
Lecture Notes in Economics and Mathematical Systems 673

Philipp Melchiors

Dynamic and
Stochastic
Multi-Project
Planning

Lecture Notes in Economics
and Mathematical Systems 673

Founding Editors:

M. Beckmann
H.P. Künzi

Managing Editors:

Prof. Dr. G. Fandel
Fachbereich Wirtschaftswissenschaften
Fernuniversität Hagen
Hagen, Germany

Prof. Dr. W. Trockel
Murat Sertel Institute for Advanced Economic Research
Istanbul Bilgi University
Istanbul, Turkey

and

Institut für Mathematische Wirtschaftsforschung (IMW)
Universität Bielefeld
Bielefeld, Germany

Editorial Board:

H. Dawid, D. Dimitrov, A. Gerber, C-J. Haake, C. Hofmann, T. Pfeiffer,
R. Slowiński, W.H.M. Zijm

For further volumes:
http://www.springer.com/series/300

http://www.springer.com/series/300

Philipp Melchiors

Dynamic and Stochastic
Multi-Project Planning

123

Philipp Melchiors
Technische UniversitRat MRunchen
München, Germany

ISSN 0075-8442 ISSN 2196-9957 (electronic)
ISBN 978-3-319-04539-9 ISBN 978-3-319-04540-5 (eBook)
DOI 10.1007/978-3-319-04540-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933551

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

This thesis was written during my current employment as a teaching assistant
and doctoral student at the Department for Business Administration and Service
Operations Management at Technische Unversität München. It was accepted as a
dissertation in May 2013.

This work was made possible by the support of many persons. First of all, I
would like to express my gratitude towards my advisor, Prof. Rainer Kolisch, for his
guidance in finding this interesting research topic and his ongoing support in many
aspects. My time at his department belongs to the most interesting and inspiring
periods in my life. In particular, I would like to thank Prof. Roel Leus for giving
me the opportunity of a research stay at his department at Katholieke Universiteit
Leuven (Belgium) and for being the co-referee of my dissertation. I also owe special
thanks to Prof. Stefan Creemers for contributing his expertise and experience in
stochastic models. I really enjoyed the open-minded atmosphere and the intensive
exchange of ideas during my time in Belgium.

At this point, I would also like to thank my colleagues for their help and for
many activities (not only scientific ones). Especially, together with my colleague
Hans-Jörg Schütz, who shared the room with me, I could dive into the theory of
Markov decision processes for our research problems.

Last but not least, I would like to thank my family for supporting and encouraging
me in pursuing my research project.

München, Germany Philipp Melchiors

v

Contents

1 Introduction . 1
1.1 Background . 1
1.2 Research Focus . 3

1.2.1 Order Acceptance and Capacity Planning . 3
1.2.2 Resource-Constrained Multi-project Scheduling 4

1.3 Outline . 5

2 Problem Statements . 7
2.1 General Assumptions and Notation .. 7

2.1.1 Projects . 7
2.1.2 Resources. 8
2.1.3 Project Types . 9
2.1.4 Objective Functions. 11

2.2 Dynamic-Stochastic Multi-project Scheduling Problem.. 12
2.2.1 Non-preemptive Scheduling Problem.. 12
2.2.2 Preemptive Scheduling Problem . 14

2.3 Order Acceptance and Capacity Planning Problem 15
2.3.1 Multi-project Environment . 15
2.3.2 Order Acceptance Decisions . 16
2.3.3 Resource Allocation Decisions. 17

3 Literature Review . 19
3.1 Dynamic Programming and Approximate Dynamic

Programming . 19
3.2 Project Scheduling .. 21

3.2.1 Static–Deterministic Project Scheduling . 21
3.2.2 Dynamic–Deterministic Project Scheduling.. 22
3.2.3 Static–Stochastic Project Scheduling . 22
3.2.4 Dynamic–Stochastic Project Scheduling . 24

3.3 Capacity Planning . 26
3.4 Order Acceptance.. 27

vii

viii Contents

4 Continuous-Time Markov Decision Processes . 29
4.1 General Structure . 29
4.2 Basic Definitions and Relevant Properties . 30
4.3 Objective Function . 32
4.4 Evaluation and Optimality Equations.. 33
4.5 Uniformization.. 34
4.6 General Solution Methodologies.. 36

4.6.1 Value Iteration.. 36
4.6.2 Policy Iteration .. 36

4.7 Implementation . 39
4.7.1 Generation of the State Space . 39
4.7.2 Solution Methodologies . 41

5 Generation of Problem Instances . 43
5.1 Generation of Project Networks . 44
5.2 Generation Procedure . 44

5.2.1 Step 1: Assignment of Activity Types to Resource Types . . . 44
5.2.2 Step 2: Determination of Expected Durations

of the Activity Types. 45
5.2.3 Step 3: Variation Check of the Expected Activity

Durations .. 47
5.2.4 Step 4: Adjustments to Resource Type Specific

Utilizations . 49
5.2.5 Step 5: Check of Project Type Workloads . 49
5.2.6 Step 6: Storage of Additional Parameters . 50

6 Scheduling Using Priority Policies . 51
6.1 Priority Policies . 51

6.1.1 Computation of Rule Parameters. 52
6.1.2 Priority Rules . 53

6.2 Experimental Design . 57
6.2.1 Preliminaries . 57
6.2.2 Generation of Problem Instances. 58
6.2.3 Simulation Set Up . 60

6.3 Main Effects of Problem Parameters . 61
6.3.1 Due Date Tightness . 61
6.3.2 Number of Resources . 62
6.3.3 Order Strength . 64
6.3.4 Variation of Expected Activity Durations . 66
6.3.5 Utilization per Resource . 66
6.3.6 Observations for Problem Instances with a Single

Project Type . 68
6.4 Detailed Analysis . 68

6.4.1 Performance for Special Cases . 68
6.4.2 Performance for the Remaining Problem Instances 69

Contents ix

7 Optimal and Near Optimal Scheduling Policies . 73
7.1 Models as a Markov Decision Process . 74

7.1.1 Non-preemptive Scheduling Problem.. 74
7.1.2 Preemptive Scheduling Problem . 82
7.1.3 Numerical Example .. 92

7.2 Optimal Policy for the Single Resource Case Without
Preemptions .. 101

7.3 Project State Ordering Policies . 104
7.3.1 Preemptive Project State Ordering Policies 104
7.3.2 Non-preemptive Project State Ordering Policies 114
7.3.3 Project State Ordering Priority Policies . 117
7.3.4 Numerical Example .. 117

7.4 Scheduling Using Approximate Dynamic Programming 118
7.4.1 Basic Idea . 118
7.4.2 Approximation Based on the Preemptive Problem 119
7.4.3 Approximation Using Linear Function Approximation.. 123
7.4.4 Approximation for the Non-preemptive Problem

Based on Linear Function Approximation
for the Preemptive Problem . 133

7.5 Computational Study . 133
7.5.1 Experimental Design . 134
7.5.2 Priority Policies . 136
7.5.3 Simulation Setup . 136
7.5.4 Results for the Preemptive Problem . 136
7.5.5 Results for the Non-preemptive Problem .. 140
7.5.6 Performance of Linear Function Approximation 145

8 Integrated Dynamic Order Acceptance and Capacity Planning. 157
8.1 Stochastic Dynamic Programming.. 157

8.1.1 State Variables . 157
8.1.2 Decision Variables . 158
8.1.3 Exogenous Information Process. 159
8.1.4 Transition Function . 159
8.1.5 Objective Function .. 160

8.2 Solution Methodology .. 161
8.3 Computational Investigation . 168

8.3.1 Structure of Optimal Policies . 168
8.3.2 Benefit of Crashing and Flexible MPP. 174

x Contents

9 Conclusions and Future Work . 183

A Abbreviations . 187

B Symbols . 189
B.1 General . 189

B.1.1 System .. 189
B.1.2 Markov Decision Processes . 189
B.1.3 Projects and Project Types . 190
B.1.4 Resources and Resource Types. 191

B.2 Generation of Problem Instances . 191
B.2.1 Problem Parameters. 191
B.2.2 Generation Procedure .. 192

B.3 Scheduling . 192
B.3.1 General . 192
B.3.2 Scheduling Using Priority Policies . 192
B.3.3 Markov Decision Process for the Non-preemptive

Problem . 193
B.3.4 Markov Decision Process for the Preemptive Problem 194
B.3.5 Optimal Policy for the Non-preemptive Problem

with a Single Resource . 194
B.3.6 Preemptive Project State Ordering Policies 195
B.3.7 Non-preemptive Project State Ordering Policies 196
B.3.8 Approximate Dynamic Programming.. 196

B.4 Order Acceptance and Capacity Planning .. 197

Bibliography . 199

List of Figures

Fig. 1.1 Hierarchical framework (cf. Hans et al. [56]) . 2
Fig. 1.2 Positioning framework for multi-project environments

(cf. Hans et al. [56]) . 4

Fig. 2.1 Relationship between project types and individual projects 10
Fig. 2.2 Relationship between general project types and specific

project types . 16
Fig. 2.3 Alternative processes depending on the type of OA decisions 17

Fig. 4.1 Structure of a CTMDP . 30
Fig. 4.2 Idea of uniformization . 35
Fig. 4.3 Hash table and array of system state objects . 40

Fig. 5.1 Generation procedure . 46

Fig. 6.1 Function of the urgency factor U ij.t/ . 54
Fig. 6.2 Impact of the tightness factor . 62
Fig. 6.3 Impact of jRj . 63
Fig. 6.4 Impact of OSp on policy performance . 65
Fig. 6.5 Impact of CVdr

on policy performance . 67
Fig. 6.6 Impact of the number of OS on policy performance 67

Fig. 7.1 Specifications of the example.. 93
Fig. 7.2 Flow of the projects through the system . 94
Fig. 7.3 Scheduling decisions for the preemptive problem

at resource type 1 . 95
Fig. 7.4 Scheduling decisions for the non-preemptive problem

at resource type 1 . 97
Fig. 7.5 Scheduling decisions for the preemptive problem

at resource type 1 . 99
Fig. 7.6 Usage of rules for scheduling at resource type 2

if y1 D 0 . 100
Fig. 7.7 Example illustrating the benefit of POPs . 106

xi

xii List of Figures

Fig. 7.8 Interpretation of a decision when using
the value function of the preemptive problem
as an approximation . 121

Fig. 7.9 General idea of using a semi-open system
as an approximation for an open system . 126

Fig. 7.10 Example used to test approximation architectures 145
Fig. 7.11 Data of the problem instance with a single project type

composed of five activity types . 152
Fig. 7.12 Data of the problem instance with two project types

composed of three activity types each . 154
Fig. 7.13 Data of the problem instance with a single project type

composed of 10 activity types . 155

Fig. 8.1 Optimal order acceptance decisions depending
on the number of projects in the system if no crashing
is allowed . 170

Fig. 8.2 Optimal order acceptance decisions depending
on the number of projects in the system if crashing is allowed 170

Fig. 8.3 Usage of non-regular capacity at states where project
type 1 is scheduled . 173

Fig. 8.4 Benefit of crashing . 175
Fig. 8.5 Effective arrival rates with and without crashing

in case of flexible MPP . 176
Fig. 8.6 Benefit of MPP without crashing .. 177
Fig. 8.7 Benefit of MPP with crashing . 178
Fig. 8.8 Benefit of MPP and crashing for different expected durations 179
Fig. 8.9 Benefit of MPP and crashing for different levels of u 180

List of Tables

Table 5.1 General parameters for base instance generation 45
Table 5.2 General parameters for base instance generation 45
Table 5.3 Resource type related parameters for base instance

generation .. 45
Table 5.4 Project type related parameters for base instance generation 45

Table 6.1 Values for the system parameters . 59
Table 6.2 jVpr j for all p 2 P and r 2 R . 60
Table 6.3 Values of the project type parameters . 60
Table 6.4 Mean weighted tardiness values and mean ranks

for the case with 1 resource . 69
Table 6.5 Mean weighted tardiness values and mean ranks

for the case with OS D 0 . 69
Table 6.6 Mean average weighted tardiness values and ranks

for high tightness . 70
Table 6.7 Mean average tardiness values and ranks for low tightness 70

Table 7.1 Parameters of Example 1 . 92
Table 7.2 Objective function and state space cardinalities 93
Table 7.3 Project states . 94
Table 7.4 Optimal scheduling decisions of resource type 1

and 2 for the preemptive problem.. 96
Table 7.5 Optimal scheduling decisions of resource type 1

and 2 for the non-preemptive problem . 97
Table 7.6 Performance figures for different policies . 98
Table 7.7 Optimal scheduling decisions of resource type 2

for the case with y1 D 0 . 101
Table 7.8 State space cardinalities for general and for PO-policies 117
Table 7.9 Performance of preemptive general and PO-policies 118
Table 7.10 Performance of non-preemptive general and PO-policies 118
Table 7.11 Performance of policies using the approximation

from the preemptive problem . 122

xiii

xiv List of Tables

Table 7.12 Reduction of the state space cardinality when using
the preemptive problem for an approximation . 122

Table 7.13 System related parameters for the problem instances. 134
Table 7.14 Project type related parameters for the problem

instances with one project type . 135
Table 7.15 Project type related parameters for the problem

instances with two project types . 135
Table 7.16 State space cardinalities for a single project type

at different levels of OS . 137
Table 7.17 State space cardinalities for two project types

at different levels of OS . 137
Table 7.18 Relative performance of priority policies for a single

project type at different levels of OS . 138
Table 7.19 Relative performance of priority policies for a single

project type at different levels of CVdr
. 138

Table 7.20 Relative performance of priority policies for two
project types at different levels of OS . 139

Table 7.21 Relative performance of priority policies for two
project types at different levels of CVd . 139

Table 7.22 Performance of PO-priority policies for a single
project type . 140

Table 7.23 Performance of PO-priority policies for two project types 140
Table 7.24 State space cardinalities for a single project type

at different levels of OS . 141
Table 7.25 State space cardinalities for two project types

at different levels of OS . 141
Table 7.26 Performance of RBPs for a single project type

at different levels of OS . 142
Table 7.27 Performance of priority policies for a single project

type at different levels of CVdr
. 142

Table 7.28 Performance of priority policies for two project types
at different levels of OS . 142

Table 7.29 Performance of priority policies for two project types
at different levels of CVd . 142

Table 7.30 Performance of PO-priority policies for a single
project type . 143

Table 7.31 Performance of PO-priority policies for two project types 143
Table 7.32 Performance of ADP-P-PO for a single project type

at different levels of OS . 144
Table 7.33 Performance of ADP-P-PO for a single project type

at different levels of CVd . 144
Table 7.34 Performance of ADP-P-PO for two project types

at different levels of OS . 144
Table 7.35 Performance of ADP-P-PO for two project types

at different levels of CVd . 145

List of Tables xv

Table 7.36 Performance of the approximation architectures
for different sets of representative states . 146

Table 7.37 Number of basis functions for the preemptive problem 147
Table 7.38 Improvement by sampling representative states 148
Table 7.39 Performance of ADP-PI-LS and ADP-PI-BE . 148
Table 7.40 Performance of priority policies . 149
Table 7.41 Performance of the PSLin2-architecture at different

levels of Kmax and generalization to open systems 150
Table 7.42 Performance of the QLin2-architecture at different

levels of Kmax and generalization to open systems 150
Table 7.43 Performance of the policies obtained from

ADP-LS-PI,ADP-BE-PI,ADP-VI . 150
Table 7.44 Number of basis functions for the non-preemptive problem 151
Table 7.45 Performance of the preemptive policies obtained

for the instance with a single project type consisting
of five activity types . 153

Table 7.46 Performance of the non-preemptive policies obtained
for the instance with a single project type consisting
of five activity types . 153

Table 7.47 Performance of the preemptive policies obtained
for the instance with two project types consisting
of three activity types each . 154

Table 7.48 Performance of the non-preemptive policies obtained
for the instance with two project types consisting
of three activity types each . 155

Table 7.49 Performance of the preemptive policies obtained
for the instance with a single project type consisting
of 10 activity types . 155

Table 7.50 Performance of the non-preemptive policies obtained
for the instance with a single project type consisting
of 10 activity types . 156

Table 8.1 Problem parameters for Base case 1 . 169
Table 8.2 Problem parameters for Base case 2 . 174
Table 8.3 Performance for different combinations of .y1; y2/ 181

Chapter 1
Introduction

1.1 Background

The starting point of our research were the observations that we made in the research
and development (R&D) department of a well known German manufacturing
company. The focus of the department has been on the development of hardware
components for the control of motor systems which is organized in projects. For
each project typically a number of milestones are defined where a certain amount
of work should be completed. Thus, project planning is an important task which is,
at the same time, very complex for the following reasons. Firstly, multiple projects
are processed at the same time which compete for a set of shared resources with
limited capacity such as functional departments, specialists or computers. Secondly,
processing times of activities as well as precedence relations between activities are
stochastic. This is caused mainly by the lack of information and by operational
uncertainties (cf. Hans et al. [56]). Thirdly, the situation is dynamic in the sense that
new projects continuously arrive with stochastic interarrival times. In the following
we thus refer to such environments as dynamic-stochastic multi-project environ-
ments. Further examples in the literature, for example the product development
(PD) of a chemical company presented by Adler et al. [2], give evidence that
such environments are typical for R&D departments. Additionally, they also can
be found in other domains such as maintenance for aircrafts (cf. Cohen et al. [28])
or engineering-to-order (ETO) in which a project refers to the development and
production of a product on order (cf. Zijm [139]).

One issue which frequently occurs in dynamic-stochastic multi-project environ-
ments is that flow times of projects through the system tend to be much larger
than originally planned and due dates that are not met (cf. Adler et al.[2]). Typical
consequences are losses due to a delayed market entry in case of PD-projects
(cf. Blackburn [19]) or penalties for not meeting due dates such as for ETO-projects.

The main cause for large flow times is congestion in front of the resources due
to different reasons. Firstly, congestion is a consequence of stochastic processing
times or interarrival times as it is well known from queueing theory (cf. Gross and

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_1,
© Springer International Publishing Switzerland 2015

1

2 1 Introduction

Fig. 1.1 Hierarchical framework (cf. Hans et al. [56])

Harris [54] or Levy and Globerson [87]). As an example, we consider a single
resource which processes one activity at a time. Although on average interarrival
times may be larger than processing times of activities it may happen that processing
times of activities may be larger than interarrival times due to stochastic variations.
As a consequence, more activities arrive than are completed in a given period of
time such that excess activities are forced to wait.

Secondly, congestion may be a consequence of inappropriate planning. Before
going into detail, we outline a hierarchical framework in order to structure planning
decisions. We use the framework by Hans et al. [56] as shown in Fig. 1.1. Planning
decisions can be categorized according to two dimensions, namely the hierarchical
level and the functional area. Three hierarchical levels – namely strategic, tactical
and operational – and three functional areas – namely technological planning,
resource capacity planning and material coordination – are distinguished.

Regarding congestion, decisions from resource capacity planning are the most
relevant ones.

On the strategic level, resource capacity planning refers to dimensioning resource
capacities. Thus, if resource capacities are too low, increased congestion is the
consequence. However, this topic will not be further addressed in this thesis.

On the tactical level, multiple planning steps are typically performed on arrival
of an order or project proposal. The first planning step is macro process planning
(MPP) or rough cut planning. It generally involves the specification of networks con-
sisting of aggregate work packages with rough estimates of resource requirements,
durations and precedence relations (cf. De Boer [33]). Resources are aggregated
to resource groups such as departments of a company. To make the idea more
specific we consider a production department as a part of an ETO-company. In this

1.2 Research Focus 3

context, MPP involves the selection of product routings and global estimation of
processing times (cf. Zijm [139]). Selection of product routings involves decisions
on the equipment and groups of different resources as well as the sequencing of
production steps.

The information obtained by MPP is used to decide whether an order is accepted
or rejected. Furthermore, it supports cost estimations for pricing or due date
quotation. This is also referred to as order acceptance (OA). Furthermore, the
information from MPP is used in a rough cut capacity planning (RCCP) step. RCCP
involves decisions on allocations of aggregated resources where flexibility due to
non-regular capacity, such as overtime, may be taken into account.

On the operational level, micro process planning (and engineering for ETO-
companies) and resource-constrained project scheduling are performed where
resource capacities are assumed to be fixed. Furthermore, detailed information is
used on the level of single resources such as activities to be done by each resource
and their durations (cf. Hans [55]).

In this thesis, we will consider, in more detail, capacity planning problems on
the tactical level and scheduling problems on the operational level. Both kinds of
problems will be outlined in more detail in Sect. 1.2.

1.2 Research Focus

1.2.1 Order Acceptance and Capacity Planning

In this hierarchical planning process OA and RCCP are typically carried out
separately. OA is generally a task of the sales department, which, aiming at high
turnovers, accepts as many orders as possible without taking into account the effects
on system performance. This conflict of objectives results in large project flow times
or due dates that are not met. This suggests a joint optimization (cf. Zijm [139]) of
OA decisions and decisions related to capacity planning. Note that the conflict of
objectives becomes even more relevant in the face of uncertainty as congestion may
occur even if optimal decisions are made.

A related issue that has been neglected so far in the literature is the following.
Although less information is needed in RCCP at the tactical level than for detailed
scheduling on the operational level, MPP might still need considerable resources,
for example from the engineering department (cf. Ishi et al. [63]). Especially, if
it is fully performed before OA it can be imagined as a step to be performed with
considerable urgency as customers expect quick responses. Due to the urgency, MPP
before OA is expected to be crashed in the sense of reducing its processing time by
allocation of additional resource capacity (cf. Kelley and Walker [68]) at higher cost.
Thus, if at least a part of MPP is postponed to a time after OA costs can be reduced
by performing MPP with less resource capacity. Furthermore, the customer has to
wait for a response which may lead to a price reduction.

4 1 Introduction

Fig. 1.2 Positioning
framework for multi-project
environments (cf. Hans
et al. [56])

To the best of our knowledge, joint optimization w.r.t. long term optimal
decisions of OA and capacity planning has not been coveredyet in the literature
for a dynamic-stochastic multi-project environment.

1.2.2 Resource-Constrained Multi-project Scheduling

Multi-project environments can be categorized using the positioning framework
presented by Herroelen and Leus [58] and Hans et al. [56] according to dependency
and variability as shown in Fig. 1.2. Dependency refers to the degree a particular
project is dependent on influences external to the individual project. Dependencies
may arise from factors external to the organization but also from internal factors
such as shared resources. For multi-project environments that are characterized
by low dependency, projects are considered separately such that single-project
scheduling problems are obtained. In case of high dependency, projects must be
considered simultaneously which leads to multi-project scheduling problems.

Variability refers to variability of the work environment, for example in terms
of activity durations, interarrival times or precedence relations between activities.
For multi-project environments characterized by low variability, deterministic or
proactive baseline schedules can be determined in which buffers are used to protect
the schedule from variations of activity durations. In case of high variability, either
proactive schedules are revised in the scope of reactive scheduling or decisions are
made using scheduling policies. Scheduling policies dynamically make scheduling
decisions at stochastic decision times based on available information, for example
from the observed past and a-priori knowledge about probability distributions. Thus,
policies do not need a baseline schedule anymore.

According to this framework, it becomes obvious that dynamic-stochastic multi-
project environments, as outlined before, are characterized by high variability and
high dependency. Thus, scheduling is most complex as variability needs to be taken
into account in addition to simultaneous consideration of projects. Furthermore,
good scheduling decisions have to account for their long term effect due to the fact
that new projects continuously arrive while having ongoing projects in the system.
This reduces the benefit of proactive baseline schedules such that in our point of
view scheduling policies are most appropriate.

1.3 Outline 5

To the best of our knowledge the usage of scheduling policies in dynamic-
stochastic multi-project environment except for special cases such as queueing
networks has not been systematically investigated yet.

1.3 Outline

This thesis is organized as follows. In Chap. 2, we present firstly general
assumptions and notation. Secondly, we give formal statements of the dynamic-
stochastic multi-project scheduling problem with and without preemptions, and of
the dynamic-stochastic order acceptance and capacity planning problem.

Chapter 3 is dedicated to a review of the most relevant literature for the problems
considered in this thesis. The review is divided into four parts. The first part refers
to the methodologies used in this thesis, namely dynamic and approximate dynamic
programming. In the second part, relevant literature from the field of project
scheduling is reviewed while the third part refers to relevant literature from the
more general problem of capacity planning. In the fourth part, we review literature
from the field of order acceptance.

Chapter 4 presents fundamentals of the theory of continuous-time Markov
decision processes (CTMDPs) and definitions as needed in this thesis. Furthermore,
the most important algorithms for determining optimal policies are outlined. Finally,
we briefly address how CTMDPs and algorithms can be implemented efficiently.

The focus of Chap. 5 is on a formal description of relevant problem parameters
and the procedure for generating problem instances.

In Chap. 6, we investigate, in an extensive simulation study, the performance
of non-preemptive resource-based priority policies (RBPs) for scheduling in a
dynamic-stochastic multi-project environment. Non-preemptive RBPs combine
priority rules for prioritizing waiting activities with the parallel scheduling scheme.
Thus, they schedule as many activities as possible at a time while no activities in
process may be preempted. The priority rules for the RBPs have been selected
according to their performance for related problems while the problem instances
have been generated with different problem parameters being controlled. The
analysis of the results is focused, firstly, on the main effects of problem parameters,
and, secondly, on recommendations concerning the policies to be used for given
values of the problem parameters.

Chapter 7 considers the computations of optimal and near optimal scheduling
policies for the scheduling problem without preemptions (non-preemptive problem)
and with preemptions (preemptive problem). The chapter is divided into five parts.
In the first part, both problems are modeled as CTMDPs where structural properties
are exploited to obtain simplified models and to reduce the computational burden for
obtaining optimal policies. Complexity results in terms of state space cardinalities
are also obtained.

6 1 Introduction

In the second part, we show that the optimal non-preemptive policy is a priority
index policy for systems consisting of a single resource. The result applies also to
cases where activity durations are generally distributed.

In the third part, the class of project state ordering policies (POPs) is presented.
The main benefit of POPs is their potential to considerably reduce state space
cardinality, especially if project networks have only few precedence relations, at
only little loss of performance. Thus, larger problem instances can be solved.

As, even when using POPs, the range of problem instances is still limited we
consider in the fourth part two approaches of approximate dynamic programming
(ADP). The first approach exploits the fact that the state space for the preemptive
problem is much smaller than for the non-preemptive problem and uses the value
function from the preemptive problem in order to obtain a policy for the non-
preemptive problem. The second approach uses linear function approximation in
order to obtain approximations of the value function. In this context, we address a
number of methodologies to obtain linear function approximations.

To investigate the performance of optimal policies as well as near optimal
policies from ADP, we carried out an extensive computational study of which
the results are presented in the fifth part. The study is based on a set of problem
instances, where a number of problem parameters are controlled. The analysis is
divided into three main parts. In the first part, we analyze for the preemptive problem
the potential of POPs to reduce state space cardinality and the performance of
optimal POPs relative to the performance of optimal policies without restriction
to a certain class (general policies). As we have found that the restriction to POPs
does not lead to a loss of performance for most problem instances we compare
optimal POPs instead of general policies with a number of RBPs. In addition,
we also consider the performance of resource-based priority POPs (RBPOPs) that
combine the idea of POPs with the idea of RBPs. In the second part, we carry out
a similar analysis for the non-preemptive problem. In addition, we investigate the
performance of non-preemptive POPs which are based on the value function from
the preemptive problem. In the third part, we investigate the performance of POPs
based on linear function approximation. At first, we analyze the performance of
the different methodologies for obtaining an approximation of the value function.
Afterwards, we demonstrate, based on a number of case studies, that linear function
approximation may lead to policies that clearly outperform RBPs.

Chapter 8 addresses the joint optimization of order acceptance decisions with
capacity planning on the tactical level. After modeling the problem as a CTMDP,
we show in a first step how optimal policies can be efficiently determined. In a
second step, we investigate the structure of optimal policies which may guide the
search for good heuristic policies. In a third step, we investigate conditions when
the planning problem can be simplified by performing MPP after OA or ignoring
the existence non-regular capacity.

Chapter 2
Problem Statements

2.1 General Assumptions and Notation

In this section, we present general assumptions and introduce basic notation.
Our assumptions are guided by the model proposed by Adler et al. [2] who have

presented a generalized queueing network referred to as processing network for the
analysis of a dynamic-stochastic multi-project environment. We believe that such
a model is useful for three reasons. Firstly, important aspects such as congestion
leading to considerable delays of projects are captured. Secondly, the assumption
of stationary distributions permits the long term analysis of decisions. Finally, the
assumptions of the model appear to be realistic enough to make predictions of the
behavior of realistic dynamic-stochastic multi-project environments.

Next, we describe the most important components and assumptions of our
models.

2.1.1 Projects

Projects arrive dynamically according to a stochastic arrival process. Project j is
composed of multiple work packages being referred to as activities where activity i

has a stochastic duration d ij. Between the activities there are typically precedence
relations.

The life cycle of a project can be outlined as follows. On arrival of project j at
time ta

j the due date is assigned. It is given by ta
j CDmax

j where Dmax
j is defined to

be the maximum flow time that is allowed to a project. As Dmax
j may be subject to

negotiations between the customer and the organization the maximum flow time is
modeled as a random variable.

Furthermore, we define Uj .t/ to be the set of unfinished activities of project j

and US
j .t/ the set of unscheduled activities at time t . In addition to US

j .t/, Uj .t/

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_2,
© Springer International Publishing Switzerland 2015

7

8 2 Problem Statements

may also contain activities that already have been scheduled but still are in process
at time t such that they are unfinished but not unscheduled.

Afterwards, activities i 2 Uj .t/ are processed until all activities are completed at
time tc

j such that Uj .tc
j / D ;. At completion time tc

j , a project is assumed to leave
the system. Thus, we obtain the flow time F j D tc

j � ta
j .

As we assume a stochastic arrival process we have a random variable ıj D
ta

j �ta
j�1 for the time between the arrivals of project j �1 and project j . Obviously,

we may have multiple projects in the system at a time such that we have a set J .t/

of the projects being in the system at time t .

2.1.2 Resources

Resources can be departments, single employees or machines depending on the level
of detail. As in a company multiple resources may have the same set of skills, such
that they are able to process the same types of activities, they are grouped as a
resource type. In addition, this helps to exploit pooling effects (cf. Adler et al. [2] or
Hopp and Spearman [61]). Thus, an activity may wait in front of a resource type as
a group of resources with the necessary skills instead of waiting in front of a single
resource that has been specified in advance.

In the following the multi-project environment is considered as a system
composed of a set R of resource type where each resource type r 2 R comprises
cr identical resources w.r.t. skills and qualifications such as product engineers or
application engineers (cf. Adler et al. [2]). As scheduling decisions typically take
place at the operational level cr can be considered as fixed. Such resources being
constantly available for the entire planning horizon are also referred to as renewable
resources (cf. Demeulemeester and Herroelen [39]). For the special case where
cr D 1 8r 2 R, we also refer to resources r 2 R.

Note that at the level of order acceptance (OA) decisions terminology is slightly
changed. As order acceptance and capacity planning decisions refer to the tactical
level there are more degrees of freedom concerning the usage of resources.
Resources are more aggregated, such as departments, and are taken into account
using capacities being the amount of work, measured in time units, which can
be processed per time unit. Capacity may be extended using overtime or hiring
additional employees (cf. Hans [55]). Thus, in this context, it is more useful to refer
to resources and capacity instead of resource types and resources.

In our model, we assume that each resource entirely processes a given activ-
ity. This assumption deviates from classical static and deterministic resource-
constrained multi-project scheduling problems e.g. Pritsker et al. [107] where one
activity may need multiple resources of possibly multiple types. However, the
assumption is more realistic in the stochastic case as the work content a resource has
to process may be subject to stochastic variations. Hence, we consider the problem
at the level of tasks that are to be processed by one resource (cf. Adler et al. [2]) and
thus are parts of an activity in the classical sense. For simplicity, we refer to tasks

2.1 General Assumptions and Notation 9

as activities. Furthermore, scheduling may also be done at the level of departments
where activities are larger work packages to be entirely processed by a department.
Such problems may occur as part of rough-cut capacity planning (cf. Hans [55])
considered in Chap. 8.

2.1.3 Project Types

We assume that projects can be categorized into a set P of project types composed
of multiple activity types.

For each project type, we assume the arrival process to be Poisson. The assump-
tion of project types is realistic as, for many cases, projects have characteristics
in common such as projects that develop new products and projects that modify
existing products (cf. Adler et al. [2]). A Poisson arrival process is realistic as
projects typically come from a large pool of customers such that arrivals can be
considered as nearly independent stochastic events.

Thus, our model has two levels of abstraction. Project types and individual
projects. Therefore, we use the following notation in order to make the difference
clear. For individual projects, we use index j and refer to the type of project j by
pj . For addressing activity type i of project type p we use tuple .i; p/. As each
activity of an individual project is of an activity type we reuse index i and refer
to individual activities by tuples .i; j /. Hence, activity .i; j / is of type .i; pj / such
that the information for each project j and activity .i; j / is obtained through project
type pj .

For each project type p 2 P , we assume the following information to be given.

• Arrival rate �p .
• Distribution for the maximum flow time with mean D

max
p .

• Holding cost wp incurred per time unit, the due date is exceeded.
• Payoff yp obtained on completion. We assume that for yp , any project related

fixed costs that do not depend on decisions are already subtracted e.g. cost for
material.

• A network depicted as a graph Gp D .Vp;Ap/ with a node set Vp representing
activity types and arc set Ap representing precedence relations between activity
types. .i; i 0/ 2 Ap depicts a precedence relation between activity type .i; p/ and
activity type .i 0; p/ of the type finish-to-start with minimum duration 0.

• For each activity type .i; p/ with i 2 Vp: Distribution for the duration with mean
d ip and resource type rip required for processing.

Figure 2.1 illustrates the relationship between project types and individual projects
with the given information. Furthermore, we define

VSucc
p .i/ D fi 0 2 Vpj < i; i 0 >2 Apg (2.1)

10 2 Problem Statements

Fig. 2.1 Relationship between project types and individual projects

to be the set of immediate successors and

VPred
p .i/ D fi 0 2 Vpj < i 0; i >2 Apg (2.2)

to be the set of immediate predecessors of activity type .i; p/ with i 2 Vp .
As the arrival process is a superposition of Poisson arrival processes random

variables ıj are stochastically independent and exponentially distributed with rate
� D P

p2P
�p . Thus, for each project j arriving at the system the type pj is a random

variable where pj D p occurs with probability

�p

�

Furthermore, we assume that activity durations d ij are stochastically independent
random variables with mean dipj

.
Note that distributions for the random variables considered so far are typically

given by a density function or cumulative distribution function (CDF) that may
have more parameters than the mean. For such cases, further parameters need to be
added to the information for each activity type .i; p/. When assumptions w.r.t. the
distributions are made more specific later we will address the necessary parameters.

Finally, we assume that projects are accepted as long as a maximum num-
ber Kmax of projects in the system has not been reached. Hence, we consider

2.1 General Assumptions and Notation 11

a semi-open system (cf. Buzacott and Shantikumar [25]). This assumption is
motivated by three reasons. Firstly, bounding problem size is necessary to apply
optimization methodologies as used in Chap. 7. Secondly, it is realistic to restrict
acceptance of new projects to the system as holding costs may become too large.
Finally, we avoid the well known problem that the system may become unstable in
the sense that the long term number of projects in the system may be unbounded.
Be �r the traffic intensity of resource type r 2 R as given by

�r D
X

p2P
�p

X

i2Vpr

d ip (2.3)

where Vpr is the set of activity types to be processed by resource type r . �r can
be interpreted as the amount of work that arrives per time unit at resource type r

(cf. Brémaud [21]). Then, a necessary condition for stability is

�r < cr (2.4)

(2.4) states that the amount of work that arrives at the system per time unit must not
exceed the number of resources per time unit as given by cr . Unfortunately, (2.4)
is not sufficient as it is well known from scheduling in queueing networks that
under some policies the system may become unstable although the conditions is
met (cf. Kumar and Seidman [80] or Meyn [93]).

2.1.4 Objective Functions

The most general objective function is the maximization of the long term average
profit per project as given by

Z D max lim
J�!1E

2

4 1

J

JX

jD1

�

n
jJ .ta

j /j < Kmax
o

.ypj
� wpj

� .F j �Dmax
j /C/

3

5

(2.5)

�

n
jJ .ta

j /j < Kmax
o

is an indicator function being 1 if the number of projects in

the system without consideration of the new project is below Kmax. The term wpj
�

.F j�Dmax
j /C gives the tardiness cost (or weighted tardiness) that increases linearly

with the tardiness .F j �Dmax
j /C of a project. Further cost are assumed to be fixed

(at least on average) such that they may be implicitly taken into account by ypj
.

For our investigation, instead of the profit-oriented objective function we will
also use an equivalent cost-oriented objective function that is given by

12 2 Problem Statements

Z D min lim
J�!1E

2

4 1

J

JX

jD0

�

n
jJ .ta

j /j < Kmax
o

wpj
.F j �Dmax

j /CC

�
1 � �

n
jJ .ta

j /j < Kmax
o�

ypj

i
(2.6)

Instead of accounting for the payoff yp obtained for each project admitted to the
system, we account for the lost payoffs for the projects not admitted to the system
when jJ .ta

j /j D Kmax.
Note that for unbounded Kmax (2.5) and (2.6) turn into the minimization of the

long term average weighted tardiness per project. If, in addition, Dmax
j D 0 8j D

1; : : : ; J holding cost wp are incurred per time unit a project of type p is in the
system such that both objective functions reduce to the minimization of the average
weighted flow time per project.

2.2 Dynamic-Stochastic Multi-project Scheduling Problem

In this section, we describe in Sect. 2.2.1 the scheduling problem without preemp-
tions (non-preemptive problem) and in Sect. 2.2.2 the scheduling problem with
preemptions (preemptive problem).

2.2.1 Non-preemptive Scheduling Problem

Generally scheduling is a step where activities are laid out in the time order in which
they have to be performed (cf. Demeulemeester and Herroelen [39]). This implies
decisions on the start times of the activities. Then, scheduling decisions are subject
to the following constraints

sij C d ij � si 0j 8j 2 J .t/I .i; i 0/ 2 Apj
I t � 0 (2.7)

jE.r; t/j � cr 8r 2 RI t � 0 (2.8)

where sij is the start time of activity .i; j / and Er .t/ the set of activities executed at
time t on resource type r 2 R.

Constraints (2.7) depict the precedence constraints between activities. The start
time si 0j of activity .i 0; j / must be greater or equal the completion time of
each immediate predecessor activities .i; j /. Constraints (2.8) depict the resource
constraints. For each resource type r 2 R, the numbers of activities jE.r; t/j
processed at time t , has to be less than or equal to the number of resources cr .

As we consider a dynamic-stochastic environment, scheduling decisions have to
meet the nonanticipativity constraint (cf. Fernandez et al. [48]) which states that

2.2 Dynamic-Stochastic Multi-project Scheduling Problem 13

only information that has become known up to decision time t may be used. Thus,
it is not possible to compute a baseline schedule based on the realizations of the
random variables in advance. Instead, we employ a scheduling policy (or strategy)
� . In the literature there are multiple views on the scheduling problem (cf. Stork
[122]) such that the definition of a scheduling policy depends on the respective
view. In this thesis, we interpret the dynamic and stochastic scheduling problem as
a multistage decision process where decisions are to be made at decision times such
that we define a scheduling policy as follows.

Definition 2.2.1. A non-preemptive scheduling policy � defines actions at a
decision time t and defines a tentative next decision time tnext. A decision consists
of the sets BS.r; t/ �W.r; t/ 8r 2 R of activities to be started at the current time t

on resource type r with jE.r; t/ [BS.r; t/j � crg.
W.r; t/ is the set of activities waiting for resource type r at time t . An activity .i; j /

is added to W.ripj
; t/ as soon as all its predecessors have been completed. The

definition is based on the general definition by Fernandez et al. [49]. As we have
stationary probability distributions we can restrict our considerations without loss
of optimality to stationary scheduling policies (cf. Puterman [108]) where a decision
does not depend on the decision time but only on the available system information
at a decision time. In order to reduce the computational complexity and facilitate
analysis we assume that a scheduling policy � is

1. Non-idling (cf. Meyn [93]) such that jE.r; t/ [BS.r; t/j D minfcr ; jE.r; t/ [
W.r; t/jg if jE.r; t/j < cr .

2. Stationary (cf. Puterman [108]) such that a decision does not depend on the
decision time but only on the system information available at a decision time.

Then, decision times are given by the following theorem.

Theorem 2.2.1. An non-idling and non-preemptive policy � considers the system
only on arrival of new projects or completions of an activities.

Proof. A non-idling policy stops scheduling activities at a decision time t as soon
as no further activities can be scheduled. This is the case when for all resource types
r 2 R either all resources are busy such that jE.r; t/ [BS.r; t/j D cr or no further
activities are waiting as W.r; t/nBS.r; t/ D ;. As no preemptions are allowed, the
next time tnext where the policy can schedule activities is when at least one of the
following two cases occurs.

1. Resources become idle due to completion of activities. Then, activities waiting
for resources of the respective types may be scheduled.

2. New activities become ready for execution. This happens on arrivals of new
projects or completion of activities if they are the last predecessor activities yet
to be completed of their direct successors in the project network. Then, if there
are idle resources of the required types activities may be scheduled.

Thus, for making decisions, it is sufficient to consider the system on arrivals of new
projects or completions of activities. ut

14 2 Problem Statements

2.2.2 Preemptive Scheduling Problem

If we allow that an activity be preempted (preemptive problem) two cases must be
distinguished (cf. Demeulemeester and Herroelen [39]). In the first case activities
are repeated while in the second case they are resumed later. Repeating an activity
implies that the work that already has been done is ignored the next time an activity
is scheduled. Thus, the distribution of its duration is independent from the amount of
work already done. By contrast, resuming an activity implies that work already done
is not ignored such that the activity is resumed from the point where its execution
has been preempted. Thus, the distribution of its remaining duration depend on the
work already done. An exception is the case where the duration is exponentially
distributed as the exponential distribution has the memoryless property.1

In order to keep analysis simple we assume exponentially distributed activity
durations for finding optimal policies (cf. Chap. 7). Thus, we do not have to
distinguish between repeating or resuming and activity such that we consider both.

Furthermore, we assume that preempting and rescheduling an activity can be
done at no cost at decision time.

Next, we give the definition of a scheduling policy for the preemptive problem.

Definition 2.2.2. A preemptive scheduling policy � defines decisions at a deci-
sion time t and defines a tentative next decision time tnext. A decision consists of the
sets BP.r; t/ � E.r; t/ 8r 2 R of activities to be preempted on resource type r 2 R
and the sets BS.r; t/ �W.r; t/ 8r 2 R of activities to be started at the current time
t on resource type r with jE.r; t/ [BS.r; t/nBP.r; t/j � cr .

The definition is based on a general definition by Fernandez et al. [49]. Again, we
can restrict our considerations without loss of optimality to stationary scheduling
policies (cf. Puterman [108]) where a decision does not depend on the decision
time but only on available system information. To simplify analysis, we allow
preemptive scheduling policies to be idling such that we allow jE.r; t/[BS.r; t/j �
minfcr ; jE.r; t/[W.r; t/jg if jE.r; t/j < cr . However, we require that total idleness
is avoided where no activity is in process at all at any time t as long as J .t/ ¤ ;.

The fact that activities may be preempted and rescheduled any time leads in
principle to an infinite space of scheduling policies. Fortunately, according to the
next theorem, we can restrict our considerations without loss of optimality to
decision times on arrivals or activity completions.

Theorem 2.2.2. For exponentially distributed interarrival times and activity dura-
tions there exists a globally optimal preemptive scheduling policy �� that considers
the system only on arrival of a new project or completion of an activity.

Proof. The assertion follows directly from the memory-less property of the expo-
nential distributions for the interarrival times and activity durations. As long as no

1Cf. Gross and Harris [54] for the memoryless property of the exponential distribution.

2.3 Order Acceptance and Capacity Planning Problem 15

event (arrival of a new project or completion of an activity) occurs the distribution
of the remaining time to any event do not change such that there is no benefit of
preemptions and rescheduling. ut

2.3 Order Acceptance and Capacity Planning Problem

In the context of this problem, we refer to requests from customers before
acceptance decisions as orders and after acceptance as projects. In the following,
we describe the relevant aspects of this problem and present assumptions that are
made in addition to the assumptions from Sect. 2.1.

2.3.1 Multi-project Environment

For simplicity of the analysis, we consider only a single resource such as the
bottleneck resource in the system which has capacity 1 in the sense that only
one activity can be processed at a time. As at the tactical level no detailed
information of the projects are available resources and projects with their activities
are considered in an aggregate manner. Thus, resources are typically departments
e.g. engineering departments of a company that process larger work packages of a
project (cf. Hans [55]).

As information concerning aggregate activities and their precedence relations are
obtained from MPP we assume that project types p 2 P become known after MPP
has been performed.

Furthermore, we assume that for each project only a single activity is to be
processed on the bottleneck resource such that, in the following, we refer to projects
instead of activities. Furthermore, we again have the assumption that the duration
of a project of type p 2 P is exponentially distributed with rate �p while the mean
duration is d p D 1

�p
. In this context, holding cost wp per time unit the project is

in the system serve as a approximation for the cost incurred due to not meeting due
dates or due to a delayed completion.

In addition, we define general project types � 2 ˆ and assume that each project
type p is of one general project type �p as shown in Fig. 2.2.
We assume that �p is known before MPP has been fully performed. For example, it
is known without further analysis that a customer requests to develop a new product
from scratch or modify an existing one (cf. Adler et al. [2]). In the worst case, there
exists only a single general project type if no information is known about an order
at all before MPP is performed.

The arrival rate for general type � is given by

�� D
X

p2P�

�p (2.9)

16 2 Problem Statements

Fig. 2.2 Relationship between general project types and specific project types

where P� D
˚
p 2 P j�p D �

�
is the set of project types p 2 P that are mapped

onto a general project type � 2 ˆ.

2.3.2 Order Acceptance Decisions

Any order arriving at the system may be accepted or rejected. In order to assess
whether acceptance is beneficial more detailed information about a project may be
taken into account. The information is determined in the MPP step (cf. Hans [55])
subsequent to an arrival. In our model, this corresponds as outlined in Sect. 2.3.1
to determining the specific project type p 2 P . As performing MPP requires
resources costs such as labor cost are incurred during this step. Furthermore, costs
may also involve price reductions due to the fact that a customer has to wait for an
acceptance/rejection decision. For simplicity, we assume the costs to be fixed such
that a fixed cost kM

�p
is incurred for MPP.

We consider the flexibility of doing MPP regularly before OA or postponing
MPP to a time after OA. In case of postponed MPP only the general project type �

is known for the assessment of a order. However, before making capacity planning
decisions, postponed MPP is done at fixed cost kPM

�p
. As customers typically expect

quick responses the MPP step is expected to be crashed in the sense of reducing
its processing time at the expense of more resources (cf. Kelley and Walker [68])
if it is performed before OA. Thus, higher costs due to overtime or price reduction
to the customer for obtaining a postponed decision may be incurred such that it
is realistic to assume that kM

�p
> kPM

�p
. Figure 2.3 illustrates the idea by showing

the processes for both types of OA decisions. Below each picture the information
(specific project type p or general project type �) that becomes known at different
times of each process is shown. For ease of modeling, we assume that we can ignore
the time needed for MPP as it is short relative to the duration of the project or the
interarrival times. Thus, the option to postpone MPP after to a time after OA helps
to save costs for three reasons. Firstly, in case the order is rejected the effort for

2.3 Order Acceptance and Capacity Planning Problem 17

Fig. 2.3 Alternative processes depending on the type of OA decisions

MPP to obtain p is lost. Secondly, MPP can be done using less resources at lower
cost. Finally, the customer has a response in less time. This, justifies a lower cost
kPM

�p
when performing MPP after OA. However, on the downside postponing MPP

may lead to worse cost estimates or less reliable due dates. This is implicitly taken
into account by the fact that when postponing MPP order acceptance decisions are
only based on the general project type known without fully performing MPP. In this
thesis, we refer to the first option of doing MPP before making the OA decision as
regular MPP and the second option as postponed MPP.

2.3.3 Resource Allocation Decisions

In order to simplify analysis, we assume that idleness of the resource is not allowed
as long as there are waiting projects. Hence, on completion of a project, we schedule
a new project for execution from the waiting projects. Furthermore, we assume that
only one project may be processed at a time and that the project in process may not
be preempted. The latter requirement is realistic as preemptions may have a number
of disadvantages which render preemptions detrimental to system performance.
Multi-tasking may be the consequence which is well known to lead to an increase

18 2 Problem Statements

of overall flow times of projects (cf. Goldratt [52]). Furthermore, setup times/costs
may occur (cf. Anavi-Isakow and Golany [3]).

As we consider the problem at the tactical level, we assume that non-regular
capacity (cf. Hans [55] or Herbots et al. [57]) is available. Non-regular capacity may
be used for example to process multiple projects at a time (cf. Herbots et al. [102])
or to crash a project in the sense that it is processed in less time (cf. Kelley and
Walker [68]). In this thesis, we consider the second alternative. Be ıC a continuous
variable with 0 � ıC � 1 denoting the share of non-regular capacity used in order to
reduce the duration of the current project in process or the project to be scheduled.
By increasing the share of non-regular capacity, we assume that the service rate is
increased in a linear way such that �p.1C zpıC

p/. zp is the maximum increase of the
service rate in case of full usage of non-regular capacity. If a project is processed
using non-regular capacity additional costs wCıC incurred per time unit a project
is processed in a crashed fashion. Crashing costs per time unit that are linear in
the usage of non-regular capacity may occur if non-regular capacity comes from
overtime. This is common in many areas such as service organizations (cf. Easton
and Rossin [44] or McManus [92]). We assume that the usage of non-regular
capacity may be dynamically changed any time which is realistic for non-regular
capacity resulting from overtime.

Finally, we assume that MPP does not make use of the (bottleneck) resource
considered for the execution of projects. Thus, MPP may be performed in a crashed
fashion before OA although all non-regular capacity of the resource is in use for
crashing the project in process.

Chapter 3
Literature Review

3.1 Dynamic Programming and Approximate Dynamic
Programming

Dynamic programming is a general technique for solving sequential problems. The
first comprehensive books on the topic have been written by Bellman [13] and
Howard [62]. The most important methodologies for determining an optimal policy
for a Markov decision process (MDP) are backward induction, value iteration (VI),
policy iteration (PI) and linear programming. As MDPs are in discrete time where
transitions have the same deterministic durations many results and methodologies,
such as VI, cannot be directly applied to continuous-time Markov decision processes
with exponentially distributed transition times. Thus, to circumvent this issue,
Lippman [88] has proposed uniformization that involves a transformation of a given
continuous-time Markov decision process (CTMDP) into an equivalent CTMDP
that corresponds formally to a discrete time MDP.

Another major problem is the fact that the state space becomes so large that
applying dynamic programming methodologies becomes intractable due to memory
requirements and computational burden. This phenomenon is known as curse of
dimensionality (cf. Powell [105]), which may, in addition to the state space, also
refer to the set of alternative decisions (action space) or the set of possible events
related to the transition to other system states (outcome space).

To remedy the curse of dimensionality, a number of approaches summarized
under approximate dynamic programming (ADP), have been considered. A central
approach to coping with the size of the state space is to approximate the value
function via a function having a more compact representation, which is also referred
to as approximation architecture. Approximation architectures depend on the state
variables and have free parameters to be adjusted such that a good approximation of
the value function is obtained.

The approaches to determine the free parameters of the approximation architec-
ture can be roughly divided into simulation-based approaches and approaches that

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_3,
© Springer International Publishing Switzerland 2015

19

20 3 Literature Review

are not based on simulation. Simulation based approaches are often referred to as
reinforcement learning (cf. Sutton and Barto [123]) or neuro-dynamic programming
(cf. Bertsekas and Tsitsiklis [17]). The basic idea is to simulate the system while
observations (e.g. costs or rewards incurred on a sample path) are used to generate
observations of the true but unknown value function. Those observations are
used to obtain approximations of the value function via stochastic approximation
methodologies. A number of algorithms have been proposed which differ, on the
one hand, in the way observations of costs or rewards are used in order to generate
observations of the value function and, on the other hand, when a policy is improved.
In order to obtain observations of the value function the costs or rewards incurred on
a sample path may be directly used or combined with the approximation obtained
so far, which is done in temporal difference learning. Then, one option to obtain an
approximation is to perform a least square fit (which corresponds to linear regression
in case of linear approximation architectures) of the approximation architecture
to the observations of the value function. Furthermore, the approximation may
be learned in this fashion, without changing the policy, as done in approximate
policy iteration (cf. Bertsekas and Tsitsiklis [17]). Alternatively, the policy may be
changed while the approximation is learned as done in optimistic approximate policy
iteration (cf. Bertsekas and Tsitsiklis [17]) or Q-learning (cf. Sutton and Barto
[123]). Typical approximation architectures in this context are neural networks
or linear functions, where the approximation architecture depends on the free
parameters in a linear fashion. For further details, we refer to Bertsekas and
Tsitsiklis [17] or the more recent textbook by Powell [106]. One major advantage
of simulation-based approaches is the fact that no model of the system is needed
which delivers the distribution of the transition times as well as the transition
probabilities. However, on the downside the computational burden for obtaining
a good approximation of the value function may be large (cf. Meyn [93]).

From the approaches that are not based on simulation, approximate linear
programming (ALP) is well known. ALP was originally proposed by Schweitzer and
Seidman [115] and is based on the formulation of an MDP as an equivalent linear
programm (LP). However, the LP still suffers the curse of dimensionality since for
each state there is a decision variable representing the value of the value function.
Thus, the value function is replaced by a linear approximation architecture such that
the number of decision variables is reduced. However, the number of constraints
remains large, which may be resolved by constraint reduction (cf. Veach [130]),
constraint sampling (cf. De Farias and Van Roy [36]) or column generation on the
primal (cf. Veatch and Walker [131]) or on the dual (cf. Adelman [1]) of the LP.
De Farias and Van Roy [35] establish theoretical results for the ALP approach with
discounted cost and suggest to use state relevance weights to control the precision
of the approximation at given states. De Farias and Van Roy [34] introduce the ALP
approach with state relevance weights for the average cost case.

Another approach which is not based on simulation is the minimization of the
Bellman error (cf. Bertsekas and Tsitsiklis [17]) where the free parameters of the
approximation architecture are determined such that the violation of the evaluation
equations is minimized. The approach has been successfully applied especially for

3.2 Project Scheduling 21

the control of queueing networks such as in Koole and Pot [77] for routing decisions
in a call center or in Roubos and Bhulai [113] for the control of admissions or service
rates.

3.2 Project Scheduling

We categorize the literature on project scheduling according to the two criteria:
Project arrivals and information on project data. With respect to project arrivals,
we distinguish between the static case, where all projects are available and can be
started at the beginning of the time horizon and the dynamic case, where projects
arrive over time. With respect to the information on project data, we distinguish
between the deterministic case where all project data, such as arrival times, durations
and resource demands, are deterministic and the stochastic case where (some)
project data are stochastic.

3.2.1 Static–Deterministic Project Scheduling

In the static-deterministic multi-project scheduling problem, there are a number of
projects which have to be scheduled. Each project is available at the beginning of
the planning horizon and all data are deterministic.

Optimal schedules for the static-deterministic case with a single project are
mostly based on formulations of the resource-constrained project scheduling
problem (RCPSP). An early formulation of the problem as a linear program has
been proposed by Pritsker et al. [107] for different objective functions such as the
minimization of the makespan or, in case of multiple projects, the minimization of
the sum of flow times for all projects. If the makespan is used in case of multiple
projects, they are considered as a single project such that the makespan corresponds
to the longest flow time. This approach is also known as single project approach.
In order to determine an optimal schedule, which consists of the start times for the
activities, a number of more refined models and approaches (e.g. branch and bound
algorithms) have been proposed. For a survey, we refer to Brucker et al. [23] or
Demeulemeester and Herroelen [39]. However, the size of the problems that can be
solved to optimality is limited as finding an optimal schedule has been shown to be
NP–complete (cf. Demeulemeester and Herroelen [39]).

Thus, different heuristic approaches have been considered. One of the most
popular approaches due to very short computation times is to combine priority
rules with a scheduling scheme for generating schedules of good quality. For the
static and deterministic case, two scheduling schemes are most common. The
serial scheduling scheme has been proposed by Kelley [67]. It iterates over the
activities where in each iteration the first activity from a list sorted according to
the priorities is selected and scheduled as early as possible while precedence and

22 3 Literature Review

capacity constraints are taken into account. The parallel scheduling scheme iterates
over the decision times that correspond to completion times of activities already
scheduled. In each iteration, as many activities as possible are scheduled at a time.
For the single project case, priority rules have been tested, for example, by Davis
and Patterson [32], Boctor [20] and Kolisch [74]. Further references can be found
in Herroelen et al. [60].

For multi-project scheduling a number of papers are focused on the performance
of priority rules. For the objective of minimizing the total weighted project delay,
Kurtulus and Davis [81], Kurtulus and Narula [82] and Tsai and Chiu [128]
undertook computational studies where they tested the performance of different
priority rules. Lawrence and Morton [85] have proposed a family of priority rules
that are based on the idea of the bottleneck dynamics (BD) approach (cf. Morton and
Pentico [96]) for the minimum total weighted tardiness objective. The basic idea is
to take into account opportunity cost due to the fact that scheduling activities leads
to delay of other activities.

3.2.2 Dynamic–Deterministic Project Scheduling

Dynamic-deterministic multi-project scheduling has been addressed intensively for
the special case of the dynamic job shop scheduling problem. For an overview of
this, we refer to Ramasesh [109] and Kemppainen [69]. Vepsalainen and Morton
[132], Anderson and Nyirenda [4] and Kutanoglu and Sabuncuoglu [83]. They
undertook computational studies on the performance of priority rules for minimizing
the total weighted tardiness of jobs where the parallel scheduling scheme was used.

3.2.3 Static–Stochastic Project Scheduling

In case of stochastic activity durations, scheduling decisions have to meet the
nonanticipativity constraint (cf. Fernandez et al. [48]) which states that only
information that has become known up to decision time t may be used. Thus, it is
not possible to compute a baseline schedule based on the realizations for the activity
durations in advance.

For project scheduling under uncertainty, essentially five approaches have been
considered in the literature (cf. Herroelen and Leus [59]) that are proactive schedul-
ing, reactive scheduling, stochastic scheduling, fuzzy scheduling and sensitivity
analysis. In case of proactive scheduling a proactive baseline schedule is computed
where temporal buffers are used to protect it from stochastic variations of activity
durations. Reactive scheduling refers to revisions of the proactive schedules in case
of unforeseen events such as an activity having a longer duration than planned.
In case of stochastic scheduling, scheduling policies are used that define for each
(not a priori known) decision time the activities which have to be scheduled. Fuzzy

3.2 Project Scheduling 23

scheduling considers fuzzy start times and completion times of the activities and
sensitivity analysis tries to identify a conditions where a given schedule remains
optimal.

As already justified in Sect. 1.2, we only consider in this thesis only stochastic
scheduling based on scheduling policies.

The literature on the static-stochastic project scheduling problems mostly
assumes, for the case of a single project, stochastic activity durations while all
other parameters are deterministic. For the case with unlimited resources in the
sense that unlimited numbers of activities can be processed at a time, Kulkarni and
Adlakha [79] assumed exponentially distributed activity durations and proposed
an evaluation model based on a continuous-time Markov chain (CTMC) which
allows to numerically compute different moments of the makespan distribution. The
approach has been denoted as Markov program evaluation and review technique
networks (Markov PERT networks). Lee and Suh [86] extended Markov PERT
networks to capture more general networks typical for product development
processes where precedence relations may be stochastic such that iterations are
possible. Obviously, as expected makespan minimization is trivial for unlimited
resources (activities are simply started as soon as they become ready according
to the precedence constraints) those models do not consider the optimization of
scheduling decisions. However, this is no longer the case for the expected net
present value (NPV) objective where delaying activities may be beneficial due to
discounted costs. At the same time, the payoff obtained at the end of the project may
be reduced due to discounting such that there is a tradeoff. Buss and Rosenblatt [24]
have shown how the expected NPV can be determined for a Markov PERT network.
In addition, they investigated the effect of delaying an activity on the expected
NPV. Sobel et al. [120] have presented continuous-time Markov decision processes
(CTMDPs) for computing an optimal scheduling policy which maximizes the
expected net present value (NPV) of a project given by a Markov PERT network.
Creemers et al. [31] have proposed algorithmic improvements allowing the solution
of problem instances with larger state spaces.

For the case with limited resources and generally distributed activity durations, a
number of classes of scheduling policies have been proposed. As typical objective,
the expected makespan has to be minimized. An overview and a classification of
the classes scheduling policies is given in Möhring et al. [95] and Stork [122].
The two most widely used scheduling policies for heuristics are activity–based
priority policies (ABPs) and resource-based priority policies (RBPs). Stork [122]
has shown that RBPs are from a theoretical point of view disadvantageous because,
when interpreted as a function which maps a vector of activity durations into a
vector of activity start times, they are neither monotone nor continuous. However,
recent computational results have shown that RBPs lead to solutions with a smaller
expected makespan (cf. Ballestin and Leus [11] and Ashtiani et al. [5]).

Resource-constrained multi–project scheduling in static and stochastic envi-
ronments has been considered so far mostly in the context of a single resource
(or machine) having capacity 1 and projects require exactly one capacity unit.
Thus, projects must be processed sequentially. One class of policies that has been

24 3 Literature Review

shown to be optimal for many problems in this context is the class of priority
index policies (cf. Nino-Mora [100]). A priority index policy assigns projects,
competing for the resource, a priority index, which is used for prioritizing them.
The priority index of a project has the property that it depends only on its state
at the time of the decision and is independent from the states of other projects.
A well known class of problems where priority index policies have been shown to be
optimal are multi–armed bandit problems (MABs) (see Nino-Mora[100] or Gittins
and Jones [51] for a description). Kavadias and Loch [66] consider scheduling of
multiple projects at a single bottleneck resource under more general assumptions
such that the scheduling problem is no longer a MAB. However, they found that
under certain conditions the optimal policy is still a priority index policy. Choi
et al. [26] have formulated a discrete time Markov decision process (MDP) for
scheduling of chemical engineering projects to be processed on multiple resource
types. The MDP takes into account a range of sources of uncertainty. For example, in
addition to activity durations, success probabilities of activities may be stochastic.
As state spaces become extremely large they use simulation based approaches of
approximate dynamic programming (ADP) for obtaining near optimal scheduling
policies w.r.t. expected total reward.

3.2.4 Dynamic–Stochastic Project Scheduling

The seminal paper which showed the practical relevance of modeling a dynamic–
stochastic multi–project environments as a queueing network is Adler et al. [2] who
investigated the performance of R&D–projects in terms of flow times for a chemical
company. There, and later in Levy and Globerson [87], a multi-project organization
is modeled as a processing network where projects of different types arrive over
time and each activity of a project has to be processed by a function (resource) of a
specific type. Projects of a given type typically share the same precedence relations,
interarrival time distributions and distributions for the activity durations (cf. also
Chap. 2). Activities are queued in front of the resources of the specified types in
order to be processed. Processing networks are closely related to classical queueing
networks. However, a major difference to classical queueing networks is the fact that
projects or jobs which flow through the network may fork in the sense that activities
may be processed in parallel or join in the sense that multiple activities that may
be processed in parallel must have been completed before their common successors
may be started. The investigation is done via simulation where, however, only the
FCFS–priority policy has been used for scheduling.

From a theoretical point of view such fork-join–processing networks have already
been subject to research before. A number of papers consider approaches to estimate
the distribution of flow times where typical assumptions are that each resource type
processes at most one activity type of a project type and a FCFS-priority policy is
used for scheduling. Furthermore, there is a single resource of each resource type.
Heavy traffic analysis (where the utilization of the resources is close to 1) has been

3.2 Project Scheduling 25

applied by Nguyen [98] for a single project type in order to obtain approximations
e.g. of the expected flow time. Nguyen [99] has extended the analysis to the case
of multiple project types. For the case of a single project type with exponentially
distributed activity durations, Azaron et al. [6] and Azaron and Modarres [7]
developed an approach for determining the flow time distribution. The idea is to
transform the original fork-join network in the dynamic-stochastic case referred to
as dynamic PERT network into a Markov PERT network. For the transformation, the
authors have exploited the fact that if there is a single resource or infinitely many
resources of a given type the flow time of an activity (waiting time plus processing
time) is exponentially distributed. Thus, the flow time distributions of the activities
at the resources in the dynamic PERT network replace the distributions of the
activity durations in the Markov PERT network. Using phase-type distributions, the
idea has been extended to determine approximations for the flow time distribution in
case that activity durations follow a general distribution. Although the authors claim
that the approach is useful for evaluating scheduling policies no scheduling policies
other than FCFS have been considered. Azaron and Tavakkoli-Moghaddam [8] used
the approach in order to evaluate decisions on the number of resources which are
dedicated to processing an activity type. In their model, the number of resources of
a type has an impact on the expected duration of an activity type (the assumption
that only one activity may be processed at a time still holds). Yaghoubi et al. [136]
have extended the model to the case where CONPIP is used as input control.

One of the few analytical contributions to scheduling in fork-join–processing
networks is the paper by Baccelli et al. [9] who have considered non-preemptive
as well as preemptive scheduling policies. They introduced the class of local order
preserving policies and established for its subclasses a number of theoretical results
such as the optimality w.r.t. number of projects in the system for FCFS-policies (not
FCFS-priority policies as considered in this thesis). However, as the classes may
contain large numbers of alternative policies optimal policies are provided only for
special cases.

A number of simulation studies have assessed different control policies for
the framework of Adler et al. [2]. Anavi-Isakow and Golany [3] undertook a
simulation study in order to assess the performance of two input control policies,
constant number of projects in process (CONPIP) and constant time in process
(CONTIP), jointly with priority policies for scheduling activities waiting in the
resource queues. Cohen et al. [28] employed the critical chain approach originally
developed by Goldratt [52] to derive a preemptive priority policy for scheduling
and compared the latter with priority policies (Due date modified MINSLK by
Dumond and Mabert [43], First Come, First Serve) for minimizing the total flow
time. The results show that the due date modified MINSLK–policy gives better
results than the critical chain approach. This holds in particular for systems with
a high utilization. Although the investigations by Anavi-Isakow and Golany [3] and
Cohen et al. [28] deliver some indications on which priority policies should be used,
their investigations suffer from the fact that both restrict their considerations to only
one toy example.

26 3 Literature Review

A special case of multi-project scheduling in a dynamic-stochastic context is
scheduling in classical queueing networks where projects do not fork and join. For
the special case of queueing networks consisting of a single resource, Cox and Smith
[29] have shown that the c�-policy is optimal for a M=G=1-system with different
project types and an average cost per unit of time objective. The c�-policy is a
priority index policy that prefers projects with the highest value of c� where c

denotes the holding cost per unit of time of a project type and � is the service rate
for the respective project. Klimov [72] has shown that an priority index policy is
optimal for the more general M=G=1-system with feedback. Feedback refers to the
fact that projects may revisit the system after being served. Before revisiting the
system they may change their type with a given probability,

For more general queueing networks with multiple resource types, optimal
scheduling policies can in principle be obtained via stochastic dynamic program-
ming (cf. Sennott [118] or Meyn [93]). However, one major obstacle is the curse
of dimensionality which primarily refers to the size of the state space. One option
to remedy this issue is using approximate dynamic programming (ADP) where
the value function is approximated by a compact functional form also referred
to as approximation architecture (for references cf. also Sect. 3.1). Successful
applications of ADP to scheduling of queueing networks can be found in De Farias
and Van Roy [35], Veach [130] and Vyzas [133] .

The important issue of system stability has been considered by different authors.
Recall that stability implies that the long term average number of projects in the
system is finite (cf. also Sect. 2.1). However, Kumar and Seidman [80] have shown
that instability may occur for some scheduling policies even if the utilization per
resource is strictly smaller than one. For further details on stability, we refer to
Meyn [93] and to Kumar and Seidman [80].

The only work which considers the computation of optimal policies in the field
of dynamic-stochastic multi-project scheduling is the one by Choi et al. [27] who
extended the model by Choi et al. [26]. They take into account the arrivals of a
limited number of projects in the future. However, no long term optimal policies
have been determined.

3.3 Capacity Planning

Models dedicated to tactical rough cut capacity planning (RCCP) comprise beside
scheduling decisions also decisions related to usage of resource capacities. RCCP
in static and deterministic environments have been considered for example by De
Boer [33] and Hans [55]. In their models, additional capacities may be used in order
to process more project activities at a time or reduce the duration of an activity.
The latter usage has been also referred to as crashing that has been considered by
a different authors such as Kelley and Walker [68], Berman [14] as well as Roemer
and Ahmadi [110].

3.4 Order Acceptance 27

In dynamic-stochastic environments crashing of activities is related to control of
services rates. Crabill [30] investigated the optimal control of service rates for an
M=M=1-system and has found that an optimal policy has multiple thresholds. If a
threshold w.r.t. the number of projects in the system is exceeded the service rate is
switched to the next higher service rate.

3.4 Order Acceptance

Order acceptance problems have been considered in static as well as in dynamic
environments. In static environments, a set of projects not yet started is given at
the beginning of the planning horizon. From this set, a subset has to be selected
according to an objective w.r.t. a set of constraints. Hence, order acceptance is
mostly referred to as selection in static environments. Models based on mathemat-
ical programming have been proposed by Bard et al. [12] or Loch et al. [90] while
Loch and Kavadias [89] have presented a more aggregate model considering the
problem from a financial perspective without explicit consideration of projects as
discrete items.

Joint optimization of order acceptance and scheduling decisions in the static con-
text has been considered by Slotnick and Morton [119], Talla Nobibon et al. [124]
and Talla Nobibon and Leus [125] who have developed exact and heuristic
algorithms for the solution.

Order acceptance problems for dynamic environments have been considered in
different fields. In multi-project planning, different models exist that are based on
the idea of the dynamic stochastic knapsack problem (DSKP). Different variants
of the DSKP have been considered by Ross and Tsang [111], Kleywegt and
Papastavrou [70] and [71]. The basic idea is as follows. We have a resource of
limited capacity and items that dynamically arrive with stochastic interarrival times
as well as a demand of varying size for the capacity. On arrival, items may be
accepted or rejected. If all resources are in use the item must be rejected such that
no queueing is allowed.

Perry and Hartman [102] consider the order acceptance problem with one
resource for multiple periods and projects that consist only of a single activity. As
the capacity is limited in each period the problem can be considered as a multi-
knapsack problem. Herbots et al. [57] extend the model of Perry and Hartman
[102] by allowing more complex resource allocation schemes, which are typical
for RCCP. Although both models may take into account stochastic interarrival times
only deterministic project durations are considered.

Order acceptance problems with stochastic interarrival times and stochastic
project durations (projects consist typically only of a single activity) have been con-
sidered in queueing theory. One of the very first papers is the one of Naor [97] which
considers order acceptance decisions for a M=M=1–system with a single project
type. A holding cost is incurred per unit of time a project is in the system and payoffs
are obtained for each accepted project. The average reward is to be maximized.

28 3 Literature Review

Generalizations of the basic model to general distributions and multiple capacity
units have been considered by Yechiali [137, 138], Knudsen [73] and Feinberg and
Yang [47]. Feinberg and Yang [47] consider a M=M=c–system with multiple project
types where holding costs, arrival rates and pay offs obtained on completion depend
on the project type while all project types have the same expected duration (service
rate). For the systems considered, order acceptance policies are monotone policies
in the sense that an order of a certain type is accepted until the number of projects
in the system exceeds a certain threshold which may depend on the project type.
However, scheduling decisions or decisions w.r.t. resource capacities have not been
subject to optimization. Scheduling decisions are typically made using FCFS.

Joint optimization of order acceptance decisions and scheduling decisions in
queueing theory has been considered by De Serres [40] and [41]. The author
considers a M=M=1–system with two project types where the expected durations
of the projects depend on their types and preemption of projects already in process
is allowed. Based on extensive experimental studies, he found that, for many cases,
the optimal policies exhibit a monotone structure w.r.t. order acceptance decisions.
However, the author failed to provide formal proofs for the structure of optimal
policies. Furthermore, the c�–policy has shown to be optimal in many cases for
making scheduling decisions. However, this is not always the case, as a counter
example in De Serres [41] shows. Although the work of De Serres comes closest
to our problem it neglects important issues relevant for order acceptance in multi–
project organizations. Firstly, no decisions w.r.t. usage of resource capacities are
taken into account. Secondly, it is assumed that project related information except
the duration is fully known on arrival. The cost for performing MPP before OA are
neglected.

The joint optimization of order acceptance and scheduling decisions has been
investigated on a heuristic basis. Wester et al. [134] and Van Foreest et al. [129]
develop and test via simulation different order acceptance and scheduling heuristics
for a system consisting of a single resource that processes one project at a
time. The heuristics are characterized by different levels of detail concerning the
system information used. The case with multiple resource types as well as projects
consisting of multiple activities has been considered by Ebben et al. [45] and
Ivanescu et al. [64,65]. Ivanescu et al. [64,65] extend, in addition, the investigation
also to stochastic activity durations.

Chapter 4
Continuous-Time Markov Decision Processes

In this chapter, we review the fundamentals of continuous-time Markov decision
processes (CTMDPs) as used in this thesis. Our focus is on CTMDPs as the
problems presented in Chap. 2 are considered in continuous time. In Sect. 4.1, we
outline the general structure of a CTMDP. In order to evaluate existing policies
and obtain optimal policies sets of equations denoted as evaluation equations and
optimality equations need to be solved. In Sect. 4.4, we present the general form of
the equations. Afterwards, we present in Sect. 4.5 the concept of uniformization
which is needed before the methods outlined in Sect. 4.6 can be applied for
solving the evaluation and optimality equations. Finally, we address in Sect. 4.7 the
implementation of a CTMDP as a computer program.

4.1 General Structure

In the following, we present the basic structure of a CTMDP. As shown in Fig. 4.1, a
CTMDP is a sequential decision process where the system is considered at decision
times for making decisions. In this thesis, we distinguish between pre-decision
states s and post-decision states Os (cf. Powell [105]). A pre-decision state s is the
state immediately before a decision (or action) a is made. For making a decision,
only the information available in the pre-decision state s and no information about
prior states of the system may be used. Making a decision a refers to the selection
of a decision from a set A.s/ of alternative decisions.

After making and implementing a decision a, a post-decision state Os D Os.s; a/

is entered. Note that making and implementing a decision is assumed to be done
in no time such that Os is immediately entered. Post-decision states are considered
explicitly for different reasons. Powell [105], for example, uses post-decision states
for simulation-based approaches of approximate dynamic programming. We make
use of post-decision states for simplifying the generation of the transitions as
discussed later in Sect. 7.1.1.3.

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_4,
© Springer International Publishing Switzerland 2015

29

30 4 Continuous-Time Markov Decision Processes

Fig. 4.1 Structure of a CTMDP

Now, from the perspective of the CTMDP the system remains in Os until an event
e occurs which makes a new decision necessary. As a consequence of e, a transition
from the system state Os to a new pre-decision state s0 occurs. As events are stochastic
the transition from state s to state s0 after making decision a occurs with probability
q.s0js; a/. Until the occurrence of the event, there is a transition time � D �.s; a/

which is exponentially distributed with rate ˇ.s; a/. For the transition time from s

to s0, the fictitious transition s to Os is not taken into account as it does not need time.
Note that a CTMDP is a special case of a semi-Markov decision process

(SMDP) (for details cf. Puterman [108]) where the transition times follow a general
distribution.

As, for most of the time, we consider pre-decision-states, we refer to pre-decision
states s as system states. We use the terms pre-decision and post-decision states only
where it is necessary to distinguish between both kinds of states.

4.2 Basic Definitions and Relevant Properties

In the following, we give some basic definitions used in the context of MDPs
(cf. Puterman[108]).

Definition 4.2.1. The state space is the set S of all possible system states s.

We will make the definition more specific when discussing the CTMDPs for the
dynamic-stochastic multi-project scheduling problem and the problem of order
acceptance and capacity planning. In the following, most of our analysis will refer
to finite state spaces with jSj <1.

As we assume for the multi–project environment that probability distributions
are stationary it is sufficient to restrict considerations to stationary Markov policies.
They are defined as follows.

Definition 4.2.2. A stationary Markov policy � specifies a decision that is indepen-
dent from decision time t and depends only on the information provided by system
state s 2 S.

4.2 Basic Definitions and Relevant Properties 31

This definition does not imply a loss of optimality when searching for a policy
that is globally optimal in the space of all possible policies. It can be shown
that there exists a stationary deterministic Markov policy that is globally optimal
(cf. Puterman[108]) if the state space S and the sets of alternative decisions
A.s/ 8s 2 S are finite. Both conditions are met for the cases where we consider
optimal policies.

Furthermore, we define the concept of a sample path which is used for a part of
our analysis.

Definition 4.2.3. A sample path ! D .s1; a1; �1; s2; a2; �2; : : : ; aN�1; �N�1; sN / is
a sequence of states sn, decisions an and realizations for the transition times �n.

Note that on a sample path, it is well possible that a state s 2 S is visited multiple
times.

Under a given policy, a CTMDP turns into a continuous-time Markov chain
(CTMC). In the following, we give some important definitions related to Markov
chains (not necessarily CTMCs) which can be transferred to the case of MDPs.

Definition 4.2.4. A state s 2 S is recurrent if the time between two visits is
bounded with probability 1.

Definition 4.2.5. A state s 2 S is transient if the time between two visits is
unbounded with positive probability.

The definition of recurrence can be strengthened by the definition of positive
recurrence.

Definition 4.2.6. A state s 2 S is positive recurrent if the expected time between
two visits is bounded.

The property of recurrence is necessary for the existence of a bounded long term
average cost or reward. For finite state spaces (jSj � 1) it is also sufficient
(cf. Puterman [108]) whereas for infinite state spaces positive recurrence is needed.

Before we address some properties that are important for the application of the
methods used in this work, we give some further definitions characterizing the
relationships between states.

Definition 4.2.7. A state s0 2 S is accessible from a state s 2 S (s ! s0) if s0 can
be reached from s with positive probability.

Definition 4.2.8. A state s0 2 S communicates with state s 2 S if s ! s0 and
s0 ! s.

Next, we define a closed set (or class) of states.

Definition 4.2.9. A set C � S is closed if no state s0 2 SnC is accessible from any
state s 2 C.

Definition 4.2.10. A closed set C � S is irreducible if no subset of C is closed.

32 4 Continuous-Time Markov Decision Processes

For a finite state space S, it is possible that the set of recurrent states decomposes
into a finite number of irreducible closed sets, while, for infinite S, the number
of closed sets is possibly infinite. This leads to the following definitions that are
relevant for the application of solution methods.

Definition 4.2.11. A MC is unichain if there exists a single irreducible class of
recurrent states plus some transient states.

Definition 4.2.12. A MC is multichain if there exist multiple irreducible classes of
recurrent states plus some transient states.

Finally, we transfer the definitions of unichain and multichain to MDPs (not
necessarily CTMDPs).

Definition 4.2.13. An MDP is unichain if under every deterministic stationary
policy there exists a single irreducible class of recurrent states plus some transient
states.

Definition 4.2.14. An MDP is multichain if there exists a deterministic stationary
policy for which there exist multiple irreducible classes of recurrent states plus some
transient states.

The definitions of unichain and multichain have the following implications for the
case of CTMDPs. If the CTMC under a given policy is unichain the long term
average cost or reward is independent from the starting state s 2 S of a sample
path. By contrast, if the CTMC under a given policy is multichain the average
cost or reward may vary depending on the starting state s 2 S of a sample
path. Therefore, solution methodologies become more involved for multichain
CTMDPs. Fortunately, for the problems considered in this thesis, we can restrict
our considerations to unichain CTMDPs.

4.3 Objective Function

As we consider the long term average cost or profit per project (cf. Chap. 2) the
relevant objective functions for the CTMDP are the average cost per time unit or the
average reward per time unit. As the analysis for both objectives is very similar we
refer in the general presentation of the MDP related theory only to the average cost
objective. Then, the optimal average cost g� is given by

g� D min
�2…

lim inf
N!1 g.�/ D

E

�
N�1P

nD1

.c.sn; �.sn//�.sn; �.sn//C k.sn; �.sn/; snC1//

�

E

�
NP

nD1

�.sn; �.sn//

�

(4.1)

4.4 Evaluation and Optimality Equations 33

where g.�/ is the average cost when policy � is followed. c.s; a/ is the cost rate
incurrent per time unit subsequent to decision a in system state c.s; a/ and k.s; a; s0/
is the fixed cost incurred on the transition from system state s to system state s0
subsequent to decision a.

Recall that if the CTMDP is unichain g� or g.�/ are independent from the
starting state s0 of a sample path (cf. Puterman [108]).

4.4 Evaluation and Optimality Equations

We use a CTMDP, discussed so far, for two purposes in the scope of our
investigations.

1. Evaluation of a given policy � .
2. Finding an optimal policy ��.

Evaluation of a given policy � involves determining the value g.�/ of the
objective function. This can be done either by simulation or by finding a solution for
the following set of evaluation equations (also referred to as Poisson’s equations).

h.s/ D c.s; �.s// � g.�/

ˇ.s; �.s//
C
X

s02S
q.s0js; �.s//

�
k.s; �.s/; s0/C h.s0/

�
(4.2)

For the existence of a unique solution of the unknowns g and h.s/ we must have a
unichain CTMDP with a finite state space where k.s; a; s0/, c.s; a/ and ˇ.s; a/ > 0

are bounded. Then, the unique solution can be obtained by setting h.s00/ D 0 for
some state s00 2 S (cf. Puterman [108]).

The values h.s/ are also denoted as relative value function. One possible
interpretation is that they are the long term difference between the expected total
costs when the system is started at state s and the expected total costs when the
system is started at state s00 (cf. Tijms [127] or Bertsekas [15]). Thus, h.s/ is also
denoted as relative cost (cf. Bertsekas [16]).

While Eqs. (7.27) are sufficient for the evaluation of a stationary policy � an
optimal stationary policy �� D argmin

�2…

g.�/ must deliver a feasible solution for the

following set of optimality equations (also referred to as Bellman equations).

h.s/ D min
a2A.s/

(
c.s; a/ � g�

ˇ.s; a/
C
X

s02S

	
q.s0js; a/

�
k.s; a; s0/C h.s0/

�

)

(4.3)

34 4 Continuous-Time Markov Decision Processes

4.5 Uniformization

When considering a CTMDP, there is the problem that the transition times after
making decision a 2 A.s/ in state s 2 S are exponentially distributed with varying
expected durations 1

ˇ.s;a/
while many results and methods e.g. value iteration (VI)

have been developed for discrete time MDPs with transitions having the same
deterministic duration (typically the duration is one time unit). Therefore, we apply
uniformization originally developed by Lippman [88] (cf. also Puterman [108]).
It transforms the original CTMDP into an equivalent CTMDP where the expected
transition times are equal for all states and decisions. Thus, the uniformized CTMDP
corresponds formally to a discrete time MDP although it is still a CTMDP. Note that
for the uniformized CTMDP only the expected transition times are equal while the
transition times are still exponentially distributed random variables.

As a first step, we fix the uniformization constant c such that

sup
s2S;a2A.s/

ˇ.s; a/ < c <1 (4.4)

which leads to c � maxfˇ.s; a/8s 2 S; a 2 A.s/g. Next, we consider the
transitions after making decision a 2 A.s/ in state s 2 S. We add to the transitions
subsequent to decision a in state s a fictitious transition which directs back to state
s. The fictitious transition is related to a fictitious (dummy) event which occur at
rate c � ˇ.s; a/. Thus, the new total rate is c. As the fictitious event does not have
any effect on the system state the uniformized CTMDP is equivalent to the original
one (a formal proof can be found in Tijms [127]). Figure 4.2 shows an extract of
the CTMDP for illustrating the idea.For system state s, the additional transitions go
from the post-decision state Os.s; a/ (for simplicity of presentation we have dropped
the parameters s and a) back to system state s.

Furthermore, we obtain new transition probabilities as given by

Qq.s0js; a/ D q.s0js; a/
ˇ.s; a/

c
8s; s0 2 S (4.5)

We set

Qg.�/ D g.�/

c
(4.6)

Qg� D g�

c
(4.7)

Qc.s; a/ D c.s; a/

c
(4.8)

and obtain the following evaluation equations for a � 2 … which correspond
formally to the evaluation equations of a discrete time MDP.

4.5 Uniformization 35

Fig. 4.2 Idea of uniformization

h.s/ D Qc.s; �.s// � Qg.�/C
X

s02S
Qq.s0j�.s/; s/

�
k.s; �.s/; s0/C h.s0/

�

C
�

1 � ˇ.s; �.s//

c

�

h.s/ 8s 2 S (4.9)

The optimality equations for the uniformized CTMDP are given by

h.s/ D min
a2A.s/

(

Qc.s; a/ � Qg� C
X

s02S
Qq.s0ja; s/

�
k.s; a; s0/C h.s0/

�

C
�

1 � ˇ.s; a/

c

�

h.s/

8s 2 S (4.10)

36 4 Continuous-Time Markov Decision Processes

4.6 General Solution Methodologies

For the discussion of the solution methodologies, we use the generic form of the
evaluation equations given by

h.s/ D c.s; �.s// � g

ˇ.s; �.s//
C
X

s02S
q.s0js; �.s//

�
k.s; �.s/; s0/C h.s0/

� 8s 2 S
(4.11)

and the optimality equations given by

h.s/ D min
a2A.s/

(
c.s; a/ � g�

ˇ.s; a/
C
X

s02S
q.s0js; a/

�
k.s; a; s0/C h.s0/

�
)

8s 2 S
(4.12)

as a starting point.

4.6.1 Value Iteration

Value iteration (VI) (cf. Puterman [108]) is one of the most commonly used
algorithms to solve infinite horizon MDPs. The algorithm iterates over the entire
state space s 2 S and updates a set of values Vn.s/ being numerical estimates for
the value function for all s 2 S in iteration n. As VI requires a discrete time MDP we
have to consider the uniformized CTMDP. The procedure is given by Algorithm 1.
As the CTMDP is unichain, we can apply value iteration without modifications.
Note that in order to avoid numerical problems, we subtract in Step 11 the value
of empty state V 0

n . Hence, the values Vn.s/ remain bounded and converge to the
relative value function h.s/. Therefore, the algorithm is known as relative value
iteration. Note that standard value iteration and relative value iteration obtain the
same policy on convergence.

The numerical estimate g0 for g� is obtained from

g0 D c

2

�

max
s2S .Vn.s/ � Vn�1.s//Cmin

s2S .Vn.s/ � Vn�1.s//

�

(4.13)

which is known to converge to g� for n!1.

4.6.2 Policy Iteration

The idea of policy iteration (PI) is to start with given policy �0 and to perform
multiple iterations in order to obtain an optimal policy. Each iteration n comprises
an evaluation step and an improvement step. The evaluation step determines a

4.6 General Solution Methodologies 37

Algorithm 1 Unichain relative value iteration
Require: S
1: for s 2 S do
2: V0.s/ 0

3: end for
4: n 1

5: Do
6: for s 2 S do
7:

Vn.s/ min
a2A.s/

fQc.s; a/

CX

s0
2S
Qq.s0js; a/.k.s; a; s0/C Vn�1.s

0//C
�

1� ˇ.s; a/

c

�

Vn�1.s/

)

8s 2 S

8: end for
9: V 0

n Vn.s0/

10: for s 2 S do
11: Vn.s/ Vn.s/� V 0

n

12: end for
13: n nC 1

14: Until maxs2S .Vn.s/� Vn�1.s// �mins2S .Vn.s/� Vn�1.s// < �

15: for s 2 S do
16:

�.s/ argmin
a2A.s/

fQc.s; a/

CX

s0
2S
Qq.s0js; a/.k.s; a; s0/C Vn�1.s

0//C
�

1� ˇ.s; a/

c

�

Vn�1.s/

)

8s 2 S

17: end for

solution for the set of evaluation equations (4.12). This can effectively be done
using VI where decisions are made based on a given policy. Alternatively, we may
also use algorithms for the efficient solution of linear equations e.g. Gauss-Seidel
(cf. Defregger [37]) or the Power Series Algorithm (cf. Koole and Pot [78]).

The improvement step (4.14) also known as one step policy improvement
(cf. Tijms [127]) determines a new policy �n given the value function
h.�n�1; s/ 8s 2 S and average cost g.�n�1/ for policy �n�1 from the previous
iteration by

�n.s/ D argmin
a2A.s/

�
c.s; a/ � g.�n�1/

ˇ.s; a/
C

X

s02S
q.s0js; a/

�
k.s; a; s0/C h.�n�1; s0/

�
)

8s 2 S (4.14)

38 4 Continuous-Time Markov Decision Processes

h.�n�1; s/ is the relative function when policy �n�1 is followed in state s and
afterwards. Thus, the right-hand side of the equation can be interpreted as the
relative cost when decision a is selected and policy �n�1 is followed afterwards.
For the new policy, we must have g.�n/ � g.�n�1/ (for a proof cf. Tijms
[127]).

The idea of policy improvement will also be central in the approximate dynamic
programming algorithms discussed in Sect. 7.4. Policy iteration aborts as soon as no
further improvement of a policy can be obtained such that g.�n/ D g.�n�1/. The
procedure is given by Algorithm 2.

The motivation to consider policy iteration is threefold. Firstly, it has advantages
in terms of run time and memory requirements. For example, finding the optimal
decision for each system state can be very time-consuming but needs to be
performed less frequently than in VI. Secondly, it can be implemented more
efficiently in terms of run time and memory requirements (for details we refer to
Sect. 4.7.2). Thirdly, it serves as a basis for the algorithms of ADP in Sect. 7.4.

Algorithm 2 Unichain policy iteration
Require: S; �0

1:
2: n 0

3:
4: Do
5: n nC 1

6:

7:

Policy evaluation: Obtain the average cost g.�n�1/ and the relative value function
h.�n�1; s/ 8s 2 S by solving equations:

h.s/ D c.s; a/� g.�n�1/

ˇ.s; �n�1.s//
CX

s0
2S

q.s0js; �n�1.s// .k.s; �n�1.s/; s0/C h.s0//

8s 2 S
8:

9:

Policy improvement: Chose �nC1 to satisfy:

�n.s/ D argmin
a2A.s/

�
c.s; a/� g.�n�1/

ˇ.s; a/

CX

s0
2S

q.s0js; a/ .k.s; a; s0/C h.�n�1; s0//

)

8s 2 S

10: Until g.�n/ D g.�n�1/

11:
12: �� D �n

4.7 Implementation 39

4.7 Implementation

4.7.1 Generation of the State Space

The implementation of the CTMDP and the corresponding solution methodologies
has been done using JAVA.

At first we briefly address the data structure, before we briefly address the
procedure for generating the state space.

4.7.1.1 Data Structures

The state space S is represented using an array of objects representing the system
states. An object for system state s contains an array for tuples .�; n.�; s// for all
project states � 2 † where n.�; s/ > 0 (for details on the definition of project states
� and system states s we refer to Sect. 7.1). Furthermore, we maintain an array
containing objects that represent project states � 2 †. Each object representing
a project state has multiple arrays with indices for waiting activities, activities in
process and the project type.

For a fast retrieval of system states s 2 S and project states � 2 †, we use hash
tables (cf. Sedgewick [117]) of which the elements are addressed via hash keys. In
the following, we briefly explain the usage and computation of hash keys only for
system states s (for project states � we proceed in a similar way). A hash key for a
system state s is an integer value obtained via hash function H.s/ which lies in the
range between 1 and the size of the hash table. The computation of H.s/ is based
on the content of a system state or project state object. Figure 4.3 shows the hash
table and the array of objects for system states s 2 S. A hash key H.s/ is used as an
index in the hash table of a fixed size containing references. Then, each reference
points to the first system state object in the array of system states which has a given
hash key e.g. for system state s1 we store in the hash table 1 being the position of
s1 in the array of system state objects. If no such system state object exists yet as
system state s may not have been added yet to the state space we store �1. Note
that the hash keys have a smaller length, e.g. 16 bit, than the total set of variables
used for representing a system state s (the set of tuples .�; n.�; s//) such that there
may be more possible combinations of values for the variables of a system state
than possible hash keys (in case of a length of 16 bit we have at most 65;536 hash
keys). Thus, collisions are possible in the sense that two states may have the same
hash key. In the example, we have for s1 and s3 H.s1/ D H.s2/. In order to cope
with collisions, state objects having the same hash key are linked by storing for each
system state s the position Succ.s/ of the next state having the same hash key in the
array. If there exists no further state with the same hash key we set Succ.s/ D �1.
For example, s1 is stored at position 1 and system state s3 at position 3. Thus, we
store for s1 the location of s3, by setting Succ.s1/ D 3, as the next system state with

40 4 Continuous-Time Markov Decision Processes

Fig. 4.3 Hash table and array of system state objects

H.s3/ D H.s1/. As there is no further system state object with the same hash key
we set Succ.s3/ D �1.

Thus, to check whether a given system state s already exists, we proceed along
the chain of system states having the same hash key as a given system state s.

4.7.1.2 Generation Procedure

The generation procedure for the state space S is as follows. At first, we add system
state s0, where the system is empty. Then, we generate all feasible decisions and
transitions to successor states of s0 in the CTMDP. If a successor state does not
exist yet it is added to the state space by storing its object after the last object in
the array of system state objects and updating the hash table information. Then, we
process the array of system state objects in an increasing order and stop as soon as,
after considering a system state, no further system states are in the array of system
state objects. This is the case if all system states have been checked for successors
and no successors not yet in the state space could be generated.

4.7 Implementation 41

4.7.2 Solution Methodologies

The run time required by VI strongly depends on Step 7. In each iteration n and for
each state s 2 S all decisions a 2 A.s/ including the transitions to the successor
states must be generated and evaluated. Therefore, Step 7 may consume a lot of
computational time if a full enumeration of alternative decisions is necessary. The
computational burden can be reduced in two ways.

1. Generation and storage of decisions and transitions in advance. However memory
consumptions may be tremendously increased.

2. The structure of the Bellman equations can be exploited to avoid full enumeration
and evaluation of all decisions a 2 A.s/. This has been done for the preemptive
scheduling problem in Sect. 7.1.2 or for the order acceptance and capacity
planning problem in Chap. 8. The computation burden for generating transitions
might be higher than in the first case. However, less computational effort for
evaluating decisions is needed and memory consumption is reduced as no
decisions and transitions need to be stored.

In order to reduce the computational burden of PI we store the decisions of the
current policy �n as well as the corresponding transitions. Thus, we have, as an
advantage of PI, lower memory consumption than for VI as, for each state s 2
S, we only have to store the transitions for one decision instead of all decisions.
Furthermore, the step of determining optimal decisions a� 2 A.s/ 8s 2 S is done
less frequently.

Chapter 5
Generation of Problem Instances

For testing scheduling methodologies in a systematic way, it is important to have
a set of problem instances that is representative for the entire space of problem
instances. For example, the set of instances of Patterson [101] for the static-
deterministic single project scheduling problem has been used by many authors for
testing. However, Kolisch et al. [76] have found that the set does not contain cases
that are difficult to solve and that problem parameters may have a strong impact on
problem complexity in terms of computation times.

Thus, for static-deterministic single–project scheduling problems, also referred
to as resource-constrained project scheduling problem (RCPSP), a number of
generators for systematic creation of problem instances according to given param-
eters have been developed by Kolisch and Sprecher [75], Schwindt [116] and
Demeulemeester et al. [38]).

For static-deterministic multi-project scheduling problems, a generator has been
recently developed by Browning and Yassine [22].

However, for dynamic-stochastic multi-project scheduling problems, as consid-
ered in this thesis, no generator is available so far. Most instances (cf. Adler et al.
[2] and Anavi-Isakow and Golany [3]) have either been taken from the real world or
have been created as toy examples.

Thus, we have developed a procedure by which problem instances of the
dynamic-stochastic multi–project scheduling problem can be generated systemat-
ically based on specified problem parameters.

As a first step, we address in Sect. 5.1 the generation of project networks,
composed of nodes, representing activity types, and arcs, representing precedence
relations. Those networks serve as skeletons for the project types in the generation
procedure which is presented in Sect. 5.2.

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_5,
© Springer International Publishing Switzerland 2015

43

44 5 Generation of Problem Instances

5.1 Generation of Project Networks

In this thesis, activity-on node (AoN) networks (cf. Demeulemeester and Herroelen
[39]) are considered where nodes represent activities and arcs represent precedence
relations. The generation is done using the generator ProgenMax, which has origi-
nally been developed by Schwindt [116] for generating instances of a generalized
RCPSP. As we only need nodes and arcs from those problem instances only two
parameters are of interest–the order strength (OS) and the number of nodes jV j.

OS is a Œ0I 1	-normalized summary measure characterizing the network structure
and is defined as follows (cf. Schwindt [116]).

OS D
P

i2V
P

i 02V
ıii0 � jV j

jV j.jV j � 1/=2
(5.1)

V is the set of nodes and ıii0 is a binary variable indicating that there exists a path in
the AoN–network from node i to i 0. In words, OS is the fraction of the number of
precedence relations (including the transitive ones) between all nodes i; i 0 2 V and
the maximum number of possible precedence relations.

At the boundaries of the range of values for OS, a value of 0 reflects a parallel
network without any precedence relations at all (dummy nodes and precedence
relations to dummy nodes are ignored) and 1 a serial network with precedence
relations between all nodes. Note that OS originally has been proposed by Thesen
[126] as an easy to compute approximation for the restrictiveness of a network.
For each combination of OS and jV j, we generate N nw sample networks. Table 5.1
summarizes the parameters for the network generation.

5.2 Generation Procedure

The procedure is composed of multiple steps and uses general parameters
(cf. Table 5.2), resource type related parameters (cf. Table 5.3) and project type
related parameters (cf. Table 5.4).

The steps of the procedure are outlined in Fig. 5.1. Note that for each project
type p 2 P an AoN–network .Vp.OSp; nnw

p /, Ap.OSp; nnw
p // is given that has been

generated in advance according to Sect. 5.1. For each problem instance (of the N PI

instances to be generated), the following steps are carried out.

5.2.1 Step 1: Assignment of Activity Types to Resource Types

In the first step, we determine, for each resource type r 2R, the set VprD
˚
i 2 Vpj

rip D r
�

of activity types .i; p/ to be processed by resource type r . We randomly

5.2 Generation Procedure 45

Table 5.1 General parameters for base instance generation

Parameter Definition

OS Order strength
jV j Number of nodes
N nw Number of networks to be sampled for given OS and jV j

Table 5.2 General parameters for base instance generation

Parameter Definition

�max Maximum total arrival rate
N PI Number of problem instances to be generated
sd Seed for the random numbers used in the generation

process

Table 5.3 Resource type related parameters for base instance generation

Parameter Definition

cr Number of resources of type r

CVd;min Minimum value for the coefficient of variation related
to expected durations

CVd;max Maximum value for the coefficient of variation related
to expected durations

u Utilization per resource

Table 5.4 Project type related parameters for base instance generation

Parameter Definition

˛p Percent of tardy projects of type p

ap Fraction of the total arrival rate
�wf Tolerance parameter for workload proportions
OSp Order strength of the network of project type p

nnw
p Number of the network sample of project type p

r Utilization multiplier of resource type r

jVprj Number of activity types .i; p/ to be processed by
resource type r

wf p Workload coefficient of project type p

wp Weight of project type p

select a node i 2 Vp that has not been assigned to some resource type yet and set
rip D r until the specified cardinality jVprj is reached for Vpr.

5.2.2 Step 2: Determination of Expected Durations
of the Activity Types

In the second step, we determine for all activity types .i; p/ the expected dura-
tion d ip. At first, we set the total arrival rate � D �max where we have, for the

46 5 Generation of Problem Instances

Fig. 5.1 Generation procedure

arrival rate of any project type p 2 P , �p D �max � ap . ap is the fraction of the
total arrival rate that is due to project type p. For the generation of expected activity
durations, we make the preliminary assumption that all resources have the same
level of utilization such that

ur D �r

cr

D 1 8r 2 R (5.2)

�r refers to the traffic intensity as defined by (2.3) which can be interpreted as the
amount of work that arrives per time unit at resource type r (cf. Brémaud [21]).
Later, we discuss two options to achieve utilizations that are specific to resource
types.

Next, we draw, for each activity type .i; p/, a random real number Qdip from Œ0I 1	.
In order to obtain the values for d ip we must scale the values for Qdip as follows. As
ur D 1 8r 2 R the traffic intensities are given by �r D cr . Be �ip D �p � d ip

the traffic intensity due to activity type .i; p/. Then, for all activity types .i; p/ with
i 2 Vpr, we must have

X

p2P

X

i2Vpr

�ip D �r D cr (5.3)

5.2 Generation Procedure 47

Be Q�r and Q�ip the traffic intensities when we replace d ip by Qdip. By scaling Q�ip such
that �ip D Q�ip

�r

Q�r
D Q�ip

crQ�r
condition (5.3) is met. From the definition of �ip, we obtain

the expected durations by

d ip D Qdip
cr

Q�r

(5.4)

To attain the desired level of utilization, such that ur D u 8r 2 R, we set � D
�max � u and �p D � � ap .

5.2.3 Step 3: Variation Check of the Expected Activity
Durations

In the third step, we check, for each resource type r 2 R, the variation of the
expected durations of the activities to be processed. In order to measure the variation
we introduce random variable d r for the expected duration of any activity arriving
(becoming ready for execution) at resource type r . Then, the variation of the
expected durations is measured by the coefficient of variation CV

dr
of d r . For

the computation of CV
d r

, we make the simplifying assumption that the types of
activities arriving at resource type r are identically and independently distributed.1

Thus, the probability that any arriving activity at resource type r is of type .i; p/ is
given by ap

ar
where ar D P

p2P
apjVprj. ar can be interpreted as the expected number

of activities to be processed by resource type r due to a project of any type having
entered the system. Now, EŒd r 	 and VarŒd r 	 are given by

EŒd r 	 D 1

ar

X

p2P
ap

X

i2Vpr

d ip (5.5)

VarŒd r 	 D 1

ar

X

p2P
ap

X

i2Vpr

d
2

ip �EŒd r 	
2 (5.6)

Thus, we obtain for the squared coefficient of variation CV2

d r

CV2

d r
D VarŒd r 	

EŒd r 	2
(5.7)

1Note that the assumption is normally not met due to the impact of scheduling policies and
interdependencies between activities coming from the same project. For example, multiple
activities from the same project may arrive after completion of their common predecessors.

48 5 Generation of Problem Instances

D
1
ar

P

p2P
ap

P

i2Vpr

d
2

ip � EŒd r 	
2

1
ar

P

p2P
ap

P

i2Vpr

d ip

!2
(5.8)

D ar

P

p2P
ap

P

i2Vpr

d
2

ip

P

p2P
ap

P

i2Vpr

d ip

!2
� 1 (5.9)

Finally, we get

CV
d r
D

v
u
u
u
u
u
u
u
t

ar

P

p2P
ap

P

i2Vpr

d
2

ip

P

p2P
ap � P

i2Vpr

d ip

!2
� 1 (5.10)

Note that the reason for using CV
d r

instead of using VarŒd r 	 for controlling the
variation related to the expected durations becomes obvious when we insert (5.4)
in (5.6) and (5.10) such that we obtain

VarŒd r 	 D

0

B
B
@

cr

�max
P

p2P
ap

P

i2Vpr

Qdip

1

C
C
A

20

B
@

1

ar

X

p2P

X

i2Vpr

Qd 2
ip �

0

@ 1

ar

X

p2P
ap

X

i2Vpr

Qdip

1

A

2
1

C
A

(5.11)

CV
d r
D

v
u
u
u
u
u
u
t

ar

P

p2P
ap

P

i2Vpr

Qd 2
ip

P

p2P
ap � P

i2Vpr

Qdip

!2
� 1 (5.12)

We observe that VarŒd r 	 depends on �max and cr while CV
dr

is independent of the
two parameters. This can be explained by the fact that the two parameters do not
affect the relative variation between the expected durations but only the absolute
level of their mean and variation. Thus, we can measure and control the variation of
the expected durations independently from the values of other parameters.

In order to make sure that the expected activity durations attain the desired level
of variation for each resource type r 2 R we check the following condition.

5.2 Generation Procedure 49

CVd;min � CV
dr
� CVd;max 8r 2 R (5.13)

If (5.13) is not met the expected durations d ip are determined again by repeating the
steps starting from sampling the values for Qdip 2 Œ0I 1	 in Step 2.

5.2.4 Step 4: Adjustments to Resource Type Specific
Utilizations

In the fourth step, we take into account that the utilization per resource of type
r 2 R may be lower than u. Therefore, we use a utilization multiplier
r 2 Œ0I 1	

denoting the fraction of the actual utilization of the maximum utilization u such that
ur D u �
r . Now, we have two options for taking into account
r in the generation
process.

1. Increasing cr : With �r D u � cr we obtain

cr .
r / D
�

�r

u �
r

�

D
�

cr

r

�

(5.14)

Hence ur D u�cr

cr .
r /
� u �
r .

2. Scaling down the expected durations of all activity types .i; p/ with rip D r gives

d ip.
r / D d ip
r8p 2 R; i 2 Vpr (5.15)

Thus, we have

ur D

r�

P

p2P
ap

P

i2Vpr

d ip

cr

D �r

cr

r D u �
r (5.16)

Note that both options have no effect on CV
d r

.

5.2.5 Step 5: Check of Project Type Workloads

In the fifth step, we check whether the proportions of the expected work loads per
project for the different project types correspond to the proportions of the workload
indices wip . For a project type p 2 P the expected workload per project is given by

d p D
X

i2Vp

d ip (5.17)

50 5 Generation of Problem Instances

Now, we check whether for any two project types p1; p2 2P the following condition
is met.

wip1

wip2

� .1 � �wi/ � d p1

d p2

� wip1

wip2

� .1C �wi/ (5.18)

�wi is a tolerance parameter as it is difficult to meet the condition exactly due
to sampled expected activity durations from a continuous uniformly distributed
interval. If (5.18) is not met for some p1; p2 2 P the procedure is repeated starting
with sampling of the values for Qdip 2 Œ0I 1	 in Step 2.

5.2.6 Step 6: Storage of Additional Parameters

In the sixth step, additional parameters are simply stored with the other data of the
problem instance. Firstly, we store for each project type p 2 P the holding cost wp

per time unit. Secondly, we store ˛p . ˛p denotes the percentage of tardy projects
of type p when fixed maximum flow time D

max
p is set and the set of activities to be

scheduled BS
r .t/ is determined randomly. Both are simply stored with the other data

of the problem instance.
Further problem related parameters (e.g. for the probability distributions for

activity durations and interarrival times) may be added. However, when we investi-
gate mostly instances with exponentially distributed interarrival times and activity
durations no further distribution parameters are needed.

The procedure is repeated until the specified number of sampled instances N PI

is generated. In order to obtain the same problem instances (for a given set of
parameters), each time the procedure is run, we initialize the random number
generator (RNG) using a given seed sd. As long as the same seed sd is used, sampled
expected durations d ip and resources types rip are independent from non-relevant
parameters, such as OSp or ˛p . Thus, changing OSp or ˛p does not have an impact
on the sampled values of d ip and rip.

Chapter 6
Scheduling Using Priority Policies

In this chapter, we present a simulation study carried out to investigate the
performance of priority policies in dynamic-stochastic environments.

As in most related studies in the project scheduling as well as the job shop
literature preemptions are not allowed, we restrict our considerations to this case.

The study has three objectives. Firstly, to determine whether it is beneficial to
use priority policies. Secondly, to show the impact of problem parameters on the
performance of priority policies. Thirdly, to identify conditions, in terms of problem
parameters, under which specific priority policies can be recommended.

In Sect. 6.1, we give a description of the priority policies considered in this
study. They have been selected according to their performance for related problems,
especially for those with a weighted tardiness objective, in the multi-project
scheduling and job shop scheduling literature.

Section 6.2 presents in detail, the additional assumptions made for the simulation
study, and the problem parameters considered.

In Sect. 6.3, we investigate the main effects of the problem parameters and in
Sect. 6.4 we analyze in detail the conditions under which specific priority policies
can be recommended.

6.1 Priority Policies

For stochastic project scheduling problems, various classes of policies have been
proposed (cf. for example Möhring et al. [95] and Stork [122]). Our focus is on the
class of resource-based priority policies (cf. Stork [122]) that are defined as follows.

Definition 6.1.1. At decision epoch t a resource-based priority policy (RBP)
�prio orders the activities in W.r; t/ based on priorities obtained by a priority rule
and selects activities according to this order.

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_6,
© Springer International Publishing Switzerland 2015

51

52 6 Scheduling Using Priority Policies

Resource based priority policies combine priority rules with the parallel schedule
generation scheme (cf. Kolisch [74]), which is compatible with the nonanticipativity
constraint (cf. Ballestin [10]).

An alternative to RBPs are activity based priority policies (ABPs) (cf. Stork
[122]) where the additional constraint exists that an activity with a lower priority
(w.l.o.g. we prefer activities with higher priorities) may not be scheduled before
an activity with a higher priority. From a theoretical point of view ABPs have
the advantage that Graham anomalies (cf. Graham [53]) are avoided. Graham
anomalies refer to the fact that reducing the duration of an activity may lead to
an increase of the project completion time which is a consequence of the non-
idling property of RBSs. By the additional constraint ABPs allow idleness and
thus avoid Graham anomalies. Activities with lower priorities are ignored, although
they could be scheduled, as soon as an activity could not be scheduled. However,
some preliminary experiments have shown that ABPs lead in many cases to a bad
performance or even instable behavior with in an unbounded long term average
number of projects in the system. This is due to idleness of resources that occurs
quite frequently such that the busy periods of the resources are not sufficient to cope
with the workload associated with the projects arriving at the system.

After a short discussion of how parameters of priority rules are computed, we
state the priority rules to be investigated in formal terms. The selection of the
rules has been based on their performance for similar problems especially with
weighted tardiness or a weighted flow time objectives (cf. Lawrence and Morton
[85], Kurtulus and Narula [82] and Kutanoglu and Sabuncuoglu [83]). Furthermore,
rules have been selected where information can be easily obtained for example
weights such that their implementation is less costly. For the rest of the chapter,
we refer to a priority policy or only policy when we refer to a RBP that is based on
a given priority rule such as FCFS.

6.1.1 Computation of Rule Parameters

In this section, we discuss two parameters used by several priority rules.

The first parameter is the expected length D
CP
p of the critical path, being the

longest path in the project network when limited resources are neglected, of project
type p. The second parameter is an estimate for the expected latest start time l ij

for activities .i; j / in order to meet the due date of project j . One major difficulty
in determining both parameters is their dependence on the current system state (in
terms of sets of waiting activities and activities in process) and future scheduling
decisions. As those dependencies partially result from scarce resources we use

simple estimates for D
CP
p and l ij instead that are computed without consideration of

limited resources and only using expected durations as follows. At first, we estimate

the expected length of the critical path D
CP
p by computing the longest path in the

network if the expected durations of the activity types are used as if they were

6.1 Priority Policies 53

deterministic durations. Then, for each project j we obtain the estimates for l ij

by the backward recursion proposed by Lawrence and Morton [85] as given by

l ij D
(

ta
j CmaxfDmax

j ; DCP
pj
g � d ipj

VSucc
pj

.i/ D ;
min

i 0

f.l i 0j � d ipj
/ W i 0 2 VSucc

pj
.i/g otherwise

(6.1)

The computation of latest start times based on deterministic durations is expected to
be typical procedure of practitioners although durations may be stochastic since
scheduling is mostly based on deterministic models. Thus, we consider priority
policies based on information that is typically used.

6.1.2 Priority Rules

6.1.2.1 Bottleneck Dynamics Rules

A family of rules summarized under the bottleneck dynamics approach has been
proposed by Lawrence and Morton [85] and Morton and Pentico [96]. In particular,
these rules have been designed for the weighted tardiness objective. The generic
form of the rules is

max
.i;j /2W.r;t /

wpj

� ij.t/
U ij.t/ (6.2)

The basic idea of the approach is to balance the cost wpj
U ij.t/ of delaying an

activity for one time unit against the marginal opportunity cost � ij.t/ associated
with starting its execution one time unit earlier. The term wpj

U ij.t/ for the delay
cost has two components: The weight (holding costs per time unit) wpj

reflects the
maximum possible delay costs incurred when the project tardiness increases by one
time unit. As activities may have positive total slack l ij � t , the urgency factor U ij,
0 � U ij.t/ � 1, is used for discounting wpj

. It is given by

U ij.t/ D exp

0

@� .l ij � t/C

�dripj
.t/

1

A (6.3)

where d ripj
.t/ is the average expected duration of activities waiting in front of

resource type r at time t and � is a scaling factor denoted as lookahead parameter.
By increasing �, the fact that waiting times consume slack and thus increase the
urgency is taken into account (cf. Lawrence and Morton [85]). Figure 6.1 shows the

shape of the urgency factor for different values for � and d ripj
.t/ D 1. For negative

slack, the urgency factor is 1 and it decreases exponentially for positive slack.
The higher the look ahead parameter �, the less rapid the decrease of the urgency

54 6 Scheduling Using Priority Policies

−20 0
0

0.5

1

1.5

k =5 k = 20

k = 100

lij − t

U
ij

(t
)

Fig. 6.1 Function of the
urgency factor U ij.t /

factor. In order to estimate opportunity cost � ij.t/ Lawrence and Morton [85]
propose two methods, namely myopic activity costing (MC) and global activity
costing (GC). Myopic activity costing considers only activity .i; j / to be scheduled
on resource type ripj

which gives opportunity cost

� ij.t/ D
�ripj

.t/

cripj

d ipj
(6.4)

The rationale is that scheduling activity .i; j / seizes fraction 1
cripj

of the resources

of type ripj
for dipj

time units. Each time unit is worth �ripj
.t/, being the estimated

opportunity cost for postponing the activities waiting in front of resource type ripj

by one time unit. As we have cripj
D cr and �ripj

.t/ D �r .t/ for all activities

.i; j / 2Wr .t/ waiting in front of resource type r , (6.4) reduces to � ij.t/ D d ipj
.

For global activity costing (GC), the opportunity costs of all unscheduled
activities of project j from the set US

j .t/, including activity .i; j /, are considered.
Morton and Pentico [96] make the assumption that to expedite project j all
unscheduled activities .i 0; j / with i 0 2 US

j .t/ of project j have to be started
immediately as soon as they become ready. Thus, we obtain the opportunity cost by

� ij.t/ D
X

m2US
j .t/

�rmpj

.t/

crmpj

d mpj

!

(6.5)

where resource prices �r .t/ are set either by uniform resource pricing in Eq. (6.6)
(cf. Lawrence and Morton [85]) or by dynamic resource pricing in Eq. (6.7)
(cf. Morton and Pentico [96]).

�U
r .t/ D 1 8r 2 R (6.6)

�D
r .t/ D

X

.i;j /2Wr .t /

wpj
� U ij.t/ (6.7)

6.1 Priority Policies 55

Combining the two activity costing methods, myopic and global, with the resource
pricing schemes, uniform and dynamic, we obtain the following three bottleneck
dynamic (BD) priority rules.

BD-MC: BD with Myopic Activity Costing (MC)

max
.i;j /2Wr .t /

wpj

d ipj

� U ij.t/ (6.8)

BD-GC-U: BD with Global Activity Costing (GC) and Uniform Resource
Pricing (U)

max
.i;j /2Wr .t /

wpj

P

m2US
j .t/

d mpj

�U
r .t /

crmpj

� U ij.t/ (6.9)

BD-GC-D: BD with Global Activity Costing (GC) and Dynamic Resource
Pricing (D)

max
.i;j /2Wr .t /

wpj

P

m2US
j .t/

d mpj
� �D

r .t /

crmpj

� U ij.t/ (6.10)

Note that the priority rules given by (6.8)–(6.10) are similar to the well known
WSPT-rule. The BD-MC-rule multiplies, for each waiting activity, the priority
from WSPT with urgency factor U ij.t/ whereby due dates are taken into account.
Accordingly, the two rules based on global activity costing, BD-GC-U and BD-GC-
D, are not only considering the duration of the activity under consideration but of
all unscheduled activities of the project the activity belongs to.

6.1.2.2 Further Rules

Next to the three bottleneck dynamic rules, we investigate the following rules (for
the references we refer the reader to end of this section).

First-Come, First-Served (FCFS)

min
.i;j /2Wr .t /

ta
ij (6.11)

where ta
ij refers to the arrival time of activity .i; j / at resource type ripj

.

56 6 Scheduling Using Priority Policies

Maximum Penalty (MAXPEN)

max
.i;j /2Wr .t /

wpj
(6.12)

Due Date Modified Shortest Activity from Shortest Project (SASP-DD)

min
.i;j /2Wr .t /

(
l ij � t l ij � t < 0

D
CP
pj
C d ipj

otherwise
(6.13)

Weighted Earliest Due Date (WEDD)

min
.i;j /2Wr .t /

(
w�1

pj
� .ta

j CDmax
j � t/ ta

j CDmax
j � t � 0

wpj
� .ta

j CDmax
j � t/ ta

j CDmax
j � t < 0

(6.14)

Weighted Minimum Slack (WMINSLK)

min
.i;j /2Wr .t /

(
w�1

pj
� .l ij � t/ l ij � t � 0

wpj
� .l ij � t/ l ij � t < 0

(6.15)

Note that we modified WEDD and WMINSLK such that in case of negative
remaining time until the due date (ta

j C Dmax
j � t > 0) or negative total slack

(l ij � t), the priority value is still positive.

Weighted Shortest Processing Time (WSPT)

max
.i;j /2Wr .t /

wpj

d ipj

(6.16)

Weighted Critical Ratio and Shortest Processing Time (W(CRCSPT))

max
.i;j /2Wr .t /

wpj

d ipj
�max

(

1;
ta
jCDmax

j �t

DCP
pj
�l

CP
ipj

) (6.17)

The W(CRCSPT)-rule has originally been designed for minimizing a weighted
tardiness objective in job shop scheduling. We have adapted it according to the
idea of Tsai and Chiu [128] to the multi-project scheduling problem. Instead of
the expected remaining workload of a job the expected length of longest path

6.2 Experimental Design 57

between an activity type .i; p/ and the end of the project of type p is used. For
the computation of the expected latest start times l ij, we do not take into account

waiting times such that E
h
DCP

p � lCP
ip

i
is a constant for all projects of type p.

Random (RAN)

This policy randomly selects activities for scheduling.
The formulas for FCFS, WEDD, WMINSLK and WSPT have been taken

from Lawrence and Morton [85]. W(CRCSPT) has been proposed for dynamic
job shop scheduling problems by Kutanoglu and Sabuncuoglu [83] based on the
CRCSPT-rule by Andersson and Nyirenda [4]. SASP-DD has been taken from
Dumond and Mabert [43]. Finally we note that ties are broken randomly.

6.2 Experimental Design

Firstly, we discuss more specific assumptions for the simulation study. Secondly,
we outline the relevant parameters for the generation of problem instances and
simulation. For details of the generation procedure, we refer to Chap. 5.

6.2.1 Preliminaries

At first we assume that preemptions are not allowed such that we consider non-
preemptive RBPs.

In addition, the following specific assumptions are made. For each project type
p 2 P , we assume a Poisson arrival process with rate �p . Activity durations are
assumed to be exponentially distributed with mean d ip for activity type .i; p/.
Maximum flow times Dmax

j are drawn from an uniform distributed interval
h
.1 � ˇ/D

max
pj
I .1C ˇ/D

max
pj

i
. The number of projects in the system is restricted

to Kmax because, as addressed in Sect. 2.1, scheduling policies (especially if they are
not optimal) may lead to instable system behavior where not steady state is reached
(cf. Kumar and Seidman [80] or Meyn [93]) such that simulation run times may
become very large. Kmax and D

max
p 8p 2 P are determined by two simulation runs

where activities are scheduled using the RAN-policy. In the first run, we have not
restricted the number of projects jJ .t/j at any time t . Then, we have set Kmax to the
number of projects which is not exceeded 99 % of the time. As a consequence, the
system is nearly an open system without limitation on the number of projects. In the
second run, taking into account Kmax, as determined above, we have determined
D

max
p such that the share of completed projects from all accepted projects of type

58 6 Scheduling Using Priority Policies

p 2 P with a flow time F j � D
max
p amounts to 1 � ˛p . Parameter ˛p serves

to control due date tightness and corresponds to the share of tardy projects of
type p when using the RAN-policy. Employing ˛p , we address the problem that
the difficulty to meet due dates depends on multiple factors, amongst others the
utilization of resources (cf. Ramasesh [109]). As ˛p is a statistical measure, defined
on realizations of project flow times, it allows to control the tightness independently
from problem parameters. Furthermore, as RAN does not use any information, due
date tightness is controlled independently from the information used by specific
scheduling policies.

Finally, we discuss a normalization of the results. Instead of using the objective
values Z .�/, obtained when using policy � for a problem instance, we use
normalized results given by

Z n.�/ D Z .�/

Z .RAN/
(6.18)

where Z n.�/ is the average weighted tardiness obtained for a policy � relative
to the average weighted tardiness obtained using RAN. The normalization has the
advantage that, when averaging over the results from a set of problem instances, the
values lie in a similar range such that they have a similar impact on the mean.

6.2.2 Generation of Problem Instances

The generation of problem instances is controlled by two set of parameters, system
parameters and project parameters.

6.2.2.1 System Parameters

The number of resource types jRj is set to 1, 3, 5 ,10 ,15 and 20 with cr D 1

8r 2 R.
As for cr D 1 8r 2 R each resource type corresponds to a resource, we use

for the rest of the chapter, the terms resource types and resources interchangeably.
The utilization ur of resource r 2 R is assumed to be equal for all resources

r 2 R such that ur D u 8r 2 R. To obtain a given level of u expected durations of
the activity types are set such that for � D �max D 0:1333 the utilization amounts
to 100 %. Then, we attain a given level of u by setting the total arrival rate to � D
�max �u where u is considered at the levels of 70 and 90 %. For simplicity, the project
type related arrival rates �p have equal shares of � such that ap D 1

jPj .
The variation of the expected durations of the activities processed on a resource

(type) r is controlled by their coefficient of variation CV
dr

where d r is a random

6.2 Experimental Design 59

Table 6.1 Values for the
system parameters

Parameter Value

jRj 1, 3, 5, 10, 15, 20

u 0:7, 0:9h
CVd;minICVd;max

i
Œ0I 0:4	, Œ0:8I 1;000	

variable for the expected duration of any activity to be processed on resource r . For
details, we refer to Chap. 5. For our experiment, we consider two intervalsh

CVd;minICVd;max
i

from which CVdr
may come from. The first interval Œ0I 0:4	

refers to small variations of the expected durations and second interval Œ0:8I 1:0	

to large variations of the expected durations. Table 6.1 summarizes the system
parameters and the levels at which they have set within the experimental design.

6.2.2.2 Project Type Parameters

We investigate problem instances with two project types (P D f1; 2g) having
weights w1 D 1 and w2 D 2. As we intend to obtain general insights into the effects
of problem parameters we consider similar project types in the sense that they have
the same values for their parameters except the holding cost wp . We consider two
levels of due date tightness ˛ D 20; 80 % with ˛p D ˛ 8p 2 P .

The parameter ˇ for the variation of the maximum flow time Dmax
j is set to 50 %.

For controlling the networks of the project types, we have set the following
parameters.

The number of activity types for each project type p 2 P has been set to jVpj D
20 8p 2 P .

The network structure of each project type is controlled using the order strength
(OS). Recall that OS is a Œ0; 1	-normalized summary measure for the number of all
precedence relations, including the transitive ones. A value of 0 indicates a purely
parallel network where there are no precedence relations between the activities.
A value of 1 indicates a serial network where activities have to be executed in a
strict sequence. A formal definition of OS is given by Schwindt [116]. We have set
OSp to 0, 0:2 , 0:4, 0:6, 0:8 and 1:0 for both project types p 2 P . For each level
of OSp , four sample networks are generated such that we can form two pairs of
different networks.

Finally, the workload indices wip are set to one for all p 2 P with a tolerance
parameter �wi D 0:15 in order to have project types with an approximately equal
expected workload dp D P

i2Vp

d ip. The requirement that project types must have

an approximately equal workload is made in order to avoid hidden effects of the
workloads on the performance of priority policies. Hidden effects may result from
the fact that some policies (e.g. BD-GC-U) consider the total expected workload
from unscheduled activities of the projects such that large differences between the

60 6 Scheduling Using Priority Policies

Table 6.2 jVpr j for all
p 2 P and r 2 R jRj jVprj

1 20
3 7 7 6
5 4 4 4 4 4
10 2 2 2 2 2 2 2 2 2 2
15 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
20 1

Table 6.3 Values of the
project type parameters

Parameter Value

˛ (%) 80, 20

ˇ (%) 50

.jV1j; jV2j/ .20; 20/

.w1; w2/ .1; 2/

.wi1; wi2/ .1; 1/

�wi 0:15

OS 0, 0:2, 0:4, 0:6, 0:8, 1:0

expected workloads of the project types may lead to a better performance of such
policies.

For each combination of parameters and pair of networks N PI D 2 instances are
generated as outlined in Chap. 5. The number of activity types jVpr j to be processed
by each resource r 2 R are specified in Table 6.2. In our design each resource
should process nearly the same number of activity types. Thus, for fixed jVpj D
20 8p 2 P the values for jVpr j depend on jRj.

Table 6.3 summarizes the parameters related to project types. The total number
of problem instances results from the product over the number of levels (given in
parentheses) w.r.t. jRj (6), u (2), CV

dr
(2), ˛ (2), OSp (6), the number of generated

pairs of networks for each level of OSp (2) and the number of the instances N PI

(2) for a given combination of parameters such that we obtain 1;152 instances. For
each problem instance we simulate each priority policy such that we have 12;672

combinations of priority policies and problem instances.

6.2.3 Simulation Set Up

For the simulation of the problem instances, we have implemented a discrete event
simulation tool using JAVA. When running the simulation, we employed a warm up
period of 10;000 projects to reach a steady state. The length of the warm up period
has been determined using Welch’s procedure (cf. Law [84]) for problem instances
with jRj D 20 and u D 0:9 where a high number of projects is expected to be
in the system. By this, we have obtained a longer warm up period than necessary
for most of our instances, ensuring that we are on the safe side. The length of the
observation period has been set to 20;000 projects. As variance reduction technique,

6.3 Main Effects of Problem Parameters 61

we have employed common random numbers (see Law [84]) such that, for each
problem instance, all priority policies are applied on the same sample of projects
characterized by realizations for type, interarrival times and activity durations.

For each combination of problem instance and priority policy, we have run 10

replications such that we could verify that for most ínstances and policies the
resulting paired t-confidence intervals (cf. Law [84]) do not contain 0 at a confidence
level of 95 %. Furthermore, the width of the confidence interval is at most 10 %
of Zn

� .
For the BD-policies the lookahead parameter � is set to 1 as for this value good

results have been obtained in preliminary experiments.

6.3 Main Effects of Problem Parameters

Let us first discuss the main effects of the problem parameters ˛, jRj, OSp , CVd and
u on the performance of the priority policies. In order to obtain the main effect of
a problem parameter, we average over sets of problem instances where a parameter
has a given value. Then, the differences between the means obtained for different
values of the problem parameter are computed which indicate an effect (cf. Law
[84]). We have verified that, despite interactions between parameters, the effects
can also be observed for subsets of the problem instances. In the following Z

n
.�/

denotes the mean of the Zn.�/ values for a set of problem instances with given
value for a problem parameter.

6.3.1 Due Date Tightness

Figure 6.2 shows the impact of due date tightness ˛ controlled via the percentage of
tardy projects. For low due date tightness (˛ D 0:2), policies employing due date
information such as slack or critical ratio exhibit a superior performance. For high
due date tightness (˛ D 0:8), the performance of policies using due date information
is still better, but to a much smaller extend. This can be explained by the fact that,
for ˛ D 0:2, many activities have ample expected total slack l ij.t/ � t . In this case,
it is sufficient to identify the activities with small total slack and schedule them
first. Activities with enough total slack need no further consideration. However,
for ˛ D 0:8 the total slack of many activities is small and hence is not as good
for discriminating activities anymore. Other information such as weights, expected
activity durations or resource prices becomes more important.

62 6 Scheduling Using Priority Policies

0.2 0.8
0

50

100

150

α

Z
n π

MAXPEN
WEDD

WMINSLK
WSPT

BD-MC
W(CR+SPT)

BD-GC-U
BD-GC-D

FCFS
SASP-DD

Fig. 6.2 Impact of the
tightness factor

6.3.2 Number of Resources

Figure 6.3 shows the performance for different numbers of resources jRj at the two
levels of due date tightness (˛ D 0:2 and ˛ D 0:8). For a clear representation, we
separate the priority policies according to the type of performance function into two
figures.

For both levels of tightness, we observe that for increasing jRj, the performance
of the priority policies depicted on the left, BD-GC-D, BD-GC-U, MAXPEN,
WEDD, WMINSLK and SASP-DD, deteriorates. Contrarily, the performance of
some policies depicted on the right, namely WSPT and W(CRCSPT), improves
slightly. The performance of the remaining policies on the right is varying and
partially depends on the level of due date tightness while the performance of
FCFS is constant for high due date tightness and slightly improving for low due
date tightness. BD-MC, independently of due date tightness, exhibits an improved
performance until jRj D 5 resources and deteriorates afterwards.

Altogether, we observe that for low due date tightness, policies using due date
information give a better performance which is almost identical. This can be
explained using the argument from Sect. 6.3.1. Finally, we note that W(CRCSPT)
exhibits the best performance for higher jRj.

Next, we analyze in more depth the reason for the good performance of
BD-GC-U, BD-GC-D, WEDD WMINSLK and SASP for small jRj. As a starting
point, we consider the case where jRj D 1 with unbounded Kmax and generally
distributed activity durations. If we set ˛ D 100 % the objective function turns
into the minimization of the average weighted flow time. For this specific case,
the optimal scheduling policy is a priority index policy (cf. Nino-Mora [100]), as
given by

Theorem 6.3.1. The optimal scheduling policy w.r.t. expected weighted flow time
is a priority index policy where an activity is selected according to

max
.i;j /2W.r;t /

wpj
P

m2Uj .t/

d mpj

(6.19)

6.3 Main Effects of Problem Parameters 63

α = 0.8

1 3 5 10 15 20
0

50

100

150

|R|

Z
n π

1 3 5 10 15 20
0

50

100

150

|R|

Z
n π

MAXPEN WEDD WMINSLK BD-GC-U BD-GC-D
SASP-DD WSPT BD-MC W(CR+SPT) FCFS

α = 0.2

1 3 5 10 15 20
0

50

100

150

200

|R|

Z
n π

1 3 5 10 15 20
0

50

100

150

200

|R|

Z
n π

MAXPEN WEDD WMINSLK BD-GC-U BD-GC-D
SASP-DD WSPT BD-MC W(CR+SPT) FCFS

Fig. 6.3 Impact of jRj

As a tie breaker among the activities of a project and between the projects j 2 J .t/

in case of equal priority any policy can be used.

Recall that Uj .t/ denotes the set of unfinished activities which is equivalent to US
j .t/

at decision times since no activity is in process. The proof of Theorem 6.3.1 can be
found in Sect. 7.2 and is based on Klimov’s [72] result for optimally scheduling
multiple job classes waiting in front of a queueing system with a single resource.
We observe that (6.19) is equivalent to BD-GC-U given by (6.9) with an urgency
factor U ij.t/ D 1. Furthermore, we observe that similarly to BD-GC-U the optimal
policy is a generalization of WSPT where a project is considered as one job.
As the completion of an activity leads to a reduction of the expected remaining
workload

P

m2Uj .t/

d mp.j / the priority of a project increases. Hence, the activities of

64 6 Scheduling Using Priority Policies

a project are processed as long as no project with a higher priority arrives. For this
case, the project in process is preempted on completion of the activity in process.
This behavior reflects the basic approximation assumption (cf. Sect. 6.1.2) of the
BD-approach, which states that in order to expedite a project (reduce its tardiness)
all its unscheduled activities (including the activity currently considered) must be
expedited. Resource prices are not needed as all activity types are processed by the
same resource.

This suggests that, for small jRj where each resource type processes many
activity types, the performance of BD-GC-U and the BD-GC-D is less sensitive to
resource prices. For larger jRj, the number of activity types processed per resource
type decreases such that more resource types are involved for processing a project
type. Hence, the benefit of scheduling an activity is affected by system variables
such as sets of waiting activities and activities in process at other resource types.
This explains the deteriorating performance of the two policies as well as the
observation that BD-GC-D with dynamic resource price estimates performs better
than BD-GC-U.

For explaining the observation that SASP-DD, WEDD and WMINSLK exhibit
a similar performance as BD-GC-U and BD-GC-D, we note that due dates are
positively correlated with project arrival times such that projects having earlier due
dates tend to have arrived earlier. Thus, projects with earlier due dates tend to have
more completed and scheduled activities. As SASP-DD, WMINSLK and WEDD
tend to prefer activities from projects with earlier due dates they implicitly prefer
projects having less expected workload from unscheduled activities, similarly to
BD-GC-D and the BD-GC-U.

Finally, we explain the performance of WSPT, W(CRCSPT) and BD-MC. Note
that the three policies are based on the same principle and consider each activity
as an isolated job such that all other unfinished activities of a project are ignored.
Thus, the policies are expected to perform well if the activities belong to separate
projects and the successors of the waiting activities do not interfere each other by
demanding the same resources. Obviously, both conditions are more likely to be
met for large jRj. The deteriorating performance of BD-MC for large jRj may be
explained by two issues related to U ij.t/. Firstly, the lookahead parameter � of the
BD-MC-policy is not always optimally set. Secondly, the critical ratio employed by
W(CRCSPT) may be a more appropriate urgency measure than U ij.t/.

6.3.3 Order Strength

Figure 6.4 shows the results for different values of order strength (OS). Again,
we present the results for ˛ D 0:8 and ˛ D 0:2 separately. For high due date
tightness, we observe that, for all policies except WSPT and W(CRCSPT), the
performance deteriorates at higher values of OS. By contrast, the performance of
WSPT slightly improves when increasing OS while for low due date tightness the
performance of WSPT deteriorates. The performance of W(CRCSPT) is nearly

6.3 Main Effects of Problem Parameters 65

α =0 .8

0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

OS p

Z
n π

0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

OS p

Z
n π

α = 0.2

0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

OS p

Z
n π

0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

OSp

Z
n π

MAXPEN WEDD WMINSLK BD-GC-U BD-GC-D
SASP-DD WSPT BD-MC W(CR+SPT) FCFS

Fig. 6.4 Impact of OSp on policy performance

stable for both levels of due date tightness. Finally, we observe that FCFS shows
a good performance for OS D 0.

We first explain the performance of BG-GC-D and BD-GC-U. At low levels
of OS, there are only few precedence relations such that the activities of a project
that are processed by each resource can be considered as nearly independent sub-
projects. On the level of such sub-projects, we can argue using Theorem 7.2.1 that
activities from sub-projects of a resource having less expected remaining workload
and high delay cost should be preferred. At the same time, at the level of entire
projects, expediting a subproject is only beneficial if all parallel sub-projects are
expedited as well. As all sub-projects must be finished in order to finish the entire
project the advantage of expediting a subproject would be reduced by parallel sub-
projects not expedited. We observe that both aspects of good scheduling decisions
are implicitly taken into account by the consideration of the expected workload from
unscheduled activities of a project (being equal to sum of the expected remaining
workload over all sub-projects).

66 6 Scheduling Using Priority Policies

The similar performance of SASP-DD, WMINSLK and WEDD can be explained
again by the positive correlation between due dates and expected workload from
unscheduled activities as discussed in Sect. 6.3.2.

To explain the performance of WSPT for low due date tightness, we note that the
latter does not take into account due date information and hence has an inferior
performance. However, the effect of less advantageous scheduling decisions is
weaker for small values of OS. Activities are less critical in the sense that a delay
is less likely to increase project tardiness as more parallel activities are likely to be
completed afterwards.

The performance of FCFS for OSp D 0 can be explained by the fact that the
arrival times of activities ta

ij belonging to the same project are identical to the project
arrival times such that ta

ij D ta
j . Thus, activities from projects having arrived earlier

are preferred which results in a similar behavior as policies based on due date
information such as SASP-DD or WMINSLK.

6.3.4 Variation of Expected Activity Durations

Figure 6.5 shows the results for the two ranges of CVdr
. The results are shown

separately as the performance of the priority policies follows the same pattern for the
two levels of due date tightness. We observe that the policies based on the WSPT-
principle, that are namely BD-MC and W(CRCSPT) perform better for a higher
CVdr

level.
This can intuitively be explained by the fact that minimizing the average

weighted flow time of the activities at each resource becomes more effective when
the variation between the expected durations of the activities is larger. Note that a
WSPT-policy (or c�-policy) is well known to minimize the average weighted flow
time of projects consisting of a single activity at a single resource (cf. Pinedo [103])
for static as well as dynamic problems. Furthermore, short average weighted flow
times of activities at the resources tend to have a positive effect on the average
weighted tardiness on the level of projects.

6.3.5 Utilization per Resource

Figure 6.6 shows the effect of the utilization per resource u. Obviously, the effect is
small. This contrasts the findings in the literature where increasing utilization leads
to a higher effectiveness of policies aimed at flow time related objectives such as
WSPT (cf. Kutanoglu and Sabuncuoglu [83] or Vepsalainen and Morton [132]). An
explanation is delivered by the fact that the tightness is controlled by the statistical
measure percentage of tardy projects ˛. Hence, the effect of utilization is implicitly
taken into account when setting the mean maximum durations D

max
p 8p 2 P . This

leads to a due date tightness that is roughly at the same level for different values

6.3 Main Effects of Problem Parameters 67

[0;0.4] [0.8;1000]
0

50

100

150

CV dr

Z
n π

MAXPEN
WEDD

WMINSLK
WSPT

BD-MC
W(CR+SPT)

BD-GC-U
BD-GC-D

FCFS
SASP-DD

Fig. 6.5 Impact of CVdr
on policy performance

α = 0.8

0.7 0.9
0

50

100

150

u

Z
n π

α = 0.2

0.7 0.9
0

50

100

150

200

u

Z
n π

MAXPEN WEDD WMINSLK BD-GC-U BD-GC-D
SASP-DD WSPT BD-MC W(CR+SPT) FCFS

Fig. 6.6 Impact of the number of OS on policy performance

of u. By contrast, in the literature due dates are set without taking into account
resource utilization. As a consequence increasing utilization leads in many cases to
an increasing tightness such that observations similar to Sect. 6.3.1 can be made.

68 6 Scheduling Using Priority Policies

Furthermore, we observe that when increasing u the gaps between the objective
values slightly increase. This can be explained by increasing queue lengths ampli-
fying the effect of the priority policies.

6.3.6 Observations for Problem Instances with a Single Project
Type

We also have investigated instances with a single project type with w1 D 1.
Essentially, the effects observed for two project types could be confirmed also
for the case of a single project type. However, we have found that in many cases
BD-GC-U performs much better such that the impact of different resource pricing
schemes (uniform and dynamic pricing) is weaker. A possible explanation is the
fact that projects have a more similar flow through the system and have the same
weights/costs per time unit when the due date is not met. Thus, judgements whether
it is beneficial to expedite an activity is more determined by the remaining activities
to be scheduled.

6.4 Detailed Analysis

In the following, we consider the results in more detail with the objective to identify
cases where certain policies can be recommended. Primarily, the recommendations
are based on the performance of the policies. However, we additionally pay attention
to policies having less need for information such that they are easier to implement.

When presenting the results, we show, in addition to Z
n
.�/, the mean ranks

R.�/. This helps to verify that low (high) Z
n
.�/ are not due to exceptional low

(high) values Zn.�/ for some instances.
The analysis is composed of two parts. At first, we consider two extreme cases

where recommendations w.r.t. priority policies to be used are especially clear. The
first case comprises problem instances with only one resource (jRj D 1). The
second case comprises problem instances with purely parallel networks (OSp D
0 8p 2 P).

In the second part, we analyze the results for the remaining problem instances.

6.4.1 Performance for Special Cases

6.4.1.1 Single Resource

Table 6.4 shows the results for the case with one resource processing all activity
types (jRj D 1). For this case, BD-GC-D and BD-GC-U perform best with WEDD

6.4 Detailed Analysis 69

Table 6.4 Mean weighted
tardiness values and mean
ranks for the case with 1
resource

Policy Z
n

� (%) R�

BD-GC-U 22.6 1.4
BD-GC-D 22.6 1.3
WEDD 26.6 3.0
WMINSLK 28.2 4.1
SASP-DD 35.3 6.2
BD-MC 38.4 5.8
W(CRCSPT) 40.0 6.7
MAXPEN 76.1 8.3
FCFS 78.8 8.6
WSPT 91.8 9.3

Table 6.5 Mean weighted
tardiness values and mean
ranks for the case with
OS D 0

Policy Z
n

� (%) R�

BD-GC-U 19.6 1.7
BD-GC-D 19.5 1.3
WEDD 23.2 3.7
WMINSLK 23.9 4.6
FCFS 28.2 6.0
BD-MC 29.3 5.6
W(CRCSPT) 29.3 5.8
SASP-DD 31.3 7.1
WSPT 81.9 9.7
MAXPEN 86.4 9.3

and WMINSLK being the best followers. These observations are consistent with the
theoretical insights discussed in Sect. 6.3.2.

6.4.1.2 Parallel Networks

For the case of parallel networks without precedence relations (OSp D 0 8p 2 P),
BD-GC-U and BD-GC-D perform best with WEDD and WMINSLK being the best
followers. Furthermore, FCFS may be an easy-to-implement alternative having only
a modest need for information (Table 6.5).

6.4.2 Performance for the Remaining Problem Instances

For ease of presentation, we number the intervals for CVdr
as follows – 1 for interval

Œ0I 0:4	 and 2 for interval Œ0:8I 1;000	.
As a first step, we have grouped the problem instances by due date tightness. As a

second step, we have identified, for each of the two groups, five subsets (10 subsets
in total) covering different ranges of parameter values. Table 6.6 shows Z

n

� and R�

70 6 Scheduling Using Priority Policies

Table 6.6 Mean average weighted tardiness values and ranks for high tightness

Subset 1 2 3 4 5
jRj 3–5 3–5 3–5 10–20 10–20
OS 0.2–0.4 0.6–1 0.6–1 0.2–1 0.2–1
CVd 1–2 1 2 1 2

Z
n

� (%) R� Z
n

� (%) R� Z
n

� (%) R� Z
n

� (%) R� Z
n

� (%) R�

BD-GC-U 40.7 2.7 52.1 3.2 56.8 5.5 89.7 6.9 161.8 8.5
BD-GC-D 37.2 1.4 49.0 1.5 43.4 3.0 62.4 2.2 66.9 3.9
BD-MC 49.8 6.1 62.2 5.5 40.6 3.0 65.6 3.8 49.2 2.7
W(CRCSPT) 47.1 4.9 58.9 4.1 29.7 1.1 56.6 1.7 17.2 1.0
WMINSLK 40.6 3.3 52.8 3.2 51.2 5.6 66.1 3.6 105.0 6.6
WEDD 43.1 4.5 56.5 5.1 52.4 6.3 72.2 5.7 110.0 7.7
WSPT 71.9 8.7 86.1 8.5 47.0 5.4 93.2 8.6 37.2 2.9
MAXPEN 76.1 8.8 79.4 8.3 85.5 9.0 90.8 8.5 124.4 8.2
FCFS 83.2 9.4 91.6 9.5 96.5 9.6 83.3 7.3 96.2 6.6
SASP-DD 45.3 5.3 60.7 6.2 51.1 6.3 75.6 6.7 103.0 6.8

Table 6.7 Mean average tardiness values and ranks for low tightness

Subset 6 7 8 9 10
jRj 3–5 3–5 10–20 10–20 10–20
OS 0.2–1 0.2–1 0.2–1 0.2–0.4 0.6–1
CVd 1 2 1 2 2

Z
n

� (%) R� Z
n

� (%) R� Z
n

� (%) R� Z
n

� (%) R� Z
n

� (%) R�

BD-GC-U 10:6 3.0 8:3 3.6 13:7 4.2 42:2 5:5 121:5 7.2
BD-GC-D 10:1 1.9 7:9 2.9 12:0 3.0 15:6 3:4 38:9 4.2
BD-MC 11:3 4.2 7:5 3.1 11:4 2.6 12:2 2:4 30:0 3.0
W(CRCSPT) 7:9 2.1 3:8 1.4 4:9 1.0 1:4 1:0 0:5 1.0
WMINSLK 11:6 4.2 9:5 5.0 13:9 4.4 24:6 5:5 57:6 5.9
WEDD 13:5 5.6 10:2 5.6 17:6 5.8 27:9 6:2 67:2 7.0
WSPT 144:4 9.7 70:5 8.5 149:8 9.4 40:1 6:9 23:7 3.9
MAXPEN 122:0 9.3 136:0 9.9 148:7 9.6 236:4 10:0 243:1 9.9
FCFS 70:6 8.0 73:2 8.6 57:4 7.7 53:9 7:9 79:8 7.3
SASP-DD 32:2 7.0 18:6 6.5 47:9 7.3 39:6 6:3 59:2 5.8

for the different policies and subsets for high due date tightness and Table 6.7 for
low due date tightness.

For both levels of tightness, we make the general observation that policies based
on due date information outperform, for most cases, policies without due date
information, such as FCFS, MAXPEN. Furthermore, we observe that WMINSLK
outperforms WEDD such that we conclude that slack information, although being
only a rough cut estimate, has a benefit over the due date.

In the following, we discuss the more specific observations made for each level
of due date tightness.

6.4 Detailed Analysis 71

6.4.2.1 High Due Date Tightness

For low values of jRj and OS (subset 1), low jRj, low CVd and higher values for
OS (subset 2), BD-GC-D, BD-GC-D and WMINSLK are the best alternatives.

Furthermore, for the remaining subsets (subset 3–5) with higher values for
jRj and CVdr

, W(CRCSPT) performs best. Furthermore, BD-GC-D and BD-MC
perform well. For high numbers of resources and high variation of expected activity
durations (subset 5), WSPT is a good easy-to-implement policy.

6.4.2.2 Low Due Date Tightness

W(CRCSPT) performs best for almost all subsets (except for subset 1 where its
average rank is slightly higher than that of BD-GC-D). As alternatives, BD-GC-D
and BD-MC exhibit a reasonably good performance while BD-GC-U can only be
recommended for small jRj. WMINSLK can be considered a good alternative as
long as we do not have high values for jRj and CVdr

(subsets 6–8).
Finally, WSPT is a good alternative for high jRj, CVdr

and OS (subset 10) where
it outperforms all policies but W(CRCSPT).

Chapter 7
Optimal and Near Optimal Scheduling Policies

This chapter is dedicated to models and methodologies for the computation of
optimal and near optimal policies.

To simplify analysis, we ignore due dates and restrict our consideration to flow
times of projects (due dates are set equal to the arrival times of the projects).
Furthermore, we assume that activity durations are exponentially distributed.

As a starting point, we model in Sect. 7.1 the non-preemptive and the preemptive
scheduling problem outlined in Chap. 2 as Markov decision processes. Furthermore,
we show how problem structure can be exploited to reduce the computational burden
and give complexity results in terms of state space cardinality. Finally, a numerical
example is presented in order to discuss structural properties that are typical for
optimal policies.

Section 7.2 considers the special case where the system consists of a single
resource. We have found that a priority index policy is optimal. Indices can be
obtained without much computational effort.

The focus of Sect. 7.3 is on the class of project state ordering policies (POPs),
which helps to considerably reduce state space cardinality. At the same time the
policies remain optimal for many cases. Basic structural results are provided for
the preemptive and the non-preemptive problem. For the preemptive problem, we
quantify more precisely the state space reduction via an equivalence of the state
space obtained for the preemptive scheduling problem to the state space of a
queueing network.

In Sect. 7.4, we consider a number of approximate dynamic programming (ADP)
approaches to remedy the curse of dimensionality and extend the computation of
optimal policies to open systems with unbounded Kmax.

The performance optimal policies and the methodologies for their computation
are investigated in Sect. 7.5 based on an extensive computational study.

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_7,
© Springer International Publishing Switzerland 2015

73

74 7 Optimal and Near Optimal Scheduling Policies

7.1 Models as a Markov Decision Process

In this section, we formulate, as a first step, in Sect. 7.1.1 the CTMDP for the non-
preemptive scheduling problem according to the assumptions made in the Chap. 2.
Secondly, we present in Sect. 7.1.2 the CTMDP for the scheduling problem where
preemptions are allowed (preemptive scheduling problem).

7.1.1 Non-preemptive Scheduling Problem

The framework for the description has been taken from Powell [106].

7.1.1.1 Markov Decision Process

State variables A system state s.t/ at time t is characterized by the states of the
projects in the system. The state �.j; t/ of a project j 2 J .t/ is given by

�.j; t/ D .p;W.j; t/; E.j; t// (7.1)

The index p is needed to address information depending on project type p, such
as precedence relations, expected activity durations. W.j; t/ is the set of waiting
activities and E.j; t/ the set of activities in process of project j at time t . In the
following, we use p.�/, W.�/ and W.�/ to refer to the three elements of project
state � . Based on W.�/ and E.�/ we define U.�/ the set of unfinished activities
of a project in state � which comprises W.�/ [E.�/ and all direct and indirect
successors. Note that W.�/[E.�/ form an antichain being a subset of Vp.�/ without
precedence relations between the nodes. Furthermore, a project state � is analogous
to the concept of an uniformly directed cut (UDC) as used in Kulkarni and Adlakha
[79]. A UDC is in the context of activity-on-arc-networks a set of arcs representing
activities without precedence relations preventing parallel execution. The set of
states that a project may adopt between arrival and completion is bounded by two
special project states: The initial state � I

p immediately entered after the arrival where
no activities can be in process or be completed (such that U.� I

p/ D Vp) and the
absorbing state �F

p D .p;;;;/ entered on completion of the last activity where
U.�F

p/ D ;.
By †, we refer to the set of all feasible project states for projects being in the

system where a project state � is feasible if no precedence or resource constraints are
violated. The finite number of activity types .i; p/ imply a finite set †. As projects
entering project state �F

p leave immediately the system, �F
p is not element of †.

The number of state variables can be reduced by exploiting that it is not necessary
to distinguish between individual projects being in the same project state � . All
projects in the same state are identical in terms of duration distributions and resource

7.1 Models as a Markov Decision Process 75

types of activities, precedence relations, sets of waiting activities and activities in
process such that the projects possess the same stochastic properties essential for
the CTMDP. Hence, we define variables n.�; t/ for the number of projects in project
state � at time t . Then, a system state at time t is given by

s.t/ D n.t/ D �n.�1; t/; n.�2; t/; : : : ; n.�j†j; t/
�

(7.2)

As a special system state, we define s0 D .0; : : : ; 0/ where the system is empty.
As we consider stationary policies we drop the time index in the following. Using
n.�; s/, we refer, in the following, to the number of projects in project state � while
the system is in state s.

We define

†.p; s/ D f� 2 †jp.�/ D p ^ n.�; s/ > 0g (7.3)

to be the subset of project states � 2 † with p.�/ D p and n.�; s/ > 0.
The set S containing all feasible system states s where decisions are to be made

(pre-decision states) defines the state space. Feasibility of a state s is given by the
following definition.

Definition 7.1.1. A system state s is feasible if there exists a policy under which it
is accessible from system state s0.

Finally, we define K.s/ to be the number of projects in the system for system
state s as given by

K.s/ D
X

�2†

n.�; s/ (7.4)

Note that the post-decision states are considered explicitly for the construction of
the transitions. However, a post-decisions state is only in the state space S if there
are occasions where it is also pre-decision state.

Decision variables For the purpose of generating alternative decisions, we number
the projects in the system by k D 1; : : : ; K.s/ where project states � are ordered
lexicographically according to the following criteria.

1. Project type p.�/.
2. Set of waiting activities W.�/.
3. Set of activities in process E.�/.

Between projects in the same state � , ties can be broken arbitrarily as they are
equivalent. Then, �.k; s/ refers to the state of project k in system state s and tuple
.i; k/ refers to activity i of project k to be scheduled. Furthermore, BS.r; s/ is the
set of activities given by tuples .i; k/ to be scheduled in system state s on resource
type r 2 R. Then, a decision a is given by a tuple of sets BS.r; s/ as follows

76 7 Optimal and Near Optimal Scheduling Policies

a D �BS.r1; s/; : : : ;BS.rjRj; s/
�

(7.5)

By BS.r; s; a/, we refer to the set of activities to be scheduled by decision a on
resource type r 2 R. The set A.s/ of alternative decisions for system state s is
generated in three steps.

1. Determine the set W.r; s/ of activities waiting for resource type r in system state
s as given by

W.r; s/ D
K.s/[

kD1

˚
.i; k/ji 2W.�.k; s// ^ rip.�.k;s// D r

�
(7.6)

The definition of W.r; s/ states that it consists of waiting activities from the
projects k D 1; : : : ; K.s/ where the resource type rip.�.k;s// required for
processing corresponds to the considered resource type r .

2. Determine the set A.r; s/ of all feasible sets BS.r; s/. Note that if jW.r; s/j >

f .r; s/ only subsets BS.r; s/ � W.r; s/ can be scheduled at a decision time.
Then, a set A.r; s/ is given by

A.r; s/ D ˚BS.r; s/ �W.r; s/j jBS.r; s/j D min ff .r; s/; jW.r; s/jg� (7.7)

where f .r; s/ refers to the number of idle resources of type r in system state s.
If W.r; s/ D ;, an empty set BS.r; s/ D ; is added to A.r; s/. The constraint
jBS.r; s/j D min ff .r; s/I jW.r; s/jg on the cardinality of the sets BS.r; s/ states
that either all waiting activities may be selected or just as many as there are idle
resources of type r . As the constraint requires to schedule as many activities as
possible, only decisions being in line with a non-idling policy are generated.

3. Determine A.s/ by the cartesian product of the sets A.r; s/ as given by

A.s/ D �r2RA.r; s/ (7.8)

For the case that no activities are available to be scheduled, a single decision
consisting of empty sets is obtained. Thus, the decision has no effect on the
system. This may occur in different situations. Firstly, if there are no idle
resources of the required types for processing any of the waiting activities.
This may be the case on arrivals of new projects. Secondly, if there are no
waiting activities since all activities are in process and successors of the activity
just completed have some yet unfinished predecessors. Finally, if the system is
empty.

Exogenous information process Exogenous information arrives when an event
occurs while the system is in a post-decision state Os. For our problem, we identify
two kinds of events.

7.1 Models as a Markov Decision Process 77

1. Arrival of a new project of type p – This kind of event occurs at a rate of �p. By
means of project type p, we know the network structure, the expected durations
and the required resource types for processing the activities.

2. Completion of activity i of a project being in project state � – As such an even
may occur for any of the n.�; Os/ projects being in project state � this event occurs
at a rate n.�; Os/ � �ip.�/.

Transition function The transitions from system state s 2 S to another system
state s0 2 S when having selected decision a 2 A.s/ can be constructed as follows.
At first, we describe the effect of a decision a leading to a post-decision state
Os.s; a/. Afterwards, we present in detail the effects of events leading to transitions
to subsequent system states s0 2 S.

Before going into detail, we give some definitions.

• � I
p is the initial project state when a new project arrives at the system. � I

p only
contains activities i in W.� I

p/ having no predecessors such that .i 0; i / … Ap 8i 2
W.� I

p/; i 0 2 Vp . Furthermore, no activities are in process such that E.� I
p/ D ;.

• �C.i; �/ is the project state subsequent to the completion of activity i of a project
in state � (all other activities in E.�/ continue being in process). Each direct
successor i 0 of i (such that .i; i 0/ 2 Ap.�/) is checked whether it is ready in
the sense that all its predecessors have been completed. In the positive case i 0 is
added to W.�R.i; �// being the set of direct successors that become ready for
being scheduled on completion of activity i in project state � . W.�R.i; �// is
given by

WR.i; �/ D fi 0 2 U.�/nfigj8.i 00; i 0/ 2 Ap W i 00 … U.�/nfig ^ .i; i 0/ 2 Apg

(7.9)

Then, we have

�C.i; �/ D �p.�/;W.�/ [WR.i; �/; E.�/nfig� (7.10)

• �S.B; �/ is the project state subsequent to scheduling all activities given by index
set B of a project in state � . It is given by

�S.B; �/ D .p.�/;W.�/nB; E.�/ [B/ (7.11)

In order to obtain the post-decision state Os.s; a/ subsequent to pre-decision state
s 2 S we compute the index sets

BS.k; s; a/ D fi j.i; k/ 2
[

r2R
BS.r; s; a/g (7.12)

of all activities of project k 2 f1; : : : ; K.s/g scheduled by decision a in system
state s.

78 7 Optimal and Near Optimal Scheduling Policies

Then, we define

On.�; s; a/ D
K.s/X

kD1

�
˚
�S.BS.k; s; a/; �.k; s// D �

�
(7.13)

to be the number of projects in state � when the system is in the post-decision state
Os.s; a/. If BS.k; s; a/ D ; then we clearly have �S .BS.k; s; a/; �.k; s// D �.k; s/.
Now, the post-decision state Os.s; a/ is given by

Os.s; a/ D � On.�1; s; a/; : : : ; On.�j†j; s; a/
�

(7.14)

The total rate ˇ.s; a/ of the exponentially distributed transition time is obtained by

ˇ.s; a/ D
X

�2†

X

i2E.�/

�ip.�/ � n.�; Os.s; a//C
X

p2P
�p (7.15)

Next, to obtain a system state s0 2 S subsequent to post-decision state Os.s; a/,
we develop the transitions due to the two kinds of events (arrivals and activity
completions).

1. Arrival of a new project of type p 2 P – Arrivals may occur as long as K.s/ <

Kmax. The pre-decision state sA.s; a; p/ that is entered on arrival and acceptance
of a project of type p 2 P subsequent to making decision a in pre-decision state
s is given by

sA.s; a; p/ D Os.s; a/C � fK.s/ < Kmaxg e.�I
p / (7.16)

where e.�/ is a unity vector having a value of 1 at the position of � . We observe
that sA.s; a; p/ D Os.s; a/ if K.s/ D Kmax. Thus, Os.s; a/ is also a pre-decision
state such that Os.s; a/ 2 S. The probability of a transition related to an arrival
event is given by

qA.s; a; p/ D �p

ˇ.s; a/
(7.17)

Furthermore, we have a fixed cost of the transition

kA.s; p/ D � fK.s/ D Kmaxg � yp (7.18)

which is incurred only if a project must be rejected as K.s/ D Kmax.
2. Completion of activity i of a project in state � – The pre-decision state

sC.s; a; i; �/, entered on completion of activity i 2 E.�/ of a project in state
� if decision a was selected before in state s, is given by

7.1 Models as a Markov Decision Process 79

sC.s; a; i; �/ D Os.s; a/ � � fn.�; Os.s; a// > 0g e.�/C
�

n
n.�; Os.s; a// > 0 ^ �C .i; �/ ¤ �F

p

o
e.�C .i; �// (7.19)

Note that if n.�; Os.s; a// D 0 we have sC.s; a; i; �/ D Os.s; a/. Furthermore, if a
project of type p enters its absorbing state �F

p , on completion of its last activity,
no increment of the number of projects in state �F

p takes place as the project
leaves the system.

The probability of a transition related to the completion of activity i 2 E.�/

of a project in state � is given by

qC.s; a; i; �/ D �ip.�/ � n.�; Os.s; a//

ˇ.s; a/
(7.20)

Cost function The total holding cost per time unit subsequent to a pre-decision
state s is given by

c.s/ D
X

�2†

wp.�/ � n.�; s/ (7.21)

Note that the holding cost per time unit only depends on the pre-decision state as
the set of projects in the system does not change when making scheduling decisions.
However, the expected holding cost until the next pre-decision state s is given by

c.s/

ˇ.s;a/
and hence also depend on the decision.

Furthermore, we have fixed cost k.s; a; s0/ which may be incurred on a transition
between two pre-decision states s and s0. On arrival of a new project of type p, we
have k.s; a; s0/ D kA.s; p/. On completion of an activity, we have k.s; a; s0/ D 0.

Objective function In order evaluate a given policy � , we consider the long term
average cost per time unit as given by

g.�/ D lim inf
N!1 g.�/ D

E

�
N�1P

nD0

.c.sn/�.sn; �.sn//C k.sn; an; snC1//

�

E

�
NP

nD1

�.sn; �.sn//

� (7.22)

n denotes the number of the visited state and �.s; a/ denotes the transition time
being exponentially distributed with rate ˇ.s; a/. Then, an optimal policy is given by

�� D arg min
�2…
fg.�/g (7.23)

Thus, g� D g.��/ is the minimum cost yielded under an optimal policy ��.
The equivalence of the average cost per project and the average cost per time unit
becomes obvious when considering a sample path associated with an arrival stream
of J projects. Be N.J / the number of transitions of the sample path.

80 7 Optimal and Near Optimal Scheduling Policies

We assume that the sample path starts at an empty system s0 D s0 and ends at an
empty system sN.J / D s0. Then, we have for the rejection cost

E

2

4
JX

jD0

�

n
jJ .ta

j /j D Kmax
o
� ypj

3

5 D E

2

4
N.J /X

nD1

k.sn; an; snC1/

3

5 (7.24)

and for the holding costs

E

2

4
JX

jD1

wpj
F j

3

5 D E

2

4
N.J /X

nD1

c.sn/�n.sn; an/

3

5 (7.25)

where wpj
F j is the total holding cost of project j . Thus, we obtain

E

2

4
JX

jD1

�
�

n
jJ .ta

j /j D Kmax
o
� ypj

C wpj
F j

�
3

5

D
2

4
N.J /X

nD1

.k.sn; an; snC1/C c.sn/�.sn; an//

3

5

(7.26)

Whether we divide the right or the left-hand side by the number of projects J for

obtaining the cost per project or by the expected period length E

"
N.J /P

nD1

�.sn; �.sn//

#

> 0 for obtaining the cost per time unit clearly has no impact on the optimization.
Hence, the two objectives are equivalent.

Finally, we remark that the restriction to non-idling policies helps to reduce
computational complexity by the fact that the decision sets A.s/ as well as the state
space S become smaller. If idleness were allowed we may have more system states
where some of the resources idle. At the same time, as we see later, the state space S
for the problem without preemptions may grow very large, even for small problems.
Unfortunately, we were not able to quantify in more precisely the cardinality of
S. However, we will quantify more precisely the state space cardinality for the
preemptive problem. Furthermore, we will see in Sect. 7.4.2 that the state space
cardinality for the preemptive problem with preemptions is a lower bound of the
state space cardinality for the non-preemptive problem.

7.1.1.2 Evaluation and Optimality Equations

Firstly, we show that under any stationary policy � there exists, independently from
the starting state of a sample path, a single value g.�/ for the long term average

7.1 Models as a Markov Decision Process 81

cost. This property is important for the formulation of evaluation and optimality
equations below and for the application of solution methodologies as presented
in Chap. 4. Recall from Chap. 4 that the existence is guaranteed if a CTMDP is
unichain (cf. Puterman [108]) such that there exist under any stationary policy a
single recurrent class of states and a (possibly) empty set of transient states. The
following Theorem gives that the CTMDP is unichain for the dynamic-stochastic
scheduling problem.

Theorem 7.1.1. Under any stationary scheduling policy � that avoids total idle-
ness, the CTMDP for the dynamic stochastic multi-project scheduling problem is
unichain.

Proof. At first, we note that by avoiding total idleness at least one activity is
processed on any resource type except that the system is empty (K.s/ D 0). Hence,
there is always at least one resource busy as long as K.s/ > 0. Furthermore, with
non-zero probability no new project arrives for the entire period until the system
becomes empty such that system state s0 2 S is accessible from any system state.
Conversely, under every stationary policy � , a subset S.�/ � Sns0 is accessible
from s0 such that all s 2 S.�/ communicate with s0 and S.�/ [fs0g is a recurrent
class of states. Since s0 is accessible from all transient states s 2 SnS.�/ it is the
only recurrent class. ut

As non-idling policies always avoid total idleness the Theorem applies to the
CTMDP for the non-preemptive problem. Then, the set of evaluation equations
(Poisson’s equations) is given by

h.s/ D c.s/ � g

ˇ.s; �.s//
C
X

p2P

	
qA.s; �.s/; p/

�
kA.s; p/C h.sA.s; �.s/; p//

�

C
X

�2†

X

i2E
qC.s; �.s/; i; �/h.sC.s; �.s/; i; �// 8s 2 S (7.27)

and the set of optimality equations (Bellman equations) is given by

h.s/ D min
a2A.s/

8
<

:

c.s/ � g

ˇ.s; a/
C
X

p2P

	
qA.s; a; p/

�
kA.s; p/C h.sA.s; a; p//

�

C
X

�2†

X

i2E
qC.s; a; i; �/h.sC.s; a; i; �//

)

8s 2 S (7.28)

For the solution, we set h.s0/ D 0 as s0 is in the recurrent class under any stationary
policy � that avoids total idleness.

82 7 Optimal and Near Optimal Scheduling Policies

7.1.1.3 Elimination of Scheduling Decisions

A subproblem is finding an optimal decision a� 2 A.s/ for all system states s 2 S.
As jA.s/j may be large the solution of the subproblem by fully enumerating and
evaluating all alternative decisions a 2 A.s/ may slow down the procedure. Thus,
we eliminate scheduling decisions by truncating for any system state s 2 S the
number of projects in project state � . We define the set R.�/ of resource types
which are demanded by at least one waiting activity of a project in state � .

R.�/ D fr 2 Rj9i 2W.�/ ^ rip.�/ D rg (7.29)

In order to eliminate decisions we observe that in the worst case we assign to each
idle resource of type r 2 R.�/ no more than one activity from a project in state �

such that any two activities i; i 0 2 W.�/ are not from the same project. Hence, we
need consider at most as many projects in state � as there are idle resources of the
resource types r 2 R.�/ such that we can truncate the number of projects in state
� to

nTr.�; s/ D min

8
<

:

X

r2R.�/

f .r; s/In.�; s/

9
=

;
� n.�; s/ (7.30)

Then, for the generation of decisions as outlined in Sect. 7.1.1.1, we consider
a system state sTr.s/ D �

nTr.�1; s/; : : : ; nTr.�j†j; s/
�

with truncated numbers of
projects such that less alternative decisions exist.

Example 7.1.1. We have for system state s n.�; s/ D 4 and n.� 0; s/ D 0 8� 0 2
† ¤ � . This implies that we have four projects k1; k2; k3; k4 2 Œ1; : : : ; K.s/	

being in the same project state �.k1; s/ D �.k2; s/ D �.k3; s/ D �.k4; s/ D � .
Furthermore, we have two waiting activities (W.�/ D fi1; i2g) which are to be
processed on resource type r (ri1p.�/ D ri2p.�/ D r) which has 1 idle resource
(f .r; s/ D 1). Obviously, no more than one activity can be scheduled. Thus,
consideration of scheduling alternatives can be restricted to project k1 such that
nTr.�; s/ D minf1I 4g D 1.

7.1.2 Preemptive Scheduling Problem

In this section, we assume that activities may be preempted and rescheduled at no
cost if an event occurs.

In Sect. 7.1.2.1, we discuss the CTMDP for the preemptive problem as an exten-
sion of the CTMDP for the non-preemptive problem. Based on this formulation, we
exploit further structural properties to derive in Sect. 7.1.2.2 a simplified CTMDP
without explicit consideration of post-decision states. Finally, for the simplified

7.1 Models as a Markov Decision Process 83

CTMDP, we present in Sect. 7.1.2.3 an efficient procedure for determining an
optimal scheduling decision.

7.1.2.1 Extension of the CTMDP for the Non-preemptive Problem

Generally, for preempting and rescheduling activities, we have to determine the sets
BP.r; t/ and BS.r; t/ for all r 2 R at a decision time t .

Exploiting the assumption that no cost is incurred due to preemptions and
rescheduling, we simply shift back all activities in process to the set of waiting
activities such that BP.r; t/ D E.r; t/. Thus, only the sets BS.r; t/ have to be
optimized.

Furthermore, due to Theorem 2.2.2, decision times can be restricted without loss
of optimality to times where activity completions or project arrivals occur.

To obtain the CTMDP for the preemptive problem, we define the following
operation which shifts activities in process of a project in state � back to the set
of waiting activities

�P.�/ D .p.�/;W.�/ [E.�/;;/ (7.31)

In order to adapt the CTMDP for the non-preemption problem (cf. Sect. 7.1.1), such
that it becomes a CTMDP for the preemptive problem, we define the following
operation which maps any state s 2 S onto a state sP.s/ 2 SP where all activities
are waiting. It is given by

sP.s/ D �nP.�1; s/; : : : ; nP.�j†j; s/
�

(7.32)

where nP.�; s/ is given by

nP.�; s/ D

0

B
@

P

� 02†
�P.� 0/D�

n.� 0; s/ � 2 †P

0 otherwise

(7.33)

†P is the set of feasible project states which may occur in the pre-decision states of
the preemptive problem, where we have E.�/ D ; 8� 2 †P.

By SP, we refer to the space of all feasible pre-decision states for the preemptive
problem. Then, for the transitions as outlined in Sect. 7.1.1.1 sA.s; a; p/ and
sC.s; a; i; �/ are replaced by sP.sA.s; a; p// and sP.sC.s; a; i; �//. The surjective
mapping sP.s/ suggests that the state space SP of the preemptive problem is smaller
than S. In pre-decision states we no longer have to account for the activities being
in process as they are all in the sets of waiting activities.

Furthermore, the preemptive problem can be considered as a relaxation of
the non-preemptive problem as the activities being in process at a decision time
represent a constraint on the decision sets A.s/.

84 7 Optimal and Near Optimal Scheduling Policies

As, by assumption, total idleness is avoided such that at least one activity must
be in process except the system is empty (in state s0) Theorem 7.1.1 applies also to
the preemptive problem.

7.1.2.2 Simplified CTMDP

The structure of the preemptive problem can exploited in order to obtain a
simplified CTMDP where no explicit consideration of post-decision states is needed
anymore. Furthermore, decisions have a simpler representation which leads to an
efficient approach for determining the optimal decision without full enumeration
and evaluation of all scheduling alternatives. Details are given in Sect. 7.1.2.3.

In order to see how the CTMDP, presented in Sect. 7.1.2.1, can be simplified, let
us consider the effect of a decision a 2 A.s/ that schedules the set BS.k; s; a/ of
activities of project k 2 Œ1; : : : ; K.s/	. Hence, for the post-decision state Os.s; a/, we
have

�S.BS.k; s; a/; �/ D �W.�/nBS.k; s; a/;BS.k; s; a/; p.�/
�

(7.34)

Next, let us assume that the next event refers to the completion of activity .i; k/ with
i 2 BS.k; s; a/ such that the subsequent project state in system state s0 is given by

�P ��C �i; �S �BS.k; s; a/; �
��� D �p.�/;W.�/nfig [WR.i; �/;;� (7.35)

We observe that, except the completion of activity .i; k/, the decision to schedule
activities in BS.k; s; a/ does not carry over to the next project state as we shift all
activities not completed back to the set of waiting activities. Furthermore, for any
other project k0 2 Œ1; : : : ; K.s/	 ¤ k, we have

�P
�
�S
�BS

�
k0; s; a

�
; �
�� D � (7.36)

such that scheduling activities in BS.k0; s; a/ does not carry over as well.
Hence, for obtaining the transition related to the completion of an activity

it is sufficient to know the activity index i and the state �.k; s/ of the project
k 2 Œ1; : : : ; K.s/	 covered by a scheduling decision. The system state subsequent to
the completion of activity i of a project in state � is given by

sCP.s; i; �/ D s � e.�/C e
�
�CW.i; �/

�
(7.37)

where

�CW.i; �/ D �p.�/;W.�/nfig [WR.i; �/;;� (7.38)

Note, as �C.i; �/ requires i 2 E.�/ we have introduced �CW.i; �/ which requires
i 2W.�/.

7.1 Models as a Markov Decision Process 85

On arrival of a new project of type p 2 P , all activities in process are shifted
back to the sets of waiting activities. Hence, we have n.� I

p; s0/ D n.� I
p; s/C 1 and

n.�; s0/ D n.�; s/ 8� ¤ � I
p . In vector notation a transition subsequent to an arrival

of a new project of type p 2 P is given by

sAP.s; p/ D s C � fK.s/ < Kmaxg e
�
�I .p/

�
(7.39)

Recall that in case of the non-preemption problem, for each project k 2
Œ1; : : : ; K.s/	, the effect of a scheduling decision, represented by the sets BS.k; s; a/,
carries over to the subsequent system states. This is due to the fact that all activities
scheduled by decision a and that are not completed remain in process. This explains
why scheduling decisions must be referred to individual projects which makes the
generation of alternative decisions and transitions more involved.

By contrast, for the preemptive problem the only effect of a scheduling decision
in system state s that carries over to subsequent states is the completion of activity i

of a project in state � . All other activities are preempted such that the fact they were
scheduled is “forgotten”.

As a consequence, we only have to distinguish between groups of activities
identified by the tuples .i; �/ such that, for a scheduling decision, we simply have
to specify a number n.i; �/ of activities of group .i; �/ to be scheduled. A decision
a can now be defined as a vector of the variables n.i; �/.

a D �n.i; �/ 8� 2 †P; i 2W.�/
�

(7.40)

Then, rate ˇ.s; a/ is given by

ˇ.s; a/ D
X

�2†P

X

i2W.�/

�ip.�/n.i; �; a/C
X

p2P
�p (7.41)

By n.i; �; a/, we address the number of activities of group .i; �/ which are
scheduled by decision a. Based on a decision, we obtain for the probability that
an activity of group .i; �/ is completed

qCP.s; a; i; �/ D n.i; �; a/�ip.�/

ˇ.s; a/
(7.42)

and for the probability that a project of type p 2 P arrives

qAP.s; a; p/ D �p

ˇ.s; a/
(7.43)

The evaluation equations (Poisson’s equations) are then given by

86 7 Optimal and Near Optimal Scheduling Policies

h.s/ D c.s/ � g.�/

ˇ.s; �.s//
C
X

p2P

	
qAP.s; �.s/; p/

�
kA.s; p/C h.sAP.s; p//

�

C
X

�2†P

X

i2E
qCP.s; �.s/; i; �/h.sCP.s; i; �// 8s 2 S (7.44)

and the optimality equations (Bellman equations) by

h.s/ D min
a2A.s/

8
<

:

c.s/ � g�

ˇ.s; a/
C
X

p2P

	
qAP.s; a; p/

�
kA.s; p/C h.sAP.s; p//

�

C
X

�2†P

X

i2E
qCP.s; a; i; �/h.sCP.s; i; �//

)

8s 2 S (7.45)

7.1.2.3 Efficient Procedure for Determining Optimal Decisions

While the state space for the preemptive problem becomes smaller the decision sets
A.s/ may become larger as all resources idle and more scheduling alternatives exist.
However, for the simplified CTMDP optimal scheduling decision can be efficiently
determined without enumeration and evaluation of all decisions a 2 A.s/ as given
by the following theorem.

Theorem 7.1.2. An optimal decision a� 2 A.s/ is given by the optimal solution of
the following linear program (LP).

min
X

�2†P

X

i2W.�/

n.i; �/Q.s; i; �/ (7.46)

where

Q.s; i; �/ D �ip.�/

�
h.sCP.s; i; �// � h.s/

�
(7.47)

subject to

X

�2†P

X

i2W.�/

�
˚
rip.�/ D r

�
n.i; �/ � cr 8r 2 R (7.48)

n.i; �/ � n.�; s/ 8� 2 †P; i 2W.�/ (7.49)

n.i; �/ 2 �0 8� 2 †P; i 2W.�/ (7.50)

The problem can be classified as a bounded multi-dimensional knapsack problem
(cf. Martello and Toth [91] and Fréville [50]) where the values Q.s; i; �/ can be

7.1 Models as a Markov Decision Process 87

interpreted as the change of the long term expected total cost by the completion of
activity i of a project in state � . Thus, if Q.s; i; �/ < 0 activity i 2 W.�/ from
a project in state � is scheduled if enough resources are available. Obviously, as
the values Q.s; i; �/ have the role of state dependent priorities when scheduling
activities, activity groups .i; �/ can also be interpreted as priority classes. The
first set of constraints (7.48) states that at most cr activities may be scheduled
on resource type r . The second set of constraints (7.49) states that the number of
activities n.i; �/ of group .i; �/ to be scheduled may not exceed the number of
waiting activities of the respective group. As each activity of type .i; p/ with i 2 Vp

occurs at most once in the set of waiting activities W.�/ of a project state � 2 †P,
the number of waiting activities of group .i; �/ equals the number of projects in this
project state n.�; s/. The third set of constraints (7.50) establishes integrality of the
solution. Note that for the theoretically possible case that no activity is selected as
Q.s; i; �/ > 0 8� 2 †P; i 2 W.�/ a single activity of the group .i�; ��/ with the
smallest Q.s; i; �/ > 0 must be selected (n.i�; ��/ D 1) such that total idleness is
avoided.

Now, we give the proof of Theorem 7.1.2.

Proof. At first, we uniformize the CTMDP as outlined in Sect. 4.5 in order to
replace the rates ˇ.s; a/ by the uniformization constant c, which is independent of
a decision. Thus, the optimality equations of the uniformized CTMDP are given by

h.s/ D min

8
<

:

c.s/ � g�

c
C
X

�2†P

X

i2W.�/

n.i; �/�ip.�/

c

�
h.sCP.s; i; �//

�

C
X

p2P

�p

c

�
kA.s; p/C h.sAP.s; p//

�

C
0

@1�
X

�2†P

X

i2W.�/

n.i; �/�ip.�/

c
�
X

p2P

�p

c

1

Ah.s/

9
=

;
8s 2 SP (7.51)

Rearranging and pulling constant terms out of the minimization gives

h.s/ D min

8
<

:

X

�2†P

X

i2W.�/

n.i; �/�ip.�/

c

�
h.sCP.s; i; �// � h.s/

�
9
=

;

C c.s/ � g�

c
C h.s/C

X

p2P

�p

c

�
kA.s; p/h.sAP.s; p// � h.s/

� 8s 2 SP (7.52)

Now, we denote the value of an activity being scheduled by

Q.s; i; �/ D �ip.�/

�
h.sCP.s; i; �// � h.s/

�
(7.53)

88 7 Optimal and Near Optimal Scheduling Policies

such that we can write

h.s/ D min

8
<

:

X

�2†P

X

i2W.�/

n.i; �/

c
Q.s; i; �/

9
=

;

C c.s/ � g�

c
C h.s/C

X

p2P

�p

c

�
kA.s; p/h.sAP.s; p// � h.s/

� 8s 2 SP (7.54)

Now, we see that the right-hand side is an affine mapping of the decision variables
n.i; �/ on the value function h.s/ of state s. This property is also referred to as affine
expectation property (cf. Moallemi et al. [94]).

As the constant part of the function as well the uniformization constant are not
relevant for the minimization, it is sufficient to minimize

min
X

�2†P

X

i2W.�/

n.i; �/Q.s; i; �/ (7.55)

The minimization is subject to the constraints (7.48) and (7.49). ut
The problem can now be solved in two ways.

(i) We can solve a Linear Program (LP) obtained when relaxing the integrality
constraint (7.50) of the decision variables n.i; �/. The optimal solution of the LP
is integral as the right-hand sides of the constraints are integral while the matrix
of coefficients for the decision variables is totally unimodular. This can be seen
as follows. The matrix of the coefficients for the left-hand sides of the constraints
has two entries (one for each set of constraints) in each column being 1 while the
other entries are 0. Thus, total unimodularity follows (cf. Williams [135]).

(ii) We can decompose the problem into jRj bounded knapsack problems as each
activity group .i; �/ is entirely processed by one resource type. The jRj knapsack
problems are very easy to solve as all items (activities) have the same size (1).
The solution procedure is given by Algorithm 3.

Before we state the solution procedure we define

†.s/ D f� 2 †jn.�; s/ > 0g (7.56)

the subset of project states � 2 † with n.�; s/ > 0. We break ties between activity
groups .i; �/ having the same Q.s; i; �/ according to the following criteria.

1. Project type p.�/.
2. Set of waiting activities W.�/.
3. Index i .

7.1 Models as a Markov Decision Process 89

Algorithm 3 Computing the optimal decision for the preemptive case
Require: s 2 SP

1:
2: for � 2 †.s/ do
3: for i 2W.�/ do
4: n.i; �/ 0

5: end for
6: end for
7: for r 2 R do
8: Compute set C D ˚

.i; �/j� 2 †.s/ ^ i 2W.�/^ rip.�/ D r
�

9: f 0

10: while C ¤ ; and f < cr do
11: Get .i; �/ 2 C with smallest Q.s; i; �/

12: if cr � f > n.�; s/ then
13: n.i; �/ n.�; s/

14: else
15: n.i; �/ cr � f

16: end if
17: f f C n.i; �/

18: C Cn.i; �/

19: end while
20: end for

The run time of the procedure is characterized as follows.

Theorem 7.1.3. The run time of Algorithm 3 is in

O

X

r2R
jC.r/j C

X

r2R
jC.r/j log jC.r/j

!

:

Proof. For an efficient implementation, we store for each system state only the
tuples .�; n.�// such that †.s/ is already given (cf. Sect. 4.7). The run time for the
initialization is in O.

P

r2R
jC.r/j/ as

S

r2R
C.r/ D f.i; �/j� 2 †.s/; i 2W.�/g. For

each set C.r/, we can use a sorted list which can be obtained in O.jC.r/j log jC.r/j/.
using for example Quicksort (cf. Sedgewick [117]). Then, getting .i; �/ as well
as the remaining steps in the inner loop for each resource type r 2 R is done in

constant time. Thus, the total run time of the inner loop is in O

�
P

r2R
jC.r/j

�

, and

the entire procedure has a run time of O

�
P

r2R
jC.r/j C P

r2R
jC.r/j log jC.r/j

�

. ut

Finally, we remark that the procedure is similar to the parallel scheduling
scheme as used by a resource-based priority policy (cf. Sect. 6.1) based on the state
dependent priorities Q.s; i; �/.

90 7 Optimal and Near Optimal Scheduling Policies

The advantage of not enumerating A.s/ can be seen in the following example.

Example 7.1.2. We consider a system with a single resource type with c1 D 5

resources and two project types consisting of a single activity type. Hence, each
project type p D 1; 2 can only have one project state � D .p; f1g;;/ for any system
state. Hence, in total we have 2 project states �1 and �2. Next, we consider system
state s 2 SP with n.�1; s/ D n.�2; s/ D 10.

When fully enumerating all feasible decisions in A.s/, we have to consider six
alternative decisions .n.1; �1/; n.1; �2// such that A.s/ is given by

A.s/ D f.0; 5/; .1; 4/; .2; 3/; .3; 2/; .4; 1/; .5; 0/g (7.57)

For the evaluation of each decision, we would have to consider four transi-
tions(except for the decisions .0; 5/ and .5; 0/). One transition for the completion
of a project of type 1, one transition for completion of a project of type 2 and two
transitions for the arrival processes (we have one arrival process for each project
type). In total we have to consider 4 � 4C 3 � 2 D 22 transitions.

Using Algorithm 3, we only consider two activity groups .1; �1/ and .1; �2/ for
which we have to evaluate one transition each. Thus, in total we have to evaluate
only two transitions instead.

7.1.2.4 State Space Cardinality

As the computational effort and memory requirements to determine an optimal
policy �� depends largely on the number of states it is useful to know jSPj. The
following theorem delivers firstly a sufficient criterion for a state s be in SP, and
secondly a formula for jSPj.
Theorem 7.1.4. (a) Any state s with � 2 †P 8n.�; s/ > 0 and K.s/ � Kmax is in

SP.

(b) jSPj D
�

Kmax C j†Pj
j†Pj

�

Proof. To prove part (a), it is sufficient to show by induction over the number of
projects in the system (K.s/) that any state s with K.s/ � Kmax is accessible from
s0 under some policy.

Induction start: For K.s/ D 0, the system must be in s0 such that the case is trivial.

Induction step: We show that each state s with K.s/ � Kmax is accessible from a
finite sequence of states s00 with K.s00/ D K.s/ � Kmax that are again accessible
from a state s0 with K.s0/ D K.s/� 1 under some policy. By induction assumption,
s0 is accessible from s0 under some policy � such that s0 2 SP. Thus, all s00 are
accessible from s0 such that s00 2 SP and s must be accessible from s0. As a
consequence the assertion that s 2 SP follows.

7.1 Models as a Markov Decision Process 91

Now we have to consider two cases.

1. If n.� I
p; s/ > 0 holds for at least one project type p 2 P , then s is accessible by

a single transition subsequent to an arrival event from a state s0 with K.s0/ � 1.
2. Otherwise, we consider any project state � with n.�; s/ > 0 and consider the fol-

lowing scenario. A project has just arrived in state s000 D s�e.�/Ce.� I
p.�//. We

assume that afterwards activities i … U.�/ of the project are always scheduled
and subsequent transitions are related only to completions of those activities.
Hence, the subsequent system states s00 are given by s00 D s000 � e.� I

p.�//C e.� 0/
where � 0 is an intermediate state with p.� 0/ D p.�/ and we have for the sets
of unfinished activities U.�/ � U.� 0/ � U.� I

p.�//. As only activities i … U.�/

are scheduled system state s must be entered sometime such that it is accessible
from s000 via the system states s00. Obviously, such a scenario is in line with the
assumptions made so far for scheduling policies such that such a policy must
exist. As s000 is covered by case 1 with K.s000/ D K.s00/ D K.s/ � Kmax s000 is
accessible from s0 such that s000 2 SP. Thus states s00 are accessible from s0 such
that s00 2 SP. Finally, we conclude s is accessible from s0 via states s0, s000 and s00
such that s 2 SP.

The proof of part (b) is based on the result from the first part. As a first step,
transform the semi-open system into an equivalent closed system having fixed
number of Kmax projects in the system. We introduce a project state �NIS D
.�1;;;;/ for the projects that are not in the system. An interpretation is as follows:
On completion, projects turns into generic projects without specific type that are
queued in front of the system. Then, they wait for admission to the system at a rate
� D P

p2P
�p where the time between two admissions is exponentially distributed.

On admission, a generic project turns into an project of type p 2 P with probability
�p

�
which can be accepted or rejected.
Next, we observe that the state space must contain all possibilities of distributing

Kmax projects among the project states in †P [f�NISg. From combinatorics, this
corresponds to the well know problem of distributing n items (Kmax projects) among
k buckets (j†Pj C 1 project states) where the number of possibilities is given by�

nC k � 1

k � 1

�

such that

jSPj D
�

nC k � 1

k � 1

�

D
�

Kmax C j†Pj
j†Pj

�

ut
The precise cardinality of the state space jSPj cannot always be computed using

a closed expression as j†Pj depends on the structure of the networks Gp . However,
the following corollary delivers an interval for jSPj.

92 7 Optimal and Near Optimal Scheduling Policies

Table 7.1 Parameters
of Example 1

Parameter Value

jRj 3
cr 1 8r 2 R
Kmax 20
jPj 1

Corollary 7.1.1.

0

B
@

Kmax C P

p2P
jVpj

P

p2P
jVpj

1

C
A � jSPj �

0

B
@

Kmax C P

p2P
.2jVp j � 1/

P

p2P
.2jVp j � 1/

1

C
A (7.58)

Proof. The lower bound is obtained from the observation that for a project of type
p 2 P we have at least jVpj possible project states where in each project state one
of the activities is waiting. This is the case for projects where activities have to be
executed in a strict linear order (when OS D 1) due to precedence relations. The
upper bound is obtained as follows. For a project of type p 2 P , we have at most
2jVp j � 1 possible sets of waiting activities without counting the absorbing state �F

p

of a project where all activities have been completed. This is the case for projects
without any precedence relations between the activities (when OS D 0) such that for
project state � I

p D .p;Vp;;/ all activities are waiting. Thus, activities of a project
can be scheduled and completed in any order where any intermediate project � 0 with
W.� 0/ D U.� 0/ may occur under some policy. ut

Unfortunately, the upper bound for jSPj can be very large as the following
example shows.

Example 7.1.3. For a problem instance with a single project type that consists of 5

activity types. Setting Kmax D 10 we obtain 3;003 � jSPj � 1;121;099;408.

In Sect. 7.3.1, we show how to remedy this problem using the class of project
state ordering policies.

7.1.3 Numerical Example

In order to test the models and to gain insights into important features of optimal
policies, we discuss a numerical example with a single project type. System
parameters are given in Table 7.1. The parameters and the network of the project
type are given in Fig. 7.1. To obtain a realistic case, we have set the payoff to a
high value such that rejections should be avoided as much as possible. Otherwise,
if rejections are less costly the optimal policy may exhibit an undesired behavior
when the number of projects approaches the bound Kmax. The policy increases the

7.1 Models as a Markov Decision Process 93

Fig. 7.1 Specifications of the example

Table 7.2 Objective function
and state space cardinalities

Non-preemptive Preemptive

g� 52:454 50:534

State space cardinality 683;209 53;130

Number of project states 12 5

rejection rate in order to reduce the flow times of the projects currently in the system.
We will return to the effect of rejection costs in Sect. 7.1.3.4.

7.1.3.1 General Observations

Table 7.2 shows the value for the objective function as well as the state space
cardinalities for the non-preemptive as well as the preemptive problem. At first,
we observe that the optimal average cost is lower for the preemptive problem which
can be easily explained by the fact that the preemptive problem is a relaxation of the
non-preemptive problem. Thus, g� of the preemptive problem is a lower bound for
g� of the non-preemptive problem.

Next, we observe that for the non-preemptive problem we obtain a state space that
is more than 12 times larger than the state space for the preemptive problem. This
can be explained by the fact for the non-preemptive problem activities in process
that cannot be preempted need to be taken into account. Hence, we have 12 project
states for the non-preemptive problem while for the preemptive problem there are
only 4 project states that may occur in the pre-decision states. Table 7.6 shows the
set † of all project states with the sets W.�/ and E.�/. In the rightmost column,
we find project states marked using � to indicate that they belong to the set †P of
project states which may occur in the pre-decision states in case of the preemptive
problem. For the non-preemptive problem, all project states � 2 † may also occur
in the pre-decision states. Recall that all project states (Table 7.3) not being in †P

may occur in the post-decision states.

94 7 Optimal and Near Optimal Scheduling Policies

Table 7.3 Project states † W.�/ E.�/ in †P

�1 f1g ; �
�2 f2g ; �
�3 f3g ; �
�4 f4g ; �
�5 f2;3g ; �
�6 ; f1g
�7 ; f2g
�8 ; f3g
�9 ; f4g
�10 f3g f2g
�11 f2g f3g
�12 ; f2; 3g

Fig. 7.2 Flow of the projects through the system

Before going into detail, we note that scheduling decisions depend on how
resource types are involved in the flow of projects through the system. Figure 7.2
shows the system from the perspective of the resource types. Hence, it is useful
to discuss the scheduling decisions for each resource type separately (although, in
the CTMDP, a decision refers to activities for multiple resource types at a time).
We observe that resource type 1 processes activity types .1; 1/ and .4; 1/. From
Table 7.3, we know that activity 1 of a project (that is of activity type .1; 1/) can
only be in W.�1/ and activity 4 (of type .4; 1/) only in W.�4/. Thus, decisions for
resource type 0 refer either to scheduling of activity 1 of a project in state �1 or to
activity 4 of a project in state �4.

Resource types 2 and 3 process only one activity type respectively. However,
the activities of both activity types may occur in different project states. For the
preemptive problem activities of activity type .2; 1/ may occur in �2 and �5 and for
the non-preemptive problem additionally in �11. As a consequence, a decision refers
to scheduling activity 2 either from a project in state �2 or state �5 (or state �11).

7.1 Models as a Markov Decision Process 95

Fig. 7.3 Scheduling decisions for the preemptive problem at resource type 1

Due to its simpler structure, we first examine the optimal scheduling policy
for the preemptive problem before considering the policy for the non-preemptive
problem.

7.1.3.2 Optimal Policy for the Preemptive Scheduling Problem

To gain insights into the structure of the scheduling decisions for resource type 1, we
consider the state space only at some specific regions of the state space. Figure 7.3
shows the optimal scheduling decisions where n.�1; s/ > 0 and n.�4; s/ > 0 for
different levels of n.�5; s/. For all other � 2 †P, we have n.�; s/ D 0. We start
the analysis by considering the case where n.�5; s/ D 0. Then, as long as n.�1; s/

and n.�4; s/ are below a certain threshold within the light grey region only activity
1 of some project in �1 is scheduled. Beyond the threshold in the dark grey region,
activity 4 of some project in �4 is scheduled. To understand the policy, we note that,
if resource types 2 and 3 have no activities waiting (n.�5; s/ D 0), we have idleness
of both resource types after making a decision. Then, for small n.�4; s/ activity 1

from projects in state �1 is preferred as, on completion of activity 1, resource types
2 and 3 can be used for processing activities 2 and 3. Otherwise, unused idle times
may be the consequence that lead to higher delays of projects in state �1 having

96 7 Optimal and Near Optimal Scheduling Policies

Table 7.4 Optimal scheduling decisions of resource type 1 and 2 for the preemptive problem

Case Condition Decision

Resource type 1
1 n.s; �2/ > 0 Schedule activity 2 from a project in state �2

2 n.s; �2/ D 0^ n.s; �5/ > 0 Schedule activity 2 from a project in state �5

Resource type 2
1 n.s; �3/ > 0 Schedule activity 3 from a project in state �3

2 n.s; �3/ D 0^ n.s; �5/ > 0 Schedule activity 3 from a project in state �5

activity 1 waiting (as there is less time available for completing activities of types 2

and 3).
If we increase n.�5; s/, such that there are more projects having activities 2 and 3

waiting, the risk that resource types 2 and 3 idle is reduced. Obviously, this may only
happen if all activities waiting for resources 2 or 3 are completed before completion
of activity 1 of a project in state �1. Thus, the dark grey region where activity
4 is preferred for scheduling becomes larger. This behavior can be interpreted as
building up a safety stock (cf. Meyn [93]) for protecting resource types 2 and 3

from becoming idle. The preference for activity 4 for increasing n.�4; s/ can be
explained by a decreasing benefit of scheduling activity 1. As for projects having
activity 1 waiting activity 4 is still unfinished such that it is likely that they will be
delayed later due to a large n.�4; s/.

Next, we consider the scheduling decisions related to resource types 2 and 3.
Table 7.4 shows that for resource type 2 and 3 scheduling decisions are made
according to simple rules irrespectively from the states of other projects. An
explanation is given by the fact that activity 2 (3) from a project in state �2 (�3)
is less critical in the sense that a delay of the activity is less likely to lead to a delay
of the project than activity 2 (3) from a project in state �5. A project in state �5 may
also be delayed by activity 3 (2).

7.1.3.3 Optimal Policy for the Non-preemptive Scheduling Problem

Figure 7.4 shows the optimal scheduling decisions for resource type 1. Note that
for the non-preemptive problem, states where both resource types 2 and 3 idle,
while there multiple projects are waiting in �5 are infeasible (except for states with
n.�5; s/ D 1 that are entered on completion of activity 1 of some project) as we
require policies to be non-idling. Hence, except for the first case where both resource
types idle, we consider states where one project always has both activities in process
(�12) on resource types 2 and 3.

Generally, we observe that the structure of the optimal policy is similar to the
structure of the optimal policy for the preemptive problem concerning the decisions
for resource type 1. This observation suggests using the solution for the preemptive
problem as an approximation which is easier to solve for the non-preemptive
problem. We will return to this idea in Sect. 7.4.2.

7.1 Models as a Markov Decision Process 97

Fig. 7.4 Scheduling decisions for the non-preemptive problem at resource type 1

Table 7.5 Optimal scheduling decisions of resource type 1 and 2 for the non-preemptive problem

Case Condition Decision

Resource type 1
1 n.s; �2/ > 0 Schedule activity 2 from a project in state �2

2 n.s; �2/ D 0^ n.s; �11/ > 0 Schedule activity 2 from a project in state �11

3 n.s; �2/ D 0^ n.s; �11/ D 0^ n.s; �5/ > 0 Schedule activity 2 from a project in state �5

Resource type 2
1 n.s; �3/ > 0 Schedule activity 2 from a project in state �3

2 n.s; �3/ D 0^ n.s; �10/ > 0 Schedule activity 2 from a project in state �10

3 n.s; �3/ D 0^ n.s; �10/ D 0^ n.s; �5/ > 0 Schedule activity 2 from a project in state �5

Note that, for the case where resource types 2 and 3 idle without waiting
activities, we have a maximum of 19 projects in the system. This can be explained
by the fact that for the non-preemptive problem idleness of all three resource types
can only occur on completion of activity 4 processed on resource type 1 such that
the project leaves afterwards. If it were activity 1 of some project we would have
one project being in state �5. The scheduling decisions related to resource types 1

and 2 become more involved than for the preemptive problem as projects having
activity 2 (3) waiting for resource type 1 (2) may now be in state �2, �5 and �11 (�3,
�5 and �10). We will now present the optimal rules shown in Table 7.5 for this case.

98 7 Optimal and Near Optimal Scheduling Policies

Table 7.6 Performance figures for different policies

y1 0 1;000 1;000 1;000 1;000 1;000

Policy ��;0 ��;1;000 ��;0 RAN BD-GC-U BD-GC-D

g 10:129 50:387 75:795 68:914 64:469 64:617

�eff
1 0:935 0:962 0:935 0:943 0:948 0:947

Avg. holding cost 10:129 11:816 10:129 11:856 12:109 12:103

Avg. rejection cost 0:000 38:571 65:667 57:0581 52:361 52:507

Avg. flowtime 10:837 12:286 10:837 12:569 12:773 12:776

Basically, the rule for the preemptive scheduling problem has been extended by
the consideration of project state �11 (�10). Additionally, we have the case that
activity 2 (3) from a project in state �2 (�3) is preferred over activity 2 (3) from
a project in state �11 (�10) for a similar argument as the one used above for the
preemptive problem. Furthermore, activity 2 (3) from a project in state �11 (�10) is
preferred of activity 2 (3) from a project in state �5 as it is more critical. The parallel
activity 3 (2) being in process for a project in state �11 is completed earlier than
activity 3 (2) from a project in state �5 as it has not been scheduled yet.

Thus, we have a structural property of the optimal policies that activities from
projects having more activities completed or more activities already scheduled
should be preferred. This property can be observed for many instances having
parallel networks. This idea has led us to the class of project state ordering policies
which will be discussed in Sect. 7.3.

7.1.3.4 Effect of Rejection Cost

To conclude the investigation, we briefly address the effect of rejection costs. For
simplicity, we only consider the preemptive case as similar observations could be
obtained for the non-preemptive case.

In order to investigate the effect of rejection costs, we have computed the optimal
policy ��;0 for the case where y1 D 0. In order to show the benefit of taking into
account rejection costs, we have applied policy ��;0 to the case where y1 D 1;000.
Table 7.6 shows the results for ��;0 applied to the case with y1 D 0 as well
as y1 D 1;000. As a benchmark, we show for the case where y1 D 1;000 the
performance of the optimal policy pi�;1;000 as well as the performance of three
priority policies, namely RAN, BD-GC-U and BD-GC-D. In the first row, it is
indicated to which of the two cases (y1 D 0 or y1 D 1;000) the results in a column
refer. Ties between activities with same priorities are broken randomly. BD-GC-
U and BD-GC-D (with � D 1) are two priority policies based on the bottleneck
dynamics approach (cf. Lawrence and Morton [85] or Morton and Pentico [96]) that
have performed well in the simulation study presented in Chap. 6. For details, we
refer to Sect. 6.1.

To explain the performance, we show the parts of the average cost (average
holding cost and average rejection cost) separately and the effective arrival rate

7.1 Models as a Markov Decision Process 99

Fig. 7.5 Scheduling decisions for the preemptive problem at resource type 1

�eff
1 which is the arrival rate obtained when rejections due to K.s/ D Kmax are taken

into account. Since w1 D 1 the average holding correspond to the average number
of projects in the system. Thus, the average flow time can be easily obtained from
Little’s law (cf. Gross and Harris [54]) by dividing the average holding cost by the
effective arrival rate �eff

1 . We make a number of interesting observations. Firstly, the
average holding cost as well as average flow times are lower when y1 D 0. However,
the average cost is higher if policy ��;0 is applied to the case with y1 D 1;000 than
the average (overall) cost obtained from the optimal policy ��;1;000. This can be
explained by regarding �eff

1 . As �eff
1 is lower for ��;0 than for ��;1;000 we conclude

that ��;0 obviously exploits rejections if K.s/ D Kmax in order to reduce the average
number and flow times of projects in the system. However, if ��;0 is applied to the
case with y1 D 1;000 total cost become much higher.

For the priority policies, we observe that although RAN achieves a lower average
holding cost and flow time than BD-GC-U as well as BD-GC-D the latter priority
policies achieve a lower average (overall) cost g (Table 7.6).

Thus, we conclude that for semi-open system it is not sufficient to optimize
average flow times or holding cost. Instead, total cost including rejection cost should
be considered. It is even possible that for optimal policies larger average flow times
are obtained while rejection cost may be lower.

Next, in order to understand how ��;0 exploits the limit Kmax to reduce �eff
1 , we

analyze important features of its structure. Figure 7.5 shows a part of the optimal

100 7 Optimal and Near Optimal Scheduling Policies

Fig. 7.6 Usage of rules for scheduling at resource type 2 if y1 D 0

scheduling decisions for resource type 1 where n.�1; s/ > 0 and n.�4; s/ > 0

for different levels of n.�5; s/. For all other � 2 †P we have n.�; s/ D 0.
Comparing the structure of the decisions for ��;0 with the structure of the decisions
for ��;1;000 as shown in Fig. 7.3 we observe that projects having activity 1 waiting
are preferred more often as the light grey region becomes larger. This can be
explained by the fact that preferring activities from less advanced projects in terms
of less completed (or unfinished) activities leads, in short term, to more projects in
the system as less projects are completed. Thus, a larger number of projects in the
system make rejections more likely. However, in long term, when there are many
advanced projects in the system (with only few unfinished activities), they do not
have to compete with projects having arrived later such that their flow times become
shorter.

Next, we consider the optimal decisions for resource type 2. While for the case
with y1 D 1;000 optimal decisions followed a very simple structure, the structure
becomes more involved for the case with y1 D 0. Instead, we now have two rules
Rule 1 and Rule 2 for determining the optimal decision as shown in Table 7.7.
Obviously, Rule 2 is the opposite of Rule 1 and prefers activity 2 from projects in
state �5 instead of projects in �2. When to use one of both rules depends on the
system state. Figure 7.6 indicates when to use one of both rules for system states
where n.�2; s/ > 0,.�5; s/ > 0 and n.�1; s/ D 0,.�3; s/ D 0,.�4; s/ D 0.

We observe that for larger numbers of projects in the system (dark grey region)
Rule 2 is preferred and Rule 1 otherwise. This can be explained again by the fact
that the policy tries to keep the number of projects in the system at a high level
in order to make rejections more likely. Thus, less advanced projects in terms of

7.2 Optimal Policy for the Single Resource Case Without Preemptions 101

Table 7.7 Optimal scheduling decisions of resource type 2 for the case with y1 D 0

Case Condition Decision

Rule 1
1 n.s; �2/ > 0 Schedule activity 2 from a project in state �2

2 n.s; �2/ D 0^ n.s; �5/ > 0 Schedule activity 2 from a project in state �5

Rule 2
1 n.s; �5/ > 0 Schedule activity 2 from a project in state �5

2 n.s; �5/ D 0^ n.s; �2/ > 0 Schedule activity 2 from a project in state �2

more unfinished activities are preferred. For other system states the structure of the
optimal policy w.r.t. usage of the two scheduling rules is similar.

As activity type 3 has the same expected duration and successors as activity type
2 optimal decisions for resource type 3 have the same structure.

Note that the observed behavior of the optimal policy without consideration
of rejection cost is typically undesired as considerable losses of revenues are the
consequence. Furthermore, acceptance and rejection of new orders arriving at the
system is subject to order acceptance on the tactical level (cf. Chap. 8) while
scheduling on the operational level should not lead to any losses.

An interesting question remains – How do the structure of optimal policies looks
like for open systems? We have found in a number of experiments where we have
increased Kmax that for a given set of states the policies become more similar to
the policies with larger rejection costs. This can be explained by the fact that for
large Kmax the incentive becomes less to hold projects longer in the system for
preventing future arrivals. For open systems with unbounded Kmax project arrivals
are completely independent from the scheduling policies.

7.2 Optimal Policy for the Single Resource Case Without
Preemptions

In this section, we consider a special case with the following assumptions.

• System consists of a single resource (jRj D 1 and cr D 1).
• Activities of type .i; p/ have generally distributed duration with mean d ip.
• Activities in process may not be preempted.
• The maximum number of projects in the system Kmax is unbounded.

Then, the optimal scheduling policy is given by the following theorem.

Theorem 7.2.1. The optimal scheduling policy minimizing the average weighted
flow time is a priority index policy where an activity is selected according to

max
.i;j /2Wr .t /

wpj
P

m2Uj .t/

d mpj

(7.59)

102 7 Optimal and Near Optimal Scheduling Policies

As a tie breaker among the activities of a project and between the projects j 2 J .t/

in case of equal priority any policy can be used.

Recall that a scheduling policy is a priority index policy (cf. Nino-Mora [100])
where projects competing for the resource are assigned an index which is used for
prioritizing the projects. The index of a project depends only on its state at the time
of the decision and is independent from the states of other projects.

Before giving the proof, we briefly introduce a problem known as Klimov’s
problem for which Klimov [72] proved that the optimal policy is a priority index
policy and provided a recursion for obtaining the priorities.

The problem can be sketched as follows. We consider a set � of job classes which
are processed by a single resource. Jobs of class ! 2 � arrive according to a Poisson
process with rate �! . For the cases where the resource is busy, the jobs of a class
! wait in their own queue with a length n.!; t/. The service time is assumed to be
generally distributed with cumulative distribution function B.!; t/. On completion
of a job of class !, it turns into a job of class !0 2 � with probability p!!0 and
leaves the system with probability 1 � P

!02�

p!!0 .

As long as a job of class ! is in the system a holding cost w! is incurred per unit
of time. As objective function Klimov considers the minimization of the average
cost per unit of time.

Then, a sequence of sets (of job classes) ��1 ; : : : ; ��o is defined by

��l D
�

! 2 �l

ˇ
ˇ
ˇ
ˇ

w!

.!; �l/
D min

!02�l

w!0

.!0; �l /

(7.60)

where

�1 D �I �lC1 D �n
l[

mD1

��m (7.61)

.!; �i/ denotes the expected remaining processing time (no waiting times) until
a job of class ! leaves the set of job classes �i . Based on the sequence of sets an
optimal policy for scheduling, jobs of the different classes on the resource is given
by the following theorem.

Theorem 7.2.2. The optimal policy is to prefer job classes in the set ��lC1 over jobs
in the class ��l .

The proof can be found in Klimov [72].
Now, we give proof of Theorem 7.2.1.

Proof. The proof is composed of two steps. In a first step we show that the problem
can be interpreted a special case of Klimov’s–problem and apply in a second step
Theorem 7.2.2 to obtain the policy.

As at decision times no project is in process we do not have to account for
the time any activity already has been in process. Thus, it is sufficient to consider

7.2 Optimal Policy for the Single Resource Case Without Preemptions 103

for project j 2 J .t/ the current state �j .t/ D �
pj ;Wj .t/; Ej .t/

�
as defined in

Sect. 7.1.1.1. After scheduling an activity .i; j / with i 2 W.�.j; t// at time t it is
processed without preemption until completion as no preemptions are allowed. On
completion of activity .i; j / the subsequent project state �CW.i; �/ given by (7.38).
All successors of activity .i; j / for which all predecessors have been completed are
added, if available, to the set of waiting activities. The states of the other projects do
not change as only one activity can be executed at a time. We observe that it is not
necessary to distinguish between two projects j; j 0 2 J .t/ with �.j; t/ D �.j 0; t/

such that we only need to account for n.�; t/ being the number of projects in state
� at time t .

Next, we interpret each project state � 2 † as a job type where for the choice
of an activity i 2 W.�/ a stationary (possibly random) policy z W † �! N is
given that delivers based on the current project state � 2 † the activity from
W.�/ to be scheduled. Thus, a project switches from state � to �C.i; �/ with
a probability p

�
�; �C.i; �/

� D p .z.�/ D i 2W.�//. Obviously, as each project
must be completed and no abortions are allowed we must have 1 � P

� 02†

p.�; � 0/ D
0 8� ¤ �F

p.�/ and 1� P
� 02†

p.�; � 0/ D 1 8� D �F
p.�/ as the project leaves the system

on completion of its last activity. Thus, the set of project states † corresponds to the
set � of job types and we can apply Theorem 7.2.2 to obtain the optimal policy.

At first † can be divided to subsets †1; : : : ; †o of project types according to
(7.61). Starting with †i we obtain

†iC1 D †in†�i (7.62)

where

†�i D
�

� 2 †i

ˇ
ˇ
ˇ
ˇ

wp.�/

.�; †i/
D min

� 02†i

wp.� 0/

.� 0; †i /

(7.63)

where .�; †i / is the expected remaining processing time of a project in state �

until leaves the set †i of project states. To obtain the indices, we need wp.�/ and
.�; †i/ for all � 2 †i .

While wp.�/ is already given, .�; †i / needs to be computed. Fortunately, it can
be easily obtained exploiting a relationship between the sets †1; : : : ; †i . Without
loss of generality we consider the project states � 2 †in†�i . Then, concerning the
project states � 0 2 †�i two cases can be distinguished.

1. p.�/ D p.� 0/: By definition of †�i , we must have
wp.�/

.�;†i /
>

wp.�0/

.� 0;†i /
. As wp.�/ D

wp.� 0/ we must have .�; †i / < .� 0; †i /. As each activity of a project can
only processed once due to the acyclic project network we must have .�; †i / >

.�C.z.�/; �/; †i /. Thus, we conclude that � 0 cannot be accessed from � by
completions of unfinished activities in U.�/.

2. p.�/ ¤ p.� 0/: � 0 cannot be accessed from � as a project cannot change its type.

104 7 Optimal and Near Optimal Scheduling Policies

Thus, all project states that are accessible from � must be in †i such that
.�; †iC1/ D .�; †i/. By induction it follows that

.�; †iC1/ D .�; †/ D
X

k2U.�/

d kp.�/

such that it is sufficient to compute the expected remaining processing times only
once.

As obviously .�; †/ only depend on the project state � any policy z may be
used for the selection of the activity to be scheduled from W.�/. Furthermore, ties
may be broken between two project states �; � 0 2 † with

wp.�/

.�;†/
D wp.�0/

.� 0;†/
using any

rule. This completes the proof. ut
We observe that the optimal policy boils down to the c�–policy (cf. WSPT–

policy in Sect. 6.1) for the special case where project types consist of a single activity
type.

7.3 Project State Ordering Policies

We observe that especially for networks having only few precedence relations
between the activity types the state space may become forbiddingly large even for
small networks and a limited Kmax. This observation is in line with the results by
other authors who have considered stochastic scheduling of projects using CTMDPs
(cf. Sobel et al. [120] or Creemers et al. [31]). An option to reduce the state space
is restricting the search for an optimal policy to a class of policies where in each
state s 2 S (or s 2 SP for the preemptive problem) only a subset of the alternative
decisions a 2 A.s/ is considered. Thus, parts of the state space S (s 2 SP) may no
longer be accessible from s0 for all policies of a given class.

In this section, we restrict our considerations to systems with cr D 1 8r 2 R.
For such systems, we propose the class of project state ordering policies (POPs) that
may be preemptive or non-preemptive. Due to their simpler structure, we consider
first preemptive POPs in Sect. 7.3.1 and extend the analysis to non-preemptive POPs
in Sect. 7.3.2.

7.3.1 Preemptive Project State Ordering Policies

At first, we give in Sect. 7.3.1.1 the definitions and present some general properties
of the state space. Afterwards, we establish in Sect. 7.3.1.2 an interesting relation to
a queueing network representation of the state space where each activity type .i; p/

has its own queue. The relation allows us to quantify more precisely the reduction
of jSPj using POPs.

7.3 Project State Ordering Policies 105

7.3.1.1 Definitions and General Structural Results

At first, we define a relation between project states � that is fundamental for the
definition of POPs

Definition 7.3.1. We have two project states �1; �2. Then, project state �1 is more
advanced than �2 if p.�1/ D p.�2/ and U.�1/ � U.�2/.

The term U.�1/ � U.�2/ states that in order to have a project j1 that is in a
more advanced state �1 than another project j2 in state �2 there must be for each
unfinished activity .i; j1/ with i 2 U.�1/ an unfinished activity .i; j2/ with i 2
U.�2/. Furthermore there must be some additional unfinished activities .i 0; j2/ with
i 0 … U.�1/ and i 2 U.�2/. We shortly write �1 	a �2 in order to say that project
state �1 is more advanced than project state �2. Now, we define the class of project
state ordering policies (POPs).

Definition 7.3.2. Let �1; �2 2 †.p; s/ be two projects states with �1 	a �2. Then,
a preemptive project state ordering policy �PO always prefers activity i 2 W.�1/

from a project in state �1 over activity i 2 W.�2/ from a project �2 8i 2 W.�1/\
W.�2/.

By …PPO � … we denote the class of preemptive project state ordering policies
(POPs) where SPPO is the set of states (state space) that communicate with s0 under
at least one preemptive POP plus the empty system state s0.

The class of policies formalizes the intuition that waiting activities of a project
being in a more advances state tend to be more critical than those of a project in
a less advanced state. Criticality refers to the probability to lie on the critical path
(cf. Elmaghraby [46]). To see this, let us consider the following example.

Example 7.3.1. We consider two projects j1 and j2 where j1 is in state �1 and j2

in state �2 with �1 	a �2. Furthermore, we have activities .i; j1/ and .i; j2/ with
i 2W.�1/\W.�2/ that are waiting. Then, activities .i 0; j2/ with i 0 2 U.�2/nU.�1/

may not be successors of activity .i; j2/. Otherwise, they would be in U.�1/ as
well. Thus, activity .i; j2/ is less critical than activity .i; j1/ as activities .i 0; j2/

may be completed later than activity .i; j2/ such that scheduling .i; j2/ tends to
have a smaller impact on project flow time that scheduling of project .i; j1/. Let
us assume that we have for the two projects j1 and j2 W.�1/ D U.�1/ D f1g and
W.�2/ D U.�2/ D f1; 2g of type p 2 P . Activity type .1; p/ is to be processed on a
different resource type than activity type .2; p/. Then, Fig. 7.7 shows two scenarios.
Scenario 1 refers to scheduling of activities .1; j1/ and .2; j2/ where Scenario 2

refers to scheduling of activities .1; j2/ and .2; j2/ where there are given realizations
d1j1 ,d1j2 and d2j2 for the activity durations. For simplicity, the presentation is only
for the preemptive-resume case. Note that as only activity .2; j2/ needs resource r2 it
is immediately rescheduled on completion of activity .1; j1/ in Scenario 1 or .1; j2/

in Scenario 2. We observe that the total holding cost for Scenario 1 is wp �.d1j1Cd2j2/

where for Scenario 2 we have wp � .d1j1 C d1j2 C d2j2/. Obviously, the total holding
cost increase for Scenario 2 as the flow time for project j1 increases while it remains

106 7 Optimal and Near Optimal Scheduling Policies

Fig. 7.7 Example illustrating the benefit of POPs

the same for project j2 as activity .2; j2/ is completed after completion of activity
.1; j2/.

If we have an order starting with the most advanced states defined on the set
†.p; s/ according to Definition 7.3.2 such that �1 	a; �2 	a : : : 	a �j†.p;s/j we
define �o.l; p; s/ D �l 2 †.p; s/ to deliver the project state having rank l according
to the order on †.p; s/.

The following theorem shows the project state ordering effect of a policy in …PO

and implies that SPPO � SP. Furthermore, a sufficient condition for a state s be in
SPPO is given.

Theorem 7.3.1. The following properties hold for SPPO.

(a) For any system state s 2 SPPO there is an order of the project states
� 2 †.p; s/ 8p 2 P such that �o.1; p; s/ 	a �o.2; p; s/ 	a : : : 	a

�o.j†.p; s/j; p; s/.
(b) Any system state s with K.s/ � Kmax and an order of the project states

� 2 †.p; s/ 8p 2 P such that �o.1; p; s/ 	a �o.2; p; s/ 	a : : : 	a

�o.j†.p; s/j; p; s/ must be in SPPO.

Proof. The proof of part (a) is by induction over the states visited on a sample path
starting at the empty state s0 D s0 D .0; : : : ; 0/.

Induction start: For the case of an empty system (s0 D s0) and immediately after
the arrival of the first project of type p 2 P , we have only one project in the system
which is in state �I

p . Hence, n.�I
p ; s1/ D 1 and n.�; s1/ D 0 8� 2 †; � ¤ �I

p such
that the induction assumption is met.

Induction step: We consider system state sn accessed after n transitions. If sn D s0

the case is equivalent to the induction start. If sn ¤ s0, we consider the transitions
subsequent to the two types of events.

1. Arrival of a new project of type p 2 P : As all activities of the project are
unfinished for the initial state �I

p we have �o.j†.p; snC1/j; p; snC1/ D �I
p
a

�o.j†.p; sn/j; p; sn/.

7.3 Project State Ordering Policies 107

2. Completion of an activity: We consider activity i 2 W.�o.l; p; sn// of a project
of type p in project state �o.l; p; sn/. Now, we assume that the activity is
scheduled by decision an D �PO.sn/. On completion of activity i the project
state is � 0 D �CPW.i; �o.l; p; sn// where U.� 0/ D U.�o.l; p; sn//nfig such that
� 0 	a �o.l; p; sn/.

Furthermore, we know that i …W.�o.l �1; p; snC1// as otherwise, by induc-
tion assumption, activity i from a project in state �o.l�1; p; sn/ would have been
preferred by decision an. Thus, we have �o.l � 1; p; snC1/ D �o.l � 1; p; sn/
a

� 0 such that we obtain for state snC1 †.p; snC1/ D †.p; sn/ [f� 0g with

�o.1; p; sn/ 	a : : : 	a �o.l � 1; p; sn/
a � 0 	a �o.l; p; sn/ 	a

�o.l C 1; p; sn/ 	a : : : 	a �o.j†.p; sn/j; p; sn/

Note that if n.�o.l; p; sn/; sn/ D 1 project state �o.l; p; sn/ must be eliminated
from †.p; snC1/ such that †.p; snC1/ D †.p; sn/ [f� 0gnf�o.l; p; sn/g.
However, the order between the project states remains.

The proof of part (b) is by induction over the number of projects in the system
(K.s/).

Induction start: For K.s/ D 0 the system must be in s0 such that the case is trivial.

Induction step: We consider any state s with K.s/ � Kmax and an order of the
project states � 2 †.p; s/ 8p 2 P such that

�o.1; p; s/ 	a �o.2; p; s/ 	a : : : 	a �o.j†.p; s/j; p; s/

Then, it is sufficient to show that s is accessible from a state s0 with K.s0/ D K.s/�1

over a finite sequence of states s00 with K.s00/ D K.s/ � Kmax that are again
accessible from s0 under some PO-policy. For state s0 we have †.p; s0/ with

�o.1; p; s0/ 	a �o.2; p; s0/ 	a : : : 	a �o.j†.p; s0/j; p; s0/ 8p 2 P

and for the states s00 we have †.p; s00/ with

�o.1; p; s00/ 	a �o.2; p; s00/ 	a : : : 	a �o.j†.p; s00/j; p; s00/ 8p 2 P

By induction assumption, s0 is accessible from s0 such that s0 2 SPPO. Thus, all
states s00 are accessible from s0 such that they are accessible from s0 and we must
have s00 2 SPPO. Consequently, s must be accessible from s0 over a sequence of
states in SPPO such that s 2 SPPO follows.

Now we have to consider two cases.

1. If �o.j†.p; s/j; p; s/ D � I
p for at least one project type p 2 P then s is accessible

by a single transition subsequent to an arrival from a state s0 2 SPPO with K.s0/�
1 such that s 2 SPPO.

108 7 Optimal and Near Optimal Scheduling Policies

2. If �o.j†.p; s/j; p; s/ ¤ � I
p 8p 2 P we know that �o.j†.p; s/j; p; s/ 	a � I

p

for any p 2 P with †.p; s/ ¤ ;. Now, we consider the following scenario. A
project has just arrived in state s000 D s � e.�o.j†.p; s/j; p; s//C e.� I

p/ and for
the project states in †.p; s000/ we must have

�o.1; p; s000/ D �o.1; p; s/ 	a : : : 	a �o.j†.p; s000/j�1; p; s000/ D �o.j†.p; s/j; p; s/

	a �o.j†.p; s000/j; p; s000/ D � I
p

Next, we assume activities i … U.�o.j†.p; s/j; p; s// of this project are always
scheduled which is feasible under a POP, and that subsequent transitions are only
related to completions of those activities. Hence, the subsequent system states are
given by s00 D s000 � e.� I

p/C e.�/ where

�o.j†.p; s/j; p; s/ 	a �o.j†.p; s00/j; p; s00/D � 	a�o.j†.p; s000/j; p; s000/ D � I
p

For each system state s00, we have for the project states in †.p; s00/

�o.1; p; s/ 	a �o.2; p; s/ 	a : : : 	a �o.j†.p; s/j; p; s/ 	a �

As only activities i … U.�j†.p;s/j/ are scheduled system state s must be entered
such that it is accessible from s000 via states s00 under a POP. As s000 with
Kmax.s000/ D Kmax.s/ is entered just after an arrival the state is covered by case
1. Furthermore, the states s00 with Kmax.s00/ D Kmax.s/ are accessible from s0

via s000 2 SPPO. Thus, we have s00 2 SPPO. We conclude that s is accessible from
s0 via states s0, s000 and s00 such that s 2 SPPO.

Finally, we note that if n.�j†.p;s/j; s/ D 1 �o.j†.p; s/j; p; s/ … †.p; s00/ and
�o.j†.p; s/j; p; s/ … †.p; s000/ which does not have an effect on the order of the
project states such that the induction step remains valid.

ut
Due to the order between the project states in set †.p; s/, we exclude combina-

tions of project states which may otherwise be possible such that SPPO � SP.

7.3.1.2 Project State Ordering Policies and Queueing Networks
Representation of the System

In this section, we show, for unbounded Kmax, the equivalence of the state space
SPPO and the state space SQ of a queueing network. In the queueing network
activities of each type .i; p/ wait in their own queue of length n.i; p; sQ/ in system
state sQ 2 SQ which is given by

sQ D �n.i1; p1/; n.i2; p2/; : : : ; n.ijVj; pjVj/
�

(7.64)

7.3 Project State Ordering Policies 109

V D ˚
.i; p/jp 2 P ; i 2 Vp

�
is the set of all activity types. Thus, we write il and

pl for addressing the information of activity type .i; p/l . Explicit representation
of synchronization queues as considered for example by Cohen et al. [28] is not
necessary since, as we will see, the information is implicitly contained in the state
representation.

The equivalence between SPPO and SQ allows us to characterize and quantify
more precisely the effect of POPs on the state space cardinality. Furthermore,
it highlights the fact that, when using POPs, a queuing network representation
is appropriate for the dynamic-stochastic multi-project scheduling problem with
preemptions. For the investigation of the state space complexity, we use the
following notation.

• �.W ; p/ D .W ;;; p/: Project state obtained from the combination of the set of
waiting activities W and project type p.

• U.W ; p/: Set of all activities in the set W and their direct and indirect successors.
• W.U ; p/ D fi 2 U j8i 0 2 U W .i 0; i / … Apg: Set of activities in U of which no

predecessors are in U .
• W.p; s/ D S

�2†.p;s/

W.�/: Index superset of all waiting activities related to

projects of type p in system state s.
• W.p; sQ/ D ˚

i 2 Vpjn.i; p; sQ/ > 0
�
: Index superset of all waiting activities

related to projects of type p in system state sQ 2 SQ.
• U.p; s/ D U.W.p; s/; p/: Index superset of all unfinished activities related to

projects of type p in system state s 2 SP.
• U.p; sQ/ D U.W.p; sQ/; p/: Index superset of all unfinished activities related to

projects of type p in system state sQ 2 SQ.
• n.i; p; s/ D P

�2†.p;s/

� fi 2W.�/g n.�; s/: Number of activities of type .i; p/

that are waiting in system state s 2 SP.

Now, we state the main result delivering a bijection m which allows to conclude the
equivalence of SPPO and SQ for unbounded Kmax.

Theorem 7.3.2. For unbounded Kmax there exists a bijection m W SPPO ! SQ

mapping a state in SPPO on a state in SQ and vice versa. m is given by

(i) m W SPPO ! SQ:

n.i; p; sQ/ D n.i; p; s/ 8p 2 P ; i 2 Vp (7.65)

(ii) m�1 W SQ ! SPPO:

Require: sQ 2 SQ

1: s D s0

2: for p 2 P do
3: l 1

4: s
Q
1 D sQ

5: while not n.i; p; s
Q
l / D 0 8i 2 Vp do

110 7 Optimal and Near Optimal Scheduling Policies

6: �min
lp D �.W.U.s

Q
l ; p/; p/; p/

7: n.�min
lp ; s/ D min

n
n.i; p; s

Q
l /ji 2W.�min

lp ; p/
o

8: Compute s
Q
lC1 by letting for all p0 2 P ; i 2 Vp0

n.i; p0; s
Q
lC1/ D

(
n.i; p0; s

Q
l / � n.�min

lp ; s/ i 2W.�min
lp /; p0 D p

n.i; p0; s
Q
l / otherwise

(7.66)

9: l l C 1

10: end while
11: end for

Note that a sequence of �min
lp for a project type p 2 P constitutes a set †.p; s/

of state s D m�1.sQ/ 2 SPPO. Before we give the proof of Theorem 7.3.2,
we state two lemmas needed to retrieve project state �o.j†.p; s/j; p; s/ and
n.�o.j†.p; s/j/; p; s/.

Lemma 7.3.1. For any state s 2 SPPO, we have

�o.j†.p; s/j; p; s/ D �.W.U.p; s/; p/; p/ (7.67)

Proof. Be L D j†.p; s/j. From U.�o.1; p; s// � U.�o.2; p; s// � : : : �
U.�o.L; p; s// it follows that

U.p; s/ D U.W.p; s/; p/ D U.�o.L; p; s// (7.68)

Then, W.U.p; s/; p/ gives the set of activities without predecessors which is equal
to W.�o.L; p; s//. Thus, we obtain the project state by

�o.L; p; s/ D �.W.U.p; s/; p/; p/:

ut
The second lemma gives n.�o.j†.p; s/j; p; s/; s/.

Lemma 7.3.2. For any state s 2 SPPO, we have

n.�o.j†.p; s/j; p; s/; s/ D min .n.i; p; s/ji 2W.�o.j†.p; s/j; p; s/// (7.69)

Proof. Be L D j†.p; s/j. From

U.p; s/ D U.�o.L; p; s// � : : : � U.�o.1; p; s//

we have unfinished activities with i 2 U.�o.L; p; s//nU.�o.L � 1; p; s// that
are in no other set of unfinished activities such that i … W.�o.l; p; s// �
U.�o.l; p; s// 8l D 1; : : : ; L � 1.

7.3 Project State Ordering Policies 111

Furthermore, we must have some unfinished activities waiting such that
W.�o.L; p; s// \ .U.�o.L; p; s//nU.�o.L � 1; p; s/// ¤ ;. This follows from
the fact that if we had W.�o.L; p; s// � W.�o.l; p; s// for some l 2 Œ1; L� 1	

we would have U.�o.L; p; s// � U.�o.l; p; s//. Hence, for activities with
i 2W.�o.jLj; p; s//\ .U.�o.jLj; p; s//nU.�o.jLj � 1; p; s/// we must have

n.i; p; s/ D n.�o.jLj; s/; p; s/:

By contrast for all activities with i 2W.�o.jLj; p; s/; s/\W.�o.l; p; s// (where
W.�o.l; p; s// � U.�o.l; p; s//) for at least other project state with l D 1; : : : ; L�
1, we must have n.i; p; s/ > n.�o.L; s/; p; s/. Thus, the assertion follows. ut

Now, we give the proof of Theorem 7.3.2

Proof. In order to show that the mapping m is a bijection we show, firstly, that m is
injective such for a state in s 2 SPPO m�1.m.s// D s. Secondly, we show that m�1

is injective such that for a state in sQ 2 SQ m.m�1.sQ// D sQ.
The first part for showing that m�1.m.s// D s is done by induction.
We assume that we have obtained a state sQ D m.s/ 2 SQ from a state s 2 SPPO.

From the definition of m.s/, we have n.i; p; sQ/ D n.i; p; s/ 8p 2 P ;8i 2 Vp .
Furthermore, W.p; sQ/ D W.p; s/ since, for all i 2 W.p; s/, there must exist at
least one � 2 †.p; s/ with i 2W.�/. Thus, n.i; p; s/ > 0 and i 2W.p; sQ/ which
implies U.sQ; p/ D U.s; p/.

Now, in order to show that the recursion of m�1 retrieves s from sQ it
is sufficient to show that the intermediate states s

Q

l 2 SQ can be obtained

from states sl 2 SPPO by s
Q

l D m.sl/. A state sl 2 SPPO characterized by
†.p; sl / D f�o.1; p; s/; : : : ; �o.j†.p; s/j � .l � 1/; p; s/g � †.p; s/ where
n.�; sl / D n.�; s/ 8� 2 †.p; sl /, n.�; sl / D 0 8� 2 †.p; s/n†.p; sl / and
n.�; sl / D n.�; s/ 8� 2 †.p0; s/; p0 2 P ¤ p.

As U.s
Q
l ; p/ D U.sl ; p/ we obtain for state s0 D m�1.m.s// from Lemma 7.3.1

�min
lp D �o.j†.p; s/j � l C 1; p; s/ 2 †.p; s/

and from Lemma 7.3.2

n.�min
lp / D n.�.j†.p; s/j � l C 1; p; s/; s/

Thus, after termination of m�1, we obtain for state s0

†.p; s0/ D f�o.j†.p; s/j; p; s/; �o.j†.p; s/j � 1; p; s/; : : : ; �o.1; p; s/g
D †.p; s/ 8p 2 P

where, at position l , we have

n.�o.j†.p; s/j � l C 1; p; s/; s0/ D n.�o.j†.p; s/j � l C 1; p; s/; s/

112 7 Optimal and Near Optimal Scheduling Policies

Induction start: As s
Q
1 D sQ D m.s/ D m.s1/ the assertion is met for l D 1.

Induction step: Be given state s
Q
l which is assumed to be obtained from a state sl .

From Lemmas 7.3.1 and 7.3.2, we obtain �min
lp and n.�min

lp ; sl /. In order to obtain

s
Q
lC1 we set nip0.s

Q
lC1/ D nip0.s

Q
l / � n.�min

lp ; sl / 8i 2 W.�min
l / if p0 D p and

nip0.s
Q
lC1/ D nip0.s

Q
l / otherwise.

Now, we observe that s
Q
lC1 is obtained from s

Q
l by not adding n.�min

lp ; sl / to the

state variables n.i; p; s
Q
l / 8i 2W.�min

lp /.

Hence, s
Q
lC1 can also be obtained from a state slC1 2 SPPO where

†.p; slC1/ D †.p; sl /nf�min
lp g D f�o.1; p; s/; : : : ; �o.j†.p; s/j � l; p; s/g

Thus, the assertion follows.
Before showing that m.m�1.sQ// D sQ we have to make sure in the second part

that s D m�1.sQ/ 2 SPPO 8sQ 2 SQ.
If s 2 SPPO we must have, as stated by Theorem 7.3.1, an order for the sets

†.p; s/ 8p 2 P such that �o.1; p; s/ 	a �o.2; p; s/ 	a : : : 	a �o.j†.p; s/j; p; s/.
Thus, it is sufficient to show that we have U.s

Q
1 ; p/ � U.s

Q
2 ; p/ � : : : �

U.s
Q
L; p/ such that �min

1p � �min
2p � : : : � �min

Lp where L is the last iteration after

which n.i; p; s
Q
L/ D 0 8i 2 Vp. Any state having this property must be in SPPO

according to Theorem 7.3.1 part (b). The proof is by induction over the iterations
l D 1; : : : ; L.

Induction start: The case is trivial for l D 1.

Induction step: By U.s
Q
l ; p/ D U.W.p; s

Q
l /; p/, we obtain the index superset

of unfinished activities related to projects of type p in system state s
Q
l . By

W.U.s
Q
l ; p/; p/ D W.�min

lp /, the set of waiting activities (activities with i 2
U.s

Q
l ; p/ without predecessors in U.s

Q
l ; p/), belonging to U.s

Q
l ; p/, is obtained.

Now, as activity i 2W.�min
lp / cannot be successor of another activity i 0 2W.�min

lp /

of a project in state �min
lp , we have the property that if the activity index i 2W.�min

lp /

is removed from W.p; s
Q
l / the superset will no longer be obtained such that

U.W.�min
lp /nfig/ � U.W.�min

lp //.

As, by definition of n.�min
l ; s/, we have n.�min

l ; s/ D n.i; p; s
Q
l / for some activity

types .i; p/ with i 2W.�min
l / we must have

n.i; p; s
Q
lC1/ D n.i; p; s

Q
l /� n.�min

lp ; s/ D 0

Thus, we have W.p; s
Q
lC1/ � W.p; s

Q
l / and U.W.p; s

Q

lC1/; p/ � U.W.p; s
Q

l /; p/

such that �min
lC1 	a �min

l . Hence, the assertion follows.

Finally, we show that m.m�1.sQ// D sQ. From the fact that W.p; s
Q
lC1/ �

W.p; s
Q
l /, we know for activity type .i; p/ with i 2 W.p; sQ/ that n.i; p; s

Q
l 0 / D 0

7.3 Project State Ordering Policies 113

for some l 0 > 1 while n.i; p; s
Q
l 0�1/ > 0. Thus, i … W.�min

l 0p / as we must have

W.�min
l 0p / � W.s

Q
l 0 ; p/. Hence, for all following iterations l 00 D l 0 C 1; : : : ; L we

have i …W.�min
l 00p/ and n.i; p; s

Q
l 00/ D 0 as well.

This leads us to

LX

lD1
i2W.�min

kp /

n.�min
lp ; s/ D n.i; p; sQ/

Hence applying m recovers n.i; p; sQ/ D n.i; p; s/. This completes the proof. ut
From Theorem 7.3.2 we can conclude that using POPs a large part of the com-

plexity resulting from networks with few precedence relations can be eliminated.

Corollary 7.3.1. For unbounded Kmax jSPPOj is independent of the structure of the
activity type networks Gp .

Proof. If no limit is imposed on the number of projects in the system any vector
of queue lengths for the activity types .i; p/ gives a feasible state sQ 2 SQ. The
feasibility follows from the fact that according to Theorem 7.3.2 it can be mapped to
a feasible state s 2 SPPO. As the number of feasible combinations of queue lengths
(and thus the states sQ) is independent from the network structure the assertion
follows. ut

The next theorem gives an interval for jSPPOj with limited Kmax.

Theorem 7.3.3. If we allow a maximum of Kmax projects in the system we have

0

B
@

Kmax C P

p2P
jVpj

P

p2P
jVpj

1

C
A � jSPPOj � .Kmax C 1/

P

p2P
jVp j

(7.70)

Proof. The lower bound on the left is taken from Corollary 7.1.1 and is still valid as
for networks with strict linear orders POPs do not effect state space cardinality.

For deriving the upper bound we use the equivalence SPPO ” SQ for
unbounded Kmax. Then, if Kmax is bounded the queue length for each activity
type .i; p/ is bounded by Kmax such that n.i; p; sQ/ � Kmax. Hence, a queue may
have Kmax C 1 different lengths. However, as Kmax restricts the number of projects
in the system queue lengths may not have a value of Kmax at the same time, for
example when activities are to be processed in a strict linear order. Ignoring such
interdependencies between queues due to Kmax and precedence relations we have

at most .Kmax C 1/

P

p2P
jVp j

combinations of the queue lengths. Note that, the upper
bound is tight for the case of a single project type without precedence relations
between activity types where queue lengths may have the maximum length Kmax at
the same time. This can be seen as follows. Starting at an empty system projects may

114 7 Optimal and Near Optimal Scheduling Policies

arrive before completion of any activity until K.s/ D Kmax. As any state sQ 2 SQ

with queue length smaller or equal to Kmax may be mapped to a state s 2 SPPO any
combination of queue lengths is feasible such that the upper bound is tight. ut

While the lower bound remains equal to the lower bound when no POPs are
considered, the new upper bound on the right hand side is much more tight such
that for Example 7.1.3 we obtain 3;003 � jSPPOj � 161;051. Thus, the state space
cardinality lies in a range that can easily be handled by the solution methodologies
addressed in Chap. 4.

To summarize the findings, POPs help to reduce the state space cardinalities by a
reduction of the dimensionality of the problem. While for general policies the state
space cardinality is largely determined by the total number project states in †P,
the state space cardinality using POPs is largely determined by the total number of
activity types in V where j†Pj � jV j.

7.3.2 Non-preemptive Project State Ordering Policies

At first, we define the set C.�1; �2/ D .W.�1/ [E.�1// \ .W.�2/[E.�2// being
the set of common activities being ready for execution (in the sense that all
predecessors have been completed) of two projects in project states �1; �2 with
p.�1/ D p.�2/. Then, we define the two sets EC

1 .�1; �2/ D E.�1/ \ C.�1; �2/ and
EC

2 .�1; �2/ D E.�2/ \ C.�1; �2/ being the subsets of activities being in process that
are also in the common set of ready activities.

Next, we extend the relation between project states already defined for the
preemptive problem by Definition 7.3.1 to the non-preemptive problem.

Definition 7.3.3. We have two project states �1; �2. Then project state �1 is more
advanced than �2 if p.�1/ D p.�2/ and one of the two conditions holds:

1. U.�1/ � U.�2/ and EC
1 .�1; �2/ EC

2 .�1; �2/

2. U.�1/ D U.�2/ and EC
1 .�1; �2/ � EC

2 .�1; �2/.

The term EC
1 .�1; �2/ � EC

2 .�1; �2/ takes into account that activities of a project in
a more advanced state may be in process but must be waiting in case of the project
in the less advanced state. As cr D 1 8r 2 R EC

1 .�1; �2/ � EC
2 .�1; �2/ implies

EC
2 .�1; �2/ D ;.

Thus, for any i 2 C.�1; �2/ i may be in E.�1/ or in W.�1/ but must be in
W.�2/. Again, we shortly write �1 	a �2 in order to say that project state �1 is
more advanced than project state �2. Now, we repeat the definition of the class
of project state ordering policies (POPs) which is taken from Sect. 7.3.1.1 without
modifications.

Definition 7.3.4. Let �1; �2 2 †.p; s/ be two projects states respectively with
�1 	a �2. Then, a non-preemptive project state ordering policy �PO always prefers

7.3 Project State Ordering Policies 115

activity i 2W.�1/ from a project in state �1 over activity i 2W.�2/ of a project in
state �2 8i 2W.�1/ \W.�2/.

By …PO � … we denote the class of non-preemptive project state ordering
policies (POPs) where SPO is the set of states (state space) that communicate with
s0 under at least one non-preemptive POP plus the empty system state s0.

The class of policies formalizes also for the non-preemptive case the intuition that
activities of a project being in a more advanced state tend to be more critical than
those of a project in a less advanced state. Recall that criticality refers the probability
to lie on the critical path (cf. Elmaghraby [46]). To see this, let us consider the
following example.

Example 7.3.2. Basically the idea of non-preemptive POPs corresponds to the idea
of preemptive POPs (cf. Example 7.3.1). In addition, we may have the case where
U.�2/ D U.�1/ and EC

1 .�1; �2/ � EC
2 .�1; �2/. Then, .i 0; j1/ with i 0 2 U.�1/ tend

to be more critical than activities .i 0; j2/ which can be seen as follows. For each
activity .i; j1/ with i 2 EC

1 .�1; �2/, we must have i 2 W.�2/ such that .i; j1/ is
completed before .i; j2/. Thus, .i; j2/ is more likely to delay completion of project
j2 than .i; j1/.

Finally, we prove a structural property for the state space of the non-preemptive
problem that explains the name of the policy class.

Theorem 7.3.4. Following an POP �PO for any system state s 2 SPO we have for
the projects of type p 2 P an order of the project states � 2 †.p; s/ such that
�o.1; p; s/ 	a �o.2; p; s/ 	a : : : 	a �o.j†.p; s/j; p; s/.

Proof. The proof is by induction over the states visited on a sample path starting at
the empty state s0 while a POP �PO is followed.

Induction start: For the case of an empty system (s0 D s0) and immediately after
the arrival of the first project of type p 2 P , we have only one project in the system
which is in state �I

p . Thus, n.�I
p ; s1/ D 1 and n.�; p/ D 0 8� ¤ �I

p such that the
induction assumption is met.

Induction step: We consider system state sn entered after n transitions. If sn D s0

the case is equivalent to the induction start. If sn ¤ s0 we first analyze the effect of
a scheduling decision an D �PO.sn/ and show that also for the post-decision states
the induction assumption is met.

Clearly, if only one project of type p is in the system the induction assumption
is always met. For the effect of the scheduling decision in case of multiple projects,
we consider two projects k1; k2 2 Œ1; : : : ; K.sn/	 with �.k1; sn/
a �.k2; sn/. For
�.k1; sn/ 	a �.k2; sn/, �PO must prefer activities .i; k1/ with i 2 W.�.k1; sn// \
W.�.k2; sn//. If �.k1; sn/ D �.k2; sn/ w.l.o.g. activities of project k1 are preferred
over activities of k2. If no further activities of both projects are scheduled we must
have �S .B.an; k1; sn/; �.k1; sn//
a �S .B.an; k2; sn/; �.k2; sn//.

Next, we consider activities .i; k1/ with i 2W.�.k1; sn// and i …W.�.k2; sn//.
We know that activities .i; k2/ are not yet ready for execution as they neither

116 7 Optimal and Near Optimal Scheduling Policies

can be finished since U.�.k1; sn// � U.�.k2; sn// nor be in process since
EC

1 .�.k1/; �.k2// EC
2 .�.k1/; �.k2//.

Next, we consider activities .i; k2/ with i …W.�.k1; sn// and i 2W.�.k2; sn//.
From U.�.k1; sn// � U.�.k2; sn// we know that if all predecessors have been
completed for .i; k2/ they must have been completed for activity .i; k1/ as well.
Thus, activities .i; k1/ must already have been completed or are in process .i 2
E.�.k1; sn///.

Thus, no activities are scheduled of project k1 that already have been finished for
project k2 as well as no activities of project k2 are scheduled that are still unfinished
for project k1. As a consequence, we still have �S .B.an; k1; sn/; �.k1; sn//
a

�S .B.an; k2; sn/; �.k2; sn// such that for the post-decision state Osn D Os.sn; an/ the
induction assumption is met.

As a next step, starting with post-decision state Osn, we consider the transitions
subsequent to the two types of events.

1. Arrival of a new project of type p 2 P : As for the initial state �I
p all

activities of the project are unfinished and not in process (E.�I
p / D ;) we

have �I
p �a �o.j†.p; Osn/j; p; Os/. Thus, the induction assumption is met for

snC1 D sA.sn; an; p/.
2. Completion of activity i of a project in state �o.l; p; Osn/ such that the project

enters state � 0 D �C.i; �o.l; p; Osn//. Clearly, we have U.� 0/ � U.�o.l; p; Osn//.
Furthermore, we know that i … U.�o.l�1; p; Osn// – We must have i …W.�o.l�
1; p; Osn// as �o.l � 1; p; Osn/ 	a �o.l; p; Osn/ and i … E.�o.l � 1; p; Osn// as no
other activity can be scheduled on resource rip.�o.l;p;Osn// due to cr D 1 8r 2 R.
Hence, we have U.�o.l � 1; p; Osn// � U.� 0/ and EC

1 .�o.l � 1; p; Osn/; � 0/
EC

2 .�o.l�1; p; Osn/; � 0/ such that we have, for †.p; snC1/ of system state snC1 D
sC.sn; an; i; �o.l; p; s//,

�o.1; p; Osn/ 	a : : : 	a �o.l � 1; p; Osn/
a � 0 	a �o.l C 1; p; Osn/ 	a : : : 	a

�o.j†.p; Osn/j; p; Osn/

Note that �o.l; p; Osn/ is no longer in †.p; snC1/ as each project state having
activities in process can only be of one project at a time due to cr D 1.

To conclude the proof, we briefly address removals of project states from
†.p; sn/. If n.�.k; sn/; sn/ D 1 and B.an; k; sn/ ¤ ; we have †.p; Osn/ D
†.p; sn/nf�.k; sn/g as the project changes its state such that n.�.k; s/; Osn/ D 0.
However the removal of �.k; s/ does not affect the order between the states
� 2 †.p; Os/. The same is true for transitions from project state �o.l; p; Osn/ where
n.�o.l; p; s/; Osn/ D 1. ut

Obviously, the number of possible sets †.p; s/ of projects states that may occur
is restricted such that SPO � S.

7.3 Project State Ordering Policies 117

Table 7.8 State space
cardinalities for general
and for PO-policies

Policy class Non preemptive Preemptive

General 683,209 53,130
PO 102,838 19,481

% (PO/General) 15.05 36.67

7.3.3 Project State Ordering Priority Policies

If a RBP (cf. Definition 6.1.1) only considers the activities that are in line with the
definition of a POP (cf. Definition 7.3.2) a resource based project state ordering
priority policy (RBPOP) is obtained. For simplicity, we also refer to PO-priority
policies.

If the restriction to POPs implies a reduction of alternative decisions without
much loss of performance, elimination of some suboptimal decisions can be
expected. Thus, PO-priority policies may show an improved performance over
general priority policies.

7.3.4 Numerical Example

Considering the numerical example from Sect. 7.1.3 we observe that for a high
rejection cost y1 D 1;000 the optimal policies are POPs. This can be seen by the fact
that the rules for the decisions of resources 2 and 3 prefer activities from projects
in more advances states where �5 	a �2 and �5 	a �3 for the preemptive problem.
For the non-preemptive problem, we additionally have �10 	a �5 and �11 	a �5.

Table 7.8 shows the potential to reduce the state space cardinality by using POPs.
By %.PO=General/ we refer to the fraction of the state space cardinality for
POPs from the state space cardinality for general policies without any restrictions.
Obviously, even for such small examples considerable reductions (especially for the
non-preemptive problem) are possible.

Next, we consider the performance of POPs for the case with rejection cost y1 D
0 and y1 D 1;000. Table 7.9 shows the performance of preemptive and Table 7.10
of non-preemptive policies. As a benchmark we have added the results for some
priority policies, namely BD-GC-U, BD-GC-D (with RAN as tie breaker) and RAN
(for details cf. Chap. 6). The results have been obtained from 10 simulation runs
with a length of 500;000 project arrivals and a warm-up of 10;000 project arrivals.
Variance has been reduced using common random numbers (CRN) such that the
paired t-confidence intervals for any two policies do not contain 0 at a confidence
level of 95 % (cf. Law [84]).

We observe that restricting the consideration to the class of POPs does not lead
to a loss of optimality for y1 D 1;000. This is in line with the observation made
before that the optimal general policy is a POP. However, even though for y1 D 0

118 7 Optimal and Near Optimal Scheduling Policies

Table 7.9 Performance
of preemptive general
and PO-policies

y1

Policy class Policy 0 1,000

General Optimal 10.129 50.387
BD-GC-U 12.109 64.469
BD-GC-D 12.110 64.617
RAN 11.856 68.914

PO Optimal 10.302 50.387
BD-GC-U 12.111 64.629
BD-GC-D 12.118 64.594
RAN 11.471 60.478

Table 7.10 Performance
of non-preemptive general
and PO-policies

y1

Policy class Policy 0 1,000

General Optimal 10.399 52.382
BD-GC-U 12.039 64.413
BD-GC-D 12.034 64.465
RAN 11.714 66.822

PO Optimal 10.541 52.382
BD-GC-U 12.008 63.973
BD-GC-D 12.009 64.115
RAN 11.462 60.456

the optimal general policy is no longer a POP, the optimal POP does not perform
much worse (optimality gap is only 1:4 %) and still clearly outperforms the RBPs.
Furthermore, we observe that RBPOPs have a slight advantage over general RBPs.

We will investigate the potential of POPs to reduce state space cardinalities and
their performance for more general settings in Sect. 7.5.

7.4 Scheduling Using Approximate Dynamic Programming

7.4.1 Basic Idea

Despite the usage of policy classes, the state space of the scheduling problem
may become very large. Even for the preemptive problem using POPs, the size
of the state space is exponential in the number of activity types. Thus, for higher
numbers of activity types or projects in the system (e.g. for open systems with
unbounded Kmax) the computation of an optimal policy using value iteration
or policy iteration becomes intractable. This phenomenon is known as curse of
dimensionality (cf. Powell [105]).

7.4 Scheduling Using Approximate Dynamic Programming 119

A number of approaches, summarized under the notion of approximate dynamic
programming (ADP) (cf. Bertsekas and Tsitsiklis [17] and Powell [105]), aim at
remedying the curse of dimensionality by approximating the value function h.s/ by
a function Qh.s/. While for an exact representation of h.s/ normally all states are
required Qh.s/ typically has a much more compact representation.

The policy obtained from ADP may no longer be optimal but still perform very
well.

At first, we present in Sect. 7.4.2, an approximation of the value function for the
non-preemptive problem based on the value function of the preemptive problem.
In Sect. 7.4.3, we present for open systems approximations of the value function
based on linear function approximation. Finally, in Sect. 7.4.4 it is shown how an
approximation for the non-preemptive problem can be obtained based on linear
function approximation for the preemptive problem.

7.4.2 Approximation Based on the Preemptive Problem

Comparing the policies for the non-preemptive and the preemptive problem which
have been obtained for the example in Sect. 7.1.3 we make two observations.
Firstly, the state space for the non-preemptive problem is much larger than for the
preemptive problem. Secondly, the structure of the policies as well as the objective
function values are very similar.

The observations can be explained as follows. If there are many projects in the
system the number of waiting activities is much higher than the number of activities
in process. Thus, the impact of the fact whether a single activity is in process or
waiting becomes smaller while the impact of waiting times due to other activities
that are still waiting becomes more prominent.

This suggests using the value function of the preemptive problem without
consideration of activities in process as an approximation for the value function
of the non-preemptive problem.

After determining an optimal policy for the preemptive problem we have the
value function hP*.s/ 8s 2 SP as well as the average cost gP* under the optimal
policy �P*.s/ 8s 2 SP.

However, hP*.s/ cannot be applied directly as an approximation since it is not
defined for states s0 2 S where for some � 2 †.p; s0/ we have E.�.s0// ¤ ;.

Hence, it is necessary to map the states s0 onto states in s 2 SP by sP.s0/ as
defined in (7.32). Then, the approximation QhP.s/ 8s 2 S is given by

QhP.s/ D hP*.sP.s// 8s 2 S (7.71)

The following lemma gives two results. Firstly, it states that QhP.s/ is defined for all
s 2 S. Secondly, it states that we may also use the value function obtained from
the preemptive problem if the class POPs is considered, with SPPO � SP. However,

120 7 Optimal and Near Optimal Scheduling Policies

we have to follow a POP for the non-preemptive problem as well, such that for all
s 2 SPO we have all subsequent states s0 2 SPO.

Lemma 7.4.1. (a) For all s 2 S we have sP.s/ 2 SP.
(b) For all s 2 SPO we have sP.s/ 2 SPPO

Proof. Part (a) follows directly from Theorem 7.1.4 by noting that K.sP/ D K.s/.
For the proof of part (b) we use from Theorem 7.3.4 that for a state s 2 SPO

and project states �1; �2 2 †.p; s/ we must have �1 	 �2 or �2 	 �1. W.l.o.g. we
assume �1 	 �2. From Definition 7.3.3, we know that U.�1/ � U.�2/. As �P does
not have any effect on U we know that if U.�1/ D U.�2/ we have that �P.�1/ D
�P.�2/. Hence, both project states are mapped onto the same project state by sP.s/.
If U.�1/ � U.�2/ we have �P.�1/ 	 �P.�1/. From Theorem 7.3.1 part (b), we know
that, by the existence of the order on the project states in †.p; sP.s// 8p 2 P , we
must have sP.s/ 2 SPPO. ut

From Lemma 7.4.1, we directly obtain that the state space cardinality for the
preemptive problem is a lower bound of the state space cardinality for the non-
preemptive problem such that jSPj � jSj and jSPPOj � jSPOj.

Then, we use the approximation to obtain an approximate policy �ADPP for the
non-preemptive problem in

�ADPP.s/ D argmina2A.s/

�
c.s/ � gP*

ˇ.s; a/
C

X

s02S
q.s0js; a/.k.s; a; s0/C QhP.s//

)

8s 2 S (7.72)

where the determination of the optimal decision can be done in an efficient way.
We observe that mapping of successor states onto states in SP is done by

shifting activities in process back to the sets of waiting activities. This allows the
interpretation that for the approximation a decision a 2 A.s/ is selected that
is optimal if, just after the decision, preemptions were allowed for the rest of
the infinite planning horizon. Figure 7.8 illustrates the idea. The only difference
between the policy based on the approximation and the optimal policy for the
preemptive problem is the fact that in state s 2 S we may not preempt activities
already in process. Thus, the expression

(
c.s/ � gP*

ˇ.s; a/
C
X

s02S
q.s0js; a/.k.s; a; s0/C QhP.s//

)

gives the long term relative cost for the preemptive problem after making decision
a in state s 2 S.

For determining the optimal decision a�, we may use the simplified represen-
tation of a decision as used in Sect. 7.1.2.2 for the preemptive problem. Thus, we

7.4 Scheduling Using Approximate Dynamic Programming 121

Fig. 7.8 Interpretation of a decision when using the value function of the preemptive problem
as an approximation

have the opportunity of applying essentially the same procedure as discussed in
Sect. 7.1.2.3. However, in addition, it must be taken into account that activities in
process may not be preempted in state s such that we have to modify slightly the
formulation of the LP and the solution procedure.

min

0

@
X

�2†S

X

i2W.�/

n.i; �/Q.s; i; �/

1

A (7.73)

where

Q.s; i; �/ D �ip.�/

�
hP*.sCP.sP.s/; i; �// � hP*.sP.s//

�
(7.74)

The minimization is due to scarce resource types subject to the following con-
straints:

X

�2†S

X

i2W.�/

I .r.i; p.�// D r/ n.i; �/ � f .r; s/ 8r 2 R (7.75)

n.i; �/ � n.�; s/ 8� 2 †; i 2W.�/ (7.76)

n.i; �/ 2 �0 8� 2 †; i 2W.�/ (7.77)

Here, we have replaced cr by f .r; s/ in order to take into account activities in
process in state s. As the mappings sCP require a state in SP we have to use sP.s/.

We break ties between activity groups .i; �/ as follows.

1. Project type p.�/.
2. Set of waiting activities W.�/.
3. Set of activities in process E.�/.
4. Index i .

122 7 Optimal and Near Optimal Scheduling Policies

Table 7.11 Performance
of policies using the
approximation from the
preemptive problem

Rejection cost
Policy class Policy 0 1,000

General Optimal 10.399 52.382
ADP-P 10.497 52.660
RAN 11.856 68.914

PO Optimal 10.541 52.382
ADP-P-PO 10.587 52.464
RAN 11.462 60.456

Table 7.12 Reduction of the
state space cardinality when
using the preemptive problem
for an approximation

Policy class Non-preemptive Preemptive %

General 683,209 53,130 7.78
PO 102,838 19,481 18.94

In order to be able to compare policies based on the approximation with optimal
policies for the non-preemptive problem we order project states lexicographically in
the same way as we order project states in Sect. 7.1.1.1 for the generation of decision
alternatives. Then, in order to a derive a decision for non-preemptive problem ties
between activities from group .i; �/ are broken using the project numbers k D
1; : : : ; K.s/. Projects having smaller numbers k with �.k; s/ are preferred.

To show that the idea works we have applied the approach to the example from
Sect. 7.1.3. Table 7.11 shows the results for the general version (ADP-P) of the
policy obtained from the preemptive problem as well as its PO-version (ADP-
P-PO). The results have been obtained from simulation with the same settings
as in Sect. 7.3.4. As a benchmark, we have added the results for RAN which
has performed best among the priority policies tested. We observe that ADP-P
as well ADP-P-PO are near optimal for y0 D 0 as well as y1 D 1;000 and
clearly outperform RAN. Furthermore, ADP-P-PO slightly outperforms ADP-P for
y1 D 1;000 which can be explained by the fact that non-preemptive POPs take into
account by definition activities in process. Thus, a part of the suboptimal decisions
are excluded before decisions are made using the approximative value function
QhP.s/.

Next, we briefly consider the reduction of the state space cardinality if the
preemptive problem is used to obtain an approximation. Table 7.12 shows the
cardinalities for general policies and POPs in the non-preemptive and the preemptive
case. The column % shows the fraction of the state space cardinality for the preemp-
tive problem from the state space cardinality for the non-preemptive problem. We
conclude that considerable reductions of the state space cardinality at only little loss
of performance are possible. Combining the idea of POPs with the approximation
based on the preemptive problem we can reduce a state space of 683;209 states to a
state space of only 19;481 states which corresponds to a fraction of only 2:85 %.

The performance of policies based on the approximation from the preemptive
problem will be investigated more systematically in Sect. 7.5.

7.4 Scheduling Using Approximate Dynamic Programming 123

7.4.3 Approximation Using Linear Function Approximation

The approximation based on the solution of the preemptive problem has three
drawbacks. Firstly, we still need to store a large number of states. Secondly, it does
not alleviate the curse of dimensionality for the preemptive problem. Finally, it does
not allow to determine policies for open systems having infinite state spaces.

Hence, we consider the option to approximate the value function using an
approximation architecture (cf. Bertsekas and Tsitsiklis [17]) being a function that
has a compact parameterized representation. In addition to non-linear architectures
such as neural networks, linear architectures are common. For our purposes, we use
a linear architecture QhLin.s; v/ of the form

QhLin.s; v/ D v0 C
MX

mD1

vm � �m.s/ (7.78)

where v is a vector of parameters. Note that the linear approximation architecture
corresponds essentially to a linear regression model. �m.s/ are functions depending
on state variables which are denoted as basis functions or features. The basis
functions are weighted using the parameters vm such that the value function h.s/

is approximated. M is the number of basis functions used for the approximation.
In order to obtain a value function approximation leading to a good scheduling

policy, we have to adress two issues.

1. Selection of basis functions.
2. Determination of weights.

The selection of appropriate basis functions is problem specific and requires
knowledge of the problem structure. We address this issue for our problem in
Sect. 7.4.3.1.

For the determination of the weights there are different kinds of approaches
available. Simulation-based approaches (cf. Bertsekas [16], Bertsekas and Tsitsiklis
[17] or Powell [105]) essentially collect observations from simulation runs in order
to determine approximations of the value function. However, we have found in
preliminary experiments that due to the high variation of the system variables
determining estimates of the weights may be very time consuming while it is not
clear whether the approximations obtained lead to good policies. This is in line with
the observations made by Meyn [93] for small queueing networks.

As we intend to consider more complex examples we have concentrated on a
number of ADP-approaches do not need simulation.

A straight forward approach presented in Sect. 7.4.3.2 that is also useful to test
approximation architectures is to approximate an open system via a semi-open
system with finite Kmax. As a first step, we determine for the semi-open system an
optimal policy. Afterwards, we apply linear regression on parts of the state space.
As a result, hopefully a good policy is obtained which generalizes to the case of
unlimited numbers of projects.

124 7 Optimal and Near Optimal Scheduling Policies

As for larger numbers of activity types and project types the approach is no longer
tractable we have also tested approaches that do not require the value function
of an optimal policy. A method based on the minimization of the Bellman error
(cf. Bertsekas and Tsitsiklis [17]) turned out to be a good choice. A detailed
description of the method will be given in Sect. 7.4.3.3.

Another class of approaches that are not based on simulation is approximate
linear programming (ALP) (cf. De Farias and Van Roy [34, 35] and Veach [130]).
However, as first tests delivered less promising results, in terms of performance of
the policies obtained, we have dropped ALP from further consideration.

7.4.3.1 Selection of Basis Functions

For open queueing networks, approximation architectures based on polynomials
defined on the queue lengths and number of projects in process have successfully
been applied in many cases (cf. Koole and Pot [77], Roubos and Bhulai [114] or
Vyzas [133]). From fluid approximations of queueing networks it is known that
the value function may have a piece-wise quadratic structure (cf. Meyn [93]). This
suggests two kinds of architectures for our problem.

Architecture based on project states To obtain an architecture for our problem
where parallel project networks are possible we observe that the representation
based on project states can be seen as a generalization of a queueing network. For
the case that the networks have no parallel paths (OS D 1) we have for any project
state � at most one activity waiting or in process (such that W.�/ [E.�/ D fig
for some i 2 Vp). Hence, n.�; s/ corresponds to the number of activities of type
.i; p.�// which are waiting in a queue or which are in process.

This suggests using a polynomial approximation architecture based on the
numbers n.�; s/ of the projects in project states � 2 † for a system state s. For
our investigations, we consider architectures based on first order, second order and
third order polynomials which are given by

QhPSLin1.s; v/ Dv0 C
j†S jX

kD1

vk � n.�k; s/ (7.79)

QhPSLin2.s; v/ Dv0 C
j†S jX

kD1

vk � n.�k; s/C
j†S jX

kD1

j†S jX

lDk

vkl � n.�k; s/ � n.�l ; s/ (7.80)

QhPSLin3.s; v/ Dv0 C
j†S jX

kD1

vk � n.�k; s/C
j†S jX

kD1

j†S jX

lDk

vkl � n.�k; s/ � n.�l ; s/C

j†S jX

kD1

j†S jX

lDk

j†S jX

mDl

vklm � n.�k; s/ � n.�l ; s/ � n.�m; s/ (7.81)

7.4 Scheduling Using Approximate Dynamic Programming 125

Architecture based on queue lengths for the activity types The equivalence
between SPPO to SQ suggests architecture for the preemptive problem that are based
on the queue lengths given by n.i; p; s/. For the representation, we order the activity
types such that they are assigned an index k. Again, we consider architectures based
on first, second and third order polynomials that, however, use n.i; p; s/ instead of
n.�; s/. The architectures are as follows.

QhQLin1.s; v/ Dv0 C
jVjX

kD1

vk � n.ik; pk; s/ (7.82)

QhQLin2.s; v/ Dv0 C
jVjX

kD1

vk � n.ik; pk; s/C
jVjX

kD1

jVjX

lDk

vkl � n.ik; pk; s/ � n.il ; pl ; s/

(7.83)

QhQLin3.s; v/ Dv0 C
jVjX

kD1

vk � n.ik; pk; s/C
jVjX

kD1

jVjX

lDk

vkl � n.ik; pk; s/ � n.il ; pl ; s/C

jVjX

kD1

jVjX

lDk

jVjX

mDl

vklm � n.ik; pk; s/ � n.il ; pl ; s/ � n.im; pm; s/ (7.84)

The advantage of the architectures based on queue lengths is the fact that the
number of basis functions may be much smaller. The number of project states may,
depending on the network structure, grow exponentially in the number of activity
types (cf. proof of Corollary 7.1.1) while the number of activity types remains
constant.

Note that we will use the architectures primarily for deriving policies of open
systems without limits on the number of projects. For semi-open systems with
Kmax < 1 the architectures might need additional basis functions in order to
capture the effect of rejection cost at the boundary of the state space (cf. Sect. 7.1.3).
Indications on the kind of additional basis functions can be found in Bhulai and
Koole [18] who have derived closed expressions of the relative value function for
an M/M/1-system with rejections of projects.

7.4.3.2 Semi-open System as an Approximation for the Open System

The idea is to approximate an open system using an semi-open system with Kmax <

1 that exhibits a similar behavior as the open system (cf. Pot [104] or Vyzas [133]).
Figure 7.9 outlines the general idea. For constructing a semi-open system we have
two options. As a first option, we may set Kmax < 1 to a high value where states
with K.s/ > Kmax are very unlikely to be entered for the open system. Thus, the
error due to truncation is kept small (cf. Pot [104]). However, a rather high value
Kmax might be needed such that the state space may grow very large.

126 7 Optimal and Near Optimal Scheduling Policies

Fig. 7.9 General idea of using a semi-open system as an approximation for an open system

Thus, as a second option, we set Kmax to a lower value and determine the values
for the rejection cost yp such that the relative value function h.s/ for the truncated
problem is similar to the value function of the original problem (open system).

This can be done as follows. We first simulate the open system with unbounded
Kmax under some policy. Here, we use RAN which selects activities randomly. As a
result, we obtain go.�RAN/ being the average cost under RAN for an open system.

In a second step, we set yp D y 8p 2 P where y is determined such that for the
semi-open system we obtain g.�RAN/ � go.�RAN/.

Next, we determine, for the semi-open system, an optimal policy �� with average
cost g� using the standard methodologies discussed in Chap. 4. Finally, in order to
obtain the weights for a linear approximation architecture QhLin.s; v/, we apply linear
regression (cf. Bertsekas and Tsitsiklis [17]) on a set of representative states QS � S
where the following problem has to be solved.

1

2
min

v

X

s2 QS
.s/

� QhLin.s; v/� h.s/
�2

(7.85)

The solution is given by

v� D �AT . QS/diag.�/A. QS/
��1

AT . QS/diag.�/h (7.86)

where

A. QS/ D

0

B
B
B
@

�1.s1/ �2.s1/ : : : �L.s1/

�1.s2/ �2.s2/ : : : �L.s2/
:::

:::
:::

:::

�1.sj QSj/ �2.sj QSj/ : : : �L.sj QSj/

1

C
C
C
A

(7.87)

Then, the approximate policy is obtained from

7.4 Scheduling Using Approximate Dynamic Programming 127

�ADPLS.s/ D arg min
a2A.s/

�
c.s/ � g�

ˇ.s; a/
C

X

s02S
q.s0js; a/.k.s; a; s0/C QhLin.s; v�//

)

8s 2 S (7.88)

If, in case of many basis functions, the matrix A. QS/ becomes very large a gradient
descent approach similar to the approach proposed for the Bellman error method in
Sect. 7.4.3.3 may be used (cf. Bertsekas and Tsitsiklis [17]). As it is often not clear
which set of representative states results in an approximation leading to a good
policy we test alternative sets of representative states QS1; : : : ; QSN QS . As an additional
option for tuning the linear regression, we take into account state relevance weights
�.s/ that are given for the sets of representative states by the vectors �1; : : : ; � jN QS j
(cf. De Farias and Van Roy [35]). The purpose of state relevance weights �.s/ is
to control the precision of the approximation at the different states. If a state s a
high state relevance weight, the weights for the basis functions of an architecture

are determined such that the squared error
� QhLin.s; v/ � h.s/

�2

for the respective

state becomes smaller.
Note that although an approximation might appear to be a good fit the resulting

policy might not perform well. Unfortunately, from a theoretical point of view, the
relationship between the choice of representative states, state relevance weights and
performance of the policy based on the architecture is often not clear (cf. Roubos
and Bhulai [113] or Pot [104]). Thus, we test alternative sets of representative states
that may be randomly generated and select the set (with the corresponding state
relevance weights) that delivers the best performing policy.

Basically, we can apply linear regression on the entire state space of the truncated
problem such that QS D S. However, approximation errors which are likely to occur
near the boundary of the state space may impair the quality of the value function
approximation. Hence, according to our experience, QS should only contain states
that are reasonably distant from the boundary of the state space. We discuss the
determination of QS in Sect. 7.4.3.4 in more detail.

The entire procedure is given by Algorithm 4 (denoted as ADP-LS). We perform
a search over the sets QS1; : : : ; QSN QS and store in vmin the weights of the approximation
that results in the best policy in terms of the minimum average cost. The evaluation
in Step 8 can be done in two ways.

1. Any methodology for the solution of the evaluation equations such as VI may be
used (cf. Chap. 4).

2. Simulation run of sufficient length. This method has the advantage that the
evaluation may be based on the performance for the open system. In order to
reduce the needed length of the simulation run common random numbers (CRN)
as a variance reduction technique (cf. Law [84]) has been found to be effective.
The quality of the estimate for the average cost g is less important as only the
best set of representative states is to be identified.

128 7 Optimal and Near Optimal Scheduling Policies

Algorithm 4 ADP-LS

Require: S of a truncated problem with given Kmax, QS1; : : : ; QS
N

QS ,�1,. . . ,�
N

QS .
1: Determine optimal policy �� and optimal h.s/ 8s 2 S .
2: gADPLS 1
3: z 0

4: Do
5: z zC 1

6: QS QSz

7: Determine v by solving (7.85).
8: Determine g for the policy obtained from (7.88).
9: if g < gmin then

10: v.��/ v
11: gmin g

12: end if
13: Until z D N

QS

In order to test whether the approximation architectures capture sufficient
structure of the value function such that the principles of dynamic programming can
be applied we have also implemented an approximate version of policy iteration
(cf. Sect. 4.6.2). The main modification is that the policy improvement in Step 12 is
replaced by the computation of the approximation QhLin.s; v.�n�1// obtained for the
policy �n�1 from the last iteration such that the new policy is given by

�n.s/ D argmin
a2A.s/

�
c.s/ � g.�n�1/

ˇ.s; a/
C

X

s02S
q.s0js; a/.k.s; a; s0/C QhLin.s; v.�n�1///

)

8s 2 S (7.89)

where v.�n�1/ is the vector of weights obtained from the value function h.s; �n�1/

of policy �n�1. As we use an approximation, convergence towards an optimal policy
is no longer guaranteed (cf. Bertsekas and Tstsiklis [17]). Hence, we stop after a
fixed number of iterations and store the approximation that has yielded the best
policy so far.

To find a good approximation QhLin.s; v.�n�1// we search again over a sets
QS1; : : : ; QSN QS of representative states having vectors of state relevance weights

�1,. . . ,�N QS . Note that if simulation is used for finding the best set of representative
states CRN may be used to keep simulation runs short. However, for the average
cost g to be used in (7.89) an additional longer simulation run should be used to
obtain a better estimate. The procedure is given by Algorithm 5 (denoted as ADP-
PI-LS). Finally, we briefly address a common issue of linear regression, namely
lack of multicollinearity. One possibility where this issue occurs is when some
basis functions may not yield different values on a set of representative states. Such
cases happen for example if a combination of project states never occurs in the

7.4 Scheduling Using Approximate Dynamic Programming 129

Algorithm 5 ADP-PI-LS

Require: S of a truncated problem with given Kmax, QS1; : : : ; QS
N

QS , �1,. . . ,�
N

QS , �0.
1: n 0.
2: Policy evaluation: Determine g.�0/ h.�0; s/ 8s 2 S by solving the equations:

h.�0; s/ D c.s/� g.�0/

ˇ.s; �0.s//
CX

s0
2S

q.s0js; �0.s//.k.s; �0.s/; s0/C h.�0; s0// 8s 2 S

3: g.�min/ 1
4: Do
5: n nC 1.
6: g.�n/ 1
7: z 0

8: Do
9: z zC 1

10: QS QSz

11: Determine v.�n�1/ by solving (7.85).
12: Determine g for the policy obtained from

�n.s/ D argmin
a2A.s/

�
c.s/� g.�n�1/

ˇ.s; a/
C

X

s0
2S

q.s0js; a/.k.s; a; s0/C QhLin.s; v.�n�1///

)

8s 2 S

13: if g < g.�n/ then
14: v.�n�1/ v
15: g.�n/ g

16: end if
17: Until z D N

QS

18: Policy evaluation: Obtain h.�n; s/ 8s 2 S by solving the equations

h.�n; s/ D c.s/� g.�n/

ˇ.s; �n.s//
CX

s0
2S

q.s0js; �n.s//.k.s; �n.s/; s0/C h.�n; s0// 8s 2 S

19: if g.�n/ < g.�min/ then
20: g.�min/ g.�n/.
21: v.�min/ v.�n�1/.
22: end if
23: Until n D N ADPPILS

set of representative states such that the basis function delivers always 0. Then,
it is not possible to determine a weight. To resolve this issue, we eliminate such
basis functions from the architecture. All other cases where lack of multicollinearity
occurs are resolved by sampling a new set of representative states.

130 7 Optimal and Near Optimal Scheduling Policies

7.4.3.3 Bellman Error Minimization

A drawback of the methods discussed in Sect. 7.4.3.2 is the fact that the state space,
even for a semi-open system, might become too large for applying the methodolo-
gies discussed so far. Hence, we consider another methodology (cf. Bertsekas and
Tsitsiklis [17]) for determining v given a policy � .

We rearrange the evaluation equation (4.12) by bringing all terms to the left
hand side in order to obtain the following condition to be met by the value function
h.s/ 8s 2 S for any policy �

c.s/ � g.�/

ˇ.s; �.s//
C
X

s02S
q.s0js; �.s//.k.s; �n.s/; s0/C h.s0// � h.s/ D 0 8s 2 S

(7.90)

The condition needs no longer be met if an approximation QhLin.s; v/ is used instead
of h.s/.

Thus, we define the Bellman error D.s; v; �/ as the violation of condition (7.90).

D.s; v; �/ D c.s/� g.�/

ˇ.s; �.s//
C
X

s02S
q.s0js; �.s//.k.s; �n.s/; s0/C QhLin.s0; v// � QhLin.s; v/

(7.91)

Now, we see that, as an alternative to linear regression, we can determine v such that
the Bellman errors for a set of representative states QS are minimized. This can done
by solving the following problem.

min
v

X

s2 QS
.s/D.s; v; �/2 (7.92)

Analogously to linear regression, where the weighted squared errors between the
true value function and the approximation are minimized, we use squared Bellman
errors which again are weighted using state relevance weights .s/. For the solution
we have considered two options (cf. Bertsekas and Tsitsiklis [17]).

1. Single step of Newton’s-method as given by

v D �r2f .v0/
��1 rf .v0/ (7.93)

where f .v/ D P

s2 QS
.s/D.s; v; �/2.

Generally, Newton’s method applied for optimization iteratively approaches
the optimum of a function f .v/ starting from some given point v0 by minimizing
in each iteration a quadratic approximation. As the function is already quadratic
a single step is sufficient. We have initialized the algorithm by v0 D 0. Note that

7.4 Scheduling Using Approximate Dynamic Programming 131

the step of Newton’s method is equivalent to a step of the Gauss-Newton method
because D.s; v; �/ is a linear function of v.

2. Gradient descent approach. Here, we apply a steepest-descent approach with
diagonal scaling for accelerating convergence. At first, we initialize the algo-

rithm with v0.s/ D 0. Then, we compute a diagonal matrix D having
�

@2f .v0i /

@2v0i

��1

at the diagonal. Note that for computing the matrix the choice of v0 does not have
any impact as the second derivatives of the quadratic function f .v/ are constant.
Now, we use the following recursion until convergence

vnC1 D vn � � � Drf .vn/ (7.94)

� denotes a step size for which a value of 1 has worked well.

The gradient descent approach has the advantage that the Hessian matrix r2f .v0/

and its inverse being a M �M -matrix needs not be computed. Thus the gradient
descent approach is a good choice for a large number M of basis functions. For the
diagonal matrix, we only have to store the values at the diagonal.

The minimization of the Bellman error can be embedded into approximate policy
iteration that is similar to Algorithm 5. Algorithm 6 gives the entire procedure.

The major difference to Algorithm 5 is the computation of the vector v.�n�1/

related to policy �n�1 from the previous iteration. We observe that for the improve-
ment of the policy, the average cost g.�n/ is not determined by Bellman error
minimization. Instead, it may be obtained from the solution of evaluation equations
or in a simulation run (cf. De Farias and Van Roy [34]). Thus, the approach can
also be applied to state spaces being too large (even for semi-open systems) for the
approaches considered in Sect. 7.4.3.2. For the search over the sets of representative
states, we may apply CRN for short simulation runs. However, we recommend again
to use an additional longer run to obtain a better estimate for g.�n/ after having
determined the best set of representative states.

Finally, we remark that the Bellman error minimization does not allow to use the
constant v0 in the approximation architectures for the following reason. When we
replace in (7.95) QhLin.s; v/ by linear function as given by (7.78) we obtain

D.s; v; �/ D c.s/ � g.�/

ˇ.s; �.s//

C
X

s02S
q.s0js; �.s//.k.s; �n.s/; s0/Cv0C

NX

mD1

vm ��m.s0//� v0�
NX

mD1

vm ��m.s/

(7.95)

From
P

s02S
q.s0js; �.s//v0 � v0 D v0 � v0 D 0 as

P

s02S
q.s0js; �.s// D 1 v0 is

eliminated. Thus, v0 is not determined such that we simply set v0 D 0.

132 7 Optimal and Near Optimal Scheduling Policies

Algorithm 6 ADP-PI-BE

Require: QS1; : : : ; QS
N

QS , �1,. . . ,�
N

QS , �0.
1: n 0.
2: Policy evaluation: Determine the average cost g.�0/.
3: �min D1
4: Do
5: n nC 1.
6: z 0

7: g.�n/ 1
8: Do
9: z zC 1

10: QS QSz

11: Determine v.�n�1/ by solving the problem stated in (7.92) for QSz.
12: Determine g for the policy obtained from

�n.s/ D argmin
a2A.s/

�
c.s/� g.�n�1/

ˇ.s; a/
C

X

s0
2S

q.s0js; a/.k.s; a; s0/C QhLin.s; v.�n�1///

)

8s 2 S

13: if g < g.�n/ then
14: v.�n�1/ v
15: g.�n/ g

16: end if
17: Until z D N

QS

18: if g.�n/ < g.�min/ then
19: g.�min/ g.�n/

20: v.�min/ v.�n�1/

21: end if
22: Until n D N ADPPIBE

The lack of multicollinearity may also occur for the Bellman error minimization
which is resolved in the same way as for linear regression.

7.4.3.4 Determining Sets of Representative States

To control the composition of a set of representative states QS we specify an interval
ŒKL; KU	. Thus, for any state s 2 S to be considered we must have K.s/ 2	
KL; KU

. We have determined sets of representative states in two ways.

1. Select all states s 2 S with K.s/ 2 	KL; KU

. Then, we have

QS D ˚s 2 SjK.s/ 2 ŒKL; KU	
�

7.5 Computational Study 133

2. Sampling of states on a simulation run where RAN is used for scheduling
and a maximum cardinality j QSjmax is specified such that j QSj � j QSjmax. Then,
we have QS � ˚

s 2 SjK.s/ 2 ŒKL; KU	
�
. During the simulation run, states are

collected until j QSjmax is reached. RAN is used in order access a large range of
possible states as every possible decision may be selected in a state with non-
zero probability.

7.4.4 Approximation for the Non-preemptive Problem Based
on Linear Function Approximation for the Preemptive
Problem

Instead of applying linear function approximation to the non-preemptive problem,
we can use linear function approximation for the preemptive problem. This has the
advantage that it is easier to determine an approximation for the following reasons.
Firstly, the number of basis functions is lower for the PSLin-architectures as they
depend on the number of project states. Secondly, we can use the QLin-architectures
based on the queues for the activity types. Thirdly, it tends to be easier to find good
sets of representative states due to a smaller state space.

The procedure consists of two steps.

1. Determine a linear function approximation QhLinP.s/ for the preemptive problem.
2. Derive an approximation for the non-preemptive problem based on the approx-

imation for the preemptive problem by using QhLinP.s/ instead of hP*.s/ in the
approximation QhP.s/ given by (7.71). Note that for determining an optimal
decision efficiently we may use QhLinP.s/ instead of hP*.s/ in (7.74).

7.5 Computational Study

The computational study has the following main objectives. Firstly, the benefit of
project state ordering policies (POPs) should be assessed where attention is paid
to their performance and their potential to reduce state space cardinality. We refer
to the class of stationary policies without restrictions (except the restrictions made
in Chap. 2) to a certain class as general. Secondly, the focus is on the benefit of
optimal policies relative to simple resource based priority policies (RBPs). As all
priority policies considered are RBPs we simply refer to them as priority policies.
When considering RBPs, we also consider the benefit of RBPOPs. As we only
consider RBPs we refer to RBPOPs as PO-priority policies. Finally, we investigate
the potential of using linear function approximation (with special focus to open
systems) to obtain good policies.

At first, we outline in Sect. 7.5.1 the experimental design before we present the
results for the preemptive problem in Sect. 7.5.4. In Sect. 7.5.5 we discuss the results

134 7 Optimal and Near Optimal Scheduling Policies

Table 7.13 System related
parameters for the problem
instances

Parameter Value

jRj 2,3
cr 1

.CVd;min; CVd;max/ Œ0I 0:2	, Œ0:4I 0:6	, Œ0:8I 1:0	

�max 0:133

ur 0:7, 0:9

Kmax 5,10

for the non-preemptive problem where also the performance of the approximation
based on the preemptive problem is investigated. Section 7.5.6 is dedicated to an
investigation of linear function approximation.

7.5.1 Experimental Design

For the investigation, we have used one set of problem instances with a single project
type and one set with two project types. The problem instances are kept moderate
in size as the focus is on the performance of POPs, state space cardinalities and
on the benefit of optimal policies relative to priority policies for different ranges of
problem parameters.

In the following, we describe, in detail, the experimental design. For a detailed
description of the parameters and the generation procedure for the problem
instances, we refer to Chap. 5. We consider a system with two resource types
(jRj D 2) and three resource types (jRj D 3) with cr D 1 8r 2 R. Thus, in the
following, we refer to resources instead of resource types.

Furthermore, we control the coefficient of variation CVdr
related to the expected

durations of the activity types to be processed on a resource r 2 R by the
requirement that it lies in a specified interval .CVd;min; CVd;max/ for each resource
r 2 R. In our experimental design we have specified three intervals Œ0I 0:2	,
Œ0:4I 0:6	 and Œ0:8I 1:0	 covering ranges of low, medium and high degrees of
variation of the expected activity durations at each resource.

The maximum arrival rate is set to �max D 0:1333 which is reduced accordingly
to attain a specified level of utilization u which is set to 0:7 and 0:9 for both
resources, respectively. The maximum number of projects in the system Kmax is set
to 5 and 10 projects. Table 7.13 summarizes the values for the system parameters.

Instances with a single project type We have set the holding cost to w1 D 1 per
time unit and the rejection cost to y1 D 1;000. If rejection cost would be set to
a lower value scheduling policies may exploit the bound Kmax on the number of
projects in order to reduce average holding cost by increasing the rejection rate
(cf. Sect. 7.1.3). This is typically not a desired behavior of scheduling policies
as acceptance/rejection of new projects is typically subject to order acceptance
decisions on the tactical level (cf. Chap. 8).

7.5 Computational Study 135

Table 7.14 Project type
related parameters for the
problem instances with one
project type

Parameter Value

.jV11j; jV12j/ if jRj D 2 .3; 2/

.jV11j; jV12j; jV13j/ if jRj D 3 .2; 2; 1/

OS1 0, 0:2, 0:4, 0:6, 0:8, 1:0

w1 1

y1 1;000

N PI 5

Table 7.15 Project type
related parameters for the
problem instances with two
project types

Parameter Value

.jVp1j; jVp2j/; .2; 1/

OSp 0, 0:3, 0:6, 1:0

.w1; w2/ .1; 2/

yp 1;000

N PI 5

ap 0.5

Furthermore, N PI D 5 samples are drawn for ri1 and d i1 for given problem
parameters. The project type is composed of five activity types (jV1j D 5).

For the sets V1r 8r 2 R of activity types to be processed on the resource types,
we specify the cardinalities to be jV11j D 3 and jV12j D 2 for the case of jR D 2j.
For the case of jRj D 3 we have set jV11j D 2, jV12j D 2 and jV13j D 1.

The network of the project type is controlled via the order strength (OS) where
OS1 is set to 0, 0:2 0:4, 0:6, 0:8 and 1. For each value, we have generated one
network sample. Table 7.14 summarizes the values for the set of instances.

Thus, the set comprises 720 instances resulting from the product of the levels
w.r.t. jRj (2), .CVd;min; CVd;max/ (3), ur (2), Kmax (2), OS (6) and N PI (5).

Instances with two project types For this set of instances, we assume two project
types where each project type p 2 P is composed of three activity types (jVpj D 3).
Both project types have a network, that has the same value OSp which is set to 0,
0:3, 0:6 and 1. For each value of OS, we, again, generate one network sample. As
there are two possible networks only for OSp D 0:6, for all other values both project
types have the same network.

The holding costs per time unit are set to w1 D 1 and w2 D 2 whereas the
rejection costs are set to y1 D y2 D 1;000. Thus, the two project types differ for a
problem instance w.r.t. holding costs per time unit and the samples for rip and d ip.

Finally, the total arrival rate is shared equally among the two project types such
that we set the fractions of the total arrival rate to a1 D a2 D 0:5.

As both project types consist only of 3 activity types we consider only instances
with jRj D 2. Thus, for the sets V1r 8r 2 R of activity types to be processed on
the resource types, we specify the cardinalities for both project types p 2 P to be
jVp1j D 2 and jVp2j D 1.

Table 7.15 summarizes the values for the two sets of instances where we have
used p as index if both project types have the same parameter value in a problem
instance.

136 7 Optimal and Near Optimal Scheduling Policies

Thus, the set comprises 240 instances resulting from the product of the levels
w.r.t. .CVd;min; CVd;max/ (3), ur (2), Kmax (2), OS (4) and N PI (5).

7.5.2 Priority Policies

As a benchmark for optimal policies, we have considered priority policies. As
simple priority policies, we consider the well known WSPT-policy (or c�-policy)
and the RAN-policy where activities are randomly selected from the sets W.r; t/ of
activities waiting for a resource r 2 R. Furthermore, we have added two priority
policies based on the bottleneck dynamics approach (cf. Lawrence and Morton
[85] or Morton and Pentico [96]) that have performed well in the simulation study
presented in Chap. 6. The policies are namely BD-GC-U and BD-GC-D (for details
see Sect. 6.1) with a lookahead parameter � D 1. Ties between activities with same
priorities are broken randomly.

7.5.3 Simulation Setup

For the evaluation of optimal scheduling policies and priority policies, we have
used simulation. For each policy and each problem instance, we have carried out
10 simulation runs with 30;000 project arrivals (where some may be rejected due
to Kmax). The warm-up period has been set to 10;000 projects. In order to reduce
variance between the results for different policies, we have used common random
numbers (cf. Law [84]). We have verified that, for most cases, the resulting paired
t-confidence intervals (cf. Law [84]) for any two policies do not contain 0 at a
confidence level of 95 % and the confidence intervals for g are not larger than 10 %
of the mean.

When applying scheduling policies we break ties between projects in the same
state according to their arrival times.

7.5.4 Results for the Preemptive Problem

7.5.4.1 State Space Cardinalities

In order to bound computation times, we have defined a limit of 1;000;000 states
for jSPj and jSPPOj. If the limit is exceeded for a given problem instance the
computation of an optimal policy (general or PO) is aborted.

Instances with a single project type Table 7.16 shows the cardinalities for the
set of problem instances. As jSPj (and jSPPOj to a lesser extent) depend on j†j the

7.5 Computational Study 137

Table 7.16 State space cardinalities for a single project type at different levels of OS

Kmax 5 10

OS1 j†Pj jSPj jSPPOj (%) jSPj jSPPOj (%)

0 31 376;992 7;776 2:06 – 161;050 –
0.2 19 42;504 3;276 7:71 – 61;220 –
0.4 11 4;368 1;176 26:92 352,716 18;876 5.35
0.6 9 2;002 924 46:15 92,378 14;872 16.10
0.8 7 792 560 70:71 19,448 8;294 42.65
1 5 252 252 100:00 3,003 3;003 100.00

Table 7.17 State space cardinalities for two project types at different levels of OS

Kmax 5 10

OS j†Pj jSPj jSPPOj (%) jSPj jSPPOj (%)

0 14 11;628 3;885 33:41 – 116;754 –
0.3 10 3;003 1;638 54:55 184,756 40;040 21.67
0.6 8 1;287 966 75:06 43,758 21;021 48.04
1 6 462 462 100:00 8,008 8;008 100.00

state space cardinalities implicitly depend on the network structure given by OS and
the number of activity types jVpj. Furthermore, they depend on Kmax. Thus, the
following tables show the cardinalities jSPj and jSPPOj for different values of OS
and Kmax when general policies and POPs are considered. The percentages indicate
the fraction of the cardinality of SPPO from the cardinality of SP.

The results confirm the theoretical finding that for small values of OS where
networks have less precedence relations state spaces may become very large if
general policies are considered. Furthermore, the correctness of Theorem 7.1.4
could be verified. For example, when OS D 0 and Kmax D 5 we obtain 376;992 D�

5C 31

31

�

, and for OS D 0:4 and Kmax D 10 we obtain 352;716 D
�

10C 11

11

�

.

We observe that the growth of the state space can be considerably tempered using
POPs such that jSPPOjmay only be a small fraction of jSPj. We verify that the upper
bound from Theorem 7.3.3 is tight as 7;776 D .5C 1/5 for OS D 0 and Kmax D 5

and 161;050 D .10 C 1/5 for OS D 0 and Kmax D 10. Thus, we could solve all
problem instances to optimality using POPs where using general policies the state
was larger than our limit of 1;000;000 states for instances with Kmax D 10 and
OS � 0:2 (Table 7.16).

Instances with two project types Table 7.17 confirms the observations made in
Sect. 7.5.5.1 for the case with two project types. Again, we could determine an
optimal POP for all instances.

138 7 Optimal and Near Optimal Scheduling Policies

Table 7.18 Relative performance of priority policies for a single project type at different levels
of OS

OS1 BD-GC-U(%) BD-GC-D(%) WSPT(%) RAN(%) Best(%) Max best(%)

0 0.1 0.1 51.0 41.6 �0.1 1.2
0.2 1.2 1.2 44.9 40.1 1.1 19.7
0.4 4.5 4.4 33.8 32.0 3.8 24.8
0.6 4.4 4.4 28.2 26.9 3.1 25.9
0.8 4.7 4.6 22.6 26.1 3.3 20.3
1 11.5 11.3 17.4 21.2 5.0 25.9

Table 7.19 Relative performance of priority policies for a single project type at different levels
of CVdr

CVd r
BD-GC-U(%) BD-GC-D(%) WSPT(%) RAN(%) Best(%) Max best(%)

Œ0I 0:2	 3.5 3.4 56.3 39.8 2.9 18.2
Œ0:4I 0:6	 5.2 5.2 29.0 30.9 3.7 25.9
Œ0:8I 1:0	 4.5 4.4 13.7 22.0 1.6 19.7

7.5.4.2 Performance of Optimal Policies

At first, we could verify that the optimality gap between an optimal POP and an
optimal general policy is zero for the instances where we could determine an optimal
general policy. This indicates that the restriction to POPs does not lead to a loss of
optimality for the problem instances considered.

Next, we report on the performance of optimal policies relative to priority
policies.

Instances with a single project type Table 7.18 shows the mean optimality gap

(given by g.�prio/

g.��PO/
� 1) of the priority policies to the optimal POP at different levels

of the order strength (OS). The mean gap in the column Best is based on the best
solution gap obtained for each problem instance. The column Max Best shows the
maximum value for the best gap obtained within a set of problem instances with the
same OS in order to demonstrate the range of possible best gaps (Table 7.18).

First of all, we observe that it is beneficial to search for optimal policies
especially for OS-values larger than 0:2. For small values of OS the performance of
the BD-policies is near optimal on average while for higher OS-values the best gaps
are 3–5 % on average. However, much are higher gaps up to 25:9 % are possible.
Table 7.19 shows the mean as well as the maximum gaps for different ranges of
CVdr

. We observe that, for higher ranges, the benefit of optimal policies becomes
smaller on average as the smaller mean best solution gap of 1:7 % indicates. This
can be explained by the fact that WSPT becomes more beneficial for higher CVdr

(Table 7.19).

7.5 Computational Study 139

Table 7.20 Relative performance of priority policies for two project types at different levels of OS

OSp BD-GC-U (%) BD-GC-D (%) WSPT (%) RAN (%) Best (%) Max best (%)

0.0 2.0 2.0 23.9 28.5 1.7 8.1
0.3 12.4 2.5 18.6 27.9 2.3 12.7
0.6 12.8 3.3 17.0 25.0 3.0 11.1
1.0 27.0 3.8 12.2 26.4 3.7 17.1

Table 7.21 Relative performance of priority policies for two project types at different levels
of CVd

CVd r
BD-GC-U (%) BD-GC-D (%) WSPT (%) RAN (%) Best (%) Max best (%)

Œ0I 0:2	 5.4 4.9 17.7 25.6 4.8 17.1
Œ0:4I 0:6	 10.6 3.0 23.7 29.2 3.0 11.5
Œ0:8I 1:0	 24.4 0.7 12.3 26.1 0.5 2.5

Instances with two project types Tables 7.20 and 7.21 confirm that the obser-
vations made for a single project type are also valid for multiple project types
(Tables 7.20 and 7.21).

7.5.4.3 Performance of Project State Ordering Priority Policies

In the following, we discuss the results of PO-priority policies for the case with a
single project type as well as for the case with two project types.

Instances with a single project type Table 7.22 shows the mean optimality gap
of general priority policies and that of PO-priority policies for the instances with a
single project type.

We observe that BD-GC-U based on the bottleneck dynamics approach shows
an inferior performance on average. By contrast, BD-GC-D, WSPT and the RAN
exhibit, on average, an improved performance.

An explanation is the fact that, as the general priority policies BD-GC-U and
BD-GC-D prefer projects with a smaller expected remaining workload they already
behave in many cases like POPs. Recall that for any two project states �1; �2 2 †

with �1 	a �2 we always have U.�1/ � U.�2/ such that
P

i2U.�1/

d ip.�/ <

P

i2U.�2/

d ip.�/. Thus, activities of a given type are preferred from projects having less

expected remaining workload. As a consequence the benefit of PO-priority policies
based on the bottleneck dynamic approach is reduced as their general counterparts
already mimic in part the behavior of POPs. Then, reducing the decisions sets by
considering PO-priority policies may also increase the probability of suboptimal
decisions to be selected. This explains the inferior performance of the PO-version
of BD-GC-U.

140 7 Optimal and Near Optimal Scheduling Policies

Table 7.22 Performance
of PO-priority policies for
a single project type

General (%) PO (%)

BD-GC-U 5.4 6.2
BD-GC-D 4.3 4.3
WSPT 33.0 25.1
RAN 31.3 22.7
Best 2.9 3.6

Table 7.23 Performance
of PO-priority policies for
two project types

General (%) PO (%)

BD-GC-U 13.5 13.4
BD-GC-D 2.9 3.0
WSPT 17.9 16.6
RAN 27.0 22.9
Best 2.7 2.8

Instances with two project types Table 7.23 shows the mean solution gap for the
general priority policies and that of PO-priority policies for the instances with two
project types (Table 7.23).

Again the PO-priority policies BD-GC-U- and the BD-GC-U-policies do not
outperform the general counterparts on average while the PO-priority policies
WSPT and the RAN do.

We conclude that PO-priority policies slightly outperform general priority
policies. But essentially the benefit of optimal policies as shown in Sect. 7.5.4.2
remains.

7.5.5 Results for the Non-preemptive Problem

7.5.5.1 State Space Cardinalities

In order to bound computation times we, again, have set a limit of 1;000;000 for the
state space cardinality.

Instances with a single project type Table 7.24 show the cardinalities for the set
of problem instances. As, again, S and SPO to a lesser extend depend on j†j the
cardinalities implicitly depend on the network structure given by OS, the number
of activity types jVpj and Kmax. Thus, the following tables show jSj and jSPOj for
different values of OS and Kmax when general policies and POPs are considered. As
the state space cardinalities depend in part on jRj we have non-integer means. The
percentages indicates the fraction of the cardinality of SPO from SP.

The results confirm the observation already made for the preemptive problem
that for small values of OS where networks have less precedence relations state
spaces may become very large when general policies are considered. Again, the
growth can be considerably tempered again using POPs such that jSPOj may only a

7.5 Computational Study 141

Table 7.24 State space cardinalities for a single project type at different levels of OS

Kmax 5 10

OS1 j†j jSj jSPOj (%) jSj jSPOj (%)

0 175 – 57,511 – – – –
0.2 82.1 – 20,355.8 – – 478,418.3 –
0.4 32.4 53,963.7 5,692.8 10.55 – 127,784.3 –
0.6 24.9 18,906.5 4,469.2 23.64 – 101,045.3 –
0.8 17.7 5,275.7 2,371.8 44.96 241,337.8 52,618.6 21.80
1 10 845.2 805.8 95.34 15,379.2 15,379.2 100.00

Table 7.25 State space cardinalities for two project types at different levels of OS

Kmax 5 10

OSp j†j jSj jSPOj (%) jSj jSPOj (%)

0 46 167,434 27,445 16.39 – – –
0.3 27 26,525.6 9,264.4 34.93 – 333,969.8 –
0.6 19.4 8,217 4,740.8 57.70 511,985.4 159,948.8 31.24
1 12 1,755.8 1,755.8 100.00 50,243.8 50,243.8 100.00

small percentage of jSj. Thus, using POPs, we could solve all problem instances to
optimality where using general policies for instances with Kmax D 10 or OS � 0:2

the state space was larger than our limit of 1;000;000 states.

Instances with two project types Table 7.25 confirms the observations made in
Sect. 7.5.5.1 for the case with two project types. Again we could determine the
optimal POP for all instances except for Kmax D 10 and OS1 D 0.

7.5.5.2 Performance of Optimal Policies

At first, we note that, for the instances tested, we could always verify where an
optimal general policy could be determined that POPs are globally optimal as well.

Next, we report on the performance of optimal POPs relative to priority policies.
In order to have the same numbers of instances at each combination of problem
parameters we only consider ranges of parameters where for all instances an optimal
POP could be determined such that instances with OS1 D 0 are excluded from
consideration.

Instances with a single project type Table 7.26 shows the mean optimality gap

(given by g.�prio/

g.��PO/
� 1) of the different priority policies to the optimal policy at

different levels of the order strength (OS). The mean gap in the column Best is
based on the best solution gap obtained for each problem instance. The column Max
Best shows the maximum value for the best gap obtained in order to demonstrate
the range of possible gaps.

142 7 Optimal and Near Optimal Scheduling Policies

Table 7.26 Performance of RBPs for a single project type at different levels of OS

OSp BD-GC-U (%) BD-GC-D (%) WSPT (%) RAN (%) Best (%) Max best (%)

0.2 2.8 2.8 31.0 41.4 2.5 18.2
0.4 4.8 4.5 22.3 31.6 3.9 19.8
0.6 4.3 4.4 18.9 27.2 3.1 21.9
0.8 4.1 4.1 15.0 26.1 2.8 16.1
1 7.3 7.2 11.7 18.7 2.8 19.2

Table 7.27 Performance of priority policies for a single project type at different levels of CVdr

CVd r
BD-GC-U (%) BD-GC-D (%) WSPT (%) RAN (%) Best (%) Max best (%)

Œ0I 0:2	 3.8 3.8 37.6 26.6 3.3 10.8
Œ0:4I 0:6	 5.2 5.1 15.8 26.0 3.6 21.9
Œ0:8I 1:0	 5.0 4.9 5.9 34.4 2.2 19.0

Table 7.28 Performance of priority policies for two project types at different levels of OS

OSp BD-GC-U (%) BD-GC-D (%) WSPT (%) RAN (%) Best (%) Max best (%)

0.3 8.9 3.1 11.8 26.6 2.9 12.1
0.6 8.0 2.8 9.7 23.0 2.7 13.6
1.0 14.8 3.2 6.5 22.5 2.6 13.6

Table 7.29 Performance of priority policies for two project types at different levels of CVd

CVd r
BD-GC-U (%) BD-GC-D (%) WSPT (%) RAN (%) Best (%) Max best (%)

Œ0I 0:2	 4.0 3.4 10.0 16.1 3.3 11.3
Œ0:4I 0:6	 7.2 3.8 12.7 22.0 3.4 13.6
Œ0:8I 1:0	 20.5 1.9 5.3 34.0 1.5 7.7

First of all, we observe that it is beneficial to search for optimal policies
especially for an OS larger than 0:2. For a small OS the performance of the BD-
policies is near optimal on average while for higher OS-values the best gaps are
about 3 % on average. However, much are higher gaps up to 21:9 % are possible.
Table 7.27 shows the mean gaps for different ranges of CVdr

. We observe that for
higher ranges optimal policies become less beneficial as an mean of 2:1 % of the
best gap indicates. This can be explained by the fact that WSPT becomes more
beneficial.

Instances with two project types Tables 7.28 and 7.29 confirm that the observa-
tions made for a single project type are also valid for multiple project types.

7.5.5.3 Performance of Project State Ordering Priority Policies

In the following, we discuss the results for PO-priority policies in case of a single
project type as well as in case of two project types.

7.5 Computational Study 143

Table 7.30 Performance
of PO-priority policies for a
single project type

General (%) PO (%)

BD-GC-U 4.7 4.3
BD-GC-D 4.6 4.2
WSPT 19.8 17.2
RAN 29.0 23.9
Best 3.1 2.4

Table 7.31 Performance
of PO-priority policies for
two project types

General (%) PO (%)

BD-GC-U 10.6 10.4
BD-GC-D 3.0 3.0
WSPT 9.3 8.7
RAN 24.0 22.8
MinGap 2.7 2.6

Instances with a single project type Table 7.30 shows the mean solution gap of
general priority policies and of PO-priority policies for the instances with a single
project type.

We observe that the PO-versions of all priority policies show an improved
performance on average.

Instances with two project types Table 7.30 shows the mean solution gap of
the general priority policies and of PO-priority policies for the instances with two
project types (Table 7.31).

As for the case with a single project type, we observe that the PO-versions of all
priority policies show an improved performance on average. Interestingly both PO-
priority policies based on the bottleneck dynamics approach (BD-GC-U, BD-GC-D)
outperform their general counterparts. This can be explained by the fact that POPs
according to their definition for the non-preemptive case take into account activities
in process and waiting activities which none of the general priority policies do.

We conclude that also for the non-preemptive case PO-priority policies slightly
outperform general priority policies. But, essentially, the benefit of optimal policies
as shown in Sect. 7.5.4.2 remains.

7.5.5.4 Performance of the Value Function Approximation
from the Preemptive Problem

In this section, we investigate the performance of the policy based on the value
function from the preemptive problem. We denote the policy in the following as
ADP-P-PO as we consider only the PO-version of the policy. At first, we discuss
the performance for the instances with a single project type before we consider the
performance for the instances with two project types. As a benchmark for ADP-P-
PO, we use the solution gap obtained for the best general priority policy as well as
for the best PO-priority policy.

144 7 Optimal and Near Optimal Scheduling Policies

Table 7.32 Performance
of ADP-P-PO for a single
project type at different levels
of OS

Best

OS1 ADP-P-PO (%) General (%) PO (%)

0.2 0.4 2.5 1.3
0.4 0.5 3.9 2.9
0.6 0.6 3.1 2.5
0.8 0.7 2.8 2.5
1 0.4 2.8 2.8

Table 7.33 Performance
of ADP-P-PO for a single
project type at different levels
of CVd

Best

CVdr
ADP-P-PO (%) General (%) PO (%)

Œ0I 0:2	 0.2 3.3 2.8
Œ0:4I 0:6	 0.3 3.6 3.1
Œ0:8I 1:0	 1.1 2.2 1.2

Table 7.34 Performance
of ADP-P-PO for two project
types at different levels of OS

Best

OSp ADP-P-PO (%) General (%) PO (%)

0.3 2.3 2.9 2.7
0.6 2.5 2.7 2.6
1 2.8 2.6 2.6

Instances with a single project type Table 7.32 shows the mean solution gaps for
different levels of OS.

We observe that for each level ADP-P-PO outperforms on average the best
priority policies (general RBPs and RBPOPs).

Table 7.33 shows the average solution gaps for different levels of CVdr
.

We observe that for low ranges of CVdr
ADP-P-PO clearly outperforms the

priority policies on average. However, for high ranges of CVdr
, the performance

of the preemptive approximation deteriorates but remains better on average than
the performance of the priority policies. This can be explained by the fact that for
high CVdr

activities with extremely long expected durations may occur. For such
activities the effect of not allowing preemptions has a higher impact on optimal
scheduling decisions.

Instances with two project types Table 7.34 shows the average solution gaps for
different levels of order strength.

Here, we observe that on average ADP-P-PO performs at most slightly better.
The observation can be explained by considering the average performance for
different levels of CVdr

as shown in Table 7.35.
We observe that, for low ranges of CVdr

, ADP-P-PO clearly outperforms on
average the priority policies. However, for high ranges of CVdr

, its performance is
worse than that of the priority policies. Thus, the mean gaps at different levels of OS
are adversely affected by the bad performance for high ranges of CVdr

.

7.5 Computational Study 145

Table 7.35 Performance
of ADP-P-PO for two project
types at different levels
of CVd

Best

CVdr
ADP-P-PO (%) General (%) PO (%)

Œ0I 0:2	 0.4 3.3 3.1
Œ0:4I 0:6	 1.2 3.4 3.4
Œ0:8I 1:0	 6.0 1.5 1.5

Fig. 7.10 Example used
to test approximation
architectures

7.5.6 Performance of Linear Function Approximation

In this section, we investigate the performance of using linear function approxima-
tion for the case of open systems (unbounded Kmax).

In Sect. 7.5.6.1, we test firstly, a number of methodological options from
Sect. 7.4.3 such as the approximation architectures to be used or the determination
of representative states and derive recommendations. In Sect. 7.5.6.2, we present a
number of case studies to illustrate the benefit of linear function approximation.

7.5.6.1 Test of the Approximation Architectures and First Computational
Insights

For our investigation, we consider the following example with two resource types
where c1 D c2 D 1 and unbounded Kmax (Fig. 7.10).

In order to test the approximation architectures discussed in Sect. 7.4.3.1 we
approximate the open system using a semi-open system with Kmax D 50. Using
simulation, we obtain for go.RAN/ an estimate of 14:934. Then, we set y1 D 485

for which we obtain for g.RAN/ an estimate of 14:985 such that g.RAN/ �
go.RAN/.

Next, an optimal preemptive POP yielding g� D 13:568 has been computed for
the semi-open system which serves as a benchmark for assessing the quality of the
policies obtained from value function approximation.

146 7 Optimal and Near Optimal Scheduling Policies

Table 7.36 Performance of the approximation architectures for different sets of representative
states

[0;5] [0;10]

Architecture MSQE QS MSQE SP g MSQE QS MSQE SP g

PSLin1 100:085 1.434eC 10 16.690 1;039:888 1.848eC 09 16.690
PSLin2 0:620 4.738eC 08 13.935 9:810 3.722eC 07 14.397
PSLin3 0:013 2.324eC 09 13.930 0:325 5.383eC 07 14.760

QLin1 113:221 1.447eC 10 16.690 1;318:612 1.929eC 09 16.690
QLin2 0:997 5.344eC 08 14.257 19:313 4.669eC 07 14.385
QLin3 0:049 3.552eC 09 13.993 1:252 1.501eC 08 14.166

[0;15] [0;20]

Architecture MSQE QS MSQE SP g MSQE QS MSQE SP g

PSLin1 4;482:944 4.373eC 08 14.581 13;161:322 1.332eC 08 14.581
PSLin2 51:163 6.547eC 06 14.434 172:975 1.679eC 06 14.538
PSLin3 1:524 3.668eC 06 14.587 4:786 3.882eC 05 14.328

QLin1 6;133:586 4.718eC 08 16.690 18;965:209 1.493eC 08 16.690
QLin2 114:682 9.084eC 06 14.713 420:704 2.580eC 06 15.0872
QLin3 8:079 1.773C 07 14.617 31:612 3.095eC 06 14.731

Performance of approximation architectures and impact of representative
states For the investigation, we use as set of representative states QS D˚
s 2 SPjK.s/ 2 	KL; KU

�
. The intervals

	
KL; KU

considered were Œ0; 5	, Œ0; 10	,

Œ0; 15	 and Œ0; 20	. For each interval, we fitted the approximation architectures to
the value function of the states in QS. The state relevance weights were set to 1 for
all our experiments in this section. The results are shown in Table 7.36. The column
Architecture shows the name of the architecture. The columns MSQE QS and MSQE
SP show the mean squared error (MSQE) of the approximate value functions to
the value function for the semi-open system computed for the states in QS and SP

respectively. The columns g show the average cost obtained when the policy based
on the approximate value function is applied on the semi-open system. Obviously,
the best performance is obtained when architectures with a degree of the polynomial
larger than one are fitted in representative states near the origin of the state space
(state s0). A possible explanation is the fact that near the origin the value function
has smaller values (value function is nearly monotone in the number of projects in
the system). Thus, the value function tends to have less extreme variations between
the states such that an architecture may capture more easily the structure of a value
function that is relevant for a good policy. Furthermore, states near the origin seem
to have higher probabilities such that they are more relevant for determining optimal
policies.

Next, we observe that, in terms of MSQE and average cost, a degree of 1 is not
sufficient to capture the structure of the value function. Furthermore, architectures

7.5 Computational Study 147

Table 7.37 Number of basis
functions for the preemptive
problem

Preemptive

Architecture General PO

PSLin1 5 5

PSLin2 15 14

PSLin3 35 30

QLin1 4 4

QLin2 10 10

QLin3 20 20

based on a cubic polynomial (PSLin3 and QLin3) lead to smaller values of MSQE
in QSP than architectures based on a quadratic polynomial (PSLin2 and QLin2) but
not to much better policies. In some cases, policies resulting from the architectures
based on a cubic polynomial perform even worse. An explanation is that a higher
degree of the polynomial allows better fits for the representative states in QSP

but makes the architecture more susceptible to overfitting (cf. Roubos [112]).
Overfitting refers to the phenomenon that an architecture that has been perfectly
fitted to a subset of the state space does not generalize well to the entire state space
as the architecture has too many parameters. This is indicated MSQE SP values that
are higher for architectures based on cubic polynomials than for architectures based
on quadratic polynomials. The observation is in line with the findings of Roubos
and Bhulai [114] who have approximated the value functions for queueing systems.
We conclude that the architectures based on a quadratic polynomial are sufficient to
capture the structure of the value function such that a good policy can be obtained.
In the following we restrict our considerations to approximation architectures based
on a quadratic polynomial (PSLin2 and QLin2).

Finally, we observe that the architectures based on the queueing network
perspective (QLin1, QLin2, QLin3) deliver slightly worse approximations that the
architectures based on the project states (PSLin1, PSLin1, PSLin3). Despite the
equivalence of both perspectives (cf. Theorem 7.3.2) in case of POPs basis functions
based on simple queue lengths neglect important features. An example is the case
where two activities waiting for a resource are from the same project. If those
activities have the same set of successors it may be less important which activity to
be scheduled first as the successors need the completion of both. Such features are
better captured by an architecture based on project states. However, architectures
based on the queueing network perspective have less basis functions (except for
project networks with OS D 1). Table 7.37 shows for the example the number of
basis functions for each architecture when general scheduling policies and when
POPs are considered.

We observe that POPs help to reduce the number of basis functions for the
architectures based on project states. This is due to the fact that when following
a POP states of projects of a given type p 2 P are always ordered according to the
sets of unfinished activities (cf. Theorem 7.3.1). Thus, combinations of non-ordered
project states may no longer occur such that the corresponding product terms can be

148 7 Optimal and Near Optimal Scheduling Policies

Table 7.38 Improvement
by sampling representative
states

Architecture Fixed Sampled

PSLin2 13.935 13.628

QLin2 14.257 13.618

Table 7.39 Performance
of ADP-PI-LS and
ADP-PI-BE

ADP-PI-LS ADP-PI-BE

Iteration PSLin2 QLin2 PSLin2 QLin2

0 14.558 14.558 14.558 14.558
1 14.365 14.090 13.854 16.400
2 13.663 13.617 14.467 13.962
3 13.647 13.633 14.419 14.872
4 13.648 13.626 13.740 13.785
5 13.645 13.627 13.700 14.087

Best 13.645 13.617 13.700 13.785

eliminated from the architecture. Finally, we verify that the architectures based on
the queueing network perspective have much less basis functions such that they are
an interesting option if there are many project states.

Sampling of representative states Next, we have tested the effect of sampling
representative states. We sampled 20 sets QSP

1 ; : : : ; QSP
20 � QSP of 50 states from the set

QSP D ˚
s 2 SPjK.s/ 2 Œ0; 5	

�
. Table 7.38 contrasts for the PSLin2- and the QLin2-

architecture the best policy obtained over all sampled sets with the policy obtained
for the set QSP.

We observe that, by searching over multiple sampled sets of representative states,
the performance of the approximation w.r.t. average cost obtained for the resulting
policy can be considerably improved such that near optimal policies can be obtained
with an optimality gap of only 0:44 % for the PSLin2-architecture and 0:36 % for
the QLin2-architecture.

Test of approximate policy iteration As a next step, we have tested the idea
of policy improvement using the approximate policy iteration algorithm based on
least square fit to the value function for the semi-open system with Kmax D 50

(Algorithm 5) and based on Bellman error minimization (Algorithm 6). In the
following, we refer to the resulting policies as ADP-LS-PI and ADP-BE-PI. Thus,
we can verify that the architectures are able to capture the value function of
different intermediate policies. Furthermore, we verify that the architectures, indeed,
capture sufficient structure of the value function such that they can be used in
ADP-approaches that exploit the principles of dynamic programming. Approximate
policy iteration should exhibit a similar convergence behavior (at least partially) as
policy iteration applied on the true value function. As initial policy, we have used
BD-GC-U which has performed best.

Table 7.39 shows the results of the architectures PSLin2 and QLin2 for five
iterations. Obviously, the idea of policy improvement works as, for many iterations,

7.5 Computational Study 149

Table 7.40 Performance
of priority policies

Average cost

Priority policy Preemptive Non-preemptive

WSPT 14.540 14.510
BD-GC-U 14.524 14.523
BD-GC-D 14.524 14.511
RAN 14.527 14.616

a better policy is derived based on the policy from a previous iteration. As, for each
iteration, the same sets of representative states are used, the change of a policy can be
attributed to the policy improvement step. As the value function is approximated, the
improvement step may lead to an inferior policy (cf. Bertsekas and Tsitsiklis [17]).
However, it is worthwhile to perform multiple improvement steps in order to obtain
a near optimal policy as for both algorithms and architectures the average cost tend
to decrease over multiple iterations. Furthermore, we observe that the performance
of ADP-PI-BE is slightly inferior to ADP-PI-LS. This can be explained by the
inferior quality of the approximations obtained from the Bellman error method as it
uses less information than the linear regression in ADP-LS-PI. However, it can be
applied in cases where even for the semi-open system the state space becomes too
large. Finally, for both algorithms and architectures a near optimal policy is obtained
(solution gap is at most 1:5 %).

Performance for open systems Next, we examine how well the policies obtained
for the semi-open system generalize to an open system for the preemptive as well
as the non-preemptive problem. As we no longer have an optimal policy, we present
as a benchmark the results obtained for PO-priority policies (with a RAN used as
tie breaker) for the preemptive and non-preemptive problem in Table 7.40. Here, we
only consider PO-priority policies such that the POPs from the ADP-approaches do
not have an advantage from the elimination of decisions by the restriction to POPs.
At first, we examine the effect of Kmax of the semi-open systems for approximating
an open system where we apply Algorithm 4 with 20 sets of representative states (50

states each) with an interval
	
KL; KU

 D Œ0I 5	. The resulting policy is denoted in
the following as ADP-LS. Tables 7.41 and 7.42 show the results for the architectures
PSLin2 and QLin2 separately. The column Optimal shows the average cost for the
optimal policy for the semi-open system while the columns Preemptive (semi-open)
and Preemptive (open) show the average cost for ADP-LS when applied to the semi-
open system as well as an open system with preemptions allowed. For open systems
we have evaluated the policies using simulation with 10 replications of 500;000

project arrivals each. The warm up period had a length of 10;000 arrivals. Finally,
the column Non-preemptive (semi-open) show the results when the value function
approximation of ADP-LS is used as outlined in Sect. 7.4.3.2 in order to obtain a
policy for the non-preemptive problem.

For both architectures, the policies generalize well to open systems where the
performance deteriorates when the truncation level is reduced. This can be explained
by the higher distortion of the value function due to boundary of the state space.

150 7 Optimal and Near Optimal Scheduling Policies

Table 7.41 Performance of the PSLin2-architecture at different levels of Kmax and generalization
to open systems

Kmax Optimal Preemptive (semi-open) Preemptive (open) Non-preemptive (open)

50 13.568 13.628 13.887 14.023
20 13.731 13.830 13.830 14.104
10 13.835 13.885 14.469 14.533

Table 7.42 Performance of the QLin2-architecture at different levels of Kmax and generalization
to open systems

Kmax Optimal Preemptive (semi-open) Preemptive (open) Non-preemptive (open)

50 13.568 13.619 13.873 14.008
20 13.731 13.831 13.900 14.052
10 13.835 13.875 14.188 14.311

Table 7.43 Performance of the policies obtained from ADP-LS-PI,ADP-BE-PI,ADP-VI

Open-PSLin2 Open-QLin2

Policy Preemptive Non-preemptive Preemptive Non-preemptive

ADP-LS-T 13.887 14.023 13.873 14.008
ADP-LS-PI 13.900 14.054 13.876 14.016
ADP-BE-PI 13.976 14.124 14.053 14.218

However, even for low Kmax policies that are superior to the priority policies may
be obtained. Thus, we conclude that generally semi-open systems even with lower
Kmax may be used for approximating open systems.

Table 7.43 shows the performance of the best policy obtained from ADP-LS,
ADP-PI-LS and ADP-PI-BE for both architectures. Again, the approximations have
been applied to the semi-open system (preemptive) with Kmax D 50 and to an open
system with and without preemptions.

We observe that while the performance of the policies is near optimal for the
semi-open system the policies outperform the PO-priority policies (cf. Table 7.40).

Application of linear function approximation to non-preemptive problem In
principle, linear function approximation can also be directly applied to the non-
preemptive problem. However this has two drawbacks. Firstly, larger state spaces
need to be considered when using linear regression for obtaining an approximation.
Secondly, the PSLin-architectures become larger as the Table 7.44 shows.

Thus, as for the non-preemptive problem, the approximation based on the pre-
emptive problem has worked sufficiently well, we have restricted our considerations
to the preemptive problem and use the approximation for the non-preemptive
problem.

Finally, we remark that, although the investigation has been carried out on a
single problem instance, we could verify the observations made so far also for other
problem instances which we have tested.

7.5 Computational Study 151

Table 7.44 Number of basis
functions for the
non-preemptive problem

Preemptive

Architecture General PO

PSLin1 11 11

PSLin2 57 48

PSLin3 203 144

QLin1 3 3

QLin2 9 9

QLin3 19 19

7.5.6.2 Application of Linear Function Approximation to Selected
Problem Instances

According to our observations application of linear function approximation needs
tuning w.r.t. number and size for the sets of representative states, range for the
sets of representative states and the architecture to be used (PSLin2 or QLin2).
Furthermore, linear function approximation does not work well for every problem
instance for two reasons.

1. Approximation architectures may not capture the structure of the value function
well for each problem instance. An option to remedy this problem may be to
use more elaborate architectures such as piece-wise quadratic approximation
architectures (cf. Veach [130] for an example). However, the computational
burden for finding good sets of representative states may increase. Furthermore,
techniques providing approximations of better quality such as those based on
simulation (cf. Bertsekas and Tsitsiklis [17] or Powell [105]) may be considered.

2. As already mentioned, linear function approximation works best with sets of
representative state from the region near the origin of the state space (given by
state s0). Thus, there may be the problem that the architecture may work for semi-
open systems but does not generalize well for open systems. For open systems
the system may be in regions of the state space with larger numbers of projects
in the system K.s/ where the value function may differ in its structure from the
value function near the origin of the state space. We have observed that this is
the case, in particular, for instances where project types have different holding
cost wp per time unit. However, if project types have equal holding costs wp per
time unit the architectures, discussed so far, delivered in many cases promising
results. Again, to remedy this limitation more elaborate architectures such as
piece-wise quadratic approximation architectures might improve the quality of
the approximations.

In the following, we demonstrate for a number of problem instances that linear
function approximation can successfully be applied in order to obtain policies
for open systems that outperform priority policies. The first two examples are of
medium size (5 and 6 activity types) while the third one is a larger one with 10

activity types.

152 7 Optimal and Near Optimal Scheduling Policies

Fig. 7.11 Data of the problem instance with a single project type composed of five activity types

The experimental setup is as follows. For the problem instance, we have derived
preemptive POPs using a semi-open system with Kmax D 10 (ADP-LS) and
approximate policy iteration based on the Bellman error minimization (ADP-PI-
BE). The evaluation of the sets of representative states and the intermediate policies
as a part of the Bellman error method was based on simulation. State relevance
weights have been set to 1 without further tuning as sufficiently good results have
been obtained.

Furthermore, we have combined the two methods with the PSLin2 and the
QLin2 architecture such that we have obtained four policies from ADP that are
namely ADP-LS-PSLin2, ADP-LS-QLin2, ADP-PI-BE-PSLin2 and ADP-PI-BE-
QLin2. As a benchmark, we consider different PO-priority policies that are namely
BD-GC-U, BD-GC-D, WSPT and RAN. We also have tested the general versions
of the priority policies and have found that they do not have significant advantages
or perform even worse than the PO-priority policies.

In order to evaluate the policies, we have used 10 simulation runs of 500;000

projects arriving at the system. For the evaluation of representative states as a
part of the Bellman error method we have used shorter simulation runs of only
100,000 project arrivals. The warm up period was set to 10;000 project arrivals
for all simulation runs. Variance has been reduced using common random numbers
(cf. Law [84]) such that the paired t-confidence intervals (cf. Law [84]) for any two
policies do not contain 0 at a confidence level of 95 %.

Single project type with five activity types We consider a problem instance with a
single project type composed of five activity types. They are to be processed by two
resource types where we assume cr D 1 8r 2 R. Figure 7.11 gives the information
of the project type.

The network has an OS of 0:6. We have set the arrival rate and the activity
durations such that a utilization per resource of 0:9 is attained.

For the semi-open system, we have obtained a CTMDP with jSPj D 18;876

states and j†Pj D 11 project states while the PSLin2 architecture has 60 basis func-

7.5 Computational Study 153

Table 7.45 Performance
of the preemptive policies
obtained for the instance with
a single project type
consisting of five activity
types

Policy Average cost

ADP-LS-PSLin2 13.280
ADP-LS-QLin2 12.931
ADP-PI-BE-PSLin2 13.256
ADP-PI-BE-QLin2 13.514
BD-GC-U 16.412
BD-GC-D 16.437
WSPT 17.771
RAN 15.133

Table 7.46 Performance
of the non-preemptive
policies obtained for the
instance with a single project
type consisting of five activity
types

Policy Average cost

ADP-LS-PSLin2-P 13.702
ADP-LS-QLin2-P 13.301
ADP-PI-BE-PSLin2-P 13.726
ADP-PI-BE-QLin2-P 14.011
BD-GC-U 16.454
BD-GC-D 16.422
WSPT 17.548
RAN 15.778

tions and the QLin2 architecture 21 basis functions. For both architectures (PSLin2
and QLin2) 50 sets of 500 representative states from the interval ŒKLIKU 	 D Œ0I 5	

have been used. Table 7.45 shows the average cost for the four policies and different
PO-priority policies as a benchmark (Table 7.45).

Firstly, we observe that all policies obtained from ADP clearly outperform the
PO-priority policies. Secondly, policies based on the QLin2 architecture are superior
to policies based on the PSLin2 architecture if ADP-LS is used and inferior if ADP-
PI-BE is used. Obviously, although the QLin2 architecture has much less basis
functions it captures enough structure in order obtain policies performing reasonably
well.

Next, we have used the approximations for the preemptive problem as outlined in
Sect. 7.4.4 in order obtain policies for the non-preemptive problem. The policies are
namely ADP-LS-PSLin2-P, ADP-LS-QLin2-P, ADP-PI-BE-PSLin2-P and ADP-
PI-BE-QLin2-P. Table 7.46 shows the results for the policies obtained from ADP
as well as the PO-priority policies (Table 7.46). The results are similar to the
preemptive problem. Again the policy from ADP outperform the PO-priority
policies.

Two small project types We consider a problem instance with two small project
types. Each has three activity types which are to be processed by two resource types
with cr D 1 8r 2 R. Figure 7.12 gives the information of the two project types.

The networks have an OS of 0:6. We have set the arrival rate and the activity
durations such that a utilization per resource of 0:9 is attained.

154 7 Optimal and Near Optimal Scheduling Policies

Fig. 7.12 Data of the problem instance with two project types composed of three activity types
each

Table 7.47 Performance
of the preemptive policies
obtained for the instance with
two project types consisting
of three activity types each

Policy Average cost

ADP-LS-PSLin2 11.840
ADP-LS-QLin2 12.718
ADP-PI-BE-PSLin2 12.177
ADP-PI-BE-QLin2 12.406
BD-GC-U 16.608
BD-GC-D 13.388
WSPT 14.881
RAN 14.398

For the semi-open system we have obtained a CTMDP with jSPj D 21; 021

states and j†Pj D 8 project states while the PSLin2-architecture has 43 basis and the
QLin2-architecture 28 basis functions. Again we have used 50 sets of representative
states from an interval ŒKLIKU 	 D Œ0I 5	 where for the PSLin2-architecture the
number of representative states has been set to 500 and for the QLin2-architecture
to 200.

Table 7.47 shows the average cost for the four policies and different PO-priority
policies as a benchmark. Firstly, we observe that the policies obtained from ADP
using the PSLin2 architecture clearly outperform the PO-priority policies. Secondly,
policies using the QLin2-architecture are inferior to the policies using the PSLin2-
architecture but also outperform the PO-priority policies. Next, we derived policies
for the non-preemptive problem. The results are shown in Table 7.48. Again, the
policies from ADP outperform the PO-priority policies.

Single project type with ten activity types We consider a problem instance with
a single project type composed of 10 activity types. They are to be processed by two
resource types where we assume cr D 1 8r 2 R. Figure 7.13 gives the information
of the project type. The network has an OS of 0:8. We have set the arrival rate and
the activity durations such that a utilization per resource of 0:9 is attained.

7.5 Computational Study 155

Table 7.48 Performance
of the non-preemptive
policies obtained
for the instance with two
project types consisting
of three activity types each

Policy Average cost

ADP-LS-PSLin2-P 12.273
ADP-LS-QLin2 12.975
ADP-PI-BE-PSLin2-P 12.618
ADP-PI-BE-QLin2 12.730
BD-GC-U 16.560
BD-GC-D 13.377
WSPT 14.700
RAN 14.589

Fig. 7.13 Data of the problem instance with a single project type composed of 10 activity types

Table 7.49 Performance
of the preemptive policies
obtained for the instance with
a single project type
consisting of 10 activity types

Policy Average cost

ADP-PI-BE-PSLin2 18.266
ADP-PI-BE-QLin2 18.454
BD-GC-U 24.708
BD-GC-D 24.674
WSPT 20.015
RAN 24.496

For the semi-open system we have obtained a CTMDP with j†Pj D 18

project states while the PSLin2 architecture has 170 basis functions and the QLin2
architecture 66 basis functions. Due to the larger number of basis functions, we have
used 200 sets of representative states from an interval ŒKLIKU 	 D Œ0I 5	 where for
the PSLin2 architecture the number of representative states has been set to 2;000

and for the QLin2 architecture to 500. As jSPPOj > 1;000;000 we only have used
ADP-PI-BE for determining the weights of the approximation architectures.

Table 7.49 shows the average cost for the four policies and different PO-priority
policies as a benchmark. Firstly, we observe that all policies obtained from ADP
clearly outperform the PO-priority policies. Secondly, policies using the QLin2
architecture are, as expected, inferior to the policies using the PSLin2 architecture.
However, although the QLin2 architecture has much less basis functions, it captures
enough structure in order obtain policies outperforming the PO-priority policies.

156 7 Optimal and Near Optimal Scheduling Policies

Table 7.50 Performance
of the non-preemptive
policies obtained
for the instance with a single
project type consisting of 10
activity types

Policy Average cost

ADP-PI-BE-PSLin2-P 21.399
ADP-PI-BE-QLin2-P 22.428
BD-GC-U 30.341
BD-GC-D 30.341
WSPT 22.143
RAN 40.380

Table 7.50 shows the results for the policies obtained from ADP as well as
the PO-priority policies for the non-preemptive case. The results are similar to the
preemptive problem. Again the policy with the PSLin2 architecture outperform the
PO-priority policies while the policy with the QLin2 architecture performs slightly
less well than WSPT but outperforms all other PO-priority policies.

Chapter 8
Integrated Dynamic Order Acceptance
and Capacity Planning

This chapter is dedicated to the joint optimization of order acceptance (OA)
decisions and capacity planning decisions. In Sect. 8.1, we model the problem as
outlined in Sect. 2.3 as a CTMDP for which in Sect. 8.2 methodological issues
are addressed for the efficient computation of optimal policies. In Sect. 8.3, we
investigate the structure of optimal policies and the benefits of optimizing OA and
capacity planning decisions.

8.1 Stochastic Dynamic Programming

In this section, we model the problem as a continuous-time Markov decision process
(CTMDP) (cf. Puterman [108]) and give a detailed descriptions of its components.
The framework has been taken from Powell [106].

8.1.1 State Variables

A state s 2 S of the system, at any decision time, is given by

s D �nW; nE� (8.1)

Let nW D
�
nW

1 ; nW
2 ; : : : ; nW

jPj
�

and nE D
�
nE

1 ; nE
2 ; : : : ; nE

jPj
�

denote vectors where

nW
p is the number of projects of type p 2 P that are waiting to be processed and nE

p

is the number of projects of type p 2 P that are in process. As we consider only a
single resource nE is a unit vector. s0 D ..0; : : : ; 0/ ; .0; : : : ; 0// is the system state
where the system is empty.

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_8,
© Springer International Publishing Switzerland 2015

157

158 8 Integrated Dynamic Order Acceptance and Capacity Planning

8.1.2 Decision Variables

We define the set of alternative decisions A.s/ of state s 2 S. A decision a 2 A.s/

refers to the types of orders that are to be accepted or rejected, the projects to be
scheduled next to the resource and the usage of non-regular capacity. Decisions
on scheduling and usage of non-regular capacity are also referred to as capacity
planning decisions. A decision a is given by

a D �ıM; ıE; ıC
�

(8.2)

Next, we explain the variables of a decision a in detail where we firstly address
the variables ıM related to order acceptance decisions and secondly address the
variables ıE and ıC related to capacity planning decisions.

8.1.2.1 Order Acceptance Decisions

In order to keep the state space small we take the idea of Ross and Tsang [111] by
deciding in state s 2 S whether we accept an order if the next event is related to an
arrival of an order of type p 2 P or general type � 2 ˆ. Hence, we do not have to
store in an additional state variable whether an order has arrived or not. Then, vector
ıM D

�
ıM

1 ; ıM
2 ; : : : ; ıM

jPj
�

is a vector of binary variables ıM
p that refer to the types

p 2 P of orders to be accepted as follows

ıM
p D

�
1 Accept the next order if it turns out to be of type p.
0 Reject the next order if it turns out to be of project type p.

(8.3)

In order to determine the fixed cost associated with OA we have to distinguish three
cases for each general project type � 2 ˆ.

1. If ıM
p D 0 8p 2 P.�/ – All projects of any type p 2 P.�/ are rejected such that

no MPP is performed at all. Thus, no cost is incurred on rejecting projects of any
type.

2. If ıM
p D 1 8p 2 P.�/ – All projects of any type p 2 P.�/ are accepted such

that no specific project types p 2 P.�/ need to be distinguished. Thus, it is
optimal to postpone MPP if kM

� � kPM
� and only a fixed cost kPM

� is incurred. If
kM

� < kPM
� (theoretical case) MPP should be performed such that a fixed cost kM

�

is incurred.
3. ıM

p D 0 for some p 2 P.�/ and ıM
p0 D 1 for some p0 2 P.�/ with p0 ¤ p –

MPP must be performed regularly before OA in order to determine the specific
type p 2 P.�/ of an order. Hence, on acceptance or rejection of a project of type
p a fixed cost kM

� is incurred.

Then, the fixed cost associated with the acceptance of an order of general type � is
given by

8.1 Stochastic Dynamic Programming 159

kA.ıM; �/ D

8
<̂

:̂

0 ıM
p D 0 8p 2 P.�/

min
n
kPM

� ; kM
�

o
ıM

p D 1 8p 2 P.�/

kM
� otherwise

(8.4)

8.1.2.2 Capacity Planning Decisions

The vector ıE D
�
ıE

1 ; ıE
2 ; : : : ; ıE

jPj
�

is a vector of binary variables ıE
p that refers to

the projects to be scheduled as follows

ıE
p D

�
1 Schedule a project of type p.
0 Do not schedule a project of type p.

(8.5)

A feasible decision must be in line with a non-idling (cf. Meyn [93]) OA and
resource allocation policy such that exactly one project must be scheduled if there
are waiting projects and the resource is idle. Furthermore, a project in process may
not be preempted.

The variable ıC.a/ is defined to be the fraction of non-regular capacity used and
refers to the project already scheduled (where nE

p.s/ D 1) or the project scheduled
by decision a (where ıE

p.a/ D 1 for some p 2 P with nW
p .s/ � 1). The cost per unit

of time, after a decision a in system state s 2 S is made, becomes

c.s; a/ D
X

p2P
wp

�
nW

p .s/C nE
p.s/

�
C wCıC.a/ (8.6)

8.1.3 Exogenous Information Process

Exogenous information arrives when an event occurs after making a decision in a
system state. For our problem, we identify two kinds of events.

• Arrival of a new order of type p – This kind of event occurs at a rate �p. By
means of its type we know its parameters such as expected duration, holding cost
etc.

• Completion of a project of type p – This kind of event occurs at rate .1 C
ıCzp/�p .

8.1.4 Transition Function

A transition from one system state s to a subsequent system state s0 takes place if an
event occurs after making a decision a in system state s. The time to the next event

160 8 Integrated Dynamic Order Acceptance and Capacity Planning

is exponentially distributed with rate ˇ.s; a/ which is given by

ˇ.s; a/ D
X

p2P
.nE

p.s/C ıE
p.a//�p � .1C ıC.a/zp/C

X

p2P
�p (8.7)

Next, we state formally the mappings to the subsequent states on an event of the
two kinds. In the following, we use ep for a unity vector of dimension jP j having a
value of 1 at position p and zero for all other positions.

1. Arrival of an order – On arrival of a new order of type p 2 P that is accepted the
subsequent system state is given by

sA.s; ıE; p/ D �nW.s/C ep � ıE; nE.s/C ıE� (8.8)

On arrival, an accepted order of type p becomes a project and is added to the
waiting projects such that nW

p .sA.s; ıE; p// D nW
p .s/C 1. Furthermore, a project

of type p0 2 P may be scheduled by decision a and remains scheduled on arrival
of an new project such that nE

p0.s
A.s; ıE; p// D nE

p0.s/ C ıE
p.a/. In case that a

project arrives that is rejected, the subsequent state given by

sR.s; ıE/ D �nW.s/ � ıE; nE.s/C ıE� (8.9)

is entered. In this case, the only change of the system state is due to scheduling
of a project of type p 2 P .

2. Completion of a project – The subsequent state is given by

sE.s; ıE; p/ D �nW.s/ � ıE; nE.s/C ıE � ep

�
(8.10)

In this case, either the project already scheduled in state s is removed from
the system or the project scheduled by decision a in state s. At the end of the
transition as fixed payoff yp is obtained.

8.1.5 Objective Function

In order to evaluate a given policy � , we consider the long term average reward per
time unit as given by

g.�/ D lim inf
N!1

E

�
N�1P

nD0

y.sn; �.sn/; snC1/�
NP

nD0

c.sn; �.sn//�n

�

E

�
NP

nD0

�.sn; �.sn//

� (8.11)

8.2 Solution Methodology 161

n denotes the number of the visited state, �.s; a/ is the transition time being
exponentially distributed with rate ˇ.s; a/ and y.s; a; s0/ the fixed reward incurred
on a transition from state s to state s0. On arrival of a new order of general project
type � 2 ˆ, we have y.s; a; s0/ D �kA.ıPM.a/; �/, and on completion of a project
of type p 2 P , we have y.s; a; s0/ D yp . Furthermore, we assume holding cost wp

per time unit a project is in the system which corresponds to the average weighted
flow time per project objective. Thus, the holding cost being linear in time serve
as an approximation for the cost incurred due to not meeting due dates or due to
delayed completion. Then, the cost rate c.s; a/ per time unit the system is in state s

after selecting decision a is given by

c.s; a/ D
X

p2P
wp

�
nW

p .s/C nE
p.s/

�
C wCıC.a/ (8.12)

Then, an optimal policy �� is given by

�� D arg max
�2…
fg.�/g (8.13)

8.2 Solution Methodology

In this section, we address how the structure of the problem can be exploited in order
to determine efficiently an optimal policy. At first, we make sure that there exists,
for any given stationary policy � , a single g.�/ independent from the starting state
of a sample path by establishing that the CTDMP is unichain (cf. Puterman [108]).

Theorem 8.2.1. Under any stationary policy � performing OA and capacity
planning decisions, the CTMDP is unichain.

Proof. For the proof, it is sufficient to restrict the consideration to the scheduling
decisions made by a policy. At first, we note that, by assuming non-idling policies
(cf. Meyn [93]), the resource is always busy after having made a decision except the
system is empty in state s0. Hence, the resource is busy for all states s 2 Snfs0g.
Furthermore, with non-zero probability, no new project arrives or is accepted until
the system becomes empty such that system state s0 is accessible from any system
state s 2 Snfs0g. Conversely, under a policy � a subsetS.�/ � Snfs0g is accessible
from s0 such that all s 2 S.�/ communicate with s0 and S.�/ [fs0g is a recurrent
class of states. Since s0 is accessible from all transient states s 2 SnS.�/, it is the
only recurrent class. ut

We note that if we allow idleness the CTMDP is not necessarily unichain
but weakly communicating as for some policies the CTMDP may be multichain
(for details cf. Puterman[108]). Thus, we have modify the solution procedures.
Furthermore, according to some preliminary tests, allowing idleness does not seem
to have a benefit on the performance of optimal policies.

162 8 Integrated Dynamic Order Acceptance and Capacity Planning

As the CTMDP is unichain under any policy � 2 …, the formulation of the
optimality equations can be simplified as there exist a single g.�/ for policy �

that is independent from the starting state of a sample path. Furthermore, the
methodologies outlined in Chap. 4 can be applied without modifications.

Then, the set of optimality equations (Bellman equations) 8s 2 S is given by

h.s/ D max
a2A.s/

fQ.s; a/g 8s 2 S (8.14)

where Q.s; a/ is the value of decision a 2 A.s/.
The optimal policy �� is given by

��.s/ D a� D arg max
a2A.s/

fQ.s; a/g 8s 2 S (8.15)

where the value Q.s; a/ of a decision a in state s is given by

Q.s; a/ D QR.s; a/CQNR.s; a/ (8.16)

QR.s; a/ is the value of a decision if ıC D 0 and is given by

QR.s; a/ D�

P

p2P
wp

�
nW

p .s/C nE
p.s/

�
� g�

ˇ.s; a/
�
X

p2P

�p

ˇ.s; a/
kA.ıM.a/; �p/

C
X

p2P

�p

ˇ.s; a/
ıM

p .a/h
�
sA.s; a; p/

�

C
X

p2P

�p

ˇ.s; a/

�
1 � ıM

p .a/h
�
sR.s; a/

��

C
X

p2P

.nE
p.s/C ıE

p.a//�p

ˇ.s; a/

�
yp C h.sE.s; a; p//

�

(8.17)
QNR.s; a/ the change of the decision value due to ıC and is given by

QNR.s; a/ D� wCıC.a/

ˇ.s; a/
C
X

p2P

.nE
p.s/C ıE

p.a//zpıC�p

ˇ.s; a/

�
yp C h.sE.s; a; p//

�

(8.18)

For the solution of (8.16), we can apply standard methodologies as presented in
Sect. 4. However, the subproblem of determining a� 2 A.s/I 8s 2 S is difficult
as we have infinite jA.s/j. This is due to the continuous variable ıC. In addition,
we have 2jPj possible OA alternatives and at most jP j alternatives for scheduling

8.2 Solution Methodology 163

projects on the resource. Fortunately, we are able to exploit the structure of the
optimality equations which leads to an efficient procedure for determining a�.

At first, all scheduling decisions represented by ıE need to be fully enumerated
since all successor states sA.s; ıE; p/, sR.s; ıE/ and sE.s; ıE; p/ depend on ıE.

The optimal values for ıM given ıE can be determined in two steps. In the first
step, we determine the optimal order acceptance decisions ıMPP for the case that
MPP is regularly performed before OA using the following lemma.

Lemma 8.2.1. Given ıE and the assumption that MPP is performed before OA, the
optimal ıMPP for system state s 2 S is obtained as follows

ıMPP
p D

�
0 h.sA.s; ıE; p// � h.sR.s; ıE// � 0

1 otherwise
(8.19)

Proof. To remove ˇ.s; a/ from the denominators, we apply uniformization where
the CTMDP is transformed into an equivalent CTMDP by adding fictitious transi-
tions to system state s without any cost such that a constant total rate c is attained
(cf. Chap. 4). Thus, we obtain

h.s/ D maxa2A.s/

˚ QQ.s; a/
�

c
C h.s/ (8.20)

where

QQ.s; a/ D QQR.s; a/C QQNR.s; a/ (8.21)

and

QQR.s; a/ D� g� �
X

p2P
wp

�
nW

p .s/C nE
p.s/

�
�
X

p2P
�pkA.ıM.a/; �p/

C
X

p2P
�pıM

p .a/
�
h
�
sA.s; ıE.a/; p/

� � h.s/
�

C
X

p2P
�p

�
1 � ıM

p .a/
� �

h
�
sR.s; ıE.a//

� � h.s/
�

C
X

p2P
.nE

p.s/C ıE
p.a//�p

�
yp C h.sE.s; ıE.a/; p// � h.s/

�

(8.22)

QQNR.s; a/ D� wCıC.a/C
X

p2P
.nE

p.s/C ıE
p.a//zpıC.a/�p

�
yp C h.sE.s; ıE.a/; p// � h.s/

�

(8.23)

164 8 Integrated Dynamic Order Acceptance and Capacity Planning

By rearranging (8.22) according to general project types we obtain

QQR.s; a/ D� g� �
X

�2ˆ

X

p2P.�/

wp

�
nW

p .s/C nE
p.s/

�
�
X

�2ˆ

X

p2P.�/

�pkA.ıM.a/; �/

C
X

�2ˆ

X

p2P.�/

�pıM
p .a/

�
h
�
sA.s; ıE.a/; p/

� � h.s/
�

C
X

�2ˆ

X

p2P.�/

�p

�
1 � ıM

p .a/
� �

h
�
sR.s; ıE.a//

� � h.s/
�

C
X

�2ˆ

X

p2P.�/

.nE
p.s/C ıE

p.a//�p

�
yp C h.sE.s; ıE.a/; p// � h.s/

�

(8.24)

such that we can decompose (8.24) into jˆj Independent terms. For each general
project type � 2 ˆ a term is given by

� g�

jˆj �
X

p2P.�/

wp

�
nW

p .s/C nE
p.s/

�
�

X

p2P.�/

�pkA.ıM.a/; �/

C
X

p2P.�/

�pıM
p .a/

�
h
�
sA.s; ıE.a/; p/

� � h.s/
�

C
X

p2P.�/

�p

�
1 � ıM

p .a/
� �

h
�
sR.s; ıE.a//

� � h.s/
�

C
X

p2P.�/

.nE
p.s/C ıE

p.a//�p

�
yp C h.sE.s; ıE.a/; p// � h.s/

�

(8.25)

which is independent from the terms of other general project types.
In the following, we show how an optimal ıM given ıE can be determined. As

this involves a selection of a decision from those having the same values for ıE, we
drop the decision a as parameter.

Rearranging (8.25) and removing the part that is independent from ıM gives

� ��kA.ıM; �/C
X

p2P.�/

�pıM
p

�
h
�
sA.s; ıE; p/

� � h
�
sR.s; ıE/

��

(8.26)

With the assumption that MPP is always performed before OA, we determine an
optimal ıMPP (which replaces ıM). Then, (8.26) turns into

� ��kM
� C

X

p2P.�/

�pıMPP
p

�
h
�
sA.s; ıE; p/

� � h
�
sR.s; ıE/

��

(8.27)

8.2 Solution Methodology 165

Thus, the term can be maximized by letting ıMPP
p D 1 for any p 2 P.�/ if

h
�
sA.s; ıE.a/; p/

� � h
�
sR.s; ıE/

�
> 0 (8.28)

and ıMPP
p D 0 otherwise. ut

The difference h.sA.s; ıE; p//� h.sR.s; ıE// can be interpreted as the change of
the long term expected total reward if on arrival an order of type p 2 P is accepted.
Thus, we accept a project of type p 2 P only if the expected long term total reward
is increased.

Then, we obtain ıM from the following lemma.

Lemma 8.2.2. Given ıE, ıMPP, the optimal ıM for system state s 2 S is obtained
as follows. For any � 2 ˆ, we set 8p 2 P.�/

ıM
p D ıMPP

p QM.s; ıE; ıMPP; �/ > QPM.s; ıE; �/ ^QM.s; ıE; ıMPP; �/ > 0

ıM
p D 1 QM.s; ıE; ıMPP; �/ � QPM.s; ıE; �/ ^QPM.s; ıE; �/ > 0

ıM
p D 0 otherwise

(8.29)

where

QM.s; ıE; ıMPP; �/ D
X

p2P.�/

�pıMPP
p

�
h.sA.s; ıE; p//� h.sR.s; ıE//

� � ��kM
�

(8.30)

QPM.s; ıE; �/ D
X

p2P.�/

�p

�
h.sA.s; ıE; p// � h.sR.s; ıE//

� � �� min
n
kM

� ; kPM
�

o

(8.31)

Proof. We obtain QM.s; ıE; ıMPP; �/ from (8.27) for given ıMPP and ıE.
If we do not perform MPP before OA and ıM

p D 1 8p 2 P.�/ we obtain

�
X

p2P.�/

�p min
n
kM

� ; kPM
�

o
C

X

p2P.�/

�p

�
h
�
sA.s; ıE; p/

� � h
�
sR.s; ıE/

��

(8.32)

which corresponds to QPM.s; ıE; �/. If ıM
p D 0 8p 2 P.�/ we obtain 0.

Thus, comparing the three alternatives gives the optimal order acceptance
decision for general project type �. ut

QM.s; ıE; ıMPP; �/ can be interpreted as the change of the expected long term
total reward if MPP is performed before OA and order acceptance decisions are
made for the orders of general type � according to ıMPP. QPM.s; ıE; �/ can be
interpreted as the change of the expected long term total reward if orders of

166 8 Integrated Dynamic Order Acceptance and Capacity Planning

general type � are accepted and MPP is postponed. Thus, if QM.s; ıE; ıM; �/ >

QPM.s; ıE; �/ and QM.s; ıE; ıM; �/ > 0 MPP is performed before OA.
If QPM.s; ıE; �/ � QM.s; ıE; ıM; �/ and QPM.s; ıE; �/ > 0 projects of general

� are accepted while MPP is postponed. Otherwise any project of general type �

will be rejected.
Next, ıC is determined using the following lemma.

Lemma 8.2.3. Given ıM, ıE we have ıC D 1 if

� wC C
X

p2P
.nE

p.s/C ıE
p/zp�p

�
yp C h.sE.s; ıE; p/ � h.s//

�
> 0 (8.33)

and ıC D 0 otherwise.

Proof. Given given ıPM, ıE, we observe that (8.23) is maximized by ıC D 1 if

� wC C
X

p2P
.nE

p.s/C ıE
p/zp�p

�
yp C h.sE.s; ıE; p// � h.s/

�
> 0

and ıC D 0 otherwise. ut
The left hand side of (8.33) can be interpreted as change of the long term

expected total reward if non-regular capacity is fully used to crash the project in
process. Thus, either non-regular capacity is used 100 % if the left hand side (8.33)
is positive or 0 % otherwise. This corresponds to the behavior of a bang bang control
(cf. Stidham and Weber [121]) where the optimal service rate for a system state is
always one of the two extreme values from an interval of feasible values.

Thus, in order to determine the decision that minimizes Q.s; a/, we have to
consider at most jP j possible scheduling decisions where for each scheduling
decision, we determine optimal values w.r.t. the remaining decision variables.
Thus, we have to evaluate jP j terms for the OA decisions with MPP before OA.
Furthermore, we have jˆj terms for the OA decisions with postponed MPP and jˆj
for the OA decisions with MPP before OA where each term in composed of O.jP j/
terms. Finally, we evaluate one term for the decision concerning the usage of non-
regular capacity. Then, for each scheduling decision, we have to compute the total
value Q.s; a/ in order to compare the jP j scheduling decisions. In total, we have
to evaluate O.jP j2/ terms. Even if we ignore the usage of non-regular capacity, the
procedure is more efficient than full enumeration of all decisions as we would have
to evaluate O.jP j � 2jPj/ decisions.

Finally, the cardinality of the state space jSj that has a high impact on the
computational burden and memory requirements is given by the following theorem.

Theorem 8.2.2.

jSj D
�

Kmax � 1C jP j
P j

�

.jP j C 1/ (8.34)

8.2 Solution Methodology 167

Proof. In order to compute jSj, we ignore the order acceptance decisions and
assume that any project is accepted until Kmax is reached. This is justified by the fact
under such a policy each state s 2 S is accessible as long as Kmax is not exceeded.
This can be seen by considering the following scenario that may occur with non-zero
probability. Starting with s0, the first project of type p 2 P with nE

p.s/ D 1 arrives
and is immediately scheduled as we require policies to be non-idling. Afterwards,
we assume that no project is rejected as long as Kmax is not reached. The project in
process is not completed while nW

p .s/ projects arrive for each project type p 2 W .
Thus, each state s 2 S is accessible from s0, and by completion of the project in
project, each state s0 2 S with nE.s0/ D 0 is accessible from s0 as well.

To simplify the analysis, we transform the semi-open system (cf. Buzacott and
Shantikumar [25]) with a maximum number of projects in the system into an
equivalent closed system with a constant number Kmax of projects in the system
by introducing the variable nNIS.s/ D Kmax � P

p2P
.nW

p .s/C nE
p.s// for the projects

not in the system. An interpretation is as follows. On completion, projects turns into
generic orders without specific type that are queued in front of the system. Then,
they wait for admission to the system at a rate � D P

p2P
�p where the time between

two admissions is exponentially distributed. On admission, a generic order turns
into an order of type p 2 P with probability �p

�
which can be accepted or rejected.

Then, we obtain the cardinality of the state space in two steps. In the first step,
we consider the states where no project is in process on the bottleneck resource.
We observe that such states can only be entered subsequent to project completions.
Thus, if we allow a maximum of Kmax projects to be in the system at most Kmax�1

projects may be waiting which are of the jP j project types. The rest of the projects
is waiting for admission. Then, the number of states with no projects in process

amounts to

�
Kmax � 1C jP j

jP j
�

which corresponds to the number of possibilities

of distributing n identical items (Kmax � 1) among k (jP j C 1) buckets as given

by

�
nC k � 1

k � 1

�

. In order to obtain, in the second step, the number of states

having a project in process, we observe that each state s with a project of any
type p 2 P in process has a transition to a state s0 with nW.s0/ D nW.s/ and
nE.s0/ D 0 on completion of the project. Thus, s0 must be accessible via one
transition from jP j states having one project in process such that there number is�

Kmax � 1C jP j
jP j

�

jP j.
Then, the sum of the number of states without a project in process and the number

of states with one project in process gives the assertion. ut

168 8 Integrated Dynamic Order Acceptance and Capacity Planning

8.3 Computational Investigation

In this section, we investigate computationally the effect of the two sources of
flexibility that are the option of postponing MPP and the option of using non-regular
capacity for crashing.

For the analysis, we distinguish w.r.t. MPP between three cases.

1. Regular MPP – MPP is always performed before OA, except all projects of a
general project type are rejected. For this case, we set kPM

� to a large value for all
� 2 ˆ such that MPP is never postponed.

2. Postponed MPP – MPP is always performed after OA on arrival of a project
such that acceptance/rejection decisions are only based on information from the
general project type. For this case, we set kM

� to a large value for all � 2 ˆ such
that MPP is always postponed.

3. Flexible MPP – Whether MPP is postponed or performed regularly is subject to
decisions based on the system state.

Concerning the usage of non-regular capacity for crashing projets, we distinguish
between two cases.

1. No crashing – Crashing using non-regular capacity is not allowed. To model this
case, we set zp D 0 8p 2 P such that the usage of non-regular capacity has no
benefit.

2. Crashing – Crashing using non-regular capacity is allowed.

The investigation is guided by two research questions.

1. What is the structure of optimal policies?
2. Under which system conditions it is worthwhile to consider postponing of MPP

and usage of non-regular capacity?

By the first research question, we intend to find out whether and when policies have
a simple structure which makes them more amenable to simple approximations.
The second research question is aimed at finding out for which values of system
parameters both sources of flexibility should be considered simultaneously. This
implies a more complicated planning problem which can be simplified by omitting
one or both aspects.

In the following, Sect. 8.3.1 is dedicated to the first research question and
Sect. 8.3.2 to the second one.

8.3.1 Structure of Optimal Policies

As a starting point, we consider a problem instance referred to as Base case 1 with
two project types p 2 P.�/ D P such that both are from the same general project
type. The parameters are given in Table 8.1.

8.3 Computational Investigation 169

Table 8.1 Problem
parameters for Base case 1

Parameter Value

.d 1; d2/ .0:6; 1:4/

.w1; w2/ .10; 10/

.y1; y2/ .200; 200/

.�1; �2/ .0:5; 0:5/

.z1; z2/ .0:429; 0:429/

kM
1 10

kPM
1 5

wC 50

The two project types differ only w.r.t. their expected durations. Furthermore, we
have set the expected durations and the arrival rates such that utilization u of the
bottleneck resource, given by

u D � D
X

p2P
�pd p (8.35)

has a value of 1. Note that u is the utilization without crashing if all orders were
accepted.

Special attention is payed to differences and similarities to optimal policies
obtained for related problems. The analysis is divided according to the three parts
of decisions. Order acceptance, scheduling and usage of non-regular capacity.

8.3.1.1 Order Acceptance

Essentially, our problem is generalization of the problem considered by De Serres
[42] such that we are confronted with the same difficulties when applying proof
techniques for establishing structural results. Thus, in order to explore in more
detail the structure of an optimal policy w.r.t. OA we use computational experiments
instead. Figure 8.1 shows the optimal OA decisions for Base case 1 when no
crashing is allowed and regular MPP or flexible MPP is used.

For the presentation of the policy, we have aggregated the system states according
to the number of projects of each type in the system.

We can clearly identify acceptance regions highlighted by different shades of
grey where projects of both types are accepted, only projects of type p1 are
accepted and no projects are accepted. We also obtain some regions indicated by the
intermediate shades of grey where order acceptance decisions may differ between
the states. For some states projects of both types are accepted and for some states
projects only from one type are accepted.

Obviously, for regular MPP and for flexible MPP, the optimal policy is nearly
monotonic w.r.t. OA decisions which is in line with the findings of De Serres
[42]. Furthermore, we observe that the fact whether regular MPP or flexible MPP
is used does not affect the structure of the optimal policy. However, for flexible

170 8 Integrated Dynamic Order Acceptance and Capacity Planning

Fig. 8.1 Optimal order acceptance decisions depending on the number of projects in the system if
no crashing is allowed

Fig. 8.2 Optimal order acceptance decisions depending on the number of projects in the system if
crashing is allowed

MPP, decisions in the light grey region are always associated with postponed MPP.
Thus, the main benefit from allowing flexible MPP results from the cost saved by
postponed MPP when projects of both types are accepted (light grey region).

Next, we consider the optimal order acceptance decisions when crashing is
allowed.

Figure 8.2 reveals that the optimal policies are again nearly monotonic and are
less selective as the regions where projects are accepted become larger. Again, the
structure is hardly affected by allowing flexible MPP.

In an extensive computational study, we could verify that also for other problem
instances where project types differ w.r.t. payoffs, holding cost or crashing factors
optimal policies are nearly monotonic w.r.t. order acceptance decisions.

Next, we consider another interesting property that is especially useful to narrow
down the space of approximations of the optimal policy w.r.t. OA decisions. The

8.3 Computational Investigation 171

region where projects of both types are accepted is contained in the acceptance
region for projects of type p1 having a shorter expected duration. Next, we
generalize the finding to cases where project types may differ w.r.t. other parameters.
As a starting point, we could establish the following result for project types have
different holding costs and payoffs.

Theorem 8.3.1. Be given two project types p1; p2 2 P.�/ for some � 2 ˆ with
the following properties.

• yp1 � yp2

• wp1 � wp2

• d p1 D d p2

• No crashing is possible (zp1 D zp2 D 0)

Then, under an optimal policy, at each decision time where it is optimal to accept a
project of type p2 it is also optimal to accept a project of type p1.

Proof. For the proof, we consider a finite stream of projects indexed by j D
1; : : : ; J that arrive at the system. We represent a project by a tuple .j; p/ and refer
to the type of a project by pj . Then, the system state s.t/ at time t is given by
s.t/ D .J a;W.t/; E.t// where J a is the number of order that already have arrived
at the system, W.t/ is the set of waiting projects and E.t/ the set of projects in
process. The variable J a is needed to account for the limited number of orders
that arrive at the system. It is incremented by 1 if an order of any type arrives
(irrespectively whether the order will be accepted or not) and as soon as J a D J no
further order arrives. A decision a 2 A.s/ is given by

a D �ıM;B� (8.36)

where ıM.a/ is a vector of binary variables ıM
p .a/ for the order acceptance decisions

as defined in Sect. 8.1 and B.a/ is the set of projects to be scheduled (as the
bottleneck resource can process only one project at a time, the set contains at most
one element). We define sA.B; s; p/ to be the state that is entered on arrival of a
project of type p if projects in B.a/ are scheduled and sR.B; s/ the state entered
when a project is rejected and projects in B are scheduled. V �.s/ refers to the future
expected total reward if after state s an optimal policy is followed. Furthermore, we
define F .j; s/ to be a random variable for the remaining flow time of project j if
the system is in state s and an optimal policy is followed.

For the proof, we assume that the system is in state s where j projects already
have arrived and decision a� is the optimal decision. As project types p1 and p2

are from the same general type, we can ignore, in the following analysis, fixed cost
for doing regular or postponed MPP. Next, we assume that it is optimal to accept
project j C 1 if it turns out to be of type p2 such that V �.sA.B.a�/; s; p2// �
V �.sR.B.a�/; s// > 0. Then, the expected remaining flow time of project j C 1 is
given by EŒF .j C 1; sA.B.a�/; s; p2//	.

172 8 Integrated Dynamic Order Acceptance and Capacity Planning

Next, we consider the case where a project is accepted if it turns out to be of type
p1.

If decisions are made afterwards as if it were of type p2 we must have
EŒF .j C 1; sA.B.a�/; s; p1//	 D EŒF .j C 1; sA.B.a�/; s; p2//	 as the same
resource allocation and OA decisions are made and p1 has the same distribution
for its duration as p2. We would have for the expected remaining holding cost

E
	
F .j C 1; sA.B.a�/; s; p2//

wp1 � E

	
F .j C 1; sA.B.a�/; s; p2//

wp2

and for the payoffs yp1 � yp2 . Thus, the expected future reward would be

V �.sA.B.a�/; s; p2//� E
	
F .j C 1; sA.B.a�/; s; p2//

.wp1 � wp2 /C

.yp1 � yp2 / � V �.sA.B.a�/; s; p2//

As, by assumption, an optimal policy is followed after state sA.p1; s/ which makes
optimal decisions we must have

V �.sA.B.a�/; s; p1// � V �.sA.B.a�/; s; p2//�
E
	
F .j C 1; sA.B.a�/; s; p2//

.wp1 � wp2 /C .yp1 � yp2 /

Thus, the assertion follows that if it is optimal to accept a project of type p2 it is
also optimal to accept a project of type p1. The assertion remains also valid for
J �!1. ut

This, result implies that if the conditions hold the regions where projects of both
types are accepted is contained in the acceptance region for p1.

Unfortunately, as the distribution of the durations has an impact on state and
transition probabilities of the CTMDP, we could not extend the result to the case
where d 1 � d2 and zp1 � zp2 . However, we could verify in a number of
computational experiments that, at least for the cases we have tested, the result
extends to expected durations and crashing factors. To summarize the findings we
introduce the concept of dominance.

Definition 8.3.1. Be p1; p2 2 P.�/ for some � 2 ˆ two project types with
�.p1/ D �.p2/. Then p1 dominates pointwise p2 if d 1 � d 2, w1 � w2, y1 � y2,
z1 � z2 and at least one inequality is strict.

In short, we write p1 	d p2 to say that p1 dominates pointwise p2.
Then, our conclusion from the experiments is the following: If p1 	d p2 the

region where projects of both types are accepted is contained in the acceptance
region of p1.

From a practitioners point of view, the monotonic structure of optimal order
acceptance decisions may serve as a starting point to find good heuristic policies
for order acceptance decisions. For example, as the boundaries of the acceptance

8.3 Computational Investigation 173

Fig. 8.3 Usage of non-regular capacity at states where project type 1 is scheduled

regions correspond almost to a linear function, window flow controls may be an
option to approximate the optimal policy w.r.t. OA decisions (cf. De Serres [42]).
Dominance relations between project types help to further reduce that search space
of possible policies w.r.t. OA decisions.

8.3.1.2 Scheduling

For Base case 1 as well as for many other instances, the optimal policy corresponds
w.r.t. scheduling decisions to the c�-policy. Except some cases where the priorities
wp�p are very similar (cf. De Serres [41] for an example where the c�-policy is
not optimal) we could verify that without crashing the c�-policy delivers optimal
scheduling decisions. If crashing is allowed the following condition should be met.

wp1 �p1 � wp2 �p2 .1C zp2 / (8.37)

According to our observations, the optimal policy corresponds to a c�-policy if for
two project types p1 > p2 the priority of a project of type p2 can never exceed the
priority of a project of type p1 even if its crashed.

8.3.1.3 Usage of Non-regular Capacity

Next, we consider the usage of non-regular capacity when flexible MPP is allowed.
Figure 8.3 shows the usage of non-regular capacity for states where no project is in
process and it is optimal to schedule a project of type 1.

174 8 Integrated Dynamic Order Acceptance and Capacity Planning

Table 8.2 Problem
parameters for Base case 2

Parameter Value

.d 1; d2/ .1:0; 1:0/

.w1; w2/ .10; 10/

.y1; y2/ .200; 200/

.�1; �2/ .0:5; 0:5/

.z1; z2/ .0:429; 0:429/

kM
1 10

kPM
1 5

wC 50

Obviously, the policy is monotonic w.r.t. usage of non-regular capacity. Non-
regular capacity is used for crashing if the numbers of projects of each type waiting
in the system exceed a certain number. The more projects are waiting in the system
the higher are the holding cost due to waiting. Thus, the pressure to reduce holding
cost by processing projects in less time increases which explains the structure of
the policy. Obviously, for the case where only projects of type 2 are waiting the
threshold is slightly lower (3) than for the case where more projects of type 1 are
waiting. This can be explained by the longer expected duration of project type 2.
As the flow times of such projects are expected to be longer the pressure to crash
increases.

Monotonicity w.r.t. usage of non-regular capacity is typical and can also be
observed for other parts of the state space where a project is already in process.
Furthermore, we could verify in an extensive computational study that this mono-
tonicity exists also for other problem instances.

The decision on the usage of non-regular capacity is a kind of service rate control.
Then, the observation is similar to the results of Crabill [30] who has shown that
for an M=M=1-system with a single project type the optimal policy has multiple
thresholds on the number of projects in the system. If a threshold is exceeded a
larger service rate is selected.

We conclude that the optimal policy has in many cases a simple structure
w.r.t. capacity planning decisions which may guide the search for good heuristic
policies.

8.3.2 Benefit of Crashing and Flexible MPP

In order to explore the benefit of the two sources of flexibility we carry out a ceteris
paribus analysis with a base case referred to as Base case 2 with two identical project
types p 2 P.�/ D P which are from the same general project type. The parameters
are shown in Table 8.2.

Again, we have set the expected project durations and the arrival rates such that
without crashing the utilization of the bottleneck resource has a value of 1 if all
orders were accepted. We will briefly address the impact of utilization later.

8.3 Computational Investigation 175

(1;1) (0.6;1.4) (0.2;1.8)
130

140

150

160

170

(d1;d2)

g

(200;200) (120;280) (40;360)
130

140

150

160

170

(y1;y2)

g

(10;10) (6;14) (2;18)
130

140

150

160

170

(w1;w2)

g

NoCrashing+RegularMPP Crashing+RegularMPP
NoCrashing+FlexibleMPP Crashing+FlexibleMPP

Fig. 8.4 Benefit of crashing

For the ceteris paribus analysis, we have considered scenarios where projects
have different degrees of heterogeneity. Heterogeneity refers to the extend the values
w.r.t. a parameter differ between the project types. For example, two project types
with expected durations .0:6; 1:4/ are more heterogeneous that two project types
having the same expected duration. For our analysis, we have set the expected
durations .d 1; d 2/ to .0:6; 1:4/ and .0:2; 1:8/, the payoffs .y1; y2/ to .120; 280/ and
.40; 360/ and the holding costs per time unit .w1; w2/ to .6; 10/ and .2; 18/.

8.3.2.1 Benefit of Crashing

In this section, we analyze the benefit of crashing using non-regular capacity.
Figure 8.7 shows firstly the average reward for regular MPP without crashing and
with crashing in the base case and different scenarios concerning the expected
durations .d1; d2/, the payoffs .y1; y2/ and the holding cost per time unit .w1; w2/.
Secondly, it shows the average reward for flexible MPP without crashing and with
crashing in the different scenarios (Fig. 8.4).

176 8 Integrated Dynamic Order Acceptance and Capacity Planning

(1;1) (0.6;1.4) (0.2;1.8)
0

0.2

0.4

0.6

0.8

1

(d1;d2)

g

λeff
1 if no crashing is performed λeff

2 if no crashing is performed
λeff

1 if crashing is performed λeff
2 if crashing is performed

Fig. 8.5 Effective arrival rates with and without crashing in case of flexible MPP

We observe that crashing is most beneficial for the base case as we obtain the
largest increase of the average reward. This holds for regular MPP as well as for
flexible MPP. The larger the difference between the expected durations, payoffs or
holding costs per time unit becomes the smaller becomes the increase of the average
reward due to crashing. The observation can be explained by the fact that for more
heterogenous projects the policy becomes more selective in the sense that projects of
the type with the higher expected duration, lower payoff and higher holding cost per
time unit are rejected more frequently. An indication delivers a consideration of the
effective arrival rate �eff

p being the arrival rate of project type p 2 P when rejections
of projects are taken into account. Figure 8.5 shows the effective arrival rates for
both project types at different levels of heterogeneity w.r.t. expected durations when
crashing is performed or not and flexible MPP is applied.

We observe that crashing leads to an increase of the effective arrival rates. Due
to shorter project durations, average holding costs decrease such that more projects
can be accepted. Furthermore, for more heterogenous projects (implying a shorter
the expected duration of project type 1), the effective arrival rate of project type 1

increases up to the maximum arrival rate of 0:5. Thus, crashing does not lead to
a further increase of the effective arrival rate of project type 1. At the same time
crashing leads to an increase of the effective arrival rate of project type 2. However,
the increase becomes less the higher the expected duration of project type 2 becomes
as crashing compensates the negative effect of a longer expected duration less well.

The observations made for the payoffs and the holding costs per time unit can be
explained by a similar argument.

8.3 Computational Investigation 177

(1;1) (0.6;1.4) (0.2;1.8)
130

140

150

160

170

(d1;d2)

g

(200;200) (120;280) (40;360)
130

140

150

160

170

(y1;y2)

g

(10;10) (6;14) (2;18)
130

140

150

160

170

(w1;w2)

g

Postponed MPP Upper bound std. MPP and flex. MPP
Flexible MPP Regular MPP

Fig. 8.6 Benefit of MPP without crashing

8.3.2.2 Benefit of MPP

In this section, we analyze the benefit of MPP in more detail. At first, we consider
the effect of MPP when no crashing is performed. Figure 8.6 shows the average
rewards for the different scenarios with postponed MPP, regular MPP and flexible
MPP. In addition, we compute an upper bound for the average reward obtained from
regular MPP and flexible MPP by setting kM

1 D kPM
1 D 5. As a consequence, the

difference between the upper bound and the average reward for postponed MPP can
be interpreted as the maximum additional average reward resulting from regular
MPP.

At first, we make the intuitive observation that regular MPP becomes more
beneficial for more heterogeneous projects as MPP helps to identify the project type
which should be rejected. Furthermore, we observe that the average reward can be
considerably increased and nearly attains the upper bound when flexible MPP is
performed instead of regular MPP. However, the benefit of flexible MPP decreases
for more heterogeneous projects which can be explained by the fact that a large part
of the benefit is due to savings of the additional fixed cost kM

� � kPM
� in case of

178 8 Integrated Dynamic Order Acceptance and Capacity Planning

(1;1) (0.6;1.4) (0.2;1.8)
130

140

150

160

170

(d1;d2)

g

(200;200) (120;280) (40;360)
130

140

150

160

170

(y1;y2)

g

(10;10) (6;14) (2;18)
130

140

150

160

170

(w1;w2)

g

PostponedMPP Upperboundreg.MPPandflex.MPP
FlexibleMPP RegularMPP

Fig. 8.7 Benefit of MPP with crashing

postponed MPP. The more heterogeneous projects become the less it is beneficial to
postpone MPP.

Next, we consider the benefit of MPP when crashing is allowed as shown in
Fig. 8.7.

We observe that, with crashing, the maximum additional average reward resulting
from regular MPP decreases such that flexible MPP has a smaller benefit over
postponed MPP. Furthermore, regular MPP is only beneficial over postponed MPP
only for very heterogeneous projects in terms of expected durations or payoffs. The
observation can be explained by the fact that crashing reduces project durations such
that negative impact of longer projects is reduced.

8.3.2.3 Combined Benefit of MPP and Crashing

In this section, we analyze when it is worthwhile to consider flexible MPP and
crashing simultaneously. Instead, the planning problem could be simplified by

8.3 Computational Investigation 179

(1;1) (0.6;1.4) (0.2;1.8)
130

140

150

160

170

(d1;d2)

g

(200;200) (120;280) (40;360)
130

140

150

160

170

(y1;y2)

g

(10;10) (6;14) (2;18)
130

140

150

160

170

(w1;w2)

g

Postponed MPP without crashing Flexible MPP without crashing
Postponed MPP withcrashing Flexible MPP with crashing

Fig. 8.8 Benefit of MPP and crashing for different expected durations

considering flexible MPP without crashing or crashing while MPP is postponed. The
simplest problem is obtained when MPP is postponed and no crashing is allowed.1

Figure 8.8 shows the average rewards for different levels of heterogeneity
w.r.t. expected durations for postponed MPP without crashing, flexible MPP without
crashing, postponed MPP with crashing and flexible MPP and crashing.

We observe that a policy that uses flexible MPP and crashing performs best.
Furthermore, for projects having the same expected durations its benefit over the
policy with postponed MPP without crashing can be fully explained by usage of
crashing. By contrast for projects having very heterogeneous expected durations its
performance can be fully explained by the usage of flexible MPP.

This suggests that for similar projects of the same general type a policy that
only takes into account crashing and postpones MPP is sufficient while for very

1Regular MPP is not considered in this analysis as it is dominated by flexible MPP and postponed
MPP as seen in the previous section.

180 8 Integrated Dynamic Order Acceptance and Capacity Planning

0.8 1.0 2.0
120

140

160

180

200

u

g

Postponed MPP without crashing Flexible MPP without crashing
Postponed MPP with crashing Flexible MPP with crashing

Fig. 8.9 Benefit of MPP and crashing for different levels of u

heterogeneous projects only flexible MPP without crashing should be taken into
account.

Finally, we briefly address the effect of u which has been ignored so far.
Figure 8.9 shows the effect for the base case when setting .d1; d2/ D .0:6; 1:4/

when setting u to 0:8, 1:0 and 2:0.
It becomes obvious that for low levels of u, there is only a small benefit of MPP

before OA and non-regular capacity for crashing. By contrast, for a high level of u,
indicating an overly demanded system, the benefit of MPP and non-regular capacity
become larger. In the face of higher demand the efficient usage of a scarce resource
becomes more important.

8.3.2.4 General Insights

In the previous sections, observations have been made only for the ceteris paribus
case where only one project parameter is varied at a time. Next, we draw some more
general conclusions from the observations made in a more extensive computational
study. As long as there is a dominance relation (p1 	d p2 or p2 	d p1) between
two project types p1; p2 2 P.�/ for some � 2 ˆ more heterogeneity w.r.t. project
type parameters makes flexible MPP more beneficial while less heterogeneity makes
crashing more beneficial.

Thus, in the intermediate regions where project type parameters are not extremely
different a policy combining flexible MPP and crashing is most beneficial.

Next, we briefly address the effect when project types become more heteroge-
neous w.r.t. one parameter while no dominance relation exists. For the analysis we
consider Base case 1 where we have obviously a dominance relation as d 1 < d 2.
Then, we firstly consider the scenario where have for the payoffs .y1; y2/ D
.120; 280/ such that there is no longer a dominance relation as y1 < y2 and
d 1 < d 2. Secondly, we consider the scenario where .y1; y2/ D .280; 120/ such that
the dominance relation is strengthened. In order to study the benefit of flexible MPP

8.3 Computational Investigation 181

Table 8.3 Performance for different combinations of .y1; y2/

.y1; y2/ .200; 200/ .120; 280/ .280; 120/

Postponed MPP without crashing 138.132 138.132 138.132
Flexible MPP without crashing 144.005 138.133 154.900
Flexible MPP with crashing 147.842 146.523 155.067

and crashing we consider optimal policies with postponed MPP without crashing,
flexible MPP without crashing and flexible MPP with crashing. Table 8.3 shows the
average rewards for the base case and the two scenarios.

We observe that for the scenario where there is no dominance relation anymore
flexible MPP has no benefit while crashing is most beneficial. This can be explained
by the fact that the advantage of the shorter expected duration of project type 1 is
neutralized in part by the smaller payoff y1. Thus, both project types become more
similar from an economic point of view.

Chapter 9
Conclusions and Future Work

In this chapter, we summarize, firstly, the results obtained from our research, and
secondly point out possible options for future research.

After formal statements of the problems in Chap. 2 and a review of the relevant
literature in Chap. 3, we have proposed in Chap. 5 a new procedure for the genera-
tion of problem instances with controlled parameters. The controlled parameters are
related to the system such as number of resource types and to project types such as
order strength or number of activity types.

The focus of Chap. 6 was on the performance of resource-based priority policies
(RBPs) for scheduling under a weighted tardiness objective where preemptions are
not allowed. The investigation was based on a simulation study where a number of
problem parameters are controlled. We have found that the performance of RBPs
strongly depends on the problem parameters such that no general recommendation,
concerning the policy to be used, can be given. Thus, we have identified different
scenarios where the ranking of the RBPs in terms of their performance has been
relatively stable.

Chapter 7 was dedicated to the computation of optimal policies and near optimal
policies for the scheduling problem with and without preemptions. To facilitate anal-
ysis, we have assumed a semi-open system where projects are rejected if the number
of projects in the system exceeds a certain number. Furthermore, we have considered
the weighted flow time instead of the weighted tardiness and fixed costs incurred
when projects are rejected. As a first step, we have formulated two new models
which represent both problems by continuous-time Markov decision processes
(CTMDPs). For both models, optimal policies can be obtained using standard
solution methodologies as outlined in Chap. 4. Furthermore, we have shown how
efficiency can be improved and have characterized complexity in terms of state
space cardinality. Then, a numerical example was given to point out important
features of optimal policies. However, as the cardinalities of the state space becomes
very large, especially when there are only few precedence relations and preemptions
are not allowed, optimal policies can be obtained only for small examples. Thus,
as a second step, we have proposed, based on the structural properties observed

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5_9,
© Springer International Publishing Switzerland 2015

183

184 9 Conclusions and Future Work

for optimal policies, a new policy class, namely the class of project state ordering
policies (POPs), which helps to effectively reduce state space cardinality without
much loss of performance. To remedy further the curse of dimensionality, we
consider, in a third step, approaches of approximate dynamic programming. The
first approach addresses large state spaces when preemptions are not allowed by
exploiting the fact that the state space becomes much smaller when preemptions
are allowed. The idea is to approximate the value function using the value function
of the optimal policy for the problem with preemptions. The second approach is to
approximate the value function using approximation architectures having a compact
representation. The major advantages of using approximation architectures are the
fact that the analysis carried out for semi-open systems can be extended to open
systems without a limit on the number of projects in the system and that larger
problem instances with many activity types and project types can be considered.
We have proposed a number of approximation architectures and have considered a
number of approaches for determining the free parameters. In a large computational
study with controlled problem parameters we investigated the benefit of optimal
policies over RBPs as considered in Chap. 6 and the performance of POPs and their
potential to reduce state space cardinalities. We have found that optimal policies
may have considerable benefits over RBPs. Furthermore, restricting the considera-
tion to POPs does not mean a loss of performance in many cases while state space
cardinality can be dramatically reduced. Thus, optimal policies can be obtained for a
larger range of problem instances. For the non-preemptive problem, we additionally
have investigated the performance of the value function approximation based on the
value function for the preemptive problem. We have found, that, for many cases,
near optimal policies can be obtained which clearly outperform RBPs. As we have
numerous approximation architectures and algorithmic options for determining the
free parameters, we carried out a computational study in order to narrow down
the number of alternatives in terms of approximation architectures and algorithms
to the most promising ones. Afterwards, we used a number of case studies to
demonstrate the performance of policies obtained from approximation architectures.
We have found that such policies have the potential to clearly outperform RBPs.

In Chap. 8, we have considered the joint optimization of order acceptance
(OA) decisions and capacity planning decisions comprising scheduling decisions
and decisions concerning the usage of non-regular capacity. An additional aspect,
which has been neglected so far in the literature, is the option to postpone macro
process planning where important information about an order is determined to
a time after OA. As a starting point, we have presented a new tactical model
based on a CTMDP for which decisions can be determined efficiently. Based
on the model, we investigated the structure of optimal policies. We have found
that optimal policies have in many cases a simple structure which may guide the
search for simple heuristic policies. Furthermore, we considered the benefit of
the option to postpone MPP or the usage of non-regular capacity in the model.
We have identified conditions where one or both aspects can be neglected such
that model and the corresponding planning problem can be simplified. Future work
may refer to different issues. Firstly, the effect of different probability distributions

9 Conclusions and Future Work 185

for interarrival times and activity durations on the performance of priority policies
should be investigated. First tests have revealed that, essentially, the results remain
valid also for other distributions. Secondly, optimal and near optimal policies that
have been obtained under the assumption of the exponential distribution should be
tested with other distributions as well. Again, preliminary experiments have shown
that the policies may perform well also for other distributions. Thirdly, the models
could be generalized in order to take into account further properties of R&D-projects
such as iterations in case of failures. Finally, the investigation of order acceptance
and capacity planning can extended to multiple bottleneck resources.

A
Abbreviations

ADP Approximate dynamic programming.
BE Bellman error.
BD Bottleneck dynamics.
BD-MC Bottleneck dynamics with myopic activity costing.
BD-GC-U Bottleneck dynamics with global activity costing and uniform

resource pricing.
BD-GC-U Bottleneck dynamics with global activity costing and dynamic

resource pricing.
CR Critical ratio.
CRN Common random numbers.
CV Coefficient of variation.
CTMC Continuous-time Markov chains.
CTMDP Continuous-time Markov decision process.
FCFS First-come first-served.
GC Global activity costing.
LS Least square.
MAXPEN Maximum penalty.
MC Myopic activity costing.
MDP Markov decision process.
MPP Macro process planning.
OA Order acceptance
OS Order strength.
PD Product development.
PI Policy iteration.
PO Project state ordering.
POP Project state ordering policy.
RAN Random.
RNG Random number generator.
RCCP Rough cut capacity planning.
RCPSP Resource-constrained project scheduling problem.

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5,
© Springer International Publishing Switzerland 2015

187

188 A Abbreviations

RBP Resource-based priority policy.
RBPOP Resource-based project state ordering policy.
SASP-DD Due-date modified shortest activity from shorted project.
VI Value iteration.
W(CRC SPT) Weighted critical ratio and shortest processing time.
WEDD Weighted earliest due date.
WMINSLK Weighted minimum slack.
WSPT Weighted shortest processing time.

B
Symbols

B.1 General

B.1.1 System

�f�g Indicator function being 1 if the condition � is met. Otherwise it is 0.
Kmax Maximum number of projects which are allowed to be in the system.
� Total arrival rate.
t Current system time.

B.1.2 Markov Decision Processes

A.s/ Set of alternative decisions in system state s.
a Decision.
ˇ.s; a/ Transition rate resulting from decision a in system state s.
C Closed set (class) of states.
c Uniformization constant.
c.s; a/ Cost rate per time unit resulting from decision a in system state s.
Qc.s; a/ Expected transition cost resulting from decision a in system state s in

the uniformized CTMDP.
e Stochastic event.
g.�/ Long term average cost incurred per time unit under policy � .
go.�/ Long term average cost incurred per time unit under policy � for an

open system.
Qg.�/ Long term average cost incurred per transition under policy � in the

uniformized CTMDP.
g� Long term average cost incurred per time unit under an optimal

policy ��.

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5,
© Springer International Publishing Switzerland 2015

189

190 B Symbols

Qg� Long term average cost incurred per transition under an optimal policy
�� in the uniformized CTMDP.

H.s/ Hash function.
h.s/ Relative value function depending on system state s.
k.s; a; s0/ Additional fixed cost incurred on a transition from system state s to

system state s0 after making decision a.
kA.a; p/ Fixed cost incurred on arrival of a project of type p if decision a is

selected.
! Sample path.
� Policy.
�.s/ Decision from policy � in system state s.
… Set of all stationary policies.
Succ.s/ Position of the next state having the same hash key H.s/.
s System state.
�.s; a/ Transition time after system state s if decision a is selected.
V.s/ Estimate for relative value function for system state s.

B.1.3 Projects and Project Types

Ap Set of precedence relations between the activity types of project type p.
D

max
p Mean maximum flow time of project type p.

Dmax
j Maximum flow time of project j .

dij Duration of activity i of project j .
d ip Expected duration of activity type .i; p/.
d p Expected total workload of project type p.
ıj Time between the arrivals of project j � 1 and j .
F j Flow time of project j .
Gp Graph representing the network of project type p with nodes represent-

ing activity types and arcs representing precedence relations.
i Index for activities and activity types.
j Index for projects.
.i; j / Activity i of project j .
.i; p/ Activity type i of project type p.
J .t/ Set of projects in the system at time t .
�p Arrival rate of project type p.
�ip Service rate of activity type .i; p/.
OSp Order strength of the network of project type p.
P Set of project types.
p Index for project types.
pj Type of project j .
rip Resource demanded by activity type .i; p/.
ta

j Arrival time of project j at the system.

B.2 Generation of Problem Instances 191

tx
j Completion time of project j at the system.

tnext Next decision time.
Vp Set of activities types of project type p.
VPred

p .i/ Set of immediate predecessors of activity type .i; p/.
VSucc

p .i/ Set of immediate successors of activity type .i; p/.
Vpr Set of activities types of project type p to be processed on resource type

r .
W.j; t/ Set of waiting activities of project j at time t .
wp Weight/cost per time unit of project type p.
yp Rejection cost/payoff of project type p.

B.1.4 Resources and Resource Types

cr Number of resources of resource type r .
d r Expected duration of any activity arriving at resource type r .
CV

d r
Coefficient of variation related to the expected durations of the activities
processed on resource type r .

E.r; t/ Set of activities in process on resource type r at time t .
�r Traffic intensity for resource type r .
r Index for resource types.
R Set of resource types.
W.r; t/ Set of activities waiting for resource type r at time t .
ur Utilization of a resource of type r .

B.2 Generation of Problem Instances

B.2.1 Problem Parameters

˛p Percent of tardy projects of project type p.
ap Fraction of the total arrival rate for project type p.
ˇ Parameter for the variation of the maximum flow times.
CVd;min Minimum value for the coefficient of variation related to expected

durations.
CVd;max Maximum value for the coefficient of variation related to expected

durations.
ıij Binary variable indicating that there exists a path in the AoN–network

from node i to j .
�wi Tolerance parameter for workload proportions.
�max Maximum total arrival rate.

r Utilization multiplier of resource type r .

192 B Symbols

N PI Number of problem instances to be generated with given parameters.
nnw

p Number of the network sample of project type p.
OSp Order strength of the network for project type p.
jRj Number of resource types.
sd Seed for the RNG used in the generation process.
u Utilization per resource.
V Set of nodes.
jVpj Number of nodes of the network for project type p.
wip Workload index for project type p.

B.2.2 Generation Procedure

ar Expected number of activities to be processed by resource type r due to a
project of any type having entered the system.

Qdip Temporary value for d ip.
�ip Traffic intensity due to activity type .i; p/.
Q�ip Temporary value for �ip.
�ip Traffic intensity due to activity type .i; p/.
�r Traffic intensity for resource type r .
Q�r Temporary value for �r .

B.3 Scheduling

B.3.1 General

sij Start time of activity .i; j /.
BS.r; t/ Set of activities scheduled on resource type r at time t .
BB.r; t/ Set of activities preempted on resource type r at time t .

B.3.2 Scheduling Using Priority Policies

D
CP
p Expected length of the critical path of project type p.

d r .t/ Average expected duration of the activities waiting for resource type r at
time t .

� Lookahead parameter.
l ij Expected latest start time of activity .i; j /.

l
CP
ij Expected latest start time of activity .i; j / where the due date is deter-

mined based on the expected critical path length.

B.3 Scheduling 193

�ij.t/ Marginal opportunity cost of activity .i; j / at time t .
�r.t/ Price for resource type r at time t .
�U

r .t/ Price for resource type r at time t estimated using uniform resource
pricing.

�D
r .t/ Price for resource type r at time t estimated using dynamic resource

pricing.
R

n
.�/ Mean rank of policy � .

ta
ij Arrival time of activity .i; j / at resource type ripj

.
U ij.t/ Urgency factor of activity .i; j / at time t .
Z .�/ Average weighted tardiness under policy � .
Z n.�/ Normalized average weighted tardiness under policy � .
Z

n
.�/ Mean normalized average weighted tardiness under policy � .

B.3.3 Markov Decision Process for the Non-preemptive
Problem

A.r; s/ Set of all feasible activity sets that can be scheduled on resource type
r in system state s.

BS.k; s; a/ Set of all activities from project k scheduled by decision a in system
state s.

E.�/ Set of activities in process of a project in state � .
f .r; s/ Number of idle resources of type r in system state s.
K.s/ Number of projects in the system in system state s.
kA.s; p/ Fixed cost incurred on arrival of a project of type p when the last

pre-decision state is s.
n.�; s/ Number of projects of project state � in system state s.
nTr.�; s/ Truncated number projects of project state � in system state s.
On.�; s; a/ Number of projects in project state � while the system is in the post-

decision state resulting from decision a in system state s.
��;y Optimal policy computed for the case with rejection cost y for all

project types.
p.�/ Type of a project in project state � .
� Project state.
�.j; t/ State of project j at time t .
�.k; s/ State of project k in system state s.
� I

p Initial project state of a project of type p immediately after project
arrival.

�F
p Absorbing project state of a project of type p entered on completion

of the last activity.
�C.i; �/ Project state entered from � on completion of activity i 2 E.�/.
�S.B; �/ Project state entered from � subsequent to scheduling all activities

given by index set B.

194 B Symbols

†.p; s/ Set of states of the projects of type p that are in the system at state
s.

† Set of all project states.
S.�/ Set of system states that is accessible from s0 under policy � .
s System state.
s0 System state with no projects in the system.
sTr.s/ System state based on truncated numbers of project states from s.
sC.s; a; i; �/ System state entered on completion of activity i of a project in state

� subsequent to decision a in system state s.
W.�/ Set of waiting activities of a project in state � .
WR.i; �/ Set of activities of a project in state � that become ready for

execution on completion of activity i .

B.3.4 Markov Decision Process for the Preemptive Problem

C.r/ Set of tuples .i; �/ with rip.�/ D r and � 2 †.s/.
n.i; �/ Number of activities i of projects in state � to be scheduled.
n.a; i; �/ Number of activities i of projects in state � to be scheduled by

decision a.
qA.s; a; p/ Probability of a transition in system state s on arrival of a project of

type p if decision a is selected.
qC.s; a; i; �/ Probability of a transition in system state s on completion of activity

i of a project in state � if decision a is selected.
Q.s; i; �/ Value indicating the change of the long term expected total costs by

scheduling activity i of a project in state � .
�CPW.i; �/ Project state entered from � on completion of activity i 2W.�/.
�NIS State of the projects that are not in the system.
†P Set of all project states that may occur in pre-decision states of the

preemptive problem.
SP Set of system states that may occur at decision times.
sAP.s; p/ System state entered from s on an arrival of a project of type p.
sCP.s; i; �/ System state entered from s on completion of activity i of a project

in state � .
WR.i; �/ Set of activities of a project in state � that become ready for

execution on completion of activity i .

B.3.5 Optimal Policy for the Non-preemptive Problem
with a Single Resource

B.!; t/ Cumulative distribution function for the duration of jobs of class !.
.!; �l/ Expected remaining processing time until a job of class ! leaves the set

�l of job classes.

B.3 Scheduling 195

.�; †l/ Expected remaining processing time until a project in state � leaves the
set †l of project states.

�! Arrival rate of job class !.
n.!; t/ Length of the queue for jobs of class !.
� Set of all job classes.
�l Subset of � obtained from iteration l .
��l Subset of �l where the elements in ��l have the minimum fraction

w!

.!;�l/
from those in �l .

! Index for job classes.
p.!; !0/ Probability that on completion a job of class ! becomes a job of class

!0.
p.�; � 0/ Probability that on completion of an activity a project in state �

becomes a project in state � 0.
†l Subset of † obtained from iteration l .
†�l Subset of †l where the elements in †�l have the minimum fraction

wp.�/

.�;†l /
from those in †l .

w! Holding cost per time unit a job class ! is in the system.

B.3.6 Preemptive Project State Ordering Policies

n.i; p; s/ Number of activities of type .i; p/ that are waiting in system state
s 2 SP.

n.i; p; sQ/ Number of activities of type .i; p/ that are waiting in system state
sQ 2 SQ.

…PO Set of all stationary preemptive POPs.
�.W ; p/ Project state obtained by the combination of the set of waiting

activities W and project type p.
�o.l; p; s/ Project state having the l-th rank in the order defined on the set

†.p; s/.
SPPO Set of system states (state space) if only POPs are considered for the

preemptive problem.
SQ Set of all system states (state space) of a queueing network.
sQ System state of a queueing network.
s

Q
l System state of a queueing network after the l-th iteration of m�1.

�min
lp Least advanced project state from system state s

Q
l obtained in the l th

iteration of m�1.
W.U ; p/ Set of activities in U of which no predecessors are in U .
W.p; sQ/ Index superset of waiting activities related to projects of type p in

system state sQ 2 SQ.
W.p; s/ Index superset of waiting activities related to projects of type p in

system state s 2 SPPO.
U.�/ Set of unfinished activities of a project in state � .

196 B Symbols

U.W ; p/ Set of all direct and indirect successors of the activities in the set W .
U.p; sQ/ Index superset of unfinished activities related to projects of type p in

system state sQ 2 SQ.
U.p; s/ Index superset of unfinished activities related to projects of type p in

system state s 2 SPPO.

B.3.7 Non-preemptive Project State Ordering Policies

C.�1; �2/ Set of activities waiting or in process that two projects in the states �1

and �2 have in common.
EC

1 .�1; �2/ Activities in E.�1/ that are also in C.�1; �2/.
EC

2 .�1; �2/ Activities in E.�2/ that are also in C.�1; �2/.
…PO Set of all stationary non-preemptive POPs.
�PO Non-preemptive POP.
SPO Set of system states (state space) if only POPs are considered for the

non-preemptive problem.

B.3.8 Approximate Dynamic Programming

A. QS/ Regression matrix for a given set QS of representative states.
D Diagonal scaling matrix.
f .v/ Weighted squared Bellman error based on v.
.s/ State relevance weight for system state s.
� Vector of state relevance weights.
gmin Minimum average cost obtained so far.
go.�/ Average cost per unit of time for an open system under policy � .
Qh.s/ Approximate value function for system state s.
QhLin.s/ Approximate value function for system state s based on a linear

approximation architecture.
QhLinP.s/ Approximate value function for system state s of the preemptive

problem based on a linear approximation architecture.
QhP.s/ Approximate value function for system state s of the non-preemptive

problem based on h�P.s/.
h�P.s/ Value function for system state s resulting from the optimal policy for

the preemptive problem.
KL Lower bound for K.s/.
KU Upper bound for K.s/.
N
QS Number of sets containing representative states.

N ADPPIBE Number of policy improvements in ADP-PI-BE.
N ADPPILS Number of policy improvements in ADP-PI-LS.

B.4 Order Acceptance and Capacity Planning 197

�.s/ Basis function depending on system state s.
QS Set of representative states.
j QSjmax Maximum number of representative states.
V Set of all activity types.
v Weight for basis function �.s/ in a linear approximation architecture.
v Vector of weights for the basis functions.
v.�/ Vector of weights for the basis functions that correspond to a policy � .
v� Best vector of weights in terms of weighted mean squared error or

weighted mean squared bellman error for the basis functions.
� Step size for the gradient descent approach.

B.4 Order Acceptance and Capacity Planning

B Set of projects to be scheduled.
B.a/ Set of projects to be scheduled by decision a.
ıC Share of non-regular capacity used.
ıM Vector of binary variables ıM

p .

ıMPP Vector of binary variables ıMPP
p .

ıM
p Binary variable indicating that the next of project is accepted if

it turns out to be of type p.
ıMPP

p Binary variable indicating that the next of project is accepted
after MPP if it turns out to be of type p.

ıE Vector of binary variables ıE
p.

ıE
p Binary variable indicating that a project of type p is scheduled.

F .j; s/ Remaining flow time of project j when the system is in state s.
kA.ıM/ Cost due to acceptance or rejection of orders.
kM

� Fixed cost when MPP is performed before OA for a project of
general type �.

kPM
� Fixed cost when MPP is performed after OA for a project of

general type �.
�� Arrival rate of general project type �.
�p Service rate for project type p.
nE.s/ Vector of variables nE

p.s/.
nE

p.s/ Number of projects of type p in process in system state s.
nW.s/ Vector of variables nW

p .
nW

p (s) Number of waiting projects of type p in system state s.
nNIS.s/ Number of projects outside the system in system state s.
� Index for general project types.
�p General type of project type p.
ˆ Set of general project types.
P� Set of project types being of general type �.
Q.s; a/ Value of decision a.

198 B Symbols

QQ.s; a/ Value of decision a in the uniformized CTMDP.
QQM.ıE; ıM; �; s/ Value of the OA decision given by ıM for general project type

� is MPP is performed before OA.
QQN.ıE; ıM; �; s/ Value of the OA decision given by ıM for general project type

� is MPP is postponed.
QR.s; a/ Value of decision a if only regular capacity is used.
QQR.s; a/ Value of decision a in the uniformized CTMDP if only regular

capacity is used.
QNR.s; a/ Change of the value of decision a if non-regular capacity is

used.
QQNR.s; a/ Change of the value of decision a in the uniformized CTMDP

if non-regular capacity is used.
sA.s; ıE; p/ State entered on arrival of an accepted order of type p when

projects are scheduled according to ıE.
sA.s;B; p/ State entered on arrival of an accepted order of type p when

projects are scheduled according to B.
sR.s; ıE; p/ State entered on arrival of a rejected order of type p when

projects are scheduled according to ıE.
sR.s;B; p/ State entered on arrival of a rejected order of type p when

projects are scheduled according to B.
V �.s/ Future expected total reward (Value function for state s) under

an optimal policy.
wC Cost per unit of time in case of full usage of non-regular

capacity.
zp Maximum increase of the service rate of project type p in case

of full usage of non-regular capacity.
y.s; a; s0/ Fixed reward incurred on a transition from state s to state s0.

Bibliography

1. Adelman, D. (2004). A price-directed approach to stochastic inventory/routing. Operations
Research, 52(4), 499–514.

2. Adler, P. S., Mandelbaum, A., Nguyen, V., & Schwerer, E. (1995). From project to process
management: An empirically-based framework for analyzing product development time.
Management Science, 41(3), 458–484.

3. Anavi-Isakow, S., & Golany, B. (2003). Managing multi-project environments through
constant work-in-process. International Journal of Project Management, 21, 9–18.

4. Anderson, E. J., & Nyrenda, J. C. (1990). Two new rules to minimize tardiness in a job shop.
International Journal of Production Research, 28(12), 2277–2292.

5. Ashtiani, B., Leus, R., & Aryanezhad, M.-B. (2011). New competitive results for the
stochastic resource-constrained project-scheduling problem: Exploring the benefits of pre-
processing. Journal of Scheduling, 14, 157–171.

6. Azaron, A., Katagiri, H., Kato, K., & Sakawa, M. (2006). Longest path analysis in networks
of queues: Dynamic scheduling problems. European Journal of Operational Research, 174,
132–149.

7. Azaron, A., & Modarres, M. (2007). Project completion time in dynamic PERT networks with
generating projects. Scientia Iranica, 14(1), 56–63.

8. Azaron, A., & Tavakkoli-Moghaddam, R. (2006). A multi-objective resource allocation in
dynamic PERT networks. Applied Mathematics and Computation, 181, 163–174.

9. Baccelli, F., Liu, Z., & Towsley, D. (1993). Extremal scheduling of parallel processing with
and without real-time constraints. Journal of the Association for Computing Machinery, 40(5),
1209–1237.

10. Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP? Journal of
Scheduling, 10, 153–166.

11. Ballestín, F., & Leus, R. (2009). Resource-constrained project scheduling for timely project
completion with stochastic activity durations. Production and Operations Management,
18(4), 459–474.

12. Bard, J., Balachandra, R., & Kaufman, P. (1988). An interactive approach to R&D project
selection and termination. IEEE Transactions on Engineering Management, 35, 139–146.

13. Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.
14. Berman, E. B. (1964). Resource allocation in a PERT network under continuous activity time-

cost functions. Management Science, 10(4), 734–745.
15. Bertsekas, D. (2000). Dynamic programming and optimal control (Vol. I). Belmont: Athena

Scientific.
16. Bertsekas, D. (2007). Dynamic programming and optimal control (Vol. II). Belmont: Athena

Scientific.

P. Melchiors, Dynamic and Stochastic Multi-Project Planning, Lecture Notes
in Economics and Mathematical Systems 673, DOI 10.1007/978-3-319-04540-5,
© Springer International Publishing Switzerland 2015

199

200 Bibliography

17. Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Belmont: Athena
Scientific.

18. Bhulai, S., & Koole, G. (2003). On the structure of value functions for threshold policies in
queueing models. Journal of Applied Probability, 40, 613–622.

19. Blackburn, J. D. (1991). New product development: The new time wars. In Time-based
competition – The next battleground in American manufacturing. Homewood: Business One
Irwin.

20. Boctor, F. F. (1990). Some efficient multi-heuristic procedures for resource-constrained
project scheduling. European Journal of Operational Research, 49, 3–13.

21. Brémaud, P. (1999). Markov chains – Gibbs fields, Monte Carlo simulation, and queues.
New York: Springer.

22. Browning, T. R., & Yassine, A. A. (2010). A random generator of resource constrained multi-
project network problems. Journal of Scheduling, 13, 143–161.

23. Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained
project scheduling: Notation, classification, models, and methods. European Journal of
Operational Research, 112, 3–41.

24. Buss, A. H., & Rosenblatt, M. J. (1997). Activity delay in stochastic project networks.
Operations Research, 45(1), 126–139.

25. Buzacott, J. A., & Shantikumar, J. G. (1993). Stochastic models and manufacturing systems.
Englewood Cliffs: Prentice Hall.

26. Choi, J., Realff, M. J., & Lee, J. H. (2004). Dynamic programming in a heuristically confined
state space: A stochastic resource constrained project scheduling application. Computers and
Chemical Engineering, 28, 1039–1058.

27. Choi, J., Realff, M. J., & Lee, J. H. (2007). A Q-learning-based method applied to stochastic
resource constrained project scheduling with new project arrivals. International Journal of
Robust and Nonlinear Control, 17, 1214–1231.

28. Cohen, I., Nguyen, V., & Shtub, A. (2004). Multi-project scheduling and control: A process-
based comparative study of the critical chain methodology and some alternatives. Project
Management Journal, 35(2), 39–50.

29. Cox, D. R., & Smith, W. L. (1961). Queues. London: Methuen.
30. Crabill, T. B. (1972). Optimal control of a service facility with variable exponential service

times and constant arrival rate. Management Science, 18(9), 560–566.
31. Creemers, S., Leus, R., & Lambrecht, M. (2010). Scheduling Markovian PERT networks to

maximize the net present value. Operations Research Letters, 38, 51–56.
32. Davis, E. W., & Patterson, J. H. (1975). A comparison of heuristic and optimum solutions in

resource-constrained project scheduling. Management Science, 21, 944–955.
33. De Boer, R. (1998). Resource-constrained multi-project management. PhD thesis, Universiteit

Twente.
34. De Farias, D. P., & Van Roy, B. (2003). Approximate linear programming for average-cost

dynamic programming. Advances in Neural Information Processing Systems, 15, 1619–1626.
35. De Farias, D. P., & Van Roy, B. (2003). The linear programming approach to approximate

dynamic programming. Operations Research, 51(6), 850–865.
36. De Farias, D. P., & Van Roy, B. (2004). On constraint sampling in the linear programming

approach to approximate dynamic programming. Mathematics of Operations Research, 29(3),
462–478.

37. Defregger, F. (2009). Revenue management for manufacturing companies. PhD thesis,
Katholische Universität Eichstätt-Ingolstadt.

38. Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). RanGen: A random network
generator for activity-on-the-node networks. Journal of Scheduling, 6, 17–38.

39. Demeulemeester, E. L., & Herroelen, W. S. (2002). A research handbook (International series
in operations research & management science). Boston: Kluwer Academic.

40. De Serres, I. (1991). Simultaneous optimization of flow control and scheduling in a single
server queue with two job classes. Operations Research Letters, 10, 103–112.

Bibliography 201

41. De Serres, I. (1991). Simultaneous optimization of flow control and scheduling in queues.
PhD thesis, McGill University, Montreal.

42. De Serres, Y. (1991). Simultaneous optimization of flow control and scheduling in a single
server queue with two job classes: Numerical results and approximation. Computers and
Operations Research, 18, 361–378.

43. Dumond, J., & Mabert, V. A. (1988). Evaluating project scheduling and due date assignment
procedures: An experimental analysis. Management Science, 34(1), 101–118.

44. Easton, F. F., & Rossin, D. F. (1997). Overtime schedules for full-time service workers.
Omega, 25, 285–299.

45. Ebben, M. J. R., Hans, E. W., & Olde Weghuis, F. M. (2005). Workload based order
acceptance in job shop environments. OR Spectrum, 27, 107–122.

46. Elmaghraby, S. E. (2000). On criticality and sensitivity in activity networks. European
Journal of Operational Research, 127, 220–238.

47. Feinberg, E. A., & Yang, F. (2010). Optimality of trunk reservation for an M/M/k/N queue
with several customer types and holding costs. Technical report, State University of New York
at Stony Brook.

48. Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. J. A. (1996). The role of the nonan-
ticipativity constraint in commercial software for stochastic project scheduling. Computers
Industrial Engineering, 31(1/2), 233–236.

49. Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. K. (1998). Understanding simulation
solutions to resource-constrained project scheduling problems with stochastic task durations.
Engineering Management Journal, 10(4), 5–13.

50. Fréville, A. (2004). The multidimensional 0–1 knapsack problem: An overview. European
Journal of Operational Research, 155, 1–21.

51. Gittins, J. C., & Jones, D. M. (1972). A dynamic allocation index for the sequential design
of experiments. In J. Bolyaim (Ed.), Progress in statistics (European meeting of statisticians,
Budapest) (Vol. 9). Budapest: Colloquium Mathematical Society.

52. Goldratt, E. M. (1997). Critical chain. Great Barrington: The North River Press.
53. Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. The Bell System

Technical Journal, 45(9), 1563–1581.
54. Gross, D., & Harris, C. M. (1998). Fundamentals of queueing theory. New York: Wiley.
55. Hans, E. W. (2001). Resource loading by branch-and-price techniques. PhD thesis, University

of Twente.
56. Hans, E. W., Herroelen, W., Leus, R., & Wullink, G. (2007). A hierarchical approach to multi-

project scheduling under uncertainty. OMEGA, 35(5), 563–577.
57. Herbots, J., Herroelen, W., & Leus, R. (2007). Dynamic order acceptance and capacity

planning on a single bottleneck resource. Naval Research Logistics, 54, 874–889.
58. Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: A review and clas-

sification of procedures. International Journal of Operations and Production Management,
42(8), 1599–1620.

59. Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research, 165, 289–306.

60. Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-constrained project
scheduling: A survey of recent developments. Computers and Operations Research, 25(4),
279–302.

61. Hopp, W. J., & Spearman, M. L. (2000). Factory physics (2nd ed.). Boston: Irwin McGraw-
Hill.

62. Howard, R. (1960). Dynamic programming and Markov processes. Cambridge: MIT.
63. Ishii, N., Takano, Y., & Muraki, M. (2011). A bidding price decision process in consideration

of cost estimation accuracy and deficit order probability for engineer-to-order manufacturing.
Technical report, Tokyo Institute of Technology.

64. Ivanescu, C. V., Fransoo, J. C., & Bertrand, J. W. M. (2002). Makespan estimation and order
acceptance in batch process industries when processing times are uncertain. OR Spectrum,
24, 467–495.

202 Bibliography

65. Ivanescu, V. C., Fransoo, J. C., & Betrand, J. W. M. (2006). A hybrid policy for order
acceptance in batch process industries. OR Spectrum, 28, 199–222.

66. Kavadias, S., & Loch, C. H. (2003). Optimal project sequencing with recourse at a scarce
resource. Production and Operations Management, 12(4), 433–442.

67. Kelley, J. E., Jr. (1963). The critical path method: Resource planning and scheduling. In
Industrial scheduling. Englewood Cliffs: Prentice Hall.

68. Kelley, J. E., & Walker, M. R. (1959). Critical-path planning and scheduling. In 1959
Proceedings of the eastern joint computer conference, Boston (pp. 160–173).

69. Kemppainen, K. (2005). Priority scheduling revisited – Dominant rules, open protocols and
integrated order management. PhD thesis, Helsinki School of Economics.

70. Kleywegt, A. J., & Papastavrou, J. D. (1998). The dynamic and stochastic knapsack problem.
Operations Research, 1, 17–35.

71. Kleywegt, A. J., & Papastavrou, J. D. (2001). The dynamic and stochastic knapsack problem
with random sized items. Operations Research, 49(1), 26–41.

72. Klimov, G. P. (1974). Time-sharing service systems I. Theory of Probability and its
Applications, 19(3), 532–551.

73. Knudsen, N. C. (1972). Individual and social optimization in a mutliserver queue with a
general cost-benefit. Econometrica, 40(3), 515–528.

74. Kolisch, R. (1996). Efficient priority rules for the resource-constrained project scheduling
problem. Journal of Operations Management, 14, 179–102.

75. Kolisch, R., & Sprecher, A. (1996). PSPLIB – A project scheduling problem library.
European Journal of Operational Research, 1, 205–216.

76. Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of a general
class of resource-constrained project scheduling problems. Management Science, 41(10),
1693–1703.

77. Koole, G., & Pot, A. (2005). Approximate dynamic programming in multi-skill call centers.
In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005
winter simulation conference, Orlando.

78. Koole, G., & Pot, A. (2006). Workload minimization in re-entrant lines. European Journal of
Operational Research, 174, 216–233.

79. Kulkarni, V. G., & Adlakha, V. G. (1986). Markov and Markov-regenerative PERT networks.
Operations Research, 34, 769–781.

80. Kumar, P. R., & Seidman, T. I. (1990). Dynamic instabilities and stabilization methods in
distributed real-time scheduling of manufacturing systems. IEEE Transactions on Automatic
Control, 35(3), 289–298.

81. Kurtulus, I. S., & Davis, E. W. (1982). Multi-project scheduling: Categorization of heuristic
rule performance. Management Science, 28(2), 161–172.

82. Kurtulus, I. S., & Narula, S. C. (1985). Multi-project scheduling: Analysis of project
performance. IIE Transactions, 17(1), 58–66.

83. Kutanoglu, E., & Sabuncuoglu, I. (1999). An analysis of heuristics in a dynamic job shop with
weighted tardiness objectives. International Journal of Production Research, 37(1), 165–187.

84. Law, A. (2007). Simulation modeling and analysis (4th ed.). Boston: McGraw-Hill.
85. Lawrence, S. R., & Morton, T. E. (1993). Resource-constrained multi-project scheduling

with tardy costs: Comparing myopic, bottleneck, and resource pricing heuristics. European
Journal of Operational Research, 64, 168–187.

86. Lee, H., & Suh, H.-W. (2008). Estimating the duration of stochastic workflow for product
development process. International Journal of Production Economics, 111, 105–117.

87. Levy, N., & Globerson, S. (1997). Improving multiproject management by using a queueing
theory approach. Project Management Journal, 28(4), 40–46.

88. Lippman, S. A. (1975). Applying a new device in the optimization of exponential queueing
systems. Operations Research, 23, 687–710.

89. Loch, C. H., & Kavadias, S. (2002). Dynamic portfolio selection of NPD programs using
marginal returns. Management Science, 48(10), 1227–1241.

Bibliography 203

90. Loch, C. H., Pich, M. T., Urbschat, M., & Terwiesch, C. (2001). Selecting R&D projects at
BMW: A case study of adopting mathematical programming methods. IEEE Transactions
Engineering Management, 48(1), 70–80.

91. Martello, S., & Toth, P. (1990). Knapsack problems. New York: Wiley.
92. McManus, M. I. (1977). Optimum use of overtime in post offices. Computers and Operations

Research, 4, 271–278.
93. Meyn, S. (2008). Control techniques for complex networks. Cambridge: Cambridge Univer-

sity Press.
94. Moallemi, C. C., Kumar, S., & Van Roy, B. (2008). Approximate and data-driven dynamic

programming for queueing networks. Technical report, Graduate School of Business,
Columbia University.

95. Möhring, R. H., Radermacher, F. J., & Weiss, G. (1984). Stochastic scheduling problems I.
Zeitschrift für Operations Research, 28, 193–260.

96. Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems (Wiley series in
engineering & technology management). New York: Wiley.

97. Naor, P. (1969). The regulation of queue size by levying tolls. Econometrica, 37(1), 15–24.
98. Nguyen, V. (1993). Processing networks with parallel and sequential tasks: Heavy traffic

analysis and brownian limits. The Annals of Applied Probability, 3(1), 28–55.
99. Nguyen, V. (1994). The trouble with diversity: Fork-join networks with heterogeneous

customer populations. The Annals of Applied Probability, 4(1), 1–25.
100. Nino-Mora, J. (2005). Stochastic scheduling. In P. M. Pardalos (Ed.), Encyclopedia of

optimization (Vol. V, pp. 367–372). Dordrecht: Kluwer Academic.
101. Patterson, J. H. (1984). A comparison of exact approaches for solving the multiple constrained

resource project scheduling problem. Management, 30(7), 854–867.
102. Perry, T. C., & Hartman, J. C. (2004). Allocating manufacturing capacity by solving a

dynamic, stochastic multiknapsack problem. Technical report ISE 04T-009, Lehigh Univer-
sity, Pennsylvania.

103. Pinedo, M. L. (2008). Scheduling-theory, algorithms, and systems (3rd ed.). New York:
Springer.

104. Pot, A. (2006). Planning and routing algorithms for multi-skill contact centers. PhD thesis,
Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam.

105. Powell, W. B. (2007). Approximate dynamic programming. Hoboken: Wiley.
106. Powell, W. B. (2011). Approximate dynamic programming (2nd ed.). Hoboken: Wiley.
107. Pritsker, A. A. B., Watters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with limited

resources: A zero-one programming approach. Management Science, 16, 93–107.
108. Puterman, M. L. (1994). Markov decision processes – Discrete stochastic dynamic program-

ming. New York: Wiley.
109. Ramasesh, R. (1990). Dynamic job shop scheduling: A survey of simulation research.

OMEGA International Journal of Operations and Production Management, 18(1), 43–57.
110. Roemer, T. A., & Ahmadi, R. (2004). Concurrent crashing and overlapping in product

development. Operations Research, 52(4), 606–622.
111. Ross, K. W., & Tsang, D. H. K. (1989). Optimal circuit access policies in an ISDN

environment: A Markov decision approach. IEEE Transactions on Communications, 37(9),
934–939.

112. Roubos, D. (2010). The application of approximate dynamic programming techniques. PhD
thesis, Vrije Universiteit Amsterdam.

113. Roubos, D., & Bhulai, S. (2007). Average-cost approximate dynamic programming for the
control of birth-death processes. Technical report, VU University Amsterdam.

114. Roubos, D., & Bhulai, S. (2010). Approximate dynamic programming techniques for the
control of time-varying queueing systems applied to call centers with abandonments and
retrials. Probability in the Engineering and Informational Sciences, 24, 27–45.

115. Schweitzer, P. J., & Seidman, A. (1985). Generalized polynomial approximations in Marko-
vian decision processes. Journal of Mathematical Analysis and Applications, 110, 568–582.

204 Bibliography

116. Schwindt, C. (1998). Generation of resource-constrained project scheduling problems subject
to temporal constraints. Technical report WIOR-543, Universitaet Karlsruhe.

117. Sedgewick, R. (1992). Algorithmen (2nd ed.). München: Addison-Wesley.
118. Sennot, L. I. (1999). Stochastic dynamic programming and the control of queueing systems

(Wiley series in probability and statistics). New York: Wiley.
119. Slotnick, S., & Morton, T. (2007). Order acceptance with weighted tardiness. Computers and

Operations Research, 34, 3029–3042.
120. Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochastic

activity duration to maximize expected net present value. European Journal of Operational
Research, 198, 697–705.

121. Stidham, S., & Weber, R. (1993). A survey of Markov decision models for control of networks
of queues. Queueing Systems, 13, 291–314.

122. Stork, F. (2001). Stochastic resource-constrained project scheduling. PhD thesis, Technische
Universität Berlin.

123. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge: MIT.
124. Talla Nobibon, F., Herbots, J., & Leus, R. (2009). Order acceptance and scheduling in a single-

machine environment: Exact and heuristic algorithms. Technical report, Faculty of Business
and Economics, KU Leuven.

125. Talla Nobibon, F., & Leus, R. (2011). Exact algorithms for a generalization of the order accep-
tance and scheduling problem in a single-machine environment. Computers and Operations
Research, 38(1), 367–378.

126. Thesen, A. (1977). Measures of the restrictiveness of project networks. Networks, 7, 193–208.
127. Tijms, H. C. (2003). A first course in stochastic models. New York: Wiley.
128. Tsai, D. M., & Chiu, H. N. (1996). Two heuristics for scheduling multiple projects with

resource constraints. Construction Management and Economics, 14, 325–340.
129. van Foreest, N. D., Wijngaard, J., & van der Vaart, J. T. (2010). Scheduling and order

acceptance for the customized stochastic lot scheduling problem. International Journal of
Production Research, 48(12), 3561–3578.

130. Veatch, M. H. (2009). Approximate dynamic programming for networks: Fluid models and
constraint reduction. Technical report, Gordon College.

131. Veatch, M. H., & Walker, N. (2008). Approximate linear programming for network control:
Column generation and subproblems. Technical report, Gordon College.

132. Vepsalainen, A. P. J., & Morton, T. E. (1987). Priority rules for job shops with weighted
tardiness costs. Management Science, 33(8), 1035–1047.

133. Vyzas, E. (1997). Approximate dynamic programming for some queueing problems. Master’s
thesis, Massachusetts Institute of Technology.

134. Wester, F. A. W., Wijngaard, J., & Zijm, W. H. M. (1992). Order acceptance strategies in
a production-to-order environment with setup time and due-dates. International Journal of
Production Research, 30(6), 1313–1326.

135. Williams, H. P. (1999). Model building in mathematical programming (4th ed.). New York:
Wiley.

136. Yaghoubi, S., Noori, S., Azaron, A., & Tavakkoli-Moghaddam, R. (2011). Resource allo-
cation in dynamic PERT networks with finite capacity. European Journal of Operational
Research, 215, 670–678.

137. Yechiali, U. (1969). On optimal balking rules and toll charges in the GI/M/1 queueing process.
Operations Research, 19, 349–370.

138. Yechiali, U. (1972). Customers’ optimal joining rules for the GI/M/s queue. Manage, 18,
434–443.

139. Zijm, W. H. M. (2000). Towards intelligent manufacturing planning and control systems. OR
Spektrum, 22, 313–345.

	Preface
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Research Focus
	1.2.1 Order Acceptance and Capacity Planning
	1.2.2 Resource-Constrained Multi-project Scheduling

	1.3 Outline

	2 Problem Statements
	2.1 General Assumptions and Notation
	2.1.1 Projects
	2.1.2 Resources
	2.1.3 Project Types
	2.1.4 Objective Functions

	2.2 Dynamic-Stochastic Multi-project Scheduling Problem
	2.2.1 Non-preemptive Scheduling Problem
	2.2.2 Preemptive Scheduling Problem

	2.3 Order Acceptance and Capacity Planning Problem
	2.3.1 Multi-project Environment
	2.3.2 Order Acceptance Decisions
	2.3.3 Resource Allocation Decisions

	3 Literature Review
	3.1 Dynamic Programming and Approximate DynamicProgramming
	3.2 Project Scheduling
	3.2.1 Static–Deterministic Project Scheduling
	3.2.2 Dynamic–Deterministic Project Scheduling
	3.2.3 Static–Stochastic Project Scheduling
	3.2.4 Dynamic–Stochastic Project Scheduling

	3.3 Capacity Planning
	3.4 Order Acceptance

	4 Continuous-Time Markov Decision Processes
	4.1 General Structure
	4.2 Basic Definitions and Relevant Properties
	4.3 Objective Function
	4.4 Evaluation and Optimality Equations
	4.5 Uniformization
	4.6 General Solution Methodologies
	4.6.1 Value Iteration
	4.6.2 Policy Iteration

	4.7 Implementation
	4.7.1 Generation of the State Space
	4.7.1.1 Data Structures
	4.7.1.2 Generation Procedure

	4.7.2 Solution Methodologies

	5 Generation of Problem Instances
	5.1 Generation of Project Networks
	5.2 Generation Procedure
	5.2.1 Step 1: Assignment of Activity Types to Resource Types
	5.2.2 Step 2: Determination of Expected Durations of the Activity Types
	5.2.3 Step 3: Variation Check of the Expected ActivityDurations
	5.2.4 Step 4: Adjustments to Resource Type SpecificUtilizations
	5.2.5 Step 5: Check of Project Type Workloads
	5.2.6 Step 6: Storage of Additional Parameters

	6 Scheduling Using Priority Policies
	6.1 Priority Policies
	6.1.1 Computation of Rule Parameters
	6.1.2 Priority Rules
	6.1.2.1 Bottleneck Dynamics Rules
	6.1.2.2 Further Rules

	6.2 Experimental Design
	6.2.1 Preliminaries
	6.2.2 Generation of Problem Instances
	6.2.2.1 System Parameters
	6.2.2.2 Project Type Parameters

	6.2.3 Simulation Set Up

	6.3 Main Effects of Problem Parameters
	6.3.1 Due Date Tightness
	6.3.2 Number of Resources
	6.3.3 Order Strength
	6.3.4 Variation of Expected Activity Durations
	6.3.5 Utilization per Resource
	6.3.6 Observations for Problem Instances with a Single Project Type

	6.4 Detailed Analysis
	6.4.1 Performance for Special Cases
	6.4.1.1 Single Resource
	6.4.1.2 Parallel Networks

	6.4.2 Performance for the Remaining Problem Instances
	6.4.2.1 High Due Date Tightness
	6.4.2.2 Low Due Date Tightness

	7 Optimal and Near Optimal Scheduling Policies
	7.1 Models as a Markov Decision Process
	7.1.1 Non-preemptive Scheduling Problem
	7.1.1.1 Markov Decision Process
	7.1.1.2 Evaluation and Optimality Equations
	7.1.1.3 Elimination of Scheduling Decisions

	7.1.2 Preemptive Scheduling Problem
	7.1.2.1 Extension of the CTMDP for the Non-preemptive Problem
	7.1.2.2 Simplified CTMDP
	7.1.2.3 Efficient Procedure for Determining Optimal Decisions
	7.1.2.4 State Space Cardinality

	7.1.3 Numerical Example
	7.1.3.1 General Observations
	7.1.3.2 Optimal Policy for the Preemptive Scheduling Problem
	7.1.3.3 Optimal Policy for the Non-preemptive Scheduling Problem
	7.1.3.4 Effect of Rejection Cost

	7.2 Optimal Policy for the Single Resource Case Without Preemptions
	7.3 Project State Ordering Policies
	7.3.1 Preemptive Project State Ordering Policies
	7.3.1.1 Definitions and General Structural Results
	7.3.1.2 Project State Ordering Policies and Queueing Networks Representation of the System

	7.3.2 Non-preemptive Project State Ordering Policies
	7.3.3 Project State Ordering Priority Policies
	7.3.4 Numerical Example

	7.4 Scheduling Using Approximate Dynamic Programming
	7.4.1 Basic Idea
	7.4.2 Approximation Based on the Preemptive Problem
	7.4.3 Approximation Using Linear Function Approximation
	7.4.3.1 Selection of Basis Functions
	7.4.3.2 Semi-open System as an Approximation for the Open System
	7.4.3.3 Bellman Error Minimization
	7.4.3.4 Determining Sets of Representative States

	7.4.4 Approximation for the Non-preemptive Problem Based on Linear Function Approximation for the Preemptive Problem

	7.5 Computational Study
	7.5.1 Experimental Design
	7.5.2 Priority Policies
	7.5.3 Simulation Setup
	7.5.4 Results for the Preemptive Problem
	7.5.4.1 State Space Cardinalities
	7.5.4.2 Performance of Optimal Policies
	7.5.4.3 Performance of Project State Ordering Priority Policies

	7.5.5 Results for the Non-preemptive Problem
	7.5.5.1 State Space Cardinalities
	7.5.5.2 Performance of Optimal Policies
	7.5.5.3 Performance of Project State Ordering Priority Policies
	7.5.5.4 Performance of the Value Function Approximation from the Preemptive Problem

	7.5.6 Performance of Linear Function Approximation
	7.5.6.1 Test of the Approximation Architectures and First Computational Insights
	7.5.6.2 Application of Linear Function Approximation to Selected Problem Instances

	8 Integrated Dynamic Order Acceptance and Capacity Planning
	8.1 Stochastic Dynamic Programming
	8.1.1 State Variables
	8.1.2 Decision Variables
	8.1.2.1 Order Acceptance Decisions
	8.1.2.2 Capacity Planning Decisions

	8.1.3 Exogenous Information Process
	8.1.4 Transition Function
	8.1.5 Objective Function

	8.2 Solution Methodology
	8.3 Computational Investigation
	8.3.1 Structure of Optimal Policies
	8.3.1.1 Order Acceptance
	8.3.1.2 Scheduling
	8.3.1.3 Usage of Non-regular Capacity

	8.3.2 Benefit of Crashing and Flexible MPP
	8.3.2.1 Benefit of Crashing
	8.3.2.2 Benefit of MPP
	8.3.2.3 Combined Benefit of MPP and Crashing
	8.3.2.4 General Insights

	9 Conclusions and Future Work
	A Abbreviations
	B Symbols
	B.1 General
	B.1.1 System
	B.1.2 Markov Decision Processes
	B.1.3 Projects and Project Types
	B.1.4 Resources and Resource Types

	B.2 Generation of Problem Instances
	B.2.1 Problem Parameters
	B.2.2 Generation Procedure

	B.3 Scheduling
	B.3.1 General
	B.3.2 Scheduling Using Priority Policies
	B.3.3 Markov Decision Process for the Non-preemptiveProblem
	B.3.4 Markov Decision Process for the Preemptive Problem
	B.3.5 Optimal Policy for the Non-preemptive Problem with a Single Resource
	B.3.6 Preemptive Project State Ordering Policies
	B.3.7 Non-preemptive Project State Ordering Policies
	B.3.8 Approximate Dynamic Programming

	B.4 Order Acceptance and Capacity Planning

	Bibliography

