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Preface

During the last decades, geosciences and -engineering were influenced by two
essential scenarios. First, the technological progress has changed completely
the observational and measurement techniques. Modern high speed com-
puters and satellite-based techniques are entering more and more all (geo)
disciplines. Second, there is a growing public concern about the future of
our planet, its climate, its environment, and about an expected shortage
of natural resources. Obviously, both aspects, viz. (i) efficient strategies of
protection against threats of a changing Earth and (ii) the exceptional sit-
uation of getting terrestrial, airborne as well as spaceborne, data of better
and better quality explain the strong need for new mathematical structures,
tools, and methods. In consequence, mathematics concerned with geoscien-
tific problems, i.e., geomathematics, is becoming more and more important.
Nowadays, geomathematics may be regarded as the key technology to build
the bridge between real Earth processes and their scientific understanding.
In fact, it is the intrinsic and indispensable means to handle geoscientifi-
cally relevant data sets of high quality within high accuracy and to improve
significantly modeling capabilities in Earth system research.

From modern satellite-positioning, it is well known that the Earth’s sur-
face deviates from a sphere by less than 0.4% of its radius. This is the
reason why spherical functions and concepts play an essential part in all
geosciences. In particular, spherical polynomials and zonal functions consti-
tute fundamental ingredients of modern (geo-)research – wherever spherical
fields are significant, be they electromagnetic, gravitational, hydrodynam-
ical, solid body, etc. Surprisingly enough, it turned out that essential fea-
tures involving spherical vector and tensor structures were not available in
the geosciences, when W. Freeden, first at the RWTH Aachen and later as
head of the Geomathematics Group of the TU Kaiserslautern, started with
the vector and/or tensor analysis of (Earth’s) gravity field data obtained
by satellite-to-satellite tracking (SST) and/or satellite gravity gradiometry
(SGG). This is the reason why, based on results about Green’s function
with respect to the scalar Beltrami operator, a series of papers was initi-
ated to establish vector and tensor counterparts of the Legendre polynomi-
als, to verify vector and tensor extensions of the addition theorem, and to
introduce vectorial and tensorial generalizations of the famous Funk-Hecke

xiii



xiv Preface

formula. Even more, the concept of zonal (kernel) functions (i.e., radial
basis functions in the jargon of approximation theory), the theory of splines
and wavelets etc could be generalized to the spherical vector/tensor case.
All these new concepts were successfully applied in diverse areas such as
climate and weather, deformation analysis, geomagnetics, gravitation, and
ocean circulation.

This book collects all material developed by the Geomathematics Group,
TU Kaiserslautern, during the last years to set up a theory of spherical
functions of mathematical (geo-)physics. The work shows a twofold tran-
sition: First, the natural transition from the scalar to the vectorial and
tensorial theory of spherical harmonics is given in coordinate-free represen-
tation, based on new variants of the addition theorem and the Funk–Hecke
formulas. Second, the canonical transition from spherical harmonics via
zonal (kernel) functions to the Dirac kernel is presented in close orientation
to an uncertainty principle classifying the space/frequency (momentum) be-
havior of the functions for purposes of constructive approximation and data
analysis. In doing so, the whole palette of spherical (trial) functions is pro-
vided for modeling and simulating phenomena and processes of the Earth
system.

The main purpose of the book is to serve as a self-consistent introductory
textbook for (graduate) students of mathematics, (geo-)physics, geodesy,
and (geo-)engineering. In addition, the work should also be a valuable
reference for scientists and practitioners facing spherical problems in their
professional tasks. Essential ingredients of the work are the theses of
W. Freeden (1979a), T. Gervens (1989), M. Schreiner (1994), S. Beth (2000),
and H. Nutz (2002). Preliminary material can be found in the work by
C. Müller (1952, 1966, 1998) and W. Freeden et al. (1998).

The preparation of the final version was supported by various impor-
tant remarks and suggestions of many colleagues of ESA (European Space
Agency), GFZ (GeoForschungsZentrum Potsdam), AWI (Alfred Wegener
Institut Bremerhaven), IAPG (Institut für Astronomische und Physika-
lische Geodäsie München), etc. We are particularly obliged to Stephan
Dahlke, Marburg; Heinz Engl, Linz; Karl–Heinz Glassmeier, Braunschweig;
Erik W. Grafarend, Stuttgart; Erwin Groten, Darmstadt; Peter Maass,
Bremen; Helmut Moritz, Graz; Zuhair Nashed, Orlando; Jürgen Prestin,
Lübeck; Reiner Rummel, München; William Rundell, College Station; Tho-
mas Sonar, Braunschweig; Hans Sünkel, Graz; Leif Svensson, Lund, for
friendly collaboration. Our work has been improved by our students and by
readers of several drafts of the manuscript. In particular, we are indebted to
Thorsten Maier, Thomas Fehlinger, Christian Gerhards, and Kerstin Wolf,
who generously devoted time to early versions of the work.
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knowledge the courtesy and ready cooperation of Springer and all the staff
members there who were involved in the publication of the manuscript.
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1 Introduction

Spherical harmonics are the analogues of trigonometric functions for Fourier
expansion theory on the sphere. They were introduced in the 1780s to study
gravitational theory (cf. P.S. de Laplace (1785), A.M. Legendre (1785)).
Early publications on the theory of spherical harmonics in their original
physically motivated meaning as multipoles are, e.g., due to R.F.A. Clebsch
(1861), T. Sylvester (1876), E. Heine (1878), F. Neumann (1887), and
J.C. Maxwell (1891). Today, the use of spherical harmonics in diverse pro-
cedures is a well-established technique in all geosciences, particularly for
the purpose of representing scalar potentials. A great incentive came from
the fact that global geomagnetic data became available in the first half of
the 19th century (cf. C.F. Gauß (1838)). Nowadays, reference models for
the Earth’s gravitational or magnetic field, for example, are widely known
by tables of coefficients of the spherical harmonic Fourier expansion of their
potentials. It is characteristic for the Fourier approach that each spheri-
cal harmonic, as an ‘ansatz-function’ of polynomial nature, corresponds to
exactly one degree, i.e., in the jargon of signal processing to exactly one
frequency. Thus, orthogonal (Fourier) expansion in terms of spherical har-
monics amounts to the superposition of summands showing an oscillating
character determined by the degree (frequency) of the Legendre polyno-
mial (see Table 1.1). The more spherical harmonics of different degrees are
involved in the Fourier (orthogonal) expansion of a signal, the more the
oscillations grow in number, and the less are the amplitudes in size.

Concerning the mathematical representation of spherical vector and ten-
sor fields in applied sciences, one is usually not interested in their separation
into their (scalar) cartesian component functions. Instead, we have to ob-
serve inherent physical constraints. For example, the external gravitational
field is curl-free, the magnetic field is divergence-free, and the equations
for incompressible Navier–Stokes equations in meteorological applications
or the geostrophic formulation of ocean circulation include divergence-free
vector solutions. In many cases, certain quantities are related to each other
in an obvious manner by vector operators like the surface gradient or the
surface curl gradient. In this respect, the gravity field, the magnetic field,
the wind field, the field of oceanic currents, or electromagnetic waves gen-
erated by surface currents should be mentioned as important examples.
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2 1 Introduction

In addition, spherical modeling in terms of spherical harmonics arises nat-
urally in the analysis of the elastic-gravitational free oscillations of a spher-
ically symmetric, non-rotating Earth. Altogether, vector/tensor spherical
harmonics are used throughout mathematics, theoretical physics, geo- and
astrophysics, and engineering – indeed, wherever one deals with physically
based fields.

Table 1.1: Fourier expansion of scalar square-integrable functions on the
unit sphere Ω.

Weierstraß approximation theorem:
use of homogeneous polynomials ↓(geo)physical constraint of har-

monicity

spherical harmonics Yn,j

as restrictions of homogeneous harmonic polynomials Hn,j

to the unit sphere Ω ⊂ R
3

orthonormality and orthogonal
invariance↓addition theorem

one-dimensional Legendre polynomial Pn satisfying

Pn(ξ · η) =
4π

2n + 1

2n+1∑

j=1

Yn,j(ξ)Yn,j(η), ξ, η ∈ Ω

convolution against the Legendre
kernel↓Funk–Hecke formula

Legendre transform of F :

(Pn ∗ F )(ξ) =
2n + 1

4π

∫

Ω
Pn(ξ · η)F (η)dω(η), ξ ∈ Ω

superposition over frequencies↓orthogonal (Fourier) series expan-
sion

Fourier series of F ∈ L2(Ω):

F (ξ) =
∞∑

n=0

2n + 1
4π

∫

Ω
Pn(ξ · η)F (η)dω(η), ξ ∈ Ω
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1.1 Motivation

In the second half of the last century, a physically motivated approach for
the decomposition of spherical vector and tensor fields was presented based
on a spherical variant of the Helmholtz theorem (see, e.g., P.M. Morse,
H. Feshbach (1953), G.E. Backus (1966); G.E. Backus (1967, 1986)). Fol-
lowing this concept, e.g., the tangential part of a spherical vector field is
split up into a curl-free and a divergence-free field by use of two differential
operators, viz. the already mentioned surface gradient and the surface curl
gradient. Of course, an analogous splitting is valid in tensor theory.

Table 1.2: Twofold transition.

Scalar
Legendre
kernels

→ Vector
Legendre
kernels

→ Tensor
Legendre
kernels

↓ ↓ ↓
scalar
zonal

kernels
→ vector

zonal
kernels

→ tensor
zonal

kernels

↓ ↓ ↓
scalar
Dirac
kernel
→ vector

Dirac
kernel
→ tensor

Dirac
kernel

In subsequent publications during the second half of the last century,
however, the vector spherical harmonic theory was usually written in local
coordinate expressions that make mathematical formulations lengthy and
hard to read. Tensor spherical harmonic settings are even more difficult
to understand. In addition, when using local coordinates within a global
spherical concept, differential geometry tells us that there is no representa-
tion of vector and tensor spherical harmonics which is free of singularities.
In consequence, the mathematical arrangement involving vector and tensor
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spherical harmonics has led to an inadequately complex and less consistent
literature, yet. Coordinate free explicit formulas on vector and/or tensor
variants of the Legendre polynomial could not be found in the literature.
As an immediate result, the orthogonal invariance based on specific vector
/tensor extensions of the Legendre polynomials was not worked out suit-
ably in a unifying scalar/vector/tensor framework. Even more, the concept
of zonal (kernel) functions was not generalized adequately to the spherical
vector/tensor case. All these new structures concerning spherical functions
in mathematical (geo-)physics are successfully developed in this work. Basi-
cally two transitions are undertaken in our approach, namely the transition
from spherical harmonics via zonal kernel functions to the Dirac kernels on
the one hand and the transition from scalar to vector and tensor theory on
the other hand (see Table 1.2).

To explain the transition from the theory of scalar spherical harmonics
to its vectorial and tensorial extensions (see Chapters 3, 4, 5, and 6 for
details), our work starts from physically motivated dual pairs of operators
(the reference space being always the space of signals with finite energy,
i.e., the space of square-integrable fields). The pair o(i), O(i), i ∈ {1, 2, 3}, is
originated in the constituting ingredients of the Helmholtz decomposition
of a vector field (see Chapter 5), while o(i,k), O(i,k), i, k ∈ {1, 2, 3}, take
the analogous role for the Helmholtz decomposition of tensor fields (see
Chapter 6). For example, in vector theory, o(1)F is assumed to be the
normal field ξ �→ o

(1)
ξ F (ξ) = F (ξ)ξ, ξ ∈ Ω, o(2)F is the surface gradient field

ξ �→ o
(2)
ξ F (ξ) = ∇∗

ξF (ξ), ξ ∈ Ω, and o(3)F is the surface curl gradient field

ξ �→ o
(3)
ξ F (ξ) = L∗

ξF (ξ), ξ ∈ Ω, with L∗
ξ = ξ ∧ ∇∗

ξ applied to a scalar valued

function F , while O(1)f is the normal component ξ �→ O
(1)
ξ f(ξ) = f(ξ)·ξ, ξ ∈

Ω, O(2)f is the negative surface divergence ξ �→ O
(2)
ξ f(ξ) = −∇∗

ξ ·f(ξ), ξ ∈ Ω,

over a vector valued function f . Clearly, the operators o(i,k), O(i,k) are also
definable in orientation to the tensor Helmholtz decomposition theorem (for
reasons of simplicity, however, their explicit description is omitted here). It
should be noted that, in vector as well as tensor theory, the connecting link
from the operators to the Helmholtz decomposition is the Green function
with respect to the (scalar) Beltrami operator and its iterations (for more
details, the reader is referred to Chapter 4 of this work).

The pairs o(i), O(i) and o(i,i), O(i,i) of dual operators lead us to an asso-
ciated palette of Legendre kernel functions, all of them generated by the
classical one-dimensional Legendre polynomial Pn of degree n. To be more
concrete, three types of Legendre kernels occur in the vectorial as well as
tensorial context (see Table 1.3).

and O(3)f is the negative surface curl ξ �→ O
(3)
ξ f(ξ) = −L∗

ξ ·f(ξ), ξ ∈ Ω taken
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Table 1.3: Legendre kernel functions.

Scalar Legendre polynomial

Pn =
O(i)O(i)p(i,i)

n

μ
(i)
n

=
O(i,k)O(i,k)P(i,k)

n

μ
(i,k)
n

application
of o(i) ↓↑ application

of O(i)
application

of o(i,k) ↓↑ application
of O(i,k)

vector Legendre kernel

p(i)
n =

o(i)Pn

(μ(i)
n )1/2

=
O(i)p(i,i)

n

(μ(i)
n )1/2

tensor Legendre kernel (order 2)

p(i,k)
n =

o(i,k)Pn

(μ(i,k)
n )1/2

=
O(i,k)P(i,k)

n

(μ(i,k)
n )1/2

application
of o(i) ↓↑ application

of O(i)
application

of o(i,k) ↓↑ application
of O(i,k)

tensor Legendre kernel (order 2)

p(i,i)
n =

o(i)p
(i)
n

(μ(i)
n )1/2

=
o(i)o(i)Pn

μ
(i)
n

tensor Legendre kernel (order 4)

P(i,k,i,k)
n =

o(i,k)p(i,k)
n

(μ(i,k)
n )1/2

=
o(i,k)o(i,k)Pn

μ
(i,k)
n

vectorial
context

tensorial
context

The Legendre kernels o(i)Pn, o(i)o(i)Pn are of concern for the vector ap-
proach to spherical harmonics, whereas o(i,i)Pn, o(i,i)o(i,i)Pn, i = 1, 2, 3, form
the analogues in tensorial theory. Corresponding to each Legendre kernel,
we are led to two variants for representing square-integrable fields by or-
thogonal (Fourier) expansion, where the reconstruction – as in the scalar
case – is undertaken by superposition over all frequencies.

The Tables 1.3, 1.4, and 1.5 bring together – into a single unified notation
– the formalisms for the vector/tensor spherical harmonic theory based on
the following principles:

• The vector/tensor spherical harmonics involving the o(i), o(i,i)-opera-
tors, respectively, are obtainable as restrictions of three-dimensional
homogeneous harmonic vector/tensor polynomials, respectively, that
are computable exactly exclusively by integer operations.

• The vector/tensor Legendre kernels are obtainable as the outcome of
sums extended over a maximal orthonormal system of vector/tensor
spherical harmonics of degree (frequency) n, respectively.
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• The vector/tensor Legendre kernels are zonal kernel functions, i.e.,
they are orthogonally invariant (in vector/tensor sense, respectively)
with respect to orthogonal transformations (leaving one point of the
unit sphere Ω fixed).

• Spherical harmonics of degree (frequency) n form an irreducible sub-
space of the reference space of (square-integrable) fields on Ω.

• Each Legendre kernel implies an associated Funk–Hecke formula that
determines the constituting features of the convolution of a square-
integrable field against the Legendre kernel.

• The orthogonal Fourier expansion of a square-integrable field is the
sum of the convolutions of the field against the Legendre kernels being
extended over all frequences.

Unfortunately, the vector spherical harmonics generated by the operators
o(i), O(i), i = 1, 2, 3, do not constitute eigenfunctions with respect to the
Beltrami operator. But it should be mentioned that certain operators õ(i),
i = 1, 2, 3, can be introduced in terms of the operators o(i), i = 1, 2, 3,
which define alternative classes of vector spherical harmonics that represent
eigensolutions to the Beltrami operator. The price to be paid is that the
separation of spherical vector fields into normal and tangential parts is lost.
More precisely, the operators õ(i), i ∈ {1, 2}, generate so-called spheroidal
fields, while õ(3) generates poloidal fields. In fact, all statements involving
orthogonal (Fourier) expansion of spherical fields remain valid for this new
class of operators. Moreover, analogous classes of tensor spherical harmonics
can be introduced by operators õ(i,k), Õ(i,k), i, k = 1, 2, 3, in close analogy to
the vector case. In addition, it should be noted that the spherical harmonics
based on the õ(i), Õ(i), õ(i,k), Õ(i,k)-operators play a particular role whenever
the Laplace operator comes into play, i.e., in gravitation for representing
any kind of harmonic fields (see Chapter 10).

To summarize, the theory of spherical harmonics as presented in this book
(see Chapters 3, 4, 5, and 6) is a unifying attempt of consolidating, reviewing
and supplementing the different approaches in real scalar, vector, and tensor
theory. The essential tools are the Legendre kernels which are shown to be
explicitly available and tremendously significant in rotational invariance and
in orthogonal Fourier expansions. The work is self-contained: the reader is
told how to derive all equations occuring in due course. Most importantly,
our coordinate-free setup yields a number of formulas and theorems that
previously were derived only in coordinate representation (such as polar
coordinates). In doing so, any kind of singularities is avoided at the poles.
Finally, our philosophy opens new promising perspectives of constructing
important, i.e., zonal classes of spherical trial functions by summing up
Legendre kernel expressions, thereby providing (geo-)physical relevance and
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Table 1.4: Fourier expansion of (square-integrable) vector fields f .

Vector spherical harmonics

y
(i)
n,j = (μ(i)

n )−1/2o(i)Yn,j

addition
theorem

↓ vectorial
variant

addition
theorem

↓ tensorial
variant

vp(i,i)
n (ξ, η)

=
2n+1∑

j=1

y
(i)
n,j(ξ)⊗ y

(i)
n,j(η)

p(i)
n (ξ, η)

=
2n+1∑

j=1

y
(i)
n,j(ξ)Yn,j(η)

Funk–Hecke
formula

↓ tensorial
variant

Funk–Hecke
formula

↓ vectorial
variant

Legendre transform

2n + 1
4π

×
∫

Ω

vp(i,i)
n (ξ, η)f(η)dω(η)

Legendre transform

2n + 1
4π

(μ(i)
n )−1/2

×
∫

Ω
p(i)

n (ξ, η)O(i)
η f(η)dω(η)

superposition↓ over
frequencies

superposition↓ over
frequencies

f(ξ) =
3∑

i=1

∞∑

n=0i

2n + 1
4π

×
∫

Ω

vp(i,i)
n (ξ, η)f(η)dω(η)

f(ξ) =
3∑

i=1

∞∑

n=0i

2n + 1
4π

(μ(i)
n )−1/2

×
∫

Ω
p(i)

n (ξ, η)O(i)
η f(η)dω(η)

rank–2 tensorial
approach

vectorial
approach

increasing local applicability.

To understand the transition from the theory of spherical harmonics to
zonal kernel function up to the Dirac kernel (for details see Chapters 7, 8,
and 9), we have to realize the relative advantages of the classical Fourier ex-
pansion method by means of spherical harmonics not only in the frequency
domain, but also in the space domain. Obviously, it is characteristic for
Fourier techniques that the spherical harmonics as polynomial trial func-
tions admit no localization in space domain, while in the frequency domain
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Table 1.5: Fourier expansion of a square-integrable tensor fields f .

Tensor spherical harmonics

y(i,k)
n,j = (μ(i,k)

n )−1/2o(i,k)Yn,j

addition
theorem

↓ rank-4
tensorial
variant

addition
theorem

↓ rank-2
tensorial
variant

P(i,k,i,k)
n (ξ, η)

=
2n+1∑

j=1

y(i,k)
n,j (ξ)⊗ y(i,k)

n,j (η)

tp(i,k)
n (ξ, η)

=
2n+1∑

j=1

y(i,k)
n,j (ξ)Yn,j(η)

Funk–Hecke
formula

↓ rank-4
tensorial
variant

Funk–Hecke
formula

↓ rank-2
tensorial
variant

Legendre transform

2n + 1
4π

×
∫

Ω
P(i,k,i,k)

n (ξ, η)f(η)dω(η)

Legendre transform

2n + 1
4π

(μ(i,k)
n )−1/2

×
∫

Ω

tp(i,k)
n (ξ, η)O(i,k)

η f(η)dω(η)

superposition↓ over
frequencies

superposition↓ over
frequencies

f(ξ) =
3∑

i,k=1

∞∑

n=0ik

2n + 1
4π

×
∫

Ω
P(i,k,i,k)

n (ξ, η)f(η)dω(η)

f(ξ) =
3∑

i,k=1

∞∑

n=0ik

2n + 1
4π

1

(μ(i,k)
n )1/2

×
∫

Ω

tp(i,k)
n (ξ, η)O(i,k)

η f(η)dω(η)

rank-4 tensorial
approach

rank-2 tensorial
approach

(more precisely, momentum domain), they always correspond to exactly
one degree, i.e., frequency, and therefore, are said to show ideal frequency
localization. Because of the ideal frequency localization and the simultane-
ous absence of space localization, in fact, local changes of fields (signals) in
the space domain affect the whole table of orthogonal (Fourier) coefficients.
This, in turn, causes global changes of the corresponding (truncated) Fourier
series in the space domain. Nevertheless, the ideal frequency localization
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usually proves to be helpful for meaningful physical interpretations (e.g.,
within Meissl schemes in physical geodesy (see, e.g., P.A. Meissl (1971),
E.W. Grafarend (2001), H. Nutz (2002) and the references therein) relat-
ing – for a frequency being fixed – the different observables of the Earth’s
gravitational potential to each other.

Taking these aspects on spherical harmonic modeling by Fourier series
into account, trial functions which simultaneously show ideal frequency lo-
calization as well as ideal space localization would be a desirable choice. In
fact, such an ideal system of trial functions would admit models of high-
est spatial resolution which were expressible in terms of single frequencies.
However, the uncertainty principle (see, e.g., F.J. Narcowich, J.D. Ward
(1996), W. Freeden (1998), N. Láın Fernández (2003)) – connecting space
and frequency localization – tells us that both characteristics are mutu-
ally exclusive. Extreme trial functions in the sense of such an uncertainty
principle are, on the one hand, the Legendre kernels (no space localiza-
tion, ideal frequency localization) and, on the other hand, the Dirac kernel
(ideal space localization, no frequency localization). In conclusion, Fourier
expansion methods are well suited to resolve low and medium frequency
phenomena, i.e., the ‘trend’ of a signal, while their application to obtain
high resolution in global or local models is critical. This difficulty is also
well known to theoretical physics, e.g., when describing monochromatic elec-
tromagnetic waves or considering the quantum-mechanical treatment of free
particles. In this case, plane waves with fixed frequencies (ideal frequency
localization, no space localization) are the solutions of the corresponding
differential equations, but do certainly not reflect the physical reality. As
a remedy, plane waves of different frequencies are superposed to so-called
wave-packages which gain a certain amount of space localization, while los-
ing their ideal spectral localization. In a similar way, a suitable superposi-
tion of polynomial Legendre kernel functions leads to so-called zonal kernel
functions, in particular to kernel functions with a reduced frequency, but
increased space localization.

Additive clustering of weighted Legendre kernels – the weights are usu-
ally said to define the Legendre symbol – generates zonal kernel functions.
The uncertainty principle (see Chapter 7) describes a trade-off between two
’spreads’ of the zonal kernels, one for the space and the other for the fre-
quency. The main statement is that sharp localization of zonal kernels in
space and in frequency is mutually exclusive. The reason for the validity of
the uncertainty relation is that the aforementioned operators o(1) and o(3)

do not commute. Thus, o(1) and o(3) cannot be sharply defined simulta-
neously. As already mentioned, extremal members in the space/frequency
(momentum) relation are the Legendre kernels and the Dirac kernels (see
Table 1.6). More explicitly, the uncertainty principle allows us to give a
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Table 1.6: From Legendre kernels via zonal kernels to the Dirac kernel.

Legendre
kernels

zonal kernels Dirac
kernel

general case

bandlimited spacelimited

quantitative classification in the form of a canonically defined hierarchy of
the space/frequency localization properties of zonal kernel functions, be they
of scalar, vectorial, or tensorial nature. For simplicity, restricting ourselves
to scalar zonal kernels of the form

K(ξ · η) =
∞∑

k=0

2n + 1
4π

K∧(n)Pn(ξ · η), ξ, η ∈ Ω (1.1)

(with K∧(n), n = 0, 1, . . . , being the symbol of the kernel K), we are led
to the following conclusion: In view of the amount of space/frequency (mo-
mentum) localization, it is remarkable to distinguish bandlimited kernels
(i.e., K∧(n) = 0 for all n ≥ N) and non-bandlimited ones, for which in-
finitely many numbers K∧(n) do not vanish. Non-bandlimited kernels show
a much stronger space localization than their bandlimited counterparts.
Empirically, if K∧(n) ≈ K∧(n + 1) ≈ 1 for many successive large integers
n, then the support of the series (1.1) in the space domain is small, i.e., the
kernel is spacelimited (i.e., in the jargon of approximation theory, locally
supported). Assuming the condition limn→∞ K∧(n) = 0, we are confronted
with the situation that the slower the sequence {K∧(n)}n=0,1,... converges
to zero, the lower is the frequency localization, and the higher is the space
localization.

Our considerations lead us to the following characterization of trial
functions in constructive approximation: Fourier expansion methods with
polynomial ansatz functions offer the canonical ‘trend-approximation’ of
low-frequent phenomena (for global modeling), while bandlimited kernels
can be used for the transition from long-wavelength to short-wavelength
phenomena (global to local modeling). Because of their excellent localiza-
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tion properties in the space domain, the non-bandlimited kernels can be used
for the modeling of short-wavelength phenomena (local modeling). Using
kernels of different scales reflecting the different stages of space/frequency
localization (see, e.g., W. Freeden (1998), W. Freeden, V. Michel (1999)
and the references therein), the modeling process can be adapted to the
localization properties of the physical phenomena (see Table 1.7).

Table 1.7: Multiscale expansion of scalar (square-integrable) spherical func-
tions F .

Sequence of scale-dependent zonal
kernels (i.e., scaling functions) Φj↓convolutions against Φj

low-pass filtered versions of F

(Φj ∗ F )(ξ) =
∫

Ω
Φj(ξ · η)F (η) dω(η), ξ ∈ Ω

continuous ‘summation’ over
positions η ∈ Ω↓‘zooming in’ (Φj → δ as j →∞)

multiscale expansion of F involving a Dirac family of zonal scalar kernels

F (ξ) = lim
j→∞

∫

Ω
Φj(ξ · η)F (η) dω(η), ξ ∈ Ω

In case of so-called scaling functions, the width of the corresponding fre-
quency bands and, consequently, the amount of space localization is con-
trolled (in continuous and/or discrete way) using a so-called scale-parameter,
such that the Dirac kernel acts as limit kernel as the scale-parameter takes
its limit. Typically, the generating kernels of scaling functions have the char-
acteristics of low-pass filters, i.e., the zonal kernels involved in the convolu-
tion of the field against the Legendre kernels are significantly based on low
frequencies, while the higher frequencies are attenuated or even completely
left out in the summation. Conventionally, the difference between successive
members in a scaling function is called a wavelet function. Clearly, it is again
a zonal kernel. In consequence, wavelet functions have the typical proper-
ties of band-pass filters, i.e., the weighted Legendre kernels of low and high
frequency within the wavelet kernel are attenuated or even completely left
out. According to their particular construction, wavelet-techniques provide
a decomposition of the reference space into a sequence of approximating
subspaces – the scale spaces – corresponding to the scale parameter. In
each scale space, a filtered version of a spherical field under consideration
is calculated as a convolution of the field against the respective member of
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the scaling function and, thus, leading to an approximation of the field at
certain resolutions. For increasing scales, the approximation improves and
the information obtained on coarse levels is usually contained in foregoing
levels. The difference between two successive bandpass filtered version of
the signal is called the detail information and is collected in the so-called
detail space. The wavelets constitute the basis functions of the detail spaces
and, summarizing our excursion to multiscale modeling, every element of
the reference space can be represented as a structured linear combination of
scaling functions and wavelets corresponding to different scales and at dif-
ferent positions. That is, using scaling functions und wavelets at different
scales, the corresponding multiscale technique can be constructed as to be
suitable for the specific local field structure. Consequently, although most
fields show a correlation in space as well as in frequency, the zonal kernel
functions with their simultaneous space and frequency localization allow for
the efficient detection and approximation of essential features by only using
fractions of the original information (decorrelation).

The Tables 1.7, 1.8, and 1.9 bring together, into a unified nomenclature,
the formalisms for zonal kernel function theory based on the following prin-
ciples:

• Weighted Legendre kernels are the constituting summands of zonal
kernel functions.

• The only zonal kernel that is both band- and spacelimited is the trivial
kernel; the Legendre kernel is ideal in frequency localization, the Dirac
kernel is ideal in space localization.

• The convolution of a field (signal) against a zonal kernel function
provides a filtered version of the original.

• Scaling kernels, i.e., certain sequences of (parameter-dependent) zonal
kernels tending to the Dirac kernel, provide better and better approx-
imating low-pass filtered versions of the field (signal) under consider-
ation.

To summarize, the theory of zonal kernels as presented in this book (see
Chapters 7, 8, and 9) is a unifying attempt of reviewing, clarifying and
supplementing the different additive clusters of weighted Legendre kernels.
The kernels exist as bandlimited and non-bandlimited, spacelimited, and
non-spacelimited variants. The uncertainty principle determines the fre-
quency/ space window for approximation. A fixed space window is used for
the windowed Fourier transform of fields (signals), where the approxima-
tion is still taken over the frequencies. The power of the scaling function
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Table 1.8: Interrelations between space and frequency localization, kernel
type, correlation, integral transform and resolution.

Space localization
� �

no space localization ideal space localization

frequency localization
� �

ideal frequency localization no frequency localization

kernel type
� �

Legendre kernel bandlimited locally supported Dirac kernel

correlation
� �

ideal correlation no correlation

integral transform
� �

Fourier windowed Fourier wavelet

resolution
� �

low high

lies in the fact that zonal kernels with a variable (space localizing) support
come into use. The multiscale transform using scaling (kernel) functions
is a space-reflected replacement of the Fourier transform, however, giving
the dynamical space-varying frequency distribution of a field. Due to the
possibility that variable kernel functions (i.e., scaling functions as sequential
space localizing reductions) are being applied, a substantial better modeling
of the high-frequency ‘short wavelength’ part of a field (signal) is possible.
This finally amounts to the transition from global to (scale-dependent) local
approximation (including multiresolution by spherical wavelets).
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1.2 Layout

Chapter 2 gives an introduction into spherical nomenclature and settings.
Fundamental results of spherical vector analysis are recapitulated. Orthogo-
nal invariance is explained within the scalar, vectorial, and tensorial concept
(see Table 1.9).

Table 1.9: The fundamentals of the book.

Funk–Hecke
formula

orthogonal
invariance

addition
theorem

scalar

vectorial

tensorial

In Chapter 3, the scalar surface theory of spherical harmonics is formu-
lated based on the work of C. Müller (1952, 1966) and W. Freeden (1979a);
W. Freeden (1980b). Important ingredients are the addition theorem of
spherical harmonics and the formula of Funk and Hecke. The closure and
completeness of scalar spherical harmonics in the space of square-integrable
functions is shown by Bernstein or Abel-Poisson summability. Exact genera-
tion of linearly independent systems of homogeneous harmonic polynomials
only by integer operations is investigated briefly. Fourier (orthogonal) ex-
pansions are discussed, (the energy of) a square-integrable function (signal)
is split into degree variances in terms of spherical harmonics. The scalar
spherical harmonics are recognized to be eigenfunctions of the scalar Bel-
trami operator on the (unit) sphere. The Legendre polynomial is identified
as the only scalar spherical harmonic invariant under orthogonal transfor-
mations. Zonal, tesseral, and sectorial spherical harmonics, i.e., associated
Legendre harmonics, are introduced by use of associated Legendre func-
tions. Scalar angular derivatives are seen to produce anisotropic operators
within the scalar framework.
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Chapter 4 presents the theory of Green functions with respect to the scalar
Beltrami operator (as proposed by W. Freeden (1979a); W. Freeden (1980b,
1981a)). Its definition is given by formulating four constituting properties,
i.e., the Beltrami differential equation relating the Green function to the
Dirac function(al), the characteristic logarithmic singularity, the rotational
symmetry, and a certain normalization condition to assure uniqueness. In-
tegral formulas are formulated that enable us to estimate the error between
a (sufficiently smooth) function and its truncated orthogonal expansion in
terms of scalar spherical harmonics. Integral expressions are deduced which
act as solutions of the equations involving surface gradient, surface curl gra-
dient, and (iterated) Beltrami differential operators. The results on Green
functions are meant to be the preparatory material for decomposition the-
orems of spherical vector and tensor fields, respectively, in accordance with
the Helmholtz approach. Iterated Beltrami equations are solved by integral
expressions involving Green functions.

In Chapter 5, the vector theory of spherical harmonics is developed in con-
sistency with its scalar counterpart (based on the work T. Gervens (1989),
W. Freeden, T. Gervens (1989, 1991), W. Freeden et al. (1998)). A particu-
lar role is played by the Helmholtz decomposition theorem which separates
a spherical vector field into three field components, namely a radial part,
a tangential divergence-free, and a tangential curl-free part. As already
pointed out, an essential tool for representing a spherical vector field is the
Green function with respect to the Beltrami operator. The physical back-
ground for the Helmholtz decomposition is based on well-known facts of
surface vector analysis, viz. the existence of surface potentials and stream
functions, and the characterization of tangential vector fields such as sur-
face (curl) gradient fields. To be more concrete, the surface gradient field
on the sphere is seen to be generated by a potential function, while the sur-
face curl gradient field is canonically related to a stream function. Vectorial
analogues of the Legendre polynomials are introduced, their properties are
analyzed in detail. Outstanding keystones in the vectorial framework of vec-
tor spherical harmonics are the addition theorem and the formulas of Funk
and Hecke. The closure and completeness of vector spherical harmonics for
the space of square-integrable vector fields is shown via Bernstein summabil-
ity. Two different ways of expanding square-integrable fields in terms of (an
orthonormal system of) vector spherical harmonics are described alterna-
tively based on a (one-step) tensor-vector multiplication or on a consecutive
(two-step) vector-scalar and scalar-vector multiplication.

Chapter 6 deals with the theory of tensor spherical harmonics (in close
orientation to M. Schreiner (1994), W. Freeden et al. (1994, 1998)). All
essential results known from the scalar and vectorial approach are extended
to the tensor case. Orthonormal tensor spherical harmonics are introduced
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in the space of square-integrable tensor fields on the unit sphere. In partic-
ular, the addition theorem for tensor spherical harmonics is formulated and
the decomposition theorem for spherical tensor fields is verified by use of
the Green function with respect to iterations of the Beltrami operator. The
tensor spherical harmonics are characterized as eigenfunctions of a tensorial
analogue of the Beltrami operator. Alternative approaches to tensor spher-
ical harmonics are studied. Tensorial versions of the Funk–Hecke formula
are described in more detail.

Chapter 7 presents the mathematical classification of zonal kernel func-
tions. The verification and interpretation of an uncertainty principle for
fields (with second distributional derivatives) on the the unit sphere is the
essential tool for the classification. Frequency as well as space localization
are formulated by means of the expectation value and the variance of the
surface curl gradient and the radial projection operator, respectively. The
results obtained by certain tools of spherical vector analysis are used for
a large class of band/spacelimited and non-band/spacelimited zonal kernel
functions. The particular role of the Legendre kernel and the Dirac kernel is
pointed out. The series expansions of vector/tensor zonal kernel functions
in terms of (zonal) Legendre kernels are indicated by the specification of
their symbols. All representations are coordinate-free.

Chapter 8 considers two different ways of generating vectorial and ten-
sorial zonal kernel functions (cf. H. Nutz (2002)). In particular, scale-
dependent bandlimited and non-bandlimited zonal kernel functions are listed
such that the scale parameter acts as regulation for the amount of space/fre-
quency localization. The Funk-Hecke formulas enable us to establish filtered
versions of spherical fields by forming convolutions. The sequences of zonal
kernel functions tending to the Dirac kernel, i.e., the so-called scaling func-
tions, provide a ‘zooming in’ approximation of square-integrable fields from
global to local features under (geophysically) constraints.

Chapter 9 presents the concept of tensorial zonal kernel functions. Their
description is given in parallel to the vectorial case. Particular emphasis is
laid on tensor scaling functions.

Finally, Chapter 10 is an application of our spherically oriented approach
to geoscientifically relevant gravitation. The essential goal is to present the
mathematical concepts, structures, and tools for the understanding of mass
balance and mass transport seen in the closely interrelated Earth’s grav-
ity field. The key observables in gravitational field determination such as
gravity anomalies, gravity disturbances, geoidal undulations, deflections of
the vertical, dynamic ocean topography etc are mathematically character-
ized, both in terms of spherical harmonics and zonal kernel functions. The
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problems of determining the (geostrophic) ocean circulation, the elastic field
from ground displacements, and the density distribution inside the Earth
are studied in more detail. Finally, vector and tensor outer harmonic zonal
kernels are shown to be the adequate means for ‘downward continuation’ of
vectorial and tensorial gravitational data from satellite orbits to the Earth’s
surface.

A brief view over the contents of the chapters of this book is given in
Table 1.10.
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Table 1.10: Contents (in brief).

Scalar
framework

Vector
framework

Tensor
framework

Basic settings
(differential
operators,
orthogonal
invariance)

Chapter 2 Chapter 2 Chapter 2

Green’s
functions,

integral
theorems

Chapter 4

Spherical
harmonics
(definition,
Legendre
functions,
addition
theorems,

Funk–Hecke
formulas)

Chapter 3 Chapter 5 Chapter 6

Zonal kernel
Functions
(definition,

classification,
scaling

functions,
Dirac kernel)

Chapter 7 Chapter 8 Chapter 9

Applications
(mass

distribution
interrelated to
gravity field
quantities)

Chapter 10 Chapter 10 Chapter 10



2 Basic Settings and Spherical
Nomenclature

In this chapter, we start with some notation in the three-dimensional Eu-
clidean space R

3. The most important differential operators in R
3 are listed.

We give the representation of the gradient and the Laplace operator and split
them into their radial and angular parts.

Certain differential operators on the unit sphere Ω in R
3 are introduced,

including the surface gradient, the surface curl gradient, the surface diver-
gence, the surface curl, and the Beltrami operator. Although we rely on
coordinate-free representations throughout this book (to avoid coordinate-
implied singularities on the (global) sphere Ω), these operators will be dis-
cussed, for the convenience of the reader, in the particular system of spher-
ical coordinates. Function spaces of scalar- and vector-valued functions on
the unit sphere are characterized. Basic theorems on vector analysis are
recapitulated in spherical language. Finally, we are concerned with basic
results on spherical symmetry and orthogonal invariance in the scalar, vec-
tor, and tensor context, respectively.

2.1 Scalars, Vectors, and Tensors

The letters N, N0, Z, R, and C denote the set of positive, non-negative inte-
gers, integers, real numbers, and complex numbers, respectively. Let us use
x, y, . . . to represent the elements of the Euclidean space R

3. For all x ∈ R
3,

x = (x1, x2, x3)T , different from the origin, we have

x = rξ, r = |x| =
√

x2
1 + x2

2 + x2
3, (2.1)

where ξ = (ξ1, ξ2, ξ3)T is the uniquely determined directional unit vector of
x ∈ R

3. The unit sphere in R
3 is denoted by Ω:

Ω =
{
ξ ∈ R

3
∣∣|ξ| = 1

}

19
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If the vectors ε1, ε2, ε3 form the canonical orthonormal basis in R
3

ε1 =

⎛

⎝
1
0
0

⎞

⎠ , ε2 =

⎛

⎝
0
1
0

⎞

⎠ , ε3 =

⎛

⎝
0
0
1

⎞

⎠ , (2.2)

we may represent the points x ∈ R
3 in cartesian coordinates xi = x · εi,

i = 1, 2, 3, by

x =
3∑

i=1

(x · εi)εi =
3∑

i=1

xiε
i . (2.3)

The inner (scalar), vector, and dyadic (tensor) product of two elements
x, y ∈ R

3, are defined by

x · y = xT y =
3∑

i=1

xiyi, (2.4)

x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)
T , (2.5)

x⊗ y = xyT =

⎛

⎝
x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3

⎞

⎠ , (2.6)

respectively. Clearly, x2 = |x|2 = x · x = xT x, x ∈ R
3. Moreover, for

x, y ∈ R
3, we have the Cauchy-Schwarz inequality

|x · y| ≤ |x| · |y| (2.7)

and the triangle inequality

||x| − |y|| ≤ |x± y| ≤ |x|+ |y|. (2.8)

With the alternator (Levi–Cività alternating symbol)

εijk =

⎧
⎨

⎩

+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 if (i, j, k) is not a permutation of (1, 2, 3)

(2.9)

we obtain

(x ∧ y) · εi = (x ∧ y)i =
3∑

j=1

3∑

k=1

εijkxjyk . (2.10)

Moreover, we have

3∑

i=1

εijkεipq = δjpδkq − δjqδkp, (2.11)
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where δij is the Kronecker delta

δij =
{

0 if i �= j
1 if i = j .

(2.12)

As usual, a tensor x ∈ R
3⊗R

3 of second rank (of rank 2 or second order)
is understood to be a linear mapping that assigns to each x ∈ R

3 a vector
y ∈ R

3: y = xx. The (cartesian) components xij of x are defined by

xij = εi · (xεj) = (εi)T (xεj), (2.13)

so that y = xx is equivalent to

yi = y · εi =
3∑

j=1

xij(x · εj) =
3∑

j=1

xijxj . (2.14)

The inner product x · y of two rank–2 tensors x,y ∈ R
3 ⊗ R

3 (also known
as double dot product x : y) is defined by

x · y = tr(xTy) =
3∑

i=1

3∑

j=1

xijyij , (2.15)

while
|x| = (x · x)1/2 (2.16)

is called the norm of x ∈ R
3 ⊗ R

3.

Given any tensor x and any pair x, y ∈ R
3, we have

x · (xy) = x · (x⊗ y) . (2.17)

In connection with (2.17) it is easy to see that

(εi ⊗ εj) · (εk ⊗ εl) = δik δjl, (2.18)

so that the nine tensors εi ⊗ εj are orthonormal. Moreover, it follows that

3∑

i=1

3∑

j=1

(
xijε

i ⊗ εj
)
x =

3∑

i=1

3∑

j=1

xij(x · εj)εi = xx. (2.19)

Thus, x ∈ R
3 ⊗ R

3 can be written in the form

x =
3∑

i=1

3∑

j=1

xijε
i ⊗ εj . (2.20)
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The identity tensor i is given by

i =
3∑

i=1

εi ⊗ εi . (2.21)

Moreover, we write tr(x) for the trace of x and det(x) for the determinant
of x. It is not hard to see that

tr(x⊗ y) = x · y, x, y ∈ R
3. (2.22)

Furthermore,

x · (yz) =
(
yTx

)
· z =

(
xzT

)
· y, x,y, z ∈ R

3 ⊗ R
3 . (2.23)

We write xT for the transpose of x; it is the unique tensor satisfying

(xy) · x = y ·
(
xT x

)
, (2.24)

for all x, y ∈ R
3. We call x symmetric if x = xT , and skew if x = −xT .

Every tensor x admits the unique decomposition

x = sym x + skw x, (2.25)

into the symmetric part sym x and the skew part skw x. More explicitly,

sym x =
1
2
(
x + xT

)
, skw x =

1
2
(
x− xT

)
. (2.26)

It should be noted that there is a one-to-one correspondence between
vectors and skew tensors: Given any skew tensor w, there exists a unique
vector w such that wx = w ∧ x for every x ∈ R

3; indeed,

wi = −1
2

3∑

j=1

3∑

k=1

εijkwjk . (2.27)

We call w the axial vector corresponding to w. Conversely, given a vector
w, there exists a unique skew tensor w such that the above relation holds;
in fact,

wij = −
3∑

k=1

εijkwk . (2.28)

The dyadic (tensor) product x⊗ y of two elements x, y ∈ R
3 (see (2.6)) is

the tensor that assigns to each u ∈ R
3 the vector (y · u)x. More explicitly,

(x⊗ y)u = (y · u)x (2.29)
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for every u ∈ R
3.

By use of the canonical orthonormal basis {ε1, ε2, ε3} of R
3, a tensor F

of rank k is written in the form

F =
3∑

i1,...,ik=1

Fi1,...,ikεi1 ⊗ . . .⊗ εik , Fi1,...,ik ∈ R, (2.30)

and the set {εi1⊗ . . .⊗εik}i1,...,ik∈{1,2,3} is an orthonormal basis of the linear
space of all tensors of rank k.

The scalar product F ·G of two tensors of rank k is defined by

F ·G =
3∑

i1,...,ik=1

Fi1,...,ikGi1,...,ik , (2.31)

and the Euclidean norm is

|F| = (F · F)1/2. (2.32)

If F =
∑3

i1,...,ik=1 Fi1,...,ikεi1 ⊗ . . .⊗ εik and G =
∑3

i1,...,il
εi1 ⊗ . . .⊗ εil are

tensors of rank k and l, respectively, then F⊗G is the tensor of rank k + l
defined by

F⊗G =
3∑

i1,...,ik=1

3∑

j1,...,jl=1

Fi1,...,ikGj1,...,jl
εi1⊗. . .⊗εik⊗εj1⊗. . .⊗εjl . (2.33)

A tensor of rank two,

f =
3∑

i,k=1

Fi,kε
i ⊗ εk, (2.34)

can be viewed as a linear operator on vectors (tensors of rank one) g =∑3
i=1 Giε

i in the sense of

fg =
3∑

i,k=1

Fi,kGkε
i. (2.35)

Interpreting a tensor of rank four as a linear operator on tensors of rank
two, we define

Fg =
3∑

i,j,k,l=1

Fi,j,k,lGk,lε
i ⊗ εj , (2.36)

where

F =
3∑

i,j,k,l=1

Fi,j,k,lε
i ⊗ εj ⊗ εk ⊗ εl (2.37)
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is a tensor of rank four (also called rank-4 tensor) and

g =
3∑

k,l=1

Gk,lε
k ⊗ εl (2.38)

is a tensor of rank two (i.e., rank-2 tensor).

As usual, we define the product of two tensors of rank two, f =
∑3

i,k=1

Fi,kε
i ⊗ εk and g =

∑3
k,j=1 Gk,jε

k ⊗ εj , by

fg =
3∑

i,j,k=1

Fi,kGk,jε
i ⊗ εj . (2.39)

Furthermore, the product of two rank-4 tensors

F =
3∑

i,j,m,n=1

Fi,j,k,lε
i ⊗ εj ⊗ εm ⊗ εn (2.40)

and

G =
3∑

m,n,k,l=1

Gm,n,k,lε
m ⊗ εn ⊗ εk ⊗ εl (2.41)

is analogously defined by

FG =
3∑

i,j,k,l,m,n=1

Fi,j,m,nGm,n,k,lε
i ⊗ εj ⊗ εk ⊗ εl. (2.42)

2.2 Differential Operators

If Γ is a set of points in R
3, ∂Γ will denote its boundary. The set Γ = Γ∪∂Γ

will be called the closure of Γ. A set Γ ⊂ R
3 is called a region if and only if

it is open and connected.

By a scalar, vector, or tensor function (field) on a region Γ ⊂ R
3, we

mean a function that assigns to each point of Γ, a scalar, vectorial, or
tensorial function value, respectively. Unless otherwise specified, all fields
are assumed to be real valued throughout this book. It will be of advantage
to use the following general scheme of notations:

capital letters F ,G : scalar functions,
lower-case letters f , g : vector fields,
boldface lower-case letters f ,g : tensor fields of second rank,
boldface capital letters F,G : tensor fields of fourth rank.
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The restriction of a scalar-valued function F , a vector-valued function f ,
or a tensor-valued function f to a subset M of its domain is denoted by
F |M , f |M , or f |M , respectively. For a set S of functions, we set S|M =
{F |M

∣∣F ∈ S}.

Let Γ ⊂ R
3 be a region. Suppose that F : Γ → R is differentiable.

∇F : x �→ (∇F )(x), x ∈ Γ, denotes the gradient of F on Γ. The partial
derivatives of F at x ∈ Γ, briefly written F|i, i ∈ {1, 2, 3}, are given by

F|i(x) =
∂F

∂xi
(x) = (∇F ) (x) · εi = ((∇F ) (x))i . (2.43)

LF : x �→ LF (x) = x ∧ (∇F )(x), x ∈ Γ, is called the curl gradient of F
on Γ. We say that the scalar function F : Γ → R, the vector function
f : Γ → R

3, and the tensor function f : Γ → R
3⊗R

3, respectively, is of class
C(1)on Γ, c(1) on Γ, and c(1) on Γ, if F, f, f , respectively, is differentiable
at every point of Γ and ∇F,∇f,∇f , respectively, is continuous on Γ. The
gradient of ∇F , ∇f , ∇f is denoted by ∇(2)F , ∇(2)f , ∇(2)f . Continuing in
this manner, we say that F, f, f , respectively, is of class C(n), c(n), c(n) on
Γ, n ≥ 1 (briefly, F ∈ C(n)(Γ), f ∈ c(n)(Γ), f ∈ c(n)(Γ)) if it is of class
C(n−1), c(n−1), c(n−1) and its (n − 1)st gradient ∇(n−1)F , ∇(n−1)f ,∇(n−1)f ,
respectively, is continuously differentiable (note that we usually write C, c, c
instead of C(0), c(0), c(0), respectively).

Obviously, the gradient of a differentiable scalar field is a vector field,
while the gradient of a differentiable vector field is a tensor field, etc. We
say that F is of class C(n) on Γ, Γ = Γ ∪ ∂Γ (briefly, F ∈ C(n)(Γ)), if F
is of class C(n) on Γ and, for each k ∈ {0, . . . , n}, ∇(k)F has a continuous
extension to Γ (in this case, we also write ∇(n)F for the extended function).
Analogous definitions can be given for the vectorial and tensorial cases.

Let u : Γ → R
3 be a vector field, and suppose that u is differentiable at a

point x ∈ Γ. The partial derivatives of u at x ∈ Γ are given by

ui|j(x) =
∂ui

∂xj
(x) = εi · (∇u)(x)εj . (2.44)

Then, the divergence of u at x ∈ Γ is the scalar value

∇x · u(x) = divxu(x) = tr (∇u)(x) . (2.45)

Thus we have the identity

∇x · u(x) = divxu(x) =
3∑

i=1

ui|i(x) . (2.46)



26 2 Basic Settings and Spherical Nomenclature

The curl of u at x ∈ Γ, denoted by

Lx · u(x) = curlxu(x),

is the unique vector with the property
(
(∇u) (x)− (∇u) (x)T

)
a = (curlxu(x)) ∧ a = (Lx · u(x)) ∧ a (2.47)

for every a ∈ R
3. In components, we have

(Lx · u(x)) · εi = curlxu(x) · εi =
3∑

j=1

3∑

k=1

εijkuk|j(x) . (2.48)

We write (∇̂xu)(x) for the symmetric gradient of u given by

(∇̂u)(x) = sym (∇u)(x) =
1
2
(
(∇u)(x) + (∇u)(x)T

)
. (2.49)

Let f : Γ → R
3⊗R

3 be a tensor field of second order, and suppose that f
is differentiable at x ∈ Γ. The partial derivatives of f at x ∈ Γ are given by

fij|k(x) =
∂fij
∂xk

(x) = εi ·
(
(∇f) (x)εk

)
εj , (2.50)

Then the tensor field fT : x �→ (f(x))T , x ∈ Γ, is also differentiable at
x ∈ Γ. The divergence of f at x, written by ∇x · f(x) = divxf(x), is the
unique vector with the property

(∇x · f(x)) · a = divxf(x) · a (2.51)
= divx

(
fT (x)a

)
= ∇x ·

(
fT (x)a

)

for every (fixed) vector a ∈ R
3. In the same manner, we define the curl of

f at x, written by Lx · f(x) = curlxf(x), to be the unique tensor with the
property

(Lx · f(x)) a = curlxf(x)a = curlx
(
fT (x)a

)
= Lx ·

(
fT (x)a

)
(2.52)

for every (fixed) vector a ∈ R
3. Clearly,

(∇x · f(x))i = divxf(x) · εi =
3∑

j=1

fij|j(x), (2.53)

εi ·
(
Lx · f(x)εj

)
= εi · curlxf(x)εj =

3∑

p=1

3∑

q=1

εipqfjq|p(x) . (2.54)



2.2 Differential Operators 27

Let F : Γ → R be a differentiable scalar field, and suppose that ∇F is
differentiable at x ∈ Γ. Then we introduce the Laplace operator (Laplacian)
of F at x ∈ Γ by

ΔxF (x) = divx ((∇F )(x)) = ∇x · ((∇F ) (x)) . (2.55)

Analogously, we define the Laplacian of a vector field f : Γ → R
3 (with ∇f

being differentiable at x ∈ Γ) by

Δxf(x) = divx ((∇f) (x)) = ∇x · ((∇f) (x)) . (2.56)

Clearly, for sufficiently often differentiable F, f ,

ΔxF (x) =
3∑

i=1

F|i|i(x), (2.57)

Δxf(x) · εi =
3∑

j=1

fi|j|j(x) . (2.58)

Finally, the Laplacian Δxf(x) of a sufficiently smooth tensor field f is the
unique tensor (of second order) with the property

(Δf) (x)a = Δx (f(x)a) (2.59)

for every fixed a ∈ R
3. In components,

εi · (Δf) (x)εj =
3∑

q=1

fij|q|q(x) . (2.60)

Of future interest are the following identities

L · ∇F = curl ∇F = 0, (2.61)
∇ · (L · u) = div curl u = 0, (2.62)
L · (L · u) = curl curl u = ∇div u−Δu = ∇ (∇ · u)−Δu, (2.63)

L · (∇u) = curl ∇u = 0, (2.64)
L ·
(
∇uT

)
= curl (∇uT ) = ∇curl u = ∇ (L · u) , (2.65)

∇u = −∇uT ⇒ ∇∇u = 0, (2.66)
∇ · (L · f) = div curl f = curl div fT = L ·

(
∇ · fT

)
, (2.67)

(L · (L · f))T = (curl curl f)T = curl curl fT = L ·
(
L · fT

)
, (2.68)

∇ ·
(
fT u

)
= div (fT u) = u · div f + f · ∇u = u · (∇ · f) + f · ∇u,

(2.69)
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provided that F is a scalar field, u is a vector field, and f is a tensor field,
sufficiently often differentiable on Γ.

If Γ is a bounded region in three-dimensional Euclidean space with (smooth)
boundary ∂Γ and unit outward normal ν, then the Gauss theorem tells us
that

∫

Γ
∇xF (x) dV (x) =

∫

∂Γ
F (x)ν(x) dω(x), (2.70)

∫

Γ
∇xf(x) dV (x) =

∫

∂Γ
f(x)⊗ ν(x) dω(x), (2.71)

∫

Γ
∇x · f(x) dV (x) =

∫

∂Γ
f(x) · ν(x) dω(x), (2.72)

∫

Γ
Lx · f(x) dV (x) =

∫

∂Γ
ν(x) ∧ f(x) dω(x), (2.73)

∫

Γ
∇x · f(x) dV (x) =

∫

∂Γ
f(x)ν(x) dω(x), (2.74)

whenever the integrand on the left is continuously differentiable on Γ =
Γ ∪ ∂Γ (dV is the volume element, dω is the surface element).

By letting f = ∇F , F ∈ C(1)(Γ), we obtain from (2.72)
∫

Γ
ΔxF (x) dV (x) =

∫

∂Γ

∂F

∂ν
(x) dω(x). (2.75)

Consequently, for all functions F ∈ C(1)(Γ)∪C(2)(Γ) satisfying the Laplace
equation ΔF = 0 in Γ, we have

∫

∂Γ

∂F

∂ν
(x) dω(x) = 0. (2.76)

Furthermore, for all f = F∇G , F ∈ C(1)(Γ), G ∈ C(2)(Γ), we get

Theorem 2.1. (First Green Theorem) For F ∈ C(1)(Γ), G ∈ C(2)(Γ)
∫

Γ
(F (x)ΔxG(x) +∇xF (x) · ∇xG(x)) dV (x) =

∫

∂Γ
F (x)

∂G

∂ν
(x) dω(x).

Taking f = F∇G−G∇F , F, G ∈ C(2)(Γ), we obtain

Theorem 2.2. (Second Green Theorem) For F, G ∈ C(2)(Γ)
∫

Γ
(F (x)ΔxG(x)−G(x)ΔxF (x)) dV (x)

=
∫

∂Γ

(
F (x)

∂G

∂ν
(x)−G(x)

∂F

∂ν
(x)
)

dω(x).
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For all x ∈ R
3\{y}, x = (x1, x2, x3)T , y = (y1, y2, y3)T , an easy calculation

shows us that
1

|x− y| =
1

(
3∑

k=1

(xk − yk)2
)1/2

, (2.77)

∂

∂xk

1
|x− y| = −xk − yk

|x− y|3 , k = 1, 2, 3, (2.78)

and
∂

∂xk∂xj

1
|x− y| =

3(xk − yk)(xj − yj)− δkj |x− y|2
|x− y|5 , (2.79)

j, k = 1, 2, 3. In other words, for all x ∈ R
3, x �= y, we have

Δx
1

|x− y| = 0, (2.80)

i.e., x �→ |x − y|−1, x �= y, is a radial-symmetric solution of the Laplace
equation in R

3\{y}. In potential theory, it is called the fundamental solution
of Δ.

Suppose that y is an element of Γ. Then, for all sufficiently small ε > 0,
the Second Green Theorem (Theorem 2.2) gives us

∫

x∈Γ
|x−y|≥ε

⎛

⎜⎜⎝F (x) Δx
1

|x− y|︸ ︷︷ ︸
=0

− 1
|x− y|ΔxF (x)

⎞

⎟⎟⎠ dV (x) (2.81)

=
∫

x∈∂Γ

(
F (x)

∂

∂νx

1
|x− y| −

1
|x− y|

∂F

∂ν
(x)
)

dω(x)

+
∫

|x−y|=ε

x∈Γ

(
F (x)

∂

∂νx

1
|x− y| −

1
|x− y|

∂F

∂ν
(x)
)

dω(x)

provided that F is of class C(2)(Γ). Now, because of the continuity of ∂F
∂ν ,

we find
∣∣∣∣∣∣∣∣

∫

|x−y|=ε

x∈Γ

1
|x− y|

∂F

∂ν
(x) dω(x)

∣∣∣∣∣∣∣∣
≤ 1

ε

∫

|x−y|=ε

x∈Γ

∣∣∣∣
∂F

∂ν
(x)
∣∣∣∣ dω(x) (2.82)

≤ C

ε
4πε2 ε→0−→ 0.
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Moreover, we have
∫

|x−y|=ε

x∈Γ

F (x)
∂

∂νx

1
|x− y| dω(x) (2.83)

= −
∫

|x−y|=ε

x∈Γ

F (x) ν(x) · x− y

|x− y|3 dω(x)

=
1
ε2

∫

|x−y|=ε

x∈Γ

F (x) dω(x).

The Mean Value Theorem allows us to write
∫

|x−y|=ε

x∈Γ

F (x) dω(x) = 4πF (xε)ε2, (2.84)

where xε is a point on the sphere in R
3 with center y and radius ε. Observing

the continuity of F , we are able to deduce that F (xε)
ε→0−→ F (y) as xε

ε→0−→ y.
Thus we see that

lim
ε→0

∫

|x−y|=ε

x∈Γ

F (x)
∂

∂νx

1
|x− y|dω(x) = 4πF (y), y ∈ Γ. (2.85)

Remark 2.3. Similar arguments apply to the cases y ∈ ∂Γ and y /∈ Γ.

Summarizing our results we finally obtain the following theorem.

Theorem 2.4. (Third Green Theorem) Let F be of class C(2)(Γ). Then

∫

Γ

1
|x− y|ΔxF (x) dV (x)

−
∫

∂Γ

(
1

|x− y|
∂F

∂ν
(x)− F (x)

∂

∂νx

1
|x− y|

)
dω(x) (2.86)

=

⎧
⎨

⎩

−4πF (y) , y ∈ Γ,
−2πF (y) , y ∈ ∂Γ,

0 , y /∈ Γ.

2.3 Spherical Notation

As already mentioned, the unit sphere in R
3 is denoted by Ω:

Ω =
{
ξ ∈ R

3
∣∣|ξ| = 1

}
. (2.87)
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We set Ωint for the ‘inner space’ of Ω, while Ωext denotes the ‘outer space’
of Ω. More explicitly,

Ωint =
{
x ∈ R

3
∣∣ |x| < 1

}
, (2.88)

Ωext = {x ∈ R
3| |x| > 1}. (2.89)

The sphere in R
3 with radius R around the origin will be denoted by ΩR:

ΩR =
{
x ∈ R

3
∣∣|x| = R

}
. (2.90)

We set Ωint
R for the ‘inner space’ of ΩR, while Ωext

R denotes the ‘outer space’
of ΩR:

Ωint
R =

{
x ∈ R

3
∣∣ |x| < R

}
, (2.91)

Ωext
R = {x ∈ R

3| |x| > R}. (2.92)

It is well known that the total surface ‖ΩR‖ of ΩR is equal to 4πR2:

‖ΩR‖ =
∫

ΩR

dω(ξ) = 4πR2. (2.93)

We may represent the points x ∈ R
3, x = rξ, ξ ∈ Ω in polar coordinates as

follows (see Fig. 2.1):

x = rξ, r = |x|,
ξ = tε3 +

√
1− t2(cos ϕε1 + sinϕε2),

−1 ≤ t ≤ 1 , 0 ≤ ϕ < 2π , t = cos ϑ ,

(2.94)

(ϑ ∈ [0, π]: (co-)latitude, ϕ: longitude, t: polar distance), i.e.,

ξ = (sin ϑ cos ϕ, sinϑ sinϕ, cos ϑ)T . (2.95)
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Fig. 2.1: Polar coordinates in three-dimensional Euclidean space R
3.

More explicitly,

ξ = (sinϑξ cos ϕξ, sinϑξ sin ϕξ, cos ϑξ)
T . (2.96)

The scalar product between two unit vectors ξ and η reads as follows:

η · ξ = sinϑη cos ϕη sinϑξ cos ϕξ (2.97)
+ sinϑη sin ϕη sinϑξ sin ϕξ

+ cos ϑη cos ϑξ

= (cos ϕη cos ϕξ + sin ϕη sinϕξ) sinϑη sin ϑξ + cos ϑη cos ϑξ

= cos(ϕη − ϕξ) sinϑη sin ϑξ + cos ϑη cos ϑξ

= cos(ϕη − ϕξ)
√

1− t2η

√
1− t2ξ + tηtξ.

2.4 Function Spaces

The set of scalar functions F : Ω → R which are measurable and for which

‖F‖Lp(Ω) =
(∫

Ω
|F (ξ)|p dω(ξ)

) 1
p

< ∞, 1 ≤ p < ∞, (2.98)
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is known as Lp(Ω). Clearly, Lp(Ω) ⊂ Lq(Ω) for 1 ≤ q < p. A function
F : Ω → R possessing k continuous derivatives on the unit sphere Ω is said
to be of class C(k)(Ω), (0 ≤ k ≤ ∞). C(Ω) (= C(0)(Ω)) is the class of
continuous scalar-valued functions on Ω. C(Ω) is a complete normed space
endowed with

‖F‖C(Ω) = sup
ξ∈Ω

|F (ξ)|. (2.99)

By μ(F ; δ), we denote the modulus of continuity of the function F ∈ C(Ω)

μ(F ; δ) = max
ξ,ζ∈Ω;1−ξ·ζ≤δ

|F (ξ)− F (ζ)| , 0 < δ < 2. (2.100)

A function F : Ω → R is said to be Lipschitz-continuous if there exists a
(Lipschitz) constant CF > 0 such that the inequality

|F (ξ)− F (η)| ≤ CF |ξ − η| =
√

2CF

√
1− ξ · η (2.101)

holds for all ξ, η ∈ Ω. The class of all Lipschitz-continuous functions on Ω
is denoted by Lip(Ω). Clearly, C(1)(Ω) ⊂ Lip(Ω).

L2(Ω) is a Hilbert space with respect to the inner product (·, ·)L2(Ω) de-
fined by

(F, G)L2(Ω) =
∫

Ω
F (ξ)G(ξ) dω(ξ), F, G ∈ L2(Ω). (2.102)

In connection with (·, ·)L2(Ω), C(Ω) is a pre-Hilbert space. For each F ∈
C(Ω) we have the norm estimate

‖F‖L2(Ω) ≤
√

4π ‖F‖C(Ω). (2.103)

L2(Ω) is the completion of C(Ω) with respect to the norm ‖ · ‖L2(Ω), i.e.,

L2(Ω) = C(Ω)
‖·‖L2(Ω) . (2.104)

Any function of the form

Gξ : Ω → R, η �→ Gξ(η) = G(ξ · η), η ∈ Ω, (2.105)

is called a ξ-zonal function on Ω (or ξ-axial radial basis function). Zonal
functions are constant on the sets

Ω(ξ; h) = {η ∈ Ω|ξ · η = h}, h ∈ [−1, 1] . (2.106)
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The set of all ξ-zonal functions is isomorphic to the set of functions G :
[−1, 1] → R. This allows us to interpret C[−1, 1] and Lp[−1, 1] (with norms
defined correspondingly) as subspaces of C(Ω) and Lp(Ω). Obviously,

‖G‖C[−1,1] = ‖G(ε3·)‖C(Ω), (2.107)

and we define

‖G‖Lp[−1,1] = ‖G(ε3·)‖Lp(Ω)

=
(∫

Ω
|G(η · ε3)|p dω(η)

)1/p

=
(

2π

∫ 1

−1
|G(t)|p dt

)1/p

.

(2.108)

Analogously, we define the inner product in L2[−1, 1] by

(F, G)L2[−1,1] = 2π

∫ 1

−1
F (t)G(t) dt, (2.109)

F, G ∈ L2[−1, 1].

Next, we give some preliminaries for the study of vector fields defined on
the unit sphere Ω. Using the canonical orthonormal basis {ε1, ε2, ε3} of R

3,
we may write any vector field f : Ω → R

3 in the form

f(ξ) =
3∑

i=1

Fi(ξ)εi, ξ ∈ Ω, (2.110)

where the component functions Fi are given by Fi(ξ) = f(ξ) · εi, ξ ∈ Ω.

l2(Ω) denotes the space consisting of all square-integrable vector fields on
Ω. In connection with the inner product

(f, g)l2(Ω) =
∫

Ω
f(ξ) · g(ξ) dω(ξ), f, g ∈ l2(Ω), (2.111)

l2(Ω) is a Hilbert space. The space c(p)(Ω), 0 ≤ p ≤ ∞, consists of all p-
times continuously differentiable vector fields on Ω. For brevity, we usually
write c(Ω) = c(0)(Ω). The space c(Ω) is complete with respect to the norm

‖f‖c(Ω) = sup
ξ∈Ω

|f(ξ)|, f ∈ c(Ω). (2.112)

Furthermore,

c(Ω)
‖·‖l2(Ω) = l2(Ω). (2.113)
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In analogy to (2.103), we have for all f ∈ c(Ω) the norm estimate

‖f‖l2(Ω) ≤
√

4π ‖f‖c(Ω). (2.114)

The generalization of the preceding settings to tensor fields of rank two
is straightforward. A tensor field is said to be of class c(k)(Ω), 0 ≤ k ≤ ∞,
if its component functions with respect to the basis {εi ⊗ εk}i,k=1,2,3 are in
C(k)(Ω). The space c(Ω)(= c(0)(Ω)) equipped with the norm ‖·‖c(Ω) defined
by

‖f‖c(Ω) = sup
ξ∈Ω

|f(ξ)|, f ∈ c(Ω), (2.115)

is a Banach space. By l2(Ω), we denote the Hilbert space of square-integrable
tensor fields f : Ω → R

3 ⊗ R
3 with inner product

(f ,g)l2(Ω) =
∫

Ω
f(ξ) · g(ξ)dω(ξ), f ,g ∈ l2(Ω), (2.116)

and associated norm ‖ · ‖l2(Ω). The space l2(Ω) is the completion of c(Ω)
with respect to the norm ‖ · ‖l2(Ω).

2.5 Differential Calculus

In order to introduce a system of triads on spheres, we define the vector
function

Φ : [0,∞)× [0, 2π)× [−1, 1] → R
3 (2.117)

by

Φ(r, ϕ, t) =

⎛

⎝
r
√

1− t2 cos ϕ

r
√

1− t2 sin ϕ
rt

⎞

⎠ . (2.118)

Setting r = 1 we already know that a local coordinate system is obtainable
on the unit sphere. In other words, instead of denoting any element of Ω
by its vectorial representation ξ, we may also use its coordinates (ϕ, t) in
accordance with (2.94). Calculating the derivatives of Φ and setting r = 1,
the corresponding set of orthonormal unit vectors in the directions r, ϕ, and



36 2 Basic Settings and Spherical Nomenclature

t is easily determined to be

εr(ϕ, t) =

⎛

⎝

√
1− t2 cos ϕ√
1− t2 sinϕ

t

⎞

⎠ , (2.119)

εϕ(ϕ, t) =

⎛

⎝
− sin ϕ
cos ϕ

0

⎞

⎠ , (2.120)

εt(ϕ, t) =

⎛

⎝
−t cos ϕ
−t sinϕ√

1− t2

⎞

⎠ . (2.121)

Obviously,
εt(ϕ, t) = εr(ϕ, t) ∧ εϕ(ϕ, t) . (2.122)

The vectors εϕ and εt mark the tangential directions. Since we associate
ξ with its representations using the local coordinates ϕ and t, we identify
εr(ξ) with εr(ϕ, t), etc (cf. Fig. 2.2).

εr(ξ)

εϕ(ξ)

εt(ξ)

εt(η)

εr(η)
εϕ(η)

Fig. 2.2: The local triad εr, εϕ, εt with respect to two different points ξ and
η on the unit sphere.

From (2.119) to (2.121), we immediately obtain a representation of the
cartesian unit vectors in terms of the spherical ones:

ε1 =
√

1− t2 cos ϕεr(ϕ, t)− sin ϕεϕ(ϕ, t)− t cos ϕεt(ϕ, t), (2.123)

ε2 =
√

1− t2 sinϕεr(ϕ, t) + cos ϕεϕ(ϕ, t)− t sinϕεt(ϕ, t), (2.124)

ε3 = tεr(ϕ, t) +
√

1− t2εt(ϕ, t) . (2.125)

The system {εϕ, εt} enables us to formulate a vector differential calculus.
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Gradient fields ∇F can be decomposed into a radial and a tangential
component. More explicitly, the surface gradient ∇∗ contains the tangential
derivatives of the gradient ∇ as follows:

∇ = εr ∂

∂r
+

1
r
∇∗. (2.126)

Letting x = rξ, r = |x|, ξ ∈ Ω, we find with η ∈ Ω

∇x(x · η) = η = εr(ξ · η) +∇∗
ξ(ξ · η), (2.127)

such that
∇∗

ξ(ξ · η) = η − (ξ · η)ξ. (2.128)

The surface curl gradient L∗ is defined by

L∗
ξF (ξ) = ξ ∧∇∗

ξF (ξ), ξ ∈ Ω, (2.129)

F ∈ C(1)(Ω). According to its definition (2.129), L∗F is a tangential vector
field perpendicular to ∇∗F , i.e.,

∇∗
ξF (ξ) · L∗

ξF (ξ) = 0, ξ ∈ Ω. (2.130)

∇∗· = div∗ and L∗· = curl∗, respectively, denote the surface divergence
and the surface curl given by

∇∗
ξ · f(ξ) =

3∑

i=1

∇∗
ξFi(ξ) · εi (2.131)

and

L∗
ξ · f(ξ) =

3∑

i=1

L∗
ξFi(ξ) · εi . (2.132)

Note that the surface curl as defined by (2.132), i.e.,

ξ �→ L∗
ξ ·f(ξ) = curl∗ξf(ξ) = div∗

ξ(f(ξ)∧ξ) = ∇∗
ξ ·(f(ξ)∧ξ), ξ ∈ Ω, (2.133)

represents a scalar-valued function on the unit sphere Ω in R
3.

The aforementioned relations can be understood from the well-known role
of the Beltrami operator Δ∗ in the representation of the Laplace operator
Δ:

Δx =
(

∂

∂r

)2

+
2
r

∂

∂r
+

1
r2

Δ∗
ξ . (2.134)

In spherical coordinates, the operators Δ∗, L∗,∇∗, respectively, read as fol-
lows:

Δ∗
ξ =

∂

∂t

(
1− t2

) ∂

∂t
+

1
1− t2

(
∂

∂ϕ

)2

, (2.135)
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∇∗
ξ = εϕ 1√

1− t2
∂

∂ϕ
+ εt

√
1− t2

∂

∂t
, (2.136)

L∗
ξ = −εϕ

√
1− t2

∂

∂t
+ εt 1√

1− t2
∂

∂ϕ
. (2.137)

An easy calculation using (2.119)–(2.121) shows that

∇∗
ξ =

1√
1− t2

(
− sinϕε1 + cos ϕε2

) ∂

∂ϕ
(2.138)

+
√

1− t2
(
−t cos ϕε1 − t sinϕε2 +

√
1− t2ε3

) ∂

∂t
,

L∗
ξ =

√
1− t2

(
sinϕε1 − cos ϕε2

) ∂

∂t
(2.139)

+
1√

1− t2

(
−t cos ϕε1 − t sinϕε2 +

√
1− t2ε3

) ∂

∂ϕ
.

For the convenience of the reader, a list of the spherical operators is
included (see Table 2.1).

Table 2.1: Spherical differential operators.

Symbol Differential Operator

∇∗
ξ surface gradient at ξ

L∗
ξ = ξ ∧∇∗

ξ surface curl gradient at ξ

∇∗
ξ · surface divergence at ξ

L∗
ξ · surface curl at ξ

Δ∗
ξ = ∇∗

ξ · ∇∗
ξ Beltrami operator at ξ

Δ∗
ξ = L∗

ξ · L∗
ξ Beltrami operator at ξ

It should be mentioned that the operators ∇∗, L∗, Δ∗ will always be used
here in coordinate-free representation, thereby avoiding any singularity at
the poles.

Since the operators ∇∗, L∗ and ∇∗·, L∗· are of particular interest through-
out this work, we list some of their properties: If ξ ∈ Ω, then
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∇∗
ξ · ∇∗

ξF (ξ) = Δ∗
ξF (ξ), (2.140)

L∗
ξ · L∗

ξF (ξ) = Δ∗
ξF (ξ), (2.141)

∇∗
ξ · L∗

ξF (ξ) = 0, (2.142)
L∗

ξ · ∇∗
ξF (ξ) = 0, (2.143)

∇∗
ξF (ξ) · L∗

ξF (ξ) = 0, (2.144)
∇∗

ξ · (F (ξ)f(ξ)) = (∇∗
ξF (ξ)) · f(ξ) + F (ξ)(∇∗

ξ · f(ξ)), (2.145)
∇∗

ξ · ξ = 2, (2.146)

ξ ∈ Ω. Moreover, we have

∇∗
ξ ∧ (F (ξ)f(ξ)) = ∇∗

ξF (ξ) ∧ f(ξ) + F (ξ)∇∗
ξ ∧ f(ξ), ξ ∈ Ω. (2.147)

For a given function F ∈ C(1)(Ω), the triple F (ξ)ξ,∇∗
ξF (ξ), L∗

ξF (ξ), ξ ∈ Ω,
supplies us with a system of three orthogonal vectors at each point ξ ∈ Ω,
provided that F (ξ) �= 0 and ∇∗

ξF (ξ) �= 0.

Let η ∈ Ω be fixed, then it is not difficult to see (cf. (2.127)) that, for
ξ ∈ Ω,

∇∗
ξ(ξ · η) = η − (ξ · η)ξ, (2.148)

L∗
ξ(ξ · η) = ξ ∧∇∗

ξ(ξ · η) = ξ ∧ η, (2.149)

and
Δ∗

ξ(ξ · η) = −2(ξ · η). (2.150)

More generally, if F is of class C(1)[−1, 1] and F ′ ∈ C[−1, 1] is its (one-
dimensional) derivative, then

∇∗
ξF (ξ · η) = F ′(ξ · η)(η − (ξ · η)ξ), (2.151)

L∗
ξF (ξ · η) = F ′(ξ · η)(ξ ∧ η), (2.152)

whereas, for F ∈ C(2)[−1, 1],

Δ∗
ξF (ξ · η) = −2(ξ · η)F ′(ξ · η) + (1− (ξ · η)2)F ′′(ξ · η). (2.153)

2.6 Integral Calculus

Having formulated the development of a vector differential calculus, we now
come to the integral calculus: Let Γ be a subset of Ω with (sufficiently
smooth) boundary curve ∂Γ (see Fig. 2.3). Moreover, denote by ν and τ unit
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surface vectors normal (outward of Γ) and tangential to ∂Γ, respectively.
Let σ denote the arc length along ∂Γ .

Fig. 2.3: Γ as subset of the unit sphere Ω.

Then the surface theorem of Gauß reads
∫

Γ
∇∗

ξ · f(ξ) dω(ξ) =
∫

∂Γ
νξ · f(ξ) dσ(ξ), (2.154)

while the surface theorem of Stokes takes the form
∫

Γ
L∗

ξ · f(ξ) dω(ξ) =
∫

∂Γ
τξ · f(ξ) dσ(ξ) (2.155)

provided that f is a continuously differentiable field on Γ̄ = Γ ∪ ∂Γ such
that f(ξ) · ξ = 0, ξ ∈ Γ̄ .

Applying the Gauß formula to f = F ∇∗G with suitable F, G we obtain
the First Green Surface Theorem

∫

Γ
∇∗

ξG(ξ) · ∇∗
ξF (ξ) dω(ξ) +

∫

Γ
F (ξ)Δ∗

ξG(ξ) dω(ξ)

=
∫

∂Γ
F (ξ)

∂

∂νξ
G(ξ) dσ(ξ). (2.156)

In a similar way, applying the Stokes formula to f = FL∗G we get
∫

Γ
L∗

ξG(ξ) · L∗
ξF (ξ) dω(ξ) +

∫

Γ
F (ξ)Δ∗

ξG(ξ) dω(ξ) (2.157)

=
∫

∂Γ
F (ξ)

∂

∂τξ
G(ξ)dσ(ξ)
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(observe that ∂/∂νξ = νξ · ∇∗
ξ and ∂/∂τξ = τξ · L∗

ξ). Interchanging F, G in
(2.157) and subtracting (2.156) yields the Second Green Surface Theorem

∫

Γ

{
F (ξ)Δ∗

ξG(ξ)−G(ξ)Δ∗
ξF (ξ)

}
dω(ξ)

=
∫

∂Γ

{
F (ξ)

∂

∂νξ
G(ξ)−G(ξ)

∂

∂νξ
F (ξ)

}
dσ(ξ) (2.158)

=
∫

∂Γ

{
F (ξ)

∂

∂τξ
G(ξ)−G(ξ)

∂

∂τξ
F (ξ)

}
dσ(ξ).

There are immediate consequences of the above formulas due to the fact that
the integral identities also hold true on Ω\Γ̄ (under suitable assumptions on
the integrands). For the whole sphere Ω, this leads to

∫

Ω
f(ξ) · ∇∗

ξF (ξ) dω(ξ) = −
∫

Ω
F (ξ)∇∗

ξ · f(ξ) dω(ξ), (2.159)
∫

Ω
f(ξ) · L∗

ξF (ξ) dω(ξ) = −
∫

Ω
F (ξ)L∗

ξ · f(ξ) dω(ξ), (2.160)
∫

Ω
∇∗

ξF (ξ) · ∇∗
ξG(ξ) dω(ξ) = −

∫

Ω
F (ξ)Δ∗

ξG(ξ) dω(ξ) (2.161)

= −
∫

Ω
G(ξ)Δ∗

ξF (ξ) dω(ξ).

Furthermore, ∫

Ω
∇∗

ξ · f(ξ) dω(ξ) = 0, (2.162)

∫

Ω
L∗

ξF (ξ) · L∗
ξG(ξ) dω(ξ) = −

∫

Ω
F (ξ)Δ∗

ξG(ξ) dω(ξ), (2.163)

∫

Ω
∇∗

ξ · (f(ξ) ∧ ξ) dω(ξ) = 0, (2.164)

provided that F : Ω → R (resp. f : Ω → R
3) are sufficiently often continu-

ously differentiable.

Let us consider a spherical vector field f of class c(Ω). Of course, f can
be decomposed by using the three basis vectors ε1, ε2, ε3:

f(ξ) =
3∑

i=1

(
f(ξ) · εi

)
εi =

3∑

i=1

Fi(ξ)εi, ξ ∈ Ω, (2.165)

where Fi : Ω → R are differentiable functions with Fi(ξ) = f(ξ) · εi, ξ ∈ Ω,
i = 1, 2, 3. The representation (2.165) can be used to reduce vectorial
differential or integral equations, but it has the drawback that essential
properties (for example, surface divergence, surface curl, spherical symme-
try, etc) of vector fields are ignored. This problem can be overcome by the
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Fig. 2.4: A curve C on Ω connecting two points ξ0 and ξ1.

Helmholtz decomposition formula (for more details the reader is referred to
Section 5.2). To be more specific, the decomposition (2.165) of vector fields
using the unit vectors εi, i ∈ {1, 2, 3}, is no longer adequate for a large
class of problems, since none of them reflects either the tangential or the
normal direction on the sphere. A first hint for a system of unit vectors
that is more suitable to a physically motivated situation can be given by
the representation:

f(ξ) = fnor(ξ) + ftan(ξ), (2.166)

where
fnor(ξ) = (f(ξ) · ξ)ξ. (2.167)

The vector ξ ∈ Ω points into the normal direction. Thus, we have to con-
struct for ftan(ξ) in each point ξ ∈ Ω two unit vectors perpendicular to ξ
(that have to be of physical relevance).

Clearly, for a continuous vector field f : Ω → R
3, we call

ξ �→ fnor(ξ) = (f(ξ) · ξ)ξ, ξ ∈ Ω, (2.168)

the normal field of f , while

ξ �→ ftan(ξ) = f(ξ)− (f(ξ) · ξ)ξ, ξ ∈ Ω, (2.169)

is called the tangential field of f . Obviously, the identity (2.166) is valid
and the normal field of f is orthogonal to the tangential field of f , i.e., for
all ξ ∈ Ω

((f(ξ) · ξ)ξ) · ((f(ξ)− (f(ξ) · ξ) ξ)) = (f(ξ) · ξ)2 − (f(ξ) · ξ)2

= 0. (2.170)



2.6 Integral Calculus 43

Furthermore, for f, g ∈ c(Ω) and ξ ∈ Ω,

f(ξ) · g(ξ) = fnor(ξ) · gnor(ξ) + ftan(ξ) · gtan(ξ). (2.171)

Lemma 2.5. The tangential field of f vanishes i.e., ftan(ξ) = 0, ξ ∈ Ω, if
and only if f(ξ) · τ̂(ξ) = 0 for every unit vector τ̂(ξ) that is perpendicular
to ξ, i.e., for which ξ · τ̂(ξ) = 0, ξ ∈ Ω.

Proof. First, assume ftan = 0. For all ξ ∈ Ω we have

f(ξ) · τ̂(ξ) = (f(ξ) · ξ) (ξ · τ̂(ξ))︸ ︷︷ ︸
=0

+ (f(ξ)− (f(ξ) · ξ)ξ)︸ ︷︷ ︸
=0

·τ̂(ξ) (2.172)

= 0.

Conversely, assume that the tangential field is non-vanishing, i.e.,

ftan(ξ) = f(ξ)− (f(ξ) · ξ)ξ �= 0. (2.173)

Then it follows that ftan(ξ)|ftan(ξ)|−1 is a unit vector field perpendicular to
ξ. Hence, by our hypothesis,

ftan(ξ) ·
ftan(ξ)
|ftan(ξ)|

= 0. (2.174)

This implies
|ftan(ξ)| = 0, (2.175)

which is a contradiction. Thus it follows that ftan(ξ) = 0, as required.

Lemma 2.6. Suppose that f is continuous on Ω. Moreover, let
∫

C
τξ · f(ξ) dσ(ξ) = 0 (2.176)

for every curve C lying on Ω. Then

ftan(ξ) = 0 (2.177)

for all ξ ∈ Ω, i.e., the tangential field of f vanishes for all ξ ∈ Ω.

Proof. Choose any point ξ0 ∈ Ω. Let τξ0 be any unit vector satisfying
τξ0 · ξ0 = 0. Then, there is a curve C on Ω passing through ξ0 whose unit
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tangent vector at ξ0 is just τξ0 . Let Cξ0
sub be any subset of C containing ξ0.

Then, in accordance with our assumption,
∫

Cξ0
sub

τξ · f(ξ) dσ(ξ) = 0. (2.178)

Hence, letting the length of Cξ0
sub tend to zero we find τξ0 ·f(ξ0) = 0. Lemma

2.5 then yields ftan(ξ0) = f(ξ0)−(f(ξ0)·ξ0)ξ0 = 0. Since ξ0 can be any point
on the sphere Ω, we have ftan(ξ) = f(ξ)− (f(ξ) · ξ)ξ = 0 for all ξ ∈ Ω.

The surface gradient acts like an ordinary gradient in R
3 when we inte-

grate it along lines on Ω. In more detail, suppose F is continuously differ-
entiable in an open set in R

3 containing Ω, and C is any curve lying on Ω,
starting at ξ0 and ending at ξ1 (see Fig. 2.4). Suppose that τξ is the unit
tangent vector at ξ on C pointing from ξ0 to ξ1. Then

F (ξ1)− F (ξ0) =
∫

C
τξ · ∇∗

ξF (ξ) dσ(ξ) (2.179)

(observe that τξ ·∇ξF (ξ) = τξ ·∇∗
ξF (ξ), ξ ∈ Ω, (cf. C. Müller (1969))). This

result enables us to show the following lemma.

Lemma 2.7. Let F be of class C(1)(Ω). Assume that ∇∗
ξF (ξ) = 0 for all

ξ ∈ Ω, then F is constant, and conversely.

Proof. If ∇∗
ξF (ξ) = 0, then we obtain, in connection with (2.179), F (ξ1) =

F (ξ0) for any ξ0, ξ1 on Ω.

Conversely, if F is constant, the identity (2.179) shows that f = ∇∗F
fulfills ∫

C
τξ · f(ξ) dσ(ξ) = 0 (2.180)

for every curve C lying on Ω. Consequently, following Lemma 2.6,

ftan(ξ) = 0 (2.181)

for all ξ ∈ Ω. This shows that

ftan(ξ) = f(ξ)− (f(ξ) · ξ) · ξ = f(ξ) = ∇∗
ξF (ξ) = 0 (2.182)

for all ξ ∈ Ω.

From Lemma 2.7 we are immediately able to deduce the following state-
ment.
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Lemma 2.8. Let F be of class C(1)(Ω). Assume that L∗
ξF (ξ) = 0 for all

ξ ∈ Ω, then F is constant, and conversely.

Proof. If L∗
ξF (ξ) = 0, i.e., ξ ∧ ∇∗

ξF (ξ) = 0 for all ξ ∈ Ω. Then ξ ∧ ξ ∧
∇∗

ξF (ξ) = (ξ ·∇∗
ξF (ξ))ξ−∇∗

ξF (ξ)(ξ ·ξ) = −∇∗
ξF (ξ) = 0 for all ξ ∈ Ω. Thus,

by virtue of Lemma 2.7, we find F = const.

Conversely, if F is constant, then L∗
ξF (ξ) = ξ ∧ ∇∗

ξF (ξ) = ξ ∧ 0 = 0 for
all ξ ∈ Ω. This proves Lemma 2.8.

Next, we prove the following well-known result of spherical vector analysis
(see, e.g., G.E. Backus et al. (1996)).

Lemma 2.9. Let f ∈ c(Ω) be a tangent vector field, i.e., f(ξ) = ftan(ξ) =
f(ξ)− (f(ξ) · ξ)ξ, ξ ∈ Ω. Furthermore, suppose that

∫

C
τξ · f(ξ) dσ(ξ) = 0 (2.183)

for every closed curve on Ω.

Then, there is a scalar field P on Ω such that

f(ξ) = ∇∗
ξP (ξ), ξ ∈ Ω. (2.184)

The field P is continuously differentiable and is unique up to a constant.

Proof. Take an arbitrary, but fixed ξ0 ∈ Ω. We let

P (ξ) =
∫ ξ

ξ0

τζ · f(ζ) dσ(ζ), (2.185)

the integral being along any curve C that starts at ξ0 ∈ Ω and ends at ξ ∈ Ω.
Then, for any two points ξ0, ξ on Ω and any curve C lying on Ω and starting
at ξ0 and ending at ξ1,

P (ξ1)− P (ξ0) =
∫ ξ1

ξ0

τζ · f(ζ) dσ(ζ). (2.186)

Observing (2.179) we find

P (ξ1)− P (ξ0) =
∫ ξ1

ξ0

τζ · ∇∗
ζP (ζ) dσ(ζ). (2.187)
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Combining (2.186) and (2.187), we obtain

∫ ξ1

ξ0

τζ ·
(
f(ζ)−∇∗

ζP (ζ)
)

dσ(ζ) = 0 (2.188)

for any curve C on Ω. Lemma 2.6, therefore, tells us that

f(ξ)−∇∗
ξP (ξ) = 0, ξ ∈ Ω. (2.189)

The proof that P is continuously differentiable on Ω is omitted. The easiest
way to construct such a proof is to take P constant on each straight line
passing through Ω in the normal direction (see, e.g., G.E. Backus et al.
(1996)).

In order to verify that P is unique up to a constant, we observe that
∇∗

ξP1(ξ) = ∇∗
ξP2(ξ), ξ ∈ Ω, implies ∇∗

ξ(P1 − P2)(ξ) = 0, ξ ∈ Ω, i.e., by
virtue of Lemma 2.7, P1 − P2 = const.

Now we are able to formulate the following important theorem:

Theorem 2.10. Let f ∈ c(1)(Ω) be a tangential field, i.e., f(ξ) = ftan(ξ) =
f(ξ)− (f(ξ) · ξ)ξ for all ξ ∈ Ω.

Then L∗
ξ ·f(ξ) = 0, ξ ∈ Ω, if and only if there is a scalar field P such that

f(ξ) = ∇∗
ξP (ξ), ξ ∈ Ω, (2.190)

and P is unique up to an additive constant (P is called potential function
for f).

Similarly, ∇∗
ξ ·f(ξ) = 0, ξ ∈ Ω, if and only if there is a scalar field S such

that
f(ξ) = L∗

ξS(ξ), ξ ∈ Ω, (2.191)

and S is unique up to an additive constant (S is called stream function for
f).

Proof. The condition f = ∇∗P implies L∗ · f = 0, and f = L∗S implies
∇∗ · f = 0.

Conversely, assume that L∗
ξ · f(ξ) = 0, ξ ∈ Ω. Then the surface theorem

of Stokes implies ∫

C
τξ · f(ξ) dσ(ξ) = 0 (2.192)
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for every closed curve C on Ω. From Lemma 2.9, it follows that there exists
a scalar field P such that f = ∇∗P . Furthermore, P is unique up to an
additive constant.

Finally, suppose ∇∗ ·f = 0. Then L∗
ξ ·(ξ∧f(ξ)) = 0, ξ ∈ Ω. Hence, by the

same arguments as above, there is a scalar field S, unique up to a constant,
such that

−ξ ∧ f(ξ) = ∇∗
ξS(ξ), ξ ∈ Ω. (2.193)

This is equivalent to

−ξ ∧ (ξ ∧ f(ξ)) = (ξ ∧∇∗
ξ)S(ξ), ξ ∈ Ω, (2.194)

or
f = L∗S (2.195)

on Ω. This proves Theorem 2.10.

For tangential fields, the validity of homogeneous “pre-Maxwell equations”
implies that the field under consideration vanishes identically. This is the
content of the next theorem.

Theorem 2.11. Let f be a continuously differentiable tangential vector field
on Ω (i.e., f(ξ) = ftan(ξ) = f(ξ)− (f(ξ) · ξ)ξ, ξ ∈ Ω) such that

∇∗
ξ · f(ξ) = 0, ξ ∈ Ω,

L∗
ξ · f(ξ) = 0, ξ ∈ Ω.

Then f = 0 on Ω.

Proof. From L∗
ξ · f(ξ) = 0 we get from Theorem 2.10 that there exists a

scalar field P such that

f(ξ) = ∇∗
ξP (ξ), ξ ∈ Ω. (2.196)

From ∇∗
ξ ·f(ξ) = 0 we can therefore deduce that ∇∗

ξ ·∇∗
ξP (ξ) = Δ∗

ξP (ξ) = 0.

Together with (2.161), this leads to
∫

Ω
(∇∗

ξP (ξ))2 dω(ξ) = 0. (2.197)

Consequently, it follows that f(ξ) = ∇∗
ξP (ξ) = 0. This is the required

result.
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2.7 Orthogonal Invariance

Systems of equations which maintain their form when the coordinate axes
are subjected to an arbitrary rotation are said to be rotationally, or orthog-
onally, invariant. The orthogonal invariance is, of course, closely related
to the group O(3) of all orthogonal transformations, i.e., the group of all
t ∈ R

3 ⊗ R
3 such that ttT = tT t = i, i = (δij)i,j=1,2,3. The set of all ro-

tations, i.e., SO(3) = {t ∈ O(3) |det t = 1} is a subgroup called the special
orthogonal group .

We briefly recapitulate some properties of these groups (see, e.g., C.
Müller (1998), N.J. Vilenkin (1968) and many others):

1. Let ξ, η be members of Ω. Then, there exists an orthogonal trans-
formation t ∈ O(3) with η = tξ and an orthogonal transformation
s ∈ SO(3) with η = sξ.

2. For every t ∈ O(3)

tξ · tη = ξ · η, ξ, η ∈ Ω. (2.198)

3. Suppose that ξ ∈ Ω. The set Oξ(3) = {t ∈ O(3) | tξ = ξ} is a subgroup
of O(3). Analogously, the set SOξ(3) = {t ∈ SO(3) | tξ = ξ} is a
subgroup of SO(3).

4. For every t ∈ O(3), we have det t = ±1. If det t = 1, t is called a
rotation, while for det t = −1, t is called a reflection .

5. Let t, t′ ∈ O(3) with det t = 1, det t′ = −1. Then

tξ ∧ tη = t(ξ ∧ η), ξ, η ∈ Ω (2.199)
t′ξ ∧ t′η = −t′(ξ ∧ η), ξ, η ∈ Ω. (2.200)

6. Let t ∈ O(3). Then, for the dyadic product, we get

t(ξ ⊗ η)tT = tξ ⊗ tη, ξ, η ∈ Ω. (2.201)

The following definitions will prove useful for our later considerations.

Definition 2.12. Let F ∈ L2(Ω), f ∈ l2(Ω), f ∈ l2(Ω) and suppose that
t ∈ O(3). For scalar, vector, and tensor fields the operator Rt is defined by

Rt : L2(Ω) → L2(Ω), RtF (ξ) = F (tξ),
Rt : l2(Ω) → l2(Ω), Rtf(ξ) = tT f(tξ),
Rt : l2(Ω) → l2(Ω), Rtf(ξ) = tT f(tξ)t,

respectively. RtF , Rtf , and Rtf are called the t-transformed fields .
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For examples illustrating how the operators Rt act on functions and vector
fields, see Figs. 2.5 and 2.6, respectively.

Fig. 2.5: The operator Rt acting on a function.

Definition 2.13. Let F be a subspace of L2(Ω) (l2(Ω) or l2(Ω)). F is
called invariant with respect to orthogonal transformations or, equivalently,
orthogonally invariant if, for all F ∈ F and for all orthogonal transforma-
tions t ∈ O(3), the function RtF is of class F .
An orthogonally invariant F is called reducible if there exists a proper sub-
space F ′ ⊂ F which itself is invariant with respect to orthogonal transfor-
mations.

Note that the expressions invariant with respect to rotations and invariant
with respect to reflections are understood in analogy to the aforementioned
definition.

A linear, orthogonally invariant space which is not reducible is called
irreducible. (It should be noted that each orthogonally invariant space of
dimension 1 is irreducible).

Fig. 2.6: The definition of the operator Rt for vector fields (note that it is
necessary not only to substitute ξ by tξ, but also to transform the directions
of the vectors).

T
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Lemma 2.14. Let (F , (·, ·)) be an orthogonally invariant Hilbert subspace
of L2(Ω). Let F1 be an orthogonally invariant subspace of F . Then, the
orthogonal complement F⊥

1 of F1 is orthogonally invariant, as well.

Proof. For all F ∈ F1, F⊥ ∈ F⊥
1 and for all orthogonal transformations

t ∈ O(3), we have

(F, RtF
⊥) =

∫

Ω
F (ξ)RtF

⊥(ξ) dω(ξ) (2.202)

= (det t)
∫

tΩ
F (ξ)RtF

⊥(ξ) dω(ξ)

= (det t)2
∫

Ω
RtT F (ξ)F⊥(ξ) dω(ξ)

= 0,

since RtT F ∈ F1. This implies that RtF
⊥ ∈ F⊥

1 and, therefore, F⊥
1 is

invariant with respect to orthogonal transformations.

Analogous results can be formulated for Hilbert spaces of square-integrable
vector and tensor fields. Lemma 2.14 shows that each orthogonally invariant
Hilbert-space can be completely decomposed into invariant parts.

In view of the last result, we are particularly interested in irreducible
spaces, i.e., spaces that definitely provide us with elements that are in-
variant with respect to certain orthogonal transformations. The following
results (see, e.g., T. Gervens (1989)) help us to analyze the structure of such
rotationally invariant functions.

Lemma 2.15. Let F be a function of class C(Ω) with RtF (ξ) = F (ξ) for
all t ∈ SO(3) and all ξ ∈ Ω. Then

F = F (ε3) = C = const.

Proof. For every ξ ∈ Ω, there exists a rotation t ∈ SO(3) with tξ = ε3.
Consequently, for every ξ ∈ Ω, we have F (ξ) = RtF (ξ) = F (tξ) = F (ε3) =
C = const.

Lemma 2.16. Let η ∈ Ω be fixed. Furthermore, let F ∈ C(Ω) with
RtF (ξ) = F (ξ) for all t ∈ SOη(3) and for all ξ ∈ Ω. Then, F can be
represented in the form

F (ξ) = Φ(ξ · η), ξ ∈ Ω,

Φ being a function Φ : [−1, 1] → R.
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Proof. Without loss of generality , let η = ε3 (if this were not true, we could
use the function G(ξ) = Rt′F (ξ), where t′ ∈ O(3) with t′ε3 = η). With
ξ = tε3 +

√
1− t2η′ we have, by assumption, that

F (tε3 +
√

1− t2η′) = F (tε3 +
√

1− t2η′′), (2.203)

for all points η′, η′′ of the unit circle. Hence, F depends only on t = ξ · ε3

and is, therefore, a function of t alone, as desired.

Lemma 2.17. Let η ∈ Ω be fixed. Let F ∈ C(Ω) with RtF (ξ) = (det t) F(ξ)
for all t ∈ Oη(3) and all ξ ∈ Ω. Then

F = 0.

Proof. Suppose that ξ is an element of Ω. There exists a reflection t ∈ Oη(3)
with tξ = ξ, but then — by assumption — we have F (ξ) = RtF (ξ) =
−F (ξ), hence, F (ξ) = 0.

Note that in Lemma 2.15 and Lemma 2.16, the rotations can as well
be replaced by reflections, i.e., in the scalar case, we need not distinguish
between rotations and reflections. In the vectorial case, however, this is not
true anymore.

In what follows, f is supposed to be a spherical vector field, i.e., f : Ω →
R

3. Let η be an element of Ω. In every point ξ �= ±η, we are able to
introduce the so-called moving triad at the point ξ

ε1
ξ = ξ, (2.204)

ε2
ξ =

1√
1− (ξ · η)2

(η − (ξ · η)ξ), (2.205)

ε3
ξ =

1√
1− (ξ · η)2

η ∧ ξ, (2.206)

such that there exist functions F1, F2, F3 : Ω → R with

f = F1ε
1
ξ + F2ε

2
ξ + F3ε

3
ξ . (2.207)

For further investigations, the following lemma is helpful.

Lemma 2.18. Let η ∈ Ω be fixed, and let the moving triad εi
ξ, i = 1, 2, 3,

be defined as in (2.204)–(2.206). Then, for all t ∈ O(3),

Rtε
i
ξ = εi

ξ, i = 1, 2

Rtε
3
ξ = (det t) ε3

ξ .
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Proof. For t ∈ Oη(3),

Rtε
1
ξ = tT ε1

tξ = tT t ξ = ξ = ε1
ξ . (2.208)

For the tangential fields, we only show the case i = 2 (the case i = 3 follows
similarly). We have

Rtε
2
ξ = tT ε2

tξ =
1√

1− (tξ · η)2
tT (η − (tξ · η)tξ) (2.209)

=
1√

1− (ξ · tT η)2
(tT η − (ξ · tT η)tT tξ)

=
1√

1− (ξ · η)2
(η − (ξ · η)ξ)

= ε2
ξ .

We now extend our results for rotationally invariant functions to the
vector case .

Lemma 2.19. Let f ∈ c(Ω) with Rtf(ξ) = f(ξ) (or equivalently, f(tξ) =
tf(ξ)) for all t ∈ SO(3) and ξ ∈ Ω. Then, there exists a constant C ∈ R

such that

f(ξ) = C ξ , ξ ∈ Ω.

Proof. Consider the orthogonal matrix

t =

⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ . (2.210)

Then tε3 = ε3 and, by assumption, f(ε3) = tf(ε3). Hence, in connection
with (2.210), we have f(ε3) = Cε3, C ∈ R. For ξ ∈ Ω, there exists a rotation
t′ with t′ε3 = ξ. Consequently, we have

f(ξ) = f(t′ε3) = t′f(ε3) = Ct′ε3 = Cξ. (2.211)

Lemma 2.20. Let η ∈ Ω. Let f ∈ c(Ω) with Rtf(ξ) = f(ξ) for all t ∈
SOη(3). Then, for ξ �= ±η, f has the representation:

f(ξ) = Φ1(ξ · η)ε1
ξ + Φ2(ξ · η)ε2

ξ + Φ3(ξ · η)ε3
ξ ,

where Φi, i = 1, 2, 3, are functions Φi : [−1, 1] → R.
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Proof. From Lemma 2.18, it follows that the functions Fi in (2.207) fulfill

RtFi(ξ) = Fi(ξ), ξ ∈ Ω, (2.212)

provided that tη = η. Therefore, via Lemma 2.16, we know that, for the
functions Fi, we have

Fi(ξ) = Φi(ξ · η). (2.213)

Lemma 2.21. Suppose that η ∈ Ω. Let f be of class c(Ω) with Rtf(ξ) =
f(ξ) for all t ∈ Oη(3). Then, for ξ �= ±η, f has the representation,

f(ξ) = Φ1(ξ · η)ε1
ξ + Φ2(ξ · η)ε2

ξ ,

Φi, i = 1, 2, being functions Φi : [−1, 1] → R.

Proof. Starting from Lemma 2.20, we now have to consider reflections, as
well. By our assumption and Lemma 2.18, we get Φ3(ξ · η) = −Φ3(ξ · η)
and, therefore, Φ3(ξ · η) = 0.

Lemma 2.22. Suppose that η ∈ Ω. Let f be of class c(Ω) with Rt f(ξ) =
(det t) f(ξ) for all t ∈ Oη(3). Then, for ξ �= ±η, the field f can be repre-
sented as follows

f(ξ) = Φ3(ξ · η)ε3
ξ , (2.214)

with Φ3 being a function Φ3 : [−1, 1] → R.

Proof. Using the same reasoning as in the proof of Lemma 2.21, but now
considering the change in sign under reflections, we end up with

Φ1(ξ · η) = −Φ1(ξ · η), Φ2(ξ · η) = −Φ2(ξ · η), (2.215)

hence, Φ1(ξ · η) = Φ2(ξ · η) = 0.

In order to extend our considerations to tensor fields of second rank , we
assume f(ξ) to be a matrix constituting a linear vector function for each
ξ ∈ Ω. Furthermore, let η be an element of Ω. Then, to the moving triad
(2.204)–(2.206), there exist scalar spherical functions Fi,j : Ω → R such that
f can be represented via dyadic products of the unit vectors, i.e.,

f(ξ) =
3∑

i=1

3∑

j=1

Fi,j(ξ) εi
ξ ⊗ εj

ξ, ξ �= ±η. (2.216)

It should be remarked that, for Fi,j = δij , (2.216) forms a partition of the
unit matrix i.
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We now examine matrices with certain, rotationally invariant character-
istics.

Lemma 2.23. For every ξ ∈ Ω and every t ∈ O(3), let f be of class c(Ω)
with

Rtf(ξ) = f(ξ) (i.e., f(tξ) = tf(ξ)tT ), (2.217)

ξ ∈ Ω. Then, there exist constants C1, C2 ∈ R with

f(ξ) = C1i + C2 ξ ⊗ ξ, ξ ∈ Ω, (2.218)

i being the unit matrix .

Proof. We start with the determination of the matrix f(ε3) = (Fij)i,j=1,2,3.
Using the transformation

t1 =

⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠ (2.219)

(2.217) leads to F12 = F13 = F21 = F31 = 0. Analogously, the application
of the transformation

t2 =

⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ (2.220)

yields F23 = F32 = 0. Finally,

t3 =

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ (2.221)

leads to F11 = F22. Consequently, there exist constants C1, C2 ∈ R such
that

f(ε3) = C1i + C2 ε3 ⊗ ε3. (2.222)

If ξ ∈ Ω, then there exits an orthogonal transformation t with tε3 = ξ.
Thus, it follows that, for ξ ∈ Ω,

f(ξ) = f(tε3) = tf(ε3)tT (2.223)
= t(C1i + C2 ε3 ⊗ ε3)tT

= C1i + C2 ξ ⊗ ξ.
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Lemma 2.24. Let f be of class c(Ω) with Rtf(ξ) = tT f(tξ)t = (det t) f(ξ)
for all ξ ∈ Ω and all t ∈ O(3). Then there exists a constant C ∈ R with

f(ξ) = C i∗(ξ), ξ ∈ Ω,

where

i∗(ξ) =

⎛

⎝
0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

⎞

⎠ , ξ = (ξ1, ξ2, ξ3)T .

Proof. In analogy to the proof of Lemma 2.23, we first determine f(ε3) with
the same transformations t1, t2 and t3 as before. Now, our assumptions
lead to F11 = F22 = F23 = F32 = F33 = F13 = F31 = 0, and F12 = −F21.
Therefore, we can find a C ∈ R such that

f(ε3) = C(ε2 ⊗ ε1 − ε1 ⊗ ε2). (2.224)

For every vector a ∈ R
3, we obviously have f(ε3)a = C ε3 ∧ a. If ξ ∈ Ω and

if t ∈ O(3) with tε3 = ξ, then

f(ξ)a = f(tε3)a = (det t) tf(ε3)tT a = (det t) C t(ε3 ∧ (tT a)) = ξ ∧ a.
(2.225)

The vector product ξ ∧ a can easily be expressed by the antisymmetric
matrix i∗(ξ), i.e., ξ ∧ a = i∗(ξ)a.

Lemma 2.25. Suppose that η ∈ Ω. For every ξ ∈ Ω and every t ∈ SOη(3),
let f be of class c(Ω) with Rtf(ξ) = tT f(tξ)t = f(ξ), ξ ∈ Ω. Then, for
ξ �= ±η, we have

f(ξ) =
3∑

i=1

3∑

j=1

Φi,j(ξ · η) εi
ξ ⊗ εj

ξ, (2.226)

with Φi,j being functions Φi,j : [−1, 1] → R.

Proof. We start from (2.216) and let Fij(ξ) = εi
ξ · (f(ξ)ε

j
ξ). By assumption,

we have Fij(tξ) = Fij(ξ), for every t ∈ SOη(3). Due to Lemma 2.16, we
have Fij = Φi,j(ξ · η). This is the wanted result.

Lemma 2.26. Suppose that η is a point of Ω. For all ξ ∈ Ω and for all
t ∈ Oη(3), let f be a of class c(Ω) with Rtf(ξ) = f(ξ). Then, for ξ �= ±η,
f(ξ) can be written as follows

f(ξ) = Φ1,1(ξ · η) ε1
ξ ⊗ ε1

ξ + Φ1,2(ξ · η) ε1
ξ ⊗ ε2

ξ + Φ2,1(ξ · η) ε2
ξ ⊗ ε1

ξ

+ Φ2,2(ξ · η) ε2
ξ ⊗ ε2

ξ + Φ3,3(ξ · η) ε3
ξ ⊗ ε3

ξ ,

with Φi,j being functions Φi,j : [−1, 1] → R.
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Proof. In contrast to Lemma 2.25, we also have to consider the use of re-
flections, i.e., we have to take into account that the transformation of cross-
products by reflections leads to a change in sign. Consequently, Φ1,3(ξ ·η) =
Φ2,3(ξ · η) = Φ3,1(ξ · η) = Φ3,2(ξ · η) = 0. This proves Lemma 2.26.

Lemma 2.27. Let η ∈ Ω. For all ξ ∈ Ω and for all t ∈ Oη(3) let f be of
class c(Ω) with Rtf(ξ) = (dett) f(ξ). Then, for ξ �= ±η, f(ξ) can be written
in the form

f(ξ) = Φ1,3(ξ · η) ε1
ξ ⊗ ε3

ξ + Φ3,1(ξ · η) ε3
ξ ⊗ ε1

ξ

+Φ2,3(ξ · η) ε2
ξ ⊗ ε3

ξ + Φ3,2(ξ · η) ε3
ξ ⊗ ε2

ξ ,

with Φi,j being functions Φi,j : [−1, 1] → R.

Proof. Considering that the transformation of f(ξ) using reflections leads
to a minus sign, we get that in (2.226) the terms with Φ1,1, Φ1,2, Φ2,1, Φ2,2

and Φ3,3 vanish.

Remark 2.28. For ξ �= ±η, another basis system is given by

ε1
η = η, (2.227)

ε2
η =

1√
1− (ξ · η)2

(ξ − (ξ · η)η), (2.228)

ε3
η =

1√
1− (ξ · η)2

η ∧ ξ. (2.229)

This shows us that analogous results to Lemma 2.27 can be based on (2.227),
(2.228), (2.229). For example, under the assumptions of Lemma 2.26, we
find

f(ξ) = Φ1,1(ξ · η)ε1
ξ ⊗ ε1

η + Φ1,2(ξ · η)ε1
ξ ⊗ ε2

η (2.230)

+ Φ2,1(ξ · η)ε2 ⊗ ε1
η + Φ2,2(ξ · η)ε2

ξ ⊗ ε2
η + Φ3,3(ξ · η)ε3

η ⊗ ε3
η,

ξ ∈ Ω.
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In this chapter, we deal with the theory of scalar spherical harmonics. As al-
ready mentioned, our scalar approach is essentially based on the work due to
C. Müller (1952, 1966, 1998) and W. Freeden (1979a); W. Freeden (1981b).
In fact, it is led by the observation (see H. Weyl (1934, 1946, 1965)) that
spherical harmonics must be more than a fortunate guess in Fourier (orthog-
onal) expansions for providing tables of potential coefficients for geophysical
quantities. This opinion arose from the occupation with theoretical physics
(in particular, gravitational theory, electromagnetism, quantum mechanics,
and general relativity) and was supported by many physicists during the
last century. Today, even problems in medicine, e.g., the electroencephalo-
graphic description of scalp potential fields, can be tackled appropriately in
terms of spherical harmonics.

The layout of this chapter is as follows: The scalar spherical harmonics
are introduced as the restrictions of the homogeneous harmonic polynomi-
als to the unit sphere. In consequence, the addition theorem of homoge-
neous harmonic polynomials canonically goes over to the theory of scalar
spherical harmonics. Maxwell’s representation formula shows that the (one-
dimensional) Legendre polynomials may be obtained by repeated differen-
tiation of the fundamental solutions of the Laplace operator. The closure
and completeness of orthonormal systems in the space L2(Ω) is fundamen-
tal for approximating square-integrable functions on the sphere by Fourier
(spherical harmonic) expansions. The closure in L2(Ω) can be derived from
Bernstein or Abel-Poisson summability. The Funk–Hecke formula estab-
lishes the close connection between the orthogonal invariance of the sphere
and the addition theorem. It turns out that any spherical harmonic is an
eigenfunction of the Beltrami operator. The angular derivatives, i.e., the
operators of the longitude and latitude, are shown to act as anisotropic
operators within the framework of scalar spherical harmonics. Finally, the
usually (in geosciences) used L2(Ω)-orthonormal system of scalar spherical
harmonics involving associated Legendre functions is introduced; its repre-
sentation in terms of trigonometric functions is discussed in more detail.
Associated Legendre harmonics are generated exactly entirely by integer
operations.
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3.1 Homogeneous Harmonic Polynomials

Let Homn (more accurately: Homn(R3)) consist of all polynomials Hn in
three variables which are homogeneous of degree n (i.e., Hn(λx) = λnHn(x)
for all λ ∈ R and all x ∈ R

3). Thus, if Hn ∈ Homn, then there exist real
numbers Cα = Cα1α2α3 such that

Hn(x) =
∑

[α]=n

Cα xα. (3.1)

In cartesian coordinates,

Hn(x1, x2, x3) =
∑

α1+α2+α3=n

Cα1α2α3 xα1
1 xα2

2 xα3
3 . (3.2)

It is obvious that the set of monomials x �→ xα, [α] = n, is a basis for
the space Homn. The number of such monomials is precisely the number of
ways a triple can be chosen so that we have [α] = n, i.e., the number of
ways of selecting 2 elements out of a collection of n + 2. This means that
the dimension d(Homn) of Homn is equal to

d(Homn) =
(n + 1)(n + 2)

2
=
(

n + 2
2

)
. (3.3)

Let Hn(∇x) be the differential operator associated to Hn(x) (i.e., replace
xα formally by (∇x)α in the expression of Hn(x)):

Hn(∇x) =
∑

α1+α2+α3=n

Cα1α2α3

∂[α]

∂xα1
1 ∂xα2

2 ∂xα3
3

=
∑

[α]=n

Cα(∇x)α . (3.4)

If such an operator is applied to a homogeneous polynomial Un of the same
degree

Un(x) =
∑

[β]=n

Dβ xβ , (3.5)

we obtain as result a real number:

(Hn(∇x)) Un(x)

=
∑

[α]=n

∑

[β]=n

Cα Dβ

(
∂

∂x1

)α1

xβ1
1

(
∂

∂x2

)α2

xβ2
2

(
∂

∂x3

)α3

xβ3
3

=
∑

[α]=n

Cα Dα α! , (3.6)
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where the factorial of a multi-index is defined as α! = α1!α2!α3!. Clearly,
we find

(Hn(∇x)) Un(x) = (Un(∇x)) Hn(x),
(Hn(∇x)) Hn(x) ≥ 0.

(3.7)

This enables us to introduce an inner product (·, ·)Homn on the space Homn

by letting
(Hn, Un)Homn = (Hn(∇x)) Un(x). (3.8)

The space Homn equipped with the inner product (·, ·)Homn is a finite-
dimensional Hilbert space. The set of monomials

{x �→ (α!)−1/2xα | [α] = n}

forms an orthonormal system in the space Homn. For each Hn ∈ Homn,
we have in connection with (3.4)

Hn(x) =
∑

[α]=n

1
α!

(Hn(∇y)) yα xα

= (Hn(∇y))
1
n!

∑

[α]=n

n!
α!

xαyα (3.9)

= (Hn(∇y))
(x · y)n

n!

=
1
n!

(x · ∇y)n Hn(y).

In other words,

Hn(x) = (
(x· )n

n!
, Hn)Homn . (3.10)

Theorem 3.1. Homn equipped with the inner product (·, ·)Homn is a finite-
dimensional Hilbert space of dimension (n+1)(n+2)

2 with the reproducing ker-
nel

KHomn(x, y) =
(x · y)n

n!
, x, y ∈ R

3, (3.11)

i.e.,

(i) for every fixed y, the function KHomn(·, y) belongs to Homn,

(ii) for any Hn ∈ Homn and any point x the reproducing property

Hn(x) = (KHomn(x, ·), Hn)Homn

is valid.
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Let {Hn,j}j=1,...,d(Homn), {Un,j}j=1,...,d(Homn) be two orthonormal systems
in the space Homn:

(Hn,j , Hn,k)Homn = δjk,
(Un,j , Un,k)Homn = δjk,

(3.12)

where δjk is the usual Kronecker symbol. Then, for j = 1, ..., d(Homn), we
have

Hn,j =
d(Homn)∑

k=1

(Hn,j , Un,k)HomnUn,k,

Un,j =
d(Homn)∑

k=1

(Un,j , Hn,k)HomnHn,k.

(3.13)

Therefore, it follows that

d(Homn)∑

j=1

Hn,j(x) Hn,j(y) =
d(Homn)∑

j=1

Un,j(x)Un,j(y). (3.14)

Hence, in particular, for the orthonormal system of monomials, we obtain
the following result.

Theorem 3.2. Let {Hn,j}j=1,...,d(Homn) be an orthonormal system in Homn.
Then

KHomn(x, y) =
(x · y)n

n!
=

d(Homn)∑

j=1

Hn,j(x)Hn,j(y), x, y ∈ R
3. (3.15)

KHomn(·, ·) is the only reproducing kernel in Homn.

Suppose that there are given d(Homn) points x1, ..., xd(Homn) ∈ R
3 and

d(Homn)-values d1, ..., dd(Homn) ∈ R. We are able to solve the Homn- inter-
polation problem

d(Homn)∑

j=1

bjHn,j(xk) = dk, k = 1, ..., d(Homn), (3.16)

if and only if the matrix

matr{x1,...,xd(Homn)}(Hn,1, . . . , Hn,d(Homn)) (3.17)

=

⎛

⎜⎝
Hn,1(x1) . . . Hn,1(xd(Homn))

...
. . .

...
Hn,d(Homn)(x1) . . . Hn,d(Homn)(xd(Homn))

⎞

⎟⎠
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is non-singular. A system of d(Homn) points x1, ..., xd(Homn) is called a
fundamental system relative to Homn if the matrix (3.17) is non-singular.

In what follows, we guarantee the existence of a fundamental system
relative to Homn (cf. C. Müller (1966)).

Lemma 3.3. There exists a system {x1, . . . , xd(Homn)} ⊂ R
3 such that

(3.17) is non-singular.

Proof. As orthonormal system, the functions Hn,1, ..., Hn,d(Homn) are lin-
early independent. Hence, there exists a point x1 for which

Hn,1(x1) �= 0. (3.18)

Now, there must also be a point x2 such that
∣∣∣∣

Hn,1(x1) Hn,1(x2)
Hn,2(x1) Hn,2(x2)

∣∣∣∣ �= 0, (3.19)

for else, we would have a contradiction to the linear independence of Hn,1,
Hn,2. In the same way, the existence of a point x3 can be deduced by the
requirement ∣∣∣∣∣∣

Hn,1(x1) Hn,1(x2) Hn,1(x3)
Hn,2(x1) Hn,2(x2) Hn,2(x3)
Hn,3(x1) Hn,3(x2) Hn,3(x3)

∣∣∣∣∣∣
�= 0. (3.20)

Finally, by induction, we obtain a system of points x1, ..., xd(Homn) such that
∣∣∣∣∣∣∣

Hn,1(x1) . . . Hn,1(xd(Homn))
...

. . .
...

Hn,d(Homn)(x1) . . . Hn,d(Homn)(xd(Homn))

∣∣∣∣∣∣∣
�= 0, (3.21)

i.e., {x1, . . . , xd(Homn)} constitutes a fundamental system relative to Homn.

To every Hn ∈ Homn, there exist real numbers b1, ..., bd(Homn) such that

Hn =
d(Homn)∑

k=1

bk Hn,k. (3.22)

Under the assumption that {x1, ..., xd(Homn)} is a fundamental system rela-
tive to Homn, the linear equations

d(Homn)∑

j=1

aj Hn,k(xj) = bk, k = 1, ..., d(Homn) , (3.23)
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are uniquely solvable in the unknowns a1, ..., ad(Homn). Thus, we obtain

Hn =
d(Homn)∑

k=1

d(Homn)∑

j=1

aj Hn,k(xj) Hn,k. (3.24)

Theorem 3.4. Let {Hn,j}j=1,...,d(Homn) be an orthonormal system in Homn.
Assume that {xk}k=1,...,d(Homn) is a fundamental system relative to Homn.
Then, each Hn ∈ Homn is uniquely representable in the form

Hn(x) =
d(Homn)∑

j=1

aj KHomn(xj , x) =
d(Homn)∑

j=1

aj
(xj · x)n

n!
. (3.25)

Let Harmn (more accurately: Harmn(R3)) be the class of all polynomials
in Homn that are harmonic:

Harmn = {Hn ∈ Homn | ΔxHn(x) = 0, x ∈ R
3}. (3.26)

For n < 2, of course, all homogeneous polynomials are harmonic.

Any homogeneous harmonic polynomial of degree n can be represented
in the form

Hn(x) = Hn(x1, x2, x3) =
n∑

j=0

xj
3An−j(x1, x2), (3.27)

where An−j is a homogeneous polynomial of degree n − j in the variables
x1, x2. Application of the Laplace operator gives

0 = ΔxHn(x) =
n∑

j=0

((
∂

∂x1

)2

+
(

∂

∂x2

)2

+
(

∂

∂x3

)2
)

xj
3An−j(x1, x2)

=
n−2∑

j=0

xj
3

((
∂

∂x1

)2

+
(

∂

∂x2

)2
)

An−j(x1, x2)

+
n−2∑

j=0

xj
3(j + 2)(j + 1)An−j−2(x1, x2), (3.28)

where we have used the facts that
((

∂

∂x1

)2

+
(

∂

∂x2

)2
)

A0(x1, x2) = 0,

((
∂

∂x1

)2

+
(

∂

∂x2

)2
)

A1(x1, x2) = 0.

(3.29)
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Thus, the functions An−j : R
2 → R satisfy the recursion relation

((
∂

∂x1

)2

+
(

∂

∂x2

)2
)

An−j(x1, x2) + (j + 2)(j + 1)An−j−2(x1, x2)

= 0 (3.30)

for j = 0, 1, ..., n− 2. Therefore, all polynomials An−j are determined if we
know An and An−1.

Theorem 3.5. Let An and An−1 be homogeneous polynomials of degree n
and n− 1 in R

2, respectively. For j = 0, ..., n− 2 we set recursively

An−j−2(x1, x2) = − 1
(j + 1)(j + 2)

((
∂

∂x1

)2

+
(

∂

∂x2

)2
)

An−j(x1, x2).

(3.31)
Then Hn : R

3 → R given by

Hn(x1, x2, x3) =
n∑

j=0

xj
3An−j(x1, x2) (3.32)

is a homogeneous harmonic polynomial of degree n in R
3, i.e., Hn ∈ Harmn.

The number of linearly independent homogeneous harmonic polynomials is
equal to the number of coefficients of An and An−1, i.e.,

d(Harmn) = n + n + 1 = 2n + 1.

Assume that n is an integer with n ≥ 2. Let Hn−2 be a homogeneous
polynomial of degree n − 2, i.e., Hn−2 ∈ Homn−2. Then, for each homoge-
neous harmonic polynomial Kn, we have

(| · |2Hn−2, Kn)Homn = (Hn−2(∇x))ΔxKn(x) = 0 . (3.33)

This means | · |2Hn−2 is orthogonal to Kn in the sense of the inner prod-
uct (·, ·)Homn . Conversely, suppose that Kn ∈ Homn is orthogonal to all
elements Ln of the form

Ln(x) = |x|2Hn−2(x) , Hn−2 ∈ Homn−2. (3.34)

Then it follows that

0 = (| · |2Hn−2, Kn)Homn = (Hn−2(∇x))ΔxKn(x) = (Hn−2, ΔKn)Homn−2

(3.35)
for all Hn−2 ∈ Homn−2. This is true only if ΔKn = 0, i.e., Kn is a homoge-
neous harmonic polynomial.
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Theorem 3.6. (Decomposition Theorem of Homn) Homn, n ≥ 2, is the
orthogonal direct sum of Harmn and Harm⊥

n , where Harm⊥
n = | · |2Homn−2

is the space of all Ln with Ln(x) = |x|2Hn−2(x), Hn−2 ∈ Homn−2. Con-
sequently, each homogeneous polynomial Hn of degree n can be uniquely
decomposed in the form

Hn(x) = Kn(x) + |x|2Hn−2(x) , (3.36)

where Kn is a homogeneous harmonic polynomial of degree n and Hn−2 is
a homogeneous polynomial of degree n− 2.

Denote by ProjHarmn
and ProjHarm⊥

n
the projection operators in Homn

onto Harmn and Harm⊥
n , respectively. Then

Hn = ProjHarmn
Hn + ProjHarm⊥

n
Hn . (3.37)

In other words,

Kn(x) = ProjHarmn
Hn(x), (3.38)

|x|2Hn−2(x) = ProjHarm⊥
n
Hn(x) . (3.39)

For all Hn, Un ∈ Homn,

(ProjHarmn
Hn, Un)Homn = (Hn, ProjHarmn

Un)Homn . (3.40)

Moreover, we have ProjHarmn
Hn = ProjHarmn

Kn = Kn. Observe that

d(Harmn) = d(Homn)− d(Harm⊥
n )

= d(Homn)− d(Homn−2)

=
(

n + 2
2

)
−
(

n

2

)
= 2n + 1.

(3.41)

If we apply Theorem 3.6 recursively to Hn−2, Hn−4, ..., we obtain the
following result.

Theorem 3.7. Each homogeneous polynomial of degree n can be uniquely
decomposed in the form

Hn(x) =
�n

2
�∑

i=0

|x|2iKn−2i(x), Kn−2i ∈ Harmn−2i, x ∈ R
3, (3.42)

where �n/2� is the largest integer which is less than or equal to n/2.
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In other words, Homn admits the direct sum decomposition

Homn(R3) =
�n

2
�⊕

i=0

| · |2iHarmn−2i(R3). (3.43)

This result gives rise to the following corollary.

Corollary 3.8. For n = 0, 1, . . .

Homn(R3)|Ω = Homn(Ω) =
�n

2
�⊕

i=0

Harmn−2i(R3)|Ω.

Since the space Pol0,...,n(R3) of polynomials in three variables of de-
gree ≤ n can be written as direct sum decomposition of Homn(R3) and
Homn−1(R3), when restricted to Ω, i.e.,

Pol0,...,n(R3)|Ω = (Homn(R3)|Ω)⊕ (Homn−1(R3)|Ω) (3.44)

we finally obtain the following corollary.

Corollary 3.9. For n = 0, 1, . . .

Pol0,...,n(R3)|Ω =
n⊕

i=0

Harmi(R3)|Ω.

In other words, the restriction to the unit sphere Ω of any polynomial
of three variables is a sum of restrictions to Ω of homogeneous harmonic
polynomials.

3.2 Addition Theorem

We are now interested in giving the explicit representation of the orthogonal
projection ProjHarmn

Hn of a given homogeneous polynomial Hn. For that
purpose, we need some preliminaries. By induction, we are able to prove
that for i = 1, 2, 3 and |x| �= 0 (cf. E.W. Hobson (1955))

(
∂

∂xi

)n 1
|x| (3.45)

= (−1)n (2n)!
n!2n

1
|x|2n+1

⎛

⎝
�n

2
�∑

s=0

(−1)s n!(2n− 2s)!
(2n)!(n− s)!s!

|x|2sΔs

⎞

⎠xn
i .
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In other words, we find

(εi · ∇x)n 1
|x| (3.46)

= (−1)n (2n)!
n!2n

1
|x|2n+1

⎛

⎝
�n

2
�∑

s=0

(−1)s n!(2n− 2s)!
(2n)!(n− s)!s!

|x|2sΔs

⎞

⎠(εi · x
)n

(i = 1, 2, 3). Since the differential operator Δ is invariant with respect to
orthogonal transformations, it is easy to see that

(y · ∇x)n 1
|x| (3.47)

= (−1)n (2n)!
n!2n

1
|x|2n+1

⎛

⎝
�n

2
�∑

s=0

(−1)s n!(2n− 2s)!
(2n)!(n− s)!s!

|x|2sΔs

⎞

⎠ (y · x)n

is valid for every y ∈ R
3. Now, as we have seen in Theorem 3.4, each

Hn ∈ Homn may be represented in the form

Hn(x) =
d(Homn)∑

j=1

cj(xj · x)n, x ∈ R
3, (3.48)

where cj , j = 1, ..., d(Homn), are suitable coefficients and x1, ..., xd(Homn) is
a fundamental system relative to Homn.

Consequently, we have the following result:

Theorem 3.10. Let Hn be a homogeneous polynomial of degree n. Then,
for each x ∈ R

3, |x| �= 0,

(Hn(∇x))
1
|x|

= (−1)n (2n)!
n!2n

1
|x|2n+1

⎛

⎝
�n

2
�∑

s=0

(−1)s n!(2n− 2s)!
(2n)!(n− s)!s!

|x|2sΔs

⎞

⎠Hn(x).

Using the decomposition (3.36) as in Theorem 3.6, it follows that

(Hn(∇x))
1
|x| = (Kn(∇x))

1
|x| + (Hn−2(∇x))Δx

1
|x| , |x| �= 0. (3.49)

Thus, in connection with

Δx
1
|x| = 0, |x| �= 0,

ΔxKn(x) = 0, x ∈ R
3,

(3.50)
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we obtain for |x| �= 0

(Hn(∇x))
1
|x| = (Kn(∇x))

1
|x| = (−1)n (2n)!

n!2n

1
|x|2n+1

Kn(x). (3.51)

By solving (3.51) for Kn(x), we get from Theorem 3.10 the following lemma.

Lemma 3.11. Let Hn be a homogeneous polynomial of degree n. Then

ProjHarmn
Hn(x) =

⎛

⎝
�n

2
�∑

s=0

(−1)s n!(2n− 2s)!
(2n)!(n− s)!s!

|x|2sΔs

⎞

⎠Hn(x) (3.52)

such that

ProjHarm⊥
n
Hn(x) = Hn(x)− ProjHarmn

Hn(x) (3.53)

=
�n

2
�∑

s=1

(−1)s−1 n!(2n− 2s)!
(2n)!(n− s)!s!

|x|2sΔsHn(x).

The differential operator ProjHarm⊥
n

given by (3.53) is called the Clebsch
projection (see E.W. Hobson (1955)). It forms a mapping from Hn ∈ Homn

to Kn ∈ Harmn such that

Kn(x) = Hn(x)−
�n

2
�∑

s=1

(−1)s−1 n!(2n− 2s)!
(2n)!(n− 2)!s!

|x|2sΔsHn(x). (3.54)

Remark 3.12. Note that

|x|2Hn−2(x) =
�n

2
�∑

s=1

(−1)s−1 n!(2n− 2s)!
(2n)!(n− s)!s!

|x|2sΔsHn(x), (3.55)

hence, the Clebsch projection can be regarded as a mechanism for the divi-
sion by |x|2.

Observing

Δx(x · y)n = n(n− 1)|y|2(x · y)n−2, y ∈ R
3, (3.56)

we obtain,
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ProjHarmn

(
(x · y)n

n!

)
(3.57)

=
1
n!

�n
2
�∑

s=0

(−1)s (2n− 2s)!(n!)2

(n− 2s)!(n− s)!s!(2n)!
|x|2s|y|2s(x · y)n−2s.

Thus, we find by using x = |x|ξ, y = |y|η, ξ, η ∈ Ω, the equation

ProjHarmn

(
(x · y)n

n!

)
(3.58)

=
(2n + 1)2n · n!

(2n + 1)!
(|x| |y|)n

�n
2
�∑

s=0

(−1)s (2n− 2s)!
2n(n− 2s)!(n− s)!s!

(ξ · η)n−2s.

Suppose that {Hn,j}j=1,...,d(Harmn) is an orthonormal system in Harmn

with respect to (·, ·)Homn . Let {Un,j}j=1,...,d(Homn)−d(Harmn) be an orthonor-
mal system in Harm⊥

n . Then, the union of both systems

{Hn,j}j=1,...,d(Harmn) ∪ {Un,j}j=1,...,d(Homn)−d(Harmn) (3.59)

forms an orthonormal system in Homn. Therefore, it follows that

(x · y)n

n!
(3.60)

=
d(Harmn)∑

j=1

Hn,j(x) Hn,j(y) +
d(Homn)−d(Harmn)∑

j=1

Un,j(x) Un,j(y)

for any pair x, y ∈ R
3. On the one hand, in view of the definition of the

projection operator ProjHarmn
, we get

ProjHarmn

⎛

⎝
d(Harmn)∑

j=1

Hn,j(x)Hn,j(y) +
d(Homn)−d(Harmn)∑

j=1

Un,j(x)Un,j(y)

⎞

⎠

=
d(Harmn)∑

j=1

Hn,j(x)Hn,j(y). (3.61)

On the other hand, as we have shown above,

ProjHarmn

(
(x · y)n

n!

)
(3.62)

=
(2n + 1)2nn!

(2n + 1)!
|x|n|y|n

�n/2�∑

s=0

(−1)s (2n− 2s)!
2n(n− 2s)!(n− s)!s!

(ξ · η)n−2s.
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By comparison of (3.61) and (3.62), we obtain the addition theorem of ho-
mogeneous harmonic polynomials in R

3.

Theorem 3.13. Let {Hn,j}j=1,...,d(Harmn), d(Harmn) = 2n + 1, be an or-
thonormal system in Harmn with respect to (·, ·)Homn. Then, for x, y ∈ R

3,
x = |x|ξ, y = |y|η, we have

2n+1∑

j=1

Hn,j(x) Hn,j(y) =
2nn!
(2n)!

|x|n|y|nPn(ξ · η),

where we have used the abbreviation

Pn(t) =
�n

2
�∑

s=0

(−1)s (2n− 2s)!
2n(n− 2s)!(n− s)!s!

tn−2s, t ∈ [−1, 1]. (3.63)

Remark 3.14. Pn is known as the Legendre polynomial of degree n (see
Section 3.5 for a detailed description).

Next, we discuss the important question of how, for any pair of elements
Hn ∈ Harmn, Kn ∈ Harmn, the inner product (·, ·)Homn defined by (3.8) is
related to the (usually used) inner product (·, ·)L2(Ω).

Theorem 3.15. For Hm ∈ Harmm, Kn ∈ Harmn,

(Hm, Kn)L2(Ω) =
δnm

μn
(Hm(∇x))Kn(x), (3.64)

where μn is given by

μn =
(2n + 1)!
4π2nn!

=
1 · 3 · . . . · (2n + 1)

4π
. (3.65)

Proof. By virtue of the Third Green Theorem of potential theory (see, The-
orem 2.4), we find

Kn(x) =
1
4π

∫

Ω

{
1

|x− y|
∂

∂νy
Kn(y)−Kn(y)

∂

∂νy

1
|x− y|

}
dω(y) (3.66)

for all x ∈ R
3 with |x| < 1, where ∂/∂ν denotes the derivative in the

direction of the outer normal to Ω. Therefore, we find

(Hm(∇x))Kn(x) =
1
4π

∫

Ω

{
(Hm(∇x))

1
|x− y|

∂

∂νy
Kn(y)

− Kn(y)
∂

∂νy
(Hm(∇x))

1
|x− y|

}
dω(y). (3.67)
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For x �= y, we get from (3.51)

(Hm(∇x))
1

|x− y| = (−1)m (2m)!
m!2m

Hm(x− y)
|x− y|2m+1

. (3.68)

Because Hm is homogeneous, this is equivalent to

(Hm(∇x))
1

|x− y| =
(2m)!
m!2m

Hm(y − x)
|x− y|2m+1

. (3.69)

Inserting (3.69) into (3.67) gives

(Hm(∇x))Kn(x) =
(2m)!

(m!)2m

1
4π

∫

Ω

{
Hm(y − x)
|x− y|2m+1

∂

∂νy
Kn(y)

−Kn(y)
∂

∂νy

Hm(y − x)
|x− y|2m+1

}
dω(y). (3.70)

It is easy to see that for m �= n

(Hm(∇x))Kn(x) |x=0 = 0, (3.71)

while for m = n

(Hm(∇x))Kn(x) |x=0 = (Hm(∇x))Kn(x) = (Hm, Kn)Homn . (3.72)

Therefore, we obtain

1
4π

∫

Ω

{
Hm(y)
|y|2m+1

∂

∂νy
Kn(y)−Kn(y)

∂

∂νy

Hm(y)
|y|2m+1

}
dω(y) (3.73)

=

{
0 for m �= n(

2mm!
(2m)!

)
(Hm, Kn)Homn for m = n

.

Since the normal derivatives of Kn and Hm are equal to

∂

∂r
Kn(rξ) |r=1 = nKn(ξ) ,

∂

∂r
Hm(rξ) |r=1 = mHm(ξ), (3.74)

respectively, it follows that

1
4π

∫

Ω

{
Hm(y)
|y|2m+1

∂

∂νy
Kn(y)−Kn(y)

∂

∂νy

Hm(y)
|y|2m+1

}
dω(y)

=
1
4π

∫

Ω
{nHm(ξ)Kn(ξ) + (m + 1)Hm(ξ)Kn(ξ)} dω(ξ)

=
n + m + 1

4π

∫

Ω
Hm(ξ)Kn(ξ) dω(ξ). (3.75)

Thus, by combination of (3.73) and (3.75), we finally obtain the desired
result.
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In other words, to any orthonormal system {Hn,j}j=1,...,2n+1 in Harmn

with respect to (·, ·)Homn there corresponds the L2(Ω)-orthonormal system
{√μnHn,j}j=1,...,2n+1, and vice versa.

Finally, we are led to the following reformulation of the addition theorem.

Theorem 3.16. {Hn,j}j=1,...,2n+1 is an orthonormal system in Harmn with
respect to (·, ·)Homn if and only if {√μnHn,j}j=1,...2n+1 is an orthonormal
system in Harmn with respect to (·, ·)L2(Ω). For x, y ∈ R

3, we have

2n+1∑

j=1

√
μnHn,j(x)

√
μnHn,j(y) =

2n + 1
4π

|x|n|y|nPn(ξ · η).

where
μn =

(2n + 1)!
4π2nn!

=
1 · 3 · . . . · (2n + 1)

4π
.

We summarize the relationship between the two topologies in Harmn in
Table 3.1.

Table 3.1: Comparison of inner products.

Topologies in Harmn

(Hn, Kn)Homn = Hn(∇x)Kn(x) | (Hn, Kn)L2(Ω) =
∫

Ω
Hn(ξ)Kn(ξ) dω(ξ)

1
μn

(Hn, Kn)Homn = (Hn, Kn)L2(Ω)

3.3 Exact Computation of Homogeneous Harmonic
Polynomials

Our purpose is to explain how a maximal linearly independent system of
homogeneous harmonic polynomials of degree n can be generated exactly
(see W. Freeden, R. Reuter (1984)). The concept is based on the observa-
tion that any linearly independent system {Hn,j}j=1,...,2n+1 of homogeneous
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harmonic polynomials of degree n

Hn,1(x) =
∑

[α]=n

C1
αxα

...
...

...
... (3.76)

Hn,2n+1(x) =
∑

[α]=n

C2n+1
α xα

can be calculated by exact computation of the coefficients Cj
α, j = 1, . . .,

2n + 1, i.e., entirely by integer operations (note that we briefly write Cj
α

instead of Cn,j
α when confusion is not likely to arise). In other words, we

want to show that the coefficients Cj
α, j = 1, ..., 2n + 1, in (3.76) can be

expressed as integers.

Let Hn be a homogeneous polynomial of the form Hn = Σ[α]=nCαxα,
x ∈ R

3, n ≥ 2. Assuming that Hn is harmonic, i.e., ΔxHn(x) = 0 , x ∈ R
3,

we obtain

ΔxHn(x) = Δx

∑

[α]=n

Cαxα =
∑

[α]=n

CαΔx(xα) = 0. (3.77)

Thus, it follows that
∑

α1+α2+α3=n

Cα

(
α1(α1 − 1)xα1−2

1 xα2
2 xα3

3 + α2(α2 − 1)xα2−2
2 xα1

1 xα3
3

+ α3(α3 − 1)xα3−2
3 xα1

1 xα2
2

)
= 0. (3.78)

We discuss the terms

α1(α1 − 1)xα1−2
1 xα2

2 xα3
3 , α1 + α2 + α3 = n,

α2(α2 − 1)xα1
1 xα2−2

2 xα3
3 , α1 + α2 + α3 = n, (3.79)

α3(α3 − 1)xα1
1 xα2

2 xα3−2
3 , α1 + α2 + α3 = n

in more detail. Every term in (3.79) with index α = (α1, α2, α3)T satisfying
[α] = α1 +α2 +α3 = n is a homogeneous polynomial of degree n−2. Hence,
the left hand side of (3.78) is a homogeneous polynomial of degree n − 2.
Therefore, ΔHn can be represented in the form

ΔxHn(x) =
∑

[β]=n−2

Dβxβ . (3.80)

The coefficients Dβ are given by

Dβ =
∑

[α]=n

Cαmβα, (3.81)
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where mβα is given by

mβα =

⎧
⎪⎪⎨

⎪⎪⎩

α1(α1 − 1), β − α = (−2, 0, 0)T

α2(α2 − 1), β − α = (0,−2, 0)T

α3(α3 − 1), β − α = (0, 0,−2)T

0 otherwise.

(3.82)

Hn is assumed to be harmonic, i.e., ΔxHn(x) = 0 for all x ∈ R
3. But this

means that all numbers Dβ are equal to 0. Therefore, it follows that
∑

[α]=n

Cαmβα = 0 (3.83)

for all β with [β] = n − 2. Now, (3.83) is a linear system of
(
n
2

)
equations

in the
(
n+2

2

)
unknowns Cα, [α] = n.

The matrix m = (mβα) has
(
n
2

)
rows and

(
n+2

2

)
columns; m can be

partitioned as follows:

m = ( l︸︷︷︸
(n2 )

... r︸︷︷︸
(n+2

2 )−(n2 )=2n+1

), (3.84)

where l = (lβδ) is a
(
n
2

)
by
(
n
2

)
matrix and r = (rβδ) is a

(
n
2

)
by
(
n+2

2

)
−
(
n
2

)

matrix.

For the set of multi indices of degree n, we introduce a binary relation
(lexicographical order) between elements

α
′
= (α

′
1, α

′
2, α

′
3)

T , α
′′

= (α
′′
1 , α

′′
2 , α

′′
3)T (3.85)

designated by ‘>’ and defined as follows:

α
′
> α

′′
(3.86)

if and only if one of the following relations is satisfied

α
′
1 > α

′′
1 (3.87)

or
α

′
1 = α

′′
1 , α

′
2 > α

′′
2 (3.88)

or
α

′
1 = α

′′
1 , α

′
2 = α

′′
2 , α

′
3 > α

′′
3 . (3.89)

The binary relation ‘>’ implies an ordering for the multi-indices α, [α] =
n, according to the mapping

(n, 0, 0) → 1 } 1
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(n− 1, 1, 0) → 2
(n− 1, 0, 1) → 3

}
2

(n− 2, 2, 0) → 4
(n− 2, 1, 1) → 5
(n− 2, 0, 2) → 6

⎫
⎬

⎭ 3

...
...
...

(0, n, 0) →
(
n+2

2

)
− n

...
...
...

(0, 0, n) →
(
n+2

2

)

⎫
⎪⎬

⎪⎭
n + 1 .

In the same way, the set of multi-indices β, [β] = n− 2, may be ordered
by increasing integers i, 1 ≤ i ≤

(
n
2

)
. Hence, in canonical manner, each pair

(β, α) with [β] = n − 2, [α] = n, corresponds uniquely to a pair (i, j), 1 ≤
i ≤

(
n
2

)
, 1 ≤ j ≤

(
n+2

2

)
. In this notation, the matrix

m = (mβα), [β] = n− 2, [α] = n (3.90)

can be rewritten in the ordered form

m = (mij), 1 ≤ i ≤
(

n

2

)
, 1 ≤ j ≤

(
n + 2

2

)
. (3.91)

Analogously
l = lβγ , [β] = n− 2, [γ] = n− 2 (3.92)

becomes

l = (lij), 1 ≤ i ≤
(

n

2

)
, 1 ≤ j ≤

(
n

2

)
. (3.93)

From (3.82), it can be deduced that

lij = 0 for i > j, i = 2, ...,
(
n
2

)
,

lij �= 0 for i = j, i = 1, ...,
(
n
2

)
.

(3.94)

But this shows that l is non-singular, hence, the matrix m is of maximal
rank:

(
n
2

)
. Therefore we are able to find

(
n+2

2

)
−
(
n
2

)
, i.e., 2n+1 linearly inde-

pendent solution vectors (A1
α) , ... , (A2n+1

α ), [α] = n, of the homogeneous
linear system (3.83). According to standard arguments of Linear Algebra,
the

(
n+2

2

)
by 2n + 1 matrix a consisting of the vectors (A1

α), ..., (A2n+1
α )

a =
(
(A1

α), ..., (A2n+1
α )

)
︸ ︷︷ ︸

2n+1

} (
n+2

2

)
(3.95)
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may be partitioned in the following form

a =
(

u
−i

)

︸ ︷︷ ︸
2n+1

, (3.96)

where i is the (2n+1) by (2n+1) unit matrix, and u is a
(
n+2

2

)
−(2n+1) by

(2n+1) matrix. Then the linear system m a = 0 can be written as follows:
l u = r. Since l is a (2n+1) by (2n+1) upper triangular matrix, the unknown
matrix u can be computed by (2n + 1)-times backward substitution.

The elements of the matrix m = (mβα) are all integers. Therefore, any so-
lution of the linear system (3.83) is a column vector of rational components.
Hence, there exists a matrix

c = ((C1
α), ..., (C2n+1

α )), [α] = n, (3.97)

the elements of which are all integers (observe that if (Cα), [α] = n, is a
solution of (3.83), then k (Cα), [α] = n, k integer, is a solution, too).

In other words, the solution process can be performed strictly in the mod-
ulus of integers. Exact computation (without rounding errors) is possible in
integer mode by use of integer operations (addition, subtraction, multiplica-
tion of integers). When the matrix c has been calculated, the homogeneous
harmonic polynomials Hn,j given by (3.76) form a (maximal) linearly inde-
pendent system, i.e., a basis in Harmn.

Finally, it should be emphasized that exact computation, i.e., addition,
subtraction, multiplication in integer mode must be performed strictly in
the available range of the integer constants. Helpful is an arithmetic for
arbitrarily long integers whose implementation on a computer system op-
erates with lists so that there is no restriction on the size of the integers
worked with (this is a standard feature of computer algebra packages). Let
us demonstrate the technique of calculating the matrix c with an example:

Example 3.17. We choose the degree n = 3. Then an elementary calcula-
tion yields

(
n + 2

2

)
= 10,

(
n

2

)
= 3, (3.98)

hence,
(

n + 2
2

)
−
(

n

2

)
= 7. (3.99)
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Every polynomial H3 ∈ Hom3 may be represented in the form:

H3(x) = C300 x3
1 + C210 x2

1 x2 + C201 x2
1 x3

+ C120 x1 x2
2 + C111 x1 x2x3 + C102 x1 x2

3

+ C030 x3
2 + C021 x2

2x3 + C012 x2 x2
3

+ C003 x3
3

(x = (x1, x2, x3)T ).

(3.100)

H3 has to fulfill the differential equation ΔxH3(x) = 0, x ∈ R
3, i.e.,

6 C300x1 + 2 C210x2 + 2 C201x3 (3.101)
+2 C120x1 + 6 C030x2 + 2 C021x3

+2 C102x1 + 2 C012x2 + 6 C003x3 = 0.

Since ΔxH3(x) = 0 identically for all x ∈ R
3, we get

(
n
2

)
= 3 equations for

the coefficients

6C300 + 2C120 + 2C102 = 0, (3.102)
2C210 + 6C030 + 2C012 = 0, (3.103)
2C201 + 2C021 + 6C003 = 0. (3.104)

Using the introduced order for the coefficients Cα, [α] = 3, the equation
m c = 0 reads in matrix notation

⎛

⎜⎜⎜⎝

6 0 0
... 2 0 2 0 0 0 0

0 2 0
... 0 0 0 6 0 2 0

0 0 2
... 0 0 0 0 2 0 6

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C300

C210

C201

. . .
C120

C111

C102

C030

C021

C012

C003

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎝
0
0
0

⎞

⎠ , (3.105)

where we have marked the partitioning of the matrix m and the vector (Cα)
by dashed lines. If we choose

C120 = −1, C111 = ... = C003 = 0 (3.106)

the linear system is uniquely solved by the vector

(
1
3
, 0, 0

... − 1, 0, 0, 0, 0, 0, 0)T . (3.107)

Multiplying this vector by 3, all components become integers

(C1
α) = (1, 0, 0

... − 3, 0, 0, 0, 0, 0, 0)T . (3.108)
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In the same way, we generate a set of 7 linearly independent solutions of
the above system the components of which are all integers, viz.

(C2
α) = (0, 0, 0

... 0,−1, 0, 0, 0, 0, 0)T , (3.109)

(C3
α) = (1, 0, 0

... 0, 0,−3, 0, 0, 0, 0)T , (3.110)

(C4
α) = (0, 3, 0

... 0, 0, 0,−1, 0, 0, 0)T , (3.111)

(C5
α) = (0, 0, 1

... 0, 0, 0, 0,−1, 0, 0)T , (3.112)

(C6
α) = (0, 1, 0

... 0, 0, 0, 0, 0,−1, 0)T , (3.113)

(C7
α) = (0, 0, 3

... 0, 0, 0, 0, 0, 0,−1)T . (3.114)

Thus a linearly independent system {H3,j}j=1,...,7 of homogeneous har-
monic polynomials of degree 3 is found by the following functions:

H3,1(x) = 1 · x3
1 − 3 · x1x

2
2, (3.115)

H3,2(x) = −1 · x1x2x3, (3.116)
H3,3(x) = 1 · x3

1 − 3 · x1x
2
3, (3.117)

H3,4(x) = 3 · x2
1x2 − 1 · x3

2, (3.118)
H3,5(x) = 1 · x2

1x3 − 1 · x2
2, x3, (3.119)

H3,6(x) = 1 · x2
1x2 − 1 · x2x

2
3, (3.120)

H3,7(x) = 3 · x2
1x3 − 1 · x3

3. (3.121)

Let us summarize the solution process once the linear system is given:

(i) Choosing the lower part of the vector identically 0 besides one com-
ponent.

(ii) Solving the system by backward substitution.

(iii) Multiplying every resulting vector by an appropriate integer.

It is worth mentioning that, corresponding to the linearly independent
system {Hn,j}j=1,...,2n+1 of homogeneous harmonic polynomials of degree n,
an orthogonal system, in {H∗

n,j}j=1,....,2n+1 with respect to both the topology
of Homn and L2(Ω) can be constructed only by integer operations (according
to the well-known Gram-Schmidt process). To this end, the functions H∗

n,j

are computed recursively. We start from

H∗
n,1 = Hn,1 . (3.122)

Then we set
H∗

n,2 = an
2,1H

∗
n,1 + Hn,2 . (3.123)
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The coefficient an
2,1 has to be chosen such that H∗

n,2 is orthogonal to H∗
n,1 :

(H∗
n,2, H

∗
n,1)Homn = 0 . (3.124)

It turns out that

an
2,1 = −

(Hn,2, H
∗
n,1)Homn

(H∗
n,1, H

∗
n,1)Homn

. (3.125)

It should be noted that numerator and denominator may be determined
exactly. Now, let

H∗
n,3 = an

3,1H
∗
n,1 + an

3,2H
∗
n,2 + Hn,3 . (3.126)

The requirements

(H∗
n,3, H

∗
n,1)Homn = 0, (3.127)

(H∗
n,3, H

∗
n,2)Homn = 0 (3.128)

lead to

an
3,1 = −

(Hn,3, H
∗
n,1)Homn

(H∗
n,1, H

∗
n,1)Homn

, (3.129)

an
3,2 = −

(Hn,3, H
∗
n,2)Homn

(H∗
n,2, H

∗
n,2)Homn

. (3.130)

Again, the coefficients can be deduced by integer operations. Analogously
we get, in general,

H∗
n,1 = Hn,1 , (3.131)

H∗
n,k = an

k,1H
∗
n,1 + ... + an

k,k−1H
∗
n,k−1 + Hn,k, k = 2, ..., 2n + 1, (3.132)

where the coefficients

an
k,s = −

(Hn,k, H
∗
n,s)Homn

(H∗
n,s, H

∗
n,s)Homn

(3.133)

are computable exactly by integer operations, i.e., an
k,s is known exactly as

a fraction of integers.

According to this well-known orthogonalization scheme, each function
H∗

n,j is a linear combination of the functions Hn,1, ..., Hn,2n+1 . The coeffi-
cients of this linear combination can be obtained exactly as rational num-
bers, too. Thus, there exists a vector (Bj

α) such that

H∗
n,j(x) =

∑

[α]=n

Bj
αxα , j = 1, ..., 2n + 1 . (3.134)

The vectors (Bj
α), j = 1, ..., 2n+1, form a matrix b whose elements consist of

fractions of integers (provided that all numbers in the course of computation
have been calculated in such a way that numerator and denominator are
known as integers).
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Lemma 3.18. There exists a sequence of homogeneous harmonic polyno-
mials {H∗

n,j}j=1,...,2n+1 of degree n with

(H∗
n,j , H

∗
n,l)Homn = 0, j �= l ,

viz.

H∗
n,1 = Hn,1

H∗
n,k = an

k,1H
∗
n,1 + ... + an

k,k−1H
∗
n,k−1 + Hn,k, k = 2, ..., 2n + 1,

where all coefficients an
k,s are computable by integer operations.

Remark 3.19. Provided that the expression
√

(H∗
n,j , H

∗
n,j)Homn has been

stored as the radicant of an integer, a Homn-orthonormal system of homo-
geneous harmonic polynomials of degree n can be calculated exactly, i.e.,
by integer operations.

Lemma 3.20. The system
√

(H∗
n,1, H

∗
n,1)

−1
Homn

H∗
n,1, . . . ,

√
(H∗

n,2n+1, H
∗
n,2n+1)

−1
Homn

H∗
n,2n+1

is an orthonormal system of homogeneous harmonic polynomials of degree
n with respect to (·, ·)Homn, while
√

μn(H∗
n,1, H

∗
n,1)

−1
Homn

H∗
n,1, . . . ,

√
μn(H∗

n,2n+1, H
∗
n,2n+1)

−1
Homn

H∗
n,2n+1

is an orthonormal system of homogeneous harmonic polynomials of degree
n with respect to (·, ·)L2(Ω). The values (H∗

n,j , H
∗
n,j)Homn can be determined

entirely by integer operations.

Example 3.21. We only deal with the degree n = 3 (for a table of higher
degrees, see W. Freeden, R. Reuter (1984)). According to our orthonormal-
ization process due to Gram-Schmidt, we are able to deduce from the max-
imal system of linearly independent homogeneous harmonic polynomials
{H3,j}j=1,...,7 an orthogonal system {H∗

3,j}j=1,...,7. The resulting functions
are listed below:

H∗
3,1(x) = x3

1 − 3x1x
2
2,

H∗
3,2(x) = x1x2x3,

H∗
3,3(x) = x3

1 + x1x
2
2 − 4x1x

2
3,

H∗
3,4(x) = 3x2

1x2 − x3
2 − x3

2,

H∗
3,5(x) = x2

1x3 − x2
2x3,

H∗
3,6(x) = x2

1x2 + x3
2 − 4x2x

2
3,

H∗
3,7(x) = 3x2

1x3 + 3x2
2x3 − 2x3

3.
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That means, all components Bj
α �= 0 are decomposed into an integer times

a product of the prime numbers 2, 3. An easy calculation gives

(H∗
3,1, H

∗
3,1)Hom3 = 24 = 1 · 23 · 31,

(H∗
3,2, H

∗
3,2)Hom3 = 1 = 1 · 20 · 30,

(H∗
3,3, H

∗
3,3)Hom3 = 40 = 5 · 23 · 30,

(H∗
3,4, H

∗
3,4)Hom3 = 24 = 1 · 23 · 31,

(H∗
3,5, H

∗
3,5)Hom3 = 4 = 1 · 22 · 30,

(H∗
3,6, H

∗
3,6)Hom3 = 40 = 5 · 23 · 30,

(H∗
3,7, H

∗
3,7)Hom3 = 60 = 5 · 22 · 31.

(3.135)

Thus, the integers are decomposed into a (positive) integer times a product
of prime numbers ≤ 3.

Consequently, the orthonormal system

√
(H∗

n,j , H
∗
n,j)

−1
Hom3

H∗
n,j (3.136)

(with respect to (·, ·)Hom3). corresponding to {H∗
n,j}j=1,...,7 may be listed as

follows:

√
(H∗

3,1, H
∗
3,1)

−1
Hom3

H∗
3,1(x)

= (1 · 20 · 30 · x3
1x

0
2x

0
3 − 1 · 20 · 31 · x1

1x
2
2x

0
3)/
√

1 · 23 · 31,
√

(H∗
3,2, H

∗
3,2)

−1
Hom3

H∗
3,2(x)

= (1 · 20 · 30 · x1
1x

1
2x

1
3)/
√

1 · 20 · 30,
√

(H∗
3,3, H

∗
3,3)

−1
Hom3

H∗
3,3(x)

= (1 · 20 · 30 · x3
1x

0
2x

0
3 + 1 · 20 · 30 · x1

1x
2
2x

0
3

−1 · 22 · 30 · x1
1x

0
2x

2
3)/
√

5 · 23 · 30,
√

(H∗
3,4, H

∗
3,4)

−1
Hom3

H∗
3,4(x)

= (1 · 20 · 31 · x2
1x

1
2x

0
3 − 1 · 20 · 30 · x0

1x
3
2x

0
3)/
√

1 · 23 · 31,
√

(H∗
3,5, H

∗
3,5)

−1
Hom3

H∗
3,5(x)

= (1 · 20 · 30 · x2
1x

0
2x

1
3 − 1 · 20 · 30 · x0

1x
2
2x

1
3)/
√

1 · 22 · 30,
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√
(H∗

3,6, H
∗
3,6)

−1
Hom3

H∗
3,6(x)

= (1 · 20 · 30 · x2
1x

1
2x

0
3 + 1 · 20 · 30 · x0

1x
3
2x

0
35 · 23 · 30 · x0

1x
1
2x

2
3)/
√

1 · 22 · 30,
√

(H∗
3,7, H

∗
3,7)

−1
Hom3

H∗
3,7(x)

= (1 · 20 · 31 · x2
1x

0
2x

1
3 + 1 · 20 · 31 · x0

1x
2
2x

1
3

−1 · 21 · 30 · x0
1x

0
2x

3
3)/
√

5 · 22 · 31.

Finally, the orthonormal system of homogeneous harmonic polynomials of
degree n (with respect to (·, ·)L2(Ω)) is given as follows

√
μ3(H∗

3,j , H
∗
3,j)

−1
Hom3

H∗
3,j , j = 1 . . . , 7 (3.137)

with
μ3 =

105
4π

=
1 · 3 · 5 · 7

4π
. (3.138)

Our considerations have shown how a basis of Harmn can be computed
entirely by integer operations from 2n + 1 systems of linear equations. The
basis functions obtained can be orthonormalized exactly by means of the
well-known Gram-Schmidt orthonormalization process. As a result, there
are 2n + 1 homogeneous harmonic polynomials available (orthonormalized
in the sense of (·, ·)Homn) . But the disadvantage in that approach is that
the linear systems of equations result in basis functions which are all in-
volved in the computational work of the orthonormalization. Later on (in
Section 3.14), when Legendre harmonics come into play, an algorithm will
be presented which reduces the amount of computational work by a factor
less than 4, but which is close to 4 if the degree n becomes large enough.

3.4 Definition of Scalar Spherical Harmonics

We begin by introducing scalar spherical harmonics. Essential tool is the
theory of homogeneous harmonic polynomials.

Definition 3.22. Let Hn be a homogeneous harmonic polynomial of degree
n in R

3, i.e., Hn ∈ Harmn(R3). The restriction

Yn = Hn|Ω (3.139)

is called a spherical harmonic of degree n. The space of all spherical harmon-
ics of degree n, i.e., the set of all restrictions Yn = Hn|Ω, Hn ∈ Harmn(R3),
is denoted by Harmn(Ω). More explicitly,

Harmn(Ω) = Harmn(R3)|Ω. (3.140)
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Remark 3.23. In what follows, we simply write Harmn instead of Harmn(R3)
(or Harmn(Ω)) if no confusion is likely to arise.

We know already that the linear space Harmn is of dimension 2n + 1,
that is d(Harmn) = 2n + 1. From Theorem 3.15, it follows that spherical
harmonics of different orders are orthogonal in the sense of the L2-inner
product

(Yn, Ym)L2(Ω) =
∫

Ω
Yn(ξ)Ym(ξ) dω(ξ) = 0, n �= m. (3.141)

Using the standard method of separation, we have Hn(x) = rnYn(ξ), x =
rξ, r = |x|, ξ ∈ Ω. Observing the identity

1
r2

d

dr

(
r2 d

dr

)
rn = n(n + 1)rn−2 (3.142)

we obtain

0 = ΔxHn(x) = rn−2n(n + 1)Yn(ξ) + rn−2Δ∗
ξYn(ξ). (3.143)

Thus, we are able to formulate the following lemma.

Lemma 3.24. Any spherical harmonic Yn, n = 0, 1, . . . , is a twice differen-
tiable eigenfunction of the Beltrami operator corresponding to the eigenvalue
−n(n + 1). More explicitly,

(Δ∗
ξ − (Δ∗)∧(n))Yn(ξ) = 0, ξ ∈ Ω, Yn ∈ Harmn,

where the ‘spherical symbol’ {(Δ∗)∧(n)}n=0,1,... of the Beltrami operator Δ∗

is given by
(Δ∗)∧(n) = −n(n + 1), n = 0, 1, . . . .

Remark 3.25. Throughout the book, for convenience, the capital letter Y
followed by double indices, for example, Yn,j , denotes a member of degree n
and order j within an orthonormal system {Yn,1, . . . , Yn,2n+1} with respect
to (·, ·)L2(Ω). A special realization of an L2(Ω)-orthonormal system is pre-
sented in Section 3.12 (where we introduce a system involving associated
Legendre functions).

In terms of spherical harmonics, the addition theorem allows the following
reformulation.

Theorem 3.26. Let {Yn,j}j=1,...,2n+1 be an L2(Ω)-orthonormal system in
Harmn. Then, for any pair (ξ, η) ∈ Ω× Ω,

2n+1∑

j=1

Yn,j(ξ)Yn,j(η) =
2n + 1

4π
Pn(ξ · η).
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Proof. Theorem 3.26 follows immediately from Theorem 3.16.

Remark 3.27. The addition theorem can be seen in analogy to its two-
dimensional counterpart involving the “circular harmonics” Hn,j(2; ·) : R

2 →
R, j = 1, 2, given by

Hn,1(2; x(2)) = Hn,1(2; x1, x2) =
1√
π

Re(x2 + ix1)n (3.144)

=
1√
π
|x|n cos n(

π

2
− ϕ)

=
(−1)n+1

√
π

|x|n sin(nϕ),

Hn,2(2; x(2)) = Hn,2(2; x1, x2) =
1√
π

Im (x2 + ix1)n (3.145)

=
1√
π
|x|n sinn(

π

2
− ϕ)

=
(−1)n+1

√
π

|x|n cos(nϕ),

x(2) ∈ R
2, x(2) = (x1, x2)T , x1 = r cos ϕ, x2 = r sinϕ, r = |x(2)| =√

x2
1 + x2

2, 0 ≤ ϕ < 2π. Obviously, we have

∫

|x(2)|=1
Hn,j(2; x(2))Hk,l(2; x(2)) dω(x(2)) = δnkδjl. (3.146)

Moreover, for x(2), y(2) ∈ R
2, x1 = |x(2)| cos ϕ, x2 = |x(2)| sinϕ, y1 =

|y(2)| cos ψ, y2 = |y(2)| sinψ, 0 ≤ ϕ, ψ < 2π, we have

2∑

j=1

Hn,j(2;x(2))Hn,j(2; y(2)) (3.147)

=
|x(2)|n|y(2)|n

π

(
cos n

(π

2
− ϕ) cos(n(

π

2
− ψ)) + sin(n(

π

2
− ϕ)) sin(n(

π

2
− ψ)

))

=
|x(2)|n|y(2)|n

π
cos(n(ϕ− ψ)).

The two-dimensional counterpart of the Legendre polynomial is the Cheby-
shev function

Ln(2; x(2)) = Re(x2 + ix1)n (3.148)
= |x(2)|n cos n(arccos(sin ϕ))
= |x(2)|nTn(sin ϕ),
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that is symmetric with respect to the (0, 1)-axis and that takes on the value
1 for (x1, x2) = (0, 1). Clearly,

Ln(2; x(2)) = |x(2)|n cos n
(
arccos(cos(

π

2
− ϕ))

)
(3.149)

= |x(2)|nTn(cos(
π

2
− ϕ))

= |x(2)|n cos
(
n
(π

2
− ϕ

))
.

Thus, we finally obtain as two-dimensional analogue of the addition theorem

2∑

j=1

Hn,j(2; x(2))Hn,j(2; y(2)) =
|x(2)|n|y(2)|n

π
Tn(ξ(2) · η(2)) (3.150)

with ξ(2) = (cos ϕ, sinϕ)T , η(2) = (cos ψ, sinψ)T . Clearly, we have

ξ(2) · η(2) = cos(ϕ− ψ), (3.151)

which explains the close similarity to the result known from our (three–
dimensional) spherical harmonic theory (for higher dimensional generaliza-
tions, see C. Müller (1966, 1998)).

Suppose that t is an orthogonal transformation. Then ξ �→ Yn,j(tξ),
ξ ∈ Ω, is a spherical harmonic of degree n. Thus, we are able to write this
function as linear combination

Yn,j(tξ) =
2n+1∑

r=1

∫

Ω
Yn,j(tη)Yn,r(η) dω(η)

︸ ︷︷ ︸
=cn

j,r

Yn,r(ξ) (3.152)

Moreover, the addition theorem tells us that, for ξ, η ∈ Ω,

Pn(tξ · tη) =
2n+1∑

j=1

Yn,j(tξ)Yn,j(tη) (3.153)

=
2n+1∑

j=1

2n+1∑

r=1

cn
j,rYn,r(ξ)

2n+1∑

s=1

cn
j,sYn,s(η)

=
2n+1∑

r=1

2n+1∑

s=1

Yn,r(ξ)Yn,s(η)
2n+1∑

j=1

cn
j,rc

n
j,s

=
2n+1∑

r=1

Yn,r(ξ)Yn,r(η)

= Pn(ξ · η)
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such that

δjl =
2n+1∑

r=1

∫

Ω
Yn,j(tη)Yn,r(η) dω(η)

∫

Ω
Yn,l(tη)Yn,r(η) dω(η)

=
∫

Ω
Yn,j(tη)Yn,l(tη) dω(η). (3.154)

Lemma 3.28. If t ∈ O(3), then the matrix

(∫

Ω
Yn,j(tη)Yn,r(η) dω(η)

)

j,r=1,...2n+1

(3.155)

is orthogonal.

Because of Pn(1) = 1, we find

2n+1∑

j=1

(Yn,j(ξ))2 =
2n + 1

4π
, ξ ∈ Ω. (3.156)

If we remember that every Yn ∈ Harmn can be written in the form

Yn =
2n+1∑

j=1

(Yn, Yn,j)L2(Ω)Yn,j , (3.157)

we immediately get the following lemma.

Lemma 3.29. (Reproducing Kernel in Harmn) For every Yn ∈ Harmn

2n + 1
4π

∫

Ω
Yn(η)Pn(ξ · η) dω(η) = Yn(ξ), ξ ∈ Ω,

that is

(ξ, η) �→ KHarmn(ξ, η) =
2n + 1

4π
Pn(ξ · η), (ξ, η) ∈ Ω× Ω,

represents the (uniquely determined) reproducing kernel in Harmn. More-
over,

(Δ∗
η − (Δ∗)∧(n))KHarmn(ξ, η) = 0, η ∈ Ω,

holds for all ξ ∈ Ω.

From Lemma 3.29, we easily obtain the following result.
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Lemma 3.30. Let

Harm0,...,m =
m⊕

n=0

Harmn. (3.158)

Then

(ξ, η) �→ KHarm0,...,m(ξ, η) =
m∑

n=0

2n + 1
4π

Pn(ξ · η) (3.159)

is the (uniquely) determined reproducing kernel in Harm0,...,m, i.e.,
KHarm0,...,m (ξ, ·), ξ ∈ Ω, is a member of Harm0,...,m with

∫

Ω
Y (η)KHarm(ξ, η) dω(η) = Y (ξ), ξ ∈ Ω (3.160)

for all Y ∈ Harm0,...,m.

Observing that

∫

Ω
(Yn(ξ))2 dω(ξ) =

2n+1∑

j=1

(Yn, Yn,j)2L2(Ω) (3.161)

we find in connection with (3.156) and (3.157)

(Yn(ξ))2 ≤
2n+1∑

j=1

(Yn, Yn,j)2L2(Ω)

2n+1∑

j=1

(Yn,j(ξ))2 (3.162)

=
2n + 1

4π

2n+1∑

j=1

(Yn, Yn,j)2L2(Ω).

This yields the following lemma.

Lemma 3.31. For every Yn ∈ Harmn

‖Yn‖C(Ω) = sup
ξ∈Ω

|Yn(ξ)| ≤
(

2n + 1
4π

) 1
2

‖Yn‖L2(Ω)

=
(

2n + 1
4π

) 1
2
(∫

Ω
(Yn(ξ))2 dω(ξ)

)1/2

. (3.163)

In particular,

‖Yn,j‖C(Ω) = sup
ξ∈Ω

|Yn,j(ξ)| ≤
(

2n + 1
4π

) 1
2

, (3.164)

j = 1, . . . , 2n + 1.
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3.5 Legendre Polynomials

The function Pn : [−1, 1] → R, n = 0, 1, ..., defined by (3.63)

Pn(t) =
�n

2
�∑

s=0

(−1)s (2n− 2s)!
2n(n− 2s)!(n− s)!s!

tn−2s, t ∈ [−1, 1] (3.165)

is called the Legendre polynomial. Pn is uniquely determined by the prop-
erties:

(i) Pn is a polynomial of degree n on the interval [−1, 1],

(ii)
∫ 1

−1
Pn(t)Pm(t) dt = 0 for n �= m,

(iii) Pn(1) = 1.

This is easily seen from the usual process of orthogonalization.

In particular, we have for n = 0, . . . , 4

P0(t) = 1, P1(t) = t, P2(t) =
3
2
t2 − 1

2
, (3.166)

P3(t) =
5
2
t3 − 3

2
t, P4(t) =

35
8

t4 − 15
4

t2 +
3
8
. (3.167)

A graphical impression of some Legendre polynomials can be found in
Fig. 3.1.

−1  −0.5  0  0.5  1
−1

−0.5

0

0.5

1

 

 

P1
P2
P3
P4

Fig. 3.1: Legendre polynomials t �→ Pn(t), t ∈ [−1, 1], n = 1, . . . , 4.

Furthermore, ∫ 1

−1
Pn(t)Pm(t) dt =

2
2n + 1

δnm. (3.168)
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Definition 3.32. For ξ ∈ Ω, the function Pn(ξ·) : η �→ Pn(ξ · η), η ∈ Ω, is
called the scalar ξ-Legendre kernel of degree n.

Applying the Cauchy–Schwarz inequality to the addition theorem (The-
orem 3.26), we obtain for the scalar ξ-Legendre kernel

2n + 1
4π

∣∣∣∣ Pn(ξ · η)
∣∣∣∣ =

∣∣∣∣∣∣

2n+1∑

j=1

Yn,j(ξ)Yn,j(η)

∣∣∣∣∣∣
(3.169)

≤

√√√√
2n+1∑

j=1

(
Yn,j(ξ)

)2
√√√√

2n+1∑

j=1

(
Yn,j(η)

)2

=
2n + 1

4π
| Pn(1) |

=
2n + 1

4π
Pn(1). (3.170)

Therefore, it follows that

|Pn(t)| ≤ Pn(1) = 1 , t ∈ [−1, 1]. (3.171)

Moreover, the Legendre polynomial Pn satisfies the estimate (see, for exam-
ple, C. Müller (1952))

|P (k)
n (t)| ≤ |P (k)

n (1)|, (3.172)

where P
(k)
n (1) = O(n2k). In particular, we have

P ′
n(1) =

n(n + 1)
2

. (3.173)

Furthermore, for k = 2, 3, . . . , n,

P (k)
n (1) =

(
1
2

)k 1
k!

n(n + 1) ((n(n + 1)− 1 · 2) . . . (n(n + 1)− k(k − 1))) .

From Lemma 3.24 in combination with Theorem 3.26, it follows that
(

(1− t2)
(

d

dt

)2

− 2t
d

dt
+ n(n + 1)

)
Pn(t) = 0, t ∈ [−1, 1], (3.174)

where

Lt =

(
(1− t2)

(
d

dt

)2

− 2t
d

dt

)
(3.175)

is the Legendre operator, i.e., the part of the Beltrami operator that depends
only on the polar distance t.

We therefore obtain the following lemma.
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Lemma 3.33. The Legendre polynomial Pn is the only twice differentiable
eigenfunction of the ‘Legendre operator’ (3.175) on [−1, 1], corresponding
to the eigenvalues −n(n + 1), n = 0, 1, ..., and bounded on [−1, 1] with
Pn(1) = 1.

The differential equation (3.174) shows that Pn and P ′
n cannot vanish

simultaneously such that Pn has no multiple zeros. The orthogonality re-
lation for Legendre polynomials implies that Pn has, at most, k different
zeros, z1, . . . zk, k ≤ n, in the interval (−1, 1). Letting

Ik(t) = (t− z1) · · · (t− zk) (3.176)

we get Ik(1) > 0 and Pn = Jn−kIk. The polynomial Jn−k is positive in
[−1, 1], and we have

∫ +1

−1
Pn(t)Ik(t) dt =

∫ +1

−1
Jn−k(t)I2

k(t) dt > 0. (3.177)

As Pn is orthogonal to all polynomials of degree < n, this is possible only
for the case k = n. Thus, we can conclude that Pn has n different zeros in
the interval (−1, 1).

The zeros of the Legendre polynomial for n = 1, 2, 3, 4 are listed in
Table 3.2.

Table 3.2: Zeros of the Legendre polynomial.

n = 1 z1 = 0
n = 2 z2 = −z1 = 0.5773502692...

n = 3 z3 = −z1 = 0.7745966692...
z2 = 0

n = 4 z4 = −z1 = 0.8611363116...
z3 = −z2 = 0.3399810436...

Lemma 3.34. The Legendre polynomial Pn has n different zeros in the
interval (−1, 1).

From the binomial theorem, it follows that

(t2 − 1)n =
n∑

s=0

(−1)s n!
(n− s)!s!

t2n−2s, n = 0, 1, . . . . (3.178)

For all s ≤ [n/2] we find
(

d

dt

)n

t2n−2s =
(2n− 2s)!
(n− 2s)!

tn−2s, (3.179)
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while for [n/2] < s ≤ n we get
(

d

dt

)n

t2n−2s = 0. (3.180)

Therefore, we see that

(
d

dt

)n

(t2 − 1)n =
�n

2
�∑

s=0

(−1)s n!
(n− s)!s!

(2n− 2s)!
(n− 2s)!

tn−2s . (3.181)

By comparison with the definition of the Legendre polynomial (3.63), we
obtain the Rodriguez formula.

Lemma 3.35. For n = 0, 1, . . . ,

Pn(t) =
1

2nn!

(
d

dt

)n

(t2 − 1)n, t ∈ [−1, 1]. (3.182)

Integrating by parts, we obtain the Rodriguez rule
∫ 1

−1
F (t)Pn(t) dt =

1
2nn!

∫ 1

−1
F (n)(t)(1− t2)n dt (3.183)

for every F ∈ C(n)[−1, 1].

As an application of this formula, we discuss the integrals
∫ 1

−1
Pk(t)(P ′

n(t)− P ′
n−2(t)) dt = −

∫ 1

−1
(Pn(t)− Pn−2(t))P ′

k(t) dt. (3.184)

P ′
n − P ′

n−2 is a polynomial of degree n − 1 on [−1, 1]. Consequently, the
integral (3.184) vanishes for k ≥ n. On the other hand, P ′

k is a polynomial
of degree k− 1. This means that the integral vanishes also for k < n− 1 so
that (3.184) differs from zero only for k = n− 1. Thus

P ′
n(t)− P ′

n−2(t) = cnPn−1(t), t ∈ [−1, 1]. (3.185)

In connection with (3.173), we find

P ′
n(1)− P ′

n−2(1) = 2n− 1. (3.186)

Therefore, it follows that

P ′
n(t)− P ′

n−2(t) = (2n− 1)Pn−1(t) , t ∈ [−1, 1]. (3.187)

Equivalently, we have

(2n− 1)
∫ 1

s
Pn−1(t) dt = Pn−2(s)− Pn(s), n ≥ 2, (3.188)
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for all s ∈ [−1, 1]. By similar arguments, we are able to show that

P ′
n+1(t)− tP ′

n(t) = (n + 1)Pn(t), (3.189)

(t2 − 1)P ′
n(t) = ntPn(t)− nPn−1(t), (3.190)

(n + 1)Pn+1(t) + nPn−1(t)− (2n + 1)tPn(t) = 0. (3.191)

The formulas (3.189)–(3.191) are known as recurrence formulas for the Leg-
endre polynomials. Moreover, we have the following result.

Lemma 3.36. For n = 1, 2, . . ., t ∈ [−1, 1],

(t2 − 1)P ′
n(t) =

n(n + 1)
2n + 1

(Pn+1(t)− Pn−1(t)). (3.192)

Proof. Inserting (3.191) into (3.190) we find

(t2 − 1)P ′
n(t) = n(tPn(t)− Pn−1(t)) (3.193)

= n

(
n + 1
2n + 1

Pn+1(t) +
n

2n + 1
Pn−1(t)− Pn−1(t)

)

= n

(
n + 1
2n + 1

Pn+1(t) +
n− (2n + 1)

2n + 1
Pn−1(t)

)

=
n(n + 1)
2n + 1

(Pn+1(t)− Pn−1(t)) .

This is the desired result.

In addition, we mention the following results involving derivatives of the
Legendre polynomial.

Lemma 3.37. The following identities are valid:

(i) For n = 0, 1, . . .

P ′
2n+1(t) =

n∑

k=0

(4k + 1)P2k(t). (3.194)

(ii) For n = 1, 2, . . .

P ′
2n(t) =

n−1∑

k=0

(4k + 3)P2k+1(t). (3.195)
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(iii) For n = 1, 2, . . .

(1 + t)P ′
n(t) =

n−1∑

k=0

(2k + 1)Pk(t) + nPn(t). (3.196)

Proof. We prove statement (iii) only. It is clear that there exist coefficients
an,0, . . . , an,n such that

(1 + t)P ′
n(t) =

n∑

k=0

an,kPk(t). (3.197)

Now, by virtue of (3.168),

∫ 1

−1
P ′

n(t)(1 + t)Pl(t) dt = an,l
2

2l + 1
(3.198)

for l = 0, . . . , n. Integration by parts yields

∫ 1

−1
P ′

n(t)(1 + t)Pl(t) dt = 2− δnl
2

2l + 1
−
∫ 1

−1
Pn(t)(1 + t)P ′

l (t) dt. (3.199)

For l = 0, . . . , n − 1 the last integral on the right-hand side vanishes, since
(1 + t)P ′

l (t) is of degree ≤ n − 1. Thus, it follows that an,l = 2l + 1 for
l = 0, . . . , n− 1. An easy calculation shows that

∫ 1

−1
Pn(t)P ′

n(t)(1 + t) dt =
1
2
P 2

n(t)(1 + t)
∣∣∣∣
1

−1

− 1
2

∫ 1

−1
P 2

n(t) dt

= 1− 1
2n + 1

, (3.200)

hence, an,n = n. This gives the required result.

Remark 3.38. The Legendre polynomials satisfy the recurrence relation

Pk(t)−
2k − 1

k
Pk−1(t) +

k − 1
k

Pk−2(t) = 0. (3.201)

k ≥ 2, t ∈ [−1, 1] (remember P0(t) = 1, P1(t) = t, t ∈ [−1, 1]). For every
t ∈ [−1, 1] fixed, the sum

QN (t) =
N∑

k=0

Pn(t) (3.202)
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can be calculated by the (stable) algorithm

RN+1(t) = RN+2(t) = 0 (3.203)

Rk(t) =
2k + 1
k + 1

Rk+1(t)−
k + 2
k + 1

Rk+2(t) + ak, k = N, . . . , 1

(3.204)

QN (t) = a0 −
1
2
R2(t) + R1(t)t. (3.205)

The proof follows easily by writing out the above recurrence relation for
the Legendre polynomial in matrix form (see P. Deuflhard, A. Hohmann
(1991)).

The power series

φ(h) =
∞∑

n=0

Pn(t)hn, t ∈ [−1, 1], (3.206)

is absolutely and uniformly convergent for all h with |h| ≤ h0, h0 ∈ [0, 1).
By differentiation with respect to h and comparing coefficients according to
(3.206), we find

(1 + h2 − 2ht)φ′(h) = (t− h)φ(h). (3.207)

This differential equation is uniquely solvable under the initial condition
φ(0) = 1. Since it is not hard to show that

h �→ (1 + h2 − 2ht)−1/2, h ∈ (−1, 1), (3.208)

solves this initial value problem, we have the following generating series
expansion of the Legendre polynomials.

Lemma 3.39. For t ∈ [−1, 1] and all h ∈ (−1, 1)

∞∑

n=0

Pn(t)hn =
1√

1 + h2 − 2ht
.

Among other areas of application, the subject of potential theory is con-
cerned with forces of attraction due to the presence of a gravitational field.
Central to the discussion of gravitational attraction is Newton’s law of grav-
itation for the force field generated by a single particle (cf. Chapter 10): the
gravitational force f in free space (i.e., free of point masses) is related to
the potential function F according to

f(x) = −∇xF (x), x �= y, (3.209)
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when the potential between a mass point y and a point of free space x has
the form

F (x) = k|x− y|−1, x �= y (3.210)

(k is the gravitational constant). Because of spherical symmetry of the
gravitational field, the potential function of a single particle depends only
upon the radial distance, i.e., the inner product of the direction vectors of x
and y. In order to obtain this result, let us suppose for the sake of definition
x = |x|ξ, y = |y|η, ξ, η ∈ Ω, |x| < |y|. Then we find

1
|x− y| =

1
|y|

(
1 +

(
|x|
|y|

)2

− 2
|x|
|y| ξ · η

)−1/2

. (3.211)

Returning now to Lemma 3.39 with t = ξ · η and h = |x|/|y|, we find that
the potential function has the series expansion

1
|x− y| =

1
|y|

∞∑

n=0

(
|x|
|y|

)n

Pn(ξ · η). (3.212)

Moreover, our considerations have shown that

1
|x− y| =

∞∑

n=0

(−1)n

n!
|x|n(ξ · ∇y)n 1

|y| , (3.213)

where
(−1)n

n!
(ξ · ∇y)n 1

|y| =
Pn(ξ · η)
|y|n+1

, n = 0, 1, . . . (3.214)

Identity (3.214) is known as Maxwell’s representation formula. It shows that
the Legendre polynomials may be obtained by repeated differentiations of
the ‘fundamental solution’ y → |y|−1, y �= 0, of the Laplace equation in the
direction of the unit vector ξ. Thus, the potential on the right-hand side
of Maxwell’s representation formula may be regarded as the potential of a
pole of order n with the axis ξ at the origin.

The power series in Lemma 3.39 can be differentiated for all h ∈ (−1, 1).
Thus, it follows that

− h− t

(1 + h2 − 2ht)3/2
=

∞∑

n=1

nPn(t)hn−1. (3.215)

Now, it is easy to see that

1√
1 + h2 − 2ht

− 2h2 − 2ht

(1 + h2 − 2ht)3/2
=

1− h2

(1 + h2 − 2ht)3/2
. (3.216)

This gives us the following result.
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Lemma 3.40. For all t ∈ [−1, 1] and h ∈ (−1, 1)

1− h2

(1 + h2 − 2ht)3/2
=

∞∑

n=0

(2n + 1)hnPn(t).

Lemma 3.39 can be used to prove an integral representation for the Leg-
endre polynomial. To this end, we start from the well known elementary
integral ∫ π

0

dϕ

1 + γ cos ϕ
=

π√
1− γ2

(|γ| < 1). (3.217)

We set

γ = −h
√

t2 − 1
1− ht

. (3.218)

On the one hand, it follows that

∫ π

0

1
1 + γ cos ϕ

dϕ = (1− ht)
∫ π

0
[1− h(t +

√
t2 − 1 cos ϕ)]−1 dϕ

= (1− ht)
∫ π

0

∞∑

n=0

(t +
√

t2 − 1 cos ϕ)nhn dϕ. (3.219)

On the other hand, we obtain

π√
1− γ2

=
π√

1− h2(t2 − 1)/(1− ht)2
=

π(1− ht)√
1 + h2 − 2ht

. (3.220)

In connection with Lemma 3.39, this yields

π√
1− γ2

= (1− ht)π
∞∑

n=0

Pn(t)hn. (3.221)

By comparison, we therefore obtain

∞∑

n=0

∫ π

0
(t +

√
t2 − 1 cos ϕ)n dϕ hn = π

∞∑

n=0

Pn(t)hn. (3.222)

This gives us the Laplace representation of Legendre polynomials .

Lemma 3.41. For t ∈ [−1, 1] and n = 0, 1, . . .

Pn(t) =
1
π

∫ π

0
(t +

√
t2 − 1 cos ϕ)n dϕ.
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By the representation (i =
√
−1)

Pn(t) =
1
2π

∫ 2π

0

(
t + i

√
1− t2 cos ϕ

)n
dϕ (3.223)

we obtain an estimate valid for arbitrary t ∈ [−1, 1] (cf. C. Müller (1969)):

|Pn(t)| ≤ 1
2π

∫ 2π

0
|t + i

√
1− t2 cos ϕ|n dϕ (3.224)

≤ (|t|+ |
√

1− t2|)n

≤ (|t|+
√

1 + |t|2)n

≤ 2n(1 + |t|2)n/2.

Moreover, it follows by the substitution s = cos ϕ that (3.223) is equivalent
to

Pn(t) =
1
π

∫ 1

−1
(t + is

√
1− t2)n(1− s2)−1/2 ds, (3.225)

so that we get from |t + is
√

1− t2| = (1− (1− s2)(1− t2))1/2 the estimate

|Pn(t)| ≤ 1
π

∫ 1

−1
e

n
2

log(1−(1−t2)(1−s2))(1− s2)−1/2 ds. (3.226)

Since
log(1− (1− s2)(1− t2)) ≤ −(1− s2)(1− t2) (3.227)

we obtain

|Pn(t)| ≤ 2
π

∫ 1

0
e−

n
2
(1−s2)(1−t2)(1− s2)−1/2 ds. (3.228)

By the substitution s = 1− u, we find in connection with u ≤ 1− s2 ≤ 2u

|Pn(t)| ≤ 2
π

∫ 1

0
e−

n
2

u(1−t2)u−1/2 du

≤
√

2
π

∞∫

0

e−
n
2

u(1−t2)u−1/2 du

=
2
π

√
π

(n(1− t2))1/2

=
1√
π

(
4

n(1− t2)

)1/2

. (3.229)

Lemma 3.42. (Estimate of the Legendre polynomial) For n = 1, 2, . . . and
t ∈ (−1, 1),

|Pn(t)| ≤ 1√
π

(
4

n(1− t2)

)1/2

. (3.230)
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Next, we discuss the circular average of a function on the unit sphere Ω.
The problem is equivalent to the investigation of the spherical counterpart
Th of the so-called translation operator

Th(F )(ξ) =
1

2π
√

1− h2

∫

ξ·η=h
η∈Ω

F (η) dσ(η), F ∈ L2(Ω), h ∈ (−1, 1),

(3.231)
where dσ is the line element in R

3. Th is a bounded positive linear operator
mapping L2(Ω) into L2(Ω) with the following properties:

||Th(F )||L2(Ω) ≤ ||F ||L2(Ω), (3.232)
∫

Ω
Th(F )(ξ)Yn(ξ) dω(ξ) = Pn(h)

∫

Ω
F (ξ)Yn(ξ) dω(ξ), (3.233)

for n = 0, 1, . . . , h ∈ (−1, 1), F ∈ L2(Ω). In particular,

Th(Yn)(ξ) = Pn(h)Yn(ξ), ξ ∈ Ω, Yn ∈ Harmn. (3.234)

Finally,
lim
h→1
h<1

||F − Th(F )||L2(Ω) = 0. (3.235)

In other words, Yn ∈ Harmn implies Th(Yn) ∈ Harmn, and h �→ Th(Yn) is
a polynomial of degree ≤ n. Furthermore, it is not hard to see that for all
G ∈ L2[−1, 1] and all F ∈ L2(Ω)

∫

Ω
G(ξ · η)F (η)dω(η) = 2π

∫ 1

−1
G(t)Tt(F )(ξ) dt (3.236)

almost everywhere.

Clearly, if P : [−1, 1] → R is a polynomial of degree ≤ m and F ∈ L2(Ω),
then ∫

Ω
P (ξ · η)F (η) dω(η) (3.237)

is a member of the class of all spherical harmonics of degree ≤ m, i.e.,

Harm0,...,m =
m⊕

n=0

Harmn. (3.238)

3.6 Orthogonal (Fourier) Expansions

Let {Yn,j}, n = 0, 1, . . . , j = 1, . . . , 2n + 1, be an L2(Ω)-orthonormal system
of spherical harmonics. Let F be an arbitrary element of class L2(Ω) (or
C(Ω)). The series

∞∑

n=0

2n+1∑

j=1

(F, Yn,j)L2(Ω)Yn,j (3.239)



98 3 Scalar Spherical Harmonics

is the Fourier series (or orthogonal expansion) of F in terms of spherical
harmonics. The constants

F∧(n, j) = (F, Yn,j)L2(Ω) =
∫

Ω
F (ξ)Yn,j(ξ) dω(ξ) (3.240)

are known as the Fourier coefficients of F (or orthogonal coefficients of F
with respect to Yn,j). One frequently writes

F ∼
∞∑

n=0

2n+1∑

j=1

F∧(n, j)Yn,j (3.241)

to indicate that the right-hand sum is associated in a formal way with the
left-hand side. In view of the fact that

ProjHarmn
(F ) =

2n+1∑

j=1

F∧(n, j)Yn,j (3.242)

=
∫

Ω

2n + 1
4π

Pn(·η)F (η) dω(η)

we may write

F ∼
∞∑

n=0

ProjHarmn
(F ), (3.243)

hence, the Fourier series (orthogonal expansion in terms of spherical har-
monics) of an element F is merely the sum of the projections of the element
on the orthonormal system of spherical harmonics. The relation between
an element and its Fourier series has been the object of many investiga-
tions. Of particular importance for practical purposes are results in the
framework of the pre-Hilbert space (C(Ω), (·, ·)L2(Ω)) or the Hilbert space
(L2(Ω), (·, ·)L2(Ω)) which will be established below.

We take the opportunity to base our considerations about Fourier expan-
sion theory in terms of spherical harmonics on two summability methods,
namely Bernstein and Abel-Poisson summability.

The point of departure for Bernstein summability is the so-called Bern-
stein kernel of degree n

t �→ Bn(t) =
n + 1
4π

(
1 + t

2

)n

, t ∈ [−1, 1]. (3.244)

Remark 3.43. The name Bernstein is motivated by the fact that the ker-
nel (see Fig. 3.2) is proportional to the Bernstein polynomial Bν

n(t) =(
n
ν

)
tν(1 − t)n−ν scaled to the interval [−1, 1] with ν = n (t is the polar

distance between ξ and η, i.e., t = ξ · η).
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Fig. 3.2: Illustration of the kernel Bn(cos ϑ), θ ∈ [−π, π] for the degrees
n = 10, n = 20, n = 40.

First, we mention some important properties of the Bernstein kernel.

Lemma 3.44.

(i) For all t ∈ [−1, 1] and n = 0, 1, . . . we have

B∧
n (0) = 2π

∫ +1

−1
Bn(t) dt = 1. (3.245)

(ii) For all t ∈ [−1, 1]
Bn(t) ≥ 0. (3.246)

(iii) For all t ∈ [−1, 1]
lim

n→∞
Bn(t) = 0. (3.247)

(iv) For k = 0, . . . , n

2π

∫ 1

−1
Bn(t)Pk(t) dt = B∧

n (k) =
n!

(n− k)!
(n + 1)!

(n + k + 1)!
(3.248)

=

(
n
k

)
(
n+k+1

k

) .

(v) For k ∈ N fixed
B∧

n (k) < B∧
n+1(k). (3.249)

(vi) For k ∈ N0 fixed, B∧
n (k) → 1 as n →∞, i.e.,

lim
n→∞

B∧
n (k) = 1. (3.250)
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Now, suppose that F is continuous on Ω. We use the property (i) to
guarantee

∫

Ω
Bn(ξ · η)F (η) dω(η) (3.251)

= F (ξ) +
∫

Ω
Bn(ξ · η) (F (η)− F (ξ)) dω(η),

ξ ∈ Ω. We split Ω into two parts, depending on a parameter γ ∈ (0, 1):

∫

Ω
. . . =

∫

−1≤ξ·η≤1−γ
. . . +

∫

1−γ≤ξ·η≤1
. . . . (3.252)

On the one hand, we find with (ii)

∣∣∣∣
∫

−1≤ξ·η≤1−γ
Bn(ξ · η)F (η) dω(η)

∣∣∣∣ ≤ 4π ‖F‖C(Ω)

∫ 1−γ

−1
Bn(t) dt

≤ 2 ‖F‖C(Ω)

(
1− γ

2

)n+1
.

On the other hand, F is uniformly continuous on Ω. Thus, there exists a
positive function μ : γ �→ μ(γ) with

lim
γ→0
γ>0

μ(γ) = 0 (3.253)

such that

|F (ξ)− F (η)| ≤ μ(γ) (3.254)

for all η ∈ Ω with 1− γ ≤ ξ · η ≤ 1. Thus, it follows that

∣∣∣∣
∫

1−γ≤ξ·η≤1
Bn(ξ · η)(F (η)− F (ξ)) dω(η)

∣∣∣∣ ≤ μ(γ)
∫

Ω
Bn(ξ · η) dω(η)

= μ(γ). (3.255)
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Summarizing our results, we obtain the following estimate

sup
ξ∈Ω

∣∣∣∣
∫

Ω

Bn(ξ · η)F (η) dω(η)− F (ξ)
∣∣∣∣ = sup

ξ∈Ω

∣∣∣∣
∫

Ω

Bn(ξ · η) (F (η)− F (ξ)) dω(η)
∣∣∣∣

≤ sup
ξ∈Ω

∣∣∣∣∣∣∣∣

∫

−1≤ξ·η≤1−γ,
|η|=1

Bn(ξ · η)F (η) dω(η)− F (ξ)
∫

−1≤ξ·η≤1−γ,
|η|=1

Bn(ξ · η) dω(η)

∣∣∣∣∣∣∣∣

+ sup
ξ∈Ω

∣∣∣∣∣∣∣∣

∫

1−γ≤ξ·η≤1,
|η|=1

Bn(ξ · η) (F (η)− F (ξ)) dω(η)

∣∣∣∣∣∣∣∣

≤ sup
ξ∈Ω

∣∣∣∣∣∣∣∣

∫

−1≤ξ·η≤1−γ,
|η|=1

Bn(ξ · η)F (η) dω(η)

∣∣∣∣∣∣∣∣

+‖F‖C(Ω)

∫

−1≤ξ·η≤1−γ,
|η|=1

Bn(ξ · η) dω(η) + μ(γ)

≤ 2‖F‖C(Ω)

(
1− γ

2

)n+1

+ μ(γ).

This shows us that

lim
n→∞

sup
ξ∈Ω

∣∣∣∣
∫

Ω
Bn(ξ · η)F (η)dω(η)− F (ξ)

∣∣∣∣ ≤ μ(γ) (3.256)

for every γ ∈ (0, 1). Since μ(γ) → 0 as γ → 0, we get the following result.

Theorem 3.45. For F ∈ C(Ω)

lim
n→∞

sup
ξ∈Ω

∣∣∣∣
∫

Ω
Bn(ξ · η)F (η) dω(η)− F (ξ)

∣∣∣∣ = 0.

Now, it can be readily seen that

Bn(t) =
n∑

k=0

B∧
n (k)

2k + 1
4π

Pk(t) (3.257)

for all t ∈ [−1, 1]. This shows us that
∫

Ω
Bn(ξ · η)F (η) dω(η)

=
n∑

k=0

B∧
n (k)

2k + 1
4π

∫

Ω
Pk(ξ · η)F (η) dω(η)

=
n∑

k=0

B∧
n (k) ProjHarmk

(F )(ξ). (3.258)
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Thus, we finally have the ‘Bernstein summability’ of a Fourier series ex-
pansion in terms of spherical harmonics.

Theorem 3.46. For F ∈ C(Ω),

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣

n∑

k=0

B∧
n (k)

2k+1∑

j=1

F∧(k, j)Yk,j(ξ)− F (ξ)

∣∣∣∣∣∣
= 0. (3.259)

Theorem 3.46 enables us to prove the closure of the system of spherical
harmonics in the space C(Ω).

Corollary 3.47. The system {Yn,j}n=0,1,..., j=1,...,2n+1 is closed in C(Ω),
that is for any given ε > 0 and each F ∈ C(Ω), there exists a linear combi-
nation

N∑

k=0

2k+1∑

j=1

dk,jYk,j

such that ∥∥∥∥∥∥
F −

N∑

k=0

2k+1∑

j=1

dk,jYk,j

∥∥∥∥∥∥
C(Ω)

≤ ε.

Proof. Given F ∈ C(Ω). Then, for any given ε > 0, there exists an integer
N = N(ε) such that

sup
ξ∈Ω

∣∣∣∣∣∣∣

N∑

k=0

2k+1∑

j=1

B∧
N (k)F∧(k, j)︸ ︷︷ ︸

=dk,j

Yk,j(ξ)− F (ξ)

∣∣∣∣∣∣∣
≤ ε, (3.260)

which proves Corollary 3.47.

The point of departure for the Abel-Poisson summability is Lemma 3.40
from which we obtain

∫ 1

−1

1− h2

(1 + h2 − 2ht)3/2
dt =

∞∑

n=0

(2n + 1)hn

∫ 1

−1
Pn(t) dt (3.261)

for all h ∈ (−1, 1). Since
∫ 1
−1 Pn(t)P0(t) dt = 0 for n ≥ 1, we finally have

1
2

∫ 1

−1

1− h2

(1 + h2 − 2ht)3/2
dt = 1. (3.262)
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Theorem 3.48. (Abel–Poisson Integral Formula) If F is continuous on Ω,
then

lim
h→1,h<1

sup
ξ∈Ω

∣∣∣∣
1
4π

∫

Ω

(1− h2)F (η)
(1 + h2 − 2h(ξ · η))3/2

dω(η)− F (ξ)
∣∣∣∣ = 0.

Proof. Observing the identity (3.262) we get

1
4π

∫

Ω

(1− h2)F (η)
(1 + h2 − 2h(ξ · η))3/2

dω(η)− F (ξ)

=
1
4π

∫

Ω

(1− h2)(F (η)− F (ξ))
(1 + h2 − 2h(ξ · η))3/2

dω(η). (3.263)

For h ∈
[

1
2 , 1
)

we split the integral into two parts:
∫

Ω
. . . =

∫

−1≤ξ·η≤1− 3√1−h

. . . +
∫

1− 3√1−h≤ξ·η≤1

. . . . (3.264)

On the one hand, we find

1 + h2 − 2ht = (1− h)2 + 2h(1− t) ≥ 2h
3
√

1− h (3.265)

and

1− h2

(1 + h2 − 2ht)3/2
≤ 1− h2

(2h 3
√

1− h)3/2
(3.266)

=
1 + h

(2h)3/2

1− h√
1− h

≤ 2
√

1− h

provided that t ∈ [−1, 1− 3
√

1− h]. This leads us to
∣∣∣∣∣∣∣

∫

−1≤ξ·η≤1− 3√1−h

(1− h2)(F (ξ)− F (η))
(1 + h2 − 2h(ξ · η))3/2

dω(η)

∣∣∣∣∣∣∣
(3.267)

≤ 4π‖F‖C(Ω)

1− 3√1−h∫

−1

1− h2

(1 + h2 − 2ht)3/2
dt ≤ 16π‖F‖C(Ω)

√
1− h.

On the other hand, F is uniformly continuous on Ω. Thus, there exists a
positive function μ : h �→ μ(h) with

lim
h→1
h<1

μ(h) = 0 (3.268)
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such that
|F (ξ)− F (η)| ≤ μ(h) (3.269)

for all η ∈ Ω satisfying 1− 3
√

1− h ≤ ξ · η ≤ 1. Consequently, in connection
with (3.262), we are able to deduce that

∣∣∣∣∣∣∣

∫

1− 3√1−h≤ξ·η≤1

(1− h2)(F (ξ)− F (η))
(1 + h2 − 2h(ξ · η))3/2

dω(η)

∣∣∣∣∣∣∣
≤ μ(h). (3.270)

Letting h tend towards 1, we obtain the desired result.

As an illustration (see Fig. 3.3), we consider a continuous function F
defined on Ω and its Abel–Poisson means

1
4π

∫

Ω

(1− h2)F (η)
(1 + h2 − 2h(ξ · η))3/2

dω(η)

for the values h = 0.9, 0.7, 0.4, respectively. In Fig. 3.3, we show a cut along
the equator of the unit sphere.

    
−0.2

0

0.2

0.4

0.6

−π −π/2 0 π/2 π
 

 

F
h = 0.9
h = 0.7
h = 0.4

Fig. 3.3: A continuous function F on the sphere and its Abel-Poisson means
(h = 0.9, h = 0.7, h = 0.4). The figure shows the profile of the function
along the equator of the unit sphere.

Combining Theorem 3.48 and Lemma 3.40, we get the ‘Abel-Poisson
summability’ of a Fourier series expansion.

Theorem 3.49. Let F be of class C(Ω). Then the series

∞∑

n=0

hn
2n+1∑

j=1

F∧(n, j)Yn,j(ξ)
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converges uniformly with respect to all ξ ∈ Ω for fixed h ∈ (0, h0), h0 < 1,
and

lim
h→1,h<1

∞∑

n=0

hn
2n+1∑

j=1

F∧(n, j)Yn,j(ξ) = F (ξ).

Again the summability (Theorem 3.49) enables us to prove the closure of
the system of spherical harmonics in the space C(Ω) with respect to ‖·‖C(Ω).

Corollary 3.50. The system {Yn,j}n=0,1,..., j=1,...,2n+1 is closed in C(Ω),
that is for any given ε > 0 and each F ∈ C(Ω), there exists a linear combi-
nation

N∑

n=0

2n+1∑

j=1

dn,jYn,j

such that ∥∥∥∥∥∥
F −

N∑

n=0

2n+1∑

j=1

dn,jYn,j

∥∥∥∥∥∥
C(Ω)

≤ ε.

Proof. Given F ∈ C(Ω). Then, on the one hand, for any given ε > 0, there
exists a real number h = h(ε) < 1 such that

sup
ξ∈Ω

∣∣∣∣∣∣
F (ξ)−

∞∑

n=0

hn
2n+1∑

j=1

F∧(n, j)Yn,j(ξ)

∣∣∣∣∣∣
≤ ε

2
. (3.271)

On the other hand, there exists an index N = N(ε) such that

sup
ξ∈Ω

∣∣∣∣∣∣

∞∑

n=0

hn
2n+1∑

j=1

F∧(n, j)Yn,j(ξ)−
N∑

n=0

hn
2n+1∑

j=1

F∧(n, j)Yn,j(ξ)

∣∣∣∣∣∣
≤ ε

2
.

(3.272)
But this means that

sup
ξ∈Ω

∣∣∣∣∣∣
F (ξ)−

N∑

n=0

2n+1∑

j=1

hnF∧(n, j)Yn,j(ξ)

∣∣∣∣∣∣
≤ ε, (3.273)

which proves Corollary 3.50.

Next, we are interested in closure and completeness in the Hilbert space
(L2(Ω), ‖ · ‖L2(Ω)).

Theorem 3.51. The system {Yn,j}n=0,1,..., j=1,...,2n+1 is closed in the space
C(Ω) with respect to ‖ · ‖L2(Ω), that is for any given ε > 0 and any given
F ∈ C(Ω), there exists a linear combination
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N∑

n=0

2n+1∑

j=1

bn,jYn,j

such that ∥∥∥∥∥∥
F −

N∑

n=0

2n+1∑

j=1

bn,jYn,j

∥∥∥∥∥∥
L2(Ω)

≤ ε.

Proof. Corollary 3.51 follows immediately from Corollary 3.50 by using the
norm estimate (2.103).

Theorem 3.52. The system {Yn,j}n=0,1,..., j=1,...,2n+1 is closed in the space
L2(Ω) with respect to ‖ · ‖L2(Ω).

Proof. C(Ω) is dense in L2(Ω), that is for every F ∈ L2(Ω) there exists
a function G ∈ C(Ω) with ‖F − G‖L2(Ω) ≤ ε/2. The function G ∈ C(Ω)
admits an arbitrarily close approximation by finite linear combinations of
spherical harmonics. Therefore, the proof of the closure is clear.

Truncated spherical harmonic expansions admit the following minimum
property which should be mentioned for the convenience of the reader.

Lemma 3.53. Assume that F ∈ L2(Ω). Then
∥∥∥∥∥∥
F −

m∑

n=0

2n+1∑

j=1

F∧(n, j)Yn,j

∥∥∥∥∥∥
L2(Ω)

= inf
Y ∈Harm0,...,m

‖F − Y ‖L2(Ω) ,

i.e., the problem of finding the linear combination in Harm0,...,m which is
minimal in the L2(Ω)-norm is solved by the orthogonal projection
ProjHarm0,...,m

(F ) of F onto Harm0,...,m.

Proof. An easy calculation shows that
∥∥∥∥∥∥
F −

m∑

n=0

2n+1∑

j=1

Ln,jYn,j

∥∥∥∥∥∥

2

L2(Ω)

= (F, F )L2(Ω) (3.274)

−
m∑

n=0

2n+1∑

j=1

| F∧(n, j) |2

+
m∑

n=0

2n+1∑

j=1

| Ln,j − F∧(n, j) |2
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for arbitrarily given coefficients Ln,j ∈ R. Therefore, the minimum of the
right-hand side of the Eq. (3.274) is achieved if and only if Ln,j = F∧(n, j)
for n = 0, . . . , m, j = 1, . . . , 2n + 1. Moreover,

∥∥∥∥∥∥
F −

m∑

n=0

2n+1∑

j=1

F∧(n, j)Yn,j

∥∥∥∥∥∥

2

L2(Ω)

= (F, F )L2(Ω) −
m∑

n=0

2n+1∑

j=1

|F∧(n, j)|2.

(3.275)

We summarize our results in the fundamental theorem of orthogonal (spher-
ical harmonic) expansions.

Theorem 3.54. The closure of the system {Yn,j} in L2(Ω) is equivalent to
each of the following statements:

(i) The orthogonal expansion of any element H ∈ L2(Ω) converges in
norm to H, i.e.,

lim
m→∞

∥∥∥∥∥∥
H −

m∑

n=0

2n+1∑

j=1

(H, Yn,j)L2(Ω)Yn,j

∥∥∥∥∥∥
L2(Ω)

= 0.

(ii) Parseval’s identity holds. That is, for any H ∈ L2(Ω),

‖H‖2
L2(Ω) = (H, H)L2(Ω) =

∞∑

n=0

2n+1∑

j=1

| (H, Yn,j)L2(Ω) |2 .

(iii) The extended Parseval identity holds. That is for any H, K ∈ L2(Ω),

(H, K)L2(Ω) =
∞∑

n=0

2n+1∑

j=1

(H, Yn,j)L2(Ω)(K, Yn,j)L2(Ω).

(iv) There is no strictly larger orthonormal system containing the or-
thonormal system {Yn,j}n=0,1,..., j=1,...,2n+1.

(v) The system {Yn,j}n=0,1,...; j=1,...,2n+1 has the completeness property.
That is, H ∈ L2(Ω) and (H, Yn,j)L2(Ω) = 0 for all n = 0, 1, ..., j =
1, ..., 2n + 1, implies H = 0.

(vi) An element H of L2(Ω) is determined uniquely by its orthogonal co-
efficients. That is, if (H, Yn,j)L2(Ω) = (K, Yn,j)L2(Ω), n = 0, 1, ..., j =
1, ..., 2n + 1, then H = K.
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The proof of Theorem 3.54 is omitted (see, for example, P.J. Davis (1963)).
The property (i) is of great importance for practical purposes. In particu-
lar, it tells us that any continuous function may be approximated (in the
L2(Ω)-sense) by finite truncations of its Fourier (orthogonal) expansion in
terms of any L2(Ω)-orthonormal system of spherical harmonics {Yn,j}.

Finally, we are interested in pointwise approximation (see, e.g., C. Müller
(1998)).

Theorem 3.55. Let F be continuous in the point ξ ∈ Ω. Moreover, as-
sume that F is bounded on Ω. Furthermore, suppose that the sequence
{Sn(F )}n=0,1,...

Sn(F )(ξ) =
n∑

k=0

2k+1∑

j=1

F∧(k, j)Yk,j(ξ)

converges in ξ ∈ Ω. Then

F (ξ) = lim
n→∞

Sn(F )(ξ) =
∞∑

k=0

2k+1∑

j=1

F∧(k, j)Yk,j(ξ). (3.276)

Proof. Observing that

Sn(F )(ξ) =
n∑

k=0

2k + 1
4π

∫

Ω
Pk(ξ · η)F (η) dω(η) (3.277)

we obtain from the Abel–Poisson summability

F (ξ) = lim
h→1
h<1

∞∑

k=0

hk 2k + 1
4π

∫

Ω
Pk(ξ · η)F (η)dω(η). (3.278)

The series can be rewritten as follows

∞∑

k=1

hk (Sk(F )(ξ)− Sk−1(F )(ξ)) + S0(F )(ξ) (3.279)

= (1− h)
∞∑

k=0

hkSk(F )(ξ).

It is known from Theorem 3.49 that

lim
h→1
h<1

(1− h)
∞∑

k=0

hkSk(F )(ξ) = F (ξ). (3.280)
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According to our assumption, the sequence {Sk(F )(ξ)}k=0,1,... is convergent:

lim
k→∞

Sk(F )(ξ) = S(F )(ξ). (3.281)

Consequently, to every ε > 0, there exists an integer k0 = k0(ε) such that

S(F )(ξ)− ε ≤ Sk(F )(ξ) ≤ S(F )(ξ) + ε (3.282)

holds for all k ≥ k0(ε). Hence, we are able to show that

hk0

1− h
(S(F )(ξ)− ε) ≤

∞∑

k=k0

hkSk(F )(ξ) ≤ hk0

1− h
(S(F )(ξ) + ε). (3.283)

The limit h → 1 gives, in connection with (3.280), the estimate

S(F )(ξ)− ε ≤ F (ξ) ≤ S(F )(ξ) + ε.

This proves the assertion of the theorem.

Finally, we are concerned with the spherical Fourier transform and its
inverse.

Definition 3.56. The spherical Fourier transform FT : F �→ (FT )(F ), F ∈
L1(Ω), is defined by

((FT )(F ))(n, j) = F∧(n, j) =
∫

Ω
F (η)Yn,j(η) dω(η).

As we have shown above, the restriction of the spherical Fourier transform
to L2(Ω) forms a mapping from L2(Ω) into the space

L2
FT (J ) =

⎧
⎨

⎩{H(n, j)}
∣∣∣∣∣

∞∑

n=0

2n+1∑

j=1

| H(n, j) |2< ∞

⎫
⎬

⎭ , (3.284)

where we have used the abbreviation

J = {(n, j) | n = 0, 1, . . . , j = 1, . . . , 2n + 1}. (3.285)

From the considerations given above, it is clear that any function F ∈ L2(Ω)
is characterized by its sequence {F∧(n, j)} ∈ L2

FT (J ).

Lemma 3.57. (Inverse Transform) For {H(n, j)} ∈ L2
FT (J ) define the

mapping
(FT )−1 : L2

FT (J ) → L2(Ω)
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by

(FT )−1({H(n, j)}) =
∞∑

n=0

2n+1∑

j=1

H(n, j)Yn,j .

Then

(FT )−1(FT ) = IL2(Ω),

(FT )(FT )−1 = IL2
FT (J ).

Moreover it should be noted that, for F, G ∈ L2(Ω), the relation

lim
N→∞

∥∥∥∥∥∥
G−

N∑

n=0

2n+1∑

j=1

F∧(n, j)Yn,j

∥∥∥∥∥∥
L2(Ω)

= 0 (3.286)

implies F = G almost everywhere on Ω. If F is assumed to be Lipschitz
continuous, i.e., F ∈ Lip(Ω), T. Gronwall (1914) has shown that F can be
recovered by its Fourier expansion in uniform sense:

lim
N→∞

∥∥∥∥∥∥
F −

N∑

n=0

2n+1∑

j=1

F∧(n, j)Yn,j

∥∥∥∥∥∥
C(Ω)

= 0. (3.287)

3.7 Legendre (Spherical) Harmonics

Next, we are interested in deriving another characterization of the Legendre
polynomial, that will be of importance in the representation of spherical
harmonics in terms of cartesian coordinates: Consider the function Ln :
R

3 → R, n = 0, 1, . . . defined by (i =
√
−1)

Ln(x) =
1
2π

∫ 2π

0
(x3+ix1 cos α+ix2 sinα)n dα, x = (x1, x2, x3)T . (3.288)

Clearly, Ln is a homogeneous polynomial of degree n which is symmetric
with respect to the x3-axis. An easy calculation shows that ΔxLn(x) = 0
for all x ∈ R

3, i.e., Ln is harmonic in R
3. Moreover, Ln has the value 1

at ε3: Ln(ε3) = 1. Furthermore, by use of the coordinates (2.94) and the
Laplace representation Lemma 3.41, we see that

Ln(x) =
rn

2π

∫ 2π

0
(t + i

√
1− t2 cos(α− ϕ))n dα (3.289)

=
rn

2π

∫ 2π

0
(t + i

√
1− t2 cos α)ndα

= rnPn(t).
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This implies that

Ln

(
x

|x|

)
= Pn(t), x = |x|

(
tε3 +

√
1− t2(cos ϕε1 + sin ϕε2)

)
, (3.290)

for all x ∈ R
3\{0}. This, together with Lemma 2.16 and the addition

theorem (Theorem 3.26) hints at the following result.

Theorem 3.58. Let Hn be a homogeneous, harmonic polynomial of degree
n with the following properties:

(i) Hn(tx) = Hn(x) for all orthogonal transformations t ∈ SOε3(3),

(ii) Hn(ε3) = 1.

Then Hn is uniquely determined, and Hn coincides with the Legendre har-
monic Ln of degree n, i.e.,

Hn(x) = Ln(x) = rnPn(t), x = r(tε3 +
√

1− t2(cos ϕε1 + sinϕε2)),

where

Pn(t) =
n∑

k=0

Cn−k
2

(1− t2)
n−k

2 tk (3.291)

with

Cn−k
2

=

{
0 , n− k odd
(−1

4)
n−k

2
n!

((n−k
2

)!)2k!
, n− k even.

(3.292)

Equivalently,

Pn(t) = n!
�n

2
�∑

l=0

(−1
4
)l (1− t2)ltn−2l

(l!)2(n− 2l)!
. (3.293)

Proof. We already know that Hn as homogeneous harmonic polynomial of
degree n can be written in the form

Hn(x) =
n∑

k=0

An−k(x1, x2)xk
3, (3.294)

where
((

∂

∂x1

)2

+
(

∂

∂x2

)2
)

An−k(x1, x2) + (k + 2)(k + 1)An−k−2(x1, x2) = 0

(3.295)
for k = 0, . . . , n − 2. Therefore, Hn is uniquely determined by the homo-
geneous polynomials An : (x1, x2) �→ An(x1, x2) and An−1 : (x1, x2) �→
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An−1(x1, x2). The condition (i) implies that these polynomials depend only
on x2

1 + x2
2. We thus find with a constant Cn−k

2

An−k(x1, x2) =

{
0 , n− k odd
Cn−k

2
(x2

1 + x2
2)

n−k
2 , n− k even.

(3.296)

For x = ε3 in (3.296), we get x2
1 + x2

2 = 0 and x3 = 1 such that C0 = 1. In
order to determine Cn−k

2
for even integers n− k, we see that

[(
∂

∂x1

)2

+
(

∂

∂x2

)2
]

(x2
1 + x2

2)
n−k

2 = 4(
n− k

2
)2(x2

1 + x2
2)

n−k−2
2 . (3.297)

In connection with (3.295), we therefore find the recursion relation

4Cn−k
2

(
n− k

2
)2(x2

1 + x2
2)

n−k−2
2 = −(k + 2)(k + 1)Cn−k−2

2
(x2

1 + x2
2)

n−k−2
2

such that
(n− k)2Cn−k

2
+ (k + 2)(k + 1)Cn−k−2

2
= 0, (3.298)

k = 0, 2, . . . , n− 2. In other words,

Cn−k
2

= 1 (3.299)

for k = n, and we have

Cn−k
2

= (−1
4
)

n−k
2

n!
((n−k

2 )!)2k!
, n− k even, (3.300)

for k = 0, . . . , n− 1. This shows us that Hn is uniquely determined by the
conditions (i) and (ii), and we have

Hn(x) =
n∑

k=0
n−k even

2(−1
4
)

n−k
2

n!
((n−k

2 )!)2k!
(x2

1 + x2
2)

n−k
2 xk

3, (3.301)

where
∑

2 means that the sum is extended over all k with n− k even.

By definition, we let Cn−k
2

= 0 for n − k odd. Consequently we are able
to write

An−k(x1, x2) = Cn−k
2

(x2
1 + x2

2)
n−k

2 (3.302)

with

Cn−k
2

=

{
0 , n− k odd
(−1

4)
n−k

2
n!

((n−k
2

)!)2k!
, n− k even (3.303)
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Using polar coordinates, we know that Hn depends only on t, as we have

x2
1 + x2

2 = r2(1− t2). (3.304)

Therefore, our considerations have shown that there exists one and only one
homogeneous harmonic polynomial Hn (dependent only on t) satisfying the
conditions (i) and (ii). More explicitly, Hn = Ln, and it follows that

Pn(t) =
n∑

k=0
n−k even

2 (−1
4
)

n−k
2

n!
((n−k

2 )!)2k!
(1− t2)

n−k
2 tk. (3.305)

By letting n− k = 2l, l = 0, . . . , �n/2�, we finally find

Ln(x) =
�n

2
�∑

l=0

Cl(x2
1 + x2

2)
lxn−2l

3 . (3.306)

From (3.298), we are able to deduce that the coefficients Cl satisfy the
recursion relation

4l2Cl + (n− 2l + 2)(n− 2l + 1)Cl−1 = 0, (3.307)

l = 1, . . . �n
2 � with C0 = 1. Consequently, in (3.306), we have

Cl = (−1
4
)l n!

(l!)2(n− 2l)!
. (3.308)

This leads us to the expression

Ln(x) = n!
�n

2
�∑

l=0

(−1
4
)l (x

2
1 + x2

2)
lxn−2l

3

(l!)2(n− 2l)!
(3.309)

such that
Ln(x) = rnLn(ξ) = rnPn(t), (3.310)

where Pn is given by (3.293). This is the assertion of Theorem 3.58.

Summarizing our results, we see that the only function Yn ∈ Harmn

satisfying (i) Yn(tξ) = Yn(ξ), ξ ∈ Ω, for all orthogonal transformations
t ∈ SOη(3) (ii) Yn(η) = 1, is given by ξ �→ Yn(ξ) = Pn(ξ · η), ξ ∈ Ω.
Furthermore, for n ∈ N0, the Legendre polynomial Pn of degree n is uniquely
represented in the form

Pn(t) =
n∑

k=0

Cn−k
2

(1− t2)
n−k

2 tk, (3.311)



114 3 Scalar Spherical Harmonics

where, the coefficients Cn−k
2

are recursively determined by

Cn−k−2
2

= − (n− k)2

(k + 2)(k + 1)
Cn−k

2
, (3.312)

k = 0, . . . , n− 2, with Cn
2
, Cn−1

2
given by

Cn
2

=

{
(−1

4)
n
2

n!
((n

2
)!)2

, n even

0 , n odd
(3.313)

and

Cn−1
2

=

{
0 , n even

(−1
4)

n−1
2

n!
((n−1

2
)!)2

, n odd.
(3.314)

Example 3.59. Theorem 3.58 can be used to generate Legendre harmonics
recursively. As an example, we discuss the case n = 3:

L3(x) =
3∑

k=0

C 3−k
2

(x2
1 + x2

2)
3−k
2 xk

3, x = (x1, x2, x3)T . (3.315)

Equivalently,

L3(x) = C0(x2
1 + x2

2)
0x3

3 + C1(x2
1 + x2

2)
1x1

3. (3.316)

According to our approach, we get

C 3
2

= 0, C 2
2

= C1 = −3
2
, (3.317)

and by recursion
C 1

2
= 0, C0 = 1. (3.318)

Thus we obtain

L3(x) = x3
3 −

3
2
(x2

1 + x2
2)x3. (3.319)

This gives us the well-known result

L3(x) = L3(rξ) = r3P3(t), ξ = tε3 +
√

1− t2(ε1 cos ϕ + ε2 sinϕ),

where the Legendre polynomial P3 of degree 3 is given by

P3(t) = t3 − 3
2
(1− t2)t =

5
2
t3 − 3

2
t. (3.320)
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3.8 Funk–Hecke Formula

An outstanding result in the theory of spherical harmonics is the Funk–
Hecke formula (cf. H. Funk (1916), E. Hecke (1918), C. Müller (1966, 1998)).

Theorem 3.60. Suppose that G is absolutely integrable on the interval
[−1, 1], i.e., G ∈ L1[−1, 1]. Then, for all (ξ, η) ∈ Ω× Ω and n = 0, 1, . . . ,

∫

Ω
G(ξ · ζ)Pn(η · ζ) dω(ζ) = G∧(n)Pn(ξ · η),

where

G∧(n) = (G, Pn)L2[−1,1] = 2π

∫ 1

−1
G(t)Pn(t) dt. (3.321)

Proof. For brevity, we set

Vn(ξ, η) =
∫

Ω
G(ξ · ζ)Pn(η · ζ) dω(ζ). (3.322)

Then, with any orthogonal matrix t,

Vn(tξ, tη) =
∫

Ω
G(tξ · ζ)Pn(tη · ζ) dω(ζ) (3.323)

= (det t)
∫

Ω
G(tξ · tζ)Pn(tη · tζ) dω(tζ).

But this shows us that, on the one hand,

Vn(tξ, tη) = (det t)2Vn(ξ, η) = Vn(ξ, η). (3.324)

On the other hand, according to (3.322) with ξ fixed, Vn(ξ, ·) is a spherical
harmonic of degree n which, by virtue of (3.324), is invariant under orthog-
onal transformations. Therefore, by Theorem 3.58, there exists a constant
G∧(n) such that Vn(ξ, η) = G∧(n)Pn(ξ · η). In order to determine G∧(n),
we set ξ = η and find

G∧(n) =
∫

Ω
G(ξ · ζ)Pn(ξ · ζ) dω(ζ)

=
∫

Ω
G(ε3 · ζ)Pn(ε3 · ζ) dω(ζ). (3.325)

It follows that G∧(n) admits the required representation.

From Lemma 3.29 and Theorem 3.60, we get the following corollary.
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Corollary 3.61. Assume that G ∈ L1[−1, 1]. Then, for every Yn ∈ Harmn,
∫

Ω
G(ξ · η)Yn(η)dω(η) = G∧(n)Yn(ξ), ξ ∈ Ω,

where G∧(n) is given above, i.e.,

G∧(n) = (G, Pn)L2[−1,1] = 2π

∫ 1

−1
G(t)Pn(t) dt.

The Funk–Hecke formula establishes the close connection between the or-
thogonal invariance of the sphere and the addition theorem. The principle
of the Funk–Hecke formula is that of the integral operator mapping F to the
‘convolution of G and F ’. The kernel G depends only on the inner product
ξ ·η, or equivalently on the distance between ξ and η. The spherical harmon-
ics Yn are the eigenfunctions of the integral operator corresponding to the
eigenvalues G∧(n). Therefore, the Funk–Hecke formula greatly simplifies
most manipulations with spherical harmonics.

Definition 3.62. The Legendre transform G �→ (LT )(G), G ∈ L1[−1, 1], is
defined by

((LT )(G))(n) = G∧(n) = (G, Pn)L2[−1,1].

The series ∞∑

n=0

2n + 1
4π

G∧(n)Pn

is called Legendre expansion of G (with Legendre coefficients G∧(n), n =
0, 1, . . .).

The restriction of the Legendre transform to L2[−1, 1] is a mapping from
L2[−1, 1] into the space L2

LT (N0) of square-summable sequences {An}:

L2
LT (N0) =

{
{An}

∣∣∣∣∣

∞∑

n=0

2n + 1
4π

|An|2 < ∞
}

. (3.326)

According to Parseval’s identity, we have

(G, H)L2[−1,1] =
∞∑

n=0

2n + 1
4π

G∧(n)H∧(n) (3.327)

for all G, H ∈ L2[−1, 1]. Moreover

lim
N→∞

∥∥∥∥∥G−
N∑

n=0

2n + 1
4π

G∧(n)Pn

∥∥∥∥∥
L2[−1,1]

= 0 (3.328)

for all G ∈ L2[−1, 1].



3.9 Eigenfunctions of the Beltrami Operator 117

Lemma 3.63. (Inverse transform) For {An} ∈ L2
LT (N0) define the mapping

(LT )−1 : L2
LT (N0) → L2[−1, 1]

by

(LT )−1({An}) =
∞∑

n=0

2n + 1
4π

AnPn.

Then

(LT )−1(LT ) = IL2[−1,1],

(LT )(LT )−1 = IL2
LT

(N0).

Observe that, for G ∈ L2[−1, 1], G∧(n) = O(n−2+ε), ε > 0, holds for
n → ∞. Furthermore, it is not difficult to show that, for G ∈ C(2)[−1, 1],
(LtG)∧(n) = −n(n + 1)G∧(n) so that G∧(n) = O(n−2(k+1)+ε), ε > 0, is
valid for G ∈ C(2k)[−1, 1], k ∈ N0.

Lemma 3.64. If G ∈ C(∞)[−1, 1], then

∞∑

n=0

2n + 1
4π

(G∧(n))α < ∞

holds for all α > 0.

3.9 Eigenfunctions of the Beltrami Operator

Next, we discuss the role played by spherical harmonics as eigenfunctions
of the Beltrami operator. From Lemma 3.24, we know that any spherical
harmonic of order n is an infinitely often differentiable eigenfunction of the
Beltrami operator corresponding to the eigenvalues (Δ∗)∧(n) = −n(n + 1),
n = 0, 1, . . .. Furthermore, the completeness of the system of spherical
harmonics enables us to show that every eigenfunction ξ �→ Yn(ξ), ξ ∈ Ω,
of the Beltrami operator corresponding to the eigenvalue −n(n + 1) defines
a homogeneous harmonic polynomial (i.e., inner (solid spherical) harmonic)

x �→ Hn(x) = rnYn(ξ), x = rξ, r = |x|, ξ ∈ Ω, (3.329)

of degree n.

We start our considerations with the following lemma.
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Lemma 3.65. Assume that λ �= −n(n + 1), n = 0, 1, ... . Let K ∈ C(∞)(Ω)
satisfy the differential equation

(Δ∗
ξ − λ)K(ξ) = 0, ξ ∈ Ω.

Then K = 0.

Proof. Let {Yn,j} be an L2(Ω)-orthonormal system of spherical harmonics.
According to the Second Green Surface Theorem, we get

∫

Ω

(
Yn,j(ξ)Δ∗

ξK(ξ)−K(ξ)Δ∗
ξYn,j(ξ)

)
dω(ξ) = 0. (3.330)

Thus, it follows that

(
λ + n(n + 1)

)∫

Ω
K(ξ)Yn,j(ξ) dω(ξ) = 0 (3.331)

for n = 0, 1, ...; j = 1, ..., 2n + 1. Since λ is assumed to be different from
−n(n + 1), n = 0, 1, ..., this implies

K∧(n, j) =
∫

Ω
K(ξ)Yn,j(ξ) dω(ξ) = 0 (3.332)

for n = 0, 1, ..., j = 1, ..., 2n + 1. The completeness property of spherical
harmonics, therefore, shows that K = 0, as required.

Lemma 3.66. Let K ∈ C(∞)(Ω) satisfy the differential equation

(
Δ∗

ξ + n(n + 1)
)
K(ξ) = (Δ∗

ξ − (Δ∗)∧(n))K(ξ)
= 0, ξ ∈ Ω.

Then K ∈ Harmn.

Proof. By the same arguments as given above, it follows that

(n(n + 1)− k(k + 1))
∫

Ω
K(ξ)Yk,j(ξ) dω(ξ) = 0 (3.333)

for k = 0, 1, . . . , j = 1, . . . , 2k + 1. For all values of k different from n,
we thus have K∧(k, j) = (K, Yk,j)L2(Ω) = 0. But this means that K is a
member of the span of Yn,1, . . . , Yn,2n+1, as required.

Summarizing our results, we therefore obtain the following theorem.
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Theorem 3.67. The spherical harmonics Yn : ξ �→ Yn(ξ) of degree
n = 0, 1, ... are everywhere on the unit sphere Ω infinitely often differentiable
eigenfunctions of the Beltrami operator Δ∗ corresponding to the eigenvalues
(Δ∗)∧(n) = −n(n+1), n = 0, 1, ... . The ‘inner (solid spherical) harmonics’
x �→ Hn(x), x ∈ R

3, with Hn(x) = rnYn(ξ), x = rξ, r = |x| are polynomials
in cartesian coordinates which satisfy the Laplace equation and are homo-
geneous of degree n. Conversely, every homogeneous harmonic polynomial
of degree n (i.e., inner harmonic of degree n) restricted to the unit sphere
Ω is a spherical harmonic of degree n.

3.10 Irreducibility of Scalar Harmonics

For any function F ∈ L2(Ω), the transformation ξ �→ tξ, ξ ∈ Ω produces a
change in the functional values of F . Let F, G ∈ L2(Ω), t ∈ O(3). Observing
the change of coordinates ζ = tξ, we find

∫

Ω
F (tξ)G(ξ) dω(ξ) = (det t)2

∫

Ω
F (ζ)G(tT ζ) dω(ζ) (3.334)

(observe that dω(tξ) = (det t) dω(ξ)). Thus, it follows that

(RtF, G)L2(Ω) = (F, RtT G)L2(Ω). (3.335)

As mentioned before, (see Section 2.7), an invariant subspace may itself
contain one or more invariant subspaces. If this is the case, V is said to
be reducible. If there are no invariant subspaces of V (other than V itself),
then V is said to be irreducible.

Next, we prove the following theorem.

Theorem 3.68. The space Harmn of spherical harmonics of order n is
irreducible.

Proof. Assume that there exists an invariant subspace Y of dimension d(Y) <
d(Harmn) = 2n + 1. Then, we would be able to show that the orthogonal
complement Y⊥ of Y in Harmn (with respect to (·, ·)L2(Ω)) is an invariant
subspace (see Lemma 2.14), for

(F, F⊥(t·))L2(Ω) =
∫

Ω
F (ξ)F⊥(tξ)dω(ξ) (3.336)

= (det t)2
∫

Ω
F (tT ξ)F⊥(ξ) dω(ξ)

= 0

holds for all F ∈ Y, F⊥ ∈ Y⊥ (observe that F (t·) is an element in Y).
But this means that F⊥(t·) is an element of Y⊥, i.e., Y⊥ is an invariant
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subspace. Now, because of the invariance of Y and Y⊥, G and G⊥ being
represented in terms of the L2(Ω)-orthonormal system {Yn,j}, respectively,

G =
d(Y)∑

j=1

Yn,j(ε3)Yn,j ∈ Y, (3.337)

G⊥ =
d(Harmn)∑

j=d(Y)+1

Yn,j(ε3)Yn,j ∈ Y⊥ (3.338)

satisfy G(t·) = G, G⊥(t·) = G⊥ for all t ∈ SOε3(3). Moreover, G, G⊥ do
not vanish identically (note that there exist elements in Y,Y⊥ different from
zero at ε3). Thus, not all values of Yn,j(ε3), j = 1, . . . , d(Y) or j = d(Y) +
1, . . . , d(Harmn) are zero. From Theorem 3.58, therefore, there exists a
constant a ∈ R\{0} such that G = aG⊥, in contradiction to our assumption.
This proves Theorem 3.68.

The irreducibility of Harmn leads us to simple representations of spherical
harmonics (cf., e.g., W. Freeden et al. (1998)).

Lemma 3.69. Let Zn be a member of Harmn. Then there exist 2n + 1
orthogonal transformations t1, . . . , t2n+1 such that any Yn ∈ Harmn can be
represented with real numbers a1, . . . , a2n+1 in the form

Yn =
2n+1∑

j=1

ajZn(tj ·).

Proof. Consider the set

V = {Zn(t·) | t ∈ O(3)}. (3.339)

Clearly, there exist t1, . . . , t2n+1 ∈ O(3) such that

V = span{Zn(t1·), . . . , Zn(t2n+1·)}. (3.340)

Therefore, Zn ∈ V implies Zn(t·) ∈ V. From the irreducibility of Harmn (cf.
Theorem 3.68), it follows that V is an invariant non-void space of dimension
d(V) = d(Harmn), and the 2n + 1 linearly independent spherical harmonics
Zn(t1·), . . . , Zn(t2n+1·) form a basis.

Lemma 3.70. There exist 2n + 1 points η1, . . . , η2n+1 of the unit sphere Ω
such that any Yn ∈ Harmn can be represented with real numbers a1, . . . , a2n+1

in the form

Yn(ξ) =
2n+1∑

j=1

ajPn(ηj · ξ), ξ ∈ Ω.
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Proof. From Lemma 3.69 we know that there exist 2n+1 orthogonal trans-
formations t1, . . . , t2n+1 such that any Yn ∈ Harmn admits the form

Yn(ξ) =
2n+1∑

j=1

ajPn(ε3 · tjξ), ξ ∈ Ω. (3.341)

But this means that Lemma 3.70 follows with ηj = tT
j ε3, j = 1, . . . , 2n + 1.

In connection with Maxwell’s representation formula (3.214), it is possible
to write the following lemma.

Lemma 3.71. For every Yn ∈ Harmn

Yn(ξ)
|x|n+1

=
(−1)n

n!

2n+1∑

j=1

aj(ηj · ∇x)n 1
|x| , x = |x|ξ, x �= 0. (3.342)

In other words, every function

H−n−1 : x �→ H−n−1(x) = |x|−(n+1)Yn(ξ), x ∈ R
3\{0}, (3.343)

(i.e., ‘outer (solid spherical) harmonic’ of degree n) may be regarded as the
potential of a linear combination of multipoles with real axes (note that
H−n−1|Ω = Hn|Ω = Yn). From (3.343), it follows that any outer (solid
spherical) harmonic H−n−1 can be generated by an ‘inner (solid spherical)
harmonic’ Hn as follows:

H−n−1(x) = |x|−(2n+1)Hn(x), x ∈ R
3\{0}. (3.344)

In Lemma 3.71, the system of points η1, . . . , η2n+1 corresponds to a system
of multipoles in Maxwell’s interpretation of spherical harmonics.

Finally, we come to the definition of fundamental systems relative to
Harmn.

Definition 3.72. A system X2n+1 of 2n+1 points η1, . . . , η2n+1 of the unit
sphere Ω is called a fundamental system relative to Harmn if the matrix

matrX2n+1(Yn,1, . . . , Yn,2n+1) =

⎛

⎜⎝
Yn,1(η1) . . . Yn,1(η2n+1)

...
...

Yn,2n+1(η1) . . . Yn,2n+1(η2n+1)

⎞

⎟⎠

(3.345)
is of maximal rank 2n + 1.
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From Lemma 3.70, we obtain the following.

Lemma 3.73. There exists a system X2n+1 = {η1, . . . , η2n+1} ⊂ Ω satisfy-
ing

det(matrX2n+1(Yn,1, . . . , Yn,2n+1)) �= 0.

Proof. From Lemma 3.70, it follows that there exist 2n+1 points η1, . . . , η2n+1

such that the functions Pn(η1·), . . . , Pn(η2n+1·) are linearly independent.
Therefore the Gram matrix

((
2n + 1

4π

)2 ∫

Ω
Pn(ηj · η)Pn(ηk · η) dω(η)

)

j,k=1,...,2n+1

=
(

2n + 1
4π

Pn(ηj · ηk)
)

j,k=1,...,2n+1

(3.346)

is of maximal rank, and its determinant is positive. By virtue of the addition
theorem, we obtain

(
matrX2n+1(Yn,1, . . . , Yn,2n+1)

)T matrX2n+1(Yn,1, . . . , Yn,2n+1)

=
(2n + 1

4π
Pn(ηj · ηk)

)
j,k=1,...,2n+1

=
2n + 1

4π
matrX2n+1(Pn(η1·), . . . , Pn(η2n+1·)). (3.347)

Hence,

det
(
matrX2n+1(Yn,1, . . . , Yn,2n+1)

)2

= det
(2n + 1

4π
Pn(ηj · ηk)

)
j,k=1,...,2n+1

(3.348)

> 0.

This shows that det
(
matrX2n+1(Yn,1, . . . , Yn,2n+1)

)
�= 0, as required.

3.11 Degree and Order Variances

(Geo-)sciences are much concerned with the space L2(Ω) of square-integrable
functions on the sphere Ω. The quantity ‖F‖2

L2(Ω) is called the energy of the
‘signal’ F ∈ L2(Ω). ‘Signals’ F ∈ L2(Ω) possess Fourier transforms F∧(n, k)
as defined before. From Parseval’s identity, we have

‖F‖2
L2(Ω) = (F, F )L2(Ω) =

∞∑

n=0

2n+1∑

k=1

(
F∧(n, k)

)2
. (3.349)
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As mentioned already, geoengineers often work more with the ‘amplitude
spectrum’ {

F∧(n, k)
}

n=0,1,...;
k=1,...,2n+1

(3.350)

than with the ‘original signal’ F ∈ L2(Ω). The ‘inverse Fourier transform’

F =
∞∑

n=0

2n+1∑

k=1

F∧(n, k)Yn,k (3.351)

allows the engineer to consider the potential F as a sum of ‘wave func-
tions’ Yn,k of different frequencies. Engineers think of their measurements
as operating on an ‘input signal’ F to produce an output signal G,

ΛF = G, (3.352)

where Λ is an operator acting on L2(Ω). Fortunately, it is the case that
large portions of interest can be well approximated by operators that are
linear and rotation-invariant. If Λ is such an operator on L2(Ω), this means
that

ΛYn,k = Λ∧(n)Yn,k, n = 0, 1, . . . , k = 1, . . . , 2n + 1, (3.353)

where the so-called symbol {Λ∧(n)}n∈N0 is a sequence of real values (in-
dependent of k). Thus, we have the fundamental fact that the spherical
harmonics are the eigenfunctions of the operator Λ. Different linear op-
erators Λ are characterized by their eigenvalues Λ∧(n). The ‘amplitude
spectrum’ {G∧(n, k)} of the response of Λ is described in terms of the am-
plitude spectrum of functions (signals) by a simple multiplication by the
‘transfer’ Λ∧(n).

Physical devices do not transmit spherical harmonics of arbitrarily high
frequency without severe attenuation. The ‘transfer’ Λ∧(n) usually tends to
zero with increasing n. It follows from (3.353) that the amplitude spectra
of the responses (observations) to functions (signals) of finite energy also
are negligibly small beyond some finite frequency. Thus, both because of
the frequency limiting nature of the used devices and because of the nature
of the ‘transmitted signals’, the geoscientist is soon led to consider ban-
dlimited functions. These are the functions F ∈ L2(Ω) whose ‘amplitude
spectra’ F∧(n, k) vanish for all n ≥ N (N ∈ N fixed). In other words, each
bandlimited function F ∈ L2(Ω) can be written as a finite Fourier transform

F =
N∑

n=0

2n+1∑

k=1

F∧(n, k)Yn,k. (3.354)

A function F of the form (3.354) is said to be bandlimited with the band
N . In analogous manner, F ∈ L2(Ω) is said to be locally supported (space–
limited) with spacewidth ρ around an axis η ∈ Ω, if for some ρ the function
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F vanishes on the set of all ξ ∈ Ω with −1 ≤ ξ · η ≤ ρ. From (3.354), it
readily follows that bandlimited functions are infinitely often differentiable
everywhere. Moreover, it is clear that F is an analytic function. From the
analyticity, it follows immediately that a non-trivial bandlimited function
cannot vanish on any (non-degenerate) subset of Ω. The only function
that is both bandlimited and space-limited is the trivial function. Now, in
addition to bandlimited but non-space-limited functions, numerical analysis
would like to deal with space-limited functions. But as we have seen, such
a function (signal) of finite (space) support cannot be bandlimited, it must
contain spherical harmonics of arbitrarily large frequencies. Thus, there
is a dilemma of seeking functions that are somehow concentrated in both
space and frequency (i.e., (angular) momentum) domain. There is a way
of mathematically expressing the impossibility of simultaneous confinement
of a function to space and (angular) momentum, namely the uncertainty
principle. Its mathematical formulation is the content of Section 7.3.

Thus far, only a (deterministic) function model has been discussed. If
a comparison of the ‘output function’ with the actual value were done,
discrepancies would be observed. A mathematical description of these dis-
crepancies has to follow the laws of probability theory in a stochastic model.
Usually, the observations are looked upon as a function G̃ on the sphere Ω
(‘∼’ for stochastic), i.e.,

G̃ = G + ε̃, (3.355)

where ε̃ is the observation noise. Moreover, in our approach, e.g., motivated
by information in satellite technology (see, e.g., R. Rummel (1997) and the
references therein), we suppose the covariance to be known, i.e.,

Cov
[
G̃(ξ), G̃(η)

]
= E [ε̃(ξ), ε̃(η)] = K(ξ, η), (ξ, η) ∈ Ω× Ω,

where the ‘covariance kernel’ K : Ω× Ω → R is of the form

K(ξ, η) =
∞∑

n=0

2n+1∑

k=1

K∧(n, k)Yn,k(ξ)Yn,k(η) (3.356)

such that its ‘symbol’ {K∧(n, k)} satisfies the conditions

(i) K∧(n, k) ≥ 0, n = 0, 1, . . . , k = 1, . . . , 2n + 1,

(ii)
∞∑

n=0

2n+1
4π sup

k=1,...,2n+1

(
K∧(n, k)

)2
< ∞.

It is noteworthy that this approach assumes that the first two statistical
moments suffice for a complete description, that the error spectrum can be
considered invariant over the measurement’s period and that one realization



3.11 Degree and Order Variances 125

in space (or mission time) is enough to deduce the stochastic characteristics.
We do not discuss the details of this subject.

Using the fact that any ‘output function’ (more clearly the output signal,
i.e., the observable) can be expanded into an orthogonal series in terms of
spherical harmonics

G̃ = ΛF̃ =
∞∑

n=0

2n+1∑

k=1

Λ∧(n, k)F̃∧(n, k)Yn,k

=
∞∑

n=0

2n+1∑

k=1

G̃∧(n, k)Yn,k (3.357)

in the sense of ‖ · ‖L2(Ω), we get a spectral representation of the form

G̃∧(n, k) = (ΛF̃ )∧(n, k) = Λ∧(n, k)F̃∧(n, k). (3.358)

Since this representation clearly distinguishes between the different degrees
and orders, one is led to observe the root-mean-square power per spheri-
cal harmonic degree and order, respectively per degree, to characterize the
signal.

Definition 3.74. Let G be of class L2(Ω). Suppose that, for n = 0, 1, . . .,
k = 1, . . . , 2n + 1, G∧(n, k) are the corresponding orthogonal coefficients.
Then, the signal degree and order variances of G are defined by

Varn,k (G) =
∫

Ω

∫

Ω
G(ξ)G(η)Yn,k(ξ)Yn,k(η) dω(ξ) dω(η) (3.359)

=
(
G∧(n, k)

)2
.

Correspondingly, for n = 0, 1, . . ., the signal degree variances of G are de-
fined by

Varn (G) =
2n + 1

4π

∫

Ω

∫

Ω
G(ξ)G(η)Pn(ξ · η) dω(ξ) dω(η) (3.360)

=
2n+1∑

k=1

(
G∧(n, k)

)2

=
2n+1∑

k=1

Varn,k (G) .

From Parseval’s identity, we get

‖G‖2
L2(Ω) =

∞∑

n=0

Varn (G) =
∞∑

n=0

2n+1∑

k=1

Varn,k (G) , (3.361)
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connecting the signal degree and order variances as well as the signal degree
variances with the ‘L2(Ω)-energy’ of the corresponding function.

In order to determine the variances in the case of the ‘output function’
G̃ = ΛF̃ , we can use the representation (3.358) and end up with

Varn,k

(
ΛF̃
)

=
((

ΛF̃
)∧

(n, k)
)2

(3.362)

and

Varn

(
ΛF̃
)

=
2n+1∑

k=1

((
ΛF̃
)∧

(n, k)
)2

. (3.363)

The spectral approach to signal-to-noise thresholding is, in addition to the
previously defined degree variances, based on analogous measures calculated
from the a priori known covariance kernel of the noise.

Definition 3.75. Let {K∧(n, k)} be the symbol of a covariance kernel K :
Ω×Ω → R (as defined above). Then the degree and order error covariance
of K is defined by

Covn,k(K) =
∫

Ω

∫

Ω
K(ξ, η)Yn,k(ξ)Yn,k(η) dω(ξ) dω(η) (3.364)

= K∧(n, k), n = 0, 1, . . . , k = 1, . . . , 2n + 1 .

For n = 0, 1, . . ., the spectral degree error covariance of K is defined by

Covn(K) =
2n+1∑

k=1

∫

Ω

∫

Ω
K(ξ, η)Yn,k(ξ)Yn,k(η) dω(ξ) dω(η) (3.365)

=
2n+1∑

k=1

K∧(n, k)

=
2n+1∑

k=1

Covn,k(K).

This definition shows that the degree and order error covariance is just
given by the orthogonal coefficient of the corresponding covariance kernel
K.

In order to make the preceding considerations more concrete, we present
two examples of spectral error covariances:
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Bandlimited white noise: Suppose that for some nK ∈ N0

K∧(n, k) = K∧(n) =

{
σ2

(nK+1)2
, n ≤ nK , k = 1, . . . , 2n + 1

0 , n > nK , k = 1, . . . , 2n + 1,
(3.366)

where ε̃ is assumed to be N (0, σ2)-distributed. The associated covariance
kernel is isotropic and reads as follows:

K(ξ, η) =
σ2

(nK + 1)2

nK∑

n=0

2n + 1
4π

Pn(ξ · η) . (3.367)

Apart from a multiplicative constant, this kernel can be understood as a
truncated Dirac δ-function(al).

Non-bandlimited colored noise: Assume that K : Ω × Ω → R is given in
such a way that

(i) K∧(n, k) = K∧(n) > 0 for an infinite number of pairs (n, k),

(ii) For ε > 0 and for some δ ∈ (1 − ε, 1) the integral
∫ δ
−1 K(t)dt is suffi-

ciently small,

(iii) K(ξ, ξ) coincides with σ2 for all ξ ∈ Ω.

A concrete realization is given by the kernel

K(ξ, η) =
σ2

exp(−c)
exp(−c(ξ · η)), (3.368)

where c is to be understood as the inverse spherical correlation length (first
degree Gauß–Markov model).

With our definitions at hand, we are now in a position to compare the
signal spectrum with that of the noise and thus can decide whether signal
or noise is dominant. The next Table 3.3 clarifies the situation (cf. W.
Freeden, T. Maier (2002)).

Table 3.3: Spectral signal to noise (hard) thresholding.
Signal and noise spectrum intersect at a degree and order resolution set
characterized by the following relations:

(i) Signal dominates noise

Varn,k(ΛF̃ ) ≥ Covn,k(K), n = 0, . . . , m, k = 1, . . . , 2n + 1,

(ii) Noise dominates signal

Varn,k(ΛF̃ ) < Covn,k(K), n = m + 1, m + 2, . . . , k = 1, . . . , 2n + 1 .
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In order to obtain an estimated denoised version ΛF̂ of the signal ΛF̃ ,
the signal must somehow be filtered. Filtering is achieved by convolving a
square-summable product kernel L : Ω × Ω → R with symbol {L∧(n, k)}
against ΛF̃ , i.e.,

ΛF̂ =
∫

Ω
L(·, η)ΛF̃ (η) dω(η). (3.369)

In spectral language, this reads

ΛF̂ (n, k) = L∧(n, k) ΛF̃ (n, k), (3.370)
n = 0, . . . , m, k = 1, . . . , 2n + 1.

Two important types of filters are well known:

(i) Spectral thresholding. This filtering technique is best represented by
the filter equation

ΛF̂ =
∞∑

n=0

2n+1∑

k=1

INres(n, k)L∧(n, k)
(
ΛF̃
)∧

(n, k)Yn,k, (3.371)

where Im denotes the indicator function of the set {0, . . . , m}.
This approach represents a ‘keep or kill’ filtering, where the signal
dominated coefficients are filtered by a square-summable product ker-
nel, while the noise dominated coefficients are set to zero. This thresh-
olding can be thought of as a non-linear operator on the set of
coefficients, resulting in a set of estimated coefficients. As a spe-
cial realization of this filter, we mention the ideal low-pass (Shannon)
filter, the kernel of which can best be characterized by its spectral
properties:

L∧(n, k) = L∧(n) =
{

1 , n = 0, . . . , m, k = 1, . . . , 2n + 1,
0 , n = m + 1, m + 2, . . . , k = 1, . . . , 2n + 1.

(3.372)
In that case, all contributions corresponding to pairs with n ≤ m are
allowed to pass, whereas all other portions of the signal are completely
eliminated.

(ii) Wiener-Kolmogorov filtering. In the spectral domain, this filter is
given by

L∧(n) =
Varn(ΛF̃ )

Varn(ΛF̃ ) + Covn(K)
, n = 0, 1, . . . . (3.373)

Assuming complete independence of signal and noise, this filter pro-
duces an optimal weighting between signal and noise. Note that the
Wiener-Kolmogorov filter bears a close resemblance to the Tikhonov
kernel used for the regularization of ill-posed inverse problems.
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3.12 Associated Legendre Polynomials

By a straightforward calculation, we obtain from the Laplace representation
of the Legendre polynomials (see Lemma 3.41)

(
1− t2

)m/2
(

d

dt

)m

Pn(t) (3.374)

=
(n + m)!

n!
im

π

π∫

0

(t + i
√

1− t2 cos ϕ)n cos(mϕ) dϕ,

n = 0, 1, . . ., m = 0, . . . , n.

Definition 3.76. For n = 0, 1, . . . , m = 0, . . . , n, Pn,m : [−1, 1] → R given
by

Pn,m(t) =
(n + m)!

n!
im

π

∫ π

0
(t + i

√
1− t2 cos ϕ)n cos(mϕ) dϕ (3.375)

is called the associated Legendre function of degree n and order m.

Thus, it is trivial to see that

Pn,m(t) = (1− t2)m/2(
d

dt
)mPn(t), t ∈ [−1, 1]. (3.376)

Observe that, in the sense of (3.376), Pn,m(t) = 0 for m > n.

By use of the associated Legendre functions, we are immediately able to
determine the expansion coefficients of the Fourier series of (t+

√
t2 − 1 cos ϕ)n,

t ∈ [−1, 1],

(t +
√

t2 − 1 cos ϕ)n =
a0

2
+

n∑

m=1

am cos(mϕ), (3.377)

where
am =

2
π

∫ π

0
(t +

√
t2 − 1 cos ϕ)n cos(mϕ) dϕ. (3.378)

In other words, from Definition 3.76, we obtain

am =
(2n)!

(n + m)!
imPn,m(t). (3.379)

Lemma 3.77. For n = 0, 1, . . ., m = 0, . . . , n

(t +
√

t2 − 1 cos ϕ)n = Pn,0(t)

+ (2n)!
n∑

m=1

im

(n + m)!
Pn,m(t) cos(mϕ),

t ∈ [−1, 1], ϕ ∈ [0, 2π).
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Using the Rodriguez formula (see (3.182)), we are led to the identity

Pn,m(t) =
1

2nn!
(1− t2)m/2

(
d

dt

)n+m

(t2 − 1)n, t ∈ [−1, 1]. (3.380)

Moreover,
Pn,0(t) = Pn(t), t ∈ [−1, 1]. (3.381)

Furthermore, we have

Pn,m(t) =
1
2n

(1− t2)m/2

�n
2
�∑

k=0

(−1)k (2n− 2k)!
k!(n− k)!(n− 2k)!

(
d

dt

)m

tn−2k.

(3.382)
Note that the m-th derivative of the power tn−2k reads

(
d

dt

)m

tn−2k =
(n− 2k)!

(n−m− 2k)!
tn−m−2k. (3.383)

This leads us to the following explicit formula for any Legendre function.

Lemma 3.78. For n = 0, 1, . . ., m = 0, . . . , n and t ∈ [−1, 1]

Pn,m(t) = (1− t2)m/2

�n−m
2

�∑

k=0

(−1)k (2n− 2k)!
2nk!(n− k)!(n−m− 2k)!

tn−m−2k.

(3.384)

We give some explicit representations of Pn,m(t), t ∈ [−1, 1]:

P1,0(t) = t, (3.385)

P1,1(t) =
√

1− t2, (3.386)

P2,0(t) =
3
2
t2 − 1

2
, (3.387)

P2,1(t) = 3t
√

1− t2, (3.388)
P2,2(t) = 3(1− t2), (3.389)

P3,0(t) =
5
2
t3 − 3

2
t, (3.390)

P3,1(t) =
√

1− t2
(

15
2

t2 − 3
2

)
, (3.391)

P3,2(t) = 15t(1− t2), (3.392)

P3,3(t) = 15(1− t2)3/2. (3.393)

Some graphical impressions of Legendre functions can be found in Figs. 3.4
and 3.5.
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Fig. 3.4: Legendre functions t �→ P2,m(t), t ∈ [−1, 1], m = 0, 1, 2.
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Fig. 3.5: Legendre functions t �→ P3,m(t), t ∈ [−1, 1], m = 0, . . . , 3.

Furthermore, from Theorem 3.288, it follows that

Pn,m(t) = (1− t2)m/2

(
d

dt

)m

n!
�n

2
�∑

l=0

(−1
4
)l (1− t2)ltn−2l

(l!)2(n− 2l)!
. (3.394)

By virtue of the product rule for differentiation, elementary calculations
yield the following lemma.

Lemma 3.79. For n = 0, 1, . . . , m = 0, . . . , n, and t ∈ [−1, 1]

Pn,m(t) =
(

1
2

)m

(n + m)!
�n−m

2
�∑

l=0

(
−1

4

)l (1− t2)
m
2

+ltn−m−2l

l!(n−m− 2l)!(l + m)!
. (3.395)

From Lemma 3.79, we are able to deduce the following recursion relation.

Lemma 3.80. For n = 0, 1, . . ., m = 0, . . . , n, and t ∈ [−1, 1]

Pn,m(t) =
(

1
2

)m (n + m)!
(n−m)!

1
m!

�n−m
2

�∑

l=0

Cl(1− t2)
m
2

+ltn−m−2l,



132 3 Scalar Spherical Harmonics

where the coefficients Cl, l = 0, . . . , �n−m
2 � − 1, are recursively given by

(2l + 2)(2l + 2m + 2)Cl+1 + (n−m− 2l)(n−m− 1− 2l)Cl = 0,

C0 = 1.

Proof. With C0 = 1 and Cl+1 = − (n−m−2l)(n−m−1−2l)
(2l+2)(2l+2m+2) Cl we get

C1 = −(n−m)(n−m− 1)
2 · (2m + 2)

, (3.396)

C2 =
(n−m)(n−m− 1)(n−m− 2)(n−m− 3)

2 · 4 · (2m + 2)(2m + 4)
. (3.397)

By continuing this process, we find

Cl = (−1)l (n−m)(n−m− 1) · . . . · (n−m− 2l + 1)
2 · 4 · . . . (2l) · (2m + 2)(2m + 4) · . . . · (2m + 2l)

(3.398)

= (−1)l (n−m)!
(n−m− 2l)!

1
2ll!

1
2l(m + 1)(m + 2) · . . . · (m + l)

.

Consequently, it follows that

Cl = (−1
4
)l (n−m)!

l!(n−m− 2l)!
m!

(m + l)!
. (3.399)

This is the desired result.

Lemma 3.80 permits the following reformulation.

Lemma 3.81. For n = 0, 1, . . . , m = 0, . . . , n, and t ∈ [−1, 1]

Pn,m(t) = (
1
2
)m (n + m)!

m!(n−m)!
(1− t2)

m
2

n−m∑

k=0

Cn−m−k
2

(1− t2)
n−m−k

2 tk, (3.400)

where

Cn−m−k
2

=

{
(−1

4)
n−m−k

2
(n−m)!

k!(n−m−k
2

)!
m!

(n+m−k
2

)!
, n−m− k even

0 , n−m− k odd.
(3.401)

Furthermore, the coefficients Cn−m−k
2

are recursively determined by

Cn−m−k−2
2

= −(n−m− k)(n + m− k)
(k + 2)(k + 1)

Cn−m−k
2

(3.402)

k = 0, . . . , n−m− 2, with Cn−m
2

, Cn−m−1
2

given by

Cn−m
2

=

{
(−1

4)
n−m

2
1

(n−m
2

)!(n+m
2

)!
, n−m even

0 , n−m odd
(3.403)
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and

Cn−m−1
2

=

{
0 , n−m even

(−1
4)

n−m−1
2

1
(n−m−1

2
)!(n+m−1

2
)!

, n−m odd.
(3.404)

In connection with Pn,m = 0 for m > n, the preceding lemma (Lemma
3.81) leads us to the following statement.

Lemma 3.82. For n = 0, 1, . . . , m = 0, 1, . . ., and t ∈ [−1, 1]

Pn,m(t) = (1− t2)
m
2

n∑

k=0

Cm
n−m−k

2

(1− t2)
n−m−k

2 tk, (3.405)

where the generating coefficients Cm
n−m−k

2

of the associated Legendre polyno-

mial of degree n and order m are given by

Cm
n−m−k

2

=

{
(1
2)m (n+m)!

(n−m)!m!Cn−m−k
2

, n−m− k even, 0 ≤ k ≤ n−m

0 , otherwise.
(3.406)

The Legendre polynomials Pn, n = 0, 1, . . ., are known to satisfy the dif-
ferential equation

(
d

dt
(1− t2)

d

dt
+ n(n + 1)

)
Pn(t) = 0. (3.407)

We differentiate this equation m-times with respect to t. In connection with
the recursion formulas of the Legendre polynomial, we find

(
d

dt

)m
(
−2t

d

dt
Pn(t) + (1− t2)

(
d

dt

)2

Pn(t)

)
+n(n+1)

(
d

dt

)m

Pn(t) = 0.

(3.408)

An elementary calculation starting from (3.408) guarantees the validity
of the following differential equation.

Lemma 3.83. The associated Legendre functions Pn,m, n = 0, 1, . . ., m =
1, . . . , n, satisfy the differential equation

(1− t2)
(

d

dt

)2

Pn,m(t)− 2t
d

dt
Pn,m(t) +

(
n(n + 1)− m2

1− t2

)
Pn,m(t) = 0.
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Next, we use the differential equation (Lemma 3.83) to verify the orthog-
onality of Pn,m and Pr,m for degrees n, r with r �= n. We notice that the
equation

Pr,m(t)
(

d

dt
(1− t2)

d

dt
Pn,m(t) +

(
n(n + 1)− m2

1− t2

)
Pn,m(t)

)

− Pn,m(t)
(

d

dt
(1− t2)Pr,m(t) +

(
r(r + 1)− m2

1− t2

)
Pr,m(t)

)

= 0 (3.409)

is equivalent to

Pr,m(t)
d

dt
(1− t2)

d

dt
Pn,m(t)− Pn,m(t)

d

dt
(1− t2)

d

dt
Pr,m(t)

+ Pn,m(t)Pr,m(t) (n(n + 1)− r(r + 1)) = 0. (3.410)

Hence, we find

d

dt

(
(1− t2)

(
Pr,m(t)

d

dt
Pn,m(t)− Pn,m(t)

d

dt
Pr,m(t)

))

+ Pn,m(t)Pr,m(t) (n(n + 1)− r(r + 1)) = 0. (3.411)

Integration with respect to t over the interval [−1, 1] yields

(n− r)(n + r + 1)
∫ 1

−1
Pn,m(t)Pr,m(t)dt = 0. (3.412)

As n+r+1 > 0 and n �= r, this leads to the following orthogonality relation.

Lemma 3.84. For all n, r with n �= r

∫ 1

−1
Pn,m(t)Pr,m(t) dt = 0.

It is not difficult to see that

Pn,m+1(t) = (1− t2)
m
2

+ 1
2

(
d

dt

)m+1

Pn(t) (3.413)

= (1− t2)
m+1

2
d

dt

(
(1− t2)−

m
2 Pn,m(t)

)

= (1− t2)1/2 d

dt
Pn,m(t) + mt(1− t2)−1/2Pn,m(t).

Thus we arrive at the following recurrence formula

Pn,m+1(t) = (1− t2)1/2 d

dt
Pn,m(t) + mt(1− t2)−1/2Pn,m(t). (3.414)
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There is a large palette of three-term recursion relations, including

(n−m + 1)Pn+1,m(t)− (2n + 1)tPn,m(t) + (n + m)Pn−1,m(t) = 0, (3.415)

(1− t2)1/2Pn,m+1(t)− 2mtPn,m(t)

+ (n + m)(n−m + 1)(1− t2)1/2Pn,m−1(t) = 0, (3.416)

Pn+1,m(t)− tPn,m(t)− (n + m)(1− t2)1/2Pn,m−1(t) = 0, (3.417)

tPn,m(t)− Pn−1,m(t)− (n−m + 1)(1− t2)1/2Pn,m−1 = 0, (3.418)

(n−m+1)Pn+1,m(t)+(1−t2)1/2Pn,m+1(t)−(n+m+1)tPn,m(t) = 0, (3.419)

(n−m)tPn,m(t)− (n + m)Pn−1,m(t) + (1− t2)1/2Pn,m+1(t) = 0. (3.420)

The derivative of Pn,m(t) is given by any of the equivalent formulas

(1− t2)
dPn,m(t)

dt
= (1− t2)1/2Pn,m+1(t)−mtPn,m(t) (3.421)

= mtPn,m(t)− (n + m)(n−m + 1)(1− t2)1/2Pn,m−1(t)
= (n + 1)tPn,m(t)− (n−m + 1)Pn+1,m(t)
= (n + m)Pn−1,m(t)− ntPn,m(t).

The effect of a change in the sign of the order or the argument is

Pn,−m(t) = (−1)m (n−m)!
(n + m)!

Pn,m(t), (3.422)

Pn,m(−t) = (−1)n+mPn,m(t). (3.423)

The identity (3.414) and the differential equation of the associated Leg-
endre function can be used to verify the following result.

Lemma 3.85. For n = 0, 1, . . . , m = 1, . . . , n

∫ 1

−1
(Pn,m(t))2 dt =

2
2n + 1

(n + m)!
(n−m)!

. (3.424)

Proof. By virtue of the recurrence relation (3.414), we obtain
∫ 1

−1
(Pn,m+1(t))2 dt =

∫ 1

−1
(1− t2)

(
d

dt
Pn,m(t)

)2

dt (3.425)

+
∫ 1

−1
m2t2

1
1− t2

(Pn,m(t))2 dt

+ 2m

∫ 1

−1
tPn,m(t)

(
d

dt
Pn,m(t)

)
dt.
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Integration by parts yields
∫ 1

−1
(Pn,m+1(t))2 dt = −

∫ 1

−1
Pn,m(t)

d

dt

{
(1− t2)

dPn,m

dt
(t)
}

dt (3.426)

+ Pn,m(t)(1− t2)
dPn,m

dt
(t)
∣∣∣∣
1

−1

+m

∫ 1

−1
tPn,m(t)

dPn,m

dt
(t) dt

+m t(Pn,m(t))2
∣∣1
−1
−m

∫ 1

−1

(
d

dt
(tPn,m(t))

)
Pn,m(t) dt

+
∫ 1

−1

m2t2

1− t2
(Pn,m(t))2 dt.

The boundary terms vanish, because (1 − t2)
∣∣∣
1

−1
= 0 and Pn,m(±1) = 0.

Hence, we find
∫ 1

−1
(Pn,m+1(t))2 dt = −

∫ 1

−1
Pn,m(t)

(
d

dt
(1− t2)

d

dt
Pn,m(t)

)
dt (3.427)

−m

∫ 1

−1
(Pn,m(t))2 dt +

∫ 1

−1

m2t2

1− t2
(Pn,m(t))2 dt.

Consequently we get, in connection with Lemma 3.83,
∫ 1

−1
(Pn,m+1(t))2 dt (3.428)

=
∫ 1

−1
(Pn,m(t))2

(
n(n + 1)− m2

1− t2
−m +

m2t2

1− t2

)
dt

=
∫ 1

−1
(Pn,m(t))2 (n(n + 1)−m(m + 1)) dt.

This shows us that
∫ 1

−1
(Pn,m+1(t))

2 dt = (n−m)(n + m + 1)
∫ 1

−1
(Pn,m(t))2 dt. (3.429)

Once again, note that Pn can be written as Pn,0, extending the definition of
the associated Legendre functions to the case n = 0, 1, . . ., m = 0, 1, . . . , n.

Repeated application of (3.429), therefore, yields
∫ 1

−1
(Pn,m(t))2 dt =

n!(n + m)!
(n−m)!n!

∫ 1

−1
(Pn(t))2 dt =

2
(2n + 1)

(n + m)!
(n−m)!

.

(3.430)
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Next, we come to the following statement.

Theorem 3.86. For every fixed m = 1, 2, . . ., the system
{(

2n + 1
2

(n−m)!
(n + m)!

)1/2

Pn,m

}

n=m,m+1,...

is a complete orthonormal system in L2[−1, 1].

Proof. The orthonormality immediately follows from the aforementioned
results. To see that the system is complete, let G ∈ L2[−1, 1] satisfy

∫ 1

1
Pn,m(t)G(t) dt = 0, n = m, m + 1, . . . . (3.431)

Thus it follows

0 =
∫ 1

−1
Pn,m(t)G(t) dt (3.432)

=
∫ 1

−1
(1− t2)m/2

(
dm

dtm
Pn(t)

)
G(t) dt

=
∫ 1

−1

(
dm

dtm
Pn(t)

)(
(1− t2)m/2G(t)

)
dt

for all n = m, m + 1, . . .. Since the system
{

dm

dtm Pn

}
n=m,m+1,...

is dense

in L2[−1, 1], it follows (1 − t2)m/2G(t) = 0, t ∈ [−1, 1], so that G = 0 in
L2[−1, 1]–sense.

Finally, we mention that, for n, l = 0, 1, . . . and m = 0, . . . , n, k = 0, . . . , l,
we have

∫ 2π

0

∫ π

0
Pn,m(cos ϑ)Pl,k(cos ϑ) cos(mϕ) cos(kϕ) sin ϑ dϑ dϕ (3.433)

=
∫ 2π

0
cos(mϕ) cos(kϕ) dϕ

∫ π

0
Pn,m(cos ϑ)Pl,k(cos ϑ) sinϑ dϑ

= δkmδln
2π

2n + 1
(n + m)!
(n−m)!

,

where, for m, k ε IN , we have observed the identity

∫ 2π

0
cos(mϕ) cos(kϕ) dϕ = πδkm. (3.434)
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In the same way, we obtain
∫ 2π

0

∫ π

0
Pn,m(cos ϑ)Pl,k(cos ϑ) sin(mϕ) sin(lϕ) sin ϑ dϑ dϕ

=
∫ 2π

0
sin(mϕ) sin(kϕ) dϕ

∫ π

0
Pn,m(cos ϑ)Pl,k(cos ϑ) sinϑdϑ

= δkmδln
2π

2n + 1
(n + m)!
(n−m)!

. (3.435)

3.13 Associated Legendre (Spherical) Harmonics

The functions G, H defined by

G : t �→ G(t) = Pn,j(t), t ∈ (−1, 1), (3.436)

H : ϕ �→ H(ϕ) =
{

cos(jϕ)
sin(jϕ)

, ϕ ∈ [0, 2π), (3.437)

respectively, satisfy the differential equations

(1− t2)G′′(t)− 2tG′(t) +
(

n(n + 1)− j2

1− t2

)
G(t) = 0, (3.438)

H ′′(ϕ) + j2H(ϕ) = 0. (3.439)

Therefore, the functions Ln,1, . . . , Ln,2n+1 ∈ C(∞)(Ω) given by

Ln,(n+1)+j(ξ) =
{

Pn,|j|(t) cos(jϕ) , j = −n, . . . , 0
Pn,j(t) sin(jϕ) , j = 1, . . . , n

(3.440)

satisfy the differential equation

(Δ∗
ξ + n(n + 1))Ln,(n+1)+j(ξ) = 0, ξ ∈ Ω, (3.441)

j = −n, . . . , n (note that, as always, ξ =
√

1− t2(cos ϕε1 + sinϕε2) + tε3).
In addition, the functions Ln,(n+1)+j ∈ C(∞)(R3), j = −n, . . . , n, given by

Ln,(n+1)+j(x) = |x|nLn,(n+1)+j(ξ), x = |x|ξ, ξ ∈ Ω, (3.442)

form homogeneous harmonic polynomials of degree n in R
3, i.e., they are

members of Harmn(R3).

Definition 3.87. Let Ln,(n+1)+j , j = −n, . . . , n, be defined by (3.440).
Then Ln,(n+1)+j is called associated Legendre (spherical) harmonic of de-
gree n and order j. Correspondingly, the system {L∗

n,(n+1)+j}j=−n,...,n given
by

L∗
n,(n+1)+j = Cn,jLn,(n+1)+j , j = −n, . . . , n, (3.443)
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with

Cn,j =

√

(2− δj0)
2n + 1

4π

(n− |j|)!
(n + |j|)! (3.444)

is called (fully) L2(Ω)-orthonormal system of associated Legendre (spherical)
harmonics in Harmn(Ω).

In terms of associated Legendre harmonics, the addition theorem (cf.
Theorem 3.26) allows us the following reformulation (that is standard in all
geosciences).

Remark 3.88. (Addition theorem for the system {L∗
n,r} of associated Leg-

endre (spherical) harmonics) Suppose that ξ, η ∈ Ω are given by

ξ =
√

1− t2ξ cos ϕξ ε1 +
√

1− t2ξ sinϕξ ε2 + tξ ε3

−1 ≤ tξ ≤ 1, 0 ≤ ϕξ < 2π, (3.445)

η =
√

1− t2η cos ϕη ε1 +
√

1− t2η sinϕη ε2 + tηε
3,

−1 ≤ tη ≤ 1, 0 ≤ ϕη < 2π. (3.446)

respectively, so that

ξ · η = tξtη +
√

1− t2ξ

√
1− t2η(cos ϕξ cos ϕη + sinϕξ sinϕη)

= tξtη +
√

1− t2ξ

√
1− t2η cos(ϕξ − ϕη). (3.447)

Then

2n + 1
4π

Pn(tξtη +
√

1− t2ξ

√
1− t2η cos(ϕξ − ϕη))

=
1
4π

Pn(tξ)Pn(tη)

+
2n + 1

2π

n∑

m=1

(n−m)!
(n + m)!

Pn,m(tξ)Pn,m(tη) cos(m(ϕξ − ϕη))

=
n∑

j=−n

L∗
n,(n+1)+j(ξ)L

∗
n,(n+1)+j(η)

=
2n+1∑

r=1

L∗
n,r(ξ)L

∗
n,r(η). (3.448)
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Equivalently, we have

2n + 1
4π

Pn(tξtη +
√

1− t2ξ

√
1− t2η cos(ϕξ − ϕη)) (3.449)

=
n+1∑

r=1

Cn,(n+1)−rPn,(n+1)−r(tξ)Pn,(n+1)−r(tη)

× (cos(((n + 1)− r)ϕξ))(cos(((n + 1)− r)ϕη))

+
2n+1∑

r=n+2

Cn,(n+1)−rPn,r−(n+1)(tξ)Pn,r−(n+1)(tη)

× (sin((r − (n + 1))ϕξ) sin((r − (n + 1))ϕη)).

In other words, summing up all spherical harmonics involving associated
Legendre functions via the addition theorem leads (apart from a multiplica-
tive factor) to the orthogonal invariant Legendre (kernel) functions.

Fig. 3.6: Zonal (j = 0) spherical harmonics L∗
n,(n+1)+j of different degrees

1, . . . , 6 (from left to right). The black and white color indicate the zones
of different signs of the function, respectively.

The geometrical interpretation of the spherical harmonics defined via as-
sociated Legendre functions is particularly useful. The harmonics with j = 0
- that is, the Legendre polynomials - are polynomials of degree n. They have
n zeros. These n zeros are all real, different, and situated in the interval
(−1, 1). In consequence, the spherical harmonics with j = 0 change their
sign n times in this interval; furthermore, they do not depend on the vari-
able ϕ. Since they divide the sphere into zones, they are also called zonal
harmonics (see Fig. 3.6).

Fig. 3.7: Tesseral (j �= ±n) spherical harmonics L∗
n,(n+1)+j of degree n = 4,

i.e., L∗
4,2, L∗

4,3, L∗
4,4, L∗

4,6, L∗
4,7, L∗

4,8 (from left to right). The black and white
colors indicate the zones of different signs of the function, respectively.
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The associated Legendre functions ϑ �→ Pn,|j|(cos ϑ), ϑ ∈ [0, π], change
their sign n − |j| times in the interval [0, π). The trigonometric functions
ϕ �→ cos(jϕ), j = −n, . . . , 0, have 2|j| zeros in the interval [0, 2π), the
functions ϕ �→ sin(jϕ), j = 1, . . . , n, have 2j zeros in the interval [0, 2π).
Consequently, the geometrical representation of the harmonics for the case
|j| �= n is similar to that of Fig. 3.7. They divide the sphere into compart-
ments in which they are alternately positive and negative, and are called
tesseral harmonics. ‘Tesseral’ means a square or rectangle. In particular,
for |j| = n, they degenerate into functions that divide the sphere into posi-
tive and negative sectors, in which case they are called sectorial harmonics,
see Fig. 3.8.

Fig. 3.8: Sectorial (j = ±n) spherical harmonics L∗
n,(n+1)+j of different

degrees: L∗
1,3, L∗

2,5, L∗
3,7, L∗

4,9, L∗
5,11, L∗

6,13 (from left to right). The black and
white colors indicate the zones of different signs of the function, respectively.

Next, we are interested in describing angular derivatives of associated Leg-
endre (spherical) harmonics. For that purpose, we start with the following
characterization of the operators ∇∗, L∗ in terms of the polar coordinates
(2.94).

√
1− (ξ · ε3)2 ∇∗

ξ =
(
− sinϕε1 + cos ϕε2

) ∂

∂ϕ
(3.450)

+ (1− t2)
(
−t cos ϕε1 − t sinϕε2 +

√
1− t2ε3

) ∂

∂t

and

√
1− (ξ · ε3)2 L∗

ξ = (1− t2)
(
sinϕε1 − cos ϕε2

) ∂

∂t
(3.451)

+
(
−t cos ϕε1 − t sinϕε2 +

√
1− t2ε3

) ∂

∂ϕ
.

We want to derive explicit representations of both derivatives√
1− (ξ · ε3)2 ∇∗

ξL
∗
n,(n+1)+j(ξ) and

√
1− (ξ · ε3)2 L∗

ξL
∗
n,(n+1)+j(ξ), ξ ∈ Ω,

(see, e.g., D. Michel (2007)).

For that purpose, we have to calculate the angular derivatives ∂
∂ϕ L∗

n,(n+1)+j

(derivative of the latitude) and (1− t2) ∂
∂tL

∗
n,(n+1)+j , (derivative of the lon-

gitude), respectively.
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Lemma 3.89. For n = 1, 2, . . . , j = −n, . . . , n

∂

∂ϕ
L∗

n,(n+1)+j(ϕ, t) = jL∗
n,(n+1)−j(ϕ, t). (3.452)

Proof. The application of the ‘operator of the latitude’ ∂
∂ϕ yields

∂

∂ϕ
L∗

n,(n+1)+j(ϕ, t) =
∂

∂ϕ
Cn,jPn,|j|(t)

{
cos(jϕ), j = −n, . . . , 0
sin(jϕ), j = 1, . . . , n

,

= Cn,jPn,|j|(t)
{
−j sin(jϕ), j = −n, . . . , 0
j cos(jϕ), j = 1, . . . , n

= jCn,−jPn,|j|(t)
{

sin(−jϕ), j = −n, . . . , 1
cos(−jϕ), j = 0, . . . , n

= jL∗
n,(n+1)−j(ϕ, t), (3.453)

where Cn,j is given by (3.444)

Cn,j =

√

(2− δ|j|0)
2n + 1

4π

(n− |j|)!
(n + |j|)! . (3.454)

(such that Cn,j = Cn,−j). This proves Lemma 3.89

Lemma 3.89 tells us that ∂
∂ϕ applied to spherical harmonics admits a

simple structure. But it also informs us that the scalar (Legendre) spherical
harmonics are not eigenfunctions of this operator.

Next, we turn to the ‘operator of the longitude’ (1− t2) ∂
∂t .

Lemma 3.90. For n = 1, 2, . . . , j = −n, . . . , n,

(1− t2)
∂

∂t
L∗

n,(n+1)+j(ϕ, t)

= −nDn+1,jL
∗
n+1,(n+1)+j(ϕ, t) + (n + 1)Dn,jL

∗
n−1,(n+1)+j(ϕ, t),

where

Dn,j =

√
(n− |j|)(n + |j|)
(2n− 1)(2n + 1)

. (3.455)
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Proof. The application of the operator (1− t2) ∂
∂t yields

(1− t2)
∂

∂t
L∗

n,(n+1)+j(ϕ, t)

= Cn,j(1− t2)
d

dt
Pn,|j|(t)

{
cos(jϕ), j = −n, . . . , 0
sin(jϕ), j = 1, . . . , n

= Cn,j

(
−n(n + 1)− |j|

2n + 1
Pn+1,|j|(t) +

(n + |j|)(n + 1)
2n + 1

Pn−1,|j|(t)
)

×
{

cos(jϕ), j = −n, . . . , 0
sin(jϕ), j = 1, . . . , n

= −n(n + 1)− |j|
2n + 1

Cn,j

Cn+1,j
L∗

n+1,(n+1)+j(ϕ, t) (3.456)

+
(n + |j|)(n + 1)

2n + 1
Cn,j

Cn−1,j
L∗

n−1,(n+1)+j(ϕ, t).

Therefore, we obtain

(1− t2)
∂

∂t
L∗

n,(n+1)+j(ϕ, t) (3.457)

= −n(n + 1− |j|)
2n + 1

√
2n + 1
2n + 3

n + 1 + |j|
n + 1− |j|L

∗
n+1,(n+1)+j(ϕ, t)

+
(n + |j|)(n + 1)

2n + 1

√
2n + 1
2n− 1

n− |j|
n + |j|L

∗
n−1,(n+1)+j(ϕ, t)

= −n

√
(n + 1− |j|)(n + 1 + |j|)

(2n + 1)(2n + 3)
L∗

n+1,(n+1)+j(ϕ, t)

+ (n + 1)

√
(n− |j|)(n + |j|)
(2n− 1)(2n + 1)

L∗
n−1,(n+1)+j(ϕ, t)

= −nDn+1,jL
∗
n,(n+1)+j(ϕ, t) + (n + 1)Dn,jL

∗
n−1,(n+1)+j(ϕ, t).

This shows Lemma 3.90.

Our considerations presented in Lemma 3.90 show us (see (2.138), (2.139)
for the explicit expressions of ∇∗ and L∗) that

√
1− t2 ∇∗L∗

n,(n+1)+j(ϕ, t) (3.458)

= (− sinϕε1 + cos ϕε2)jL∗
n,(n+1)−j(ϕ, t)

+ (−t cos ϕε1 − t sinϕε2 +
√

1− t2ε3) (−nDn+1,jL
∗
n,(n+1)+j(ϕ, t)

+(n + 1)Dn,jL
∗
n−1,(n+1)+j(ϕ, t))
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Fig. 3.9: Associated Legendre spherical harmonics L∗
n,(n+1)+j of degree n =

5 and j = 0, 1, 2 (first row) and j = 3, 4, 5 (second row) in three-dimensional
view, i.e., functional values are represented by their deviation from the unit
sphere.

and
√

1− t2 L∗L∗
n,(n+1)+j(ϕ, t) (3.459)

= (sin ϕε1 − cos ϕε2)(−nDn+1,jL
∗
n,(n+1)−j(ϕ, t)

+(n + 1)Dn,jL
∗
n−1,(n+1)+j(ϕ, t))

+ (−t cos ϕε1 − t sinϕε2 +
√

1− t2ε3)jL∗
n,(n+1)−j(ϕ, t).

In other words, the scalar (associated Legendre) harmonics {L∗
n,l}l=1,...,2n+1

are not eigenfunctions to the angular derivatives. On the one hand, the
surface gradient as well as the surface curl gradient of spherical harmonics
can be expressed using the system {L∗

n,l}l=1,...,2n+1 in elementary form. On
the other hand, the representations are lengthy and (at least in the case of
the operator of the longitude) rather complicated to handle. Even more,
singularities at the poles cannot be avoided for both surface gradient and
the surface curl gradient, i.e., ∇∗ and L∗, when polar coordinates come into
play on the (global) unit sphere Ω.

Remark 3.91. The complete orthonormal system {L∗
n,(n+1)+j}j=−n,...,n

(see Fig.3.9) is that one used for the representations of the Earth’s dis-
turbing potential (see Fig. 3.10)(for example, of the model EGM96 (cf.
F.G. Lemoine et al. (1998)), the Earth’s magnetic potential IGRF10 (cf.
S. Macmillan et al. (2003)), and many others.
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-500.0 0.0 500.0

[100 Gal m]

-100.0 0.0 100.0

[100 Gal m]
(degree 3 to 15) (degree 16 to 31)

-500.0 0.0 500.0

[100 Gal m]

-100.0 0.0 100.0

[100 Gal m]
(degree 3 to 31) (degree 32 to 63)

-500.0 0.0 500.0

[100 Gal m]

-100.0 0.0

[100 Gal m]
(degree 3 to 63) (degree 64 to 127)

Fig. 3.10: EGM96 spherical harmonic expansion in terms of associated Leg-
endre (spherical) harmonics (from W. Freeden (1999)).

Spherical harmonics involving associated Legendre polynomials, i.e., as-
sociated Legendre (spherical) harmonics, share important properties with
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the ’circle functions’, i.e., the trigonometric functions. We already know
from Lemma 3.81 that, for j = 0, . . . , n,

Pn,j(cos ϑ) =
(

1
2

)j (n + j)!
(n− j)!j!

sinj ϑ

n−j∑

k=0

Cn−j−k
2

sinn−j−k(ϑ) cosk(ϑ),

(3.460)
where the coefficients Cn−j−k

2
, are recursively determined by (3.402). Fur-

thermore, it is well-known that

cos(jϕ) =
� j
2
�∑

i=0

(−1)i

(
j

2i

)
cosj−2i(ϕ) sin2i(ϕ), (3.461)

sin(jϕ) =
� j
2
�∑

i=1

(−1)i+1

(
j

2i− 1

)
cosj−2i+1(ϕ) sin2i−1(ϕ), (3.462)

where, as usual, �n
2 � = min{k ∈ Z | k ≥ n

2 } and �n
2 � = max{k ∈ Z | k ≤ n

2 }.

In terms of spherical coordinates x = rξ, r = |x|, ξ ∈ Ω, such that
xi = rξi, i = 1, 2, 3, and ξ1 = sinϑ sin ϕ, ξ2 = sin ϑ cos ϕ, ξ3 = cos ϑ, ϕ ∈
[0, 2π), ϑ ∈ [0, π], this gives us after a simple calculation

rj(sinϑ)j cos(jϕ)

= rj(sin ϑ)j

� j
2
�∑

i=0

(−1)i

(
j

2i

)
cosj−2i(ϕ) sin2i(ϕ)

=
� j
2
�∑

i=0

(−1)i

(
j

2i

)
ξj−2i
1 ξ2i

2 (3.463)

and

rj(sinϑ)j sin(jϕ)

= rj(sin ϑ)j

� j
2
�∑

i=1

(−1)i+1

(
j

2i− 1

)
cosj−2i+1(ϕ) sin2i−1(ϕ)

=
� j
2
�∑

i=1

(−1)i−1

(
j

2i− 1

)
ξj−2i+1
1 ξ2i−1

2 . (3.464)

Collecting our results, we therefore obtain the following representation in
terms of cartesian coordinates.
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Lemma 3.92. For every n ∈ N0, {Ln,(n+1)+j}j=−n,...,n with

Ln,(n+1)+j(x) = rnPn,|j|(cos ϑ)
{

cos(jϕ) , j = −n, . . . , 0
sin(jϕ) , j = 1, . . . , n

=
(

1
2

)|j| (n + |j|)!
(n− |j|)!|j|!

n−|j|∑

k=0

Cn−|j|−k
2

(x2
1 + x2

2)
n−|j|−k

2 xk
3

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� |j|
2
�∑

i=0
(−1)i

(|j|
2i

)
x
|j|−2i
1 x2i

2 , j = −n, . . . , 0

� j
2
�∑

i=1
(−1)i−1

(
j

2i−1

)
xj−2i+1

1 x2i−1
2 , j = 1, . . . , n

(3.465)

forms a maximal (·, ·)Homn-orthogonal system and, consequently, a maximal
L2(Ω)–orthogonal system in Harmn(R3).

From Lemma 3.92, we are able to deduce the following theorem immedi-
ately.

Theorem 3.93. Let Aj
n−k : (x1, x2) �→ Aj

n−k(x1, x2), k = 0, . . . , n, (x1, x2)T ∈
R

2, be defined by

Aj
n−k(x1, x2)

= C
|j|
n−|j|−k

2

(x2
1 + x2

2)
n−|j|−k

2

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� |j|
2
�∑

i=0
(−1)i

(|j|
2i

)
x
|j|−2i
1 x2i

2 , j = −n, . . . , 0

� j
2
�∑

i=1
(−1)i−1

(
j

2i−1

)
xj−2i+1

1 x2i−1
2 , j = 1, . . . , n

(3.466)

(with C
|j|
n−|j|−k

2

given by (3.406)). Then, for n = 0, 1, . . . , j = −n, . . . , n,

the associated Legendre (spherical) harmonic Ln,(n+1)+j : R
3 → R is repre-

sentable in the form

Ln,(n+1)+j(x) =
n∑

k=0

Aj
n−k(x1, x2)xk

3, x = (x1, x2, x3)T ∈ R
3, (3.467)

where
[(

∂

∂x1

)2

+
(

∂

∂x2

)2
]

Aj
n−k(x1, x2) + (k + 1)(k + 2)Aj

n−k−2(x1, x2) = 0

(3.468)
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and, for k = 0, . . . , n,

[(
∂

∂x1

)2

+
(

∂

∂x2

)2
]

Aj
n−k(x1, x2)

= C
|j|
n−|j|−k

2

(3.469)

×
(
(n− |j| − k)2 + 2|j|(n− |j| − k)2

)
(x2

1 + x2
2)

n−|j|−k
2

−1

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� |j|
2
�∑

i=0
(−1)i

(|j|
2i

)
x
|j|−2i
1 x2i

2 , j = −n, . . . , 0

� j
2
�∑

i=1
(−1)i−1

(
j

2i−1

)
xj−2i+1

1 x2i−1
2 , j = 1, . . . , n.

The system {L∗
n,(n+1)+j} n=0,1,...

j=−n,...,n
with L∗

n,(n+1)+j defined by

ξ �→ L∗
n,(n+1)+j(ξ) = Cn,jLn(n+1)+j(ξ), ξ ∈ Ω, (3.470)

(and Cn,j given by (3.444)) forms a maximal L2(Ω)-orthonormal basis sys-
tem in L2(Ω).

Introducing the abbreviation (x1, x2) �→ Bn−|j|−k
2

(x2
1 + x2

2), x1, x2 ∈ R by

Bn−|j|−k
2

(x2
1 + x2

2) = C
|j|
n−|j|−k

2

(x2
1 + x2

2)
n−|j|−k

2 (3.471)

we are therefore able to formulate the following theorem.

Theorem 3.94. For n = 0, 1, . . . , j = −n, . . . , n, the associated Legendre
(spherical) harmonic Ln,(n+1)+j : R

3 → R is given by

Ln,(n+1)+j(x) =
n∑

k=0

Aj
n−k(x1, x2)xk

3 (3.472)

with

Aj
n−k(x1, x2) = Bn−|j|−k

2

(x2
1 + x2

2) (3.473)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� |j|
2
�∑

i=0
(−1)i

(|j|
2i

)
x
|j|−2i
1 x2i

2 , j = −n, . . . , 0

� j
2
�∑

i=1
(−1)i−1

(
j

2i−1

)
xj−2i+1

1 x2i−1
2 , j = 1, . . . , n.
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where Bn−|j|−k
2

(x2
1 + x2

2), x1, x2 ∈ R, satisfies the recursion relation

Bn−|j|−k−2
2

(x2
1 + x2

2) (3.474)

= − 1
(k + 1)(k + 2)

(
(n− |j| − k)2 + 2|j|(n− |j| − k)

)

× 1
x2

1 + x2
2

Bn−|j|−k
2

(x2
1 + x2

2),

k = 0, . . . , n− |j| − 2, starting from

Bn−|j|
2

(x2
1 + x2

2) (3.475)

=

{
(1
2)|j| (n+|j|)!

|j|!(n−|j|)!Cn−|j|
2

(x2
1 + x2

2)
n−|j|

2 , n− |j| even
0 , n− |j| odd

and

Bn−|j|−1
2

(x2
1 + x2

2) (3.476)

=

{
0 , n− |j| even
(1
2)|j| (n+|j|−1)!

|j|!(n−1−|j|)!Cn−|j|−1
2

(x2
1 + x2

2)
n−|j|−1

2 , n− |j| odd.

In other words, for n− |j| even, Ln,(n+1)+j can be calculated recursively
by (3.474) and (3.475) only by knowing Bn−|j|

2

(x2
1 + x2

2), while, for n − |j|
odd, Ln(n+1)+j can be determined recursively by (3.474) and (3.476) only
by knowing Bn−|j|−1

2

(x2
1 + x2

2), x1, x2 ∈ R.

Expressed in terms of the (usual) polar coordinates (2.94), we obtain the
following corollary.

Corollary 3.95. For n = 0, 1, . . . , j = −n, . . . , n,

Ln,(n+1)+j(ξ) (3.477)

= (1− t2)j/2
n∑

k=0

Bn−|j|−k
2

(1− t2) tk
{

cos(jϕ) , j = −n, . . . , 0
sin(jϕ) , j = 1, . . . , n

where

Bn−|j|−k−2
2

(1− t2) (3.478)

= − 1
(k + 1)(k + 2)

(
(n− |j| − k)2 + 2|j|(n− |j| − k)

)

× 1
1− t2

Bn−|j|−k
2

(1− t2),

k = 0, . . . , n − |j| − 2, with Bn−|j|
2

(1 − t2), and Bn−|j|−1
2

(1 − t2) given by

(3.475) and (3.476), respectively.
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Applying the binomial theorem, we are able to write the homogeneous
polynomials Aj

n−k : R
2 → R totally separated in terms of the coordinates

x1, x2. More explicitly, for k = 0, . . . , n,

Aj
n−k(x1, x2)

= C
|j|
n−|j|−k

2

n−|j|−k
2∑

l=0

(
n−|j|−k

2

l

)
(x2

1)
n−|j|−k

2
−l(x2

2)
l (3.479)

·

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� |j|
2
�∑

i=0
(−1)i

(|j|
2i

)
x
|j|−2i
1 x2i

2 , j = −n, . . . , 0

� j
2
�∑

i=1
(−1)i−1

(
j

2i−1

)
xj−2i+1

1 x2i−1
2 , j = 1, . . . , n.

= C
|j|
n−|j|−k

2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−|j|−k
2∑

l=0

(
n−|j|−k

2
l

) � |j|
2
�∑

i=0
(−1)i

(|j|
2i

)
xn−k−2l−2i

1 x2l+2i
2

j = −n, . . . , 0
n−|j|−k

2∑
l=0

( n−j−k
2
l

) � j
2
�∑

i=1
(−1)i−1

(
j

2i−1

)
xn−k−2l−2i+1

1 x2l+2i−1
2

j = 1, . . . , n.

From (3.468) and (3.469) it follows that

Aj
n−k−2(x1, x2) = − 1

(k + 1)(k + 2)
C

|j|
n−|j|−k

2

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n−|j|−k
2∑

l=0

(
n−|j|−k

2
l

) � |j|
2 �∑

i=0

(−1)i
(|j|

2i

) [(
∂

∂x1

)2

+
(

∂
∂x2

)2
]

xn−k−2l−2i
1 x2l+2i

2 ,

j = −n, . . . , 0,
n−j−k

2∑
l=0

(
n−j−k

2
l

) � j
2 �∑

i=1

(−1)i−1
(

j
2i−1

) [(
∂

∂x1

)2

+
(

∂
∂x2

)2
]

xn−k−2l−2i+1
1 x2l+2i−1

2 ,

j = 1, . . . , n.

This yields

Aj
n−k−2(x1, x2) = − 1

(k + 1)(k + 2)
C

|j|
n−|j|−k

2

((n− |j| − k)2 + 2|j|(n− |j| − k))

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n−|j|−k
2∑

l=0

(
n−|j|−k

2
l

) � |j|
2 �∑

i=0

(−1)i
(|j|

2i

)
x

n−k−2(l+1)−2i
1 x2l+2i

2 ,

j = −n, . . . , 0,
n−j−k

2∑
l=0

(
n−j−k

2
l

) � j
2 �∑

i=0

(−1)i−1
(

j
2i−1

)
x

n−k−2(l+1)−2i+1
1 x2l+2i−1

2 ,

j = 1, . . . , n.

In other words, applying the two-dimensional Laplacian changes the multi-
indices, but does not change the even/odd pattern. Therefore, any Legendre
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(spherical) harmonic Ln,(n+1)+j is uniquely determined by the homogeneous
polynomials Aj

n, Aj
n−1 : R

2 → R. This is the reason why their explicit rep-
resentations are of particular significance. For j = −n, . . . , 0 we obtain

Aj
n(x1, x2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
|j|
n−|j|

2

n−|j|
2∑

l=0

� |j|
2
�∑

i=0

(
n−|j|

2
l

)
(−1)i

(|j|
2i

)
xn−2l−2i

1 x2l+2i
2 ,

n− |j| even

0 , otherwise
(3.480)

and

Aj
n−1(x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
|j|
n−|j|−1

2

n−|j|−1
2∑

l=0

� |j|
2
�∑

i=0

(
n−|j|−1

2
l

)
(−1)i

(|j|
2i

)
xn−2l−2i−1

1 x2l+2i
2 ,

n− |j| odd
0 , otherwise

(3.481)
while, for j = 1, . . . , n, we find

Aj
n(x1, x2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
|j|
n−j

2

n−j
2∑

l=0

� j
2
�∑

i=1

( n−j
2
l

)
(−1)i−1

(
j

2i−1

)
xn−2l−2i+1

1 x2l+2i−1
2

n− j even

0 , otherwise
(3.482)

and

Aj
n−1(x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
|j|
n−j−1

2

n−|j|−1
2∑

l=0

� |j|
2
�∑

i=1

( n−j−1
2
l

)
(−1)i−1

(
j

2i−1

)
xn−2l−2i

1 x2l+2i−1
2

n− j odd.
0 , otherwise

(3.483)

Our considerations demonstrate that, for all integers n ≥ 2, the basis

B(n) = {Ln,(n+1)+j}j=−n,...,n (3.484)

of the space Harmn(R3) divides itself into certain subsets. In a first step,
we have two subsets

B(0)(n) =

{
n∑

k=0

2 Aj
n−k(x1, x2)xk

3

}

j=−n,...,0

,

B(1)(n) =

{
n∑

k=1

2 Aj
n−k(x1, x2)xk

3

}

j=1,...,n

,
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where, Aj
n−k : R

2 → R is given by (3.479) and, as usual,
∑
2 means that every

second summand is omitted in the sum. Clearly, the subspaces Harm(0)
n (R3)

and Harm(1)
n (R3) generated by B(0)(n) and B(1)(n), respectively, are of

dimensions n + 1 and n.

In the second step, the subsets B(0)(n), B(1)(n) are divided in canonical
way into two subsets generating an orthogonal splitting of B(n) into four
subsystems, namely

B(n,0)(n) =

{
n∑

k=0

2 Aj
n−k(x1, x2)xk

3

}

j≤0,n−|j| even
, (3.485)

B(n−1,0)(n) =

{
n∑

k=0

2 Aj
n−k(x1, x2)xk

3

}

j≤0,n−|j| odd
, (3.486)

B(n,1)(n) =

{
n∑

k=0

2 Aj
n−k(x1, x2)xk

3

}

j>0,n−|j| even
, (3.487)

B(n−1,1)(n) =

{
n∑

k=0

2 Aj
n−k(x1, x2)xk

3

}

j>0,n−|j| odd
, (3.488)

such that

B(n) = B(n,0)(n) ∪B(n−1,0)(n) ∪B(n,1)(n) ∪B(n−1,1)(n) (3.489)

and

B(k,p)(n) ⊥ B(l,q)(n), (k, p) �= (l, q), k, l ∈ {n− 1, n}, p, q ∈ {0, 1}. (3.490)

The dimensions of the four subspaces Harm(n,0)
n (R3), Harm(n−1,0)

n (R3),
Harm(n,1)

n (R3) and Harm(n−1,1)
n (R3) of the space Harmn(R3) spanned by

the systems B(n,0)(n), B(n−1,0)(n), B(n,)(n), and B(n−1,1)(n), respectively,
read as follows:

dim
(
Harm(n,0)

n (R3)
)

=
{
�n

2 �+ 1 , n even
�n

2 � , n odd,
(3.491)

dim
(
Harm(n−1,0)

n (R3)
)

=
{
�n

2 � , n even
�n

2 � , n odd,
(3.492)

dim
(
Harm(n,1)

n (R3)
)

=
{
�n

2 � , n even
�n

2 � , n odd,
(3.493)

dim
(
Harm(n−1,1)

n (R3)
)

=
{
�n

2 � , n even
�n

2 � − 1 , n odd,
(3.494)

Note that as superscripts for the first two subsets, we use binary numbers ‘0’
and ‘1’. The binary digits reflect the sign of j. The second superscripts ‘n’
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and ‘n−1’ reflect the implication of the degree of the two-dimensional homo-
geneous polynomial to the choice of n−|j| to be even/odd. More explicitly,
from the expression (3.479), it becomes obvious that the superscripts equiv-
alently reflect the even/odd pattern of the two-dimensional multiindices
involved in the representations of Aj

n−1, A
j
n if we understand ‘even’ for ‘0’

and ‘odd’ for 1. In fact, in order to characterize the ingredients in the rep-
resentations (3.480), (3.481), (3.482), and (3.483), respectively, we are lead
to the following observation: ‘(n, 0)’ is associated to two-dimensional mono-
mials xβ1

1 xβ2
2 with β1, β2 ∈ N0, β1 +β2 = n, β2 even, ‘(n−1, 0)’ is associated

to monomials xβ1
1 xβ2

2 with β1, β2 ∈ N0, β1 + β2 = n − 1, β2 even, whereas
‘(n, 1)’ is associated to monomials xβ1

1 xβ2
2 with β1, β2 ∈ N0, β1 + β2 = n, β2

odd, and ‘(n − 1, 1)’ is associated to monomials xβ1
1 xβ2

2 with β1, β2 ∈ N0,
β1 + β2 = n− 1, β2 odd.

Summarizing our results on the splitting of Harmn(R3) into ‘Legendre
subspaces’, we finally obtain

Harmn(R3) = Harm(n,0)
n (R3) ∪Harm(n−1,0)

n (R3) (3.495)
∪ Harm(n,1)

n (R3) ∪Harm(n−1,1)
n (R3)

such that
Harm(k,p)

n (R3) ⊥ Harm(l,q)
n (R3) (3.496)

provided that

(k, p) �= (l, q), k, l ∈ {n− 1, n}, p, q ∈ {0, 1}. (3.497)

Once more, the reason for the validity of (3.495) (3.496) is that the two-
dimensional multi-indices generating the basis functions in one subsystem
B(k,p)(n) k ∈ {n−1, n}, p ∈ {0, 1}, only show one specific even/odd pattern,
and the pattern is different from all the patterns in the other subsystems.

3.14 Exact Computation of Legendre Basis Systems

Earlier, in Section 3.3, it has been shown that a basis system in Harmn(R3)
can be computed entirely by integer operations from 2n+1 systems of linear
equations. The basis functions obtained can be orthonormalized exactly by
means of the well-known Gram-Schmidt orthonormalization process. As a
result, there are 2n + 1 homogeneous harmonic polynomials available (or-
thonormalized in the sense of (·, ·)Homn and, subsequently, in (·, ·)L2(Ω)).
But, the disadvantage in that approach is that the linear systems result
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in basis functions which are all involved in the computational work of the
orthonormalization process.

Our investigations about Legendre harmonics (in Section 3.13) have demon-
strated that, for every degree n ≥ 2, the space Harmn(R3) can be split
canonically into four subspaces that are mutually orthogonal and the inter-
section between any pair of subspaces is empty.

Combining these observations, we are now interested in the exact compu-
tation of a basis in Harmn(R3) which, in (·, ·)Homn-orthogonal sense, divides
itself in a natural way into the four subsystems known from the theory of
associated Legendre (spherical) harmonics. The subsystems, indeed, are
bases of the spaces Harm(k,p)

n (R3), k ∈ {n − 1, n}, p ∈ {0, 1}, respectively.
In addition, they are computed exclusively by integer operations. In do-
ing so, the calculation of coefficients involving factorials such as C

|j|
n−|j|−n

2

are avoided within the computational process. However, it turns out that
the basis established by exact computation is only partially orthogonal in
Harmn(R3), i.e., it is not totally orthogonal in (·, ·)Homn-sense (as in the case
of associated Legendre (spherical) harmonics). Actually, it is a compromise
between the two methods presented in the preceding sections. Neverthe-
less, in comparison to the exact computation explained in Section 3.3, the
amount of the computational work for (exact) orthonormalization by the
Gram-Schmidt procedure is reduced drastically, because the orthonormal-
ization process can be performed separately for the four individual subsets
(whose numbers of elements on average is (2n + 1)/4).

Our concept of exact generation of (·, ·)Homn-orthonormalized homoge-
neous harmonic polynomials in R

3 (cf. W. Freeden, R. Reuter (1990)) is
based on the observation that the two-dimensional multi-indices occurring
in the sets

M(n) = {(β1, β2)T ∈ N0
2|β1 + β2 = n} (3.498)

and

M(0)(n) = {(β1, β2)T ∈M(n)|β2 even }, (3.499)
M(1)(n) = {(β1, β2)T ∈M(n)|β2 odd } (3.500)

can be recognized in the framework of associated Legendre (spherical) har-
monics. In fact,

μq(n) = �M(bin(q))(n) =

{
n+2−b

2 , n + b even
n+2−(b+1)

2 , n + b odd,
(3.501)

where b denotes the number of digits of bin(q) which are 1, and bin(q)
denotes the representation of the integer q in its binary form. Consequently,
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we have

μq(n− 1) = �M(bin(q))(n− 1) =

{
n+1−b

2 , n− 1 + b even
n+1−(b+1)

2 , n− 1 + b odd.
(3.502)

By comparison with the results obtained in Section 3.13, this implies the
specification of the dimensions of the subspaces as follows:

μ0(n) = dim(Harm(n,0)
n (R3)), (3.503)

μ0(n− 1) = dim(Harm(n−1,0)
n (R3)), (3.504)

μ1(n) = dim(Harm(n,1)
n (R3)), (3.505)

μ1(n− 1) = dim(Harm(n−1,1)
n (R3)). (3.506)

Once again, the point of departure for the exact construction of an al-
ternative (Legendre) basis system is the observation that any homogeneous
polynomial (b,p)Hn ∈ Harm(b,p)

n (R3), b ∈ {n − 1, n}, p ∈ {0, 1}, in three
variables can be represented in the form (3.27)

(b,p)Hn(x1, x2, x3) =
n∑

k=0

2 (k,p)An−k(x1, x2)xk
3, (3.507)

where (b,p)An : R
2 → R and (b,p)An−1 : R

2 → R, b ∈ {n − 1, n}, p ∈ {0, 1}
are homogeneous polynomials of degree n and degree n − 1, respectively.
Furthermore, for k = 0, . . . , n−2, (b,p)An−k−2 is defined recursively accord-
ing to (3.31) by the relations

(b,q)An−k−2(x1, x2) (3.508)

= − 1
(k + 1)(k + 2)

((
∂

∂x1

)2

+
(

∂

∂x2

)2
)

(b,q)An−k(x1, x2).

The functions (b,q)Al
n : R

2 → R, b ∈ {n− 1, n}, p ∈ {0, 1}, l = 1, . . . , μp(n),
p ∈ {0, 1}, generating the basis in Harm(b,q)

n (R3) via the recursion relation
(3.508), therefore, can be chosen as follows:

(n,0)Al
n(x1, x2) = x

n−2(l−1)
1 x

2(l−1)
2 ,

l = 1, . . . , μ0(n), (3.509)
(n−1,0)Al

n−1(x1, x2) = x
n−1−2(l−1)
1 x

2(l−1)
2 ,

l = 1, . . . , μ0(n− 1), (3.510)
(n,1)Al

n(x1, x2) = x
n−1−2(l−1)
1 x

2(l−1)+1
2 ,

l = 1, . . . , μ1(n), (3.511)
(n−1,1)Al

n−1(x1, x2) = x
n−2−2(l−1)
1 x

2(l−1)+1
2 ,

l = 1, . . . , μ1(n− 1). (3.512)
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As requested by the recursion (3.508), the Laplacian ( ∂
∂x1

)2 + ( ∂
∂x2

)2 has to
be applied repeatedly to these functions generating the whole system as in-
dicated by (3.507), respectively. Altogether, we get a basis of 2n+1 elements
in Harmn(R3), as required. From the formulas involved in the computational
process, it is obvious that the partial orthogonal basis subsystems can be
computed in an exact arithmetic. The functions of each subsystems can be
orthonormalized, as usual, by the Gram-Schmidt orthonormalizing process
which can be performed exactly besides a final division of each polynomials
by its norm (square root).

Example 3.96. We discuss the case n = 5 and start with the set of two–
dimensional multi-indices

M(4) = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)},
M(5) = {(5, 0), (4, 1), (3, 2), (3, 3), (2, 4), (0, 5)}.

They are split according to our approach into the sets

M(0)(5) = {(5, 0), (3, 2), (1, 4)}, (3.513)
M(0)(4) = {(4, 0), (2, 2), (0, 4)}, (3.514)
M(1)(5) = {(4, 1), (2, 3), (0, 5)}, (3.515)
M(1)(4) = {(3, 1), (1, 3)}. (3.516)

Note that, for n = 5, we particularly have

μ0(n) = 3, (3.517)
μ0(n− 1) = 3, (3.518)

μ1(n) = 3, (3.519)
μ1(n− 1) = 2. (3.520)

From each of these sets, the corresponding homogeneous harmonic polyno-
mials are derived. They are written down in a schematic manner. The first
polynomial reads as follows:

1 · x4
1x

0
2x

1
3 − 2 · x2

1x
0
2x

3
3 +

1
5
· x0

1x
0
2x

5
3. (3.521)

Additionally, the orthonormalized set of polynomials can be listed in similar
fashion. The first of these reads:

(
1 · x4

1x
0
2x

1
3 − 2 · x2

1x
0
2x

3
3 +

1
5
· x0

1x
0
2x

5
3

)
/

√
384
5

. (3.522)

We obtain:
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M(0)(5) :1x5
1x

0
2x

0
3 − 10x3

1x
0
2x

2
3 + 5x1

1x
0
2x

4
3,

1x3
1x

2
2x

0
3 − 3x1

1x
2
2x

2
3 − 1x3

1x
0
2x

2
3 + 1x1

1x
0
2x

4
3,

1x1
1x

4
2x

0
3 − 6x1

1x
2
2x

2
3 + 1x1

1x
0
2x

4
3,

M(0)(4) :1x4
1x

0
2x

1
3 − 2x2

1x
0
2x

3
3 + 1

5x0
1x

0
2x

5
3,

1x2
1x

2
2x

1
3 − 1

3x0
1x

2
2x

3
3 − 1

3x2
1x

0
2x

3
3 + 1

15x0
1x

0
2x

5
3,

1x0
1x

4
2x

1
3 − 2x0

1x
2
2x

3
3 + 1

5x0
1x

0
2x

5
3,

M(1)(5) :1x4
1x

1
2x

0
3 − 6x2

1x
1
2x

2
3 + 1x0

1x
1
2x

4
3,

1x2
1x

3
2x

0
3 − 1x0

1x
3
2x

2
3 − 3x2

1x
1
2x

2
3 + 1x0

1x
1
2x

4
3.

M(1)(4) :1x3
1x

1
2x

1
3 − 1x1

1x
1
2x

3
3,

1x1
1x

3
2x

1
3 − 1x1

1x
1
2x

3
3 .

On this linearly independent set of homogeneous harmonic polynomials
of degree 5 in R

3 that is partially orthogonal, we apply the Gram-Schmidt
orthonormalization process with respect to the (·, ·)Hom5-topology thereby
observing the normalization factors (as indicated in Section 3.3):

M(0)(5) :
√

1920(1x5
1x

0
2x

0
3 − 10x3

1x
0
2x

2
3 + 5x1x

0
2x

4
3),√

54(1x3
1x

2
2x

0
3 − 3x1

1x
2
2x

2
3 + 1

4x3
1x

0
2x

2
3

+1
4x3

1x
0
2x

4
3 + 3

8x1
1x

0
2x

4
3 − 1/8x5

1x
0
2x

0
3),√

63(1x1
1x

4
2x

0
3 − 3

2x1
1x

2
2x

2
3 + 1

8x1
1x

0
2x

4
3

+1
8x5

1x
0
2x

0
3 + 1

4x3
1x

0
2x

2
3 − 3/2x3

1x
2
1x

0
3),

M(0)(4) :
√

384
5 (1x4

1x
0
2x

1
3 − 2x2

1x
0
2x

3
3 + 1

5x0
1x

0
2x

5
3),√

6(1x2
1x

2
2x

1
3 − 1

3x0
1x

0
2x

3
3 − 1

12x2
1x

0
2x

3
3 + 1

24x0
1x

0
2x

5
3

−1
8x4

1x
0
2x

1
3),√

63(1x0
1x

4
2x

1
3 − 3

2x0
1x

2
2x

3
3 + 1

8x0
1x

0
2x

5
3 + 1

8x4
1x

0
2x

1
3

+1
4x2

1x
0
2x

3
3 − 3

2x1
1x

2
2x

1
3),
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M(1)(5) :
√

192(1x4
1x

1
2x

0
3 − 6x2

1x
1
2x

2
3 + 1x0

1x
1
2x

4
3),√

36(1x2
1x

3
3x

0
3 − 1x0

1x
3
2x

2
3 + 1

2x0
1x

1
2x

4
3),√

945
(
1x0

1x
5
2x

0
3 − 5x0

1x
3
2x

2
3 + 15

8 x0
2x

1
2x

4
3

+15
8 x4

1x
1
2x

0
3 + 15

4 x2
1x

1
2x

2
3 − 5x2

1x
3
2x

0
3

)
,

M(1)(4) :
√

12(1 · x3
1x

1
2x

1
3 − 1x1

1x
1
2x

3
3),√

9(1x1
1x

3
2x

1
3 − 1

2x1
1x

1
2x

3
3 − 1

2x3
1x

1
2x

1
3).
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4 Green’s Functions and Integral
Formulas on the Sphere

An essential tool of our approach to vector and tensor spherical harmon-
ics is Green’s function on the unit sphere Ω with respect to the Beltrami
operator Δ∗. It offers the perspective of solving the surface gradient equa-
tion, the surface curl gradient equation, and (iterated) Beltrami differential
equations. The Beltrami equation is needed to assure the explicit structure
of the (Helmholtz) decomposition theorems for vectorial and tensorial fields
on the unit sphere Ω, later on.

4.1 Green’s Function with Respect to the Beltrami
Operator Δ∗

Our point of departure for discussing the Green function is the definition of
its constituting properties.

Definition 4.1. G(Δ∗; ·, ·) : (ξ, η) �→ G(Δ∗; ξ, η),−1 ≤ ξ · η < 1, is called
Green’s function on Ω with respect to the operator Δ∗, if it satisfies the
following properties:

(i) (Differential equation) for every point ξ ∈ Ω, η �→ G(Δ∗; ξ, η) is twice
continuously differentiable on the set {η ∈ Ω| − 1 ≤ ξ · η < 1}, such
that

Δ∗
ηG(Δ∗; ξ, η) = − 1

4π
, −1 ≤ ξ · η < 1,

(ii) (Characteristic singularity) for every ξ ∈ Ω, the function

η �→ G(Δ∗; ξ, η)− 1
4π

ln(1− ξ · η)

is continuously differentiable on Ω (note that

ln |ξ − η| = 1
2

ln(2− 2 ξ · η) =
1
2

ln(1− ξ · η) +
1
2

ln 2,

−1 ≤ ξ · η < 1),

159



160 4 Green’s Functions and Integral Formulas

(iii) (Rotational symmetry) for all orthogonal transformations t

G(Δ∗; tξ, tη) = G(Δ∗; ξ, η),

(iv) (Normalization) for every ξ ∈ Ω,

1
4π

∫

Ω
G(Δ∗; ξ, η) dω(η) = 0.

We first prove the uniqueness of Green’s function with respect to the Bel-
trami operator Δ∗.

Lemma 4.2. G(Δ∗; ·, ·) is uniquely determined by its defining properties
(i)–(iv).

Proof. Denote by D(Δ∗; ·, ·) the difference between two Green functions
satisfying (i)–(iv). Then, we have the following properties:

(i) D(Δ∗; ξ, ·) is twice continuously differentiable for all η ∈ Ω satisfying
−1 ≤ ξ · η < 1, and we have

(Δ∗)ηD(Δ∗; ξ, η) = 0, (4.1)

(ii) D(Δ∗; ξ, ·) is continuously differentiable on Ω,

(iii) For all orthogonal transformations t,

D(Δ∗; tξ, tη) = D(Δ∗; ξ, η), (4.2)

(iv) For all ξ ∈ Ω, ∫

Ω
D(Δ∗; ξ, η) dω(η) = 0. (4.3)

The properties (i)–(iii) show that D(Δ∗; ξ, ·) is an everywhere on the unit
sphere Ω twice continuously differentiable function satisfying the differential
equation (i). Therefore, D(Δ∗; ξ, ·) must be a spherical harmonic of degree
0. D(Δ∗; ξ, η) depends only on the scalar product of ξ and η, i.e.,

D(Δ∗; ξ, η) = α0P0(ξ · η) = α0. (4.4)

From (iv) we obtain
∫

Ω
D(Δ∗; ξ, η) dω(η) = 4πα0 = 0. (4.5)

Hence, α0 = 0. But this means that the Green function G(Δ∗; ·, ·) is
uniquely determined by the defining properties (i)–(iv).
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An easy calculation shows that

(ξ, η) �→ 1
4π

ln(1− ξ · η) +
1
4π

− 1
4π

ln 2, −1 ≤ ξ · η < 1 (4.6)

satisfies all the defining properties (i)–(iv) of the Green function with respect
to Δ∗. Therefore, we have the following result.

Lemma 4.3. For ξ, η ∈ Ω with −1 ≤ ξ · η < 1

G(Δ∗; ξ, η) =
1
4π

ln(1− ξ · η) +
1
4π

− 1
4π

ln 2.

Remark 4.4. Throughout this chapter, we usually write G(Δ∗; ξ ·η) instead
of G(Δ∗; ξ, η), (ξ, η) ∈ Ω×Ω. This indicates that G(Δ∗; ξ · η) depends only
on the scalar product of ξ and η, i.e., G(Δ∗; ·) is a zonal function, hence, it
may be understood as a function defined on the (one-dimensional) interval
[−1, 1).

Observing the logarithmic singularity of the Green function, we see by
applying the Second Green Surface Theorem that the spherical harmonics
of degree n, i.e., the eigenfunctions of the Beltrami operator Δ∗, are eigen-
functions of Green’s (kernel) function G(Δ∗; ·) in the sense of the integral
equation

−k(k + 1)
∫

Ω
G(Δ∗; ξ · η)Yk(η) dω(η) = (1− δ0k)Yk(ξ). (4.7)

In terms of a (maximal) L2(Ω)-orthonormal system {Yn,m} of spherical
harmonics of degree n and order m, we thus obtain as spectral representation
the bilinear expansion (see W. Freeden (1979a))

G(Δ∗; ξ · η) =
∞∑

n=1

2n+1∑

m=1

1
−n(n + 1)

Yn,m(ξ)Yn,m(η),

−1 ≤ ξ · η < 1. Observing the addition theorem of the spherical harmonics,
we find the following series representation in terms of Legendre polynomials

G(Δ∗; ξ · η) =
∞∑

n=1

2n + 1
4π

1
−n(n + 1)

Pn(ξ · η). (4.8)
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4.2 Space Regularized Green Function with Respect
to the Beltrami Operator

In what follows we are interested in an appropriate ‘space regularization’ of
the Green function. Our considerations are based on Taylor’s formula

ln(1− t) = ln(1− t0)−
1

1− t0
(t− t0)−

1
(1− t0 + ϑ(t− t0))2

(t− t0)2

2
, (4.9)

t0 ∈ (−1, 1), ϑ ∈ (0, 1). In other words, by letting 1− t0 = ρ, ρ > 0, we find

1− t

4πρ
+

1
4π

(ln ρ− ln 2) (4.10)

as linearization for
1
4π

ln(1− t) +
1
4π

(1− ln 2) (4.11)

in the (right) neighborhood of t0 = 1− ρ, ρ > 0 (see Fig. 4.1).

 

 

-1 -0.5 0 1ρ = 0.5
-0.4

-0.3

-0.2

-0.1

0

0.1

Gρ

G

Fig. 4.1: The regularization of G by Gρ (ρ = 0.5)

Keeping the linearization of (4.11) in mind, we next discuss the (space)
ρ-regularized Green function with respect to the Beltrami operator Δ∗:

Gρ(Δ∗; ξ · η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
4π

ln(1− ξ · η) +
1
4π

(1− ln 2), ξ · η < 1− ρ

1− ξ · η
4πρ

+
1
4π

(ln ρ− ln 2), ξ · η ≥ 1− ρ.

(4.12)
Obviously, the kernel function (ξ, η) �→ Gρ(Δ∗; ξ · η) only depends on the
inner product of ξ and η, hence Gρ(Δ∗; ξ · η) is a zonal function. According
to its construction, Gρ(Δ∗; ·η) is a continuously differentiable function on Ω
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for every (fixed) η ∈ Ω, Gρ(Δ∗; ξ·) is a continuously differentiable function
on Ω for every (fixed) ξ ∈ Ω, and we have

t �→ Gρ(Δ∗; t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
4π

ln(1− t) +
1
4π

(1− ln 2), t < 1− ρ

1− t

4πρ
+

1
4π

(ln ρ− ln 2), t ≥ 1− ρ

(4.13)

is a (one-dimensional) continuously differentiable function on the interval
[−1, 1].

The surface gradient of the ρ-regularized Green kernel is given by

∇∗
ξG

ρ(Δ∗; ξ ·η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
4π

1
1− ξ · η (η − (ξ · η)ξ), ξ · η < 1− ρ

− 1
4πρ

(η − (ξ · η)ξ), ξ · η ≥ 1− ρ,

(4.14)

while the surface curl gradient of the ρ-regularized Green kernel reads as
follows:

L∗
ξG

ρ(Δ∗; ξ · η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
4π

1
1− ξ · η (ξ ∧ η), ξ · η < 1− ρ

− 1
4πρ

(ξ ∧ η), ξ · η ≥ 1− ρ.

(4.15)

For graphical illustration see Figs. 4.2 and 4.3. In addition, we mention the
Beltrami derivative

Δ∗
ξG

ρ(Δ∗; ξ · η) =
{
− 1

4π , ξ · η < 1− ρ
1

2πρ(ξ · η), ξ · η ≥ 1− ρ.
(4.16)

    
−0.4

−0.3

−0.2

−0.1

0

0.1

−π −π/2 0 π/2 π
 

 

ρ = 2
ρ = 0.3
ρ = 0.02

Fig. 4.2: ρ-regularized Green function ϑ �→ Gρ(Δ∗; cos ϑ) for various values
ρ.
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For F ∈ C(Ω), we consider the potential P ρ(F ) given by

P ρ(F )(ξ) =
∫

Ω
Gρ(Δ∗; ξ · η)F (η) dω(η) (4.17)

    
0

0.2

0.4

0.6

0.8

−π −π/2 0 π/2 π
 

 

ρ = 2
ρ = 0.3
ρ = 0.02

Fig. 4.3: Absolute value of the surface gradient or surface curl gradient of
the ρ-regularized Green function ϑ �→ Gρ(Δ∗; cos ϑ) for various values ρ.

as regularized counterpart to the potential P (F ) given by

P (F )(ξ) =
∫

Ω
G(Δ∗; ξ · η)F (η) dω(η), ξ ∈ Ω. (4.18)

We want to prove the following theorem.

Theorem 4.5. For (sufficiently small) values ρ > 0 and F ∈ C(Ω), the
potential P ρ(F ) is of class C(1)(Ω), and we have

lim
ρ→0

sup
ξ∈Ω

∣∣∣∣
∫

Ω
G(Δ∗; ξ · η)F (η) dω(η)−

∫

Ω
Gρ(Δ∗; ξ · η)F (η) dω(η)

∣∣∣∣ = 0

(4.19)
and

lim
ρ→0

sup
ξ∈Ω

∣∣∣∣
∫

Ω

∇∗
ξG(Δ∗; ξ · η)F (η) dω(η)−∇∗

ξ

∫

Ω

Gρ(Δ∗; ξ · η)F (η) dω(η)
∣∣∣∣ = 0.

(4.20)
Furthermore,

sup
ξ∈Ω

∣∣∣∣∣∣

∫

Ω

∇∗
ξG(Δ∗; ξ · η)F (η) dω(η)−∇∗

ξ

∫

Ω
G(Δ∗; ξ · η)F (η) dω(η)

∣∣∣∣∣∣
= 0.

(4.21)
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Proof. First we are concerned with the existence of the occuring integrals.
Since F is of class C(Ω), we easily see that

∣∣∣∣
∫

Ω
ln(1− ξ · η)F (η) dω(η)

∣∣∣∣ ≤ 2π‖F‖C(Ω)

1∫

−1

ln(1− t) dt < ∞ (4.22)

and
∣∣∣∣
∫

Ω
∇∗

ξ ln(1− ξ · η)F (η) dω(η)
∣∣∣∣ ≤ ‖F‖C(Ω)

∫

Ω

√
1− (ξ · η)2

1− ξ · η dω(η) < ∞.

(4.23)
For F ∈ C(Ω), P ρ(F ) is of class C(1)(Ω). Thus it is clear that

∇∗
ξP

ρ(F )(ξ) = ∇∗
ξ

∫

Ω
Gρ(Δ∗; ξ · η)F (η) dω(η) (4.24)

=
∫

Ω
∇∗

ξG
ρ(Δ∗; ξ · η)F (η) dω(η)

with Gρ(Δ∗; ξ · η) and G(Δ∗; ξ · η) differing only on the cap with center
ξ, more precisely, on the set {η ∈ Ω|1 − ξ · η ≤ ρ}. Thus, we obtain (for
sufficiently small values ρ > 0)

|P ρ(F )(ξ)− P (F )(ξ)| (4.25)

≤ 1
4π
‖F‖C(Ω)

∫

ξ·η≥1−ρ

(
|ln(1− ξ · η)|+ ln ρ + 1 +

∣∣∣∣
1− ξ · η

ρ

∣∣∣∣

)
dω(η)

≤ 1
2
‖F‖C(Ω)

∫ 1

1−ρ

(|ln(1− t)|+ 2 + | ln ρ|) dt.

(4.26)

Consequently,

sup
ξ∈Ω

|P ρ(F )(ξ)− P (F )(ξ)| = O(ρ ln ρ). (4.27)

In other words, for all ξ ∈ Ω and F ∈ C(Ω),

|P ρ(F )(ξ)− P (F )(ξ)| = O(ρ ln ρ), ρ → 0. (4.28)

This proves the first assertion (4.19) of our theorem. In addition, we are
able to verify that

∣∣∇∗
ξP

ρ(F )(ξ)−∇∗
ξP (F )(ξ)

∣∣ (4.29)

≤ 2‖F‖C(Ω)

∫

ξ·η≥1−ρ
η∈Ω

∣∣∣∣
η − (ξ · η)ξ
1− ξ · η

∣∣∣∣ dω(η),

= 2‖F‖C(Ω)

∫

ξ·η≥1−ρ
η∈Ω

√
1− (ξ · η)2

1− ξ · η dω(η),
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i.e., ∣∣∇∗
ξP

ρ(F )(ξ)−∇∗
ξP (F )(ξ)

∣∣ = O(ρ1/2), ρ → 0. (4.30)

Altogether, this yields the desired results stated in Theorem 4.5.

Analogous to Theorem 4.5, we are able to formulate the following state-
ment.

Theorem 4.6. For (sufficiently small) values ρ > 0 and F ∈ C(Ω), the
potential P ρ(F ) is of class C(1)(Ω), and we have

lim
ρ→0

sup
ξ∈Ω

∣∣∣∣
∫

Ω
G(Δ∗; ξ · η)F (η) dω(η)−

∫

Ω
Gρ(Δ∗; ξ · η)F (η) dω(η)

∣∣∣∣ = 0

(4.31)
and

lim
ρ→0

sup
ξ∈Ω

∣∣∣∣
∫

Ω

L∗
ξG(Δ∗; ξ · η)F (η) dω(η)− L∗

ξ

∫

Ω

Gρ(Δ∗; ξ · η)F (η) dω(η)
∣∣∣∣ = 0.

(4.32)
Furthermore,

sup
ξ∈Ω

∣∣∣∣
∫

Ω
L∗

ξG(Δ∗; ξ · η)F (η) dω(η)− L∗
ξ

∫

Ω
G(Δ∗; ξ · η)F (η) dω(η)

∣∣∣∣ = 0.

(4.33)

Next, we determine the Legendre (Fourier) coefficients of the regularized
Green function with respect to the Beltrami operator Δ∗ (see S. Gramsch
(2006)). The bilinear expansion of Gρ(Δ∗; ξ · η) reads as follows:

Gρ(Δ∗; ξ · η) =
∞∑

n=0

2n + 1
4π

(Gρ)∧(n)Pn(ξ · η), ξ, η ∈ Ω, (4.34)

where

(Gρ)∧(n) = 2π

∫ 1

−1
Gρ(Δ∗; t)Pn(t) dt. (4.35)

In accordance with the definition of the regularized Green function with
respect to Δ∗ we split the integral into two parts:

(Gρ)∧(n) = 2π

∫ 1−ρ

−1

(
1
4π

ln(1− t) +
1
4π

− 1
4π

ln 2
)

Pn(t) dt

+ 2π

∫ 1

1−ρ

(
1− t

4πρ
+

1
4π

ln ρ− 1
4π

ln 2
)

Pn(t) dt
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For n = 0, 1 we immediately find

(Gρ)∧(0) =
1
4
ρ (4.36)

and

(Gρ)∧(1) = −1
2

+
1
4
ρ− 1

24
ρ2. (4.37)

For n ≥ 2 we make some auxiliary considerations. From (3.188), we know
for all s ∈ (−1, 1) that

∫ s

−1
Pn(t) dt =

Pn+1(s)− Pn−1(s)
2n + 1

, n ≥ 1. (4.38)

For the first derivative of the Legendre polynomials, we get the identity
∫ s

−1
P ′

n(t) dt = Pn(s)− (−1)n, n ≥ 1, (4.39)

since we know that Pn(−1) = (−1)n. Furthermore, it follows that for s ∈
(−1, 1)

∫ s

−1
tP ′

n(t) dt = sPn(s) + (−1)n +
Pn−1(s)− Pn+1(s)

2n + 1
, n ≥ 1. (4.40)

Moreover, we have

∫ s

−1
(t + 1)P ′

n(t) dt = (1 + s)Pn(s) +
Pn−1(s)− Pn+1(s)

2n + 1
, n ≥ 1. (4.41)

Observing these identities, the first integral can be calculated in connection
with (3.192) for values s ∈ (−1, 1) as follows:

∫ s

−1
ln(1− t)Pn(t) dt (4.42)

=
∫ s

−1
ln(1− t)

1
2n + 1

(
d

dt

)
(Pn+1(t)− Pn−1(t)) dt

=
1

2n + 1
[ln(1− t)(Pn+1(t)− Pn−1(t))]

∣∣∣∣
s

−1

+
∫ s

−1

1
1− t

1
2n + 1

(Pn+1(t)− Pn−1(t)) dt

=
1

2n + 1
ln(1− s) (Pn+1(s)− Pn−1(s))−

1
n(n + 1)

∫ s

−1
(t + 1)P ′

n(t) dt.
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Inserting (4.41), we finally obtain for s ∈ (−1, 1) and n ≥ 1

∫ s

−1
ln(1− t)Pn(t) dt (4.43)

=
(

ln(1− s) +
1

n(n + 1)

)
Pn+1(s)− Pn−1(s)

2n + 1
− (1 + s)Pn(s)

n(n + 1)
.

For the second integral with s ∈ (−1, 1), we are led to

∫ 1

s

(
ln ρ− 1 +

1− t

ρ

)
Pn(t) dt (4.44)

= (ln ρ− 1)
∫ 1

s
Pn(t) dt +

1
ρ

∫ 1

s
(1− t)Pn(t) dt.

Moreover,

∫ 1

s
tP ′

n(t) dt = 1− sPn(s)− Pn−1(s)− Pn+1(s)
2n + 1

, n ≥ 1, (4.45)

and

∫ 1

s
tPn(t) dt (4.46)

=
1

2n + 1

∫ 1

s
t

(
d

dt

)
(Pn+1(t)− Pn−1(t)) dt

= s
Pn−1(s)− Pn+1(s)

2n + 1
− Pn(s)− Pn+2(s)

(2n + 1)(2n + 3)
+

Pn−2(s)− Pn(s)
(2n + 1)(2n− 1)

,

which shows us that

∫ 1

s
(1− t)Pn(t) dt (4.47)

= (1− s)
Pn−1(s)− Pn+1(s)

2n + 1
+

Pn(s)− Pn+2(s)
(2n + 1)(2n + 3)

− Pn−2(s)− Pn(s)
(2n + 1)(2n− 1)

.

Summarizing our results, we obtain the Legendre coefficients of the regu-
larized Green function with respect to Δ∗ as follows:

Lemma 4.7. For ρ ∈ (0, 2), we have

Gρ(Δ∗; ξ · η) =
∞∑

k=0

2n + 1
4π

(Gρ)∧(n)Pn(ξ · η), −1 ≤ ξ · η ≤ 1,



4.3 Frequency Regularized Green Function 169

with

(Gρ)∧(0) =
1
4
ρ,

(Gρ)∧(1) = −1
2

+
1
4
ρ− 1

24
ρ2,

(Gρ)∧(n) =
Pn+1(1− ρ)− Pn−1(1− ρ)

2n(n + 1)(2n + 1)
− (2− ρ)

2n(n + 1)
Pn(1− ρ)

+
1
2ρ

Pn(1− ρ)− Pn+2(1− ρ)
(2n + 1)(2n + 3)

− 1
2ρ

Pn−2(1− ρ)− Pn(1− ρ)
(2n + 1)(2n− 1)

,

n = 2, 3, . . . .

It should be noted that the Legendre coefficients of the regularized Green
function with respect to Δ∗ tend to the Legendre coefficients of the Green
function with respect to Δ∗ as ρ → 0. In detail,

lim
ρ→0

(Gρ)∧(0) = 0, (4.48)

and

lim
ρ→0

(Gρ)∧(1) = −1
2
. (4.49)

Observing the identity

P ′
n(1) =

n(n + 1)
2

, n ∈ N0, (4.50)

we find, for n ≥ 2

lim
ρ→0

Pn+1(1− ρ)− Pn−1(1− ρ)
2n(n + 1)(2n + 1)

= 0, (4.51)

lim
ρ→0

2− ρ

2n(n + 1)
Pn(1− ρ) =

1
n(n + 1)

, (4.52)

lim
ρ→0

1
2ρ

Pn(1− ρ)− Pn+2(1− ρ)
(2n + 1)(2n + 3)

= 0, (4.53)

and

lim
ρ→0

1
2ρ

Pn−2(1− ρ)− Pn(1− ρ)
(2n + 1)(2n− 1)

= 0, (4.54)

which gives us the limit relation

lim
ρ→0

(Gρ)∧(n) = − 1
n(n + 1)

(4.55)

for all integers n ≥ 1.
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4.3 Frequency Regularized Green Function with
Respect to the Beltrami Operator

From (3.192), we obtain that for t ∈ [−1, 1]

(t2 − 1)
2k + 1

k(k + 1)
P ′

k(t) = Pk+1(t)− Pk−1(t). (4.56)

Hence, for t �= 1, a truncated series of the Green function, i.e., a frequency
regularization of G(Δ∗; t), can be expressed as follows:

N∑

k=1

2k + 1
4π

1
−k(k + 1)

P ′
k(t)

=
1
4π

1
1− t2

N∑

k=1

(Pk+1(t)− Pk−1(t))

=
1
4π

1
1− t2

(
N−2∑

k=1

Pk+1(t) + PN (t) + PN+1(t)

)
(4.57)

− 1
4π

1
1− t2

(
P0(t) + P1(t) +

N∑

k=3

Pk−1(t)

)

= − 1
4π

1
1− t2

(P0(t) + P1(t)− PN (t)− PN+1(t))

− 1
4π

1
1− t2

(
N−1∑

k=2

Pk(t)−
N−1∑

k=2

Pk(t)

)
.

Since P0(t) = 1 and P1(t) = t we get

N∑

k=1

2k + 1
4π

1
−k(k + 1)

P ′
k(t) (4.58)

= − 1
4π

1
(1− t)(1 + t)

(1 + t− PN (t)− PN+1(t))

= − 1
4π

1
1− t

+
1
4π

PN (t) + PN+1(t)
1− t2

.

Integrating with respect to t, we find, for −1 < t0 ≤ t < 1, t0 fixed,

N∑

k=1

2k + 1
4π

1
−k(k + 1)

Pk(t)−
N∑

k=1

2k + 1
4π

1
−k(k + 1)

Pk(t0) (4.59)

=
1
4π

ln(1− t)− 1
4π

ln(1− t0) +
1
4π

∫ t

t0

PN (s) + PN+1(s)
1− s2

ds + CN (t0).
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We choose

CN (t0) =
N∑

k=1

2k + 1
4π

1
−k(k + 1)

Pk(t0)−
1
4π

ln(1− t0) (4.60)

such that

lim
N→∞

CN (0) = lim
N→∞

N∑

k=1

2k + 1
4π

1
−k(k + 1)

Pk(0)

= lim
N→∞

�N
2
�∑

l=1

4l + 1
4π

1
−2l(2l + 1)

(−1)l

4l

(
2l

l

)

=
1
4π

(1− ln 2)

(note that P2n+1(0) = 0 and P2n(0) = (−1)n

4n

(
2n
n

)
).

Summarizing our results, we obtain the following lemma.

Lemma 4.8. For all ξ, η ∈ Ω with −1 ≤ ξ · η < 1, the N -th frequency
regularized Green function with respect to Δ∗

G(N)(Δ∗; ξ · η) = −
N∑

k=1

2k + 1
4π

1
k(k + 1)

Pk(ξ · η) (4.61)

satisfies the equation

G(Δ∗; ξ · η) − G(N)(Δ∗; ξ · η)

= − 1
4π

∫ ξ·η

0

PN (s) + PN+1(s)
1− s2

ds

+
1
4π

(1− ln 2) +
�N

2
�∑

l=1

4l + 1
4π

1
2l(2l + 1)

(−1)l

4l

(
2l

l

)
.

Figures 4.4 and 4.5 give graphical impressions of the frequency regularized
Green function.
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Fig. 4.4: Frequency regularized Green function ϑ �→ G(N)(Δ∗; cos ϑ) for
various values N .

    
0

0.5

1

1.5

−π −π/2 0 π/2 π
 

 

N = 5
N = 10
N = 20

Fig. 4.5: Absolute value of the surface gradient or surface curl gradient of
the frequency regularized Green function ϑ �→ G(N)(Δ∗; cos ϑ) for various
values N .

From Lemma 3.42, we know that for all s ∈ [0, t), t < 1, |PN (s)| =
O(N−1/2), hence, it follows that

lim
N→∞

∫ ξ·η

0

PN (s) + PN+1(s)
1− s2

ds = 0. (4.62)

In particular, we are led to the following identities

∇∗
ξG

(N)(Δ∗; ξ · η) = − 1
4π

1
1− ξ · η (η − (ξ · η)ξ) (4.63)

+
1
4π

PN (ξ · η) + PN+1(ξ · η)
1− (ξ · η)2

(η − (ξ · η)ξ)
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and

L∗
ξG

(N)(Δ∗; ξ · η) = − 1
4π

1
1− ξ · η (ξ ∧ η) (4.64)

+
1
4π

PN (ξ · η) + PN+1(ξ · η)
1− (ξ · η)2

(ξ ∧ η).

4.4 Green’s Functions with Respect to the Beltrami
Operators ∂n = Δ∗ + n(n + 1)

A fundamental question when approximating a function on the sphere Ω by
its truncated Fourier expansion (orthogonal expansion) in terms of spherical
harmonics is the existence of a manageable error term. An adequate answer
is the construction of integral formulas that will be presented later on. It
will be shown that the error term between a function and its truncated
Fourier series expansion is explicitly available in integral form provided that
sufficient smoothness is imposed on the function under consideration. An
essential tool for the integral formulas is the theory of Green’s function on
the unit sphere Ω with respect to the ‘shifted’ operators

∂n = Δ∗ − (Δ∗)∧(n), (Δ∗)∧(n) = −n(n + 1), n = 0, 1, 2, ... (4.65)

and their iterations (which later on turn out to play a fundamental role in
the (Helmholtz) decomposition of both spherical vector and tensor fields).

We start our considerations with the introduction of Green functions with
respect to the operators ∂n, n = 0, 1, . . . (cf. W. Freeden (1979a)).

Definition 4.9. G(∂n; ·, ·) : (ξ, η) �→ G(∂n; ξ, η), −1 ≤ ξ · η < 1, is called
Green’s function with respect to the operator ∂n = Δ∗ − (Δ∗)∧(n) if it
satisfies the following properties:

(i) (Differential equation) for every point ξ ∈ Ω, η �→ G(∂n; ξ, η) is twice
continuously differentiable on {η ∈ Ω | −1 ≤ ξ · η < 1}, and we have

(∂n)ηG(∂n; ξ, η) = −2n + 1
4π

Pn(ξ · η), −1 ≤ ξ · η < 1,

where (∂n)η means that the operator ∂n is applied to the variable η.

(ii) (Characteristic singularity) for every ξ ∈ Ω, the function

η �→ G(∂n; ξ, η)− 1
4π

Pn(ξ · η) ln(1− ξ · η)

is continuously differentiable on Ω.
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(iii) (Rotational symmetry) for all orthogonal transformations t,

G(∂n; tξ, tη) = G(∂n; ξ, η).

(iv) (Normalization) for every ξ ∈ Ω,
∫

Ω
G(∂n; ξ, η)Pn(ξ · η) dω(η) = 0.

We prove the uniqueness of Green’s function with respect to the operator
∂n. The concept closely parallels the proof of Lemma 4.2.

Lemma 4.10. G(∂n; ·, ·) is uniquely determined by its defining properties
(i)–(iv).

Proof. Denote by D(∂n; ·, ·) the difference between two Green functions sat-
isfying (i)–(iv). Then, we have the following properties:

(i) D(∂n; ξ, ·) is twice continuously differentiable for all points η ∈ Ω with
−1 ≤ ξ · η < 1, and we have

(∂n)ηD(∂n; ξ, η) = (Δ∗
η + n(n + 1))D(∂n; ξ, η) = 0, (4.66)

(ii) D(∂n; ξ, ·) is continuously differentiable for all η ∈ Ω,

(iii) For all orthogonal transformations t,

D(∂n; tξ, tη) = D(∂n; ξ, η), (4.67)

(iv) For all ξ ∈ Ω ∫

Ω
D(∂n; ξ, η)Pn(ξ · η) dω(η) = 0. (4.68)

The properties (i)–(iii) show that D(∂n; ξ, ·) is an everywhere on the unit
sphere Ω infinitely often differentiable function satisfying the differential
equation (i). Therefore D(∂n; ξ, ·) must be a spherical harmonic of order n.
D(∂n; ξ, η) depends only on the scalar product of ξ and η, i.e.,

D(∂n; ξ, η) = αnPn(ξ · η). (4.69)

From (iv) we obtain
∫

Ω
D(∂n; ξ, η)Pn(ξ · η) dω(η) = αn

∫

Ω
Pn(ξ · η)Pn(ξ · η) dω(η) = 0. (4.70)

Hence, αn = 0. But this means that the Green function G(∂n; ·, ·) is uniquely
determined by the defining properties (i)–(iv).
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Remark 4.11. Because of (iii), G(∂n; ·) is a zonal function.

Graphical impressions of the Green functions G(∂n; ·, ·) can be found in
Fig. 4.6.
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Fig. 4.6: The Green functions ϑ �→ G(∂n; cos ϑ) for various values n.

Observing the characteristic singularity of the Green function, we see by
applying the Second Green Surface Theorem that the spherical harmonics
of degree n, i.e., the eigenfunctions Yn of the Beltrami operator Δ∗ with re-
spect to the eigenvalues (Δ∗)∧(n), n = 0, 1, ..., are eigenfunctions of Green’s
(kernel) function G(∂n; ·, ·) in the sense of the integral equation

(
n(n + 1)− k(k + 1)

) ∫

Ω
G(∂n; ξ · η)Yk(η) dω(η) = (1− δnk)Yk(ξ). (4.71)

Furthermore, if ξ, η ∈ Ω with −1 ≤ ξ · η < 1, G(∂n; ξ, η) allows the bilinear
expansion

G(∂n; ξ · η) =
∑

(∂n)∧(k) �=0

1
(∂n)∧(k)

2k+1∑

j=1

Yk,j(ξ)Yk,j(η), (4.72)

where (∂n)∧(k) is given by

(∂n)∧(k) = (Δ∗)∧(k)− (Δ∗)∧(n) = −k(k + 1) + n(n + 1). (4.73)

The symbol
∑

(∂n)∧(k) �=0 means that the sum is to be extended over all non-
negative integers k for which the denominator (∂n)∧(k) is different from zero,
i.e., (Δ∗)∧(k) �= (Δ∗)∧(n), such that k �= n. Using the addition theorem,
we are able to rewrite the bilinear expansion of G(∂n; ξ, η) in the form

G(∂n; ξ · η) =
∑

(∂n)∧(k) �=0

2k + 1
4π

(
(∂n)∧(k)

)−1
Pk(ξ · η). (4.74)
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This leads us to the formulation of the following result.

Lemma 4.12. For n = 1, 2, . . . and ξ, η ∈ Ω with −1 ≤ ξ · η < 1

G(∂n; ξ · η) =
1
4π

Pn(ξ · η) ln (1− ξ · η)

− 1
2π

n−1∑

k=0

2k + 1
(∂n)∧(k)

Pk(ξ · η)

− 1
4π

(2n + 1
2

∫ 1

−1
P 2

n(t) ln (1− t) dt
)
Pn(ξ · η).

Proof. We have to show that G(∂n; ·) satisfies the defining properties (i)–
(iv). An easy calculation yields

(
(1− t2)

(
d

dt

)2

− 2t
d

dt
+ n(n + 1)

)
Pn(t) ln (1− t) (4.75)

= −2(1 + t)P ′
n(t)− Pn(t).

In connection with Lemma 3.37, we therefore obtain
(

(1− t2)
(

d

dt

)2

− 2t
d

dt
+ n(n + 1)

)
(−Pn(t) ln(1− t)) (4.76)

+
(

(1−t2)(
d

dt
)2−2t

d

dt
+n(n + 1)

)(
−2

n−1∑

k=0

2k + 1
n(n + 1)−k(k + 1)

Pk(t)

)

= 2(1 + t)P ′
n(t) + Pn(t)− 2

n−1∑

k=0

(2k + 1)Pk(t)

= (2n + 1)Pn(t).

This shows that condition (i) is valid. Because of Pn(1) = 1, n = 1, 2, . . . ,
condition (ii) is certainly satisfied. Finally, it is not difficult to see that

∫

Ω
G(∂n; ξ · η)Pn(ξ · η) dω(η) = 0. (4.77)

4.5 Integral Formulas Involving Green’s Function with
Respect to the Beltrami Operator Δ∗

Next, we come to integral formulas on the unit sphere under explicit formu-
lation of the remainder term between function value and integral (involving
Green’s function with respect to the Beltrami operator Δ∗).
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Let ξ be a fixed point of the unit sphere Ω. Assume that F is continuously
differentiable on Ω. Then, for each sufficiently small ρ > 0, the First Green
Surface Theorem gives
∫

ξ·η≤1−ρ,|η|=1

{
F (η)Δ∗

ηG(Δ∗; ξ · η) +∇∗
ηF (η) · ∇∗

ηG(Δ∗; ξ · η)
}

dω(η)

=
∫

ξ·η=1−ρ,|η|=1
F (η)

∂

∂νη
G(Δ∗; ξ · η) dσ(η), (4.78)

where ν is the unit normal to the circle consisting of all points η ∈ Ω with
ξ · η = 1 − ρ, tangential to Ω, and directed exterior to the set of all points
η ∈ Ω with ξ · η ≤ 1− ρ. Explicitly, written out, we have

νη = −(1− (ξ · η)2)−
1
2 η ∧ (η ∧ ξ). (4.79)

In the identity (4.78), we first observe the differential equation of Green’s
function
∫

ξ·η≤1−ρ,|η|=1
F (η)Δ∗

ηG(Δ∗; ξ · η) dω(η) = − 1
4π

∫

ξ·η≤1−ρ,|η|=1
F (η) dω(η).

(4.80)
By virtue of the logarithmic singularity of the Green function G(Δ∗; ·), we
get in analogy to well known results of potential theory (cf. O.D. Kellogg
(1929))
∫

ξ·η=1−ρ,|η|=1
F (η)

∂

∂νη
G(Δ∗; ξ · η)dσ(η) (4.81)

=
∫

ξ·η=1−ρ,|η|=1
F (η)

ξ − (1− ρ)η√
1− (1− ρ)2

·
(
− 1

4πρ
(ξ − (1− ρ)η)

)
dσ(η)

= − 1
4π

∫

ξ·η=1−ρ,|η|=1
F (η)

√
1− (1− ρ)2

ρ
dσ(η).

From the Mean Value Theorem, we are able to deduce that

− 1
4π

√
1− (1− ρ)2

ρ

∫

ξ·η=1−ρ,|η|=1
F (η) dσ(η) (4.82)

= − 1
4π

√
1− (1− ρ)2

ρ
2π
√

1− (1− ρ)2F (ηρ)

= −1
2
(2− ρ)F (ηρ)

for some ηρ lying on the circle {η ∈ Ω | 1− ξ · η = ρ}. The continuity of F
yields F (ηρ) → F (ξ) as ηρ → ξ for ρ → 0 such that

lim
ρ→0

∫

1−ξ·η≥ρ,|η|=1
F (η)

∂

∂νη
G(Δ∗; ξ · η)dσ(η) = −F (ξ). (4.83)
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Summarizing our results, we therefore obtain the following result.

Theorem 4.13. (Third Green Surface Theorem for ∇∗) Let ξ be a fixed
point of the unit sphere Ω. Suppose that F is a continuously differentiable
function on Ω. Then

F (ξ) =
1
4π

∫

Ω
F (η) dω(η)−

∫

Ω

(
∇∗

ηG(Δ∗; ξ · η)
)
·
(
∇∗

ηF (η)
)
dω(η).

In the same way, we are able to formulate the following corollary.

Corollary 4.14. (Third Green Surface Theorem for L∗) Under the assump-
tions of Theorem 4.13

F (ξ) =
1
4π

∫

Ω
F (η) dω(η)−

∫

Ω
(L∗

ηG(Δ∗; ξ · η)) · (L∗
ηF (η)) dω(η).

Proof. Applying Green’s surface identity for the operator L∗, we get for
every (sufficiently small) ρ > 0 and F ∈ C(1)(Ω),

∫

ξ·η≤1−ρ,|η|=1
L∗

ηF (η) · L∗
ηG(Δ∗; ξ · η) dω(η) (4.84)

+
∫

ξ·η≤1−ρ,|η|=1
F (η)Δ∗

ηG(Δ∗; ξ · η) dω(η)

=
∫

ξ·η=1−ρ,|η|=1
F (η)τη · L∗

ηG(Δ∗; ξ · η) dσ(η),

where τ is defined as the (unit) surface vector on Ω tangential to the circle
{η ∈ Ω | 1− ξ · η = ρ}. Explicitly, for η ∈ Ω with 1− ξ · η = ρ, we have

τη = (1− (ξ · η)2)−1/2ξ ∧ η. (4.85)

Moreover, we know that

L∗
ηG(Δ∗; ξ · η) = − 1

4π

η ∧ ξ

1− ξ · η . (4.86)

In other words, the same reasoning as in Theorem 4.13 guarantees Corollary
4.14.
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From Green’s second surface identity, we get for each sufficiently small
ρ > 0

∫

ξ·η≤1−ρ,|η|=1

{
G(Δ∗; ξ · η)Δ∗

ηF (η)− F (η)Δ∗
ηG(Δ∗; ξ · η)

}
dω(η)

=
∫

ξ·η=1−ρ,|η|=1

{
G(Δ∗; ξ · η)

∂

∂νη
F (η)− F (η)

∂

∂νη
G(Δ∗; ξ · η)

}
dσ(η),

(4.87)

provided that F is twice continuously differentiable on Ω. Observing the
defining properties of the Green function with respect to Δ∗, we can use the
same arguments as known from potential theory (cf. O.D. Kellogg (1929)).
In fact, the continuous differentiability of F on Ω leads us to

lim
ρ→0

∫

ξ·η=1−ρ,|η|=1
G(Δ∗; ξ · η)

∂

∂νη
F (η)dσ(η) = 0. (4.88)

Together with (4.83), this shows us the following result (see W. Freeden
(1979a)).

Theorem 4.15. (Third Green Surface Theorem for ∂0 = Δ∗) Let ξ be a
fixed point of the unit sphere Ω. Suppose that F is a twice continuously
differentiable function on Ω. Then

F (ξ) =
1
4π

∫

Ω
F (η) dω(η) +

∫

Ω
G(Δ∗; ξ · η)(Δ∗

ηF (η)) dω(η).

In other words, the Green theorems as stated above compare the value of
a function at a point ξ ∈ Ω with the integral mean of F relative to the unit
sphere Ω under explicit representation of the error term in integral form.
Essential tool is the Green function with respect to the Beltrami operator
Δ∗.

The Third Green Surface Theorem for ∂n = Δ∗ + n(n + 1), can be for-
mulated analogously to the case of the operator ∂0 = Δ∗.

Theorem 4.16. (Third Green Surface Theorem for ∂n = Δ∗ + n(n + 1)).
Let ξ be a fixed point of the unit sphere Ω. Suppose that F is of class C(2)(Ω).
Then

F (ξ) =
2n + 1

4π

∫

Ω
F (η)Pn(ξ · η) dω(η)

+
∫

Ω
G(Δ∗ + n(n + 1); ξ · η)(Δ∗

η + n(n + 1))F (η) dω(η).
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In order to complete our consideration, we finally mention the Green
function with respect to Δ∗ + λ for λ �= n(n + 1), n ∈ N0:

Definition 4.17. For λ �= −(Δ∗)∧(n), (Δ∗)∧(n) = −n(n + 1), n ∈ N0,
Green’s function

G(Δ∗ + λ; ·, ·) : (ξ, η) �→ G(Δ∗ + λ; ξ, η),

is defined by the following properties:

(i) (Differential equation) for every point ξ ∈ Ω, n �→ G(Δ∗ + λ; ξ, η) is
twice continuously differentiable on the set

{η ∈ Ω| − 1 ≤ ξ · η < 1},

and we have

(Δ∗
η + λ)G(Δ∗ + λ; ξ, η) = 0, −1 ≤ ξ · η < 1.

(ii) (Characteristic singularity) for every ξ ∈ Ω,

G(Δ∗ + λ; ξ, η) = O(ln(1− ξ · η)).

(iii) (Rotational symmetry) for all orthogonal transformations t

G(Δ∗ + λ; tξ, tη) = G(Δ∗ + λ; ξ, η).

Without proof, we list the following properties: G(Δ∗ +λ; ·, ·) is uniquely
determined by its defining properties. Its bilinear expansion reads as follows

G(Δ∗ + λ; ξ, η) = G(Δ∗ + λ; ξ · η)

=
1
4π

∞∑

n=0

2n + 1
λ− n(n + 1)

Pn(ξ · η), −1 ≤ ξ · η < 1.

Corollary 4.18. For F ∈ C(2)(Ω) and all λ ∈ R with λ �= n(n+1), n ∈ N0,
the integral equation

F (ξ) =
∫

Ω
G(Δ∗ + λ; ξ · η)(Δ∗

η + λ)F (η) dω(η) (4.89)

is valid.

In other words, Corollary (4.18) does not establish a canonical relationship
between functional value and integral expression. Nevertheless, Green’s
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theorem shows us (cf. W. Freeden (1981a)) that for all λ �= n(n + 1), n =
0, 1, . . .,

F (ξ) =
1
4π

∫

Ω
F (η) dω(η) (4.90)

+
∫

Ω
G0 (Δ∗ + λ; ξ · η)

(
Δ∗

η + λ
)
F (η) dω(η),

where we have used the abbreviation

G0(Δ∗+λ; ξ ·η) =
∞∑

n=1

2n + 1
4π

1
λ− n(n + 1)

Pn(ξ ·η), −1 ≤ ξ ·η < 1. (4.91)

Consequently, for all values λ ∈ R (even for the case G(∂n; ·) with n > 0),
we are able to compare a functional value at ξ ∈ Ω and the mean integral
value of a twice continuously differentiable function F on Ω under explicit
knowledge of the remainder term in integral form.

4.6 Differential Equations Involving Green’s Functions
with Respect to the Beltrami Operator Δ∗

Combining Theorem 4.13 and observing the surface gradient of the Green
function G(Δ∗; ·, ·), we obtain the following theorem.

Theorem 4.19. (Differential Equation for ∇∗ on Ω) Let v : Ω → R
3 be a

continuously differentiable vector field on Ω with ξ · v(ξ) = 0, L∗
ξ · v(ξ) = 0,

ξ ∈ Ω. Then

F (ξ) =
1
4π

∫

Ω

1
1− ξ · η (ξ − (ξ · η)η) · v(η) dω(η) (4.92)

is the uniquely determined solution of the differential equation

∇∗
ξF (ξ) = v(ξ), ξ ∈ Ω, (4.93)

satisfying
1
4π

∫

Ω
F (η) dω(η) = 0. (4.94)

Analogously, we get the following result on the differential equation of
the surface curl gradient.
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Theorem 4.20. (Differential Equation for L∗ on Ω) Let v : Ω → R
3 be a

continuously differentiable vector field on Ω with ξ · v(ξ) = 0 ∇∗
ξ · v(ξ) = 0,

ξ ∈ Ω. Then

F (ξ) =
1
4π

∫

Ω

1
1− ξ · η (η ∧ ξ) · v(η) dω(η) (4.95)

is the uniquely determined solution of the differential equation

L∗
ξF (ξ) = v(ξ), ξ ∈ Ω, (4.96)

satisfying
1
4π

∫

Ω
F (ξ) dω(η) = 0. (4.97)

From Theorem 4.15, we are able to verify the following result on the
Beltrami differential equation.

Theorem 4.21. (Differential Equations for Δ∗ on Ω) Let H be a continuous
function on Ω with

1
4π

∫

Ω
H(ξ) dω(ξ) = 0. (4.98)

Let F ∈ C(2)(Ω) satisfy the Beltrami differential equation

Δ∗F = H (4.99)

such that
1
4π

∫

Ω
F (ξ) dω(ξ) = 0. (4.100)

Then

F (ξ) =
∫

Ω
G(Δ∗; ξ · η)H(η) dω(η), ξ ∈ Ω. (4.101)

Remark 4.22. The ‘surface gradient equation’ ∇∗F = v is of particular
importance in physical geodesy for determining the geoid undulations from
deflections of the vertical (see W. Freeden, M. Schreiner (2006), T. Fehlinger
et al. (2007b), W. Freeden, K. Wolf (2008), and the references therein), while
the ‘surface curl gradient equation’ L∗F = w occurs in ocean circulation
for characterizing geostrophic flow W. Freeden et al. (2005), T. Fehlinger
et al. (2007a). For more details the reader is referred to Chapter 10. The
Beltrami differential equation of Theorem 4.21 plays a particular role in the
Helmholtz decomposition theorems for spherical vector and tensor fields (see
Sections 5.2 and 6.5).
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4.7 Approximate Integration and Spline Interpolation

By virtue of the Cauchy–Schwarz inequality, we get from Theorem 4.15
∣∣∣∣F (ξ)− 1

4π

∫

Ω
F (η) dω(η)

∣∣∣∣ (4.102)

≤
(
G
(
(Δ∗)2; ξ · ξ

))1/2
(∫

Ω
|F (η)|2 dω(η)

)1/2

=
(
G((Δ∗)2; 1)

)1/2
(∫

Ω
|F (η)|2 dω(η)

)1/2

for all ξ ∈ Ω, where G((Δ∗)2; ·) : (ξ, η) �→ G((Δ∗)2; ξ ·η), ξ, η ∈ Ω, is defined
by convolution

G((Δ∗)2; ξ · η) =
∫

Ω
G(Δ∗; ξ · ζ)G(Δ∗; ζ · η) dω(ζ). (4.103)

Obviously, the bilinear series reads

G((Δ∗)2; ξ · η) (4.104)

=
∞∑

n=1

∞∑

k=1

2n + 1
4π

2k + 1
4π

1
−k(k + 1)

1
−n(n + 1)

∫

Ω
Pn(ξ · ζ)Pk(ζ · η) dω(ζ)

=
∞∑

n=1

2n + 1
4π

1
(−n(n + 1))2

Pn(ξ · η).

Moreover, it follows that, for all ξ, η ∈ Ω with –1 ≤ ξ · η < 1

Δ∗
ηG((Δ∗)2; ξ · η) = G(Δ∗; ξ · η).

Next, we are concerned with the explicit calculation of the iterated Green
function G((Δ∗)2; ·) : t �→ G((Δ∗)2; t), t ∈ [−1, 1] given by

G((Δ∗)2; t) =
1
4π

∞∑

k=1

2k + 1
(−k(k + 1))2

Pk(t). (4.105)

First, it is not hard to see

2k + 1
k2(k + 1)2

=
1
k2
− 1

(k + 1)2
. (4.106)

This gives us for all ξ ∈ Ω

G((Δ∗)2; ξ · ξ) = G((Δ∗)2; 1) =
1
4π

( ∞∑

k=1

1
k2
−

∞∑

k=1

1
k2

+ 1

)
(4.107)

=
1
4π

.
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Moreover, from the well-known result
∑∞

k=1(−1)kk−2 = −π2/12, we obtain

G((Δ∗)2;−1) =
1
4π

− π

24
. (4.108)

For the explicit calculation of G((Δ∗)2; t) t ∈ (−1, 1), we use the differential
equation

d

dt
(1− t2)

d

dt
G((Δ∗)2; t) = G(Δ∗; t) (4.109)

=
1
4π

ln(1− t) +
1
4π

(1− ln 2).

First, for all t ∈ (−1, 1), we get by elementary manipulations

t∫

−1

d

dt
(1− x2)

d

dx
G((Δ∗)2; x) dx = (1− t2)

d

dt
G((Δ∗)2; t) (4.110)

= − 1
4π

(1− t) ln(1− t) +
ln 2
4π

(1− t).

Second, for all t ∈ (−1, 1), we find

1∫

t

d

dx
G((Δ∗)2; x) dx = G((Δ∗)2; 1)−G((Δ∗)2; t) (4.111)

= − 1
4π

1∫

t

1
1 + x

ln(1− x) dx +
ln 2
4π

∫ 1

t

1
1 + x

dx.

Substituting 1− x = u we are led to

− 1
4π

∫ 1

t

1
1 + x

ln(1− x) dx =
1
4π

∫ 0

1−t

1
2− u

ln u du. (4.112)

From a table of integrals (see, e.g., W. Gröbner, N. Hofreiter (1975)), we
borrow

∫
1

2− u
lnu du = − lnu ln

2− u

2
− L2(

u

2
) (+C), (4.113)

where L2 defines the so-called dilogarithm

L2(u) = −
∫ u

0

ln(1− v)
v

dv =
∞∑

k=1

uk

k2
. (4.114)
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It follows that the iterated Green function is expressible by means of the
dilogarithm

G((Δ∗)2; 1)︸ ︷︷ ︸
= 1

4π

−G((Δ∗)2; t) =
1
4π

(ln(1− t)(ln(1 + t)− ln 2)) (4.115)

+
1
4π
L2

(
1− t

2

)
+

(ln 2)2

4π
− ln 2

4π
ln(1 + t).

Note that

lim
t→1
t<1

(ln(1− t) (ln(1 + t)− ln 2)) = 0 (4.116)

and

lim
t→−1
t>−1

(ln(1− t) (ln(1 + t)− ln 2)− ln 2 ln(1 + t)) = −(ln 2)2. (4.117)

This finally gives us the following representation.

Lemma 4.23. For t ∈ (−1, 1),

G((Δ∗)2; t) =
1
4π

− 1
4π

ln(1− t) (ln(1 + t)− ln 2) (4.118)

− 1
4π
L2

(
1− t

2

)
− (ln 2)2

4π
+

ln 2
4π

ln(1 + t),

where

L2

(
1− t

2

)
=

∞∑

k=1

(
1− t

2

)k 1
k2

(4.119)

and

lim
t→1
t<1

G((Δ∗)2; t) = G((Δ∗)2; 1) =
1
4π

, (4.120)

lim
t→−1
t>−1

G((Δ∗)2; t) = G((Δ∗)2;−1) =
1
4π

− π

24
. (4.121)

Summarizing our results, we therefore obtain the following corollary.

Corollary 4.24. The Green function G((Δ∗)2; ·) : (ξ, η) �→ G((Δ∗)2; ξ · η),
ξ, η ∈ Ω, with respect to the operator (Δ∗)2 is continuous, and we have
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G((Δ∗)2; ξ · η) =
∞∑

k=1

2k + 1
4π

1
(−k(k + 1))2

Pk(ξ · η) (4.122)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4π , 1− ξ · η = 0

− 1
4π ln(1− ξ · η) ln(1 + ξ · η)

+ ln 2
4π ln(1− (ξ · η)2)− 1

4πL2

(
1−ξ·η

2

)

+ 1
4π (1− (ln 2)2) , 1± ξ · η �= 0

1
4π −

π
24 , 1 + ξ · η = 0.

A graphical impression of the iterated Green function is given by
Figure 4.7.
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Fig. 4.7: The iterated Green function ϑ �→ G((Δ∗)2; cos ϑ).

It should be mentioned that the integral formulas with respect to Δ∗ can
be used for approximate integration methods on the sphere Ω. We give a
concrete application: If a1, . . . , aN ∈ R satisfy

∑N
k=1 ak = 1, we have for all

nodes η1, . . . , ηN ∈ Ω,

N∑

k=1

akF (ηk) − 1
4π

∫

Ω
F (η) dω(η) (4.123)

=
∫

Ω

N∑

k=1

akG(Δ∗; ηk · η)Δ∗
ηF (η) dω(η),

provided that F is twice continuously differentiable on Ω.
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Using the Cauchy–Schwarz inequality, we get from (4.123)

∣∣∣
1
4π

∫

Ω
F (η) dω(η)−

N∑

k=1

akF (ηk)
∣∣∣ (4.124)

≤

⎛

⎝
N∑

p=1

N∑

q=1

apaqG((Δ∗)2; ηp · ηq)

⎞

⎠
1/2(∫

Ω
(Δ∗

ηF (η))2 dω(η)
)1/2

.

Thus, the “best approximation” formula corresponding to the given nodes
η1, . . . , ηN

N∑

k=1

åkF (ηk) (4.125)

to the integral
1
4π

∫

Ω
F (η) dω(η) (4.126)

is the solution of the quadratic optimization problem:
N∑

p=1

N∑

q=1

åp̊aqG
(
(Δ∗)2; ηp · ηq

)
→ min . (4.127)

under the constraints
N∑

k=1

åk = 1. (4.128)

Therefore, it is not difficult to show in accordance with Lagrange’s method
of multipliers, that the solution (̊a1, . . . , åN )T of the best approximation
formula can be obtained by solving the linear system

G((Δ∗)2; η1 · η1)̊a1 + . . . + G((Δ∗)2; ηN · η1)̊aN −
◦
λ = 0

...
...

...
...

G((Δ∗)2; η1 · ηN )̊a1 + . . . + G((Δ∗)2; ηN · ηN )̊aN −
◦
λ = 0

å1 + . . . + åN = 1
(4.129)

such that
◦
λ=

N∑

p=1

N∑

q=1

G((Δ∗)2, ηp · ηq )̊ap åq. (4.130)

In other words, the linear system does not only provide the coefficients
å1, . . . , åN of the best approximation, but also the accuracy of the integra-
tion formula via the Lagrange multiplier (4.130)
∣∣∣∣∣

1
4π

∫

Ω
F (η) dω(η)−

N∑

k=1

åkF (ηk)

∣∣∣∣∣ ≤
◦
λ

1/2
(∫

Ω

(
Δ∗

ηF (η)
)2

dω(η)
)1/2

.

(4.131)
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Similar integration procedures can be formulated for all differential oper-
ators Δ∗ + λ, λ ∈ R. This fact can be used to adapt the specific properties
of a function under consideration to an operator Δ∗ + λ in order to mini-
mize the remainder terms in numerical integration formulas (see, e.g., W.
Freeden (1981a), W. Freeden, J. Fleck (1987)).

Next, we deal with spherical splines: If a1, . . . , aN ∈ R satisfy
∑N

k=1 ak =
0 and if η1, . . . , ηN are prescribed nodes on Ω, then

∫

Ω
Δ∗

ηS(η) Δ∗
ηF (η) dω(η) =

N∑

k=1

akF (ηk), (4.132)

where S : Ω → R is given by

S(η) = C0,1Y0,1(ξ) +
N∑

k=1

akG((Δ∗)2; ηk, ξ). (4.133)

Moreover, we have

∫

Ω
Δ∗

ηS(η) Δ∗
ηS(η) dω(η) =

N∑

k=1

akS(ηk). (4.134)

Let α1, . . . , αN be given real values. Then, there exists one and only one
function S of type (4.133) satisfying ΣN

k=1ak = 0 such that S(ηi) = αi,
i = 1, . . . , N . We denote this function by SN .

Now, for all F ∈ C(2)(Ω) with F (ηi) = αi, i = 1, . . . , N , we find
∫

Ω
Δ∗

η(SN (η)− F (η))Δ∗
η(SN (η)− F (η)) dω(η) (4.135)

=
N∑

k=1

akαk − 2
N∑

k=1

akαk +
∫

Ω
(Δ∗

ηF (η))2 dω(η).

Therefore we find
∫

Ω
(Δ∗

ηF (η))2dω(η) =
∫

Ω
(Δ∗

ηSN (η))2dω(η) +
∫

Ω
(Δ∗

ξ(SN (η)− F (η)))2dω(η).

(4.136)
Expressed in terms of the ‘bending energy’

E(F ) =
∫

Ω
(Δ∗

ξF (η))2 dω(η) (4.137)

we obtain
E(SN ) ≤ E(F ) (4.138)
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for all F ∈ C(2)(Ω) satisfying F (ηi) = αi, i = 1, . . . , N . In other words, SN

is the interpolating spline (to the data points (ηk, αk), k = 1, . . . , N) with
smallest ‘energy’ (relative to Δ∗).

The integral (4.137) may be physically interpreted (at least in linearized
sense under some simplifying assumptions) as the bending energy of a (thin)
membrane spanned wholly over the (unit) sphere, F denotes the deflection
normal to the rest position supposed, of course, to be spherical. This physi-
cal model is suggested by the classical interpretation of the one-dimensional
integral

∫ b
a |F ′′(x)|2 dx as the potential energy of a statically deflected thin

beam which indeed is proportional to the integral taken over the square of
the (linearized) curvature of the elastica of the beam.

Next, we explain the intimate relationship between best approximate and
spline integration. In fact, if å1, . . . , åN solve the linear system (4.129), we
see that

1
4π

∫

Ω
S(ξ) dω(ξ) =

1√
4π

N∑

k=1

åkC0,1 (4.139)

=
N∑

k=1

åkS(ηk)

holds for all splines S of the form (4.133). In other words, the best approx-
imation to the integral is precisely the unique approximation that is exact
for spline functions.

4.8 Integral Formulas with Respect to Iterated
Beltrami Operators ∂0,...,m = ∂0 . . . ∂m

According to the classical Fredholm–Hilbert theory of linear integral equa-
tions (see, e.g., R. Courant, D. Hilbert (1924)), we inductively define the
Green functions with respect to iterated operators

∂0,...,m = ∂0 . . . ∂m, (4.140)

where
∂n = Δ∗ − (Δ∗)∧(n), n = 0, . . . , m, (4.141)

=
N∑

k=1

åk(C0,1Y0,1(ηk) +
N∑

r=1

arG((Δ∗)2; ηr, ηk))
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by the following convolutions

G(∂0,...,m; ξ·η) =
∫

Ω
G(∂0,...,m−1; ξ·ζ)G(∂m; ζ ·η) dω(ζ), m = 1, 2... , (4.142)

G(∂0; ξ · η) = G(Δ∗; ξ · η). (4.143)

G(∂0,...,m; ·, ·) : Ω × Ω → R is called Green’s function with respect to the
operator ∂0,...,m. An illustration of G(∂0,...,m, ·, ·) is given in Fig. 4.8
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Fig. 4.8: Green’s functions ϑ �→ G(∂0,...,m; cos ϑ) for m = 0, 1, 2 (normal-
ized).

For later use (more precisely, for the Helmholtz theorem involving spher-
ical tensor fields) we are interested in deriving the Green function with
respect to ∂0,...,1 = ∂0∂1 = Δ∗(Δ∗ + 2). First we have

G(∂0∂1; ξ · η) =
∞∑

k=2

2k + 1
4π

1
−k(k + 1)(−k(k + 1) + 2)

Pk(ξ · η)

=
1
4π

∞∑

k=2

2k + 1
k(k + 1)(k − 1)(k + 2)

Pk(ξ · η). (4.144)

Considering the derivatives of the sum

G(t) =
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

Pk(t) (4.145)
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we obtain in a first step in connection with Lemma 3.199

G′(t) =
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

P ′
k(t) (4.146)

=
1

t2 − 1

∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

k(k + 1)
2k + 1

(Pk+1(t)− Pk−1(t))

=
1

t2 − 1

∞∑

k=2

1
(k − 1)(k + 2)

(Pk+1(t)− Pk−1(t)) .

By index shifts, we are able to see that

G′(t) =
1

t2 − 1

( ∞∑

k=3

1
(k − 2)(k + 1)

Pk(t)−
∞∑

k=1

1
k(k + 3)

Pk(t)

)
(4.147)

=
1

t2 − 1

( ∞∑

k=3

2(2k + 1)
(k − 2)k(k + 1)(k + 3)

Pk(t)−
1
4
t− 1

10

(
3
2
t2 − 1

2

))
.

Another differentiation yields the expression

G′′(t) =
−2t

(t2 − 1)2

( ∞∑

k=3

2(2k + 1)
(k − 2)k(k + 1)(k + 3)

Pk(t)−
1
4
t− 1

10

(
3
2
t2− 1

2

))

+
1

t2 − 1

( ∞∑

k=3

2(2k + 1)
(k − 2)k(k + 1)(k + 3)

P ′
k(t)−

1
4
− 3

10
t

)
. (4.148)

The second sum can be transformed by use of the recurrence relation (Lemma
3.199) as follows
∞∑

k=3

2(2k + 1)
(k − 2)k(k + 1)(k + 3)

P ′
k(t) (4.149)

=
1

t2 − 1

∞∑

k=3

2
(k − 2)(k + 3)

(Pk+1(t)− Pk−1(t))

=
1

t2 − 1

( ∞∑

k=4

4(2k + 1)
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t)−
1
3
P2(t)−

1
7
P3(t)

)
.

This provides us with the following representation of the second derivative

G′′(t) =
1

(t2 − 1)2

( ∞∑

k=3

−4(2k + 1)
(k − 2)k(k + 1)(k + 3)

tPk(t) +
1
2
t2 +

1
5
tP2(t)

)

+
1

(t2 − 1)2

( ∞∑

k=4

4(2k + 1)
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t)−
1
3
P2(t)

− 1
7
P3(t)−

1
4
(t2 − 1)− 3

10
t(t2 − 1)

)
. (4.150)
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Now, in the first sum, the three-term-recurrence relation (2k + 1)tPk(t) =
(k + 1)Pk+1(t) + kPk−1(t) of the Legendre polynomials Pn can be applied
leading to the series

∞∑

k=3

2k + 1
(k − 2)k(k + 1)(k + 3)

tPk(t) (4.151)

=
∞∑

k=3

1
(k − 2)k(k + 1)(k + 3)

((k + 1)Pk+1(t) + kPk−1(t))

=
∞∑

k=4

2k + 1
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t) +
1
24

P2(t) +
1
70

P3(t).

Summarizing our results, we therefore have the second derivative given by

G′′(t) (4.152)

=
1

(t2 − 1)2

(
− 4

∞∑

k=4

2k + 1
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t)

−1
6
P2(t)−

2
35

P3(t) +
1
2
t2 +

1
5
tP2(t)

+4
∞∑

k=4

(2k + 1)
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t)

−1
3
P2(t)−

1
7
P3(t)−

1
4
(t2 − 1)− 3

10
t(t2 − 1)

)

=
1

(t2 − 1)2

(
−1

2
(t− 1)(t + 1)2

)

=
1
2

1
1− t

.

This enables us to establish an elementary representation of G(t) by integra-
tion. To this end, we need certain values of G(t) to determine the constants
of integration. In fact, we have

G(1) =
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

Pk(−1) (4.153)

=
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

(−1)k =
1
6
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and

G′(1) =
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

P ′
k(−1) (4.154)

=
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

k(k + 1)
2

(−1)k+1

=
∞∑

k=2

2k + 1
2(k − 1)(k + 2)

(−1)k+1

= − 5
12

.

Thus ordinary integration shows us that

G′(t) = −1
2

ln(1− t) +
1
2

ln(2)− 5
12

(4.155)

such that

G(t) =
1
2

ln(1− t)(1− t)− 1
2

+
1
2
t +

1
2

ln(2)t− 5
12

t (4.156)

− 1
2

ln(2) + 1− 5
12

+
1
6
.

Altogether we get the following result.

Lemma 4.25. The Green function G(∂0∂1; ·) with respect to the operator
∂0∂1 is continuous for all (ξ, η) ∈ Ω2. Its explicit representation reads

G(∂0∂1; ξ · η) =
1
8π

(1− ξ · η) ln(1− ξ · η) +
(

1
12

+
ln(2)

2

)
ξ · η
4π

+
1
4π

(
1
4
− ln(2)

2

)
.

For positive integers m, G(∂0,...,m; ξ ·η) is continuous on the whole sphere
Ω as a function of η with ξ fixed, or as a function of ξ with η fixed. On the
other hand, the bilinear expansion of G(∂0,...,m; ξ · η), m ≥ 1,

∞∑

k=m+1

2k+1∑

l=1

1
(∂0,...,m)∧(k)

Yk,l(ξ)Yk,l(η) =
1
4π

∞∑

k=m+1

2k + 1
(∂0,...,m)∧(k)

Pk(ξ · η)

(4.157)
with

(∂0,...,m)∧(k) = (∂0)∧(k) · . . . · (∂m)∧(k) (4.158)

is absolutely and uniformly convergent both in ξ and η respectively and
uniformly in ξ and η together. Hence, the representation theorem of the
theory of orthogonal expansions (see Theorem 3.55) yields

G(∂0,...,m; ξ · η) =
1
4π

∞∑

k=m+1

2k + 1
(∂0,...,m)∧(k)

Pk(ξ · η). (4.159)



194 4 Green’s Functions and Integral Formulas

Let m be an integer with m ≥ 2. Then the derivative

(∂2 · . . . · ∂m)η G(∂0,...,m; ξ · η) = G(∂0∂1; ξ · η), −1 ≤ ξ · η ≤ 1, (4.160)

as a function of η for fixed ξ is a continuous function on Ω. For integers
m ≥ 1, the derivative

(∂1 · . . . · ∂m)η G(∂0,...,m; ξ · η) = G(∂0; ξ · η), −1 ≤ ξ · η < 1, (4.161)

as a function of η possesses a logarithmic singularity in ξ ∈ Ω. These
properties are of basic interest in spherical spline settings corresponding to
iterated Beltrami derivatives (see W. Freeden (1981a), W. Freeden et al.
(1998)).

Observing the fact that the pth convolution of the Green function with
respect to ∂n coincides with the Green function with respect to ∂p

n, i.e.,

G(p)(∂n; ξ · η) = G((∂n)p; ξ · η), p ≥ 1, n ≥ 0, (4.162)

we obtain more generally

F (ξ) =
2n + 1

4π

∫

Ω
F (η)Pn(ξ · η) dω(η) +

∫

Ω
G(∂p

n; ξ · η)((∂p
n)ηF (η)) dω(η)

(4.163)
provided that F is of class C(2p)(Ω), where

G(∂p
n; ξ · η) =

1
4π

∑

(∂n)∧(k) �=0

2k + 1
((∂n)∧(k))p

Pk(ξ · η). (4.164)

Hence, we are able to compare a function F ∈ C(2p)(Ω) with the nth degree
term of its orthogonal expansion in terms of spherical harmonics.

By use of the Green function G(∂0∂1; ·, ·) with respect to the operator
∂0∂1, we are able to generalize the second fundamental theorem. Observing
the recursion property

(∂1)ηG(∂0∂1; ξ · η) = G(∂0; ξ · η)− 3
4π(∂0)∧(1)

P1(ξ · η) (4.165)

we obtain
∫

Ω
G(∂0; ξ · η)

(
(∂0)ηF (η)

)
dω(η)

=
∫

Ω
(∂1)ηG(∂0∂1; ξ · η)

(
(∂0)ηF (η)

)
dω(η)

+
3

4π(∂0)∧(1)

∫

Ω
P1(ξ · η)

(
(∂0)ηF (η)

)
dω(η). (4.166)
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Integration by parts, i.e., application of the Second Green Surface Theorem,
yields for a function F ∈ C(4)(Ω)

∫

Ω
(∂1)ηG(∂0∂1; ξ · η)

(
(∂0)ηF (η)

)
dω(η)

=
∫

Ω
G(∂0∂1; ξ · η)

(
(∂0∂1)ηF (η)

)
dω(η). (4.167)

In the same way, we get

3
4π(∂0)∧(1)

∫

Ω
P1(ξ · η) ((∂0)ηF (η)) dω(η) =

3
4π

∫

Ω
P1(ξ · η)F (η) dω(η).

(4.168)

Therefore, we have
∫

Ω
G(∂0; ξ · η)

(
(∂0)ηF (η)

)
dω(η) (4.169)

=
∫

Ω
G(∂0∂1; ξ · η)

(
(∂0∂1)ηF (η)

)
dω(η) +

3
4π

∫

Ω
F (η)P1(ξ · η) dω(η)

provided that F is a four times continuously differentiable function on Ω.
Thus, by combination of Theorem 4.15 and (4.169), we have, for all func-
tions, F ∈ C(4)(Ω)

F (ξ) =
1∑

n=0

2n + 1
4π

∫

Ω
F (η)Pn(ξ · η) dω(η) (4.170)

+
∫

Ω
G(∂0∂1; ξ · η)

(
(∂0∂1)ηF (η)

)
dω(η).

More generally, by successive integration by parts, we obtain in connection
with the definition of G(∂0,...,m; ·, ·) the following integral formulas.

Theorem 4.26. Let m be a non-negative integer and ξ be a fixed point of
the unit sphere Ω. Let F be a (2m + 2)–times continuously differentiable
function on Ω. Then

F (ξ) =
m∑

n=0

2n + 1
4π

∫

Ω
F (η)Pn(ξ · η) dω(η)

+
∫

Ω
G(∂0,...,m; ξ · η)

(
(∂0,...,m)ηF (η)

)
dω(η). (4.171)

If F is (2m + 1)–times continuously differentiable on Ω, then

F (ξ) =
m∑

n=0

2n + 1
4π

∫

Ω
F (η)Pn(ξ · η) dω(η) (4.172)

−
∫

Ω

(
∇∗

ηG(∂0,...,m; ξ · η)
)
·
(
∇∗

η(∂1,...,m)ηF (η)
)
dω(η),
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where

∇∗
ηG(∂0,...,m; ξ · η) =

( 1
4π

∞∑

k=m+1

2k + 1
(∂0,...,m)∧(k)

P ′
k(ξ · η)

)
(ξ − (ξ · η)η).

Analogously, if F is (2m+1)–times continuously differentiable on Ω, then

F (ξ) =
m∑

n=0

2n + 1
4π

∫

Ω
F (η)Pn(ξ · η) dω(η)

−
∫

Ω
L∗

ηG(∂0,...,m; ξ · η) · L∗
η(∂1,...,m)ηF (η) dω(η),

where

L∗
ηG(∂0,...,m; ξ · η) =

(
1
4π

∞∑

k=m+1

2k + 1
(∂0,...,m)∧(k)

P ′
k(ξ · η)

)
(ξ ∧ η).

Inserting the addition theorem of spherical harmonics, we find from (4.171)
for all functions F ∈ C(2m+2)(Ω)

F (ξ) =
m∑

n=0

2n+1∑

j=1

Yn,j(ξ)F∧(n, j) (4.173)

+
∫

Ω
G(∂0,...,m; ξ · η)

(
(∂0,...,m)ηF (η)

)
dω(η). (4.174)

This formula gives a comparison between the mth partial sum of the Fourier
expansion of F into spherical harmonics and the functional value of F with
explicit knowledge of the remainder term.

More general, by iterated application of the Second Green Surface Theo-
rem, we obtain

F (ξ) =
m∑

n=0

2n+1∑

j=1

Yn,j(ξ)F∧(n, j) (4.175)

+
∫

Ω
G(∂p0

0 · . . . ∂pm
m ; ξ · η)((∂p0

0 · . . . ∂pm
m )F (η)) dω(η)

provided that pl ≥ 1, l = 0, . . . , m, and F is 2(p0 + . . . + pm)–times contin-
uously differentiable on Ω.

The identity (4.171) can be written as follows:

F (ξ)−
m∑

n=0

2n+1∑

j=1

Yn,j(ξ)F∧(n, j)

=
∫

Ω
(∂0,...,m)ηG(∂2

0,...,m; ξ · η)
(
(∂0,...,m)ηF (η)

)
dω(η), (4.176)
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where ∂2
0,...,m = ∂0,...,m∂0,...,m and G(∂2

0,...,m; ·, ·) is given by the convolution
integral (for a graphical impression, see Fig. 4.9)

G(∂2
0,...,m; ξ · η) = G(2)(∂0,...,m; ξ · η) (4.177)

=
∫

Ω
G(∂0,...,m; ξ · ζ)G(∂0,...,m, ζ · η) dω(ζ).
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Fig. 4.9: Green’s functions ϑ �→ G(∂2
0,...,m; cos ϑ) for m = 0, 1, 2 (normal-

ized).

Clearly, G(∂2
0,...,m; ·, ·) allows the bilinear expansion

G(∂2
0,...,m; ξ · η) =

1
4π

∞∑

k=m+1

2k + 1
(∂2

0,...,m)∧(k)
Pk(ξ · η), ξ, η ∈ Ω, (4.178)

with

(∂2
0,...,m)∧(k) = ((∂0,...,m)∧(k))2. (4.179)

From (4.176) we obtain, for example,

∥∥∥∥∥∥
F −

m∑

n=0

2n+1∑

j=1

(F, Yn,j)L2(Ω)Yn,j

∥∥∥∥∥∥
L2(Ω)

≤
(

1
4π

∞∑

k=m+1

2k + 1
(∂2

0,...,m)∧(k)

) 1
2

‖(∂0,...,m)F‖L2(Ω). (4.180)

We omit Lp(Ω)-estimates for p �= 2 and C(Ω)-estimates.
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4.9 Differential Equations Involving Green’s Function
with Respect to Iterated Beltrami Operators
∂0,...,m = ∂0 . . . ∂m

According to our nomenclature, Harm0,...,m, m ≥ 0, denotes the space of all
spherical harmonics of degree ≤ m so that in the sense of the inner product
(·, ·)L2(Ω)

Harm0,...,m =
m⊕

l=0

Harml. (4.181)

Consequently, Harm0,...,m possesses the dimension

M = d(Harm0,...,m) =
m∑

j=0

d(Harmj) =
m∑

j=0

(2j + 1) = (m + 1)2. (4.182)

The space Harm0,...,m equipped with the inner product (·, ·)L2(Ω) is an M -
dimensional Hilbert space with the reproducing kernel KHarm0,...,m(·, ·) :
Ω× Ω → R given by

KHarm0,...,m(ξ · η) =
m∑

n=0

2n+1∑

j=1

Yn,j(ξ)Yn,j(η) (4.183)

=
m∑

n=0

2n + 1
4π

Pn(ξ · η).

Note that the recursion relation

(n+1)(Pn+1(t)−Pn(t))−n(Pn(t)−Pn−1(t)) = (2n+1)(t−1)Pn(t) (4.184)

implies

(ξ · η − 1)KHarm0,...,m(ξ · η) =
m + 1

4π
(Pm+1(ξ · η)− Pm(ξ · η)) (4.185)

for all (ξ, η) ∈ Ω× Ω.

Let Y be an element of class Harm0,...,m of spherical harmonics of degree
≤ m :

Y (η) =
m∑

n=0

2n+1∑

j=1

Y ∧(n, j)Yn,j(η), η ∈ Ω. (4.186)

Then, observing the differential equation

(∂n)ηYn,j(η) = 0, η ∈ Ω, (4.187)
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for n = 0, ..., m, j = 1, ..., 2n + 1 we have

(∂0,...,m)ηY (η) = (∂0 · ... · ∂m)ηY (η)

=
m∑

n=0

2n+1∑

j=1

Y ∧(n, j)(∂0 · ... · ∂m)ηYn,j(η)

= 0 (4.188)

for all η ∈ Ω. On the other hand, we know from (4.174) that any solution
Y ∈ C(2m+2)(Ω) of the homogeneous differential equation

(∂0,...,m)ηY (η) = 0, η ∈ Ω, (4.189)

is representable in the form

Y (η) =
m∑

n=0

2n+1∑

j=1

Y ∧(n, j)Yn,j(η), η ∈ Ω. (4.190)

But this means that Harm0,...,m is the null space of the operator ∂0,...,m.

For given H ∈ C(Ω), the integral formula (Theorem 4.26) can be used to
discuss the general differential equation

(∂0,...,m)ηF (η) = H(η), η ∈ Ω. (4.191)

By virtue of the Green surface identity, we first see that
∫

Ω

(
(∂0,..,m)ηF (η)

)
Y (η) dω(η) =

∫

Ω

(
(∂0,..,m)ηY (η)

)
F (η) dω(η) = 0 (4.192)

for all elements Y ∈ Harm0,...,m. From the considerations given above,
it is clear that any function Y ∈ Harm0,...,m can be added to F without
changing the differential equation (4.191). However, if we require that F
is orthogonal to the null space Harm0,...,m of ∂0,..,m, then the differential
equation is uniquely solvable. This finally leads us to the following result.

Theorem 4.27. Let H be a continuous function on Ω orthogonal to
Harm0,...,m, i.e., ∫

Ω
H(η)Yn,j(η) dω = 0 (4.193)

for n = 0, ..., m, j = 1, ..., 2n + 1. Then the function F given by

F (ξ) =
∫

Ω
G(∂0,..,m; ξ · η)H(η) dω(η), ξ ∈ Ω, (4.194)

represents the only (2m + 2)–times continuously differentiable solution of
the differential equation (4.191) on Ω which is orthogonal to Harm0,...,m.
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This result turns out to be useful for the decomposition of spherical vector
and tensor field into normal and tangential components.

Of course, spline (integration) methods can be introduced in the same
way for the operators ∂0,...,m as instead of the Beltrami operator (see W.
Freeden (1981c)).
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Euclidean spaces R

n are multidimensional Euler summation and cubature
formulas (cf. W. Freeden, J. Fleck (1987) and the references therein). Green
functions with respect to iterated Beltrami operators are essential tools in
the Helmholtz decomposition theorems for spherical vector and tensor fields
(see W. Freeden et al. (1998) and the considerations given in Chapters 5
and 6).



5 Vector Spherical Harmonics

Various applications imply different formulations of the definition of vector
spherical harmonics, putting the accent on different issues. What is our
understanding in this context? One important aspect is the easy transition
from scalar spherical harmonics to the vectorial ones. A simple approach is
to formulate the vectorial problem in terms of cartesian components. How-
ever, we already know that this procedure leads back to anisotropic scalar
component equations, so that the physical relevance is difficult to realize,
the mathematical formulation is lengthy, and the numerical modeling of-
ten becomes too complicated. In a large number of physically motivated
applications, it turns out that a separation into normal and tangential vec-
tor fields is of advantage where the underlying differential equations are
separable in spherical coordinates. No doubt, the definition of vector spher-
ical harmonics should take into account this separation. Another important
feature is that all geosciences are becoming increasingly interested in a uni-
fying concept to handle consistently scalar spherical functions together with
spherical vector and tensor fields. The goal is to combine different types of
data derived from various sources such as terrestrial, airborne, and satellite
observations.

In fact, most of the aforementioned geophysically motivated aspects are
guaranteed adequately within a vectorial framework, transforming scalar
functions into vector fields by use of certain operators o(i), i = 1, 2, 3. The
operator o(1) separates the normal part of a vector field from the tangential
part; o(2) defines a (tangential) surface gradient field that is curl-free, while
o(3) yields a (tangential) surface curl gradient field that is divergence-free.
In doing so, we are led to definitions that are independent of any particular
choice of spherical harmonics and do not relate to any particular choice of
a spherical coordinate system. Moreover, the rotational symmetry, i.e., the
isotropy can be reflected in suitable (vectorial) manner.

The layout of this chapter on vector spherical harmonics is as follows:
Section 5.1 is concerned with the separation of vector fields into normal and
tangential parts. In Section 5.2, we introduce the vector spherical harmon-
ics based on the properties of the operators o(i), i = 1, 2, 3. Section 5.3
is dedicated to the Helmholtz decomposition formula for spherical vector

201



202 5 Vector Spherical Harmonics

fields by use of the Green function with respect to the Beltrami operator.
Section 5.4 shows the closure and completeness of vector spherical harmon-
ics intrinsically on the sphere based on Bernstein summability. The inter-
relations between vector spherical harmonics and homogeneous harmonic
vector polynomials are investigated in more detail in Section 5.5. It fol-
lows (in Section 5.6) the exact computation of orthogonal systems of vector
spherical harmonics. Section 5.7 deals with the orthogonal invariance. Sec-
tion 5.8 shows us that the vector spherical harmonics can be regarded as
eigenfunctions of a vectorial analogue of the Beltrami operator. Section 5.9
presents the formulation of the addition theorem in terms of vector spheri-
cal harmonics thereby introducing appropriate counterparts of the Legendre
polynomial. In Section 5.10, we prove vectorial versions of the Funk–Hecke
formula. Vectorial counterparts of the Legendre polynomial are introduced
in Section 5.11. Degree and order variances are discussed in Section 5.12.
After a deeper insight into counterparts of Legendre polynomials within
the vectorial context and the degree and order variances, we consider (in
Section 5.13) an alternative system of vector spherical harmonics directly
related to homogeneous harmonic vector polynomials, and present another
system in Section 5.14. Finally, we summarize the methods for expanding
vector fields using different convolution processes in Section 5.15.

5.1 Normal and Tangential Fields

In order to separate continuous vector fields into their tangential and normal
parts, we introduce the projection operators pnor and ptan by

pnorf(ξ) = fnor(ξ) = (f(ξ) · ξ) ξ, ξ ∈ Ω, f ∈ c(Ω), (5.1)
ptanf(ξ) = ftan(ξ) = f(ξ)− pnorf(ξ), ξ ∈ Ω, f ∈ c(Ω). (5.2)

It is easy to see that, for all ξ ∈ Ω,

ptan(ξ ∧ f(ξ)) = ξ ∧ ptanf(ξ), (5.3)
ptanf(ξ) = −ξ ∧ (ξ ∧ f(ξ)) = −ξ ∧ (ξ ∧ ptanf(ξ)). (5.4)

Obviously, for ξ ∈ Ω and f, g ∈ c(Ω),

f(ξ) · g(ξ) = pnorf(ξ) · pnorg(ξ) + ptanf(ξ) · ptang(ξ). (5.5)

Furthermore, from Lemma 2.6, we know that ptanf(ξ) = 0 if and only if
f(ξ) · τξ = 0 for every unit vector τξ that is perpendicular to ξ (note that
f(ξ) · τξ = (pnorf(ξ) + ptanf(ξ)) · τξ).
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We let

cnor(Ω) = {f ∈ c(Ω)| f = pnorf}, (5.6)
ctan(Ω) = {f ∈ c(Ω)| f = ptanf}. (5.7)

Furthermore,

l2nor(Ω) = cnor(Ω)
‖·‖l2(Ω) , (5.8)

l2tan(Ω) = ctan(Ω)
‖·‖l2(Ω) , (5.9)

We say f ∈ l2(Ω) is normal if f = pnorf and tangential if f = ptanf ,
respectively. Clearly, we have the orthogonal decomposition

l2(Ω) = l2nor(Ω)⊕ l2tan(Ω). (5.10)

The spaces c(p)
nor(Ω) and c(p)

tan(Ω), 0 ≤ p ≤ ∞, are defined in the same fashion.

The projection of the identity tensor

i =
3∑

i=1

εi ⊗ εi (5.11)

onto the tangential components at a point ξ ∈ Ω defines the surface identity
tensor field itan given by

itan(ξ) = i− ξ ⊗ ξ, ξ ∈ Ω. (5.12)

Moreover, we define the surface rotation (tensor) field jtan by

jtan(ξ) = ξ ∧ i =
3∑

i=1

(ξ ∧ εi)⊗ εi, ξ ∈ Ω. (5.13)

Obviously,

itan(ξ) ξ = 0, jtan(ξ) ξ = 0, (5.14)
itan(ξ) uξ = uξ, jtan(ξ) uξ = ξ ∧ uξ, (5.15)

if uξ ∈ R
3, uξ · ξ = 0.

5.2 Definition of Vector Spherical Harmonics

The abbreviation

0i =
{

0, i = 1
1, i = 2, 3

(5.16)

will simplify our following considerations:
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Assume that F is of class C(0i)(Ω), i = 1, 2, 3. We define operators o(i) :
C(0i)(Ω) → c(Ω), respectively, as follows:

o
(1)
ξ F (ξ) = ξF (ξ), ξ ∈ Ω, (5.17)

o
(2)
ξ F (ξ) = ∇∗

ξF (ξ), ξ ∈ Ω, (5.18)

o
(3)
ξ F (ξ) = L∗

ξF (ξ), ξ ∈ Ω. (5.19)

It is clear that o(1)F is a normal vector field, whereas o(2)F and o(3)F are
tangential. Moreover, it is not difficult to prove the following results:

o
(1)
ξ F (ξ) · o(2)

ξ F (ξ) = 0, F ∈ C(1)(Ω), (5.20)

o
(1)
ξ F (ξ) · o(3)

ξ F (ξ) = 0, F ∈ C(1)(Ω), (5.21)

o
(2)
ξ F (ξ) · o(3)

ξ F (ξ) = 0, F ∈ C(1)(Ω). (5.22)

Green’s integral formulas, i.e., partial integration on the sphere, help us
to introduce the operators O(i) which are adjoint to o(i). In more detail, for
f ∈ c(0i)(Ω) and G ∈ C(0i)(Ω), we have

(o(i)G, f)l2(Ω) = (G, O(i)f)L2(Ω), (5.23)

i = 1, 2, 3. Explicitly written out, this means that
∫

Ω
o(i)G(ξ) · f(ξ) dω(ξ) =

∫

Ω
G(ξ)O(i)f(ξ) dω(ξ). (5.24)

We easily find

O
(1)
ξ f(ξ) = ξ · pnorf(ξ), ξ ∈ Ω, (5.25)

O
(2)
ξ f(ξ) = −∇∗

ξ · ptanf(ξ), ξ ∈ Ω, (5.26)

O
(3)
ξ f(ξ) = −L∗

ξ · ptanf(ξ), ξ ∈ Ω, (5.27)

provided that f is of class c(0i)(Ω), i ∈ {1, 2, 3}.

It can be readily shown that the O(i)–operators satisfy the following re-
lations.

Lemma 5.1. Suppose that F is of class C(2)(Ω). Then the following state-
ments hold true:

(i) If i �= j, i, j ∈ {1, 2, 3}, then O
(i)
ξ o

(j)
ξ F (ξ) = 0, ξ ∈ Ω.



5.2 Definition of Vector Spherical Harmonics 205

(ii)

O
(i)
ξ o

(i)
ξ F (ξ) =

{
F (ξ), i = 1,
−Δ∗

ξF (ξ), i = 2, 3.

The definition of vector spherical harmonics can be given without using
any local coordinate system on the sphere only by aid of the operators
o(i), O(i), i ∈ {1, 2, 3}.

Definition 5.2. Any vector field of the form

y(i)
n = o(i)Yn, n ≥ 0i, Yn ∈ Harmn, i = 1, 2, 3,

is called a vector spherical harmonic of degree n and type i (with respect
to the dual system o(i), O(i)).

o(1)Yn represents a normal field, while o(2)Yn, o(3)Yn are tangential fields of
degree n.

Obviously, according to our construction, we have (see Fig. 5.1)

ξ ∧ (o(1)Yn)(ξ) = 0, ξ · (o(2)Yn)(ξ) = 0, ξ · (o(3)Yn)(ξ) = 0, (5.28)
L∗

ξ · (o(2)Yn)(ξ) = 0, ∇∗
ξ · (o(3)Yn)(ξ) = 0. (5.29)

The orthogonality of scalar spherical harmonics helps us to show the orthog-
onality of vector spherical harmonics : First, for degrees n, m with n �= m,
it follows that

∫

Ω
o
(1)
ξ Yn(ξ) · o(1)

ξ Ym(ξ) dω(ξ) =
∫

Ω
Yn(ξ)Ym(ξ)(ξ · ξ) dω(ξ) (5.30)

=
∫

Ω
Yn(ξ)Ym(ξ) dω(ξ) = 0.

In connection with (2.161), we obtain for n �= m, (n, m ≥ 1)

∫

Ω
o
(2)
ξ Yn(ξ) · o(2)

ξ Ym(ξ) dω(x) (5.31)

=
∫

Ω
∇∗

ξYn(ξ) · ∇∗
ξYm(ξ) dω(ξ)

= −
∫

Ω
Yn(ξ)Δ∗

ξYm(ξ) dω(ξ)

= m(m + 1)
∫

Ω
Yn(ξ)Ym(ξ) dω(ξ)

= 0.
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Fig. 5.1: Vector spherical harmonics y
(i)
n,j of type i = 2 (left) and i = 3 (right)

for the degree 3 and orders 0, 1, 2, 3 (from top to bottom). The contour lines
represent the scalar spherical harmonic Yn,j from which the vector spherical
harmonics are generated.

Finally, for n �= m (n, m ≥ 1), we find with (2.163)

∫

Ω
o
(3)
ξ Yn(ξ)o(3)

ξ Ym(ξ) dω(ξ) =
∫

Ω
L∗

ξYn(ξ) · L∗
ξYm(ξ) dω(ξ) (5.32)

= −
∫

Ω
Yn(ξ)Δ∗

ξYm(ξ) dω(ξ)

= 0.
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In other words, for i ∈ {1, 2, 3} and n �= m, with n, m ≥ 0i we have
∫

Ω
o
(i)
ξ Yn(ξ) · o(i)

ξ Ym(ξ) dω(ξ) =
∫

Ω
Yn(ξ)O(i)

ξ o
(i)
ξ Ym(ξ) dω(ξ)

= 0. (5.33)

By harm(i)
n , we denote the set of all vector spherical harmonics of degree n

and type i. Furthermore, we let

harm0 = harm(1)
0 , (5.34)

harmn =
3⊕

i=1

harm(i)
n , n ≥ 1. (5.35)

We know from the orthogonality of the vector spherical harmonics of
different degrees that harmn is orthogonal to harmm whenever n �= m.

If {Yn,j}n=0,1,...,j=1,...2n+1 forms an L2(Ω)-orthonormal set of (scalar) spher-
ical harmonics, then

y
(i)
n,j = (μ(i)

n )−1/2 o(i)Yn,j , (5.36)

i ∈ {1, 2, 3}, n ≥ 0i, j = 1, . . . , 2n + 1, forms an l2(Ω)-orthonormal system
of vector spherical harmonics (with respect to the dual system o(i), O(i)),
provided that the values μ

(i)
n are chosen in such a way that

μ(i)
n = ‖O(i)o(i)Yn,j‖L2(Ω), (5.37)

i.e.,

μ(i)
n =

{
1, i = 1
−(Δ∗)∧(n) = n(n + 1), i = 2, 3 .

Altogether we find
∫

Ω
y

(i)
n,j(ξ) · y

(k)
m,l(ξ) dω(ξ) = δikδnmδjl. (5.38)

Obviously, vector spherical harmonics can be calculated from the rep-
resentations of scalar spherical harmonics. Illustrations of the tangential
vector spherical harmonics are given in Fig. 5.1.

Example 5.3. Observing the well-known representations

Y0,1(ξ) =
1√
4π

, ξ ∈ Ω, (5.39)

Y1,j(ξ) =

√
3
4π

(ξ · εj), ξ ∈ Ω, j = 1, . . . , 3, (5.40)
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it is not difficult to see, that the vector fields

y
(1)
0,1(ξ) =

1√
4π

ξ, ξ ∈ Ω, (5.41)

y
(1)
1,j (ξ) =

√
3
4π

(ξ · εj)ξ, ξ ∈ Ω, j = 1, . . . , 3, (5.42)

y
(2)
1,j (ξ) =

√
3
8π

(εj − (ξ · εj)ξ), ξ ∈ Ω, j = 1, . . . , 3, (5.43)

y
(3)
1,j (ξ) =

√
3
8π

(ξ ∧ εj), ξ ∈ Ω, j = 1, . . . , 3 (5.44)

form an l2(Ω)-orthonormal system of vector spherical harmonic of degree
0, 1.

5.3 Helmholtz Decomposition Theorem for Spherical
Vector Fields

The motivation for the o(i)-operators is based on the fact that any vector
field f ∈ c(1)(Ω) can be explicitly written out as

f(ξ) =
3∑

i=1

o(i)Fi(ξ), ξ ∈ Ω, (5.45)

with uniquely determined (scalar) functions Fi : Ω → R.

In what follows, we formulate the decomposition theorem in a rigor-
ous sense. Our particular purpose is to show how the scalar functions Fi

can be determined in an explicit way by use of the concept of the Green
function with respect to the Beltrami operator. An example is shown in
Figs. 5.2 and 5.3.
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Fig. 5.2: Tangential vector field.

Fig. 5.3: Curl-free part (left picture) and divergence-free part (right picture)
of the tangential vector field illustrated in Fig. 5.2.

Theorem 5.4. (Helmholtz Decomposition Theorem) Let f : Ω → R
3 be a

continuously differentiable vector field. Then there exist uniquely determined
functions F1 ∈ C(1)(Ω) and F2, F3 ∈ C(2)(Ω) satisfying

∫

Ω
Fi(ξ) dω(ξ) = 0, i = 2, 3, (5.46)

such that

f(ξ) =
3∑

i=1

o(i)Fi(ξ) = F1(ξ)ξ +∇∗
ξF2(ξ) + L∗

ξF3(ξ), ξ ∈ Ω.

The functions Fi are given by

F1(ξ) = O
(1)
ξ f(ξ), ξ ∈ Ω,

F2(ξ) = −
∫

Ω
G(Δ∗; ξ · η)O(2)

η f(η) dω(η), ξ ∈ Ω,

F3(ξ) = −
∫

Ω

G(Δ∗; ξ · η)O(3)
η

f(η) dω(η), ξ ∈ Ω.
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Proof. Any vector field f can be written as

f = fnor + ftan, (5.47)

where

fnor = pnorf ∈ c(1)
nor(Ω), (5.48)

ftan = ptanf ∈ c(1)
tan(Ω). (5.49)

Clearly, we have fnor(ξ) = o(1)F1(ξ) with F1(ξ) = O(1)f(ξ), ξ ∈ Ω.

The tangential vector field ftan can be represented in the form

ftan = ∇∗F2 + L∗F3. (5.50)

Applying the operators ∇∗· and L∗·, respectively, to ftan we obtain the
Beltrami differential equations

Δ∗F2 = ∇∗ · ftan, (5.51)
Δ∗F3 = L∗ · ftan. (5.52)

Since ∫

Ω
∇∗

ξ · ftan(ξ) dω(ξ) =
∫

Ω
L∗

ξ · ftan(ξ) dω(ξ) = 0, (5.53)

we get the required decomposition from the fundamental theorem for the
Beltrami operator and the definition of the adjoint operators O(i) to o(i).
Furthermore, (5.46) is valid.

In order to prove the uniqueness of Fi, i = 1, 2, 3, assume that there exists
another triple of functions Gi, i = 1, 2, 3, such that

f = o(1)F1 + o(2)F2 + o(3)F3, (5.54)
f = o(1)G1 + o(2)G2 + o(3)G3. (5.55)

Then, it follows that F1 = O(1)f = G1, thus, F1 is uniquely defined. Appli-
cations of O(2) and O(3) to (5.54) and (5.55) yields

Δ∗F2 = Δ∗G2, (5.56)
Δ∗F3 = Δ∗G3. (5.57)

Hence, the normalization conditions (5.46) for Fi and Gi, i = 2, 3, imply
F2 = G2, F3 = G3, as required (see Theorem 4.21).

According to the Helmholtz decomposition theorem, an arbitrary vector
field f ∈ c(1)(Ω) can be written uniquely in the form

f = F1(ξ)ξ +∇∗
ξF2(ξ) + L∗

ξF (η), ξ ∈ Ω (5.58)
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where F1 ∈ C(1)(Ω) and F2, F2 ∈ C(2)(Ω) satisfy the identities

F1(ξ) = f(ξ) · ξ (5.59)

and ∫

Ω
F2(ξ) dω(ξ) =

∫

Ω
F3(ξ) dω(ξ) = 0. (5.60)

Usually, a vector field of the special form

ξ �→ F1(ξ)ξ +∇∗
ξF2(ξ), ξ ∈ Ω, (5.61)

is said to be spheroidal, whereas one of the form

ξ �→ L∗
ξF3(ξ), ξ ∈ Ω, (5.62)

is said to be toroidal. Thus, the Helmholtz theorem represents the decom-
position of an arbitrary vector field of class c(1)(Ω) into its spheroidal and
toroidal parts. Note that a spheroidal field has both radial and tangential
components, whereas a toroidal field is purely tangential. To our knowledge,
there is no commonly accepted name for the pureley tangential surface gra-
dient field ∇∗F2 of a spheroidal field; G.E. Backus (1966); G.E. Backus
(1986) suggests calling it consoidal.

The space harmn of vector spherical harmonics of degree n, therefore,
lead naturally to radial, consoidal, and toroidal subspaces harm(1)

n , harm(2)
n

and harm(3)
n . The spaces are mutually orthogonal. In addition, they are

orthogonally invariant and irreducible.

A useful consequence of the Helmholtz representation is that the surface
divergence of a toroidal field is zero, and that a spheroidal field has a toroidal
surface curl, and vice versa. The problem of getting back a consoidal and
toroidal field from its generator (in terms of momentum (frequency) and/or
space regularizations) leads back to Chapter 4.

The Helmholtz decomposition theorem (Theorem 5.4) also implies an
orthogonal decomposition of the space c(∞)(Ω). In fact,

c(∞)(Ω) = c(∞)
(1) (Ω)⊕ c(∞)

(2) (Ω)⊕ c(∞)
(3) (Ω), (5.63)

where

c(∞)
(1) (Ω) = c(∞)

nor (Ω), (5.64)

c(∞)
(2) (Ω) = {f ∈ c(∞)(Ω) | O(1)f = O(3)f = 0}, (5.65)

c(∞)
(3) (Ω) = {f ∈ c(∞)(Ω) | O(1)f = O(2)f = 0}. (5.66)
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Of course, these definitions can be extended as well to the spaces c(k)(Ω),
0 ≤ k ≤ ∞, or l2(Ω). In the case of l2(Ω), we are able to write

l2(i)(Ω) = {o(i)F | F ∈ C(∞)(Ω)}
‖·‖l2(Ω) . (5.67)

Thus, we end up with the orthogonal decompositions

l2(Ω) = l2nor(Ω)⊕ l2tan(Ω), (5.68)
l2tan(Ω) = l2(2)(Ω)⊕ l2(3)(Ω). (5.69)

5.4 Orthogonal (Fourier) Expansions

Next, we prove the closure and completeness of vector spherical harmonics
intrinsically on the sphere (note that a non-intrinsic proof follows from the
arguments of Section 5.5). For our purpose here, we use vectorial variants
of the scalar zonal Bernstein kernels. Although the approximation of func-
tions by using Bernstein polynomials is one of the classical research topics
and their theory is a rich one, their application within the vector theory of
spherical harmonics seems to go back to W. Freeden, M. Gutting (2008).
Indeed, the vector zonal Bernstein kernel approximations can be shown to
guarantee the closure property in the space of continuous spherical normal
as well as tangential vector fields, respectively. In consequence, they also
assure closure and completeness in the Hilbert space of (Lebesgue-)square-
integrable vector fields. Essential tools are the theory of the Green function
with respect to the (iterated) Beltrami operator and the Helmholtz decom-
position theorem.

We begin our considerations by convolving the Green function with re-
spect to the Beltrami operator against the Bernstein kernel

BGn(ξ · η) =
∫

Ω

G(Δ∗; ξ · α)Bn(α · η)dω(α).

Written in terms of a Legendre series, we find the finite sum

BGn(ξ · η) =
n∑

k=1

2k + 1
4π

B∧
n (k)

−k(k + 1)
Pk(ξ · η).

Note that the Bernstein kernel is a polynomial and the Green function is
of class L1[−1, 1], hence, the existence of the convolution integral as ban-
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dlimited Legendre expansion is obvious.

Next, we are interested in the Bernstein summability of Fourier expan-
sions in terms of vector spherical harmonics. To this end, we need some
preparatory material (more precisely, Lemma 5.5 and Lemma 5.6). Essen-
tial tool of our considerations is the Green function with respect to the
Beltrami operator (cf. W. Freeden, M. Gutting (2008)).

Lemma 5.5. For i ∈ {1, 2, 3}

lim
n→∞

‖Fi − F
(n)
i ‖C(Ω) = 0.

where Fi, i = 1, 2, 3, are the functions occuring in the Helmholtz decompo-
sition theorem

F1(ξ) = O
(1)
ξ f(ξ),

Fi(ξ) = −
∫

Ω
G(Δ∗; ξ · η)O(i)

η f(η) dω(η), i = 2, 3

and F
(n)
i , i = 1, 2, 3, are given by

F
(n)
1 (ξ) =

∫

Ω
Bn(ξ · η)O(1)

η f(η) dω(η),

F
(n)
i (ξ) = −

∫

Ω
BGn(ξ · η)O(i)

η f(η) dω(η), i = 2, 3.

Proof. Clearly, the case i = 1 of Lemma 5.5 is easy to handle. It follows
immediately from the scalar theory. Thus, it remains to study the cases
i = 2, 3. We start from the convolution integrals

F
(n)
i (ξ) = −

(
BGn ∗O(i)f

)
(ξ) = −

∫

Ω
BGn(ξ · η)O(i)

η f(η)dω(η), (5.70)

i = 2, 3. It is not difficult to see that

‖Fi − F
(n)
i ‖C(0)(Ω) = ‖G(Δ∗; ·) ∗O(i)f −BGn ∗O(i)f‖C(Ω)

≤ ‖O(i)f‖C(0)(Ω)‖G(Δ∗; ·)−BGn‖L1[−1,1].

Since both kernels G(Δ∗; ·) and BGn are of class L2[−1, 1] and, for all
k ∈ N0, the Legendre coefficients of the Bernstein kernel B∧

n (k) converge to
1 for n tending to infinity, we are able to deduce that

lim
n→∞

‖G(Δ∗; ·)−BGn‖L2[−1,1] = 0.

Obviously, this implies L1-convergence as well as ‖Fi − F
(n)
i ‖C(Ω) → 0 for

i = 1, 2, 3 and n →∞, as required.
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Considering the o(i)-derivatives, we have to verify the following lemma.

Lemma 5.6. For i ∈ {1, 2, 3}

lim
n→∞

sup
ξ∈Ω

∣∣∣o(i)
ξ Fi(ξ)− o

(i)
ξ F

(n)
i (ξ)

∣∣∣ = 0.

Proof. It is not hard to see that for i ∈ {2, 3}

‖o(i)
ξ Fi(ξ)− o

(i)
ξ F

(n)
i (ξ)‖c(Ω) (5.71)

= sup
ξ∈Ω

∣∣∣∣∣∣
o
(i)
ξ

∫

Ω

G(Δ∗; ξ · η)O(i)
η f(η)dω(η)−o

(i)
ξ

∫

Ω

BGn(ξ · η)O(i)
η f(η)dω(η)

∣∣∣∣∣∣

= sup
ξ∈Ω

∣∣∣∣∣∣

∫

Ω

o
(i)
ξ G(Δ∗; ξ · η)O(i)

η f(η)dω(η)−
∫

Ω

o
(i)
ξ BGn(ξ · η)O(i)

η f(η)dω(η)

∣∣∣∣∣∣
,

where it is clear that the operator o(i) can be drawn inside the two integrals.
This leads us to following estimate:

sup
ξ∈Ω

∣∣∣∣
∫

Ω
o
(i)
ξ G(Δ∗; ξ · η)O(i)

η f(η)dω(η)−
∫

Ω
o
(i)
ξ BGn(ξ · η)O(i)

η f(η)dω(η)
∣∣∣∣

≤ sup
ξ∈Ω

∫

Ω

∣∣∣o(i)
ξ G(Δ∗; ξ · η)− o

(i)
ξ BGn(ξ · η)

∣∣∣
∣∣∣O(i)

η f(η)
∣∣∣ dω(η)

≤ ‖O(i)f‖C(Ω)

∫

Ω

∣∣∣o(i)
ξ G(Δ∗; ξ · η)− o

(i)
ξ BGn(ξ · η)

∣∣∣ dω(η). (5.72)

We have to study the convergence of the last integral. In more detail, we
are interested in proving that

lim
n→∞

∫

Ω

∣∣∣o(i)
ξ G(Δ∗; ξ · η)− o

(i)
ξ BGn(ξ · η)

∣∣∣ dω(η) = 0. (5.73)

For that purpose, we notice that the Bernstein kernels oi
ξBGn(ξ ·η), i = 2, 3,

admit the following (Legendre) series expansions

o
(2)
ξ BGn(ξ · η) =

n∑

k=1

2k + 1
4π

B∧
n (k)

−k(k + 1)
P ′

k(ξ · η) (η − (ξ · η)ξ) , (5.74)

o
(3)
ξ BGn(ξ · η) =

n∑

k=1

2k + 1
4π

B∧
n (k)

−k(k + 1)
P ′

k(ξ · η) (ξ ∧ η) . (5.75)

Moreover, an easy calculation shows that the application of the o(i)-operators,
i = 2, 3, to the Green function with respect to the Beltrami operator leads
us to the identities

o
(2)
ξ G(Δ∗; ξ · η) = − 1

4π

η − (η · ξ)ξ
1− η · ξ , o

(3)
ξ G(Δ∗; ξ · η) = − 1

4π

ξ ∧ η

1− η · ξ .
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Consequently, for i = 2, 3, our integral can be expressed in the form

∫

Ω

∣∣∣o(i)
ξ G(Δ∗; ξ · η)− o

(i)
ξ BGn(ξ · η)

∣∣∣ dω(η) (5.76)

=
∫

Ω

∣∣∣∣∣∣
−1
4π

o
(i)
ξ (ξ · η)

1− ξ · η − −1
4π

n∑

k=1

2k + 1
k(k + 1)

B∧
n (k)P ′

k(ξ · η)o(i)
ξ (ξ · η)

∣∣∣∣∣∣
dω(η)

=
1
4π

∫

Ω

∣∣∣o(i)
ξ (ξ · η)

∣∣∣

∣∣∣∣∣
1

1− ξ · η −
n∑

k=1

2k + 1
k(k + 1)

B∧
n (k)P ′

k(ξ · η)

∣∣∣∣∣ dω(η)

=
1
2

∫ 1

−1

√
1− t2

∣∣∣∣∣
1

1− t
−

n∑

k=1

2k + 1
k(k + 1)

B∧
n (k)P ′

k(t)

∣∣∣∣∣ dt.

At this point, we use the recurrence relation (Lemma 3.192) for the Legendre
polynomials. This gives us the identity

∫

Ω

∣∣∣o(i)
ξ G(Δ∗; ξ · η)− o

(i)
ξ BGn(ξ · η)

∣∣∣ dω(η) (5.77)

=
1
2

∫ 1

−1

√
1 + t

1− t

∣∣∣∣∣1− (1− t)
n∑

k=1

B∧
n (k)

Pk+1(t)− Pk−1(t)
t2 − 1

∣∣∣∣∣ dt

=
1
2

∫ 1

−1

√
1 + t

1− t

∣∣∣∣∣1 +
1

1 + t

n∑

k=1

B∧
n (k) (Pk+1(t)− Pk−1(t))

∣∣∣∣∣ dt .

For the occurring sum, it follows that

n∑

k=1

B∧
n (k) (Pk+1(t)− Pk−1(t)) =

B∧
n (n)Pn+1(t) + B∧

n (n− 1)Pn(t)−B∧
n (2)P1(t)−B∧

n (1)P0(t)

+
n−1∑

k=2

(
B∧

n (k − 1)−B∧
n (k + 1)

)
Pk(t) , (5.78)

where a simple calculation shows that

B∧
n (k − 1)−B∧

n (k + 1) = B∧
n+1(k)(2k + 1)

2
(n + 2)

. (5.79)
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We plug (5.79) into (5.78) getting the following result

n∑

k=1

B∧
n (k) (Pk+1(t)− Pk−1(t)) (5.80)

= B∧
n (n)Pn+1(t) + B∧

n (n− 1)Pn(t)−B∧
n (2)P1(t)−B∧

n (1)P0(t)

+
2

n + 2

n−1∑

k=2

B∧
n+1(k)(2k + 1)Pk(t)

=
2

n + 2

n+1∑

k=0

B∧
n+1(k)(2k + 1)Pk(t)− (1 + t)

=
2

n + 2
(n + 1)

(
1 + t

2

)n+1

− (1 + t) .

Keeping this result in mind, we return to the integral (5.77). As a matter
of fact, the identity (5.77) can be rewritten in the form

1
2

∫ 1

−1

√
1 + t

1− t

∣∣∣∣∣1 +
1

1 + t

n∑

k=1

B∧
n (k) (Pk+1(t)− Pk−1(t))

∣∣∣∣∣ dt (5.81)

=
1
2

∫ 1

−1

√
1 + t

1− t

∣∣∣∣
n + 1
n + 2

(
1 + t

2

)n∣∣∣∣ dt.

Clearly, as the Bernstein kernel is non-negative, we are left with the integral
expression

∫

Ω

∣∣∣o(i)
ξ G(Δ∗; ξ · η)− o

(i)
ξ BGn(ξ · η)

∣∣∣ dω(η) =
1
2

n + 1
n + 2

1∫

−1

√
1 + t

1− t

(
1 + t

2

)n

dt

=
Γ(n + 3

2)
Γ(1

2) Γ(n + 2)
, (5.82)

(which follows by induction). It is well-known that the value of our integral
can be estimated as follows:

1√
2n + 2

<
Γ(n + 3

2)
Γ(1

2) Γ(n + 2)
<

2√
2n + 2

. (5.83)

Therefore, we immediately obtain the convergence of our integral for n →
∞. In addition, we get information about the speed of the convergence, i.e.,

∫

Ω

∣∣∣o(i)
ξ G(Δ∗; ξ · η)− o

(i)
ξ BGn(ξ · η)

∣∣∣ dω(η) = O(n−1/2).
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After these preparations, we are now in a position to establish the ‘Bern-
stein summability’ of the Fourier series in terms of vector spherical harmon-
ics.

Theorem 5.7. For any vector field f of class c(1)(Ω),

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣
f(ξ)−

3∑

i=1

n∑

k=0i

2k+1∑

j=1

B∧
n (k)

(
f (i)
)∧

(k, j)y(i)
k,j(ξ)

∣∣∣∣∣∣
= 0,

where, as usual, 01 = 0 and 0i = 1, i = 2, 3.

Proof. From Lemma 5.6, we know that for f ∈ c(1)(Ω)

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣f(ξ)−
3∑

i=1

o
(i)
ξ F

(n)
i (ξ)

∣∣∣∣∣ = lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣

3∑

i=1

o
(i)
ξ Fi(ξ)−

3∑

i=1

o
(i)
ξ F

(n)
i (ξ)

∣∣∣∣∣

≤
3∑

i=1

lim
n→∞

sup
ξ∈Ω

∣∣∣o(i)
ξ Fi(ξ)− o

(i)
ξ F

(n)
i (ξ)

∣∣∣ = 0.

(5.84)

The expression o
(1)
ξ F

(n)
1 (ξ) can be expressed in the form

o
(1)
ξ F

(n)
1 (ξ) = o

(1)
ξ

∫

Ω
Bn(ξ · η)O(1)

η f(η)dω(η)

=
n∑

k=0

B∧
n (k)o(1)

ξ

2k+1∑

j=1

(
O(1)f

)∧
(k, j)Yk,j(ξ)

=
n∑

k=0

2k+1∑

j=1

B∧
n (k)

(
O(1)f

)∧
(k, j)y(1)

k,j (ξ), (5.85)

where we have

(
O(1)f

)∧
(k, j) =

∫

Ω
O(1)

η f(η)Yk,j(η)dω(η)

=
∫

Ω
f(η) · o(1)

η Yk,j(η)
︸ ︷︷ ︸

=y
(1)
k,j(η)

dω(η) =
(
f (1)

)∧
(k, j). (5.86)
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Furthermore, for i = 2, 3, it is not difficult to see that

o
(1)
ξ F

(n)
i (ξ) = −o

(i)
ξ

∫

Ω
BGn(ξ · η)O(1)

η f(η)dω(η)

=
n∑

k=1

B∧
n (k)

k(k + 1)
o
(i)
ξ

2k+1∑

j=1

(
O(i)f

)∧
(k, j)Yk,j(ξ)

=
n∑

k=1

2k+1∑

j=1

B∧
n (k)√

k(k + 1)

(
O(i)f

)∧
(k, j)y(i)

k,j(ξ). (5.87)

Taking a look at the coefficients
(
O(i)f

)∧
(k, j), we find

(
O(i)f

)∧
(k, j) =

∫

Ω
O(i)

η f(η)Yk,j(η)dω(η) =
∫

Ω
f(η) · o(i)

η Yk,j(η)dω(η)

=
√

k(k + 1)
∫

Ω

f(η) · y(i)
k,j(η)dω(η) =

√
k(k + 1)

(
f (i)
)∧

(k, j).

(5.88)

The identities (5.85) and (5.86) as well as (5.87) and (5.88) allow us to
conclude

o
(i)
ξ F

(n)
i (ξ) =

n∑

k=1

2k+1∑

j=1

B∧
n (k)

(
f (i)
)∧

(k, j)y(i)
k,j(ξ), i = 1, 2, 3. (5.89)

In connection with (5.84), we therefore obtain

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣f(ξ)−
3∑

i=1

o
(i)
ξ F

(n)
i (ξ)

∣∣∣∣∣

= lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣
f(ξ)−

3∑

i=1

n∑

k=0i

2k+1∑

j=1

B∧
n (k)

(
f (i)
)∧

(k, j)y(i)
k,j(ξ)

∣∣∣∣∣∣
= 0,

(5.90)

provided that f ∈ c(1)(Ω). This is the desired result.

Next, a well-known density argument enables us to verify the closure of
the vector spherical harmonics

{
y

(i)
k,j

}

i,k,j
in the space c(Ω).

Theorem 5.8. For any given ε > 0 and each f ∈ c(Ω), there exists a linear
combination

∑3
i=1

∑N
k=0i

∑2k+1
j=1 d

(i)
k,jy

(i)
k,j , such that

∥∥∥∥∥∥
f −

3∑

i=1

N∑

k=0i

2k+1∑

j=1

d
(i)
k,jy

(i)
k,j

∥∥∥∥∥∥
c(Ω)

≤ ε.
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Indeed, if we take any g ∈ c(0)(Ω) and any ε > 0, we find a field f ∈ c(1)(Ω)
such that supξ∈Ω |g(ξ) − f(ξ)| < ε

2 . Due to Theorem 5.7, there also exists
an integer N with

sup
ξ∈Ω

∣∣∣∣∣∣
f(ξ)−

3∑

i=1

N∑

k=0i

2k+1∑

j=1

B∧
n (k)

(
f (i)
)∧

(k, j)y(i)
k,j(ξ)

∣∣∣∣∣∣
<

ε

2
.

Combining both inequalities, we therefore obtain

sup
ξ∈Ω

∣∣∣∣∣∣∣∣∣∣

g(ξ)−
3∑

i=1

N∑

k=0i

2k+1∑

j=1

B∧
n (k)

(
f (i)
)∧

(k, j)
︸ ︷︷ ︸

d
(i)
k,j

y
(i)
k,j(ξ)

∣∣∣∣∣∣∣∣∣∣

< ε.

By standard arguments, this immediately gives us the closure in c(Ω) with
respect to ‖ · ‖l2(Ω) as well as in l2(Ω) which in turn leads to completeness

of the system
{

y
(i)
k,j

}

i,k,j
in l2(Ω).

Summarizing our results, we therefore obtain the following theorem.

Theorem 5.9. Let {y(i)
n,j} i=1,2,3

n=0i,..., j=1,...,2n+1
be defined as in (5.36). Then,

the following statements are valid:

(i) The system of vector spherical harmonics is closed in c(Ω) with respect
to ‖ · ‖c(Ω).

(ii) The system is complete in l2(Ω) with respect to (·, ·)l2(Ω).

Once more, part (i) of this theorem says that any continuous vector field
on Ω can be approximated arbitrarily close by finite linear combinations of
vector spherical harmonics, while part (ii) is equivalent (cf. Theorem 3.54)
to the fact that every vector field in l2(Ω) can be represented by its Fourier
(orthogonal) series in terms of the l2(Ω)-orthogonal system {y(i)

n,j}:

f =
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j)y(i)
n,j . (5.91)

To be more specific, for f ∈ l2(Ω), we have

lim
N→∞

∥∥∥∥∥∥
f −

3∑

i=1

N∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j)y(i)
n,j

∥∥∥∥∥∥
l2(Ω)

= 0, (5.92)
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where the ‘Fourier coefficients’ are given by

(f (i))∧(n, j) = (f, y
(i)
n,j)l2(Ω) =

∫

Ω
f(ξ) · y(i)

n,j(ξ) dω(ξ). (5.93)

5.5 Homogeneous Harmonic Vector Polynomials

The property of scalar spherical harmonics of being restrictions of homoge-
neous harmonic polynomials to the unit sphere Ω has been of tremendous
importance for many results in scalar theory. In what follows, similar rela-
tions between vector spherical harmonics and homogeneous harmonic vec-
tor polynomials are developed. Unfortunately, the different nature of the
separation into normal/tangential components on the one hand, and into
cartesian components, on the other hand, does not provide us with relations
of comparable simplicity. Nevertheless, these interdependencies help us to
recognize significant results on the role of vector spherical harmonics as trial
functions in constructive approximation, viz. the closure and completeness
of vector spherical harmonics.

Definition 5.10. A vector field hn : R
3 → R

3, n ∈ N0, is called a homoge-
neous harmonic vector polynomial of degree n if hn · εi is a scalar homoge-
neous harmonic polynomial of degree n for every index i ∈ {1, 2, 3}.

Using the abbreviation,

Harmn(R3)εi = {Hnεi | Hn ∈ Harmn(R3)}, (5.94)

the space of all homogeneous harmonic vector polynomials of degree n is
characterized by

3⊕

i=1

Harmn(R3)εi. (5.95)

The restriction of a homogeneous harmonic vector polynomial of degree n
to the unit sphere Ω does – in contrast to the scalar case – in general, not
yield a spherical harmonic of degree n. But we shall see later on that each
member of

3⊕

i=1

Harmn(Ω)εi (5.96)

is expressible as a linear combination of vector spherical harmonics of dif-
ferent orders.

Suppose that Hn is of class Harmn(R3). Then, it is immediately clear
that the field ∇Hn is a homogeneous harmonic vector polynomial of degree
n − 1. A simple calculation shows that x �→ x ∧ ∇xHn(x), x ∈ R

3, yields
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a homogeneous harmonic vector polynomial of degree n. The field x �→
xHn(x), x ∈ R

3, is, in general, not harmonic, but it follows easily that x �→
((2n + 1)x − |x|2∇x)Hn(x) is a homogeneous harmonic vector polynomial
of degree n + 1.

These preparations motivate the following definition:

Definition 5.11. For n ∈ N0, Hn ∈ Homn(R3), and i ∈ {1, 2, 3} the opera-
tors õ

(i)
n , i = 1, 2, 3, are defined by

õ(1)
n Hn(x) = ((2n + 1)x− |x|2∇x)Hn(x), x ∈ R

3,

õ(2)
n Hn(x) = ∇xHn(x), x ∈ R

3,

õ(3)
n Hn(x) = x ∧∇xHn(x), x ∈ R

3.

The aforementioned properties of the operators õ
(i)
n , i ∈ {1, 2, 3}, intro-

duced in Definition 5.10 are summarized in the following result.

Lemma 5.12. Let Hn ∈ Harmn(R3), n ∈ N0. Then õ
(i)
n Hn is a homoge-

neous harmonic vector polynomial of degree deg(i)(n), where

deg(i)(n) =

⎧
⎨

⎩

n + 1, i = 1
n− 1, i = 2

n, i = 3.
(5.97)

(If deg(i)(n) < 0, then, by definition, õ
(i)
n Hn = 0).

Proof. Since the other statements are straightforward, we only prove that
the cartesian components of õ

(1)
n Hn(x) = ((2n + 1)x − |x|2∇x)Hn(x) con-

stitute homogeneous harmonic polynomials of degree n + 1. To be more
specific, observe that the components of õ

(1)
n Hn are homogeneous of degree

n + 1. Since, for j ∈ {1, 2, 3}, the function εj · ∇Hn is a homogeneous
harmonic polynomial of degree n− 1, we obtain by elementary calculations

Δx(õ(1)
n Hn(x)) · εj (5.98)

= Δx

(
(2n + 1)xjHn(x)− |x|2 ∂

∂xj
Hn(x)

)

= 2(2n + 1)εj · ∇Hn(x)

−
(
Δx|x|2

) ∂

∂xj
Hn(x)−

(
2∇x|x|2

)
·
(
∇x

∂

∂xj
Hn(x)

)

= 2(2n + 1)
∂

∂xj
Hn(x)− 6

∂

∂xj
Hn(x)− 4x · ∇x

∂

∂xj
Hn(x)

= 4(n− 1)
∂

∂xj
Hn(x)− 4(n− 1)

∂

∂xj
Hn(x)

= 0.

This yields the desired result.
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With the notation x = rξ, r = |x|, and the known representation of the
gradient ∇ in polar coordinates, it follows that

((2n + 1)x− |x|2∇x) = ξ

(
(2n + 1)r − r2 ∂

∂r

)
− r∇∗

ξ . (5.99)

Thus, for Yn ∈ Harmn and x = rξ, r = |x| > 0, we see that

õ(1)
n rnYn(ξ) = (n + 1)rn+1Yn(ξ)ξ − rn+1∇∗

ξYn(ξ), (5.100)

õ(2)
n rnYn(ξ) = nrn−1Yn(ξ)ξ + rn−1∇∗

ξYn(ξ), (5.101)

õ(3)
n rnYn(ξ) = rnL∗

ξYn(ξ). (5.102)

But this shows us that the restrictions of rξ �→ õ
(i)
n rnYn(ξ) to the unit sphere

Ω can be written as linear combinations of vector spherical harmonics o(i)Yn.
More explicitly,

õ(1)
n Hn(x)|r=1 = (n + 1)o(1)

ξ Yn(ξ)− o
(2)
ξ Yn(ξ), (5.103)

õ(2)
n Hn(x)|r=1 = no

(1)
ξ Yn(ξ) + o

(2)
ξ Yn(ξ), (5.104)

õ(3)
n Hn(x)|r=1 = o

(3)
ξ Yn(ξ), (5.105)

where Hn(x) = rnYn(ξ), x = rξ.

By inverting the equations (5.103) –(5.105), we find

o
(1)
ξ Yn(ξ) =

1
2n + 1

(
õ(1)

n Hn(x)|r=1

)
+

1
2n + 1

(
õ(2)

n Hn(x)|r=1

)
, (5.106)

o
(2)
ξ Yn(ξ) =

−n

2n + 1

(
õ(1)

n Hn(x)|r=1

)
+

n + 1
2n + 1

(
õ(2)

n Hn(x)|r=1

)
, (5.107)

o
(3)
ξ Yn(ξ) =

(
õ(3)
n Hn(x)|r=1

)
. (5.108)

By virtue of Lemma 5.12, it follows that the cartesian components of any
vector spherical harmonic of degree n and type 1 and 2 can be expressed
as linear combinations involving scalar spherical harmonics of degrees n− 1
and n+1, whereas the cartesian components of a vector spherical harmonic
of degree n and type 3 are a linear combination in terms of scalar spherical
harmonics of degree n.

In more detail,

harm(i)
n ⊂

3⊕

j=1

Harmn−1ε
j ⊕

3⊕

j=1

Harmn+1ε
j , i = 1, 2, (5.109)

harm(3)
n ⊂

3⊕

j=1

Harmnεj . (5.110)
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An immediate consequence is the fact that

y(i)
n (−ξ) = (−1)n+1y(i)

n (ξ), ξ ∈ Ω, y(i)
n ∈ harm(i)

n , i = 1, 2, (5.111)

and
y(3)

n (−ξ) = (−1)ny(3)
n (ξ), ξ ∈ Ω, y(3)

n ∈ harm(3)
n . (5.112)

Furthermore, the following orthogonality relations are readily obtainable
from (5.109) and (5.110).

Lemma 5.13. Let y
(i)
n ∈ harm(i)

n and Ym ∈ Harmm. Then
∫

Ω
y(i)

n (ξ)Ym(ξ) dω(ξ) = 0,

whenever i ∈ {1, 2} and m �∈ {n− 1, n + 1} or i = 3 and m �= n.

Next, we are interested in closure and completeness properties of vector
spherical harmonics. It is obvious from the corresponding results of (scalar)
spherical harmonics that

⊕∞
m=0

⊕3
i=1 Harmmεi is dense in c(Ω) with respect

to ‖ · ‖c(Ω) and in l2(Ω) with respect to ‖ · ‖l2(Ω). On the other hand, one
can readily show that

harmn ⊂
n+1⊕

m=n−1

3⊕

i=1

Harmmεi. (5.113)

It is obvious that similar properties of the above sets
⊕∞

m=0 harm(1)
m and

⊕∞
m=1 (harm(2)

m ⊕ harm(3)
m ) may be verified within the spaces cnor(Ω) and

l2nor(Ω), respectively, ctan(Ω) and l2tan(Ω).

5.6 Exact Computation of Orthonormal Systems

In Chapter 3, an algorithm for generating L2(Ω)-orthonormal systems of
scalar spherical harmonics was indicated. In what follows, we are interested
in a viable way for determining l2(Ω)-orthonormal systems of vector spher-
ical harmonics {y(i)

n,j}. It should be noted that, we avoid problems arising
from the singularities of a spherical coordinate system when using cartesian
coordinate representations.

Let Hn,j , j = 1, . . . , 2n + 1, be an (·, ·)Homn-orthonormal system of homo-
geneous harmonic polynomials of degree n, of the form

Hn,j(x) =
∑

[α]=n

Bj
αxα (5.114)
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with known real numbers Bj
α (as described in Chapter 3). Then we know

that Yn,j(ξ) =
√

μnHn,j(ξ), ξ ∈ Ω, constitutes an L2(Ω)-orthogonal system
of spherical harmonics. Therefore, via the well-known procedure, by letting

y
(i)
n,j = (μ(i)

n )1/2o(i)Yn,j , j = 1, . . . , 2n + 1, i ∈ 1, 2, 3, (5.115)

an l2(Ω)-orthonormal system of vector spherical harmonics of kind i is found.
More explicitly,

y
(1)
n,j(ξ) =

1
√

μn
h

(1)
n,j(x)||x|=1 =

1
√

μn
h

(1)
n,j(ξ), (5.116)

y
(2)
n,j(ξ) =

1
√

μn

1√
n(n + 1)

h
(2)
n,j(x)||x|=1 =

1
√

μn

1√
n(n + 1)

h
(2)
n,j(ξ),

(5.117)

y
(3)
n,j(ξ) =

1
√

μn

1√
n(n + 1)

h
(3)
n,j(x)||x|=1 =

1
√

μn

1√
n(n + 1)

h
(3)
n,j(ξ),

(5.118)

where

h
(1)
n,j(x) = Hn,j(x)x, (5.119)

h
(2)
n,j(x) = x2∇xHn,j(x)− nHn,j(x)x, (5.120)

h
(3)
n,j(x) = x ∧∇xHn,j(x) (5.121)

(x = rξ, r = |x|, ξ ∈ Ω).

Our purpose is to determine the vector spherical harmonics using exclu-
sively exact integer arithmetic. We base our considerations on the repre-
sentation

h
(i)
n,j(x) =

3∑

k=1

εk

⎛

⎝
∑

[α]=mi

Di,k
α;jx

α

⎞

⎠ , (5.122)

where m1 = m2 = n + 1, m3 = n. Observing, the already known identities

y
(1)
n,j(ξ) =

√
μn

μ
(1)
n

1
2n + 1

(õ(1)
n + õ(2)

n )Hn,j(rξ)|r=1, (5.123)

y
(2)
n,j(ξ) =

√
μn

μ
(2)
n

1
2n + 1

(−nõ(1)
n + (n + 1)õ(2)

n )Hn,j(rξ)|r=1, (5.124)

y
(3)
n,j(ξ) =

√
μn

μ
(3)
n

õ(3)
n Hn,j(rξ)|r=1, (5.125)
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we find by observing the definition of the k
(i)
n -operators (see Definition 5.11)

y
(1)
n,j(ξ) =

√
μn

μ
(1)
n

∑

[α]=n

Bj
α

⎛

⎝
ξα1+1
1 ξα2

2 ξα3
3

ξα1
1 ξα2+1

2 ξα3
3

ξα1
1 ξα2

2 ξα3+1
3

⎞

⎠,

y
(2)
n,j(ξ) =

√
μn

μ
(2)
n

∑

[α]=n

Bj
α

⎛

⎝
α1ξ

α1−1
1 ξα2

2 ξα3
3 (ξ2

1 + ξ2
2 + ξ2

3)− nξα1+1
1 ξα2

2 ξα3
3

α2ξ
α1
1 ξα2−1

2 ξα3
3 (ξ2

1 + ξ2
2 + ξ2

3)− nξα1
1 ξα2+2

2 ξα3
3

α3ξ
α1
1 ξα2

2 ξα3−1
3 (ξ2

1 + ξ2
2 + ξ2

3)− nξα1
1 ξα2

2 ξα3+1
3

⎞

⎠,

y
(3)
n,j(ξ) =

√
μn

μ
(3)
n

∑

[α]=n

Bj
α

⎛

⎝
α3ξ

α1
1 xα2+1

2 ξα3−1
3 − α2ξ

α1
1 ξα2−1

2 ξα3+1
3

α1ξ
α1−1
1 ξα2

2 ξα3+1
3 − α3ξ

α1+1
1 ξα2

2 ξα3−1
3

α2ξ
α1+1
1 ξα2−1

2 ξα3
3 − α1ξ

α1−1
1 ξα1+1

2 ξα3
3

⎞

⎠.

Hence, the coefficients Di,k
β,j occuring in (5.122) are found. We organize

their computation by a matrix-matrix multiplication in the form

Di,k
β;j =

√
μn

μ
(i)
n

∑

[α]=n

Bj
αM i,k

βα;j (5.126)

for i, k = 1, 2, 3, j = 1, . . . , 2n + 1, [β] = n + 1 in the cases i = 1, 2 and
[β] = n if i = 3, respectively. The matrices mi,k = (M i,k

β,α) have
(
n+2

2

)
rows

and
(
n
2

)
columns for i = 1, 2 and they have

(
n
2

)
rows and

(
n
2

)
columns if

i = 3. It is easy to see that

M1,1
βα;j =

{
1 if β − α = (1, 0, 0)T

0 otherwise
(5.127)

M1,2
βα;j =

{
1 if β − α = (0, 1, 0)T

0 otherwise
(5.128)

M1,3
βα;j =

{
1 if β − α = (0, 0, 1)T

0 otherwise
(5.129)

M2,1
βα;j =

⎧
⎨

⎩

α1 − n if β − α = (1, 0, 0)T

α1 if β − α ∈ {(−1, 2, 0)T , (−1, 0, 2)T }
0 otherwise

(5.130)

M2,2
βα;j =

⎧
⎨

⎩

α2 − n if β − α = (0, 1, 0)T

α2 if β − α ∈ {(2,−1, 0)T , (0,−1, 2)T }
0 otherwise

(5.131)

M2,3
βα;j =

⎧
⎨

⎩

α3 − n if β − α = (0, 0, 1)T

α3 if β − α ∈ {(2, 0,−1)T , (0, 2,−1)T }
0 otherwise

(5.132)

M3,1
βα;j =

⎧
⎨

⎩

α3 − n if β − α = (0, 1,−1)T

−α2 if β − α ∈ (0,−1, 1)T

0 otherwise
(5.133)
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M3,2
βα;j =

⎧
⎨

⎩

α1 if β − α = (−1, 0, 1)T

−α3 if β − α ∈ (1, 0,−1)T

0 otherwise
(5.134)

M3,3
βα;j =

⎧
⎨

⎩

α2 if β − α = (1,−1, 0)T

−α1 if β − α = (−1, 1, 0)T

0 otherwise.
(5.135)

Example 5.14. As example, we consider, for n = 3, the (·, ·)Hom3-ortho-
normal system

H3,1(x) =
1√
24

(x1
3 − 3x1x2

2), (5.136)

H3,2(x) = x1x2x3, (5.137)

H3,3(x) =
1√
40

(x1
3 + x1x2

2 − 4x1x3
2), (5.138)

H3,4(x) =
1√
24

(3x1
2x2 − x2

3), (5.139)

H3,5(x) =
1√
4
(x1

2x3 − x2
2x3), (5.140)

H3,6(x) =
1√
40

(x1
2x2 + x2

3 − 4x2x3), (5.141)

H3,7(x) =
1√
60

(3x1
2x3 + 3x2

2x3 − 2x3
3) (5.142)

of homogeneous harmonic polynomials of degree 3. Then we obtain

y
(1)
3,1(ξ) =

√
105
4π

1√
24

(ξ1
3 − 3ξ1ξ2

2)ξ, (5.143)

y
(1)
3,2(ξ) =

√
105
4π

ξ1ξ2ξ3ξ, (5.144)

y
(1)
3,3(ξ) =

√
105
4π

1√
40

(ξ1
3 + ξ1ξ2

2 − 4ξ1ξ3
2)ξ, (5.145)

y
(1)
3,4(ξ) =

√
105
4π

1√
24

(3ξ1
2ξ2 − ξ2

3)ξ, (5.146)

y
(1)
3,5(ξ) =

√
105
4π

1√
4
(ξ1

2ξ3 − ξ2
2ξ3)ξ, (5.147)

y
(1)
3,6(ξ) =

√
105
4π

1√
40

(ξ1
2ξ2 + ξ2

3 − 4ξ2ξ3)ξ, (5.148)

y
(1)
3,7(ξ) =

√
105
4π

1√
60

(3ξ1
2ξ3 + 3ξ2

2ξ3 − 2ξ3
3)ξ, (5.149)
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and

y
(2)
3,1(ξ) =

√
105
28π

1√
24

⎛

⎝
−3ξ1

2(ξ1
2 − 3ξ2

2) + 3ξ1
2 − 3ξ2

2

−3ξ1ξ2(ξ1
2 − 3ξ2

2)− 6ξ1ξ2

−3ξ1ξ3(ξ1
2 − 3ξ2

2)

⎞

⎠ , (5.150)

y
(2)
3,2(ξ) =

√
105
28π

⎛

⎝
−3ξ1

2ξ2ξ3 + ξ2ξ3

−3ξ1ξ2
2ξ3 + ξ1ξ3

−3ξ1ξ2ξ3
2 + ξ1ξ2

⎞

⎠ , (5.151)

y
(2)
3,3(ξ) =

√
105
28π

1√
40

⎛

⎝
−3ξ1

2(1− 5ξ3
2) + 3ξ1

2 + ξ2
2 − 4ξ3

2

−3ξ1ξ2(1− 5ξ3
2) + 2ξ1ξ2

−3ξ1ξ3 − 8ξ1ξ3

⎞

⎠ ,

y
(2)
3,4(ξ) =

√
105
28π

1√
24

⎛

⎝
−3ξ1ξ2(3ξ1

2 − ξ2
2) + 6ξ1ξ2

−3ξ2
2(3ξ1

2 − ξ2
2) + 3ξ1

2 − 3ξ2
2

−3ξ2ξ3(3ξ1
2 − ξ2

2)

⎞

⎠ , (5.152)

y
(2)
3,5(ξ) =

√
105
28π

1√
4

⎛

⎝
−3ξ1ξ3(ξ1

2 − ξ2
2) + 2ξ1ξ3

−3ξ2ξ3(ξ1
2 − ξ2

2)− 2ξ2ξ3

−3ξ1ξ3(ξ1
2 − ξ2

2) + ξ1
2 − ξ2

2

⎞

⎠ , (5.153)

y
(2)
3,6(ξ) =

√
105
28π

1√
40

⎛

⎝
−3ξ1ξ2(1− 5ξ3

2) + 2ξ1ξ2

−3ξ2
2(1− 5ξ3

2) + ξ1
2 + 3ξ2

2 − 4ξ3
2

−3ξ2ξ3(1− 5ξ3
2)− 8ξ2ξ3

⎞

⎠ ,

(5.154)

y
(2)
3,7(ξ) =

√
105
28π

1√
60

⎛

⎝
−3ξ1ξ3(3− 5ξ3

2) + 6ξ1ξ3

−3ξ2ξ3(3− 5ξ3
2) + 6ξ2ξ3

−3ξ3
2(3− 5ξ3

2) + 3(1− 3ξ3
2)

⎞

⎠ , (5.155)

as well as

y
(3)
3,1(ξ) =

√
105
28π

1√
24

ξ ∧

⎛

⎝
3ξ1

2 − 3ξ2
2

−6ξ1ξ2

0

⎞

⎠ , (5.156)

y
(3)
3,2(ξ) =

√
105
28π

ξ ∧

⎛

⎝
ξ2ξ3

ξ1ξ3

ξ1ξ2

⎞

⎠ , (5.157)

y
(3)
3,3(ξ) =

√
105
28π

1√
40

ξ ∧

⎛

⎝
3ξ1

2 + ξ2
2 − 4ξ3

2

2ξ1ξ2

−8ξ1ξ3

⎞

⎠ , (5.158)

y
(3)
3,4(ξ) =

√
105
28π

1√
24

ξ ∧

⎛

⎝
6ξ1ξ2

3ξ1
2 − 3ξ2

2

0

⎞

⎠ , (5.159)
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y
(3)
3,5(ξ) =

√
105
28π

1√
4
ξ ∧

⎛

⎝
2ξ1ξ3

−2ξ2ξ3

ξ1
2 − ξ2

2

⎞

⎠ , (5.160)

y
(3)
3,6(ξ) =

√
105
28π

1√
40

ξ ∧

⎛

⎝
2ξ1ξ2

ξ1
2 + 3ξ2

2 − 4ξ3
2

−4ξ2

⎞

⎠ , (5.161)

y
(3)
3,7(ξ) =

√
105
28π

1√
60

ξ ∧

⎛

⎝
6ξ1ξ3

6ξ2ξ3

3(ξ2
1 − 2ξ3

2)

⎞

⎠ . (5.162)

5.7 Irreducibility and Orthogonal Invariance of Vector
Spherical Harmonics

Another coordinate free classification of vector spherical harmonics can be
given by looking at the following system of partial differential equations:

ξΔ∗
ξ(ξ · f(ξ))− (Δ∗)∧(n)f(ξ) = 0, n ≥ 0, (5.163)

∇∗
ξ(∇∗

ξ · f(ξ))− (Δ∗)∧(n)f(ξ) = 0, n ≥ 1, (5.164)
L∗

ξ(∇∗
ξ · (f(ξ) ∧ ξ))− (Δ∗)∧(n)f(ξ) = 0, n ≥ 1, (5.165)

where, as usual,
(Δ∗)∧(n) = −n(n + 1). (5.166)

Solutions y
(1)
n of (5.163) fulfill ξ ∧ y

(1)
n (ξ) = 0 and, consequently, there

exists a scalar function F such that y
(1)
n (ξ) = ξF (ξ). In connection with

(5.163), this leads to

ξ(Δ∗
ξF (ξ)− (Δ∗)∧(n)F (ξ)) = 0, (5.167)

which means that F1 is a spherical harmonic of degree n, i.e., solutions of
(5.163) are of the form y

(1)
n (ξ) = ξYn(ξ).

For solutions y
(2)
n of (5.164), we get ξ ·y(2)

n (ξ) = 0 and ∇∗
ξ ·(ξ∧y

(2)
n (ξ)) = 0,

such that there exists a scalar function G with y
(2)
n (ξ) = ∇∗

ξG(ξ). Together
with (5.164), this leads to

∇∗
ξ(Δ

∗
ξG(ξ)− (Δ∗)∧(n)G(ξ)) = 0. (5.168)

Consequently, we have

Δ∗
ξG(ξ)− (Δ∗)∧(n)G(ξ) = const. (5.169)
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This means that, up to a constant, G is a spherical harmonic of degree n,
and solutions of (5.164) are of the form y

(2)
n (ξ) = ∇∗

ξYn(ξ).

Analogously, solutions y
(3)
n of (5.165) fulfill both ξ · y

(3)
n (ξ) = 0 and

∇∗
ξ · y

(3)
n (ξ) which in turn means that there exists a scalar function H such

that y
(3)
n (ξ) = L∗

ξH(ξ). Consequently,

L∗
ξ(Δ

∗
ξH(ξ)− (Δ∗)∧(n)H(ξ)) = 0 (5.170)

and, therefore, y
(3)
n (ξ) = L∗

ξYn(ξ).

As we have seen, the solutions of the differential equations (5.163)-(5.165)
are the vector spherical harmonics (as defined in the previous section). This
observation has immediate consequences for the spaces harm(i)

n of vector
spherical harmonics. In fact, they can be seen to be ‘the smallest’ orthogo-
nally invariant spaces.

Theorem 5.15. The spaces harm(i)
n of vector spherical harmonics are or-

thogonally invariant and irreducible.

Proof. The orthogonal invariance is a direct consequence of the invariant
differential operators of (5.163, 5.164, 5.165). To be more concrete, suppose
that there exists an orthogonally invariant subspace of harm(i)

n . The appli-
cation of the operators o(i) to the respective elements would – because of
Definition 5.2 – generate an orthogonally invariant subspace in the space
of scalar spherical harmonics. This, however, is a contradiction to the irre-
ducibility of the spaces Harmn.

Theorem 5.15 shows us that vector spherical harmonics have the same
significance for spherical vector fields, as have the spherical harmonics in the
theory of scalar spherical fields. In what follows, we deduce some concrete
consequences for vector spherical harmonics.

Suppose that t is of class O(3). Let, for i ∈ {1, 2, 3}, {y(i)
n,j}j=1,...,2n+1 be

an orthonormal system in harm(i)
n . Because of Theorem 5.15, there exist

coefficients cj,l such that

Rty
(i)
n,j =

2n+1∑

l=1

cj,ly
(i)
n,l, i ∈ {1, 2}, (5.171)

Rty
(i)
n,j = det t

2n+1∑

l=1

cj,ly
(i)
n,l (5.172)
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(note that, for i = 3, we have to take into account a minus sign for reflec-
tions because of the vector product). Consequently, for every orthogonal
transformation t we have, on the one hand, an associated matrix cj,l with

∫

Ω
Rty

(i)
n,j(ξ) ·Rty

(i)
n,k(ξ) dω(ξ) =

2n+1∑

l=1

2n+1∑

l′=1

cj,lck,l′

∫

Ω
y

(i)
n,l(ξ) · y

(i)
n,l′(ξ) dω(ξ)

=
2n+1∑

l=1

2n+1∑

l′=1

cj,lck,l′δll′

=
2n+1∑

l=1

cj,lck,l. (5.173)

On the other hand, we may interpret t to be a coordinate transformation
on Ω, i.e,

∫

Ω
Rty

(i)
n,j(ξ) ·Rty

(i)
n,k(ξ) dω(ξ) =

∫

Ω
y

(i)
n,j(η) · y(i)

n,k(η) dω(η) = δjk. (5.174)

Comparing (5.173) and (5.174), we get

2n+1∑

l=1

cj,lck,l = δjk, (5.175)

hence, (cj,l) is an orthogonal matrix. An analogous treatment leads to

2n+1∑

j=1

cj,kcj,l = δkl. (5.176)

Now, for ξ, η ∈ Ω, let

vp(i,k)
n (ξ, η) =

2n+1∑

j=1

y
(i)
n,j(ξ)⊗ y

(k)
n,j(η). (5.177)

Then, every a ∈ R
3, vp(i,k)

n (·, η)a is a member of harm(i)
n . This means that

(5.177) provides a mapping from harm(k)
n onto harm(i)

n .

If (i, k) ∈ {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}, then from (5.171), (5.172) and
(5.176) we get
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tT vp(i,k)
n (tξ, tη)t =

2n+1∑

j=1

tT
[
y

(i)
n,j(tξ)⊗ y

(k)
n,j(tη)

]
t (5.178)

=
2n+1∑

j=1

tT y
(i)
n,j(tξ)⊗ tT y

(k)
n,j(tη)

=
2n+1∑

j=1

(
2n+1∑

l=1

cj,ly
(i)
n,l(ξ)⊗

2n+1∑

m=1

cj,my(k)
n,m(η)

)

=
2n+1∑

j=1

2n+1∑

l=1

2n+1∑

m=1

cj,lcj,my
(i)
n,l(ξ)⊗ y(k)

n,m(η)

=
2n+1∑

l=1

2n+1∑

m=1

δlmy
(i)
n,l(ξ)⊗ y(k)

n,m(η)

= vp(i,k)
n (ξ, η).

If either i = 3 or k = 3, a similar result can be shown, taking into account
a minus sign for reflections.

Summarizing our results, we are able to formulate the following lemma.

Lemma 5.16. Let t be of class O(3). Suppose that ξ, η ∈ Ω. Then

vp(i,k)
n (tξ, tη) =

{
tvp(i,k)

n (ξ, η)tT , else

(det t) tvp(i,k)
n (ξ, η)tT , if either i = 3 or k = 3.

(5.179)

Actually, it is this lemma which makes tensors of the form (5.177) an
important tool when dealing with the addition theorem for vector spherical
harmonics in terms of Legendre tensors (see Section 5.9).

Let z
(i)
n be a member of class harm(i)

n , then the span of elements of the
form

Rtz
(i)
n , t ∈ O(3), (5.180)

is orthogonally invariant and, according to Theorem 5.15, is harm(i)
n itself.

Hence, among the vector fields of the form (5.180) there is a basis for harm(i)
n ,

and we have the following representation theorem:

Theorem 5.17. Let z
(i)
n be a member of class harm(i)

n with z
(i)
n �= 0. Then,

there exist 2n+1 orthogonal transformations t1, t2 . . . , t2n+1 such that every
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vector spherical harmonic y
(i)
n ∈ harm(i)

n can be represented in the form

y(i)
n =

2n+1∑

j=1

cjRtjz
(i)
n , (5.181)

with certain real numbers c1, c2, . . . , c2n+1.

If we, in particular choose, z
(i)
n to be an element of the form vp(i,i)

n (·, η)a,
with η ∈ Ω and a ∈ R

3, then Lemma 5.16 allows the following reformulation.

Lemma 5.18. There exist points η1, η2, . . . , η2n+1 ∈ Ω and vectors a1, a2,
. . . , a2n+1 ∈ R

3 such that every vector spherical harmonic y
(i)
n ∈ harm(i)

n

admits the representation

y(i)
n =

2n+1∑

j=1

cj
vp(i,i)

n (·, ηj)aj , (5.182)

with certain real numbers c1, c2, . . . , c2n+1.

Given points η1, η2, . . . , η2n+1 ∈ Ω and given vectors a1, a2, . . . , a2n+1 ∈
R

3 can be used for a representation in the sense of Lemma 5.18 if the Gram
matrix of the vectors is non-singular.

Let j, k ∈ {1, 2, . . . , 2n + 1}, then we have
∫

Ω
(vp(i,i)

n (ξ, ηj)aj)T vp(i,i)
n (ξ, ηk)ak dω(ξ)

= aT
j

∫

Ω
(vp(i,i)

n (ξ, ηj)aj)Tp(i,i)
n (ξ, ηk) dω(ξ)ak

= aT
j

vp(i,i)
n (ηj , ηk)ak.

Lemma 5.18 is equivalent to the following statement:

Lemma 5.19. There exist points η1, η2, . . . , η2n+1 ∈ Ω and vectors a1,
a2, . . . , a2n+1 ∈ R

3 such that the matrix
(
aT

j
vp(i,i)

n (ηj , ηk)ak

)
j=1,...,2n+1
k=1,...,2n+1

, (5.183)

i ∈ {1, 2, 3}, is non-singular.

We now turn to orthogonally invariant elements in the spaces harm(i)
n .

From Lemma 2.19, we know that a vector field, which is invariant under
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all orthogonal transformations, i.e., f(tξ) = tf(ξ) for all t ∈ SO(3), is of
the form f(ξ) = Cξ, ξ ∈ Ω. There remains the question which elements
y

(i)
n ∈ harm(i)

n are transformed onto themselves under rotations around a
fixed axis η, i.e.,

y(i)
n (tξ) = ty(i)

n (ξ), (5.184)

for t ∈ SOη(3). For vp(i,1)
n (ξ, η)η as a function of ξ, we have, in connection

with Lemma 5.16, the relation

vp(i,1)
n (tξ, η)η = tvp(i,1)

n (ξ, tT η)tT tη (5.185)
= tvp(i,1)

n (ξ, η)η.

Let p̂
(i)
n ∈ harm(i)

n , i ∈ {1, 2, 3}, denote a vector field which is invariant
under all transformations t ∈ SOη(3). From Lemma 2.20, we know that
there exist functions Φk, k = 1, 2, 3, such that

p̂(i)
n (ξ, η) =

3∑

k=1

Φk(ξ · η) εk
ξ , (5.186)

for ξ �= ±η. Since p̂
(i)
n is of class harm(i)

n , we know that the functions Φk are
arbitrarily often differentiable in (−1, 1). We consider the case i = 2 (the
cases i = 1, 3 can be treated analogously): Since p̂

(2)
n ∈ harm(2)

n , it is clear
that ε1

ξ · p̂
(2)
n (ξ, η) = 0 as well as ∇∗

ξ · (ξ ∧ p̂
(2)
n (ξ, η)) = 0. Furthermore we

have Φ1 = Φ3 = 0. Consequently, (5.186) simplifies to

p̂(2)
n (ξ, η) = ε2

ξΦ2(ξ · η) = ∇∗
ξΨ(ξ · η), (5.187)

ξ �= ±η, where Ψ is an antiderivative of (1 − t2)−1/2Φ2 in (−1, 1). Since
∇∗

ξ · p̂
(2)
n (ξ, η) defines a spherical harmonic of degree n, this is also true for

Δ∗
ξΨ(ξ · η) and, consequently, for Ψ(ξ · η). Since Ψ(ξ · η) is only dependent

on the scalar product ξ · η it is clear that Ψ(ξ · η) is – up to a factor – given
by the Legendre polynomial Pn(ξ · η), i.e.,

p̂(2)
n (ξ, η) = λ∇∗

ξPn(ξ · η) = λ (η − (ξ · η)ξ) P ′
n(ξ · η), λ ∈ R. (5.188)

The limit ξ → ±η yields p̂
(2)
n (±η, η) = 0. A similar argument leads to

p̂(1)
n (ξ, η) = λ η Pn(ξ · η), (5.189)

and
p̂(3)

n (ξ, η) = λL∗
ξPn(ξ · η) = λ (ξ ∧ η) P ′

n(ξ · η). (5.190)

Summarizing our results, we are led to the following representations of ‘Leg-
endre vector functions’.
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Theorem 5.20. Let η ∈ Ω. In harm(i)
n , i = 1, 2, 3, there exists one and

only one element p
(i)
n (·, η), with the following properties:

(i) p
(i)
n (t·, η) = tp(i)

n (·, η), t ∈ SOη(3),

(ii)

η · p(1)
n (η, η) = 1,

−(μ(2)
n )1/2∇∗

ξ · p(2)
n (ξ, η)|ξ=η = 1,

−(μ(3)
n )1/2L∗

ξ · p(3)
n (ξ, η)|ξ=η = 1.

Proof. Condition (i) defines p
(i)
n (·, η) up to a normalization constant. With

condition (ii) of Theorem 5.20, the normalization constants can be calcu-
lated as follows:

p(1)
n (ξ, η) = ξ Pn(ξ · η), (5.191)

p(2)
n (ξ, η) =

1√
n(n + 1)

∇∗
ξPn(ξ · η), (5.192)

p(3)
n (ξ, η) =

1√
n(n + 1)

L∗
ξPn(ξ · η). (5.193)

i.e., for i = 1, 2, 3,

p(i)
n (ξ, η) = (μ(i)

n )−1/2o
(i)
ξ Pn(ξ · η). (5.194)

Definition 5.21. The kernel p
(i)
n : (ξ, η) �→ p

(i)
n (ξ, η), ξ, η ∈ Ω (more accu-

rately, vp
(i)
n : (ξ, η) �→ vp

(i)
n (ξ, η), ξ, η ∈ Ω), is called the (vectorial) Legendre

vector kernel of degree n and type i with respect to the dual system of op-
erators o(i), O(i) , i ∈ {1, 2, 3}. The kernel pn =

∑3
i=1 p

(i)
n is called (vecto-

rial) Legendre vector kernel of degree n with respect to the system o(i), O(i),
i = 1, 2, 3..

It should be noted that these vector fields bear a close resemblance to the
Legendre vectors which are vectorial counterparts of the Legendre polyno-
mials, and which can be used to formulate an addition theorem connecting
scalar and vector spherical harmonics. This resemblance and the rotational
invariance of the vector fields (5.191, 5.192, 5.193) make the Legendre vec-
tors such important tools of vectorial theory.

According to Theorem 5.20, we can generate a basis in harm(i)
n from any

non-vanishing vector spherical harmonic using orthogonal transformations
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t1, t2 . . . , t2n+1. If, in this context, we use rotational invariant vector fields,
we can find 2n+1 linearly independent vector fields of the form Rtjp

(i)
n (·, η),

j = 1, . . . , 2n + 1. Hence we end up with the following representation theo-
rem.

Theorem 5.22. There exist 2n + 1 points η1, η2, . . . , η2n+1 ∈ Ω such that
every vector spherical harmonic y

(i)
n ∈ harm(i)

n can be represented in the
form

y(i)
n =

2n+1∑

j=1

cjp
(i)
n (·, ηj) (5.195)

with certain real constants c1, . . . , c2n+1.

In what follows, we recapitulate some interesting results for rotational
invariant spherical vector fields.

Lemma 5.23. For ξ, η ∈ Ω and for i = 1, 2, 3

∣∣∣(μ(i)
n )−1/2p(i)

n (ξ, η)
∣∣∣ ≤ 1.

Proof. The well known inequalities |Pn(t)| ≤ 1 and |P ′
n(t)| ≤ n(n+1)

2 , t ∈
[−1, 1], together with (5.191, 5.192, 5.193) lead to the required result.

An immediate consequence of the orthogonality of vector spherical har-
monics is the orthogonality of rotational invariant vector fields on the sphere,
i.e., ∫

Ω
p(i)

n (ξ, η1) · p(i)
m (ξ, η2) dω(ξ) = 0 (5.196)

for n �= m and η1, η2 ∈ Ω.

Lemma 5.24. If η1, η2 ∈ Ω, then

∫

Ω
p(i)

n (ξ, η1) · p(i)
n (ξ, η2) dω(ξ) =

4π

2n + 1
Pn(η1 · η2), i = {1, 2, 3}.

Proof. We show the proof for the case i = 2. The other cases can be treated
in analogous manner:
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∫

Ω
p(i)

n (ξ, η1) · p(i)
n (ξ, η2) dω(ξ) (5.197)

=
1

n(n + 1)

∫

Ω
∇∗

ξPn(ξ · η1) · ∇∗
ξPn(ξ · η2) dω(ξ)

=
∫

Ω
Pn(ξ · η1)Pn(ξ · η2) dω(ξ)

=
4π

2n + 1
Pn(η1 · η2).

This is the desired result.

5.8 Vectorial Beltrami Operator

Next, we develop a vectorial analogue of the Beltrami operator Δ∗, denoted
by Δ∗. In doing so, the vector spherical harmonics of class harmn can be
recognized as eigenfunctions of the vectorial operator Δ∗. In particular , it
turns out that the operator Δ∗ corresponds to the orthogonal decomposition
with respect to the operators o(i), i = 1, 2, 3, that is to say, Δ∗f ∈ c(i)(Ω)

for all i = 1, 2, 3, provided that f ∈ c(2)
(i) (Ω).

Our construction is based on the componentwise application of the (scalar)
Beltrami operator Δ∗: The point of departure is the convention that, if
f ∈ c(2)(Ω) is of the form

f(ξ) =
3∑

i=1

εiFi(ξ), ξ ∈ Ω, (5.198)

then Δ∗f is understood to be

Δ∗f(ξ) =
3∑

i=1

εiΔ∗Fi(ξ), ξ ∈ Ω. (5.199)

Observing this setting, we are able to deduce the following identities.

Lemma 5.25. The following statements are true.

(i) Let F : Ω → R be sufficiently smooth. Then

Δ∗o(1)F = o(1)(Δ∗ − 2)F + 2o(2)F,

Δ∗o(2)F = −2o(1)Δ∗F + o(2)Δ∗F,

Δ∗o(3)F = o(3)Δ∗F.
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(ii) Let f : Ω → R
3 be a sufficiently smooth vector field. Then

O(1)Δ∗f = (Δ∗ − 2)O(1)f + 2O(2)f,

O(2)Δ∗f = −2Δ∗O(1)f + Δ∗O(2)f,

O(3)Δ∗f = Δ∗O(3)f.

Proof. We verify only the first formula of part (i), since the other assertions
follow by quite similar arguments. Assume that the function under consid-
eration is a spherical harmonic Yn of class Harmn. Then, it follows from
(5.108) that

Δ∗
ξo

(1)
ξ Yn(ξ) = Δ∗

ξ

1
2n + 1

(
õ(1)

n rnYn(ξ)|r=1 + õ(2)
n rnYn(ξ)|r=1

)

= −(n + 1)(n + 2)
2n + 1

(õ(1)
n rnYn(ξ))|r=1

−n(n− 1)
2n + 1

(õ(2)
n rnYn(ξ))|r=1 (5.200)

holds for all ξ ∈ Ω. Using (5.97), we obtain

Δ∗
ξo

(1)
ξ Yn(ξ) = −(n + 1)2(n + 2)

2n + 1
o
(1)
ξ Yn(ξ) +

(n + 1)(n + 2)
2n + 1

o
(2)
ξ Yn(ξ)

−(n− 1)n2

2n + 1
o
(1)
ξ Yn(ξ)− n(n− 1)

2n + 1
o
(2)
ξ Yn(ξ)

= (−n(n + 1)− 2)o(1)
ξ Yn(ξ) + 2o

(2)
ξ Yn(ξ)

= (Δ∗
ξ − 2)o(1)

ξ Yn(ξ) + 2o
(2)
ξ Yn(ξ). (5.201)

Thus, our formula is true for every spherical harmonic. The completeness of
the system of vector spherical harmonics in l2(Ω) then implies the validity
for all sufficiently smooth functions. Part (ii) follows from the adjointness
of the operators o(i) and O(i) and the self-adjointness of Δ∗.

Lemma 5.25 helps us to find a vectorial Beltrami operator by observing
the following identities

(Δ∗ + 2)o(1)Yn = −n(n + 1)o(1)Yn + 2o(2)Yn,

Δ∗o(2)Yn = 2n(n + 1)o(1)Yn − n(n + 1)o(2)Yn, (5.202)
Δ∗o(3)Yn = −n(n + 1)o(3)Yn.

In consequence, we have

pnor(Δ∗ + 2)o(1)Yn = −n(n + 1)o(1)Yn,

ptanΔ∗o(2)Yn = −n(n + 1)o(2)Yn, (5.203)
ptanΔ∗o(3)Yn = −n(n + 1)o(3)Yn.
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In other words, the equations (5.203) motivate the introduction of the vec-
torial Beltrami operator in the following way.

Definition 5.26. The operator Δ∗ : c(2)(Ω) → c(0)(Ω) given by

Δ∗ = pnor(Δ∗ + 2)pnor + ptanΔ∗ptan,

is called vectorial Beltrami operator, where the application of Δ∗ on vector
fields is understood in the sense of (5.199).

As an immediate consequence of Lemma 5.25, we obtain the following
result.

Lemma 5.27. If F : Ω → R and f : Ω → R
3 are sufficiently smooth, then,

for i ∈ {1, 2, 3},

Δ∗o(i)F = o(i)Δ∗F,

O(i)Δ∗f = Δ∗O(i)f.

Lemma 5.27 motivates us to characterize the spectrum of the operator
Δ∗.

Theorem 5.28. Any vector spherical harmonic yn ∈ harmn of degree n
is an infinitely often differentiable eigenfunction of the operator Δ∗ with
respect to the eigenvalue (Δ∗)∧(n) = (Δ∗)∧(n) = −(n(n + 1)). Conversely,
any infinitely often differentiable eigenfunction of Δ∗ is a vector spherical
harmonic.

Remark 5.29. The vector spherical harmonics can be seen to be the eigen-
functions of an operator Δ∗ that can be introduced (without projection
operators) only by use of differentiation processes in R

3 (see T. Gervens
(1989)). More explicitly, the following theorem is valid.

Theorem 5.30. Let Δ∗ be given by

Δ∗
ξf(ξ) = Δ∗

ξf(ξ)− 2(ξ ∧∇ξ) ∧ f(ξ)− 2f(ξ), f ∈ c(2)(Ω). (5.204)

Then
Δ∗

ξyn + n(n + 1)yn = 0, yn ∈ harmn. (5.205)

5.9 Vectorial Addition Theorem

From the scalar theory, we know the fundamental role of the addition the-
orem of spherical harmonics. Our interest now is the formulation of a vec-
torial analogue of the addition theorem involving tensorial structure. This
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vectorial addition theorem assures the existence of a vectorial reproducing
kernel which is a basic tool, for example, in the theory of ‘vectorial zonal
functions’. In addition, this addition theorem offers a better insight into
orthogonal invariance within the theory of vector spherical harmonics.

Let {y(i)
n,j} i=1,2,3

j=1,...,2n+1
be an l2(Ω)-orthonormal basis of harmn, as defined

in (5.36), corresponding to an L2(Ω)-orthonormal basis {Yn,j}j=1,...,2n+1 of
Harmn: y

(i)
n,j = (μ(i)

n )−1/2o(i)Yn,j . Then, the announced vectorial analogue of
the addition theorem deals with the question of determining the expression

vp(i,k)
n (ξ, η) =

2n + 1
4π

2n+1∑

j=1

y
(i)
n,j(ξ)⊗ y

(k)
n,j(η), ξ, η ∈ Ω. (5.206)

Our purpose is to explain how a vectorial counterpart of tensorial nature for
the Legendre polynomial comes into play. For that purpose, we first extend
in canonical way the definition of the o(i)-operators (cf. (5.17)–(5.19)) to
vector fields.

Suppose that f : Ω → R
3 is a sufficiently smooth vector field of the

representation

f(ξ) =
3∑

k=1

Fk(ξ)εk, Fk(ξ) = f(ξ) · εk, ξ ∈ Ω. (5.207)

Then we set

o
(i)
ξ f(ξ) =

3∑

k=1

(o(i)
ξ Fk(ξ))⊗ εk (5.208)

=
3∑

k=1

(
o(i)(f(ξ) · εk)

)
⊗ εk, i = 1, 2, 3.

Thus, o(i) maps scalar functions to vector fields and vector fields to rank-2
tensor fields, respectively.

In accordance with this nomenclature, (5.206) can be expressed as follows:

2n+1∑

j=1

y
(i)
n,j(ξ)⊗ y

(k)
n,j(η) = (μ(i)

n )−1/2(μ(k)
n )−1/2

2n+1∑

j=1

o
(i)
ξ Yn,j(ξ)⊗ o(k)

η Yn,j(η)

= (μ(i)
n )−1/2(μ(k)

n )−1/2o
(i)
ξ o(k)

η

2n+1∑

j=1

Yn,j(ξ)Yn,j(η)

= (μ(i)
n )−1/2(μ(k)

n )−1/2 2n + 1
4π

o
(i)
ξ o(k)

η Pn(ξ · η).

(5.209)
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In other words, vp(i,k)
n : Ω × Ω → R

3 ⊗ R
3 is given in terms of the one–

dimensional Legendre polynomial by

vp(i,k)
n (ξ, η) = (μ(i)

n )−1/2(μ(k)
n )−1/2o

(i)
ξ o(k)

η Pn(ξ · η), ξ, η ∈ Ω. (5.210)

Altogether, this leads us to the following variant of the addition theorem for
vector spherical harmonics.

Theorem 5.31. Let {y(i)
n,j} i=1,2,3

j=1,...,2n+1
be an l2(Ω)-orthonormal basis of

harmn as given in (5.36). Then, for ξ, η ∈ Ω,

2n+1∑

j=1

y
(i)
n,j(ξ)⊗ y

(k)
n,j(η) =

2n + 1
4π

vp(i,k)
n (ξ, η)

= (μ(i)
n )−1/2(μ(k)

n )−1/2 2n + 1
4π

o
(i)
ξ o(k)

η Pn(ξ · η)

holds for i, k ∈ {1, 2, 3}.

Definition 5.32. The kernel vp(i,k)
n : Ω × Ω → R

3 ⊗ R
3, i, k ∈ {1, 2, 3}

given by

(μ(i)
n )−1/2(μ(k)

n )−1/2 2n + 1
4π

o
(i)
ξ o(k)

η Pn(ξ · η) =
2n+1∑

j=1

y
(i)
n,j(ξ)⊗ y

(k)
n,j(η) (5.211)

is called the (vectorial) Legendre rank-2 tensor kernel of degree n and type
(i, k) with respect to the dual system of operators o(i), O(i), i ∈ {1, 2, 3}. The
kernel

vpn =
3∑

i=1

3∑

k=1

vp(i,k)
n (5.212)

is called (vectorial) Legendre rank-2 tensor kernel of degree n with respect
to the dual system of operators o(i), O(i), i = 1, 2, 3.

The main problem to be solved is the evaluation of vp(i,k)
n as introduced

by (5.210). As auxiliary results, we verify the following identities.

Lemma 5.33. For ξ, η ∈ Ω,

o
(2)
ξ (ξ − (ξ · η)η) = itan(ξ)− (η − (ξ · η)ξ)⊗ η,

o
(3)
ξ (ξ − (ξ · η)η) = jtan(ξ)− (ξ ∧ η)⊗ η,

o
(2)
ξ (η ∧ ξ) = −jtan(η)− ξ ⊗ η ∧ ξ,

o
(3)
ξ (η ∧ ξ) = (ξ · η)itan(ξ)− (η − (ξ · η)ξ)⊗ ξ.
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Proof. We prove the first and third formulae. The second and fourth for-
mulae follow by similar arguments, since we know that L∗

ξ = ξ ∧∇∗
ξ .

First we get

o
(2)
ξ (ξ − (ξ · η)η) = o

(2)
ξ

3∑

l=1

((ξ · εl)− (ξ · η)(η · εl))εl (5.213)

=
3∑

l=1

(εl − (ξ · εl)ξ)⊗ εl − ((η · εl)(η − (ξ · η)ξ)⊗ εl)

= itan(ξ)− (η − (ξ · η)ξ)⊗ η.

Furthermore, we have

o
(2)
ξ (η ∧ ξ) = o

(2)
ξ

3∑

l=1

((η ∧ ξ) · εl)εl (5.214)

= o
(2)
ξ

3∑

l=1

((εl ∧ η) · ξ)εl

=
3∑

l=1

(εl ∧ η − ((εl ∧ η) · ξ)ξ)⊗ εl

=
3∑

l=1

(−η ∧ εl)⊗ εl − ((η ∧ ξ) · εl)ξ ⊗ εl

= −jtan(η)− ξ ⊗ η ∧ ξ.

If F : [−1, 1] → R is sufficiently smooth, then, for ξ, η ∈ Ω we obtain from
Lemma 5.33:

o
(1)
ξ o(1)

η F (ξ · η) = F (ξ · η)ξ ⊗ η, (5.215)

o
(1)
ξ o(2)

η F (ξ · η) = F ′(ξ · η)ξ ⊗ (ξ − (ξ · η)η), (5.216)

o
(1)
ξ o(3)

η F (ξ · η) = F ′(ξ · η)ξ ⊗ η ∧ ξ. (5.217)

Similar results hold for o
(2)
ξ o

(1)
η F (ξ · η) and o

(3)
ξ o

(1)
η F (ξ · η). Treating the

tangential operators, we find for ξ, η ∈ Ω

o
(2)
ξ o(2)

η F (ξ · η) = ∇∗
ξ ⊗ (F ′(ξ · η)(ξ − (ξ · η)η)) (5.218)

= (∇∗
ξF

′(ξ · η))⊗ (ξ−(ξ · η)η)+F ′(ξ · η)∇∗
ξ ⊗ (ξ−(ξ · η)η)

= F ′′(ξ · η)(η − (ξ · η)ξ)⊗ (ξ − (ξ · η)η)
+F ′(ξ · η)(itan(ξ)− (η − (ξ · η)ξ)⊗ η)
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and

o
(2)
ξ o(3)

η F (ξ · η) = ∇∗
ξ ⊗ (F ′(ξ · η)η ∧ ξ) (5.219)

= (∇∗
ξF

′(ξ · η))⊗ η ∧ ξ + F ′(ξ · η)∇∗
ξ ⊗ (η ∧ ξ)

= F ′′(ξ · η)(η − (ξ · η)ξ)⊗ η ∧ ξ

+F ′(ξ · η)(−jtan(η)− ξ ⊗ η ∧ ξ).

Similar calculations yield the following formulas

o
(3)
ξ o(2)

η F (ξ · η) = F ′′(ξ · η)ξ ∧ η ⊗ (ξ − (ξ · η)η) (5.220)

+F ′(ξ · η)(jtan(ξ)− ξ ∧ η ⊗ η)

and

o
(3)
ξ o(3)

η F (ξ · η) = F ′′(ξ · η)ξ ∧ η ⊗ η ∧ ξ (5.221)

+F ′(ξ · η)((ξ · η)itan(ξ)− (η − (ξ · η)ξ)⊗ ξ).

Applying these results to the scalar Legendre polynomial Pn, we obtain the
following representation for the Legendre tensor vp(i,k)

n of degree n and type
(i, k) with respect to the dual system of operators o(i), O(i), i, k ∈ {1, 2, 3}.

Theorem 5.34. Suppose that n is a non-negative integer. Then the iden-
tities

vp(1,1)
n (ξ, η) = Pn(ξ · η)ξ ⊗ η,

vp(1,2)
n (ξ, η) =

1√
n(n + 1)

P ′
n(ξ · η)ξ ⊗ (ξ − (ξ · η)η),

vp(1,3)
n (ξ, η) =

1√
n(n + 1)

P ′
n(ξ · η)ξ ⊗ η ∧ ξ,

vp(2,1)
n (ξ, η) =

1√
n(n + 1)

P ′
n(ξ · η)(η − (ξ · η)ξ)⊗ η,

vp(3,1)
n (ξ, η) =

1√
n(n + 1)

P ′
n(ξ · η)ξ ∧ η ⊗ η,

vp(2,2)
n (ξ, η) =

1
n(n + 1)

(P ′′
n (ξ · η)(η − (ξ · η)ξ)⊗ (ξ − (ξ · η)η)

+ P ′
n(ξ · η)(itan(ξ)− (η − (ξ · η)ξ)⊗ η)),

vp(2,3)
n (ξ, η) =

1
n(n + 1)

(P ′′
n (ξ · η)(η − (ξ · η)ξ)⊗ η ∧ ξ

+ P ′
n(ξ · η)(−jtan(η)− ξ ⊗ η ∧ ξ)),

vp(3,2)
n (ξ, η) =

1
n(n + 1)

(P ′′
n (ξ · η)ξ ∧ η ⊗ (ξ − (ξ · η)η)

+ P ′
n(ξ · η)(jtan(ξ)− ξ ∧ η ⊗ η)),
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vp(3,3)
n (ξ, η) =

1
n(n + 1)

(P ′′
n (ξ · η)ξ ∧ η ⊗ η ∧ ξ

+ P ′
n(ξ · η)((ξ · η)itan(ξ)− (η − (ξ · η)ξ)⊗ ξ))

hold for all (ξ, η) ∈ Ω× Ω.

The case ξ = η in the last theorem is of particular interest. Observing
Pn(1) = 1, P ′

n(1) = 1
2n(n + 1), and P ′′

n (1) = 1
8n(n + 1)(n(n + 1) − 2) (cf.

Chapter 3.5), we obtain the following corollary.

Corollary 5.35. For n ∈ N0 and all ξ ∈ Ω

vp(1,1)
n (ξ, ξ) = ξ ⊗ ξ,

vp(1,i)
n (ξ, ξ) = vp(i,1)

n (ξ, ξ) = 0, i = 2, 3,

vp(2,2)
n (ξ, ξ) = vp(3,3)

n (ξ, ξ) =
1
2
itan(ξ),

vp(2,3)
n (ξ, ξ) = −vp(3,2)

n (ξ, ξ) = −1
2
jtan(ξ).

It follows readily that

trace ((η − (ξ · η)ξ)⊗ (ξ − (ξ · η)η)) = −(ξ · η)(1− (ξ · η)2) (5.222)

and
trace (ξ ∧ η ⊗ η ∧ ξ) = −(1− (ξ · η)2). (5.223)

Hence, from Theorem 5.34, we get the following identities.

Lemma 5.36. For n ∈ N0 and all ξ, η ∈ Ω we have

trace (vp(1,1)
n (ξ, η)) = Pn(ξ · η)(ξ · η),

trace (vp(1,2)
n (ξ, η)) = trace (vp(2,1)

n (ξ, η))

=
1√

n(n + 1)
P ′

n(ξ · η)(1− (ξ · η)2),

trace (vp(2,2)
n (ξ · η)) =

1
n(n + 1)

(P ′′
n (ξ · η)(1− (ξ · η)2)(ξ · η) + 2P ′

n(ξ · η)),

trace (vp(3,3)
n (ξ, η)) = Pn(ξ · η),

trace (vp(1,3)
n (ξ, η)) = trace (vp(3,1)

n (ξ, η))
= trace (vp(2,3)

n (ξ, η))
= trace (vp(3,2)

n (ξ, η))
= 0.

Taking ξ = η in the last lemma we get, in connection with Theorem 5.31,
the following result.
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Lemma 5.37. Let n ∈ N and i ∈ {1, 2, 3}. If y
(i)
n,j , j = 1, . . . , 2n + 1, forms

an l2(Ω)-orthonormal basis of harm(i)
n , then

2n+1∑

j=1

(
y

(i)
n,j(ξ)

)2
=

2n + 1
4π

.

Every vector spherical harmonic y
(i)
n ∈ harm(i)

n of degree n and type i can
be represented by its orthogonal expansion

y(i)
n =

2n+1∑

j=1

an,jy
(i)
n,j (5.224)

with
an,j = (y(i)

n , y
(i)
n,j)l2(Ω), j = 1, . . . , 2n + 1. (5.225)

Application of the Cauchy–Schwarz inequality in combination with Lemma
5.37 yields the estimate

|y(i)
n (ξ)|2 ≤

⎛

⎝
2n+1∑

j=1

a2
n,j

⎞

⎠

⎛

⎝
2n+1∑

j=1

|y(i)
n,j(ξ)|2

⎞

⎠ (5.226)

=
2n + 1

4π

2n+1∑

j=1

a2
n,j (5.227)

for all ξ ∈ Ω. Observing
∑2n+1

j=1 a2
n,j = ‖y(i)

n ‖2
l2(Ω), we finally obtain the

following lemma.

Lemma 5.38. Suppose y
(i)
n is a member of harm(i)

n . Then

‖y(i)
n ‖c(Ω) ≤

√
2n + 1

4π
‖y(i)

n ‖l2(Ω). (5.228)

In particular,

‖y(i)
n,j‖c(Ω) ≤

√
2n + 1

4π
. (5.229)

5.10 Vectorial Funk–Hecke Formulas

Next, we deal with generalizations of the Funk–Hecke formula to the vecto-
rial case. Two variants are considered in more detail:
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(i) Let g(·, η) : Ω → R
3 be a vector field which is invariant with respect

to all orthogonal transformations t ∈ SO(3) leaving η ∈ Ω fixed.
Determine the integral

∫

Ω
g(ξ, η) · y(i)

n (ξ) dω(ξ), (5.230)

where y
(i)
n ∈ harm(i)

n .

(ii) Let G ∈ L1[−1, 1], η ∈ Ω fixed. Determine the integral
∫

Ω
G(ξ · η)y(i)

n (ξ) dω(ξ), (5.231)

where y
(i)
n ∈ harm(i)

n .

Remark 5.39. Notice that the integral (5.230) is scalar-valued, while (5.231)
is vector-valued. This difference causes completely different ways of estab-
lishing the Funk–Hecke formulas. The first variant uses certain properties
of invariant vector fields, while the second one is based on the cartesian
representation of vector spherical harmonics.

We start with the recapitulation of some topics of representation theory
needed for our studies on the Funk–Hecke formula (cf. Section 3.9).

Let t ∈ SO(3). The operator Rt : l2(Ω) → l2(Ω) has been introduced as
follows: for f ∈ l2(Ω), Rtf(ξ) = tT f(tξ), ξ ∈ Ω.

Furthermore, let S ⊂ SO(3) be a subgroup of SO(3). As is well-known, a
subspace v ⊂ l2(Ω) is called invariant with respect to S or simply S-invariant
if f ∈ v implies that Rtf ∈ v for all t ∈ S. If there exists no subspace of v
(other than v itself) which is S-invariant, then v is said to be irreducible.

Now, assume that f, g are of class l2(Ω), t ∈ SO(3). Then, it follows that

(Rtf, g)l2(Ω) = (f, RtT g)l2(Ω). (5.232)

But this means that the adjoint operator of Rt is given by RtT . Let F ∈
C(1)(Ω), t ∈ SO(3). Then we find

o
(1)
ξ RtF (ξ) = ξF (tξ) = tT tξF (tξ) = Rto

(1)F (ξ), (5.233)

and

o
(2)
ξ RtF (ξ) = ∇∗

ξF (tξ) = tT (∇∗F )(tξ) = Rto
(2)F (ξ). (5.234)
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An analogous result holds for o(3). Together with (5.232), we get for F ∈
C(1)(Ω) and f ∈ c(1)(Ω) and any t ∈ SO(3) that, for all i ∈ {1, 2, 3} and
ξ ∈ Ω,

o
(i)
ξ RtF (ξ) = Rto

(i)F (ξ) (5.235)

and
O

(i)
ξ Rtf(ξ) = RtO

(i)f(ξ). (5.236)

Therefore, we remember in connection with the results of Chapter 2.7 and
Theorem 3.68 the following statements:

(i) The space l2(i)(Ω) is SO(3)-invariant for all i ∈ {1, 2, 3} .

(ii) The set harm(i)
n is an SO(3)-invariant subspace of l2(i)(Ω) for all i ∈

{1, 2, 3} and n ≥ 0i. Furthermore, harm(i)
n is irreducible.

Assume that F ∈ L2(Ω) with RtF = F for all t ∈ SOη(3). Then we
already know that there exists a function F̃ ∈ L2[−1, 1] such that F (ξ) =
F̃ (ξ · η), ξ ∈ Ω. Furthermore, we have shown in Theorem 3.58 that if F is,
in addition, a spherical harmonic of order n, i.e., F ∈ Harmn, there exists
a constant C ∈ R such that

F (ξ) = C Pn(ξ · η), ξ ∈ Ω. (5.237)

A generalization of these results to the vectorial case can be written down
as follows:

(i) If f ∈ c(1)(Ω) satisfies Rtf = f for all t ∈ SOη(3), η fixed, then there
exist functions Fi ∈ C[−1, 1], i = 1, 2, 3, such that

O
(i)
ξ f(ξ) = Fi(ξ · η), ξ ∈ Ω. (5.238)

(ii) Let i ∈ {1, 2, 3} and y
(i)
n ∈ harm(i)

n with Rty
(i)
n = y

(i)
n for all t ∈

SOη(3), η fixed. Then there exists a constant C ∈ R such that

y(i)
n (ξ) = C o

(i)
ξ Pn(ξ · η), ξ ∈ Ω. (5.239)

Let η ∈ Ω be fixed. Assume that g(·, η) ∈ c(1)(Ω) is a spherical vector field
with Rtg(ξ, η) = g(ξ, η), ξ ∈ Ω, for all t ∈ SOη(3). Then it follows from
the considerations above that, for i ∈ {1, 2, 3}, the functions O

(i)
ξ g(ξ, η) =

Gi(ξ · η) depend only on the inner product ξ · η. Thus, we may define in
analogy to Theorem 3.60

(O(i)g)∧(n) = 2π

∫ 1

−1
Gi(t)Pn(t) dt. (5.240)
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It follows from (5.23) that y
(i)
n = o(i)Yn ∈ harm(i)

n satisfies
∫

Ω
g(ξ, η) · y(i)

n (ξ) dω(ξ) =
∫

Ω
O

(i)
ξ g(ξ, η)Yn(ξ) dω(ξ) (5.241)

= (O(i)g)∧(n)Yn(η).

This leads us to the first variant of the vectorial Funk–Hecke formula.

Theorem 5.40. Let η ∈ Ω be fixed. Assume that g(·, η) ∈ c(1)(Ω) satisfies

Rtg(ξ, η) = g(ξ, η)

for all t ∈ SOη(3) and all ξ ∈ Ω. Then, for i ∈ {1, 2, 3} and y
(i)
n ∈

harm(i)
n , n ≥ 0i,

∫

Ω
g(ξ, η) · y(i)

n (ξ) dω(ξ) = (μ(i)
n )−1(O(i)g)∧(n)O(i)

η y(i)
n (η),

where (O(i)g)∧(n) is defined by (5.240).

By virtue of the addition theorem for vector spherical harmonics, we
immediately obtain the following consequence.

Corollary 5.41. Let η ∈ Ω be fixed, g(·, η) ∈ c(1)(Ω). Assume that

Rtg(ξ, η) = g(ξ, η) (5.242)

for all t ∈ SOη(3) and all ξ ∈ Ω. Then, for all ζ ∈ Ω and i ∈ {1, 2, 3},
∫

Ω
g(ξ, η)T vp(i,i)

n (ξ, ζ) dω(ξ) = (μ(i)
n )−1(O(i)g)∧(n) o

(i)
ζ Pn(ζ · η).

We now come to the second variant of the vectorial Funk–Hecke formula
as announced in (5.231). The basic ideas to handle this problem are the
representation of vector spherical harmonics by means of restrictions of ho-
mogeneous harmonic vector polynomials and the componentwise application
of the (scalar) Funk–Hecke formula.

Let Yn ∈ Harmn be a spherical harmonic. Then, we know from Lemma
5.12 that the cartesian components of the spherical vector field

ξ �→ õ(i)
n rnYn(ξ)|r=1, ξ ∈ Ω, i ∈ {1, 2, 3}, (5.243)

are (scalar) spherical harmonics of degree deg(i)(n) (cf. Lemma 5.12). Thus,
we get immediately for G ∈ L1[−1, 1] and η ∈ Ω
∫

Ω
G(ξ · η)õ(i)

n rnYn(ξ)|r=1dω(ξ) = G∧(deg(i)(n))õ(i)
n rnYn(η)|r=1. (5.244)
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We know from the formulas (5.106, 5.107, 5.108) how a vector spherical har-
monic is expressible by restrictions of homogeneous harmonic vector poly-
nomials. Combining these results, we get the second variant of the vectorial
Funk–Hecke formula.

Theorem 5.42. Let G be of class L1[−1, 1]. Assume that Yn ∈ Harmn.
Then, for all η ∈ Ω, and for all n = 1, 2, . . . ,

∫

Ω
G(ξ · η)o(1)

ξ Yn(ξ) dω(ξ) = G∧
(1,1)(n)o(1)

η Yn(η) + G∧
(1,2)(n)o(2)

η Yn(η),

∫

Ω
G(ξ · η)o(2)

ξ Yn(ξ) dω(ξ) = G∧
(2,1)(n)o(1)

η Yn(η) + G∧
(2,2)(n)o(2)

η Yn(η),

∫

Ω
G(ξ · η)o(3)

ξ Yn(ξ) dω(ξ) = G∧
(3,3)(n)o(3)

η Yn(η),

where the coefficients G∧
(i,j)(n) are given by

G∧
(1,1)(n) =

1
2n + 1

(
(n + 1)G∧(n + 1) + nG∧(n− 1)

)
,

G∧
(1,2)(n) =

1
2n + 1

(
G∧(n− 1)−G∧(n + 1)

)
,

G∧
(2,1)(n) =

n(n + 1)
2n + 1

(
G∧(n− 1)−G∧(n + 1)

)
,

G∧
(2,2)(n) =

1
2n + 1

(
nG∧(n + 1) + (n + 1)G∧(n− 1)

)
,

G∧
(3,3)(n) = G∧(n).

Notice that the space l2(3)(Ω) is invariant with respect to the defined in-
tegral operator, while l2(1)(Ω) and l2(2)(Ω) are not. However, it is clear that
l2(1)(Ω)⊕ l2(2)(Ω) is an invariant subspace of l2(Ω).

5.11 Counterparts of the Legendre Polynomial

Next, our purpose is to extend the operators O(i) also to rank-2 tensor fields.
For sufficiently smooth fields f : Ω → R

3 ⊗ R
3 of the form

f(ξ) =
3∑

j=1

3∑

k=1

Fjk(ξ)εj ⊗ εk (5.245)
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we let

O
(i)
ξ f(ξ) =

3∑

k=1

O
(i)
ξ

⎛

⎝
3∑

j=1

Fjk(ξ)εj

⎞

⎠ εk. (5.246)

According to the definition (5.246), it is clear that the (vectorial) Legendre
rank–2 tensor kernel vp(i,i)

n (·, ·) of type (i, i) is the reproducing kernel of
harmn in the following sense:

(i) for all ξ ∈ Ω
O

(i)
ξ

vp(i,i)
n (ξ, ·) ∈ harm(i)

n (5.247)

(ii) for every f ∈ harm(i)
n and all ξ ∈ Ω

O
(i)
ξ f(ξ) =

(
O

(i)
ξ

vp(i,i)
n (ξ, ·), f

)

l2(Ω)
. (5.248)

Moreover, let a ∈ R
3 and η ∈ Ω be fixed. Then the vector field

vp(i,k)
n (·, η) · a =

4π

2n + 1

2n+1∑

j=1

(y(k)
n,j(η) · a)y(i)

n,j (5.249)

is a vector spherical harmonic of degree n and type i. Thus, we obtain from
(5.227) and Lemma 5.37

|vp(i,k)
n (ξ, η) · a|2 ≤ 2n + 1

4π

(
4π

2n + 1

)2 2n+1∑

j=1

(y(k)
n,j(ξ) · a)2 ≤ |a|2 (5.250)

for all ξ, η ∈ Ω. This gives us the following result.

Lemma 5.43. Let i, k, l ∈ {1, 2, 3}. Then, for all ξ, η ∈ Ω,

|vp(i,k)
n (ξ, η) · εl| ≤ 1

and
|vp(i,k)

n (ξ, η)| ≤
√

3.

Proof. The second inequality follows directly from the fact that

|vp(i,k)
n (ξ, η)|2 =

3∑

l=1

|vp(i,k)
n (ξ, η)εl|2 . (5.251)
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Lemma 5.43 generalizes the estimate |Pn(t)| ≤ 1, t ∈ [−1, 1] of the scalar
Legendre polynomial.

Remark 5.44. The addition theorem enables us to represent a vector-
valued function on the sphere Ω by use of the Legendre tensors. More
explicitly, suppose that f is of class l2(Ω) with

f =
3∑

i=1

f (i), f (i) ∈ l2(i)(Ω). (5.252)

Then it follows that

f(ξ) =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

∫

Ω
y(i)

n,m(η) · f(η) dω(η) y(i)
n,m(ξ) (5.253)

=
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

∫

Ω
(y(i)

n,m(ξ)⊗ y(i)
n,m(η))f(η)dω(η)

=
3∑

i=1

∞∑

n=0i

∫

Ω

2n + 1
4π

vp(i,i)
n (ξ, η)f(η)dω(η)

=
3∑

i=1

∞∑

n=0i

∫

Ω

2n + 1
4π

vp(i,i)
n (ξ, η)f (i)(η)dω(η).

The expansion of vector fields in terms of the Legendre tensors can be
regarded as a natural extension of the scalar Fourier theory to the vectorial
case. In order to motivate an alternative approach based on Legendre vec-
tors, we write down the representation of a vector-valued function on the
sphere Ω in the following way:

f(ξ)

=
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

∫

Ω
f (i)(η) · y(i)

n,m(η) dω(η) y(i)
n,m(ξ) (5.254)

=
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

∫

Ω
f (i)(η)(μ(i)

n )−1/2o(i)
η Yn,m(η)dω(η)(μ(i)

n )−1/2o
(i)
ξ Yn,m(ξ)

=
3∑

i=1

∞∑

n=0i

(μ(i)
n )−1/2

∫

Ω
O(i)

η f (i)(η)(μ(i)
n )−1/2o

(i)
ξ

2n+1∑

m=1

Yn,m(η)Yn,m(ξ)dω(η)

=
3∑

i=1

∞∑

n=0i

(μ(i)
n )−1/2

∫

Ω
O(i)

η f (i)(η)(μ(i)
n )−1/2o

(i)
ξ

2n + 1
4π

Pn(ξ · η)dω(η).

This leads us to the following definition (see Theorem 5.20).
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Definition 5.45. The (vectorial) Legendre vector field p
(i)
n : Ω × Ω →

R
3, i ∈ {1, 2, 3}, of degree n and type i (with respect to the dual system of

operators o(i), O(i), i ∈ {1, 2, 3}), is given by

p(i)
n (ξ, η) =

(
μ(i)

n

)−1/2
o
(i)
ξ Pn(ξ · η), ξ, η ∈ Ω. (5.255)

The (vectorial) Legendre vector field pn : Ω × Ω → R of degree n with
respect to the dual system of operators o(i), O(i), i = 1, 2, 3, is defined by

pn(ξ, η) =
3∑

i=1

p(i)
n (ξ, η). (5.256)

Following our considerations given above, every vector-valued function
f ∈ l2(Ω), therefore, admits an expansion

f(ξ) =
3∑

i=1

∞∑

n=0i

2n + 1
4π

(μ(i)
n )−1/2

∫

Ω

p(i)
n (ξ, η)O(i)

η f(η)dω(η). (5.257)

Obviously, the Legendre vectors fulfill an addition theorem, which reads as
follows:

Theorem 5.46. Let {Yn,m}m=1,...,2n+1 be an L2(Ω)–orthonormal basis of
Harmn. Then, for i ∈ {1, 2, 3} and all ξ, η ∈ Ω,

2n+1∑

m=1

y(i)
n,m(ξ)Yn,m(η) =

2n + 1
4π

p(i)
n (ξ, η). (5.258)

The Legendre polynomials and the corresponding vectorial Legendre vec-
tors and rank–2 tensors, as defined here, are related in the following way:

Lemma 5.47. Let Pn be the Legendre polynomials of degree n, vp(i,k)
n the

corresponding Legendre tensors of degree n and type (i, k), and p
(i)
n the cor-

responding Legendre vector of degree n and type i. Then, for all ξ, η ∈ Ω,

Pn(ξ · η) = (μ(i)
n )−1/2(μ(k)

n )−1/2O
(k)
ξ O(i)

η
vp(i,k)

n (ξ, η), (5.259)

and
Pn(ξ · η) = (μ(i)

n )−1/2O
(i)
ξ p(i)

n (ξ, η). (5.260)

Remark 5.48. Defining the system {y(i),R
n,m }i=1,2,3,n=0i,...,m=1,...,2n+1 by

y(i),R
n,m (x) =

(
1
R

)
y(i)

n,m

(
x

|x|

)
, x ∈ ΩR, (5.261)



252 5 Vector Spherical Harmonics

we get an orthonormal basis in l2(ΩR), provided that the system

{y(i)
n,m}i=1,2,3,n=0i,...,m=1,...,2n+1 (5.262)

constitutes an l2(i)(Ω)–orthonormal basis in l2(i)(Ω), i ∈ {1, 2, 3}.

In addition, it should be noted that every vector field f (i) ∈ l2(i)(ΩR) can
be expanded in terms of vector spherical harmonics on ΩR as follows

f (i) =
∞∑

n=0i

2n+1∑

m=1

f (i)∧R(n, m)y(i),R
n,m , (5.263)

where the orthogonal (Fourier) coefficients are given by

f (i)∧R(n, m) =
(
f (i), y(i),R

n,m

)

l2(ΩR)
=
∫

ΩR

f (i)(x) · y(i);R
n,m (x) dω(x). (5.264)

Note that the identity (5.263) is understood in ‖ · ‖l2(ΩR)–sense.

5.12 Degree and Order Variances

In analogy to the scalar case, let us think of an ‘output signal’ g as produced
by a linear operator λ applied to an ‘input signal’ f

λf = g, (5.265)

where λ is an operator mapping of l2(Ω) onto itself such that

λy(i)
n,m =

(
λ(i)

)∧
(n, m) y(i)

n,m, (5.266)

i = 1, 2, 3, n = 0i, 0i + 1, . . ., m = 1, . . . , 2n + 1. The symbol {(λ(i))∧(n, m)}
is supposed to be a sequence of real numbers for i = 1, 2, 3 (where, as usual,
01 = 0 and 0i = 1, i = 2, 3.

Remark 5.49. Note that similar arguments hold true for operators λ
with matrical symbols {(λ(i))∧(n, m)}, i.e., a sequence of matrices of class
R

3 ⊗ R
3, i = 1, 2, 3.

In practice, an error-affected ‘output signal’

g̃ = g + ε̃, (5.267)
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is observed, where ε̃ is the observation noise. Analogously to the scalar
case, we assume that

Cov[g̃(ξ), g̃(η)] = E[ε̃(ξ), ε̃(η)] = k(ξ, η), (ξ, η) ∈ Ω× Ω, (5.268)

is known, where the tensorial covariance kernel k(·, ·) : Ω×Ω → R
3⊗R

3, is
explicitly given as follows.

Definition 5.50. Let k(i) : Ω×Ω → R
3⊗R

3, i ∈ {1, 2, 3}, (more precisely,
vk(i)) be a tensor kernel of the form

k(i)(ξ, η) =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(k(i))∧(n, m)(μ(i)
n )−1o

(i)
ξ o(i)

η Yn,m(ξ)Yn,m(η)

=
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(k(i))∧(n, m)y(i)
n,m(ξ)⊗ y(i)

n,m(η),

with the symbol
{
(k(i))∧(n, m)

}
, i ∈ {1, 2, 3}, satisfying the conditions:

(i) (k(i))∧(n, m) ≥ 0 for n = 0, 1, . . . , m = 1, . . . , 2n + 1, i ∈ {1, 2, 3},

(ii)
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(k(i))∧(n, m) sup
η∈Ω

∣∣∣y(i)
n,m(η)

∣∣∣
2

< ∞ .

Then k(i), i ∈ {1, 2, 3}, is called a (vectorial) covariance rank–2 tensor kernel
of type i, while k =

∑3
i=1 k(i) (more precisely, vk) is called a (vectorial)

covariance rank–2 tensorial kernel.

Any ‘output function’ (output signal) can be expanded into an orthogonal
series in terms of vector spherical harmonics:

g̃ = λf̃ =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(λ(i))∧(n, m)(f̃ (i))∧(n, m)y(i)
n,m

=
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

(g̃(i))∧(n, m)y(i)
n,m,

where the equality has to be understood in the sense of ‖·‖l2(Ω) . Using this
series expansion we get, for i ∈ {1, 2, 3}, the spectral representation

(g̃(i))∧(n, m) = (λ(i))∧(n, m)(f̃ (i))∧(n, m) . (5.269)

This is the vectorial analogue for (3.358) and also hints at using the root-
mean-square power per degree and order, respectively per degree, to char-
acterize the vectorial signal. Motivated by the corresponding definitions
for the scalar case and by Parseval’s identity, we introduce the following
definition (cf. W. Freeden, T. Maier (2002, 2003)).
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Definition 5.51. Let g be of class l2(Ω). Let, for i ∈ {1, 2, 3}, n = 0i, 0i +
1, . . ., m = 1, . . . , 2n + 1, (g(i))∧(n, m) be the corresponding orthogonal
coefficients. Then, the signal degree n and order m variances of type i of g
are defined by

Var(i)n,m(g) =
∫

Ω

∫

Ω

(
y(i)

n,m(ξ)⊗ y(i)
n,m(η)

)
· (g(ξ)⊗ g(η)) dω(ξ) dω(η)

=
∫

Ω

∫

Ω
g(ξ) ·

(
y(i)

n,m(ξ)⊗ y
(i)
n,km(η)

)
g(η) dω(ξ) dω(η)

=
((

g(i)
)∧

(n, m)
)2

. (5.270)

Accordingly, the signal degree n variances of type i of g are given by

Var(i)n (g) =
2n + 1

4π

∫

Ω

∫

Ω
g(ξ) · vp(i,i)

n (ξ, η)g(η) dω(η) dω(ξ)

=
2n+1∑

m=1

((
g(i)
)∧

(n, m)
)2

=
2n+1∑

m=1

Var(i)n,m(g), (5.271)

while the signal degree variances of g read as follows:

Varn(λf̃) =
3∑

i=1

Var(i)n (λf̃). (5.272)

Obviously, by virtue of Parseval’s identity, we obtain

‖λf̃‖l2(Ω) =
3∑

i=1

∞∑

n=0i

2n+1∑

m=1

Var(i)n,m(λf̃), (5.273)

again connecting the signal degree and order variances as well as the sig-
nal degree variances with the ‘l2(Ω)-energy’ of the corresponding vectorial
signal.

It is clear that the remarks concerning the frequency limiting charac-
teristics of physical devices and the resulting bandlimited nature of the
‘transmitted signals’ are valid in the vectorial case as well. That is, one
is usually able to consider bandlimited vector fields g̃ ∈ l2(Ω), the signal
degree variances of which satisfy Varn(g̃) = 0 for all n > N .

As an example, we consider the normal (i = 1) and the tangential (i = 2)
degree variances of the EGM96–gradient field (see Fig. 5.4). Their degree
variances are shown in Fig. 5.5.
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Fig. 5.4: The normal derivative [in 100 Gal] and the surface gradient illus-
trated for the Earth’s gravitational potential model EGM96 ([in 100 Gal]).

Fig. 5.5: Normal (left) and tangential (right) degree variances of the EGM96
model (from S. Beth (2000)).

In addition to the previously defined signal variances, the tensorial co-
variance kernel k is used to calculate suitable measures to characterize the
noise:

Definition 5.52. In accordance with Definition 5.50, let
{
(k(i))∧(n,m)

}
be

the symbol of a (vectorial) covariance rank–2 tensorial kernel k : Ω× Ω →
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R
3×3. Then the degree and order error covariance of type i is given by

Cov(i)
n,m(k)

=
∫

Ω

∫

Ω

(
y(i)

n,m(ξ)⊗ y(i)
n,m(η)

)
· k(ξ, η) dω(ξ) dω(η)

=
3∑

l=1

∑

n,m

∑

(p,q)

(k(l))∧(p, q)
∫

Ω

∫

Ω

(
y(i)

n,m(η) · y(l)
p,q(η)

)

(
y(i)

n,m(ξ) · y(l)
p,q(ξ)

)
dω(ξ)dω(η)

= (k(i))∧(n, m).

Moreover, the error covariance of type i as well as the error covariance are
defined by

Cov(i)
n (k) =

2n+1∑

m=1

Cov(i)
n,m(k) =

2n+1∑

m=1

(k(i))∧(n, m) (5.274)

and

Covn(k) =
3∑

i=1

2n+1∑

m=1

(k(i))∧(n, m). (5.275)

The signal-to-noise relation is determined by the degree and order reso-
lution set of type i.

Definition 5.53. Signal and noise spectrum intersect at the degree and
order resolution set of type i, defined by the following relations:

(i) Signal dominates noise

Var(i)n,m(λf̃) ≥ Cov(i)
n,m(k), n = 0i, 0i + 1, . . . , m, m = 1, . . . , 2n + 1,

(5.276)

(ii) Noise dominates signal

Var(i)n,m(λf̃) < Cov(i)
n,m(k), n = m, m + 1, . . . , m = 1, . . . , 2n + 1.

(5.277)

The technique of filtering the signal λf̃ in order to get an estimated
denoised version λ̂f can be canonically carried over from the scalar case.
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5.13 Vector Spherical Harmonics Related to Vector
Homogeneous Harmonic Polynomials

Up to now, the operators õ
(i)
n were defined for homogeneous harmonic poly-

nomials of degree n in R
3 (see Section 5.5). Every Hn ∈ Harmn(R3) can

be written in the form Hn(x) = rnYn(ξ), x = rξ, r ≥ 0, ξ ∈ Ω, where
Yn ∈ Harmn. It is obvious that the representation of the gradient ∇ by
observing the normal and the tangential parts yields

õ(1)
n rnYn(ξ) = (n + 1)rn+1o

(1)
ξ Yn(ξ)− rn+1o

(2)
ξ Yn(ξ), (5.278)

õ(2)
n rnYn(ξ) = nrn−1o

(1)
ξ Yn(ξ) + rn−1o

(2)
ξ Yn(ξ), (5.279)

õ(3)
n rnYn(ξ) = rno

(3)
ξ Yn(ξ). (5.280)

Therefore, the restrictions of rξ �→ õ
(i)
n rnYn(ξ) to the unit sphere Ω can be

written as linear combinations of vector spherical harmonics o(i)Yn.

In the sequel, we understand õ
(i)
n Yn to be given by

õ(i)
n Yn(ξ) = õ(i)

n Hn(x)|r=1, (5.281)

where Hn(x) = rnYn(ξ), x = rξ, ξ ∈ Ω. In other words, (see also (5.106)–
(5.108)), we have

õ(1)
n Yn(ξ) = (n + 1)o(1)

ξ Yn(ξ)− o
(2)
ξ Yn(ξ), (5.282)

õ(2)
n Yn(ξ) = no

(1)
ξ Yn(ξ) + o

(2)
ξ Yn(ξ), (5.283)

õ(3)
n Yn(ξ) = o

(3)
ξ Yn(ξ). (5.284)

Note that õ
(i)
n acts on the variable ξ, as does o(i), but this will not be

indicated in the Equations (5.282), (5.283), (5.284). It is obvious that the
adjoint operators Õ

(i)
n to õ

(i)
n satisfying the equations

(õ(i)
n G, f)l2(Ω) = (G, Õ(i)

n f)L2(Ω), (5.285)

f ∈ harmn and G ∈ Harmn, are given by

Õ(1)
n f = (n + 1)O(1)f −O(2)f, (5.286)

Õ(2)
n f = nO(1)f + O(2)f, (5.287)

Õ(3)
n f = O(3)f. (5.288)

Definition 5.54. Any vector field

ỹ(i)
n = õ(i)

n Yn, n ≥ 0i, Yn ∈ Harmn

is called a vector spherical harmonic of degree n and type i with respect to
the dual system of operators õ

(i)
n , Õ

(i)
n , i ∈ {1, 2, 3}.
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The following lemma is easy to verify (see also W. Freeden et al. (1998)).

Lemma 5.55. For every Yn ∈ Harm, we have

Õ(i)
n ỹ(j)

n (ξ) = Õ(i)
n õ(j)

n Yn(ξ) = δijμ̃
(i)
n Yn(ξ), (5.289)

where the constants μ̃
(i)
n are given as follows:

μ̃(i)
n = ‖Õ(i)

n ỹ(i)
n ‖L2(Ω) = ‖Õ(i)

n õ(i)
n Yn‖L2(Ω), (5.290)

i.e.,

μ̃(1)
n = (n + 1)(2n + 1), (5.291)

μ̃(2)
n = n(2n + 1), (5.292)

μ̃(3)
n = n(n + 1). (5.293)

It should be mentioned that the operators õ
(i)
n : Harmn → harmn, i =

1, 2, 3, admit extensions õ(i) : C(∞)(Ω) → c(∞)(Ω), i = 1, 2, 3, by using the
(pseudo) differential operator D = (−Δ∗ + 1

4)1/2 − 1
2 satisfying

DYn = D∧(n)Yn =

(√
n(n + 1) +

1
4
− 1

2

)
Yn = nYn, (5.294)

Yn ∈ Harmn, n = 0, 1, . . . (for more details on the concept of spherical
pseudodifferential operators, see e.g. S.L. Svensson (1983) ,W. Freeden et al.
(1998)). More explicitly, we set

õ(1) = o(1)(D + 1)− o(2), (5.295)
õ(2) = o(1)D + o(2), (5.296)
õ(3) = o(3). (5.297)

Indeed, by observing the definition y
(i)
n = o(i) Yn, n ≥ 0i, we get

õ(1)Yn = o(1)(D + 1)Yn − o(2)Yn = (n + 1)y(1)
n − y(2)

n = õ(1)
n Yn = ỹ(1)

n ,

(5.298)
õ(2)

n Yn = o(1)DYn + o(2)Yn = ny(1)
n + y(2)

n = õ(2)
n Yn = ỹ(2)

n , (5.299)
õ(3)
n Yn = o(3)Yn = õ(3)

n Yn = ỹ(3)
n . (5.300)

Obviously, the adjoint operators Õ(i) : c(∞)(Ω) → C(∞)(Ω), i = 1, 2, 3, to
the operators õ(i) satisfying the equation

(õ(i)G, f)l2(Ω) = (G, Õ(i)f)L2(Ω), (5.301)
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f ∈ c(∞)(Ω), G ∈ C(∞)(Ω), are given by

Õ(1) = O(1)(D + 1)−O(2), (5.302)
Õ(2) = O(1)D + O(2), (5.303)
Õ(3) = O(3). (5.304)

This consideration leads us to the introduction of the following set of vector
spherical harmonics (note that our approach essentially follows the ideas of
the concept as introduced by A.R. Edmonds (1957)):

Let {Yn,m}n=0,1,...,n=1,...,2n+1, be an L2(Ω)-orthonormal system of spherical
harmonics. Then, we let

ỹ(i)
n,m =

(
μ̃(i)

n

)−1/2
õ(i)Yn,m, n = 0i, . . . , m = 1, . . . , 2n + 1. (5.305)

By inverting the identities (5.282, 5.283, 5.284), we obtain the following
equations for ξ ∈ Ω:

o
(1)
ξ Yn,m(ξ) =

1
2n + 1

õ
(1)
ξ Yn,m(ξ) +

1
2n + 1

õ
(2)
ξ Yn,m(ξ), (5.306)

o
(2)
ξ Yn,m(ξ) =

−n

2n + 1
õ
(1)
ξ Yn,m(ξ) +

n + 1
2n + 1

õ
(2)
ξ Yn,m(ξ), (5.307)

o
(3)
ξ Yn,m(ξ) = õ

(3)
ξ Yn,m(ξ). (5.308)

This provides a relation between the system {y(i)
n,m} and the system {ỹ(i)

n,m} of
vector spherical harmonics. More explicitly, the systems {y(i)

n,m} and {ỹ(i)
n,m}

are related to each other in the following way:

ỹ(1)
n,m =

√
n + 1
2n + 1

y(1)
n,m −

√
n

2n + 1
y(2)

n,m, (5.309)

ỹ(2)
n,m =

√
n

2n + 1
y(1)

n,m +

√
n + 1
2n + 1

y(2)
n,m, (5.310)

ỹ(3)
n,m = y(3)

n,m. (5.311)

Conversely

y(1)
n,m =

√
n + 1
2n + 1

ỹ(1)
n,m +

√
n

2n + 1
ỹ(2)

n,m, (5.312)

y(2)
n,m = −

√
n

2n + 1
ỹ(1)

n,m +

√
n + 1
2n + 1

ỹ(2)
n,m, (5.313)

y(3)
n,m = ỹ(3)

n,m. (5.314)

Our considerations enable us to formulate the following theorem.
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Theorem 5.56. Let {Yn,m}n=0,1,...,m=1,....2n+1 be an L2(Ω)–orthonormal set
of scalar spherical harmonics. Then the set

{ỹ(i)
n,m}i=1,2,3,n=0i,...,m=1,...,2n+1 (5.315)

as defined in (5.305) forms an l2(Ω)–orthonormal set of vector spherical
harmonics which is closed in c(Ω) with respect to ‖ · ‖c(Ω) and complete in
l2(Ω) with respect to (·, ·)l2(Ω). Furthermore, for all ξ ∈ Ω.

Δ∗
ξ ỹ

(1)
n,m(ξ) = −(n + 1)(n + 2)ỹ(1)

n,m(ξ), (5.316)

Δ∗
ξ ỹ

(2)
n,m(ξ) = −n(n− 1)ỹ(2)

n,m(ξ), (5.317)

Δ∗
ξ ỹ

(3)
n,m(ξ) = −n(n + 1)ỹ(3)

n,m(ξ), (5.318)

where the Beltrami operator is applied to each component of the vector fields.

In other words, Theorem 5.56 tells us that

Δ∗
ξ ỹ

(1)
n−1,m(ξ) = −n(n + 1)ỹ(1)

n−1,m(ξ), n = 1, 2, . . . , m = 1, . . . , 2n + 1,

(5.319)

Δ∗
ξ ỹ

(2)
n+1,m(ξ) = −n(n + 1)ỹ(2)

n+1,m(ξ), n = 0, 1, . . . , m = 1, . . . , 2n + 1,

(5.320)
Δ∗

ξ ỹ
(3)
n,m(ξ) = −n(n + 1)ỹ(3)

n,m(ξ), n = 1, 2, . . . , m = 1, . . . , 2n + 1.

(5.321)

On the one hand, each member of the system {ỹ(i)
n,m} is, by definition, not

decomposable into normal and tangential parts, but on the other hand, it
is a set of eigenfunctions of the Beltrami operator.

5.14 Alternative Systems of Vector Spherical
Harmonics

In analogy to the harm(i)
n -spaces, we introduce the following function spaces:

h̃arm
(i)

n = span{ỹ(i)
n,m}m=1,...,2n+1, i = 1, 2, 3, n = 0i, 0i + 1, . . . . (5.322)

Obviously, these function spaces are characterized by the relations

harm(1)
0 = h̃arm

(1)

0 , (5.323)

harm(1)
n ⊕ harm(2)

n = h̃arm
(1)

n ⊕ h̃arm
(2)

n , n = 1, 2, . . . , (5.324)

harm(3)
n = h̃arm

(3)

n , n = 1, 2, . . . . (5.325)



5.14 Alternative Systems of Vector Spherical Harmonics 261

In consequence, we have

harm0 = h̃arm
(1)

0 , (5.326)

harmn =
3⊕

i=1

h̃arm
(i)

n . (5.327)

In what follows, we mention the relation between the system ỹ
(i)
n,m and the

restrictions of homogeneous harmonic vector polynomials to the unit sphere
Ω.

Lemma 5.57. Suppose that Hn is of class Harmn(R3). Let εkHn be a
homogenous harmonic vector polynomial. Then

εkHn|Ω = ỹ
(1)
n−1 + ỹ

(2)
n+1 + ỹ(3)

n , (5.328)

where

ỹ
(1)
n−1 = õ

(1)
n−1Yn−1, Yn−1 ∈ Harmn−1, (5.329)

ỹ
(2)
n+1 = õ

(2)
n+1Yn+1, Yn+1 ∈ Harmn+1, (5.330)

ỹ(3)
n = õ(3)

n Yn, Yn ∈ Harmn. (5.331)

Proof. Clearly, εkHn|Ω is a member of class l2(Ω) such that

εkHn|Ω =
3∑

i=1

∞∑

p=0i

2p+1∑

q=1

a(i)
p,qỹ

(i)
p,q, (5.332)

where {ỹ(i)
p,q}p=0i,...,q=1,...2p+1 is an orthonormal system of vector spherical

harmonics as defined in (5.305). Furthermore, it is not difficult to see that

ỹ(1)
n,m =

3∑

j=1

c
(1)
j,mεjY j

n+1, Y j
n+1 ∈ Harmn+1, (5.333)

ỹ(2)
n,m =

3∑

j=1

c
(2)
j,mεjY j

n−1, Y j
n−1 ∈ Harmn−1, (5.334)

ỹ(3)
n,m =

3∑

j=1

c
(3)
j,mεjY j

n , Y j
n ∈ Harmn. (5.335)

Since {ỹ(i)
p,q}p=0i,...,q=1,...2p+1 is an orthonormal basis in l2(Ω), we obtain by

comparison



262 5 Vector Spherical Harmonics

a(1)
p,q =

{
0, n− 1 �= p

C
(1)
k,p,q, n− 1 = p

, (5.336)

a(2)
p,q =

{
0, n + 1 �= p

C
(2)
k,p,q, n + 1 = p

, (5.337)

a(3)
p,q =

{
0, n �= p

C
(3)
k,p,q, n = p

, (5.338)

C
(i)
k,p,q ∈ R. This confirms our assertion.

It should be mentioned that an addition theorem for the system, {ỹ(i)
n,m}

can be formulated based on that of the system {y(i)
n,m}.

As preparation, we understand õ(i)f to be defined by

õ
(i)
ξ f(ξ) =

3∑

l=1

(õ(i)
ξ Fl(ξ))⊗ εl, i ∈ {1, 2, 3}, (5.339)

whenever f : Ω → R
3 is (a sufficiently smooth vector field) given by

f(ξ) =
3∑

l=1

Fl(ξ)εl, Fl = f · εl. (5.340)

Our point of departure is the definition of the Legendre kernel corre-
sponding to the vector spherical harmonics ỹ

(i)
n,m, i = 1, 2, 3, n = 0i, . . .,

m = 1, . . . , 2n + 1 (see H. Nutz (2002)).

Definition 5.58. The kernel vp̃(i,j)
n : Ω × Ω → R

3 ⊗ R
3, i, j ∈ {1, 2, 3}

given by

vp̃(i,j)
n (ξ, η) =

(
μ̃(i)

n

)−1/2 (
μ̃(j)

n

)−1/2
õ
(i)
ξ õ(j)

η Pn(ξ · η), ξ, η ∈ Ω, (5.341)

is called the (vectorial) Legendre rank-2 tensor kernel of degree n and type
(i, j) with respect to õ

(i)
n , Õ

(i)
n , i = 1, 2, 3. The kernel

vp̃n =
3∑

i=1

3∑

j=1

vp̃(i,j)
n (5.342)

is called vectorial Legendre rank-2 tensor kernel of degree n with respect to
the dual system of operators õ(i), Õ(i), i = {1, 2, 3}.
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The relation between the Legendre tensor vp̃(i,k)
n and the Legendre tensor

vp(i,k)
n is described by the following lemma.

Lemma 5.59. The Legendre tensor fields vp̃(i,k)
n : Ω×Ω → R

3⊗R
3, i, k ∈

{1, 2, 3}, as indicated above, can be expressed in terms of Legendre tensors
vp(i,k)

n as follows:

vp̃(1,1)
n = (n + 1)2(c1,1

n )2 vp(1,1)
n − (n + 1)c1,1

n c2,1
n (vp(1,2)

n + vp(2,1)
n )

+(c2,1
n )2 vp(2,2)

n ,

vp̃(1,2)
n = n(n + 1)c1,1

n c1,2
n

vp(1,1)
n + (n + 1)c1,1

n c2,2
n

vp(1,2)
n − nc1,1

n c2,2
n

vp(2,1)
n

−c2,1
n c2,2

n
vp(2,2)

n ,

vp̃(1,3)
n = (n + 1)c1,1

n c3,3
n

vp(1,3)
n − c2,1

n c3,3
n

vp(2,3)
n ,

vp̃(2,1)
n = n(n + 1)c1,2

n c1,1
n

vp(1,1)
n + (n + 1)c2,2

n c1,1
n

vp(2,1)
n − nc1,2

n c2,1
n

vp(1,2)
n

−c2,2
n c2,1

n
vp(2,2)

n ,

vp̃(2,2)
n = n2(c1,2

n )2 vp(1,1)
n + nc1,2

n c2,2
n (vp(1,2)

n + vp(2,1)
n ) + (c2,2

n )2 vp(2,2)
n ,

vp̃(2,3)
n = nc1,2

n c3,3
n

vp(1,3)
n + c2,2

n c3,3
n

vp(2,3)
n ,

vp̃(3,1)
n = (n + 1)c1,1

n c3,1
n

vp(3,1)
n − c3,3

n c2,1
n

vp(3,2)
n ,

vp̃(3,2)
n = nc3,3

n c1,2
n

vp(3,1)
n + c3,3

n c1,2
n

vp(3,2)
n ,

vp̃(3,3)
n = c3,3

n c3,3
n

vp(3,3)
n ,

where the constants ci,k
n ∈ R are given by

ci,k
n =

(
μ(i)

n

)1/2 (
μ̃(k)

n

)−1/2
. (5.343)

The addition theorem for the vector harmonics ỹ
(i)
n,m defined by (5.305)

reads as follows (see H. Nutz (2002)).

Theorem 5.60. Let {ỹ(i)
n,m}m=1,...,2n+1 be an l2(Ω)–orthonormal basis of

h̃arm
(i)

n as defined by (5.305). Then

2n+1∑

m=1

ỹ(i)
n,m(ξ)⊗ ỹ(k)

n,m(η) =
2n + 1

4π
vp̃(i,k)

n (ξ, η) (5.344)

holds for i, k ∈ {1, 2, 3} and (ξ, η) ∈ Ω× Ω.
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Proof. The addition theorem follows directly from the definition of the Leg-
endre tensor vp̃(i,k)

n and from the already known addition theorem for the
Legendre tensor vp(i,k)

n . We only have to observe

ỹ(1)
n,m ⊗ ỹ(1)

n,m = (n + 1)2(c1,1
n )2 y(1)

n,m ⊗ y(1)
n,m − (n + 1)c1,1

n c2,1
n (y(1)

n,m ⊗ y(2)
n,m

+y(2)
n,m ⊗ y(1)

n,m) + (c2,1
n )2 y(2)

n,m ⊗ y(2)
n,m, (5.345)

ỹ(1)
n,m ⊗ ỹ(2)

n,m = n(n + 1)c1,1
n c1,2

n y(1)
n,m ⊗ y(1)

n,m + (n + 1)c1,1
n c2,2

n y(1)
n,m ⊗ y(2)

n,m

−nc1,1
n c2,2

n y(2)
n,m ⊗ y(1)

n,m − c2,1
n c2,2

n y(2)
n,m ⊗ y(2)

n,m, (5.346)

ỹ(1)
n,m ⊗ ỹ(3)

n,m = (n + 1)c1,1
n c3,3

n y(1)
n,m ⊗ y(3)

n,m − c2,1
n c3,3

n y(2)
n,m ⊗ y(3)

n,m, (5.347)

ỹ(2)
n,m ⊗ ỹ(1)

n,m = n(n + 1)c1,2
n c1,1

n y(1)
n,m ⊗ y(1)

n,m + (n + 1)c2,2
n c1,1

n y(2)
n,m ⊗ y(1)

n,m

−nc1,2
n c2,1

n y(1)
n,m ⊗ y(2)

n,m − c2,2
n c2,1

n y(2)
n,m ⊗ y(2)

n,m, (5.348)

ỹ(2)
n,m ⊗ ỹ(2)

n,m = n2(c1,2
n )2 y(1)

n,m ⊗ y(2)
n,m + nc1,2

n c2,2
n (y(1)

n,m ⊗ y(2)
n,m + y(2)

n,m ⊗ y(1)
n,m)

+(c2,2
n )2 y(2)

n,m ⊗ y(2)
n,m, (5.349)

ỹ(2)
n,m ⊗ ỹ(3)

n,m = nc1,2
n c3,3

n y(1)
n,m ⊗ y(3)

n,m + c2,2
n c3,3

n y(2)
n,m ⊗ y(3)

n,m, (5.350)

ỹ(3)
n,m ⊗ ỹ(1)

n,m = (n + 1)c1,1
n c3,1

n y(3)
n,m ⊗ y(1)

n,m − c3,3
n c2,1

n y(3)
n,m ⊗ y(2)

n,m, (5.351)

ỹ(3)
n,m ⊗ ỹ(2)

n,m = nc3,3
n c1,2

n y(3)
n,m ⊗ y(1)

n,m + c3,3
n c1,2

n y(3)
n,m ⊗ y(2)

n,m, (5.352)

ỹ(3)
n,m ⊗ ỹ(3)

n,m = c3,3
n c3,3

n y(3)
n,m ⊗ y(3)

n,m. (5.353)

As in the case of the Legendre tensor vp(i,k)
n , we are led to an estimate

for the absolute value of the tensors vp̃(i,k)
n .

Lemma 5.61. Let i, k, l ∈ {1, 2, 3}. Then, for all ξ, η ∈ Ω,

|vp̃(i,k)
n (ξ, η)εl| ≤ 1,

and
|vp̃(i,k)

n (ξ, η)| ≤
√

3.

By virtue of the addition theorem (Theorem 5.60), we are able to conclude

that k̃
h̃arm

(i)

n

is the reproducing kernel of the space h̃arm
(i)

n . More explicitly,

the tensor field

k̃
h̃arm

(i)

n

(ξ, η) =
2n + 1

4π
vp̃(i,i)

n (ξ, η), ξ, η ∈ Ω, (5.354)

is the reproducing kernel of h̃arm
(i)

n in the following sense:
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(i) for all ξ ∈ Ω

Õ(i)
n k̃

h̃arm
(i)

n

(·, ξ) ∈ h̃arm
(i)

n , (5.355)

(ii) for every f ∈ h̃arm
(i)

n and all ξ ∈ Ω

Õ(i)
n f(ξ) =

(
Õ(i)

n k̃
h̃arm

(i)

n

(·, ξ), f
)

l2(Ω)

. (5.356)

Note that (for sufficiently smooth) tensor fields f : Ω → R
3⊗R

3 of the form

f(ξ) =
3∑

j=1

3∑

k=1

Fj,k(ξ)εj ⊗ εk (5.357)

such that
∑3

j=1 Fj,k(ξ)εj ∈ h̃armn, we understand the operators Õ(i) to be
defined by

Õ
(i)
ξ f(ξ) =

3∑

k=1

Õ
(i)
ξ

⎛

⎝
3∑

j=1

Fj,k(ξ)εj

⎞

⎠ εk. (5.358)

In analogy to the described way of defining the Legendre vectors based
on the system {y(i)

n,m}, we are able to define the Legendre vectors p̃
(i)
n based

on the system {ỹ(i)
n,m}.

Definition 5.62. The kernel p̃
(i)
n : Ω× Ω → R

3, i ∈ {1, 2, 3}, given by

p̃(i)
n (ξ, η) =

(
μ̃(i)

n

)−1/2
õ
(i)
ξ Pn(ξ · η), ξ, η ∈ Ω, (5.359)

is called the (vectorial) Legendre vector kernel of degree n and type i with
respect to the dual system of operators õ

(i)
n , Õ

(i)
n , i = 1, 2, 3. The kernel

p̃n =
∑3

i=1 p̃
(i)
n is called (vectorial) Legendre vector kernel of degree n with

respect to õ
(i)
n , Õ

(i)
n , i ∈ {1, 2, 3}.

The Legendre vector kernel satisfies the following lemma.

Lemma 5.63. Let the Legendre vectors p̃
(i)
n : Ω×Ω → R

3, i ∈ {1, 2, 3}, be
defined as in Definition 5.62. Then we have

p̃(1)
n (ξ, η) = (n + 1)c1,1

n p(1)
n (ξ, η)− c2,1

n p(2)
n (ξ, η), (5.360)

p̃(2)
n (ξ, η) = nc1,2

n p(1)
n (ξ, η)− c2,2

n p(2)
n (ξ, η), (5.361)

p̃(3)
n (ξ, η) = c3,3

n p(3)
n (ξ, η), (5.362)

where the constants ci,k
n , i, k ∈ {1, 2, 3}, are given by (5.343)

ci,k
n =

(
μ(i)

n

)1/2 (
μ̃(k)

n

)−1/2
. (5.363)
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We are finally led to the following addition theorem for vector spherical
harmonics.

Theorem 5.64. Let {Yn,m}m=1,...,2n+1 be an L2(Ω)–orthonormal basis of

Harmn, and the system {ỹ(i)
n,m} be given by ỹ

(i)
n,m =

(
μ̃

(i)
n

)−1/2
õ(i)Yn,m. Then

2n+1∑

m=1

ỹ(i)
n,m(ξ)Yn,m(η) =

2n + 1
4π

p̃(i)
n (ξ, η), ξ, η ∈ Ω, (5.364)

is valid for i ∈ {1, 2, 3}.

Remark 5.65. The extension of our results to a sphere of radius R can be
achieved in canonical way as in the case of the system {y(i)

n,m}. The details
are left to the reader.

5.15 Orthogonal Expansions Using Vector Legendre
Kernels

For F ∈ L2(Ω), we already know the orthogonal expansion

F =
∞∑

n=0

2n+1∑

j=1

F∧(n, j)Yn,j (5.365)

with F∧(n, j) = (F, Yn,j)L2(Ω). Using the addition theorem, the expansion
(5.365) can be reformulated as follows:

F =
∞∑

n=0

2n+1∑

j=1

∫

Ω
F (η)Yn,j(η)dω(η)Yn,j

=
∞∑

n=0

2n + 1
4π

∫

Ω
F (η)Pn(·η)dω(η). (5.366)

In other words, the projection of F into Harmn, i.e., the space of all spherical
harmonics with degree n, can be written as

ProjHarmn
(F ) =

2n + 1
4π

∫

Ω
F (η)Pn(·η)dω(η). (5.367)

Our purpose is to show how these Fourier expansions look like for the vec-
torial case. In particular, we introduce two generalizations of the Legendre
polynomial for the vectorial case, which lead to two different generalizations
of (5.367).
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Suppose that f is of class l2(Ω). Letting

(f (i))∧(n, j) =
∫

Ω
f(η) · y(i)

n,j(η)dω(η) (5.368)

we have the orthogonal expansion

f =
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j)y(i)
n,j . (5.369)

Using the addition theorem for the vector spherical harmonics {y(i)
n,j}, the

vectorial expansion (5.369) may be rewritten in the form

f =
3∑

i=1

∞∑

n=0i

2n + 1
4π

∫

Ω

vp(i,i)
n (·, η)f (i)(η)dω(η), (5.370)

where vp(i,i)
n : Ω× Ω → R

3 ⊗ R
3 reads as follows:

2n+1∑

j=1

y
(i)
n,j(ξ)⊗ y

(i)
n,j(η) =

2n + 1
4π

vp(i,i)
n (ξ, η) = (μ(i)

n )−1 2n + 1
4π

o
(i)
ξ o(i)

η Pn(ξ · η),

(5.371)
for all (ξ, η) ∈ Ω × Ω. Furthermore, it is obvious that the projection from
l2(Ω) into harm(i)

n can be formulated as

proj
harm

(i)
n

(f) =
2n + 1

4π

∫

Ω

vp(i,i)
n (·, η)f(η)dω(η). (5.372)

Thus, we recognize the second order tensor vp(i,i)
n as canonical generalization

of the Legendre polynomial to the vector case.

In fact, there is a second way to generalize the Legendre polynomial. Let
the vector spherical harmonics y

(i)
n,j be constructed from an orthonormal set

of scalar spherical harmonics, i.e.,

y
(i)
n,j = (μ(i)

n )−1/2o(i)Yn,j , (5.373)

i=1,2,3, n = 0i, . . ., j = 1, . . . , 2n + 1. Assuming that f ∈ l2(Ω) is in addi-
tion, sufficiently smooth, we are able to reformulate (5.369) in the following
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way

f =
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

∫

Ω
f(η) · y(i)

n,j(η)y(i)
n,j(·)dω(η)

=
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

∫

Ω
f(η) · 1

(μ(i)
n )1/2

o(i)
η Yn,j(η)dω(η)y(i)

n,j (5.374)

=
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

∫

Ω
(O(i)

η f(η))
1

(μ(i)
n )1/2

Yn,j(η)dω(η)y(i)
n,j

=
3∑

i=1

∞∑

n=0i

2n + 1
4π

1

(μ(i)
n )1/2

∫

Ω
p(i)

n (·, η) O(i)
η f (i)(η) dω(η),

where the (vectorial) Legendre vector kernel p
(i)
n (·, ·) : Ω×Ω → R

3×R (more
precisely, vp

(i)
n (·, ·)) is given by

2n+1∑

j=1

y
(i)
n,j(ξ)Yn,j(η) =

2n + 1
4π

p(i)
n (ξ, η), (ξ, η) ∈ Ω× Ω (5.375)

(cf. Theroem 5.46), and the operators O(i) which are adjoint to o(i) are given
by

O
(1)
ξ f (1)(ξ) = ξ · f (1)(ξ), ξ ∈ Ω, (5.376)

O
(2)
ξ f (2)(ξ) = −∇∗

ξ · f (2)(ξ), ξ ∈ Ω, (5.377)

O
(3)
ξ f (3)(ξ) = −L∗

ξ · f (3)(ξ), ξ ∈ Ω. (5.378)

The Legendre vectors written out read as follows:

p(1)
n (ξ, η) = ξPn(ξ · η), n = 0, 1, . . . , (5.379)

p(2)
n (ξ, η) =

1√
n(n + 1)

(η − (ξ · η) ξ)P ′
n(ξ · η), n = 1, 2, . . . ,(5.380)

p(3)
n (ξ, η) =

1√
n(n + 1)

(ξ ∧ η)P ′
n(ξ · η), n = 1, 2, . . . (5.381)

for (ξ, η) ∈ Ω× Ω.

Using this second generalization p
(i)
n of the Legendre polynomials, the

projection operator (5.372) can be rewritten as

proj
harm

(i)
n

(f) =
2n + 1

4π
(μ(i)

n )−1/2

∫

Ω
O(i)

η f(η)p(i)
n (·, η)dω(η). (5.382)

For this formula to be valid, it is necessary that f is sufficiently smooth.



5.15 Vector Legendre Kernels 269

Even more, besides the system {y(i)
n,j} of vector spherical vector harmon-

ics, the system {ỹ(i)
n,j} (as introduced by (5.305)) can be used in orthogonal

(Fourier) expansions. In more detail, suppose that f is of class l2(Ω). Let-
ting (

f̃ (i)
)∧

(n, j) =
∫

Ω
f̃(η) · ỹ(i)

n,j(η)dω(η) (5.383)

f admits the orthogonal expansion

f =
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

(f̃ (i))∧(n, j)ỹ(i)
n,j . (5.384)

Using the addition theorem for the vector spherical harmonics {ỹ(i)
n,j}, the

vectorial expansion (5.384) may be rewritten in the form

f =
3∑

i=1

∞∑

n=0i

2n + 1
4π

∫

Ω

vp̃(i,i)
n (·, η)f̃ (i)(η)dω(η), (5.385)

where

f̃ (i) =
∞∑

n=0i

2n+1∑

j=1

(f̃ (i))∧(n, j)ỹ(i)
n,j (5.386)

and the kernel vp̃(i,i)
n : Ω× Ω → R

3 ⊗ R
3 reads as follows:

2n+1∑

j=1

ỹ
(i)
n,j(ξ)⊗ ỹ

(i)
n,j(η) =

2n + 1
4π

vp̃(i,i)
n (ξ, η) (5.387)

= (μ̃(i)
n )−1 2n + 1

4π
õ
(i)
ξ õ(i)

η Pn(ξ · η),

for all (ξ, η) ∈ Ω × Ω. Furthermore, it is obvious that the projection from

l2(Ω) into h̃arm
(i)

n can be formulated as

proj
h̃arm

(i)

n

(f) =
2n + 1

4π

∫

Ω

vp̃(i,i)
n (·, η)f(η)dω(η). (5.388)

Therefore, also in this case, we are able to consider the second order tensor
vp̃(i,i)

n as canonical generalization of the Legendre polynomial to the vector
case.

In fact, as for the system {y(i)
n,j}, there is a second way to generalize the

Legendre polynomial. Let the vector spherical harmonics ỹ
(i)
n,j be constructed

from an orthonormal set of scalar spherical harmonics, i.e.,

ỹ
(i)
n,j = (μ̃(i)

n )−1/2õ(i)Yn,j , (5.389)
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i=1,2,3, n = 0i, . . ., j = 1, . . . , 2n + 1. Assuming that f ∈ l2(Ω) is, in addi-
tion, sufficiently smooth, we are able to reformulate (5.384) in the following
way

f =
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

∫

Ω

(
f(η) · ỹ(i)

n,j(η)
)

dω(η)ỹ(i)
n,j

=
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

∫

Ω
f(η) · 1

(μ̃(i)
n )1/2

õ(i)
η Yn,j(η)dω(η)ỹ(i)

n,j (5.390)

=
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

∫

Ω

(
Õ(i)

η f(η)
) 1

(μ̃(i)
n )1/2

Yn,j(η)dω(η)ỹ(i)
n,j

=
3∑

i=1

∞∑

n=0i

2n + 1
4π

1

(μ̃(i)
n )1/2

∫

Ω
p̃(i)

n (·, η) Õ(i)
η f (i)(η) dω(η),

where the (vectorial) Legendre vector p̃
(i)
n (·, ·) : Ω × Ω → R

3 × R (more
precisely, vp̃

(i)
n (·, ·)) is given by

2n+1∑

j=1

ỹ
(i)
n,j(ξ)Yn,j(η) =

2n + 1
4π

p̃(i)
n (ξ, η), (ξ, η) ∈ Ω× Ω (5.391)

(cf. Theroem 5.46). Clearly, we have

p̃(i)
n (ξ, η) = (μ̃(i)

n )−1/2õ
(i)
ξ Pn(ξ · η), (5.392)

(ξ, η) ∈ Ω × Ω. Using this second generalization p̃
(i)
n of the Legendre poly-

nomials, the projection operator (5.372) can be rewritten as

proj
h̃arm

(i)

n

(f) =
2n + 1

4π

1

(μ̃(i)
n )1/2

∫

Ω

(
Õ(i)

η f(η)
)

p̃(i)
n (η, ·)dω(η). (5.393)

For this formula to be valid, it is again necessary that f is sufficiently
smooth.

Remark 5.66. The second approach described above is particularly helpful
for the consideration of the vector Laplace equation (see Chapter 10), since
the vector fields x �→ õ(i)Hn(x), x ∈ R

3, i = 1, 2, 3, satisfy the equation

Δõ(i)Hn = 0, i = 1, 2, 3, (5.394)

where
Hn(x) = |x|nYn(ξ), x = |x|ξ, ξ ∈ Ω. (5.395)
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5.16 Bibliographical Notes

Since 1950s, a number of researchers have used spherical harmonics for a
variety of vectorial problems (e.g., J. Blatt, V. Weisskopf (1952), E.H. Hill
(1954), I.M. Gelfand, Z. Ya. Shapiro (1956), A.R. Edmonds (1957), H.E.
Moses (1974), D.A. Varshalovich et al. (1988) and many others). Unfortu-
nately, the vector harmonics have not had any standard form. Each major
school has invented its own notation and formalism (leaving us today with
a very heterogeneous legacy). Moreover, the normalizations used in some
of these formalisms are not very rational. An attempt at consolidating and
reviewing the literature has been made by K.S. Thorne (1980). It seems to
the authors that a number of formulas that previously were derived only un-
der restrictive assumptions have much wider realms of validity by essentially
using one system, the vector harmonics of P.M. Morse, H. Feshbach (1953)
(see also G.E. Backus et al. (1996) and the references therein). These vector
harmonics are intimately related to the ‘pure-spin vector harmonics’ (see,
for example, A.R. Edmonds (1957)). Despite the fact that vector spherical
harmonics have long been used in physical disciplines, they are only rarely
found in the mathematical literature. They have been studied by M. Lagally,
W. Franz (1964). However, basic topics were unknown. In the literature, we
have no knowledge about the decomposition theorem (using Green’s func-
tion with respect to the Beltrami operator), the addition theorem, and the
Funk–Hecke formulas developed in Section 5.10. The treatment of these
results here is based on T. Gervens (1989), W. Freeden, T. Gervens (1991),
W. Freeden et al. (1994), and W. Freeden, M. Gutting (2008). The al-
ternative system of vector spherical harmonics presented at the end of the
chapter has been investigated in more detail in the PhD-thesis due to H.
Nutz (2002).



6 Tensor Spherical Harmonics

The theory of tensor spherical harmonics extends in canonical way our ap-
proach to vector spherical harmonics. A keypoint is that the tensor spherical
harmonics are generated from the scalar ones by use of certain operators
mapping scalar functions to tensor fields. In fact, these formulations (al-
ways being independent of any choice of spherical coordinates) offer the
perspective of extending all essential results known for scalar spherical har-
monics to the tensorial case, including the definition of a tensorial Beltrami
operator, the addition theorem, and tensorial versions of the Funk–Hecke
formula. Among other areas of application (see, for example, R. Burridge
(1969), James R.W. (1976), M.N. Jones (1980), K.S. Thorne (1980), and
F.J. Zerilli (1970)), tensor spherical harmonics play an important role in
diverse satellite problems of physical geodesy. Of current interest (see in
particular Chapter 10) is the determination of the Earth’s gravitational
field by satellite gravity gradiometry, where tensor valued functionals of the
potential are measured at satellite height, (see, for example, R. Rummel
(1986), R. Rummel, M. van Gelderen (1992), R. Rummel et al. (1993), M.
Schreiner (1994), R. Rummel (1997), K.-P. Schwarz, L. Zuofa (1997), W.
Freeden et al. (1998), W. Freeden (1999), W. Freeden, V. Michel (2004),
K.H. Ilk et al. (2004) and the references therein).

Our approach to tensor spherical harmonics closely follows M. Schreiner
(1994) and W. Freeden et al. (1998). The outline is as follows: After some
nomenclature, the separation of tensor field into normal and tangential parts
is discussed in Section 6.2. Integral theorems are listed within the tenso-
rial framework on the sphere (cf. Section 6.3). In Section 6.4, we introduce
tensor spherical harmonics. Based on the Green function with respect to
the Beltrami operator, a decomposition theorem for spherical tensor fields
is shown in Section 6.5. Orthogonal (Fourier) expansions in terms of ten-
sor spherical harmonics are described in Section 6.6. The interrelations
between tensorial homogeneous harmonic polynomials and tensor spherical
harmonics are discussed in Section 6.7. The tensor spherical harmonics are
characterized as eigenfunctions of a tensorial analogue of the Beltrami op-
erator (Section 6.8). Then, tensorial versions of the addition theorem and
the Funk–Hecke formula are developed in Sections 6.9 and 6.10, respec-
tively. After the description of counterparts to the Legendre polynomial
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(cf. Section 6.11), we introduce tensor spherical harmonics related to ten-
sor homogeneous harmonic polynormials in Section 6.12. Based on these
results, Section 6.13 shows alternative function systems of tensor spherical
harmonics. Finally, orthogonal expansions using tensor Legendre kernels
are discussed in Section 6.14.

6.1 Some Nomenclature

For the convenience of the reader, we start with the repetition of some
facts. As usual, a tensor of rank k ∈ N is understood to be an element of⊗k

l=1 R
3 (see, e.g., M.E. Gurtin (1971)). Using the canonical orthonormal

basis {ε1, ε2, ε3} of R
3, a tensor F of rank k can be written as

F =
3∑

i1,...,ik=1

Fi1...ikεi1 ⊗ . . .⊗ εik , Fi1...ik ∈ R. (6.1)

The scalar product F ·G of two rank-k tensors F, G is defined by

F ·G =
3∑

i1,...,ik=1

Fi1...ik Gi1...ik , Fi1...ik , Gi1...ik ∈ R, (6.2)

hence, the modulus |F| of a rank-k tensor is given by

|F| =

⎛

⎝
3∑

i1,...,ik=1

|Fi1...ik |2
⎞

⎠
1/2

. (6.3)

If

F =
3∑

i1,...,ik=1

Fi1...ikεi1 ⊗ . . .⊗ εik (6.4)

and

G =
3∑

i1,...,il=1

Gi1...ilε
i1 ⊗ . . .⊗ εil (6.5)

are a rank-k tensor and a rank-l tensor, respectively, F⊗G is the rank-(k+l)
tensor given by

F⊗G =
3∑

i1,...,ik=1

3∑

j1,...,jl=1

Fi1...ik Gj1...jl
εi1 ⊗ . . .⊗ εik ⊗ εj1 ⊗ . . .⊗ εjl . (6.6)

In what follows, we first restrict ourselves to tensor fields of rank 2. But
it should be noted that most of our considerations carry over to the more
general cases in an obvious way.
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If f is a rank-2 tensor given by

f =
3∑

i,k=1

Fik εi ⊗ εk, (6.7)

its trace is defined by

trace f =
3∑

i=1

Fii. (6.8)

We define the transpose of f by

fT =
3∑

i,k=1

Fikε
k ⊗ εi (6.9)

and say f is symmetric if f = fT and skew-symmetric if f = −fT . As is
well known, any tensor field f can be decomposed into a symmetric and
skew-symmetric part: f = sym f + skew f , where sym f = 1

2(f + fT ) and
skew f = 1

2(f − fT ).

Clearly, a spherical rank-2 tensor field f : Ω → R
3⊗R

3 can be represented
in terms of its coordinate functions by means of functions: Fik : Ω → R as
follows:

f(ξ) =
3∑

i,k=1

Fik(ξ)εi ⊗ εk, ξ ∈ Ω. (6.10)

If v =
3∑

i=1
Viε

i is a vector field, then the products vT f and fv are defined

by

vT f =
3∑

k=1

3∑

i=1

ViFikε
k (6.11)

and

fv =
3∑

i=1

3∑

k=1

FikVkε
i, (6.12)

respectively.

6.2 Normal and Tangential Fields

Rank-2 tensor fields f : Ω → R
3 ⊗R

3 can be separated into their tangential
and normal parts. We set
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p∗,norf(ξ) = (f(ξ)ξ)⊗ ξ, (6.13)
pnor,∗f(ξ) = ξ ⊗ (ξT f(ξ)), (6.14)
p∗,tanf(ξ) = f(ξ)− p∗,norf(ξ) = f(ξ)− (f(ξ)ξ)⊗ ξ, (6.15)
ptan,∗f(ξ) = f(ξ)− pnor,∗f(ξ) = f(ξ)− ξ ⊗ (ξT f(ξ)), (6.16)

pnor,tanf(ξ) = pnor,∗(p∗,tanf(ξ)) = p∗,tan(pnor,∗f(ξ)) (6.17)
= ξ ⊗ (ξT f(ξ))− (ξT f(ξ) · ξ)ξ ⊗ ξ,

ptan,norf(ξ) = pnor,∗(p∗;tanf(ξ)) = p∗,tan(pnor,∗f(ξ)) (6.18)
= f(ξ)ξ ⊗ ξ − ξ ⊗ (ξT f(ξ)ξ ⊗ ξ), (6.19)

pnor,norf(ξ) = pnor,∗(p∗,norf(ξ)) = p∗,nor(pnor,∗f(ξ)) (6.20)
= ξ ⊗ (ξT f(ξ)ξ ⊗ ξ), (6.21)

ptan,tanf(ξ) = f(ξ)− ξ ⊗ ξT · f(ξ)− f(ξ)ξ ⊗ ξ + (ξT f(ξ) · ξ)ξ ⊗ ξ.

(6.22)

A tensor vector field f ∈ l2(Ω) is called normal if f = pnor,norf and tangential
if f = ptan,tanf . It is called left normal if f = pnor,∗f , left normal/right
tangential if f = pnor,tanf , and so on. Altogether, we have

f = pnor,norf + pnor,tanf + ptan,norf + ptan,tanf . (6.23)

The operators, as defined by (6.13) - (6.22) admit the definition of the
spaces l2∗,nor(Ω), l2∗,tan(Ω), . . . , and c(p)

∗,nor(Ω), c(p)
∗,tan(Ω), etc. We end up with

the following orthogonal decompositions:

l2∗,nor(Ω) = l2nor,nor(Ω)⊕ l2tan,nor(Ω), (6.24)

l2∗,tan(Ω) = l2nor,tan(Ω)⊕ l2tan,tan(Ω), (6.25)

l2nor,∗(Ω) = l2nor,nor(Ω)⊕ l2nor,tan(Ω), (6.26)

l2tan,∗(Ω) = l2tan,nor(Ω)⊕ l2tan,tan(Ω), (6.27)

l2(Ω) = l2∗,nor(Ω)⊕ l2∗,tan(Ω), (6.28)

l2(Ω) = l2nor,∗(Ω)⊕ l2tan,∗(Ω). (6.29)

It is a well known fact (see, for example, M.E. Gurtin (1971)) that every
rank-2 tensor field f : Ω → R

3 ⊗ R
3 can be represented as a dyadic sum

f(ξ) =
p∑

i=1

ui(ξ)⊗ vi(ξ), ξ ∈ Ω, (6.30)

in terms of vector fields ui, vi : Ω → R
3 (for example, take the coordinate

expression (6.10)). It should be noted that neither the upper index p nor
the vector fields ui, vi are uniquely defined in (6.30).
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A left normal tensor f can be expressed as

f(ξ) =
3∑

i=1

ξ ⊗ vi(ξ), ξ ∈ Ω, (6.31)

by means of vector fields vi. For this tensor, it follows that

ξT f(ξ) =
3∑

i=1

vi(ξ), ξ ∈ Ω. (6.32)

Similarly, a multiplication by ξ from the right of a right normal tensor field
f , given by

f(ξ) =
3∑

i=1

ui(ξ)⊗ ξ, ξ ∈ Ω (6.33)

yields

f(ξ)ξ =
3∑

i=1

ui(ξ), ξ ∈ Ω. (6.34)

As in the vectorial case, spherical tensor fields can be characterized in
an elegant manner by the use of certain differential processes. Since we are
mainly interested in presenting the underlying formalism, we will not spend
much effort to formulate our results in their most general setting.

Let u ∈ c(1)(Ω) be a vector field given in its coordinate form by

u(ξ) =
3∑

i=1

Ui(ξ)εi, ξ ∈ Ω, Ui ∈ C(1)(Ω). (6.35)

Then we define the operators ∇∗⊗ and L∗⊗ by

∇∗
ξ ⊗ u(ξ) =

3∑

i=1

(∇∗
ξUi(ξ))⊗ εi, ξ ∈ Ω, (6.36)

L∗
ξ ⊗ u(ξ) =

3∑

i=1

(L∗
ξUi(ξ))⊗ εi, ξ ∈ Ω. (6.37)

Clearly, ∇∗ ⊗ u and L∗ ⊗ u are left tangential. But it is an important fact,
that even if u is tangential, the tensor fields ∇∗⊗u and L∗⊗u are generally
not tangential. It is obvious that the product rule is valid. To be specific,
let F ∈ C(1)(Ω) and u ∈ c(1)(Ω), then

∇∗
ξ ⊗ (F (ξ)u(ξ)) = ∇∗

ξF (ξ)⊗ u(ξ) + F (ξ)∇∗
ξ ⊗ u(ξ), ξ ∈ Ω. (6.38)
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In order to simplify our calculations, we first apply the operators ∇∗⊗ and
L∗⊗ to the local orthonormal triad defined in (2.119, 2.120, 2.121). It follows
that for ϕ ∈ (0, 2π), t ∈ (−1, 1)

∇∗ ⊗ εr(ϕ, t) = εϕ(ϕ, t)⊗ εϕ(ϕ, t) + εt(ϕ, t)⊗ εt(ϕ, t), (6.39)

∇∗ ⊗ εϕ(ϕ, t) = −εϕ(ϕ, t)⊗ εr(ϕ, t) +
t√

1− t2
εϕ(ϕ, t)⊗ εt(ϕ, t),

(6.40)

∇∗ ⊗ εt(ϕ, t) = −εt(ϕ, t)⊗ εr(ϕ, t)− t√
1− t2

εϕ(ϕ, t)⊗ εϕ(ϕ, t),

(6.41)

and

L∗ ⊗ εr(ϕ, t) = εt(ϕ, t)⊗ εϕ(ϕ, t)− εϕ(ϕ, t)⊗ εt(ϕ, t), (6.42)

L∗ ⊗ εϕ(ϕ, t) = −εt(ϕ, t)⊗ εr(ϕ, t) +
t√

1− t2
εt(ϕ, t)⊗ εt(ϕ, t),

(6.43)

L∗ ⊗ εt(ϕ, t) = εϕ(ϕ, t)⊗ εr(ϕ, t)− t√
1− t2

εt(ϕ, t)⊗ εϕ(ϕ, t).

(6.44)

The product rule (6.38) then yields for u ∈ c(1)(Ω)

∇∗ ⊗ u = ptan,∗∇∗ ⊗ u, (6.45)
L∗ ⊗ u = ptan,∗L∗ ⊗ u. (6.46)

Furthermore, we have for u ∈ c(1)
tan(Ω) and ξ ∈ Ω

ptan,nor∇∗
ξ ⊗ u(ξ) = −u(ξ)⊗ ξ, (6.47)

ptan,norL∗
ξ ⊗ u(ξ) = −ξ ∧ u(ξ)⊗ ξ. (6.48)

For the normal vector field ξ �→ F (ξ)ξ, ξ ∈ Ω, with F ∈ C(1)(Ω), we obtain

∇∗
ξ ⊗ F (ξ)ξ = F (ξ)itan(ξ) +∇∗

ξF (ξ)⊗ ξ, (6.49)
L∗

ξ ⊗ F (ξ)ξ = F (ξ)jtan(ξ) + L∗
ξF (ξ)⊗ ξ. (6.50)

6.3 Integral Theorems

After the generalizations of the surface gradient operators in Section 6.2,
we shall now investigate analogues to the operators, ∇∗·, and, L∗·, applied
to tensor fields.
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Let f ∈ c(1)
tan,∗(Ω) be a left tangential rank-2 tensor field given by

f(ξ) =
3∑

i,k=1

Fik(ξ)εi ⊗ εk, Fik ∈ C(1)(Ω), i, k = 1, 2, 3. (6.51)

Then we set

∇∗
ξ · f(ξ) =

3∑

k=1

(
∇∗

ξ ·
(

3∑

i=1

Fik(ξ)εi

))
εk,

L∗
ξ · f(ξ) =

3∑

k=1

(
L∗

ξ ·
(

3∑

i=1

Fik(ξ)εi

))
εk.

(6.52)

Moreover, for u ∈ c(1)
tan(Ω) and v ∈ c(1)(Ω) with

u =
3∑

i=1

Uiε
i, v =

3∑

i=1

Viε
i, (6.53)

and Ui, Vi ∈ C(1)(Ω) for i = 1, 2, 3 we get

∇∗ · (u⊗ v) = ∇∗ ·

⎛

⎝
3∑

i,k=1

UiVkε
i ⊗ εk

⎞

⎠ (6.54)

=
3∑

k=1

(
∇∗ ·

(
3∑

i=1

UiVkε
i

)
εk

)

=
3∑

k=1

(
∇∗ ·

(
3∑

i=1

Uiε
i

))
Vkε

k +
3∑

k=1

(u · ∇∗Vk)εk

= (∇∗ · u)v + u · (∇∗ ⊗ v).

Thus, we end up with the product rule

∇∗ · (u⊗ v) = (∇∗ · u)v + u · (∇∗ ⊗ v). (6.55)

Analogously,
L∗ · (u⊗ v) = (L∗ · u)v + u · (L∗ ⊗ v). (6.56)

Furthermore, for F ∈ C(1)(Ω) and f ∈ c(1)
tan,∗(Ω), the result is

∇∗
ξ · (F (ξ)f(ξ)) = (∇∗

ξF (ξ)) · f(ξ) + F (ξ)∇∗
ξ · f(ξ), ξ ∈ Ω, (6.57)

and a similar formula is valid for L∗.

The surface theorem of Gauß yields the following result:
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Lemma 6.1. Let f ∈ c(1)(Ω) and g ∈ c(1)
tan,∗(Ω). Then

∫

Ω
(∇∗

ξ ⊗ f(ξ)) · g(ξ) dω(ξ) = −
∫

Ω
f(ξ) · (∇∗

ξ · g(ξ)) dω(ξ),
∫

Ω
(L∗

ξ ⊗ f(ξ)) · g(ξ) dω(ξ) = −
∫

Ω
f(ξ) · (L∗

ξ · g(ξ)) dω(ξ).

Proof. We only verify the first formula. Let

f =
3∑

i=1

Fiε
i, g =

3∑

i,k=1

Gikε
i ⊗ εk. (6.58)

Then

(∇∗ ⊗ f) · g =

(
3∑

i=1

∇∗Fi ⊗ εi

)
·

⎛

⎝
3∑

i,k=1

Gkiε
k ⊗ εi

⎞

⎠ (6.59)

=
3∑

i=1

(
∇∗Fi

)
·
(

3∑

k=1

Gkiε
k

)

and

f · (∇∗ · g) =

(
3∑

i=1

Fiε
i

)
·

⎛

⎝
3∑

i,k=1

(
∇∗ ·

(
3∑

k=1

Gkiε
k

))
εi

⎞

⎠ (6.60)

=
3∑

i=1

(
Fi∇∗

)
·
(

3∑

k=1

Gkiε
k

)
.

Thus, the assertion follows from the surface theorem of Gauß.

Again, we write down the effect of the operators ∇∗· and L∗· on tensors
expressed locally with the help of the triad εr, εϕ, εt. In particular, we get
for ϕ ∈ (0, 2π) and t ∈ (−1, 1)

∇∗ · (εϕ(ϕ, t)⊗ εr(ϕ, t)) = εϕ(ϕ, t), (6.61)

∇∗ · (εϕ(ϕ, t)⊗ εϕ(ϕ, t)) = −εr(ϕ, t) +
t√

1− t2
εt(ϕ, t), (6.62)

∇∗ · (εϕ(ϕ, t)⊗ εt(ϕ, t)) = − t√
1− t2

εϕ(ϕ, t), (6.63)

∇∗ · (εt(ϕ, t)⊗ εr(ϕ, t)) = − t√
1− t2

εr(ϕ, t) + εt(ϕ, t), (6.64)

∇∗ · (εt(ϕ, t)⊗ εϕ(ϕ, t)) = − t√
1− t2

εϕ(ϕ, t), (6.65)

∇∗ · (εt(ϕ, t)⊗ εt(ϕ, t)) = −εr(ϕ, t)− t√
1− t2

εt, (6.66)
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and

L∗ · (εϕ(ϕ, t)⊗ εr(ϕ, t)) = − t√
1− t2

εr(ϕ, t)− εt(ϕ, t), (6.67)

L∗ · (εϕ(ϕ, t)⊗ εϕ(ϕ, t)) = − t√
1− t2

εϕ(ϕ, t), (6.68)

L∗ · (εϕ(ϕ, t)⊗ εt(ϕ, t)) = −εr(ϕ, t) +
t√

1− t2
εt(ϕ, t), (6.69)

L∗ · (εt(ϕ, t)⊗ εr(ϕ, t)) = −εϕ(ϕ, t), (6.70)

L∗ · (εt(ϕ, t)⊗ εϕ(ϕ, t)) = −εr(ϕ, t) +
t√

1− t2
εt(ϕ, t), (6.71)

L∗ · (εt(ϕ, t)⊗ εt(ϕ, t)) = − t√
1− t2

εϕ(ϕ, t). (6.72)

Since the tensors itan and jtan are locally given by

itan(ϕ, t) = εϕ(ϕ, t)⊗ εϕ(ϕ, t) + εt(ϕ, t)⊗ εt(ϕ, t), (6.73)
jtan(ϕ, t) = εt(ϕ, t)⊗ εϕ(ϕ, t)− εϕ(ϕ, t)⊗ εt(ϕ, t), (6.74)

we obtain for ξ ∈ Ω

∇∗
ξ · itan(ξ) = −2ξ, (6.75)

L∗
ξ · itan(ξ) = 0, (6.76)

∇∗
ξ · jtan(ξ) = 0, (6.77)

L∗
ξ · jtan(ξ) = −2ξ. (6.78)

Using the product rule (6.57) and its counterpart for L∗·, the above listed
formulas help us to evaluate ∇∗· and L∗· applied to tensor fields in local
representation with respect to εr, εϕ, and εt.

It is clear from our consideration that ξ ⊗ ξF (ξ), ξ ∈ Ω, are left nor-
mal/right normal, ξ ⊗ ∇∗

ξF (ξ), ξ ⊗ L∗
ξF (ξ), ξ ∈ Ω, are left normal/right

tangential, ∇∗
ξF (ξ)⊗ ξ, L∗

ξF (ξ)⊗ ξ are left tangential/right normal. More-
over, we have

p∗,nor∇∗
ξ ⊗∇∗

ξF (ξ) = ∇∗
ξ ⊗∇∗

ξF (ξ)ξξT = −∇∗
ξF (ξ)⊗ ξ, (6.79)

p∗,nor∇∗
ξ ⊗ L∗

ξF (ξ) = ∇∗
ξ ⊗∇∗

ξF (ξ)ξξT = −L∗
ξF (ξ)⊗ ξ, (6.80)

p∗,norL∗
ξ ⊗∇∗

ξF (ξ) = L∗
ξ ⊗∇∗

ξF (ξ)ξξT = −L∗
ξF (ξ)⊗ ξ, (6.81)

p∗,norL∗
ξ ⊗ L∗

ξF (ξ) = L∗
ξ ⊗ L∗

ξF (ξ)ξξT = −∇∗
ξF (ξ)⊗ ξ, (6.82)

ξ ∈ Ω. In consequence, the expressions (6.79), (6.82) are left tangential,
but, in general, not right tangential. Nevertheless, certain combinations of
the four operators under consideration allow a separation into normal and
tangential fields.
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It is not difficult to see that

trace ξ ⊗ ξF (ξ) = F (ξ), (6.83)
trace ∇∗

ξ ⊗∇∗
ξF (ξ) = Δ∗

ξF (ξ), (6.84)
trace L∗

ξ ⊗ L∗
ξF (ξ) = Δ∗

ξF (ξ), (6.85)

ξ ∈ Ω. In all other cases, the trace vanishes.

Finally, we are able to formulate for sufficiently smooth functions F : Ω →
R and tensor fields f : Ω → R

3 ⊗ R
3 the following Green integral formulas:

∫

Ω

(ξ ⊗ ξF (ξ)) · f(ξ) dω(ξ) =
∫

Ω

F (ξ)ξT f(ξ)ξ dω(ξ),
∫

Ω

(
ξ ⊗∇∗

ξF (ξ)
)
· f(ξ)dω(ξ) = −

∫

Ω

F (ξ)∇∗
ξ ·
(
ξT f(ξ)− ξ · (ξT f(ξ))ξ

)
dω(ξ),

∫

Ω

(
ξ ⊗ L∗

ξF (ξ)
)
· f(ξ) dω(ξ) = −

∫

Ω

F (ξ)L∗
ξ ·
(
ξT f(ξ)− ξ · (ξT f(ξ))ξ

)
dω(ξ),

∫

Ω

(
∇∗

ξF (ξ)⊗ ξ
)
· f(ξ) dω(ξ) = −

∫

Ω

F (ξ)∇∗
ξ · (f(ξ)ξ − (ξ · f(ξ)ξ)ξ) dω(ξ),

∫

Ω

(
∇∗

ξF (ξ)⊗ ξ
)
· f(ξ) dω(ξ) = −

∫

Ω

F (ξ)L∗
ξ · (f(ξ)ξ − (ξ · f(ξ)ξ)ξ) dω(ξ),

(6.86)

and

∫

Ω

(
∇∗

ξ ⊗∇∗
ξ

)
F (ξ) · f(ξ) dω(ξ) =

∫

Ω
F (ξ)∇∗

ξ ·
{
∇∗

ξ · (f(ξ)− ξ ⊗ (ξT f(ξ)))− [ξ · (∇ξ · (f(ξ)− ξ ⊗ (ξT f(ξ))))]ξ
}

dω(ξ),
∫

Ω

(
(∇∗

ξ ⊗ L∗
ξ)F (ξ)

)
· f(ξ) dω(ξ) =

∫

Ω
F (ξ)L∗

ξ ·
{
∇∗

ξ · (f(ξ)− ξ ⊗ (ξT f(ξ)))−
[
ξ · (∇∗

ξ · (f(ξ)− ξ ⊗ (ξT f(ξ))))
]
ξ
}

dω(ξ),
∫

Ω

(
(L∗

ξ ⊗∇∗
ξ)F (ξ)

)
· f(ξ) dω(ξ) =

∫

Ω
F (ξ)∇∗

ξ ·
{
L∗

ξ · (f(ξ)− ξ ⊗ (ξT f(ξ)))−
[
ξ · (L∗

ξ · (f(ξ)− ξ ⊗ (ξT f(ξ))))
]
ξ
}

dω(ξ),
∫

Ω

(
(L∗

ξ ⊗ L∗
ξ)F (ξ)

)
· f(ξ) dω(ξ) =

∫

Ω
F (ξ)L∗

ξ ·
{
L∗

ξ · (f(ξ)− ξ ⊗ (ξT f(ξ)))−
[
ξ · (L∗

ξ · (f(ξ)− ξ ⊗ (ξT f(ξ))))
]
ξ
}

dω(ξ).
(6.87)
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6.4 Definition of Tensor Spherical Harmonics

To simplify our notation, we introduce the operators q(i,k) : C(2)(Ω) → c(Ω)
as follows:

q(1,1)
ξ F (ξ) = ξ ⊗ ξF (ξ), (6.88)

q(1,2)
ξ F (ξ) = ξ ⊗∇∗

ξF (ξ), (6.89)

q(1,3)
ξ F (ξ) = ξ ⊗ L∗

ξF (ξ), (6.90)

q(2,1)
ξ F (ξ) = ∇∗

ξF (ξ)⊗ ξ, (6.91)

q(3,1)
ξ F (ξ) = L∗

ξF (ξ)⊗ ξ, (6.92)

q(2,2)
ξ F (ξ) = ∇∗

ξ ⊗∇∗
ξF (ξ), (6.93)

q(2,3)
ξ F (ξ) = ∇∗

ξ ⊗ L∗F (ξ), (6.94)

q(3,2)
ξ F (ξ) = L∗

ξ ⊗∇∗
ξF (ξ), (6.95)

q(3,3)
ξ F (ξ) = L∗

ξ ⊗ L∗
ξF (ξ), (6.96)

ξ ∈ Ω. It is clear from the considerations above that q(1,1)F is left nor-
mal/right normal, q(1,k)F are left normal/right tangential (k = 2, 3), and
q(i,1)F are left tangential/right normal (i = 2, 3). Furthermore, the ten-
sor fields q(i,k)F, i, k = 2, 3 are left tangential, but, in general, not right
tangential. In particular, (6.47) and (6.48) show that

p∗,nor∇∗
ξ ⊗∇∗

ξF (ξ) = −∇∗
ξF (ξ)⊗ ξ, (6.97)

p∗,nor∇∗
ξ ⊗ L∗

ξF (ξ) = −L∗
ξF (ξ)⊗ ξ, (6.98)

p∗,norL∗
ξ ⊗∇∗

ξF (ξ) = −L∗
ξF (ξ)⊗ ξ, (6.99)

p∗,norL∗
ξ ⊗ L∗

ξF (ξ) = ∇∗
ξF (ξ)⊗ ξ, (6.100)

ξ ∈ Ω. Thus, certain combinations of the q(i,k)-operators allow a separation
into normal and tangential tensor fields.

The trace of q(i,k)F is given by

trace q(1,1)
ξ F (ξ) = F (ξ), (6.101)

trace q(2,2)
ξ F (ξ) = trace q(3,3)

ξ F (ξ) = Δ∗
ξF (ξ), (6.102)

and
trace q(i,k)

ξ F (ξ) = 0, (6.103)

if (i, k) ∈ {(1, 2), (1, 3), (2, 1), (3, 1), (2, 3), (3, 2)}.
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Next, we are interested in the adjoint operators of q(i,k) (denoted by
Q(i,k)). To be more explicit, we are looking for operators Q(i,k) satisfying

∫

Ω
q(i,k)F (ξ) · f(ξ) dω(ξ) =

∫

Ω
F (ξ)Q(i,k)f(ξ) dω(ξ), (6.104)

i.e.,

(q(i,k)F , f)l2(Ω) = (F, Q(i,k)f)L2(Ω) (6.105)

for all (i, k) ∈ {(1, 1), . . . , (3, 3)} and all sufficiently smooth functions F :
Ω → R and tensor fields f : Ω → R

3 ⊗ R
3. It can be deduced from Lemma

6.1 that the operators Q(i,k) may be written down in the following form:

Q
(1,1)
ξ f(ξ) = ξT f(ξ)ξ, (6.106)

Q
(1,2)
ξ f(ξ) = −∇∗

ξ · ptan(ξT f(ξ)), (6.107)

Q
(1,3)
ξ f(ξ) = −L∗

ξ · ptan(ξT f(ξ)), (6.108)

Q
(2,1)
ξ f(ξ) = −∇∗

ξ · ptan(f(ξ)ξ), (6.109)

Q
(3,1)
ξ f(ξ) = −L∗

ξ · ptan(f(ξ)ξ), (6.110)

Q
(2,2)
ξ f(ξ) = ∇∗

ξ · ptan(∇∗
ξ · ptan,∗f(ξ)), (6.111)

Q
(2,3)
ξ f(ξ) = L∗

ξ · ptan(∇∗
ξ · ptan,∗f(ξ)), (6.112)

Q
(3,2)
ξ f(ξ) = ∇∗

ξ · ptan(L∗
ξ · ptan,∗f(ξ)), (6.113)

Q
(3,3)
ξ f(ξ) = L∗

ξ · ptan(L∗
ξ · ptan,∗f(ξ)), (6.114)

provided that f ∈ c(2)(Ω). If F : Ω → R is sufficiently smooth, then

Q(1,1)q(1,1)F = F,

Q(i,k)q(i,k)F = −Δ∗F if (i, k) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)},
Q(i,k)q(i,k)F = Δ∗Δ∗F if (i, k) ∈ {(2, 2), (2, 3), (3, 2), (3, 3)},
Q(1,1)q(i,k)F = 0 if (i, k) �= (1, 1),
Q(1,2)q(i,k)F = 0 if (i, k) �= (1, 2),
Q(1,3)q(i,k)F = 0 if (i, k) �= (1, 3),
Q(2,1)q(i,k)F = 0 if (i, k) �∈ {(2, 1), (2, 2), (3, 3)},
Q(2,1)q(2,2)F = Δ∗F,

Q(2,1)q(3,3)F = −Δ∗F,
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Q(3,1)q(i,k)F = 0 if (i, k) �∈ {(3, 1), (2, 3), (3, 2)},
Q(3,1)q(2,3)F = Δ∗F,

Q(3,1)q(3,2)F = Δ∗F,

Q(2,2)q(i,k)F = 0 if (i, k) �∈ {(2, 1), (2, 2)},
Q(2,2)q(2,1)F = Δ∗F,

Q(2,3)q(i,k)F = 0 if (i, k) �∈ {(3, 1), (2, 3)},
Q(2,3)q(3,1)F = Δ∗F,

Q(3,2)q(i,k)F = 0 if (i, k) �∈ {(3, 1), (3, 2)},
Q(3,2)q(3,1)F = Δ∗F,

Q(3,3)q(i,k)F = 0 if (i, k) �∈ {(2, 1), (3, 3)},
Q(3,3)q(2,1)F = −Δ∗F.

It is remarkable to mention that, contrary to the vectorial case, ‘constant’
tangential tensors can be detected, i.e., tensor fields f ∈ c(1)

tan,tan(Ω) satisfying
ptan∇∗ · f = 0 and ptanL∗ · f = 0. Indeed, both tensor fields can be
characterized as linear combinations of itan and jtan.

Important relations for F ∈ C(2)(Ω) are as follows:

(∇∗ ⊗∇∗ + L∗ ⊗ L∗)F = itanΔ∗F, (6.115)
(L∗ ⊗∇∗ −∇∗ ⊗ L∗)F = jtanΔ∗F. (6.116)

In view of the above equations and definitions, we finally introduce oper-
ators o(i,k) : C(2)(Ω) → c(Ω) by

o(1,1)
ξ F (ξ) = ξ ⊗ ξF (ξ), (6.117)

o(1,2)
ξ F (ξ) = ξ ⊗∇∗

ξF (ξ), (6.118)

o(1,3)
ξ F (ξ) = ξ ⊗ L∗

ξF (ξ), (6.119)

o(2,1)
ξ F (ξ) = ∇∗

ξF (ξ)⊗ ξ, (6.120)

o(3,1)
ξ F (ξ) = L∗

ξF (ξ)⊗ ξ, (6.121)

o(2,2)
ξ F (ξ) = itan(ξ)F (ξ), (6.122)

o(2,3)
ξ F (ξ) =

(
∇∗

ξ ⊗∇∗
ξ − L∗

ξ ⊗ L∗
ξ

)
F (ξ) + 2∇∗

ξF (ξ)⊗ ξ, (6.123)

o(3,2)
ξ F (ξ) =

(
∇∗

ξ ⊗ L∗
ξ + L∗

ξ ⊗∇∗
ξ

)
F (ξ) + 2L∗

ξF (ξ)⊗ ξ, (6.124)

o(3,3)
ξ F (ξ) = jtan(ξ)F (ξ), (6.125)

ξ ∈ Ω.

After these considerations, it is not difficult to prove the following lemma.
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Lemma 6.2. Let F : Ω → R be sufficiently smooth. Then, the following
statements are valid:

(i) o(1,1)F is a normal tensor field.

(ii) o(1,2)F and o(1,3)F are left normal/right tangential.

(iii) o(2,1)F and o(3,1)F are left tangential/right normal.

(iv) o(2,2)F , o(2,3)F , o(3,2)F and o(3,3)F are tangential.

(v) o(1,1)F , o(2,2)F , o(2,3)F and o(3,2)F are symmetric.

(vi) o(3,3)F is skew-symmetric.

(vii)
(
o(1,2)F

)T
= o(2,1)F and

(
o(1,3)F

)T
= o(3,1)F .

(viii) For ξ ∈ Ω

trace o(i,k)
ξ F (ξ) =

⎧
⎨

⎩

F (ξ) for (i, k) = (1, 1)
2F (ξ) for (i, k) = (2, 2)
0 for (i, k) �= (1, 1), (2, 2).

The tangent representation theorem (cf. G.E. Backus (1966), G.E. Backus
(1967)) asserts that if ptan,tanf is the tangential part of a tensor field f ∈
c(2)(Ω), as defined above, then there exist unique scalar fields F2,2, F3,3, F2,3,
F3,2 such that

∫

Ω
F2,2(ξ) dω(ξ) =

∫

Ω
F3,3(ξ) dω(ξ) = 0, (6.126)

∫

Ω
F3,2(ξ)(εi · ξ) dω(ξ) =

∫

Ω
F2,3(ξ)(εi · ξ) dω(ξ) = 0, i = 1, 2, 3, (6.127)

and

ptan,tanf = o(2,2)F2,2 + o(2,3)F2,3 + o(3,2)F3,2 + o(3,3)F3,3. (6.128)

Furthermore, the following orthogonality relations may be formulated.

Lemma 6.3. Let F, G : Ω → R be sufficiently smooth. Then, the following
properties hold true:

(i) For all ξ ∈ Ω, o(i,k)
ξ F (ξ) · o(i′,k′)

ξ F (ξ) = 0, whenever (i, k) �= (i′, k′).

(ii) If Yn ∈ Harmn, Ym ∈ Harmm, n �= m, i.e., (Yn, Ym)L2(Ω) = 0, then we
have

(o(i,k)Yn,o(i′,k′)Ym)l2(Ω) = 0 (6.129)

for all (i, k), (i′, k′) ∈ {(1, 1), (1, 2), . . . , (3, 3)}.
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The adjoint operators O(i,k) satisfying
∫

Ω
o(i,k)F (ξ) · f(ξ) dω(ξ) =

∫

Ω
F (ξ) O(i,k)f(ξ) dω(ξ), (6.130)

i.e., in shorthand notation

(o(i,k)F , f)l2(Ω) = (F, O(i,k)f)L2(Ω) (6.131)

for all sufficiently smooth functions F : Ω → R and tensor fields f : Ω →
R

3 ⊗ R
3 can be deduced from the definitions (6.106)–(6.114). In detail, for

f ∈ c(2)(Ω) we find

O
(1,1)
ξ f(ξ) = ξT f(ξ)ξ, (6.132)

O
(1,2)
ξ f(ξ) = −∇∗

ξ · ptan

(
ξT f(ξ)

)
, (6.133)

O
(1,3)
ξ f(ξ) = −L∗

ξ · ptan

(
ξT f(ξ)

)
, (6.134)

O
(2,1)
ξ f(ξ) = −∇∗

ξ · ptan (f(ξ)ξ) , (6.135)

O
(3,1)
ξ f(ξ) = −L∗

ξ · ptan (f(ξ)ξ) , (6.136)

O
(2,2)
ξ f(ξ) = itan(ξ) · f(ξ), (6.137)

O
(2,3)
ξ f(ξ) = ∇∗

ξ · ptan

(
∇∗

ξ · ptan,∗f(ξ)
)
− L∗

ξ · ptan

(
L∗

ξ · ptan,∗f(ξ)
)

−2∇∗
ξ · ptan (f(ξ)ξ) , (6.138)

O
(3,2)
ξ f(ξ) = L∗

ξ · ptan

(
∇∗

ξ · ptan,∗f(ξ)
)

+∇∗
ξ · ptan

(
L∗

ξ · ptan,∗f(ξ)
)

−2L∗
ξ · ptan (f(ξ)ξ) , (6.139)

O
(3,3)
ξ f(ξ) = jtan(ξ) · f(ξ), (6.140)

ξ ∈ Ω. Provided that F : Ω → R is sufficiently smooth we obtain

O
(i′,k′)
ξ o(i,k)

ξ F (ξ) = 0 if (i, k) �= (i′, k′), (6.141)

whereas

O
(i,k)
ξ o(i,k)

ξ F (ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F (ξ) if (i, k) = (1, 1)
−Δ∗F (ξ) if (i, k) ∈ {(1, 2), (1, 3)

(2, 1), (3, 1)}
2F (ξ) if (i, k) ∈ {(2, 2), (3, 3)}
2Δ∗(Δ∗ + 2)F (ξ) if (i, k) ∈ {(2, 3), (3, 2)}

.

(6.142)
It can be easily deduced that for Y0 ∈ Harm0

o(i,k)Y0 = 0 if (i, k) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)}, (6.143)

while for Y ∈ Harm0 ∪Harm1 we find

o(i,k)Y = 0 if (i, k) ∈ {(2, 3), (3, 2)}. (6.144)



288 6 Tensor Spherical Harmonics

Thus, for notational convenience, we let

0i,k =

⎧
⎨

⎩

0 for (i, k) ∈ {(1, 1), (2, 2), (3, 3)}
1 for (i, k) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)}
2 for (i, k) ∈ {(2, 3), (3, 2)}

. (6.145)

These preparations of Section 6.4 motivate us to introduce tensor spher-
ical harmonics as follows.

Definition 6.4. Let (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)}. We call o(i,k)Yn, n ≥
0i,k, with Yn ∈ Harmn, a tensor spherical harmonic of degree n and type
(i, k). The space of all tensor spherical harmonics of degree n and type (i, k)
is denoted by harm(i,k)

n . Furthermore, we set

harm0 = harm(1,1)
0 ⊕ harm(2,2)

0 ⊕ harm(3,3)
0 , (6.146)

harm1 =
3⊕

i,k=1
(i,k) �=(2,3),(3,2)

harm(i,k)
1 , (6.147)

harmn =
3⊕

i,k=1

harm(i,k)
n , n ≥ 2. (6.148)

An l2(Ω)-orthonormal system of tensor spherical harmonics for (i, k) ∈
{(1, 1), (1, 2), . . . , (3, 3)}, n ≥ 0i,k, j = 1, . . . , 2n+1, is introduced by letting

y(i,k)
n,j = (μ(i,k)

n )−1/2o(i,k)Yn,j , (6.149)

where μ
(i,k)
n is defined by

μ(i,k)
n =

∥∥∥O(i,k)o(i,k)Yn,j

∥∥∥
L2(Ω)

,

that is

μ(i,k)
n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, (i, k) = (1, 1)
2, (i, k) ∈ {(2, 2), (3, 3)}
−Δ∗∧(n), (i, k) ∈

{(1, 2), (1, 3), (2, 1), (3, 1)}
2Δ∗∧(n)

(
Δ∗∧(n) + 2

)
, (i, k) ∈ {(2, 3), (3, 2)}

.

(6.150)

It is not difficult to see that
{
y(i,k)

n,j

}
forms an orthonormal system in

l2(Ω), i.e., ∫

Ω
y(i,k)

n,j (ξ) · y(p,q)
m,l (ξ) dω(ξ) = δnmδjlδipδkq. (6.151)



6.5 Helmholtz Decomposition Theorem 289

Example 6.5. Let us consider the (L2(Ω)–orthonormal) scalar spherical
harmonics of degree 0, 1,

Y0,1(ξ) =
1√
4π

, ξ ∈ Ω, (6.152)

Y1,j(ξ) =

√
3
4π

(ξ · εj), ξ ∈ Ω, j = 1, . . . , 3. (6.153)

It is not difficult to see that

y(1,1)
0,1 (ξ) =

1√
4π

ξ ⊗ ξ, (6.154)

y(2,2)
0,1 (ξ) =

1√
4π

(i− ξ ⊗ ξ), (6.155)

y(3,3)
0,1 (ξ) =

1√
4π

(ξ ∧ i) =
1√
4π

3∑

i=1

(ξ ∧ εi)⊗ εi, (6.156)

y(1,1)
1,j (ξ) =

√
3
4π

(ξ · εj)ξ ⊗ εj , j = 1, 2, 3, (6.157)

y(1,2)
1,j (ξ) =

√
3
8π

ξ ⊗ (εj − (ξ · εj)ξ), j = 1, 2, 3, (6.158)

y(1,3)
1,j (ξ) =

√
3
8π

ξ ⊗ (ξ ∧ εj), j = 1, 2, 3, (6.159)

y(2,1)
1,j (ξ) =

√
3
8π

(εj − (ξ · εj)ξ)⊗ ξ, j = 1, 2, 3, (6.160)

y(3,1)
1,j (ξ) =

√
3
8π

(ξ ∧ εj)⊗ ξ, j = 1, 2, 3, (6.161)

y(3,3)
1,j (ξ) =

√
3
8π

(ξ · εj)(ξ ∧ i), j = 1, 2, 3. (6.162)

6.5 Helmholtz Decomposition Theorem

Our purpose now is to show that, if a tensor field f : Ω → R
3 ⊗ R

3 satisfies
some smoothness assumptions, its decomposition into normal and tangential
fields can be established by use of the Green functions with respect to the
(scalar) Beltrami operator and its first iteration. Our results are based on
the aforementioned tangent representation theorem for tensor fields and the
already known Helmholtz decomposition theorem for spherical vector fields
(as presented in Section 5.2).
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Theorem 6.6. (Helmholtz Decomposition Theorem) Let f be of class
c(2)(Ω). Then there exist uniquely defined functions Fi,k ∈ C(2)(Ω), (i, k) ∈
{(1, 1), (1, 2), . . . , (3, 3)} with (Fi,k, Y0)L2(Ω) = 0 for all Y0 ∈ Harm0 if
(i, k) ∈ {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} and (Fi,k, Y1)L2(Ω) = 0 for
all Y1 ∈ Harm1 if (i, k) ∈ {(2, 3), (3, 2)}, in such a way that

f =
3∑

i,k=1

o(i,k)Fi,k, (6.163)

where the functions ξ �→ Fi,k(ξ), ξ ∈ Ω, are explicitly given by

F1,1(ξ) = O
(1,1)
ξ f(ξ), (6.164)

F2,2(ξ) =
1
2
O

(2,2)
ξ f(ξ), (6.165)

F3,3(ξ) =
1
2
O

(3,3)
ξ f(ξ), (6.166)

F1,2(ξ) = −
∫

Ω
G(Δ∗; ξ · η)O(1,2)

η f(η) dω(η), (6.167)

F1,3(ξ) = −
∫

Ω
G(Δ∗; ξ · η)O(1,3)

η f(η) dω(η), (6.168)

F2,1(ξ) = −
∫

Ω
G(Δ∗; ξ · η)O(2,1)

η f(η) dω(η), (6.169)

F3,1(ξ) = −
∫

Ω
G(Δ∗; ξ · η)O(3,1)

η f(η) dω(η), (6.170)

F2,3(ξ) =
1
2

∫

Ω
G(Δ∗(Δ∗ + 2); ξ · η)O(2,3)

η f(η) dω(η), (6.171)

F3,2(ξ) =
1
2

∫

Ω
G(Δ∗(Δ∗ + 2); ξ · η)O(3,2)

η f(η) dω(η). (6.172)

Remark 6.7. In the notation of Chapter 4, we have ∂0 = Δ∗ and ∂0∂1 =
Δ∗(Δ∗ + 2).

Proof. Using the projection operators as defined in Section 6.2, we have

f = pnor,norf + pnor,tanf + ptan,norf + ptan,tanf . (6.173)

Each term can be investigated separately. It is clear that pnor,norf =
o(1,1)O(1,1)f . The left normal/right tangential field pnor,tanf allows a rep-

resentation of the form pnor,tanf(ξ) = ξ ⊗ u(ξ), ξ ∈ Ω, with u ∈ c
(2)
tan.

If we write u in the form u(ξ) = ∇∗F1,2(ξ) + L∗F1,3(ξ) (as proposed in
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Chapter 5.3), we find

Δ∗
ξF1,2(ξ) = −O

(1,2)
ξ f(ξ), ξ ∈ Ω, (6.174)

Δ∗
ξF1,3(ξ) = −O

(1,3)
ξ f(ξ), ξ ∈ Ω. (6.175)

The solution is uniquely determined by Theorem 4.27 since it can be deduced
from (6.143) that (O(1,2)f , Y0)L2(Ω) = 0 and (O(1,3)f , Y0)L2(Ω) = 0 for all
Y0 ∈ Harm0. We have, for ξ ∈ Ω,

F1,2(ξ) = −
∫

Ω
G(Δ∗; ξ · η)O(1,2)

η f(η) dω(η), (6.176)

F1,3(ξ) = −
∫

Ω
G(Δ∗; ξ · η)O(1,3)

η f(η) dω(η), (6.177)

as required. The left tangential/right normal part can be considered in a
similar way.

The tensor field

ptan,tanf −
1
2
o(2,2)O(2,2)f − 1

2
o(3,3)O(3,3)f (6.178)

is symmetric and traceless. Based on the tangent representation theorem
due to G.E. Backus (1966); G.E. Backus (1967), we obtain from the formu-
lation

ptan,tanf −
1
2
o(2,2)O(2,2)f − 1

2
o(3,3)O(3,3)f = o(2,3)F2,3 + o(3,2)F3,2 (6.179)

the differential equations

2Δ∗
ξ(Δ

∗
ξ + 2)F2,3(ξ) = O

(2,3)
ξ f(ξ), (6.180)

2Δ∗
ξ(Δ

∗
ξ + 2)F3,2(ξ) = O

(3,2)
ξ f(ξ) (6.181)

for ξ ∈ Ω (remember that −(Δ∗)∧(1) = 2). By virtue of (6.141), (6.142)
and Theorem 4.27, we see that the unique solutions are given by

F2,3(ξ) =
1
2

∫

Ω
G(Δ∗(Δ∗ + 2); ξ · η)O(2,3)

η f(η) dω(η), ξ ∈ Ω, (6.182)

F3,2(ξ) =
1
2

∫

Ω
G(Δ∗(Δ∗ + 2); ξ · η)O(3,2)

η f(η) dω(η), ξ ∈ Ω. (6.183)

Consequently, the existence is assured.

The uniqueness follows from the integral theorems for the (iterated) Bel-
trami differential equations.
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As an example of the above developed decomposition procedure for tensor
fields, we describe how the Hesse matrix of a function defined in R

3\{0} can
be decomposed, when restricted to the unit sphere. It turns out that this
result is of particular importance in satellite gradiometry, i.e., the determi-
nation of the Earth’s gravitational field from measurements of second order
derivatives of the potential at satellite height. In particular, this decom-
position is of advantage for the classification of those types of gradiometry
measurements, which ensure existence and uniqueness in a mathematical
formulation of the gradiometry problem (cf. M. Schreiner (1996)).

Suppose that the function H : R
3 \ {0} → R is twice continuously dif-

ferentiable. We want to show how the Hesse matrix restricted to the unit
sphere Ω, i.e.,

h(ξ) = ∇x ⊗∇xH(x)||x|=1, ξ ∈ Ω, (6.184)

can be decomposed according to the rules of Theorem 6.6. In order to
evaluate

∇x ⊗∇xH(x) =
(

ξ
∂

∂r
+

1
r
∇∗

ξ

)
⊗
(

ξ
∂

∂r
+

1
r
∇∗

ξ

)
H(rξ), (6.185)

we first see that

ξ
∂

∂r
⊗ ξ

∂

∂r
H(rξ) = ξ ⊗ ξ

(
∂

∂r

)2

H(rξ), (6.186)

ξ
∂

∂r
⊗ 1

r
∇∗

ξH(rξ) = − 1
r2

ξ ⊗∇∗
ξH(rξ) +

1
r
ξ ⊗∇∗

ξ

∂

∂r
H(rξ), (6.187)

1
r
∇∗

ξ ⊗ ξ
∂

∂r
H(rξ) =

1
r
itan(ξ)

∂

∂r
H(rξ) +

1
r
∇∗

ξ

(
∂

∂r
H(rξ)

)
⊗ ξ,

(6.188)
1
r
∇∗

ξ ⊗
1
r
∇∗

ξH(rξ) =
1
r2
∇∗

ξ ⊗∇∗
ξH(rξ). (6.189)

Summing up these terms, we obtain

∇x ⊗∇xH(x)||x|=1 = ξ ⊗ ξ

(
∂

∂r

)2

H(rξ)|r=1 (6.190)

+ ξ ⊗∇∗
ξ

(
∂

∂r
H(rξ)|r=1 −H(ξ)

)

+
(
∇∗ ∂

∂r
H(rξ)|r=1

)
⊗ ξ

+ ∇∗
ξ ⊗∇∗

ξH(ξ)

+ itan(ξ)
∂

∂r
H(rξ)|r=1.
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Using (6.115) and the definition of the o(i,k)-operators, we finally arrive
at

∇x ⊗∇xH(x)||x|=1 = o(1,1)
ξ

((
∂

∂r

)2

H(rξ)|r=1

)
(6.191)

+o(1,2)
ξ

(
∂

∂r
H(rξ)|r=1 −H(ξ)

)

+o(2,1)
ξ

(
∂

∂r
H(rξ)|r=1 −H(ξ)

)

+o(2,2)
ξ

(
1
2
Δ∗

ξH(ξ) +
∂

∂r
H(rξ)|r=1

)

+o(2,3)
ξ

1
2
H(ξ).

In particular, if we consider an outer (solid spherical) harmonic H−n−1 :
x �→ H−n−1(x), H−n−1(rξ) = r−(n+1)Yn(ξ), r > 0, ξ ∈ Ω, we obtain the
following decomposition of the Hesse matrix:

∇x ⊗∇xH−n−1(x)||x|=1 = (n + 1)(n + 2)o(1,1)
ξ Yn(ξ) (6.192)

− (n + 2)o(1,2)
ξ Yn(ξ)− (n + 2)o(2,1)

ξ Yn(ξ)

− 1
2
(n + 1)(n + 2)o(2,2)

ξ Yn(ξ)

+
1
2
o(2,3)

ξ Yn(ξ).

6.6 Orthogonal (Fourier) Expansions

Next, the closure and completeness of tensor spherical harmonics will be
formulated intrinsically on the sphere via Bernstein summability (see W.
Freeden, M. Gutting (2008)). Another proof of the closure and complete-
ness using homogeneous harmonic tensor polynomials in three-dimensional
Euclidean space R

3 can be derived from arguments given in Section 6.7.

We begin our considerations by introducing ‘Bernstein convolutions’ to
the nine Helmholtz functions. More explicitly, we let

F
(n)
1,1 (ξ) =

∫

Ω
Bn(ξ · α)O(1,1)f(α)dω(α), (6.193)

F
(n)
2,2 (ξ) =

1
2

∫

Ω
Bn(ξ · α)O(2,2)f(α)dω(α), (6.194)
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F
(n)
3,3 (ξ) =

1
2

∫

Ω
Bn(ξ · α)O(3,3)f(α)dω(α), (6.195)

F
(n)
1,2 (ξ) = −

∫

Ω
BGn(ξ · α)O(1,2)f(α)dω(α), (6.196)

F
(n)
1,3 (ξ) = −

∫

Ω
BGn(ξ · α)O(1,3)f(α)dω(α), (6.197)

F
(n)
2,1 (ξ) = −

∫

Ω
BGn(ξ · α)O(2,1)f(α)dω(α), (6.198)

F
(n)
3,1 (ξ) = −

∫

Ω
BGn(ξ · α)O(3,1)f(α)dω(α), (6.199)

F
(n)
2,3 (ξ) =

1
2

∫

Ω
BG(2)

n (ξ · α)O(2,3)f(α)dω(α), (6.200)

F
(n)
3,2 (ξ) =

1
2

∫

Ω
BG(2)

n (ξ · α)O(3,2)f(α)dω(α), (6.201)

where

BG(2)
n (ξ · η) =

∫

Ω
G(Δ∗(Δ∗ + 2); ξ · α)Bn(α · η)dω(α) (6.202)

=
n∑

k=2

2k + 1
4π

B∧
n (k)

(k − 1)k(k + 1)(k + 2)
Pk(ξ · η).

Our interest is the ‘Bernstein summability’ of Fourier expansions in terms of
tensor spherical harmonics. To this end, we need some preparatory results
(viz., Lemma 6.8 and Lemma 6.9).

Lemma 6.8. For i, k ∈ {1, 2, 3}, we have

lim
n→∞

sup
ξ∈Ω

∣∣∣Fi,k(ξ)− F
(n)
i,k (ξ)

∣∣∣ = 0,

where the functions Fi,k are defined by (6.164)–(6.172) and the functions
F

(n)
i,k are given by (6.193)–(6.201).

Proof. Since both kernels G(Δ∗(Δ∗ + 2); ·) and BG
(2)
n are in L2[−1, 1] and

the Legendre coefficients of the Bernstein kernel B∧
n (k) converge to 1 as

n →∞ for all k ∈ N0, we obtain

lim
n→∞

‖G(Δ∗(Δ∗ + 2); ·)−BG(2)
n ‖L2[−1,1] = 0. (6.203)

The last limit also holds true in the L1-metric. Consequently, we are able
to deduce that ‖Fi,k − F

(n)
i,k ‖C(Ω) −→ 0 for i, k ∈ {1, 2, 3} as n −→∞.

We are now prepared to verify the following result.
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Lemma 6.9. For i, k ∈ {1, 2, 3}

lim
n→∞

sup
ξ∈Ω

‖o(i,k)Fi,k − o(i,k)F
(n)
i,k ‖c(Ω) = 0.

Proof. For the types (i, k) = (1, 1), (2, 2), (3, 3), we obtain the required con-
vergence of ‖o(i,k)Fi,k − o(i,k)F

(n)
i,k ‖c(Ω) as in the scalar case, and for the

types (i, k) = (1, 2), (1, 3), (2, 1), (3, 1) as in the vectorial case because of the
structure of the corresponding operators o(i,k). This leaves us with the two
types (i, k) = (2, 3), (3, 2).

‖o(i,k)
ξ F (i,k)(ξ)− o(i,k)

ξ F (i,k)
n (ξ)‖c(Ω) (6.204)

= sup
ξ∈Ω

∣∣∣∣
1
2

(
o(i,k)

ξ

∫

Ω
G(Δ∗(Δ∗ + 2); ξ · η)O(i,k)

η f(η)dω(η)

− o(i,k)
ξ

∫

Ω
BG(2)

n (ξ · η)O(i,k)
η f(η)dω(η)

)∣∣∣∣

= sup
ξ∈Ω

∣∣∣∣
1
2

(∫

Ω
o(i,k)

ξ G(Δ∗(Δ∗ + 2); ξ · η)O(i,k)
η f(η)dω(η)

−
∫

Ω
o(i,k)

ξ BG(2)
n (ξ · η)O(i,k)

η f(η)dω(η)
)∣∣∣∣ ,

where the operator o(i,k) can be put inside both integrals. By obvious
manipulations, we now get

sup
ξ∈Ω

∣∣∣∣
1
2

(∫

Ω

(
o(i,k)

ξ G(Δ∗(Δ∗ + 2); ξ · η)− o(i,k)
ξ BG

(2)
n (ξ · η)

)
O

(i,k)
η f(η)dω(η)

)∣∣∣∣

≤ sup
ξ∈Ω

1
2

∫
Ω

∣∣∣o(i,k)
ξ G(Δ∗(Δ∗ + 2); ξ · η)− o(i,k)

ξ BG
(2)
n (ξ · η)

∣∣∣
∣∣∣O(i,k)

η f(η)
∣∣∣ dω(η)

≤ 1
2‖O(i,k)f‖C(Ω)

∫

Ω

∣∣∣o(i,k)
ξ G(Δ∗(Δ∗ + 2); ξ · η)− o(i,k)

ξ BG
(2)
n (ξ · η)

∣∣∣ dω(η).

In consequence, we have to prove the convergence of the last integral, i.e.,
the l1-norm. Application of the tensorial operators o(2,3) and o(3,2) to the
corresponding Green function results in the following identities

o(2,3)
ξ G(Δ∗(Δ∗ + 2); ξ · η) (6.205)

= 1
4πG′′(ξ · η) [(η − (ξ · η) ξ)⊗ (η − (ξ · η) ξ)− (ξ ∧ η)⊗ (ξ ∧ η)] ,

o(3,2)
ξ G(Δ∗(Δ∗ + 2); ξ · η) (6.206)

= 1
4πG′′(ξ · η) [(η − (ξ · η) ξ)⊗ (ξ ∧ η) + (ξ ∧ η)⊗ (η − (ξ · η) ξ)] .
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Calculating the absolute value of the last two expressions, we find that
∣∣∣o(2,3)

ξ G(Δ∗(Δ∗ + 2); ξ · η)
∣∣∣ (6.207)

=
1
4π

∣∣G′′(ξ · η)
∣∣ |(η − (ξ · η) ξ)⊗ (η − (ξ · η) ξ)− (ξ ∧ η)⊗ (ξ ∧ η)|

=
1
8π

1
1− ξ · η

√
2(1− (ξ · η)2) =

1
4π

1√
2
(1 + ξ · η)

and
∣∣∣o(3,2)

ξ G(Δ∗(Δ∗ + 2); ξ, η)
∣∣∣ (6.208)

=
1
4π

∣∣G′′(ξ · η)
∣∣ |(η − (ξ · η) ξ)⊗ (ξ ∧ η) + (ξ ∧ η)⊗ (η − (ξ · η) ξ)|

=
1
8π

1
1− ξ · η

√
2(1− (ξ · η)2) =

1
4π

1√
2
(1 + ξ · η),

where we used the relation

|x⊗ x− y ⊗ y|2 = |x|4 + |y|4 − 2(x · y)2 (6.209)

with x = η− (ξ · η) ξ and y = ξ ∧ η for the first operator, thereby observing
that (η − (ξ · η) ξ) · (ξ ∧ η) = 0 and |η − (ξ · η) ξ|2 = |ξ ∧ η|2 = 1 − (ξ · η)2.
For the second operator, a slightly different relation is required, i.e.,

|x⊗ y + y ⊗ x|2 = 2(x · y)2 + 2|x|2|y|2, (6.210)

where x = η − (ξ · η) ξ and y = ξ ∧ η.

Thus, we are able to conclude both that o(3,2)G(Δ∗(Δ∗ + 2); ·, η) is of
class l2(Ω) and o(2,3)G(Δ∗(Δ∗ + 2); ·, η) is of class l2(Ω) for all η ∈ Ω.
In consequence, the desired l1-convergence results from the l2-convergence
of the two kernels (both are in l2(Ω) and B∧

n (k) tends to 1). Thus, Lemma
6.9 is verified for all types (i, k).

Now, we are able to formulate the ‘Bernstein summability’ of a Fourier
series in terms of tensor spherical harmonics.

Theorem 6.10. For any tensor field f ∈ c(2)(Ω),

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣
f(ξ)−

3∑

i,k=1

n∑

m=0i,k

2m+1∑

j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ)

∣∣∣∣∣∣
= 0.
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Proof. From Lemma 6.9, we have for any tensorial field f ∈ c(2)(Ω)

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣f(ξ)−
3∑

i,k=1

o(i,k)
ξ F

(n)
i,k (ξ)

∣∣∣∣∣

= lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣
3∑

i,k=1

o(i,k)
ξ Fi,k(ξ)−

3∑
i,k=1

o(i,k)
ξ F

(n)
i,k (ξ)

∣∣∣∣∣

≤
3∑

i,k=1

lim
n→∞

sup
ξ∈Ω

∣∣∣o(i,k)
ξ Fi,k(ξ)− o(i,k)

ξ F
(n)
i,k (ξ)

∣∣∣ = 0. (6.211)

Our aim is to consider the term o(1,1)
ξ F

(n)
1,1 (ξ) in more detail. A simple

calculation yields

o(1,1)
ξ F

(n)
1,1 (ξ) = o(1,1)

ξ

∫

Ω
Bn(ξ · η)O(1,1)

η f(η)dω(η)

=
n∑

k=0

B∧
n (k)

2k + 1
4π

o(1,1)
ξ

∫

Ω
Pk(ξ · η)O(1,1)

η f(η)dω(η)

=
n∑

k=0

B∧
n (k)o(1,1)

ξ

2k+1∑

j=1

(
O(1,1)f

)∧
(k, j)Yk,j(ξ)

=
n∑

k=0

2k+1∑

j=1

B∧
n (k)

(
O(1,1)f

)∧
(k, j)y(1,1)

k,j (ξ). (6.212)

It should be noted that

(
O(1,1)f

)∧
(k, j) =

∫

Ω
O(1,1)

η f(η)Yk,j(η)dω(η)

=
∫

Ω
f(η) · o(1,1)

η Yk,j(η)
︸ ︷︷ ︸

=y
(1,1)
k,j (η)

dω(η) =
(
f (1,1)

)∧
(k, j) (6.213)

such that from (6.212) and (6.213), we are able to conclude for the type
(i, k) = (1, 1) that

o(1,1)
ξ F

(n)
1,1 (ξ) =

n∑

k=0

2k+1∑

j=1

B∧
n (k)

(
f (1,1)

)∧
(k, j)y(1,1)

k,j (ξ). (6.214)
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For the cases (i, k) = (2, 2), (3, 3), we get

o(i,k)
ξ F

(n)
i,k (ξ) = o(i,k)

ξ

1
2

∫

Ω
Bn(ξ · η)O(i,k)

η f(η)dω(η)

=
1
2

n∑

m=0

B∧
n (m)

2m + 1
4π

o(i,k)
ξ

∫

Ω
Pm(ξ · η)O(i,k)

η f(η)dω(η)

=
1
2

n∑

m=0

B∧
n (m)O(i.k)

ξ

2m+1∑

j=1

(
O(i,k)f

)∧
(m, j)Ym,j(ξ)

=
1√
2

n∑

m=0

2m+1∑

j=1

B∧
n (m)

(
O(i,k)f

)∧
(m, j)y(i,k)

m,j (ξ). (6.215)

Observe that

(
O(i,k)f

)∧
(m, j) =

∫

Ω
O(i,k)

η f(η)Ym,j(η)dω(η)

=
∫

Ω
f(η) · o(i,k)

η Ym,j(η)
︸ ︷︷ ︸
=
√

2y
(i,k)
m,j (η)

dω(η) =
√

2
(
f (i,k)

)∧
(m, j). (6.216)

Combining (6.215) and (6.216), we get for (i, k) = (2, 2), (3, 3)

o(i,k)
ξ F

(n)
i,k (ξ) =

n∑

m=0

2m+1∑

j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ). (6.217)

For (i, k) = (1, 2), (1, 3), (2, 1), (3, 1), we have

o(i,k)
ξ F

(n)
i,k (ξ) = −o(i,k)

ξ

1
2

∫

Ω
BGn(ξ · η)O(i,k)

η f(η)dω(η)

=
n∑

m=1

B∧
n (m)

m(m + 1)
2m + 1

4π
o(i,k)

ξ

∫

Ω
Pm(ξ · η)O(i,k)

η f(η)dω(η)

=
n∑

m=1

B∧
n (m)

m(m + 1)
o(i,k)

ξ

2m+1∑

j=1

(
O(i,k)f

)∧
(m, j)Ym,j(ξ)

=
n∑

m=1

2m+1∑

j=1

B∧
n (m)√

m(m + 1)

(
O(i,k)f

)∧
(m, j)y(i,k)

m,j (ξ). (6.218)
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Again, we have to take a look at the coefficients
(
O(i,k)f

)∧
(m, j). In fact,

(
O(i,k)f

)∧
(m, j) =

∫

Ω
O(i,k)

η f(η)Ym,j(η)dω(η) (6.219)

=
∫

Ω
f(η) · o(i,k)

η Ym,j(η)dω(η),

=
√

m(m + 1)
∫

Ω
f(η) · y(i,k)

m,j (η)dω(η)

=
√

m(m + 1)
(
f (i,k)

)∧
(m, j).

Putting together (6.218) and (6.220), we are able to show that, for (i, k) =
(1, 2), (1, 3), (2, 1), (3, 1),

o(i,k)
ξ F

(n)
i,k (ξ) =

n∑

m=1

2m+1∑

j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ). (6.220)

Finally, we treat (i, k) = (2, 3), (3, 2). It is not hard to verify that

o(i,k)
ξ F

(n)
i,k (ξ) (6.221)

= o(i,k)
ξ

1
2

∫

Ω
BG(2)

n (ξ · η)O(i,k)
η f(η)dω(η)

=
n∑

m=2

B∧
n (m)

2m(m + 1)(m(m + 1)− 2)
2m + 1

4π
o(i,k)

ξ

∫

Ω

Pm(ξ · η)O(i,k)
η f(η)dω(η)

=
n∑

m=2

B∧
n (m)

2m(m + 1)(m(m + 1)− 2)
o(i,k)

ξ

2m+1∑

j=1

(
O(i,k)f

)∧
(m, j)Ym,j(ξ)

=
n∑

m=2

2m+1∑

j=1

B∧
n (m)√

2m(m + 1)(m(m + 1)− 2)

(
O(i,k)f

)∧
(m, j)y(i,k)

m,j (ξ).

This enables us to rewrite the coefficients
(
O(i,k)f

)∧
(m, j) as follows

(
O(i,k)f

)∧
(m, j) =

∫

Ω
O(i,k)

η f(η)Ym,j(η)dω(η) (6.222)

=
∫

Ω
f(η) · o(i,k)

η Ym,j(η)dω(η)

=
√

2m(m + 1)(m(m + 1)− 2)
∫

Ω
f(η) · y(i,k)

m,j (η)dω(η)

=
√

2m(m + 1)(m(m + 1)− 2)
(
f (i,k)

)∧
(m, j).

Consequently, the identities (6.221) and (6.222) lead to the conclusion that
for (i, k) = (2, 3), (3, 2)

o(i,k)
ξ F

(n)
i,k (ξ) =

n∑

m=2

2m+1∑

j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ). (6.223)
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Altogether, the identities (6.214), (6.217), (6.220), and (6.223) in connection
with (6.211) yield the desired summability of tensor spherical harmonics.
More concretely,

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣f(ξ)−
3∑

i,k=1

o(i,k)
ξ F

(n)
i,k (ξ)

∣∣∣∣∣ (6.224)

= lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣f(ξ)−
3∑

i,k=1

n∑
m=0i,k

2m+1∑
j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ)

∣∣∣∣∣ = 0,

provided that f ∈ c(2)(Ω).

As in the vector case, based on a density argument, the closure of the
tensor spherical harmonics

{
y(i,k)

m,j

}

i,k,m,j
in the space c(Ω) becomes obvi-

ous.

Theorem 6.11. For any given ε > 0 and each f ∈ c(Ω), there exists a
linear combination

∑3
i,k=1

∑N
m=0i,k

∑2m+1
j=1 d

(i,k)
m,j y(i,k)

m,j , such that

∥∥∥∥∥∥
f −

3∑

i,k=1

N∑

m=0i,k

2m+1∑

j=1

d
(i,k)
m,j y(i,k)

m,j

∥∥∥∥∥∥
c(Ω)

≤ ε.

Again, standard arguments guarantee the closure in c(Ω) with respect to
‖ · ‖l2(Ω) as well as in l2(Ω) which in turn shows the completeness of the

system
{
y(i,k)

m,j

}

i,k,m,j
in l2(Ω).

Summarizing our results, we therefore obtain the following theorem.

Theorem 6.12. Let
{
y(i,k)

n,j

}
i,k=1,2,3

n=0i,k,..., j=1,...,2n+1

be defined as in (6.149).

Then the following statements are valid:

(i) The system of tensor spherical harmonics is closed in c(Ω) with respect
to ‖ · ‖c(Ω).

(ii) The system is complete in l2(Ω) with respect to ‖·‖l2(Ω).

Once more, part (i) of this theorem justifies the approximation of contin-
uous tensor fields on the sphere by finite sums of tensor spherical harmonics,
while part (ii) is equivalent to the property that any tensor field f ∈ l2(Ω)
can be represented in l2(Ω)-sense by its orthogonal expansion in terms of
tensor spherical harmonics.
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6.7 Homogeneous Harmonic Tensor Polynomials

Next, we want to show that the l2(Ω)-orthonormal system of tensor spherical
harmonics is complete in l2(Ω) with respect to (·, ·)l2(Ω) and closed in c(Ω)
with respect to ‖·‖c(Ω). As in the vectorial case, we start with the definition
of homogeneous harmonic polynomials.

Definition 6.13. A tensor field hn : R
3 → R

3 ⊗ R
3, n ≥ 0, of the form

hn(x) =
3∑

i,k=1

H ik
n (x)εi ⊗ εk, x ∈ R

3, (6.225)

is called homogeneous harmonic tensor polynomial of degree n, if every H ik
n

is a scalar homogeneous harmonic polynomial of degree n.

Using the notation

Harmnεi ⊗ εk = span
{

Yn,jε
i ⊗ εk

}
i,k=1,2,3

j=1,...,2n+1

, (6.226)

n ∈ N0, i, k ∈ {1, 2, 3}, the space of all homogeneous harmonic tensor
polynomials of degree n is characterized by

3⊕

i,k=1

Harmn(R3)εi ⊗ εk. (6.227)

As in the vector theory, the restriction of a homogeneous harmonic tensor
polynomial of degree n to the unit sphere Ω does, in general, not yield a
spherical harmonic of degree n. But our purpose is to show that

3⊕

i,k=1

Harmn(Ω)εi ⊗ εk (6.228)

is expressible as a linear combination of tensor spherical harmonic of differ-
ent degrees.

As immediate consequences of the Corollaries 3.50 and 3.52, we obtain
the following lemma.

Lemma 6.14. The following statements are valid:

(i) The system
{
Yn,jε

i ⊗ εk
}

i,k=1,2,3
n=0,1,..., j=1,...,2n+1

is complete in l2(Ω).

(ii) The system {Yn,jε
i⊗εk} i,k=1,2,3

n=0,1,..., j=1,...,2n+1
is closed in c(Ω) with respect

to ‖ · ‖c(Ω).
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In what follows, we are interested in the relations between tensor spherical
harmonics on the one hand and homogeneous harmonic tensor polynomials
restricted to the unit sphere on the other hand. For that purpose, we
consider operators õ(i,k)

n , i, k ∈ {1, 2, 3} given by

õ(1,1)
n F (x) =

(
(2n + 3)x− |x|2∇x

)
⊗
(
(2n + 1)x− |x|2∇x

)
F (x),

(6.229)
õ(1,2)

n F (x) =
(
(2n− 1)x− |x|2∇x

)
⊗∇xF (x), (6.230)

õ(1,3)
n F (x) =

(
(2n + 1)x− |x|2∇x

)
⊗ (x ∧∇x)F (x), (6.231)

õ(2,1)
n F (x) = ∇x ⊗

(
(2n + 1)x− |x|2∇x

)
F (x), (6.232)

õ(2,2)
n F (x) = ∇x ⊗∇xF (x), (6.233)

õ(2,3)
n F (x) = ∇x ⊗ (x ∧∇x)F (x), (6.234)

õ(3,1)
n F (x) = (x ∧∇x)⊗

(
(2n + 1)x− |x|2∇x

)
F (x), (6.235)

õ(3,2)
n F (x) = (x ∧∇x)⊗∇xF (x), (6.236)

õ(3,3)
n F (x) = (x ∧∇x)⊗ (x ∧∇x) F (x) (6.237)

for x ∈ R
3 and sufficiently smooth function F : R

3 → R. Simple calculations
in cartesian coordinates lead us in a straightforward way to the following
result.

Lemma 6.15. Let Hn, n ∈ N0, be a homogeneous harmonic polynomial of
degree n. Then, õ(i,k)

n Hn is a homogeneous harmonic tensor polynomial of
degree deg(i,k)(n), where

deg(i,k)(n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n− 2 for (i, k) = (2, 2)
n− 1 for (i, k) ∈ {(2, 3), (3, 2)}
n for (i, k) ∈ {(1, 2), (2, 1), (3, 3)}
n + 1 for (i, k) ∈ {(1, 3), (3, 1)}
n + 2 for (i, k) = (1, 1)

. (6.238)

( deg(i,k)(n) < 0 means that õ(i,k)
n Hn = 0).

The gradient of a sufficiently smooth function F : R
3 \ {0} → R is known

to be equal to

∇xF (x) = ξ
∂

∂r
F (rξ) +

1
r
∇∗

ξF (rξ), x = rξ, r > 0, ξ ∈ Ω. (6.239)

Similarly, if f : R
3 \ {0} → R

3 is a sufficiently smooth vector field of the
form

f(x) =
3∑

i=1

Fi(x)εi, |x| > 0, (6.240)



6.7 Homogeneous Harmonic Tensor Polynomials 303

then we have, for r > 0, ξ ∈ Ω,

∇x ⊗ f(x) =
3∑

i=1

∇xFi(x)⊗ εi (6.241)

=
3∑

i=1

(
ξ

∂

∂r
Fi(rξ) +

1
r
∇∗

ξFi(rξ)
)
⊗ εi

= ξ ⊗ ∂

∂r
f(rξ) +

1
r
∇∗

ξ ⊗ f(rξ).

Thus we get, for Yn ∈ Harmn,

õ(1,1)
n rnYn(ξ) (6.242)
=

(
(2n + 3)rξ − r2∇x

)
⊗
(
(2n + 1)rξ − r2∇x

)
rnYn(ξ)

=
(
(2n + 3)rξ − r2∇x

)
⊗
(
(2n + 1)rn+1ξYn(ξ)− nrn+1ξYn(ξ)

−rn+1∇∗
ξYn(ξ)

)

=
(
(2n + 3)rξ − r2∇x

)
⊗
(
(n + 1)rn+1ξYn(ξ)− rn+1∇∗

ξYn(ξ)
)
.

This shows us that

õ(1,1)
n rnYn(ξ) (6.243)
= (2n + 3)(n + 1)rn+2ξ ⊗ ξYn(ξ)− (2n + 3)rn+2ξ ⊗∇∗

ξYn(ξ)

−(n + 1)rn+2∇∗
ξ ⊗ ξYn(ξ) + rn+2∇∗

ξ ⊗∇∗
ξYn(ξ)

−(n + 1)r2ξ ⊗ ∂

∂r
rn+1ξYn(ξ) + r2ξ ⊗ ∂

∂r
rn+1∇∗

ξYn(ξ)

= (n + 2)(n + 1)rn+2ξ ⊗ ξYn(ξ)− (n + 2)rn+2ξ ⊗∇∗
ξYn(ξ)

−(n + 1)rn+2∇∗
ξYn(ξ)⊗ ξ − (n + 1)rn+2itan(ξ)Yn(ξ)

+rn+2∇∗
ξ ⊗∇∗

ξYn(ξ),

where we have used (6.49). By restricting this tensor field to the unit sphere
Ω, we get with (6.115)

õ(1,1)
n rnYn(ξ)|r=1 = (n + 2)(n + 1)o(1,1)Yn(ξ)− (n + 2)o(1,2)Yn(ξ)

−(n + 2)o(2,1)Yn(ξ)− 1
2
(n + 2)(n + 1)õ(2,2)

n Yn(ξ)

+
1
2
o(2,3)Yn(ξ).

Similar calculations show that all restrictions of rξ �→ õ(i,k)
n rnYn(ξ) to the

unit sphere Ω (i.e., r = 1) can be written as linear combinations of the
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tensor spherical harmonics o(i,k)Yn. More explicitly, for Yn ∈ Harmn

⎛

⎜⎜⎜⎜⎜⎜⎝

õ(1,1)
n rnYn|r=1

õ(1,2)
n rnYn|r=1

õ(2,1)
n rnYn|r=1

õ(2,2)
n rnYn|r=1

õ(3,3)
n rnYn|r=1

⎞

⎟⎟⎟⎟⎟⎟⎠
= an

⎛

⎜⎜⎜⎜⎝

o(1,1)Yn

o(1,2)Yn

o(2,1)Yn

o(2,2)Yn

o(2,3)Yn

⎞

⎟⎟⎟⎟⎠
(6.244)

and ⎛

⎜⎜⎜⎝

õ(1,3)
n rnYn|r=1

õ(2,3)
n rnYn|r=1

õ(3,1)
n rnYn|r=1

õ(3,2)
n rnYn|r=1

⎞

⎟⎟⎟⎠ = bn

⎛

⎜⎜⎝

o(1,3)Yn

o(3,1)Yn

o(3,2)Yn

o(3,3)Yn

⎞

⎟⎟⎠ , (6.245)

where the matrices an and bn are given by

an =

⎛

⎜⎜⎜⎜⎝

(n + 1)(n + 2) −(n + 2) −(n + 2) −1
2(n + 2)(n + 1) 1

2
n2 n −(n− 1) −1

2n(n− 1) −1
2

(n + 1)2 −(n + 1) n + 2 1
2(n + 2)(n + 1) −1

2
n(n− 1) n− 1 n− 1 −1

2n(n− 1) 1
2

0 0 1 −1
2n(n + 1) −1

2

⎞

⎟⎟⎟⎟⎠
,

(6.246)

bn =

⎛

⎜⎜⎝

n + 1 1 −1
2 −1

2n(n + 1)
n −1 1

2
1
2n(n + 1)

0 n + 2 −1
2

1
2(n + 2)(n + 1)

0 n− 1 1
2 −1

2n(n− 1)

⎞

⎟⎟⎠ . (6.247)

Elementary calculations show that

det(an) =
1
2
n(2n + 3)(2n− 1)(n + 1)(2n + 1)2 (6.248)

and
det(bn) = −1

2
n(n + 1)(2n + 1)2. (6.249)

Thus, the matrices an and bn are regular for n ≥ 1. The inverse matrices
read as follows:

a−1
n = (6.250)
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 n2+8 n+3

1
4 n2−1

1
4 n2+8 n+3

1
4 n2−1

0
−n

4 n2+8 n+3
n+1

4 n2−1
−n

4 n2+8 n+3
n+1

4 n2−1
0

−n
4 n2+8 n+3

1−n2

(4 n2−1)n
n(2+n)

4 n3+12 n2+11 n+3
n+1

4 n2−1
1

(n+1)n

−1
4 n2+8 n+3

−1+n
(4 n2−1)n

2+n
4 n3+12 n2+11 n+3

−1
4 n2−1

−1
(n+1)n

(n−1)n
4 n2+8 n+3

n3+2 n2−n−2
(1−4 n2)n

(2−n−n2)n

4 n3+12 n2+11 n+3
n2+3 n+2

4 n2−1
2−n−n2

(n+1)n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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b−1
n =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
2n+1

1
2n+1 0 0

1
2n2+3n+1

− 1
n(2 n+1)

n
1+3 n+2 n2

n+1
n(2 n+1)

− n2+n−2
1+3 n+2 n2

n2+n−2
n(2 n+1) − (−1+n)n

1+3 n+2 n2
3 n+2+n2

n(2 n+1)

− 1
2n2+3n+1

1
n(2 n+1) − 1

2n2+3n+1
− 1

n(2 n+1)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (6.251)

For the special case n = 0, we see that Y0 ∈ Harm0 satisfies

2o(1,1)Y0 − o(2,2)Y0 = õ
(1,1)
0 Y0|Ω,

o(1,1)Y0 + o(2,2)Y0 = õ
(2,1)
0 Y0|Ω,

o(3,3)Y0 = õ
(3,1)
0 Y0|Ω.

(6.252)

Hence, we obtain the following lemma, in view of Lemma 6.15.

Lemma 6.16. Let y(i,k)
n ∈ harm(i,k)

n be a tensor spherical harmonic of
degree n and type (i, k). Then,

y(i,k)
n ∈

3⊕

p,q=1

Harmn−2ε
p⊗εq

⊕
Harmnεp⊗εq

⊕
Harmn+2ε

p⊗εq, (6.253)

if (i, k) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)}. Moreover,

y(i,k)
n ∈

3⊕

p,q=1

Harmn−1ε
p ⊗ εq ⊕Harmn+1ε

p ⊗ εq, (6.254)

if (i, k) ∈ {(1, 3), (3, 1), (3, 2), (3, 3)}.

For y(i,k)
n ∈ harm(i,k)

n and ξ ∈ Ω, it follows as an immediate consequence
that

y(i,k)
n (−ξ) = (−1)ny(i,k)

n (ξ) (6.255)

if (i, k) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)} and

y(i,k)
n (−ξ) = (−1)n+1y(i,k)

n (ξ) (6.256)

if (i, k) ∈ {(1, 3), (3, 1), (3, 2), (3, 3)}.

Lemma 6.16 also yields other orthogonality relations.

Lemma 6.17. For y(i,k)
n ∈ harm(i,k)

n and Ym ∈ Harmm

∫

Ω
Ym(ξ)y(i,k)

n (ξ) dω(ξ) = 0 (6.257)

if (i, k) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)} and m �∈ {n − 2, n, n + 2} or if
(i, k) ∈ {(1, 3), (3, 1), (3, 2), (3, 3)} and m �∈ {n− 1, n + 1}.



306 6 Tensor Spherical Harmonics

Moreover, it can be deduced that

harm(i,k)
n ⊂

3⊕

p,q=1

2⊕

l=−2

Harmlε
p ⊗ εq (6.258)

holds for all n ∈ N0 and i, k ∈ {1, 2, 3}. Thus, we know that every ho-
mogeneous harmonic tensor polynomial restricted to Ω can be expressed as
a finite linear combination of tensor spherical harmonics, and vice versa.
Hence, closure and completeness properties also follow directly from Corol-
lary 3.50 and Corollary 3.52.

As an immediate consequence of the completeness of the tensor spherical
harmonics in l2(Ω) and the orthogonality of tensor fields f ,g : Ω → R

3 ⊗ R
3

of the representation f = o(i,k)F and g = o(i′,k′)G, with (i, k) �= (i′, k′), we
obtain an orthogonal decomposition of l2(Ω) which generalizes the relations
(6.24–6.29) in canonical way. Using the notion

l2(i,k)(Ω) = span
{
y(i,k)

n,j

}

n=0i,k,..., j=1,...,2n+1

‖·‖
l2(Ω)

(6.259)

for (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)}, we are led to an orthogonal decompo-
sition of l2(Ω) into nine complete subspaces, namely

l2(Ω) =
3⊕

i,k=1

l2(i,k)(Ω). (6.260)

Obviously, we have

l2(i,k)(Ω) =
{
o(i,k)F

∣∣ F ∈ C(∞)(Ω)
}‖·‖

l2(Ω) (6.261)

and

l2(i,k)(Ω) =
{
f ∈ l2(Ω)

∣∣∣ O(i′,k′)f = 0 for (i′, k′) �= (i, k)
}

, (6.262)

where the differentiation is understood in the weak sense. But this means
that we are able to define the corresponding projection operators p(i,k) :
l2(Ω) −→ l2(i,k)(Ω) in standard way.

6.8 Tensorial Beltrami Operator

The problem now is how a tensorial Beltrami operator �∗ can be con-
structed such that the tensor spherical harmonics can be characterized as
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eigenfunctions of this operator. Our particular aim is to define the operator
�∗ in such a way that the equations

�∗o(i,k)F = o(i,k)Δ∗F, (6.263)
O(i,k)�∗f = Δ∗O(i,k)f , (6.264)

hold for all sufficiently smooth functions F : Ω → R and tensor fields
f : Ω → R

3 ⊗ R
3.

As in the vectorial case (cf. Section 5.8), we start by applying the (scalar)
Beltrami operator to the cartesian components of tensor spherical harmon-
ics. If f ∈ c(2)(Ω) is a spherical tensor field of the form

f(ξ) =
3∑

i,k=1

Fi,k(ξ)εi ⊗ εk, ξ ∈ Ω, (6.265)

we set

Δ∗
ξf(ξ) =

3∑

i,k=1

(
Δ∗

ξFi,k(ξ)
)
εi ⊗ εk, ξ ∈ Ω. (6.266)

The application of the Beltrami operator to the cartesian components of a
tensor spherical harmonic is easy. Using the results of Section 6.7, this can
be done in the following way: Express firstly o(i,k)Yn as a linear combination
of restrictions of homogeneous harmonic tensor polynomials to the unit
sphere (cf. (6.244) and (6.245)). Since the cartesian components of these
polynomials are homogeneous harmonic polynomials when restricted to Ω
(of degree ∈ {n− 2, n− 1, . . . , n + 2}), the application of Δ∗ yields just the
eigenvalues of Δ∗. Transforming these results back, we obtain the following
identities.

Lemma 6.18. Let Yn ∈ Harmn be a spherical harmonic of degree n. Then
we have

Δ∗o(1,1)Yn = (−n(n + 1)− 4)o(1,1)Yn + 2(o(1,2) + o(2,1) + o(2,2))Yn,

Δ∗o(1,2)Yn = (−n(n + 1)− 2)o(1,2)Yn

+ (2n(n + 1)o(1,1) − 2o(2,1) − n(n + 1)o(2,2) + o(2,3))Yn,

Δ∗o(2,1)Yn = (−n(n + 1)− 2)o(2,1)Yn

+ (2n(n + 1)o(1,1) − 2o(1,2) − n(n + 1)o(2,2) + o(2,3))Yn,

Δ∗o(2,2)Yn = (−n(n + 1)− 2)o(2,2)Yn

+ (4o(1,1) − 2o(2,1) − 2o(2,3))Yn,

Δ∗o(2,3)Yn = (−n(n + 1) + 2)o(2,3)Yn

+ ((2n(n + 1)− 4)o(1,2) + (2n(n + 1)− 4)o(2,1))Yn,
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and

Δ∗o(1,3)Yn = (−n(n + 1)− 2)o(1,3)Yn

+ (−2o(3,1) + o(3,2) + n(n + 1)o(3,3))Yn,

Δ∗o(3,1)Yn = (−n(n + 1)− 2)o(3,1)Yn

+ (−2o(1,3) + o(3,2) − n(n + 1)o(3,3))Yn,

Δ∗o(3,2)Yn = (−n(n + 1) + 2)o(3,2)Yn

+ ((2n(n + 1)− 4)o(1,3) + (2n(n + 1)− 4)o(3,1))Yn,

Δ∗o(3,3)Yn = (−n(n + 1)− 2)o(3,3)Yn + (−2o(1,3) − 2o(3,2))Yn.

An immediate consequence is that the operator �∗ : c(2)(Ω) −→ c(Ω)
defined by

�∗ = pnor,nor(Δ
∗ + 4)pnor,nor + pnor,tan(Δ

∗ + 2)pnor,tan

+ ptan,nor(Δ
∗ + 2)ptan,nor + p(2,2)(Δ

∗ + 2)p(2,2)

+ p(2,3)(Δ
∗ − 2)p(2,3) + p(3,2)(Δ

∗ − 2)p(3,2)

+ p(3,3)(Δ
∗ + 2)p(3,3) (6.267)

satisfies (6.263) and (6.264) (note that the projection operators are defined
in accordance with (6.260)).

Definition 6.19. Let f ∈ c(Ω) be a tensor field of the form

f(ξ) =
3∑

i,k=1

Fik(ξ)εi ⊗ εk, ξ ∈ Ω. (6.268)

Then we define the operator J : c(Ω) −→ c(Ω) by

Jξf(ξ) = f(ξ)−
3∑

i,k=1

Fi,k(ξ)(ξ ∧ εi)⊗ (ξ ∧ εk), ξ ∈ Ω. (6.269)

For F ∈ C(Ω) elementary calculations yields the identities

Jo(2,2)F = 0, Jo(2,3)F = 2o(2,3)F, (6.270)
Jo(3,3)F = 0, Jo(3,2)F = 2o(3,2)F, (6.271)

and
Jo(i,k)F = 0, (6.272)

if i = 1 or k = 1. Hence, we are able to redefine the operator �∗ as follows:

�∗f = pnor,nor(Δ
∗ + 4)pnor,norf + pnor,tan(Δ

∗ + 2)pnor,tanf (6.273)
+ ptan,nor(Δ

∗ + 2)ptan,norf + ptan,tan(Δ
∗ + 2− 2J)ptan,tanf ,
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provided that f ∈ c(2)Ω.

Collecting our results, we obtain the following theorem.

Theorem 6.20. The operator �∗ obeys the following properties:

(i) The operator �∗ : c(2)(Ω) → c(Ω) satisfies for all i, k ∈ {1, 2, 3}

�∗o(i,k) = o(i,k)Δ∗,

O(i,k)�∗ = Δ∗O(i,k).

(ii) Any tensor spherical harmonic yn ∈ harmn satisfies the relation

�∗yn = (Δ∗)∧(n)yn.

(iii) If y ∈ c(∞)(Ω) satisfies �∗y = λy for any λ ∈ R, then λ = (Δ∗)∧(n),
n ∈ N0, and y ∈ harmn.

Proof. These statements follow from Lemma 3.24, Corollary 3.50, and the
previous results of this chapter.

6.9 Tensorial Addition Theorem

Next, we deal with the generalization of the addition theorem to tensor
spherical harmonics. As usual, let us assume that

y(i,k)
n,j =

(
μ(i,k)

n

)−1/2
o(i,k)Yn,j (6.274)

constitutes an l2(Ω)-orthonormal system of tensor spherical harmonics of
degree n, order j, and type (i, k). The problem is to evaluate the rank-4
tensor

2n+1∑

j=1

y(i,k)
n,j (ξ)⊗ y(l,m)

n,j (η), (ξ, η) ∈ Ω2 = Ω× Ω. (6.275)

and to establish rank-4 tensorial versions of the Legendre polynomial for
(i, k), (l, m) ∈ {(1, 1), (1, 2), . . . , (3, 3)}.

To this end, we first need an extension of the operators o(i,k) to (suffi-
ciently smooth) rank-2 tensor fields. More explicitly, let f : Ω → R

3 ⊗ R
3

be a smooth tensor field of the form

f(ξ) =
3∑

i,k=1

Fik(ξ)εi ⊗ εk, ξ ∈ Ω. (6.276)
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Then, for (l, m) ∈ {(1, 1), (1, 2), . . . , (3, 3)} we set

o(l,m)
ξ f(ξ) =

3∑

i,k=1

(
o(l,m)

ξ Fik(ξ)
)
⊗ εi ⊗ εk. (6.277)

In other words, o(l,m)f is a rank-4 tensor. Observing the setting (6.277), we
are able to reformulate the expression (6.275) as follows:

2n+1∑

j=1

y(i,k)
n,j (ξ)⊗ y(l,m)

n,j (η) (6.278)

=
(
μ(i,k)

n

)−(1/2) (
μ(l,m)

n

)−(1/2)∑

j

o(i,k)
ξ Yn,j(ξ)⊗ o(l,m)

η Yn,j(η)

=
(
μ(i,k)

n

)−(1/2) (
μ(l,m)

n

)−(1/2)
o(i,k)

ξ o(l,m)
η

2n+1∑

j=1

Yn,j(ξ)Yn,j(η)

=
(
μ(i,k)

n

)−(1/2) (
μ(l,m)

n

)−(1/2) 2n + 1
4π

o(i,k)
ξ o(l,m)

η Pn(ξ · η).

Introducing the rank-4 tensor field

P(i,k,l,m)
n (ξ, η) : Ω× Ω → R

3 ⊗ R
3 ⊗ R

3 ⊗ R
3 (6.279)

for (i, k), (l, m) ∈ {(1, 1), (1, 2), . . . , (3, 3)}, by letting

P(i,k,l,m)
n (ξ, η) = (μ(i,k)

n )−1/2(μ(l,m)
n )−1/2o(i,k)

ξ o(l,m)
η Pn(ξ · η), ξ, η ∈ Ω,

(6.280)
we are therefore led to the following formulation of the addition theorem for
tensor spherical harmonics involving Legendre rank-4 tensor kernels.

Theorem 6.21. Let
{
y(i,k)

n,j

}
i,k=1,2,3

j=1,...,2n+1

be an l2(Ω)-orthonormal system of

tensor spherical harmonics in harmn. For index pairs (i, k), (l, m) ∈ {(1, 1),
(1, 2), . . . , (3, 3)} and points ξ, η ∈ Ω, we have

2n+1∑

j=1

y(i,k)
n,j (ξ)⊗ y(l,m)

n,j (η) =
2n + 1

4π
P(i,k,l,m)

n (ξ, η). (6.281)

Definition 6.22. The kernel P(i,k,l,m)
n : Ω× Ω → R

3 ⊗ R
3 ⊗ R

3 ⊗ R
3, with

i, k, l, m ∈ {1, 2, 3}, (more precisely, tP(i,k,l,m)
n ) given by

2n + 1
4π

P(i,k,l,m)
n (ξ, η) =

2n+1∑

j=1

y(i,k)
n,j (ξ)⊗ y(l,m)

n,j (η) (6.282)



6.9 Tensorial Addition Theorem 311

is called the (tensorial) Legendre rank-4 tensor kernel of degree n and type
(i, k, l, m) (with respect to the dual systems of operators o(i,k), O(i,k), i, k ∈
{1, 2, 3} ). The kernel

Pn =
3∑

i=1

3∑

k=1

3∑

l=1

3∑

m=1

P(i,k,l,m)
n (6.283)

is called (tensorial) Legendre rank-4 tensor kernel of degree n (with respect
to the dual system of operators o(i,k), O(i,k), i, k = 1, 2, 3).

Of course, it remains to express the Legendre rank-4 tensor P(i,k,l,m)
n (ξ, η)

in explicit form. The essential tool is the next lemma which can be verified
by use of local coordinates as introduced in (2.94).

Lemma 6.23. Suppose that F is of class C(2)[−1, 1]. Let η ∈ Ω fixed.
Then, for ξ ∈ Ω,

o(1,1)
ξ F (ξ · η) = F (ξ · η)ξ ⊗ ξ, (6.284)

o(1,2)
ξ F (ξ · η) = F ′(ξ · η)ξ ⊗ (η − (ξ · η)ξ), (6.285)

o(1,3)
ξ F (ξ · η) = F ′(ξ · η)ξ ⊗ (ξ ∧ η), (6.286)

o(2,1)
ξ F (ξ · η) = F ′(ξ · η)(η − (ξ · η)ξ)⊗ ξ, (6.287)

o(2,2)
ξ F (ξ · η) = F (ξ · η)itan(ξ), (6.288)

o(2,3)
ξ F (ξ · η) = F ′′(ξ · η) [(η − (ξ · η)ξ)⊗

(η − (ξ · η)ξ)− (ξ ∧ η)⊗ (ξ ∧ η)] , (6.289)

o(3,1)
ξ F (ξ · η) = F ′(ξ · η)(ξ ∧ η)⊗ ξ, (6.290)

o(3,2)
ξ F (ξ · η) = F ′′(ξ · η) [(η − (ξ · η)ξ)⊗

(ξ ∧ η) + (ξ ∧ η)⊗ (η − (ξ · η)ξ)] , (6.291)

o(3,3)
ξ F (ξ · η) = F (ξ · η)jtan(ξ). (6.292)

Combining Lemma 6.23 with (6.277) and (6.280), we obtain the following
theorem after some lengthy calculations (see M. Schreiner (1994)).

Theorem 6.24. Assume that Φ1
n, . . . ,Φ9

n, n ∈ N0, and t ∈ (−1, 1) are
defined by
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Φ1
n(t) = Pn(t),

Φ2
n(t) = P ′

n(t),

Φ3
n(t) =

√
1− t2P ′

n(t),
Φ4

n(t) = −n(n + 1)Pn(t) + 2tP ′
n(t),

Φ5
n(t) = −n(n + 1)

1− t2
Pn(t) +

2t

1− t2
P ′

n(t),

Φ6
n(t) = −n(n + 1)Pn(t) + tP ′

n(t),

Φ7
n(t) = 2

n(n + 1)t√
1− t2

Pn(t)− 2t2 + n2t2 + nt2 − n2 − n + 2√
1− t2

P ′
n(t),

Φ8
n(t) = −n(n + 1)(n2t2 + nt2 + 4t2 + 8− n− n2)

1− t2
Pn(t)

+ 4
t(t2 + n2t2 + nt2 + 5− n2 − n)

1− t2
P ′

n(t),

Φ9
n(t) = 3

n(n + 1)t
1− t2

Pn(t)− 4t2 + n2t2 + nt2 + 2− n2 − n

1− t2
P ′

n(t).

Suppose that ξ, η ∈ Ω with ξ �= ±η, or, equivalently, (ξ ·η)2 �= 1. Let us de-
fine - as usual - the orthonormal sets of vectors

{
ε1
ξ , ε

2
ξ , ε

3
ξ

}
and

{
ε1
η, ε

2
η, ε

3
η

}

by

ε1
ξ = ξ, ε1

η = η,

ε2
ξ =

1√
1− (ξ · η)2

(η − (ξ · η)ξ), ε2
η =

1√
1− (ξ · η)2

(ξ − (ξ · η)η),

ε3
ξ =

1√
1− (ξ · η)2

ξ ∧ η, ε3
η =

1√
1− (ξ · η)2

η ∧ ξ.

Then, we find

P(i,k,l,m)
n (ξ, η) = (μ(i,k)

n )−1/2(μ(l,m)
n )−1/2P̂(i,k,l,m)

n (ξ, η), (6.293)

where

P̂(1,1,1,1)
n (ξ, η) = Φ1

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε1
η ⊗ ε1

η,

P̂(1,1,1,2)
n (ξ, η) = Φ3

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε1
η ⊗ ε2

η,

P̂(1,1,1,3)
n (ξ, η) = −Φ3

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε1
η ⊗ ε3

η,

P̂(1,1,2,1)
n (ξ, η) = Φ3

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε1

η,

P̂(1,1,2,2)
n (ξ, η) = Φ1

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε2

η + Φ1
n(ξ · η)ε1

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε3
η,

P̂(1,1,2,3)
n (ξ, η) = Φ4

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε2

η − Φ4
n(ξ · η)ε1

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε3
η,
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P̂(1,1,3,1)
n (ξ, η) = −Φ3

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε3
η ⊗ ε1

η,

P̂(1,1,3,2)
n (ξ, η) = −Φ4

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε3

η − Φ4
n(ξ · η)ε1

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε2
η,

P̂(1,1,3,3)
n (ξ, η) = Φ1

n(ξ · η)ε1
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε3

η − Φ1
n(ξ · η)ε1

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε2
η,

P̂(1,2,1,2)
n (ξ, η) = Φ6

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε1
η ⊗ ε2

η − Φ2
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε1

η ⊗ ε3
η,

P̂(1,2,1,3)
n (ξ, η) = −Φ6

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε1
η ⊗ ε3

η − Φ2
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε1

η ⊗ ε2
η,

P̂(1,2,2,1)
n (ξ, η) = Φ6

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε1

η − Φ2
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε1
η,

P̂(1,2,2,2)
n (ξ, η) = Φ3

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε2

η + Φ3
n(ξ · η)ε1

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε3
η,

P̂(1,2,2,3)
n (ξ, η) = Φ7

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε2

η − Φ7
n(ξ · η)ε1

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε3
η

−2 Φ5
n(ξ · η)(ε1

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε3
η + ε1

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε2
η),

P̂(1,2,3,1)
n (ξ, η) = −Φ6

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε1

η − Φ2
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε1
η,

P̂(1,2,3,2)
n (ξ, η) = −Φ7

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε3

η − Φ7
n(ξ · η)ε1

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε2
η

−2 Φ5
n(ξ · η)(ε1

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε2
η − ε1

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε3
η),

P̂(1,2,3,3)
n (ξ, η) = Φ3

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε3

η − Φ3
n(ξ · η)ε1

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε2
η,

P̂(1,3,1,3)
n (ξ, η) = −Φ2

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε1
η ⊗ ε2

η + Φ6
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε1

η ⊗ ε3
η,

P̂(1,3,2,1)
n (ξ, η) = −Φ2

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε1

η − Φ6
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε1
η,

P̂(1,3,2,2)
n (ξ, η) = −Φ3

n(ξ · η)ε1
ξ ⊗ ε3

ξ ⊗ ε2
η ⊗ ε2

η − Φ3
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε3
η,

P̂(1,3,2,3)
n (ξ, η) = −2 Φ5

n(ξ · η)(ε1
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε3

η + ε1
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε2

η)

−Φ7
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε2
η + Φ7

n(ξ · η)ε1
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε3

η,

P̂(1,3,3,1)
n (ξ, η) = −Φ2

n(ξ · η)ε1
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε1

η + Φ6
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε1
η,

P̂(1,3,3,2)
n (ξ, η) = 2 Φ5

n(ξ · η)(ε1
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε3

η − ε1
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε2

η)

+Φ7
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε3
η + Φ7

n(ξ · η)ε1
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε2

η,

P̂(1,3,3,3)
n (ξ, η) = −Φ3

n(ξ · η)ε1
ξ ⊗ ε3

ξ ⊗ ε2
η ⊗ ε3

η + Φ3
n(ξ · η)ε1

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε2
η,

P̂(2,1,2,1)
n (ξ, η) = Φ6

n(ξ · η)ε2
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε1

η − Φ2
n(ξ · η)ε3

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε1
η,

P̂(2,1,2,2)
n (ξ, η) = Φ3

n(ξ · η)ε2
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε2

η + Φ3
n(ξ · η)ε2

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε3
η,

P̂(2,1,2,3)
n (ξ, η) = Φ7

n(ξ · η)ε2
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε2

η − Φ7
n(ξ · η)ε2

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε3
η

−2 Φ5
n(ξ · η)(ε3

ξ ⊗ ε1
ξ ⊗ ε2

η ⊗ ε3
η + ε3

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε2
η),

P̂(2,1,3,1)
n (ξ, η) = −Φ6

n(ξ · η)ε2
ξ ⊗ ε1

ξ ⊗ ε3
η ⊗ ε1

η − Φ2
n(ξ · η)ε3

ξ ⊗ ε1
ξ ⊗ ε2

η ⊗ ε1
η,

P̂(2,1,3,2)
n (ξ, η) = −Φ7

n(ξ · η)ε2
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε3

η − Φ7
n(ξ · η)ε2

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε2
η

−2 Φ5
n(ξ · η)(ε3

ξ ⊗ ε1
ξ ⊗ ε2

η ⊗ ε2
η − ε3

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε3
η),

P̂(2,1,3,3)
n (ξ, η) = Φ3

n(ξ · η)ε2
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε3

η − Φ3
n(ξ · η)ε2

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε2
η,

P̂(2,2,2,2)
n (ξ, η) = Φ1

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε2

η + Φ1
n(ξ · η)ε2

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε3
η

+Φ1
n(ξ · η)ε3

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε2
η + Φ1

n(ξ · η)ε3
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε3

η,
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P̂(2,2,2,3)
n (ξ, η) = Φ4

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε2

η − Φ4
n(ξ · η)ε2

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε3
η

+Φ4
n(ξ · η)ε3

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε2
η − Φ4

n(ξ · η)ε3
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε3

η,

P̂(2,2,3,1)
n (ξ, η) = −Φ3

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε1

η − Φ3
n(ξ · η)ε3

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε1
η,

P̂(2,2,3,2)
n (ξ, η) = −Φ4

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε3

η − Φ4
n(ξ · η)ε2

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε2
η

−Φ4
n(ξ · η)ε3

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε3
η − Φ4

n(ξ · η)ε3
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε2

η,

P̂(2,2,3,3)
n (ξ, η) = Φ1

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε3

η − Φ1
n(ξ · η)ε2

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε2
η

+Φ1
n(ξ · η)ε3

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε3
η − Φ1

n(ξ · η)ε3
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε2

η,

P̂(2,3,2,3)
n (ξ, η) = Φ8

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε2

η − Φ8
n(ξ · η)ε2

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε3
η

+4 Φ9
n(ξ · η)(ε2

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε3
η + ε2

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε2
η)

+4 Φ9
n(ξ · η)(ε3

ξ ⊗ ε2
ξ ⊗ ε2

η ⊗ ε3
η + ε3

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε2
η)

−Φ8
n(ξ · η)ε3

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε2
η + Φ8

n(ξ · η)ε3
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε3

η,

P̂(2,3,3,1)
n (ξ, η) = −Φ7

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε1

η − 2 Φ5
n(ξ · η)ε2

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε1
η

−2 Φ5
n(ξ · η)ε3

ξ ⊗ ε2
ξ ⊗ ε2

η ⊗ ε1
η + Φ7

n(ξ · η)ε3
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε1

η,

P̂(2,3,3,2)
n (ξ, η) = −Φ8

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε3

η − Φ8
n(ξ · η)ε2

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε2
η

+4 Φ9
n(ξ · η)(ε2

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε2
η − ε2

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε3
η)

+4 Φ9
n(ξ · η)(ε3

ξ ⊗ ε2
ξ ⊗ ε2

η ⊗ ε2
η − ε3

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε3
η)

+Φ8
n(ξ · η)ε3

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε3
η + Φ8

n(ξ · η)ε3
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε2

η,

P̂(2,3,3,3)
n (ξ, η) = Φ4

n(ξ · η)ε2
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε3

η − Φ4
n(ξ · η)ε2

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε2
η

−Φ4
n(ξ · η)ε3

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε3
η + Φ4

n(ξ · η)ε3
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε2

η,

P̂(3,1,3,1)
n (ξ, η) = −Φ2

n(ξ · η)ε2
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε1

η + Φ6
n(ξ · η)ε3

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε1
η,

P̂(3,1,3,2)
n (ξ, η) = 2 Φ5

n(ξ · η)(ε2
ξ ⊗ ε1

ξ ⊗ ε3
η ⊗ ε3

η − ε2
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε2

η)

+Φ7
n(ξ · η)ε3

ξ ⊗ ε1
ξ ⊗ ε2

η ⊗ ε3
η + Φ7

n(ξ · η)ε3
ξ ⊗ ε1

ξ ⊗ ε3
η ⊗ ε2

η,

P̂(3,1,3,3)
n (ξ, η) = −Φ3

n(ξ · η)ε3
ξ ⊗ ε1

ξ ⊗ ε2
η ⊗ ε3

η + Φ3
n(ξ · η)ε3

ξ ⊗ ε1
ξ ⊗ ε3

η ⊗ ε2
η,

P̂(3,2,3,2)
n (ξ, η) = 4 Φ9

n(ξ · η)(ε2
ξ ⊗ ε2

ξ ⊗ ε2
η ⊗ ε2

η − ε2
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε3

η)

+Φ8
n(ξ · η)ε2

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε3
η + Φ8

n(ξ · η)ε2
ξ ⊗ ε3

ξ ⊗ ε3
η ⊗ ε2

η

+Φ8
n(ξ · η)ε3

ξ ⊗ ε2
ξ ⊗ ε2

η ⊗ ε3
η + Φ8

n(ξ · η)ε3
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε2

η

−4 Φ9
n(ξ · η)(ε3

ξ ⊗ ε3
ξ ⊗ ε2

η ⊗ ε2
η − ε3

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε3
η),

P̂(3,2,3,3)
n (ξ, η) = −Φ4

n(ξ · η)ε2
ξ ⊗ ε3

ξ ⊗ ε2
η ⊗ ε3

η + Φ4
n(ξ · η)ε2

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε2
η

−Φ4
n(ξ · η)ε3

ξ ⊗ ε2
ξ ⊗ ε2

η ⊗ ε3
η + Φ4

n(ξ · η)ε3
ξ ⊗ ε2

ξ ⊗ ε3
η ⊗ ε2

η,

P̂(3,3,3,3)
n (ξ, η) = Φ1

n(ξ · η)ε2
ξ ⊗ ε3

ξ ⊗ ε2
η ⊗ ε3

η − Φ1
n(ξ · η)ε2

ξ ⊗ ε3
ξ ⊗ ε3

η ⊗ ε2
η

+Φ1
n(ξ · η)(ε3

ξ ⊗ ε2
ξ ⊗ ε3

η ⊗ ε2
η − ε3

ξ ⊗ ε2
ξ ⊗ ε2

η ⊗ ε3
η).
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Remark 6.25. (i) The cases not listed in Theorem 6.24 can be easily real-
ized by symmetry arguments. (ii) If ξ = ±η, the value of P(i,k,l,m)

n (ξ,±ξ) can
be evaluated by taking the limit η → ξ and (if necessary) via the relations
(6.255) and (6.256).

Since the cases (i, k) = (l, m) are of particular importance, we are inter-
ested in the explicit representation of P(i,k,i,k)

n (ξ, ξ), in addition. As prepa-
ration, we introduce two abbreviations indicating special tensors which turn
out to be useful in the formulation of the next theorem, namely

A =
3∑

i=1

εi ⊗ εi ⊗ εi ⊗ εi −
3∑

i,k=1
i�=k

εi ⊗ εi ⊗ εk ⊗ εk, (6.294)

B =
3∑

i,k=1
i�=k

(
εi ⊗ εk ⊗ εi ⊗ εk + εi ⊗ εk ⊗ εk ⊗ εi

)
, (6.295)

({ε1, ε2, ε3} is the canonical orthonormal basis in R
3). It can be easily

seen that these tensorial settings do not depend on the special choice of
the orthonormal basis. Furthermore, in analogy to the definition of ptan,tan

(given in Section 6.1), we introduce an operator Ptan, projecting a rank-4
tensor on its tangential part in R

3 ⊗ R
3 ⊗ R

3 ⊗ R
3 by letting

Atan(ξ) = PtanA(ξ), ξ ∈ Ω, (6.296)
Btan(ξ) = PtanB(ξ), ξ ∈ Ω. (6.297)

The proof of the next theorem now follows by taking the limit η → ξ
in Theorem 6.24, thereby keeping in mind that Pn(1) = 1 and P ′

n(1) =
n(n + 1)/2.

Theorem 6.26. Let n ∈ N0, ξ ∈ Ω. Then the following statements are
valid:

P(1,1,1,1)
n (ξ, ξ) = ξ ⊗ ξ ⊗ ξ ⊗ ξ,

P(1,2,1,2)
n (ξ, ξ) =

1
2

(
3∑

i=1

ξ ⊗ εi ⊗ ξ ⊗ εi − ξ ⊗ ξ ⊗ ξ ⊗ ξ

)
,

P(1,3,1,3)
n (ξ, ξ) =

1
2

(
3∑

i=1

ξ ⊗ εi ⊗ ξ ⊗ εi − ξ ⊗ ξ ⊗ ξ ⊗ ξ

)
,

P(2,1,2,1)
n (ξ, ξ) =

1
2

(
3∑

i=1

εi ⊗ ξ ⊗ εi ⊗ ξ − ξ ⊗ ξ ⊗ ξ ⊗ ξ

)
,

P(2,2,2,2)
n (ξ, ξ) =

1
2
itan(ξ)⊗ itan(ξ),
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P(2,3,2,3)
n (ξ, ξ) = −1

2
n(n + 1) + 4
n(n + 1)− 2

Atan(ξ) +
n(n + 1) + 1
n(n + 1)− 2

Btan(ξ),

P(3,1,3,1)
n (ξ, ξ) =

1
2
n(n + 1)

(
3∑

i=1

εi ⊗ ξ ⊗ εi ⊗ ξ − ξ ⊗ ξ ⊗ ξ ⊗ ξ

)
,

P(3,2,3,2)
n (ξ, ξ) =

n(n + 1) + 1
n(n + 1)− 2

Atan(ξ)−
1
2

n(n + 1) + 4
n(n + 1)− 2

Btan(ξ),

P(3,3,3,3)
n (ξ, ξ) =

1
2
jtan(ξ)⊗ jtan(ξ).

Observing (6.255) and (6.256), the values of P(i,k,i,k)
n (ξ,−ξ) can be derived

immediately from this theorem.

If T is a rank-4 tensor of the form

T =
3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

Tijklε
i ⊗ εj ⊗ εk ⊗ εl, (6.298)

then its trace is defined by (cf. M.E. Gurtin (1971))

trace T =
3∑

i=1

3∑

k=1

Tikik. (6.299)

In consequence, we easily see that the trace of P(i,k,i,k)
n (ξ, ξ) is given by

trace P(i,k,i,k)
n (ξ, ξ) = 1. (6.300)

Moreover, the next result is a direct consequence of Theorem 6.21.

Lemma 6.27. For an l2(Ω)–orthonormal system
{
y(i,k)

n,j

}

j=1,...,2n+1
of ten-

sor spherical harmonics of degree n and for (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)},
n ≥ 0i,k, and ξ ∈ Ω we have

2n+1∑

j=1

y(i,k)
n,j (ξ) · y(i,k)

n,j (ξ) =
2n + 1

4π
. (6.301)

Every tensor spherical harmonic y(i,k)
n ∈ harm(i,k)

n can be written as
linear combination y(i,k)

n =
∑2n+1

j=1 cjy
(i,k)
n,j with cj = (y(i,k)

n ,y(i,k)
n,j )l2(Ω). By

the Cauchy–Schwarz inequality, we therefore obtain for all ξ ∈ Ω

∣∣∣y(i,k)
n (ξ)

∣∣∣
2
≤

⎛

⎝
2n+1∑

j=1

c2
j

⎞

⎠

⎛

⎝
2n+1∑

j=1

∣∣∣y(i,k)
n,j (ξ)

∣∣∣
2

⎞

⎠ . (6.302)
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From Parseval’s identity we are able to deduce that

2n+1∑

j=1

c2
j =

2n+1∑

j=1

(y(i,k)
n ,y(i,k)

n,j )2
l2(Ω)

=
∥∥∥y(i,k)

n

∥∥∥
2

l2(Ω)
. (6.303)

Therefore we find, in connection with Lemma 6.27, the following estimates.

Lemma 6.28. For any tensor spherical harmonic y(i,k)
n of class harm(i,k)

n

we have

sup
ξ∈Ω

∣∣∣y(i,k)
n (ξ)

∣∣∣ ≤
√

2n + 1
4π

∥∥∥y(i,k)
n

∥∥∥
l2(Ω)

. (6.304)

In particular,

sup
ξ∈Ω

∣∣∣y(i,k)
n,j (ξ)

∣∣∣ ≤
√

2n + 1
4π

. (6.305)

It follows from the previous investigations that P(i,k,i,k)
n (·, ·) is the repro-

ducing kernel of harm(i,k)
n in the sense that

(i) For all ξ ∈ Ω
O

(i,k)
ξ P(i,k,i,k)

n (ξ, ·) ∈ harm(i,k)
n (6.306)

(ii) For every f ∈ harm(i,k)
n and all ξ ∈ Ω

O
(i,k)
ξ f(ξ) = (O(i,k)

ξ P(i,k,i,k)
n (ξ, ·), f)l2(Ω) (6.307)

At the end of this section, we want to mention an analogue of the estimate
|Pn(t)| ≤ 1, t ∈ [−1, 1] for the Legendre rank-4 tensor P(i,k,l,m)

n (ξ, η). For
that purpose, let a ∈ R

3 ⊗ R
3 and η ∈ Ω be fixed. Then

P(i,k,l,m)
n (·, η) · a =

4π

2n + 1

2n+1∑

j=1

(
y(l,m)

n,j (η) · a
)
y(i,k)

n,j (6.308)

is a tensor spherical harmonic of order n and type (i, k, l, m). Hence, we
obtain, from Lemma 6.28 and (6.301), that

∣∣∣P(i,k,l,m)
n (ξ, η) · a

∣∣∣
2

≤ 2n + 1
4π

∥∥∥∥∥∥
4π

2n + 1

2n+1∑

j=1

(
y(l,m)

n,j (η) · a
)
∥∥∥∥∥∥

2

l2(Ω)

(6.309)

=
4π

2n + 1

2n+1∑

j=1

(
y(l,m)

n,j (η) · a
)2

≤ |a|2.

This finally leads us to the following result.
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Lemma 6.29. Let i, k, l, m, p, q ∈ {1, 2, 3}. Then, for all ξ, η ∈ Ω,
∣∣∣P(i,k,l,m)

n (ξ, η) · (εp ⊗ εq)
∣∣∣ ≤ 1. (6.310)

6.10 Tensorial Funk–Hecke Formulas

As in the vectorial case, our purpose is to prove two different generalizations
of the Funk–Hecke formula known from the scalar theory. In order to specify
these variants, we have to discuss the following problems:

(i) Let η ∈ Ω be fixed and h(·, η) ∈ C(2)(Ω) be invariant with respect to
rotations t ∈ SO(3) satisfying tη = η. What is the value of

∫

Ω
h(ξ, η) · y(i,k)

n (ξ) dω(ξ) (6.311)

for y(i,k)
n ∈ harm(i,k)

n ?

(ii) Let H ∈ L1[−1, 1]. How can the integral
∫

Ω
H(ξ · η)y(i,k)

n (ξ) dω(ξ) (6.312)

be determined for y(i,k)
n ∈ harm(i,k)

n ?

Notice that the integral (6.311) is scalar-valued, while the value of (6.312) is
a tensor. This difference goes along with the different methods of investigat-
ing the two formulas. For the first version of the Funk–Hecke formula, we
have to discuss rotational invariant tensor fields (i.e., we have to consider
representations of the group SO(3)); the second one can be established
using the relations between tensor spherical harmonics and homogeneous
harmonic tensor polynomials (as described in Section 6.7).

Let us first recapitulate the definition of the operator Rt to the tensorial
situation (see Section 2.7): Let f be a tensor field of class l2(Ω). Assume
that t is of class SO(3). Then we set

Rtf(ξ) = tT f(tξ)t, ξ ∈ Ω. (6.313)

Let G ⊂ SO(3) be a subgroup of SO(3). A subspace v ⊂ l2(Ω) has been
called invariant with respect to G or simply G-invariant if f ∈ v implies
that Rtf ∈ v for all t ∈ G. If a G-invariant subspace v does not contain
a subspace which is also G-invariant (besides v itself), then v is called
irreducible. It is obvious that, for f ,g ∈ l2(Ω), we have

(Rtf ,g)l2(Ω) = (f , RtT g)l2(Ω), (6.314)
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i.e., RtT is the adjoint operator of Rt. For F ∈ C(2)(Ω) and f ∈ c(2)(Ω), it
can be easily verified that

o(i,k)
ξ RtF (ξ) = Rto

(i,k)
ξ F (ξ), (6.315)

O
(i,k)
ξ Rtf(ξ) = RtO

(i,k)
ξ f(ξ) (6.316)

hold for all ξ ∈ Ω and (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)}.

Therefore we find, in connection with the results of Section 2.7, the fol-
lowing properties:

(i) For all (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)}, the space l2(i,k)(Ω) ⊂ l2(Ω) is
SO(3)-invariant.

(ii) The space harm(i,k)
n is an irreducible invariant subspace of l2(Ω) with

respect to SO(3) for all (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)} and all n ≥
0i,k.

Furthermore, we are led to the following statements:

Lemma 6.30. Let η ∈ Ω be fixed. Then, the following statements are valid:

(i) If f ∈ c(2)(Ω) with Rtf = f for all t ∈ SOη(3), then there exist
Fi,k ∈ C[−1, 1], i, k ∈ {1, 2, 3}, such that

O(i,k)f(ξ) = Fi,k(ξ · η), ξ ∈ Ω. (6.317)

(ii) Let (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)} and y(i,k)
n ∈ harm(i,k)

n such that
Rty

(i,k)
n = y(i,k)

n for all t ∈ SOη(3). Then, there exists a constant
C ∈ R such that

y(i,k)
n (ξ) = C o(i,k)

ξ Pn(ξ · η), ξ ∈ Ω. (6.318)

Suppose that η ∈ Ω is fixed. Assume that h(·, η) ∈ c(2)(Ω) with Rth(ξ, η) =
h(ξ, η) for all t ∈ SOη(3). Then, for (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)}, the
function O

(i,k)
ξ h(ξ, η) = Hi,k(ξ · η) depends only on the inner product ξ · η.

Thus, we are allowed to define
(
O(i,k)h

)∧
(n) = 2π

∫ 1

−1
Hi,k(t)Pn(t) dt. (6.319)

In fact, for y(i,k)
n = o(i,k)Yn ∈ harm(i,k)

n , we find
∫

Ω
h(ξ, η) · y(i,k)

n (ξ) dω(ξ) =
∫

Ω
O

(i,k)
ξ h(ξ, η)Yn(ξ) dω(ξ) (6.320)

=
(
O(i,k)h

)∧
(n)Yn(η).
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This assures the first version of the tensorial Funk–Hecke formulas:

Theorem 6.31. Let η ∈ Ω be fixed. Assume that h(·, η) ∈ c(2)(Ω) satisfies

Rth(ξ, η) = h(ξ, η) (6.321)

for all t ∈ SOη(3) and ξ ∈ Ω. Then, for (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)}
and y(i,k)

n ∈ harm(i,k)
n , n ≥ 0i,k,

∫

Ω
h(ξ, η)·y(i,k)

n (ξ) dω(ξ) = (μ(i,k)
n )−1

(
O(i,k)h

)∧
(n) O(i,k)

η y(i,k)
n (η), (6.322)

where
(
O(i,k)h

)∧
(n) is given by (6.319).

Next, we are concerned with the second tensorial version of the Funk–
Hecke formula, as already anounced in (6.312). Let (i, k) ∈ {(1, 1), (1, 2), . . . ,
(3, 3)}. Consider k(i,k)

n rnYn|r=1, n ∈ N0, Yn ∈ Harmn, which are the restric-
tions of homogeneous harmonic tensor polynomials to the unit sphere Ω.
The cartesian components of k(i,k)

n rnYn|r=1 are spherical harmonics of de-
gree deg(i,k)(n) (cf. Lemma 6.15). Hence, it follows for H ∈ L1[−1, 1] and
all η ∈ Ω that
∫

Ω
H(ξ · η)k(i,k)

n rnYn(ξ)|r=1 dω(ξ) = H∧(deg(i,k)(n))k(i,k)
n rnYn(η)|r=1.

(6.323)
It is known from Section 6.7 that every tensor spherical harmonic yn ∈
harmn of degree n can be expressed as linear combination of restrictions of
homogeneous harmonic tensor polynomials of degrees n − 2, . . . , n + 2 (cf.
(6.244) and (6.245)). Therefore, by virtue of Theorem 3.60, the transforma-
tion matrices (6.246), (6.247), and their inverses (6.250), (6.251), we arrive
at the following result which provides the second tensorial version of the
Funk–Hecke formula.

Theorem 6.32. Let Yn ∈ Harmn be a spherical harmonic of degree n.
Moreover, suppose that H is a member of class L1[−1, 1]. Furthermore, let
η ∈ Ω be fixed.

If n = 0, then

∫

Ω
H(ξ · η)

⎛

⎜⎝
o(1,1)

ξ Y0(ξ)

o(2,2)
ξ Y0(ξ)

o(3,3)
ξ Y0(ξ)

⎞

⎟⎠ dω(ξ)

=

⎛

⎜⎝

1
3 (H∧(0) + 2H∧(2))o(1,1)

η Y0(η) + 1
3 (H∧(0)−H∧(2))o(2,2)

η Y0(η)
2
3 (H∧(0)−H∧(2))o(1,1)

η Y0(η) + 1
3 (2H∧(0) + H∧(2))o(2,2)

η Y0(η)
H∧(1)o(3,3)

η Y0(η)

⎞

⎟⎠ .
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If n ≥ 1, then

∫

Ω
H(ξ · η)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

o(1,1)
ξ Yn(ξ)

o(1,2)
ξ Yn(ξ)

o(2,1)
ξ Yn(ξ)

o(2,2)
ξ Yn(ξ)

o(2,3)
ξ Yn(ξ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

dω(ξ)

=
(
H∧(n− 2)mn−2 + H∧(n)mn + H∧(n + 2)mn+2

)

⎛

⎜⎜⎜⎜⎜⎜⎝

o(1,1)
η Yn(η)

o(1,2)
η Yn(η)

o(2,1)
η Yn(η)

o(2,2)
η Yn(η)

o(2,3)
η Yn(η)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and

∫

Ω
H(ξ · η)

⎛

⎜⎜⎜⎜⎝

o(1,3)
ξ Yn(ξ)

o(3,1)
ξ Yn(ξ)

o(3,2)
ξ Yn(ξ)

o(3,3)
ξ Yn(ξ)

⎞

⎟⎟⎟⎟⎠
dω(ξ)

=
(
H∧(n− 1)mn−1 + H∧(n + 1)mn+1

)

⎛

⎜⎜⎜⎝

o(1,3)
η Yn(η)

o(3,1)
η Yn(η)

o(3,2)
η Yn(η)

o(3,3)
η Yn(η)

⎞

⎟⎟⎟⎠ ,

where the matrices mn−2, . . .mn+2, respectively, are given by

(2n + 1)mn−2 =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2+n)(n+1)
4n+6

(2+n)(n+1)(n−1)
(4n−2)n

−(2+n)2

4n+6
(2+n)(n+1)

4n−2
(2+n)(2n+1)

2n

(1−n)n
4n+6

(n−1)2

4n−2
(n−1)n(2+n)
(4n+6)(n+1)

(1−n)n
4n−2

(1−n)(2n+1)
2n+2

(2+n)(n+1)
−(4n+6)

(2+n)(n+1)(n−1)
(4n−2)n

(2+n)2

4n+6
(2+n)(n+1)

2−4n
(n+2)(2n+1)

−2n

(n−1)n
4n+6

(n−1)2

2−4n
(1−n)n(2+n)
(4n+6)(n+1)

(n−1)n
4n−2

(n−1)(2n+1)
2n+2

(n+1)n
4n+6

(1−n)(n+1)
4n−2

−(2+n)n
4n+6

(n+1)n
(4n−2)

2n+1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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(2n + 1)mn =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(7+5n)
4n+6

(2+n)(n+1)2

(2−4n)n
(2+n)n
−(4n+6)

(6+3n)(n+1)
2−4n

(2+n)(2n+1)
−2n

(n+1)n
−(4n+6)

(n+1)(5n−3)
4n−2

(2−3n2−3n)n

(4n+6)(n+1)
(n+1)n
2−4n

(n−1)2n+1)
2n+2

(n+1)n
−(4n+6)

(n+1)(2−3n2−3n)
(4n−2)n

n(5n+8)
4n+6

(n+1)n
2−4n

(2+n)(2n+1)
2n

(3−3n)n
4n+6

(1−n)(n+1)
4n−2

(1−n)n2

(4n+6)(n+1)
(n+1)(5n−2)

4n−2
(1−n)(2n+1)

2n+2

(n+1)n
−(4n+6)

(n−1)(n+1)
4n−2

(2+n)n
4n+6

(n+1)n
2−4n

2n+1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2n + 1)mn+2 =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2+n)(n+1)
2n+3

(2+n)(n+1)
2n−1

(2+n)(n+1)
2n+3

(2+n)(n+1)
2n−1 0

n2

2n+3
n2

2n−1
n2

2n+3
n2

2n−1 0

(n+1)2

2n+3
(n+1)2

2n−1
(n+1)2

2n+3
(n+1)2

2n−1 0
(n−1)n
2n+3

(n−1)n
2n−1

(n−1)n
2n+3

(n−1)n
2n−1 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2n + 1)mn−1 =
⎛

⎜⎜⎜⎜⎜⎜⎝

2+n2+n
2n+2 −2+n2+n

2n
(1−n)n
2n+2

(2+n)(n+1)
2n

−2+n2+n
2n+2

2+n2+n
2n

(n−1)n
2n+2 − (2+n)(n+1)

2n

(1−n)(2+n)
2n+2

(n−1)(2+n)
2n

(2+n)(3n+1)
2n+2

(2+n)(n+1)
2n

(n−1)(2+n)
2n+2

(1−n)(2+n)
2n

(n−1)n
2n+2

(n−1)(3n+2)
2n

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(2n + 1)mn+1 =
⎛

⎜⎜⎜⎜⎜⎜⎝

(3n+5)n
2n+2

2+n2+n
2n

(n−1)n
2n+2 − (2+n)(n+1)

2n

2+n2+n
2n+2

(n+1)(3n−2)
2n

(1−n)n
2n+2

(2+n)(n+1)
2n

(n−1)(2+n)
2n+2

(1−n)(2+n)
2n

(n−1)n
2n+2 − (2+n)(n+1)

2n

(1−n)(2+n)
2n+2

(n−1)(2+n)
2n

(1−n)n
2n+2

(2+n)(n+1)
2n

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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6.11 Counterparts to the Legendre Polynomials

Our considerations about orthogonal expansions in terms of tensor spherical
harmonics motivate the following definition.

Definition 6.33. The kernel tp(i,k)
n : Ω×Ω → R

3⊗R
3, i, k ∈ {1, 2, 3} given

by
tp(i,k)

n (ξ, η) = (μ(i,k)
n )−1/2o(i,k)

ξ Pn(ξ · η) (6.324)

is called the (tensorial) Legendre rank-2 tensor kernel of degree n and type
(i, k) with respect to the dual system of operators o(i,k), O(i,k), i, k ∈ {1, 2, 3}.
The kernel

tpn =
3∑

i=1

3∑

k=1

tp(i,k)
n (6.325)

is called (tensorial) Legendre rank-2 tensor kernel of degree n with respect
to the dual system of operators o(i,k), O(i,k), i, k = 1, 2, 3.

Obviously, the Legendre tensors fulfill an addition theorem.

Theorem 6.34. Let {Yn,m}m=1,...,2n+1 be an L2(Ω)–orthonormal basis of
the space Harmn and let {y(i,k)

n,m }m=1,...,2n+1 with

y(i,k)
n,m = (μ(i,k)

n )−1/2o(i,k)Yn,m (6.326)

be an l2(Ω)–orthonormal basis of harm(i,k)
n . Then

2n + 1
4π

tp(i,k)
n (ξ, η) =

2n+1∑

m=1

y(i,k)
n,m (ξ)Yn,m(η), (6.327)

i, k ∈ {1, 2, 3}.

The relation between the Legendre polynomial of degree n and the Leg-
endre tensors is given by the following lemma.

Lemma 6.35. Let Pn be the one-dimensional Legendre polynomial of degree
n and tp(i,k)

n , P(i,k,l,m)
n the Legendre tensors as defined above. Then, for

ξ, η ∈ Ω,

Pn(ξ · η) =
1

(
μ

(i,k)
n

)1/2

1
(
μ

(l,m)
n

)1/2
O

(l,m)
ξ O(i,k)

η P(i,k,l,m)
n (ξ, η) (6.328)

and

Pn(ξ · η) =
1

(
μ

(i,k)
n

)1/2
O

(i,k)
ξ

tp(i,k)
n (ξ, η). (6.329)
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By use of the addition theorem, we are able to express any rank–2 tensor
field on the sphere in terms of the Legendre tensors in the following way:

f =
3∑

i,k=1

∞∑

n=0ik

∫

Ω

2n + 1
4π

P(i,k,i,k)
n (·, η)f (i,k)(η)dω(η), (6.330)

(in l2(Ω)–sense), where the integral is taken componentwise and f (i,k) ∈
l2(i,k)(Ω).

It should be noted that K
harm

(i,k)
n

= 2n+1
4π P(i,k,i,k)

n is the reproducing

kernel of the space harm(i,k)
n in the sense that

(i) for all ξ ∈ Ω
O

(i,k)
ξ K

harm
(i,k)
n

(·, ξ) ∈ harm(i,k)
n , (6.331)

(ii) for every f ∈ harm(i,k)
n and all ξ ∈ Ω

O
(i,k)
ξ f(ξ) =

(
O

(i,k)
ξ K

harm
(i,k)
n

(·, ξ), f
)

l2(Ω)
, (6.332)

where, for (sufficiently smooth) tensor fields, F : Ω → R
3⊗R

3⊗R
3⊗R

3 of
the form,

F(ξ) =
3∑

p=1

3∑

q=1

3∑

r=1

3∑

s=1

Fp,q,r,s(ξ)εp ⊗ εq ⊗ εr ⊗ εs (6.333)

the operators O(i,k) are defined by

O(i,k)F(ξ) =
3∑

r=1

3∑

s=1

O(i,k)

⎛

⎝
3∑

p=1

3∑

q=1

Fp,q,r,s(ξ)εp ⊗ εq

⎞

⎠ εr ⊗ εs. (6.334)

In the vectorial case, two approaches (based on the Legendre tensors and
the Legendre vectors) were presented. The analogue to the Legendre vector
approach in vectorial theory is an approach involving Legendre tensors of
rank two as follows:

f(ξ) =
3∑

i,k=1

∞∑

n=0ik

2n+1∑

m=1

(
f (i,k),y(i,k)

n,m

)

l2(Ω)
y(i,k)

n,m (ξ) (6.335)

=
3∑

i,k=1

∞∑

n=0ik

2n+1∑

m=1

∫

Ω
f (i,k)(η)

o(i,k)
η Yn,m(η)

(μ(i,k)
n )1/2

dω(η)
o(i,k)

ξ Yn,m(ξ)

(μ(i,k)
n )1/2

.
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6.12 Tensor Spherical Harmonics Related to Tensor
Homogeneous Harmonic Polynomials

Up to now, we dealt with the tensor spherical harmonic system
{y(i,k)

n,m }i,k=1,2,3, n=0ik,..., m=1,...,2n+1 with respect to the dual system of op-
erators o(i,k), O(i,k), i, k ∈ {1, 2, 3}, concentrating on the fact that the de-
composition into normal and tangential tensor fields is realized. We are now
going to introduce an l2(Ω)–orthonormal set of tensor spherical harmonics
{ỹ(i,k)

n }i,k=1,2,3, n=0̃ik,..., m=1,...,2n+1 such that the functions ỹ(i,k)
n,m are eigen-

functions of the (scalar) Beltrami operator and, therefore, are useful in the
(theory) of harmonic functions. More explicitly, it turns out that the new
system of tensor spherical harmonics will enable us to introduce so-called
inner/outer (solid spherical) tensor harmonics in such a way that they fulfill
the Laplace equation in the inner/outer space of a sphere (see Chapter 10).

In the sequel, we understand õ(i,k)
n Yn to be defined by

õ(i,k)
n Yn(ξ) = õ(i,k)

n Hn(x)|r=1, (6.336)

with Hn(x) = rnYn(ξ), x = rξ. In more detail,
⎛

⎜⎜⎜⎜⎜⎜⎝

õ(1,1)
n Yn

õ(1,2)
n Yn

õ(2,1)
n Yn

õ(2,2)
n Yn

õ(3,3)
n Yn

⎞

⎟⎟⎟⎟⎟⎟⎠
= an

⎛

⎜⎜⎜⎜⎝

o(1,1)Yn

o(1,2)Yn

o(2,1)Yn

o(2,2)Yn

o(2,3)Yn

⎞

⎟⎟⎟⎟⎠
(6.337)

and ⎛

⎜⎜⎜⎝

õ(1,3)
n Yn

õ(2,3)
n Yn

õ(3,1)
n Yn

õ(3,2)
n Yn

⎞

⎟⎟⎟⎠ = bn

⎛

⎜⎜⎝

o(1,3)Yn

o(3,1)Yn

o(3,2)Yn

o(3,3)Yn

⎞

⎟⎟⎠ , (6.338)

with matrixes an and bn as defined in (6.246) and (6.247), respectively. The
adjoint operators Õ

(i,k)
n satisfying
(
õ(i,k)

n G, f
)

l2(Ω)
=
(
G, Õ(i,k)

n f
)

L2(Ω)
, (6.339)

f ∈ harmn, G ∈ Harmn, are given by
⎛

⎜⎜⎜⎜⎜⎜⎝

Õ
(1,1)
n f

Õ
(1,2)
n f

Õ
(2,1)
n f

Õ
(2,2)
n f

Õ
(3,3)
n f

⎞

⎟⎟⎟⎟⎟⎟⎠
= an

⎛

⎜⎜⎜⎜⎝

O(1,1)G

O(1,2)G

O(2,1)G

O(2,2)G

O(2,3)G

⎞

⎟⎟⎟⎟⎠
(6.340)
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and ⎛

⎜⎜⎜⎝

Õ
(1,3)
n f

Õ
(2,3)
n f

Õ
(3,1)
n f

Õ
(3,2)
n f

⎞

⎟⎟⎟⎠ = bn

⎛

⎜⎜⎝

O(1,3)G

O(3,1)G

O(3,2)G

O(3,3)G

⎞

⎟⎟⎠ . (6.341)

Further on, by use of the constants μ̃
(i,k)
n

μ̃(i,k)
n = ‖Õ(i,k)

n õ(i,k)
n Yn‖L2(Ω) (6.342)

we obtain

μ̃(1,1)
n = (n + 2)(n + 1)(2n− 3)(2n− 1), (6.343)

μ̃(1,2)
n = 3n4, (6.344)

μ̃(2,1)
n = (n + 1)2(2n− 3)(2n− 1), (6.345)

μ̃(2,2)
n = n(n− 1)(2n + 1)(2n− 1), (6.346)

μ̃(3,3)
n = n2(n− 1)(2n + 1), (6.347)

μ̃(1,3)
n = n(n + 1)2(2n + 1), (6.348)

μ̃(2,3)
n = n2(n + 2)(n + 1), (6.349)

μ̃(3,1)
n = n2(n + 1)(2n + 1), (6.350)

μ̃(3,2)
n = n(n + 1)2(2n + 1). (6.351)

The operators õ(i,k)
n : Harmn → h̃armn, i, k ∈ {1, 2, 3}, admit extensions

õ(i,k) : C(∞)(Ω) → c(∞)(Ω), i, k ∈ {1, 2, 3}, (6.352)

by letting ⎛

⎜⎜⎜⎜⎝

õ(1,1)Yn

õ(1,2)Yn

õ(2,1)Yn

õ(2,2)Yn

õ(3,3)Yn

⎞

⎟⎟⎟⎟⎠
= aD

⎛

⎜⎜⎜⎜⎝

Yn

Yn

Yn

Yn

Yn

⎞

⎟⎟⎟⎟⎠
(6.353)

and ⎛

⎜⎜⎝

õ(1,3)Yn

õ(2,3)Yn

õ(3,1)Yn

õ(3,2)Yn

⎞

⎟⎟⎠ = bD

⎛

⎜⎜⎝

Yn

Yn

Yn

Yn

⎞

⎟⎟⎠ , (6.354)

where the matricial operators aD and bD are defined by

aD =

⎛

⎜⎜⎜⎜⎜⎜⎝

o(1,1)(D + 1)(D + 2) −o(1,2)(D + 2) −o(2,1)(D + 2) − 1
2 o(2,2)(D + 2)(D + 1) 1

2o(2,3)

o(1,1)D2 o(1,2)D −o(2,1)(D − 1) − 1
2o(2,2)D(D − 1) − 1

2o(2,3)

o(1,1)(D + 1)2 −o(1,2)(D + 1) o(2,1)(D + 2) 1
2o(2,2)(D + 2)(D + 1) − 1

2o(2,3)

o(1,1)D(D − 1) o(1,2)(D − 1) o(2,1)(D − 1) − 1
2o(2,2)D(D − 1) 1

2o(2,3)

0 0 o(2,1) − 1
2o(2,2)D(D + 1) − 1

2o(2,3)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(6.355)
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bD =

⎛

⎜⎜⎜⎝

o(1,3)(D + 1) o(3,1) − 1
2o(3,2) − 1

2o(3,3)D(D + 1)

o(1,3)D −o(3,1) 1
2o(3,2) 1

2o(3,3)D(D + 1)

0 o(3,1)(D + 2) − 1
2o(3,2) 1

2o(3,3)(D + 2)(D + 1)

0 o(3,1)(D − 1) 1
2o(3,2) − 1

2o(3,3)D(D − 1)

⎞

⎟⎟⎟⎠ . (6.356)

with D being the (pseudo)differential operator given by (5.294).

In consequence, we are led to introduce the following tensor spherical
harmonics

ỹ(i,k)
n,m =

(
μ̃(i,k)

n

)−1/2
õ(i,k)Yn,m, (6.357)

n = 0̃ik, . . . , m = 1, . . . , 2n + 1, where

0̃ik =

⎧
⎨

⎩

0, (i, k) ∈ {(1, 1), (2, 1), (3, 1)}
1, (i, k) ∈ {(1, 2), (1, 3), (2, 3), (3, 3)}
2, (i, k) ∈ {(2, 2), (3, 2)}

. (6.358)

Obviously, the system {y(i,k)
n,m }i,k=1,2,3,n=0ik,...,m=1,...,2n+1 and the system

{ỹ(i,k)
n,m }i,k=1,2,3,n=0̃ik,...;m=1,...,2n+1 are related in the following way

⎛

⎜⎜⎜⎜⎜⎜⎝

ỹ(1,1)
n,m

ỹ(1,2)
n,m

ỹ(2,1)
n,m

ỹ(2,2)
n,m

ỹ(3,3)
n,m

⎞

⎟⎟⎟⎟⎟⎟⎠
= α̃−1

n αna−1
n

⎛

⎜⎜⎜⎜⎜⎜⎝

y(1,1)
n,m

y(1,2)
n,m

y(2,1)
n,m

y(2,2)
n,m

y(2,3)
n,m

⎞

⎟⎟⎟⎟⎟⎟⎠
, (6.359)

and
⎛

⎜⎜⎜⎝

ỹ(1,3)
n,m

ỹ(2,3)
n,m

ỹ(3,1)
n,m

ỹ(3,2)
n,m

⎞

⎟⎟⎟⎠ = β̃−1
n βnb−1

n

⎛

⎜⎜⎜⎝

y(1,3)
n,m

y(3,1)
n,m

y(3,2)
n,m

y(3,3)
n,m

⎞

⎟⎟⎟⎠ , (6.360)

where

αn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
μ

(1,1)
n 0 0 0 0

0
√

μ
(1,2)
n 0 0 0

0 0
√

μ
(2,1)
n 0 0

0 0 0
√

μ
(2,2)
n 0

0 0 0 0
√

μ
(2,3)
n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

βn =

⎛

⎜⎜⎜⎜⎜⎜⎝

√
μ

(1,3)
n 0 0 0

0
√

μ
(2,3)
n 0 0

0 0
√

μ
(3,1)
n 0

0 0 0
√

μ
(3,2)
n

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and the matrices α̃n and β̃n are defined analogously.

Clearly, the system {ỹ(i,k)
n,m } is a set of eigenfunctions of the Beltrami op-

erator. Furthermore, the functions ỹ(i,k)
n,m are eigenfunctions of the tensorial

Beltrami operator �∗.

Theorem 6.36. Let {Yn,m}n=0,1,..., m=1,...,2n+1 be an L2(Ω)-orthonormal
set of scalar spherical harmonics. Then, the set

{
ỹ(i,k)

n,m

}

i,k=1,2,3, n=0̃ik,..., m=1,...,2n+1
, (6.361)

as defined by (6.357) forms an l2(Ω)-orthonormal set of tensor spherical
harmonics which is closed in c(Ω) with respect to ‖ · ‖c(Ω) and complete in
l2(Ω) with respect to (·, ·)l2(Ω). Furthermore, we have

Δ∗
ξ ỹ

(1,1)
n,m = −(n + 2)(n + 3)ỹ(1,1)

n,m , (6.362)

Δ∗
ξ ỹ

(1,2)
n,m = −n(n + 1)ỹ(1,2)

n,m , (6.363)

Δ∗
ξ ỹ

(2,1)
n,m = −n(n + 1)ỹ(2,1)

n,m , (6.364)

Δ∗
ξ ỹ

(2,2)
n,m = −(n− 1)(n− 2)ỹ(2,2)

n,m , (6.365)

Δ∗
ξ ỹ

(3,3)
n,m = −n(n + 1)ỹ(3,3)

n,m , (6.366)

Δ∗
ξ ỹ

(1,3)
n,m = −(n + 1)(n + 2)ỹ(1,3)

n,m , (6.367)

Δ∗
ξ ỹ

(2,3)
n,m = −n(n− 1)ỹ(2,3)

n,m , (6.368)

Δ∗
ξ ỹ

(3,1)
n,m = −(n + 1)(n + 2)ỹ(3,1)

n,m , (6.369)

Δ∗
ξ ỹ

(3,2)
n,m = −n(n− 1)ỹ(3,2)

n,m . (6.370)

6.13 Alternative Systems of Tensor Spherical
Harmonics

Introducing the spaces

h̃arm
(i,k)

n = span{ỹ(i,k)
n,m }m=1,...,2n+1, n = 0̃ik, . . . , (6.371)
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we find

harm(3,3)
0 = h̃arm

(3,1)

0 , (6.372)

harm(1,1)
0 ⊕ harm(2,2)

0 = h̃arm
(1,1)

0 ⊕ h̃arm
(2,1)

0 , (6.373)

harm(1,3)
1 ⊕ harm(3,1)

1 ⊕ harm(3,3)
1

= h̃arm
(1,3)

1 ⊕ h̃arm
(2,3)

1 ⊕ h̃arm
(3,1)

1 , (6.374)

harm(1,1)
1 ⊕ harm(1,2)

1 ⊕ harm(2,1)
1 ⊕ harm(2,2)

1

= h̃arm
(1,1)

1 ⊕ h̃arm
(1,2)

1 ⊕ h̃arm
(2,1)

1 ⊕ h̃arm
(3,3)

1 , (6.375)

and, for n = 2, 3, . . .,

harm(1,3)
n ⊕ harm(3,1)

n ⊕ harm(3,2)
n ⊕ harm(3,3)

n

= h̃arm
(1,3)

n ⊕ h̃arm
(3,1)

n ⊕ h̃arm
(3,2)

n ⊕ h̃arm
(3,3)

n , (6.376)

and

harm(1,1)
n ⊕ harm(1,2)

n ⊕ harm(2,1)
n ⊕ harm(2,2)

n ⊕ harm(2,3)
n

= h̃arm
(1,1)

n ⊕ h̃arm
(1,2)

n ⊕ h̃arm
(2,1)

n ⊕ h̃arm
(2,2)

n ⊕ h̃arm
(3,3)

n . (6.377)

Therefore, it is clear that

harm0 = h̃arm
(1,1)

0 ⊕ h̃arm
(2,1)

0 ⊕ h̃arm
(3,1)

0 , (6.378)

harm1 =
3⊕

i,k=1
(i,k)/∈{(2,2),(3,2)}

h̃arm
(i,k)

1 , (6.379)

harmn =
3⊕

i,k=1

h̃arm
(i,k)

n , n = 2, 3, . . . . (6.380)

In analogy to the vectorial case, we are able to formulate the following
lemma.

Lemma 6.37. Let εk⊗εlHn be a homogenous harmonic tensor polynomial.
Then

εk ⊗ εlHn|Ω (6.381)

= ỹ(2,2)
n+2 + ỹ(2,3)

n+1 + ỹ(3,2)
n−1 + ỹ(1,2)

n + ỹ(2,1)
n + ỹ(3,3)

n + ỹ(1,3)
n−1 + ỹ(3,1)

n+1 + ỹ(1,1)
n−2 ,
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where

ỹ(2,2)
n+2 = õ(2,2)

n+2 Yn+2, Yn+2 ∈ Harmn+2, (6.382)

ỹ(2,3)
n+1 = õ(2,3)

n+1 Y
(1)
n+1, Y

(1)
n+1 ∈ Harmn+1, (6.383)

ỹ(3,2)
n+1 = õ(3,2)

n+1 Y
(2)
n+1, Y

(2)
n+1 ∈ Harmn+1, (6.384)

ỹ(1,2)
n = õ(1,2)

n Y (1)
n , Y (1)

n ∈ Harmn, (6.385)
ỹ(2,1)

n = õ(2,1)
n Y (2)

n , Y (2)
n ∈ Harmn, (6.386)

ỹ(3,3)
n = õ(3,3)

n Y (3)
n , Y (3)

n ∈ Harmn, (6.387)

ỹ(1,3)
n−1 = õ(1,3)

n−1 Y
(1)
n−1, Y

(1)
n−1 ∈ Harmn−1, (6.388)

ỹ(3,1)
n−1 = õ(3,1)

n−1 Y
(2)
n−1, Y

(2)
n−1 ∈ Harmn−1, (6.389)

ỹ(1,1)
n−2 = õ(1,1)

n−2 Yn−2, Yn−2 ∈ Harmn−2. (6.390)

Analogously to Lemma 5.55, we evaluate the terms Õ(i,k)õ(j,l)Yn with Yn

being a member of Harmn:

Lemma 6.38. For an L2(Ω)-orthonormal system of spherical harmonics
{Yn,m}, the following identity holds true:

Õ(i,k)õ(j,l)Yn,m(ξ) = δijδklμ̃
(i,k)
n Yn,m(ξ). (6.391)

Next, we are interested in deriving an addition theorem involving Legen-
dre rank-4 tensor kernels.

Definition 6.39. The kernel

P̃(i,k,l,m)
n : Ω× Ω → R

3 ⊗ R
3 ⊗ R

3 ⊗ R
3, i, k, l, m ∈ {1, 2, 3}, (6.392)

given by

P̃(i,k,l,m)
n (ξ, η) = (μ̃(i,k)

n )−1/2(μ̃(l,m)
n )−1/2õ(i,k)

ξ õ(l,m)
η Pn(ξ · η), (6.393)

ξ, η ∈ Ω, is called the (tensorial) Legendre rank-4 tensor kernel of degree n
and type (i, k, l, m) with respect to the dual system of operators õ(i,k), Õ(i,k).
The kernel

P̃n =
3∑

i=1

3∑

k=1

3∑

l=1

3∑

m=1

P̃(i,k,l,m)
n (6.394)

is called (tensorial) Legendre rank-4 tensor kernel of degree n with respect
to the dual system of operators õ(i,k), Õ(i,k), i, k ∈ {1, 2, 3}.
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The connection between the Legendre tensor P̃(i,k,l,m)
n and the Legendre

tensor P(i,k,l,m)
n (more precisely, tP(i,k,l,m)

n and tP(i,k,l,m)) can be easily cal-
culated from their definitions. Unfortunately, the formulas are quite lengthy
so that we will not show them here.

The addition theorem for the tensor fields functions ỹ(i,k)
n,m as defined in

(6.357) reads as follows.

Theorem 6.40. Let {ỹ(i,k)
n,m }m=1,...,2n+1 be an l2(Ω)–orthonormal basis of

h̃arm
(i,k)

n (as defined by (6.357)). Then

2n+1∑

m=1

ỹ(i,k)
n,m (ξ)⊗ ỹ(p,q)

n,m (η) =
2n + 1

4π
P̃(i,k,p,q)

n (ξ, η), (6.395)

i, k, p, q ∈ {1, 2, 3}.

As in the case of the Legendre tensor P(i,k,p,q)
n , we are able to give an

estimate of the values |tP̃(i,k,p,q)
n (ξ, η)|.

Lemma 6.41. If i, k, l, m, p, q ∈ {1, 2, 3}, then, for all ξ, η ∈ Ω,

(i) |P̃(i,k,l,m)
n (ξ, η)(εp ⊗ εq)| ≤ 1,

(ii) |P̃(i,k,l,m)
n (ξ, η)| ≤ 3.

Obviously,

K̃
h̃arm

(i,k)

n

=
2n + 1

4π
P̃(i,k,i,k)

n

is the reproducing kernel of the space h̃arm
(i,k)

n in the sense that

(i) for all ξ ∈ Ω

Õ(i,k)K̃
h̃arm

(i,k)

n

(·, ξ) ∈ h̃arm
(i,k)

n , (6.396)

(ii) for every f ∈ h̃arm
(i,k)

n and all ξ ∈ Ω

Õ(i,k)f(ξ) =
(

Õ(i,k)K̃
h̃arm

(i,k)

n

(·, ξ), f
)

l2(Ω)

, (6.397)

where for (sufficiently smooth) tensor fields F : Ω → R
3 ⊗ R

3 ⊗ R
3 ⊗ R

3 of
the form

F(ξ) =
3∑

p=1

3∑

q=1

3∑

r=1

3∑

s=1

Fp,q,r,s(ξ)εp ⊗ εq ⊗ εr ⊗ εs (6.398)



332 6 Tensor Spherical Harmonics

with
∑3

p,q=1 Fp,q,r,s(ξ)εp ⊗ εq ∈ h̃armn for r, s ∈ {1, 2, 3} we define the
operators Õ(i,k) by

Õ(i,k)F(ξ) =
3∑

r=1

3∑

s=1

Õ(i,k)

⎛

⎝
3∑

p=1

3∑

q=1

Fp,q,r,s(ξ)εp ⊗ εq

⎞

⎠ εr ⊗ εs. (6.399)

If we introduce the tensor fields tp̃(i,k)
n : Ω× Ω → R

3 ⊗ R
3, i, k ∈ {1, 2, 3},

we finally get an addition theorem involving the tensor spherical harmonics
{ỹ(i,k)

n,m } and the scalar spherical harmonics {Yn,m}.

Definition 6.42. The kernel tp̃(i,k)
n (·, ·) : Ω×Ω → R

3 ⊗R
3, i, k ∈ {1, 2, 3},

given by

tp̃(i,k)
n (ξ, η) = (μ̃(i,k)

n )−1/2õ(i,k)
ξ Pn(ξ · η), ξ, η ∈ Ω. (6.400)

is called the (tensorial) Legendre rank-2 tensor kernel of degree n and type
(i, k) with respect to the dual system of operators õ(i,k), Õ(i,k), i, k = 1, 2, 3.
The kernel

tp̃n =
3∑

i=1

3∑

k=1

tp̃(i,k)
n (6.401)

is called (tensorial) Legendre rank-2 tensor kernel of degree n with respect
to the dual system of operators õ(i,k), Õ(i,k), i, k = 1, 2, 3.

The relation between the Legendre tensors tp̃(i,k)
n and the Legendre ten-

sors tp(i,k)
n can directly be derived using (6.337) and (6.338).

Lemma 6.43. Let the Legendre tensors tp̃(i,k)
n : Ω × Ω → R

3 ⊗ R
3, i, k ∈

{1, 2, 3}, be defined as above. Then

tp̃(1,1)
n = c1,1,1,1

n (n + 1)(n + 2) tp(1,1)
n − c1,2,1,1

n (n + 2) tp(1,2)
n

−c2,1,1,1
n (n + 2) tp(2,1)

n − c2,2,1,1
n

1
2
(n + 1)(n + 2) tp(2,2)

n

+c2,3,1,1
n

1
2

tp(2,3)
n , (6.402)

tp̃(1,2)
n = c1,1,1,2

n n2 tp(1,1)
n + c1,2,1,2

n n tp(1,2)
n − c2,1,1,2

n (n− 1) tp(2,1)
n

+c2,2,1,2
n

1
2
n(n− 1) tp(2,2)

n − c2,3,1,2
n

1
2

tp(2,3)
n , (6.403)

tp̃(2,1)
n = c1,1,2,1

n (n + 1)2 tp(1,1)
n − c1,2,2,1

n (n + 1) tp(1,2)
n

+c2,1,2,1
n (n + 2) tp(2,1)

n + c2,2,2,1
n

1
2
(n + 1)(n + 2) tp(2,2)

n

−c2,3,2,1
n

1
2

tp(2,3)
n , (6.404)
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tp̃(2,2)
n = c1,1,2,2

n n(n− 1) tp(1,1)
n + c1,2,2,2

n (n− 1) tp(1,2)
n

+c2,1,2,2
n (n− 1) tp(2,1)

n − c2,2,2,2
n

1
2
n(n− 1) tp(2,2)

n

+c2,3,2,2
n

1
2

tp(2,3)
n , (6.405)

tp̃(3,3)
n = c2,1,3,3

n
tp(2,1)

n − c2,2,3,3
n

1
2
n(n + 1) tp(2,2)

n

−c2,3,3,3
n

1
2

tp(2,3)
n , (6.406)

tp̃(1,3)
n = c1,3,1,3

n (n + 1) tp(1,3)
n + c3,1,1,3

n
tp(3,1)

n − c3,2,1,3
n

1
2

tp(3,2)
n

−c3,3,1,3
n

1
2
n(n + 1) tp(3,3)

n , (6.407)

tp̃(2,3)
n = c1,3,2,3

n n tp(1,3)
n − c3,1,2,3

n
tp(3,1)

n + c3,2,2,3
n

1
2

tp(3,2)
n

+c3,3,2,3
n

1
2
n(n + 1) tp(3,3)

n , (6.408)

tp̃(3,1)
n = c3,1,3,1

n (n + 2) tp(3,1)
n − c3,2,3,1

n

1
2

tp(3,2)
n

+c3,3,3,1
n

1
2
(n + 2)(n + 1) tp(3,3)

n ,

(6.409)
tp̃(3,2)

n = c3,1,3,2
n (n− 1) tp(3,1)

n + c3,2,3,2
n

1
2

tp(3,2)
n

−c3,3,3,2
n

1
2
n(n− 1) tp(3,3)

n , (6.410)

where the constants ci,k,l,m
n , i, k, l, m ∈ {1, 2, 3}, are given by

ci,k,l,m
n =

(
μ

(i,k)
n

μ̃
(l,m)
n

)1/2

. (6.411)

Finally, we mention the following addition theorem.

Theorem 6.44. Let {Yn,m}m=1,...,2n+1 be an L2(Ω)–orthonormal basis of
Harmn. Assume that ỹ(i,k)

n,m is defined by (6.357). Then

2n+1∑

m=1

ỹ(i,k)
n,m (ξ)Yn,m(η) =

2n + 1
4π

tp̃n
(i,k)(ξ, η), (6.412)

i, k ∈ {1, 2, 3}.
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6.14 Orthogonal Expansions Using Tensor Legendre
Kernels

For F ∈ L2(Ω), we already know the orthogonal expansion

F =
∞∑

n=0

2n+1∑

j=1

F∧(n, j)Yn,j (6.413)

with F∧(n, j) = (F, Yn,j)L2(Ω). Using the addition theorem, (6.413) can be
reformulated as follows

F =
∞∑

n=0

2n+1∑

j=1

∫

Ω
F (η)Yn,j(η)Yn,j(·)dω(η)

=
∞∑

n=0

2n + 1
4π

∫

Ω
F (η)Pn(· η)dω(η). (6.414)

In other words, the projection of F into Harmn, i.e., the space of all spherical
harmonics with degree n, can be written as

ProjHarmn
(F ) =

2n + 1
4π

∫

Ω
F (η)Pn(· η)dω(η). (6.415)

It is the aim of the remaining part of this section to show how these expan-
sions look like for the tensorial case. For that purpose, we follow a similar
way as in the vectorial case, (cf. Section 5.15). In particular, we introduce
two generalizations of the Legendre polynomial for the tensorial case, which
lead to two different generalizations of (6.415) for the two system of dual
operators, respectively.

Let f ∈ l2(Ω). Letting

(f (i,k))∧(n, j) =
∫

Ω
f(η) · y(i,k)

n,j (η)dω(η) (6.416)

we have the expansion

f =
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n+1∑

j=1

(f (i,k))∧(n, j)y(i,k)
n,j . (6.417)

Using the addition theorem for tensor spherical harmonics involving Leg-
endre rank-4 tensor kernels, the expansion (6.417) may be rewritten in the
form

f =
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n + 1
4π

∫

Ω
P(i,k,i,k)

n (·, η)f (i,k)(η)dω(η),
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where the Legendre tensor P(i,k,i,k)
n : Ω× Ω → R

3 ⊗ R
3 ⊗ R

3 ⊗ R
3 reads as

follows:
2n+1∑

j=1

y(i,k)
n,j (ξ)⊗ y(i,k)

n,j (η) =
2n + 1

4π
P(i,k,i,k)

n (ξ, η) (6.418)

= (μ(i,k)
n )−1 2n + 1

4π
o(i,k)

ξ o(i,k)
η Pn(ξ · η),

(ξ, η) ∈ Ω× Ω (Pn is the usual Legendre polynomial of degree n). Explicit
expressions for o(i,k)

η Pn(ξ ·η) can be calculated using Lemma 6.23, where the
explicit expressions for P(i,k,i,k)

n are given in Theorem 6.26. Furthermore, it
is obvious that the projection l2(Ω) → harm(i,k)

n reads as follows

Proj
harm

(i,k)
n

(f) =
2n + 1

4π

∫

Ω
P(i,k,i,k)

n (·, η)f (i,k)(η)dω(η). (6.419)

Thus, we recognize Legendre rank-4 tensor kernel P(i,k,i,k)
n as a canonical

generalization of the Legendre polynomial to the tensor case.

As in the vectorial case, there is a second variant to generalize the Leg-
endre polynomial. Let the tensor spherical harmonics y(i,k)

n,j be constructed
from an orthonormal set of scalar spherical harmonics, i.e.,

y(i,k)
n,j =

(
μ(i,k)

n

)−1/2
o(i,k)Yn,j , (6.420)

i, k = 1, 2, 3, n = 0ik, . . ., j = 1, . . . , 2n + 1. Assuming that f ∈ l2(Ω) is,
in addition, sufficiently smooth, we can reformulate (6.417) in the following
way

f =
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n+1∑

j=1

∫

Ω
f(η) · y(i,k)

n,j (η)dω(η)y(i,k)
n,j (6.421)

=
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n+1∑

j=1

∫

Ω
f(η) · 1

(μ(i,k)
n )1/2

o(i,k)
η Yn,j(η)dω(η)y(i,k)

n,j

=
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n+1∑

j=1

∫

Ω
(O(i,k)

η f(η))
1

(μ(i,k)
n )1/2

Yn,j(η)dω(η)y(i,k)
n,j

=
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n + 1
4π

1

(μ(i,k)
n )1/2

∫

Ω
O(i,k)

η f(η)tp(i,k)
n (·, η) dω(η),

where the Legendre tensor tp(i,k)
n : Ω× Ω → R

3 ⊗ R
3 is given by

2n+1∑

j=1

y(i,k)
n (ξ)Yn,j(η) =

2n + 1
4π

tp(i,k)
n (ξ, η), (ξ, η) ∈ Ω× Ω, (6.422)
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and the operators O(i,k) which are adjoint to o(i,k) are given by (6.132)–
(6.140). The Legendre tensors can be determined using the addition theo-
rem 6.34. Using this second generalization tp(i,k)

n of the Legendre polyno-
mials, the projection operator (6.419) can be rewritten as

Proj
harm

(i,k)
n

(f) =
2n + 1

4π

1

(μ(i,k)
n )1/2

∫

Ω
O(i,k)

η f(η)tp(i,k)
n (·, η)dω(η). (6.423)

For this formula to be valid, it is necessary that f is sufficiently smooth.

In addition, it should be mentioned that not only the system of dual
operators o(i,k), O(i,k), i, k ∈ {1, 2, 3}, define tensor spherical harmonics, but
also the system of dual operators õ(i,k), Õ(i,k) enables us to introduce tensor
spherical harmonics. In more detail, using the system {ỹ(i,k)

n,j } with

ỹ(i,k)
n,j =

(
μ̃(i,k)

n

)−1/2
õ(i,k)Yn,j , (6.424)

i, k = 1, 2, 3, n = 0ik, . . ., j = 1, . . . , 2n + 1, we find for f ∈ l2(Ω)

f =
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n+1∑

j=1

∫

Ω
f(η) · ỹi,k

n,j(η)dω(η)ỹi,k
n,j (6.425)

=
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n+1∑

j=1

∫

Ω
f(η) · 1

(μ̃(i,k)
n )1/2

õ(i,k)
η Yn,j(η)dω(η)ỹi,k

n,j

=
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n+1∑

j=1

∫

Ω
(Õ(i,k)

η f(η))
1

(μ̃(i,k)
n )1/2

Yn,j(η)dω(η)ỹi,k
n,j

=
3∑

i=1

3∑

k=1

∞∑

n=0ik

2n + 1
4π

1

(μ̃(i,k)
n )1/2

∫

Ω
Õ(i,k)

η f(η)tp̃(i,k)
n (·, η) dω(η),

where the Legendre tensor tp̃(i,k)
n : Ω× Ω → R

3 ⊗ R
3 is given by

2n+1∑

j=1

ỹ(i,k)
n (ξ)Yn,j(η) =

2n + 1
4π

tp̃(i,k)
n (ξ, η), (ξ, η) ∈ Ω× Ω. (6.426)

The kernel tp̃(i,k)
n leads us to the projection operator (cf. (6.419))

Proj
h̃arm

(i,k)

n

(f) =
2n + 1

4π

1

(μ̃(i,k)
n )1/2

∫

Ω

(
Õ(i,k)

η f(η)
)

tp̃(i,k)
n (·, η)dω(η).

(6.427)
Again, for this formula to be valid, it is necessary that f is sufficiently
smooth.
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7 Scalar Zonal Kernel Functions

Any kernel function K : Ω× Ω → R that is characterized by the property

K(ξ, η) = K(|ξ − η|), ξ, η ∈ Ω (7.1)

is called a (spherical) radial basis function (at least in the theory of construc-
tive approximation). In other words, a radial basis function is a real-valued
kernel function whose values depend only on the Euclidean distance |ξ − η|
of two unit vectors ξ, η (see Fig. 7.1). A well-known fact is that the distance
of two unit vectors is expressible in terms of their inner product:

|ξ − η|2 = |ξ|2 + |η|2 − 2ξ · η = 2(1− ξ · η), ξ, η ∈ Ω. (7.2)

Consequently, any radial basis function is equivalently characterized by the
property of being dependent only on the inner product ξ · η of the unit
vectors ξ, η ∈ Ω, i.e.,

K(ξ, η) = K(|ξ − η|) = K̂(ξ · η), ξ, η ∈ Ω. (7.3)

In the theory of special functions of mathematical physics, however, a kernel
K̂ : Ω×Ω → R satisfying K̂(ξ · η) = K̂(tξ · tη), ξ, η ∈ Ω, for all orthogonal
transformation t is known as a zonal kernel function (see (2.107)). In order
to point out the reducibility of K̂ to a function defined on the interval
[−1, 1], the notation (ξ, η) �→ K̂(ξ · η), (ξ, η) ∈ Ω × Ω, is used throughout
this work.

7.1 Zonal Kernel Functions in Scalar Context

In what follows, we deal with essential keystones of the scalar theory of zonal
kernel functions. The classical addition theorem of spherical harmonics
enables us to characterize zonal kernel functions as orthogonal (Fourier)
sum expansions in terms of Legendre polynomials.

We begin our considerations by recapitulating the definition of a zonal
kernel function in more mathematical rigor.

339
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Fig. 7.1: Two examples of scalar (locally supported) zonal functions on the
unit sphere Ω.

Definition 7.1. Assume that K̂ is a real function on the interval [−1, 1].
A function Kξ : Ω → R, ξ ∈ Ω fixed, given by

η �→ Kξ(η) = K̂(ξ · η), η ∈ Ω, (7.4)

is called a scalar zonal kernel function (more accurately, ξ–zonal kernel
function or ξ–zonal function).

For simplicity, we write K(ξ·) instead of K(ξ · ·). It is clear that ξ–
zonal functions are invariant under orthogonal transformations which leave
ξ fixed, such that the value Kξ(η) depends only on the inner product of η
and ξ (isotropy). Moreover, it is customary to identify Kξ(η) with K(ξ · η)
(instead of K̂(ξ · η)).

Definition 7.2. A scalar zonal function K : [−1, 1] → R is called an L2(Ω)–
zonal scalar kernel function, if K(ξ·) is a member of the space L2(Ω) for
each ξ ∈ Ω.

From the Funk-Hecke formula, we obtain for all ξ, η ∈ Ω and K ∈
L2[−1, 1] ∫

Ω
K(ξ · α)Pn(α · ζ) dω(α) = K∧(n)Pn(ξ · ζ) (7.5)

with Legendre coefficients K∧(n), n ∈ N0, given by

K∧(n) = 2π

∫ 1

−1
K(t)Pn(t) dt. (7.6)

Using both the addition theorem (Theorem 3.26) and the Funk–Hecke
formula (Theorem 3.60), we get a representation of an L2(Ω)–scalar zonal
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kernel function K in terms of a Legendre series. Explicitly written out,

K(ξ·) =
∞∑

n=0

2n + 1
4π

K∧(n)Pn(ξ·) (7.7)

(in ‖ ·‖L2(Ω)–sense), where the sequence {K∧(n)}n∈N0 is called the Legendre
symbol of the zonal kernel K(ξ·).

From the addition theorem with ξ = η we get

2n+1∑

m=1

(Yn,m(ξ))2 =
2n + 1

4π
, ξ ∈ Ω. (7.8)

Therefore, the representation (7.7) in combination with (7.8) helps us to
formulate the following theorem:

Theorem 7.3. A scalar zonal kernel function K : [−1, 1] → R is an L2(Ω)–
scalar zonal function if and only if

∞∑

n=0

2n + 1
4π

(
K∧(n)

)2
< ∞. (7.9)

7.2 Convolutions Involving Scalar Zonal Kernel
Functions

Via the Funk–Hecke formula, we are led to compositions of zonal kernels
generated by convolution. An important feature is that the convolution of
zonal kernel functions does not affect the property of being a zonal kernel.

Definition 7.4. Let H, K be L2(Ω)-scalar zonal kernel functions. Suppose
that F is of class L2(Ω). Then K ∗ F defined by

(K ∗ F )(ξ) =
∫

Ω
K(ξ · η)F (η)dω(η), (7.10)

ξ ∈ Ω, is called the convolution of K against F . Furthermore, H ∗K defined
by

(H ∗K)(ξ · η) =
∫

Ω
H(ξ · ζ)K(ζ · η)dω(ζ), (7.11)

ξ, η ∈ Ω, is called the convolution of H against K.

Note that we use the same symbol ‘∗’ for different specifications of con-
volutions. Moreover, the commutativity in (7.11) should be pointed out,
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such that the convolution of H against K is equal to the convolution of K
against H, i.e., H ∗K = K ∗H.

Convolutions on the sphere have been discussed by many authors (see,
for example, S. Bochner (1954), A.P. Calderon, A. Zygmund (1955)). Of
particular importance in our approach are the following properties:

(i) For G ∈ L2[−1, 1], Yn ∈ Harmn,

(G ∗ Yn)(ξ) = G∧(n)Yn(ξ), ξ ∈ Ω, (7.12)

(ii) For all Yn ∈ Harmn (cf. Corollary 3.61),
∫

Ω
(G ∗ F )(η)Yn(η) dω(η) = G∧(n)

∫

Ω
F (η)Yn(η) dω(η). (7.13)

For later use, we introduce the concept of an iterated convolution.

Definition 7.5. Assume that K ∈ L2[−1, 1] and F ∈ L2(Ω). For (ξ, ζ) ∈
Ω× Ω we let

K(1)(ξ · ζ) = K(ξ · ζ),

K(k)(ξ · ζ) =
∫

Ω
K(k−1)(ξ · η)K(ζ · η) dω(η), k = 2, 3 . . . .

Then K(k) ∗ F is called the k-th iterated convolution of K against F .

Obviously, the k-th iterated kernel K is a scalar zonal kernel function,
and it follows immediately that

(K(k))∧(n) = (K∧(n))k, n = 0, 1, . . . , k = 1, 2, . . . . (7.14)

Let H, K be L2(Ω)-scalar zonal kernel functions. Furthermore, suppose
that F is of class L2(Ω). By virtue of of the Cauchy–Schwarz inequality, it
is not hard to see that, for K ∈ L2(Ω), K ∗F is in L2(Ω), whereas H ∗K is
a member of class C(Ω). In spectral formulation, we have

K ∗ F =
∞∑

n=0

K∧(n)
2n+1∑

m=1

F∧(n, m)Yn,m, (7.15)

and

H ∗K =
∞∑

n=0

2n + 1
4π

H∧(n)K∧(n)Pn. (7.16)
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Finally, it should be mentioned that

F =
∞∑

n=0

2n + 1
4π

Pn ∗ F (7.17)

in the topology of ‖ · ‖L2(Ω).

7.3 Classification of Zonal Kernel Functions

As already mentioned, spherical harmonics are an adequate and often used
tool for global approximation of functions on a sphere. In fact, spherical har-
monic expansions are classical means in geopotential modeling. However,
spherical harmonics suffer from several drawbacks in their construction be-
cause of their global support. An essential disadvantage is the fact that
they are usually not appropriate for the investigation of local structures.
In this respect, it is advisable to go over to space localizing functions, e.g.,
zonal kernel functions that are generated by summing up certain spheri-
cal harmonic expressions. Several classes of zonal kernel functions can be
distinguished, for example, bandlimited and non-bandlimited, space-limited
and non-spacelimited kernel functions. But the question is what is the right
zonal kernel function of local nature for local purposes of approximation?
Of course, the user of a mathematical method is interested in knowing the
trial system which fits ‘adequately’ to the problem. Actually it is necessary,
in the case where several choices are possible or an optimal choice cannot be
found, to choose the trial systems in close adaptation to the data width and
the required smoothness of the field to be approximated. In this respect, an
uncertainty principle specifying the space and frequency (in physical lan-
guage ‘momentum’) localization is helpful to serve as a decisive criterion.
The essential outcome of the uncertainty principle is a better understanding
of the classification of zonal kernel functions.

We begin our mathematical explanations of an uncertainty principle on
the sphere Ω with the development of suitable bounds for the quantification
of space and frequency localization.

Localization in Space. Suppose that F is of class L2(Ω). Assume first
that

‖F‖L2(Ω) =
(∫

Ω
(F (η))2 dω(η)

)1/2

= 1. (7.18)

We associate to F the normal (radial) field η �→ ηF (η) = o
(1)
η F (η), η ∈ Ω.

This function maps L2(Ω) into the associated set of normal fields on Ω. The
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‘center of gravity of the spherical window’ is defined by the expectation value
in the space domain

go(1)

F =
∫

Ω

(
o(1)
η F (η)

)
F (η) dω(η) =

∫

Ω
η(F (η))2 dω(η) ∈ R

3 (7.19)

thereby interpreting (F (η))2 dω(η) as surface mass distribution over the
sphere Ω embedded in Euclidean space R

3. It is clear that go(1)

F lies in the
closed inner space Ωint of Ω: |go(1)

F | ≤ 1. The variance in the space domain
is understood in canonical sense as the variance of the operator o(1)

(σo(1)

F )2 =
∫

Ω

((
o(1)
η − go(1)

F

)
F (η)

)2
dω(η)

=
∫

Ω

(
η − go(1)

F

)2
(F (η))2 dω(η) ∈ R. (7.20)

Observing the identity (η− go(1)

F )2 = 1+(go(1)

F )2−2η · go(1)

F , η ∈ Ω, it follows
immediately that (σo(1)

F )2 = 1− (go(1)

F )2. Obviously, 0 ≤ (σo(1)

F )2 ≤ 1.

Since we are particularly interested in bandlimited or non–bandlimited
zonal (i.e., radial basis) functions on the sphere, some simplifications can
be made. Let K be of class L2[−1, 1] and ‖K‖L2[−1,1] = 1. Then, the cor-
responding expectation value (‘center of gravity’) can be computed readily
as follows (ε3 = (0, 0, 1)T ):

go(1)

K(·ε3) =
∫

Ω
η
(
K
(
η · ε3

))2
dω(η) =

(
2π

∫ 1

−1
t (K(t))2 dt

)
ε3.

Letting

to
(1)

K =
∣∣∣go(1)

K(·ε3)

∣∣∣ = 2π

∣∣∣∣
∫ 1

−1
t (K(t))2 dt

∣∣∣∣ ∈ R (7.21)

we find for the corresponding variance

(σo(1)

K )2 =
∫

Ω

(
η − go(1)

K(·ε3)

)2 (
K
(
η · ε3

))2
dω(η) (7.22)

= 1−
(
to

(1)

K

)2

= 1−
(
go(1)

K(·ε3)

)2
∈ R.
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go(1)

F

σo(1)

F

ηo(1)

F

1

C

Fig. 7.2: Localization in a spherical cap.

Figure 7.2 gives a geometric interpretation of go(1)

F and σo(1)

F . We associate
to go(1)

F , go(1)

F �= 0, and its projection ηo(1)

F onto the sphere Ω the spherical
cap C = {η ∈ Ω | 1 − η · ηo(1)

F ≤ 1 − |go(1)

F |}. Then the boundary ∂C is a
circle with radius σo(1)

F . As one thinks of a zonal function F to be a ‘window
function’ on Ω, the window is determined by C, and its width is given by
σo(1)

F .

Localization in Frequency (once again, in physics usually called localiza-
tion in momentum). Next the expectation value in the ‘frequency domain’
is introduced to be the expectation value of the surface curl operator o(3)

on Ω. Then, for F ∈ H2l(Ω), l ∈ N, i.e., for all F ∈ L2(Ω) such that there
exists a function G ∈ L2(Ω) with G∧(n, k) = (−n(n + 1))lF∧(n, k) for all
n = 0, 1, . . ., k = 1, . . . , 2n + 1, we have

go(3)

F =
∫

Ω

(
o(3)
η F (η)

)
F (η) dω(η) = 0 ∈ R

3.

Correspondingly, the variance in the ‘frequency domain’ is given by

(σo(3)

F )2 =
∫

Ω

((
o(3)
η − go(3)

F

)
F (η)

)2
dω(η) ∈ R.

The surface theorem of Stokes shows us that

(σo(3)

F )2 =
∫

Ω

(
o(3)
η F (η)

)
·
(
o(3)
η F (η)

)
dω(η)

=
∫

Ω

(
−Δ∗

ηF (η)
)
F (η)dω(η).
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Table 7.1: Space/frequency localization: A comparison of the operators o(1)

and o(3).

Operator Expectation value

Space o(1) go(1)

F =
∫

Ω

(
o(1)
η F (η)

)
F (η)dω(η)

Frequency o(3) go(3)

F =
∫

Ω

(
o(3)
η F (η)

)
F (η)dω(η)

Operator Variance

Space o(1) (σo(1)

F )2 =
∫

Ω

((
o(1)
η − go(1)

F

)
F (η)

)2
dω(η)

Frequency o(3) (σo(3)

F )2 =
∫

Ω

((
o(3)
η − go(3)

F

)
F (η)

)2
dω(η)

Expressed in terms of spherical harmonics, we get via the Parseval identity

(σo(3)

F )2 =
∞∑

n=0

2n+1∑

k=1

n(n + 1)(F∧(n, k))2.

Note that we require

‖F‖2
L2(Ω) =

∞∑

n=0

2n+1∑

k=1

(
F∧(n, k)

)2 = 1.

The meaning of σo(3)

F as measure for ‘frequency localization’ is as follows:
The range of σo(3)

F is the interval [0,∞]; a large value of σo(3)

F occurs if many
Fourier coefficients contribute to σo(3)

F . In conclusion, relating any spherical
harmonic to a ‘single wavelength’ a large value σo(3)

F tells us that F is spread
out widely in ‘frequency domain’. In contrast to this statement, a small
number of σo(3)

F indicates that only a few number of Fourier coefficients is
significant (cf. Table 7.1).

Again we formulate our quantities in the context of zonal functions . Let
K(·ε3) be of class H2(Ω) satisfying ‖K(·ε3)‖L2(Ω) = 1, then

(σo(3)

K(·ε3))
2 = −

∫

Ω
Δ∗

ηK(η · ε3)K(η · ε3)dω(η)

= −2π

∫ 1

−1
K(t)LtK(t) dt
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where Lt denotes the Legendre operator as given by (3.175).

The square roots of the variances, i.e., σo(1)
and σo(3)

, are called the
uncertainties in o(1) and o(3), respectively. For these quantities, we get (see
F.J. Narcowich, J.D. Ward (1996) and W. Freeden (1998)) the estimate
(σo(1)

F )2(σo(3)

F )2 ≥ |go(1)

F |2.

Summarizing our results, we are led to the following theorem.

Theorem 7.6. Let F ∈ H2(Ω) satisfy ‖F‖L2(Ω) = 1. Then

(σo(1)

F )2(σo(3)

F )2 ≥
∣∣∣go(1)

F

∣∣∣
2
. (7.23)

If go(1)

F is non-vanishing, then

Δo(1)

F Δo(3)

F ≥ 1, (7.24)

where we have used the abbreviations

Δo(1)

F =
σo(1)

F∣∣∣go(1)

F

∣∣∣
(7.25)

and
Δo(3)

F = σo(3)

F . (7.26)

Proof. First we observe that for F ∈ H2(Ω) and all constant vectors a ∈ R
3,

a = (a1, a2, a3)T ,

∫

Ω
F (η)

(
(η − a) ∧ o(3)

η F (η)
)

dω(η) (7.27)

=
∫

Ω

(
3∑

i=1

εi ∧
(
F (η)(ηi − ai)o(3)

η F (η)
))

dω(η)

=
3∑

i=1

εi ∧
∫

Ω
F (η)(ηi − ai)o(3)

η F (η) dω(η)

(note that o(3) = L∗). Now it is clear that for i = 1, 2, 3

F (η)(ηi − ai)o(3)
η F (η) =

3∑

k=1

(
F (η)(ηi − ai)εk · o(3)

η F (η)
)

εk. (7.28)
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This yields the identity
∫

Ω
F (η)

(
(η − a) ∧ o(3)

η F (η)
)

dω(η) (7.29)

=
3∑

i=1

εi ∧
3∑

k=1

∫

Ω
F (η)(ηi − ai)εk · o(3)

η F (η) dω(η)εk.

It follows that
3∑

i=1

εi ∧
3∑

k=1

∫

Ω
F (η)(ηi − ai)εk · o(3)

η F (η) dω(η)εk (7.30)

=
3∑

i=1

εi ∧
3∑

k=1

(−1)
∫

Ω
F (η)o(3)

η ·
(
F (η)(ηi − ai)εk

)
dω(η)εk

=
3∑

i=1

εi ∧
3∑

k=1

(−1)
∫

Ω
F (η)o(3)

η (F (η)(ηi − ai)) · εk dω(η)εk

=
3∑

i=1

εi ∧ (−1)
∫

Ω
F (η)o(3)

η (F (η)(ηi − ai)) dω(η).

This leads us to the identity
∫

Ω
F (η)

(
(η − a) ∧ o(3)

η F (η)
)

dω(η) (7.31)

=
3∑

i=1

∫

Ω
F (η)o(3)

η (F (η)(ηi − ai)) dω(η) ∧ εi

=
∫

Ω
F (η)o(3)

η ∧ (F (η)(η − a)) dω(η)

=
∫

Ω
F (η)

(
o(3)
η ∧ ((η − a)F (η))

)
dω(η),

where we used the notation

L∗
η ∧ g(η) =

3∑

i=1

(
L∗

η(g(η) · εi)
)
∧ εi (7.32)

in analogy to (2.132). With the help of this identity, we now verify the
uncertainty principle. For that purpose, we first see by application of the
Cauchy–Schwarz inequality that

σo(1)

F σo(3)

F ≥ gF , (7.33)

where we have used the abbreviation

gF =
∫

Ω

∣∣∣
(
η − go(1)

F

)
F (η)

∣∣∣
∣∣∣o(3)

η F (η)
∣∣∣ dω(η). (7.34)
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The last expression can be estimated from below as follows

gF ≥
∣∣∣∣
∫

Ω
F (η)

(
η − go(1)

F

)
∧
(
o(3)
η F (η)

)
dω(η)

∣∣∣∣ . (7.35)

With our preliminary result, we then obtain

gF ≥
∣∣∣∣
∫

Ω
F (η)

(
o(3)
η ∧

((
η − go(1)

F

)
F (η)

))
dω(η)

∣∣∣∣ . (7.36)

Furthermore, after elementary calculations, it follows that
(
η − go(1)

F

)
∧ o(3)

η + o(3)
η ∧

(
η − go(1)

F

)
= −2η. (7.37)

But this gives us

gF ≥
∣∣∣∣
∫

Ω
F (η)(−η)F (η) dω(η)

∣∣∣∣ =
∣∣∣go(1)

F

∣∣∣ , (7.38)

as required.

In fact, the statement of Theorem 7.6 remains valid without assuming the
condition ‖F‖L2(Ω) = 1 (see S. Beth (2000)).

Corollary 7.7. Let G be a member of class H2(Ω). Then

(σo(1)

G )2(σo(3)

G )2 ≥
∣∣∣go(1)

G

∣∣∣
2

. (7.39)

If go(1)

G is non-vanishing, then

Δo(1)

G Δo(3)

G ≥ 1 . (7.40)

Proof. Remember that σo(1)

G , σo(3)

G respectively, are non-negative. Therefore,
the inequality (7.39) is verified for G = 0 (in ‖·‖L2(Ω)–sense) by the following
estimate

∣∣∣go(1)

G

∣∣∣ =
∣∣∣∣
∫

Ω
η |G(η)|2 dω(η)

∣∣∣∣

≤
∫

Ω
|η| |G(η)|2 dω(η)

= ‖G‖2
L2(Ω)

= 0 . (7.41)

Without loss of generality, we suppose that ‖G‖L2(Ω) �= 0. Then we define
F = G/ ‖G‖L2(Ω). The application of the operator definitions leads us to

go(1)

G =
∫

Ω
η |G(η)|2 dω(η) = ‖G‖2

L2(Ω) go(1)

F , (7.42)
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and

(σo(1)

G )2 =
∫

Ω

∣∣∣η − go(1)

G

∣∣∣
2
|G(η)|2 dω(η) (7.43)

=
∫

Ω

(
1− 2η · go(1)

G +
(
go(1)

G

)2
)
|G(η)|2 dω(η)

= ‖G‖2
L2(Ω) − 2

(
go(1)

G

)2
+ ‖G‖2

L2(Ω)

(
go(1)

G

)2

= ‖G‖2
L2(Ω)

(
1− 2 ‖G‖2

L2(Ω)

(
go(1)

F

)2
+ ‖G‖4

L2(Ω)

(
go(1)

F

)2
)

.

In order to obtain a relation between σo(1)

G and σo(1)

F , we need the following
estimate

1− 2 ‖G‖2
L2(Ω)

(
go(1)

F

)2
+ ‖G‖4

L2(Ω)

(
go(1)

F

)2
−
(

1−
(
go(1)

F

)2
)

=
(
go(1)

F

)2 (
1− 2 ‖G‖2

L2(Ω) + ‖G‖4
L2(Ω)

)

=
(
go(1)

F

)2 (
‖G‖2

L2(Ω) − 1
)2

≥ 0 . (7.44)

Consequently,

1−2 ‖G‖2
L2(Ω)

(
go(1)

F

)2
+‖G‖4

L2(Ω)

(
go(1)

F

)2
≥ 1−

(
go(1)

F

)2
= (σo(1)

F )2 . (7.45)

Using (7.45) in the right hand side of (7.43), we see that ‖G‖2
L2(Ω) (σo(1)

F )2

is bounded by (σo(1)

G )2, i.e.,

(σo(1)

G )2 ≥ ‖G‖2
L2(Ω) (σo(1)

F )2 . (7.46)

We already know that

go(3)

G =
∫

Ω
G(η)L∗

ηG(η)dω(η) = 0, (7.47)

and

(σo(3)

G )2 =
∫

Ω
−G(η)Δ∗

ηG(η)dω(η) = ‖G‖2
L2(Ω) (σo(3)

F )2 . (7.48)

From (7.46) and (7.48), respectively, we immediately find the uncertainty
principle (7.39):

(σo(1)

G )2(σo(3)

G )2 ≥ ‖G‖4
L2(Ω) (σo(1)

F )2(σo(3)

F )2 (7.49)

≥ ‖G‖4
L2(Ω)

∣∣∣go(1)

F

∣∣∣
2

=
∣∣∣go(1)

G

∣∣∣
2

.

This completes the proof.
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The uncertainty relation measures the trade off between ‘space localiza-
tion’ and ‘frequency localization’ (‘spread in frequency’). It states that
sharp localization in space and ‘frequency’ are mutually exclusive.

An immediate consequence of Theorem 7.6 is its reformulation for zonal
functions K(ε3·) : η �→ K(ε3 · η), η ∈ Ω.

Corollary 7.8. Let K(ε3·) ∈ H2(Ω) satisfy ‖K‖L2[−1,1] = 1. If to
(1)

K is
non-vanishing, then

Δo(1)

K Δo(3)

K ≥ 1,

where

Δo(1)

K =
σo(1)

K

to
(1)

K

and
Δo(3)

K = σo(3)

K .

The interpretation of (σo(3)

K )2 as variance in ‘total angular momentum’
helped us to prove Theorem 7.6. But this interpretation shows two essential
drawbacks: First, the expectation value of the surface curl gradient is a
vector which seems to be inadequate in ‘momentum localization’ in terms
of scalar spherical harmonics, and secondly, the value of go(3)

F vanishes for
all candidates F . This means that the ‘center of gravitation of the spherical
window’ in ‘momentum domain’ is independent of the function F under
consideration. Therefore, we are finally interested in the variance of the
operator −Δ∗

(σ−Δ∗
F )2 =

∫

Ω

∣∣∣
((
−Δ∗

η

)
− g−Δ∗

F

)
F (η)

∣∣∣
2

dω(η) (7.50)

which is a measure for the ‘spread in momentum’. Now the corresponding
expectation value g−Δ∗

F is scalar-valued and non-vanishing. It can be easily
seen that

(σ−Δ∗
F )2 = g

(−Δ∗)2

F −
(
g−Δ∗
F

)2
. (7.51)

In connection with Theorem 7.6, this leads to the following result.

Theorem 7.9. Let F be of class H4(Ω) such that ‖F‖L2(Ω) = 1. Then

(σo(1)

F )2(σ−Δ∗
F )2 ≥

∣∣∣go(1)

F

∣∣∣
g
(−Δ∗)2

F −
(
g−Δ∗
F

)2

g−Δ∗
F

(7.52)

provided that g−Δ∗
F �= 0. If the right hand side of (7.52) is non-vanishing,

then
Δo(1)

F Δ−Δ∗
F ≥ 1, (7.53)



352 7 Scalar Zonal Kernel Functions

where

Δ−Δ∗
F =

⎛

⎜⎜⎜⎝
(σ−Δ∗

F )2

g
(−Δ∗)2

F −
(
g−Δ∗

F

)2

g−Δ∗
F

⎞

⎟⎟⎟⎠

1/2

=
(
g−Δ∗
F

)1/2
= Δo(3)

F .

Finally, we discuss some examples which are of particular interest for us:

Localization of Spherical Harmonics. We know that
∫

Ω
(Yn,k(ξ))2 dω(ξ) = 1 . (7.54)

Now it is clear that
go(1)

Yn,k
= 0, σo(1)

Yn,k
= 1. (7.55)

Moreover, we have

g−Δ∗
Yn,k

= n(n + 1), σ−Δ∗
Yn,k

= 0. (7.56)

In other words, spherical harmonics show an ideal frequency localization, but
no space localization (see Fig. 7.3 for an illustration of space and frequency
localization for the Legendre polynomials).
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Fig. 7.3: The Legendre kernel Pn for n = 2, 5, 9, space representation
ϑ �→ Pn(cos(ϑ)) (left) and frequency representation m �→ (Pn)∧(m) (right).

Localization of the Legendre Kernel. We have with P ∗
n =

√
2n+1

2 Pn

∫

Ω
(P ∗

n(ξ · ζ))2 dω(ζ) = 1 (7.57)
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for all ξ ∈ Ω, such that

go(1)

P ∗
n(ξ·) = 0, σo(1)

P ∗
n(ξ·) = 1 (7.58)

g−Δ∗

P ∗
n(ξ·) = n(n + 1), σ−Δ∗

P ∗
n(ξ·) = 0. (7.59)
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Fig. 7.4: Abel–Poisson kernel uncertainty classification: The functions h �→
Δo(1)

Q̃h
and h �→ Δ−Δ∗

Q̃h
.

Localization of the Abel–Poisson Kernel. Consider the function Qh :
[−1, 1] → R, h < 1, given by (see Fig. 7.4)

Qh(t) =
1
4π

1− h2

(1 + h2 − 2ht)3/2
=

∞∑

n=0

2n + 1
4π

hnPn(t). (7.60)

An easy calculation gives us

‖Qh‖L2[−1,1] = (Qh2(1))1/2 =
(

1 + h2

4π

)1/2 1
1− h2

. (7.61)

Furthermore, for Q̃h(t) = ‖Qh‖−1
L2[−1,1]

Qh(t), t ∈ [−1, 1], we obtain after an
elementary calculation

to
(1)

Q̃h
=

2h

1 + h2
, (σo(1)

Q̃h
)2 =

(
1− h2

1 + h2

)2

, (7.62)

g−Δ∗

Q̃h
=

6h2

(1− h2)2
, (σ−Δ∗

Q̃h
)2 =

12h2(h4 + 5h2 + 1)
(1− h2)4

(7.63)

and

Δo(1)

Q̃h
=

1− h2

2h
, Δ−Δ∗

Q̃h
=

√
6h

1− h2
. (7.64)

Thus, we finally obtain

Δo(1)

Q̃h
Δ−Δ∗

Q̃h
=
√

6
2

=

√
3
2

> 1. (7.65)
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Fig. 7.5: The Abel–Poisson kernel Qh for h = 0.7, 0.5, 0.2. Space represen-
tation ϑ �→ Qh(cos(ϑ)) (left) and frequency representation n �→ (Qh)∧(n)
(right).

Note that in this case, the value Δo(1)

Q̃h
Δ−Δ∗

Q̃h
is independent of h.

All intermediate cases of ‘space-frequency localization’ occur when dis-
cussing the Abel–Poisson kernel. In fact, it should be pointed out that the
Abel–Poisson kernel does not satisfy a minimum uncertainty state.

Letting h formally tend to 1 in the results provided by the uncertainty
principle for the Abel–Poisson kernel function, we are able to interpret the
localization properties of the Dirac kernel on Ω:

δ(ξ · η) =
∞∑

n=0

2n+1∑

k=1

Yn,k(ξ)Yn,k(η), ξ, η ∈ Ω. (7.66)

Using the addition theorem, we see that the Dirac kernel is of zonal nature
satisfying δ∧(n) = 1 for all n ∈ N0:

δ(ξ · η) =
∞∑

n=0

2n + 1
4π

Pn(ξ · η), ξ, η ∈ Ω, (7.67)

where the convergence is understood in distributional sense. As a matter
of fact, letting h tend to 1 shows us that the variances in the space do-
main take the constant value 0. On the other hand, the variances in the
frequency domain converge to ∞. Hence, the Dirac kernel shows ideal space
localization, but no frequency localization .

Bandlimited versions δN of the Dirac kernel, i.e., truncations of the Dirac
kernel in the form

δN (ξ · η) =
N∑

n=0

2n + 1
4π

Pn(ξ · η), ξ, η ∈ Ω, (7.68)
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are called Shannon kernel functions of degree N ∈ N0.

The minimum uncertainty state within the uncertainty relation is pro-
vided by the bell-shaped (Gaussian) probability density function (see W.
Freeden (1998), N. Láın Fernández (2003)) .

Localization of the Gaussian Function. Consider the function Gλ given
by

Gλ(t) = e−(λ/2)(1−t), t ∈ [−1, 1], λ > 0. (7.69)

An elementary calculation shows us that

G̃λ(t) = γ(λ)e−(λ/2)(1−t), (7.70)

with

γ(λ) = (1/
√

4π)
(

1
2λ

(1− e−2λ)
)−1/2

, (7.71)

satisfies ‖G̃λ‖L2[−1,1] = 1. Furthermore, it is not difficult to deduce (cf. W.
Freeden, U. Windheuser (1997)) that Δo(1)

G̃λ
Δ−Δ∗

G̃λ
→ 1 as λ → ∞. This

shows us that the best value of the uncertainty principle (Corollary 7.8) is
1.

Summarizing our results, we are led to the following conclusions: The
uncertainty principle represents a trade off between two ‘spreads’, one for the
position and the other for the frequency. The main statement is that sharp
localization in space and in frequency are mutually exclusive. The reason for
the validity of the uncertainty relation (Theorem 7.6) is that the operators
o(1) and o(3) do not commute. Thus o(1) and o(3) cannot be sharply defined
simultaneously. Extremal members in the space/momentum relation are
the polynomials (i.e., spherical harmonics) and the Dirac function(al)s. An
asymptotically optimal kernel is the Gaussian function.

The estimate (Corollary 7.8) allows us to give a quantitative classifica-
tion in the form of a canonically defined hierarchy of the space/frequency
localization properties of kernel functions of the form

K(t) =
∞∑

n=0

2n + 1
4π

K∧(n)Pn(t), t = ξ · η, (7.72)

(ξ, η) ∈ Ω × Ω. In view of the amount of space/frequency localization, it
is also important to distinguish bandlimited kernels (i.e., K∧(n) = 0 for all
n ≥ N) and non-bandlimited ones. Non-bandlimited kernels show a much
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stronger space localization than bandlimited counterparts. It is not difficult
to prove that if K ∈ L2[−1, 1] with ‖K(ξ· )‖L2(Ω) = 1,

(σo(1)

K(ξ· ))
2 = 1−

( ∞∑

n=1

2n + 1
4π

K∧(n)K∧(n + 1)

)2

. (7.73)

Thus, if K∧(n) ≈ K∧(n + 1) ≈ 1 for many successive integers n, then the
support of (7.72) in space domain is small.

The varieties of the intensity of the localization on the sphere Ω can be also
illustrated by considering the kernel function (7.72). By choosing ’K∧(n) =
δnk’ we obtain a Legendre kernel of degree k, i.e., we arrive at the left end of
our scheme (see Table 7.2). On the other hand, if we formally take K∧(n) =
1 for n = 0, 1, . . ., we obtain the kernel which is the Dirac functional in
L2(Ω). Band-limited kernels have the property K∧(n) = 0 for all n ≥ N ,
N ∈ N0. Non-bandlimited kernels satisfy K∧(n) �= 0 for an infinite number
of integers n ∈ N0. Assuming the condition limn→∞ K∧(n) = 0, it follows
that the slower the sequence {K∧(n)}n=0,1,... converges to zero, the lower is
the frequency localization, and the higher is the space localization.

Table 7.2: The uncertainty principle and its consequences.

space localization
� �

no space localization ideal space localization

frequency localization
� �

ideal frequency localization no frequency localization

kernel type
� �

Legendre kernel bandlimited locally supported Dirac kernel

Altogether, Table 7.2 gives a qualitative illustration of the consequences
of the uncertainty principle in the theory of zonal kernel functions on the
sphere: On the left end of this scheme, we have the Legendre kernels with
their ideal frequency (momentum) localization. However, they show no
space localization, as they are of polynomial nature. Thus, the present stan-
dard way in applications of increasing the accuracy in spherical harmonic
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(Fourier) expansions is to increase the maximum degree of the spherical
harmonics expansions under consideration. On the right end of the scheme,
there is the Dirac kernel which maps a function to its value at a certain point.
Hence, those functionals have ideal space localization but no frequency lo-
calization. Consequently, they are used in a finite pointset approximation
(see, for example, the thesis due to J. Cui (1997) and the references therein).

Zonal kernel functions exist as bandlimited and non-bandlimited func-
tions. Every bandlimited zonal kernel function refers to a finite number
of frequencies. This reduction of the frequency localization allows a finite
variance of the space in the uncertainty principle, i.e., this method has both
a frequency localization and a space localization. If we move from bandlim-
ited to non-bandlimited zonal kernel functions, the frequency localization
usually decreases and the space localization increases in accordance to the
uncertainty principle. In consequence, if the accuracy has to be increased in
zonal kernel approximation (e.g., by splines and wavelets as proposed in W.
Freeden et al. (1998)), a denser point grid is required in the (local) region
under investigation.

7.4 Dirac Families of Zonal Scalar Kernel Functions

As already pointed out, the spectral representation of a square-integrable
function by means of spherical harmonics is essential to solving many prob-
lems in today‘s applications. In future research, however, Fourier (orthogo-
nal) expansions in terms of spherical harmonics {Yn,j} will not be the only
way of representing a square-integrable function. In order to explain this in
more detail, we think of a square-integrable function as a signal in which
the spectrum evolves over space in significant way. We imagine that, at
each point on the sphere Ω, the function refers to a certain combination
of frequencies, and that these frequencies are continuously changing. This
space–evolution of the frequencies, however, is not reflected in the Fourier
expansion in terms of non–space localizing spherical harmonics, at least not
directly. Therefore, in theory, any member F of the space L2(Ω) can be
reconstructed from its Fourier transforms, i.e., the ‘amplitude spectrum’
{F∧(n, j)} n=0,1,...,

j=1,...,2n+1
, but the Fourier transform contains information about

the frequencies of the function over all positions instead of showing how the
frequencies vary in space.

In what follows, we present a two-parameter, i.e., scale- and space-dep-
endent method of achieving a reconstruction of a function F ∈ L2(Ω)
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involving (scalar) zonal kernel functions which we refer to as scaling (ker-
nel) functions converging to the (zonal) Dirac kernel. Roughly speaking, a
Dirac family as discussed here is a set of zonal kernels Φρ : [−1, 1] → R,
ρ ∈ (0,∞), of the form

Φρ(ξ · η) =
∞∑

n=0

ϕρ(n)
2n+1∑

j=1

Yn,j(ξ)Yn,j(η), (7.74)

=
∞∑

n=0

ϕρ(n)
2n + 1

4π
Pn(ξ · η), ξ, η ∈ Ω,

converging to the ‘Dirac–kernel’ δ as ρ → 0. As shown in Section 7.3, the
Dirac kernel can be formally written as zonal kernel function

δ(ξ · η) =
∞∑

n=0

2n+1∑

j=1

Yn,j(ξ)Yn,j(η), (7.75)

=
∞∑

n=0

2n + 1
4π

Pn(ξ · η), ξ, η ∈ Ω.

Consequently, if {Φρ}ρ∈(0,∞) is a Dirac family of zonal kernels, its ‘symbol’
{ϕρ(n)}n=0,1,... constitutes a sequence satisfying the limit relation

lim
ρ→0
ρ>0

ϕρ(n) = 1 (7.76)

for each n = 0, 1, . . .. Accordingly, if {Φρ}ρ∈(0,∞) is a Dirac family of zonal
kernels, the convolution integrals

(Φρ ∗ F ) (ξ) =
∫

Ω
Φρ(ξ · η)F (η) dω(η), ξ ∈ Ω, (7.77)

converge (in a certain topology) to the limit

F (ξ) = (δ ∗ F )(ξ) =
∫

Ω
δ(ξ · η)F (η) dω(η), ξ ∈ Ω, (7.78)

for all ξ ∈ Ω as ρ tends to 0. In more detail, if F is a function of class L2(Ω)
and {Φρ} is a (suitable) Dirac family (tending to the Dirac kernel), then
the following limit relation holds true:

lim
ρ→0,ρ>0

‖F − Φρ ∗ F‖L2(Ω) = 0 . (7.79)

It should be noted that an approximate convolution identity acts as a
space and frequency localization procedure in the following way: As {Φρ},
ρ ∈ (0,∞), is a Dirac family of zonal scalar kernel functions tending to the
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Dirac kernel, the function Φρ(η·), is highly concentrated about the point
η ∈ Ω if the ‘scale parameter’ is a small positive value. Moreover, as ρ tends
to infinity, Φρ(η·) becomes more and more localized in frequency. Cor-
respondingly, the uncertainty principle states that the space localization
of Φρ(η·) becomes more and more decreasing. In conclusion, the prod-
ucts η �→ Φρ(ξ · η)F (η), η ∈ Ω, ξ ∈ Ω, for each fixed value ρ, display
information in F ∈ L2(Ω) at various levels of spatial resolution or fre-
quency bands. Consequently, as ρ approaches ∞, the convolution integrals
Φρ ∗F =

∫
Ω Φρ(·η)F (η) dω(η) display coarser, lower-frequency features. As

ρ approaches 0, the integrals give sharper and sharper spatial resolution.
In other words, the convolution integrals can measure the space-frequency
variations of spectral components, but they have a different space-frequency
resolution.

Each scale approximation Φρ ∗ F of a function F ∈ L2(Ω) must be made
directly by computing the relevant convolution integrals. In doing so, how-
ever, it is inefficient to use no information from the approximation Φρ ∗ F
within the computation of Φρ′ ∗F provided that ρ′ < ρ. In fact, the efficient
construction of multiscale approximation based on Dirac families begins
by a multiresolution analysis in terms of wavelets, i.e., a recursive method
which is ideal for computation (see W. Freeden et al. (1998), W. Freeden, V.
Michel (2005) and the references therein). However, this aspect of construc-
tive approximation will not be discussed here in our approach to spherical
functions relevant for geoscientific purposes.

A mathematically rigorous formulation of a Dirac family is as follows.

Definition 7.10. Let {Φρ}ρ∈(0,∞) be a family of functions in L2[−1, 1]
satisfying the condition

(Φρ)∧(0) = 2π

∫ 1

−1
Φρ(t)P0(t) dt = 2π

∫ 1

−1
Φρ(t) dt = 1 (7.80)

for all ρ ∈ (0,∞). Then {Φρ}ρ∈(0,∞) is said to be a Dirac family in L2(Ω),
if

lim
ρ→0

‖F − Φρ ∗ F‖L2(Ω) = 0 (7.81)

for all F ∈ L2(Ω).

Remark 7.11. In the jargon of approximation theory, the family {Iρ}ρ∈(0,∞)

of operators Iρ given by IρF = Φρ ∗ F is called a (spherical) singular inte-
gral, and {Φρ}ρ∈(0,∞) itself is called the kernel of the singular integral (or,
briefly, scaling function). However, we want to point out the convergence
of {Φρ}ρ∈(0,∞) to the Dirac kernel δ as ρ → 0. This is the reason why we
use the notation of the Dirac family in our approach.



360 7 Scalar Zonal Kernel Functions

The convergence of a Dirac family of scalar zonal kernel functions to the
scalar Dirac kernel is described in more detail by the following theorem.

Theorem 7.12. Let {Φρ}ρ∈(0,∞) be a family of functions in L2[−1, 1] sat-
isfying

(Φρ)∧(0) = 1 (7.82)

and

2π

∫ 1

−1
|Φρ(t)| dt ≤ M (7.83)

for all ρ ∈ (0,∞) with some constant M independent of ρ. Then {Φρ}ρ∈(0,∞)

is a Dirac family in L2(Ω) if and only if

lim
ρ→0

(Φρ)∧(n) = 1 (7.84)

for all n ∈ N0.

Proof. We have to verify the equivalence (see W. Freeden, K. Hesse (2002)).

⇐=: From the definition of a Dirac family in L2(Ω), we are able to deduce
that

lim
ρ→0

‖F − Φρ ∗ F‖L2(Ω) = 0 (7.85)

for all F ∈ L2(Ω). Particularly, this holds for all spherical harmonics Yn

of degree n. The Funk-Hecke formula implies that Φρ ∗ Yn = (Φρ)∧(n)Yn.
Thus, it follows that

0 = lim
ρ→0

‖Yn − Φρ ∗ Yn‖L2(Ω)

= lim
ρ→0

|1− (Φρ)∧(n)| ‖Yn‖L2(Ω)

and limρ→0(Φρ)∧(n) = 1 follows because of ‖Yn‖L2(Ω) �= 0 for all spherical
harmonics Yn �= 0 of degree n ∈ N0.

=⇒: The uniform boundedness in the sense of (7.83) imposed on the func-
tions Φρ, ρ ∈ (0,∞), and the estimate |Pn(t)| ≤ 1 for all t ∈ [−1, 1] and all
n ∈ N0 imply that

(Φρ)∧(n) ≤ 2π

∫ 1

−1
|Φρ(t)| |Pn(t)| dt ≤ 2π

∫ 1

−1
|Φρ(t)| dt ≤ M,

(Φρ)∧(n) ≥ −2π

∫ 1

−1
|Φρ(t)| |Pn(t)| dt ≥ −2π

∫ 1

−1
|Φρ(t)| dt ≥ −M.
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Hence, (Φρ)∧(n) ∈ [−M, M ] for all n ∈ N0 and all ρ ∈ (0,∞). Therefore,

‖F − Φρ ∗ F‖2
L2(Ω) =

∞∑

n=0

2n+1∑

l=1

(
1− (Φρ)∧(n)

)2 (
F∧(n, l)

)2

≤ (M + 1)2 ‖F‖2
L2(Ω) (7.86)

for all ρ ∈ (0,∞) and all F ∈ L2(Ω). As the upper bound (M + 1) of the
term |1 − (Φρ)∧(n)| is independent of ρ ∈ (0,∞), the limit for ρ → 0 and
the infinite sum may be interchanged. Hence,

lim
ρ→0

‖F − Φρ ∗ F‖L2(Ω) (7.87)

=

( ∞∑

n=0

2n+1∑

l=1

lim
ρ→0

(
1− (Φρ)∧(n)

)2 (
F∧(n, l)

)2
)1/2

= 0

for all F ∈ L2(Ω), as required.

Restricting our attention to non-negative kernels {Φρ}ρ∈(0,∞), (i.e., all
Φρ, ρ ∈ (0,∞), satisfy Φρ(t) ≥ 0 for almost all t ∈ [−1, 1]), more equivalent
characterizations of a Dirac family are deducible. The main advantage of
non-negative kernels {Φρ}ρ∈(0,∞) is that the property (Φρ)∧(0) = 1 implies

1 = (Φρ)∧(0) = 2π

∫ 1

−1
Φρ(t) dt = 2π

∫ 1

−1
|Φρ(t)| dt (7.88)

i. e., the condition (7.83) is valid with the sharp bound M = 1.

Theorem 7.13. Let {Φρ}ρ∈(0,∞) be a family of functions in L2[−1, 1], which
satisfy (Φρ)∧(0) = 1 and which are non-negative. Then the following prop-
erties are equivalent:

(i) {Φρ}ρ∈(0,∞) is a non-negative Dirac family in L2(Ω),

(ii) limρ→0 ‖F − Φρ ∗ F‖L2(Ω) = 0 for all F ∈ L2(Ω),

(iii) limρ→0(Φρ)∧(n) = 1 for all n ∈ N0,

(iv) limρ→0(Φρ)∧(1) = 1,

(v) {Φρ}ρ∈(0,∞) satisfies the ‘localization property’

lim
ρ→0

∫ δ

−1
Φρ(t) dt = 0

for all δ ∈ (−1, 1).
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Proof. The statements (i) and (ii) are equivalent by definition and the equiv-
alence of (ii) and (iii) is clear from Theorem 7.13. Obviously, (iii) implies
(iv). It remains to show, that (v) follows from (iv) and that (v) implies (iii).

(iv) =⇒ (v): Let δ ∈ (−1, 1) be arbitrary. Because of the non-negativity of
the kernels Φρ,

0 ≤
∫ δ

−1
Φρ(t) dt ≤ 1

(1− δ)

∫ δ

−1
(1− t) Φρ(t) dt (7.89)

≤ 1
(1− δ)

∫ 1

−1
(1− t) Φρ(t) dt

=
1
2π

1
(1− δ)

(
(Φρ)∧(0)− (Φρ)∧(1)

)
.

Taking the limit for ρ → 0 the localization property follows from (vi).

(v) =⇒ (iii): Property (iii) is equivalent to the following assertion: For
every n ∈ N and for every ε > 0, there exists a value ρ0 = ρ0(ε, n) ∈ (0,∞)
such that 1− ε ≤ (Φρ)∧(n)) ≤ 1 for all ρ ∈ (0, ρ0]. By the non-negativity of
Φρ and the estimate |Pn(t)| ≤ 1 for all n ∈ N0,

(Φρ)∧(n) = 2π

∫ 1

−1
Φρ(t)Pn(t) dt ≤ 2π

∫ 1

−1
Φρ(t) dt = (Φρ)∧(0) = 1. (7.90)

Let n ∈ N and ε > 0 be arbitrary. For δ ∈ (−1, 1),

(Φρ)∧(n) = 2π

∫ δ

−1
Φρ(t)Pn(t) dt + 2π

∫ 1

δ
Φρ(t)Pn(t) dt. (7.91)

As Pn(1) = 1, δ ∈ (−1, 1) can be chosen so close to 1 that Pn(t) ≥√
1− (ε/2) for all t ∈ [δ, 1]. Thus,

(Φρ)∧(n) ≥ 2π

∫ δ

−1
Φρ(t)Pn(t) dt + 2π

√
1− (ε/2)

∫ 1

δ
Φρ(t) dt. (7.92)

As |Pn(t)| ≤ 1 for all δ ∈ (−1, 1),

−2π

∫ δ

−1
Φρ(t) dt ≤ 2π

∫ δ

−1
Φρ(t)Pn(t) dt ≤ 2π

∫ δ

−1
Φρ(t) dt. (7.93)

Therefore, the localization property (v) implies that there exists ρ1, such
that the estimate 2π

∫ δ
−1 Φρ(t)Pn(t) dt ≥ −ε/2 is valid for all ρ ∈ (0, ρ1).

On the other hand, (Φρ)∧(0) = 1 for all ρ ∈ (0,∞), and the localization
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property implies

1
2π

= lim
ρ→0

∫ 1

−1
Φρ(t) dt (7.94)

= lim
ρ→0

∫ δ

−1
Φρ(t) dt + lim

ρ→0

∫ 1

δ
Φρ(t) dt

= lim
ρ→0

∫ 1

δ
Φρ(t) dt.

Hence, there exists ρ2 ∈ (0,∞) such that 2π
∫ 1
δ Φρ(t) dt ≥

√
1− (ε/2) for

all ρ ∈ (0, ρ2). The relation (7.92) implies 1 − ε ≤ (Φρ)∧(n) ≤ 1 for all
ρ ∈ (0, ρ0) with ρ0 = min{ρ1, ρ2}.

Theorem 7.13 immediately leads us to the following notation.

Definition 7.14. A family {Φρ}ρ∈(0,∞) ⊂ L2[−1, 1] satisfying the condi-
tions

(i) (Φρ)∧(0) = 1,

(ii) Φρ is non-negative on [−1, 1],

(iii) lim
ρ→0

Φρ(t) dt = 0, δ ∈ (−1, 1),

is called a Dirac family of non-negative type in L2(Ω).

Finally, it is worth mentioning that a Dirac family of non-negative type
in L2(Ω), i.e., a family {Φρ}ρ∈(0,∞) ⊂ L2[−1, 1], fulfilling the assumptions
of Theorem 7.13 satisfies the estimate

‖Φρ ∗ F‖L2(Ω) ≤ ‖F‖L2(Ω) (7.95)

for all ρ ∈ (0,∞) and for all F ∈ L2(Ω).

For a categorization of certain examples of Dirac families of scalar zonal
kernel functions, the following definition is helpful (see, e.g., H. Berens et al.
(1969)).

Definition 7.15. A family {Iρ}, Iρ : L2(Ω) → L2(Ω), ρ ∈ (0,∞), is called
a semigroup of contraction operators on L2(Ω), if the following properties
are satisfied:

(i) For each ρ ∈ (0,∞), Iρ is a linear bounded operator mapping L2(Ω)
into itself and I0 = I (identity operator).
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(ii) Iρ1+ρ2 = Iρ1Iρ2 , 0 ≤ ρ1 ≤ ρ2 < ∞
(iii) lim

ρ→0
ρ>0

‖Iρ(F )− F‖L2(Ω) = 0, F ∈ L2(Ω)

(iv) ‖Iρ(F )‖L2(Ω) ≤ ‖F‖L2(Ω), ρ ∈ (0,∞), F ∈ L2(Ω).

Examples of semigroups of contraction operators on L2(Ω) will be discussed
in Section 7.5.

We conclude this section by making some words about the spherical
wavelet transform (for references, the reader is referred to the list in Sec-
tion 7.6) The wavelet transform acts as a space and frequency localization
operator in the following way: If {Φρ}, ρ ∈ (0,∞), is a Dirac family and ρ
approaches infinity, the convolution integrals

Φρ ∗ U =
∫

Ω
Φρ(·, η)F (η) dω(η) (7.96)

display coarser, lower-frequency features. As ρ approaches zero, the inte-
grals give sharper and sharper spatial resolution. In other words, the con-
volution integrals can measure the space-frequency variations of spectral
components, but they have a different space-frequency resolution.

Each scale-space approximation Φρ ∗ F of a function F ∈ L2(Ω) must be
made directly by computing the relevant convolution integrals. In doing
so, however, it is inefficient to use no information from the approximation
Φρ ∗F within the computation of Φρ′ ∗F provided that ρ′ < ρ. In fact, the
efficient construction of wavelets begins by a multiresolution analysis, i.e.,
a completely recursive method which is therefore ideal for computation. In
this context, we observe that

∫ ∞

R

∫

Ω
Ψρ(·, η)F (η) dω(η)

dσ

σ
→ F ∈ L2(Ω), R → 0, (7.97)

i.e.,

lim
R→0
R>0

∥∥∥∥F −
∫ ∞

R

∫

Ω
Ψρ(ξ, η)F (η) dω(η)

dρ

ρ

∥∥∥∥
L2(Ω)

= 0, (7.98)

provided that

Ψρ(ξ, η) =
∞∑

n=0

Ψ∧
ρ (n)

2n+1∑

j=1

Yn,j(ξ)Yn,j(η) (ξ, η) ∈ Ω× Ω, (7.99)

is given such that

ψ∧
ρ (n) = −ρ

d

dρ
Φ∧

ρ (n) (7.100)
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for n = 0, 1, . . . and all ρ ∈ (0,∞). Conventionally, the family {Ψρ}, ρ ∈
(0,∞), is called a (scale continuous) wavelet. The (scale continuous) wavelet
transform (WT ): L2(Ω) → L2((0,∞)× Ω) is defined by

(WT )(F )(ρ; ξ) = (Ψρ) ∗ F (ξ) =
∫

Ω
Ψρ(ξ, η)F (η) dω(η). (7.101)

In other words, the wavelet transform is defined as the L2(Ω)–inner product
of F ∈ L2(Ω) with the set of ‘rotations’ and ‘dilations’ of F . The (scale
continuous) wavelet transform (WT ) is invertible on L2(Ω), i.e.,

F =
∫

Ω

∫ ∞

0
(WT )(F )(ρ; η)Ψρ(·, η)

dρ

ρ
dω(η) (7.102)

in the sense of ‖·‖L2(Ω). From Parseval’s identity in terms of scalar spherical
harmonics, it follows that

∫

Ω

∫ ∞

0
(Ψρ ∗ F )(η)

dρ

ρ
dω(η) = ‖F‖2

L2(Ω) (7.103)

i.e., (WT ) converts a function F of one variable into a function of two
variables ξ ∈ Ω and ρ ∈ (0,∞) without changing its total energy.

In terms of filtering {Φρ} and {Ψρ}, ρ ∈ (0,∞) may be interpreted as
low-pass filter and bandpass filter, respectively. Correspondingly, the con-
volution operators are given by

Φρ ∗ F, F ∈ L2(Ω), (7.104)
Ψρ ∗ F, F ∈ L2(Ω). (7.105)

The Fourier transforms read as follows:

(Φρ ∗ F )∧(n, j) = F∧(n, j)Φ∧
ρ (n), (7.106)

(Ψρ ∗ F )∧(n, j) = F∧(n, j)Ψ∧
ρ (n). (7.107)

These formulas provide the transition from the wavelet transform to the
Fourier transform.

Since all scales ρ are used, the reconstruction is highly redundant. Of
course, the redundancy leads us to the following question which is of par-
ticular importance in data analysis:

- Given an arbitrary H ∈ L2((0,∞) × Ω), how can we know whether
H = (WT )(F ) for some function F ∈ L2(Ω)?

The question amounts to finding the range of the (scale continuous) wavelet
transform (WT ) : L2(Ω) → L2((0,∞) × Ω) (see W. Freeden et al. (1998)),
i.e., the subspace

W = (WT )(L2(Ω)) �= L2((0,∞)× Ω). (7.108)
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Actually, it can be shown that the tendency for minimizing errors by use of
the wavelet transform is again expressed in least-squares approximation:

Let H be an arbitrary element of L2((0,∞)×Ω). Then the unique function
FH ∈ L2(Ω) with the property

‖H−(WT )(FH)‖L2((0,∞)×Ω) = inf
U∈L2(Ω)

‖H−(WT )(U)‖L2((0,∞)×Ω) (7.109)

is given by

FH =
∫ ∞

0

∫

Ω
H(ρ; η)Ψρ(·, η)dω(η)

dρ

ρ
. (7.110)

(WT )(FH) is indeed the orthogonal projection of H onto W.

Another important question in the context of the wavelet transform is:

- Given an arbitrary H(ρ; ξ) = (WT )(F )(ρ; ξ), ρ ∈ (0,∞), and ξ ∈ Ω,
for some F ∈ L2(Ω), how can we reconstruct F?

The answer is provided by the so-called least-energy representation. It
states: Of all possible functions H ∈ L2((0,∞) × Ω) for F ∈ L2(Ω),
the function H = (WT )(F ) is unique in that it minimizes the ‘energy’
‖H‖2

L2((0,∞)×Ω. More explicitly (see W. Freeden et al. (1998))

‖(WT )(F )‖L2((0,∞)×Ω) = inf
H∈L2((0,∞)×Ω)

(WT )−1(H)=F

‖H‖L2((0,∞)×Ω).

7.5 Examples of Dirac Families

Several types of Dirac families can be distinguished which are of basic in-
terest in applications (see Table 7.3).

Space limited, i.e., locally supported kernel functions are nothing new,
having been discussed in one-dimensional Euclidean space already by A.
Haar (1910). In what follows, we first present the classical concept initiated
by Haar in a generalization to the spherical case (see Fig. 7.6):

Example 7.16. The Haar Dirac family {Hh}h∈(0,1) ⊂ L2[−1, 1], Hh :
[−1, 1] → R, t �→ Hh(t), h = e−ρ, ρ ∈ (0,∞), is given by

Hh(t) =
{

0 , t ∈ [−1, h]
1
2π

1
(1−h) , t ∈ [h, 1]. (7.111)
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Table 7.3: Three types of kernels: bandlimited, spacelimited, and non–
spacelimited/non-bandlimited.

Legendre
kernels

Zonal kernels Dirac
kernel

K∧(n) = δn,k general case K∧(n) = 1,
n = 0, . . .

bandlimited

K∧(n) = 0,
n > N

spacelimited

K(ξ · η) = 0,
1− ξ · η ≥ δ

Shannon

K∧(n) = 1,
n ≤ N

Haar

K(ξ · η) = 1,
1− ξ · η ≤ δ

Obviously, Hh(t) ≥ 0 for all t ∈ [−1, 1] and (Hh)∧(0) = 2π ‖Hh‖L2[−1,1] =
1 are fulfilled. Thus {Hh}h∈(0,1) generates an approximate identity in L2(Ω).
Further properties of the Haar Dirac family follow in the next example by
specialization to the case k = 0.

Example 7.17. Let k be a non-negative integer, i.e., k ∈ N0. The smoothed
Haar Dirac family {L(k)

h }h∈(0,1) ⊂ C(k−1)[−1, 1], ρ ∈ (0,∞), is defined by

L
(k)
h : [−1, 1] → R, t �→ L

(k)
h (t), where (cf. (3.44))

L
(k)
h (t) = ((B(k)

h )∧(0))−1B
(k)
h (t) (7.112)

with

B
(k)
h (t) =

⎧
⎨

⎩

0 , t ∈ [−1, h)
(t− h)k

(1− h)k
, t ∈ [h, 1].

(7.113)

By definition, L
(k)
h is non-negative, has the support [h, 1], and satisfies

(L(k)
h )∧(0) = 1. Hence, it is a non-negative [h, 1]-locally supported Dirac
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Fig. 7.6: The Haar kernel Hh for h = 0.3, 0.7, 0.9. Space representation
ϑ �→ Hh(cos(ϑ)) (left) and frequency representation n �→ (Hh)∧(n) (right).

family. Obviously, the function L
(0)
h , h ∈ (−1, 1), coincides with the Haar

function Hh. The Legendre coefficients of B
(k)
h and, hence, L

(k)
h , h ∈ (−1, 1),

k ∈ N0, can be calculated recursively (cf. W. Freeden et al. (1998)):

(B(k)
h )∧(0) = 2π

(
1− h

k + 1

)
�= 0, (7.114)

(B(k)
h )∧(1) = 2π

(
1− h

k + 1

)(
1− 1− h

k + 2

)
, (7.115)

(B(k)
h )∧(n + 1) =

(
2n + 1

n + k + 2

)
h (B(k)

h )∧(n) +
(

k + 1− n

n + k + 2

)
(B(k)

h )∧(n− 1).

(7.116)
It can be shown by use of the estimates for the Legendre polynomials that
|(L(k)

h )∧(n)| = O
(
(n(1− h))−(3/2)−k

)
for n → ∞. The functions L

(k)
h , h ∈

(0, 1), k ∈ N0, assume their maximum in t = 1. For k > 2, the Lipschitz-
constant C

(k)
h for L

(k)
h can be chosen as the maximum of the first derivative,

which is also taken in the point t = 1. Thus, we obtain

sup
t∈[−1,1]

|L(k)
h (t)| = L

(k)
h (1) =

1
2π

(k + 1)
(1− h)

, k ∈ N0, (7.117)

and

C
(k)
h = sup

t∈[−1,1]
|(L(k)

h )(1)(t)| = (L(k)
h )′(1) =

1
2π

k(k + 1)
(1− h)2

, k ≥ 2. (7.118)

The function L
(0)
h is constant on its support. Consequently, Equation (7.118)

is also valid for k = 0 on supp(L(0)
h ) = [h, 1]. For k = 1, the function L

(k)
h

is continuous and piecewise linear, thus the Lipschitz-constant C
(1)
h can be

chosen as the first derivative of L
(1)
h on supp(L(1)

h ). Hence, (7.118) is also
true for k = 1.
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Fig. 7.7: The smoothed Haar kernel L
(k)
h for k = 2 and h = 0.3, 0.7, 0.9.

Space representation ϑ �→ L
(k)
h (cos(ϑ)) (left) and frequency representation

n �→ (L(k)
h )∧(n) (right).
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Fig. 7.8: The smoothed Haar kernel L
(k)
h for h = 0.3 and k = 0, 1, 2.

Space representation ϑ �→ L
(k)
h (cos(ϑ)) (left) and frequency representation

n �→ (L(k)
h )∧(n) (right).

In order to discuss the Dirac property for the Haar functions in more
detail, we consider the averages

M
(k)
h (F )(ξ) =

∫

Ω
L

(k)
h (ξ · η)F (η) dω(η), ξ ∈ Ω, k ≥ 0, (7.119)

where (see Figs. 7.7 and 7.8 for a graphical illustration)

L
(k)
h (ξ · η) =

(
(B(k)

h )∧(0)
)−1

B
(k)
h (ξ · η), ξ, η ∈ Ω. (7.120)

Clearly, the case k = 0 describes an equally weighted average over a spherical
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cap. For ξ ∈ Ω and F ∈ C(Ω), we have

|M (0)
h (F )(ξ)− F (ξ)| (7.121)

= ‖Ω(ξ; h)‖−1

∣∣∣∣∣

∫

ξ·η≥h,|η|=1
(F (η)− F (ξ)) dω(η)

∣∣∣∣∣
≤ sup

h≤ξ·η≤1
|F (η)− F (ξ)|. (7.122)

Thus, it is easy to see that

‖M (0)
h (F )− F‖C(Ω) ≤ μ(F ; 1− h). (7.123)

Moreover, for h ∈ [0, 1) and F ∈ L2(Ω),

‖M (0)
h (F )‖L2(Ω) ≤ ‖F‖L2(Ω) (7.124)

and
lim
h→1
h<1

‖M (0)
h (F )− F‖L2(Ω) = 0. (7.125)

For F, H ∈ L2(Ω) the identity

−n(n + 1)F∧(n, j) = H∧(n, j), n = 0, 1, . . . , j = 1, . . . , 2n + 1, (7.126)

is equivalent to the limit relation

lim
h→1
h<1

‖M
(0)
h (F )− F

h2
−H‖L2(Ω) = 0. (7.127)

In fact, as W. Freeden et al. (1998) have pointed out, we have

lim
h→1
h<1

M
(0)
h (F )(ξ)− F (ξ)

h2
= Δ∗

ξF (ξ), ξ ∈ Ω, (7.128)

provided that F is a member of class C(2)(Ω). By similar arguments (see,
e.g., H. Berens et al. (1969)) we are able to show that, for F ∈ L2(Ω), the
relation

‖M (0)
h (F )− F‖L2(Ω) = O((1− h)2) (7.129)

is equivalent to the fact that there exists a function G ∈ L2(Ω) such that

G∧(n, j) = −n(n + 1)F∧(n, j), n = 0, 1, . . . , j = 1, . . . , 2n + 1. (7.130)

Next, we discuss higher order averages, i.e., k ≥ 1. For k = 1, 2, . . ., h ∈
(0, 1), and F ∈ (Ω) it can be readily seen that

∥∥∥M (k)
h (F )

∥∥∥
L2(Ω)

≤ ‖F‖L2(Ω) (7.131)
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and
lim
h→1
h<1

‖M (k)
h (F )− F‖L2(Ω) = 0. (7.132)

Using the modulus of continuity, we obtain for F ∈ C(Ω)

‖ M
(k)
h (F )− F ‖C(Ω)≤ μ(F ; 1− h). (7.133)

Moreover, it follows that

∫

Ω
Pn(ξ · ζ)M (k)

h (F )(ζ) dω(ζ) =
(B(k)

h )∧(n)

(B(k)
h )∧(0)

∫

Ω
Pn(ξ · ζ)F (ζ) dω(ζ). (7.134)

Furthermore, we find

L
(k)
h =

∞∑

n=0

2n + 1
4π

(L(k)
h )∧(n)Pn (7.135)

in the sense of ‖ · ‖L2[−1,1]. For t ∈ [−1, 1] and k = 1, 2, . . . we have

∣∣∣L(k)
h (t)

∣∣∣ ≤ 1
2π

k + 1
1− h

. (7.136)

Moreover, for all t, t′ ∈ [−1, 1] and k = 1, 2, . . .

∣∣∣L(k)
h (t)− L

(k)
h (t′)

∣∣∣ ≤ 1
2π

2k−1k(k + 1)
(1− h)k+1

|t− t′|. (7.137)

The values (B(k)
h )∧(n) are the eigenvalues of the operator M

(k)
h : C(Ω) →

C(Ω), i.e., M
(k)
h Yn = (B(k)

h )∧(n)Yn for all Yn ∈ Harmn.

Finally, we mention that the second iterations (L(k)
h )(2) are given by

(L(k)
h )(2)(ξ · η) = ((B(k)

h )∧(0))−2

∫

Ω
B

(k)
h (ξ · ζ)B(k)

h (ζ · η) dω(ζ). (7.138)

It is obvious from (7.136) and (7.137) that for all ξ, ξ′, η ∈ Ω, and k = 1, 2, . . .

∣∣∣(L(k)
h )(2)(ξ · η)

∣∣∣ ≤ 2
(k + 1)2

(1− h)2
, (7.139)

and
∣∣∣(L(k)

h )(2)(ξ · η)− (L(k)
h )(2)(ξ′ · η)

∣∣∣ ≤ 1
2π

2kk2(k + 1)2

(1− h)k+2
|ξ − ξ′|. (7.140)
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The operators (M (k)
h )(2) : L2(Ω) → L2(Ω) are defined by

(M (k)
h )(2)(F )(ξ) = M

(k)
h (M (k)

h (F ))(ξ) (7.141)

=
∫

Ω
(L(k)

h )(2)(ξ · η)F (η) dω(η), ξ ∈ Ω.

For all ξ ∈ Ω, we find that

(M (k)
h )(2)(F )(ξ)− F (ξ) =

∫

−1+2h2≤ξ·η≤1

(L(k)
h )(2)(ξ · η)(F (η)− F (ξ)) dω(η).

(7.142)
The function F ∈ C(Ω) is uniformly continuous on Ω. Hence,

|(M (k)
h )(2)(F )(ξ)− F (ξ)| (7.143)

≤ max
−1+2h2≤ξ·η≤1

|F (ξ)− F (η)|
∫

−1+2h2≤ξ·η≤1

(L(k)
h )(2)(ξ · η) dω(η).

But this gives us

|(M (k)
h )(2)(F )(ξ)− F (ξ)| ≤ max

−1+2h2≤ξ·η≤1
|F (ξ)− F (η)|. (7.144)

For h ∈ (−1, 1) and F ∈ C(Ω), we have

‖(M (k)
h )(2)(F )‖C(Ω) ≤ ‖F‖C(Ω) (7.145)

and
‖(M (k)

h )(2)(F )− F‖C(Ω) ≤ μ(F ; 2(1− h2)). (7.146)

The function B
(k)
h (·η) : ξ �→ B

(k)
h (ξ · η), ξ ∈ Ω, admits an expansion in

terms of Legendre polynomials as follows:

B
(k)
h (ξ · η) =

∞∑

n=0

2n + 1
4π

(B(k)
h )∧(n)Pn(ξ · η). (7.147)

Thus it is easy to see that

(L(k)
h )(2)(ξ, η) = (L(k)

h )(2)(ξ · η) (7.148)

=
(
(B(k)

h )∧(0)
)−2

∞∑

n=0

2n + 1
4π

(
(B(k)

h )∧(n)
)2

Pn(ξ · η).

Scaling functions with local support turn out to be of particular efficiency
and economy, for example, in numerical integration of convolution integrals,
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since the numerical effort must be done only on the local support. We know
already that

supp(L(k)
h ∗ L

(k)
h′ ) = [h � h′, 1], 0 < h, h′ < 1 (7.149)

where the operation � : [−1, 1]2 → [−1, 1] is defined by

h � h′ = cos(min{π, arccos(h) + arccos(h′)}) (7.150)

However, the statement

L
(k)
h ∗ L

(k)
h′ = L

(k)
h�h′ , 0 < h′, h < 1, (7.151)

does not hold true in general. Our Dirac families with local support, there-
fore, do not generate a semigroup of contraction operators (contrary to the
Abel–Poisson or Gauß–Weierstraß singular integrals that will be discussed
later on). Nevertheless, we are able to find a way to achieve an approximate
contraction procedure as follows (see W. Freeden, U. Windheuser (1996)):
For h1 ∈ (0, 1) and k ≥ 0, let L

[k]
1 ∈ L2[−1, 1], be given by

L
[k]
1 = L

(k)
h1

. (7.152)

Consequently, we have with (L[k]
1 )∧(n) = (L(k)

h1
)∧(n), n = 0, 1, . . . ,

L
[k]
1 =

∞∑

n=0

2n + 1
4π

(L[k]
1 )∧(n)Pn (7.153)

and
∞∑

n=0

2n + 1
4π

((
L

[k]
1

)∧
(n)
)2

< ∞. (7.154)

Moreover,
∞∑

n=0

2n + 1
4π

((
L

[k]
1

)∧
(n)
)2j

< ∞ (7.155)

holds for all integers j = 1, 2, . . .. This makes it possible to introduce kernels
{L[k]

j } ⊂ L2[−1, 1], j ∈ N of the following representation:

L
[k]
j (t) =

∞∑

n=0

2n + 1
4π

((
L

[k]
1

)∧
(n)
)j

Pn(t), t ∈ [−1, 1]. (7.156)

But this yields the property

L
[k]
j ∗ L

[k]
j′ = L

[k]
j+j′ (7.157)
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for j, j′ ∈ N. According to our construction L
[k]
j is the jth iteration of L

[k]
1

which in turn means that

suppL
[k]
j = [hj , 1] (7.158)

with
hj = h1 � . . . � h1︸ ︷︷ ︸

jtimes

. (7.159)

Hence, our procedure results in a locally spacelimited supported kernel
{L[k]

j } showing the property (7.157). Consequently, the results obtained
for the singular integral

M
[k]
j (F )(ξ) = (L[k]

j ∗ F )(ξ), ξ ∈ Ω, F ∈ L2(Ω) (7.160)

can be summarized as follows.

Theorem 7.18. M
[k]
j defines for each j ∈ N, k ≥ 1, a linear bounded oper-

ator from X (Ω) to C(k−1)(Ω). For all j ∈ N, and F ∈ L2(Ω)

‖M [k]
j (F )‖L2(Ω) ≤ ‖F‖L2(Ω),

and, for j, j′ ∈ N

M
[k]
j+j′ = M

[k]
j M

[k]
j′ .

Seen in comparison with a semigroup of contraction operators, we are
confronted with a simulated procedure that stops after finite steps for j = 1
that is for a fixed ‘window size’ h1. Therefore, approximation cannot be
performed with arbitrary accuracy. Nevertheless, our approach is of prac-
tical importance. In applications, only discrete data material is available,
so an arbitrarily close approximation doesn’t make sense. Instead, we are
confronted with the problem of reaching in a finite number of steps a nu-
merically relevant approximation (based on a parameter h1 chosen in close
adaptation to the data situation). But, of course, it remains to find the
right choice h1 in practical applications.

Example 7.19. The spherical up function (see W. Freeden et al. (1998),
M. Schreiner (2003), W. Freeden, M. Schreiner (2006)) is introduced by
an infinite convolution of locally supported functions, where the support of
each of the building blocks is carefully chosen to ensure that the resulting
convolution is also locally supported. Furthermore, the infinite convolution
is infinitely often differentiable, since the symbol {(Up(λ)

h )∧(n)}n∈N0 decays
for n →∞ faster than any rational function.
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Our version of the up function is defined as follows (see M. Schreiner
(2003)): Let h ∈ (−1, 1), and λ > −1. We let ϕ0 = arccos h and introduce

ϕi = 2−iϕ0, , hi = cos
ϕi

2
, i = 1, 2, . . . (7.161)

With these preliminaries, we define Up(λ)
h as follows

Up(λ)
h = (L(λ)

h1
)(2) ∗ (L(λ)

h2
)(2) ∗ . . . =

∞

*i=1
(L(λ)

hi
)(2), (7.162)

where
L

(λ)
h (t) =

λ + 1
2π(1− h)λ+1

B
(λ)
h (t) (7.163)

with

B
(λ)
h (t) =

{
0 , −1 ≤ t ≤ h
(t− h)λ , h < t ≤ 1.

(7.164)

Each ϑ �→ L
(λ)
hi

(cos ϑ) has the support [0, ϕi/2] so that ϑ �→ (L(λ)
hi

)(2)(cos ϑ)

has the support [0, ϕi]. Thus, the function ϑ �→ Up(λ)
h (cos ϑ) has the support

[0,
∑∞

i=1 ϕi] = [0, ϕ0], such that suppUp(λ)
h (t) = [h, 1].

We know that, for each i, we have

0 ≤ ((L(λ)
hi

)(2))∧(n) ≤ ((L(λ)
hi

)(2))∧(0) = 1, n = 1, 2, . . . . (7.165)

In other words, (7.162) is well-defined, and we have

(Up(λ)
h )∧(n) =

∞∏

i=1

(
((L(λ)

hi
)(2))∧(n)

)2
. (7.166)

In particular,

0 ≤ (Up(λ)
h )∧(n) ≤ (Up(λ)

h )∧(0) = 1, n = 1, 2, . . . (7.167)

We summarize the properties of the spherical up function (see Fig. 7.9) in
the following theorem (for the proof see W. Freeden, M. Schreiner (2006)):

Theorem 7.20. Let, for h ∈ (−1, 1) and λ > −1, the function Up(λ)
h :

[−1, 1] → R be defined by (7.162), then the following statements are valid:

(i) Up(λ)
h is locally supported with suppUp(λ)

h = [h, 1].



376 7 Scalar Zonal Kernel Functions

(ii) For all η ∈ Ω, Up(λ)
h (η· ) is of class C(∞)(Ω),

(iii) Up(λ)
h : [−1, 1] → R can be expressed with the uniformly convergent

series

Up(λ)
h =

∞∑

n=0

2n + 1
4π

(Up(λ)
h )∧(n)Pn, (7.168)

where (Up(λ)
h )∧(0) = 1 and

0 ≤ (Up(λ)
h )∧(n) =

∞∏

i=1

(
(L(λ)

hi
)∧(n)

)2
≤ 1, n = 0, 1, 2, . . . , (7.169)

(iv) For all n = 1, 2, . . .

lim
h→1

(Up(λ)
h )∧(n) = 1, (7.170)

(v) For all t ∈ [−1, 1]

0 ≤ Up(λ)
h (t) ≤ Up(λ)

h (1) =
∞∑

n=0

2n + 1
4π

(Up(λ)
h )∧(n), (7.171)

(vi) For any k ∈ N

(Up(λ)
h )∧(n) = O(n−k), n →∞. (7.172)

From now on, we assume that the values h ∈ (−1, 1) and λ > −1 are
fixed. Under this choice of h, the numbers hi, i = 1, 2, . . ., are defined as in
(7.161). Using again the kernels

(Up(λ)
h )j,...,∞ =

∞

*i=j
(L(λ)

hi
)(2) (7.173)

we are able to define a Dirac family Φj : [−1, 1] → R by (see Fig. 7.9)

Φj = (Up(λ)
h )j,...,∞, j = 1,2,. . . . (7.174)

By construction, suppΦj = [hj−1, 1], and we have the refinement equation

Φj+1 ∗ (L(λ)
hj

)(2) = Φj , j ≥ 1. (7.175)
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Fig. 7.9: The Dirac family based on the Up function Φj for j = 1, 2, 3,
λ = −0.9 and h = −1.

Using the statements (iv) and (v) of the last theorem, we obtain for every
F ∈ L2(Ω)

lim
j→∞

‖Φj ∗ F − F‖L2(Ω) = 0 (7.176)

and
‖Φj ∗ F‖L2(Ω) ≤ ‖Φj+1 ∗ F‖L2(Ω) ≤ ‖F‖L2(Ω). (7.177)

Next, we list non-spacelimited, non-bandlimited Dirac families in L2(Ω).
We confine ourselves to two types of Dirac families which are of basic in-
terest in applications. The first kernel is the Abel–Poisson kernel whose
analogue in Euclidean spaces R

n is well known (see for example E.M. Stein,
G. Weiss (1971)). A somewhat similar kernel is the Gauß–Weierstraß ker-
nel. We shall show, in particular, that Abel–Poisson and Gauß–Weierstraß
means converge in uniform sense. Both Abel–Poisson and Gauß–Weierstraß
integral means define a semigroup of contraction operators on L2(Ω).

Example 7.21. The family {Qh}h∈(0,1), h = e−ρ, given by

Qh(t) =
1
4π

1− h2

(1 + h2 − 2ht)3/2
=

∞∑

n=0

2n + 1
4π

hnPn(t), (7.178)

t ∈ [−1, 1], is called the Abel-Poisson scaling function (see Fig. 7.5).

The function Ah(F ) : ξ �→ Ah(F )(ξ), ξ ∈ Ω, F ∈ L2(Ω), defined as
convolution integral by

Ah(F )(ξ) =
∫

Ω
Qh(ξ · η)F (η) dω(η), ξ ∈ Ω, (7.179)
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is called the ‘Abel–Poisson mean’. The integral (7.179) may be rewritten as
follows

Ah(F )(ξ) =
∞∑

n=0

2n + 1
4π

hn

∫

Ω
F (η)Pn(ξ · η) dω(η) (7.180)

so that
∫

Ω
Ah(F )(ξ)Yn(ξ) dω(ξ) = hn

∫

Ω
F (ξ)Yn(ξ) dω(ξ) (7.181)

for all Yn ∈ Harmn, i.e., (Qh)∧(n) = hn, n = 0, 1, . . . .

For all F ∈ C(Ω), we have

‖ Ah(F ) ‖C(Ω)≤‖ F ‖C(Ω) . (7.182)

More generally,
‖Ah(F )‖L2(Ω) ≤ ‖F‖L2(Ω) (7.183)

for all F ∈ L2(Ω). If F is Lipschitz-continuous with Lipschitz constant CF

(i.e., F ∈ Lip(Ω)), then

‖Ah(F )− F‖C(Ω) ≤
√

2(CF + h0
−1‖F‖C(Ω))

√
1− h (7.184)

for all h ∈ (h0, 1), h0 ∈ (0, 1) fixed. If F (ξ) > 0 for all ξ ∈ Ω, then
Ah(F )(ξ) > 0 for all ξ ∈ Ω. Moreover, because of the limit relation,

lim
h→1,h<1

(1− h)−1(hn − 1) = −n, (7.185)

it is not difficult to show that the equations

−nF∧(n, j) = G∧(n, j), n = 0, 1, . . . , j = 1, . . . , 2n + 1, (7.186)

are equivalent to

lim
h→1,h<1

∥∥∥∥
Ah(F )− F

1− h
−G

∥∥∥∥
C(Ω)

= 0 (7.187)

provided that F, G ∈ C(Ω). A similar result holds in (L2(Ω), ‖ · ‖L2(Ω)).
Furthermore, H. Berens et al. (1969) have shown that, for F ∈ L2(Ω), the
relation

‖Ah(F )− F‖L2(Ω) = O(1− h) (7.188)

is equivalent to the fact there exists a function G ∈ L2(Ω) such that
G∧(n, j) = −nF∧(n, j), n = 0, 1, . . . , j = 1, . . . , 2n + 1. In other words,
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the ‘saturation class’ of the Abel–Poisson operators {Ae−ρ}, ρ ∈ (0,∞), is
given by

H(L2(Ω);−n) = {F ∈ L2(Ω)|∃G ∈ L2(Ω) : G∧(n, j) = −nF∧(n, j)},
(7.189)

whereas the ‘saturation order’ of {Ae−ρ}, ρ ∈ (0,∞) is O(1− e−ρ), ρ → 0.

A classical problem involving the Abel–Poisson mean is the Dirichlet prob-
lem of potential theory corresponding to a spherical boundary. More ex-
plicitly, for given F ∈ C(Ω), the function V : Ωint → R given by V (x) =
Ar(F )(ξ), x = rξ, ξ ∈ Ω, is the only solution of the interior Dirichlet prob-
lem (i) V ∈ C(2)(Ωint) ∩ C(Ωint) (ii) ΔV = 0 in Ωint, (iii) V |Ω = F . This
is the reason why this kernel is particularly useful in the approximation
of harmonic functions. By virtue of the maximum/minimum principle of
potential theory, we get for all ξ ∈ Ω

min
η∈Ω

F (η) ≤ Ah(F )(ξ) ≤ max
η∈Ω

F (η), F ∈ C(Ω). (7.190)

Altogether, we are able to conclude that {Ae−ρ}, ρ ∈ (0,∞), forms a semi-
group of contraction operators on L2(Ω).

Example 7.22. Next, we deal with the so-called ‘Gauß-Weierstraß’ scaling
function {Wρ}ρ∈(0,∞), given by (see Fig. 7.10)

Wρ(t) =
∞∑

n=0

2n + 1
4π

e−n(n+1)ρPn(t), t ∈ [−1, 1]. (7.191)

The integrals

Gρ(F )(ξ) =
∫

Ω
Wρ(ξ · η)F (η) dω(η), ξ ∈ Ω, F ∈ L2(Ω), (7.192)

are called the ‘Gauß-Weierstraß’ means. {Gρ}ρ∈(0,∞) satisfies the relation

‖Gρ(F )‖L2(Ω) ≤ ‖F‖L2(Ω) (7.193)

for all F ∈ L2(Ω). Thus Gρ : L2(Ω) → L2(Ω) defines a bounded linear
operator for every ρ ∈ (0,∞) such that Gρ+ρ′ = GρGρ′ . The set of all
operators Gρ, 0 < ρ < ∞, forms a semigroup of contraction operators on
L2(Ω).

Since the series is absolutely and uniformly convergent, Gρ(F ) can be
rewritten in the form

Gρ(F )(ξ) =
∞∑

n=0

e−n(n+1)ρ 2n + 1
4π

∫

Ω
F (η)Pn(ξ · η) dω(η). (7.194)
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For sufficiently small ρ > 0, the series

1
ρ

∞∑

n=0

(e−n(n+1)ρ − 1)
2n + 1

4π

∫

Ω
F (η)Pn(ξ · η) dω(η) (7.195)

represents an approximation for the Beltrami derivative of F at ξ ∈ Ω.
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Fig. 7.10: The Gauß-Weierstraß scaling function. Space representation (left)
and frequency representation (right). Both for various parameters ρ.

Theorem 7.23. Suppose that F is twice continuously differentiable on Ω.
Then

lim
ρ→0,ρ>0

∥∥∥∥
Gρ(F )− F

ρ
−Δ∗F

∥∥∥∥
C(Ω)

= 0.

Proof. The integral ∫ ρ

0
Gτ (Δ∗F )(ξ) dτ (7.196)

exists for all ρ > 0, ξ ∈ Ω and for all F ∈ C(2)(Ω). Moreover, it is not
difficult to see that

∫

Ω

∫ ρ

0
Gτ (Δ∗F )(ξ) dτYn,j(ξ) dω(ξ) (7.197)

=
∫ ρ

0

∫

Ω
Gτ (Δ∗F )(ξ)Yn,j(ξ) dω(ξ) dτ

= −e−n(n+1)ρ − 1
n(n + 1)

∫

Ω
Δ∗

ξF (ξ)Yn,j(ξ) dω(ξ).

Since (Δ∗)∧(n) = −n(n + 1) are the eigenvalues of the Beltrami operator
Δ∗, we find for n = 0, 1, ...
∫

Ω

∫ ρ

0
Gτ (Δ∗F )(ξ) dτYn,j(ξ) dω(ξ) = (e−n(n+1)ρ − 1)

∫

Ω
F (ξ)Yn,j(ξ) dω(ξ).

(7.198)
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On the other hand,
∫

Ω
(Gρ(F )(ξ)− F (ξ))Yn,j(ξ) dω(ξ) = (e−n(n+1)ρ − 1)

∫

Ω
F (ξ)Yn,j(ξ) dω(ξ).

(7.199)
By comparison of (7.198) and (7.199), we obtain

Gρ(F )(ξ)− F (ξ) =
∫ ρ

0
Gτ (Δ∗F )(ξ) dτ (7.200)

for all ρ > 0 and ξ ∈ Ω. Therefore, it follows that
∥∥∥∥
Gρ(F )− F

ρ
−Δ∗F

∥∥∥∥
C(Ω)

= sup
ξ∈Ω

∣∣∣∣
1
ρ

∫ ρ

0
(Gτ (Δ∗F )(ξ)− (Δ∗F )(ξ)) dτ

∣∣∣∣

≤ 1
ρ

∫ ρ

0
sup
ξ∈Ω

|Gτ (Δ∗F )(ξ)−Δ∗
ξF (ξ)| dτ

≤ sup
0≤τ≤ρ

||Gτ (Δ∗F )−Δ∗F ||C(Ω). (7.201)

Letting ρ tend to 0, we obtain the desired result.

In the same way, we obtain the following corollary:

Corollary 7.24. For F, H ∈ L2(Ω) the following statements are equivalent:

−n(n + 1)F∧(n, j) = H∧(n, j), n = 0, 1, . . . , j = 1, . . . , 2n + 1,

and
lim
ρ→0
ρ>0

‖Gρ(F )− F

ρ
−H‖L2(Ω) = 0

If H = 0 in L2(Ω), then F = const.

Moreover, H. Berens et al. (1969) have shown that the ‘saturation class’ of
the Gauß–Weierstraß singular integral operators {Gρ}, ρ ∈ (0,∞), is given
by

H(L2(Ω);−n(n + 1)) (7.202)
= {F ∈ L2(Ω)|∃G ∈ L2(Ω) : G∧(n, j) = −n(n + 1)F∧(n, j)},

and the ‘saturation order’ of {Gρ}, ρ ∈ (0,∞), is O(ρ), ρ → 0.

A problem involving the Gauß–Weierstraß kernel (cf. W. Freeden, M.
Schreiner (1995)) is the initial-value problem (heat equation)

∂

∂t
U(t; ξ) = Δ∗

ξU(t; ξ), t ≥ 0, ξ ∈ Ω, (7.203)

U(0; ξ) = F (ξ), ξ ∈ Ω. (7.204)
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The solution is given by convolution against the Gauß–Weierstraß kernel

U(t; ξ) = Gt(F )(ξ) =
∫

Ω
Wt(ξ · η)F (η) dω(η). (7.205)

Formula (7.205) is of fundamental importance in multiscale descriptions of
spherical images.

All kernels that will be discussed now are chosen in such a way that the
support of their spectral generators, i.e., the Legendre symbol is compact.
In other words, our interest now is to list bandlimited Dirac families.

Example 7.25. The generator of the Shannon Dirac family, Φρ, ρ ∈ (0,∞),
is given by

(Φρ)∧(n) =
{

1 , n ∈ [0, ρ−1)
0 , n ∈ [ρ−1,∞).

(7.206)

Its associated kernel (see Fig. 7.11 for a graphical impression) reads

Φρ(ξ · η) =
∑

n≤ρ−1

2n + 1
4π

Pn(ξ · η), ξ, η ∈ Ω. (7.207)

As already known, the kernel Φρ may be interpreted as truncated Dirac
kernel. It is not surprising that the Shannon kernel as ‘finite polynomial
kernel’ shows strong oscillations in space. This is the price to be paid for the
sharp separation in frequency space. To suppress the oscillations, we are led
to ‘smoothed versions’ of the Shannon kernel (dependent on an additional
parameter α ∈ (0, 1)).
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Fig. 7.11: The Shannon scaling function Φρ for ρ = 1/16, 1/8, 1/4. Space
representation ϑ �→ Φρ(cos(ϑ)) (left) and frequency representation n �→
(Φρ)∧(n) (right).
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Fig. 7.12: The smoothed Shannon scaling function Φρ for ρ =
1/16, 1/8, 1/4, and α = 0.5. Space representation ϑ �→ Φρ(cos(ϑ)) (left)
and frequency representation n �→ (Φρ)∧(n) (right).
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Fig. 7.13: The CUP–Dirac family Φρ for ρ = 1/16, 1/8, 1/4. Space repre-
sentation ϑ �→ Φρ(cos(ϑ)) (left) and frequency representation n �→ (Φρ)∧(n)
(right).

Example 7.26. The generator of the smoothed Shannon Dirac family (see
Figs. 7.12 and 7.13) reads as follows

Φ∧
ρ (n) =

⎧
⎨

⎩

1 , n ∈ [0, ρ−1α)
1−αn
1−α , n ∈ [ρ−1α, ρ−1]
0 , n ∈ [ρ−1,∞)

(7.208)

Compared with the Shannon case, there is a linear transition from the value
1 at [0, ρ−1α] to the value 0 at [ρ−1,∞).

Example 7.27. Of course, many other suitable choices for Φ∧
ρ (n) can be

found for practical purposes. We only mention the CUP-Dirac family (see
M. Schreiner (1996)).

Φ∧
ρ (n) =

{
(1− ρn)2(1 + 2ρn) , n ∈ [0, ρ−1)
0 , [ρ−1,∞).

(7.209)
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The illustrations show that the phenomena of oscillation that are still ex-
istent for the smoothed Shannon Dirac family can be suppressed by this
choice.

Next, we are interested in the kernels B
(k)
h in view of the uncertainty

relation. Using

‖B(k)
h ‖2 = 2π

∫ 1

−1
[B(k)

h (t)]2 dt

= 2π
1− h

2k + 1
, (7.210)

we define the kernel

B̃
(k)
h =

√
2k + 1

2π(1− h)
B

(k)
h , (7.211)

since the uncertainty properties are normally defined for kernels with norm
one. We find

go(1)

B̃
(k)
h ( ·ε3)

= 2π

∫ 1

−1
t
(
B̃

(k)
h (t)

)2
dt ε3 =

1 + h + 2k

2 + 2k
ε3. (7.212)

Consequently,

(σo(1)

B̃
(k)
h

)2 = 1−
(

1 + h + 2k

2 + 2k

)2

=
(1− h)(h + 4k + 3)

(2k + 2)2
. (7.213)

Using (7.25), we finally arrive at

Δo(1)

B̃
(k)
h

=
1

1 + h + 2k

√
(1− h)(h + 4k + 3). (7.214)

For the localization in frequency, we assume k ≥ 2. We have

(σo(3)

B̃
(k)
h ( ·ε3)

)2 = −2π

∫ 1

−1
B̃

(k)
h (t)LtB̃

(k)
h (t) dt

=
2k + 1

2π(1− h)
−2π

(1− h)2k

∫ 1

h
(t− h)kLt(t− h)k dt(7.215)

=
k(h + 2k)

(1− h)(2k − 1)
,

so that

Δo(3)

B̃
(k)
h

=

√
k(h + 2k)

(1− h)(2k − 1)
. (7.216)
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Fig. 7.14: Uncertainty classification of the normalized smoothed Haar scal-
ing function B̃

(k)
h (k = 1, left; k = 3 right). Δo(1)

B̃
(k)
h

, Δo(3)

B̃
(k)
h

and the product

Δo(1)

B̃
(k)
h

Δo(3)

B̃
(k)
h

are shown as functions of h.

The application of Lt requires that the kernel is twice differentiable. How-
ever, using integration by parts, the results immediately carry over to the
case k = 1. Figure 7.14 gives a graphical impression of these results for the
special cases k = 1 and k = 3.

For the investigation of the uncertainty properties of the Shannon kernels,
we start from

‖Φρ‖2 =
�ρ−1�∑

n=0

2n + 1
4π

=
1
4π

(
(�ρ−1�+ 1) + �ρ−1��ρ−1 + 1�

)
(7.217)

where, as usual, �ρ−1� is the largest integer which is less or equal ρ−1.
Observing this result, we define the normalized Shannon kernel by

Φ̃ρ =
1

‖Φρ‖
Φρ. (7.218)

(σo(1)

Φ̃ρ
)2 = 1− 1

‖Φρ‖2

⎛

⎝
�ρ−1−1�∑

n=1

2n + 2
4π

⎞

⎠
2

= 1−
(

2�ρ−1 − 1�+ �ρ−1��ρ−1 − 1�
�ρ−1 + 1�+ �ρ−1��ρ−1 + 1�

)2

, (7.219)

so that

Δo(1)

Φ̃ρ
=

√√√√√
1−

(
2�ρ−1−1�+�ρ−1��ρ−1−1�
�ρ−1+1�+�ρ−1��ρ−1+1�

)2

2�ρ−1−1�+�ρ−1��ρ−1−1�
�ρ−1+1�+�ρ−1��ρ−1+1�

. (7.220)
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Moreover, we find

(σo(3)

Φ̃ρ
)2 =

4π

�ρ−1�+ 1 + �ρ−1��ρ−1 + 1�

�ρ−1�∑

n=0

2n + 1
4π

n(n + 1)

=
1
2
�ρ−1�(1 + �ρ−1�)2(2 + �ρ−1�)
�ρ−1�+ 1 + �ρ−1��ρ−1 + 1� (7.221)

such that

Δo(3)

Φ̃ρ
=

√
1
2
�ρ−1�(1 + �ρ−1�)2(2 + �ρ−1�)
�ρ−1�+ 1 + �ρ−1��ρ−1 + 1� . (7.222)

The results are illustrated in Fig. 7.15.
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in a double logarithmic setting.

7.6 Bibliographical Notes
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e.g., S. Dahlke et al. (1995) and I. Weinreich (2001), D. Potts, M. Tasche
(1995), T. Lyche, L. Schumaker (2000), P. Schröder, W. Sweldens (1995)).
A group theoretical approach to a continuous wavelet transform on the
sphere is followed by J.-P. Antoine, P. Vandergheynst (1999), J.-P. Antoine
et al. (2002), and M. Holschneider (1996). The parameter choice of their
continuous wavelet transform is the product of SO(3) (for the motion on
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+ (for the dilations). A continuous wavelet transform
approach for analyzing functions on the sphere is presented by Dahlke and
Maass (S. Dahlke, P. Maass (1996)).

The constructions of the Geomathematics Group in Kaiserslautern on
spherical wavelets (W. Freeden, M. Schreiner (1995), W. Freeden, U. Wind-
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W. Freeden, K. Hesse (2002), W. Freeden, C. Mayer (2003), W. Freeden
et al. (2003), W. Freeden, M. Schreiner (2007)) are intrinsically based on
the specific properties concerning the theory of spherical harmonics. W.
Freeden, M. Schreiner (2007) are interested in a compromise connecting
zonal function expressions and structured grids on the sphere to obtain fast
algorithms.



8 Vector Zonal Kernel Functions

In vector theory, the points of the departure to zonal kernel fields are the
addition theorems relating vector spherical harmonics to Legendre vector
rank-2 tensor fields and the counterparts of the Funk-Hecke formula in the
vectorial context. The corresponding kernel functions obtained by sum-
ming up the vectorial Legendre kernel functions to certain (bandlimited or
non-bandlimited) orthogonal series expansions are called zonal vector ker-
nel functions due to their intimate similarities in definition and structure
to scalar zonal functions and their relevance to (geo-)physically motivated
applications.

Of particular significance in the theory of vector fields is the coordinate-
free representation by vector zonal kernel functions. As is well known, co-
ordinate representations of vector spherical harmonics are not calculable
without singularities at the poles. Zonal vector functions, i.e., vector Leg-
endre kernel expansions, however, avoid this problem completely, as they
are constructed by application of the surface gradient and the surface curl
gradient to a scalar zonal kernel function. In fact, zonal vector functions
consist of a ‘directional term’ linked to a scalar zonal kernel function (for
the normal part) or a one-dimensional derivative (for the tangential parts).
Moreover, differential operators of vectorial nature like the surface gradient
or the surface curl gradient can completely be treated within an isotropic
(vector) framework. It should be pointed out that isotropic vector opera-
tors, i.e., operators mapping a scalar function to a vector field (or vice versa)
– thereby maintaining their form when subjected to orthogonal transforma-
tions – can be expressed by means of convolutions against a vector zonal
kernel function. In that sense, vector zonal functions form the canonical
bridge between scalar functions and vector fields. In addition, the inherent
orthogonal invariance reduces the structural complexity and dimension. It
should be mentioned that, in vectorial case, two different techniques can
be formulated for representing isotropic operators by convolution. Zonal
kernel functions to be used in the vector context can either be formulated
as vector fields generated by applying the operator o(i) once on scalar zonal
functions, or as rank-2 tensor fields by a double application of the operators
o(i) (see, e.g., M. Bayer et al. (1998), S. Beth (2000), H. Nutz (2002), C.
Mayer (2003)). In the first case, we are led to vector zonal kernel func-

389
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tions, whereas the second case leads to vectorial zonal rank-2 tensor kernel
functions (to be used within the vector context (see Table 8.1).

Table 8.1: Overview on (vectorial) zonal rank-2 tensor/vector kernel func-
tions in relation to Legendre kernel functions.

Zonal
kernel
(gen-
erating
system)

Linear approach Bilinear approach

Scalar field
({Yn,j}–
system)

scalar zonal kernel
function ({Pn}–
system)

K

Vector field
({y(i)

n,j}-
system)

(vectorial) zonal
rank-2 tensor kernel
function ({vp(i,i)

n }–
system)

vk(i,i)
(vectorial) zonal
vector kernel func-
tion({p(i)

n }–system)

k(i)

Vector field
({ỹ(i)

n,j}-
system)

(vectorial) zonal
rank-2 tensor kernel
function ({vp̃(i,i)

n }–
system)

vk̃(i,i)
(vectorial) zonal
vector kernel func-
tion({p̃(i)

n }–system)

k̃(i)

8.1 Preparatory Material

As already mentioned, two approaches are evident based on the addition
theorems (Theorem 5.31 and Theorem 5.46): Zonal rank-2 tensor kernel
functions (within the vectorial context) – in this approach called (vectorial)
zonal rank-2 tensor kernel function – are defined by a double application of
the differential dual operators o(i) on scalar zonal kernel functions, whereas
the zonal vectorial kernel functions are derived by a single application of
these operators to scalar zonal kernel functions. In doing so, we take ad-
vantage of the features from the operators o(i), O(i), i = 1, 2, 3. Indeed,
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the operators o(i) can be easily applied to scalar zonal kernel functions.
For example, for a (sufficiently smooth) scalar zonal kernel function K, the
following identities are well-known:

o
(1)
ξ K(ξ · η) = K(ξ · η)η, (8.1)

o
(2)
ξ K(ξ · η) = K ′(ξ · η)(η − (ξ · η)ξ), (8.2)

o
(3)
ξ K(ξ · η) = K ′(ξ · η)(ξ ∧ η). (8.3)

Furthermore, we mention

o
(1)
ξ o(1)

η K(ξ · η) = K(ξ · η)ξ ⊗ η, (8.4)

o
(2)
ξ o(2)

η K(ξ · η) = ∇∗
ξ ⊗ (K ′(ξ · η)(ξ − (ξ · η)η)) (8.5)

= (∇∗
ξK

′(ξ · η))⊗ (ξ − (ξ · η)η)
+ K ′(ξ · η)∇∗

η ⊗ (ξ − (ξ · η)η)
= K ′′(ξ · η)(η − (ξ · η)ξ)⊗ (ξ − (ξ · η)η)

+ K ′(ξ · η)(itan(ξ)− (η − (ξ · η)ξ)⊗ η),

o
(3)
ξ o(3)

η K(ξ · η) = K ′(ξ · η)ξ ∧ η ⊗ η ∧ ξ (8.6)

+ K ′(ξ · η)((ξ · η)itan(ξ)− (η − (ξ · η)ξ)⊗ ξ),

provided that K : [−1, 1] → R is sufficiently often differentiable.

These formulas show two advantages: First, we only have to calculate
the one-dimensional derivatives of a scalar zonal kernel function, which re-
duces the operational effort enormously (note that, in the case of double
application of the operators o(i), the two-dimensional derivatives of a scalar
zonal kernel function have to be evaluated). Second, no singularities occur
when the operators o(2) and o(3) are applied to scalar zonal kernel func-
tions. Moreover, the basic principles that are governed by the uncertainty
relation canonically extend from the scalar to the vector context of zonal
kernel functions (even for tangential vector kernel fields).

8.2 Tensor Zonal Kernel Functions of Rank Two in
Vectorial Context

We start with the characterization of zonal rank-2 tensor kernel functions
(within the vectorial context). This approach arises directly from the scalar
theory (see W. Freeden et al. (1998)). To be more concrete, the zonal tensor
kernel functions are defined in terms of scalar zonal kernel functions by a
double application of the operators o(i).
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Definition 8.1. Assume that K(1) ∈ C[−1, 1] and K(i) ∈ C(2)[−1, 1], i ∈
{2, 3}, are scalar zonal kernel functions. A function vk(i,i) : Ω×Ω → R

3⊗R
3,

vk(i,i)(ξ, η) = o
(i)
ξ o(i)

η K(i)(ξ · η), ξ, η ∈ Ω, (8.7)

is called a (vectorial) zonal rank-2 tensor kernel function of type (i, i) (with
respect to {vp(i,i)

n }). Moreover,

vk =
3∑

i=1

vk(i,i) (8.8)

is called a (vectorial) zonal rank-2 tensor kernel function (with respect to
{vpn}).

Definition 8.2. A (vectorial) zonal rank-2 tensor kernel function of type
(i, i), vk(i) : Ω×Ω → R

3⊗R
3, i ∈ {1, 2, 3}, is called an l2(i,i)(Ω)-zonal rank-2

tensor kernel function, if vk(i,i)(ξ, ·) is square-integrable on Ω for each ξ ∈ Ω.
Furthermore, vk =

∑3
i=1

vk(i,i) is called an l2(Ω)-zonal rank-2 tensor kernel
function.

For the explicit representation of the (vectorial) zonal rank-2 tensor kernel
functions in terms of the Legendre polynomials, we take advantage of the
already known vectorial variants of the Funk–Hecke formula, which should
be recapitulated for the convenience of the reader.

Theorem 8.3. (Funk–Hecke Formula in Vectorial Context) Let η ∈ Ω be
fixed. Assume that g(·, η) ∈ c(1)(Ω) satisfies tg(ξ, η) = g(tξ, η) for all or-
thogonal transformations t ∈ SOη(3) and all ξ ∈ Ω. Then, for all ζ ∈ Ω
and i ∈ {1, 2, 3}, we have

∫

Ω

vp(i,i)
n (ζ, ξ)g(ξ, η)dω(ξ) =

(
μ(i)

n

)−1
(O(i)g)∧(n)o(i)

ζ Pn(ζ · η), (8.9)

where

(O(i)g)∧(n) = 2π

∫ 1

−1
Gi(t)Pn(t)dt, (8.10)

and

Gi(ξ · η) = O
(i)
ξ g(ξ, η). (8.11)

Within the concept of (vectorial) zonal kernel functions, this theorem
leads us to the following statement.
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Theorem 8.4. Any l2(i,i)(Ω)-zonal rank-2 tensor kernel function vk(i,i) can
be represented as a Legendre series of the form

vk(i,i)(ξ, ·) =
∞∑

n=0i

2n + 1
4π

(k(i,i))∧(n) vp(i,i)
n (ξ, ·), (8.12)

where

(vk(i,i))∧(n) = 2πμ(i)
n

∫ 1

−1
K(i)(t)Pn(t) dt = μ(i)

n (K(i))∧(n). (8.13)

Proof. We deal with the case i = 1. As vk(1,1)(ξ, ·) is a member of the space
l2(Ω), we have

∫

Ω
o
(1)
ξ o(1)

η K(1)(ξ · η) · o(1)
ξ o(1)

η K(1)(ξ · η) dω(η) < ∞. (8.14)

Furthermore, for f ∈ l2(Ω) and g ∈ l2(Ω) we get
∫

Ω
f(η) · o(1)

η g(η) dω(η) =
∫

Ω
O(1)

η f(η) · g(η) dω(η). (8.15)

Hence, it follows that
∫

Ω
o(1)
η K(1)(ξ · η) · o(1)

η K(1)(ξ · η) dw(η) (8.16)

=
∫

Ω
O

(1)
ξ o

(1)
ξ o(1)

η K(1)(ξ · η) · o(1)
η K(1)(ξ · η) dω(η)

=
∫

Ω
o
(1)
ξ o(1)

η K(1)(ξ · η) · o(1)
ξ o(1)

η K(1)(ξ · η) dω(η).

Defining gξ(η) = o
(i)
η K(1)(ξ · η), η ∈ Ω, we can express gξ as a Fourier

(orthogonal) series. More explicitly, using the addition theorem and the
vectorial Funk–Hecke formula, we readily find

o(i)
η K(1)(ξ · η) = gξ(η) (8.17)

=
∞∑

n=0i

2n+1∑

m=1

(
(gξ)(i)

)∧
(n, m)y(i)

n,m(η)

=
∞∑

n=0i

2n+1∑

m=1

∫

Ω
gξ(ζ) · y(i)

n,m(ζ)dω(ζ) y(i)
n,m(η)

=
∞∑

n=0i

2n + 1
4π

∫

Ω

vp(i,i)
n (η, ζ)gξ(ζ)dω(ζ)

=
∞∑

n=0i

2n + 1
4π

(
μ(i)

n

)−1 (
O(i)gξ

)∧
(n) o(i)

η Pn(η · ξ),
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where

(O(i)gξ)∧(n) = 2π

∫ 1

−1
Gi(t)Pn(t) dt, (8.18)

with
Gi(ξ · ζ) = O

(i)
ζ gξ(ζ). (8.19)

Therefore, for i = 1, we have

(O(1)gξ)∧(n) = 2π

∫ 1

−1
K̂(t)Pn(t)dt = 2π

∫ 1

−1
K(1)(t)Pn(t)dt, (8.20)

where

K̂(ξ · η) = O
(1)
ξ o(1)

η K(1)(ξ · η) = (ξ · ξ) K(1)(ξ · η) = K(1)(ξ · η), (8.21)

thereby identifying, as usual, K̂ : Ω× Ω → R
3 with K̂ : [−1, 1] → R

3, (i.e.,
K̂(t) = K̂(ξ · η)).

Summarizing our results for i = 1, we therefore obtain

vk(1,1)(ξ · η) = o
(1)
ξ o(1)

η K(1)(ξ · η)

= o
(1)
ξ gξ(η)

= o
(1)
ξ

∞∑

n=0

2n + 1
4π

(μ(1)
n )−1(O(1)gξ)∧(n)o(1)

η Pn(ξ · η)

=
∞∑

n=0

2n + 1
4π

(O(1)gξ)∧(n)vp(1,1)
n (ξ, η). (8.22)

Observing the fact that μ
(1)
n = 1, we finally get the wanted assertion.

Next, we come to the cases i = 2, 3. Now, K(i)(ξ·) is differentiable and,
thus, in L2(Ω). The kernel K(i) admits the Legendre series expansion

K(i) =
∞∑

n=0

2n + 1
4π

(K(i))∧(n)Pn, (8.23)

where

(K(i))∧(n) = 2π

∫ 1

−1
K(i)(t)Pn(t)dt. (8.24)

This leads us to the desired identity

k(i)(ξ, η) = o
(i)
ξ o(i)

η K(i)(ξ · η) (8.25)

=
∞∑

n=0i

2n + 1
4π

(K(i))∧(n)μ(i)
n

vp(i,i)
n (ξ, η).

Altogether, Theorem 8.4 is verified.
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A key property of an l2(Ω)-tensor zonal kernel function vk is its invariance
under orthogonal transformations t, i.e., vk(tξ, tη) = tvk(ξ, η)tT , ξ, η ∈ Ω.
In addition, it is not difficult to show the following result.

Theorem 8.5. A (vectorial) zonal rank-2 tensor kernel function of type i
vk(i,i) : Ω×Ω → R

3⊗R
3 is an l2(i,i)(Ω)-zonal rank–2 tensor kernel function,

if and only if
∞∑

n=0i

2n + 1
4π

(
(vk(i,i))∧(n)

)2
< ∞, (8.26)

where
(vk(i,i))∧(n) = μ(i)

n (K(i))∧(n). (8.27)

Of course, this theorem follows directly from the addition theorem

2n+1∑

m=1

(y(i)
n,m(ξ))2 =

2n + 1
4π

, ξ ∈ Ω. (8.28)

The introduction of convolutions involving (vectorial) zonal rank-2 tensor
kernel functions is quite similar to the scalar case.

Definition 8.6. Let vk, vh be l2(Ω)-zonal rank-2 tensor kernel functions.
Suppose that f is a vector field of class l2(Ω). Then, vk ∗ f defined by

(vk ∗ f) (ξ) =
∫

Ω

vk(ξ, η)f(η)dω(η), ξ ∈ Ω, (8.29)

is called the convolution of vk against f . Furthermore, vh ∗ vk defined by

(vh ∗ vk) (ξ, η) =
∫

Ω

vh(ξ, ζ)vk(ζ, η)dω(ζ), ξ, η ∈ Ω, (8.30)

is said to be the convolution of vh against vk.

Note that the symbol ‘∗’ is again used simultaneously for different types
of convolutions.

Obviously, vk ∗ f is a member of class l2(Ω). In spectral formulation, we
have

vk(i,i) ∗ f =
∞∑

n=0i

(vk(i,i))∧(n)
2n+1∑

m=1

(f (i))∧(n, m)y(i)
n,m, (8.31)

and

vh(i) ∗ vk =
∞∑

n=0i

2n + 1
4π

(vh(i,i))∧(n)(vk(i,i))∧(n)vp(i,i)
n , (8.32)
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i = 1, 2, 3.

By virtue of the orthogonal expansion in terms of Legendre tensors (8.32),
it is not hard to verify that, for every point ξ ∈ Ω, (vh ∗ vk) (ξ, ·) is contin-
uous on the sphere Ω.

Lemma 8.7. Let vk =
∑3

i=1
vk(i,i) be an l2(Ω)-zonal rank-2 tensor kernel

function. Then

vk(i,i)(ξ, η) =
∞∑

n=0i

2n + 1
4π

vp(i,i)
n (ξ, ·) ∗ vk(·, η), (8.33)

ξ, η ∈ Ω.

Finally, we mention the representation of an l2(Ω)-vector field f in terms
of Legendre tensors vp(i,i)

n

f =
3∑

i=1

∞∑

n=0i

2n + 1
4π

vp(i,i)
n ∗ f, (8.34)

where the equality in (8.34) is understood in ‖ · ‖l2(Ω)–sense.

Remark 8.8. As we have shown, the Legendre tensor fields vp̃(i,i)
n can be

expressed in terms of the tensor fields vp(i,i)
n . This is the reason why it also

makes sense to introduce (vectorial) zonal rank-2 tensor kernel functions
with respect to the {vp̃(i,i)

n }-system by letting

vk̃(i,i)(ξ, η) =
∞∑

n=0i

2n + 1
4π

(
vk̃(i,i)

)∧
(n)vp̃(i,i)

n (ξ, η), (8.35)

(ξ, η) ∈ Ω× Ω, where

(vk̃(i,i))∧(n)vp(i,i)
n (ξ, η) =

∫

Ω

vk̃(i,i)(ξ, ζ)
2n + 1

4π
vp̃(i,i)

n (ζ, η) dω(η). (8.36)

Clearly, all results being valid for the {vp̃(i,i)
n }-system can be formulated in

parallel.

8.3 Vector Zonal Kernel Functions in Vectorial
Context

Remembering the second vectorial variant of the addition theorem (Theorem
5.46) in vector theory, we now turn to the definition of vector zonal kernel
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functions. As already announced, they are created by a single application
of the operators o(i) to scalar zonal kernel functions.

Definition 8.9. Assume that K(i) ∈ C(0i)[−1, 1], i ∈ {1, 2, 3}, are scalar
zonal kernel functions, respectively. A function k(i) : Ω × Ω → R

3 (more
precisely, vk(i)), given by

k(i)(ξ, η) = o
(i)
ξ K(i)(ξ · η), ξ, η ∈ Ω, (8.37)

is called a (vectorial) zonal vector kernel function of type i (with respect to
{p(i)

n }), and

k =
3∑

i=1

k(i) (8.38)

is called a (vectorial) zonal vector kernel function (with respect to {pn}).

Definition 8.10. A zonal vector kernel function k(i) : Ω×Ω → R
3 of type

i is called an l2(i)(Ω)–zonal vector kernel function, if k(i)(ξ, ·) is in l2(Ω) for

each ξ ∈ Ω. Furthermore, k =
∑3

i=1 k(i) is called an l2(Ω)–zonal vector
kernel function.

The following result can be directly derived from the identities (8.4), (8.5),
and (8.6).

Theorem 8.11. An l2(i)(Ω)–zonal vector kernel function k(i) : Ω× Ω → R
3

of type i can be expressed as a Legendre series in the form

k(i)(ξ, ·) =
∞∑

n=0i

2n + 1
4π

(k(i))∧(n)pn
(i)(ξ, ·), (8.39)

where

(k(i))∧(n) =
(
μ(i)

n

)1/2
(K(i))∧(n). (8.40)

Proof. Again, we first deal with the case i = 1. As k(1)(ξ, ·) is in l2(Ω), it is
easy to see that
∫

Ω
K(1)(ξ · η)K(1)(ξ · η) dω(η) =

∫

Ω
K(1)(ξ · η)O(1)

ξ o
(1)
ξ K(1)(ξ · η) dω(η)

=
∫

Ω
o
(1)
ξ K(1)(ξ · η) · o(1)

ξ K(1)(ξ·) dω(η)

=
∫

Ω
k(1)(ξ · η) · k(1)(ξ · η) dω(η) < ∞.
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Thus we have K(1)(ξ·) ∈ L2(Ω), such that K(1)(ξ·) can be written as a
Legendre series. This leads us to the identities

k(1)(ξ, ·) = o(1)
∞∑

n=0

2n + 1
4π

(K(1))∧(n)Pn(ξ, ·) (8.41)

=
∞∑

n=0

(
μ(1)

n

)1/2 2n + 1
4π

(K(1))∧(n)p(1)
n (ξ, ·)

=
∞∑

n=0

2n + 1
4π

(k(1))∧(n)p(1)(ξ, ·),

where
(k(1))∧(n) =

(
μ(1)

n

)1/2
(K(1))∧(n). (8.42)

This is the required result for i = 1. For the cases i = 2, 3, we observe
that K(i)(ξ·) is assumed to be differentiable and, therefore, in L2(Ω). The
assertion of our theorem follows by the same arguments as shown for the
case i = 1.

Theorem 8.12. A vector zonal kernel function k(i) : Ω× Ω → R
3of type i

is an l2(i)(Ω)–vector zonal kernel function, if and only if

∞∑

n=0i

2n + 1
4π

(
(k(i))∧(n)

)2
< ∞, (8.43)

where
(k(i))∧(n) =

(
μ(i)

n

)1/2
(K(i))∧(n). (8.44)

Proof. Observing that x · y = tracex⊗ y, x, y ∈ R
3, we get

(k(ξ, ·), k(ξ, ·))l2(Ω) (8.45)

=
∫

Ω

(
3∑

i=1

∞∑

n=0i

2n + 1
4π

(k(i))∧(n)p(i)
n (ξ, η)

)

·

⎛

⎝
3∑

j=1

∞∑

l=0j

2l + 1
4π

(k(j))∧(l)p(j)
l (ξ, η)

⎞

⎠ dω(η)

=
3∑

i=1

3∑

j=1

∞∑

n=max(0i,0j)

2n+1∑

m=1

(k(i))∧(n)(k(j))∧(n)y(i)
n,m(ξ) · y(j)

n,m(ξ)

=
3∑

i=1

3∑

j=1

∞∑

n=max(0i,0j)

(k(i))∧(n)(k(j))∧(n)
2n + 1

4π
trace (vp(i,j)

n (ξ, ξ)).
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The desired assertion follows by taking into account that

trace(vp(i,j)
n (ξ, ξ)) = δij . (8.46)

This yields the proof of Theorem 8.12.

Remark 8.13. From Lemma 5.63, we know that the vector Legendre ker-
nels p̃

(i)
n can be written in terms of p

(i)
n . Therefore, it also makes sense to

introduce, in parallel, (vectorial) zonal vector kernel functions with respect
to {p̃(i)

n } by letting

k̃(i)(ξ, η) =
∞∑

n=0i

2n + 1
4π

(k̃(i))∧(n)p̃(i)
n (ξ, η), (8.47)

(ξ, η) ∈ Ω× Ω, where

(k̃(i))∧(n)p̃(i)
n (ξ, η) =

∫

Ω
k̃(i)(ξ, ζ)

2n + 1
4π

p̃(i)
n (η, ζ) dω. (8.48)

8.4 Convolutions Involving Vector Zonal Kernel
Functions

Next, we introduce convolutions in the vectorial context.

Definition 8.14. Let k be an l2(Ω)-zonal vector kernel function, f ∈ l2(Ω),
F ∈ L2(Ω). Then k ∗ f defined by

k ∗ f(ξ) =
∫

Ω
k(η, ξ) · f(η)dω(η) (8.49)

is called the convolution of k against f . Moreover, k(i) �F , i = 1, 2, 3, given
by

k(i) � F (ξ) =
∫

Ω
k(i)(ξ, η)F (η)dω(η) (8.50)

is called the convolution of k(i) against F .

Note that we use different symbols for the convolutions to point out their
different nature.

For k, k̂ being l2(Ω)-zonal vector kernel functions we let

k̂ � (k ∗ f) =
3∑

i=1

k̂(i) �
(
k(i) ∗ f

)
. (8.51)
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Note that

k̂(i) �
(
k(i) ∗ f

)
=
∫

Ω

∫

Ω
k̂(i)(·, ξ)⊗ k(i)(η, ξ)f(η)dω(η)dω(ξ). (8.52)

This motivates the following rank-2 tensorial setting.

Definition 8.15. Let k̂(i), k(i) be two l2(i)(Ω)-zonal vector kernel functions.

Then, we define the convolution of k̂(i) against k(i) by

(
k̂(i) � k(i)

)
(ξ, η) =

∫

Ω
k̂(i)(ξ, ζ)⊗ k(i)(η, ζ)dω(ζ). (8.53)

Furthermore, k̂ � k is understood to be

k̂ � k =
3∑

i=1

k̂(i) � k(i). (8.54)

The following theorem can be verified easily by standard arguments.

Theorem 8.16. Let k̂(i), k(i) be two l2(i)(Ω)-zonal vector kernel functions.

Then the convolution k̂(i) � k(i) is an l2(i)(Ω)-zonal tensor kernel function,
such that

k̂(i) � k(i)(ξ, ·) =
∞∑

n=0i

2n+1∑

m=1

(k̂(i))∧(n)(k(i))∧(n)
2n + 1

4π
vp(i,i)

n (ξ, ·). (8.55)

From the expansion (8.55) in terms of Legendre rank-2 tensors, it can be
derived that k̂(i) � k(i)(ξ, ·) is continuous on the sphere Ω for every ξ ∈ Ω.

The Parseval identity for vector spherical harmonics enables us to verify
the following theorem (see M. Bayer et al. (1998), S. Beth (2000)).

Theorem 8.17. Let f be of class l2(Ω). Assume that k̂, k are l2(Ω)-zonal
vector kernel functions, whereas k̂, k are l2(Ω)-zonal rank-2 tensor kernel
functions with

(vk̂(i,i))∧(n) = (k̂(i))∧(n), (8.56)

and
(vk(i,i))∧(n) = (k(i))∧(n), (8.57)

for all i = 1, 2, 3. Then

vk̂ ∗ vk ∗ f = k̂ � (k ∗ f). (8.58)
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In other words, the different ways of forming convolutions (8.58) against
vector fields either by tensor zonal kernel function or vector zonal kernels are
equivalent. This is, in fact, a remarkable result. In consequence, due to The-
orem 8.17, we can substitute rank-2 tensor zonal kernel functions by vector
zonal kernel basis functions which is of importance not only for numerical
purposes: once again, vector zonal functions require first order derivatives
of the Legendre polynomials, whereas tensor zonal kernel functions make it
necessary to compute the second order derivatives. Furthermore, the opera-
tional effort is reduced as we do not have to calculate tensor products when
we turn over to vector zonal kernel functions. The structural price that
must be paid in comparison to the tensor approach, however, is a bilinear
framework for the vectorial kernels involved in the convolutions.

8.5 Dirac Families of Zonal Vector Kernel Functions

Starting from a Dirac family {Φρ}ρ∈(0,∞) of scalar zonal kernel functions, we
are able to construct a Dirac family of zonal rank-2 tensor kernel functions
{ϕρ}ρ∈(0,∞) as follows (note that we restrict ourselves to the system of dual
operators o(i), O(i), i ∈ {1, 2, 3}):

ϕρ(ξ, η) =
3∑

i=1

vϕ(i,i)
ρ (ξ, η) (8.59)

with
vϕ(i,i)

ρ (ξ, η) =
∞∑

n=Oi

(Φρ)∧(n)
2n+1∑

j=1

y
(i)
n,j(ξ)⊗ y

(i)
n,j(η), (8.60)

ξ, η ∈ Ω. Correspondingly, a Dirac family {ϕρ}ρ∈(0,∞) of vector zonal kernel
functions ϕρ reads as follows:

ϕρ(ξ, η) =
3∑

i=1

ϕ(i)
ρ (ξ, η) (8.61)

with

ϕ(i)
ρ (ξ, η) =

∞∑

n=Oi

(Φρ)∧(n)Yn,j(ξ)y
(i)
n,j(η), (8.62)

ξ, η ∈ Ω.

As an immediate consequence, we obtain the following linear and bilinear
approach for rank-2 tensor Dirac families and the bilinear approach for
vector Dirac families.
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Theorem 8.18. Let {Φρ}ρ∈(0,∞) be a scalar Dirac family. Then

lim
ρ→0

‖f −ϕρ ∗ f‖l2(Ω) = 0, (8.63)

lim
ρ→0

‖f −ϕρ ∗ϕρ ∗ f‖l2(Ω) = 0 (8.64)

and
lim
ρ→0

‖f − ϕρ � ϕρ ∗ f‖l2(Ω) = 0 (8.65)

for all f ∈ l2(Ω).

This means that we have extended the notion of an approximate identity
in a canonical way to spherical vector field thereby using two different, but
(in bilinear sense) equivalent approaches to Dirac families.

Seen from the point of spherical functions on the sphere, we should have
a closer look to the Dirac families involved in the approximation. It is clear
that

vϕ(1,1)
ρ (ξ, η) = o

(1)
ξ o(1)

η Φρ(ξ · η) (8.66)

and

vϕ(i,i)
ρ (ξ, η) = −o

(i)
ξ o(i)

η

∫

Ω
G(Δ∗; ξ · ζ)Φρ(ζ · η) dω(ξ), (8.67)

ξ, η ∈ Ω, i = 2, 3. Equivalently, we have

ϕ(i,i)
ρ (ξ, η) = o

(i)
ξ o(i)

η

∞∑

n=1

2n + 1
4π

1
n(n + 1)

(Φρ)∧(n)Pn(ξ · η), (8.68)

ξ, η ∈ Ω, i = 2, 3. In an analogous way, we find

ϕ(i)
ρ (ξ, η) = o(i)

η

∞∑

n=1

2n + 1
4π

1√
n(n + 1)

(Φρ)∧(n)Pn(ξ · η), (8.69)

i = 2, 3.

Remark 8.19. Our approach has shown that an isotropic operator map-
ping a vector field onto a vector field refuses the representation in terms of a
vector zonal kernel function. In that context, in fact, zonal tensor functions
have to be taken into account. Zonal tensor functions, indeed, fall back
upon an addition theorem involving the tensor product of vector spherical
harmonics. Although they do not allow us to describe isotropic vector fields,
zonal rank-2 tensor fields are of advantage for the approximation of vector
fields in form of splines (W. Freeden, T. Gervens (1991)), W. Freeden et al.
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(1994) and wavelets (W. Freeden et al. (1998)) (by matrix-vector multipli-
cations with constant vectors). The numerical disadvantage of a representa-
tion of vector fields based on tensor zonal kernel fields is easily understood.
We have to deal with matrix-vector multiplications. In comparison with
vector zonal functions, a further drawback comes up. While vector zonal
functions require only the first derivative of a scalar radial zonal function,
zonal tensor functions even need second derivatives. This makes them more
difficult to handle in vector field modeling, particularly when the scalar
zonal function is not known elementary in a closed representation, but only
as series expansion in terms of Legendre polynomials. Nevertheless, tensor
zonal functions are an important tool in the characterization of vector fields
(comparable to the scalar case). Of course, tensor zonal functions are nat-
ural structures to observe rotational symmetry within a tensor framework,
and in this case, second derivatives for the occurring Legendre polynomials
are canonical.

8.6 Bibliographical Notes

Zonal kernel functions in the vector context have been introduced in a double
sense in twofold way (i) as vector fields generated by applying the operators
o(i), õ(i), respectively, on scalar zonal kernel functions (see M. Bayer et al.
(1998), S. Beth (2000), H. Nutz (2002), C. Mayer (2003)) (ii) as tensor fields
generated by a double application of the operators o(i), õ(i), respectively, on
scalar zonal functions (see W. Freeden et al. (1998), S. Beth (2000), H.
Nutz (2002), M.K. Abeyratne (2003)). In the first case, we are led to zonal
vector kernel functions, whereas the second case leads to zonal tensor kernel
functions (to be used within the vector context). Both types of isotropic
functions are basic tools for approximation techniques like spherical splines
and wavelets (see, e.g., G. Wahba (1982), W. Freeden, T. Gervens (1991),
W. Freeden, U. Windheuser (1996), U. Windheuser (1995), W. Freeden
et al. (1998), W. Freeden, M. Schreiner (1997), H. Nutz (2002), M.J. Fengler
(2005), W. Freeden, M. Schreiner (2006), S. Gramsch (2006), T. Fehlinger
et al. (2007)).
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Next, we come to zonal kernel functions in the tensor context. In analogy
to the vectorial case, we are able to derive two variants based on the known
addition theorems (Theorem 6.21 and Theorem 6.34). In more detail, we
obtain zonal kernel functions in the tensor context by applying the operators
o(i,k), i, k ∈ {1, 2, 3}, once and twice to scalar zonal kernel functions (see
Table 9.1).

Table 9.1: Overview on (tensorial) zonal rank-4/rank-2 tensor kernel func-
tions in relation to Legendre kernel functions.

Zonal
kernel
(gen-
erating
system)

Linear approach Bilinear approach

Scalar field
({Yn,j}-
system)

scalar zonal kernel
function ({Pn}–
system)

K

Tensor field
({y(i,k)

n,j }-
system)

(tensorial) zonal
rank-4 tensor kernel
function ({P(i,k,i,k)

n }-
system)

K(i,k)
(tensorial) zonal rank-
2 tensor kernel func-
tion ({tp(i,k)

n }-system)

tk(i,k)

Tensor field
({ỹ(i,k)

n,j }-
system)

(tensorial) zonal
rank-4 tensor kernel
function ({P̃(i,k,i,k)

n }-
system)

K̃(i,k)
(tensorial) zonal rank-
2 tensor kernel func-
tion ({tp̃(i,k)

n }-system)

tk̃(i,k)

405
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9.1 Preparatory Material

Our work is based on the following already known lemma, which demon-
strates that the operators o(i,k) are easily applicable to scalar zonal kernel
functions.

Lemma 9.1. Let K be of class C(0ik)[−1, 1]. Suppose that η ∈ Ω is fixed.
Then, for all ξ ∈ Ω,

o(1,1)
ξ K(ξ · η) = K(ξ · η)ξ ⊗ η, (9.1)

o(1,2)
ξ K(ξ · η) = K ′(ξ · η)ξ ⊗ (η − (ξ · η)ξ), (9.2)

o(1,3)
ξ K(ξ · η) = K ′(ξ · η)ξ ⊗ (ξ ∧ η), (9.3)

o(2,1)
ξ K(ξ · η) = K ′(ξ · η)(η − (ξ · η)ξ)⊗ ξ, (9.4)

o(2,2)
ξ K(ξ · η) = K(ξ · η)itan(ξ), (9.5)

o(2,3)
ξ K(ξ · η) = K ′′(ξ · η) ((η − (ξ · η)ξ)⊗ (η − (ξ · η)ξ) (9.6)

− (ξ ∧ η)⊗ (ξ ∧ η)) ,

o(3,1)
ξ K(ξ · η) = K ′(ξ · η)(ξ ∧ η)⊗ ξ, (9.7)

o(3,2)
ξ K(ξ · η) = K ′′(ξ · η) ((η − (ξ · η)ξ)⊗ (ξ ∧ η) (9.8)

+ (ξ ∧ η)⊗ (η − (ξ · η)ξ)) ,

o(3,3)
ξ K(ξ · η) = K(ξ · η)jtan(ξ). (9.9)

For simplicity, we omit the explicit representations of a double application
of the operators o(i,k) to the scalar kernel K.

9.2 Tensor Zonal Kernel Functions of Rank Four in
Tensorial Context

First, we are interested in defining (tensorial) rank-4 tensor zonal kernel
functions by a double application of operators o(i,k) on (sufficiently often
differentiable) scalar zonal kernel functions.
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Definition 9.2. Assume that K(i,k) ∈ C(2·0ik)[−1, 1], i, k ∈ {1, 2, 3}, are
scalar zonal kernel functions. A function K(i,k) : Ω×Ω → R

3⊗R
3⊗R

3⊗R
3,

(more precisely, tK(i,k)) given by

K(i,k)(ξ, η) = o(i,k)
ξ o(i,k)

η K(i,k)(ξ · η), ξ, η ∈ Ω, (9.10)

is called a (tensorial) zonal rank-4 tensor kernel function of type (i, k) (with
respect to {P(i,k,i,k)

n }). Furthermore, we let

K =
3∑

i=1

3∑

k=1

K(i,k) (9.11)

K is called a (tensorial) zonal rank-4 tensor kernel function (with respect
to {Pn}).

In close analogy to the vector case, we introduce the following setting.

Definition 9.3. A (tensorial) zonal rank-4 tensor kernel function of type
(i, k), K(i,k) : Ω × Ω → R

3 ⊗ R
3 ⊗ R

3 ⊗ R
3, i, k ∈ {1, 2, 3}, is called

an l2(i,k)(Ω)–(tensorial) zonal rank-4 tensor kernel function, if K(i,k)(ξ, ·)
is square-integrable on Ω for every ξ ∈ Ω. Furthermore,

K =
3∑

i=1

3∑

k=1

K(i,k) (9.12)

is called an l2(Ω)-tensorial zonal rank-4 tensor kernel function, if K(i,k) are
l2(i,k)(Ω)-tensorial zonal rank-4 tensor kernel functions.

Clearly, (tensorial) zonal rank-4 tensor kernel functions can be expanded
in terms of the Legendre functions. For that purpose, we need the cor-
responding tensorial variant of the Funk–Hecke formula. As in the vector
case, for the convenience of the reader, it will be recapitulated briefly.

Theorem 9.4. (Funke-Hecke Formula in Tensorial Context) Let η ∈ Ω be
fixed. Assume that h(·, η) ∈ c(2)(Ω) satisfies h(tξ, η) = th(ξ, η)tT for all
orthogonal transformations t ∈ SOη(3) and all ξ ∈ Ω. Then, for all ζ ∈ Ω
and for all i, k ∈ {1, 2, 3},
∫

Ω
P(i,k,i,k)

n (ζ, ξ)h(ζ, η)dω(ξ) =
(
μ(i,k)

n

)−1 (
O(i,k)h

)∧
(n)o(i,k)

ζ Pn(ζ · η),

(9.13)
where (

O(i,k)h
)∧

(n) = 2π

∫ 1

−1
Hi,k(t)Pn(t)dt, (9.14)
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and
Hi,k(ξ · η) = O

(i,k)
ξ h(ξ, η). (9.15)

In parallel to the vector case, we formulate the following result.

Theorem 9.5. An l2(i,k)(Ω)-tensorial zonal rank-4 tensor kernel function

K(i,k) can be represented as a Legendre series in the form

K(i,k)(ξ, ·) =
∞∑

n=0ik

2n + 1
4π

(K(i,k))∧(n)P(i,k,i,k)
n (ξ, ·), (9.16)

where
(K(i,k))∧(n) = μ(i,k)

n (K(i,k))∧(n). (9.17)

The proof of Theorem 9.5 follows in close analogy to its vectorial coun-
terpart (Theorem 8.4). Thus, it is omitted here.

Theorem 9.6. A (tensorial) zonal rank-4 tensor kernel function of type
(i, k), K(i,k) : Ω × Ω → R

3 ⊗ R
3 ⊗ R

3 ⊗ R
3 is an l2(i,k)(Ω) (tensorial) zonal

rank–4 tensor kernel function, if and only if

∞∑

n=0ik

2n + 1
4π

(
(K(i,k))∧(n)

)2
< ∞, (9.18)

where
(K(i,k))∧(n) = μ(i,k)

n (K(i,k))∧(n). (9.19)

Theorem 9.6 follows directly from the identity

2n+1∑

m=1

|y(i,k)
n,m (ξ)|2 =

2n + 1
4π

. (9.20)

9.3 Convolutions Involving Zonal Tensor Kernel
Functions

We are now going to introduce convolutions in the tensor context.

Definition 9.7. Let H, K be l2(Ω)-tensorial zonal rank-4 tensor kernel
functions. Suppose that f is of class l2(Ω). Then K ∗ f defined by

(K ∗ f)(ξ) =
∫

Ω
K(ξ, η)f(η)dω(η), (9.21)
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ξ ∈ Ω, is called the convolution of K against f . Furthermore, H∗K defined
by

(H ∗K)(ξ, η) =
∫

Ω
H(ξ, ζ)K(ζ, η)dω(ζ), (9.22)

ξ, η ∈ Ω, is called the convolution of H against K.

Different variants of convolutions are definable.

From the addition theorem, the orthogonality of the tensor spherical har-
monics, together with the identity f(g · h) = (f ⊗ g)h, we are able to show
that

K(i,k) ∗ f (9.23)

=
∫

Ω

∞∑

n=0ik

(K(i,k))∧(n)
2n+1∑

m=1

y(i,k)
n,m (ξ)⊗ y(i,k)

n,m (η)

×
∞∑

p=0ik

2p+1∑

q=1

(f (i,k))∧(p, q)y(i,k)
p,q (η)dω(η)

=
∞∑

n=0ik

(K(i,k))∧(n)
2n+1∑

m=1

(f (i,k))∧(n, m) y(i,k)
n,m .

Further on, because of (F⊗G)(H⊗ I) = (G ·H)F⊗ I, we find

H(i,k) ∗K(i,k) =
∞∑

n=0ik

2n + 1
4π

(H(i,k))∧(n)(K(i,k))∧(n)P(i,k,i,k)
n . (9.24)

Using the Legendre series expansion (9.24), we easily see that the convolu-
tion H(i,k) ∗K(ξ, ·) is continuous on Ω for each point ξ ∈ Ω.

Lemma 9.8. Let K =
∑3

i,k=1 K(i,k) be an l2(Ω)-tensorial zonal rank-4
tensor kernel function. Then K(i,k) is expressible in the form

K(i,k)(ξ, η) =
∞∑

n=0ik

2n + 1
4π

P(i,k,i,k)
n (ξ, ·) ∗K(·, η), (9.25)

ξ, η ∈ Ω.

Finally, we are able to deduce from (6.330) that every f ∈ l2(Ω) can be
represented in the form

f =
3∑

i,k=1

∞∑

n=0ik

2n + 1
4π

P(i,k,i,k)
n ∗ f (9.26)

(in ‖ · ‖l2(Ω)-sense).
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Remark 9.9. The (tensorial) Legendre rank-4 tensor kernel functions P̃(i,k,i,k)
n

are expressible in terms of P(i,k,i,k)
n . Therefore, (tensorial) zonal rank-4 ten-

sor kernel functions with respect to the {P̃(i,k,i,k)
n }-system read as follows:

K̃(i,k)(ξ, η) =
∞∑

n=0ik

2n + 1
4π

(
K̃(i,k)

)∧
(n)P̃(i,k,i,k)

n , (9.27)

(ξ, η) ∈ Ω× Ω, where

(K̃(i,k))∧(n)P̃(i,k,i,k)
n (ξ, η) =

∫

Ω
K̃(i,k)(ξ, ζ)

2n + 1
4π

P̃(i,k,i,k)
n (ξ, η) dω(ζ).

(9.28)

9.4 Tensor Zonal Kernel Functions of Rank Two in
Tensorial Context

Tensorial rank-2 tensor zonal kernel functions are defined by a single ap-
plication of the operators o(i,k) to (sufficiently smooth) scalar zonal kernel
functions. Seen from operational point of view, they are of importance for
two reasons: First, the computational effort is reduced because we do not
have to calculate the tensor product of a tensor of rank four and a tensor of
rank two. Furthermore, according to Lemma 9.1, we only need the second
order derivatives of the generating scalar zonal kernel functions, whereas in
the first approach involving tensorial rank-4 tensor zonal kernel functions,
we need fourth order derivatives.

Definition 9.10. Assume that K(i,k) : [−1, 1] → R are (sufficiently often
differentiable) scalar zonal kernel functions, i.e., K(i,k) ∈ C(0ik)[−1, 1], i, k ∈
{1, 2, 3}. A function tk(i,k)

ξ : Ω× Ω → R
3 ⊗ R

3, given by

tk(i,k)
ξ (ξ, η) = o(i,k)

ξ K(i,k)(ξ · η), ξ, η ∈ Ω, (9.29)

is called a (tensorial) zonal rank-2 tensor kernel function of type (i, k) (with
respect to {tp(i,k)

n }), while

tk =
3∑

i=1

3∑

k=1

tk(i,k) (9.30)

is called a (tensorial) zonal rank-2 tensor kernel function (with respect to
{tp(i,k)

n }).



9.4 Tensor Zonal Kernel Functions of Rank Two in Tensorial Context 411

In analogy to our above considerations, we introduce the following defi-
nition.

Definition 9.11. A (tensorial) zonal rank-2 tensor kernel function of kind
(i, k), k(i,k) : Ω × Ω → R

3 ⊗ R
3 is called an l2(i,k)(Ω)-tensorial zonal rank-2

tensor kernel function, if tk(i,k)(ξ, ·) is in l2(Ω) for each ξ ∈ Ω. Furthermore,
tk =

∑3
i=1

∑3
k=1

tk(i,k) is called an l2(Ω)-(tensorial) zonal rank-2 tensor
kernel function, if k(i,k) are l2(i,k)(Ω)-tensorial zonal rank-2 tensor kernel
functions.

In accordance with our approach, we are immediately able to prove the
following property of an l2(i,k)(Ω)-(tensorial) zonal rank-2 tensor kernel func-
tion.

Theorem 9.12. An l2(i,k)(Ω)-zonal rank-2 tensor zonal kernel function tk(i,k)

can be represented as a Legendre series in the form

tk(i,k)(ξ, ·) =
∞∑

n=0ik

2n + 1
4π

(tk(i,k))∧(n)tp(i,k)
n (ξ, ·), (9.31)

where

(tk(i,k))∧(n) =
(
μ(i,k)

n

)1/2
(K(i,k))∧(n). (9.32)

The proof of Theorem 9.12 parallels that one known from the vectorial
case, hence, we do not formulate it.

Theorem 9.13. A (tensorial) zonal rank-2 tensor function of type (i, k)
tk(i,k) : Ω×Ω → R

3⊗R
3 is an l2(i,k)(Ω)-zonal rank-2 tensor kernel function,

if and only if
∞∑

n=0ik

2n + 1
4π

(
(tk(i,k))∧(n)

)2
< ∞, (9.33)

where

(tk(i,k))∧(n) =
(
μ(i,k)

n

)1/2
(K(i,k)) ∧ (n). (9.34)

Remark 9.14. From Lemma 6.43, we know that the (tensorial) Legen-
dre rank-2 tensor kernel functions tp̃(i,k)

n are expressible in terms of p(i,k)
n .

Therefore, we are able to introduce zonal rank-2 tensor kernel functions
with respect to the {tp̃(i,k)

n }-system

tk̃(i,k)(ξ, η) =
∞∑

n=0i

2n + 1
4π

(
tk̃(i,k)

)∧
(n)tp̃(i,k)

n (ξ, η), (9.35)
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(ξ, η) ∈ Ω× Ω, where

(tk̃(i,k))∧(n)tp(i,k)
n (ξ, η) =

∫

Ω

tk̃(i,k)(ξ, ζ)
2n + 1

4π
tp̃(i,k)

n (ζ, η) dω(η). (9.36)

Next, we want to define the convolution in a (tensorial) rank-2 tensor
context .

Definition 9.15. Let tk be a l2(Ω)-tensorial zonal rank-2 tensor kernel
functions. Furthermore, assume that f ∈ l2(Ω), F ∈ L2(Ω). Then tk ∗ f
defined by

tk ∗ f(ξ) =
∫

Ω

tk(η, ξ) · f(η)dω(η) (9.37)

is called the convolution of tk against f . Moreover, tk(i,k)�F , i, k ∈ {1, 2, 3},
given by

tk(i,k) � F (ξ) =
∫

Ω

tk(i,k)(ξ, η)F (η)dω(η) (9.38)

is called the convolution of k(i,k) against F .

For brevity, we write

tk̂ � (tk ∗ f) =
3∑

i=1

3∑

k=1

tk̂
(i,k)

�
(

tk(i,k) ∗ f
)

. (9.39)

Since it is not difficult to see that

th(i,k) �
(

tk(i,k) ∗ f
)

=
∫

Ω

∫

Ω

th(i,k)(·, ξ)⊗ tk(i,k)(η, ξ)f(η)dω(η)dω(ξ),

(9.40)
we are finally led to the following setting.

Definition 9.16. Let th(i,k), tk(i,k) be two l2(i,k)(Ω)–(tensorial) zonal rank–

2 tensor kernel functions. Then, we define the convolution of th(i,k) against
tk(i,k) by

th(i,k) � tk(i,k)(ξ, η) =
∫

Ω

th(i,k)(ξ, ζ)⊗ tk(i,k)(η, ζ)dω(ζ). (9.41)

Moreover, th � tk is given by

th � tk =
3∑

i=1

3∑

k=1

th(i,k) � tk(i,k). (9.42)

Collecting our material on the rank-2 tensor context, we are led to for-
mulate the following result.
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Theorem 9.17. Let th(i,k), tk(i,k) be two l2(i,k)(Ω)-(tensorial) zonal rank-2

tensor kernel functions. Then the convolution th(i,k) � tk(i,k) is an l2(i)(Ω)-
tensorial zonal rank-4 tensor kernel function, and we have

th(i,k) � tk(i,k)(ξ, ·) =
∞∑

n=0ik

2n+1∑

m=1

(th(i,k))∧(n)(tk(i,k))∧(n)
2n + 1

4π
P(i,k,i,k)

n (ξ, ·).

(9.43)

By observing the property (9.43) we are able to deduce that, for every
ξ ∈ Ω, h(i,k) � k(i,k)(ξ, ·) is continuous on Ω.

Theorem 9.18. Let f of class l2(Ω). Suppose that th and tk are l2(i,k)(Ω)-

zonal rank-2 tensor kernel functions, whereas K̃, K are l2(i,k)(Ω)-zonal rank-
4 tensor kernel functions satisfying

(H(i,k))∧(n) = (th(i,k))∧(n), (9.44)

and
(K(i,k))∧(n) = (k(i,k))∧(n), (9.45)

for all i, k ∈ {1, 2, 3}, n ≥ 0ik. Then

H ∗K ∗ f = th � tk ∗ f . (9.46)

Proof. Observing the Legendre series expansion of f and of the zonal ker-
nel functions, the addition theorem, and the orthogonality of the spherical
harmonics, we get for the left hand side

H ∗K ∗ f (9.47)

=
3∑

i,k=1

∞∑

n=0ik

(H(i,k))∧(n)(K(i,k))∧(n)
2n+1∑

m=1

(f (i,k))∧(n, m) y(i,k)
n,m .

For the right hand side, we find

th � tk ∗ f =
3∑

i,k=1

th(i,k) � tk(i,k) ∗ f (9.48)

=
3∑

i,k=1

∫

Ω

∫

Ω

th(i,k)(·, ζ)tk(i,k)(η, ζ) · f(η)dω(η)dω(ζ)

=
3∑

i,k=1

∞∑

n=0ik

th(i,k)∧(n)tk(i,k)∧(n)
2n+1∑

m=1

f (i,k)∧(n, m) y(i,k)
n,m .

In connection with (9.44) and (9.45), we obtain the desired result.
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9.5 Dirac Families of Zonal Tensor Kernel Functions

Starting once more from a scalar Dirac family {Φρ}ρ∈(0,∞), we are able
to construct a Dirac family {Φρ}ρ∈(0,∞) of zonal rank-4 tensorial kernel
functions as follows.

Φρ(ξ, η) =
3∑

i=1

3∑

k=1

Φ(i,k,i,k)
ρ (ξ, η), ξ, η ∈ Ω, (9.49)

with

Φ(i,k,i,k)
ρ (ξ, η) =

∞∑

n=0ik

(Φρ)∧(n)
2n+1∑

m=1

y(i,k)
n,m (ξ)⊗ y(i,k)

n,m (η), (9.50)

ξ, η ∈ Ω. Correspondingly, a Dirac family {ϕρ}ρ∈(0,∞) of zonal rank-2 tensor
kernel functions reads as follows

tϕρ(ξ, η) =
3∑

i=1

3∑

k=1

tϕ(i,k)
ρ (ξ, η) (9.51)

with
tϕ(i,k)

ρ (ξ, η) =
∞∑

n=0i,k

(Φρ)∧(n)
2n+1∑

m=1

Yn,m(ξ)y(i,k)
n,m (η), (9.52)

ξ, η ∈ Ω.

From our consideration, it is clear that the following theorem holds true.

Theorem 9.19. Let {Φρ}ρ∈(0,∞) be a scalar function as defined by (9.49).
Then

lim
ρ→0

‖f −Φρ ∗ f‖l2(Ω) = 0, (9.53)

lim
ρ→0

‖f −Φρ ∗Φρ ∗ f‖l2(Ω) = 0 (9.54)

and
lim
ρ→0

‖f −ϕρ � ϕρ ∗ f‖l2(Ω) = 0. (9.55)

Theorem 9.19 extends the notion of an approximate identity to tensor
spherical fields.

Obviously,
Φ(1,1,1,1)

ρ (ξ, η) = o
(1,1)
ξ o(1,1)

η Φρ(ξ · η). (9.56)
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ξ, η ∈ Ω. For i ∈ {2, 3} we have

Φ(i,i,i,i)
ρ (ξ, η) =

1
2
o
(i,i)
ξ o(i,i)

η Φρ(ξ · η), (9.57)

ξ, η ∈ Ω, while, for (i, k) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)},

Φ(i,k,i,k)
ρ (ξ, η) = −o

(i,k)
ξ o(i,k)

η

∫

Ω
G(Δ∗; ξ · ζ)Φρ(ζ · η) dω(ζ), (9.58)

ξ, η ∈ Ω. Finally, for (i, k) ∈ {(2, 3), (3, 2)},

Φ(i,k,i,k)
ρ (ξ, η) =

1
n(n + 1)(n(n + 1)− 2)

(9.59)

o
(i,k)
ξ o(i,k)

η

∫

Ω
G(Δ∗(Δ∗ − 2); ξ · ζ)Φρ(ζ · η) dω(ζ),

ξ, η ∈ Ω.
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10 Zonal Function Modeling
of Earth’s Mass Distribution

There is a growing public concern about the future of our planet, its cli-
mate, its environment and about expected shortage of natural resources.
Any consistent and efficient strategy of protection against these threats de-
pends on a profound understanding of the Earth system. In particular,
the knowledge of the Earth mass distribution is of crucial importance for
the exploration of processes driving deformation of the Earth surface and
influencing ocean surface topography. Closely interrelated with mass trans-
port and mass anomalies is the Earth’s gravity field and its constituting
ingredients (see Table 10.1).

Table 10.1: Scientific uses of gravity field observables.

Solid Earth Oceanography Glaciology Geodesy Climate
Crustal Dynamic Bedrock Leveling Sea level

density topography topography (GPS) changes
Post glacial Heat Flux Height Coastal

rebound transport systems zones
Mass Orbit

transport determination

In what follows, we deal with a spherical approach to the so-called grav-
ity quantities, i.e., the geomathematically relevant functions on the sphere
characterizing the observables of the Earth’s gravity potential. Spherical
harmonics and zonal kernel functions are shown to be the essential tools for
the determination of mass anomalies and mass distribution between essen-
tial Earth system components, viz. gravity field, elastic field and oceanic
flow field. Our particular interest in this chapter is a systematic framework
of the gravity observables by the principles of spectral theory in terms of
spherical harmonics. Moreover, all representers of the observables can be
described by convolution against zonal kernels.

417
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It should be pointed out that our framework is not constructed in such
a way as to consist only of scalar ingredients. Indeed, two different choices
are viable, namely either as composition by scalar but anisotropic compo-
nents of the vectorial and tensorial building elements, or as composition by
isotropic vectorial and/or tensorial building blocks in their original nature.
Clearly, this work is concerned with the structural advantages of the sec-
ond variant (e.g., orthogonal invariance of fields and isotropy of operators)
avoiding decompositions into component ingredients thereby knowing that
vectorial/tensorial constituting elements are simpler in structure but larger
in dimension.

10.1 Key Observables

If the Earth had a perfectly spherical shape and if the mass inside the Earth
were distributed homogeneously or rotationally symmetric, then the line
along which a test mass fell would be a straight line, directed radially and
going exactly through the Earth’s center of mass. The gravitational field
obtained in this way would be spherically symmetric. In reality, however, the
situation is more complex. The topographic features, mountains and valleys,
are very irregular. The actual gravitational field is influenced by strong
irregularities in density within the Earth. As a result, the gravitational
force deviates from one place to the other from that of a homogeneous
sphere.

ellipsoid

geoid

Earth’s surface

geoidal
undulation

ocean

Fig. 10.1: Earth’s surface, geoid, ellipsoid

The knowledge of the gravitational field of the global Earth is of great im-
portance for many applications from which we only mention a few
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significant examples, for example, geodesy, civil engineering, solid Earth
physics, oceanography. A particular role is played for aspects of global ‘cli-
mate change’ in the Earth system: Indeed, there is a growing awareness of
global environmental problems (e.g., the CO2-question, the rapid decrease
of rain forests, global sea level changes, etc.). What is the role of the future
airborne methods and satellite missions in this context? They do not tell us
the reasons for physical processes, but it is essential to bring the phenom-
ena into one system (e.g., to make sea level records comparable in different
parts of the world). In other words, equipotential surfaces such as the geoid
(see Figs. 10.1 and 10.2) are viewed as an almost static reference for many
rapidly changing processes and at the same time as a ‘frozen picture’ of
tectonic processes that evolved over geological time spans.

Fig. 10.2: Geoidal surface (GFZ-EIGEN-CG01C geoid (2005)).

Indeed, the gravity field plays a peculiar dual role in Earth sciences. On
the one hand, by comparing the actual field with that of an idealized Earth
body (e.g., an idealized Earth in hydrostatic equilibrium) their deviations,
called gravity anomalies, are derivable. The gravity anomalies indicate the
state of mass imbalance in the Earth’s interior. On the other hand, the
geoid, i.e., the equipotential surface at (mean) sea-level of a hypothetical
ocean at rest, serves as the reference surface for all topographical features
(for more details see, e.g., ESA (1999)).

Internal density signatures of the Earth are reflected by gravitational field
signatures, and gravitational field signatures smooth out exponentially with
increasing distance from the Earth’s body. As a consequence, positioning
systems are ideally located as far as possible from the Earth, whereas gravity
field sensors are ideally located as close as possible to the Earth. Following
these basic principles, various positioning and gravity field determination
techniques have been designed. Sensors may be sensitive to local or global
features of the gravity field. Considering the spatial location of the data,
we may differentiate between terrestrial (surface), airborne, and spaceborne
methods. Regarding the data type we have various measurement principles
of the gravity field leading to different types of data:
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Fig. 10.3: Absolute gravimeter

To be more precise, the force of gravity provides a directional structure
to the space above the Earth’s surface. It is tangential to the vertical
plumb lines and perpendicular to all (level) equipotential surfaces (see also
Fig. 10.12). Any water surface at rest is part of a level surface. Level
(equipotential) surfaces are ideal reference surfaces, for example, for heights.
As already mentioned, the geoid is defined as that level surface of the gravity
field which best fits the mean sea level. Gravity can be measured by absolute
or relative gravimeters.

Absolute gravimeters are based directly on measuring the acceleration
of free fall (e.g., of a test mass in a vacuum tube (see Fig. 10.3, right).
Most common relative gravimeters are spring-based (see Fig. 10.4). By
determining the amount by which the weight stretches the spring, grav-
ity becomes available. The highest accuracy relative gravity measurements
are conducted at the Earth’s surface. Measurements on ships and in air-
craft deliver reasonably good data only after the removal of inertial noise.
Gravity data can be converted into gravity anomalies by subtracting a cor-
responding reference potential derived from a simple gravity field model
associated to an, e.g., ellipsoidal surface. Gravity anomalies are further-
more converted into mean gravity anomalies by a proper averaging process
over well defined areas. In future, gravity disturbances will become more
important than gravity anomalies, because the Global Positioning System
(GPS) determines the ellipsoidal coordinates directly at the surface point,
so that the gravity disturbances can be considered observational data in-
stead of the gravity anomalies. Classical spirit leveling measuring (via the
height difference between two points) potential differences is a very time-
consuming procedure. GPS leveling has introduced a revolution here. If the
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ellipsoidal height (above the reference ellipsoid) is measured by GPS, and
if there exists a reliable geoidal map, then the so-called orthometric height
(above the geoid) can be obtained immediately. In other words, geocentric
positions can be determined in a purely geometric way.

The direction of the gravity vector can be obtained by astronomical po-
sitioning. Measurements are possible on the Earth’s surface only. Observa-
tions of the gravity vector are converted into so-called vertical deflections
by subtracting a corresponding reference direction derived from a simple
gravity field model, e.g., associated to an ellipsoidal surface. Vertical deflec-
tions are surface-curl free tangential fields generated by the surface gradient
applied to the disturbing potential (in a spherical Earth model). Due to the
high measurement effort required to acquire these types of data compared to
a gravity measurement, the data density of vertical deflections is much less
than that of gravity anomalies. Gravitational field determination based on
the observation of vertical deflections and combined with gravity is feasible
in smaller areas with good data coverage.

Fig. 10.4: The principle of a relative gravimeter

Concerning gravity, however, it should be pointed out that the terrestrial
distribution of Earth’s gravity data on a global scale is far from being ho-
mogeneous with large gaps, in particular over oceans but also over land. In
addition, the quality of the data is very distinct. Thus, terrestrial gravity
data coverage now and in the foreseeable future is far from being satisfac-
tory. This is the reason why spaceborne measurements have to come into
play.

Airborne gravimetry is a highly sensitive detection method of the grav-
itational potential of the Earth by a gravity accelerometer. Proposals to
implement airborne gravimetry go back to the late fifties of the last cen-
tury, and first flight experiments were already done in the early 1960s. A
major obstacle of such techniques at that time was the inaccuracy of nav-
igational information (e.g., velocity and acceleration of the space vehicle)
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which is needed to obtain the desired precision. Although at an appropri-
ate level of accuracy, airborne gravimetry is vastly superior in economy and
efficiency to pointwise terrestrial methods, there were serious doubts in the
seventies and eighties of ever achieving useful results. In the early 1990s,
however, great advances in GPS technology opened new ways to resolve the
navigational problems. More explicitly, attitude, position, and velocity of
the airborne gravity system become sufficiently computable from the iner-
tial measurements updated by GPS carrier phase and Doppler observations
for GPS leveling). Vehicle accelerations are derivable from GPS data only,
so that in a third step, the airborne gravity disturbance is determinable
from the difference between the force vector and the GPS-derived accel-
eration vector. Nowadays, some industrial companies are perfecting their
system concepts by paying careful attention to the operational conditions
under which an airborne gravimeter works best. Major advances in airborne
gravimetry will be expected in the coming years.

Fig. 10.5: Essential satellite methods (due to G. Seeber (1984)).

A variety of observational techniques exploiting satellites from the ground
(see Fig. 10.5) have been used to determine the Earth’s geoid. Two of
them provide essential inputs to the recent elaboration of global gravity
models: Satellite laser ranging (SLR) delivers the distance of a satellite
from a ground station with accuracy depending on the quality of the SLR
station. Worldwide, there exist a large number of operational SLR systems.
SLR data contain information about the orbit of the satellite, the position of
the measurement site and Earth’s rotation and plate tectonic parameters.
It remains today the most accurate technique (in the absolute sense) to
which others can be compared and calibrated. Range rate measurements
are based on the observation of the Doppler effect by which the frequency
of a transmitted signal is observed with a modified value proportional to the
line-of-sight velocity between the transmitter and the observer. Plenty of
such measurements have been collected between satellite borne transmitters
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and ground stations but to a limited precision. The system can also be
inverted, where transmitters are at the stations and the receiver is onboard
a satellite.

Satellite radar altimetry has demonstrated an impressive capability of
mapping the surface of the oceans. As already pointed out, the ocean sur-
face is a good approximation of an equipotential surface and, as such, its
offset from the geoid at mean sea level (mean in terms of time) is called sea
surface topography. This offset reflects many effects including the variables
salinity, ocean temperature, ocean currents, variable atmospheric conditions
such as wind and air pressure perturbations, tides, etc. Since the sea surface
topography refers to the geoid, the precise and sufficiently detailed knowl-
edge of the geoid is mandatory. In a geostrophic approach (divergence-free),
surface flow and sea surface topography are related by virtue of the surface
curl gradient. In fact, satellite altimetry has revolutionized the understand-
ing of ocean variability and dynamics.

Fig. 10.6: Orbit illustration: Homogeneous spherical Earth’s model (right)
and space fixed ellipse, ellipsoidal Earth’s model and spirals, real Earth (left)
and modulation by the gravity signal (due to R. Rummel, IAPG Munich).

The three satellite concepts under present operation are satellite-to-satel-
lite tracking in the high-low mode (SST hi-lo), satellite-to-satellite track-
ing in the low-low mode (SST lo-lo), and satellite gravity gradiometry
(SGG). Representatives of these three concepts (see Figs. 10.7 and 10.8) are
CHAMP (SST hi-lo), GRACE (SST lo-lo combined with SST hi-lo), GOCE
(SGG combined with SST hi-lo). Common to all three concepts is that the
determination of the Earth’s gravity field is based on the measurement of
the relative motion (in the Earth’s gravity field) of test masses.

The concept of satellite-to-satellite tracking (SST) goes back almost three
decades. The original idea was to fly two satellites in an identical low or-
bit with a separation of a few hundred kilometers between the spacecrafts
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Fig. 10.7: The CHAMP concept (left) and the GRACE concept (right)(cf.
ESA (1998)).

(low–low SST). Between the satellites, the distance and the Doppler fre-
quency shift can be measured. As such, the data represent admittedly, to
some degree of approximation, first order tangential derivatives of the grav-
itational potential. The alternative to low-low SST is high-low SST: Nowa-
days GPS is fully operational with a number of satellites in space which
can track a Low Earth Orbiter (LEO). From continuous carrier phase mea-
surements of all visible GPS satellites, the orbit can be determined to an
accuracy of a few centimeters (cf. Fig. 10.6). Such data, when collected by
a dedicated gravity field satellite over a period of several months, can deliver
estimates of the long wavelength part of the global gravity field, represented
by the geoid.

Fig. 10.8: The GOCE concept (cf. ESA (1998)).
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In the case of SST hi-lo, the low flying test mass is a low earth orbiter
(LEO) and the high flying test masses are the satellites of the Global Po-
sitioning System (GPS). As the GPS receiver mounted on the LEO always
‘contacts’ four or even more of the GPS satellites, the relative motion of
the LEO can be monitored three-dimensionally, i.e. in all three coordinate
directions. The lower the orbit of the LEO, the higher is its sensitivity with
respect to the spatial variations of the gravitational forces but by skin forces
as well (atmospheric drag, solar radiation, albedo, etc.), the latter have ei-
ther to be compensated for by a drag-free mechanism or, as for CHAMP,
be measured by a three axis accelerometer. Also the high orbiters, the GPS
satellites, are affected by non-gravitational forces. However, the latter can
be modeled quite well. They affect mainly the very long spatial scales, and
to a large extent, their effect averages out. In addition, the ephemerides
of the GPS satellites are determined very accurately by the large network
of ground stations that constitute the International Geodynamic Service
(IGS). In the case of SST lo-lo, the relative motion between two LEO’s,
chasing each other, is measured with highest precision. The quantity of
interest is the relative motion of the center of mass of the two satellites.
Again, the effect of non-gravitational forces on the two spacecrafts either
has to be compensated actively or measured (GRACE). Over land, it is for
the first time demonstrated with GRACE, that satellites are able to glob-
ally probe the Earth for largely unknown soil moisture and aquifer changes
on seasonal and interannual time scales. Being important for the under-
standing of the global water cycle, a GRACE-based system shall continue
to trace global hydrology.

Satellite gravity gradiometry (SGG) is a technique of measuring the
relative acceleration, not between free falling test masses like satellites,
but of measuring test masses at different locations inside one satellite (see
Fig. 10.8). Each test mass is enclosed in a housing and kept levitated (float-
ing, without ever touching the walls) by a capacitive or inductive feedback
mechanism. The difference in feedback signals between two test masses is
proportional to their relative acceleration and exerted purely by the differ-
ential gravitational field. Non-gravitational acceleration of the spacecraft
affects all accelerometers inside the satellite in the same manner and so ide-
ally drops out during differencing. The rotational motion of the satellite
affects the measured differences. However, the rotational signal (angular
velocities and accelerations) can be separated from the gravitational signal,
if acceleration differences are taken in all possible (spatial) combinations
(= full tensor gradiometer). Again, low orbit means high sensitivity. The
GOCE mission (see Fig. 10.8) opens a completely new range of spatial scales
to research.
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t0

t1

Fig. 10.9: The principle of a gradiometer.

One can argue that the basic observable in all three cases (SST hi-lo,
SST lo-lo, SGG) is the gravitational acceleration. In the case of SST hi-lo,
with the motion of the high orbiting GPS satellites assumed to be perfectly
known, this corresponds to an in situ 3-D acceleration measurement in the
LEO. For the case of SST lo-lo, it is the measurement of acceleration dif-
ference over the intersatellite distance and in the line-of-sight (LOS) of the
LEOs. Finally, in the case of gradiometry, it is the measurement of acceler-
ation differences in 3-D over the tiny baseline of the gradiometer. In short,
we are confronted with the following situation:

SST hi–lo: 3–D acceleration = gravitational gradient,

SST lo–lo: acceleration difference = difference in gradient,

SGG: differential = gradient of gradient (‘tensor’).

Thus, in the mathematical sense, it is a transition from the first derivative
of the gravitational potential via a difference in the first derivative to the
second derivative. The guiding parameter that determines sensitivity with
respect to the spatial scales of the Earth’s gravitational potential is the
distance between the test masses, being almost infinity for SST hi-lo and
almost zero for gradiometry (cf. Fig. 10.9).

Summarizing our introductory remarks on gravity quantities, we come to
following conclusion: Over the years, geoscientists have realized the great
complexity of the Earth and its environment. In particular, the knowledge
of the gravity potential and its level (equipotential) surfaces giving infor-
mation about mass distribution and mass transport in the Earth’s system
has become an important issue. In this respect, the gravity field is the key
component of future investigation. Seen from numerical point of view, it
must be remarked for future work that combining data from different sen-
sors and sources is the way forward. Only coordinated research between
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geodesy, geophysics, and geomathematics will provide a breakthrough in
understanding and modeling of important processes in the Earth system.

An overview of gravitational quantities (GQ) involved in the modeling of
Earth’s mass distribution is given in Table 10.2.

Table 10.2: Gravity quantities (actual situation) for determining the Earth’s
gravitational potential.

GPS–leveling High altitude

(→ positions x, y, heights N, H)

Conventional satellite techniques Medium altitude

Laser, Doppler, etc. (→ positions x, y, x± y)
satellite altimetry

(→ dynamic ocean topography Ξ(x), gravita-
tional potential V (x) at ocean positions x)

Satellite-to-satellite tracking (high-low) Medium altitude

(→ gravitational gradient ∇V (x) at satellite po-
sitions x)

Satellite-to-satellite tracking (low-low) Medium altitude

(→ difference ∇V (x) − ∇V (y) of gradients at
satellite positions x, y)

Satellite–gravity–gradiometry Low altitude

(→ gravitational tensor∇(2)V (x) at satellite po-
sitions x)

Gravimetry, astrogeodesy Ground level

(→ gravity anomalies A(x), gravity distur-
bances D(x), vertical deflections Θ(x), gravita-
tional magnitude |∇V (x)|, gravitational direc-
tion ∇V (x)/|∇V (x)|, torsion balance ∇(2)V (x))
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10.2 Gravity Potential

Gravity, as observed on the Earth’s surface, is the combined effect of the
gravitational mass attraction and the centrifugal force due to the Earth’s
rotation. The force of gravity provides a directional structure to the space
above the Earth’s surface. It is tangential to the vertical plumb lines and
perpendicular to all level surfaces. Any water surface at rest is part of a level
surface. As if the Earth were a homogeneous, spherical body, gravity turns
out to be constant all over the Earth’s surface, the well-known quantity
9.8 ms−2. The plumb lines are directed toward the Earth’s center of mass,
and this implies that all level surfaces are nearly spherical, too.

Fig. 10.10: Illustration of the components of the gravity acceleration (ESA
medialab, ESA communication production SP–1314)

First, the gravity decreases from the poles to the equator by about 0.05 ms−2

(see Fig. 10.10). This is caused by the flattening of the Earth’s figure and
the negative effect of the centrifugal force, which is maximal at the equator.
Second, high mountains and deep ocean trenches cause the gravity to vary.
Third, materials within the Earth’s interior are not uniformly distributed.
The irregular gravity field shapes as virtual surface, the geoid. The level
surfaces ideal reference surfaces, for example, for heights.

In more detail, the gravity acceleration (gravity) w is the resultant of grav-
itation v and centrifugal acceleration c :

w = v + c. (10.1)

The centrifugal force c arises as a result of the rotation of the Earth about
its axis. We assume here a rotation of constant angular velocity ω0 about
the rotational axis x3, which is further assumed to be fixed with respect to
the Earth. The centrifugal acceleration acting on a unit mass is directed
outward perpendicular to the spin axis (see Fig. 10.11).

If the ε3-axis of an Earth-fixed coordinate system coincides with the axis
of rotation, then we have
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Fig. 10.11: Gravitation v, centrifugal acceleration c, gravity acceleration w.

c(x) = −ω2
0ε

3 ∧ (ε3 ∧ x). (10.2)

Using the so–called centrifugal potential

C(x) =
ω2

0

2
|ε3 ∧ (ε3 ∧ x)| = ω2

0

2
(
(x · ε1)2 + (x · ε2)2

)
=

ω2
0

2
(x2

1 + x2
2) (10.3)

we can write c = ∇C. Applying the Laplace operator gives us ΔC = 2ω2
0,

thus, the function C is not harmonic.

The direction of the gravity w is known as the direction of the plumb
line, the quantity |w| is called the gravity intensity (often just gravity). The
gravity potential of the Earth can be expressed in the form:

W = V + C. (10.4)

The gravity acceleration w is given by

w = ∇W = ∇V +∇C. (10.5)

The surfaces of constant gravity potential W (x) = const, x ∈ R
3, are desig-

nated as equipotential (level,) or geopotential surfaces of gravity (for more
details see, e.g., E. Groten (1979), W.A. Heiskanen, H. Moritz (1967), W.
Torge (1991)).

The gravity potential W of the Earth is the sum of the gravitational
potential V and the centrifugal potential C, i.e., W = V +C. In the Earth’s
fixed coordinate system, the centrifugal potential C is explicitly known.
Hence, the determination of equipotential surfaces of the potential W is
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strongly related to the knowledge of the potential V . The gravity vector
w given by w(x) = ∇xW (x) where the point x ∈ R

3 is located outside
and on a sphere around the origin with Earth’s radius R (see Fig. 10.12),
is normal to the equipotential surface passing through the same point (for
the specification of the (mean) Earth’s radius R see, e.g., E. Groten (1979),
W.A. Heiskanen, H. Moritz (1967), W. Torge (1991)). Thus, equipotential
surfaces intuitively express the notion of tangential surfaces, as they are
normal to the plumb lines given by the direction of the gravity vector.

plumb line

level surface

ν(x)

w(x)

x

Fig. 10.12: Level surface and plumb line.

According to the classical Newton Law of Gravitation (1687), knowing
the density distribution F of a body, the gravitational potential can be
computed everywhere in R

3. More explicitly, the gravitational potential V
of the Earth’s exterior is given by

V (x) = G

∫

Earth

F (y)
|x− y| dV (y), x ∈ R

3\Earth, (10.6)

where G is the gravitational constant (G = 6.6742 · 10−11m3 kg−1 s−2).

The properties of the gravitational potential (10.6) in the Earth’s exterior
are easily described as follows:

ΔV (x) = 0, x ∈ R
3\Earth. (10.7)
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Fig. 10.13: Regularity at infinity.

Moreover, the gravitational potential V is regular at infinity, i.e.,

|V (x)| = O

(
1
|x|

)
, |x| → ∞, (10.8)

|∇V (x)| = O

(
1
|x|2

)
, |x| → ∞. (10.9)

Note that, for suitably large values |x| (see Fig. 10.13), we have |y| ≤ 1
2 |x|,

hence, |x− y| ≥ ||x| − |y|| ≥ 1
2 |x|.

Clearly, the gravitational field v = ∇V fulfills the following identities:

L · ∇V (x) = 0, (10.10)
∇ · ∇V (x) = ΔV (x) = 0, (10.11)

x ∈ R
3\Earth.

However, the problem is that in reality the density distribution is very
irregular and known only for parts of the upper crust of the Earth. It
is actually so that geoscientists would like to know it from measuring the
gravitational field. Even if the Earth is supposed to be spherical, the deter-
mination of the gravitational potential by integrating Newton’s potential is
not achievable. This is the reason why, in spherical nomenclature, we first
expand the gravitational potential of the spherical Earth Ωint

R into a series
of spherical harmonics. In doing so, we observe that the so-called reciprocal
distance can be expressed as a Legendre series as follows:

1
|x− y| =

1
|x|

∞∑

n=0

(
|y|
|x|

)n

Pn

(
x

|x| ·
y

|x|

)
, (10.12)

y ∈ Ωint
R , x ∈ Ωext

R , i.e., |y| ≤ R < |x|.
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Relating (10.12) to the radius R, we obtain

1
|x− y| =

∞∑

n=0

2n+1∑

j=1

4πR

2n + 1
HR

−n−1,k(x)HR
n,k(y), (10.13)

where HR
n,k is an inner harmonic of degree n and order k given by

HR
n,k(x) =

1
R

(
|x|
R

)n

Yn,k(ξ), x = |x|ξ, ξ ∈ Ω, (10.14)

and HR
−n−1,k is an outer harmonic of degree n and order k given by

HR
−n−1,k(x) =

1
R

(
R

|x|

)n+1

Yn,k(ξ), x = |x|ξ, ξ ∈ Ω. (10.15)

Note that {Yn,k} n=0,1,...
k=1,...,2n+1

is an L2(Ω)-orthonormal system of scalar spher-
ical harmonics.

Insertion of the series expansion (10.13) into the Newton formula for the
gravitational potential yields for x ∈ Ωext

R :

V (x) = G

∞∑

n=0

2n+1∑

k=1

4πR

2n + 1

∫

Ωint
R

F (y) HR
n,k(y) dV (y) HR

−n−1,k(x). (10.16)

At first sight, we might conclude that we end up with an infinite series of
integrals, where we have only one integral in the beginning. However, the
integrals involving inner/outer harmonics are regular, and a closer look at
the individual terms reveals their geophysical relevance:

The zero term gives the potential with mass equal to that of the gravitating
mass distribution of the spherical Earth’s body Ωint

R . The first order term
relates to dipole mass moments. The quadrupole moments obtained by the
second order term reflect the oblateness of the mass distribution.

As already pointed out, the expansion coefficients of the series (10.16)

4πRG

2n + 1

∫

Ωint
R

F (y) HR
n,k(y) dV (y) (10.17)

are not computable, since their determination requires the knowledge of the
density function F in the Earth’s interior Ωint

R . In fact, it turns out that there
are infinitely many mass distributions, which have the given gravitational
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potential of the Earth as exterior potential. To overcome the difficulties, the
solution of the (Dirichlet) boundary-value problem ΔV (x) = 0, x ∈ Ωint

R ,
corresponding to the boundary condition V |ΩR ∈ C(ΩR) would suffice for
purposes of determining the exterior gravitational potential, in principle,
from geophysical point of view, the expansion coefficients (10.17) can be
expressed by the ‘boundary function’ V |ΩR. However, the comparison of
the spherical harmonic coefficients leads to an infinite number of equations
relating V |ΩR on the (spherical) Earth’s surface ΩR to the density distri-
bution F inside the (spherical) Earth Ωint

R . In other words, the knowledge
of the density function inside the Earth allows the Fourier (orthogonal) ex-
pansion in terms of the potential coefficients. Inversely, given the potential
coefficients as derived from the terrestrial potential, V |ΩR does not suffice to
determine the density distribution. In geophysics, this ambiguity is known
as the gravimetry problem of determining Earth’s density distribution.

Table 10.3: Gravimetric units.

Physical quantity SI units Traditional units

Gravity 10−2ms−2 1 Gal
Gravity 10−5ms−2 1 mGal
Gravity 10−8ms−2 1μGal

Gravity potential 108m2s−2 1kGal· m

Gravity gradients 10−9s−2 1 E

Collecting the results on the Earth’s gravitational field v for the outer
space of the Earth (in spherical approximation, of course, Ωext

R ), we are con-
fronted with the following (mathematical) characterization: v is an infinitely
often differentiable vector field in the exterior of the Earth such that

(v1)

div v = ∇ · v = 0, curl v = L · v = 0 (10.18)

in the Earth’s exterior,
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(v2) v is regular at infinity:

|v(x)| = O

(
1
|x|2

)
, |x| → ∞. (10.19)

Seen from mathematical point of view, the properties (v1) and (v2) imply
that the Earth’s gravitational field v in the exterior of the Earth (see, e.g.,
O.D. Kellogg (1929), M.E. Gurtin (1971), A. Wangerin (1921)) is a gradient
field

v = ∇V, (10.20)

where the gravitational potential V fulfills the properties: V is an infinitely
often differentiable scalar field in the exterior of the Earth such that

(V1) V is harmonic in the Earth’s exterior, i.e., ΔV = 0,

(V2) V is regular at infinity, i.e.,

|V (x)| = O

(
1
|x|

)
, |x| → ∞, (10.21)

|∇V (x)| = O

(
1
|x|2

)
, |x| → ∞, (10.22)

and vice versa.

Moreover, the gradient field of the Earth’s gravitational field (i.e., the
Jacobi matrix field)

v = ∇v, (10.23)

obeys the following properties: v is an infinitely often differentiable tensor
field in the exterior of the Earth such that

(v1)
div v = ∇ · v = 0, curl v = L · v = 0 (10.24)

in the Earth’s exterior,

(v2) v is regular at infinity:

|v(x)| = O

(
1
|x|3

)
, |x| → ∞ , (10.25)

and vice versa.

Combining (10.24) with (10.20), we see that v can be represented as the
Hesse tensor of the scalar field V , i.e.,

v = (∇⊗∇)V = ∇(2)V. (10.26)
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10.3 Inner/Outer Harmonics

As preparation for the theory of boundary-value problems in terms of outer
harmonics, some results known from potential theory should be recapitu-
lated briefly. More explicitly, we are interested in essential ingredients of
potential theory in their specific formulation for the outer space Ωext

R of the
sphere around the origin with radius R.

Let V : Ωext
R → R, v : Ωext

R → R
3, and v : Ωext

R → R
3⊗R

3, respectively, be a
scalar, vector, and tensor field on the set Ωext

R . We say that V, v,v , respec-
tively, are harmonic on Ωext

R if V, v,v are twice continuously differentiable
on Ωext

R and ΔV = 0, Δv = 0, Δv = 0 on Ωext
R .

Without proof, we mention some well-known theorems concerning har-
monic fields on Ωext

R (for the proofs see, for example, M.E. Gurtin (1971),
O.D. Kellogg (1929)):

(1) Every harmonic field in Ωext
R is analytic in Ωext

R , i.e., every harmonic
field is determined by its local properties .

(2) Harnack’s convergence theorem: Let Vδ : Ωext
R → R, vδ : Ωext

R → R
3,

and vδ : Ωext
R → R

3 ⊗ R
3, respectively, be harmonic on Ωext

R for each
value δ (0 < δ < δ0), and regular at infinity. Moreover, let

Vδ → V , δ → 0, δ > 0,

vδ → v , δ → 0, δ > 0,

vδ → v , δ → 0, δ > 0,

uniformly on each subset K of Ωext
R with dist(K, ∂Ωext

R ) > 0. Then
V : Ωext

R → R, v : Ωext
R → R

3, and v : Ωext
R → R

3 ⊗ R
3, respectively, is

harmonic on Ωext
R and regular at infinity. Furthermore, for each fixed

integer n

∇(n)Vδ → ∇(n)V , δ → 0, δ > 0,

∇(n)vδ → ∇(n)v , δ → 0, δ > 0,

∇(n)vδ → ∇(n)v , δ → 0, δ > 0,

holds uniformly on each subset K of Ωext
R with dist(K, ∂Ωext

R ) > 0.

(3) Let V : Ωext
R → R be twice continuously differentiable on Ωext

R and
continuous on Ωext

R , i.e., V ∈ C(Ωext
R ) ∩ C(2)(Ωext

R ), harmonic on Ωext
R ,

and regular at infinity. Then, the maximum/minimum principle tells
us that

sup
x∈Ωext

R

|V (x)| ≤ sup
x∈ΩR

|V (x)| . (10.27)
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(4) There is a so-called fundamental solution (singularity function) S :
x �→ |x − y|−1, x �= y with respect to the Laplace operator Δ such
that the fundamental theorem of potential theory (see Theorem 2.4)

∫

∂Ωext
R

(
1

|x− y|
∂V

∂ν
(y)− V (y)

∂

∂νy

1
|x− y|

)
dω(y) (10.28)

=

⎧
⎨

⎩

−4πV (x) , x ∈ Ωext
R ,

−2πV (x) , x ∈ ∂Ωext
R ,

0 , x /∈ Ωext
R

holds true.

Consider the sphere ΩR ⊂ R
3 around the origin with radius R > 0. As

usual, Ωint
R is the inner space of ΩR, and Ωext

R is the outer space. By virtue of
the isomorphism Ω  ξ �→ Rξ ∈ ΩR, we assume functions F : ΩR → R to be
defined on Ω. It is clear that the function spaces defined on Ω admit their
natural generalizations as spaces of functions defined on ΩR. We have, for
example, C(∞)(ΩR), Lp(ΩR), etc. Obviously, an L2(Ω)-orthonormal system
of spherical harmonics forms an orthogonal system on ΩR (with respect to
(·, ·)L2(ΩR)). More explicitly, we have

(Yn,k, Yp,q)L2(ΩR) =
∫

ΩR

Yn,k

(
x

|x|

)
Yp,q

(
x

|x|

)
dω(x) = R2δnpδkq. (10.29)

With the relationship ξ ↔ Rξ, the surface gradient ∇∗;R and the Bel-
trami operator Δ∗;R on ΩR, respectively, have the representation ∇∗;R =
(1/R)∇∗;1 = (1/R)∇∗, Δ∗;R = (1/R2)Δ∗;1 = (1/R2)Δ∗, where ∇∗, Δ∗ are
the surface gradient and the Beltrami operator of the unit sphere Ω. For
Yn ∈ Harmn(Ω), we have Δ∗;RYn = (1/R2)(Δ∗)∧(n)Yn.

We now introduce the system {Y R
n,k} n=0,1,...

k=1,...,2n+1
by letting

Y R
n,k(x) =

1
R

Yn,k

(
x

|x|

)
, x ∈ ΩR . (10.30)

Due to (10.29), the system {Y R
n,k} n=0,1,...

k=1,...,2n+1
is an orthonormal basis in

L2(ΩR):

L2(ΩR) = span n=0,1,...,
k=1,...,2n+1

(Y R
n,k)

‖·‖L2(ΩR) . (10.31)

The system {HR
n,k} n=0,1,...

k=1,...,2n+1
of inner harmonics HR

n,k of degree n and order
k can be written as

HR
n,k(x) =

(
|x|
R

)n

Y R
n,k (x) , x ∈ R

3. (10.32)
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It satisfies the following properties:

• HR
n,k is of class C(∞)(R3)

• HR
n,k satisfies Laplace’s equation in R

3:

ΔxHR
n,k(x) = 0, x ∈ R

3

• HR
n,k|ΩR

= Y R
n,k = 1

RYn,k

• (HR
n,k, H

R
p,q)L2(ΩR) =

∫

ΩR

Y R
n,k (x)Y R

p,q (x) dω(x) = δnpδkq

(note that in the case of ΩR = Ω, we have HR
n,k |R=1 = H1

n,k = Yn,k for all
n = 0, 1, . . .; k = 1, . . . , 2n + 1).

From the addition theorem of spherical harmonics, we obtain

2n+1∑

k=1

HR
n,k(x)HR

n,k(y) =
2n + 1
4πR2

(
|x||y|
R2

)n

Pn

(
x

|x| ·
y

|y|

)
(10.33)

for all (x, y) ∈ Ωint
R ×Ωint

R , which is known as the addition theorem of inner
harmonics (see (3.26)).

In accordance with our notation, Harmn(Ωint
R ) denotes the space of all

inner harmonics of degree n on Ωint
R , i.e., Harmn(Ωint

R ) is equal to the space
of all linear combinations of the 2n + 1 elements HR

n,1, . . . H
R
n,2n+1. Conse-

quently, d(Harmn(Ωint
R )) = 2n + 1. We let

Harmp,...,q(Ωint
R ) =

q⊕

n=p

Harmn(Ωint
R ), 0 ≤ p ≤ q . (10.34)

The kernel K
Harmp,...,q(Ωint

R )
(·, ·) : Ωint

R × Ωint
R → R given by

K
Harmp,...,q(Ωint

R )
(x, y) =

q∑

n=p

2n+1∑

k=1

HR
n,k(x)HR

n,k(y), (x, y) ∈ Ωint
R × Ωint

R ,

(10.35)
is the reproducing kernel of the space Harmp,...,q(Ωint

R ) with respect to
‖ · ‖L2(ΩR), i.e.:

(i) For every y ∈ Ωint
R , the functions K

Harmp,...,q(Ωint
R )

(y, ·) as well as

K
Harmp,...,q(Ωint

R )
(·, y) belong to Harmp,...,q(Ωint

R )
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(ii) For any H ∈ Harmp,...,q(Ωint
R ) and any x ∈ Ωint

R , the reproducing prop-
erty

H(x) =
(
K

Harmp,...,q(Ωint
R )

(·, x), H
)

L2(ΩR)

=
(
K

Harmp,...,q(Ωint
R )

(x, ·), H
)

L2(ΩR)

holds true.

The system {HR
−n−1,k} n=0,1,...

k=1,...,2n+1
of outer harmonics HR

−n−1,k of degree n

and order k defined by

HR
−n−1,k(x) =

(
R

|x|

)n+1

Y R
n,k (x) , x ∈ R

3\{0}, (10.36)

satisfies the following properties:

• HR
−n−1,k is of class C(∞)(R3\{0})

• HR
−n−1,k satisfies Laplace’s equation in R

3\{0}:

ΔxHR
−n−1,k(x) = 0, x ∈ R

3\{0}

• HR
−n−1 is regular at infinity, i.e.

∣∣HR
−n−1,k(x)

∣∣ = O

(
1
|x|

)
, |x| → ∞ (10.37)

and ∣∣∇HR
−n−1,k(x)

∣∣ = O

(
1
|x|2

)
, |x| → ∞

• HR
−n−1,k

∣∣∣ΩR = Y R
n,k = 1

RYn,k

•
(
HR

−n−1,k, H
R
−p−1,q

)

L2(ΩR)
= δnpδkq.

The addition theorem of spherical harmonics now yields

2n+1∑

k=1

HR
−n−1,k(x)HR

−n−1,k(y) =
2n + 1
4πR2

(
R2

|x| |y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
(10.38)

for all (x, y) ∈ Ωext
R ×Ωext

R , which is known as the addition theorem of outer
harmonics.



10.3 Inner/Outer Harmonics 439

We let
Harmn

(
Ωext

R

)
= span

k=1,...,2n+1

(
HR

−n−1,k|Ωext
R

)
(10.39)

and

Harmp,...,q

(
Ωext

R

)
=

q⊕

n=p

Harmn

(
Ωext

R

)
. (10.40)

The kernel K
Harmp,...,q(Ωext

R )
(·, ·): Ωext

R × Ωext
R → R given by

KHarm
p,...,q(Ωext

R
)
(x, y) =

q∑

n=p

2n+1∑

k=1

HR
−n−1,k(x)HR

−n−1,k(y), (10.41)

(x, y) ∈ Ωext
R × Ωext

R , is the reproducing kernel of the space Harmp,...,q(Ωext
R )

with respect to ‖ · ‖L2(ΩR).

For brevity, we set

Harmp,...,q(K) = Harmp,...,q

(
Ωext

R

)
|K (10.42)

for every subset K of Ωext
R .

It should be noted that an inner harmonic HR
n,k is related to the correspond-

ing outer harmonic HR
−n−1,k in the following way:

HR
−n−1,k(x) =

(
R

|x|

)2n+1

HR
n,k(x) =

R

|x|H
R
n,k

(
R2

|x|2 x

)
. (10.43)

In other words, the outer harmonic is obtainable by the ‘Kelvin transform’
KR relative to the sphere ΩR from its inner counterpart as follows:

HR
−n−1,k(x) = KR

(
HR

n,k

)
(x) =

R

|x|H
R
n,k(x), (10.44)

where the map x �→ x defined by

x =
R2

|x|2 x, x �= 0 (10.45)

is called the inversion of R
3 relative to the sphere ΩR. Note that x lies on

the ray from the origin determined by x, with

|x|
R

=
R

|x| . (10.46)



440 10 Zonal Function Modeling of Earth’s Mass Distribution

It is well known (see, for example, W. Walter (1971)) that the inversion map
of R

3 relative to the sphere ΩR is continuous and its own inverse. Moreover,
it is the identity on ΩR. Furthermore, it is easily seen that

HR
n,k(x) =

R

|x|H
R
−n−1,k(x) = KR

(
HR

−n−1,k

)
(x), (10.47)

which demonstrates that it is reasonable to introduce the Kelvin transform
for the compactification R

3 ∪ {∞} of R
3 (by additionally letting x = ∞ for

x = 0 and x = 0 for x = ∞).

Next, we discuss the representations of outer harmonics on spheres of
different altitudes. By convention, throughout this work, R is the height of
the ground level, while S describes the satellite level such that S > R > 0.

By virtue of (10.36), we are immediately able to deduce that

HR
−n−1,k =

(
R

r

)n

Hr
−n−1,k (10.48)

for all r ≥ R. Moreover, the radial derivative ∂r admits the following
representations

∂rH
R
−n−1,k =

∂HR
−n−1,k

∂r
= −n + 1

r
HR

−n−1,k (10.49)

= −n + 1
r

(
R

r

)n

Hr
−n−1,k (10.50)

= −n + 1
R

(
R

r

)n+1

Hr
−n−1,k.

Furthermore, for all r ≥ R, we have

(∂r)
2 HR

−n−1,k =
(
−n + 1

r

)(
−n + 2

r

)(
R

r

)n

Hr
−n−1,k

=
(n + 1)(n + 2)

R2

(
R

r

)n+2

Hr
−n−1,k. (10.51)

These results about ‘upward continuation’ can be arranged in a scheme as
shown in Table 10.4.
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Table 10.4: Outer harmonics characterizing ‘upward continuation’.

ΩS–level: HS
−n−1,k

−n+1
S→ ∂rH

S
−n−1,k

↑ ·
(

R
S

)n ↑ ·
(

R
S

)n+1

ΩR–level: HR
−n−1,k

−n+1
R→ ∂rH

R
−n−1,k

The concise scheme in Table 10.4 connects the outer harmonics and their
derivatives at the altitudes R (ground level) and S (satellite level), respec-
tively. This scheme applies per degree and order. The vertical arrows char-
acterize ‘upward continuation’, while the horizontal arrows describe transi-
tion from the function to its radial derivative.

Finding the solution of the Laplace equation subject to certain boundary
conditions (see, e.g., O.D. Kellogg (1929), F. Neumann (1887)) is what we
call a boundary-value problem (BVP). Of particular importance in classi-
cal potential theory is the Dirichlet and Neumann boundary-value problem,
i.e., the determination of a potential from given potential values and normal
derivatives, respectively. Our considerations are restricted to (the geophys-
ically relevant) exterior boundary-value problems (note that the interior
boundary-value problems can be discussed analogously). If the boundary
is a sphere ΩR around the origin, then it is well known (see, for example,
O.D. Kellogg (1929), F. Neumann (1887)) that the solutions of the classical
boundary-value problems can be given in explicit integral form.

Exterior Dirichlet Problem (EDP): Given F ∈ C(ΩR). Then the function
U : Ωext

R → R given by

U(x) =
∫

ΩR

D(x, y)F (y) dω(y) (10.52)

with the Abel–Poisson kernel function (briefly called Abel–Poisson kernel)

D(x, y) =
1

4πR

|x|2 −R2

|x− y|3 , x ∈ Ωext
R , (10.53)

is the unique solution of the exterior Dirichlet boundary–value problem:

(i) U is continuous in Ωext
R and twice continuously differentiable in Ωext

R ,
i.e., U ∈ C(Ωext

R ) ∩ C(2)(Ωext
R ).
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(ii) U is harmonic on Ωext
R , i.e., ΔU = 0 in Ωext

R .

(iii) U is regular at infinity, i.e., |U(x)| = O( 1
|x|), |∇U(x)| = O( 1

|x|2 ) as
|x| → ∞.

(iv) U |ΩR = F .

Furthermore, U can be represented by a Fourier series expansion in terms
of outer harmonics

U =
∞∑

n=0

2n+1∑

k=1

F
∧L2(ΩR)(n, k)HR

−n−1,k , (10.54)

where the Fourier coefficients are given by

F
∧L2(ΩR)(n, k) =

∫

ΩR

F (y)HR
−n−1,k(y) dω(y), (10.55)

n = 0, 1, . . .; k = 1, . . . , 2n + 1, and the series expansion is absolutely and
uniformly convergent on each subset K ⊂ Ωext

R with dist(K, ΩR) > 0.

Exterior Neumann Problem (ENP): Given F ∈ C(ΩR). Then the funtion
U : Ωext

R → R given by

U(x) = − R

4π

∫

ΩR

N(x, y)F (y)dω(η)

with the Neumann kernel function (Neumann kernel)

N(x, y) =
2R

|x− y| + ln
(
|x|+ |x− y| −R

|x|+ |x− y|+ R

)
, x ∈ Ωext

R ,

is the unique solution of the exterior Neumann boundary-value problem:

(i) U is continuously differentiable in Ωext
R and twice continuously differ-

entiable in Ωext
R , i.e., U ∈ C(1)(Ωext

R ) ∩ C(2)(Ωext
R )

(ii) U is harmonic on Ωext
R , i.e., ΔU = 0 in Ωext

R

(iii) U is regular at infinity, i.e., |U(x)| = O( 1
|x|), |∇U(x)| = O( 1

|x|2 ) as
|x| → ∞

(iv) ∂rU |r=R = ν · (∇U)|ΩR = F ,
where ν : ΩR → R

3 (more explicitly, νΩR
: ΩR → R

3) is the (unit)
normal field pointing into the exterior space Ωext

R .

Furthermore, U can be represented by a Fourier series expansion in terms
of outer harmonics

U = −
∞∑

n=0

2n+1∑

k=1

R

n + 1
F

∧L2(ΩR)(n, k)HR
−n−1,k, (10.56)
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where the Fourier coefficients are given by (10.55), and the series expan-
sion is absolutely and uniformly convergent on each subset K ⊂ Ωext

R with
dist(K, ΩR) > 0.

The solution of the classical boundary-value problems leads us to the
schemes of Tables 10.5 and 10.6 (characterizing ‘upward continuation’).

Table 10.5: (Frequency) Meissl scheme for ‘upward continuation’ (involving
outer harmonics).

ΩS–level: V ∧L2(ΩS)(n, k)
−n+1

S→(∂rV )∧L2(ΩS) (n, k)

↑ ·
(

R
S

)n ↑ ·
(

R
S

)n+1

ΩR–level: V ∧L2(ΩR)(n, k)
−n+1

R→(∂rV )∧L2(ΩR) (n, k)

The vertical arrows characterizing ‘upward continuation’ amount to an
attenuation by the factor

(
R
S

)n. The opposite directions characterizing
‘downward continuation’ amount to an amplification by the factor

(
S
R

)n.

Table 10.6: (Space) Meissl scheme for ‘upward continuation’ (involving
zonal kernel functions).

ΩS–level: V (Sη)
∗N(Sξ,Sη)→ ∂rV (S, ξ)

∗D(Sη, Rζ) ↑ ↑ ∗D(Sξ, Rα)

ΩR–level: V (Rζ)
∗N(Rα,Rζ)→ ∂rV (Rα)

The vertical arrows characterizing ‘upward continuation’ describe the con-
volution with the (zonal) Abel-Poisson kernel, while the transition to the
Neumann problem amounts to the convolution with the (zonal) Neumann
kernel function.
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Fig. 10.14: The disturbing potential EGM96 and its first and second radial
derivatives ∂rT and ∂2

rrT , respectively, at Earth’s surface [0km] and at al-
titude [200km] (illustrated in the upper row), Geomathematics Group, TU
Kaiserslautern, W. Freeden (1999).

A system {Φn}n=0,1,..., Φn ∈ L2(ΩR), is called complete in the Hilbert
space L2(ΩR) if it satisfies the following property: For every Φ ∈ L2(ΩR),
the condition

(Φ, Φn)L2(ΩR) =
∫

ΩR

Φ(x)Φn(x) dω(x) = 0 (10.57)

for all n = 0, 1, . . . implies Φ = 0 (in the sense of L2(ΩR)).

In classical potential theory (see e.g. O.D. Kellogg (1929)), a large number
of systems {Φ̃n}n=0,1,..., Φ̃n : Ωext

R → R, is known satisfying the following
properties:

(i) Φ̃n is continuous on Ωext
R and twice continuously differentiable on Ωext

R

for n = 0, 1, . . .

(ii) Φ̃n is harmonic on Ωext
R , i.e. ΔxΦ̃n(x) = 0 for all x ∈ Ωext

R and n =
0, 1, . . .

(iii) {Φn}n=0,1,... with Φn = Φ̃n|ΩR, n = 0, 1, . . ., is complete in L2(ΩR).

The most important system (e.g., in geosciences) is the already known
system of outer harmonics (i.e., multipoles). A proof can be found, for
example, in W. Freeden (1979a), C. Müller (1998).

Lemma 10.1. Let {HR
−n−1,k} n=0,1,...

k=1,...,2n+1
be a system of outer harmonics.
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Then {
HR

−n−1,k|ΩR

}
n=0,1,...

k=1,...,2n+1

(10.58)

is a linearly independent complete system in L2(ΩR).

In order to illustrate the role of single poles, we use the concept of fun-
damental systems in Ωint

R .

Definition 10.2. A system Y = {yn}n=0,1,... ⊂ Ωint
R (yn �= yk for all n �= k)

with supn=0,1,...|yn| = ρ < R is called a fundamental system in Ωint
R if the

conditions

(i) F is twice continuously differentiable in Ωint
R ,

(ii) F is harmonic on Ωint
R , i.e. ΔF = 0 in Ωint

R ,

(iii) F (yn) = 0 for n = 0, 1, . . .

imply the property
F = 0

in Ωint
R .

Analogously, a system Y = {yn}n=0,1,... ⊂ Ωext
R (yn �= yk for all n �= k)

with infn=0,1,...|yn| = ρ > R is called a fundamental system in Ωext
R if the

conditions

(i) F is twice continuously differentiable in Ωext
R ,

(ii) F is harmonic on Ωext
R , i.e. ΔF = 0 in Ωext

R ,

(iii) F is regular at infinity, i.e.

|F (x)| = O

(
1
|x|

)
, |x| → ∞,

∣∣ (∇F ) (x)
∣∣ = O

(
1
|x|2

)
, |x| → ∞,

(iv) F (yn) = 0 for n = 0, 1, . . .

imply the property
F = 0

in Ωext
R .

Observing this definition, we are able to formulate the following lemma.
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Lemma 10.3. Suppose that Y = {yn}n=0,1,... is a fundamental system in
Ωint

R with
supn=0,1,...|yn| = ρ < R . (10.59)

Denote by

x �→ M(x, yn) =
1

|x− yn|
, x ∈ Ωext

R . (10.60)

the single poles (mass points) at yn ∈ Y , n = 0, 1, . . ..Then

{M (x, yn) |x∈ΩR
}n=0,1,... (10.61)

is a linearly independent complete system in L2(ΩR).

Proof. Provided that yn �= yk for all n �= k, we are immediately able to
verify the linear independence.

Our aim is to prove the completeness. Consider a function Φ ∈ L2(ΩR)
and require that

(Φ, M (·, yn))L2(ΩR) =
∫

ΩR

M(y, yn)Φ(y) dω(y) = 0 (10.62)

for n = 0, 1, . . .. Then, the (single-layer) potential U defined by

U(x) =
∫

ΩR

M(y, x)Φ(y) dω(y) (10.63)

vanishes at all points yn ∈ Y . Since Y is a fundamental system in Ωint
R , this

fact shows us that U = 0 in Ωint
R . Observing the fact that

M(y, x) =
1
|y|

∞∑

n=0

(
|x|
|y|

)n

Pn

(
x

|x| ·
y

|y|

)
, y ∈ ΩR, (10.64)

we obtain for all x ∈ Ωint
R with |x| = ρ

U(x) =
1
R

∞∑

n=0

2n+1∑

k=1

4πR2

2n + 1

( ρ

R

)n
Y R

n,k (x)
∫

ΩR

Φ(y)Y R
n,k (y) dω(y)

= 0. (10.65)

This tells us that
(
Φ, HR

n,k

)
L2(ΩR)

=
∫

ΩR

Φ(y)HR
n,k(y) dω(y) = 0 (10.66)

for n = 0, 1, . . .; k = 1, . . . , 2n + 1. Thus, the completeness of the system
{HR

n,k} n=0,1,...
k=1,...,2n+1

shows us that Φ = 0 in L2(ΩR), as required.
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Some examples of fundamental systems in Ωint
R should be listed below:

(i) If Y is a countable dense set of points on a closed surface Ξ ⊂ Ωint
R

with dist(Ξ, ΩR) > 0, then Y is a fundamental system in Ωint
R .

(ii) If Y is a countable dense set of points in the inner space Ξint of a closed
surface Ξ with dist(Ξ, ΩR) > 0, then Y is a fundamental system in
Ωint

R .

(iii) Let w0 be a point in Ωint
R . Let {xn}n=0,1,... ⊂ Ωint

R be an infinite system
of points (with xn �= xk for all n �= k) converging to w0. For the set

S =
{(

xp · ε1, xq · ε2, xr · ε3
)T ∣∣∣ p, q, r ∈ N0

}
(10.67)

we assume S ⊂ Ωint
R . Let Y = {yk}k=0,1,... be an enumeration of S.

Then Y is a fundamental system in Ωint
R .

Further, complete systems which are of relevance in potential theory can be
obtained by using {K(x, yn)}n=0,1,... with

K(x, y) =
1
|x|

∞∑

k=0

2k + 1
4πR2

K∧(k)
(
|y|
|x|

)k

Pk

(
x

|x| ·
y

|y|

)
, (10.68)

x ∈ Ωext
R , y ∈ Y ⊂ Ωint

R ,

instead of the system {M(x, yn)}n=0,1,... provided that Y is a fundamen-
tal system in Ωint

R with ρ = supy∈Y |y| < R, and the coefficients K∧(k),
K∧(k) �= 0 for k = 0, 1, . . ., have to be chosen in such a way that

∞∑

k=0

(2k + 1)
∣∣∣K∧(k)

∣∣∣
( ρ

R

)k
< ∞ . (10.69)

Lemma 10.4. Suppose that Y = {yn}n=0,1,... is a fundamental system in
Ωint

R satisfying supy∈Y |y| = ρ < R. Let K(x, yn) be given by (10.68) (with
coefficients K∧(k) �= 0 for k = 0, 1, . . ., satisfying the condition (10.69)).
Then {

K(x, yn)
∣∣
x∈ΩR

}

n=0,1,...

is a linearly independent complete system in L2(ΩR).

The proof of the completeness for the system {K(·, yn)}n=0,1,... in L2(ΩR)
again follows from the completeness of the system of spherical harmonics.

Of numerical significance are series expansions (10.68) with explicit (i.e.
elementary) representations (as, for example, the single poles).
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Lemma 10.5. Let y0 be a fixed point in Ωint
R and K be given by (10.68).

Denote by Py0

β (x), n = 0, 1, . . ., the expression given by

(
∂

∂y0

)β

K(x, y0),

(β ∈ N0
3: multi-index, [β] = β1 + β2 + β3,

(
∂

∂y0

)β
= ∂[β]

∂
β1
y1

∂
β2
y2

∂
β3
y3

∣∣
y0

).

Then ⎧
⎨

⎩

(
∂

∂y0

)β

K (x, y0)

∣∣∣∣∣
x∈ΩR

⎫
⎬

⎭
[β]=n; n=0,1,...

is a linearly independent complete system in L2(ΩR).

The proof follows from Maxwell’s representation theorem (cf. W. Freeden
et al. (1994)) in connection with the completeness of the system of spherical
harmonics.

Applying the Kelvin transform with respect to the sphere ΩR with radius
R around the origin (cf. O.D. Kellogg (1929)), we are led to systems

{
K(x, yn)

∣∣∣x∈Ωext
R

}

n=0,1,...

with

K(x, y) =
∞∑

k=0

2k + 1
4πR2

K∧(k)
(

R2

|x| |y|

)k+1

Pk

(
x

|x| ·
y

|y|

)
, (10.70)

x ∈ Ωext
R , y ∈ Y ⊂ Ωext

R ,

where Y = {yn}n=0,1,... is the point system generated by Y by letting

yn =
R2

|yn|2
yn, n = 0, 1, . . . (10.71)

(thereby assuming 0 �∈ Y ). Note that our above assumptions imply the
estimate ∞∑

k=0

(2n + 1)
∣∣∣K∧(k)

∣∣∣
(

R

ρ

)k

< ∞, (10.72)

where ρ is given by
ρ = infy∈Y |y| > R . (10.73)

Therefore, we are able to formulate the following result.
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Lemma 10.6. Suppose that Y = {yn}n=0,1,... is given as described above.
Let K(x, yn) be given as above (with coefficients K∧(k) �= 0 for k = 0, 1, . . .,
satisfying (10.72)). Then

{
K (x, yn) |x∈ΩR

}
n=0,1,...

is a linearly independent complete system in L2(ΩR).

The kernels of the form (10.70) play a central role in the Sobolev space
theory of harmonic functions. Typical examples are as follows:

(i) Abel–Poisson kernel:

K∧(k) = 1, k = 0, 1, . . . . (10.74)

The kernel reads as follows:

K(x, y) =
1
4π

|x|2|y|2 −R2

(L(x, y))3/2
, x ∈ Ωext

R , y ∈ Y ⊂ Ωext
R , (10.75)

where we have introduced the abbreviation

L (x, y) = |x|2|y|2 − 2R2x · y + R4 . (10.76)

(ii) Singularity kernel:

K∧(k) =
2

2k + 1
, k = 0, 1, . . . . (10.77)

The kernel is now given by

K (x, y) =
1
2π

1
(L(x, y))1/2

, x ∈ Ωext
R , y ∈ Y ⊂ Ωext

R . (10.78)

(iii) Logarithmic kernel:

K∧(k) =
1

(k + 1)(2k + 1)
, k = 0, 1, . . . . (10.79)

Now we have

K(x, y) =
1

4πR2
ln

(
R2 − x · y + (L(x, y))1/2

|x| |y|+ x · y

)
, (10.80)

x ∈ Ωext
R , y ∈ Y ⊂ Ωext

R .
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Remark 10.7. Choosing (instead of (10.69) and (10.72)) K∧(k) (with
K∧(k) �= 0 for k = 0, 1, . . .) in such a way that

∞∑

k=0

(2k + 1)
∣∣∣K∧(k)

∣∣∣ < ∞, (10.81)

i.e. the sequence {∣∣K∧(k)
∣∣−1/2

}

n=0,1,...
(10.82)

is assumed to be summable (in the sense of W. Freeden (1998)), ρ and ρ are
even allowed to satisfy ρ ≤ R and ρ ≥ R, respectively.

An equivalent statement to the completeness of a system {Φn}n=0,1,... ⊂
L2(ΩR) is the closure (see e.g. P.J. Davis (1963) for the proof of equivalence):
For a given function Φ ∈ L2(ΩR) and an arbitrary value ε > 0, there exist
an integer N(= N(ε)) and constants a0, . . . , aN such that

⎛

⎝
∫

ΩR

∣∣∣∣∣Φ(y)−
N∑

n=0

anΦn(y)

∣∣∣∣∣

2

dω(y)

⎞

⎠
1/2

≤ ε . (10.83)

This property means that any Φ ∈ L2(ΩR) can be approximated by a mem-
ber of the span of {Φn}n=0,1,... ⊂ L2(ΩR) in the sense of the L2(ΩR)–metric.

The step from approximation on the sphere ΩR to approximation in the
outer space Ωext

R can be performed as indicated by the following theorem.

Theorem 10.8. Let K be a (not necessarily compact) subset of the space
Ωext

R satisfying dist(K, ΩR) ≥ ρ > 0. Let Φ̃, Ψ̃ be functions of class
C(Ωext

R ) ∩ C(2)(Ωext
R ), being harmonic on Ωext

R and regular at infinity, such
that Φ̃ |ΩR = Φ and Ψ̃ |ΩR = Ψ . Then, there exists a positive constant
C(= C(K, ΩR)) such that

sup
x∈K

∣∣∣Φ̃(x)− Ψ̃(x)
∣∣∣
2
≤ C

(∫

ΩR

(Φ(y)−Ψ(y))2 dω(y)
)1/2

. (10.84)

Proof. Theorem 10.8 is easily verified by application of the Abel–Poisson
integral formula (see Section 3.6)

Φ̃(x)− Ψ̃(x) =
∫

ΩR

D(x, y) (Φ(y)−Ψ(y)) dω(y), (10.85)

where D(x, y) denotes the Abel–Poisson kernel (see (10.53)). Put

C = C(K, ΩR) = sup
x∈K

(∫

ΩR

(D(x, y))2 dω(y)
)1/2

. (10.86)
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Then, for each x ∈ K, the Cauchy–Schwarz inequality yields
∣∣∣Φ̃(x)− Ψ̃(x)

∣∣∣
2
≤ C2

∫

ΩR

(Φ(y)−Ψ(y))2 dω(y) . (10.87)

This is the desired result.

Let Φ̃ be the unique solution of the Dirichlet problem in Ωext
R correspond-

ing to the boundary values Φ̃
∣∣ΩR = Φ, Φ ∈ C(ΩR). If now {Φ̃n}n=0,1,... is

given such that each Φ̃n is the unique solution of the Dirichlet problem in
Ωext

R corresponding to the boundary values Φ̃n |ΩR = Φn, n = 0, 1, . . . , and
{Φn}n=0,1,... ⊂ C(ΩR) forms a complete system in L2(ΩR), then, for every
ε > 0, there exist an integer N(= N(ε)) and coefficients a0, . . . , aN such
that

sup
x∈K

∣∣∣∣∣Φ̃(x)−
N∑

n=0

anΦ̃n(x)

∣∣∣∣∣ (10.88)

≤ C(K, ΩR)

⎛

⎝
∫

ΩR

(
Φ(y)−

N∑

n=0

anΦn(y)

)2

dω(y)

⎞

⎠
1/2

≤ C(K, ΩR) ε

for each subset K ⊂ Ωext
R with dist(K, ΩR) ≥ ρ > 0. In other words,

approximation in quadratic sense on the sphere ΩR implies uniform approx-
imation for each subset K ⊂ Ωext

R with dist(K, ΩR) ≥ ρ > 0. This result is
illustrated for typical satellite problems in the scheme of Table 10.7.

Table 10.7: Dirichlet’s problem.

Satellite’s height
convergence in C(ΩS)– topology

lim
N→∞

sup
x∈ΩS

∣∣∣∣∣U(x)−
N∑

n=0

2n+1∑

k=1

U
∧L2(ΩR)(n, k)HR

−n−1,k(x)

∣∣∣∣∣ = 0

⇑
Earth’s height

convergence in L2(ΩR)– topology

lim
N→∞

(∫

ΩR

∣∣∣U(x)−
N∑

n=0

2n+1∑

k=1

U
∧L2(ΩR)(n, k)︸ ︷︷ ︸

=F
∧

L2(ΩR) (n,k)

HR
−n−1,k(x)

∣∣∣
2
dω(x)

)1/2
= 0

A similar result is true for the Neumann problem:

Theorem 10.9. Let K be a (not necessarily compact) subset of the space
Ωext

R satisfying dist(K, ΩR) ≥ ρ > 0. Let Φ̃, Ψ̃ be functions of class C(1)(Ωext
R )
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∩C(2)(Ωext
R ), being harmonic on Ωext

R and regular at infinity, such that ∂r

Φ̃ |ΩR = F and ∂rΨ̃ |ΩR = G . Then there exists a positive constant C(=
C(K, ΩR)) such that

sup
x∈K

∣∣∣Φ̃(x)− Ψ̃(x)
∣∣∣
2
≤ C

(∫

ΩR

(F (y)−G(y))2 dω(y)
)1/2

. (10.89)

This result enables us to formulate a solution procedure for the exte-
rior Neumann problem: Let Φ̃ be the unique solution of the Neumann
problem in Ωext

R corresponding to the boundary values ∂rΦ̃
∣∣ΩR = F , F ∈

C(ΩR). If now {Φ̃n}n=0,1,... is given such that each Φ̃n is the unique solu-
tion of the Neumann problem in Ωext

R corresponding to the boundary values
∂rΦ̃n |ΩR = Fn, n = 0, 1, . . . , and {Fn}n=0,1,... ⊂ C(ΩR) forms a complete
system in L2(ΩR), then, for every ε > 0, there exist an integer N(= N(ε))
and coefficients a0, . . . , aN such that

sup
x∈K

∣∣∣∣∣Φ̃(x)−
N∑

n=0

anΦ̃n(x)

∣∣∣∣∣ (10.90)

≤ C(K, ΩR)

⎛

⎝
∫

ΩR

(
F (y)−

N∑

n=0

anFn(y)

)2

dω(y)

⎞

⎠
1/2

≤ C(K, ΩR) ε

for each subset K ⊂ Ωext
R with dist(K, ΩR) ≥ ρ > 0. In other words,

approximation in quadratic sense on the sphere ΩR of the normal derivative
implies uniform approximation for each subset K ⊂ Ωext

R with dist(K, ΩR) ≥
ρ > 0. An illustration of this result for a satellite situation is given in the
scheme of Table 10.8.

Table 10.8: Neumann’s problem.

Satellite’s height
convergence in C(ΩS)– topology

lim
N→∞

sup
x∈ΩS

∣∣∣∣∣U(x)−
N∑

n=0

2n+1∑

k=1

R

n + 1
(∂rU)∧L2(ΩR)(n, k)HR

−n−1,k(x)

∣∣∣∣∣ = 0

⇑
Earth’s height

convergence in L2(ΩR)– topology

lim
N→∞

(∫

ΩR

∣∣∣∂rU(x)−
N∑

n=0

2n+1∑

k=1

(∂rU)∧L2(ΩR)(n, k)︸ ︷︷ ︸
=F

∧
L2(ΩR) (n,k)

HR
−n−1,k(x)

∣∣∣
2
dω(x)

)1/2
= 0
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We conclude our considerations with the following extension of Theorem
10.8.

Theorem 10.10. Under the assumptions of Theorem 10.8, there exists for
every k ∈ N a constant D(= D(K, ΩR)) such that

sup
x∈K

∣∣∣
(
∇(k)Φ̃

)
(x)−

(
∇(k)Ψ̃

)
(x)
∣∣∣ ≤ D

(∫

ΩR

(Φ(y)−Ψ(y))2 dω(y)
)1/2

.

(10.91)

Proof. From (10.85) it follows that for k ∈ N

(
∇(k)Φ̃

)
(x)−

(
∇(k)Ψ̃

)
(x) =

∫

ΩR

∇(k)
x D(x, y) (Φ(y)−Ψ(y)) dω(η)

(10.92)
for all x ∈ K. Hence, we get from the Cauchy–Schwarz inequality

∣∣∣
(
∇(k)Φ̃

)
(x)−

(
∇(k)Ψ̃

)
(x)
∣∣∣ ≤ D2

∫

ΩR

(Φ(y)−Ψ(y))2 dω(η),

where

D = D (K, ΩR) = sup
x∈K

(∫

ΩR

(
∇(k)

x D(x, y)
)2

dω(η)
)1/2

. (10.93)

This proves Theorem 10.10.

Let Φ̃ be the unique solution of the Dirichlet problem in Ωext
R correspond-

ing to the boundary values Φ̃
∣∣ΩR = Φ, Φ ∈ C(ΩR). If now {Φ̃n}n=0,1,... is

given such that each Φ̃n is the unique solution of the Dirichlet problem in
Ωext

R corresponding to the boundary values Φ̃n

∣∣ΩR = Φn, n = 0, 1, . . ., and
{Φn}n=0,1,... ⊂ C(ΩR) forms a complete system in L2(ΩR), then, for every
ε > 0, there exist an integer N(= N(ε)) and coefficients a0, . . . , aN such
that

sup
x∈K

∣∣∣∣∣

(
∇(k)Φ̃

)
(x)−

N∑

n=0

an

(
∇(k)Φ̃n

)
(x)

∣∣∣∣∣

≤ D(K, ΩR)

⎛

⎝
∫

ΩR

(
Φ(y)−

N∑

n=0

anΦn(y)

)2

dω(y)

⎞

⎠
1/2

≤ D(K, ΩR) ε

for each subset K ⊂ Ωext
R with dist(K, ΩR) ≥ ρ > 0.
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10.4 Limit Formulas and Jump Relations

Let F be a continuous function on the sphere ΩR. Then the functions
Un : R

3\ΩR → R, n = 1, 2, . . ., defined by

Un(x) =
∫

ΩR

F (y)
(

∂

∂ν(y)

)n−1 1
|x− y| dω(y) (10.94)

are infinitely often differentiable and satisfy the Laplace equation in Ωint
R

and Ωext
R (ν is the (unit) normal field pointing into the outer space Ωext

R such
that ν(x) = x/R for all x ∈ ΩR). In addition, the functions Un are regular
at infinity. The function U1 given by

U1(x) =
∫

ΩR

F (y)
1

|x− y| dω(y) (10.95)

is called the potential of the single layer on ΩR, while U2 given by

U2(x) =
∫

ΩR

F (y)
∂

∂ν(y)
1

|x− y| dω(y) (10.96)

is called the potential of the double layer on ΩR.

For F ∈ C(ΩR), the functions Un, n = 1, 2, can be continued continuously
to the surface ΩR, but the limits depend from which parallel surface (inner
or outer) the points x tend to ΩR. On the other hand, the functions Un, n =
1, 2, also are defined on the surface ΩR, i.e., the integrals (10.95), (10.96)
exist for x ∈ ΩR. Furthermore, the integral

U ′
1(x) =

∫

ΩR

F (y)
∂

∂ν(x)
1

|x− y| dω(y) (10.97)

exists for all x ∈ ΩR and can be continued continuously to ΩR. However,
the integrals do not coincide, in general, with the inner or outer limits of
the potentials (see, for example, S.G. Michlin (1975), R. Leis (1967), W.
Walter (1971)).

From classical potential theory (see, for example, O.D. Kellogg (1929), W.
Walter (1971)) and the references therein), it is known that for all x ∈ ΩR

and F ∈ C(ΩR)
lim
τ→0
τ>0

U1(x± τν(x)) = U1(x), (10.98)

lim
τ→0
τ>0

∂U1

∂ν(x)
(x± τν(x)) = ∓2πF (x) + U ′

1(x), (10.99)

lim
τ→0
τ>0

U2(x± τν(x)) = ±2πF (x) + U2(x), (10.100)
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(limit relations)

lim
τ→0
τ>0

(U1(x + τν(x))− U1(x− τν(x))) = 0, (10.101)

lim
τ→0
τ>0

(
∂U1

∂ν(x)
(x + τν(x))− ∂U1

∂ν(x)
(x− τν(x))

)
= −4πF (x), (10.102)

lim
τ→0
τ>0

(U2(x + τν(x)− U2(x− τν(x)) = 4πF (x), (10.103)

lim
τ→0
τ>0

(
∂U2

∂ν(x)
(x + τν(x))− ∂U2

∂ν(x)
(x− τν(x))

)
= 0 (10.104)

(jump relations).

In addition, it was shown by O.D. Kellogg (1929) that the preceding
relations hold uniformly with respect to all x ∈ Ω. This means that

lim
τ→0
τ>0

sup
x∈ΩR

|U1(x± τν(x))− U1(x)| = 0, (10.105)

lim
τ→0
τ>0

sup
x∈ΩR

∣∣∣∣
∂U1

∂ν(x)
(x± τν(x))± 2πF (x)− U ′

1(x)
∣∣∣∣ = 0, (10.106)

lim
τ→0
τ>0

sup
x∈ΩR

∣∣U2(x± τν(x))∓ 2πF (x)− U2(x)
∣∣ = 0 (10.107)

and
lim
τ→0
τ>0

sup
x∈ΩR

∣∣U1(x + τν(x))− U1(x− τν(x))
∣∣ = 0, (10.108)

lim
τ→0
τ>0

sup
x∈ΩR

∣∣∣∣
∂U1

∂ν(x)
(x + τν(x))− ∂U1

∂ν(x)
(x− τν(x)) + 4πF (x)

∣∣∣∣ = 0, (10.109)

lim
τ→0
τ>0

sup
x∈ΩR

∣∣U2(x + τν(x))− U2(x− τν(x))− 4πF (x)
∣∣ = 0, (10.110)

lim
τ→0
τ>0

sup
x∈ΩR

∣∣∣∣
∂U2

∂ν(x)
(x + τν(x))− ∂U2

∂ν(x)
(x− τν(x))

∣∣∣∣ = 0 . (10.111)

Here we have written, as usual,

∂U

∂ν(x)
(x± τν(x)) =

x

R
· (∇U)(x± τν(x)) . (10.112)

Furthermore, by means of functional analysis, W. Freeden (1980a) (see also
W. Freeden, C. Mayer (2003)) was able to show that the limit and jump
relations also hold true in L2-topology. In more detail,

lim
τ→0
τ>0

(∫

Ω
|U1(x± τν(x))− U1(x)|2 dω(x)

)1/2

= 0, (10.113)



456 10 Zonal Function Modeling of Earth’s Mass Distribution

lim
τ→0
τ>0

(∫

Ω

∣∣∣∣
∂U1

∂ν(x)
(x± τν(x))± 2πF (x)− U ′

1(x)
∣∣∣∣
2

dω(x)

)1/2

= 0, (10.114)

lim
τ→0
τ>0

(∫

Ω

∣∣U2(x± τν(x))∓ 2πF (x)− U2(x)
∣∣2 dω(x)

)1/2

= 0 (10.115)

and

lim
τ→0
τ>0

(∫

Ω

∣∣U1(x + τν(x))− U1(x− τν(x))
∣∣2 dω(x)

)1/2

= 0, (10.116)

lim
τ→0
τ>0

(∫

Ω

∣∣∣∣
∂U1

∂ν(x)
(x + τν(x))− ∂U1

∂ν(x)
(x− τν(x)) + 4πF (x)

∣∣∣∣
2

dω(x)

)1/2

= 0,

(10.117)

lim
τ→0
τ>0

(∫

Ω

∣∣U2(x + τν(x))− U2(x− τν(x))− 4πF (x)
∣∣2 dω(x)

)1/2

= 0,

(10.118)

lim
τ→0
τ>0

(∫

Ω

∣∣∣∣
∂U2

∂ν(x)
(x + τν(x))− ∂U2

∂ν(x)
(x− τν(x))

∣∣∣∣
2

dω(x)

)1/2

= 0 .

(10.119)

The classical boundary-value problems can be solved in terms of layer
potentials. We recapitulate the essential results for the Dirichlet and Neu-
mann problem (for more details the reader is referred, e.g., to S.G. Michlin
(1975), W. Walter (1971) and the references therein).

Exterior Dirichlet Problem (EDP): Given F ∈ C(ΩR), find a function U ∈
C(Ωext

R ) ∩ C(2)(Ωext
R ) which is harmonic in Ωext

R and regular at infinity such
that

U+
ΩR

(x) = lim
τ→0
τ>0

U(x + τν(x)) = F (x), x ∈ ΩR. (10.120)

Exterior Neumann Problem (ENP): Given a function F ∈ C(ΩR), find U ∈
C(1)(Ωext

R )∩C(2)(Ωext
R ) which is harmonic in Ωext

R and regular at infinity such
that

∂U+

∂νΩR

(x) = lim
τ→0
τ>0

ν(x) · (∇U)(x + τν(x)) = F (x), x ∈ ΩR. (10.121)

Existence and Uniqueness: We recall the role of layer potentials in the
aforementioned boundary-value problems.
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(EDP) Let D+ (more accurately, D+
ΩR

) denote the set consisting of all H+
ΩR

,
where H is of class C(Ωext

R ) ∩ C(2)(Ωext
R ), harmonic in Ωext

R , and regular at
infinity.

By virtue of the maximum/minimum principle, the solution of (EDP) is
uniquely determined, hence,

D+ = C(ΩR). (10.122)

It can be formulated in terms of a potential of the form

U(x) (10.123)

=
∫

ΩR

Q(y)
∂

∂ν(y)
1

|x− y| dω(y) +
1
|x|

∫

ΩR

Q(y) dω(y), Q ∈ C(ΩR),

such that Q satisfies the integral equation

F = U+
ΩR

=
(
2πI + P + P|2(0, 0)

)
, Q ∈ C(ΩR), (10.124)

where
P (Q) : x �→ 1

|x|

∫

ΩR

Q(y) dω(y). (10.125)

and
P|2(0, 0)Q(x) =

∫

ΩR

Q(y)
∂

∂ν(y)
1

|x− y| dω(y), (10.126)

Setting
T = 2πI + P + P|2(0, 0) (10.127)

we obtain
kern(T ∗) = {0}, (10.128)

T (C(ΩR)) = D+. (10.129)

By completion,

L2(ΩR) = D+‖·‖L2(ΩR) = C(ΩR)
‖·‖L2(ΩR) . (10.130)

(ENP) Let N+ (more accurately, N+
ΩR

) denote the set consisting of all ∂H+

∂νΩR
,

where H is of class C(1)(Ωext
R )∩C(2)(Ωext

R ), harmonic in Ωext
R , and regular at

infinity.

By virtue of the first Green theorem (cf. Theorem 2.2), the solution of
(ENP) can be shown to be uniquely determined, hence,

N+ = C(ΩR). (10.131)
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It can be formulated in terms of a single-layer potential

U(x) =
∫

ΩR

Q(y)
1

|x− y| dω(y), Q ∈ C(ΩR), (10.132)

such that Q satisfies the integral equations

F =
∂U+

∂νΩR

=
(
−2πI + P|1(0, 0)

)
Q, (10.133)

where
P|1(0, 0)Q(x) =

∂

∂ν(x)

∫

Ω
Q(y)

1
|x− y| dω(y). (10.134)

Setting
T =

(
−2πI + P|1(0, 0)

)
(10.135)

we obtain
kern (T ∗) = {0}, (10.136)

T (C(ΩR)) = N+. (10.137)

By completion,
L2(ΩR) = N+‖·‖L2(ΩR) . (10.138)

Analogous arguments, of course, hold for the inner boundary-value prob-
lems. The details are left to the reader. A more comprehensive treatment
of classical potential theory may be found in standard textbooks, e.g., O.D.
Kellogg (1929), W. Walter (1971).

10.5 Gravity Anomalies and Deflections of the
Vertical

The traditional concept of physical geodesy (for more details, the reader is
referred to the survey article given by, e.g., R. Rummel (1992)) is based
on the assumption that all over the Earth, the position (e.g., latitude and
longitude) and scalar gravity g are available. Moreover, it is common prac-
tice that the gravitational effects of the sun and moon and of the Earth’s
atmosphere are accounted for by means of corrections. The gravitational
part of the gravity potential can then be regarded as a harmonic func-
tion. A classical approach to gravity field modeling was conceived by G.G.
Stokes (1849). He proposed reducing the given gravity accelerations from
the Earth’s surface to the geoid. As the geoid is a level surface, its poten-
tial value is constant. The difference between the reduced gravity on the
geoid and the reference gravity on the so-called normal ellipsoid is called the
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gravity anomaly. The disturbing potential, i.e., the difference between the
actual and the reference potential, can be obtained from a (third) boundary
value problem of potential theory. Its solution is representable in integral
form, i.e., by the Stokes integral. The disadvantage of the Stokes approach
is that the reduction to the geoid requires the introduction of assumptions
concerning the unknown mass distribution between the Earth’s surface and
the geoid.

In this paper, we briefly recapitulate the classical approach to global grav-
ity field determination due to Stokes (1849), Bruns (1878), and Neumann
(1887) by formulating the differential/integral relations between gravity dis-
turbance, gravity anomaly, vertical deflections on the one hand, and the
disturbing potential and the geoidal undulations on the other hand. The
representation of the disturbing potential in terms of gravity disturbances,
gravity anomalies, and deflections of the vertical are written in terms of
well-known integral representations over the geoid. For practical purposes,
the integrals are replaced by approximate formulas using certain integration
weights and knots within a spherical framework.

Equipotential surfaces of the gravity potential W allow, in general, no
simple representation. This is the reason why a reference surface, in physi-
cal geodesy usually an ellipsoid of revolution, is chosen for the (approximate)
construction of the geoid. As a matter of fact, the deviations of the gravity
field of the Earth from the normal field of such an ellipsoid are small. The
remaining parts of the gravity field are gathered in a so-called disturbing
gravity field ∇T corresponding to the disturbing potential T . Knowing the
gravity potential, all equipotential surfaces – including the geoid – are given
by an equation of the form W (x) = const. By introducing U as the normal
gravity potential corresponding to the ellipsoidal field and T as the dis-
turbing potential (for details see, e.g., E. Groten (1979), W.A. Heiskanen,
H. Moritz (1967), W. Torge (1991)) we are led to a decomposition of the
gravity potential in the form

W = U + T (10.139)

such that

(1) the center of the ellipsoid coincides with the center of gravity of the
Earth,

(2) the difference of the mass of the Earth and the mass of the ellipsoid
is zero.

Consequently, in accordance with the classical approach (see, e.g., E. Groten
(1979); W.A. Heiskanen, H. Moritz (1967); W. Torge (1991)), T is given in
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such a way that

(1) ∫

ΩR

T (y)HR
−1,0(y) dω(y) = 0, (10.140)

(2) ∫

ΩR

T (y)HR
−2,k(y) dω(y) = 0, k = 1, 2, 3. (10.141)

The series expansion of T in terms of scalar (outer) harmonics (see Figs.
10.14 and 10.15) is given by

T (x) =
∞∑

n=2

2n+1∑

k=1

T
∧L2(ΩR)(n, k)HR

−n−1,k(x), x ∈ Ωext
R , (10.142)

where T
∧L2(ΩR)(n, k) is given by

T
∧L2(ΩR)(n, k) =

∫

ΩR

T (y)HR
−n−1,k(y) dω(y). (10.143)

Fig. 10.15: Degree variances
∑2n+1

n=1 T
∧L2(ΩR)(n, k) for the anomalous poten-

tial derived from satellite data (see ESA (1998)).

A point x of the geoid is projected onto the point y of the ellipsoid by
means of the ellipsoidal normal (see Fig. 10.16). The distance between x
and y is called the geoidal height, or geoidal undulation.
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The gravity anomaly vector is defined as the difference between the gravity
vector w(x) and the normal gravity vector u(y), u = ∇U , i.e.,

α(x) = w(x)− u(y) (10.144)

(see Fig. 10.16). It is also possible to subtract the vectors w and u at the
same point x to get the gravity disturbance vector

δ(x) = w(x)− u(x). (10.145)

geoid
W=const =W0

reference
ellipsoid
U = const = U0

y

x

w(x)

u(y)

u(x)

�(x)

N(x)

�’(x)

geoidal height

Fig. 10.16: Illustration of the definition of the gravity anomaly vector α(x) =
w(x)− u(y) and the gravity disturbance vector δ(x) = w(x)− u(x).

Of course, several basic mathematical relations between the quantities
just mentioned are known. In what follows, we only describe heuristically
the fundamental relations (in spherical nomenclature). We start by observ-
ing that the gravity disturbance vector at the point x can be written as

δ(x) = w(x)− u(x) = ∇(W (x)− U(x)) = ∇T (x). (10.146)

Expanding the potential U at x according to Taylor’s theorem and trun-
cating the series at the linear term, we get

U(x) .= U(y) +
∂U

∂ν ′ (y)N(x) (10.147)

( .= means approximation in linearized sense). Here, ν ′(y) is the ellipsoidal
normal at y, i.e., ν ′(y) = −u(y)/γ(y), γ(y) = |u(y)|, and the geoid un-
dulation N(x), as indicated in Fig. 10.16, is the aforementioned distance
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between x and y, i.e., between the geoid and the reference ellipsoid. Using

γ(y) = |u(y)| = −ν ′(y) · u(y)

= −ν ′(y) · ∇U(y) = −∂U

∂ν ′ (y) (10.148)

we arrive at

N(x) =
T (x)− (W (x)− U(y))

|u(y)|

=
T (x)− (W (x)− U(y))

γ(y)
. (10.149)

Letting U(y) = W (x) = const = W0 we obtain the so-called Bruns’ formula
(cf. E.H. Bruns (1878))

N(x) =
T (x)
γ(y)

. (10.150)

It should be noted that Bruns’ formula (10.150) relates the physical quantity
T to the geometric quantity N .

In what follows, we are interested in introducing the deflections of the
vertical of the gravity disturbing potential T . For this purpose, let us con-
sider the vector field ν(x) = −w(x)/|w(x)|. This gives us the identity (with
g(x) = |w(x)| and γ(x) = |u(x)|)

w(x) = ∇W (x) = −|w(x)| ν(x) = −g(x)ν(x). (10.151)

Furthermore, we have

u(x) = ∇U(x) = −|u(x)| ν ′(x) = −γ(x)ν ′(x). (10.152)

The deflection of the vertical Θ(x) at the point x on the geoid is defined
to be the angular (i.e., tangential) difference between the directions ν(x)
and ν ′(x), i.e., the plumb line and the ellipsoidal normal through the same
point:

Θ(x) = ν(x)− ν′(x)− ((ν(x)− ν′(x)) · ν(x)) ν(x). (10.153)

Clearly, because of (10.153), Θ(x) is orthogonal to ν(x), i.e., Θ(x) ·ν(x) = 0.
Since the plumb lines are orthogonal to the level surfaces of the geoid and
the ellipsoid, respectively, the deflections of the vertical give, briefly spoken,
a measure of the gradient of the level surfaces. This aspect will be described
in more detail below: From (10.151) we obtain, in connection with (10.153),

w(x) = ∇W (x) (10.154)
= −|w(x)|

(
Θ(x) + ν ′(x) + ((ν(x)− ν ′(x)) · ν(x))ν(x)

)
.
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Altogether, we get for the gravity disturbance vector

w(x)− u(x) = ∇T (x) (10.155)
= −|w(x)|

(
Θ(x) +

(
(ν(x)− ν ′(x)) · ν(x)

)
ν(x)

)

− (|w(x)| − |u(x)|) ν ′(x).

The magnitude

D(x) = |w(x)| − |u(x)| = g(x)− γ(x) (10.156)

is called the gravity disturbance, while

A(x) = |w(x)| − |u(y)| = g(x)− γ(y) (10.157)

is called the gravity anomaly.

Since the vector ν(x) − ν ′(x) is (almost) orthogonal to ν ′(x), physical
geodesy tells us that it can be neglected in (10.155). Hence, it follows that

w(x)− u(x) = ∇T (x) (10.158)
.= −|w(x)|Θ(x)− (|w(x)| − |u(x)|) ν ′(x).

The gradient ∇T (x) can be split into a normal part (pointing into the
direction of ν(x)) and an angular (tangential) part (characterized by the
surface gradient ∇∗). It follows that

∇T (x) =
∂T

∂ν
(x)ν(x) +

1
|x|∇

∗T (x). (10.159)

By comparison of (10.158) and (10.159), we therefore obtain

D(x) = g(x)− γ(x) = |w(x)| − |u(x)| = −∂T

∂ν ′ (x), (10.160)

i.e., the gravity disturbance, beside being the difference in magnitude of
the actual and the normal gravity vector, is also the normal component of
the gravity disturbance vector. In addition, we are led to the angular, i.e.,
(tangential) differential equation

1
|x|∇

∗T (x) = −|w(x)| Θ(x). (10.161)

Since |Θ(x)| is a small quantity, it may be (without loss of precision) mul-
tiplied either by −|w(x)| or by −|u(x)|, i.e., by −g(x) or by −γ(x).

The reference ellipsoid deviates from a sphere only by quantities of the
order of the flattening. Therefore, in numerical calculations, if we treat
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the reference ellipsoid as a sphere ΩR (with mean radius R as defined by,
e.g., W.A. Heiskanen, H. Moritz (1967), B. Hofmann–Wellenhof, H. Moritz
(2005)), this may cause a relative error of the same order (for more details,
the reader is referred to standard textbooks of physical geodesy (e.g., W.A.
Heiskanen, H. Moritz (1967)). If this error is permissible, we are allowed to
replace |u(Rξ)| by its spherical approximation GM/R2 such that

∇∗
ξT (Rξ) = −GM

R
Θ(Rξ), (10.162)

where G is the gravitational constant and M is the constant of the mass.

By virtue of Bruns’ formula, we finally find the relation between geoidal
undulations and deflections of the vertical

GM

R2
∇∗

ξN(Rξ) = −GM

R
Θ(Rξ), ξ ∈ Ω, (10.163)

i.e.,
∇∗

ξN(Rξ) = −R Θ(Rξ), ξ ∈ Ω. (10.164)

In other words, the knowledge of the geoid undulations allows the determi-
nation of the deflections of the vertical by taking the surface gradient on
the unit sphere.

From the identity (10.160), it follows that

−∂T

∂ν ′ (x) = D(x) = |w(x)| − |γ(x)| (10.165)

.= |w(x)| − |γ(y)| − ∂γ

∂ν ′ (y) N(x)

= A(x)− ∂γ

∂ν ′ (y) N(x),

where A represents the scalar gravity anomaly as defined by (10.157). Ob-
serving Bruns’ formula we get

A(x) = −∂T

∂ν ′ (x) +
1

γ(y)
∂γ

∂ν ′ (y) T (x). (10.166)

In well-known spherical approximation, we have (see, e.g., W.A. Heiska-
nen, H. Moritz (1967))

γ(y) = |u(y)| = GM

|y|2 , (10.167)

∂γ

∂ν ′ (y) =
y

|y| · ∇yγ(y) = −2
GM

|y|3 (10.168)

and
1

γ(y)
∂γ

∂ν ′ (y) = − 2
|y| . (10.169)
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Fig. 10.17: The normal derivative [in 100 Gal] and the surface gradient illus-
trated for EGM96 (in 100 Gal), Geomathematics Group, TU Kaiserslautern,
S. Beth (2000).

This leads us to the basic relations (cf. Figs. 10.17, 10.20 and 10.21)

−D(x) =
x

|x| · ∇T (x), x ∈ ΩR, (10.170)

and
−A(x) =

x

|x| · ∇T (x) +
2
|x|T (x), x ∈ ΩR, (10.171)

as so-called fundamental equations of physical geodesy.
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In the sense of physical geodesy (cf., e.g., A.A. Aardalan, E.W. Gra-
farend, G. Finn (2006), W.A. Heiskanen, H. Moritz (1967)), the meaning
of the spherical approximation should be carefully kept in mind. It is used
only for expressions relating to small quantities of the disturbing potential,
the geoidal undulations, the gravity disturbances, the gravity anomalies,
etc. Actually, in all geodetic approaches, the reference surface will never
be understood to be a sphere in any geometrical sense, but it always is an
ellipsoid. However, as the flattening of this ellipsoid is very small, the ellip-
soidal formulas are expandable into Taylor series in terms of the flattening,
and then all terms containing higher order expressions of the flattening may
be neglected. In this way, together with suitable pre-reduction processes of
gravity, formulas are obtained that are rigorously valid for the sphere.

Remark 10.11. In physical geodesy, the deflections of the vertical are
usually decomposed into mutually perpendicular scalar components, and the
so-called Vening Meinesz’ kernel comes into play (see W.A. Heiskanen, H.
Moritz (1967)). In fact, there are various distinctions in the introduction of
the deflections of the vertical (see, e.g., C. Jekeli (1999), W.E. Featherstone,
J.M. Rüeger (2000), E.W. Grafarend (2001), W. Torge (1991)). Recently,
an ellipsoidally based approach to gravity field modeling is given by A.A.
Aardalan, E.W. Grafarend, G. Finn (2006) (see also the references therein).

Remark 10.12. The advantages of ‘zooming-in’ techniques for global and/or
local approximation in physical geodesy is discussed appropriately, e.g., in
E. Groten (2003) (see also the references therein).

Since the disturbing potential T is a harmonic function in Ωext
R , we are

confronted with boundary-value problems of potential theory to determine
T in Ωext

R from prescribed gravity disturbance D or the gravity anomaly A,
respectively.

Remark 10.13. It should be noted that, at the present state of practice,
much more gravity anomalies are available than gravity disturbances. In
future, because of GPS, it may be expected that the gravity disturbances
become more important than the gravity anomalies (for more details see,
e.g., B. Hofmann–Wellenhof, H. Moritz (2005)). This is the reason why
both problems will be discussed here.

As is well known, standard methods for solving boundary–value problems
corresponding to a spherical boundary are as follows:

(1) The expansion method in terms of outer harmonics,

(2) The representation by means of layer-potentials.
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In what follows, we explain these methods both for the (modified) exterior
Neumann problem and for the exterior Stokes problem. Furthermore, we
deal with new procedures of regularization for the integral expression of the
solution on the boundary ΩR, respectively.

Expansion method in terms of outer harmonics. The determination of
the disturbing potential T in Ωext

r from known gravity disturbances on ΩR

leads us to the (modified) Neumann boundary-value problem:

(Modified) Exterior Neumann Problem (ENP): We are given D ∈ C(ΩR)
with ∫

ΩR

D(y)HR
−n−1,k(y)dω(y) = 0

n = 0, 1; and k = 1, . . . , 2n + 1. Then the function T : Ωext
R → R given by

T (x) =
R

4π

∫

ΩR

N(x, y)D(y) dω(y) (10.172)

with the Neumann kernel function

N(x, y) =
2R

|x− y| + ln
(
|x|+ |x− y| −R

|x|+ |x− y|+ R

)
, (10.173)

is the unique solution of the exterior Neumann boundary-value problem:

(i) T is continuously differentiable in Ωext
R and twice continuously differ-

entiable in Ωext
R , i.e., T ∈ C(1)(Ωext

R ) ∩ C(2)(Ωext
R ),

(ii) T is harmonic on Ωext
R , i.e., ΔT = 0 in Ωext

R ,

(iii) T is regular at infinity, i.e., |T (x)| = O
(

1
|x|

)
, |∇T (x)| = O

(
1

|x|2
)

as
|x| → ∞,

(iv)
∫
ΩR

T (y)HR
−n−1,k(y) dω(y) = 0, n = 0, 1; and k = 1, . . . , 2n + 1.

(v) − x
|x| · ∇xT (x) = D(x), x ∈ ΩR.

The solution T can be represented by a Fourier series expansion in terms
of outer harmonics

T =
∞∑

n=2

2n+1∑

k=1

R

n + 1
D

∧L2(ΩR)(n, k)HR
−n−1,k, (10.174)

where
D

∧L2(ΩR)(n, k) =
∫

ΩR

D(y)HR
−n−1,k(y) dω(y), (10.175)

n = 2, 3, . . ., k = 1, . . . , 2n + 1, where the series expansion is absolutely and
uniformly convergent on each subset K ⊂ Ωext

R with dist(K, ΩR) > 0.
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For points x, y ∈ ΩR, we (formally) get the so-called Neumann formula
which is an improper integral over ΩR

T

(
Rx

|x|

)
=

1
4πR

∫

ΩR

⎛

⎝
√

2√
1− x

|x| ·
y
|y|

(10.176)

+ ln

⎛

⎝

√
2− 2 x

|x| ·
y
|y|

2 +
√

2− 2 x
|x| ·

y
|y|

⎞

⎠

⎞

⎠D

(
Ry

|y|

)
dω(y).

Note that the surface integral (10.176) indeed has to be extended over
the whole surface. In accordance with our approach, it is valid under the
following assumptions: (i) The mass within the reference ellipsoid is equal
to the mass of the Earth, (ii) The potential of the geoid and the reference
ellipsoid are equal, (iii) The center of the reference ellipsoid is coincident
with the center of the Earth, (iv) There are no masses outside, (v) The
approximation is simplified in spherical sense.

The identity (10.176) formulated in an equivalent way over the unit sphere
Ω yields

T (Rξ) =
R

4π

∫

Ω
N(ξ · η)D(Rη) dω(η), ξ ∈ Ω, (10.177)

where the Neumann kernel is given by

N(ξ · η) =
√

2√
1− ξ · η − ln

(
1 +

√
2√

1− ξ · η

)
, 1− ξ · η �= 0. (10.178)

Note that
N(Rξ, Rη) = N(ξ · η), ξ, η ∈ Ω. (10.179)

The essential idea now is that the improper integral (10.177) can be regu-
larized, e.g., by replacing the zonal kernel (cf. W. Freeden, K. Wolf (2008))

S(ξ · η) =
√

2√
1− ξ · η , 1− ξ · η �= 0, (10.180)

via the space-regularized zonal kernel (see Figs. 10.18 and 10.19)

Sρ(ξ · η) (10.181)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R

ρ

(
3− 2R2

ρ2
(1− ξ · η)

)
, 0 ≤ 1− ξ · η ≤ ρ2

2R2

√
2√

1− ξ · η , ρ2

2R2 < 1− ξ · η ≤ 2.
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T ρ(Rξ) (10.182)

=
R

4π

∫

1−ξ·η> ρ2

2R2

√
2√

1− ξ · ηD(Rη) dω(η)

− R

4π

∫

1−ξ·η> ρ2

2R2

ln

(
1 +

√
2√

1− ξ · η

)
D(Rη) dω(η)

+
R

4π

∫

1−ξ·η≤ ρ2

2R2

R

ρ

(
3− 2R2

ρ2
(1− ξ · η)

)
D(Rη) dω(η)

− R

4π

∫

1−ξ·η≤ ρ2

2R2

ln
(

1 +
R

ρ

(
3− 2R2

ρ2
(1− ξ · η)

))
D(Rη) dω(η).

1−ρ2/(2R2)

21/2

2R/ρ

3R/ρ

S(t)

Sρ(t)

0 1−1

1

t

Fig. 10.18: The function S and its ‘regularization’ Sρ on the intervals [−1, 1)
and [−1, 1], respectively.

In other words, a low-pass filtered version of T is given by

T ρ(Rξ) =
R

4π

∫

Ω
Nρ(ξ · η)D(Rη) dω(η), (10.183)

where the regularized Neumann kernel reads as follows

Nρ(ξ · η) = Sρ(ξ · η)− ln(1 + Sρ(ξ · η)), ξ, η ∈ Ω. (10.184)
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Note (cf. Fig. 10.20) that t �→ Sρ(t), t ∈ [−1, 1], given by

Sρ(t) (10.185)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R

ρ

(
3− 2R2

ρ2
(1− t)

)
, 0 ≤ 1− t ≤ ρ2

2R2

√
2√

1− t
, ρ2

2R2 < 1− t ≤ 2

is continuously differentiable. Moreover, we have (cf. Fig. 10.18)

S

(
1− ρ2

2R2

)
= Sρ

(
1− ρ2

2R2

)
(10.186)

and

S′
(

1− ρ2

2R2

)
= (Sρ)′

(
1− ρ2

2R2

)
. (10.187)
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Fig. 10.19: The kernel ϑ �→ Sρ(cos ϑ) (10.181) for several ρ.

Furthermore, S and Sρ are monotonically increasing with

S(t) ≥ Sρ(t) ≥ 1 (10.188)

for all t ∈ [−1, 1). Thus,

S(t)− Sρ(t) (10.189)

=

{ √
2√

1−t
− R

ρ

(
3− 2R2

ρ2 (1− t)
)

, 0 < 1− t ≤ ρ2

2R2

0, ρ2

2R2 < 1− t ≤ 2.
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Elementary calculations give

∫ 1

−1
|S(t)− Sρ(t)| dt =

∫ 1

1− ρ2

2R2

(S(t)− Sρ(t)) dt

= O(ρ) (10.190)

as ρ → 0, hence, it follows that

lim
j→∞

∫ 1

−1
|S(t)− Sρj (t)| dt = 0. (10.191)

Observing the properties of the functions S and Sρ, we find

| ln(S(t))− ln(Sρ(t))| ≤ |S(t)− Sρ(t)| (10.192)

and
|ln(1 + S(t))− ln(1 + Sρ(t))| ≤ 1

2
|S(t)− Sρ(t)| . (10.193)

Consequently, we have
∫

Ω

|ln(1 + S(ξ · η))− ln(1 + Sρ(ξ · η))| dω(η) = O(ρ). (10.194)

Since D(R·) : Ω → R is continuous and, therefore, uniformly bounded on
ΩR, we finally obtain in connection with (10.194)

lim
ρ→0

sup
ξ∈T

|T (Rξ)− T ρ(Rξ)| (10.195)

= lim
ρ→0

sup
ξ∈T

R

4π

∣∣∣∣
∫

Ω
(N(ξ · η)−Nρ(ξ · η))D(Rη) dω(η)

∣∣∣∣

= 0

for all subsets T ⊂ Ω.

The determination of the disturbing potential T on Ωext
R from known

gravity anomalies on ΩR leads us to Stokes boundary-value problem.

Exterior Stokes Problem (ESP): We are given A ∈ C(ΩR) with
∫

ΩR

A(y)H−n−1,k(y) dω(y) = 0, n = 0, 1, k = 1, . . . , 2n + 1. (10.196)

Then, the function T : Ωext
R → R given by

T (x) =
R

4π

∫

ΩR

A(y)St(x, y) dω(y) (10.197)
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Fig. 10.20: EIGEN-GL04C derived gravity disturbances and disturbing po-
tential (reconstructed by use of smoothed Haar scaling functions, Geomath-
ematics Group, TU Kaiserslautern, D. Mathar (2008)).

with the Stokes kernel function (briefly called Stokes kernel)

St(x, y) =
R

|x| +
2R

|x− y| −
5R2

|x|2
x

|x| ·
y

|y| −
3R

|x|2 |x− y| (10.198)

− 3
R2

|x|2
x

|x| ·
y

|y| ln
(
|x| −R x

|x| ·
y
|y| + |x− y|

2|x|

)

is the unique solution of the exterior Stokes boundary-value problem(see,
e.g., W. Freeden (1978a)):
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(i) T is continuously differentiable in Ωext
R and twice continuously differ-

entiable in Aext, i.e., U ∈ C(1)(Ωext
R ) ∩ C(2)(Ωext

R ),

(ii) T is harmonic in Ωext
R , i.e., ΔT = 0 in Ωext

R ,

(iii) T is regular at infinity,

(iv)
∫
ΩR

T (y)HR
−n−1,k(y) dω(y) = 0, n = 0, 1, k = 1,. . . , 2n + 1,

(v) − x
|x| · ∇xT (x)− 2

|x|T (x) = A(x), x ∈ ΩR.

The potential T can be represented by a Fourier series expansion in terms
of outer harmonics

T =
∞∑

n=2

2n+1∑

k=1

R

n− 1
A

∧L2(ΩR)(n, k)HR
−n−1,k (10.199)

with
A

∧L2(ΩR)(n, k) =
∫

ΩR

A(y)HR
−n−1,k(y) dω(y), (10.200)

n = 2, 3, . . . , k = 1, . . . , 2n + 1, and the series expansion is absolutely and
uniformly convergent on each subset K ⊂ Ωext

R with dist(K, ΩR) > 0.

For points x, y ∈ ΩR, we (formally) get an analogue to the Neumann
formula, called Stokes’ formula, which again represents an improper integral
over ΩR

T (Rξ) =
1

4πR

∫

ΩR

St(Rξ, Rη)A(Rη) dω(Rη). (10.201)

Equivalently, we have

T (Rξ) =
R

4π

∫

Ω
St(ξ · η)A(Rη) dω(η), (10.202)

where

St(ξ · η) = S(ξ · η)− 6(S(ξ · η))−1 + 1− 5ξ · η (10.203)

−3ξ · η ln
(

1
S(ξ · η)

+
1

(S(ξ · η))2

)
.

Note that
St(Rξ, Rη) = St(ξ · η), ξ, η ∈ Ω. (10.204)

From Bruns’ formula

N(Rξ) = T (Rξ)
R2

GM
(10.205)

we get the geodial undulations (see Fig. 10.21).
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Fig. 10.21: EIGEN-GL04C derived gravity anomalies and geoidal undula-
tions (reconstructed by use of smoothed Haar scaling functions, Geomath-
ematics Group, TU Kaiserslautern, D. Mathar (2008)).

Again, the improper integral (10.202) can be regularized, e.g., by replac-
ing the zonal kernel S (see (10.180) by the space-regularized zonal kernel
Sρ (see (10.181)).

In fact, the regularization (10.181) leads us to the following regularized
global representation of the disturbing potential corresponding to gravity
anomalies as boundary data (see W. Freeden, K. Wolf (2008))

T ρ(Rξ) =
R

4π

∫

Ω
Stρ(ξ · η)A(Rη) dω(η) (10.206)
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with (see Fig. 10.22)

Stρ(ξ · η) = Sρ(ξ · η)− 6(S(ξ · η))−1 + 1− 5ξ · η

−3ξ · η ln
(

1
Sρ(ξ · η)

+
1

(Sρ(ξ · η))2

)
. (10.207)

The integrands of T (Rξ) and T ρ(Rξ) differ only on the spherical cap Sρ(ξ) =
{η ∈ Ω

∣∣1− ξ · η ≤ ρ2

2R2 }. Here we have

St(ξ · η)− Stρ(ξ · η) (10.208)
= (S(ξ · η)− Sρ(ξ · η))

−3ξ · η ln
(

1
S(ξ · η)

+
1

(S(ξ · η))2

)

+3ξ · η ln
(

1
Sρ(ξ · η)

+
1

(Sρ(ξ · η))2

)
.

Now it follows that for all t ∈ [−1, 1) with 1− t ≤ ρ2

2R2

ln
(

1
S(t)

+
1

(S(t))2

)
− ln

(
1

Sρ(t)
+

1
(Sρ(t))2

)
(10.209)

= ln (1 + S(t))− ln(1 + Sρ(t))
−2 (ln (S(t))− ln(Sρ(t))) .

Furthermore, by use of the already known properties of the functions S and
Sρ on [−1, 1), we get

∣∣∣∣ln
(

1
S(t)

+
1

(S(t))2

)
− ln

(
1

Sρ(t)
+

1
(Sρ(t))2

)∣∣∣∣
= O(|S(t)− Sρ(t)|). (10.210)

In connection with (10.189), we therefore find

lim
ρ→0

sup
ξ∈T

|T (Rξ)− T ρ(Rξ)| = 0 (10.211)

for every subset T ⊂ Ω.

Remark 10.14. The last identity can be used to guarantee a multiscale ap-
proximation by locally supported scalar zonal wavelets (see W. Freeden, K.
Wolf (2008)). Hence, a new efficient and economical method has been found
for determining geoid undulations from local data, i.e., gravity anomalies.

The gravity anomalies obtained from EGM96 (see F.G. Lemoine et al.
(1998)) are shown in Fig. 10.21. In the gravity anomalies, all significantly
tectonic processes become visible. In accordance with Newton’s law, the
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Fig. 10.22: The regularized Stokes kernel ϑ �→ Stρ(cos ϑ) for several ρ.

gravity anomalies and gravity disturbances permit the conclusion of an ir-
regular density distribution inside the Earth. Unfortunately, gravity anoma-
lies do not determine uniquely the interior density distribution of the Earth
(this point will be made clear later on, when both density and gravity by
virtue of the Poisson integral representation will be explained in more de-
tail). Geoid undulations (see Fig. 10.21) are the measure of the pertubations
in the hydrostatic equilibrium. They do not show essential correlations to
the distribution of the continents.

Fig. 10.23: Plot of the regularized EGM-geopotential in [m2/s2] (left), the
deflections of the vertical (right) in [m/s2], Geomathematics Group, TU
Kaiserslautern, T. Fehlinger et al. (2007).
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The (unique) solution T of the differential equation for the surface gradi-
ent (cf. Figs. 10.17 and 10.23)

∇∗
ξT (Rξ) = −GM

R
Θ(Rξ), ξ ∈ Ω, (10.212)

satisfying ∫

Ω
T (Rξ) dω(ξ) = 0, (10.213)

∫

Ω
T (Rξ)(ξ · εk) dω(ξ) = 0, k = 1, 2, 3, (10.214)

can be formulated in terms of the Green function with respect to the Bel-
trami operator given by (cf. Section 4.1)

G(ξ · η) = 1 + ln
(

1
(S(ξ · η))2

)
, 1− ξ · η �= 0, (10.215)

as follows

T (Rξ) =
GM

4πR

∫

Ω

∇∗
ηG(ξ · η) ·Θ(Rη) dω(η), ξ ∈ Ω. (10.216)

An easy calculation yields

∇∗
ηG(ξ · η) = ∇∗

η(1− 2 ln(S(ξ · η))) (10.217)

= −2
S′(ξ · η)
S(ξ · η)

(ξ − (ξ · η)η)

= −1
2
(S(ξ · η))2(ξ − (ξ · η)η).

Thus, it follows that

T (Rξ) =
R

4π

∫

Ω
g(ξ, η) ·Θ(Rη) dω(η), (10.218)

where

g(ξ, η) = −GM

2R2
(S(ξ · η))2 (ξ − (ξ · η)η) , ξ, η ∈ Ω. (10.219)

Replacing S by Sρ, we get as regularization T ρ of T corresponding to
deflections of the vertical as data set

T ρ(Rξ) =
R

4π

∫

Ω
gρ(ξ, η) ·Θ(Rη) dω(η), (10.220)

where

gρ(ξ, η) = −GM

2R2
(Sρ(ξ · η))2(ξ − (ξ · η)η), ξ, η ∈ Ω. (10.221)
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Fig. 10.24: Multiscale reconstruction of the regularized anomalous potential
T in [m2s−2] from vertical deflections for the Hawaiian (plume) area using
regularized vector Green functions. (A rough low pass filtering at scale 6 is
improved with several band pass filters of scale 6,...,11. The last illustration
shows the approximation of T at scale J = 12), Geomathematics Group,
TU Kaiserslautern, T. Fehlinger (2008).
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From the properties known for S and Sρ, we are able to derive that

∫

Ω

(
(S(ξ · η))2 − (Sρ(ξ · η))2

)
(ξ − (ξ · η)η) ·Θ(Rη) dω(η)

=
∫

1− ρ2

2R2 ≤ξ·η≤1

(
(S(ξ · η))2 − (Sρ(ξ · η))2

)

×
√

1− (ξ · η)2 · ξ − (ξ · η)η
|ξ − (ξ · η)η| ·Θ(Rη) dω(η)

= O(ρ) (10.222)

provided that Θ(R·) is a continuous vector field on Ω. Consequently, we
have

lim
ρ→0

sup
ξ∈T

|T (Rξ)− T ρ(Rξ)| = 0 (10.223)

for all subsets T ⊂ Ω.

Representation by layer potentials. We again begin with the (modified)
Neumann problem.

(Modified) Exterior Neumann Problem (ENP): We are given D ∈ C(ΩR)
with ∫

ΩR

D(y)HR
−n−1,k(y)dω(y) = 0

n = 0, 1, k = 1, . . . , 2n + 1.

Let N+
2 denote the set consisting of all ∂H+

∂νΩR
corresponding to the func-

tions H : Ωext
R → R satisfying the following conditions:

(i) H is continuously differentiable in Ωext
R and twice continuously differ-

entiable in Ωext
R , i.e., H ∈ C(1)(Ωext

R ) ∩ C(2)(Ωext
R ),

(ii) H is harmonic in Ωext
R , i.e., ΔH = 0 in Ωext

R ,

(iii) H is regular at infinity,

(iv)
∫
ΩR

H(y)HR
−n−1,k(y) dω(y) = 0, n = 0, 1, k = 1,. . . , 2n + 1.

Obviously, the potential T satisfying the properties

(i) T is continuously differentiable in Ωext
R and twice continuously differ-

entiable in Ωext
R , i.e., T ∈ C(1)(Ωext

R ) ∩ C(2)(Ωext
R ),

(ii) T is harmonic on Ωext
R , i.e., ΔT = 0 in Ωext

R ,

(iii) T is regular at infinity, i.e., |T (x)| = O
(

1
|x|

)
, |∇T (x)| = O

(
1

|x|2
)

as
|x| → ∞,
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(iv)
∫
ΩR

T (y)HR
−n−1,k(y) dω(y) = 0, n = 0, 1, k = 1, . . . , 2n + 1.

(v) x
|x| · ∇xT (x) = −D(x), x ∈ ΩR.

is uniquely determined, hence,

N+
2 = C2(ΩR), (10.224)

where C2(ΩR) is the space of all G ∈ C(ΩR) with
∫

ΩR

G(y)HR
−n−1,k(y) dω(y) = 0, n = 0, 1, k = 1, . . . , 2n + 1. (10.225)

T can be formulated in terms of a single-layer potential

T (x) =
∫

ΩR

Q(y)
1

|x− y| dω(y), Q ∈ C2(ΩR), (10.226)

such that Q ∈ C2(ΩR) satisfies the integral equations

−D =
∂T+

∂νΩR

=
(
−2πI + P|1(0, 0)

)
Q, (10.227)

where (cf. (10.134) )

P|1(0, 0)Q(x) =
∂

∂ν(x)

∫

ΩR

Q(y)
1

|x− y| dω(y). (10.228)

Setting
T =

(
−2πI + P|1(0, 0)

)
(10.229)

we obtain
kern (T ∗) = {0}, (10.230)

T (C2(ΩR)) = N+
2 . (10.231)

By completion,

L2
2(ΩR) = N+

2

‖·‖L2(ΩR)
, (10.232)

where L2
2(ΩR) is the space of all G ∈ L2(ΩR) with

∫

ΩR

G(y)HR
−n−1,k(y) dω(y) = 0, n = 0, 1, k = 1, . . . , 2n + 1. (10.233)

Exterior Stokes Problem (ESP): We are given A ∈ C2(ΩR).

Let S+
2 denote the set consisting of all ∂H+

∂νΩR
+ 2

RH|ΩR corresponding to

functions H : Ωext
R → R satisfying the following conditions:
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(i) H is continuously differentiable in Ωext
R and twice continuously differ-

entiable in Ωext
R , i.e., H ∈ C(1)(Ωext

R ) ∩ C(2)(Ωext
R ),

(ii) H is harmonic in Ωext
R , i.e., ΔH = 0 in Ωext

R ,

(iii) H is regular at infinity,

(iv)
∫
ΩR

H(y)HR
−n−1,k(y) dω(y) = 0, n = 0, 1, k = 1,. . . , 2n + 1.

Obviously, the potential T satisfying the properties

(i) T is continuously differentiable in Ωext
R and twice continuously differ-

entiable in Aext, i.e., U ∈ C(1)(Ωext
R ) ∩ C(2)(Ωext

R ),

(ii) T is harmonic in Ωext
R , i.e., ΔT = 0 in Ωext

R ,

(iii) T is regular at infinity,

(iv)
∫
ΩR

T (y)HR
−n−1,k(y) dω(y) = 0, n = 0, 1, k = 1,. . . , 2n + 1,

(v) x
|x| · ∇xT (x) + 2

|x|T (x) = −A(x), x ∈ ΩR.

is uniquely determined, hence,

S+
2 = C2(ΩR). (10.234)

T can be formulated in terms of a single-layer potential

T (x) =
∫

ΩR

Q(y)
1

|x− y| dω(y), Q ∈ C2(ΩR), (10.235)

such that Q ∈ C2(ΩR) satisfies the integral equations

−A =
∂T+

∂νΩR

+
2
R

T =
(
−2πI + P|1(0, 0) +

2
R

P (0, 0)
)

Q, (10.236)

where (see (10.134))

P (0, 0)Q(x) =
∫

Ω
Q(y)

1
|x− y| dω(y) (10.237)

and
P|1(0, 0)Q(x) =

∂

∂ν(x)

∫

Ω
Q(y)

1
|x− y| dω(y). (10.238)

Setting

T =
(
−2πI + P|1(0, 0) +

2
R

P (0, 0)
)

(10.239)

we obtain
kern (T ∗) = {0}, (10.240)

T (C2(ΩR)) = S+
2 . (10.241)

By completion,

L2
2(ΩR) = S+

2

‖·‖L2(ΩR)
. (10.242)
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Remark 10.15. It should be remarked that, in all integral expressions both
for the (modified) exterior Neumann problem and for the exterior Stokes
problem, the kernel |x− y|−1 can be replaced by

1
|x− y| −

1
|x| −

1
|x|

(
|y|
|x|

)
|x|
|x| ·

|y|
|y| (10.243)

(cf. (10.12)).

On the sphere ΩR, the (improper) layer-integrals occurring in the solu-
tion process yielding the disturbing potential from known (discretely given)
gravity disturbances and gravity anomalies, respectively, can be regularized
by use of the kernel function (10.181). The resulting regularized integral
equations (10.227), (10.236), respectively, can be solved, e.g., by colloca-
tion, least squares techniques, or Galerkin approximation (note that S as
well as Sρ as defined by (10.180) and (10.181) are scalar zonal functions).
Even more, the whole discretization process corresponding to discrete data
can be formulated as multiscale procedure (in analogy to the algorithm
proposed by W. Freeden, C. Mayer (2003)).

10.6 Geostrophic Ocean Flow and Dynamic Ocean
Topography

First, we are interested in deriving the known set of equations describing
the dynamic of a fluid from the physical laws of conservation. For discussing
the local and total time derivation, we start from a field u, which depends
on a space and time variable and which is assumed to be differentiable with
respect to each variable. Applying the Taylor expansion up to the first
order, we obtain

u(x + δx, t + δt) = u(x, t) + (δx · ∇x)u(x, t) + (
∂

∂t
u(x, t))δt, (10.244)

where, as usual, δx and δt are infinitesimal displacements in space and time.
Setting δx = x(t + δt)− x(t) and observing the limit

lim
δt→0

∂x

∂t
= v(x, t), (10.245)

where v(x, t) is the velocity of the fluid under consideration, we are led to
the total time derivative of u
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d

dt
u(x, t) = lim

δt→0

u(x(t + δt), t + δt)− u(x, t)
δt

(10.246)

= lim
δt→0

(
∂x

∂t
· ∇x)u(x, t) +

∂

∂t
u(x, t)

= (v(x, t) · ∇x)u(x, t) +
∂

∂t
u(x, t).

In fluid mechanics, the term du
dt characterizes the rate of change of u

following a particle of the fluid. It is called the Lagrangian time derivative
of u. The term ∂u

∂t is called the Eulerian time derivative. It indicates the
rate of change of u at a fixed point in a coordinate frame.

Let us assume that the inner space Ωint
R of the sphere ΩR with radius R

around the origin is occupied by a fluid. If ρ : (x, t) → ρ(x, t), ρ(x, t) is
the time and space dependent density of the fluid at position x ∈ Ωint

R and
time t ≥ 0, then the mass of the fluid enclosed by the sphere ΩR at the
time t is

∫
Ωint

R
ρ(x, t)dV (x) and the rate of mass across the sphere is given

by
∫
ΩR

ρ(x, t)v(x, t) · ν(x)dω(x), where v(x, t) is the velocity of the fluid at
the point x and time t ( ν is the unit normal vector field on ΩR pointing
into the outer space Ωext

R ).

The conservation of mass of the fluid is guaranteed by the balance equa-
tion

∂

∂t

∫

Ωint
R

ρ(x, t) dV (x) = −
∫

ΩR

ρ(x, t) v(x, t) · ν(x) dω(x). (10.247)

By observing the time derivative in the Eulerian framework
d

dt
=

∂

∂t
+ v(x, t) · ∇x (10.248)

we consequently find via the Theorem of Gauss
∂

∂t
ρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0. (10.249)

or
d

dt
ρ(x, t) +∇ · (ρ(x, t)v(x, t))− v(x, t) · ∇xρ(x, t) = 0. (10.250)

The conservation of momentum states that the rate of change in the mo-
mentum is equal to the sum of the total volume force and the total surface
force acting on the fluid. In detail,

d

dt

∫

Ωint
R

ρ(x, t)v(x, t) dV (x) =
∫

Ωint
R

f(x, t) ρ(x, t) dV (x) (10.251)

+
∫

ΩR

f(x, t)ν(x) dω(x),
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where f is the stress tensor. Assuming the incompressibility of the fluid,
i.e. that the time changes of the density d

dtρ(x, t) are negligible, we find in
connection with the Theorem of Gauss

∫

Ωint
R

ρ(x, t)
d

dt
v(x, t) dV (x) = −

∫

Ωint
R

f(x, t)ρ(x, t) dV (x) (10.252)

+
∫

Ωint
R

∇x · f(x, t) dV (x).

Since the last equation is also valid for all subsets in Ωext
R , we are able to

deduce that

ρ(x, t)
d

dt
v(x, t) = ρ(x, t)f(x, t) +∇x · f(x, t). (10.253)

This differential equation connects the acceleration of a fluid with the vol-
ume force and the stress tensor.

Note that the application of the divergence to a tensor of rank 2 is un-
derstood rowwise, i.e., for f(x, t) = (fij(x, t))i,j=1,2,3,

∇x · f(x, t) =

⎛

⎝
3∑

j=1

∂

∂xj
fij(x, t)

⎞

⎠

i=1,2,3

∈ R
3. (10.254)

The third fundamental physical axiom, the conservation of angular mo-
mentum, implies the symmetry of the Cauchy stress tensor f , i.e.,

f(x, t) = (f(x, t))T . (10.255)

Equivalently,
fij(x, t) = fji(x, t) (10.256)

for all i, j = 1, 2, 3.

It should be remarked that the fourth fundamental axiom of physics, the
conservation of energy, does not play a role in this context. Some aspects of
the behavior of the medium in motion are characterizable by the properties
of the Cauchy stress tensor.

In a fluid at rest, the principal stresses are all the same and equal at all
points of the fluid, i.e., the stress tensor of a fluid at rest is isotropic and
only normal stresses act on the fluid. The fluid is normally in a state of
compression and therefore the stress tensor can be written as

f(x, t) = −P (x, t)i, (10.257)



10.6 Geostrophic Ocean Flow and Dynamic Ocean Topography 485

where P (x, t) = −1/3(f11(x, t)+f22(x, t)+f33(x, t)) is the hydrostatic pres-
sure (which is generally a function of the variable x).

In a fluid motion, the Cauchy stress tensor f is usually expressed as a sum
of the isotropic part −P (x, t)i and the remaining non-isotropic part d(x, t)
as follows

f(x, t) = −P (x, t)i + d(x, t). (10.258)

The expression of the non-isotropic stress field is usually written as

d(x, t) = 2μ

(
e(x, t)− 1

3
(∇x · v(x, t))i

)
, (10.259)

where μ is the viscosity of the fluid. The first part in (10.259) is called
the rate of strain tensor and the second part is called the rate of expansion
tensor. The rate of strain reads

e(x, t) =
1
2
(∇x ⊗ v(x, t) + (∇x ⊗ v(x, t))T ). (10.260)

Using the expression (10.259) for d, the total stress tensor becomes

f(x, t) (10.261)

= −P (x, t)i + 2μ(x, t)
(
e(x, t)− 1

3
(∇x · v(x, t))i

)
.

Substituting this equation for the stress tensor into the equation of motion
(10.253), we get

ρ(x, t)
d

dt
v(x, t)

= ρ(x, t)f(x, t)−∇xP (x, t) +∇ ·
(

2μ(x, t)
(
e(x, t)− 1

3
(∇x · v(x, t))i

))
.

The last equation is called the Navier–Stokes equation of motion. If the
viscosity μ is supposed to be uniform over the fluid and constant in time,
(10.262) can be formulated as follows

ρ(x, t)
d

dt
v(x, t)

= f(x, t)ρ(x, t)−∇xP (x, t) + μ

(
Δv(x, t) +

1
3
∇x(∇x · v(x, t))

)
.

If incompressible flow is assumed, the equation of mass conservation leads
to ∇· v(x, t) = 0 for all x and t. The Navier–Stokes equation then takes the
form

ρ(x, t)
d

dt
v(x, t) = ρ(x, t)f(x, t)−∇xP (x, t) + μΔxv(x, t). (10.262)
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By introducing the kinematic viscosity ν = μ ρ, the last equation is repre-
sentable in the form

d

dt
v(x, t) = f(x, t)− 1

ρ(x, t)
∇xP (x, t) + νΔxv(x, t). (10.263)

For incompressible fluids (with d
dtρ(x, t) = 0), it is sufficient to determine v

and P , if additional boundary and initial conditions are given (see, e.g., R.
Temam (1979)). For a spherical approach and its numerical realization, cf.
M.J. Fengler, W. Freeden (2005), M.J. Fengler (2005)).

Remark 10.16. In order to compare the different magnitudes in (10.263),
the equation is written in dimensionless variables. For a representative
length L and a representative velocity V , we define

v′ =
v

V
, x′ =

x

L
, t′ = t

V
L

, P ′ =
P − P0

ρV 2
, (10.264)

where P0 is a representative value of the pressure of the fluid. The Reynolds
number is defined by

Re =
ρLV

μ
=

LV
ν

. (10.265)

In the dimensionless coordinates, the Navier–Stokes equation can be formu-
lated as

d

dt
v′(x′, t′) = −∇′

xP (x′, t′) +
1

Re
Δ′

xv(x′, t′), ∇′
x · v′(x′, t′) = 0. (10.266)

After renaming the variables, this equation becomes in the Eulerian frame-
work

∂

∂t
v(x, t)+(v(x, t)·∇x)v(x, t) = −∇xP (x, t)+

1
Re

Δxv(x, t), ∇x ·v(x, t) = 0.

(10.267)
In the context of the representative magnitudes, the convection term (v(x, t)·
∇x)T v(x, t) is of magnitude V 2/L and the diffusion term Δxv(x, t) is of
magnitude V /L2. Consequently, the Reynolds number is a measure for the
relative magnitude of the convective and the viscous forces. More explicitly,

Re ≈ (v(x, t) · ∇x)v(x, t)
νΔxv(x, t)

. (10.268)

Re essentially smaller than 1, i.e., Re $ 1 means that the inertia force is
much smaller than the viscous force, such that the viscous force and the
pressure force are dominant in (10.267), whereas Re essentially larger than
1, i.e., Re % 1 tells us that the inertia force is dominant.

The Stokes flow problem is characterized by very small velocities, respec-
tively, by very low Reynolds numbers Re such that the non linear convection
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term can be neglected. In the case, the equation (10.267) takes the simpli-
fied form

∂

∂t
v(x, t) = −∇xP (x, t) +

1
Re

Δxv(x, t), ∇x · v(x, t) = 0. (10.269)

If, in addition, the flow is steady, i.e., v and P do not depend on t, the
whole inertia flow is small in magnitude compared to pressure forces and to
viscous forces. Thus, the inertia force is negligible and (10.269) simplifies
to

Δxv(x) = −∇xP (x), ∇x · v(x) = 0, (10.270)

which is the so-called Stokes system of equations (for more details, the
reader is referred to C. Mayer (2007)).

After these general preparations, we now come to the particular problem
of modeling the ocean flow:

The point of departure in the Eulerian framework is the so-called Euler
equation of motion of a fluid in the form

ρ(x, t)
(

∂

∂t
v(x, t) + (v(x, t) · ∇x)v(x, t)

)
= ρ(x, t)f(x, t) +∇x · f(x, t),

(10.271)
where

• ρ is the scalar mass density of the medium,

• v is the velocity of the medium,

• f is the (body) force field acting on the medium,

• f is the Cauchy stress tensor.

Under the assumption of a perfect (ideal) fluid, we are allowed to require
the property that f(x, t)x is parallel to x for all x ∈ R

3\{0}. In fact, for a
perfect fluid, we have

f(x, t) = −P (x, t)i. (10.272)

In addition, the relevant exterior forces may be assumed to consist of the
following ingredients:

• the gravity force, ∇xW (x, t), where, as usual, W is the sum of the
gravitational and the centrifugal potential,

• the Coriolis force, −2ρ ω ∧ v(x, t), where ω is the angular velocity of
the Earth’s rotation,



488 10 Zonal Function Modeling of Earth’s Mass Distribution

• the frictional force, ffric, is due to the geometry, especially the bound-
ary and the internal forces.

Thus, we arrive at the following equation

ρ(x, t)
(

∂

∂t
v(x, t) + (v(x, t) · ∇x)v(x, t) + 2ω ∧ v(x, t)

)

= −ρ(x, t)∇xW (x, t)−∇xP (x, t). (10.273)

Even more, for purposes of modeling the ocean flow, the last equation
may be reduced by further approximations:

Large scale approximation: For large scale ocean flow, the non-linearity
does not play a significant role, i.e., the term (v(x, t) · ∇x)v(x, t) can be
neglected.

Hydrostatic approximation: The scale of the vertical motion is small com-
pared with the scale of the horizontal motion. The vertical Coriolis accel-
eration due to the horizontal motion is neglected in the vertical momentum
equation, as well as the inertial and frictional forces. The assumption of
hydrostatic equilibrium filters out non-hydrostatic gravity waves.

Coriolis force approximation: The horizontal Coriolis acceleration due to
the vertical motion is neglected in the horizontal momentum equations. The
approximations above leave only the horizontal Coriolis acceleration due to
the horizontal motion.

Boussinesq approximation: The vertical scale of the motion is small com-
pared with the scale height. The density variations are neglected except in
the vertical momentum equation when coupled to gravity.

With these approximations, the Euler equation changes drastically. Our
task below is to extract explicitly the spherical currents out of these as-
sumptions, i.e., to separate horizontal and vertical velocities.

In the sense of the Boussinesq approximation, oceanic water is assumed
to be incompressible and homogeneous. In consequence, the density ρ is
replaced by a mean density ρ0. Further, in case of incompressible fluids, the
continuity equation ∂ρ

∂t + ρ(∇ · v) = 0 changes to the equation

∇ · v = 0 (10.274)

providing divergence–free motions. Under the assumption of incompress-
ibility, observing the well-known splitting of the gradient ∇ = ξ ∂

∂r + 1
r∇∗,
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we are able to express vertical velocities by horizontal ones (see, e.g., D.
Michel (2007)).

Theorem 10.17. Let v : Ωext
r → R, r > 0, be divergence free. Then

(
∂

∂r
+

2
r

)
(v(rξ) · ξ) = −1

r
(∇∗ · ptan(v)) . (10.275)

Proof. The vector v(rξ), ξ ∈ Ω, can be written as follows:

v(rξ) = (v(rξ) ·εr(ξ))εr(ξ)+(v(rξ) ·ε(ξ))ε(ξ)+(v(rξ) ·εt(ξ))εt(ξ). (10.276)

Separating ∇ in radial and tangential parts, we have

0 = ∇rξ · v(rξ) (10.277)

= εr(ξ) · ∂

∂r
v(rξ) +

1
r
∇∗

ξ · v(rξ)

= εr(ξ) · ∂

∂r

(
(v(rξ) · εr(ξ)) εr(ξ) + (v(rξ) · εϕ(ξ)) εϕ(ξ)

+
(
v(rξ) · εt(ξ)

)
εt(ξ)

)

+
1
r
∇∗

ξ ·
(

(v(rξ) · εr(ξ)) εr(ξ) + (v(rξ) · εϕ(ξ)) εϕ(ξ)

+
(
v(rξ) · εt(ξ)

)
εt(ξ)

)
.

The first part of this identity can be rewritten in the form

εr(ξ) ·
((

∂

∂r
v(rξ) · εr(ξ)

)
εr(ξ) +

(
∂

∂r
v(rξ) · εϕ(ξ)

)
εϕ(ξ)

+
(

∂

∂r
v(rξ) · εt(ξ)

)
εt(ξ)

)
(10.278)

= εr(ξ) ·
(

∂

∂r
v(rξ) · εr(ξ)

)
εr(ξ)

=
∂

∂r
v(rξ) · εr(ξ) =

∂

∂r
(v(rξ) · εr(ξ)) .

The second part allows the reformulation

∇∗
ξ ·
(

(v(rξ) · εr(ξ)) εr(ξ) + (v(rξ) · εϕ(ξ)) εϕ(ξ) (10.279)

+
(
v(rξ) · εt(ξ)

)
εt(ξ)

)

= ∇∗
ξ (v(rξ) · εr(ξ)) · εr(ξ)

︸ ︷︷ ︸
=0

+ (v(rξ) · εr(ξ))∇∗
ξ · εr(ξ)

︸ ︷︷ ︸
=2

+ ∇∗
ξ ·
(

(v(rξ) · εϕ(ξ)) εϕ(ξ) +
(
v(rξ) · εt(ξ)

)
εt(ξ)

︸ ︷︷ ︸
=ptan(v(rξ))

)
.
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Summarizing our calculations, we finally obtain

0 =
∂

∂r
(v(rξ) · εr(ξ)) + 2(v(rξ) · εr(ξ)) +

1
r
∇∗

ξ · ptan(v(rξ)). (10.280)

This is the desired result.

For the shallow water approximation, the ocean is assumed to be a thin
stratified layer with small aspect ratio (see, e.g., J. Pedlovsky (1979)), i.e.,
the fraction of vertical length scale D to horizontal length scale L satisfies

D

L
$ 1 .

In doing so, we can also assume that small variations in the fluid occur
mainly in horizontal direction, i.e., that the vertical velocity is by far smaller
than its horizontal counterpart. By introducing a characteristic time scale,
we obtain immediately characteristic values for tangential and for vertical
velocities respectively, where the vertical velocities are considerably smaller
than the horizontal ones. This leads us to a separation of the total velocity
vector field into a tangential and a normal field in the form

v = vtan + vnor, (10.281)

where vtan = ptan(v) is the tangential part of v and vnor = pnor(v) = (v · ξ) ξ
is the normal part. In accordance with this decomposition, we obtain

d

dt
vtan(rξ, t) = − 1

ρ0

1
r
∇∗

ξP (rξ, t)− 2ptan(ω ∧ v(rξ, t)) + ptan(ffric),

(10.282)
d

dt
vnor(rξ, t) = − 1

ρ0

∂

∂r
P (rξ, t)ξ − 2pnor(ω ∧ v(rξ, t)) + (w(rξ) · ξ)ξ

(10.283)

where w = −∇W .

For a decorrelation of these equations, we consider the Coriolis part ex-
plicitly. For being energetically consistent, we use the shallow water ap-
proximations and simplify this set of equations by stating some additional
assumptions. Their detailed motivation can be found in J. Pedlovsky (1979).

The first assumption is based on the fact that |vnor| $ |vtan|. Conse-
quently, the expression ptan(ω ∧ vnor) is very small. In fact, it follows that

|ptan(ω ∧ vnor)| = |ω ∧ vnor − ((ω ∧ vnor) · ξ︸ ︷︷ ︸
=0

)ξ| (10.284)

≤ |ω||vnor| sin�(ε3, ξ),
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where �(ε3, ξ) is the angle between ε3 and ξ, i.e., between the normalized
versions of ω and vnor. Since ptan(ω ∧ vnor) is a part of the equation for
|vtan|, the factors of the estimation have to be compared to it. We see that
all are very small, but especially |vnor|. Hence, we are able to omit this
term. Thus, (10.282) can be rewritten as follows

d

dt
vtan(rξ, t) = − 1

ρ0

1
r
∇∗

ξP (rξ, t)− 2ptan(ω ∧ vtan(rξ, t)) + ptan(ffric) .

(10.285)

Moreover, pnor(ω ∧ v) is very small when compared to (w(rξ) · ξ)ξ, since
we have

|pnor(ω ∧ v)| = |((ω ∧ v) · ξ)ξ| (10.286)
= |−(ω ∧ ξ) · v| |ξ|︸︷︷︸

=1

=
∣∣∣− |ω‖2(ε3 ∧ ξ) · (vnor︸︷︷︸

||ξ

+vtan)
∣∣∣

= |ω|
∣∣(ε3 ∧ ξ) · vtan

∣∣

≤ |ω| sin�(ε3, ξ)|vtan|,

where �(ε3, ξ) again is the angle between ε3 and ξ. This means that the
vertical component of the Coriolis force is negligible with respect to the term
(w(rξ) · ξ)ξ, since the rotation rate and the absolute horizontal velocity are
very small. The remaining equation from (10.283) is given by

d

dt
vnor(rξ, t) = − 1

ρ0

∂

∂r
P (rξ, t)ξ + (w(rξ) · ξ)ξ (10.287)

The only two terms being significant in size within the last equation are
gravity (with w(rξ) · ξ assumed to be constant, W0, for our purposes) and
the radial variation of the pressure field. Therefore, we can assume that
these two cancel out each other (see, e.g., J. Pedlovsky (1979)).

In the sense of the hydrostatic approximation, it is assumed that

∂

∂r
P (rξ) = W0ρ0.

This is the reason why we are able to integrate the equation ∂P/∂r = W0ρ0

vertically within a small area slightly below the surface. We understand the
ocean height along the ray to be described as follows:

P (rξ)− P (Rξ) = W0ρ0

(∫ R

r
s ds

)
ξ + W0ρ0

∫ R+Ξ(ξ)

R
ds,
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where P (Rξ) is the atmospheric pressure at the ocean surface. Since we
will not model wind-driven circulation here, we can assume that there are
no pressure differences on the surface, i.e., that P (Rξ) is constant and will,
therefore, vanish within the dynamical equations. The first integral can, at
least within the upper ocean, be assumed to be nearly constant, such that
its surface gradient is very small compared to W0ρ0∇∗

ξΞ(ξ). Thus, in the
upper layer of the ocean, we finally arrive at

∇∗
ξP (rξ) = W0ρ0∇∗

ξΞ(ξ) , (10.288)

i.e., the horizontal pressure gradient is given by differences in the water
column heights. In more detail, determining the distance H(ξ) of a satellite
to the sea surface by satellite altimetry, the difference to the satellite height
Hsat(ξ) gives us the height Hocean(ξ) on the ocean surface: Hocean(ξ) =
Hsat(ξ)−H(ξ). If, in addition, the geoidal height Hgeoid(ξ) is known, then
the dynamic topography (see Fig. 10.25)

Ξ(ξ) = Hocean(ξ)−Hgeoid(ξ) (10.289)

is obtainable. Consequently, the dynamic topography is understood to be
the difference between the sea surface height and the geoidal height (see
Fig. 10.25 for the definition and Fig. 10.26 for a graphical illustration).

Fig. 10.25: Ocean dynamic topography.

Remark 10.18. In our reduction process of Euler’s equation, it remains
to consider the viscous friction. Its inclusion, though viscosity is commonly
small, is unfortunately a mixture of horizontal and vertical components.
Since we use shallow-water approximations, we can neglect certain terms
here, too. Viscous friction ffric, as considered here, is given by

ffric(v) = αtan
1
r2

Δ∗vnor + αlinvtan, (10.290)
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where αlim is an (artifical) linear friction (to stabilize the solution pro-
cess). This finally enables us to state the horizontal shallow water equation
(10.285) in the form

d

dt
vtan(rξ, t) = −w(rξ) · ξ

r
∇∗

ξΞ(ξ, t) (10.291)

+ptan

(
−2ω ∧ vtan(rξ, t) +

αtan

r2
Δ∗

ξvtan(rξ)
)

+αlinvtan(rξ, t).

Written explicitly out in polar coordinates and keeping r ∈ R fixed, equa-
tion (10.291) is identical to the two-dimensional Navier–Stokes equation on
the sphere as discussed by R. Temam (1979). Note that one can use the
continuity equation (10.275) for the vertical component instead of (10.287).
The consideration is omitted, since tangential currents are our main con-
cern in this approach. Summarizing our results, we finally get the following
equation

d

dt
vtan(rξ, t)− toccvtan(rξ, t) = −W0

r
∇∗

ξΞ(ξ, t) , (10.292)

where we used the abbreviations

toccvtan(rξ, t) = ptan

(
−2ω ∧ vtan(rξ, t) +

αtan

r2
Δ∗

ξvtan(rξ, t)
)

(10.293)

+αlinvtan(rξ, t).

In case of linearized, steady state motion ( d
dtvtan(rξ, t) = 0) we have

toccvtan(rξ) =
W0

r
∇∗

ξΞ(ξ). (10.294)

In case of frictionless currents, the only term left in (10.285) is the Coriolis
force balancing the horizontal pressure gradient, i.e., combining (10.285) and
(10.294) we find

2ptan(ω ∧ vtan(rξ)) = −W0

r
∇∗

ξΞ(ξ). (10.295)

This is the so-called geostrophic balance and results in the geostrophic flow
assumption. Considerations of this type of oceanic velocity have already
been investigated, for example, in S. Levitus (1982), R.S. Nerem, C.J.
Koblinsky (1994), R.S. Nerem et al. (1990), S. Beth (2000), W. Freeden
et al. (2005), D. Michel (2007).

Altogether, by assuming frictionless motion (far away from coasts, ocean
surfaces, and ocean beds) of a homogeneous fluid, neglecting turbulent flows
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Fig. 10.26: Dynamic topography, as difference between the original altimet-
ric and geoidal data set, Geomathematics Group, TU Kaiserslautern, D.
Michel (2005) (see also W. Freeden et al. (2005)).

and vertical velocities, the Euler equations simplify to two common con-
servations laws, the hydrostatic and the geostrophic balance. In spherical
nomenclature, on the Earth’s surface ΩR with ω = |ω|(ξ ·ε3)ξ, we are able to
relate the horizontal velocity to the dynamic topography Ξ in the following
way (cf. R. Coleman (1980))

2|ω|(ξ · ε3)(ξ ∧ vtan(Rξ)) = −W0

R
∇∗

ξΞ(ξ), (10.296)

i.e.,

vtan(Rξ) =
W0

2|ω|(ξ · ε3)R
L∗

ξΞ(ξ), (10.297)

(note that (10.297) is valid for all ξ ∈ Ω with ε3 · ξ �= 0, i.e., the equator is
excluded). Clearly, for all ξ ∈ Ω, the geostrophic flow vtan given by (10.297)
is perpendicular to the tangential surface gradient ∇∗Ξ of the sea surface
topography on Ω. This is a remarkable feature of the geostrophic velocity
field. The currents flow along and not across the lines of constant sea surface
topography.

As already known, the knowledge of the dynamic topography allows the
determination of the geostrophic flow by taking the surface curl gradient
(see Fig. 10.27). Conversely, the knowledge of the geostrophic flow implies
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Fig. 10.27: Dynamic topography [cm] and geostrophic flow [cm/s] of the
Gulf stream, Geomathematics Group, TU Kaiserslautern, D. Michel (2005)
(see also W. Freeden et al. (2005)).
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the dynamic topography by taking Green’s surface identity with respect to
L∗ (cf. Section 2.6)

Ξ(ξ) =
|ω|R
πW0

∫

Ω

1
1− ξ · η (η ∧ ξ) · (η · ε3)vtan(Rη) dω(η). (10.298)

10.7 Elastic Field

In the case of motion of material in the Earth’s interior, we are concerned
with solid material in the interior of the Earth such that the assumption of
a perfect fluid is not valid anymore.

For small displacements d : Ωint
R × R → R

3, Euler’s equation of motion
can be linearized in the following way:

ρ(x, t)
∂2d

∂t2
(x, t) = f(x, t) +∇x · f(x, t), (10.299)

where f(x, t) = (fi,j(x, t))i,j=1,2,3 with

fi,j(x, t) =
3∑

k=1

3∑

l=1

Ξi,j,k,l(x, t)
1
2

(
∂dk(x, t)

∂xl
+

∂dl(x, t)
∂xk

,

)
(10.300)

i, j ∈ {1, 2, 3}. The occuring tensor of rank 4, Ξ, is called elasticity tensor
with the following symmetries

Ξi,j,k,l = Ξk,l,i,j = Ξi,j,l,k. (10.301)

An idealized case is an isotropic medium, where we have

Ξi,j,k,l(x, t) = λ̃(x, t)δijδkl + μ̃(x, t)(δikδjl + δilδjk), (10.302)

where λ̃ and μ̃ are the so-called Lamè parameters.

Lemma 10.19. Under the assumption of an isotropic medium, we have for
the Cauchy stress tensor

f(x, t) = λ̃(x, t)(∇x · d(x, t))i + μ̃(x, t)
(
∇x ⊗ d(x, t) + (∇x ⊗ d(x, t))T

)
.

(10.303)
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Proof. For the components of the Cauchy stress tensor, we have

fi,j(x, t)

=
1
2

3∑

k,l=1

(
λ̃(x, t)δijδkl + μ̃(x, t)(δikδjl + δilδjk)

)(∂dk(x, t)
∂xl

+
∂dl(x, t)

∂xk

)

=
1
2

(
λ̃(x, t)δij

3∑

k=1

(
∂dk(x, t)

∂xk
+

∂dk(x, t)
∂xk

)

+μ̃(x, t)
(

∂di(x, t)
∂xj

+
∂dj(x, t)

∂xi
+

∂dj(x, t)
∂xi

+
∂di(x, t)

∂xj

))

= λ̃(x, t)δij(∇x · d(x, t)) + μ̃(x, t)
(

∂di(x, t)
∂xj

+
∂dj(x, t)

∂xi

)
.

Lemma 10.20. Under the assumption of an isotropic medium, Euler’s
equation of motion becomes

ρ(x)
∂2d(x, t)

∂t2
= f(x, t) + (μ̃(x, t) + μ̃(x, t))∇x(∇x · d(x, t))

+ (∇x · d(x, t))∇xλ̃(x, t) + μ̃(x, t)Δxd(x, t)
+ (∇x ⊗ d(x, t) + (∇x ⊗ d(x, t))T )∇xμ(x, t).

Proof. For the proof of this assertion, we have to calculate the divergence
of the Cauchy stress tensor. We split this calculation into two parts and for
the first part we obtain

∇x · (λ̃(x, t)(∇x · d(x, t))i)

= ∇x ·

⎛

⎝
λ̃(x, t)(∇x · d(x, t)) 0 0
0 λ̃(x, t)(∇x · d(x, t)) 0
0 0 λ̃(x, t)(∇x · d(x, t))

⎞

⎠

= ∇x(λ̃(x, t)∇x · d(x, t))

= (∇xd(x, t))∇xλ̃(x, t) + λ̃(x, t)∇x(∇x · d(x, t)).

For the second part, we first get

∇x ·
(
∇x ⊗ d(x, t) + (∇x ⊗ d(x, t))T

)

=

⎛

⎝
3∑

j=1

∂

∂xj

(
∂dj(x, t)

∂xi
+

∂di(x, t)
∂xj

)⎞

⎠

i=1,2,3

=

⎛

⎝
3∑

j=1

∂

∂xj

∂dj(x, t)
∂xi

⎞

⎠

i=1,2,3

+

⎛

⎝
3∑

j=1

∂2di(x, t)
∂x2

j

⎞

⎠

i=1,2,3

= ∇x(∇x · d(x, t)) + Δxd(x, t).



498 10 Zonal Function Modeling of Earth’s Mass Distribution

Thus, we obtain for the second part of ∇ · f ,
∇x · (μ̃(x, t)(∇x ⊗ d(x, t) + (∇x ⊗ d(x, t))T ))

= μ̃(x, t)(∇x(∇x · d(x, t)) + Δxd(x, t))
+
(
∇x ⊗ d(x, t) + (∇x ⊗ d(x, t))T

)
∇xμ̃(x, t),

which finishes the proof.

If the Lamé constants λ̃ and μ̃ are real constants that are not dependent on
the spatial variable x, then we are confronted with a homogeneous medium.
If we, furthermore, neglect the body forces f in the Cauchy–Navier equation,
we obtain a simplified version of this equation given by

ρ(x)
∂2

∂t2
d(x, t) = (λ̃ + μ̃)∇x(∇x · d(x, t)) + μ̃Δxd(x, t). (10.304)

Moreover, when we treat equilibrium problems of an isotropic homogeneous
elastic body, the field equations reduce to the Navier equation (also called
the Cauchy–Navier equation)

μ̃Δxd(x) +
(
λ̃ + μ̃

)
∇x(∇x · d(x)) = 0, x ∈ Ωint

R . (10.305)

This equation plays in the theory of elasticity the same part as the Laplace
equation in the theory of harmonic functions, and it formally reduces to it
for μ̃ = 1, λ̃ = −1.

The Cauchy–Navier equation admits the equivalent formulation

♦xd(x) = Δxd(x) + τ̃∇x(∇x · d(x)) = 0, x ∈ Ωint
R , (10.306)

where

τ̃ =
1

1− 2δ
, δ̃ =

λ̃

2(λ̃ + μ̃)
(10.307)

(δ̃ is called Poisson’s ratio). Since

Δxd(x) = ∇x(∇x · d(x))−∇x ∧ (∇x ∧ d(x)), x ∈ Ωint
R , (10.308)

we equivalently have

♦xd(x) =
(
λ̃ + 2μ̃

)
∇x(∇x ·d(x))− μ̃∇x∧ (∇x∧d(x)), x ∈ Ωint

R . (10.309)

Suppose now that d is a (sufficiently often differentiable) vector field satis-
fying the Navier equation. Then it follows that

0 = μ̃∇x · (♦xd(x)) = ∇x ·
(
μ̃Δxd(x) +

(
λ̃ + μ̃

)
∇x · (∇x(∇x · d(x)))

)

= μ̃Δx(∇x · d(x)) +
(
λ̃ + μ̃

)
Δx(∇x · d(x))

=
(
λ̃ + 2μ̃

)
Δx(∇x · d(x)), (10.310)
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0 = μ̃∇x ∧ (♦xd(x)) = μ̃Δx(∇x ∧ d(x)) +
(
λ̃ + μ̃

)
∇x ∧ (∇x(∇x · d(x)))

= μ̃Δx(∇x ∧ d(x)), (10.311)

0 = μ̃Δx(♦xd) = μ̃ΔxΔxd(x) +
(
λ̃ + μ̃

)
∇x(Δx(∇x · d(x)))

= μ̃ΔxΔxd(x). (10.312)

Summarizing our results, we therefore obtain for a sufficiently often differ-
entiable field d : Ωint

R → R
3 satisfying ♦xd(x) = 0 , x ∈ Ωint

R :

Δx(∇x · d(x)) = 0, x ∈ Ωint
R , (10.313)

Δx(∇x ∧ d(x)) = 0, x ∈ Ωint
R , (10.314)

Δx(Δxd(x)) = 0, x ∈ Ωint
R . (10.315)

In other words, our considerations have led to the conclusions that the
displacement field d is biharmonic, and its divergence and curl are harmonic.

This shows a deep relation between linear elasticity and potential theory.
Moreover it should be noted that, according to the invariance of the dif-
ferential operators ∇, Δ with respect to orthogonal transformations, we are
able to derive that ♦d = 0 is equivalent to ♦

(
tT d(t·)

)
= 0 for all orthogonal

transformations t (for d ∈ c(2)(Ωint
R )).

Let navn (more explicitly: navn(R3)) be the class of homogeneous vector
polynomials of degree n satisfying Navier’s equations in R

3:

navn =

{
u ∈ homn

∣∣∣∣∣♦u = Δu + τ∇(∇ · u) = 0, τ =
λ̃ + μ̃

μ̃

}
. (10.316)

Remark 10.21. If τ = 0, (10.316) leads back to the space of harmn(R3) of
vectorial harmonic polynomials (well known from W. Freeden et al. (1994)).

Every vector field u ∈ navn can be written in the form

u(x) =
n∑

j=0

cn−j(x1, x2) xj
3, x ∈ R

3, x = (x1, x2, x3)T , (10.317)

where cn−j : R
2 → R

3 denote homogeneous vector polynomials of degree
n− j. It readily can be seen that ♦u allows the following representation:

♦xu(x) = Δxu(x) + τ∇x(∇x · u(x)) (10.318)

= a
∂2

∂x2
3

u(x) + bx
∂

∂x3
u(x) + cx, x ∈ R

3,
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where we have used the matrix operators a,bx, cx given by

a =

⎛

⎝
1 0 0
0 1 0
0 0 1 + τ

⎞

⎠ ,

bx =

⎛

⎜⎝
0 0 τ ∂

∂x1

0 0 τ ∂
∂x2

τ ∂
∂x1

τ ∂
∂x2

0

⎞

⎟⎠ ,

cx =

⎛

⎜⎜⎝

(1 + τ) ∂2

∂x2
1

+ ∂2

∂x2
2

τ ∂
∂x1

∂
∂x2

0

τ ∂
∂x2

∂
∂x1

∂2

∂x2
1

+ (1 + τ) ∂2

∂x2
2

0

0 0 ∂2

∂x2
1

+ ∂2

∂x2
2
.

⎞

⎟⎟⎠ .

Observing the fact that

∂u

∂x3
(x1, x2, x3) =

n−1∑

j=0

(j + 1)cn−j−1(x1, x2)x
j
3, (10.319)

∂2u

∂x2
3

(x1, x2, x3) =
n−2∑

j=0

(j + 2)(j + 1)cn−j−2(x1, x2)x
j
3 (10.320)

we get from (10.317) the recursion relation

(j + 2)(j + 1)acn−j−2(x̃) + (j + 1)bxcn−j−1(x̃) + cxcn−j(x̃) = 0, (10.321)

x̃ = (x1, x2)T , j = 0, ..., n − 2. Since the matrix a is regular (notice that
τ �= −1), all polynomials cj are determined provided that cn and cn−1 are
known.

By summarizing our results, we obtain the following theorem.

Theorem 10.22. Let cn, cn−1 : R
2 → R

3 be homogeneous polynomials of
degree n, n− 1, respectively. For j = 0, ..., n− 2 we define recursively

acn−j−2(x1, x2) = − 1
(j + 2)(j + 1)

(
(j+1)bxcn−j−1(x1, x2)+cxcn−j(x1, x2)

)
.

Then un : R
3 → R

3 given by

un(x1, x2, x3) =
n∑

j=0

cn−j(x1, x2)x
j
3

is a homogeneous polynomial of degree n in R
3 satisfying the Navier equa-

tion ♦xun(x) = 0, x ∈ R
3. Moreover, the number of linearly independent

homogeneous polynomials is equal to the total number of coefficients of cn

and cn−1, that is
d(navn) = 3(2n + 1) . (10.322)
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Remark 10.23. We know (see, e.g., W. Freeden et al. (1994))) that ho-
mogeneous harmonic polynomials of different degree are orthogonal (in the
l2-sense). This fact, however, is not true for the spaces navn (τ �= 0), as the
following example shows. The vector fields

u0(x) =

⎛

⎝
0
1
0

⎞

⎠ , u2(x) =

⎛

⎝
x1x2

− τ
2(τ+3)(x

2
1 + x2

2 + x2
3)

0

⎞

⎠

are elements of nav0 and nav2, respectively. But it follows by an easy
calculation that

∫

Ω

u0(ξ) · u2(ξ) dω(ξ) = − 2πτ

τ + 3
�= 0.

Nevertheless, we are able to prove the following result.

Theorem 10.24. Let un ∈ navn, um ∈ navm. Then

(un, um)l2(Ω) =
∫

Ω
un(ξ) · um(ξ) dω(ξ) = 0

if |n−m| �= 2 and n �= m.

Proof. Applying Green’s formula and the Gauss theorem, we see that

0 =
∫

|x|≤1
(un(x) · ♦xum(x)− um(x) · ♦xun(x)) dx

=
∫

|x|≤1
(un(x) ·Δxum(x)− um(x) ·Δxun(x)) dx (10.323)

+τ

∫

|x|≤1
(un(x) · ∇x(∇x · um(x))− um(x) · ∇x(∇x · un(x))) dx

= (m− n)
∫

|x|=1
un(x) · um(x) dω(x)

+τ

∫

|x|≤1
(∇x · (un(x)∇x · um(x))−∇x · (um(x)∇x · un(x))) dx

= (m− n)
∫

|x|=1
un(x) · um(x) dω(x)

+τ

∫

|x|=1
((x · un(x))∇x · um(x)− (x · um(x))∇x · un(x)) dω(x).

The functions x �→ (∇x ·um)(x) and x �→ (∇x ·un)(x), x ∈ R
3, are harmonic

and the functions

x �→ x · un(x) and x �→ x · um(x), x ∈ R
3
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are biharmonic. For example,

Δx(x · un(x)) = x ·Δxun(x) + 2∇x · un(x) (10.324)
= 2∇x · un(x)− τ(x · ∇x)∇x · un(x)
= (2− τ(n− 1))∇x · un(x)

so that we have ΔxΔx(x · un(x)) = 0, x ∈ R
3. In an analogous way, it

follows that ΔxΔx(x ·um(x)) = 0, x ∈ R
3. Therefore (see W. Freeden et al.

(1994)), there exist scalar homogeneous harmonic polynomials Hn−1, Hn+1,
Hm−1, and Hm+1 of degree n−1, n+1, m−1, and m+1, respectively, with

x · un(x) = Hn+1(x) + |x|2Hn−1(x) (10.325)

and
x · um(x) = Hm+1(x) + |x|2Hm−1(x). (10.326)

According to our assumptions, we have m− 1 �= n + 1 and m + 1 �= n− 1.
Thus we find

∫

|x|=1
(x · un(x))∇x · um(x) dω(x) = 0, (10.327)

∫

|x|=1
(x · um(x))∇x · un(x) dω(x) = 0. (10.328)

Hence, Equation (10.323) reduces to

0 =
∫

Ω
un(ξ) · um(ξ) dω(ξ) (10.329)

if n �= m. This is the required result.

Next, we are interested in giving explicit representations of homogeneous
polynomials of degree n which solve the Navier equation in R

3. This can
be done, for example, by using the recursion formula (10.321). But we are
also able to use known information about scalar homogeneous harmonic
polynomials. We start with a preparatory lemma.

Lemma 10.25. Let Hn : R
3 → R, n ≥ 0, be a scalar homogeneous har-

monic polynomial of degree n. Then

(i) Δx(Hn(x)x) = 2∇xHn(x),
(ii) Δx(|x|mHn(x)) = m(m + 2n + 1)|x|m−2Hn(x), m ≥ 2,

(iii) Δx

(
x2∇xHn(x)

)
= 2(2n + 1)∇xHn(x).

Proof. The formulas (i), (ii), and (iii) can be obtained by straightforward
calculations.
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We are now interested in the following lemma.

Lemma 10.26. Let Hn : R
3 → R be a homogeneous harmonic polynomial

of degree n. Then the following identities are valid:

(i) For all x ∈ R
3, ♦x(∇xHn(x)) = 0.

(ii) For all x ∈ R
3, ♦x(x ∧∇xHn(x)) = 0.

(iii) For all x ∈ R
3, ♦x(xHn(x) + αn|x|2∇xHn(x)) = 0, where

αn = − λ̃(3 + n) + μ̃(5 + n)

2
(
nλ̃ + μ̃(3n + 1)

) . (10.330)

(iv) For all x ∈ R
3, ♦x(Hn(x)εk + βn|x|2∇x∇x · (Hn(x)εk)) = 0 , where

βn = − λ̃ + μ̃(
2λ̃ + 6μ̃

)
n− 2λ̃− 4μ̃

. (10.331)

(v) For all x ∈ R
3, ♦x

(
Hn(x)εk + γn(εk · ∇xHn(x))x

)
= 0, where

γn = − λ̃ + μ̃

(n + 2)λ̃ + (n + 4)μ̃
. (10.332)

Proof. The formulas can be obtained by elementary calculations.

Lemma 10.26 enables us to develop three important systems of polynomial
solutions of the Navier equation.

Lemma 10.27. Let {Hn,j}j=1,...,2n+1 be a linearly independent system of
scalar homogeneous harmonic polynomials of degree n. Then the functions
wn,j,k : R

3 → R
3, k = 1, 2, 3, defined by

wn,j,k(x) = Hn,j(x)εk + βn|x|2∇x

(
∇x ·

(
Hn,j(x)εk

))
, x ∈ R

3, (10.333)

form a set of 3(2n + 1) linearly independent elements of navn(R3), where
βn is given by (10.331).

Lemma 10.28. Let {Hn,j}j=1,...,2n+1 be a linearly independent system of
scalar homogeneous harmonic polynomials of degree n. Then the functions
vn,j,k : R

3 → R
3, k = 1, 2, 3, defined by

vn,j,k(x) = Hn,j(x)εk + γn

(
εk · ∇xHn,j(x)

)
x, x ∈ R

3, (10.334)

form a set of 3(2n + 1) linearly independent elements of navn(R3), where
γn is given by (10.332).
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Fig. 10.28: Reference (left) and deformed (right) configurations of Ω associ-
ated to the displacement function x �→ xH1(x)+α1|x|2∇xH1(x), λ̃ = 2, μ̃ =
3, H1(x) = x · ε2, x ∈ R

3.

Remark 10.29. The system (10.333) can be found in A. Lurje (1963), while
the system (10.334) has been discussed in H. Bauch (1981), W. Freeden, R.
Reuter (1989). Unfortunately, both systems are not orthogonal invariant,
that is, tT vn,j,k(t·) (resp. tT wn,j,k(t·)) generally is not a member of the
span of the system {vn,j,k} (resp. {wn,j,k}). A polynomial system showing
this property will be listed now (for the case n=2 see Figs. 10.28, 10.29, and
10.30).

Lemma 10.30. Let {Hk,j} k=n−1,n,n+1
j=1,...,2n+1

be a linearly independent system of

scalar homogeneous harmonic polynomials. Then, the functions u
(i)
n,j : R

3 →
R

3, i = 1, 2, 3, defined by

u
(1)
n,j(x) = Hn−1,j(x)x + αn−1|x|2∇xHn−1,j(x), (10.335)

n = 1, 2, ..., j = 1, ..., 2n− 1,

u
(2)
n,j(x) = ∇xHn+1,j(x), n = 0, 1, ..., j = 1, ..., 2n + 3, (10.336)

u
(3)
n,j(x) = x ∧∇xHn,j(x), n = 1, 2, ..., j = 1, ..., 2n + 1, (10.337)

form a set of 3(2n + 1) linearly independent elements of navn(R3), where
αn is given by (10.330).
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The functions u
(2)
n,j , u

(3)
n,j are characterized by the properties:

∇x · u(2)
n,j(x) = 0, ∇x ∧ u

(2)
n,j(x) = 0, (10.338)

x · u(3)
n,j(x) = 0, ∇x · u(3)

n,j(x) = 0. (10.339)

From a physical point of view, this means that u
(2)
n,j is a poloidal field (i.e.,

a vector field free of dilatation and torsion), while u
(3)
n,j is a toroidal field.

Only the functions u
(1)
n,j are responsible for volume change.

Fig. 10.29: Radial (grey) and tangential (arrows) displacements of Ω associ-
ated to the displacement function x �→ xH1(x)+α1|x|2∇xH1(x), λ̃ = 2, μ̃ =
3, H1(x) = x · ε2, x ∈ R

3.

Remark 10.31. There is a very interesting relation between the systems
{wn,j,k}, {vn,j,k}, k = 1, 2, 3, introduced above and the system {u(i)

n+1,j}, i =
1, 2, 3. Replacing Hn−1,j by

∑3
k=1 εk · ∇Hn,j (note that εk · ∇Hn,j is a

homogeneous harmonic polynomial of degree n − 1 due to a result in W.
Freeden et al. (1994)) in the representation of u

(1)
n,j , we obtain a field zn,j

defined as follows:

zn,j(x) =

(
3∑

k=1

(
εk · ∇xHn,j(x)

))
x + αn−1x

2∇x

(
3∑

k=1

(
εk · ∇xHn,j(x)

))
.

(10.340)
It is clear that zn,j satisfies the Navier equation. Moreover, it is easy to see
that γn = (−βn)/αn−1. But this shows that

vn,j = wn,j −
βn

αn−1
zn,j , n = 0, 1, . . . , j = 1, . . . , 2n + 1, (10.341)
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where we have used the abbreviations

vn,j =
3∑

k=1

vn,j,k, wn,j =
3∑

k=1

wn,j,k. (10.342)

Assuming that the scalar system {Hn,j}n=0,1,...,j=1,...,2n+1 forms an or-
thonormal system of homogeneous harmonic polynomials with respect to
L2(Ω), the following orthogonal relations can be guaranteed:

∫

Ω
u

(i)
n,j(ξ) · u

(k)
n,l (ξ) dω(ξ) = 0 if i �= k or j �= l, (10.343)

∫

Ω
u

(i)
n,j(ξ) · u

(i)
m,k(ξ) dω(ξ) = 0 if n �= m or j �= k, i = 1, 2, 3, (10.344)

∫

Ω
u

(3)
n,j(ξ) · u

(i)
m,k(ξ) dω(ξ) = 0 if i = 1, 2 . (10.345)

This shows us the following lemma.

Lemma 10.32. The space navn, n > 0, defined by (10.316) can be decom-
posed into three subspaces nav(i)

n , i = 1, 2, 3, given by

nav(i)
n = span

j=1,...,2n+1

{
u

(i)
n,j

}
(10.346)

such that
navn = nav(1)

n ⊕ nav(2)
n ⊕ nav(3)

n . (10.347)

Moreover, we have the following dimensions:

d
(
nav(1)

n

)
= 2n− 1, d

(
nav(2)

n

)
= 2n + 3, d

(
nav(3)

n

)
= 2n + 1. (10.348)

For n = 0,
nav0 = nav(2)

0 = span
j=1,2,3

u
(2)
0,j , d (nav0) = 3. (10.349)

As mentioned above, the spaces nav(i)
n , i = 1, 2, 3, are orthogonal invariant

in the sense that u ∈ nav(i)
n is equivalent to tT u(t·) ∈ nav(i)

n , i = 1, 2, 3, for
every orthogonal transformation t. Thus, we have found a decomposition
of navn into three invariant subspaces.

Next, assume that w
(i)
n is a member of nav(i)

n . Consider the space h
(i)
n

of all linear combinations of functions w
(i)
n (t·), where t is an orthogonal

transformation:
h(i)

n = span
{

w(i)
n (t·)

∣∣∣ t ∈ O(3)
}

. (10.350)
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Fig. 10.30: Radial (grey) and tangential (arrows) displacements of Ω1/2

associated to the displacement function x �→ xH1(x) + α1|x|2∇xH1(x), λ̃ =
2, μ̃ = 3, H1(x) = x · ε2, x ∈ R

3.

Then it is clear that 0 < d(h(i)
n ) ≤ d(nav(i)

n ). Moreover, it can be shown
that there exists no orthogonal invariant subspace in nav(i)

n . Thus, it follows
immediately that nav(i)

n = h
(i)
n . This leads us to the following lemma.

Lemma 10.33. Let w
(i)
n be of class nav(i)

n . Then, there exist d(nav(i)
n )

orthogonal transformations tj , j = 1, ..., d(nav(i)
n ), such that any element

u(i) ∈ nav(i)
n can be written in the form

u(i) =

d
(
nav

(i)
n

)

∑

j=1

c
(i)
j tT

j w(i)
n (tj ·), (10.351)

where c
(i)
j are real numbers.

Finally, we formulate the addition theorem for the system {u(k)
n,j} devel-

oped in Lemma 10.30. By separation of radial and angular tangential com-
ponents, we first obtain after simple calculations

u
(1)
n,j(x) = γ(1)

n (|x|)y(1)
n−1,j(ξ) + δ(1)

n (|x|)y(2)
n−1,j(ξ), (10.352)

u
(2)
n,j(x) = γ(2)

n (|x|)y(1)
n+1,j(ξ) + δ(2)

n (|x|)y(2)
n+1,j(ξ), (10.353)

u
(3)
n,j(x) = γ(3)

n (|x|)y(3)
n,j , (10.354)
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where we have used the abbreviations

γ(1)
n (|x|) = |x|n(1 + (n− 1)αn−1), (10.355)

δ(1)
n (|x|) = |x|nαn−1

√
(n− 1)n, (10.356)

γ(2)
n (|x|) = |x|n(1 + n), (10.357)

δ(2)
n (|x|) = |x|n

√
(n + 1)(n + 2), (10.358)

γ(3)
n (|x|) = |x|n

√
n(n + 1) . (10.359)

Remembering the addition theorem for vector spherical harmonics (see The-
orem 5.31), we obtain the following theorem.

Theorem 10.34. For x, y ∈ R
3, x = rξ, y = ρη, r = |x|, ρ = |y|,

2n−1∑

j=1

u
(1)
n,j(x)⊗ u

(1)
n,j(y)

= γ(1)
n (r)γ(1)

n (ρ)p(1,1)
n−1 (ξ, η) + γ(1)

n (r)δ(1)
n (ρ)p(1,2)

n−1 (ξ, η)

+ δ(1)
n (r)γ(1)

n (ρ)p(2,1)
n−1 (ξ, η) + δ(1)

n (r)δ(1)
n (ρ)p(2,2)

n−1 (ξ, η),

2n+3∑

j=1

u
(2)
n,j(x)⊗ u

(2)
n,j(y)

= γ(2)
n (r)γ(2)

n (ρ)p(1,1)
n+1 (ξ, η), +γ(2)

n (r)δ(2)
n (ρ)p(1,2)

n+1 (ξ, η)

+ δ(2)
n (r)γ(2)

n (ρ)p(2,1)
n+1 (ξ, η) + δ(2)

n (r)δ(2)
n (ρ)p(2,2)

n+1 (ξ, η),
2n+1∑

j=1

u
(3)
n,j(x)⊗ u

(3)
n,j(y) = γ(3)

n (r)γ(3)
n (ρ)p(3,3)

n (ξ, η).

In particular, we find the following result.

Lemma 10.35. If x ∈ R
3, r = |x|, x = rξ, then

2n−1∑

j=1

∣∣∣u(1)
n,j(x)

∣∣∣
2

= r2n
(
(1 + (n− 1)αn−1)2 + α2

n−1n(n− 1)
) 2n− 1

4π
,

2n+3∑

j=1

∣∣∣u(2)
n,j(x)

∣∣∣
2

= r2n (n + 1)(2n + 3)2

4π
,

2n+1∑

j=1

∣∣∣u(3)
n,j(x)

∣∣∣
2

= r2n n(n + 1)(2n + 1)
4π

.

From our considerations given above, it is clear that there are different
ways of computing linearly independent systems of homogeneous polynomial
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solutions to the Navier equations. Of course, the recursion procedure of
Theorem 10.22 can be used to derive an algorithm quite analogously to the
method used for scalar homogeneous polynomials.

Next, we are interested in determining elastic potentials corresponding to
vector spherical harmonics as boundary values.

Lemma 10.36. Let v
(i)
n,j , R

3 → R
3, i = 1, 2, 3, be defined by

v
(1)
n,j(x) = Hn,j(x)x + αn

(
x2 − 1

)
∇xHn,j(x), (10.360)

n = 0, 1, ..., j = 1, ..., 2n + 1,

v
(2)
n,j(x) = (n(n + 1))−

1
2

(
∇xHn,j(x)− nv

(1)
n,j(x)

)
, (10.361)

n = 1, 2, ..., j = 1, ..., 2n + 1,

v
(3)
n,j(x) = (n(n + 1))−

1
2 x ∧∇xHn,j(x), (10.362)

n = 1, 2, ..., j = 1, ..., 2n + 1,

where
αn = − nτ + 2 + 3τ

2(n(τ + 2) + 1)
, (10.363)

Hn,j(x) = |x|nYn,j(ξ), x = |x|ξ, ξ ∈ Ω. (10.364)

Then v
(i)
n,j satisfies the Cauchy–Navier equation ♦v

(i)
n,j(x) = 0 in Ωint with

v
(i)
n,j |Ω = y

(i)
n,j .

Proof. It is not hard to see that

♦xv
(1)
n,j(x) = 2∇xHn,j(x) + τ(3 + n)∇xHn,j(x) (10.365)

+αn((6 + 4(n− 1))∇xHn,j(x) + 2nτ∇xHn,j(x))
= 0,

♦xv
(2)
n,j(x) = (n(n + 1))−

1
2 (♦x∇xHn,j(x)) (10.366)

−n(n(n + 1))−
1
2

(
(♦x)v(1)

n,j(x)
)

= 0,

♦xv
(3)
n,j(x) = (n(n + 1))−

1
2♦x(x ∧∇xHn,j(x)) (10.367)

= −2∇x ∧∇xHn,j(x)
= 0.

Using the polar coordinates x = rξ, r = |x|, ξ ∈ Ω, we obtain after simple
calculations

v
(1)
n,j(x) = σ(1)

n (r)y(1)
n,j(ξ) + τ (1)

n (r)y(2)
n,j(ξ), (10.368)

v
(2)
n,j(x) = σ(2)

n (r)y(1)
n,j(ξ) + τ (2)

n (r)y(2)
n,j(ξ), (10.369)

v
(3)
n,j(x) = σ(3)

n (r)y(3)
n,j(ξ), (10.370)
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where

σ(1)
n (r) = rn−1

(
r2 + nαn

(
r2 − 1

))
, (10.371)

σ(2)
n (r) = (n(n + 1))−

1
2 n(1 + nαn)rn−1

(
1− r2

)
, (10.372)

σ(3)
n (r) = rn, (10.373)

τ (1)
n (r) = αn(n(n + 1))+

1
2 rn−1

(
r2 − 1

)
, (10.374)

τ (2)
n (r) = rn−1

(
1− nαn

(
r2 − 1

))
. (10.375)

This shows us that v
(i)−
n,j = v

(i)
n,j |Ω = y

(i)
n,j , as required.

It should be mentioned that

v
(1)
n,j = u

(1)
n+1,j − αn∇Hn,j , n = 0, 1, ..., j = 1, ..., 2n + 1,

v
(2)
n,j = (n(n + 1))−

1
2

(
u

(2)
n−1,j − nv

(1)
n,j

)
, n = 1, 2, ..., j = 1, ..., 2n + 1.

Thus the polynomial solution v
(i)
n,j , i = 1, 2 corresponding to y

(i)
n,j on Ω is not

homogeneous.

Remark 10.37. Observe that, under the assumption 3λ̃ + 2μ̃ > 0, μ̃ > 0,
it follows that

τ =
λ̃ + μ̃

μ̃
=

1
3

+
3λ̃ + 2μ̃

3μ̃
>

1
3
. (10.376)

Therefore, it is not difficult to deduce that for all n ≥ 3

|αn| =
1
2

nτ + 3τ + 2
nτ + 2n + 1

(10.377)

=
1
2

1 + 3τ
nτ + 2

nτ

1 + 2n
nτ + 1

nτ

≤ 1
2

2 + 2
nτ

1 + 1
nτ

≤ 1, (10.378)

while for all n ≥ 1

|αn| ≤
1
2

+
3
2n

1 + 2
nτ

≤ 2. (10.379)

The sequence (αn) therefore is uniformly bounded with respect to τ .

Remark 10.38. Let us denote by v
(i);R
n,j : R

3 → R
3 the vector fields

v
(1);R
n,j (x) = σ(1)

n

(
|x|
R

)
y

(1)
n,j(ξ) + τ (1)

n

(
|x|
R

)
y

(2)
n,j(ξ), (10.380)

v
(2);R
n,j (x) = σ(2)

n

(
|x|
R

)
y

(1)
n,j(ξ) + τ (2)

n

(
|x|
R

)
y

(2)
n,j(ξ), (10.381)

v
(3);R
n,j (x) = σ(3)

n

(
|x|
R

)
y

(3)
n,j(ξ), (10.382)
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where x = |x|ξ, |x| ≤ R and σ
(1)
n , τ

(1)
n are given as follows

σ(1)
n

(
|x|
R

)
=

(
|x|
R

)n−1
((

|x|
R

)2

+ nαn

(
|x|
R

)2

− 1

)
, (10.383)

τ (1)
n

(
|x|
R

)
=

(
|x|
R

)n−1

αn(n(n + 1))1/2

((
|x|
R

)2

− 1

)
, (10.384)

σ(2)
n

(
|x|
R

)
=

(
|x|
R

)n−1

n(1 + nαn)(n(n + 1))1/2

(
1−

(
|x|
R

)2
)

,

(10.385)

τ (2)
n

(
|x|
R

)
=

(
|x|
R

)n−1
(

1− nαn

((
|x|
R

)2

− 1

))
, (10.386)

σ(3)
n

(
|x|
R

)
=

(
|x|
R

)n

(10.387)

with

τ =
λ̃ + μ̃

μ̃
. (10.388)

Then v
(i);R
n,j is the unique solution of the first boundary-value problem

v
(i);R
n,j ∈ c

(
Ωint

R

)
∩ c(2)

(
Ωint

R

)
, ♦v

(i);R
n,j = 0 in Ωint

R , (10.389)

corresponding the boundary values

v
(i);R
n,j |ΩR = y

(i)
n,j . (10.390)

We easily obtain the following theorem (see T. Gervens (1989)).

Theorem 10.39. Suppose that f is of class c(Ω). Then, the unique solution
u of the Dirichlet problem u ∈ c(2)(Ωint) ∩ c(Ωint), ♦u = 0 in Ωint u|Ω = f
is representable in the form

u(x) =
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j) v
(i)
n,j(x)

for all x ∈ K with K ⊂ Ωint and dist(K, Ω) > 0, where (f (i))∧(n, j) are the
Fourier coefficients of f with respect to the system {y(i)

n,j}

(f (i))∧(n, j) =
(
f, y

(i)
n,j

)

l2(Ω)
=
∫

Ω
f(η) · y(i)

n,j(η) dω(η).
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From Lemma 10.36, it is not difficult to determine the stress vector field
Tν(v

(i)
n,j)(x) for any point x ∈ Ωint:

|x|Tν

(
v

(1)
n,j

)
(x) =

(
μ̃(n + 2) + λ̃(n + 3) + αn

(
λ̃ + μ̃

))
Hn,j(x)x

+ (μ̃ + 2μ̃nαn) x2∇xHn,j(x)− 2αnμ̃(n− 1)∇xHn,j(x),
n = 0, 1, ..., j = 1, ..., 2n + 1,

|x|Tν

(
v

(2)
n,j

)
(x) = (n(n + 1))−

1
2 (2μ̃(n− 1))∇xHn,j(x)− nTν

(
v

(1)
n,j(x)

)
,

n = 1, 2, ..., j = 1, ..., 2n + 1,

|x|Tν

(
v

(3)
n,j

)
(x) = (n(n + 1))−

1
2 μ̃(n− 1)x ∧∇xHn,j(x),

n = 1, 2, ..., j = 1, ..., 2n + 1.

This leads us to the following theorem.

Theorem 10.40. Let f be of class c(Ω). Suppose that u is the solution of
the inner Dirichlet problem u of the Dirichlet problem u ∈ c(2)(Ωint) ∩ c(Ωint),
♦u = 0 in Ωint, u|Ω = f . Then

|x|Tν(u)(x) =
3∑

i=1

∞∑

n=0i

2n+1∑

j=1

(f (i))∧(n, j)Tν

(
v

(i)
n,j

)
(x)

for each x ∈ Ωint.

Next, we note that the fields v
(i)
n,j admit a decomposition into curl-free and

divergence-free parts. For that purpose, we formulate the following lemma
(see T. Gervens (1989)).

Lemma 10.41. Under the assumptions of Lemma 10.36

v
(1)
n,j(x) = δn∇x

(
x2Hn,j(x)

)
+ εn∇x ∧∇x ∧

((
x2Hn,j(x)

)
x
)
,

v
(2)
n,j(x) = (n(n + 1))−

1
2∇x

(
Hn,j(x)− nδnx2Hn,j(x)

)

−(n(n + 1))−
1
2 nεn∇x ∧∇x ∧

((
x2Hn,j(x)

)
x
)
,

v
(3)
n,j(x) = −(n(n + 1))−

1
2∇x ∧ (Hn,j(x)x),

where
δn =

n + 3 + 2nαn

2(2n + 3)
, εn =

2nαn − 1
2(2n + 3)

. (10.391)

Proof. Elementary calculations show us that

∇x

(
x2Hn,j(x)

)
= 2Hn,j(x)x +∇xHn,j(x), (10.392)
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and

∇x ∧∇x ∧
((

x2Hn,j(x)
)
x
)

(10.393)
= −∇x

(
x2x ∧∇xHn,j(x)

)

= −2x ∧ (x ∧∇xHn,j(x)) + x2∇x ∧ (∇x ∧Hn,j(x)x)
= −2nHn,j(x)x + 2x2∇xHn,j(x) + x2∇x (∇x ·Hn,j(x)x)

−x2Δx (Hn,j(x)x)
= −2nHn,j(x)x + (n + 3)x2∇xHn,j(x) .

This implies

Hn,j(x)x (10.394)
= (2(2n+3))−1

(
(n+3)∇x

(
x2Hn,j(x)

)
−∇x ∧∇x ∧

(
x2Hn,j(x)x

))
,

x2∇xHn,j(x)
= (2n+3)−1

(
n∇x

(
x2Hn,j(x)

)
+∇x ∧∇x ∧

(
x2Hn,j(x)x

))
.

Therefore, the vector fields v
(i)
n,j , i = 1, 2, 3, can be written as indicated by

Lemma 10.41.

Lemma 10.41 leads us to the following result.

Theorem 10.42. For given f ∈ c(Ω), the uniquely determined solution u
of the Dirichlet problem u of the Dirichlet problem u ∈ c(2)(Ωint) ∩ c(Ωint),
♦u = 0 in Ωint, u|Ω = f is given by

u(x) = ∇xZ1(x) +∇x ∧∇x ∧
(
x2Z2(x)x

)
+∇x ∧ (Z3(x)x)

for all x ∈ K with K ⊂ Ωint and dist(K, Ω) > 0, where the functions
Zi, i = 1, 2, 3, can be written as follows:

Z1(x) =
∞∑

n=0

2n+1∑

j=1

(
(f (1))∧(n, j)δnx2Hn,j(x)

+
(f (2))∧(n, j)σn√

n(n + 1)

(
Hn,j(x)− nδnx2Hn,j(x)

)
)

,

Z2(x) =
∞∑

n=0

2n+1∑

j=1

((
(f (1))∧(n, j)− n (n(n + 1))−1/2(f (2))∧(n, j)

)

εnHn,j(x)
)
,

Z3(x) = −
∞∑

n=1

2n+1∑

j=1

(n(n + 1))−1/2(f (3))∧(n, j)Hn,j(x),

where σ0 = 0 and σn = 1 for n > 0.
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Obviously, the vector fields ui, i = 1, 2, 3, given by

u1(x) = ∇xZ1(x), (10.395)
u2(x) = ∇x ∧∇x ∧

(
x2Z2(x)x

)
, (10.396)

u3(x) = ∇x ∧ (Z3(x)x) (10.397)

satisfy

∇x ∧ u1(x) = 0, (10.398)
∇x · u2(x) = 0, x · ∇x ∧ u2(x) = 0, (10.399)
∇x · u3(x) = 0, x · u3(x) = 0, (10.400)

for all x ∈ K ⊂ Ωint with dist(K, Ω) > 0. The vector field u2 is of poloidal
type, while u3 is of toroidal type.

Finally, we discuss the Neumann problem of determining polynomial so-
lutions from given surface tractions on the unit sphere (see T. Gervens
(1989)).

Lemma 10.43. The vector fields w
(i)
n,j , i = 1, 2, 3, defined by

w
(1)
n,j(x) = ζn

(
Hn,j(x)x + αnx2∇xHn,j(x)− 1 + 2nαn

2(n− 1)
∇xHn,j(x)

)
,

n = 0, 2, 3, ..., j = 1, ..., 2n + 1,

w
(1)
1,j (x) = 3ζ1

(
H1,j(x)x + α1x

2∇xH1,j(x)
)
,

j = 1, 2, 3,

w
(2)
n,j(x) = (n(n + 1))−

1
2 (2μ̃(n− 1))−1/2∇xHn,j(x)− (n(n + 1))−

1
2 nw

(1)
n,j(x),

n = 2, 3, ..., j = 1, ..., 2n + 1,

w
(3)
n,j(x) = (n(n + 1))−

1
2 (μ̃(n− 1))−1x ∧∇xHn,j(x),

n = 2, 3, ..., j = 1, ..., 2n + 1,

where

αn = − nτ + 2 + 3τ

2(n(τ + 2) + 1)
, ζn =

1
(λ̃ + μ̃)(3 + n + 2nαn)− μ̃

,

Hn,j(x) = |x|nYn,j(ξ), x = |x|ξ, ξ ∈ Ω,

satisfy w
(i)
n,j ∈ c(2)(Ωint) ∩ c(Ωint), ♦u = 0 in Ωint, and

Tν

(
w

(1)
n,j

)−
= y

(1)
n,j , n = 0, 2, 3, ..., j = 1, ..., 2n + 1,

Tν

(
w

(1)
1,j

)−
= 2y

(1)
n,j −

√
2 y

(2)
n,j , j = 1, 2, 3,

Tν

(
w

(i)
n,j

)−
= y

(i)
n,j , i = 2, 3; n = 2, 3, ..., j = 1, ..., 2n + 1.
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Note that ζn is well defined for all n ≥ 1 provided that 3λ̃ + 2μ̃ > 0,
μ̃ > 0.

We conclude our considerations with the following theorem.

Theorem 10.44. Suppose that f is of class c(0,γ)(Ω), i.e., γ – Hölder con-
tinuous on Ω satisfying the conditions

∫

Ω
f(ξ) dω(ξ) = 0,

∫

Ω
(f(ξ) ∧ ξ) dω(ξ) = 0. (10.401)

Then the series

u = (f (1))∧(0, 1)w(1)
0,1 +

3∑

j=1

(f (1))∧(1, j)w(1)
1,j +

3∑

i=1

∞∑

n=2

2n+1∑

j=1

(f (i))∧(n, j)w(i)
n,j

solves Neumann’s problem u ∈ c(2)(Ωint) ∩ c(1,γ)(Ωint), ♦u = 0 in Ωint,
Tν(u) = f on every K ⊂ Ωint with dist(K, Ω) > 0.

The extension of our results to the sphere ΩR around the origin with
radius R is obvious (see W. Freeden et al. (1990)) and will not be worked
out here.

10.8 Density Distribution

A classical problem in Earth’s sciences is gravimetry, i.e., the determination
of the Earth’s mass density distribution from measurements of the gravita-
tional potential or related quantities. From a mathematical point of view,
the gravimetry problem amounts to the inversion of a Fredholm integral
equation of first kind involving Newton’s law of gravitation (see, e.g., L.L.
Helms (1969), V. Michel (2002a, 2002b), W. Walter (1971) and the refer-
ences therein). The gravimetry problem is ill-posed, as the inversion is not
continuous (for more details see L. Ballani et al. (1993), E.W. Grafarend
(1982), E. Groten (1979), W.A. Heiskanen, H. Moritz (1967), H. Moritz
(1980), W. Torge (1991) and the references therein). However, this is not the
only reason for the ill-posedness of the solution of the gravimetry problem.
Within Hadamard’s classification (existence, stability, uniqueness), we are
confronted with the following situation: (Existence) It is well known that the
gravitational potential is harmonic outside the Earth. Therefore, the Fred-
holm integral equation is unsolvable if the right hand side is non-harmonic.
Moreover, there even does not exist a solution for a certain set of harmonic
right hand sides. However, in our approach, it is not difficult to give a neces-
sary and sufficient condition for the existence of a solution. Furthermore, the
image of the corresponding Fredholm integral operator is dense in the space
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of harmonic functions with respect to the L2-topology. Moreover, a per-
turbed potential outside the image can still be treated in such a way that ap-
proximations to the exact solution of the unperturbed problem can be found
in an appropriate way. (Stability) The inversion of the operator, i.e., the de-
termination of a density distribution that corresponds to a given potential,
is not continuous. This means that unavoidable errors in the measurements
of the potential are able to lead to a completely different density function.
In consequence, regularization procedures are unavoidable. (Uniqueness)
The most serious difficulty is the non-uniqueness of the solution. Essential
parts of the density distribution cannot be reconstructed from the gravi-
tational potential (for more details see V. Michel (1998), W. Freeden, V.
Michel (2004), V. Michel (2005), V. Michel, K. Wolf (2008)). For every
arbitrary density distribution, there exists an infinite-dimensional set of
different density distributions which generate exactly the same potential.
Within this context, it should be noted that a square-integrable function on
a sphere, i.e., the surface of a ball, can be approximated arbitrarily well by a
harmonic function. However, this is not true for square-integrable functions
defined on the whole ball, i.e., including the interior. The reason is that
in the second case, the anharmonic functions come into play. Therefore,
a determination of a harmonic function as density distribution makes no
sense if the anharmonic part of the solution is not taken into account. It
should be noted that a radially symmetric density distribution, such as the
standard layer model PREM (Preliminary Reference Earth Model), has a
constant harmonic part, such that it will never be possible to obtain the
characteristic layers of the Earth’s interior if only harmonic functions are in
use. The considerations of this work definitely show that methods only with
harmonic functions are not able to solve the gravimetry problem. However,
in general, it is necessary to include an anharmonic concept that is supposed
to determine the inner composition of the Earth.

From the mathematical point of view, the gravimetry problem can be
formulated by a Fredholm integral equation of the first kind,

V =
∫

Ωint
R

F (y)
|y − ·| dV (y), (10.402)

where Ωint
R is the Earth’s interior, i.e., the inner space of the sphere with

(mean) Earth’s radius R around the origin, F is the unknown mass density
function, and V is the gravitational potential, which is usually only given
on a finite discrete set of points. In V. Michel (1998), V. Michel (1999),
and V. Michel (2002), a multiscale approach to this problem is developed.
Moreover, in W. Freeden, V. Michel (2004), V. Michel (2005), this theory is
extended to the more general case of a regular (Earth’s) surface Σ. It should
be remarked that we are not concerned here with the determination of the
potential F from the usual observables of V , such as gravity disturbances,
the radial derivative, the gradient, or the Hessian of V on satellite’s orbits.
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We simply assume that V itself is given on the (actual) Earth’s surface ΩR

(supposed here to be spherical). For more details on spaceborne gravimetry,
see V. Michel (2005).

Definition 10.45. The so-called gravimetry operator T̃ on L2(Ωint
R ) is given

by

V (y) =
(
T̃F
)

(y) =
∫

Ωint
R

F (x)
|x− y| dV (x), y ∈ Ωext

R , (10.403)

F ∈ L2(Ωint
R ).

Theorem 10.46. The operator introduced by Definition 10.45 is bounded.

Proof. By the Cauchy-Schwarz inequality, we obtain

(F,
1

| · −y|)L2(Ωint
R ) ≤ ‖F‖L2(Ωint

R )

∥∥∥∥
1

| · −y|

∥∥∥∥
L2(Ωint

R )

. (10.404)

Then

|TF |2
L2(Ωint

R )
=

∫

Σint

(F,
1

| · −y|)
2
L2(Ωint

R )
dV (y) (10.405)

≤ ‖F‖2
L2(Ωint

R )

∫

Ωint
R

∫

Ωint
R

1
|x− y| dV (x) dV (y).

By introducing polar coordinates we find
∫

Ωint
R

1
|x|2 dV (x) =

∫ R

0

∫ 2π

0

∫ π

0

1
r2

r2 sin(ϑ) dϑ dϕ dr = 4πR. (10.406)

Thus

‖T‖2 = sup
F∈L2(Ωint

R
)

F �=0

‖TF‖2
L2(Ωint

R )

‖F‖2
L2(Ωint

R )

≤ 4πR. (10.407)

Common Earth models like PREM (cf. A. Dziewonski, D.L. Anderson
(1981), A. Dziewonski, D.L. Anderson (1984)) consider the density to be
radially symmetric. This property is inherited by the operator.

Theorem 10.47. For radially symmetric functions, i.e., all F ∈ L2(Ωint
R )

satisfying F (x) = F̃ (|x|) with F̃ ∈ L2[0, R], the image under T̃ is radially
symmetric

(T̃F )(rξ) = −2π

r

R∫

0

sF̃ (s)(|r − s| − (r + s)) ds, r ∈ [0, R], ξ ∈ Ω, (10.408)

i.e., T̃F only depends on the radius r.



518 10 Zonal Function Modeling of Earth’s Mass Distribution

Proof. Let x = rξ and y = sη, with r, s ∈ [0, R] and ξ, η ∈ Ω. Then, the
Funk-Hecke formula shows us

(T̃F )(x) =
∫

Ωint
R

F (y)
|x− y| dV (y)

=
∫ R

0
s2F̃ (s)

∫

Ω

1√
r2 + s2 − 2(rξ) · (sη)

dω(η) ds

=
∫ R

0
s2F̃ (s)2π

∫ 1

−1

1√
r2 + s2 − 2rst

dt ds,

The last equations only depends on r, i.e., the solution is radially symmetric.
For the explicit calculation, we use

∫ 1

−1

1√
a− bt

dt = −2
b

(√
a− b−

√
a + b

)
. (10.409)

Observing this integral, we obtain

(T̃F )(rξ) = −
∫ R

0
s2F (x)2π

1
rs

(√
r2 + s2 − 2rs−

√
r2 + s2 + 2rs

)
ds,

(10.410)
ξ ∈ Ω, which is the desired result.

The radial symmetry of the Earth’s interior is obviously just a first ap-
proximation. However, deviations from this will still be small compared to
the discontinuity of the radial parts.

It is a well-known fact that Newton volume integral representing the grav-
itational potential V as introduced by Definition 10.45 satisfies the Laplace
equation in the outer space. In fact, the proof of Theorem 10.48 is an
immediate consequence of the harmonicity of the integrand in Ωint

R .

Theorem 10.48. Let F : Ωint
R → R be an integrable bounded function.

Then
x �→ V (x) =

∫

Ωint
R

F (y)
|x− y| dV (y) (10.411)

satisfies

Δx

∫

Ωint
R

F (y)
|x− y| dV (y) = 0 (10.412)

for all x ∈ Ωext
R .

Next, we are interested in showing that the Newton integral in the inner
space satisfies the Poisson equation at least under some canonical conditions
on the density function. Our considerations below essentially follow R. Leis
(1967) and S.G. Michlin (1975).
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Theorem 10.49. Let F : Ωint
R → R be a continuous function. Then V is

of class C(Ωint
R ). Furthermore, we have

∇V (x) =
∫

Ωint
R

F (y)∇x
1

|x− y| dV (y). (10.413)

Proof. We replace the fundamental solution of potential theory S : (x, y) �→
S(|x− y|), x �= y, given by

S(|x− y|) =
1

|x− y| (10.414)

by a ‘regularization’ of the form

Sρ(|x− y|) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2ρ

(
3− 1

ρ2
|x− y|2

)
, |x− y| ≤ ρ

1
|x− y| , |x− y| > ρ,

(10.415)

ρ > 0. In other words, by letting r = |x− y|, we replace

S(r) =
1
r
, r > 0, (10.416)

by

Sρ(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2ρ

(
3− 1

ρ2
r2

)
, r ≤ ρ

1
r
, r > ρ.

(10.417)

Sρ is continuously differentiable for all r ≥ 0. Furthermore, S(r) = Sρ(r)
for all r > ρ.

We set
VS(x) =

∫

Ωint
R

F (y)S(|x− y|) dV (y) (10.418)

and
VSρ(x) =

∫

Ωint
R

F (y)Sρ(|x− y|) dV (y). (10.419)

The integrands of VS and VSρ differ only in the ball around the point x with
radius ρ. Moreover, the function F : Ωint

R → R is supposed to be continuous
on Ωint

R . Hence, it is uniformly bounded on Ωint
R . This shows us that

|VS(x)− VSρ(x)| = O

⎛

⎜⎝
∫

|x−y|≤ρ

(S(|x− y|)− Sρ(|x− y|) dV (y)

⎞

⎟⎠ = O(ρ2).

(10.420)
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Therefore, VS is of class C(Ωint
R ) as limit of a uniformly convergent sequence

of continuous functions on Ωint
R .

Furthermore, we let

vS(x) =
∫

Ωint
R

F (y)∇xS(|x− y|) dV (y) (10.421)

and
vSρ(x) =

∫

Ωint
R

F (y)∇xSρ(|x− y|) dV (y). (10.422)

Because of | ∇xS(|x− y|) |= O((S(|x− y|)2), the integrals vS and vρ
S exist

for all x ∈ Ωint
R . It is not difficult to see that

sup
x∈Ωint

R

|vS(x)− vSρ(x)| = sup
x∈Ωint

R

|∇VS(x)−∇VSρ(x)| = O(ρ). (10.423)

Consequently, vs is a continuous vector field on Ωint
R . Moreover, as the

relation (10.423) holds uniformly on Ωint
R , we obtain in connection with

well-known theorems of classical analysis

vS(x) = ∇VS(x) =
∫

Ωint
R

F (y)∇xS(|x− y|) dV (y). (10.424)

This is the desired result.

Next, we come to the Poisson equation under the assumption of Hölder
continuity of the function F on Ωint

R .

Theorem 10.50. If F is Hölder continuous on Ωint
R , then the Poisson equa-

tion
Δx

∫

Ωint
R

F (y)
1

|x− y| dV (y) = −4πF (x) (10.425)

holds for all x ∈ Ωint
R .

Proof. We introduce

Hρ(|x− y|) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2ρ3

(
5− 3

ρ2
|x− y|2

)
, |x− y| ≤ ρ

1
|x− y|3 , |x− y| > ρ.

(10.426)
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With r = |x− y|, we have

Hρ(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2ρ3

(
5− 3

ρ2
r2

)
, r ≤ ρ

1
r3

, r > ρ.

(10.427)

Hρ is continuously differentiable for all r ≥ 0. Moreover, by already known
arguments, it can be shown (cf. Theorem 10.49 ) that the vector field

−
∫

Ωint
R

F (y)Hρ(|x− y|)(x− y) dV (y) (10.428)

converges uniformly on Ωint
R to the limit field

∇V (x) = −
∫

Ωint
R

F (y)
x− y

|x− y|3 dV (y). (10.429)

For all x ∈ R
3 with |x− y| ≤ ρ, a simple calculation yields

∇x · ((x− y)Hρ(|x− y|)) =
15
2

(
1
ρ3
− |x− y|2

ρ5

)
. (10.430)

Furthermore,
∫

|x−y|≤ρ

∇x · ((x− y)Hρ(|x− y|)) dV (y) = 4π. (10.431)

Hence it is not hard to verify that

−∇x ·
∫

Ωint
R

F (y)Hρ(|x− y|)(x− y) dV (y) (10.432)

= −
∫

|x−y|≤ρ
F (y)∇x · (Hρ(|x− y|)(x− y)) dV (y)

= − 4πF (x)

+
∫

|x−y|≤ρ

(F (x)− F (y))∇x · (Hρ(|x− y|)(x− y)) dV (y).

The Hölder continuity of F assures the estimate

sup
Ωint

R

∣∣∣∣∣−∇x ·
∫

Ωint
R

F (y)(x− y)Hρ(|x− y|) dV (y) + 4πF (x)

∣∣∣∣∣ = O(ρα)

(10.433)



522 10 Zonal Function Modeling of Earth’s Mass Distribution

uniformly as to x ∈ Ωint
R . In an analogous way, we are able to show that the

first partial derivatives of (10.428) uniformly converge to continuous limit
fields. Again, well known theorems of classical analysis show us that ∇V is
differentiable in Ωint

R , and we have

Δx

∫

Ωint
R

F (y)
|x− y| dV (y) = −4πF (x), x ∈ Ωint

R , (10.434)

as required.

Remark 10.51. Theorem 10.49 shows us that, for x ∈ Ωint
R and F ∈

C(Ωint
R ), the improper integral

V (x) =
∫

Ωint
R

F (y)
1

|x− y| dV (y) (10.435)

can be regularized by
∫

Ωint
R

F (y)Sρ(|x− y|) dV (y) (10.436)

such that

lim
ρ→0

sup
x∈Ωint

R

∣∣∣∣∣

∫

Ωint
R

F (y)
1

|x− y| dV (y)−
∫

Ωint
R

F (y)Sρ(|x− y|) dV (y)

∣∣∣∣∣ = 0.

(10.437)
Even more, the vector field

∇V (x) = −
∫

Ωint
R

F (y)
x− y

|x− y|3 dV (y) (10.438)

admits the regularization

−
∫

Ωint
R

F (y)∇xHρ(|x− y|) dV (y). (10.439)

such that

lim
ρ→0

sup
x∈Ωint

R

∣∣∣∣∣

∫

Ωint
R

F (y)
x− y

|x− y|3 dV (y)−
∫

Ωint
R

F (y)∇xHρ(|x− y|) dV (y)

∣∣∣∣∣ = 0.

(10.440)

Whereas boundary-value problems require tools for the approximation of
functions on the boundary ΩR (i.e., in our case, the Earth’s surface), we
have to deal with functions which are defined on the inner or outer space
of ΩR, i.e., on three-dimensional domains. For this purpose, the following
well known theorems are important. Concerning the proofs we refer to, for
example, W. Freeden (1980a) and V. Michel (1999).
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Theorem 10.52. The set of harmonic functions on a ball Ωint
R ,

Harm(Ωint
R ) =

{
F ∈ C(2)(Ωint

R )
∣∣∣ΔF = 0 in Ωint

R

}
, (10.441)

is a closed subspace of L2(Ωint
R ). Moreover, the inner harmonics

{
H int

n,j(R; ·)
}

n=0,1,...,j=1,...,2n+1
, (10.442)

given by

H int
n,j (R; x) =

√
2n + 3

R3

(
|x|
R

)n

Yn,j

(
x

|x|

)
,

x ∈ Ωint
R , constitute a complete orthonormal system in the Hilbert space

Harm(Ωint
R ), with respect to the inner product (·, ·)

L2(Ωint
R )

.

Theorem 10.53. The set of square-integrable harmonic functions on the
outer space Ωext

R ,

Harm(Ωext
R ) (10.443)

=

{
F ∈ C(2)(Ωext

R )

∣∣∣∣∣

∫

Ωext
R

(F (x))2 dV (x) < ∞, ΔF = 0 in Ωext
R

}
,

is a closed subspace of L2(Ωext
R ). Moreover, the system of outer harmonics

{Hext
−n−1,j(R; ·)}n=1,2,...,j=1,...,2n+1, given by

Hext
−n−1,j(R; x) =

√
2n− 1

R3

(
R

|x|

)n+1

Yn,j

(
x

|x|

)
, (10.444)

x ∈ Ωext
R , constitutes a complete orthonormal system in the Hilbert space

Harm(Ωext
R ) with respect to the inner product (·, ·)

L2(Ωext
R )

.

Note that an outer harmonic of degree n = 0 possesses the form

Hext
−1,1(R; x) = C

1
|x|Y0,1

(
x

|x|

)
=

C√
4π|x|

, x ∈ Ωext
R , (10.445)

C ∈ R\{0} constant. In consequence, this function is not an element of
L2(Ωext

R ).

The series expansion of the single pole in terms of Legendre polynomials
allows us to investigate the Fredholm integral operator T in the case of a
spherical surface ΩR (see also N. Weck (1972) for a more general surface
and V. Michel (1999) in the spherical case).
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Theorem 10.54. If ΩR is a sphere with (Earth’s) radius R > 0, then the
operator T̃ : L2(Ωint

R ) → T̃ (L2(Ωint
R )), given by

(
T̃F
)

(y) =
∫

Ωint
R

F (x)
|x− y| dV (x), y ∈ Ωext

R , (10.446)

has the null space (kernel)

ker T̃ =

{
G ∈ L2

(
Ωint

R

) ∣∣∣∣∣

∫

Ωint
R

G(x)H(x) dV (x) = 0, H ∈ Harm
(
Ωint

R

)}
,

(10.447)
i.e., ker T̃ is the L2(Ωint

R )-orthogonal space of Harm
(
Ωint

R

)
.

Proof. Let F ∈ L2(Ωint
R ) with T̃F = 0. Since Harm(Ωint

R ) is a closed subspace
of L2(Ωint

R ), there exists a unique orthogonal decomposition

F = Fharm + G, (10.448)

where Fharm ∈ Harm(Ωint
R ) and G ⊥ Harm(Ωint

R ), i.e.,
∫

Ωint
R

G(x)H(x) dV (x) = 0 (10.449)

for all H ∈ Harm(Ωint
R ). We have to show that T̃F = 0 is equivalent to

Fharm = 0.

For that purpose, Fharm allows the representation as a Fourier series in
terms of inner harmonics as follows:

F =
∞∑

n=0

2n+1∑

j=1

(
F, H int

n,j(R; ·)
)
L2(Ωint

R )
H int

n,j(R; ·) + G, (10.450)

where the equality is understood in the topology of L2(Ωint
R ). Let y ∈ Ωext

R

be arbitrary but fixed. Then, the potential at y corresponding to the mass
density distribution F can written in the form

(
T̃F
)

(y)

=
∫

Ωint
R

1
|x− y|F (x) dV (x)

=
∫

Ωext
R

1
|y|

∞∑

n=0

(
| · |
|y|

)n 4π

2n + 1

2n+1∑

j=1

Yn,j

(
y

|y|

)
Yn,j

(
x

|x|

)
.
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Note that the sequence of functions
⎛

⎝
N∑

n=0

(
| · |
|y|

)n 4π

2n + 1

2n+1∑

j=1

Yn,j

(
y

|y|

)
Yn,j

(
·
| · |

)⎞

⎠

N∈N

(10.451)

converges uniformly and, therefore, in the L2(Ωint
R ) sense:

∥∥∥∥∥∥

∞∑

n=N+1

(
| · |
|y|

)n 4π

2n + 1

2n+1∑

j=1

Yn,j

(
y

|y|

)
Yn,j

(
·
| · |

)∥∥∥∥∥∥
L2(Ωint

R )

=

∥∥∥∥∥

∞∑

n=N+1

(
| · |
|y|

)n

Pn

(
y

|y| ·
·
| · |

)∥∥∥∥∥
L2(Ωint

R )

(10.452)

≤
√

4
3
πR3

∥∥∥∥∥

∞∑

n=N+1

(
| · |
|y|

)n

Pn

(
y

|y| ·
·
| · |

)∥∥∥∥∥
C(Ωint

R )

≤
√

4
3
πR3

∞∑

n=N+1

(
R

|y|

)n

−→ 0, N →∞ .

Since the strong convergence in a Hilbert space always implies the weak
convergence in the same space, we obtain

(
T̃F
)

(y) =
∞∑

n=0

2n+1∑

j=1

1
|y|n+1

4π

2n + 1
Yn,j

(
y

|y|

)

√
R3

2n + 3
Rn

∫

Ωint
R

H int
n,j(R; x)F (x) dV (x)

= R2
∞∑

n=0

2n+1∑

j=1

4π

2n + 1
1√

(2n− 1)(2n + 3)
Hext

−n−1,j (R; y)

∫

Ωint
R

H int
n,j(R; x)F (x) dV (x).

Consequently, T̃F = 0 is equivalent to (H int
n,j(σ; ·), F )

L2(Ωint
R )

= 0, n =
0, 1, . . . , j = 1, . . . , 2n + 1. But this means that Fharm = 0 .

An appropriate coordinate transformation (see, e.g., W.A. Heiskanen, H.
Moritz (1967)) allows the representation of the potential T̃F in the basis
{HR

−n−1,j} n=1,2,...,
j=1,...,2n+1

, such that the coefficient of HR
−1,1 vanish. We assume

that such a coordinate transformation has already been performed such that
we are able to deal with basis functions in L2(Ωext

R ).
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Theorem 10.54 implies the following corollary.

Corollary 10.55. Let the operator T̃ be given by Theorem 10.54. If P is
of class Harm(Ωext

R ) and if there exists a harmonic solution of the problem

T̃F = P, (10.453)

with F ∈ Harm(Ωint
R ) unknown, then F is unique and given by its Fourier

coefficients
∫

Ωint
R

F (x)H int
n,j(R; x) dV (x)

=
2n + 1
4πR2

√
(2n− 1)(2n + 3)

∫

Ωint
R

P (x)Hext
−n−1,j(R; x)dV (x),

n = 1, 2, . . . , j = 1, . . . , 2n + 1 and
(
F, H int

0,1(R; ·)
)
L2(Ωint

R )
= 0, (10.454)

i.e.,

F =
∞∑

n=1

2n+1∑

j=1

2n + 1
4πR2

√
(2n− 1)(2n + 3)

(
P, Hext

−n−1,j(R; ·)
)
L2(Ωext

R )
H int

n,j(R; ·)

(10.455)
in the sense of L2(Ωint

R ), where

(P, Hext
−n−1,j(R; ·))

L2(Ωext
R )

=
∫

Ωext
R

P (x)Hext
−n−1(R; x) dV (x). (10.456)

The null space of the operator T̃ , which is the L2(Ωint
R )-orthogonal space

of the space of harmonic functions on Ωint
R , is called the space of anharmonic

functions.

Anharm
(
Ωint

R

)
=

{
F ∈ L2(Ωint

R )
∣∣∣(F, H)

L2(Ωint
R )

= 0, if H ∈ Harm(Ωint
R )
}

= Harm(Ωint
R )

⊥
L2(Ωint

R
)

The elements of space Anharm(Ωint
R ) are called anharmonic functions. A

theoretical characterization of this space in terms of distributions and within
a Sobolev space nomenclature is given in N. Weck (1972). The non
-uniqueness of the solution of the gravimetry problem is a serious diffi-
culty. Only a few publications, such as L. Ballani et al. (1993), and V.
Michel (1999), have further investigated the treatment of the anharmonic
functions. In our approach, we follow W. Freeden, V. Michel (2004).

Concerning the solvability of the equation T̃F = P , we are led to formu-
late another corollary of Theorem 10.54.
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Corollary 10.56. The equation T̃F = P of Corollary 10.55 is solvable if
and only if P is harmonic and the series

∞∑

n=1

2n+1∑

j=1

(2n + 1)2(2n− 1)(2n + 3)

(∫

Ωint
R

P (x)Hext
−n−1,j(R; x) dV (x)

)2

(10.457)
is convergent.

This inequality is obtained by observing the requirement

F ∈ Harm
(
Ωint

R

)
=
{

H int
n,j(R; ·)

∣∣n ∈ N0, j ∈ {1, . . . , 2n + 1}
}‖·‖

L2(Ωint
R

)
,

(10.458)
which implies

∞∑

n=0

2n+1∑

j=1

(∫

Ωint
R

F (x)H int
n,j(R; x) dV (x)

)2

(10.459)

It is a well known result in functional analysis that operators of the type
T̃ are compact, where compact operators are never continuously invertible.
Note that for this purpose, the operators should be regarded as operators
from L2(Ωint

R ) to L2(Ωext
R ), since the kernel (x, y) → 1

|x−y| is not a member

of L2(Ωint
R × Ωext

R ).

Theorem 10.57. Let T̃ be given as in Theorem 10.54. Then the restricted
operator

T̃
∣∣Harm(Ωint

R ) : Harm
(
Ωint

R

)
→ T̃

(
Harm

(
Ωint

R

))
(10.460)

is invertible. However, the inverse operator (T̃
∣∣Harm(Ωint

R ))−1 is discontin-
uous.

According to Hadamard, an inverse problem T̃F = P is classified in the
following way: The problem is called well-posed if the following three criteria
are satisfied: (a) A solution F exists. (b) The solution F is unique. (c) The
solution F is stable, i.e., T̃−1 is continuous. Otherwise, the problem is called
ill-posed. The results that we derived up to now show that the gravimetry
problem (as formulated here in a spherical setup) is ill-posed. Unavoidable
errors in measurements can perturb the right hand side such that a formerly
solvable problem can become unsolvable. In such a case, a projection of the
measured potential on the space

{
Hext

−n−1,j(R; ·)
∣∣n ∈ N, j ∈ {1, . . . , 2n + 1}

}‖·‖
L2(Ωext

R
)

(10.461)
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allows us to regain solvability, provided that the Fourier coefficients of
the right hand side decay sufficiently fast. However, errors in measure-
ments do not only affect the solvability. They can, in particular, seriously
change the calculated solution, since the instability, i.e., the discontinuity of
(T̃ |Harm(Ωint

R ))−1, causes a high sensitivity of the solution to variations of
the right hand side of the equation. Last but not least, the non-uniqueness
of the solution has to be taken into account.

An (with respect to L2(Ωint
R )) orthogonal basis for Anharm(Ωint

R ) has
been constructed in L. Ballani et al. (1993) in the spherical case. A non-
orthogonal anharmonic basis has been developed in V. Michel (1999) (also
in the spherical case). We omit the proofs here and only quote the results.

Theorem 10.58. The following statements hold true.

(a) A complete L2(Ωint
R )-orthogonal system in Anharm(Ωint

R ) is given by
{
rξ �→ rnPk,n(r2)Yn,j(ξ)

}
k∈N,n∈N0,j∈{1,...,2n+1} , (10.462)

where {Pk,n}k∈N;n∈N0 is a system of polynomials defined by

Pk,n(x) =

√
2

R2n+3
Gk

(
n +

3
2
, n +

3
2
;

x

R2

)
. (10.463)

The functions Gk, k ∈ N0, are the Jacobi polynomials, which are the
only polynomials on [0, 1] that satisfy the following conditions for all
n, m ∈ N0:

(i) Gn(a, b; ·) is a polynomial of degree n on [0, 1].
(ii) Gn(a, b; 0) = 1.
(iii)

∫ 1
0 xa−1(1− x)b−aGn(a, b; x)Gm(a, b; x) dx = 0 for n �= m,

provided that a > 0 and b > a− 1.

(b) A closed system in Anharm(Ωint
R ) is given by (see V. Michel (1999))

{
rξ �→

(
rn+2k − (2n + 3)R2k

2n + 2k + 3
rn

)
Yn,j(ξ)

}

k∈N,n∈N0,j∈{1,...,2n+1}
.

(10.464)
Moreover, the basis functions form polynomials of degree ≤ N ∈ N\{1}
if and only if the index triple (k, n, j) is within the range

n ∈ {0, . . . , N − 2}, j ∈ {1, . . . , 2n + 1}, k ∈
{

1, . . . ,

[
N − n

2

]}
,

where [·] is the Gauss bracket, defined by [x] = max{ν ∈ Z|ν ≤ x},
x ∈ R. The set of anharmonic polynomials with degree ≤ N has the
dimension 1

6N3 − 1
6N .
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Note that the set of harmonic polynomials on Ωint
R with degree ≤ N has

the dimension (N + 1)2. Most surprisingly, in the case of a bandlimited
reconstruction of the mass density function, the reconstructable part has a
lower dimension than the null space.

The obvious advantage of the system in part (a) of Theorem 10.58 is
its orthogonality. On the other hand, the system described in part (b)
has a radial part, which is explicitly given, whereas the radial part of the
orthogonal system has to be calculated iteratively by means of recurrence
formulas.

The important role of the anharmonic functions in the theory of the
gravimetry problem is also stressed if we investigate a radially symmetric
density distribution which is approximately given for the mantle and the
outer and inner core of the Earth. Such a structure of spherical layers
leaves (almost) no information in the gravitational potential and, therefore,
cannot be recovered by means of harmonic functions (see also V. Michel
(1999)).

Theorem 10.59. Let F ∈ L2(Ωint
R ) and G ∈ L2([0, R]) be given functions

such that
F (x) = G(|x|) (10.465)

for all x ∈ Ωint
R , where ΩR is the sphere around the origin with radius R > 0.

Then (
T̃F
)

(y) = 4π

∫ R

0
r2G(r) dr

1
|y| , y ∈ Ωext

R . (10.466)

Moreover, the unique harmonic solution H ∈ Harm(Ωint
R ) of the equation

T̃H = T̃F is constant and given by

H =
3

R3

∫ R

0
r2G(r) dr . (10.467)

Proof. We know that the application of the operator T̃ to F yields
(
T̃F
)

(y)

=
∫

Ωint
R

1
|y|

∞∑

n=0

(
|x|
|y|

)n 4π

2n + 1

2n+1∑

j=1

Yn,j

(
y

|y|

)
Yn,j

(
x

|x|

)
F (x)dV (x)

=
1
|y|

∞∑

n=0

1
|y|n

4π

2n + 1

2n+1∑

j=1

Yn,j

(
y

|y|

)∫

Ωint
R

|x|nYn,j

(
x

|x|

)
F (x) dV (x),

y ∈ Ωext
R , since the strong convergence in a Hilbert space implies the weak

convergence in the same space. The application of the radial symmetry of
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F to the inner products in the obtained series implies
∫

Ωint
R

|x|nYn,j

(
x

|x|

)
F (x) dV (x) =

∫ R

0
r2+n

∫

Ω
Yn,j(ξ)F (rξ) dω(ξ) dr

=
∫ R

0
r2+nG(r) dr

∫

Ω
Yn,j(ξ) · 1 dω(ξ)

=
√

4π

∫ R

0
r2G(r) dr δn0δj1,

where we have observed the L2(Ω)-orthonormality of the spherical harmon-
ics system {Yn,j}n=0,1,...,j=1,...,2n+1. Consequently, the potential of F can be
written as

(
T̃F
)

(y) = 4π

∫ R

0
r2G(r) dr

1
|y| , y ∈ Ωext

R , (10.468)

since Y0,1 = 1√
4π

. If we are now looking for a harmonic function H ∈
Harm(Ωint

R ) with

H =
∞∑

n=0

2n+1∑

j=1

∫

Ωint
R

H(y)H int
n,j(R; y) dV (y)H int

n,j(R; ·) (10.469)

(in the sense of L2(Ωint
R )) that solves the equation T̃H = T̃F , then we obtain

the identity
(
T̃H

)
(y)

=
∫

Ωint
R

1
|y|

∞∑

n=0

(
|x|
|y|

)n 4π

2n + 1

2n+1∑

j=1

Yn,j

(
y

|y|

)
Yn,j

(
x

|x|

)
H(x) dV (x)

=
∫

Ωint
R

1
|y|

∞∑

n=0

1
|y|n

4π

2n + 1

2n+1∑

j=1

Yn,j

(
y

|y|

)
σn

√
σ3

2n + 3
H int

n,j(σ; ·)H(x) dV (x)

=
∞∑

n=0

1
|y|n+1

4π

2n + 1

2n+1∑

j=1

Yn,j

(
y

|y|

)√
σ2n+3

2n + 3

∫

Ωint
R

H(x)H int
n,j(σ; x) dV (x)

= 4π

∫ σ

0
r2G(r) dr

1
|y| , y ∈ Ωext

R .

Obviously, the linear independence of the functions y �→ 1
|y|n+1 Yn,j

(
y
|y|

)

implies that all but one of the Fourier coefficients of H vanish:
∫

Ωint
R

H int
n,j(R; x)H(x) dV (x) = 0, n ∈ N, j = 1, . . . , 2n + 1,

∫

Ωint
R

H int
0,1(R; x)H(x) dV (x) =

√
4π

∫ R

0
r2G(r) dr

√
3

R3
.
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Consequently, the unique harmonic solution H of the equation T̃H = T̃F
is given by

H =
∫ R

0
r2G(r) dr

3
R3

. (10.470)

This is the desired result.

This result indeed shows us that a reconstruction of the (deep) Earth’s
interior with a harmonic function system makes no sense. Therefore, a reli-
able method for the approximation of the density distribution of the Earth
requires a treatment of both orthogonal projections: the harmonic part and
the anharmonic part. Moreover, remember that the contribution of Hext

−1,1 to
the (outer) gravitational potential can be neglected when applying an appro-
priate coordinate transformation, as we mentioned above. This operation
can, therefore, physically be interpreted as filtering out the contribution of
the radially symmetric density structures in the Earth’s interior.

Note that the total mass of an anharmonic density function is zero.

Theorem 10.60. Let F be a member of class Anharm(Ωint
R ). Then we have

∫

Ωint
R

F (x) dV (x) = 0 . (10.471)

Proof. Since F is L2(Ωint
R )-orthogonal to every harmonic function on Ωint

R ,
it is in particular orthogonal to every constant function on Ωint

R . Thus,
∫

Ωint
R

F (x) · 1 dV (x) = 0 . (10.472)

Therefore, the constant harmonic solution, obtained in the case of a ra-
dially symmetric Earth’s interior, can be interpreted as the average mass
density of the Earth. In the case of PREM (the Preliminary Reference Earth
Model, see, e.g., A. Dziewonski, D.L. Anderson (1981) and A. Dziewonski,
D.L. Anderson (1984)), we obtain for this average density according to The-
orem 10.59 the approximate value 5.5134 g/cm3 (V. Michel (1999)).

Note that every function H int
n,j(R; ·), n = 1, 2, . . . , j = 1, . . . , 2n + 1, has

the total mass zero, since H int
0,1(R; ·) is constant and L2(Ωint

R )-orthogonal to
each H int

n,j(R; ·), n = 1, 2, . . . , j = 1, . . . , 2n + 1, such that
∫

Ωint
R

F (x)H int
0,1 (R; x) dV (x)

√
4πR3

3
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may in general be interpreted as the total mass of a mass density distribution
F ∈ L2(Ωint

R ).

Our results will now be used to investigate the inverse problem TF =
P, where TF is a gravitational potential on Ωint

R with and a mass density
distribution F .

Remember the families of functions

{H int
n,j(R; ·)}n∈N0,j=1,...,2n+1 (10.473)

and
{Hext

−n−1,j(R; ·)}n∈N,j=1,...,2n+1, (10.474)

respectively, which are complete orthonormal systems in the
Hilbert spaces (Harm(Ωint

R ), (·, ·)
L2(Ωint

R )
) and (Harm(Ωext

R ), (·, ·)
L2(Ωext

R )
). Sup-

pose that {k∧(n)}n∈N0 is the symbol of T̃ : L2(Ωint
R ) → T̃ (L2(Ωint

R )), i.e.,

(T̃F )(y) =
∞∑

n=0

2n+1∑

j=1

k∧(n)
∫

Ωint
R

F (x)H int
n,j(R; x) dV (x)Hext

−n−1,j(R; y),

y ∈ Ωext
R , F ∈ L2(Ωint

R ), where Hext
−1,1(R; ·) (�∈ L2(Ωext

R )) is a given function.
We are able to formulate the following result.

Theorem 10.61. The inverse problem

T̃F = P,

P ∈ L2(Ωext
R ) given and F ∈ Harm(Ωint

R ) unknown, is solvable if and only if
P ∈ Harm(Ωext

R ) with

∞∑

n=1

2n+1∑

j=1

⎛

⎜⎝

(
P, Hext

−n−1,j(R; ·)
)

L2(Ωext
R )

k∧(n)

⎞

⎟⎠

2

< ∞ . (10.475)

In this case, the harmonic solution F ∈ Harm(Ωint
R ) is unique and given by

(
F, H int

0,1(R; ·)
)
L2(Ωint

R )
=

∫

Ωint
R

F (x)H int
0,1(R; x) dV (x)

= 0,
(
F, H int

n,j(R; ·)
)
L2(Ωint

R )
=

∫

Ωint
R

F (x)H int
n,j(x)(R; x) dV (x)

=
∫

Ωext
R

P (x)Hext
−n−1,j(R; x) dV (x)

=
(P, Hext

−n−1,j(R; ·))
L2(Ωext

R )

k∧(n)
,
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n = 1, 2, . . . , j = 1, . . . , 2n + 1.

As we have seen, the inverse operator (T̃
∣∣Harm(Ωint

R ))−1, defined on the
image imT̃ = T̃ (L2(Ωint

R )), is discontinuous. Due to unavoidable errors in
the measurements of the gravitational field, the application of this inverse
operator to the observed potential for a direct reconstruction of the mass
density distribution is not reasonable. Therefore, we have to develop a
method which uses the principle of regularization, i.e., we do not calcu-
late the exact solution but determine a sequence of approximations, which
continuously depend on the potential and converge to the exact solution.

Definition 10.62. Let K : X → K(X ) ⊂ Y be an invertible linear opera-
tor, where (X , ‖ · ‖X ) and (Y, ‖ · ‖Y) are Banach spaces. A family of linear
operators Kn : K(X ) → X , n ∈ N0, is called a regularization of K−1 if it
satisfies the following properties:

(i) Kn is continuous for every n ∈ N0.

(ii) For every P ∈ K(X ) the identity

lim
n→∞

KnP = K−1P

holds with respect to ‖ · ‖X . The element KnP is called an n-level
regularization of the inverse problem KF = P .

For further details on regularizations and their application to geoscientific
problems, the reader is referred to, for example, W. Freeden, F. Schneider
(1998), F. Schneider (1997). In our case, the operator T is the Fredholm
integral operator of the first kind given by Newton’s gravitational potential.
This leads us to the following statement.

Definition 10.63. Let T̃
∣∣Harm(Ωint

R ) : Harm(Ωint
R ) → T̃ (L2(Ωint

R )) be the
restriction of the linear operator to the space of harmonic functions. Then
the operator S : T (L2(Ωint

R )) → Harm(Ωint
R ) is defined by

S̃ =
(
T̃
∣∣Harm(Ωint

R )
)−1

.

A regularization of the operator S̃ can be constructed in several ways.
The ‘classical’ approach given by a truncated singular-value decomposition
(TSVD) is discussed for example in W. Freeden, V. Michel (2004). However,
a TSVD represents the regularizations T̃nP in terms of polynomials, which
have no space localization. Therefore, a local determination of an approx-
imation with high spatial resolutions requires the use of polynomials with
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very high degrees which can coincide with an extremely ‘oscillating’ behav-
ior. For this reason, a multiscale regularization concept (based on V. Michel
(1999)) is proposed in V. Michel (2005). The advantage of a multiscale reg-
ularization is the use of functions like wavelets, which are space localizing
as well as frequency (momentum) localizing. Moreover, the variation of the
scales allows different weightings of the two kinds of localizations.

In our approach, we restrict ourselves to the spectral reconstruction of
the mass density distribution.

Harmonic part. The spectral reconstruction is based on the fact that
F = S̃P , P ∈ T̃ (L2(Ωint

R )) ∩ L2(Ωext
R ), is represented by

(
F, H int

0,1 (R; ·)
)
L2(Ωint

R )
= 0,

(
F, H int

n,j (R; ·)
)
L2(Ωint

R )
=

(P, Hext
−n−1,j(R; ·))

L2(Ωext
R )

k∧(n)
,

n = 1, 2, . . . , j = 1, . . . , 2n + 1, according to Theorem 10.61. Before we are
going to calculate the solution, we have to take the possible non-existence
of the solution due to errors in the measurements into account. Note that
we defined Harm(Ωext

R ) as a subset of L2(Ωext
R ).

Theorem 10.64. Let P ∈ T̃ (L2(Ωint
R )) ∩ L2(Ωext

R ) be a gravitational po-
tential. The corresponding perturbed function is given by P + εE, where
E ∈ L2(Ωext

R ) and ε > 0. Then the projection operator P : L2(Ωext
R ) →

Harm(Ωext
R ), defined by

PG =
∞∑

n=1

2n+1∑

j=1

(
G, Hext

−n−1,j(R; ·)
)
L2(Ωext

R )
Hext

−n−1,j(R; ·)

(in the sense of L2(Ωext
R )), has the property

‖P (P + εE)− P‖
L2(Ωext

R )
≤ ε ‖E‖

L2(Ωext
R )

.

Proof. The L2(Ωext
R )–norm of the difference P(P +εE)−P can be calculated

by using Parseval’s identity:

‖P (P + εE)− P‖2
L2(Ωext

R )
=

∞∑

n=1

2n+1∑

j=1

(
εE, Hext

−n−1,j(R; ·)
)2
L2(Ωext

R )

= ε2
∞∑

n=1

2n+1∑

j=1

(
E, Hext

−n−1,j(R; ·)
)2
L2(Ωext

R )

≤ ε2 ‖E‖2
L2(Ωext

R )
.
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Obviously, we are able to use the projection operator P to obtain the
(in the sense of L2(Ωext

R )) best possible approximation to the unperturbed
potential P .

However, it does not suffice to know that P(P + εE) is harmonic and
square integrable on Ωext

R . For the solvability of T̃F = P(P + εE), F ∈
Harm(Ωint

R ), we need the property P(P + εE) ∈ im T̃ . This requirement
can be satisfied by an appropriate approximation, as the following theorem
and its proof demonstrate.

Theorem 10.65. The projection P(im T̃ ) of the image im T̃ of the operator
T̃ is dense in Harm(Ωext

R ) with respect to L2(Ωext
R ):

P(im T̃ )
‖·‖

L2(Ωext
R

) = Harm(Ωext
R ) = P

(
L2(Ωext

R )
)

.

Proof. According to the construction of the operator P, it is clear that

P(im T̃ ) ⊂ Harm(Ωext
R ) = P

(
L2(Ωext

R )
)

.

Now let P ∈ Harm(Ωext
R ) be an arbitrary function with the representation

P =
∞∑

n=1

2n+1∑

j=1

(
P, Hext

−n−1,j(R; ·)
)
L2(Ωext

R )
Hext

−n−1,j(R; ·)

in the L2(Ωext
R )-topology. Then the sequence {PN}N∈N, defined by

PN =
N∑

n=1

2n+1∑

j=1

(
P, Hext

−n−1,j(R; ·)
)
L2(Ωext

R )
Hext

−n−1,j(R; ·),

obviously satisfies the properties

lim
N→∞

‖P − PN‖L2(Ωext
R )

= 0

and

∞∑

n=1

2n+1∑

j=1

(
(PN , Hext

−n−1,j(R; ·))
L2(Ωext

R )

k∧(n)

)2

=
N∑

n=1

2n+1∑

j=1

(
(P, Hext

−n−1,j(R; ·))
L2(Ωext

R )

k∧(n)

)2

< ∞,

i.e., PN ∈ P
(
im T̃

)
for all N ∈ N.
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This result does not only show that it is rather improbable to find a pro-
jected potential P(P + εE) outside the image of the operator. It also tells
us that such an exceptional harmonic function, for which solvability is not
given, can be approximated arbitrarily well by a function that corresponds
to a solvable problem. As we could see, a TSVD represents, like every
bandlimited approach, a trivial way of satisfying the summability condi-
tion. W. Freeden, V. Michel (2004) show that a multiscale technique also
allows the construction of non-bandlimited approximations which guarantee
solvability.

Using Theorem 10.61, we can now formulate a spectral regularization
technique for the gravimetry problem.

Theorem 10.66. Let P ∈ L2(Ωext
R ) be an arbitrary function. Then the

sequence {FN}N∈N of harmonic functions given by

FN =
N∑

n=1

2n+1∑

j=1

(P, Hext
−n−1,j(R; ·))

L2(Ωext
R )

k∧(n)
H int

n,j(R; ·) (10.476)

shows the property

lim
N→∞

∥∥∥PP − T̃FN

∥∥∥
L2(Ωext

R )
= 0 .

Moreover, if PP ∈ im T̃ , then {FN}N∈N converges to the harmonic solution
F of the integral equation

T̃F = PP,

i.e.,

lim
N→∞

∥∥∥∥
(
T
∣∣Harm(Ωint

R )
)−1

(PP )− FN

∥∥∥∥
L2(Ωint

R )

= 0 .

Proof. From the results derived above, we find

T̃FN =
N∑

n=1

2n+1∑

j=1

(
P, Hext

−n−1,j(R; ·)
)
L2(Ωext

R )
Hext

−n−1,j(R; ·),

such that obviously {T̃FN}N∈N converges to PP with respect to ‖·‖
L2(Ωext

R )
.

Moreover, according to Theorem 10.61 the harmonic solution

F =
(
T
∣∣Harm(Ωint

R )
)−1

(PP )

is given by
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F =
∞∑

n=1

2n+1∑

j=1

(
P, Hext

−n−1,j(R; ·)
)

L2(Ωext
R )

k∧(n)
H int

n,j(R; ·),

(with respect to L2(Ωint
R )), provided that PP ∈ im T̃ . Thus,

lim
N→∞

‖F − FN‖2

L2(Ωint
R )

= lim
N→∞

∞∑

n=N+1

2n+1∑

j=1

⎛

⎜⎝

(
P, Hext

−n−1,j(R; ·)
)

L2(Ωext
R )

k∧(n)

⎞

⎟⎠

2

= 0 .

This is the wanted result.

The approximations as defined by (10.476) require the calculation of the
Fourier coefficients

(
P, Hext

−n−1,j(R; ·)
)
L2(Ωext

R )
=
∫

Ωext
R

P (x)Hext
−n−1,j(R; x) dV (x) .

In reality, we only know P on a discrete set of points, such that the above
integral has to be determined numerically with an appropriate integration
formula.

More explicitly, the Fourier coefficients of the potential P are given by

(
P, Hext

−n−1,j(R; ·)
)
L2(Ωext

R )

=
∫

Ωext
R

P (x)Hext
−n−1,j(R; x) dV (x)

=

√
2n− 1

R3

∫ ∞

R
r2

(
R

r

)n+1 ∫

Ω
P (rξ)Yn,j(ξ) dω(ξ) dr,

n = 1, 2, . . . , j = 1, . . . , 2n + 1.

Let α be the radius of a sphere A around the origin with α < R. If we
assume that the potential P can be represented by

P (x) =
∞∑

m=0

2m+1∑

k=1

(
P,

1
α

Ym,k

(
·
| · |

))

L2(A)

1
α

(
α

|x|

)m+1

Ym,k

(
x

|x|

)
,
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x ∈ Ωext
R , then we find that

(
P,Hext

−n−1,j(R; ·)
)
L2(Ωext

R )

=

√
2n− 1

R3

×
∫ ∞

R

Rn+1

rn−1

( ∞∑

m=0

2m+1∑

k=1

(
P, Ym,k

(
·
| · |

))

L2(A)

αm−1

rm+1
Ym,k, Yn,j

)

L2(Ω)

dr

=

√
2n− 1

R3

×
∫ ∞

R

Rn+1

rn−1

∞∑

m=0

2m+1∑

k=1

(
P, Ym,k

(
·
| · |

))

L2(A)

αm−1

rm+1
(Ym,k, Yn,j)L2(Ω) dr

=

√
2n− 1

R3

∫ ∞

R

Rn+1

rn−1

αn−1

rn+1
dr

(
P, Yn,j

(
·
| · |

))

L2(A)

=
1√

R3(2n− 1)
αn−1

Rn−2

(
P, Yn,j

(
·
| · |

))

L2(A)

=
1√

R(2n− 1)

(α

R

)n−1
∫

A

P (x)Yn,j

(
x

|x|

)
dω(x),

n = 1, 2, . . ., j = 1, . . . , 2n + 1. This means that, in this simplified case,
the numerical integration can be reduced to the calculation of a spherical
integral over a sphere A, with radius α around the origin.

Note that the integrals that have to be determined approximately are L2-
scalar products with polynomials. Due to the non-space localizing character
of polynomials, the grid for the numerical integration should be equidis-
tributed. However, this requirement does not fit the real data situation.
In North America, western Europe, and Australia, gravitational data are
available on a comparatively dense grid, whereas one of the lowest densities
of available data points is, for example, given in the polar regions. Such
datasets can be better handled by the multiscale approach as described by
W. Freeden, V. Michel (2004), V. Michel (2005).

We have seen that it is only possible to recover the harmonic part of the
Earth’s density distribution from the gravitational potential (for graphical
illustration see Figs. 10.31 and 10.32). Therefore, we need a strategy to
determine an approximation to the anharmonic part of the unknown mass
density function from non-gravitational data. We will represent such a
priori information by linear functionals Fn : L2(Ωint

R ) → R . The idea is
that, a given set of measurements related to the true mass density function
F can be represented by FnF = bn, n ∈ I ⊂ N . The application of those
functionals to the already calculated (approximation to the) harmonic part
Fharm of F allows us to formulate an equation system for the anharmonic



10.8 Density Distribution 539

Fig. 10.31: (Harmonic) Density
[

kg
m3

]
from EGM96, Geomathematics

Group, TU Kaiserslautern, K. Wolf (2006) ( see also V. Michel, K. Wolf
(2008)).

part Fanharm of F :

FnFanharm = bn −FnFharm, n ∈ I . (10.477)

Consequently, it suffices to assume that the linear functionals Fn are de-
fined on Anharm(Ωint

R ): Fn : Anharm(Ωint
R ) → R. For the determination of

an anharmonic function satisfying (10.477), several methods exist. In the
following, we explain a “classical” spectral approximation. For a wavelet
approach, see V. Michel (2002). A spline approximation method is devel-
oped in V. Michel (1999). For alternative methods we refer to, for example,
L. Ballani et al. (1993) and the references therein.

Since the available information for the mass density function of the Earth
and related quantities is always finite, it suffices to assume that the index
set I has the form I = {1, . . . , N}. In other words, our a priori information
is represented by

FnG = bn, n = 1, . . . , N, (10.478)

where G ∈ Anharm(Ωint
R ) is unknown.

Motivated by Theorem 10.58, we assume that we have a countable basis
of Anharm(Ωint

R ). In Theorem 10.58, we listed for the spherical Earth two
closed systems Ai in Anharm(Ωint

R ), namely

{
rξ �→ rnPk,n(r2)Yn,j(ξ)

}
k∈N,n∈N0,j∈{1,...,2n+1} , (10.479)
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where Pk,n(x) is a polynomial of degree k, and

{
rξ �→

(
rn+2k − (2n + 3)R2k

2n + 2k + 3
rn

)
Yn,j(ξ)

}

k∈N,n∈N0,j∈{1,...,2n+1}
.

(10.480)
In both cases, the degree of the polynomial corresponding to an index triple
(k, n, j) is n + 2k. It appears to be reasonable to choose the enumeration
(k, n, j) �→ i in the last definition in a way such that

degAi1 ≤ degAi2 , if i1 ≤ i2. (10.481)

A fixed degree N = n + 2k corresponds to pairs
{

(n, k)
∣∣∣∣k = 1, . . . ,

[
N

2

]
, n = N − 2k

}
, (10.482)

where [·] is the Gauss bracket. Hence, the number of polynomials of degree
N in one of the above mentioned systems is

[N
2 ]∑

k=1

(2(N − 2k) + 1) = (2N + 1)
[
N

2

]
− 4

[
N
2

] ([
N
2

]
+ 1
)

2

=
(

2N − 2
[
N

2

]
− 1
)[

N

2

]
, N ≥ 2 .

Note that every polynomial of degree 0 or 1 is harmonic.

Thus, the indices of {Ai}i∈N can be divided (in the spherical case) into
consecutive sections of length

(
2N − 2

[
N
2

]
− 1
) [

N
2

]
, such that, in each

section, the degree of Ai is constant. The arrangement of the polynomi-
als within each index section is, therefore, not influenced by the condition
(10.481) and is, consequently, from this point of view, arbitrary. We are in-
terested in an harmonic function G satisfying (10.478). To obtain a unique
solution, the most simple approach would be to take a function of the kind

G =
N∑

i=1

aiAi . (10.483)

The set of coefficients {ai}i=1,...,N has to be determined from the a priori
conditions

N∑

i=1

aiFnAi = bn, n = 1, . . . , N . (10.484)

If the rank of the matrix
(FnAi)n=1,...,N

i=1,...,N
(10.485)
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is less than N , we can add additional a priori information (or, alternatively,
decrease the number of coefficients) to obtain a matrix of maximal rank.
The solution of the obtained linear equation system can be calculated with
the common algorithms such as the Householder method.

An example of such a system of functionals is given by the point function-
als. Let {xn}n=1,...,N be a system of pairwise distinct points in Ωint

R . Then
the functionals Fn : Anharm(Ωint

R ) → R, given by FnG = G(xn), G ∈
Anharm(Ωint

R ), n ∈ {1, . . . , N}, are linear. The corresponding linear equa-
tion system has the matrix (Ai(xn))n=1,...,N

i=1,...,N
However, in reality direct mea-

surements of the mass density are only available at some points in the upper
crust of the Earth. It is obvious that an anharmonic function calculated
from such datasets cannot represent the situation in the deep Earth. This
fact is stressed by the discovery that the (almost) radially symmetric layer
structure of the mantle and the core is nearly fully described by the anhar-
monic part of the density distribution (see Theorem 10.59 and V. Michel
(1999)). Therefore, additional datasets which are also influenced by deep
structures have to be included in the calculations, such as data from seis-
mology and geomagnetism. A priori information represented by point func-
tionals FnG = G(xn) are, therefore, usually pointwise solutions of further
inverse problems.

Fig. 10.32: Multiresolution of density
[

kg
m3

]
from EGM96, Geomathematics

Group, TU Kaiserslautern, K. Wolf (2006).
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10.9 Vector Outer Harmonics and the Gravitational
Gradient

In what follows, we extend the results obtained for scalar outer harmonics to
the vectorial case (cf. H. Nutz (2002)). It should be noted that the system
of vector spherical harmonics {ỹ(i)

n,m} and not the system {y(i)
n,m} is used to

generate the set of vector outer harmonics {h(i);R
−n−1,m}.

To be more concrete, the vectorial outer (solid spherical) harmonics (briefly
called vector outer harmonics) h

(i);R
n,m of degree n, order m, and kind i are

given by

h
(1);R
−n−1,m(x) =

1
R

(
R

|x|

)n+2

ỹ(1)
n,m

(
x

|x|

)
, n = 0, 1, . . . , m = 1, . . . 2n + 1,

(10.486)

h
(2);R
−n−1,m(x) =

1
R

(
R

|x|

)n

ỹ(2)
n,m

(
x

|x|

)
, n = 1, 2, . . . , m = 1, . . . 2n + 1,

(10.487)

h
(3);R
−n−1,m(x) =

1
R

(
R

|x|

)n+1

ỹ(3)
n,m

(
x

|x|

)
, n = 1, 2, . . . , m = 1, . . . 2n + 1,

(10.488)

x ∈ R
3\{0}.

From our results about the systems {ỹ(i)
n,m} (see Chapter 5), we are im-

mediately able to deduce the following properties:

• h
(i);R
−n−1,m is of class c(∞)(R3\{0}), i ∈ {1, 2, 3},

• Δxh
(i);R
−n−1,m = 0 for all x ∈ R

3\{0} and i ∈ {1, 2, 3}, i.e., every com-

ponent function h
(i)
−n−1,m · εk satisfies the Laplace equation,

• h
(i);R
−n−1,m|ΩR = 1

R ỹ
(i)
n,m, i ∈ {1, 2, 3},

• |h(i);R
−n−1,m(x)| = O(|x|−1), |x| → ∞, i ∈ {1, 2, 3},

• (h(i);R
−n−1,m(x), h(j);R

−l−1,s)l2(ΩR) =
∫

ΩR

h
(i);R
−n−1,m(x) · h(j);R

−l−1,s(x) dω(x)

= δijδnlδms, i, j ∈ {1, 2, 3}.
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As in the scalar case, we introduce the h̃arm
(i)

n –spaces to be

h̃arm
(i)

n (Ωext
R ) = span

m=1,...,2n+1

{
h

(i);R
−n−1,m

∣∣Ωext
R

}
. (10.489)

Furthermore,

h̃arm0(Ωext
R ) = h̃arm

(1)

0 (Ωext
R ), (10.490)

h̃armn(Ωext
R ) =

3⊕

i=1

h̃arm
(i)

n (Ωext
R ). (10.491)

As usual, h̃arm
(i)

p,...,q(Ωext
R ), 0i ≤ p ≤ q, denotes the space

h̃arm
(i)

p,...,q(Ωext
R ) =

q⊕

n=p

h̃arm
(i)

n (Ωext
R ). (10.492)

We are now able to formulate the addition theorems for the vector outer
harmonics. Again, we have two choices involving Legendre tensors or Leg-
endre vectors, respectively.

Theorem 10.67. Let {h(i);R
−n−1,m}m=1,...,2n+1 be a system of vector outer har-

monics of degree n, order m, and kind i. Then, for (x, y) ∈ Ωext
R ×Ωext

R , the
addition theorem for vector outer harmonics reads as follows:

2n+1∑

m=1

h
(1);R
−n−1,m(x) ⊗ h

(1);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n+2
2n + 1

4π
p̃

(1,1)
n

(
x

|x|
,

y

|y|

)
,

(10.493)

2n+1∑

m=1

h
(1);R
−n−1,m(x) ⊗ h

(2);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n (
R

|x|

)2 2n + 1

4π
p̃

(1,2)
n

(
x

|x|
,

y

|y|

)
,

(10.494)

2n+1∑

m=1

h
(1);R
−n−1,m(x) ⊗ h

(3);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n+1 (
R

|x|

)
2n + 1

4π
p̃

(1,3)
n

(
x

|x|
,

y

|y|

)
,

(10.495)

2n+1∑

m=1

h
(2);R
−n−1,m(x) ⊗ h

(1);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n (
R

|y|

)2 2n + 1

4π
p̃

(2,1)
n

(
x

|x|
,

y

|y|

)
,

(10.496)

2n+1∑

m=1

h
(2);R
−n−1,m(x) ⊗ h

(2);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n
2n + 1

4π
p̃

(2,2)
n

(
x

|x|
,

y

|y|

)
,

(10.497)

2n+1∑

m=1

h
(2);R
−n−1,m(x) ⊗ h

(3);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n (
R

|y|

)
2n + 1

4π
p̃

(2,3)
n

(
x

|x|
,

y

|y|

)
,

(10.498)
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2n+1∑

m=1

h
(3);R
−n−1,m(x) ⊗ h

(1);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n+1 (
R

|y|

)
2n + 1

4π
p̃

(3,1)
n

(
x

|x|
,

y

|y|

)
,

(10.499)

2n+1∑

m=1

h
(3);R
−n−1,m(x) ⊗ h

(2);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n (
R

|x|

)
2n + 1

4π
p̃

(3,2)
n

(
x

|x|
,

y

|y|

)
,

(10.500)

2n+1∑

m=1

h
(3);R
−n−1,m(x) ⊗ h

(3);R
−n−1,m(y) =

1

R2

(
R2

|x||y|

)n+1
2n + 1

4π
p̃

(3,3)
n

(
x

|x|
,

y

|y|

)
.

(10.501)

Combining scalar and vector outer harmonics and observing the concept
of Legendre vectors, we are led to the following addition theorem:

Theorem 10.68. Let {HR
−n−1,m}m=1,...,2n+1 be a system of scalar outer

harmonics of degree n and order m. Suppose that {h(i);R
−n−1,m}m=1,...,2n+1

forms the associated system of vector outer harmonics of degree n, order m,
and kind i. Then, for (x, y) ∈ Ωext

R × Ωext
R , the addition theorem for scalar

and vector outer harmonics reads as follows

2n+1∑

m=1

h
(1);R
−n−1,m(x)HR

−n−1,m(y) =
1

R2

(
R2

|x||y|

)n+1(
R

|y|

)
2n + 1

4π
p̃(1)

n

(
x

|x| ,
y

|y|

)
,

(10.502)
2n+1∑

m=1

h
(2);R
−n−1,m(x)HR

−n−1,m(y) =
1

R2

(
R2

|x||y|

)n(
R

|x|

)
2n + 1

4π
p̃(2)

n

(
x

|x| ,
y

|y|

)
,

(10.503)
2n+1∑

m=1

h
(3);R
−n−1,m(x)HR

−n−1,m(y) =
1

R2

(
R2

|x||y|

)n+1 2n + 1
4π

p̃(3)
n

(
x

|x| ,
y

|y|

)
.

(10.504)

Our purpose now is to mention some important properties involving vec-
tor outer harmonics.

Lemma 10.69. (Linear Independence of Vector Outer Harmonics) Assume
that {h(i);R

−n−1,m}i=1,2,3,n=0i,...,
m=1,...,2n+1

is a system of vector outer harmonics as defined

by (10.486), (10.487) and (10.488). Then, for all r > 0, the system

{h(i);R
−n−1,m|Ωr}i=1,2,3;n=0i,...,

m=1,...,2n+1

is linearly independent.
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Next we are interested in the completeness for vector outer harmonics on
ΩR. Our results can be based on the corresponding theorems of the scalar
theory.

Lemma 10.70. Let {HR
−n−1,m}n=0,1,...,m=1,...,2n+1 be a system of scalar

outer harmonics. The n

span{HR
−n−1,mεi|ΩR}

‖·‖l2(ΩR) = l2(ΩR),

and
span{HR

−n−1,m)εi|ΩR}
‖·‖c(ΩR) = c(ΩR).

Lemma 10.70 enables us to formulate the following theorem.

Theorem 10.71. Let {h(i);R
−n−1,m}i=1,2,3;n=0i,...;

m=1,...,2n+1

be a system of vector outer

harmonics as defined by (10.486), (10.487) and (10.488). Then, for all
r > 0 the following statements hold true:

l2(Ωr) = span
i=1,2,3;n=0i,...,

m=1,...,2n+1

{h(i);R
−n−1,m|Ωr}

‖·‖l2(Ωr)

,

and

c(Ωr) = span
i=1,2,3;n=0i,...,

m=1,...,2n+1

{h(i);R
−n−1,m|ΩR}

‖·‖c(Ωr)

.

The purpose of high-low satellite-to-satellite tracking (hi–lo SST) by use
of GPS (as realized, e.g., by the German satellite CHAMP of the GFZ) is
to develop the geopotential from measured ranges (geometrical distances)
between a low earth orbiter (LEO) and the high flying GPS satellites. In
what follows, hi-lo SST is discussed from a mathematical point of view as
the problem of determining the external gravitational field of the Earth from
the gradient vector at the altitude of the LEO.

In order to translate hi-lo SST into a mathematical formulation (see W.
Freeden (1999), W. Freeden et al. (1999), W. Freeden et al. (2002), and, for
alternative approaches, ESA (1996), ESA (1998), ESA (1999) and the ref-
erences therein), we start from the following spherically oriented situation:
Let ΩR denote the Earth’s surface, while ΩS denotes the orbital surface.
The arrangement of the GPS satellites is such that at least four satellites
are simultaneously visible above the horizon anywhere on the Earth’s surface
ΩR and the orbit ΩS of the LEO satellite as well, all the time. Moreover,
the GPS satellites (see Fig. 10.33) are supposed to be placed in circular
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orbits Ωγi of radii around the origin with γi % S; and n is the total number
of GPS satellites. To every LEO position x ∈ ΩS , therefore, there exist at
least m(≥ 4) visible GPS satellites located at yl1 , . . . , ylm , li ∈ {1, . . . , n}
for i = 1, . . . , m, such that the geometrical distances (ranges) dli = |x−yli |,
li ∈ {1, . . . , n} for i = 1, . . . , m, are measurable (see Fig. 10.33). Since
the orbits of the GPS satellites are assumed to be known, the coordinates
of the LEO satellite located at x ∈ ΩS can be derived from simultaneous
range measurements to the satellites. From this, the relative positions of
the satellites at x and yli , i.e., pli = x−yli , li ∈ {1, . . . , n}, i = 1, . . . , m,
become available at time t. The relative velocities vli and accelerations
ali are obtainable by differentiating the relative positions with respect to
t. We may assume that the measurements are produced at a sufficiently
dense rate so that (numerical) differentiation can be performed without any
difficulty. The interesting expressions now are the relative accelerations ali ,
i = 1, . . . , m, all of which are determined for inertial motion (in accordance
with the Newton–Euler equation) by the gravitational field only and may
be equated by the difference of the gradient field of the geopotential, V ,
here evaluated at the locations of x and yli , li ∈ {1, . . . , n} for i = 1, . . . , m.
To be more specific,

ali(x) = (∇V )(x)− (∇V )(yli), x ∈ ΩS , (10.505)

i = 1, . . . , m. (Note that the gravitational force is considered now to be
independent of time t at a certain position. In other words, we assume here
that the time-like variations of the field are so slow as to be negligible.)
From (10.505), it follows that

(∇V )(x) =
m∑

i=1

αi (ali(x) + (∇V )(yli)) , x ∈ ΩS , (10.506)

Fig. 10.33: Principle of spaceborne GPS.
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for all selections (α1, . . . , αm)T ∈ R
m satisfying

∑m
i=1 αi = 1. The influence

of the GPS on the choice of the coefficients α1, . . . , αm will not be investi-
gated here. (Usually, in practice, (∇V )(yli) are supposed to be so small as
to be negligible.)

The hi-low SST problem can be described as follows: Let ΩR be the Earth’s
surface, and let ΩS denote the orbital surface of the LEO under considera-
tion. Let there be known the gradient vectors

v(x) = (∇V )(x), x ∈ ΩS , (10.507)

at the flight positions of the LEO. Find the geopotential V on Ωext
R , i.e., on

and outside the Earth’s surface ΩR.

Low–low satellite-to-satellite tracking (lo–lo SST) (as used, for example,
by the GFZ/NASA two satellite configuration GRACE) is a tandem mode
procedure. By lo–lo SST (see the explanations in ESA (1996, 1998, 1999),
the vectors ali , i = 1, ..., m, are measurable at two different positions x and
x∗ with x∗ = x + h(x), x ∈ ΩS , where h : ΩS → R

3 is the difference vector
field between the two satellite positions (i.e., |h(x)| ≥ ι > 0 with ι denoting
the intersatellite range).

Consequently, the mathematical scenario of the lo–lo SST problem is char-
acterized as follows: Let there be known the vectors v(x) = (∇V )(x) and
v(x + h(x)) = (∇V )(x + h(x)), x ∈ ΩS . Find V on Ωext

R from the values
v(x)− v(x + h(x)).

We begin our considerations with the uniqueness of the SST problem from
given vector values (in spherical geometry).

Theorem 10.72. Suppose that X ⊂ ΩS (i.e., the subset of observational
points on the satellite orbit ΩS, S > R) is a dense system on ΩS. If v
satisfies ∇ · v = 0, L · v = 0 in Ωext

R such that

v(x) = 0, x ∈ X ,

then v = 0 in Ωext
R .

Proof. Any field v satisfying ∇ · v = 0, L · v = 0 in Ωext
R can be expressed in

the form ∇V , hence, the coordinate functions v · εi, i = 1, 2, 3, satisfy

Δ
(
v · εi

)
= Δ

((
εi · ∇

)
V
)

=
(
εi · ∇

)
ΔV = 0 (10.508)

in Ωext
R . Note that the harmonic function V is arbitrarily often differentiable

in Ωext
R . Moreover, according to our assumption, (εi · ∇)V (x) = 0 for all
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points x of the dense system X on ΩS , hence, X is a fundamental system in
Ωext

R in the sense of Definition 10.2. This implies v ·εi = 0 in Ωext
R , i = 1, 2, 3,

as required.

Furthermore, we are able to verify the following result.

Theorem 10.73. Suppose that X ⊂ ΩS, S > R, is a dense system of points
on the satellite orbit ΩS, S > R. If v satisfies ∇· v =, L · v = 0 in Ωext

R with

(−x) · v(x) = 0, x ∈ X , (10.509)

then v = 0 in Ωext
R .

Proof. We again base our arguments on the identity v = ∇V . The potential
V |Ωext

S , S > R, may be expanded in terms of outer harmonics

V (x) =
∞∑

n=0

2n+1∑

k=1

V
∧L2(ΩS)(n, k)HS

−n−1,k(x), x ∈ Ωext
S , (10.510)

where V
∧L2(ΩS)(n, k), n = 0, 1, . . ., k = 1, . . . , 2n + 1, are the expansion

coefficients

V
∧L2(ΩS)(n, k) =

∫

ΩS

V (x)HS
−n−1,k(x) dω(x), (10.511)

and the series expansion in (10.510) is absolutely and uniformly convergent
in Ωext

S . It is not hard to see that

− x

|x| · (∇V )(x) =
∞∑

n=0

2n+1∑

k=1

n + 1
|x| V

∧L2(ΩS)(n, k)HS
−n−1,k(x), x ∈ Ωext

S .

(10.512)
Hence,

x �→ (−x) · (∇V )(x), x ∈ Ωext
S , (10.513)

is continuous in Ωext
S , twice continuously differentiable in Ωext

S , harmonic in
Ωext

S , and regular at infinity. By virtue of (−x) · (∇V )(x) = 0 for all x ∈ X ,
we therefore obtain

∞∑

n=0

2n+1∑

k=1

V
∧L2(ΩS)(n, k)(n + 1)HS

−n−1,k(x) = 0, x ∈ X . (10.514)

Since X is assumed to be a dense system on ΩS , S > R, the identity (10.514)
holds true for all x ∈ Ωext

S . The completeness property of the theory of
spherical harmonics then tells us that

V
∧L2(ΩS)(n, k)(n + 1) = 0, (10.515)



10.9 Vector Outer Harmonics and the Gravitational Gradient 549

hence,
V

∧L2(ΩS)(n, k) = 0 (10.516)

for all n = 0, 1, . . ., k = 1, . . . , 2n + 1. This yields V = 0 in Ωext
S . By

analytical continuation, we get V = 0 in Ωext
R , hence, v = 0 in Ωext

R . This is
the desired result.

Theorem 10.73 means that the Earth’s external gravitational field is
uniquely recoverable from (negative) radial derivatives corresponding to a
fundamental system X on the satellite orbit. In other words, the Earth’s
external gravitational field is uniquely detectable on and outside ΩR from
GPS-SST data corresponding gradient vectors given on a dense system X
on the satellite orbit ΩS .

In conclusion, the results concerning satellite-to-satellite tracking (SST)
show that the problem of developing the gravitational potential outside the
Earth from given gradients in point systems on spherical orbits is overde-
termined; it suffices to prescribe, e.g., the normal (i.e. radial) component
(cf. Theorem 10.73). In fact, the Earth’s gravitational potential can be
detected alternatively from a dense system of surface gradients (i.e., ver-
tical deflections) on the satellite orbit. Both aspects of gravitational field
determination from SST-data will be described now in more detail:

Let the gravitational potential V ∈ C(Ωext
R )∩C(2)(Ωext

R ) satisfying ΔV = 0
in Ωext

R , |V (x)| = O( 1
|x|), |∇V (x)| = O( 1

|x|2 ), |x| → ∞, be given in the form

V =
∞∑

n=0

2n+1∑

k=1

V
∧L2(ΩR)(n, k)HR

−n−1,k. (10.517)

We have to derive V from its gravitational gradient ∇V on the external
sphere ΩS . For that purpose, we remember the decomposition of ∇V into
its horizontal and tangential parts:

(∇V )(Sξ) =
∂V (rξ)

∂r
ξ

∣∣∣∣
r=S

+
1
r
∇∗

ξV (rξ)
∣∣∣∣
r=S

, S > R. (10.518)

First, we show that V (as defined by (10.517)) is uniquely determined by
its normal derivative on ΩS . Observing the identity

∂rV (rξ) |r=S =
∂V (rξ)

∂r

∣∣∣∣
r=S

(10.519)

=
∞∑

n=0

2n+1∑

k=1

V
∧L2(ΩR)(n, k)Λ∂ R

S

(n)HS
−n−1,k(Sξ)
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with

Λ∂ R
S

(n) = −n + 1
S

(
R

S

)n

= −n + 1
R

(
R

S

)n+1

(10.520)

we find ∂rV |r=S = 0 if and only if V = 0. This means that V is uniquely
determined by its radial derivative ∂rV on ΩS .

Second, it is not difficult to verify that

1
r
∇∗

ξV (rξ)
∣∣∣∣
r=S

(10.521)

=
2∑

i=1

∞∑

k=0i

2n+1∑

k=1

V
∧L2(ΩR)(n, k)λ(i)

∇∗;S (n)h(1)
−n−1,k(Sξ),

where

λ
(i)

∇∗;S (n) =

⎧
⎨

⎩
−n

S

(
R
S

)n√ n+1
2n+1 ; i = 1,

n+1
S

(
R
S

)n√ n
2n+1 ; i = 2.

(10.522)

This leads us to the conclusion that
1
r
∇∗

ξV (rξ)|r=S = 0 (10.523)

if and only if

V (x) =
C0,1

|x| , C0,1 ∈ R. (10.524)

Turning over from the gravitational potential V to the disturbing potential
T as indicated by (10.139), we get the following results:

∂rT |r=S = 0 if and only if T = 0,

∇∗;ST = 0 if and only if T = 0.

In other words, the anomalous potential is uniquely determined by its radial
derivative or its surface gradient on the (orbital) surface ΩS , respectively.

Finally, we remember

∇HR
−n−1,k = −

√
μ̃

(1)
n h

(1);R
−n−1,k = −

√
(n + 1)(2n + 1)h(1);R

−n−1,k. (10.525)

This enables us to write the gravitational field ∇V as follows:

∇V = −
∞∑

n=0

2n+1∑

k=1

V
∧L2(ΩR)(n, k)

√
μ̃

(1)
n h

(1);R
−n−1,k. (10.526)

Moreover, it is easily seen that
∫

ΩS

∇V (y) · h(1);S
−p−1,q(y) dω(y) = −

(
R

S

)p+1

V
∧L2(ΩR)(p, q)

√
μ̃

(1)
n . (10.527)
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Therefore, we finally obtain the following reformulation of V from the series
representation (10.517)

V =
∞∑

n=0

2n+1∑

k=1

(
∇V, h

(1);S
−n−1,k

)

l2(ΩS)
(μ̃(1)

n )−1/2

(
S

R

)n+1

HR
−n−1,k. (10.528)

The last formula expresses the gravitational potential on Ωext
R in terms of the

gravitational gradient on the satellite orbit ΩS . Essential tools are the vector
outer harmonics. The same result holds true for the anomalous potential.
Clearly, in (10.528), the equality on ΩR is understood in L2(ΩR)-sense, while
the convergence on each Ωr, r > R is understood in C(Ωr)-sense.

10.10 Tensor Outer Harmonics and the Gravitational
Tensor

The extension of the vectorial theory of outer harmonics to the tensorial
case is straightforward. By use of the systems {ỹ(i,k);R

n,m } of tensor spheri-
cal harmonics, we are able to write down a set of tensor outer harmonics
{h(i,k);R

−n−1,m}, where the arguments are quite similar to the vectorial case.

The system

{h(i,k);R
−n−1,m(·)}i,k∈{1,2,3}, n = 0̃ik, 0̃i,k + 1, . . . , m = 1, . . . , 2n + 1 (10.529)

of tensor outer harmonics of degree n, order m, and kind (i,k) is given by

h(1,1);R
−n−1,m(x) =

1
R

(
R

|x|

)n+3

ỹ(1,1)
n,m

(
x

|x|

)
, (10.530)

h(1,2);R
−n−1,m(x) =

1
R

(
R

|x|

)n+1

ỹ(1,2)
n,m

(
x

|x|

)
, (10.531)

h(2,1);R
−n−1,m(x) =

1
R

(
R

|x|

)n+1

ỹ(2,1)
n,m

(
x

|x|

)
, (10.532)

h(2,2);R
−n−1,m(x) =

1
R

(
R

|x|

)n−1

ỹ(2,2)
n,m

(
x

|x|

)
, (10.533)

h(3,3);R
−n−1,m(x) =

1
R

(
R

|x|

)n+1

ỹ(3,3)
n,m

(
x

|x|

)
, (10.534)

h(1,3);R
−n−1,m(x) =

1
R

(
R

|x|

)n+2

ỹ(1,3)
n,m

(
x

|x|

)
, (10.535)
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h(2,3);R
−n−1,m(x) =

1
R

(
R

|x|

)n

ỹ(2,3)
un,m

(
x

|x|

)
, (10.536)

h(3,1);R
−n−1,m(x) =

1
R

(
R

|x|

)n+2

ỹ(3,1)
n,m

(
x

|x|

)
, (10.537)

h(3,2);R
−n−1,m(x) =

1
R

(
R

|x|

)n

ỹ(3,2)
n,m

(
x

|x|

)
, (10.538)

x ∈ R
3\{0}, n = 0̃ik, 0̃ik +1, . . . , m = 1, . . . , 2n+1 (for the definition of the

ỹ(i,j)
n,m , see Chapter 6).

The following properties are valid:

• h(i,k);R
−n−1,m is of class c(∞)(R3\{0}),

• Δxh
(i,k);R
−n−1,m(x) = 0 for x ∈ R

3\{0}, i.e., the component functions of

h(i,k);R
n,m fulfill the Laplace equation,

• h(i,k);R
−n−1,m|ΩR = 1

R ỹ(i,k)
n,m ,

• |h(i,k);R
−n−1,m(x)| = O(|x|−1), |x| → ∞,

• (h(i,k);R
−n−1,m,h(p,q);R

−l−1,s)l2(ΩR) = δipδkqδnlδms.

In analogy to the vector case, we set

h̃arm
(i,k)

n (Ωext
R ) = span

{
h(i,k);R
−n−1,m(·)|Ωext

R

∣∣m = 1, . . . , 2n + 1
}

, (10.539)

and

h̃arm
(i,k)

p,...,q(Ωext
R ) =

q⊕

n=p

h̃arm
(i,k)

n (Ωext
R ), 0̃ik ≤ p ≤ q. (10.540)

As in the case of spherical harmonics, we define

h̃arm0(Ωext
R ) =

3⊕

i=1

h̃arm
(i,1)

0 (Ωext
R ) (10.541)

h̃arm1(Ωext
R ) =

3⊕

i,k=1
(i,k) �=(2,2),(3,2)

h̃arm
(i,k)

1 (Ωext
R ), (10.542)

h̃armn(Ωext
R ) =

3⊕

i,k=1

h̃arm
(i,k)

n (Ωext
R ), n ≥ 2. (10.543)
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The addition theorems can be formulated in analogy to the vectorial
case both for the tensor product of two tensor outer harmonics and for
the product of a scalar and a tensor outer harmonic. They are very easy to
derive, but lengthy to write down; so, we will omit them.

In parallel to the vectorial case, we find the following lemma.

Lemma 10.74. (Linear Independence of Tensor Outer Harmonics) Let
{h(i,k);

−n−1,m}i,k=1,2,3;n=0̃ik,...,
m=1,...,2n+1

be a system of tensor outer harmonics as defined

in (10.530)–(10.538). Then, for all r > 0 the system
{
h(i,k)

n,m |Ωr

}
i,k=1,2,3;n=0̃ik,...;

m=1,...,2n+1

(10.544)

is linearly independent for all Ωr.

It is obvious from the corresponding results of scalar outer harmonics that
the following lemma holds true.

Lemma 10.75. Let {HR
−n−1,m}n=0,1,...,m=1,...,2n+1 be a system of scalar

outer harmonics. Then

span{HR
−n−1,mεi ⊗ εk|Ωr}

‖·‖l2(Ωr) = l2(Ωr), (10.545)

span{HR
−n−1,mεi ⊗ εk|Ωr)}

‖·‖c(Ωr) = c(Ωr). (10.546)

Finally, we mention the following theorem.

Theorem 10.76. Let {h(i,k);R
−n−1,m}i,k=1,2,3,n=0̃ik,...,

m=1,...,2n+1

be a system of tensor outer

harmonics. Then, for all r > 0, the following statements hold true:

l2(Ωr) = span
i,k=1,2,3;n=0̃ik,...,

m=1,...,2n+1

(h(i,k);R
−n−1,m)|Ωr

‖·‖l2(Ωr)

, (10.547)

c(Ωr) = span
i,k=1,2,3;n=0̃ik,...,

m=1,...,2n+1

(h(i,k);R
−n−1,m)|Ωr

‖·‖c(Ωr)

. (10.548)

As already mentioned, current knowledge of the Earth’s gravity field,
as derived from various observing techniques, is incomplete. We can only
expect substantial improvements by exploiting new approaches based on
satellite gravitational observation methods. Our intent now is to provide
an overview at the sattelite-gravity-gradiometry (SGG) techniques to be
realized by the ESA satellite GOCE. The concept considered for the GOCE



554 10 Zonal Function Modeling of Earth’s Mass Distribution

mission (see ESA (1999)) is satellite-gravity-gradiometry (SGG), i.e., the
measurement of the relative acceleration of test masses at different locations
inside one satellite.

In an idealized situation, free of non-gravitational influences, the accel-
eration vector of a proof mass in free fall at the center x of mass of a
space vehicle is, according to Newton’s law, equal to the gradient of the
gravitational potential: v = ∇V . Considering now the motion of a second
proof mass at y close to x relative to the first one, its acceleration is in the
linearized sense

v(y) ≈ v(x) + v(x)(y − x) . (10.549)

The matrix v(x) = (∇v)(x) is the Hesse matrix

v(x) = ∇⊗∇V (x) (10.550)

consisting of all second order derivatives of the Earth’s gravitational poten-
tial V . Because of its tensor properties, v is called the gravitational tensor.
In other words, measurements of the relative accelerations between two test
masses provide information about the second order partial derivatives of the
gravitational potential V . In an ideal observational situation, the full Hesse
matrix is available by an array of test masses.

An illustrative view on satellite gradiometry based on Newton’s theory of
gravitation is as follows: Newton, when working on his law of gravitation,
is said to have been inspired by a falling apple. Referring to the theory
of gravitation as the tale of the falling apple, it would be appropriate to
view gradiometry as the story of two falling apples. In C.W. Misner et al.
(1973) this point is made clear. In one of their examples, it is shown that
by measuring the relative distance between the shortest paths taken by
two ants walking on the skin of an apple, from two adjacent beginning to
two adjacent end points, the geometry of its curved surface can be derived.
Translated to our case, shortest path means geodesic or free fall of two test
particles (apples), from the relative motion of which the geometry of the
curved space can be inferred, curved by the gravitational field of the Earth.
Interpreting gravity in terms of geometry in the sense of Einstein, when all
nine observable gradient components are measured at a point, gradiometry
shows the complete local geometry of the relative motion of adjacent proof
masses in free fall. However, it is more practical to constrain their rela-
tive motion by highly sensitive springs and measure instead the tension and
compression of the springs. This is equivalent to saying that a gradiome-
ter is realized by a coupled system of highly sensitive micro accelerometers.
(A gradiometer of this kind is envisaged for the GOCE mission (see ESA
(1999)) planned by ESA to produce a coverage of the entire Earth with
measurements.) The one-dimensional principle is shown in Fig. 10.34. The
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gravitational force acting on the test masses results in an elongation of the
springs, where (assuming linear stiffness) the elongation is proportional to
the forces. Measuring the differences of the two elongations gives infor-
mation on the differences of the forces, which is an approximation of the
space derivative of the force field, and thus an approximation of the order
derivative of the potential.

Fig. 10.34: Principle of gradiometry. Two masses are connected with springs
at the satellite. Measured are differences of the elongation of the two springs.

In conclusion, the mathematical formulation of the SGG problem (after
separating all non-gravitational influences) reads as follows:

Let there be known from the gravitational field v on Ωext
R the gradients

v = (∇v) = ∇⊗∇V, (10.551)

on the orbital surface ΩS of the LEO satellite. Find the geopotential V
from the knowledge of the gravitational tensor ∇⊗∇V on ΩS .

We first deal with the problem of uniqueness corresponding to the model
situation of a system X ⊂ ΩS of known GPS–SST data.

Theorem 10.77. Suppose that X ⊂ ΩS (i.e., the subset of observational
points on the satellite orbit ΩS , S > R) is a dense system on ΩS. If v
satisfies ∇ · v = 0, L · v = 0 in Ωext

R such that

v(x) = 0, x ∈ X ,

then the associated field v satisfying ∇ · v = 0, L · v = 0 in Ωext
R with

v = ∇v = ∇(2)V satisfies v = 0 in Ωext
R .

Proof. Any field v with ∇ · v = 0, L · v = 0, in Ωext
R can be expressed

in the form ∇(2)V = (∇ ⊗ ∇)V . Furthermore, the coordinate functions
vij = εi · vεj , i, j ∈ {1, 2, 3}, satisfy Δvij = 0 in Ωext

R . This implies vij = 0
in Ωext

R , i, j ∈ {1, 2, 3}, since X is a fundamental system in Ωext
R . From

v = ∇(2)V = (∇ ⊗ ∇)V = 0, we finally get V = 0 in Ωext
R and, thus,

v = ∇V = 0, as required.
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In other words, the Earth’s external gravitational field v is uniquely de-
tectable on and outside the Earth’s surface ΩR if SGG data (i.e., second
order derivatives of the Earth’s gravitational potential V ) are given on a
dense system X (on the satellite orbit ΩS).

Furthermore, we are able to verify the following result.

Theorem 10.78. Suppose that X is a dense system of points on ΩS. If v
satisfies ∇ · v = 0, L · v = 0 in Ωext

R with

x · (v(x)x) = 0, x ∈ X ,

then v = 0 in Ωext
R (with v = ∇v = ∇(2)V ).

Proof. We base our arguments on the identity

v(x) = ∇(2)V (x) = (∇⊗∇)V (x), x ∈ Ωext
R . (10.552)

From our assumptions, it is clear that Ωext
S , S > R, is a strict subset of Ωext

R .
Clearly, the potential V |Ωext

S may be expanded in terms of outer harmonics

V (x) =
∞∑

n=0

2n+1∑

k=1

V
∧L2(ΩS)(n, k)HS

−n−1,k(x), x ∈ Ωext
S , (10.553)

where V
∧L2(Ωs)(n, k) are the orthogonal coefficients (10.511). By elementary

calculations, we get

x

|x| ·
((

∇(2)
x V

)
(x)

x

|x|

)
=
(

x

|x| · ∇x

)(
x

|x| · ∇x

)
V (x) (10.554)

=
∞∑

n=0

2n+1∑

k=1

(n + 1)(n + 2)
|x|2 V

∧L2(ΩS)(n, k)HS
−n−1,k(x),

x ∈ Ωext
S . Hence,

x �→ x ·
(
∇(2)V

)
(x)x, x ∈ Ωext

S ,

is a harmonic function in Ωext
S . In accordance with x ·

(
(∇(2)V )(x)x

)
= 0,

x ∈ X , we thus obtain

∞∑

n=0

2n+1∑

k=1

V
∧L2(ΩS)(n, k)(n + 1)(n + 2)HS

−n−1,k(x) = 0, x ∈ X . (10.555)

Since X is a fundamental system in Ωext
R , the identity (10.555) holds true in

Ωext
R . The theory of spherical harmonics then tells us that

V
∧L2(ΩR)(n, k)(n + 1)(n + 2) = 0, (10.556)
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hence, V
∧L2(ΩS)(n, k) = 0 for n = 0, 1, . . ., k = 1, . . . , 2n + 1. This yields

V = 0 in Ωext
S . By analytical continuation, we have V = 0 in Ωext

S , and
hence v = ∇V = 0 in Ωext

R .

Theorem 10.78 means that the Earth’s external gravitational field is
uniquely recoverable from ’second radial derivatives’ corresponding to a fun-
damental system X ⊂ ΩS .

Next, we remember the decomposition of ∇⊗∇ into its well-known radial
and tangential parts:

∇x ⊗∇x =
(

ξ
∂

∂r
+

1
r
∇∗

ξ

)
⊗
(

ξ
∂

∂r
+

1
r
∇∗

ξ

)
(10.557)

=
∂

∂r
ξ ⊗ ∂

∂r
ξ +

∂

∂r
ξ ⊗ 1

r
∇∗ξ

+
1
r
∇∗

ξ ⊗
∂

∂r
ξ +

1
r2
∇∗

ξ ⊗∇∗
ξ .

It will be seen that the operators ∂/∂r, (∂/∂r)2, ∇∗, ∂/∂r ∇∗, and ∇∗⊗∇∗

form the constituting ingredients of the gravitational tensor ∇ ⊗ ∇V . It
should be noted that operators ∂/∂r and ∇∗ have already been described
within the SST-context for specifying the gravitational gradient. Therefore,
it remains to discuss the derivatives (∂/∂r)2, ∂/∂r ∇∗, and ∇∗ ⊗∇∗.

First, an easy calculation gives

(∂r)
2 V (rξ)|r=S =

∂2V (rξ)
∂r2

∣∣∣∣
r=S

(10.558)

=
∞∑

n=0

2n+1∑

k=1

V
∧L2(ΩR)(n, k)Λ(n)HS

−n−1,k,

where

Λ(n) =
(
−n + 1

S

)(
−n + 2

S

)(
R

S

)n

=
(n + 1)(n + 2)

R2

(
R

S

)n+2

.

(10.559)
Thus it follows that (∂R

S
)2V = 0 if and only if V = 0.
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Second, we are able to write

1
r
∂R

r
∇∗

ξV (r, ξ)
∣∣∣∣
r=S

=
1
r

∂

∂r
∇∗

ξV (rξ)
∣∣∣∣
r=S

(10.560)

=
2∑

i=1

∞∑

n=0i

2n+1∑

k=1

V
∧L2(ΩR)(n, k)λ(i)

∂r
∇∗;S(n)h(i);S

−n−1,k(Sξ),

where

λ
(i)

∂r∇∗;S (n) =

⎧
⎨

⎩

n(n+1)
S2

√
n+2
2n+1(R

S )n, i = 1,

− (n+1)2

S2

√
n

2n+1(R
S )n, i = 2.

(10.561)

This shows us that (
1
r
∂R

r
∇∗

ξV (rξ)
)
|r=S = 0 (10.562)

if and only if

V (x) =
C

|x| , C ∈ R. (10.563)

Third, it can be shown that

1
r2
∇∗

ξ ⊗∇∗
ξV (rξ)|r=S (10.564)

=
2∑

i,k=1

∞∑

n=0̃i,k

2n+1∑

m=1

V
∧L2(ΩR)(n, m)λ(i,k)

∇∗;S∇∗;S (n)h(i,k);S
−n−1,m(Sξ),

where

λ
(i,k)

∇∗;S⊗∇∗;S (n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
μ

(1,1)
n

n(n+1)
S2(2n+1)(2n+3)

(R
S )n , (i, k) = (1, 1),

−
√

μ
(1,2)
n

(n+1)(n−1)
S2(2n−1)(2n+1)

(R
S )n , (i, k) = (1, 2),

−
√

μ
(2,1)
n

n(n+2)
S2(2n+3)(2n+1)

(R
S )n , (i, k) = (2, 1),√

μ
(2,2)
n

n(n+1)(n+2)
S2(2n−1)(2n+1)

(R
S )n , (i, k) = (2, 2).

(10.565)
This implies

1
r2
∇∗

ξ ⊗∇∗
ξV (rξ)

∣∣∣∣
r=S

= 0 (10.566)

if and only if

V =
1∑

n=0

2n+1∑

m=1

Cn,mHR
−n−1,m, Cn,m ∈ R. (10.567)
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Turning over from the gravitational potential V to the disturbing potential
T (where the Fourier coefficients of order 0 and 1 are zero), we get the
following result:

Corollary 10.79. For the disturbing potential T , each of the following
statements is equivalent to T = 0:

(i) ∂rT = 0 on a sphere at satellite’s height,

(ii) (∂r)2T = 0 on a sphere at satellite’s height,

(iii) ∇∗;ST = 0 on a sphere at satellite’s height,

(iv) ∂r∇∗;ST = 0 on a sphere at satellite’s height,

(v) ∇∗;S ⊗∇∗;ST = 0 on a sphere at satellite’s height.

Finally, we mention that

∇⊗∇HR
−n−1,k =

√
μ̃

(1,1)
n h(1,1);R

−n−1,k (10.568)

=
√

(n + 2)(n + 2)(2n− 3)(2n− 1)h(1,1);R
−n−1,k.

Consequently, we find

∇⊗∇V =
∞∑

k=0

2n+1∑

k=1

V
∧L2(ΩR)(n, k)

√
μ̃

(1,1)
n h(1,1);R

−n−1,m. (10.569)

This enables us to verify that

∫

ΩS

∇⊗∇V (y) · h(1,1);S
−p−1,q(y) dω(y) =

(
R

S

)p+2

V
∧L2(ΩR)(p, q)

√
μ̃

(1,1)
n .

(10.570)
Therefore, from (10.517), we finally obtain the following reformulation of
V ,

V =
∞∑

n=0

2n+1∑

k=1

(∇⊗∇V ;h(1,1);S
−n−1,k)l2(ΩS)(μ̃

(1,1)
n )−1/2(

S

R
)n+2HR

−n−1,k. (10.571)

This formula expresses the gravitational potential V in Ωext
R in terms of the

gravitational tensor ∇ ⊗ ∇V on the satellite orbit ΩS . Essential tools are
the tensor outer harmonics. The equality in (10.571) is understood in the
standard sense. The result is also true for the anomalous potential.
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Fig. 10.35: Terrestrial EGM96-potential (left) and terrestrial harmonic den-
sity of the EGM96-potential (right) for South America (Geomathematics
Group, TU Kaiserslautern (2008)).

Fig. 10.36: First radial derivative at 400 km (left) and second radial deriva-
tive at 200 km (right) of the EGM96-potential for South America (Geo-
mathematics Group, TU Kaiserslautern (2008)).

10.11 Gravity Quantities in Spherical Nomenclature

Finally, we list all essential material of our spherically oriented approach to
gravity quantities (GQ) of the anomalous potential in a formal setup (see
Figs. 10.35, 10.36 for getting a graphical impression):

Assume that the anomalous potential T satisfies the properties

• T ∈ C(Ωext
R ) ∩ C(2)(Ωext

R ),

• ΔT = 0 in Ωext
R ,

• T is regular at infinity,

|T (x))| = O

(
1
|x|

)
, |∇T (x)| = O

(
1
|x|2

)
, |x| → ∞,
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• T
∧L2(ΩR)(n, k) = 0, n = 0, 1, and k = 1, . . . , 2n + 1.

Then T is given in form

T =
∞∑

n=2

2n+1∑

k=1

T
∧L2(ΩR)(n, k)HR

−n−1,k, (10.572)

where the equality is understood in the sense

lim
N→∞

⎛

⎝
∫

ΩR

∣∣∣∣∣T (y)−
N∑

n=2

2n+1∑

k=1

T
∧L2(ΩR)(n, k)HR

−n−1,k(y)

∣∣∣∣∣

2

dω(y)

⎞

⎠
1/2

= 0

(10.573)
and

lim
N→∞

sup
x∈Ωr

|T (x)−
N∑

n=2

2n+1∑

k=1

T
∧L2(ΩR)(n, k)HR

−n−1,k(x)| = 0, (10.574)

r > R. Relevant scalar gravity quantities (GQ) are characterized by the
operator ΛL

GQ given by

ΛL
GQT (x) =

∞∑

n=2

2n+1∑

k=1

ΛL
GQ(n)T∧L2(ΩR)(n, k)HR

−n−1,k(x) (10.575)

=
∫

ΩL

KΛL
GQ

(x, y)T (y) dω(y)

with

KΛL
GQ

(x, y) =
∞∑

n=2

2n+1∑

k=1

ΛL
GQ(n)HR

−n−1,k(x)HL
−n−1,k(y), (10.576)

L ∈ {R, S}, where R is the ground level and S is the satellite level.

By virtue of the addition theorem, we are allowed to write (10.576) in the
form

KΛL
GQ

(x, y) =
1

RL

∞∑

n=2

ΛL
GQ(n)

(
RL

|x||y|

)n+1

Pn

(
x

|x| ·
y

|y|

)
, (10.577)

where Pn is the one-dimensional Legendre polynomial of degree n. Obvi-
ously, from (10.577), we see that KΛL

GQ
(·, ·) is a zonal function provided that

x ∈ ΩR, y ∈ ΩL. We summarize the results in Table 10.9.
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Table 10.9: ‘L-upward continued’ scalar gravity quantities.

Symbol Operator Quantity
(

R
L

)n
T anomalous potential

−n−1
r

(
R
L

)n
A gravity anomaly

−n+1
R

(
R
L

)n+1 (∂r)|r=L first radial derivative
(
−n+2

R

) (
−n+1

R

) (
R
L

)n+2 (∂r)
2
∣∣∣
r=L

second radial derivative

If the anomalous potential T is assumed to be bandlimited, i.e.,

T
∧L2(ΩR)(n, k) = 0, n ≥ N + 1, k = 1, . . . , 2n + 1, (10.578)

then T can be recovered from the ‘L-upward continued’ gravity quantities
as follows

T (x) =
∫

ΩL

KN
(ΛL

GQ)−1(x, y)ΛL
GQ(y) dω(y), (10.579)

where

KN
(ΛL

GQ)−1(x, y) =
N∑

n=2

2n+1∑

k=1

(
ΛL

GQ(n)
)−1

HR
−n−1,k(x)HL

−n−1,k(y), (10.580)

(x, y) ∈ Ωext
R × Ωext

L .

The (relevant) vectorial gravity quantity in SST is the ‘L-upward contin-
ued’ gradient ∇T given by

λL
GQT (x) =

∫

ΩL

kλL
GQ

(x, y)T (y) dω(y), (10.581)

where

kλL
GQ

(x, y) =
∞∑

n=2

2n+1∑

k=1

λL
GQ(n)h(1);R

−n−1,k(x)HL
−n−1,k(y), (10.582)

(x, y) ∈ Ωext
R × Ωext

L (see Table 10.10).
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Table 10.10: ‘L-upward continued’ anomalous gradient.

Symbol Operator Quantity
√

μ̃
(1)
n

(
R
L

)n+1 ∇T anomalous field

A bandlimited potential T can be recovered from the ‘L-upward contin-
ued’ gradient ∇T as follows

T (x) =
∫

ΩL

kN

(λL
GQ)−1(x, y) · λL

GQT (y) dω(y), (10.583)

where

kN

(λL
GQ)−1(x, y) =

N∑

n=2

2n+1∑

k=1

(
λL

GQ(n)
)−1

HR
−n−1,k(x)h(1);L

−n−1,k(y), (10.584)

(x, y) ∈ Ωext
R × Ωext

L .

The addition theorem enables us to rewrite kλL
GQ

(·, ·) in the form

k(λL
GQ)−1(x, y) =

1
RL

N∑

n=2

2n + 1
4π

(
L

|y|

)n+2( R

|x|

)n+1

p̃(1)
n

(
y

|y| ·
x

|x|

)
.

(10.585)

As (relevant) tensorial gravity quantity for satellite-gravity-gradiometry
(SGG), we finally mention the ‘L-upward continued’ anomalous tensor
∇⊗∇T given by

λL
GQT =

∫

ΩR

kλL
GQ

(x, y)T (y) dω(y), (10.586)

where

kλL
GQ

(x, y) =
∞∑

n=2

2n+1∑

k=1

λL
GQ(n)h(1,1);R

−n−1,k(x)HL
−n−1,k(y), (10.587)

(x, y) ∈ Ωext
R × Ωext

L (see Table 10.11).
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Table 10.11: ‘L-upward continued’ anomalous tensor.

symbol Operator Quantity
√

μ̃
(1,1)
n

(
R
L

)n+2 ∇⊗∇T anomalous tensor

10.12 Pseudodifferential Operators and
Geomathematics

In the preceding chapters of this book, we put particular emphasis on the
usefulness and the beauty of orthogonality and rotational invariance for
sphere oriented applications. It has been shown how scalar, vectorial and
tensorial problems can be dealt with in a unified concept. All these things
led quite naturally to zonal kernels of different types. In this section, we
like to focus our attention on (invariant) pseudodifferential operators and
their usefulness in the described setting.

An invariant pseudodifferential operator (for brevity, we will leave out
the word invariant in the following) can be seen as a linear operator such
that its effect on the orthogonal system of spherical harmonics is only on
the degree, but not on the order, i.e.,

ΛYn,m = Λ∧(n)Yn,m, m = 1, . . . , 2n + 1. (10.588)

The spherical symbol Λ∧(n) has many appealing properties. For example,
it is easily seen that

(Λ′ + Λ′′)∧(n) = (Λ′)∧(n) + (Λ′′)∧(n) (10.589)

and
(Λ′Λ′′)∧(n) = (Λ′)∧(n)(Λ′′)∧(n), (10.590)

for all n = 0, 1, . . .

Since pseudodifferential operators on the sphere belong to the traditional
equipment, we do not give a general description (within a Sobolev space
framework). Instead, we restrict ourselves to certain geophysically relevant
examples of pseudodifferential operators. A more detailed discussion (e.g.,
from the point of physical geodesy) can be found in S.L. Svensson (1983)
and W. Freeden et al. (1998).
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The perhaps best known scalar example is the Laplace Beltrami operator
on the unit sphere Ω with the symbol (Δ∗)∧(n) = −n(n + 1), n = 0, 1, ....

(1) Beltrami operator Δ∗. It is not invertible since (Δ∗)∧(0) = 0, but
−Δ∗+ 1

4 has the symbol {(−Δ∗+ 1
4)∧(n)} with (−Δ∗+ 1

4)∧(n) = (n+
1
2)2, n = 0, 1, ... and, hence, has an inverse (−Δ∗ + 1

4)−1 which is a ra-
tional pseudodifferential operator of order −2, i.e. n �→
((−Δ∗ + 1

4)−1)∧(n), n ∈ N0, is a rational function of order −2. More
generally, (−Δ∗+ 1

4)s is a rational pseudodifferential operator of order
2s and has the spherical symbol {((−Δ∗ + 1

4)s)∧(n)} with

((
−Δ∗ +

1
4

)s)∧
(n) =

(
n +

1
2

)2s

, n = 0, 1, ... (10.591)

(2) Green’s integral operator. The operator Λ given by

Λ(U)(ξ) =
1
4π

∫

Ω
G(Δ∗; ξ · η)U(η) dω(η), ξ ∈ Ω (10.592)

has the spherical symbol {(Λ)∧(n)}, where

(Λ)∧(n) =
{

0 for n = 0
−1/(n(n + 1)) for n = 1, 2, . . .

(10.593)

Note that the operator Λ given by

Λ(U)(ξ) =
1
4π

∫

Ω
G(Δ∗ +

1
4
; ξ · η)U(η) dω(η), ξ ∈ Ω (10.594)

has the spherical symbol {(Λ)∧(n)}, where

(Λ)∧(n) =
{
−4 for n = 0
−1/(n(n + 1) + 1

4) = −1/(n + 1
2)2 for n = 1, 2, . . .

(10.595)

A pseudodifferential operator Λ satisfying Λ∧(n) → 0 is called a smoothing
operator, because Λ∧(n) → 0 means that the higher order harmonics are
subdued by the operator. An example is the Green integral operator. The
Beltrami operator has an opposite effect, because the higher order harmonics
are amplified.

This concept can be generalized in natural way to the vectorial, tensorial
and mixed cases. A pseudodifferential operator mapping scalar functions to
vector fields on Ω is given by a symbol

λ∧(n) = (λ∧
(1)(n), λ∧

(2)(n), λ∧
(3)(n)) (10.596)
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such that

λYn,m = λ∧
(1)(n)y(1)

n,m + λ∧
(2)(n)y(2)

n,m + λ∧
(3)(n)y(3)

n,m. (10.597)

Similarly, we can use such an operator representation for the mapping of
vector fields to scalar ones:

λy(i)
n,m = λ∧

(i)(n)Yn,m. (10.598)

Obvious generalizations lead to pseudodifferential operators mapping scalar
fields to tensor fields, vector fields to tensor fields, and so on.

In this context, the surface gradient o(2) = ∇∗, e.g., can be interpreted as
a pseudodifferential operator with symbol

(∇∗)∧(n) = (0,
√

n(n + 1), 0), (10.599)

since ∇∗Ynm =
√

n(n + 1)y(2)
n,m. The surface curl gradient o(3) = L∗ defined

by L∗
ξ = ξ ∧∇∗

ξ , ξ ∈ Ω, can be seen to have the symbol

(L∗)∧(n) = (0, 0,
√

n(n + 1)). (10.600)

Using this terminology the operators O(i) are found to be pseudodiffer-
ential operators of order 0 if i = 1 and order 1 if i = 2, 3. More explicitly,
we have

(O(1))∧(n) = 1,

(O(i))∧(n) =
√

n(n + 1), i = 2, 3.

Similarly, the tensorial case can be attacked.

λYn,m = λ∧
(1,1)(n)y(1,1)

n,m + λ∧
(1,2)(n)y(1,2)

n,m + λ∧
(1,3)(n)y(1,3)

n,m

+ λ∧
(2,1)(n)y(2,1)

n,m + λ∧
(2,2)(n)y(2,2)

n,m + λ∧
(2,3)(n)y(2,3)

n,m (10.601)

+ λ∧
(3,1)(n)y(3,1)

n,m + λ∧
(3,2)(n)y(3,2)

n,m + λ∧
(3,3)(n)y(3,3)

n,m .

For example, the symbol of the operator o(1,2) defined by o(1,2)
ξ = ξ ⊗∇∗

ξ ,
ξ ∈ Ω, can be characterized by

(o(1,2))∧(n)

⎛

⎜⎝
0
√

μ
(1,2)
n 0

0 0 0
0 0 0

⎞

⎟⎠ =

⎛

⎝
0
√

n(n + 1) 0
0 0 0
0 0 0

⎞

⎠ . (10.602)

In particular, the operators O(i,i), i = 1, 2, 3, can be interpreted to be
pseudodifferential operators of order 0, while the operators O(i,k) are of
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order 1 for (i, k) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)}, or of order 2 if (i, k) ∈
{(2, 3), (3, 2)}, respectively. Their symbols are given by

(O(i,k))∧(n)

=

⎧
⎪⎪⎨

⎪⎪⎩

1 if (i, k) = (1, 1)√
2 if (i, k) ∈ {(2, 2), (3, 3)}√
n(n + 1) if (i, k) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)}√
n(n + 1)(n(n + 1)− 2) if (i, k) ∈ {(2, 3), (3, 2)}.

The strong connection of orthogonal invariance and zonal kernels gets
obvious, when applying these pseudodifferential operators to Legendre ker-
nels. To be more concrete, the addition theorem of spherical harmonics is
on the one hand

Pn(ξ · η) =
4π

2n + 1

2n+1∑

m=1

Yn,m(ξ)Yn,m(η). (10.603)

On the other hand, we already know that the vectorial Legendre vector
kernel satisfies

vp(i)
n (ξ, η) = (μ(i)

n )1/2o
(i)
ξ Pn(ξ · η) =

4π

2n + 1

2n+1∑

m=1

y(i)
n,m(ξ)Yn,m(η). (10.604)

That means that the transition from Pn(ξ ·η) to vp
(i)
n (ξ, η) can be described

with the application of the pseudodifferential operator δ(i) with

δ∧(i)(n) = (δi1, δi2, δi3). (10.605)

Similarly, the transition from Pn(ξ · η) to p(i,k)
n (ξ, η) can be seen as the

application of a (tensorial) pseudodifferential operator with symbol

δ∧
(i,j)(n) =

⎛

⎝
δ1iδ1j δ1iδ2j δ1iδ3j

δ2iδ1j δ2iδ2j δ3iδ3j

δ2iδ1j δ2iδ2j δ3iδ3j

⎞

⎠ (10.606)

Thus, we have developed an efficient and clear calculus for the solution
of many problems in sphere oriented geomathematics. We can switch from
orthogonal systems with scalar, vectorial or tensorial spherical harmonics, to
zonal kernels or pseudodifferential operators to get the best representation
for the underlying problems. Furthermore, as illustrated in many examples
in this book, efficient numerical schemes can be implemented with the help
of these techniques.
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Munich working groups (see, e.g., R. Rummel (1986, 1997)). Their ma-
jor interest in spaceborne data is globally reflected orthogonal expansions
in terms of (frequency localizing) vector and tensor spherical harmonics
(cf. R. Rummel, M. van Gelderen (1992), R. Rummel et al. (1993)). The
research of the Geomathematics Group, Kaiserslautern, is much more con-
cerned with locally oriented modeling by means of space-limited (i.e., locally
supported) vector and tensor zonal functions (see M. Schreiner 1994, 1997),

ton’s potential, i.e., the so-called gravimetry problem. Finally, it should be
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W. Freeden et al. (1994, 1998a)). In this respect the results obtained
for inverse problems by multiresolution are important keystones (see W.
Freeden (1990b), F. Schneider (1996, 1997), W. Freeden et al. (1997,
2002), W. Freeden, F. Schneider (1998c), W. Freeden (1999), W. Freeden,
V. Michel (2004b)).



Concluding Remarks

Today’s geosciences profit so much from the possibilities that result from
highly advanced electronic measurement concepts, modern computer tech-
nology and, most of all, artificial satellites. In fact, the exceptional situation
of getting simultaneous and complementary observations from a multiple of
low-orbiting satellites opens new opportunities to contribute significantly
to the understanding of our planet, its climate, its environment and about
an expected shortage of natural resources. All of a sudden, key parameters
for the study of the dynamics of our planet and the interaction of its solid
part with ice, oceans, atmosphere etc become accessible. In this context,
new types of vector and tensor data measured on (almost) spherical refer-
ence surfaces such as the (spherical) Earth or (near-)circular orbits are very
likely the greatest challenge. These data help geodesists to determine the
Earth’s gravitational field from spaceborne gravity sensors, the oceanogra-
phers to see the oceans flow, people from geomagnetics to get insight in
the spatio-time variation of the magnetic field, solid Earth physicists to
better understand the dynamics of the Earth’s interior, meteorologists to
simulate wind fields, a.s.o. However, (non-standard) observations and data
having a different type, location, and distribution cannot be handled by
traditional modeling and simulation techniques. This is the reason why
adequate components of mathematical thinking, adapted formulations of
theories and models, and economical and efficient numerical developments
are indispensable. Up to now, the modeling of vector and tensor data is done
on global scale by orthogonal expansions by means of polynomial structures
such as (certain types of) vector and tensor spherical harmonics. But so
far, they can not keep pace with the prospects and the expectations of the
‘Earth system sciences’. Moreover, there is an increasing need for high-
precision modeling on local areas. In this respect, zonal kernel functions,
i.e., in the jargon of constructive approximation, radial basis functions, be-
come more and more important because of their space localizing properties
even in the vectorial and tensorial context. The current book shows that
the addition theorem of the theory of spherical harmonics enables us to
express all types of zonal kernel functions in terms of a one-dimensional
function, viz. the Legendre polynomial. In other words, additive clustering
of spherical harmonics generates specific classes of space localizing zonal
kernel functions, i.e., Legendre series expansions, ready for approximation
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within scalar, vectorial, and tensorial framework. Furthermore, our inves-
tigations demonstrate that the closer the Legendre series expansion is to
the Dirac kernel, the more localized is the zonal kernel in space, and the
more economical is its role in (spatial) local computation. In addition, the
Funke–Hecke formula provides the natural tool for establishing convolutions
of spherical fields against zonal kernels. In consequence, by specifying scal-
ing functions, i.e., sequences of zonal functions tending to the Dirac kernel,
(space-localized) filtered versions of (square-integrable) spherical fields are
obtainable by convolution leading to ‘zooming-in’ approximation within a
multiscale procedure. Altogether, the vectorial and tensorial counterparts
of the Legendre polynomial are the essential keystones in our work. They
enable the transition from spherical harmonics via zonal kernels up to the
Dirac kernel. In addition, the Funk–Hecke formula and its consequences in
spherical convolutions opens new methological perspectives for global as
well as local approximation in vectorial and tensorial physically motivated
application.

It should be remarked that only the joint use of mathematical technol-
ogy and highly accurate sensors combining (globally available) spaceborne
data with local airborne and/or terrestrial observations will contribute to
a deeper knowledge of the Earth system and, in turn, to the development
of sustainable strategies to safeguard the human habitat for future gener-
ations. In this respect, the spherically oriented structures, methods and
procedures presented in this book form an essential step for handling ter-
restrial, airborne, and spaceborne data under relevant physical as well as
numerical assumptions.

Finally, the authors want to point out that much of the material of this
book can be readily formulated for non-spherical reference surfaces. Never-
theless, it remains to work with more realistic geometries such as (actual)
Earth’s surface, real satellite orbits, etc. This is the great challenge for
future research.
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tk̃(·, ·) . . . . . . . . . . . . . . . (tensorial) rank-2 tensor zonal kernel function

(with respect to the Legendre {p̃n(·, ·)} –system) :9.2
K̃(i,k)(·, ·) . . . . . . . . . . . (tensorial) rank-4 tensor zonal kernel function
of type (i, k) (with respect to the Legendre {P̃(i,k,i,k)

n (·, ·)} –system):9.2
K̃(·, ·) . . . . . . . . . . . . . . . (tensorial) rank-4 tensor zonal kernel function

(with respect to the Legendre {P̃n(·, ·)} –system):9.2
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Freeden, W., Über ein Verfahren zur Bestimmung des Gravitationspoten-
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Zeitschrift für Vermessungswesen (ZfV), 106, 200–210, 1981a.

Freeden, W., On Spherical Spline Interpolation and Approximation, Math.
Meth. in the Appl. Sci., 3, 551–575, 1981b.

Freeden, W., On Approximation by Harmonic Splines, Manuscr. Géod., 6,
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Hecke, E., Über orthogonal-invariante Integralgleichungen, Math. Ann.,
78, 398–404, 1918.

Heine, E., Handbuch der Kugelfunktionen, Verlag G. Reimer, Berlin, 1878.

Heiskanen, W.A., Moritz, H., Physical Geodesy, Freeman, San Francisco,
CA, 1967.

Helms, L.L., Introduction to Potential Theory, Wiley-Interscience, New
York, 1969.

Hill, E.H., The Theory of Vector Spherical Harmonics, Amer. J. Phys. 22,
211–214, 1954.

Hobson, E.W., The Theory of Spherical and Ellipsoidal Harmonics, Reprint
Chelsea Publishing Company, New York, 1955.

Hochstadt, H., The Functions of Mathematical Physics, Wiley-Intersciences,
1971.

Hofmann–Wellenhof, B., Moritz, H., Physical Geodesy, Springer, Wien,
New York, 2005.

Holschneider, M. Continuous Wavelet Transforms on the Sphere, J. Math.
Phys., 37, 4156–4165, 1996.

Ilk, K.H., Flury, J., Rummel, R., Schwintzer, P., Bosch, W., Haas, C.,
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Láın Fernández, N., Polynomial Bases on the Sphere, PhD Thesis, Univer-
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