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8 τά πάντα ρει̃ . . . (and it all keeps flowing. . . ) . . . . . . . . . . . . . . . . . . . . . . . . 155

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



viii Contents

J.-M. Maillet
Heisenberg Spin Chains: From Quantum Groups to
Neutron Scattering Experiments

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
2 Heisenberg spin chain and algebraic Bethe ansatz . . . . . . . . . . . . . . . . . . . . . 170

2.1. Algebraic Bethe ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
2.2. Description of the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
2.3. Drinfel’d twist and F-basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2.4. Solution of the quantum inverse problem . . . . . . . . . . . . . . . . . . . . . . . 175
2.5. Scalar products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
2.6. Action of operators A, B, C, D on a general state . . . . . . . . . . . . . . 177

3 Correlation functions: Finite chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.1. Matrix elements of local operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.2. Elementary blocks of correlation functions . . . . . . . . . . . . . . . . . . . . . . 179
3.3. Two-point functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
3.4. Towards the comparison with neutron scattering

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4 Correlation functions: Infinite chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.1. The thermodynamic limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.2. Elementary blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5 Exact and asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.1. Exact results at ∆ = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.1.1. The emptiness formation probability . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.1.2. The two-point function of σz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.2. Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3. Asymptotic behavior of the two-point functions . . . . . . . . . . . . . . . . . 194

6 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A. Connes
Non-commutative Geometry and the Spectral Model of Space-time

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
2 Why non-commutative spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
3 What is a non-commutative geometry? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
4 Inner fluctuations of a spectral geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5 The spectral action principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6 The finite non-commutative geometry F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.1. The representation of AF in HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.2. The unimodular unitary group SU(AF ) . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.3. The classification of Dirac operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214



Contents ix

7 The spectral action for M × F and the standard model . . . . . . . . . . . . . . . 215
8 Detailed form of the bosonic action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9 Detailed form of the spectral action without gravity . . . . . . . . . . . . . . . . . . 218

10 Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.1. Unification of couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.2. See-saw mechanism for neutrino masses . . . . . . . . . . . . . . . . . . . . . . . . 220
10.3. Mass relation Y2(S) = 4 g2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10.4. The Higgs scattering parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.5. Naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
10.6. Gravitational terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226



Foreword

This book is the seventh in a series of lectures of the Séminaire Poincaré, which
is directed towards a large audience of physicists and of mathematicians.

The goal of this seminar is to provide up-to-date information about general
topics of great interest in physics. Both the theoretical and experimental aspects
are covered, with some historical background. Inspired by the Bourbaki seminar
in mathematics in its organization, hence nicknamed “Bourbaphi”, the Poincaré
Seminar is held twice a year at the Institut Henri Poincaré in Paris, with contri-
butions prepared in advance. Particular care is devoted to the pedagogical nature
of the presentations so as to fulfill the goal of being readable by a large audience
of scientists.

This volume contains the tenth such seminar, held on April 30, 2007. It is
devoted to the application of non-commutative geometry and quantum groups to
physics.

The book starts with a pedagogical introduction to Moyal geometry by Vin-
cent Pasquier, with special emphasis on the quantum Hall effect. It is followed
by a detailed review of Vincent Rivasseau on non-commutative field theory and
the recent advances which lead to its renormalizability and asymptotic safety. The
description of the quantum Hall effect as a non-commutative fluid is then treated
in detail by Alexios Polychronakos. Integrable spin chains can be studied through
quantum groups; their striking agreement with neutron scattering experiments is
reviewed by Jean-Michel Maillet. The book ends up with a detailed description by
the world famous expert Alain Connes of the standard model of particle physics
as a spectral model on a very simple non-commutative geometry, including the
recent progress on the Higgs sector and neutrino masses.

We hope that the continued publication of this series will serve the community
of physicists and mathematicians at professional or graduate student level.

We thank the Commissariat à l’Énergie Atomique (Division des Sciences
de la Matière) and the Daniel Iagolnitzer Foundation for sponsoring the Seminar.
Special thanks are due to Chantal Delongeas for the preparation of the manuscript.

Bertrand Duplantier
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Quantum Hall Effect
and Non-commutative Geometry

Vincent Pasquier

1. Introduction

Our aim is to introduce the ideas of non-commutative geometry through the ex-
ample of the Quantum Hall Effect (QHE). We present a few concrete situations
where the concepts of non-commutative geometry find physical applications.

The Quantum Hall Effect [1–4] is a remarkable example of a purely exper-
imental discovery which “could” have been predicted because the tools required
are not extremely sophisticated and were known at the time of the discovery.
What was missing was a good understanding of topological rigidity produced by
quantum mechanics whose consequences can be tested at a macroscopic level: The
quantized integers of the conductivity are completely analogous to the topological
numbers one encounters in the study of fiber-bundles.

One can give a schematic description of the Quantum Hall Effect as follows.
It deals with electrons constrained to move in a two-dimensional semiconductor
sample in a presence of an applied magnetic field perpendicular to the sample. Due
to the magnetic field, the Hilbert space of an electron is stratified into Landau levels
separated by an energy gap (called the cyclotron frequency and proportional to
the applied field). Each Landau level has a macroscopic degeneracy given by the
area of the sample divided by a quantum of area (inversely proportional to the
field) equal to 2πl2 where the length l is the so-called magnetic length. It is useful
to think of the magnetic length as a Plank constant l2 ∼ �. The limit of a strong
magnetic field is very analogous to a classical limit.

The electrons behave much like incompressible objects occupying a quantum
of area. Thus, when their number times 2πl2 is exactly equal a multiple of the
area, it costs the energy gap to add one more electron. This discontinuity in the
energy needed to add one more electron is at the origin of the incompressibility
of the electron fluid. The number of electrons occupying each unit cell is called
the filling factor, and the transverse conductivity is quantized each time the filling
factor is exactly an integer.



2 V. Pasquier

We shall stick to this simple explanation, although this cannot be the end of
the story. Indeed, if it was correct, the filling factor being linear in the magnetic
field, the quantization of the conductance should be observed only at specific
values of the magnetic field. In fact, it is observed on regions of finite width called
plateaux, and it is necessary to invoke the impurities and localized states to account
for these plateaus. Roughly speaking, some of the states are localized and do not
participate to the conductance. These states are populated when the magnetic
field is in a plateau. We refer the reader to a previous Poincaré seminar for an
introduction to these effects [4]. What is important for us here is that (although
counter-intuitive) it is possible to realize experimentally situations where the filling
factor is exactly an integer (or a fraction as we see next).

It came as a surprise (rewarded by the Nobel prize1) when the Quantum
Hall Effect was observed at non-integer filling factors which turn out to always
be simple fractions. To explain these fractions, it was necessary to introduce some
very specific wave functions and to take into account the interactions between the
electrons. The proposed wave functions are in some sense variational, although
they carry no adjustable free parameters.

This approach of a universal phenomenon through the introduction of “rigid”
trial wave functions goes in opposite direction to the renormalization group ideas.
Nevertheless, the trial wave functions are undoubtedly the most powerful tools
available at present and it remains a challenge to reconcile them with the field the-
oretical point of view. The recent progress in understanding the renormalizability
of non-commutative field theories [6] may be a crucial step in this direction.

Another point of contact between field theory and the QHE must be men-
tioned. Remarkably, many good trial wave functions for the fractional QHE are also
correlation functions of conformal field theory (CFT) and integrable models [7], al-
though this relation is not fully understood. The possibility to identify the certain
fields such as the currents with the electron arises from the fact that their opera-
tor product expansions are polynomial, a property obeyed by the wave functions
when electrons approach each other. In some sense, the short distance properties
combined with minimal degree constraints arising from incompressibility control
the structure of the theory. Another mysterious aspect is that the quasiparticles
of the Hall effect carry a fractional charge, as if an electron breaks up into pieces.
A very similar phenomenon occurs in CFT where the current can be obtained as
the short distance expansion of other fields. In the study of the XXZ spin chain,
the magnon is known to break up into two spinons. This leads to a rich variety of
phenomena which can be studied by exact methods. J.M. Maillet explains these
aspects in his contribution to this book.

The non-commutative geometrical aspects that occupy us here are preemi-
nent in the fractional QHE when the lowest Landau level is partially filled. A great
simplification and a source of richness comes from the Lowest Landau Level (LLL)
projection. When the energy scales involved are small compared to the cyclotron

1Horst L. Störmer, Daniel C. Tsui. Robert B. Laughlin, in 1998.
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gap, one can study the dynamics by restricting it to the LLL. As a consequence of
this drastic reduction of the degrees of freedom, the two coordinates of the plane
obey the same commutation relations as the position and the momentum in quan-
tum mechanics. The electron is therefore not a point-like particle anymore and
can at best be localized at the scale of the magnetic length.

In a series of experiments [20, 21], it was realized that the electron behaves
as a neutral particle when the filling factor is exactly 1/2 [13]. We shall present an
image of the ν = 1/2 state where electrons are dressed by a companion charge of
the opposite sign. When the filling factor is 1/2, the two charges conspire to make
a neutral bound state with the structure of a dipole [17]. It is this very specific
experimental situation which we advocate to be a paradigm of non-commutative
geometry [23]. We hope to convince the reader that it is deeply connected to the
non-commutative field theory aspects developed by V. Rivasseau in this book. We
present our understanding of the theory, being conscious that it cannot be the
complete story.

We also review the example of the Skyrmion [31] which consists of the non-
commutative analogue of the nonlinear sigma model solitons. This gives an exactly
solvable model where the classical concept of the winding number has a quantum
counterpart which is simply the electric charge of the soliton. This gives a physical
application for the non-commutative geometry developed by A. Connes [37]. In
particular, the topological invariant which measures the winding number has a non-
commutative analogue which evaluates the electric charge of the Skyrmion [33].

A remarkable aspect of the QHE physics is that it becomes a matrix theory.
The study of this theory has suscitated many very interesting works, in particular
in relation with the Chern-Simon theory [8]. These aspects have been extensively
studied by A. Polychronakos [9] who develops them in this book.

2. Lowest Landau level physics

2.1. Single particle in a magnetic field

Let us first recall some basic facts about the motion of a particle in a magnetic
field. We consider a charge q particle in the plane subject to a magnetic field
transverse to the plane.

It is convenient to define the magnetic length l by

l = q−
1
2 . (1)

To simplify the notation, we take units where the magnetic field is equal to q.
We introduce a vector potential A for the magnetic field:

q = ∂xAy − ∂yAx. (2)

The vector potential A is defined up to a gauge transformation A → A + ∇χ.
The action from which the equations of motion of a mass m and charge 1 particle
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(confined to the plane) in presence of the magnetic field Bẑ derive, is given by:

S =
∫ (m

2
ṙ2 − Aṙ

)
dt. (3)

Using the canonical rules, we obtain a Hamiltonian:

H0 =
1

2m
(p + A)2 =

π2

2m
, (4)

where πi = m∂xi/i−Ai is the momentum conjugated to xi; the so-called dynamical
momenta

πx = px + Ax, πy = py + Ay (5)

obey the commutation relations

[πi, πj ] = iqεij , [ri, rj ] = 0, [πi, rj ] = −iδij, (6)

where εij is the antisymmetric tensor εxy = −εyx = 1.
We consider the case where q > 0. If we define creation and annihilation

operators as linear combinations of the two dynamical momenta,

a =

√
1
2
(πx + iπy), a+ =

√
1
2
(πx − iπy), (7)

obeying the Heisenberg relations

[a, a+] = q, (8)

the Hamiltonian is

H0 =
1

2m

(
a+a +

q

2

)
. (9)

Its spectrum is that of an oscillator:

En =
q

2m
(n +

1
2
), (10)

with n ≥ 0. Each energy branch is called a Landau level.
A useful gauge is the so-called symmetric gauge defined by

Ax = −qy

2
, Ay =

qx

2
. (11)

In this gauge

a =
i√
2
(∂z̄ + qz), a+ =

i√
2
(∂z − qz̄), (12)

where we set z = (x + iy)/2, z̄ = (x − iy)/2.
We can define new coordinates Rx, Ry which commute with the dynamical

momenta

Rx =
qx

2
− py, Ry =

qy

2
+ px, (13)

with the commutator given by

[Ri, Rj ] = iqεij, [πi, Rj ] = 0. (14)
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The so-defined coordinates are called guiding centers. The guiding center coordi-
nates can be combined into two oscillators b+ = 1

2 (Rx + iRy), b = Rx − iRy:

2b+ = qz − ∂z̄,
b = qz̄ + ∂z, (15)

obeying

[b, b+] = q. (16)

The lowest Landau level wave functions are obtained upon acting onto the ground
state of (9) with the l power of b+. In this gauge, the angular momentum L =
b+b/q = z∂z is a good quantum number and they carry an angular momentum
L = l. Their expression is

〈z|l〉 = (q1/2z)l/(2πl!)1/2e−qzz̄. (17)

The wave functions are normalized so that 〈l|l′〉 = δll′ . The parameter q has
the dimension of a length−2. By taking its modulus: |〈z|l〉| ∼ rle−qr2

, we see
that a wave function is peaked around circular shells of radius

√
2l/q around the

origin. Thus if we quantize the system in a disk of finite radius R, we recover the
expected degeneracy (18) by keeping only the wave functions confined into the
disk l ≤ l0 = 2R2/q.

If q < 0, the role of the creation and annihilation operators is reversed,
and the lowest Landau level wave functions carry a negative angular momentum
L = −bb+/q = −l and are given by the complex conjugated expression of (17).

The fact that the guiding center coordinates commute with H0 implies that
its spectrum is extremely degenerate. The two coordinates q−1Rx, q−1Ry do not
commute with each other and cannot be fixed simultaneously. There is a quantum
uncertainty ∆Rx∆Ry = q to determine the position of the guiding center. Due
to the uncertainty principle, the physical plane can be thought of as divided into
disjointed cells of area 2π/q where the guiding center can be localized. The degen-
eracy per energy level and per unit area is q

2π so that in an area Ω, the number of
degenerate states is

NΩ =
qΩ
2π

, (18)

so that electrons behave “as if” they acquire some size under a magnetic field, the
area being inversely proportional to the charge q.

In the strong magnetic field limit, one projects the dynamics onto the lowest
Landau level LLL n = 0. In other words, we impose the constraint a|states〉 = 0
and the dynamics is fully controlled by the guiding center coordinates.

2.2. Non-commutative product

Let us show how the non-commutative product on functions arises from the pro-
jection in the LLL. For future convenience, we keep the charge of the particle equal
to q in this section.
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The idea is to transform a function f(x) into a one body operator:
∫

d2x|x〉
f(x)〈x|, and to project this operator in the LLL:

f̂ =
∑
n,m

|n〉
∫
〈n|x〉f(x)〈x|m〉d2x 〈m|, (19)

where n, m are the indices of the LLL orbitals. In this way, we transform a function
into a matrix.

Conversely, using coherent states, a one body operator acting in the LLL
can be transformed into a function. The coherent states |z〉 are the most localized
states in the LLL. They are the adjoint of the state 〈z| defined by 〈z|n〉 = ψn(z)
where ψn(z) are the LLL wave functions (17). They form an overcomplete basis,
and transform a matrix into a function by

f(z, z̄) = 〈z|f̂ |z〉. (20)

To see this work in practice, it is convenient to use the symmetric gauge.
The guiding center coordinates (13) are combined into the oscillators (16) acting
within the LLL. It is convenient to absorb the factor e−qzz̄ in the measure. Thus, we
recover the Bargman–Fock representation of the operators on analytical functions:

b = ∂z, b+ = qz. (21)

The coherent states |ξ〉 are defined as the eigenstates of b: b|ξ〉 = qξ̄|ξ〉. Thus,
their wave function is proportional to

〈z|ξ〉 = eqξ̄z. (22)

The Q-symbol [36] of a one body operator Â acting within the LLL consists in
bracketing it between coherent states:

a(z, z̄) = 〈z|Â|z〉/ρ. (23)

In particular one has

eiPX = ei(p̄z+pz̄) = 〈z|ei p̄b+

q ei pb
q |z〉. (24)

Therefore, the Q-symbol induces a non-commutative product on functions which
we denote by ∗:

a ∗ b = 〈z|ÂB̂|z〉. (25)

If we apply this to plane waves, we obtain the product

eiPXeiRX = e−
P.R

q ei P∧R
q ei(P+R)X . (26)

This algebra is known as the magnetic translation algebra [18] and plays an im-
portant role in the theory of the QHE. We shall see next that it originates from
the fact that the coordinate X has a dipolar structure.

In the limit q → ∞, the ∗-product coincides with the ordinary product. Using
(24) one can evaluate the first-order correction to the ordinary product given by

a ∗ b = ab +
1
q
∂z̄a∂zb + O(

1
q2

). (27)
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It is straightforward to establish the following dictionary between the com-
mutative space and non-commutative LLL projected space:

1
π

∫
. d2x → 1

q
Tr ., ∂z. → q[b, .], ∂z̄. → −q[b+, .] (28)

where Tr now stands for the trace of the matrix in the LLL Hilbert space.

3. Interactions

3.1. Spring in a magnetic field

Let us first consider a simple model for particles in interaction. A pair of particles
of opposite charge ±q is coupled by a spring. In the Landau gauge:

Ax = 0, Ay = x, (29)

their dynamics follows the Lagrangian

L = (x1ẏ1 − x2ẏ2) − k/2((x1 − x2)2 + (y1 − y2)2), (30)

where we have have taken the strong B field limit which enables to neglect the
masses of the particles. The Hamiltonian is therefore:

H =
k

2
((x1 − x2)2 + (y1 − y2)2) = P 2/2k. (31)

Its eigenstates are simply plane waves:

ΨP (X) = eiP.X , (32)

with X the center of mass coordinates. The magnetic translation commutations
(26) arise because the plane waves are extended bound states and not point par-
ticles as we have seen on this simple example.

The momentum �P and the relative coordinate are then related by −PX =
y1 − y2, PY = x1 − x2 so that the bound state behaves as a neutral dipole with
a dipole vector perpendicular and proportional to its momentum. Note that since
the strength k of the spring enters the Hamiltonian (31) as a normalization factor
the wave function (32) which describes the two charges is independent of k.

It is a general fact, that if the spring is replaced by a rotation invariant po-
tential V (r), one can refine the preceding approach to show that the wave function
of the bound state is independent of the potential. To see it we need to consider
the problem of the particle and the hole interacting in their respective LLL.

We mention that the recent developments in non-commutative string theory
have the same origin. Indeed, one of the fundamental fields of string theory called
the B field is the exact analogue of the magnetic field. When this field acquires an
expectation value, the open strings behave very much like a spring in an external
magnetic field [38].
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3.2. Structure of the bound state

It is instructive to consider the dynamics of two particles within the lowest Landau
level. The two particles interact through a potential V (x1−x2) which is supposed
to be both translation and rotation invariant. In a physical situation the potential
is the Coulomb interaction between the electrons, but it can in principle be any
potential. For reasons that will become clear in the text we consider particles with
a charge respectively equal to q1 and q2. Our aim is to show that the properties of
the dynamics are independent of the detailed shape of the potential. More precisely,
the potential interaction is a two-body operator which can be projected into the
lowest Landau level. The projection consists in replacing the coordinates, x1, x2,
with the guiding center coordinates, R1, R2. After the projection is taken, the
potential becomes an operator which is the effective Hamiltonian for the lowest
Landau level dynamics. Using a simple invariance argument, we can see that the
eigenstates of the potential do not depend on it, as long as it is invariant under
the isometries of the plane. In other words, the two-body wave functions of the
Hall effect are independent of the interactions. The case of the spring studied in
the preceding section corresponds to q1 = −q2.

The guiding center coordinates for a particle of charge q > 0 and the angular
momentum, L = b+b

q , generate a central extension of the algebra of the isometries
of the plane:

[b, b+] = q, [L, b+] = b+, [L, b] = −b. (33)

This algebra commutes with the Hamiltonian H , and therefore acts within the
lowest Landau level. It plays a role similar to the angular momentum in quantum
mechanics, and the operators b, b+, L are the analoga of the angular momentum
operators J−, J+, Jz. (Indeed, the wave functions can be obtained by taking the
limit J → ∞, Jz finite, called contraction, from the wave functions on the sphere
in presence of a monopole field.) The Landau level index n plays the same role as
the representation index j in the rotation group, and it can be recovered as the
eigenvalue of a Casimir operator: C = 2b+b/q + L. The states within each Landau
level can be labeled by their angular momentum m ≤ n.

When two particles of positive charge q1 and q2 are restricted to their respec-
tive lowest Landau level and interact through a translation and rotation invariant
potential, we can form the operators b+ = b+

1 + b+
2 , b = b1 + b2 and the total angu-

lar momentum L = L1 + L2. Since the normalization (13) is such that these sums
are proportional to the total momentum, the interaction potential commutes with
these operators. They obey the commutation relations of the algebra (33) with
the charge q = q1 + q2. Thus, as for the angular momentum, a product of two
representations decomposes into representations of the isometry of the plane (33).
As a result, the bound state structure is given by Clebsch-Gordan coefficients and
does not depend on the potential.

A first physically interesting case is when the two charges are equal to the
electron charge (q1 = q2 = 1). It is easy to verify that each representation is
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constructed from a generating state annihilated by b: (b+
1 − b+

2 )n|0〉, and the value
of the Casimir operator is C = n. The corresponding wave functions are:

Ψn(z1, z2) = (z1 − z2)n, (34)

an expression that plays an important role in the theory of the fractional Hall
effect. The potential being invariant under the displacements, it is a number Vn in
each representation. Conversely, the Vn are all the information about the potential
that is retained by the lowest Landau level physics. The numbers Vn are called
pseudopotentials, and turn out to be fundamental to characterize the different
phases of the fractional Hall effect (see the contribution of D. Haldane in [1]).

The other case is when the two particles have charges with opposite signs,
q1 > 0 and q2 < 0, |q2| < q1. Because of the sign of the second charge, b+

2 and
b2 become respectively annihilation and creation operators and the lowest Landau
level wave functions are polynomials in z̄2 instead of z2. For a negative charge,
after we factorize the exponential eqz̄z , the expressions of the oscillators (21) are

b = 2qz̄, b+ =
1
2
∂z̄ . (35)

The same analysis can be repeated, but now the Casimir operator has a
negative value n exactly as for the Landau levels. The physical interpretation is
that a couple of charges with opposite sign behave exactly like a bound state of
charge q∗ = q1 − |q2|. The wave functions are independent of the potential. They
organize into higher Landau levels within the lowest Landau level.

In particular, the states annihilated by b = b1 + b2 have the wave function

Ψn(z1, z̄2) = z̄n
2 exp(−2q2z1z̄2). (36)

They are the nth Landau level’s wave functions with the smallest possible angular
momentum L = −n. By taking the modulus of these wave functions, we see that
in presence of these bound states the space is divided into circular sectors of area
2π/q∗ each.

In the case where the two charges have the same magnitude q1 = −q2 = q,
we recover the plane waves of the last section:

Ψp(z1, z̄2) = exp (2qz1z̄2 + ip̄(z1 + z2) + ip(z̄1 + z̄2)). (37)

3.3. Bosons at ν = 1
Let us indicate how a scenario involving these composite particles enables to ap-
prehend the QHE plateaux in the region of a magnetic field around ν0 = 1/2. To
further simplify, consider bosonic particles interacting repulsively in a magnetic
field at a filling factor ν = 1. Although both problems first look different, they are
essentially the same.

The LLL particles interact with a repulsive potential V (�x− �y). After projec-
tion the Hamiltonian takes the form

H = 1/2
∫

ρ(�x) V (�x − �y) ρ(�y) d2x d2y (38)
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where ρ(�x) is the projected density operator. The projection relates a field ρ(�x) to
a matrix ρ̂ as we saw earlier, therefore this is a problem of matrix quantum me-
chanics. Let us be as schematic as possible and consider a local repulsive potential:

H = 1/2
∫

ρ(�x)2d2x. (39)

Since the density is an operator, the Hamiltonian is not trivially diagonal as it
would be in the absence of a magnetic field.

If we use the matrix formulation, we introduce N by N matrices Mij for the
density operator ρ. The commutation relations of the matrix elements are given by

[Mij , Mkl] = δjkMil − δilMkj , (40)

and one recognizes the GL(N) commutation relations; this algebra is trivially
realized by the matrix units Mij = |i〉〈j|.

We can as well decompose the field ρ(x) into plane waves: ρ(x) =
∑

�k eikxρk.
The matrix-plane waves êikx obey the magnetic translation relations (26). To give
their matrix expression, it is convenient to introduce the matrices U, V defined by
U |i〉 = e

2iπ
N |i〉 and V |i〉 = |i + 1〉. By choosing a normal ordering convention, one

has êikx = Uk1V k2 . The decomposition of the density operator M on the density
Fourier modes is given by M =

∑
k ρkêikx. Substituting this expression into (40),

we see again that the modes ρk obey the magnetic translation algebra (and do not
commute as in the case where there is no field).

The constraint that the filling factor is equal to one is realized by

N̂ |state〉 = N, (41)

where N̂ = TrM is the number operator.
We can find a representation of the algebra (40) given by: Mij = a+

i aj , where
the operators a+

i creates a LLL particle in the orbital i, with 1 ≤ i ≤ N . In the
bosonic case we want to diagonalize the Hamiltonian (39) in the space containing
exactly N bosons. The dimension of the Hilbert space is very large, and there is
no good approximation scheme available.

If the commutation relations of ai, a+
i are fermionic, however, there is a

unique state obeying the constraint (41) given by a+
1 . . . a+

n |0〉, and the ground
state is trivially the full Slater determinant of the LLL orbitals. Its wave function
is the Vandermonde determinant of the variables zi.

If we proceed naively and replace the interaction ρ(�x)2 by the star product:
ρ(�x) ∗ ρ(�x), the Hamiltonian (39) becomes

H = TrM2, (42)

which is a Casimir operator of the algebra (40). Thus, in the bosonic case, it is
constant and equal to N̂(N̂ + N − 1) which is equal to (2N − 1)N in the subspace
obeying the constraint (41).
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To find an approximation scheme for the ground state of (39), the approach
proposed in [23], developed in [24–27] is to build the theory of these particles on
top of the ground state having the opposite statistics. The “composite” particle is
made of the original particle and a “hole” in the ground state.

The ground state is filled with bound-states introduced above made of an
electron of charge 1, and a hole in a ground state filled with charges −q. The
charge of the bound state is thus q∗, with

q∗ = 1 − q. (43)

To obtain the values of the filling factor that give rise to a Hall effect, we
use the fact that for a fixed magnetic field and a fixed density, the proportionality
relation between the charge and the filling factor is given by

charge ∝ 1
filling factor

. (44)

When the magnetic field is varied, we take as a postulate that the charge q adjusts
itself so that the filling factor of the ground state of the q charge is always equal
to 1. Thus, q ∝ 1. An integer quantum Hall effect will develop when the filling
factor of the bound state is an integer p. So, when q∗ ∝ 1/p. We can recover
the normalization coefficient through the relation between the filling factor of the
electrons and their charge: 1 ∝ 1/ν. Substituting these relations in (43) we obtain
the following expression for the filling factors giving rise to a Hall effect:

1
ν

= 1 +
1
p
. (45)

We can represent the composite particles by fermionic rectangular matrices
Ψαi, Ψ+

iα where i labels the lowest Landau level orbitals of a charge 1 particle and
α labels the lowest Landau level orbitals of a charge q particle. Thus, Ψ+

iα creates
particles in the orbitals i and a hole in the orbital α. They obey the commutation
relations

{Ψ+
iα, Ψβj} = δijδαβ . (46)

The density operators M ′
ij for the charge 1 particle and M ′′

αβ for the charge q
particle can be represented as

M ′
ij = Ψ+

iαΨαj , M ′′
αβ = ΨαiΨ+

iβ , (47)

and it is straightforward to see that they obey the GL(N ′)×GL(N) commutation
relations.

We can then convert these matrices into functions ρ′(x) and ρ′′(x), which
represent the particle and the hole density respectively. The total density is the sum
of both: ρ = ρ′+ρ′′. The dynamics is obtained by substituting these representations
in the Hamiltonian (39).
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At ν = 1 exactly, Ψ is a neutral fermionic bound state. In this limit, the
density is approximated by

ρ(�x) =: {Ψ+�, Ψ}(x) :≈ �∇× Ψ+i�∇Ψ(x) (48)

The anticommutator originates from the fact that we add the two contributions ρb

and ρf treating the pairs as composite particles. As a result, the dominant term
in a gradient expansion is the right-hand side of this equality.

The Hamiltonian (39) can be expressed in terms of these operators to obtain
an effective description in terms of neutral dipolar particles.

The theory can be adapted to the ν = 1/2 fermionic case relevant for the
QHE. The background charge adjusts so that its filling factor is 1/2, and the
filling factors are given by 1

ν = 2 + 1
p . These filling factors are those predicted by

Jain [10], and fit well with the Hall effect observed at ν = 3/7, 4/9, 5/11, 6/13.
In the region, close to ν = 1/2, the quasiparticles have practically zero charge,
and therefore see a weak magnetic field. They behave very much like a neutral
Fermi liquid in agreement with several experiments [20]. One of them measures
directly the charge q∗ of the quasiparticles through the cyclotron radius of their
trajectory [29]. At ν = 1/2 exactly, the quasiparticles are neutral dipoles with a
dipole size of the order of the magnetic length. The main difficulty for the theory
is that the separation between two dipoles is of the same order as their size, and
this is therefore a strong interaction problem. It would be extremely interesting if
the new developments in NCFT [6] can help to make progress in this theory.

4. Skyrmion and nonlinear σ-model

As another application, we review the Skyrmion of the Hall effect [31] which relates
the topological charge of the classical soliton to the electric charge of the quantum
state. In a given topological sector, the solitons which minimize the action are in
one-to-one correspondence with the degenerate eigenstates of a quantum Hamil-
tonian in the same charge sector. Moreover in both cases, the energy is equal to
the modulus of the charge.

Belavin and Polyakov [32] have considered the classical solutions of the two-
dimensional nonlinear σ-model on the sphere S2. The field configurations �n(x, y)
can be characterized by their stereographic projection on the complex plane w(x,y).
One requires that the spin points in the x direction at infinity, or equivalently
w(∞) = 1. The minima of the action are rational fractions of z = x + iy:
w(z) = f(z)/g(z). The soliton’s winding number and its classical action are both
given by the degree k of the polynomials f, g. The soliton is thus determined by
the positions where the spin points to the south and the north pole given by the
zeros of f and g.

In quantum mechanics, the wave function for a spin 1/2 particle constrained
to the Lowest Landau Level (LLL) is fully determined by the positions where
the spin is up or down with probability one. Up to an exponential term, the two
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components of this wave function are polynomials in z vanishing at the positions
where the spin is respectively up and down. The wave functions:

〈z1, . . . , zNe |Φ〉 =
Ne∏
i=1

(f(zi) ↑ +g(zi) ↓)
∏
i<j

(zi − zj)m (49)

have been considered (for m = 1) by MacDonald, Fertig and Brey [34] in the Hall
effect context. They represent the ground states of spin 1/2 particles at a filling
fraction close to 1/m. We show that the correspondence with the nonlinear σ-model
can be made precise in the case m = 1. One has the following correspondence table:

∫
(�∇�n)2d2x

∑
i<j δ(2)(�xi − �xj)

�n(�x) |Φ〉 a Slater determinant

winding number electric charge

4.1. Non-commutative Belavin–Polyakov soliton

Let us show that the Skyrmion is the exact non-commutative analogue of the
Belavin–Polyakov soliton [33].

A point on the sphere S2 is a unit vector �n(�x) with which we construct the
projector p(�x) = (1 + �n�σ)/2. p is a two by two rank one hermitian projector
p2 = p, p+ = p, and the action for the nonlinear σ-model takes the form:

S =
1
π

∫
tr ∂zp ∂zp d2x. (50)

To obtain the solitons which minimize the action let us substitute ∂zp
2 for ∂zp to

rewrite the integrand as tr p(∂zp ∂zp + ∂z̄p ∂zp) and add to (50) the topological
term

K =
1
π

∫
tr p(∂zp ∂zp − ∂z̄p ∂zp) d2x (51)

so that the sum takes the form

S′ = S + K =
2
π

∫
tr (p ∂zp)+(p ∂zp) d2x. (52)

(52) is positive and the solutions with S′ = 0 must obey p∂zp = 0. If we parameter-
ize p by a unitary vector v, v+v = 1, p = vv+, it is solved for v = N−1(f(z), g(z))
where f, g are holomorphic functions and N =

√
|f |2 + |g|2. If one requires that

p(∞) = (1 + σx)/2, f and g are polynomials with the same highest coefficient
zk. The integrand of K is the field strength of the gauge potential ω = −v+dv/2i
which goes to a pure gauge far from soliton. The topological term is therefore given
by the contour integral of ω at infinity equal to −k and thus S = k.

The quantum analogous problem we consider here consists of finding the
degenerate ground states of electrons interacting by a δ repulsive potential in the
lowest Landau level (LLL). The electrons are confined in a finite disc thread by Nφ

magnetic fluxes. When the number of electrons Ne differs from Nφ by an integer



14 V. Pasquier

equal to the winding number k the quantum eigenstates coincide with the classical
solitonic field configurations if the scale of variation of the soliton is large compared
to the magnetic length.

The second quantized field that annihilates (creates) an electron with a spin
σ at position �x in the LLL can be constructed in terms of the fermionic operators
clσ (c+

lσ) which annihilate (create) an electron in the lth orbital:

Ψσ(�x) =
∑

l

〈z|l〉clσ. (53)

In terms of this field, the total number of electrons in the LLL is Ne =∫ ∑
σ Ψ+

σ Ψσ(�x) d2x. The charge of the Skyrmion is the difference between the
number of magnetic fluxes Nφ and the number of electrons Ne: Qs = Nφ − Ne.
In other words, it is the number of electrons added or subtracted to the system
starting from a situation where the filling factor ν = Ne/Nφ is exactly one. In the
following we consider the limit Nφ, Ne = ∞ keeping the charge Qs fixed.

In [34], it was observed that the zero energy states of the hard-core model
Hamiltonian could be completely determined. We consider a closely related short
range repulsive Hamiltonian invariant under a particle hole transformation Ψ →
Ψ+ and such that the energy of its ground state coincides with the charge. It is
given by

H =
1
ρ

∫
(Ψ+

↑ Ψ↑ − Ψ↓Ψ+
↓ )2(�x) d2x =

2
ρ

∫
(Ψ↑Ψ↓)+(Ψ↑Ψ↓)(�x) d2x + Qs (54)

where we have used the fact that {Ψσ(�x), Ψ+
σ′(�x)} = ρδσσ′ to obtain the second

equality. Let us for simplicity consider the case where Qs > 0, the other case can be
reached using a particle hole transformation. This Hamiltonian is clearly bounded
from below by Qs and the exact eigenstates with energy Qs are obtained for states
|Φ〉 such that Ψ↑(�x)Ψ↓(�x)|Φ〉 = 0. In such a state two electrons never occupy the
same position and the wave function is blind to the short range potential. This
property is precisely guaranteed by the factor

∏
i<j(zi − zj) in (49).

The states (49) carry a charge Qs = k where k is the degree of the polynomials
f and g. They are Slater determinants:

〈z1, . . . , zNe |Φ〉 =
Ne∧
1

(f(zi) ↑ +g(zi) ↓)〈zi|l̃〉 (55)

where 〈z|l̃〉 is basis of orthogonal polynomials for the scalar product:

〈φ|φ′〉 =
∫

φ̄(z̄)φ′(z)e−qz̄z(|f |2 + |g|2)d2x. (56)

A Slater determinant is fully determined by the matrix expectation value:

〈z|P̂ |z〉 = ρp = 〈Φ|,
(

Ψ+
↓ Ψ↓ Ψ+

↑ Ψ↓
Ψ+

↓ Ψ↑ Ψ+
↑ Ψ↑

)
|Φ〉 (57)
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and P̂ is a projector, P̂ 2 = P̂ . In the case of (55) we can obtain P̂ explicitly as
follows. The states |vl〉 = (f(b+) ↑ +g(b+) ↓)|l̃〉 can be organized into a vector
V =

∑
l |vl〉〈l|. By construction, V +V = Id, so that V V + = P̂ , where P̂ is the

projector with Q-symbol p.
To relate the Skyrmion to the classical σ-model, let us evaluate the energy

of a Slater determinant |Φ〉 using the Wick theorem:

〈Φ|H |Φ〉 = ρ

∫
(2det p − tr p + 1) d2x. (58)

In the expression above, the determinant is evaluated using the ordinary product.
Suppose we replace it with the ∗-product in (58). Using the fact that p∗p = p one
verifies that the integrand rewrites (tr p−1)∗(tr p−1). Since tr(p−1) is O(ρ−1), the
∗-square is O(ρ−2) and does not contribute to the energy when ρ → ∞. Therefore,
the limiting value of (58) is given by the modification induced by the ordinary
product at first-order in ρ−1. One obtains from (27):

〈Φ|H |Φ〉 =
1
π

∫
tr ∂zp ∂zp d2x + O(1/ρ) (59)

which is the value of the action (50) and establishes the correspondence between
the classical and the quantum problems.

Although the classical action (50) can be obtained straightforwardly from
the energy (58) in the limit ρ → ∞, the topological term (51) cannot be related
so directly to the charge of the Skyrmion. Nevertheless it is possible to define the
topological term at the quantum level and to verify that it coincides with the
charge in the present case. For this we need to make the substitutions (28) in (51):

p → P̂ ,
1
π

∫
. d2x → 1

q
Tr ., ∂z. → q[b, .], ∂z̄. → −q[b+, .] . (60)

The modified expression of K (51) still defines a topological invariant which is a
non-commutative analogue of K [37] to which it reduces in the limit ρ → ∞. It
can be defined for projectors P̂ which do not have a classical limit p. The easiest
way to realize a charge −k configuration consists in expelling k electrons from the
first l < k angular momentum orbitals in the ν = 1 filled LLL. (Here the spin
can be kept fixed and plays no essential role.) The projector which characterizes
this configuration is P̂ =

∑
l≥k |l〉〈l|, equivalently V = b+kN−1 =

∑
l |l + k〉〈l|.

Using the quantum expression one can easily verify that the topological invariant
is equal to the charge K = −k.
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Non-commutative Renormalization

Vincent Rivasseau

Abstract. A new version of scale analysis and renormalization theory has been
found on the non-commutative Moyal space. It could be useful for physics be-
yond the standard model or for standard physics in strong external fields. The
good news is that quantum field theory is better behaved on non-commutative
than on ordinary space: indeed it has no Landau ghost. We review this rapidly
growing subject.

1. Introduction

The world as we know it today is made of about 61 different scales if we use
powers of ten1. Indeed there is a fundamental length obtained by combining the
three fundamental constants of physics, Newton’s gravitation constant G, Planck’s
constant � and the speed of light c. It is the Planck length �P =

√
�G/c3, whose

value is about 1.6 · 10−35 meters. Below this length ordinary space-time almost
certainly has to be quantized, so that the very notion of scale might be modified.
But there is also a maximal observable scale or “horizon” in the universe, not for
fundamental but for practical reasons. The current distance from the Earth to the
edge of the visible universe is about 46 billion light-years in any direction2. This
translates into a comoving radius of the visible universe of about 4.4·1026 meters, or
more fundamentally 2.7 ·1061 Planck lengths. Although we do not observe galaxies
that far away, the WMAP data indicate that the universe is really at least 80%
that big [1]. The geometric mean between the size of the (observable) universe

1Or of about 140 e-folds if we want to avoid any parochialism due to our ten fingers. What is
important is to measure distances on a logarithmic scale.
2The age of the universe is only about 13.7 billion years, so one could believe the observable
radius would be 13.7 billion light years. This gives already a correct order of magnitude, but
in our expanding universe space-time is actually curved so that distances have to be measured
in comoving coordinates. The light emitted by matter shortly after the big-bang, that is to say
about 13.7 billion years ago, which is reaching us now corresponds to a present distance of that
matter to us that has almost trippled, see http://en.wikipedia.org/wiki/Observable universe.
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and the Planck’s length stands therefore around 10−4 meters, about the size of an
(arguably very small) ant. In [2], we proposed to call this the “antropic principle”.

Among the roughly sixty scales of the universe, only about ten to eleven were
relatively well known to ancient Greeks and Romans two thousand years ago. We
have now at least some knowledge of the 45 largest scales from 2 · 10−19 meters
(roughly speaking the scale of 1 Tev, observable at the largest particle colliders
on earth) up to the size of the universe. This means that we know about three
fourths of all scales. But the sixteen scales between 2 ·10−19 meters and the Planck
length form the last true terra incognita of physics. Note that this year the LHC
accelerator at Cern with maximum energy of about 10 Tev should start opening
a window into a new power of ten. But that truly special treat also will mark the
end of an era. The next fifteen scales between 2 · 10−20 meters and the Planck
length may remain largely out of direct reach in the foreseeable future, except for
the glimpses which are expected to come from the study of very energetic but rare
cosmic rays. Just as the Palomar mountain telescope remained the largest in the
world for almost fifty years, we expect the LHC to remain the machine with highest
energy for a rather long time until truly new technologies emerge3. Therefore we
should try to satisfy our understandable curiosity about the terra incognita in
the coming decades through more and more sophisticated indirect analysis. Here
theoretical and mathematical physics have a large part to play because they will
help us to better compare and recoup many indirect observations, most of them
probably coming from astrophysics and cosmology, and to make better educated
guesses.

I would like now to argue both that quantum field theory and renormalization
are some of the best tools at our disposal for such educated guesses, but also that
very likely we shall also need some generalization of these concepts.

Quantum field theory or QFT provides a quantum description of particles
and interactions which is compatible with special relativity [3–6]. It is certainly
essential because it lies right at the frontier of the terra incognita. It is the accurate
formalism at the shortest distances we know, between roughly the atomic scale of
10−10 meters, at which relativistic corrections to quantum mechanics start playing
a significant role4, up to the last known scale of a Tev or 2 ·10−19 meters. Over the
years it has evolved into the standard model which explains in great detail most
experiments in particle physics and is contradicted by none. But it suffers from
at least two flaws. First it is not yet compatible with general relativity, that is
Einstein’s theory of gravitation. Second, the standard model incorporates so many
different fermionic matter fields coupled by bosonic gauge fields that it seems more
some kind of new Mendeleyev table than a fundamental theory. For these two
reasons QFT and the standard model are not supposed to remain valid without

3New colliders such as the planned linear e+- e− international collider might be built soon. They
will be very useful and cleaner than the LHC, but they should remain for a long time with lower
total energy.
4For instance quantum electrodynamics explains the Lamb shift in the hydrogen atom spectrum.
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any changes until the Planck length where gravitation should be quantized. They
could in fact become inaccurate much before that scale.

What about renormalization? Nowadays renormalization is considered the
heart of QFT, and even much more [7–9]. But initially renormalization was little
more than a trick, a quick fix to remove the divergences that plagued the compu-
tations of quantum electrodynamics. These divergences were due to summations
over exchanges of virtual particles with high momenta. Early renormalization the-
ory succeeded in hiding these divergences into unobservable bare parameters of
the theory. In this way the physical quantities, when expressed in terms of the
renormalized parameters at observable scales, no longer showed any divergences.
Mathematicians were especially scornful. But many physicists also were not fully
satisfied. F. Dyson, one of the founding fathers of that early theory, once told me:
“We believed renormalization would not last more than six months, just the time
for us to invent something better. . . ”

Surprisingly, renormalization survived and prospered. In the mid 1950s Lan-
dau and others found a key difficulty, called the Landau ghost or triviality prob-
lem, which plagued simple renormalizable QFT such as the φ4

4 theory or quan-
tum electrodynamics. Roughly speaking Landau showed that the infinities sup-
posedly taken out by renormalization were still there, because the bare coupling
corresponding to a nonzero renormalized coupling became infinite at a very small
but finite scale. Although his argument was not mathematically fully rigorous,
many physicists proclaimed QFT and renormalization dead and looked for a bet-
ter theory. But in the early 1970s, against all odds, they both made a spectacu-
lar comeback. As a double consequence of better experiments but also of better
computations, quantum electrodynamics was demoted of its possibly fundamental
status and incorporated into the larger electroweak theory of Glashow, Weinberg
and Salam. This electroweak theory is still a QFT but with a non-abelian gauge
symmetry. Motivated by this work ’t Hooft and Veltman proved that renormaliza-
tion could be extended to non-abelian gauge theories [10]. This difficult technical
feat used the new technique of dimensional renormalization to better respect the
gauge symmetry. The next and key step was the extraordinary discovery that such
non-abelian gauge theories no longer have any Landau ghost. This was done first
by ’t Hooft in some unpublished work, then by D. Gross, H.D. Politzer and F.
Wilczek [11,12]. D. Gross and F. Wilczek then used this discovery to convincingly
formulate a non-abelian gauge theory of strong interactions [13], the ones which
govern nuclear forces, which they called quantum chromodynamics. Remark that
in every key aspect of this striking recovery, renormalization was no longer some
kind of trick. It took a life of its own.

But as spectacular as this story might be, something even more important
happened to renormalization around that time. In the hands of K. Wilson [14] and
others, renormalization theory went out of its QFT cradle. Its scope expanded con-
siderably. Under the alas unfortunate name of renormalization group (RG), it was
recognized as the right mathematical technique to move through the different scales
of physics. More precisely, over the years it became a completely general paradigm
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to study changes of scale, whether the relevant physical phenomena are classical
or quantum, and whether they are deterministic or statistical. This encompasses
in particular the full Boltzmann program to deduce thermodynamics from sta-
tistical mechanics and potentially much more. In the hands of Wilson, Kadanoff,
Fisher and followers, RG allowed to much better understand phase transitions in
statistical mechanics, in particular the universality of critical exponents [15]. The
fundamental observation of K. Wilson was that the change from bare to renormal-
ized actions is too complex a phenomenon to be described in a single step. Just
like the trajectory of a complicated dynamical system, it must be studied step by
step through a local evolution equation. To summarize, do not jump over many
scales at once!

Let us make a comparison between renormalization and geometry. To describe
a manifold, one needs a covering set of maps or atlas with crucial transition regions
which must appear on different maps and which are glued through transition
functions. One can then describe more complicated objects, such as bundles over
a base manifold, through connections which allow to parallel transport objects in
the fibers when one moves over the base.

Renormalization theory is both somewhat similar and somewhat different. It
is some kind of geometry with a very sophisticated infinite-dimensional“bundle”
part which loosely speaking describes the effective actions. These actions flow in
some infinite-dimensional functional space. But at least until now the “base” part
is quite trivial: it is a simple one-dimensional positive real axis, better viewed in
fact as a full real axis if we use logarithmic scales. We have indeed both positive
and negative scales around a reference scale of observation. The negative or small
spatial scales are called ultraviolet and the positive or large ones are called infrared
in reference to the origin of the theory in electrodynamics. An elementary step from
one scale to the next is called a renormalization group step. K. Wilson understood
that there is an analogy between this step and the elementary evolution step of a
dynamical system. This analogy allowed him to bring the techniques of classical
dynamical systems into renormalization theory. One can say that he was able to
see the classical structure hidden in QFT.

Working in the direction opposite to K. Wilson, G. Gallavotti and collab-
orators were able to see the quantum field theory structure hidden in classical
dynamics. For instance they understood secular averages in celestial mechanics
as a kind of renormalization [16, 17]. In classical mechanics, small denominators
play the role of high frequencies or ultraviolet divergences in ordinary RG. The
interesting physics consists in studying the long time behavior of the classical tra-
jectories, which is the analog of the infrared or large distance effects in statistical
mechanics.

At first sight the classical structure discovered by Wilson in QFT and the
quantum structure discovered by Gallavotti and collaborators in classical mechan-
ics are both surprising because classical and QFT perturbation theories look very
different. Classical perturbation theory, like the inductive solution of any determin-
istic equation, is indexed by trees, whether QFT perturbation theory is indexed
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by more complicated “Feynman graphs”, which contain the famous “loops” of
anti-particles responsible for the ultraviolet divergences5. But the classical trees
hidden inside QFT were revealed in many steps, starting with Zimmermann (who
called them forests. . . ) [18] through Gallavotti and many others, until Kreimer
and Connes viewed them as generators of Hopf algebras [19–21]. Roughly speak-
ing the trees were hidden because they are not just subgraphs of the Feynman
graphs. They picture abstract inclusion relations of the short distance connected
components of the graph within the bigger components at larger scales. Gallavotti
and collaborators understood why there is a structure on the trees which index the
classical Poincaré-Lindstedt perturbation series similar to Zimmermann’s forests
in quantum field perturbation theory6.

Let us make an additional remark which points to another fundamental simi-
larity between renormalization group flow and time evolution. Both seem naturally
oriented flows. Microscopic laws are expected to determine macroscopic laws, not
the converse. Time runs from past to future and entropy increases rather than
decreases. This is philosophically at the heart of standard determinism. A key
feature of Wilson’s RG is to have defined in a mathematically precise way which
short scale information should be forgotten through coarse graining: it is the part
corresponding to the irrelevant operators in the action. But coarse graining is also
fundamental for the second law in statistical mechanics, which is the only law in
classical physics which is “oriented in time” and also the one which can be only
understood in terms of change of scales.

Whether this arrow common to RG and to time evolution is of a cosmological
origin remains to be further investigated. We remark here simply that in the
distant past the big bang has to be explored and understood on a logarithmic
time scale. At the beginning of our universe important physics is the one at very
short distance. As time passes and the universe evolves, physics at longer distances,
lower temperatures and lower momenta becomes literally visible. Hence the history
of the universe itself can be summarized as a giant unfolding of the renormalization
group.

This unfolding can then be specialized into many different technical versions
depending on the particular physical context, and the particular problem at hand.
RG has the potential to provide microscopic explanations for many phenomenolog-
ical theories. Hence it remains today a very active subject, with several important
new brands developed in the two last decades at various levels of physical precision
and of mathematical rigor.
To name just a few of these brands:

– the RG around extended singularities governs the quantum behavior of con-
densed matter [23–25]. It should also govern the propagation of wave fronts
and the long-distance scattering of particles in Minkowski space. Extended

5Remember that one can interpret antiparticles as going backwards in time.
6In addition Gallavotti also remarked that antimatter loops in Feynman graphs can just be erased
by an appropriate choice of non-Hermitian field interactions [22].
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singularities alter dramatically the behavior of the renormalization group.
For instance because the dimension of the extended singularity of the Fermi
surface equals that of the space itself minus one, hence that of space-time
minus two, local quartic fermionic interactions in condensed matter in any
dimension have the same power counting than two-dimensional fermionic
field theories. This means that condensed matter in any dimension is similar
to just renormalizable field theory. Among the main consequences, there is
no critical mean field dimension in condensed matter except at infinity, but
there is a rigorous way to handle non-perturbative phase transitions such
as the BCS formation of superconducting pairs through a dynamical 1/N
expansion [26].

– the RG trajectories in dimension 2 between conformal theories with differ-
ent central charges have been pioneered in [27]. Here the theory is less ad-
vanced, but again the c-theorem is a very tantalizing analog of Boltzmann’s
H-theorem.

– the functional RG of [28] governs the behavior of many disordered systems.
It might have wide applications from spin glasses to surfaces.

Let us return to our desire to glimpse into the terra incognita from currently known
physics. We are in the uncomfortable situation of salmons returning to their birth-
place, since we are trying to run against the RG flow. Many different bare actions
lead to the same effective physics, so that we may be lost in a maze. However the
region of terra incognita closest to us is still far from the Planck scale. In that
region we can expect that any non-renormalizable terms in the action generated
at the Planck scale have been washed out by the RG flow and renormalizable
theories should still dominate physics. Hence renormalizability remains a guiding
principle to lead us into the maze of speculations at the entrance of terra incognita.
Of course we should also be alert and ready to incorporate possible modifications
of QFT as we progress towards the Planck scale, since we know that quantization
of gravity at that scale will not happen through standard field theory.

String theory [29] is currently the leading candidate for such a quantum the-
ory of gravitation. Tantalizingly the spectrum of massless particles of the closed
string contains particles up to spin 2, hence contains a candidate for the gravi-
ton. Open strings only contain spin one massless particles such as gauge bosons.
Since closed strings must form out of open strings through interactions, it has
been widely argued that string theory provides an explanation for the existence
of quantum gravity as a necessary complement to gauge theories. This remains
the biggest success of the theory up to now. It is also remarkable that string the-
ory (more precisely membrane theory) allows some microscopic derivations of the
Beckenstein-Hawking formula for blackhole entropy [30].

String theory also predicts two crucial features which are unobserved up to
now, supersymmetry and six or seven new Kaluza-Klein dimensions of space-time
at short distance. Although no superpartner of any real particle has been found
yet, there are some indirect indications of supersymmetry, such as the careful
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study of the flows of the running non-abelian standard model gauge couplings7.
Extra dimensions might also be welcome, especially if they are significantly larger
than the Planck scale, because they might provide an explanation for the puzzling
weakness of gravitation with respect to other forces. Roughly speaking gravitation
could be weak because in string theory it propagates very naturally into such
extra dimensions in contrast with other interactions which may remain stuck to
our ordinary four-dimensional universe or “brane”.

But there are several difficulties with string theory which cast some doubt on
its usefulness to guide us into the first scales of terra incognita. First the theory is
really a very bold stroke to quantize gravity at the Planck scale, very far from cur-
rent observations. This giant leap runs directly against the step by step philosophy
of the RG. Second the mathematical structure of string theory is complicated up
to the point where it may become depressing. For instance great effort is needed
to put the string theory at two loops on some rigorous footing [31], and three
loops seem almost hopeless. Third, there was for some time the hope that string
theory and the phenomenology at lower energies derived from it might be unique.
This hope has now vanished with the discovery of a very complicated landscape of
different possible string vacua and associated long distance phenomenologies.

In view of these difficulties some physicists have started to openly criticize
what they consider a disproportionate amount of intellectual resources devoted to
the study of string theory compared to other alternatives [32].

I do not share these critics. I think in particular that string theory has been
very successful as a brain storming tool. It has lead already to many spectacular
insights into pure mathematics and geometry. But my personal bet would be that
if somewhere in the mountains near the Planck scale string theory might be useful,
or even correct, we should also search for other complementary and more reliable
principles to guide us in the maze of waterways at the entrance of terra incognita.
If these other complementary principles turn out to be compatible with string
theory at higher scales, so much the better.

It is a rather natural remark that since gravity alters the very geometry of
ordinary space, any quantum theory of gravity should quantize ordinary space,
not just the phase space of mechanics, as quantum mechanics does. Hence at some
point at or before the Planck scale we should expect the algebra of ordinary co-
ordinates or observables to be generalized to a non-commutative algebra. Alain
Connes, Michel Dubois-Violette, Ali Chamseddine and others have forcefully ad-
vocated that the classical Lagrangian of the current standard model arises much
more naturally on simple non-commutative geometries than on ordinary commu-
tative Minkowsky space. We refer to Alain’s contribution here for these arguments.
They remain in the line of Einstein’s classical unification of Maxwell’s electrody-
namics equations through the introduction of a new four-dimensional space-time.

7The three couplings join better at a single very high scale if supersymmetry is included in the
picture. Of course sceptics can remark that this argument requires to continue these flows deep
within terra incognita, where new physics could occur.
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The next logical step seems to be to find the analog of quantum electrodynamics.
It should be quantum field theory on non-commutative geometry, or NCQFT. The
idea of NCQFT goes back at least to Snyders [33].

A second line of argument ends at the same conclusion. String theorists real-
ized in the late 1990s that NCQFT is an effective theory of strings [34,35]. Roughly
this is because in addition to the symmetric tensor gµν the spectrum of the closed
string also contains an antisymmetric tensor Bµν . There is no reason for this an-
tisymmetric tensor not to freeze at some lower scale into a classical field, just as
gµν is supposed to freeze into the classical metric of Einstein’s general relativity.
But such a freeze of Bµν precisely induces an effective non-commutative geometry.
In the simplest case of flat Riemannian metric and trivial constant antisymmetric
tensor, the geometry is simply of the Moyal type; it reduces to a constant anticom-
mutator between (Euclidean) space-time coordinates. This made NCQFT popular
among string theorists. A good review of these ideas can be found in [36].

These two lines of arguments, starting at both ends of terra incognita con-
verge to the same conclusion: there should be an intermediate regime between
QFT and string theory where NCQFT is the right formalism. The breaking of
locality and the appearance of cyclic-symmetric rather than fully symmetric in-
teractions in NCQFT is fully consistent with this intermediate status of NCQFT
between fields and strings. The ribbon graphs of NCQFT may be interpreted ei-
ther as “thicker particle world-lines” or as “simplified open strings world-sheets”
in which only the ends of strings appear but not yet their internal oscillations.
However until recently a big stumbling block remained. The simplest NCQFT on
Moyal space, such as φ�4

4 , were found not to be renormalizable because of a sur-
prising phenomenon called uv/ir mixing. Roughly speaking this φ�4

4 theory still
has infinitely many ultraviolet divergent graphs but fewer than the ordinary φ4

4

theory. The new “ultraviolet convergent” graphs, such as the non-planar tadpole
k

p

generate completely unexpected infrared divergences which are not of the renor-
malizable type [37].

However few years ago the solution out of this riddle was found. H. Grosse
and R. Wulkenhaar in a brilliant series of papers discovered how to renormalize
φ�4

4 [38–40]. This “revolution” happened quietly without mediatic fanfare, but it
might turn out to develop into a good Ariane’s thread at the entrance of the maze.
Indeed remember the argument of Wilson: renormalizable theories are the building
blocks of physics because they are the ones who survive RG flows . . .

It is always very interesting to develop a new brand of RG, but that new
brand on non-commutative Moyal space is especially exciting. Indeed it changes
the very definition of scales in a new and nontrivial way. Therefore it may ulti-
mately change our view of locality and causality, hence our very view of the deter-
ministic relationship from small to large distances. It is fair to say that the same
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is true of string theory, where T -dualities also change small into large distances
and vice-versa. But in contrast with string theory, this new brand of NCQFT is
mathematically tractable, not at one or two loops, but as we shall see below, at
any number of loops and probably even non-perturbatively! This just means that
we can do complicated computations in these NCQFT’s with much more ease and
confidence than in string theory.

The goal of these lectures is to present this new set of burgeoning ideas.
We start with a blitz introduction to standard renormalization group con-

cepts in QFT: functional integration and Feynman graphs. The system of Feynman
graphs of the φ4

4 theory provides the simplest example to play and experiment with
the idea of renormalization. It is straightforward to analyze the basic scaling be-
havior of high energy subgraphs within graphs of lower energy. In this way one
discovers relatively easily the most important physical effect under change of the
observation scale, namely the flow of the coupling constant. It leads immediately
to the fundamental difficulty associated to the short distance behavior of the the-
ory, namely the Landau ghost or triviality problem. That ghost disappears in the
“asymptotically free” non-abelian gauge theories [11, 12]. With hindsight this re-
sult might perhaps be viewed in a not so distant future as the first glimpse of
NCQFT . . .

Grosse and Wulkenhaar realized that previous studies of NCQFT had used
the wrong propagator! Moyal interactions were noticed to obey a certain Lang-
mann-Szabo duality [41], which exchanges space and momentum variables. Grosse
and Wulkenhaar realized that the propagator should be modified to also respect
this symmetry [40]. This means that NCQFT on Moyal spaces has to be based
on the Mehler kernel, which governs propagation in a harmonic potential, rather
than on the heat kernel, which governs ordinary propagation in commutative space.
Grosse and Wulkenhaar were able to compute for the first time the Mehler kernel
in the matrix base which transforms the Moyal product into a matrix product.
This is a real tour de force! The matrix based Mehler kernel is quasi-diagonal, and
they were able to use their computation to prove perturbative renormalizability of
the theory, up to some estimates which were finally proven in [42].

By matching correctly propagator and interaction to respect symmetries,
Grosse and Wulkenhaar were following one of the main successful thread of quan-
tum field theory. Their renormalizability result is in the direct footsteps of ’t Hooft
and Veltman, who did the same for non-abelian gauge theories thirty years before.
However I have often heard two main critics raised, which I would like to answer
here.

The first critic is that it is no wonder that adding a harmonic potential
gets rid of the infrared problem. It is naive because the harmonic potential is
the only partner of the Laplacian under LS duality. No other infrared regulator
would make the theory renormalizable. The theory has infinitely many degrees of
freedom, and infinitely many divergent graphs, so the new BPHZ theorem obtained
by Grosse and Wulkenhaar is completely nontrivial. In fact now that the RG flow
corresponding to these theories is better understood, we understand the former
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uv/ir mixing just as an ordinary anomaly which signaled a missing marginal term
in the Lagrangian under that RG flow.

The second and most serious critic is that since the Mehler kernel is not trans-
lation invariant, the Grosse and Wulkenhaar ideas will never be able to describe any
mainstream physics in which there should be no preferred origin. This is just wrong
but for a more subtle reason. We have shown that the Grosse-Wulkenhaar method
can be extended to renormalize theories such as the Langmann-Szabo-Zarembo
φ̄ � φ � φ̄ � φ model [43–45] in four dimensions or the Gross-Neveu model in two
dimensions. In these theories the ordinary Mehler kernel is replaced by a related
kernel which governs propagation of charged particles in a constant background
field. This kernel, which we now propose to call the covariant Mehler kernel8,
is still not translation invariant because it depends on non translation-invariant
gauge choice. It oscillates rather than decays when particles move away from a
preferred origin. But in such theories physical observables, which are gauge invari-
ant, do not feel that preferred origin. That’s why translation invariant phenomena
can be described!

We proposed to call the whole new class of NCQFT theories built either on
the Mehler kernel or on its covariant generalizations vulcanized (may be we should
have spelled Wulkenized?) because renormalizability means that their structure
resists under change of scale9.

These newly discovered vulcanized theories or NCVQFT and their associ-
ated RG flows absolutely deserve a thorough and systematic investigation, not
only because they may be relevant for physics beyond the standard model, but
also (although this is often less emphasized) because they may provide explana-
tion of nontrivial effective physics in our ordinary standard world whenever strong
background gauge fields are present. Many examples come to mind, from various
aspects of the quantum Hall effect to the behavior of two-dimensional charged
polymers under magnetic fields or even to quark confinement. In such cases ap-
propriate generalizations of the vulcanized RG may be the right tool to show how
the correct effective nonlocal interactions emerge out of local interactions.

At the laboratoire de physique théorique at Orsay we have embarked on such
a systematic investigation of NCVQFTs and of their RG flows. This program is
also actively pursued elsewhere. Let us review briefly the main recent results and
open problems.

Multiscale analysis. The initial Grosse-Wulkenhaar breakthrough used sharp cut-
offs in matrix space, which like sharp cutoffs in ordinary direct and momentum
space are not so well suited to rigorous bounds and multiscale analysis. By re-
placing these cutoffs by smoother cutoffs which cut directly the Mehler parameter

8Initially we called such NCQFT theories critical, but it was pointed to us that this word may
create confusion with critical phenomena, so we suggest now to call them covariant.
9Vulcanization is a technological operation which adds sulphur to natural rubber to improve its
mechanical properties and its resistance to temperature change, and temperature is a scale in
imaginary time. . .
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into slices, we could derive rigorously the estimates that were only numerically
checked in [40] hence close the last gaps in the BPHZ theorem for vulcanized
non-commutative φ�4

4 [42]. We could also replace the somewhat cumbersome re-
cursive use of the Polchinski equation [46] by more direct and explicit bounds in
a multiscale analysis.

Direct space. Although non translation invariant propagators and nonlocal vertices
are unfamiliar, the direct space representation of NCVQFT remains closer to our
ordinary intuition than the matrix base. Using direct space methods, we have
provided a new proof of the BPHZ theorem for vulcanized non-commutative φ�4

4

[47]. We have also extended the Grosse-Wulkenhaar results to the φ̄ � φ � φ̄ � φ
LSZ model [43]. Our proof relies on a multiscale analysis analogous to [42] but in
direct space. It allows a more transparent understanding of the moyality of the
counterterms for planar subgraphs at higher scales when seen through external
propagators at lower scales. This is the exact analog of the locality in ordinary
QFT of general subgraphs at higher scales when seen through external propagators
at lower scales. Such propagators do not distinguish short distance details, and
ordinary locality could be summarized as the obvious remark that from far enough
away any object looks roughly like a point. But moyality could be summarized as
a more surprising fact: viewed from lower RG scales10, planar higher scale effects,
which are the only ones large enough to require renormalization, look like Moyal
products.

Fermionic theories. To enlarge the class of renormalizable non-commutative field
theories and to attack the quantum Hall effect problem it is essential to extend the
results of Grosse-Wulkenhaar to fermionic theories. Vulcanized fermionic propaga-
tors have been computed and their scaling properties established, both in matrix
base and direct space, in [50]. They seem to be necessarily of the covariant type.

The simplest fermionic NCVQFT theory, corresponding to the two-dimen-
sional ordinary Gross-Neveu model, was then proved renormalizable to all orders in
[51]. This was done using the x-space version which seems also the most promising
for a complete non-perturbative construction, using Pauli’s principle to control the
apparent (fake) divergences of perturbation theory.

Ghost Hunting. Grosse and Wulkenhaar made the first nontrivial one loop RG
computation in NCVQFT in [52]. Although they did not word it initially in this
way, their result means that at this order there is no Landau ghost in NCVQFT!
A nontrivial fixed point of the renormalization group develops at high energy,
where the Grosse-Wulkenhaar parameter Ω tends to the self-dual point Ω = 1, so
that Langmann-Szabo duality become exact, and the beta function vanishes. This

10These scales being defined in the new RG sense, we no longer say “from far away”. Although
I hate to criticize, I feel a duty here to warn the reader that often cited previous “proofs of
moyality” such as [48, 49] should be dismissed. The main theorem in [48], whose proof never
appeared, is simply wrong; and even more importantly the analysis in [49] does not lead to any
BPHZ theorem nor to any sensible RG flow. This is because using the old definition of RG scales
it misses vulcanization.
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stops the growth of the bare coupling constant in the ultraviolet regime, hence
kills the ghost. So after all NCVQFT is not only as good as QFT with respect
to renormalization, it is definitely better! This vindicates, although in a totally
unexpected way, the initial intuition of Snyders [33], who like many after him was
at least partly motivated by the hope to escape the divergences in QFT which were
considered ugly. Remark however that the ghost is not killed because of asymptotic
freedom. Both the bare and the renormalized coupling are nonzero. They can be
made both small if the renormalized Ω is not too small, in which case perturbation
theory is expected to remain valid all along the complete RG trajectory. It is only
in the singular limit Ωren → 0 that the ghost begins to reappear.

For mathematical physicists who like me came from the constructive field
theory program, the Landau ghost has always been a big frustration. Remember
that because non-abelian gauge theories are very complicated and lead to con-
finement in the infrared regime, there is no good four-dimensional rigorous field
theory without unnatural cutoffs up to now11. I was therefore from the start very
excited by the possibility to build non-perturbatively the φ�4

4 theory as the first
such rigorous four-dimensional field theory without unnatural cutoffs, even if it
lives on the Moyal space which is not the one initially expected, and does not obey
the usual axioms of ordinary QFT.

For that happy scenario to happen, two main nontrivial steps are needed. The
first one is to extend the vanishing of the beta function at the self-dual point Ω = 1
to all orders of perturbation theory. This has been done in [57,58], using the matrix
version of the theory. First the result was checked by brute force computation at
two and three loops. Then we devised a general method for all orders. It relies
on Ward identities inspired by those of similar theories with quartic interactions
in which the beta function vanishes [59–61]. However the relation of these Ward
identities to the underlying LS symmetry remains unclear and we would also like
to develop again an x-space version of that result to understand better its relation
to the LS symmetry.

The second step is to extend in a proper way constructive methods such as
cluster and Mayer expansions to build non-perturbatively the connected functions
of NCVQFT in a single RG slice. Typically we would like a theorem of Borel
summability [62] in the coupling constant for these functions which has to be
uniform in the slice index. This is in progress. A construction of the model and
of its full RG trajectory would then presumably follow from a multiscale analysis
similar to that of [63].

φ�3
6 and Kontsevich model. The non-commutative φ�3 model in 6 dimensions has

been shown to be renormalizable, asymptotically free, and solvable genus by genus
by mapping it to the Kontsevich model, in [64–66]. The running coupling constant
has also been computed exactly, and found to decrease more rapidly than predicted

11We have only renormalizable constructive theories for two-dimensional fermionic theories [53,
54] and for the infrared side of φ4

4 [55, 56].
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by the one-loop beta function. That model however is not expected to have a non-
perturbative definition because it should be unstable at large φ.

Gauge theories. A very important and difficult goal is to properly vulcanize gauge
theories such as Yang-Mills in four-dimensional Moyal space or Chern-Simons on
the two-dimensional Moyal plane plus one additional ordinary commutative time
direction. We do not need to look at complicated gauge groups since the U(1)
pure gauge theory is nontrivial and interacting on non-commutative geometry
even without matter fields. What is not obvious is to find a proper compromise
between gauge and Langmann-Szabo symmetries which still has a well-defined
perturbation theory around a computable vacuum after gauge invariance has been
fixed through appropriate Faddeev-Popov or BRS procedures. We should judge
success in my opinion by one main criterion, namely renormalizability. Recently
de Goursac, Wallet and Wulkenhaar computed the non-commutative action for
gauge fields which can be induced through integration of a scalar renormalizable
matter field minimally coupled to the gauge field [67]; the result exhibits both
gauge symmetry and LS covariance, hence vulcanization, but the vacuum looks
nontrivial so that to check whether the associated perturbative expansion is really
renormalizable seems difficult.

Dimensional regularization and renormalization better respect gauge symme-
tries and they were the key to the initial ’t Hooft-Veltman proof of renormaliz-
ability of ordinary gauge theories. Therefore no matter what the final word will be
on NCV gauge theories, it should be useful to have the corresponding tools ready
at hand in the non-commutative context12. This requires several steps, the first of
which is

Parametric representation. In this compact representation, direct space or momen-
tum variables have been integrated out for each Feynman amplitude. The result
is expressed as integrals over the heat kernel parameters of each propagator, and
the integrands are the topological polynomials of the graph13. These integrals can
then be shown analytic in the dimension D of space-time for �D small enough.
They are in fact meromorphic in the complex plane, and ultraviolet divergences
can be extracted through appropriate inductive contour integrations.

The same program can be accomplished in NCVQFT because the Mehler
kernel is still quadratic in space variables14. The corresponding topological hyper-
bolic polynomials are richer than in ordinary field theory since they are invariants
of the ribbon graph which for instance contain information about the genus of
the surface on which these graphs live. They can be computed both for ordinary

12The Connes-Kreimer works also use abundantly dimensional regularization and renormaliza-
tion, and this is another motivation.
13Mathematicians call these polynomials Kirchhoff polynomials, and physicist call them Syman-
zik polynomials in the quantum field theory context.
14This is true provided “hypermomenta” are introduced to Fourier transform the space conser-
vation at vertices which in Moyal space is the LS dual to ordinary momentum conservation.
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NCVQFT [68] and in the more difficult case of covariant theories such as the LSZ
model [69].

Dimensional regularization and renormalization. From the parametric represen-
tation the corresponding regularization and minimal-dimensional renormalization
scheme should follow for NCVQFTs. However appropriate factorization of the lead-
ing terms of the new hyperbolic polynomials under rescaling of the parameters of
any subgraph is required. This is indeed the analog in the parameter representa-
tion of the “moyality” of the counterterms in direct space. This program is under
way [70].

Quantum Hall effect. NCQFT and in particular the non-commutative Chern Si-
mons theory has been recognized as effective theory of the quantum Hall effect
already for some time [71–73]. We also refer to the contributions of V. Pasquier
and of A. Polychronakos in this volume. But the discovery of the vulcanized RG
holds promises for a better explanation of how these effective actions are generated
from the microscopic level.

In this case there is an interesting reversal of the initial Grosse-Wulkenhaar
problematic. In the φ�4

4 theory the vertex is given a priori by the Moyal structure,
and it is LS invariant. The challenge was to find the right propagator which makes
the theory renormalizable, and it turned out to have LS duality.

Now to explain the (fractional) quantum Hall effect, which is a bulk effect
whose understanding requires electron interactions, we can almost invert this logic.
The propagator is known since it corresponds to non-relativistic electrons in two
dimensions in a constant magnetic field. It has LS duality. But the effective theory
should be anionic hence not local. Here again we can argue that among all possi-
ble nonlocal interactions, a few renormalization group steps should select the only
ones which form a renormalizable theory with the corresponding propagator. In the
commutative case (i.e., zero magnetic field) local interactions such as those of the
Hubbard model are just renormalizable in any dimension because of the extended
nature of the Fermi-surface singularity. Since the non-commutative electron propa-
gator (i.e., in nonzero magnetic field) looks very similar to the Grosse-Wulkenhaar
propagator (it is in fact a generalization of the Langmann-Szabo-Zarembo propa-
gator) we can conjecture that the renormalizable interaction corresponding to this
propagator should be given by a Moyal product. That’s why we hope that non-
commutative field theory and a suitable generalization of the Grosse-Wulkenhaar
RG might be the correct framework for a microscopic ab initio understanding of
the fractional quantum Hall effect which is currently lacking.

Charged polymers in magnetic fields. Just like the heat kernel governs random
motion, the covariant Mehler kernel governs random motion of charged particles
in presence of a magnetic field. Ordinary polymers can be studied as random
walk with a local self-repelling or self-avoiding interaction. They can be treated
by QFT techniques using the N = 0 component limit or the supersymmetry
trick to erase the unwanted vacuum graphs. Many results, such as various ex-



Non-commutative Renormalization 33

act critical exponents in two dimensions, approximate ones in three dimensions,
and infrared asymptotic freedom in four dimensions have been computed for self-
avoiding polymers through renormalization group techniques. In the same way
we expect that charged polymers under magnetic field should be studied through
the new non-commutative vulcanized RG. The relevant interactions again should
be of the Moyal rather than of the local type, and there is no reason that the
replica trick could not be extended in this context. Ordinary observables such as
N point functions would be only translation covariant, but translation invariant
physical observables such as density-density correlations should be recovered out
of gauge invariant observables. In this way it might be possible to deduce new
scaling properties of these systems and their exact critical exponents through the
generalizations of the techniques used in the ordinary commutative case [74].

More generally we hope that the conformal invariant two-dimensional theo-
ries, the RG flows between them and the c theorem of Zamolodchikov [27] should
have appropriate magnetic generalizations which should involve vulcanized flows
and Moyal interactions.

Quark confinement. It is less clear that NCVQFT gauge theories might shed light
on confinement, but this is also possible.

Even for regular commutative field theory such as non-abelian gauge the-
ory, the strong coupling or non-perturbative regimes may be studied fruitfully
through their non-commutative (i.e., nonlocal) counterparts. This point of view is
forcefully suggested in [35], where a mapping is proposed between ordinary and
non-commutative gauge fields which do not preserve the gauge groups but preserve
the gauge equivalent classes. Let us further remark that the effective physics of
confinement should be governed by a nonlocal interaction, as is the case in effective
strings or bags models. The great advantage of NCVQFT over the initial matrix
model approach of ’t Hooft [75] is that in the latter the planar graphs dominate
because a gauge group SU(N) with N large is introduced in an ad hoc way instead
of the physical SU(2) or SU(3), whether in the former case, there is potentially
a perfectly physical explanation for the planar limit, since it should just emerge
naturally out of a renormalization group effect. We would like the large N matrix
limit in NCVQFT’s to parallel the large N vector limit which allows to understand
the formation of Cooper pairs in supraconductivity [26]. In that case N is not ar-
bitrary but is roughly the number of effective quasi particles or sectors around
the extended Fermi surface singularity at the superconducting transition tempera-
ture. This number is automatically very large if this temperature is very low. This
is why we called this phenomenon a dynamical large N vector limit. NCVQFTs
provides us with the first clear example of a dynamical large N matrix limit. We
hope therefore that it should be ultimately useful to understand bound states in
ordinary commutative non-abelian gauge theories, hence quark confinement.

Quantum gravity. Although ordinary renormalizable QFTs seem more or less to
have NCVQFT analogs on the Moyal space, there is no renormalizable commu-
tative field theory for spin 2 particles, so that the NCVQFTs alone should not
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allow quantization of gravity. However quantum gravity might enter the picture
of NCVQFTs at a later and more advanced stage. Since quantum gravity appears
in closed strings, it may have something to do with doubling the ribbons of some
NCQFT in an appropriate way. But because there is no reason not to quantize
the antisymmetric tensor B which defines the non-commutative geometry as well
as the symmetric one g which defines the metric, we should clearly no longer limit
ourselves to Moyal spaces. A first step towards a non-commutative approach to
quantum gravity along these lines should be to search for the proper analog of
vulcanization in more general non-commutative geometries. It might for instance
describe physics in the vicinity of a charged rotating black hole generating a strong
magnetic field. However we have to admit that any theory of quantum gravity will
probably remain highly conjectural for many decades or even centuries . . .

I would like to warmly thank all the collaborators who contributed in vari-
ous ways to the elaboration of this material, in particular M. Disertori, R. Gurau,
J. Magnen, A. Tanasa, F. Vignes-Tourneret, J.C. Wallet and R. Wulkenhaar. Spe-
cial thanks are due to F. Vignes-Tourneret since this review is largely based on
our common recent review [76], with introduction and sections added on commu-
tative renormalization, ghost hunting and the parametric representation. I would
like also to sincerely apologize to the many people whose work in this area would
be worth of citation but has not been cited here: this is because of my lack of time
or competence but not out of bad will.

2. Commutative renormalization, a blitz review

This section is a summary of [77] which we include for self-containedness.

2.1. Functional integral

In QFT, particle number is not conserved. Cross sections in scattering experiments
contain the physical information of the theory. They are the matrix elements of
the diffusion matrix S. Under suitable conditions they are expressed in terms of
the Green functions GN of the theory through so-called “reduction formulae”.

Green’s functions are time ordered vacuum expectation values of the field φ,
which is operator valued and acts on the Fock space:

GN (z1, . . . , zN ) = 〈ψ0, T [φ(z1) · · ·φ(zN )]ψ0〉 . (2.1)

Here ψ0 is the vacuum state and the T -product orders φ(z1) · · ·φ(zN ) according
to times.

Consider a Lagrangian field theory, and split the total Lagrangian as the sum
of a free plus an interacting piece, L = L0 + Lint. The Gell-Mann-Low formula
expresses the Green functions as vacuum expectation values of a similar product
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of free fields with an eiLint insertion:

GN (z1, . . . , zN ) =

〈
ψ0, T

[
φ(z1) · · ·φ(zN )ei

∫
dxLint(φ(x))

]
ψ0

〉
〈
ψ0, T (ei

∫
dxLint(φ(x)))ψ0

〉 . (2.2)

In the functional integral formalism proposed by Feynman [78], the Gell-
Mann-Low formula is replaced by a functional integral in terms of an (ill-defined)
“integral over histories” which is formally the product of Lebesgue measures over
all space-time. The corresponding formula is the Feynman-Kac formula:

GN (z1, . . . , zN) =

∫ ∏
j

φ(zj)ei
∫ L(φ(x))dxDφ∫

ei
∫ L(φ(x))dxDφ

. (2.3)

The integrand in (2.3) contains now the full LagrangianL = L0+Lint instead
of the interacting one. This is interesting to expose symmetries of the theory
which may not be separate symmetries of the free and interacting Lagrangians,
for instance gauge symmetries. Perturbation theory and the Feynman rules can
still be derived as explained in the next subsection. But (2.3) is also well adapted
to constrained quantization and to the study of non-perturbative effects. Finally
there is a deep analogy between the Feynman-Kac formula and the formula which
expresses correlation functions in classical statistical mechanics. For instance, the
correlation functions for a lattice Ising model are given by

〈 n∏
i=1

σxi

〉
=

∑
{σx=±1}

e−L(σ)
∏
i

σxi∑
{σx=±1}

e−L(σ)
, (2.4)

where x labels the discrete sites of the lattice, the sum is over configurations
{σx = ±1} which associate a “spin” with value +1 or −1 to each such site and
L(σ) contains usually nearest neighbor interactions and possibly a magnetic field h:

L(σ) =
∑

x,y nearest neighbors

Jσxσy +
∑

x

hσx. (2.5)

By analytically continuing (2.3) to imaginary time, or Euclidean space, it is
possible to complete the analogy with (2.4), hence to establish a firm contact with
statistical mechanics [15, 79, 80].

This idea also allows us to give much better meaning to the path integral,
at least for a free bosonic field. Indeed the free Euclidean measure can be defined
easily as a Gaussian measure, because in Euclidean space L0 is a quadratic form
of positive type15.

15However the functional space that supports this measure is not in general a space of smooth
functions, but rather of distributions. This was already true for functional integrals such as those
of Brownian motion, which are supported by continuous but not differentiable paths. Therefore
“functional integrals” in quantum field theory should more appropriately be called “distributional
integrals”.
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The Green functions continued to Euclidean points are called the Schwinger
functions of the model, and are given by the Euclidean Feynman-Kac formula:

SN (z1, . . . , zN) = Z−1

∫ N∏
j=1

φ(zj)e−
∫ L(φ(x))dxDφ (2.6)

Z =
∫

e−
∫ L(φ(x))dxDφ. (2.7)

The simplest interacting field theory is the theory of a one component scalar
bosonic field φ with quartic interaction λφ4 (φ3 which is simpler is unstable).
In Rd it is called the φ4

d model. For d = 2, 3 the model is super-renormalizable
and has been built non-perturbatively by constructive field theory. For d = 4
it is just renormalizable, and it provides the simplest pedagogical introduction to
perturbative renormalization theory. But because of the Landau ghost or triviality
problem explained in Subsection 2.5, the model presumably does not exist as a
true interacting theory at the non-perturbative level. Its non-commutative version
should exist on the Moyal plane, see Section 5.

Formally the Schwinger functions of φ4
d are the moments of the measure:

dν =
1
Z

e−
λ
4!

∫
φ4−(m2/2)

∫
φ2−(a/2)

∫
(∂µφ∂µφ)Dφ, (2.8)

where

• λ is the coupling constant, usually assumed positive or complex with positive
real part; remark the convenient 1/4! factor to take into account the sym-
metry of permutation of all fields at a local vertex. In the non-commutative
version of the theory permutation symmetry becomes the more restricted
cyclic symmetry and it is convenient to change the 1/4! factor to 1/4.

• m is the mass, which fixes an energy scale for the theory.
• a is the wave function constant. It can be set to 1 by a rescaling of the field.
• Z is a normalization factor which makes (2.8) a probability measure.
• Dφ is a formal (mathematically ill-defined) product

∏
x∈Rd dφ(x) of Lebesgue

measures at every point of Rd.

The Gaussian part of the measure is

dµ(φ) =
1
Z0

e−(m2/2)
∫

φ2−(a/2)
∫

(∂µφ∂µφ)Dφ. (2.9)

where Z0 is again the normalization factor which makes (2.9) a probability mea-
sure.

More precisely if we consider the translation invariant propagator C(x, y) ≡
C(x − y) (with slight abuse of notation), whose Fourier transform is

C(p) =
1

(2π)d

1
p2 + m2

, (2.10)
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we can use Minlos theorem and the general theory of Gaussian processes to define
dµ(φ) as the centered Gaussian measure on the Schwartz space of tempered dis-
tributions S′(Rd) whose covariance is C. A Gaussian measure is uniquely defined
by its moments, or the integral of polynomials of fields. Explicitly this integral is
zero for a monomial of odd degree, and for n = 2p even it is equal to∫

φ(x1) · · ·φ(xn)dµ(φ) =
∑

γ

∏
∈γ

C(xi�
, xj�

), (2.11)

where the sum runs over all the 2p!! = (2p− 1)(2p− 3) · · · 5 · 3 · 1 pairings γ of the
2p arguments into p disjoint pairs � = (i, j).

Note that since for d ≥ 2, C(p) is not integrable, C(x, y) must be understood
as a distribution. It is therefore convenient to also use regularized kernels, for
instance

Cκ(p) =
1

(2π)d

e−κ(p2+m2)

p2 + m2
=
∫ ∞

κ

e−α(p2+m2)dα (2.12)

whose Fourier transform Cκ(x, y) is now a smooth function and not a distribution:

Cκ(x, y) =
∫ ∞

κ

e−αm2−(x−y)2/4α dα

αD/2
. (2.13)

α−D/2e−(x−y)2/4α is the heat kernel and therefore this α-representation has also
an interpretation in terms of Brownian motion:

Cκ(x, y) =
∫ ∞

κ

dα exp(−m2α)P (x, y; α) (2.14)

where P (x, y; α) = (4πα)−d/2 exp(−|x − y|2/4α) is the Gaussian probability dis-
tribution of a Brownian path going from x to y in time α.

Such a regulator κ is called an ultraviolet cutoff, and we have (in the dis-
tribution sense) limκ→0 Cκ(x, y) = C(x, y). Remark that due to the nonzero m2

mass term, the kernel Cκ(x, y) decays exponentially at large |x − y| with rate m.
For some constant K and d > 2 we have:

|Cκ(x, y)| ≤ Kκ1−d/2e−m|x−y|. (2.15)

It is a standard useful construction to build from the Schwinger functions the
connected Schwinger functions, given by:

CN (z1, . . . , zN ) =
∑

P1∪···∪Pk={1,...,N}
Pi∩Pj=0

(−1)k+1(k − 1)!
k∏

i=1

Spi(zj1 , . . . , zjpi
), (2.16)

where the sum is performed over all distinct partitions of {1, . . . , N} into k subsets
P1, . . . , Pk, Pi being made of pi elements called j1, . . . , jpi . For instance in the φ4

theory, where all odd Schwinger functions vanish due to the unbroken φ → −φ
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symmetry, the connected 4-point function is simply:

C4(z1, . . . , z4) = S4(z1, . . . , z4) − S2(z1, z2)S2(z3, z4) (2.17)

− S2(z1, z3)S2(z2, z4) − S2(z1, z4)S2(z2, z3).

2.2. Feynman rules

The full interacting measure may now be defined as the multiplication of the
Gaussian measure dµ(φ) by the interaction factor:

dν =
1
Z

e−
λ
4!

∫
φ4(x)dxdµ(φ) (2.18)

and the Schwinger functions are the normalized moments of this measure:

SN (z1, . . . , zN) =
∫

φ(z1) · · ·φ(zN )dν(φ). (2.19)

Expanding the exponential as a power series in the coupling constant λ, one obtains
a formal expansion for the Schwinger functions:

SN (z1, . . . , zN) =
1
Z

∞∑
n=0

(−λ)n

n!

∫ [∫ φ4(x)dx

4!
]n

φ(z1) · · ·φ(zN )dµ(φ) (2.20)

It is now possible to perform explicitly the functional integral of the corresponding
polynomial. The result gives at any order n a sum over (4n + N − 1)!! “Wick
contractions schemes W”, i.e., ways of pairing together 4n+N fields into 2n+N/2
pairs. At order n the result of this perturbation scheme is therefore simply the sum
over all these schemes W of the spatial integrals over x1, . . . , xn of the integrand∏

∈W C(xi�
, xj�

) times the factor 1
n! (

−λ
4! )n. These integrals are then functions

(in fact distributions) of the external positions z1, . . . , zN . But they may diverge
either because they are integrals over all of R4 (no volume cutoff) or because of
the singularities in the propagator C at coinciding points.

Labeling the n dummy integration variables in (2.20) as x1, . . . , xn, we draw a
line � for each contraction of two fields. Each position x1, . . . , xn is then associated
to a four-legged vertex and each external source zi to a one-legged vertex, as shown
in Figure 1.
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Figure 1: A possible contraction scheme with n = N = 4.

For practical computations, it is obviously more convenient to gather all the
contractions which lead to the same drawing, hence to the same integral. This leads
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to the notion of Feynman graphs. To any such graph is associated a contribution or
amplitude, which is the sum of the contributions associated with the corresponding
set of Wick contractions. The “Feynman rules” summarize how to compute this
amplitude with its correct combinatoric factor.

We always use the following notation for a graph G:

• n(G) or simply n is the number of internal vertices of G, or the order of the
graph.

• l(G) or l is the number of internal lines of G, i.e., lines hooked at both ends
to an internal vertex of G.

• N(G) or N is the number of external vertices of G; it corresponds to the
order of the Schwinger function one is looking at. When N = 0 the graph is
a vacuum graph, otherwise it is called an N -point graph.

• c(G) or c is the number of connected components of G.
• L(G) or L is the number of independent loops of G.

For a regular φ4 graph, i.e., a graph which has no line hooked at both ends
to external vertices, we have the relations

l(G) = 2n(G) − N(G)/2, (2.21)

L(G) = l(G) − n(G) + c(G) = n(G) + 1 − N(G)/2, (2.22)

where in the last equality we assume connectedness of G, hence c(G) = 1.
A subgraph F of a graph G is a subset of internal lines of G, together with

the corresponding attached vertices. Lines in the subset defining F are the internal
lines of F , and their number is simply l(F ), as before. Similarly all the vertices of
G hooked to at least one of these internal lines of F are called the internal vertices
of F and considered to be in F ; their number by definition is n(F ). Finally a good
convention is to call external half-line of F every half-line of G which is not in
F but which is hooked to a vertex of F ; it is then the number of such external
half-lines which we call N(F ). With these conventions one has for φ4 subgraphs
the same relation (2.21) as for regular φ4 graphs.

To compute the amplitude associated to a φ4 graph, we have to add the
contributions of the corresponding contraction schemes.

This is summarized by the “Feynman rules”:

• To each line � with end vertices at positions x and y, associate a propagator
C(xj , yj).

• To each internal vertex, associate (−λ)/4!.
• Count all the contraction schemes giving this diagram. The number should

be of the form (4!)nn!/S(G) where S(G) is an integer called the symmetry
factor of the diagram. The 4! represents the permutation of the fields hooked
to an internal vertex.

• Multiply all these factors, divide by n! and sum over the position of all internal
vertices.
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The formula for the bare amplitude of a graph is therefore, as a distribution
in z1, . . . , zN :

AG(z1, . . . , zN ) ≡
∫ n∏

i=1

dxi

∏
∈G

C(x, y). (2.23)

This is the “direct” or “x-space” representation of a Feynman integral. As stated
above, this integral suffers of possible divergences. But the corresponding quanti-
ties with both volume cutoff and ultraviolet cutoff κ are well defined. They are:

Aκ
G,Λ(z1, . . . , zN) ≡

∫
Λn

n∏
i=1

dxi

∏
∈G

Cκ(x, y). (2.24)

The integrand is indeed bounded and the integration domain is a compact box Λ.
The unnormalized Schwinger functions are therefore formally given by the

sum over all graphs with the right number of external lines of the corresponding
Feynman amplitudes:

ZSN =
∑

φ4 graphs G with N(G)=N

(−λ)n(G)

S(G)
AG . (2.25)

Z itself, the normalization, is given by the sum of all vacuum amplitudes:

Z =
∑

φ4 graphs G with N(G)=0

(−λ)n(G)

S(G)
AG. (2.26)

Let us remark that since the total number of Feynman graphs is (4n + N)!!,
taking into account Stirling’s formula and the symmetry factor 1/n! from the
exponential we expect perturbation theory at large order to behave as Knn! for
some constant K. Indeed at order n the amplitude of a Feynman graph is a 4n-
dimensional integral. It is reasonable to expect that in average it should behave
as cn for some constant c. But this means that one should expect zero radius
of convergence for the series (2.25). This is not too surprising. Even the one-
dimensional integral

F (g) =
∫ +∞

−∞
e−x2/2−λx4/4!dx (2.27)

is well defined only for λ ≥ 0. We cannot hope infinite-dimensional functional
integrals of the same kind to behave better than this one-dimensional integral.
In mathematically precise terms, F is not analytic near λ = 0, but only Borel
summable [62]. Borel summability is therefore the best we can hope for the φ4

theory, and it has indeed been proved for the theory in dimensions 2 and 3 [81,82].
From translation invariance, we do not expect Aκ

G,Λ to have a limit as Λ →
∞ if there are vacuum subgraphs in G. But we can remark that an amplitude
factorizes as the product of the amplitudes of its connected components.

With simple combinatoric verification at the level of contraction schemes we
can factorize the sum over all vacuum graphs in the expansion of unnormalized
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Schwinger functions, hence get for the normalized functions a formula analog to
(2.25):

SN =
∑

φ4 graphs G with N(G)=N
G without any vacuum subgraph

(−λ)n(G)

S(G)
AG. (2.28)

Now in (2.28) it is possible to pass to the thermodynamic limit (in the sense
of formal power series) because using the exponential decrease of the propagator,
each individual graph has a limit at fixed external arguments. There is of course no
need to divide by the volume for that because each connected component in (2.28)
is tied to at least one external source, and they provide the necessary breaking of
translation invariance.

Finally one can find the perturbative expansions for the connected Schwinger
functions and the vertex functions. As expected, the connected Schwinger functions
are given by sums over connected amplitudes:

CN =
∑

φ4 connected graphs G with N(G)=N

(−λ)n(G)

S(G)
AG (2.29)

and the vertex functions are the sums of the amputated amplitudes for proper
graphs, also called one-particle-irreducible. They are the graphs which remain con-
nected even after removal of any given internal line. The amputated amplitudes
are defined in momentum space by omitting the Fourier transform of the propa-
gators of the external lines. It is therefore convenient to write these amplitudes in
the so-called momentum representation:

ΓN (z1, . . . , zN) =
∑

φ4 proper graphs G with N(G)=N

(−λ)n(G)

S(G)
AT

G(z1, . . . , zN), (2.30)

AT
G(z1, . . . , zN ) ≡ 1

(2π)dN/2

∫
dp1 . . . dpNei

∑
piziAG(p1, . . . , pN ), (2.31)

AG(p1, . . . , pN) =
∫ ∏

 internal line of G

ddp

p2
 + m2

∏
v∈G

δ(
∑



εv, p). (2.32)

Remark in (2.32) the δ functions which ensure momentum conservation at each
internal vertex v; the sum inside is over both internal and external momenta;
each internal line is oriented in an arbitrary way and each external line is oriented
towards the inside of the graph. The incidence matrix ε(v, �) is 1 if the line � arrives
at v, −1 if it starts from v and 0 otherwise. Remark also that there is an overall
momentum conservation rule δ(p1 + · · · + pN ) hidden in (2.32). The drawback
of the momentum representation lies in the necessity for practical computations
to eliminate the δ functions by a “momentum routing” prescription, and there
is no canonical choice for that. Although this is rarely explicitly explained in the
quantum field theory literature, such a choice of a momentum routing is equivalent
to the choice of a particular spanning tree of the graph.
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2.3. Scale analysis and renormalization

In order to analyze the ultraviolet or short distance limit according to the renor-
malization group method, we can cut the propagator C into slices Ci so that
C =

∑∞
i=0 Ci. This can be done conveniently within the parametric representa-

tion, since α in this representation roughly corresponds to 1/p2. So we can define
the propagator within a slice as

C0 =
∫ ∞

1

e−m2α− |x−y|2
4α

dα

αd/2
, Ci =

∫ M−2(i−1)

M−2i

e−m2α− |x−y|2
4α

dα

αd/2
for i ≥ 1.

(2.33)
where M is a fixed number, for instance 10, or 2, or e (see footnote 1 in the
Introduction). We can intuitively imagine Ci as the piece of the field oscillating
with Fourier momenta essentially of size M i. In fact it is easy to prove the bound
(for d > 2)

|Ci(x, y)| ≤ K.M (d−2)ie−Mi|x−y| (2.34)
where K is some constant.

Now the full propagator with ultraviolet cutoff Mρ, ρ being a large integer,
may be viewed as a sum of slices:

C≤ρ =
ρ∑

i=0

Ci (2.35)

Then the basic renormalization group step is made of two main operations:
• a functional integration;
• the computation of a logarithm.

Indeed decomposing a covariance in a Gaussian process corresponds to a
decomposition of the field into independent Gaussian random variables φi, each
distributed with a measure dµi of covariance Ci. Let us introduce

Φi =
i∑

j=0

φj . (2.36)

This is the “low-momentum” field for all frequencies lower than i. The RG idea is
that starting from scale ρ and performing ρ − i steps, one arrives at an effective
action for the remaining field Φi. Then, writing Φi = φi + Φi−1, one splits the
field into a “fluctuation” field φi and a “background” field Φi−1. The first step,
functional integration, is performed solely on the fluctuation field, so it computes

Zi−1(Φi−1) =
∫

dµi(φi)e−Si(φi+Φi−1). (2.37)

Then the second step rewrites this quantity as the exponential of an effective
action, hence simply computes

Si−1(Φi−1) = − log[Zi−1(Φi−1)]. (2.38)

Now Zi−1 = e−Si−1 and one can iterate! The flow from the initial bare action
S = Sρ for the full field to an effective renormalized action S0 for the last “slowly
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varying” component φ0 of the field is similar to the flow of a dynamical system.
Its evolution is decomposed into a sequence of discrete steps from Si to Si−1.

This renormalization group strategy can be best understood on the system
of Feynman graphs which represent the perturbative expansion of the theory. The
first step, functional integration over fluctuation fields, means that we have to
consider subgraphs with all their internal lines in higher slices than any of their
external lines. The second step, taking the logarithm, means that we have to
consider only connected such subgraphs. We call such connected subgraphs quasi-
local. Renormalizability is then a nontrivial result that combines locality and power
counting for these quasi-local subgraphs.

Locality simply means that quasi-local subgraphs S look local when seen
through their external lines. Indeed since they are connected and since their in-
ternal lines have scale say ≥ i, all the internal vertices are roughly at distance
M−i. But the external lines have scales ≤ i − 1, which only distinguish details
larger than M−(i−1). Therefore they cannot distinguish the internal vertices of S
one from the other. Hence quasi-local subgraphs look like “fat dots” when seen
through their external lines, see Figure 2. Obviously this locality principle is com-
pletely independent of dimension.
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Figure 2: A high energy subgraph S seen from lower energies looks quasi-local.

Power counting is a rough estimate which compares the size of a fat dot such
as S in Figure 2 with N external legs to the coupling constant that would be in
front of an exactly local

∫
φN (x)dx interaction term if it were in the Lagrangian.

To simplify we now assume that the internal scales are all equal to i, the external
scales are O(1), and we do not care about constants and so on, but only about
the dependence in i as i gets large. We must first save one internal position such
as the barycentre of the fat dot or the position of a particular internal vertex
to represent the

∫
dx integration in

∫
φN (x)dx. Then we must integrate over the

positions of all internal vertices of the subgraph save that one. This brings about
a weight M−di(n−1), because since S is connected we can use the decay of the
internal lines to evaluate these n − 1 integrals. Finally we should not forget the
prefactor M (D−2)li coming from (2.34), for the l internal lines. Multiplying these
two factors and using relation (2.21)–(2.22) we obtain that the “coupling constant”
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or factor in front of the fat dot is of order M−di(n−1)+2i(2n−N/2) = Mω(G), if we
define the superficial degree of divergence of a φ4

d connected graph as

ω(G) = (d − 4)n(G) + d − d − 2
2

N(G). (2.39)

So power counting, in contrast with locality, depends on the space-time dimension.
Let us return to the concrete example of Figure 2. A 4-point subgraph made

of three vertices and four internal lines at a high slice i index. If we suppose the
four external dashed lines have much lower index, say of order unity, the subgraph
looks almost local, like a fat dot at this unit scale. We have to save one vertex
integration for the position of the fat dot. Hence the coupling constant of this fat
dot is made of two vertex integrations and the four weights of the internal lines
(in order not to forget these internal line factors we kept internal lines apparent
as four tadpoles attached to the fat dot in the right of Figure 2). In dimension 4
this total weight turns out to be independent of the scale.

At lower scales propagators can branch either through the initial bare cou-
pling or through any such fat dot in all possible ways because of the combinatorial
rules of functional integration. Hence they feel effectively a new coupling which is
the sum of the bare coupling plus all the fat dot corrections coming from higher
scales. To compute these new couplings only graphs with ω(G) ≥ 0, which are
called primitively divergent, really matter because their weight does not decrease
as the gap i increases.

– If d = 2, we find ω(G) = 2−2n, so the only primitively divergent graphs have
n = 1, and N = 0 or N = 2. The only divergence is due to the “tadpole”
loop

∫
d2p

(p2+m2) which is logarithmically divergent.

– If d = 3, we find ω(G) = 3−n−N/2, so the only primitively divergent graphs
have n ≤ 3, N = 0, or n ≤ 2 and N = 2. Such a theory with only a finite
number of “primitively divergent” subgraphs is called super-renormalizable.

– If d = 4, ω(G) = 4 − N . Every two-point graph is quadratically divergent
and every four-point graph is logarithmically divergent. This is in agreement
with the superficial degree of these graphs being respectively 2 and 0. The
couplings that do not decay with i all correspond to terms that were already
present in the Lagrangian, namely

∫
φ4,

∫
φ2 and

∫
(∇φ).(∇φ) 16. Hence the

structure of the Lagrangian resists under change of scale, although the values
of the coefficients can change. The theory is called just renormalizable.

16Because the graphs with N = 2 are quadratically divergent we must Taylor expand the quasi
local fat dots until we get convergent effects. Using parity and rotational symmetry, this gener-
ates only a logarithmically divergent

∫
(∇φ).(∇φ) term beyond the quadratically divergent

∫
φ2.

Furthermore this term starts only at n = 2 or two loops, because the first tadpole graph at
N = 2, n = 1 is exactly local.
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– Finally for d > 4 we have infinitely many primitively divergent graphs with ar-
bitrarily large number of external legs, and the theory is called non-renormal-
izable, because fat dots with N larger than 4 are important and they cor-
respond to new couplings generated by the renormalization group which are
not present in the initial bare Lagrangian.

To summarize:

• Locality means that quasi-local subgraphs look local when seen through their
external lines. It holds in any dimension.

• Power counting gives the rough size of the new couplings associated to these
subgraphs as a function of their number N of external legs, of their order n
and of the dimension of space-time d.

• Renormalizability (in the ultraviolet regime) holds if the structure of the
Lagrangian resists under change of scale, although the values of the coeffi-
cients or coupling constants may change. For φ4 it occurs if d ≤ 4, with d = 4
the most interesting case.

2.4. The BPHZ theorem

The BPHZ theorem is both a brilliant historic piece of mathematical physics which
gives precise mathematical meaning to the notion of renormalizability, using the
mathematics of formal power series, but it is also ultimately a bad way to under-
stand and express renormalization. Let us try to explain both statements.

For the massive Euclidean φ4
4 theory we could for instance state the following

normalization conditions on the connected functions in momentum space at zero
momenta:

C4(0, 0, 0, 0) = −λren, (2.40)

C2(p2 = 0) =
1

m2
ren

, (2.41)

d

dp2
C2|p2=0 = − aren

m4
ren

. (2.42)

Usually one puts aren = 1 by rescaling the field φ.
Using the inversion theorem on formal power series for any fixed ultraviolet

cutoff κ it is possible to reexpress any formal power series in λbare with bare prop-
agators 1/(abarep

2 + m2
bare) for any Schwinger functions as a formal power series

in λren with renormalized propagators 1/(arenp
2 +m2

ren). The BPHZ theorem then
states that the formal perturbative formal power series has finite coefficients order
by order when the ultraviolet cutoff κ is lifted. The first proof by Hepp relied on
the inductive Bogoliubov’s recursion scheme. Then a completely explicit expres-
sion for the coefficients of the renormalized series was written by Zimmermann
and many followers. The coefficients of that renormalized series can be written as
sums of renormalized Feynman amplitudes. They are similar to Feynman integrals
but with additional subtractions indexed by Zimmermann’s forests. Returning to
an inductive rather than explicit scheme, Polchinski remarked that it is possible
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to also deduce the BPHZ theorem from a renormalization group equation and in-
ductive bounds which does not decompose each order of perturbation theory into
Feynman graphs [46]. This method was clarified and applied by C. Kopper and
coworkers, see [83].

The solution of the difficult “overlapping” divergence problem through Bo-
goliubov’s or Polchinski’s recursions and Zimmermann’s forests becomes particu-
larly clear in the parametric representation using Hepp’s sectors. A Hepp sector
is simply a complete ordering of the α parameters for all the lines of the graph.
In each sector there is a different classification of forests into packets so that each
packet gives a finite integral [84, 85].

But from the physical point of view we cannot conceal the fact that purely
perturbative renormalization theory is not very satisfying. At least two facts hint
at a better theory which lies behind:

– The forest formula seems unnecessarily complicated, with too many terms.
For instance in any given Hepp sector only one particular packet of forests
is really necessary to make the renormalized amplitude finite, the one which
corresponds to the quasi-local divergent subgraphs of that sector. The other
packets seem useless, a little bit like “junk DNA”. They are there just because
they are necessary for other sectors. This does not look optimal.

– The theory makes renormalized amplitudes finite, but at tremendous cost!
The size of some of these renormalized amplitudes becomes unreasonably
large as the size of the graph increases. This phenomenon is called the “renor-
malon problem”. For instance it is easy to check that the renormalized am-
plitude (at 0 external momenta) of the graphs Pn with 6 external legs and
n+2 internal vertices in Figure 3 becomes as large as cnn! when n → ∞. In-
deed at large q the renormalized amplitude AR

G2
in Figure 5 grows like log |q|.

Therefore the chain of n such graphs in Figure 3 behaves as [log |q|]n, and
the total amplitude of Pn behaves as∫

[log |q|]n d4q

[q2 + m2]3
�n→∞ cnn! . (2.43)
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Figure 3: A family of graphs Pn producing a renormalon.

So after renormalization some families of graphs acquire so large values that
they cannot be resumed! Physically this is just as bad as if infinities were still
there. These two hints are in fact linked. As their name indicates, renormalons
are due to renormalization. Families of completely convergent graphs such as the
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Figure 4: A family of convergent graphs Qn, that do not produce any renormalon.

graphs Qn of Figure 4, are bounded by cn, and produce no renormalons. Studying
more carefully renormalization in the α parametric representation one can check
that renormalons are solely due to the forests packets that we compared to “junk
DNA”. Renormalons are due to subtractions that are not necessary to ensure
convergence, just like the strange log |q| growth of AR

G0
at large q is solely due to

the counterterm in the region where this counterterm is not necessary to make the
amplitude finite.

We can therefore conclude that subtractions are not organized in an optimal
way by the Bogoliubov recursion. What is wrong from a physical point of view
in the BPHZ theorem is to use the size of the graph as the relevant parameter
to organize Bogoliubov’s induction. It is rather the size of the line momenta that
should be used to better organize the renormalization subtractions.

This leads to the point of view advocated in [9]: neither the bare nor the
renormalized series are optimal. Perturbation should be organized as a power series
in an infinite set of effective expansions, which are related through the RG flow
equation. In the end exactly the same contributions are resumed than in the bare
or in the renormalized series, but they are regrouped in a much better way.

2.5. The Landau ghost and asymptotic freedom

In the case of φ4
4 only the flow of the coupling constants really matters, because the

flow of m and of a for different reasons are not very important in the ultraviolet
limit:

– the flow of m is governed at leading order by the tadpole. The bare mass m2
i

corresponding to a finite positive physical mass m2
ren is negative and grows as

λM2i with the slice index i. But since p2 in the ith slice is also of order M2i

but without the λ, as long as the coupling λ remains small it remains much
larger than m2

i . Hence the mass term plays no significant role in the higher
slices. It was remarked in [9] that because there are no overlapping problems
associated to 1PI two-point subgraphs, there is in fact no inconvenience to
use the full renormalized mren all the way from the bare to renormalized
scales, with subtractions on 1PI two-point subgraphs independent of their
scale.

– the flow of a is also not very important. Indeed it really starts at two loops
because the tadpole is exactly local. So this flow is in fact bounded, and
generates no renormalons. In fact as again remarked in [9] for theories of the
φ4

4 type one might as well use the bare value abare all the way from bare to
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G 1 G 2

Figure 5: The φ4 connected graphs with n = 2, N = 4.

renormalized scales and perform no second Taylor subtraction on any 1PI
two-point subgraphs.

But the physics of φ4
4 in the ultraviolet limit really depends of the flow of

λ. By a simple second-order computation there are only 2 connected graphs with
n = 2 and N = 4 pictured in Figure 5. They govern at leading order the flow of
the coupling constant.

In the commutative φ4
4 theory the graph G1 does not contribute to the cou-

pling constant flow. This can be seen in many ways, for instance after mass renor-
malization the graph G1 vanishes exactly because it contains a tadpole which
is not quasi-local but exactly local. One can also remark that the graph is one
particle reducible. In ordinary translation-invariant, hence momentum-conserving
theories, one-particle-reducible quasi-local graphs never contribute significantly to
RG flows. Indeed they become very small when the gap i between internal and
external scales grows. This is because by momentum conservation the momentum
of any one-particle-reducible line � has to be the sum of a finite set of external
momenta on one of its sides. But a finite sum of small momenta remains small
and this clashes directly with the fact that � being internal its momentum should
grow as the gap i grows. Remark that this is no longer true in non-commutative
vulcanized φ�4

4 , because that theory is not translation invariant, and that’s why it
will ultimately escape the Landau ghost curse.

So in φ4
4 the flow is intimately linked to the sign of the graph G2 of Figure 5.

More precisely, we find that at second order the relation between λi and λi−1 is

λi−1 � λi − βλ2
i (2.44)

(remember the minus sign in the exponential of the action), where β is a constant,
namely the asymptotic value of

∑
j,j′/ inf(j,j′)=i

∫
d4yCj(x, y)Cj′ (x, y) when i →

∞. Clearly this constant is positive. So for the normal stable φ4
4 theory, the relation

(2.44) inverts into
λi � λi−1 + βλ2

i−1, (2.45)

so that fixing the renormalized coupling seems to lead at finite i to a large, di-
verging bare coupling, incompatible with perturbation theory. This is the Landau
ghost problem, which affects both the φ4

4 theory and electrodynamics. Equiva-
lently if one keeps λi finite as i gets large, λ0 = λren tends to zero and the final
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effective theory is “trivial” which means it is a free theory without interaction, in
contradiction with the physical observation, e.g., of a coupling constant of about
1/137 in electrodynamics.

But in non-abelian gauge theories an extra minus sign is created by the
algebra of the Lie brackets. This surprising discovery has deep consequences. The
flow relation becomes approximately

λi � λi−1 − βλiλi−1, (2.46)

with β > 0, or, dividing by λiλi−1,

1/λi � 1/λi−1 + β, (2.47)

with solution λi � λ0
1+λ0βi . A more precise computation to third order in fact

leads to

λi �
λ0

1 + λ0(βi + γ log i + O(1))
. (2.48)

Such a theory is called asymptotically free (in the ultraviolet limit) because the
effective coupling tends to 0 with the cutoff for a finite fixed small renormalized
coupling. Physically the interaction is turned off at small distances. This theory
is in agreement with scattering experiments which see a collection of almost free
particles (quarks and gluons) inside the hadrons at very high energy. This was the
main initial argument to adopt quantum chromodynamics, a non-abelian gauge
theory with SU(3) gauge group, as the theory of strong interactions [13].

Remark that in such asymptotically free theories which form the backbone of
today’s standard model, the running coupling constants remain bounded between
far ultraviolet “bare” scales and the lower energy scale where renormalized cou-
plings are measured. Ironically the point of view on early renormalization theory
as a trick to hide the ultraviolet divergences of QFT into infinite unobservable
bare parameters could not turn out to be more wrong than in the standard model.
Indeed the bare coupling constants tend to 0 with the ultraviolet cutoff, and what
can be farther from infinity than 0?

3. Non-commutative field theory

3.1. Field theory on Moyal space

The recent progresses concerning the renormalization of non-commutative field
theory have been obtained on a very simple non-commutative space namely the
Moyal space. From the point of view of quantum field theory, it is certainly the
most studied space. Let us start with its precise definition.

3.1.1. The Moyal space RD
θ . Let us define E = {xµ, µ ∈ �1, D�} and C〈E〉 the free

algebra generated by E. Let Θ a D × D non-degenerate skew-symmetric matrix
(which requires D even) and I the ideal of C〈E〉 generated by the elements xµxν −
xνxµ − ıΘµν . The Moyal algebra AΘ is the quotient C〈E〉/I. Each element in AΘ

is a formal power series in the xµ’s for which the relation [xµ, xν ] = ıΘµν holds.
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Usually, one puts the matrix Θ into its canonical form:

Θ =

⎛⎜⎜⎜⎜⎜⎝
0 θ1

−θ1 0 (0)

. . .

(0)
0 θD/2

−θD/2 0

⎞⎟⎟⎟⎟⎟⎠ . (3.1)

Sometimes one even set θ = θ1 = · · · = θD/2. The preceding algebraic definition
whereas short and precise may be too abstract to perform real computations. One
then needs a more analytical definition. A representation of the algebra AΘ is
given by some set of functions on Rd equipped with a non-commutative product:
the Groenwald-Moyal product. What follows is based on [86].

The algebra AΘ. The Moyal algebra AΘ is the linear space of smooth and rapidly
decreasing functions S(RD) equipped with the non-commutative product defined
by: ∀f, g ∈ SD

def= S(RD),

(f �Θ g)(x) =
∫

RD

dDk

(2π)D
dDy f(x + 1

2Θ · k)g(x + y)eık·y (3.2)

=
1

πD |detΘ|

∫
RD

dDydDz f(x + y)g(x + z)e−2ıyΘ−1z . (3.3)

This algebra may be considered as the “functions on the Moyal space RD
θ ”. In the

following we will write f � g instead of f �Θ g and use: ∀f, g ∈ SD, ∀j ∈ �1, 2N�,

(Ff)(x) =
∫

f(t)e−ıtxdt (3.4)

for the Fourier transform and

(f � g)(x) =
∫

f(x − t)g(t)e2ıxΘ−1tdt (3.5)

for the twisted convolution. As on RD, the Fourier transform exchanges product
and convolution:

F (f � g) =F (f) � F (g) (3.6)

F (f � g) =F (f) � F (g). (3.7)

One also shows that the Moyal product and the twisted convolution are associative:

((f � g) � h)(x) =
∫

f(x − t − s)g(s)h(t)e2ı(xΘ−1t+(x−t)Θ−1s)ds dt (3.8)

=
∫

f(u − v)g(v − t)h(t)e2ı(xΘ−1v−tΘ−1v)dt dv

=(f � (g � h))(x). (3.9)
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Using (3.7), we show the associativity of the �-product. The complex conjugation
is involutive in AΘ,

f �Θ g =ḡ �Θ f̄ . (3.10)

One also has

f �Θ g =g �−Θ f. (3.11)

Proposition 3.1 (Trace). For all f, g ∈ SD,∫
dx (f � g)(x) =

∫
dx f(x)g(x) =

∫
dx (g � f)(x) . (3.12)

Proof.∫
dx (f � g)(x) = F (f � g)(0) = (Ff � Fg)(0) (3.13)

=
∫

Ff(−t)Fg(t)dt = (Ff ∗ Fg)(0) = F (fg)(0) =
∫

f(x)g(x)dx

where ∗ is the ordinary convolution. �
In the following sections, we will need Lemma 3.2 to compute the interaction

terms for the Φ�4
4 and Gross-Neveu models. We write x ∧ y

def= 2xΘ−1y.

Lemma 3.2. For all j ∈ �1, 2n + 1�, let fj ∈ AΘ. Then

(f1 �Θ · · · �Θ f2n) (x) =
1

π2D det2 Θ

∫ 2n∏
j=1

dxjfj(xj) e−ıx∧∑2n
i=1(−1)i+1xi e−ıϕ2n ,

(3.14)

(f1 �Θ · · · �Θ f2n+1) (x)

=
1

πD detΘ

∫ 2n+1∏
j=1

dxjfj(xj) δ
(
x −

2n+1∑
i=1

(−1)i+1xi

)
e−ıϕ2n+1 , (3.15)

∀p ∈ N, ϕp =
p∑

i<j=1

(−1)i+j+1xi ∧ xj . (3.16)

Corollary 3.3. For all j ∈ �1, 2n + 1�, let fj ∈ AΘ. Then∫
dx (f1 �Θ · · · �Θ f2n) (x) =

1
πD detΘ

∫ 2n∏
j=1

dxjfj(xj) δ
( 2n∑

i=1

(−1)i+1xi

)
e−ıϕ2n ,

(3.17)∫
dx (f1 �Θ · · · �Θ f2n+1) (x) =

1
πD detΘ

∫ 2n+1∏
j=1

dxjfj(xj) e−ıϕ2n+1, (3.18)

∀p ∈ N, ϕp =
p∑

i<j=1

(−1)i+j+1xi ∧ xj . (3.19)
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The cyclicity of the product, inherited from Proposition 3.1 implies: ∀f, g, h ∈ SD,

〈f � g, h〉 =〈f, g � h〉 = 〈g, h � f〉 (3.20)

and allows to extend the Moyal algebra by duality into an algebra of tempered
distributions.

Extension by Duality. Let us first consider the product of a tempered distribution
with a Schwartz-class function. Let T ∈ S′

D and h ∈ SD. We define 〈T, h〉 def= T (h)
and 〈T ∗, h〉 = 〈T, h〉.

Definition 3.1. Let T ∈ S′
D, f, h ∈ SD, we define T � f and f � T by

〈T � f, h〉 =〈T, f � h〉, (3.21)

〈f � T, h〉 =〈T, h � f〉. (3.22)

For example, the identity 1 as an element of S′
D is the unity for the �-product:

∀f, h ∈ SD,

〈1 � f, h〉 =〈1, f � h〉 (3.23)

=
∫

(f � h)(x)dx =
∫

f(x)h(x)dx

=〈f, h〉.

We are now ready to define the linear space M as the intersection of two sub-spaces
ML and MR of S′

D.

Definition 3.2 (Multipliers algebra).

ML = {S ∈ S′
D : ∀f ∈ SD, S � f ∈ SD} , (3.24)

MR = {R ∈ S′
D : ∀f ∈ SD, f � R ∈ SD} , (3.25)

M =ML ∩MR. (3.26)

One can show that M is an associative ∗-algebra. It contains, among others,
the identity, the polynomials, the δ distribution and its derivatives. Then the
relation

[xµ, xν ] =ıΘµν , (3.27)

often given as a definition of the Moyal space, holds in M (but not in AΘ).

3.1.2. The Φ�4 theory on R4
θ Moyal space. The simplest non-commutative model

one may consider is the Φ�4 theory on the four-dimensional Moyal space. Its La-
grangian is the usual (commutative) one where the pointwise product is replaced
by the Moyal one:

S[φ] =
∫

d4x
(
− 1

2
∂µφ � ∂µφ +

1
2
m2 φ � φ +

λ

4
φ � φ � φ � φ

)
(x). (3.28)
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Thanks to the formula (3.3), this action can be explicitly computed. The interac-
tion part is given by the Corollary 3.3:∫

dxφ�4(x) =
∫ 4∏

i=1

dxi φ(xi) δ(x1 − x2 + x3 − x4)eıϕ, (3.29)

ϕ =
4∑

i<j=1

(−1)i+j+1xi ∧ xj .

The most obvious characteristic of the Moyal product is its non-locality. But its
non-commutativity implies that the vertex of the model (3.28) is only invariant
under cyclic permutation of the fields. This restricted invariance incites to repre-
sent the associated Feynman graphs with ribbon propagators. One can then make
a clear distinction between planar and non-planar graphs. This will be detailed in
Section 4.

Thanks to the delta function in (3.29), the oscillation may be written in
different ways:

δ(x1 − x2 + x3 − x4)eıϕ = δ(x1 − x2 + x3 − x4)eıx1∧x2+ıx3∧x4 (3.30a)

= δ(x1 − x2 + x3 − x4)eıx4∧x1+ıx2∧x3 (3.30b)

= δ(x1 − x2 + x3 − x4) exp ı(x1 − x2) ∧ (x2 − x3). (3.30c)

The interaction is real and positive17:∫ 4∏
i=1

dxiφ(xi) δ(x1 − x2 + x3 − x4)eıϕ

=
∫

dk

(∫
dxdy φ(x)φ(y)eık(x−y)+ıx∧y

)2
∈ R+. (3.31)

It is also translation invariant as shows equation (3.30c).
Property 3.1 implies that the propagator is the usual one: Ĉ(p) = 1/(p2+m2).

3.1.3. UV/IR mixing. In the article [87], Filk computed the Feynman rules corre-
sponding to (3.28). He showed that the planar amplitudes equal the commutative
ones whereas the non-planar ones give rise to oscillations coupling the internal
and external legs. Hence contrary perhaps to overoptimistic initial expectations,
non-commutative geometry alone does not eliminate the ultraviolet divergences of
QFT. Since there are infinitely many planar graphs with four external legs, the
model (3.28) might at best be just renormalizable in the ultraviolet regime, as
ordinary φ4

4.
In fact it is not. Minwalla, Van Raamsdonk and Seiberg discovered that the

model (3.28) exhibits a new type of divergences making it non-renormalizable [37].

17Another way to prove it is from (3.10), φ�4 = φ�4.
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A typical example is the non-planar tadpole:
k

p
=

λ

12

∫
d4k

(2π)4
eipµkνΘµν

k2 + m2

=
λ

48π2

√
m2

(Θp)2
K1(

√
m2(Θp)2) �

p→0
p−2. (3.32)

If p �= 0, this amplitude is finite but, for small p, it diverges like p−2. In other
words, if we put an ultraviolet cut-off Λ to the k-integral, the two limits Λ → ∞
and p → 0 do not commute. This is the UV/IR mixing phenomenon. A chain
of non-planar tadpoles, inserted in bigger graphs, makes divergent any function
(with six points or more for example). But this divergence is not local and can’t be
absorbed in a mass redefinition. This is what makes the model non-renormalizable.
We will see in sections 6.4 and 7 that the UV/IR mixing results in a coupling of the
different scales of the theory. We will also note that we should distinguish different
types of mixing.

The UV/IR mixing was studied by several groups. First, Chepelev and Roiban
[48] gave a power counting for different scalar models. They were able to identify
the divergent graphs and to classify the divergences of the theories thanks to the
topological data of the graphs. Then V. Gayral [88] showed that UV/IR mixing
is present on all isospectral deformations (they consist in curved generalizations
of the Moyal space and of the non-commutative torus). For this, he considered
a scalar model (3.28) and discovered contributions to the effective action which
diverge when the external momenta vanish. The UV/IR mixing is then a general
characteristic of the non-commutative theories, at least on these deformations.

3.2. The Grosse-Wulkenhaar breakthrough

The situation remained unchanged until H. Grosse and R. Wulkenhaar discovered
a way to define a renormalizable non-commutative model. We will detail their
result in Section 4 but the main message is the following. By adding an harmonic
term to the Lagrangian (3.28),

S[φ]=
∫

d4x
(
− 1

2
∂µφ�∂µφ+

Ω2

2
(x̃µφ)�(x̃µφ)+

1
2
m2φ�φ+

λ

4
φ�φ�φ�φ

)
(x)

(3.33)

where x̃ = 2Θ−1x and the metric is Euclidean, the model, in four dimensions,
is renormalizable at all orders of perturbation [40]. We will see in Section 7 that
this additional term gives rise to an infrared cut-off and allows to decouple the
different scales of the theory. The new model (3.33), which we call vulcanized
Φ�4

4 , does not exhibit any mixing. This result is very important because it opens
the way towards other non-commutative field theories. Remember that we call
vulcanization the procedure consisting in adding a new term to a Lagrangian of a
non-commutative theory in order to make it renormalizable, see footnote 9.
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The propagator C of this Φ4 theory is the kernel of the inverse operator
−∆ + Ω2x̃2 + m2. It is known as the Mehler kernel [50, 89]:

C(x, y) =
Ω2

θ2π2

∫ ∞

0

dt

sinh2(2Ω̃t)
e−

Ω̃
2 coth(2Ω̃t)(x−y)2− Ω̃

2 tanh(2Ω̃t)(x+y)2−m2t. (3.34)

Langmann and Szabo remarked that the quartic interaction with Moyal product
is invariant under a duality transformation. It is a symmetry between momentum
and direct space. The interaction part of the model (3.33) is (see equation (3.17))

Sint[φ] =
∫

d4x
λ

4
(φ � φ � φ � φ)(x) (3.35)

=
∫ 4∏

a=1

d4xa φ(xa)V (x1, x2, x3, x4) (3.36)

=
∫ 4∏

a=1

d4pa

(2π)4
φ̂(pa) V̂ (p1, p2, p3, p4) (3.37)

with

V (x1, x2, x3, x4) =
λ

4
1

π4 detΘ
δ(x1 − x2 + x3 − x4) cos(2(Θ−1)µν(xµ

1xν
2 + xµ

3xν
4)),

V̂ (p1, p2, p3, p4) =
λ

4
(2π)4δ(p1 − p2 + p3 − p4) cos(

1
2
Θµν(p1,µp2,ν + p3,µp4,ν))

where we used a cyclic Fourier transform: φ̂(pa) =
∫

dx e(−1)aıpaxaφ(xa). The
transformation

φ̂(p) ↔ π2
√
| detΘ|φ(x), pµ ↔ x̃µ (3.38)

exchanges (3.36) and (3.37). In addition, the free part of the model (3.28) isn’t co-
variant under this duality. The vulcanization adds a term to the Lagrangian which
restores the symmetry. The theory (3.33) is then covariant under the Langmann-
Szabo duality:

S[φ; m, λ, Ω] �→Ω2 S[φ;
m

Ω
,

λ

Ω2
,

1
Ω

]. (3.39)

By symmetry, the parameter Ω is confined in [0, 1]. Let us note that for Ω = 1,
the model is invariant.

The interpretation of that harmonic term is not yet clear. But the vulcan-
ization procedure already allowed to prove the renormalizability of several other
models on Moyal spaces such that Φ�4

2 [39], φ3
2,4 [64,65] and the LSZ models [43–45].

These last ones are of the type

S[φ] =
∫

dnx
(1

2
φ̄ � (−∂µ + x̃µ + m)2φ +

λ

4
φ̄ � φ � φ̄ � φ

)
(x). (3.40)

By comparison with (3.33), one notes that here the additional term is formally
equivalent to a fixed magnetic background. Therefore such a model is invariant
under magnetic translations which combine a translation and a phase shift on the
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field. This model is invariant under the above duality and is exactly soluble. Let us
remark that the complex interaction in (3.40) makes the Langmann-Szabo duality
more natural. It doesn’t need a cyclic Fourier transform. The φ�3 model at Ω = 1
also exhibits a soluble structure [64–66].

3.3. The non-commutative Gross-Neveu model

Apart from the Φ�4
4 , the modified bosonic LSZ model [47] and supersymmetric the-

ories, we now know several renormalizable non-commutative field theories. Nev-
ertheless they either are super-renormalizable (Φ�4

2 [39]) or (and) studied at a
special point in the parameter space where they are solvable (Φ�3

2 , Φ�3
4 [64, 65],

the LSZ models [43–45]). Although only logarithmically divergent for parity rea-
sons, the non-commutative Gross-Neveu model is a just renormalizable quantum
field theory as Φ�4

4 . One of its main interesting features is that it can be inter-
preted as a nonlocal fermionic field theory in a constant magnetic background.
Then apart from strengthening the “vulcanization” procedure to get renormaliz-
able non-commutative field theories, the Gross-Neveu model may also be useful
for the study of the quantum Hall effect. It is also a good first candidate for a
constructive study [9] of a non-commutative field theory as fermionic models are
usually easier to construct. Moreover its commutative counterpart being asymp-
totically free and exhibiting dynamical mass generation [90–92], a study of the
physics of this model would be interesting.

The non-commutative Gross-Neveu model (GN2
Θ) is a fermionic quartically

interacting quantum field theory on the Moyal plane R2
θ. The skew-symmetric

matrix Θ is

Θ =
(

0 −θ
θ 0

)
. (3.41)

The action is

S[ψ̄, ψ] =
∫

dx
(
ψ̄
(
−ı/∂ + Ω/̃x + m + µ γ5

)
ψ + Vo(ψ̄, ψ) + Vno(ψ̄, ψ)

)
(x) (3.42)

where x̃ = 2Θ−1x, γ5 = ıγ0γ1 and V = Vo + Vno is the interaction part given
hereafter. The µ-term appears at two-loop order. We use an Euclidean metric and
the Feynman convention /a = γµaµ. The γ0 and γ1 matrices form a two-dimensional
representation of the Clifford algebra {γµ, γν} = −2δµν . Let us remark that the
γµ’s are then skew-Hermitian: γµ† = −γµ.

Propagator. The propagator corresponding to the action (3.42) is given by the
following lemma:

Lemma 3.4 (Propagator [50]). The propagator of the Gross-Neveu model is

C(x, y) =
∫

dµC(ψ̄, ψ)ψ(x)ψ̄(y) =
(
−ı/∂ + Ω/̃x + m

)−1
(x, y) (3.43)

=
∫ ∞

0

dt C(t; x, y),
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C(t; x, y) = − Ω
θπ

e−tm2

sinh(2Ω̃t)
e−

Ω̃
2 coth(2Ω̃t)(x−y)2+ıΩx∧y (3.44)

×
{

ıΩ̃ coth(2Ω̃t)(/x − /y) + Ω(/̃x − /̃y) − m
}

e−2ıΩtγΘ−1γ

with Ω̃ = 2Ω
θ and x ∧ y = 2xΘ−1y.

We also have e−2ıΩtγΘ−1γ = cosh(2Ω̃t)12 − ı θ
2 sinh(2Ω̃t)γΘ−1γ.

If we want to study a N -color model, we can consider a propagator diagonal
in these color indices.

Interactions. Concerning the interaction part V , recall that (see Corollary 3.3) for
any f1, f2, f3, f4 in AΘ,∫

dx (f1 � f2 � f3 � f4) (x) =
1

π2 detΘ

∫ 4∏
j=1

dxjfj(xj) δ(x1 − x2 + x3 − x4)e−ıϕ,

(3.45)

ϕ =
4∑

i<j=1

(−1)i+j+1xi ∧ xj . (3.46)

This product is nonlocal and only invariant under cyclic permutations of the fields.
Then, contrary to the commutative Gross-Neveu model, for which there exists only
one spinorial interaction, the GN2

Θ model has, at least, six different interactions:
the orientable ones

Vo =
λ1

4

∫
dx

(
ψ̄ � ψ � ψ̄ � ψ

)
(x) (3.47a)

+
λ2

4

∫
dx

(
ψ̄ � γµψ � ψ̄ � γµψ

)
(x) (3.47b)

+
λ3

4

∫
dx

(
ψ̄ � γ5ψ � ψ̄ � γ5ψ

)
(x), (3.47c)

where ψ’s and ψ̄’s alternate and the non-orientable ones

Vno =
λ4

4

∫
dx

(
ψ � ψ̄ � ψ̄ � ψ

)
(x) (3.48a)

+
λ5

4

∫
dx

(
ψ � γµψ̄ � ψ̄ � γµψ

)
(x) (3.48b)

+
λ6

4

∫
dx

(
ψ � γ5ψ̄ � ψ̄ � γ5ψ

)
(x). (3.48c)

All these interactions have the same x kernel thanks to the equation (3.45). The
reason for which we call these interactions orientable or not will be clear in Sec-
tion 7.
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4. Multi-scale analysis in the matrix basis

The matrix basis is a basis for Schwartz-class functions. In this basis, the Moyal
product becomes a simple matrix product. Each field is then represented by an
infinite matrix [39, 86, 93].

4.1. A dynamical matrix model

4.1.1. From the direct space to the matrix basis. In the matrix basis, the ac-
tion (3.33) takes the form:

S[φ] =(2π)D/2
√

detΘ
(1

2
φ∆φ +

λ

4
Trφ4

)
(4.1)

where φ = φmn, m, n ∈ ND/2 and

∆mn,kl =
D/2∑
i=1

(
µ2

0 +
2
θ
(mi + ni + 1)

)
δmlδnk − 2

θ
(1 − Ω2) (4.2)

×
(√

(mi + 1)(ni + 1) δmi+1,liδni+1,ki +
√

mini δmi−1,liδni−1,ki

)∏
j =i

δmj lj δnjkj .

The (four-dimensional) matrix ∆ represents the quadratic part of the Lagrangian.
The first difficulty to study the matrix model (4.1) is the computation of its prop-
agator G defined as the inverse of ∆:∑

r,s∈ND/2

∆mn;rsGsr;kl =
∑

r,s∈ND/2

Gmn;rs∆sr;kl = δmlδnk. (4.3)

Fortunately, the action is invariant under SO(2)D/2 thanks to the form (3.1)
of the Θ matrix. It implies a conservation law

∆mn,kl =0 ⇐⇒ m + k �= n + l. (4.4)

The result is [39, 40]

Gm,m+h;l+h,l =
θ

8Ω

∫ 1

0

dα
(1 − α)

µ2
0θ

8Ω +( D
4 −1)

(1 + Cα)
D
2

D
2∏

s=1

G
(α)
ms,ms+hs;ls+hs,ls , (4.5)

G
(α)
m,m+h;l+h,l =

(√
1 − α

1 + Cα

)m+l+h

×
min(m,l)∑

u=max(0,−h)

A(m, l, h, u)
(

Cα(1 + Ω)√
1 − α(1 − Ω)

)m+l−2u

,

where A(m, l, h, u) =
√(

m
m−u

)(
m+h
m−u

)(
l

l−u

)(
l+h
l−u

)
and C is a function in Ω: C(Ω) =

(1−Ω)2

4Ω . The main advantage of the matrix basis is that it simplifies the interaction
part: φ�4 becomes Trφ4. But the propagator becomes very complicated.

Let us remark that the matrix model (4.1) is dynamical : its quadratic part
is not trivial. Usually, matrix models are local.
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Definition 4.1. A matrix model is called local if Gmn;kl = G(m, n)δmlδnk and
nonlocal otherwise.

In the matrix theories, the Feynman graphs are ribbon graphs. The propaga-
tor Gmn;kl is then represented by Figure 6. In a local matrix model, the propagator

m

n = m + h k = l + h

l

Figure 6: Matrix propagator.

preserves the index values along the trajectories (simple lines).

4.1.2. Topology of ribbon graphs. The power counting of a matrix model depends
on the topological data of its graphs. Figure 7 gives two examples of ribbon graphs.
Each ribbon graph may be drawn on a two-dimensional manifold. Actually each
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(a) Planar

��
����
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��

(b) Non-planar

Figure 7: Ribbon graphs.

graph defines a surface on which it is drawn. Let a graph G with V vertices, I
internal propagators (double lines) and F faces (made of simple lines). The Euler
characteristic

χ =2 − 2g = V − I + F (4.6)

gives the genus g of the manifold. One can make this clear by passing to the dual
graph. The dual of a given graph G is obtained by exchanging faces and vertices.
The dual graphs of the Φ�4 theory are tesselations of the surfaces on which they
are drawn. Moreover each direct face broken by external legs becomes, in the dual
graph, a puncture. If among the F faces of a graph, B are broken, this graph may
be drawn on a surface of genus g = 1 − 1

2 (V − I + F ) with B punctures. Figure 8
gives the topological data of the graphs of Figure 7.
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I=3
F=2
B=2
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⎫⎪⎪⎬⎪⎪⎭ =⇒ g = 1

Figure 8: Topological data of ribbon graphs.

4.2. Multi-scale analysis

In [42], a multi-scale analysis was introduced to complete the rigorous study of the
power counting of the non-commutative Φ�4 theory.

4.2.1. Bounds on the propagator. Let G a ribbon graph of the Φ�4
4 theory with

N external legs, V vertices, I internal lines and F faces. Its genus is then g =
1− 1

2 (V − I +F ). Four indices {m, n; k, l} ∈ N2 are associated to each internal line
of the graph and two indices to each external line, that is to say 4I + 2N = 8V
indices. But, at each vertex, the left index of a ribbon equals the right one of the
neighbor ribbon. This gives rise to 4V independent identifications which allows
to write each index in terms of a set I made of 4V indices, four per vertex, for
example the left index of each half-ribbon.

The graph amplitude is then

AG =
∑
I

∏
δ∈G

Gmδ(I),nδ(I);kδ(I),lδ(I) δmδ−lδ,nδ−kδ
, (4.7)

where the four indices of the propagator G of the line δ are functions of I and writ-
ten {mδ(I), nδ(I); kδ(I), lδ(I)}. We decompose each propagator, given by (4.5):

G =
∞∑

i=0

Gi thanks to
∫ 1

0

dα =
∞∑

i=1

∫ M−2(i−1)

M−2i

dα, M > 1. (4.8)
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We have an associated decomposition for each amplitude

AG =
∑

µ

AG,µ , (4.9)

AG,µ =
∑
I

∏
δ∈G

Giδ

mδ(I),nδ(I);kδ(I),lδ(I) δmδ(I)−lδ(I),nδ(I)−kδ(I) , (4.10)

where µ = {iδ} runs over all the possible assignments of a positive integer iδ to
each line δ. We proved the following four propositions:

Proposition 4.1. For M large enough, there exists a constant K such that, for
Ω ∈ [0.5, 1], we have the uniform bound

Gi
m,m+h;l+h,l � KM−2ie−

Ω
3 M−2i‖m+l+h‖. (4.11)

Proposition 4.2. For M large enough, there exist two constants K and K1 such
that, for Ω ∈ [0.5, 1], we have the uniform bound

Gi
m,m+h;l+h,l � KM−2ie−

Ω
4 M−2i‖m+l+h‖

×
D
2∏

s=1

min

⎛⎝1,

(
K1 min(ms, ls, ms + hs, ls + hs)

M2i

)|ms−ls|
2

⎞⎠ . (4.12)

This bound allows to prove that the only diverging graphs have either a
constant index along the trajectories or a total jump of 2.

Proposition 4.3. For M large enough, there exists a constant K such that, for
Ω ∈ [23 , 1], we have the uniform bound

p∑
l=−m

Gi
m,p−l,p,m+l � KM−2i e−

Ω
4 M−2i(‖p‖+‖m‖) . (4.13)

This bound shows that the propagator is almost local in the following sense:
with m fixed, the sum over l doesn’t cost anything (see Figure 6). Nevertheless
the sums we’ll have to perform are entangled (a given index may enter different
propagators) so that we need the following proposition.

Proposition 4.4. For M large enough, there exists a constant K such that, for
Ω ∈ [23 , 1], we have the uniform bound

∞∑
l=−m

max
p�max(l,0)

Gi
m,p−l;p,m+l � KM−2ie−

Ω
36 M−2i‖m‖ . (4.14)

We refer to [42] for the proofs of these four propositions.
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4.2.2. Power counting. About half of the 4V indices initially associated to a graph
is determined by the external indices and the delta functions in (4.7). The other
indices are summation indices. The power counting consists in finding which sums
cost M2i and which cost O(1) thanks to (4.13). The M2i factor comes from (4.11)
after a summation over an index18 m ∈ N2,

∞∑
m1,m2=0

e−cM−2i(m1+m2) =
1

(1 − e−cM−2i)2
=

M4i

c2
(1 + O(M−2i)). (4.15)

We first use the delta functions as much as possible to reduce the set I to
a true minimal set I ′ of independent indices. For this, it is convenient to use the
dual graphs where the resolution of the delta functions is equivalent to a usual
momentum routing.

The dual graph is made of the same propagators than the direct graph except
the position of their indices. Whereas in the original graph we have Gmn;kl =

m

n k

l
, the position of the indices in a dual propagator is

Gmn;kl =
m

l k

n
. (4.16)

The conservation δl−m,−(n−k) in (4.7) implies that the difference l−m is conserved
along the propagator. These differences behave like angular momenta and the
conservation of the differences � = l − m and −� = n − k is nothing else than the
conservation of the angular momentum thanks to the symmetry SO(2) × SO(2)
of the action (4.1):

m

l k

n
δl −δl l = m + � , n = k + (−�). (4.17)

The cyclicity of the vertices implies the vanishing of the sum of the angular mo-
menta entering a vertex. Thus the angular momentum in the dual graph behaves
exactly like the usual momentum in ordinary Feynman graphs.

We know that the number of independent momenta is exactly the number
L′ (= I − V ′ + 1 for a connected graph) of loops in the dual graph. Each index at
a (dual) vertex is then given by a unique reference index and a sum of momenta.
If the dual vertex under consideration is an external one, we choose an external
index for the reference index. The reference indices in the dual graph correspond
to the loop indices in the direct graph. The number of summation indices is then
V ′−B +L′ = I +(1−B) where B � 0 is the number of broken faces of the direct
graph or the number of external vertices in the dual graph.

By using a well-chosen order on the lines, an optimized tree and an L1 −L∞

bound, one can prove that the summation over the angular momenta does not cost
anything thanks to (4.13). Recall that a connected component is a subgraph for
which all internal lines have indices greater than all its external ones. The power

18Recall that each index is in fact made of two indices, one for each symplectic pair of R4
θ.
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counting is then:

AG � K ′V ∑
µ

∏
i,k

Mω(Gi
k) (4.18)

with ω(Gi
k) = 4(V ′

i,k − Bi,k) − 2Ii,k = 4(Fi,k − Bi,k) − 2Ii,k (4.19)

= (4 − Ni,k) − 4(2gi,k + Bi,k − 1)

where Ni,k, Vi,k, Ii,k = 2Vi,k − Ni,k

2 , Fi,k and Bi,k are respectively the numbers
of external legs, of vertices, of (internal) propagators, of faces and broken faces of
the connected component Gi

k ; gi,k = 1− 1
2 (Vi,k − Ii,k +Fi,k) is its genus. We have

Theorem 4.5. The sum over the scales attributions µ converges if ∀i, k, ω(Gi
k) < 0.

We recover the power counting obtained in [38].
From this point on, renormalizability of Φ�4

4 can proceed (however remark
that it remains limited to Ω ∈ [0.5, 1] by the technical estimates such as (4.11);
this limitation is overcome in the direct space method below).

The multiscale analysis allows to define the so-called effective expansion,
in between the bare and the renormalized expansion, which is optimal, both for
physical and for constructive purposes [9]. In this effective expansion only the
subcontributions with all internal scales higher than all external scales have to be
renormalized by counterterms of the form of the initial Lagrangian.

In fact only planar such subcontributions with a single external face must be
renormalized by such counterterms. This follows simply from the Grosse-Wulken-
haar moves defined in [38]. These moves translate the external legs along the
outer border of the planar graph, up to irrelevant corrections, until they all merge
together into a term of the proper Moyal form, which is then absorbed in the
effective constants definition. This requires only the estimates (4.11)–(4.14), which
were checked numerically in [38].

In this way the relevant and marginal counterterms can be shown to be of
the Moyal type, namely renormalize the parameters λ, m and Ω19.

Notice that in the multiscale analysis there is no need for the relatively com-
plicated use of Polchinski’s equation [46] made in [38]. Polchinski’s method, al-
though undoubtedly very elegant for proving perturbative renormalizability does
not seem directly suited to constructive purposes, even in the case of simple
fermionic models such as the commutative Gross Neveu model, see, e.g., [94].

The BPHZ theorem itself for the renormalized expansion follows from finite-
ness of the effective expansion by developing the counterterms still hidden in the
effective couplings. Its own finiteness can be checked, e.g., through the standard
classification of forests [9]. Let us however recall once again that in our opinion
the effective expansion, not the renormalized one is the more fundamental object,
both to describe the physics and to attack deeper mathematical problems, such as
those of constructive theory [9, 77].

19The wave function renormalization, i.e., renormalization of the ∂µφ�∂µφ term can be absorbed

in a rescaling of the field, called “field strength renormalization”.
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5. Hunting the Landau ghost

The matrix base simplifies very much at Ω = 1, where the matrix propagator
becomes diagonal, i.e., conserves exact indices. This property has been used for the
general proof that the beta function of the theory vanishes in the ultraviolet regime
[58]. At the moment this is the only concrete result that shows that NCVQFT is
definitely better behaved than QFT. It also opens the perspective of a full non-
perturbative construction of the model.

We summarize now the sequence of three papers [52,57,58] which lead to this
exciting result, using the simpler notations of [58].

5.1. One loop

The propagator in the matrix base at Ω = 1 is

Cmn;kl = Gmnδmlδnk ; Gmn =
1

A + m + n
, (5.1)

where A = 2 + µ2/4, m, n ∈ N2 (µ being the mass) and we use the notation

δml = δm1l1δm2l2 , m + m = m1 + m2 + n1 + n2 . (5.2)

We focus on the complex φ̄ � φ � φ̄ � φ theory, since the result for the real case
is similar [57]. The generating functional is:

Z(η, η̄) =
∫

dφdφ̄ e−S(φ̄,φ)+F (η̄,η,;φ̄,φ)

F (η̄, η; φ̄, φ) = φ̄η + η̄φ

S(φ̄, φ) = φ̄Xφ + φXφ̄ + Aφ̄φ +
λ

2
φφ̄φφ̄ (5.3)

where traces are implicit and the matrix Xmn stands for mδmn. S is the action
and F the external sources.

We denote Γ4(0, 0, 0, 0) the amputated one particle irreducible four-point
function and Σ(0, 0) the amputated one particle irreducible two-point function
with external indices set to zero. The wave function renormalization is ∂LΣ =
∂RΣ = Σ(1, 0)−Σ(0, 0) [57], and the corresponding field strength renormalization
is Z = (1 − ∂LΣ(0, 0)) = (1 − ∂RΣ(0, 0)) The main result to prove is that after
field strength renormalization20 the effective coupling is asymptotically constant,
hence:

Theorem 5.1. The equation:

Γ4(0, 0, 0, 0) = λZ2 (5.4)

holds up to irrelevant terms to all orders of perturbation, either as a bare equation
with fixed ultraviolet cutoff, or as an equation for the renormalized theory. In the

20We recall that in the ordinary commutative φ4
4 field theory there is no one loop wave-function

renormalization, hence the Landau ghost can be seen directly on the four-point function renor-
malization at one loop.
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latter case λ should still be understood as the bare constant, but reexpressed as a
series in powers of λren.

The field strength renormalization at one loop is

Z = 1 − aλ (5.5)

where we can keep in a only the coefficient of the logarithmic divergence, as the
rest does not contribute but to finite irrelevant corrections.

Tup

p

m

n

m

n

m
m
n

m

n

n

p

Tdown

Figure 9: Two-point graphs at one loops: The up and down tadpoles.

To compute a we should add the wave function renormalization for the two
tadpoles T up and T down of Figure 9. These two graphs have both a coupling
constant −λ/2, and a combinatorial factor 2 for choosing to which leg of the vertex
the external φ̄ contracts. Then the logarithmic divergence of T up is∑

p

(
1

m + p + A
− 1

p + A
) = −

∑
p

[
m

(m + p + A)(p + A)
] (5.6)

so it corresponds to the renormalization of the coefficient of the m factor in Gm,n

in 5.1, with logarithmic divergence λ
∑

p[
1
p2 ]. Similarly the logarithmic divergence

of T down gives the same renormalization but for the n factor in Gm,n in 5.1.
Altogether we find therefore that

a = +
∑

p

[
1
p2

]. (5.7)

In the real case we have a combinatoric factor 4 instead of 2, but the coupling
constant is λ/4, so a is the same. The four-point function perturbative expansion

B1

p

0

Figure 10: Four-point graph at one loop.
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Figure 11: Four-point graphs at two loops.

at one loop is

Γ4(0, 0, 0, 0) = −λ[1 − a′λ]. (5.8)

Only the graph B1 of Figure 10 contributes to a′. It has a prefactor 1
2! (λ/2)2 and a

combinatoric factor 24 for contractions, since there is a factor 2 to choose whether
the bubble is “vertical or horizontal”, i.e., if the horizontal bubble of Figure 10 is
of φ̄ � φ � φ̄ � φ or of φ̄ � φ � φ̄ � φ type, then a factor 2 to choose to which vertex
the first external; φ̄ contracts, then a factor 2 for the leg to which it contracts in
that vertex and finally another factor 2 for the leg to which the other external φ̄
contracts.

The corresponding sum gives

a′ = (24λ/8)
∑

p

1
p2 = 2a (B1) . (5.9)

so that at one loop equation (5.4) holds. In the real case we have a combinatoric
factor 43 instead of 24, but the coupling constant is λ/4, so a is the same and (5.4)
holds.

5.2. Two and three loops

This computation was extended to two and three loops in [57]. The results were
given in the form of tables for the discrete divergent sums and combinatoric weights
of all planar regular graphs which appears at two and three loops in Γ4 and Z.
Equation (5.4) holds again, both in the real and complex cases.

Here we simply reproduce the list of contributing Feynman graphs. Indeed it
is interesting to notice that although at large order there are less planar regular
graphs than the general graphs of the commutative theory, the effect is opposite
at small orders.
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Figure 12: Two-point graphs at two loops.
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Figure 13: Two-point graphs at three loops.
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Figure 14: Four-point graphs at three loops, part I.

5.3. The general Ward identity

In this section, essentially reproduced from [58], we prove a general Ward iden-
tity which allows to check that Theorem 5.1 continues to hold at any order in
perturbation theory.

We orient the propagators from a φ̄ to a φ. For a field φ̄ab we call the index
a a left index and the index, b a right index. The first (second) index of a φ̄ always
contracts with the second (first) index of a φ. Consequently for φcd, c is a right
index and d is a left index.

Let U = eıB with B a small hermitian matrix. We consider the “left” (as it
acts only on the left indices) change of variables:

φU = φU ; φ̄U = U †φ̄ . (5.10)

There is a similar “right” change of variables. The variation of the action is, at
first order,

δS = φUXU †φ̄ − φXφ̄ ≈ ı
(
φBXφ̄ − φXBφ̄

)
= ıB

(
Xφ̄φ − φ̄φX

)
(5.11)
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Figure 15: Four-point graphs at three loops, part II.

and the variation of the external sources is

δF = U †φ̄η − φ̄η + η̄φU − η̄φ ≈ −ıBφ̄η + ıη̄φB

= ıB
(
− φ̄η + η̄φ). (5.12)

We obviously have

δ lnZ

δBba
= 0 =

1
Z(η̄, η)

∫
dφ̄dφ

(
− δS

δBba
+

δF

δBba

)
e−S+F

=
1

Z(η̄, η)

∫
dφ̄dφ e−S+F

(
− [Xφ̄φ − φ̄φX ]ab + [−φ̄η + η̄φ]ab

)
. (5.13)

We now apply ∂η∂η̄|η=η̄=0 on the above expression. As we have at most two
insertions, we get only the connected components of the correlation functions.

0 =
〈
∂η∂η̄

(
− [Xφ̄φ − φ̄φX ]ab + [−φ̄η + η̄φ]ab

)
eF (η̄,η)|0

〉
c

, (5.14)

which gives〈
∂(η̄φ)ab

∂η̄

∂(φ̄η)
∂η

− ∂(φ̄η)ab

∂η

∂(η̄φ)
∂η̄

− [Xφ̄φ − φ̄φX ]ab
∂(η̄φ)

∂η̄

∂(φ̄η)
∂η

〉
c

= 0. (5.15)

Using the explicit form of X we get

(a − b)
〈

[φ̄φ]ab
∂(η̄φ)

∂η̄

∂(φ̄η)
∂η

〉
c

=
〈

∂(η̄φ)ab

∂η̄

∂(φ̄η)
∂η

〉
c

−
〈

∂(φ̄η)ab

∂η

∂(η̄φ)
∂η̄

〉
,
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and for η̄βαηνµ we get

(a − b)
〈
[φ̄φ]abφαβφ̄µν

〉
c

=
〈
δaβφαbφ̄µν

〉
c
−
〈
δbµφ̄aνφαβ

〉
c

. (5.16)

We restrict to terms in the above expressions which are planar with a single
external face, as all others are irrelevant. Such terms have α = ν, a = β and b = µ.
The Ward identity for the two-point function reads

(a − b)
〈
[φ̄φ]abφνaφ̄bν

〉
c

=
〈
φνbφ̄bν

〉
c
−
〈
φ̄aνφνa

〉
c

(5.17)

(repeated indices are not summed up).
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Figure 16: The Ward identity for a 2p-point function with insertion on the left
face.

Derivating further we get

(a − b)
〈
[φ̄φ]ab∂η̄1(η̄φ)∂η1(φ̄η)∂η̄2(η̄φ)∂η2(φ̄η)

〉
c

(5.18)

=
〈
∂η̄1(η̄φ)∂η1(φ̄η)

[
∂η̄2(η̄φ)ab∂η2(φ̄η) − ∂η2(φ̄η)ab∂η̄2(η̄φ)

]〉
c
+ 1 ↔ 2 .

Take η̄1 βα, η1 νµ, η̄2 δγ and η2 σρ. We get

(a − b)
〈
[φ̄φ]abφαβ φ̄µνφγδφ̄ρσ

〉
c

(5.19)

=
〈
φαβφ̄µνδaδφγbφ̄ρσ

〉
c
−
〈
φαβ φ̄µνφγδφ̄aσδbρ

〉
c
+

+
〈
φγδφ̄ρσδaβφαbφ̄µν

〉
c
−
〈
φγδφ̄ρσφαβ φ̄aνδbµ

〉
c

.

Again neglecting all terms which are not planar with a single external face leads
to

(a − b)
〈
φαa[φ̄φ]abφ̄bνφνδφ̄δα

〉
c

=
〈
φαbφ̄bνφνδφ̄δα

〉
c
−
〈
φαaφ̄aνφνδφ̄δα

〉
c
. (5.20)

Clearly there are similar identities for 2p-point functions for any p.
The indices a and b are left indices, so that we have the Ward identity with

an insertion on a left face as represented in Figure 16. There is a similar Ward
identity obtained with the “right” transformation, consequently with the insertion
on a right face.
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5.3.1. Proof of Theorem 5.1. We start this section by some definitions: we will
denote G4(m, n, k, l) the connected four-point function restricted to the planar
one broken face case, where m, n, k, l are the indices of the external face in the
correct cyclic order. The first index m always represents a left index.

Similarly, G2(m, n) is the connected planar one broken face two-point func-
tion with m, n the indices on the external face (also called the dressed propagator,
see Figure 17). G2(m, n) and Σ(m, n) are related by

G2(m, n) =
Cmn

1 − CmnΣ(m, n)
=

1
C−1

mn − Σ(m, n)
. (5.21)

mnC   =
2

G(m,n)=
m

n

m

n

Figure 17: The dressed and the bare propagators.

Gins(a, b; . . . ) will denote the planar one broken face connected function with
one insertion on the left border where the matrix index jumps from a to b. With
this notation the Ward identity (5.17) writes:

(a − b) G2
ins(a, b; ν) = G2(b, ν) − G2(a, ν) . (5.22)

All the identities we use, either Ward identities or the Dyson equation of
motion can be written either for the bare theory or for the theory with complete
mass renormalization, which is the one considered in [57]. In the first case the
parameter A in (5.1) is the bare one, Abare and there is no mass subtraction. In
the second case the parameter A in (5.1) is Aren = Abare −Σ(0, 0), and every two-
point 1PI subgraph is subtracted at 0 external indices21. ∂L denotes the derivative
with respect to a left index and ∂R the one with respect to a right index. When
the two derivatives are equal we use the generic notation ∂.

Let us prove first the theorem in the mass-renormalized case, then in the
next subsection in the bare case. Indeed the mass-renormalized theory used is free
from any quadratic divergences. Remaining logarithmic subdivergences in the ultra
violet cutoff can be removed easily by passing to the effective series as explained
in [57].

We analyze a four-point connected function G4(0, m, 0, m) with index m �= 0
on the right borders. This explicit break of left-right symmetry is adapted to our
problem.

Consider a φ̄ external line and the first vertex hooked to it. Turning right on
the m border at this vertex we meet a new line (the slashed line in Figure 18). The
slashed line either separates the graph into two disconnected components (G4

(1)

and G4
(2) in Figure 18) or not (G4

(3) in Figure 18). Furthermore, if the slashed
line separates the graph into two disconnected components the first vertex may

21These mass subtractions need not be rearranged into forests since 1PI two-point subgraphs
never overlap non trivially.
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Figure 18: The Dyson equation.

either belong to the four-point component (G4
(1) in Figure 18) or to the two-point

component (G4
(2) in Figure 18).

We stress that this is a classification of graphs: the different components de-
picted in Figure 18 take into account all the combinatoric factors. Furthermore,
the setting of the external indices to 0 on the left borders and m on the right bor-
ders distinguishes the G4

(1) and G4
(2) from their counterparts “pointing upwards”:

indeed, the latter are classified in G4
(3)!

We have thus the Dyson equation:

G4(0, m, 0, m) = G4
(1)(0, m, 0, m) + G4

(2)(0, m, 0, m) + G4
(3)(0, m, 0, m) . (5.23)

The second term, G4
(2), is zero. Indeed the mass renormalized two-point in-

sertion is zero, as it has the external left index set to zero. Note that this is an
insertion exclusively on the left border. The simplest case of such an insertion is
a (left) tadpole. We will (naturally) call a general insertion touching only the left
border a “generalized left tadpole”.

We will prove that G4
(1) + G4

(3) yields Γ4 = λ(1 − ∂Σ)2 after amputation of
the four external propagators.

We start with G4
(1). It is of the form

G4
(1)(0, m, 0, m) = λC0mG2(0, m)G2

ins(0, 0; m) . (5.24)

By the Ward identity we have

G2
ins(0, 0; m) = lim

ζ→0
G2

ins(ζ, 0; m) = lim
ζ→0

G2(0, m) − G2(ζ, m)
ζ

= −∂LG2(0, m) . (5.25)
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Using the explicit form of the bare propagator we have ∂LC−1
ab = ∂RC−1

ab =
∂C−1

ab = 1. Reexpressing G2(0, m) by equation (5.21) we conclude that:

G4
(1)(0, m, 0, m) = λC0m

C0mC2
0m[1 − ∂LΣ(0, m)]

[1 − C0mΣ(0, m)](1 − C0mΣ(0, m))2

= λ[G2(0, m)]4
C0m

G2(0, m)
[1 − ∂LΣ(0, m)] . (5.26)

The self energy is (again up to irrelevant terms [40])

Σ(m, n) = Σ(0, 0) + (m + n)∂Σ(0, 0). (5.27)

Therefore up to irrelevant terms (C−1
0m = m + Aren) we have

G2(0, m) =
1

m + Abare − Σ(0, m)
=

1
m[1 − ∂Σ(0, 0)] + Aren

, (5.28)

and

C0m

G2(0, m)
= 1 − ∂Σ(0, 0) +

Aren

m + Aren
∂Σ(0, 0) . (5.29)

Inserting equation (5.29) in equation (5.26) gives

G4
(1)(0, m, 0, m) = λ[G2(0, m)]4

(
1 − ∂Σ(0, 0) +

Aren

m + Aren
∂Σ(0, 0)

)
[1 − ∂LΣ(0, m)] . (5.30)

CT=
pp

1PI 1PI

Figure 19: Two-point insertion and opening of the loop with index p.

For the G4
(3)(0, m, 0, m) one starts by “opening” the face which is “first on

the right”. The summed index of this face is called p (see Figure 18). For bare
Green functions this reads

G4,bare
(3) (0, m, 0, m) = C0m

∑
p

G4,bare
ins (p, 0; m, 0, m) . (5.31)

When passing to mass renormalized Green functions one must be cautious. It
is possible that the face p belonged to a 1PI two-point insertion in G4

(3) (see
the left-hand side in Figure 19). Upon opening the face p this two-point insertion
disappears (see right-hand side of Figure 19)! When renormalizing, the counterterm
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corresponding to this kind of two-point insertion will be subtracted on the left-
hand side of equation (5.31), but not on the right-hand side. In the equation for
G4

(3)(0, m, 0, m) one must therefore add its missing counterterm, so that

G4
(3)(0, m, 0, m) = C0m

∑
p

G4
ins(0, p; m, 0, m)

− C0m(CTlost)G4(0, m, 0, m) . (5.32)

It is clear that not all 1PI two-point insertions on the left-hand side of Fig-
ure 19 will be “lost” on the right-hand side. If the insertion is a “generalized left
tadpole” it is not “lost” by opening the face p (imagine a tadpole pointing up-
wards in Figure 19: clearly it will not be opened by opening the line). We will call
the two-point 1PI insertions “lost” on the right-hand side ΣR(m, n). Denoting the
generalized left tadpole T L we can write (see Fig .20):

Σ(m, n) = T L(m, n) + ΣR(m, n) . (5.33)

Note that as T L(m, n) is an insertion exclusively on the left border, it does not
depend upon the right index n. We therefore have ∂Σ(m, n) = ∂RΣ(m, n) =
∂RΣR(m, n).

Σ(m,n)

p

(m,n)TL (m,n)ΣR

=1PI + 1PI

m

n

m

m

n
n

Figure 20: The self energy.

The missing mass counterterm writes

CTlost = ΣR(0, 0) = Σ(0, 0) − T L . (5.34)

In order to evaluate ΣR(0, 0) we procede by opening its face p and using the Ward
identity (5.17), to obtain

ΣR(0, 0) =
1

G2(0, 0)

∑
p

G2
ins(0, p; 0)

=
1

G2(0, 0)

∑
p

1
p
[G2(0, 0) − G2(p, 0)]

=
∑

p

1
p

(
1 − G2(p, 0)

G2(0, 0)

)
. (5.35)
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Using equation (5.32) and equation (5.35) we have

G4
(3)(0, m, 0, m) = C0m

∑
p

G4
ins(0, p; m, 0, m)

− C0mG4(0, m, 0, m)
∑

p

1
p

(
1 − G2(p, 0)

G2(0, 0)

)
. (5.36)

But by the Ward identity (5.20)

C0m

∑
p

G4
ins(0, p; m, 0, m) = C0m

∑
p

1
p

(
G4(0, m, 0, m)− G4(p, m, 0, m)

)
.

(5.37)

The second term in equation (5.37), having at least three denominators linear in
p, is irrelevant22 . Substituting equation (5.37) in equation (5.36) we have

G4
(3)(0, m, 0, m) = C0m

G4(0, m, 0, m)
G2(0, 0)

∑
p

G2(p, 0)
p

. (5.38)

To conclude we must evaluate the sum in equation (5.38). Using equation (5.28)
we have∑

p

G2(p, 0)
p

=
∑

p

G2(p, 0)
p

( 1
G2(0, 1)

− 1
G2(0, 0)

) 1
1 − ∂Σ(0, 0)

. (5.39)

In order to interpret the two terms in the above equation we start by performing
the same manipulations as in equation (5.35) for ΣR(0, 1). We get

ΣR(0, 1) =
∑

p

1
p

(
1 − G2(p, 1)

G2(0, 1)

)
=
∑

p

1
p

(
1 − G2(p, 0)

G2(0, 1)

)
. (5.40)

where in the second equality we have neglected an irrelevant term.
Substituting equation (5.35) and equation (5.40) in equation (5.39) we get∑

p

G2(p, 0)
p

=
ΣR(0, 0) − ΣR(0, 1)

1 − ∂Σ(0, 0)
= − ∂RΣR(0, 0)

1 − ∂Σ(0, 0)
= − ∂Σ(0, 0)

1 − ∂Σ(0, 0)
, (5.41)

as ∂RΣR = ∂Σ. Hence:

G4
(3)(0, m, 0, m; p) = −C0mG4(0, m, 0, m)

1
G2(0, 0)

∂Σ(0, 0)
1 − ∂Σ(0, 0)

= −G4(0, m, 0, m)
Aren ∂Σ(0, 0)

(m + Aren)[1 − ∂Σ(0, 0)]
. (5.42)

22Any perturbation order of G4(p, m, 0, m) is a polynomial in ln(p) divided by p2. Therefore the
sums over p above are always convergent.
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Using (5.30) and (5.42), equation (5.23) rewrites as

G4(0, m, 0, m)
(
1 +

Aren ∂Σ(0, 0)
(m + Aren) [1 − ∂Σ(0, 0)]

)
(5.43)

= λbare(G2(0, m))4
(
1 − ∂Σ(0, 0) +

Aren

m + Aren
∂Σ(0, 0)

)
[1 − ∂LΣ(0, m)] .

We multiply (5.43) by [1 − ∂Σ(0, 0)] and amputate four times. As the differences
Γ4(0, m, 0, m, ) − Γ4(0, 0, 0, 0) and ∂LΣ(0, m) − ∂LΣ(0, 0) are irrelevant we get:

Γ4(0, 0, 0, 0) = λ(1 − ∂Σ(0, 0))2 . (5.44)

�

5.3.2. Bare identity. Let us explain now why the main theorem is also true as an
identity between bare functions, without any renormalization, but with ultraviolet
cutoff.

Using the same Ward identities, all the equations go through with only few
differences:

– we should no longer add the lost mass counterterm in (5.34);
– the term G4

(2) is no longer zero;
– equation (5.29) and all propagators now involve the bare A parameter.

But these effects compensate. Indeed the bare G4
(2) term is the left generalized

tadpole Σ − ΣR, hence

G4
(2)(0, m, 0, m) = C0,m

(
Σ(0, m) − ΣR(0, m)

)
G4(0, m, 0, m) . (5.45)

Equation (5.29) becomes up to irrelevant terms

Cbare
0m

G2,bare(0, m)
= 1 − ∂LΣ(0, 0) +

Abare

m + Abare
∂LΣ(0, 0) − 1

m + Abare
Σ(0, 0) .

(5.46)

The first term proportional to Σ(0, m) in (5.45) combines with the new term in
(5.46), and the second term proportional to ΣR(0, m) in (5.45) is exactly the former
“lost counterterm” (5.34). This proves (5.4) in the bare case.

5.4. The RG flow

It remains to understand better the meaning of the Langmann-Szabo symmetry
which certainly lies behind this Ward identity. Of course we also need to develop a
non-perturbative or constructive analysis of the theory to fully confirm the absence
of the Landau ghost. If this constructive analysis confirms the perturbative picture
the expected non-perturbative flow for the effective parameters λ and Ω should be:

dλi

di
� a(1 − Ωi)F (λi) , (5.47)

dΩi

di
� b(1 − Ωi)G(λi) , (5.48)
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Figure 21: Numerical flow for λ and Ω.

where F (λi) = λ2
i + O(λ3

i ), G(λi) = λi + O(λ2
i ) and a, b ∈ R are two constants.

The behavior of this system is qualitatively the same as the simpler system
dλi

di
� a(1 − Ωi)λ2

i , (5.49)

dΩi

di
� b(1 − Ωi)λi , (5.50)

whose solution is
λi = λ0e

a
b (Ωi−Ω0) , (5.51)

with Ωi solution of

b i λ0 =
∫ 1−Ω0

1−Ωi

e
au
b

du

u
, (5.52)

hence going exponentially fast to 1 as i goes to infinity. The corresponding numer-
ical flow is drawn on Figure 21.

Of course to establish fully rigorously this picture is beyond the reach of
perturbative theorems and requires a constructive analysis.

6. Propagators on non-commutative space

We give here the results we derived in [50]. In this article, we computed the x-
space and matrix basis kernels of operators which generalize the Mehler kernel
(3.34). Then we proceeded to a study of the scaling behaviors of these kernels in
the matrix basis. This work is useful to study the non-commutative Gross-Neveu
model in the matrix basis.
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6.1. Bosonic kernel

The following lemma generalizes the Mehler kernel [89]:

Lemma 6.1. Let H be the operator

H =
1
2

(
− ∆ + Ω2x2 − 2ıB(x0∂1 − x1∂0)

)
. (6.1)

The x-space kernel of e−tH is

e−tH(x, x′) =
Ω

2π sinh Ωt
e−A, (6.2)

A =
Ω coshΩt

2 sinhΩt
(x2 + x′2) − Ω coshBt

sinh Ωt
x · x′ − ı

Ω sinhBt

sinh Ωt
x ∧ x′. (6.3)

Remark. The Mehler kernel corresponds to B = 0. The limit Ω = B → 0 gives the
usual heat kernel.

Lemma 6.2. Let H be given by (6.1) with Ω(B) → 2Ω/θ(2Bθ). Its inverse in the
matrix basis is

H−1
m,m+h;l+h,l =

θ

8Ω

∫ 1

0

dα
(1 − α)

µ2
0θ

8Ω +( D
4 −1)

(1 + Cα)
D
2

(1 − α)−
4B
8Ω h

D
2∏

s=1

G
(α)
ms,ms+hs;ls+hs,ls ,

G
(α)
m,m+h;l+h,l =

(√
1 − α

1 + Cα

)m+l+h

(6.4)

×
min(m,l)∑

u=max(0,−h)

A(m, l, h, u)
(

Cα(1 + Ω)√
1 − α(1 − Ω)

)m+l−2u

,

where A(m, l, h, u) =
√(

m
m−u

)(
m+h
m−u

)(
l

l−u

)(
l+h
l−u

)
and C is a function of Ω: C(Ω) =

(1−Ω)2

4Ω .

6.2. Fermionic kernel

On the Moyal space, we modified the commutative Gross-Neveu model by adding
a /̃x term (see Lemma 3.4). We have

G(x, y) = − Ω
θπ

∫ ∞

0

dt

sinh(2Ω̃t)
e−

Ω̃
2 coth(2Ω̃t)(x−y)2+ıΩ̃x∧y (6.5)

×
{
ıΩ̃ coth(2Ω̃t)(/x − /y) + Ω(/̃x − /̃y) − µ

}
e−2ıΩ̃tγ0γ1

e−tµ2
.

It will be useful to express G in terms of commutators:

G(x, y) = − Ω
θπ

∫ ∞

0

dt
{

ıΩ̃ coth(2Ω̃t)
[
/x, Γt

]
(x, y)

+Ω
[
/̃x, Γt

]
(x, y) − µΓt(x, y)

}
e−2ıΩ̃tγ0γ1

e−tµ2
, (6.6)
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where

Γt(x, y) =
1

sinh(2Ω̃t)
e−

Ω̃
2 coth(2Ω̃t)(x−y)2+ıΩ̃x∧y (6.7)

with Ω̃ = 2Ω
θ and x ∧ y = x0y1 − x1y0.

We now give the expression of the fermionic kernel (6.6) in the matrix basis.
The inverse of the quadratic form

∆ = p2 + µ2 +
4Ω2

θ2
x2 +

4B

θ
L2 (6.8)

is given by (6.4) in the preceding section:

Γm,m+h;l+h,l =
θ

8Ω

∫ 1

0

dα
(1 − α)

µ2θ
8Ω − 1

2

(1 + Cα)
Γα

m,m+h;l+h,l , (6.9)

Γ(α)
m,m+h;l+h,l =

(√
1 − α

1 + Cα

)m+l+h

(1 − α)−
Bh
2Ω (6.10)

×
min(m,l)∑

u=0

A(m, l, h, u)
(

Cα(1 + Ω)√
1 − α (1 − Ω)

)m+l−2u

.

The fermionic propagator G (6.6) in the matrix basis may be deduced from the
kernel (6.9). We just set B = Ω, add the missing term with γ0γ1 and compute the
action of −/p− Ω/̃x + µ on Γ. We must then evaluate [xν , Γ] in the matrix basis:

[
x0, Γ

]
m,n;k,l

=2πθ

√
θ

8

{√
m + 1Γm+1,n;k,l −

√
lΓm,n;k,l−1 +

√
mΓm−1,n;k,l

−
√

l + 1Γm,n;k,l+1 +
√

n + 1Γm,n+1;k,l −
√

kΓm,n;k−1,l

+
√

nΓm,n−1;k,l −
√

k + 1Γm,n;k+1,l

}
, (6.11)

[
x1, Γ

]
m,n;k,l

=2ıπθ

√
θ

8

{√
m + 1Γm+1,n;k,l −

√
lΓm,n;k,l−1 −

√
mΓm−1,n;k,l

+
√

l + 1Γm,n;k,l+1 −
√

n + 1Γm,n+1;k,l +
√

kΓm,n;k−1,l

+
√

nΓm,n−1;k,l −
√

k + 1Γm,n;k+1,l

}
. (6.12)

This allows us to prove:

Lemma 6.3. Let Gm,n;k,l be the kernel, in the matrix basis, of the operator(
/p + Ω/̃x + µ

)−1
. We have:

Gm,n;k,l = − 2Ω
θ2π2

∫ 1

0

dα Gα
m,n;k,l, (6.13)
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Gα
m,n;k,l =

(
ıΩ̃

2 − α

α
[/x, Γα]m,n;k,l + Ω

[
/̃x, Γα

]
m,n;k,l

− µ Γα
m,n;k,l

)
×
(

2 − α

2
√

1 − α
12 − ı

α

2
√

1 − α
γ0γ1

)
, (6.14)

where Γα is given by (6.10) and the commutators by the formulas (6.11) and (6.12).

The first two terms in the equation (6.14) contain commutators and will be
gathered under the name Gα,comm

m,n;k,l . The last term will be called Gα,mass
m,n;k,l:

Gα,comm
m,n;k,l =

(
ıΩ̃

2 − α

α
[/x, Γα]m,n;k,l + Ω

[
/̃x, Γα

]
m,n;k,l

)
×
(

2 − α

2
√

1 − α
12 − ı

α

2
√

1 − α
γ0γ1

)
, (6.15)

Gα,mass
m,n;k,l = −µ Γα

m,n;k,l ×
(

2 − α

2
√

1 − α
12 − ı

α

2
√

1 − α
γ0γ1

)
. (6.16)

6.3. Bounds

We use the multi-scale analysis to study the behavior of the propagator (6.14) and
revisit more finely the bounds (4.11) to (4.14). In a slice i, the propagator is

Γi
m,m+h,l+h,l =

θ

8Ω

∫ M−2(i−1)

M−2i

dα
(1 − α)

µ2
0θ

8Ω − 1
2

(1 + Cα)
Γ(α)

m,m+h;l+h,l , (6.17)

Gm,n;k,l =
∞∑

i=1

Gi
m,n;k,l ; Gi

m,n;k,l = − 2Ω
θ2π2

∫ M−2(i−1)

M−2i

dα Gα
m,n;k,l . (6.18)

Let h = n−m and p = l−m. Without loss of generality, we assume h � 0 and p � 0.
Then the smallest index among m, n, k, l is m and the biggest is k = m + h + p.
We have:

Theorem 6.4. Under the assumptions h = n − m � 0 and p = l − m � 0, there
exist K, c ∈ R+ (c depends on Ω) such that the propagator of the non-commutative
Gross-Neveu model in a slice i obeys the bound

|Gi,comm
m,n;k,l| � KM−i

(
χ(αk > 1)

exp{− cp2

1+kM−2i − cM−2i

1+k (h − k
1+C )2}

(1 +
√

kM−2i)

+ min(1, (αk)p)e−ckM−2i−cp

)
. (6.19)

The mass term is slightly different:

|Gi,mass
m,n;k,l| �KM−2i

(
χ(αk > 1)

exp{− cp2

1+kM−2i − cM−2i

1+k (h − k
1+C )2}

1 +
√

kM−2i

+ min(1, (αk)p)e−ckM−2i−cp

)
. (6.20)
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Remark. We can redo the same analysis for the Φ4 propagator and get

Gi
m,n;k,l � KM−2i min (1, (αk)p) e−c(M−2ik+p) (6.21)

which allows to recover the bounds (4.11) to (4.14).

6.4. Propagators and renormalizability

Let us consider the propagator (6.13) of the non-commutative Gross-Neveu model.
We saw in Section 6.3 that there exist two regions in the space of indices where the
propagator behaves very differently. In one of them it behaves as the Φ4 propagator
and leads then to the same power counting. In the critical region, we have

Gi �K
M−i

1 +
√

kM−2i
e
− cp2

1+kM−2i − cM−2i

1+k (h− k
1+C )2

. (6.22)

The point is that such a propagator does not allow to sum two reference indices
with a unique line. This fact was useful in the proof of the power counting of the
Φ4 model. This leads to a renormalizable UV/IR mixing.

Let us consider the graph in Figure 22b where the two external lines bear an
index i � 1 and the internal one an index j < i. The propagator (6.13) obeys the
bound in Proposition 4.13 which means that it is almost local. We only have to
sum over one index per internal face.

i

i

−1 −1

(a) At scale i

i

i

j−1 −1

(b) At scale j

Figure 22: Sunset graph.

On the graph of Figure 22a, if the two lines inside are true external ones,
the graph has two broken faces and there is no index to sum over. Then by using
Proposition 4.11 we get AG � M−2i. The sum over i converges and we have the
same behavior as the Φ4 theory, that is to say the graphs with B � 2 broken
faces are finite. But if these two lines belongs to a line of scale j < i (see Figure
22b), the result is different. Indeed, at scale i, we recover the graph of Figure
22a. To maintain the previous result (M−2i), we should sum up the two indices
corresponding to the internal faces with the propagator of scale j. This is not
possible. Instead we have:∑

k,h

M−2i−j e−M−2ik e−
cM−2j

1+k (h− k
1+C )2

1 +
√

kM−2j
� KM j. (6.23)
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The sum over i diverges logarithmically. The graph of Figure 22a converges if it is
linked to true external legs and diverges if it is a subgraph of a graph at a lower
scale. The power counting depends on the scales lower than the lowest scale of the
graph. It can’t then be factorized into the connected components: this is UV/IR
mixing.

Let’s remark that the graph of Figure 22a is not renormalizable by a counter-
term in the Lagrangian. Its logarithmic divergence cannot be absorbed in a redef-
inition of a coupling constant. Fortunately the renormalization of the two-point
graph of Figure 22b makes the four-point subdivergence finite [51]. This makes the
non-commutative Gross-Neveu model renormalizable.

7. Direct space

We now want to explain how the power counting analysis can be performed in
direct space, and the “moyality” of the necessary counterterms can be checked by
a Taylor expansion which is a generalization of the one used in direct commutative
space.

In the commutative case there is translation invariance, hence each propaga-
tor depends on a single difference variable which is short in the ultraviolet regime;
in the non-commutative case the propagator depends on both the difference of end
positions, which is again short in the uv regime, but also on the sum which is long
in the uv regime, considering the explicit form (3.34) of the Mehler kernel.

This distinction between short and long variables is at the basis of the power
counting analysis in direct space.

7.1. Short and long variables

Let G be an arbitrary connected graph. The amplitude associated with this graph
is in direct space (with hopefully self-explaining notation):

AG =
∫ ∏

v,i=1,...,4

dxv,i

∏
l

dtl (7.1)

∏
v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)eı

∑
i<j(−1)i+j+1xv,iθ

−1xv,j

]∏
l

Cl ,

Cl =
Ω2

[2π sinh(Ωtl)]2
e
−Ω

2 coth(Ωtl)(x
2
v,i(l)+x2

v′,i′(l))+
Ω

sinh(Ωtl)
xv,i(l).xv′,i′(l)−µ2

0tl .

For each line l of the graph joining positions xv,i(l) and xv′,i′(l), we choose an
orientation and we define the “short” variable ul = xv,i(l) −xv′,i′(l) and the “long”
variable vl = xv,i(l) + xv′,i′(l).

With this notation, defining Ωtl = αl, the propagators in our graph can be
written as ∫ ∞

0

∏
l

Ωdαl

[2π sinh(αl)]2
e−

Ω
4 coth(

αl
2 )u2

l −Ω
4 tanh(

αl
2 )v2

l −
µ2
0

Ω αl . (7.2)



Non-commutative Renormalization 83

As in matrix space we can slice each propagator according to the size of its α
parameter and obtain the multiscale representation of each Feynman amplitude:

AG =
∑

µ

AG,µ , AG,µ =
∫ ∏

v,i=1,...,4

dxv,i

∏
l

C
iµ(l)
l (ul, vl) (7.3)

∏
v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)eı

∑
i<j(−1)i+j+1xv,iθ

−1xv,j

]
,

Ci(u, v) =
∫ M−2(i−1)

M−2i

Ωdα

[2π sinh(α)]2
e−

Ω
4 coth( α

2 )u2−Ω
4 tanh( α

2 )v2−µ2
0

Ω α , (7.4)

where µ runs over scales attributions {iµ(l)} for each line l of the graph, and the
sliced propagator Ci in slice i ∈ N obeys the crude bound:

Lemma 7.1. For some constants K (large) and c (small):

Ci(u, v) � KM2ie−c[Mi‖u‖+M−i‖v‖] (7.5)

(which a posteriori justifies the terminology of “long” and “‘short” variables).

The proof is elementary.

7.2. Routing, Filk moves

7.2.1. Oriented graphs. We pick a tree T of lines of the graph, hence connecting
all vertices, pick with a root vertex and build an orientation of all the lines of
the graph in an inductive way. Starting from an arbitrary orientation of a field
at the root of the tree, we climb in the tree and at each vertex of the tree we
impose cyclic order to alternate entering and exiting tree lines and loop half-lines,
as in Figure 23a. Then we look at the loop lines. If every loop lines consist in
the contraction of an entering and an exiting line, the graph is called orientable.
Otherwise we call it non-orientable as in Figure 23b.

7.2.2. Position routing. There are n δ functions in an amplitude with n vertices,
hence n linear equations for the 4n positions, one for each vertex. The position
routing associated to the tree T solves this system by passing to another equivalent
system of n linear equations, one for each branch of the tree. This is a triangular
change of variables, of Jacobian 1. This equivalent system is obtained by summing
up the arguments of the δ functions of the vertices in each branch. This change of
variables is exactly the x-space analog of the resolution of momentum conservation
called momentum routing in the standard physics literature of commutative field
theory, except that one should now take care of the additional ± cyclic signs.

One can prove [47] that the rank of the system of δ functions in an amplitude
with n vertices is

• n − 1 if the graph is orientable;
• n if the graph is non-orientable.

The position routing change of variables is summarized by the following lemma:
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(a) Orientation of a tree
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(b) A non-orientable graph

Figure 23: Orientation.

Lemma 7.2 (Position Routing). We have, calling IG the remaining integrand in
(7.3):

AG =
∫ [∏

v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)

] ]
IG({xv,i}) (7.6)

=
∫ ∏

b

δ

⎛⎝ ∑
l∈Tb∪Lb

ul +
∑

l∈Lb,+

vl −
∑

l∈Lb,−

vl +
∑

f∈Xb

ε(f)xf

⎞⎠ IG({xv,i}),

where ε(f) is ±1 depending on whether the field f enters or exits the branch.

We can now use the system of delta functions to eliminate variables. It is of
course better to eliminate long variables as their integration costs a factor M4i

whereas the integration of a short variable brings M−4i. Rough power counting,
neglecting all oscillations of the vertices leads therefore, in the case of an orientable
graph with N external fields, n internal vertices and l = 2n − N/2 internal lines
at scale i to:

• a factor M2i(2n−N/2) coming from the M2i factors for each line of scale i in
(7.5);

• a factor M−4i(2n−N/2) for the l = 2n − N/2 short variables integrations;
• a factor M4i(n−N/2+1) for the long variables after eliminating n − 1 of them

using the delta functions.

The total factor is therefore M−(N−4)i, the ordinary scaling of φ4
4, which means

that only two- and four-point subgraphs (N � 4) diverge when i has to be summed.
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In the non-orientable case, we can eliminate one additional long variable since
the rank of the system of delta functions is larger by one unit! Therefore we get
a power counting bound M−Ni, which proves that only orientable graphs may
diverge.

In fact we of course know that not all orientable two- and four-point subgraphs
diverge but only the planar ones with a single external face. (It is easy to check
that all such planar graphs are indeed orientable.)

Since only these planar subgraphs with a single external face can be renormal-
ized by Moyal counterterms, we need to prove that orientable, non-planar graphs
or orientable planar graphs with several external faces have in fact a better power
counting than this crude estimate. This can be done only by exploiting their ver-
tices oscillations. We explain now how to do this with minimal effort.

7.2.3. Filk moves and rosettes. Following Filk [87], we can contract all lines of a
spanning tree T and reduce G to a single vertex with “tadpole loops” called a
“rosette graph”. This rosette is a cycle (which is the border of the former tree)
bearing loop lines on it (see Figure 24): Remark that the rosette can also be

Figure 24: A rosette.

considered as a big vertex, with r = 2n + 2 fields, on which N are external fields
with external variables x and 2n + 2 − N are loop fields for the corresponding
n + 1 − N/2 loops. When the graph is orientable, the rosette is also orientable,
which means that turning around the rosette the lines alternatively enter and exit.
These lines correspond to the contraction of the fields on the border of the tree T
before the Filk contraction, also called the “first Filk move”.

7.2.4. Rosette factor. We start from the root and turn around the tree in the
trigonometrical sense. We number separately all the fields as 1, . . . , 2n + 2 and all
the tree lines as 1, . . . , n − 1 in the order they are met.
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Lemma 7.3. The rosette contribution after a complete first Filk reduction is exactly:

δ(v1 − v2 + · · · − v2n+2 +
∑
l∈T

ul)eiV QV +iURU+iUSV (7.7)

where the v variables are the long or external variables of the rosette, counted with
their signs, and the quadratic oscillations for these variables is

V QV =
∑

0�i<j�r

(−1)i+j+1viθ
−1vj . (7.8)

We have now to analyze in detail this quadratic oscillation of the remaining
long loop variables since it is essential to improve power counting. We can neglect
the secondary oscillations URU and USV which imply short variables.

The second Filk reduction [87] further simplifies the rosette factor by erasing
the loops of the rosette which do not cross any other loops or arch over external
fields. It can be shown that the loops which disappear in this operation correspond
to those long variables who do not appear in the quadratic form Q.

Using the remaining oscillating factors one can prove that non-planar graphs
with genus larger than one or with more than one external face do not diverge.

The basic mechanism to improve the power counting of a single non-planar
subgraph is the following:∫

dw1dw2e
−M−2i1w2

1−M−2i2w2
2−iw1θ−1w2+w1.E1(x,u)+w2E2(x,u)

=
∫

dw′
1dw′

2e
−M−2i1 (w′

1)
2−M−2i2 (w′

2)
2+iw′

1θ−1w′
2+(u,x)Q(u,x)

= KM4i1

∫
dw′

2e
−(M2i1+M−2i2 )(w′

2)2 = KM4i1M−4i2 . (7.9)

In these equations we used for simplicity M−2i instead of the correct but more
complicated factor (Ω/4) tanh(α/2) (of course this does not change the argument)
and we performed a unitary linear change of variables w′

1 = w1 + �1(x, u), w′
2 =

w2 + �2(x, u) to compute the oscillating w′
1 integral. The gain in (7.9) is M−8i2 ,

which is the difference between M−4i2 and the normal factor M4i2 that the w2

integral would have cost if we had done it with the regular e−M−2i2w2
2 factor for

long variables. To maximize this gain we can assume i1 � i2.
This basic argument must then be generalized to each non-planar subgraph

in the multiscale analysis, which is possible.
Finally it remains to consider the case of subgraphs which are planar ori-

entable but with more than one external face. In that case there are no crossing
loops in the rosette but there must be at least one loop line arching over a nontriv-
ial subset of external legs (see, e.g., line 6 in Figure 24). We have then a nontrivial
integration over at least one external variable, called x, of at least one long loop
variable called w. This “external” x variable without the oscillation improvement
would be integrated with a test function of scale 1 (if it is a true external line of
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scale 1) or better (if it is a higher long loop variable)23. But we get now∫
dxdwe−M−2iw2−iwθ−1x+w.E1(x

′,u) = KM4i

∫
dxe−M+2ix2

= K ′ , (7.10)

so that a factor M4i in the former bound becomes O(1), hence is improved by
M−4i.

In this way we can reduce the convergence of the multiscale analysis to the
problem of renormalization of planar two- and four-point subgraphs with a single
external face, which we treat in the next section.

Remark that the power counting obtained in this way is still not optimal. To
get the same level of precision than with the matrix base requires, e.g., to display g
independent improvements of the type (7.9) for a graph of genus g. This is doable
but basically requires a reduction of the quadratic form Q for a single-faced rosette
(also called “hyperrosette”) into g standard symplectic blocks through the so-called
“third Filk move” introduced in [68]. We return to this question in Section 8.2.

7.3. Renormalization

7.3.1. Four-point function. Consider the amplitude of a four-point graph G which
in the multiscale expansion has all its internal scales higher than its four external
scales.

The idea is that one should compare its amplitude to a similar amplitude
with a “Moyal factor” exp

(
2ıθ−1 (x1 ∧ x2 + x3 ∧ x4)

)
δ(∆) factorized in front,

where ∆ = x1 − x2 + x3 − x4. But precisely because the graph is planar with
a single external face we understand that the external positions x only couple
to short variables U of the internal amplitudes through the global delta function
and the oscillations. Hence we can break this coupling by a systematic Taylor
expansion to first order. This separates a piece proportional to “Moyal factor”,
then absorbed into the effective coupling constant, and a remainder which has at
least one additional small factor which gives him improved power counting.

This is done by expressing the amplitude for a graph with N = 4, g = 0 and
B = 1 as:

A(G)(x1 , x2, x3, x4) =
∫

exp
(
2ıθ−1 (x1 ∧ x2 + x3 ∧ x4)

) ∏
∈T i

k

du C(u, U, V)

×
[ ∏

l∈Gi
k l∈T

duldvlCl(ul, vl)
]

eıURU+ıUSV (7.11)

×
{

δ(∆) +
∫ 1

0

dt

[
U · ∇δ(∆ + tU) + δ(∆ + tU)[ıXQU + R′(t)]

]
eıtXQU+R(t)

}
.

23Since the loop line arches over a nontrivial (i.e., neither full nor empty) subset of external legs
of the rosette, the variable x cannot be the full combination of external variables in the “root”
δ function.
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where C(u, U, V) is the propagator taken at X = 0, U =
∑

 u and R(t) is a
correcting term involving tanhα[X.X + X.(U + V )].

The first term is of the initial
∫

Trφ � φ � φ � φ form. The rest no longer
diverges, since the U and R provide the necessary small factors.

7.3.2. Two-point function. Following the same strategy we have to Taylor-expand
the coupling between external variables and U factors in two-point planar graphs
with a single external face to third order and some nontrivial symmetrization of the
terms according to the two external arguments to cancel some odd contributions.
The corresponding factorized relevant and marginal contributions can be then
shown to give rise only to

• a mass counterterm;
• a wave function counterterm;
• A harmonic potential counterterm,

and the remainder has convergent power counting. This concludes the construction
of the effective expansion in this direct space multiscale analysis.

Again the BPHZ theorem itself for the renormalized expansion follows by
developing the counterterms still hidden in the effective couplings and its finiteness
follows from the standard classification of forests. See however the remarks at the
end of Section 4.2.2.

Since the bound (7.5) works for any Ω �= 0, an additional bonus of the x-space
method is that it proves renormalizability of the model for any Ω in ]0, 1]24, while
the matrix method proved it only for Ω in ]0.5, 1].

7.3.3. The Langmann-Szabo-Zarembo model. It is a four-dimensional theory of a
bosonic complex field defined by the action

S =
∫

1
2
φ̄(−DµDµ + Ω2x2)φ + λφ̄ � φ � φ̄ � φ (7.12)

where Dµ = ı∂µ + Bµνxν is the covariant derivative in a magnetic field B.
The interaction φ̄ � φ � φ̄ � φ ensures that perturbation theory contains only

orientable graphs. For Ω > 0 the x-space propagator still decays as in the ordinary
φ4

4 case and the model has been shown renormalizable by an easy extension of the
methods of the previous Section [47].

However at Ω = 0, there is no longer any harmonic potential in addition to
the covariant derivatives and the bounds are lost. We call models in this category
covariant.

7.3.4. Covariant models. Consider the x-kernel of the operator

H−1 =
(
p2 + Ω2x̃2 − 2ıB

(
x0p1 − x1p0

))−1
, (7.13)

24The case Ω in [1, +∞[ is irrelevant since it can be rewritten by LS duality as an equivalent
model with Ω in ]0, 1].
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H−1(x, y) =
Ω̃
8π

∫ ∞

0

dt

sinh(2Ω̃t)
exp

(
− Ω̃

2
cosh(2Bt)

sinh(2Ω̃t)
(x − y)2

− Ω̃
2

cosh(2Ω̃t) − cosh(2Bt)

sinh(2Ω̃t)
(x2 + y2)

+2ıΩ̃
sinh(2Bt)

sinh(2Ω̃t)
x ∧ y

)
with Ω̃ =

2Ω
θ

. (7.14)

The Gross-Neveu model or the covariant Langmann-Szabo-Zarembo models cor-
respond to the case B = Ω̃. In these models there is no longer any confining decay
for the “long variables” but only an oscillation:

Q−1 = H−1 =
Ω̃
8π

∫ ∞

0

dt

sinh(2Ω̃t)
exp

(
− Ω̃

2
coth(2Ω̃t)(x − y)2 + 2ıΩ̃x ∧ y

)
.

(7.15)

The construction of these covariant models is more difficult, since sufficiently
many oscillations must be proven independent before power counting can be es-
tablished. The prototype paper which solved this problem is [51], which we briefly
summarize now.

The main technical difficulty of the covariant models is the absence of de-
creasing functions for the long v variables in the propagator replaced by an oscil-
lation, see (7.15). Note that these decreasing functions are in principle created by
integration over the u variables25:∫

du e−
Ω̃
2 coth(2Ω̃t)u2+ıu∧v =K tanh(2Ω̃t) e−k tanh(2Ω̃t)v2

. (7.16)

But to perform all these Gaussian integrations for a general graph is a difficult task
(see [69]) and is in fact not necessary for a BPHZ theorem. We can instead exploit
the vertices and propagators oscillations to get rational decreasing functions in
some linear combinations of the long v variables. The difficulty is then to prove
that all these linear combinations are independent and hence allow to integrate
over all the v variables. To solve this problem we need the exact expression of
the total oscillation in terms of the short and long variables. This consists in
a generalization of the Filk’s work [87]. This has been done in [51]. Once the
oscillations are proven independent, one can just use the same arguments than in
the Φ4 case (see Section 7.2) to compute an upper bound for the power counting:

Lemma 7.4 (Power counting GN2
Θ). Let G be a connected orientable graph. For all

Ω ∈ [0, 1), there exists K ∈ R+ such that its amputated amplitude AG integrated

25In all the following we restrict ourselves to the dimension 2.
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over test functions is bounded by

|AG| �KnM− 1
2 ω(G) (7.17)

with ω(G) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N − 4 if (N = 2 or N � 6) and g = 0,
if N = 4, g = 0 and B = 1,
if G is critical,

N if N = 4, g = 0, B = 2 and G non-critical,
N + 4 if g � 1.

(7.18)

As in the non-commutative Φ4 case, only the planar graphs are divergent.
But the behavior of the graphs with more than one broken face is different. Note
that we already discussed such a feature in the matrix basis (see Section 6.4).
In the multiscale framework, the Feynman diagrams are endowed with a scale
attribution which gives each line a scale index. The only subgraphs we meet in
this setting have all their internal scales higher than their external ones. Then a
subgraph G of scale i is called critical if it has N = 4, g = 0, B = 2 and that the
two “external” points in the second broken face are only linked by a single line
of scale j < i. The typical example is the graph of Figure 22a. In this case, the
subgraph is logarithmically divergent whereas it is convergent in the Φ4 model.
Let us now show roughly how it happens in the case of Figure 22a but now in
x-space.

The same arguments than in the Φ4 model prove that the integrations over
the internal points of the graph 22a lead to a logarithmic divergence which means
that AGi � O(1) in the multiscale framework. But remember that there is a
remaining oscillation between a long variable of this graph and the external points
in the second broken face of the form v∧ (x− y). But v is of order M i which leads
to a decreasing function implementing x− y of order M−i. If these points are true
external ones, they are integrated over test functions of norm 1. Then thanks to
the additional decreasing function for x − y we gain a factor M−2i which makes
the graph convergent. But if x and y are linked by a single line of scale j < i (as
in Figure 22b), instead of test functions we have a propagator between x and y.
This one behaves like (see (7.15)):

Cj(x, y) �M j e−M2j(x−y)2+ıx∧y. (7.19)

The integration over x − y instead of giving M−2j gives M−2i thanks to the
oscillation v ∧ (x − y). Then we have gained a good factor M−2(i−j). But the
oscillation in the propagator x∧ y now gives x + y � M2i instead of M2j and the
integration over x+y cancels the preceding gain. The critical component of Figure
22a is logarithmically divergent.

This kind of argument can be repeated and refined for more general graphs
to prove that this problem appears only when the external points of the auxiliary
broken faces are linked only by a single lower line [51]. This phenomenon can be
seen as a mixing between scales. Indeed the power counting of a given subgraph now
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depends on the graphs at lower scales. This was not the case in the commutative
realm. Fortunately this mixing does not prevent renormalization. Note that though
the critical subgraphs are not renormalizable by a vertex-like counterterm, they
are regularized by the renormalization of the two-point function at scale j. The
proof of this point relies heavily on the fact that there is only one line of lower
scale.

Let us conclude this section by mentioning the flows of the covariant models.
One very interesting feature of the non-commutative Φ4 model is the boundedness
of its flows and even the vanishing of its beta function for a special value of its
bare parameters [52, 57, 58]. Note that its commutative counterpart (the usual φ4

model on R4) is asymptotically free in the infrared and has then an unbounded
flow. It turns out that the flow of the covariant models are not regularized by the
non-commutativity. The one-loop computation of the beta functions of the non-
commutative Gross-Neveu model [95] shows that it is asymptotically free in the
ultraviolet region as in the commutative case.

8. Parametric representation

8.1. Ordinary Symanzik polynomials

In ordinary commutative field theory, Symanzik’s polynomials are obtained after
integration over internal position variables. The amplitude of an amputated graph
G with external momenta p is, up to a normalization, in space-time dimension D:

AG(p) =δ(
∑

p)
∫ ∞

0

e−VG(p,α)/UG(α)

UG(α)D/2

∏
l

(e−m2αldαl) . (8.1)

The first and second Symanzik polynomials UG and VG are

UG =
∑
T

∏
l∈T

αl , (8.2a)

VG =
∑
T2

∏
l∈T2

αl(
∑

i∈E(T2)

pi)2 , (8.2b)

where the first sum is over spanning trees T of G and the second sum is over
two trees T2, i.e., forests separating the graph in exactly two connected compo-
nents E(T2) and F (T2); the corresponding Euclidean invariant (

∑
i∈E(T2)

pi)2 is,
by momentum conservation, also equal to (

∑
i∈F (T2) pi)2.

There are many interesting features in the parametric representation:

– It is more compact than direct or momentum space for dimension D > 2,
hence it is adapted to numerical computations.

– The dimension D appears now as a simple parameter. This allows us to make
it non integer or even complex, at least in perturbation theory. This opens
the road to the definition of dimensional regularization and renormalization,
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which respect the symmetries of gauge theories. This technique was the key
to the first proof of the renormalizability of non-abelian gauge theories [10].

– The form of the first and second Symanzik show an explicit positivity and
democracy between trees (or two-trees): each of them appears with positive
and equal coefficients.

– The locality of the counterterms is still visible (although less obvious than
in direct space). It corresponds to the factorization of UG into USUG/S plus
smaller terms under scaling of all the parameters of a subgraph S, because
the leading terms are the trees whose restriction to S are subtrees of S. One
could remark that this factorization also plays a key role in the constructive
RG analysis and multiscale bounds of the theory [9].

In the next two subsections we shall derive the analogs of the corresponding state-
ments in NCVQFT. But before that let us give a brief proof of formulas (8.1). The
proof of (8.2b) is similar.

Formula (8.1) is equivalent to the computation of the determinant, namely
that of the quadratic form gathering the heat kernels of all the internal lines in
position space, when we integrate over all vertices save one. The role of this saved
vertex is crucial because otherwise the determinant of the quadratic form vanishes,
i.e., the computation becomes infinite by translation invariance.

But the same determinants and problems already arose a century before
Feynman graphs in the XIX century theory of electric circuits, where wires play
the role of propagators and the conservation of currents at each node of the circuit
play the role of conservation of momenta or translation invariance. In fact the
parametric representation follows from the tree matrix theorem of Kirchhoff [96],
which is a key result of combinatorial theory which in its simplest form may be
stated as:

Theorem 8.1 (Tree Matrix Theorem). Let A be an n by n matrix such that
n∑

i=1

Aij = 0 ∀j . (8.3)

Obviously det A = 0. But let A11 be the matrix A with line 1 and column 1 deleted.
Then

detA11 =
∑
T

∏
∈T

Ai�,j�
, (8.4)

where the sum runs over all directed trees on {1, . . . , n}, directed away from root 1.

This theorem is a particular case of a more general result that can compute
any minor of a matrix as a graphical sum over forests and more [97].

To deduce (8.1) from that theorem one defines Aii as the coordination of the
graph at vertex i and Aij as −l(ij) where l(ij) is the number of lines from vertex
ic to vertex j. The line 1 and column 1 deleted correspond, e.g., to fix the first
vertex 1 at the origin to break translation invariance.
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We include now a proof of this theorem using Grassmann variables de-
rived from [97], because this proof was essential for us to find the correct non-
commutative generalization of the parametric representation. Recall that Grass-
mann variables anticommute,

χiχj + χjχi = 0, (8.5)

hence in particular χ2
i = 0, and that the Grassmann rules of integration are∫

dχ = 0 ;
∫

χdχ = 1. (8.6)

Therefore we have:

Lemma 8.2. Consider a set of 2n independent Grassmann variables

ψ1, . . . , ψn, ψ1, . . . , ψn (8.7)

and the integration measure

dψdψ = dψ1, . . . ,dψn, dψ1, . . . ,dψn (8.8)

The bar is there for convenience, but it is not complex conjugation. Prove that for
any matrix A,

detA =
∫

dψdψe−ψAψ . (8.9)

More generally, if p is an integer 0 ≤ p ≤ m, and I = {i1, . . . , ip}, J =
{j1, . . . , jp} are two ordered subsets with p elements i1 < · · · < ip and j1 < · · · < jp,
if also AI,J denotes the (n− p)× (n− p) matrix obtained by erasing the rows of A
with index in I and the columns of A with index in J , then∫

dψdψ (ψJψI)e
−ψAψ = (−1)ΣI+ΣJdet(AI,J ) (8.10)

where (ψJψI)
def= ψj1ψi1ψj2ψi2 . . . ψjpψip

, ΣI
def= i1 + · · ·+ ip and likewise for ΣJ .

We return now to

Proof of Theorem 8.1. We use Grassmann variables to write the determinant of
a matrix with one line and one row deleted as a Grassmann integral with two
corresponding sources:

det A11 =
∫

(dψdψ) (ψ1ψ1)e
−ψAψ. (8.11)

The trick is to use (8.3) to write

ψAψ =
n∑

i,j=1

(ψi − ψj)Aijψj . (8.12)
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By Lemma 8.2:

detA11 =
∫

dψdψ (ψ1ψ1) exp

⎛⎝−
n∑

i,j=1

Aij(ψi − ψj)ψj

⎞⎠ (8.13)

=
∫

dψdψ (ψ1ψ1)

⎡⎣ n∏
i,j=1

(
1 − Aij(ψi − ψj)ψj

)⎤⎦ (8.14)

by the Pauli exclusion principle. We now expand to get

detA11 =
∑
G

⎛⎝ ∏
=(i,j)∈G

(−Aij)

⎞⎠ΩG (8.15)

where G is any subset of [n] × [n], and we used the notation

ΩG
def=

∫
dψdψ (ψ1ψ1)

⎛⎝ ∏
(i,j)∈G

[
(ψi − ψj)ψj

]⎞⎠ . (8.16)

The theorem will now follow from the following

Lemma 8.3. ΩG = 0 unless the graph G is a tree directed away from 1 in which
case ΩG = 1.

Proof. Trivially, if (i, i) belongs to G, then the integrand of ΩG contains a factor
ψi − ψi = 0 and therefore ΩG vanishes.

But the crucial observation is that if there is a loop in G then again ΩG = 0.
This is because then the integrand of ΩF ,R contains the factor

ψτ(k) − ψτ(1) = (ψτ(k) − ψτ(k−1)) + · · · + (ψτ(2) − ψτ(1)). (8.17)

Now, upon inserting this telescoping expansion of the factor ψτ(k) −ψτ(1) into the
integrand of ΩF ,R, the latter breaks into a sum of (k − 1) products. For each of
these products, there exists an α ∈ Z/kZ such that the factor (ψτ(α) − ψτ(α−1))
appears twice: once with the + sign from the telescopic expansion of (ψτ(k)−ψτ(1)),
and once more with a + (resp. −) sign if (τ(α), τ(α − 1)) (resp. (τ(α − 1), τ(α)))
belongs to F . Again, the Pauli exclusion principle entails that ΩG = 0.

Now every connected component of G must contain 1, otherwise there is no
way to saturate the dψ1 integration.

This means that G has to be a directed tree on {1, . . . , n}. It remains only to
see now that G has to be directed away from 1, which is not too difficult.

Now Theorem 8.1 follows immediately.
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8.2. Non-commutative hyperbolic polynomials, the non-covariant case

Since the Mehler kernel is still quadratic in position space it is possible to also
integrate explicitly all positions to reduce Feynman amplitudes of, e.g., non-com-
mutative Φ�4

4 purely to parametric formulas, but of course the analogs of Symanzik
polynomials are now hyperbolic polynomials which encode the richer information
about ribbon graphs. These polynomials were first computed in [68] in the case of
the non-covariant vulcanized Φ�4

4 theory. The computation relies essentially on a
Grassmann variable analysis of Pfaffians which generalizes the tree matrix theorem
of the previous section.

Defining the antisymmetric matrix σ as

σ =
(

σ2 0
0 σ2

)
with (8.18)

σ2 =
(

0 −i
i 0

)
(8.19)

the δ-functions appearing in the vertex contribution can be rewritten as an integral
over some new variables pV . We refer to these variables as to hypermomenta. Note
that one associates such a hypermomentum pV to any vertex V via the relation

δ(xV
1 − xV

2 + xV
3 − xV

4 ) =
∫

dp′V
(2π)4

eip′
V (xV

1 −xV
2 +xV

3 −xV
4 )

=
∫

dpV

(2π)4
epV σ(xV

1 −xV
2 +xV

3 −xV
4 ) . (8.20)

Consider a particular ribbon graph G. Specializing to dimension 4 and choos-
ing a particular root vertex V̄ of the graph, one can write the Feynman amplitude
for G in the condensed way

AG =
∫ ∏



[1 − t2
t

]2
dα

∫
dxdpe−

Ω
2 XGXt

(8.21)

where t = tanh α�

2 , X summarizes all positions and hypermomenta and G is a cer-
tain quadratic form. If we call xe and pV̄ the external variables we can decompose
G according to an internal quadratic form Q, an external one M and a coupling
part P so that

X =
(
xe pV̄ u v p

)
, G =

(
M P
P t Q

)
, (8.22)

Performing the gaussian integration over all internal variables one obtains:

AG =
∫ [1 − t2

t

]2
dα

1√
detQ

e
− Ω̃

2

(
xe p̄

)
[M−PQ−1P t]

⎛⎝xe

p̄

⎞⎠
. (8.23)

This form allows to define the polynomials HUG,v̄ and HVG,v̄, analogs of the
Symanzik polynomials U and V of the commutative case (see (8.1)). They are
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defined by

AV̄ ({xe}, pv̄) =K ′
∫ ∞

0

∏
l

[dαl(1 − t2l )
2]HUG,v̄(t)−2e

−HVG,v̄ (t,xe,pv̄)
HUG,v̄(t) . (8.24)

They are polynomials in the set of variables t (� = 1, . . . , L), the hyperbolic
tangent of the half-angle of the parameters α.

Using now (8.23) and (8.24) the polynomial HUG,v̄ writes

HUv̄ =(detQ)
1
4

L∏
=1

t. (8.25)

The main results ( [68]) are:

• The polynomials HUG,v̄ and HVG,v̄ have a strong positivity property. Roughly
speaking they are sums of monomials with positive integer coefficients. This
positive integer property comes from the fact that each such coefficient is the
square of a Pfaffian with integer entries,

• Leading terms can be identified in a given “Hepp sector”, at least for ori-
entable graphs. A Hepp sector is a complete ordering of the t parameters.
These leading terms which can be shown strictly positive in HUG,v̄ corre-
spond to super-trees which are the disjoint union of a tree in the direct graph
and a tree in the dual graph. Hypertrees in a graph with n vertices and F
faces have therefore n + F − 2 lines. (Any connected graph has hypertrees,
and under reduction of the hypertree, the graph becomes a hyperrosette).
Similarly one can identify “super-two-trees” HVG,v̄ which govern the leading
behavior of HVG,v̄ in any Hepp sector.

From the second property, one can deduce the exact power counting of any
orientable ribbon graph of the theory, just as in the matrix base.

Let us now borrow from [68] some examples of these hyperbolic polynomials.
We put s = (4θΩ)−1. For the bubble graph of Figure 25:

Figure 25: The bubble graph.
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Figure 26: The sunshine graph.

HUG,v =(1 + 4s2)(t1 + t2 + t21t2 + t1t
2
2) ,

HVG,v =t22

[
p2 + 2s(x4 − x1)

]2
+ t1t2

[
2p2

2 + (1 + 16s4)(x1 − x4)2
]

+ t21

[
p2 + 2s(x1 − x4)

]2
. (8.26)

For the sunshine graph Figure 26:

HUG,v =
[
t1t2 + t1t3 + t2t3 + t21t2t3 + t1t

2
2t3 + t1t2t

2
3

]
(1 + 8s2 + 16s4)

+ 16s2(t22 + t21t
2
3) . (8.27)

For the non-planar sunshine graph (see Figure 27) we have:

Figure 27: The non-planar sunshine graph.

HUG,v =
[
t1t2 + t1t3 + t2t3 + t21t2t3 + t1t

2
2t3 + t1t2t

2
3

]
(1 + 8s2 + 16s4)

+ 4s2
[
1 + t21 + t22 + t21t

2
2 + t23 + t21t

2
3 + t22t

2
3 + t21t

2
2t

2
3

]
,

We note the improvement in the genus with respect to its planar counterparts.
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Figure 28: The broken bubble graph.

For the broken bubble graph (see Figure 28) we have:

HUG,v =(1 + 4s2)(t1 + t2 + t21t2 + t1t
2
2) ,

HVG,v =t22

[
4s2(x1 + y2)2 + (p2 − 2s(x3 + y4))2

]
+ t21

[
p2 + 2s(x3 − y4)

]2
+ t1t2

[
8s2y2

2 + 2(p2 − 2sy4)2 + (x1 + x3)2 + 16s4(x1 − x3)2
]

+ t21t
2
24s2(x1 − y2)2 .

Note that HUG,v is identical to the one of the bubble with only one broken face.
The power counting improvement comes from the broken face and can be seen
only in HVG,v.

Figure 29: The half-eye graph.

Finally, for the half-eye graph (see Figure 29), we start by defining

A24 =t1t3 + t1t3t
2
2 + t1t3t

2
4 + t1t3t

2
2t

2
4 . (8.28)
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The HUG,v polynomial with fixed hypermomentum corresponding to the vertex
with two external legs is

HUG,v1 =(A24 + A14 + A23 + A13 + A12)(1 + 8s2 + 16s4)

+ t1t2t3t4(8 + 16s2 + 256s4) + 4t1t2t
2
3 + 4t1t2t

2
4

+ 16s2(t23 + t22t
2
4 + t21t

2
4 + t21t

2
2t

2
3)

+ 64s4(t1t2t23 + t1t2t
2
4) , (8.29)

whereas with another fixed hypermomentum we get

HUG,v2 =(A24 + A14 + A23 + A13 + A12)(1 + 8s2 + 16s4)

+ t1t2t3t4(4 + 32s2 + 64s4) + 32s2t1t2t
2
3 + 32s2t1t2t

2
4

+ 16s2(t23 + t21t
2
4 + t22t

2
4 + t21t

3
2t

2
3) . (8.30)

Note that the leading terms are identical and the choice of the root perturbs only
the non-leading ones. Moreover note the presence of the t23 term. Its presence can
be understood by the fact that in the sector t1, t2, t4 > t3 the subgraph formed
by the lines 1, 2, 4 has two broken faces. This is the sign of a power counting
improvement due to the additional broken face in that sector. To exploit it, we
just have to integrate over the variables of line 3 in that sector, using the second
polynomial HVG′,v for the triangle subgraph G′ made of lines 1, 2, 4.

8.3. Non-commutative hyperbolic polynomials, the covariant case

In the covariant case the diagonal coefficients on the long variables disappear
but there are new antisymmetric terms proportional to Ω due to the propagator
oscillations.

It is possible to reproduce easily the positivity theorem of the previous non-
covariant case, because we still have sums of squares of Pfaffians. But identifying
the leading terms of the polynomials under a rescaling associating to a subgraph
is more difficult. It is easy to see that for transcendental values of Ω, the desired
leading terms cannot vanish because that would correspond to Ω being the root of
a polynomial with integer coefficients. But power counting under a transcenden-
tality condition is not very satisfying, especially because continuous RG flows also
necessarily cross non transcendental points.

But thanks to a slightly more difficult analysis inspired by [93] and which
involve a kind of new fourth Filk move, it is possible to prove that except again for
some special cases of four-point graphs with two broken faces, the power counting
goes through at Ω < 1.

The corresponding analysis together with many examples are given in [69].
The covariant case at Ω = 1, also called the self-dual covariant case is very

interesting, because it may be the most relevant for the study of, e.g., the quantum
Hall effect. Apparently it corresponds to a very degenerate non-renormalizable
situation because even the four-point function has non logarithmic divergences
as can be seen easily in the matrix basis, where the propagator is now either
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1/(2m + A) or 1/(2n + A) depending on the sign of the “magnetic field” Ω . But
there is a huge gauge invariance and we feel that the Ward identities of Section 5
should allow renormalization of the theory even in that case.

Let us also recall that the parametric representation can be used to derive
the dimensional regularization and renormalization of the theory. Dimensional
regularization means that Feynman amplitudes are meromorphic in the space-
time dimension D. This can be conveniently proved in the Complete Mellin rep-
resentation [98, 99] in which the dependence in D occurs in explicit Γ functions.
This representation is also the right tool to derive asymptotic expansions in pow-
ers and powers of logarithms for completely general scalings of subsets of external
invariants. It has been recently extended to the non-commutative case in [100].

Dimensional regularization means that there is a recursive extraction of poles
in D in which the divergent terms are counterterms of the form of the initial
Lagrangian. In parametric space it means that a certain factorization occurs for
the leading terms of the hyperbolic polynomials HU and HV under rescaling of
the variables of the divergent subgraphs. This study will be done in [70] and may
be useful for the future renormalization of non-commutative gauge theories.

9. Conclusion

Non-commutative QFT seemed initially to have non-renormalizable divergencies,
due to UV/IR mixing. But following the Grosse-Wulkenhaar breakthrough, there
has been recent rapid progress in our understanding of renormalizable QFT on
Moyal spaces. We can already propose a preliminary classification of these models
into different categories, according to the behavior of their propagators:

• ordinary models at 0 < Ω < 1 such as Φ�4
4 (which has non-orientable graphs)

or (φ̄φ)2 models (which has none). Their propagator, roughly (p2 + Ω2x̃2 +
A)−1 is LS covariant and has good decay both in matrix space (4.11–4.14)
and direct space (7.2). They have non-logarithmic mass divergencies and
definitely require “vulcanization”, i.e., the Ω term.

• self-dual models at Ω = 1 in which the propagator is LS invariant. Their
propagator is even better. In the matrix base it is diagonal, e.g., of the form
Gm,n = (m+n+A)−1, where A is a constant. The supermodels seem generi-
cally ultraviolet fixed points of the ordinary models, at which nontrivial Ward
identities force the vanishing of the beta function. The flow of Ω to the Ω = 1
fixed point is very fast (exponentially fast in RG steps).

• covariant models such as orientable versions of LSZ or Gross-Neveu (and
presumably orientable gauge theories of various kind: Yang-Mills, Chern-
Simons. . . ). They may have only logarithmic divergencies and apparently no
perturbative UV/IR mixing. However the vulcanized version still appears the
most generic framework for their treatment. The propagator is then roughly
(p2 + Ω2x̃2 + 2Ωx̃ ∧ p)−1. In matrix space this propagator shows definitely
a weaker decay (6.19) than for the ordinary models, because of the presence
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of a nontrivial saddle point. In direct space the propagator no longer decays
with respect to the long variables, but only oscillates. Nevertheless the main
lesson is that in matrix space the weaker decay can still be used; and in x
space the oscillations can never be completely killed by the vertices oscilla-
tions. Hence these models retain therefore essentially the power counting of
the ordinary models, up to some nasty details concerning the four-point sub-
graphs with two external faces. Ultimately, thanks to a little conspiration in
which the four-point subgraphs with two external faces are renormalized by
the mass renormalization, the covariant models remain renormalizable. This
is the main message of [51, 93].

• self-dual covariant models which are of the previous type but at Ω = 1. Their
propagator in the matrix base is diagonal and depends only on one index m
(e.g., always the left side of the ribbon). It is of the form Gm,n = (m+A)−1. In
x space the propagator oscillates in a way that often exactly compensates the
vertices oscillations. These models have definitely worse power counting than
in the ordinary case, with, e.g., quadratically divergent four-point graphs (if
sharp cut-offs are used). Nevertheless Ward identities can presumably still be
used to show that they can still be renormalized. This probably requires a
much larger conspiration to generalize the Ward identities of the supermodels.

Notice that the status of non-orientable covariant theories is not yet clarified.
Parametric representation can be derived in the non-commutative case. It

implies hyperbolic generalizations of the Symanzik polynomials which condense
the information about the rich topological structure of a ribbon graph. Using this
representation, dimensional regularization and dimensional renormalization should
extend to the non-commutative framework.

Remark that trees, which are the building blocks of the Symanzik polynomi-
als, are also at the heart of (commutative) constructive theory, whose philosophy
could be roughly summarized as “You shall use trees26, but you shall not de-
velop their loops or else you shall diverge”. It is quite natural to conjecture that
hypertrees, which are the natural non-commutative objects intrinsic to a ribbon
graph, should play a key combinatoric role in the yet to develop non-commutative
constructive field theory.

In conclusion we have barely started to scratch the world of renormalizable
QFT on non-commutative spaces. The little we see through the narrow window
now open is extremely tantalizing. There exists renormalizable NCQFTs, e.g., Φ�4

on R4
θ, Gross-Neveu on R2

θ and they enjoy better properties than their commu-
tative counterparts, since they have no Landau ghosts. The constructive program
looks easier on non-commutative geometries than on commutative ones. Non-
commutative non relativistic field theories with a chemical potential seem the
right formalism for a study ab initio of various problems in presence of a magnetic
field, and in particular of the quantum Hall effect. The correct scaling and RG

26These trees may be either true trees of the graphs in the fermionic case or trees associated to
cluster or Mayer expansions in the bosonic case, but this distinction is not essential.
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theory of this effect presumably requires to build a very singular theory (of the
self-dual covariant type) because of the huge degeneracy of the Landau levels. To
understand this theory and the gauge theories on non-commutative spaces seem
the most obvious challenges ahead of us.
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Mathematics Vol. 251, 2007, hep-th/0409312.

[3] M. Peskin and Daniel V. Schroeder (Contributor), An Introduction to Quantum Field
Theory, Perseus Publishing, (1995).

[4] C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw Hill, 1980.

[5] P. Ramond, Field Theory, Addison-Wesley, 1994.

[6] J. Glimm and A. Jaffe, Quantum Physics. A functional integral point of view. Mc-
Graw and Hill, New York, 1981.

[7] Manfred Salmhofer, Renormalization: An Introduction, Texts and Monographs in
Physics, Springer Verlag, 1999.
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[96] G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Un-
tersuchung der linearen Verteilung galvanischer Ströme geführt wird, Ann. Physik
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Non-commutative Fluids

Alexios P. Polychronakos

Abstract. We review the connection between non-commutative gauge theory,
matrix models and fluid mechanical systems. The non-commutative Chern-
Simons description of the quantum Hall effect and bosonization of collective
fermion states are used as specific examples.

1. Introduction

The idea that space may be a derived or emergent concept is a relatively old
theme in theoretical physics. In the context of quantum mechanics, observables
are operators and it is only their spectrum and mutual relations (commutators)
that define their physical content. Space, to the extent that it is observable, should
be not different. The properties attributed to space from everyday experience –
and postulated in newtonian mechanics and special relativity – could be either
exact or approximate, emerging in some particular or partial classical limit. Other
structures, extending or deforming the concepts of classical geometry, and reducing
to it under appropriate conditions, are conceivable.

This possibility has had an early emergence in speculations by Heisenberg
himself. It made reappearances in various guises and contexts [1]. One of the most
strikingly prescient of later developments in non-commutative gauge theory was
the work of Eguchi and Kawai in large-N single-plaquette lattice gauge theory [2].
It was, however, after the seminal and celebrated work of Alain Connes that non-
commutative geometry achieved the mathematical rigor and conceptual richness
that made it a major component of modern theoretical physics. The concept made
further inroads when it emerged as a property of space-time solutions derived from
string theory [4, 5] and, by now, it claims a huge body of research literature.

One of the reasons that makes the idea of non-commutative spaces attrac-
tive is the common language and connections that it provides between apparently
disparate topics. Indeed, as will be reviewed in this write-up, non-commutative
physics unifies such a priori different objects as gauge fields, membranes, flu-
ids, matrix models and many-body systems. (Some of the above connections can
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be established independently, but the full continuum emerges only in the non-
commutative setting.)

Unification of description usually brings unification of concepts. This raises
the stakes and elevates noncommutativity into a possibly fundamental property
of nature. We could ask, for instance, whether the eventual bringing together of
gravity, quantum mechanics and thermodynamics will arise out of some underlying
fully non-commutative structure that shapes into space-time, quantum mechanics
and statistical ensembles in some appropriate limit. Whether this is indeed true
is, of course, unclear and leaves room for wild speculation.

At this point, we should refrain from fantasizing any further and take a more
pragmatic point of view. The obvious question is: does noncommutativity buy us
any advantage for physics as we presently know it? It will be the purpose of this
exposé (as, I imagine, of the other contributions to this book) to demonstrate that
this, indeed, is the case.

2. Review of non-commutative spaces

The concepts of non-commutative geometry will be covered by other contributions
to this book and there is probably little use in repeating them here. Moreover, there
are many excellent and complete review articles, of which [6–8] are only a small
sample.

Nevertheless, a brief summary will be presented here, for two main reasons.
Firstly, it will make this write-up essentially self-contained and will minimize the
need to refer to other sources for a coherent reading; and secondly, the level and
tone of the presentation will be adapted to our needs, and hopefully will serve as
a low-key alternative to more rigorous and complete treatments.

2.1. The operator formulation

The simplest starting point for the definition of non-commutative spaces is through
the definition of non-commutative coordinates. This is the approach that is most
closely related to physics, making the allusions to quantum mechanics most ex-
plicit, and is therefore also the most common one in physics texts. In this, the
non-commutative spaces are defined in terms of their coordinates xµ, which are
abstracted into (linear) operators. Such coordinates can be added and multiplied
(associatively), forming a full operator algebra, but are not (necessarily) commu-
tative. Instead, they obey the commutation relations

[xµ, xν ] = iθµν , µ, ν = 1, . . . , d. (1)

The antisymmetric two-tensor θµν could be itself an operator, but is usually taken
to commute with all xµ (for ‘flat’ non-commutative spaces) and is, thus, a set of
ordinary, constant c-numbers. Its inverse, when it exists,

ωµν = (θ−1)µν , (2)

defines a constant two-form ω characterizing the noncommutativity of the space.
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Clearly the form of θ can be changed by redefining the coordinates of the
space. Linear redefinitions of the xµ, in particular, would leave θµν a c-number
(nonlinear redefinitions will be examined later). We can take advantage of this
to give a simple form to θµν . Specifically, by an orthogonal transformation of the
xµ we can bring θµν to a Darboux form consisting of two-dimensional blocks pro-
portional to iσ2 plus a set of zero eigenvalues. This would decompose the space
into a direct sum of mutually commuting two-dimensional non-commutative sub-
spaces, plus possibly a number of commuting coordinates (odd-dimensional spaces
necessarily have at least one commuting coordinate). In general, there will be 2n
properly noncommuting coordinates xα (α = 1, . . . , 2n) and q = d−2n commuting
ones Y i (i = 1, . . . , q). In that case ω will be defined as the inverse of the projection
θ̄ of θ on the fully noncommuting subspace:

ωαβ = (θ̄−1)αβ , ωij = 0. (3)

The actual non-commutative space can be thought of as a representation of
the above operator algebra (1), acting on a set of states. For real spaces the oper-
ators xµ will be considered hermitian, their eigenvalues corresponding to possible
values of the corresponding coordinate. Not all coordinates can be diagonalized
simultaneously, so the notion of ‘points’ (sets of values for all coordinates xµ) is
absent. The analogy with quantum mechanical coordinate and momentum is clear,
with each ‘Darboux’ pair of non-commutative coordinates being the analog of a
canonical quantum pair. Nevertheless, a full set of geometric notions survives, in
particular relating to fields on the space, as will become clear.

The representation of xµ can be reducible or irreducible. For the commut-
ing components Y i any useful representation must necessarily be reducible, else
the corresponding directions would effectively be absent (consisting of a single
point). States are labeled by the values of these coordinates yi, taken to be contin-
uous. The rest of the space, consisting of canonical Heisenberg pairs, admits the
tensor product of Heisenberg-Fock Hilbert spaces (one for each two-dimensional
noncommuting subspace k = 1, . . . , n) as its unique irreducible representation. In
general, we can have a reducible representation consisting of the direct sum of N
such irreducible components for each set of values yi, labeled by an extra index
a = 1, . . . , N (we shall take N not to depend on yi). A complete basis for the
states, then, can be

|n1, . . . , nn; y1, . . . , yq; a〉 (4)

where nk is the Fock (oscillator) excitation number of the kth two-dimensional
subspace.

Due to the reducibility of the above representation, the operators xµ do not
constitute a complete set. To make the set complete, additional operators need
be introduced. To deal with the reducibility due to the values yi, we consider
translation (derivative) operators ∂µ. These are defined through their action on
xµ, generating constant shifts:

[∂µ, xν ] = δν
µ. (5)
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On the fully non-commutative subspace these are inner automorphisms gener-
ated by

∂α = −iωαβxβ . (6)
For the commutative coordinates, however, extra operators have to be appended,
shifting the Casimirs Y i and thus acting on the coordinates yi as usual derivatives.

To deal with the reducibility due to the components a = 1, . . . , N , we need
to introduce yet another set of operators in the full representation space mixing
the above N components. Such a set are the hermitian U(N) operators Gr , r =
1, . . . , N2 that commute with the xµ, ∂µ and mix the components a. (We could,
of course, choose these operators to be the SU(N) subset, eliminating the trivial
identity operator.) The set of operators xα, ∂i, G

r is now complete.
Within the above setting, we can define field theories on a non-commutative

space. Fields are the analogs of functions of coordinates xµ; that is, arbitrary
operators in the universal enveloping algebra of the xµ. In general, the above fields
are not arbitrary operators on the full representation space, since they commute
with ∂i and Gr. In particular, they act ‘pointwise’ on the commutative coordinates
Y i are, therefore, ordinary functions of the yi.

We can, of course, define fields depending also on the remaining operators.
Fields involving operators Gr are useful, as they act as N × N matrices on com-
ponents a. They are the analogs of matrix-valued fields and will be useful in con-
structing gauge theories. We could further define operators that depend on the
commutative derivatives ∂i. These have no commutative analog, and will not be
considered here. Notice, however, that on fully non-commutative spaces (even-
dimensional spaces without commutative components), the matrix-valued fields
fab(xµ) constitute the full set of operators acting on the representation space.

The fundamental notions completing the discussion of non-commutative field
theory are the definitions of derivatives and space integral. Derivatives of a function
f are defined as commutators with the corresponding operator:

∂µ · f = [∂µ, f ]. (7)

That is, through the adjoint action of the operator ∂µ on fields (we use the dot to
denote this action). For the commutative derivatives ∂i this is the ordinary partial
derivative ∂/∂yi. For the non-commutative coordinates, however, such action is
generated by the xα themselves, as ∂α = −iωαβxβ . So the notion of coordinates
and derivatives on purely non-commutative spaces fuses, the distinction made only
upon specifying the action of the operators xα on fields (left- or right- multiplica-
tion, or adjoin action).

The integral over space is defined as the trace in the representation space,
normalized as: ∫

ddx =
∫

dqy tr′
√

det(2πθ) tr ≡ Tr (8)

where tr is the trace over the Fock spaces and tr′ is the trace over the degen-
eracy index a = 1, . . . , N . This corresponds to a space integral and a trace over
the matrix indices a. The extra determinant factor ensures the recovery of the
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proper commutative limit (think of semiclassical quantization, or the transition
from quantum to classical statistical mechanical partition functions.)

All manipulations within ordinary field theory can be transposed here, with a
non-commutative twist. For instance, the fact that the integral of a total derivative
vanishes (under proper boundary conditions), translates to the statement that the
trace of a commutator vanishes, and its violation by fields with nontrivial behavior
at infinity is mirrored in the nonvanishing trace of the commutator of unbounded,
non-trace class operators, such as the non-commutative coordinates themselves.

2.2. Weyl maps, Wigner functions and ∗-products

The product of non-commutative fields is simply the product of the corresponding
operators, which is clearly associative but not commutative. It is also not ‘point-
wise’, as the notion of points does not even exist. Nevertheless, in the limit θµν → 0
we recover the usual (commutative) geometry and algebra of functions. Points are
recovered as any set of states whose spread ∆xµ in each coordinate xµ goes to
zero in the commutative limit. Such a useful set is, e.g., the set of coherent states
in each non-commutative (Darboux) pair of coordinates with average values xµ.

Observations like that can form the basis of a complete mapping between non-
commutative fields and commutative functions f(x), leading to the notion of the
‘symbol’ of f(x) and the star-product. Specifically, by expressing fields as functions
of the fundamental operators xµ and ordering the various xµ in the expressions
for the fields in a prescribed way, using their known commutators, establishes a
one-to-one correspondence between functions of operators and ordinary functions.
This is reminiscent of, and in fact equivalent to, the Wigner function mapping of
a quantum mechanical operator onto the classical phase space (see [9] for a simple
review).

The ordering that is most usually adopted is the fully symmetric Weyl or-
dering, in which monomials in the xµ are fully symmetrized. It is simplest to work
with the Fourier transforms of functions, since exponentials of linear combinations
of xµ are automatically Weyl ordered. So a classical function f(x), with Fourier
transform f̃(k), is mapped to the operator (non-commutative field) f as:

f =
∫

dk eikµxµ

f̃(k) (9)

(the integral over k is of the appropriate dimensionality). Conversely, the ‘symbol’
(commutative function) corresponding to an operator f can be expressed as:

f̃(k) =
√

det(θ/2π) tr fe−ikµxµ

(10)

where the above trace is taken over an irreducible representation of the non-com-
mutative coordinates. This reproduces scalar functions. For matrix-valued non-
commutative fields f , acting nontrivially on a direct sum of N copies of the irre-
ducible representation, the above expression generalizes to

f̃ab(k) =
√

det(θ/2π)
∑

n

〈n, a|fe−ikµxµ |n, b〉 (11)
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where |n, a〉 are a complete set of states for the ath copy of the irreducible rep-
resentation, reproducing a matrix function of commutative variables. Hermitian
operators f map to hermitian matrix functions fab(x) or, in the case N = 1, real
functions.

On can show that, under the above mapping, derivatives and integrals of non-
commutative fields map to the standard commutative ones for their symbol. The
product of operators, however, maps to a new function, called the star-product of
the corresponding functions [10]:

f ↔ f(x) , g ↔ g(x) =⇒ fg ↔ (f ∗ g)(x). (12)

The star product can be written explicitly in terms of the Fourier transforms of
functions as

(f ∗ g)(k) =
∫

dk f̃(q) g̃(k − q) e
i
2 θµνkµkν . (13)

This is the standard convolution of Fourier transforms, but with an extra phase
factor. The resulting ∗-product is associative but non-commutative and also non-
local in the coordinates xµ. The commutator of two non-commutative fields maps
to the so-called star, or Moyal, brackets of their symbols.

The above mapping has the advantage that it circumnavigates the conceptual
problems of non-commutative geometry by working with familiar objects such as
ordinary functions and their integral and derivatives, trading the effects of non-
commutativity for a nonlocal, non-commutative function product. It can, however,
obscure the beauty and conceptual unification that arises from noncommutativity
and make some issues or calculations unwieldy. In what follows, we shall stick
with the operator formulation as exposed above. Translation into the ∗-product
language can always be done at any desired stage.

3. Non-commutative gauge theory

Gauge theory on non-commutative spaces becomes particularly attractive [11–
13]. Gauge fields Aµ are hermitian operators acting on the representation space.
Since they do not depend on ∂i they cannot shift the values of yi, while they act
nontrivially on the fully noncommuting subspace. They have effectively become big
matrices acting on the full Fock space with elements depending on the commuting
coordinates. Derivatives of these fields are defined through the adjoint action of ∂µ,

∂µ · Aν = [∂µ, Aν ]. (14)

Using the above formalism, gauge field theory can be built in a way analogous
to the commuting case. Gauge transformations are unitary transformations in
the full representation space. Restricting Aµ to depend on the coordinates only,
as above, produces the so-called U(1) gauge theory. U(N) gauge theory can be
obtained by relaxing this restriction and allowing Aµ to also be a function of the
Gr and thus act on the index a.
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3.1. Background-independent formulation

The basic moral of the previous section is that non-commutative gauge theory
can be written in a universal way [14–16]. In the operator formulation no special
distinction needs be done between U(1) and U(N) theories, nor need gauge and
space-time degrees of freedom be treated distinctly. The fundamental operators of
the theory are

Dµ = −i∂µ + Aµ (15)

corresponding to covariant derivatives. Gauge transformations are simply unitary
conjugations of the covariant derivative operators by a unitary field U . That is,
the Dµ transform covariantly:

Dµ → U−1DµU. (16)

This reproduces the (non-commutative version of the) standard gauge transforma-
tion of Aµ:

Aµ → −iU−1∂µ · U + U−1AµU. (17)

For the fully non-commutative components, covariant derivative operators assume
the form

Dα = ωαβxβ + Aα = ωαβ(xβ + θβγAγ) = ωαβXβ. (18)

The above rewriting is important in various ways. It stresses the fact that, on
fully non-commutative spaces, the separation of Dα into xα (coordinate) and Aα

(gauge) is largely arbitrary and artificial: both are operators acting on the Hilbert
space on an equal footing, the distinction between ‘derivative’ and ‘coordinate’
having been eliminated. This separation is also gauge dependent, since a unitary
transformation will mix the two parts. In effect, gauge transformations mix spatial
and gauge degrees of freedom! Further, it is not consistent any more to consider
strictly SU(N) gauge fields. Even if Aµ is originally traceless in the N -dimensional
index a, gauge transformations U cannot meaningfully be restricted to SU(N):
the notion of partial trace of an operator with respect to one component of a
direct product space makes sense, but the notion of partial determinant does not.
A gauge transformation will always generate a U(1) part for Aµ, making U(N)
gauge theory the only theory that arises naturally.

The above rewriting also introduces the ‘covariant coordinate’ field Xα that
combines the ordinary coordinate and gauge fields in a covariant way and is dual
to the covariant derivative. Non-commutative gauge theory can be constructed
entirely in terms of the Xα. These, in turn, can be thought of as ‘deformed’
coordinates, the deformation being generated by (the dual of) gauge fields, which
alludes to stretching membranes and fluids. All this is relevant in the upcoming
story.

Any lagrangian built entirely out of Dµ will lead to a gauge invariant ac-
tion, since the trace will remain invariant under any unitary transformation. The
standard Maxwell-Yang-Mills action is built by defining the field strength

Fµν = ∂µ · Aν − ∂ν · Aµ + i[Aµ, Aν ] = i[Dµ, Dν ] − ωµν (19)
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and writing the standard action

SLY M =
1

4g2
TrFµνFµν = − 1

4g2
Tr([Dµ, Dν ] + iωµν)2 (20)

where Tr also includes integration over commutative components yi. In the above
we used some c-number metric tensor gµν to raise the indices of F . Note that
the operators ∂α·, understood to act in the adjoint on fields, commute, while the
operators ∂α = −iωαβXβ have a nonzero commutator equal to

[∂α, ∂β ] = iωαβ. (21)

This explains the extra ω-term appearing in the definition of F in terms of covari-
ant derivative commutators.

One can, however, just as well work with the action

ŜLY M =
1

4g2
TrF̂µν F̂µν = − 1

4g2
Tr[Dµ, Dν ][Dµ, Dν ]. (22)

Indeed, Ŝ differs from S by a term proportional to Trω2, which is an irrelevant
(infinite) constant, as well as a term proportional to ωµνTr[Dµ, Dν ], which, being
the trace of a commutator (a ‘total derivative’), does not contribute to the equa-
tions of motion. The two actions lead to the same classical theory. Note that θµν

or ωµν do not appear in the action. These quantities arise only in the commutator
of non-commutative coordinates. Since the xµ do not explicitly appear in the ac-
tion either (being just a gauge-dependent part of Dµ), all reference to the specific
non-commutative space has been eliminated! This is the ‘background independent’
formulation of non-commutative gauge theory that stresses its universality.

3.2. Superselection of the non-commutative vacuum

How does, then, a particular non-commutative space arise in this theory? The
equations of motion for the operators Dµ are

[Dµ, [Dµ, Dν ]] = 0. (23)

The general operator solution of this equation is not fully known. Apart from
the trivial solution Dµ = 0, it admits as solution all operators with c-number
commutators, satisfying

[Dµ, Dν ] = −iωµν (24)

for some ω. This is the classical ‘non-commutative vacuum’, where Dµ = −i∂µ,
and expanding Dµ around this vacuum leads to a specific non-commutative gauge
theory.

Quantum mechanically, ωµν are superselection parameters and the above
vacuum is stable. To see this, assume that the time direction is commutative and
consider the collective mode

Dα = −iλαβ∂β (25)
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with λαβ parameters depending only on time. This mode would change the non-
commutative vacuum while leaving the gauge field part of Dα unexcited. ω gets
modified into

ω′
µν = λµαωαβλβν . (26)

The action implies a quartic potential for this mode, with a strength proportional
to Tr1, and a kinetic term proportional to Tr∂α∂β . (There is also a gauge constraint
which does not alter the qualitative dynamical behavior of λ.) Both potential and
kinetic terms are infinite, and to regularize them we should truncate each Fock
space trace up to some highest state Λ, corresponding to a finite volume regulariza-
tion (the area of each non-commutative two-dimensional subspace has effectively
become Λ). One can check that the potential term would grow as Λn while the
kinetic term would grow as Λn+1. Thus the kinetic term dominates; the above
collective degrees of freedom acquire an infinite mass and will remain “frozen” to
whatever initial value they are placed, in spite of the nontrivial potential. (This
is analogous to the θ-angle of the vacuum of four-dimensional non-abelian gauge
theories: the vacuum energy depends on θ which is still superselected.) Quantum
mechanically there is no interference between different values of λ and we can fix
them to some c-number value, thus fixing the noncommutativity of space [17].
This phenomenon is similar to symmetry breaking, but with the important dif-
ference that the potential is not flat along changes of the “broken” vacuum, and
consequently there are no Goldstone bosons.

In conclusion, we can start with the action (22) as the definition of our theory,
where Dµ are arbitrary operators (matrices) in some space. Gauge theory is then
defined as a perturbation around a (stable) classical vacuum. Particular choices of
this vacuum will lead to standard non-commutative gauge theory, with θµν and
N appearing as vacuum parameters. Living in any specific space and gauge group
amounts to landscaping!

3.3. Non-commutative Chern-Simons action

A particularly useful and important type of action in gauge theory is the Chern-
Simons term [18]. This is a topological action, best written in terms of differential
forms. In the commutative case, we define the one- and two-forms

A = iAµdxµ , F = dA + A2 =
i

2

(
∂µAν − ∂νAµ + i[Aµ, Aν ]

)
dxµdxν . (27)

The Chern-Simons action S2n+1 is the integral of the 2n+1-form C2n+1 satisfying

dC2n+1 = trFn+1. (28)

By virtue of (28) and the gauge invariance of trFn it follows that S2n+1 is gauge
invariant up to total derivatives, since, if δ stands for an infinitesimal gauge trans-
formation,

dδC2n+1 = δdC2n+1 = δtrFn = 0 , so δC2n+1 = dΩ2n. (29)

The integrated action is therefore invariant under infinitesimal gauge transforma-
tions. Large gauge transformations may lead to an additive change in the action
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and they usually imply a quantization of its coefficient [18, 19]. As a result, the
equations of motion derived from this action are gauge covariant and read

δS2n+1

δA
=

δ

δA

∫
C2n+1 = (n + 1)Fn. (30)

The above can be considered as the defining relation for C2n+1.
We can define corresponding non-commutative Chern-Simons actions [20–28].

To this end, we shall adopt the differential form language [17] and define the usual
basis of one-forms dxµ as a set of formal anticommuting parameters with the
property

dxµdxν = −dxνdxµ , dxµ1 · · · dxµd = εµ1...µd . (31)

Topological actions do not involve the metric tensor and can be written as integrals
of d-forms. The only dynamical objects available in non-commutative gauge theory
are Dµ and thus the only form that we can write is

D = idxµDµ = d + A (32)

where we defined the exterior derivative and gauge field one-forms

d = dxµ∂µ , A = idxµAµ (33)

(note that both D and A as defined above are antihermitian). The action of the
exterior derivative d on an operator p-form H , d·H, yields the p+1-form dxµ[∂µ, H]
and is given by

d · H = dH − (−)pHd. (34)

In particular, on the gauge field one-form A it acts as

d · A = dA + Ad. (35)

Correspondingly, the covariant exterior derivative of H is

D · H = DH − (−)pHD. (36)

As a result of the noncommutativity of the operators ∂µ, the exterior derivative
operator is not nilpotent but rather satisfies

d2 = ω , ω =
i

2
dxµdxνωµν . (37)

We stress, however, that d· is still nilpotent since ω commutes with all operator
forms:

d · d · H = [d, [d, H]∓]± = ±[ω, H] = 0. (38)

The two-form F̂ = i
2dxµdxν F̂µν is simply

F̂ = D2 =
1
2
D · D = ω + dA + Ad + A2 = ω + F (39)

where F = i
2dxµdxνFµν is the conventionally defined field strength two-form.

The most general d-form that we can write involves arbitrary combinations
of D and ω. If, however, we adopt the view that ω should arise as a superselection
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(vacuum) parameter and not as a term in the action, the unique form that we can
write is Dd and the unique action

Ŝd =
d + 1
2d

TrDd = Tr Cd. (40)

This is the Chern-Simons action. The coefficient was chosen to conform with the
commutative definition, as will be discussed shortly. In even dimensions Ŝd reduces
to the trace of a commutator Tr[D, Dd−1], a total derivative that does not affect
the equations of motion and corresponds to a topological term. In odd dimensions
it becomes a nontrivial action.

Ŝd is by construction gauge invariant. To see that it also satisfies the defining
property of a Chern-Simons form (30) is almost immediate: δ/δA = δ/δD and
thus, for d = 2n + 1:

δ

δA
Tr D2n+1 = (2n + 1)D2n = (2n + 1) F̂n. (41)

So, with the chosen normalization in (40) we have the defining condition (30) with
F̂ in the place of F. What is less obvious is that ŜD can be written entirely in
terms of F and A and that, for commutative spaces, it reduces to the standard
Chern-Simons action. To achieve that, one must expand CD in terms of d and
A, make use of the cyclicity of trace and the condition d2 = ω and reduce the
expressions into ones containing dA + Ad rather than isolated d s. The condition

Trωnd = 0 (42)

which is a result of the fact that ∂µ is off-diagonal for both commuting and non-
commuting dimensions, can also be used to get rid of overall constants. This is
a rather involved procedure for which we have no algorithmic approach. (Specific
cases will be worked out later.) Note, further, that the use of the cyclicity of trace
implies that we dismiss total derivative terms (traces of commutators). Such terms
do not affect the equations of motion. For d = 1 the result is simply

Ŝ1 = TrA (43)

which is the ‘abelian’ one-dimensional Chern-Simons term. For d = 3 we obtain

Ŝ3 = Tr(AF − 1
3
A3) + 2Tr(ωA) (44)

where we used the fact that Tr[A(dA + Ad)] = 2Tr(A2d). The first term is the
non-commutative version of the standard three-dimensional Chern-Simons term,
while the second is a lower-dimensional Chern-Simons term involving explicitly ω.

We can get the general expression for Ŝd by referring to the defining relation.
This reads

δ

δA
Ŝ2n+1 = (n + 1)F̂n = (n + 1)(F + ω)n = (n + 1)

n∑
k=0

(
n

k

)
ωn−kFk (45)
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and by expressing Fk as the A-derivative of the standard Chern-Simons action
S2k+1 we get

δ

δA

{
Ŝ2n+1 −

n∑
k=0

(
n + 1
k + 1

)
ωn−kS2k+1

}
= 0. (46)

So the expression in brackets must be a constant, easily seen to be zero by setting
A = 0. We therefore have

Ŝ2n+1 =
n∑

k=0

(
n + 1
k + 1

)
Trωn−kC2k+1. (47)

We observe that we get the 2n+1-dimensional Chern-Simons action plus all lower-
dimensional actions with tensors ω inserted to complete the dimensions. Each term
is separately gauge invariant and we could have chosen to omit them, or include
them with different coefficient. It is the specific combination above, however, that
has the property that it can be reformulated in a way that does not involve ω
explicitly. The standard Chern-Simons action can also be written in terms of D
alone by inverting (47):

S2n+1 = (n + 1)Tr
∫ 1

0

D(t2D2 − ω)ndt = Tr
n∑

k=0

(
n + 1
k + 1

)
k + 1
2k + 1

(−ω)n−kD2k+1.

(48)
For example, the simplest nontrivial non-commutative action in 2+1 dimensions
reads

S3 = Tr
(

2
3
D3 − 2ωD

)
. (49)

The above can be written more explicitly in terms of the two spatial covariant
derivatives D1,2, which are operators acting on the non-commutative space, and
the temporal covariant derivative D0 = dt(∂t + iA0), which contains a proper
derivative operator in the commutative direction x0 = t and a non-commutative
gauge field A0:

S3 =
∫

dt 2πθ Tr
{

εij(Ḋi + i[A0, Di])Dj +
2
θ
A0

}
. (50)

Note that the overall coefficient of the last, linear term is independent of θ.
We also point out a peculiar property of the Chern-Simons form Ĉ2n+1. Its

covariant derivative yields F̂n+1:

D · Ĉ2n+1 = DĈ2n+1 + Ĉ2n+1D =
2n + 2
2n + 1

F̂n+1. (51)

A similar relation holds between Cd (understood as the form appearing inside the
trace in the right-hand side of (48)) and F. Clearly the standard Chern-Simons
form does not share this property. Our Cd differs from the standard one by com-
mutators that cannot all be written as ordinary derivatives (such as, e.g., [d, dA]).
These unconventional terms turn Cd into a covariant quantity that satisfies (51).
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3.4. Level quantization for the non-commutative Chern-Simons action

We conclude our consideration of the non-commutative Chern-Simons action by
considering the quantization requirements for its coefficient [27, 28].

In the commutative case, a quantization condition for the coefficient of non-
abelian Chern-Simons actions (‘level quantization’) is required for global gauge
invariance. This has its roots in the topology of the group of gauge transforma-
tions in the given manifold. E.g., for the three-dimensional term, the fact that
π3[SU(N)] = Z for any N > 1 implies the existence of topologically nontrivial
gauge transformations and corresponding level quantization.

For the non-commutative actions we have not studied the topology of the
gauge group. This would appear to be a hard question for a ‘fuzzy’ non-commut-
ative space, but in fact is well defined and easy to answer: gauge transformations
are simply unitary transformations on the full representation space on which Xµ

or Dµ act. This space is infinite-dimensional, so we are dealing with (some ver-
sion of) U(∞). Two observations, however, elucidate the answer. First, for odd-
dimensional non-commutative spaces there is always one (and in general only one)
commutative dimension t, conventionally called time and compactified to a circle;
and second, if we require gauge transformations to act trivially at infinity, we are
essentially restricting the corresponding unitary operators to have finite support
on the representation space and be bounded. So the relevant gauge transforma-
tions are essentially U(N) matrices of the form U(t), where N is the ‘support’ of
U , that is, the dimension of the subspace of the Hilbert space on which U acts
nontrivially. The relevant topology is S1 → U(N) and is nontrivial due to the U(1)
factor in U(N):

π1[U(N)] = π1[U(1)] = Z. (52)
This is true for any non-commutative gauge theory, abelian or non-abelian. A
‘winding number one’ transformation would be a matrix of the form

U(t) = ei 2π
N tŨ(t) , t ∈ [0, 1] (53)

with Ũ an SU(N) matrix satisfying Ũ(0) = 1 and Ũ(1) = exp(−i 2π
N ), a ZN matrix.

This satisfies U(0) = U(1) = 1 but cannot be smoothly deformed to U(t) = 1.
What is the change, if any, of the non-commutative Chern-Simons action

under the above transformation? We may look at the explicit form (50) of S3 to
decide it. The first, cubic term is completely gauge invariant. Indeed, under a gauge
transformation the quantity inside the trace and integral transforms covariantly

εij(Ḋi + i[A0, Di])Dj → U(t)−1
[
εij(Ḋi + i[A0, Di])Dj

]
U(t) (54)

and upon tracing it remains invariant. The term A0, however, transforms as

A0 → U(t)−1A0U(t) − iU(t)−1U̇(t). (55)

The last term gives a nontrivial contribution to the action equal to

∆S3 = −i4π

∫ 1

0

dt trU(t)−1U̇(t). (56)
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The SU(N) part Ũ of U(t) does not contribute to the above, since Ũ−1 ˙̃U is
traceless. The U(1) factor, however, contributes a part equal to

∆S3 = −i4π

∫ 1

0

dt i
2π

N
tr1 = 8π2. (57)

The coefficient of the action λ should be such that the overall change of the action
be quantum mechanically invisible, that is, a multiple of 2π. We get

λ 8π2 = 2πn or λ =
n

4π
(58)

with n an integer.
The above quantization condition is independent of θ and conforms with the

level quantization of the commutative non-abelian Chern-Simons theory. It also
holds for the abelian (or, rather, U(1)) theory, for which there is no quantization in
the commutative case. In the commutative limit the corresponding topologically
nontrivial gauge transformations become singular and decouple from the theory,
thus eliminating the need for quantization. This result will be relevant in the
upcoming considerations of the quantum Hall effect.

4. Connection with fluid mechanics

At this point we take a break from non-commutative gauge theory to bring into
the picture fluid mechanics and review its two main formulations, Euler and La-
grange. As will become apparent, the two subjects are intimately related. Already
we saw that non-commutative gauge theory can be formulated in terms of covari-
ant deformed coordinate operators Xµ. These parallel the spatial coordinates of
particle fluids, with the undeformed background coordinates xµ playing the role
of body-fixed labels of the particles.

4.1. Lagrange and Euler descriptions of fluids

We start with a summary review of the two main formulations of fluid mechan-
ics, the particle-fixed (Lagrange) and space-fixed (Euler) descriptions. For more
extensive reviews see [29, 30].

A fluid can be viewed as a dense collection of (identical) particles moving
in some d-dimensional space, evolving in time t. The Lagrange description uses
the coordinates of the particles comprising the fluid: X i(x, t). These are labeled
by a set of parameters xi, which are the coordinates of some fiducial reference
configuration and are called particle-fixed or comoving coordinates. They serve,
effectively, as particle ‘labels’. Summation over particles amounts to integration
over the comoving coordinates x times the density of particles in the fiducial
configuration ρ0(x), which is usually taken to be homogeneous.

In the Euler description the fluid is described by the space-time-dependent
density ρ(r, t) and velocity fields vi(r, t) at each point of space with coordinates ri.
The two formulations are related by considering the particles at space coordinates
ri, that is, X i = ri, and expressing the density and velocity field in terms of the
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Lagrange variables. We assume sufficient regularity so that (single-valued) inverse
functions χi(r, t) exist:

X i(t, x)
∣∣∣
x=χ(t,r)

= ri. (59)

X i(x, t) provides a mapping of the fiducial particle position xi to position at time t,
while χi(r, t) is the inverse mapping. The Euler density then is defined by

ρ(r, t) = ρ0

∫
dxδ

(
X(x, t) − r

)
. (60)

(The integral and the δ-function carry the dimensionality of the relevant space.)
This evaluates as

1
ρ(r, t)

=
1
ρ0

det
∂X i(x, t)

∂xj

∣∣∣
x=χ(r,t)

(61)

which is simply the change of volume element from fiducial to real space. The
Euler velocity is

vi(r, t) = Ẋ i(x, t)
∣∣∣
x=χ(r,t)

(62)

where overdot denotes differentiation with respect to the explicit time dependence.
(Evaluating an expression at x = χ(r, t) is equivalent to eliminating x in favor of
X , which is then renamed r.)

The number of particles in the fluid is conserved. This is a trivial (kinemat-
ical) condition in the Lagrange formulation, where comoving coordinates directly
relate to particles. In the Euler formulations this manifests through conservation
of the particle current ji = ρvi, given in terms of Lagrange variables by

ji(r, t) = ρ0

∫
dxẊ i(r, t)δ

(
X(x, t) − r

)
. (63)

As a consequence of the above definition it obeys the continuity equation

ρ̇ + ∂ij
i = 0 . (64)

The kinetic part of the lagrangian K for the Lagrange variables is simply
the single-particle lagrangian for each particle in terms of the particle coordinates,
Ksp(X), summed over all particles,

K = ρ0

∫
dxKsp

(
X(x, t)

)
. (65)

The exact form of Ksp depends on whether the particles are relativistic or non-
relativistic, the presence of magnetic fields etc. As an example, the kinetic term
for a non-relativistic plasma in an external magnetic field generated by an electro-
magnetic vector potential Ai is

K = ρ0

∫
dx

[
1
2
m gij(X) Ẋ iẊj + qAi(X, t) Ẋ i

]
(66)

with m and q the mass and charge of each fluid particle and gij the metric of
space.
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Single-particle (external) potentials can be written in a similar way, while
many-body and near-neighbor (density dependent) potentials will be more in-
volved.

4.2. Reparametrization symmetry and its non-commutative avatar

The Lagrange description has an obvious underlying symmetry. Comoving coor-
dinates are essentially arbitrary particle labels. All fluid quantities are invariant
under particle relabeling, that is, under reparametrizations of the variables xi,
provided that the density of the fiducial configuration ρ0 remains invariant. Such
transformations are volume-preserving diffeomorphisms of the variables xi.

For the minimal nontrivial case of two spatial dimensions, this symmetry
corresponds to area-preserving diffeomorphisms. They can be thought of as canon-
ical transformations on a two-dimensional phase space and are parametrized by
a function of the two spatial variables, the generator of canonical transformation.
Infinitesimal transformations are written

δxi = εij ∂f

∂xj
(67)

with f(x) the generating function. Obviously δxi satisfies the area-preserving con-
dition

det
∂(xi + δxi)

∂xj
= 1 or

∂δxi

∂xi
= 0. (68)

The same condition can be written in an even more suggestive way. Define a
canonical structure for the two-dimensional space in terms of the Poisson brackets

{x1, x2} = θ or {xi, xj} = θεij = θij (69)

for some constant θ. Rescaling f by a factor θ−1, we can re-write δxi as

δxi = θij∂jf = {xi, f}. (70)

Similarly, the transformation of the fundamental (Lagrange) fluid variables under
the above redefinition is

δX i = ∂jX
iδxj = θjk∂jX

i∂kf = {X i, f}. (71)

The above look like the classical analog (or precursor) of the gauge transfor-
mations of the covariant non-commutative gauge coordinates X i of the previous
sections. This is not accidental: the area-preserving transformations for the fluid
correspond to relabeling the parameters x and do not generate a physically distinct
fluid configurations. They represent simply a redundancy in the description of the
fluid in terms of Lagrange coordinates; that is, a gauge symmetry. Physical fluid
quantities, such as the Euler variables, or the fluid lagrangian, are expressed as
integrals of quantities transforming ‘covariantly’ under the above transformation;
that is, transforming by the Poisson bracket of the quantity with the generator of
the transformation f , as in (71). They are, therefore, invariant under such trans-
formations; that is, gauge invariant.
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The analogy with non-commutative gauge theory becomes manifest by writ-
ing the Lagrange particle coordinates in terms of their deviation from the fiducial
coordinates [31–34]:

X i(x, t) = xi + ai(x, t) = xi + θijAj(x, t). (72)

The deviation ai, and its dual Ai do not transform covariantly any more; rather

δAi = ∂if + {Ai, f}. (73)

The similarity with the gauge transformation of a gauge field is obvious. The duals
of the X i,

Di = ωijX
j = ωijx

j + Ai, (74)

obviously correspond to covariant derivatives (although at this stage they are just
rewritings of the comoving particle coordinates). The analog of the field strength is

F̂ij = {Di, Dj} = ωij + ∂iAj − ∂jAi + {Ai, Aj}. (75)

This is related to the fluid density, which in the Poisson bracket formulation reads

ρ0

ρ
= det

∂Xk(x, t)
∂xl

=
1
θ
{X1, X2}. (76)

The field strength calculates as

F̂ij = ωij{X1, X2} =
ρ0

ρ
εij . (77)

The field strength essentially becomes the (inverse) fluid density!
Similar considerations generalize to higher dimensions, with one twist: canon-

ical transformations, the classical version of non-commutative gauge transforma-
tions, are only a symplectic subgroup of full volume-preserving diffeomorphisms.
Higher-dimensional non-commutative gauge theory is analogous to a special ver-
sion of fluid mechanics that enjoys a somewhat limited particle relabeling invari-
ance. For the purposes of describing the quantum Hall effect, an essentially two-
dimensional situation, this is inconsequential.

4.3. Gauging the symmetry

In the above discussion the role of time was not considered. The particle relabel-
ing (x-space reparametrization) considered above were time-independent. Time-
dependent transformations are not, a priori, invariances of the fluid since they
introduce extra, nonphysical terms in the particle velocities Ẋ i(x, t). To promote
this transformation into a full space-time gauge symmetry we must gauge time
derivatives by introducing a temporal gauge field A0:

D0X
i = ẋi + {A0, X

i}. (78)

Under the transformation (71) with a time-dependent function f the above deriv-
ative will transform covariantly,

δD0X
i = {D0X

i, f}, (79)
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provided that the gauge field A0 transforms as

δA0 = ḟ + {A0, f}. (80)

This gauging, however, has dynamical consequences. We can gauge fix the theory
by choosing the temporal gauge, putting A0 = 0. The action becomes identical to
the ungauged action, with the exception that now we have to satisfy the Gauss law
for the gauge-fixed symmetry, that is, the equation of motion for the reduced field
A0. The exact form of the constraint depends on the kinetic term of the lagrangian
for the fluid:

G =
{

X i,
∂K

∂Ẋ i

}
= 0. (81)

As an example, for the plasma of (66) the Gauss law reads

G = {Ẋ i, mgij(X) Ẋj + qAi(X)} = 0. (82)

Interesting two-dimensional special cases are (gij = δij , q = 0), when

G = {Ẋ i, X i} = 0 (83)

and the ‘lowest Landau level’ case of massless particles in a constant magnetic
field (m = 0, Ai = (B/2)εijX

j), when

G = {X1, X2} = 0. (84)

We conclude by mentioning that the fluid structure we described in this
section can also be interpreted as membrane dynamics. Indeed, a membrane is,
in principle, a sheet of fluid in a higher-dimensional space. A two-dimensional
membrane in two space dimensions is space-filling, and thus indistinguishable from
a fluid, the density expressing the way in which the membrane shrinks or expands
locally. The full correspondence of membranes, non-commutative (matrix) theory
and fluids, relativistic and non-relativistic, has been examined elsewhere [35]. We
shall not expand on it here.

4.4. Non-commutative fluids and the Seiberg-Witten map

In the previous section we alluded to the connection between non-commutative
gauge theory and fluid mechanics. It is time to make the connection explicit [34].
We shall work specifically in two (flat) spatial dimensions, as the most straight-
forward case and relevant to the quantum Hall effect.

The transition from (classical) fluids to non-commutative fluids is achieved
the same way as the transition from classical to quantum mechanics. We promote
the canonical Poisson brackets introduced in the previous section to (operator)
commutators. All Poisson brackets that appear become commutators:

{ , } → −i[ , ]. (85)

So the comoving parameters satisfy

[xi, xj ] = iθij . (86)
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They have become a non-commutative plane. This means that the particle labels
cannot have ‘sharp’ values and pinpointing the particles of the fluid is no more
possible. In effect, we have a ‘fuzzification’ of the underlying fluid particles and a
corresponding ‘fuzzy’ fluid.

The remaining structure smoothly goes over to non-commutative gauge the-
ory, as already alluded. We assume that the non-commutative coordinates x1,
x2 act on a single irreducible representation of their Heisenberg algebra; this ef-
fectively assigns a single particle state for each ‘point’ of space (each state in
the representation). Inclusion of multiple copies of the irreducible representations
would correspond to multiple particle states per ‘point’ of space and would endow
the particles with internal degrees of freedom.

Integration over the comoving parameters becomes 2πθ times trace over the
representation space. Summation over particles, then, becomes∑

particles

= ρ0

∫
dx → 2πθρ0Tr. (87)

The parameter θ, or its inverse ω, was introduced arbitrarily and plays no role in
the fluid description. This is similar to the background-independent formulation
of non-commutative gauge theory in terms of covariant derivatives or coordinates.
Presently, we relate θ to the inverse density of the fiducial configuration ρ−1

0

2πθ =
1
ρ0

(88)

in which case the factor in the preceding equation disappears. Particle summation
becomes a simple trace, so particles are identified with states in the representation
space. This relation between fiducial density and noncommutativity parameter will
always be assumed to hold from now on.

The Lagrange coordinates of particles X i and the gauge field A0 are func-
tions of the underlying ‘fuzzy’ (non-commutative) particle labels, and thus become
non-commutative fields. Area-preserving reparametrizations, which are canonical
transformations in the classical case, become unitary transformations in the non-
commutative case (think, again, of quantum mechanics). Operators X i transform
by unitary conjugations; infinitesimally,

δX i = i[f, X i]. (89)

The deviations of X i from the fiducial coordinates xi, on the other hand, as defined
in (72), and the temporal gauge field pick up extra terms and transform as proper
gauge fields:

δAµ = ∂µf − i[Aµ, f ]. (90)

The remaining question is the form of the (gauge invariant) lagrangian that
corresponds to the non-commutative fluid. This depends on the specific fluid dy-
namics and will be dealt with in the next section. Before we go there, we would like
to examine further the properties of the non-commutative fluid that derives from
the present construction. Just because the underlying particles become fuzzy does
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not necessarily mean that the emerging fluid cannot be described in traditional
terms. Indeed, fluids are dense distributions of particles and we are not supposed
to be able to distinguish individual particles in any case. The Euler description,
which talks about collective fluid properties like density and velocity, remains valid
in the non-commutative case as we shall see.

The non-commutative version of equation (76) for the density becomes (with
2πθρ0 = 1)

[X1, X2] =
i

2πρ
. (91)

This relation would suggest that the density, too, becomes a non-commutative
field. The difficulty with this expression is that it gives the density as a function
of the underlying comoving coordinates, which we know are non-commutative.

A better expression is (60), which gives the density as a function of a point
in space r. This formula directly transcribes into

ρ(r, t) = Trδ
(
X − r

)
(92)

in the non-commutative case. r is still an ordinary space variable, and the trace
eliminates the operator nature of the expression in the right-hand side, rendering
a classical function of r and t. The only difficulty is in the definition of the delta
function for the non-commutative argument X i − ri: the various X i (two in our
case) are operators and do not commute, so there are ordering issues in defining
any function of the two. In fact, the operator δ(X − r) may not even be hermitian
unless properly ordered, which would produce a complex density.

In dealing with such problems, a procedure similar to the definition of the
‘symbol’ of a non-commutative field is followed: a standard ordering of all monomi-
als involving various X is is prescribed. The Weyl (totally symmetrized) ordering
is usually adopted. Under this ordering, the delta function above is defined as

δ
(
X − r

)
=
∫

dkeiki(r
i−Xi) (93)

where ki are classical (c-number) Fourier integration parameters. The above oper-
ator has also the advantage of being hermitian. The spatial Fourier transform of
the density with respect to r is simply

ρ(k, t) = Tr e−ikiX
i

. (94)

In a similar vein, we use the classical expression for the particle current

ji(r, t) = ρ0

∫
dxẊ iδ

(
X − r

)
(95)

to write the corresponding expression for the non-commutative fluid as

ji(k, t) = TrD0X
i e−ikjXj

. (96)

In the above, we used the covariant time derivative in order to make the expression
explicitly gauge invariant. The corresponding current is real, as the trace ensures
that the change of ordering between D0X and the exponential is immaterial.
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The crucial observation is that the above density and current still satisfy the
continuity equation, which in Fourier space becomes

ρ̇ + ikij
i = 0. (97)

The proof is straightforward and relies on the following two facts, true due to the
cyclicity of trace:

d

dt
Tr e−ikiX

i

= −iTr kjẊ
je−ikiX

i

(98)

and

Tr [A0, kjX
j]e−ikiX

i

= 0. (99)

The non-commutative fluid, therefore, has an Euler description in terms of a tra-
ditional conserved particle density and current.

The above observation is the basis for a mapping between commutative and
non-commutative gauge theories, which first arose in the context of string theory
and is known as the Seiberg-Witten map [5]. The key element is that, in 2+1
dimensions, a conserved current can be written in terms of its dual two-form,
which then satisfies the Bianchi identity. Specifically, define

Jµν = εµνλjλ (100)

where j0 = ρ. Then, due to the continuity equation ∂µjµ = 0, Jµν satisfies

∂µJνλ + cyclic perms. = 0 or dJ = 0. (101)

This means that J can be considered as an abelian field strength, which allows us
to define an abelian commutative gauge field Ãµ. The reference configuration of
the fluid, in which particles are in their fiducial positions X i = xi and corresponds
to vanishing non-commutative gauge field, gives jµ

0 = (ρ0, 0, 0) or J0 = ρ0dx1dx2.
If we want to have this configuration correspond to vanishing abelian gauge field
F̃µν , we have to define

F̃ = J − J0 (102)

or, more explicitly

F̃0i = εikjk , F̃ij = εij(ρ − ρ0). (103)

Substituting the explicit expressions (94,96) for ρ and ji, and expressing X i in
them in terms of non-commutative fields, gives an explicit mapping between the
non-commutative fields Aµ and the commutative fields Ãµ.

Similar considerations extend to higher dimensions but, again, we shall not
dwell on them here [34, 36, 37]. The moral lesson of the above is that the La-
grange formulation of fuzzy fluids is inherently non-commutative, while the Euler
formulation is commutative. The Seiberg-Witten map between them becomes the
transition from the particle-fixed Lagrange to the space-fixed Euler formulation.
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5. The non-commutative description of quantum Hall states

We reach, now, one of the main topics of this presentation. Is the above useful to
anything? Can we use it to describe or solve any physical system or does it remain
an interesting peculiarity?

To find an appropriate application, we must look for systems with ‘fuzzy’
particles. This is not hard: quantum mechanical particles on their phase spaces are
fuzzy, due to Heisenberg uncertainty. This can be carried through, and eventually
leads to the description of one-dimensional fermions in terms of matrix models.

A more interesting situation arises in lowest Landau level physics, in which
particles become fuzzy on the coordinate space. Spatial coordinates become non-
commuting when restricted to the lowest Landau level [38,39], already introducing
a non-commutative element (although quite distinct from the one introduced in
the sequel). This is also the setting for the description of quantum Hall states and
will be the topic of the present section.

5.1. Non-commutative Chern-Simons description of the quantum Hall fluid

The system to be described consists of a large number N → ∞ of electrons on
the plane in the lowest Landau level of an external constant magnetic field B (we
take the electron charge e = 1). Upon proper dynamical conditions, they form
quantum Hall states (for a review of the quantum Hall effect see [40]). According
to the observations of the previous section, we can parametrize their coordinates
as a fuzzy fluid in terms of two non-commutative Lagrange coordinates (infinite
hermitian ‘matrices’) X i, i = 1, 2, that is, by two operators on an infinite Hilbert
space. The density of these electrons is not fixed at this point, but will eventually
relate to the noncommutativity parameter as ρ0 = 1/2πθ.

The action is the non-commutative fluid analog of the gauge action of massless
particles in an external constant magnetic field. In the symmetric gauge for the
magnetic field, this would read

S =
∫

dt
B

2
Tr
{
εijD0X

i Xj
}

=
∫

dt
B

2
Tr
{
εij(Ẋ i + i[A0, X

i])Xj
}

. (104)

The above expression was made gauge invariant by gauging the time derivative and
introducing a non-commutative temporal gauge field A0. As explained in previous
sections, however, this introduces a Gauss law constraint, which in the present
case reads

[X1, X2] = 0. (105)
This is undesirable in many ways. The would-be non-commutative coordinates be-
come commutative, eliminating the fuzziness of the description. More seriously, the
density of the fluid classically becomes singular, as can be seen from the expression
(91) for the inverse fluid density. (It can also be deduced from the commutative
expression (94), although in a slightly more convoluted way.)

Taking care of the above difficulty also gives the opportunity to introduce an
important piece of physics for the system: fractional quantum Hall states (Laugh-
lin states, in their simplest form) are incompressible and have a constant spatial
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density ρ0. The filling fraction ν of the state is defined as the fraction of the Landau
level density ρ

LL
= B/2π that ρ0 represents:

ν =
ρ0

ρ
LL

=
2πρ

B
=

1
θB

(106)

where the non-commutative parameter θ is related to the desired fluid density in
the standard way, spelled out again as

ρ0 =
1

2πθ
. (107)

We can introduce this constant density ρ0 in the system by modifying the Gauss
law constraint by an appropriate constant, achieved by adding a term linear in
A0. The resulting action reads

S =
∫

dt
B

2
Tr
{

εij(Ẋ i + i[A0, X
i])Xj + 2θA0

}
. (108)

This was first proposed by Susskind [33], motivated by the earlier, classical map-
ping of the quantum Hall fluid to a gauge action [31] and related string theory
work [41]. The equation of motion for A0, now, imposes the Gauss law constraint

[X1, X2] = iθ (109)

essentially identifying X1,X2 with a non-commutative plane.
Interestingly, the above action is exactly the non-commutative CS action in

2+1 dimensions! A simple comparison of expression (50) and (108) above reveals
that they are the same, upon identifying θDi = εijX

j. The coefficient of the CS
term λ relates to B and the filling fraction as

λ =
Bθ

4π
=

1
4πν

. (110)

This establishes the connection of the non-commutative Chern-Simons action with
the quantum Hall effect.

As before, gauge transformations are conjugations of X i or Di by arbitrary
time-dependent unitary operators. In the quantum Hall fluid context they take
the meaning of reshuffling the electrons. Equivalently, the X i can be considered as
coordinates of a two-dimensional fuzzy membrane, 2πθ playing the role of an area
quantum and gauge transformations realizing area preserving diffeomorphisms.
The canonical conjugate of X1 is P2 = BX2, and the generator of gauge transfor-
mations is

G = −iB[X1, X2] = Bθ =
1
ν

(111)

by virtue of (109). Since gauge transformations are interpreted as reshuffling of
particles, the above has the interpretation of endowing the particles with quantum
statistics of order 1/ν.
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5.2. Quasiparticle and quasihole classical states

The classical equation (109) has a unique solution, modulo gauge (unitary) trans-
formations, namely the unique irreducible representation of the Heisenberg al-
gebra. Representation states can be conveniently written in a Fock basis |n〉,
n = 0, 1, . . . , for the ladder operators X1 ± iX2, |0〉 representing a state of mini-
mal spread at the origin. The classical theory has this representation as its unique
state, the vacuum.

Deviations from the vacuum (109) can be achieved by introducing sources
in the action [33]. A localized source at the origin has a density of the form ρ =
ρ0 − qδ2(x) in the continuous (commutative) case, representing a point source of
particle number −q, that is, a hole of charge q for q > 0. The non-commutative
analog of such a density is

[X1, X2] = iθ(1 + q|0〉〈0|). (112)

In the membrane picture the right-hand side of (112) corresponds to area and
implies that the area quantum at the origin has been increased to 2πθ(1 + q),
therefore piercing a hole of area A = 2πθq and creating a particle deficit q = ρ0A.
We shall call this a quasihole state. For q > 0 we find the quasihole solution of
(112) as

X1 + iX2 =
√

2θ

∞∑
n=1

√
n + q |n − 1〉〈n|. (113)

Such solutions are called non-commutative gauge solitons [14, 15, 53–55].
The case of quasiparticles, q < 0 is more interesting. Clearly the area quantum

cannot be diminished below zero, and equations (112) and (113) cannot hold for
−q > 1. The correct equation is, instead,

[X1, X2] = iθ

(
1 −

k−1∑
n=0

|n〉〈n| − ε|k〉〈k|
)

(114)

where k and ε are the integer and fractional part of the quasiparticle charge −q.
The solution of (114) is

X1 + iX2 =
k−1∑
n=0

zn|n〉〈n| +
√

2θ
∞∑

n=k+1

√
n − k − ε |n − 1〉〈n|. (115)

(For k = 0 the first sum in (114,115) drops.) In the membrane picture, k quanta
of the membrane have ‘peeled’ and occupy positions zn = xn + iyn on the plane,
while the rest of the membrane has a deficit of area at the origin equal to 2πθε,
leading to a charge surplus ε. Clearly the quanta are electrons that sit on top of the
continuous charge distribution. If we want all charge density to be concentrated
at the origin, we must choose all zn = 0. The above quasiparticle states for integer
q are the non-commutative solitons and flux tubes that are also solutions of non-
commutative gauge theory, while the quasihole states are not solutions of the
non-commutative gauge theory action and have no direct analog.
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Laughlin theory predicts that quasihole excitations in the quantum Hall state
have their charge −q quantized in integer units of ν, q = mν, with m a positive
integer. We see that the above discussion gives no hint of this quantization, while
we see at least some indication of electron quantization in (114, 115). Quasihole
quantization will emerge in the quantum theory, as we shall see shortly, and is
equivalent to a quantization condition of the non-commutative Chern-Simons term.

5.3. Finite number of electrons: the Chern-Simons matrix model

Describing an infinitely plane filled with electrons is not the most interesting sit-
uation. We wish to describe quantum Hall states of finite extent consisting of N
electrons. Obviously the coordinates X i of the non-commutative fluid description
would have to be represented by finite N × N matrices. The action (108), how-
ever, and the equation (109) to which it leads, are inconsistent for finite matrices,
and a modified action must be written which still captures the physical features
of the quantum Hall system. Such an action exists, and leads to a matrix model
truncation of the non-commutative Chern-Simons action involving a ‘boundary
field’ [42]. It is

S =
∫

dt
B

2
Tr
{

εij(Ẋ i + i[A0, X
i])Xj + 2θA0 − ω(X i)2

}
+Ψ†(iΨ̇−A0Ψ). (116)

It has the same form as the planar CS action, but with two extra terms. The
first, and most crucial, involves Ψ, a complex N -vector that transforms in the
fundamental of the gauge group U(N):

X i → UX iU−1 , Ψ → UΨ. (117)

Its action is a covariant kinetic term similar to a complex scalar fermion. We shall,
however, quantize it as a boson; this is perfectly consistent, since there is no spatial
kinetic term that would lead to a negative Dirac sea and the usual inconsistencies
of first-order bosonic actions.

The term proportional to ω (not to be confused with θ−1) serves as a spatial
regulator: since we will be describing a finite number of electrons, there is nothing
to keep them localized anywhere in the plane. We added a confining harmonic
potential which serves as a ‘box’ to keep the particles near the origin.

We can again impose the A0 equation of motion as a Gauss constraint and
then put A0 = 0. In our case it reads

G ≡ −iB[X1, X2] + ΨΨ† − Bθ = 0. (118)

Taking the trace of the above equation gives

Ψ†Ψ = NBθ. (119)

The equation of motion for Ψ in the A0 = 0 gauge is Ψ̇ = 0. So we can take it
to be

Ψ =
√

NBθ |v〉 (120)
where |v〉 is a constant vector of unit length. Then (118) reads

[X1, X2] = iθ (1 − N |v〉〈v|) . (121)
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This is similar to (109) for the infinite plane case, with an extra projection operator.
Using the residual gauge freedom under time-independent unitary transformations,
we can rotate |v〉 to the form |v〉 = (0, . . . 0, 1). The above commutator then takes
the form iθ diag (1, . . . , 1, 1−N) which is the ‘minimal’ deformation of the planar
result (109) that has a vanishing trace.

In the fluid (or membrane) picture, Ψ is like a boundary term. Its role is
to absorb the ‘anomaly’ of the commutator [X1, X2], much like the case of a
boundary field theory required to absorb the anomaly of a bulk (commutative)
Chern-Simons field theory.

The equations of motion for X i read

Ẋ i + ωεijX
j = 0. (122)

This is just a matrix harmonic oscillator. It is solved by

X1 + iX2 = eiωtA (123)

where A is any N × N matrix satisfying the constraint

[A, A†] = 2θ(1 − N |v〉〈v|). (124)

The classical states of this theory are given by the set of matrices A =
X1 + iX2 satisfying (124) or (121). We can easily find them by choosing a basis
in which one of the Xs is diagonal, say, X1. Then the commutator [X1, X2] is
purely off-diagonal and the components of the vector |v〉 must satisfy |vn|2 = 1/N .
We can use the residual U(1)N gauge freedom to choose the phases of vn so that
vn = 1/

√
N . So we get

(X1)mn = xnδmn , (X2)mn = ynδmn +
iθ

xm − xn
(1 − δmn). (125)

The solution is parametrized by the N eigenvalues of X1, xn, and the N diagonal
elements of X2, yn.

5.4. Quantum Hall ‘droplet’ vacuum

Not all solutions found above correspond to quantum Hall fluids. In fact, choosing
all xn and yn much bigger than

√
θ and not too close to each other, both X1

and X2 become almost diagonal; they represent N electrons scattered in positions
(xn, yn) on the plane and performing rotational motion around the origin with
angular velocity ω. This is the familiar motion of charged particles in a magnetic
field along lines of equal potential when their proper kinetic term is negligible.
Quantum Hall states will form when particles coalesce near the origin, that is, for
states of low energy.

To find the ground state, we must minimize the potential

V =
Bω

2
Tr[(X1)2 + (X2)2] =

Bω

2
Tr(A†A) (126)

while imposing the constraint (121) or (124). This can be implemented with a ma-
trix Lagrange multiplier Λ (essentially, solving the equations of motion including
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A0 ≡ Λ and putting the time derivatives to zero). We obtain

A = [Λ, A] , or X i = iεij[Λ, Xj]. (127)

This is reminiscent of canonical commutation relations for a quantum harmonic
oscillator, with Λ playing the role of the Hamiltonian. We are led to the solution

A =
√

2θ

N−1∑
n=0

√
n|n − 1〉〈n| , Λ =

N−1∑
n=0

n|n〉〈n| , |v〉 = |N − 1〉. (128)

This is essentially a quantum harmonic oscillator and Hamiltonian projected to the
lowest N energy eigenstates. It is easy to check that the above satisfies both (124)
and (127). Its physical interpretation is clear: it represents a circular quantum Hall
‘droplet’ of radius

√
2Nθ. Indeed, the radius-squared matrix coordinate R2 is

R2 = (X1)2 + (X2)2 = A†A +
1
2
[A, A†] (129)

=
N−2∑
n=0

θ(2n + 1)|n〉〈n| + θ(N − 1)|N − 1〉〈N − 1|. (130)

The highest eigenvalue of R2 is (2N − 1)θ. The particle density of this droplet is
ρ0 = N/(πR2) ∼ 1/(2πθ) as in the infinite plane case.

The matrices X i are known and can be explicitly diagonalized in this case.
Their eigenvalues are given by the zeros of the Nth Hermite polynomial (times√

2θ). In the large-N limit the distribution of these zeros obeys the famous Wigner
semi-circle law, with radius

√
N . Since these eigenvalues are interpreted as elec-

tron coordinates, this confirms once more the fact that the electrons are evenly
distributed on a disk of radius

√
2Nθ.

5.5. Excited states of the model

Excitations of the classical ground state can now be considered. Any perturbation
of (128) in the form of (125) is, of course, some excited state. We shall concentrate,
however, on two special types of excitations.

The first is obtained by performing on A, A† all transformations generated
by the infinitesimal transformation

A′ = A +
N−1∑
n=0

εn(A†)n (131)

with εn infinitesimal complex parameters. The sum is truncated to N −1 since A†

is an N ×N matrix and only its first N powers are independent. It is obvious that
(124) remains invariant under the above transformation and therefore also under
the finite transformations generated by repeated application of (131).

If A, A† were true oscillator operators, these would be canonical (unitary)
transformations, that is, gauge transformations that would leave the physical state
invariant. For the finite A, A† in (128), however, these are not unitary transforma-
tions and generate a new state. To understand what is that new state, examine
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what happens to the ‘border’ of the circular quantum Hall droplet under this
transformation. This is defined by A†A ∼ 2Nθ (for large N). To find the new
boundary parametrize A ∼

√
2Nθeiφ, with φ the polar angle on the plane and

calculate (A†A)′. The new boundary in polar coordinates is

R′(φ) =
√

2Nθ +
N∑

n=−N

cneinφ (132)

where the coefficients cn are

cn = c∗−n =
Rn

2
εn−1 (n > 0), c0 = 0. (133)

This is an arbitrary area-preserving deformation of the boundary of the droplet,
truncated to the lowest N Fourier modes. The above states are, therefore, arbi-
trary area-preserving boundary excitations of the droplet [56–58], appropriately
truncated to reflect the finite non-commutative nature of the system (the fact that
there are only N electrons).

Note that on the plane there is an infinity of area-preserving diffeomorphisms
that produce a specific deformation of a given curve. From the droplet point of
view, however, these are all gauge equivalent since they deform the outside of the
droplet (which is empty) or the inside of it (which is full and thus invariant).
The finite theory that we examine has actually broken this infinite gauge free-
dom, since most of these canonical transformations of a, a† do not preserve the
Gauss constraint (124) when applied on A, A†. The transformations (131) pick a
representative in this class which respects the constraint.

The second class of excitations are the analogs of quasihole and quasiparticle
states. States with a quasihole of charge −q at the origin can be written quite
explicitly in the form

A =
√

2θ

(
√

q|N − 1〉〈0| +
N−1∑
n=1

√
n + q|n − 1〉〈n|

)
, q > 0. (134)

It can be verified that the eigenvalues of A†A are

(A†A)n = 2θ(n + q) , n = 0, 1, . . . , N − 1 (135)

so it represents a circular droplet with a circular hole of area 2πθq at the origin,
that is, with a charge deficit q. The droplet radius has appropriately swelled, since
the total number of particles is always N .

Note that (134) stills respects the Gauss constraint (124) (with |v〉 = |N−1〉)
without the explicit introduction of any source. So, unlike the infinite plane case,
this model contains states representing quasiholes without the need to introduce
external sources. What happens is that the hole and the boundary of the droplet
together cancel the anomaly of the commutator, the outer boundary part absorbing
an amount N + q and the inner (hole) boundary producing an amount q. This
possibility did not exist in the infinite plane, where the boundary at infinity was
invisible, and an explicit source was needed to nucleate the hole.
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Quasiparticle states are a different matter. In fact, there are no quasiparticle
states with the extra particle number localized anywhere within the droplet. Such
states do not belong to the ν = 1/Bθ Laughlin state. There are quasiparticle states
with an integer particle number −q = m, and the extra m electrons occupying
positions outside the droplet. The explicit form of these states is not so easy to
write. At any rate, it is interesting that the matrix model ‘sees’ the quantization
of the particle number and the inaccessibility of the interior of the quantum Hall
state in a natural way.

Having said all that, we are now making the point that all types of states
defined above are the same. Quasihole and quasiparticle states are non-perturbative
boundary excitations of the droplet, while perturbative boundary excitations can
be viewed as marginal particle states.

To clarify this point, note that the transformation (131) or (132) defining
infinitesimal boundary excitations has 2N real parameters. The general state of
the system, as presented in (125) also depends on 2N parameters (the xn and yn).
The configuration space is connected, so all states can be reached continuously
from the ground state. Therefore, all states can be generated by exponentiating
(131). This is again a feature of the finite-N model: there is no sharp distinction
between ‘perturbative’ (boundary) and ‘soliton’ (quasiparticle) states, each being
a particular limit of the other.

5.6. Equivalence to the Calogero model

The model examined above should feel very familiar to Calogero model aficionados.
Indeed, it is equivalent to the harmonic rational Calogero model [43–45], whose
connection to fractional statistics [46] and anions [47–49] has been established in
different contexts. This is an integrable system of N nonrelativistic particles on
the line interacting with mutual inverse-square potential and an external harmonic
potential, with Hamiltonian

H =
N∑

n=1

(
ω

2B
p2

n +
Bω

2
x2

n

)
+
∑
n=m

ν−2

(xn − xm)2
. (136)

In terms of the parameters of the model, the mass of the particles is B/ω and the
coupling constant of the two-body inverse-square potential is ν−2. We refer the
reader to [50–52] for details on the Calogero model and its connection with the
matrix model. Here we simply state the relevant results and give their connection
to quantum Hall quantities.

The positions of the Calogero particles xn are the eigenvalues of X1, while the
momenta pn are the diagonal elements of X2, specifically pn = Byn. The motion of
the xn generated by the Hamiltonian (136) is compatible with the evolution of the
eigenvalues of X1 as it evolves in time according to (123). So the Calogero model
gives a one-dimensional perspective of the quantum Hall state by monitoring some
effective electron coordinates along X1 (the eigenvalues of X1).



138 A.P. Polychronakos

The Hamiltonian of the Calogero model (136) is equal to the matrix model
potential V = 1

2BωTr(X i)2. Therefore, energy states map between the two models.
The ground state is obtained by putting the particles at their static equilibrium
positions. Because of their repulsion, they will form a lattice of points lying at
the roots of the Nth Hermite polynomial and reproducing the semi-circle Wigner
distribution mentioned before.

Boundary excitations of the quantum Hall droplet correspond to small vibra-
tions around the equilibrium position, that is, sound waves on the lattice. Quasi-
holes are large-amplitude (nonlinear) oscillations of the particles at a localized
region of the lattice. For a quasihole of charge q at the center, on the average q
particles near x = 0 participate in the oscillation.

Finally, quasiparticles are excitations where one of the particles is isolated
outside the ground state distribution (a ‘soliton’) [59]. As it moves, it ‘hits’ the
distribution on one side and causes a solitary wave of net charge 1 to propagate
through the distribution. As the wave reaches the other end of the distribution
another particle emerges and gets emitted there, continuing its motion outside the
distribution. So a quasiparticle is more or less identified with a Calogero particle,
although its role, at different times, is assumed by different Calogero particles, or
even by soliton waves within the ground state distribution.

Overall, we have a ‘holographic’ description of the two-dimensional quantum
Hall states in terms of the one-dimensional Calogero particle picture. Properties of
the system can be translated back-and-forth between the two descriptions. Further
connections at the quantum level will be described in subsequent sections.

6. The quantum matrix Chern-Simons model

The properties of the model analyzed in the previous section are classical. The
‘states’ and ‘oscillators’ that we encountered were due to the non-commutative
nature of the coordinates and were referring to the classical matrix model.

The full physical content of the model, and its complete equivalence to quan-
tum Hall (Laughlin) states, is revealed only upon quantization. In fact, some of the
most interesting features of the states, such as filling fraction and quasihole charge
quantization, manifest only in the quantum domain. This will be the subject of
the present section.

6.1. Quantization of the filling fraction

The quantization of the Chern-Simons matrix model has been treated in [51]. We
shall repeat here the basic arguments establishing their relevance to the quantum
Hall system.

We shall use double brackets for quantum commutators and double kets for
quantum states, to distinguish them from matrix commutators and N -vectors.

Quantum mechanically the matrix elements of X i become operators. Since
the lagrangian is first-order in time derivatives, X1

mn and X2
kl are canonically
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conjugate:

[[X1
mn, X2

kl]] =
i

B
δmlδkn (137)

or, in terms of A = X1 + iX2

[[Amn, A†
kl]] =

1
B

δmkδnl. (138)

The Hamiltonian, ordered as 1
2BωTrA†A, is

H =
∑
mn

1
2
BωA†

mnAmn. (139)

This is just N2 harmonic oscillators. Further, the components of the vector Ψn

correspond to N harmonic oscillators. Quantized as bosons, their canonical com-
mutator is

[[Ψm, Ψ†
n]] = δmn. (140)

So the system is a priori just N(N + 1) uncoupled oscillators. What couples
the oscillators and reduces the system to effectively 2N phase space variables
(the planar coordinates of the electrons) is the Gauss law constraint (118). In
writing it, we in principle encounter operator ordering ambiguities. These are easily
fixed, however, by noting that the operator G is the quantum generator of unitary
rotations of both X i and Ψ. Therefore, it must satisfy the commutation relations of
the U(N) algebra. The X-part is an orbital realization of SU(N) on the manifold
of N ×N hermitian matrices. Specifically, expand X1,2 and A, A† in the complete
basis of matrices {1, T a} where T a are the N2−1 normalized fundamental SU(N)
generators:

X1 = x0 +
N2−1∑
a=1

xaT a ,
√

BA = ao +
N2−1∑
a=1

aaT a, (141)

xa, aa are scalar operators. Then, by (137,138) the corresponding components
of BX2 are the conjugate operators −i∂/∂xa, while aa, a†

a are harmonic oscilla-
tor operators. We can write the components of the matrix commutator GX =
−iB[X1, X2] in G in the following ordering:

Ga
X = −ifabcxb

∂

∂xa
(142)

= −i(A†
mkAnk − A†

nkAmk) (143)

= −ia†
bf

abcac (144)

where fabc are the structure constants of SU(N). Similarly, expressing GΨ = ΨΨ†

in the SU(N) basis of matrices, we write its components in the ordering

Ga
Ψ = Ψ†

mT a
mn.Ψn (145)

The operators above, with the specific normal ordering, indeed satisfy the
SU(N) algebra. The expression of Ga

X in terms of xa is like an angular momentum.
The expression of Ga

Ψ in terms of the oscillators Ψi and of Ga
X in terms of the
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oscillators aa is the well-known Jordan-Wigner realization of the SU(N) algebra
in the Fock space of bosonic oscillators. Specifically, let Ra

αβ be the matrix elements
of the generators of SU(N) in any representation of dimension dR, and aα, a†

α a
set of dR mutually commuting oscillators. Then the operators

Ga = a†
αRa

αβaβ (146)

satisfy the SU(N) algebra. The Fock space of the oscillators contains all the sym-
metric tensor products of R-representations of SU(N); the total number operator
of the oscillators identifies the number of R components in the specific symmetric
product. The expressions for Ga

Ψ and Ga
X are specific cases of the above construc-

tion for Ra the fundamental (T a) or the adjoin (−ifa) representation respectively.
So, the traceless part of the Gauss law (118) becomes

(Ga
X + Ga

Ψ)|phys〉〉 = 0 (147)

where |phys〉〉 denotes the physical quantum states of the model. The trace part,
on the other hand, expresses the fact that the total U(1) charge of the model must
vanish. It reads

(Ψ†
nΨn − NBθ)|phys〉〉 = 0. (148)

We are now set to derive the first nontrivial quantum mechanical implication:
the inverse-filling fraction is quantized to integer values. To see this, first notice
that the first term in (148) is nothing but the total number operator for the
oscillators Ψn and is obviously an integer. So we immediately conclude that NBθ
must be quantized to an integer.

However, this is not the whole story. Let us look again at the SU(N) Gauss
law (147). It tells us that physical states must be in a singlet representation of Ga.
The orbital part Ga

X , however, realizes only representations arising out of products
of the adjoin, and therefore it contains only irreps whose total number of boxes
in their Young tableau is an integer multiple of N . Alternatively, the U(1) and
ZN part of U is invisible in the transformation X i → UX iU−1 and thus the ZN

charge of the operator realizing this transformation on states must vanish. (For
instance, for N = 2, Ga is the usual orbital angular momentum in 3 dimensions
which cannot be half-integer.)

Since physical states are invariant under the sum of GX and GΨ, the repre-
sentations of GΨ and GX must be conjugate to each other so that their product
contain the singlet. Therefore, the irreps of GΨ must also have a number of boxes
which is a multiple of N . The oscillator realization (148) contains all the symmet-
ric irreps of SU(N), whose Young tableau consists of a single row. The number of
boxes equals the total number operator of the oscillators Ψ†

nΨn. So we conclude
that NBθ must be an integer multiple of N [51], that is,

Bθ =
1
ν

= k , k = integer . (149)

The above effect has a purely group theoretic origin. The same effect, however,
can be recovered using topological considerations, by demanding invariance of
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the quantum action exp(iS) under gauge U(N) transformations with a nontrivial
winding in the temporal direction [51]. This is clearly the finite-N counterpart of
the level quantization for the non-commutative Chern-Simons term as exposed in
a previous section, namely 4πλ = integer. By (110) this is equivalent to (149).

By reducing the model to the dynamics of the eigenvalues of X1 we recover
a quantum Calogero model with Hamiltonian

H =
N∑

n=1

(
ω

2B
p2

n +
Bω

2
x2

n

)
+
∑
n=m

k(k + 1)
(xn − xm)2

. (150)

Note the shift of the coupling constant from k2 to k(k+1) compared to the classical
case. This is a quantum reordering effect which results in the shift of ν−1 from k
to k +1 ≡ n. The above model is, in fact, perfectly well defined even for fractional
values of ν−1, while the matrix model that generated it requires quantization.
This is due to the fact that, by embedding the particle system in the matrix
model, we have augmented its particle permutation symmetry SN to general U(N)
transformations; while the smaller symmetry SN is always well defined, the larger
U(N) symmetry becomes anomalous unless ν−1 is quantized.

6.2. Quantum states

We can now examine the quantum excitations of this theory. The quantum states
of the model are simply states in the Fock space of a collection of oscillators. The
total energy is the energy carried by the N2 oscillators Amn or aa. We must also
impose the constraint (147) and (148) on the Fock states. Overall, this becomes a
combinatorics group theory problem which is in principle doable, although quite
tedious.

Fortunately, we do not need to go through it here. The quantization of this
model is known and achieves its most intuitive description in terms of the states
of the corresponding Calogero model. We explain how.

Let us work in the X1 representation, X2 being its canonical momentum.
Writing X1 = UΛ1U

−1 with Λ = diag {xi} being its eigenvalues, we can view
the state of the system as a wavefunction of U and xn. The gauge generator Ga

X

appearing in the Gauss law (147) is actually the conjugate momentum to the vari-
ables U . Due to the Gauss law, the angular degrees of freedom U are constrained
to be in a specific angular momentum state, determined by the representation of
SU(N) carried by the Ψn. From the discussion of the previous section, we under-
stand that this is the completely symmetric representation with nN = N/ν boxes
in the Young tableau. So the dynamics of U are completely fixed, and it suffices
to consider the states of the eigenvalues. These are described by the states of the
quantum Calogero model. The Hamiltonian of the Calogero model corresponds to
the matrix potential V = 1

2BωTr(X i)2, which contains all the relevant information
for the system.
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Calogero energy eigenstates are expressed in terms of N positive, integer
‘quasi-occupation numbers’ nj (quasinumbers, for short), with the property

nj − nj−1 ≥ n =
1
ν

, j = 1, . . . , N. (151)

In terms of the nj the spectrum becomes identical to the spectrum of N indepen-
dent harmonic oscillators

E =
N∑

j=1

Ej =
N∑

j=1

ω

(
nj +

1
2

)
. (152)

The constraint (151) means that the nj cannot be packed closer than n = ν−1,
so they have a ‘statistical repulsion’ of order n. For filling fraction ν = 1 these
are ordinary fermions, while for ν−1 = n > 1 they behave as particles with an
enhanced exclusion principle.

The scattering phase shift between Calogero particles is exp(iπ/ν). So, in
terms of the phase that their wavefunction picks upon exchanging them, they look
like fermions for odd n and bosons for even n [46]. Since the underlying particles
(electrons) must be fermions, we should pick n odd.

The energy ‘eigenvalues’ Ej are the quantum analogs of the eigenvalues of
the matrix 1

2Bω(X i)2. The radial positions Rj are determined by

1
2
BωR2

j = Ej → R2
j =

2nj + 1
B

. (153)

So the quasinumbers 2nj+1 determine the radial positions of electrons. The ground
state values are the smallest non-negative integers satisfying (151)

nj,gs = n(j − 1) , j = 1, . . . , N. (154)

They form a ‘Fermi sea’ but with a density of states dilated by a factor ν compared
to standard fermions. This state reproduces the circular quantum Hall droplet. Its
radius maps to the Fermi level, R ∼

√
(2nN,gs + 1)/B ∼

√
2Nθ.

Quasiparticle and quasihole states are identified in a way analogous to parti-
cles and holes of a Fermi sea. A quasiparticle state is obtained by peeling a ‘particle’
from the surface of the sea (quasinumber nN,gs) and putting it to a higher value
n′

N > n(N−1). This corresponds to an electron in a rotationally invariant state at
radial position R′ ∼

√
2(n′

N + 1)/B. Successive particles can be excited this way.
The particle number is obviously quantized to an integer (the number of excited
quasinumbers) and we can only place them outside the quantum Hall droplet.

Quasiholes are somewhat subtler: they correspond to the minimal excitations
of the ground state inside the quantum Hall droplet. This can be achieved by
leaving all quasinumber nj for j ≤ k unchanged, and increasing all nj , j > k by
one,

nj = n(j − 1) j ≤ k (155)
= n(j − 1) + 1 k < j ≤ N. (156)

This increases the gap between nk and nk+1 to n+1 and creates a minimal ‘hole’.
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This hole has a particle number −q = −1/n = −ν. To see it, consider re-
moving a particle altogether from quasinumber nk. This would create a gap of
2n between nk−1 and nk+1. The extra gap n can be considered as arising out of
the formation of n holes (increasing nj for j ≥ k n times). Thus the absence of a
particle corresponds to n holes. We therefore obtain the important result that the
quasihole charge is naturally quantized to units of

qh = ν =
1
n

(157)

in accordance with Laughlin theory.
We conclude by stressing once more that there is no fundamental distinction

between particles and holes for finite N . A particle can be considered as a non-
perturbative excitation of many holes near the Fermi level, while a hole can be
viewed as a coherent state of many particles of minimal excitation.

6.3. Final remarks on the matrix model

The quantization of the inverse filling fraction and, importantly, the quasihole
charge quantization emerged as quantum mechanical consequences of this model.
The quantizations of the two parameters had a rather different origin. We can
summarize here the basic meaning of each:

Quantization of the inverse filling fraction is basically angular momentum
quantization. The matrix commutator of [X1, X2] is an orbital angular momentum
in the compact space of the angular parameters of the matrices, and it must be
quantized. Alternatively (and equivalently), it can be understood as a topological
quantization condition due to a global gauge anomaly of the model.

Quantization of the quasihole charge, on the other hand, is nothing but har-
monic oscillator quantization. Quasiholes are simply individual quanta of the os-
cillators Amn. The square of the radial coordinate R2 = (X1)2 +(X2)2 is basically
a harmonic oscillator.

√
BX1 and

√
BX2 are canonically conjugate, so the quanta

of R2 are 2/B. Each quantum increases R2 by 2/B and so it increases the area by
2π/B. This creates a charge deficit q equal to the area times the ground state den-
sity q = (2π/B) · (1/2πθ) = 1/θB = ν. So the fundamental quasihole charge is ν.

An important effect, which can be both interesting and frustrating, is the
quantum shift in the effective value of the inverse filling fraction from k to n = k+1.
This is the root of the famous fermionization of the eigenvalues of the matrix model
in the singlet sector (k = 0). Its presence complicates some efforts to reproduce
layered quantum Hall states, as it frustrates the obvious charge density counting.

There are many questions on the above model that we left untouched, some
of them already addressed and some still open [60–68]. Their list includes the de-
scription of Hall states with spin, the treatment of cylindrical, spherical or toroidal
space topologies, the description of states with nontrivial filling fraction, the exact
mapping between quantities of physical interest in the two descriptions, the inclu-
sion of electron interactions etc. The interested reader is directed to the numerous
papers in the literature dealing with these issues. In the concluding section we
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prefer to present an alternative non-commutative fluid description for quantum
many-body states.

7. The non-commutative Euler picture and bosonization

In the previous sections we reviewed the non-commutative picture of the Lagrange
formulation of fluids and its use in the quantum Hall effect. The Euler formula-
tion, on the other hand, was peculiar in that it allowed for a fully commutative
description, leading to the Seiberg-Witten map.

This, however, is not the only possibility. Indeed, we saw that there were
two potential descriptions for the density of the fluid, one inherently commutative
(94) and one inherently non-commutative (91). Although the commutative one
was adopted, one could just as well work with the non-commutative one, expect-
ing to recover the standard Euler description only at the commutative limit. As it
turns out, this is a very natural description of fluids consisting of fermions. Since
the non-commutative density is an inherently bosonic field, it affords a descrip-
tion of fermionic systems in terms of bosonic field variables, naturally leading to
bosonization.

7.1. Density description of fermionic many-body systems

The starting point will be a system of N non-interacting fermions in D = 1
spatial dimensions. The restriction of the dimensionality of space at this point is
completely unnecessary and inconsequential, and is imposed only for conceptual
and notational simplification and easier comparison with previous sections. In fact,
much of the formalism will not even make specific reference to the dimensionality
of space.

We shall choose our fermions to be noninteracting and carrying no internal
degrees of freedom such as spin, color etc. (there is no conflict with the spin-
statistics theorem in this first-quantized, many-body description). Again, this is
solely for convenience and to allow us to focus on the main conceptual issue of
their fluid description rather than other dynamical questions. The only remaining
physical quantity is the single-particle Hamiltonian defining their dynamics, de-
noted Hsp(x, p). Here x, p are single-particle coordinate and momentum operators,
together forming a ‘non-commutative plane’, with the role of θ played by � itself:

[x, p]sp = i� (158)

The subscript sp will be appended to single-particle operators or relations (except
x and p) to distinguish them from upcoming field theory quantities.

Single-particle states are elements of the irreducible representation of the
above Heisenberg commutator. A basis would be the eigenstates |n〉 of Hsp cor-
responding to eigenvalues En (assumed nondegenerate for simplicity). The states
of the N -body system, on the other hand, are fully antisymmetrized elements
of the N -body Hilbert space consisting of N copies of the above space. They
can be expressed in a Fock description in terms of the occupation number basis
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Nn = 0, 1 for each single particle level. The ground state, in particular, is the state
|1, . . . , 1, 0, . . . 〉 with the N lowest levels occupied by fermions.

An alternative description, however, working with a single copy of the above
space is possible, in terms of a single-particle density-like operator [69,70]. Specif-
ically, define the (hermitian) single-particle operator ρ whose eigenvalues corre-
spond to the occupation numbers Ni = 1 for a set of N specific filled single-particle
states and Ni = 0 for all other states:

ρ =
N∑

n=1

|ψn〉〈ψn|. (159)

Clearly ρ is a good description of the N -body fermion system whenever the
fermions occupy N single-particle states. The ground state ρ0, in particular, is
such a state and would correspond to

ρ0 =
N∑

n=1

|n〉〈n|. (160)

Due to the Schrödinger evolution of the single-particle states |n〉, the operator ρ
satisfies the evolution equation

i�ρ̇ = [Hsp, ρ]sp. (161)

This description has several drawbacks. It is obviously limited from the fact
that it can describe only ‘factorizable’ states, that is, basis states in some appro-
priate Fock space, but not their linear combinations (‘entangled’ states). This is
serious, as it violates the quantum mechanical superposition principle, and makes
it clear that this cannot be a full quantum description of the system. Further, the
operator ρ must be a projection operator with exactly N eigenvalues equal to one
and the rest of them vanishing, which means that it must satisfy the algebraic
constraint

ρ2 = ρ , Trρ = N. (162)

So ρ is similar to the density matrix, except for its trace.
In spite of the above, we shall see that this is a valid starting point for a full

description of the many-body quantum system in a second-quantized picture. To
give ρ proper dynamics, we must write an action that leads to the above equations
(evolution plus constraints) in a canonical setting. The simplest way to achieve
this is by ‘solving’ the constraint in terms of a unitary field U as

ρ = U−1ρ0U (163)

with ρ0 the ground state. Any ρ can be expressed as above, U being a unitary
operator mapping the first N energy eigenstates to the actual single-particle states
entering the definition of ρ. An appropriate action for U is

S =
∫

dtTr
(
i�ρ0U̇U−1 − U−1ρ0UHsp

)
. (164)
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It is easy to check that it leads to (161) for (163). Note that the first term in
the action is a first-order kinetic term, defining a canonical one-form. The matrix
elements of U , therefore, encode both coordinates and momenta and constitute
the full phase space variable of the system. The Poisson brackets of U and, con-
sequently, ρ can be derived by inverting the above canonical one-form. The result
is that the matrix elements ρmn of ρ have Poisson brackets

{ρm1n1 , ρm2n2} =
1
i�

(ρm1n2δm2n1 − ρm2n1δm1n2). (165)

The second term in the action is the Hamiltonian H = Tr(ρHsp) and represents
the sum of the energy expectation values of the N fermions.

7.2. The correspondence to a non-commutative fluid

It should be clear that the above description essentially defines a non-commutative
fluid. Indeed, the operators U and ρ act on the Heisenberg Hilbert space and can
be expressed in terms of the fundamental operators x, p. As such, they are non-
commutative fields. The constraint for ρ is the non-commutative version of the
relation f2 = f defining the characteristic function of a domain. We can, therefore,
visualize ρ as a ‘droplet’ of a non-commutative fluid that fills a ‘domain’ of the
non-commutative plain with a droplet ‘height’ equal to 1. The actual density of the
fluid is fixed by the integration formula on the non-commutative plane, assigning
an area of 2π� to each state on the Hilbert space. So the value of the density inside
the droplet becomes 1/2π�.

A similar picture is obtained by considering the classical ‘symbol’ of the above
operator, using the Weyl-ordering mapping. The corresponding commutative func-
tion represents a droplet with a fuzzy boundary (the field drops smoothly from 1
to 0, and can even become negative at some points), but the bulk of the droplet
and its exterior are at constant density (0 or 1).

As one should expect, this is the value of the density of states on phase space
according to the semiclassical quantization condition assigning one quantum state
per phase space area h = 2π�. The above description is the quantum, fuzzy, non-
commutative analog of the classical phase space density. According to the Liouville
theorem, a collection of particles with some density on the phase space evolves in
an area-preserving way, so a droplet of constant density evolves into a droplet of
different shape but the same constant density [71].

The ground state ρ0 corresponds to a droplet filling a ‘lake’ in phase space
in which the classical value of the single particle energy satisfies

Hsp(x, p) ≤ EF . (166)

This ensures the minimal energy for the full state. The boundary of the droplet
is at the line defined by the points Hsp = EF , the highest energy of any single
particle. This is the Fermi energy.

The unitary transformation U maps to a ‘star-unitary’ commutative function
satisfying U ∗ U∗ = 1. One could think that in the commutative (classical) limit
it becomes a phase, U = exp[iφ(x, p)]. This, however, is not necessarily so. U
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enters into the definition of ρ only through the adjoint action ρ = U∗ ∗ρ0 ∗U . If U
became a phase in the commutative limit, it would give ρ = ρ0 (upon mapping star
products to ordinary products), creating no variation. The trick is that U(x, p) can
contain terms of order �−1: since the star-products in the definition of ρ in terms
of U reproduce ρ0 plus terms of order �, the overall result will be of order �0 and
remain finite in the classical limit. So U(x, p) may not map to a finite function in
this limit; its action on ρ0, however, is finite and defines a canonical transformation,
changing the shape of the droplet. Overall, we have a correspondence with a fuzzy,
incompressible phase space fluid in the density (Euler) description.

7.3. Quantization and the full many-body correspondence

What makes this description viable and useful is that it reproduces the full Hilbert
space of the N fermions upon quantization.

The easiest way to see this is to notice that the action (164) is of the Kirillov-
Kostant-Souriau form for the group of unitary transformations on the Hilbert
space. For concreteness, we may introduce a cutoff and truncate the Hilbert space
to the K first energy levels K � N . Then the above becomes the KKS action
for the group U(K). Its properties and quantization are fully known, and we
summarize the basic points.

Both ρ = U−1ρ0U and the action (164) are invariant under time-dependent
transformations

U(t) → V (t)U(t) , [ρ0, V (t)] = 0 (167)

for any unitary operator (K ×K unitary matrix) commuting with ρ0. This means
that the corresponding ‘diagonal’ degrees of freedom of U are redundant and cor-
respond to a gauge invariance of the description in terms of U . This introduces a
Gauss law as well as a ‘global gauge anomaly’ for the action that requires a quanti-
zation condition, akin to the magnetic monopole quantization or level quantization
for the Chern-Simons term. The end result is:

• The eigenvalues of the constant matrix ρ0 must be integers for a consistent
quantization.
On the other hand, the classical Poisson brackets for ρ (165) become, upon

quantization,

[[ρm1n1 , ρm2n2 ]] = ρm1n2δm2n1 − ρm2n1δm1n2 (168)

where we used, again, double brackets for quantum commutators to distinguish
from matrix (single-particle) commutators. The above is nothing but the U(K) al-
gebra in a ‘cartesian’ basis (notice how � has disappeared). The quantum Hilbert
space, therefore, will form representations of U(K). The Gauss law, however, im-
poses constraints on what these can be. The end result is:

• The quantum states form an irreducible representation of U(K) determined
by a Young tableau with the number of boxes in each row corresponding to
the eigenvalues of ρ0.
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In our case, the eigenvalues are N 1s and K − N 0s, already properly quan-
tized. So the Young tableau corresponds to a single column of N boxes; that is,
the N -fold fully antisymmetric representation of U(K).

This is exactly the Hilbert space of N fermions on K single-particle states!
The dimensionality of this representation is

D =
K!

N !(K − N)!
(169)

matching the number quantum states of N fermions in K levels. The matrix
elements of the operator ρmn in the above representation can be realized in a
Jordan-Wigner construction involving K fermionic oscillators Ψn, as

ρmn = Ψ†
nΨm (170)

satisfying the constraint
K∑

n=1

Ψ†
nΨn = N. (171)

This Ψ is essentially the second-quantized fermion field, the above relation being
the constraint to the N -particle sector. The quantized Hamiltonian operator for ρ
in this realization becomes

H = Tr(ρHsp) =
∑
m,n

Ψ†
m(Hsp)mnΨn (172)

and thus also corresponds to the second-quantized many-body Hamiltonian. Over-
all, this becomes a complete description of the many-body fermion system in terms
of a quantized non-commutative density field ρ or, equivalently, the unitary non-
commutative field U .

It is worth pointing out that in the limit K → ∞ the algebra (168) becomes
infinite-dimensional and reproduces the so-called “W∞ algebra”. This algebra has
a host of representations, one of which corresponds to the Hilbert space of N
fermions. In the finite K case the conditions ρ2 = ρ and trρ = N fixed the Hilbert
space. Similar conditions, corresponding to the appropriate choice of a ‘vacuum’
(highest-weight) state, fix the desired representation of the W∞ density algebra.
The commutative limit of this algebra, on the other hand, corresponds to the
standard Poisson brackets of phase space density functions, as implied by the
underlying canonical structure of x and p.

7.4. Higher-dimensional non-commutative bosonization

The above also constitutes an exact bosonization of the fermion system. Indeed,
the fields ρ or U are bosonic, so they afford a description of fermions without use
of Grassmann variables. The price to pay is the increase of dimensionality (two
phase space rather than one space dimensions) and the non-commutative nature
of the classical ρ-dynamics, even before quantization.

The correspondence to traditional bosonization can be achieved through the
Seiberg-Witten map on the field U . We shall not enter into any detail here, but
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the upshot of the story is that the action (164) maps to the (commutative) action
of a one-dimensional chiral boson under this map. The corresponding space deriv-
ative of the field is an abelian ‘current’ that maps to the boundary of the classical
fluid droplet, which parametrizes the full shape of the fluid. Overall this recovers
standard abelian bosonization results [72] in the non-commutative hydrodynamic
setting. Generalizations to particles carrying internal degrees of freedom are possi-
ble and lead to the Wess-Zumino-Witten action for non-abelian bosonization [73].

Most intriguingly, much of the above discussion can be exported to higher
dimensions. The formalism extends naturally to higher dimensions, the matrix ρ
now acting on the space of states of a single particle in D spatial dimensions.
The crucial difference, however, is that the Seiberg-Witten map of the higher-
dimensional action yields a nontrivial action in 2D (phase space) dimensions that,
unlike the D = 1 case, does not reduce to a D-dimensional chiral boson action.

We can obtain a more economical description by performing the Seiberg-
Witten map only on a two-dimensional non-commutative subspace, leaving the
rest of the 2D-dimensional space untouched. This transformation works similarly
to the D = 1 case, leading to a description in terms of a field in one residual
(commutative) dimension as well as the remaining 2D− 2 non-commutative ones.
This constitutes a ‘minimal’ bosonization in the non-commutative field theory
setting [75]. (For other approaches on higher-dimensional bosonization see [74].)

The form of the above theory can be motivated by starting with the fully
classical, commutative picture of our density droplet in phase space of constant
density ρ0 = 1/(2π�)D, whose shape is fully determined in terms of its boundary.
A convenient way to parametrize the boundary is in terms of the value of one of
the phase space coordinates, say p

D
, on the boundary as a function of the 2D − 1

remaining ones. We write

pD |boundary ≡ R(x1, p1; . . . xD ) (173)

R will be the boundary field of the theory. For notational convenience, we rename
the variable conjugate to the eliminated variable p

D
(that is, x

D
) σ and write φα

(α = 1, . . . , 2D − 2) for the remaining 2D − 2 phase space dimensions (xn, pn)
(n = 1, . . . , D − 1).

The dynamics of the classical system are determined by the canonical Poisson
brackets of the field R(σ, φ). These can be derived through a Hamiltonian reduction
of the full density Poisson brackets on the phase space [71] and we simply quote the
result. We use θαβ = {φα, φβ}sp for the standard (Darboux) single-particle Poisson
brackets of φ (that is, θαβ = εαβ if α and β correspond to xn and pn, otherwise
zero), as well as the shorthand R1,2 = R(σ1,2, φ1,2), with 1 and 2 labeling the
two points in the 2D − 1-dimensional space (σ, φ) at which we shall calculate the
brackets. The field theory Poisson brackets for R1 and R2 read, in an obvious
notation:

{R1, R2} =
1
ρ0

[−δ′(σ1 − σ2) δ(φ1 − φ2) − δ(σ1 − σ2) {R(σ1, φ1), δ(φ1 − φ2)}sp1] .

(174)
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Similarly, the Hamiltonian for the field R is the integral of the single-particle
Hamiltonian over the bulk of the droplet and reads

H = ρo

∫
dp

D
dσ d2dφHsp(σ, φ)ϑ(R − p

D
) (175)

where ϑ(x) = 1
2 [1 + sgn(x)] is the step function. (174) and (175) define a bosonic

field theory (in a Hamiltonian setting) that describes the droplet classically.
The correct quantum version of the theory cannot simply be obtained by

turning the above Poisson brackets into quantum commutators. We have already
encountered a similar situation in the previous subsection: the commutative, clas-
sical Poisson algebra of the density operator ρ is deformed into the W∞ algebra
(or its finite U(K) truncation) in the quantum case.

This observation will guide us in motivating the correct quantum commuta-
tors for the boundary field. We observe that the first, R-independent term of the
above Poisson brackets reproduces a current algebra in the σ-direction, exactly
as in one-dimensional bosonization. The second, homogeneous term, on the other
hand, has the form of a density algebra in the residual 2D− 2 phase space dimen-
sions. In this sense, the field R is partly current and partly density. Taking our
clues from standard bosonization and the story of the previous subsections, we pro-
pose that the current algebra part remains undeformed upon quantization, while
the density part gets deformed to the corresponding non-commutative structure.
A simple way to do that and still use the same (commutative) phase space nota-
tion is in the ∗-product language. Specifically, we turn the single-particle Poisson
brackets to non-commutative Moyal brackets {., .}∗ on the 2d-dimensional phase
space manifold φα. The full deformed field theory Poisson brackets, now, read:

{R1, R2} =
1
ρ0

[−δ′(σ1 − σ2)δ(φ1 − φ2) − δ(σ1 − σ2){R1, δ(φ1 − φ2)}∗1] . (176)

The Moyal brackets between two functions of φ are expressed in terms of the
non-commutative Groenewald-Moyal star-product on the phase space φ [10]:

{F (φ), G(φ)}∗ =
1
i�

[F (φ) ∗ G(φ) − G(φ) ∗ F (φ)] (177)

with � itself being the noncommutativity parameter. Correspondingly, the Hamil-
tonian H is given by expression (175) but with ∗-products replacing the usual
products between its terms.

The transition to the matrix (‘operator’) notation can be done in the stan-
dard way, as exposed in the introductory sections, by choosing any basis of states
ψa in the single-particle Hilbert space. This would map the field R(σ, φ) to dy-
namical matrix elements Rab(σ). The only extra piece that we need is the matrix
representation of the delta function δ(φ1 − φ2), with defining property∫

d2dφ1F (φ1) δ(φ1 − φ2) = F (φ2). (178)

Since δ(φ1−φ2) is a function of two variables, its matrix transform in each of them
will produce a symbol with four indices δa1b1;a2b2 . The above defining relation in
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the matrix representation becomes

(2π�)(D−1)F a1b1δb1a1;a2b2 = F a2b2 (179)

which implies

δa1b1;a2b2 =
1

(2π�)(D−1)
δa1b2δa2b1 . (180)

With the above, and using ρo = 1/(2π�)D, the canonical Poisson brackets of the
matrix Rab become

{Rab
1 , Rcd

2 } = −2π�δ′(σ1 − σ2)δadδcb + 2πiδ(σ1 − σ2)(Rad
1 δcb − Rcb

1 δad). (181)

Not surprisingly, we recover a structure for the second term similar to the one for
ρ of the previous subsection as expressed in (168).

We are now ready to perform the quantization of the theory. The fields Rab(σ)
become operators whose quantum commutator is given by the above Poisson brack-
ets times i�. Defining, further, the Fourier modes

Rab
k =

∫
dσ

2π�
Rab(σ)e−ikσ (182)

the quantum commutators become

[[Rab
k , Rcd

k′ ]] = kδ(k + k′)δadδcb − Rad
k+k′δcb + Rcb

k+k′δad. (183)

The zero mode Raa
0 ≡ N is a Casimir and represents the total fermion number.

For a compact dimension σ, normalized to a circle of length 2π, the Fourier modes
become discrete.

The above is also recognized as a chiral current algebra for the matrix field
Rab

k on the unitary group of transformations of the first-quantized states ψa. To
make this explicit, consider again the finite-dimensional truncation of the Hilbert
space into K single-particle states; that is, a, b, c, d = 1, . . . , K (this would au-
tomatically be the case for a compact phase space {φα}). As remarked before,
the homogeneous part of the above commutator is the U(K) algebra in a ‘carte-
sian’ parametrization. To bring it into the habitual form, define the hermitian
K × K fundamental generators of U(K), T A, A = 0, . . . , K2 − 1, normalized as
tr(T AT B) = 1

2δAB , which fix the U(M) structure constants [T A, T B] = ifABCT C

(with f0AB = 0). Using the T A as a basis we express the quantum commutators
(183) in terms of the RA = tr(T AR) as

[[RA
k , RB

k′ ]] =
1
2
kδ(k + k′)δAB + ifABCRC

k+k′ . (184)

This is the so-called Kac-Moody algebra for the group U(K).
The coefficient kKM of the central extension of the Kac-Moody algebra (the

first, affine term) must be quantized to an integer to have unitary representations.
Interestingly, this coefficient in the above commutators emerges quantized to the
value k

KM
= 1. This is crucial for bosonization [73]. The k

KM
= 1 algebra has a

unique irreducible unitary representation over each ‘vacuum’; that is, over highest
weight states annihilated by all RA(k) for k > 0 and transforming under a fully



152 A.P. Polychronakos

antisymmetric SU(K) representations under T A(0). These Fock-like representa-
tions correspond exactly to the perturbative Hilbert space of excitations of the
many-body fermionic system over the full set of possible Fermi sea ground states.
The U(1) charge R0

0, which is a Casimir, corresponds to the total fermion num-
ber; diagonal operators RH

k , for k < 0 and H in the Cartan subgroup of U(K)
generate ‘radial’ excitations in the Fermi sea along each direction in the residual
phase space variables; while off-diagonal operators RT

k , for k < 0 and T off the
Cartan subgroup, generate transitions of fermions between different points of the
Fermi sea.

In the above, we have suddenly introduced the word ‘perturbative’ in the
mapping between states of the field R and many-body fermion states. We had
started with a full, non-perturbative description of the system before we reduced
it to boundary variables. Where did perturbative come from?

This is a standard feature of bosonization, true also in the one-dimensional
case. The boundary of the droplet could in principle ‘hit’ upon itself, breaking
the droplet into disconnected components. The field R in such cases would de-
velop ‘shock waves’ and lose single-valuedness. Quantum mechanically, the above
situation corresponds to locally depleting the Fermi sea. This is an essentially
non-perturbative phenomenon, whose account would require the introduction of
branches for the field R after the formation of shock waves and corresponding
boundary conditions between the branches. Quantum mechanically it would re-
quire nontrivial truncations and identifications of states in the Hilbert space of
the quantum field R. In the absence of that, the bosonic theory gives an exact de-
scription of the Fermi system up to the point that the Dirac sea would be depleted.
This is adequate for many-body applications.

Finally, the Hamiltonian of the bosonic theory becomes

H =
∫

dp
D
dσ

2π�
trHsp(σ, p

D
, φ̂)ϑ(R − p

D
) (185)

where p
D

remains a scalar integration parameter while φ̂ become (classical) matri-
ces and R is an operator matrix field as before. Clearly there are issues of ordering
in the above expression, matrix (non-commutative) as well as quantum, just as in
standard 1 + 1-dimensional bosonization.

To demonstrate the applicability of this theory we shall work out explicitly
the simplest nontrivial example of higher-dimensional bosonization: a system of N
noninteracting two-dimensional fermions in a harmonic oscillator potential. The
single-particle Hamiltonian is

Hsp =
1
2
(p2

1 + x2
1 + p2

2 + x2
2). (186)

For simplicity we chose the oscillator to be isotropic and of unit frequency. The
single-body spectrum is the direct sum of two simple harmonic oscillator spectra,
Emn = �(m + n + 1), m, n = 0, 1, . . . . Calling m + n + 1 = K, the energy levels
are EK = �K with degeneracy K.
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The N -body ground state consists of fermions filling states EK up to a Fermi
level EF = �KF . In general, this state is degenerate, since the last energy level
of degeneracy KF is not fully occupied. Specifically, for a number of fermions N
satisfying

N =
KF (KF − 1)

2
+ M , 0 ≤ M ≤ KF (187)

the Fermi sea consists of a fully filled bulk (the first term above) and M fermions
on the KF -degenerate level at the surface. The degeneracy of this many-body
state is

g(KF , M) =
KF !

M !(KF − M)!
(188)

representing the ways to distribute the M last fermions over KF states, and its
energy is

E(KF , M) = �
KF (KF − 1)(2KF − 1)

6
+ �KF M. (189)

Clearly the vacua (KF , M = KF ) and (KF + 1, M = 0) are identical. Excitations
over the Fermi sea come with energies in integer multiples of � and degeneracies
according to the possible fermion arrangements.

For the bosonized system we choose polar phase space variables,

hi =
1
2
(p2

i + x2
i ) , θi = arctan

xi

pi
, i = 1, 2 (190)

in terms of which the single-particle Hamiltonian and Poisson structure is

{θi, hj}sp = δij , Hsp = h1 + h2. (191)

For the droplet description we can take h2 = R and θ2 = σ which leaves (h1, θ1) ∼
(x1, p1) as the residual phase space. The bosonic Hamiltonian is

H =
1

(2π�)2

∫
dσdh1dθ1(

1
2
R2 + h1R). (192)

The ground state is a configuration with R + h1 = EF . The non-perturbative
constraints R > 0, h1 > 0 mean that the range of h1 is 0 < h1 < EF .

To obtain the matrix representation of R we define oscillator states |a〉, a =
0, 1, 2, . . . in the residual single-particle space (h1, θ1) satisfying ĥ1|a〉 = �(a+ 1

2 )|a〉.
The non-perturbative constraint for h1 is implemented by restricting to the KF -
dimensional Hilbert space spanned by a = 0, 1, . . . , KF with EF = �KF − 1. In
the matrix representation Rab becomes a U(KF ) current algebra. We also Fourier
transform in σ as in (182) into discrete modes Rab

n , n = 0,±1, . . . (σ has a period
2π). The Hamiltonian (192) has no matrix ordering ambiguities (being quadratic
in R and h1) but it needs quantum ordering. Just as in the 1+1-dimensional case,
we normal order by pulling negative modes N to the left of positive ones. The
result is

H

�
=
∑
n>0

Rab
−nRba

n +
1
2
Rab

0 Rba
0 +

(
a +

1
2

)
Raa

0 . (193)
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To analyze the spectrum of (193) we perform the change of variables

R̂ab
n = Rab

n−a+b + (a − KF + 1)δabδn. (194)

The new fields R̂ satisfy the same Kac-Moody algebra as R. The Hamiltonian
(193) becomes

H

�
=
∑
n>0

R̂ab
−nR̂ba

n +
1
2
R̂ab

0 R̂ba
0 +

(
KF − 1

2

)
R̂aa

0 +
KF (KF − 1)(2KF − 1)

6
. (195)

The above is the standard quadratic form in R̂ plus a constant and a term pro-
portional to the U(1) charge R̂aa

0 = N − KF (KF − 1)/2.
The ground state consists of the vacuum multiplet |KF , M〉, annihilated by

all positive modes R̂n and transforming in the M -fold fully antisymmetric irrep
of SU(KF ) (0 ≤ M ≤ KF − 1), with degeneracy equal to the dimension of this
representation KF !/M !(KF − M)!. The U(1) charge of R̂ is given by the number
of boxes in the Young tableau of the irreps, so it is M . The fermion number is,
then, N = KF (KF − 1)/2 + M . Overall, we have a full correspondence with the
many-body fermion ground states found before; the state M = KF is absent,
consistently with the fact that the corresponding many-body state is the state
M = 0 for a shifted KF .

The energy of the above states consists of a constant plus a dynamical con-
tribution from the zero mode R̂0. The quadratic part contributes 1

2�M , while the
linear part contributes �(KF − 1

2 )M . Overall, the energy is �KF (KF − 1)(2KF −
1)/6 + �KF M , also in agreement with the many-body result.

Excited states are obtained by acting with creation operators R̂−n on the vac-
uum. These will have integer quanta of energy. Due to the presence of zero-norm
states, the corresponding Fock representation truncates in just the right way to
reproduce the states of second-quantized fermions with an SU(KF ) internal sym-
metry and fixed total fermion number. These particle-hole states are, again, into
one-to-one correspondence with the excitation states of the many-body system,
built as towers of one-dimensional excited Fermi seas over single-particle states
Em,n, one tower for each value of n, with the correct excitation energy. We have
the non-perturbative constraint 0 ≤ n < KF , as well as constraints related to the
non-depletion of the Fermi sea for each value of n, just as in the one-dimensional
case. The number of fermions for each tower can vary, the off-diagonal operators
R̂ab

n creating transitions between towers, with the total particle number fixed to
N by the value of the U(1) Casimir.

The above will suffice to give a flavor of the non-commutative bosonization
method. There are clearly many issues that still remain open, not the least of which
is the identification of a fermion creation operator in this framework. Putting the
method to some good use would also be nice.
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8. τά πάντα ρει̃ . . . (and it all keeps flowing. . . )

This was a lightning review of the more recent and current aspects of non-com-
mutative fluids and their uses in many-body systems. There is a lot more to learn
and do. If some of the readers are inspired and motivated into further study or
research in this subject, then this narrative has served its purpose. We shall stop
here.
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Heisenberg Spin Chains:
From Quantum Groups
to Neutron Scattering Experiments

Jean-Michel Maillet

Abstract. Heisenberg spin-1/2 chains are the archetype of quantum integrable
one-dimensional models describing magnetic properties of a wide range of
compounds (like the KCuF3 crystal), which can be probed experimentally
through neutron scattering experiments, while being at the same time at the
root of the invention of Bethe ansatz and Yang-Baxter structures that led
in turn to quantum groups discovery. The aim of this contribution is to de-
scribe these algebraic ingredients and to show how to obtain from them (using
combined analytical and numerical analysis) dynamical correlation functions
of integrable Heisenberg spin-1/2 chains, the Fourier transform of which, the
so-called dynamical structure factors, being directly measured in inelastic
neutron scattering experiments. Our method is based on the algebraic Bethe
ansatz and the resolution of the quantum inverse scattering problem. It leads
to recent progress in the computation of integrable Heisenberg spin-1/2 chains
correlation functions that we review here.

1. Introduction

One of the main tasks of statistical mechanics is to understand macroscopic quan-
tities such as specific heat, susceptibility, or transport properties for a fluid or a
crystal in terms of microscopic elementary interactions between the constituents
which are for example molecules, or ions. A fundamental theoretical quantity for
this study is the so-called dynamical structure factor (the Fourier transform of
the dynamical two-point correlation function). The importance of these functions
originates from the following facts:

(i) They can be measured directly via scattering of neutrons or photons at the
material to be studied [1–7], so that if we are able to compute these functions
within a model given by some Hamiltonian describing microscopic interac-
tions, we can compare this model with the reality.
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(ii) From these quantities it is possible to compute other fundamental macro-
scopic quantities of statistical mechanics for systems in thermodynamical
equilibrium and close to this equilibrium, like in particular transport coeffi-
cients (see, e.g., [7]).

Thus if one is interested in understanding, for example, magnetic properties of
crystals one should find models describing the microscopic interactions between
the spins of the constituent ions and develop methods to calculate within such
models the dynamical spin-spin correlation functions. This is for a generically
interacting quantum Hamiltonian a very involved problem, quite often out of reach
of any treatment by perturbation theory. Hence, the strategy to attack this difficult
task has been first to construct simple enough but representative models encoding
the main features of magnetic properties of crystals. A serious but not senseless
simplification in this process is the reduction of the dimensionality of the problem
leading in particular to consider models defined in one dimension. Although drastic
at first sight, this strategy proved to be quite successful. In fact there exists today
an impressive list of magnetic materials where the interaction between the different
constituents is mainly along one-dimensional chains whereas the energy exchange
between the different chains is negligible [8]. Strong one-dimensional magnetic
character is most usually produced by separating the chains carrying the dominant
magnetic interaction by large non-magnetic complex ions, like in CuCl2 · 2NC5H5.
Note however that in these systems, the three-dimensional character is usually
recovered at sufficiently low temperature.

A very interesting example of such a compound is provided by the (rather
exotic) KCuF3 crystal which displays properties characteristic of one-dimensional
antiferromagnets [8–12]. Although the KCuF3 crystal is fully three-dimensional,
its one-dimensional magnetic properties are attributed to the distortion of the oc-
tahedral environment of the Cu2+ ions due to the Jahn-Teller effect [13]. It leads
to a spatial alignment of the 3d orbitals in Cu2+ resulting in a strong exchange
interaction along one axis of the crystal (the chain axis) while in the perpen-
dicular direction the exchange interaction is very small due to poor overlap of
the corresponding orbitals. The ratio between the two interaction constants has
been evaluated to be of the order 0.027 [9], making the magnetic behavior of the
KCuF3 compound effectively one-dimensional. Further, the Cu2+ ions provide [8]
effective spin-1/2-dynamical variables in interaction which is well represented by
the Heisenberg spin chain Hamiltonian [14]. The XXZ spin- 1

2 Heisenberg chain
in an external magnetic field h is a quantum interacting model defined on a one-
dimensional lattice with Hamiltonian

H = H(0) − hSz, (1)

H(0) =
M∑

m=1

{
σx

mσx
m+1 + σy

mσy
m+1 + ∆(σz

mσz
m+1 − 1)

}
, (2)

Sz =
1
2

M∑
m=1

σz
m, [H(0), Sz] = 0. (3)
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Here ∆ is the anisotropy parameter (essentially equal to 1 for KCuF3), M
is the number of sites of the chain (and here we assume for simplicity periodic
boundary conditions), h denotes the uniform external magnetic field, and σx,y,z

m

are the local spin operators (here in the spin- 1
2 representation) associated with

each site m of the chain. The quantum space of states is H = ⊗M
m=1Hm, where

Hm ∼ C2 is called local quantum space, with dimH = 2M . The operators σx,y,z
m act

as the corresponding Pauli matrices in the space Hm and as the identity operator
elsewhere.

Following our discussion above, to be able to compare predictions of such a
one-dimensional model to actual magnetic compounds such as KCuF3, we need
to compute various physical observable quantities such as the dynamical struc-
ture factors; they are the Fourier transform of the dynamical spin-spin correlation
functions which at nonzero temperature T , lattice distance m and time difference
t, are given as traces over the space of states,

Sαβ(m, t) =
tr(σα

1 eiHt σβ
m+1 e−iHt e−

H
kT )

tr(e−
H
kT )

. (4)

At zero temperature, this expression reduces to an average value of the prod-
uct of Heisenberg spin operators taken in the ground state |ψg 〉, the normalized
(non-degenerated in the disordered regime) state with lowest energy level of the
Heisenberg chain,

Sαβ(m, t) = 〈ψg |σα
1 eiHt σβ

m+1 e−iHt |ψg 〉. (5)

The Fourier transform (in space and time) Sαβ(q, ω) of this dynamical correlation
functions is related, at first order in the neutron-crystal interaction, to the differen-
tial magnetic cross sections for the inelastic scattering of unpolarized neutrons off
a crystal (like KCuF3), with energy transfer ω and momentum transfer q through
the following formula [5]:

dσ

dΩdω
∼ (δαβ − qαqβ

q2
) Sαβ(q, ω). (6)

Hence, to compare the Heisenberg model to experimental measurements of
the neutron scattering cross sections, we need to compute the dynamical spin-spin
correlation functions (4) or (5).

This amounts first to determine the spectrum of the Heisenberg Hamiltonian.
Further, we need to identify the action of the local spin operators in the corre-
sponding eigenstate basis and obtain their matrix elements to be summed up to
perform the trace, and the scalar products, necessary in the actual computation
of (4) or (5).

The solution to these different steps turns out to be a fantastic challenge in-
volving deep algebraic structures hidden in the original Bethe ansatz solution [15]
of the Heisenberg Hamiltonian spectrum and unraveled along its extensions [16–20]
in particular through the associated Yang-Baxter structures [21–27]; these led, in
the search of an algebraic way to construct new integrable models [28–31], to the



164 J.-M. Maillet

discovery of quantum groups [32–35]; it was later realized that the underlying sym-
metry algebra of the Heisenberg model in the infinite lattice limit is the quantum
affine algebra Uq(ŝl2) [36, 37].

The aim of this lecture is to describe the methods used towards the solution
of these successive steps. Some of them are already 75 years old and go back to
H. Bethe [15], while others have been developed only in the last ten years. But
before going into the historical developments and technical details about these
tools, and as a motivation to eventually spend some time learning about them, we
would like to give here one of the results that we obtained rather recently [38–40]:
the graphical plot (as a function of q and ω) of the total dynamical structure factor
at zero temperature S(q, ω) and its successful comparison to experimental neutron
scattering measurements on the KCuF3 crystal (the colors encode here the value
of the function in the (q, ω) plane, from light gray corresponding to zero value to
dark gray in the highest contributions), see Fig. 1.

Figure 1. The dynamical structure factor S(q, ω), on the right com-
puted using Bethe ansatz techniques and on the left from inelastic neu-
tron scattering experiment on KCuF3 [11] (experimental data and pic-
ture, courtesy A. Tennant)

This computation involves both analytical (exact) results about the spectrum
of the Heisenberg Hamiltonian, the matrix elements of the local spin operators
between eigenstates using Bethe ansatz techniques and numerical analysis used to
perform the sums over these matrix elements to obtain the dynamical structure
factor S(q, ω) (see Section 3).
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What makes these results at all possible is the integrable nature of the Heisen-
berg Hamiltonian, namely in particular the possibility to determine its exact spec-
trum. This model, introduced by Heisenberg in 1928 [14], can in fact be considered
as the archetype of a large class of integrable (called also exactly solvable) models
in low dimensions in classical and quantum statistical mechanics and field theory.
They already found many applications ranging from condensed matter physics
(see, e.g., [26, 41–43]) to high energy physics (see, e.g., [44–46]).

The history of these integrable models of statistical physics started in fact
a bit before the Heisenberg spin chain, with the proposal by Lenz and by Ising
[47, 48]) of the Ising model to investigate ferromagnetic properties of solids. Ising
first solved the one-dimensional case where there is no phase transition at any
finite temperature to a ferromagnetic ordered state. It is rather unfortunate that
Ising did not realize at that time that this failure was a peculiarity of the one-
dimensional situation. However, this was taken by Heisenberg as a motivation to
propose his own model in 1928 [14], based on a more sophisticated treatment of
the interactions between the spins (using in particular their full quantum operator
nature which was simplified drastically in the Ising case). In this way, the more
complicated Heisenberg model was exploited (successfully) first, and only after
theoretical physicists (and chemists!) did return to the somehow simpler Ising
model [49–53].

The Bethe solution of the Heisenberg spin chain in 1931 gave the start-
ing point for the development of the field of quantum integrable models in one-
dimensional statistical mechanics, using his now famous Bethe ansatz and its fur-
ther extensions [15, 17, 18, 20, 21].

The Ising model generated also a fantastic line of research, starting with
the Onsager solution of the two-dimensional case in 1942 [51]. It had a major
impact on the theory of critical phenomena and launched a series of studies of
two-dimensional exactly solvable models of classical statistical mechanics (in fact
related through their transfer matrices to the above quantum one-dimensional spin
chains) culminating in the works of Baxter in the 1970s on the 6-vertex (related
to the XXZ chain) and 8-vertex (related to the XY Z chain) models (see the
book [26] and references therein).

This remarkable success (also with the works of Gaudin, Yang and many oth-
ers; see [25–27] and references therein) led to apply these techniques to a quite in-
teresting continuum model, the nonlinear Schrödinger model, which was also clas-
sically solvable through the inverse scattering methods using its Lax pair structure,
see, e.g., [54, 55] and references therein. This led to the discovery of an algebraic
version of the Bethe ansatz by Faddeev, Sklyanin and Taktadjan [23,24]. The alge-
braic structure at work in this method has been coined since this pioneering work,
the Yang-Baxter algebra. It is written as a quadratic algebra of quantum operators
depending on a continuous parameterλ (the spectral parameter) and governed by
an R-matrix which in the case of the Heisenberg XXZ chain is directly related
to the Boltzman weights of the 6-vertex model. For that case, there are four op-
erators, A, B, C, D that can be considered as forming the operator entries of a
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2 × 2 matrix, the monodromy matrix,

T (λ) =
(

A(λ) B(λ)
C(λ) D(λ)

)
. (7)

This monodromy matrix is constructed from the R-matrix of the model as a spe-
cific ordered product all along the chain (see the next section). The quadratic
commutation relations between the operators A, B, C, D can then be written in a
compact way as

R12(λ, µ) T1(λ) T2(µ) = T2(µ) T1(λ) R12(λ, µ), (8)

with the tensor notation T1(λ) = T (λ) ⊗ Id and T2(µ) = Id ⊗ T (µ). There the
R-matrix appears as the structure constants of the Yang-Baxter algebra. It is a
linear operator in the tensor product V1 ⊗ V2, where each Vi is isomorphic to C2,
and depends generically on two spectral parameters λ1 and λ2 associated to these
two vector spaces. It is denoted by R12(λ1, λ2). Such an R-matrix satisfies the
Yang-Baxter equation,

R12(λ1, λ2) R13(λ1, λ3) R23(λ2, λ3) = R23(λ2, λ3) R13(λ1, λ3) R12(λ1, λ2). (9)

These commutation relations imply in particular that the transfer matrices, de-
fined as

T (λ) = tr T (λ) = A(λ) + D(λ), (10)
commute for different values of the spectral parameter [T (λ), T (µ)] = 0 and also
with Sz, [T (λ), Sz ] = 0. The Hamiltonian (2) at h = 0 is related to T (λ) by the
‘trace identity’

H(0) = 2 sinh η
dT (λ)

dλ
T −1(λ)

λ= η
2

− 2M cosh η. (11)

Therefore, the spectrum of the Hamiltonian (1) is given by the common eigenvec-
tors of the transfer matrices and of Sz . They can be constructed by the successive
action of operator B(λi) (or equivalently by the C(λi)) on a reference state pro-
vided the spectral parameters λi satisfy the original Bethe equations. The analysis
of these equations leads to the determination of the Hamiltonian spectrum, and to
the determination of the ground state, in particular in the limit of infinite chains.

It is interesting to mention that the above algebraic structures have nice
classical limits that are related to Lie-Poisson structures (see [54, 55] and refer-
ences therein). It enables us to construct the corresponding classical integrable
models purely from the knowledge of a Lie algebra and its representations. The
similar question for the quantum case was of great importance in constructing
new quantum integrable models, not only on the lattice but also in the contin-
uum [28–31]. In turn, the full solution of this problem led to the discovery of
quantum groups [32–35].

After determining the spectrum, the next task is to consider the computation
of correlation functions such as (5). There are two main routes to compute dynam-
ical two-point correlation functions of this type, namely, depending on the lattice
distance m and on the time variable t (we assume here translational invariance):
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(i) Compute first the action of local operators on the ground state

σα
1 eiHt σβ

m+1 e−iHt |ψg 〉 = | ψ̃g 〉 (12)

and then calculate the resulting scalar product to get

Sαβ(m, t) = 〈ψg | ψ̃g〉. (13)

Note however that for dynamical correlation functions this amounts to evaluate
the action of the exponential of the Hamiltonian operator not only on Hamiltonian
eigenstates (which is easy) but also on general states resulting from the action of
local operators on Hamiltonian eigenstates (which is rather complicated).

(ii) Insert the identity as a sum over a complete set of normalized states |ψi 〉 (for
instance, the basis constructed out of the eigenvectors of the Hamiltonian)
between the local operators to obtain a representation for the correlation
function as a sum over matrix elements of local operators,

Sαβ(m, t) =
∑

i

〈ψg |σα
1 |ψi 〉 〈ψi |σα

1 |ψg 〉 ei(Ei−Eg)t eim(Pi−Pg), (14)

where, Ei, Pi and Eg, Pg are the energy and momentum eigenvalues of the
states |ψi 〉 and of the ground state |ψg 〉 respectively. This amounts again to
be able to act with local operators on eigenstates, to compute the resulting
scalar products, and finally to perform the above sum containing in the XXZ
spin- 1

2 model case with M sites 2M terms.

In both approaches, we need to obtain the action of local operators on Hamil-
tonian eigenstates in a compact and manageable form and then to evaluate the
resulting scalar product. This problem turns out to be very involved due to the
highly nonlocal nature of the Bethe eigenstates. Indeed, the creation operators
of Bethe eigenstates (the operators B(λ)) are extremely nonlocal in terms of lo-
cal spin operators σα

i . In fact (see next section) they are the sum of 2M terms
(M is the number of lattice sites in the chain), each term being some product of
spin operators σα

i from the site one to the site M . As a consequence, A, B, C, D
operators do not have a priori simple commutation relations with the local spin
operators, which is the ingredient we would need to compute the action of the
latter on Bethe eigenstates. It is a major problem that prevents for very long the
computation of correlation functions. In fact, the first case to be understood was
the free fermion point ∆ = 0 (a computation essentially equivalent to the one
for the two-dimensional Ising model). In that case, thanks to a Jordan-Wigner
transformation, it is possible to rewrite the Hamiltonian as a quadratic expression
in the fermionic operators and hence to use them as creation operators for its
eigenstates while the local spin operators have also a simple expression in terms
of them. It is this property, namely the fact that all relevant quantities can be
embedded inside the same Clifford algebra, that finally opened the possibility to
compute the correlation functions in that case. Nevertheless tremendous work was
necessary to achieve full answers [51–53,56–60].
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Going beyond the free Fermion case has been a major challenge for the last
thirty years.

For integrable quantum spin chains [61–63] and lattice models [26], the first
attempts to go beyond free Fermion models relied on the Bethe ansatz tech-
niques [23,64] and were undertaken by A.G. Izergin and V.E. Korepin (see, e.g., [61]
and references therein). Their approach yields formulae for the correlation func-
tions [61, 65–67] written as vacuum expectation values of some determinants de-
pending on so-called “dual fields” which were introduced to overcome the huge
combinatorial sums arising in particular from the action of local operators on
Bethe states. However these formulae are not completely explicit, since these “dual
fields” cannot be eliminated from the final result.

In the last fifteen years, two main approaches to a more explicit computation
of form factors and correlation functions have been developed, mainly for lattice
models.

One of these approaches was initiated by M. Jimbo, T. Miwa and their col-
laborators [36, 37, 68, 69] and enables, using some (rather well-controlled) hypoth-
esis, to compute form factors and correlation functions of quantum spin chains
of infinite length (and in their massive regime) by expressing them in terms of
traces of q-deformed vertex operators over an irreducible highest weight represen-
tation of the corresponding quantum affine algebra. This quantum affine algebra
is conjectured to be the infinite-dimensional symmetry algebra of the Heisenberg
infinite chain, and all relevant quantities can be embedded in this algebra, mak-
ing the computation of correlation functions possible. The vertex operators traces
turn out to satisfy an axiomatic system of equations called q-deformed Knizhnik-
Zamolodchikov (q-KZ) equations, the solutions of which can be expressed in terms
of multiple integral formulae. Using these equations similar formulae can be con-
jectured in the massless regime.

Recently, a more algebraic representation for the solution of these q-deformed
Knizhnik-Zamolodchikov equations have been obtained for the XXX and XXZ
(and conjectured for the XY Z) spin 1/2 chains; in these representations, all el-
ementary blocks of the correlation functions can be expressed in terms of some
transcendental functions [70–72]. A detailed review of the approach can be found
in [62].

These results, their proofs, together with their extension to nonzero magnetic
field have been obtained in 1999 [38, 73] using the algebraic Bethe ansatz frame-
work [23–25] and the actual resolution of the so-called quantum inverse scattering
problem [38,74].

The main steps of this method are as follows. Let us first note that any n-
point correlation function of the Heisenberg chain can be reconstructed as a sum
of elementary building blocks defined in the following way:

Fm({εj , ε
′
j}) = 〈ψg |

m∏
j=1

E
ε′j ,εj

j |ψg 〉. (15)
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Here |ψg 〉 is the normalized ground state of the chain and E
ε′j ,εj

j denotes the
elementary operator acting on the quantum space Hj at site j as the 2× 2 matrix
of elements Eε′,ε

lk = δl,ε′δk,ε.
A multiple integral representation for these building blocks was obtained for

the first time in [68, 69]. We briefly recall how we derived them in the framework
of algebraic Bethe Ansatz [38, 73] by solving the following successive problems:

(i) determination of the ground state 〈ψg |,
(ii) evaluation of action of the product of local operators on this ground state,
(iii) computation of the scalar product of the resulting state with |ψg 〉,
(iv) thermodynamic limit.
The starting point of our method is to use in step (i) the description of the eigen-
states obtained via algebraic Bethe ansatz [23, 61]. They are constructed in this
framework in terms of generalized creation and annihilation operators which are
themselves highly nonlocal. Acting with local operators on such states in step (ii) is
therefore a-priori a nontrivial problem. One of the key-ingredients of our method,
which enables us to compute this action explicitly, is the solution of the so-called
quantum inverse scattering problem [38, 74]: local operators are reconstructed in
terms of the generators of the so-called Yang-Baxter algebra, which contains in
particular the creation/annihilation operators for the eigenstates. Hence, all com-
putations can now be done in the Yang-Baxter algebra. In particular, the step
(ii) is now completed using only the quadratic commutation relations satisfied by
these generators [73]. The computation of the resulting scalar products in step (iii)
may also present some technical difficulties. In the case of the XXZ Heisenberg
chain, it has been solved using again the algebraic structure of the Yang-Baxter
algebra [38, 83]. Finally, the step (iv) is obtained using the results of [19, 20].

Note that this procedure remains essentially the same in the case of the
two-point correlation functions. The main difference is that, in step (ii), the re-
construction of the corresponding local operators from the solution of the inverse
problem gives rise to a more complicated combination of the generators of the
Yang-Baxter algebra, so that the use of their commutation relations to determine
their action on the eigenstates involves more complicated combinatorics.

At zero magnetic field our method gives a complete proof of the multiple
integral representations obtained in [37, 68, 69] both for massive and massless
regimes. Hence, together with the works [68, 69], it also gives a proof that cor-
relation functions of the XXZ (inhomogeneous) chain indeed satisfy (reduced)
q-deformed Knizhnik-Zamolodchikov equations. Moreover, time or temperature
dependent correlation functions can also be computed [63,80,81] using such tech-
niques.

This method allows also for the computation of the matrix elements of the lo-
cal spin operators and the above elementary blocks of the correlation functions for
the finite chain. Hence, thermodynamic limit can be considered separately. In par-
ticular, using both analytical results from Bethe ansatz for these matrix elements
of the spin operators [38,73,74,84] and numerical methods to take the summation
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over intermediate states it has recently been possible to compute [39,40] dynami-
cal structure factors (i.e., Fourier transform of the dynamical spin-spin correlation
functions) for finite XXZ Heisenberg spin chains in a magnetic field (with for ex-
ample 500 or 1000 sites) and to compare successfully these theoretical results with
actual neutron scattering experiments, for example on KCuF3 as shown in Fig. 1.

This article is meant to be a rather brief review on the problem of correlation
functions in quantum integrable models and more specifically in the XXZ Heisen-
berg model. More detailed account of the results sketched here together with their
proofs can be found in the original articles [38,63,73–80,84–86] and in [39,40,87].
This lecture is organized as follows. The space of states of the Heisenberg spin
chain will be described in the next section. It includes a brief introduction to
the algebraic Bethe ansatz and to various tools of importance in the computa-
tion of correlation functions, like in particular the solution of the quantum inverse
scattering problem and the determinant representations of the scalar products of
states. Section 3 is devoted to the correlation functions of the finite chain and
the description of the method leading to Fig. 1. Correlation functions in the ther-
modynamic limit are studied in Section 4. In Section 5 we describe several exact
and asymptotic results together with some open problems. Conclusions and some
perspectives are given in the last section.

2. Heisenberg spin chain and algebraic Bethe ansatz

The space of states is of dimension 2M as it follows from the definition of the
Hamiltonian in (1). Apart from the completely ferromagnetic states with all spins
up or down, the construction of the Hamiltonian eigenvectors is rather nontrivial.
The purpose of this section is to briefly explain the basics of the knowledge of the
space of states in the framework of the algebraic Bethe ansatz, leading in particular
to the determination of the spectrum of (1).

2.1. Algebraic Bethe ansatz

The algebraic Bethe ansatz originated from the fusion of the original (coordinate)
Bethe ansatz and of the inverse scattering method in its Hamiltonian formulation
[23–25]. At the root of the algebraic Bethe ansatz method is the construction of the
quantum monodromy matrix. In the case of the XXZ chain (1) the monodromy
matrix is a 2 × 2 matrix,

T (λ) =
(

A(λ) B(λ)
C(λ) D(λ)

)
, (16)

with operator-valued entries A, B, C and D which depend on a complex parameter
λ (spectral parameter) and act in the quantum space of states H of the chain. One
of the main properties of these operators is that the trace of T , namely A + D,
commutes with the Hamiltonian H , while operators B and C can be used as
creation operators of respectively eigenvectors and dual eigenvectors of A + D
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and hence of H itself. The monodromy matrix is defined as the following ordered
product,

T (λ) = LM (λ) . . . L2(λ)L1(λ), (17)

where Ln(λ) denotes the quantum L-operator at the site n of the chain:

Ln(λ) =
(

sinh(λ + η
2 σz

n) sinh η σ−
n

sinh η σ+
n sinh(λ − η

2 σz
n)

)
. (18)

The parameter η is related to the anisotropy parameter as ∆ = cosh η. It follows
from this definition that the monodromy matrix is a highly nonlocal operator
in terms of the local spin operators σx,y,z

n . However, the commutation relations
between the operators A, B, C, D can be computed in a simple way. They are
given by the quantum R-matrix,

R(λ, µ) =

⎛⎜⎜⎝
1 0 0 0
0 b(λ, µ) c(λ, µ) 0
0 c(λ, µ) b(λ, µ) 0
0 0 0 1

⎞⎟⎟⎠ (19)

where

b(λ, µ) =
sinh(λ − µ)

sinh(λ − µ + η)
, c(λ, µ) =

sinh(η)
sinh(λ − µ + η)

, (20)

The R-matrix is a linear operator in the tensor product V1 ⊗ V2, where each Vi

is isomorphic to C2, and depends generically on two spectral parameters λ1 and
λ2 associated to these two vector spaces. It is denoted by R12(λ1, λ2). Such an
R-matrix satisfies the Yang-Baxter equation,

R12(λ1, λ2) R13(λ1, λ3) R23(λ2, λ3) = R23(λ2, λ3) R13(λ1, λ3) R12(λ1, λ2). (21)

It gives the following commutation relations among the operators entries of the
monodromy matrix,

R12(λ, µ) T1(λ) T2(µ) = T2(µ) T1(λ) R12(λ, µ), (22)

with the tensor notations T1(λ) = T (λ) ⊗ Id and T2(µ) = Id ⊗ T (µ). These com-
mutation relations imply in particular that the transfer matrices, defined as

T (λ) = tr T (λ) = A(λ) + D(λ), (23)

commute for different values of the spectral parameter [T (λ), T (µ)] = 0 and also
with Sz, [T (λ), Sz ] = 0. The Hamiltonian (2) at h = 0 is related to T (λ) by the
‘trace identity’ (11).

Therefore, the spectrum of the Hamiltonian (1) is given by the common
eigenvectors of the transfer matrices and of Sz.

For technical reasons, it is actually convenient to introduce a slightly more
general object, the twisted transfer matrix

Tκ(λ) = A(λ) + κD(λ), (24)
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where κ is a complex parameter. The particular case of Tκ(λ) at κ = 1 corresponds
to the usual (untwisted) transfer matrix T (λ). It will be also convenient to consider
an inhomogeneous version of the XXZ chain, for which

T1...M (λ; ξ1, . . . , ξM ) = LM (λ − ξM + η/2) . . . L1(λ − ξ1 + η/2). (25)

Here, ξ1, . . . , ξM are complex parameters (inhomogeneity parameters) attached to
each site of the lattice. The homogeneous model (1) corresponds to the case where
ξj = η/2 for j = 1, . . . , M .

In the framework of algebraic Bethe ansatz, an arbitrary quantum state can
be obtained from the vectors generated by multiple action of operators B(λ) on the
reference vector | 0 〉 with all spins up (respectively by multiple action of operators
C(λ) on the dual reference vector 〈 0 |),

|ψ 〉 =
N∏

j=1

B(λj)| 0 〉, 〈ψ | = 〈 0 |
N∏

j=1

C(λj), N = 0, 1, . . . , M. (26)

2.2. Description of the spectrum

Let us consider here the subspace H(M/2−N) of the space of states H with a fixed
number N of spins down. In this subspace, the eigenvectors |ψκ({λ}) 〉 (respec-
tively 〈ψκ({λ}) |) of the twisted transfer matrix Tκ(µ) can be constructed in the
form (26), where the parameters λ1, . . . , λN satisfy the system of twisted Bethe
equations

Yκ(λj |{λ}) = 0, j = 1, . . . , N. (27)

Here, the function Yκ is defined as

Yκ(µ|{λ}) = a(µ)
N∏

k=1

sinh(λk − µ + η) + κ d(µ)
N∏

k=1

sinh(λk − µ − η), (28)

and a(λ), d(λ) are the eigenvalues of the operators A(λ) and D(λ) on the reference
state | 0 〉. In the normalization (18) and for the inhomogeneous model (25), we
have

a(λ) =
M∏

a=1

sinh(λ − ξa + η), d(λ) =
M∏

a=1

sinh(λ − ξa). (29)

The corresponding eigenvalue of Tκ(µ) on |ψκ({λ}) 〉 (or on a dual eigenvector) is

τκ(µ|{λ}) = a(µ)
N∏

k=1

sinh(λk − µ + η)
sinh(λk − µ)

+ κ d(µ)
N∏

k=1

sinh(µ − λk + η)
sinh(µ − λk)

. (30)

The solutions of the system of twisted Bethe equations (27) have been an-
alyzed in [88]. In general, not all of these solutions correspond to eigenvectors
of Tκ(µ).
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Definition 2.1. A solution {λ} of the system (27) is called admissible if

d(λj)
N∏

k=1
k =j

sinh(λj − λk + η) �= 0, j = 1, . . . , N, (31)

and un-admissible otherwise. A solution is called off-diagonal if the corresponding
parameters λ1, . . . , λN are pairwise distinct, and diagonal otherwise.

One of the main results of [88] is that, for generic parameters κ and {ξ}, the
set of the eigenvectors corresponding to the admissible off-diagonal solutions of the
system of twisted Bethe equations (27) forms a basis in the subspace H(M/2−N).
It has been proven in [80] that this result is still valid in the homogeneous case
ξj = η/2, j = 1, . . . , N , at least if κ is in a punctured vicinity of the origin
(i.e., 0 < |κ| < κ0 for κ0 small enough). Note however that, for specific values
of κ and {ξ}, the basis of the eigenvectors in H(M/2−N) may include some states
corresponding to un-admissible solutions of (27) (in particular in the homogeneous
limit at κ = 1).

At κ = 1, it follows from the trace identity (11) that the eigenvectors of the
transfer matrix coincide, in the homogeneous limit, with the ones of the Hamil-
tonian (1). The corresponding eigenvalues in the case of zero magnetic field can
be obtained from (11), (30):

H(0) |ψ({λ}) 〉 = (
N∑

j=1

E(λj)) · |ψ({λ}) 〉, (32)

where the (bare) one-particle energy E(λ) is equal to

E(λ) =
2 sinh2 η

sinh(λ + η
2 ) sinh(λ − η

2 )
. (33)

2.3. Drinfel’d twist and F-basis

As already noted, the operators A, B, C, D are highly nonlocal in terms of local
spin operators. There exists however an interesting description of these operators
by means of a change of basis of the space of states. In particular, this basis will
provide a direct access to the scalar products of states. The root of this new basis
is provided by the notion of Drinfel’d twist [35] associated to the R-matrix of the
XXZ chain. It leads to the notion of factorizing F -matrices. To be essentially self-
contained we briefly recall here their main properties and refer to [84] for more
details and proofs.

Definition 2.2. For inhomogeneity parameters ξj in generic positions and for any
integer n one can associate to any element σ of the symmetric group Sn of order
n a unique R-matrix Rσ

1...n(ξ1, . . . , ξn), denoted for simplicity Rσ
1...n, constructed

as an ordered product (depending on σ) of the elementary R-matrices Rij(ξi, ξj).
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We have the following property for arbitrary integer n:

Proposition 2.1.

Rσ
1...n T1...n(λ; ξ1, . . . , ξn) = Tσ(1)...σ(n)(λ; ξσ(1), . . . , ξσ(n)) Rσ

1...n. (34)

We can now define the notion of factorizing F -matrix:

Definition 2.3. A factorizing F -matrix associated to a given elementary R matrix
is an invertible matrix F1...n(ξ1, . . . , ξn), defined for arbitrary integer n, satisfying
the following relation for any element σ of Sn:

Fσ(1)...σ(n)(ξσ(1), . . . , ξσ(n)) Rσ
1...n(ξ1, . . . , ξn) = F1...n(ξ1, . . . , ξn). (35)

In other words, such an F -matrix factorizes the corresponding R-matrix for
arbitrary integer n. Taking into account the fact that the parameters ξn are in
one-to-one correspondence with the vector spaces Hn, we can adopt simplified
notations such that

F1...n(ξ1, . . . , ξn) = F1...n,

Fσ(1)...σ(n)(ξσ(1), . . . , ξσ(n)) = Fσ(1)...σ(n).

Theorem 2.1 ( [84]). For the XXZ model with inhomogeneity parameters ξn in
generic positions, there exist a factorizing, triangular F -matrix. It is constructed
explicitly from the R-matrix.

It has two important properties:

Proposition 2.2 ( [84]). In the F -basis, the monodromy matrix T̃

T̃1...M (λ; ξ1, . . . , ξM ) = F1...MT1...M (λ; ξ1, . . . , ξM ) F−1
1...M (36)

is totally symmetric under any simultaneous permutations of the lattice sites i and
of the corresponding inhomogeneity parameters ξi.

The second property gives the explicit expressions of the monodromy matrix
in the F -basis. For the XXZ- 1

2 model, the quantum monodromy operator is a 2×2
matrix with entries A, B, C, D which are obtained as sums of 2M−1 operators
which themselves are products of M local spin operators on the quantum chain.
As an example, the B operator is given as

B1...M (λ) =
N∑

i=1

σ−
i Ωi +

∑
i=j =k

σ−
i (σ−

j σ+
k ) Ωijk + higher terms, (37)

where the matrices Ωi, Ωijk, are diagonal operators acting respectively on all sites
but i, on all sites but i, j, k, and the higher order terms involve more and more
exchange spin terms like σ−

j σ+
k . It means that the B operator returns one spin

somewhere on the chain, this operation being however dressed non-locally and
with non-diagonal operators by multiple exchange terms of the type σ−

j σ+
k .
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So, whereas these formulas in the original basis are quite involved, their
expressions in the F -basis simplify drastically:

Proposition 2.3 ( [84]). The operators D, B and C in the F -basis are given by the
formulas

D̃1...M (λ; ξ1, . . . , ξM ) =
M
⊗

i=1

(
b(λ, ξi) 0

0 1

)
[i]

, (38)

B̃1...M (λ) =
M∑
i=1

σ−
i c(λ, ξi) ⊗

j =i

(
b(λ, ξj) 0

0 b−1(ξj , ξi)

)
[j]

, (39)

C̃1...M (λ) =
M∑
i=1

σ+
i c(λ, ξi) ⊗

j =i

(
b(λ, ξj) b−1(ξi, ξj) 0

0 1

)
[j]

, (40)

and the operator Ã can be obtained from quantum determinant relations.

We wish first to stress that while the operators Ã, B̃, C̃, D̃ satisfy the same
quadratic commutation relations as A, B, C, D, they are completely symmetric
under simultaneous exchange of the inhomogeneity parameters of the spaces Hn.
It really means that the factorizing F -matrices we have constructed solve the
combinatorial problem induced by the nontrivial action of the permutation group
SM given by the R-matrix. In the F -basis the action of the permutation group on
the operators Ã, B̃, C̃, D̃ is trivial.

Further, it can be shown that the pseudo-vacuum vector is left invariant,
namely, it is an eigenvector of the total F -matrix with eigenvalue 1; in particular,
the algebraic Bethe ansatz can be carried out also in the F -basis. Hence, a direct
computation of Bethe eigenvectors and of their scalar products in this F -basis is
made possible, while it was a priori very involved in the original basis. There, only
commutation relations between the operators A, B, C, D can be used, leading
(see [61]) to very intricate sums over partitions.

2.4. Solution of the quantum inverse problem

The very simple expressions of the monodromy matrix operators entries D, B, C

in the F -basis suggests that any local operator E
ε′j ,εj

j , acting in a local quantum
space Hj at site j, can be expressed in terms of the entries of the monodromy
matrix. This is the so-called quantum inverse scattering problem. The solution to
this problem was found in [38, 74]:

Theorem 2.2.

E
ε′j ,εj

j =
j−1∏
α=1

T (ξα) · Tεj ,ε′j(ξj) ·
j∏

α=1

T −1(ξα). (41)

The proof of this theorem is elementary (see [38, 74]) and hence it can be
obtained for a large class of lattice integrable models. It relies essentially on the
property that the R-matrix R(λ, µ) reduces to the permutation operator for λ = µ.
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An immediate consequence of this theorem is that the operators A, B, C, and D
generate the space of all operators acting in H.

2.5. Scalar products

We give here the expressions for the scalar product of an eigenvector of the twisted
transfer matrix with any arbitrary state of the form (26). These scalar products
can be expressed as determinant of rather simple matrices. The root of all these
determinants is in fact the determinant representation for the partition function
of the 6-vertex model with domain wall boundary conditions [89]. Let us first
define, for arbitrary positive integers n, n′ (n ≤ n′) and arbitrary sets of variables
λ1, . . . , λn, µ1, . . . , µn and ν1, . . . , νn′ such that {λ} ⊂ {ν}, the n × n matrix
Ωκ({λ}, {µ}|{ν}) as

(Ωκ)jk({λ}, {µ}|{ν}) = a(µk) t(λj , µk)
n′∏

a=1

sinh(νa − µk + η)

− κ d(µk) t(µk, λj)
n′∏

a=1

sinh(νa − µk − η), (42)

with

t(λ, µ) =
sinh η

sinh(λ − µ) sinh(λ − µ + η)
. (43)

Proposition 2.4. [38,63,83] Let {λ1, . . . , λN} be a solution of the system of twisted
Bethe equations (27), and µ1, . . . , µN be generic complex numbers. Then,

〈 0 |
N∏

j=1

C(µj) |ψκ({λ}) 〉 = 〈ψκ({λ}) |
N∏

j=1

B(µj)| 0 〉

=

N∏
a=1

d(λa)
N∏

a,b=1

sinh(µb − λa)

N∏
a>b

sinh(λa − λb) sinh(µb − µa)
· det

N

(
∂

∂λj
τκ(µk|{λ})

)
(44)

=

N∏
a=1

d(λa)

N∏
a>b

sinh(λa − λb) sinh(µb − µa)
· det

N
Ωκ({λ}, {µ}|{λ}). (45)

These equations are valid for any arbitrary complex parameter κ, in particular
at κ = 1. In this case we may omit the subscript κ and denote (ψ, τ,Y, Ω) =
(ψκ, τκ,Yκ, Ωκ)|κ=1.

If the sets {λ} and {µ} are different, the eigenvector |ψκ({λ}) 〉 is orthogonal
to the dual eigenvector 〈ψκ({µ}) |. Otherwise we obtain a formula for the norm of
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the corresponding vector [38, 82, 90],

〈ψκ({λ}) |ψκ({λ}) 〉 =

N∏
a=1

d(λa)

N∏
a,b=1
a=b

sinh(λa − λb)
· det

N
Ωκ({λ}, {λ}|{λ})

= (−1)N

N∏
a=1

d(λa)

N∏
a,b=1
a=b

sinh(λa − λb)
· det

N

(
∂

∂λk
Yκ(λj |{λ})

)
.

2.6. Action of operators A, B, C, D on a general state

An important step of the computation of correlation function is to express the ac-
tion of any product of local operators on any Bethe eigenvector. From the solution
of the quantum inverse scattering problem, this is given by the successive action
of A, B, C, D operators on a vector constructed by action of C operators on the
reference vector. Action of A, B, C, D on such a vector are well known (see for
example [61]). They can be written in the following form:

〈 0 |
N∏

k=1

C(λk)A(λN+1) =
N+1∑
a′=1

a(λa′)

N∏
k=1

sinh(λk − λa′ + η)

N+1∏
k=1
k =a′

sinh(λk − λa′)
〈 0 |

N+1∏
k=1
k =a′

C(λk); (46)

〈 0 |
N∏

k=1

C(λk)D(λN+1) =
N+1∑
a=1

d(λa)

N∏
k=1

sinh(λa − λk + η)

N+1∏
k=1
k =a

sinh(λa − λk)
〈 0 |

N+1∏
k=1
k =a

C(λk). (47)

The action of the operator B(λ) can be obtained similarly,

〈 0 |
N∏

k=1

C(λk)B(λN+1) =
N+1∑
a=1

d(λa)

N∏
k=1

sinh(λa − λk + η)

N+1∏
k=1
k =a

sinh(λa − λk)

×
N+1∑
a′=1
a′ =a

a(λa′)
sinh(λN+1 − λa′ + η)

N+1∏
j=1
j =a

sinh(λj − λa′ + η)

N+1∏
j=1

j =a,a′

sinh(λj − λa′)
〈 0 |

N+1∏
k=1

k =a,a′

C(λk), (48)

and the action of C is obvious.
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3. Correlation functions: Finite chain

To compute correlation functions of some product of local operators, the following
successive problems have to be addressed:

(i) determination of the ground state 〈ψg |,
(ii) evaluation of the action of the product of the local operators on it, and
(iii) computation of the scalar product of the resulting state with |ψg 〉.
Using the solution of the quantum inverse scattering problem together with the ex-
plicit determinant formulas for the scalar products and the norm of the Bethe state,
one sees that matrix elements of local spin operators and correlation functions can
be expressed as (multiple) sums of determinants [73]. It should be stressed that
this result is purely algebraic and is valid for finite chains of arbitrary length M .

3.1. Matrix elements of local operators

We begin with the calculation of the one-point functions. These results follow
directly from the solution of the quantum inverse scattering problem, the above
action of operators A, B, C and D, and the determinant representation of the
scalar products. We consider

F−
N (m, {µj}, {λk}) = 〈 0 |

N+1∏
j=1

C(µj) σ−
m

N∏
k=1

B(λk) | 0 〉 (49)

and

F+
N (m, {λk}, {µj}) = 〈 0 |

N∏
k=1

C(λk) σ+
m

N+1∏
j=1

B(µj) | 0 〉, (50)

where {λk}n and {µj}n+1 are solutions of Bethe equations.

Proposition 3.1. For two Bethe states with spectral parameters {λk}N and
{µj}N+1, the matrix element of the operator σ−

m can be represented as a deter-
minant,

F−
N (m, {µj}, {λk}) =

φm−1({µj})
φm−1({λk})

N+1∏
j=1

sinh(µj − ξm + η)

N∏
k=1

sinh(λk − ξm + η)

· detN+1 H−(m, {µj}, {λk})∏
N+1≥k>j≥1

sinh(µk − µj)
∏

1≤β<α≤N

sinh(λβ − λα)
, (51)

φm({λk}) =
N∏

k=1

m∏
j=1

b−1(λk, ξj), (52)
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and the (N + 1) × (N + 1) matrix H− is defined as

H−
ab(m) =

ϕ(η)
ϕ(µa − λb)

(
a(λb)

N+1∏
j=1
j =a

ϕ(µj − λb + η) − d(λb)
N+1∏
j=1
j =a

ϕ(µj − λb − η)
)

for b < N + 1, (53)

H−
aN+1(m) =

ϕ(η)
ϕ(µa − ξm + η)ϕ(µa − ξm)

. (54)

For the matrix element F+
N (m, {λk}, {µj}) we get

F+
N (m, {λk}, {µj}) =

φm(λk)φm−1(λk)
φm−1(µj)φm(µj)

F−
N (m, {µj}, {λk}). (55)

The matrix elements of the operator σz
m between two Bethe states have been

obtained similarly [38].

3.2. Elementary blocks of correlation functions

In this section we consider a more general case of correlation functions: the ground
state mean value of any product of the local elementary 2 × 2 matrices Eε′,ε

lk =
δl,ε′δk,ε:

Fm({εj , ε
′
j}) =

〈ψg |
m∏

j=1

E
ε′j ,εj

j |ψg 〉

〈ψg |ψg〉
. (56)

An arbitrary n-point correlation function can be obtained as a sum of such mean
values. Using the solution of the quantum inverse scattering problem, we reduce
this problem to the computation of the ground state mean value of an arbitrary
ordered product of monodromy matrix elements,

Fm({εj , ε
′
j}) = φ−1

m ({λ})
〈ψg |Tε1,ε′1(ξ1) . . . Tεm,ε′m(ξm)|ψg 〉

〈ψg |ψg〉
. (57)

To calculate these mean values we first describe generically the product of the mon-
odromy matrix elements. For that purpose, one should consider the two following
sets of indices, α+ = {j : 1 ≤ j ≤ m, εj = 1}, card(α+) = s′, maxj∈α+(j) ≡ j′max,
minj∈α+(j) ≡ j′min, and similarly α− = {j : 1 ≤ j ≤ m, ε′j = 2}, card(α−) = s,
maxj∈α−(j) ≡ jmax, minj∈α−(j) ≡ jmin. The intersection of these two sets is not
empty and corresponds to the operators B(ξj). Consider now the action

〈 0 |
N∏

k=1

C(λk)Tε1,ε′1(λN+1) . . . Tεm,ε′m(λN+m), (58)

applying one by one the formulae (46)–(48). For all the indices j from the sets
α+ and α− one obtains a summation on the corresponding indices a′

j (for j ∈ α+,
corresponding to the action of the operators A(λ) or B(λ)) or aj (for j ∈ α−,
corresponding to the action of the operators D(λ) or B(λ)). As the product of the
monodromy matrix elements is ordered these summations are also ordered and the
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corresponding indices should be taken from the following sets, Aj = {b : 1 ≤ b ≤
N + m, b �= ak, a′

k, k < j} and A′
j = {b : 1 ≤ b ≤ N + m, b �= a′

k, k < j, b �=
ak, k ≤ j}. Thus,

〈 0 |
N∏

k=1

C(λk)Tε1,ε′1(λN+1) . . . Tεm,ε′m(λN+m)

=
∑

{aj ,a′
j}

G{aj ,a′
j}(λ1, . . . , λN+m)〈 0 |

∏
b∈Am+1

C(λb). (59)

The summation is taken over the indices aj for j ∈ α− and a′
j for j ∈ α+ such

that 1 ≤ aj ≤ N + j, aj ∈ Aj , 1 ≤ a′
j ≤ N + j, a′

j ∈ A′
j . The functions

G{aj ,a′
j}(λ1, . . . , λN+m) can then be easily obtained from the formulae (46)–(48)

taking into account that λa = ξa−N for a > N :

G{aj ,a′
j}(λ1, . . . , λN+m) =

∏
j∈α−

d(λaj )

N+j−1∏
b=1

b∈Aj

sinh(λaj − λb + η)

N+j∏
b=1

b∈A′
j

sinh(λaj − λb)

×
∏

j∈α+

a(λa′
j
)

N+j−1∏
b=1

b∈A′
j

sinh(λb − λa′
j
+ η)

N+j∏
b=1

b∈Aj+1

sinh(λb − λa′
j
)

. (60)

Now to calculate the normalized mean value (57) we apply the determinant
representation for the scalar product. It should be mentioned that the number of
operators C(λ) has to be equal to the number of the operators B(λ), as otherwise
the mean value is zero, and hence the total number of elements in the sets α+ and
α− is s + s′ = m. Taking into account that in (57), for b > N, λb = ξb−N one has
to consider the following scalar products,

〈 0 |
∏

b∈Am+1

C(λb)
N∏

k=1

B(λk)| 0 〉

〈 0 |
N∏

k=1

C(λk)
N∏

k=1

B(λk)| 0 〉
,

for all the permitted values of aj , a
′
j . Finally we obtain:

Fm({εj , ε
′
j}) =

1∏
k<l

sinh(ξk − ξl)

∑
{aj ,a′

j}
H{aj ,a′

j}(λ1, . . . , λN+m), (61)
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the sum being taken on the same set of indices aj , a
′
j as in (59). The functions

H{aj ,a′
j}({λ}) can be obtained using (60) and the determinant representations for

the scalar products.

3.3. Two-point functions

The method presented in the last section is quite straightforward and gives formally
the possibility to compute any correlation function. However, it has been developed
for the computation of the average values of monomials in the monodromy matrix
operators entries, leading to the elementary building blocks, whereas the study of
the two-point functions involves big sums of such blocks. Indeed, let us consider
for example the correlation function 〈σz

1 σz
m+1 〉. Then, according to the solution

of the inverse scattering problem (41), we need to calculate the expectation value

〈ψ({λ}) | (A − D)(ξ1) ·
m∏

a=2

T (ξa) · (A − D)(ξm+1) ·
m+1∏
b=1

T −1(ξb) |ψ({λ}) 〉. (62)

Since |ψ({λ}) 〉 is an eigenvector, the action of
∏m+1

b=1 T −1(ξb) on this state merely
produces a numerical factor. However, it is much more complicated to evaluate the
action of

∏m
a=2 T (ξa). Indeed, we have to act first with (A − D)(ξ1) on 〈ψ({λ}) |

(or with (A − D)(ξm+1) on |ψ({λ}) 〉), which gives a sum of states which are no
longer eigenvectors of the transfer matrix, and on which the multiple action of T
is not simple. In fact, the product

∏m
a=2(A + D)(ξa) would lead to a sum of 2m−1

elementary blocks. This is not very convenient, in particular at large distance m.
Therefore, to obtain manageable expressions for such correlation functions, it is
of great importance to develop an alternative and compact way to express the
multiple action of the transfer matrix on arbitrary states or, in other words, to
make an effective re-summation of the corresponding sum of the 2m−1 terms. This
can be achieved in the following way:

Proposition 3.2. Let κ, x1, . . . , xm and µ1, . . . , µN be generic parameters. Then
the action of

∏m
a=1 Tκ(xa) on a state of the form 〈 0 |

∏N
j=1 C(µj) can be formally

written as

〈 0 |
N∏

j=1

C(µj)
m∏

a=1

Tκ(xa) =
1

N !

∮
Γ{x}∪Γ{µ}

N∏
j=1

dzj

2πi
·

m∏
a=1

τκ(xa|{z})·
N∏

a=1

1
Yκ(za|{z})

×
N∏

j,k=1
j<k

sinh(zj − zk)
sinh(µj − µk)

· det
N

Ωκ({z}, {µ}|{z}) · 〈 0 |
N∏

j=1

C(zj), (63)

where the integration contour Γ{x} ∪ Γ{µ} surrounds the points1 x1, . . . , xm and
µ1, . . . , µN and does not contain any other pole of the integrand.

1More precisely, for a set of complex variables {ν1, . . . , νl}, the notation Γ{ν} should be un-
derstood in the following way: Γ{ν} is the boundary of a set of poly-disks Da(r) in CN , i.e.,
Γ{ν} = ∪l

a=1D̄a(r) with D̄a(r) = {z ∈ CN : |zk − νa| = r, k = 1, . . . , N}.
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One of the simplest applications concerns the generating function of the two-
point correlation function of the third components of spin, which is defined as the
normalized expectation value 〈Qκ

l,m 〉 of the operator

Qκ
l,m =

m∏
n=l

(
1 + κ

2
+

1 − κ

2
· σz

n

)
=

l−1∏
j=1

T (ξj) ·
m∏

j=l

Tκ(ξj) ·
m∏

j=1

T −1(ξj), (64)

where |ψ({λ}) 〉 is an eigenvector of T (µ) in the subspace H(M/2−N). The two-
point correlation function of the third components of local spins in the eigenvector
|ψ({λ}) 〉 can be obtained in terms of the second ‘lattice derivative’ and the second
derivative with respect to κ of the generating function 〈Qκ

l,m 〉 at κ = 1:

〈σz
l σz

l+m 〉 = 〈σz
l 〉 + 〈σz

l+m 〉 − 1

+ 2
∂2

∂κ2
〈Qκ

l,l+m − Qκ
l,l+m−1 − Qκ

l+1,l+m + Qκ
l+1,l+m−1 〉

κ=1

. (65)

Due to the translational invariance of the correlation functions in the homoge-
neous model, we will simply consider the expectation value 〈Qκ

1,m 〉. For any given
eigenvector, we obtain the following result:

Theorem 3.1. Let {λ} be an admissible off-diagonal solution of the system of un-
twisted Bethe equations, and let us consider the corresponding expectation value
〈Qκ

1,m 〉 in the inhomogeneous finite XXZ chain. Then there exists κ0 > 0 such
that, for |κ| < κ0, the following representations hold:

〈Qκ
1,m 〉 =

1
N !

∮
Γ{ξ}∪Γ{λ}

N∏
j=1

dzj

2πi
·

m∏
a=1

τκ(ξa|{z})
τ(ξa|{λ})

·
N∏

a=1

1
Yκ(za|{z})

× det
N

Ωκ({z}, {λ}|{z}) · detN Ω({λ}, {z}|{λ})
detN Ω({λ}, {λ}|{λ}) . (66)

The integration contours are such that the only singularities of the integrand which
contribute to the integral are the points ξ1, . . . , ξm and λ1 . . . , λN .

From this result, we can extract a compact representation for the two-point
function of σz [79]. Similar expressions exist for other correlation functions of the
spin operators, and in particular for the time dependent case [63, 79]. Moreover,
this multiple contour integral representation permits to relate two very different
ways to compute two-point correlation functions of the type, g12 = 〈ω|θ1θ2|ω〉,
namely,

(i) to compute the action of local operators on the ground state θ1θ2|ω〉 = |ω̃〉
and then to calculate the resulting scalar product g12 = 〈ω|ω̃〉 as was ex-
plained in the previous sections.

(ii) to insert a sum over a complete set of states |ωi〉 (for instance, a complete
set of eigenvectors of the Hamiltonian) between the local operators θ1 and θ2
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and to obtain the representation for the correlation function as a sum over
matrix elements of local operators,

g12 =
∑

i

〈ω|θ1|ωi〉 · 〈ωi|θ2|ω〉. (67)

In fact the above representation as multiple contour integrals contains both ex-
pansions. Indeed there are two ways to evaluate the corresponding integrals: either
to compute the residues in the poles inside Γ, or to compute the residues in the
poles within strips of the width iπ outside Γ.

The first way leads to a representation of the correlation function 〈σz
1σz

m+1〉
in terms of the previously obtained [75] m-multiple sums. Evaluation of the above
contour integral in terms of the poles outside the contour Γ gives us the expansion
(ii) of the correlation function (i.e., an expansion in terms of matrix elements of
σz between the ground state and all excited states). This relation holds also for
the time dependent case [63, 79].

3.4. Towards the comparison with neutron scattering experiments

In this section, we first briefly review all elements necessary for the computa-
tion of the dynamical spin-spin correlation functions of the anisotropic Heisenberg
model, following [39,40] and leading in particular to the successful comparison with
neutron scattering experiments, see Fig. 1. We start by giving our notation and
discussing the eigenstates in some details. The reference state is taken to be the
state with all spins up, |0〉 = ⊗M

i=1| ↑〉i. Since the total magnetization commutes
with the Hamiltonian, the Hilbert space separates into subspaces of fixed magne-
tization, determined from the number of reversed spins N . We take the number
of sites M to be even, and 2N ≤ M , the other sector being accessible through a
change in the reference state.

Eigenstates in each subspace are completely characterized for 2N ≤ M by a
set of rapidities {λj}, j = 1, . . . , N , solution to the Bethe equations[

sinh(λj + iζ/2)
sinh(λj − iζ/2)

]M

=
N∏

k =j

sinh(λj − λk + iζ)
sinh(λj − λk − iζ)

, j = 1, . . . , N, (68)

where ∆ = cos ζ. In view of the periodicity of the sinh function in the complex
plane, we can restrict the possible values that the rapidities can take to the strip
−π/2 < Imλ ≤ π/2, or alternately define an extended zone scheme in which λ and
λ + iπZ are identified.

A more practical version of the Bethe equations is obtained by writing them
in logarithmic form,

atan
[
tanh(λj)
tan(ζ/2)

]
− 1

M

N∑
k=1

atan
[
tanh(λj − λk)

tan ζ

]
=π

Ij

M
. (69)

Here, Ij are distinct half-integers which can be viewed as quantum numbers: each
choice of a set {Ij}, j = 1, . . . , N (with Ij defined mod(M)) uniquely specifies a
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set of rapidities, and therefore an eigenstate. The energy of a state is given as a
function of the rapidities by

E = J

N∑
j=1

− sin2 ζ

cosh 2λj − cos ζ
− h(

M

2
− N), (70)

whereas the momentum has a simple representation in terms of the quantum
numbers,

q =
N∑

j=1

i ln
[
sinh(λj + iζ/2)
sinh(λj − iζ/2)

]
= πN +

2π

M

N∑
j=1

Ij mod 2π. (71)

The ground state is given by I0
j = −N+1

2 + j, j = 1, . . . , N , and all excited states
are in principle obtained from the different choices of sets {Ij}.

To study dynamics, some ingredients have to be added to the Bethe Ansatz:
the matrix elements of spin operators between eigenstates (form factors). In terms
of form factors for the Fourier-transformed spin operators Sa

q = 1√
M

∑M
j=1 eiqjSa

j ,
the structure factor can be written as a sum

Saā(q, ω) = 2π
∑

α=GS

|〈GS|Sa
q |α〉|2δ(ω − ωα) (72)

over the whole set of intermediate eigenstates |α〉 (distinct from the ground state
|GS〉) in a fixed magnetization subspace. Each term in (72) can be obtained [38]
as a product of determinants of specific matrices, which are fully determined for
given bra and ket eigenstates by a knowledge of the corresponding sets of rapidi-
ties. The analytical summation of this series remains for the moment out of reach,
but numerically, for chains of length a few hundred sites, quite feasible. Moreover,
we know that the correlation functions of the finite chain approach their thermo-
dynamic limit with errors of order 1

M , hence if M = 200 for example the error is
usually quite acceptable to make comparison with experiments.

The strategy to follow is now clear. We compute the Szz and S−+ structure
factors by directly summing the terms on the right-hand side of equation (72)
over a judiciously chosen subset of eigenstates. The momentum delta functions
are broadened to width ε ∼ 1/M using δε(x) = 1√

πε
e−x2/ε2 in order to obtain

smooth curves. We scan through the eigenstates in the following order. First, we
observe that the form factors of the spin operators between the ground state and
an eigenstate {λ} are extremely rapidly decreasing functions of the number of
holes that need to be inserted in the configuration of the lowest-energy state (in
the same base) in order to obtain the configuration {I} corresponding to {λ}. We
therefore scan through all bases and configurations for increasing number of holes,
starting from one-hole states for Szz, and zero-hole states for S−+. Although the
number of possible configurations for fixed base and number of holes is a rapidly
increasing function of the number of holes, we find that the total contributions
for fixed bases also rapidly decrease for increasing hole numbers. We therefore
limit ourselves to states with up to three holes, corresponding to up to six-particle
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excitations. We can quantify the quality of the present computational method by
evaluating the summation rules for the longitudinal and transverse form factors.
Namely, by integrating over momentum and frequency, we should saturate the
values ∫ ∞

−∞

dω

2π

1
M

∑
q

Szz(q, ω) =
1
4
− 〈Sz〉2 =

1
4

[
1 − (1 − 2N

M
)2
]

, (73)

∫ ∞

−∞

dω

2π

1
M

∑
q

S−+(q, ω) =
1
2
− 〈Sz〉 =

N

M
. (74)

In Fig. 2, we plot the longitudinal structure factor as a function of momen-
tum and frequency for anisotropy ∆ = 0.75, for four values of the magnetization.
Fig. 3 contains the transverse structure factor for the same anisotropy and mag-
netizations.

For all intermediate states involving strings, we explicitly check that the
deviations from the string hypothesis are small. We find in general that states
involving strings of length higher than two are admissible solutions to the Bethe
equations for high enough magnetizations. At zero field, only two-string states have
exponentially small deviations δ, and all higher-string states must be discarded.

The relative contributions to the structure factors from different bases is very
much dependent on the system size, the anisotropy, and the magnetization. In
general, we find that two- and four-particle contributions are sufficient to saturate
well over 90% of the summation rules in all cases, for system sizes up to M = 200.
Interestingly, however, we find that string states also contribute noticeably in
many cases. For example, in Fig. 4, we plot the zero-field transverse structure
factor contributions coming from intermediate states with one string of length two
and up to three holes. Around six or seven percent of the weight is accounted for
by these states, and similar or somewhat lower figures are found in other cases.
Strings of length higher than two do not contribute significantly. For example, we
find only around 5.7 · 10−8% of the summation rule from states with one string
of length three, for the longitudinal structure factor for ∆ = 0.25 at M = N/4
with N = 128. For ∆ = 0.75, we find 6.3 · 10−7%. For the transverse correlators,
the figures are 2.3 · 10−12% and 3.1 · 10−12%. Even though these numbers would
increase if we could go to larger system sizes, we do not expect them to ever
become numerically significant.

The imperfect saturation of the summation rules that we obtain in general
can be ascribed either to higher states in the hierarchy which are not included
in our partial summations, or states that are in principle included, but which are
rejected in view of their deviations from the string hypothesis. As the proportion
of excluded string states can be rather large (ranging anywhere from zero to fifty
percent), we believe the latter explanation to be the correct one. In any case,
these results are precise enough to be compared successfully to different data from
neutron scattering experiments for several magnetic compounds. From our results
covering the whole Brillouin zone and frequency space, it is straightforward to
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Figure 2. Longitudinal structure factor as a function of momentum q
and frequency ω, for ∆ = 0.75, and N = M/8, M/4, 3M/8, and M/2.
Here, M = 200 and all contributions up to two holes are taken into
account. The summation rule is thereby saturated to 98.6%, 97.0%,
95.4% and 97.8%.

obtain space-time dependent correlation functions by inverse Fourier transform:

〈Sa
j+1(t)S

ā
1 (0)〉c =

1
M

∑
α=GS

|〈GS|Sa
qα
|α〉|2e−iqαj−iωαt. (75)

It is possible to compare these results to known exact results for equal-time corre-
lators at short distance, and to the large-distance asymptotic form obtained from
conformal field theory. This comparison can only be made at zero field, where both
sets of results are known exactly. The comparison turns out to be extremely good,
as can be expected from the high saturation of the summation rules [40].

4. Correlation functions: Infinite chain

In the thermodynamic limit, M → ∞ and at zero magnetic field, the model ex-
hibits three different regimes depending on the value of ∆ [26]. For ∆ < −1, the
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Figure 3. Transverse structure factor as a function of momentum q
and frequency ω, for ∆ = 0.75, and N = M/8, M/4, 3M/8, and M/2.
Here, M = 200 and all contributions up to two holes are taken into
account. The summation rule is thereby saturated to 99.3%, 97.8%,
96.5% and 98.8%.

model is ferromagnetic, for −1 < ∆ < 1, the model has a non-degenerated anti-
ferromagnetic ground state, and no gap in the spectrum (massless regime), while
for ∆ > 1, the ground state is twice degenerated with a gap in the spectrum (mas-
sive regime). In both cases, the ground state has spin zero. Hence the number of
parameters λ in the ground state vectors is equal to half the size M of the chain.
For M → ∞, these parameters will be distributed in some continuous interval
according to a density function ρ.

4.1. The thermodynamic limit

In this limit, the Bethe equations for the ground state, written in their logarithmic
form, become a linear integral equation for the density distribution of these λ’s,

ρtot(α) +
∫ Λ

−Λ

K(α − β)ρtot(β) dβ =
p′0tot

(α)
2π

, (76)
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Figure 4. The two-string contributions to the transverse structure fac-
tor at zero magnetic field, as a function of momentum q and frequency
ω, and for anisotropy 0.75. The density scale has been enhanced as
compared to that used in the previous figures. Here, M = 200 and con-
tributions up to three holes are taken into account. The summation rule
contributions from these states is 6.3%.

where the new real variables α are defined in terms of general spectral parameters
λ differently in the two domains. From now on, we only describe the massless
regime (see [73] for the other case) −1 < ∆ < 1 where α = λ. The density ρ
is defined as the limit of the quantity 1

M(λj+1−λj)
, and the functions K(λ) and

p′0tot
(λ) are the derivatives with respect to λ of the functions − θ(λ)

2π and p0tot(λ):

K(α) =
sin 2ζ

2π sinh(α + iζ) sinh(α − iζ)

p′0(α) =
sin ζ

sinh(α + i ζ
2 ) sinh(α − i ζ

2 )

for − 1 < ∆ < 1, with ζ = iη, (77)

with p′0tot
(α) =

1
M

M∑
i=1

p′0(α − βk − i
ζ

2
), (78)

where βk = ξk. The integration limit Λ is equal to +∞ for −1 < ∆ < 1. The
solution for the equation (76) in the homogeneous model where all parameters ξk

are equal to η/2, that is the density for the ground state of the Hamiltonian in the
thermodynamic limit, is given by the following function [19]:

ρ(α) =
1

2ζ cosh(πα
ζ )

.

For technical convenience, we will also use the function

ρtot(α) =
1
M

M∑
i=1

ρ(α − βk − i
ζ

2
).
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It will be also convenient to consider, without any loss of generality, that the
inhomogeneity parameters are contained in the region −ζ < Imβj < 0. Using
these results, for any C∞ function f (π-periodic in the domain ∆ > 1), sums over
all the values of f at the point αj , 1 ≤ j ≤ N , parameterizing the ground state,
can be replaced in the thermodynamic limit by an integral:

1
M

N∑
j=1

f(αj) =
∫ Λ

−Λ

f(α)ρtot(α) dα + O(M−1).

Thus, multiple sums obtained in correlation functions will become multiple inte-
grals. Similarly, it is possible to evaluate the behavior of the determinant formulas
for the scalar products and the norm of Bethe vectors (and in particular their
ratios) in the limit M → ∞.

4.2. Elementary blocks

From the representations as multiple sums of these elementary blocks in the finite
chain we can obtain their multiple integral representations in the thermodynamic
limit. Let us now consider separately the two regimes of the XXZ model. In the
massless regime η = −iζ is imaginary, the ground state parameters λ are real and
the limit of integration is infinity Λ = ∞. In this case we consider the inhomo-
geneity parameters ξj such that 0 > Im(ξj) > −ζ. For the correlation functions in
the thermodynamic limit one obtains the following result in this regime:

Proposition 4.1.

Fm({εj , ε
′
j}) =

∏
k<l

sinh π
ζ (ξk − ξl)

sinh(ξk − ξl)

s′∏
j=1

∞−iζ∫
−∞−iζ

dλj

2iζ

m∏
j=s′+1

∞∫
−∞

i
dλj

2ζ

×
m∏

a=1

m∏
k=1

1
sinh π

ζ (λa − ξk)

∏
j∈α−

⎛⎝j−1∏
k=1

sinh(µj − ξk − iζ)
m∏

k=j+1

sinh(µj − ξk)

⎞⎠
×

∏
j∈α+

⎛⎝j−1∏
k=1

sinh(µ′
j − ξk + iζ)

m∏
k=j+1

sinh(µ′
j − ξk)

⎞⎠∏
a>b

sinh π
ζ (λa − λb)

sinh(λa − λb − iζ)
,

where the parameters of integration are ordered in the following way: {λ1, . . . λm} =
{µ′

j′max
, . . . , µ′

j′min
, µjmin , . . . , µjmax}.

The homogeneous limit (ξj = −iζ/2, ∀j) of the correlation function
Fm({εj , ε

′
j}) can then be taken in an obvious way. We have obtained similar repre-

sentations for the massive regime, and also in the presence of a nonzero magnetic
field [73]. For zero magnetic field, these results agree exactly with the ones ob-
tained by Jimbo and Miwa in [69], using in particular q-KZ equations. It means
that for zero magnetic field, the elementary blocks of correlation functions indeed
satisfy q-KZ equations. Recently, more algebraic representations of solutions of
the q-KZ equations have been obtained that correspond to the above correlation
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functions [70, 71]. From the finite chain representation for the two-point function,
it is also possible to obtain multiple integral representations for that case as well,
in particular for their generating function [75, 76]. They correspond to different
huge re-summations and symmetrization of the corresponding elementary blocks,
as in the finite chain situation [75]. Moreover, the case of time dependent corre-
lation functions has also been obtained [63, 79]. Finally, let us note that at the
free fermion point, all the results presented here lead, in a very elementary way,
to already known results [63, 76, 80].

5. Exact and asymptotic results

5.1. Exact results at ∆ = 1/2
Up to now, two exact results have been obtained for the case of anisotropy ∆ = 1/2:
the exact value of the emptiness formation probability for arbitrary distance m
[77] and the two-point function of the third component of spin [85]. These two
results follow from the above multiple integral representations for which, due to the
determinant structure of the integrand, the corresponding multiple integrals can
be separated and hence explicitly computed for this special value of the anisotropy.

5.1.1. The emptiness formation probability. This correlation function τ(m) (the
probability to find in the ground state a ferromagnetic string of length m) is defined
as the expectation value

τ(m) = 〈ψg|
m∏

k=1

1 − σz
k

2
|ψg〉 (79)

where |ψg〉 denotes the normalized ground state. In the thermodynamic limit
(M → ∞), this quantity can be expressed as a multiple integral with m inte-
grations [37, 38, 68, 69, 73].

Proposition 5.1. For ∆ = cos ζ, 0 < ζ < π, τ(m) = limξ1,...ξm→− iζ
2

τ(m, {ξj}),
where

τ(m, {ξj}) =
1
m!

∞∫
−∞

Zm({λ}, {ξ})
m∏

a<b

sinh(ξa − ξb)
detm

(
i

2ζ sinh π
ζ (λj − ξk)

)
dmλ, (80)

Zm({λ}, {ξ}) =
m∏

a=1

m∏
b=1

sinh(λa−ξb) sinh(λa−ξb−iζ)
sinh(λa−λb−iζ)

×
detm

(
−i sin ζ

sinh(λj−ξk) sinh(λj−ξk−iζ)

)
m∏

a>b

sinh(ξa−ξb)
. (81)

The proof is given in [75]. Due to the determinant structure of the integrand,
the integrals can be separated and computed for the special case ∆ = 1

2 (ζ = π/3):
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Proposition 5.2. Let ξk = εk − iπ/6 and εab = εa − εb. Then

τ(m, {εj}) =
(−1)

m2−m
2

2m2

m∏
a>b

sinh 3εba

sinh εba

m∏
a,b=1
a=b

1
sinh εab

· detm

(
3 sinh εjk

2

sinh 3εjk

2

)
, (82)

τ(m) =
(

1
2

)m2 m−1∏
k=0

(3k + 1)!
(m + k)!

. (83)

Observe that the quantity Am =
∏m−1

k=0 (3k + 1)!/(m + k)! is the number of
alternating sign matrices of size m. This result was conjectured in [91].

5.1.2. The two-point function of σz . The two-point functions can be obtained, as
in the finite chain situation, from a generating function 〈Qκ(m)〉; in the thermo-
dynamic limit, we use the following multiple integral representation [79]:

〈Qκ(m)〉 =
m∑

n=0

κm−n

n!(m − n)!

∮
Γ{−iζ/2}

dmz

(2πi)m

∫
R−iζ

dnλ

∫
R

dm−nλ ·
m∏

j=1

ϕm(zj)
ϕm(λj)

×
n∏

j=1

{
t(zj , λj)

m∏
k=1

sinh(zj − λk − iζ)
sinh(zj − zk − iζ)

}
m∏

j=n+1

{
t(λj , zj)

m∏
k=1

sinh(λk − zj − iζ)
sinh(zk − zj − iζ)

}

×
m∏

j=1

m∏
k=1

sinh(λk − zj − iζ)
sinh(λk − λj − iζ)

· detm

(
i

2ζ sinh π
ζ (λ − z)

)
. (84)

Here,

∆ = cos ζ, t(z, λ) =
−i sin ζ

sinh(z − λ) sinh(z − λ − iζ)
, ϕ(z) =

sinh(z − i ζ
2 )

sinh(z + i ζ
2 )

, (85)

and the integrals over the variables zj are taken with respect to a closed contour
Γ which surrounds the point −iζ/2 and does not contain any other singularities
of the integrand. The equation (84) is valid for the homogeneous XXZ chain
with arbitrary −1 < ∆ < 1. If we consider the inhomogeneous XXZ model with
inhomogeneities ξ1, . . . , ξm, then one should replace in the representation (84) the
function ϕm in the following way:

ϕm(z) →
m∏

b=1

sinh(z − ξb − iζ)
sinh(z − ξb)

, ϕ−m(λ) →
m∏

b=1

sinh(λ − ξb)
sinh(λ − ξb − iζ)

. (86)

In order to come back to the homogeneous case, one should set ξk = −iζ/2,
k = 1, . . . , m in (86). In the inhomogeneous model, the integration contour Γ
surrounds the points ξ1, . . . , ξm, and the integrals over zj are therefore equal to
the sum of the residues of the integrand in these simple poles. It turns out that
again for the special case ∆ = 1

2 integrals can be separated and computed to
give [85]:
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Proposition 5.3.

〈Qκ(m)〉 =
3m

2m2

m∏
a>b

sinh 3(ξa − ξb)
sinh3(ξa − ξb)

m∑
n=0

κm−n
∑

{ξ}={ξγ+}∪{ξγ−}
|γ+|=n

det
m

Φ̂(n)

×
∏

a∈γ+

∏
b∈γ−

sinh(ξb − ξa − iπ
3 ) sinh(ξa − ξb)

sinh2(ξb − ξa + iπ
3 )

,

Φ̂(n)({ξγ+}, {ξγ−}) =

⎛⎜⎜⎝
Φ(ξj − ξk) Φ(ξj − ξk − iπ

3 )

Φ(ξj − ξk + iπ
3 ) Φ(ξj − ξk)

⎞⎟⎟⎠ , Φ(x) =
sinh x

2

sinh 3x
2

.

Here the sum is taken with respect to all partitions of the set {ξ} into two disjoint
subsets {ξγ+} ∪ {ξγ−} of cardinality n and m − n respectively. The first n lines
and columns of the matrix Φ̂(n) are associated with the parameters ξ ∈ {ξγ+}. The
remaining lines and columns are associated with ξ ∈ {ξγ−}.

Thus, we have obtained an explicit answer for the generating function
〈Qκ(m)〉 of the inhomogeneous XXZ model. It is also possible to check that the
above sum over partitions remains indeed finite in the homogeneous limit ξk → 0.
Finally, for small distances it is possible to compute the above expressions explic-
itly as polynomial functions of the variable κ of degree m. Interestingly, it turns
out that all coefficients are integer numbers divided by 2m2

[85], meaning a possi-
ble combinatorial interpretation of these numbers as for the emptiness formation
probability computed in the previous section.

5.2. Asymptotic results

An important issue is the analysis of the multiple integral representations of corre-
lation functions for large distances. There it means analyzing asymptotic behavior
of m-fold integrals for m large. An interesting example to study in this respect is
provided by the emptiness formation probability. This correlation function reduces
to a single elementary block. Moreover, we already described its exact value for
an anisotropy ∆ = 1

2 in the previous section. In fact, it is possible to obtain the
asymptotic behavior of τ(m) using the saddle-point method for arbitrary values
of the anisotropy ∆ > −1 . This was performed for the first time in [76] in the
case of free fermions (∆ = 0), but it can be applied to the general case as well.
We present here the results in the massless and massive regimes [63, 78].

To apply the saddle-point method to the emptiness formation probability, it
is convenient to express its integral representation in the following form:

τ(m) =
∫
D

dmλ Gm({λ}) em2Sm({λ}), (87)
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with

Sm({λ}) = − 1
m2

m∑
a>b

log[sinh(λa − λb + η) sinh(λa − λb − η)]

+
1
m

m∑
a=1

log[sinh(λa + η/2) sinh(λa − η/2)]

+
1

m2
lim

ξ1...ξm→η/2
log

[( −2iπ

sinh η

)m
(
det ρ(λj , ξk)

)2∏
a=b

sinh(ξa − ξb)

]
(88)

and

Gm({λ}) = lim
ξ1...ξm→η/2

detm

[
i

2π t(λj , ξk)
]

detm ρ(λj , ξk)
. (89)

In (87), the integration domain D is such that the variable of integration λ1, . . . , λm

are ordered in the interval C = [−Λh, Λh] (i.e., −Λh < λ1 < · · · < λm < Λh in the
massless case, and −iΛh < iλ1 < · · · < iλm < iΛh in the massive case).

The main problem in the saddle point analysis is that, a priori, we do not
know any asymptotic equivalent of the quantity Gm(λ) when m → ∞. Neverthe-
less, in the case of zero magnetic field, it is still possible to compute the asymptotic
behavior of (87) in the leading order, provided we make the following hypothe-
sis: we assume that the integrand of (87) admits a maximum for a certain value
λ′

1, . . . , λ
′
m of the integration variables λ1, . . . , λm, that, for large m, the distribu-

tion of these parameters λ′
1, . . . , λ

′
m can be described by a density function ρs(λ′)

of the form

ρs(λ′
j) = lim

m→∞
1

m(λ′
j+1 − λ′

j)
, (90)

on the symmetric interval [−Λ, Λ] and that, at the leading order in m, we can
replace the sums over the set of parameters {λ′} by integrals weighted with the
density ρs(λ′).

First, it is easy to determine the maximum of the function Sm({λ}). Indeed,
let {λ̃} be solution of the system

∂λj Sm({λ̃}) = 0, 1 ≤ j ≤ m. (91)

In the limit m → ∞, if we suppose again that the parameters λ̃1, . . . , λ̃m become
distributed according to a certain density ρ̃s(λ) and that sums over the λ̃j become
integrals over this density, the system (91) turns again into a single integral equa-
tion for ρ̃s, that can be solved explicitly in the case of zero magnetic field. It gives
the maximum of Sm({λ}) when m → ∞.2

The second step is to show that the factor Gm({λ}) gives always a negligible
contribution compared to Sm({λ̃}) at this order in m, at least for any distribution

2At this main order in m, there exists a unique solution of the integral equation for ρ̃s, and we
know it corresponds to a maximum because Sm({λ}) → −∞ on the boundary of D.
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of the variables λj satisfying the previous hypothesis of regularity. We obtain

lim
m→∞

1
m2

log Gm({λ}) = 0 (92)

for any distribution of {λ} with good properties of regularity, in particular for the
saddle point. This means that, at the main order in m, the factor Gm({λ}) does
not contribute to the value of the maximum of the integrand.

Finally we obtain the following result concerning the asymptotic behaviour
of τ(m) for m → ∞ (see [63, 78]):

S(0)(∆) = lim
m→∞

log τ(m)
m2

, (93)

= −ζ

2
−

∞∑
n=1

e−nζ

n

sinh(nζ)
cosh(2nζ)

, (∆ = cosh ζ > 1), (94)

= log
π

ζ
+

1
2

∫
R−i0

dω

ω

sinh ω
2 (π − ζ) cosh2 ωζ

2

sinh πω
2 sinh ωζ

2 coshωζ
, (−1 < ∆ = cos ζ < 1).

(95)

It coincides with the exact known results obtained in [76, 92] at the free fermion
point and in [77, 91] at ∆ = 1/2, and is in agreement with the expected (infinite)
value in the Ising limit. Similar techniques can be applied to the two-point function.
However, the result that has been extracted so far is only the absence of the
gaussian term. Unfortunately, we do not know up to now how to extract the
expected power law corrections to the gaussian behavior from this saddle point
analysis. More powerful methods will certainly be needed to go further.

5.3. Asymptotic behavior of the two-point functions

The long-distance asymptotic behavior of physical correlation functions, such as
the two-point functions, have attracted long-standing interest. In the case of the
XXZ model, some predictions were made already a long time ago. These predic-
tions are confirmed by the numerical summation over the exact form factors that
we performed for the XXZ model in the disordered regime [40].

In the massive regime (∆ > 1), spin-spin correlation functions are expected to
decay exponentially with the distance and the exact value of the correlation length
was proposed in [94]. For the XXZ chain in the massless regime (−1 < ∆ ≤ 1),
zero temperature is a critical point and the correlation length becomes infinite in
units of the lattice spacing. The leading long-distance effects can be predicted by
conformal field theory and the correlation functions are expected to decay as a
power of the distance. In particular, one expects that, at the leading order,

〈σx
j σx

j+n 〉 = (−1)n A

nπ−ζ
+ · · · , (96)

〈σz
j σz

j+n 〉 = − 1
π(π − ζ)

1
n2

+ (−1)n Az

n
π

π−ζ
+ · · · . (97)
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A conjecture for the non-universal correlation amplitudes A and Az can be found
in [95–97]. The exact value of the critical exponents in (96)–(97) was proposed for
the first time in [98].

However, at the moment there does not exist any direct derivation of these
predictions from the exact expressions of the correlation functions on the lattice.
In the last subsection we have shown how to determine, at least in the main order,
the asymptotic behavior of the emptiness formation probability using the saddle-
point method. We could expect to be able to apply the same technique to the new
multiple integral representation of the two-point function.

In particular, one can notice immediately that each term of the representation
of the generating functional 〈Qκ

1,m 〉 has a structure very similar to the one for the
emptiness formation probability. Indeed, it is possible to apply to the whole sum
a slight modification of the saddle-point technique presented here. It shows that,
as it should be, there is no contribution of order exp(αm2) when m → ∞.

However, to obtain the precise asymptotic behavior of the two-point func-
tion, one should be able to analyze sub-leading corrections to this saddle-point
method, which is technically quite difficult. It is not obvious in particular from
these expressions that, in the massless regime, the leading asymptotic behavior of
the two-point function is only of power-law order.

It is also quite interesting (and relevant experimentally) to consider other
lattice models such as spin chains with magnetic or non-magnetic impurities [99–
101] or models with electrons (carrying both spin and charge) like the Hubbard
model and to compute in particular their transport properties.

6. Conclusion and perspectives

In this article, we have reviewed recent results concerning the computation of
correlation functions in the XXZ chain by the methods of the inverse scattering
problem and the algebraic Bethe ansatz. In conclusion, we would like to discuss
some perspectives and problems to be solved.

One of the most interesting open problems is to prove the conformal field
theory predictions [93, 98] concerning the asymptotic behavior of the correlation
functions. This is certainly a very important issue not only for physical applications
but also from a theoretical viewpoint. Moreover, it also would open the route
towards the generalization of the methods presented here to quantum integrable
models of field theory. We have seen that in particular cases, the multiple integral
representations enable for a preliminary asymptotic analysis. Nevertheless, this
problem remains one of the main challenges in the topics that have been described
in this article.

A possible way to solve this problem would be to find the thermodynamic
limit of the master equations (like the one obtained for the two-point correlation
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functions). It is natural to expect that, in this limit, one should obtain a represen-
tation for these correlation functions in terms of a functional integral, which could
eventually be estimated for large time and distance.

Note that the master equation shows a direct analytic relation between the
multiple integral representations and the form factor expansions for the correlation
functions. It seems likely that similar representations exist for other models solv-
able by algebraic Bethe ansatz. It would be in particular very interesting to obtain
an analogue of this master equation in the case of the field theory models, which
could provide an analytic link between short distance and long distance expan-
sions of their correlation functions. Other models of interest include models with
magnetic [99] or non-magnetic impurities, meaning different integrable boundary
conditions [100,101], and also the Hubbard model the transport properties of which
have high experimental interest, see, e.g., [102] and references therein.
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Non-commutative Geometry and
the Spectral Model of Space-time

Alain Connes

Abstract. This is a report on our joint work with A. Chamseddine and M.
Marcolli. This essay gives a short introduction to a potential application in
physics of a new type of geometry based on spectral considerations which is
convenient when dealing with non-commutative spaces, i.e., spaces in which
the simplifying rule of commutativity is no longer applied to the coordinates.
Starting from the phenomenological Lagrangian of gravity coupled with mat-
ter one infers, using the spectral action principle, that space-time admits a
fine structure which is a subtle mixture of the usual 4-dimensional continuum
with a finite discrete structure F . Under the (unrealistic) hypothesis that this
structure remains valid (i.e., one does not have any “hyperfine” modifica-
tion) until the unification scale, one obtains a number of predictions whose
approximate validity is a basic test of the approach.

1. Background

Our knowledge of space-time can be summarized by the transition from the flat
Minkowski metric

ds2 = − dt2 + dx2 + dy2 + dz2 (1)

to the Lorentzian metric
ds2 = gµνdxµ dxν (2)

of curved space-time with gravitational potential gµν . The basic principle is the
Einstein-Hilbert action principle

SE [ gµν ] =
1
G

∫
M

r
√

g d4x (3)

where r is the scalar curvature of the space-time manifold M . This action principle
only accounts for the gravitational forces and a full account of the forces observed
so far requires the addition of new fields, and of corresponding new terms SSM in
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the action, which constitute the Standard Model so that the total action is of the
form

S = SE + SSM . (4)

Passing from classical to quantum physics is achieved by the recipe of Dirac and
Feynman so that the probability amplitude of a classical configuration A is

ei
S(A)

� . (5)

When combined with perturbative renormalization this recipe agrees remarkably
well with experiment, but meets (at least) two basic problems:

• One cannot maintain both unitarity and renormalizability at arbitrary scales
for the gravitational potential gµν .

• The action SSM is complicated beyond reason and thus only appears as
“phenomenological”.
To appreciate the second statement we give the explicit form of SSM =∫

M
LSM

√
g d4x below (cf. [26]):

LSM = − 1
2
∂νga

µ∂νga
µ − gsf

abc∂µga
νgb

µgc
ν − 1

4
g2

sfabcfadegb
µgc

νgd
µge

ν − ∂νW +
µ ∂νW−

µ −
M2W +

µ W−
µ − 1

2
∂νZ0

µ∂νZ0
µ − 1

2c2w
M2Z0

µZ0
µ − 1

2
∂µAν∂µAν − igcw(∂νZ0

µ(W +
µ W−

ν −
W +

ν W−
µ ) − Z0

ν (W +
µ ∂νW−

µ − W−
µ ∂νW +

µ ) + Z0
µ(W +

ν ∂νW−
µ − W−

ν ∂νW +
µ )) −

igsw(∂νAµ(W +
µ W−

ν − W +
ν W−

µ ) − Aν(W +
µ ∂νW−

µ − W−
µ ∂νW +

µ ) + Aµ(W +
ν ∂νW−

µ −
W−

ν ∂νW +
µ )) − 1

2
g2W +

µ W−
µ W +

ν W−
ν + 1

2
g2W +

µ W−
ν W +

µ W−
ν + g2c2

w(Z0
µW +

µ Z0
νW−

ν −
Z0

µZ0
µW +

ν W−
ν ) + g2s2

w(AµW +
µ AνW−

ν − AµAµW +
ν W−

ν ) + g2swcw(AµZ0
ν (W +

µ W−
ν −

W +
ν W−

µ ) − 2AµZ0
µW +

ν W−
ν ) − 1

2
∂µH∂µH − 1

2
m2

hH2 − ∂µφ+∂µφ− − M2φ+φ− −
1
2
∂µφ0∂µφ0 − 1

2c2w
M2φ0φ0 − βh

(
2M2

g2 + 2M
g

H + 1
2
(H2 + φ0φ0 + 2φ+φ−)

)
+ 2M4

g2 αh −
gαhM

(
H3 + Hφ0φ0 + 2Hφ+φ−)−

1
8
g2αh

(
H4 + (φ0)4 + 4(φ+φ−)2 + 4(φ0)2φ+φ− + 4H2φ+φ− + 2(φ0)2H2

) −
gMW +

µ W−
µ H − 1

2
g M

c2w
Z0

µZ0
µH −

1
2
ig
(
W +

µ (φ0∂µφ− − φ−∂µφ0) − W−
µ (φ0∂µφ+ − φ+∂µφ0)

)
+

1
2
g
(
W +

µ (H∂µφ− − φ−∂µH) + W−
µ (H∂µφ+ − φ+∂µH)

)
+ 1

2
g 1

cw
Z0

µ(H∂µφ0 − φ0∂µH) −
ig

s2
w

cw
MZ0

µ(W +
µ φ− − W−

µ φ+) + igswMAµ(W +
µ φ− − W−

µ φ+) − ig
1−2c2w
2cw

Z0
µ(φ+∂µφ− −

φ−∂µφ+) + igswAµ(φ+∂µφ− − φ−∂µφ+) − 1
4
g2W +

µ W−
µ

(
H2 + (φ0)2 + 2φ+φ−)−

1
8
g2 1

c2w
Z0

µZ0
µ

(
H2 + (φ0)2 + 2(2s2

w − 1)2φ+φ−)− 1
2
g2 s2

w
cw

Z0
µφ0(W +

µ φ− + W−
µ φ+) −

1
2
ig2 s2

w
cw

Z0
µH(W +

µ φ− − W−
µ φ+) + 1

2
g2swAµφ0(W +

µ φ− + W−
µ φ+) + 1

2
ig2swAµH(W +

µ φ− −
W−

µ φ+) − g2 sw
cw

(2c2
w − 1)Z0

µAµφ+φ− − g2s2
wAµAµφ+φ− + 1

2
igsλ

a
ij(q̄

σ
i γµqσ

j )ga
µ − ēλ(γ∂ +

mλ
e )eλ − ν̄λγ∂νλ − ūλ

j (γ∂ + mλ
u)uλ

j − d̄λ
j (γ∂ + mλ

d)dλ
j +

igswAµ

(−(ēλγµeλ) + 2
3
(ūλ

j γµuλ
j ) − 1

3
(d̄λ

j γµdλ
j )
)

+ ig
4cw

Z0
µ{(ν̄λγµ(1 + γ5)νλ) +

(ēλγµ(4s2
w − 1 − γ5)eλ) + (d̄λ

j γµ( 4
3
s2

w − 1 − γ5)dλ
j ) + (ūλ

j γµ(1 − 8
3
s2

w + γ5)uλ
j )} +

ig

2
√

2
W +

µ

(
(ν̄λγµ(1 + γ5)eλ) + (ūλ

j γµ(1 + γ5)Cλκdκ
j )
)

+

ig

2
√

2
W−

µ

(
(ēλγµ(1 + γ5)νλ) + (d̄κ

j C†
κλγµ(1 + γ5)uλ

j )
)

+

ig

2
√

2

mλ
e

M

(−φ+(ν̄λ(1 − γ5)eλ) + φ−(ēλ(1 + γ5)νλ)
)− g

2

mλ
e

M

(
H(ēλeλ) + iφ0(ēλγ5eλ)

)
+

ig

2M
√

2
φ+
(
−mκ

d(ūλ
j Cλκ(1 − γ5)dκ

j ) + mλ
u(ūλ

j Cλκ(1 + γ5)dκ
j )
)

+
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ig

2M
√

2
φ−
(
mλ

d(d̄λ
j C†

λκ(1 + γ5)uκ
j ) − mκ

u(d̄λ
j C†

λκ(1 − γ5)uκ
j )
)
− g

2

mλ
u

M
H(ūλ

j uλ
j ) −

g
2

mλ
d

M
H(d̄λ

j dλ
j ) + ig

2

mλ
u

M
φ0(ūλ

j γ5uλ
j ) − ig

2

mλ
d

M
φ0(d̄λ

j γ5dλ
j ) + Ḡa∂2Ga + gsf

abc∂µḠaGbgc
µ +

X̄+(∂2 − M2)X+ + X̄−(∂2 − M2)X− + X̄0(∂2 − M2

c2w
)X0 + Ȳ ∂2Y +

igcwW +
µ (∂µX̄0X− − ∂µX̄+X0) + igswW +

µ (∂µȲ X− − ∂µX̄+Y ) + igcwW−
µ (∂µX̄−X0 −

∂µX̄0X+) + igswW−
µ (∂µX̄−Y − ∂µȲ X+) + igcwZ0

µ(∂µX̄+X+ − ∂µX̄−X−) +

igswAµ(∂µX̄+X+ − ∂µX̄−X−) − 1
2
gM

(
X̄+X+H + X̄−X−H + 1

c2w
X̄0X0H

)
+

1−2c2w
2cw

igM
(
X̄+X0φ+ − X̄−X0φ−)+ 1

2cw
igM

(
X̄0X−φ+ − X̄0X+φ−)+

igMsw

(
X̄0X−φ+ − X̄0X+φ−) + 1

2
igM

(
X̄+X+φ0 − X̄−X−φ0

)
.

This action functional was expressed in flat space-time and needs of course
to be minimally coupled with gravity. One also needs to take into account the
experimental discovery of neutrino oscillations and add the corresponding new
terms.

2. Why non-commutative spaces

The natural group of symmetries of the total action (4) is the semi-direct product

G = Map(M, G) � Diff(M) (6)

of the group Map(M, G) of gauge transformations of second kind by the group
Diff(M) of diffeomorphisms. Here G is the gauge group, inferred from experiment

G = U(1) × SU(2) × SU(3) . (7)

Since the symmetry group of the Einstein-Hilbert action of pure gravity is simply
Diff(M) it is natural to ask wether there is a space X whose group of diffeomor-
phisms is directly of the form (6). The answer is:

No: for ordinary spaces.
Yes: for non-commutative spaces.
A “non-commutative space” is one in which the usual coordinates xµ no

longer satisfy the simplifying commutative rule saying that the order of the terms
is irrelevant in a product. They are familiar to physicists since Heisenberg’s discov-
ery of the nontrivial commutation rules for the natural coordinates in the phase
space of a microscopic mechanical system. In first approximation the group of dif-
feomorphisms of such a space is the group of automorphisms Aut(A) of the algebra
A of coordinates. The new feature that arises in the non-commutative case is that
there are “easy” automorphisms, namely those of the form

f ∈ A �→ u f u−1

where u ∈ A is an invertible element. Such automorphisms are called “inner” or
“internal” and form a normal subgroup Inn(A) of the group Aut(A) so that one
has the general exact sequence

1 → Inn(A) → Aut(A) → Out(A) → 1 . (8)
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This exact sequence remains valid when taking into account the compatibility with
the adjoint f �→ f∗ (one restricts to �-automorphisms while u ∈ A is now a unitary
element uu∗ = u∗u = 1).

For an ordinary manifold X results from topology (cf. [22]) preclude the ex-
istence of a space whose group of diffeomorphisms is the group G of (6). To under-
stand how passing to non-commutative spaces adds the missing part Map(M, G),
let us consider the simplest example where the algebra

A = C∞(M, Mn(C)) = C∞(M) ⊗ Mn(C)

consists of smooth maps from a manifold M to the algebra Mn(C) of n×n matrices.
One then shows that the group Inn(A) in that case is locally isomorphic to the
group Map(M, G) of smooth maps from M to the small gauge group G = PSU(n)
(quotient of SU(n) by its center) and that the general exact sequence (8) becomes
identical to the exact sequence governing the structure of the group G, namely

1 → Map(M, G) → G → Diff(M) → 1. (9)

Moreover the physics terminology of “internal symmetries” matches the mathe-
matical one perfectly. We refer to Proposition 3.4 of [7] for the more involved case
of the group (6).

3. What is a non-commutative geometry?

A refined notion of geometry (suitable in particular to deal with spaces whose
coordinates do not commute) is obtained by focussing not on the traditional gµν

but on the Dirac operator D. In extracting the square root of the Laplacian using
a spin structure the Dirac operator enables us to talk about the line element
ds = D−1 instead of its square (2). The new paradigm for a geometric space is
of spectral nature. A spectral geometry (A,H, D) is given by an involutive unital
algebra A represented as operators in a Hilbert space H and a self-adjoint operator
D with compact resolvent such that all commutators [D, a] are bounded for a ∈ A.
A spectral geometry is even if the Hilbert space H is endowed with a Z/2- grading
γ which commutes with any a ∈ A and anticommutes with D.

This notion extends the Riemannian paradigm as follows. A spin Riemannian
manifold M gives rise in a canonical manner to a spectral geometry. The Hilbert
space H is the Hilbert space L2(M, S) of square integrable spinors on M and
the algebra A = C∞(M) of smooth functions on M acts in H by multiplication
operators:

(f ξ)(x) = f(x) ξ(x) , ∀x ∈ M . (10)

The operator D is the Dirac operator,

∂/M =
√
−1 γµ ∇µ. (11)

The grading γ is given by the chirality operator which we denote by γ5 in the
four-dimensional case.



Non-commutative Geometry and the Spectral Model of Space-time 207

As it turns out this way of defining a geometry by specifying the Dirac oper-
ator is meaningful both in mathematical terms (where the Dirac operator specifies
the fundamental class in KO-homology) and in physics terms (where, modulo a
chiral gauge transformation, the Dirac operator is the inverse of the Euclidean
propagator of fermions). From both sides (KO-homology and physics) a further
“decoration” is needed in the form of a real structure. A real structure of KO-
dimension n ∈ Z/8 on a spectral geometry (A,H, D) is an antilinear isometry
J : H → H, with the property that

J2 = ε, JD = ε′DJ, and Jγ = ε′′γJ . (12)

The numbers ε, ε′, ε′′ ∈ {−1, 1} are a function of n mod 8 given by

n 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

From the mathematical side the role of J is twofold, it embodies the crucial nuance
between complex K-homology and “real” KO-homology which plays a key role in
the conceptual understanding of homotopy types of manifolds. It also embodies the
discovery by Tomita of the general structure of representations of non-commutative
algebras. This corresponds to the commutation relation

[a, b0] = 0 ∀ a, b ∈ A, (13)

where
b0 = Jb∗J−1 ∀b ∈ A. (14)

From the physics side the operator J corresponds to the charge conjugation op-
erator. The change from the Riemannian paradigm to the spectral one already
occurred in geodesy. The notion of geometry is intimately tied up with the mea-
surement of length and it was never completely obvious how to reach some agree-
ment on a physical unit of length which would unify the numerous existing choices.
Since the French revolution the concrete “mètre-étalon” (realized in the form of
a platinum bar which is approximately 10−7 times the quarter of the meridian of
the earth) was taken as unit of length in the metric system. Already in 1927, at
the seventh conference on the metric system, in order to take into account the
inevitable natural variations of the concrete “mètre-étalon”, the idea emerged to
compare it with a reference wave length (the red line of Cadmium). Around 1960
the reference to the “mètre-étalon” was finally abandoned and a new definition
of the “mètre” was adopted as 1650763, 73 times the wave length of the radiation
corresponding to the transition between the levels 2p10 and 5d5 of the Krypton
86Kr. In 1967 the second was defined as the duration of 9192631770 periods of
the radiation corresponding to the transition between the two hyperfine levels of
Caesium-133. Finally in 1983 the “mètre” was defined as the distance travelled by
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light in 1/299792458 second. In fact the speed of light is just a conversion factor
and to define the “mètre” one gives it the specific value of

c = 299792458 m/s.

In other words the “mètre” is defined as a certain fraction 9192631770
299792458 ∼ 30.6633 . . .

of the wave length of the radiation coming from the transition between the above
hyperfine levels of the Caesium atom. The advantages of the new standard of length
are many. By not being tied up with any specific location it is in fact available any-
where where Caesium is (the choice of Caesium as opposed to Helium or Hydrogen
which are much more common in the universe is of course still debatable [2]).

In non-commutative geometry the Riemannian formula for the geodesic dis-
tance

d(x, y) = inf
∫

γ

√
gµνdxµ dxν (15)

where the infimum is taken over all paths from x to y, is replaced by

d(x, y) = sup{|f(x) − f(y)| : f ∈ A , ‖[D, f ]‖ ≤ 1} , (16)

which gives the same answer in the Riemannian case but continues to make sense
for spectral geometries where the algebra A is no longer commutative (x and y
are then states on A).

The traditional notions of geometry all have natural analogues in the spectral
framework. We refer to [9] for more details. The dimension of a non-commutative
geometry is not a number but a spectrum, the dimension spectrum (cf. [14]) which
is the subset Π of the complex plane C at which the spectral functions have singu-
larities. Under the hypothesis that the dimension spectrum is simple, i.e., that the
spectral functions have at most simple poles, the residue at the pole defines a far
reaching extension (cf. [14]) of the fundamental integral in non-commutative geom-
etry given by the Dixmier trace (cf. [9]). This extends the Wodzicki residue from
pseudodifferential operators on a manifold to the general framework of spectral
triples, and gives meaning to

∫
−T in that context. It is simply given by∫

−T = Ress=0 Tr (T |D|−s) . (17)

4. Inner fluctuations of a spectral geometry

The non-commutative world is rich in phenomena which have no commutative
counterpart. We already saw above the role of inner automorphisms (as inter-
nal symmetries) which decompose the full automorphism group into equivalence
classes modulo inner. In a similar manner the non-commutative metrics admit
a natural foliation, the metrics on the same leaf are obtained as inner fluctua-
tions. The corresponding transformation on the operator D is simply the addition
D �→ DA = D + A + ε′ J AJ−1 where A = A∗ is an arbitrary selfadjoint element
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of Ω1
D with

Ω1
D = {

∑
j

aj [D, bj ] | aj , bj ∈ A} , (18)

which is by construction a bimodule over A.
The inner fluctuations in non-commutative geometry are generated by the

existence of Morita equivalences (cf. [24]). Given an algebra A, a Morita equivalent
algebra B is the algebra of endomorphisms of a finite projective (right) module E
over A,

B = EndA(E). (19)
Transferring the metric from A to B requires the choice of a hermitian connection
∇ on E . A connection is a linear map ∇ : E → E ⊗A Ω1

D satisfying the Leibniz rule

∇(ξa) = (∇ξ)a + ξ ⊗ da , ∀ ξ ∈ E , a ∈ A,

with da = [D, a]. Taking the obvious Morita equivalence between A and itself
generates the inner fluctuations D �→ D + A + ε′ J AJ−1.

By (14) one gets a right A-module structure on H,

ξ b = b0 ξ , ∀ ξ ∈ H , b ∈ A . (20)

The unitary group of the algebra A then acts by the “adjoint representation” in
H in the form

ξ ∈ H → Ad(u) ξ = u ξ u∗ , ∀ ξ ∈ H , u ∈ A , u u∗ = u∗ u = 1 . (21)

The order one condition

[[D, a], b0] = 0 ∀ a, b ∈ A (22)

ensures that for any A ∈ Ω1
D with A = A∗ and any unitary u ∈ A, one has

Ad(u)(D + A + ε′ J AJ−1)Ad(u∗) = D + γu(A) + ε′ J γu(A)J−1,

where γu(A) = u [D, u∗] + u Au∗.
The above parallel between inner automorphisms and internal symmetries

extends to a parallel between the inner fluctuations and the gauge potentials.

5. The spectral action principle

We shall recall in this section our joint work with Ali Chamseddine on the spectral
action principle [3–6]. The starting point is the discussion of observables in gravity.
By the principle of gauge invariance the only quantities which have a chance to
be observable in gravity are those which are invariant under the gauge group, i.e.,
the group of diffeomorphisms of the space-time M . Assuming first that we deal
with a classical manifold (and Wick rotate to Euclidean signature for simplicity),
one can form a number of such invariants (under suitable convergence conditions)
as the integrals of the form ∫

M

F (K)
√

g d4x (23)
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where F (K) is a scalar invariant function (the scalar curvature is one example
of such a function but there are many others) of the Riemann curvature K. We
refer to [16] for other more complicated examples of such invariants, where those
of the form (23) appear as the single integral observables, i.e., those which add
up when evaluated on the direct sum of geometric spaces. Now while in theory a
quantity like (23) is observable it is almost impossible to evaluate since it involves
the knowledge of the entire space-time and is in that way highly non localized. On
the other hand, spectral data are available in localized form anywhere, and are
(asymptotically) of the form (23) when they are of the additive form

Trace (f(D/Λ)), (24)

where D is the Dirac operator and f is a positive even function of the real variable
while the parameter Λ fixes the mass scale. The spectral action principle asserts
that the fundamental action functional S that allows to compare different geomet-
ric spaces at the classical level and is used in the functional integration to go to
the quantum level, is itself of the form (24). The detailed form of the function f
is largely irrelevant since the spectral action (24) can be expanded in decreasing
powers of the scale Λ in the form

Trace (f(D/Λ)) ∼
∑

k∈Π+

fk Λk

∫
− |D|−k + f(0) ζD(0) + o(1), (25)

where Π+ is the positive part of the dimension spectrum, the integral
∫
− is defined

in (17), and the function f only appears through the scalars

fk =
∫ ∞

0

f(v) vk−1 dv. (26)

The term independent of the parameter Λ is the value at s = 0 (regularity at s = 0
is assumed) of the zeta function,

ζD(s) = Tr (|D|−s) . (27)

The main result of our joint work with A. Chamseddine [3], [4] is that, when
applied to the inner fluctuations of the product geometry M×F the spectral action
gives the standard model coupled with gravity. Here M is a Riemannian compact
spin 4-manifold, the standard model coupled with gravity is in the Euclidean form,
and the geometry of the finite space F is encoded (as in the general framework of
NCG) by a spectral geometry (AF ,HF , DF ).

For M the spectral geometry is given by (10), (11). For the non-commutative
geometry F used in [4] to obtain the standard model coupled to gravity, all the
ingredients are finite-dimensional. The algebra AF = C ⊕ H ⊕ M3(C) (i.e., the
direct sum of the algebras C of complex numbers, H of quaternions, and M3(C)
of 3 × 3 matrices) encodes the gauge group. The Hilbert space HF encodes the
elementary quarks and leptons. The operator DF encodes those free parameters
of the standard model related to the Yukawa couplings.
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The above work [4] had several shortcomings:

1. The finite geometry F is put in “by hand” with no conceptual understanding
of the representation of AF in HF .

2. There is a fermion doubling problem (cf. [21]) in the Fermionic part of the
action.

3. It does not incorporate the neutrino mixing and see-saw mechanism for neu-
trino masses.

We showed in [12] and [7] how to solve these three problems (the first only partly
since the number of generations is put by hand) simply by keeping the distinction
between the following two notions of dimension of a non-commutative space,

• the metric dimension,
• the KO-dimension.

The metric dimension manifests itself by the growth of the spectrum of the Dirac
operator and gives an upper bound to the dimension spectrum. In a (compact)
space of dimension k the line element ds = D−1 is an infinitesimal of order 1/k
which means that the nth characteristic value of ds is of the order of n−1/k (in
the non-compact case one replaces ds by a ds for a ∈ A). As far as space-time
goes it appears that the situation of interest will be the four-dimensional one. In
particular the metric dimension of the finite geometry F will be zero.

The KO-dimension is only well defined modulo 8 and it takes into account
both the Z/2-grading γ of H as well as the real structure J according to (12). The
real surprise is that in order for things to work the only needed change (besides
the easy addition of a right-handed neutrino) is to change the Z/2 grading of the
finite geometry F to its opposite in the “antiparticle” sector. It is only thanks to
this that the Fermion doubling problem pointed out in [21] can be successfully
handled. Moreover it will automatically generate the full standard model, i.e., the
model with neutrino mixing and the see-saw mechanism as follows from the full
classification of Dirac operators: Theorem 6.7.

When one looks at the above table giving the KO-dimension of the finite
space F one then finds that its KO-dimension is now equal to 6 modulo 8 (!). As
a result we see that the KO-dimension of the product space M × F is in fact
equal to 10 ∼ 2 modulo 8. Of course the above 10 is very reminiscent of string
theory, in which the finite space F might be a good candidate for an “effective”
compactification at least for low energies1. But 10 is also 2 modulo 8 which might
be related to the observations of [20] about gravity.

It is also remarkable that the non-commutative spheres arising from quantum
groups, such as the Podleś spheres already exhibit the situation where the metric
dimension (0 in that case) is distinct from the KO-dimension (2 in that case)
as pointed out in the work of L. Da̧browski and A. Sitarz on Podleś quantum
spheres [15].

1Note however that we are dealing with the standard model, not its supersymmetrized version.
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6. The finite non-commutative geometry F

In this section we shall first describe in a conceptual manner the representation of
AF in HF and classify the Dirac operators DF . The only small nuance with [11]
is that we incorporate a right-handed neutrino νR and change the Z/2 grading
in the antiparticle sector to its opposite. This, innocent as it looks, allows for a
better conceptual understanding of the representation of AF in HF and also will
completely alter the classification of Dirac operators (Theorem 6.7).

6.1. The representation of AF in HF

We start from the involutive algebra (with H the quaternions with involution
q → q̄)

ALR = C ⊕ HL ⊕ HR ⊕ M3(C). (28)
We construct a natural representation (ALR,HF , JF , γF ) fulfilling (12) and (13)
in dimension 6 modulo 8. The commutation relation (13) shows that there is an
underlying structure of ALR-bimodule on HF and we shall use that structure as
a guide. One uses the bimodule structure to define Ad(u) by (21).

Definition 6.1. Let M be an ALR-bimodule. Then M is odd iff the adjoint action
(21) of s = (1,−1,−1, 1) fulfills Ad(s) = −1.

Such a bimodule is a representation of the reduction of ALR ⊗R A0
LR by the

projection 1
2 (1 − s ⊗ s0). This subalgebra is an algebra over C and we restrict to

complex representations. One defines the contragredient bimodule of a bimodule
M as the complex conjugate space

M0 = {ξ̄ ; ξ ∈ M} , a ξ̄ b = b∗ξ a∗ , ∀ a, b ∈ ALR. (29)

We can now give the following characterization of the ALR-bimodule MF

and the real structure JF for one generation.

Proposition 6.2.

• The ALR-bimodule MF is the direct sum of all inequivalent irreducible odd
ALR-bimodules.

• The dimension of MF is 32.
• The real structure JF is given by the isomorphism with the contragredient

bimodule.

We define the Z/2-grading γF by

γF = c − JF c JF , c = (0,−1, 1, 0) ∈ ALR. (30)

One then checks that the following holds:

J2
F = 1 , JF γF = − γF JF , (31)

which together with the commutation of JF with the Dirac operators, is charac-
teristic of KO-dimension equal to 6 modulo 8.

The equality ι(λ, q, m) = (λ, q, λ, m) defines a homomorphism ι of involutive
algebras from AF to ALR so that we view AF as a subalgebra of ALR.
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Definition 6.3. The real representation (AF ,HF , JF , γF ) is the restriction to AF ⊂
ALR of the direct sum MF ⊗ C3 of three copies of MF .

It has dimension 32 × 3 = 96, needless to say this 3 is the number of gener-
ations and it is put in by hand here. A conceptual explanation for the restriction
to AF ⊂ ALR is given in [7].

6.2. The unimodular unitary group SU(AF )
Using the action of AF in HF one defines the unimodular subgroup SU(AF ) of
the unitary group U(AF ) = {u ∈ AF , uu∗ = u∗u = 1} as follows.

Definition 6.4. We let SU(AF ) be the subgroup of U(AF ) defined by

SU(AF ) = {u ∈ U(AF ) : Det(u) = 1}
where Det(u) is the determinant of the action of u in HF .

One obtains both the standard model gauge group and its action on fermions
from the adjoint action of SU(AF ) in the following way:

Proposition 6.5.

1. The group SU(AF ) is, up to an Abelian finite group,

SU(AF ) ∼ U(1) × SU(2) × SU(3).

2. The adjoint action u → Ad(u) (cf. (21)) of SU(AF ) in HF coincides with
the standard model action on elementary quarks and leptons.

One shows [7] that the sum of the irreducible odd bimodules is of the form

MF = (πL ⊕ πR ⊕ π3
R ⊕ π3

L) ⊕ (πL ⊕ πR ⊕ π3
R ⊕ π3

L)0. (32)

This ALR-bimodule MF is of dimension 2 · (2 + 2 + 2 × 3 + 2 × 3) = 32 and the
adjoint action gives the gauge action of the standard model for one generation,
with the following labels for the basis elements of MF ,(

νL νR

eL eR

)
for the term πL ⊕ πR, (

uj
L uj

R

dj
L dj

R

)
for the term π3

R ⊕ π3
L (with color indices j) and the transformation q → q̄ to pass

to the contragredient bimodules. With these labels one checks that the adjoint
action of the U(1) factor is given by multiplication of the basis vectors f by the
following powers of λ ∈ U(1):

e ν u d

fL −1 −1 1
3

1
3

fR −2 0 4
3 − 2

3
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6.3. The classification of Dirac operators

To be precise we adopt the following.

Definition 6.6. A Dirac operator is a self-adjoint operator D in HF commuting
with JF , CF = {(λ, λ, 0)} ∈ AF , anticommuting with γF and fulfilling the order
one condition [[D, a], b0] = 0 for any a, b ∈ AF .

The physics meaning of the condition of commutation with CF is to ensure
that one gauge vector boson (the photon) remains massless.

In order to state the classification of Dirac operators we introduce the follow-
ing notation, let Me, Mν , Md, Mu and MR be three by three matrices, we then
let D(M) be the operator in HF given by

D(M) =
[
S T ∗

T S̄

]
(33)

where

S = S ⊕ (Sq ⊗ 13) (34)

and in the basis (νR, eR, νL, eL) and (uR, dR, uL, dL),

S =

⎡⎢⎢⎣
0 0 M∗

ν 0
0 0 0 M∗

e

Mν 0 0 0
0 Me 0 0

⎤⎥⎥⎦ Sq =

⎡⎢⎢⎣
0 0 M∗

u 0
0 0 0 M∗

d

Mu 0 0 0
0 Md 0 0

⎤⎥⎥⎦ (35)

while the operator T is 0 except on the subspace HνR ⊂ HF with basis the νR

which it maps, using the matrix MR, to the subspace Hν̄R ⊂ HF with basis the ν̄R.

Theorem 6.7.

1. Let D be a Dirac operator. There exist 3× 3 matrices Me, Mν , Md, Mu and
MR, with MR symmetric, such that D = D(M).

2. All operators D(M) (with MR symmetric) are Dirac operators.
3. The operators D(M) and D(M ′) are conjugate by a unitary operator com-

muting with AF , γF and JF iff there exists unitary matrices Vj and Wj such
that

M ′
e = V1 Me V ∗

3 , M ′
ν = V2 Mν V ∗

3 , M ′
d = W1 Md W ∗

3 ,

M ′
u = W2 Mu W ∗

3 , M ′
R = V2 MR V̄ ∗

2 .

In particular Theorem 6.7 shows that the Dirac operators give all the required
features, such as

• mixing matrices for quarks and leptons,
• unbroken color,
• see-saw mechanism for right handed neutrinos.
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7. The spectral action for M × F and the standard model

We now consider a four-dimensional smooth compact Riemannian manifold M
with a fixed spin structure and recall that it is fully encoded by its Dirac spectral
geometry (A1,H1, D1) = (C∞(M), L2(M, S), ∂/M ). We then consider its product
with the above finite geometry (A2,H2, D2) = (AF ,HF , DF ). With (Aj ,Hj , Dj)
of KO-dimensions 4 for j = 1 and 6 for j = 2, the product geometry is given by
the rules

A = A1 ⊗A2 , H = H1 ⊗H2 , D = D1 ⊗ 1 + γ1 ⊗D2 , γ = γ1 ⊗ γ2 , J = J1 ⊗ J2 .

Note that it matters that J1 commutes with γ1 to check that J commutes with D.
The KO-dimension of the finite space F is 6 ∈ Z/8 and thus the KO-dimension
of the product geometry M × F is now 2 ∈ Z/8. In other words according to (12)
the commutation rules are

J2 = −1, JD = DJ, and Jγ = −γJ . (36)

Let us now explain how these rules allow to define a natural antisymmetric bilinear
form on the even part H+ = {ξ ∈ H , γ ξ = ξ} of H.

Proposition 7.1. On a real spectral geometry of KO-dimension 2 ∈ Z/8, the follow-
ing equality defines an antisymmetric bilinear form on H+ = {ξ ∈ H , γ ξ = ξ},

AD(ξ′, ξ) = 〈J ξ′, D ξ〉 , ∀ ξ, ξ′ ∈ H+. (37)

The above trilinear pairing between D, ξ and ξ′ is gauge invariant under the adjoint
action (cf. (21)) of the unitary group of A,

AD(ξ′, ξ) = ADu(Ad(u)ξ′, Ad(u)ξ) , Du = Ad(u)D Ad(u∗). (38)

Now the Pfaffian of an antisymmetric bilinear form is best expressed in terms
of the functional integral involving anticommuting “classical fermions” which at
the formal level means that

Pf(A) =
∫

e−
1
2 A(ξ) D[ξ].

It is the use of the Pfaffian as a square root of the determinant that allows to solve
the Fermion doubling puzzle which was pointed out in [21]. The solution obtained
by a better choice of the KO-dimension of the space F and hence of M ×F is not
unrelated to the point made in [17].

Theorem 7.2. Let M be a Riemannian spin 4-manifold and F the finite non-
commutative geometry of KO-dimension 6 described above. Let M ×F be endowed
with the product metric.

1. The unimodular subgroup of the unitary group acting by the adjoint represen-
tation Ad(u) in H is the group of gauge transformations of SM.

2. The unimodular inner fluctuations A of the metric2 are parameterized exactly
by the gauge bosons of SM (including the Higgs doublet).

2The unimodular inner fluctuations are obtained by restricting to those A which are traceless,
i.e., fulfill the condition Tr(A) = 0.
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3. The full standard model (see the explicit formula in §9) minimally coupled
with Einstein gravity is given in Euclidean form by the action functional

S = Tr(f(DA/Λ)) +
1
2
〈J ξ, DA ξ〉 , ξ ∈ H+

applied to unimodular inner fluctuations DA = D+A+JAJ−1 of the metric.

We take f even and positive with f (n)(0) = 0 for n ≥ 1 for definiteness. Note
also that the components of ξ anticommute so the antisymmetric form does not
vanish. The proof is given in [7] which is a variant of [4] (cf. [18] for a detailed
version). After turning off gravity to simplify and working in flat space (after
Wick rotation back to Lorentzian signature) one gets the Lagrangian of §9 whose
agreement with that of §1 can hardly be fortuitous. It is obtained in Euclidean
form and all the signs are the physical ones, provided the test function f is positive
which is the natural condition to get a sensible exponent in the functional integral.
The positivity of the test function f ensures the positivity of the action functional
before taking the asymptotic expansion. In general, this does not suffice to control
the sign of the terms in the asymptotic expansion. In our case, however, this
determines the positivity of the momenta f0, f2, and f4. The explicit calculation
then shows that this implies that the signs of all the terms are the expected physical
ones.

We obtain the usual Einstein–Hilbert action with a cosmological term, and
in addition the square of the Weyl curvature and a pairing of the scalar curvature
with the square of the Higgs field. The Weyl curvature term does not affect gravity
at low energies, as explained in §10.6 below.

The fermion doubling problem is resolved by the use of the Pfaffian, we
checked that part for the Dirac mass terms, and trust that the same holds for the
Majorana mass terms. There is one subtle point which is the use of the following
chiral transformation:

U = ei π
4 γ5

to transform the Fermionic part of the action to the traditional one, i.e., the
Euclidean action for Fermi fields (cf. [8]). While this transformation is innocent at
the classical level, it is nontrivial at the quantum level and introduces some kind
of Maslov index in the transition from our form of the Euclidean action to the
more traditional one. We shall now give more details on the bosonic part of the
action.

8. Detailed form of the bosonic action

We shall now give the precise form of the bosonic action, the calculation [7] is
entirely similar to [4] with new terms appearing from the presence of MR.
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One lets fk =
∫∞
0 f(u)uk−1du for k > 0 and f0 = f(0). Also

a = Tr(M∗
ν Mν + M∗

e Me + 3(M∗
uMu + M∗

d Md)) (39)

b = Tr((M∗
ν Mν)2 + (M∗

e Me)2 + 3(M∗
uMu)2 + 3(M∗

dMd)2)

c = Tr(M∗
RMR)

d = Tr((M∗
RMR)2)

e = Tr(M∗
RMRM∗

ν Mν).

The spectral action is given by a computation entirely similar to [4] which yields:

S =
1
π2

(48 f4 Λ4 − f2 Λ2 c +
f0

4
d)
∫ √

g d4x (40)

+
96 f2 Λ2 − f0 c

24π2

∫
R
√

g d4x

+
f0

10 π2

∫
(
11
6

R∗R∗ − 3 Cµνρσ Cµνρσ)
√

g d4x

+
(−2 a f2 Λ2 + e f0)

π2

∫
|ϕ|2 √g d4x

+
f0

2 π2

∫
a |Dµϕ|2 √g d4x

− f0

12 π2

∫
a R |ϕ|2 √g d4x

+
f0

2 π2

∫
(g2

3 Gi
µν Gµνi + g2

2 Fα
µν Fµνα +

5
3

g2
1 Bµν Bµν)

√
g d4x

+
f0

2 π2

∫
b |ϕ|4 √g d4x

where (a, b, c, d, e) are defined above and Dµϕ is the minimal coupling. A simple
change of variables as in [4], namely

H =
√

a f0

π
ϕ , (41)

so that the kinetic term becomes3∫
1
2
|DµH|2 √g d4x

and
g2
3 f0

2π2
=

1
4

, g2
3 = g2

2 =
5
3

g2
1 . (42)

3Here we differ slightly from [4] by a factor of
√

2 to match the conventions of Veltman [26].
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transforms the bosonic action into the form:

S =
∫

d4x
√

g

[
1

2κ2
0

R + α0 Cµνρσ Cµνρσ (43)

+ γ0 + τ0
∗R∗R + δ0 R;µ µ

+
1
4

Gi
µν Gµνi +

1
4

Fα
µν Fµνα +

1
4

Bµν Bµν

+
1
2
|Dµ H|2 − µ2

0|H|2 − 1
12

R |H|2 + λ0|H|4
]

where
1
κ2

0

=
96 f2 Λ2 − f0 c

12 π2
(44)

µ2
0 = 2

f2 Λ2

f0
− e

a
(45)

α0 = − 3 f0

10 π2
(46)

τ0 =
11 f0

60 π2
(47)

δ0 = −2
3

α0 (48)

γ0 =
1
π2

(
48 f4 Λ4 − f2 Λ2 c +

f0

4
d

)
(49)

λ0 =
π2

2 f0

b

a2
=

b g2

a2
(50)

9. Detailed form of the spectral action without gravity

To make the comparison easier we Wick rotate back to Minkowski space and
after turning off gravity by working in flat space (and addition of gauge fixing
terms4) the spectral action, after the change of variables summarized in table 1,
is given by the following formula:
LSM = − 1

2∂νga
µ∂νga

µ − gsf
abc∂µga

νgb
µgc

ν − 1
4g2

sfabcfadegb
µgc

νgd
µge

ν − ∂νW+
µ ∂νW−

µ −
M2W+

µ W−
µ − 1

2∂νZ0
µ∂νZ0

µ − 1
2c2

w
M2Z0

µZ0
µ − 1

2∂µAν∂µAν − igcw(∂νZ0
µ(W+

µ W−
ν −

W+
ν W−

µ ) − Z0
ν (W+

µ ∂νW−
µ − W−

µ ∂νW+
µ ) + Z0

µ(W+
ν ∂νW−

µ − W−
ν ∂νW+

µ )) −
igsw(∂νAµ(W+

µ W−
ν − W+

ν W−
µ ) − Aν(W+

µ ∂νW−
µ − W−

µ ∂νW+
µ ) + Aµ(W+

ν ∂νW−
µ −

W−
ν ∂νW+

µ )) − 1
2g2W+

µ W−
µ W+

ν W−
ν + 1

2g2W+
µ W−

ν W+
µ W−

ν + g2c2
w(Z0

µW+
µ Z0

νW−
ν −

Z0
µZ0

µW+
ν W−

ν ) + g2s2
w(AµW+

µ AνW−
ν − AµAµW+

ν W−
ν ) +

g2swcw(AµZ0
ν (W+

µ W−
ν −W+

ν W−
µ )− 2AµZ0

µW+
ν W−

ν )− 1
2∂µH∂µH − 2M2αhH2 −

∂µφ+∂µφ− − 1
2∂µφ0∂µφ0 − βh

(
2M2

g2 + 2M
g H + 1

2 (H2 + φ0φ0 + 2φ+φ−)
)

+

4We add the Feynman gauge fixing terms just to simplify the form of the gauge kinetic terms.
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2M4

g2 αh − gαhM
(
H3 + Hφ0φ0 + 2Hφ+φ−)−

1
8g2αh

(
H4 + (φ0)4 + 4(φ+φ−)2 + 4(φ0)2φ+φ− + 4H2φ+φ− + 2(φ0)2H2

)
−

gMW+
µ W−

µ H − 1
2g M

c2
w

Z0
µZ0

µH −
1
2 ig

(
W+

µ (φ0∂µφ− − φ−∂µφ0) − W−
µ (φ0∂µφ+ − φ+∂µφ0)

)
+

1
2g
(
W+

µ (H∂µφ− − φ−∂µH) + W−
µ (H∂µφ+ − φ+∂µH)

)
+ 1

2g 1
cw

Z0
µ(H∂µφ0 −

φ0∂µH) + M( 1
cw

Z0
µ∂µφ0 + W+

µ ∂µφ− + W−
µ ∂µφ+) − ig

s2
w

cw
MZ0

µ(W+
µ φ− −

W−
µ φ+) + igswMAµ(W+

µ φ− − W−
µ φ+) − ig

1−2c2
w

2cw
Z0

µ(φ+∂µφ− − φ−∂µφ+) +
igswAµ(φ+∂µφ− − φ−∂µφ+) − 1

4g2W+
µ W−

µ

(
H2 + (φ0)2 + 2φ+φ−)−

1
8g2 1

c2
w

Z0
µZ0

µ

(
H2 + (φ0)2 + 2(2s2

w − 1)2φ+φ−)− 1
2g2 s2

w

cw
Z0

µφ0(W+
µ φ− + W−

µ φ+) −
1
2 ig2 s2

w

cw
Z0

µH(W+
µ φ− − W−

µ φ+) + 1
2g2swAµφ0(W+

µ φ− + W−
µ φ+) +

1
2 ig2swAµH(W+

µ φ− − W−
µ φ+) − g2 sw

cw
(2c2

w − 1)Z0
µAµφ+φ− − g2s2

wAµAµφ+φ− +
1
2 igsλ

a
ij(q̄

σ
i γµqσ

j )ga
µ − ēλ(γ∂ +mλ

e )eλ − ν̄λ(γ∂ +mλ
ν)νλ − ūλ

j (γ∂ +mλ
u)uλ

j − d̄λ
j (γ∂ +

mλ
d)dλ

j + igswAµ

(
−(ēλγµeλ) + 2

3 (ūλ
j γµuλ

j ) − 1
3 (d̄λ

j γµdλ
j )
)

+ ig
4cw

Z0
µ{(ν̄λγµ(1 +

γ5)νλ) + (ēλγµ(4s2
w − 1 − γ5)eλ) + (d̄λ

j γµ(4
3s2

w − 1 − γ5)dλ
j ) + (ūλ

j γµ(1 − 8
3s2

w +
γ5)uλ

j )} + ig

2
√

2
W+

µ

(
(ν̄λγµ(1 + γ5)U lep

λκeκ) + (ūλ
j γµ(1 + γ5)Cλκdκ

j )
)

+
ig

2
√

2
W−

µ

(
(ēκU lep†

κλγµ(1 + γ5)νλ) + (d̄κ
j C†

κλγµ(1 + γ5)uλ
j )
)

+
ig

2M
√

2
φ+

(
−mκ

e (ν̄λU lep
λκ(1 − γ5)eκ) + mλ

ν (ν̄λU lep
λκ(1 + γ5)eκ)

)
+

ig

2M
√

2
φ−

(
mλ

e (ēλU lep†
λκ(1 + γ5)νκ) − mκ

ν (ēλU lep†
λκ(1 − γ5)νκ)

)
− g

2
mλ

ν

M H(ν̄λνλ)−
g
2

mλ
e

M H(ēλeλ) + ig
2

mλ
ν

M φ0(ν̄λγ5νλ) − ig
2

mλ
e

M φ0(ēλγ5eλ) − 1
4 ν̄λMR

λκ (1 − γ5)ν̂κ −
1
4 ν̄λMR

λκ (1 − γ5)ν̂κ + ig

2M
√

2
φ+
(
−mκ

d(ūλ
j Cλκ(1 − γ5)dκ

j ) + mλ
u(ūλ

j Cλκ(1 +

γ5)dκ
j )
)

+ ig

2M
√

2
φ−

(
mλ

d(d̄λ
j C†

λκ(1 + γ5)uκ
j ) − mκ

u(d̄λ
j C†

λκ(1 − γ5)uκ
j )
)
−

g
2

mλ
u

M H(ūλ
j uλ

j ) − g
2

mλ
d

M H(d̄λ
j dλ

j ) + ig
2

mλ
u

M φ0(ūλ
j γ5uλ

j ) − ig
2

mλ
d

M φ0(d̄λ
j γ5dλ

j ).

This formula compares nicely with [26], i.e., the Lagrangian of §1. Besides
the addition of the neutrino mass terms, and absence of the ghost terms there is
only one difference: in the spectral action Lagrangian one gets the term

M (
1
cw

Z0
µ∂µφ0 + W+

µ ∂µφ− + W−
µ ∂µφ+) (51)

while in the Veltman’s formula [26] one gets instead the following

−M2φ+φ− − 1
2c2

w

M2φ0φ0. (52)

This difference comes from the gauge fixing term

Lfix = −1
2
C2 , Ca = −∂µWµ

a + Ma φa (53)
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given by the Feynman-t’Hooft gauge in Veltman’s formula [26], indeed one has

Lfix = − 1
2

(∂µWµ
a )2 − 1

2c2
w

M2φ0φ0 − M2φ+φ−

+ M

(
1
cw

φ0∂µZ0
µ + φ−∂µW+

µ + φ+∂µW−
µ

)
. (54)

10. Predictions

The conversion table 1 shows that all the mass parameters of the standard model
now acquire geometric meaning as components of the non-commutative metric as
displayed in the right column. We shall work under the hypothesis that the geo-
metric theory is valid at a preferred scale Λ of the order of the unification scale (cf.
§10.1) and that the standard model coupled with gravity is just its manifestation
when one integrates the high energy modes á la Wilson. Then following [4] one
can use the renormalization group equations to run down the various coupling
constants. Besides the gauge couplings this will be done for the value of the Higgs
quartic self-coupling which gives a rough estimate (around 170 GeV) for the Higgs
mass under the “big desert” hypothesis. It is satisfactory that another prediction
at unification, namely the mass relation of §10.3 also gives a sensible answer, while
similar results hold for the couplings of the gravitational part of the action. But it
is of course very likely that instead of the big desert one will meet gradual refine-
ments of the non-commutative geometry M × F when climbing in energy to the
unification scale so that our knowledge of the finite geometry F is still too primi-
tive to make accurate predictions. The “naturalness” problem will be discussed in
§10.5. At first sight one might easily confuse the obtained predictions with those
of a GUT, but there is a substantial difference since for instance no proton decay
is implied in our theory.

10.1. Unification of couplings

The numerical values are similar to those of [4] and in particular one gets the same
value of gauge couplings as in grand unified theories SU(5) or SO(10). The three
gauge couplings fulfill (42). This means that in the above formula the values of g,
gs and sw, cw are fixed exactly as in [4] at

gs = g , tg(w)2 =
3
5

. (55)

10.2. See-saw mechanism for neutrino masses

Let us briefly explain the analogue of the see-saw mechanism in our context. We
use the notation of §6.3. The restriction of D(M) to the subspace of HF with basis
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Standard notation notation Spectral
Model Action

Higgs Boson ϕ = (2M
g + H H = 1√

2

√
a

g (1 + ψ) Inner
−iφ0, −i

√
2φ+) metric(0,1)

Gauge bosons Aµ, Z0
µ, W±

µ , ga
µ (B, W, V ) Inner

metric(1,0)

Fermion masses mu, mν Mu = δu, Mν = δν Dirac(0,1)

u, ν in u, ν

CKM matrix Cκ
λ , md Md = C δd C† Dirac(0,1)

Masses down in d

Lepton mixing U lep
λκ, me Me = U lep δe U lep† Dirac(0,1)

Masses leptons e in e

Majorana MR MR Dirac(0,1)

mass matrix in νR, ν̄R

Gauge couplings g1 = g tg(w), g2
3 = g2

2 = 5
3 g2

1 Fixed at
g2 = g, g3 = gs unification

Higgs scattering 1
8 g2 αh, αh = m2

h

4M2 λ0 = g2 b
a2 Fixed at

parameter unification

Tadpole constant βh, (−αh M2 µ2
0 = 2 f2Λ

2

f0
− e

a −µ2
0 |H|2

+βh

2 ) |ϕ|2

Graviton gµν ∂/M Dirac(1,0)

Table 1. Conversion from Spectral Action to Standard Model

the (νR, νL, ν̄R, ν̄L) is given by the matrix⎡⎢⎢⎣
0 M∗

ν M∗
R 0

Mν 0 0 0
MR 0 0 M̄∗

ν

0 0 M̄ν 0

⎤⎥⎥⎦ . (56)

Let us simplify to one generation and let MR ∼ M be a very large mass term –
the largest eigenvalue of MR will be set to the order of the unification scale by the
equations of motion of the spectral action – while Mν ∼ m is much smaller5. The
eigenvalues of the matrix (56) are then given by

1
2

(±M ±
√

M2 + 4m2)

5It is a Dirac mass term, fixed by the Higgs vev.
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which gives two eigenvalues very close to ±M and two others very close to ±m2

M
as can be checked directly from the determinant of the matrix (56), which is equal
to |Mν |4 ∼ m4 (for one generation).

10.3. Mass relation Y2(S) = 4 g2

Note that the matrices Mu, Md, Mν and Me are only relevant up to an overall scale.
Indeed they only enter in the coupling of the Higgs with fermions and because of
the rescaling (41) only by the terms

kx =
π√
a f0

Mx , x ∈ {u, d, ν, e} (57)

which are dimensionless matrices by construction. The conversion for the mass
matrices is

(ku)λκ =
g

2M
mλ

u δκ
λ (58)

(kd)λκ =
g

2M
mµ

d Cλµδρ
µC†

ρκ

(kν)λκ =
g

2M
mλ

ν δκ
λ

(ke)λκ =
g

2M
mµ

e U lep
λµδρ

µU lep†
ρκ.

It might seem at first sight that one can simply use (58) to define the matrices kx

but this overlooks the fact that (57) implies one constraint:

Tr(k∗
νkν + k∗

eke + 3(k∗
uku + k∗

dkd)) = 2 g2 , (59)

using (42) to replace π2

f0
by 2 g2. When expressed in the right-hand side, i.e., the

standard model parameters this gives∑
λ

(mλ
ν )2 + (mλ

e )2 + 3 (mλ
u)2 + 3 (mλ

d)2 = 8 M2 (60)

where M is the mass of the W boson. Thus with the standard notation ( [19]) for
the Yukawa couplings, so that the fermion masses are mf = 1√

2
yf v, v = 2M

g the
relation reads ∑

λ

(yλ
ν )2 + (yλ

e )2 + 3 (yλ
u)2 + 3 (yλ

d )2 = 4 g2. (61)

Neglecting the other Yukawa coupling except for the top quark, and imposing the
relation (61) at unification scale, then running it downwards using the renormal-
ization group one gets the boundary value 2√

3
g ∼ 0.597 for yt at unification scale

which gives a Fermi scale value of the order of y0 =∼ 1.102 and a top quark mass
of the order of 1√

2
y0 v ∼ 173 y0 GeV. This is fine since a large neglected tau neu-

trino Yukawa coupling (allowed by the see-saw mechanism) similar to that of the

top quark, lowers the value at unification by a factor of
√

3
4 which has the effect

of lowering the value of y0 to y0 ∼ 1.04. This yields an acceptable value for the
top quark mass (whose Yukawa coupling is y0 ∼ 1), given that we still neglected
all other smaller Yukawa couplings.
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10.4. The Higgs scattering parameter

The change of notation for the Higgs fields using the conversion Table 1 gives

H =
1√
2

√
a

g
(1 + ψ) = (

2M

g
+ H − iφ0,−i

√
2φ+) . (62)

One gets a specific value of the Higgs scattering parameter αh, as in [4] (which
agrees with [19]),

αh =
8 b

a2
(63)

(with the notations (39)) which is of the order of 8
3 if there is a dominating top

mass. The numerical solution to the RG equations with the boundary value λ0 =
0.356 at Λ = 1017 GeV gives λ(MZ) ∼ 0.241 and a Higgs mass of the order of
170 GeV.

10.5. Naturalness

The hypothesis that what we see is the low energy average of a purely geomet-
ric theory valid at unification scale Λ needs to be confronted with the “natural-
ness” problem coming from the quadratically divergent graphs of the theory. This
problem already arises in a φ4 theory (in dimension 4) with classical potential
V0(φ) = 1

2m2φ2 + λ
4 φ4. Recall that the effective potential which is the first term

in the expansion of the effective action in powers of the derivatives of the classical
field φ around the constant field φ = φc

Seff (φ) =
∫

[−V (φ) +
1
2
(∂µφ)2Z(φ) + · · · ] dDx (64)

can be expressed as the following sum over 1PI diagrams with zero external mo-
menta:

V (φc) = V0(φc) −
∑

Γ∈ 1PI

�L U(Γ(p1 = 0, . . . , pN = 0))
σ(Γ)

φN
c

N !
(65)

where φc is viewed as a real variable, and V0(φc) is the classical potential. By
construction the quantum corrections are organized in increasing powers of � and
these correspond to the loop number of the 1PI graphs. At the one-loop level and
for a polynomial interaction, one finds that the unrenormalized value gives ( [25],
equation 2.64)

V (φc) = V0(φc) +
�

2

∫
log(1 +

V
′′
0 (φc)
k2

)
dDk

(2π)D
+ O(�2). (66)

In dimension D = 4 the integral diverges in the ultraviolet due to the two terms

V
′′
0 (φc)
k2

− V
′′ 2
0 (φc)
2 k4

(67)

in the expansion of the logarithm at large momentum k. If the classical potential
V0 is at most quartic the divergences can be compensated by adding suitable
counterterms in the classical potential. Thus, in particular, if one uses a ultraviolet
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cutoff Λ and considers the φ4 theory with classical potential V0(φ) = 1
2m2φ2+ λ

4 φ4,
one gets a quadratic divergence of the form

Λ2

32π2
(3λφ2

c + m2) − log Λ
32π2

(V
′′
0 (φc))2, (68)

whose elimination requires adjusting the classical potential as a function of the
cutoff Λ as

(V0 + δV0)(φ) = V0(φ) − Λ2

32π2
(3λφ2) +

log Λ
32π2

(6m2λφ2 + 9λ2φ4), (69)

where we ignored an irrelevant (but Λ-dependent) additive constant.
This shows very clearly that, in order to obtain a Λ-independent effective

potential, one needs the bare action to depend upon Λ with a large negative
quadratic term of the form − Λ2

32π2 (3λφ2) at the one-loop level. This is precisely
the type of term present in the spectral action in the case of the standard model.
The presence of the other quadratic divergences coming from the Yukawa coupling
of the scalar field with fermions alters the overall sign of the quadratic divergence
only at small enough Λ. However, as shown in [7] §5.7, it comes back to the
above sign when Λ gets above 1010 GeV and in particular when it is close to
the unification scale. This leaves open the possibility of using the quadratically
divergent mass term of the spectral action to account for the naturalness problem
(but an accurate account would require at least some fine tuning of the unification
scale, and a better understanding of the running of the Newton constant).

10.6. Gravitational terms

We now discuss the behavior of the gravitational terms in the spectral action,
namely ∫ (

1
2κ2

0

R + α0 Cµνρσ Cµνρσ + γ0 + τ0 R∗R∗ − ξ0 R |H|2
)
√

g d4x. (70)

The traditional form of the Euclidean higher derivative terms that are qua-
dratic in curvature is∫ (

1
2η

Cµνρσ Cµνρσ − ω

3η
R2 +

θ

η
E

)
√

g d4x, (71)

with E = R∗R∗ the topological term which is the integrand in the Euler charac-
teristic

χ(M) =
1

32π2

∫
E
√

g d4x =
1

32π2

∫
R∗R∗√g d4x . (72)

The running of the coefficients of the Euclidean higher derivative terms in (71), de-
termined by the renormalization group equation, is gauge independent and known
and we computed in [7] their value at low scale starting from the initial value
prescribed by the spectral action at unification scale. We found that the infrared
behavior of these terms approaches the fixed point η = 0, ω = −0.0228, θ = 0.327.
The coefficient η goes to zero in the infrared limit, sufficiently slowly, so that, up
to scales of the order of the size of the universe, its inverse remains O(1). On the
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other hand, η(t), ω(t) and θ(t) have a common singularity at an energy scale of the
order of 1023 GeV, which is above the Planck scale. Moreover, within the energy
scales that are of interest to our model η(t) is neither too small nor too large (it
does not vary by more than a single order of magnitude between the Planck scale
and infrared energies). This implies in particular that the extra terms (besides the
Einstein-Hilbert term) do not have any observable consequence at low energy.

The discussion of the Newton constant is much more tricky since its running
is scheme dependent. Under the very conservative hypothesis that it does not run
much from our scale to the unification scale one finds (cf. [7]) that for a unification
scale of 1017 GeV an order one tuning (f2 ∼ 5f0) of the moments of the test
function f suffices to get an acceptable value for the Newton constant.

11. Final remarks

The above approach to physics can be summarized as a strategy to interpret the
complicated input of the phenomenological Lagrangian of gravity coupled with
matter as coming from a fine structure (of the form M × F ) in the geometry of
space-time. Extrapolating this to unification scale (i.e., assuming the big desert)
gives predictions which can be compared with experiment. Of course we do not
believe that the big desert is there and a key test when “new physics” will be
observed is to decide wether it will be possible to interpret the new terms of the
Lagrangian in the same manner from non-commutative spaces and the spectral
action. This type of test already occurred with the new neutrino physics coming
from the Kamiokande experiment and for quite some time I believed that the new
terms would simply not fit with the spectral action principle. It is only thanks to
the simple idea of decoupling the KO-dimension from the metric dimension that
the problem was resolved (this was also done independently by John Barrett [1]
with a similar solution).

At a more fundamental level the fact that the action functional can be ob-
tained from spectral data suggests that instead of just looking at the inner fluctua-
tions of a product metric on M×F , one should view that as a special case of a fully
unified theory at the operator theoretic level, i.e., a kind of spectral random matrix
theory where the operator D varies in the symplectic ensemble (corresponding to
the commutation with i =

√
−1 and J that generate the quaternions). The first

basic step is to understand how to extend the computations of the spontaneous
symmetry breaking of the electroweak sector of SM [25] to the full gravitational
sector. The natural symmetry group of the spectral action is the unitary symplec-
tic group, corresponding as above to the commutation with i =

√
−1 and J . In the

forthcoming book with M. Marcolli [13] we develop an analogy between the spon-
taneous symmetry breaking which is the key of our work in number theory (the
theory of Q-lattices) and the missing SSB for gravity. One of the simple ideas that
emerge from the mere existence of the analogy is that the geometry of space-time
is a notion which probably stops making sense when the energy scale (i.e., the
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temperature) is above the critical value of the main phase transition. In particular
it seems an ill fated goal to try and quantize gravity as a fundamental theory in
a fixed background, the idea being that the very notion of space-time ceases to
make sense at high enough energy scales. We refer to the last section of [13] for a
more detailed discussion of this point.
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