Green functions, e.g. (−i)〈T([h0 + hσ ]ckσ )(t)Xā(t ′)〉U . We may deal with
those according to the decoupling procedure applied in Sect. 3.2, or by the Wick’s
theorem following the approach described in detail in [2]. The latter of those proce-
dures, however, is inappropriate to use in non-equilibrium situations. Therefore, we
will follow another approach that provides a diagrammatic expansion of the propa-
gators.

Consider a general propagator with two Hubbard operators, e.g.

Gab̄(t, t
′) = (−i)

〈TSXa(t)Xb̄(t ′)〉
〈TS〉 , (3.29)

where the transitions a, b are arbitrary. Varying this Green function with respect to
the sources Uξ(t) in the action S = exp{−i

∫
C

∑
ξ Uξ (t)Z

ξdt ′}, we obtain

δGab̄(t, t
′) = −i

∫

C

∑

ξ

δUξ (t
′′)
{
(−i)

〈TSZξ (t ′′)Xa(t)Xb̄(t ′)〉
〈TS〉

− (−i)
〈TSXa(t)Xb̄(t ′)〉

〈TS〉
〈TSZξ (t ′′)〉

〈TS〉
}
dt ′′. (3.30)

Here, we recognize the first factor in the second term as Gab(t, t
′). By rearranging

the above expression, we, thus, find that the propagator containing three Hubbard
operators can be expressed in terms of the one-electron Green function and func-
tional derivatives thereof, according to

(−i)〈TZξ (t ′′)Xa(t)Xb̄(t ′)〉U =
(

〈TZξ (t ′′)〉U + i
δ

δUξ (t ′′)

)
Gab̄(t, t

′). (3.31)

Keeping in mind that all averages 〈TZξ (t)〉U naturally appearing in the aligns
of motion for the Green functions Gab̄(t, t

′), are results of anti-commutators as

e.g. Pab̄(t) = 〈T{Xa,Xb̄}(t)〉U = 〈T(δqq ′Zpp′ + δpp′Zq ′q)(t)〉U , for transitions a =
pq, b = p′q ′. In analogy with this, we introduce the notation

Rab̄(t) = i

(
δqq ′

δ

δUpp′(t)
+ δpp′

δ

δUq ′q(t)

)
. (3.32)

Using all the notation thus introduced, we can write the equation of motion for
a the Green function Gab(t, t

′) in the Hamiltonian system H = ∑
kσ εkσ nkσ +∑

p Ephp +∑kσa[vkσ (dσ )ac
†
kσ

Xa + H.c.] as

[i∂t − Δā]Gab(t, t
′) −

∑

ξc

Uξ (t)ε
aξ
c Gcb(t, t

′)

= δ(t − t ′)Pab̄(t) +
∑

cd

[Pac̄(t
+) + Rac̄(t

+)]
∫

C

Vcd(t, t ′′)Gdb(t
′′, t ′)dt ′′,

(3.33)
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where ε
aξ
c is a tensor defined such that [Xa,Zξ ] =∑c ε

aξ
c Xc, while Vcd(t, t ′) =∑

σ Vσ (t, t ′)(d†
σ )c̄(dσ )d .

The structure of the equation of motion suggests that we can write the matrix
equation

[i∂t −Δ− U(t)]G(t, t ′) = δ(t − t ′)P(t)+[P(t+)+ R(t+)]
∫

C

V(t, t ′′)G(t ′′, t ′)dt ′′.
(3.34)

Then, we should in principle, obtain the equation

G(t, t ′) = d(t, t ′)P(t ′) +
∫

C

d(t, t1)[P(t+1 ) + R(t+1 )]V(t1, t2)G(t2, t
′)dt2dt1,

(3.35)
where d(t, t ′) satisfying the equation [i∂t − Δ − U(t)]d(t, t ′) = δ(t − t ′) is called
the bare locator. The Green function clearly has the structure of a product of the
locator function d, or more generally the dressed locator D, and the end-factor P,
according to G = DP. Hence, multiplying (3.35) from the right by P−1(t ′) we obtain
the equation for the locator D, that is

D(t, t ′) = d(t, t ′) +
∫

C

d(t, t1)[P(t+1 ) + R(t+1 )]V(t1, t2)D(t2, t
′)dt2dt1. (3.36)

Further, is we multiply this equation from the left by d−1(τ, t) and from the right
by D−1(t ′, τ ′), and integrate the equation over t and t ′, we obtain

D−1(τ, τ ′) = d−1(τ, τ ′) −
∫

C

{[P(τ+) + R(τ+)]V(τ, t2)D(t2, t
′)}D−1(t ′, τ ′)dt2dt ′.

(3.37)
The parenthesis has been introduced in the integral as a reminder that the functional
differentiation operator R acts on the locator D(t2, t

′), however, not on the inverse
locator D−1(t ′, τ ′). Hence, the product {R(τ+)V(t1, t2)D(t2, t

′)}D−1(t ′, τ ′) cannot
be further simplified since D−1 is the inverse of D, and not of RVD. We can, how-
ever, write the expression in (3.37) as

D−1(τ, τ ′) = d−1(τ, τ ′) − P(τ+)V(τ, τ ′)

−
∫

C

{R(τ+)V(τ, t2)D(t2, t
′)}D−1(t ′, τ ′)dt2dt ′. (3.38)

Either this expression or the one in (3.37) suggests that one can introduce a self-
energy, or rather, a self-energy operator S , by putting

S(τ, τ ′) = P(τ+)V(τ, τ ′) +
∫

C

{R(τ+)V(τ, t2)D(t2, t
′)}D−1(t ′, τ ′)dt2dt ′, (3.39)

which reduces the equation for the locator to

D−1(t, t ′) = d−1(t, t ′) − S(t, t ′). (3.40)
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Finally, we can also write the equation for the Green function in terms of the self-
energy operator as

G(t, t ′) = g(t, t ′) +
∫

C

d(t, τ )S(τ, τ ′)G(τ ′, t ′)dτdτ ′, (3.41)

where g = dP is the bare Green function.
We will explore the framework provided by the self-energy operator in Chap. 5

for a diagrammatic expansion of the Green function. Here, we notice, however, that
the simplest approximation of the Green function is obtained by omitting the func-
tional differentiation, i.e. simply letting S ≈ PV. Then, by letting the external source
fields Uξ(t) → 0, in which limit we can extract the physical content of the derived
equations. We obtain the Dyson-like equation

G(t, t ′) = g(t, t ′) +
∫

C

g(t, t1)V(t1, t2)G(t2, t
′)dt2dt1. (3.42)

3.4 Non-Equilibrium Green Functions

So far, we have been working with all propagators defined on the complex time
contour e.g. [t0, t0 − iβ], which provides a convenient environment to generate the
appropriate equation s of motion, and perturbational or diagrammatic expansions of
the propagators. The complex contour environment is, nevertheless, inappropriate
when physical information is to be acquired from the work we have done. We need
to convert our propagators into the real time domain. The fundament for this con-
version was laid out by Kadanoff and Baym [1], and Keldysh [3], while Langreth
[4] provided simple rules that allows simple mechanical manipulations of the real
time Green functions. Here, we will make a somewhat thorough discussion of the
procedures to convert the contour ordered Green functions into the corresponding
real time propagators. The author also refers to [5] for an analogous discussion.

There are two basic propagators in the framework of non-equilibrium Green
functions, namely the lesser and greater Green functions, here defined by

G>

ab
(t, t ′) = −i〈Xa(t)Xb̄(t ′)〉, t > t ′, (3.43a)

G<

ab
(t, t ′) = i〈Xb̄(t ′)Xa(t)〉, t < t ′. (3.43b)

We have taken the case when the transitions are Fermi-like. We also have reasons to
define lesser and greater Green functions with Bose-like transitions e.g.
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K>
ξζ̄

(t, t ′) = −i〈Zξ (t)Zζ̄ (t ′)〉, t > t ′, (3.44a)

K<
ξζ̄

(t, t ′) = −i〈Zζ̄ (t ′)Zξ (t)〉, t < t ′. (3.44b)

The negative sign appearing on the lesser Green function K<
ξζ̄

(t, t ′) is related to

the use of commutator when dealing with Bose-like transitions, instead of the anti-
commutator as is the case in case of Fermi-like transitions, cf. G<

ab
(t, t ′).

The lesser (greater) superscript is used as a reminder that the time t is less (larger)
than t ′ on the time contour. The time contour [t0, t0 − iβ] for instance, begins at the
time t0, goes, slightly above the real time axis, to ∞ (whatever it means) where it
circumvents the real time axis, continues slightly below the real time axis and ends
at t0 − iβ , see Fig. 3.1. Hence, we must understand the meaning of t < t ′ on the
contour. In fact, we can regard t as being less than t ′ as long as t ′ lies closer to the
end point of the contour, e.g. t0 − iβ , than t . Sometimes, however, it is meaningful
to also regard the time contour C as constituted of two disjoint parts, the upper and
lower contours, Cu and Cl , respectively. The upper contour begins at the beginning
of C and ends at ∞, where it is joint with the beginning of the lower contour Cl

which, in turn, ends at the end of C. Finally, in order to obtain the real time Green
functions, we must let the start and end points of the contour approach −∞ (in the
particular case of [t0, t0 − iβ] we have to require that t0 → −∞).

Some care has to be taken when our propagator is a convolution of two, or
more, Green functions on the time contour. Assuming that the propagator A(t, t ′) =∫
C

B(t, t ′′)D(t ′′, t ′)dt ′′, where B and D are some propagators. The lesser propaga-

Fig. 3.1 Two examples of the complex time contour. In panel (a) the contour [t0, t0 − iβ] as
suggested by Kadanoff and Baym is depicted, whereas panel (b) illustrates the Keldysh contour
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tor A< is then extracted by the following consideration:

A<(t, t ′) =
∫ t

−∞
B>(t, t ′′)D<(t ′′, t ′)dt ′′ +

∫ t ′

t

B<(t, t ′′)D<(t ′′, t ′)dt ′′

+
∫ −∞

t ′
B<(t, t ′′)D>(t ′′, t ′)dt ′′. (3.45)

In the first integral, the time t ′′ < t < t ′, while in the second we have t < t ′′ < t ′,
whereas the times t < t ′ < t ′′ in the last. Here, we have to think contour-wise and
not in the usual sense. On the upper contour this introduces no problem, while in
the lower contour this leads to something that might look counter-intuitive. Keep-
ing in mind the rule given above, times closer to the end-point of the contour are
later/greater than times closer to the starting point, such problems should not arise.

Now, the expression given above for A<(t, t ′) is not satisfactory and we need to
shape it up. We can do the following: let the second integral be given as two, i.e.

∫ t ′

t

B<(t, t ′′)D<(t ′′, t ′)dt ′′ =
∫ −∞

t

B<(t, t ′′)D<(t ′′, t ′)dt ′′

+
∫ t ′

−∞
B<(t, t ′′)D<(t ′′, t ′)dt ′′. (3.46)

We can, then, write the lesser propagator according to

A<(t, t ′) =
∫

θ(t − t ′′)[B>(t, t ′′) − B<(t, t ′′)]D<(t ′′, t ′)dt ′′

+
∫

B<(t, t ′′)θ(−t + t ′)[D<(t ′′, t ′) − D>(t ′′, t ′)]dt ′′, (3.47)

where the integration is taken on the whole real time axis. The combinations of the
correlation functions between the brackets are commonly known as the retarded and
advanced Green functions, generally

Ar(t, t ′) = θ(t − t ′)[A>(t, t ′) − A<(t, t ′)], (3.48a)

Aa(t, t ′) = −θ(−t + t ′)[A>(t, t ′) − A<(t, t ′)]. (3.48b)

Using these definitions, we find for instance that

G
r/a

ab
(t, t ′) = (∓i)θ(±t ∓ t ′)〈{Xb̄(t ′),Xa(t)}〉, (3.49a)

K
r/a

ξ ζ̄
(t, t ′) = (∓i)θ(±t ∓ t ′)〈[Zζ̄ (t ′),Zξ (t)]〉, (3.49b)

in agreement with the usual definitions for equilibrium Green functions.
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Substituting the definitions given in (3.48a), (3.48b) into to (3.47), we finally find
that this expression can be rewritten as

A<(t, t ′) =
∫

[Br(t, t ′′)D<(t ′′, t ′) + B<(t, t ′′)Da(t ′′, t ′)]dt ′′, (3.50)

which is most commonly found in literature.
Another interesting identity to consider is A(t, t ′) = B(t, t ′)D(t, t ′), which gives

A</>(t, t ′) = B</>(t, t)D</>(t, t ′), (3.51)

since t < t ′, or t > t ′, in both propagators B and D. Thus, when finding the retarded
propagator Ar(t, t ′), where A(t, t ′) = ∫

C
B(t, t ′′)D(t ′′, t ′)dt ′′, we use the defini-

tions in (3.48a), (3.48b), and find that

Ar(t, t ′) = θ(t − t ′)[B>(t, t)D>(t, t ′) − B<(t, t)D<(t, t ′)]. (3.52)

Adding zero (!), i.e. 0 = B>(t, t)D<(t, t ′) − B>(t, t)D<(t, t ′), gives

Ar(t, t ′) = θ(t − t ′)[B>(t, t){D>(t, t ′) − D<(t, t ′)}
+ {B>(t, t ′) − B<(t, t)}D<(t, t ′)]

= B>(t, t ′)Dr(t, t ′) + Br(t, t ′)D<(t, t ′). (3.53)

This conversion, as well as the expression in (3.50), clearly illustrates that con-
tinuation to the real time axis is not always trivial. However, relying on the basic
correlation functions, the lesser and greater, always admits finding a more or less
convenient final expression.

In summary, the following identifications will be useful later in the book, namely,

A(t, t ′) =
∫

C

B(t, t ′′)D(t ′′, t ′)dt ′′,
⎧
⎪⎪⎨

⎪⎪⎩

A</>(t, t ′) = ∫ [Br(t, t ′′)D</>(t ′′, t ′)

+ B</>(t, t ′′)Da(t ′′, t ′)]dt ′′,

Ar/a(t, t ′) = ∫ Br/a(t, t ′)Dr/a(t, t ′)dt ′′,

(3.54a)

A(t, t ′) = B(t, t ′)D(t, t ′),
{

A</>(t, t ′) = B</>(t, t ′)D</>(t, t ′),

Ar/a(t, t ′) = B>(t, t ′)Dr/a(t, t ′) + Br/a(t, t ′)D<(t, t ′).

(3.54b)
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3.5 Basic Building Blocks for Non-Equilibrium Studies

Above, we have investigated the conversion of the contour ordered Green func-
tions to real times, defining the lesser and greater Green functions (or correlation
functions), and studied the structure of the propagators when they are products or
convolution of two other propagators. We also defined the retarded and advanced
Green functions in terms of the lesser and greater ones. This is all fine, however,
when doing actual calculations we need to have explicit expressions for the basic
Green functions, such as the Green function for a non-interacting electron. After all,
no matter how intricate the final Green function may be in terms of expansions and
diagrams, at some point we will have to insert the Green function for non-interacting
electrons in order to carry out the calculations. Therefore, we spend some effort in
deriving the lesser and greater Green functions for a free electron in the system
H0 = ∑kσ εkσ c

†
kσ

ckσ . We also consider the bare Green functions gab̄(t, t
′) and

kξζ̄ (t, t
′) in the isolated system Hloc =∑Nn ENnh

n
N .

We begin with the free electrons described by the Hamiltonian H0, and we define
the Green function gkσ (t, t ′) = (−i)〈Tckσ (t)c

†
kσ

(t ′)〉. This Green function satisfies
the align

(i∂t − εkσ )gkσ (t, t ′) = δ(t − t ′), (3.55)

which leads to that

gkσ (t, t ′) = (−i)Te−iεkσ (t−t ′), (3.56)

where T is the time-ordering operator on the contour C, as usual. How shall we
find the lesser and greater counterparts of this Green function? Taking for instance
g>

kσ
(t, t ′) = (−i)〈ckσ (t)c

†
kσ

(t ′)〉, we know that t > t ′ on the contour C, while t < t ′
for g<

kσ
(t, t ′). To be specific, let C = [t0, t0 − iβ]. Using the boundary conditions of

the Green functions on the contour C (discussed in the first paragraph in Sect. 3.3),
we find that

g<
kσ (t0, t

′) = −eμβg>
kσ (t0 − iβ, t ′). (3.57)

Due to the time-independence of the Hamiltonian H0, we have gkσ (t, t ′) =
gkσ (t − t ′), and Fourier transforming the above equation we find

g<
kσ (ω) = −e−β(ω−μ)g>

kσ (ω). (3.58)

Taking into account that ckσ removes an electron from the system with momentum
k and spin σ , it must remove the energy εkσ from the system, hence

g<
kσ (ω) =

∫
i〈c†

kσ
(0)ckσ (t)〉eiωtdt = i

∫
〈nkσ 〉ei(ω−εkσ )t dt

= i2π〈nkσ 〉δ(ω − εkσ ). (3.59)

In the same way we find that g>
kσ

(ω) = −i2π(1 − 〈nkσ 〉)δ(ω − εkσ ). Using these
expressions along with (3.58), we arrive at the equation

〈nkσ 〉δ(ω − εkσ ) = e−β(ω−μ)(1 − 〈nkσ 〉)δ(ω − εkσ ). (3.60)
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We thus deduce that 〈nkσ 〉 = f (εkσ ) = [eβ(εkσ −μ) +1]−1, the Fermi function, which
is expected from e.g. equilibrium theory. Going back to time space, we find that the
lesser and greater Green functions are given by

g<
kσ (t, t ′) = if (εkσ )e−iεkσ (t−t ′), (3.61a)

g>
kσ (t, t ′) = (−i)[1 − f (εkσ )]e−iεkσ (t−t ′), (3.61b)

g
r/a

kσ
(t, t ′) = (∓i)θ(±t ∓ t)e−iεkσ (t−t ′), (3.61c)

where we have used the definitions in (3.48a), (3.48b) to find the retarded and ad-
vanced Green functions.

We now turn our attention to the isolated system Hloc and consider the propaga-
tors gab̄(t, t

′) and kξζ̄ (t, t
′). The equations of motion for these propagators are given

by

(i∂t − Δā)gab̄(t, t
′) = δ(t − t ′)Pab̄(t), (3.62a)

(i∂t − Δξ̄ )kξ ζ̄ (t, t
′) = δ(t − t ′)Qξζ (t), (3.62b)

where Qξζ (t) = 〈[Zξ ,Zζ̄ ](t)〉. Following the previous discussion about the bound-
ary conditions for Hubbard operator Green functions, it is clear that we have the
boundary conditions g<

ab̄
(t0, t) = −g>

ab̄
(t0 − iβ, t) and k<

ξζ̄
(t0, t) = k>

ξζ̄
(t0 − iβ, t).

In order to find the lesser and greater counterparts of these Green functions we
study the Fourier transforms g

</>

ab̄
(ω) and k

</>

ξζ̄
(ω), under the assumption that the

propagators depend only on the time difference t − t ′. We have, for example,

g<

ab̄
(ω) =

∫
i〈Xb̄(0)Xa(t)〉eiωtdt =

∫
i〈Xb̄Xa〉ei(ω−Δā)t dt

= i2π〈Xb̄Xa〉δ(ω − Δā), (3.63a)

k<
ξζ̄

(ω) =
∫

(−i)〈Zζ̄ (0)Zξ (t)〉eiωtdt =
∫

(−i)〈Zζ̄ Zξ 〉ei(ω−Δξ̄ )t
dt

= (−i)2π〈Zζ̄ Zξ 〉δ(ω − Δξ̄ ). (3.63b)

Here, we have used that the transition Xa (Zξ ) changes the energy in the system
by Δā (Δξ̄ ). In the same way, we find that g>

ab̄
(ω) = (−i)2π〈XaXb̄〉δ(ω − Δā) and

k>
ξζ̄

(ω) = (−i)2π〈ZξZζ̄ 〉δ(ω−Δξ̄ ). Then, turning back to time space, we can write

the lesser, greater, retarded, and advanced Green functions as
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g<

ab̄
(t, t ′) = i2π〈Xb̄Xa〉e−iΔā(t−t ′), (3.64a)

g>

ab̄
(t, t ′) = (−i)2π〈XaXb̄〉e−iΔā(t−t ′), (3.64b)

gr/a(t, t ′) = (∓i)θ(±t ∓ t ′)Pab̄e
−iΔā(t−t ′), (3.64c)

and

k<
ξζ̄

(ω) = (−i)2π〈Zζ̄ Zξ 〉e−iΔξ̄ (t−t ′)
, (3.65a)

k>
ξζ̄

(ω) = (−i)2π〈ZξZζ̄ 〉e−iΔξ̄ (t−t ′)
, (3.65b)

kr/a(t, t ′) = (∓i)θ(±t ∓ t ′)Qξζ e
−iΔξ̄ (t−t ′)

. (3.65c)

Thus far, we have only considered open systems in equilibrium for which there is
no real reason for introducing the non-equilibrium Green functions. In the remain-
der of the book, however, we shall discuss open systems under non-equilibrium
conditions. We will often consider the influence of a source-drain voltage, or bias
voltage, which generates a charge current through the system. There are, on the
other hand, systems which may be considered as being in equilibrium from certain
aspects, while being in non-equilibrium from other aspects. Under such circum-
stances, there are also reasons to make the analysis of the physical processes within
a non-equilibrium approach. Hence, from hereon the description will be based upon
the conception of non-equilibrium. Therefore, let us move ahead to the next chapter.
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Chapter 4
Non-Equilibrium Formalism

Abstract We go deeper into the general description of non-equilibrium physics,
both within the occupation number approach and by means of non-equilibrium
Green function. We derive expressions for the tunneling current through complexes
of interacting systems coupled to thermal baths, or leads. We discuss concepts of
time-dependent and stationary processes.

4.1 Occupation Number Approach

We have already seen, in Sect. 2.2, how the occupation numbers of a system can be
related to each other through the conduction channels, or leads. Actually, without
mentioning it, we derived the equations for the occupation numbers in a form which
is prepared for non-equilibrium conditions. We obtain equilibrium by requiring that
the chemical potentials μχ = μeq in all leads χ , such that there is no potential
energy imbalance anywhere in the system. In this sense, equilibrium is just a special
case of non-equilibrium.

When thinking of non-equilibrium, one often considers transport of some quan-
tity, or quantities, due to the imbalance in potential energy in the system. The trans-
ported quantity may be charge, spin, or just energy in e.g. heat transport. We shall
very often consider charge and spin transport in this book, although much of the
content discussed here will be valid from other aspects.

In order consider the charge transport through a specific system, we take the
Hamiltonian H =∑χ

r=1 Hχr +∑Nn ENnh
n
N +∑ν Hν

T , with Hχr as given in (2.1)
and Hν

T as given in (2.3). We are interested in the charge that flows from lead, say
χ0, to the rest of the system. We are aware that the charge may actually flow from
the rest of the system into this lead, but within the given approach such a charge flow
will manifest itself as a negative flow. Therefore, there is no loss of generality in our
approach. Charge flow, or charge current, is the charge rate of change and is, hence,
described by the temporal derivative of the charge Nχ0 , i.e. we put the charge current
Iχ0(t) = −e∂tNχ0 = −e∂t

∑
kσ∈χ0

〈nkσ 〉. The current may be time-dependent as a
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result of possible time-dependent variations in the potential energy imbalance in the
system. Applying the methods of Chap. 2, we find that we can write the current as

Iχ0(t) = ie
∑

Nnm

∑

kσ

[
vkσNnm〈c†

kσ Xnm
NN+1〉 − v∗

kσNnm〈Xmn
N+1Nckσ 〉] (4.1a)

= −2e Im
∑

Nnm

∑

kσ

vkσNnm〈c†
kσ

Xnm
NN+1〉, (4.1b)

where vkσNnm =∑iν vkiσ (dνiσ )nm
NN+1.

Before we proceed, we notice the two different ways to write the current in (4.1a),
(4.1b). The former description, (4.1a), is written as the average of the current density
operator j (t) = i

∑
Nnm

∑
kσ vkσNnmc

†
kσ

Xnm
NN+1 +H.c., such that Iχ0(t) = e〈j (t)〉.

This form presents a very intuitive formulation of the current as the net of the trans-
fer of electrons from the quantum dot to the lead and the transfer of electrons from
the lead to the quantum dot. While the latter formulation, (4.1b), is less intuitive, it
has the benefits of being mathematically convenient.

The averages 〈c†
kσ

Xnm
NN+1〉 and 〈Xmn

N+1Nckσ 〉 = 〈c†
kσ

Xnm
NN+1〉∗ can be approxi-

mated by

〈c†
kσ

Xnm
NN+1〉(t) = v∗

kσNnm

f (εkσ )NNn − f (−εkσ )NN+1m

εkσ − ΔN+1m,Nn + iδ
, (4.2)

since f (−x) = 1 − f (x). Substituting back into (4.1a), (4.1b), we find that the
charge current flowing from lead χ0 is expressed by

Iχ0 = 2πe
∑

Nnm

∑

kσ

|vkσNnm|2[f (εkσ )NNn −f (−εkσ )NN+1m

]
δ(εkσ −ΔN+1m,Nn).

(4.3)
This expression is very general since we do not make any assumptions of the band
structure in the leads, we have not replaced the k summation with energy integration
over the density of states. If we do this, i.e. letting

∑
k → ∫

ρχ0(ω)dω, where ρχ0

is the local density of states in the lead χ0, we can rewrite the current as

Iχ0 = e
∑

Nnm

∑

σ

Γ
χ0
σNnm(ΔN+1m,Nn)

[
fχ0(ΔN+1m,Nn)NNn

− fχ0(−ΔN+1m,Nn)NN+1m

]
, (4.4)

where Γ
χ0
σNnm(ε) = 2π |vχ0σNnm(ε)|2ρχ0 . Here, vχ0σNnm(ε) is a function of energy

ε which equals vkσNnm whenever the ε equals εkσ .
Whatever approach we use in actually calculating the current, i.e. using either

of (4.3) and (4.4), it is clear that the current flowing from (to) the lead χ0 is de-
termined by the occupations NNn and NN+1m in the states |N,n〉 and |N + 1,m〉,
respectively, and the transition energy ΔN+1m,Nn between those states. It is also
clear that current depends on the density of occupied and unoccupied electron states
in the lead χ0, here signified by fχ0(ω) and fχ0(−ω), respectively, particularly at
the transition energy ΔN+1m,Nn.
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4.2 Green Function Approach

Now, we want to take the discussion of the charge current further, and we do this
by deriving an expression for the current in terms of Green functions. Such an ex-
pression has the advantage that it opens a possibility to make a deeper analysis of
the interacting region, e.g. quantum dots. Moreover, although the occupation num-
bers corresponding to the localized levels, in general can be calculated through a
density matrix approach, as discussed in Chap. 2, these are often obtained through
calculations of the Green functions for the localized levels. Therefore, this is reason
enough to establish the current in terms of the Green functions directly. Some of
the derivation may be thought of as repetitive, but the reason to go over the steps
once more is to thoroughly describe the method using Green functions. This will
also give an opportunity to make a qualitative assessment of the two different meth-
ods.

We take the same Hamiltonian as in Sect. 4.1, and calculate the charge current
flowing from the lead χ0 out to the remainder of the system, i.e.

Iχ0(t) = −e∂t

∑

kσ

〈nkσ 〉 = ie
∑

kσb

[vkσb〈c†
kσ

Xb〉 − v∗
kσb〈Xb̄ckσ 〉]. (4.5)

In order to proceed in terms of Green functions, we identify the correlation function
〈Xb̄(t)ckσ (t)〉 with F<

kσ b̄
(t, t) = i〈Xb̄(t)ckσ (t)〉. This is the lesser Green function

for the process that describes the transfer of electrons between the localized lev-
els and the lead. Here, also vkσb =∑i vkσ (diσ )b . It is then sensible to rewrite the
current as

Iχ0(t) = −2e Re
∑

kσb

v∗
kσbF

<

kσ b̄
(t, t), (4.6)

where we have made use of that the two terms are complex conjugates of one an-
other. The expression given in (4.5) explicitly displays that the current consists of
two types of transfers of electrons. One transfer goes from the lead to the localized
levels, whereas the other goes in the opposite direction. The net current then, is the
sum of those. The advantage with the expression in (4.6) is that it explicitly shows
that we really only have to deal with one Green function at the moment, making the
treatment somewhat shorter.

We define the transfer Green function

Fkσ b̄(t, t
′) = (−i)〈Tckσ (t)Xb̄(t ′)〉U . (4.7)

The propagator is found to satisfy the equation

(i∂t − εkσ )Fkσ b̄(t, t
′) =

∑

a

vkσaGab(t, t
′). (4.8)
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Here, the lead Green function gkσ (t, t ′) is the one introduced in (3.55), with which
we rewrite (4.8) as

Fkσ b̄(t, t
′) =

∑

a

∫

C

gkσ (t, t ′′)vkσa(t
′′)Gab(t

′′, t ′)dt ′′. (4.9)

Here, we let the hybridization coefficient vkσa remain under the integration sign
since, for all we know, it may be time-dependent. Using the rules in (3.54), we thus
have

F<

kσ b̄
(t, t) =

∑

a

∫
vkσa(t

′′)[gr
kσ (t, t ′′)G<

ab
(t ′′, t) + g<

kσ (t, t ′′)Ga

ab
(t ′′, t)]dt ′′

= (−i)
∑

a

∫ t

−∞
vkσa(t

′′)[G<

ab
(t ′′, t) − f (εkσ )Ga

ab
(t ′′, t)]eiεkσ (t ′′−t)dt ′′

= i
∑

a

∫ t

−∞
vkσa(t

′′)[f (εkσ )G>

ab
(t ′′, t)

+ f (−εkσ )G<

ab
(t ′′, t)]eiεkσ (t ′′−t)dt ′′. (4.10)

The last equality is obtained by using (3.48). The final line is also very appealing
since it displays the transfer of electrons between the lead and the localized region,
as an electron flow between occupied states in the lead (localized region), signified
by f (ω) (G<

ab
), and unoccupied states in the localized region (lead), signified by

G>

ab
(f (−ω)). Hence, the first term can be interpreted as, if there are electrons oc-

cupying the states in the leads and simultaneously there are unoccupied localized
states, there is a possibility that electrons will flow from the lead to these localized
states. The second term can be interpreted as a flow of electrons in the opposite
direction.

Substituting (4.10) into (4.6), we find the current in the form

Iχ0(t) = −2e Im
∑

kσab

v∗
kσb(t)

∫ t

−∞
vkσa(t

′)

× [f (εkσ )G>

ab
(t ′, t) + f (−εkσ )G<

ab
(t ′, t)

]
eiεkσ (t ′−t)dt ′. (4.11)

Analogous to our interpretation of the transfer Green function in (4.10), we interpret
the current as a flow between occupied and unoccupied states in the lead (localized
region) and localized region (lead). Especially, if the localized region constitutes a
geometrically confined part of the system, we can think in terms of electron flow in
to and out from this confined space. The net current is, as always, the sum of the
inflow and outflow of electrons.

We obtain a parameter expression for the tunneling current by introducing the
coupling parameter

Γ
χ0

σ b̄a
(t, t ′;ω) = 2πv∗

χ0σb(t)vχ0σa(t
′)ρχ0(ω), (4.12)



4.3 Single-Level Quantum Dot 45

see Sect. 4.1 for definitions, integrating over the density of states ρχ0 , and noticing
the obvious matrix product structure in the summation, that is

Iχ0(t) = i2e
∑

σ

tr
∫ ∫ t

−∞
Γ χ0

σ (t, t ′;ω)

× [fχ0(ω)G>(t ′, t) + fχ0(−ω)G<(t ′, t)
]
eiω(t ′−t)dt ′ dω

2π
. (4.13)

Here, we have introduced the matrices G = {Gab}ab and Γ
χ0
σ = {Γ χ0

σ b̄a
}ab . The trace

runs over the transitions a.
Equivalent expressions are obtained for the current flowing from any other lead

into the remainder of the system. Depending on the situation and circumstances that
is subject to the investigation, we can make further streamlining in the formulas
for the current which is convenient in the particular case. For now, however, we
note that if all external forces/fields applied on the system are time-independent,
the local Green functions G</>(t ′, t) = G</>(t ′ − t) and Γ

χ0
σ (t, t ′;ω) = Γ

χ0
σ (ω),

which leads to a simplified formula for the current reading

Iχ0 = ie

2π

∑

σ

tr
∫

Γ χ0
σ (ω)

[
fχ0(ω)G>(ω) + fχ0(−ω)G<(ω)

]
dω. (4.14)

The current given in this expression is very similar to the one provided in (4.4),
however, there is a significant difference. Here, the matrix Green functions G con-
tains much more than only the diagonal transitions which are accounted for in (4.4).
All off-diagonal transitions included in G are physical and, hence, possible, and
as such they will contribute to the current. The questions is only with how much?
These are questions that will be partly discussed in later chapters.

The theory introduced in this section is further discussed in [1–4].

4.3 Single-Level Quantum Dot

Let us go back to the system with a single localized level interacting with conduc-
tion channels, described in term of the Anderson model as discussed in Sect. 3.2.
There, we derived the equations for the equilibrium situation, and now can do the
same thing under non-equilibrium conditions. We have to introduce, at least, a sec-
ond lead in order to enable a charge current to flow through the single localized
level. We could of course imagine that the localized level was interacting with a
single conduction channel, see Sect. 7.2.2, but for now we will think in terms of
the geometrically appealing system with, at least, two leads and localized level in a
quantum dot of some kind.

It is worth to mention that we are using this example in order to develop a gen-
eral structure of the formalism. In the diagonal formalism, it matters less, as we
have seen, whether the quantum dot contain one or more single electron levels. We
have to be aware, nevertheless, that there are some simplifications appearing when
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using the single-level quantum dot, especially concerning the notation since we are
making use of the fact that all transition matrix elements are ±1. When we write the
equations in matrix form, however, this fact does not make any difference for the
structure of the equations.

Our system can be described by the Hamiltonian H = HL + HR + HQD + HT ,
where HL(R) = ∑

p(q)σ εp(q)σ c
†
p(q)σ cp(q)σ , and HT = ∑

kσ∈L∪R vkσ c
†
kσ

[X0σ +
σXσ̄2] + H.c. Here and in the following, will associate the momentum p (q) with
the left (right) lead. Formally, we can follow the procedure in Sect. 3.2, and write
the equations for the Green functions G0σa and Gσ̄2a , to the same approximation,
according to

G0σa(t, t
′) = g0σa(t, t

′) +
∑

b

∫

C

g0σ (t, t1)V0σb(t1, t2)Gba(t2, t
′)dt2dt1, (4.15a)

Gσ̄2a(t, t
′) = gσ̄2a(t, t

′) +
∑

b

∫

C

gσ̄2(t, t1)V0σb(t1, t2)Gba(t2, t
′)dt2dt1. (4.15b)

We rewrite this equation in matrix form

G(t, t ′) = g(t, t ′) +
∫

C

g(t, t1)V(t1, t2)G(t2, t
′)dt2dt1. (4.16)

Thus, according to the rules in (3.54) we can write the lesser and greater Green
function as

G</>(t, t ′) = g</>(t, t ′) +
∫

[gr (t, t1)Vr (t1, t2)G</>(t2, t
′)

+ gr (t, t1)V</>(t1, t2)Ga(t2, t
′)

+ g</>(t, t1)Va(t1, t2)Ga(t2, t
′)]dt1dt2. (4.17)

We collect the terms with G</> to the left hand side, and make use of the fact that∫
gr,−1(t, t1)g</>(t1, t

′)dt1 = 0. We, thus, obtain

∫
[gr,−1(t, t1) − V(t, t1)]G</>(t1, t

′)dt1 =
∫

V</>(t, t1)Ga(t1, t
′)dt1. (4.18)

Making the identification gr,−1 − V = Gr,−1, finally results in

G</>(t, t ′) =
∫

Gr (t, t1)V</>(t1, t2)Ga(t2, t
′)dt2dt1. (4.19)

Using (3.54) we also find the retarded and advanced Green functions

Gr/a(t, t ′) = gr/a(t, t ′) +
∫

gr/a(t, t1)Vr/a(t1, t2)Gr/a(t2, t
′)dt2dt1. (4.20)
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We note that we have not made any use of the particular Hamiltonian system in
which the Green functions were derived and, indeed, these formulas are valid when-
ever the Green function is obtained in a Dyson-like equation form as in (4.16), where
V is associated with the self-energy.

In the present particular case, the interaction potential, or self-energy, V reduces
to a 4 × 4 matrix

V(t, t ′) =
(

V′(t, t ′) σ zV′(t, t ′)
σ zV′(t, t ′) V′(t, t ′)

)
, (4.21)

where V′(t, t ′) is a diagonal 2×2 matrix with entries Vσ (t, t ′) =∑kσ v∗
kσ

(t)vkσ (t ′)
× gkσ (t, t ′). Here, the summation runs over all states in the left and right leads.
Using our basic building blocks in (3.61) we find that e.g.

V </>
σ (t, t ′) = (±i)

∑

kσ

v∗
kσ (t)vkσ (t ′)fχ (±εkσ )e−iεkσ (t−t ′), (4.22)

V r/a
σ (t, t ′) = (∓i)θ(±t ∓ t ′)

∑

kσ

v∗
kσ (t)vkσ (t ′)e−iεkσ (t−t ′). (4.23)

In order to proceed with the analytical treatment, we convert the k-summation to
energy integration over the density of states ρχ(ω), which enables writing the lesser
Green matrix function according to

G<(t, t ′) = i
∑

χ

∫
fχ(ω)Gr (t, t1)Γ

χ (t1, t2;ω)Ga(t2, t
′)e−iω(t1−t2)

dω

2π
dt1dt2.

(4.24)
The structure of the lesser Green function in this form suggests an interpretation of
the quantum dot as a sum of contributions, each of which being in local equilibrium.
This interpretation is sound, since in equilibrium the lesser Green function provides
exactly the local density of occupied states, which may be displayed through the
total density of states multiplied by a filling factor. Because of the non-equilibrium
conditions in the system as whole, the best we can expect about the quantum dot is
that it is piecewise in local equilibrium with the leads. The greater Green function
G> is obtained by the replacement ifχ (ω) → −ifχ (−ω) = −i[1 − fχ(ω)].

Using the explicit forms of the lesser and greater Green functions we can write
the current IL flowing from the left lead as

IL(t) = 2e tr
∫ t

−∞

∫
Γ L(t, t ′;ω)Gr (t ′, t1)Γ R(t1, t2;ω′)Ga(t2, t)

× [fL(ω) − fR(ω′)
]
e−iω(t−t ′)−iω′(t1−t2)

dω

2π

dω′

2π
dt1dt2dt ′. (4.25)

Expressing the current like this is very appealing since it suggests an interpretation
of two leads being in non-equilibrium with one another. The two leads, further, has
a barrier in between through which the transmission is governed by the transmission
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coefficient

T (t;ω,ω′) =
∫ t

−∞

∫
Γ L(t, t ′;ω)Gr (t ′, t1)Γ R(t1, t2;ω′)Ga(t2, t)

× e−iω(t−t ′)−iω′(t1−t2)dt1dt2dt ′, (4.26)

giving the current simply as

IL(t) = 2e tr
∫

T (t;ω,ω′)
[
fL(ω) − fR(ω′)

]dω

2π

dω′

2π
. (4.27)

Thus, no matter how complicated the structure is between the leads, it is only the
probability for an electron in one lead to be transmitted into the other that matters.
This is the general way we may look at our problems. On the other hand, since this
probability is the quantity to be found, by one or another means, this simple formula
is of no help if we cannot find the probability. Regardless of this, we have gained
general knowledge about non-equilibrium and transport by bringing the microscopic
and macroscopic pictures together.

4.3.1 Calculating the End-Factors

The above discussion has been rather general and we have made no or little reference
to the Green functions being constructed of Hubbard operators. Taking this aspect
into account we remember from Sect. 3.2, that the occupation numbers N0, Nσ , and
N2 were calculated using the spectral theorem. In non-equilibrium we cannot use
this approach since quantum dot Green function is not given in a single equilibrium
form, cf. (4.19) and (4.24). We therefore have to come up with new formulas for the
occupation numbers that is commensurate with the non-equilibrium conditions.

By straight forward calculations we find that e.g.

N0(t) = 〈h0(t)〉 =
∑

σ

〈X0σ (t)Xσ0(t)〉 = i
∑

σ

G>
0σ (t, t). (4.28)

The summation over spin is, as we discussed in Sect. 3.2, present because the empty
state couples to the singly occupied states through the transitions |0〉〈σ | and we
cannot know a priori to which state it couples. Therefore we have to sum over all
possibilities. This way of thinking becomes even more adequate in non-equilibrium
since available transitions will be used although they may not couple to the ground
state.

Using the above equation we find that the occupation number N0 can be calcu-
lated through

N0 = i

2π

∫ ∑

σ

G>
0σ (ω)dω, (4.29)
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while the occupation numbers Nσ and N2 are analogously found and can be written

Nσ = − i

2π

∫ {
G<

0σ (ω) − G>
σ2(ω)

}
dω, (4.30)

N2 = − i

2π

∫ ∑

σ

G<
σ2(ω)dω. (4.31)

These formulas are easy to extend to the general situation, i.e. in other systems than
the single level case.

It is interesting to compare those non-equilibrium formulas to the equilibrium
ones given in Sect. 3.2. Taking for instance the lesser and greater Green functions
as formulated in (4.24), and assuming that spin-flip transitions do occur anywhere
in the system. The occupation number N0 would then take the form

N0 =
∑

σ

∫ [{1 − fL(ω)}Γ L
σ (t1, t2;ω) + {1 − fR(ω)}Γ R

σ (t1, t2;ω)
]
e−iω(t1−t2)

× [Gr
0σ (t, t1) + σGr

0σ2σ̄ (t, t1)
]

× [Ga
0σ (t2, t) + σGa

0σ2σ̄ (t2, t)
]dω

2π
dt1dt2. (4.32)

The non-equilibrium conditions are explicit by the presence of the left and right
Fermi functions at their corresponding chemical potentials μL and μR . Now, as-
suming equilibrium conditions implies that μL = μR = μeq, which leads to that
fL(ω) = fR(ω) = f (ω). Hence, the first factor in the above equation can be fac-
torized into {1 − f (ω)}{Γ L

σ (t1, t2;ω) + Γ R
σ (t1, t2;ω)} = {1 − f (ω)}Γσ (t1, t2;ω),

where Γσ = Γ L
σ + Γ R

σ . Moreover, in equilibrium we cannot have any time-
dependence in the system, expect for possible random redistributions of the elec-
trons which cancel on average. Hence, the coupling Γσ (t1, t2;ω) = Γσ (ω) and
Gr/a(t, t ′) = Gr/a(t − t ′), so that we can write

N0 =
∑

σ

∫
{1 − f (ω)}Γσ (ω)

∣∣∣∣
∫ [

Gr
0σ (t − t ′) + σGr

0σ2σ̄ (t − t ′)
]
eiω(t−t ′)dt ′

∣∣∣∣
2
dω

2π

=
∑

σ

∫
{1 − f (ω)}Γσ (ω)

∣∣Gr
0σ (ω) + σGr

0σ2σ̄ (ω)
∣∣2 dω

2π
. (4.33)

The expressions for the retarded Green functions in the present approximation
are given in Sect. 3.2, and using these it is a straight forward calculation showing
that |Gr

0σ + σGr
0σ2σ̄ |2(Γσ /2) = − ImGr

0σ , hence, we find that

N0 = − 1

π

∫
{1 − f (ω)} Im

∑

σ

Gr
0σ (ω)dω. (4.34)

We thus recover the formula obtained from the spectral theorem, and working
through steps for the numbers Nσ and N2, we recover the other two expressions
as well.



50 4 Non-Equilibrium Formalism

We know from the definition, that e.g. P0σ = N0 + Nσ . Using this informa-
tion we can establish an important relation concerning the total occupation. We
would like to require that the total occupation naturally satisfies the conservation
law P0σ + Pσ̄2 = 1, since Pσ̄2 = 〈nσ̄ 〉 and P0σ = 1 − 〈nσ̄ 〉 = 〈nσ 〉. It would, on the
other hand, be nice if we can prove this relation rather than postulating it. Since we
now know how to related the occupation numbers to the lesser and greater Green
functions, we can make a direct calculation as follows

P0σ + Pσ̄2 = N0 + Nσ + Nσ̄ + N2

= i

2π

∑

σ

∫ [
G>

0σ − G<
0σ + G>

σ̄2 − G<
σ̄2

]
dω

= i

2π

∑

σ

∫ [
Gr

0σ − Ga
0σ + Gr

σ̄2 − Gr
σ̄2

]
dω

= − 1

π
Im
∑

σ

∫ [
Gr

0σ + Gr
σ̄2

]
dω

= − 1

π
tr Im

∫
Grdω = 1. (4.35)

In the last equality we have used the fact that the trace of the integrated density
of states is one. The imaginary part of the retarded Green function plays the role
of a probability density, and using this interpretation we should know that the last
equality follows.

4.3.2 Approximations for the Retarded Green Function

The above equations are somewhat general and we need to make further assump-
tions about our system in order to proceed the analytical treatment. The transmission
coefficient T is now given in terms of the retarded and advanced Green functions
and the coupling matrices. In (4.20) we see that the retarded and advanced Green
functions are being expressed in term of themselves, self-consistently, hence, there
is one instance in which we can make approximations.

4.3.2.1 T -matrix

For instance, replacing Gr/a by gr/a in (4.20) gives a description of the quantum
dot as being weakly disturbed by the presence of the leads. The levels would still
have infinite life-time, as in the atomic limit, however, the disturbance from the
leads allow one scattering inside the quantum dot. In this case, the retarded Green
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function becomes

Gr (t, t ′) = gr (t, t ′) +
∑

χ

∫
g(t, t1)Γ

χ(t1, t2;ω)g(t2, t
′)e−iω(t1−t2)

dω

2π
dt2dt1,

(4.36)
which illustrates the idea that the population in the quantum dot (first term) is dis-
turbed by the interaction with the leads (second term). The multiplication of two
bare Green functions g in the second term indicates scattering between different
states, where the scattering is mediated by the lead χ through the coupling Γ χ .

We can, however, do better than only include one scattering inside the quantum
dot. We shall for simplicity do this in the Markovian approximation, which means
that the propagators have no memory and only depend on the time difference. This
is typically applicable in the stationary, or time-independent, regime, but may also
be thought of under other circumstances, e.g. Brownian motion. Under those con-
ditions, we can Fourier transform all quantities to energy space. Using the original
form of the retarded Green function in (4.20) and replacing the dressed Green func-
tion G on the right hand side by the whole expression to the right of the equality
sign, we arrive at

Gr (ω) = gr (ω) + gr (ω)Vr (ω)gr (ω) + gr (ω)Vr (ω)gr (ω)Vr (ω)Gr (ω). (4.37)

We do not have to terminate the expansion at this step, but rather continue to arbi-
trary order. By continuing the procedure to infinite order we find that the dressed
Green function can be algebraically written as

Gr = gr + grVrgr + grVrgrVrgr + grVrgrVrgrVrgr + · · ·
= gr + grTrgr , (4.38)

where we have introduced the T -matrix

Tr = Vr + VrgrVr + VrgrVrgrVr + · · · = Vr [1 − grVr ]−1. (4.39)

Here, we require that ‖grVr‖ < 1 in order to obtain a convergent series. The above
expansion becomes quite involved when writing it in terms of the time-integrals.
We can simplify the resulting expressions by assuming that the tunneling matrix
elements vkσ are time-independent, which then leads to

V(ω) =
∑

kσ

Vk

ω − εkσ + iδ
, δ > 0, (4.40)

where

Vk =
(

vk σzvk
σzvk vk

)
, vk =

(
δσ↑ 0
0 δσ↓

)
|vkσ |2. (4.41)

Our T -matrix thus becomes

Tr (ω) =
∑

kσ

Vk

ω − εkσ + iδ

[
ω − Δ − P

∑

k′σ ′

Vk′

ω − εk′σ ′ + iδ

]−1

[ω − Δ]. (4.42)
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Parameterizing the interaction matrix defining Λ =∑kσ Vk/(ω − εkσ ) and Γ χ =
2π
∑

kσ∈χ Vkδ(ω − εkσ ), such that Γ =∑χ Γ χ and Vr = Λ− iΓ /2, we write the
T -matrix according to

Tr (ω) =
[
Λ − i

2
Γ

][
ω − Δ − PΛ + i

2
PΓ

]−1

[ω − Δ]. (4.43)

The middle factor tells at which energies resonances are to be expected and we
see, for instance, that the level in the quantum dot is responsible for a resonance
at Δ. This resonance is, however, shifted by the amount of PΛ, which is small, or
even negligible, in case of metallic leads. The multiple scattering does not gener-
ate new resonances in this system. The multiple scattering do, nonetheless, cause a
broadening to the existing resonances, which is seen by the presence of the imag-
inary part Γ/2 in the middle factor. Such broadening did not appear in our first
approximation with a single scattering event inside the quantum dot. The broaden-
ing is physical and reasonable from the point of view that the quantum dot is no
longer isolated from the environment, but its electrons are interacting with the elec-
trons in the leads due to the tunneling between the leads and the quantum dot. The
presence of the end-factor factoring the level broadening signifies the fact that the
quantum dot level are subject to internal many-body interactions (here, Coulomb
repulsion), which tend to narrow the level broadening.

The resulting Green function in the T -matrix approach becomes in this case

Gr (ω) = gr (ω)

{
1 +

[
Λ − i

2
Γ

][
ω − Δ − PΛ + i

2
PΓ

]−1

P
}

=
[
ω − Δ − PΛ + i

2
PΓ

]−1

P. (4.44)

4.3.2.2 Dyson Equation

Staying in the Markovian limit, we can also make an approximation directly from
the equation for the retarded Green function in (4.20), written as

Gr (ω) = gr (ω) + gr (ω)Vr (ω)Gr (ω). (4.45)

Gathering the terms proportional to Gr on the left hand side of the equation we find
the result

Gr (ω) = [1 − gr (ω)Vr (ω)
]−1gr (ω) =

[
ω − Δ − PΛ + i

2
PΓ

]−1

P. (4.46)

Clearly, this result equals the one from the T -matrix approach, cf. (4.44). The reason
if, of course, that we started from the same equation and made the same assumptions
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in both cases, thus, the result should be equal. Sometimes it is, however, more ap-
pealing from a physical point of view to use the T -matrix approach, while in other
situations it is better employ the Dyson equation.

Both the result from the T -matrix approach as well as the one resulting from
the Dyson equation, are here expressed in the mean field approximation. This is
limit to which we will return many times, and is therefore important to give some
physical interpretation about. First, and most importantly, is that the mean field the-
ory neglects all kinds of fluctuations that may occur in the system. This implies
that anything unusual that may happen in the quantum dot, is averaged out from
the description. Secondly, however, since this approximation is always available in
one or another form, it is very often used in literature and in research in general.
It is often easy to understand some of the basic properties of a system in terms of
mean field theory. On the other hand, due to the lack of precision, one immediately
has to go beyond mean field theory in order to say anything about something more
interesting properties. Therefore, in the next chapter we will develop a technique
for many-body operator Green functions with which we can make very systematic
higher order approximations beyond mean field theory.

4.4 How to Include the Bias Voltage

Up to now we have tacitly included the bias voltage via the Fermi functions for the
left and right leads through fχ(ω) = f (ω − μχ). Doing like this is reasonable if
we imagine that the energies εkσ in the leads are given relative to their respective
chemical potentials, and assuming that the leads are in (quasi-) equilibrium. Hence,
the Hamiltonian for the lead χ may be written

Kχ = Hχ − μχNχ =
∑

kσ

εkσ c
†
kσ

ckσ − μχNχ =
∑

kσ

[εkσ − μχ ]c†
kσ

ckσ , (4.47)

where Nχ =∑kσ c
†
kσ

ckσ is the number of electrons. Here, we use the notation K
for the Hamiltonian which includes the chemical potential. Then, the Green function
gkσ (t, t ′) = (−i)〈Tckσ (t)c

†
kσ

(t ′)〉 satisfies the equation of motion
(
i∂t − [εkσ − μχ ])gkσ (t, t ′) = δ(t − t ′), (4.48)

which leads to the retarded/advanced and lesser/greater forms

g<
kσ (t, t ′) = if (εkσ − μχ)e−i(εkσ −μχ )(t−t ′), (3.61a′)

g>
kσ (t, t ′) = −i[1 − f (εkσ − μχ)]e−i(εkσ −μχ)(t−t ′), (3.61b′)

g
r/a

kσ
(t, t ′) = (∓i)θ(±t ∓ t)e−i(εkσ −μχ)(t−t ′). (3.61c′)
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Alternatively, we can transform the Hamiltonian such that the chemical potentials
μχ goes directly into the tunneling part of the model. Using that e.g.

ckσ (t) = eiHχ t ckσ e−iHχ t , (4.49)

we perform the transformation H(t) = eiH0t He−iH0t , where H0 contains all the
subsystems of the total structure, however, without the mutual interactions between
them. The number operators commute with H0 which allows us to write H0 = K0 +∑

χ μχNχ . If we, for instance, have H = H0 + HT , with H0 = HL + HR + HQD ,

and HT =∑kσ vkσ c
†
kσ

dσ + H.c., we find that Hχ (t) = Hχ and HQD(t) = HQD .
The interaction term, on the other hand, has to be treated with some care. We obtain

HT (t) = eiH0t HT e−iH0t = ei(K0+μLNL+μRNR)t HT e−i(K0+μLNL+μRNR)t

= eiK0t ei(μLNL+μRNR)t HT e−i(μLNL+μRNR)t e−iK0t

= eiK0t
∑

kσ

(
vkσ c

†
kσ

dσ ei(μχ+μQD)t + H.c.
)
e−iK0t . (4.50)

Using this description, we can again use the Green functions for the leads as for-
mulated in (3.61) and the reference to the bias, or chemical potentials of the various
subsystems, appears very explicitly in the formulation of the current.
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Chapter 5
Diagram Technique

Abstract A systematic diagram technique for expanding the Green function con-
structed of many-body operators is developed. The general approach is outlined and
a few specific examples are described in detail.

We shall do some of the treatment in this chapter quite hands on and, therefore, use
a model which is simple but quite general. Occasionally we will go to e.g. the single
level model we have been looking at earlier in order to more explicitly exemplify
some issues. We take a model with two leads since it corresponds well to experi-
mentally realistic systems although there may be more leads attached to the central
region as well. The techniques apply for more general physical systems, however,
we choose here to outline different methods in terms of something more concrete.
Also, we will not go to deep into the details of the foundation of the theory for all
introduced concepts but we will rather take the attitude of how to do it. Anyone that
is interested in the more formal theory connected to the different expansion schemes
may consult e.g. [1–3].

5.1 Equation of Motion and Decoupling

In this first section, we shall discuss a more conventional method for performing
expansions of propagators. We start with the equation of motion technique. The
benefits with this method is that it permits a very hands on approach to the Green
functions and expansions. It is also very easy to employ in simple systems, and when
we want to study physical properties in the mean field approximation. We can, of
course, go beyond mean field theory even with the equation of motion method but,
as we shall see, the structure of the equations may become somewhat involved when
higher order scattering processes are to be included.

We begin with a simple model in order to gain some feeling for the method and
then we go to more complicated cases.
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5.1.1 Non-Interacting Resonant Level

We take a single level quantum dot without internal interactions, coupled to two
leads and model this system by

H =
∑

kσ

εkσ c
†
kσ

ckσ +
∑

σ

εσ d†
σ dσ +

∑

kσ

[vkσ c
†
kσ

dσ + H.c.]. (5.1)

For simplicity, we shall assume time-independent tunneling coefficients vkσ , al-
though a generalization to the time-dependent case is straight forward. We will
be interested in the physics of the quantum dot, and we therefore approach the
Green function Gσσ ′(t, t ′) = (−i)〈Tdσ (t)d

†
σ ′(t ′)〉. The equation of motion for Gσσ ′

is given by

(i∂t − εσ )Gσσ ′(t, t ′) = δ(t − t ′)δσσ ′ +
∑

k

v∗
kσ (−i)〈Tckσ (t)d

†
σ ′(t ′)〉. (5.2)

We continue by looking at the equation of motion for the propagator Fkσσ ′(t, t ′) =
(−i)〈Tckσ (t)d

†
σ ′(t ′)〉, which becomes

(i∂t − εkσ )Fkσσ ′(t, t ′) = vkσ (−i)〈Tdσ (t)d
†
σ ′(t ′)〉 = vkσ Gσσ ′(t, t ′). (5.3)

Hence, solving for Fkσσ ′ and putting the result back into (5.2) we find that we can
close the equation for Gσσ ′ , i.e.

(i∂t − εσ )Gσσ ′(t, t ′) = δ(t − t ′)δσσ ′ +
∑

k

|vkσ |2
∫

C

gkσ (t, t1)Gσσ ′(t1, t
′)dt1,

(5.4)
or alternatively

Gσσ ′(t, t ′) = δσσ ′gσ (t, t ′) +
∫

C

gσ (t, t1)Vσ (t1, t2)Gσσ ′(t2, t
′)dt1. (5.5)

Here, gσ and gkσ satisfy the equations (i∂t − εσ )gσ (t, t ′) = δ(t − t ′) and (i∂t −
εkσ )gkσ (t, t ′) = δ(t − t ′), respectively, whereas Vσ (t, t ′) =∑k |vkσ |2gkσ (t, t ′).

Suppose that we are seeking the retarded quantum dot Green function. Then, we
know from our earlier discussions that

Gr
σσ ′(t, t ′) = δσσ ′gr

σ (t, t ′) +
∫

gr
σ (t, t1)V

r
σ (t1, t2)G

r
σσ ′(t2, t

′)dt2dt1. (5.6)
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Using what we know about gkσ from (3.61), noticing that

(−i)θ(t1 − t2)
∑

k

|vkσ |2e−iεkσ (t1−t2)

=
∫ ∑

k

|vkσ |2
ω − εkσ + iδ

e−iω(t1−t2)
dω

2π

=
∫ (

Λσ (ω) − i

2
Γσ (ω)

)
e−iω(t1−t2)

dω

2π
(5.7)

and assuming that Λσ and Γσ are slowly varying functions of the energy so they
be replaced by constants, we have

∑
k |vkσ |2e−iεkσ (t1−t2) ≈ δ(t1 − t2)[Λσ − iΓσ /2]

Going back to the differential equation, we then find

[
i∂t − εσ − Λσ + i

2
Γσ

]
Gr

σσ ′(t, t ′) = δσσ ′δ(t − t ′), (5.8)

from which we finally obtain

Gr
σσ ′(t, t ′) = (−i)θ(t − t ′)δσσ ′e−i(εσ +Λσ −iΓσ /2)(t−t ′). (5.9)

The advanced form is found analogously.
Using the same assumptions for V <

σ as for V r
σ , we can then go on to find e.g. the

lesser Green function

G<
σσ ′(t, t ′) =

∫
Gr

σσ ′′(t, t1)V
<
σ ′′(t1, t2)G

a
σ ′′σ ′(t2, t

′)dt1dt2

= iδσσ ′
∑

χ

∫
fχ(ω)Γ χ

σ

∫ t

−∞
e−i(εσ +Λσ −iΓσ /2)(t−t1)−iωt1dt1

×
∫ ∞

t ′
e−i(εσ +Λσ +iΓσ /2)(t2−t ′)+iωt2dt2

dω

2π

= iδσσ ′
∑

χ

∫
fχ(ω)Γ

χ
σ

|ω − εσ − Λσ + iΓσ /2|2 e−iω(t−t ′) dω

2π
. (5.10)

We see from those last two expressions that we could have made a Fourier trans-
form of the equation of motion of e.g. (5.8), such that

(
ω − εσ − Λσ + i

2
Γσ

)
Gr

σσ ′(ω) = δσσ ′ (5.11)

which is easily solved and gives

Gr
σσ ′(iω) = δσσ ′

ω − εσ − Λσ + iΓσ /2
. (5.12)
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We recognize this expression in (5.10). Indeed, by recalling that V <
σ (ω) =

i
∑

χ fχ(ω)Γ
χ
σ , we find that the lesser Green function can be written as

G<
σσ ′(ω) = iδσσ ′

fL(ω)Γ L
σ + fR(ω)Γ R

σ

|ω − εσ − Λσ + iΓσ /2|2

=
∑

χ

fχ(ω)Γ
χ
σ

Γσ

(−2 Im |Gr
σσ ′(ω)|2). (5.13)

We could, of course, gone directly to the Fourier transformed solution by notic-
ing that the Hamiltonian in (5.1) is translational invariant in time (and space). This
implies that the Green functions actually are functions of the time-difference t − t ′,
as was confirmed in our temporal Green functions. We took the opportunity to de-
rive the Green functions in time-space since we will often use this approach later in
the book.

The occupation number 〈nσ 〉 is given by

〈nσ 〉 = − i

2π

∫
G<

σσ (ω)dω (5.14)

and for low temperatures we have

〈nσ 〉 = 1

π

∑

χ

Γ
χ
σ

Γσ

(
arctan

μχ − εσ − Λσ

Γσ /2
− arctan

Dχ − εσ − Λσ

Γσ /2

)
, (5.15)

where Dχ > 0 is the band width in the lead χ . From this we can see that 〈n↑〉 =
〈n↓〉 = 1/2 whenever the parameters Λ

χ
↑ = Λ

χ
↓ , Γ

χ
↑ = Γ

χ
↓ , and ε↑ = ε↓, that is,

when the system is spin-degenerate. For any type of disturbance of this symmetry
there will be a spin-polarization induced on the local electrons.

Inserting (5.13), and the analogous one for the greater Green function, into the
current in (4.14), using the stationary regime requirement IR = −IL such that I =
(IL − IR)/2, we can write the current through the resonant level as

I = e

4π

∑

σ

∫
Γ L

σ Γ R
σ

|ω − εσ − Λσ + iΓσ /2|2 [fL(ω) − fR(ω)]dω. (5.16)

This current was discussed by Larkin and Matveev [4] in connection with resonant
tunneling of electrons via impurity states in short semiconducting contacts.

The solution for the Green function expressed in e.g. (5.8), as well as all other
expressions displayed in this section, is the expected one for the localized level inter-
acting through tunneling, or hybridization, with one or several conduction channels.
The model given in (5.1) is called the Fano-Anderson model and can, for example,
be used as an example of solvable models. Physically it describes, as mentioned, the
interactions between localized and de-localized electrons through tunneling. The
absence of charging interaction term for the localized electrons may be viewed as
unphysical and therefore the Fano-Anderson model may be poor in the description
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of transport properties in nanoscale systems, where the charging energy often is
larger than the couplings to the leads. It serves, however, an excellent purpose for
exercises in Green function formalism. Moreover, the solutions presented here will
be called for as bare solutions in other, more complicated, situations.

5.1.2 Coulomb Island

In order to make the modeling more physically sound, we introduce the first compli-
cation to our model and discuss how we should approach the physics of the localized
electrons in

H =
∑

kσ

εkσ c
†
kσ

ckσ +
∑

σ

εσ d†
σ dσ + Un↑n↓ +

∑

kσ

[vkσ c
†
kσ

dσ + H.c.]. (5.17)

The new term, Un↑n↓ accounts for the charging energy in the quantum dot, or,
localized level. It is more physical than the Fano-Anderson model since it properly
describes what will happen in the quantum dot when there are two electrons present.
We would expect that the two electrons want to repel each other since they have the
same charge and sign, which is the Coulomb repulsion, or interaction. Although we
have introduced the strength of the interaction merely through a parameter U , the
model clearly describes that the state with two electrons, in the atomic limit, must
have the energy ε↑ + ε↓ + U .

Approaching local electrons with the equation of motion for the Green function
Gσσ ′ we have

(i∂t − εσ )Gσσ ′(t, t ′) = δσσ ′δ(t − t ′) + U(−i)〈Tnσ̄ (t)dσ (t)d
†
σ ′(t ′)〉

+
∑

k

v∗
kσ Fkσσ ′(t, t ′). (5.18)

The new obstacle to our description is the two electron Green function Gσσ ′(t, t ′) =
(−i)〈Tnσ̄ (t)dσ (t)d

†
σ ′(t ′)〉, about which we have to do something. The question is,

of course, what can we do? First, we look at the equation of motion for this two-
electron Green function. We find

(i∂t − εσ − U)Gσσ ′(t, t ′) = δσσ ′ 〈nσ̄ (t)〉δ(t − t ′)

+
∑

ks

vks(−i)〈T[nσ̄ dσ , c
†
ks

ds](t)d†
σ ′(t ′)〉,

+
∑

ks

v∗
ks(−i)〈T[nσ̄ dσ , d†

s cks](t)d†
σ ′(t ′)〉, (5.19)

where we have used that the product nσ nσ = nσ , giving the U on the left hand side
of the equation. Clearly, the right hand side becomes even more complicated under
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this operation. The propagator in the first summand can be rewritten

(−i)〈T[nσ̄ dσ , c
†
ks

ds](t)d†
σ ′(t ′)〉 = −δsσ̄ (−i)〈T(c

†
kσ̄

dσ̄ dσ )(t)d
†
σ ′(t ′)〉, (5.20)

and, similarly, the propagator in the second summand becomes

(−i)〈T[nσ̄ dσ , d†
s cks](t)d†

σ ′(t ′)〉 = δsσ (−i)〈T(nσ̄ ckσ )(t)d
†
σ ′(t ′)〉

− δsσ̄ (−i)〈T(d
†
σ̄ dσ ckσ̄ )(t)d

†
σ ′(t ′)〉. (5.21)

Let us, for the moment, stop at this point and see what we can do. We decouple
the propagators on the right hand side, such that

(−i)〈T(c
†
kσ̄

dσ̄ dσ )(t)d
†
σ ′(t ′)〉 = 〈c†

kσ̄
(t)dσ̄ (t)〉Gσσ ′(t, t ′)

− 〈c†
kσ̄

(t)dσ (t)〉Gσ̄σ ′(t, t ′)

+ 〈dσ̄ (t)dσ (t)〉(−i)〈Tc
†
kσ̄

(t)d
†
σ ′(t ′)〉, (5.22a)

(−i)〈T(nσ̄ ckσ )(t)d
†
σ ′(t ′)〉 = 〈nσ̄ (t)〉Fkσσ ′(t, t ′)

− 〈d†
σ̄ (t)ckσ (t)〉Gσ̄σ ′(t, t ′)

+ 〈dσ̄ (t)ckσ (t)〉(−i)〈Td
†
σ̄ (t)d

†
σ ′(t ′)〉, (5.22b)

(−i)〈T(d
†
σ̄ dσ ckσ̄ )(t)d

†
σ ′(t ′)〉 = 〈d†

σ̄ (t)dσ (t)〉Fkσ̄ σ ′(t, t ′)

− 〈d†
σ̄ (t)ckσ̄ (t)〉Gσσ ′(t, t ′)

+ 〈dσ (t)ckσ̄ (t)〉(−i)〈Td
†
σ̄ (t)d

†
σ ′(t ′)〉. (5.22c)

First, under the assumption that neither the leads nor the quantum dot have any
superconducting properties we can safely use that any propagator, or average, with
two creation or annihilation operators is negligible, if not vanishing. Second, if we
wish to obtain a second order approximation in the tunneling rate, we assert that the
averages of operators with equal time can be taken in the atomic limit, so that e.g.
〈c†

kσ̄
(t)dσ (t)〉 = 0. We then arrive at the mean field equation for the two-electron

Green function

(i∂t − εσ − U)Gσσ ′(t, t ′) = δσσ ′ 〈nσ̄ (t)〉δ(t − t ′) +
∑

k

v∗
kσ 〈nσ̄ (t)〉Fkσσ ′(t, t ′).

(5.23)
The sum over k on the right hand side describes the transfer of electrons with spin
σ between the quantum dot and the leads in presence of a spin σ̄ electron in the
quantum dot.

Now, in order to proceed in a lighter manner, we assume stationary conditions
on the system such that we can Fourier transform our equations. We have the set of
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equations

(iω − εσ )Gσσ ′(iω) = δσσ ′ + U Gσσ ′(iω) +
∑

k

v∗
kσ Fkσσ ′(iω), (5.24a)

(iω − εσ − U)Gσσ ′(iω) = δσσ ′ 〈nσ̄ 〉 +
∑

k

v∗
kσ 〈nσ̄ 〉Fkσσ ′(iω), (5.24b)

(iω − εkσ )Fkσσ ′(iω) = vkσ Gσσ ′(iω). (5.24c)

Solving for the single-electron Green function Gσσ ′ we arrive at

Gσσ ′(iω) = gσ (iω)
(
1 + gσ (iω − U)〈nσ̄ 〉U)(δσσ ′ + Vσ (iω)Gσσ ′(iω)

)
. (5.25)

We now redefine our bare Green function for the localized electrons by G0σ (iω) =
gσ (iω)[1 + gσ (iω − U)〈nσ̄ 〉U ], which permits us to write

Gσσ ′(iω) = δσσ ′G0σ (iω) + G0σ (iω)Vσ (iω)Gσσ ′(iω). (5.26)

Thus, we can obtain the retarded (advanced) and lesser (greater) Green functions
using the same procedure as previously, that is

G
r/a

σσ ′(ω) = δσσ ′Gr/a

0σ (ω) + G
r/a

0σ (ω)V r/a
σ (ω)G

r/a

σσ ′(ω), (5.27a)

G
</>

σσ ′ (ω) = Gr
σσ ′′(ω)V

</>

σ ′′ (ω)Ga
σ ′′σ ′(ω). (5.27b)

The retarded (advanced) bare Green function is given by

G
r/a

0σ (ω) = 〈nσ̄ 〉
ω − εσ ± iδ

+ 1 − 〈nσ̄ 〉
ω − εσ − U ± iδ

, (5.28)

and we thus obtain

G
r/a

σσ ′(ω) = δσσ ′ [ω − εσ − 〈1 − nσ̄ 〉U ]
[ω − εσ − Λσ + iΓσ /2][ω − εσ − U ] − 〈nσ̄ 〉U(Λσ − iΓσ /2)

.

(5.29)
The lesser Green function is, again, found to be the squared modulus of the retarded
Green function, |Gr

σσ |2, times the lesser interaction propagator V <
σ . However, we

also have a reference to the occupation numbers 〈nσ 〉 which are calculated by (5.14)
requiring that

∑
σ 〈nσ 〉 = 1. In this way we have constructed a self-consistent solu-

tion of the Green function for the localized electrons in the quantum dot.
We can check that the obtained solution is consistent with the solution in the

previous section by letting the charging energy U → 0. The retarded Green function
then reduces to the one given in (5.12), as we expect. In the opposite limit, i.e.
U → ∞, we find the solution

lim
U→∞G

r/a

σσ ′(ω) = δσσ ′
1 − 〈nσ̄ 〉

ω − εσ − 〈1 − nσ̄ 〉(Λσ + iΓσ /2)
. (5.30)
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The infinite U limit corresponds to the case where there cannot be two electrons
present simultaneously in the quantum dot, or island. This condition is made sure
to hold by the presence of the occupation number 1 − 〈nσ̄ 〉 in the numerator. The
effective width of the level is also reduced by this same factor. In this limit and for
low temperatures the occupation number 〈nσ 〉 can be determined from the equation

〈nσ 〉
1 − 〈nσ̄ 〉 = 1

π

∑

χ

Γ
χ
σ

Γσ

(
arctan

μχ − ε̃σ

〈1 − nσ̄ 〉Γσ /2
+ arctan

Dχ + ε̃σ

〈1 − nσ̄ 〉Γσ /2

)
, (5.31)

where Dχ is the band width in the lead χ , whereas ε̃σ = εσ + 〈1 − nσ̄ 〉Λσ is the
effective position of the localized level. Again, in the spin-degenerate case we must
recover that 〈nσ 〉 = 1/2 although the island cannot host two electrons at the same
time. We regard, however, the Green functions to be probability densities such that
− Im tr

∫
Gr (ω)dω/π = 1. With this interpretation the occupation number 〈nσ 〉

give the probability for the level to be occupied with a spin σ electron, rather than
the number of electrons.

The mean field theory for the local levels in the quantum dot provide the inter-
action with the electrons in the conduction channel. This interaction generates the
level width Γσ which changes the discrete level into a Lorentzian shaped continu-
ous distribution for the energy in the quantum dot, centered near the positions of
the discrete levels from the atomic limit. The level broadening is, however, con-
stant in energy and does not depend on any kinds of many-body interactions that do
occur inside the quantum dot when coupled to leads. Therefore, we move on to a
description which accounts for higher order scattering processes.

5.1.3 Beyond Mean Field Theory

Let us again look at the two-electron Green function, for which we found the equa-
tion

(i∂t − εσ − U)Gσσ ′(t, t ′) = δσσ ′ 〈nσ̄ (t)〉δ(t − t ′)

−
∑

k

vkσ̄ (−i)〈T(dσ̄ dσ c
†
kσ̄

)(t)d
†
σ ′(t ′)〉 (5.32a)

+
∑

k

v∗
kσ (−i)〈T(nσ̄ ckσ )(t)d

†
σ ′(t ′)〉 (5.32b)

−
∑

k

v∗
kσ̄ (−i)〈T(d

†
σ̄ dσ ckσ̄ )(t)d

†
σ ′(t ′)〉. (5.32c)

This equation holds the main difficulties in the treatment of the single level Coulomb
island, because the equation of motion for each and every propagator in this equa-
tion, generates new propagators accounting for even more scattering processes. We
dealt with this problem in the previous section by accepting the mean field equation.
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As we discussed previously, the mean field theory excludes all fluctuations in e.g.
the localized level that are caused by the interaction between the conduction chan-
nels and the local quantum dot level. Would fluctuations be expected? Of course
there are reasons to believe that the couplings between the conduction channels and
the local level would be able to mediate fluctuations like e.g. the local electron hop-
ping of the quantum dot and into one of the lead, whereby another electron hops
from one lead into the quantum dot and thereby replacing the first electron. The
processes could occur one after the other or simultaneously. The replacing electron
may have the same or opposite spin as the replaced electron. Such processes may
happen even in equilibrium, but then those processes cause no net current through
the system. In non-equilibrium those processes may give rise to peaks or dips in the
differential conductance that cannot be ascribed to the known resonances. Hence,
the higher order scattering processes may cause a build up of new resonances be-
tween the leads which may contribute to the conductance. From a fundamental
point of view it is interesting to study the excitation spectrum in the quantum dot,
especially if there are excitations generated through higher order scattering pro-
cesses.

Here, we will proceed by making one additional step in the expansion of the
two-electron Green function and also study the propagator on the right hand side
in (5.32a)–(5.32c). In this way we will obtain an energy dependent self-energy to
the final single electron Green function.

Considering the contributions one by one, we have for the term (5.32a) the equa-
tion

(i∂t − εσ̄ − εσ + εkσ̄ )(−i)〈T(dσ̄ dσ c
†
kσ̄

)(t)d
†
σ ′(t ′)〉

= δσσ ′δ(t − t ′)〈dσ̄ (t)c
†
kσ̄

(t)〉 + U(−i)〈T(nσ̄ dσ̄ dσ c
†
kσ̄

)(t)d
†
σ ′(t ′)〉

+ U(−i)〈T(nσ dσ̄ dσ c
†
kσ̄

)(t)d
†
σ ′(t ′)〉

+
∑

k′

{
v∗

k′σ (−i)〈T(c
†
kσ̄

ck′σ dσ̄ )(t)d
†
σ ′(t ′)〉

− v∗
k′σ̄
[
(−i)〈T(c

†
kσ̄

ck′σ̄ dσ )(t)d
†
σ ′(t ′)〉

− (−i)〈T(d
†
σ̄ dσ̄ dσ )(t)d

†
σ ′(t ′)〉

]}
, (5.33)

where we have assumed that the spin-flip average 〈dσ (t)c
†
kσ̄

(t)〉 = 0. Here, we
decouple the propagators under the same assumptions as we made in the mean
field approach. We, further, take the approach to convert all propagators into
their bare counterparts, expect for the ones resulting in the single electron Green
function Gσσ ′ . Then, we also see that the average 〈dσ̄ (t)c

†
kσ̄

(t)〉 = 0. The sec-
ond and third terms on the right hand side of the equation reduce to contribution
U 〈(nσ + nσ̄ )(t)〉 = U in the parentheses on the left hand side. Under those assump-
tions, we find that the first term in the summand vanishes, while the second and
third give the contributions −v∗

kσ̄
〈nkσ̄ (t)〉Gσσ ′(t, t ′) and −v∗

kσ̄
Gσσ ′ , respectively.



64 5 Diagram Technique

We thus have reduced the equation to the simpler form

(i∂t − εσ̄ − εσ − U + εkσ̄ )(−i)〈T(dσ̄ dσ c
†
kσ̄

)(t)d
†
σ ′(t ′)〉

= v∗
kσ̄ [〈nkσ̄ (t)〉Gσσ ′(t, t ′) − Gσσ ′(t, t ′)]. (5.34)

Analogously, we find the equation for (5.32b)

(i∂t − εkσ )(−i)〈T(nσ̄ ckσ )(t)d
†
σ ′(t ′)〉 = vkσ 〈nσ̄ (t)〉Gσσ ′(t, t ′), (5.35)

and for (5.32c)

(i∂t + εσ̄ − εσ − U 〈nσ̄ − nσ 〉 − εkσ )(−i)〈T(d
†
σ̄ dσ ckσ̄ )(t)d

†
σ ′(t ′)〉

= vkσ̄ [〈nkσ̄ (t)〉Gσσ ′(t, t ′) − Gσσ ′(t, t ′)]. (5.36)

It may seem inconsistent not to expressing (5.35) in terms of the two-electron Green
function. We choose to make this approximation, however, in order to capture the
correct result in the atomic limit.

We go over to energy space by assuming stationary conditions, and substitute
(5.34)–(5.36) into (5.32a)–(5.32c). We obtain

[iω − εσ − U ]Gσσ ′(iω) = δσσ ′ 〈nσ̄ 〉 + Σ2σ (iω)Gσσ ′(iω)

+ [〈nσ̄ 〉Vσ (iω) + Σ1σ (iω)
]
Gσσ ′(iω). (5.37)

Here, we have introduced the self-energy

Σασ (iω) =
∑

k

Aα|vkσ̄ |2
(

1

iω − εσ̄ − εσ − U + εkσ̄

+ 1

iω + εσ̄ − εσ − U 〈nσ̄ − nσ 〉 − εkσ̄

)
, (5.38)

where A1 = f (εkσ̄ ) and A2 = 1.
We stop here and conclude that the structure of the equation for the single-

electron Green function begins to become rather involved. We note, however, by
using (5.37) in the equation (iω − εσ )Gσσ ′ = δσσ ′ +U Gσσ ′ +Vσ Gσσ ′ , that we find
the solution

G−1
σσ ′(iω) = δσσ ′g−1

σ (iω) − Σσσ ′(iω), (5.39)

where we have defined the self-energy [5, 6]

Σσσ ′(iω) = δσσ ′
(

Vσ (iω) + U
〈nσ̄ 〉(iω − εσ ) − Σ1σ (iω)

iω − εσ − 〈1 − nσ̄ 〉U − Σ2σ (iω)

)
. (5.40)

The retarded and advanced single-electron Green function can be found by a straight
forward analytical continuation iω → ω + iδ, δ > 0. The lesser and greater forms
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are, however, not so simple to find to this order of approximation, and it is, in fact,
still an open question to find suitable expressions for these quantities.

In equilibrium we can resort to the retarded and advanced form of Gσσ ′ , and
the solutions given by (5.39) and (5.40) provide an additional resonance near the
Fermi level, Kondo resonance, in case of a nearly spin-degenerate quantum dot, i.e.
ε↑ ≈ ε↓. The appearance of this resonance is due to screening of the local magnetic
moment that arise in the quantum dot in equilibrium. If the quantum dot level is
far below the equilibrium chemical potential, it will be hosted by an electron with a
definite spin. This spin yields an effective magnetic moment locally in the system.
The de-localized electrons in the conduction channels tend to screen this moment in
order to equilibrate any spin-imbalance that arise, and this screening generates the
additional resonance.

We shall not dwell on this type of approximation. We learn that the equation of
motion technique has its benefits, that it is straight forward and easy to employ in
almost any situation. In going to higher order approximations the drawbacks are
obvious, that it takes quite some bookkeeping in order to perform each step of the
derivations. There are other ways to proceed with a systematic approach to approxi-
mations, i.e. using Wick’s theorem. We refer the reader to the excellent introductions
to this subject given in e.g. [1–3].

5.2 Expanding the Hubbard Operator Green Functions

From now on we shall assume that we have a model of the type H = HL +
HR + HC + HT , where HL/R are as usual, whereas HC = ∑

Nn ENnh
n
N and

HT =∑kσa vkσac
†
kσ

Xa + H.c., where a is an arbitrary single-electron transition.
We will also need a source potential H′(t) = Uξ(t)Z

ξ , where we sum over repeated
indices. The source fields which are necessary in the present context, correspond to
the possible Bose-like transitions that arise in the system due to multiplications of
Fermi-like transitions.

We start off as before and consider the equation of motion for the Green function
Gab(t, t

′) = (−i)〈TXa(t)Xb̄(t ′)〉U . The equation of motion is written

(i∂t − Δā)Gab(t, t
′) = δ(t − t ′)Pab(t

′) + εac
ξ

[+vkσc(−i)〈TZξ (t)c
†
kσ

(t)Xb̄(t ′)〉U
+ v∗

kσc(−i)〈TZξ (t)ckσ (t)Xb̄(t ′)〉U
]
. (5.41)

Recall that the tensor εac
ξ is defined from the anti-commutation relation {Xa,Xc} =

εac
ξ Zξ .

One approach to study this equation would be using conventional perturbation
theory, expanding the propagators according to
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(−i)〈TA(t)B(t ′)〉

=
∞∑

n=0

(−i)n+1
∫

C

· · ·
∫

C

〈TA(t)B(t ′)HT (t1) · · · HT (tn)〉0dtn · · ·dt1. (5.42)

Each of those propagators inside the integrals have to be decoupled to enable cal-
culations of the propagator on the left hand side. Here, we shall not further discuss
this method and instead refer the reader to [7], in which a Wick’s theorem approach
is extensively discussed. A fundamental reason for not taking this discussion is that
Wick’s theorem for Hubbard operators is inapplicable under non-equilibrium con-
ditions.

Instead, we shall approach the problem with a technique that is reminiscent of the
method introduced by Kadanoff and Baym [8] using functional derivatives. The idea
was introduced already in (3.31), for a propagator with three Hubbard operators. We
can, of course, do the same thing with the mixed propagators we have in the equation
of motion above. Using the same approach that was employed in deriving (3.31), we
find

(−i)〈TZξ (t)c
†
kσ

(t)Xb̄(t ′)〉U =
(

〈TZξ (t)〉U + i
δ

δUξ (t)

)
F

†
kσ b̄

(t, t ′), (5.43a)

(−i)〈TZξ (t)ckσ (t)Xb̄(t ′)〉U =
(

〈TZξ (t)〉U + i
δ

δUξ (t)

)
Fkσ b̄(t, t

′), (5.43b)

where we have defined F
†
kσ b̄

(t, t ′) = (−i)〈Tc
†
kσ

(t)Xb̄(t ′)〉U . Unless we are consid-
ering the lead or the central region to be in the superconducting state, this propagator
is negligible. It is therefore omitted in the following, since we are focusing our ef-
forts on metallic leads and central regions not being in the superconducting state.

Substituting the above expressions into (5.41) gives

(i∂t − Δā)Gab(t, t
′) = δ(t − t ′)Pab(t

′) + v∗
kσc[Pac(t

+) + Rac(t
+)]Fkσ b̄(t, t

′),
(5.44)

where Pac(t) = εac
ξ 〈TZξ (t)〉U = 〈T{Xa,Xc̄}(t)〉U and Rac(t) = iεac

ξ δ/δUξ (t), as
defined in Chap. 3. Using (4.8) for the propagator Fkσ b̄ we finally arrive at the
equation

(i∂t − Δā)Gab(t, t
′) = δ(t − t ′)Pab(t

′)

+ [Pac(t
+) + Rac(t

+)]
∫

C

Vc̄d(t, t1)Gdb(t1, t
′), (5.45)

where Vc̄d(t, t ′) =∑kσ v∗
kσc

vkσdgkσ (t, t ′).
In Chap. 3 we saw how we can write the equation for the matrix Green function

G = {Gab}ab according to

G(t, t ′) = d(t, t ′)P(t ′) +
∫

C

d(t, t1)S(t1, t2)G(t2, t
′)dt2dt1, (5.46)
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where the self-energy operators S is defined through

S(t, t ′) = P(t+)V(t, t ′) +
∫

C

{R(t+)V(t, t1)D(t1, t2)}D−1(t2, t
′)dt1dt2, (5.47)

and the inverse of the locator as

D−1(t, t ′) = d−1(t, t ′) − S(t, t ′). (5.48)

It is important to note that the functional derivative in the integrand only acts on the
propagators in the braces. The way in which we have constructed our framework
implies that the propagator V is unaffected by the functional derivative, however,
the matrices R and V are non-commuting. Further developments are, thus, most
conveniently performed for the components of the equation, i.e.

Sab̄(t, t
′) = Pac̄(t

+)Vc̄b(t, t
′) +

∫

C

{Rac̄(t
+)Vc̄d(t, t1)Ddē(t1, t2)}D−1

eb̄
(t2, t

′)dt1dt2.

(5.49)
Here, we use that DD−1 = I = D−1D giving 0 = δ(DD−1) = (δD)D−1 + D(δD−1),
hence, (δD)D−1 = −D(δD−1). The self-energy operators can thus be written as

Sab(t, t
′) = Pac̄(t

+)Vc̄b(t, t
′)−

∫

C

Vc̄d(t, t1)Ddē(t1, t2){Rac̄(t
+)D−1

eb̄
(t2, t

′)}dt1dt2.

(5.50)
We are now in position to begin discussing approximation schemes.

5.2.1 Hubbard-I-Approximation

The Hubbard-I-approximation is the simplest approximation in the model and is
given when omitting the second term in the self-energy operator, i.e. letting S = PV.
The resulting equation then becomes

G(t, t ′) = g(t, t ′) +
∫

C

g(t, t1)V(t1, t2)G(t2, t
′)dt1dt2, (5.51)

as was discussed in Chap. 3. This is a mean-field approximation and, as such, it
neglects any type of fluctuation in the system. Hence, it is typically a good approxi-
mation under conditions where the influence of fluctuations is suppressed, e.g. under
influence of strong external fields or at high temperatures.

Graphically we write this equation according to

(5.51′)

where the single and double lines denote the bare and dressed locators d and D, re-
spectively, whereas the dots mark the end-factors P , and the wiggles denote the in-
teraction propagator V . This graphical representation explicitly illustrate the Green
function being a product between the locator and the end-factor.
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5.2.2 One-Loop-Approximation

The first step beyond the Hubbard-I-approximation is given by performing one func-
tional differentiation in the self-energy operator. We, thus, have to consider the quan-
tity Rac(t

+)D−1
eb

(t2, t
′). In order to only perform one functional differentiation, we

see that the inverse locator D−1 has to be approximated by d−1 − PV, i.e. letting
S ≈ PV + {RVD}[d−1 − PV], hence,

Rac(t
+)D−1

eb
(t2, t

′) ≈ Rac(t
+)d−1

eb
(t2, t

′) − Rac(t
+)Pef (t+2 )Vf̄ b(t2, t

′). (5.52)

The inverse of the bare locator is given by

d−1
eb

(t2, t
′) = δ(t2 − t ′)[δeb(i∂t2 − Δē) − ε

eξ
b Uξ (t2)], (5.53)

hence, acting with the functional differentiation operator results in

Rac(t
+)d−1

eb
(t2, t

′) = −iδ(t2 − t ′)εac
ζ ε

eξ
b

δUξ (t2)

δUζ (t+)

= −iδ(t2 − t ′)δ(t − t2)δζξ ε
ac
ζ ε

eξ
b . (5.54)

The self-energy resulting from this contribution acquires the form

Σ
(1a)

ab̄
(t, t ′) = (−i)δ(t − t ′)

∫

C

εac
ξ Vcd(t, t1)Dde(t1, t)ε

eξ
b dt1, (5.55)

or

(5.55′)

where the bottom straight lines denote where the bubble should be connected to the
incoming and outgoing propagators. This contribution arise due to electrons residing
in different states in the central region and interacting with one another through the
conduction channel. The appearance of this self-energy is due to proper many-body
interactions between electrons in the central region which has a tendency to increase
the energy separation between the singly and doubly occupied states. The real part
of this contributions provides a non-negligible shift of the local levels which, in
general, varies with time t . The shift also depends on the chemical potentials in the
leads and, hence, on the bias voltage applied over the system, as we shall see in the
next section.

Here we can, however, perform a general calculation of the self-energy by
the following observation. The time variable t1 is integrated along the contour C

which we divide into the two pieces C< = (−∞, t) and C> = (t,−∞) on which
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t1 < t and t1 > t , respectively. Assuming time-independent conditions we have e.g.
V <

cd(t, t ′) = i
∑

kσ v∗
kσc

vkσdf (εkσ ) exp [−iεkσ (t − t ′)], which leads to

Σ
(1a)

ab̄
(t, t ′)

= (−i)δ(t − t ′)εac
ξ

∑

kσ

v∗
kσcvkσd

[∫
f (−εkσ )D<

de(ω) + f (εkσ )D>
de(ω)

ω − εkσ

dω

2π

− i

2

{
f (−εkσ )D<

de(εkσ ) + f (εkσ )D>
de(εkσ )

}]
ε
eξ
b . (5.56)

Approximating the locator by its bare counterpart, e.g. D<
de(ω) ≈ d<

de(ω), where
d<
de(ω) = i2πδdeδ(ω − Δd̄), we obtain

Σ
(1a)

ab̄
(t, t ′) = δ(t − t ′)εac

ξ

∑

kσ

v∗
kσcvkσd

(
1 − 2f (εkσ )

Δd̄ − εkσ

− iπ[1 − 2f (Δd̄)]δ(εkσ − Δd̄)

)
ε
dξ
b . (5.57)

The same result is obtained using frequency summation methods [9]. Note that this
self-energy is purely real, which means that is only provides a shift to the transition
energy Δā in the Green function Gab . We thus write the dressed transition energy

as Δ∗̄
a = Δā + δΔā , where we identify the shift δΔā = Σ

(1a)

ab̄
.

We can proceed further by assuming low temperatures and large band-widths W

in the leads. Then, by replacing the k-summation with an integration weighted by
the density of state, we obtain

δΔā ≈ 1

π
εac
ξ

∑

χ

Γ
χ
cd ln

|μχ − Δd̄ |
W

ε
dξ
b . (5.58)

This shift to the transition energy is small unless the transition energy Δd̄ lies in
the proximity of the chemical potential μχ . Hence, for varying bias voltages the
distance |μχ − Δd̄ | may very well become small which leads to a significant shift
of the transition energy. Effectively, the conduction electrons screens the localized
electrons which results in that the dressed transition energy is pushed away from be-
ing in resonance with the chemical potentials of the leads. The apparent divergence
of the shift is non-physical and should be viewed as an artifact of the approximation.
Recall that we replaced the locator by its bare counterpart. It is this replacement
which leads to the undesired divergence. The kinematic shift δΔā can, therefore,
not become arbitrarily large and there is a cross-over value of the chemical potential
μχ where the dressed transition energy goes from being below to above μχ , for
decreasing values of μχ .

In the following discussion we will let the kinematic shift to the transition ener-
gies be absorbed in the transition energy itself, i.e. letting Δā → Δā + δΔā . Since
the kinematic shift depends on the bias voltage, it will be become time-dependent
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for time-varying biases. Although the shift is important under many stationary con-
ditions, which will be discussed in detail later, it is only under time-varying external
conditions we need to be slightly more explicit about the presence of the kinematic
shift. Hence, we can safely let the shift be part of the definition of the transition
energy.

The second term in (5.52) contains the factor Rac(t
+)Pef (t+2 ) which is calcu-

lated through

Rac(t
+)Pef (t+2 ) ≡ iεac

ξ

δ

δUξ (t+)

〈TS{Xe,Xf̄ }(t+2 )〉
〈TS〉

= iεac
ξ

(
(−i)〈TSZξ (t+){Xe,Xf̄ }(t+2 )〉U

− (−i)εac
ξ 〈TSZξ (t+)〉U 〈TS{Xe,Xf̄ }(t+2 )〉U

)

= iεac
ξ ε

ef
ζ (−i)〈TZξ (t+)Zζ̄ (t+2 )〉U − Pac(t

+)Pef (t+2 )

= iεac
ξ ε

ef
ζ Kξζ̄ (t

+, t+2 ) − Pac(t
+)Pef (t+2 ), (5.59)

where we have introduced the propagator Kξζ̄ (t, t
′) = (−i)〈TZξ (t)Zζ̄ (t ′)〉U for the

Bose-like transitions Zξ and Zζ , cf. definitions in (3.44). The resulting self-energy
from this contribution is

Σ
(1b)

ab̄
(t, t ′) =

∫

C

Vcd(t, t1)Dde(t1, t2)
[
iεac

ξ ε
ef
ζ Kξζ̄ (t, t2)

− Pac(t)Pef (t2)
]
Vf b(t2, t

′)dt2dt1

=
∫

C

[
Vcd(t, t1)Dde(t1, t2)iε

ac
ξ ε

ef
ζ Kξζ̄ (t, t2)

− Pac(t)Vcd(t, t1)Gdf (t1, t2)
]
Vf b(t2, t

′)dt2dt1 (5.60)

since removing the superscript “+”-signs does not change the value of the integral.
Graphically this self-energy can be written

(5.60′)

where the dashed line signifies K . The labels have been omitted to the benefit of
the graphical appearance of the diagrams, and the reader is encouraged to insert the
labels.

The two self-energies we derived for in the one-loop-approximation are gener-
ated by effecting the functional differentiation to the locator. However, when ex-
amining the expression in (5.46), one realizes that the functional derivative actually
should act on the Green function G rather than on only the locator D. The Green
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function G = DP and therefore the variation δG = (δD)P + D(δP). Hence, in or-
der to obtain the full equation of motion for the Green function in the one-loop-
approximation, we have to insert the expression given in (5.59) into the equation.
Effectively, this amounts to adding the contribution

δPab(t, t
′) =

∫

C

Vcd(t, t1)Dde(t1, t
′)
(
iεac

ξ Kξζ (t1, t
′)εeb

ζ − Pcd(t+)Pf b(t
′)
)
dt1

(5.61)
and graphically

(5.61′)

Examining this result, in the equation of motion we find the term

−
∫

C

gad(t, t1)Vde(t1, t2)Geb(t2, t
′)dt2dt1 (5.62)

which exactly cancels the self-energy provided by the first contribution to the dia-
grammatic expansion, i.e. the result given in the Hubbard-I-approximation. Hence,
the mean-field contribution to the Green function is replaced by the term

i

∫

C

dac(t, t1)ε
cd
ξ Vde(t1, t2)Def (t2, t

′)Kξζ (t1, t
′)εf b

ζ dt1t2. (5.63)

In this expression the propagator Kξζ (t1, t
′) replaces the end-factors on the locators.

The propagator Kξζ (t1, t
′) provides a correlation between the occupation numbers

calculated at different times rather than only the product between them. This gen-
eralization is important under conditions when we cannot consider the occupation
numbers at the different times as being independent of one another, i.e. whenever
there is a memory in the system one has to calculate the correlation function. On
the other hand, when the memory can be neglected, e.g. stationary conditions, we
can employ the Markovian approximation which results in the decoupling of the
propagator iεcd

ξ ε
f b
ζ Kξζ (t1, t

′) into simply Pcd(t1)Pf b(t
′) from which we recover

the mean-field contribution to the equation. This is the same as to say that the end-
factors at different times are independent of one another.

The one-loop equation of motion for the Green function Gab is given by

Gab(t, t
′) = gab(t, t

′) + i

∫

C

dac(t, t1)ε
cd
ξ Vde(t1, t2)Def (t2, t

′)Kξζ̄ (t1, t
′)εf b

ζ dt2dt1

+ i

∫

C

dac(t, t1)ε
ce
ξ Vef (t1, t2)Df h(t2, t3)Kξζ (t1, t3)ε

hg
ζ

× Vgd(t3, t4)Gdb(t4, t
′)dt4dt3dt2dt1
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−
∫

C

gac(t, t1)Vce(t1, t2)Gef (t2, t3)Vf d(t3, t4)

× Gdb(t4, t
′)dt4dt3dt2dt1, (5.64)

that is,

(5.64′)

Here, the first and second diagrams on the right hand side provides the bare Green
function, however, with a dressed end-factor. Here we also see quite clearly that
the approximation K → −iPP turns the second diagram into the mean-field dia-
gram as shown in the Hubbard-I-approximation, cf. (5.51′). Simultaneously, in this
approximation the third diagram equals the fourth which leads to that the two dia-
grams cancel exactly. This is expected since we cannot allow the mean-field theory
to be described by different sets of diagrams. It is noticeable, however, that (5.64)
already describes the physics of the quantum dot to the fourth order in the tunneling
rate vkσ , which illustrates the power, or, efficiency of the approach using functional
derivatives.

We can obtain a more general Dyson equation by making use of the diagrams
that cancel each other. First we define the dressed end-factor

(5.65)

Then, we can rewrite the (5.64′) according to

(5.66)

This compact notation suggests that we have considered the end-factor to its full
extent in the sense that no higher order contributions will be added to the total end-
factor P = P + δP . The end-factor depends, however, on the Bose-like propagator
Kξζ and the complexity of the processes involved into this is arbitrary. Below, we
study the first order appearance of this propagator.

Up to now we have not discussed anything about the Bose-like propagator Kξζ ,

and how it should be treated. However, the equation of motion for the operator Zξ
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appears to be

(i∂t − Δξ̄ )Z
ξ =

∑

kσ

(
vkσac

†
kσ

[Zξ ,Xa] + v∗
kσa[Zξ ,Xā]ckσ

)

=
∑

kσ

ε
ξa
b

(
vkσbc

†
kσ

Xb + v∗
kσbX

b̄ckσ

)
. (5.67)

Notice that we are using the commutator, instead of the anti-commutator, between
the Z- and X-operators. For Bose-like operators one should use commutator, which
is motivated by e.g. [hp,hq ] = δpq . On the other hand, since the X- and Z-operators
are neither Fermi- nor Bose-operators we may employ anyone (of [, ] and {, }) be-
ing most convenient. In this book we have chosen the commutator between Bose-
and Fermi-like operators, e.g. [X,Z] and [c,Z]. Equation (5.67) can be compared
with the equations for the occupation numbers discussed in Chap. 2. Here we are
interested in the equation for the propagator Kξζ , however, which becomes

(i∂t − Δξ̄ )Kξζ (t, t
′) = δ(t − t ′)Qξζ +

∑

kσ

ε
ξa
b

(
vkσa(−i)〈T(c

†
kσ

Xb)(t)Zζ̄ (t ′)〉U

+ v∗
kσa(−i)〈T(Xb̄ckσ )(t)Zζ̄ (t ′)〉U

)
.

(5.68)
In order to be consistent within the approach we have developed for the Green

functions G, we rewrite this equation by again using the relation in (3.31). We need
to consider first, however, which Green function we would like to operate on with
the functional differentiation. We may, of course, rewrite the second propagator in
the summand according to

(−i)〈T(Xb̄ckσ )(t)Zζ̄ (t ′)〉U =
(

〈TXb̄(t)〉U + i
δ

δUb̄(t)

)
(−i)〈Tckσ (t)Zζ̄ (t ′)〉U .

(5.69)
Then, on the other hand, we encounter some problems, since the Green function
(−i)〈Tckσ (t)Zζ̄ (t ′)〉U cannot be rewritten in a form that closes neither of the equa-
tions for K and G. Moreover, the averages 〈TXb̄(t)〉U would describe the proba-
bility amplitude for an electron being in the transition b̄, which is not well defined.
Therefore, it does not make any sense to calculate this average. Thus, we have to
employ some other strategy. In (5.43a), (5.43b), we have already worked out how
we should treat propagators of the kind being present in the equation for K , let be
that order of the operators is nor the same here. Utilizing that the c- and X-operators
anti-commute, we can write

(−i)〈T(Xb̄ckσ )(t)Zζ̄ (t ′)〉U = −
(

〈TZζ̄ (t ′)〉U + i
δ

δUζ̄ (t
′)

)
Fkσb(t, t

−). (5.70)

We know that Fkσb(t, t
−) can be rewritten according to vkσagkσ Gab , hence, the

equation for G can be closed by taking this approach. Furthermore, we do not fall
into any weird discussions on whether we can calculate the averages 〈TXa〉U , we
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just do not have to consider them at all. As a result, we obtain the equation for K

according to

(i∂t − Δξ̄ )Kξζ (t, t
′)

= δ(t − t ′)Qξζ −
(

〈TZζ̄ (t ′)〉U + δ

δUζ̄ (t
′)

)

×
∑

kσa

ε
ξa
b

∫

C

(
Gbc(t, t

′′)Vca(t
′′, t−) + Vac(t, t

′′)Gcb(t
′′, t−)

)
. (5.71)

Here, we do not discard the first term in the summand since it constitutes a sensible
sequence of transitions even in the case of normal metallic leads.

The simplest approximation, beyond the atomic limit, is given by the Hubbard-
I-approximation, corresponding to omitting the functional differentiation, for which
we obtain

(i∂t − Δξ̄ )Kξζ (t, t
′) = δ(t − t ′)Qξζ − 〈TZζ̄ (t ′)〉U

∑

kσa

ε
ξa
b

∫

C

(
Gbc(t, t

′′)Vca(t
′′, t−)

+ Vac(t, t
′′)Gcb(t

′′, t−)
)
. (5.72)

Graphically, this equation is written as

(5.72′)

Here, the dotted lines have been added to remind that the last dots are connected to
the corresponding diagrams. Note that the two last diagrams account for different
processes that couple to the Bose-like transition Zξ .

Finally, whenever the right hand side is zero, or approximately zero, K is a con-
stant of motion. This is the same as to say that the operators Zξ and Zζ̄ are un-
correlated in time, i.e. independent of one another. This, therefore, motivates us to
replace the Green function K(t, t ′) by the product −iP (t)P (t ′).

We have now seen how we should act with the functional derivatives appearing
in the equation of motion. On the other hand, the discussion so far has been made on
an abstract system and it is therefore desirable to now turn our heads to something
more concrete and hands on. Hence, we will not go any further into the details of
the diagrammatic expansion in general terms. Instead, we will being analyzing some
of the effects from the various contributions derived thus far in a simple example,
while more examples are provides in Chap. 6.
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5.3 Single-Level Quantum Dot

We again look at the single-level quantum dot, since it serves as a simple example
from where we can pick up some intuition, and here we will learn more about the
diagrammatic technique itself. We will repeat some of the technical issues already
discussed in the previous sections, in order to clarify some details that might have
been hidden while making the theory as general as possible. Thus, here we take
the Coulomb island model, i.e. H = HL + HR +∑p Ephp +∑kσ (vkσ c

†
kσ

[X0σ +
σXσ̄

2 ]+H.c.), and begin our analysis in the usual manner, that is, through the equa-
tion of motion. As we now by know, this can be written as

(
i∂t − Δ0

σ0 − ΔUσ0(t)
)
G0σa(t, t

′) − Uσσ̄ (t)G0σ̄ a(t, t
′)

= δ(t − t ′)P0σa(t) + (P0σb(t
+) + R0σb(t

+)
) ∫

C

Vbc(t, t1)Gca(t1, t
′)dt1,

(5.73a)
(
i∂t − Δ0

2σ̄ − ΔU2σ̄ (t)
)
Gσ̄2a(t, t

′) + Uσσ̄ (t)Gσ2a(t, t
′)

= δ(t − t ′)Pσ̄2a(t) + (Pσ̄2b(t
+) + Rσ̄2b(t

+)
) ∫

C

Vbc(t, t1)Gca(t1, t
′)dt1.

(5.73b)

The corresponding matrix equation then becomes

(
i∂t − Δ0 − U(t)

)
G(t, t ′)

= δ(t − t ′)P(t) + (P(t+) + R(t+)
)∫

C

V(t, t1)G(t1, t
′)dt1, (5.74)

where Δ0 = diag{Δ0
↑0,Δ

0
↓0,Δ

0
2↓,Δ0

2↑} contains the bare transition energies Δ0
σ0 =

Eσ − E0 and Δ0
2σ = E2 − Eσ . The interaction matrix V was introduced in Chap. 4.

The source fields are contained in the matrix U = diag{U1,U2}, where Ui , i = 1,2,
are 2 × 2-matrices defined by

U1 =
(

ΔU↑0 U↑↓
U↓↑ ΔU↓0

)
, U2 =

(
ΔU2↓ −U↑↓
−U↓↑ ΔU2↑

)
. (5.75)

In this model the end-factor P = diag{P0↑,P0↓,P↓2,P↑2}, where Ppq ≡
Ppqqp = Ppqpq , since there is no term in the Hamiltonian that supports direct spin-
flip transitions. There might be higher order processes, however, that involve spin-
flip scattering, but those will not cause the off-diagonal end-factors like e.g. P0↑↓0

to become finite.
The functional differentiation matrix operator R = diag{R1,R2} is defined by

R1 =
(

R0↑ R0↑↓0
R0↓↑0 R0↓

)
, R2 =

(
R↓2 R↓22↑

R↑22↓ R2↑

)
, (5.76)
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with the elements

Rpqq ′p′(t) = i

(
δqq ′

δ

δUpp′(t)
+ δpp′

δ

δUq ′q(t)

)
, (5.77)

where we also use the convention Rpq ≡ Rpqqp .
Although the matrix representation provides a very nice appearance of the equa-

tion of motion we cannot perform the diagrammatic expansion in terms of matrix
algebra, since the matrices R and V do not commute. Hence, we need to study the
components one by one. The second term in the integrand of (5.73a) is then rewrit-
ten as (omitting the integrals for simplicity)

R0σb(t
+)Vbc(t, t1)Gca(t1, t

′)

= −Vbc(t, t1)Dcd(t1, t2){R0σb(t
+)D−1

de (t2, t3)}Gea(t3, t
′)

+ Vbc(t, t1)Dcd(t1, t
′){R0σb(t

+)Pda(t
′)}. (5.78)

First, we replace the dressed inverse locator D−1
de by d−1

de − Pdf Vf e in order

or obtain the one-loop-approximation, and we use that Rab(t
+)d−1(t2, t3) =

−δ(t2 − t3)δ(t
+ − t3)RabU. It is then straight forward to see that

R0σσ ′0U = −i

⎛

⎜⎜⎝

δσσ ′ − δσ↑δσ ′↑ −δσ↓δσ ′↑ 0 0
−δσ↑δσ ′↓ δσσ ′ − δσ↓δσ ′↓ 0 0

0 0 δσ↓δσ ′↓ δσ↓δσ ′↑
0 0 δσ↑δσ ′↓ δσ↑δσ ′↑

⎞

⎟⎟⎠ , (5.79a)

Rσ22σ ′U = i

⎛

⎜⎜⎝

δσ↑δσ ′↑ δσ↑δσ ′↓ 0 0
δσ↓δσ ′↑ δσ↓δσ ′↓ 0 0

0 0 δσσ ′ − δσ↓δσ ′↓ −δσ↑δσ ′↓
0 0 −δσ↓δσ ′↑ δσσ ′ − δσ↑δσ ′↑

⎞

⎟⎟⎠ . (5.79b)

This is an efficient way of keeping book of our calculations. We also see that writing
out the first (last) two diagonal elements in (5.79a (b)) is not superfluous, since those
elements are not always zero, e.g. R0↓U = −i diag{1 0 1 0}.

The second term in the integrand of (5.73a) can now be calculated, using (5.79a),
according to

R0σb(t
+)Vbc(t, t1)Gcσ0(t1, t

′)

= iVσ̄0c(t, t1)Dcσ̄0(t1, t)Gσ0(t, t
′)

+ Vσ0c(t, t1)Dcσ0(t1, t
′)R0σ (t+)P0σ (t ′)

+ iVσ̄0c(t, t1)Dc2σ (t1, t)Gσ̄2σ0(t, t
′)

+ Vσ̄0c(t, t1)Dcσ̄0(t1, t
′)R0σ σ̄0(t

+)P0σ̄ σ0(t
′). (5.80)
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Here, we recall that the self-energy δΔσ0(t) = iVσ̄0c̄(t, t1)Dcσ̄0(t1, t) is real and,
thus, only provides a shift to the position of the pole of the Green function. As this
shift depends on one time only (remember the integration over t1), we can simply
move this term to the left hand side of the equation. We do the same with the shift
δΔ2σ̄ (t) = iVσ̄0c̄(t, t1)Dc2σ (t1, t). Summing up for all elements of the matrix equa-
tion, we can write our effective equation of motion in the one-loop-approximation
according to (letting the external sources Uξ → 0)

(
i∂t − Δ(t)

)
G(t, t ′) = P(t, t ′) +

∫

C

P(t, t1)V(t1, t2)G(t2, t
′)dt1dt2, (5.81)

where Δ(t) = Δ0 + δΔ(t), and

δΔ =
(

δΔ10 δΔ21
δΔ10 δΔ21

)
, (5.82)

with δΔ10 = diag{δΔ↑0 δΔ↓0}, and δΔ21 = diag{δΔ2↓ δΔ2↑}, whereas the matrix
P(t, t ′) = δ(t − t ′)P(t ′) + δP, with δP(t, t ′) defined through

δPab(t, t
′) =

∫

C

Vcd(t, t1)Dde(t1, t
′)Rac(t)Peb(t

′). (5.83)

5.3.1 Excluding Fluctuations in P

First, we omit the correction δP to the end-factor and study the resulting expres-
sion for the Green function. Since the bare end-factor is diagonal, it is possible to
solve (5.81) analytically by taking advantage of its block-diagonal structure, at least
in the time-independent domain. Therefore, by Fourier transforming the equation
we find [9]

G0σ (iω) = iω − Δ2σ̄ − Pσ̄2Vσ (iω)

Hσ (iω)
P0σ , (5.84a)

Gσ̄2(iω) = iω − Δσ0 − P0σ Vσ (iω)

Hσ (iω)
Pσ̄2, (5.84b)

Gσ̄2σ0(iω) = σPσ̄2Vσ (iω) + σ̄ δΔσ0

iω − Δ2σ̄ − Pσ̄2Vσ (iω)
G0σ (iω), (5.84c)

Gσ0σ̄2(iω) = σP0σ Vσ (iω) + σ̄ δΔ2σ̄

iω − Δσ0 − P0σ Vσ (iω)
Gσ̄2(iω), (5.84d)

where Hσ (iω) = [iω−Δ0
σ0 −Vσ (iω)][iω−Δ0

2σ̄ −δΔσ0]−U [Pσ̄2Vσ (iω)−δΔσ0].
Recalling that dσ = X0σ + σXσ̄2, we find for the single-electron Green function
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Gσ (t, t ′) = (−i)〈Tdσ (t)d†
σ (t ′)〉, the solution

Gσ (iω) = G0σ (iω) + σ [G0σ2σ̄ (iω) + Gσ̄2σ0(iω)] + Gσ̄2(iω)

= iω − Δ0
σ0 − δΔσ0 − δΔ2σ̄ − UP0σ

[iω − Δ0
σ0 − Vσ (iω)][iω − Δ0

2σ̄ − δΔσ0] − U [Pσ̄2Vσ (iω) − δΔσ0]
.

(5.85)

Here, we have been using that P0σ + Pσ̄2 = 1, σ 2 = 1, and that σ σ̄ = −1.
We see the resemblance with the Hubbard-I-approximation by letting δΔā → 0,

and recalling that P0σ = 1 − 〈nσ 〉 and Pσ̄2 = 〈nσ̄ 〉, cf. (5.29). More importantly,
is that we from this approximation again capture the correct results in the non-
interacting (U → 0) and atomic limits (vkσ → 0), of which only the former is non-
trivial. However, for U → 0, the denominator

Hσ (iω) = [iω − Δ0
σ0 − Vσ (iω)][iω − Δ0

σ0 − δΔσ0 − δΔ2σ̄ ] (5.86)

from which we deduce

Gσ (iω) = iω − Δ0
σ0 − δΔσ0 − δΔ2σ̄

[iω − Δ0
σ0 − Vσ (iω)][iω − Δ0

σ0 − δΔσ0 − δΔ2σ̄ ]

= 1

iω − Δ0
σ0 − Vσ (iω)

, (5.87)

as expected.
Here, it is justified to ask what happens with the corrections δΔā in the non-

interacting limit. We may have the attitude that is does not matter since these cor-
rections do not enter the expressions for the Green functions, hence, we do not need
to know anything about them. On the other hand, from a physical point of view it
would be quite unsatisfactory if the corrections diverge in this limit, since it would
suggest some violent fluctuations in the system which, nonetheless, would not make
any contribution to the local properties of the quantum dot. Fortunately, the sum
δΔσ0 + δΔ2σ̄ → 0 as U → 0, as would be expected for weakly correlated elec-
trons. Using (5.56), we find (recalling that the imaginary part vanishes) that

δΔσ0 + δΔ2σ̄ ∼ − Im
Δ0

σ̄0 − Δ0
2σ

Hr
σ (ω)

= Im
U

Hr
σ (ω)

, (5.88)

which clearly approaches zero as the correlation U vanishes.
Finally, we approach the last limit, that is, U → ∞. In the present case we can-

not expect to reproduce the result from the Hubbard-I-approximation, since here
we also have to handle the renormalization. The form of the final Green function
should be similar as in the Hubbard-I-approximation, though, since the energy of
the doubly occupied state tends to infinity whereas its corresponding population
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number N2 → 0. Indeed, dividing the Green function in (5.85) by U , the resulting
numerator becomes

iω − Δ0
σ0 − δΔσ0 − δΔ2σ̄

U
− P0σ , (5.89)

whereas the corresponding denominator equals

(iω − Δ0
σ0 − Vσ )(iω − Δ0

2σ̄ − δΔσ0 − δΔ2σ̄ )

U
− Pσ̄2Vσ − δΔσ0. (5.90)

From (5.56) it follows that δΔā is finite for all U . Moreover, since δΔ2σ̄ /U → 1 as
U → ∞, the final result becomes

lim
U→∞Gσ (iω) = P0σ

iω − Δ0
σ0 − δΔσ0 − P0σ Vσ

= P0σ

iω − Δσ0 − P0σ Vσ

. (5.91)

From the last expression, we see that this result is reminiscent of the corresponding
result in the Hubbard-I-approximation. Here, also the corrected transition energy is
given by

Δσ0 = Δ0
σ0 + 1

2π

∑

k

|vkσ̄ |2 2f (εkσ̄ ) − 1

εkσ̄ − Δσ̄0
, (5.92)

where we have used the approximation of the locator introduced below (5.56). In
this limit it also fairly simple to find an analytical expression for the population
number 〈nσ 〉, since N2 → 0 leaves 〈nσ 〉 = Pσ2 → Nσ . Using Nσ = Im

∫
(G<

0σ −
G>

σ2)dω/2π we then obtain, at zero temperature, the non-linear equation

〈nσ 〉 = P0σ

Γσ

∑

χ=L,R

Γ χ
σ

{
1

π
arctan

μχ − Δσ0

P0σ Γσ /2
+ 1

2

}
. (5.93)

Letting μχ → −∞, or Δσ0 → ∞, the right hand side of the equation vanishes giv-
ing 〈nσ 〉 = 0, which is expected for an unoccupied quantum dot. In the opposite
limit, i.e. μχ → ∞, or Δσ0 → −∞, the sum equals Γσ , hence, the resulting equa-
tion to solve is simply

Nσ = 〈nσ 〉 = P0σ = N0 + Nσ , (5.94)

which can only be satisfied by requiring that N0 = 0, that is
∑

σ Nσ = 1. There is
exactly one electron in the QD. This electron may, however, be distributed in some
way among the two spin-projections.

5.3.2 Including Fluctuations in P

Now, we include the fluctuations of the population numbers, i.e. δP. Consid-
ering e.g. (5.80), the two contributions Vσ0c(t, t1)Dcσ0(t1, t

′)R0σ (t)P0σ ā(t
′) and

Vσ̄0c(t, t1)Dcσ̄0(t1, t
′)R0σ σ̄0(t)P0σ̄ ā(t

′) appear in the equation for Gσ0ā . Operating
with R on the end-factor P results in the Bose-like Green function K . Let us re-
main within the simplest order of approximation for this Green function. Then, only
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the propagators Kσσ̄ and the end-factors P0σ are non-vanishing in general. We then
have for, say, a = 0σ

δP0σ (t, t ′) = iKσ̄σ (t, t ′)
∫

C

∑

a

Vσ̄0a(t, t1)Daσ0(t1, t
′)dt1

+ (〈T(h0 + hσ )(t)(h0 + hσ )(t ′)〉U − P0σ (t)P0σ (t ′)
)

×
∫

C

∑

a

Vσ0a(t, t1)Daσ0(t1, t
′)dt1, (5.95)

where Kσ̄σ (t, t ′) = (−i)〈TZσ̄σ (t)Zσσ̄ (t ′)〉U . To the lowest order of approximation
Kσ̄σ (t, t ′) = (−i)(Nσ̄ −Nσ )Te−iΔσσ̄ (t−t ′) = (−i)(P0σ̄ −P0σ )Te−iΔσσ̄ (t−t ′), where
the last equality is clear since P0σ = N0 + Nσ by definition. Clearly, in this approx-
imation the fluctuations in the populations of the different spin states may provide
some effect to the properties of the quantum dot only in the case of a spin-polarized
quantum dot such that Nσ �= Nσ̄ .

The last contribution is proportional to [δ(t − t ′) − P0σ (t)]P0σ (t ′) under
conditions for which the diagonal operators hp are constant, while it vanishes
if those operators are independent, since then 〈T(h0 + hσ )(t)(h0 + hσ )(t ′)〉U =
P0σ (t)P0σ (t ′). In either case, this contribution is negligible at this stage. Later we
will encounter situations when the finiteness of this contributions, although small,
is essential for the description of correlation effects.

It is instructive to study the graphical appearance of this dressing to the end-
factor, here given by

(5.95′)

We can, thus, interpret the first term in δP0σ as spin σ̄ electrons in the leads (wiggle)
that tunnel into the quantum dot (double line), a process which is assisted by a spin-
flip transition in the quantum dot (dashed line).

Also using the simplification Dab(t, t
′) = (−i)δabTe−iΔā(t−t ′), we can find the

lesser form of δP according to

δP <
0σ (t, t ′) = i

∫ (
V r

σ̄0(t, t1)D
<
0σ̄ (t1, t

′) + V <
σ̄0(t, t1)D

a
0σ̄ (t1, t

′)
)
dt1K

<
σ̄σ (t, t ′)

−
∫ (

V r
σ0(t, t1)D

<
0σ (t1, t

′) + V <
σ0(t, t1)D

a
0σ (t1, t

′)
)
dt1P0σ (t)P0σ (t ′)

= Nσ

∑

k

|vkσ̄ |2
(∫ t

−∞
e−iεkσ̄ (t−t1)−iΔσ̄0(t1−t ′)dt1

−
∫ t ′

−∞
f (εkσ̄ )e−iεkσ̄ (t−t1)−iΔσ̄0(t1−t ′)dt1

)
e−iΔσσ̄ (t−t ′)

= iNσ

∑

k

|vkσ̄ |2 f (εkσ̄ )e−i(εkσ̄ +Δσσ̄ )(t−t ′) − e−iΔσ0(t−t ′)

εkσ̄ − Δσ̄0 − iδ
, (5.96)
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where we have used that Δσσ̄ +Δσ̄0 = Δσ0 −Δσ̄0 +Δσ̄0 = Δσ0, which is true also
in the one-loop-approximation. We notice that the first term accounts for spin-flips
of the electrons on the quantum dot, in presence of the spin σ̄ (remember that we
are considering the spin σ -channel) electrons in the leads.

We obtain the greater correction δP >
0σ analogously, i.e.

δP >
0σ (t, t ′) = −iNσ̄

∑

k

|vkσ̄ |2 [1 − f (εkσ̄ )]e−i(εkσ̄ +Δσσ̄ )(t−t ′) − e−iΔσ0(t−t ′)

εkσ̄ − Δσ̄0 − iδ
.

(5.97)
With the help of these expressions we can finally find the retarded/advanced form
of δP0σ , using Ar/a(t, t ′) = ±θ(±t ∓ t ′)[A>(t, t ′) − A<(t, t ′)], that is,

δP
r/a

0σ (t, t ′) = (∓i)θ(±t ∓ t ′)
∑

k

|vkσ̄ |2
εkσ̄ − Δσ̄0 − iδ

({
Nσ̄ − f (εkσ̄ )(Nσ̄ − Nσ )

}

× e−i(εkσ̄ +Δσσ̄ )(t−t ′) − (Nσ̄ + Nσ )e−iΔσ0(t−t ′)). (5.98)

In the stationary regime we go over to energy space, for which we obtain the
lesser correction

δP <
0σ (ω) = i2πNσ

∑

k

|vkσ̄ |2 f (εkσ̄ )δ(ω − εkσ̄ − Δσσ̄ ) − δ(ω − Δσ0)

εkσ̄ − Δσ̄0 − iδ

≈ iNσ

∑

χ

Γ
χ
σ̄

(
fχ(ω − Δσσ̄ )

ω − Δσ0
− iπ[1 − fχ(Δσ̄0)]δ(ω − Δσ0)

)
, (5.99)

whereas the greater correction becomes

δP >
0σ (ω) ≈ −iNσ̄

∑

χ

Γ
χ
σ̄

(
1 − fχ(ω − Δσσ̄ )

ω − Δσ0
− iπfχ(Δσ̄0)δ(ω−Δσ0)

)
. (5.100)

Finally, we also have the retarded/advanced correction given by

δP r
0σ (ω) = P0σ̄ − P0σ

ω − Δσ0

∑

χ

Γ
χ
σ̄

2π

{
log

∣∣∣∣
ω − μχ − Δσσ̄

μχ − Δσ̄0

∣∣∣∣

− iπ
[
fχ(Δσ̄0) − fχ(ω − Δσσ̄ )

]}− i

2
Γσ̄

Nσ̄ + Nσ

ω − Δσ0 + iδ
, (5.101)

where we have used that Nσ̄ − Nσ = P0σ̄ − P0σ .
The derivations, so far, have been made for the Green function G0σ . The deriva-

tions for Gσ̄2 are very analogous and are left as an exercise for the reader.
At this stage we have everything we need in order to obtain the non-equilibrium

Green functions for the single-level quantum dot. We only need to find the expres-
sion for the lesser and greater Green functions, which would have been easy if it
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were not for the additional contribution in the end-factor. Recall that the equation to
the Green function reads

(
i∂t − Δ(t)

)
G(t, t ′) = P(t, t ′) +

∫

C

P(t, t1)V(t1, t2)G(t2, t
′)dt1dt2. (R5.81)

Algebraically, we thus have the equation

G(t, t ′) = d(t, t1)P(t1, t
′) + d(t, t1)P(t1, t2)V(t2, t3)G(t3, t

′). (5.102)

Applying the rules for analytical continuation we obtain the equation for the lesser
Green function according to

G< = dr
P

< + d<
P

a + dr
P

rVrG< + dr
P

rV<Ga + dr
P

<VaGa + d<
P

aVaGa.

(5.103)
Due to the increased complexity in the end-factor, it depends on two times instead
of a single, we do not get away as easy as we did previously in the derivation of G<.
Collecting the G<-terms on the left hand side and using that dr,−1d< = 0 identi-
cally, we have

G<(t, t ′) =
∫

Gr (t, t1)V<(t1, t2)Ga(t2, t
′)dt1dt2 +

∫
Dr (t, t1)

[
P

<(t1, t
′)

+
∫

P
<(t1, t2)Va(t2, t3)Ga(t3, t

′)dt2dt3

]
dt1, (5.104)

and analogously for the greater Green function.
The first term (formally) remains the same as in mean-field theory, although

the (retarded/advanced) Green functions themselves are given beyond mean-field.
The increased complexity in the end-factor, however, gives rise to a correction term
which accounts for fluctuations in the occupation on the quantum dot, which would
not be present in any mean-field type of theory.

5.3.3 Higher Order Approximations

The basic equations for the single level quantum dot is given by (5.73a), (5.73b),
where the diagrammatic expansion of the Green function is generated in the second
term of the integrand of each equation. For e.g. (5.73a), the starting point for higher
order approximations can be written as in (5.78), and analogously for (5.73b). In
order to obtain higher order approximations compared to the ones that we already
studied, we go back to (5.78), here given again for convenience,

R0σb(t
+)Vbc(t, t1)Gca(t1, t

′)

= −Vbc(t, t1)Dcd(t1, t2){R0σb(t
+)D−1

de (t2, t3)}Gea(t3, t
′)

+ Vbc(t, t1)Dcd(t1, t
′){R0σb(t

+)Pda(t
′)}. (R5.78)
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Let us concentrate our efforts to the first term. Although we could dwell on the
various approximations of δP , the second term is in principle dealt with to full
extent, and can thus be left without further considerations. Also, in order not to
make the following discussion to cumbersome in terms of notation, we assume infi-
nite Coulomb repulsion in the quantum dot, i.e. U → ∞. Our discussion is straight
forwardly generalized to finite correlation strength, although the algebraic manipu-
lations may become slightly more involved.

The inverse of the locator

D−1
de (t2, t3) = d−1

de (t2, t3) − Sde(t2, t3), (R5.48′)

with the self-energy operator

Sde(t2, t3) = Pdc̄(t2)Vc̄e(t2, t3)

−
∫

C

Vc̄f (t2, t4)Df ḡ(t4, t5){Rdc̄(t2)D
−1
gē (t5, t3)}dt4dt5. (R5.50′)

We recall that the one-loop approximation was obtained by omitting the second
term in Sde. Thus, we obtain the next order of approximation by keeping this term,
however, replacing the inverse locator inside the integral by its corresponding bare
locator. Putting b = 0σ̄ and using that V , D, and G all are diagonal in the limit
U → ∞, we find for the first term in (R5.78)

−
∫

C

Vσ̄ (t, t1)D0σ̄ (t1, t2){R0σ σ̄0(t
+)D−1

0σ̄ σ0(t2, t3)}G0σ (t3, t
′)dt1dt2dt3

= −
∫

C

Vσ̄ (t, t1)D0σ̄ (t1, t2)

{
R0σ σ̄0(t

+)

[
d−1

0σ̄ σ0(t2, t3) − P0σ̄ σ0(t2)Vσ ′(t2, t3)

+
∫

C

Vs(t2, t4)D0ss′0(t4, t5){R0σ̄ s0(t2)d
−1
0s′σ0(t5, t3)}dt4dt5

]}

× G0σ (t3, t
′)dt1dt2dt3

≈ −
∫

C

Vσ̄ (t, t1)D0σ̄ (t1, t2)

{
−i[δ(t+ + t2)δ(t2 − t3) + Kσ̄σ (t+, t2)Vσ (t2, t3)]

−
∫

C

Vs(t2, t4)D0s(t4, t6){R0σ σ̄0(t
+)d−1

0ss′0(t6, t7)}D0s′(t7, t5)

× {R0σs0(t2)d
−1
0s′σ0(t5, t3)}dt4dt5dt6dt7

}
G0σ (t3, t

′)dt1dt2dt3

= δΔσ0(t)G0σ (t, t ′) +
∫

C

[
Σ

(1b)
0σ (t, t1) + Σ

(2b)
0σ (t, t1)

]
G0σ (t1, t

′)dt1, (5.105)

where the first and second terms are given according to the previous discussion,
whereas the last contribution is of higher order and given by

Σ
(2b)
0σ (t, t ′) =

∫

C

Vσ̄ (t, t1)D0σ̄ (t1, t
′)Vσ̄ (t ′, t3)D0σ̄ (t3, t)D0σ (t, t ′)dt1dt3. (5.106)
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Instead letting b = 0σ in (R5.78) we obtain

−
∫

C

Vσ (t, t1)D0σ (t1, t2){R0σσ0(t
+)D−1

0σσ ′0(t2, t3)}G0σ ′σ0(t3, t
′)dt1dt2dt3

= δσσ ′
∫

C

Σ
(2a)
0σ (t, t2)G0σ (t2, t

′), (5.107)

where

Σ
(2a)
0σ (t, t ′) =

∫

C

Vσ (t, t1)D0σ (t1, t
′)Vσ̄ (t ′, t3)D0σ̄ (t3, t)D0σ̄ (t, t ′)dt1dt3. (5.108)

Graphically those contributions can be drawn as

(5.108′)

(5.106′)

which illustrate the propagation of a quantum dot electron from left to the right in
the presence of electrons tunneling between the leads and quantum dot. Be reminded
that there should be quantum dot electron lines with spin σ attached to the left and
right hand sides of each self-energy. Then, the first self-energy, Σ

(2a)
0σ , represents

that an incoming electron flips its spin at the left vertex, and propagates to the right
vertex where it flips its spin back to σ . This propagation from the left to the right
vertex takes place under influence of an spin σ electron propagating in the lead
which tunnels into the quantum dot, flips its spin at the right vertex while it tunnels
back into the lead and then again into the quantum dot. The second self-energy,
Σ

(2b)
0σ , represents propagation from the left to the right vertex of a spin σ electron in

the quantum dot, which scatters off spin σ̄ electrons at the vertices, electrons which
tunnel back and forth between the leads and the quantum dot.

Making use of that the expressions for the self-energies, cf. (5.108) and (5.106),
are given as two separate integrals, we convert the self-energy, e.g. Σ(2a), into its
lesser counterpart according to

Σ
(2a),<
0σ (t, t ′) = D<

0σ̄ (t, t ′)
∫ (

V r
σ (t, t ′′)D<

0σ (t ′′, t ′) + V <
σ̄ (t, t ′′)Da

0σ̄ (t ′′, t ′)
)
dt ′′

×
∫ (

V r
σ̄ (t ′, t ′′)D>

0σ̄ (t ′′, t) + V >
σ̄ (t ′, t ′′)Da

0σ̄ (t ′′, t)
)
dt ′′. (5.109)



5.3 Single-Level Quantum Dot 85

Using the previous approximations for V and D, we obtain the lesser self-energy

Σ
(2a),<
0σ (t, t ′) = ie−iΔσ̄0(t−t ′)∑

k

|vkσ |2 f (εkσ )e−iεkσ (t−t ′) − e−iΔσ0(t−t ′)

εkσ − Δσ0 − iδ

×
∑

p

|vpσ̄ |2 [1 − f (εpσ̄ )]eiεpσ̄ (t−t ′) − eiΔσ̄0(t−t ′)

εpσ̄ − Δσ̄0 − iδ
. (5.110)

Going back in the derivation of the self-energies Σ(2a) and Σ(2b), we simpli-
fied the inverse of the locators by its bare counterparts. Therefore, we proceed by
reinserting the dressed locators inside the functional differentiations. The we find
that we first have a product of first order derivatives, similar to what we have in the
self-energies Σ(2a) and Σ(2b). In addition, we also have to account for a second
order derivative appearing due to the product structure of the self-energy opera-
tor. Consider the derivative R0σ σ̄0(t

+)D−1
0σ̄ σ0(t2, t3), expand the inverse locator, and

consider the last term in the first order expansion, i.e.

R0σ σ̄0(t
+)
[{

R0σ̄ s0(t2)Vs(t2, t4)D0ss′0(t4, t5)
}
D−1

0s′σ0(t5, t3)
]

= −R0σ σ̄0(t
+)
[
Vs(t2, t4)D0ss′0(t4, t5)

{
R0σ̄ s0(t2)D

−1
0s′σ0(t5, t3)

}]

= Vs(t2, t4)D0s(t4, t6)
{
R0σ σ̄0(t

+)D−1
0ss′0(t6, t7)

}

× D0s′(t7, t5)
{
R0σ̄ s0(t2)D

−1
0s′σ0(t5, t3)

}

− Vs(t2, t4)D0s(t4, t5)
{
R0σ σ̄0(t

+)R0σ̄ s0(t2)D
−1
0sσ0(t5, t3)

}
. (5.111)

Expanding the inverse locator once more, i.e. D−1 = d−1 − PV − [RV D]D−1,
however, omitting the last term, give the self-energy contribution

−Vσ̄ (t, t1)D0σ̄ (t1, t2)R0σ σ̄0(t
+)
[{

R0σ̄ s0(t2)Vs(t2, t4)D0ss′0(t4, t5)
}
D−1

0s′σ0(t5, t3)
]

= Σ
(2a)
0σ (t, t3) + Σ

(2b)
0σ (t, t3) + Vσ̄ (t, t1)D0σ̄ (t1, t2)

(
Vs(t2, t4)D0s(t4, t6)

× [{R0σ σ̄0(t
+)d−1

0ss′0(t6, t7)
}{

R0σ̄ s0(t2)P0s′σ0(t5)Vσ (t5, t3)
}

+ {R0σ σ̄0(t
+)P0ss′0(t6)Vs′(t6, t7)

}{
R0σ̄ s0(t2)d

−1
0s′σ0(t5, t3)

}

− {R0σ σ̄0(t
+)P0ss′0(t6)Vs′(t6, t7)

}

× {R0σ̄ s0(t2)P0s′σ0(t5)Vσ (t5, t3)
}]

D0s′(t7, t5)

− Vs(t2, t4)D0s(t4, t5)
{
R0σ σ̄0(t

+)R0σ̄ s0(t2)P0s′σ0(t5)Vσ (t5, t3)
})

, (5.112)

where we have used that the second derivative of the bare locator identically van-
ishes. Here, there are four third order contributions with respect to the interaction
potential V . We study them one by one. First consider

Σ
(3a)
0σ (t, t3) = Vσ̄ (t, t1)D0σ̄ (t1, t2)Vs(t2, t4)D0s(t4, t6)

{
R0σ σ̄0(t

+)d−1
0ss′0(t6, t7)

}

× D0s′(t7, t5)
{
R0σ̄ s0(t2)P0s′σ0(t5)Vσ (t5, t3)

}
. (5.113)



86 5 Diagram Technique

From (5.79a) we find the requirement that s = σ̄ and s′ = σ , which yields
R0σ σ̄0(t

+)d−1
0ss′0(t6, t7) = iδsσ̄ δs′σ δ(t − t6)δ(t6 − t7). This leads to that the sec-

ond factor, R0σ̄ s0(t2)P0s′σ0(t5)Vσ (t5, t3) = −P0σ̄ (t2)P0σ (t5)Vσ (t5, t3). Hence, us-
ing that G = DP , we obtain

Σ
(3a)
0σ (t, t3) = −Vσ̄ (t, t1)G0σ̄ (t1, t2)Vσ̄ (t2, t4)D0σ̄ (t4, t)G0σ (t, t5)Vσ (t5, t3)

(5.114)
or

(5.114′)

which is basically a dressing of Σ
(2a)
0σ . The second new contribution in (5.112) also

dresses a lower order diagram, since

Σ
(3b)
0σ (t, t3) = Vσ̄ (t, t1)D0σ̄ (t1, t2)Vs(t2, t4)D0s(t4, t6)

× {R0σ σ̄0(t
+)P0ss′0(t6)Vs′(t6, t7)

}

× D0s′(t7, t5)
{
R0σ̄ s0(t2)d

−1
0s′σ0(t5, t3)

}

= Vσ̄ (t, t1)D0σ̄ (t1, t2)Vs(t2, t4)D0s(t4, t6)iKσ̄σ (t+, t6)Vs′(t6, t7)

× D0s′(t7, t5)
[−iδsσ̄ δs′σ δ(t2 − t5)δ(t5 − t3)

]

= Vσ̄ (t, t1)D0σ̄ (t1, t3)Vσ̄ (t3, t4)D0σ̄ (t4, t6)Kσ̄σ (t+, t6)

× Vσ (t6, t7)D0σ (t7, t3) (5.115)

which has the graphical appearance

(5.115′)

The third new contribution in (5.112) gives

Σ
(3c)
0σ (t, t3) = −Vσ̄ (t, t1)D0σ̄ (t1, t2)Vs(t2, t4)D0s(t4, t6)

× {R0σ σ̄0(t
+)P0ss′0(t6)Vs′(t6, t7)

}

× D0s′(t7, t5)
{
R0σ̄ s0(t2)P0s′σ0(t5)Vσ (t5, t3)

}
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= iVσ̄ (t, t1)G0σ̄ (t1, t2)Vσ̄ (t2, t4)D0σ̄ (t4, t6)Kσ̄σ (t, t6)Vσ (t6, t7)

× G0σ (t7, t5)Vσ (t5, t3) (5.116)

or

(5.116′)
which is of fourth order with respect to the interaction potential V .

All the three above contributions provide a dressing to lower order diagram and
do not introduce anything significantly new to our description. The last contribution
in (5.112) does, however, bring forward pieces of physics which is not contained in
the lower order diagrams. The second order derivative acting on the end-factor takes
a higher order moment of the fluctuations in the quantum dot occupation. We have

Σ
(3d)
0σ (t, t3) = −Vσ̄ (t, t1)D0σ̄ (t1, t2)Vs(t2, t4)D0s(t4, t5)

× {R0σ σ̄0(t
+)R0σ̄ s0(t2)P0s′σ0(t5)Vσ (t5, t3)

}
. (5.117)

We assume that the order of the functional differentiation is of no importance (one
arrives at the same result when this assumption is relaxed so this is no serious
simplification). Then, we consider as the “first” derivative R0σ σ̄0(t)P0s′σ0(t5) =
iδs′σ̄ Kσ̄σ (t, t5). The equation of motion for Kσ̄σ (t, t5) can to the simplest order
be written

(
i∂t − Δσσ̄ − ΔUσσ̄ (t)

)
Kσ̄σ (t, t5) = δ(t − t5)

(
P0σ̄ − P0σ

)
. (5.118)

We here note two things which are crucial in order to proceed with the self-
energy Σ(3d). First, the propagator Kσ̄σ can be written as a product of a locator
and end-factor analogously to G. We, thus, write Kσ̄σ = Lσ̄σ [P0σ̄ − P0σ ], where
Lσ̄σ is the locator. In principle, the product LP is a matrix product and should in-
volve more terms, terms which we do not have to consider here since those vanish.
Second, the left hand side of the equation for K also contains the source fields Uξ

which is also in analogy with the equation for G.
Making use of those observations, and making the simplest possible expansion

of K , we now act with the second derivative, i.e.

R0σ̄ s0(t2)iδs′σ̄ Kσ̄σ (t, t5) = −iLσ̄σ (t, t8)[R0σ̄ s0(t2)L
−1
σ̄ σ (t8, t9)]Kσ̄σ (t9, t5)

+ iLσ̄σ (t, t5)R0σ̄ s0(t2)[P0σ̄ (t5) − P0σ (t5)]. (5.119)

A quick look at (5.118) gives at hand that the first term in the expression for RK

vanishes unless s = σ̄ . This requirement is also necessary for the second contribu-
tion since an off-diagonal functional derivative acting on the diagonal end-factors
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vanishes, in the present model. Hence, we find the following expression for the sec-
ond order derivative:

R0σ̄ s0(t2)iδs′σ̄ Kσ̄σ (t, t5)

= Lσ̄σ (t, t2)Kσ̄σ (t2, t5) + iLσ̄σ (t, t5)[〈T(h0 + hσ̄ )(t2)(h
0 + hσ̄ )(t5)〉U

− P0σ̄ (t2)P0σ̄ (t5) − 〈T(h0 + hσ̄ )(t2)(h
0 + hσ )(t5)〉U + P0σ̄ (t2)P0σ (t5)].

(5.120)

Assuming that the diagonal operators hp have a slow time-dependence, we
can approximate the last term by iLσ̄σ (t, t5)[δ(t2 − t5)Nσ̄ (t2) − {P0σ̄ (t5) −
P0σ (t5)}P0σ̄ (t2)]. Finally, we then have the self-energy

Σ
(3d)
0σ (t, t3) = −Vσ̄ (t, t1)D0σ̄ (t1, t2)Vσ̄ (t2, t4)D0σ̄ (t4, t5)

[
Lσ̄σ (t, t2)Kσ̄σ (t2, t5)

+ iLσ̄σ (t, t5)
{
δ(t2 − t5)Nσ̄ (t2) − {P0σ̄ (t5) − P0σ (t5)}P0σ̄ (t2)

}]

× Vσ (t5, t3) (5.121)

and graphically

(5.121′)

where the dotted line denotes Lσ̄σ , whereas the empty circle in the second diagram
stands for Nσ̄ . It should also be noticed in the second diagram, that the small loop
to the right is actually contracted to a single time due to δ(t2 − t5).

It is interesting to see that, despite all other diagram involving a functional deriva-
tive of the end-factor vanish in the spin-degenerate case, this last self-energy con-
tributes for all conditions of spin-polarization. While the first and last diagrams are
finite whenever the spin-degeneracy is broken, due to the presence of P0σ −P0σ̄ , the
second diagram is finite also under spin-degenerate conditions, due to the absence
of P0σ − P0σ̄ . We also note, that there is a set of diagrams also when considering
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the derivative R0σ (t+)D−1
0σ , which are reminiscent of those discussed here and the

derivation of those are left as an exercise.
The middle diagram in the self-energy Σ

(3d)
0σ contributes even under spin-

degenerate conditions. Specifically, we have

(−i)

∫

C

Vσ̄ (t, t1)D0σ̄ (t1, t2)Vσ̄ (t2, t4)D0σ̄ (t4, t2)Lσ̄σ (t, t2)

× Nσ̄ (t2)Vσ (t2, t3)dt1dt2dt4

= (−i)

∫

C

Dσ̄ (t, t2)Dσ̄ (t2, t2)Lσ̄σ (t, t2)Nσ̄ (t2)Vσ (t2, t3)dt2, (5.122)

where Dσ̄ (t, t2) = ∫
C

Vσ̄ (t, t1)D0σ̄ (t1, t2)dt1. It is now a bit simpler to convert this
contribution into the real time domain. In particular, by assuming that t < t3, we
obtain

(−i)

∫

C

Dσ̄ (t, t2)Dσ̄ (t2)Lσ̄σ (t, t2)Nσ̄ (t2)Vσ (t2, t3)dt2

= (−i)

∫ t

−∞
(

D>
σ̄ (t, t2)L

>
σ̄σ (t, t2) − D<

σ̄ (t, t2)L
<
σ̄σ (t, t2)

)

× Dσ̄ (t2, t2)Nσ̄ (t2)V
<
σ (t2, t3)dt2

+ (−i)

∫ t3

−∞
D<

σ̄ (t, t2)L
<
σ̄σ (t, t2)Dσ̄ (t2, t2)

× Nσ̄ (t2)
(
V <

σ (t2, t3) − V >
σ (t2, t3)

)
dt2, (5.123)

where

D</>
σ̄ (t, t2) =

∫ (
V r

σ̄ (t, t1)D
</>

0σ̄ (t1, t2)dt1 + V
</>
σ̄ (t, t1)D

a
0σ̄ (t1, t2)

)
dt1

= ±i
∑

k

|vkσ̄ |2 e−iΔσ̄0(t−t2) − f (±εkσ̄ )e−iεkσ̄ (t−t2)

Δσ̄0 − εkσ̄ + iδ
, (5.124a)

Dσ̄ (t2, t2) =
∫ t2

−∞
(
V <

σ̄ (t2, t1)D
>
0σ̄ (t1, t2) − V >

σ̄ (t2, t1)D
<
0σ̄ (t1, t2)

)
dt1

= i
∑

k

|vkσ̄ |2 2f (εkσ̄ ) − 1

Δσ̄0 − εkσ̄ + iδ
. (5.124b)

Here, we have assumed, for simplicity, that V
</>
σ (t, t ′) = (±i)

∑
k f (±εkσ ) ×

e−iεkσ (t−t ′), and we have replaced the dressed locators by their bare counterparts
d

</>

0σ (t, t ′) = (±i)e−iΔσ0(t−t ′). We, also, replace the locators Lσ̄σ by l
</>
σ̄σ (t, t ′) =

(−i)e−iΔσσ̄ (t−t ′) and assume that the occupation numbers Nσ̄ are time-independent.
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We then obtain e.g.

(−i)

∫ t

−∞
D>

σ̄ (t, t2)L
>
σ̄σ (t, t2)V

<
σ (t2, t3)dt2

≈ −i
∑

χχ ′

Γ
χ
σ̄

2π

Γ
χ ′
σ

2π

∫
fχ ′(ω)

2πδ(ω − ε′)
Δσ̄0 − ε + iδ

(
1

ω − Δσ0 + iδ

− fχ(−ε)

ω − ε − Δσσ̄ + iδ

)
dεdε′e−iω(t−t3)

dω

2π
. (5.125)

The first term gives a contribution of roughly −(1/4π)
∑

χχ ′ Γ
χ
σ̄ Γ

χ ′
σ fχ ′(ω)/(ω −

Δσ0 + iδ), whereas the second term provides the logarithmic correction

∼ i

(2π)2

∑

χχ ′
Γ

χ
σ̄ Γ χ ′

σ fχ ′(ω) ln

∣∣∣∣
μχ − Δσ̄0

ω − μχ − Δσσ̄

∣∣∣∣ (5.126)

to the self-energy. This contribution gives rise to a so-called Kondo peak around the
chemical potential μχ for small spin-flip energies Δσσ̄ . More contributions of this
sort are obtained by carry out the calculations for the remaining part of the lesser,
and greater, forms of the middle diagram of the self-energy Σ

(3d)
0σ .

We have now discussed most of the issues when it comes to expand the Hub-
bard operator Green functions in terms of diagrams. We have not, however, taken
a deeper discussion about e.g. vertex corrections and vertex equation, and other
highly non-trivial matters. Those discussions will be left untouched for the benefit
of considering more examples from physics in the following chapters.
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Chapter 6
Tunneling Current in a Single Level System

Abstract We study the local properties and the tunneling current in a single level
quantum dot system employing the different approximation schemes developed in
the previous chapters. The impact of the one-loop approximation cause variations
in the broadening of the local level and an additional explicit contribution to the
current. We proceed by discussing the behavior under spin-dependent conditions.

6.1 Single Level Quantum Dot

From the simplest theory we know that the single level in the quantum dot is in-
finitely sharp if there is no environment coupled to it. Upon coupling the quantum
dot to external bath(s), the level broadens and one cannot any longer speak of a dis-
crete level in a strict sense. It is, nonetheless, simpler to think of the system as still
being separated into pieces consisting of the quantum dot level and the delocalized
environment, especially when we go to higher order approximation.

In Sects. 5.3.1 and 5.3.2 we studied the diagrammatic expansion of the single
level quantum dot Green function up to the first order beyond mean-field theory, in
the sense that we included fluctuations in the occupation numbers. These fluctua-
tions result in a self-energy which is energy dependent. Moreover, including these
fluctuations also resulted in an increased complexity in the lesser and greater Green
functions, as we saw in (5.104).

In this section we will study the single level quantum dot in some more detail,
however, we will not go into the Kondo physics since this theory is not developed at
the moment in terms of Hubbard operators. We will take the full one-loop approx-
imation and analyze the physics of the single level system under spin-degenerate
as well as under spin-dependent conditions, in order to acquire as complete picture
as possible. For simplicity and since we are mainly seeking a qualitative picture,
however, we perform most of the analysis in the large Hubbard U limit, so that the
doubly occupied state can be ignored.

The local density of states in the quantum dot is given by −tr Im Gr/π , in equi-
librium, where we trace over the many-body states included in G. In the present
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Fig. 6.1 Local equilibrium properties of the single level quantum dot system under spin-degener-
ate conditions. (a) Local density of states (LDOS) as function of the energy ω, where the line at
the origin marks the location of the equilibrium chemical potential μ0, and (b) population numbers
for varying position of the bare local level relative to μ0, (c) schematic sketch of the system, and
(d) current at eV = 0.01Γ . Here, we have taken kBT = 0.5Γ , and ε0 = −5Γ/π

case, we can decouple the equations for spin ↑ and ↓, in the stationary regime lead-
ing to

− 1

π
ImGr

0σ (ω) = − 1

π
Im

P0σ + δP r
0σ (ω)

ω − Δσ0 + iΓσ [P0σ + δP r
0σ (ω)]/2

, (6.1)

where δP r
0σ (ω) is given in (5.101). In Fig. 6.1(a) we plot the total local den-

sity of states (− Im
∑

σ Gr
0σ /π ) in three different approximations, i.e. Hubbard-

I-approximation (solid), re-normalized levels (faint), and one-loop-approximation
(dotted). In the Hubbard-I-approximation, we have

− 1

π
ImG

r,HIA
0σ (ω) = Γσ

2π

P 2
0σ

(ω − Δ0
σ0)

2 + (Γσ P0σ /2)2
, (6.2)

which is a typical Lorentzian of width Γσ P0σ /2, see Fig. 6.1(a) (solid). Adding
the level renormalization does not change the functional appearance of the density
of state, only the peak position is changed from Δ0

σ0 to Δσ0. This is also clearly
illustrated in Fig. 6.1(a) (faint).
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Adding the fluctuating contribution, δP , we find

− 1

π
ImG

r,OLA
0σ (ω)

= Γσ

2π

[P0σ + Re δP r
0σ ]2 + [Im δP r

0σ ]2

[ω − Δσ0 − Im δP r
0σ Γσ /2]2 + [(P0σ + Re δP r

0σ )Γσ /2]2

− 1

π

(ω − Δσ0) Im δP r
0σ

[ω − Δσ0 − Im δP r
0σ Γσ /2]2 + [(P0σ + Re δP r

0σ )Γσ /2]2
. (6.3)

The first term has a functional appearance which is similar to the simpler approxi-
mations, i.e. a Lorentzian. One should bear in mind, though, that δP r

0σ (ω) depends
on the energy ω. The overall behavior is, thus, much more complex than a sim-
ple Lorentzian function. We note that there is an additional shift to the local en-
ergy level, Im δP r

0σ Γσ /2. This shift is small except for ω ≈ Δσ0, where it diverges,
cf. (5.101). The width of the level, (P0σ + Re δP r

0σ )Γσ /2 is increased, which is
physically reasonable since the inclusion of more electron movements back and
forth should lead to a decreased lifetime of the state. This additional broadening of
the local level is also seen in Fig. 6.1(a) (dotted).

The second term provides only minor modifications to the overall picture, which
is seen by e.g. taking the ratio between the first and the second contribution in the
above expression. We then obtain

2

Γσ

(ω − Δσ0) Im δP r
0σ

[P0σ + Re δP r
0σ ]2 + [Im δP r

0σ ]2

= − 2

Γσ

π(ω − Δσ0)[f (Δσ̄0) − f (ω − Δσσ̄ )] + [Nσ̄ + Nσ ]Γσ̄ /2

[P0σ + Re δP r
0σ ]2 + [Im δP r

0σ ]2
, (6.4)

since Im δP r
0σ (ω) = −π[f (Δσ̄0) − f (ω − Δσσ̄ )] − (Γσ̄ /2)[Nσ̄ + Nσ ]/(ω − Δσ0).

The divergence in Im δP r
0σ leads to that the ratio above approaches zero, and apart

from this case, the ratio is smoothly behaving.
In equilibrium the population numbers Np are given by simply N0 = 1 −

N↑ − N↓ and Nσ = − Im
∫

f (ω)Gr
0σ (ω)dω/π , and these are plotted in Fig. 6.1(b).

Here, the quantum dot is empty (N0 → 1) when μ0 � Eσ = ε0, that is, when the
electron level is far above the chemical potential μ0, while it is filled by half an elec-
tron of each spin (Nσ → 1/2, such that

∑
σ Nσ → 1) in average at the opposite end.

We also see that there are kinks in the population numbers in the two approximations
beyond the Hubbard-I-approximation, which are related to logarithmic divergence
of the level renormalization when μ → Δσ0. This behavior is, as we previously dis-
cussed, caused by replacing the dressed locator with its bare counterpart in the level
renormalization and is smoothened out when the level renormalization is calculated
in a bit more sophisticated manner, see e.g. [1, 2].

In Fig. 6.1(d) we plot the near equilibrium current (we discuss in the succeeding
section how the current is calculated) for varying positions of the quantum dot level
relative to μ0, using a small bias voltage. In this way we mimic the linear response
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measurements for the conductance of system. We find that there are no significant
differences between the three approximation schemes under spin-degenerate condi-
tions, which is not surprising since the contribution δP has very little impact in this
case.

The above relations are written with explicit references to the spin degree of
freedom. Let us, therefore, study what will happen with the quantum dot when there
is a spin-dependence imposed on the system. We assume that the spin-polarization
in the leads can be parametrized through the couplings using the relation pχ =
Γ

χ
↑ − Γ

χ
↓ , and we set Γ

χ
σ = Γ

χ

0 (1 + σpχ)/2.
The transition energy Δσ0 is coupled to Δσ̄0 through the renormalization equa-

tion, e.g.

Δσ0 = Δ0
σ0 +

∑

χ

Γ
χ
σ̄

π
ln

|μχ − Δσ̄0|
W

.

Hence, Δ↑0 = Δ0
↑0 in the limit Γ

χ
↓ = 0. In this limit, however, Γ

χ
↑ = Γ χ which

leads to that Δ↓0 − Δ0
↓0 ≈ ∑

χ Γ χ ln{|μχ − Δ↑0|/W }/π < 0, since |μχ −
Δσ0|/W < 1. Physically, this means that the degeneracy of the quantum dot level
is broken, and that the spin level with the least coupling to the leads becomes
the ground state. The equilibrium local density of states therefore should acquire
a double peak structure, which is also seen in Fig. 6.2(a). In the full one-loop-
approximation, the increased broadening tends to smear out the double peak struc-
ture.

The occupations of the spin-split levels become significantly altered from the
Hubbard-I-approximation-picture, see Fig. 6.2(b), where the occupations for the ↑
and ↓ levels differ throughout the whole range in the one-loop-approximation, while
there is a difference only in a limited range for the simpler approximations. Also,
the linear response current displays some information about the spin-dependence in
the quantum dot, see Fig. 6.2(c) and (d).

6.2 Spin-Dependent Transport in Quantum Dot Systems

We have now studied the local properties of the single level system under spin-
dependent conditions in equilibrium. Here, we proceed by looking at the transport
properties for these conditions and link the behavior of the differential conductance
to the local density of states.

We already know what the current looks like in mean field theory. Hence, let
us look at what happens with the current in the next order of approximation, when
using the formula in (4.14), here rewritten to suit the present situation to read

IL = ie

2π
tr
∫

Γ L
[
fL(ω)G>(ω) + [1 − fL(ω)]G<(ω)

]
dω, (4.14′)

in the stationary regime for constant coupling Γ L. For simplicity, we also let the
Coulomb repulsion U → ∞, so that we only have to consider the Green func-
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Fig. 6.2 Local equilibrium properties of the single level quantum dot system under spin-dependent
conditions (pL = 0.5 and pR = 0). (a) Local density of states (LDOS) as function of the energy
ω, where the line at the origin marks the location of the equilibrium chemical potential μ0, and
(b) population numbers, (c) schematic sketch of the system, and (d) current at eV = 0.01Γ . Here,
we have taken kBT = 0.5Γ , and ε0 = −5Γ/π

tion G0σ . In this case, the matrices in the formula above are diagonal. We re-
call that e.g. G< = GrV<Ga + Dr

P
<(1 + VaGa) in the one-loop-approximation,

which reduces to G< = GrV<Ga in the simpler approximations. Let us derive
the current for the one-loop-approximation, in order to be slightly more general.
Using that the matrices are diagonal, we find that the second term in the ex-
pression for the lesser Green function has the entries P

<
0σ Dr

0σ (1 + V a
σ Ga

0σ ) =
P

<
0σ (ω − Δσ0 − V a

σ P
a
0σ + V a

σ P
a
0σ )|Dr

0σ |2 = P
<
0σ (ω − Δσ0)|Dr

0σ |2. The lesser, and
greater, form of the end-factor is found in Sect. 5.3.2 and, moreover, using that
V

</>
σ (ω) = ±ifL(±ω)Γ L

σ ± ifR(±ω)Γ R
σ , we can write the current in the form

IL = e

2π

∑

σ

∫
Γ L

σ

[
Γ R

σ

(
fL(ω) − fR(ω)

)|Gr
0σ (ω)|2

+
∑

χ

Γ
χ
σ̄

{
Nσ̄ fL(ω)[1 − fχ(ω − Δσσ̄ )]

− Nσ [1 − fL(ω)]fχ(ω − Δσσ̄ )
}|Dr

0σ (ω)|2]dω. (6.5)

Formally, the first term in (6.5) appears the same as in the mean field approxi-
mation whereas the second term is a direct consequence of the fluctuations between
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Fig. 6.3 Non-equilibrium properties of the single level quantum dot system under spin-degenerate
conditions. (a) Total charge current through the single level quantum dot, (b) differential conduc-
tance, (c) potential diagram of the system, and (d) bias dependent population numbers. Here, we
have taken kBT = 0.5Γ , and ε0 = −5Γ/π

the two spin states, spin-flip fluctuations. Hence, the fluctuations in the quantum
dot occupation does not only enter indirectly through the Green functions, but also
directly as additional terms in the current.

The second term in the current, arises due to inelastic spin-flip transitions in the
quantum dot between the states |↑〉 and |↓〉. Here, it is reasonable to use the termi-
nology of inelastic transitions even when E↑ = E↓, since the state of the electron in
the quantum dot is changing during the transition from one spin state to the other.
In the spin-degenerate limit, e.g. E↑ = E↓, and N↑ = N↓ = N1, the second term
goes like (N1/2)

∑
σ

∫ [fL − fR]|Dr
0σ |2dω, which leads to that the total current

is approximately proportional to [1 − (1 − N1/2)N1/2]∑σ

∫ [fL − fR]|Dr
0σ |2dω.

This should be compared to the current in the Hubbard-I-approximation, which is
approximately proportional to (1 −N1/2)2∑

σ

∫ [fL −fR]|Dr
0σ |2dω. The ratio be-

tween the two expressions gives

1 − (1 − N1/2)N1/2

(1 − N1/2)2
= (1 − N1/2)2 + N1/2

(1 − N1/2)2
= 1 + N1/2

(1 − N1/2)2
. (6.6)

Thus, the current in the Hubbard-I-approximation is slightly less than the current in
the one-loop-approximation, meaning that the fluctuations of the quantum dot occu-
pation leads to a slight increase in the total current. This observation is confirmed in
the plots of the current and differential conductance in Fig. 6.3(a) and (b), although
the differences are small. Note that one has to compare the one-loop-approximation
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(dotted) with the current which includes the re-normalized level (faint), which be-
haves like the Hubbard-I-approximation in all respect except for the transition en-
ergy, and henceforth referred to as the re-normalized Hubbard-I-approximation. We
should also note this approximate result only holds for low biases. For higher biases
we need to account for the self-consistent variations in the population numbers,
which is non-trivial.

The self-consistently calculated population numbers are plotted in Fig. 6.3(d),
illustrating the slightly increased width of the quantum dot states through the in-
creased population in the empty state, N0. Hence, the smearing of the localized
states due to the fluctuations results in a higher probability that the quantum dot is
unoccupied in equilibrium.

Considering the spin-dependent currents in case of the left lead being ferro-
magnetic and the right non-magnetic changes the behavior of the system rather sub-
stantially. The spin-imbalance generates a net flow of electrons through the spin-flip
channel supported by the bias voltage applied across the junction. More understand-
ing about the current described by the expression above is given by studying its
corresponding differential conductance. Some caution has to taken when doing this,
for instance, the Green functions should be calculated self-consistently with respect
to the occupation numbers. The occupation numbers are, in turn, expected to vary
with the bias voltage which means that the derivative e.g. (∂/∂V )Gr

0σ �= 0, in gen-
eral. For an analytical qualitative analysis, albeit not entirely correct, we omit this
dependence.

Then, for low temperatures, the differential conductance is approximated by

∂IL

∂V
= e2

4π

∑

σ

∫
Γ L

σ |Dr
0σ (ω)|2

[
Γ R

σ

(
δ(ω − eV/2) + δ(ω + eV/2)

)|Pr
0σ (ω)|2

+ 1

2π

{∑

χ

Γ
χ
σ̄ {(Nσ̄ [1 − fχ(ω − Δσσ̄ )] + Nσ fχ(ω − Δσσ̄ )}δ(ω − eV/2)

− {Γ L
σ̄ δ(ω − Δσσ̄ − eV/2) − Γ R

σ̄ δ(ω − Δσσ̄ + eV/2)}

× {Nσ̄ fL(ω) + Nσ [1 − fL(ω)]}
}]

dω. (6.7)

The interpretation of the various terms is straight forward. The first term provides
the usual elastic peaks at biases corresponding to the transition energy. The second
term, in braces, gives a redistribution of the current at the spin-flip energy Δσσ̄ , such
that the current passing through the state Nσ (Nσ̄ ) is increased (decreased). In the
plots given in Fig. 6.4(b) and (d), which show the total and spin-resolved differential
conductance, respectively, the spin-flip energies Δ↑↓(↓↑) ≈ ±1. The effect on the
current is small and therefore not visible in the plots. The differential conductance
does, however, show several narrow peaks in the region of the transition energies.
These are, as before, related to the renormalization of the transition energies, but
should in a more sophisticated calculation be less pronounced.
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Fig. 6.4 Non-equilibrium properties of the single level quantum dot system under spin-depen-
dent conditions (pL = 0.5 and pR = 0). (a) Total charge current through the single level quantum
dot, (b) differential conductance, (c) bias dependent population numbers, and (d) spin-resolved
differential conductance. Here, we have taken kBT = 0.5Γ , and ε0 = −5Γ/π

The question is whether we can tune the parameters Γ
χ
σ in such a way that

the second contribution to the differential conductance becomes important, or al-
ternatively put, is there a way to enhance the significance of the contribution
Dr

P
</>(1 + V aGa) in the expression for G</>. First, we need to separate the

quantum dot levels, which can be done by an external magnetic field B directly
applied across the system, or by using ferromagnetic leads. We use the latter ap-
proach here, since we know from above that the spin-polarization in the leads in-
duce a spin-splitting of the quantum dot levels. The spin-splitting naturally leads
to a spin-polarization of the quantum dot, i.e. N↑ �= N↓. Moreover, we saw above
that application of a single ferromagnetic lead, while the other being non-magnetic,
generates an asymmetry in the populations. This asymmetry becomes apparent in
the spin-resolved differential conductance, while the asymmetry in the total current
is not as dramatic.

We can provide an asymmetry in the total current by attaching the leads asym-
metrically in the sense that the quantum dot is stronger coupled to one of the leads,
which can be expressed through the ratio Γ L/Γ R . Assume, for definiteness, that
Γ L/Γ R � 1. Then, electrons coming into the quantum dot from the left lead have a
hard time exiting the quantum dot to the right lead. Hence, biasing the system from
the left to the right, leads to an accumulation of electron density in the quantum
dot, see Fig. 6.5(b). This is also true in all three approximation schemes. In simple
mean field theory, e.g. Landauer picture [3–5], however, the differential conduc-
tance, Fig. 6.5(a), is almost symmetric which can be explained by the fact that the
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Fig. 6.5 Non-equilibrium properties of the single level quantum dot system under spin-degen-
erate conditions and asymmetric couplings to the leads. (a) Total differential conductance and
(b) bias dependent population numbers. Here, we have taken kBT = 0.5Γ , ε0 = −5Γ/π , and
Γ L/Γ R = 10

transmission in this approximation is given by T ∼ ∑σ Γ L
σ Γ R

σ |Gr
0σ |2. Irrespec-

tive of whether the electron is entering the quantum dot from the left or the right
lead, it “sees” an available level weighted by the population numbers, which is pro-
portional to the total coupling Γ L

σ Γ R
σ . The mean field according to the Hubbard-I-

approximation is also almost symmetric, for the same reasons. The Green function,
which is included in the transmission matrix, may carry some asymmetries which
is brought into the current and differential conductance, see Fig. 6.5(a). It is clearly
seen in Fig. 6.5(a) that the more advanced approximation schemes provide further
signatures of asymmetry in the differential conductance.

Combining the asymmetric couplings with the ferromagnetic leads introduce an
enhanced spin-polarization of the quantum dot in one bias direction compared to
the case with symmetric couplings. In view of the previous discussion this is un-
derstandable since the accumulation of charge in the quantum dot due to the weak
coupling to one lead must also be spin-polarized if couplings to the leads are spin-
dependent as well. Thus, assuming e.g. Γ L > Γ R and Γ

χ
↑ > Γ

χ
↓ , we would expect

the accumulated charge to have a ↓ majority spin, which indeed is verified in the
computations, see Fig. 6.6. It is also clear that the asymmetry is expected in both the
re-normalized Hubbard-I-approximation and one-loop-approximation.

The main difference between the two approximation schemes is that the latter
changes the functional dependence on the bias from the usual mean field appear-
ance. This added contribution to the current tends to enhance the effect from the
asymmetric couplings as well as from the spin-dependence. The result is that one
spin-projections of the current becomes further suppressed in comparison to the
mean field current, see Fig. 6.7. Panel (d) shows the spin-polarization of the current,
i.e. (J↑ − J↓)/

∑
σ Jσ for the two asymmetric cases, which gives an illustration

of that it is possible to almost completely suppress on spin-channel in the current
simply by configuring the system in an asymmetric way in combination with spin-
dependent couplings between the leads and the quantum dot.
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Fig. 6.6 Non-equilibrium population numbers of the single level quantum dot system under
spin-dependent conditions (pL = pR = p) in the one-loop-approximation (bold grey) and re-nor-
malized Hubbard-I-approximation (solid). (a) Empty state, (b) spin ↑, and (c) spin ↓. Here, we
have taken kBT = 0.5Γ , and ε0 = −5Γ/π

Fig. 6.7 Current under spin-dependent conditions (pL = pR = p) in the one-loop-approximation
(bold grey) and re-normalized Hubbard-I-approximation (solid). (a) Total current, (b) spin ↑, and
(c) spin ↓. Here, we have taken kBT = 0.5Γ , and ε0 = −5Γ/π . The plots are off-set for clarity

6.3 Non-Collinearly Aligned Ferromagnetic Leads

Ferromagnetic leads is a way to generate a spin-polarized current in the system, a
spin-polarization that might be enhanced or reduced by a quantum dot in between.
The magnetic moment of the lead may be aligned in a parallel or anti-parallel fash-
ion, as in the previous cases. The magnetic moments may also be non-collinearly
aligned.

We continue to consider a single level quantum dot. Although the magnetization
directions in the two leads are noncollinear, it is useful to introduce a global refer-
ence frame, where the x-direction lies along the direction of the charge current, see
Fig. 6.8. As the global z direction is arbitrary around the x axis, there is no restric-
tion in choosing it along the magnetization direction of the left reservoir, since its
magnetic moment is assumed to be fixed. The magnetization of the right reservoir
is rotated by the angle φ in the global xz plane.
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Fig. 6.8 The quantum dot coupled to noncollinearly oriented ferromagnetic leads. The global
reference frame and the magnetization ML of the left reservoir coincide, while the magnetization
MR of the right reservoir is rotated by the angle φ

We assume that the bare quantum dot level is spin-degenerate at the energy ε0
and that the on-site Coulomb repulsion is U . Here, the level spacing of the quantum
dot is assumed to exceed the thermal broadening. In this spirit then, the energy of
the quantum dot is given by HQD =∑σ ε0d

†
σ dσ + Un↑n↓ =∑p=0,σ,2 Ephp .

The energies of the reservoirs are, for simplicity, given by HL/R

∑
ks∈L/R εks ×

c
†
ks

cks . The ferromagnetism in the leads is modeled in the spirit of the Stoner theory
in the sense that a strong spin asymmetry in the density of states is assumed. The
density of states is, moreover, approximated to be energy independent. The tunnel-
ing interaction between the left lead and the quantum dot is given by

HT L =
∑

kσ∈L,a

vkσ (dσ )ac
†
kσ

Xa + H.c., (6.8)

since the local reference frame coincides with the global. Here,
∑

a(dσ )aXa =
〈0|dσ |σ 〉X0σ + 〈σ̄ |dσ |2〉Xσ̄2. The corresponding the energy for the interaction be-
tween the quantum dot and the right reservoir if given by

HT R =
∑

k∈R,a

([
vk+c

†
k+ cos

φ

2
− vk−c

†
k0− sin

φ

2

]
(d↑)a

+
[
vk+c

†
k+ sin

φ

2
+ vk−c

†
k0− cos

φ

2

]
(d↓)a

)
Xa + H.c., (6.9)

where the rotation of the magnetization direction is included. Here, the spin indices
s = ± have been used in order to distinguish between the global and local reference
frames. The expression given in (6.9) can be conveniently rewritten by introducing
the rotated quantum dot operators

(
d+
d−

)
= R

(
d↑
d↓

)
, R =

(
cos(φ/2) sin(φ/2)

− sin(φ/2) cos(φ/2)

)
. (6.10)

Hence, (6.9) becomes simply HT R =∑ks∈R,a vks(ds)
ac

†
ks

Xa + H.c.
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The local properties in the quantum dot is determined from the Green function

Gσσ ′(t, t ′) = (dσ )a(d
†
σ ′)bGab(t, t

′). (6.11)

In the stationary regimes it is sufficient to study the Fourier transformed Green
functions Gab(iω). The equation of motion for the Green functions G0σa(iω) and
Gσ̄2a(iω) are in the re-normalized Hubbard-I-approximation given by [6, 7]

(
iω − Δσ0 − P0σbVbσ0

)
G0σa(iω) = P0σa + σ

(
P0σbVbσ0 + δΔ2σ̄

)
Gσ̄2a(iω)

+ Σ0σ σ̄0G0σ̄ a(iω) + Σσ̄22σ Gσ2a(iω),

(6.12a)
(
iω − Δ2σ̄ − Pσ̄2bVb2σ̄

)
Gσ̄2a(iω) = Pσ̄2a + σ

(
Pσ̄2bVb2σ̄ + σ̄ δΔσ0

)
G0σa(iω)

+ Σ0σ σ̄0G0σ̄ a(iω) + Σσ̄22σ Gσ2a(iω).

(6.12b)

The structure of these equations suggests that we can write the equation of motion
on terms as a 4 × 4 matrix equation

[iω − Δ0 − Σ(iω)]G(iω) = P, (6.13)

where Δ0 = diag{Δ0
↑0,Δ

0
↓0,Δ

0
2↓,Δ0

2↑} contains the bare transition energies,
whereas the self-energy matrix Σ(iω) = PV(iω) + δΔ. In this form the interac-
tion matrix is given by

V = VL + VR = VL +
(

vr σ zvr

σ zvr vr

)
, (6.14a)

VL =
∑

kσ∈L

|vkσ |2
iω − εkσ

⎛

⎜⎜⎝

δσ↑ 0 δσ↑ 0
0 δσ↓ 0 −δσ↓

δσ↑ 0 δσ↑ 0
0 −δσ↓ 0 δσ↓

⎞

⎟⎟⎠ , (6.14b)

vR =
∑

ks∈R

|vks |2
iω − εks

RT (φ)

(
δs+ 0
0 δs−

)
R(φ), (6.14c)

where σz is the z component of the Pauli spin vector. We define the coupling matrix
Γ L/R = −2 Im VL/R(ω+ i0+), where the coupling constants Γ

L/R
σ is parametrized

in terms of pL/R = (Γ
L/R
↑ − Γ

L/R
↓ )/Γ0, where Γ0 = Γ

L/R
↑ + Γ

L/R
↓ , such that we

can write Γ
L/R
σ = Γ0(1 + σpL/R)/2. Here, Γ

L/R
σ defines the coupling constant

between the spin σ channel in the left/right lead and the quantum dot. By this pro-
cedure no essential physics is lost. In terms of the spin-dependent parameters pα the
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coupling matrices to the left and right leads become

Γ L = Γ0

2

⎛

⎜⎜⎝

1 + pL 0 1 + pL 0
0 1 − pL 0 −1 + pL

1 + pL 0 1 + pL 0
0 −1 + pL 0 1 − pL

⎞

⎟⎟⎠ , (6.15a)

Γ R =
(

γ R σ sγ R

σ zγ R γ R

)
, γ R = Γ0

2

(
1 + pR cosφ pR sinφ

pR sinφ 1 − pR cosφ

)
. (6.15b)

Finally, it is important to note that the end-factor P is block diagonal P =
diag{P1,P2}, where

P1 =
(

N0 + N↑ N↓↑
N↑↓ N0 + N↓

)
, P2 =

(
N↓ + N2 N↓↑

N↑↓ N↑ + N2

)
, (6.16a)

explicitly in terms of the population numbers of the involved transitions.
Consider the renormalization energy δΔσ0 = δΔL

σ0 + δΔR
σ0 for the transition

X0σ , where [2]

δΔL
σ0 = − 1

π

∑

k∈L

|vkσ̄ |2
∫

f (εkσ̄ ) − f (ω)

εkσ̄ − ω
Im
[
Dr

0σ̄ (ω)+ σ̄Dr
σ2σ̄0(ω)

]
dω, (6.17a)

whereas δΔR
σ0 = δσ↑δΔR

σ0:↑ + δσ↓δΔR
σ0:↓ with [6, 7]

δΔR
σ0:↑ = − 1

π

∑

k∈R

∫ {(
[f (εk+) − f (ω)] |vk+|2

εk+ − ω
sin2(φ/2)

+ [f (εk−) − f (ω)] |vk−|2
εk+ − ω

cos2(φ/2)

)
Im
[
Dr

0↓(ω) − Dr↑2↓0(ω)
]

+ sinφ

2

(
[f (εk+) − f (ω)] |vk+|2

εk+ − ω
− [f (εk−) − f (ω)] |vk−|2

εk+ − ω

)

× Im
[
Dr

0↑↓0(ω) + Dr↓2↓0(ω)
]}

dω (6.17b)

and

δΔR
σ0:↓ = − 1

π

∑

k∈R

∫ {(
[f (εk+) − f (ω)] |vk+|2

εk+ − ω
cos2(φ/2)

+ [f (εk−) − f (ω)] |vk−|2
εk+ − ω

sin2(φ/2)

)
Im
[
Dr

0↑(ω) + Dr↓2↑(ω)
]

+ sinφ

2

(
[f (εk+) − f (ω)] |vk+|2

εk+ − ω
− [f (εk−) − f (ω)] |vk−|2

εk+ − ω

)

× Im
[
Dr

0↓↑0(ω) − Dr↑2↑0(ω)
]}

dω. (6.17c)



104 6 Tunneling Current in a Single Level System

Note that those expressions were derived using frequency summation over the
loop diagram in the expansion of the Green functions, resulting in slightly different
expressions compared to using the non-equilibrium techniques discussed previously
in this book. Except for some minor details, the above formulas are equivalent to the
ones derived using non-equilibrium techniques.

Analogous expressions are, of course, present for the other shifts. In fact, the
re-normalizaton term δΔ in the self-energy is a full 4 × 4 matrix, in general,
and reduces to the case discussed previously only for collinear configurations
of the magnetic leads, including non-magnetic leads. Hence, the spin-flip transi-
tion energies are also subject to the renormalization due to the magnetism in the
leads.

More important in the present context is the strong dependence of the shifts on the
magnetic properties in the reservoirs. This is clearly displayed in (6.17a)–(6.17c),
which shows an explicit dependence on the couplings between the leads and the
quantum dot. The induced shift of the quantum dot transition energies are (exactly)
equal only when the couplings to the leads are equal. In other words are the induced
shift distinct whenever the couplings differ. This is simplest illustrated in e.g. the left
shift, δΔL

σ0. Assume that the magnetization directions in the two leads are collinear,
so that all off-diagonal locators vanish, and assume that U → ∞, for simplicity.
The latter assumption leads to that all propagators involving transitions between
one- and two-particle states can be neglected. Putting Dr

0σ (ω) = (ω − Δ0
σ0 + i0+),

where Δ0
↑0 = Δ0

↓0 (= Δ0
10) by construction, (6.17a) reduces to

δΔL
σ0 = Γ L

σ̄

π
ln

|μL − Δ0
10|

D
, (6.18)

where 2D is the width of the conduction band in the lead. For sufficiently large
D ∼ 1 eV, which is reasonable for normal metals, the ratio in the logarithm lies
between 0 and 1, hence, δΔL

σ0 < 0. Therefore, the difference

δΔL↑0 − δΔL↓0 = 1

π
ln

∣∣∣∣
μL − Δ0

10

D

∣∣∣∣
Γ L↓ −Γ L↑

(6.19)

vanishes only if Γ L↑ = Γ L↓ , whereas the difference is negative (positive) whenever

Γ L↑ < Γ L↓ (Γ L↑ > Γ L↓ ), which means that Δ↑0 < Δ↓0 (Δ↑0 > Δ↓0). Consequently,
a spin-splitting is induced in the quantum dot when it is contacted by a magnetic
lead to the left. The same argument holds for the right contribution and is valid for
arbitrary U , and non-equilibrium conditions.

The spin-polarizing shifts of the transition energies induced by the left and right
leads provide a combined effect, such that it becomes maximal when the reservoirs
are magnetically parallel, whereas the spin-split becomes minimal for anti-parallel
alignment of magnetizations in the leads, see Fig. 6.9(a). A continuous rotation of
the magnetic direction in e.g. the right lead (0 ≤ φ ≤ π), yields a continuous vari-
ation of the induced spin split from its maximum to its minimum. In particular, the
minimum split in equilibrium (black) is zero for Γ L

σ = Γ R
σ , whereas the finite bias
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Fig. 6.9 (a) Dressed transition energies in equilibrium (black) and non-equilibrium (grey) at
eV/Γ0 = 5 as function of the rotation angle φ and (b) conductance G(φ)/G0 (G0 = e2/h) as
function φ and equilibrium chemical potential μ. In (a), the bare transition energies Δ0

σ0 and Δ0
2σ

are included for reference. Here ε0 = 0, U = 2, and μ = 0 in units of Γ0, whereas the spin-asym-
metry pL/R = 0.85 at kBT /Γ0 = 0.08

in non-equilibrium (grey) yields an unequal shift from the left and right leads which
causes a difference between the state energies even in the anti-parallel configuration
which is illustrates in Fig. 6.9(a).

The equilibrium conductance G(φ)/G0 (G0 = e2/h) as function of the rotation
angle φ and chemical potential μ for a typical set-up is displayed in Fig. 6.9(b).
For φ = π , which corresponds to parallel magnetic configuration, it is readily seen
that the system is resonant at four different energies due to the spin-splitting of the
quantum dot level. For increasing angle, the difference between the transition ener-
gies Δ↑0 (Δ2↓) and Δ↓0 (Δ2↑) decreases which is in agreement with the behavior
illustrated in Fig. 6.9(a).

A striking feature of the conductance is that it is not a monotonic function of
φ whenever the μ is in the vicinity of any of the transition energies. From any
linear response mean-field theory it is expected that the conductance varies with
the local current density j (ω,φ) ∼ tr ImΓ LGr (ω,φ)Γ RGa(ω,φ), at the chemical
potential. This picture is not altered here. However, the varying positions of the
transition energies as function of φ provide and additional feature, namely, that the
conductance is not necessarily maximal for parallel or anti-parallel alignment of the
magnetic leads. It is also clear that the conductance is a strict monotonic function of
φ whenever μ lies either below of above the transitions energies Δσ0 and Δ2σ , or
in the gap between them. The non-monotonic characteristics of the conductance is
predicted to be a feature of the strongly coupled regime, i.e. |Δσ0 − μ|/Γ0 � 1 or
|Δ2σ − μ| � 1. In the weakly coupled regime, i.e. Coulomb blockade, the system
returns to a normal spin-valve behavior.
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Chapter 7
Coupling to Vibrational Mode

Abstract A higher degree of complexity is added by including coupling between
electrons and local vibrational modes. Here, we begin by considering the theory for
electronic transport through molecular quantum dots in which bosonic modes, e.g.
vibrations, are present. We finally show a procedure which allows to also include
the bosonic degrees of freedom into the many-body operators, thereby putting the
electronic and bosonic degrees of freedom on the same level.

7.1 Introduction

In the 1960s, measurements were made on tunnel junctions that were exposed to e.g.
propionic acid [CH3(CH2)COOH] and acetic acid [CH3COOH] [1]. When com-
pared to the tunnel junctions that were not exposed to the acid treatment, it became
obvious that the molecules added in the tunnel junctions, generated additional signa-
tures in the conductance spectrum. The additional features in the spectrum could not
be explained by the usual elastic theory for the conductance, i.e. the normal electron
levels that are due to level quantization. It was necessary to add electron levels that
are caused by interactions between electronic and bosonic degrees of freedom in the
tunnel junction, that is, inelastic modes.

Since the first measurements on nanoscale structures in the 1960s, e.g. tunnel
junctions, there are innumerably many reports of phenomenon where couplings
between electronic and bosonic degrees of freedom are pertinent. Particularly on
molecular systems, where a molecular structure, e.g. C60 [2], H2 [3], SC8H16S [4],
or molecule comprising a single transition metal ion (Co2+) [5], have been placed
between electrodes, additional conductance peaks have been measured, conductance
peaks that cannot be explained solely by the electronic structure of the molecu-
lar systems. Moreover, scanning tunneling microscopy (STM) measurements, per-
formed on e.g. single O2 molecule chemisorbed on Ag(110) [6] and directly on
Au(111) and Cu(111) surfaces [7], reveal features in the conductance that are gen-
erated by the coupling between electrons and vibrations (vibrons).
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Fig. 7.1 Alternative
mechanical vibrational
motions in a simple diatomic
molecule. (a) Rotational
oscillation, (b) and
(c) translational oscillations

Theoretically, many of these experimental evidences have been modeled within
one or another framework. Persson and Baratoff [8] assumed the vibrational (vi-
bronic) mode to be inherent in the resonant level of the adsorbate molecule in
the STM set-up. One can think of the vibronic mode as a mechanical motion of
the molecule, e.g. as a rotational oscillation, see Fig. 7.1(a), or translational os-
cillation, Fig. 7.1(b) and (c). Other types of mechanical oscillations are of course
possible, e.g. breathing mode. Irrespective of the nature of the generation of the
vibronic mode, by suggesting that ε(Q) is the resonant level for a fixed dis-
placement Q, and expanding to first order in Q one obtains the resonant energy
ε(Q) ≈ ε0 + ε′

0Q = ε0 + ε′
0(a

† + a)�/
√

2m∗Ω , where m∗ and Ω/� is the reduced
mass and frequency of the vibrational mode, respectively, whereas a† (a) creates
(annihilates) the vibrational mode. This treatment leads to the effective model for
the resonant level as ε(Q)d†d ≈ ε0d

†d + λd†d(a† + a), where λ = ε′
0�/

√
2m∗Ω

defines the coupling energy between the electronic and vibronic modes.
This type of model for the vibrational mode included in the structure defines the

starting point for many studies of the vibronic contributions to the current, e.g. in
connection with STM [9, 10], and in molecular quantum dots studies of the tem-
perature dependence of the transport [11, 12], current and shot noise [12, 13], level
broadening [14], and hysteresis, switching, and negative differential conductance
[15], and electron spin resonance (ESR) [16].

7.2 Local Electron Coupled to Vibrational Mode

Here we simply adopt the simple concept for the coupling between the electronic
and vibronic degrees of freedom, and we model the single level molecular quantum
dot coupled to leads with the Hamiltonian

H =
∑

kσ∈L,R

εkσ c
†
kσ

ckσ +
∑

σ

εσ d†
σ dσ + Un↑n↓ + ω0a

†a

+ λ
∑

σ

d†
σ dσ (a† + a) +

∑

kσ

(vkσ c
†
kσ

dσ + H.c.), (7.1)

where ω0 is the frequency of the vibration. In principle, there is nothing that hinders
us from including more vibrational modes, however, for simplicity we make our
following analysis for a single one.
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7.2.1 Weak Electron-Vibron Coupling

The first approach to this new type of problem is to consider a canonical transfor-
mation of the molecular subsystem

Hmol =
∑

σ

εσ d†
σ dσ + Un↑n↓ + ω0a

†a + λ
∑

σ

d†
σ dσ (a† + a). (7.2)

In our first attempt, we also omit the charging energy U and the spin degree of
freedom, hence our (over) simplified molecule can be written

Hmol = ε0d
†d + ω0a

†a + λd†d(a† + a). (7.3)

This model can be diagonalized through the following procedure. We wish to
find a transformation U such that

eU † Hmole
U = ε̃d†d + ω̃0a

†a, (7.4)

that is, the molecular model becomes diagonal, possibly at the cost of redefining the
energies for the electronic and vibronic modes. The operator transformation

eSAe−S = A + [S,A] + 1

2! [S, [S,A]] + 1

3! [S, [S, [S,A]]] + · · · , (7.5)

using

S = λ

ω0
d†d(a† − a), (7.6)

giving S† = −S, such that eS = (e−S)†, does the job. We, then, obtain the commu-
tators

[S, Hmol] = − λ

ω0

(
ω0[a† + a] + 2λ

)
d†d,

[S, [S, Hmol]] = 2
λ2

ω0
d†d, [S, [S, [S, Hmol]]] = 0.

Hence, the new Hamiltonian H̃mol = eS He−S contains two new terms, effectively
resulting in

H̃mol = ε̃d†d + ω0a
†a, (7.7)

where ε̃ = ε − λ2/ω0.
The method is now easy to generalize to the situation we interested in, namely,

the Hamiltonian given in (7.2). We take the operator

S = λ

ω0

∑

σ

d†
σ dσ (a† − a), (7.8)
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and we obtain the transformed Hamiltonian

H̃mol =
∑

σ

ε̃σ d†
σ dσ + Ũn↑n↓ + ω0a

†a, (7.9)

where we now have ε̃σ = εσ − λ2/ω0 and Ũ = U − 2λ2/ω0.
It is, thus, clear that the canonical transformation provides a decoupling of the

electronic and vibronic degrees of freedom, at least in the atomic limit model. The
question that arise is what happens with the electron and vibron operators. This
is something we need to figure out since we want to couple our molecule to the
electrodes, or leads. Therefore, in applying the canonical transformation to the indi-
vidual operators, we obtain

d̃σ = dσ X , X = e−(λ/ω0)(a
†−a), ã = a − λ

ω0

∑

σ

d†
σ dσ ,

d̃†
σ = d†

σ X †, X † = e(λ/ω0)(a
†−a), ã† = a† − λ

ω0

∑

σ

d†
σ dσ ,

which operators satisfy ñσ = d̃†
σ d̃σ = d†

σ X †dσ X = nσ X † X = nσ , and ã†ã =
a†a − (λ/ω0)

∑
σ nσ (a† + a) + (λ/ω0)

2∑
σσ ′ nσ nσ ′ . Inserting these new opera-

tors into (7.2), of course, also results in (7.9).
Thinking in terms of the Green function for the levels in the molecule, we find

from the definition that the Green function Gσσ ′(t, t ′) = (−i)〈Tdσ (t)d
†
σ ′(t ′)〉 be-

comes

Gσσ ′(t, t ′) = (−i)〈Tdσ (t)d
†
σ ′(t ′)〉 = (−i)〈Tdσ (t)d

†
σ ′(t ′)e−SeS〉

= (−i)〈TeSdσ (t)d
†
σ ′(t ′)e−S〉 = (−i)〈Td̃σ (t)d̃

†
σ ′(t ′)〉

= (−i)〈Tdσ (t)X (t)d
†
σ ′(t ′)X †(t ′)〉

= (−i)〈Tdσ (t)d
†
σ ′(t ′)〉el〈X (t)X †(t ′)〉vib

= G̃σσ ′(t, t ′)〈X (t)X †(t ′)〉vib, (7.10)

where the subscripts refer to averaging over the electronic and vibronic degrees of
freedom, respectively. The meaning of the above equalities is that we can calcu-
late the properties of the resonant level in the molecule as we have done before,
but in the Hamiltonian system (7.9), and then finally multiply it by the average
〈X (t)X †(t ′)〉vib, where X (t) = eiω0a

†at X e−iω0a
†at . This average can, on the other

hand, be exactly calculated. We have to be a bit cautious when using the introduced
procedure though, since this procedure works very well when the coupling between
the electrons and vibrons is weak. There will be an influence from the electron-
vibron coupling on the tunneling, which we cannot neglect in general. However,
doing first things first, we will return to these issues later.
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For a calculation of the average 〈X (t)X †(t ′)〉vib, we introduce the function

F(t, t ′) = 〈X (t)X †(t ′)〉vib =
∑∞

n=0〈n|e−βω0a
†a X (t)X (t ′)|n〉

∑∞
n=0〈n|e−βω0a

†a|n〉 , (7.11)

where |n〉 = (a†)n|0〉/√n! denotes the bosonic state with n excitations. Here,
the denominator equals

∑
n e−βω0n = (1 − e−βω0)−1 = eβω0Np , where Np =

(eβω0 − 1)−1. The time-development of the operators X can be rewritten from its
fundamental expression to read

X (t) = eiω0a
†at X e−iω0a

†at = e−(λ/ω0)
2/2eiω0a

†at e−λa†/ω0eλa/ω0e−iω0a
†at , (7.12)

where we have used Feynman’s theorem for disentangling of operators, i.e. eA+B =
eAeBe−[A,B]/2 if both A and B commutes with [A,B] [17]. Then, between the third
and fourth exponential we insert e−iω0a

†at eiω0a
†at , and, moreover, using that

eiω0a
†at e−λa/ω0e−iω0a

†at

=
∞∑

n=0

(−λ/ω0)
n

n!
{
an + iω0t[a†a, an] + · · ·}

=
∞∑

n=0

(−λ/ω0)
n

n! ane−iω0nt = exp

(
− λ

ω0
ae−iω0t

)
, (7.13)

we find

X (t) = e−(λ/ω0)
2/2 exp

(
− λ

ω0
a†eiω0t

)
exp

(
λ

ω0
ae−iω0t

)

= e−(λ/ω0)
2

exp

(
− λ

ω0

[
a†eiω0t − ae−iω0t

])
. (7.14)

The average F(t, t ′) can now be written

F(t, t ′) = e−βω0

Np

∞∑

n=0

e−βω0ne−(λ/ω0)
2

× 〈n|e−λa†eiω0 t /ω0eλae−iω0 t /ω0eλa†e−iω0 t ′/ω0e−λaeiω0 t ′/ω0 |n〉. (7.15)

The next step is to arrange the operators such that all destruction operators stand to
the right in the average. We begin by considering the product

eλae−iω0 t /ω0eλa†e−iω0 t ′/ω0 = eλa†e−iω0t ′/ω0
[
e−λa†e−iω0 t ′/ω0eλae−iω0 t /ω0eλa†e−iω0 t ′/ω0

]
.

(7.16)
The expression in brackets is straightforwardly calculated using the expansions in-
troduced above. The result is

eλae−iω0 t /ω0eλa†e−iω0 t ′/ω0 = e−(λ/ω0)
2e−iω0(t−t ′)

eλa†e−iω0 t ′/ω0eλae−iω0 t /ω0 . (7.17)
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Hence, the average can be written as

F(t, t ′) = exp

{
−
(

λ

ω0

)2[
1 − e−iω0(t−t ′)]

}
e−βω0

Np

×
∞∑

n=0

e−βω0n〈n|eλa†[eiω0 t ′−eiω0 t ]/ω0e−λa[e−iω0 t ′−e−iω0t ]/ω0 |n〉. (7.18)

The final step in the calculation of the average is taken by acting with the expo-
nential e−φ(t)a on the states |n〉. Here, it is advisable to notice that

a|n〉 = √
n|n − 1〉, a2|n〉 =√n(n − 1)|n − 2〉, . . . , am|n〉 =

√
n!

(n − m)! |n − m〉,

such that |n − m〉 = 0 for all m > n. Summing up the series results in

e−φ(t)a|n〉 =
n∑

m=0

(−1)m
φm(t)

m!

√
n!

(n − m)! |n − m〉, (7.19a)

〈n|eφ∗(t)a† = 〈n − m|
n∑

m=0

[φ∗(t)]m
m!

√
n!

(n − m)! . (7.19b)

By orthogonality of the states we, thus, obtain

〈n|eλa†[eiω0 t ′−eiω0 t ]/ω0e−λa[e−iω0 t ′−e−iω0t ]/ω0 |n〉

=
n∑

m=0

(−1)m

m!
n!

m!(n − m)!
(

λ

ω0

∣∣e−iω0t
′ − e−iω0t

∣∣
)2m

= Ln

([
λ

ω0

∣∣e−iω0t
′ − e−iω0t

∣∣
]2)

, (7.20)

where Ln(x) = L0
n(x) is the Laguerre polynomial. In e.g. [18] one finds that the

sum
∑∞

n=0 Ln(x)yn = (1 − y)−1 exp [(xy)/(y − 1)]. By identifying y by e−βω0 we
can write (1 − y)−1 exp [(xy)/(y − 1)] = Npeβω0−xNp , which leads to that we can
finally write the average F(t, t ′) according to

F(t, t ′) = exp

{
−
(

λ

ω0

)2[
1 − e−iω0(t−t ′) + ∣∣1 − e−iω0(t−t ′)∣∣2Np

]}

= exp

{
−
(

λ

ω0

)2[(
1 − e−iω0(t−t ′))(1 + Np) + (1 − eiω0(t−t ′))Np

]}
.

(7.21)
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The Green function for the resonant level in the molecular quantum dot coupled
to the vibrational mode ω0, thus, becomes

Gσσ ′(t, t ′) = G̃σσ ′(t, t ′) exp

{
−
(

λ

ω0

)2[(
1 − e−iω0(t−t ′))(1 + Np)

+ (1 − eiω0(t−t ′))Np

]}
. (7.22)

Let us now assume stationary conditions, so that we can Fourier transform into
frequency space. Doing this for the retarded Green function and assuming that
G̃σσ ′(ω) = ∫ G̃σσ ′(t, t ′)eiωτ dt ′, where τ = t − t ′, give

Gr
σσ ′(ω) =

∫
G̃r

σσ ′(t, t ′) exp

{
−
(

λ

ω0

)2[(
1 − e−iω0τ

)
(1 + Np)

+ (1 − eiω0τ
)
Np

]}

= e−(λ
√

1+2Np/ω0)
2 ∑

n

In

(
2

[
λ

ω0

]2√
Np(1 + Np)

)

× enβω0/2G̃r
σσ ′(ω − nω0), (7.23)

where In(x) is the modified Bessel function. Hence, if the electronic Green function
is given by e.g. G̃r

σσ ′(ω) = δσσ ′/(ω− εσ + iδ), δ > 0, the full Green function which
includes both the electronic and vibronic degrees of freedom becomes

Gr
σσ ′(ω) = δσσ ′e−(λ

√
1+2Np/ω0)

2 ∑

n

In(2[ λ
ω0

]2
√

Np(1 + Np))

ω − (εσ + nω0) + iδ
enβω0/2, (7.24)

which clearly illustrates the full effect of the coupling between the resonant elec-
tronic level and the vibrational mode in that there appear a series of side-peaks
(n �= 0) around the resonant level (n = 0). This transformation of the single reso-
nant level into a multitude of levels is illustrated in Fig. 7.2.

Fig. 7.2 Before and after the
canonical transformation,
where the molecule before the
canonical transformation is
represented by a single level
structure which is moving
back and forth, whereas the
molecule has turned into a
multilevel structure after the
transformation
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Recall that the molecular quantum dot is supposed to be coupled to electrodes, or
leads, and therefore we include these into the picture at this moment, cf. (7.1). The
canonical transformation that we applied to the molecular part of the Hamiltonian
also has to be applied to the remainder of the model, giving

H̃ =
∑

kσ∈L,R

εkσ c
†
kσ

ckσ +
∑

σ

ε̃σ d†
σ dσ + Ũn↑n↓ + ω0a

†a

+
∑

kσ

(vkσ c
†
kσ

dσ X + H.c.). (7.25)

Thus, the diagonalization of the molecular part of the model simply transferred the
complexity of the coupling between the electronic and vibronic degrees of free-
dom into the tunneling term. The problem is only that we wanted to avoid the cou-
pling between the electrons and vibron at all, which is possible under certain con-
ditions. Hewson and Newns [19] investigated this issue for equilibrium situations
and found that the electron-vibron coupling becomes important to include when-
ever

2
λ2

ω0
> Γ, ω0 >

∣∣∣∣εσ − λ2

ω0

∣∣∣∣, (7.26a)

Γ

2ω0
e−(λ/ω0)

2
< 1 <

(
λ

ω0

)2

, (7.26b)

where Γ = 2π
∑

kσ |vkσ |2δ(ω − εkσ ). The first inequality means that the electron-
vibron coupling is strong in comparison with the tunneling, whereas the second
inequality says that the vibron frequency should be large compared to the electronic
energy (relative to the Fermi level). The two last inequalities mean that vibronic
satellite peaks are separated from one another and the number of vibrons involved
in the processes is appreciable, respectively. Thus, if these conditions are not met
in the system under investigation, one can neglect the influence from the electron-
vibron coupling in the tunneling Hamiltonian.

In non-equilibrium the situation may be different since, e.g. the electron level
might be close to the chemical potential of the left lead but not of the right. If this is
the case, then the total tunneling coupling strength [11]

Γ = Γ L + Γ R → Γ L + Γ Re−(λ/ω0)(1+2Np), (7.27)

i.e. there is a narrowing of the coupling to the right lead.
Considering the case in complete absence of the narrowing effect one can, in

mean field theory, take the electron Green function to be

G̃r
σσ ′(ω) = δσσ ′

ω − ε̃σ − 〈1 − nσ̄ 〉Ũ
(ω − ε̃σ + iΓσ /2)(ω − ε̃σ − Ũ ) + i〈nσ̄ 〉ŨΓσ /2

,

and put it into the Green function given in e.g. (7.23). We obtain
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Gr
σσ ′(ω) = δσσ ′e−(λ

√
1+2Np/ω0)

2 ∑

n

In(z)e
nβω0/2

× ω − ε̃σ − nω0 − 〈1 − nσ̄ 〉Ũ
(ω − ε̃σ − nω0 + iΓσ /2)(ω − ε̃σ − nω0 − Ũ ) + i〈nσ̄ 〉ŨΓσ /2

,

(7.28)

with z = 2(λ/ω0)
2
√

Np(1 + Np). In the limit U/Γσ � 1 we have approximately

G̃r
σσ ′(ω) ≈ δσσ ′

( 〈1 − nσ̄ 〉
ω − ε̃σ + iΓσ /4

+ 〈nσ̄ 〉
ω − ε̃σ − Ũ + iΓσ /4

)
,

i.e. one resonance at ε̃σ and one at ε̃σ + Ũ , both with a width of roughly Γσ /2,
which in the vibrating molecular quantum dot results in

Gr
σσ ′(ω) = δσσ ′e−(λ

√
1+2Np/ω0)

2 ∑

n

In(z)e
nβω0/2

( 〈1 − nσ̄ 〉
ω − ε̃σ − nω0 + iΓσ /4

+ 〈nσ̄ 〉
ω − ε̃σ − nω0 − Ũ + iΓσ /4

)
. (7.29)

In this expression one clearly sees that there appear vibrational side-peaks around
both resonant levels, as one would expect.

In the above discussion we have completely neglected the influence of the
electron-vibron coupling on the Green function self-energy. Later in this chapter,
we will return to this issue and also address a way to include such effects in the
Green function.

7.2.2 Electron Spin Resonance

We consider an example of an application of the small polaron formation model in
connection to the ESR set-up for tunnel current systems. In this set-up, the spin of a
local defect is measured by variations in the charge, or spin, current as the frequency
of a time-dependent magnetic field is varied.

Here, one may think of a resonator which is oscillating with the frequency ω0 and
where the mechanical oscillations are weakly coupled to the molecular electrons—
we denote the coupling strength by λ. We have in mind a single molecular level ε0

coupled to external baths, or leads. The level is spin-split by the external magnetic
field B0, such that ε↓ − ε↑ = ωr = gμBB0, where g and μB is the gyromagnetic
ratio and Bohr magneton, respectively. In addition, the spins are coupled to each
other by a rotating magnetic field B1(cosω1t, sinω1t) which is applied perpendicu-
lar to B0. We assume that 2gμBB1 is much less than both ω0 and ωr . In principle,
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we employ the model H = Hc + Hd + HT [16], where

Hd =
∑

σ

[
εσ +λ(a† +a)+ U

2
nσ̄

]
nσ −gμBB1

[
d

†
↑d↓riω1t +d

†
↓d↑r−iω1t

]+ω0a
†a,

(7.30)
Hc =∑kσ εkc

†
kσ

ckσ , and HT =∑kσ vkc
†
kσ

dσ +H.c., describe the electrons in the
molecule, the reservoir, and their mutual tunneling interactions, respectively.

The second term in Hd is non-diagonal in terms of the Fermi operators and,
moreover, it is time-dependent. First, we remove the time-dependence in the model
by transforming the system into the rotating reference frame of the magnetic field.
This can be achieved through the unitary transformation

Hrf = eSrf He−Srf + i

(
∂

∂t
eSrf

)
e−Srf , (7.31a)

Srf = i
ω1t

2

[
n↓ − n↑ +

∑

k

(nk↓ − nk↑)

]
. (7.31b)

Again using the expansion eSAe−S = A + [S,A] + 1
2! [S, [S,A]] + · · · we obtain,

for instance,

eSrfd
†
↑d↓eiω1t e−Srf =

(
d

†
↑d↓ + i

ω1t

2
[n↓ − n↑, d

†
↑d↓]

+
[
i
ω1t

2

]2 1

2! [n↓ − n↑, [n↓ − n↑, d
†
↑d↓]] + · · ·

)
eiω1t

= d
†
↑d↓
(

1 + i
ω1t

2
(−2) +

[
i
ω1t

2

]2
(−2)2

2! + · · ·
)

eiω1t

= d
†
↑d↓e−iω1t eiω1t = d

†
↑d↓. (7.32)

The overall effect of the transformation results in

Hrf =
∑

kσ

εrf
kσ nkσ + ω0a

†a + HT

+
∑

σ

(
εrf
σ + λ(a† + a) + U

2
nσ̄

)
nσ − gμBB1(d

†
↑d↓ + H.c.), (7.33)

where εrf
σ = εσ + σω1/2 and εrf

kσ
= εk + σω1/2.

Clearly, removing the time-dependence in the model comes with the cost that
we introduce a spin-splitting of the electronic energies. The spin-splitting of the
electrons in the reservoir originates from the magnetic pumping field acting on the
localized electrons which, in turn, hybridize with the de-localized electrons in the
reservoir. The magnetic pumping propagates energy from the molecule to the reser-
voir and generates the spin chemical potentials μσ = −σω1/2 in the reservoir (re-
member that all energies are given relative to the equilibrium chemical potential μ).
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In this sense, the frequency ω1 of the oscillating field can be viewed as a (spin) bias
applied to the system. Despite this imbalance between the spin channels the charge
chemical potential is, nevertheless, μ = (μ↑ + μ↓)/2 = 0.

Although the system as a whole remains in equilibrium, the one-photon imbal-
ance between the spin-channels generates a non-equilibrium condition for the two
spin projections of the electrons. A spin ↓ electron the in the reservoir at the energy
εrf

k↓ can tunnel into the local molecular level εrf↓ . The rotating magnetic field does, in

turn, flip the spin of the electron and puts it into the level εrf↑ , from which it may tun-

nel into the reservoir state εrf
k↑. Repeated occurrence of such tunneling and spin-flip

events build up a stationary current between the two spin-channels in the reservoir.
The next step is to decouple the vibronic and electronic degrees of freedom,

for which we employ the procedure of previous section, i.e. introducing H̃ =
eSph Hrfe

−Sph , Sph = (λ/ω0)(a
† − a)

∑
σ nσ . We then obtain the transformed energy

levels ε̃σ = εrf
σ − λ2/ω0 and charging energy Ũ = U − 2λ2/ω0, while the tunnel-

ing Hamiltonian is shifted into H̃T =∑kσ vkc
†
kσ

dσ X + H.c. Here, we make use
of the assumptions of small currents and weak coupling between the vibronic and
electronic levels and, thus, neglect the effect of the vibrons on the tunneling, i.e. let
X → 〈X 〉ph and let vk〈X 〉ph → vk in the tunneling Hamiltonian.

In the atomic limit (Ũ = 0) and in absence of the vibron-electron coupling
(λ = 0), the molecule is reduced to a simple driven two-level system, which is
characterized by a coherent weight transfer between the two spin states, i.e. Rabi
oscillations. This weight transfer has the resonance frequency ω1 = ωr . Further, the
Rabi frequency of the spin oscillations is given by Ω =√Δ2 + 4(gμBB1)2, where
Δ = ω1 − ωr denotes the detuning from the resonance.

We notice that the electronic states of the molecule still are represented in a non-
diagonal fashion, both in that there is a spin-flip term and there is a charging term in
the Hamiltonian. This can be taken care of by different means, and first we approach
the problem by a semi-diagonalization of the molecular electron states through the
transformation [20]

(
d↑
d↓

)
= u

(
c↑
c↓

)
, u =

(
cosφ − sinφ

sinφ cosφ

)
, (7.34)

where tanφ = 2gμBB1/(Ω −Δ). In this new basis for the molecular electron states
the molecular Hamiltonian becomes

H̃d =
∑

σ

Eσ c†
σ cσ + Ũc

†
↑c↑c

†
↓c↓, (7.35)

with Eσ = (ε̃↑ + ε̃↓ − σΩ)/2 = ε0 − λ2/ω0 − σΩ/2.
The current we are to consider is the flow of electrons of a given spin projection σ

in the reservoir, through the molecule and back into the reservoir in a different spin
state. Thus, we cannot simply study the full charge current I = −e∂t

∑
kσ 〈nkσ 〉,

since this current must vanish. The current we are looking for is, however, the spin
current Iσ = −e∂t

∑
k〈nkσ 〉, and following the procedure introduce in Chap. 4, we
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find that this current can be written as

Iσ = ie

�
tr
∫

Γσ

{
fσ (ω)G>(ω) + [1 − fσ (ω)]G<(ω)

}
dω. (7.36)

Here, the coupling matrix Γσ = uσ Γ , with Γ = 2π
∑

k |vk|2δ(ω − εk), and

u↑ = σyu↓σy, u↓ =
(

sin2 φ sinφ cosφ

sinφ cosφ cos2 φ

)
. (7.37)

The y-component of the Pauli matrix vector is represented by σy , whereas fσ (ω) =
f (ω − μσ ) is the Fermi function for the spin σ channel. The Green function matrix
is defined by G</> = {G</>

σσ ′ }σσ ′ , and is calculated using G</> = GrΣ</>Ga ,

where e.g. the retarded Green function Gr
σσ ′(t, t ′) = (−i)θ(t − t ′)〈{cσ (t), c

†
σ ′(t ′)}〉.

The canonical electron-vibron decoupling procedure casts the Green function into
the form Gr

σσ ′(t, t ′) = G̃r
σσ (t, t ′)〈X (t)X (t ′)〉ph.

Calculating the electronic Green function in the mean field approximation, we
find that G̃r

σ σ̄ (ω) = 0 and G̃r
σσ (ω) = G̃r

σ (ω) with

G̃r
σ (ω) = ω − Eσ − 〈1 − nσ̄ 〉Ũ

(ω − Eσ + iΓ /2)(ω − Eσ − Ũ ) + i〈nσ̄ 〉ŨΓ /2
, (7.38)

and 〈nσ 〉 = (−i)
∫

G̃<
σ (ω)dω/(2π). Consequently, we have our total Green function

as given in (7.28), or

Gr
σ (ω) = e−(λ

√
1+2Np/ω0)

2 ∑

n

In(z)e
nβω0/2

× ω − Eσ − nω0 − 〈1 − nσ̄ 〉Ũ
(ω − Eσ − nω0 + iΓσ /2)(ω − Eσ − nω0 − Ũ ) + i〈nσ̄ 〉ŨΓσ /2

.

(7.28′)
Under the assumption that the electron-vibron coupling is weak it is justified

to neglect the contributions to the self-energy arising due to the electron-vibron
interactions. The lesser and greater self-energies can, therefore, be approximated as

Σ<(ω) = if↑(ω)Γ↑ + if↓(ω)Γ↓, (7.39a)

Σ>(ω) = −i
[
1 − f↑(ω)

]
Γ↑ − i

[
1 − f↓(ω)

]
Γ↓. (7.39b)

One should be aware that those forms of the lesser and greater self-energies are
somewhat simplified, since the self-energy which is related to the electron correla-
tions have been omitted. Qualitatively though, the effect we are studying here does
not depend on the particular form of the self-energy, but rather on the coupling be-
tween different states. Hence, the introduced approximation is justified. Inserting
these self-energies into the spin σ current, we obtain
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Iσ = e

h
Γ 2
∫

Ts(ω)
[
fσ (ω) − fσ̄ (ω)

]
dω, (7.40a)

Ts(ω) = ∣∣Gr↑(ω) − Gr↓(ω)
∣∣2 sin2 φ cos2 φ. (7.40b)

Here, we notice that the transmission Ts is spin-independent which, of course, is
expected in the stationary regime. The total spin current is then Is =∑σ σ z

σσ Iσ =
2I↑, since I↓ = −I↑.

The form of the transmission coefficient suggests an interpretation of the spin
current as interference between the wave functions that propagate back and forth
between the reservoir and the molecule. In the present context of electron-vibron
coupled system, such an interpretation is especially appealing. In order to make
a simple argument of this interpretation we make things as simple as possible and
consider the case of vanishing effective charging energy, i.e. Ũ = 0 ⇔ U = 2λ2/ω0.
The first factor in the transmission can be written

∣∣Gr↑(ω) − Gr↓(ω)
∣∣2

=
∣∣∣∣
∑

n

ΩIn(z)e
nβω0/2

(ω − ωr↑ − nω0)(ω − ωr↓ − nω0)

∣∣∣∣
2

=
∣∣∣∣

Ω

(ω − ωr↑)(ω − ωr↓)
+
∑

n�=0

ΩIn(z)e
nβω0/2

(ω − ωr↑ − nω0)(ω − ωr↓ − nω0)

∣∣∣∣
2

, (7.41)

where ω
r/a
σ = Eσ ∓ iΓ /2. The transmission, and hence the current, peaks at the

resonance frequency ω1 = ωr , giving rise to the ESR peak. At resonance we also
have Ω = 2gμBB1 and Eσ = ε0 − λ2/ω0 − σgμBB1, which means that |E↑ − E↓|
is minimal with respect to the rotating frequency, see Fig. 7.3(a). In the present
form of the spin current, the ESR peak is generated by the first term (n = 0) in the
expansion of T , which is also the only term that remains in absence of the electron-
vibron coupling.

The sum over n �= 0 arises because of the electron-vibron coupling and from
this sum we pick up additional features in the spin current, which consequently
is an effect from presence of the many conductance channels. The schemati-
cally drawn electronic structure for the molecule in this set-up is displayed in
Fig. 7.3(b), from which we see that something interesting may occur at frequen-
cies ω1 = ωr + nω0, n �= 0. Then, the assumption 2gμBB1 � |n|ω0 leads to that
Ω =√(nω0)2 + 4(gμBB1)2 ≈ |n|ω0(1 + 2[gμBB1/(nω0)]2).

We proceed by studying the first two terms in the expansion |Gr↑ − Gr↓|2, that is,
terms with n = 0,1,

Ω2[I 2
0 (z)|G̃r↑(ω)G̃r↓(ω)|2 + I 2

1 (z)|G̃r↑(ω − ω0)G̃
r↓(ω − ω0)|2eβω0

+ 2 Re I0(z)I1(z)G̃
r↑(ω)G̃r↓(ω)G̃r↑(ω − ω0)G̃

r↓(ω − ω0)e
βω0/2]. (7.42)
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Fig. 7.3 Schematic
electronic structure of the
molecule in (a) absence and
in (b) presence of
electron-vibron coupling. At
vanishing time-dependent
magnetic field, the electron
levels are separated by ωr ,
while at finite B1 and
resonance frequency
ω1 = ωr , the levels are
separated by 2gμBB1 < ωr .
and the levels diverge for
increasing frequencies ω1.
(a) There is only one
frequency at which the levels
converge. (b) There are
additional frequencies where
the molecular levels
converge, or, cross. At those
crossings, levels with
different vibrational
excitations are degenerate

The first terms add positively to the transmission and they peak at ω = Eσ and ω =
Eσ + ω0, respectively. The last term is more interesting though. It is proportional to

−Re
Ω

ω0 + iΓ

(
1

(ω − E↑ − ω0 − iΓ /2)(ω − E↓ + iΓ /2)

− 1

(ω − E↓ − ω0 − iΓ /2)(ω − E↑ + iΓ /2)

)
, (7.43)

and it is negligible at pumping frequencies ω1 = ωr since then E↑ ≈ E↓, which
leads to that the two contributions cancel. At pumping frequencies ω1 → ωr +
ω0, however, we have that Ω →

√
ω2

0 + 4(gμBB1)2 ≈ ω0, which leads to that
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E↑ + ω0 ≈ E↓. Consequently, the above expression reduces to approximately

− 1

1 + (Γ/ω0)2

1

(ω − E↓)2 + (Γ/2)2
, (7.44)

since the second term is negligible. This expression peaks at ω = E↓ ≈ E↑ + ω0

and adds negatively to the total transmission Ts . We can estimate the impact of this
negative contribution to the transmission through the ratios between the third and
first terms, and third and second terms, in (7.42) at the frequency ω1 ≈ ωr +ω0. We
obtain

∣∣∣∣
I1(z)

2I0(z)

∣∣∣∣e
βω0/2 L(ω0),

∣∣∣∣
I0(z)

2I1(z)

∣∣∣∣e
−βω0/2 L(ω0), (7.45)

respectively, where L(ω0) = ω2
0/[1 + (ω0/Γ )2] = Γ 2/[1 + (Γ/ω0)

2]. This shows
that the transmission is significantly reduced when the detuning Δ equals the first
vibrational side band. By including all remaining contributions to the transmission,
i.e. summing over all n, we obtain analogous reductions in the transmission at the
pumping frequencies ω1 = ωr +nω0. The argument is certainly also true in presence
of a finite effective charging energy, hence, the result is quite general.

When calculating the physical properties of the system we have to perform self-
consistent calculations of (7.38) with respect to the occupation numbers 〈nσ 〉. Here,
for instance, we are interested in the (equilibrium) spin current flowing through the
molecular level. In Fig. 7.4(a) we plot the spin current as function of the pumping
frequency ω1, and the result clearly illustrates the main ESR peak at ω1 = ωr as
well as the vibrational anti-resonances at ω1 = ωr + nω0, n �= 0.

A peculiar feature in the spin current is that it decreases for increasing coupling λ

at Ũ = 0. This can understood as an effect of that the electron density is distributed
among an increasing number of vibrational side-bands for increasing λ. Hence, for
a given spin bias ω1 there is less electron density available for conductance within
the bias window as the coupling λ increases. Analogously, there is an increasing
spin current for increasing correlation charging energy, which is a result of focusing
the electron density in the spin bias window as Ũ grows.

Fig. 7.4 (a) Dependence of the equilibrium spin current on the electron-vibron coupling λ

and effective charging energy Ũ . Local molecular DOS for λ/ω0 = 0.35, and Ũ = 0 (b) and
Ũ/ω0 = 10 (c). Here, ωr = 2, gμBB1 = 0.2315, Γ = 4

√
5/25, and kBT = 10, in units of ω0
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7.2.2.1 Two-Terminal System and Non-Equilibrium Conditions

The above framework is straightforwardly generalized to systems with two leads
and non-equilibrium conditions. We define the bias voltage V = (μL − μR)/e and
in each lead we have the spin imbalance such that μχ = (μχ↑ + μχ↓)/2, where
χ = L,R. Using the same procedure as above, we derive the current ILσ for the
spin σ current flowing from the left lead into the molecule, which results in

ILσ = e

h

∫
Γ L
{
Γ R Tc(ω)

(
fLσ (ω) − fRσ (ω)

)+ Γ LTs(ω)
(
fLσ (ω) − fLσ̄ (ω)

)

+ Γ R Ts(ω)
(
fLσ (ω) − fRσ̄ (ω)

)}
dω. (7.46)

Here, we have defined the transmission coefficient Tc = |Gr↑ cos2 φ + Gr↓ sin2 φ|2,
whereas fχσ = f (ω − μχσ ). The expression for the current is obtained by noticing
that

Σ< = i
∑

χσ

fχσ Γ χ
σ , Σ> = −i

∑

χσ

(1 − fχσ )Γ χ
σ . (7.47)

The first contribution in (7.46) can be identified as the usual charge current
through molecule in analogy to the result in [21], the second contribution is analo-
gous to the one discussed above, whereas the third contribution describes the spin
current between the leads.

The total charge current flowing through the molecule is defined as Ic =∑σ ILσ ,
for which we obtain

Ic = e

h

∑

σ

∫
Γ LΓ R

(
Ts(ω) + Tc(ω)

)(
fLσ (ω) − fRσ (ω)

)
dω, (7.48)

which is just the sum of the different transmissions between the leads. We notice
here that

Ts + Tc = |Gr↑| cos4 φ + |Gr↓|2 sin4 φ + 2 Re(Gr↑Ga↓ + Gr↓Ga↑) cos2 φ sin2 φ

+ (|Gr↑| + |Gr↓|2 − 2 Re(Gr↑Ga↓ + Gr↓Ga↑)
)

cos2 φ sin2 φ

= |Gr↑| cos2 φ + |Gr↓|2 sin2 φ, (7.49)

hence, the total charge current lacks the interference effect that occurs in the spin-
current. This is to be expected since the charge current consists of current compo-
nents that are merely added upon one another.

The spin current is defined through Is =∑σ σ z
σσ ILσ from which we obtain

Is = e

h

∫
Γ L
(
2Γ LTs

(
fL↑(ω) − fL↓(ω)

)

+ Γ R Ts

(
fL↑(ω) − fR↓(ω) + fR↑(ω) − fL↓(ω)

)

+ Γ R Tc

(
fL↑(ω) − fR↑(ω) + fR↓(ω) − fL↓(ω)

))
dω. (7.50)
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The first of the contributions to the spin-current, i.e. proportional to Γ LTs , has the
same origin as the spin-current discussed in the single terminal case, and describes
the spin-current between the spin-channels within one lead. The second contribu-
tion has an analogous origin but with the difference that this spin-current flows be-
tween the spin-channels in different leads. The last contribution arise due to the
spin-imbalance in the charge current which is caused by the spin-bias acting on the
leads. In contrast to the first two contributions, this last one may vanish under equi-
librium conditions such that μL − μR = 0 although there might be a spin-bias ap-
plied on the system. If the spin-bias acts on the leads such that ω1 = μχ↑−μχ↓, then
μLσ −μRσ = 0 which leads to that fLσ −fRσ = 0 and, hence, the spin-current van-
ishes. If the spin-bias, on the other hand, is such that ω1 = μL↑−μL↓ = μR↓−μR↑,
then there would be a spin-↑ current flowing between the leads, say, from the left
to the right lead. Simultaneously, there is a spin-↓ current flowing from the right to
the left lead. Summing up those two current, this leads to a finite contribution to the
total spin-current.

Typical examples of the non-equilibrium spin-current is plotted in Fig. 7.5 for a
few different values of the bias voltage. The characteristics of the spin-current can
be explained by the following: For low pumping frequencies ω1, the transport that
is assisted by spin-flips in the molecular structure dominates the spin-current, c.f.
first and second contributions to Is in (7.50). Thus, the main ESR peak is visible as
well as are the vibrational anti-resonances in analogy to the equilibrium case. For
increasing frequencies ω1 ones sees that the spin-current drifts off from the equi-
librium value. This characteristics is expected since for increasing ω1, the potential
barrier for spin-flips increases which leads to that the transport that is assisted by
the ac magnetic field becomes suppressed. The current that is not assisted by the
spin-flips, i.e. the last contribution in (7.50), increase for increasing ω1 due to the
non-equilibrium conditions. As ω1 grows, the distance between the spin-chemical
potentials μχ↑ and μχ↓ increases, as well as the distance between the molecular
level spin-projections E↑ and E↓. The spin-↑ current flowing between the leads via
the molecular energy E↑ grows since the loss due to spin-flips decreases. The same
arguments holds for the spin-↓ channel. Eventually, the current from the last con-
tribution in (7.50) saturates in accordance with usual transport through a molecular
level.

Fig. 7.5 Bias voltage
dependence of the
spin-current for λ/ω0 = 0.35
and Ũ = 0. Other parameters
are as in Fig. 7.4
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As we have seen in the previous discussion, the lesser and greater self-energies
of the molecular Green function have been incorrectly treated. Although it is not
impossible to improve on the description of the present picture, such that the lesser
and greater self-energies are appropriately accounted for within the given approxi-
mation, it is found not to be straight forward. Therefore, if we are to improve on the
electronic side of the problem, one choice is to describe the electronic degrees of
freedom through Hubbard operators. This is our task in the succeeding section.

7.2.3 Converting the Electronic Operators to Many-Body
Operators

The lesser and greater self-energies for the Green function given in (7.28′) are sim-
plified since they do not include effects from the electron-electron interactions oc-
curring within the molecular quantum dot. This unsatisfactory property can be reme-
died e.g. by transforming the electronic operators into Hubbard operators, i.e. letting
the operators cσ which are diagonal in spin space be expanded as cσ = X0σ +σXσ̄2.
We then have the transformed Hamiltonians

H̃d =
∑

p=0,σ,2

Ephp, (7.51a)

H̃T =
∑

kσ

vkc
†
kσ

([X0σ + σXσ̄2] cosφ

− σ [X0σ̄ + σ̄Xσ2] sinφ
)

X + H.c., (7.51b)

where Ep ∈ {0,Eσ ,
∑

σ Eσ + Ũ} = {0, ε0 − λ2/ω0 − σΩ/2,2ε0 + U − 4λ2/ω0}.
We introduce the coupling vectors

vk↑ = vk(cosφ,− sinφ, cosφ, sinφ), (7.52a)

vk↓ = vk(sinφ, cosφ, sinφ, cosφ), (7.52b)

by means of which we can write the tunneling Hamiltonian

H̃T =
∑

kσ

vkσ c
†
kσ

(X0↑,X0↓,X↓2,X↑2)T X + H.c. (7.53)

With this formulation, we can employ the framework that we introduced in Sect. 6.3.
We treat the Green function for the molecular level in the Hubbard-I-approximation
omitting the level renormalization, in which approximation we have the equa-
tion

(iω − Δ − PV)G̃ = P, (7.54)
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with

V =
∑

σ

Vσ =
∑

kσ

|vk|2
iω − εk

Uσ , (7.55a)

U↑ =
(

u↑ u↑σz

σ zu↑ σzu↑σz

)
, U↓ =

(
u↓ u↓σz

σ zu↓ σzu↓σz

)
, (7.55b)

where the matrices uσ are defined in (7.37). Using this description, we find that the
lesser and greater forms can be written as G̃</> = G̃rV</>G̃a , where the correct
forms of V</>(ω) = (±i)

∑
σ Γ uσ fσ (±ω) are obtained even in presence of finite

Coulomb interactions, c.f. the lesser and greater self-energies for the Green function
given in (7.28′). Thanks to the product of P and V in the self-energy, the effects from
the electronic correlations are included into the full form of the Green function. For
more elaborate forms of the self-energy we can, of course, consult the theoretical
formalism in Chap. 5.

The retarded and advanced forms of the Green functions can be readily obtained
by inverting the equation for G̃ above. We find

G
r/a
n (ω) = Pn

ω − Δn − Σ
r/a
n −∑m �=n

Σ
r/a
nm Σ

r/a
mn

ω−Δm−Σ
r/a
m

, (7.56a)

G
r/a
nm (ω) = − Σ

r/a
nm

ω − Δn − Σ
r/a
n

G
r/a
m , (7.56b)

where Gn ≡ Gnn, whereas the self-energies Σ
r/a
mn are given by

Σ
r/a
nm =

∑

l

PnlV
r/a
lm , m �= n, n,m = 1,2, (7.56c)

Σ
r/a
n ≡ Σ

r/a
nn ; (7.56d)

where we have used that the equation of motion can be turned into a block structure
in which the blocks are 2 × 2-matrices.

Having solved the Green function for the molecular level and, in addition, pro-
vided the corresponding non-equilibrium Green functions with the correct self-
energies, we can transform the problem back into the framework of the previous sec-
tion, by the transformation Gσ (t, t ′) = G0σ (t, t ′)+σ [G0σ2σ̄ (t, t ′)+Gσ̄2σ0(t, t

′)]+
Gσ̄2(t, t

′). Nevertheless, while we have solved the non-equilibrium physics of the
electronic level more appropriately, there is still no improvement on the influence
from the electron-vibron coupling.

7.3 Beyond Weak Electron-Vibron Coupling

In all of the previous discussions, we have assumed that the coupling between the
electronic and vibronic degrees of freedom is weak, and that the effects of the cou-
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pling does not influence the self-energy of the electronic Green function. It has been
shown by several authors, however, that even in the weak coupling limit one cannot
neglect the influence from the vibronic modes on the electronic structure, see e.g.
[12, 22]. Here, we will address a more generalized situation in which the polaron
effects are also taken into account for in the description of the molecular levels.

7.3.1 Intermediate and Strong Electron-Vibron Coupling Regime

We begin by a simple extension of the previous discussion, see Sect. 7.2.1, in which
we consider the Green functions G̃σσ ′(t, t ′) = (−i)〈Tdσ (t)d

†
σ ′(t ′)〉 and K(t, t ′) =

〈TX (t)X †(t ′)〉, such that Gσσ ′(t, t ′) = G̃σσ ′(t, t ′)K(t, t ′). We here, follow the line-
out proposed in [22], which provides a self-consistent set of equations for G̃ and K

and is valid in the intermediate to strong electron-vibron coupling regimes. The ap-
proach can, furthermore, be viewed as a strong coupling analog of the self-consistent
Born approximation.

The Green functions are calculated in the Hamiltonian system (7.25). For sim-
plicity, however, we omit the correlation term Un↑n↓ such that the two-electron
Green function does not have to be considered.

We have the equation of motion for G̃ given by

(i∂t − ε̃σ )G̃σσ ′(t, t ′) = δσσ ′δ(t − t ′) +
∑

k

v∗
kσ (−i)〈T(X †ckσ )(t)d

†
σ ′(t ′)〉, (7.57)

which leads to

G̃σσ ′(t, t ′) = δσσ ′ g̃σ (t, t ′)

+
∫

C

g̃σ (t, τ )
∑

k

v∗
kσ (−i)〈T(X †ckσ )(τ )d

†
σ ′(t ′)〉dτ, (7.58)

where (i∂t − εσ )gσ (t, t ′) = δ(t − t ′). Acting from the right on G̃ with the operator
−i∂t ′ − εσ , which satisfies gσ (t, t ′)(−i∂t ′ − εσ ) = δ(t − t ′), we obtain

G̃σσ ′(t, t ′) = δσσ ′ g̃σ (t, t ′) + δσσ ′
∫

C

g̃σ (t, τ )Σσ (τ, τ ′)g̃σ (τ ′, t ′)dτdτ ′, (7.59a)

where the self-energy

Σσ (t, t ′) =
∑

k

|vkσ |2gkσ (t, t ′)K(t ′, t). (7.59b)

Obviously, the presence of the vibronic modes also gives an influence on the Green
function G̃, and not only on G as in the weakly coupled regime.
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The vibron Green function K is treated somewhat differently. Consider the ex-
pansion

〈TX (t)X †(t ′)〉 =
∞∑

n,m=0

(−iλ)n

n!
(iλ)m

m! 〈TP n(t)P m(t ′)〉, (7.60)

where the vibron momentum operator P = (−i)(a − a†). It is convenient to intro-
duce the cumulant φp(t, t ′) of order p, in terms of which, the vibron Green function
can be rewritten into

〈TX (t)X †(t ′)〉

= exp

{ ∞∑

p=1

λp

p! φp(t, t ′)
}

= 1 +
∞∑

p=1

λp

p! φp(t, t ′) + 1

2

∑

pq

λp+q

p!q! φp(t, t ′)φq(t, t ′) + · · · . (7.61)

Retaining terms up to second order in λ and equating same orders in λ in the two
above expressions, we obtain the relations

φ1(t, t
′) = i〈P(t)〉 − i〈P(t ′)〉, (7.62a)

φ2(t, t
′) + φ2

1(t, t ′) = 2〈TP(t)P (t ′)〉 − 〈P 2(t)〉 − 〈P 2(t ′)〉. (7.62b)

In the stationary regime, the averages 〈P n(t)〉 = 〈P n(t ′)〉 = 〈P n〉, which leads to
that φ1(t, t

′) = 0, whereas

φ2(t, t
′) = 2〈TP(t)P (t ′)〉 − 2〈P 2〉. (7.63)

Making use of those results in the cumulant expansion of K , yields the following
form:

K(t, t ′) = exp
{
iλ2[D(t, t ′) + i〈P 2〉]}, (7.64)

where D(t, t ′) = (−i)〈TP(t)P (t ′)〉 is the phonon momentum Green function,
whereas 〈P 2(t)〉 = iD<(t, t) = iD>(t, t).

The next step is to consider the equation of motion for D, that is,

i∂tD(t, t ′) = (−i)ω0(−i)〈TQ(t)P (t ′)〉, (7.65)

where Q = a + a† is the phonon displacement operator. Here, we have used that
[P,a†a] = −iQ and that P commutes with X . This operator obeys the equation of
motion

i∂tQ(t) = iω0P(t) − 2λ
∑

kσ

(vkσ c
†
kσ

dσ X − H.c.), (7.66)
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since [Q,a†a] = iP . We moreover have that [Q,P n] = nP n−1 which implies that

[Q, X ] =
∞∑

n=0

(iλ)n

n! [Q,P n] = · · · = −2λX . (7.67)

Putting together the two equations for D and (−i)〈TQ(t)P (t ′)〉 leads to that we
can write

1

2ω0

(
(i∂t )

2 − ω2
0

)
D(t, t ′) = δ(t − t ′) + iλ

∑

kσ

(
vkσ (−i)〈T(c

†
kσ

dσ X )(t)P (t ′)〉

− v∗
kσ (−i)〈T(X †d†

σ ckσ )(t)P (t ′)〉), (7.68)

where we have neglected contributions that mix different processes, using the so-
called non-crossing approximation (NCA) [23]. Applying the differentiation op-
erator D−1

0 = [(i∂t )
2 − ω2

0]/(2ω0) from the right, analogously as the case of the
electronic Green function, we obtain the equation

D(t, t ′) = D0(t, t
′) +

∫

C

D0(t, τ )Π(τ, τ ′)D0(τ
′, t ′)dτdτ ′, (7.69a)

where the self-energy

Π(t, t ′) = −iλ2
∑

kσ

|vkσ |2(gkσ (t ′, t)G̃σ (t, t ′)K(t, t ′)

+ gkσ (t, t ′)G̃σ (t ′, t)K(t ′, t)
)
. (7.69b)

In order to improve on the description of the electronic structure, we replace
the rightmost (bare) propagators in both (7.59a) and (7.69a), by their dressed coun-
terparts. In this way we obtain Dyson-like equations for both the electronic and
vibronic Green functions, which have to be self-consistently solved.

The next step is to determine the lesser and greater forms of G̃ and K . In order
to do this calculation, we assume time-independent conditions, such that all propa-
gators depend on the time-difference t − t ′. Thanks to that both G̃ and D are given
in terms of Dyson-like equations, we find that

G̃</>
σ (ω) = G̃r

σ (ω)Σ</>
σ (ω)G̃a

σ (ω), (7.70a)

D</>(ω) = Dr(ω)Π</>(ω)Da(ω), (7.70b)

where the electronic lesser and greater self-energies are expressed as

Σ</>
σ (ω) = V </>

σ (ω)K>/<(ω) = (±i)
∑

χ

fχ(±ω)Γ χ
σ K>/<(ω), (7.71a)
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whereas the corresponding vibronic self-energies are written according to

Π</>(t, t ′) = −iλ2
∑

σ

(
V >

σ (t ′, t)G<
σ (t, t ′) + V <

σ (t ′, t)G>
σ (t, t ′)

)
K</>(t, t ′).

(7.71b)
Here, we have used the tunneling propagator Vσ (iω) = ∑

k |vkσ |2gkσ (iω), and
gkσ (iω) = 1/(iω − εkσ ). Finally, from the definition of K we obtain

K>(t, t ′) ≡ 〈X (t)X †(t ′)〉 = exp
{
iλ2[D>(t, t ′) − D>(t, t)]}, (7.72a)

K<(t, t ′) ≡ 〈X †(t ′)X (t)〉 = exp
{
iλ2[D<(t, t ′) − D<(t, t)]}. (7.72b)

Before the description is complete, we also need to find expressions for the re-
tarded and advanced Green functions. In principle, those can be obtained through
the definitions e.g. Gr/a(t, t ′) = ±θ(±t ∓ t ′)[G>(t, t ′)−G<(t, t ′)]. We may, on the
other hand, just well make use of the equations for the Green functions, which in
the time-independent regime give

G̃r/a
σ (ω) = 1

ω − ε̃σ − Kr/a(ω)
ω−ε̃σ ±iδ

, (7.73a)

Dr/a(ω) = 2ω0

ω2 − ω2
0 − 2ω0Πr/a(ω)

, (7.73b)

where e.g.

Πr(t, t ′) = θ(t − t ′)[Π>(t, t ′) − Π<(t, t ′)]
= −iλ2θ(t − t ′)

(
V >(t ′, t)G̃<

σ (t, t ′) + V <(t ′, t)G̃>
σ (t, t ′)

)

× (K>(t, t ′) − K<(t, t ′)
)
. (7.74)

Using this procedure, we obtain a self-consistent scheme for solving the elec-
tronic structure of the vibrating molecule. In this scheme, it is obvious that the
coupling between the electronic and vibronic degrees of freedom are affecting the
properties of both the electronic and vibronic Green functions, such that the vibronic
modes are also influencing the electron level broadening.

7.4 Transforming It All to Many-Body Operators

We saw in Sect. 7.2.1 that there are reasons to consider other ways to deal with
the electron-vibron coupled system, and an important reason is that we want to be
able to handle the strongly coupled cases. In the literature there is a huge number
of approaches, especially within non-equilibrium theory since most methods have
proven useful in different regimes and for different purposes. Here, the aim is to
connect to the many-body operator formalism and elucidate its abilities within this
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part of the theoretical formalism. The method as such, is based on the previous ideas
of using the many-body states of the central unit, e.g. molecular quantum dot. These
ideas have subsequently been extended by Galperin et al. [24] to also include the
vibronic side-levels into the many-body states.

The idea is straightforward from the previous introduction of the many-body
operators. As an example, we again take the model introduced in (7.1), here repeated
for convenience

H =
∑

kσ∈L,R

εkσ c
†
kσ

ckσ +
∑

σ

εσ d†
σ dσ + Un↑n↓ + ω0a

†a

+ λ
∑

σ

d†
σ dσ (a† + a) +

∑

kσ

(vkσ c
†
kσ

dσ + H.c.), (7.1)

which is canonically transformed into the form

H̃ =
∑

kσ∈L,R

εkσ c
†
kσ

ckσ +
∑

σ

ε̃σ d†
σ dσ + Ũn↑n↓ + ω0a

†a

+
∑

kσ

(vkσ c
†
kσ

dσ X + H.c.). (7.25)

In absence of the coupling to the vibrational mode, the local electronic states are
|p〉, p ∈ {0,↑,↓,2}. These eigenstates are now extended to the set |p,μ〉, where
μ denotes the vibronic excitation of the electronic state labeled by p. The local
electron operators are, in this basis, given by the expansion

dσ =
∑

pq

∑

μν

〈p,μ|dσ |q, ν〉Xpμ,qν. (7.75)

The electron operators act only on the electron degree of freedom in the state |p,n〉,
hence

∑
q dσ |q, ν〉 = dσ [|σ, ν〉 + |2, ν〉] = |0, ν〉 + σ |σ̄ , ν〉, which leads to

dσ =
∑

μν

[〈0,μ|0, ν〉X0μ,σν + σ 〈σ̄ ,μ|σ̄ , ν〉Xσ̄μ,2ν] =
∑

μ

[X0μ,σμ + σXσ̄μ,2μ].
(7.76)

The vibron operators, on the other hand, only act on the bosonic degree of freedom,
and due to the expansion

am =
∑

pq

∑

μν

= 〈p,μ|am|q, ν〉Xpμ,qν

=
∑

pq

∑

μν

√
ν!

(ν − m)! 〈p,μ|q, ν − m〉Xpμ,qν

=
∑

pμ

√
(μ + m)!

μ! Xpμ,pμ+m, (7.77)



7.4 Transforming It All to Many-Body Operators 131

we obtain the combination

dσ am =
∑

μ

√
(μ + m)!

μ! [X0μ,σμ+m + σXσ̄μ,2μ+m]. (7.78)

Further, by making use of the identity e−λ(a†−a)/ω0 = e−(λ/ω0)
2/2e−λa†/ω0eλa/ω0 ,

we find the matrix elements

〈p,μ|dσ X |q, ν〉 = e−(λ/ω0)
2/2
(

λ

ω0

)ν−μ
√

μ!
ν! Lν−μ

μ

([
λ

ω0

]2)
, (7.79)

where we, without loss of generality, have assumed that μ < ν. The tunneling
Hamiltonian accordingly becomes

H̃T =
∑

kσ

vkσ c
†
kσ

dσ + H.c. =
∑

kσa

vkσac
†
kσ

Xa + H.c., (7.80a)

vkσa = 〈p,μ|dσ X |q, ν〉, a = (p,μ)(q, ν), (7.80b)

where the transition index a carries both the electronic and vibronic degrees of free-
dom.

The many-body eigenstates were introduced in order to make the molecular part
of the Hamiltonian diagonal, i.e.

H̃mol =
∑

σ

ε̃σ d†
σ dσ + Ũn↑n↓ + ω0a

†a =
∑

pμ

Epμhpμ =
∑

ξ

Eξh
ξ , (7.81)

where Epμ = Ep + μω0, with E0 = 0, Eσ = ε̃σ , and E2 = ε̃↑ + ε̃↓ + Ũ . Here,
also the transition index ξ = (p,μ) denotes the diagonal transition. We, thus, have
control of the full Hamiltonian for the vibrating molecular system in the eigenstate
representation and we can, therefore, also use the framework developed in Chap. 5.
It is interesting to notice that the many-body representation very clearly describes
the vibrating molecular structure through an infinite set of eigenstates |ξ 〉 = |p,μ〉,
and that the tunneling current through the molecule is mediated by transitions be-
tween those (infinitely many) eigenstates. In this sense, the concept of opening con-
duction channels due to the vibrations in the structure becomes even more conceiv-
able. Through the eigenstate description we also avoid the discussion of inelastic
processes since, strictly speaking, there can only be elastic (direct) processes be-
tween different eigenstates. There can, however, occur indirect inelastic transitions
between the eigenstates if those are assisted by some corresponding inelastic pro-
cess in the lead-molecule system.

In principle, we can perform as high order diagrammatic expansion of the Green
function defined in terms of the many-body operators Xa as we would find neces-
sary, using the technique introduced in Chap. 5. It is, however, interesting to notice
that already at the level of the Hubbard-I-approximation, the resulting molecular
electronic structure is largely influenced by the vibronic modes. In particular, this
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manifest through non-uniform widths of the vibronic side-peaks, i.e. different vi-
bronic side-peaks acquire different width due to the different transition matrix ele-
ments, or Franck-Condon factors. This is in sharp contrast to the picture obtained
in the small polaron picture. From a physical point of view, this latter scenario is
expected to be the most sensible one, since there is no principle mechanism that
supports a uniform broadening of the vibronic side-peaks. Such a negative statement
cannot be taken as a proof of principle. It is, on the other hand, easy to see that one
would expect a larger probability for transitions between nearby states, than between
states that largely differ in energy. From other symmetry reasons, it would also be
quite obvious that transitions between states with more alike symmetry should be
more likely, than between states with less symmetry in common.
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Chapter 8
Nanomechanical Oscillator

Abstract Coupling of electronic and vibrational degrees of freedom in systems
with superconducting leads further enriches the physics in tunneling systems. We
consider back-action effects of the current on the mechanical motion of a subsys-
tem and show that the mechanical oscillations can be externally excited by the su-
percurrent. On the other hand, the nanomechanical motion leaves off-prints in the
supercurrent which may lead to e.g. additional Shapiro steps in the I–V charac-
teristics. We finally investigate the dynamics of a vibrating quantum dot embedded
in a Josephson junction, and we find that new time-scales emerge. These emergent
time-scales are intimately related to the energies of the single-electron transitions
occurring in the quantum dot. We derive a phase diagram for the dynamics of the
quantum dot occupation. In particular, we find one regime in which the occupation
numbers are constants of the motion and in which the mechanical dynamics is, thus,
set by the Josephson frequency.

8.1 Introduction

Coupling between electronic and vibronic degrees of freedom introduces, as we saw
in the previous chapter, additional complexity to the characteristics of the nanoscale
system. Unlike static defects, vibrational modes posses internal degrees of freedom
which may give rise to additional peaks and dips in the differential conductance
of molecular systems. Incorporating superconducting electronics in combination
within nanomechanical set-up, inevitably enrichess both e.g. Josephson currents as
well as the nanomechanical motion. A prominent example of superconducting elec-
tronics in combination with nanomechanics is a Cooper pair shuttle [1], in which
a superconducting grain, or island, has an oscillating motion inside a Josephson
junction. By varying the superconducting phases in the superconducting leads and
island, the magnitude of the dc current can be controlled. Superconducting transport
through a vibrating molecular structure in the subgap regime can be interpreted in
terms of a ladder picture of inelastic multiple Andreev reflection processes [2]. Yet
other studies of the Josephson effect in superconducting junctions coupled to me-
chanical oscillators show the possibility to introduce additional Shapiro steps in the
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I–V characteristics whose positions are determined by the frequency of the vibra-
tions [3, 4].

In this chapter we discuss a few non-equilibrium characteristic of the Josephson
effect in superconducting junctions coupled to mechanical degrees of freedom. For
single and double Josephson junctions, we derive the time-dependent supercurrent
from which we define a Hamiltonian which is inserted into the model of the nanome-
chanical motion. The resulting motion is put back into the supercurrent. Through
this procedure we can study both the current driven nanomechanical motion as well
as the effects of the electron-vibron coupling on the supercurrent. As a final step,
we also discuss these ideas in a vibrating single level quantum dot embedded in a
Josephson junction.

8.2 Vibrating Josephson Junction

The physical system we will discuss in this part, comprise a superconducting elec-
trode (SCR) of mass mc attached to a cantilever with a spring constant kc , see
Fig. 8.1, cf. [3]. The movable electrode is located at some distance from an in-
finitely massive counterelectrode (SCL). The Hamiltonian describing this system is
given by

H = HL + HR + HT , (8.1a)

Hχ =
∑

kσ

εkc
†
kσ

ckσ +
∑

k

[
Δχc

†
k↑c

†
−k↓ + H.c.

]
, χ = L,R, (8.1b)

HT =
∑

pqσ

Tpqc†
pσ cqσ + H.c., p ∈ L, q ∈ R. (8.1c)

Here, the leads are described by the BCS Hamiltonians Hχ , where εk is the
single-particle energies of the conduction electrons, whereas Δχ is the supercon-
ducting pair potential, or gap function, in the leads. We assume that the supercon-
ductors are of a spin-singlet s-wave pairing symmetry, and we consider the Joseph-
son junction at zero temperature. The latter assumption implies that the derived the-
ory is applicable for temperatures much lower than the relevant energy scales related

Fig. 8.1 Schematic view of the electromechanically coupled superconducting tunnel junction.
The superconducting electrode attached to the cantilever (SCR) is modeled as a harmonic oscil-
lator with spring constant kc and mass mc , located at some distance from an infinitely massive
superconducting counterelectrode (SCL). The device is biased with a voltage V
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to the nanomechanical motion, ω0, and Josephson frequency, ωJ , i.e. T � ω0,ωJ .
Specifically, typical frequencies for the nanomechanical oscillations can be in the
range ω0 ∼ 108–109 Hz, which requires that T ∼ 10–100 mK.

The tunneling between the superconductors is given at the rate Tpq. The nanome-
chanical motion of the oscillating electrode is included in this tunneling rate through

Tpq = T (0)
pq [1 + αq], (8.2)

where α describes the coupling between the electronic tunneling and vibrational
motion. The quantity q is the displacement operator for the oscillator, such that the
equilibrium point (q = 0) of the oscillating electrode is located within the junction
at a position that does not correspond to a special point of symmetry between the
leads. This linear approximation of the motion captures the modulation of the tunnel
barrier triggered by the oscillations.

The energy associated with the frequency of the nanomechanical oscillations,

ω0 =
√

kc

mc

∼ 10−6–10−1 eV, (8.3)

is much smaller than the typical electronic energy on the order of 1 eV. Hence, the
mechanical oscillations is very slow compared to the time scale of the electronic
processes which allows us to apply the Born-Oppenheimer approximation to treat
the electronic degrees of freedom. In this approximation, the moving island is re-
garded to be static at every instantaneous location. Under those conditions we study
the dynamics of the mechanical oscillator as affected by the tunneling electrons.

8.2.1 The Supercurrent

As usual, we consider the number of electrons NL in the left lead and study the rate
of change of electrons within the model. We have the total current (� = 1)

I (t) = 2e Re
∫ t

−∞
(〈[A(t),A†(t ′)]〉eieV (t−t ′) + 〈[A(t),A(t ′)]〉eieV (t+t ′))dt ′, (8.4)

where A(t) = ∑
pq Tpq(t)c

†
pσ (t)cqσ (t), whereas the time-dependent operators

ckσ (t) = eiKχ t ckσ e−iKχ t . The first term is associated with conventional single-
electron tunneling which does not contribute to the supercurrent. In the following
we shall only be concerned with the supercurrent, which is described by the second
term, i.e.

IS(t) = 2e Re
∫ t

−∞
〈[A(t),A(t ′)]〉eieV (t+t ′)dt ′. (8.5)

The average contains two creation (destruction) operators from the left (right) lead,
that is, it describes the tunneling of two electrons from the right to the left lead which
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is the transfer of a Cooper pair through the junction. The current thus, includes the
anomalous averages e.g. F †>

pσp′σ ′(t, t ′) = (−i)〈c†
pσ (t)c

†
p′σ ′(t ′)〉 and F >

qσq′σ ′(t, t ′) =
(−i)〈cqσ (t)cq′σ ′(t ′)〉.

We proceed by making a Bogoliubov-Valatin transformation ckσ = ukγkσ −
σv∗

kγ
†
kσ̄

, where the subscripts σ =↑,↓, whereas the factor σ = ±1. Using this
transformation we have introduced the quasi-particle energies Ek =√

(εp − μχ)2 + |Δχ |2, and the coherence factors

uk =
√

1

2

(
1 + εk − μχ

Ek

)
, vk =

√
1

2

(
1 − εk − μχ

Ek

)
, (8.6)

such that |uk|2 + |vk|2 = 1 and u∗
kvk = |Δχ |eiφχ /(2Ek), where φχ is the phase

associated with the superconductor χ . In terms of those new operators, γpσ , γ
†
pσ , we

will pair the operators γ and γ † with one another to form a quasi-particle description
of the transport. We obtain e.g.

F >
kσk′σ ′(t, t ′) = (−i)〈ckσ (t)ck′σ ′(t ′)〉

= (−i)〈(ukγkσ − σv∗
kγ

†
kσ̄

)(t)(uk′γk′σ ′ − σ ′v∗
k′γ

†
k′σ̄ ′)(t ′)〉

= iσ ′δσ σ̄ ′ukv∗
k′ 〈γkσ (t)γ

†
k′σ̄ ′(t ′)〉 + iσ δσ̄σ ′v∗

kuk′ 〈γ †
kσ̄

(t)γk′σ ′(t ′)〉

= iδkk′σδσ̄σ ′ukv∗
k′
[
f (Ek)eiEk(t−t ′) − f (−Ek)e−iEk(t−t ′)], (8.7)

where the last line is obtained by observing that 〈γ̄ †
kσ̄ (t)γk′σ ′(t ′)〉 = f (Ek) ×

exp[iEk(t − t ′)] defines the occupation number for the quasi-particle at the energy
Ek and momentum k. For short, we use the notation Fkσσ ′ = δkk′ Fkσk′σ ′ . In sum-
mary, we have the four different anomalous Green functions

F <
kσσ ′(t, t ′) = iδσ ′σ̄ σukv∗

k

[
f (Ek)e−iEk(t−t ′) − f (−Ek)eiEk(t−t ′)], (8.8a)

F >
kσσ ′(t, t ′) = iδσ ′σ̄ σukv∗

k

[
f (Ek)eiEk(t−t ′) − f (−Ek)e−iEk(t−t ′)], (8.8b)

F †<
kσσ ′(t, t ′) = iδσ ′σ̄ σu∗

kvk
[
f (−Ek)eiEk(t−t ′) − f (Ek)e−iEk(t−t ′)], (8.8c)

F †>
kσσ ′(t, t ′) = iδσ ′σ̄ σu∗

kvk
[
f (−Ek)e−iEk(t−t ′) − f (Ek)eiEk(t−t ′)]. (8.8d)

At zero temperature, which is assumed here, the Fermi function f (Ek) = 0. The
current can, thus, be reformulated into (τ = t − t ′, ωJ = 2eV , and φ = φL − φR)

IS(t) = 2e Re
∑

pqσ

∫ t

−∞
Tpq(t)Tpq(t ′)

(
F †>

pσ σ̄ (t, t ′)F <
qσ̄ σ (t ′, t)

− F †<
pσ σ̄ (t, t ′)F >

qσ̄ σ (t ′, t)
)
e−ieV τ dt ′eiωJ t
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= 2e Re
∑

pqσ

|ΔL||ΔR|
4EpEq

×
∫ t

−∞
Tpq(t)Tpq(t ′)

(
e−i(Ep+Eq)τ − ei(Ep+Eq)τ

)
e−ieV τ dt ′ei(ωJ t+φ). (8.9)

Were it not for the unknown time-dependence in the tunneling parameter, this
time-integral would be solvable. However, thanks to the discussion above, we are
allowed to use the Born-Oppenheimer approximation and treat the nanomechanical
motion as very slow in comparison with the electronic processes, i.e. Ek � ωJ ,ω0.
Hence, we can make the approximation q(t ′) ≈ q(t) − τ q̇(t). By introducing the
parameters

JS(eV ) = e
∑

pq

|T (0)
pq |2 |ΔL||ΔR|

EpEq

(
1

eV + Ep + Eq
− 1

eV − Ep − Eq

)
, (8.10)

which describes the amplitude of the supercurrent in absence of the vibrational
mode, and

ΓS(eV ) = e
∑

pq

|T (0)
pq |2 |ΔL||ΔR|

EpEq

(
1

(eV + Ep + Eq)2
− 1

(eV − Ep − Eq)2

)
,

(8.11)
which reflects the modified amplitude of the supercurrent due to the vibrational
mode, we can finally write the Josephson current according to

IS(t) = JS[1 + αq]2 sin(ωJ t + φ) − ΓS[1 + αq]αq̇ cos(ωJ t + φ), (8.12)

where q̇ = ∂tq . Making an order of magnitude estimate of those parameters one
finds for small bias voltages that

ωJ

ΓS

JS

∼
(

eV

|Δ|
)2

� 1. (8.13)

8.2.2 Motion of the Oscillating Electrode

It is clear from (8.12) that the current very strongly depends on the position of
the oscillating electrode. Hence, in order to achieve a comprehensive picture of the
effects from the movable electrode on the supercurrent we need a model for the
nanomechanical motion. We can achieve this picture by constructing a Hamiltonian
HJ for the Josephson junction using the requirement that 2e∂HJ /∂φ = IS . We,
thus, find

HJ = EJ [1 + αq]2[1 − cos(ωJ t + φ)
]− ΓS

2e
[1 + αq]αq̇ sin(ωJ t + φ), (8.14)
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where EJ = JS/(2e). This Hamiltonian captures the Josephson back-action effect,
or in other words, the influence from the electronic degrees of freedom on the
nanomechanical motion. The entire mechanical motion will now be modeled by
the classical Hamiltonian

Hosc = p2

2mc

+ kcq
2

2
+ HJ . (8.15)

Using the Hamilton equations of motion, q̇ = ∂Hosc/∂p and ṗ = −∂Hosc/∂q , we
find the equation of motion for the coordinate variable q according to

mcq̈ + [γN + γS(t)]q̇ + kcq = F(t). (8.16)

Evidently, the nanomechanical motion of the movable electrode describes a driven
and damped harmonic oscillation, here with the time-dependent damping

γS(t) = −α2 ΓS

e
sin(ωJ t + φ), (8.17)

while the damping γN is related to e.g. the mechanical friction, and driving force

F(t) = −2αEJ (1 + αq)

(
1 −

[
1 + ωJ ΓS

4eEJ

]
cos(ωJ t + φ)

)
. (8.18)

The net effect of the Josephson back-action on the nanomechanical dynamics is
found to be two-fold. First, the coupling to the Josephson current generates a mod-
ification of the mechanical stiffness—the quantity 2α2EJ can be removed from the
driving force and added to the spring constant, hence, adding a so-called Joseph-
son stiffness to the effective spring constant. Second, the oscillatory contribution
to the driving force and the time-dependent part of the damping lead to a coherent
back-action.

It is an important fact to observe that the damping γS originates from the cou-
pling between the tunneling electrons and the mechanical motion of the system,
and one can separate out two particular aspects. One of those aspects is that γS de-
pends on the bias voltage and vanishes for vanishing bias voltage, since ΓS → 0 as
eV → 0. The second important aspect is that γS is a periodic function of time, with
the Josephson frequency, for finite bias voltages. There is no analogous effect in a
normal metal junction due to the absence of a quasi-particle energy gap, hence, the
time-dependent damping is unique for the Josephson system.

We study the mechanical motion under low bias voltages, such that ΓS is much
smaller than JS . By also assuming weak electron-vibron coupling α, the main
physics is captured by neglecting terms that are proportional to ΓS , αΓS and α2,
in the equation of motion for q . The movable electrode, then, obeys the motion

q(t) = q0 sin(ω̃0t + δ0)e
−γN t/2mc − 2

αEJ

kc

(
1 − H(t;ωJ ,φ)

)
. (8.19)



8.2 Vibrating Josephson Junction 139

Here, ω̃0 =
√

ω2
0 − (γN/2m)2 is the eigenfrequency of the damped oscillations,

whereas the function

H(t;ω,φ) = 1 − (ω/ω0)
2

[1 − (ω/ω0)2]2 + (γNω/kc)2

×
[

cos(ωt + φ) + γN

kc

ω

1 − (ω/ω0)2
sin(ωt + φ)

]

= 1 − (ω/ω0)
2

[1 − (ω/ω0)2]2 + (γNω/kc)2

√

1 +
(

γN

kc

ω

1 − (ω/ω0)2

)2

× sin(ωt + φ̃), (8.20)

where φ̃ = φ + arctan{(kc/γN)[1 − (ω/ω0)
2]/ω}. Here also, the parameters q0 and

δ0 are to be determined by the initial conditions.
Tuning the Josephson frequency ωJ → ω0 leads to that H(ωJ ) → (kc/γNω0) ×

sin(ω0t + φ), and to the motion

q(t) = q0 sin(ω̃0t + δ0)e
−γN t/2mc − 2

αEJ

γNω0
sin(ω0t + φ). (8.21)

For a weakly damped system (γN → 0), the motion appears to occur with an un-
controlled amplitude at the frequency ω0, something which is a typical resonant
characteristics. In the strongly damped case, on the other hand, the oscillatory mo-
tion with frequency ω̃0 rapidly decays whereas the part oscillating at the frequency
ω0 persists indefinitely with a small amplitude.

Substituting this motion into the expression for the current, (8.12), under the
same approximation regarding ΓS , however, retaining contributions up to α2, leads
to the Josephson current

IS(t)

JS

=
(

1 − 4
α2

0

K

)
sin(ωJ t + φ) +

(
2α0 sin(ω̃0t + δ0)e

−γN t/2mc

+ α2
0 sin2(ω̃0t + δ0)e

−γN t/mc + 4
α2

0

K
H(t;ωJ ,φ)

)
sin(ωJ t + φ), (8.22)

where α0 = q0α and K = kcq
2
0/EJ . The Josephson current is obviously not only

modulated by the Josephson frequency ωJ but also by the (effective) vibrational fre-
quency ω̃0. In particular, for weakly damped oscillations (γN → 0), one finds con-
tributions to the Josephson current which are proportional to sin(ω̃0t +δ0) sin(ωJ t +
φ), from the second term in (8.22), which gives the frequencies ωJ ± ω0, and
sin2(ω̃0t + δ0) cos(ωJ t + φ) ∼ [1 − cos 2(ω̃0t + δ0)] sin(ωJ t + φ), from the third
term in (8.22), giving the frequencies ωJ ± 2ω0. From the last term in (8.22) we fi-
nally find a contributions which is proportional to cos(ωJ t +φ) sin(ωJ t +φ), which
gives a frequency 2ωJ .
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Thus, apart from the fundamental Josephson frequency ωJ , which is provided
by e.g. the first term in (8.22), the coupling between the tunneling electrons and
the mechanical motion provides modulations of the Josephson current by the dou-
bled Josephson frequency 2ωJ and, in addition, with the frequencies ωJ ± ω0 and
ωJ ± 2ω0. Especially, tuning the bias voltage such that either ωJ = ω0 or ωJ = 2ω0
leads to dc components, Shapiro steps, in the current.

8.3 Vibrating Superconducting Island in a Josephson Junction

As we saw above, the coupling between the tunneling electrons and mechanical mo-
tion leads to additional complexity of both the mechanical motion and Josephson
current in the system. Without the electro-mechanical coupling, the Josephson cur-
rent is simply described by IS(t) = JS sin(ωJ t +φ), and this contribution is retained
in the electro-mechanically coupled system, cf. (8.22). In the electro-mechanically
system, however, the Josephson current assumes the functional form IS(t) =
J̃s(t) sin(ωJ t + φ) + Γ̃S(t) cos(ωJ t + φ), where the parameters J̃S and Γ̃S depend
on the motion of the movable electrode in a non-trivial fashion, see e.g. (8.22). Here,
we proceed to build on our intuition by adding complexity to the set-up in that we
introduce a second Josephson junction. We, furthermore, let the island between the
two Josephson junctions be suspended on a spring, or cantilever, see Fig. 8.2.

In the spirit of the previous example, we model the present system with the
Hamiltonian

H = HL + HI + HR + HT , (8.23a)

Hχ =
∑

nσ

εnc†
nσ cnσ +

∑

n

[
Δχc

†
n↑c

†
−n↓ + H.c.

]
, χ = L,I,R, (8.23b)

HT =
∑

pkσ

Tpkc†
pσ ckσ +

∑

qkσ

Tqkc†
qσ ckσ + H.c. p ∈ L, k ∈ I, q ∈ R, (8.23c)

Fig. 8.2 Schematic view of the electromechanically coupled superconducting island (SC I) to the
superconducting electrodes (SC L and SC R). The motion of the island, with mass mc , which is
suspended on e.g. a cantilever and located between the infinitely massive superconducting leads,
is modeled as a harmonic oscillator with spring constant kc . The device is biased with a voltage V
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where Tpk = T
(0)
pk (1+αLq) and Tqk = T

(0)
qk (1+αRq), with the couplings αL and αR

to the left and right leads. Performing an analogous derivation as was done for the
single junction system, we obtain the supercurrent I

χ
S (t) between the lead χ = L,R

and the island according to

I
χ
S (t) = J

χ
S (ωχ)[1+αχq]2 sin(ωJ t +φχ)−Γ

χ
S (ωχ)[1+αχq]αχ q̇ cos(ωJ t +φχ),

(8.24)
where the Josephson frequency ωχ = 2(μχ − μI ) and φχ is the phase difference
between the lead χ and the island. Moreover, the amplitude of the Josephson current
in absence of electromechanical coupling is given by

J
χ
S (μχ) = e

∑

n∈χ,k

|T (0)
nk |2 |Δχ ||ΔI |

EnEk

(
1

μχ + En + Ek
− 1

μχ − En − Ek

)
, (8.25)

where Δχ and ΔI is the superconducting gap in lead χ and the island, respec-

tively, whereas the quasi-particle energies En =
√

(εn − μχ)2 + |Δχ |2 and Ek =
√

(εk − μI )2 + |ΔI |2. Here, also the second contribution to the current has the am-
plitude

Γ
χ
S (μχ) = e

∑

n∈χ,k

|T (0)
nk |2 |Δχ ||ΔI |

EnEk

(
1

(μχ + En + Ek)2
− 1

(μχ − En − Ek)2

)
.

(8.26)
For stationary bias voltages we use that IR

S = −IL
S such that the total supercurrent

can be written IS = IL
S = (IL

S − IR
S )/2.

The Hamiltonian for the nanomechanical motion in which the force arising
from the electro-mechanical coupling is included, is derived by requiring that
2e∂HJ /∂φχ = I

χ
S . It is then found that

HJ = 1

2

∑

χ=L,R

(
E

χ
J [1 + αχq]2[1 − cos(ωχ t + φχ)]

− 1

2e
Γ

χ
S [1 + αχq]αχ q̇ sin(ωχ t + φχ)

)
, (8.27)

where E
χ
J = J

χ
S /(2e), and we find the equation of motion for the coordinate q

given by an equation which is formally equal to the one given in (8.17), here with
the driving force

F(t) = −
∑

χ=L,R

E
χ
J αχ [1 + αχq]

{
1 −

(
1 + ωχΓ

χ
S

4eE
χ
J

)
cos(ωχ t + φχ)

}
, (8.28)

whereas the time-dependent damping

γS(t) = − 1

2e

∑

χ=L,R

Γ
χ
S α2

χ sin(ωχ t + φχ). (8.29)
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In comparison with the single junction system, it appears as the only complexity
added in this case is the summation over two junctions. However, the motion of
the island is now affected by the supercurrent in two junctions, and the increased
degrees of freedom due to this summation, increases our possibilities to control and
manipulate the motion of the island and the resulting current. To begin our analysis
of this feature, we perform similar approximations as above, i.e. we neglect the
terms in the damping and driving force which are proportional to αχΓ

χ
S and α2

χ .
Then, the motion of the island is given by

q(t) = q0 sin(ω̃0t + δ0)e
−γN t/2mc −

∑

χ=L,R

αχE
χ
J

kc

(
1 − H(t;ωχ,φχ )

)
. (8.30)

Using this motion in the expression for the Josephson current yields

I
χ
S (t)

J
χ
S

=
(

1 + 2α̃χ sin(ω̃0t + δ0)e
−γN t/2mc + α̃2

χ sin2(ω̃0t + δ0)e
−γN t/mc

− 2α̃χ

∑

χ ′=L,R

α̃χ ′

Kχ ′

[
1 − H(t;ωχ ′ , φχ ′)

])
sin(ωχ t + φχ), (8.31)

with α̃χ = q0αχ and Kχ = kcq
2
0/E

χ
J . Despite this current appear as innocent as

the single junction current, we here have an expression with many more degrees of
freedom. For instance, the appearance of two phase factors φL and φR demands that
we cannot neglect them. Instead, there is an interplay between them by which we
can control whether there flows a current through the junctions. The two Josephson
frequencies ωL and ωR may, moreover, also be different if the system is asymmetric
with respect to the bias voltage. Finally, the sum in the last term shows that the
Josephson current in one junction depends on the current in the other, hence, one
has to adjust the parameters with much more care in the double junction system.

In order to get a grasp of the richness the double junction system presents, we
tune the parameters into the following regime. Assuming that T

(0)
pk = T

(0)
qk and

|ΔL| = |ΔR|, it is seen that JL
S = JR

S = JS , hence, we can set E
χ
J = EJ and

K
χ
J = KJ . By, furthermore, assuming that αL = −αR = α we find that the Joseph-

son current can be written as

2IS(t)

JS

= [1 + α̃2 sin2(ω̃0t + δ0)e
−γN t/2mc

][
sin(ωLt + φL) − sin(ωRt + φR)

]

+ 2α̃

(
sin(ω̃0t + δ0)e

−γN t/mc + α̃

KJ

[
H(t;ωL,φL) − H(t;ωR,φR)

])

× [sin(ωLt + φL) + sin(ωRt + φR)
]
. (8.32)

From this expression it is clear that under zero phase differences φχ = 0 and
symmetrically biased system ωL = −ωR = ωJ , the Josephson current becomes

2IS(t)

JS

= 2
[
1 + α̃2 sin2(ω0t + δ0)e

−γN t/m
]

sinωJ t. (8.33)



8.3 Vibrating Superconducting Island in a Josephson Junction 143

Fig. 8.3 Fourier transform of
the Josephson current
(log10 |2IS(ω)/JS |2) as
function of the frequency ω

and the phase difference φL

for undamped (γN = 0) and
symmetric bias (ωJ = −ωR )
conditions, and fixed phase
difference φR = 0. Here, we
have taken α̃ = 0.1,
KJ = 0.6, and frequency
ω0 = 1.3ωJ

Hence, in the underdamped case (γN → 0), the Josephson current comprise a dc
component whenever the bias voltage matches the Shapiro step 2ω̃0, analogous to
the single junction system. In contrast to the single junction, however, there is no
dc component at bias voltages equaling ω̃0. The electro-mechanical coupling in the
system generates a dc component at each junction, but under the present conditions,
those cancel each other. The net effect, thus, is that there is no dc component at
ω̃0. The Josephson current under those conditions corresponds to the dashed line
in Fig. 8.3, where it is readily seen that there are current components only at the
frequencies ωJ , and ωJ ± 2ω0.

Another limiting case is to consider opposite phases, i.e. φR = φL + π , and we
assume symmetrically biased and undamped system. Then, the Josephson current
can be simplified to

IS(t)

JS

= [1 + α̃2 sin2(ω0t + δ0)
]

cosωJ t sinφL + 4α̃ sin(ω0t + δ0) sinωJ t cosφL

+ α̃

KJ

sin 2ωJ t cos2 φL. (8.34)

Consequently, for general phase differences φL there are current components with
frequencies ωJ , 2ωJ , ωJ ± ω0, and ωJ ± 2ω0, see Fig. 8.3. However, at φL = −π ,
giving φR = 0, the components at frequency ωJ and ωJ ± 2ω0 vanishes, something
which is also illustrated in Fig. 8.3 (dotted lines).

Finally, we consider the zero bias case, i.e. ωχ = 0. Then, the function
H(t;ω,φ) = cosφ, and the Josephson current in (8.32) reduces to

2IS(t)

JS

= [1 + α̃2 sin(ω̃0t + δ0)e
−γN t/m

][sinφL − sinφR]

+ 2α̃

(
sin(ω̃0t + δ0)e

−γN t/2m + α̃

KJ

[cosφL − cosφR]
)

× [sinφL + sinφR]. (8.35)

Hence, for general combinations of the phase differences φχ , the zero bias Joseph-
son current has a non-vanishing dc components as well as ac components at the
frequencies ω̃0 and 2ω̃0.
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It is seen, however, that for phase differences φL = φR , only the contribution
proportional to sin(ω̃0t + δ0) survives, that is, there is only one non-vanishing com-
ponent to the current, and this component is time-dependent with frequency ω̃0.
Moreover, in the case of opposite phase differences φL = −φR , on the other hand,
there is one dc and one ac contribution to the current, of which the time-dependent
component has the frequency 2ω̃0, that is, twice the eigenfrequency of the mechan-
ical oscillations.

Both the single and double Josephson junction systems are, in certain respect,
rather simple systems to handle. Treating the superconductors in the spirit of BCS
(Bardeen-Cooper-Schrieffer) theory [5], provides a very simple parametrization of
the amplitudes (JS, ΓS ) associated with the time-independent and time-dependent
couplings between the superconductors. One can imagine to have very different
superconducting media, and asymmetric couplings in the different junction (in the
double junction system) in order to vary the circumstances. Nevertheless, we do not
obtain any additional time-dependence but those of frequencies that are associated
with the fundamental frequencies ω0 and ωJ . In order to obtain something that does
have other time-dependences involved, we consider in the succeeding section an
oscillating single level quantum dot embedded in a Josephson junction.

8.4 Vibrating Quantum Dot Island in a Josephson Junction

Here, we imagine that the superconducting island SC I is replaced by a single level
quantum dot, but we retain the mechanical degrees of freedom. Having this in mind
we, thus, consider the model

H =
∑

χ=L,R

Hχ + HQD + HT , (8.36)

where Hχ is as before, whereas the quantum dot is described by HQD =∑σ [ε0 +
Unσ̄ /2]nσ =∑p=0,σ,2 Ephp , and the tunneling between the leads and the quan-

tum dot by HT =∑kσ Tkσ c
†
kσ

dσ +H.c. =∑kσ Tkσ c
†
kσ

(X0σ +σXσ̄2)+H.c. The
electro-mechanical coupling is, also here, taken into account through the tunneling
rates

Tkσ = T
(0)
kσ

(1 + αχq), k ∈ χ = L,R. (8.37)

In what follows, we assume spin-degenerate conditions, such that Tkσ = Tk, and we
also assume that the tunneling rates slowly depends on the momentum, hence, we
set Tk = Tχ .

Just like we did in Sect. 8.2, we derive the supercurrent flowing between the left
(superconducting) lead and the quantum dot in order to obtain the formula

IL
S (t) = 2e Re

∫ t

−∞
〈[AL(t),AL(t ′)]〉eiμL(t+t ′)dt ′, (8.38)
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however, here

Aχ(t) =
∑

kσ

Tχ (t)c
†
kσ

(t)dσ (t) =
∑

kσ

Tχ (t)c
†
kσ

(t)
[
X0σ (t) + σXσ̄2(t)

]
, (8.39)

with

ckσ (t) = eiKχ t ckσ e−iKχ t , Kχ = Hχ − μχNχ, (8.40a)

dσ (t) = eiKQDtdσ e−iKQDt , (8.40b)

Xa(t) = eiKQDtXae−iKQDt , KQD = HQD. (8.40c)

Here, we assume that the chemical potential of the quantum dot μQD equals the
equilibrium chemical potential μeq = 0, and that it does not vary with the bias volt-
age.

The average inside the integration is taken care of by an analogous procedure as
in the previous cases, i.e.

〈[AL(t),AL(t ′)]〉
=
∑

pσ

TL(t)TL(t ′)
〈
c

†
kσ

(t)dσ (t)c
†
pσ̄ (t ′)dσ̄ (t ′) − c

†
pσ̄ (t ′)dσ̄ (t ′)c†

kσ
(t)dσ (t)

〉

= −
∑

pσ

TL(t)TL(t ′)
[

F †>
pσ σ̄ (t, t ′)F<

σ̄σ (t ′, t) − F †<
pσ σ̄ (t, t ′)F>

σ̄σ (t ′, t)
]
. (8.41)

The anomalous Green functions for the lead, F †</>
pσ σ̄ (t, t ′), are given in (8.8a)–

(8.8d). The new anomalous Green functions, F
</>

σσ ′ (t, t ′), provides the dynamics
of the quantum dot states, and are defined by

F<
σ̄σ (t ′, t) = i〈dσ (t)dσ̄ (t ′)〉, F>

σ̄σ (t ′, t) = −i〈dσ̄ (t ′)dσ (t)〉, (8.42a)

F
†<
σ̄σ (t ′, t) = i〈d†

σ (t)d
†
σ̄ (t ′)〉, F

†>
σ̄σ (t ′, t) = −i〈d†

σ̄ (t ′)d†
σ (t)〉, (8.42b)

where, we for completeness, also have defined the anomalous Green functions
F

†</>

σσ ′ (t, t ′). Since, for instance, dσ dσ̄ = [X0σ + σXσ̄2][X0σ̄ + σ̄Xσ2] = σ̄Z02,
we approximate the anomalous quantum dot Green functions by (τ = t − t ′)

F<
σ̄σ (t ′, t) = iσ̄N02e

iΔ2σ τ , F>
σ̄σ (t ′, t) = (−i)σN02e

iΔσ̄0τ , (8.43a)

F
†<
σ̄σ (t ′, t) = iσN20e

iΔσ̄0τ , F
†>
σ̄σ (t ′, t) = (−i)σ̄N20e

iΔ2σ τ . (8.43b)

Generally, the averages N02 = 〈Z02〉 = 〈Z20〉∗ is time-dependent, and below we
shall go into how this time-dependence is treated within this context. We notice,
however, that N02 describes the rate at which transitions between the doubly occu-
pied and empty states occur within the quantum dot, that is, the coherent tunneling
of two electrons out of the quantum dot to one of the leads.
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Recalling that we are performing the study at zero temperature, we find that the
supercurrent can be written as

IL
S (t) = 2e Re

∑

pσ

|ΔL|
2Ep

∫ t

−∞
TL(t)TL(t ′)N02(t

′)

× (ei(Ep+Δσ̄0)τ − e−i(Ep−Δ2σ )τ
)
e−iωLτ/2dt ′ei(ωLt+φL), (8.44)

where ωχ = 2(μχ −μQD), χ = L,R. When it comes to the time-dependence of the
tunneling rates, we can again employ the Born-Oppenheimer approximation, that is,
Tk(t ′) ≈ Tk(t) − τ Ṫp(t). In doing so, we define the time-independent parameters

J
χ
S (ωχ ;ω) = e

∑

kσ

|Δχ ||T (0)
χ |2

Ek

×
(

1

ω − ωχ/2 + Ek + Δσ̄0
− 1

ω − ωχ/2 − Ek + Δ2σ

)
, (8.45)

Γ
χ
S (ωχ ;ω) = e

∑

kσ

|Δχ ||T (0)
χ |2

Ek

×
(

1

(ω − ωχ/2 + Ek + Δσ̄0)2
− 1

(ω − ωχ/2 − Ek + Δ2σ )2

)
,

(8.46)

which allows us to write the Josephson current as

IL
S (t) = −Re

∫
N02(t

′)
(
JL

S (ωL;ω)(1 + αLq)2 sin(ωLt + φL)

− Γ L
S (ωL;ω)αL(1 + αLq)q̇ cos(ωLt + φL)

)
e−iωτ dt ′ dω

2π
. (8.47)

Notice that this expression is the quantum dot analogy to the one given in the super-
conducting island case, cf. (8.24). Also, notice that this expression includes a time-
dependence in the average N02, which cannot be neglected, in general. Nonetheless,
in situations when the time-dependence of N02 is negligible, the time-integration
yields 2πδ(ω), and the behavior of the quantum dot motion, as well as the Joseph-
son current, is described in very much the same way as the superconducting island.

Generally, the time-dependence of the average N02 is very much governed by
the electronic processes between the leads and the quantum dot. Fortunately, we can
study its time-dependence through the equation of motion for N02 within the model.
We find that

(i∂t − Δ20)N02(t) = −
∑

kσ

σTχ 〈[X0σ + σXσ̄2]ckσ̄ 〉e−iωχ t/2. (8.48)
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The correlation function is treated by means of perturbation theory, e.g. using the
first order expansion 〈A(t)〉 ≈ (−i)

∫
θ(τ )〈[A(t), H(t ′)]〉dt ′. To this order, we then

obtain

〈([X0σ + σXσ̄2]ckσ̄ )(t)〉 = i

∫ t

−∞
Tχ(t ′)

([
G>

0σ (t, t ′) + G>
σ̄2(t, t

′)
]

F <
kσ σ̄ (t ′, t)

− [G<
0σ (t, t ′) + G<

σ̄2(t, t
′)
]

F >
kσ σ̄ (t ′, t)

)
e−iωχ t ′/2dt ′,

(8.49)

where we have neglected terms proportional to N02 (and N20) since such terms
leads to a higher order of approximation than we are interested in here. The lesser
and greater quantum dot Green functions are here approximated by

G<
0σ (t, t ′) = iNσ e−iΔσ0τ , G>

0σ (t, t ′) = (−i)N0e
−iΔσ0τ , (8.50a)

G<
σ̄2(t, t

′) = iN2e
−iΔ2σ̄ τ , G>

σ̄2(t, t
′) = (−i)Nσ̄ e−iΔ2σ̄ τ . (8.50b)

We, then, obtain the equation of motion

(i∂t − Δ20)N02(t) ≈ −
∑

χ

∫ (
(1 + αχq)2Uχ(ωχ ; t ′,ω)

− iαχ (1 + αχq)q̇Vχ (ωχ ; t ′,ω)
)
e−iωτ dω

2π
dt ′e−i(ωχ t+φχ ),

(8.51)

where

Uχ(ωχ ; t,ω) =
∑

kσ

|Δχ ||T (0)
χ |2

2Ek

(
N0(t)

ω + ωχ/2 − Ek − Δσ0

+ Nσ (t)

ω + ωχ/2 + Ek − Δσ0
+ Nσ̄ (t)

ω + ωχ/2 − Ek − Δ2σ̄

+ N2(t)

ω + ωχ/2 + Ek − Δ2σ̄

)
, (8.52a)

Vχ(ωχ ; t,ω) =
∑

kσ

|Δχ ||T (0)
χ |2

2Ek

(
N0(t)

(ω + ωχ/2 − Ek − Δσ0)2

+ Nσ (t)

(ω + ωχ/2 + Ek − Δσ0)2
+ Nσ̄ (t)

(ω + ωχ/2 − Ek − Δ2σ̄ )2

+ N2(t)

(ω + ωχ/2 + Ek − Δ2σ̄ )2

)
. (8.52b)
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An order of magnitude estimate for the relative ratio between the parameters J
χ
S ,

Γ
χ
S , Uχ , and Vχ , gives

ωχ

Γ
χ
S

J
χ
S

∼
∣∣∣∣
eV

Δχ

∣∣∣∣
2

, ωχ

Vχ

Uχ

∼ 1 + |eV/Δχ |2
1 − |eV/Δχ |2 ,

Uχ

J
χ
S

∼ eV

|Δχ | . (8.53)

In the case that the quantum dot occupation numbers Np , p = 0, σ,2, are time-
independent, the equation for N02 can be integrated and we obtain

N02(t) ≈
∑

χ

[(
(1 + αχq)2U ′

χ (ωχ) − αχ [(1 + αχq)q̇ + αχ q̈]V ′
χ (ωχ)

− 2α2
χ q̇2U ′′′

χ (ωχ)
)

cos(ωχ t + φχ) − αχ q̇
(
(1 + αχq)V ′

χ (ωχ)

+ 2(1 + αχq)U ′′
χ (ωχ) − 2αχ q̈V ′′′

χ (ωχ)
)

sin(ωχ t + φχ)
]

(8.54)

where we have introduced the notation U ′
χ (ωχ) = Uχ(ωχ)/(Δ20 − ωχ), U ′′

χ (ωχ) =
Uχ(ωχ)/(Δ20 − ωχ)2, and U ′′′

χ (ωχ) = Uχ(ωχ)/(Δ20 − ωχ)3, and analogously for
V ′

χ , V ′′
χ , and V ′′′

χ . Under those conditions, Np being constants of motion, the time-
dependence imposed on N02 has a period which is directly determined by the
Josephson frequencies ωχ , χ = L,R. Thus, there is no new time-dependence in-
troduced.

We describe the more general motion by also treating the occupation numbers
Np as time-dependent quantities, with rates of change

∂tN0 = 2 Im
∑

kσ

Tχ 〈c†
kσ

X0σ 〉eiωχ t , (8.55a)

∂tNσ = −2 Im
∑

k

Tχ

(〈c†
kσ

X0σ 〉 + σ 〈c†
kσ̄

Xσ2〉)eiωχ t , (8.55b)

∂tN2 = −2 Im
∑

kσ

Tχ 〈c†
kσ

Xσ̄2〉eiωχ t . (8.55c)

The correlation functions are expressed as

〈c†
kσ

X0σ 〉eiωχ t = (−i)

∫ t

−∞
Tχ

(
G<

kσ (t ′, t)G>
0σ (t, t ′)

− G>
kσ (t ′, t)G<

0σ (t, t ′)
)
eiωχ τ dt ′, (8.56a)

〈c†
kσ

Xσ̄2〉eiωχ t = (−i)σ

∫ t

−∞
Tχ

(
G<

kσ (t ′, t)G>
σ̄2(t, t

′)

− G>
kσ (t ′, t)G<

σ̄2(t, t
′)
)
eiωχ τ dt ′, (8.56b)

where the Green functions G</> for the superconducting leads are given by
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G<
kσ (t ′, t) = i

[|uk|2f (Ek)eiEkτ + |vk|2f (−Ek)e−iEkτ
]
, (8.57a)

G>
kσ (t ′, t) = (−i)

[|uk|2f (−Ek)eiEkτ + |vk|2f (Ek)e−iEkτ
]
. (8.57b)

In terms of those Green functions and the ones for the QD, (8.50a)–(8.50b), we
write the correlation functions as (T → 0)

〈c†
kσ

X0σ 〉eiωχ t = (−i)

∫ t

−∞
Tχ

(|vkσ |2e−iEkτN0 − |ukσ |2eiEkτNσ

)

× e−i(Δσ0−ωχ )τ dt ′, (8.58a)

〈c†
kσ

Xσ̄2〉eiωχ t = (−i)σ

∫ t

−∞
Tχ

(|vkσ |2e−iEkτNσ̄ − |ukσ |2eiEkτN2
)

× e−i(Δ2σ̄ −ωχ )τ dt ′. (8.58b)

Inserting the former correlation function into the equation for e.g. N0 yields

∂tN0 = 2 Im
∑

χσ

Tχ (t)

∫
Tχ(t ′)

(
Γ

χ
0σ (ω)N0 − Λ

χ
0σ (ω)Nσ

)
e−iωτ dω

2π
dt ′ (8.59)

where we have introduced the parameters

Γ χ
pq(ω) =

∑

k

|vk|2
ω − Δ

χ
qp − Ek + iδ

, Λχ
pq(ω) =

∑

k

|uk|2
ω − Δ

χ
qp + Ek + iδ

,

(8.60)
and where Δ

χ
qp = Δqp − ωχ .

The parameters Γ
χ
pq and Λ

χ
pq can be evaluated by the following procedure. We

replace the k-summation by integration over the density of electron states Nχ in
the superconducting leads χ , and we assume Nχ to vary slowly with momen-
tum/energy. Next, we notice that since Ek is an even functions of εk, the fraction
1/(ω −Δ

χ
qp ±Ek + iδ) is also an even function of εk. Furthermore, by noticing that

|uk|2 = [1+εk/Ek]/2 and |vk|2 = [1−εk/Ek]/2, and Ek =
√

(εk − ωχ)2 + |Δχ |2,

we can obtain and expression for the parameter e.g. Γ
χ
pq through the following cal-

culation:

Γ χ
pq(ω) =

∫
Nχ

[1 − ε/E]/2

ω − Δ
χ
qp − E + iδ

dε = 2Nχ

∫ ∞

0

1/2

ω − Δ
χ
qp − E + iδ

dε

= Nχ

∫ ∞

|Δχ |
1

ω − Δ
χ
qp − E + iδ

E√
E2 − |Δχ |2

dE. (8.61)

Under the time-independent conditions, the equation for N0 would only contain the
imaginary part of Γ

χ
pq . Although we notice that the real part of Γ

χ
pq is by no means

small, the real part of the integrand diverges as E → |Δχ | which leads to a divergent
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integral, we only retain the imaginary part. We thus have,

Γ χ
pq ≈ −πNχ

∫
δ(ω − Δχ

qp − E)
θ(E − |Δχ |)
√

E2 − |Δχ |2
EdE

= −πNχ

ω − Δ
χ
qp√

(ω − Δ
χ
qp)2 − |Δχ |2

θ(ω − Δχ
qp − |Δχ |). (8.62)

In the same way we also obtain

Λχ
pq(ω) = −πNχ

ω − Δ
χ
qp√

(ω − Δ
χ
qp)2 − |Δχ |2

θ(−ω + Δχ
qp − |Δχ |). (8.63)

The two parameters Γ
χ
pq and Λ

χ
pq are non-vanishing only when the energy

|ω − Δ
χ
qp| > |Δχ |, something that we shall make use of below.

In order to proceed, we notice that1

∫
Tχ(t ′)e−iωτ dt ′ ≈ T (0)

χ

∫
(1 + αχq − ταχ q̇)e−iωτ dτ

≈ 2πT (0)
χ (1 + αχq)δ(ω) = 2πTχ(t)δ(ω). (8.64)

By this approximation, we then obtain the equations of motion for the quantum dot
occupation numbers given by

∂tN =
∑

χ

(T (0)
χ )2

⎛

⎜⎜⎜⎝

∑
σ Λ

χ

0σ Γ
χ

0↑ Γ
χ

0↓ 0

−Λ
χ
0↑ −Γ

χ
0↑ + Λ

χ
↑2 0 Γ

χ
↑2

−Λ
χ

0↓ 0 −Γ
χ

0↓ + Λ
χ

↓2 Γ
χ

↓2

0 −Λ
χ
↑2 −Λ

χ
↓2 −∑σ Γ

χ
σ2

⎞

⎟⎟⎟⎠N,

(8.65)
where N = {Np}Tp=0,σ,2.

There are several regimes in which the quantum dot population numbers will be-
have very differently. For instance, in case all transitions Δ

χ

σ0 and Δ
χ

2σ are located
within the superconducting gaps of the leads, all the parameters Γ

χ
pq and Λ

χ
pq van-

ish. Hence, all the occupation numbers Np are constants of motion, which leads to
that the time-dependence of N02 given in (8.54) holds. This regime corresponds to
region II in Fig. 8.4.

By symmetry, the cases for which Δ
χ

σ0 < −|Δχ | and |Δχ

2σ | < |Δχ |, and Δ
χ

2σ >

|Δχ | and |Δχ
σ0| < |Δχ |, regions I and III in Fig. 8.4, respectively, give rise to the

1Here, we are not entirely careful since the Fourier transform of τ is not defined. However, the
Fourier cosine transform of τ must vanish since τ cosωτ is an odd function of τ , whereas τ sinωτ

is even. If we replace the latter function by 2τ 1−δ sinωτ , δ > small, and integrate over [0,∞),
one finds the Fourier sine transform 2Γ (1 − δ)ω1−δ sin([1 − δ]π/2) → 0, as δ → 0, Γ (x) is the
Gamma function.
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Fig. 8.4 Phase diagram for
the equation of motion for N
under the spin-degenerate
conditions. In regime I (III)
Δ

χ
σ0 < −|Δχ (Δχ

2σ > |Δχ |)
and |Δχ

2σ | < |Δχ |
(|Δχ

σ0| < |Δχ |). In regime II,
all transitions |Δχ

pq | < |Δχ |,
while the transitions lie
outside the superconducting
gaps in the other regimes

same time-dependence of the occupation numbers, provided that we interchange N0
and N2 with one another. Therefore, consider e.g. region I. In this region the pa-
rameters Γ

χ
pq = 0, for all transitions |p〉〈q|, and also Δ

χ

σ2 = 0 since Δ
χ

2σ > −|Δχ |,
whereas Λ

χ

0σ �= 0 since Δ
χ

σ0 < −|Δχ |. Then, the equation of motion assumes the
form

∂tN = 2
∑

χσ

T 2
χ Γ

χ
0σ

⎛

⎜⎜⎝

1 0 0 0
−δσ↑ 0 0 0
−δσ↓ 0 0 0

0 0 0 0

⎞

⎟⎟⎠N, (8.66)

that is, N2 is a constant of motion. The time-dependence of N0 can be determined
by integrating and one finds that, up to a constant,

N0(t) = Ñ0

∏

χσ

e
Λ

χ
0σ

∫ t
t0

(T
(0)
χ )2(t ′)dt ′

, (8.67a)

Nσ (t) = −
∑

χ

Λ
χ

0σ

∫ t

t0

(
T (0)

χ

)2
N0(t

′)dt ′, (8.67b)

for some initial time t0 at which Ñ0 = N0(t0). Under the local approximation of the
tunneling rate, N0 acquires the time-evolution

∏

χσ

eΛ
χ
0σ (T

(0)
χ )3αχ q̇{[1+αχq][1−αχ q̇(t−t0)]+α2

χ q̇2(t−t0)
2/3}(t−t0). (8.68)

Here, the exponent changes sign periodically with the velocity q̇ , and position q , of
the quantum dot, which provides an oscillatory behavior of the occupation numbers
N0 as well as for Nσ . The physics of this behavior is that the occupation in the
quantum dot periodically grows and wanes as the quantum dot moves. Such a feature
may, thus, enable loading and unloading electron density on the quantum dot at
different leads, or, single electron shuttling between the superconductors via the
quantum dot.
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The time-scale τ for loading (unloading) electron density on the quantum dot
is related to the transition energy Δ

χ

σ0 (Δχ

2σ ), and it can be noticed that τ → 0
as Δ

χ
σ0 → −|Δχ | (Δχ

2σ → |Δχ |), while it is determined solely by the density of
electron states, τ ∼ 1/Nχ , in the leads of transition energies far below (above) the
superconducting gap. The dynamics of the occupation numbers introduce an addi-
tional time-scale to the ac Josephson current which is associated with the energies
of the quantum dot transitions, and which is markedly different from the ones intro-
duced through either the Josephson frequency or the fundamental frequency of the
vibrations.

In the case when all transitions lie below the lower edges of the superconduct-
ing gaps, that is Δ

χ
pq < −|Δχ | cf. region IV in Fig. 8.4, the parameters Γ

χ
pq = 0

whereas all Λ
χ
pq are finite. Under those conditions, the matrix in the equation for

N is lower triangular and can, therefore, be analytically solved. For instance, the
time-dependence of N0 is, up to a constant, given by (8.67a). By also integrating the
equations for Nσ and N2 we find

Nσ (t) = −
∏

χ

∫ t

t0

eΛ
χ
σ2

∫ t
t ′ T 2

χ (t ′′)dt ′′∑

χ ′
T 2

χ ′(t ′)Λχ ′
0σ N0(t

′)dt ′, (8.69a)

N2(t) = −
∑

χσ

Λ
χ
σ2

∫ t

t0

Nσ (t ′)dt ′. (8.69b)

Both the empty and one-electron states depend on the periodic motion and velocity
of the quantum dot, as in the previous case. In addition, the occupation of the two-
electron state acquires a time-dependence since it depends on the integrated time-
evolution of the occupation in the other states. The time-evolution of the electron
occupation in the quantum dot is, hence, related to the (four) time-scales that are
associated with the transition energies Δσ0 and Δ2σ . The one-electron occupation
Nσ in particular, strongly depend on the rates of the transitions X0σ and Xσ2. The
properties of regime VI are obtained by noticing that Γ

χ
pq �= 0 and all Λ

χ
pq = 0,

which leads to that the roles of N0 and N2 are interchanged.
The last regime, in which Δ

χ
σ0 < −|Δχ | and Δ

χ
2σ > |Δχ |, region V in Fig. 8.4,

provides the most complicated dynamics of the occupation numbers, since the pa-
rameters Λ

χ

0σ < 0, Λ
χ

σ2 = 0, Γ
χ

0σ = 0, and Γ
χ

σ2 > 0. The occupation number N0 is,
thus, obtained from (8.67a), whereas N2 is obtained from an analogous expression
which is found by replacing Λ0σ and Ñ0 by Γσ2 and Ñ2, respectively. It is under-
stood that N0 increases while N2 decreases, and the other way around, which is
expected from conservation of probability. The one-electron occupations depend on
the integrated time-evolutions of N0 and N2 through the expression

Nσ (t) = −
∑

χ

∫ t

t0

T 2
χ (t ′)

[
Λ

χ

0σ N0(t
′) − Γ

χ

σ2N2(t
′)
]
dt ′. (8.70)

The occupation of the one-electron states can, thus, be viewed as resulting from the
imbalance between the occupation in the empty and two-electron states.
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In all of the cases discussed here, one has to recall, however, that we perform
the time-integrations under the assumption that Tχ(t ′) ≈ Tχ(t)− τ Ṫχ (t). Moreover,
in order to acquire the entire time-dependence of the occupation numbers, we also
have to have information about the mechanical motion of the quantum dot itself, i.e.
we need to know q(t).

We understand from the discussion of the oscillating quantum dot embedded in
the Josephson junction, that the new time, or energy, scale that can be introduced
stem from the quantum dot transition energies Δpq . We have seen that when these
transitions lie in within the superconducting gaps of the leads, the mechanical mo-
tion of the quantum dot is entirely determined by the Josephson frequencies ωχ .
If one or more transition energies lie outside the superconducting gaps, the me-
chanical motion is also strongly affected by the time-dependence of the occupation
numbers Np of the quantum dot.
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Chapter 9
Current-Voltage Asymmetries in Two Level
Systems

Abstract We consider current-voltage asymmetries in double quantum dot systems.
Such effects are here described in terms of correlation effects and we use the one-
loop-approximation to find that asymmetric couplings to the left and right leads
which provide asymmetric response to the bias voltage. We discuss the results in
terms of the relative level spacing, detuning, and the hopping rate between the quan-
tum dots.

9.1 Introduction

Experimental I–V characteristics of e.g. quantum dot systems, carbon nanotubes,
and quantum wires, often show a degree of asymmetry with respect to the bias
voltage [1–3]. These observations are made on nano-devices where one part has
a complex electronic structure, which is coupled to two, or more, non-complex
regions, e.g. leads. The non-trivial I–V characteristics becomes particularly ap-
parent when the interacting region is asymmetrically coupled to the left and right
leads.

I–V asymmetries may be an effect of impurities introduced during the growth
process or differences in interface roughness of the oxide layers between the con-
tacts and the interacting region [4, 5]. Other mechanisms that may introduce asym-
metries in the I–V , or differential conductance (dI/dV ), characteristics are unin-
tentional background charges which additionally contribute a charging energy to the
interacting region [5], or higher collector barrier which enhances the charge storage
in the well substantially and leads to different current amplitudes for the back- and
forward biased device [6, 7].

Theoretically, it has been suggested that inelastic scattering gives different con-
tributions in the back- and forward bias direction, something that would especially
important for asymmetric structures [8, 9]. However, a full understanding of the
mechanisms responsible for the observed asymmetries in the I–V (dI/dV ) charac-
teristics has not yet been put forward.
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Experiments on double quantum dots coupled to metallic leads have also shown
asymmetric negative differential conductance behavior in the I–V characteristics,
see e.g. [10]. Here, the I–V characteristics is asymmetric in the sense that the neg-
ative differential conductance appears only in one half of the bias voltage range
(−V,V ). Features of negative differential conductance can normally be realized in
semi-conductor double- and multi-barrier structures [11, 12], which usually can be
referred to as band-edge effects [13, 14]. On the other hand, sharp resonant peaks
[15] related to vanishing energy distance between the levels in the two quantum
dots, creating a resonant state [16], have been recorded in transport experiments on
double quantum dots fabricated from semi-conductor hetero-structures. Alignment
of the levels in the two quantum dots are, however, expected to create symmetric
I–V characteristics with sharp resonant peaks and large peak-to-valley ratios. This
is in huge contrast to the observations in [10]. Asymmetries and negative differential
conductance in interacting regions coupled to metallic leads with a conduction band
width of the order of eV, cannot be explained in terms of band-edge effects. Nor-
mally, one would expect an increasing current with increasing bias voltage, possibly
with appearance of plateaux due to the zero-dimensional confined energy levels of
the interacting region.

Here, we will seek an explanation for the I–V asymmetries and negative differ-
ential conductance in terms of electron correlations. We understand from our pre-
vious formal studies of the Green function for the interacting region that we must
go to at least the one-loop-approximation in order to obtain a theory that is beyond
mean-field in order to capture correlation related asymmetries.

9.2 Setting Up the Model

We will study the problem in terms of an idealized double quantum dot, cf. Fig. 9.1,
each with a single level and a large intradot Coulomb repulsion UA/B , and the quan-
tum dots interact through the interdot Coulomb repulsion UAB and hopping t . Fur-
ther, the quantum dots are coupled to leads with tunneling rates vkσ , k ∈ L,R. The
energy for the system is modeled by the Hamiltonian H = HL+ HR + HDQD + HT ,
where, as usual Hχ =∑kσ∈χ εkσ c

†
kσ

ckσ , χ = L,R, whereas

Fig. 9.1 Sketch of the double quantum dot system. The quantum dots interact through the interdot
Coulomb repulsion UAB and hopping t , and each quantum dot is coupled to a lead through Γ L/R



9.2 Setting Up the Model 157

HDQD =
∑

σ

εAd
†
Aσ dAσ + UAnA↑nA↓ +

∑

σ

εBd
†
Bσ dBσ + UBnB↑nB↓

+ UAB(nA↑ + nA↓)(nB↑ + nB↓) +
∑

σ

t (d
†
Aσ dBσ + H.c.)

=
∑

Nn

ENnh
n
N . (9.1)

Finally, the tunneling Hamiltonian HT =∑kσ,a vkσac
†
kσ

Xa + H.c., where vkσa =
vkσ (dσ )a , and where dσ = dAσ (dBσ ) for k ∈ L (R).

Here, we have introduced the Hubbard operators in terms of the eigensystem
{ENn, |N,n〉}, where N and n denote the number of electrons and state, respec-
tively. Reference to the electron spin is not necessary, but is included for complete-
ness. In Table 9.1 we summarize the eigenstates for the double quantum dot in the
atomic limit.

In the following, we focus on the case with bias voltages less than both UA/B

and the intradot level spacing. It is then sufficient to consider only the transitions
between the empty and singly occupied states, |0,1〉 and |1, n〉, n = 1, . . . ,4, re-
spectively. The Hamiltonian for the double quantum dot then reduces to a sum-
mation over these states only. Hence, HT = ∑

kσn vkσnc
†
kσ

X1n
01 + H.c., where

vkσn = vkσ (dσ )1n
01 . In reality, there may be an unknown number N of electrons in

the interacting region. The conducting channels involve only one or a few of the cor-
responding many-body states, and therefore one can simplify the model and identify
the empty state of the model with the N − 1 configuration.

Table 9.1 Eigenstates of the double quantum dot system. Here, we use the convention |σ 〉|σ ′〉 =
d

†
Bσ ′d

†
Aσ |0〉 and |↑↓〉 = d

†
↓d

†
↑|0〉. The two-electron states |ΦA〉 = |↑↓〉|0〉, |ΦB 〉 = |0〉|↑↓〉, and

|ΦAB 〉 = [|↑〉|↓〉 − |↓〉|↑〉]/√2. The coefficients αn, βn, An, Bn, Cn, κn, and λn depend on the
internal parameters εA/B , UA/B , UAB , and t

N |N,n〉

0 |0,1〉 = |0〉
1 |1, n〉 = αn|↑〉|0〉 + βn|0〉|↑〉 n = 1,3

|1, n〉 = αn|↓〉|0〉 + βn|0〉|↓〉 n = 2,4

2 |2,1〉 = |↑〉|↑〉
|2,2〉 = |↓〉|↓〉
|2,3〉 = [|↑〉|↓〉 + |↓〉|↑〉]/√2

|2, n〉 = An|ΦA〉 + Bn|ΦB 〉 + Cn|ΦAB 〉 n = 4,5,6

3 |3, n〉 = κn|↑〉|0〉 + λn|0〉|↑〉 n = 1,3

|3, n〉 = κn|↓〉|0〉 + λn|0〉|↓〉 n = 2,4

4 |4,1〉 = |↑↓〉|↑↓〉
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The eigenenergies for the one-electron states are given by

E1n = εA + εB ± √
Δε2 + 4t2

2
, (9.2)

where n = 1,2 (3,4) correspond to the negative (positive) sign, whereas Δε =
εA − εB is the inter-dot level off-set, or, detuning. The energy of the empty state
is E01 = 0. The transition matrix elements

(dAσ )1n
01 = 〈0,1|dAσ |1, n〉 = αn[(δn1 + δn3)δσ↑ + (δn2 + δn4)δσ↓], (9.3a)

(dBσ )1n
01 = 〈0,1|dBσ |1, n〉 = βn[(δn1 + δn3)δσ↑ + (δn2 + δn4)δσ↓], (9.3b)

where

α1(2) = Δε − √
Δε2 + 4t2

√
[Δε0 − √

Δε2 + 4t2]2 + 4t2
, (9.4a)

β1(2) = 2t√
[Δε − √

Δε2 + 4t2]2 + 4t2
, (9.4b)

while α3(4) = −β1(2) and β3(4) = α1(2). Hence, |(dAσ )
11(2)
01 |2 �= |(dAσ )

13(4)
01 |2 and

|(dBσ )
11(2)
01 |2 �= |(dBσ )

13(4)
01 |2 whenever εA �= εB , as can be seen in Table 9.2 where

the equilibrium properties of the double quantum dot and the transition matrix ele-
ments are listed. The properties of the matrix elements are also plotted in Fig. 9.2(a)
for various hopping strengths t , whereas the drawings in Fig. 9.2(b) and (c) illustrate
the system in the single-particle (b) and many-body (c) representations.

The above situation would hold in many realistic systems since the sizes of the
two quantum dots are different, in general. The difference of the transition matrix
elements influences the current through the system and, furthermore, one can control
the properties of the system through the transition matrix elements.

Table 9.2 Equilibrium
properties of the DQD given
the inter-dot Coulomb
repulsion UAB = 40 meV,
respectively, and the hopping
t = 0.75 meV. The
single-particle levels εA/B are
input parameters

(A) (B) (C)

εAσ (meV) −3.25 −2.5 −1.75

εBσ (meV) −1.75 −2.5 −3.25

E1σ (meV) −3.56 −3.25 −3.56

E2σ (meV) −1.44 −1.75 −1.44

|(dAσ )
01(2)
01 |2 0.85 0.5 0.15

|(dAσ )
03(4)
01 |2 0.15 0.5 0.85

|(dBσ )
01(2)
01 |2 0.15 0.5 0.85

|(dBσ )
03(4)
01 |2 0.85 0.5 0.15
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Fig. 9.2 (a) Transition matrix elements |(dAσ )
11(2)
01 |2 = |(dBσ )

13(4)
01 |2 (black) and |(dAσ )

13(4)
01 |2 =

|(dBσ )
11(2)
01 |2 (grey) as function of the detuning Δε for various hopping strengths t . (b) Sketch of

the energies in the serially coupled quantum dots. In quantum dot A (B), the bare single-electron
levels εA(B). (c) Schematic picture of the energies in the diagonal representation, where μL(R) is the
chemical potential in the left (right) lead. The energies of the transitions between the one-electron
states |1, n〉 and the empty state |0,1〉 are denoted Δn0. The arrows illustrate the strengths of the
transition probabilities between the one-electron states in the double quantum dot and the leads

The plots in Fig. 9.2(a) illustrate the dependence of |(dAσ )
11(2)
01 |2 = |(dBσ )

13(4)
01 |2

(black) and |(dAσ )
13(4)
01 |2 = |(dBσ )

11(2)
01 |2 (grey) as function of the detuning Δε for

various hopping strengths t . It is clear that the matrix elements are equal for van-
ishing detuning, for all hoppings t , which is naturally understood since then e.g.
α1 = 2t/(2 · 2t) = 1/(2t) = β1. This is expected since the state in the two quantum
dots are resonant with one another in this case. In other wordings this means that
the one-electron states are equally distributed throughout the double quantum dot.

For finite detuning, one of the matrix elements approaches unity and the other
to zero, as ξ = 2t/Δε → 0. This is easiest seen be rewriting the matrix elements in
terms of the parameter ξ , giving e.g.

α2
1 = (signΔε −√1 + ξ2)2

ξ2 + (signΔε −√1 + ξ2)2
, β2

1 = ξ2

ξ2 + (signΔε −√1 + ξ2)2
. (9.5)

Hence, for Δε < 0 it is obvious that α2
1(2) → 1 and β2

1(2) → 0, while α3(4) → 0
and β3(4) → 1. The physical meaning of these limits is that the state |1,1(2)〉 has a
larger weight on quantum dot A than on B , while |1,3(4)〉 is heavier weighted on
quantum dot B . In the case Δε > 0, the limit values are interchanged, and |1,1(2)〉
and |1,3(4)〉 become more weighted on quantum dot B and A, respectively.

In the opposite limit, that is, |ξ | → ∞, we have

α2
1 = (|ξ |−1 signΔε −√1 + ξ−2)2

1 + (|ξ |−1 signΔε −√1 + ξ−2)2
,

β2
1 = 1

1 + (|ξ |−1 signΔε −√1 + ξ−2)2
,

(9.6)

which leads to that α2
n → 1/2 and β2

n → 1/2, for all n, which is indicated in
Fig. 9.2(a), for increasing t . Hence, the one-electron states become more uniformly
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distributed throughout the double quantum dot structure for increasing hopping.
This is expected since a large hopping tends to de-localized the states in the sys-
tem.

9.3 Scattering Between the States

In this section we derive the non-equilibrium Green functions for the double quan-
tum dot, and we discuss it in terms of the scattering between the states in the double
quantum dot.

The charge current, I , through the systems will be calculated using the, by now
well-known, formula

I = ie

2h

∑

n

∫ ({f +
L Γ L

n − f +
R Γ R

n }G<
n (ω) + {f −

L Γ L
n − f −

R Γ R
n }G>

n (ω)
)
dω, (9.7)

where Γ
χ
n = 2π

∑
kσ∈χ |vknσ |2δ(ω − εkσ ), f +

χ = fχ(ω), and f −
χ = fχ(−ω) =

1 − fχ(ω), whereas the Green function for the double quantum dot is de-
fined through Gnm(t, t ′) = (−i)〈TX1n

01 (t)Xm1
10 (t ′)〉U . We will need the action S =

exp[−i
∫
C

H′(t)dt] with

H′(t) = U0(t)h
1
0 +

∑

n

(
Un(t)h

1n
01 + Unm(t)Znm

11

)
. (9.8)

The equation of motion for the Green function is given by

(
i

∂

∂t
− Δ0

n − ΔUn(t)

)
Gnm(t, t ′) −

∑

n′ �=n

Unn′(t)Gn′m(t, t ′)

= δ(t − t ′)Pnm(t ′) +
∑

n′m′

(
Pnn′(t+) + Rnn′(t+)

)

×
∫

C

Vn′m′(t, t ′′)Gm′m(t ′′, t ′)dt ′′, (9.9)

where, we repeat that, Rnm(t) = i[δnmδ/δU0(t) + δ/δUmn(t)], and the interac-
tion propagator Vnm(t, t ′) = ∑

kσ v∗
kσn

vkσmgkσ (t, t ′). Here, the Green function
gkσ (t, t ′) denotes an electron in the leads, and satisfies the equation (i∂/∂t −
εkσ )gkσ (t, t) = δ(t − t ′).

In the present discussion it is obvious that Gnm(t, t ′) =∑n′ Dnn′(t, t ′)Pn′m(t ′),
such that

δGnm(t, t ′) =
∑

n′

([δDnn′(t, t ′)]Pn′m(t ′) + Dnn′(t, t ′)[δPn′m(t ′)]). (9.10)
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Recalling that D−1D = 1 giving δD = D[δD−1]D, we find that

δGnm(t, t ′) =
∑

n′

(
Dnn′(t, t ′)[δPn′m(t ′)]

−
∑

νν′

∫

C

Dnν(t, τ )[δDνν′(τ, τ ′)]Dν′n′(τ ′, t ′)Pn′m(t)dτdτ ′
)

. (9.11)

In the limit of zero source fields, Unm(t) → 0, all components of the double quantum
dot Green function matrix that do not conserve either the spin or orbital moments
vanish. Functional derivatives of these propagators may, as we have seen previously,
be finite and will be considered. Scattering between the one-electron states |n〉 and
|m〉, n �= m, is included in the first order correction (first order in functional deriva-
tives). Having these observations in mind, we find that the last term in the equation
of motion can be written
∑

n′m′
Rnn′(t+)

∫

C

Vn′m′(t, t ′′)Gm′m(t ′′, t ′)dt ′′

= i
∑

n′ �=n

∫

C

Vn′(t, τ )
(
δmnDn′(τ, t ′)Kn′n(t, t

′) + Dn′(τ, t)Gn′m(t, t ′)
)
dτ. (9.12)

Here, Kn′n(t, t ′) = (−i)〈TZn′n
11 (t)Znn′

11 (t ′)〉U describes the scattering between
the one-electron states, and satisfies the equation (i∂/∂t − Δnn′)Kn′n(t, t ′) =
δ(t − t ′)[Pn′(t) − Pn(t)].

The first term in (9.12) plays an important role for the understanding of the scat-
tering effects that influence the transport through the system. In particular, this term
is a key part for the explanation of the I–V asymmetries as well as the asymmetric
negative differential conductance, which will be discussed below. The second term
provides the dressing of the transition energy arising from the kinematic interactions
induced by the presence of the de-localized electrons in the leads. We, thus, identify
the dressed transition energy Δn by

Δn = Δ0
n + i

∑

n′ �=n

∫

C

Vn′(t, τ )Dn′(τ, t)dτ, (9.13)

and the dressed end-factor Pnm(t, t ′) by

Pnm(t, t ′) = δ(t − t ′)Pnm(t)+ iδmn

∑

n′

∫

C

Vn′(t, τ )Dn′(τ, t ′)dτKn′n(t, t
′), (9.14)

where Knn(t, t
′) = 0.

We have, thus, arrived at the one-loop-approximation, which was the goal of
this derivation. By restricting ourselves to the stationary regime, we can Fourier
transform our result and obtain the equation of motion

(iω − Δn)Gn(iω) = Pn(iω) + Pn(iω)Vn(iω)Gn(iω). (9.15)
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Although this equation is diagonal, the dressed end-factor contains, as we have seen
above, scattering events between different states. Our purpose with this study is to
understand the effects of the electron correlation on the I–V characteristics. There-
fore, we do not include off-diagonal contributions to the Green function, although
these may provide additional features to the I–V characteristics.

9.4 Asymmetric Population Numbers

The shift in the dressed transition energy Δn, (9.13), is caused by the kinematic
interactions between electrons residing in the states |n′ �= n〉 in the double quantum
dot. These interactions are possible because of the couplings to the leads, which
enable tunneling of electrons between the leads and double quantum dot. Due to
the fluctuating nature of the electrons, tunneling back and forth between the leads
and the double quantum dot, there may be electron density in any of the states |n〉,
and hence, there will be interactions between those densities. This is the physical
background for the kinematic interactions in this system.

Converting the integral into real times, i.e.
∫

C

V (t, τ )D(τ, t)dτ =
∫

[V r(t, τ )D<(τ, t) + V <(t, τ )Da(τ, t)]dτ,

introduces the Fermi function f (εkσ ), i.e. a restricted domain for the energy sum-
mation, which leads to an increased shift near the chemical potentials of the leads.
This is illustrated Fig. 9.3(a), which shows the dressed transition energies as func-
tion of the bias voltage for the case (A) in Table 9.2. We note that the cases listed in
Table 9.2 are reasonable for sizes of the quantum dots less than 10 to 100 nanome-
ters each. It may be seen from the figure that sharp dips in Δn are found at specific
bias voltages. If the couplings to the left and the right contact are asymmetric, that
is, if the hybridization between the localized state in the double quantum dot and
the states in the left lead is different from that to the right lead, then shift of the

Fig. 9.3 (a) Dressed transition energies as function of the bias voltage for the case (A) in Table 9.2,
with Γ L/R = 0.375 meV, and T = 5 K. (b) Dressed population numbers 2N1 = N1 + N2 and
2N3 = N3 + N4, as function of the bias voltage for the case (A)
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transition energies becomes different when the bias voltage is applied in the for-
ward direction compared to the reverse biased system. In Fig. 9.3(a) the couplings
Γ L = Γ R , however, the couplings of each transition in the double quantum dot be-
comes asymmetric with respect to the left and right leads, i.e. Γ L

n �= Γ R
n , because of

the asymmetry of the transitions |0〉〈n| in the double quantum dot.
The expression for the end-factor, (9.14), can be used to understand the basic

mechanisms for the scattering between the one-electron states. First of all it should
be noticed that any contribution in the sum over the states |n〉 vanishes whenever
Pn = Pm. This happens whenever the spectral weights of the transitions |0〉〈n| and
|0〉〈m| equal. Second, the leading contribution from the dressing of the end-factor
has an imaginary part which peaks around Δn. To illustrate this with a simple model,
we put Dr

n(ω) = (ω − Δn + i0+)−1 and D<
n (ω) = i2πδ(ω − Δn). Then, we obtain

the retarded end-factor approximately as

P
r
nm(ω) ≈ Pnm − δmn

∑

n′χ

Γ
χ

n′
2π

Pn′ − Pn

ω − Δn

(
log

∣∣∣∣
μχ − Δn′

ω − μχ − Δnn′

∣∣∣∣− iπfχ(ω − Δnn′)

)
.

(9.16)
The real part appear to be diverging for bias voltages such that μχ ≈ Δn′ . If we
instead use the dressed locator Dr

n′(ω) in the above calculation, this apparent diver-
gence is removed, hence, it is of less importance.

The physical effect from the dressing of the end-factor is an increased or de-
creased spectral weight for the corresponding Green function, depending on the
sign of the difference Pn′ − Pn. Hence, the ability for an electron to tunnel through
the double quantum dot via the transition |n〉〈0| is highly influenced by the scatter-
ing between the one-electron states. It should be emphasized, however, that this is a
dynamical process which strongly depends on the bias voltage and, in addition, on
the strength of the couplings to the left and the right leads.

The population numbers, calculated through the set of self-consistent equa-
tions such that Nn = (−i)

∫
G<

n (ω)dω/(2π) and N0 + ∑n Nn = 1, are plotted
in Fig. 9.3(b) and (c), where panel (c) displays the sums N1 + N2 = 2N1 and
N3 + N4 = 2N3, for the one-electron states as function of the bias voltage for the
parameters used in case (A), cf. Table 9.2. The population numbers N1 and N3,
are almost equal in the region around equilibrium. However, it may be seen from
Fig. 9.3(c) that N3 decreases while N1 remains more or less constant, as the bias
voltage increase in the forward direction (eV = μL − μR > 0). This behavior re-
flects the difference of the coupling strengths for the two transition |0〉〈1| and |0〉〈3|.
The first of these two transitions couples weaker to the right lead that then other
does, and hence prohibits electrons to flow through the double quantum dot via this
transition. Therefore, the population remains constant around its maximum value
for a large range of bias voltages.

For reverse bias voltages (eV < 0), the case is quite the opposite, since the
first transition, |0〉〈1|, couples strong to the left lead whereas the second transition,
|0〉〈3|, couples weaker, cf. Fig. 9.1(c). Hence, a larger amount of electron density
can flow through |0〉〈1| which leads to a decreased population in the state |1〉〈1|.
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The dip and hump in the plots for N1 around −11 mV and 9 mV, respec-
tively, are both caused by the dressing of the end-factor. This fact is empha-
sized in Fig. 9.3(b), showing a comparison of the two mean field approxima-
tions, Hubbard-I-approximation (dashed), re-normalized Hubbard-I-approximation
(dotted), and one-loop-approximation (solid). The figure illustrates logarithmic
plots of the ratio N3/N1 as function of the bias voltage in the three approx-
imation schemes. The dynamical effects from the dressed end-factor tend to
modify the population numbers of the transitions for biases around Δn, as dis-
cussed above, and this modification leads to a further decrease of N1 around
−11 mV since the difference P3 − P1 > 0, whereas this difference is nega-
tive for biases around 9 mV which leads to the hump in N1. In the mean
field theories, the electrons flow through the double quantum dot directly via
the transitions |0〉〈n|, which is expected since the transverse couplings through
|n〉〈n′| are not open in these approximations. The dynamical effects in the dressed
end-factor, which arise from scattering between the one-electron states, tends
to prevent the electrons in the leads to tunnel through the quantum dot via
|0〉〈1|.

As a result of this dynamical redistribution of the spectral weight, it is expected
that the current through the double quantum dot is less (larger) for biases in the range
∼−11 mV (∼9 mV) where the population number N1 is decreased (increased).
Moreover, since both transitions between the empty and one-electron states are res-
onant around −11 mV, whereas only |0〉〈3| is resonant around 9 mV, it is also ex-
pected that the influence of the dynamical redistribution on the resulting current
should be larger in the former case than in the latter. The asymmetry of the positions
of the hump and dip with respect to the bias voltage, is related to the asymmetric
renormalization of the transition energies.

9.5 Current-Voltage Characteristics

We now analyze the calculated current under a few different circumstances. The
important parameters in the present context are the detuning Δε = εA − εB and the
tunneling t . These should be compared to the couplings Γ χ between the double
quantum dot and the leads. The intradot and interdot Coulomb repulsion are irrele-
vant as long as we restrict our discussion to bias voltages such that only transitions
between the empty and one-electron states are involved in the current.

As an example of the differences between the three approximation schemes we
have been considering, the I–V and dI/dV characteristics are shown in Fig. 9.4 for
the parameters in case (A), cf. Table 9.2. First, one can note that the two currents
in the mean-field approximations are shifted in the sense that the two transitions
become resonant at lower biases in the Hubbard-I-approximation than in the re-
normalized Hubbard-I-approximation. This is in agreement with the discussions in
the previous section. Naturally, then the dI/dV peaks appear at lower biases in
the Hubbard-I-approximation than in the re-normalized Hubbard-I-approximation.
The re-normalized Hubbard-I-approximation has a slight asymmetry inherent from
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Fig. 9.4 I–V characteristics
(upper panel) and dI/dV

(lower panel) for the double
quantum dot calculated in the
one-loop-approximation
(solid), re-normalized
Hubbard-I-approximation
(dotted), and
Hubbard-I-approximation
(dashed). Parameters are
taken from case (A) in
Table 9.2

the asymmetric shifts of the transition energies. The effect from this asymmetric
re-normalization of the transitions is, however, negligible and would most certainly
not be detectable in experiments.

In the one-loop-approximation, on the other hand, the asymmetry of the I–V

and dI/dV characteristics is more apparent. Consider the reverse biased system,
eV < 0. The large increase of the current seen in the re-normalized Hubbard-I-
approximation in the range between −3 and −7 mV, remains in the one-loop-
approximation, since the spectral weights are almost equal down to about −7 mV in
the two cases. However, as the bias voltage approaches the range where the dynami-
cal effects of the dressed end-factor become important, the current does not increase
in a step-like fashion. The dI/dV shows a double peak with a small amplitude and
minimum around −11 mV, which is where the dressed population number N1 has
its corresponding minimum, cf. Fig. 9.3(c). Similarly for forward bias voltages, the
amplitude of the step around 5 mV is less in the one-loop-approximation than in
the re-normalized Hubbard-I-approximation, which is understood as an effect of the
scattering between the one-electron states causing a decreased probability for elec-
trons to undergo the transition |0〉〈3| in the double quantum dot. Hence, the resulting
currents in the three different approximation schemes, can be understood from the
discussion about the population numbers of the one-electron states. Thus, we now
proceed to investigate the resulting currents through the double quantum dot in the
one-loop-approximation.

The detuning of the discrete levels in the two quantum dots is of main impor-
tance in order to understand the asymmetry of the I–V characteristics of the system.
When the two levels are resonant, i.e. the detuning Δε = 0, the transition matrix
elements (dAσ )1n

01 and (dBσ )1n
01 are equal. For negative detuning, Δε < 0, the lower

orbital in the double quantum dot couples strong/weak to the left/right lead, whereas
the situation is diametrically opposite for the upper orbital. In case of positive detun-
ing, Δε > 0, the situation is reversed. It is thus expected that the I–V characteristics
would be mirror images of one another under the detuning, which is indeed the case,
cf. Fig. 8 in [17, 18].
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9.5.1 Current-Voltage Asymmetry

We now consider varying (negative) detuning. As was previously discussed, the
transition matrix elements |(dAσ )1n

01 |2 = |(dBσ )1n
01 |2 when the levels are resonant,

which then leads to symmetric I–V curves since the couplings of the transitions
|0〉〈n| to the left and right leads are equal. For finite detuning, the transition ma-
trix elements are distinct, for all values of the tunneling rate t between the quan-
tum dots. Thus, the asymmetry imposed on the system will provide an asymmetric
I–V characteristics, which is clearly seen in Fig. 9.4(a). In Fig. 9.5(a) we plot the
I–V (dI/dV ) characteristics in the upper (lower) panel for increasing magnitude
of the detuning and fixed interdot tunneling rate t , and the plots show the increas-
ing asymmetry as |Δε| grows. The current is only slightly asymmetric for small
detuning. These plots clearly illustrate the importance of the scattering between the
one-electron states which is a result of the enlarged degree of asymmetric couplings
to the left and right lead and follows from the increased asymmetry internally in the
double quantum dot.

By instead letting the detuning be fixed and varying the interdot tunneling t , we
find that the I–V characteristics follows the trends given for the transition matrix
elements for varying t , cf. Fig. 9.2(a). For small tunneling rates we expect the I–V

asymmetry to be significant whereas it is expected to be less pronounced for large
tunneling rates. This is clear since all matrix elements tends to 1/2 as the tunnel-
ing rate grows large, for any detuning since Δε/t → 0 in this limit. One would,
thus, expect that the asymmetry of the I–V characteristics becomes small for large
tunneling rates between the quantum dots, which is also clearly seen in Fig. 9.5(b),
which displays the I–V characteristics (upper panel) for varying t . One should note
that a large tunneling rate results in a large separation of the transition energies
Δn, which eventually leads to that Δ3(4), cf. Fig. 9.2(c), becomes positive for in-
creasing t . This is the case for t/Γ = 5 (dash-dotted) in Fig. 9.5(b), showing that

Fig. 9.5 Asymmetric I–V characteristics (upper panel) and dI/dV (lower panel) for (a) differ-
ent detuning Δε = εA − εB < 0 and fixed interdot tunneling t/Γ = 1, and (b) varying interdot
tunneling t and fixed detuning Δε/Γ = −2
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Δ3(4) lies in the vicinity of the equilibrium chemical potential μ, which gives a high
conductance for low bias voltages. The plots in Fig. 9.5(b) suggest that the I–V

asymmetry increases (decreases) for decreasing (increasing) tunneling rate, which
is to be expected since the asymmetry internally in the double quantum dot increases
(decreases) in this limit.

The plots in Fig. 9.5 show that the amplitude of the current tends to increase as
the systems becomes more symmetric, i.e. Δε/t → 0 which leads to that |(dAσ )1n

01 |2,
|(dBσ )1n

01|2 → 1/2. This behavior reflects the fact that equally strong couplings of
the transitions |0〉〈n| to the left and right leads means that the corresponding double
quantum dot orbital extends with a uniform probability amplitude throughout the
structure. As the double quantum dot become strongly asymmetric, in the sense
that the transition matrix elements approached 1 or 0, one finds a large probability
amplitude of the orbital in one of the quantum dots and a small in the other one. The
conductivity of the double quantum dot is closely related to this fact, since a strong
localization of a state in one of the quantum dot yields a weak tunneling probability
through the other. Hence, the overall current is reduced.

9.5.2 Negative Differential Conductance

Before concluding this chapter, we consider one of the more dramatic consequences
of the I–V asymmetries that we have been discussing so far. From the lower panel
of Fig. 9.5(a) it is clear that the separation of the peaks in the double peak structure
appearing for negative voltages, increases as the magnitude of the detuning grows.
Simultaneously, the conductance in the valley between the peaks approaches zero.
Hence, in this picture it appears as a negative differential conductance would pos-
sibly establish if the detuning is even further increased. It seems that this increase
should be accompanied with a small interdot tunneling rate t , cf. Fig. 9.5(b). Thus,
fixing the tunneling rate and increasing the detuning we find that this is indeed the
case, which is illustrated in Fig. 9.6(a) where the couplings Γ L/Γ R = 1.

In the previous discussion we suggested that the I–V asymmetries arise due to
a significant decrease of the population number N1, which results in that the transi-
tion |0〉〈1| becomes less available for conduction. By the same token, the negative
differential conductance is the result of a further decreased availability, eventually
completely blocking any conduction through the double quantum dot via this tran-
sition. In the lower panel of Fig. 9.6(a) it is seen how the valley between the two
conductance peaks, for negative bias voltages, evolve from being positive to nega-
tive as the detuning increases. The transition |0〉〈1| begins to conduct for bias volt-
ages slightly below its corresponding resonance value, due to the finite width of the
transition. For increasingly negative values of the bias voltage, the conductance of
the transition drops and, eventually, becomes more or less unavailable for conduct-
ing electrons through the double quantum dot, hence, the current drops. A further
increased (negative) bias voltage results in a re-established conduction through the
double quantum dot via the transition, hence the current grows again. The small
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Fig. 9.6 Asymmetric I–V characteristics (upper panel) and dI/dV (lower panel) displaying neg-
ative differential conductance for (a) different detuning Δε = εA − εB < 0 and fixed interdot tun-
neling t/Γ = 1, and (b) varying interdot tunneling t and fixed detuning Δε/Γ = −8/3

negative differential conductance around 5 mV is most likely due to numerical er-
rors in the numerical differentiation, since the current is vanishingly small in this
region.

Above we concluded that small interdot tunneling rates tends to preserve the
asymmetric properties of the double quantum dot whereas larger values of the t

forces the system in to a more symmetric performance. This fact is verified for the
current and is illustrates in Fig. 9.6(b), where it is seen that the negative differential
conductance vanishes for increasing t .

9.6 Summary

We have seen that in the one-loop-approximation theory, scattering between the
one-electron states generate regions of depleted and enhanced population of the or-
bital in the double quantum dot, which are asymmetrically located with respect to
the bias voltage. The asymmetric behavior is a response to that the scattering be-
tween the one-electron states gives rise to a dynamical redistribution of the spectral
weights. We concluded that increasing the separation between the levels in the two
quantum dots and/or decreasing the interdot tunneling rate cause an increased de-
gree of asymmetry of the I–V characteristics. For sufficiently large ratio between
the detuning and the interdot tunneling rate, the asymmetric behavior may give rise
to regions of negative differential conductance.
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Chapter 10
Spin-Blockade

Abstract We reconsider the serially coupled double quantum dot system in the
Pauli spin blockade regime and study the current and its dependence on internal
and external parameters, e.g. the interdot tunneling rate and couplings to the leads.
We proceed the study of the Pauli spin blockade regime by including ferromagnetic
leads, in which case we find that a pure spin one state can be formed at finite bias
voltages. We finally consider the prospect of obtaining an equivalent to the Pauli
spin blockade phenomenon in T-shaped double quantum dots.

10.1 Pauli Spin-Blockade in Double Quantum Dots

Let us repeat some of the details from Chaps. 1 and 2 before we embark on our final
analysis of the current characteristics in the Pauli spin blockade regime. The physics
of the double quantum dot is captured by the Hamiltonian

HDQD =
∑

i=A,B

(∑

σ

εiσ d
†
iσ diσ + Uini↑ni↓

)

+ (U ′ − J/2)(nA↑ + nA↓)(nB↑ + nB↓)

− 2J sA · sB + t
∑

σ

(d
†
Aσ dBσ + H.c.)

=
∑

Nn

ENnh
n
N, (10.1)

where the eigenstates |N,n〉 are essentially given in Table 9.1, however, now also
depending on the spin-spin interaction parameter J . The leads are described sim-
ply by HL/R =∑kσ∈L/R εkσ c

†
kσ

ckσ , and the tunneling interaction is provided by

HT =∑kσ,Nnm vkσ,Nnmc
†
kσ

Xnm
NN+1 + H.c., where vkσ,Nnm = vkσ (diσ )nm

NN+1, with
i = A (B) if k ∈ L (R).
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In Chap. 2 we found that the equations of motion for the population numbers
NNn can be written according to

�∂tN01 = −
∑

χn

Γ
χ

01,1n[f +
χ (Δ1n,01)N01 − f −

χ (Δ1n,01)N1n], (10.2a)

�∂tNNn =
∑

χn′

(
Γ

χ

N−1n′,Nn
[f +

χ (ΔNn,N−1n′)NN−1n′ − f −
χ (ΔNn,N−1n′)NNn]

− Γ
χ

N+1n′,Nn
[f +

χ (ΔN+1n′,Nn)NNn − f −
χ (ΔN+1n′,Nn)NN+1n′ ]),

N = 1,2,3, (10.2b)

�∂tN41 =
∑

χn

Γ
χ

3n,41[f +
χ (Δ41,3n)N3n − f −

χ (Δ41,3n)N41], (10.2c)

owing to the conditions that ∂tNp = 0 in the stationary regime, and that
∑

p Np = 1
by conservation of probability, or, charge, whatever feels more convenient. Here,
Γ

χ

Nn,N+1n′ = 2π
∑

kσ i |vkσ (diσ )nn′
NN+1|2δ(ΔN+1n′,Nn −εkσ ) gives the effective tun-

neling rate between the double quantum dot and the leads in terms of transitions
between the many-body states.

10.1.1 The Pauli Spin Blockade Regime

By tuning the bias voltage into the regime eV = μL −μR ∈ [0.1,1]U and following
the arguments in Sect. 2.4 we have previously seen that

N1n′ =
∑5

n=1 Γ R
1n′,2n

N2n

∑5
n=1 Γ L

1n′,2n

, n′ = 1,2, (10.3)

0 =
∑

n′=1,2

[Γ L
1n′,2nN1n′ − Γ R

1n′,2nN2n], n = 1, . . . ,5. (10.4)

Spin-degenerate conditions leads to that the triplet configurations |2, n〉, n = 1,2,3,
are degenerate such that E2n = ET and N2n = NT /3, as are the one-electron states
|1, n〉, n = 1,2, with E11 = E12 and N1n = N1/2. From the above equations it is
then easy to see that

N1 = 2

3

Γ R

Γ L

(
α

β

)2

NT , (10.5a)

N2n = 1

3

(
Ln

Rn

· α

β

)2

NT , n = 4,5, (10.5b)

where α2 = ξ2/[(1+√1 + ξ2)2 +ξ2] and β2 = (1+√1 + ξ2)2/[(1+√1 + ξ2)2 +
ξ2], with ξ = 2t/Δε, and where Ln and Rn are bounded and finite for all ξ . By the
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Fig. 10.1 (a) Two-electron
population numbers NT

(solid), P24 (dotted), and P25
(dashed), for ξ = 0.1 (bold)
and ξ = 0.5 (faint), keeping
Δε constant, 1/β ∼ U/10,
and U ′ = U/2. (b) The I–V

characteristics for the double
quantum dot system for
various values of ξ , keeping
Δε constant, and
Γ L = Γ R = Γ . The inset
shows the current in the Pauli
spin blockade regime on a
logarithmic scale

normalization condition N1 + NT + N24 + N25 = 1 we obtained

NT =
{

1 + 1

3

(
α

β

)2[
2
Γ R

Γ L
+
∑

n=4,5

(
Ln

Rn

)2]}−1

. (10.6)

In this form, it is easy to see that NT → 1 as ξ → 0, since α → 0 and β → 1 in this
limit.

The spin triplet population number, NT (solid), is plotted in Fig. 10.1(a) along
with the population numbers of the first and second spin singlet states, N24 (dot-
ted) and N25 (dashed), respectively, for two different values of ξ . It is clear from
the plots that the spin triplet state is almost fully occupied in this regime of bias
voltages, eV = μL − μR ∈ [0.1,1]U , for small ξ , while its population decrease for
increasing ξ . It is also clear that singlet populations N24 and N25 are negligible in
the Pauli spin blockade regime.

We now proceed by studying the current characteristics of the system in this
regime. Writing the current according to basic relation

Iχ = ie

h

∑

Nnn′

∫
Γ

χ

Nn,N+1n′ [fχ(ω)G>
Nn,N+1n′(ω) + fχ(−ω)G<

Nn,N+1n′(ω)]dω,

(10.7)
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and identifying the lesser and greater Green functions by

G>
Nn,N+1n′(ω) = −i2πNNnδ(ω − ΔN+1n′,Nn), (10.8a)

G<
Nn,N+1n′(ω) = i2πNN+1n′δ(ω − ΔN+1n′,Nn), (10.8b)

we obtain

IL = e

�

∑

Nnn′
Γ L

Nn,N+1n′
{
fL(ΔN+1n′,Nn)[NNn + NN+1n′ ] − NN+1n′

}
. (10.9)

From the analysis of the population numbers we conclude that, in the Pauli spin
blockade regime, we only need to include the terms proportional to N11 = N12 =
N1/2, N21 = N22 = N23 = NT /3, and N2n, n = 4,5, which leads to that only the
couplings Γ L

1n,2n′ , with n = 1,2 and n′ = 1, . . . ,5 contribute to the current. More-
over, since we have managed to write all non-vanishing population numbers in terms
of the population number NT for the spin triplet state, we can conclude that the cur-
rent is going to be directly proportional to NT . Hence, in the Pauli spin blockade
regime, we find, after some straightforward algebra and using the transition matrix
elements in Table 2.1, that the current reduces to [2]

IL = 2e

3�
Γ R

(
α

β

)2(3

2
β2 + L2

4 + L2
5

)
NT . (10.10)

This expression shows that the current strongly depends on the ratio (α/β)2 =
ξ2/(1 + √1 + ξ2)2 and, hence, that there is a strong suppression of the current
for weakly coupled quantum dots, i.e. for ξ � 1. This property is clearly illustrated
in the bias voltage range eV/U ∈ [0.1,1] in Fig. 10.1(b), which shows the I–V

characteristics for the double quantum dot for different ξ , keeping Δε constant. In
particular, the blockade becomes roughly 3 orders of magnitude deeper when ξ is
decreased from 0.1 to 0.005. This calculated current verifies the experimental ob-
servations in [1]. Bias voltage dependent transition matrix elements generated by a
10% voltage drop between the quantum dots do not qualitatively alter this picture.

We understand that the current IL in the Pauli spin blockade regime is not com-
pletely vanishing which is due to the finite interdot tunneling rate t . A finite in-
terdot tunneling leads to that the population number for the spin triplet is slightly
less than unity. The remaining population, i.e. 1 − NT , is distributed among the
one-electron states |1, n〉, n = 1,2 and the spin singlet states |2, n〉, n = 4,5. In
particular, none of the population numbers N1, N24, and N25, is identically zero
which implies that there occurs transitions between those states by letting elec-
trons in and out from the double quantum dot to the leads, i.e. there is a transport
of electrons between the leads which is another way to say that there is charge
current flowing in the system. It is, furthermore, clear that the leakage current
grows quadratically with ξ since (α/β)2 = ξ2/[1 + √

1 + ξ ]2, while NT decays
by [1 + (α/β)2/3]−1 ≈ 1 − (α/β)2/3.

The above analysis of the population numbers is made on the assumption that
μ = 0. Shifting the position of μ in experiments correspond to application of a gate
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Fig. 10.2 (a) Differential
conductance dI/dV for the
double quantum dot for
varying positions of the
chemical potential
μ ∈ [−1,2]U . (b) Contour
plot of the spin triplet
population number NT as
function of the bias voltage
and the position μ. The
truncated diamond in the bias
voltage range [0,1.5]U marks
the region with NT ≈ 1. Here,
ξ = 0.05, while the other
parameters are as in Fig. 10.1

Fig. 10.3 Spin-triplet
population number NT (bold)
for different asymmetries
γ = Γ R/Γ L of the couplings
to the leads. The sum of the
one-electron population
numbers N1 (faint) are
plotted as reference. Here,
ξ = 0.05, whereas other
parameters are as in Fig. 10.1

voltage across the system, by means of which the levels in the quantum dot can be
changed relative to μ. By shifting μ, we find that the Pauli spin blockade regime
extends over a range of gate voltages, where NT ≈ 1 and the current through the
double quantum dot is small. This is illustrated in Fig. 10.2, where the differential
conductance and NT are plotted in panels (a) and (b), respectively, as functions of
the bias voltage and the chemical potential. In panel (b), the dark truncated diamond
readily shows the expected domain of the Pauli spin blockade regime. The corre-
sponding conductance in panel (a) displays regions of negative differential conduc-
tance shown through the dark ridges along the borders of the diamond.

The population number NT strongly depends on the ratio (α/β)2 as we have seen
above. It also depends on the couplings Γ L/R to the leads through the ratio Γ R/Γ L,
cf. (10.6). Hence, assuming proportional couplings such that Γ R/Γ L = γ ≥ 0, and
letting γ ∼ (β/α)2 gives rise to a lifting of the Pauli spin blockade even for weakly
coupled quantum dots. Accordingly, ξ → 0 one finds that NT → 3/5, see Fig. 10.3
where NT (bold) and N1 (faint) are plotted for varying degree of asymmetry γ

between the double quantum dot and the leads. The plots clearly shows that NT

decays as γ increases, that is, when the coupling to the right lead grows stronger than
the coupling to the left. In particular for γ ∼ (β/α)2, the plot shows that NT is close
to 3/5. The population numbers for the spin singlets have a negligible dependence
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on γ . Hence, the increasing remainder 1 − NT is accumulated on the one-electron
states |1, n〉, n = 1,2, which is clear since N1 ∝ γNT , see (10.5a), (10.5b). This
tendency is also verified in Fig. 10.3 for N1.

The absolute magnitude of the current is, however, not increased by the lifting of
the Pauli spin blockade through the asymmetric couplings to the leads. In the limit
γ = x(β/α)2 and ξ � 1, where x > 0 is an arbitrary constant, the current in the bias
voltage regime eV ∈ [0.1,1]U becomes

IL = 4e

�

x

3 + 2x
Γ L = 8πe

h
Γ

1

1 + γ

x

3 + 2x
, (10.11)

where we have used that Γ = Γ L +Γ R = (1+γ )Γ L. The displayed relation shows
that the current remains small, and decreasing, for increasing asymmetries γ of the
couplings to the leads.

10.1.2 Reverse Bias Regime

In the experiments [1], it was suggested that the unit occupation of the spin triplet
was lifted for reverse bias voltages, which is a natural conjecture when considering
the set-up of the system. Here, we cannot be satisfied, however, with a conjecture
but we would rather like to see if this can be justified, if not proven, on a theoretical
basis.

Hence, we let eV ∈ −[1,0.1]U and ξ � 1. Then, by the same arguments as in
the previous discussion only the population numbers N1, NT , N24, and N25, are
finite. It turns out that we obtain the following relations between those population
numbers [2], that is,

N1 = 2
Γ L

Γ R

(
L4

R4

)2

N24, (10.12a)

NT = 3

2

(
α

β
· L4

R4

)2

N24, (10.12b)

N25 =
(

L4

R4
· R5

L5

)2

N24, (10.12c)

N24 =
{

1 +
(

L4

R4

)2[
2
Γ L

Γ R
+ 3

2

(
α

β

)2

+
(

R5

L5

)2]}−1

. (10.12d)

The expression in (10.12c) tell us that NT ≈ 0 for small ξ , while none of the other
population numbers has a strong dependence on ξ . Thus, all population numbers
in (10.12a)–(10.12d) but NT are finite. Reverse bias voltages correspond to the neg-
ative voltage regime in Fig. 10.1, in which panel (a) shows that the spin triplet state
hardly is populated for small ξ , while the populations of the singlet states, N24 and
N25, are finite. The sum of those states is less that one, however, which leads to that
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remaining population is (equally) distributed among N11 and N12. The finiteness of
N1, N24, and N25, means that the electron population in the double quantum dot
varies between 1 and 2 electrons, which is the same as to say that there is current
running through the system. This current is given by [2]

IL = 2e

�
Γ LL2

4

[
1 +

(
R5

R4

)2]
N24, (10.13)

and is expected to be substantially larger than in the forward direction, which is also
seen in Fig. 10.1(b).

10.1.3 Linear Regime

In the linear regime, i.e. eV ∈ (−0.1,0.1)U , we can employ the equilibrium results

N1 = 2eβ(Δ24,11−μ)N24, (10.14a)

NT = 3eβ(Δ24,11−Δ21,11)N24, (10.14b)

N25 = eβ(Δ24,11−Δ25,11)N24, (10.14c)

N24 =
{

1 + 2eβ(Δ24,11−μ) + 3eβ(Δ24,11−Δ21,11) + eβ(Δ24,11−Δ25,11)

}−1

. (10.14d)

Using that Δ24,11 < μ = 0, cf. Fig. 2.1, we see from those relations that N24 ≈ 1
whenever |Δ24,11| � 1/β which is satisfied for ξ � 0.1 and 1/β ∼ U/10. Accord-
ingly, the population numbers in (10.14a)–(10.14d) will be exponentially suppressed
by the same condition on ξ , since the gap between the energies between the low-
est singlet state, |2,4〉, and the other two-electron states increase roughly by ξ2.
Hence, for ξ � 0.1, the current will be blockaded by the lowest spin singlet in a
finite range around zero bias voltage, which is also illustrated in Fig. 10.1. The plots
for N24 (dotted) in panel (a) shows the tendency of increasing N24 around equilib-
rium for increasing ξ , which gives rise to the current blockade shown in panel (b)
for ξ = 0.5 (dotted). It is, moreover, clear that N24 → 1/7 and ξ → 0, since the en-
ergetic distance between Δ24,11 and μ, and Δ2n,11, n = 1,2,3,5, approaches zero.
In the limit of weakly coupled quantum dots, the equilibrium population numbers
satisfy N1 = 2/7, NT = 3/7, and N24 = N25 = 1/7. The conductance of the system
in the linear regime is therefore substantially larger than in the Pauli spin blockade
regime, cf. Fig. 10.1(b).

Since the first observation of the Pauli spin blockade phenomenon in vertical cou-
pled quantum dots [1], the effect has been recorded in other types of configurations,
such as lateral semi-conducting quantum dots [5–7], and in carbon nanotubes [8].
Further discussions about the Pauli spin blockade phenomenon can be found in [9].
In the following sections we will focus on a few other theoretical aspects of the Pauli
spin blockade regime.
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10.2 Formation of Pure Spin One State in Double Quantum Dots

We now manipulate the external conditions and investigate how the double quantum
dot react to those changes. In particular, we tune the system into the Pauli spin
blockade regime as in the previous discussions, but replace one of the leads by a
ferromagnetic lead keeping the other lead non-magnetic. The results discussed in
this section can also be found in [3].

The extension to ferromagnetic leads is done be introducing the parameters
pL/R = Γ

L/R
↑ − Γ

L/R
↓ for the spin-polarization, such that Γ

χ
σ = Γ0(1 + σpχ)/2,

where Γ0 = Γ
χ
↑ + Γ

χ
↓ , since we are considering symmetric couplings to the leads.

A non-magnetic state in the lead corresponds to pχ = 0, whereas half-metallicity is
obtained for pχ = ±1, corresponding to ↑ and ↓, respectively.

Changing the external condition does not change the general condition of the
double quantum dot. Hence, in the bias voltage regime eV ∈ (−1,1)U , only the
population numbers N1n, n = 1,2, and N2n, n = 1, . . . ,5, are finite. However, since
the spin-degenerate conditions are broken we must acknowledge that N11 �= N12,
and N21 �= N22 �= N23, in general.

First, we consider forward bias voltages eV ∈ (0.1,1)U , where we have the re-
lations

N1n =
∑5

σ,n′=1 Γ R
σ |(dBσ )nn′

12 |2N2n′
∑5

σ,n′=1 Γ L
σ |(dAσ )nn′

12 |2 , n = 1,2, (10.15a)

N2n′ =
∑2

σ,n=1 Γ L
σ |(dAσ )nn′

12 |2N1n
∑2

σ,n′=1 Γ R
σ |(dBσ )nn′

12 |2 , n = 1, . . . ,5, (10.15b)

which, by using the matrix elements in Table 2.1, can be further simplified to read

N11 = 1 + pR

1 + pL

(
α

β

)2

N21, N12 = 1 − pL

1 − pR

(
1 + pR

1 + pL

)2(
α

β

)2

N21, (10.16a)

N22 =
(

1 − pL

1 + pL

1 + pR

1 − pR

)2

N21, N23 = 1 − pL

1 + pL

1 + pR

1 − pR

N21, (10.16b)

N2n = 1 − pL

1 + pL

1 + pR

1 − pR

(
α

β

Ln

Rn

)2

, n = 4,5. (10.16c)

Conservation of charge finally gives

N21 =
{

1 + 1 + pR

1 + pL

[
1 − pL

1 − pR

+ 1 + pR

1 + pL

(
1 − pL

1 − pR

)2

+
(

α

β

)2(
1 + 1 − pL

1 − pR

1 + pR

1 + pL

+ 1 − pL

1 − pR

∑

n=4,5

(
Ln

Rn

)2)]}−1

. (10.17)
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Consider the case pL = 1 and pR = 0, which corresponds to letting the left be
half-metallic with spin ↑ and the right lead being non-magnetic. Then, the popula-
tion number N21 = 1/[1 + (α/β)/2] = 2(1 + ξ2)/(2 + 3ξ2) → 1 as ξ → 0. Physi-
cally, this result means that the probability to populate the spin triplet state | ↑〉| ↑〉
is unity and that the double quantum dot acquires the definite spin moment mz = 1.
This result is consistent with (10.16a)–(10.16c), since all population numbers but
N11 vanish for pL = 1 and pR = 0, while N11 ∝ (α/β)2 → 0 as ξ → 0. The result
is also consistent with the spin-degenerate Pauli spin blockade, since the population
number of the spin triplet must be unity. While a definite spin moment is obtained
in the double quantum dot, this result is not so surprising since there are only spin
↑ electrons available in the left lead. Hence, the accumulated charge in the double
quantum dot must eventually become strongly spin-polarized.

The similar result is obtained by letting the left lead be non-magnetic (pL = 0)
and the right lead half-metallic with spin ↓ (pR = −1). Then, N21 = 1 indepen-
dently of the interdot tunneling rate t and detuning Δε. This result is, of course,
consistent with (10.16a)–(10.16c), since all population numbers but N21 are identi-
cally zero.

Neither of those results are very surprising. In the former case, for instance, only
spin ↑ electrons are present in the left lead and are, thus, the only electrons that can
flow from the left to the right. Accumulation of electrons in the double quantum
dot necessarily have to be of spin ↑. In the latter example, both spin projections are
available in the left lead, however, only spin ↓ electrons are permitted to enter the
right lead. Despite the tunneling rate between the quantum dots and the right lead
is small for the spin ↓ electrons, it is vanishing for the spin ↑ electrons. Hence, the
accumulated electron density in the double quantum dot will eventually consist of
spin ↑ solely.

The reverse regime, i.e. eV ∈ (−1,−0.1)U , is, in this respect, more intriguing.
Using the same arguments are before, we find that the population numbers are re-
lated through

N11 = 1 + pR

1 + pL

(
1 − pL

1 − pR

)2(
β

α

)2

N22, N12 = 1 − pL

1 − pR

(
β

α

)2

N22, (10.18a)

N21 =
(

1 − pL

1 + pL

1 + pR

1 − pR

)2

N22, N23 = 1 − pL

1 + pL

1 + pR

1 − pR

N22, (10.18b)

N2n = 1 − pL

1 + pL

1 + pR

1 − pR

(
β

α
· Rn

Ln

)2

N22, n = 4,5. (10.18c)

Conservation of charge gives

N22 =
{

1 + 1 − pL

1 − pR

[
1 + pR

1 + pL

+ 1 − pL

1 − pR

(
1 + pR

1 + pL

)2

+
(

β

α

)2(
1 + 1 − pL

1 − pR

1 + pR

1 + pL

+ 1 + pR

1 + pL

∑

n=4,5

[
Rn

Ln

]2)]}−1

. (10.19)
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From (10.19) it follows that N22 = 1 for pL = 1, i.e. when the left lead is half-
metallic spin ↑. We also note that this results irrespective of the spin-polarization
in the right lead and of the ratio ξ , since all terms in the square bracket in (10.19)
are multiplied by 1 − pL = 0. Simultaneously, all other population numbers vanish,
see (10.18a)–(10.18c). Physically, this means that the state | ↓〉A| ↓〉B becomes fully
populated for low temperatures whenever the left lead is a spin ↑ half-metal.

Having the discussion in Sect. 10.1 in mind, this result is quite remarkable, since
without the spin-polarized leads all triplet states would have small population num-
bers in this regime, eV ∈ (−1,−0.1)U . In fact, in the spin-degenerate case, the
electron density is rather uniformly distributed among the spin singlet states |2, n〉,
n = 4,5, and the one-electron states |1, n〉, n = 1,2. The spin-polarization does not
change the transition matrix elements, see Table 2.1, but from those we, neverthe-
less, find the explanation for the remarkable accumulation of electron density in the
spin triplet. Unless, the right lead is a spin ↑ half metal, it provides the double quan-
tum dot with electrons of both spin projections, and from the discussion in Sect. 10.1
we know that the population numbers of the spin triplet states are finite and, hence,
are part of the conduction of electrons from the right to the left lead. The probabil-
ity amplitudes for the transitions |1,1〉〈2,2| and |1,2〉〈2,2| are 0 and β (recall that
|1,1〉 = α| ↑〉|0〉 + β|0〉| ↑〉 and |1,2〉 = α| ↓〉|0〉 + β|0〉| ↓〉). Due to the absence
of spin ↓ electron states in the left lead, the condition pL = 1 implies that the latter
transition is unavailable. Hence, while both spin ↑ and ↓ electrons can tunnel into
the double quantum dot from the right, only the spin ↑ electrons can continue to the
left lead. Then, since the spin triplet state |2,2〉 is involved in the conduction, this
inevitably leads to an accumulation of electron density in this state.

If we instead assume that the right lead is half-metallic spin ↓, i.e. pR = −1, we
find from (10.19) that N22 = 2ξ2/(1+3ξ2) → 0 as ξ → 0, for any spin-polarization
in the left lead. Simultaneously, all population numbers but N12 vanish identically,
whereas

N12 = 1

2

(
β

α

)2

N22 = 1 + ξ2

1 + 3ξ2
→ 1, as ξ → 0, (10.20)

that is, the one-electron state α| ↓〉|0〉 + β|0〉| ↓〉 acquires an almost full population
for weakly coupled quantum dots. Hence, the double quantum dot ends up in a spin-
polarized configuration, however, carrying only one electron instead of two.

10.3 Non-Equilibrium Triplet Blockade in T-Shaped Double
Quantum Dot

Before leaving the discussion of the Pauli spin blockade in double quantum dots,
we ask ourselves whether it would be possible to obtain a similar state in parallel, or
T-shaped, double quantum dot systems, see Fig. 10.4(a). We find that this is indeed
the case if there is a ferromagnetic exchange interaction between the quantum dots.
The results discussed in this section can also be found in [4].
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Fig. 10.4 (a) Schematic view of the T-shaped double quantum dot system, where only one of
the quantum dots is coupled to the leads. (b) Processes leading to the non-equilibrium triplet,
Pauli spin blockade, blockade. Faint and bold lines signify small and large transition probabilities,
respectively. See text for notation

As we shall see below, the quantities that are important for obtaining the Pauli
spin blockade comprise the conditions that the quantum dots are coupled through
Coulomb and exchange interactions, and weakly through tunneling. In absence of
the spin-spin exchange interaction, there may be regimes of normal Coulomb block-
ade in a finite range of bias voltages around equilibrium.

Existence of a sufficiently large ferromagnetic exchange coupling leads to that
the spin triplet states |2, n〉, n = 1,2,3, acquire a lower energy than the lowest spin
singlet |2,4〉. Hence, the spin triplet naturally becomes the ground state with a unit
probability of being populated, provided that the spin triplet energy is lower than the
energies of all other states. The spin triplet remains fully occupied for bias voltages
smaller than the energy separation between the triplet and singlet states, although
transitions between the one-electron and the singlet states may open for conduc-
tion. For larger bias voltages, however, this low bias triplet blockade is lifted as the
transitions between triplet and one-electron states become resonant with the chem-
ical potentials of the leads. The current is then mediated by transitions between the
two-electron singlet and one-electron states.

The proper non-equilibrium Pauli spin blockade regime is entered at bias volt-
ages such that transitions between the three-electron states and, at least, one of the
singlet states become resonant, see Fig. 10.4(b). At those conditions, an electron en-
ters the double quantum dot from the lead with the higher (chemical) potential under
a transition from a two-electron singlet to a three-electron state. Transitions from the
spin triplet to the three-electron states are suppressed since the bias voltage does not
support tunneling through the energy barrier between those states. Next, an electron
tunnels out from the double quantum dot under a transition from the three-electron
state to the spin triplet, since the transition matrix element for this process is about
unity whereas the matrix elements for transitions between the three-electron states
and the spin singlets are at most one half. Eventually, charge accumulate in the spin
triplet since the transitions between those states and the one-electron states occur
with a negligible rate.
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In order to be quantitative, assume the two quantum dots to be spin-degenerate
and assume that the exchange parameter J ≥ 0 such that the direct spin-spin inter-
action does not favor an anti-ferromagnetic configuration of the spins in the quan-
tum dots. In analogy with the serial case, we require that the lowest one-electron
states, the lowest singlet states, and the triplet states are nearly aligned, and that
the lowest three-electron states lie below the equilibrium chemical potential μ,
hence, ET ≈ E24 ≈ E25 ≈ min4

n=1{E1n} < min4
n=1{E3n} < μ < E4. For this set-

up we, thus, require that μ − εB ≈ Δε, U ′ ≈ Δε, and UA ≈ 2Δε ≤ UB , where
Δε = εB − εA. The condition UA ≤ UB points out that the quantum dots do not
need to be identical but that the charging energy of the second quantum dot should
be bounded below by the charging energy of the first. The presence of the second
quantum dot is, however, essential in order to obtain the Pauli spin blockade regime
in the T-shaped system. Finally, weakly coupled quantum dots, ξ � 1, implies that
the energies for the lowest one- and three-electron states acquire their main weights
on quantum dot A. This condition yields a low (large) probability for the transitions
between the triplet and the lowest lying one-electron (three-electron) states.

The discussion is here focused to the non-equilibrium Pauli spin blockade since
the low bias blockade can be obtained for weakly coupled quantum dots whenever
J > 0 is sufficiently large. As mentioned, the Pauli spin blockade is generated by
opening transitions between the two- and three-electron states. It turns out that the
restrictions eV < 7Δε/4, kBT < UA/10, and ξ < 1/5 are sufficient for these pur-
poses, which give that only the population numbers P1n, n = 1,2, NT = P2n/3,
n = 1,2,3, P24, P25, and P3n, n = 1,2, are non-negligible. The population num-
bers for all other states are negligible since any transition involving those states are
non-resonant. As in Sect. 10.1, we consider spin-degenerate conditions, for which it
is required that P1n = N1/2, and P3n = N3/2, and which reduces the system to five
equations for the population numbers, given by e.g. (10.2a)–(10.2c).

The Pauli spin blockade regime enters when, at least one of, the transition ener-
gies Δ3n,24,Δ3n,25 lie within the bias voltage window eV = μL − μR , whereas the
transition energy between the spin triplet and the three-electrons state, i.e. Δ3n,T , is
non-resonant, where the subscript T denotes the spin triplet states. In addition, in or-
der to acquire an accumulation of charge in the spin triplet states under those condi-
tions, and in order to prevent a large leakage of charge from the spin triplet states, it
is necessary that transitions between the three-electron (one-electron) states and the
spin triplet states occur with large (small) probability. In particular, the transitions
|3, n〉〈T | must be very much more likely to occur than the transitions |3, n〉〈2,4|
and |3, n〉〈2,5|, since otherwise the charge would not tend to accumulate in the spin
triplet.

We obtain the desired conditions by tuning the bias voltage such that e.g.
minnm{Δ3m,2n} < μL < maxnm{Δ3m,2n}, n = 1, . . . ,5, and m = 1,2 (here eV > 0
whereas the case eV < 0 follow by symmetry). In this regime fL(Δ2n,1m) =
fR(−Δ2n,1m) = 1, n = 1, . . . ,5, m = 1,2, and fR(Δ3m,2n) = 0, n = 1, . . . ,5,
m = 1,2. From the above discussion it is clear that the charge accumulation in the
spin triplet will be lifted for bias voltages that support transitions between the spin
triplet states and the three-electron states. We, therefore, require the bias voltage to
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be such that fL/R(Δ3m,T ), which is obtained for Δ3m,T = E3m − ET > μL + kBT ,
m = 1,2. The equations for the population numbers can thus be written

N1 = 1

p
N3 = 2/3

1 + 2p(κ/β)2
NT , P2n = p

2

L2
n/p + Λ2

n

∑
χ fχ(−Δ31,2n)

L2
n + Λ2

nfL(Δ31,2n)
N1,

(10.21a)

p =
∑

n=4,5 L2
n

Λ2
nfL(Δ31,2n)

L2
n+Λ2

nfL(Δ31,2n)

3κ2 +∑χ,n=4,5 Λ2
nfχ (−Δ31,2n)[1 − Λ2

nfL(Δ31,2n)

L2
n+Λ2

nfL(Δ31,2n)
]
, (10.21b)

where n = 4,5, in the expression for P2n. Here, also β2 ≡ ∑
σ |(dAσ )m1

12 |2 =
ξ2/[(1 +√1 + ξ2)2 + ξ2] and L2

n ≡∑σ |(dAσ )mn
12 |2, m = 1,2, n = 4,5, whereas

κ2 ≡∑σ |(dAσ )1m
23 |2 = (1 + ξ2)/[(1 +√1 + ξ2)2 + ξ2] and Λ2

n ≡∑σ |(dAσ )mn
12 |2,

m = 1,2, n = 4,5, are the matrix elements for the involved transitions. The above
equation follow from spin-degeneracy since Δ2n,11 = Δ2n,12 and Δ31,2n = Δ32,2n,
n = 1, . . . ,5. Combining (10.21a)–(10.21b) with charge conservation (N1 + NT +∑5

n=4 P2n + N3 = 1), it follows that

NT = 1

1 + 2/3
1+2p(κ/β)2

(
1 + p + p

2

∑
n=4,5

L2
n/p+Λ2

n

∑
χ fχ (−Δ31,2n)

L2
n+Λ2

nfL(Δ31,2n)

) . (10.22)

The matrix elements Ln and Λn, n = 4,5, are finite and bounded, and we have
the limits L2

4 → 1, L2
5 → 0, Λ2

4 → 0, and Λ2
5 → 1/2, as ξ → 0. Those limits also

lead to that p → 0 as ξ → 0 in the considered regime of bias voltages. The last term
in the parentheses in the denominator of (10.22) is, hence, at most 1/2 for weakly
coupled quantum dots. The ratio 2p(κ/β)2 is, however, finite for all ξ and J > 0,
while it diverges as ξ → 0 for J = 0, see the main panel in Fig. 10.5. For weakly
coupled quantum dots one, thus, finds that NT ≈ 1/(1 + [1 + 2p(κ/β)2]−1) ≈ 1,
whenever the ratio 2p(κ/β)2 � 1. The inset in Fig. 10.5 illustrates a subset in (t, J )-
space where this ratio is larger/smaller than 100, where the boundary between the
regions is approximately given by J (t) = J0 − 15t2[1 + 100t2].

Fig. 10.5 Variation of the
ratio 2p(κ/β)2 as function of
the exchange parameter J for
different tunneling rates t at
constant Δε, U ′, and UA/B .
The inset shows the region in
(t, J )-space where
2p(κ/β)2 > 10
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The current in the considered regime is given by

I = eΓ0

6�

[
3(β2 − κ2) +

∑

n=4,5

{(
L2

n − Λ2
nfL(−Δ31,2n)

)

+ 2Λ2
nfL(Δ31,2n)

L2
n + pΛ2

n

∑
χ fχ(−Δ31,2n)

L2
n + Λ2

nfL(Δ31,2n)

}]
NT

1 + 2p(κ/β)2
, (10.23)

which clearly shows that a large value of the ratio 2p(κ/β)2 generates a suppres-
sion of the current at the formation of the unit population probability of the spin
triplet. Furthermore, at bias voltages such that μL < minnm{Δ3m,2n} it follows that
fL(Δ3m,2n) ≈ 0 which, in turn, leads to that p ≈ 0. Under those conditions, the
triplet occupation is lifted resulting in an about 2p(κ/β)2 larger current than in the
blockade regime.

In the T-shaped system, the Pauli spin blockade depends on the interplay between
J and t , where a reduced t leads to a strong localization of the odd number states in
either of the quantum dots. Especially for Δε > 0, this leads to that the lowest odd
number states are strongly localized in quantum dot A. In this case, the probability
for transitions between the spin triplet and one-/three-electron states is small/large,
since β → 0/κ → 1, as ξ → 0.

As we have seen before, are the singlet states expanded in terms of the Fock states
{|ΦAB〉, |ΦA〉, |ΦB〉}, see Table 9.1, with weights that are slowly varying functions
of t but strongly dependent on J . While the two lowest spin singlet states, |2,4〉 and
|2,5〉, are almost equally weighted on the Fock states |ΦAB〉 and |ΦA〉 at negligible
J , for increasing J > 0 their weights are redistributed such that |2,4〉 and |2,5〉 ac-
quires an increasing weight on |ΦA〉 and |ΦAB〉, respectively. For a finite J > 0 and
t → 0 this redistribution, thus, leads to an enhanced (reduced) probability for the
transitions |2,4〉〈1, n| (|2,5〉〈1, n|), n = 1,2 and a reduced (enhanced) probability
for the transitions |2,4〉〈3, n| (|2,5〉〈3, n|), n = 1,2 to occur. This is equivalently
stated through the limits L2

4 → 1 (L2
5 → 0), and Λ2

4 → 0 (Λ2
5 → 1/2), which im-

plies that p → 0 as t → 0, while the ratio p(κ/β)2 remains almost constant. This
ratio p(κ/β)2, however, increases (decreases) for smaller (larger) J , which can be
seen in Fig. 10.5.

The typical variation of the spin triplet population number NT for 0 < J <

J0 − 15t2[1 + 100t2] and t/(kBT ) < 2, as calculated from (10.22), is plotted in
Fig. 10.6(a), as function of the bias voltage and the chemical potential. The dark di-
amond which is extended by two arms marks the region in which the spin triplet is
(almost) fully occupied, in which region the current flowing between the leads in al-
most vanishing, or blockaded, see panel (b). From the plot of the current it is legible
that the Pauli spin blockade regime is a subset of a larger domain of current block-
ade. The part of the blockade regime which is not caused by the Pauli spin blockade
i.e. the region corresponding to the white triangle centered around zero bias voltage
with in panel (a), is due to normal Coulomb blockade. The two diamonds within
the low current regime are caused by a lifting of the Pauli spin blockade, where
the current is mediated by transitions between the one-electron states and the spin
singlets.
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Fig. 10.6 (a) Variation of the spin triplet population number probability NT , (b) the current I (arb.
units), and (c) the differential conductance dI/dV (arb. units), as function of the bias voltage and
the chemical potential. Here, ξ = 0.01, kBT = 0.01UA = 4t , and J = 0.2(UA − U ′)/2

It is clear from the plots that shifting the chemical potential μ in the range εB +
(Δε − J,2Δε) extends the low bias triplet regime since the transitions between
the spin triplet and the one-electron states become resonant at higher bias voltages.
The Pauli spin blockade is shifted, on the other hand, to lower bias voltages since the
chemical potential is closer to the transitions between the spin singlets and the three-
electron states. The two blockade regimes merge into a single one as |μ−Δ3m,2n| <
|μ−ΔT,1m|, i.e. for μ−εB ∈ (3Δε/2,2Δε), see Fig. 10.6. Furthermore, shifting the
chemical potential in the interval εB + (Δε/2,Δε − J ) removes the low bias Pauli
spin blockade since the one-electron states become the equilibrium ground state.
Thus, shifted towards lower bias voltages, the non-equilibrium Pauli spin blockade
is here caused by transitions between the one- and two-electron states which tend to
accumulate charge in the spin triplet.

Finally, we notice that while we here have only considered the case Δε > 0,
the non-equilibrium Pauli spin blockade can also be found in the opposite case, i.e.
Δε < 0 and μ − εA ≈ Δε. The system has to be gated such that only the four-
electron state lies above the equilibrium chemical potential, whereas the charge ac-
cumulation in the spin triplet state is meditated by the same processes as described
here.
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Chapter 11
Detection of Exchange Interaction Through
Fano-Like Interference Effects

Abstract We study Fano-like interference effects in connection with scanning tun-
neling microscopy experimental set-up of e.g. two-level systems. The physics of
the systems suggests a mechanism that allows detection of the two-electron singlet-
triplet exchange splitting in diatomic molecular systems. Different pathways for the
tunneling electrons lead to interference effects and generate kinks in the differential
conductance at the energies for the spin singlet and triplet states.

11.1 Introduction

Fano resonances can be realized in a variety of system, ranging from systems with
interactions between continuum states and a localized state, as originally formu-
lated by Fano [1], to systems comprising clusters of atoms, e.g. diatomic molecules,
which leads to branching of the tunneling electron wave functions. Here reformu-
lated for the purpose of STM and nanoscale systems, interference occur between
waves going through the different tunneling paths in real space, where one path
leads through the sample to the substrate whereas the other path goes directly into
the substrate.

Typically, in STM measurements of a sample located on a substrate surface, it is
desired that the tunneling current flows through the sample. While this, of course,
occurs as the STM tip is sufficiently close to the sample, there is still a part of the
current that flows directly between the STM tip. The tunneling electron wave func-
tions are, thus, branched between different pathways. This branching of the wave
functions gives rise to interference effects when the partial waves reassemble into
one in the tip or the substrate [2]. The interference leads to a suppressed transmis-
sion probability for the tunneling electrons at certain energies, and the suppressed
transmission is a fingerprint of Fano resonances [1], which generally appear in sys-
tems where tunneling electrons are branched between different pathways. Recently,
these ideas have been exploited in double and triple quantum dots systems [3–7],
where the quantum dots in parallel constitute the different pathways for the tunnel-
ing electrons.
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Here, we address the Fano interference effects that arise due to different path-
ways in phase space. In two-level systems, tunneling paths such as |N = 2, n〉 →
|N = 1,m〉 → |N = 2, n′〉 → |N = 1,m′〉 → |N = 2, n〉 give rise to phase space in-
terference. Here, N = 1,2, denote the number of electrons in the state, whereas n,m

are states indices [8, 9]. Although such tunneling paths are of second order, they
provide significant contributions to the transmission coefficient, and hence to the
conductance, thereby causing detectable signatures. The interference effects can be
described in mean-field approximation of the sample correlation functions, hence,
we do not discuss any fluctuations caused by electronic correlations or by the cou-
plings to the tip and substrate.

11.2 Tunneling Current

Before we approach the two-level system itself, we begin by setting up a framework
which can be used to understand the STM current and (differential) conductance.
Generally, the STM system, that we have in mind, can be described by the Hamilto-
nian

H = Htip + Hsub + Hsample + HT , (11.1)

where the first and second terms describe the electronic structure in the tip and
substrate, respectively. Here, we assume flat band free-electron like models for the
states in the tip and substrate, and define Htip =∑pσ∈tip εpσ c

†
pσ cpσ and Hsub =

∑
kσ εkσ c

†
kσ

ckσ , for the tip and substrate, respectively, and we let the momentum p
(k) belong to the tip (substrate). The third term describes the electronic structure of
the sample, which is to be studied in the STM experiment. The last term includes
the tunneling interaction between the sample and the tip and substrate, and can be
written as (using obvious notation)

HT =
∑

pnσ

vpnσ c†
pσ dnσ +

∑

knσ

vknσ c
†
kσ

dnσ + H.c. (11.2)

Using the expression for the current given by (4.4), we can here formulate it as

I = e

h

∫
T (ω)[ftip(ω) − fsub(ω)]dω, (11.3)

where the transmission coefficient

T (ω) = trΓ tipGr (ω)Γ subGa(ω), (11.4)

whereas Γ tip = {Γ tip
nmσ (ω)}nm = {2π

∑
p v∗

pnσ vpmσ δ(ω − εpσ )}nm defines the cou-
pling matrix between the tip and sample, while the matrix for the couplings between
the sample and substrate is analogously defined. For later reference, we also intro-
duce the chemical potential μtip = μ + eV (μsub = μ) for the tip (substrate) such
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that eV = μtip − μsub. The tunneling through the sample is, thus, conveniently de-
scribed within the retarded and advanced Green functions for the electronic structure
of the sample.

As it can be noticed, we neglect the possibility for the electrons to tunnel directly
between the tip and substrate. This choice is made for simplicity, since we first of all
want to see whether there is any effect arising due to the various pathways through
the different atoms in the molecule. When this has been established, one can proceed
and also include the effects from the tunneling between the tip and substrate. This
is, however, beyond the scope of the present analysis.

11.3 Probing the Two-Level System

We begin by considering a diatomic molecule comprising two identical atoms,
which allows one to think of the atoms in terms of quantum dots and the molecular
structure as a double quantum dot. Further, we assume that the atoms are coupled
through Coulomb and exchange interactions with their respective strengths given
in terms of the parameters U and J . The system in schematically illustrated in
Fig. 11.1, displaying the molecular structure, comprising the two atoms, adsorbed
onto the substrate, and the STM tip above the molecule. The whole system is con-
nected to a bias voltage source.

For simplicity, we assume infinite intralevel Coulomb interactions in order to
avoid the possibility of ending up with two electrons in one of the atoms. We also
assume that the tunneling between the atoms is negligible. While this set of assump-
tions is not crucial for the effect that we discuss here, it merely permits a convenient
framework for heuristic and qualitative studies of the approach. The approach can be
straightforwardly generalized, something that we omit to do, however, in the present
discussion for the benefit of focusing on the more interesting details.

We model the molecule, or sample, by the Hamiltonian

Hsample =
∑

n=1,2;σ
ε0d

†
nσ dnσ − 2JS1 · S2 +

(
U − J

2

)
(n1↑ + n1↓)(n2↑ + n2↓),

(11.5)

Fig. 11.1 Cartoon of the
diatomic “1”+“2” molecule
coupled to the STM tip and
substrate. The localized
electrons in the atoms are
subject to an interatomic
Coulomb and exchange
interactions, U and J ,
respectively



190 11 Detection of Exchange Interaction Through Fano-Like Interference Effects

requiring that there may be at most one electron per level n. Here also, the spin
operator Sn is defined by Sn =∑σσ ′ d†

nσ σ σσ ′dnσ ′ . We may also use the model given
in (1.5) for a more general description of the molecular structure.

As we have discussed previously in this book, the two-level system may, in gen-
eral, be described in terms of 16 eigenstates. By forbidding the double occupancy in
the atoms, the system is reduced to a set of 11 states. For completeness we provide
them here within the simplified model. Expressing the eigenstates in terms of the
empty state |0〉, the one-electron states

|1,1(2)〉 = d
†
1↑(↓) − d

†
2↑(↓)√

2
|0〉, |1,3(4)〉 = d

†
1↑(↓) + d

†
2↑(↓)√

2
|0〉, (11.6)

describe the bonding and anti-bonding configurations, respectively, with the corre-
sponding eigenenergies E1n = ε0. In the same way we write the molecular two-
electron states as the spin triplet configurations

|2,1〉 = d
†
2↑d

†
1↑|0〉, |2,2〉 = d

†
2↓d

†
1↓|0〉, |2,3〉 = d

†
2↓d

†
1↑ + d

†
2↑d

†
1↓√

2
|0〉,
(11.7)

with energies E2n = 2ε0 + U + J/2, n = 1,2,3, or as the spin singlet state

|2,4〉 = d
†
2↓d

†
1↑ − d

†
2↑d

†
1↓√

2
|0〉, (11.8)

with energy E24 = 2ε0 + U − J/2.
The effect that we point out using this model, and which may be used for mea-

surements of the singlet-triplet splitting J , is caused by phase space interference
between wave functions traversing through the singlet and triplet states. This inter-
ference results in that some states become more or less isolated from the surrounding
environment which, in turn, generate conductance suppressions at biases that corre-
spond to the spin singlet and triplet state energies. These conductance suppressions
are direct responses to that there exist states that are only very weakly coupled to
the surrounding electron bath(s), states in which electron density can accumulate
and thereby cause the decreased conductance.

Heuristically, we can understand the decoupling of some certain states from the
electron baths by the following consideration. Assume that the spin singlet state
|2,4〉 is initially occupied. A spin ↑ electron can be removed from either atom
through the process (d1↑ + d2↑)|2,4〉 = −(d

†
2↓ + d

†
1↓)|0〉/√2 = −|1,4〉. Remov-

ing a spin ↑ electron from the spin singlet state is, thus, always governed by a
transition to the one-electron anti-bonding spin ↓ state. This state is orthogonal
to all other states, by construction. Analogously, by removing a spin ↓ electron
from the spin singlet state the system necessarily undergoes a transition to the one-
electron anti-bonding spin ↑ state |1,3〉. In conclusion, the system cannot undergo
a single-electron transition from the spin singlet to the one-electron bonding states
and, in this respect, the spin singlet is decoupled from the one-electron bonding
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states. An analogous analysis shows that while the spin triplet states are decoupled
from the one-electron anti-bonding states, they couple to the one-electron bonding
states, since e.g. (d1↑ + d2↑)|2,1〉 = (−d

†
2↓ + d

†
1↓)|0〉 = √

2|1,2〉.
We proceed by making use that our sample is given in terms of its eigenstates,

for which it is beneficial to write the sample Hamiltonian in diagonal form, i.e.
Hsample =∑Nn ENnh

n
N . The tunneling Hamiltonian HT is then rewritten according

to

HT =
∑

Nnm

(∑

pσ

vpσNnmc†
pσ +

∑

kσ

vkσNnmc
†
kσ

)
Xnm

NN+1 + H.c., (11.9)

where the tunneling rates

vp(k)σNnm = 〈N,n|[vp(k)1σ d1σ + vp(k)2σ d2σ ]|N + 1,m〉, (11.10)

also include the matrix elements for single electron transitions in the sample. This
form of the tunneling rates reflects the branching of the tunneling electron wave
functions in real space, as the electrons tunnel between the tip, sample, and sub-
strate.

Now, suppose that the molecule is prepared in the spin singlet state. The tun-
neling current between the tip and substrate is then mediated by the sequence e.g.
|2,4〉 → |1,3〉 → |2, n〉, where n = 1,2,3,4, is random. The second arrow in the
sequence may be directed to the spin singlet, of course, but also to the spin triplet
since e.g. d

†
1↓|1,3〉 = −[|2,3〉 − |2,4〉]/2 and d

†
2↓|1,3〉 = [|2,3〉 + |2,4〉]/2. Sim-

ply adding those processes, which corresponds to equal coupling strengths between
the molecular atoms and tip, result in that the transitions to the spin triplet, |2,3〉,
cancel. Taking into account that these couplings, in general, are different one can
realize that there will be a non-vanishing contribution from the transitions to the
spin triplet, as will be discussed in more technical terms below. Quantitatively, we
have

|〈1,3|[vk1↓d1↓ + vk2↓d2↓|2,4〉| = 1

2
|vk1↓ + vk2↓|, (11.11a)

|〈1,3|[vk1↓d1↓ + vk2↓d2↓|2,3〉| = 1

2
|vk1↓ − vk2↓|. (11.11b)

Hence, depending on the relation between the tunneling rates vk1σ and vk2σ there
will be a larger or smaller degree of cancellation of the coupling between anti-
bonding one-electron states and the spin triplet. Following the argument made in
the heuristic discussion, the spin triplet state |2,3〉 becomes completely decoupled
from the anti-bonding states |1,3〉 when the tunneling rates vk1σ = vk2σ . In this
case, the spin singlet has a unit coupling to the anti-bonding states.
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The full set of possible transitions is given by diagram

which illustrates that there is a coupling of the spin singlet and triplet states through
the tunneling process, that is, there occur indirect transitions between the spin sin-
glet and triplet states. These indirect singlet-triplet transitions generate interference
effects between the tunneling electron waves traversing the different transport chan-
nels which, moreover, implies that multiple-scattering events have to be included
into the picture.

Before we go in to the specific set-ups, we introduce the framework for our suc-
ceeding discussions. Since we are only interested in probing the two-electron states,
the spin singlet and spin triplets, we restrict ourselves to the transitions between
only the one- and two-electron states.1 The sample Green function, thus, becomes
a 20 × 20 matrix which, in general, is not diagonal due to higher order transi-
tions that may contribute significantly to the electronic structure of the molecular
system. We simplify our system, however, by assuming that only diagonal pro-
cesses |2, n〉 → |1,m〉 → |2, n〉 and off-diagonal processes like |2, n〉 → |1,m〉 →
|2, n′〉 → |1,m〉 → |2, n〉 contribute to the tunneling. The introduced simplification
reduces the system to a set of 2 × 2 matrix equation, each of which may be analyti-
cally solved.

We introduce the Green functions

Gmnm′(t, t ′) = (−i)〈TXnm
12 (t)Xm′n

21 (t ′)〉. (11.12)

In the simplified system, we obtain the equations of motion

(i∂t − Δmn)Gmnm′(t, t ′)

= δ(t − t ′)Pmnm′(t) +
∑

μμ′

∫

C

Pmnμ(t)Vnμμ′n(t, t
′′)Gμ′nm′(t ′′, t ′)dt ′′, (11.13)

in the Hubbard-I-approximation. Here, the interaction

Vnμμ′n(t, t
′) =

∑

pσ

v∗
pσ2nμvpσ2nμ′gpσ (t, t ′) +

∑

kσ

v∗
kσ2nμvkσ2nμ′gkσ (t, t ′),

(11.14)
where gp(k)σ (t, t ′) is the (free-electron-like) Green function for the electrons in the
tip (substrate).

1Recall that the three- and four-electron states are discarded already in the formulation of the
Hamiltonian, since the intra-dot Coulomb interaction strength is infinite.
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As we know from previous chapters, the equations for the Green functions are to
be self-consistently solved, with respect to the occupation numbers NNn, for each
point in the vast parameters space of the Hamiltonian, e.g. bias voltage, temperature
etc. Through such calculations we would obtain a valid non-equilibrium descrip-
tion of the Fano-like interference effects. In order to focus on the physical mecha-
nism rather than on the quantitative variations, we omit such a treatment here. The
qualitative features of the system remain the same and, therefore, we discuss the
physics without the self-consistency condition by further simplifying the equations
of motion. We assume, without loss of phase space interference effects, that the end-
factors Pmnm′ = δmm′ , i.e. we assume that the off-diagonal occupation numbers are
negligible. In absence of spin-flip transitions in the system, the equations for tran-
sitions between the one-electron spin ↑ and ↓ states are equal. Thus, we omit any
reference to the spin degree of freedom.

We note that transitions between different spin triplet configurations do not gen-
erate the interference effects we discuss here and it is, therefore, reasonable to con-
sider only transitions between the spin-singlet and one of spin-triplet states, say
|2,3〉. The other processes, that is, the couplings of the spin-singlet to the spin triplet
states |2,1〉 and |2,2〉, merely renormalizes the coefficients in the final expression
for the transmission.

Calculation of the Fourier transformed retarded Green function for transitions
between the states |2,3〉 and |2,4〉 through the one-electron state |1, n〉 results in

Gr
3n4(ω) = 1

(ω − ωn+)(ω − ωn−)

⎛

⎝
ω − Δ4n + i

2Γ4n4 − i
2Γ3n4

− i
2Γ4n3 ω − Δ3n + i

2
Γ3n3

⎞

⎠ ,

(11.15)
where Γmnm′(ω) = −2 ImV r

nmm′n(ω) defines the total coupling between the sam-
ple and the tip and substrate. We define the coupling between tip and sample by
Γ

tip
mnm′(ω) = 2π

∑
pσ v∗

pσ2nmvpσ2nm′δ(ω − εpσ ) and analogously for the coupling

between the substrate and sample, such that Γmnm′ = Γ
tip
mnm′ + Γ sub

mnm′ . Finally, we
define the denominator Cn(ω) = (ω−ωn+)(ω−ωn−), where the poles ω± are given
by

ωn± = 1

2

{
Δ3n + Δ4n − i

2
[Γ3n3 + Γ4n4]

±
√(

Δ3n − Δ4n − i

2
[Γ3n3 − Γ4n4]

)2

− 4Γ3n4Γ4n3

}
. (11.16)

11.3.1 Symmetric Coupling to the Substrate

Assume that the atoms in the diatomic molecule couple equally strong to the sub-
strate. Quantitatively, this means that vkσ1 = vkσ2 = vkσ , which results in the cou-
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pling matrices

Γ sub
|1,1〉 = Γ sub

0

(
1 0
0 0

)
, Γ sub

|1,3〉 = Γ sub
0

(
0 0
0 1

)
, (11.17)

where Γ sub
0 = 2π

∑
kσ |vkσ |2δ(ω − εkσ ). Further, we assume that the tunneling rate

between the tip and sample can be parametrized by vpσn = γnvpσ , where γn ∈ [0,1].
Then, the coupling matrices for the transmission between the tip and sample can be
written

Γ
tip
|1,1〉 = Γ

tip
0

4

(
(γ1 + γ2)

2 −γ 2
1 + γ 2

2

−γ 2
1 + γ 2

2 (γ1 − γ2)
2

)
, (11.18a)

Γ
tip
|1,3〉 = Γ

tip
0

4

(
(γ1 − γ2)

2 −γ 2
1 + γ 2

2

−γ 2
1 + γ 2

2 (γ1 + γ2)
2

)
. (11.18b)

We, finally, assume that Γ
tip

0 = λΓ0/2 and Γ sub
0 = Γ0/2, where λ � 1, such that the

broadening of the localized states Γ|2,m〉 � Γ sub
|2,m〉. The final assumption is performed

in order to simplify the analytical treatment. In particular for the poles of the Green
functions, this assumption leads to

ω1± = ε0 + U ± J

2
− i

8
Γ0(1 ± 1), (11.19a)

ω3± = ε0 + U ± J

2
− i

8
Γ0(1 ∓ 1), (11.19b)

for the transitions through the bonding and anti-bonding one-electron states, re-
spectively, since Δm1 = Δm3, m = 1, . . . ,4, and since the transition energies
Δ31 = E23 − E11 = 2ε0 + U + J/2 − ε0 = ε0 + U + J/2 and Δ41 = E24 − E11 =
2ε0 +U −J/2−ε0 = ε0 +U −J/2. We see that the poles of the Green function are
located at the singlet and triplet energies. We also see that the poles ω1− and ω3+
acquire vanishing widths, which correspond to the energies where the transitions
occur with zero probability. Inclusion of the widths that are due to the tunneling
between the tip and the sample, these expressions show that there are states which
couple very weakly to the surrounding delocalized electrons. We, thus, expect both
sharp and broad peaks, centered around more or less at the same energy, in the spec-
trum for the density of electrons states in the molecular system, and that those peaks
are associated with the singlet and triplet states.

The expected sharp peaks in the local density of electron states in the sample is
a direct result of the interference between the waves, of the tunneling electrons, that
are branched in phase space. This destructive interference manifests itself in that the
widths of the states associated with the energies ω1− and ω3+ become small, which
is the same as to say that electrons occupying those states have very little interac-
tions with the surrounding delocalized electrons in the baths. The states associated
with the energies ω1+ and ω3− have large widths, something which is provided by
constructive interference between the branched tunneling electron waves.
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Fig. 11.2 (a) Typical density of electron states (bold) around the spin singlet and triplet states
in the sample. The density of electron states associated with the pose ω1± (dark) and ω3± (light)
are plotted separately. (b) Transmission coefficient for the system, with the total (bold) and partial
transmissions through the channels which couple the two-electron states to the bonding (dark) and
anti-bonding (light) one-electron states. Here, we have used ε0 = 2, U = 3, J = 0.6, Γ0 = 2 (units:
meV), λ = 0.005, γ1 = 0 and γ2 = 1

We calculate the total local density of electron states ρtot through

ρtot(ω) =
∑

nm

ρnm(ω) = − 1

π

∑

nm

ImGr
mnm(ω), (11.20)

see Fig. 11.2(a), where we have plotted ρtot (bold) along with its components ρnm.
It is readily seen from the partial densities of states that there are two sharp peaks
and two wide ones, which in the total density of states is expressed as a single broad
peak with two sharp features on top of it. The example illustrated in the plots, is
reasonable from the point of view that the single-triplet splitting may be smaller than
the broadening due to the coupling between the sample and the substrate and tip. In
the calculations of the poles, a finite contributions from coupling to the electrons in
the tip have been included in addition to the one generated by the coupling to the
substrate. Hence, without the additional features due to the interference, it would
be very hard to realize whether the broad peak arises due to one or two, or more,
states. The interference, thus, enables a possibility to actually detect the location
of the spin singlet and triplet states, or, at least, the energy splitting between those
states.

The narrow, or sharply peaked, states in the sample give rise to dips in the con-
ductance of the system. This can be directly seen in the transmission coefficient
T (ω). For simplicity, we use the above assumption that the widths of the states in
the sample can be written Γm1m′ = Γ

tip
m1m′ +δmm′δm3 and Γm3m′ = Γ

tip
m3m′ +δmm′δm4,

we find

T (ω) = Γ
tip
|1,1〉G

r|1,1〉Γ sub
|1,1〉G

a
|1,1〉 + Γ

tip
|1,3〉G

r|1,3〉Γ sub
|1,3〉G

a
|1,3〉

= λ

(
Γ0

4

)2

(γ1 + γ2)
2
(∣∣∣∣

ω − ε0 − U + J/2

C1(ω)

∣∣∣∣
2

+
∣∣∣∣
ω − ε0 − U − J/2

C3(ω)

∣∣∣∣
2)

,

(11.21)
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for the transmission through the two-electron states. The expression clearly shows
that the transmission possesses dips at the energies associated with the spin singlet
and triplet states, i.e. at ω = ε0 +U − J/2 and ω = ε0 +U + J/2, respectively, and
that the distance between the dips equals the exchange splitting energy, i.e. J .

These dip features are also clearly seen in the plot of the total transmission in
Fig. 11.2(b) (bold). The partial transmission coefficients have zeros at the spin sin-
glet and triplet state energies, which is also legible in Fig. 11.2(b) (dark and light
curves).

Whenever the broadening of the quantum levels in the sample is larger than the
singlet-triplet splitting J there will not be two distinct peaks associated with the
singlet and triplet state in the transmission, nor in the differential conductance. Vis-
ibility of the individual dips, moreover, requires low temperatures since the trans-
mission coefficient is convolved with the thermal distribution function. Therefore
it would be preferable, under those circumstances, to resolve the spectrum through
measurements of the second current derivative with respect to the bias voltage, i.e.
d2I/dV 2, rather than the differential conductance. Such measurements would pro-
vide further information about the long-lived states in the sample in terms of the
very sharp features at the energies corresponding to those states.

The plots in Fig. 11.3 show the differential conductance (a) and d2I/dV 2 (b)
corresponding to the density of electron states and transmission in Fig. 11.2. As we
already have mentioned, the broad electron densities gives rise to wide conductance
peaks which significantly overlap such that the individual peaks cannot be distin-
guished. On the other hand, the dips occurring in the conductance plot, originating
from the narrow peaks in the density of electron states, can be used to pinpoint the
positions of the spin singlet and triplet states. However, the large level broadening
makes an unambiguous read-out of the singlet and triplet states difficult. The plot
of the d2I/dV 2 does resolve this issue, since the dips in the conductance display
themselves as large and narrow variations from the, almost, vanishing underlying
d2I/dV 2.

Fig. 11.3 (a) Total differential conductance (bold) and the partial conductances through the chan-
nel which couple the two-electron states through the bonding (dark) and anti-bonding (light) states.
(b) Total and partial voltage derivatives d2I/dV 2. Here, T = 0.05 K, while other parameters are
as in Fig. 11.2
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11.3.2 Asymmetric Coupling to the Substrate

In the above discussion, we approached the interference effects from simplest point
of view and assumed that the atoms in the molecular structure couple equally strong
to the substrate. Moreover, we assumed that the molecular structure comprised two
atoms. Neither of these two assumptions are necessary and here we make contact
with the more general situation, that is, either the atoms in the molecule couple
asymmetrically to the substrate or the molecule consists of a single entity with two
levels. In both situations, we can parametrize the tunneling rate between the sample
and substrate according to vknσ = κnvkσ , with κn ∈ [0,1].

Under those circumstances we have to rederive the equations for the poles of
the Green function and, hence, the transmission coefficient using the additional
parametrization. It is quite obvious that the coupling matrices Γ sub

|1,n〉 now take on
the forms

Γ sub
|1,1〉 = Γ sub

0

4

(
(κ1 + κ2)

2 −κ2
1 + κ2

2

−κ2
1 + κ2

2 (κ1 − κ2)
2

)
, (11.22a)

Γ sub
|1,3〉 = Γ sub

0

4

(
(κ1 − κ2)

2 −κ2
1 + κ2

2

−κ2
1 + κ2

2 (κ1 + κ2)
2

)
, (11.22b)

in analogy to the couplings between the sample and the tip. By still assuming that
the tunneling between atoms, or levels, in the molecule is vanishingly small, and
that tunneling between the tip and sample has a negligible effect on the widths of
the molecular levels, we find that the localized states can be written as

ω1± = ε0 + U − i

16
Γ0(κ

2
1 + κ2

2 ) ± 1

2

√(
J − i

4
κ1κ2Γ0

)2

− (κ2
1 − κ2

2 )2

(
Γ0

4

)2

,

(11.23a)

ω3± = ε0 + U − i

16
Γ0(κ

2
1 + κ2

2 ) ± 1

2

√(
J + i

4
κ1κ2Γ0

)2

− (κ2
1 − κ2

2 )2

(
Γ0

4

)2

.

(11.23b)

These expressions show that both poles ωn±, n = 1,3, acquire a significant width
whenever the couplings between the atoms, or levels, and the substrate are unequal.
A large width of a state implies that electrons residing in this state interacts strongly
with the electron bath in the substrate, for which reason the conductance dips due to
interference cease to exist. This is, hence, and indication that asymmetric couplings
between the levels in the sample and the substrate is detrimental to the possibility
for observing the sharp features in the dI/dV or d2I/dV 2.

We can conclude that the presence of sharp features in the conductance that are
generated by the interference depends on the asymmetry of the couplings between
the levels in the sample and the de-localized electrons in the substrate. In general,
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a weakly coupled state is obtained by requiring fairly symmetric tunneling rates
between the sample levels and either the tip or the substrate. The interference effects
are, of course, amplified whenever the tunneling rates are symmetric to both the tip
and substrate.

The transmission coefficient for the system is in the present set-up given by

T (ω) = λ

(
Γ0

4

)2

(γ1κ1 + γ2κ2)
2
(∣∣∣∣

ω − ε − U + qJ/2

C1(ω)

∣∣∣∣
2

+
∣∣∣∣
ω − ε − U − qJ/2

C3(ω)

∣∣∣∣
2)

, (11.24)

where the asymmetry of the coupling introduces the factor

q = γ1κ2 + γ2κ1

γ1κ1 + γ2κ2
. (11.25)

Except from the change in the overall amplitude of the transmission, the asym-
metry shifts the positions of the transmission dips. Quantitatively we obtain an
about 6% shift of the transmission dips for coupling asymmetries γ2/γ1 � 0.7 and
κ2/κ1 � 0.7. Hence, even for a rather high degree of asymmetry in the couplings,
this indicates that there is a reasonably good chance to measure the exchange pa-
rameter J .

11.3.3 Nonresonant Levels

Finally, we approach the case where the levels in the atoms are non-resonant, in
which we access molecular structures that are comprised of non-equivalent atoms.
We can also think of spin-split levels, in which case the first term in the sample
Hamiltonian has to be modified according to

∑

nσ

εnσ d†
nσ dnσ =

∑

nσ

[
εn − σ

Δn

2

]
d†
nσ dnσ , (11.26)

where Δn is the spin-split of the nth level. The spin-split may be imposed by external
and/or internal magnetic fields.

The two-electron states remain the same as in the previous discussion, and we
keep the nomenclature of spin-singlet and spin-triplet states, although referring to
the spin-triplet is not correct in a strict sense since the energies associated with
those states are non-degenerate in the spin-dependent case. Nonetheless, the triplet
state energies become E21 = E23 + (Δ1 + Δ2)/2, E22 = E23 − (Δ1 + Δ2)/2, and
E23 = ε1 + ε2 + U + J/2, whereas the singlet state energy becomes E24 = ε1 +
ε2 + U − J/2.
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It is preferable to write the one-electron states as

|1, n〉 = {δn1d
†
1↑ + δn2d

†
1↓ + δn3d

†
2↑ + δn4d

†
2↓}|0〉, (11.27)

with the corresponding energies E1n = (δ1n + δ3n)εn↑ + (δ2n + δ4n)εn↓.
In the remainder of this discussion we assume that the tunneling rates can

be parametrized as in the previous section, i.e. according to vpnσ = γnvpσ and
vknσ = κnvkσ . The coupling matrices between the tip and the sample then become

Γ
tip
|1,1〉 = γ 2

2
Γ

tip
0

2

(
1 1
1 1

)
, Γ

tip
|1,3〉 = γ 2

1
Γ

tip
0

2

(
1 −1

−1 1

)
, (11.28)

while the couplings between the sample and the substrate are given by

Γ sub
|1,1〉 = κ2

2
Γ sub

0

2

(
1 1
1 1

)
, Γ sub

|1,3〉 = κ2
1
Γ sub

0

2

(
1 −1

−1 1

)
. (11.29)

Here, we have only considered the coupling matrices for the triplet state |2,3〉,
whereas the coupling matrices to the other triplet configurations are the same.

Assuming that the level broadening due to the tunneling between the tip and the
sample is negligible, we obtain the following poles of the Green function, involving
|2,3〉 and |2,4〉,

ω1± = 1

2

[
ε1↑ + ε2↑ + 2U − i

2
κ2

2 Γ0 ±
√

J 2 −
(

κ2
2 Γ0

2

)2 ]
, (11.30a)

ω3± = 1

2

[
ε1↑ + ε2↑ + 2U − i

2
κ2

1 Γ0 ±
√

J 2 −
(

κ2
1 Γ0

2

)2 ]
. (11.30b)

The poles ω2± and ω4± associated with the spin ↓ channel are obtained by letting
↑→↓ in the above equations.

The form of the poles reveal for the spin-degenerate case, i.e. Δn = 0, that there
may be sharp localized states in the molecule only for J � κnΓ0/2. In this case, we
have e.g.

ω1± ≈ 1

2

[
ε1↑ + ε2↑ + 2U − i

2
κ2

2 Γ0 ± i
κ2

2 Γ0

2

{
1 − 1

2

(
2J

κ2
2Γ0

)2}]

≈
{

1
2 [ε1↑ + ε2↑ + 2U − i J 2

κ2
2 Γ0

], +,

1
2 [ε1↑ + ε2↑ + 2U − iκ2

2 Γ0], −.
(11.31)

In the symmetric case it should, thus, be possible to measure J in cases where
the singlet-triplet splitting is small. Then, however, the theory presented previously
applies, and therefore we proceed to the discussion for the spin-dependent system.

The above discussion revealed that non-resonant levels will not give rise to
any sharp features, generated by interference, in the conductance. Therefore, we
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again assume that the levels ε1 = ε2 = ε0 while the spin-split is uniform, i.e. Δ1 =
Δ2 = Δ0. For simplicity, we also assume that both levels in the sample couple
equally strong to the substrate. We can, thus, describe the one-electron states us-
ing (11.6) and the coupling matrices between the sample and substrate by (11.17).

A reason to use spin-dependent transport for the types of measurements corre-
sponding to the situation discussed here, is that the spin-dependence of the current
will enable studies of the spin-splitting of the two-electron triplet states. The singlet
state couples to all triplet configurations trough the one-electron states. From the
previous discussion we know that these couplings generate sharp localized states in
the sample at energies which correspond to the triplet and singlet states. By intro-
ducing the spin-splitting of the levels, we expect there to appear more sharp states
and, hence, more sharp features in the conductance. We, moreover, expect that some
of those features should be located at energies which correspond to the different spin
configurations of the triplet states.

Quantitatively, we have to consider all Green functions Gr
mn4, m = 1,2,3 for the

triplet configurations and n = 1, . . . ,4 for the one-electron states. The poles of Gr
3n4

are given by

ω
(0)
1± = ε0 + Δ0

2
+ U ± J

2
− i

Γ0

8
(1 ± 1), ω

(0)
2± = ω

(0)
1± − Δ0, (11.32a)

ω
(0)
3± = ε0 + Δ0

2
+ U ± J

2
− i

Γ0

8
(1 ∓ 1), ω

(0)
4± = ω

(0)
3± − Δ0, (11.32b)

where the superscript refers to that the poles are associated with the triplet state
|2,3〉 = |S = 1,mz = 0〉. Likewise we have for Gr

1n4 and Gr
2n4 the poles

ω
(1)
1± = ω

(0)
1± − Δ0(1 ± 1), ω

(−1)
2± = ω

(0)
2± + Δ0(1 ± 1), (11.33a)

ω
(1)
3± = ω

(0)
3± − Δ0(1 ± 1), ω

(−1)
4± = ω

(0)
4± + Δ0(1 ± 1). (11.33b)

We notice that the spin-dependence gives rise to four sets of poles, since there is
now a different coupling between the singlet and the three triplet configurations. We
also notice that the triplet configuration e.g. |2,1〉 = |S = 1,mz = 1〉 = d

†
2↑d

†
1↑|0〉

does not couple to the spin ↓ states |1,2〉 and |1,4〉. Likewise, the triplet state
|2,2〉 = |S = 1,mz = −1〉 = d

†
2↓d

†
1↓|0〉 does not couple to the spin ↑ states |1,1〉

and |1,3〉. This is, of course, obvious in absence of spin-flip processes. The obser-
vations lead, however, to that there will not appear any sharp features in the con-
ductance which are associated with transitions between, say, |2,1〉 and |1,2〉. We
notice, further the equalities

ω
(1)
n− = ω

(0)
n−, n = 1,3, ω

(−1)
n− = ω

(0)
n−, n = 2,4,

ω
(1)
1+ = ω

(0)
2+, ω

(−1)
2+ = ω

(0)
1+,

ω
(1)
3+ = ω

(0)
4+, ω

(−1)
4+ = ω

(0)
3+.

Hence, there are only four distinct energies and we should, therefore, only expect to
find four sharp dips in the conductance.
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Chapter 12
Spin Systems in Non-Equilibrium

Abstract A quantum Langevin equation for the dynamics of a local spin embedded
in a tunnel junction is derived. Under non-equilibrium conditions the dynamics is
considered on the Keldysh contour. Several issues regarding the properties of the
leads and their influence on the local spin dynamics are discussed.

12.1 Introduction

In previous chapters we have encountered questions about how the current can be-
come spin-polarized by manipulations of the quantum dot, see e.g. Chaps. 6 and 10.
Such questions are highly relevant in the context of how one should be able to e.g.
pick up particular signatures in the current that is related to one or another set-up
of the local spins. Having those questions in mind, it also becomes natural to ask
whether the local spin would be affected by the electronic and magnetic properties
in the surroundings, e.g. the leads. In other words, how would we perform a cer-
tain manipulation of the local spin through applications of external gate and bias
voltages, or magnetic fields. The answers to those questions very much rely on the
electronic and magnetic properties of the leads.

In this chapter we address the dynamics of a single spin embedded in the tunnel
junction between metallic leads [1, 2]. The leads may be ferromagnetic. Taking the
non-equilibrium conditions into account, we derive a quantum Langevin equation
for the spin dynamics. Through the parameters comprised in this equation, we are
able to analyze the effects on the local spin dynamics of various electronic and
magnetic properties of the leads.

We proceed to study a few particular cases for observing the spin dynamics
through e.g. magnetic resonance force mircoscopy (MRFM) [1], and tunneling mea-
surements [3, 4].

The present chapter might seem a bit off the target when it comes to the pre-
viously discussed X-operator formalism. However, although we do not employ the
X-operators, we nonetheless utilize many-body operators as we are considering spin
operators, which also have non-Fermionic algebraic properties. It is, hence, perti-
nent in this text on many-body approach to physics.
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12.2 Equation for Local Spin

Consider two metallic leads coupled to one another through a tunnel junction in
which a spin S is embedded, see Fig. 12.1 for a schematic view. The tunnel junction
may be thought of as e.g. a point contact between the leads, so that possible magnetic
fields generated at the tips of the leads (if those are magnetic) can be neglected. The
Hamiltonian of the system may be written

H = HL + HR + HS + HT , (12.1)

where Hχ =∑kσ εkσ c
†
kσ

ckσ , k ∈ χ = L,R. In the following, we assign the sub-
scripts p (q) to electrons in the left (right) lead. The local spin may be exposed
to an external magnetic field Bext(t), and we model the free spin according to
HS = −gμBBext · S, where g and μB are the gyromagnetic ratio (g-factor) and
Bohr magneton, respectively. The leads are weakly coupled through the tunneling
Hamiltonian

HT =
∑

pqσσ ′
c†

pσ T̂σσ ′cqσ ′ + H.c., (12.2)

where the matrix element T̂σσ ′ defines the rate of the electron transfer through the
magnetically active tunnel barrier. Here, a spin is embedded in the barrier which
leads to that the matrix element becomes a spin operator [5, 6]. For the present
discussions, we will restrict ourselves to

T̂σσ ′ = T0δσσ ′ + T1σσσ ′ · S + T2σ
x
σσ ′ . (12.3)

The first term, T0, describes the spin-independent tunneling rate, which is the same
as the tunneling electrons would experience also without the presence of the local
spin. The second term, T1σσσ ′ · S, accounts for the tunneling rate which is affected
by the local spin through spin-spin, or exchange, interaction. The last term, T2σ

x
σσ ′ ,

denotes the rate of spin-flip transition inside the barrier generated by e.g. spin-orbit
interaction. This term may also be present even in absence of the local spin. In
principle, we can lump the first and last term into a single spin-dependent tunneling
rate, i.e. Tσσ ′ = T0δσσ ′ + T2σ

x
σσ ′ . For more details on the tunneling rates, see [5–7].

We assume that the system is biased with the time-dependent voltage V (t) =
Vdc + Vac(t), where Vdc and Vac are dc and ac components. Under the non-
equilibrium conditions, there forms a dipole around the barrier region due to the

Fig. 12.1 Local spin
embedded in the tunnel
junction between two
metallic, possibly
ferromagnetic, leads
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accumulation or depletion of electron charge at the interfaces. As a consequence
of this process we can talk about the single-electron energies Ekσ = εkσ + WL(t),
which are constrained by the relation WL(t)−WR(t) = Vac(t). Disregarding patho-
logical time-dependences of the bias voltage, such as monotonically and indefinitely
increasing voltages, the occupation of the states in the respective contact remain de-
termined by the distribution established before the time-dependence is turned on.
Hence, the chemical potentials in the left and right leads differ by the dc component
only, or in other words, μL − μR = eVdc.

It turns out to be preferable to apply the gauge transformation

Û = e
−i
∫ t
t0

[μL+WL(t ′)]NLdt ′
e
−i
∫ t
t0

[μR+WR(t ′)]NRdt ′
, (12.4)

to the model, where Nχ =∑kσ∈χ c
†
kσ

ckσ . The model H is then turned into K =
KL + KR + KR + KT . Here, Kχ =∑kσ∈χ ξkσ c

†
kσ

ckσ , ξkσ = εkσ − μχ , and KS =
HS , whereas

KT =
∑

pqσσ ′
c†

pσ T̂σσ ′cqσ ′eiφ(t) + H.c., φ(t) = e

∫ t

t0

V (t ′)dt ′. (12.5)

We now derive an effective action for the local spin using the Keldysh tech-
nique [8]. Considering all external fields to be the same on both the forward and
backward branches of the Keldysh contour C, the partition function Z has to satisfy
the condition

Z = tr TCe−i
∮
C KL(t)dt = 1, (12.6)

where the trace runs over both electronic and spin degrees of freedom. Here, TC

denotes time-ordering on the Keldysh contour. In order to obtain an action for the
spin, we take the partial trace over the electronic degrees of freedom only. The
tunneling contribution to the spin action, thus, reads

iδST = −1

2

∮

C

〈TC KT (S(t), t)KT (S(t ′), t ′)〉dtdt ′. (12.7)

Notice that this action is given by the first non-trivial contribution in the expansion of
the exponential operator TCe−i

∮
C KL(t)dt . The traces over the electronic degrees of

freedom of the first and second contributions,
∮
C
〈TC1〉dt and

∮
C
〈TC KT (S(t), t)〉dt ,

respectively, vanish, for which reason (12.7) provides the first non-trivial contribu-
tion to the spin-action.

We introduce the tunneling operator Aσσ ′ = ∑pq c
†
pσ cqσ ′ and the propagator

Dσσ ′(t, t ′) = (−i)〈TC Aσσ ′(t)A†
σσ ′(t ′)〉, in terms of which the tunneling Hamilto-

nian reads

KT =
∑

σσ ′
T̂σσ ′ Aσσ ′eiφ(t) + H.c., (12.8)
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whereas the effective action is written

iδST = (−i)

∮

C

∑

σσ ′
T̂σσ ′(t)Dσσ ′(t, t ′)T̂σ ′σ (t ′)eiδφ(t,t ′)dtdt ′, (12.9)

where δφ(t, t ′) = ∫ t

t ′ V (t ′)dt ′.
The next step is to expand the two contour integrals in terms of the upper and

lower branches of the Keldysh contour. We use the superscripts u and l, in order
to distinguish between quantities on the upper and lower branches, (−∞,∞) and
(∞,−∞), respectively. Moreover, the propagator Dσσ ′(t, t ′) has four different be-
haviors depending on which branch the time variables t and t ′ lie. We have

DT
σσ ′(t, t ′) = (−i)〈TAσσ ′(t)A†

σσ ′(t)〉, t, t ′ ∈ (−∞,∞), (12.10a)

D<
σσ ′(t, t ′) = (−i)〈A†

σσ ′(t)Aσσ ′(t)〉, t ∈ (−∞,∞), t ′ ∈ (∞,−∞), (12.10b)

D>
σσ ′(t, t ′) = (−i)〈Aσσ ′(t)A†

σσ ′(t)〉, t ∈ (∞,−∞), t ′ ∈ (−∞,∞), (12.10c)

DT̄
σσ ′(t, t ′) = (−i)〈T̄Aσσ ′(t)A†

σσ ′(t)〉, t, t ′ ∈ (∞,−∞), (12.10d)

where T and T̄ is the time ordering and anti-time ordering operator, respectively.
Recall that Aσσ ′ is a Bose-like operator. In principle we could have been satisfied
by working with only the lesser and greater propagators, only requiring knowledge
of whether t is less than or greater than t ′ in the contour sense. It is, however,
convenient to make use of the time and anti-time ordered propagators whenever t

and t ′ lie on the same branch of the contour, which will become apparent below.
In terms of the propagators in (12.10a)–(12.10d), we write the action as

iδST = (−i)
∑

σσ ′

∫ ∞

−∞
(
T̂ u

σσ ′(t)DT
σσ ′(t, t ′)T̂ u

σ ′σ (t ′) − T̂ u
σσ ′(t)D<

σσ ′(t, t ′)T̂ l
σ ′σ (t ′)

− T̂ l
σσ ′(t)D>

σσ ′(t, t ′)T̂ u
σ ′σ (t ′) + T̂ l

σσ ′(t)DT̄
σσ ′(t, t ′)T̂ l

σ ′σ (t ′)
)
eiδφ(t,t ′)dtdt ′

= (−i)
∑

σσ ′

∫ ∞

−∞
eiδφ(t,t ′)

× (T̂ u
σσ ′(t) −T̂ u

σσ ′(t)
)
(

DT
σσ ′(t, t ′) D<

σσ ′(t, t ′)
D>

σσ ′(t, t ′) DT̄
σσ ′(t, t ′)

)(
T̂ u

σ ′σ (t ′)
−T̂ u

σ ′σ (t ′)

)
dtdt ′.

(12.11)

The four propagators in (12.10a)–(12.10d) are related to the retarded, advanced,
and Keldysh forms of the propagators, defined by

Dr/a

σσ ′(t, t ′) = (∓i)θ(±t ∓ t ′)〈[Aσσ ′(t), A†
σσ ′(t ′)]〉, (12.12a)

DK
σσ ′(t, t ′) = (−i)〈{Aσσ ′(t), A†

σσ ′(t ′)}〉, (12.12b)
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through (3.48) along with the equations

DT
σσ ′(t, t ′) = θ(t − t ′)D>

σσ ′(t, t ′) + θ(t ′ − t)D<
σσ ′(t, t ′), (12.13a)

DT̄
σσ ′(t, t ′) = θ(t ′ − t)D>

σσ ′(t, t ′) + θ(t − t ′)D<
σσ ′(t, t ′), (12.13b)

DK
σσ ′(t, t ′) = D>

σσ ′(t, t ′) + D<
σσ ′(t, t ′). (12.13c)

Therefore, we introduce the fast and slow variables T̂ c
σσ ′ = (T̂ u

σσ ′ + T̂ l
σσ ′)/2 and

T̂
q

σσ ′ = T̂ u
σσ ′ − T̂ l

σσ ′ , such that T̂
q

σσ ′ · T̂ c
σσ ′ = 0. We, furthermore, apply the rotation

R = 1√
2

(
1 1

−1 1

)
, R−1 = R†, (12.14)

to the matrix with propagators in (12.11). This leads to that we finally can write the
effective action according to

iδST = − i

2

∑

σσ ′

∫ ∞

−∞
eiδφ(t,t ′)

× (2T̂ c
σσ ′(t) T̂

q

σσ ′(t)
)
(

0 Da
σσ ′(t, t ′)

Dr
σσ ′(t, t ′) DK

σσ ′(t, t ′)

)(
2T̂ c

σ ′σ (t ′)
T̂

q

σ ′σ (t ′)

)
dtdt ′

= (−i)
∑

σσ ′

∫ ∞

−∞

(
T̂ c

σσ ′(t)Da
σσ ′(t, t ′)T̂ q

σ ′σ (t ′) + T̂
q

σσ ′(t)Dr
σσ ′(t, t ′)T̂ c

σ ′σ (t ′)

+ 1

2
T̂

q

σσ ′(t)DK
σσ ′(t, t ′)T̂ q

σ ′σ (t ′)
)

eiδφ(t,t ′)dtdt ′. (12.15)

Now, we can begin to analyze the components of the action due to tunnel-
ing. Recall that T̂σσ = Tσσ + T1σσσ ′ · S, where only the second term has a time-
dependence. It is then straightforward to see that T̂ c = Tσσ ′ + T1σσσ ′ · Sc, whereas
T̂ q = T1σσσ ′ · Sq . Those observations lead to that the action can be partitioned into
δST = δSc + δSq , where the action of the slow and fast variables can be written

δSc = 1

e

∫
j (1)
m (t)S

q
m(t)dt + 1

e

∫
S

q
m(t)j (2)

mn(t, t ′)Sc
n(t

′)dtdt ′, (12.16a)

δSq = 1

e

∫
S

q
m(t)j (3)

mn(t, t ′)Sq
n (t ′)dtdt ′, (12.16b)

m,n = x, y, z, respectively. The current densities j
(k)
mn , k = 1,2,3, j

(1)
m ≡ j

(1)
mm, in-

troduced here are defined by
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j (1)
m (t) = −eT1

∑

σσ ′
σm

σσ ′Tσ ′σ

∫ (
Dr

σσ ′(t, t ′)eiδφ(t,t ′) + Da
σ ′σ (t ′, t)e−iδφ(t,t ′))dt ′,

(12.17a)

j (2)
mn(t, t) = −eT 2

1

∑

σσ ′
σm

σσ ′
(

Dr
σσ ′(t, t ′)eiδφ(t,t ′) + Da

σ ′σ (t ′, t)e−iδφ(t,t ′))σn
σ ′σ ,

(12.17b)

j (3)
mn(t, t) = − e

2
T 2

1

∑

σσ ′
σm

σσ ′ DK
σσ ′(t, t ′)eiδφ(t,t ′)σ n

σ ′σ . (12.17c)

The first current density, j (1)
m arises due to the spin-imbalance in the leads along with

the non-equilibrium conditions present in the system. It is readily seen in (12.17a)
that this current vanishes if the leads are non-magnetic and in the absence of spin-
flip transitions inside the barrier, but is finite if at least either of the mechanisms is
present. The second and third current densities, j (2)

mn , j
(3)
mn , are both tensors of second

order (matrices), and arise due to the interactions between the local spin in the tunnel
barrier and the de-localized spins constituted by the tunneling electrons.

We now make the model complete by adding the action that stems from the in-
teraction between the local spin and tunneling electrons to the actions arising from
the interaction between the external magnetic field, δSext = gμB

∮
C

Bext · Sdt =
gμB

∫
Bext · Sqdt , and the Wess-Zuminov-Witten-Novikov (WZWN) action which

describes the Berry phase accumulated by the spin as a result of its motion on the
sphere. On the Keldysh contour, the latter term reads [9]

SWSWN = 1

S2

∫
Sq · (∂tSc × Sc)dt. (12.18)

The total action can be summarized by

S =
∫ (

1

S2
Sq · (∂tSc × Sc) + gμBBext · Sq + 1

e
j(1) · Sq

)
dt

+ 1

e

∫ (
Sq · j(2) · Sc + Sq · j(3) · Sq

)
dtdt ′. (12.19)

Effective equations for the dynamics of the local spin are obtained by effecting
a functional differentiation on the action with respect to either of the spin fields Sc

or Sq and putting the resulting expression to zero. Here, we will consider the slow
dynamics, which means that we will differentiate out the field Sq . A problem will
arise in the last term since it contains the fast spin variable Sq twice. Hence, we
will not get rid of the fast variable completely through the functional differentiation.
By application of the Hubbard-Stratonovich transformation to the action

∫
Sq · j(3) ·

Sqdtdt ′, the fast spin variable can be removed, however, at the cost of introducing
an auxiliary random field ξ , i.e.
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eiδSq = ei
∫

S
q
mj

(3)
mnS

q
n dtdt ′/e = e−(i/2)

∫
S

q
m[−2j

(3)
mn/e]Sq

n dtdt ′

=
∫

e(i/2)
∫

ξ
q
m[−2j

(3)
mn/e]−1ξ

q
n dtdt ′e−i

∫
ξmS

q
mdt Dξ, (12.20a)

Dξ = lim
ε→0

∏√
det ε[−2j(3)/e]−1 dξm√

i2π
. (12.20b)

The random fields can be related to the current tensor j
(3)
mn through the following

observation. Assume that there is a random magnetic field ξ coupled to the local
spin Sq via Hξ = −gμBξ · S. The partition function with respect to the random
fields then assumes the form

Z[ξ ] = tr ξ e
− ∫ Hξ dt ≈ e− ∫ 〈Hξ (t)Hξ (t ′)〉dtdt ′/2 = e−(gμB)2

∫ 〈ξm(t)S
q
m(t)ξn(t ′)Sq

n (t ′)〉dtdt ′/2

= e−(gμB)2
∫ 〈ξm(t)ξn(t ′)〉Sq

m(t)S
q
n (t ′)dtdt ′/2. (12.21)

Inspection of (12.20a), (12.20b) and (12.21) indicates that the correlation func-
tion of the random fields should satisfy the relation (gμB)2〈ξm(t)ξn(t

′)〉 =
−i2j

(3)
mn(t, t ′)/e.

After this transformation, the total action can be written

S =
∫

Sq ·
(

1

S2
∂tSc ×Sc +gμB [Bext + ξ ]+ 1

e
j(1) + 1

e

∫
j(2) ·Scdt ′

)
dt, (12.22)

for which we obtain the functional derivative

0 = δS
δSq(t)

= 1

S2
∂tSc × Sc + gμB [Bext + ξ ] + 1

e
j(1) + 1

e

∫
j(2) · Scdt ′. (12.23)

We obtain an appealing equation of motion for Sc by cross-multiplying this equation
with Sc under the requirement that |Sc| = S is constant, since then (dropping the
superscript c)

∂tS(t) = gμBS(t) × [Bext(t) + ξ(t)] + 1

e
S(t) × j(1)(t)

+ 1

e

∫
S(t)×[j(2)(t, t ′) · S(t ′)

]
dt ′. (12.24)

Here, it has been tacitly used that the slow spin variable can be considered as being
semi-classical to a good approximation. We notice, however, that quantum effects
have indeed been included in this semi-classical equation through the presence of
action δSq given solely in terms of the fast, or quantum, spin variable Sq .

In the presence of the electronic tunneling processes the semi-classical approx-
imation can be further elaborated to simplify the integral in the last term. For this,
we assume that the electrons in the leads are sufficiently described by the Green
functions gkσ (t, t ′) = (−i)TC exp [−iξkσ (t − t ′)]. Then, for low temperatures the
elements of the current tensor j(2) acquire the time-dependence

j (2)
mn(t, t ′) ∼ θ(t − t ′) sinD(t − t ′)

(t − t ′)2

(
1 − cosD(t − t ′)

)
, (12.25)
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where D is half the band width of the conduction band in the leads. The time-
dependence of this current tensor suggests a peaked onset at t − t ′ = 0, however, os-
cillating with a quadratic decay for larger times. The characteristic time-scale is set
by 1/D, which essentially provides the width of the peak around t − t ′ = 0. Hence,
for spin-precession (Larmor) frequencies ωL � D, we are in the regime where the
spin dynamics is much slower than the processes of the conduction electrons. The
slowness of the spin dynamics, thus, allows the local, or Born-Oppenheimer, ap-
proximation S(t ′) ≈ S(t) − (t − t ′)∂tS(t), analogous to the approximation intro-
duced in Chap. 8. The equation of motion for the spin, then assumes the simpler
form

∂tS = α(t)∂tS · S + gμBS ×
[

Bext + ξ + 1

egμB

j(1) + 1

egμB

∫
j(2)(t, t ′)dt ′ · S

]
,

(12.26)
where α(t) = ∫ (t − t ′)j(2)(t, t ′)dt ′/e defines a damping parameter. This equation
for S captures the main dynamics of the local spin under the influence of the tun-
neling electrons, and is reminiscent of the Landau-Lifshitz-Gilbert (LLG) equation
[10, 11]. From here on, we shall proceed with an approximative discussion of the
spin dynamics.

The random, or Langevin, term ξ arises due to the exchange interaction between
the tunneling electrons and the local spin. In the present set-up, the energy scale
for the exchange interaction is given by the parameter T1, here in the order of
0.1–1 meV. The precession frequency ωL is set by the external magnetic field and
the internal currents. Assuming that the effective magnetic field acting on the local
spin is less than 0.5 T, the Larmor frequency ωL < 60 µeV. Under those conditions it
is reasonable to expect that the random processes are suppressed, and we can neglect
the random term in the following.

The damping parameter α is also generated by the exchange interaction. For low
temperatures and dc voltages, it is straightforward to show that it is negligible as
well. To see this, consider the contribution Dσσ ′(t, t ′)eiδφ(t,t ′) in the current ten-
sor j(2). We then have the time-integration

∫ t

−∞
(t − t ′)Dr

σσ ′(t, t ′)eiδφ(t,t ′)dt ′

∼ (−i)

∫ D

−D

∫ t

−∞
(t − t ′)

(
f (E) − f (E′)

)
ei(E−E′+eVdc)(t−t ′)dt ′dEdE′

= i

∫ D

−D

f (E) − f (E′)
(E − E′ + eVdc)2

dEdE′

= i

∫ D

−D

f (E)

(
2E

E2 − (D − eVdc)2
− 2E

E2 − (D + eVdc)2

)
dE

≈ i ln

∣∣∣∣
1 − eVdc/D

1 + eVdc/D

∣∣∣∣. (12.27)
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It is, thus, clear that the damping parameter is vanishingly small for bias voltages
such that eVdc � D.

12.3 Dynamics of Local Spin

For our discussion of the local spin dynamics we take the above approximations for
granted, under which the spin equation of motion reduces to

∂tS = gμBS ×
[

Bext + 1

egμB

j(1) + 1

egμB

∫
j(2)(t, t ′)dt ′S

]
. (12.28)

In order to make life a little easier, we assume that the electrons in the leads can be
described by the simplified Green function gkσ (t, t ′) = (−i)T exp [−iξkσ (t − t ′)].
For simplicity, we also assume a simple harmonic time-dependence of the bias volt-
age such that V (t) = Vdc + Vac cosω0t , and that the densities of states in the leads
are slowly varying with energy/momentum. Under those approximations, the cur-
rent densities involved in the equation are given by

j (1)
m (t) = ieT1

∑

σσ ′μν

σm
σσ ′Tσσ ′Jμ(eVac/ω0)Jν(eVac/ω0)

×
∫ t

−∞

∫ [
NLσ NRσ ′ei(E−E′+eVdc)(t−t ′)+iω0(μt−νt ′)

− NLσ ′NRσ e−i(E−E′+eVdc)(t−t ′)−iω0(μt−νt ′)]

× [f (E) − f (E′)]dEdE′dt ′, (12.29a)

and

j (2)
mn(t, t ′) = ieT 2

1 θ(t − t ′)
∑

σσ ′μν

σm
σσ ′σn

σ ′σ Jμ(eVac/ω0)Jν(eVac/ω0)

×
∫ t

−∞

∫ [
NLσ NRσ ′ei(E−E′+eVdc)(t−t ′)+iω0(μt−νt ′)

− NLσ ′NRσ e−i(E−E′+eVdc)(t−t ′)−iω0(μt−νt ′)]

× [f (E) − f (E′)]dEdE′. (12.29b)

Here, we have used that eiz sinφ =∑n Jn(z)e
inφ . From these expressions we can

obtain dc conditions by letting Vac → 0 and ω0 → 0, in that order, in which case
only the term with μ = ν = 0 survives.

For later reference, we also rewrite the spin components of the densities of states
in terms of the electronic and magnetic densities Nχ and mχ , such that Nχσ =∑

σ ′ [1 + σσ ′]Nχσ ′/2 = (Nχ + σmz
χ)/2.



212 12 Spin Systems in Non-Equilibrium

12.3.1 Non-Magnetic Leads

First, we study the interaction between the tunneling current and the local spin
for non-magnetic leads. Then, the densities of states are spin-independent, so that
Nχσ = Nχ/2, which leads to the current densities

j (1)
m (t) ≈ −eπT1NLNR

∑

σσ ′μν

σm
σσ ′Tσσ ′Jμ(eVac/ω0)Jν(eVac/ω0)

× [eVdc + νω0] sinω0(μ − ν)t, (12.30a)
∫

j (2)
mn(t, t ′)dt ′ ≈ −eπT 2

1 NLNR

∑

σσ ′μν

σm
σσ ′σn

σ ′σ Jμ(eVac/ω0)Jν(eVac/ω0)

× [eVdc + νω0] sinω0(μ − ν)t. (12.30b)

Here, we first notice in (12.30b) that the only non-vanishing components are the
diagonal ones, that is, j

(2)
mm, m = x, y, z. We, furthermore, notice that these diagonal

components are equal. In the case of non-magnetic leads, they do not have any effect
on the spin dynamics, however, since S × j(2)S = (SySz[j (2)

zz − j
(2)
y ], SxSz[j (2)

xx −
j

(2)
zz ], SxSy[j (2)

yy − j
(2)
xx ]) = 0, where we have used that the spins are semi-classical.

We now study the effect of the current density in (12.30a). By recalling
that Tσσ ′ = δσσ ′T0 + σx

σσ ′T2, it is clear that the only non-vanishing component

in (12.30a) is j
(1)
x . Hence, the equation of motion for the spin can be written

∂tS = gμBS × Bext + 1

e

⎛

⎝
0 0 0
0 0 j

(1)
x

0 −j
(1)
x 0

⎞

⎠ . (12.31)

In absence of external magnetic fields, the spin component Sx is a constant of mo-
tion, and the local spin acquires a rotational motion in the yz-plane about the x-axis,
with frequency ωL = |j (1)

x |/e.
This result suggests force microscopy experiment, MRFM, which is set-up such

that there is a magnetic particle mounted on a nanomechanical cantilever above of
the tunnel junction, see Fig. 12.2. The magnetic particle is coupled to the local spin
through a magnetic force [12], e.g.

F(r, t) = −[me(t) · ∇]Bext(r), (12.32)

where r is the mean distance between the micromagnet and the local spin, me(t) =
gμBS(t) is the magnetic moment of the local spin, and the total external magnetic
field B(r) comprise the external field Bext and the magnetic field Bt (r) generated by
the cantilever micromagnet. Assuming, for instance, that |∂Bz

t /∂z| ∼ 10−1 T/µm
yields a force signal of about 10 aN.

The experimental set-up according to this scheme would provide a direct mea-
surement of the magnetic resonance signal from a single spin, particularly in ab-
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Fig. 12.2 Schematic view of
the tunnel junction, in which
a spin is embedded, in
combination with MRFM.
A static external magnetic
field polarized the spin, while
an ac electric field generates
an effective time-dependent
spin-polarized current,
through spin-flip transitions
in the tunnel junction, which
influences the dynamics of
the local spin. The dynamical
variations in the local
effective magnetic field is
picked up by a resonator,
nanomechanical cantilever,
onto which a micromagnet is
mounted

sence of an externally applied time-dependent field. Recording such a signal would
be a very strong evidence for spin-flip transitions across the tunnel junction.

12.3.2 Ferromagnetic Leads

We now turn our attention to the case of ferromagnetic leads. In the following we
put the spin-flip tunneling matrix element T2 = 0, in order to purify the system.
Then, the only surviving contribution from the current density in (12.29a) is the
z-component, which essentially behaves as

j (1)
z (t) = −πeT0T1(NRmz

L + NLmz
R cos θ)

×
∑

μν

Jμ(eVac/ω0)Jν(eVac/ω0)[eVdc + νω0] sinω0(μ − ν)t, (12.33)

where θ defines the angle between the magnetic moments of the left and right leads.
In this way, we allow for non-collinear arrangements of the magnetic moments. In
the above formula we have let the global reference frame to coincide with the spin
reference frame of the left lead.

This current density, (12.33) contributes a finite shift to the Larmor frequency
whenever NRmz

L + NLmz
R �= 0. This requirement is satisfied neither in case of non-

magnetic leads (see previous discussion), nor in case in which both leads are ferro-
magnetic but such that NLmz

R = −NRmz
L, or NL/NR = −mz

L/mz
R . This latter case

can be realized, for example, when both leads have identical electronic and magnetic
structures but are aligned in an anti-ferromagnetic order.
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The current density j(2) is more interesting. We find, for instance, that the com-
ponents j

(2)
xx = j

(2)
yy , j

(2)
xy = −j

(2)
yx , and j

(2)
zz are finite, while the others are identically

zero. Considering, further, the product S× j(2)S, it can be understood that the differ-
ence j

(2)
xx − j

(2)
zz lies along the z-direction, whereas j

(2)
xy lies in the xy-plane. While

both contributions provide shifts to the Larmor frequency, the latter is interesting
since it also provides a torque on the local spin. We find that

∫ t

−∞
[j (2)

xx (t, t ′) − j (2)
zz (t, t ′)]dt ′ = 2πeT 2

1 mL · mR

∑

μν

Jμ(eVac/ω0)Jν(eVac/ω0)

× [eVdc + νω0] sinω0(μ − ν)t, (12.34a)
∫ t

−∞
j (2)
xy (t, t ′)dt ′ = −πe

2
T 2

1 (NRmz
L − NLmz

R cos θ)

×
∑

μν

Jμ(eVac/ω0)Jν(eVac/ω0)[eVdc + νω0]

× cosω0(μ − ν)t. (12.34b)

The longitudinal component, (12.34a), is non-vanishing only if both leads are spin-
polarized. In addition, it only contributes to the spin dynamics in presence of a
time-dependent bias voltage. The transversal component, on the other hand, only
requires that the difference NRmz

L − NLmz
R cos θ �= 0, which is satisfied whenever

the at least one of the leads is spin-polarized or, if they are identical, they are not in
ferromagnetic arrangement (θ = 0). It is, furthermore, clear that this contribution is
finite for stationary biases, something that we shall discuss below.

The effects of the current densities above can be summarized in that the compo-
nents in (12.33) and (12.34a) contributes to the precession of the local spin about its
local direction. The component in (12.34b) is generated by spin-flips of the tunnel-
ing electrons when interacting with the local spin moments. Under those processes
the local spin is subject to a torque which tends to slightly change the local direction
of the local spin. For example, in case of anti-ferromagnetically arranged leads, the
current density component (12.34b) acts as to line the local spin up in the direction
of the magnetic moment of the source lead. An ac bias voltage causes a wobbling,
or nutation, of the local spin motion, as we shall see below.

We have already taken into account that the local spin is described in a semi-
classical sense, hence, here we take the full advantage of this description in that we
parametrize the spin on the unit sphere according to S = S(cosϕ sinϑ, sinϕ sinϑ ,
cosϑ), where ϕ and ϑ is the azimuthal and polar angles, respectively, whereas
S = |S|. The equation of motion for the local spin can then be written as

ϕ̇ = −gμBBext(t) + 1

e
Sj(1)

z (t) + 1

e
S

∫
[j (2)

xx (t, t ′) − j (2)
zz (t, t ′)]dt ′ cosϑ, (12.35a)

ϑ̇ = 1

e
S

∫
j (2)
xy (t, t ′)dt ′ sinϑ. (12.35b)
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Fig. 12.3 The different qualitative behavior of the local spin in presence of an applied ac bias
voltage when the magnetizations of the leads are equal and ferromagnetically (black) and anti–
ferromagnetically (grey) arranged. (a) The polar displacement of the spin. (b) The resulting spin
motion on the unit sphere. Here, NLT1 ∼ NRT1 ∼ 0.1, mz

χ/Nχ ∼ 0.9 θ = 0 (a) and θ = π (b), and
ω0 = 3 meV

The solution of the second equation is given by

ϑ(t) = 2 arctan

(
tan

ϑ0

2
e−πST 2

1 (NRmz
L−NLmz

R cos θ)/2

×
∏

μν

exp

{
Jμ

(
eVac

ω0

)
Jν

(
eVac

ω0

)
[eVdc + νω0] sinω0(μ − ν)t

ω0(μ − ν)

})
, (12.36)

where ϑ0 is the polar orientation of the spin at some initial time t0. The full motion
of the local spin, where the planar precession is given by the equation for ϕ and
the deviation from the planar motion is given by ϑ , is obviously rather complicated,
even in the simplified case we are considering here, see Fig. 12.3. Especially, we
see that the nutation of the spin, which is caused by its coupling to the tunneling
electrons, is directly modulated by the time-dependence of the bias voltage. In case
of harmonic bias voltages, it can also be seen from the expression of ϑ , that the
lower the frequency of the bias, i.e. ω0 � eVdc/10, the larger the amplitude of the
polar angular displacement, something that will provide a signal for detection in the
tunneling current.

In static limit, eVac → 0, ω0 → 0, such that eVac/ω0 → 0, the polar angle ac-
quires the time-dependence

ϑ(t) = 2 arctan

(
tan

ϑ0

2
e−πeVdcST 2

1 (NRmz
L−NLmz

R cos θ)(t−t0)/2
)

. (12.37)

Thus, assuming ϑ0 �= 0 and Vdc > 0, it is clear that ϑ approaches 0 (π ) as time
grows for positive (negative) NRmz

L − NLmz
R cos θ , and it can be understood that
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the local spin moment assumes the direction of the magnetic moment of the source
lead. This is easiest seen by assuming identical leads.

From the static limit result we define the characteristic time scale

τ−1
c � πeVdc

2
ST 2

1 (NRmz
L − NLmz

R cos θ) (12.38)

for the polar angle motion. Parametrizing the magnetic density mz
χ = Nχpχ , where

−1 ≤ pχ ≤ 1, the difference NRmz
L − NLmz

R cos θ = NLNR(pL − pR cos θ). As-
suming NLT1 ∼ NRT1 ∼ 0.1, pχ = 1/2, θ = π , and Vdc ∼ 1 mV, we arrive at the
characteristic time-scale τc ≈ 5 ps, which should be sufficiently short to switch the
spin from e.g. ↑ to ↓ within a bias pulse of 1 ns.

In a realistic set-up, it would be desirable to manipulate the spin by means of a
bias pulse with time span τs . A sudden onset of the bias inevitably leads to transient
effects in the induced current densities, which transfer to the motion of the spin.
Therefore, consider the voltage pulse V (t) = Vdc +Vac[θ(t −τ0)−θ(t −τ1)], where
τ1 = τ0 +τs . As we are interested in the dynamics induced by the current, we assume
that Bext = 0. From the above discussion we know that a stationary bias eventually
will line the local spin up in the direction parallel to the magnetic moment of the
source (or anti-parallel to the magnetic moment of the drain if the source is non-
magnetic). We, thus, set Vdc = 0 in order to focus on the transient behavior of the
spin. Under those conditions, the polar angle motion is given by

ϑ̇(t) = −πeVac

2
ST 2

1 (NRmz
L − NLmz

R cos θ)
([

1 − e−(t−τ0)/τ
]

× [θ(t − τ0) − θ(t − τ1)
]

+ [e−(t−τ1)/τ − e−(t−τ0)/τ
]

cos eVac(t − τ1)θ(t − τ1)
)

sinϑ, (12.39)

where the time-scale τ is related to the electronic tunneling processes, and is of the
order of 1 fs. Those processes are much faster than both τc and the time-scale of the
Larmor frequency ωL for bias voltages between 1–100 mV. For e.g. a 1 ns bias pulse
of 1 mV, the critical time-scale is ∼100 fs. Physically, the time-scale τ implies that
the induced current densities are retarded (delayed) responses of the bias voltage
across the junction.

The time-dependence of the polar angle is plotted in Fig. 12.4(a) for the square
pulse, and it is clearly seen that the angle goes from π to 0, i.e. spin going from
−z to z in the global reference frame, within the time scale of the pulse. The in-
tegrated induced current density

∫ t

−∞ j
(2)
xy (t, t ′)dt ′ is plotted in Fig. 12.4(b). At the

onset (termination) of the pulse, the amplitude of the induced current density grows
(decays) exponentially, which is expected from the equation of ϑ . As the pulse ter-
minates, however, there are additional oscillations in the induced current density, as
a reaction to that the bias is removed. These oscillations are not visible in the polar
angle motion since they are exponentially suppressed.
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Fig. 12.4 Time-dependent
variation of the polar
angle (a), the integrated
current density∫ t

−∞ j
(2)
xy (t, t ′)dt ′ (b), and the

Larmor frequency (c) for a
square bias voltage pulse, cf.
dotted line in (a). Here,
Vac = 1 mV,
NLT1 ∼ NRT1 ∼ 0.1,
pχ = 1/2 and θ = π

The Larmor frequency ωL of the precession is affected by the time-dependent
variation of ϑ . In absence of external magnetic field, we find

ω2
L(t) = S2

e2

(
j (1)
z (t) +

∫ t

−∞
[j (2)

xx (t, t ′) − j (2)
zz (t, t ′)]dt ′

)2

+ S2

e2

(∫ t

−∞
j (2)
xy (t, t ′)dt ′

)2

sin2 ϑ. (12.40)

The time-dependence of the first term is the square of

eVac
[
e−(t−τ0)/τ − e−(t−τ1)/τ

]
sin eVac(t − τ1)θ(t − τ1). (12.41)

Essentially, this field does not affect the Larmor frequency until after the bias pulse
has terminated. Its response to this termination is an exponentially decaying oscil-
latory variation of ωL, see Fig. 12.4(c) around 1.5 ns.

The last contribution to the Larmor frequency, vanishes for as long as ϑ = nπ ,
n integer, that is, as long as the local spin is directed along the z-direction in the
global reference frame. However, during the time interval of the spin flips, the polar
angle 0 < |ϑ | < π , leading to that sin2 ϑ �= 0. One would, therefore, expect a sharp
peak in the time-evolution of the Larmor frequency, ωL(t). This is also depicted in
Fig. 12.4(c), showing a peaked Larmor frequency simultaneously with the spin flip.

One should bear in mind here, that we have omitted any anisotropy fields that
may have the effect to stabilize the local spin moment under equilibrium conditions,
that is, for zero bias voltage. The purpose of the above discussion is, however, to
demonstrate that the bias voltage itself may have a stabilizing effect on the local
spin moment, hence, it can be regarded as an anisotropy field in its own respect.
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12.4 Signatures of the Local Spin in the Transport

Finally, we consider the possibility to read out the spin dynamics through the tunnel-
ing current that is being measured. Because we may wonder—would it be possible
at all to record any signature from dynamics of the local spin. As we shall see be-
low, there are several reasons to believe that this would be the case. The present
discussion is pertinent to e.g. break junction experiments or scanning tunneling mi-
croscopy measurements (STM) etc.

The current across the junction can be written as

I (t) = 2e Re
∑

σσ ′

∫ t

−∞
〈[T̂σσ ′(t)Aσσ ′(t), T̂σ ′σ (t ′)A†

σσ ′(t ′)]〉dt ′

= I0(t) + Iz(t) + I⊥(t), (12.42)

where

I0(t) = 2eT 2
0 Re

∑

pqσ

∫ t

−∞
(
f (ξpσ ) − f (ξqσ )

)
ei(ξpσ −ξqσ )(t−t ′)+iδφ(t,t ′)dt ′, (12.43a)

Iz(t) = 4eT0T1 Re
∑

pqσ

∫ t

−∞

(
σz

σσ + T0

2T1
cosϑ(t)

)
cosϑ(t)

× (f (ξpσ ) − f (ξqσ )
)
ei(ξpσ −ξqσ )(t−t ′)+iδφ(t,t ′)dt ′, (12.43b)

I⊥(t) = 2eT 2
1 Re

∑

pqσ

∫ t

−∞
sin2 ϑ(t)

(
f (ξpσ ) − f (ξqσ̄ )

)

× ei(ξpσ −ξqσ̄ )(t−t ′)+iδφ(t,t ′)dt ′. (12.43c)

These currents describe, from above, the direct tunneling between the leads with-
out noticing the local spin moment, the tunneling in which the current becomes
spin-polarized due to the presence of the local spin, and the tunneling in which the
tunneling electrons undergo spin-flips generated by their interactions with the local
spin moment. Note here, that we have used the semi-classical description of the local
spin when obtaining the above expressions for the current. In a quantum description
one would be able to obtain an analogous separation of the currents, however, in
terms of the average of the local spin moments, 〈Sz〉, and the spin-spin correlation
functions, σ · 〈S(t)S(t ′)〉 · σ , see e.g. [13, 14].

It is important to notice that the tunneling current is modulated by the presence
of the local spin through the variation of the polar angle ϑ(t), cf. terms propor-
tional to cosϑ and cos2 ϑ in Iz, as well as the term proportional to sin2 ϑ in I⊥. The
quadratic dependence on the sine and cosine leads to a modulation of the current by
the doubled frequency 2ϑ , as well. We can, therefore, expect that the current con-
tains components which show a slightly deviated time-dependence compared to the
fundamental time-dependence introduced through the bias voltage. The expressions
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of the current, furthermore, show that there is no direct influence on the current from
the azimuthal motion of the local spin, i.e. there is no explicit dependence on ϕ.

In order to be more concrete, consider the biasing of the system according to

δφ(t, t ′) = e

∫ t

t ′

(
Vdc + Vac[θ(τ − τ0) − θ(τ − τ1)]

)
dτ. (12.44)

Under those conditions the equation of motion for ϑ becomes

ϑ̇(t) = −πe

2
ST 2

1 (NRmz
L − NLmz

R cos θ)
(
Vdcθ(t − τ0)

+ [Vdc cos eVac(t − τ0)e
−(t−τ0)/τ + (Vdc + Vac)

(
1 − e−(t−τ0)/τ

)]

× [θ(t − τ0) − θ(t − τ1)
]+ [Vdc cos eVac(τ1 − τ0)e

−(t−τ0)/τ

+ (Vdc + Vac)
(
e−(t−τ1)/τ − e−(t−τ0)/τ

)
cos eVac(t − τ1)

+ eVdc
(
1 − e−(t−τ1)/τ

)]
θ(t − τ1) sinϑ(t). (12.45)

For simplicity, assume that the initial polar angle ϑ0 = π , so that the local spin is
↓ at t = t0. Also assume that Vdc > 0, and that pL = 1/2, pR = 0, for NLT1 ∼
NRT1 ∼ 0.1. Hence, we assume to have one ferromagnetic and one non-magnetic
lead, a setup that is pertinent to e.g. STM using a spin-polarized tip. The dynamics
of the local spin is plotted in Fig. 12.5, and it behaves as one would expect from the
above discussion and Fig. 12.4.

It can be understood from (12.43a) that I0 follow the time-dependence of the bias
voltage only, as can be seen in Fig. 12.5(b) (grey), as well. Therefore, we leave this
component. Before the spin flip event, see Fig. 12.5(a), both the current Iz (solid-
dotted) are finite whereas I⊥ = 0 (faint), see Fig. 12.5(b). Simultaneously with the
spin flip event though, both currents Iz and I⊥ change their amplitude, as an effect
that the polar angle varies from π to 0. Note that, Iz assumes a new steady state

Fig. 12.5 Time-dependence
of the polar angle (a) and the
tunneling current (b) for the
bias pulse V (t) = eVdc +
eVac[θ(t − τ0) − θ(t − τ1)],
(τ0, τ1) = (1,2) ns (a)
(faint—zero bias level is
indicated by the dotted line).
In (b) the plotted currents are
the total I (t) (bold), I0(t)

(grey), Iz(t) (solid-dotted),
and I⊥(t) (faint)
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after the spin flip event, whereas I⊥ merely peaks at the event and thereafter returns
back to its previous steady state.

The bias voltage abruptly changes at the time τ0, which here occurs after the spin
flip, which leads to a change in Iz. A finite time span after the onset of the bias
pulse, the spin flips, which again leads to that Iz changes and assumes a new steady
state, whereas I⊥ peaks.

The tiny peaks in the current component I⊥ at the spin flip events are too small to
be recorded by themselves, since they are occurring simultaneously as the compo-
nent Iz changes from one state to another, which leaves a greater impression on the
current. The total current (bold), nevertheless, varies due to the sum of the changes
in Iz and I⊥. The changes in the total current due to the onset (τ0) and termination
(τ1) of the bias pulse are expected and be can controlled. The changes due to the
spin flip event can, however be distinguished from the other variations and, thus, be
taken as signatures of that the spin flips have occurred.

We replace the bias voltage pulse by a harmonic bias, e.g.

δφ(t, t ′) = e

∫ t

t ′

(
Vdc + Vac cosω0τ

)
dτ. (12.46)

For this type of biasing, it will become evident below that the current displays higher
order harmonics due to the interactions between the tunneling electrons and the local
spin. It will also become evident that those additional features are present in the
current only when the current density j

(2)
xy acting on the local spin is non-vanishing.

Under the harmonically modulated bias voltage, the induced current density∫ t

−∞ jxy(2)(t, t ′)dt ′, as well as the current components I0, Iz, and I⊥, all have the
time-dependence

∫ t

−∞
ei(x+eVdc)(t−t ′)+ieVac(sinω0t−sinω0t

′)/ω0dt ′

∼
∑

μν

Jμ(eVac/ω)Jν(eVac/ω)δ(x + eVdc + νω0)e
iω0(μ−ν)t . (12.47)

Thus, while all current densities inherits the fundamental frequency ω0 of the bias
voltage, the net of the bias on I0 merely yields a single, or simple, harmonic vari-
ation, see Fig. 12.6(b) and (f). We understand this behavior since I0 is a simple
kinetic response to the bias voltage and is not influenced by the dynamics of the
local spin.

The expression for the polar angle motion under the harmonic biasing, given
in (12.36), reflects that the nutation of the spin is directly modulated by the fre-
quency ω0 of the harmonic bias. For all components satisfying μ − ν = 0, we can
make the replacement sinω0(μ−ν)t/[ω0(μ−ν)] → t , which, thus, contribute with
linear temporal factors in the product. For all other components, it is intelligible that
the ratio eVdc/ω0 is important, since the smaller the frequency ω0, the larger the am-
plitude of variations in the polar angle and, hence, the greater the impact of the local
spin dynamics on the tunneling current. The explicit occurrence of the fundamental



12.4 Signatures of the Local Spin in the Transport 221

Fig. 12.6 Time-dependence and the its Fourier transforms of the total current I (a) and (e), respec-
tively, and the corresponding current components I0 (b) and (f), Iz (c) and (g), and I⊥ (d) and (h).
Here, V (t) = eVdc + eVac cosω0t with ω−1

0 = 5h × 104/π , pL = pR = 0.9, θ = π , T1/T0 = 1/2,
NLT 1 ∼ NRT1 ∼ 0.1, eVdc ∼ 1000ω0, and eVac ∼ 5ω0

frequency ω0 in the time-dependence of ϑ suggests that we should expect to see
higher order harmonics, both in ϑ but most importantly in the resulting tunneling
current. The absence of such signatures would indicate that there is no (exchange)
interaction between the tunneling current and the local spin.

The currents plotted in Fig. 12.6 are provided for eVdc ∼ 1000ω0 and eVac ∼ 5ω0.
Under those conditions, along with the other parameters given in the figure caption,
the amplitude of the polar angle max(ϑ − minϑ)/π ∼ 0.05, see Fig. 12.7(a) (bold),
which should be sufficiently large to generate an observable contribution from the
currents Iz and I⊥ through the components cosϑ and sinϑ , see Fig. 12.7(a) (faint).

The time-dependent current components Iz and I⊥ and their corresponding
Fourier transforms are plotted in Fig. 12.6(c) and (d), and (g) and (h), respectively.
From the plots, its clearly seen that the time-dependences of these current compo-
nents are largely modified compared to the input time-dependence, cf. the harmonic
behavior of I0 in Fig. 12.6(b). The vertical lines in the plots are inserted as guides to
the eye. Moreover, although the largest contribution to the current is carried by I0,
the time-dependence of the total current is significantly influenced by the contribu-
tions from Iz and I⊥, cf. Fig. 12.6(a).

By studying the Fourier transforms of the currents, we also find that there is a sec-
ond contribution to the total current (marked with an arrow at 2ω0), see Fig. 12.6(e).
Its presence has to originate from the interaction between the tunneling electrons
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Fig. 12.7 (a) Polar angle motion (bold) and cosϑ(t) (faint) for the harmonic bias given Fig. 12.6,
and (b) spin motion. In panel (b) we have added the static magnetic field Bext = 1ẑ T in order to
speed up the azimuthal motion. Parameters are as in Fig. 12.6

and the local spin, since there is no second Fourier component in the current I0, see
Fig. 12.6(f), but there are such components in both the contributions Iz and I⊥, see
Fig. 12.6(g) and (h). This doubled frequency is, according to the above discussion,
a direct fingerprint of the exchange interaction between the spin-polarized tunneling
electrons and the local spin. Although even higher order harmonics are expected in
the resulting current, the amplitudes of those are too small to provide visible signa-
tures on the present scale.

The parameter regime in which the tunneling experiment is proposed should be
within the realms of present state-of-the-art nanotechnology. Experiments aiming
towards measurements of the spin dynamics would be extremely intriguing and use-
ful for further advances within basic science of nanoscale physics.
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V
Vibrational mode, 107, 133
Vibron, 107, 134

W
Wess-Zuminov-Witten-Novikov, 208

X
X-operator commutator relations, 8
X-operator multiplication, 8
X-operators, 8
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