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Decoherence and the Transition
from Quantum to Classical – Revisited

Wojciech Hubert Zurek

Abstract. The environment surrounding a quantum system can, in effect,
monitor some of the systems observables. As a result, the eigenstates of these
observables continuously decohere and can behave like classical states.

This paper has a somewhat unusual origin and, as a consequence, an unusual
structure. It is built on the principle embraced by families who outgrow their
dwellings and decide to add a few rooms to their existing structures instead of
starting from scratch. These additions usually “show,” but the whole can still be
quite pleasing to the eye, combining the old and the new in a functional way. What
follows is such a “remodeling” of the paper I wrote a dozen years ago for Physics
Today (1991). The old text (with some modifications) is interwoven with the new
text, but the additions are set off in boxes throughout this article and serve as a
commentary on new developments as they relate to the original. The references
appear together at the end.

In 1991, the study of decoherence was still a rather new subject, but already
at that time, I had developed a feeling that most implications about the system’s
“immersion” in the environment had been discovered in the preceding 10 years, so
a review was in order. While writing it, I had, however, come to suspect that the
small gaps in the landscape of the border territory between the quantum and the
classical were actually not that small after all and that they presented excellent
opportunities for further advances.

Indeed, I am surprised and gratified by how much the field has evolved over
the last decade. The role of decoherence was recognized by a wide spectrum of
practicing physicists as well as, beyond physics proper, by material scientists and
philosophers. The study of the predictability sieve, investigations of the interface
between chaotic dynamics and decoherence, and most recently, the tantalizing
glimpses of the information-theoretic nature of the quantum have elucidated our
understanding of theubert Universe.

Not all of the new developments are reported in this review: Some of the
most recent (and, conceivably, most far-reaching) are still too ”fresh”, and, hence,
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too difficult to describe succinctly. The role of redundancy of the imprint left by
the preferred observables of the system on the states of the environment in the
emergence of the objective classical properties from the quantum substrate, or the
concept of the environment – assisted invariance (or envariance) that allows one
to give a fully quantum justification of Born’s rule connecting amplitudes with
probabilities are beyond the scope of this minireview.

Finally, I have some advice to the reader. I believe this paper should be read
twice: first, just the old text alone; then – and only then – on the second reading,
the whole thing. I would also recommend to the curious reader two other overviews:
the draft of my Reviews of Modern Physics paper (Zurek 2001a) and Les Houches
Lectures coauthored with Juan Pablo Paz (Paz and Zurek 2001).

Introduction

Quantum mechanics works exceedingly well in all practical applications. No exam-
ple of conflict between its predictions and experiment is known. Without quantum
physics, we could not explain the behavior of the solids, the structure and function
of DNA, the color of the stars, the action of lasers, or the properties of superfluids.
Yet nearly a century after its inception, the debate about the relation of quantum
physics to the familiar physical world continues. Why is a theory that seems to
account with precision for everything we can measure still deemed lacking?
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The only “failure” of quantum theory is its inability to provide a natural
framework for our prejudices about the workings of the Universe. States of quan-
tum systems evolve according to the deterministic, linear Schrödinger equation

i�
d

dt
|ψ〉 = H |ψ〉 . (1)

That is, just as in classical mechanics, given the initial state of the system and its
Hamiltonian H , one can, at least in principle, compute the state at an arbitrary
time. This deterministic evolution of |ψ〉 has been verified in carefully controlled
experiments. Moreover, there is no indication of a border between quantum and
classical at which Equation (1) would fail (see cartoon on the opener to this article).

There is, however, a very poorly controlled experiment with results so tan-
gible and immediate that it has enormous power to convince: Our perceptions
are often difficult to reconcile with the predictions of Equation (1). Why? Given
almost any initial condition, the Universe described by |ψ〉 evolves into a state con-
taining many alternatives that are never seen to coexist in our world. Moreover,
while the ultimate evidence for the choice of one alternative resides in our elu-
sive “consciousness,” there is every indication that the choice occurs much before
consciousness ever gets involved and that, once made, it is irrevocable. Thus, at
the root of our unease with quantum theory is the clash between the principle of
superposition – the basic tenet of the theory reflected in the linearity of Equation
(1) – and everyday classical reality in which this principle appears to be violated.

The problem of measurement has a long and fascinating history. The first
widely accepted explanation of how a single outcome emerges from the multitude
of potentialities was the Copenhagen Interpretation proposed by Niels Bohr (1928),
who insisted that a classical apparatus is necessary to carry out measurements.
Thus, quantum theory was not to be universal. The key feature of the Copenhagen
Interpretation is the dividing line between quantum and classical. Bohr emphasized
that the border must be mobile so that even the “ultimate apparatus” – the human
nervous system – could in principle be measured and analyzed as a quantum object,
provided that a suitable classical device could be found to carry out the task.

In the absence of a crisp criterion to distinguish between quantum and clas-
sical, an identification of the classical with the macroscopic has often been ten-
tatively accepted. The inadequacy of this approach has become apparent as a
result of relatively recent developments: A cryogenic version of the Weber bar –
a gravity-wave detector – must be treated as a quantum harmonic oscillator even
though it may weigh a ton (Braginsky et al. 1980, Caves et al. 1980). Nonclassical
squeezed states can describe oscillations of suitably prepared electromagnetic fields
with macroscopic numbers of photons (Teich and Saleh 1990). Finally, quantum
states associated with the currents of superconducting Josephson junctions involve
macroscopic numbers of electrons, but still they can tunnel between the minima
of the effective potential corresponding to the opposite sense of rotation (Leggett
et al. 1987, Caldeira and Leggett 1983a, Tesche 1986).
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If macroscopic systems cannot be always safely placed on the classical side
of the boundary, then might there be no boundary at all? The Many Worlds In-
terpretation (or more accurately, the Many Universes Interpretation), developed
by Hugh Everett III with encouragement from John Archibald Wheeler in the
1950s, claims to do away with the boundary (Everett 1957, Wheeler 1957). In this
interpretation, the entire universe is described by quantum theory. Superpositions
evolve forever according to the Schrödinger equation. Each time a suitable inter-
action takes place between any two quantum systems, the wave function of the
universe splits, developing ever more “branches.”

Initially, Everett’s work went almost unnoticed. It was taken out of moth-
balls over a decade later by Bryce DeWitt (1970) and DeWitt and Neill Graham
(1973), who managed to upgrade its status from “virtually unknown” to “very
controversial.” The Many Worlds Interpretation is a natural choice for quantum
cosmology, which describes the whole Universe by means of a state vector. There
is nothing more macroscopic than the Universe. It can have no a priori classical
subsystems. There can be no observer “on the outside.” In this universal setting,
classicality must be an emergent property of the selected observables or systems.

At first glance, the Many Worlds and Copenhagen Interpretations have little
in common. The Copenhagen Interpretation demands an a priori “classical do-
main” with a border that enforces a classical “embargo” by letting through just
one potential outcome. The Many Worlds Interpretation aims to abolish the need
for the border altogether. Every potential outcome is accommodated by the ever-
proliferating branches of the wave function of the Universe. The similarity between
the difficulties faced by these two viewpoints becomes apparent, nevertheless, when
we ask the obvious question, “Why do I, the observer, perceive only one of the out-
comes?” Quantum theory, with its freedom to rotate bases in Hilbert space, does
not even clearly define which states of the Universe correspond to the “branches.”
Yet, our perception of a reality with alternatives – not a coherent superposition
of alternatives – demands an explanation of when, where, and how it is decided
what the observer actually records. Considered in this context, the Many Worlds
Interpretation in its original version does not really abolish the border but pushes
it all the way to the boundary between the physical Universe and consciousness.
Needless to say, this is a very uncomfortable place to do physics.

In spite of the profound nature of the difficulties, recent years have seen a
growing consensus that progress is being made in dealing with the measurement
problem, which is the usual euphemism for the collection of interpretational co-
nundrums described above. The key (and uncontroversial) fact has been known
almost since the inception of quantum theory, but its significance for the transi-
tion from quantum to classical is being recognized only now: Macroscopic systems
are never isolated from their environments. Therefore – as H. Dieter Zeh empha-
sized (1970) – they should not be expected to follow Schrödinger’s equation, which
is applicable only to a closed system. As a result, systems usually regarded as clas-
sical suffer (or benefit) from the natural loss of quantum coherence, which “leaks
out” into the environment (Zurek 1981, 1982). The resulting decoherence cannot
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be ignored when one addresses the problem of the reduction of the quantum me-
chanical wavepacket: Decoherence imposes, in effect, the required “embargo” on
the potential outcomes by allowing the observer to maintain only records of the
alternatives sanctioned by decoherence and to be aware of only one of the branches
– one of the “decoherent histories” in the nomenclature of Murray Gell-Mann and
James Hartle (1990) and Hartle (1991).

The aim of this paper is to explain the physics and thinking behind decoher-
ence and
environment-induced superselection. The reader should be warned that this writer
is not a disinterested witness to this development (Wigner 1983, Joos and Zeh
1985, Haake and Walls 1986, Milburn and Holmes 1986, Albrecht 1991, Hu et al.
1992), but rather, one of the proponents. I shall, nevertheless, attempt to paint a
fairly honest picture and point out the difficulties as well as the accomplishments.

Decoherence in Quantum Information Processing

Much of what was written in the introduction remains valid today. One important
development is the increase in experimental evidence for the validity of the quan-
tum principle of superposition in various contexts including spectacular double-slit
experiments that demonstrate interference of fullerenes (Arndt et al. 1999), the
study of superpositions in Josephson junctions (Mooij et al.1999, Friedman et al.
2000), and the implementation of Schrödinger “kittens” in atom interferometry
(Chapman et al. 1995, Pfau et al. 1994), ion traps (Monroe et al. 1996) and mi-
crowave cavities (Brune et al. 1996). In addition to confirming the superposition
principle and other exotic aspects of quantum theory (such as entanglement) in
novel settings, some of these experiments allow – as we shall see later – for a
controlled investigation of decoherence.

The other important change that influenced the perception of the quantum-
to-classical “border territory” is the explosion of interest in quantum information
and computation. Although quantum computers were already being discussed in
the 1980s, the nature of the interest has changed since Peter Shor invented his
factoring algorithm. Impressive theoretical advances, including the discovery of
quantum error correction and resilient quantum computation, quickly followed,
accompanied by increasingly bold experimental forays. The superposition princi-
ple, once the cause of trouble for the interpretation of quantum theory, has become
the central article of faith in the emerging science of quantum information pro-
cessing. This last development is discussed elsewhere in this volume, so I shall not
dwell on it here.

The application of quantum physics to information processing has also trans-
formed the nature of interest in the process of decoherence: At the time of my
original review (1991), decoherence was a solution to the interpretation problem
– a mechanism to impose an effective classicality on de facto quantum systems.
In quantum information processing, decoherence plays two roles. Above all, it is
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a threat to the quantumness of quantum information. It invalidates the quantum
superposition principle and thus turns quantum computers into (at best) classical
computers, negating the potential power offered by the quantumness of the algo-
rithms. But decoherence is also a necessary (although, until recently, tacitly taken
for granted) ingredient in quantum information processing, which must, after all,
end in a “measurement.”

A

(a)

(b)

B

S

N

S

N

Detector

A B

*

N

S z

y

x

Figure 1. A Reversible Stern-Gerlach Apparatus.
The “gedanken” reversible Stern-Gerlach apparatus in (a) splits
a beam of atoms into two branches that are correlated with the
component of the spin of the atoms (b) and then recombines the
branches before the atoms leave the device. Eugene Wigner (1963)
used this gedanken experiment to show that a correlation between
the spin and the location of an atom can be reversibly undone.
The introduction of a one-bit (two-state) quantum detector that
changes its state when the atom passes nearby prevents the rever-
sal: The detector inherits the correlation between the spin and the
trajectory, so the Stern-Gerlach apparatus can no longer undo the
correlation. (This illustration was adapted with permission from
Zurek 1981.)

The role of a measurement is to convert quantum states and quantum cor-
relations (with their characteristic indefiniteness and malleability) into classical,
definite outcomes. Decoherence leads to the environment-induced superselection
(einselection) that justifies the existence of the preferred pointer states. It enables
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one to draw an effective border between the quantum and the classical in straight-
forward terms, which do not appeal to the “collapse of the wavepacket” or any
other such deus ex machina.

Correlations and Measurements

A convenient starting point for the discussion of the measurement problem and,
more generally, of the emergence of classical behavior from quantum dynamics
is the analysis of quantum measurements due to John von Neumann (1932). In
contrast to Bohr, who assumed at the outset that the apparatus must be classical
(thereby forfeiting claim of quantum theory to universal validity), von Neumann
analyzed the case of a quantum apparatus. I shall reproduce his analysis for the
simplest case: a measurement on a two-state system S (which can be thought of as
an atom with spin 1/2) in which a quantum two-state (one bit) detector records
the result.

The Hilbert space HS of the system is spanned by the orthonormal states
| ↑〉 and | ↓〉, while the states |d↑〉 and |d↓〉 span the HD of the detector. A two-
dimensional HD is the absolute minimum needed to record the possible outcomes.
One can devise a quantum detector (see Figure 1) that “clicks” only when the spin
is in the state | ↑〉, that is,

| ↑〉|d↓〉 → | ↑〉|d↑〉 , (2)
and remains unperturbed otherwise.

I shall assume that, before the interaction, the system was in a pure state ψS
given by

|ψS〉 = α| ↑〉 + β| ↓〉 , (3)
with the complex coefficients satisfying |α|2 + |β|2 = 1. The composite system
starts as

|Φi〉 = |ψS〉|d↓〉 , (4)
Interaction results in the evolution of |Φi〉 into a correlated state |Φc〉:

|Φi〉 = (α| ↑〉 + β| ↓〉) ⇒ α| ↑〉|d↑〉 + β| ↓〉|d↓〉 = |Φc〉 . (5)

This essential and uncontroversial first stage of the measurement process can be
accomplished by means of a Schrödinger equation with an appropriate interaction.
It might be tempting to halt the discussion of measurements with Equation (5).
After all, the correlated state vector |Φc〉 implies that, if the detector is seen in
the state |d↑〉, the system is guaranteed to be found in the state | ↑〉. Why ask for
anything more?

The reason for dissatisfaction with |Φc〉 as a description of a completed mea-
surement is simple and fundamental: In the real world, even when we do not know
the outcome of a measurement, we do know the possible alternatives, and we can
safely act as if only one of those alternatives has occurred. As we shall see in the
next section, such an assumption is not only unsafe but also simply wrong for a
system described by |Φc〉.
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How then can an observer (who has not yet consulted the detector) express his
ignorance about the outcome without giving up his certainty about the “menu” of
the possibilities? Quantum theory provides the right formal tool for the occasion:
A density matrix can be used to describe the probability distribution over the
alternative outcomes.

Von Neumann was well aware of these difficulties. Indeed, he postulated
(1932) that, in addition to the unitary evolution given by Equation (1), there
should be an ad hoc “process 1”—a nonunitary reduction of the state vector—
that would take the pure, correlated state |Φc〉 into an appropriate mixture: This
process makes the outcomes independent of one another by taking the pure-state
density matrix:

ρc = |Φc〉〈Φc| = |α|2| ↑〉〈↑ ||d↑〉〈d↑| + αβ∗| ↑〉〈↓ ||d↑〉〈d↓|
+α∗β| ↓〉〈↑ ||d↓〉〈d↑| + |β|2| ↓〉〈↓ ||d↓〉〈d↓| , (6)

and canceling the off-diagonal terms that express purely quantum correlations
(entanglement) so that the reduced density matrix with only classical correlations
emerges:

ρr = |α|2| ↑〉〈↑ ||d↑〉〈d↑| + |β|2| ↓〉〈↓ ||d↓〉〈d↓| . (7)

Why is the reduced ρr easier to interpret as a description of a completed mea-
surement than ρc? After all, both ρr and ρc contain identical diagonal elements.
Therefore, both outcomes are still potentially present. So what – if anything – was
gained at the substantial price of introducing a nonunitary process 1?

The Question of Preferred Basis: What Was Measured?

The key advantage of ρr over ρc is that its coefficients may be interpreted as
classical probabilities. The density matrix ρr can be used to describe the alternative
states of a composite spin-detector system that has classical correlations. Von
Neumann’s process 1 serves a similar purpose to Bohr’s “border” even though
process 1 leaves all the alternatives in place. When the off-diagonal terms are
absent, one can nevertheless safely maintain that the apparatus, as well as the
system, is each separately in a definite but unknown state, and that the correlation
between them still exists in the preferred basis defined by the states appearing on
the diagonal. By the same token, the identities of two halves of a split coin placed
in two sealed envelopes may be unknown but are classically correlated. Holding
one unopened envelope, we can be sure that the half it contains is either “heads”
or “tails” (and not some superposition of the two) and that the second envelope
contains the matching alternative.

By contrast, it is impossible to interpret ρc as representing such “classical
ignorance.” In particular, even the set of the alternative outcomes is not decided
by ρc! This circumstance can be illustrated in a dramatic fashion by choosing
α = −β = 1/

√
2 so that the density matrix ρc is a projection operator constructed
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from the correlated state

|Φc〉 = (| ↑〉|d↑ − | ↓〉|d↓〉)
√

2 . (8)

This state is invariant under the rotations of the basis. For instance, instead of the
eigenstates of | ↑〉 and | ↓〉 of σ̂z one can rewrite |Φc〉 in terms of the eigenstates
of σ̂x:

|�〉 = (| ↑〉 + | ↓〉)
√

2 , (9a)

|⊗〉 = (| ↑〉 − | ↓〉)
√

2 . (9b)
This representation immediately yields

|Φc〉 = (|�〉|d�〉 − |⊗〉|d⊗〉)/
√

2 , (10)

where
|d�〉 = |d↓〉 − d↑〉/

√
2 and |d⊗〉 = |d↑〉 + d↓〉

√
2 , (11)

are, as a consequence of the superposition principle, perfectly “legal” states in the
Hilbert space of the quantum detector. Therefore, the density matrix

ρc = |Φc〉〈Φc|
could have many (in fact, infinitely many) different states of the subsystems on
the diagonal.

This freedom to choose a basis should not come as a surprise. Except for
the notation, the state vector |Φc〉 is the same as the wave function of a pair of
maximally correlated (or entangled) spin-1/2 systems in David Bohm’s version
(1951) of the Einstein-Podolsky-Rosen (EPR) paradox (Einstein et al. 1935). And
the experiments that show that such nonseparable quantum correlations violate
Bell’s inequalities (Bell 1964) are demonstrating the following key point: The states
of the two spins in a system described by |Φc〉 are not just unknown, but rather
they cannot exist before the “real” measurement (Aspect et al. 1981, 1982). We
conclude that when a detector is quantum, a superposition of records exists and
is a record of a superposition of outcomes – a very nonclassical state of affairs.

Missing Information and Decoherence

Unitary evolution condemns every closed quantum system to “purity.” Yet, if the
outcomes of a measurement are to become independent events, with consequences
that can be explored separately, a way must be found to dispose of the excess
information. In the previous sections, quantum correlation was analyzed from the
point of view of its role in acquiring information. Here, I shall discuss the flip side
of the story: Quantum correlations can also disperse information throughout the
degrees of freedom that are, in effect, inaccessible to the observer. Interaction with
the degrees of freedom external to the system – which we shall summarily refer to
as the environment – offers such a possibility.

Reduction of the state vector, ρc ⇒ ρr, decreases the information available
to the observer about the composite system SD. The information loss is needed if
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the outcomes are to become classical and thereby available as initial conditions to
predict the future. The effect of this loss is to increase the entropy H = −Trρ lnρ
by an amount

∆H = H(ρr) −H(ρc) = (|α|2 ln |α|2 + |β|2 ln |β|2) . (12)

Entropy must increase because the initial state described by ρc was pure,
H(ρc) = 0, and the reduced state is mixed. Information gain – the objective of
the measurement – is accomplished only when the observer interacts and becomes
correlated with the detector in the already precollapsed state ρr.

To illustrate the process of the environment-induced decoherence, consider a
system S, a detector D, and an environment E . The environment is also a quantum
system. Following the first step of the measurement process – establishment of a
correlation as shown in Equation (5) – the environment similarly interacts and
becomes correlated with the apparatus:

|Φc〉|E〉 = (α| ↑〉|d↑〉 + β| ↓〉|d↓〉)E0〉 ⇒ α| ↑〉|d↑〉|E↑〉 + β| ↓〉|d↓〉|E↓〉 = |Ψ〉 . (13)

The final state of the combined SDE “von Neumann chain” of correlated
systems extends the correlation beyond the SD pair. When the states of the en-
vironment Ei〉 corresponding to the states |d↑〉 and |d↓〉 of the detector are or-
thogonal, 〈Ei|Ei′〉 = δii′ , the density matrix for the detector-system combination
is obtained by ignoring (tracing over) the information in the uncontrolled (and
unknown) degrees of freedom

ρDS = TrE |Ψ〉〈Ψ| = Σi〈Ei|Ψ〉〈Ψ|Ei′〉
= |α|2| ↑〉〈↑ ||d↑〉〈d↑| + |β|2| ↓〉〈↓ ||d↓〉〈d↓| = ρr . (14)

The resulting ρr is precisely the reduced density matrix that von Neumann
called for. Now, in contrast to the situation described by Equations (9)–(11), a
superposition of the records of the detector states is no longer a record of a super-
position of the state of the system. A preferred basis of the detector, sometimes
called the “pointer basis” for obvious reasons, has emerged. Moreover, we have
obtained it – or so it appears – without having to appeal to von Neumann’s
nonunitary process 1 or anything else beyond the ordinary, unitary Schrödinger
evolution. The preferred basis of the detector – or for that matter, of any open
quantum system – is selected by the dynamics.

Not all aspects of this process are completely clear. It is, however, certain
that the detector-environment interaction Hamiltonian plays a decisive role. In
particular, when the interaction with the environment dominates, eigenspaces of
any observable Λ that commutes with the interaction Hamiltonian,

[Λ, Hint] = 0 . (15)

invariably end up on the diagonal of the reduced density matrix (Zurek 1981, 1982).
This commutation relation has a simple physical implication: It guarantees that
the pointer observable Λ will be a constant of motion, a conserved quantity under
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the evolution generated by the interaction Hamiltonian. Thus, when a system is
in an eigenstate of Λ, interaction with the environment will leave it unperturbed.

In the real world, the spreading of quantum correlations is practically in-
evitable. For example, when in the course of measuring the state of a spin-1/2
atom (see Figure 1b), a photon had scattered from the atom while it was traveling
along one of its two alternative routes, this interaction would have resulted in a
correlation with the environment and would have necessarily led to a loss of quan-
tum coherence. The density matrix of the SD pair would have lost its off-diagonal
terms. Moreover, given that it is impossible to catch up with the photon, such
loss of coherence would have been irreversible. As we shall see later, irreversibility
could also arise from more familiar, statistical causes: Environments are notorious
for having large numbers of interacting degrees of freedom, making extraction of
lost information as difficult as reversing trajectories in the Boltzmann gas.

Quantum Discord – A Measure of Quantumness

The contrast between the density matrices in Equations (6) and (7) is stark and
obvious. In particular, the entanglement between the system and the detector in
ρc is obviously quantum – classical systems cannot be entangled. The argument
against the “ignorance” interpretation of ρc still stands. Yet we would like to
have a quantitative measure of how much is classical (or how much is quantum)
about the correlations of a state represented by a general density matrix. Such
a measure of the quantumness of correlation was devised recently (Zurek 2000,
Ollivier and Zurek 2002). It is known as quantum discord. Of the several closely
related definitions of discord, we shall select one that is easiest to explain. It is
based on mutual information – an information-theoretic measure of how much
easier it is to describe the state of a pair of objects (S, D) jointly rather than
separately. One formula for mutual information I(S : D) is simply

I(S : D) = H(S) + H(D) − H(S, D) ,

where H(S) and H(D) are the entropies of S and D, respectively, and H(S, D)
is the joint entropy of the two. When S and D are not correlated (statistically
independent),

H(S, D) = H(S) + H(D) ,

and I(S : D) = 0. By contrast, when there is a perfect classical correlation be-
tween them (for example, two copies of the same book), H(S, D) = H(S) = H(D)
=I(S : D). Perfect classical correlation implies that, when we find out all about
one of them, we also know everything about the other, and the conditional entropy
H(S|D) (a measure of the uncertainty about S after the state of D is found out)
disappears. Indeed, classically, the joint entropy H(S, D) can always be decom-
posed into, say, H(D), which measures the information missing about D, and the
conditional entropy H(S|D). Information is still missing about S even after the
state of D has been determined: H(S, D) = H(D) + H(S|D). This expression for
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the joint entropy suggests an obvious rewrite of the preceding definition of mutual
information into a classically identical form, namely,

J (S : D) = H(S) + H(D) − (H(D) + H(S|D)) .

Here, we have abstained from the obvious (and perfectly justified from the classical
viewpoint) cancellation in order to emphasize the central feature of quantumness:
In quantum physics, the state collapses into one of the eigenstates of the measured
observable. Hence, a state of the object is redefined by a measurement. Thus, the
joint entropy can be defined in terms of the conditional entropy only after the
measurement used to access, say, D, has been specified. In that case,

H|dk〉 = (H(D) + H(S|D))|dk〉 .

This type of joint entropy expresses the ignorance about the pair (S, D) after
the observable with the eigenstates {|dk〉} has been measured on D. Of course,
H|dk〉(S, D) is not the only way to define the entropy of the pair. One can also
compute a basis-independent joint entropy H(S, D), the von Neumann entropy
of the pair. Since these two definitions of joint entropy do not coincide in the
quantum case, we can define a basis-dependent quantum discord

δ|dk〉(S|D) = I − J = (H(D) + H(S|D))|dk〉 + H(S, D)

as the measure of the extent by which the underlying density matrix describing
S and D is perturbed by a measurement of the observable with the eigenstates
{|dk〉}. States of classical objects – or classical correlations – are “objective”: They
exist independent of measurements. Hence, when there is a basis {|d̂k〉} such that
the minimum discord evaluated for this basis disappears,

δ̂(S|D) = min|dk〉{H(S|D) − (H(D) + H(S|D))|dk〉} = 0 ,

the correlation can be regarded as effectively classical (or more precisely, as “classi-
cally accessible through D”). One can then show that there is a set of probabilities
associated with the basis {|dk〉} that can be treated as classical. It is straightfor-
ward to see that, when S and D are entangled (for example, ρc = |φc〉〈φc|), then
δ̂ > 0 in all bases. By contrast, if we consider ρr, discord disappears in the basis
{|d↑〉, |d↓)〉} so that the underlying correlation is effectively classical.

It is important to emphasize that quantum discord is not just another mea-
sure of entanglement but a genuine measure of the quantumness of correlations. In
situations involving measurements and decoherence, quantumness disappears for
the preferred set of states that are effectively classical and thus serves as an indi-
cator of the pointer basis, which as we shall see, emerges as a result of decoherence
and einselection.

Decoherence: How Long Does It Take?

A tractable model of the environment is afforded by a collection of harmonic
oscillators (Feynman and Vernon 1963, Dekker 1981, Caldeira and Leggett 1983a,
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∆x

χ+

δ

χ–

Figure 2. A “Schrödinger Cat” State or a Coherent Superposi-
tion. This cat state ϕ(x), the coherent superposition of two Gauss-
ian wavepackets of Equation (18), could describe a particle in a
superposition of locations inside a Stern-Gerlach apparatus (see
Figure 1) or the state that develops in the course of a double-
slit experiment. The phase between the two components has been
chosen to be zero.

1983b, 1985, Joos and Zeh 1985, Hu et al. 1992) or, equivalently, by a quantum
field (Unruh and Zurek 1989). If a particle is present, excitations of the field
will scatter off the particle. The resulting “ripples” will constitute a record of
its position, shape, orientation, and so on, and most important, its instantaneous
location and hence its trajectory.

A boat traveling on a quiet lake or a stone that fell into water will leave such
an imprint on the water surface. Our eyesight relies on the perturbation left by
the objects on the preexisting state of the electromagnetic field. Hence, it is hardly
surprising that an imprint is left whenever two quantum systems interact, even
when “nobody is looking,” and even when the lake is stormy and full of preexisting
waves, and the field is full of excitations – that is, when the environment starts in
equilibrium at some finite temperature. “Messy” initial states of the environment
make it difficult to decipher the record, but do not preclude its existence.

A specific example of decoherence – a particle at position x interacting with
a scalar field φ (which can be regarded as a collection of harmonic oscillators)
through the Hamiltonian

Hint = εxdφ/dt (16)

where ε is the strength of the coupling, has been extensively studied by many,
including the investigators just referenced. The conclusion is easily formulated in
the so-called “high-temperature limit,” in which only thermal-excitation effects of
the field φ are taken into account and the effect of zero-point vacuum fluctuations
is neglected. In this case, the density matrix ρ(x, x′) of the particle in the position
representation evolves according to the master equation

ρ̇ =

Von Neumann Equation︷ ︸︸ ︷
− i

�
[H, ρ]︸ ︷︷ ︸

ρ̇=−FORCE=ΛV

−

Relaxation︷ ︸︸ ︷
γ(x − x′)

(
∂

∂x
− ∂

∂x′

)
︸ ︷︷ ︸

ρ̇=−γp

−

Decoherence︷ ︸︸ ︷
2mγkBT

�2
(x − x′)2ρ︸ ︷︷ ︸

Classical Phase Space

,

(17)
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where H is the particle’s Hamiltonian (although with the potential V (x) adjusted
because of Hint), γ is the relaxation rate, kB is the Boltzmann constant, and T
is the temperature of the field. Equation (17) is obtained by first solving exactly
the Schrödinger equation for a particle plus the field and then tracing over the
degrees of freedom of the field. I will not analyze Equation (17) in detail but
just point out that it naturally separates into three distinct terms, each of them
responsible for a different aspect of the effectively classical behavior. The first
term – the von Neumann equation (which can be derived from the Schrödinger
equation) – generates reversible classical evolution of the expectation value of any
observable that has a classical counterpart regardless of the form of ρ (Ehrenfest’s
theorem). The second term causes dissipation. The relaxation rate γ = η/2m is
proportional to the viscosity η = ε2/2 due to the interaction with the scalar field.
That interaction causes a decrease in the average momentum and loss of energy.
The last term also has a classical counterpart: It is responsible for fluctuations or
random “kicks” that lead to Brownian motion. We shall see this in more detail in
the next section.

Figure 3. Evolution of the Density Matrix for the Schrödinger
Cat State in Figure 2. (a)This plot shows the density matrix for
the cat state in Figure 2 in the position representation ρ(x, x′) =
ϕ(x)ϕ∗(x). The peaks near the diagonal (green) correspond to
the two possible locations of the particle. The peaks away from
the diagonal (red) are due to quantum coherence. Their existence
and size demonstrate that the particle is not in either of the two
approximate locations but in a coherent superposition of them.
(b) Environment-induced decoherence causes decay of the off-
diagonal terms of ρ(x, x′). Here, the density matrix in (a) has
partially decohered. Further decoherence would result in a den-
sity matrix with diagonal peaks only. It can then be regarded as
a classical probability distribution with an equal probability of
finding the particle in either of the locations corresponding to the
Gaussian wave packets.



Decoherence and the Transition from Quantum to Classical – Revisited 15

For our purposes, the effect of the last term on quantum superpositions is of
greatest interest. I shall show that it destroys quantum coherence, eliminating off-
diagonal terms responsible for quantum correlations between spatially separated
pieces of the wavepacket. It is therefore responsible for the classical structure of the
phase space, as it converts superpositions into mixtures of localized wave packets
which, in the classical limit, turn into the familiar points in phase space. This
effect is best illustrated by an example. Consider the “cat” state shown in Figure
2, where the wave function of a particle is given by a coherent superposition of
two Gaussians: ϕ(x) = (χ+(x) + χ−(x))/2

1
2 and the Gaussians are

χ±(x) = 〈x|±〉 exp

[
−
(
x ± ∆x

2

)2
4δ2

]
. (18)

For the case of wide separation (∆x >> δ), the corresponding density matrix
ρ(x, x′) = ϕ(x)ϕ∗(x′) has four peaks: Two on the diagonal defined by x = x′, and
two off the diagonal for which x and x′ are very different (see Figure 3). Quantum
coherence is due to the off-diagonal peaks. As those peaks disappear, position
emerges as an approximate preferred basis.

The last term of Equation (17), which is proportional to (x − x′)2, has lit-
tle effect on the diagonal peaks. By contrast, it has a large effect on the off-
diagonal peaks for which (x − x′)2 is approximately the square of the separa-
tion (∆x)2. In particular, it causes the off-diagonal peaks to decay at the rate
d
dt (ρ

±) ∼ 2γmkBT/�2(∆x)2ρ± = τ−1
D ρ+. It follows that quantum coherence will

disappear on a decoherence time scale (Zurek 1984);

τD � γ−1

(
λdB

∆x

)2

= τR

(
�

∆x
√

2mkBT

)2

(19)

where λdB = �/(2mkBT )−
1
2 is the thermal de Broglie wavelength. For macroscopic

objects, the decoherence time τD is typically much less than the relaxation time
τR = γ−1. For a system at temperature T = 300 kelvins with mass m = 1 gram and
separation ∆x = 1 centimeter, the ratio of the two time scales is τD/τR ∼ 10−40!
Thus, even if the relaxation rate were of the order of the age of the Universe,
∼ 1017 seconds, quantum coherence would be destroyed in τD ∼ 10−23 second.

For microscopic systems and, occasionally, even for very macroscopic ones,
the decoherence times are relatively long. For an electron (me = 10−27grams),
τD can be much larger than the other relevant time scales on atomic and larger
energy and distance scales. For a massive Weber bar, tiny ∆x(∼ 10−17centimeter)
and cryogenic temperatures suppress decoherence. Nevertheless, the macroscopic
nature of the object is certainly crucial in facilitating the transition from quantum
to classical.
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Experiments on Decoherence

A great deal of work on master equations and their derivations in different situa-
tions has been conducted since 1991, but in effect, most of the results described
above stand. A summary can be found in Paz and Zurek (2001) and a discussion
of the caveats to the simple conclusions regarding decoherence rates appears in
Anglin et al. (1997).

Perhaps the most important development in the study of decoherence is on
the experimental front. In the past decade, several experiments probing decoher-
ence in various systems have been carried out. In particular, Michel Brune, Serge
Haroche, Jean-Michel Raimond, and their colleagues at École Normale Supérieure
in Paris (Brune et al. 1996, Haroche 1998) have performed a series of microwave
cavity experiments in which they manipulate electromagnetic fields into a
Schrödinger-cat-like superposition using rubidium atoms. They probe the ensu-
ing loss of quantum coherence. These experiments have confirmed the basic tenets
of decoherence theory. Since then, the French scientists have applied the same
techniques to implement various quantum information-processing ventures. They
are in the process of upgrading their equipment in order to produce “bigger and
better” Schrödinger cats and to study their decoherence.

A little later, Wineland, Monroe, and coworkers (Turchette et al. 2000) used
ion traps (set up to implement a fragment of one of the quantum computer designs)
to study the decoherence of ions due to radiation. Again, theory was confirmed,
further advancing the status of decoherence as both a key ingredient of the ex-
planation of the emergent classicality and a threat to quantum computation. In
addition to these developments, which test various aspects of decoherence induced
by a real or simulated “large environment,” Pritchard and his coworkers at the
Massachusetts Institute of Technology have carried out a beautiful sequence of
experiments by using atomic interferometry in order to investigate the role of in-
formation transfer between atoms and photons (see Kokorowski et al. 2001 and
other references therein). Finally, “analogue experiments” simulating the behavior
of the Schrödinger equation in optics (Cheng and Raymer 1999) have explored
some of the otherwise difficult-to-access corners of the parameter space.

In addition to these essentially mesoscopic Schrödinger cat decoherence ex-
periments, designs of much more substantial “cats” (for example, mirrors in su-
perpositions of quantum states) are being investigated in several laboratories.

Classical Limit of Quantum Dynamic

The Schrödinger equation was deduced from classical mechanics in the Hamilton-
Jacobi form. Thus, it is no surprise that it yields classical equations of motion when
� can be regarded as small. This fact, along with Ehrenfest’s theorem, Bohr’s cor-
respondence principle, and the kinship of quantum commutators with the classical
Poisson brackets, is part of the standard lore found in textbooks. However, es-
tablishing the quantum-classical correspondence involves the states as well as the
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equations of motion. Quantum mechanics is formulated in Hilbert space, which
can accommodate localized wavepackets with sensible classical limits as well as
the most bizarre and quantum superpositions. By contrast, classical dynamics
happens in phase space. To facilitate the study of the transition from quantum
to classical behavior, it is convenient to employ the Wigner transform of a wave
function ψ(x):

W (x, p) =
1

2π�

∫ ∞

−∞
eipy/�ψ∗

(
x +

y

2

)
ψ
(
x − y

2

)
dy , (20)

which expresses quantum states as functions of position and momentum.
The Wigner distribution W (x, p) is real, but it can be negative. Hence, it

cannot be regarded as a probability distribution. Nevertheless, when integrated
over one of the two variables, it yields the probability distribution for the other (for
example,

∫
W (x, p)dp = |ψ(x)|2). For a minimum uncertainty wavepacket, ψ(x) =

π− 1
4 δ−

1
2 exp{−(x − x0)2/2δ2 + ip0x/�}, the Wigner distribution is a Gaussian in

both x and p:

W (x, p) =
1
π�

exp
{
− (x − x0)2

δ2
− (p − p0)2δ2

�2

}
. (21)

It describes a system that is localized in both x and p. Nothing else that Hilbert
space has to offer is closer to approximating a point in classical phase space. The
Wigner distribution is easily generalized to the case of a general density matrix
ρ(x, x′):

W (x, p) =
1

2π�

∫ ∞

−∞
eipy/�ρ

(
x − y

2
, x +

y

2

)
dy , (22)

where ρ(x, x′) is, for example, the reduced density matrix of the particle discussed
before.

The phase-space nature of the Wigner transform suggests a strategy for ex-
hibiting classical behavior: Whenever W (x, p) represents a mixture of localized
wavepackets – as in Equation (21) –it can be regarded as a classical probability
distribution in the phase space. However, when the underlying state is truly quan-
tum, as is the superposition in Figure 2, the corresponding Wigner distribution
function will have alternating sign – see Figure 4(a). This property alone will make
it impossible to regard the function as a probability distribution in phase space.
The Wigner function in Figure 4(a) is

W (x, p) ∼ (W+ + W−)
2

+
1
π�

exp
{
−p2δ2

�2
− x2

δ2

}
· cos

(
∆x

�
p

)
, (23)

where the Gaussians W+ and W− are Wigner transforms of the Gaussian
wavepacket χ+ and χ−. If the underlying state had been a mixture of χ+ and
χ− rather than a superposition, the Wigner function would have been described
by the same two Gaussians W+ and W−, but the oscillating term would have been
absent.
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Figure 4. Wigner Distributions and Their Decoherence for Coherent Su-

perpositions. (a) The Wigner distribution W (x, p) is plotted as a function of

x and p for the cat state of Figure 2. Note the two separate positive peaks

as well as the oscillating interference term in between them. This distribu-

tion cannot be regarded as a classical probability distribution in phase space

because it has negative contributions. (b–e) Decoherence produces diffusion

in the direction of the momentum. As a result, the negative and positive rip-

ples of the interference term in (x, p) diffuse into each other and cancel out.

This process is almost instantaneous for open macroscopic systems. In the ap-

propriate limit, the Wigner function has a classical structure in phase space

and evolves in accord with the equations of classical dynamics. (a′–e′) The

analogous initial Wigner distribution and its evolution for a superposition of

momenta are shown. The interference terms disappear more slowly on a time

scale dictated by the dynamics of the system: Decoherence is caused by the

environment coupling to (that is, monitoring) the position of the system –

see Equation(16). So, for a superposition of momenta, it will start only after

different velocities move the two peaks into different locations.
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The equation of motion for W (x, p) of a particle coupled to an environment
can be obtained from Equation (17) for ρ(x, x′):

∂W

∂t
= − p

m

∂

∂x
W +

∂V

∂x

∂

∂p
W︸ ︷︷ ︸

Liouville Equation

+ 2γ
∂

∂p
pW︸ ︷︷ ︸

Friction

+ D
∂2W

∂p2︸ ︷︷ ︸
Decoherence

, (24)

where V is the renormalized potential and D = 2mγBT = ηkBT . The three terms
of this equation correspond to the three terms of Equation (17).

The first term is easily identified as a classical Poisson bracket {H, W}. That
is, when w(x, p) is a familiar classical probability density in phase space, then it
evolves according to:

∂w

∂t
= −∂w

∂x

∂H

∂p
+

∂w

∂p

∂H

∂x
= {H, w} = Lw (25)

where L stands for the Liouville operator. Thus, classical dynamics in its Liouville
form follows from quantum dynamics at least for the harmonic oscillator case,
which is described rigorously by Equations (17) and (24). (For more general V (x),
the Poisson bracket would have to be supplemented by quantum corrections of
order �.) The second term of Equation (24) represents friction. The last term
results in the diffusion of W (x, p) in momentum at the rate given by D.

Classical equations of motion are a necessary but insufficient ingredient of
the classical limit: We must also obtain the correct structure of the classical phase
space by barring all but the probability distributions of well-localized wavepackets.
The last term in Equation (24) has precisely this effect on nonclassical W (x, p).
For example, the Wigner function for the superposition of spatially localized wave
packets – Figure 4(a) – has a sinusoidal modulation in the momentum coordinate
produced by the oscillating term cos((∆x/�)p). This term, however, is an eigen-
function of the diffusion operator ∂2/∂p2 in the last term of Equation (24). As a
result, the modulation is washed out by diffusion at a rate

τ−1
D = −Ẇ

W
=

(
D ∂2

∂p2 W
)

W
=

2mγkBT (∆x)2

�2
. (26)

Negative valleys of W (x, p) fill in on a time scale of order τD, and the distribu-
tion retains just two peaks, which now correspond to two classical alternatives-see
Figures 4(a) to 4(e). The Wigner function for a superposition of momenta, shown
in Figure 4(a′), also decoheres as the dynamics causes the resulting difference in
velocities to damp out the oscillations in position and again yield two classical
alternatives – see Figures 4(b′) to 4(e′).

The ratio of the decoherence and relaxation time scales depends on �2/m –
see Equation (19). Therefore, when m is large and � small, τD can be nearly zero –
decoherence can be nearly instantaneous – while, at the same time, the motion of
small patches (which correspond to the probability distribution in classical phase
space) in the smooth potential becomes reversible. This idealization is responsible
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for our confidence in classical mechanics, and, more generally, for many aspects of
our belief in classical reality.

The discussion above demonstrates that decoherence and the transition from
quantum to classical (usually regarded as esoteric) is an inevitable consequence
of the immersion of a system in an environment. True, our considerations were
based on a fairly specific model – a particle in a heat bath of harmonic oscillators.
However, this is often a reasonable approximate model for many more compli-
cated systems. Moreover, our key conclusions – such as the relation between the
decoherence and relaxation time scales in Equation (19) – do not depend on any
specific features of the model. Thus, one can hope that the viscosity and the re-
sulting relaxation always imply decoherence and that the transition from quantum
to classical can be always expected to take place on a time scale of the order of
the above estimates.

The Predictability Sieve

Since 1991, the understanding of the emergence of the preferred pointer states dur-
ing the process of decoherence has advanced a great deal. Perhaps the most impor-
tant advance to date is the predictability sieve (Zurek 1993, Zurek et al. 1993), a
more general definition of pointer states that can be used even when the interaction
with the environment does not dominate over the self-Hamiltonian of the system.
The predictability sieve sifts through the Hilbert space of a system interacting with
its environment and selects states that are most predictable. Motivation for the
predictability sieve comes from the observation that classical states exist or evolve
predictably. Therefore, selecting quantum states that retain predictability in spite
of the coupling to the environment is the obvious strategy in search of classicality.
To implement the predictability sieve, we imagine a (continuously infinite) list of
all the pure states {|ψ〉} in the Hilbert space of the system in question. Each of
them would evolve, after a time t, into a density matrix ρ|ψ〉(t). If the system were
isolated, all the density matrices would have the form ρ|ψ〉(t) = |ψ(t)〉〈ψ(t)| of
projection operators, where |ψ(t)〉 is the appropriate solution of the Schrödinger
equation. But when the system is coupled to the environment (that is, the system
is “open”), ρ|ψ〉(t) is truly mixed and has a nonzero von Neumann entropy. Thus,
one can compute H(ρ|ψ〉(t)) = −Trρ|ψ〉 log ρ|ψ〉, thereby defining a functional on
the Hilbert space HS of the system, |ψ〉 → H(|ψ〉, t). An obvious way to look for
predictable, effectively classical states is to seek a subset of all {|ψ〉} that mini-
mize H(|ψ〉, t) after a certain, sufficiently long time t. When such preferred pointer
states exist, are well defined (that is, the minimum of the entropy H(|ψ〉, t) differs
significantly for pointer states from the average value), and are reasonably stable
(that is, after the initial decoherence time, the set of preferred states is reasonably
insensitive to the precise value of t), one can consider them as good candidates for
the classical domain. Figure A illustrates an implementation of the predictability
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Figure A. The Predictability Sieve for the Underdamped Har-
monic Oscillator. One measure of predictability is the so-called
purity (Trρ2), which is plotted as a function of time for mix-
tures of minimum uncertainty wavepackets in an underdamped
harmonic oscillator with γ/ω = 10−4. The wavepackets start with
different squeeze parameters s. (Trρ2) serves as a measure of the
purity of the reduced density matrix ρ. The predictability sieve
favors coherent states (s = 1), which have the shape of a ground
state, that is, the same spread in position and momentum when
measured in units natural for the harmonic oscillator. Because
they are the most predictable (more than the energy eigenstates),
they are expected to play the crucial role of the pointer basis in
the transition from quantum to classical.

sieve strategy using a different, simpler measure of predictability – purity (Trρ2)
– rather than the von Neumann entropy, which is much more difficult to compute.

Quantum Chaos and Phase Space Aspects of Quantum – Classical
Correspondence

Classical mechanics “happens” in phase space. It is therefore critically important
to show that quantum theory can – in the presence of decoherence – reproduce the
basic structure of classical phase space and that it can emulate classical dynamics.
The argument put forward in my original paper (1991) has since been amply
supported by several related developments.

The crucial idealization that plays a key role in classical physics is a point. Be-
cause of the Heisenberg’s indeterminacy principle ∆x∆p ≥ �/2. Hence, quantum
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theory does not admit states with simultaneously vanishing ∆x and ∆p. However,
as the study of the predictability sieve has demonstrated, in many situations rel-
evant to the classical limit of quantum dynamics one can expect decoherence to
select pointer states that are localized in both ∆x and ∆p. That is, approximate
minimum uncertainty wavepackets are a quantum version of points. They appear
naturally in the underdamped harmonic oscillator coupled weakly to the environ-
ment (Zurek, 1993, Zurek et al. 1993, Gallis 1996). These results are also relevant
to the transition from quantum to classical in the context of field theory with
the added twist that the kinds of states selected will typically differ for bosonic
and fermionic fields (Anglin and Zurek 1996) because bosons and fermions tend
to couple differently to their environments. Finally, under suitable circumstances,
einselection can even single out energy eigenstates of the self-Hamiltonian of the
system, thus justifying in part the perception of “quantum jumps” (Paz and Zurek
1999).

An intriguing arena for the discussion of quantum - classical correspondence
is quantum chaos. To begin with, classical and quantum evolutions from the same
initial conditions of a system lead to very different phase space “portraits.” The
quantum phase space portrait will depend on the particular representation used,
but there are good reasons to favor the Wigner distribution. Studies that use the
Wigner distribution indicate that, at the moment when any quantum - classical
correspondence is lost in chaotic dynamics, even the averages computed using
properties of the classical and quantum states begin to differ (Karkuszewski et al.
2002).

Decoherence appears to be very effective in restoring correspondence. This
point, originally demonstrated almost a decade ago (Zurek and Paz 1994, 1995)
has since been amply corroborated by numerical evidence (Habib et al. 1998). Ba-
sically, decoherence eradicates the small-scale interference accompanying the rapid
development of large-scale coherence in quantum versions of classically chaotic sys-
tems (refer to Figure B). This outcome was expected. In order for the quantum
to classical correspondence to hold, the coherence length �C of the quantum state
must satisfy the following inequality: �C = �/(2Dλ)

1
2 << χ, where λ is the Lya-

punov exponent, D is the usual coefficient describing the rate of decoherence, and
χ is the scale on which the potential V (x) is significantly nonlinear:

χ �
√

V ′

V ′′′ .

When a quantum state is localized on scales small compared to χ (which is the
import of the inequality above), its phase space evolution is effectively classical,
but because of chaos and decoherence, it becomes irreversible and unpredictable.

A surprising corollary of this line of argument is the realization (Zurek and
Paz 1994) that the dynamical second law – entropy production at the scale set by
the dynamics of the system and more or less independent of the strength of the
coupling to the environment – is a natural and, indeed, an inevitable consequence
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of decoherence. This point has been since confirmed in numerical studies (Miller
and Sarkar 1999, Pattanayak 1999, Monteoliva and Paz 2000).

Figure B. Decoherence in a Chaotic Driven Double-Well Sys-
tem. This numerical study (Habib et al. 1998) of a chaotic driven
double-well system described by the Hamiltonian H = p2/2m −
Ax+Bx4 + Fx cos(ωt) with m = 1, A = 10, B = 0.5, F = 10,
and ω = 6.07 illustrates the effectiveness of decoherence in the
transition from quantum to classical. These parameters result in
a chaotic classical system with a Lyapunov exponent λ � 0.5.
The three snapshots taken after 8 periods of the driving force il-
lustrate phase space distributions in (a) the quantum case, (b)
the classical case, and (c) the quantum case but with decoherence
(D = 0.025). The initial condition was always the same Gaussian,
and in the quantum cases, the state was pure. Interference fringes
are clearly visible in (a), which bears only a vague resemblance
to the classical distribution in (b). By contrast, (c) shows that
even modest decoherence helps restore the quantum-classical cor-
respondence. In this example the coherence length �C is not much
smaller than the typical nonlinearity scale, so the system is on the
border between quantum and classical. Indeed, traces of quantum
interference are still visible in (c) as blue “troughs,” or regions
where the Wigner function is still slightly negative. The change
in color from red to blue shown in the legends for (a) and (c)
corresponds to a change from positive peaks to negative troughs.
In the ab initio classical case (b), there are no negative troughs.

Other surprising consequences of the study of Wigner functions in the
quantum-chaotic context is the realization that they develop phase space structure
on the scale associated with the sub-Planck action α = �2/A << �, where A is
the classical action of the system, and that this sub-Planck action is physically
significant (Zurek 2001b). This can be seen in Figure B part (a), where a small
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black square with the area of � is clearly larger than the smallest “ripples” in
the image. This point was to some extent anticipated by the plots of the Wigner
functions of Schrödinger cats (see Figures 4a and 4(a′) in this article) a version of
which appeared in the 1991 Physics Today version of this paper – the interference
term of the Wigner function has a sub-Planck structure.

A lot has happened in establishing phase space aspects of quantum - classical
correspondence, but a lot more remains to be done. (A more thorough summary
of the past accomplishments and remaining goals can be found in Zurek 2001b).

Quantum Theory of Classical Reality

Classical reality can be defined purely in terms of classical states obeying classical
laws. In the past few sections, we have seen how this reality emerges from the sub-
strate of quantum physics: Open quantum systems are forced into states described
by localized wavepackets. They obey classical equations of motion, although with
damping terms and fluctuations that have a quantum origin. What else is there
to explain?

Controversies regarding the interpretation of quantum physics originate in
the clash between the predictions of the Schrödinger equation and our percep-
tions. I will therefore conclude this paper by revisiting the source of the problem
– our awareness of definite outcomes. If these mental processes were essentially
unphysical, there would be no hope of formulating and addressing the ultimate
question – why do we perceive just one of the quantum alternatives? – within the
context of physics. Indeed, one might be tempted to follow Eugene Wigner (1961)
and give consciousness the last word in collapsing the state vector. I shall assume
the opposite. That is, I shall examine the idea that the higher mental processes
all correspond to well-defined, but, at present, poorly understood information-
processing functions that are being carried out by physical systems, our brains.

Described in this manner, awareness becomes susceptible to physical analy-
sis. In particular, the process of decoherence we have described above is bound to
affect the states of the brain: Relevant observables of individual neurons, includ-
ing chemical concentrations and electrical potentials, are macroscopic. They obey
classical, dissipative equations of motion. Thus, any quantum superposition of the
states of neurons will be destroyed far too quickly for us to become conscious of
the quantum “goings on”. Decoherence, or more to the point, environment-induced
superselection, applies to our own “state of mind”.

One might still ask why the preferred basis of neurons becomes correlated
with the classical observables in the familiar universe. It would be, after all, so
much easier to believe in quantum physics if we could train our senses to perceive
nonclassical superpositions. One obvious reason is that the selection of the avail-
able interaction Hamiltonians is limited and constrains the choice of detectable
observables. There is, however, another reason for this focus on the classical that
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must have played a decisive role: Our senses did not evolve for the purpose of ver-
ifying quantum mechanics. Rather, they have developed in the process in which
survival of the fittest played a central role. There is no evolutionary reason for per-
ception when nothing can be gained from prediction. And, as the predictability
sieve illustrates, only quantum states that are robust in spite of decoherence, and
hence, effectively classical, have predictable consequences. Indeed, classical reality
can be regarded as nearly synonymous with predictability.

There is little doubt that the process of decoherence sketched in this paper
is an important element of the big picture central to understanding the transition
from quantum to classical. Decoherence destroys superpositions. The environment
induces, in effect, a superselection rule that prevents certain superpositions from
being observed. Only states that survive this process can become classical.

There is even less doubt that this rough outline will be further extended.
Much work needs to be done both on technical issues (such as studying more
realistic models that could lead to additional experiments) and on problems that
require new conceptual input (such as defining what constitutes a “system” or
answering the question of how an observer fits into the big picture).

Decoherence is of use within the framework of either of the two interpreta-
tions: It can supply a definition of the branches in Everett’s Many Worlds Inter-
pretation, but it can also delineate the border that is so central to Bohr’s point of
view. And if there is one lesson to be learned from what we already know about
such matters, it is that information and its transfer play a key role in the quantum
universe.

The natural sciences were built on a tacit assumption: Information about the
universe can be acquired without changing its state. The ideal of “hard science”
was to be objective and provide a description of reality. Information was regarded
as unphysical, ethereal, a mere record of the tangible, material universe, an incon-
sequential reflection, existing beyond and essentially decoupled from the domain
governed by the laws of physics. This view is no longer tenable (Wheeler 1991,
Landauer 1991). Quantum theory has put an end to this Laplacean dream about
a mechanical universe. Observers of quantum phenomena can no longer be just
passive spectators. Quantum laws make it impossible to gain information without
changing the state of the measured object. The dividing line between what is and
what is known to be has been blurred forever. While abolishing this boundary,
quantum theory has simultaneously deprived the “conscious observer” of a mo-
nopoly on acquiring and storing information: Any correlation is a registration, any
quantum state is a record of some other quantum state. When correlations are
robust enough, or the record is sufficiently indelible, familiar classical “objective
reality” emerges from the quantum substrate. Moreover, even a minute interaction
with the environment, practically inevitable for any macroscopic object, will es-
tablish such a correlation: The environment will, in effect, measure the state of the
object, and this suffices to destroy quantum coherence. The resulting decoherence
plays, therefore, a vital role in facilitating the transition from quantum to classical.
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The Existential Interpretation

The quantum theory of classical reality has developed significantly since 1991.
These advances are now collectively known as the existential interpretation (Zurek
2001a). The basic difference between quantum and classical states is that the ob-
jective existence of the latter can be taken for granted. That is, a system’s clas-
sical state can be simply “found out” by an observer originally ignorant of any
of its characteristics. By contrast, quantum states are hopelessly “malleable” – it
is impossible in principle for an observer to find out an unknown quantum state
without perturbing it. The only exception to this rule occurs when an observer
knows beforehand that the unknown state is one of the eigenstates of some def-
inite observable. Then and only then can a nondemolition measurement (Caves
et al. 1980) of that observable be devised so that another observer who knew the
original state would not notice any perturbations when making a confirmatory
measurement.

If the unknown state cannot be found out – as is indeed the case for iso-
lated quantum systems – then one can make a persuasive case that such states are
subjective, and that quantum state vectors are merely records of the observer’s
knowledge about the state of a fragment of the Universe (Fuchs and Peres 2000).
However, einselection is capable of converting such malleable and “unreal” quan-
tum states into solid elements of reality. Several ways to argue this point have
been developed since the early discussions (Zurek 1993, 1998, 2001a). In effect, all
of them rely on einselection, the emergence of the preferred set of pointer states.
Thus, observers aware of the structure of the Hamiltonians (which are “objective,”
can be found out without “collateral damage”, and in the real world, are known
well enough in advance) can also divine the sets of preferred pointer states (if they
exist) and thus discover the preexisting state of the system.

One way to understand this environment – induced objective existence is to
recognize that observers – especially human observers – never measure anything
directly. Instead, most of our data about the Universe is acquired when information
about the systems of interest is intercepted and spread throughout the environ-
ment. The environment preferentially records the information about the pointer
states, and hence, only information about the pointer states is readily available.
This argument can be made more rigorous in simple models, whose redundancy
can be more carefully quantified (Zurek 2000, 2001a).

This is an area of ongoing research. Acquisition of information about the sys-
tems from fragments of the environment leads to the so-called conditional quantum
dynamics, a subject related to quantum trajectories (Carmichael 1993). In partic-
ular one can show that the predictability sieve also works in this setting (Dalvit
et al. 2001).

The overarching open question of the interpretation of quantum physics – the
“meaning of the wave function” – appears to be in part answered by these recent
developments. Two alternatives are usually listed as the only conceivable answers.
The possibility that the state vector is purely epistemological (that is, solely a
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record of the observer’s knowledge) is often associated with the Copenhagen In-
terpretation (Bohr 1928). The trouble with this view is that there is no unified
description of the Universe as a whole: The classical domain of the Universe is
a necessary prerequisite, so both classical and quantum theory are necessary and
the border between them is, at best, ill-defined. The alternative is to regard the
state vector as an ontological entity – as a solid description of the state of the
Universe akin to the classical states. But in this case (favored by the supporters of
Everett’s Many Worlds Interpretation), everything consistent with the universal
state vector needs to be regarded as equally “real.”

The view that seems to be emerging from the theory of decoherence is in
some sense somewhere in between these two extremes. Quantum state vectors
can be real, but only when the superposition principle – a cornerstone of quantum
behavior – is “turned off” by einselection. Yet einselection is caused by the transfer
of information about selected observables. Hence, the ontological features of the
state vectors – objective existence of the einselected states – is acquired through
the epistemological “information transfer.”

Obviously, more remains to be done. Equally obviously, however, decoher-
ence and einselection are here to stay. They constrain the possible solutions after
the quantum – classical transition in a manner suggestive of a still more radical
view of the ultimate interpretation of quantum theory in which information seems
destined to play a central role. Further speculative discussion of this point is be-
yond the scope of the present paper, but it will be certainly brought to the fore
by (paradoxically) perhaps the most promising applications of quantum physics
to information processing. Indeed, quantum computing inevitably poses questions
that probe the very core of the distinction between quantum and classical. This
development is an example of the unpredictability and serendipity of the process of
scientific discovery: Questions originally asked for the most impractical of reasons
– questions about the EPR paradox, the quantum-to-classical transition, the role
of information, and the interpretation of the quantum state vector – have become
relevant to practical applications such as quantum cryptography and quantum
computation.
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Monitoring the Decoherence of Mesoscopic
Quantum Superpositions in a Cavity

Jean-Michel Raimond and Serge Haroche

Abstract. Decoherence is an extremely fast and efficient environment-induced
process transforming macroscopic quantum superpositions into statistical mix-
tures. It is an essential step in quantum measurement and a formidable obsta-
cle for a practical use of quantum superpositions (quantum computing for in-
stance). For large objects, decoherence is so fast that its dynamics is unobserv-
able. Mesoscopic fields stored in a high-quality superconducting millimeter-
wave cavity, a modern equivalent to Einstein’s ‘photon box’, are ideal tools to
reveal the dynamics of the decoherence process. Their interaction with a single
circular Rydberg atom prepares them in a quantum superposition of fields,
containing a few photons, with different classical phases. The evolution of this
‘Schrödinger cat’ state can be later probed with a ‘quantum mouse’, another
atom, assessing its coherence. We describe here the experiments performed
along these lines at ENS, and stress the deep links between decoherence and
complementarity.

1. Introduction

Quantum state superpositions are ubiquitous in the microscopic world. They are
at the heart of any interferometry experiment, be them either the fancy quantum
interferences of laser cooled atoms or the usual light interferences observed, for
instance, in the Young’s double slit device.

Quite obviously, these quantum superpositions do not invade our macroscopic
world. At out scale, there is not such a thing that an object following two paths at
the same time or, to quote once more Schrödinger’s provocative wording, a cat that
would be suspended in quantum limbs in a quantum superposition of its ‘dead’
and ‘alive’ states. In fact, we observe only a tiny fraction of all possible states of
an immense Hilbert space.

Decoherence is the extremely efficient mechanism that confines the weird-
ness of the quantum world at a microscopic scale and that prevents the quantum
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monsters from entering our lives [1, 2, 3]. Any quantum system is coupled to an
environment. For microscopic systems, made of a single spin, a single atom or a
single photon, this coupling results in the usual relaxation mechanism, setting a
finite lifetime to the system’s energy, for instance.

For a mesoscopic quantum superposition, the environment very rapidly trans-
forms it into a mere statistical mixture, obeying the standard probability laws for
exclusive events. The decoherence time scale decreases when a parameter measur-
ing the distance between the states in the superposition increases. For superposi-
tions of very different states, the decoherence time scale is extraordinarily short,
making the observation of such quantum superpositions practically impossible (see
W. Zurek’s and H.D. Zeh’s contributions in this Volume).

Observing our classical world is a strong indication of the validity of the
decoherence concept. It would, obviously, be much more interesting to study the
dynamics of the decoherence, to unveil its inner workings and to put our under-
standing of this essential phenomenon under close scrutiny.

Testing experimentally decoherence is a challenging task. First, it is so effi-
cient that there is no hope to resolve its dynamics when it comes to macroscopic
objects, even much simpler than a cat. One should thus control a single meso-
scopic quantum system. Larger than a single atom or a single photon, it should
be nevertheless sufficiently isolated from its environment to provide an accessible
decoherence time scale. It should first be prepared in a superposition of states at
a mesoscopic ‘distance’ in the system’s phase space. Finally, a signal indicating
the degree of coherence (of ‘quantumness’) of the final system’s state should be
obtained and studied as a function of time, revealing the decoherence dynamics.

Cavity Quantum Electrodynamics [4] and ion trap experiments [5] are ideally
suited for these experiments. Both implement a simple quantum system, made up
of a single two-level system (a spin-1/2) strongly interacting with a mesoscopic
quantum oscillator (a spring). In the cavity QED case, the oscillator is a single
mode of a high quality cavity, interacting with a single atom. In the ion trap
experiments, the oscillator is the mechanical motion of the ion in the trap, coupled
by appropriate laser beams to the ion’s internal state. In both cases, the spin/spring
interaction can be tailored to cast the oscillator in a mesoscopic quantum state
superposition [6, 7]. The decoherence dynamics, unveiled for the first time in a
cavity QED experiment [7], has also been studied in the ion trap context [8].

We shall describe here the cavity QED experiments performed at ENS on
‘Schrödinger cat states’ of the cavity field and their decoherence [4]. These experi-
ments use circular Rydberg atoms interacting, one at a time, with a superconduct-
ing cavity. These cavities are a reasonable modern approximation of the ‘photon
box’ that Bohr and Einstein were using in their heated debates about quantum
mechanics. They are able to store microwave fields for long times, up to a millisec-
ond, corresponding to quality factors Q in the 108 range. Their mode, equivalent
to an harmonic oscillator, is thus pretty well isolated from the outside world.

Circular Rydberg states have a high principal quantum number, around 50 in
these experiments, and maximum orbital and magnetic quantum numbers. They
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Figure 1. Scheme of the ENS cavity QED set-up.

have a nearly macroscopic size: the atomic radius is 0.1 µm, comparable to the
size of a living organism, virus or bacteria. They are blessed with remarkable
properties [4], being long-lived (radiative lifetime about 30 ms) with a huge dipole
strongly coupling the transition between two adjacent states to millimeter-waves.
The atomic transition frequency can be tuned by Stark effect in a d.c. electric
field. Finally, circular atoms can be detected in a selective and sensitive way using
field ionization.

Figure 1 presents the ENS experimental scheme. In box B, velocity-selected
rubidium atoms effusing from oven O are prepared in the circular states |e〉 or |g〉,
with principal quantum numbers 51 and 50 respectively. The atomic samples are
excited at a given time. Their position is thus known at any time during their 20 cm
transit through the apparatus until they are finally detected in the field-ionization
counter D, which discriminates |e〉 and |g〉. The atoms are protected from the room-
temperature backbody field by a 1K cryogenic environment. The atom number in
a sample obeys a Poisson statistics, with much less than one atom on the average.
When an event is recorded by D (detection efficiency > 80%), the probability
that it corresponds to more than one atom is negligible. The atomic state can be
manipulated before or after the interaction with the cavity C by resonant classical
microwave fields produced in the zones R1 and R2 by the additional source S′.

The |e〉 → |g〉 transition, at 51.1 GHz, is resonant or nearly resonant with
the superconducting Fabry Perot cavity C. The photon storage time, Tc, is of the
order of 1 ms. A classical source, S, injects classical fields in C, with controlled
amplitudes and phases. An electric field applied across the mirrors tunes the atomic
transition via the Stark effect in or out of resonance with C, at well defined times,
leading to a precise control of the atom-cavity interaction dynamics.

We shall first, in Section 2, describe the quantum optics theoretical tools
necessary to analyze the decoherence experiments. We first briefly recall the field
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quantization in a single mode, equivalent to a one-dimensional harmonic oscilla-
tor. We then describe two important quantum fields, the coherent states and the
Schrödinger cat states. The coherent states are the most classical field states, being
produced by classical sources such as S. They are also the most stable with respect
to cavity relaxation, the ‘pointer states’ for the field. The cat states are quantum
superpositions of different coherent states and present remarkable quantum fea-
tures. Finally, we describe cavity mode relaxation, either in the Master equation
or in the Monte Carlo trajectories approaches, which shed complementary lights
on this important process.

Section 3 is devoted to the production an detection of Schrödinger cat states
in the cavity. We describe first the atom-cavity interaction in terms of the ‘dressed
sates’. We show that the interaction with a single, non-resonant atom transforms
a coherent state into a cat, whose decoherence is then theoretically analyzed.
We explain how a probe atom, a ‘quantum mouse’ can be used to assess the
decoherence of the cavity cat.

Finally, Section 4 is devoted to the perspectives opened for these decoher-
ence studies: creation of very large cats by resonant atom-field interaction, direct
measurement of the cat’s Wigner function, providing a detailed insight into the
decoherence mechanisms and creation of non-local cat states, merging the Einstein-
Podolsky-Rosen [9] non-locality and decoherence.

2. A quantum field at the boundary of quantum and classical
worlds

2.1. A quantum cavity mode

A single field mode is equivalent to a one-dimensional harmonic oscillator. The non-
degenerate energy eigenstates are the Fock or ‘photon number states’ {|n〉} n > 0,
whose energy is �ωc(n + 1

2 ), where ωc is the cavity mode angular frequency. The
ground state is the vacuum |0〉. The Fock states are an orthogonal set:

〈n|p〉 = δnp . (1)

The photon annihilation and creation operators a and a† connect the Fock states:

a|n〉 =
√

n|n − 1〉 ; a†|n〉 =
√

n + 1|n + 1〉 . (2)

The action of a on |0〉 gives a null vector (it is not possible to annihilate a photon
in vacuum). All Fock states can be generated from the vacuum by repeated appli-
cations of the photon creation operator: |n〉 = a†n|0〉√n!. These operators obey a
bosonic commutation rule:

[
a, a†] = 11.

The cavity Hamiltonian is Hc = �ωc(a†a + 1/2). Since we are dealing with
a single-mode situation, we can redefine the energy origin to get rid of the non-
vanishing vacuum state energy. We can thus also use the simpler Hamiltonian:

H ′
c = �ωca

†a . (3)
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Figure 2. Scheme of a microwave Fabry-Perot cavity. The two
spherical mirrors separated by L sustain a Gaussian mode with
waist w. The cavity axis normal to the mirrors is Oz. The si-
nusoidal standing wave pattern (with field nodes and antinodes
along Oz) is not represented. Atoms propagate along Ox axis.

The cavity mode electric field operator at position r writes:

Ec = iE0

[
f(r)a − f∗(r)a†] , (4)

where E0 is a normalization factor. The dimensionless vector function f(r) = εcf(r)
describes the spatial structure of the field mode (relative field amplitude f and
polarization εc). At the point where the field mode amplitude is maximum, which
we also take as the origin, f = 1.

The normalization factor is obtained by equating the Fock states energies
with the integral over space of the expectation value of the electromagnetic energy
density ε0|Ec|2:

E0 =
√

�ωc

2ε0V . (5)

where we define the cavity effective volume V by:

V =
∫

|f(r)|2 dV . (6)

As a specific example, consider the case of the Fabry-Perot cavity briefly
described in Section 1. It is made of two spherical mirrors facing each other (Figure
2). The mode is then a standing wave with a Gaussian transverse profile and
a sinusoidal field variation in the longitudinal direction normal to the mirrors,
separated by the distance L. The waist w characterizes the minimum width of the
Gaussian. The mode volume is then V = πLw2/4. For the specific parameters of
the experiment (L = 2.7 cm; w = 6 mm) we have V = 0.7 cm3. The field per
photon is then:

E0 = 1.5 10−3 V/cm , (7)

a rather large value in S.I. units for a quantum field.
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The field quadrature operators correspond to a mechanical oscillator’s posi-
tion and momentum:

X =
a + a†

2
; P =

a − a†

2i
=

e−iπ/2a + eiπ/2a†

2
. (8)

More generally, phase quadratures are linear combinations of a and a†:

Xϕ =
e−iϕa + eiϕa†

2
; Xϕ+π/2 =

e−iϕa − eiϕa†

2i
. (9)

They satisfy the commutation rules
[
Xϕ, Xϕ+π/2

]
= i/2, which correspond to the

uncertainty relations ∆Xϕ∆Xϕ+π/2 ≥ 1/4, where ∆Xϕ and ∆Xϕ+π/2 are conju-
gate phase quadrature fluctuations.

The eigenstate of the quadrature Xϕ corresponding to the real and contin-
uous eigenvalue x is a non-normalizable state (infinite energy), which obeys the
orthogonality and closure relationships:

ϕ 〈x | x′〉ϕ = δ(x − x′) ;
∫

|x〉ϕ ϕ 〈x| dx = 11, (10)

the transformation from the |x〉ϕ basis to the conjugate basis |x〉ϕ+π/2 being a
Fourier transform:

|x〉ϕ+π/2 =
∫

dy |y〉ϕϕ 〈y | x〉ϕ+π/2 =
1√
π

∫
dy e2i x y |y〉ϕ . (11)

Note that two conjugate field quadratures provide coordinates for the quantum
field phase space, equivalent to the Fresnel plane for classical fields.

The expectation value 〈n|Xϕ |n〉 of any phase quadrature in a Fock state is
zero. There is thus no preferred phase neither in the vacuum nor in any Fock state,
a feature which shows that these quantum states are quite different from classical
fields. For the vacuum, the quadrature fluctuations are isotropic and correspond
to the minimum value compatible with Heisenberg uncertainty relations:∆X

(0)
ϕ =√

〈0|X2
ϕ |0〉 = 1/2. The probability distribution P (0)(x) of the field quadrature is

then a Gaussian:

P (0)(x) = |ϕ 〈x | 0〉|2 =
(

2
π

)1/2

e−2x2
. (12)

In summary, the vacuum field in each mode has isotropic Gaussian fluctuations
around zero field.

2.2. Coherent states

To describe situations in which the phase of the field is relevant, it is convenient
to expand the field on the basis of the coherent states [10, 11], which are more
physical than Fock or quadrature states and are experimentally more accessible.

A coherent state of a single field mode is defined as resulting from the trans-
lation of the vacuum field in phase space. This translation is represented, in its
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Figure 3. Coherent state. (a) Pictorial representation of the ac-
tion of the displacement operator on the vacuum state. The dis-
placement by a complex amplitude α amounts to a displacement
by Re α along the X0 quadrature axis, followed by a displace-
ment by Imα along the Xπ/2 quadrature. (b) Time evolution of
a coherent state.

most general form, by the unitary displacement operator:

D(α) = eαa†−α∗a , (13)

where α = |α| exp(iφ) is a C-number whose real and imaginary parts are the
projections along the X0 and Xπ/2 directions respectively of the translation vector.
The translated vacuum state is the coherent state |α〉:

|α〉 = D(α)|0〉 . (14)

The translated ‘packet’, whose evolution is determined in the Schrödinger picture
by the free field Hamiltonian [Eq. (3)], subsequently rotates at frequency ωc in
phase space, without deformation: |α(t)〉 = |αe−iωct〉. This corresponds to the best
possible approximation of a classical free oscillator motion. Figure 3(a,b) shows
how the vacuum state is transformed by translation into a coherent state and how
this state freely evolves in phase space. In Figure 3(b), the coherent states are
pictorially shown as uncertainty circles of radius unity at the tip of the classical
amplitude, a representation that we shall repeatedly use in the following.

In order to make the translation operation more explicit, it is convenient
to split the exponential in Eq. (13) in two, separating the contributions of the
real and imaginary parts of α. We make use of the Glauber relation [12] eA+B =
eAeBe−[A,B]/2 (valid if [A, B] commutes with A and B) and we get:

D(α) = e−iα1α2 e2iα2X0 e−2iα1Xπ/2 . (15)

Using a mechanical oscillator analogy, the displacement D(α) can thus be viewed
as a translation along space by an amount α1 = Re(α), followed by a ‘momentum
kick’ of magnitude α2 = Im (α).
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Figure 4. Photon number statistical distributions. (a) Coherent
field with n = 1 photons on the average. (b) Coherent field with
n = 20.

Let us compute the probability amplitude for finding the value x when mea-
suring the quadrature operator X0 on a field in state |α〉. A straightforward cal-
culation using Eqs. (14) and (15) yields:

〈x | α〉 =
(

2
π

)1/4

e−iα1α2 e2iα2x e−(x−α1)
2

, (16)

a Gaussian wave packet centered in α1, with a phase modulation at frequency α2

describing the momentum kick. The probability for finding the value x for the
quadrature is thus:

P (x) =
(

2
π

)1/2

exp
[
−2 (x − α1)

2
]

, (17)

a translated ground state distribution.
An alternative and useful expression of the displacement operator is obtained

by using again the Glauber relation, separating this time the a and a† terms:

D(α) = eαa†−α∗a = exp

(
−|α|

2

2
)

eαa†
e−α∗a . (18)

This form corresponds to the ‘normal ordering’ in quantum optics. If we expand
the exponential of operators in series, all the an terms are on the right and the
a†n terms on the left. The action of the exp(−α∗a) operator on the right leaves
the vacuum unchanged, since only the zero-order term in the expansion yields a
non-zero result. Combining Eqs. (14)and (18), we get:

|α〉 =
∑

n
cn(α) |n〉 with cn(α) = exp

(
−|α|

2

2
)

αn

√
n!

. (19)

The distribution of photon numbers in a coherent state obeys a Poisson statistics.
Figure 4 shows this distribution for α = 1 and α =

√
20. The average photon
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number n and photon number variances ∆n are:

n = |α|2 ;
∆n

n
=

1
|α| =

1√
n

. (20)

The relative fluctuation of the photon number is thus inversely proportional to
the square root of its average. For large fields, this fluctuation becomes negligible
(classical limit).

Coherent states are eigenstates of the photon annihilation operator a. This
essential property is easily derived from Eqs. (2) and (19):

a |α〉 = α |α〉 and 〈α| a† = 〈α| α∗ . (21)

It is also useful to recall the expression of the scalar product of two coherent states:

〈α | β〉 = e−|α|2/2 −|β|2/2 + α∗β ; |〈α | β〉|2 = e−|α−β|2 , (22)

which shows that the overlap of two such states decreases exponentially with their
‘distance’ in phase space. Although they are never strictly orthogonal, they become
practically so when the distance of their centers is much larger than 1, the radius
of the uncertainty circle.

The coherent states constitute a complete set of states in the mode’s Hilbert
space:

1
π

∫
dα1dα2 |α〉 〈α| = 11 . (23)

Note however that the non-orthogonal coherent state basis is over-complete. The
expansion of a state over it is not unique.

Coherent states are easily produced experimentally, by the classical micro-
wave source S weakly coupled to the cavity mode (see Figure 1). The evolution
operator for the mode state under the coupling with a classical current is the
displacement operator, transforming the initial vacuum in a coherent state whose
amplitude and phase are under experimenter’s control.

As a classical field, a coherent state is defined by a complex amplitude,
evolving in the Fresnel plane. The non-vanishing quantum fluctuations of the
field quadratures is represented by the uncertainty circle in Figure 3. For very
small fields (about one photon on the average) the amplitude is comparable to the
uncertainties and quantum fluctuations play an important role. For very large am-
plitudes, quantum fluctuations are negligible and the coherent state can be viewed
as a classical object, with well defined phase and amplitude. Coherent states stored
in a cavity thus span the quantum to classical transition, with the mere adjustment
of the source controls.

2.3. Schrödinger cat states

We give here a special attention to superpositions of two quasi-orthogonal coherent
states, represented in the Fresnel plane by two non-overlapping circles. These states
are prototypes of Schrödinger cats [13, 14]. We will see later how they can be
prepared and used to study the dynamics of decoherence. We enumerate first
some of their properties. As a simple example, we consider a linear superposition
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Figure 5. Pictorial representation of a π-phase cat in phase space.

with equal weights of two coherent states with opposite phases (see Figure 5). This
superposition, called a π-phase cat in the following, writes:

|Ψeven
cat 〉 =

|β〉 + |−β〉√
2
(
1 + e−2|β|2) ≈ (1/

√
2) (|β〉 + |−β〉) , (24)

where β is the amplitude of the field (taken real). The superscript ‘even’ will be
explained below. The denominator in the first r.h.s. term is a normalization factor,
taking into account the overlap of |β〉 and |−β〉. If |β| � 1, this overlap is negligible
and the cat state is expressed by the simpler form given by the second r.h.s. term
in Eq. (24).

The coherence between the two states is an essential feature which distin-
guishes it from a mere statistical mixture. This is made clear by expressing the
field density operator:

ρcat ≈ 1
2

(|β〉 〈β| + |−β〉 〈−β| + |β〉 〈−β| + |−β〉 〈β|) . (25)

The cat coherence is described by the off-diagonal part of this density operator
[last two terms in the r.h.s. of Eq. (25)].

This coherence is displayed by analyzing the field quadrature distribution.
Suppose first that we measure X0. Its probability distribution is the sum of two
Gaussians, centered at ±β:

P
(cat)
0 (x) ≈ 1√

2π

(
e−2(x−β)2 + e−2(x+β)2

)
. (26)

The probability amplitudes for measuring x in state | + β〉 and | − β〉 do not
appreciably overlap and thus cannot interfere: the resulting distribution is simply
the sum of those corresponding to the state components. The state coherence is
not apparent here. If we measure instead Xπ/2, the probability distribution is:

P
(cat)
π/2 (x) ≈ 1

2

∣∣
π/2 〈x | β〉 + π/2 〈x | −β〉 ∣∣2 , (27)

where the index π/2 in π/2〈x| indicates an eigenstate of Xπ/2. The probability
P

(cat)
π/2 (x) is the square of the sum of two amplitudes which are both non-zero.
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Figure 6. Quadratures of an even Schrödinger cat. (a) The X0

quadrature exhibits well separated Gaussian peaks corresponding
to the cat’s components. (b) For Xπ/4, the Gaussian peaks dis-
tance is reduced. (c) For Xπ/2 the two peaks merge and fringes
show up.

These amplitudes are easy to compute. The scalar product of |x〉π/2 with |β〉 is
equal to the product of |x〉0 with |−iβ〉, as a mere rotation in phase space indicates.
Using Eq. (16), we get:

P
(cat)
π/2 ≈

(
2
π

)1/2

e−2x2
(1 + cos 4βx) . (28)

The probability distribution is a Gaussian centered at x = 0, modulated by an
interference term with fringes having a period 1/4β, inversely proportional to the
‘cat size’ β. This interference is a signature of the coherence of the superposition.

The distribution of any phase quadrature Xϕ can be obtained in the same
way. The interference term exists only when ϕ is close to π/2. A graphical repre-
sentation is very convenient to understand why it is so (Figure 6). For a coherent
state, a field quadrature takes non-zero values in an interval corresponding to
the projection of the state uncertainty circle on the direction of the quadrature.
For a Schrödinger cat state, there are two such intervals, corresponding to the
two state components. If β � 1 and ϕ = 0 [Figure 6(a)], the two intervals are
non-overlapping and there is no interference. For a ϕ value between 0 and π/2
[Figure 6(b)], the two intervals are closer than for ϕ = 0, resulting in two still non-
overlapping gaussians without interference. It is only when ϕ gets very close to
π/2 that the two projected intervals overlap along the direction of the quadrature,
leading to a large interference term [Figure 6(c)].

Another aspect of the cat states coherence is revealed by considering their
photon number distribution. The state given by Eq. (24) develops only along even
number states, since the probability for finding n photons in it is proportional to
1 + (−1)n, justifying the superscript ‘even’ in its name. Similarly the cat state:

|ψodd〉 = (1/
√

2)[|β〉 − | − β〉] , (29)

develops only along the odd photon numbers. We call it an ‘odd phase cat’. The
periodicity of the photon number is related to the coherence of the state, since a
statistical mixture of |β〉 and | − β〉 contains all photon numbers. The modulated
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Figure 7. Plots of Q functions. (a) 5 photons coherent state
(real amplitude). (b) Schrödinger even cat state, superposition of
two 5 photon coherent states with opposite phases. Note the weak
interference pattern near the origin. (c) Two-photon Fock state.

photon number distribution is a signature of the even and odd cats coherence, as
is the existence of dark fringes in their Xπ/2 quadrature.

It is hence convenient to introduce the photon number parity operator P [12]
which admits as eigenstates all the superpositions of even photon numbers with
the eigenvalue +1 and all the superpositions of odd photon number states with
the eigenvalue 1:

P = eiπa†a . (30)
The odd and even phase cats |β〉 ± | − β〉 are eigenstates of P with the +1 and
−1 eigenvalues. From Eq. (21), the action of the annihilation operator on an even
(odd) phase cat results in the switching of the cat parity:

a[|β〉 ± | − β〉] = β[|β〉 ∓ | − β〉] . (31)

Let us remark finally:
P|x〉ϕ = | − x〉ϕ . (32)

2.4. A pictorial representation of field states

We used up to now qualitative phase-space representations. These pictures are
made fully quantitative by associating unambiguously to the field state, pure or
statistical mixture, two functions, Q and W , taking real values in phase space
[15] and extending in the quantum realm the probability distributions over phase
space, which are pivotal in statistical mechanics. They can be plotted and give a
vivid description of the state. The knowledge of any one of them is sufficient to
reconstruct the field density operator and thus the result probability distribution
for any measurement.
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2.4.1. The Q function. The field is described by the density operator ρ. Its Q
function at the point in phase space defined by the complex amplitude α is:

Q(α) =
1
π
〈α| ρ |α〉 =

1
π

Tr [ρ |α〉 〈α|] . (33)

For a pure state, Q is the square of the overlap with a coherent state whose
amplitude spans the Fresnel plane. It is a real, positive and normalized quantity:
the integral of Q over the whole phase space is equal to 1. An alternative definition
of Q is, using Eq. (14):

Q(α) =
1
π

Tr[|0〉〈0|D(−α)ρD(α)] . (34)

Thus, Q(α) is the expectation value of the projector on the vacuum, in the state
of the field translated by −α, leading, as shown below, to a simple experimental
determination of Q [16].

It results directly from Eqs. (33) and (22) that Q(α) is a Gaussian centered
in β for the coherent state |β〉 [Figure 7(a)]. The Q function of a Schrödinger cat
defined by Eq. (24) is essentially the superposition of two gaussians, centered at
±β [Figure 7(b)]. There is a small additional interference term taking non-zero
values between these two gaussians, but it is of the order of the scalar product
of the two cat components, vanishingly small as soon as they are separated. The
Q function is thus not appropriate to describe the coherence of a cat. Figure 7(c)
shows the Q function of a n = 2 Fock state, a circular rim around the origin as
intuitively expected.

2.4.2. The Wigner function. The Wigner distribution W (α) = W (x + ip) [17] is
defined by:

W (x, p) =
1
π

∫
dx′e−2ix′p〈x +

x′

2
|ρ|x − x′

2
〉 . (35)

It is the Fourier transform of an off-diagonal matrix element of ρ in a quadrature
representation. The W function is real and normalized. Contrary to Q, it can
take negative values in domains of phase space, making it clear that it is not a
probability distribution. Negative values are, as shown below, a signature of non-
classical states.

The W function of coherent states are again Gaussian functions centered at
the amplitude of the state, but their width is

√
2 times smaller than the one of

Q. The W function of a π-phase cat is made up of two Gaussian peaks and a
large interference pattern between these peaks with an alternance of positive and
negative ridges [Figure 8(a)]. This pattern is a signature of the cat’s coherence,
lacking in the W function of a statistical mixture. The W function is thus much
better adapted than Q for the study of a cat’s coherence. Figure 8(b) and (c)
present the W function of the n = 1 and n = 2 Fock states which also exhibit
negative parts.
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Figure 8. Plot of W functions. (a) Schrödinger cat, superposi-
tion of two 5-photon coherent states with opposite phases. (b)
One-photon Fock state. (c) Two-photon Fock state.

By inverse Fourier transform of Eq. (35), the matrix elements of the field
density operator are:

〈x +
x′

2
|ρ|x − x′

2
〉 =

∫
dpe2ix′pW (x, p) . (36)

The field density operator is thus fully determined by W . In particular, the prob-
ability density of the quadrature X0, is:

〈x|ρ|x〉 =
∫

dpW (x, p) . (37)

The probability that X0 takes a given value x is obtained by integrating W for
this x value, along all values of p. This property holds for any set of orthogonal
quadratures. Schrödinger cats, for instance, have quadratures values occurring
with 0 probability (see Figure 6), a signature of their non-classical nature. The
integral of W along the orthogonal quadrature vanishes, which is possible only if
W presents alternations of positive and negative values. We thus understand that
negativities of W are related to non-classicality.

We conclude by giving an alternative expression of W ([18] and L. Davidovich,
private communication). Using:

|x − x′

2
〉 = e−i(x−x′)pD(x + ip)| − x′

2
〉 , (38)

and

〈x +
x′

2
| = 〈x

′

2
|D(−x − ip)ei(x+x′)p , (39)
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which follow directly from the definition of D(α) and replacing |x ± x′/2〉 in Eq.
(36) by the expressions given by Eqs. (38) and (39), noting finally that P|x′/2〉 =
| − x′/2〉 [see Eq. (32)], we get:

W (x, p) =
2
π

Tr[D(−α)ρD(α)P ] . (40)

The Wigner distribution at α is the expectation value in the state translated by
−α of the field parity operator. This property leads to a simple experimental
determination of W described in Section 4.2.

2.5. Field mode relaxation

2.5.1. Master equation. Decoherence is the result of a dissemination of informa-
tion about a system via its entanglement with an environment E. For all practical
purposes, this information is buried in E on which no measurement can be per-
formed in practice. The system density operator ρ is obtained by tracing over E
the system/environment entangled state.

The system relaxation is then described by a master equation, differential
equation for ρ alone. This equation can be derived from a simple environment
model [12], a bath of harmonic oscillators, for instance, spanning a wide range
of frequencies around the system’s eigenfrequencies, in thermal equilibrium at a
finite temperature T . Quite remarkably, the final form of the master equation is
model-independent.

For the sake of simplicity, we consider only the zero temperature case. The
master equation then writes in the standard Lindblad form:

dρ

dt
= − i

�
[H ′

c, ρ] +
κ

2
[
2aρa† − a†aρ − ρa†a

]
, (41)

where κ = 1/Tc = ωc/Q the damping rate of the cavity mode energy. The first
term in the r.h.s. describes the Hamiltonian evolution. The second describes the
effect of photon escape into E.

Remarkably, this equation depends only upon the classical energy damping
time Tc = 1/κ, which can be measured with macroscopic fields. At finite tempera-
ture, additional terms, proportional to nth, the mean number of thermal photons
per mode, describe the creation of thermalexcitations in the mode.

It is easy to derive from Eq. (41) the evolution of the photon number distri-
bution p(n) = ρnn = 〈n|ρ|n〉:

dp(n)
dt

= κ(n + 1)p(n + 1) − κnp(n) . (42)

This equation describes a cascade in the Fock states ladder. The lifetime of state |n〉
is thus of the order of Tc/n, decreasing when the number of photon increases. We
show below that the lifetime of a coherent state is independent upon its amplitude.
That non-classical Fock states are more fragile than semi-classical coherent ones
is a first insight into decoherence. We defer to the next section the application of
the master equation to a cat state.
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B

Figure 9. An environment B detecting the photon lost by the
cavity field.

2.5.2. Monte Carlo trajectories. The master equation does not provide a detailed
insight into the mechanisms of relaxation. The Monte Carlo wavefunction approach
is more convenient for computational purposes and also more insightful. We give
here the recipes for the Monte Carlo method in the cavity case and discuss briefly
its physical contents. A more detailed account can be found in [19, 20].

The master equation is obtained by tracing over all possible results of a
virtual measurement performed over the environment. Let us imagine instead that
this measurement is explicitly made and its results recorded. What happens then?
For the sake of definiteness, the cavity will be owned by a first operator, called
Alice, and Bob has a complete control over the environment.

Bob is to monitor relaxation events, corresponding to the loss of a photon by
the mode. He could, for instance (see Figure 9) couple the cavity with a detector,
registering a click whenever a photon escapes.

Let us consider a short time interval τ . At the beginning, the cavity is in
a pure state |φ(A)〉 and Bob’s detector in a neutral state |0(B)〉. During the time
interval τ , the system evolves according to the infinitesimal unitary transformation:

|φ(A)〉 ⊗ |0(B)〉 →
[
1 − 1

2
κτ(a†a)

]
|φ(A)〉 ⊗ |0(B)〉 +

√
κτa|φ(A)〉 ⊗ |1(B)〉 , (43)

in which |1(B)〉, orthogonal to |0(B)〉, is the detector’s state after photon detection.
The time interval τ being very short, the probability for loosing two photons
is negligible. The cavity/environment state is entangled, an essential feature of
decoherence.

At the end of this time interval, Bob performs a measurement on its detector,
in the {|0(B)〉, |1(B)〉} basis. The probabilities p1 and p0 for finding the environment
(equivalent to a single qubit in this simple situation) in |1(B)〉 or |0(B)〉 are:

p1 = 1 − p0 = κτ〈φ(A)|a†a|φ(A)〉 . (44)

Depending on the outcome of the measurement, the cavity state is projected in
one of the states defined as:

|φ(A)
1 〉 =

a|φ(A)〉√
p1

, (45)

for a photon click and:

|φ(A)
0 〉 =

[
1 − 1

2κτa†a
] |φ(A)〉√

p0
. (46)
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when no click is recorded. Eq. (45) justifies the ‘jump operator’ name coined for√
κa, since it describes the discontinuous change of the mode state when B is found

in |1(B)〉. In the event that B does not change, Eq. (46) shows that the oscillator
state is also modified. It evolves under the effect of an infinitesimal non-unitary
transformation produced by the anti-hermitian pseudo-Hamiltonian i�κa†a. This
non-unitary transformation can be described as a renormalization of the oscillator
frequency by the addition of an imaginary term in its frequency (ω → ω − iκ/2).
It does not conserve the norm of the state, hence the necessity to normalize it by
the (p0)−1/2 factor.

That the cavity state evolves when no photon is recorded by Bob might
seem counterintuitive. Recall however that a null measurement provides informa-
tion on the system and, hence, modifies its state. Recording no photon during
τ is an indication that the number of photons is more likely to be small. The
pseudo-Hamiltonian describes the reduction of the field energy associated to this
information. We give below a more detailed insight into this evolution.

At the end of the time interval, the cavity is yet in a pure state, depending
upon the measurement result recorded by Bob. A Monte Carlo trajectory is then
defined by a series of random measurement results associated to successive time
bins of duration τ . At each step, the field state undergoes the action of either
[1 − κτa†a/2] or a, depending upon the measurement result. It is computed by
iterating the process, making a random decision according to the probability law
(44) to determine whether B is found in |1(B)〉 or |0(B)〉 at each stage. The state
of A at the beginning of the (n + 1)th step is determined by the outcome of the
nth measurement and B is initialized to |0(B)〉 at the beginning of each step.

The master equation result is recovered by assuming that Bob’s measure-
ments are left unread. The cavity mode ends up, at the end of the first time
interval τ , in the density operator averaged over the two possible outcomes:

ρ(τ) = p0|φ(A)
0 〉〈φ(A)

0 | + p1|φ(A)
1 〉〈φ(A)

1 | . (47)

Plugging in this equation the expressions (45) and (46) and keeping the first order
terms in τ , we get:

ρ(τ) − |φ(A)〉〈φ(A)| = −κτ

2

[
a†a, |φ(A)〉〈φ(A)|

]
+

+ κτa|φ(A)〉〈φ(A)|a† , (48)

where [, ]+ is an anti-commutator. Identifying (ρ(τ) − |φ(A)〉〈φ(A)|)/τ with dρ/dt,
we recover the master equation (41).

The Monte-Carlo approach has many advantages. Assuming that Bob is ob-
serving the environment and communicating the results of his measurements to
Alice means that she can, at all times, describe her system by a wavevector which
evolves randomly, according to the unpredictable outcomes of the measurements.
Calculating a set of Monte Carlo trajectories can be much more economical, for
large photon numbers, or more generally for high-dimensionality systems, than
solving the master equation.
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Moreover, this approach is adapted to the description of a single realization
of an experiment manipulating a unique quantum system. In many modern exper-
iments, an information is continuously extracted from the system’s environment
and its wave function follows a random trajectory exhibiting explicit quantum
jumps [21, 22, 23]. The statistics of these jumps is reproduced by a Monte Carlo
simulation involving an environment with as many states as the number of pos-
sible exclusive measurements outcomes. In most cases, this number is small and
a few quantum states of the environment detectors owned by Bob are enough to
simulate the experimental results.

The Monte Carlo procedure is easily applied to the relaxation of a Fock
state |n〉. Being an eigenstate of the pseudo-Hamiltonian, a Fock state does not
evolve between quantum jumps. Each quantum jump is a transition between two
adjacent Fock states. The cavity is always in a Fock state and the photon number
undergoes a staircase evolution, with random jumps. The usual exponential decay
is recovered by averaging many trajectories. We now turn to the interesting case of
an initial coherent state. A Monte Carlo scenario for Schrödinger cat decoherence
will be considered in the next section.

2.5.3. The coherent state paradox. Let us describe the Monte Carlo trajectories
starting from a coherent state |β〉. The probability for counting a photon in the
first time interval is p1 = κτ〈β|a†a|β〉 = κτ |β|2 = κτn. If a photon is counted,
the state is unchanged since |β〉 is an eigenstate of the jump operator

√
κa. An

evolution occurs if no photon is recorded. The imaginary frequency contribution
to the pseudo Hamiltonian produces a decrease of the state amplitude:

|β〉 → |βe−κτ/2〉 . (49)

This situation is paradoxical, since the field looses energy only if no photons
are counted! How comes that the state does not change when one photon has been
lost? We have the combination of two effects, which tend to change the photon
number in opposite directions. One the one hand, the loss of a quantum reduces
the average energy in the cavity. On the other hand, the photon click provides
an information about the state in which the field was just before the photon was
emitted, which tends to increase the photon number.

To understand this point, let us ask a simple question: knowing that it has
emitted a photon at a given time, what is the probability pc(n) that the cavity
contained n photons just before the click? If the photon emission probability were
independent on n, pc(n) would be equal to p(n) = e−nnn/n!, the photon number
distribution in the coherent state. In fact, the probability for losing a photon is
proportional to n. It follows that pc(n) = knp(n), where k = 1/n is determined by
normalization. Thus:

pc(n) =
np(n)

n
= e−n nn−1

(n − 1)!
= p(n − 1) . (50)

For a coherent state, pc(n) is equal to p(n − 1), the unconditional probability
that the initial field contains n − 1 photons. The maximum of p(n − 1), hence
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of pc(n), occurs for n = n + 1. The knowledge that a click has occurred biases
the photon number distribution before this click towards larger n values, with a
photon number expectation exceeding the a priori average value by one unit. The
loss of the photon signaled by the click brings this number back down to n. The
two effects exactly cancel and the state of the field has not changed!

This is a peculiar property of coherent states. For non-poissonian fields with
larger fluctuations, the effect could be even more counter-intuitive and result in an
overall increase of the photon expectation number, just after the loss of a photon!
This situation requires fluctuations in the initial field energy. It does not occur for
a Fock state, which looses its energy in an intuitive way.

Why, now, are coherent states loosing their energy when no photon clicks are
registered? If no photon is detected, it is more likely that the photon distribution
has less photons that was a priori assumed. To consider an extreme situation,
a coherent field has a small probability, e−n, for containing no photon at all.
This is the probability that the detector will never click, however long one waits.
The longer the period without click, the more likely it becomes that the field is
effectively in vacuum. Its wave function evolves continuously, without jump, under
the effect of the non-unitary evolution and ends up in |0〉!

The insensitivity of coherent states to jumps make their Monte Carlo trajecto-
ries certain. To determine the state at time t, we have concatenate evolutions dur-
ing the successive intervals between jumps t1, t2, . . . ti, . . . tN adding up to t. What-
ever the distribution of these intervals, the final state, |βe−κ(t1+t2+....+tN)/2〉 =
|βe−κt/2〉 remains pure: coherent states are impervious to entanglement with the
environment. They are the ‘pointer states’ of cavity decoherence.

3. Cat state generation and decoherence studies

In the last section, we described Schrödinger cat states, quantum superpositions
of coherent components with different classical phases. These states are ideal for
decoherence studies, since they are pretty well isolated from their environment,
being stored in a high-Q cavity. Moreover, their ‘size’, measured by the distance
between the two components, can be varied from the microscopic range (single
photon fields) to the mesoscopic one. We describe in this section how the inter-
action between a single Rydberg atom and a coherent state can be harnessed to
produce and probe Schrödinger cat states. We first give a brief description of the
atom/field interaction.

3.1. The atom/cavity system

We consider a two-level atom whose upper level |e〉 is connected to level |g〉 by a
dipole electric transition at angular frequency ωeg. This system is equivalent to a
spin-1/2 evolving in an abstract space, with a magnetic field, oriented along the
‘vertical’ Z axis, accounting for the energy difference between |e〉 and |g〉. These
states correspond to the eigenstates of the spin along Z, which we denote by |+〉
and |−〉.
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Any spin or atomic operator can be expanded over the basis made up of
the three Pauli matrices σX , σY and σZ together with the unity 11. The atomic
Hamiltonian is Ha = �ωegσZ/2. The atomic raising and lowering operators σ± are
σ± = (σX ± iσY )/2, with σ+|−〉 = |+〉 σ−|+〉 = |−〉 σ+|+〉 = 0 σ−|−〉 = 0. These
atomic excitation creation/annihilation operators have a fermionic commutation
{σ−, σ+} = 1, where {, } denotes an anti-commutator. There is a clear analogy
between σ± and the photon creation and annihilation operators.

The atomic dipole operator is:

D = d(εaσ− + ε∗aσ+) , (51)

where ε is a complex unit vector describing the transition polarization. For the
circular states with principal quantum numbers 51 and 50, the transition is σ-
polarized and d = 1776 atomic units, a remarkably large value due to the huge
size of the Rydberg states.

The complete atom-cavity Hamiltonian writes:

H = Ha + H ′
c + Hac , (52)

where Ha and H ′
c are the atom and cavity Hamiltonians. The coupling term, Hac,

is −D ·Ec, where Ec the electric field operator at the atomic location. The Hamil-
tonian H has been introduced by Jaynes and Cummings [24] as an approximation
to matter-field coupling in free space. It is only in a cavity that it provides a pre-
cise description of the atomic dynamics, since the interaction with a single mode
dominates the evolution.

We assume first that the atom is sitting at cavity centre [f(r) = 1]. The
coupling Hamiltonian is then:

Hac = −d [εaσ− + ε∗aσ+] · iE0

[
εca − ε∗ca

†] . (53)

Its expansion involves four terms. Two are proportional to σ−a and σ+a†. The
first corresponds to a transition from |e〉 to |g〉, together with the annihilation
of a photon. The second describes the emission of a photon by an atom in a
transition from |g〉 to |e〉. When the cavity and atomic transition frequencies, ωc

and ωeg, are comparable, these terms correspond to non-resonant processes. They
can be neglected (Rotating Wave Approximation). The two others, proportional to
σ+a and σ−a†, correspond to photon absorption or emission and the atom-cavity
coupling reduces to:

Hac = −i�
Ω0

2
[
aσ+ − a†σ−

]
, (54)

where we introduce the ‘single photon Rabi frequency’, Ω0:

Ω0 = 2
dE0ε

∗
a · εc

�
. (55)

We assumed that ε∗a ·εc is real and positive, hence Ω0. The frequency Ω0 measures
the strength of the atom-field coupling. It is proportional to the interaction energy
of the atomic dipole with a classical field corresponding to a single photon stored
in C. In our experiments Ω0 = 2π× 50 kHz, a rather large value. It is much larger
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than the cavity relaxation rate, achieving the ‘strong coupling regime’ of cavity
QED.

The ‘uncoupled states’, eigenstates of Ha +H ′
c, are the tensor products |e, n〉

and |g, n〉 of atomic energy eigenstates and cavity Fock states, with the energies
�(ωeg/2 + nωc) and �(−ωeg/2 + nωc). The ground state of Ha + H ′

c is the non-
degenerate |g, 0〉 state. When the atom-cavity detuning, ∆c = ωeg − ωc, is much
smaller than the atomic frequency, the uncoupled states |e, n〉 and |g, n + 1〉 are
degenerate (∆c = 0) or nearly degenerate. They form a ladder of equally-spaced
two-level manifolds, which are not coupled by Hac. The diagonalization of the full
Hamiltonian amounts to solving separate two-level problems.

3.1.1. Eigenenergies and eigenvectors. We consider here the restriction Hn of
the Jaynes and Cummings Hamiltonian to the manifold spanned by |e, n〉 and
|g, n + 1〉. Taking the energy reference at the mid-point between these levels, Hn

writes in matrix form:

Hn =
�

2

(
∆c −iΩn

iΩn −∆c

)
, (56)

where
Ωn = Ω0

√
n + 1 . (57)

The Rabi frequency Ωn is proportional to
√

n + 1, relative field amplitude in the
n-photons Fock state.

The eigenvalues of Hn are :

E±
n = ±�

2

√
∆2

c + Ω2
n , (58)

and the eigenvectors, the ‘dressed states’:

|±, n〉 = cos θ±n |e, n〉 + i sin θ±n |g, n + 1〉 , (59)

are generally entangled atom-cavity states. The mixing angles θ±n are given by

tan θ±n = ±
√

∆2
c + Ω2

n ∓ ∆c

Ωn
. (60)

The positions of the dressed energies are represented as a function of ∆c

on Figure 10. For large detunings, the dressed energies almost coincide with the
uncoupled ones ±�∆c/2. At zero detuning, the uncoupled levels cross. The atom-
cavity coupling transforms this crossing into an avoided crossing, the minimum
distance between the dressed states being �Ωn. We examine now two limiting
cases: the resonant case (∆c = 0) and the detuned case (∆c � Ω).

3.1.2. Resonant coupling. In the resonant case, the mixing angles are θ±n = ±π/4
and:

|±, n〉 =
1√
2

[|e, n〉 ± i|g, n + 1〉] . (61)

The separation of the dressed states at resonance, �Ωn, corresponds to the fre-
quency of the atom-field reversible energy exchange. We consider an atom in
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Figure 10. Dressed states energies as a function of the atom-
cavity detuning ∆c. The uncoupled states energies are represented
as dotted lines.

state |e〉 at time t = 0 inside the cavity containing n photons. The initial state,
|Ψe(0)〉 = |e, n〉, expands on the dressed states basis as:

|Ψe(0)〉 =
1√
2

[|+, n〉 + |−, n〉] , (62)

and becomes at time t:

|Ψe(t)〉 =
1√
2

[
|+, n〉e−iΩnt/2 + |−, n〉eiΩnt/2

]
. (63)

The probabilities for finding the atom in |e〉 or |g〉 are obtained by returning to
the uncoupled basis :

|Ψe(t)〉 = cos
Ωnt

2
|e, n〉 + sin

Ωnt

2
|g, n + 1〉 . (64)

The coupling results in a reversible exchange between |e, n〉 and |g, n + 1〉 at
frequency Ωn. This is the Rabi oscillation phenomenon. It can be understood as a
‘quantum beat’ between the two dressed states [see Eq. (63)]. For the initial state
|e, 0〉 (or |g, 1〉), this oscillation occurs at the frequency Ω0.

3.1.3. Non-resonant atom/cavity coupling. We give here a perturbative treatment
valid for large detunings [25, 26]. We assume ∆c = ωeg − ωc > 0, with θn � 1.
We develop the eigenstates and eigenenergies in powers of Ω0

√
n + 1/∆c. To first
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order for states and to second order for energies:

|+, n〉 ≈ |e, n〉 +
Ω0

√
n + 1

2∆c
|g, n + 1〉

|−, n〉 ≈ − |g, n + 1〉 +
Ω0

√
n + 1

2∆c
|e, n〉

1
�
E+,n = nωc +

ωeg

2
+

Ω2
0(n + 1)
4∆c

1
�
E−,n = (n + 1)ωc − ωeg

2
− Ω2

0(n + 1)
4∆c

. (65)

The dressed states |+, n〉 and |−, n〉 are very close to the uncoupled states,
which are slightly ‘contaminated’ by the atom-field coupling. The energies of these
levels are shifted to second order by an amount proportional to n+1, combination
of a light shift, proportional to n, and of a Lamb shift effect.

Assume now that we couple an atom in level |e〉 with a coherent field |α〉 and
let the two systems interact for a time t. Expanding the coherent state on a Fock
state basis and taking into account that |e, n〉 is very close to the |+, n〉 dressed
state, we get:

|Ψe,α(0)〉 = |e〉 |α〉 =
∑

n

cn |e, n〉 ⇒

|Ψe,α(t)〉 ≈
∑

n

cne−inωcte−iωegt/2e−iΩ2
0(n+1)t/4∆c |e, n〉 , (66)

which, in interaction picture yields:∣∣∣Ψ̃e,α(t)
〉
≈
∑

n

cn e−iΩ2
0(n+1)t/4∆c |e, n〉 = e−iΩ2

0t/4∆c |e〉 ⊗
∣∣∣αe−iΩ2

0t/4∆c

〉
.

(67)
Similarly, for an atom initially in level |g〉 we obtain:∣∣∣Ψ̃g,α(t)

〉
≈
∑

n

ne+iΩ2
0nt/4∆c |g, n〉 = |g〉 ⊗

∣∣∣αe+iΩ2
0t/4∆c

〉
. (68)

The cavity is in a coherent state, phase shifted by an angle ±Φ0 = ±Ω2
0t/4∆c

depending upon the atomic state. This effect is interpreted by attributing to the
atom an index Ni = 1±Ω2

0/4∆cωc, with the + and − signs corresponding respec-
tively to an atom in |e〉 or |g〉. With the parameters of our experiment we find, for
∆c = 3Ω, |Ni1| = 10−7, a huge value for a single atom effect. Note that this index
is linear for extremely low fields only and saturates for average photon numbers
of the order of (δ/Ω0)2, since the dispersive regime condition is no longer fulfilled.
Note also the global quantum phase shift of the system’s state when the atom is
in |e〉. This is a cavity Lamb shift effect.

Up to now, we have considered the atom as motionless at cavity center. In the
actual experiment, the atom flies across the cavity mode waist w. The atom-field
coupling, proportional to the relative mode amplitude f , is thus a time-dependent
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quantity. In the dispersive regime, the previous results still hold, when the time t
is replaced by an effective interaction time tdi taking into account the integrated
atom-field coupling. For a full crossing of the mode:

tdi =
√

π

2
w

v
. (69)

Note that the same approach can be used in the resonant case, with a different
effective interaction time tri :

tri =
√

π
w

v
. (70)

3.2. Dispersive cat generation

The phase shift produced by a single atom on a coherent state takes opposite
values for levels |e〉 and |g〉. Phase shift values as large as a few radians can be
reached. The ability of a single atom to shift by a macroscopic angle the phase
of a field containing many quanta provides an ideal tool for experiments with cat
states. When an atom is sent across the cavity in a superposition of |e〉 and |g〉, a
mesoscopic cat is produced in the cavity.

3.2.1. Reading the phase imprint of a single atom. We first measure these phase
shifts. The usual method to measure the phase of a coherent ‘signal’ in quantum
optics is homodyning: the signal is mixed with a reference of same frequency and
variable phase ϕ. The phase distribution of the signal is obtained by measuring
the intensity of the mixed signal + reference as a function of ϕ.

We have adapted this general method to our set-up and measured by ho-
modyning the phase shift induced by a single atom on a coherent field [27]. The
experimental sequence involves two successive field injections in the cavity, and
two atoms. First, a signal field with amplitude β is injected by connecting the
cavity to the source S for 2 µs. The modulus of β is calibrated in an independent
experiment, using the light shift on a non-resonant atom [28]. An off-resonant in-
dex atom Ai (atom-cavity detuning ∆c), prepared with velocity v in level |e〉 or
|g〉, is then sent across the cavity and imprints its phase shift ±Φ0 on the field
whose amplitude becomes β exp(±iΦ0).

The Φ0 value is adjusted by an independent control of the ∆c and v pa-
rameters. The detuning ∆c is tunedfrom a few tens to a few hundred kHz by
Stark-shifting the atomic transition frequency. A second reference field injection
follows before the cavity field has had time to appreciably decay. This reference
has a complex amplitude −α = −β exp(iϕ). Its modulus is the same as the one of
the signal field, but its phase ϕ can be continuously adjusted.

To probe the final cavity field, we use a second atom, Ap. This atom is sent
in |g〉. It is tuned at resonance with the mode and absorbs the homodyned field.
The information provided by the probe atom absorption is used, in a repetitive
experiment, to reconstruct the Q function of the phase-shifted field [16]. Let us
recall that Q(α) is 1/π times the probability p(0) for finding the cavity in the
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vacuum, after the field has been translated by the amplitude −α [see Eq. (34) in
Section 2.4]. This translation is realized by reference field injection.

Ideally, we want a dichotomic signal indicating whether the final number of
photons is zero or not. Let us call Pe(n) the probability for finding Ap in |e〉 when
there are n photons in C. Obviously Pe(0) = 0. A dichotomic signal would be
obtained if Pe(n) were different from 0 and independent of n for all n ≥ 1. This
is not the case for an arbitrary atom-field effective interaction time tri , since the
atom undergoes a Rabi oscillation whose period is n-dependent.

It is nevertheless possible to select an optimal effective interaction time tri =
topt = 5π/2Ω0, for which Pe(1), Pe(2) and Pe(3) are approximately equal to 1/2.
For larger n’s, this condition is not fulfilled for an ideal quantum Rabi oscillation.
However, experimental imperfections wash out the oscillations for large photon
numbers. Practically, we also get, to a good approximation, Pe(n) = 1/2 for n >
3. Hence, the probability Pe for detecting Ap in |e〉 is Pe = [1 − p(0)]/2 and
Q(α) = (1 − 2Pe)/π. The variation of Pe when ϕ is swept determines directly
Q along a circle of radius |β|. The experiment is performed with an index atom
Ai either in |e〉 or in |g〉 or, for reference, without sending Ai. The experimental
signals are shown in Figure 11 (∆c/2π = 50 kHz, v = 200 m/s). The coherent field
contains 29 photons in average. The open circles represent Q when Ai is not sent.
This peak serves as a reference for the signals shown as black circles and black
squares, which correspond respectively to Ai in level |e〉 or |g〉. The observed phase
shift, ±Φ0 = ±39◦ is in agreement with the theoretical expectations.

3.2.2. Trapping a cat in an atomic interferometer. This single-atom index effect
can be exploited to generate cat states of the field. We merely have to cast Ai,
prepared initially in |e〉, in a superposition of states |e〉 and |g〉 by a classical
microwave pulse R1 before Ai enters the mode. The field then acquires two distinct
classical phases at once and gets entangled with the atom. This entanglement can
be analyzed by finally detecting the atomic state after the atom exits C. This
analysis is carried out by combining a second microwave pulse R2 with a state
selective detector D.

Let us follow the successive stages of this experiment. The atom is prepared
by R1 in the superposition (|e〉 + |g〉)/√2. After it has crossed C, the atom-field
system evolves into the entangled state:

|Ψ1〉 =
e−iΦ0

√
2

|e〉 ⊗ |βe−iΦ0 〉 +
1√
2
|g〉 ⊗ |βeiΦ0 〉 . (71)

This is a typical quantum measurement situation, in which a large ‘meter’ (the
field) points simultaneously towards different directions corresponding to two or-
thogonal states of a microscopic system (Ai). If Ai were directly detected at the
cavity exit in |e〉 or |g〉, the field would be projected in the corresponding coher-
ent state and the quantum ambiguity lost. The atom’s measurement would tell us
whether the dispersive index had taken one value or the other.
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Figure 11. Phase-shift of a coherent field. Field phase distribu-
tion πQ(ϕ) as a function of the displacement phase ϕ in degrees.
Open squares: reference 29 photons coherent field. Solid circles
(squares): phase distribution after interaction with an atom in |e〉
(|g〉). The error bars depict statistical fluctuations. The solid lines
are Gaussian fits.

The second microwave pulse R2 can be used to preserve the blurred state of
the meter by erasing the information about the atomic index. Let us apply in R2

the transformations:

|e〉 → 1√
2

(|e〉 + eiχ|g〉) ; |g〉 → 1√
2

(|g〉 − e−iχ|e〉) , (72)

where χ can be adjusted freely by setting the relative phase of the R1 and R2

pulses. Immediately after R2, the combined atom-field state is:

|Ψ2〉 =
1
2
|e〉 ⊗ [

e−iΦ0 |βe−iΦ0〉 − e−iχ|βeiΦ0〉]
+

1
2
|g〉 ⊗

[
ei(χ−Φ0)|βe−iΦ0 〉 + |βeiΦ0〉

]
. (73)

The two states |e〉 and |g〉 are now correlated to two cat states, mutually orthogonal
when Φ0 > 1/

√
n. The phase χ of the second Ramsey zone can be adjusted to

simplify a little bit the expressions of the cat states. Setting χ = Φ0, we get:

|Ψ2〉 =
e−iΦ0

2
|e〉 ⊗ [|βe−iΦ0 〉 − |βeiΦ0 〉]+

1
2
|g〉 ⊗ [|βe−iΦ0〉 + |βeiΦ0〉] . (74)

This equation shows that the final detection of the atom projects with equal
probabilities the field into one of the two cat states [|βe−iΦ0〉 ± |βeiΦ0〉]/√2.
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When Φ0 = π/2, these states become the even and odd π-phase cat states [Eq.
(24) and (29)]:

|Ψ2〉 = − i

2
|e〉 ⊗ [|γ〉 − |−γ〉] +

1
2
|g〉 ⊗ [|γ〉 + |−γ〉] , (75)

where γ = −iβ. It is impossible to predict the field state eventually obtained,
which is revealed only by the outcome of the atomic measurement.

We shall describe later how this cat can be probed by a ‘quantum mouse’.
Before that, the simple detection of the index atom Ai provides some information
about the cat generation and sheds an intersting light onto this experiment. What
are then the probabilities for detecting Ai in either levels?

Let us suppose first that we apply onto Ai only the R1 and R2 pulses.
We recognize a Ramsey atomic interferometer [29], widely used in high-precision
atomic clocks. The probability, Pg, for observing finally the atom in level |g〉 ex-
hibits modulations (Ramsey fringes) as a function of the relative pulse phase χ:
Pg = (1 + cosχ)/2. This modulation results from a quantum interference effect.
When the atom is finally in |g〉, the transition may occur either during the first
pulse, R1, or during the second, R2. These two quantum paths are indistinguish-
able and the corresponding probability amplitudes interfere.

When the cavity is inserted between R1 and R2, the interferometric signal
provides an information about the atom-cavity interaction. We shall, first, consider
the case of an empty cavity. By setting β = 0 in Eq. (73), we obtain for the final
atom-field system:

|Ψ(β=0)
2 〉 =

e−iΦ0

2

[
1 − e−i(χ−Φ0)

]
|e, 0〉 +

1
2

[
1 + ei(χ−Φ0)

]
|g, 0〉 , (76)

which yields the probabilities P 0
e and P 0

g = 1 − P 0
e for finding the atom in |e〉 or

|g〉:
P 0

e = 1 − P 0
g =

1 − cos(χ − Φ0)
2

. (77)

The fringes are phase shifted by an angle Φ0 with respect to their position if there
were no cavity between R1 and R2. The phase shift of the atomic superposition
between the two pulses reflects the transient Lamb shift of level |e〉 in the empty
cavity mode (Section 3.1).

When the cavity contains a coherent field with n photons on average, this
field undergoes different phase shifts, depending on the state of the atom between
R1 and R2. The final cavity field amplitude measures the atomic state between
the two pulses. We recognize here the ingredients of a ‘which-path’ experiment.

Such gedanken experiments have been discussed in the early days of quan-
tum theory. A Young interferometer, for instance, produces fringes due to the
interference between two quantum paths corresponding to its two slits. Bohr’s
complementarity states that these fringes are incompatible with any unambiguous
information about the path actually followed by the particle in the interferometer.

We are thus discussing here a complementarity situation. If the two final
cavity states are orthogonal, which occurs for Φ0 > 1/

√
n, they could, by the
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detection of their phase, tell away the path of the atom. This is enough to destroy
the fringes. In more quantitative terms, the contrast of the fringes reveals the
amount of entanglement between the atom and the field. When this entanglement
is maximum, the fringes are fully suppressed. They have, on the other hand, a
maximum contrast when the two systems are separable.

More precisely, the probabilities for finding the atom in |e〉 or |g〉 when the
cavity contains a coherent field with n photons on average are obtained from Eq.
(73):

Pn
e = 1 − Pn

g =
1
2

{
1 − Re

[
ei(Φ0−χ)〈βe−iΦ0 |βeiΦ0 〉

]}
=

1
2

{
1 − cos [χ − Φ0 − n sin(2Φ0)] e−n[1−cos(2Φ0)]

}
. (78)

We recognize in the first line the scalar product of the two final field components,
whose analytical expression is given in the last line. The argument n[1−cos(2Φ0)] of
the last exponential in Eq. (78) represents the square of the distance in phase space
of the two field components. The Ramsey fringes appear to be phase-shifted by an
angle proportional to n and their amplitude is suppressed by a factor decreasing
exponentially with the separation of the field components.

We have observed these Ramsey fringes for n = 9.5 and tdi = 19 µs [7]
for different phase splittings Φ0 obtained by varying ∆c. The signals for three
different values of Φ0 are shown in Figure 12(a) with, in the insets, the final field
states phase space representations. The collapse of the fringe amplitude when the
field components separate is conspicuous. The fringe contrast is shown versus Φ0

in Figure 12(b) and the fringe phase shift in Figure 12(c). In these plots, the
points are experimental and the curves given by theory, with an overall contrast
adjustment taking into account the imperfections of the Ramsey interferometer.
Note that the theoretical formula (78), valid in the dispersive limit, does not apply
for the smallest detuning ∆c = 104 kHz. An exact expression of the phase shifts
based on the exact dressed states is used for the largest values of Φ0.

The experiment is found in excellent agreement with the theory. This is a clear
indication that the field components are separated in phase space. The variation of
the fringe phase with Φ0 reveals the light shift effect experienced by the atom. This
variation [Figure 12(c)] yields the calibration of the photon number. Moreover,
this experiment presents a direct illustration of the complementarity concept in
a simple interferometer arrangement. Note that other complementarity tests have
been performed with the same set-up [30].

3.3. Decoherence of cavity cats

Before coming to the detection of the cat coherence, we briefly describe its relax-
ation. We present three different approaches, which shed complementary lights.
We give, first, the formal solution of the master equation. We present then an en-
lightening interpretation of its results, using again the complementarity concept.
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Figure 12. Schrödinger cat and complementarity. (a) Ramsey
fringes for β = 3.1 and three different Φ0 values (0.1, 0.2 and
0.69 radians, corresponding to ∆c/2π = 712, 347 and 104 kHz
respectively from top to bottom). The insets give a pictorial rep-
resentation of the two field phase components. (b) Ramsey fringes
contrast versus Φ0. The solid line corresponds to the theoretical
predictions, scaled by the finite Ramsey interferometer contrast.
(c) Fringes shift (in radians) versus Φ0. The slope of the fitted
line provides a calibration of the photon number.

Finally, we discuss Monte Carlo trajectories for the field parity. For the sake of
simplicity, we consider only the zero temperature case.

3.3.1. Solution of the master equation. Under relaxation, a coherent state remains
coherent, with an amplitude β(t) = βe−κt/2 decaying exponentially with time. Its
density operator reduces to a projector ρ(t) = |β(t)〉〈β(t)|. Coherent states are
‘pointer states’ of the field, impervious to entanglement with the environment.
It is convenient to study the evolution of an arbitrary state by expanding it on
a coherent state basis. We do not recall here the derivation of the cat density
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Figure 13. Evolution of the Wigner function of a cat state (10
photons on the average). (a) to (d): t = 0, t = Tc/20, t = Tc/5
and t = Tc/2 respectively.

operator versus time [31], leading to:

ρ±(t) =
1
2

[
|β(t)〉〈β(t)| + |−β(t)〉〈−β(t)|

±e−2n(1−e−κt) (|β(t)〉〈−β(t)| + |−β(t)〉〈β(t)|)
]

. (79)

The fast decay of the coherence terms is described by the exponential coefficient
of the off-diagonal terms in Eq. (79). It decays at short times as exp(−2nκt) and
the coherent cat turns, for t > 1/nκ, into a mixture of states. This relaxation
process exhibits the essential features of the decoherence of a mesoscopic state
superposition. It is much faster than the cavity energy relaxation and gets faster
and faster when the ‘size’ of the cat, measured by the average photon number in
the coherent components, increases.

This fast decoherence is pictorially exhibited by the Wigner functions, repre-
sented at four different times in Figure 13 for an even cat state containing n = 10
photons on average. The decoherence process appears clearly on these plots, which
exhibit two very different time constants. After a very short time, the interference
pattern near the origin, the ‘cat whiskers’, which are a signature of its coherence,
have been washed out, leaving only the two Gaussian peaks, which slowly relax
down to vacuum.
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3.3.2. Decoherence and complementarity. The master equation approach does not
provide a deep insight into decoherence mechanisms. We give now a heuristic
derivation of Eq. (79), directly describing the environment evolution. This intuitive
approach emphasizes the deep link between decoherence and complementarity [32].

A standard model for the environment E is a bath of harmonic oscillators
labeled by the index i, linearly coupled to C. Their frequencies span a wide range
around ωc. Starting from a coherent state |β〉 at time t = 0 and an empty environ-
ment, the global cavity-environment system evolves at time t into a non-entangled
state:

|ΨCE(t)〉 = |β(t)〉 ⊗
∏

i

|εi(t)〉 , (80)

where β(t) = βe−κt/2 and εi(t) is the very small complex amplitude at time t of
the ith oscillator in E. Due to the linear coupling between C and the environment
oscillators, the phase of εi(t) is linearly related to the phase of β. Energy conser-
vation requires moreover that the total number of quanta in E equals the number
of photons lost by C: ∑

i

|εi(t)|2 = n
(
1 − e−κt

)
. (81)

Suppose now that we prepare at t = 0 the field in a cat state:

|Ψcat(0)〉 =
eiψ1

√
2
|βeiΦ〉 +

eiψ2

√
2
|βe−iΦ〉 . (82)

The state of the C+E system at time t is obtained by superposing the contributions
of the two parts of the cat, each being given by an expression of the form (80).
Noting that, when β is phase shifted by ±Φ, the same shift is experienced by the
εi(t) amplitudes, we have:

|ΨCE
cat (t)〉 =

eiψ1

√
2
|β(t)eiΦ〉 ⊗

∏
i

|εi(t)eiΦ〉

+
eiψ2

√
2
|β(t)e−iΦ〉 ⊗

∏
i

|εi(t)e−iΦ〉 . (83)

The two parts of the cat are correlated to two states of E:

|E+(t)〉 =
∏

i

|εi(t)eiΦ〉 , (84)

and
|E−(t)〉 =

∏
i

|εi(t)e−iΦ〉 , (85)

each of which is the product of minute copies of the cavity cat components dis-
seminated in the environment. Each oscillator in E is involved in a superposition
of two states with a very small amplitude εi and a large phase splitting 2Φ, a
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‘Schrödinger kitten’ so to speak. The states |E+(t)〉 and |E−(t)〉 get quickly mu-
tually orthogonal. Using Eqs. (22) and (81), we find:

〈E−(t)|E+(t)〉 = exp

[
−
∑

i

|εi(t)|2
(
1 − e2iΦ

)]
= exp

[−n(1 − e−κt)(1 − e2iΦ)
]

, (86)

an expression which goes very rapidly to zero as t increases. The fast loss of
coherence is a complementarity effect. It is a matter of information about the cat
state leaking into E. The final states of each oscillator in E have a near unity
overlap (since |εi|2 � 1), but there are very many of them and the product of
their scalar products quickly vanishes.

In other words, an information about the phase ±Φ of the cat state compo-
nents could not be obtained from a single environment oscillator whose amplitude
is very small and hence phase fluctuations very large. It could however be recov-
ered, at least in principle, from a measurement of the environment as a whole,
combining small amounts of information disseminated among the elementary os-
cillators. This is enough to kill the cat coherence and the interference effects associ-
ated to it. When tracing over E, the cat coherence is multiplied by 〈E−(t)|E+(t)〉
and ρ(t) finally writes:

ρ(t) =
1
2

{
|β(t)eiΦ〉〈β(t)eiΦ| + |β(t)e−iΦ〉〈β(t)e−iΦ|

+〈E−(t)|E+(t)〉ei(ψ1−ψ2)|β(t)eiΦ〉〈β(t)e−iΦ| + h.c.
}

. (87)

Setting Φ = π/2 and ψ1 − ψ2 = 0 or π, we recover, as expected, Eq. (79) giving
the evolution of an even or odd π-phase cat.

3.3.3. Parity jumps of a π-phase cat. We now turn to the Monte Carlo picture.
Let us imagine that we use the set-up of Figure 9 to follow the evolution of a
field initially prepared in the even cat state |Ψ+

cat(0)〉 = [|β〉 + |−β〉]/√2. The
photon clicks are counted in successive time bins of duration τ . Until the first
click at time t1, the non-unitary evolution simply shrinks the amplitude of the
cat components, turning β into β(t1) = βe−κt1/2. The cat state is continuously
changed into |Ψ+

cat(t1)〉 = [|β(t1)〉 + |−β(t1)〉]/
√

2.
The first click corresponds to a cavity state quantum jump, described by the

annihilation operator a. According to Eq. (31), the cat parity suddenly switches,
the field state jumping from |Ψ+

cat(t1)〉 to |Ψ−
cat(t1)〉 = [|β(t1)〉 − |−β(t1)〉]/

√
2.

The shrinking of the cat components then resumes until a second jump restores
the initial parity and so on. As long as the field energy has not appreciably decayed,
the probability of occurrence of a click in a time bin is p1 = κnτ and the average
duration between clicks is τD = 1/(κn). On each Monte Carlo trajectory, a fast
random parity jumping is combined with a slow deterministic shrinking of the
amplitude. The characteristic rates of these evolutions are in the ratio n.
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The information provided by a click has an immediate effect on a field in a
superposition of two coherent states, even if each of them, prepared separately in
C, would remain unchanged. This is a genuine quantum effect. The information
provided by the click changes the relative quantum phase between the two parts
of the field wave-function and, hence, its parity.

Assuming that the photon counter is perfect, the parity of the number of
clicks recorded until time t would tell us without ambiguity whether the field is
in the state |Ψ+

cat(t)〉 or |Ψ−
cat(t)〉. We could thus follow a Monte Carlo trajectory

in which the field would be a perfect, albeit random cat state. Observing the
environment makes it thus possible, at least in principle, to keep the cat coherence
alive for a time of the order of Tc = 1/κ. This continuous observation does not
give us the power, though, to choose at a given time the parity of the cat. We can
merely record it.

Monitoring the environment is of course but a gedanken experiment. It is
more realistic, if extremely difficult, to keep the cat’s coherence by monitoring the
cavity itself. As we shall see in the next section, the cavity photon number parity
can be measured non-destructively [33]. A stream of probe atoms could then record
in real time the decaying cat’s parity jumps.

In this ideal situation, the action of these jumps may be, to some extent,
canceled. Whenever the cat parity changes, an atom is sent into the cavity, interacts
resonantly with it and emits a photon in the mode, restoring the parity. Numerical
simulations show that a cat state’s coherence could be preserved, by this quantum
feedback procedure, over times of the order of Tc [34, 35]

As soon as we give up to monitor parity jumps, the field is described by a
density operator ρ, obtained by averaging Monte Carlo trajectories. After a time
of the order of τD = 1/nκ there are statistically as many trajectories with even
or odd click numbers. The density operator is then the sum with equal weights of
projectors on even and odd cats:

ρA(t > τD) ∼ 1
2
|Ψ+

cat(t)〉〈Ψ+
cat(t)| +

1
2
|Ψ−

cat(t)〉〈Ψ−
cat(t)| . (88)

It can be equivalently expressed as an incoherent sum with equal weights of pro-
jectors on the |β(t)〉 and |−β(t)〉 states. We thus retrieve the result predicted by
an exact solution of the master equation.

3.4. Probing the cat with a quantum mouse

The detection of the index atom Ai leaves in C a Schrödinger cat. How can we
probe its fast relaxation towards a statistical mixture of coherent components?
We must rely on an atomic signal to get an indirect information about the field.
After some free evolution time, we probe C with a second atom, Ap. Elaborating on
Schrödinger’s metaphor, Ap is a ‘quantum mouse’ sent in C to probe the coherence
of the relaxing cat state left by Ai.

Let us first discuss this experiment in simple qualitative terms. Atom Ai,
interacting with the initial coherent state |β〉, leaves in C a quantum superposition
of |β exp iΦ0〉 and |β exp−iΦ0〉. The mouse Ap undergoes the same transformations
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Figure 14. The interfering paths in the two atom experiment.

as Ai in R1 and R2 and produces the same quantum superposition of phase shifts
on the cavity field. Each of the phase components left by Ai is thus again split in
two parts dephased by ±Φ0. This process is pictorially represented in Figure 14.

The cavity finally contains a three-components cat. The phases ±2Φ0 corre-
spond to the situations in which Ai and Ap crossed C in the same state [(|e〉, |e〉)
or (|g〉, |g〉)]. Two different paths, (|e〉, |g〉) or (|g〉, |e〉), lead to a component with
zero phase. The atomic states, here, correspond to the cavity crossing. The Ram-
sey pulse R2 mixes the states at the exit of C. The atomic detection in D thus
does not provide any information about the states in C (a ‘quantum eraser’ situ-
ation). The two paths leading to the zero-phase component are indistinguishable,
resulting in a quantum interference. This interference vanishes when decoherence
has turned the cat superposition into a statistical mixture before Ap enters C. Let
us show now that this interference process reflects on an atomic signal η:

η = Pg|g − Pe|g , (89)

where Pg|g and Pe|g are the conditional probabilities for detecting the mouse atom
Ap in |g〉 or |e〉, provided Ai has been detected in |g〉.

Let us thus follow the successive state transformations, taking relaxation into
account with the simple kitten model presented in the previous section. When Ai

has been detected in |g〉, according to Eq. (74), the field has been prepared at
t = 0 in:

|Ψ+
Φ0
〉 =

1√
2

[|βe−iΦ0 〉 + |βeiΦ0 〉] . (90)

We assume here that the decoherence time scale is much longer than the atom-field
interaction time tdi . Decoherence is then negligible during tdi and only takes place
during the time interval t between the Ai and Ap. When Ap enters the apparatus,
the field state has been partially entangled with E, the cavity+environment state
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being:

|ΨCE(t)〉 =
1√
2

[|βe−iΦ0 〉 ⊗ |E−(t)〉 + |βeiΦ0〉 ⊗ |E+(t)〉] , (91)

where |E−(t)〉 and |E+(t)〉 are the environment states defined by Eqs. (84) and
(85). The probe atom Ap then interacts with C. As Ai, it crosses C in a time short
compared to the decoherence time. The environment remains spectator during
this interaction. Using the superposition principle, we can compute separately the
effect of the Ap − C interaction on the two parts of the cat state and add the
resulting contributions:

|ΨAiEAp(t)〉 =
1

2
√

2

[
e−iΦ0 |e2〉 ⊗

(|βe−2iΦ0〉 − |β〉)
+|g2〉 ⊗

(|βe−2iΦ0〉 + |β〉) ]⊗ |E−(t)〉

+
1

2
√

2

[
e−iΦ0 |e2〉 ⊗

(|β〉 − |βe2iΦ0 〉)
+|g2〉 ⊗

(|β〉 + |βe2iΦ0 〉) ]⊗ |E+(t)〉 . (92)

We get the three phase components represented in Figure 14. The first two and
last two lines in the r.h.s. describe the ‘offsprings’ of the |βe−iΦ0 〉 and |βe+iΦ0〉
components of the cat left by Ai in C. Each one is tagged by a different environment
state, carrying some information about its the phase. We get thus the probabilities
Pg|g and Pe|g for detecting the second atom in |g〉 or |e〉 (after having found Ai in
|g〉):

Pg|g =
1
2

+
1
4
Re 〈E−(t)|E+(t)〉 ;

Pg|g =
1
2
− 1

4
Re 〈E−(t)|E+(t)〉 . (93)

Replacing 〈E−(t)|E+(t)〉 by its expression (86), we obtain in the case 2Φ0 �= π:

η(t) = Pg|g − Pe|g =
1
2
Re exp

[−n(1 − e−κt)(1 − e2iΦ)
]

=
1
2
e−2n(1−e−κt) sin2 Φ0 cos

[
n(1 − e−κt) sin(2Φ0)

]
. (94)

For κt � 1 this expression can be approximated by:

η(t) ≈ 1
2
e−2nκt sin2 Φ0 cos[nκt sin(2Φ0)] . (95)

The two-atom correlation signal varies from 1/2 to 0 as decoherence pro-
ceeds. Its evolution is described by the product of a decaying exponential by a
cosine function of time. The decay rate of the exponential, 1/TD = 2κn sin2 Φ0, is
the cavity damping rate κ multiplied by the square of the distance in phase space
D2 = 2n sin2 Φ0 of the initial cat components. This is, once again, a characteris-
tic feature of decoherence. The cosine factor is very close to 1 at the beginning
of the evolution. When η(t) is already strongly reduced, this factor can change
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Figure 15. Theoretical value of the correlation signal η(t) for
2Φ0 = π/2, as a function of κnt.

sign, adding a modulation in the tail of the η(t) function. Figure 15 represents
the theoretical variation of η(t) for 2Φ0 ∼ π/2. Note that the maximum η value
is twice larger (1) when Φ0 = π/2, because then the two states |βe−2iΦ0 〉 and
|βe+2iΦ0 〉 coincide. This gives rise to another interference effect in the Pg|g and
Pe|g probabilities.

Sending pairs of atoms across the Ramsey interferometer, we have observed
the evolution of η [7]. The cavity damping time in this early experiment was 160 µs,
making the decoherence fast and limiting the experiment to small values of n. The
cat state prepared by the first atom contained n = 3.3 or 5.1 photon on average.
The phase splitting 2Φ0 was set at two values (100 and 50 degrees) by choosing
the detuning ∆c (70 kHz and 170 kHz respectively). The separation t between the
two atoms was varied between 30 µs and 250 µs.

Figure 16 shows η(t) for n = 3.3 and two splitting angles. The points are
experimental and the lines theoretical. Note that the theory is not restricted to
the simple perturbative analysis developed above. It includes higher order terms
in Ω0/∆c correcting the expression of the cat states at ∆c = 70 kHz. We have also
incorporated the finite Ramsey fringes contrast, which explains why the maximum
correlation is only 0.18.

The correlation signals decrease with t, revealing directly the dynamics of de-
coherence. The agreement with the theoretical model is excellent. Most strikingly,
decoherence proceeds at a faster rate when the distance between cat state com-
ponents increases. A decoherence time ≈ 0.24/κ, much shorter than the photon
decay time, is found for the larger cat (∆c = 70 kHz). A similar agreement with
theory is obtained when comparing, for the same ∆c = 70 kHz, η(t) for different
n values (5.1 and 3.3).

The CQED cat experiments are, as discussed above, models of an ideal quan-
tum measurement. The coherent field is a meter measuring the state of the first
atom crossing the cavity and evolving under the effect of their interaction into
a mesoscopic superposition. This decoherence experiment illustrates vividly the
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Figure 16. Two-atom correlation signal η as a function of t/Tc

for an atom-cavity detuning ∆c/2π = 170 kHz (open circles) and
∆c/2π = 70 kHz (solid triangles). The points are experimental,
with statistical error bars. The curves present the theoretical sig-
nal, scaled by a factor taking into account experimental imperfec-
tions. The cat phase components are pictorially depicted in the
insets.

fast evolution of the atom+meter state towards a statistical mixture and the in-
creasing difficulty to maintain quantum coherence when the distance between the
components of the mesoscopic superposition is increased.

4. The future of cavity cats

We have presented above a first experiment on decoherence dynamics. It would be
quite interesting to dive deeper into the quantum/classical transition and to test
our understanding of decoherence in this textbook situation. It is thus essential to
get more information on the relaxing cat state than provided by the correlation η.
Finally, it would be interesting to merge two of the most intriguing features of the
quantum world: decoherence and non-locality. We address these issues here. We
show first that the resonant atom-field interaction can produce efficiently very large
cat states. We present a direct measurement of the cavity field Wigner function.
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Finally, we discuss an experiment under construction aiming at the preparation of
non-local Schrödinger cat states.

4.1. Generation of large cats by resonant atom-field interaction

In the preceding section, we learned how to generate Schrödinger cats via the
dispersive atom-cavity interaction, valid when the atom-cavity detuning is large
and the photon number small. It is tempting to increase the photon number and
to decrease ∆c in order to generate ‘larger’ cats. What happens then when ∆c goes
all the way to zero? What is the index of refraction of a single resonant atom?
In the classical Lorentz model of harmonically bound electrons [36], the answer
is simple: the index is one. When it comes to a mesoscopic field, the situation is
more interesting. The atom is indeed in a quantum superposition of two very large
indices, resulting in the efficient generation of a Schrödinger cat state.

4.1.1. Quantum Rabi oscillations in a mesoscopic field. We thus return to the
interaction of a single atom, initially in |e〉, with a coherent state |α〉 =

∑
n cn|n〉

containing n = |α|2 photons on the average. The initial atom-cavity state, |e〉⊗|α〉,
can be expanded on the dressed atom state basis |±, n〉 and the evolution easily
computed. The state at the effective interaction time ti is:

|Ψ〉 =
1√
2

[|Ψ1〉 + |Ψ2〉] , (96)

where

|Ψ1〉 =
1√
2

[∑
n

cneiΩ0
√

n+1ti/2 (|e, n〉 − i|g, n + 1〉)
]

, (97)

and

|Ψ2〉 =
1√
2

[∑
n

cne−iΩ0
√

n+1ti/2 (|e, n〉 + i|g, n + 1〉)
]

. (98)

This is an exact expression. The probability Pe(t) for finding the atom in |e〉
is simply:

Pe(t) =
∑

n

|cn|2 1 + cosΩ0

√
n + 1ti

2
, (99)

a sum of terms oscillating at the frequencies Ω0

√
n + 1, weighted by the probability

for getting the corresponding photon number n in the initial coherent cavity state.
Figure 17 shows Pe(t) for n = 15. This Rabi oscillation signal presents re-

markable features, which attracted a lot of interest in the early days of quantum
optics [37, 38]. At short times, when n � 1, an oscillation is observed at a fre-
quency Ω0

√
n + 1, proportional to the classical field amplitude. This oscillations

is quite rapidly damped away and Pe reaches a stationary 1/2 value. This ‘col-
lapse’ is due to the dispersion of Rabi frequencies in Eq. (99). At much longer
times, however, the oscillations ‘revive’, due to the rephasing of the finite set of
oscillating terms in Eq. (99). This revival is directly linked to the quantization of
the Rabi oscillation spectrum and, hence, to the field energy quantization itself.
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Figure 17. Quantum revivals: computed probability Pe(t) for
finding the atom in state |e〉 versus the interaction time t in units
of 2π/Ω0. The cavity contains initially an n = 15 photons coherent
field.

This explains the theoretical interest devoted to this phenomenon [39, 40, 41, 42].
We give below an enlightening interpretation of the collapse and revival in terms
of complementarity.

The expression (96) is explicit, but does not provide a physical insight into
the field evolution. We proceed thus to obtain a more explicit, if approximate,
expression of the atom-cavity state, following [40]. We separate the kets |Ψ1〉 and
|Ψ2〉 into an atom and a field part. With a mere redefinition of the running index
n:

|Ψ1〉 =
1√
2

[∑
n

cneiΩ0
√

n+1ti/2|e, n〉 − i
∑

n

cn−1e
iΩ0

√
nti/2|g, n〉

]
, (100)

still an exact expression. We now assume that n and the photon number variance
∆N =

√
n are much larger than 1. The cn amplitudes are slowly varying functions

of n and we can set cn ≈ cn−1. We use, in the exponentials, a first order expansion
of

√
n + 1:

Ω0

√
n + 1 ti
2

≈ Ω0
√

n ti
2

+
Ω0 ti
4
√

n
, (101)

which leads to:

|Ψ1〉 =
1√
2

[∑
n

cneiΩ0
√

nti/2|n〉
] [

eiΩ0ti/4
√

n|e〉 − i|g〉
]

, (102)

a product of independent atom and field states.
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We then expand the
√

n term around n = n, up to the first order:

√
n =

√
n

2
+

n

2
√

n
. (103)

This is legitimate since ∆N � n. We get:

|Ψ1〉 =
1√
2
eiΩ0

√
nti/4

[∑
n

cneinΩ0ti/4
√

n|n〉
]

⊗
[
eiΩ0ti/4

√
n|e〉 − i|g〉

]
. (104)

The field state reduces thus to:∑
n

cneinΩ0ti/4
√

n|n〉 = |βeiΩ0ti/4
√

n〉 , (105)

a coherent state obtained from the initial one by a phase shift Ω0ti/4
√

n.
A similar calculation is performed for |Ψ2〉. Grouping all the terms, we finally

obtain the atom-field wavefunction as:

|Ψ(ti)〉 ≈ 1√
2

[
|Ψ+

a (ti)〉 ⊗ |Ψ+
f (ti)〉 + |Ψ−

a (ti)〉 ⊗ |Ψ−
f (ti)〉

]
, (106)

where the atom wavefunctions write:

|Ψ±
a 〉 =

1√
2
e±iΩ0

√
nti/2

[
e±iΩ0ti/4

√
n|e〉 ∓ i|g〉

]
, (107)

and the field ones:
|Ψ±

f 〉 = e∓iΩ0
√

nti/4|βe±iΩ0ti/4
√

n〉 . (108)

Equation (106) describes a quantum superposition involving two coherent
states rotating slowly, at an angular frequency Ω0/4

√
n, in opposite directions in

phase space, away from the initial state |α〉. These components are correlated to
atomic states, superpositions of |e〉 and |g〉 with equal weights, also rotating slowly
in opposite directions in the equatorial plane of the Bloch sphere, so that the phase
relationship between the atomic dipole and the associated field components are
kept throughout the evolution.

In other words, a resonant atom, initially in state |e〉, is in a quantum super-
position of two opposite indices of refraction and leads to a cat state preparation.
The components angular frequencies, ±Ω0/4

√
n, go to zero in the classical limit

of a very large field (obtained by letting n → ∞ and Ω0 → 0 so that the Rabi
frequency Ω0

√
n remains constant). This phase separation is thus a mesoscopic

feature, directly related to the photon graininess. Its velocity is larger than for
any finite atom-cavity detuning, much faster than in the dispersive regime. The
resonant method is thus optimal for the preparation of photonic cats with many
photons.

We have so far overlooked the global phase factors multiplying the expressions
of the |Ψ±

a 〉 and |Ψ±
f 〉 states. They evolve at frequencies about n times larger than

the phase drift frequency. In the (|Ψ1〉 + |Ψ2〉)/
√

2 superposition, though, their
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role is essential. They give rise to the interference effect responsible for the Rabi
oscillation. The study of the photonic cat evolution is thus intimately related to
the dynamics of the precession between |e〉 and |g〉.

This leads to a simple interpretation of the quantum Rabi collapse and re-
vivals, again in terms of complementarity. At short times, the two coherent compo-
nents overlap and the quantum interference and hence the Rabi oscillations show
up. Soon, the two coherent components separate. The cavity field acts then as
a which-path detector for the interfering atomic states, and the Rabi oscillations
disappear. The evolution does not stop, though, since the slow rotation of the
coherent states in phase space goes on. After a time tr such that trΩ0/4

√
n = π,

the coherent states have undergone a π rotation in opposite directions. They again
overlap. The which-path information is erased and the atom-field entanglement is
broken. The Rabi oscillations revive. A series of revivals is thus expected, corre-
sponding to the periodic overlaps of the counter-rotating fields. That these revivals
get progressively broadened, with a lower than unity contrast, as conspicuous on
Figure 17, is due to higher order terms neglected in our approximations.

4.1.2. Observing the field phase separation. We have evidenced the resonant phase
separation via a measurement of the final field phase distribution [43]. The experi-
ment is similar to the measurement of the dispersive phase shifts described above.
It involves two successive field injections and two atoms. A first coherent state
|α〉 is prepared, with n between 10 and 40. A resonant atom Ar is sent across the
cavity at a fixed velocity v1 = 335 m/s or v2 = 200 m/s (corresponding to a total
effective interaction time ti = 32 µs or 52 µs).

A second coherent field |β〉 = |−αeiϕ〉, with the same amplitude as the first,
but a variable phase ϕ, is then added in C. A probe atom, Ap, also resonant with
C, follows. Its absorption yields as above the Q function of the field left in the
cavity by Ar.

Figure 18 presents Q(αeiϕ) versus ϕ for n = 29 and ti = 52 µs. As expected, a
double peak distribution is obtained, with a phase splitting of 1.3 radians, in good
agreement with the theoretical value Ω0ti/2

√
n = 1.5 radians. We have checked

that the splitting is proportional to ti and inversely proportional to α. The observed
phase shifts are in good agreement with the simple first order calculation presented
above and in excellent agreement with a numerical simulation of the exact atom-
cavity interaction [43]. The maximum phase splitting, for n = 15 and ti = 52 µs,
was 90◦, a phase space separation much larger than what can be obtained in the
dispersive regime.

4.1.3. Checking the cat coherence. The Q function measurement does not provide
any hint about the coherent nature of the superposition. The simplest coherence
assessment would be the spontaneous Rabi revival observation. Unfortunately, even
for a relatively small cat with n = 13, the revival time tr = 4π

√
n/Ω0 = 260 µs is

prohibitively long.
It is possible to bypass this difficulty and to force the system to undergo

an early revival. The trick is to let the field components separate in phase space
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Figure 18. Phase distribution Q(αeiϕ) (in units of 1/π) for the
resonant cat state. Top curve: initial coherent field, with 29 pho-
tons on the average. Bottom: phase distribution at ti = 52 µs.
The points are experimental and the solid curves are Gaussian
fits.

until a time T , shorter than tr/2, then to force them to come back on their tracks
and to recombine at the initial phase. The recombination time, 2T , can then be
shorter that tr. This method, reminiscent of the spin echoes used in NMR, has
been proposed by Morigi et al. [44].

The system’s evolution is ruled by the Jaynes Cummings Hamiltonian, given
at resonance and cavity center by Hac [see Eq. (54)]. We time the evolution with
a ‘clock’ synchronized on the effective interaction time ti. The experiment can
be described as if the atom was sitting at cavity center. In an echo sequence,
the system evolution from time 0 to T is described by the evolution operator
U1 = exp(−iHacT/�). The atom undergoes, at time T , a percussional phase kick
corresponding to the unitary operation σZ . This kick can be produced by an
electric field pulse, transiently shifting the atomic levels via Stark effect. This
pulse phase shifts by π the atomic dipole states, reversing their phase relationship
with the associated coherent component. The evolution of the coupled atom-field
states is then reversed, both in the Fresnel plane and in the equatorial plane of
the Bloch sphere.

More quantitatively, after the phase shifting pulse, the Jaynes-Cummings
evolution resumes for the remaining time ti −T , with the evolution operator U2 =
exp[−iHac(ti − T )/�]. The overall evolution operator is:

U = U2σZU1 = σ2
ZU2σZU1 = σZe−iHac(2T−ti)/� , (109)
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where we have used the identity σ2
Z = 1 and:

σZHacσZ = −Hac . (110)

Eq. (110) means that the evolution after the phase kick is the time-mirror image
of the evolution between 0 and T . At time ti = 2T , the evolution brings the
system back to its initial state, up to a global π-phase shift between the amplitudes
associated to levels |e〉 and |g〉. Provided the whole evolution has been coherent,
Rabi oscillations, exactly identical to the initial ones, show up around 2T .

Figure 19. Experimental echo signals. Probability Pe for de-
tecting the atom in |e〉 as a function of the atom-cavity effective
interaction time ti. The points are experimental with statistical
error bars and the solid lines are a theoretical fit. (a) Rabi collapse
without Stark pulse. (b) and (c) Stark pulse applied at 18 and 22
µs respectively (vertical arrows). The first part of the signal (open
circles) is reproduced from (a) for visual convenience.

We have applied this time reversal method to the study of the Rabi oscillation
in our CQED set-up [45]. The atomic velocity is set at v = 156 m/s and n = 13.6.
The atom is tuned into resonance with C at ti = 0. The Rabi oscillation starts and
collapses while the atom is still near cavity entrance. In a preliminary experiment,
this signal is recorded by freezing the evolution at increasing times. The final
atomic state is recorded and we reconstruct the probability Pe(ti) for finding the
atom in level |e〉. The Rabi collapse signal is shown in Figure 19(a).
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We then perform the echo experiment. The Stark phase kicking pulse is ap-
plied to the atom when it reaches cavity center, long after the Rabi collapse is
complete. The atomic frequency then resumes its resonant value and the atomic
evolution proceeds until a final time ti = tf , at which the atom is suddenly de-
tuned. The frozen atomic state is analyzed by the atomic detector. Traces 19(b)
and (c) show the signals obtained when the kicking pulse occurs at the effective
time ti = T = 18 µs and 22 µs respectively. The echo signals around time 2T
are clearly observed, with a contrast about 50% of the ideal value. The kicking
time T = 22 µs corresponds to 2.5 damping times of the initial Rabi signal. The
maximum separation of the field components reaches 0.90 radians, about three
times the phase fluctuation of the initial coherent field (1/

√
n = 0.27 radian).

The components of the field are thus well separated, before being recombined by
the time reversal operation. This echo signal reveals the existence of a mesoscopic
coherence in the atom-field system between the collapse and the induced revival
time.

The induced revival signal could, in principle, be used to assess the deco-
herence process. The observed echo contrast should be directly related to the
decoherence integrated from ti = 0 to ti = 2T . In practice, this analysis cannot
be carried out because the echo is affected by experimental imperfections. A nu-
merical simulation of the system’s evolution (including the effect of decoherence
due field damping in the cavity and all known causes of imperfections), shown
as solid lines in Figure 19, indicates that the contrast reduction is dominated by
mundane imperfections. Decoherence would take over for longer echo times, whose
observation requires the use of slower atoms, not readily available.

4.1.4. How big a cat? What is the maximal practical size of a cat in these cavity
QED experiments? The longest cavity damping time obtained in 2005, is Tc = 14
ms, a two-order of magnitude increase with respect to the 1996 experiment [7],
opening the way to much fatter photonic cats. The limit to the cat size can be
evaluated by comparing the time required to prepare and probe it to its decoher-
ence time. With the optimal resonant coupling, the effective interaction time ti
needs to be such that Ω0ti/2

√
n ∼ π, i.e. ti ∼ (2π/Ω0)

√
n. It should be shorter

than the decoherence time 1/2κn = Tc/2n, thus:

n <

(
Ω0Tc

2π

)2/3

=
(

Ω0Q

2πω

)2/3

. (111)

An increase in Tc and Q by two orders of magnitude corresponds to a 102/3 ≈ 20-
fold improvement over the limit (n ≈ 5) of the early cat experiments. Cat states
with n as large as 100 are thus in view.

The Q factor is still limited by mirror imperfections. With ideally smooth
mirrors, and low enough temperature we could reach the diffraction limit, when
the losses occur by photon scattering at the edge of the mirrors. With the current
Fabry-Perot geometry, this would correspond to Q ≈ 4. 1011, or Tc = 1.4 s, again a
two orders of magnitude improvement. We can dream of another 20-fold increase
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in the cat size up to 2000 photons. This limit would be difficult to break, but it
leaves a lot of room for decoherence experiments.

4.2. Imaging Schrödinger cats: a direct determination of the cavity field Wigner
function

The smoking guns of cat coherence obtained so far do not provide a full insight
into the cavity state. It would be much more interesting to reconstruct the field’s
Wigner function W , which provides a full information about the cat and its coher-
ence. We made a first step in this direction by measuring the Wigner distribution
of a non-classical cavity field, here an approximate single-photon state [33].

The method was proposed by Lutterbach and Davidovich [46]. Let us recall
Eq. (40): W (α) is the average of the parity operatorP in the field translated by −α.
This translation, action on C of a displacement operator D1, is easily produced by
the source S. To measure 〈P 〉 [33], we send across C a probe atom Ap, initially in
|g〉, tuned off-resonance from C. The |e〉 → |g〉 transition is transiently light-shifted
by the cavity field, resulting in a phase shift of the atomic coherence. We adjust
the atom-cavity detuning, δ = 2π × 105 kHz, and the atomic velocity, v = 154
m/s, so that a single photon produces a π-phase shift on the |e〉/|g〉 coherence.

This phase shift is revealed by the Ramsey interferometer sandwiching C. The
probability Pe for detecting Ap in |e〉 is modulated versus the relative phase φ of the
R1 and R2 Ramsey pulses resonant with the |e〉 → |g〉 transition: Pe = (1+cosφ)/2.
An n-photon field in C shifts the interference pattern by nπ. When the photon
distribution is pn after D1, Pe becomes Pe(φ) = [1 +

∑
n(−1)npn cosφ]/2 = [1 +

〈P 〉 cosφ]/2. Hence, W is directly related to the Ramsey fringes contrast c(α):

W =
2
π
〈P 〉 =

2
π

c(α) =
2
π

[Pe(0, α) − Pe(π, α)] . (112)

We have applied this procedure to the residual thermal field in the cavity and
to an approximate single-photon Fock state, prepared through an atomic emission
in C. The latter results are shown in Figure 20. Panels (a) and (b) present the
Ramsey fringes for two displacement amplitudes α = 0 and α = 0.81 (W being
phase-independent, we need not tune the phase of D1 and can assume that α is
real). The fringe phase is shifted by π between these two values, indicating a sign
change for W , from negative (small α) to positive (large α)

The fringes are fitted with sine curves [solid lines in Figure 20(a)-(b)], pro-
viding the contrast c(α) (± 0.02 uncertainty). Figure 20(c) presents the Wigner
distribution values deduced from these fits (dots). The measurements are affected
by the finite intrinsic contrast of the Ramsey interferometer. We thus multiply the
raw data by a 4.16 factor, in order to obtain a normalized Wigner function. The
measured W function is negative around the origin, revealing the non-classical
nature of the cavity state. The solid line in Figure 20(c) is a fit on a mixture of
Fock states with an adjustable photon distribution, pn. The inferred pn is shown in
Figure 20(d). It exhibits a 71% probability for the one-photon state. This value is
in agreement with a model of experimental imperfections taking cavity relaxation
into account.
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Figure 20. Determination of the ‘one-photon’ Wigner function.
(a) Ramsey fringes for α = 0. Probability Pe for detecting the
atom in state |e〉 as a function of the Ramsey interferometer phase
φ/π. Dots are experimental with statistical error bars. The solid
curve is a sine fit. (b) Ramsey fringes for α = 0.81. (c) Dots: W (α)
with error bars reflecting the uncertainty on the Ramsey fringes
fit. The solid line is a theoretical fit. (d) Corresponding photon
number distribution pn.

This measurement opens interesting perspectives for the monitoring of the cat
relaxation. It should be possible, in the near future, to reconstruct experimentally
the evolution of the cat’s Wigner function shown in Figure 13.

4.3. Towards non-local cats

The Wigner function measurement can be used for the investigation of a new
type of quantum field, merging two intriguing aspects of quantum mechanics: a
non-local Schrödinger cat state. This state is a mesoscopic quantum superposition,
exhibiting a fast decoherence as the cats encountered so far. At the same time, it
exhibits the non-local properties of an EPR pair of particles and could lead to the
observation of a violation of Bell inequalities [47]. This violation should be rapidly
washed out by decoherence process.
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We have in mind an experiment with two cavities, C1 and C2, tuned slightly
off-resonance with the |g〉 → |e〉 transition, initially prepared in the same coherent
state |γ〉 by two classical sources S1 and S2. An atom is prepared, in a first Ramsey
zone R1 before C1, in a coherent superposition (|g〉 + |i〉)/√2, where |i〉 is the
circular state with principal quantum number 49. When in |i〉, the atom is far off-
resonance and leaves the cavity fields unchanged. When in |g〉, the atom produces
instead a π-phase shift of both fields. A second Ramsey zone, R2, after C2 mixes
again |g〉 and |i〉, erasing any information about the atomic state in the cavities.
The atomic detection in |g〉 then projects the two cavities into:

|Ψ〉 =
1√
N

(|γ, γ〉 + |−γ,−γ〉) , (113)

where N is a normalization factor, close to 2 for large α values. This is a meso-
scopic quantum superposition and also a non-local pair, since the two cavity field
amplitudes exhibit quantum correlations.

In EPR experiments with spin pairs [48, 49], the Bell inequalities involve
averages of products of binary spin observables (−1 or +1) for four settings of the
detection axes. In the two-field mode case, the spin observables are replaced by
the photon number parity P , another binary observable. Independently adjustable
displacements in both cavities play the role of the detection axes settings. The Bell
signal, Sb, involves then four values of the joint cavities four-dimensional Wigner
function W (α1, α2) [47]:

Sb =
π2

4
|W (α′, β′) + W (α, β′) + W (α′, β) − W (α, β)| . (114)

It should be lower than 2 for any local realistic description. It can reach 2
√

2 for
large α values. It is already 2.6 for a two-photon cat (γ =

√
2).

The joint Wigner function can be determined as for a single cavity, with
independent displacements of the cavity fields performed by S1 and S2 followed
by a probe atom prepared in R1 in a superposition of |e〉 and |g〉, whose coher-
ence undergoes two π-phase shifts per photon in both cavities. The accumulated
phase shift is probed in R2. The contrast of the Ramsey fringes is then directly
proportional to W . We have numerically simulated this experiment for two cavity
damping times, Tc = 30 ms and 300 ms, taking into account the exact atom-field
interaction [50]. The results are presented in Figure 21 as a function of the delay T
between state preparation and measurement. The Bell signal is above the classical
limit for a short time interval and undergoes a fast decoherence.

This experiment puts severe requirement on the cavity quality, since the
decoherence of the Bell signal is pretty fast. However, as mentioned above, we have
recently obtained Tc = 14 ms, already such that a violation of a Bell inequality
could be observed in a short time interval for small photon numbers. This is
certainly a strong incentive to build a two-cavity experiment.
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Figure 21. Bell signal Sb as a function of the time delay T be-
tween state preparation and analysis. The dots correspond to ex-
perimental simulations with Tc = 30 ms (squares) and 300 ms
(circles). The lines are linear fits.

5. Conclusion

Cavity QED experiments with circular Rydberg atoms and superconducting cav-
ities are well adapted to the experimental study of the decoherence dynamics.
The interaction of a single atom with a mesoscopic field, either in the resonant
or dispersive regimes, produces quantum superpositions of coherent components
with different classical phases, mesoscopic versions of the famous Schrödinger cat
state. The decoherence transforms these superpositions into statistical mixtures
in a time much shorter than the cavity energy lifetime. Probing the field quan-
tum state with another atom makes it possible to unveil directly the decoherence
process.

There is clearly much to do after the first qualitative measurements presented
here. The development of new techniques to image the cavity state, such as the
direct determination of the cavity field Wigner function, the realization of cavities
with a much higher quality factors, open the way to detailed, ‘metrologic’ studies
of the decoherence of pretty large Schrödinger cats.

A new experimental set-up is presently in construction in our laboratory.
It should circumvent many of the limitations of the present apparatus. It will
incorporate two separate cavities, making it possible to prepare and probe the
non-local cats described above. Besides these fundamental aspects, it will also be
well suited for the realization of complex quantum information manipulations [4].
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Approaches to Quantum Error Correction

Julia Kempe

Abstract. In a ground breaking discovery in 1994, Shor has shown that quan-
tum computers, if built, can factor numbers efficiently. Since then quantum
computing has become a burgeoning field of research, attracting theoreticians
and experimentalists alike, and regrouping researchers from fields like com-
puter science, physics, mathematics and engineering. Quantum information
is very fragile and prone to decoherence. Yet by the middle of 1996 it has
been shown that fault-tolerant quantum computation is possible. We give a
simple description of the elements of quantum error-correction and quantum
fault-tolerance. After characterizing quantum errors we present several er-
ror correction schemes and outline the elements of a full fledged fault-tolerant
computation, which works error-free even though all of its components can be
faulty. We also mention alternative approaches to error-correction, so called
error-avoiding or decoherence-free schemes.

We have persuasive evidence that a quantum computer would have extraor-
dinary power. But will we ever be able to build and operate them?

A quantum computer will inevitably interact with its environment, resulting
in decoherence and the decay of the quantum information stored in the device. It
is the great technological (and theoretical) challenge to combat decoherence. And
even if we can suitably isolate our quantum computer from its surroundings, errors
in the quantum gates themselves will pose grave difficulties. Quantum gates (as
opposed to classical gates) are unitary transformations chosen from a continuous
set; they cannot be implemented with perfect accuracy and the effects of small
imperfections in the gates will accumulate, leading to an eventual failure of the
computation. Any reasonable correction-scheme must thus protect against small
unitary errors in the quantum gates as well as against decoherence. Furthermore
we must not ignore that the correction and recovery procedure itself can introduce
new errors; successful fault-tolerant quantum computation must also deal with this
issue.

The purpose of this account is to give an overview of the main approaches
to quantum error correction. There exist several excellent reviews of the subject,
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which the interested reader may consult (see [Pre98b],[Pre99], [NC00], [KSV02],
[Ste99, Ste01] and more recently [Got05]).

1. Introduction

“We have learned that it is possible to fight entanglement with entanglement.”
John Preskill, 1996

In a ground breaking discovery in 1994, Shor [Sho94] has shown that quantum
computers, if built, can factor numbers efficiently. Since then quantum computing
has become a burgeoning field of research, attracting theoreticians and experimen-
talists alike, and regrouping researchers from fields like computer science, physics,
mathematics and engineering. One more reason for the enormous impetus of this
field is the fact that by the middle of 1996 it has been shown how to realize fault-
tolerant quantum computation. This was not at all obvious; in fact it was not even
clear how any form of quantum error-correction could work. Since then many new
results about the power of quantum computing have been found, and the theory
of quantum fault-tolerance has been developed and is still developing now.

In what follows we will give a simple description of the elements of quantum
error-correction and quantum fault-tolerance. Our goal is to convey the necessary
intuitions both for the problems and their solutions. In no way will we attempt
to give the full and formal picture. This account is necessarily restricted with
subjectively chosen examples and approaches and does not attempt to describe
the whole field of quantum fault-tolerance, which has become a large subfield of
quantum information theory of its own.

The structure of this account is the following. First we will describe why
quantum error correction is a non-trivial achievement, given the nature of quan-
tum information and quantum errors. Then we will briefly review the main features
of a quantum computer, since, after all, this is the object we want to protect from
errors, and it is also the object which will allow us to implement error-correction.
Then we will give the first example of a quantum error-correcting code (the Shor-
code), followed by other error correction mechanisms. We proceed to outline the
elements of a full fledged fault-tolerant computation, which works error-free even
though all of its components can be faulty. We mention alternative approaches to
error-correction, so called error-avoiding or decoherence-free schemes. We finish
with an outlook on the future. We will try to keep technical details and gener-
alizations to a minimum; the interested reader will find more details, as well as
suggestions for further reading, in the appendix.

2. The subtleties of quantum errors

“Small errors will accumulate and cause the computation to go off track.”
Rolf Landauer, 1995, in “Is quantum mechanics useful?”
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A quantum machine is far more susceptible to making errors then classical
digital machines.

Not only is a quantum system more prone to decoherence resulting from un-
wanted interaction between the quantum system and its environment, but also,
when manipulating quantum information we can only implement the desired trans-
formation up to a certain precision. Until 1995 it was not clear at all if and how
quantum error correction could work.

The second big breakthrough towards quantum computing (after Shor’s al-
gorithm) was the insight that quantum noise can be combatted or that quantum
error protection and correction is possible. The first big step in this direction was
again made by Peter Shor in his “Scheme for reducing decoherence in a quantum
memory” in 1995 [Sho95].

This was indeed an amazing piece of work: the difficulties facing the introduc-
tion of classical error-correction ideas into the quantum realm seemed formidable.
In fact there was a large number of reasons for pessimism. Let us cite but a few
of the apparent obstacles:

(1) There is a hugely successful theory of classical error correction which
allows to protect against classical errors. However, classical errors are discrete by
their nature. In the most common case where the information is encoded into a
string of bits, the possible errors are bit-flips or erasures. A quantum state is a priori
continuous, and hence also the error is continuous. Similarly, quantum operations
are continuous by their nature, and will necessarily only be implemented with a
certain precision, but never exactly. As noted by Landauer [Lan95], small errors
can accumulate over time and add up to large, uncorrectable errors. Moreover it is
not clear how to adapt the discrete theory of error correcting codes to the quantum
case.

(2) A second objection is that to protect against errors, the information
must be encoded in a redundant way. However, the quantum no-cloning theorem
[Die82, WZ82], which follows directly from the linearity of quantum mechanics,
shows that it is impossible to copy an unknown quantum state. How then can the
information be stored in a redundant way?

(3) Another point is the following: in order to correct an error, we need to
first acquire some information about the nature and type of error. In other words
we need to observe the quantum system, to perform a measurement. But any
measurement collapses the quantum system and might destroy the information we
have encoded in the quantum state. How then shall we extract information about
the error without destroying the precious quantum superposition that contains the
information?

Many researchers in the field were pessimistic about the prospects of error-
correction and Shor’s result came as a great surprise to many. All the initial ob-
jections let us appreciate the elegance of the solution even more. But before giving
the key ingredients, we need to briefly review the object we want to protect from
errors, the actual quantum machine.
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3. What is a quantum computer?

“The more success the quantum theory has, the sillier it looks.”
Albert Einstein, 1912

There are nearly as many proposals for the hardware of a quantum com-
puter today, as there are experimental quantum physicists. The ultimate shape
and function of a quantum computer will depend on the physical system used, be
it optical lattices, large molecules, crystals or silicon based architectures. Nonethe-
less, each of these implementations have some key elements in common, since they
all implement the quantum computing model.

What are the key ingredients of a quantum computer? A quantum computer
is a machine that processes basic computational units, so called qubits, quantum
two-level systems. (Although there might be quantum machines which process
higher-dimensional quantum systems, we will restrict ourselves for simplicity to the
case of two-level systems.) Qubits are two-dimensional quantum states spanned by
two basis-states, which we conventionally call |0〉 and |1〉, alluding to the classical
bits of a standard computer. Hence the general state of a qubit is

|ψ〉 = α|0〉 + β|1〉 |α|2 + |β|2 = 1 ,

where α and β are complex numbers. In each implementation of a quantum com-
puter these basis states |0〉 and |1〉 need to be identified; they usually correspond to
two chosen states of a larger system. For any quantum computation, fresh qubits
have to be supplied in a known state, which is usually taken to be the |0〉 state.

A quantum computer implements a unitary transformation on the space of
several qubits, as consistent with the laws of quantum mechanics. However, in the
context of computation, each unitary is decomposed into elementary gates, where
each gate acts on a small number of qubits only. These elementary gates constitute
a universal gate set, which allows to implement any unitary operation on the set of
qubits. There are several universal gate sets, but we will mention only two, which
are relevant for what follows. The first such set is continuous, and consists of all
one-qubit unitaries, together with the controlled NOT or CNOT. The action of
the CNOT on the basis states |00〉, |01〉, |10〉, |11〉 is as follows

CNOT =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .

In quantum circuit design it is often depicted as in Fig. 1.
It is possible to implement any unitary operation by a sequence of CNOT

and single qubit unitary operations on the qubits.
The second set of universal gates is discrete. It contains the gates H , π/8, Z

and CNOT . The first three gates are single qubit gates. H is called the Hadamard
transform, π/8 is a phase gate and Z is known to physicists as one of the Pauli
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control

target

Figure 1. The top qubit is the control qubit. If it is in the state
|0〉, then the target qubit stays unchanged, if it is in the state |1〉,
the target qubit is flipped from |0〉 to |1〉 and vice versa.

matrices σz.1 On the basis |0〉, |1〉, they act as

H =
1√
2

(
1 1
1 −1

)
π/8 =

(
ei π

8 0
0 e−i π

8

)
Z =

(
1 0
0 −1

)
.

All experimental proposals, in one way or another, demonstrate the ability to
induce the transformations corresponding to this (or some other universal) gate
set. Note that it is absolutely crucial to implement the two-qubit gate CNOT (or
some other suitable two-qubit gate), as single qubit operations alone are clearly
not universal.

This gate set is discrete, it contains only four gates. However, this comes at
a price. It is not in general possible to implement any unitary transformation with
a sequence drawn from this gate set. But it is possible to approximate any unitary
to arbitrary accuracy using gates from this set. (Here accuracy is measured as
the spectral norm of the difference between the desired unitary matrix and the
actually implemented unitary matrix.) This is good enough for our purposes.

The last ingredient of a quantum computer is the read-out, or measurement.
At the end of the day, when we want to extract the result of the quantum com-
putation, we need to observe the quantum system, to gain information about the
result.

In general one assumes that each qubit (or the qubit carrying the result of
the computation) is measured in some basis. The classical result represents the
outcome of the computation.

Schematically, then, a quantum computer looks like in Fig. 2.

4. What is a quantum error?

“Had I known that we were not going to get rid of this damned quantum
jumping, I never would have involved myself in this business!”

Erwin Schrödinger
Quantum computers are notoriously susceptible to quantum errors, and this

is certainly the reason we did not yet succeed in building a scalable model. The

1Note that the Z gate is not necessary for universality, as it can be generated from the other
gates in the set. However, it is often included for convenience, as it becomes necessary in many
fault-tolerant gate sets.
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|0〉 measure
measure

measure

|0〉

|0〉
U

H +

π/8 +

Z ......
+

H

Figure 2. A quantum computer, schematically. Fresh qubits, ini-
tialized in the state |0〉, are supplied as the input to the unitary
transform U . U is composed of elementary gates affecting at most
2 qubits. At the end of the computation the qubits are measured.

problem is that our quantum system is inevitably in contact with a larger system,
its environment. Even if we make heroic efforts to isolate a quantum system from
its environment, we still have to manipulate the information inside it in order
to compute, which again will introduce errors. Where it not for the development
of methods of quantum error correction, the prospects for quantum computing
technology would not be bright. In order to describe quantum error correction we
need to get a clear picture of what the noise processes affecting our machine are.

But how do we describe a quantum error?
Let us study the example of a single qubit. This qubit might undergo some

random unitary transformation, or it might decohere by becoming entangled with
the environment. In general it will undergo some unitary transformation in the
combined system of qubit and environment. Let us call |E〉 the state of the en-
vironment before the interaction with the qubit. Then the most general unitary
transformation on system and environment can be described as

U : |0〉 ⊗ |E〉 −→ |0〉 ⊗ |E00〉 + |1〉 ⊗ |E01〉
|1〉 ⊗ |E〉 −→ |0〉 ⊗ |E10〉 + |1〉 ⊗ |E11〉.

Here |Eij〉 represent not necessarily orthogonal or normalized states of the envi-
ronment, with the only constraint that the total evolution be unitary. The unitary
U entangles our qubit with the environment. Potentially, this entanglement will
lead to decoherence of the information stored in the qubit.
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Suppose now the qubit is in the state α|0〉+β|1〉2. Now if the qubit is afflicted
by an error, it evolves as

(α|0〉 + β|1〉) ⊗ |E〉 −→α (|0〉 ⊗ |E00〉 + |1〉 ⊗ |E01〉) + β (|0〉 ⊗ |E10〉 + |1〉 ⊗ |E11〉)
= (α|0〉 + β|1〉) ⊗ 1

2
(|E00〉 + |E11〉) identity

+ (α|0〉 − β|1〉) ⊗ 1
2

(|E00〉 − |E11〉) phase flip

+ (α|1〉 + β|0〉) ⊗ 1
2

(|E01〉 + |E10〉) bit flip

+ (α|1〉 − β|0〉) ⊗ 1
2

(|E01〉 − |E10〉) bit & phase flip.

(1)

Intuitively, we may interpret this expansion by saying that one of four things
happens to the qubit: nothing, a bit flip, a phase flip or a combination of bit
flip and phase flip. This will be made more precise in the next section, where
we see that quantum error correction will include a measurement of the error,
collapsing the state into one of the four possibilities above. This way, even though
the quantum error is continuous, it will become discrete in the process of quantum
error correction. We will denote the four errors acting on a qubit as

I =
(

1 0
0 1

)
︸ ︷︷ ︸

identity

X =
(

1 0
0 −1

)
︸ ︷︷ ︸

phase flip

Z =
(

0 1
1 0

)
︸ ︷︷ ︸

bit flip

Y = XZ =
(

0 −1
1 0

)
.︸ ︷︷ ︸

bit & phase flip

(2)

These four matrices form the so called Pauli group. Another way of saying the
above is to realize that these four errors span the space of unitary matrices on
one qubit, i.e. any matrix can be expressed as a linear combination of these four
matrices (with complex coefficients). If we trace out the environment (average over
its degrees of freedom, see App. B.2), the resulting operator can be expanded in
terms of the Pauli group, we can attach a probability to each Pauli group element.
Often the analysis of fault-tolerant architectures is simplified by assuming that the
error is a random non-identity Pauli matrix with equal probability ε/3, where ε is
the error rate.

We now make a crucial assumption: that the error processes affecting different
qubits are independent from each other. A quantum error correcting code, then,
will be such that it can protect against these four possible errors. Once the error

2Of course our qubit could be part of a larger quantum state of several qubits. It might be
entangled with other qubits which are unaffected by errors. So the coefficients α and β need not
be numbers, they can be states that are orthogonal to both |0〉 and |1〉.
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has become discrete it is much more obvious how to apply and extend classical
error correction codes, which are able to protect information against a bit flip.

We have so far only analyzed errors due to decoherence, but have neglected
errors due to imperfections in the gates, in the measurement process and in prepa-
ration of the initial states. All these operations can be faulty. A natural assumption
is again that these imperfections are independent of each other. In a similar fashion
as before we can discretize the errors in a quantum gate. We can model a faulty
gate by assuming that is is a perfect gate, followed by an error. For a one-qubit
gate this error is the same as given in Eq. (1). For a two-qubit gate we assume that
both qubits undergo possibly correlated decoherence. Similar reasoning as in Eq.
(1) shows, that in that case the error is a linear combination of 16 possible errors,
resulting from all combinations of the errors in Eq. (2) on both qubits. Again, of-
ten the additional assumption is made that all 15 non-identity errors appear with
equal probability ε2/15, where ε2 is the two-qubit gate error rate. In a similar
fashion we will deal with measurement and state preparation errors.

Note that our analysis of the error is somewhat simplified. Several tools have
been developed to study quantum decoherence and quantum noise. Some of these
formalisms are described in more detail in App. B. As already mentioned, in order
to give methods for quantum error correction, some assumptions about the nature
of the noise have to be made. In one of the common models of noise in a quantum
register it is assumed that each qubit interacts independently with the environment
in a Markovian fashion3; the resulting errors are single qubit errors affecting each
qubit independently at random. More details on models of quantum noise are given
in App. C.

5. The first error correction mechanisms

“Correct a flip and phase – that will suffice.
If in our code another error’s bred,

We simply measure it, then God plays dice,
Collapsing it to X or Y or Zed.”

Daniel Gottesman, in “Error Correction Sonnet”

We have seen how entanglement with the environment can cause errors that
result in a complete loss of the quantum information. However, entanglement will
also allow us to protect the information in a non-local way. If we distribute the
information over several qubits in a way that it cannot be accessed by measuring
just a few of the qubits, then by the same token it cannot be damaged if the
environment interacts with just a few of the qubits.

A marvelous machinery has been developed in the classical world to protect
classical information, the theory of error correcting codes. The simplest possible

3This means that the environment maintains no memory of the errors, which are thus uncorrelated
in time and qubit location.
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such code is the repetition code: each bit is replaced by three of its copies:

C : 0 −→ 000 1 −→ 111.

This code clearly protects against one bit flip error. If a bit is flipped, we can still
decode the information by majority voting. Only if two bit flips happen we will be
unable to correctly decode the information. But if we assume that the probability
of a bit flip is ε and independent on each bit, then the probability that we cannot
correct a bit flip is 3ε2(1 − ε) + ε3 (there are three possible ways to have two bit
flips and one way to have three bit flips). If we would not encode the information
at all the error probability is ε, so as long as ε < 1/2 we gain by encoding.

But how can we extend this idea to the quantum setting? There is no way to
copy quantum information. There are not only bit flip, but also phase flip errors
(and combinations of both). And moreover a measurement for majority vote will
cause disturbance.

Shor was the first to overcome all these obstacles [Sho95]. He gave the most
straightforward quantum generalization of the repetition code. Suppose we want
to just deal with bit flip errors. We encode a single qubit with the repetition code
on the basis states, i.e.

|0〉 −→ |000〉 |1〉 −→ |111〉,
such that

α|0〉 + β|1〉 −→ α|000〉 + β|111〉. (3)
This encoding can be realized with the circuit in Fig. 3.

α|0〉 + β|1〉

|0〉

|0〉

α|000〉 + β|111〉

Figure 3. The CNOTs flip the target qubit if the first qubit is in
the state |1〉. Note that the transformation does not copy the state
of the first qubit to the other two qubits, but rather implements
the transformation of Eq. (3).

Now suppose a bit flip happens, say on the first qubit. The state becomes
α|100〉 + β|011〉. If we measured the qubits in the computational basis, we would
obtain one of the states |100〉 or |011〉, but we would destroy the quantum super-
position. But what if instead we measured the parity of all pairs of qubits, without
acquiring any additional information? For instance we can measure the parity of
the first two qubits with the circuit in Fig. 4.

In our example, a parity measurement does not destroy the superposition.
If the first qubit is flipped, then both |100〉 and |011〉 have the same parity 1 on
the first two qubits. If no qubit is flipped and the code word is still in the state
of Eq. (3) this parity will be 0 for both |000〉 and |111〉. If the error is a linear
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|0〉 mesurement

⎧⎨⎩code
qubits

ancilla

Figure 4. Circuit to measure the parity of the first two qubits of
the quantum code word. Each CNOT flips the ancilla qubit if the
source qubit is in the state |1〉. If the first two qubits are in the
state |00〉, the ancilla is left in the state |0〉. If these qubits are in
the state |11〉 the ancilla is flipped twice and its state is also |0〉.
Otherwise it is flipped once by one of the CNOTs.

combination of identity and bit flip, similar to Eq. (1), then the measurement will
collapse the state into one of the two cases. Let us adapt Eq. (1) to the case of only
a bit flip error on one qubit (|E00〉 = |E11〉, |E01〉 = |E10〉 and |E01〉 and |E00〉 are
orthogonal) and write

(α|0〉 + β|1〉) ⊗ |E〉 −→ √
1 − ε (α|0〉 + β|1〉)︸ ︷︷ ︸

identity

⊗|Ẽ00〉 +
√

ε (α|1〉 + β|0〉)︸ ︷︷ ︸
bit flip

⊗|Ẽ01〉,

(4)

where we have normalized the state of the environment (|Ẽ00〉 and |Ẽ01〉 have
norm 1)4. The probability that the parity measurement collapses to the bit flip
case is ε, the probability to project onto a state where no error has happened is
1 − ε. Imagine now that each of the three qubits of the code undergoes the same
error process of Eq. (4). This gives a threefold tensor product of Eq. (4) (each
qubit has its own environment state), which shows that the probability of no error
becomes (1 − ε)3 ≥ 1 − 3ε, and the probability of each of the single qubit errors
is ε(1− ε) < ε. Of course there is now a nonzero probability that the state will be
collapsed to a state where two or even three single qubit errors occurred; however,
the total probability of this happening is given by 3ε2(1 − ε) + ε3 ≤ 3ε2.

This mechanism illustrates how a measurement that detects the error, also
discretizes it. The parity measurement disentangles the code qubits from the en-
vironment and acquires information about the error. The three parities (for each
qubit pair of the code word) give complete information about the location of the
bit flip error. They constitute what is called the error syndrome measurement.
The syndrome measurement does not acquire any information about the encoded
superposition, and hence it does not destroy it. Depending on the outcome of the
syndrome measurement, we can correct the error by applying a bit flip to the
appropriate qubit.

4Note, that if we trace out the environment (see App. B.2), we obtain a process where with
probability 1− ε nothing happens, and with probability ε the bit is flipped. ε defines the rate of
error.
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We have successfully resolved the introduction of redundancy, the discretiza-
tion of errors and a way to measure the syndrome without destroying the informa-
tion. We still need to take care of phase flip errors. We have been able to protect
against bit flip errors by encoding the bits redundantly. The idea is to also encode
the phase of the state in a redundant fashion. Shor’s idea was to encode a qubit
using nine qubits in the following way:

|0〉enc =
1√
23

(|000〉 + |111〉) (|000〉+ |111〉) (|000〉+ |111〉)

|1〉enc =
1√
23

(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) . (5)

Note that with this encoding, each of the blocks of three qubits is still encoded
with a repetition code, so we can still correct bit flip errors in a fashion very similar
to above. But what about phase errors? A phase flip error, say on one of the first
three qubits, acts as:

|0〉enc
phase flip−→ 1√

23
(|000〉 − |111〉) (|000〉+ |111〉) (|000〉 + |111〉)

|1〉enc
phase flip−→ 1√

23
(|000〉+ |111〉) (|000〉 − |111〉) (|000〉 − |111〉) .

We need to detect this phase flip without measuring the information in the state.
To achieve this we will follow the ideas developed for the bit flip and measure the
parity of the phases on each pair of two of the three blocks. There is an interesting
and useful duality between bit flip and phase flip errors. Let us look at a different
basis for qubits, given by the states

|+〉 =
1√
2

(|0〉 + |1〉) |−〉 =
1√
2

(|0〉 − |1〉) .

The change from the standard basis to the |±〉-basis we apply the Hadamard
transform H . Now note that a phase flip error acts as

|+〉 phase flip−→ |−〉 |−〉 phase flip−→ |+〉. (6)

In other words a phase flip in the standard basis becomes a bit flip in the |±〉-basis.
If we apply a Hadamard transform to each of the three qubits of a block of the
Shor code, we obtain

H⊗3 1√
2

(|000〉+ |111〉) =
1
2

(|000〉+ |110〉+ |101〉 + |011〉)

H⊗3 1√
2

(|000〉 − |111〉) =
1
2

(|111〉+ |001〉+ |010〉 + |100〉) .

Note that the parity of each of the bitstrings for positive phase is even and for
negative phase it is odd. We can see that if two blocks have different phase, then
the parity of its constituent 6 qubits is odd, otherwise it is even. Hence, in order to
detect a phase error, we just need to measure the parity of all qubits in the three
possible pairs of blocks in the |±〉 basis. The circuit in Fig. 5 does exactly that.
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|0〉 mesurement
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code

qubits

ancilla H H

⎧⎨⎩

⎧⎨⎩

⎧⎨⎩block 1

block 2

block 3

Figure 5. Circuit to measure the parity of the phase of the first
and the second block of three qubits. In the |±〉-basis a CNOT
acts on target (t) and control (c) bit as |+〉t|±〉c → |+〉t|±〉c and
|−〉t|±〉c → |−〉t|∓〉c, i.e. it flips the control bit in the |±〉 basis if
the target bit is |−〉c. This way the ancilla bit is flipped an even
number of times from |+〉 to |−〉 if blocks 1 and 2 have the same
phase, and an odd number of times if they have different phase.

The nine-bit Shor code above protects against bit and phase flip, and also
against a combination of both (when both bit and phase flip are detected, the error
is XZ). Note again, that we assume that each of the qubits undergoes some error at
rate ε. Hence, by the discretization resulting from the error-recovery measurement,
the state will be projected onto either a state where no error has occurred (with
probability ≥ 1−9ε) or a state with a large error (single qubit, two qubit etc.). This
code protects against all single qubit errors. Only when two or more errors occur
(which happens with probability ≤ 36ε2) the error is irrecoverable. Comparing this
with the error rate of an unencoded qubit, ε, we see that this code is advantageous
whenever ε ≤ 1/36.

6. Quantum Error Correcting Codes

“If people do not believe that mathematics is simple, it is only because they do
not realize how complicated life is.”

John von Neumann
Let us internalize the crucial properties of Shor’s code: A small part of the

Hilbert space of the system is designated as the code subspace C. In the Shor code
C is spanned by the two states in Eq. (5). We have a discrete set of correctable
errors {Eα}. Each of the correctable errors Eα maps the code space C to a mutually
orthogonal error space. We can make a measurement that tells us in which of the
mutually orthogonal spaces the system resides, and hence exactly infer the error.
The error can be repaired by applying an appropriate unitary transformation (E†

α).
These ideas have been formalized to define quantum error correcting codes

(QECCs). An (N, K) quantum error correcting code C is a K dimensional sub-
space of an N dimensional Hilbert space (coding space H) together with a recovery
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(super)operator R. The recovery operator usually consists of some sort of mea-
surement (to detect the error) followed by a conditional unitary to correct it, but
we do not necessarily have to think about it in this way. The code C is E-correcting
if on the code-space an error followed by recovery restores the codeword, i.e.

R ◦ E = I on C
It has been shown [BDSW96, KL97] that QECC’s exist for the set of errors if the
following conditions (QECC-conditions) are satisfied:
QECC-conditions: Let E be a discrete linear base set for E and let the code C be
spanned by the basis {|Ψi〉 : i = 1 . . .K}. Then C is an E-correcting QECC if and
only if ∀|Ψi〉, |Ψj〉 ∈ C

〈Ψj |E†
βEα|Ψi〉 = cαβδij ∀Eα,Eβ ∈ E. (7)

What this means is the following: Errors Eα,Eβ ∈ E acting on different orthogo-
nal codewords |Ψi〉 take these codewords to orthogonal states (〈Ψi|E†

βEα|Ψj〉 = 0).
Otherwise errors would destroy the perfect distinguishability of orthogonal code-
words and no recovery would be possible. On the other hand for different errors
acting on the same codeword |Ψi〉 we only require that 〈Ψi|E†

βEα|Ψi〉 does not
depend on i. Otherwise we would – in identifying the error – acquire some infor-
mation about the encoded state |Ψi〉 and thus inevitably disturb it.

We usually think of the errors Eα to be a subset of the Pauli group with up
to t non-identity Pauli matrices (for a t-error correcting QECC).

It is now possible to make the connection to the theory of classical error
correcting codes. It turns out that there are families of classical codes with cer-
tain properties (concerning their dual) which make good quantum error correcting
codes [Ste96b, CS96]. The codes have become known as Calderbank-Shor-Steane
codes (CSS codes). It has been shown that for any number t of correctable errors,
there is a QECC which can correct up to t errors (bit flip, phase flip and combina-
tion). As a result this code reduces the error for an unencoded qubit, ε, to cεt+1,
where c is a constant depending on the code.

To illustrate this connection to classical codes we will briefly describe the
smallest code in that family, which was first given by Steane [Ste96b]. This is
the so called 7 qubit Steane code, based on the classical 7-bit Hamming code.
The classical Hamming code encodes one bit into 7 bits. The codewords can be
characterized by the parity check matrix

H =

⎛⎝ 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞⎠ . (8)

The code is the kernel of H , i.e. each code word is a 7-bit vector vcode such that
H · vcode = (0, 0, 0)T in GF (2) arithmetic. H has three linearly independent rows
(over GF (2)), so the kernel is spanned by four linearly independent code words,
and hence there are 16 different code words. If an error affects the ith bit of the
codeword, this codeword is changed to vcode + ei. The parity check matrix of the
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Figure 6. Computation of the bit-flip syndrome for Steane’s 7-
qubit code. The three ancilla qubits carry the error syndrome.

resulting word is H(vcode + ei) = Hei �= 0, which is just the ith column of H .
Since all columns of H are distinct, each ei has a different error syndrome and we
can infer ei from it.

Steane’s code, derived from the Hamming code, is the following:

|0〉code =
1√
8

( ∑
even v

∈ Hamming

|v〉
)

=
1√
8

(
|0000000〉+ |0001111〉+ |0110011〉+ |0111100〉

+|1010101〉+ |1011010〉+ |1100110〉+ |1101001〉
)

,

|1〉code =
1√
8

( ∑
odd v

∈ Hamming

|v〉
)

=
1√
8

(
|1111111〉+ |1110000〉+ |1001100〉+ |1000011〉

+|0101010〉+ |0100101〉+ |0011001〉+ |0010110〉
)
,

(9)

i.e. |0〉code is the superposition of all even and |1〉code the superposition of all odd
codewords. Note that all states appearing in the code words are Hamming code
words, and hence a single bit flip can be detected by a simple parity measurement,
as in Fig. 6.

To deal with phase flip errors we use the observation of Eq. (6), that phase
flip errors correspond to bit flip errors in the |±〉 basis. But if we change to this
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basis by applying the Hadamard transform to each bit, we obtain

H⊗7|0〉code =
1
4

⎛⎜⎝ ∑
v∈

Hamming

|v〉

⎞⎟⎠ =
1√
2

(|0〉code + |1〉code) ,

H⊗7|1〉code =
1
4

⎛⎜⎝ ∑
v∈

Hamming

(−1)wt(v)|v〉

⎞⎟⎠ =
1√
2

(|0〉code − |1〉code) (10)

(where wt(v) denotes the weight of v). The key point is that in the |±〉 basis, like
in the |0〉, |1〉 basis, |0〉code and |1〉code, are superpositions of Hamming codewords.
Hence, in the rotated basis, as in the original basis, we can perform the Hamming
parity check to diagnose bit flips, which are phase flips in the original basis. As-
suming that only one qubit is in error, performing the parity check in both bases
completely diagnoses the error, and enables us to correct it.

The core observation that allows to generalize Steane’s construction to codes
that encode more bits and can correct more errors is the following: If a quantum
code word is a linear superposition over classical code words that form a code C,
then in the |±〉 basis this code word is a linear superposition over the code words
of the dual code C⊥, where C⊥ = {u : u · v = 0 ∀v ∈ C}. This can derived when
looking at the action of the Hadamard transform on n-bit strings |x〉:

H⊗n|x〉 =
1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉.

As it is easy to see from Eq. (8), the Hamming code is its own dual, and hence we
can use its properties to correct phase errors. In general, the CSS constructions
find a code C1 (for the bit flip errors) such that its dual, C⊥

1 , contains a sufficiently
good code C2 (for the phase flip errors).

Having seen the nine qubit Shor code and the seven qubit Steane code, one
can ask what the minimal overhead for a quantum code that corrects a single error
is. It turns out that the smallest quantum code that achieves this has five qubits,
and that this is optimal [LMPZ96].

Gottesman developed a very powerful formalism, so called stabilizer codes,
that generalizes both the Shor code and CSS codes and gave fault tolerant con-
structions for them (for more details see App. D).

7. Fault-tolerant computation

“When you have faults, do not fear to abandon them.”
Confucius

We have seen that good quantum error correction codes exist. But so far
we have worked under the assumption, that the error recovery procedure is per-
fect. Of course, error recovery will never be flawless. Recovery is itself a quantum
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computation that will be prone to decoherence. We must ensure that errors do
not propagate during recovery. For instance, if an error occurs in the ancilla bit in
the parity measurement of Fig. 5, all six qubits interacting with it might be cor-
rupted; the error propagates catastrophically. In fault-tolerant computing design,
care is taken to avoid this type of error spreading, and other possible introduc-
tion and propagation of error. But even if we manage to avoid error spreading
during recovery, that is not enough. A quantum computer does more than just
store information, it also processes it. Of course we could decode, perform a gate
and encode, but this procedure would temporarily expose quantum information to
decoherence. Instead, we must apply our quantum gates directly to the encoded
data.

7.1. Guidelines of fault-tolerance

The quantum circuit model gives us a good intuition about the points in a com-
putation that potentially can introduce errors and corrupt the computation. We
need to be able to faultlessly prepare the initial state, compute with a sequence of
quantum gates and measure the output. Using a code to protect our computation
against noise, we also need to assure faultless encoding, decoding and correction.
Each qubit will be encoded into a separate block and quantum logic has to be
applied directly on the encoded states so that the information is never exposed to
noise without protection. This gives us the following guidelines of fault-tolerance:
Encoding/Decoding/State Preparation. The procedure to encode/decode the in-
formation into a code should not introduce more errors than the code can correct.
In the case of a 1-error correcting QECC encoding should not introduce more than
one error per encoded block. Often the only states that need to be encoded are
some |00 . . . 0〉 states at the beginning of the computation, it is then sufficient to
ensure fault-tolerant state-preparation.
Error-detection and Recovery. These procedures (for a QECC), usually realized
by a set of quantum gates together with auxiliary qubits, should again not intro-
duce more than one error per block.
Quantum gates. should not introduce more than one error per encoded block.
Furthermore they should not propagate already existing errors from one qubit to
several others in the same block.
Measurement. should not introduce more than one error per block. Furthermore
the measurement result must have probability of error of order ε2, where ε is the
probability of failure of any of the components in the measurement procedure.
This is because the measurement result may be used to control other operations
in a quantum computer.

7.2. Fault-tolerant error correction

With these guidelines in place, we will now illustrate how fault-tolerant recovery
can be achieved, using the Steane code in Eq. (9) as our example. The error-
measurement circuit in Fig. 6 is not fault-tolerant, as each of the CNOT gates can
propagate a single phase error on the ancilla qubit to all four of the code qubits. To
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Figure 7. Construction and verification of the |ancilla〉 state. If
the measurement outcome is 1, then the state is discarded and a
new |ancilla〉 state is prepared.

prevent this propagation, we need to expand the ancilla into four qubits, each one
the target of only one CNOT gate. But now we are again faced with the problem
that our measurement should only reveal information about the error (the parity)
but not about the encoded state. We circumvent this problem by preparing the
ancilla in the following state:

|ancilla〉 =
1√
8

(|0000〉+ |1100〉+ |1010〉+ |1001〉+ |0110〉
+|0101〉+ |0011〉+ |1111〉) ,

i.e. in a superposition of all even bit strings. The crucial observation is that on
this state one bit flip or three bit flips on any qubits all have the same effect,
they transform it to the superposition of odd bit strings. Similarly, this state is
invariant under any even number of bit flips. This means that we can infer the
syndrome bit from the parity of the ancilla bits, it suffices to measure the ancilla in
the end. Hence our syndrome measurement obeys the guidelines of fault-tolerance.
To prepare the ancilla, we can use the circuit in Fig. 7, which at the same time
allows verification of correct ancilla preparation.

The ancilla state must be verified before it is used, because a single error
in the preparation of the ancilla state can propagate and cause two phase errors
in the |ancilla〉 state. Hence the circuit in Fig. 7 also verifies that multiple phase
errors do not occur. If it fails the test it should be discarded, and the preparation
procedure repeated.

Moreover, a single syndrome measurement might be faulty. Thus, the syn-
drome measurement should be repeated for accuracy; only if the same result is
measured twice in a row should it be accepted.

With all the precautions above, recovery will only fail if two independent
errors occur in this entire procedure. The probability that this happens is still
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cε2 for some constant c, but because there are now many more gates and steps
involved the constant c can be quite large.

In a conceptually similar fashion it is possible to encode a qubit and to mea-
sure it in a basis spanned by |0〉code and |1〉code while following the guideline of
fault-tolerance. For details the reader should consult e.g. [Sho96, Ste97, Pre98b,
Pre99, Pre98a] or the work of Gottesman (e.g. [Got97c]) for fault-tolerant con-
struction for CSS and other codes in the stabilizer formalism (see App. D).

7.3. Fault-tolerant computation

We have seen how to recover stored quantum information, even when recovery
is faulty. But we also want to compute, and the gates we use will be faulty as
well. This means that we must be able to apply the gates directly to the encoded
data, without introducing errors uncontrollably and following the guidelines of
fault-tolerance.

In fact, staying with the 7-qubit Steane code, it is easy to implement some
single qubit gates directly on the encoded data. We have seen that the bitwise
Hadamard transform implements an encoded Hadamard transform on the code-
words (see Eq. (10)). This means we can apply it without propagating errors and
such that each gate introduces at most one new error. Similarly, it is easy to see
that the bitwise X gate induces an encoded Xenc because even code words get
mapped to odd ones and vice versa. Moreover the bitwise Z gate (which is just
HXH) implements the encoded Z. In the same way the π

4 gate (a diagonal single
qubit unitary with diagonal (1, i)) can be implemented by applying it bitwise to
the encoded data.

Also, it is not hard to see that the bitwise CNOT between two quantum code
words, i.e. a CNOT from the first qubit of the first code word to the first qubit
of the second code word, a CNOT from the second qubit of the first code word,
to the second qubit of the second and so on, implements a global CNOT between
two code words. We call such an implementation of an encoded two qubit gate
transversal. This is very promising, but the set of operation we can implement
fault-tolerantly is not yet universal. We also need to implement the π/8 gate for a
universal set of gates. Unfortunately it seems to be impossible to implement the
π/8 gate in a fault-tolerant way. There are several ways to circumvent this problem.
Shor, for instance, gave a way to complete the universal set by giving a transversal
implementation of a three qubit gate, the Toffoli gate [Sho96]. However, we will
follow a slightly different route here. It turns out that the gates {X, π

4 , CNOT }
are universal, provided we can measure a code word in the |0〉code, |1〉code basis
and we have access to the state

|π/8+〉code = |0〉code + exp(i
π

4
)|1〉code.

It has been shown that there is a fault-tolerant preparation and verification pro-
cedure for the state |π/8+〉code, which is similar in spirit to the one in Fig. 7.

Several variants of fault-tolerant universal quantum computation have been
developed for this and other codes, like CSS codes and stabilizer codes. They differ
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in the details of ancilla preparation and number of interactions with the code word.
As a result it is possible to implement computation and error correction following
the guidelines of fault-tolerance.

8. Concatenated coding and the threshold

“Much of modern art is devoted to lowering the threshold of what is terrible.”
Susan Sontag

We have seen how to encode quantum data, how to perform fault-tolerant
recovery and how to compute fault tolerantly on encoded states. However, this is
still not sufficient to implement quantum algorithms. Quantum codes exist that
can correct up to t errors, where t can be as large as we wish, and on which
we can compute fault-tolerantly. This means that if our error rate and gate and
measurement failure rate is ε, then computation will only fail with probability of
order εt+1 for a t of our choice. So what is the problem?

The crux is the complexity of the recovery procedure. With large t we reach
a point where the recovery procedure takes so much time that it becomes likely
that t + 1 errors occur in a block. The number of steps required for recovery
scales as a power of t, ta with exponent a > 1. That means that the probability
to have t + 1 errors before a recovery step is completed, scales as (taε)t+1. This
expression is minimized when t = cε−

1
a for some constant c and its value is at least

p fail = exp(−caε−
1
a ). This means that per error correction cycle our probability

to fail is at least p fail. If we have N such cycles, our failure probability is Np fail =
exp(−ca logNε−

1
a ). If we want to keep this (much) smaller than 1, our error rate

ε has to scale as 1
(log N)a , i.e. the longer the computation, the more accuracy we

need; an unrealistic assumption.
To overcome this problem, a special kind of hierarchical approach is used

[KLZ98] (see also [Kit97, AB97]). Ideas related to this approach go back to pio-
neering works of John von Neumann, who established a theory of fault-tolerant
computation for noisy classical computers [Neu56].

Suppose that we encode our information into a code, like Steane’s code. Then,
in turn, we encode each qubit of this encoded qubit using again Steane’s code, and
so on. We obtain several layers of encoded qubits, say k layers, and the total
number of qubits is 7k. This type of code is called concatenated code.

The exact calculations behind the threshold theorem are rather intricate. Let
us only give a rough intuition. The idea is to perform error recovery most often
at the lowest level, and less and less often at higher levels of the hierarchy, which
have more qubits. We recursively apply the idea of simulating a circuit using an
encoded circuit, constructing a hierarchy of quantum circuits. Suppose in the first
stage the original qubit is encoded in a quantum code whose encoded qubits are
again encoded in a quantum code and so on. Each level has some error recovery
cycles. If the failure probability at the lowest level of this code is ε then the failure
probability at the next level of encoding is cε2 (remember that the Steane code
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reduces the error rate from first to second order), where c counts all possibilities
that two errors can occur, given the number of gates in the recovery procedure and
the fault-tolerant application of gates. Continuing with this reasoning, the effective
error rate at the next level is cε2, and error recovery reduces the error to c(cε2)2.
Proceeding level by level, we see that at the kth level of the hierarchy an error
on one of the sub-blocks only has probability (cε)2

k

/c. We see that if our noise
rate is below a certain threshold, ε < εth ≡ 1/c, then the error is reduced in each
level of concatenation. This gives the error threshold for fault-tolerant quantum
computation.

How does the total size of the circuit grow? Let’s assume that one level of
encoding requires an overhead of G gates to fault-tolerantly perform a gate and
error-correct. Then the size of the simulating circuit grows as Gk. Let us see when
this concatenation procedure gives a small enough failure probability:

Assume the initial quantum circuit we want to emulate has N gates and we
wish to achieve a final accuracy psuccess. In such a circuit each gate has to be
accurate to psuccess/N (gate errors add linearly). To achieve this we concatenate k
times so that

(cε)2
k

c
= εth(

ε

εth
)2

k ≤ psuccess

N

or

2k ≤ log(Nεth/psuccess)
log(εth/ε)

If ε is smaller than the threshold value, such a k can be found. For error rates below
the threshold we can achieve arbitrary accuracy by concatenation. Per initial gate
the final circuit will have

Gk = 2k log G ≤
(

log(Nεth/psuccess)
log(εth/ε)

)log G

= poly(logN)

gates and so its final size will be Npoly(logN) which is only polylogarithmically
larger than the original N .

Note that we have crudely simplified our calculations. Estimating the thresh-
old is an extremely intricate task. Its value depends on the details of the code and
fault-tolerance constructions used. It also depends on whether we assume the clas-
sical syndrome processing to be perfect or not. In all cases it seems that we need
high parallelization and a supply of fresh ancilla qubits during the computation.
For a long time the actual value of the threshold has been estimated by optimists
and pessimists to lie somewhere between 10−4 and 10−7. Recent work seems to
indicate that it can be even as high as 3% [Kni05] (see also [AGP05, Rei05]) and
optimized numerical simulations of fault-tolerant protocols suggest a threshold as
high as 5% (however, to tolerate this much error existing protocols require enor-
mous overhead).
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9. Error avoidance and Decoherence Free Subsystems

“It is well known that “problem avoidance” is an important part of problem
solving.”

Edward de Bono
In all our previous analysis we have assumed that the errors behave inde-

pendently and affect few qubits at a time. What, if this is not the case? There
are situations, where groups of qubits interact with the environment in a collec-
tive fashion, possibly undergoing a correlated error. For these cases the theory of
decoherence-free subspaces and subsystems has been developed, sometimes also
called error-avoiding codes. These codes come into play when the decoherence
process is in some sense not local, but collective, involving groups of qubits.

Let us give a classical example. Assume we have an error process that with
some probability flips all bits in a group, and otherwise does nothing. In this case
we can encode a classical bit as

0 −→ 00 1 −→ 01.

The error process will change the encoded states to

00 −→ 11 01 −→ 10.

But no matter if the error has acted or not, the parity of the bit string is unchanged.
So when we decode, we will associate 00 and 11 with the encoded 0 bit and 01 and
10 with the encoded 1. Note that we will be able to decode correctly no matter how
hight the rate of error is! The error does not touch the invariant, parity, into which
we encode. That means that our encoded information has managed to completely
avoid the error, we have given the simplest error-avoiding code.

A lot of research has been done to generalize this to the quantum case (see
e.g. [Kem01, Bac01, LW03] for surveys). The noise model is in general derived from
the Hamiltonian picture (see App. B.1) or from the Markovian picture (see App.
B.3), a brief derivation is given in App. E. In general the underlying assumption
is that several qubits couple collectively to the environment and are affected by
a symmetric decoherence process. In systems where this form of decoherence is
dominant at the qubit level, error-avoiding codes as part of the error-correction
scheme are advantageous.

We will content ourselves with briefly describing one example. For one of the
most common collective decoherence processes the noise operators on n qubits
(see App. E) in the Hamiltonian picture (App. B.1) are given by Sα =

∑n
i=1 σi

α,
where σi

α is a Pauli matrix (α = {x, y, z}) on the ith qubit. Intuitively this means
that the possible unitary errors are exp(itSα). The condition for decoherence-free
subspaces is that

Sα|codeword〉 = cα|codeword〉,
or in other words that the code space is a simultaneous eigenspace of each Sα with
eigenvalue cα. If this is the case, each unitary noise operator only introduces an
unobservable phase exp(itcα) on the code space.
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Let us look at an encoding of 4 qubits:

|0〉code = |s〉 ⊗ |s〉
|1〉code =

1√
3

(|t+〉 ⊗ |t−〉 − |t0〉 ⊗ |t0〉 + |t−〉 ⊗ |t+〉) ,

where |s〉 = |01〉−|10〉√
2

and |t−,0,+〉 = {|00〉, |01〉+|10〉√
2

, |11〉}. It is easy to see that
Sα|0〉code = Sα|1〉code = 0 for α = {x, y, z} (i.e. that the coefficients cα = 0). This
means that both code states are invariant under collective noise. If we encode our
information into the subspace spanned by |0〉code and |1〉code, it will completely
avoid the errors; it resides in a “quiet” part of the space, a decoherence-free sub-
space.

This idea has been generalized to a wide variety of encodings (in particular
to decoherence-free subsystems, see App. E for a little more detail) and against
several kinds of collective noise. It has been shown how to compute on these codes
(e.g. [KBLW01]) and how to use them in a fault-tolerant framework.

Of course the noise in a real implementation of a quantum computer will be a
mixture of independent statistical noise, and coupled collective noise, depending on
the specific quantum hardware used. The idea is to use a hierarchical construction
of concatenated quantum codes, as in the threshold construction of Sec. 8, where
the lower levels of the hierarchy use error correction (or avoidance) schemes that
are highly specialized to the anticipated noise process, whereas higher levels are
similar to the known fault-tolerant constructions for QECCs (see e.g. [LBW99] for
a DFS-QECC concatenation scheme).

10. Conclusion and Epilogue

“The best thing about the future is that it only comes one day at a time.”
Abraham Lincoln

Without doubt work on quantum fault-tolerance is of prime importance if we
want to build quantum machines. In the late 1990’s pioneering work has established
that fault-tolerant quantum computation is possible, and we have estimates for
the error threshold, the maximum error a component can undergo such that the
computation still proceeds without catastrophic error. On the way we have gained
new insights into the nature of decoherence and about the methods and tools used
to model and describe it.

At this point we need to optimize the details of fault-tolerant schemes and to
generate new ideas to improve the threshold. Current experimental results show
that the accuracy in implementations of the quantum circuit model is on the order
of several percent in the best case, whereas most estimates of the threshold give
numbers of the order of 10−4 or less.

The task for current research is to analyze the threshold for particular codes
and to develop new elements of fault-tolerance that improve the threshold. For
instance only recently the existence of a threshold for the Steane code has been
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shown [AGP05, Rei05]. New elements have been developed to improve the thresh-
old, like for instance schemes based on postselection [Kni04]. Using new ingredi-
ents, the threshold has now been estimated to be on the order of 3%, albeit with
an enormous overhead in the circuit architecture [Kni05].

Another avenue of research is to explore other models of quantum computing,
different from the quantum circuit model, which can be inherently more robust
against noise. One idea, initiated by Kitaev [Kit03], is a scheme for intrinsically
fault-tolerant quantum hardware, designed to be robust against localized inaccu-
racies. In this scheme (quantum computing by anyons) gates exploit non-Abelian
Aharonov-Bohm interactions among separated quasiparticles on a 2D lattice (see
also e.g. [SBFH05]).

Another potentially more robust model is the model of adiabatic quan-
tum computation, where computation is achieved by adiabatically tuning a set
of Hamiltonians, and where the system is always in the instantaneous ground-
state. In this system there is a gap between the groundstate and the first ex-
ited state at all times, which might make the state more robust to noise (see
[FGG+01, AvDK+04, CFP02]). Yet another model is the measurement based
one-way quantum computer [BR01]. Here quantum computation is achieved by
measuring single qubits of a suitably prepared initial state. The fault-tolerance
properties of this system have recently been explored in [ND05].

All these developments allow us to be optimistic about the future of a quan-
tum computing machine. One day we might be able to combat decoherence and
have large scale entangled states operate for us. The consequences not only for
computation, but also for our understanding of the fundamental processes behind
decoherence will be formidable.

Appendix A. Further Reading

An ever growing community of researchers has been and is working an error cor-
rection and fault-tolerance in the quantum setting, and it is impossible to mention
all of them in this framework. What follows is a selection of some of the milestones
and recent developments, where the interested reader can find more information.

That quantum error correcting codes exist was first pointed out by Shor
[Sho95] and Steane [Ste96b] in the end of 1995. By early 1996 it was shown by
Steane [Ste96a] and Calderbank and Shor [CS96] that good codes exist, i.e. codes
that are capable to correct many errors. The quantum error correction conditions
where formalized by Knill and Laflamme [KL97] and Bennett et al. [BDSW96]5.

The first fully fault-tolerant recovery scheme, which takes into account that
encoding, error-correction and decoding are themselves noisy operations, was de-
veloped by Shor in 1996 [Sho96]. Methods for fault-tolerant recovery where inde-
pendently developed by Kitaev.

5These authors also analyzed schemes based on random codes.
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The first to show that there is an accuracy threshold for storage of quantum
information where Knill and Laflamme [KL96] and for quantum computation Knill,
Laflamme and Zurek [KLZ96] in 1996 (see also [KLZ98]). Similar results were
reported by Kitaev [Kit97] and Aharonov and Ben-Or [AB97].

The theory of stabilizer codes and of fault-tolerance in the powerful stabilizer
formalism was developed by Gottesman (see e.g. [Got97c])6.

Since then several researchers have sharpened the threshold and developed
new techniques to analyze and improve it. See for instance the recent work of
Steane [Ste99, Ste03], Knill [Kni04, Kni05], Aliferis, Gottesman and Preskill
[AGP05] and Reichardt [Rei05] and [FKSS04] for a dynamical systems approach.

In the literature the terms ”sub-” and ”superradiance” are often encountered
in connection with collective decoherence processes. Decoherence-free subspaces
have been studied by several researchers (see for example [DG98, ZR97, Zan97,
Zan98] in the context of storage, and [LCW98, BLW99, BKLW00, KBLW01,
DBK+00] in the context of fault-tolerant computation and [LBW99] in com-
bination with QECCs). Decoherence-free subsystems have been introduced by
[VKL99, KLV00], also in the connection with dynamic decoupling techniques. Since
then there has been a lot of active effort to adapt codes to various collective noise
processes.

The threshold has also been inspected in the light of various (local) error
models. For instance [TB05] discuss the fault-tolerant threshold for local non-
Markovian noise (see also [ALZ05] and references therein for a recent controversy
about the nature of errors and an analysis of error models that seem to not allow
fault-tolerant computation in [Kal05]).

Apart from the quantum circuit model alternative proposals for quantum ar-
chitectures have been developed, which could be potentially more robust than the
quantum circuit model. One example, developed by Kitaev, is the model of com-
putation via anyons (see [Kit03] for an analysis of its fault-tolerance properties,
or e.g. Freedman et al. [FKLW01]). Another recent example is the measurement
based quantum cluster model [BR01] introduced by Briegel and Raussendorf. Re-
cently, fault-tolerance has been analyzed in this model by Nielsen and Dawson
[ND05]. The adiabatic model of quantum computation has been introduced by
Farhi et al. [FGG+01] and shown to be equivalent to the quantum circuit model
in [AvDK+04]. Childs et al. have discussed its robustness in [CFP02].

Appendix B. How to model decoherence

No quantum system can be perfectly isolated from its surroundings and be viewed
as perfectly closed. In the physical world, degrees of freedom are usually interact-
ing with many other degrees of freedom. In fact, the understanding of this point
is crucial for the explanation of why classical mechanics in the macroscopic world

6See also work by Calderbank, Rains, Shor and Sloane, which develop stabilizer codes as codes
over GF(4) [CRSS98]
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emerges out of the microscopic operation of quantum mechanics. Even if we find
quantum computer elements that interact only weakly with the rest of the world
(achievable most likely if they are themselves of atomic or near-atomic dimen-
sions), for short times the evolution will be unitary, but eventually even weak
interactions will cause significant departure from unitarity. Physical systems have
a characteristic time for loss of unitarity, which is known in the field of mesoscopic
physics as the “dephasing time”. It is often extremely short (for a table of dephas-
ing times for various systems see [DiV95]), for example for the state of an electron
traversing a gold wire at temperature less than 1K it is of order 10−13 seconds.

We refer to the effects of noise due to unwanted coupling with the environment
as decoherence7. An early treatise on quantum noise from a rather mathematical
point of view is due to Davies [Dav76]. Caldeira and Leggett [CL83] in 1983 un-
dertook one of the first and most complete studies of an important model, the
spin-boson model.

Within the context of quantum computers these studies were taken up by
Unruh [Unr95] in 1995 and developed by many others (e.g. Palma et al. [PSE96],
Zanardi [Zan97, Zan98]). Over the past few years work on quantum computation
has generated profound insights into the nature of decoherence.

B.1. Hamiltonian Picture

To model the dynamics of a register of qubits (quantum computer) with its sur-
roundings we imagine the system immersed into its environment (often called bath)
and the whole (quantum register plus environment) as a closed system described
in a general way by the following Hamiltonian:

H = HS ⊗ IB + IS ⊗ HB + HI , (11)

where HS (HB) [the system (bath) Hamiltonian] acts on the system (bath) Hilbert
space HS (HB), IS (IB) is the identity operator on the system (bath) Hilbert space,
and HI , which acts on both the system and bath Hilbert spaces HS ⊗HB , is the
interaction Hamiltonian containing all the nontrivial couplings between system
and bath. In general HI can be written as a sum of operators which act separately
on the system (Sα’s) and on the bath (Bα’s):

HI =
∑

α

Sα ⊗ Bα. (12)

(Note that this decomposition is not necessarily unique.)
In the absence of an interaction Hamiltonian (HI = 0), the evolution of the

system and the bath are separately unitary: U(t) = exp[−iHt] = exp[−iHSt] ⊗
exp[−iHBt] (we set � = 1 throughout). Information that has been encoded
(mapped) into states of the system Hilbert space remains encoded in the system

7An unfortunate confusion in terms has arisen with the word “decoherence”. Historically it has
been used to refer just to a phase damping process – a specific type of noise – cf. e.g. Zurek
[Zur91]. Zurek and others realized the unique role played by phase damping in the transition
from a quantum to a classical world. However, in the quantum computing community by and
large the term “decoherence” is now used to refer to any noise process in quantum processing.
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Hilbert space if HI = 0. However in the case when the interaction Hamiltonian
contains nontrivial couplings between the system and the bath, information that
has been encoded over the system Hilbert space does not remain encoded over
solely the system Hilbert space but spreads out instead into the combined system
and bath Hilbert space as the time evolution proceeds.

Very often to describe decoherence in more specific contexts [Unr95, PSE96]
it is convenient to model the environment (the bath) as a mass-less scalar field,
usually assumed to be in a thermal state (described by a density matrix in Fock-
space, the state space used to model fields. Its (infinite dimensional) Hilbert space
is spanned by ⊗

k

|i〉k i ∈ {0, 1, 2, . . .}

where k labels the modes. On each mode (factor in the tensor product) we have
two operators, the lowering operator bk given by bk|i〉k =

√
i|i − 1〉k and the

raising operator b†
k given by b†

k|i〉k =
√

i + 1|i + 1〉k. Note that b†
kbk|i〉k = i|i〉k,

i.e. |i〉k is an eigenstate of the number operator b†
kbk.

The quantum register is described by an arrangement of n two-level systems
(spins). This results in the spin-boson model, where the bath Hamiltonian can be
written as

HB =
∑

k

ωkBk

and, e.g., for the spin-boson Hamiltonian, Bk = b†
kbk [LCD+87], and b†

k, bk are
respectively creation and annihilation operators of bath mode k. The interaction
Hamiltonian is given by

HI =
n∑

i=1

∑
α=+,−,z

∑
k

gα
ikσi

α ⊗ B̃α
k + h.c., (13)

where gα
ik is a coupling coefficient and h.c. denotes the hermitian conjugate. In the

spin-boson model one would have B̃+
k = bk, B̃−

k = b†
k and B̃z

k = b†
k + bk. Thus

σi
± ⊗ B̃±

k expresses a dissipative coupling (in which energy is exchanged between
system and environment), and σi

z ⊗ B̃
z

k corresponds to a phase damping process
(in which the environment randomizes the system phases, e.g., through elastic
collisions).

B.2. Operator Sum Picture

The evolution of a quantum state in the entire space is unitary in a closed system
of which we can observe and control all parts. Very often, however, this is not
the case: imagine for example that we perform a certain measurement and then
“forget” or lose the measurement outcome. As a result we know that the state
has collapsed into some eigenstate of of the measurement operator, but not into
which one, and we will have to assign probabilities to each of them to model the
current state of the system. Take the example of a qubit |ψ〉 = α|0〉 + β|1〉 and
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the measurement in the computational basis. Performing this measurement and
“throwing away” the result will leave the system in the state |0〉 with probability
|α|2 and in the state |1〉 with probability |β|2. To describe this mixture of possible
states the density matrix formalism proved to be very useful: we write

ρ = |α|2|0〉〈0| + |β|2|1〉〈1| =
( |α|2 0

0 |β|2
)

Another way we can think about density matrices is to imagine that we have a
(big) quantum system and can access only part of it. To describe the quantum
state of the accessible part (call it A), we have to average over the non- accessible
degrees of freedom of the system (part B). This is done by performing a complete
measurement on system B (mentally) and “throwing away” the outcomes (because
we do not have access to them). Let us give the example of a state of 2 qubits
|ψ〉AB = α|00〉+ β|11〉 where we only have access to the first qubit (part A). If we
(mentally) measure system B in the computational basis, we obtain the density
matrix from Eq. (14).

Let us proceed to the more general description of the statics and dynamics
of open quantum systems, described by mixed states:
States: States in an N -dimensional Hilbert space HN are given by density matrices
ρ such that:

• ρ is hermitian: ρ† = ρ
• ρ is positive: ∀|ψ〉 ∈ HN 〈ψ|ρ|ψ〉 ≥ 0, which is equivalent to λi ≥ 0, where

λi are the eigenvalues of ρ (this can be viewed as a statement about the
positivity of probabilities of the pure states in the mixture).

• ρ has trace 1 (this corresponds to the normalization of probabilities)
Pure states |ψ〉 of the system are associated with the density matrix ρpure =
|ψ〉〈ψ|. A general mixed state is diagonalizable and can be written in its spectral
decomposition as

ρ =
∑

k

pk|ψk〉〈ψk|

Note that there are in general many other ways to write ρ in the above form if
we allow for non-orthogonal states in the decomposition. Each such decomposition
{qk, |φk〉} is called an ensemble realization of ρ. The ambiguity in the decompo-
sition of ρ manifests some loss of information, in the sense that the probabilistic
mixture ρ could have arisen in a multitude of ways.
Dynamics: To describe the evolution of an open system – and thus of decoherence
– we will immerse it into a closed system. The evolution of a closed system is
described by a unitary transformation, which translates to an effective dynamics
of the open system governed by completely positive (and trace-preserving) maps.
Loosely speaking, these are maps that in HA take density matrices to density ma-
trices, with the additional property that if we extend the map to bigger spaces
HAB by applying the map on A and the identity map on B, then they still take
density matrices to density matrices. More precisely, an operator map Λ is com-
pletely positive if (I ⊗ Λ)(ρ) ≥ 0 whenever ρ ≥ 0.
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The important point here is that according to Kraus’ Representation Theorem
[Kra83] every completely positive trace preserving map can be written as

ρ →
∑

µ

MµρM †
µ with

∑
µ

M †
µMµ = I (14)

where the Mµ are N -by-N matrices (N being the dimension of the Hilbert space).
In particular this describes both the Hamiltonian and the Markovian dynamics,
though in general it is often tedious to derive the form of the Mµ from the Sα

of the Hamiltonian picture (Eq. (12)). Note that contrary to the case of unitary
evolution, general open system dynamics is not reversible.

B.3. Markovian Picture

Another very powerful formalism to describe decoherence is the approach of mas-
ter equations. Markovian quantum dynamics describes processes resulting from the
interaction with a Markovian environment in the so called Born-Markov approx-
imation. The main objective is to describe the time-evolution of an open system
with a differential equation – the Master equation - which properly describes non-
unitary behavior.

In fact it is not a priori obvious that there needs to be a differential equation
that describes decoherence. Such a description will be possible only if the evolution
of the quantum system will be local in time (Markovian), i.e. that the density
operator ρ(t + dt) is completely determined by ρ(t). This is usually not the case
because the bath retains a memory of the state of ρ at previous times for a while
and can transfer it back to the system.

To obtain the Master equation in the Born-Markov approximation a common
approach is to start with the Hamiltonian description Eq. (11) and use time-
dependent perturbation theory (i.e. an expansion into time-series) with careful
truncation (cf. [Car93]).

A more axiomatic way, followed by Lindblad [Lin76, AL87], is to establish
the most general linear equation for density matrices. More precisely, by assuming
that (i) the evolution of the system density matrix is a one-parameter semigroup,
(ii) the system density matrix retains the properties of a density matrix including
“complete positivity”, and (iii) the system and bath density matrices are initially
decoupled, Lindblad [Lin76] has shown that the most general evolution of the
system density matrix ρS(t) (in a Hilbert space of dimension N) is governed by
the master equation

dρ

dt
= L[ρ] = −i[HS, ρ] +

1
2

M∑
α,β=1

aαβ

(
[Fα, ρF†

β] + [Fαρ,F†
β ]
)

= −i[HS, ρ] +
1
2

M∑
α,β=1

aαβLα,β [ρ]. (15)

Here HS is the system Hamiltonian generating unitary evolution plus possible
additional terms due to the interaction with the bath – usually referred to as
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Lamb-shift –; the operators Fα constitute a basis for the M -dimensional space
of all bounded operators acting on HS

8, and aαβ are the elements of a positive
semi-definite Hermitian matrix. We refer to the matrix aαβ as the GKS matrix.

Every such process described by Eq. (15) corresponds to some interaction
which, if applied for a duration t, induces a quantum operation Et. The class of
quantum operations Et forms a Markovian semigroup, such that

EsEt = Es+t .

Here EsEt denotes composition of the operations, i.e., Es ◦ Et. Each Markovian
semigroup in turn describes the dynamics resulting from some interaction with a
Markovian environment in the Born approximation.

Note that the Operator Sum Representation also describes Markovian dy-
namics, though it is in practice often difficult to derive the Mµ (Eq. (14)) from
the Fα of the Markovian picture (Eq. (15)).

To make our description of Markovian quantum dynamics concrete, we
present some important examples of qubit noise processes9. We choose the ba-
sis {Fα} to be the normalized Pauli operators 1√

2
{σx, σy, σz}, and we write the

density matrix of a qubit as

ρ =
(

ρ00 ρ01

ρ10 ρ11

)
.

The first process, phase damping, acts on a qubit as

EPD
t (ρ) =

(
ρ00 e−γtρ01

e−γtρ10 ρ11

)
,

where γ is a decay constant and t is the duration of the process. The generator
has a GKS matrix with aPD

33 = γ
2 and all other aPD

αβ = 0. The second example is
the depolarizing channel, which acts on a qubit as

EDEP
t (ρ) =

(
1+e−γ̃t(ρ00−ρ11)

2 e−γ̃tρ01

e−γ̃tρ10
1+e−γ̃t(ρ11−ρ00)

2

)
.

Its GKS matrix has the nonzero elements aDEP
11 = aDEP

22 = aDEP
33 = γ̃/4. Our final

example is amplitude damping, which acts on a qubit as

EAD
t (ρ) =

(
ρ00 + (1 − e−Γt)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11

)
.

The GKS matrix aAD
αβ is given by

Γ
4

⎛⎝ 1 −i 0
i 1 0
0 0 0

⎞⎠ . (16)

8they are often called the Lindblad operators or the quantum jump operators
9For a review of these processes and their relevance to quantum information theory, see [NC00];
[Pre98a].
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Appendix C. The Error-model

The underlying key assumption for efficient usage of quantum error-correcting
codes is the independent error model. Intuitively, if a noise process acts indepen-
dently on the different qubits in the code, then provided the noise is sufficiently
weak, error-correction should improve the storage fidelity of the encoded over the
unencoded state.

Mathematically, the assumption of independent errors can be retraced in each
of the decoherence pictures introduced in Sec. B. In the Hamiltonian picture we
can rewrite Eq. (13) as

HI =
K∑

i=1

∑
α=x,y,z

∑
k

σα
i ⊗ Bα

ik,

where Bz
ik ≡ B̃z

k and Bx
ik ,By

ik are appropriate linear combinations of B̃
+

k and
B̃−

k :

Bx
ik =

1
2

(
g−ikB̃

−
k + g+

ikB̃
+
k

)
By

ik =
i

2

(
g−ikB̃

−
k − g+

ikB̃
+
k

)
i.e. all system components can be expressed in terms of tensor products of the single
qubit Pauli matrices. If we expand the evolution to first order in time and assume
that the error-rates gik are independent we will get an operator sum representation
(OSR) (cf. Eq. (14)) where each term is a linear combination of the Pauli matrices
(see [LBW99] for a recent derivation). In the Markovian formulation of noise (cf.
Eq. (15)) the independent error model assumes that each of the Fα affects only
one of the qubits and that the Fα are not correlated. Higher order correlations are
taken into account by using a code that is suitably constructed for the particular
error-model. Therefore the theory of QECCs has focused on searching for codes
that make quantum information robust against 1, 2,. . . or more erroneous qubits,
as this is the most reasonable model when one assumes spatially separated qubits
with their own local environments. Detection and correction procedures must then
be implemented at a rate higher than the intrinsic error rate.

From the linear decomposition of the error operators in the OSR or the
master equation it follows that QECC-schemes need to be able to correct only a
discrete set of errors, namely those generated by the Pauli-group10. Intuitively we
can imagine that the error process acting on one qubit puts the quantum state
into a superposition of one of the four possible discrete errors (I2, σx,y,z) and the
error-detection and correction procedure collapses the state into one of these errors
and then corrects as needed. This intuition can be made formal [NC00, KL97]: it
is possible to decompose the the operators Mµ that appear in Eq. (14) into a basis
of tensor products of the Pauli matrices. It can then be seen, when deriving the

10In the context of error-correction the Pauli matrices σx,y,z are often denoted by

X, Y,Z respectively.
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OSR representation from the Hamiltonian picture, that to first order in the noise
rate the noise process gives terms with a single non-identity matrix (single qubit
error). The core message is again that quantum codes need to account only for a
discrete linear basis of all possible errors.

Appendix D. Stabilizer Codes

Stabilizer codes, also known as additive codes, are an important subclass of quan-
tum codes. The stabilizer formalism provides an insightful tool to quantum codes
and fault-tolerant operations. It was developed by Gottesman in 1996 [Got97a,
Got97c]. We will not outline the full formalism here but rather describe only the
key elements. A full treatment can be found in [Got97b].

The powerful idea behind the stabilizer formalism is to look at the set of group
elements that stabilize a certain code and to work with this stabilizer instead of
directly with the code. In the framework of QECCs, the stabilizer permits on
the one hand to identify the errors the code can detect and correct. It also links
quantum codes to the theory of classical error correcting codes in a transparent
fashion. On the other hand it also allows one to find a set of universal, fault-tolerant
gates.

An operator S is said to stabilize a code C if

|Ψ〉 ∈ C iff S|Ψ〉 = |Ψ〉 ∀S ∈ S. (17)

The set of operators {S} form a group S, known as the stabilizer of the code
[Got97c]. Clearly, S is closed under multiplication. In the theory of QECC the un-
derlying group is the Pauli-group, the stabilizers are subgroups of the Pauli-group
(tensor products of I,X,Y,Z ). Since any two elements of the Pauli group either
commute or anti-commute, the stabilizer, in this case is always Abelian. The code
is thus the common eigenspace of the stabilizer elements with eigenvalue 1. Addi-
tive codes are completely characterized by their stabilizer S. The stabilizer S can
be given by a set of generators which span the stabilizer group via multiplication.

We define the centralizer of S to be the set of elements e in the Pauli group
that commute with every element in S, i.e. eS = Se for all S ∈ S. In case of the
Pauli group it coincides with the normalizer of S – the set of elements E in the
Pauli-group with ESE† ∈ S for all S ∈ S. We will denote it by N(S) and call it
normalizer throughout. Note that the normalizer contains the stabilizer S itself.

Recall that in the theory of QECCs the error process E can be expanded in
terms of the error basis E which is a subgroup of the Pauli group. In particular
Eα ∈ E either commutes or anti-commutes with elements in the stabilizer. This
allows us to recast the QECC-condition Eq. (7) in the stabilizer formalism as
follows:
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QECC-conditions: A quantum code C with stabilizer S is an E-correcting QECC
if for all Eα,Eβ ∈ E one of the following holds:

(1) There is an S ∈ S that anti-commutes with E†
αEβ

(2) E†
αEβ ∈ S.

This clearly implies the QECC conditions Eq. (7), since in the case of (1)
〈Ψi|E†

αEβ|Ψj〉 = 〈Ψi|E†
αEβS|Ψj〉 = −〈Ψi|SE†

αEβ|Ψj〉 = 0 and in the case of (2)
〈Ψi|E†

αEβ|Ψj〉 = 〈Ψi|Ψj〉 = δij . In particular this implies that the matrix element
cαβ is either 0 in the case of (1) or 1 in the case of (2). Conditions (1) and (2) can
be reformulated succinctly as: E†

αEβ /∈ N(S) − S.
The nine bit Shor code in Eq. (5) is a stabilizer code. The set of its stabilizers

is generated by

Z1Z2 Z2Z3 Z4Z5 Z5Z6 Z7Z8 Z8Z9

X1X2X3X4X5X6 X1X2X3X7X8X9 X4X5X6X7X8X9

Note that these generators correspond to the measurements to detect bit flip (the
Z generators) and phase flip (the X generators) errors. Indeed, for instance a bit
flip error on the first qubit anticommutes with Z1Z2.

The generators for the stabilizer of the Steane code in Eq. (9) on the 7 qubits
are the following:

IIIZZZZ IIIXXXX

IZZIIZZ IXXIIXX

ZIZIZIZ XIXIXIX.

Note how the positions of the Z and X correspond to the parity check matrix H
in Eq. (8). The fact that the code is self dual is seen in the symmetry between the
Z and the X . Note that the change of basis from |0〉, |1〉 to the |±〉 basis, which
is implemented by a conjugation with the Hadamard transform H on each bit,
transforms all Z into X and vice versa (HXH = Z and HZH = X).

The smallest possible quantum code to protect against single qubit errors,
the 5-qubit code [LMPZ96], has the following (shift invariant) stabilizer

XZZXI

IXZZX

XIXZZ

ZXIXZ.

The stabilizer formalism allows to derive fault-tolerant computation in a con-
venient way. A key ingredient are encoded gates that transform encoded states,
without decoding them, which would expose them to noise without protection.
For universal quantum computation it is sufficient to show how to implement a
universal discrete set of gates fault-tolerantly.

The key insight to fault-tolerant gates is that these encoded gates should only
take encoded states to valid encoded states, without leaving the code-space. For
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an encoded gate G this means that after application of G to a state stabilized by
all elements of S the resulting state must still be stabilized by S (see Eq. (17))

G|Ψ〉 ∈ C ↔ SG|Ψ〉 = GS|Ψ〉 (18)

or in other words over the code-space G commutes with all elements of S. In the
case of QECCs and the Pauli group this means that G is in the normalizer N(S)
of S.

The normalizer allows one to easily identify encoded logical operations on the
code. It can be shown that for large classes of stabilizer codes a universal gate-set
can be implemented either because the encoded gates are transversal, i.e. they
affect only one qubit per block, or in connection with state-preparation of special
states and measurement.

To fault-tolerantly measure on encoded states ancilla-state are employed in a
procedure like the following11: Suppose we wish to measure the encoded qubit in
the encoded computational basis. The ancilla is prepared in the state |0L〉. Then
we perform an encoded CNOT from the encoded qubit to be measured to the
ancilla. We then measure the ancilla state in the computational basis, which gives
us a non-destructive measurement of the encoded qubit in the encoded computa-
tional basis which is tolerant of possible errors in the encoded qubit. To prevent
possible uncontrolled error-propagation caused by an incorrectly prepared ancilla,
we prepare multiple |0L〉-ancillas and apply CNOT ’s between the DFS state to be
measured and each ancilla. Together with majority voting this provides a fault-
tolerant method for measuring Z̄ [Got97a].

The stabilizer formalism also provides an easy framework for fault-tolerant
encoded state preparation and decoding, as it turns out that only transversal
measurements in the Pauli-Z-basis are needed for both. For a detailed account of
fault-tolerant computation with stabilizer codes see Gottesman [Got97b].

Appendix E. Noise model for Decoherence-Free Subsystems

To derive the model of collective noise that applies to decoherence-free subsystems,
we will work with the Hamiltonian picture (see App. B.1), following [ZR97]. We
use the interaction Hamiltonian Eq. (13). Collective decoherence is the case where
the coupling constants do not depend on the qubit, i.e. gα

ik = gα
k . This allows to

rewrite the Hamiltonian in terms of the operators

Sα =
n∑

i=1

σi
α (19)

as
H = ω0Sz +

∑
k

ωkb†kbk +
∑

α=±,z

Sα ⊗
∑
k

gα
kB̃α

k + h.c.

11This procedure may differ from case to case, here we only give an example for illustration.
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The crucial observation is now that if we start the system in a common eigenstate
with the same eigenvalue of all the Sα with the bath in an eigenstate of HB then
the evolution will be completely decoupled. The condition for decoherence-free
subspaces (DFS) is

Sα|Ψ〉 = cα|Ψ〉 ∀|Ψ〉 ∈ DFS. (20)

Dynamical symmetry allows for unitary evolution of a subspace while the remain-
ing part of the Hilbert space gets strongly entangled with the environment. This
is true for arbitrary coupling strength. The form of noise where all three Sα,
α ∈ {x, y, z}, come into play is now called strong collective decoherence, if there is
only coupling to one of the Sα the noise is called weak collective decoherence.

It is also possible to study collective noise in the Markovian picture (see
App. B.3). We use Eq. (15), where LD gives the non-unitary “coupling term12.
The decoherence-free condition LD[ρ] = 0 implies that

Fα|Ψ〉 = cα|Ψ〉 ∀|Ψ〉 ∈ DFS.

As before the decoherence-free states are common eigenstates of the operators
Fα. In case of collective decoherence (symmetry of all the qubits), the Fα are
exactly the Sα of Eq. (19), and it is possible to show that the unitary term of the
Master-equation does not affect the DFS to first order.

This line of reasoning can be generalized to decoherence-free subsystems. The
Sα act on the system space. We can study the irreducible representations of this
action and identify irreducible subspaces. For each irreducible representation there
will be one or several irreducible subspaces on which the Sα act in the same way.
The one dimensional subspaces will only get a phase factor, they correspond to
the decoherence-free subspaces of Eq. (20). But the other subspaces are not lost
for our purposes. Any irreducible subspace can be used to encode information, be-
cause the action of the noise operators Sα will keep the state within the subspace.
Even though the state will change, its subspace will identify the encoded informa-
tion. The number of irreducible subspaces corresponding to the same irreducible
representation gives the number of different code words we can use.

The irreducible representations corresponding to the operators associated
with strong collective decoherence (Eq. (19)) have been studied widely in physics,
as they correspond to the angular momentum operators.

In the case of two qubits there is a single common eigenstate of the Sα,
α ∈ {x, y, z}, the singlet state

|Φ〉 =
1√
2
(|0〉|1〉 − |1〉|0〉).

For three qubits there is no one-dimensional irreducible representation of the
Sα, but there are two (identical) two-dimensional irreducibles subspaces into which

12Note that the coupling of a system with an environment might also change the unitary part
of the evolution of −i[H, ρ] by introducing an additional term to the system Hamiltonian, called
the Lamb-shift.
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we can encode as

|0〉code =

{
| 1√

2
(|010〉 − |100〉)

| 1√
2

(|011〉 − |101〉) |1〉code =

{
1√
6

(−2|001〉+ |010〉 + |100〉)
1√
6

(2|110〉 − |101〉 − |011〉) .

Increasing the number of qubits the number of identical irreducible subspaces
grows favorably, so that it is possible to encode at a good rate. For more references
on this and the theory of fault-tolerant computation on such systems, see Sec. A.
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Decoherence of a Quantum Bit Circuit
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Abstract. Solid state quantum bit circuits (qubits) are candidates for the im-
plementation of quantum processors, which can in principle perform some
computational tasks beyond reach of classical sequential processors. Decoher-
ence is there a key issue since electrical circuits are more prone to decoherence
than microscopic objects such as atoms. We introduce the different families
of solid state qubits, which are either based on single particle states in semi-
conductor nanostructures, or on global quantum states of superconducting
Josephson circuits. We treat more in detail the Cooper pair box Josephson
circuit, and the quantronium circuit derived from it. In this device, a decou-
pling strategy of the circuit from the outside circuitry allows to improve quan-
tum coherence. We expose results obtained on the manipulation of the qubit
state in the quantronium. We develop a general framework for understanding
decoherence in qubit circuits, and show how coherence time measurements
allow to characterize noise sources coup.

1. Why solid state quantum bit circuits ?

These notes provide an introduction to the solid state quantum electrical circuits
developed during recent years, following recent propositions for quantum machines.
If no quantum-classical frontier indeed exists between the microscopic world and
the macroscopic one, quantum machines could indeed take advantage of the rich-
ness of quantum physics for performing specific tasks more efficiently than classical
ones. Although no quantum machine has been operated yet, probing quantum me-
chanics with collective variables involving a large number of underlying microscopic
degrees of freedom is already an important goal. As expected, decoherence plays
there an important role. We present here the systematic investigation carried out
on the quantronium circuit developed by our team.
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2. Towards quantum machines

Very interesting propositions for truly quantum machines, in which state vari-
ables are ruled by quantum mechanics, appeared in the domain of processors after
Deutsch and Josza showed that the concept of algorithmic complexity is hardware
dependent. It was shown that a simple set of unitary operations on an ensemble
of coupled two level systems, called quantum bits (qubits), is sufficient to perform
some specific computing tasks in a smaller number of algorithmic steps than with a
classical processor [1]. Quantum algorithms furthermore solve some mathematical
tasks presently considered as intractable, such as the factorization of large num-
bers, exponentially faster than classical algorithms operated on sequential Von
Neumann computers. Solid state quantum bit circuits are a new type of electronic
circuits that aim at implementing quantum bits and quantum processors.

Figure 1. A quantum processor consists of an array of qubits.
Logic operations are performed by controlling the single and two
qubit Hamiltonians. (Quantronics group).

A sketch of a quantum processor is shown in Fig. 1. Each qubit is controlled
independently, so that any unitary operation can be applied to it. Qubits are
coupled in a controlled way so that all the two qubit gate operations required by
algorithms can be performed. A two-qubit gate is universal when, combined with a
subset of single qubit gates, it allows implemention of any unitary evolution[1]. For
instance, the control-not gate (C-NOT), which applies a not operation on qubit 2
when qubit 1 is in state 1, is universal.

2.1. Criteria required for qubits

Not all two level systems are suitable for implementing qubits. A series of points,
summarized by DiVicenzo, need to be addressed (see chapter 7 in[1]):

1) The level spectrum should be sufficiently anharmonic to provide a good two
level system.

2) An operation corresponding to a ‘reset’ is needed.
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3) The quantum coherence time must be sufficient for the implementation of
quantum error correction codes. This requirement is extremely demanding:
less than one error in 104 gate operations in the most optimistic case.

4) The qubits must be of a scalable design with a universal set of gates.
5) A high fidelity readout method is needed.

2.2. Qubit implementation: Atoms and ions versus electrical circuits

On the experimental side, implementing a quantum processor fullfilling these cri-
teria is a formidable task [2]. The activity has been focused on the operation of
simple systems, with at most a few qubits. Two main roads have been followed.
Microscopic quantum systems like atoms[3] and ions[4] have been considered. Their
main advantage is their excellent quantum coherence, but their scalability is ques-
tionable. The most advanced qubit implementation is based on ions in linear traps,
coupled to their longitudinal motion [4] and addressed optically.

Solid state electrical circuits have attracted a large interest because they are
considered as more versatile and more easily scalable, although reaching the quan-
tum regime is extremely difficult. in this course, we provide a simple presentation
of solid state qubits (see refs. [5, 6, 7, 8] for further reading on solid state qubit
circuits).

2.3. Solid state electrical qubit circuits

Two main strategies based on quantum states of either single particles or of a
whole circuit, have been followed for making solid-state electrical qubits.

In the first strategy, the quantum states are nuclear spin states, single electron
spin states, or single electron orbital states. The advantage of using microscopic
states is that their quantum behaviour has already been probed and can be excel-
lent at low temperature. The main drawback is that qubit operations are difficult
to perform since single particles are not easily controlled and read out.

The second strategy has been developed in superconducting circuits based
on Josephson junctions, which form a kind of artificial atoms. Their Hamiltonian
can be tailored almost at will, and a direct electrical readout can be incorporated
in the circuit. On the other hand, these artificial atoms are less quantum than
natural ones and spin degrees of freedom.

3. Qubits based on semiconductor structures

Different types of quantum states suitable for making qubits can be found in semi-
conductor nanostructures, as described below. Two families can be distinguished:
the first one being based on quantum states of nuclear spins, or of localized elec-
trons, while the second one is based on propagating electronic states (flying qubits).
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Figure 2. Kane’s proposal: nuclear spins of phosphorus impu-
rities form the qubits. The control is provided by the hyperfine
interaction with a bound electron around each impurity. Each
qubit is controlled by applying a voltage to an A gate electrode
that displaces slightly the wavefunction of the bound electron, and
thus modifies the hyperfine interaction. The two qubit operations
are performed using the J gates, which control the exchange inter-
action between neighboring bound electrons, and thus the inter-
action between the qubits. (Picture taken from [9].) (Quantronics
group).

3.1. Kane’s proposal: nuclear spins of P impurities in silicon

Kane’s proposal, sketched in Fig. 2, is based on the S=1/2 nuclear spins of P 31

impurities in silicon [9]. The qubits are controlled through the hyperfine interac-
tion between the nucleus of the P 31 impurity and the bound electron around it.
The transition frequency of each qubit is determined by the magnetic field applied
to it, and by its hyperfine coupling controlled by a gate voltage (A gates). The
exchange interaction between the electrons mediates an effective interactions be-
tween the qubits, which can be also controlled by a gate voltage (J gate). Single
qubit gates would be performed by using resonant pulses, like in NMR, while two
qubit gates would be performed using the J gates. The readout would be performed
by transferring the information on the qubit state to the charge of a quantum dot,
which would then be read using an electrometer. The feasibility of this seducing
proposal still has to be demonstrated.
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Figure 3. Coherent oscillations of a single electron inside a dou-
ble dot structure, as a function of the duration of a dc pulse
applied to the transport voltage. These oscillations are revealed
by the average current when the pulse is repeated at a large rate
(Picture taken from Hayashi et al. [10].) (Quantronics group).

3.2. Charge states in quantum dots

Although the occupation of a quantum dot by a single electron is not expected
to provide an excellent qubit because the electron strongly interacts with electric
fields, coherent oscillations in a semiconductor qubit circuit[10] were observed by
measuring the transport current in a double dot, as shown in Fig. 3. Recently, a
coherence time of the order of 200 ns was achieved in a similar double dot structure,
using a single electron transistor (SET) for the qubit readout. [11].

3.3. Electron spins in quantum dots

Using electron spins for the qubits is attractive because the spin is weakly coupled
to the other degrees of freedom of the circuit, and because the spin state can be
transferred to a charge state for the purpose of readout (see [12] and refs. therein).
The device shown in Fig. 4 is a double dot in which the exchange interaction
between the single electrons in the dots is controlled by the central gate voltage.
The readout is performed by monitoring the charge of the dot with a quantum
point contact transistor close to it: first, the dot gate voltage is changed so that
an up spin electron stays in the dot, while a down spin electron leaves it. In that
case, another up spin electron from the reservoir can enter the dot. The detection
of changes in the dot charge then provides a single shot efficient measurement of
the qubit state [12].

Another setup based on a similar double-dot structure, was recently pro-
posed [13]. In this new scheme, the qubit is encoded in the spin of two electron
states with one electron charge in each dot. These spin states are the singlet S
state and the triplet T state m = 0. Coherent qubit manipulation was achieved by
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Figure 4. Scanning Electron Micrograph of a double dot im-
plementing two qubits. The qubits are based on the spin of a
single electron in the ground state of each dot (disks). (Courtesy
of Lieven Vandersypen, T.U. Delft.) (Quantronics group).

controlling the exchange interaction between the two dots. Although the coherence
time was limited at about 10 ns due to the magnetic field produced by the nuclei
in the substrate, coherent signals were recovered at times 1 µs using echo methods,
like in NMR.

3.4. Flying qubits

Propagating electron states have also been proposed for implementing qubits.
Propagating states in wires with a small number of conduction channels have
been considered, but edge states in Quantum hall Effect structures seem to offer
a better solution [5] because of their long phase coherence time at low tempera-
ture. Qubit states could then be encoded using electrons propagating in opposite
directions, along the opposite sides of the wires.

4. Superconducting qubit circuits

The interest of using the quantum states of a whole circuit for implementing qubits
is to benefit from the wide range of Hamiltonians that can be obtained when
inductors and capacitors are combined with Josephson junctions, which provide
the anharmonicity required for making two level systems. Josephson qubit circuits
can be considered as artificial macroscopic atoms, whose properties can be tailored.
Their Hamiltonian can be controlled by applying electric or magnetic fields, and
bias currents.

4.1. Hamiltonian of Josephson circuits

When branch variables are chosen, the contribution to the Hamiltonian of a
Josephson element in a given branch is:

h(θ) = −EJ cos(θ),
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where θ is the superconducting phase difference across the junction, EJ = I0ϕ0

the Josephson energy, with I0 the critical current of the junction, and ϕ0 = �/2e.
The phase θ is the conjugate of the number N of Cooper pairs passed across
the junction. The full Hamiltonian is then obtained by adding the electromagnetic
terms to the Josephson terms [14, 15]. Any junction in a circuit is characterized by
the fluctuations of θ and of N . Often, the circuit junctions are either in the phase
or number regimes, characterized by small and large fluctuations of the phase,
respectively. Qubit circuits can be classified according to the regime to which they
belong. The main types of superconducting qubit circuits can be classified along
a phase to charge axis, as shown in Fig. 5.

Figure 5. Left: A Cooper-pair box consists of a small supercon-
ducting island connected by a Josephson junction to a supercon-
ducting reservoir, and charge biased by a gate capacitance con-
nected to a voltage source. Right: schematic circuit. The Joseph-
son coupling allows the exchange of Cooper pairs. The phase of
the superconducting island and the number of extra Cooper pairs
inside are conjugated variables. (Quantronics group).

The phase qubit [16] developed at NIST (Boulder) consists of a Josephson
junction in a flux biased loop, and the Josephson potential has two wells. The qubit
states are two quantized levels in the first potential well, and the readout is per-
formed by resonantly inducing the transfer to the second well, using a monitoring
SQUID to detect it.

The flux qubit [17, 18] developed at T.U. Delft consists of three junctions
in a loop, placed in the phase regime. Its Hamiltonian is controlled by the flux
threading the loop. The flux qubit can be coupled in different ways to a readout
SQUID. This circuit is in the phase regime.

The quantronium circuit [19, 20, 8, 21], developed at CEA-Saclay is operated
in the intermediate charge-phase regime. The Cooper pair box [23], operated in the
charge regime at NEC, is the first qubit circuit for which coherent control of the
quantum state was achieved [22]. A detailed description of all Josephson qubits,
with extensive references to other works, is given in [6, 7, 8].
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4.2. The Cooper pair box

The single Cooper pair box [8] consists of a single junction connected to a voltage
source across a small gate capacitor, as shown in Fig. 6. Its Hamiltonian writes:

Ĥ(Ng) = EC(N̂ − Ng)2 − EJ cos θ̂ (1)

where EC = (2e)2/2CΣ is the charging energy of a cooper pair in the island, and
Ng = CgVg/(2e) the reduced gate charge with Vg the gate voltage. The operators

N̂ and θ̂ obey the commutation relation
[
θ̂, N̂

]
= i. The energy spectrum can be

analytically determined, and is 2e periodic with the gate charge. When EJ � EC ,
and at Ng ≡ 1/2mod[1], the qubit states are simply symmetric and antisymmetric
combinations of successive |N〉 states.

The most direct way to probe the Cooper pair box is to measure the island
charge. After the measurement of the island charge in the ground state [23] with
an electrometer based on a Single Electron Transistor (SET) [24], the first Joseph-
son qubit experiment was performed by monitoring the current through an extra
junction connected on one side to the box island and on the other side to a voltage
source [22]. A charge readout of a Cooper pair box [25] using a rf-SET [26], and a
single-shot high fidelity sample and hold readout [27] were later obtained. Finally,
a Cooper pair box embedded in a resonant microwave cavity, similar to an atom
in a cavity [3], was recently operated [28].

Figure 6. The Cooper pair box consists of a small superconduct-
ing island connected to a superconducting reservoir, by a Joseph-
son junction (crossed square in the electrical scheme), and biased
by a gate capacitor. The Josephson coupling allows the exchange
of Cooper pairs between the island and the reservoir. The island
phase and the extra number of Cooper pairs in the island are
conjugated variables. (Quantronics group).
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4.3. How to maintain quantum coherence?

When the readout circuit measures the qubit, its backaction results in full qubit
decoherence during the time needed to get the outcome, and even faster if the
readout efficiency is below the quantum limit. In order to reduce decoherence,
the readout circuit should thus be switched off when the qubit is operated, and
switched on just at readout time. Before explaining a possible strategy to circum-
vent this problem, we expose the basic concepts underlying decoherence in qubit
circuits.

The interaction between a qubit and the degrees of freedom of its environment
entangles both parties. This entanglement takes a simple form in the weak coupling
regime, which is usually the case in qubit circuits[29]. The control parameters of
the qubit Hamiltonian ( such as Ng for the Cooper pair box), are in fact dynamical
variables of the qubit environment, which can fluctuate.

4.4. Qubit-environment coupling Hamiltonian

We call λ the set of control variables entering the Hamiltonian of a qubit. At a
given working point λ0, the qubit space is analogous to a fictitious spin 1/2 with
σz eigenstates |0〉 and |1〉. Using the Pauli matrix representation of spin operators,
the expansion of the Hamiltonian around λ0 yields the coupling Hamiltonian:

ĤX = −1/2
(−→
Dλ

−→·σ
)(

λ̂ − λ0

)
(2)

where
−→
Dλ ·−→σ is the restriction of −2∂̂H/∂λ to the {|0〉 , |1〉} space. This coupling

Hamiltonian determines the qubit evolution when a control parameter is varied,and
thus the coupling to decoherence noise sources.

In the weak coupling regime, the fluctuations of the qubit environment are
characterized by the spectral density:

Sλ0(ω) =
1
2π

∫ +∞

−∞
dτ
〈(

λ̂(t) − λ0

)(
λ̂(t + τ) − λ0

)〉
exp(−iωτ) . (3)

This spectral density is defined for positive and negative ω′s, proportional to the
number of environmental modes that can absorb and emit a quantum �ω, respec-
tively. In the case of the Cooper pair box, the fluctuations of the gate charge Ng

arise from the impedance of the biasing circuitry and from microscopic charge
fluctuators in the vicinity of the box island[8, 21].

4.5. Relaxation

The decay of the diagonal part of the density matrix in the eigenstate basis
{|0〉 , |1〉} involves |1〉 → |0〉 qubit transitions, with the energy transferred to the
environment. Such an event resets the qubit in its ground state. The decay is
exponential, with a rate:

Γ1 =
π

2

(
Dλ,⊥

�

)2

Sλ0(ω01) . (4)
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The symbol ⊥ indicates that only transverse fluctuations at positive frequency
ω01 induce downward transitions. Upward transitions, which involve Sλ0(−ω01),
occur at a negligible rate for experiments performed at temperatures kBT � �ω01,
provided the environment is at thermal equilibrium. The relaxation time is thus
T1 = 1/Γ1.

4.6. Decoherence= relaxation + dephasing

When a coherent superposition a |0〉 + b |1〉 is prepared, the amplitudes a and b
evolve in time, and the non diagonal part of the density matrix oscillates at the
qubit frequency ω01. The precise definition of decoherence is the decay of this part
of the density matrix. There are two distinct contributions to this decay. Relaxation
contributes to decoherence by an exponential damping factor with a rate Γ1/2, but
another process, called dephasing, often dominates. When the qubit frequency Ω01

fluctuates, an extra phase factor exp[i∆ϕ(t)] with ∆ϕ(t) = Dλ,z

�

t∫
0

(
λ̂(t′) − λ0

)
dt′

builds up between both amplitudes, the coupling coefficient Dλ,z being:

Dλ,z = 〈0| ∂̂H/∂λ |0〉 − 〈1| ∂̂H/∂λ |1〉 = �∂ω01/∂λ .

Dephasing thus involves longitudinal fluctuations, and contributes to decoherence
by the factor:

fX(t) = 〈exp[i∆ϕ(t)]〉 . (5)
This dephasing factor fX(t) is not necessarily exponential. When Dλ,z �= 0 ,

and assuming a gaussian process for
(
λ̂(t′) − λ0

)
, one finds using a semi-classical

approach:

fX(t) = exp

[
− t2

2

(
Dλ,z

�

)2 ∫ +∞

−∞
dω Sλ0(ω)sinc2(

ωt

2
)

]
, (6)

which is justified by a full quantum treatment of the coupling to a bath of harmonic
oscillators justifies using the quantum spectral density in the above expression [21,
29].

4.7. The optimal working point strategy

The above considerations on decoherence yield the following requirements for the
working point of a qubit:

– In order to minimize the relaxation, the coefficients Dλ,⊥ should be small,
and ideally Dλ,⊥ = 0.

– In order to minimize dephasing, the coefficients Dλ,z ∝ ∂Ω01/∂λ should be
small. The optimal case is when the transition frequency is stationary with
respect to all control parameters: Dλ,z = 0. At such optimal points, the
qubit is decoupled to first order from its environment and from the readout
circuitry. This means that the two qubit states cannot be discriminated at
an optimal point. One must therefore depart in some way from the optimal
point in order to perform the readout.
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5. The quantronium circuit

The optimal working point strategy was first applied to the Cooper pair box, with
the quantronium circuit [19, 20, 8].

The quantronium circuit, shown in Fig. 7, is derived from the Cooper pair
box. The box Josephson junction is split into two junctions with respective Joseph-
son energies EJ (1±d)/2, with d ∈ [0, 1] a small asymmetry coefficient. The reason
for splitting the junction into two halves is to form a loop that can be biased by
a magnetic flux Φ. A third junction is inserted in the loop for the purpose of per-
forming the readout of the qubit. A split box has two degrees of freedom, which
can be chosen as the island phase θ̂ and the phase difference δ̂ across the two box
junctions.

The phase difference δ̂ in the split-box Hamiltonian is related to the phase
difference across the readout junction by the relation δ̂ = γ̂ + Φ/φ0, where the
phase γ̂ is the phase of the readout junction. Except at readout time, when the
qubit gets entangled with the readout junction, δ̂ can be considered as an almost
classical parameter. The Hamiltonian of the split box alone, which depends on the
two control parameters Ng and δ, writes:

Ĥ = EC(N̂− Ng)2 − EJ cos(
δ̂

2
) cos(θ̂) + dEJ sin(

δ̂

2
) sin(θ̂) . (7)

The corresponding energy levels can be calculated as a function of the control
parameters [21]. The variations of the qubit transition frequency with the control
parameters are shown in Fig. 7. Different optimal points where all derivatives
∂Ω01/∂λi vanish are present.

The loop current operator provides a new variable to probe the qubit:

Î(Ng, δ) = (−2e)

(
−1

�

∂Ĥ

∂δ

)
.

The average loop current 〈ik〉 in state |k〉 obeys a generalized Josephson relation:
〈ik(Ng, δ)〉 =

〈
k
∣∣∣Î∣∣∣ k〉 = 1

ϕ0
∂Ek(Ng, δ)/∂δ . The difference between the loop

currents of the two qubit states is ∆i10 = 〈i1〉 − 〈i0〉 = 2e∂ω10/∂δ. As expected,
the difference ∆i10 vanishes at an optimal point.

5.1. Relaxation and dephasing in the quantronium

The split box is coupled to noise sources that affect the gate charge Ng and the
phase δ [8, 21]. The coupling to these noise sources Dλ,⊥ and Dλ,z for relaxation
and dephasing are obtained from the definition 2.

The coupling vector Dλ,⊥ for relaxation is:

Dλ,⊥ =
{
4EC

∣∣∣〈0
∣∣∣N̂ ∣∣∣ 1〉∣∣∣ , 2ϕ0

∣∣∣〈0
∣∣∣Î∣∣∣ 1〉∣∣∣} .

Relaxation can thus proceed through the charge and phase ports, but the
phase port does not contribute to relaxation at Ng = 1/2 when the asymmetry
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Figure 7. Bottom: Schematic circuit of the quantronium qubit
circuit. The quantronium consists of a readout junction inserted
in the loop of a split-junction Cooper pair box. When a trape-
zoidal current pulse is applied, the readout junction switches to
the voltage state with a larger probability for state |1〉 than for
state |0〉. Top: Calculated transition frequency as a function of the
control parameters Ng and δ for the parameters EJ = 0.86 kBK,
EC = 0.68 kBK. The optimal point used in the experiments is
the saddle point (Ng = 1/2, δ = 0). (Quantronics group).

factor d vanishes. Precise balancing of the box junctions is thus important in the
quantronium.

The coupling vector for dephasing is directly related to the derivatives of the
transition frequency:

Dλ,z = � (∂ω01/∂Ng, ∂ω01/∂δ) .

The charge noise arises from the noise in the gate bias circuit and from the
background charge noise due to microscopic fluctuators in the vicinity of the box
tunnel junctions. These noises have a 1/f spectral density at low frequency.
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5.2. Readout of the quantronium

The readout junction can be used in different ways in order to discriminate the
qubit states.

5.2.1. Switching readout. The simplest method consists in using the readout junc-
tion to perform a measurement of the loop current after adiabatically moving away
from the optimal point. For this purpose, a trapezoidal readout pulse with a peak
value slightly below the readout junction critical current is applied to the cir-
cuit(see fig. 7). Since this bias current adds to the loop current in the readout
junction, the switching of the readout junction to a finite voltage state can be
induced with a large probability for state |1〉 and with a small probability for state
|0〉. This switching method is in principle a single shot readout. It has been applied
to the quantronium [20] and to the flux qubit [18], with a switching probability
difference up to 40% and 70%, respectively. The lack of fidelity is attributed to
spurious relaxation during the readout bias current pulse. This switching method
does not allow for a subsequent readout and is thus not quantum non demolition
(QND).

Figure 8. The statistics of successive readout outcomes, per-
formed in the ground state and in the excited state of the qubit,
give access to the QND fraction of the ac readout method devel-
oped for the quantronium. In this experiment, the readout fidelity
and the QND fraction are rather low in the excited state of the
qubit. (Quantronics group).
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5.2.2. AC methods for QND readout. Recently, microwave methods measuring
the phase of a microwave signal reflected or transmitted by the circuit have been
proposed for different superconducting qubits in order to attempt a non destructive
QND readout. In general, with these rf methods, the working point stays, on
average, at the optimal point, and undergoes small amplitude oscillations at a
frequency different from the qubit frequency. Avoiding relaxation when moving
far away from the optimal point might furthermore improve the readout fidelity.
Such methods have been proposed for the flux qubit [30], the quantronium [31,
32], and the Cooper pair box [28, 33]. In the quantronium, The qubit slightly
modifies the inductance of the whole circuit [32], with opposite changes for the two
qubit states. This change is inferred from the phase of the reflected signal,taking
benefit of the non-linear resonance of the readout junction [31]. We have probed the
QND character of this Josephson Bifurcation Amplifier (JBA) readout [32, 34] by
comparing the outcomes of two successive readouts, as shown in Fig. 8. We found
that the readout is only partly QND, and induces relaxation. Like in the case of
the switching readout, spurious relaxation limits readout performances.

6. Coherent control of the qubit

Coherent control of a qubit is performed by driving the control parameters of the
Hamiltonian. Although an adiabatic evolution is possible, most of experiments
have been performed with hard pulses.

In the dc-pulse method [22], a sudden change of the Hamiltonian is performed.
The qubit state does not in principle evolve during the change, but evolves after-
wards with the new Hamiltonian during the pulse duration. This simple method
requires extremely short pulse rise-times.

In the resonant pulse method, a control parameter is varied sinusoidally at
the qubit frequency. When the gate voltage of a Cooper pair box is modulated by
a resonant microwave pulse with amplitude δNG, the Hamiltonian 2 contains a
term h(t) = −2EC

〈
0
∣∣∣N̂ ∣∣∣ 1〉σX , which induces Rabi precession at the frequency

ωR = 4EC δNG /�

∣∣∣〈0
∣∣∣N̂ ∣∣∣ 1〉∣∣∣ .

As described in Fig. 9, the fictitious spin representing the qubit rotates around
an axis located in the equatorial plane of the Bloch sphere, at an angle given by
the phase of the microwave pulse. A single resonant pulse with duration τ induces
a rotation by an angle ωRτ , which manifests itself by oscillations of the switching
probability, as shown in Fig. 9. When the pulse is not resonant, the detuning adds
a z component to the rotation vector.

6.1. NMR-like control of a qubit

More complex manipulations inspired from NMR [35, 36, 37] have been performed
in order to implement single qubit gates, and to probe decoherence processes [38,
39].
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Figure 9. Left: Rabi precession of the qubit state represented
on the Bloch sphere in the rotating frame during a resonant mi-
crowave pulse; Right: Rabi oscillations of the switching probability
with the pulse duration. (Quantronics group).

Three sequential rotations around two orthogonal axes, for instance the x and
y axes on the Bloch sphere, allow to perform any unitary operation on a qubit.
It is thus important to test whether or not two subsequent rotations combine as
predicted, which is shown in Fig. 10. The issue of gate robustness is also extremely

Figure 10. Switching probability after two π/2 pulses around
two orthogonal axes, as a function of the delay between the pulses.
The phase of the oscillating signal at the detuning frequency
50 MHz varies as predicted for the different combinations of ro-
tation axes. The solid lines are theoretical fits. (Taken from [39].)
(Quantronics group).
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important because the needs of quantum computing are extremely demanding. In
NMR, composite pulse methods have been developed in order to make transfor-
mations less sensitive to pulse imperfections [36, 37, 40]. In these methods, a single
pulse is replaced by a series of pulses that yield the same target operation, but
with a decreased sensitivity to pulse imperfections. In the case of frequency de-
tuning, a particular sequence named CORPSE (Compensation for Off-Resonance
with a Pulse Sequence) has proved to be extremely efficient [40]. This sequence
was probed in the quantronium for a π rotation around the X axis [39].

Figure 11. Left: switching probability after a single π pulse
(open symbols) and after a Corpse pulse corresponding to the
same rotation (full symbols), as a function of frequency. The broad
maximum for the CORPSE pulse proves the robustness respec-
tively to frequency variations. Right: switching probability after
a rotation by an angle theta around the −X axis (open symbols),
and after a subsequent CORPSE pulse (full symbols). The phase
opposition between the two patterns indicates that the Corpse
pulse works for any initial state. (Quantronics group).

7. Probing qubit coherence

We discuss now decoherence during the free evolution of the qubit, and during
its driven evolution. Decoherence induces the decay of the qubit density matrix
elements, both in the lab and rotating frames. As explained in section 4.6, de-
coherence is characterized by relaxation, affecting the diagonal and off diagonal
parts of the density matrix, and by dephasing, which affects only its off diagonal
part. Detailed explanations can be found in [41].

7.1. Relaxation

Relaxation is readily obtained from the decay of the signal after a π pulse. The
relaxation time in the quantronium ranges from a few hundreds of nanoseconds
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up to a few microseconds. These relaxation times are shorter than those calcu-
lated from the coupling to the external circuit using an estimated value for the
asymmetry factor d. Excessive relaxation is found in all Josephson qubits, and
could be attributed to the coupling with spurious microscopic two level systems,
as suggested in [42].

7.2. Decoherence during free evolution

Figure 12. Ramsey fringe experiment on a quantronium sample
at the optimal point. Two π/2 microwave pulses slightly out of
resonance and separated by a time delay t are applied to the gate.
The oscillations of the switching probability (dots) at the detuning
frequency probe decoherence. In this experiment, the coherence
time was 500 ns, as estimated from an exponentially decaying
cosine fit (full line). For the quantronium, Coherence times have
been measured in the range 200 − 500 ns. (Quantronics group).

The most direct way to probe decoherence is to perform a Ramsey fringe ex-
periment, as shown in Fig. 12, using two π/2 pulses slightly out of resonance. The
first pulse creates a superposition of states, with an off diagonal density matrix.
After a period of free evolution, during which decoherence takes place, a second
pulse transforms part of the off-diagonal terms of the density matrix into a lon-
gitudinal term, which is measured by the subsequent readout pulse. The decay of
the obtained oscillations at the detuning frequency characterize decoherence. This
experiment was first performed in atomic physics, and it corresponds to the free
induction decay (FID) in NMR. When the decay is not exponential, we define the
coherence time as the time corresponding to a decay factor exp(−1). Other more
sophisticated pulse methods have been developed to probe coherence. When the
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operating point is moved away from the optimal point at which decoherence is
weak during a fraction of the delay between the two pulses of a Ramsey sequence,
the signal gives access to decoherence at this new working point.

Figure 13. Symbols: Switching probability after a Ramsey two
pulse sequence, as a function of the delay between pulses. The
envelope is the best fit obtained with the static approximation.
(Quantronics group).

In order to better characterize decoherence, a series of experiments has been
performed on the same sample whose decay of Ramsey interferences is shown
in Fig. 13. This decay is not exponential, as expected from the so-called ’static’
model [41] which assumes that frequency fluctuations responsable for dephasing
are almost static on the time scale of each Ramsey pulse sequence. Other more
sophisticated pulse methods have been developed to probe coherence [41]. When
the operating point is moved away from the optimal point at which decoherence is
weak during a fraction of the delay between the two pulses of a Ramsey sequence,
the signal gives access to decoherence at this new working point. The interest of
this ’detuning’ method is to perform qubit manipulations at the optimal working
point without being hindered by decoherence. When the coherence time is too short
for time domain experiments, the lineshape, which is the Fourier transform of the
Ramsey signal, gives access to the coherence time. Coherence times obtained with
all these methods on a single sample away from the optimal point in the charge
and phase directions are indicated by full symbols in Fig. 14.
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It is possible to shed further light on the decoherence processes and to fight
them using the echo technique well known in NMR [35]. An echo sequence is a two
π/2 pulse Ramsey sequence with a π pulse in the middle, which causes the phase
accumulated during the second half to be subtracted from the phase accumulated
during the first half. When the noise-source producing the frequency fluctuation
is static on the time scale of the pulse sequence, the echo does not decay. The
observed echo decay times, indicated by open disks in Fig. 14, thus set constraints
on the spectral density of the noise sources. In particular, these data indicate
that the charge noise is significantly smaller than expected from the low frequency
1/f spectrum. Bang-bang suppression of dephasing, which generalizes the echo
technique, could fight decoherence more efficiently [43].

Figure 14. Coherence times T2 and TEcho in a quantronium
sample extracted from the decay of free evolution signals. The
full and dashed lines are calculated using the the spectral densi-
ties depicted by the bottom graphs for the phase noise (left) and
for the charge noise (right), respectively. (Quantronics group).

7.3. Decoherence during driven evolution

During driven evolution, the density matrix is best defined using the eigenstate
basis in the rotating frame. On resonance, these eigenstates are the states |X〉 and
|−X〉 on the Bloch sphere. As in the laboratory frame, the decay of the density
matrix involves relaxation and dephasing. The measurement of the relaxation time
can be performed using the so-called spin locking technique in NMR [35], which
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allows one to measure the qubit polarization after the preparation of the state
|X〉. The coherence time during driven evolution is easily obtained from Rabi os-
cillations. Indeed, the initial state |0〉 is a coherent superposition of the eigenstates
during driven evolution: |0〉 = (|X〉 + |−X〉) /

√
2 .

The Rabi signal measured after a pulse of duration t thus probes decoher-
ence during driven evolution. The corresponding coherence time is longer than the
coherence time during free evolution because the driving field quenches the effect
of the low frequency fluctuations that dominate dephasing during free evolution.

8. Qubit coupling schemes

8.1. First experimental results

Single qubit control and readout has been achieved for several Josephson qubits.
Although the control accuracy and readout fidelity do not yet meet the require-
ments for quantum computing, the demonstration on such ’working’ qubits of logic
gates is now a main goal. Presently, only a few experiments have been performed
on coupled qubits. A logic C − NOT gate was operated in 2003 on charge qubits
[44], but without single shot readout. The correlations between coupled phase
qubits were measured recently using a single-shot readout [45]. In this experiment,
a fixed coupling between two phase qubits with the same resonance frequency is
implemented with a capacitor as shown in Fig. 15. Starting from state |10〉, the
probabilities to obtain states |10〉 and |01〉 are then anticorrelated, as expected
for a swapping interaction. The entanglement between two coupled qubits should
however be investigated with better accuracy in order to probe the violation of Bell
inequalities predicted by quantum mechanics. Only such an experiment could in-
deed test if collective degrees of freedom do obey quantum mechanics, and whether
or not the entanglement decays as predicted from the known decoherence processes.
We know discuss the different types of coupling schemes.

8.2. Tunable versus fixed couplings

In a processor, single qubit operations have to be supplemented with two qubit
logic gate operations. During a logic gate operation, the coupling between the two
qubits has to be controlled with great accuracy. For most solid state qubits, there
is however no simple way to switch and to control the coupling. In the case of the
superconducting qubits, controllable coupling circuits have been proposed [47], but
fixed coupling Hamiltonians have been mostly considered and operated: capacitive
coupling for phase, charge-phase and charge qubits, and inductive coupling for flux
qubits. It is nevertheless possible to use a constant coupling Hamiltonian provided
that the effective qubit-qubit interaction is controlled by other parameters. We
now discuss all these coupling schemes.

The first demonstration of a logic gate was performed using a fixed Hamil-
tonian. The system used consisted of two Cooper pair boxes with their islands
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Figure 15. Two phase qubits are capacitively coupled and mea-
sured simultaneously after a free evolution time. The anticorrela-
tion between the probabilities P01 and P10 demonstrate the swap-
ping induced by the interaction (taken from [45]). (Quantronics
group).

connected by a capacitance CC . The coupling Hamiltonian is

Hcc = −ECC(N̂1 − NG1)(N̂2 − NG2) (8)

where ECC = −EC1EC2CC/(2e)2 is the coupling energy, smaller than the charging
energy of the Cooper pair boxes. This Hamiltonian corresponds to changing the
gate charges by (ECC/2EC1) /(N̂2−NG2) for qubit 1, and by (ECC/2EC2) /(N̂1−
NG1) for qubit 2. The correlations between the two qubits predicted for this
Hamiltonian have been probed, and a C-NOT logic gate was operated with this
circuit[44].

In the uncoupled eigenstate basis, The Hamiltonian (8) contains both lon-
gitudinal terms of type σ̂Z1σ̂Z2 and transverse terms of type σ̂X1σ̂X2. At the
double optimal point NG1 = NG2 = 1/2 , δ1 = δ2 = 0, the Hamiltonian (8) is
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however purely transverse HCC = �ΩC σ̂X1σ̂X2, with ΩC = ECC/�

∣∣∣〈01

∣∣∣N̂1

∣∣∣ 11

〉∣∣∣∣∣∣〈02

∣∣∣N̂2

∣∣∣ 12

〉∣∣∣. When the two qubits have the same resonance frequency ω01, and
when ΩC � ω01, the non-secular terms in HCC that do not commute with the
single qubit Hamiltonian are ineffective, and the effective Hamiltonian reduces to:

Hsec
CC = (�ΩC) (σ̂+1σ̂−2 + σ̂−1σ̂+2) . (9)

The evolution of the two qubits corresponds to swapping them periodically. More
precisely, a swap operation is obtained at time π/ΩC . This gate is called ISWAP
because of extra factors i:

ISWAP |00〉 = |00〉 ; ISWAP |10〉 = −i |01〉 ;
ISWAP |01〉 = −i |10〉 ; ISWAP |11〉 = |11〉.
At time π/4ΩC , the evolution operator corresponds to the gate

√
ISWAP ,

which is universal.

8.3. Control of the interaction mediated by a fixed Hamiltonian

The control of the qubit-qubit interaction mediated by a fixed Hamiltonian de-
pends on the form of this Hamiltonian.

For a coupling of the form 9, the effective interaction can be controlled by
varying the qubit frequencies since the qubits are affected only when their fre-
quency difference is smaller than ΩC . This tuning strategy was recently applied to
capacitively coupled phase qubits, in which the qubit frequency is directly con-
trolled by the bias current of the junctions [7]. The correlations predicted by
quantum mechanics between the readouts of the two qubits were observed [45].
The tuning strategy would be also well suited for coupling many qubits together
through an oscillator [29]. The virtual exchange of photons between each qubit
and the oscillator indeed yields a coupling of the form 9, which is efficient only
when the two qubits are tuned. This coupling scheme yields truly scalable designs,
whereas most of other schemes are limited to 1D qubit arrays, with nearest neigh-
bor couplings. The coupling between a qubit and a resonator has already been
demonstrated for the charge and flux qubits [46, 28].

Another method proposed recently consists in maintaining the qubits out
of resonance, but in reaching an equivalent resonance condition in the presence
of resonant microwave pulses applied to each one [48]. This method is based on
a well known NMR protocol that aims at placing two different spin species ’on
speaking terms’. In this scheme, the energy difference between the two qubits is
exchanged with the microwave fields.

9. Conclusions and perspectives

Many solid state qubits have been proposed, and several of them have already
demonstrated coherent evolution.

For semiconductor qubits, the coherent transfer of an electron between two
dots has been demonstrated, and other promising designs are under investigation.
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For superconducting qubits, single qubit control, single-shot readout, and a
two-qubit logic gate have been achieved. Methods inspired from NMR have been
applied to qubit manipulation in order to improve manipulation robustness, and
to probe decoherence processes. However, the lack of an efficient readout scheme
and of robust two qubit gates still hinders the development of the field. New QND
readout schemes are presently investigated in order to reach a higher readout
fidelity. New qubit gates have been proposed, but none of them is as robust as
classical gates used in ordinary classical processors. Currently, the coherence time,
the readout fidelity, and the gate accuracy are insufficient to envision quantum
computing. But how far from this goal are solid state qubits?

In order to use quantum error correcting codes, an error rate of the order
of 10−4 for each logic gate operation is required. Presently, the gate error rates
can be estimated at about a few % for single qubit gates, and at about 20% at
best for two qubit gates. The present solid state qubits thus miss the goal by
many orders of magnitude. When decoherence and readout errors are taken into
account, quantum computing appears even more unrealistic. This is not, however, a
reason to give up because conceptual and technical breakthroughs can be expected
in this rather new field, and because no fundamental objection has been found.
One should not forget that, in physics, everything which is possible is eventually
done. Furthermore, quantum circuits provide new research directions in which
fundamental questions on quantum mechanics can be addressed. The extension of
quantum entanglement out of the microscopic world, and the location and nature
of the frontier between quantum and classical worlds, are two of these essential
issues. For instance, the accurate measurement of the correlations between two
coupled qubits would indeed probe whether or not the collective variables of qubit
circuits do follow quantum mechanics.

Our feeling is that, whatever the motivation, complex quantum systems and
quantum machines are a fascinating field worth the effort.
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Grégoire Ithier, François Nguyen, Eddy Collin,
Nicolas Boulant, Phil J. Meeson, Philippe Joyez,
Denis Vion and Daniel Estève
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Roots and Fruits of Decoherence

H. Dieter Zeh

Abstract. The concept of decoherence is defined, and discussed in a historical
context. This is illustrated by some of its essential consequences which may
be relevant for the interpretation of quantum theory. Various aspects of the
formalism are also reviewed for this purpose.

1. Definition of concepts

The concept of decoherence has become quite popular during the last two decades.
However, while its observable consequences have now been clearly confirmed exper-
imentally [1, 2] (see also contributions to this seminar), some misunderstandings
regarding its meaning seem to persist in the literature. The phenomenon itself ob-
viously does not depend on any particular interpretation of quantum theory, but
its relevance for them may vary considerably [3, 4]. I am indeed surprised about
the indifference of most physicists regarding the potential consequences of decoher-
ence in this respect, since this concept arose as a by-product of arguments favoring
either a collapse of the wave function as part of its dynamics, or an Everett-type
interpretation. In contrast to the Copenhagen interpretation, which insists on fun-
damental classical concepts, both these interpretations regard the wave function
as a complete and universal representation of reality (cf. [5]).

So let me first emphasize that by decoherence I do neither just mean the
disappearance of spatial interference fringes in the statistical distribution of mea-
surement results, nor do I claim that decoherence without additional assumptions
is able to solve the infamous measurement problem by explaining the stochastic
nature of measurements on the basis of a universal Schrödinger equation. Rather,
I mean no more (and no less) than the dynamical dislocalization of quantum me-
chanical superpositions, which are defined in an abstract Hilbert space with a local
basis (given by particle positions and/or spatial fields, for example). The ultimate
nature of this Hilbert space basis (the stage for a universal wave function) can
only be found in a unifying TOE (theory of everything).
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Dislocalization arises through the formation of entanglement of any system
under consideration (with states φ) with another one, such as its unavoidable
environment (described by states Φ). This is often achieved by means of a von-
Neumann type “measurement” interaction(∑

ciφi

)
Φ0 →

∑
ciφiΦi , (1)

which would represent a logical controlled-not operation in the case i = 1, 2 and
Φ0 = Φ1. Ideal measurements, that is, those without recoil or change of the state
φi, define “pure decoherence”. After the interaction, these superpositions still exist,
even though they are not there any more [6, 7]. The difference between these
two traditionally equivalent phrases reflects the essential character of nonlocal
quantum reality. I am indeed convinced that the importance of decoherence was
overlooked for the first 60 years of quantum theory precisely because entanglement
was regarded just as an aspect of quantum mechanical methods of calculation
rather than of physical reality.

Dislocalization of superpositions may be reversible (“virtual”) or irreversible
in practice (“real” decoherence). In the first case it would either allow the complete
relocalization of the superposition (“recoherence”), or at least its reconstruction
(the “quantum erasure” of measurement results). The distinction according to the
reversibility or irreversibility of decoherence explains also the virtual versus real
nature of other “quantum events”, such as radioactive decay, particle creation,
or excitation. For example, decayed systems remain in a superposition with their
undecayed sources until partial waves corresponding to different decay times are
decohered from one another. (This has the dynamical consequence of giving rise
to an exact exponential decay law – see the contribution by Erich Joos to these
proceedings.) In contrast to recoherence (complete reversal of the dislocalization),
quantum erasure is compatible with the irreversible and non-unitary dynamics
of open systems – related to a local entropy decrease at the cost of an entropy
increase in the environment [8].

According to (1), dislocalization of superpositions requires a distortion of the
environment Φ by the system φ rather than a distortion of the system by the en-
vironment (such as by classical “noise”). This leads to the important consequence
that decoherence in quantum computers cannot be error-corrected for in the usual
manner by means of redundant information storage. Adding extra physical quan-
tum bits to achieve redundancy, as it would be appropriate to correct spin or
phase flips in the system, would in general even raise the quantum computer’s
vulnerability against decoherence – for the same reason as the increased size of
an object normally strengthens its classicality. (Error correction codes proposed in
the literature for this purpose are based on the presumption of decoherence-free
auxiliary qubits, which may not be very realistic.)

In special situations, decoherence may be observed as a disappearance of
spatial interference fringes. Only for mass points, or center of mass positions of
extended objects, are wave functions isomorphic to spatial waves, and only after
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position measurements with many equivalently prepared objects do they form a
statistical distribution. The interference pattern could then conceivable also have
been obscured by a slightly varying preparation procedure (for example due to
uncontrollable “noise”), while decoherence according to Equ. (1) affects individual
quantum states. Because of the latters’ nonlocality it leads locally to a reduced
density matrix that describes formally an apparent ensemble of states (thus not
presuming it). The conceptually important difference between true and apparent
ensembles was clearly pointed out by Bernard d’Espagnat [9] when he distin-
guished between proper and improper mixtures. In the case of virtual (reversible)
decoherence, this difference can be observed as recoherence (relocalization of the
superposition) – impossible for a proper mixture.

Superpositions thus define pure states, which characterize individual prop-
erties that are not present in their formal components. For example, the super-
position of two different spinor states is again an individual spinor state (up or
down with respect to another direction); the superposition of a K-meson and its
antiparticle defines a new particle (Klong or Kshort); that of a continuum of posi-
tions (in the form of a plane wave) defines a certain “momentum” (wave number).
Similarly, a superposition of products of the spin states of two particles (even
at different places) by means of Clebsch-Gordon coefficients defines an individual
state of total spin, while each particle is then in an “improper mixture” because of
its virtual decoherence by the other one. Under unitary transformations (described
by a Schrödinger equation) these total states remain pure and can never become
ensembles that might represent different measurement outcomes. However, unitary
decoherence may irreversibly lead to apparent ensembles (improper mixtures) for
local systems, which would precisely explain the required ensembles of measure-
ment outcomes if they were genuine (proper). This consequence can hardly be an
unrelated accident!

2. Roots in nuclear physics

Nuclear physics provides some nice examples of many-particle systems which are
nonetheless clearly microscopic (found in energy eigenstates). While I was in-
volved in low energy nuclear physics during the sixties, I became irritated by
some methods which were quite successfully used. One of them, called the time-
dependent Hartree-Fock approximation, describes “stationary” states of heavy nu-
clei by means of time-dependent determinants of single-nucleon wave functions.
But how can the mathematical solution of a static equation Hψ = Eψ know
about a concept of time? Similarly, certain deformed nuclei were often described
by means of a time-dependent “cranking model” in order to calculate an effective
moment of inertia, or to reproduce a Coriolis type coupling between collective
rotational states and individual nucleons. However, both parameters characterize
the spectra of static energy eigenstates! It turned out that time is here used as a
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misleading tool to describe static superpositions of one-parametric continua of dif-
ferent determinants in order to construct quantum states for their corresponding
collective degrees of freedom (vibrations or rotations around one axis, for example).

For other collective modes, more than one parameter may be required. Gen-
eral rotations, for example, have to be represented by a non-Abelian symmetry
group characterized by three Euler angles. Superpositions then assume the form

Ψ =
∫

dΩf(φ, θ, χ)U(φ, θ, χ)Φ(r1, . . . , rn) , (2)

where U(φ, θ, χ) is the unitary transformation describing a rotation and dΩ the
volume element in this space, while Φ is a deformed determinant or other “model
wave function”. There are many other cases where entanglement is classically
circumscribed in terms of a time-dependent jargon. Well known is the picture of
“vacuum fluctuations” – used to characterize a static state of entangled quantum
fields.

If a variational procedure

δ〈Φ|(H − E)|Φ〉 = 0 , (3)

with determinants Φ consisting of single nucleon wave functions φi, leads to a
deformed solution (as it happens for many heavy nuclei), one must first conclude
that Φ can not be an approximation to the correct solution of Hψ = Eψ, since it is
far from being an angular momentum eigenstate. However, using the degeneracy of
these “wrong” solutions under rotations, one may consider their superposition (2)
as the next best step. Simultaneous variation of the single-particle wave functions
in Φ and the superposition amplitudes f(φ, θ, χ) then leads to angular momentum
eigenstates and rotational spectra, including Coriolis effects for the single particle
motion [10].

The superposition (2) may be regarded as being “dislocalized” over all nu-
cleons in such a way that they are all strongly entangled with one another. A
strong symmetry violation of the model wave function Φ may be defined by the
quasi-orthogonality of slightly different orientations,

〈Φ|U(φ, θ, χ)|Φ〉 ≈ 0 for U �= 1 , (4)

as though the collective orientation were an observable, and f(φ, θ, χ) therefore
the corresponding wave function. In a similar way, phonon degrees of freedom
arise in solid bodies. This strong violation of rotational symmetry does not require
a “needle limit” of strong geometric asymmetry: it is a collective effect of many
slightly asymmetric single-particle wave functions (subsystems). For product wave
functions Φ =

∏
i φi(ri), for example, one would get

〈Φ|U(φ, θ, χ)|Φ〉 =
∏

i

〈φi|U(φ, θ, χ)|φi〉

=
∏

i

(1 − εi) ≈
∏

i

exp(−εi) = exp(−
∑

i

εi) . (5)
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(For nucleons, their indistinguishability reduces this result somewhat, and may
let nuclei behave as a superfluid.) This quasi-orthogonality is very similar to de-
coherence, which is often achieved by means of a product of inner products of
many environmental subsystems (such as many scattered particles) [6]. In lowest
approximation of the strong symmetry violation, each nucleon then “feels” only
the deformed (apparently oriented) self-consistent potential produced by the oth-
ers. While there is no absolute orientation in this case of rotational symmetry of
the exact Hamiltonian, the latter’s dependence on inertial frames allows the nucle-
ons in higher order also to experience a Coriolis-type coupling with the collective
angular momentum.

So one may say that the individual nucleons “observe” an apparent asymme-
try in spite of the symmetric global superposition of all orientations. However, a
similar superposition of different pointer positions occurs in a quantum measure-
ment that is described by von Neumann’s unitary interaction (1). This analogy led
me to the weird speculation about a nucleus that is big enough to contain a complex
subsystem which may resemble a registration device or even a conscious observer.
It/she/he would then become entangled with its/her/his “relative world”, such as
with a definite orientation. Does the dynamical consequence described above then
indicate a way to solve the measurement problem? If the nucleons in the deformed
nucleus dynamically feel a definite orientation in spite of the global superposition,
would an internal observer then not similarly have to become “aware of” a certain
measurement result?

This picture was also my first attempt towards a (non-relativistic) quantum
cosmology – a kind of Everett interpretation as I later discovered. When I learned
about the static Wheeler-DeWitt quantum universe, described by an equation
Hψ = 0, it also helped me to understand the concept of time that emerges therein
(cf. [11] and Sect. 6.2.2 of Ref. [8]). In contrast to a macroscopic body, a nucleus
in an energy eigenstate represents a closed quantum “universe”. However, it was
absolutely impossible at that time to discuss these ideas with colleagues, or even
to publish them. An influential Heidelberg Nobel prize winner frankly informed
me that any further activities on this subject would end my academic career!

Macroscopic objects are never found in energy eigenstates, but rather in
states of certain (usually time-dependent) orientations or positions. Therefore,
it was generally concluded that “quantum theory is not made for macroscopic
objects” or even the universe. According to Niels Bohr, macroscopic systems have
to be described in terms of presumed classical (or “every-day”) concepts – even
though they would have to obey the uncertainty relations.

3. The quantum-to-classical transition

Much has been written about the quantum-to-classical transition (cf. [12, 7] and
Zurek’s contribution to these proceedings). It is evidently crucial for a theory that
describes reality exclusively in terms of quantum states, while it would be of no
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more than secondary importance (such as for explaining the absence of interfer-
ence patterns in scattering experiments) if classical concepts were presumed for a
probabilistic interpretation from the beginning. I could never accept such a funda-
mental divide between quantum and classical concepts. So one has to understand
the different appearance of atoms, nuclei and small molecules on the one hand, and
macroscopic objects on the other. If both are described quantum mechanically,
their energy spectra differ quantitatively. For example, rotational states of macro-
scopic objects are very dense. As a consequence, they cannot resist entanglement
with their environment even in the case of very weak interactions. Their reduced
density matrices must then always represent “mixed states”, while the locality of
these interactions leads to the vanishing of non-diagonal elements preferentially in
the position or “pointer” representation. This is now called decoherence.

Although this term came up more than ten years later (probably it was first
used in talks given by Gell-Mann and Hartle at the end of the eighties, preceding
their publication of 1993 [13]), I pointed out in a number of papers (see [14, 15])
that this disappearance of certain non-diagonal elements of the density matrix ex-
plains superselection rules, which were often postulated as fundamental restrictions
of the superposition principle (for example in axiomatic foundations of quantum
theory). They were assumed to hold for specific properties, such as electric charge,
as well as for “classical observables”, although the axioms did not define a precise
boundary between quantum and classical concepts.

In these early papers you will not even find the word “entanglement” – simply
because this concept was so rarely used at that time that I did not know this
English translation of Schrödinger’s Verschränkung. So I referred to it as “quantum
correlations”. Remember that even Schrödinger, in his famous paper of 1935 [16],
regarded Verschränkung as a mysterious probability relation (which would have
to characterize ensembles rather than individual states), since he was convinced
that reality has to be defined in space and time.

However, what I had in mind went beyond what is now called decoherence,
since it was inspired by the above mentioned picture of an observer inside a closed
quantum system. An external observer, who is part of the environment of the
observed object, becomes entangled, too, with the property he is observing – just
as the observer within the deformed nucleus is entangled with its orientation. He is
thus part of a much bigger “nucleus” (or closed system): the quantum universe. So
he “feels”, or can be aware, only of a definite value of the property he has measured
(or separately of different values in different “Everett worlds”). All you have to
assume is that his various quantum states which may exist as factor states in these
components of the global wave function are the true carriers of awareness. This
is even plausible from a quite conventional point of view, since these decohered
component states, which are a consequence of the Schrödinger equation, possess all
properties required to define observers, such as complexity and dynamical stability
(memory). Indeed, these states are the same ones that would arise in appropriate
collapse theories if they were, according to von Neumann’s motivation, constructed
in order to re-establish a psycho-physical parallelism, but I do not see why a
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modification of the dynamics that eliminates all “other” components from reality
should be required.

A genuine collapse that was simply triggered by irreversible decoherence (as
recently suggested in a very clever way by Roland Omnès [17]) would not lead to
any observable consequences, while other models should either be experimentally
confirmed or refuted. As long as they are not confirmed, it is just a matter of taste
whether you apply Occam’s razor to the facts (by inventing new dynamical laws to
cut off what you cannot see) or to the laws (by leaving the Schrödinger equation
unchanged) – although this choice must clearly have cosmological consequences
(such as a symmetric superposition of many different asymmetric “worlds” that
might have been essential, that is, not yet decohered, during early stages of the
universe).

For me the most important fruit of decoherence (that is, of a universal en-
tanglement) is the fact that no classical concepts are required any more on a fun-
damental level. There is then also no need for a fundamental concept of “observ-
ables”, which would assume certain values only upon measurement – see Chap. 4,
and for uncertainty relations then restricting such values. The Fourier theorem
for the wave function explains this “uncertainty” in a natural way – well known
for classical radio waves, which are themselves real and certain. When Bohr and
Heisenberg insisted that the uncertainty relations go beyond the Fourier theo-
rem, they were apparently thinking of spatial wave functions only (thus neglecting
entangled states).

For microscopic objects which can be sufficiently isolated, the experimental
physicist has a choice between mutually exclusive (“conjugate”) measurements,
while macroscopic properties are decohered by their unavoidable environment in
a general and specific manner. This explains their classical appearance. The cor-
responding quasi-classical basis in Hilbert space then appears as a classical config-
uration space, while the conventional “quantization” procedure may be regarded
as the re-introduction of these lost superpositions into the (approximately valid)
classical theory. Similarly, the classical world appears local to us, since nonlocal
entanglement becomes immediately uncontrollable: it is decohered.

In order to illustrate the difference between this and the Copenhagen inter-
pretation, let me quote from a recent publication by Ulfbeck and Aage Bohr from
Copenhagen regarding the nature of quantum events. They write [18]: “No event
takes place in the source itself as a precursor of the click in the counter . . . ”. Hence,
there is no decay event in the atom, for example! So far I agree; this conclusion,
which is in contrast to earlier interpretations of quantum theory, is enforced by ex-
periments which use reflected decay fragments to demonstrate recoherence (state
vector revival) or interference with partial waves resulting from later decay times.
In order to appreciate this important change in the Copenhagen interpretation,
one may compare the new version with Pauli’s claim from the fifties that “the
appearance of a certain position or momentum of a particle is a creation outside
the laws of nature” (my italics), which clearly refers to the creation of particle
properties. Ulfbeck and Bohr then continue their sentence of above: “. . . where
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the wave function loses its meaning.” Here I strongly disagree. After all, it is pre-
cisely the arising uncontrollable entanglement with the environment, described by
a global wave function, which explains decoherence. These authors are correct,
though, when placing the creation of (apparent, I would add) stochastic “events”
in the apparatus, where the dislocalization of the relevant superposition becomes
irreversible FAPP (for all practical purposes), thus creating an apparent ensemble
of quasi-classical wave packets. The dishonesty of the Copenhagen interpretation
consists in switching concepts on demand and regarding the (genuine or appar-
ent) collapse as a “normal increase of information” – as though the wave function
represented no more than an ensemble of possible physical states. However, this is
ruled out by observed state vector revival phenomena.

Of course, you may pragmatically use classical concepts as though they were
fundamental – even when studying decoherence as a phenomenon. One cannot ex-
pect practicing physicists always to argue in terms of a universal wave function. But
they may keep in mind that there is a consistent description (thus representing a
“quantum reality”) underlying their classical terminology. Similarly, a high-energy
physicist uses the concepts of momentum and energy to describe the objects in
his laboratory, although he knows that they are no more than limited descriptions
of the objective relativistic concept of “momenergy”. Fortunately, there are other
fruits of decoherence in the form of observable phenomena which demonstrate
decoherence in action [1, 2]. Nonetheless, the derivability in principle of classical
(such as particle) concepts undermines the motivation for the Heisenberg picture
as well as for Bohm’s quantum mechanics, for example.

4. Quantum mechanics without observables1

In quantum theory, measurements are traditionally described by means of “observ-
ables”, which in the Heisenberg picture are assumed to replace classical variables,
and therefore have to carry the dynamical time dependence. They are formally
represented by hermitean operators, and introduced in addition to the concepts of
quantum states and their dynamics as a fundamental and independent ingredient
of quantum theory. However, even though often forming the starting point of a
formal quantization procedure, this ingredient may not be separately required if
physical states are universally described by general quantum states (superposi-
tions in an appropriate basis of states) and their dynamics. This interpretation,
to be further explained below, would comply with John Bell’s quest for a theory
in terms of “beables” rather than observables [19]. It was for this reason that his
preference shifted from Bohm’s theory to collapse models (where wave functions
are assumed to completely describe reality) during his last years. (Another reason
was his antipathy against the “extravagance” – as he called it – of the multiplicity
of Everett worlds, which appears in the form of myriads of empty components as
well in Bohm’s never collapsing wave function.)

1 This chapter is based on Sect. 2.2 of [7]. It may be skipped for a quick reading.
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Let |α〉 be an arbitrary quantum state of a local system (perhaps exper-
imentally prepared by means of a “filter” – see below). The phenomenological
probability for finding this system in another quantum state |n〉, say, after an ap-
propriate measurement, is given by means of their inner product, pn = |〈n | α〉|2,
where both state vectors are assumed to be normalized. This transition of state
may either correspond to a collapse or a branching of the wave function – though
here neglecting the states of the apparatus and the environment. The state |n〉
represents here a specific measurement. In a position measurement, for example,
the number n has to be replaced with the continuous coordinates x, y, z, leading
to the “improper” Hilbert states |r〉. Measurements are called “of the first kind”
or “ideal” if the system will again be found in the state |n〉 (except for a phase
factor) whenever the measurement is immediately repeated. Preparations of states
can be regarded as measurements which select a certain subset of outcomes for
further measurements. n-preparations are therefore also called n-filters, since all
“not-n” results are thereby excluded from the subsequent experiment proper. The
above probabilities can be written in the form pn = 〈α | Pn | α〉, with a special
“observable” Pn := |n〉〈n|, which is thus derived from the kinematical concept of
quantum states by using their (phenomenological) probabilistic dynamics during
measurements, rather than being introduced as a fundamental concept.

Instead of these special “n or not-n measurements” (for fixed n), one can
also perform more general “n1 or n2 or . . . measurements”, with all ni’s mutu-
ally exclusive (〈ni|nj〉 = δij). If the states forming such a set {|n〉} are pure and
exhaustive (that is, complete,

∑
Pn = 1), they represent a basis of the correspond-

ing Hilbert space. By introducing an arbitrary “measurement scale” an, one may
construct general observables

A =
∑

|n〉an〈n| , (6)

which permit the definition of “expectation values”

〈α | A | α〉 =
∑

pnan . (7)

In the special case of a yes-no measurement, one has an = δnn0 , and expectation
values become probabilities. Finding the state |n〉 during a measurement is then
also expressed as “finding the value an of an observable”. A uniquely invertible
change of scale, bn = f(an), describes the same physical measurement; for position
measurements of a particle it would simply represent a coordinate transformation.
Even a measurement of the particle’s potential energy V is equivalent to an (in-
complete) position measurement if the function V (r) is given.

According to this definition, quantum expectation values must not be under-
stood as mean values in an ensemble that represents ignorance about the precise
state. Rather, they have to be interpreted as resulting from the probabilities for
potentially arising quantum states |n〉 – regardless of the interpretation of this
stochastic process. If the set {|n〉} of such potential states forms a basis, any state
|α〉 can be represented as a superposition |α〉 =

∑
cn|n〉. In general, it neither
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forms an n0-state nor any not-n0 state. Its dependence on the complex coeffi-
cients cn requires that states which differ from one another by a numerical factor
must be different “in reality”. This is true even though they represent the same
“ray” in Hilbert space and cannot, according to the measurement postulate, be
distinguished operationally. The states |n1〉 + |n2〉 and |n1〉 − |n2〉 could not be
physically different from another if |n2〉 and −|n2〉 were the same state. While
operationally indistinguishable in the state ±|n2〉 itself, any numerical factor –
such as a phase factor – would become relevant in the case of recoherence. (Only
a global factor would thus be “redundant”.) For this reason, projection operators
|n〉〈n| are insufficient to characterize quantum states.

The expansion coefficients cn relating physically meaningful states – for ex-
ample those describing different spin directions or different versions of the K-meson
– have in principle to be determined (relative to one another) by appropriate ex-
periments. However, they can often be derived from a previously known (or con-
jectured) classical Hamiltonian theory by means of “quantization rules”. In this
case, the classical configurations q (such as particle positions or field variables)
are postulated to parametrize a basis in Hilbert space, {|q〉}, while the canonical
momenta p parametrize another one, {|p〉}. Their corresponding observables,

Q =
∫

dq |q〉q〈q| and P =
∫

dp |p〉p〈p| , (8)

are then required to obey commutation relations in analogy to the classical Poisson
brackets. In this way, they form an important tool for constructing and interpret-
ing the specific Hilbert space of quantum states. These commutators essentially
determine the unitary transformation 〈p | q〉 (e.g. as a Fourier transform eipq) –
thus more than what could be defined by means of the projection operators |q〉〈q|
and |p〉〈p|. This algebraic procedure is mathematically very elegant and appealing,
since the Poisson brackets and commutators may represent generalized symmetry
transformations. However, the concept of observables (which form the algebra)
can be derived from the more fundamental one of state vectors and their inner
products, as described above.

Physical states are assumed to vary in time in accordance with a dynami-
cal law – in quantum mechanics of the form i∂t|α〉 = H|α〉. In contrast, a mea-
surement device is usually defined regardless of time. This must then also hold
for the observable representing it, or for its eigenbasis {|n〉}. The probabilities
pn(t) = |〈n | α(t)〉|2 will therefore vary with time according to the time-dependence
of the physical states |α〉. It is well known that this (Schrödinger) time depen-
dence is formally equivalent to the (inverse) time dependence of observables (or
the reference states |n〉). Since observables “correspond” to classical variables,
this time dependence appeared suggestive in the Heisenberg–Born–Jordan alge-
braic approach to quantum theory. However, the absence of dynamical states |α(t)〉
from this Heisenberg picture, a consequence of insisting on classical kinematical
concepts, leads to paradoxes and conceptual inconsistencies (complementarity, du-
alism, quantum logic, quantum information, negative probabilities, and all that).
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The transition to a Heisenberg picture essentially breaks down for open systems,
which cannot obey a Schrödinger equation.

An environment-induced superselection rule means that certain superposi-
tions are highly unstable against decoherence. It is then impossible in practice to
construct measurement devices for them. This empirical situation has led some
physicists to deny the existence of these superpositions and their corresponding
observables – either by postulate or by formal manipulations of dubious interpre-
tation, often including infinities or non-separable Hilbert spaces.

While any basis {|n〉} in Hilbert space defines formal probabilities, pn =
|〈n|α〉|2, only a basis consisting of states that are not immediately destroyed by
decoherence defines “realizable observables”. Since the latter usually form a gen-
uine subset of all formal observables (diagonalizable operators), they must contain
a nontrivial “center” in algebraic terms. It consists of those which commute with all
the rest. Observables forming the center may be regarded as “classical”, since they
can be measured simultaneously with all realizable ones. In the algebraic approach
to quantum theory, this center appears as part of its axiomatic structure [20]. How-
ever, since the condition of decoherence has to be considered quantitatively (and
may even vary to some extent with the specific nature of the environment), this
algebraic classification remains an approximate and dynamically emerging scheme.

These “classical” observables thus characterize the subspaces into which su-
perpositions decohere. Hence, even if the superposition of a right-handed and a
left-handed chiral molecule, say, could be prepared by means of an appropriate
(very fast) measurement of the first kind, it would be destroyed before the mea-
surement may be repeated for a test. In contrast, the chiral states of all individual
molecules in a bag of sugar are “robust” in a normal environment, and thus re-
tain this property individually over time intervals which by far exceed thermal
relaxation times. This stability may even be increased by the quantum Zeno ef-
fect (see [21] for a consistent and exhaustive discussion). Therefore, chirality does
not only appear classical in these cases, but also as an approximate constant of
the motion that has to be taken into account for defining canonical ensembles in
thermodynamics.

The above-used description of measurements of the first kind by means of
probabilities for transitions |α〉 → |n〉 (or, for that matter, by corresponding
observables) is phenomenological. However, measurements should be described
dynamically as interactions between the measured system and the measurement
device. The observable (that is, the measurement basis) should thus be derived
from the corresponding interaction Hamiltonian and the initial state of the device.
As shown by von Neumann, this interaction must be diagonal with respect to
the measurement basis (see (1) and [22]). Its diagonal subsystem matrix elements
are operators acting on the quantum state of the device in such a way that the
“pointer” evolves into a position appropriate for being read, |n〉|Φ0〉 → |n〉|Φn〉.
Here, the first ket refers to the system, the second one to the device. The states
|Φn〉, representing different pointer positions, must approximately be mutually
orthogonal, and “classical” in the explained sense.
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Because of the dynamical version of the superposition principle, an initial su-
perposition

∑
cn|n〉 does not lead to definite pointer positions (with their empiri-

cally observed frequencies). If decoherence is neglected, one obtains their entangled
superposition

∑
cn|n〉|Φn〉, that is, a state that is different from all potential mea-

surement outcomes |n〉|Φn〉. This dilemma represents the “quantum measurement
problem”. Von Neumann’s interaction is nonetheless regarded as the first step of
a measurement (a “pre-measurement”). Yet, a collapse still seems to be required
– now in the measurement device rather than in the microscopic system. Because
of the entanglement between system and apparatus, it would then affect the total
system. (Some authors seem to have taken the phenomenological collapse in the
microscopic system by itself too literally, and therefore disregarded the state of the
measurement device in their measurement theory. Such an approach is based on
the assumption that quantum states always exist for all systems. This would be
in conflict with quantum nonlocality, even though it may be in accordance with
early interpretations of the quantum formalism.)

If, in a certain measurement, a whole subset of states |n〉 leads to the same
pointer position |Φn0〉, these states can not be distinguished by this measurement.
According to von Neumann’s interaction, the pointer state |Φn0〉 will now be cor-
related with the projection of the initial state onto the subspace spanned by this
subset. A corresponding collapse was therefore formally postulated by Lüders [23]
as a generalization of von Neumann’s “first intervention” (as he called the collapse
dynamics).

In this sense, the interaction with an appropriate measuring device defines an
observable. The formal time dependence of observables according to the Heisenberg
picture would then describe a time dependence of the states diagonalizing the
interaction Hamiltonian, such that, paradoxically, the device would be assumed to
be dynamically controlled by the Hamiltonian of the system.

The question whether a certain formal observable (that is, a diagonalizable
operator) can be physically realized can only be answered by taking into account
the unavoidable environment. A macroscopic measurement device is always as-
sumed to decohere into its macroscopic pointer states. However, as mentioned in
Chapter 3, environment-induced decoherence by itself does not solve the measure-
ment problem, since the “pointer states” |Φn〉 may be defined to include the total
environment (the “rest of the world”). Identifying the thus arising global superpo-
sition with an ensemble of states (represented by a statistical operator ρ) that leads
to the same expectation values 〈A〉 = tr(Aρ) for a limited set of observables {A}
would beg the question. This merely operational argument is nonetheless often
found in the literature.

5. Rules versus tools

As the Everett interpretation describes a “branching quantum world”, which mim-
ics a collapsing wave function to the internal observer, the question is often raised
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for the precise rules of this branching – similar to the dynamical rules for a col-
lapse. Such collapse rules would have to define the individual branches (or the
“pointer states”) as well as their dynamical probabilities. In contrast, decoherence
describes the branching by means of the Schrödinger equation as a dislocalization
of initially local superpositions in such a way that the latter become gradually
inaccessible to any local observer. Decoherence neither defines nor explains this
ultimate (conscious) observer. While the branching is ultimately justified by the
observer’s locality, the dislocalization itself is an objective dynamical process – in
particular occurring in measurement devices.

This unitary dynamical process causes the non-diagonal elements of the re-
duced density matrices of all dynamically involved local systems (such as those
forming a chain of interactions which lead to an observation) to vanish very fast.
These indicators of dislocalized superpositions are therefore often used to define
decoherence. However, subsystems and their density matrices are no more than
convenient conceptual tools, useful because of the locality of all interactions and
the causal structure of our world (based on cosmic initial conditions that are
responsible for the arrow of time [8]). In contradistinction to a nonlocal superposi-
tion, the concept of a density matrix presumes the probability interpretation. The
degree of diagonalization of the reduced density matrices would depend on the
precise choice and boundaries of subsystems, but this is irrelevant for a sufficient
definition of “macroscopically distinct” global branches FAPP. Decoherence may
thus be called a collapse without a collapse.

While a genuine collapse theory would have to postulate (as part of the dy-
namical law) probabilities for its various possible outcomes, in an Everett world
all branches are assumed to remain in existence. One can then meaningfully argue
only about frequencies of outcomes (such as spots on a screen) in series of mea-
surements that were performed in our branch. Graham was able to show more than
thirty years ago [24] that all those very abundant (by number) “maverick Everett
worlds” which do not possess frequencies in accordance with the Born probabil-
ities possess a norm that vanishes with increasing size of the series. While their
exclusion is nonetheless not a trivial assumption, the norm plays here a similar
rôle as phase space does in classical statistical physics: it is dynamically conserved
under the Schrödinger equation, and thus an appropriate measure of probability.

6. Nonlocality

Let me continue with another reminiscence from the “dark ages of decoherence”
(that ended not before Wojcziech Zurek had published his first papers on this
subject in the Physical Review [22]). After I had completed the manuscript for my
first paper on what is now called decoherence [14], the only well known physicist
who responded to it in a positive way for a long time was Eugene Wigner. He helped
me to get it published, and he also arranged for an invitation to a conference on
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the foundations of quantum theory to be held in Varenna in 1970, organized by
Bernard d’Espagnat [25].

When I arrived at Varenna, I found the participants (John Bell included) in
hot debates about the first experimental results regarding the Bell inequalities,
which had been published a few years before [26]. I had never heard of them,
but I could not quite share the general excitement, since I was already entirely
convinced that entanglement (and hence nonlocality) was a well founded property
of quantum states, which in my opinion described reality rather than probability
correlations. So I concluded that everybody would now soon agree.

Obviously I was far too optimistic. Some physicists are searching for loopholes
in the experiments which confirm the violation of these inequalities until today –
even though all experimental results were precisely predicted by quantum theory.
Others (perhaps still the majority) are interpreting nonlocality as a “spooky action
at a distance”, which would have to affect tacitly presumed local quantities or
events (such as described by classical concepts). I cannot see anything but prejudice
(once shared by Einstein and Schrödinger!) in such an assumption about reality.
It is amazing that even Bohm, who did assume the nonlocal wave function to be
real, added classical concepts to describe another (local) reality, which would have
to include the local observer, and for which the wave function acts as no more
than a pilot wave.

It appears strange, too, that certain “measures of entanglement” that have re-
cently been much in use [27] measure only reversible or usable entanglement, while
quite incorrectly regarding irreversible entanglement (decoherence) as “noise” or
“distortion”. It is certainly not an accident that this position appears related to
Ulfbeck and Bohr’s above-mentioned statement. The observable consequences of
Equ. (1) demonstrate that quantum measurements can not be regarded as describ-
ing a “mere increase of information” – even in the absence of any recoil. Quantum
measurement interactions produce real nonlocal entanglement.

If reality is accepted to be kinematically nonlocal, you also don’t need any
“spooky teleportation” in order to explain certain experiments that appear par-
ticularly attractive to science fiction authors. In all these experiments you have to
prepare in advance a nonlocal (entangled) state that contains, in one of its com-
ponents, precisely what is later claimed to be ported already at its final position.
For example, in such a setting two spinors have to be prepared in the form of a
Bell state

| ↑〉A| ↓〉B − | ↓〉A| ↑〉B
= | →〉A| ←〉B − | ←〉A| →〉B = . . . , (9)

where A and B refer to Alice’s and Bob’s place, respectively. Nothing has to be
ported any more when Alice, say, follows the usual “teleportation” procedure to
perform the measurement of another (local) Bell state that includes her spinor
of (9) and the one to be ported. Because of the “real” (irreversible) decoherence
of the nonlocal superposition (9) caused by this measurement, this initial Bell
state becomes an apparent ensemble, such that the entanglement it represents
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appears to be a statistical correlation from the point of view of all local observers
(such as Bob). His apparently incomplete information may then be “completed” by
apparently classical means (Alice sending a message to Bob). In quantum terms,
this “information transfer” means that Bob and his spin, too, become consistent
members of the (partly irreversible) global entanglement (see Joos’s Sect. 3.4.2 of
[7]). This is then experienced by Bob (in all his arising branches) as a collapse of the
wave function. If the relativistic universal Hamiltonian is local (an integral over
a spatial Hamiltonian density), it becomes obvious from this unitary treatment
that there can be no superluminal influence. Quantum nonlocality is therefore
compatible with the dynamical locality of quantum fields that is often referred to
as “relativistic causality”.

Alice assumes here the rôle of Wigner’s well known “friend”, who performs
a measurement without immediately telling the former the outcome (so when is
the collapse?). If Pauli’s remark of Chap. 5 were right, though, something like
telekinesis “outside the laws of nature” would indeed have to create the measure-
ment result at Bob’s place in the case of an initial nonlocal Bell state. The term
“quantum information” instead of entanglement is therefore quite misleading: en-
tanglement must be part of quantum reality – even though it may often become
indistinguishable from a statistical correlation in practice.

Alice would need a similar initial Bell-type superposition of the kind

|CK〉A|noCK〉B − |noCK〉A|CK〉B (10)

in order to “beam” Captain Kirk (CK) from her to Bob’s place, provided he could
be shielded against decoherence until she either “measures” his absence at her
place or else sends Bob a message to perform a unitary transformation that leads
to |CK >. (This hypothetical isolation of (10) would indeed permit the existence
of a local Schrödinger cat state |CK〉 ± |noCK〉.) However, the Captain Kirk
who is then found at Bob’s place could not be one who knows what happened
at Alice’s place after the preparation of the initial Bell state. You would need a
tremendously more complex entangled state, that had to contain all possibilities
as part of its nonlocal quantum reality, in order to decide later what to beam. The
term “quantum teleportation” drastically misleads the public and should in my
opinion not be used by serious scientists. There is enough genuine weirdness that
quantum theory has to offer!

In practice, most nonlocal states (except for entanglement between very
weakly interacting subsystems, such as photons or neutral spins) would imme-
diately be irreversibly destroyed (that is, become uncontrollable) by decoherence.
The apparent locality of our classical world is therefore the consequence of its dras-
tic nonlocality: classical “facts” (or events) appear to be local, although they arise
precisely by the dislocalization of superpositions. Hypothetical local (classical)
variables which have not been measured are then often regarded as “counterfac-
tuals” (but not rejected as potential concepts even though they would contradict
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experimental results!), while the nonlocal concepts (superpositions) which success-
fully describe all these irreversible processes dynamically are simply dismissed as
“not conceivably representing reality”.

7. Information loss (paradox?)

The collapse of the wave function (without observing the outcome) or any other
indeterministic process would represent a dynamical information loss, since a pure
state is transformed into an ensemble of possible states (described by a proper
mixture, for example). The dislocalization of quantum mechanical superpositions,
on the other hand, leads to an apparent information loss, since the relevant phase
relations merely become irrelevant for all practical purposes of local observers. I
will now argue that the “information loss paradox of black holes” (Hawking’s lost
bet) is precisely based on this decoherence (or otherwise on the collapse of the
wave function), and not a specific property of black holes.

For a better understanding one may first consider irreversible processes in
classical mechanics, such as Boltzmann’s molecular collisions (see Chap. 9). Since
they are based on deterministic dynamics (in analogy to quantum unitarity), en-
semble entropy is here conserved. However, collisions lead to the formation of
uncontrollable statistical correlations, which are irrelevant FAPP in the future.
(They are important, though, for the correct backward dynamics because of the
specific cosmic initial condition that has to be assumed for this Universe.) This ap-
parent loss (namely, the dislocalization) of information in this classical case affects
physical entropy, since this entropy concept disregards by definition the arising un-
controllable correlations [8]. It is defined as an extensive (additive) quantity, usu-
ally in terms of “representative ensembles” characterizing the local macroscopic
variables, while microscopic (the real) states – including those of subsystems – are
objectively determined in principle by the global initial conditions because of the
presumed classical mechanical laws. In contrast, quantum mechanical subsystems
possess non-vanishing objective entropy (described by improper mixtures) even for
a completely defined global state.

In general relativity (GR), “information” may disappear when physical ob-
jects fall onto a spacetime singularity, but in classical physics the real state of
external matter would still exist and remain determined. In contrast, for quantum
mechanics on a classical spacetime, the information loss would have to include
all existing entanglement with external matter, thus transforming the latter’s im-
proper mixture into a proper one. This conclusion seems to remain true when the
black hole disappears by means of Hawking radiation, and this has been regarded
as a paradox, since it would violate unitarity.

One may consider the spacetime geometry of a black hole in Kruskal-type
coordinates (see Figure 1). Simultaneities used by external observers in asymptot-
ically flat spacetime (such as Minkowski time coordinates in the black hole’s rest
system) can here be continued towards the center of the spherical black hole in
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Figure 1. Various simultaneities for a spherical black hole in
a Kruskal type diagram: (a) hitting the singularity, (b) entering
the regular interior region only, (c) completely remaining outside
(Schwarzschild time coordinate t). Light cones open everywhere at
±450 around the vertical time axis in this diagram, while lengths
are strongly distorted. Schwarzschild time is appropriate in partic-
ular for posing external boundary conditions. The angle between
the horizon and the line t = const can here be arbitrarily changed
by a passive time translation. This includes the (apparently close)
vicinity of the horizon, which can thus be arbitrarily “blown up”
in the diagram – thus transforming any Schwarzschild time into
the horizontal line t = 0, for example.

different arbitrary ways. If everywhere chosen according to the Schwarzschild time
coordinate t, for example, they would never intersect the horizon, but this choice
does not affect the density matrix representing the region far from the horizon
(far right in the Figure). The information loss noticed by an external observer can
therefore not be caused by the singularity – no matter how long he waits. Not even
the horizon ever enters his past, and thus never becomes a “fact” for him, while the
Hawking radiation which he may observe would originate earlier in Schwarzschild
time than the horizon. Because of the singular time dilation, the close vicinity of
the horizon can causally affect only the very distant future, since superluminal
effects are excluded in spite of quantum nonlocality (cf. Chap. 6).

On the other hand, a macroscopic black hole is permanently affected by
various kinds of decoherence [28] – most importantly by means of its retarded
radiation. So this quantum radiation must be highly entangled with the remaining
black hole, and therefore with all radiation that is emitted later [29]. If usable
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information about the black hole is stored in the external world (such as in the
form of emitted light), it defines separate Everett branches. While the unitary
dynamics determines the later global quantum state uniquely, it does not determine
an observer’s branch: the present state of an observer will have many successors
in the future. Any confirmation of the black hole’s unitary dynamics would thus
require the complete recovery of coherence, including the recombination of Everett
worlds – just as it would be required to demonstrate unitarity for all macroscopic
objects. In practice, their evolution is irreversible. This means that the answer to
Hawking’s bet has nothing specifically to do with black holes [30].

The spacetime metric with its event horizons and singularities may be as-
sumed to be “real and certain” only in classical GR. In quantum gravity, even the
spacetime geometry on which simultaneities are to be defined has to be replaced
by an entangled quantum state of matter and geometry [31, 11]. All macroscopic
properties are thereby decohered and have to be associated with separate Everett
worlds. The Wheeler-DeWitt wave function Ψ[3G, φmatter ] (or its generalization to
unified theories), which describes their global superposition, defines “probability
amplitudes” on all simultaneities (not just on those forming one geometro-dynamic
history, that is, a specific foliation of spacetime).

This timeless wave function has to obey certain timeless boundary conditions;
it cannot distinguish between past and future singularities [32]. For example, these
conditions may exclude local singularities (or those with non-vanishing Weyl ten-
sor), or just any entanglement between them and regular regions. This would
strongly affect the wave function on all spatial geometries which intersect a black
hole horizon, and induce effects corresponding to apparent final conditions. The
WKB approximation, which allows quasi-classical spacetime (hence proper times)
to emerge by means of the process of decoherence, may then completely break
down in such regions of configuration space [33], while the classical spacetime
diagram of Figure 1 would lose its meaning close to the horizon.

However, this need not affect quasi-classical solutions restricted to
Schwarzschild simultaneities (the external part of the black hole). In particular,
Bekenstein’s black hole entropy is a general result derived in this region, that can-
not be used to confirm specific models of quantum gravity, such as string theory.

8. Dynamics of entanglement

The entangled state of any two quantum systems, if assumed to be pure, can
always be written as a single sum in the Schmidt canonical form [34]

ψ =
∑

i

√
piφiΦi , (11)

where the states φi and Φi forming the two bases are determined (up to linear
combinations between degenerate coefficients) by the total state ψ. The coefficients
can be chosen real and positive by an appropriate choice of phases for the states
forming the Schmidt bases, and have therefore been written in the form

√
pi.
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In contrast to Equ. (1), the states Φi are now assumed to be orthogonal: the
expansion (11) is thus in general different from the right hand side of (1). This
Schmidt representation determines the reduced density matrices in their diagonal
form

ρφ =
∑

i

|φi〉pi〈φi| ,

ρΦ =
∑

i

|Φi〉pi〈Φi| . (12)

Since all systems must be assumed to be entangled with their environments, the
second system has in principle always to be understood as the “rest of the universe”
in order to represent a realistic situation.

If the total state ψ depends on time, the bases φi and Φi and the coefficients√
pi must carry a separate time dependence, which is determined, too, by that of

the global state ψ(t). It can be explicitly described [15] by

d
√

pi

dt
= Im

∑
j

√
pi〈ii|H |jj〉

i
dφi

dt
=
∑
j �=i

(pi − pj)−1
∑
m

√
pm[

√
pi〈ji|H|mm〉 − √

pi〈mm|H|ij〉]φi

i
dΦi

dt
=
∑
j �=i

(pi − pj)−1
∑
m

√
pm[

√
pi〈ij|H|mm〉 − √

pi〈mm|H|ji〉]Φj

+
√

piRe
∑
m

√
pm〈ii|H |mm〉Φi . (13)

The asymmetry between the two subsystems described by φ and Φ is here due to
an asymmetric phase convention. It could be avoided by a different choice [35].

In classical physics, subsystems would evolve deterministically, controlled by
time-dependent Hamiltonians which would depend on the state of the other sys-
tem (thus forming coupled deterministic dynamics). This classical picture of time-
dependent Hamiltonians is often, not very consistently, used also in quantum me-
chanics – for example in the form of perturbing “kicks” instead of genuine quantum
interactions. However, an effective Hamiltonian depending on the state of the envi-
ronment would require a separately existing state of this environment. In contrast,
Equs. (13) define highly nontrivial (not practically usable) nonunitary subsystem
dynamics. For this reason, the “probabilities” pi and the entropy

∑
pi ln pi defined

by them must usually change in time. In particular, initially separating systems
will become entangled.

Although Equs. (13) define a continuous evolution separately for each term
of the Schmidt representation, this dynamics seems to be singular whenever two
diagonal elements pi of the density matrix become equal. Closer inspection of the
dynamics reveals that two eigenvalues coming close repel each other (unless the
corresponding matrix elements of the Hamiltonian vanish exactly), and therefore
never intersect as functions of time (see Figure 2). Thereby, the quasi-singular
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Figure 2. Trajectories of different probabilities pi(t) repel each
other, while their corresponding factorizing Schmidt components
interchange their identity (including all memories). Causal his-
tories of Schmidt components thus intersect in this diagram, al-
though they never touch. This effect may also be regarded as a
pure artifact of the Schmidt representation.

dynamics (13) of the states forces the latter to interchange their identity within
a very short time. In other words: degenerate probabilities (such as in exact Bell
states!) can never occur, while the formal continuity of Schmidt components in
Figure 2 is entirely unphysical (not representing any preserved identity of states).
Subsystem density matrices are not affected by this phenomenon, since the reso-
nance terms are a consequence of the ambiguity of their degenerate eigenstates.
The non-unitary dynamics of entangled density matrices can implicitly (that is,
depending on the solutions of (13)) be written as [36]

i
dρΦ

dt
:= i

d
∑

piΦiΦ∗
i

dt

=
∑
i,j

(√
pi〈ij|H |ψ〉 − √

pj〈ψ|H |ji〉)ΦiΦ∗
j . (14)

Initially separating (factorizing) states are of special interest for the process
of decoherence. While this assumption enforces an initial degeneracy to exist be-
tween all vanishing probabilities, the initial component with p0 = 1 would at least
quadratically depend on time because of the time reversal symmetry of the global
Schrödinger equation. In this small-times approximation its precise form can be
derived by means of perturbation theory as

p0(t) ≈ 1 − t2A , (15)

where the quantity

A =
∑

j �=0,m �=0

|〈jm|H |00〉|2 (16)
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has been called a deseparation parameter. It measures the arising entanglement
(that is, the growing deviation from separating states). Index pairs jm here refer
to product states φjΦm. Note that A is different from the quantity

B =
∑

jm �=00

|〈jm|H |00〉|2 ≥ A , (17)

which measures the total change of the global state in this approximation (including
the “classical” change characterizing a time-dependent product). If the environ-
ment and the interaction Hamiltonian H are given, the deseparation parameter
A can be used to estimate the robustness of certain states against decoherence.
For example, coupled harmonic oscillators turn out to be robust when in coherent
states (such as in states describing classical fields), while their energy eigenstates
(such as photon number eigenstates) are unstable against decoherence [15] (a result
that was later confirmed in [37]).

9. Irreversibility

The dynamics of entanglement, derived from a global Schrödinger equation and
discussed in the preceding chapter, is time reversal invariant. An asymmetry may
be introduced by assuming initially separating states, for example by using Equ.
(15) exclusively for t > 0. However, if one of the two systems is indeed the “rest
of the universe”, this assumption can be exact only once (such as at the big
bang), although similar assumptions may then approximately apply later, too,
in particular for dynamically autonomous Everett components after they have
branched off (or, alternatively, after a time-asymmetric collapse).

A similar situation of special initial conditions is known to be required for
irreversible processes in general. For example, Boltzmann collisions are assumed
to affect initially uncorrelated single particle distributions (defined in µ-space),
although correlations must have built up ever since the big bang. The point here is
that these correlations remain irrelevant in the future because of the chaotic nature
of these classical systems and the enormous lengths of their Poincaré recurrence
times – reflecting a very large information capacity of correlations. Decoherence
produced by scattering of photons or molecules [6] is analogous to Boltzmann’s
entropy production by means of molecular collisions, while coupled oscillators,
which have often been used to study decoherence [38], may be useful because of
their analytical solutions, but are known to possess pathological properties: they
are not mixing in a thermodynamical sense if treated as closed systems. Similar
arguments apply to systems consisting of interacting spins, which may better be
regarded as representing virtual decoherence – in strong contrast to systems which
would classically show chaotic behavior [39].

In quantum theory, reversibility would not even hold in principle in the case
of a genuine stochastic collapse of the wave function. If the Schrödinger equation is
instead assumed to be universally exact, recoherence of different Everett branches
would have to be taken into account in order to facilitate reversibility. This can
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be excluded FAPP (just as the reversal of any other macroscopic arrow of time),
and it is therefore neglected in the usual description of phenomena by means of
irreversible master equations, for example.

This general mechanism of irreversible dynamics was elegantly formulated
by Zwanzig [40] by means of idempotent operators P acting either on classical
statistical probability distributions or on density matrices ρ. These “Zwanzig pro-
jectors” need neither be linear nor hermitean. They are chosen to formalize the
neglect of an appropriate kind of “irrelevant information”. Idempotence (P 2 = P )
means that throwing away the same information twice at the same time does not
add anything to doing it once. One should keep in mind, however, that density
matrices usually represent improper mixtures, such that a dynamically applied
Zwanzig projection includes collapse dynamics, while it would merely represent
dynamical mixing for statistical distributions.

A linear Zwanzig projection is given by tracing out the environment,

ρrel = Psubρ = ρ(φ) = TraceΦρ , (18)

while a nonlinear one may merely neglect correlations between the two subsystems,

ρrel = Psepρ = ρ(φ)ρ(Φ) = TraceΦρ Traceφρ . (19)

There are many other applications of this very general concept, which can also
be regarded as a generalized coarse graining. For example, one may just neglect
quantum correlations (entanglement), while leaving all classical correlations intact.
As another example, Boltzmann’s Stoßzahlansatz neglects dynamically all arising
statistical correlations between particles.

Zwanzig projectors are useful, in particular, since they often allow the formu-
lation of an effective (approximately autonomous) dynamics for ρrel. This requires
the special initial, but approximately maintained, condition ρirrel ≈ 0, which may
lead to a master equation of the form

dρrel

dt
= −Grelρrel , (20)

applicable in the forward direction of time. Grel must be a positive operator, acting
on the density matrix, in order to describe an entropy increase (loss of information).
The entropy is here defined by

S = −kBTrace[ρrel ln ρrel] . (21)

This dynamics is schematically depicted in Figure 3 (cf. Chap. 3 of [8]), where rel-
evant information is permanently lost to the “irrelvant channel”. For the Zwanzig
projector Psep this process describes the production of entropy by means of deco-
herence, while for Psub it would include an information transfer from the system to
the environment (that is, an entropy transfer from the environment to the system
– usually attributed to heat or noise). The “doorway channel” in this picture de-
scribes irrelevant degrees of freedom which can directly interact with the relevant
channel. In the case of entanglement, it corresponds to virtual decoherence. Note,
however, that, for these quantum Zwanzig projectors, ρrel includes an apparent
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Figure 3. Propagation of “information” contained in the statis-
tical distribution or density matrix ρ for the case ρirrel(t = 0) = 0.
It propagates through two coupled “channels” (relevant and irrel-
evant – see also Figs. 3.2–3.4 of [8]). Intervals ∆t characterize steps
of integration for the coupling PH(1 − P ) + (1 − P )HP in the
interaction representation. The entropy, defined in terms of ρrel,
grows irreversibly FAPP if relevant information disappears into
the irrelvant channel for very long Poncaré times (usually by far
exceeding the age of the universe). This may allow the formulation
of master equations for ρrel. If the irrelvant channel describes en-
tanglement, the irreversible loss represents real decoherence, while
the “doorway channel”, which is part of the irrelvant channel, cor-
responds to virtual decoherence.

(improper) ensemble of different Everett “worlds”, since their superposition has
been dislocalized (become irrelevant to local observers). This means that the formal
entropy S[ρrel] contains not only physical entropy, but also the “entropy of lacking
information” about the outcomes of all measurements or spontaneous symmetry
breakings. Physical entropy is defined as a function of these macroscopic quanti-
ties. Definite macroscopic (classical) histories in quantum mechanical description
are thus based on a collapse or branching of the wave function, while classically
they merely require the selection of subensembles, which represent incomplete in-
formation (“ignorance”) about the real physical states. Such a selection is required
in order to describe individual macroscopic histories whenever microscopic causes
have macroscopic effects. In quantum theory, this “selection” corresponds to a
genuine quantum measurement.

Explicit models for the irreversible process of decoherence and their conse-
quences are discussed in the accompanying paper by Erich Joos.
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10. Concluding remarks

To conclude, let me emphasize that the concept of decoherence does not contain
any new physical laws or assumptions beyond the established framework of quan-
tum theory. Rather, it is is a consequence of the universal application of quantum
concepts (superpositions) and their unitary dynamics.

However, a consistent interpretation of this theory in accordance with the
observed world requires a novel and nontrivial identification of observers with ap-
propriate quantum states of local systems which exist only in certain, dynamically
autonomous components of the global wave function. Accordingly, it is the observer
who “splits” indeterministically – not the (quantum) world.

This interpretation is an attempt to replace the “pragmatic irrationalism”
that is common in quantum theory textbooks (complementarity, dualism, uncer-
tainty etc.) by a consistent application of those concepts which are actually, and
without restriction or exception successfully, used when the theory is applied.

Acknowledgements: I wish to thank Erich Joos and Claus Kiefer for their collab-
oration over many years, for their persisting interest in the subject, and for their
critical comments on the manuscript of this contribution.
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Dynamical Consequences
of Strong Entanglement

Erich Joos

Abstract. The concept of motion in quantum theory is reviewed from a didac-
tical point of view. A unitary evolution according to a Schrödinger equation
has very different properties compared to motion in classical physics. If the
phase relations defining unitary dynamics are destroyed or unavailable, mo-
tion becomes impossible (Zeno effect). The most important mechanism is dis-
localization of phase relations (decoherence), arising from coupling of a quan-
tum system to its environment. Macroscopic systems are not frozen, although
strong decoherence is important to derive quasi-classical motion within the
quantum framework. These two apparently conflicting consequences of strong
decoherence are analyzed and compared.

1. Introduction

It seems to be widely accepted by now that non-classical states of macroscopic
objects can never show up in the laboratory or elsewhere since they are unsta-
ble against decoherence. This explains superselection rules, that is, kinematical
restrictions in the space of all quantum states allowed by the superposition princi-
ple. The observation that macroscopic objects are under “continuous observation”
by their natural environment paved the way for our current understanding of the
quantum-to-classical transition [1].

Since in a consistent quantum treatment macro-objects are obviously to
be considered as open systems, their dynamics can longer follow a Schrödinger
equation. This alone invalidates the textbook “derivations” of the classical limit
via Ehrenfest theorems. Instead, one has to study the consequences of strong
measurement-like interaction of the considered system with its environment. The
resulting entanglement not only superselects certain states, which are then called
“classical” by definition, but also leads to dynamical consequences. Very simple
arguments seem to show that strong decoherence, that is, strong entanglement,
leads to slowing down of the dynamics of any system. However, the objects in our



178 Erich Joos

macroscopic world obviously are moving and there seems to be no “Zeno effect”.
How this puzzle can be solved will be discussed in the following sections.

2. The quantum Zeno effect

The quantum Zeno effect was discovered independently by several authors when
studying the properties of decay probabilities in quantum theory. The now popular
term “quantum Zeno effect” was introduced by Misra and Sudarshan [2].

Let a system be described by some “undecayed” state |Ψ(0)〉 = |u〉 at some
initial time t = 0. The probability P (t) to find it again in this “undecayed” state
at a later time t is

P (t) =
∣∣〈u| e−iHt |u〉∣∣2 (1)

where H is the Hamiltonian of the system. For small times we can expand P (t),
yielding

P (t) = 1 − (∆H)2t2 + O(t4) (2)
with

(∆H)2 = 〈u|H2 |u〉 − 〈u|H |u〉2 . (3)
The important feature to notice here is the quadratic time dependence of the
survival probability. This may be compared with the usual exponential decay law

P (t) = exp(−Γt), (4)

which leads to a linear time dependence for small times,

P (t) = 1 − Γt + . . . . (5)

This raises the question, how these two differing results can be made compati-
ble. Both look fundamental, but they obviously contradict each other. This conflict
can be made even stronger, when we consider the case of repeated measurements
in a short time interval.

Suppose we repeat the measurement N times during the interval [0, t]. Then
the non-deacy (survival) probability according to Equ. (2) is

PN (t) ≈
[
1 − (∆H)2

(
t

N

)2
]N

> P (t), (6)

which for large N gives

PN (t) = 1 − (∆H)2
t2

N
+ . . .

N→∞−→ 1. (7)

This is the Zeno effect: Sufficiently dense measurements should halt any motion!
There is no Zeno effect if the system decays according to the exponential

decay (4) law, since in this case trivially

PN (t) =
(

exp
(
−Γ

t

N

))N

= exp(−Γt) = P (t). (8)
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The conclusion is that any system showing a quadratic short-time behavior is
very sensitive to measurements, whereas an exponentially decaying system does
not care about whether its decay status is measured or not, that is, it behaves
classically in this respect.

If a system is governed by the Schrödinger equation, as used in Equ. (1), the
transition probability for small times must start quadratically, hence the exponen-
tial decay law can only be an approximation for larger times. 1 What happens
in the limit of “continuous” observation? The Zeno argument seems to show that
there will be no motion at all!

To gain a better understanding of what is going on here, I will discuss in the
following why motion is slowed down by measurements. In addition, the mea-
surement process itself will be described by a unitary evolution following the
Schrödinger equation as the fundamental law of motion for quantum states. It
will turn out, that the Zeno effect can be understood as a unitary dynamical
process and the collapse of the wave function is not required.

3. Interference, Motion and Measurement in Quantum Theory

Why does measurement slow down motion in quantum theory, but not in classical
physics? The reason can be traced back to the very nature of quantum evolution.
Quantum dynamics is unitary and can be viewed as a rotation in Hilbert space,
see Fig. 1. If the Hamiltonian describes a direct unitary transition between two

Figure 1. Evolution in quantum theory can be viewed as a rota-
tion connecting an initial state |a〉 with a final state |b〉. For direct
transitions, at intermediate times superpositions such as |a〉+ |b〉
(neglecting normalization) are required for undisturbed motion.

1There is a certain irony in this situation, since – at least in popular accounts – exponential
(“random”) decay is used as a major argument that classical physics has to be replaced by a new
(quantum) theory. But there is no strictly exponential decay law in quantum theory.
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states |a〉 and |b〉, the system has to go through a sequence of superposition states
α(t) |a〉 + β(t) |b〉. An essential feature of such a superpositions is the presence of
interference (coherence). As is well known, such a superposition has properties
which none of its components has – it is an entirely new state. 2 Unitary evolution
from |a〉 to |b〉 requires all the phase relations contained in the intermediate states
α |a〉+β |b〉. Phase relations are destroyed by measurements, so it is not surprising
that motion becomes impossible in quantum theory if coherence is completely
absent!

As an example consider the evolution of a two-state system from an initial
state |1〉 as a two-step process connecting times 0, t, and 2t, as shown in Fig. 2. If

Figure 2. Evolution of a two-state system away from initial state
|1〉. The amplitude (and therefore the probability) of state |2〉 at
time 2t depends on the phases contained in the superposition of
|1〉 and |2〉 at the intermediate time t, as in a double-slit experi-
ment.

aij are transition amplitudes (calculated from the Schrödinger equation) we have
the chain

t = 0 : |1〉
−→ a11 |1〉 + a12 |2〉 (9)
−→ (a2

11 + a12a21) |1〉 + (a12a22 + a11a12) |2〉 .

The final probability for state |2〉 at time 2t is then

P2 = |a12a22 + a11a12|2 . (10)

To study the Zeno effect we are interested in the behavior of P2 for small times.
In this limit it is given by

P2 ≈ |V |2(2t)2 with V = 〈1|H |2〉 . (11)

2This is the reason why stochastic models for quantum evolution are unsuccessful: A superposi-
tion cannot be replaced by an ensemble of its components.
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Clearly the value for P2 depends essentially on the presence of interference terms.
In a sense unitary evolution is an ongoing double- (or multi-)slit experiment (with-
out ever reaching the screen)! 3

Now compare this evolution with the same process, when a measurement is
made at the intermediate time t. This measurement may either be described by
a collapse producing an ensemble (that is, resulting in |1〉 or |2〉), or dynamically
by coupling to another degree of freedom. In the latter case an entangled state

Figure 3. Evolution of a two-state system with measurement.
The probability for state |2〉 at time 2t results solely from the
transition probabilities to intermediate states at time t. The loss
of phase relations leads to a decrease of the total transition prob-
ability.

containing the system and the measuring device |Φ〉 (or, generally, the system’s
environment) ensues (more on this in the next section). The equations now look
like

t = 0 : |1〉 |Φ〉
−→ (a11 |1〉 + a12 |2〉) |Φ〉
−→ a11 |1〉 |Φ1〉 + a12 |2〉 |Φ2〉 (12)
−→ (a2

11 |Φ1〉 + a12a21 |Φ2〉) |1〉 + (a12a22 |Φ1〉 + a11a12 |Φ2〉) |2〉
(the third line describes the new measurement step) and the transition probability
is given by

P2 = |a12a22|2 + |a11a12|2

≈ 1
2
|V |2(2t)2. (13)

3Obviously, the above model is nothing more than a very primitive version of the path-integral
formalism.
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Since the interference terms are missing, we lose half of the probability! Clearly
then, if we divide the time interval not in two but into N steps the transition
probability is reduced by a factor 1/N : the Zeno effect. This reduction is a sole
consequence of entanglement without any “disturbance” of the measured system,
since the measurement is assumed ideal in this model. No coherence, no motion!

The Zeno effect can also be seen more formally from the von Neumann equa-
tion for the density matrix. If coherence is absent in a certain basis, the density
matrix is diagonal, i.e.,

ρnm = ρnnδnm. (14)

But then no evolution is possible, since the von Neumann equation immediately
yields

d

dt
ρnn =

∑
k

(Hnkρkn − ρnkHkn) ≡ 0. (15)

4. Measurement as a Dynamical Process: Decoherence

To further analyze the Zeno effect I will consider a specific model for measurements
of an N -state system. As a preparation, let me shortly review the dynamical
description of a measurement process. In a dynamical description of measurement,
the well-known loss of interference during measurement follows from a certain kind
of interaction between a system and its environment.

Following von Neumann, consider an interaction between an N -state system
and a “measurement device” in the form

|n〉 |Φ0〉 −→ exp(−iHT ) |n〉 |Φ0〉 = |n〉 |Φn〉 (16)

where |n〉 are the system states to be discriminated by the measurement device
and |Φn〉 are “pointer states” telling which state of the system has been found.
H is an appropriate interaction leading after the completion of the measurement
(at time T ) to orthogonal states of the measuring device. Since in Equ. (16) the
system state is not changed, this measurement is called “ideal” (recoil-free). A
general initial state of the system will – via the superposition principle – lead to
an entangled state, (∑

n

cn |n〉
)
|Φ0〉 −→

∑
n

cn |n〉 |Φn〉 . (17)

This correlated state is still pure and does therefore not represent an ensemble of
measurement results (therefore such a model alone does not solve the measurement
problem of quantum theory). The important point is that the phase relations
between different n are delocalized into the larger system and are no longer available
at the system alone. Therefore the system appears to be in one of the states |n〉,
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formally described by the diagonalization of its density matrix,

ρ =
∑
n,m

c∗mcn |n〉 〈m|

−→
∑
n,m

c∗mcn 〈Φm|Φn〉 |n〉 〈m| (18)

=
∑

n

|cn|2 |n〉 〈n| ,

where the last line is valid if the pointer (or environmental) states are orthogonal,
〈Φm|Φn〉 = 0.

Any measurement-like interaction will therefore produce an apparent ensem-
ble of system states. This process is now usually called “decoherence”[1]. Note
that the origin of this effect is not a disturbance of the system. Quite to the con-
trary: the system states |n〉 remain unchanged, but they “disturb” (change) the
environment!

5. Strong Decoherence of a Two-State System

As a first application of the von-Neumann measurement model let us look at an
explicit scheme for a two-state system with Hamiltonian

H = H0 + Hint

= V (|1〉 〈2| + |2〉 〈1|) + E |2〉 〈2|
+γp̂(|1〉 〈1| − |2〉 〈2|). (19)

The momentum operator p̂ in Hint (last line) leads to a shift of a pointer wavefunc-
tion Φ(x) “to the right” or “to the left”, depending on the state of the measured
system, γ represents a measure of the strength of this interaction. Because of the
special structure of the Hamiltonian this interaction is recoil-free. This model can
be solved exactly and shows the expected damped oscillations. In view of the Zeno
effect we are mostly interested in the limit of strong coupling. Here the solutions
(calculated in perturbation theory) show two interesting features, as displayed in
Figs. 4 and 5 [3]. First, the transition probability from |1〉 to |2〉 depends in a com-
plicated way on the coupling strength, but for large coupling it always decreases
with increasing interaction. This is the expected Zeno behavior.

If we look at the time dependence of the transition probability, we see the
quadratic behavior for very small times (as is required by the general theorem
Equ. (2)), but soon the transition probability grows linearly, as in an exponentially
decaying system (the rate, however, depends on the coupling strength).

A realization of the quantum Zeno effect has been achieved in an experiment
[4] where the two-state system is represented in the form of an atomic transition,
while the measurement process is realized by coupling to a third state which emits
fluorescence radiation, see. Fig. 6.
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Figure 4. Transition probability as a function of the coupling
strength in a two-state model. For strong coupling, transitions
are always damped (Zeno effect).

0 0.5 1 1.5 2

time

tr
an

si
tio

n 
pr

ob
ab

ili
ty

Figure 5. Transition probability as a function of time. If the
measurement can be considered complete (here at t ≈ 1), the
transition probability grows linearly (constant transition rates)

The Zeno effect also shows up in a curious way in a recent proposal of
“interaction-free measurement”.

Early ideas about “negative result” or “interaction-free” measurements [5]
can be combined with the Zeno mechanism [6]. One of these schemes is exemplified
in Fig. 7. If a horizontally polarized photon is sent through N polarization rotators
(or repeatedly through the same one), each of which rotates the polarization by
an angle ∆Θ = π

2N , the photon ends up with vertical polarization. In this case the
probability to find horizontal polarization would be zero,

PH = 0. (20)
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"measurement 
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Figure 6. Zeno experiment in atomic physics [4]. The two-state
system under repeated observation is represented by a transition
between states |1〉 and |2〉. Measurement is accomplished through
an optical pulse leading to fluorescence from level |3〉 if the state
|1〉 is present.

If this evolution is interrupted by a horizontal polarizer (absorber) the probability
of transmission is (similar to Eqs. (6) and (7)) given by

P
′
H = cos2N ∆Θ = cos2N π

2N
≈ 1 − π2

4N
−→ 1. (21)

To implement this idea, a photon is injected into the setup shown in Fig. 7
and goes N times through the rectangular path, as indicated. The initial polar-
ization is rotated at R by an angle ∆Θ = π

2N on each passage. In the absence of
the absorbing object, the polarizing beam splitters, making up a Mach-Zehnder
interferometer, are adjusted to have no effect. That is, the vertical component V
is coherently recombined with the horizontal one (H) at the second beamsplitter
to reproduce the rotated state of polarization. If, however, the “bomb” is present,
the vertical component is absorbed at each step. After N cycles, the photon is
now still horizontally polarized, thereby indicating the presence of the object with
probability near one, or has been absorbed (with arbitrarily small probability).
For details of experimental setups see [7].

One should be aware of the fact that the term “interaction-free” is seriously
misleading since the Zeno mechanism is a consequence of strong interaction. Part
of this conceptual confusion is related to the classical particle pictures often used
in the interpretation of interference experiments, in particular “negative-result
measurements”.
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Figure 7. Scheme of “interaction-free interrogation” as a variant
of the Zeno effect. Without the absorbing object (the bomb), the
polarization of the injected photon (initially horizontal) is rotated
by the rotator R by a small angle on every passage. The two po-
larizing beam splitters PBS have no effect, if properly adjusted,
since horizontal and vertical components are recombined coher-
ently. If an absorbing object is present, the vertical polarization
component is removed at every passage. Inspecting the photon
after many cycles allows one to infer the presence of the object
with high probability, while the photon is only very infrequently
absorbed.

6. Strong Decoherence of Many-State Systems

Why does the Zeno effect not show up in our macroscopic world? I will consider two
examples of classical dynamics. The first is the motion of a massive object such as
a dust particle or a planet. The second example will be a reconsideration of Pauli’s
rate equation, describing classical random processes, where interference apparently
plays no role. In both cases it will turn out that (1) continuous measurement (i.e.
decoherence) is an essential ingredient for deriving classical motion and (2) the
Zeno effect plays no role.

6.1. Macroscopic objects

With hindsight it seems to be a trivial observation that all macroscopic objects are
strongly interacting with their natural environments. The consequences have been
analyzed only rather late in the history of quantum theory [8, 9]. One reason for
this is certainly the prevailing Copenhagen orthodoxy. For generations students
were told that quantum theory should only be used for microscopic objects, while
macroscopic bodies are necessarily described by classical physics.

The typical scenario is represented by scattering processes where the state
of the scattered object, a photon or a molecule, typically depends on the position
of the macroscopic body. Quantitative estimates [9] show a strong effect, even in
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Figure 8. Macroscopic objects can never be considered as iso-
lated from their natural environment. Irreversible scattering pro-
cesses lead to ever-increasing entanglement.

extreme situations, for example, a dust particle scattering only cosmic background
radiation. For small distances, interference is damped according to

ρ(x, x′, t) = ρ(x, x′, 0)exp[−Λt(x − x′)2] (22)

with a “localization rate” Λ given by

Λ =
k2Nvσeff

V
. (23)

Here k is the wave vector of the scattered particel, Nv/V the incoming flux and
σeff of the order of the total cross section. Some typical numbers are shown in
the table.

The above equations are valid in the limit of small wavelengths, k|x−x′| � 1,
comprising the effect of many individually ineffective scatterng processes. The
typical decoherence timescale according to Equ. (22) is tdec ≈ 1

Λ|x−x′|2 . In the
opposite limit k|x − x′| � 1, already a single scattering event destroys coherence.
The decoherence timescale is then given by the scattering rate (that is, tdec ≈

V
Nvσtot

≈ k2

Λ ). A quantitative test of the quantum theory of spatial decoherence
([9], [10] ) has been achieved in interference experiments with large molecules [11].

The equation of motion of, say, a dust particle, is then no longer the von
Neumann-Schrödinger equation, but contains an additional scattering term (com-
pare Equ. (22),

i
∂ρ(x, x′, t)

∂t
=

1
2m

(
∂2

∂x′2 − ∂2

∂x2

)
ρ − iΛ(x − x′)2ρ. (24)

If one analyzes the solutions of this equation, one finds that, for example, the
Ehrenfest theorems for mean position and momentum are still valid: The motion
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a = 10−3 cm a = 10−5 cm a = 10−6 cm

dust particle dust particle large molecule

Cosmic background radiation 106 10−6 10−12

300 K photons 1019 1012 106

Sunlight (on earth) 1021 1017 1013

Air molecules 1036 1032 1030

Laboratory vacuum 1023 1019 1017

(106 particles/cm3)

Table 1. Localization rate Λ in cm−2s−1 for three sizes of “dust
particles” and various types of scattering processes according to
(23). This quantity measures how fast interference between differ-
ent positions disappears for distances smaller than the wavelength
of the scattered particles, following Equ. (22). For large distances,
decoherence rates are just given by scattering rates, and are thus
independent of x − x′.

is not damped, although coherence between different positions is destroyed. There
is no Zeno effect.

The above equation of motion is a special case of more general equations
which are studied under the topic “Quantum Brownian Motion”. In addition to
decoherence, these models include friction effects. A simple example is [12]

i
∂ρ(x, x′, t)

∂t
=

[
1

2m

(
∂2

∂x′2 − ∂2

∂x2

)
−iΛ(x − x′)2

+ i
γ

2
(x − x′)

(
∂

∂x′ −
∂

∂x

)]
ρ(x, x′, t) (25)

where
Λ = mγkBT. (26)

This model represents the environment as a bath of harmonic oscillators (with
temperature T ), coupled to the mass point under consideration. The three lines in
Equ. (24) describe free motion, decoherence, and friction (damping constant γ),
respectively.

In typical macroscopic situations, decoherence is much more important than
friction. The ratio of decoherence to relaxation rate can be estimated as

decoherence rate
relaxation rate

≈ mkBT (∆x)2 =
(

∆x

λth

)2

, (27)

where λth is the thermal deBroglie wavelength of the macroscopic body. This ratio
has the enormous value of about 1040 for a macroscopic situation (m=1 g, ∆x = 1
cm) [13].
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We can conclude from these models that
• Newton’s reversible laws of motion can be derived (to a very good approxi-

mation) from strong irreversible decoherence.
• The appearance of classical objects has its origin in low-entropy condition in

the early universe and the unique features of quantum nonlocality.
• Decoherence works much faster than friction in macroscopic situations.
• Although coherence is strongly suppressed, no Zeno effect (slowing down of

motion) appears.

6.2. Rate equations

The exponential decay law P (t) = exp(−λt) mentionend at the beginning is a
special case of a general rate equation with transition rates Aαβ ,

d

dt
Pα =

∑
β

AαβPβ =
∑
β �=α

(AαβPβ − AβαPα) . (28)

Its quantum analogue, describing the dynamics of “occupation probabilities” is
usually called the “Pauli equation”,

d

dt
ραα =

∑
β

Aαβρββ . (29)

An obvious feature of (29) is that interference terms do not play any dynamical
role. On the other hand, this cannot be true exactly, since then the von Neumann
equation would lead to Zeno freezing,

d

dt
ραα =

∑
β

(Hαβρβα − ραβHβα) ≡ 0. (30)

To further analyze these matters let us assume that the properties α in the rate
equation are macroscopic in the sense that they are continuously observed by the
environment. The microscopic characterization is in the following assumed to be
given entirely by energy, further degeneracies are neglected for simplicity. The
macroscopic feature α is measured by a “pointer” as in the two-state Zeno model
above, see Fig. 9. The Hamiltonian then reads [3]

H =
∑
αE

E |αE〉 〈αE| +
∑

αE �=α′E′
VαE,α′E′ |αE〉 〈α′E′|

+
∑
αE

γ(α)p̂ |αE〉 〈αE| . (31)

As in the previous two-state model, the last line represents the (recoil-free) cou-
pling to the “pointer”.

Since we are interested in the limit of strong coupling to the pointer, we
calculate the transition probability from property α0 to another one, α, in lowest
order perturbation theory. Starting from

|Ψ(0)〉 = |α0E0〉 |Φ〉 , (32)
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V

α α'

α

E

Figure 9. Transitions between groups of states are monitored
by a pointer. The symbolic measurement device in the figure rep-
resents the interaction with the environment (which may or may
not contain an experimental setup). Transition probabilities often
follow Fermi’s Golden rule (rates governed by transition matrix
elements V and level densities at resonance energy), but may be
influenced by the presence of the environment monitoring certain
features α of initial or final states.

where Φ is the pointer state, the transition probability is

PαE = 4
∫

dp |VαE,α0E0 |2 |Φ(p)|2 sin2(E − E0 + γ(α)p)t/2
(E − E0 + γ(α)p)2

(33)

(assuming γ(α0) = 0 for simplicity) . This expression shows a familiar resonance
factor, but now we have new resonances for each value of p with weight |Φ(p)|2,
shifted from E = E0 to a new value E = E0 − γ(α)p. Summing over many states
with property α gives

Pα ≈ 2πt

∫
dE

σα(E) |VαE,α0E0 |2
γ(α)

∣∣∣∣Φ(E − E0

γ(α)

)∣∣∣∣2 . (34)

Three limiting cases can be extracted from this expression (see also Fig. 10).
• Case 1: Zeno limit: For large coupling γ(α) we have

Pα ≈ 2πt

γ(α)

∫
dE σ|V |2(E)|Φ(0)|2 ∼ 1

γ(α)
. (35)

Transitions are suppressed as expected.
• Case 2: Golden Rule limit: For small coupling, transition rates become inde-

pendent of γ and the usual result is recovered,

Pα = 2πtσα(E0)|V (E0)|2. (36)

• Case 3: “Anti-Zeno effect”: If the contributions from each transition are com-
parable, that is, if σ|V |2 ≈ const. in the releveant interval [Emin, Emax] then
it is easy to see that we have a smooth transition from the Zeno region to
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Figure 10. Continuous coupling to a pointer changes the tran-
sition rate from an initial state |α0E0〉 to a group of final states
in various ways. For small coupling we find the standard Golden
rule result (here normalized to unity). Increasing the coupling to
the measuring agent may in some cases increase the transition
probability by shifting the effective resonance frequency to re-
gions with higher level density or larger transition matrix elements
(anti-Zeno effect). Strong interaction always leads to decreasing
transition rates (Zeno effect).

the Golden Rule limit. If this is not the case, it can happen that in the in-
termediate range transition probabilities are enhanced above the Golden rule
value. This is occasionally called “anti-Zeno effect”.

7. Summary

We have seen that unitary evolution depends decisively on interference between
components of the wave function. If phase relations are lost, evolution is hindered.
This leads finally to the Zeno freezing of motion. No coherence, no motion.

The destruction of phase relations can be understood as phase de-localization
arising from unitary quantum evolution, if the interaction of a system with its
environment is taken into account. In this way, the Zeno effect can be completely
understood as a dynamical effect. No collapse of the wave function is required, but
only quantum nonlocality.

Many-state systems can escape Zeno freezing. This is important for the prop-
erties of our experienced macroscopic world, but also for common “quantum” fea-
tures such as radioactive decay, which happens whether or not a counter is setup
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to observe the decay. (In fact, in most cases Nature herself provides the necessary
“counters”.)

Systems with only a few degrees of freedom are very sensitive to quantum
entanglement and can therefore never escape the Zeno effect if they are interacting
with other systems. Zeno freezing can thus be used to delineate the borderline
between classical and quantum objects.
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