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8093 Zürich, Switzerland
hjherrmann@ethz.ch

Avalanches, Landslides, Debris Flows, Pyroclastic Flows,
Volcanology

Prof E. Bruce Pitman
Department of Mathematics
University of Buffalo
Buffalo, N. Y. 14260, USA
Pitman@buffalo.edu

Hydrological Sciences
Prof. Vijay P. Singh
Water Resources Program
Department of Civil and Environmental Engineering
Louisiana State University
Baton Rouge, LA 70803-6405, USA

Nonlinear Geophysics
Prof. Efim Pelinovsky
Institute of Applied Physics
46 Uljanov Street
603950 Nizhni Novgorod, Russia
enpeli@mail.ru

Planetology. Outer Space Mechanics
Prof Heikki Salo
Division of Astronomy
Department of Physical Sciences
University of Oulu
90570 Oulu, Finnland



Lukas Schneider · Kolumban Hutter

Solid-Fluid Mixtures
of Frictional Materials
in Geophysical
and Geotechnical Context

Based on a Concise Thermodynamic Analysis

123



Lukas Schneider
TU Darmstadt
FG Energie- und
Kraftwerkstechnik
Petersenstr. 30
64287 Darmstadt
Germany
schneider@ekt.tu-darmstadt-de

Prof. Kolumban Hutter
Bergstrasse 5
8044 Zürich
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Preface

Mixture concepts are nowadays used in a great number of subjects of the bi-
ological, chemical, engineering, natural and physical sciences (to name these
alphabetically) and the theory of mixtures has attained in all these disci-
plines a high level of expertise and specialisation. The digression in their
development has on occasion led to differences in the denotation of special
formulations as ‘multi-phase systems’ or ‘non-classical mixtures’, ‘structured
mixtures’, etc., and their representatives or defenders often emphasise the
differences of these rather than their common properties.

This monograph is an attempt to view theoretical formulations of processes
which take place as interactions among various substances that are spatially
intermixed and can be viewed to continuously fill the space which they occupy
as mixtures. Moreover, we shall assume that the processes can be regarded to
be characterised by variables which obey a certain degree of continuity in their
evolution, so that the relevant processes can be described mathematically by
balance laws, in global or local form, eventually leading to differential and/or
integral equations, to which the usual techniques of theoretical and numerical
analysis can be applied.

Mixtures are generally called non-classical, if, apart from the physical laws
(e. g. balances of mass, momenta, energy and entropy), also further laws are
postulated, which are less fundamental, but may describe some features of the
micro-structure on the macroscopic level. In a mixture of fluids and solids –
these are sometimes called particle laden systems – the fraction of the volume
that is occupied by each constituent is a significant characterisation of the
micro-structure that exerts some influence on the macro-level at which the
equations governing the processes are formulated. For solid-fluid mixtures at
high solids fraction where particle contact is essential, friction between the
particles gives rise to internal stresses, which turn out to be best described
by an internal symmetric tensor valued variable. Obviously each special ap-
plication may give rise to its own such internal variable. The mixture is non-
classical as a result that each such variable is described by its own dynamical
equation.
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Our own interest in mixtures has been their use in the description of the
flow of debris, mud and slurry in various forms in the geophysical environ-
ment: avalanches of snow, gravel, soil, the catastrophic motion of debris as
a solid-fluid compound, the motion of lahars in pyroclastic flows from volca-
noes, sub-aquatic turbidity currents, catastrophic sediment transport in flu-
vial hydraulics, and the destabilisation of soil slopes and dams due to heavy
rain fall, etc. Because of this background, this monograph is in many respects
focussing on these applications, and certainly the geological, geophysical and
geotechnical bias is apparent. Nevertheless, we believe that scientists from
other fields might equally profit: process and chemical engineers interested
in the transportation of products, mechanical engineers and chemists inter-
ested in fluidised and spouted beds, bubbly flows, sprays and combustion in
flames, physical limnologists and oceanographers, atmospheric scientists etc.
in subaquatic sediment transport and aerosol dispersion, etc.

The text uses methods of rational thermodynamics, which is an extensively
developed field. We draw the readers’ attention to Truesdells writings [119],
[121], to Müller [97] and Liu [78], [80] for basic knowledge in continuum
mechanics and thermodynamics. As for mathematics, we use the level of
University calculus and analysis covering vector and Cartesian tensor calculus
and some aspects of differential equations. Knowledge of the elements of
exterior calculus may also be helpful, but is not absolutely necessary.

The work for this monograph commenced in early 2005 when LS was
preparing his Diploma (M. Sc.) thesis ‘A non-classical debris flow model,
based on a concise thermodynamic analysis’ under the supervision of KH.
This thesis has been the basis for this monograph, but is founded on ear-
lier work by Svendsen & Hutter (1995) [115] and Svendsen, Hutter

and Laloui (1999) [116]. These papers concentrated on the thermodynamic
formulation of structured visco-elastic mixtures, on the one hand, and on
constitutive modelling of dry granular materials when quasi-static frictional
(plastic) behaviour is included, on the other hand. In early 2005 a thorough
thermomechanical formulation of solid-fluid mixtures, in which the solid con-
stituents would exhibit both dynamic viscous and quasi-static frictional ef-
fects, was still missing. However, there was some hope that the above works
[115], [116] would provide a supporting guideline for the derivation of a struc-
tured thermodynamic mixture theory with frictional properties.

For several reasons, there is a necessity of such a fundamental analysis.
Geotechnical engineers and engineering geologists are in need of mathematical
models, which are capable of describing the motion of debris in unstable soil
slopes, landslides, mud flows, etc., from initiation through their catastrophic
advance down to their settlement in the run-out region. This embraces a huge
range of mechanical behaviour, from quasi-static soil plasticity prior to rapid
flow initiation through criticality, when shear banding initiates the ensuing
catastrophic motion, which is basically viscous, to the strongly decelerating
and likely compacting motion into the deposition area. This motion is often
complicated by the presence of an additional fluid and possibly gas (air) and
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may be additionally affected by e. g. fluidization, reverse grading according
to particle size, de-mixing and complete or partial saturation.

Geotechnical engineers encounter this complexity e. g. in dam break prob-
lems, artificial slope stability analyses and questions of safety of soil con-
struction sites. In engineering geology, analogous problems arise in hurricane
or typhoon generated mud flows and sturzstroms, in earthquake induced de-
bris flows, sub-aquatic turbidity currents, lahars and related pyroclastic flows
and dense as well as particle-laden snow avalanches (flow and powder snow
avalanches).

To cover the entire flow regime from the quasi-static deformation of the
water saturated soil prior to the formation of a strong shear zone and the
associated transition to the dynamic behaviour of the relevant mixture, and
finally into the deposition area, the dominant constitutive regimes change
from elasto-visco-plastic, through primarily viscous to again consolidating
elasto-visco-plastic behaviour. In a multi-constituent mixture, this may be
coupled with segregation mechanisms due to particle size (Brazil nut effect)
or a layering in essentially separated flows of a dense granular material, un-
derlying a slurry, or in the deposit by a separation into a wet upper layer of
solids underlain by a saturated mixture.

The development of a thermodynamically based set of field equations
for a structured mixture is, however, desperately needed, even when only
purely mechanical processes are in focus, since rather controversial opinions
exist among scientists of different groups; these groups represent the mixture
and multi-phase theorists. The controversy between these two groups centers
around the question of ‘which forms the solid and fluid stress tensors, and
in turn, interaction force should be’. Claims are made about the structure of
the flux terms in the momentum equations prior to any postulation of a con-
stitutive model, a claim that is premature and pretty empty anyhow if stated
prior to a complete exploitation of the Second Law of Thermodynamics with
all its inferences.

It is the thesis of this small book that differences in these quantities are
vacuous prior to a complete thermodynamic analysis, and indeed, it will be
shown that exploitation of the Second Law of Thermodynamics will be the
vehicle by which any such possible disagreement can be resolved. This is even
so, when purely mechanical formulations are in focus, since the Second Law
of Thermodynamics determines for a given constitutive class the equilibrium,
among other things, values of the constituent stress tensors and interaction
forces (and other field quantities). Differences of two distinct thermodynamic
mixture formulations can then be clearly identified as differences in the con-
stitutive postulates – and perhaps in differences of the exploitation of the
Second Law of Thermodynamics and its underlain peculiarities.

This book, written during the last three years by both authors, is the
product of a joint effort, with the analysis performed more by LS, and the
conceptual activity and the physical motivation of the approach and the in-
terpretation of the results primarily done by KH. He is also chiefly responsible
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for all errors which may still remain. In the process of development of the
theory, we have been mostly working alone. Nevertheless, Dr. Ioana Luca,
from Academia Sinica, Taiwan has closely followed the developments and
used the results in her own work on avalanching solid-fluid avalanche flows.
Her questions and critique has helped us in smoothing arguments here and
there. Moreover, we thank Prof. Bob Svendsen, Institute of Mechanics, De-
partment of Mechanical Engineering, Dortmund University of Technology,
Germany and Prof. Leslie W. Morland, Department of Mathematics, Univer-
sity of East Anglia, UK for their reviews of an earlier draft. The criticism of
these three people has led to improvements, which are now incorporated in
the text.

Finally, we thank Springer Verlag and its personnel for the supportive help
and advise in the production of the book.

November 2008
Academia Sinica, Nangang/Taipei (Taiwan), K. Hutter
Technische Universität Darmstadt (Germany), L. Schneider



Acknowledgments

KH: The work of this monograph is based on a precursory diploma thesis by
LS, completed in early 2005 that was substantially extended in the following
years with completion in late fall 2008. KH, who is retired from active duty
at Darmstadt University of Technology, Darmstadt, Germany since April
2006, acknowledges the financial support received via the German Research
Funding Agencies from 1987-2006, making such fundamental work possible.
He now equally acknowledges the inspiring atmosphere at the Laboratory
of Hydraulics, Hydrology and Glaciology at the Swiss Federal Institute of
Technology (ETH) Zurich, where parts of the writings of this monograph
have been done. He expresses, in particular, his thanks to Profs. E. Minor,

W. H. Hager and M. Funk for their steady support. In three visits of
a total of more than six months duration in 2006/07/08 as Distinguished
Visiting Professor at Academia Sinica, Nangang, Taipei, Taiwan, KH had
the peace of mind to lay down large parts of the manuscript whose final form
is now at the readers disposal. He considers his contribution to this book his
scientific report to the authorities of Academia Sinica. KH is thankful to Prof.
Chien. C. Chang, Dr. Chih-Yu Kuo and Dr. Ioana Luca, (all Division
of Mechanics, Research Center for Applied Sciences, Academia Sinica), and
to Prof. Yih-Chin Tai, from the National Chi Nan University, Puli, Taiwan,
to all for the constructive cooperation and the friendly working atmosphere.

LS: An economist would probably regard this work as the first return of a
long term investment. It is not only a financial investment – in particular from
the German state and family Schneider – that was necessary for the success
of this work but also time, good will and access to knowledge and experience.
Of course, the excellent scientific infrastructure of Technische Universität
Darmstadt (TUD) was crucial to this work but also the dedication of teachers
like Mr. H. Lang (conservatoire in Heppenheim), Mr. W. Gerecke (Martin
Luther Schule, Rimbach) and Prof. J. Casey (University of California,

ix



x Acknowledgments

Berkeley) who laid down the mathematical basis that is indispensable for
the work with rational thermodynamics.

The thesis ‘A Non-classical Debris Flow Model – based on a concise ther-
modynamic analysis’ [113] was the starting point of the work presented here.
Under the supervision of KH it was written by LS in order to earn the
Diploma degree in the studies of ‘Applied Mechanics’ at TUD. Without the
motivating environment in the group ‘AG III’ of the former Department of
Mechanics (TUD), which at that time was led by KH, this work would not
have been possible.

LS also acknowledges the support from TUD, Prof. J. Janicka, Prof.
A. Sadiki and the group of ‘Energy and Power Plant Technology’, where LS
is writing his Ph.D. thesis. The largest investment comes from his wife and
family. He is very much indebted to them.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Mixtures and Debris Flow Models . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Mixtures with Frictional Components . . . . . . . . . . . . . . . . . . . . . 10
1.4 Objectives, Methods and Structure of the Present Work . . . . . 12

2 Mathematical Preliminaries and Notations . . . . . . . . . . . . . . . 15
2.1 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Results from Exterior Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 What is integrability? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Requirements to be imposed on the ‘normal fields’ . . . . 20
2.2.3 On the non-uniqueness of the integrating factors . . . . . 24

3 Introduction to Mixture Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Basic Principles of Mixture Theory . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Kinematics of Multi-phase Mixtures . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Balance Equations and Sum Relations . . . . . . . . . . . . . . . . . . . . 39

4 Constitutive Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Selection of Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Constitutive Laws of Single-Material Bodies . . . . . . . . . . . . . . . 58
4.3 Constitutive Laws in the Context of Mixture Theory . . . . . . . . 60
4.4 A First Attempt to Incorporate Hypo-plasticity . . . . . . . . . . . . 65
4.5 Further Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Remarks on the Principle of Objectivity . . . . . . . . . . . . . . . . . . . 71

5 Entropy Principle, Transformation of the Entropy
Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1 Mixture Entropy Principle According to Müller & Liu . . . . . . . 77
5.2 Mixture Entropy Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



xii Contents

6 Thermodynamic Analysis I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Liu Identities and Residual Entropy Inequality . . . . . . . . . . . . . 91
6.2 Exploiting the Isotropy of the Vector-valued One-form . . . . . . 96
6.3 Integrability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Thermodynamic Analysis II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1 Residual Entropy Inequality in Final Form. . . . . . . . . . . . . . . . . 123
7.2 Mixture Thermodynamic Equilibrium . . . . . . . . . . . . . . . . . . . . . 127
7.3 ‘Isotropic’ Expansions of Interaction Densities and Extra

Entropy Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4 Final Representations for m̄i

α

∣
∣
E
, q

∣
∣
E
, T̄α

∣
∣
E

and η
∣
∣
E

. . . . . . . . . 143

8 Reduced Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.1 Physical Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.2 ‘Artificial’ Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.3 Final Constitutive Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.4 An Alternative to the Assumption of ‘Pressure Equilibrium’ . 183

9 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A A Primer on Exterior Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
B.1 Manipulation of the Entropy Inequality . . . . . . . . . . . . . . . . . . . 221
B.2 Other Auxiliary Results from Section 5.2 . . . . . . . . . . . . . . . . . . 225
B.3 Deduction of the Liu Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
B.4 Isotropic Representation of the Mixture Flux Density . . . . . . . 228
B.5 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
B.6 Derivation of Residual Inequality . . . . . . . . . . . . . . . . . . . . . . . . 232

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245



Acronyms, Symbols

Symbol Name/Description Page

sym(·) Symmetry operator 17

skw(·) Skew-symmetry operator 17

[·, ·] Lie-bracket 17

〈·, ·〉 Jacobi-bracket 17

[[·]] Jump of the quantity in brackets 45

|A| Norm of A; |A| :=
√

tr(A2) 164

∂(·) Partial time derivative 17

∇(·) Gradient 17

div(·) Divergence 17

dα(·)
dt material time derivative following Kα 36

d(·) Exterior derivative 82

(̄·), (·) Density with respect to the mixture volume,
constituent volume

42

˙(·) Material time derivative following the mixture 61
◦
(·) General objective time derivative 68

�(·) Represents the ordered collection of all con-
stituent quantities of the quantity in brackets

61

�
(·) Objective time derivative for binary, saturated

mixtures with constant true mass densities
164

xiii



xiv Acronyms, Symbols

∑

A

,
∑

v

Sum over tensors A, Sum over vectors v 99

(·)
∣
∣
E

Equilibrium part of a quantity 127

(·)
∣
∣
N

Non-equilibrium part of a quantity 127

(·)N Non-linear part of a quantity 169

(A)′ Deviatoric part of A 172

!= ‘must be equal to’ 129

A(Qα, θ) Surface area of ∂Ωαθ 34

a(∂Qα) Surface area of ∂ωα 37

aα Constituent acceleration 36

a Vector for the mathematical formulation of the
principle of objectivity for mixtures

71

Bα Constituent left Cauchy Green deformation
tensor

37

Bα Constituent material body 33

Bs Inverse ‘shear viscosity’ of the solid con-
stituent, ‘shear fluidity’

173

bα Constituent external supply rate density for
momentum

42

b Mixture external supply rate density for mo-
mentum

48

C General constitutive variable 58

CD
αβ , CW

αβ Tensor-valued coefficients of the isotropic ex-
pansion of cα

138

cα Interaction supply rate density for mass 42

cθ̇
α, cθρ

αβ , ..., cW
αβγδ Scalar-valued coefficients of the isotropic ex-

pansion of cα

139

cNα Nonlinear remainder of the isotropic expansion
of cα

138

c Vector-valued abbreviation for a combination
of Δ∗n

D and ζn

126

cβ Abbreviation for c,vβ
145

Dα Constituent stretch tensor 36

D Mixture stretch tensor 50

E3
Euclidian space, three dimensional 33

eα Interaction supply rate density for energy 42



Acronyms, Symbols xv

e Equilibrium variables 127

Fα Constituent deformation gradient 36

F Vector-valued one-form 82

FxJ

ij Abbreviation for (FxJ )ij 105

FA
ijk Abbreviation for (FA)ijk 105

f1 Coefficient of barotropy in the hypo-plastic
law

164

f2 Coefficient of pyknotropy in the hypo-plastic
law

164

G/Gα Physical variable characterising a particular
aspect of the state of mixture/ constituent Kα

39

I Second order unit tensor 72

I Fourth order unit tensor 73

IA First invariant of the second-rank tensor A 160

IIA Second invariant of the second-rank tensor A 160

IIIA Third invariant of the second-rank tensor A 160

I, J, K, ... Identifier for the constitutive variables 17

i, j, k, ... Identifier for the components 15

Kα αth constituent 33

K Number of constitutive variables 17

Ks Inverse ‘bulk viscosity’ of the solid constituent,
‘bulk fluidity’

173

k Extra entropy flux vector 96

k Abbreviation for 1
2λερn(un · un) 115

kv
α Coefficient for the linear contribution of vα to

k
143

kN Vector-valued coefficient for the nonlinear con-
tributions of k

143

Lα Constituent velocity gradient 36

L Fourth order tensor for the modelling of hypo-
plasticity

164

L Mixture velocity gradient 50

lρα Linear combination of λρ
α and λv

α 83

lνα Linear combination of lρα and λν
α 83



xvi Acronyms, Symbols

lρIα
Extension of lρα 115

lνIα
Extension of lνα 115

Mα Interaction supply rate density for moment of
momentum of constituent Kα

42

Ms Solid volume fraction tensor 170

M Dimension of
{

∇θ, �∇ρ, �∇ν
}

104

mα Interaction supply rate density for momentum
of constituent Kα

42

mi
α Euclidian invariant part of mα 57

m (n−m) constituents are density-preserving or
m constituents are ‘compressible’

68

mN
α Vector-valued coefficient for the nonlinear con-

tributions of mi
α

144

mD Drag coefficient 172

N Second order tensor for the modelling of hypo-
plasticity

164

N Dimension of
{

∇θ, �∇ρ, �∇ν, v
}

104

ND
αβ , NW

αβ Tensor-valued coefficients of the isotropic ex-
pansion of nα

139

n Number of constituents 55

n Non-equilibrium variables 127

n Exterior normal unit vector to ω 44

nσ Unit vector, perpendicular to the singular sur-
face, σ

44

nα Volume (fraction) production rate density of
constituent Kα

57

nθ̇
α, nθρ

αβ , ..., nW
αβγδ Scalar-valued coefficients of the isotropic ex-

pansion of nα

139

nN
α Nonlinear remainder of the isotropic expansion

of nα

139

P Scalar-valued one-form 82

p̄G
α True thermodynamic pressure related to ΨG 117

Q Orthogonal time-dependent tensor 59

Qα An open set of elements Xα, with boundary
∂Qα

33

QxI
Abbreviation for

(

v ⊗ PxI
− FxI

)

88



Acronyms, Symbols xvii

qα Constituent heat flux vector 42

q Mixture heat flux vector 48

qN Vector-valued coefficient for the nonlinear con-
tributions of q

144

Rα Rotational part of Fα 63

Rα0 Region of constituent Kα in the reference con-
figuration

33

Rt Region of the mixture in the present configu-
ration

33

rα Constituent external supply rate density for
the energy

42

r Mixture external supply rate density for en-
ergy

48

S Set of constitutive variables 69

Sn Set of non-equilibrium elements n 137

SR Reduced set of constitutive variables 114

SY Set of elements Y 137

s Saturation field 83

s Linear combination of s and Γ 83

s∗ Variant of s 94

Tα Cauchy stress tensor of constituent Kα 42

T Mixture Cauchy stress tensor 48

TI ‘Inner’ part of the Cauchy stress tensor 51

TD Diffusive part of the Cauchy stress tensor 51

TN
β Tensor-valued coefficient for the nonlinear con-

tributions of Tβ

144

T̄cs Constraint part of the equilibrium solid
Cauchy stress tensor

158

T̄es Elastic part of the equilibrium solid Cauchy

stress tensor
158

T̄fric Frictional (hypo-plastic) part of the equilib-
rium solid Cauchy stress tensor

158

t Time 33

uα Diffusion velocity of constituent Kα 50

V (Qα, θ) Volume of Ωαθ 34



xviii Acronyms, Symbols

v(Qα) Volume of ωα 37

vα Velocity of constituent Kα 35

v Mixture velocity or barycentric velocity 49

vfs := vf − vs Velocity difference of solid and fluid con-
stituents

156

vvol := νsvs − νfvf Volume weighted mixture velocity for a solid-
fluid mixture

155

Wα Vorticity tensor of constituent Kα 36

W Mixture vorticity tensor 50

Wfs := Wf − Ws Difference of solid and fluid vorticity tensors 156

Xα Element of the material body Bα 33

Xα0 Position vector of the element Xα in the ref-
erence configuration

33

x Position vector in the present configuration 34

Y Subset of S 137

Zα Partial internal variable for constituent Kα,
necessary for hypo-plasticity

63

α, β, γ, ... Identifiers for the constituents 15

βG
α Configuration pressure of constituent Kα re-

lated to ΨG
117

βα Configuration pressure of constituent Kα re-
lated to Ψ

148

Γ Linear combination of T and ΨG 83

Γ ∗ Variant of Γ 94

γΨ
α Constituent interaction supply rate density of

ψα

46

γ̇ Shear rate in a simple shear experiment 176

γρη
α Interaction supply rate density of constituent

Kα for the entropy
42

Δ∗α
D Combination of TD, ΨD, sym(∇θ ⊗P∇θ) and

uα · uα

126

δ Constant introduced along with [A22] 185

εα Specific internal energy of constituent Kα 42

ε Mixture specific internal energy 48



Acronyms, Symbols xix

εI ‘Inner’ mixture specific internal energy 50

εD Diffusive part of the mixture specific internal
energy

50

ζα Combination of configuration and saturation
pressure

126

ηα Specific entropy of constituent Kα 42

η Mixture specific entropy 48

θ (Absolute) temperature 58

ια Coefficient for the mass and volume-fraction
interaction in the constitutive laws

119

κi
α Configuration of constituent Kα at time ti 33

κs
1−6 Coefficients in the isotropic representation of

T̄s

∣
∣
N

170

κf
1−3 Coefficients in the isotropic representation of

T̄f

∣
∣
N

170

κf , κs ‘Bulk viscosity’ of the fluid and solid con-
stituent

172

λε
Lagrange multiplier for the energy 79

λρ
α Lagrange multiplier for the mass 79

λν
α Lagrange multiplier for the volume fraction 79

λv
α Lagrange multiplier for the momentum 79

λZ
α Lagrange multiplier for hypo-plasticity 79

μα Infinitesimal areal fraction of constituent Kα 38

μG
Iα

‘Inner’ parts of the constituent Gibbs-like free
energies; similar to the Gibbs’ free energies

118

μ Iα ‘Inner’ parts of the constituent Gibbs’ free en-
ergies

148

μ Shear modules in the Neo-Hookeian ansatz 162

μf ‘Shear viscosity’ of the fluid constituent 172

μs ‘Shear viscosity’ of the solid constituent 173

να Volume fraction and kinematic viscosity of
constituent Kα

38

νs crit Solid volume fraction at which the nominal
particle distance is larger than, or equal to, the
distance at which the particle contact ceases to
exist

174

νs max Maximum solid volume fraction 174



xx Acronyms, Symbols

ξ̄α Mass fraction of constituent Kα 49

πψ
α Constituent internal production rate density

of ψα

41

πρη
α Intrinsic entropy production rate density of

constituent Kα

42

πψ Mixture internal production rate density of ψ 48

πρη Mixture intrinsic entropy production rate den-
sity

48

πf Compressible part of the fluid pressure 157

πρα Symbol for the balance equation of mass for
constituent Kα

79

πνα Symbol for the balance equation of volume
fraction for constituent Kα

79

πZα Symbol for the balance equation of the partial
internal variable for constituent Kα

79

�α Pressure term for the Cauchy stress tensor of
constituent Kα

146

�f Pressure term for the Cauchy stress tensor of
the fluid constituent

182

�s Pressure term for the Cauchy stress tensor of
the solid constituent

182

� ‘Total’ pressure for the mixture Cauchy

stress tensor
147

ρα0 True mass density of constituent Kα in the
reference configuration

38

ρα True mass density of constituent Kα in the
present configuration

38

ρ Mixture mass density 49
∑

Abbreviation for
∑n

α=1 49

σ Singular surface, across which physical fields
may suffer finite jump discontinuity

44

σΨ
α Constituent external supply rate density of ψα 46

σρη
α External supply rate density of constituent Kα

for the entropy
42

σΨ Mixture external supply rate density of ψ 48

σρη Mixture external supply rate density for the
entropy

48

ς Saturation pressure 117

ςI ‘Inner’ part of ς 119

τ Stress component in a simple shear experiment 176



Acronyms, Symbols xxi

Φα Constitutive quantity characterising the hypo-
plastic stress for constituent Kα

63

φψ Mixture flux density of ψ 48

φρη Mixture entropy flux vector 48

φψ
α Constituent flux density of ψα 43

φρη
α Entropy flux vector of constituent Kα 42

χα Motion of the body Bα 33

ΨG
Helmholtz-like free energy; similar to the
Helmholtz free energy

117

ΨG
I ‘Inner’ part of ΨG 117

ΨG
D Diffusive part of ΨG 117

ΨG
sf Non-elastic part of the ‘inner’ free energy, ΨG

I 163

ΨG
es Elastic contribution of the solid constituent to

the ‘inner’ free energy, ΨG
I

163

ΨG
ef Elastic contribution of the fluid constituent to

the ‘inner’ free energy ΨG
I

163

ψα Physical field density per unit volume of con-
stituent Kα

39

ψ Physical field density for the mixture 48

Ωα General constituent spin tensor of constituent
Kα

68

Ω∗ Tensor for the mathematical formulation of
the principle of objectivity for mixtures

71

Ωαθ Material region assigned to Qα in the reference
configuration

34

∂Ωαθ Material surface assigned to ∂Qα in the refer-
ence configuration

34

ωα Material region assigned to Qα in the present
configuration ωα = Ωαt

37

∂Ωα Material surface assigned to ∂Qα in the refer-
ence configuration ∂ωα = ∂Ωαt

37



Assumptions

Number Assumption Page

[A1] Areal and volume fractions are the same. 41

[A2] The mixture exhibits only a single tempera-
ture and no constituent changes its aggrega-
tion state.

56

[A3] M̄α = x × m̄α. 57

[A4] All volume fractions, να (α = 1, . . . , n),
are constitutive variables and n̄α = ∂να +
div(ναvα) holds.

63

[A5] All internal variables Z̄α (α = 1, . . . , n) are

constitutive variables and
◦

Z̄α = Φ̄α holds.

68

[A6] Constituent density constraint. 69

[A7] Saturation constraint. 69

[A8] Constitutive law and set of constitutive vari-
ables S.

71

[A9] Existence of an ideal wall. 79

[A10] σρη =
∑

λv
α · b̄α + λεr. 80

[A11] λv
α = −λεuα. 96

[A12] Symmetry of Fvα
. 102

[A13a] Constitutive assumption for [PBα
, Bα] and

[

λZ
α , Zα

]

if Ωα = Wα .
102

[A13b] Constitutive assumption for [PBα
, Bα] and

[

λZ
α , Zα

]

if Ωα is independent of Wα.
102

xxiii



xxiv Assumptions

[A14] FxJ , xJ ∈
{

∇θ, �∇ρ, �∇ν
}

are independent of
∇ρ1, ...,∇ρm, ∇ν1, ...,∇νn−1 and ∇θ.

103

[A15] λε = λ̂ε(θ, θ̇). 113

[A16] λε
∣
∣
E

= θ−1. 134

[A17] λε = θ−1. 148

[A18] Debris flows are isothermal processes. 155

[A19] qN
∣
∣
E
, T̄N

s

∣
∣
E
, and m̄N

β

∣
∣
E

(β = s, f) are omit-
ted.

157

[A20] ‘Principle of phase separation’. 159

[A21] Decomposition of ΨI into the elastic and non-
elastic parts.

159

[A22] T̄fric = ρδZ̄s, δ = constant . 163

[A23] kv
α = 0 (α = s, f) . 185



Chapter 1

Introduction

Abstract A brief introduction to the aims and scopes of the monograph is given.

In Section 1.1 a motivation for the application of the thermodynamic approach is

provided. Starting with the balance laws for the masses and momenta of a binary

continuous system, it is argued that differences in the apparent forms of these laws,

which exist between the classical mixture and the multi-phase systems formulations,

can only be resolved by use of the Second Law of Thermodynamics. We also make

plausible that the relation between the partial densities, true densities and volume

fractions for the constituents, necessarily requires one set of these variables to be in-

ternal and thus governed by evolution equations. That constitutive relations depend

on the true densities and volume fractions must lead to thermodynamic and config-

uration pressures. Furthermore, the saturation condition gives rise to the saturation

pressure that enters the mathematical formulation as a free field which replaces the

lost variable due to the saturation condition.

In Section 1.2 we argue that debris flow models involving solid and fluid constituents

must be described by at least a two-phase flow of solid and fluid components. Existing

models in the literature employ either one-constituent descriptions or reduced, sim-

plified binary mixture models. These are either reduced to classical Darcy models,

in which the fluid accelerations are ignored, or models describing the influence of the

fluid in an ad hoc fashion via a parameterisation of the pore pressure. Both ignore a

justification of the equations by thermodynamic arguments.

Section 1.3 is concerned with frictional effects in avalanching flows of debris. Classical

models incorporate these as viscous effects. To account for the destabilisation of a

saturated soil heap in the pre- and post-critical phases of a catastrophic motion from

initiation to deposition, plastic behaviour is introduced. This is suggested to be ac-

counted for by symmetric tensorial variables that are related to the rate independent

parts of the constituent stress tensors. Special choices of the production rate densities

of these variables allow formulation of material laws of the class of hypo-plasticity.

L. Schneider, K. Hutter, Solid-Fluid Mixtures of Frictional Materials 1
in Geophysical and Geotechnical Context, Advances in Geophysical
and Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-02968-4 1,
c© Springer-Verlag Berlin Heidelberg 2009



2 1 Introduction

1.1 Motivation

The literature on the dynamical interaction between a fluid and a solid or
fluids and solids mixed to a heterogeneous body is immense and equally con-
flicting in several elements. The mechanical and thermal processes exhibited
by such complex systems arise in many fields of the engineering and natural
sciences. Examples are e. g. fluidized beds in chemical process engineering,
particle laden flows in fluvial hydraulics and typhoon or hurricane and earth-
quake induced landslides in catastrophic avalanche flows, to name a few, for
more details see Hutter [61]. One characterisation of such flows is, that they
often arise as interacting species flows, in which the different species are more
or less continuously intermixed. It is then only a small step of abstraction
to postulate, that (thermo)-dynamical models for them can be deduced by
postulating that the various species continuously fill the space and form what
is called a mixture. However, it is already at this level of the construction of
a mathematical model that scientists tend to disagree in their opinion what a
basic formulation of a mathematical model might be. According to a second
alternative understanding the species interaction is achieved by an averaging
or homogenisation operation of the effects exerted on one species element
by all the other species elements that are present in the assemblage of the
species.

The reader might have noticed that the terms ‘mixture’ and ‘multi-phase
system’ were carefully selected above and avoided wherever possible. In fact,
controversial views on mixtures and multi-phase systems start already here.
However, our point is that there is no need for disagreement, because at
last ‘mixtures’ and ‘multi-phase systems’ are structurally the same. Why?
Well, in multi-phase systems the essential steps, done to reach structurally
the same governing equations as in mixture theories (balances of mass, mo-
menta, energy, entropy) from which models are deduced, are the motivation
and formulation of interaction laws between the species elements and subse-
quently, the performance of a so-called ‘phase averaging operation’, by which
the discrete distribution of the species elements is smeared or smoothed over
a representative volume element. The emerging equations are balance laws as
in mixture formulations, often, and inappropriately, called conservation laws
for quantities typical of those arising in classical physics.1 Expert presenta-
tions of the two approaches are by Truesdell [119] and Müller [97] on
the mixture side, and Jackson [70], Anderson & Jackson [6] and Drew

&Passman [34] on the multi-phase systems side. Of course, by postulating
interaction laws between the species elements and performing the phase av-

1 Differences may arise, if e.g. a non-polar structure of the mixture theory is postu-
lated and the multi-phase approach suggests a theory with a polar structure. However,
this is not what we have in mind. Such differences are of fundamental nature and are
accepted by both groups as describing materials of different microphysical behaviour.
What is meant here are differences in the postulation of flux and interspecies produc-
tion terms within continuum formulations of the same ‘class’.
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eraging process, detailed knowledge and information has gone into the phase
averaged equations, which is useful, but these equations still contain unspec-
ified variables, e. g. stresses for which constitutive relations must be written
down to arrive at the complete so-called closed system of equations. An il-
lustrative example is given by Pitman & Le [104].

We conclude this initial discussion with the assertion that the mixture and
multi-phase systems approaches lead to systems of equations which have es-
sentially the same balance structure for continuously differentiable fields, but
both have at this level still unspecified fields which must be adequately pa-
rameterised to close the system of equations. Since these equations have the
same structure, and their variables are obviously continuously occupying all
points of the space of the body, it is not absolutely necessary to differentiate
between ‘mixtures’ and ‘multi-phase systems’. We shall treat these denota-
tions as synonymous. This does not, however, remove all controversies. These
start anew with the choice or postulation of the unspecified terms mentioned
above. In fact, the disagreement between scientists seems often to be caused
by performing ad-hoc closure statements at this level.

To explain the various issues, consider a binary mixture of a particle laden
fluid. Let ρ̄f,s, c̄f,s, vf,s, p̄f,s, T̄f,s, m̄f,s and ρ̄f,sg be the partial densities,
the constituent mass production rate densities, the constituent velocities, the
constituent pressures, the constituent stress tensors, the specific interaction
forces and the external body forces of the fluid (f) and solid (s) constituents,
respectively. Moreover, let νf,s be the volume fractions and ρf,s the true
densities2 of the fluid and the solid constituents, respectively. Then, accept
the fact (we shall explain this in detail later) that T̄f,s are symmetric tensors,
the balances of mass and linear momentum can be written down for the solid
and the fluid as follows:

∂ρ̄f

∂t
+ ∇ · (ρ̄fvf ) = c̄f ,

∂ρ̄s

∂t
+ ∇ · (ρ̄svs) = c̄s ,

∂(ρ̄fvf )
∂t

+ ∇ · (ρ̄fvf ⊗ vf ) = −∇p̄f + ∇ · T̄f + m̄f + ρ̄fg ,

∂(ρ̄svs)
∂t

+ ∇ · (ρ̄svs ⊗ vs) = −∇p̄s + ∇ · T̄s + m̄s + ρ̄sg ,

(1.1)

in which
c̄f = −c̄s, m̄f = −m̄s, (1.2)

since mass and momentum of the mixture body are conserved (see main text
for justification). Moreover, irrespective of whether the solid and the fluid

2 The ‘true’ density is the mass of a constituent per volume of that constituent.
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constituents are compressible or not, one has

ρ̄f,s = νf,sρf,s . (1.3)

Assume now that we wish to derive a model for this binary mixture that is
only based on the partial differential equations (1.1) (i. e. not involving the
variables νf,s and ρf,s). Then, equations (1.1) and (1.2) comprise 8 equations
for 26 unknowns, namely ρ̄f,s (2), vf,s (6), c̄f,s (1), p̄f,s (2), m̄f,s (3) [see (1.2)]
and T̄f,s (12). Treating ρ̄f , ρ̄s, vf and vs, as the basic fields, closure relations
are needed for all quantities arising on the right-hand side of (1.1). For the
most simple case of vanishing constituent mass production c̄f = c̄s = 0, we
then need closure statements for p̄f,s, T̄f,s and m̄f . Taking a very naive
view, we may set T̄f = 0 on grounds that the fluid is ideal, and we may
conjecture Newtonian viscous behaviour for the solid stress T̄s. This still
leaves us with closure relations for p̄f,s and m̄f . For the latter we may write
down a Darcy type relation: m̄s = γ(vf − vs) where γ is a permeability,
but this ignores the fact that there may be a buoyancy contribution to m̄f of
the fluid exercising a static force on the solid, see Jackson [70] or Pitman

& Le [104]. Leaving this question aside for the moment, we are still left
with equations of state for p̄f,s. For a single fluid the thermal equation of
state follows from thermodynamics via the second law, and there it is a
relation involving the true density (which is the same as the partial density
for a single constituent material). Here, however, since according to (1.3)
partial mass densities may change by changes of the true mass densities
or the volume fractions or both, we must conclude that (i) introduction of
single constituent pressures p̄f and p̄s is insufficient and (ii) a model based on
equations (1.1) and (1.2) alone is equally defective. Furthermore, we suspect
the existence of thermodynamic pressures pth

f,s, which must be governed by
changes of the true mass densities, and so-called configuration pressures pconf

f,s ,
that are then governed by variations of the volume fractions, pconf

f,s = βf,s.
Obviously, this calls for a rigorous thermodynamic derivation which delivers
explicit formulae for the pressures. This requires that the partial densities ρ̄f,s

are not basic field variables, but instead ρf,s and νf,s are, and that the volume
fractions are treated as internal variables for which also evolution equations
are required, because νf,s obviously describe the configuration change of the
mass distribution. We write these equations in the form

∂νf

∂t
+ ∇ · (νfvf ) = nf ,

∂νs

∂t
+ ∇ · (νsvs) = ns ,

(1.4)

where nf,s are production rate densities.
There are further compelling demands for a thermodynamic foundation

of the theory. To see this, assume that the fluid and solid are both density-
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preserving. This means that the true mass densities ρf,s are constant and
that the mass balance equations (1.1)1,2 reduce to equations (1.4)1,2 with

nf =
cf

ρf
, ns =

cs

ρs
(1.5)

for consistency. If we then, for some reason, would assume that the consti-
tutive relations do not depend on νf,s either, the pressure terms pth

f,s, pconf
f,s

would both vanish, a strange behaviour, in particular for equilibrium condi-
tions. So, dropping νf,s as independent constitutive variables will in this case
most likely lead to singular behaviour.

There is still a further case which gives rise to concern. Suppose that we
want to use equations (1.1) for the situation that the mixture is saturated.
This means that

νf + νs = 1 (saturation) . (1.6)

This equation expresses that the fluid constituent fills the entire pore space.
Its requirement amounts to loosing an independent variable. Equation (1.6)
may thus be interpreted as a constraint condition and as such gives therefore
rise to a constraint pressure, just as the pressure in incompressible fluids.
This pressure is called saturation pressure ς, so that in this case

p̄f,s = p̄th
f,s + p̄conf

f,s + p̄sat
f,s , (1.7)

with
p̄sat

f = λς , p̄sat
s = (1 − λ)ς , (1.8)

distributing this pressure via a parameter λ among the constituents. In the
usual approaches this distribution is postulated in an ad hoc manner, just as
now, since the effect of a single variable of the nature of stress must somehow
be distributed among the constituents in a reasonable manner. ‘Reasonable’
means, that the sum over the constituent pressures ought to be equal to the
total saturation pressure. But is this correct and what is the functional form
for λ? It can take any finite value, but is, in the literature, unanimously
postulated to have the form

λ = νf , (1.9)

see Iverson [66], Iverson & Denlinger [69], Denlinger & Iverson [33],
Pitman & Le [104], Jackson [70] and many others. Assumption (1.8) or
its generalisation

p̄sat
α = νας (α = 1, . . . , n) ,

n∑

α=1

να = 1 (1.10)
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for saturated mixtures of n constituents is called the ‘assumption of pressure
equilibrium’.3 It is only correct for special cases. Its validity or replacement
must and can be proved by thermodynamic arguments.

In the above discussion nothing specific was yet said about the interaction
forces m̄f,s except that their sum must vanish, an obvious statement in view
of Newton’s third law. However, experts in multi-phase systems emphasise
that the interaction forces can take different forms, see Anderson & Jack-

son [6], Jackson [70]. Conceptually, this is quite obvious if m̄f is thought
to be additively decomposed as follows:

m̄f = m̄(1)
f + div T̄(1)

f . (1.11)

For instance, from an a priori estimate4, one might have a first guess of the
contribution of m̄f and it so happens that it arises as a divergence term.
Then, the right-hand sides of (1.1)3,4 could be written in the form

RHS(1.1)3 = −∇p̄f + ∇ · ( (1)T̄New
f ) + m̄(1)

f + ρ̄fg ,

RHS(1.1)4 = −∇p̄s + ∇ · ( (1)T̄New
s ) − m̄(1)

f + ρ̄sg ,

(1.12a)

or even as

RHS(1.1)3 = −∇p̄f + ∇ · ( (2)T̄New
f ) + m̄(1)

f + ρ̄fg ,

RHS(1.1)4 = −∇p̄s + ∇ · ( (2)T̄New
s − (2)T̄New

f ) − m̄(1)
f + ρ̄sg ,

(1.12b)

with
(1)T̄New

f = T̄f + T̄(1)
f ,

(1)T̄New
s = T̄s − T̄(1)

f , (1.13a)

and
(2)T̄New

f = T̄f + T̄(1)
f ,

(2)T̄New
s = T̄s + T̄f , (1.13b)

respectively. In these equations, T̄New
f,s and m̄(1)

f are still left arbitrary. Obvi-
ously, in a constitutive postulate these terms must be determined in thermo-
dynamic formulations. Needless to say, that the representations (1.1)3,4 and
(1.12), (1.13) are equivalent to one another if indeed a decomposition of the
form (1.11) exists.

Looking at (1.13), one might be tempted to conclude that (1)T̄New
f exhibits

only fluid properties, whilst (1)T̄New
s expresses both fluid and solid properties.

However, such an interpretation is not compelling, for if one writes (1.11) as

3 In the literature ‘pressure equilibrium’ seems to be applied to the total pressures
not just to the saturation pressure.
4 In multi-phase systems of Anderson & Jackson [6, 70] such a priori estimates
are explicitly made.
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m̄s = m̄(1)
s + div T̄(1)

s , (1.14)

which expresses the same as (1.11), since m̄s + m̄f = 0, (1.12a) is still
obtained, but (1.13a) now takes the form

(1)T̄New
f = T̄f − T̄(1)

s ,
(1)T̄New

s = T̄s + T̄(1)
s , (1.15)

and the new interaction-force-sum relation, m̄(1)
s + m̄(1)

f = 0, is preserved.
Now, the new solid stress seems to exhibit pure solid properties, whilst the
fluid stress is ‘mixed’.

To present an even further alternative, one may incorporate the divergence
term in (1.11) into the fluid stress, but refrain from doing the analogous step
in the momentum equation for the solid. In this case the interaction forces
of the new formulation do no longer sum up to zero, a requirement, which
is generally left unquestioned. However, in all cases demonstrated so far, the
fluid and solid momentum equations remain unchanged.

Obviously, even other decompositions are thinkable. A popular one is due
to the multi-phase systems defenders, see e. g. Jackson [70]. This author
demonstrates by scrutinising the forces that are exerted by a fluid flow on
suspended particles that

m̄f = −m̄s = −νs∇ · T̄f + m̄(2)
f . (1.16)

With this choice, we may write for the right hand sides of (1.1)3,4

RHS(1.1)3 = −∇p̄f + νf∇ · T̄f + m̄(2)
f + ρ̄fg ,

RHS(1.1)4 = −∇p̄s + ∇ · T̄s + νs∇ · T̄f − m̄(2)
f + ρ̄sg .

(1.17)

These equations have lost the divergence property for the stresses. They are
yet a different version of the constituent momentum equations, but they are
obviously analogous to (1.1)3,4 provided that the decomposition (1.16) holds.5

It is now understandable that it must be very difficult to bring such dis-
parate formulations into coincidence, or at least to establish a certain degree
of harmony. We claim that rational thermodynamics is the vehicle to achieve
this. In so doing, one must select a formulation, either equations (1.1)3,4,
(1.12) or (1.17) for the balance laws of constituent momenta, postulate con-
stitutive relations for a desired material class and subsequently exploit the
entropy principle to reduce the constitutive relations to the adequate ‘mini-
mal’ form. In principle, this can be done for all three of the above presented
systems of balance laws or any other one that is available. If for different

5 Readers with advanced knowledge in structured mixture theory will realise that
momentum equations based on (1.17) cannot become equivalent to the equations with
the original variables, if for the constitutive theory the principle of phase separation
is employed.
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formulations final results can be brought into coincidence, then the formally
different theories describe indeed the same material behaviour of the mixture
in question, if not, the decompositions (1.11) or (1.16) are doubtful. This
holds for a system that can be derived from (1.1). We regard equations (1.1)
to be the most primitive ones, because they have the structure of balance
laws, which possess clearly defined global, integrated forms with the usual
mathematical properties.

In the above, two constituent mixtures were the basis for us to explain the
crucial issues that are encountered with such continuous complex systems,
but it is quite clear that nothing essential changes, if the mixture or the multi-
phase system consists of n > 2 components. We shall develop the theory for
arbitrary n but are aware that n = 2 and perhaps n = 3 or n = 4 are the most
significant cases. The analysis, not easy to grasp, will demonstrate that the
above mentioned uncertainties or open holes in the derivation of the models
will all be resolved. There is no reason for scientists to disagree and debate
on different reasonable ad hoc assumptions on some parts of the stresses or
interaction forces in different formulations; the different theories may well
agree with one another, but agreement or disagreement of two formulations
can only be judged after both have been subjected to a complete thermodynamic
analysis.

1.2 Mixtures and Debris Flow Models

Our own interest in fluid-solid mixtures is guided by their application to
catastrophic movement of snow, ice and debris avalanches, by mud flows in
fluvial hydraulics, e. g. as a result of heavy rain fall when soil on mountain
sides or dams break off or when large river discharge triggers sediment erosion
and generates its transport and deposition further down in the river basin,
often giving rise to devastating effects to life and property by erosion and
sedimentation. Such catastrophic events occur nowadays worldwide and can
almost daily be found in the news media. Many avalanche models have been
developed for dry granular fluids (for a collection of references, see Harbitz

[50], Hutter [59], Pudasaini & Hutter [105], Ancey [5] and others).
Such models are adequate for dry dense snow avalanches, for dry debris flows
and landslides that may be triggered by an earthquake. For flow of water-
soaked soil or debris, a large number of models for catastrophic motion are
based on single constituent models, in which the constitutive relation for the
stress tensor is motivated by non-Newtonian rheology. These models employ
a closure relation, for which the stress is proportional to the strain rate tensor
with scalar factor – the effective viscosity – which itself depends on the second
invariant of the stress tensor, sometimes in a rather complex way.

There is an extensive literature on this subject in the rheological sci-
ences, mostly dealing with polymeric and other complex fluids and using
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stress-stretching relations of the class of visco-plastic materials. Rheologists
differentiate between fluids exhibiting a yield stress (Bingham, Herschel

Bulkley, De Kee-Turcotte fluids) and fluids without a yield stress (New-
tonian, power law fluids with shear thinning and shear thickening behaviour).
Ancey [5] reviews the recent literature, emphasising the viscous and plas-
tic nature of such models. Because of the singularities that arise in some of
these fluid models (e. g. infinite viscosity at zero stretching for shear thinning
fluids, an essential singularity for all plastic models at yield), regularizations
have been introduced which remove these singularities. Such a regularization,
making the behaviour mathematically viscous has been suggested by Zhu et
al. [130] for the De Kee-Turcotte fluid. Luca et al. [82] proposed such a
regularisation for shear thinning and shear thickening fluids with Newtonian
behaviour at small stretching and power law behaviour at large stretching.
They derive thin layer approximations on arbitrary topography for these
kinds of fluid models and show that at least two classes of avalanche models
must be differentiated, the first class being applicable for fluids with zero or
small yield stress and the second class for materials exhibiting large yield
stress.

These models are likely adequate for flows of particle laden systems up to
moderately high solids concentration. They are however, likely inappropriate
for high solids concentration when frictional contact between the grains is
frequent. In the debris flow community mixture concepts have so far only
been incorporated in a broad fashion. Geotechnical engineers and engineering
geologists (McDougall & Hungr [85, 86], Iverson [66, 67], Iverson &

Denlinger [69]) have early recognised that the role of the fluid, or more
precisely the pore pressure, is decisive for the run-out of a granular mass
subjected to an interstitial fluid. In a first attempt to quantify the role played
by the fluid, Iverson assumed the saturated binary mixture to consist of a
fluid and a solid constituent, but imposed the simplifying assumption that
both constituents move with the same velocity, vf = vs. This implied that
the interaction force (the Darcy term) disappeared from the formulation,
but the total pressure needed to be distributed between the solid and the
fluid pressures according to

pf = λp , ps = (1 − λ)p . (1.18)

To close the system, an ad hoc closure relation is needed for the pore fluid
pressure p or for λ. A similar procedure was also taken up by Pudasaini

et al. [106] in a slightly different avalanche formulation, but using the same
physics. Computations have shown that the pore (fluid) pressure exercises a
significant effect on granular mass run-out distances. The major disadvantage
of this model is the ad hoc nature of the distribution of the pore pressure
among the constituents according to (1.18). This equation has no theoretical
basis other than to close the system of equations. Computations have also
shown that results depend chiefly on the choice of the parameterisation of
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λ, an equation for which there is no rational background. In an attempt to
introduce some notion of rationalism in such a simplistic approach a diffusion
equation for the pore pressure was derived from an independent principle;
see, Iverson [68]. However, such an approach does still not remove the fact
that the pore pressure equation is not rationally connected to the mixture
equations.

A mixture model, deserving the qualification ‘mixture’ and serving the pur-
pose of describing water saturated debris flows, was presented by Pitman &

Le [104] using the mass balances (1.1)1,2 and the momentum balances that
are based on equations (1.16), (1.1)3,4. Density preserving and saturation as-
sumptions were also used. The constitutive theory uses a plastic description
which is essentially a Mohr-Coulomb behaviour due to Rankine [108]. In
a reduced model the fluid acceleration terms are dropped, so that the fluid
equation reduces to a classical Darcy equation. Only preliminary computa-
tions for this reduced model have been conducted, and they demonstrate that
the fluid component enhances the run-out distances. Interestingly, this theory
is complementary to that of Iverson; it emphasises the role of the dynamic
interaction force, whilst Iverson ignores it, and it ignores the pore pressure,
whilst Iverson accounts for it. Both, however, predict run-out distances that
are increased by the presence of the fluid.

The above mixture models are the only ones we know of, which have been
proposed to be applied to debris flows and landslides, etc. in the mentioned
geological applications. They are of ad hoc nature, i. e. closure relations have
been suggested by physical reasoning and plausibility arguments, without
any detailed thermodynamic analysis. It is our belief that for a constitutive
class, which acceptably embraces possibly successful debris flow models, a
thorough thermodynamic analysis ought to be performed to achieve a high
degree of certainty of the model equations from which fluid-solid avalanche
models in the geophysical context can be further deduced.

1.3 Mixtures with Frictional Components

Landslides and debris flows are often initiated from slopes that have been ar-
tificially consolidated and exhibit a high degree of ‘stability’. Such flows can
also develop from artificial dams. Soil slumps arise in such cases often in in-
habited areas (e. g. Hong Kong as a well known site!). In these circumstances
the geotechnical engineer or engineering geologist wishes to have a theoretical
model for the behaviour of the soil prior to any catastrophic movement when
the soil structure is still stable under quasi-static loads, which allows also (i)
the prediction of failure by identifying shear bands and other possible local-
isation features and (ii) the determination of the catastrophic avalanching
motion from this initial post-critical state through all phases of the motion
to the deposition. The model should predict the pre-critical state of stress,
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the onset of the localisation, the initiation of the ensuing motion, the speeds
and the mass distribution in motion as well as in the final deposition. The
models mentioned in the preceding sub-section lack the potential to describe
all these phases. A stress ‘component’ capable of predicting the localisation
to identify the breaking soil mass is missing. There are several options to
incorporate this component into the theory. We have decided to do this in a
form that generalizes the well known constitutive models of hypo-plasticity.
These models were developed originally in the Geotechnical Institute of the
University of Karlsruhe by D. Kolymbas in his Ph. D. dissertation [74] and
independently in the Geomechanics Institute of the University of Grenoble,
see Chambon [23, 24], Chambon et al. [25, 26] by F. Darve [29, 30] and
their associates. Since then, they have been generalized and applied by many
geotechnical engineers. A review will be given in Chapter 4. Here we wish to
mention that, (i) even though the models are likely in conformity with the
Second Law of Thermodynamics, this has not been demonstrated, and (ii)
that the hypo-plastic models have so far not been set into a clear mixture con-
cept with a number of fluid and solid constituents. It is not clear how this can
be done. When interstitial water plays a role, the mixture context shows up
in the classical hypo-plastic models only indirectly via the somewhat ‘cryp-
tic’ statement, that effective stresses are looked at. A thermodynamic setting
of their derivation is, however, useful per se, since it will pave the route for
extending hypo-plasticity to mixtures with several solid constituents.

In the present work, incorporation of the frictional effects into the theoret-
ical formulation is done in much greater generality than just for hypo-plastic
materials. However, this approach allows us to prove how and under what
conditions hypo-plasticity fulfils the Second Law of Thermodynamics. We
shall show this for the situation that every constituent of the mixture entails
hypo-plastic material behaviour, but allows for the possibility that it can
be dropped for particular constituents, e. g. fluid components. The demon-
stration of the thermodynamic consistency has, however, not been easy, at
least not in the initial stages. The reason is, that unlike the customary hypo-
plastic approach, where an evolution equation for the Cauchy stress tensor
is postulated, we introduce the hypo-plastic behaviour indirectly by adding
an evolution equation for an objective symmetric second rank tensor valued
internal variable, to the physical balance laws, and postulating its production
rate density in plausible form. This has first been demonstrated by Svend-

sen et al. [116] for single phase dry granular materials on the basis of an
idea by Svendsen and is here generalized in the context of a general mix-
ture theory. This is a necessary step, because it is not at all clear how one
should postulate hypo-plastic contributions to the interaction forces or to
the partial stress tensors of the solid constituents, if there are more than
one. The method can describe frictional behaviour more generally than just
by hypo-plasticity, but our interest is primarily in the latter. We claim this
work forms the basis for a general material theory of a mixture of solid and
fluid constituents that should in principle be able to describe the thermo-
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dynamical response of fully saturated soils from their quasi-static behaviour
through a phase of destabilisation via the formation of localisation features,
to the post-critical behaviour in catastrophic avalanching motions, from their
initiation and while the material is subjected to large deformations, down to
the deposition. There is certainly still a long way to go before this goal will
be fully achieved, but this analysis makes a start at an acceptable level of
rigour.

1.4 Objectives, Methods and Structure of the Present
Work

As outlined in the previous sections, the objective of the present work is a
thermodynamically consistent derivation of a general non-classical mixture
model that, in a reduced form, allows the reproduction of the behaviour
of debris flows. This model shall, on the one hand, be able to describe the
above properties of flowing water-filled sediments and, on the other hand, be
sufficiently simple to allow its numerical treatment with reasonable effort.

The backbone of this model is a mixture theory that includes both, Svend-

sen’s balance equation for the volume fractions (cf. Svendsen & Hutter

[115]) and a variant of his frictional theory (cf. Svendsen et al. [116]). These
extensions of the classical mixture theory are necessary, because debris ma-
terial, as defined above, is an immiscible mixture (to be specified), in which
structures at small scales evolve independent of the overall motion.6 We em-
ploy and extend the approach to the concept of the frictional resistance of
Svendsen [116], because we think that the frictional effects between the
grains, which are influenced by the fluid can be described with it. We even
hope that the model to be developed has the capacity to appropriately repro-
duce the resistance of the reposed debris material to shear stresses at and close
to equilibrium. At this early stage, the model is designed to treat frictional ef-
fects of a rather general kind, more general than hypo-plasticity, which turns
out to be one particular application. In fact, in the thermodynamic setting of
the theory, as outlined in Chaps. 5 to 7, no explicit connection of the results
with hypo-plasticity is apparent. The identification of hypo-plasticity will be
achieved in Chap. 8 by specially choosing a representation for the production
rate density of a tensorial internal variable. So, when hypo-plasticity is men-
tioned in lieu of frictional behaviour, we have a specialisation in mind that
is important for the geotechnical-geophysical application. The developments
of Chaps. 5 to 7 hold for a material with more general or more specialized
frictional behaviour.

For the general mixture model it will be assumed that (i) the mixture
is saturated, (ii) (n − m) of the n constituents are density-preserving whilst

6 An example for this evolution is the abrupt outset and termination of fluidisation.
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the remaining m components are compressible, and (iii) the stress tensors
are symmetric, i. e. no polar effects are considered.7 It may be appropriate
at this juncture to draw the reader’s attention to the fact that in mixture
theories the definitions of ‘saturation’ and ‘incompressibility’ must be taken
with care. In this work, saturation means that the mixture constituents fill
the entire space; there is no empty space which may be envisaged to consist of
mass-less voids. The word ‘incompressibility’ should be avoided entirely and
only the notions ‘volume and density preserving’ should be used. Looking at
a single grain, this grain can be made of a one-constituent material which
is ‘volume-preserving’. This then means that the grain does not change its
volume. The grain by itself is then also ‘density-preserving’, because it is well
known that in one-constituent materials ‘volume-preserving’ and ‘density-
preserving’ describe the same behaviour.8 Not so for the mixture! And the
crucial relation is equation (1.3). The partial density of a constituent can
vary because the true density varies or its volume varies, or both. It follows
immediately that the mixture density may vary, even if all constituents are
density-preserving; that is, the mixture is not density-preserving. It is clear
that replacing the notions of ‘density-preserving’ and ‘volume-preserving’ by
‘incompressible’ is not sensible.

The thermodynamic analysis which is presented in the sequel is based on
the Müller-Liu approach of exploiting the entropy principle (cf. Müller

[97]). Also, use will be made of methods and definitions of Svendsen &

Hutter [115], Liu [80] and Svendsen et al. [116].
The present work commences with some mathematical preliminaries and

notation issues (Chapter 2), followed by an explanation of the main ideas (i.
e. premises, balance equations, definitions) of a mixture theory that accounts
for the internal structure of the mixture (Chapter 3). Following the lines of
material modelling in Chapter 4, constitutive assumptions are postulated,
first, to introduce the specific material behaviour of water-soaked debris and
second, to close the system of field equations. With the help of the entropy
principle additional restrictions for the constitutive quantities are found in
Chapter 5. This chapter presents the formulation of the entropy principle

7 In the recent literature on granular materials (cf. Huang & Bauer [56]) micro-polar
effects have been considered, specifically to account for the rotation of the grains in
order to accurately describe, besides other things, the formation of shear bands and
with it the effect of fluidisation. Theories using this refinement are not yet well tested,
and not established to model granular materials. To avoid additional complexity, we
assume a priori all stress tensors to be symmetric.
8 This follows from the mass balance, ρ̇ + ρ div v = 0. Indeed, ‘density-preserving’
means ρ̇ = 0, and this implies div v = 0. Considering a fixed volume V with boundary
∂V we thus have

∫

V div v dV = 0 or
∫

∂V v ·n da = 0, if n is the unit normal vector on
∂V exterior to V. The last expression says that the volume V does not change with
time. Thus:

ρ̇ = 0 ⇐⇒ div v = 0
‘density-preserving’ ‘volume-preserving’
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in the form as postulated by Müller [95, 96, 97] and transformed by Liu

into a variational principle and deals with its mathematical transformation
that allows direct identification of the applicability of Liu’s lemma [78]. In
Chapter 6 first inferences are drawn, i. e., the Liu identities and the residual
entropy inequality are identified. Exploitation of the isotropy of the one-form
suggested by the former paired with a number of ad-hoc assumptions allows
derivation of a substantially simplified thermodynamic potential from which
thermodynamic and configuration pressures can be derived, including all La-

grange multipliers except that corresponding to saturation and defining the
saturation pressure. In Chapter 7 thermodynamic equilibrium is defined and
equilibrium forms of the stress tensor, interaction-force and heat flux vector
are derived. It is in this chapter where the dependences of these fields are
unravelled and the structure of the theory becomes transparent. Chapter 8
is devoted to the reduction and simplification of the derived, general mixture
theory towards a manageable debris flow model, where besides other things,
the ‘principle of phase separation’ (to be specified) is applied. In the same
chapter, we compare the unphysical assumption of ‘pressure equilibrium’ (to
be specified), which, despite its unnecessary strong implications, is still in
use, (cf. Pitman & Le [104], Iverson and others [33, 68, 69]) with a much
weaker assumption proposed by Hutter et al. [63]. Moreover, we give a
detailed account of the non-equilibrium solid stress parameterisation, which
is based on typical viscometric experiments of non-Newtonian rheology of
elasto-visco-plastic fluids. In Chap. 9 a brief review of the modelling con-
cepts is given and the achievements and limitations of the taken approach
are discussed. At the end of the book, Appendix A presents concepts of ex-
terior calculus that are employed in Chaps. 5 to 7. A number of the more
complex computational steps that are encountered in the developments are
explained in detail in Appendix B.



Chapter 2

Mathematical Preliminaries and
Notations

Abstract In the first part of this chapter we present the symbolic and the Cartesian

tensor notations and show how these are applied in this book. Tensor calculus is

presumed known to the reader; so, only specifics and peculiarities pertinent to the

work are discussed. In the second part the elements of exterior calculus are explained,

but only to the extent as they are used in the thermodynamic approach treated later

on, in particular in Chap. 5.

2.1 Tensors

It is assumed that the reader is familiar with the elements of tensor algebra,
analysis and calculus. There are many books which present this subject,
among them e. g. Bowen & Wang [15, 16] or Chadwick [22] or Klingbeil

[73].
Subsequently, not only symbolic but also index notation will be used, be-

cause often proofs and auxiliary results are easier to derive that way. Nota-
tion is a crucial issue and has to be treated with care. In particular, this is
true for mixture theory. In the symbolic notation we choose Greek letters,
(α, β, γ, . . .), to identify the constituents of the mixture and place them
in the right lower corner of a quantity. In index notation, the Greek letters
for the constituents are moved to the right upper corner. Indices identifying
the Cartesian components of tensors are written in small Latin minuscules,
(i, j, k, l, . . . ), in the lower right corner of a quantity. As usual, the Einstein

summation convention is used for the component indices but not for the
Greek constituent indices. Consequently, summations over the constituents
are always written out explicitly.

In ensuing calculations, we think of vectors and tensors over R
3 as quan-

tities that consist of components and an associated basis. Thus, we write

v = vi ei, A = Aij ei ⊗ ej , B = Bijk ei ⊗ ej ⊗ ek , (2.1)

L. Schneider, K. Hutter, Solid-Fluid Mixtures of Frictional Materials 15
in Geophysical and Geotechnical Context, Advances in Geophysical
and Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-02968-4 2,
c© Springer-Verlag Berlin Heidelberg 2009
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where an orthonormal basis ei (i = 1, 2, 3) is used that spans W which is a
three-dimensional vector space over R. ei ⊗ ej , ei ⊗ ej ⊗ ek, etc. represent
dyadic products of these basis vectors. It follows that v is an element of W
and the second rank tensor A can be understood as a linear mapping of a
vector from W to W. This statement can be written as

Av = Aij (ei ⊗ ej)vkek = Aijvk δjk ei = Aijvj ei =: yi ei . (2.2)

Analogously, higher order tensors can be understood as multi-linear forms,
for details see e. g. Bowen & Wang [15]. In (2.2) the usual Kronecker

delta,

δij =
{

1 for i = j ,
0 for i �= j ,

(2.3)

and the definition of the dyadic product

(a ⊗ b) c := a (b · c) , (2.4)

have been used, where a, b and c are any vectors in the vector space W. The
operation a · b of a and b is called the scalar product and reveals a scalar.
Henceforth, the dot product A · B of two tensors A and B of the same, but
arbitrary rank results in a scalar. For second, A, B, and third, C, D, rank
tensors we define this product as

A · B := Aij Bij , C · D := Cijk Dijk . (2.5)

One can think of several other products, e. g. in R
3 the cross product of the

two vectors a and b
a × b := eijk aibj ek , (2.6)

where eijk stands for the alternator,

eijk :=

⎧

⎪⎨

⎪⎩

1 if i, j, k are an even permutation of 1,2,3 ,

−1 if i, j, k are an odd permutation of 1,2,3 ,

0 else .

(2.7)

Later in this chapter the trace operator

tr(ATB) = tr(ABT) := A · B (2.8)

will also be applied, where A and B are second rank tensors. It can be seen
from its definition that the trace operator transforms ABT into a scalar. The
transpose AT of the tensor A is defined as follows

a ·
(

ATb
)

= b · (Aa) , ∀ a, b ∈ W . (2.9)
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As done in the literature, for calculations in index notation the bases of
vector- and tensor-valued quantities are occasionally omitted. Tacitly assum-
ing that we are always dealing with an orthonormal basis, we will follow the
same line. Therefore, in place of

· viei we shall write vi ,
· Aijei ⊗ ej we shall write Aij ,
· (Bikei ⊗ ek)(ajej) we shall write Bijaj ,

and we shall call vi and Bijaj vectors and Aij a second rank tensor even
though this is, strictly, not correct.

To make calculations easier we define

sym(A) := 1
2

(

A + AT
)

, [A, B] := AB − BA ,

skw(A) := 1
2

(

A − AT
)

, 〈A, B〉 := AB + BA ,
(2.10)

where the operators sym(·) and skw(·) extract the symmetric and the skew-
symmetric parts of A, respectively. The latter two definitions specify the Lie

and Jacobi-brackets, respectively1.
If we follow the notation of Svendsen & Hutter [115] the temporal (or

partial time) derivative of a general quantity ϕ (it can be a scalar-, vector-
or tensor-valued function) is denoted by ∂ϕ and its spatial (or partial space)
derivative is given by ∇ϕ = ∂ϕ/∂x = ϕi...j,k ei ⊗ . . . ⊗ ej ⊗ ek.

In the thermodynamic analysis we will be dealing with dependent consti-
tutive quantities f (f stands e. g. for the Cauchy stress tensor or the heat
flux vector, . . . ) and independent (constitutive) variables

�x = (x1, . . . , xK) .

Examples for xs (s = 1, . . . ,K) are the temperature field, the velocity of a
constituent or its gradient etc. The dependence of f on �x is written as

f = f̂ ◦ �x = f̂(�x) .

Due to the chain rule, the temporal and spatial derivatives of f take the forms

∂f =
K∑

I=1

f̂ ,xI
(∂xI) ,

∇f =
K∑

I=1

f̂ ,xI
(∇xI) ,

(2.11a)

1 In the sequel, the brackets [ · , · ] and 〈 ·, ·〉 will exclusively be used for the Lie and
Jacobi operations, (2.10)2,4.
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∇ · f := (f)i(...)jk,k ei ⊗ . . . ⊗ ej

=
K∑

I=1

∂(̂f)i(...)jk

∂xI

∂xI

∂xk
ei ⊗ . . . ⊗ ej .

(2.11b)

The partial derivative f ,xI
which occurs in equations (2.11) can be defined

according to Fréchet. For a detailed definition of this type of partial deriva-
tive the reader is referred e. g. to Marsden & Hughes [83], Edelen [35],
or Casey [20], where explicit definitions and calculations of some important
derivatives can also be found.

2.2 Results from Exterior Calculus

The mathematically complete introduction to exterior calculus can be found
in the book ‘Applied Exterior Calculus’, by D.G.B. Edelen [35]. Its for-
mal treatment goes beyond the mathematical knowledge that is commonly
absorbed by geophysicists and engineers; so, the intention here is to present
those results established in this special mathematical field which are useful
in the ensuing developments and facilitate the algebraic manipulations in
the calculations of the thermodynamic analysis in Chapters 5 to 7. In this
book only those aspects are of significance which concern so-called differential
or Pfaffian forms and inferences which can be drawn from them when these
forms are total or perfect. Alternative presentations of exterior calculus to [35]
are by Cartan [18, 19] and Heil [53]. Here we follow mainly the beautiful
‘down to earth’ presentation by Bauer [10] in Chapter 4 to his Ph.D. disser-
tation ‘Thermodynamische Betrachtung einer gesättigten Mischung’, which
we present here in our own English version, with additions and alterations
where felt necessary. A formal exposition of the Exterior Calculus, presenting
the ground work of what follows in the summary below is given in Appendix
A

2.2.1 What is integrability?

Let

dF =
n∑

i=1

Xi(xj)dxi (2.12)

be a differential form dF , which is expressed as a linear combination of
differentials dxi with coefficient functions Xi (i = 1, . . . , n) which depend
on some or all of the xj (j = 1, . . . , n). Equation (2.12) is also called a
Pfaffian form. Under what conditions is the denotation dF on the left-hand
side of (2.12) justified in the sense that the expression (2.12) represents a
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total differential? In other words, under what conditions does integration over
the right-hand side of (2.12) deliver a value that is independent of the path
of integration in ‘configuration space’ of the ‘independent’ variables xi (i =
1, . . . , n)?2 If this is true, this value will only depend upon the initial and final
points of the integration. If this should not be the case and

∑

i Xidxi does
not represent a total differential, there still remains the question: can we alter
this situation by multiplying the right-hand side of (2.12) with an adequate
function? Under those situations this function is called an integrating factor.3

In order to geometrically interpret the roles played by the variables Xi and
the differential forms dxi, it is advantageous to write (2.12) in vectorial form

dF = X · dx , (2.13)

where X ∈ R
n and x ∈ R

n are ordered arrays X = (X1, . . . , Xn), x =
(x1, . . . , xn) and the dot denotes the scalar product over R

n. If one writes
(2.13) in the homogeneous form, dF = 0, it becomes clear that X defines a
normal field which is orthogonal to the hypersurfaces on which the value of
F does not change. Solutions of the equation dF = X · dx = 0 are surfaces
(or curves according to dimension) x = x(σ, τ, . . .) on which F is constant.
Locally such a solution can always be constructed, however, this surface may
possibly not have the largest dimension (n− 1). If the local solutions possess
the maximal possible dimension, one says that equation (2.12) is completely
integrable (see also Heil [53]). In this case it is possible, starting at a particu-
lar point, to construct a hypersurface – the mentioned manifold of dimension
(n − 1) – within which any arbitrary integration of the right-hand side of
(2.12) delivers the result zero. In this way one achieves the result to fill the
entire phase space with ‘onion shells’ on which the equation dF = 0 holds
and which never touch or intersect each other. If one imagines that the phase
space is ‘partitioned’ in this way, there still remains the problem to assign
to each ‘onion shell’ a value for the potential F and to guarantee that an
integration of the differential between the various shells delivers always the
same difference between these values, irrespective of where this integration is
performed. For even if the construction of the surfaces of constant F -values
is successful, this does not yet guarantee that the ‘distance’ between the
surfaces does not depend on the position at the surface. However, once the
‘onion shells’ are constructed and appropriate potential values assigned to
them, these facts then define in a unique way a scalar valued function – the
above mentioned integrating factor by which the right-hand side of (2.12)
must be multiplied to create everywhere the correct ‘distance’ between the

2 Configuration space is the space of the independent variables xj (j = 1, . . . , n).
3 In the classical thermodynamic literature, authors often use a different notation
for a differential form depending on whether it is total (dF ) or not (ąF ). So, dF is
total, but ąF is not. The modern mathematical literature does not distinguish the
two cases and omits the differential symbol on the left-hand side of (2.12) (see (5.13)
and (5.14)).
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potential surfaces, respectively to create the desired connection between the
differential and potential, provided it is not a priori given.

As we will see, a certain arbitrariness or possibility of choice remains un-
resolved because the ‘labeling’ of the ‘onion shells’ with potential values is
not unique. Except for this freedom, it is, however, possible in this way to
construct an integrating function for a vector field or a differential which lo-
cally allows in each point in phase space the construction of an equi-potential
surface. With the aid of this function the vector field can be derived from a
scalar potential or, alternatively, the differential form becomes total so that
integrals between two points along arbitrary paths have all the same value.
The above qualification of such a differential as being completely integrable
is to be understood in this way.

In the following the conditions will be studied which formally must be
satisfied in order that a differential form which by itself is not total can
be made total by multiplying it with a scalar function, respectively to see
whether a differential form is total already ab initio. Generally, the advantage
of such a reduction of a vector valued function to a single scalar valued
function is that mathematical operations are generally easier to perform with
scalars than with vectors or tensors.

In what follows the differential dF will define the entropy (and in a sec-
ond case the entropy flux) which must in all circumstances be a potential.
This requirement allows inferences to be deduced for the coefficients of the
differential form, Xi, which must be compatible with the potential properties.

2.2.2 Requirements to be imposed on the
‘normal fields’

Recall that a vector field v(x, y, z) over R
3 is a gradient field of a scalar

potential field P , v = gradP , if the vecor field v(x, y, z) is irrotational,

∇× v = 0 . (2.14)

If this property is not fulfilled, one may try to enforce it by multiplication of
v with a scalar function f(x, y, z). This would make f an integrating factor.
Instead of requiring the vanishing of ∇× v, one will then request

∇× (fv) = f∇× v + (∇f) × v = 0 . (2.15)

Scalar multiplication of this equation with v yields, since only f �= 0 is
reasonable,

(∇× v) · v = 0 , (2.16)

which is a necessary condition that a non-trivial function can exist by which
(2.15) can be fulfilled. However, that (2.16) is also a sufficient condition for
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the existence of a non-trivial f is not easy to prove. Rather than to pur-
sue this restricted case for v ∈ R

3 it is advantageous here to address the
generalization of this theorem of differential forms for arbitrary dimensions.
This proposition is known in the theory of differential forms or in exterior
calculus as the Frobenius condition and is well known. Its derivation is some-
what complicated and requires algebraic techniques of exterior calculus, see
Cartan [18], [19], Edelen [35]. Just as the Frobenius condition general-
izes equation (2.16), so condition (2.14), which is a statement restricted to a
vector field over R

3 to make it derivable from a potential, can be generalized
to Poincaré’s theorem, valid in a space of arbitrary dimension, see Cartan

[18], [19], Edelen [35]. We shall state these propositions without proof.

a) Poincaré’s theorem:

The formal mathematical statement is as follows:4

To a differential form ω of given order p there exists a differential form Ω
of order p − 1, from which ω ensues via an exterior derivative according
to dΩ = ω, provided ω is closed, (that is, if dω = 0).
If this statement is translated into the common language of this book, it
means that a differential form dF =

∑

i Xidxi is total or exact and there-
fore derivable from a potential, if and only if after a further differentiation
the coefficients are crosswise equal, viz.,

∂Xi

∂xj
=

∂Xj

∂xi
. (2.17)

When the vector space is R
3, (2.17) states that the vector field over R

3

must be irrotational in order to be derivable from a potential. If the condi-
tions of Poincaré’s theorem are not fulfilled, then one is confronted with
the question whether introduction of an integrating factor may lead to a
success. In this regard the theory of exterior calculus or differential forms
makes the following statement.

b) The condition of Frobenius:

Let the differential form ω not be closed, that is, let dω �= 0. Under such
a condition the differential form is completely integrable, if ω ∧ dω = 0 ,
where ‘∧’ is the exterior or ‘ veck’ product defined as

w1 ∧ w2 := w1 ⊗ w2 − w2 ⊗ w1, w1,w2 ∈ R
3 (2.18)

4 For the formal presentation of the terminology used in this theorem, see Appendix
A.
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In the simpler notation used in this book the Frobenius condition means
the following: consider that for the differential form dF =

∑

i Xidxi the
condition (2.17) is not satisfied. Then, this differential can be transformed
with an integrating factor into a total differential, if the condition

∑

ijk

eijk

(
∂Xi

∂xj

)

Xk = 0 (2.19)

holds, in which the sum stretches over all possible combinations of the
indices i, j, k; moreover, eijk is the alternating symbol defined in (2.7). The
indices {i, j, k} can be arbitrarily selected from the set of available indices
in any initial order. This is so since all permutations of an initially selected
order are contained in the sum (2.19). In R

3 the Frobenius condition is
equivalent to the satisfaction of the requirement (2.16) that the curl of a
vector field must be perpendicular to the field itself. In R

2 the curl of a
vector field, interpreted as a field in R

3 is trivially perpendicular to the
field (if the vector field lies in the x − y-plane, the curl points into the
z-direction), and in R

1, there is only a single route along which a function
can be integrated between two points, making every differential a total
one. In spaces R

n, n > 3, the condition of Frobenius can be interpreted
as follows:
If the mixed derivatives of a differential form with respect to xi and xj

with different sequences differ from one another (and this only holds for
this single pair of variables) i. e., if

∂Xi

∂xj
�= ∂Xj

∂xi
(2.20)

then in points where (2.20) is valid all other coefficient functions Xk of
the differential dF with k �∈ (i, j) must vanish. The Frobenius condition
(2.19) then reduces to

∑

k

eijk

(
∂Xi

∂xj

)

Xk = 0, for fixed i �= j . (2.21)

In the geometric language of X as vector in Rn (n > 3) this means,
if two mixed derivatives are not equal (as in (2.21)), that the normal
vector X, formed by the components Xi (i = 1, . . . , n) must lie in the
plane spanned by the coordinates belonging to these derivatives (otherwise
(2.21) does not hold). Only in this case a hypersurface can locally and
consistently be defined, which is perpendicular to the normal vectors and
thereby guarantees the existence of an adequate integrating factor. Hence,
the problem must essentially be ‘locally two-dimensional’. The larger the
dimension of the configuration space is, the more restrictive will be the
constraints which correspond to the conditions of Frobenius.
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Let us briefly summarize what the Poincaré theorem and condition of
Frobenius imply for different dimensions n.

• n = 1 In the one-dimensional case each differential is total. There is
no choice between different integration paths to reach point b from point
a; every integral along a ‘closed path’ vanishes trivially.
• n = 2 In two dimensions, there are infinitely many non-trivial possi-
bilities to vary the path of integration between two given points. Not every
field satisfies by itself the condition that the result of this integration will
be independent of the choice of the path of integration. Where this is a
priori not the case, an integrating factor can always be found which es-
tablishes this property and makes the differential form of the vector field
a total one.
• n ≥ 3 Not every vector field is so structured that it could be derived
from a potential. Neither can it be guaranteed that for such an ‘unpleas-
ant’ field an integrating factor could always be found that makes the corre-
sponding differential a total one. Thus, there are ‘pathological’ differentials
which are neither total nor would be transformable with an integrating
factor into total differentials. The question under which circumstances a
differential form can be made total, is equivalent to the question whether
the Frobenius condition is satisfied. In R

3 satisfaction of the Frobenius

condition is tantamount to stating that the vector field is perpendicular
to its vorticity field. In higher dimensions a good interpretation in terms
of geometry is not available. In these cases one is left with the algebraic
requirement (2.19) that must formally be verified or required for vector
fields to be potential fields.

In this book the differential forms which are encountered are those of the
entropy and its flux and arise first in (5.13) and (5.14) as scalar and vector
valued one-forms. The variables xi (i = 1, . . . , n) here are the independent
constitutive variables there. Moreover, dF here is written as P and F , de-
pending on whether the entropy P or the entropy flux F is in focus. The
explicit forms of the coefficient functions Xi (i = 1, . . . , n) follow from the
exploitation of the entropy principle (Second Law of Thermodynamics). Since
the number of independent constitutive variables for the mixture theory of
this book is much greater than three, the question of P and F to be total
or not is crucial. The requirement that the entropy is meaningfully defined
as a potential then corresponds to the requirement that the Frobenius con-
dition is satisfied. This then implies restrictions to the constitutive variables
which constitute necessary constraints for the satisfaction of the Second Law
of Thermodynamics.
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2.2.3 On the non-uniqueness of the integrating factors

As already explained, the single requirement that a differential form be total
does not lead to the determination of a unique integrating factor. As an
example, simply imagine that a successfully determined integrating function
is globally multiplied with an arbitrary non-vanishing constant factor, then
it is clear that a new integrating function is obtained; however, this factor f
stretches (f > 1) or compresses (0 < f < 1) or mirrors (f = −1) the scale
of the assumed potential values relative to the first function with the chosen
factor. A mirroring operation will generally be excluded because with it a
significant different interpretation of the related quantity would go along with
such a change; alternatively, stretches or compressions are relatively harmless
and only correspond to a change in the employed unit for the potential.
More precisely, a given integrating factor g (here written as an integrating
denominator) of an arbitrary non-total differential df ,

dF =
df

g
, (2.22)

can always be multiplied with an arbitrary non-trivial differentiable function
G of F , G(F ), without destroying the integrability properties. Indeed, by
multiplication with G a new differential form dH is obtained which is given
by

dH =
G(F )

g
df =

G(F )
g

∑

i

∂f

∂xi
dxi . (2.23)

Poincaré’s theorem can now be employed to verify whether the conditions
for a total differential are also fulfilled for H: With condition (2.17) one
obtains

for k = i :
∂2H

∂xj∂xi
=

dG

dF

∂F

∂xj

1
g

∂f

∂xi
+ G

∂

∂xj

(
1
g

∂f

∂xi

)

, (2.24)

for k = j :
∂2H

∂xi∂xj
=

dG

dF

∂F

∂xi

1
g

∂f

∂xj
+ G

∂

∂xi

(
1
g

∂f

∂xj

)

(2.25)

for {i, j} ∈ (1, . . . , n). In (2.24) and (2.25) the last terms on the right-hand
sides are equal, since g is an integrating factor by assumption; the first terms
on the right-hand side of (2.24) and (2.25) are also identical, since F =
∫

dF/g. Indeed, the two expressions

dG

dF

∂F

∂xj

(
1
g

∂f

∂xi

)

=
dG

dF

∂F

∂xj

∂F

∂xi
,

dG

dF

∂F

∂xi

(
1
g

∂f

∂xj

)

=
dG

dF

∂F

∂xi

∂F

∂xj
,

(2.26)
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are equal. Therefore, it is ascertained that

dH = G(F )
df

g
(2.27)

is a total differential of a function H, which, however, is not identical to F.
Rather, if Δa→bF denotes the value of the integral

∫ b

a
dF between the states

a and b in phase space of the considered system, then

Δa→bH = Δa→b(GF ) −
∫ b

a

F

(
dG

dF

)

dF . (2.28)

Depending upon the properties of G, different total differentials can be formed
from the original differential df . This arbitrariness holds for each integrating
factor of any differential form and is not particularly surprising either. Such
an operation, as it leads here from F to another potential, H, is also somewhat
irrelevant. True, the values of the original potential are stretched and moved,
but the equi-potential surfaces remain unchanged thereby. This can easily be
seen by looking at equation (2.13) or its homogeneous variant

dF = X · dx = 0 (2.29)

which defines the hypersurfaces of constant values of the potential. If the
normal vector X is stretched by a certain factor, then this process does not
change any property of the surface whatsoever that is defined by (2.29).
Since the vector can not vanish if both F and H are well defined and the
integrating factor must also be continuous, the function G must be only of
one sign; avoiding mirror transformation this requires G to be positive valued.
Applied to the entropy, this requirement guarantees that all entropies which
can be defined this way maintain the ‘ordering’ of their values. Indeed, if
equation (2.28) is written for an infinitesimal process, it takes the form

Δa→bH = Δa→b(GF ) − FΔa→bG = GΔa→bF (2.30)

A positive entropy difference remains in such a transformation positive, if
G is selected according to the above description. If this holds true for every
infinitesimal partial transformation, so it will hold also for the entire finite
process. This then also guarantees that a configuration which in one formu-
lation possesses minimum entropy and thus corresponds to a thermodynamic
equilibrium state also possesses minimum entropy in every other such formu-
lation. There remains the question whether with the functions G(F ) of the
potential F all possible transformations have been found. That this is so can
be seen, if one recalls that neighbouring equi-potential surfaces must have
‘the same distance’ everywhere. This, alternatively, implies that the normal
vectors X on such a surface must everywhere on this surface be stretched with
the same value. Consequently, the transformation factor G must at most be
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Fig. 2.1 Infinitesimal rectangle centered at (xk, x�) with coefficient functions Xk

and X� along the four sides of the infinitesimal rectangle.

a function of F for this is the only quantity which does not change on the
equi-potential surfaces.

A further property in the context of functional dependences of integrating
functions and coefficients in differential forms ensues if a given total differen-
tial only involves some but not all of the variables of the configuration space,
i. e., if

dF =
n∑

i=1

Xidxi with Xk = 0 ∀k ∈ (k1, k2, . . . , km), m < n .

(2.31)
In this case one can prove the following

Proposition regarding the dependence of the coefficients Xi on the
xj : If a total differential of the form (2.31) has coefficients which vanish
identically, then those coefficients which do not vanish equally only
depend functionally on those variables xi which belong to them (that
is, they do not depend on xk, k ∈ (k1, k2, . . . , km), m < n in (2.31)).

The proof follows by contradiction of the opposite assumption. So, let X�

with � �= k depend on xk, and assume Xk to vanish identically. Consider,
moreover, the closed infinitesimal rectangular integration path shown in Fig.
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2.1, centered at xk, x�. It is now clear that the integrals Xkdxk along the
horizontal edges vanish because Xk = 0; analogously, the integrals along the
left and right sides of the rectangle of X�dx� differ in absolute value from
one another since by assumption ∂X�/∂xk �= 0. Therefore, the integral along
the closed path composed of all four contributions,

∮

dF , does not vanish.
This result is in conflict with the assumption that dF is a total differential;
consequently, X� cannot depend on xk as was assumed above. This statement
holds locally or globally, depending upon whether the respective coefficients
of the differential form vanish locally or globally.

This result is particularly important because, later, it will imply non-
trivial consequences for the differential of the entropy via the so-called
Gibbs relation, which connects it with the internal energy and additional
variables with an integrating denominator which in classical thermostatics
of Caratheodory [17] is proved to agree with the Kelvin temperature.
Ananalogous result should also hold here. As we shall see, it will follow in
this mixture theory from a judicious application of the Poincaré theorem,
the Frobenius condition and ad hoc assumptions which are plausible on the
basis of physical or mathematical arguments.



Chapter 3

Introduction to Mixture Theory

Abstract After a general description of mixtures and multi-phase systems and their

difference, reasons are given why their distinctions are premature prior to a com-

plete thermodynamic exploitation of postulated constitutive relations by the Second

Law of Thermodynamics. Consequently, both systems are here denoted as mixtures.

Kinematics is treated first. Then, the general balance laws and their specializations

for constituent mass, momenta, energy and entropy are discussed in global and lo-

cal forms as well as jump conditions across singular surfaces. Based on Truesdell’s

metaphysical principles the sum relations define the corresponding mixture quantities

which obey the physical balance laws for the mixture as a whole.

3.1 Basic Principles of Mixture Theory

Consider a glass of water and a tea spoon of sodium chloride crystals (NaCl =
salt). If we insert the salt into the water and stir the compound with the
spoon, we obtain salt water. The salt has gone into solution, i. e., we have the
water molecules and Na+ and Cl−-ions (which are charged particles) between
them. These have nearly the same or only slightly different velocities. We
say that the Na+ and Cl−-ions diffuse through the water. However, we feel
comfortable that, at a particular spatial point at time t, water and the ions
coexist together. Moreover, since to each Na+-ion there belongs a Cl−-ion
that form the salt crystal we think of them as single salt entities that diffuse
through the water. The continuous distribution of (Na+, Cl−) ions within the
water is an abstraction that is actually never questioned but automatically
postulated, and the number density of them at any particular point defines
the salt concentration or salinity of the water. This continuous description of
the pure water and the ions (Na+, Cl−) is called a mixture.

On the other hand, if we add to the pure water in the glass a powder with
a certain colour and stir, we obtain a coloured fluid, uniform in its darkness,
if the stirring has been sufficient to uniformly distribute the particles of the

L. Schneider, K. Hutter, Solid-Fluid Mixtures of Frictional Materials 29
in Geophysical and Geotechnical Context, Advances in Geophysical
and Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-02968-4 3,
c© Springer-Verlag Berlin Heidelberg 2009
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powder (we may think of the powder to be premixed with water at very
high concentrations to form ink). The ink particles are here no longer just
molecules but clusters of such and so small that we have no difficulty in
assuming that at every spatial point there are water and ink particles. The two
substances are miscible and the conglomerate can again be called a mixture
of water and ink particles.

If, however, we try to generate a homogeneous compound of water and
sand particles (of clay or silt or grains of larger size), then a homogeneous,
uniform distribution can still be obtained or nearly obtained by stirring, but
the concept that each spatial point may be occupied by water and sand
particles can no longer be maintained. Such a compound is called hetero-
geneous. In chemical process engineering spouted and fluidized beds belong
to such bodies, in river hydraulics, sediment transport in the form of bed
load, suspended load and wash load1 characterize such compounds and in
geophysics and geology debris and mud flows, sub-aquatic turbidity currents
and avalanches belong to them. In the chemical literature such systems are
often called ‘multi-phase systems’ and, as outlined in the Introduction, it is
emphasised that such systems are different from mixtures. The idea is that
a differential element, i. e. a Representative Volume Element (RVE) consists
of many fluid and solid particles with sub-element properties which must be
brought up to the macroscopic level by some homogenization procedure.

It is our thesis that differences in the formulations of such heterogeneous
materials can only be identified once a full (thermodynamic) analysis has
been performed, but not at an intermediate stage. We, therefore, do not se-
mantically differentiate between ‘mixtures’ and ‘multi-phase systems’ and will
henceforth call materials that are composed of several different constituents
mixtures. For our purpose a constituent consists of a group of particles that
have the same mechanical and thermodynamical properties. Thus, we can
distinguish constituents according e. g. to their chemical composition, their
state of aggregation, their size or other significant criteria. In general it is as-
sumed that the constituents are distributed ‘equally’, i. e. continuously over
the region of the mixture.

Alternative terms for constituents that are equivalent are components or
phases. The terms ‘constituents’ and ‘components’ are used in a general con-
text, but often ‘phases’ denote different states of aggregation of the same
material, say ice, water and water vapour. The latter example also leads
naturally to the characterization of mixtures of miscible constituents or im-
miscible constituents. A specimen of ice from an Alpine glacier often consists

1 The solid matter that is transported by the fluid in rivers is occasionally divided
into three different components. The largest particles form the sediment bed and
are transported within a thin basal layer, the moving sediment bed. The suspended
material is divided into two fractions: the larger particles are distributed in the water
with a concentration that varies with position within the depth of the river, the
smallest particles are, roughly, uniformly distributed over the river depth and make
the river water a slurry. This is the so-called wash load.
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of several ice crystals and water embedded in inclusions. This is an immisci-
ble mixture of ice and water, because, strictly, the ice and the water occupy
different positions. Similarly, in a mud flow the water and the suspended solid
particles form an immiscible mixture of solid and fluid constituents but in
contrast to the above example they are made of different materials. Moreover,
the water in the atmosphere arises in two forms, as vapor and as clouds or
fog. Vapour is the gas phase of H2O and in air it is in solution within the
other components O2, O3, N2, CO2, etc., and it is invisible by eye, but in the
clouds the water appears as droplets suspended in the remaining components
and it is visible by eye. These droplets are in suspension and, strictly, this
mixture is immiscible. In what follows we shall mostly be concerned with
immiscible mixtures, but the differences of the various kinds of are not ap-
parent in the mathematical formulation. This is partly due to the continuity
assumption of the distribution of the constituents which we shall now address.

Consider a mixture of n arbitrary constituents. To describe its mechanical
and thermodynamical behaviour it would be advantageous if we could extend
the principles of continuum mechanics for bodies of a single constituent (e.
g. balance laws, principle of determinism, principle of local action, etc.) to
that of many constituents, i. e. mixtures. This is possible indeed, but certain
simplifications and suppositions are to be made. The suppositions proposed
by Truesdell [118, 119] first in 1957 and then again in 1968 (he called them
‘metaphysical principles’) achieved wide acceptance and constitute now the
basic principles of mixture theory. His suppositions read as follows:

1. Each spatial point of the mixture is simultaneously occupied by material of
all constituents.

2. ‘All properties of the mixture must be mathematical consequences of prop-
erties of the constituents’ (first metaphysical principle).

3. ‘So as to describe the motion of a constituent, we may in imagination isolate
it from the rest of the mixture, provided we allow properly for the actions
of the other components upon it’ (second metaphysical principle).

4. ‘The motion of the mixture is governed by the same equations as is a single
body’ (third metaphysical principle).

Obviously, this ‘mixture continuum hypothesis’ is physically not correct, but
it is made whenever mathematical formulae are laid down to describe the
physical processes that take place within the mixture, be it miscible or im-
miscible. Of course, the atomistic structure of matter makes this assumption
always dubious at sufficiently small scales. In fact, the mixture continuum
hypothesis should always be viewed as a certain homogenization process over
a RVE, which is sufficiently small to be able to describe processes that vary
over length scales which are larger than the side lengths of the RVE, but
equally also sufficiently large to smear over rapid variations in the interior
of the RVE. Figure 3.1 gives a picture of this idea. If the side length of the
RVE is large (regime I in Fig. 3.1), then variations of variables in the sub-
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RVE regime can be ignored, and the continuous distribution of mass is an
adequate assumption. When they are so small that sub-RVE heterogeneities
gain influence on the larger scales (regime II in Fig. 3.1), then these effects
may have to be accounted for by additional variables. For instance in a very
fine porous material the pores may not be ‘visible’ except by the numeri-
cal values of the phenomenological coefficients. In a soil specimen the pore
space is not negligible as it is known that it exerts a quantitative influence on
the soil behaviour. In regime III of Fig. 3.1 the RVE scale is comparable to
the sub-RVE elements, in a soil this is the diameter of the individual grains.
At this scale the continuum description obviously breaks down. Truesdell’s
second supposition can be restated as: ‘The whole is no more than the sum of
its parts’ ([119]) and the fourth can be expressed by the words: ‘In its motion
as a whole a body does not know whether it is a mixture or not’ ([119]). The
third supposition allows for the application of the balance laws (e. g. balance
laws of mass, momentum, moment of momentum, energy and entropy) for
every constituent, but in contrast to the balance laws for single-material bod-
ies, these equations are no longer conservative.2 One can also think of the
third supposition as cutting free a constituent and introducing the correct
reaction quantities which counteract the cutting operation.

The fields that will be defined according to the above suppositions are
called macroscopic, as they can not resolve the exact microscopic fields, e. g.
position, velocity etc. of the constituents. This shortcoming of Truesdell’s
mixture theory becomes considerable if we draw attention to immiscible mix-
tures (e. g. soil). On a submacroscopic scale of such materials, structures do
exist that are not measured by the macroscopic mixture quantities introduced
before. We have given examples above.

variables
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Fig. 3.1 Density, i. e. mass per unit volume of the RVE, plotted against the side
length of the RVE (principal sketch).

2 This means that interaction (production) terms may be non-zero and then express
the effect of all other constituents upon one particular constituent and vice versa.
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To circumvent this drawback researchers incorporate internal variables like
the constituent volume fractions or the porosity or tortuosity of the pore space
into the set of independent variables3. They also postulate balance equations
for these variables, but there is no agreement on what form these equations
should take. Examples for volume fraction balance equations are the second-
order balance equation of Goodman & Cowin (cf. Passman et al. [103])
or the first order balance equation of Svendsen & Hutter [115] which
does not include a volume fraction flux term. Another example for a porosity
balance equation can be found in Wilmański [124]. Fang et al. [41, 42] follow
essentially Goodman & Cowin but introduce an internal length scale of the
grains or pore space and write down a balance relation for it. In what follows
the volume fraction balance equations of Svendsen & Hutter will be used,
as they simplify the thermodynamic analysis considerably.

For some more references and more detailed discussions of the basic prin-
ciples the reader is referred e. g. to Eringen & Ingram [38], Bowen [14],
Truesdell [119], Müller [97], Rajagopal & Tao [107], Drew & Pass-

man [34] or Hutter & Jöhnk [62].

3.2 Kinematics of Multi-phase Mixtures

In this section our aim is to take a closer look at the kinematics of multi-phase
mixtures.4 Thus, we start, as in every continuum theory, from configurations
and motions of a three-dimensional non-empty continuum B, the so-called
material body.

As we are dealing with mixtures, we must consider configurations one for
each constituent and motions of a collection of n non-empty continua Bα (for
each constituent one), that constitute the body B.

An element, Xα, of continuum Bα can be understood as a name tag for one
specific material particle of constituent Kα. An open set of these elements is
called Qα, and its surface ∂Qα. Every Bα has a set of configurations {καθ}θ∈I

with I ⊂ R that are bijective5 mappings from Bα into connected and compact
regions, {Rαθ}θ∈I, in the Euclidian space, E3. In other words, one specific καθ

assigns a vector Xαθ to the material particle Xα at a fixed time θ, i. e.,

3 It is not always so that such internal variables have a clear physical meaning. In an
extreme situation they may be defined by no other specification than the equations
laid down for them. In these situations their effect is only recognisable by the effects
they exert on observable physical quantities. Internal variables have always some
degree of inexplicability and are therefore also called ‘hidden’ variables.
4 This derivation has primarily been influenced by writings of Truesdell [118, 119],
Müller [94], but has also profited from those of Eringen & Ingram [38], Müller

[94], Hutter & Jöhnk [62] and ‘Naghdi’s Notes on Continuum Mechanics’ (not
published).
5 A mapping is bijective if it is one-to-one and onto.
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καθ : Bα → E3 ,
Xαθ = καθ (Xα) ∈ Rαθ ,

for θ fixed , (3.1)

Xαθ is called the position vector of the corresponding material particle and
Rαθ is the region occupied by constituent Kα. In this spirit we assign to
the open set Qα and its surface ∂Qα a material region Ωαθ and a material
surface ∂Ωαθ within Rαθ. Ωαθ and ∂Ωαθ are called material, because they are
tied to the sets of material particles Qα and ∂Qα. Without going into details
of integration theory6 we equip the region Rαθ with volume and surface
measures. We employ the following notation

V (Qα, θ) =
∫

Ωαθ

dV, A(∂Qα, θ) =
∫

∂Ωαθ

dA (3.2)

for the volume of Ωαθ and the surface area of ∂Ωαθ, respectively.
Now, let us choose any element from the set of configurations and call it

a reference configuration, κα0. Rαθ and Xαθ corresponding to κα0 are then
Rα0 and Xα0, respectively. As already observed by Truesdell [119], κα0 can
be different for every constituent. The present configuration can be obtained
by sequentially applying the mappings κ−1

α0 and καt (see Fig. 3.2), where
καt is the mapping from the continuum Bα to the present configuration.
However, the first supposition of Truesdell (see Section 3.1) requires that
all constituents are located at the same present configuration Rt, i. e. all Rαt

fall together to one Rt and thus, in the present configuration we have only
one position vector x. In mathematical formulas x can be expressed as

x =
(

καt ◦ κ−1
α0

)

(Xα0) , (3.3)

or
x = χα (Xα0, t) , (3.4)

where καt ◦ κ−1
α0 denotes a mapping that results from sequentially applying

first κ−1
α0 and then καt. The symbol χα denotes a vector-valued function of

location Xα0 and time t of which the value is x. If we assume that χα is con-
tinuously differentiable in the neighbourhood of a material point xα except
possibly at some singular points, lines and surfaces, it is also invertible there
(cf. Hutter & Jöhnk [62] and Eringen & Ingram [38]). The function χα

is called the motion of the constituent material body Bα. With these defini-
tions in mind we can now specify the constituent velocity vα, the material
derivative dα(·)/dt following the motion of constituent Kα, the constituent
acceleration aα, the constituent velocity gradient Lα and the constituent de-
formation gradient Fα. They are defined as

6 As the rigorous definition of the integrals would exceed the scope of this treatise we
refer the reader to the respective literature on integration theory, e. g. Bauer [11].
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Fig. 3.2 Material body Bα of constituent Kα. An open set Qα ∈ Bα becomes in
the reference configuration the material region Ωα0 ∈ Rα0 ⊂ E3 with boundary
∂Ωα0, and the material particle Xα is mapped onto Xα0 ∈ Rα0. Similarly, in the
present configuration, Qα is mapped into the open set Ωαt := ωα ∈ Rαt ⊂ E3 with
boundary ∂Ωαt := ∂ωα, and the material particle Xα is mapped onto x ∈ Rαt. {Ei}
(i = 1, 2, 3) is a basis for Kα in the reference configuration, and {ei} (i = 1, 2, 3) is
a basis for Kα in the present configuration. Note all different Xα0 (α = 1, 2 , . . . , n)
are mapped in the present configuration onto the same point x. So ωα and ∂ωα are
the same region ω and boundary ∂ω for all α.

v̂α (Xα0, t) : =
∂ χα (Xα0, t)

∂t
=

d
dt

χα (Xα0, t)
∣
∣
∣
∣
Xα0

=
dαχα

(

χ−1
α (x, t) , t

)

dt
=: ṽα (x, t) =: x́α (x, t) ,

(3.5)

where (́·)α is an abbreviation for dα(·)/dt, the material time derivative, follow-
ing the motion of constituent Kα. Moreover, |Xα0 indicates that the indexed
quantity is held fixed among the variables that are indexed; the functions v̂α

and ṽα take the same values for the same Xα0, t and x evaluated from (3.4),
but they are different functions, as they depend on different position vectors.
The same is true for the accelerations

0

0

X40

x = χα(Xα, t)

Bα

X20

X30

καt(Xα)

κ−1
α0 (Xα)

x
ω

Rαt
Rα0

Xα0
∂ω

{Eαi}

{ei}

Ωα0

∂Ωα0

κα0(Xα)
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âα (Xα0, t) :=
∂2 χα (Xα0, t)

∂t2
=

d2

dt2
χα (Xα0, t)

∣
∣
∣
∣
Xα0

=
dα2χα

(

χ−1
α (x, t) , t

)

d2t
=: ãα (x, t) .

(3.6)

Let us, for a moment, look at a general field ϕα (scalar-, vector- or tensor-
valued) of constituent Kα that can be written in the forms

ϕα = ϕ̂α (Xα0, t) = ϕ̃α (x, t) . (3.7)

The first description is called Lagrangean (or material) and the second Eu-
lerian (or spatial). For the sake of completeness, we also mention ϕ =
ϕ̌α (Xα, t), which is only meaningful for philosophical considerations, but
is of no practical use. If we now take the material derivative dα(·)/dt of ϕα

in the spatial representation we obtain7

dα ϕα (x, t)
dt

:= ϕ́α =
∂ϕ̃α

∂t
+ ∇ϕ̃α ṽα , (3.8)

via the chain rule of differentiation. The first term on the right-hand side
of equation (3.8) describes local effects at a fixed position x and the second
term is associated with convective effects. Thus, dα(·)/dt can be understood
as a material derivative following the motion of constituent Kα. In the sequel,
we will omit the tilde-sign on top of the spatial quantities, because we are
mainly operating in the Eulerian description.

Next, we introduce the constituent velocity gradient

Lα := ∇vα = Dα + Wα ,

Dα := sym (∇vα) , Wα := skw (∇vα) ,
(3.9)

where we have decomposed Lα into a symmetric, Dα, and a skew-symmetric
part, Wα, that represent the stretching or rate of deformation tensor and
the vorticity or spin tensor of constituent Kα, respectively.

On the basis of the presented kinematics the constituent deformation gra-
dient, Fα, is defined as

Fα :=
∂ χα

∂Xα0
(Xα0, t) . (3.10)

Thus, Fα is a second rank tensor that maps a unit vector Mα in the reference
configuration of constituent Kα into a vector λαm in the present configura-
tion which can be viewed as a stretched and tilted image of Mα; λα is called
the stretch factor and m is a unit vector in the present configuration, i. e.

7 If ϕ̃α in (3.8) is a scalar then ∇ϕ̃αṽα must be interpreted as the dot product
(∇ϕ̃α) · ṽα; if ϕ̃α is a tensor, then ∇ϕ̃αṽα is to be interpreted as ϕ̃α

ijk...,lṽ
α
l .
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FαMα = λαm . (3.11)

With the above assumption on χα, Fα satisfies det (Fα) �= 0 and therefore it
is invertible.

We then define the symmetric constituent left Cauchy-Green deforma-
tion tensor by

Bα := FαFT
α , Bα = BT

α . (3.12)

In treatises on kinematics, temporal and spatial derivatives of the latter quan-
tities are given. We omit them here and cite the appropriate literature, e. g.
Bowen [14], Haupt [51], Greve [46] or Hutter & Jöhnk [62].

For the derivation of the constituent balance equations we need to de-
fine volume and surface measures for the present configuration see Fig. 3.3.
The constituent volume and surface measures in the present configration are
defined as

v(Qα) =
∫

ωα

1(3)
α dv, a(∂Qα) =

∫

∂ωα

1(2)
α da , (3.13)

where ωα and ∂ωα are the mappings of the material regions Ωα0 and their
surfaces ∂Ωα0 in the present configuration, and 1(3)

α and 1(2)
α are the charac-

teristic functions of Kα in ωα and ∂ωα, respectively.8 At time t, ωα and ∂ωα

Fig. 3.3 A two-dimensional picture of an RVE-circle filled with constituents inden-
tified by different shadings. It is evident, that the total area of the RVE is larger than
the sum of the areas of any particular shading. The size of the RVE is assumed to be
typical for a differential length on the macro-scale.

8 To be precise, it is assumed that the constituents occupy disjoint regions in ωα and

∂ωα, respectively. In other words 1
(3)
α ∩1

(3)
β = ∅, if α �= β and similarly 1

(2)
α ∩1

(2)
β = ∅.

So, |v (Qα)| ≤
∣
∣
∣v
(
⋃

β Qβ

)∣
∣
∣ and |a (∂Qα)| ≤

∣
∣
∣a
(
⋃

β ∂Qβ

)∣
∣
∣
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are coincident with the region ω and boundary ∂ω of the mixture region. This
is a consequence of the first supposition of Truesdell. The overall volume
of the mixture in the region ω is denoted by

v(t) =
∫

ω

dv . (3.14)

It is the volume which the mixture would occupy if we would regard it as a
continuum composed of only one material. We also define

a(t) =
∫

∂ω

da (3.15)

as the surface measure of the mixture region. With these definitions at hand
we introduce the (local) volume fraction or simply volume density of con-
stituent Kα

να (x, t) := lim
ω→RVE(x)

{∫

ω
1(3)

α dv
∫

ω
dv

}

(3.16)

as the limit of the ratio of the solid volume when ω approaches the RVE-
volume centred at x. This implies that in the context of Fig. 3.1 regimes
II and III are ignored and regime I is formally extrapolated to the RVE-
scale equal to zero. The volume fraction quantity plays a key role in mixture
theories for granular flows as it forms a measure to represent the fine grain
structures. For completeness, we also mention that the above introduction
of surface measures gives also rise to the definition of local areal fraction or
simply area density of constituent Kα via

μα (x, t) := lim
∂ω→RAE(x)

{∫

∂ω
1(2)

α dv
∫

∂ω
dv

}

, (3.17)

however, later we shall identify μα (x, t) with να (x, t).
We now introduce the constituent mass density . We recall Truesdell’s

first supposition which states that each spatial point of the mixture is simul-
taneously occupied by material of all constituents. In view of this, it seems
reasonable to go back to the continua Bα and to require that to every parti-
cle Xα a positive mass density is assigned. If this density is defined as mass
per unit volume of the constituent Kα, there are two mass densities, one for
the reference configuration ρα0 (Xα0, t) and one for the present configuration
ρα (x, t).
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3.3 Balance Equations and Sum Relations

It is the objective of any mixture theory to ‘calculate’ the motion of each con-
tinuous bodies Bα, and along with it, the evolution of the associated fields, e.
g. mass densities, temperatures etc. The equations which must be established
to accomplish this task are of functional differential and algebraic character
and have to be completed by sufficient initial and boundary conditions such
that a well posed mathematical problem is obtained. The balance equations
for the masses, momenta, energies and entropies of the constituents describe
the general behaviour of the bodies Bα without containing material specific
information. In contrast, the constitutive relations, which are the main ob-
jective of this book, supply exactly this information.

In the Introduction we have already mentioned that different paths exist
to derive balance equations for a system that consists of more than one con-
stituent. Irrespective of the type of derivation, e. g. mixture or multi-phase
approach, they all obey balance equations of basically the same structure.
Modern mixture theories, see Truesdell [118, 119], Müller [94], Eringen

& Ingram [38], Hutter & Jöhnk [62] or Rajagopal & Tao [107] employ
the following

Postulate. Let ω and ∂ω be a region and its boundary in the three-
dimensional Euclidian space E3 continuously filled with material of the
constituents Kα, α = 1, 2, . . . , n of a mixture. When a particular con-
stituent Kα is considered, we shall write ωα and ∂ωα for all α ∈ [1, n],
even though ω = ωα and ∂ω = ∂ωα. Let Gα be a physical variable
characterising a particular aspect of the state of constituent Kα in ωα.
Let, moreover, G be the corresponding physical variable characterising
the same particular aspect of the state of the mixture. Then we request
the following equations to hold:

(i) for the constituents

dGα

dt
= Pα + Sα + Fα , (3.18)

(ii) for the mixture
dG
dt

= P + S + F . (3.19)

(iii) The constituent quantities Gα, Pα, Sα and Fα and the mixture quan-
tities G, P, S and F are related to one another by

G :=
n∑

α=1

Gα, P :=
n∑

α=1

Pα, S :=
n∑

α=1

Sα, F :=
n∑

α=1

Fα. (3.20)
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Equations (3.18) and (3.19) are global balance laws, in which the time
rate of change dGα/dt (dG/dt) is assumed to be a consequence of a
production Pα (P) in the body, an external supply Sα (S) from outside
the body and a flux Fα (F) through the surface of the body.

All quantities Gα, G, . . ., Fα, F in equations (3.18) and (3.19) depend
only on time and on ωα, ω and ∂ωα, ∂ω, respectively. So, we should write
Gα(t, ωα), G(t, ω), . . ., Fα(t, ∂ωα), F(t, ∂ω), to identify the dependences on
ωα, ω and ∂ωα, ∂ω, respectively. For simplicity, we will, however, only write
Gα = Gα(t), G = G(t), . . ., Fα = Fα(t), F = F(t).

As we assume the constituent body Bα to fill the space ωα continuously,
we are free to cut this body into smaller parts, e. g. infinitesimal bodies as
long as we properly account for the interactions of the respective parts on
each other. If we now equip these bodies with the same physical properties
as Bα and map them into the present configuration we are in the position
to define the physical field density ψα per unit volume of constituent Kα at
every point within the region ωα.9

The general true density, ψα, stands, in particular, for the mass density,
momentum ‘density’, moment of momentum ‘density’, energy ‘density’ and
entropy ‘density’ per unit volume of constituent Kα (for their mathematical
formulation see second column in Table 3.1).

This density must be differentiated from ψ̄α, which is defined as the quan-
tity Gα per unit mixture volume. In the sequel we shall denote densities with
an overbar as partial densities and those without as true densities. Whilst
the former are related to the mixture volume v, the latter are associated with
the constituent volume v(Qα). The two are related to one another according
to

ψ̄α = ναψα , (3.21)

in which να is the volume fraction defined in (3.16).
With ψ̄α defined as the amount of Gα per unit mixture volume, Gα is given

by the sum relation

Gα(t) =
∫

ωα

ψ̄α(x, t)dv . (3.22)

In the same spirit we now also write

9 The assumption that any of the four field quantities in (3.18) and (3.19) can be
expressed as integrals of field densities over the space at which they are defined, is
known as additivity assumption. It is postulated to hold here for Gα, Pα, Sα and Fα

and in view of (3.20) carries automatically over to G, P, S and F .
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Pα(t) =
∫

ωα

(

π̄ψ
α(x, t) + γ̄ψ

α(x, t)
)

dv , (3.23)

Sα(t) =
∫

ωα

σ̄ψ
α(x, t)dv , (3.24)

Fα(t) =
∫

∂ωα

∗
φ̄φφ

ψ
α(x, t,n)da , (3.25)

in which π̄ψ
α , γ̄ψ

α , σ̄ψ
α and

∗
φ̄φφ

ψ
α are partial densities per unit mixture volume

and unit mixture area, respectively. The partial production density has been
divided into two contributions. We interprete henceforth π̄ψ

α as the (self)
production rate of ψ̄α by constituent Kα, whilst γ̄ψ

α is the production rate of
ψ̄α by all constituents other than Kα. This can be interpreted as production
by interaction. For mass, linear and angular momentum, energy and entropy
these quantities are defined in columns 3 and 6 of Table 3.1. Analogously, σ̄ψ

α

is the partial density of the supply rate of ψ̄α, a source of ψ̄α outside the
body volume ωα but affecting material points within ωα.

The partial density of the flux of ψ̄α through the boundary of the body is
defined per unit area on the surface ∂ωα and is denoted by

∗
φ̄φφ

ψ
α. Thus, the

total flux through the boundary ∂ωα into the body volume ωα is the surface
integral (3.25). As opposed to ψ̄

ψ
α , π̄ψ

α and γ̄ψ
α , which are only functions of

x and t,
∗
φ̄φφ

ψ
α also depends on the unit exterior normal vector n of ∂ωα. In

general,
∗
φ̄φφ

ψ
α could also depend on other differential geometric properties of

the surface, say the mean and Gaussian curvatures, but Cauchy restricted the
dependence to merely one on n (This is called the ‘Cauchy assumption’).
The flux and supply terms for mass, linear and angular momentum, energy
and entropy are listed in columns 4 and 5 of Table 3.1.

The bar in the representation
∗
φ̄φφ

ψ
α(x, t,n) indicates that the flux density

in (3.25) is referred to a unit mixture area. To assume the relation

∗
φ̄φφ

ψ
α = να

∗φφφψ
α , (3.26)

we must postulate that 10

[A1] να (x, t) = μα (x, t)

10 With the symbol [A N], N = 1, 2, 3, . . . , we itemise ad hoc assumptions used in
the sequel.
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Table 3.1 Densities for the constituent balance relations

Balance ψα πψ
α φψ

α σψ
α γψ

α

Mass ρα 0 0 0 ραcα

Momentum ραvα 0 Tα bα mα

Moment of momentum x × ραvα 0 x × Tα x × bα Mα

Total energy ρα

(

εα + 1
2vα · vα

)

0 Tαvα − qα rα + bα · vα eα

Entropy ραηα πρη
α φρη

α σρη
α γρη

α

which states that areal and volume fractions are the same; this is in general an
approximation.11 Accepting [A1] we summarise the relations between partial
and true densities,

{

ψ̄α, π̄ψ
α ,

∗
φ̄φφ

ψ
α , σ̄ψ

α , γ̄ψ
α

}

= να

{

ψα, πψ
α , ∗φφφψ

α , σψ
α , γψ

α

}

. (3.27)

With the global quantities Gα, Pα, Sα and Fα expressed by the integrals
(3.22)-(3.25), the global balance law for the constituent Kα as expressed in
item (i) of the basic Postulate (see (3.18)) now takes the form

d

dt

∫

ωα

ψ̄αdv =
∫

ωα

(

π̄ψ
α + γ̄ψ

α

)

dv +
∫

ωα

σ̄ψ
αdv +

∫

∂ωα

∗
φ̄φφ

ψ
α da . (3.28)

In view of the sum relations in item (iii) of the Postulate and (3.22)-(3.25),
and because ωα = ω, ∂ωα = ∂ω for all α, (3.28) also implies the mixture
balance law in the form

d

dt

n∑

α=1

∫

ωα

ψ̄αdv =
n∑

α=1

∫

ωα

(

π̄ψ
α + γ̄ψ

α

)

dv

+
n∑

α=1

∫

ωα

σ̄ψ
αdv +

n∑

α=1

∫

∂ωα

∗
φ̄φφ

ψ
α da .

(3.29)

Up to this point in the derivation of (3.28) and (3.29) the only mathe-
matical assumptions that were introduced beyond the basic Postulate were
(i) the additivity assumption (3.22)-(3.25) and (ii) that the densities

∗
φ̄φφ

ψ
α

depend on the differential geometric properties of the surface, on which
∗
φ̄φφ

ψ
α

11 Assumption [A1] has been differently introduced by Morland [91] who demon-
strated the assumption to be very wrong. Morland’s [92] recent work on anisotropic
permeability in a structured matrix explicitly uses an area fraction depending on the
surface normal. For granular materials with compact grains we believe [A1] to be
acceptable.
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is defined, via the unit normal vector n (Cauchy assumption). This second
assumption can be shown to imply that the flux quantity

∗
φ̄φφ

ψ
α is an affine

function of n, i. e., linear in n as follows:

∗
φ̄φφ

ψ
α(x, t,n) = φ̄

ψ
α(x, t)n . (3.30)

This equation is known as Cauchy’s lemma. Several remarks must be made
in its connection. First, with this definition of φ̄

ψ
α(x, t) the flux quantity Fα

is now positive as an outflow from ωα to its environment. Second, (3.30) is
expressed in the partial densities because it emerges from the application of
the general balance law of constituent Kα to an infinitesimal tetrahedron,
see e. g., Hutter & Jöhnk [62], Gurtin [49], Chadwick [22] or any other
book on continuum mechanics. However, in view of the definition (3.27) it
also holds for the true density,

∗φφφψ
α(x, t,n) = φψ

α(x, t)n . (3.31)

Second, ∗φφφψ
α and φψ

α are different quantities. Depending on the choice of the
physical density ψα, φψ

α constitutes a first order (for the energies), a second
order (for the stresses), or a third order (for the moments of momentum) ten-
sor (see fourth column in Table 3.1) and the multiplication on the right-hand
side of (3.30) is a contraction. Third, in the literature it is often customary to
define φψ

α(x, t) with a negative sign to assign to φψ
α(−n) the meaning of an

inflow, i. e., a gain of ψα within the body. We have not done so here, to have
positive quantities in the fourth column of Table 3.1. Finally we mention that
the property (3.30) or (3.31) is mathematically convenient, since with it the
flux term takes the form

Fα =
∫

∂ωα

φ̄
ψ
α(x, t)n da , (3.32)

which, with sufficient differentiability, can be transformed to a volume inte-
gral (divergence theorem, see below). This now brings the global balance law
for constituent Kα into the form

d

dt

∫

ωα

ψ̄αdv =
∫

ωα

(

π̄ψ
α + γ̄ψ

α

)

dv +
∫

ωα

σ̄ψ
αdv +

∫

∂ωα

φ̄
ψ
αn da , (3.33)

and by summing over all constituents the mixture balance law is obtained.
With the help of Table 3.1 this global balance equation for a general physi-
cal field density ψα can be specialized to the constituent mass, momentum,
moment of momentum, energy and entropy densities.

For equation (3.33) to hold, it was assumed that the fields are integrable
and summable. Other smoothness properties are not required for (3.33) to
hold. If we request in the sequel nevertheless certain smoothness properties,
special forms of the balance law (3.33) can be derived. In the continuum
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theories that are in focus in this work it will be assumed that the point
fields ψ̄α(x, t), π̄ψ

α(x, t), γ̄ψ
α(x, t), σ̄ψ

α(x, t) and φ̄
ψ
α(x, t) and their true field

counterparts are differentiable in any material part ω of a body except on
material or non-material surfaces across which these fields may experience
a finite jump12. In Fig. 3.4 such a material region ω is shown together with
an orientable surface σ that traces the loci across which some of the fields
(stated above) may experience a discontinuity. For this reason and for brevity
we shall henceforth call such a surface a ‘singular surface’. It divides the region
ω into subregions ω+ and ω− which are bounded by ∂ω+ ∪ σ and ∂ω− ∪ σ,
respectively. Which subregions on the two sides of σ are denoted as ω+ and
ω− is arbitrary, but once a denotation has been chosen, we agree that the
unit vector, perpendicular to σ, nσ, points into the ω+-subregion. As a non-
material surface, σ possesses its own velocity, s, different in general from the
material velocities immediately on the positive and negative sides of σ; it is,
however, clear that the only geometrically significant quantity is the normal
speed s · nσ.

In the subregions ω± with boundaries ∂ω± ∪ σ, the divergence theorem
(Gauss law) is separately applicable:

ω−

s

nσ

nω+∂ω+

∂ω−
σ

Fig. 3.4 Material volume ω that is divided in two subregions, ω+ and ω−, by a
surface σ across which the physical fields may suffer a jump discontinuity. The positive
and negative sides of σ are chosen arbitrarily, but when fixed, the unit vector nσ,
perpendicular to σ points into ω+. s is the velocity with which the singular surface
moves. The exterior normal vector to ω is n. So, on σ n = −nσ for ω+ and n = nσ

for ω−.

12 Certain weak, i. e., integrable singularities are also permissible. We restrict the
attention here to finite jumps and leave the slightly more general case to the readers
as an exercise.
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∫

ω+
α

(

∇ · φ̄ψ
α

)+

dv =
∫

∂ω+
α

(

φ̄
ψ
α

)+

n da −
∫

σ

(

φ̄
ψ
α

)+

nσ da ,

∫

ω−
α

(

∇ · φ̄ψ
α

)−
dv =

∫

∂ω−
α

(

φ̄
ψ
α

)−
n da +

∫

σ

(

φ̄
ψ
α

)−
nσ da .

(3.34)

Adding these equations, using the notation

[[φ̄ψ
α ]] :=

(

φ̄
ψ
α

)+

−
(

φ̄
ψ
α

)−
(3.35)

as the ‘jump of φ̄
ψ
α across σ’, and rearranging, yields

∫

∂ωα

φ̄
ψ
α(x, t)nda =

∫

ω+
α ∪ω−

α

∇ · φ̄ψ
α(x, t)dv +

∫

σ

[[φ̄ψ
α(x, t)]]nσda . (3.36)

This transforms the flux term in the balance law.
In much the same way, the transport theorem is treated. We start with

the decomposition

d

dt

∫

ωα

ψ̄α(x, t)dv =
d

dt

∫

ω+
α

ψ̄
+
α (x, t)dv +

d

dt

∫

ω−
α

ψ̄
−
α (x, t)dv , (3.37)

and then may transform the two integrals on the right-hand side individually
by applying the classical transport theorem for differentiable fields. In so
doing it must be recognized that the normal flux of ψ̄α through the singular
surface σ is ∓ψ̄α(vα − s) · nσ on the ± sides of σ, respectively. With these
remarks in mind, we obtain

d

dt

∫

ω+
α

ψ̄
+
α dv =

∫

ω+
α

∂ψ̄
+
α

∂t
dv +

∫

∂ω+
α

(

ψ̄αvα

)+
n da −

∫

σ

(

ψ̄αs
)+

nσ da

=
∫

ω+
α

∂ψ̄
+
α

∂t
dv +

∫

∂ω+
α ∪σ

(

ψ̄αvα

)+
n da

︸ ︷︷ ︸
∫

ω
+
α

∇·(ψ̄αvα)+
dv

−
∫

σ

(

ψ̄α(s − vα)
)+

nσ da .

(3.38)

Here, we have used the fact that the exterior unit normal vector to ω+
α on σ

is −nσ. Analogously, we obtain

d

dt

∫

ω−
α

ψ̄
−
α dv =

∫

ω−
α

∂ψ̄
−
α

∂t
dv +

∫

ω−
α

∇ ·
(

ψ̄αvα

)−
dv

+
∫

σ

(

ψ̄α(s − vα)
)−

nσ da .

(3.39)
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Adding the last two equations yields the generalised transport theorem as
follows:

d

dt

∫

ωα

ψ̄α(x, t)dv =
∫

ωα

{∂ψ̄α(x, t)
∂t

+ ∇ ·
(

ψ̄αvα

)

(x, t)
}

dv

+
∫

σ

[[ψ̄α (vα − s)]](x, t)nσda .

(3.40)

In the expressions (3.36) and (3.40) the products [[a]]nσ are contractions, i.
e., the scalar [[a]] · nσ if a is a vector, and the vector [[a]]nσ if a is a second
rank tensor, etc.

The transformations (3.36) and (3.40) allow the balance law for constituent
Kα, (3.33) to be written as13

∫

ω+
α ∪ω−

α

{∂ψ̄α

∂t
+ ∇ ·

(

ψ̄αvα

)

−∇ · φ̄ψ
α − π̄ψ

α − γ̄ψ
α − σ̄ψ

α

}

dv

+
∫

σ

[[ψ̄α (vα − s) − φ̄
ψ
α ]]nσda = 0 ,

(3.41)

in which the multiplication [[·]]nσ is a contraction.14 The mathematical struc-
ture of expression (3.41) is a sum of a volume integral of which the integrand
function consists of differentiable functions plus an integral of a jump quan-
tity over the singular surface σ. It is a direct consequence of the additivity
assumption that (3.41) holds for any material part of the body, no matter
how large or small and irrespective whether this part is crossed by a singular
surface. Consequently, if we take as the body part an local material volume
element with no singular surface, (3.41) reduces to the statement

∂ψ̄α −∇ ·
(

φ̄
ψ
α − ψ̄α ⊗ vα

)

− π̄ψ
α − σ̄ψ

α − γ̄ψ
α = 0 , (3.42)

in which the notation

∂(·) :=
∂(·)
∂t

(3.43)

13 When splitting the volume integrals of the production densities into integrals
over the regions ω+

α and ω−
α one must, in general, also allow for the existence of an

additional production term of the variable ψ̄α on the singular surface. Analogously,
the flux of the variable at the cutting line of the surfaces ∂ω+

α and ∂ω−
α with the

singular surface σ(t) can give rise to an additional flux term that may represent
surface stresses acting on singular surfaces. Such extensions of the jump conditions
shall not be considered in this book.
14 In this expression no surface terms arise because they are taken to be negligible.
Alts and Hutter (1988) [1], [2], [3], (1989) [4], among others, derive a formulation
of this complexity for single constituent continua as does Grauel [45] for mixtures.
Moreover, Morland and Sellers [93] show how the ‘surface production terms’ arise
naturally from the limits of the continuous balances at either side.
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singular surface

lid (−)

bottom (+)

mantleε → 0

Fig. 3.5 Material pillbox with lid and bottom surfaces on either side of the singular
surface and a mantle surface of height ε .

has been used. Equation (3.42) is called the local balance law , and it holds in
any neighbourhood of a point where the fields ψ̄α, φ̄

ψ
α , π̄ψ

α, σ̄ψ
α and γ̄ψ

α are
differentiable.

In a similar way, if we choose for ωα a ‘pillbox’ with lid and bottom on
the positive and negative sides of the singular surface, but infinitely close to
it, see Fig. 3.5, then the volume integral in (3.41) over ω+

α ∪ ω−
α vanishes as

ε → 0 since the integrand is differentiable and therefore bounded. So, in this
limit only, the surface integral survives in (3.41). Thus, by making the pillbox
diameter as small as we please, (3.41) reduces to

[[ψ̄α (vα − s) − φ̄
ψ
α ]]nσ = 0 . (3.44)

Summation of (3.42) and (3.44) over all constituents yields the corresponding
local balance law and jump condition for the mixture as a whole:

n∑

α=1

{

∂ψ̄α − π̄ψ
α −∇ ·

(

φ̄
ψ
α − ψ̄α ⊗ vα

)

− σ̄ψ
α − γ̄ψ

α

}

= 0 , (3.45)

n∑

α=1

{

[[ψ̄α (vα − s) − φ̄
ψ
α ]]nσ

}

= 0 . (3.46)

With the general balance equations and jump conditions (3.42)-(3.46) at
hand we can deduce the physical balance equations and jump conditions on
using Table 3.1. In addition to the independent variables, να (x, t), ρα (x, t),
vα (x, t) and x × ρ̄αvα (x, t) we have the constituent Cauchy stress tensors
Tα (x, t), specific internal energies εα (x, t), heat flux vectors qα (x, t), spe-
cific entropies ηα (x, t), entropy fluxes φρη

α (x, t) and intrinsic entropy pro-
duction rate densities πρη

α (x, t) which represent the dependent quantities
(α = 1, . . . , n). Characteristic for mixture theories are the dependent interac-
tion supply rate densities for mass cα (x, t), momentum mα (x, t), moment of
momentum Mα (x, t), energy eα (x, t) and entropy γρη

α (x, t). The constituent
external supply rate density for momentum bα (x, t), internal energy rα (x, t)
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Table 3.2 Densities for the mixture balance relations

Balance ψ πψ φψ σψ

Mass ρ 0 0 0

Momentum ρv 0 T b

Moment of momentum x × ρv 0 x × T x × b

Total energy ρ
(

ε + 1
2v · v

)

0 Tv − q r + b · v
Entropy ρη πρη φρη σρη

and entropy σρη
α (x, t) are thought to be prescribed and thus determined by

the environment of the mixture.15

One consequence of the fourth supposition of Truesdell is that the mix-
ture as a whole obeys the local balance laws as if it were a single material,
i. e. one may write down the usual general local balance relations and jump
conditions for the mixture as a whole. In the spatial representation they have
the form

∂ψ = πψ + ∇ ·
(

φψ − ψ ⊗ v
)

+ σψ , (3.47)

within the regions ω+ and ω− and

[[ψ (v − s) − φψ]]nσ = 0 (3.48)

on the singular surface σ. Here the velocity v must still be identified. The
mixture fields have the same interpretation as their equivalents in (3.42),
but as we think of the mixture as a single material no interaction supply
rate densities can arise. The specific mixture balance equations can be read
off from Table 3.2. Truesdell required in his second supposition that all
properties of the mixture be mathematical consequences of properties of the
constituents. Thus, and in view of item (iii) of the basic Postulate, the sum of
all constituent balance equations (3.42) equals the mixture balance equation
(3.47). If, in addition, the sum of the constituent interaction supply rate
densities vanishes, i. e.

n∑

α=1

γ̄ψ
α = 0 , (3.49)

the following important relations between the constituent and the mixture
quantities can be identified

15 It is physically characteristic that supply rate densities of mass vanish identically.
Such terms are not possible in Galileian mechanics. Despite of this, some authors
have introduced mass supply terms, which may have arbitrary values. We take the
position that this is unphysical.
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ψ =
∑

ψ̄α ,

φψ − ψ ⊗ v =
∑[

φ̄
ψ
α − ψ̄α ⊗ vα

]

,

πψ =
∑

π̄ψ
α ,

σψ =
∑

σ̄ψ
α .

(3.50)

In (3.50) and the remainder of this work
∑

is an abbreviation for
∑n

α=1. If
we further let ϕα and ϕ be constituent and mixture specific thermodynamic
fields, respectively and define them according to

ψα =: ραϕα and ψ =: ρϕ , (3.51)

relation (3.50)1 takes the form

ϕ =
∑

ξ̄αϕα , (3.52)

where
ξ̄α := ρ−1 ρ̄α (3.53)

represents the mass fraction of constituent Kα in the mixture. Often ξ̄α is
simply called concentration. We recall that ρα is the true density of con-
stituent Kα and the density of the mixture as a whole is ρ =

∑
ρ̄α, see

Table 3.2 and (3.501). This identification of ρ is denoted the mass density
sum relation.

With these definitions at hand, we now turn to the physical quantities of
Tables 3.1 and 3.2 and determine the relations between the constituent and
mixture physical densities. To achieve this, we must choose the correct pairs
of (ϕ, ϕα) or (ψ, ψα) and substitute them into (3.52) or (3.50)1. The choice
(ϕ, ϕα) = (1, 1) or (ψ, ψα) = (ρ, ρα) results in

1 =
∑

ξ̄α or ρ =
∑

ρ̄α . (3.54)

Equation (3.54)1 is a natural constraint on the constituent mass fractions that
follows from (3.54)2. Another relation is obtained by identifying ψ and ψα

with mixture momentum ρv and constituent momentum ραvα, respectively.
ϕ and ϕα are chosen accordingly. The result

ρv =
∑

ρ̄αvα (3.55)

can be regarded as definition of the mixture velocity16 v, which is commonly
called barycentric velocity . For mixtures it is also advantageous to define the

16 The term ‘mixture velocity’ is not precise and should be avoided since apart from
the above mass weighted mixture velocity there is also a volume weighted mixture
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constituent diffusion velocity

uα := vα − v , (3.56)

which, obviously, satisfies
∑

ρ̄αuα = 0 . (3.57)

If we now take the gradient of (3.55), then

ρ (∇v) =
∑

{ρ̄α (∇vα) + uα ⊗ (∇ρ̄α)} (3.58)

is obtained via the product rule of differentiation and the commutability of
the operators ∇ and

∑
. Also (3.54)2 and (3.56) were used. As is possible for

the constituent velocity gradient,

∇vα = Dα + Wα , (3.59)

the mixture velocity gradient , ∇v, can also be decomposed into a symmetric,
D, and skew-symmetric part, W, corresponding to the mixture stretching
and mixture vorticity tensors, respectively. This decomposition reads

L := ∇v = D + W ,

D := sym (∇v) , W := skw (∇v) .
(3.60)

Application of the operators sym(·) and skw(·) to relation (3.58) yields the
sum relations

ρD =
∑

{ρ̄αDα + sym (uα ⊗∇ρ̄α)} (3.61)

and
ρW =

∑

{ρ̄αWα + skw (uα ⊗∇ρ̄α)} . (3.62)

Turning now to the energy-balance equation, by choosing

(ψ, ψα) =
(

ρ
(

ε + 1
2v · v

)

, ρα

(

εα + 1
2vα · vα

) )

(3.63)

and substituting these into relation (3.50)1, the mixture specific internal en-
ergy can be written as

ε =
∑

ξ̄αεα + 1
2

∑

ξ̄αuα · uα = εI + εD,

εI :=
∑

ξ̄αεα, εD := 1
2

∑

ξ̄αuα · uα .

(3.64)

velocity which is quite popular (see Chen & Tai) [27]). If να denote the volume
fractions, this volume weighted mixture velocity, vvol, is given by vvol :=

∑
ναvα .



3.3 Balance Equations and Sum Relations 51

For the deduction of (3.64)1, equations (3.54)1 and (3.57) are needed. Defini-
tions (3.64)2 and (3.64)3 specify the ‘inner’ mixture specific internal energy
and the diffusive contribution of ε, respectively.

We decompose the mixture fluxes (3.50)2 in a similar way and define the
‘inner’ and diffusive mixture fluxes as follows

φψ =
∑{

φ̄
ψ
α − ψ̄α ⊗ uα

}

= φψ
I + φψ

D,

φψ
I :=

∑

φ̄
ψ
α, φψ

D :=
∑

−ψ̄α ⊗ uα .

(3.65)

Here, again, definition (3.56) was used.
With the help of Table 3.1, Table 3.2 and the correct choices of the

pairs
(

φψ, φψ
α

)

and (ψ, ψα), the general flux in (3.65) is specialized to
the Cauchy stress tensors (momentum fluxes) and to the heat flux vectors.
The results are

T =
∑

T̄α −
∑

ρ̄αuα ⊗ uα = TI + TD, (3.66)

and

q =
∑

q̄α −
∑

T̄αuα +
∑

ρ̄α

{

εα + 1
2 (uα · uα)

}

uα = qI + qD , (3.67)

where

TI :=
∑

T̄α , TD = −
∑

ρ̄αuα ⊗ uα (3.68)

and

qI :=
∑

q̄α , qD = −
∑

T̄αuα +
∑

ρ̄α

{

εα + 1
2 (uα · uα)

}

uα .

(3.69)

Here, the pairs
(

φψ, φψ
α

)

= (T, Tα) , ψα = ραvα (3.70)

for (3.66) and
(

φψ, φψ
α

)

= (Tv − q, Tαvα − qα) , ψα = ρα

(

εα + 1
2vα · vα

)

(3.71)

were substituted into (3.65) and relations (3.56), (3.57) and (3.66) were used.
Let us summarise the findings and make some remarks.

• We take the position, that priorities of theoretical formulations for con-
tinuous assemblages of a finite number of physical constituents, be these
classical mixtures or multi-phase systems, cannot be objectively decided
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about prior to complete thermodynamic derivations of the formulations
and comparison of two seemingly diverging theories.

• Consequently, we start with global balance laws as the backbones of clas-
sical continuum physics: balances of mass, linear and angular momentum,
energy and entropy for each constituent, and take the view that the pro-
duction terms for any physical quantity of the constituents may assume
non-trivial values, but – with the exception of the entropy production –
sum up to a zero value for the mixture as a whole.

• When writing down evolution equations for internal (hidden) variables,
we regard these variables to describe exclusively certain material behaviour
at the sub-RVE scale which cannot be affected by external source terms. In
other words, a balance law for an internal variable has necessarily vanishing
external supply rate density.

• On the basis that mass, momenta, energy and entropy are additive physi-
cal quantities (ψ) for which true (ψα) and partial (ψ̄α) constituent densities
can be introduced, the above fields obey local forms of balance laws of the
form

∂ψ̄α −∇ ·
(

φ̄
ψ
α − ψ̄α ⊗ vα

)

− π̄ψ
α − σ̄ψ

α − γ̄ψ
α = 0 , (3.72)

at points where all variables are continuously differentiable, and

[[ψ̄α (vα − s) − φ̄
ψ
α ]]nσ = 0 (3.73)

on surfaces, across which variables suffer at most finite jump discontinu-
ities.

• Identifying the variables arising in the above equations with the physical
quantities stated in Table 3.1, explicit forms of the physical balance laws
can be easily written down, namely

mass : ρ̄αcα = ∂ρ̄α + ∇ · (ρ̄αvα) , (3.74)

[[Mα]] := [[ρ̄α (vα − s)]] · nσ = 0 , (3.75)

linear momentum :

m̄α = ∂ (ρ̄αvα) −∇ ·
(

T̄α − ρ̄αvα ⊗ vα

)

− b̄α , (3.76)

Mα [[vα]] − [[T̄αnσ]] = 0 , (3.77)

angular momentum :

M̄α = x × m̄α + 2 skw
(

T̄α

)

, (3.78)
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energy : ēα = ∂
{

ρ̄α

(

εα + 1
2vα · vα

)}

−∇ ·
{

T̄αvα − q̄α

−ρ̄α

(

εα + 1
2vα · vα

)

vα

}

−
(

r̄α + b̄α · vα

)

, (3.79)

[[εα + 1
2vα · vα]] Mα − [[

(

T̄αvα − q̄α

)

· nσ]] = 0 , (3.80)

entropy : γ̄ρη
α = ∂ (ρ̄αηα) − π̄ρη

α −∇ ·
(

φ̄
ρη
α − ρ̄αηαvα

)

− σ̄ρη
α , (3.81)

[[ρ̄αηα (vα − s) − φ̄
ρη
α ]] · nσ = 0 , (3.82)

where the jump condition for the constituent angular momentum is re-
dundant because it is already satisfied by the jump condition of linear
momentum.

• Given sum relations (3.50), the general balance law for the mixture as a
whole takes the forms

∂ψ = πψ + ∇ ·
(

φψ − ψ ⊗ v
)

+ σψ , (3.83)

and
[[ψ (v − s) − φ̄ψ]]nσ = 0 (3.84)

at points where fields are differentiable and on singular surfaces, respec-
tively. These laws hold for all fields stated in Table 3.2, provided that the
sum of all constituent production rate densities except that for the en-
tropy vanish identically. This requirement is the expression that the body
as a whole does not recognise that it is composed of constituents, and it
automatically generates conservation laws.

• If mass density weighted variables are introduced according to (3.51)
then mixture fields are related to the constituent fields as given in (3.54),
(3.55), (3.64) and (3.66)-(3.69), respectively. This defines mixture fields
in terms of density weighted constituent quantities . We shall henceforth
restrict considerations to this case, but mention that volume weighted
mixture models are also fashionable, see Chen & Tai [27].



Chapter 4

Constitutive Assumptions

Abstract This chapter explains the complexity of the mixture theory that will

be used in the remainder of the book. We focus attention on mixtures whose con-

stituents exhibit a single temperature only and whose internal processes do not in-

volve exchanges of interaction energies among the constituents. So, balance laws for

the constituent masses and momenta are needed, but it suffices to deal only with the

conservation law of energy for the mixture as a whole. This excludes changes of aggre-

gation between constituents but still allows mass changes due to (restricted) chemical

reactions, fragmentation and abrasion. We also assume that the internal exchanges of

angular momenta are due to the moments of the exchanges of linear momenta only.

This leads to symmetric partial stress tensors.

The constitutive postulates are motivated by taking single material bodies as a basis.

We argue that, owing to the functional dependence of the partial densities on the true

densities and volume fractions, the latter must be given by their own evolution equa-

tions, and that both true densities and volume fractions and their gradients ought to

enter as independent constitutive variables. Mechanically, the constituent velocities,

deformation gradients (via the left Cauchy-Green deformation tensors for isotropy),

stretching and vorticity tensors are considered important for the description of the

deformation and motion of the fluid and solid constituents as are thermodynamically

the empirical temperature, its time rate of change and spatial gradient.

Classical hypo-plasticity is introduced as an evolution equation for the Cauchy stress

tensor, by equating an objective time derivative of T to a symmetric tensor-valued

production term, which is an additive decomposition of linear and non-linear terms,

which, in turn, are functions of the stress itself and the stretching. Since such an

evolution equation is difficult to handle in a thermodynamic analysis, we propose to

introduce for the description of the frictional processes an objective evolution equa-

tion for a symmetric stress-like tensor variable that may also serve as an independent

constitutive variable. In Chapter 8 it will be shown to yield hypo-plasticity.

Further restrictive assumptions are the constancy of the true constituent density for

a ‘density-preserving’ component and the saturation condition, according to which

all constituents fill the entire geometric space of the mixture.

L. Schneider, K. Hutter, Solid-Fluid Mixtures of Frictional Materials 55
in Geophysical and Geotechnical Context, Advances in Geophysical
and Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-02968-4 4,
c© Springer-Verlag Berlin Heidelberg 2009
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4.1 Selection of Balance Equations

So far we have dealt with a general mixture of n constituents that does not
account for an internal structure. We even allowed for energy interactions
between the constituents, so that they could exhibit different temperatures.

We shall now restrict the ensuing analysis to the special case that all con-
stituents have the same temperature and that no constituent species in the
mixture suffers a change in its aggregation state. Thus, we also suppose that
no phase changes in any mixture component take place. In the geophysical
context, there are a great number of such situations. Among these mention
might be made of earthquake and typhoon or hurricane induced landslides
of dry or water saturated soil movements, mud flows, particle laden trans-
port in slurries, sediment transport in fluvial hydraulics and many others.
However, pyroclastic flows such as lahars and debris flows from a volcanic
eruption and an avalanche of hot pyroclastic material mixed with ice from a
glacier may not fit into this category. This is so, because in pyroclastic tur-
bulent gravity driven boundary layer flows, the air that is entrained and the
eroded soil material both have different temperatures that must be adjusted
to the temperature of the erupted volcanic material. Similarly, the ice from a
mountain glacier that is overrun by the hot lahars will be melted and evapo-
rated. Our limitation to the equal temperature case is a matter of reduction
of theoretical complexity. Formally, the limiting assumption reads:

[A2] The ensuing analysis restricts attention to mixtures of which all
constituents have the same common temperature and no con-
stituent changes its aggregation state.

This assumption is equivalent to the disregard of energy-interaction between
the constituents1. Therefore, only the mixture reduced (internal) energy bal-
ance

0 = ∂ (ρε) + ∇ · (q + ρεv) − T · (∇v) − r , (4.1)

which is obtained from (3.47) and Table 3.2, must be considered. The re-
striction [A2] still leaves enough room for processes in which mass exchanges
between the constituents can take place. Chemical reactions at a common
temperature are possible and for solid constituents fragmentation or abrasion
may qualify as such processes when particle size separation is significant. It
is important that such processes are not associated with energy transfer from
one constituent to another.

1 More precisely we ignore volumetric phase changes that are associated with a
‘Clausius-Clapeyron type equation’.
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The present mixture model accounts for the constituent balance equations
of mass, momentum and moment of momentum, i. e.

ρ̄αcα = ∂ρ̄α + ∇ · (ρ̄αvα) , (4.2)

m̄α = ∂ (ρ̄αvα) −∇ ·
(

T̄α − ρ̄αvα ⊗ vα

)

− b̄α , (4.3)

M̄α = x × m̄α + 2 skw
(

T̄α

)

, (4.4)

with (α = 1, . . . , n). If we would e. g. consider the mixture momentum balance
equations instead of those for the constituents, the constituent velocities could
not be obtained independently, but only via v. This shall not be the case in
the approach pursued in this model.

To reduce the constituent momentum balance equations to the form

m̄i
α = ρ̄α (∂vα + (∇vα)vα) −∇ · T̄α − b̄α

= ρ̄α v́α −∇ · T̄α − b̄α ,
(4.5)

we substitute (4.2) into (4.3) and use the definition of a new constituent
momentum interaction supply rate density2

mi
α := mα − ραcαvα . (4.6)

The specialization of the sum relation (3.49) to the supply rate densities
ραcα, mα and Mα yields

∑

ρ̄αcα = 0 ,
∑

m̄α = 0 ,
∑

M̄α = 0 . (4.7)

From the algebraic equation (4.4) it does not in general follow that T̄α is
symmetric. This is only the case when

[A3] M̄α = x × m̄α

is prescribed. Assumption [A3] corresponds to the supposition that exchange
of angular momentum is only due to exchange of linear momentum. This
is a rather strong assumption, because it neglects the exchange of angular
momentum that happens through rotation of the grains. This assumption
is neither in agreement with the consideration of the constituent vorticity
tensors as independent variables, because these tensors are also linked to the
rotation of the grains (see Section 4.5). Unfortunately, there is no alternative

2 We mention that cα and mi
α (and not mα) are objective scalar and vector valued

variables.
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to [A3] if we want T̄α to be symmetric. The mixture stress tensor T is,
however, automatically of symmetric form as it is assumed that the ‘single’
body balance equations are applicable to the mixture as a whole, and these
are a priori assumed to be non-polar.

In view of relations (4.1) to (4.3) it is observed that there are only (4n + 1)
equations to determine the (14n + 5) unknowns (ρ̄1, . . . , ρ̄n, v1, . . . ,vn,
T̄1, . . . , T̄n, c̄1, . . . , c̄n, m̄1, . . . , m̄n, q, ε, θ). Thus, the system of the bal-
ance laws has yet to be complemented by additional relations, first, to make
the resulting system at least in principle solvable and second, to model the
mixture behaviour. This system of balance laws and the additional relations
are then called the field equations.

We aim to solve these equations for the independent variables

(ρ̄1, . . . , ρ̄n, v1, . . . ,vn, θ) , (4.8)

where θ represents an empirical temperature which, later, will be connected
to the absolute temperature. Any solution of the field equations is referred
to as a thermo-mechanical process. Consequently, phenomenological relations
will have to be found for the so-called constitutive quantities

(

T̄1, . . . , T̄n,
c̄1, . . . , c̄n, m̄1, . . . , m̄n, q, ε) to link them to the independent variables or
derivatives of them. These variables, i. e. the independent variables and cer-
tain derivatives of them are denoted constitutive variables. In the present
chapter we aim to find an appropriate set of constitutive variables to cor-
rectly model debris flows.

4.2 Constitutive Laws of Single-Material Bodies

We introduced Truedell’s suppositions (see Section 3.1) in order to employ
the usual principles and ‘tools’ known from constitutive modelling of bodies
composed of only one material. For the constitutive theory of these, the most
general law reads

C (X, t) = Ĉ
(Y, X)∈B
0� s <∞

(

ρ (Y, t − s) , χ (Y, t − s) , θ (Y, t − s) ; X
)

, (4.9)

where C is a constitutive quantity.3 The explicit dependence on the material
point X expresses the inhomogeneity of the material. In (4.9) the functional
Ĉ is assumed to depend also on the mass density, ρ, the motion, χ, and the
temperature, θ, which themselves are dependent on all elements Y of the

3 It is known in continuum mechanics of single constituent bodies that ρ (Y, t − s)
does not have to be included as a variable if χ (Y, t − s) is included. However, we keep
both here because in mixture applications an interrelation between ρ(·) and χ(·) is
not evident, and does not exist in general.
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material body B (non-local effects) and its total thermo-mechanical history
(hereditary effects). The latter contribution is formulated with the help of
the scalar s that is subtracted from the time t.

Obviously, (4.9) is far too general to gain any solution from substituting it
into the appropriate balance equations. Therefore, the following assumptions
and general rules are often applied to the general constitutive equation (4.9):

1. The assumption of homogeneity leads to the loss of an explicit dependency
on X.

2. The assumption of local action requires that the value of a certain con-
stitutive quantity at a point X depends only on the behaviour of the
independent variables in an immediate neighbourhood of the considered
point.

3. The assumption of fading memory demands that long past events have
weaker influences on the behaviour of a material than recent ones. (cf.
Truesdell [121])

4. The principle of material symmetry allows for a determination of the struc-
ture of the constitutive equations and for the reduction of material param-
eters arising in these equations. A material is symmetric with respect to a
rotation or a reflection if the same response to a thermo-mechanical pro-
cess of a material is obtained from two reference configurations that differ
by just the above rotation or reflection.

5. The principle of material objectivity states that constitutive equations
must be frame indifferent under a change of observer frame. In other words,
the constitutive equations are not allowed to change their form when the
observer is rigidly rotated or translated relative to a singled-out observer,
i. e. constitutive equations are unaffected by an observer transformation
of the form4

x∗ = Q (t)x + c (t) , QQT = I . (4.11)

6. The entropy principle embodies the main ‘tool’ to restrict the constitutive
laws. The discussion of this important physical principle is postponed to
Chapter 5.

In the realm of Taylor series expansions the second and third suppositions
require a finite length of the series which are written down for the independent
variables

(

ρ,χ, θ
)

(x, t) in the arguments of (4.9). If only the first two terms
of the Taylor expansions are kept for χ and θ and only the first for ρ, the
material is called simple. For this case (4.9) reduces to

4 One consequence of this principle is that scalar-, vector- or tensor-valued quantities
(a,a,A) that are not objective, i. e. that do not satisfy

a∗ = a, a∗ = Qa, A∗ = QAQT (4.10)

for an arbitrary time dependent orthogonal tensor Q are not allowed to appear in
the constitutive laws. The starred quantities describe the quantities in the rotated
system, those without a star in the unrotated one.
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C = Ĉ (θ, ∇θ, ρ, B) . (4.12)

In this relation, a dependence on the left Cauchy-Green deformation tensor
B instead of on the deformation gradient F, see (3.10), excludes anisotropic
behaviour, and the resulting simpler relations meet our needs.

For a detailed discussion of these issues the reader is referred e. g. to
Truesdell & Noll [121], Müller [97], Hutter & Jöhnk [62], Greve

[46] or Haupt [51]. The application of the stated rules can be found there
and thus shall not be discussed in detail here. However, the example

C = Ĉ
(

θ, θ̇, ∇θ, ρ, ∇ρ, v, B, D, W
)

, (4.13)

where only assumptions 1 to 3 and the material isotropy are used, will later
become important. It accounts not only for a dependence on the temperature
but also on its gradient and its material time derivative. As is shown by
Müller in 1971 [95], θ̇ is necessary for the linearised governing equation
of θ to be hyperbolic. Even though this issue becomes significant for time
scales much smaller than those we are looking at in debris flows, we will
nevertheless account for it in the thermodynamic analysis. Furthermore, in
(4.13) we consider a constitutive dependence on the left Cauchy-Green

tensor B and the stretching tensor D which model elastic and viscous effects
of the material, respectively. Due to objectivity reasons the contributions of
the velocity, v, and vorticity, W, are excluded in single-material constitutive
theories. Moreover, as in (4.12), simultaneous incorporation of ρ and B as
independent variables in a single constituent body is not necessary since
ρ = ρ0(detB)−1/2, but ∇ρ would account for a second order deformation
gradient, viz.,

∇ρ = −ρ0

2
(detB)−1/2B−1(∇B) = −ρ

2
B−1(∇B) , (4.14)

which, in a single constituent non-polar theory, can be ruled out on grounds of
the Second Law of Thermodynamics.5 For mixtures, such dependences cannot
be ruled out, however. We will postpone the application of the principle of
objectivity to Section 4.6, where it is introduced in the context of mixture
theory.

4.3 Constitutive Laws in the Context of Mixture Theory

Let us now assume that for a mixture at least the assumptions of homogene-
ity, local action, fading memory and isotropy are valid for each constituent

5 One could argue that ρ̇ should also be included as an independent variable in (4.13),
but that would, via the mass balance, correspond to the inclusion of trD, which is
already contained in (4.13).
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material body Bα (cf. Truesdell [119]). Then the constitutive law6

C = Ĉ
(

θ, θ̇, ∇θ, �ρ, �∇ρ, �v, �B, �D, �W
)

,

�ρ := ρ1, . . . , ρn , �∇ρ := ∇ρ1, . . . ,∇ρn ,

�v := v1, . . . ,vn , �B := B1, . . . ,Bn ,

�D := D1, . . . ,Dn , �W := W1, . . . ,Wn

(4.15)

constitutes the formal translation of relation (4.13) to mixtures. As ascer-
tained in [A2] all constituents exhibit the same temperature θ and also the
same temperature derivatives ∇θ and θ̇, where the dot marks the material
time derivative with respect to the barycentric velocity, v. In the above con-
stitutive law we accounted for the compressibility of the constituents and
their different velocities through the dependences on �v and �ρ. The incorpo-
ration of Bα and Dα (α = 1, . . . , n) allows for the description of elastic and
viscous effects in all constituents. We also consider the constituent vorticity
tensors Wα (α = 1, . . . , n) as independent constitutive variables, because
they are needed for the description of hypo-plasticity introduced later in this
chapter. By introducing Dα and Wα as arguments of (4.15) instead of Lα

(α = 1, . . . , n) we gain additional degrees of freedom, because the stretching
and vorticity tensors can be incorporated independently into the constitutive
laws. On the other hand, we have to admit that Lα (α = 1, . . . , n) are the
original constitutive variables and by considering all Dα and Wα indepen-
dently we are losing information about their relation.7

In (4.15) we also introduced both the true mass densities ρα and the
left Cauchy-Green tensors Bα (α = 1, . . . , n) as independent variables. In
single-material theories only one of (ρ, B) is considered, because owing to
mass conservation, i. e.

ρ0 = ρ
√

detB , (4.16)

ρ and B are not independent. Here, ρ0 is the (temporally) constant density
of the material in the reference configuration. For mixtures the situation is
slightly different. Relation (4.16) can not be translated one-to-one to the
constituents of a mixture, because the mass balance for constituent Kα

∂ρ̄α + ∇ · (ρ̄αvα) = ρ̄αcα , (4.17)

6 At this point a careful reader may object against the choice of θ̇ as independent
constitutive variable, since ‘a constitutive-variable time derivative should follow the
constituent and not the ‘mean’ motion’ (L.W. Morland, pers. comm.). However, θ is
the temperature of all variables, and its evolution is described by the energy equation
of the mixture, so that the time derivative following the barycentric velocity is justified
as an independent constitutive variable.
7 This issue will become important for the ‘isotropic’ expansion performed in Section
7.3.
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is no longer conservative. To see this (in)dependence more clearly, let us
consider the global analogue to (4.17) which is given by

d

dt

∫

ωα

ρ̄αdv =
∫

ωα

ρ̄αcαdv , (4.18)

or when ‘pulling this back’ to the reference configuration κα0 (see [14])

d

dt

∫

Ωα 0

ρ̄α (detFα) dV =
∫

Ωα 0

ρ̄αcα (detFα) dV , (4.19)

which implies via localization

{(detFα) ρ̄α}́ = (detFα) ρ̄αcα . (4.20)

From this we deduce

ρ̄α0 = ρ̄αdetFα or ρ̄α0 = ρ̄α

√

detBα , Bα = FαFT
α (4.21)

only if we assume that no mass interaction supply rate densities are present, i.
e. cα = 0, ∀ α. Here ρ̄α0 corresponds to ρ0 in (4.16). If we do not want to make
this assumption, we have to consider as independent constitutive variables
both the true mass densities ρα and the left Cauchy-Green tensors Bα

(α = 1, . . . , n).
If we now take a closer look at (4.15), the question arises, why we intro-

duced the true mass densities ρα to describe the compressibility, but not the
partial mass densities ρ̄α (α = 1, . . . , n). Also, it is not clear yet how the
internal structure of debris flows, i. e. the distribution and evolution of the
grain structure is modeled. To bring light into these issues we first discuss
the constituent mass balance equation (4.2). Clearly, (4.2) determines the
evolution of the constituent partial mass densities and not of the true mass
densities. Thus, all ρ̄α can be regarded as true independent variables, and
ρα (α = 1, . . . , n) as nothing more than internal variables (cf. Svendsen &

Hutter [115]). If we recall (see relation (3.27))

ρ̄α = ναρα , (4.22)

then the roles of the partial mass densities and the true densities as true
independent and internal variables, respectively, are no longer so clearly sep-
arated. Indeed, ρ̄α may change because the true mass density ρα changes,
which is due to material compressibility or else because the volume filled
by constituent Kα changes. So, both sub-processes, material compressibility
and changes of the volume which constituent Kα acquired in the mixture,
determines the partial mass density. It follows that both, ρα and να ought
to be regarded as independent variables. With this interpretation the volume
fraction density να also plays the role of describing in a minimum fashion
the distribution of the constituent within the mixture, and thus is the most
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simple form by which the sub-RVE structure of the mixture can be charac-
terised. As such its dynamics ought to be described by an evolution equation.
Svendsen & Hutter [115] assumed, in analogy with the constituent mass
balances, the simple form

[A4] n̄α = ∂να + ∇ · (ναvα) , α = 1, . . . , n

for the evolution of all να, where the constitutive quantity n̄α expresses the
volume (fraction) production rate density of the corresponding constituent.
In contrast to relation (4.7)1, the sum of n̄α over all constituents is in general
non-zero.8

If we now combine the constituent mass balances (4.2) and [A4] we obtain

ρα (cα − nα) = ∂ρα + (∇ρα) · vα, α = 1, . . . , n (4.23)

which can be interpreted as evolution relations for the constituent true mass
densities ρ1, . . . , ρn. With [A4] and (4.2) or [A4] and (4.23) 2n evolution
equations are available for the 3n variables ρ̄α, ρα and να (α = 1, . . . , n).
Due to (4.22) we can choose 2n of the above variables to be members of the
set of independent variables; [A4] then assures that any 2n of

{
�̄ρ, �ρ, �ν

}

are
true independent variables. Therefore, the constituent true mass densities ρα

(α = 1, . . . , n) are permissible variables in (4.15), but as the above discussion
also shows, one of the variables ρ̄α and να should equally be an independent
constitutive quantity. We choose να (α = 1, . . . , n). The extended general
constitutive law therefore reads

C = Ĉ
(

θ, θ̇, ∇θ, �ρ, �∇ρ, �ν, �∇ν, �v, �B, �D, �W
)

,

�ν = ν1, . . . , νn , �∇ν = ∇ν1, . . . ,∇νn ,

(4.24)

where, as a consequence of the assumption of local action, �∇ν was added.
In the constitutive law (4.24) the constituent volume fraction densities

were introduced as independent constitutive quantities and associated evolu-
tion equations, [A4], were postulated to account for the sub-macroscopic, i.
e. sub-RVE structure that is not distinguished by the macroscopic mixture
quantities. We also alluded to the fact that the volume fraction and volume
fraction gradient dependencies represent one, perhaps, minimal form to ac-
count for the description of this subscale structural behaviour. It is expected
with the postulate of such new continuous, so-called internal field variables,

8 This statement can be shown by summing [A4] over all constituents and using the
saturation condition (see [A7] in Section 4.5).
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that the observed subtleties, which cannot be described by the macroscopic
mixture quantities, can be described when such internal variables are in-
cluded. In the description of the deformation of soils and the motion of dry
and wet debris, effects, such as particle size segregation, fluidisation, fragmen-
tation and abrasion, are of sub-macroscopic scale. We chose above the volume
fractions and their first gradients as the decisive variables. In more complex
formulations, second gradients ∇2να may enter as measures of higher order
variability.

In the material sciences of granular bodies, there are also proposals with
fewer or more variables and evolution equations different from [A4] to de-
scribe such phenomena. Wilmański [124] uses the porosity (that is the vol-
ume fraction of all fluid constituents together) as such a variable and changes
the evolution equation in [A4] by adding on the right-hand side a flux term.
Geotechnical engineers prefer to work with the void ratio, which is simply
related to the porosity via

ef =
νf

1 − νf
, (4.25)

where f stands for the union of all fluid constituents. If the details of the
flow of the fluids through the pore space are important, then the ‘curvature
tensor’ of the volume fractions ∇2να may have to be added as an additional
independent variable that could enter the constitutive relation (4.24). How-
ever, one may also introduce additional internal variables, not related to the
volume fractions. The tortuosity of the pore space may be such a variable.
Irrespective of this choice, it is necessary to postulate new evolution equa-
tions for these internal variables, because their evolution is not described by
the classical balance equations of mixture theory.

From this point of view we expect or hope that the contributions να and
∇να (α = 1, . . . , n) in the constitutive law (4.24) and the balance equations
for the volume fractions, [A4], have the potential of describing fluidisation
and particle size segregation in debris flows. The hope, that with the help of
the quantities ∇να (α = 1, . . . , n) we are able to characterise the resistance
of geophysical materials (e. g. soil) to shear stress in equilibrium (‘heap prob-
lem’) is tenuous, because, first, shear stresses would be absent if the volume
fractions were uniformly distributed, and second, in simulations the variables
∇να (α = 1, . . . , n) pose the difficult task of finding boundary conditions for
the volume fractions (see Fang [39] and Fang, Wang & Hutter [41, 42]).
Although ∇ν1, . . . ,∇νn are included in the set of constitutive variables, in
the derivation of the reduced model we aim to avoid them in favour of a
frictional contribution which is presented in the following section.

Before we turn our attention to that, let us address the choice of depen-
dence of (4.24) on the stretching tensor D. Most dense granular or particle
laden flows in the geophysical context use constitutive relations which fit into
subclasses of (4.24). There are, however, also stress-deformation relations in
use which do not fit into the class (4.24). As an example, one may extend the
dependence on D by higher order Rivlin-Ericksen tensors
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A(r+1) = Ȧ(r) + LA(r) + A(r)LT , A(1) = 2D (4.26)

which are objective time derivatives of D. Such a proposal has been made by
Norem et al. [100] who use an extended version of the Criminale-Filbey-

Ericksen fluid as a basis for their avalanche model. This model employs the
first and the second Rivlin-Ericksen tensors. We shall not dwell upon such
added complexity; the analysis is complex enough for constitutive models of
the class (4.24).

4.4 A First Attempt to Incorporate Hypo-plasticity

In this subsection it will be explained how hypo-plasticity is theoretically
treated in the above theoretical formulations. The treatment is different from
how frictional effects are incorporated in the mixture theory that follows. We
present it here primarily to familiarize the reader with the subject.

The elasto-visco-plastic behaviour of soils is nowadays described by two
classes of frictional material behaviour. In one class, the transition from small
elastic and reversible behaviour to rapid deformations is accomplished by an
abrupt change of the deformation into a regime of flow. This transition takes
place when the state of stress reaches a yield condition. In stress space this
is characterised by a (closed) yield surface and the abrupt change of flow at
yield is expressed by a second rule, the so-called flow rule, which describes the
direction of flow in stress space. In the second class of material behaviour the
existence of a sharp transition of the flow state at yield is rejected. Rather,
the transition from slow creeping behaviour to rapid failure is still smooth,
but accompanied by relatively steep gradients. We are here concerned with
this second class of material response. For soils, the theory that describes
these effects of localisations and apparent instabilities is of a mathematical
structure which does not employ the concepts of a yield surface and a flow
rule. The theory is of a mathematical structure described below and was
founded by Kolymbas in 1978 [74] and coined by him hypo-plasticity. In the
subsequent years, many improved and extended constitutive models based
on the theory of hypo-plasticity (cf. Kolymbas [75]) have been developed
for granular materials such as sand and gravel. Von Wolffersdorff [126]
summarises these models as of 1996. Later, the hypo-plastic theories were
also applied and extended to fine grained soils and clays.9 The mathematical
structure of hypo-plasticity is expressed by the constitutive relation for the
Cauchy stress tensor. It has the form of an objective evolution equation of
the stress tensor and reads

9 Important steps of the development were done by Kolymbas [75], Gudehus [48],
Niemunis [99], Herle & Gudehus [54], Bauer [8], Wu [127], Masin [84] and others.
A detailed reference list is given in the Ph. D. dissertation of Masin [84].
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Ṫ − [W,T] = Φ, (4.27)

where W represents the vorticity tensor, [· , ·] is the Lie bracket, see (2.10),
and the left-hand side of (4.27) is the objective Jaumann time derivative
of T. On the right-hand side, Φ is regarded as a constitutive quantity that
measures the time rate of change of T.

A hypo-plastic material is commonly defined by (i), assuming the second
rank tensor Φ to be a function of T and D, plus possibly other variables i. e.

Φ = Φ̂
(

T, D, ·
)

, (4.28)

and (ii), supposing that Φ is continuously differentiable for all D, except at
D = 0 (cf. e. g. Wu & Kolymbas [129]). The point in (4.28) indicates other
dependencies that have been suggested in the course of development of the
theory of hypo-plasticity. Such a dependence is e. g. that on void ratio. These
dependencies are here structurally not important, but will be incorporated
later on. To further confine the form of Φ the following restrictions are made.
First, (4.27) is required to be rate independent. So, in a process accelerated
by λ, Ṫ and W change into λṪ and λW, while T remains unchanged. So,
Φ must be positively homogeneous of the first order in D. In other words,

Φ
(

T, λD, ·
)

= λΦ
(

T, D, ·
)

(4.29)

must be satisfied for all positive scalars λ. Second, Φ is thought to be also
positively homogeneous in T, i. e.

Φ
(

λT, D, ·
)

= λΦ
(

T, D, ·
)

(4.30)

for arbitrary positive scalars λ which also follows from (4.27). In a next step
towards a concrete formulation of the constitutive equation Wu & Kolym-

bas [129] decompose Φ into two parts, i. e.

Φ = L
(

T, D, ·
)

+ N
(

T, D, ·
)

, (4.31)

where the first operator, L, is considered to be linear in D and is of class
C1 ∈ [0, ∞). The second operator, N , accounts for the frictional behaviour
of the material, and for hypo-plasticity, ought to be non-linear in D. It is
of class C1 ∈ (0, ∞) but not differentiable at D = 0. The specification
of this non-linearity is not arbitrary but has to satisfy the requirement of
rate-independence. The choice

Φ = f1(·)
(

L
(

T
)

D + f2(·)N
(

T
)

|D|
)

(4.32)

is characteristic for hypo-plasticity. It is in agreement with the above require-
ments and uses the norm

|D| :=
√

tr(D2) . (4.33)
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We have also incorporated in the representation (4.32) two scalar functions,
f1(·) and f2(·), which indicate additional dependencies on scalar valued vari-
ables, e. g. the void ratio in the most simple case. f1(·) is said in the hypo-
plasticity community to describe barotropy10 and f2(·) the pyknotropy of the
material. These notions are introduced here, to familiarize the reader with
the jargon that is employed.

The equivalent form of (4.32),

Φ = f1(·)
{

L + f2(·)N ⊗ D
|D|

}

D (4.34)

is convenient, because in the constitutive law for the Cauchy stress tensor
(to be derived), the derivative Φ,D has to be performed. We also observe
from (4.32) that Φ,D is singular for D = 0 and thus, for the ‘simplest’ case,
namely stationary flow, the stress can not be determined. Regularisations are
called for.

The main task of this theory is to find representations for L, N and f1(·),
f2(·) that allow for the correct description of the behaviour of the respective
material. The existing formulations are derived through simulations and trial
and error techniques. In this process, parameter identifications are performed
with results taken from carefully conducted triaxial experiments. In addition,
(4.32) also suffers from the shortcoming that it is not clear how the exploita-
tion of the entropy principle in the version of Müller & Liu can be carried
out (cf. Teufel [117]). This problem will be addressed in Chap. 8.

Trying to circumvent the latter drawback Svendsen et al.11 [116] formu-
lated a hypo-plastic theory for a single-material body that does not prescribe
an evolution law for the Cauchy stress tensor but for an objective, ‘stress-
like’, symmetric-tensor-valued, spatial internal variable, Z. This law has the
form

Z̊ := Ż − [Ω,Z] = Φ̃, Ω = −ΩT , (4.35)

where Z̊ represents a general objective time derivative of Z, Ω being a cor-
responding spin tensor. We observe that due to the skew-symmetry of Ω, Z̊
remains symmetric and e. g. for Ω = W, the Jaumann time derivative for Z
is recovered. Again, Φ̃ is a constitutive quantity but should not be confused
with the constitutive quantity Φ in (4.27).

Svendsen et al. assumed further that the collective behaviour of the class
of materials under consideration, and in particular that of granular materials,
is elasto-visco-plastic. Thus, they incorporated the internal variable, Z, into
the set of constitutive variables. For an interpretation of Z the reader is
referred to Kirchner [71],[72] and Teufel [117].

Motivated by Svendsen’s idea we now postulate as follows:

10 It has nothing to do with the notion of ‘barotropy’ in fluid mechanics.
11 The paper is by Svendsen et al., but the idea of introducing (4.35) is Svendsen’s
alone.
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[A5] We introduce constituent, partial, objective, ‘stress-like’,
symmetric-tensor-valued internal variables, Z̄α (x, t) (α =
1, . . . , n), into the set of constitutive variables. Their objec-

tive time rates,
◦

Z̄α which include the material time derivatives
´̄Zα and corresponding constituent spin tensors, Ωα, are bal-
anced by the symmetric, tensor-valued constitutive quantities
Φ̄α (α = 1, . . . , n), i. e.

◦

Z̄α := ´̄Zα −
[

Ωα, Z̄α

]

= Φ̄α, Ωα = −ΩT
α , α = 1, . . . , n .

(4.36)

In principle, Ωα can be any corresponding spin tensor, e. g. the mixture W,
or constituent Wα, vorticity tensor, respectively, or the spin tensor ŔαRT

α

constructed out of the rotational part, Rα, of the deformation gradient, Fα.
For the time-being we leave the spin tensor, Ωα, unspecified but will choose
suitable representations later.

Being aware of the inadequacy of the introduction of internal variables Z̄α

for all constituents, i. e. also for fluids, we will still keep them formally in the
thermodynamic analysis. In Chapter 8 which is dealing with reduced models,
those Z̄α that are related to fluids will be abandoned. In this way, only the
granular part of debris flows is described by such internal variables.

Adding all Z̄α to the constitutive law (4.24), it turns into

C = Ĉ
(

θ, θ̇, ∇θ, �ρ, �∇ρ, �ν, �∇ν, �v, �B, �D, �W, �̄Z
)

,

�̄Z = Z̄1, . . . , Z̄n .

(4.37)

So far, we have not established a connection of Φ̄α (α = 1, . . . , n) with
hypo-plasticity and we will not do so until we reduce the model further to
the special case of debris flows. Indeed [A5] and (4.37) classify a frictional
material far more generally than does hypo-plasticity.

4.5 Further Assumptions

The constitutive assumptions will now be complemented by constraints on
constituent mass densities and volume fractions. In the present mixture the-
ory it is assumed that some or all of the constituent true mass densities are
constant, i. e.
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[A6] ρα = const. , α = m + 1, . . . , n , (0 � m � n) .

Bluhm [13] doubts the interpretation that [A6] is a consequence of the re-
sistance of each of the (n − m) constituents to volume changes. He argues
that the condition detFα = 1 (α = m + 1, . . . , n) which is analogous to [A6]
but not equivalent, forms a condition for a macroscopic field and thus can
not be correct. From his point of view resistance to volume changes is not
linked to macroscopic but to microscopic fields. Therefore, only the condi-
tion detFα

micro = 1 (α = m+1, . . . , n) for a real non-compatible deformation
gradient, Fα

micro, should be used as a constraint for density-preserving con-
stituents. This remark is the starting point of Bluhm’s mixture theory. This
procedure requires homogenisation rules to be applied for the upscaling from
the micro scale to the macro scale description, which we try to avoid.

Even though Bluhm’s arguments exhibit a convincing element, we will,
for simplicity, assume that [A6] allows the interpretation that it expresses
the resistance of constituents to density changes, but does not express an
obvious notion of volume preserving. The two concepts are not indentical in
general for mixtures. This constituent density constraint reduces the number
of independent variables by (n−m). If we substitute this constraint into the
mass balances of constituents Km+1 to Kn, what emerges is the reduced form

c̄α = ∂να + ∇ · (ναvα) , α = m + 1, . . . , n . (4.38)

The right-hand side of (4.38) is in agreement with that of [A4] and conse-
quently

c̄α = n̄α , or cα = nα , α = m + 1, . . . , n (4.39)

is required for all density-preserving constituents.
The saturation constraint in this mixture theory reads

[A7] 1 =
∑

να
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which states that there is no (material free) void space within the mixture.12

[A7] implies that there are only (n − 1) independent volume fractions and
thus only, say, ν1, . . . , νn−1, arise as independent variables in the constitutive
laws. On the other hand, we still have n independent volume fraction balance
equations, but of course in the nth balance equation of [A4], νn is replaced
according to [A7] by νn = 1 −

∑n−1
α=1 να (cf. Bauer [10]). Collecting the

balance equations of mass and volume fraction that are left we obtain

ρ̄αcα = ∂ρ̄α + ∇ · (ρ̄αvα) , α = 1, . . . ,m, (4.40)

n̄α = ∂να + ∇ · (ναvα) , α = 1, . . . , n − 1, (4.41)

and

n̄α = −∂
(

n−1∑

β=1

νβ

)

+ ∇ · vα −∇ ·
(

n−1∑

β=1

νβvα

)

, α = n , (4.42)

for the independent variables ρ1, . . ., ρm and ν1, . . ., νn−1. Therefore, we have
(n + m) balance laws for (m + n− 1) unknowns. Furthermore, (4.39) is valid
for the density-preserving constituents Kα (α = m + 1, . . . , n).

Following the arguments of Svendsen & Hutter [115] we state that
the constituent density constraint, [A6], reduces the number of evolution
equations and independent variables equally. [A7], on the other hand, has
no impact on the number of evolution equations but lowers the number of
independent variables by one. Therefore, [A7] can be understood as a ‘true’
constraint, inducing a new, unknown field, whereas for [A6] no such field is
justified. This property is characteristic for the structure of balance equa-
tions as formulated by Svendsen & Hutter. In the context of internal
constraints, introduced by Truesdell & Noll [121], the new constraint
field is necessary to maintain the saturation [A7].

Summarising the rules in Section 4.2 and considering assumptions [A2]
to [A7] we now choose the formulation of the final constitutive law and the
definition of the set of independent constitutive variables, S, that will be used
in the thermodynamic analysis. They read

12 This definition of the saturation condition requires clarification. In the mechanics
literature, saturation always means that there is no empty space present in the mix-
ture. That is the constituents are solids, liquids and gases. So, in a non-saturated or
partly-saturated mixture, there is one ‘constituent’ present which is massless and to
which no physical laws can be applied. It is simply empty space. In the geotechnical
and geophysical literature ‘saturated’ means that all pore space is filled with liquid,
whilst in partly or non-saturated soils, the empty void space is filled with a gas. In
the mechanics community this case is also called a saturated mixture. In this work
we adopt the definition of the mechanicists.
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[A8] C = Ĉ (S) ,

S =
{

θ, θ̇, ∇θ, �ρ, �∇ρ, �ν, �∇ν, �v, �B, �D, �W, �̄Z
}

,

�ρ := ρ1, . . . , ρm, �ν := ν1, . . . , νn−1,

�v := v1, . . . ,vn, �B := B1, . . . ,Bn,
�D := D1, . . . ,Dn, �W := W1, . . . ,Wn,

�̄Z := Z̄1, . . . , Z̄n .

C denotes any dependent constitutive variable and Ĉ (S) is the function de-
scribing it. That the independent set S is assumed to be the same for all
dependent constitutive variables is the expression of the rule of equipresence,
which states that all constitutive quantities initially share the same depen-
dences. Possible variable reductions ought to be deduced by proof. In [A8]
we already used the assumption that each constituent behaves as an isotropic
material, i. e. an arbitrary rotation or a mirror reflection does not alter the
material behaviour of a constituent (cf. Hutter & Jöhnk [62]). Thus, the
shape of the constitutive law, [A8], shall not be affected by these rotations
or reflections.
By combining the material isotropy with the requirement that every consti-
tutive law must be objective, it is observed that all constitutive quantities
must be isotropic functions of their dependent variables, i. e.,

Q∗Ĉ = Ĉ
(

θ, θ̇, Q(∇θ), �ρ, Q( �∇ρ), �ν, Q( �∇ν), Q(�v),

Q�BQT, Q�DQT, Q �WQT, Q�̄ZQT
)

, (4.43)

for all orthogonal time-dependent tensors Q (t), where Q∗ denotes the action
(

Q∗Ĉ
)

i1i2...in

= Qi1j1 Qi2j2 . . . Qinjn

(

Ĉ
)

j1j2...jn

(4.44)

on the tensor valued quantity Ĉ.

4.6 Remarks on the Principle of Objectivity

In Section 4.2 we stated the principle of objectivity for a single-material body.
In mixture theory the general constitutive law has to satisfy the equality

Ĉ
(

· · · , �v, · · · , �W, · · ·
)

= Ĉ
(

· · · , �v + �a, · · · , �W + �Ω∗, · · ·
)

, (4.45)
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identically for all three-dimensional vectors �a = (a, · · · ,a) and all skew-
symmetric tensors �Ω∗ = (Ω∗, · · · ,Ω∗) in order to be in accordance with
the principle of objectivity (cf. Svendsen & Hutter [115]). The added
terms �a and �Ω∗ in (4.45) are necessary to transform �v and �W into objective
quantities. The remaining constitutive variables are already objective. As
stated in Svendsen & Hutter [115] a common choice for a is the negative
mixture velocity −v and for Ω∗, the mixture vorticity tensor W may be
chosen. For this choice and with the definition (3.56) of the diffusion velocities,
uα, and diffusion vorticities, Uα, defined by

uα := vα − v, Uα := Wα − W , (4.46)

the principle of objectivity for mixtures can be formulated as

Ĉ
(

· · · , �v, · · · , �W, · · ·
)

= Ĉ
(

· · · , �u, · · · , �U, · · ·
)

. (4.47)

If we take into account the identity13

uβ,vα

(4.46)
= vβ,vα

−
n∑

γ=1

ξ̄γ(vγ),vα
=

(

δβα − ξ̄α

)

I , (4.48)

in which I is the (3×3) unit matrix and if we differentiate (4.47) with respect
to vα, then, the chain rule of differentiation yields

C,vα
=

n∑

β=1

C,uβ
uβ,vα

(4.48)
= C,uα

−ξ̄α

n∑

β=1

C,uβ
, α = 1, . . . , n . (4.49)

Summing these relations over all constituents Kα we obtain the restriction
∑

C,vα
= 0 . (4.50)

In a similar fashion we derive
∑

C,Wα
= 0 , (4.51)

which follows from

13 Perhaps the derivation of (4.48) in Cartesian tensor notation is easier to follow:

(uβ,vα
)ij =

∂(uβ)i

∂(vα)j

(4.46)
=

∂(vβ)i

∂(vα)j
−

n∑

γ=1

ξ̄γ
∂(vγ)i

∂(vα)j

= δβαδij −
n∑

γ=1

ξ̄γδγαδij =
(

δβα − ξ̄α

)

δij .

This Cartesian notation may be used as an alternative for many derivations.
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C,Wα
= C,Uα

−ξ̄α

n∑

β=1

C,Uβ
, α = 1, . . . , n (4.52)

and

Uβ,Wα

(4.46)
= Wβ,Wα

− W,Wα

(3.62)
= δβαI −

n∑

γ=1

ξ̄γ(Wγ),Wα
=

(

δβα − ξ̄α

)

I, (4.53)

where I is the fourth order unit tensor.
In the thermodynamic analysis below, the principle of objectivity will not

be applied until it is necessary for the progress of the calculations. Such a
procedure is allowed, because Ĉ can be chosen arbitrarily (cf. Svendsen &

Hutter [115]).



Chapter 5

Entropy Principle and
Transformation of the Entropy Inequality

Abstract After a very brief introduction into the recent developments of modern

rational thermodynamics with essentially two competing mathematical postulates

for the exploitation of the Second Law of Thermodynamics we concentrate on the

entropy principle of I. Müller with its Lagrange multipliers technique of exploita-

tion by Liu. We sketch Liu’s proof of how the entropy inequality, augmented by the

‘Lagrange multiplied balance laws’ is reduced to the so-called Liu identities and

the reduced entropy inequality. In this process the physical assumption [A10] that

external source terms cannot affect the material behaviour is significant. Computa-

tions for the fluid-solid saturated mixture with an arbitrary number of constituents

of which some may be compressible are rather involved and are partly deferred into

Appendices. The chapter ends with inequality (5.33) from which the concrete ther-

modynamic analysis ensues.

A person not familiar with thermodynamics, who is confronted with debris
flows, would presumably not guess that thermodynamics are relevant to the
behaviour of these flows. That this is indeed the case becomes clear, if we as-
sume that friction influences debris flows. Following the argument of Planck

[112] who said:

‘Alle mit Reibung behafteten Prozesse sind irreversibel’1,

we immediately realise that thermodynamic considerations should be applied
to modelling debris flows. The above quotation is one possible early statement
of the entropy principle or Second Law of Thermodynamics. There are several
mathematical formulations of this principle,2 among which that of Clausius

1 English: ‘All processes influenced by friction are irreversible’
2 The most popular formulations of the entropy principle in modern thermodynamics
are that of Clausius & Duhem, applied to materials according to the Coleman-Noll

approach [28] and that of Müller & Liu (cf. Müller [97, 96, 95], Liu [78, 79, 81] and
Hutter & Jöhnk [62]). Deviating approaches like that of Casey [21] are also in use,
yet less popular. These various different laws or axioms lead to the same inferences in

L. Schneider, K. Hutter, Solid-Fluid Mixtures of Frictional Materials 75
in Geophysical and Geotechnical Context, Advances in Geophysical
and Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-02968-4 5,
c© Springer-Verlag Berlin Heidelberg 2009
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& Duhem is probably best known. Unfortunately, their entropy inequality
in connection with the approach of Coleman & Noll to exploit it, is not
feasible for mixtures (cf. Müller [97], Hutter & Jöhnk [62]). This is due
to the fact that first, strong a priori assumptions on the entropy supply and
entropy flux are made which are not plausible for mixtures and second, the
balance laws of momentum and energy are thought to be always satisfied
by appropriate choices of supply terms.3 In his entropy principle Müller

was able to soften these assumptions by basically (i) regarding the entropy
flux as a constitutive quantity, (ii) assuming that external supply terms which
appear in the balance equations can not influence the material behaviour and
(iii) using the technique of Lagrange multipliers to express the restricted
optimisation problem which arises from the non-negativity of the entropy
production rate density, the balance laws and constraints. In the context of
mixtures, we will discuss in the following section the Müller-Liu entropy
principle.

The difficulties with the different forms of the Second Law of Thermody-
namics lies at two different levels, (i) the fundamental statement in terms
of an axiom and (ii) mathematical technicalties how inferences are drawn
from the basic axiom. Different scientists generally agree on the fundamental
statement, at least when it is formulated as an entropy principle; differences
arise in the mathematical technicalties. Of these, the most serious ones are
the choice of the entropy flux vector and the choice whether the physical
space in which the material bodies ‘live’ allows these bodies to exist in isola-
tion, not subject to exterior sources, or whether they are always affected by
sources acting in their environment. The different approaches yield different
implications, sometimes in conflict with common intuition or observations.
So far experience has shown that in these circumstances Müller formula-
tion of the entropy principle is generating the most convincing results, for a
detailed explanation of these issues see [58] [65] [98].

simple situations but imply subtle differences in more complex situations. Experience
has shown that the results obtained with the Müller & Liu form are the most
general ones. Reviews addressed to the ‘axiomatic’ structure of the Second Law of
Thermodynamics with emphasis on the physical implications are by Hutter [58],
Hutter & Wang [65] and Muschik et al. [98], among others.
3 More importantly, in the classical Coleman-Noll approach the evolution postu-
lates for internal variables such as e. g. (4.36) in [A5] are complemented by a source

term, so that Φ̄α = Φ̄int
α + Φ̄ext

α , where Φ̄ext
α may have any arbitrarily assigned

value. It follows in this case, as we shall soon see, that the evolution equations for
the internal variables do not exert any influence when exploiting the Second Law of
Thermodynamics. This may be correct or false – it is a priori not known. Otherwise
stated, the Second Law of Thermodynamics must be fulfilled subject to the condi-
tions that all field equations (i. e. balance laws, internal variable evolution equations
and all constitutive relations) are equally obeyed.
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5.1 Mixture Entropy Principle According to
Müller & Liu

In Section 3.3 we have already introduced the mixture and constituent specific
entropies η and ηα (α = 1, . . . , n), respectively, which are assumed to be
additive. The mixture specific entropy satisfies the balance relation

πρη = ∂ (ρη) −∇ · (φρη − ρηv) − σρη (5.1)

and the constituent specific entropies obey the non-conservative balance law

π̄ρη
α = ∂ (ρ̄αηα) −∇ ·

(

φ̄
ρη
α − ρ̄αηαvα

)

− σ̄ρη
α − γ̄ρη

α , (5.2)

where (5.1) and (5.2) are obtained from Table 3.2 and 3.1 and equations (3.47)
and (3.42), respectively. The constituent specific entropy ηα, its flux φρη

α , its
supply rate density σρη

α and its interaction rate density γρη
α are thought to

be constitutive quantities following the rules introduced in Chapter 4, but its
supply rate density σρη

α is of external origin and not of constitutive nature.
The Second Law is stated as follows:

The mixture entropy principle demands that the mixture intrinsic en-
tropy production rate density, πρη, must be non-negative during any
thermo-mechanical process which the mixture may undergo, i. e. the
imbalance

πρη � 0 (5.3)

is required for all solutions (θ, ρ1, . . . , ρm, ν1, . . . , νn−1, v1, . . . ,vn,
Z̄1, . . . , Z̄n

)

of the field equations (cf. Truesdell [119]). This solution
set is denoted a thermo-mechanical admissible process.

In other words, the above entropy principle asks for the simultaneous satis-
faction of (5.3), the balance laws (4.1) to (4.4), the volume fraction evolution
laws [A4], the evolution laws of the stress like symmetric tensor variables
(4.36) in [A5], the density preserving constraints [A6], the saturation con-
straint [A7] and the constitutive laws [A8]. The substitution of (5.1) into
(5.3) yields the inequality

πρη = ∂ (ρη) −∇ · (φρη − ρηv) − σρη � 0 . (5.4)

For the mathematical formulation of this (restricted optimisation) problem
let us, in thought, substitute the constitutive relations, [A8], into inequality
(5.4). Along with this, the balance laws (4.1) to (4.4), [A4], and the evolution
law (4.36) in [A5] must also be satisfied. If we use the chain rule for those
constitutive quantities that are differentiated in this process, we obtain spatial
and temporal differentiations of all constitutive variables, to which we will
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now assign the symbol YI (I = 1, . . . , N). These quantities are of higher
order than the temporal and spatial derivatives entering the constitutive and
evolution laws. It follows that the above problem can be written in the general
form

AJKYK + BJ = 0, J = 1, . . . , P , (5.5)
aKYK + β � 0 , (5.6)

in which Einstein’s summation convention applies to the index K and where
the equations in (5.5) stand for the balance laws and constraint equations,
and inequality (5.6) is a recast of inequality (5.4). Thus, AJKYK and aKYK

are linear in YK , (K = 1, . . . , R ; R � N). The coefficient matrix AJK ,
the coefficient vectors BJ and aK , and the coefficient scalar β then comprise
all remaining terms which do not involve YK . Liu proved in his Lemma [78,
Section 3] that the satisfaction of the entropy principle and thus, relations
(5.5) and (5.6), are equivalent to anyone of the statements

(i) There exists a Λ = (ΛJ=1, . . . , ΛJ=P ) with Λ �= 0 such that

aKYK + β − ΛJ (AJKYK + BJ) � 0 ∀ YK . (5.7)

(ii) There exists a Λ = (ΛJ=1, . . . , ΛJ=P ) with Λ �= 0 such that

aK − ΛJAJK = 0, K = 1, . . . , R , (5.8)
β − ΛJBJ � 0 . (5.9)

Λ does not depend on any YK , K = 1, . . . , R.

We call ΛJ the Lagrange multiplier for the J th equation; moreover, relations
(5.7) and (5.8) are called entropy inequality and Liu identities, respectively.
As will become clear in a moment, (5.9) represents the residual entropy in-
equality .

For the evaluation of (5.7) the mixture external entropy supply rate density
σρη and the external supply rate densities for momentum bα (α = 1, . . . , n)
and for internal energy r, arising in BJ and β, are to be specified. Müller

[97] achieved this by assuming that fields which are determined by the en-
vironment of the mixture are not allowed to play a role in restricting the
constitutive relations. Consequently, as it is done in the next section, all
external supply terms have to be eliminated from the entropy inequality, be
they physically justified or not. This requirement simlifies how field equations
with or without external supply terms are treated in the entropy principle.

For single-material theories the entropy principle of Müller is completed
by the assumption that between two continua special material singular sur-
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faces, so-called ideal walls, exist across which the temperature and the tangen-
tial velocity are continuous. This assumption is necessary to make the tem-
perature measurable by means of a thermometer. For multiphase mixtures
exhibiting a single temperature Wilmański [123] showed that, in general,
ideal walls do not exist. In [125] he found conditions for which the tempera-
ture is continuous across a material singular surface in a fluid-solid mixture.
The first of these conditions allows no entropy production on the singular
surface and the second requires either impermeability of the surface or conti-
nuity of the fluid Gibbs free energy (see Section 6.3) across the surface. We
will assume that our mixture model is such that conditions do exist for which
ideal wall conditions prevail. Thus, we will assume that

[A9] Under sufficiently general conditions material singular surfaces
do exist, across which the temperature and the tangential ve-
locity are continuous. In addition, we assume that these condi-
tions are sufficiently weak to not affect the debris-flow model
presented here.

5.2 Mixture Entropy Inequality

Let us now demonstrate how the entropy principle is used to restrict the
constitutive law, [A8]. To this end, we combine inequality (5.4) and the
balance equations of mass, momenta, energy and volume fractions (see (4.1)
to (4.3), [A4]), and the evolution laws (4.36) in [A5] to obtain the entropy
inequality

πρη = ∂ (ρη) −∇ · (φρη − ρηv) − σρη

−
∑

λρ
α {∂ρ̄α + ∇ · (ρ̄αvα) − ρ̄αcα}

−
∑

λv
α ·

{

∂ (ρ̄αvα) −∇ ·
(

T̄α − ρ̄αvα ⊗ vα

)

− b̄α − m̄α

}

−λε {∂ (ρε) + ∇ · (q + ρεv) − T · (∇v) − r}

−
∑

λν
α {∂να + ∇ · (ναvα) − n̄α}

−
∑

λZ
α ·

{
´̄Zα −

[

Ωα, Z̄α

]

− Φ̄α

}

� 0 , (5.10)
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where the technique of Lagrange multipliers4 was introduced. In this tech-
nique the balance laws and the evolution law for the internal variables Z̄α

(α = 1, . . . , n) are regarded as constraints. They are pre-multiplied by their
respective coefficients or so-called Lagrange multipliers and subtracted
from inequality (5.4). This modification of the original entropy inequality
(5.4) does not change its meaning, because only ‘zeros’ are subtracted. Con-
versely, by requesting the inequality (5.10) to hold for arbitrary fields makes
the balance equations to hold identically. In doing so, we introduced the con-
stituent Lagrange multipliers for mass λρ

α, momentum λv
α, volume fraction

λν
α and frictional behaviour λZ

α and the mixture Lagrange multiplier for
energy λε.

The constitutive quantities in (5.10) could, in general, also depend on the
external supply terms, but, as stated in the last section, Müller & Liu ruled
out this situation. They specified the mixture entropy supply rate density,
σρη, in such a way that no fields determined by the mixture environment
appear in the entropy inequality (5.10), i. e.5

[A10] σρη =
∑

λv
α · b̄α + λε r .

This is perhaps the appropriate place to mention that other authors, follow-
ing the Coleman-Noll approach in the exploitation of the entropy principle
(usually in the form of the Clausius-Duhem inequality) also introduce ex-
ternal supply terms in the balance equations for mass, πρα , volume fraction,
πνα , and frictional variable, πZα , or some of these and assume that these
terms can take any values desired. For this situation the analogue to [A10]
would be

σρη =
∑

λv
α · b̄α + λε r +

∑

λρα
α πρα +

∑

λνα
α πνα +

∑

λZα ·πZα . (5.11)

It follows that the exploitation of the entropy principle according to Müller

& Liu is insensitive to the external source terms, be the latter physically
justified or not.

In (5.10) no constituent density constraint ([A6]) and no saturation con-
straint ([A7]) have been used yet. To consider those, we recall Section 4.5,
where we argue that not [A6], but [A7] requires a new constraint field. In

4 In optimisation theory this technique is denoted as ‘multiplier-rule of F. John’.
Hauser & Kirchner [52] perform a precise mathematical classification of the tech-
nique of Lagrange multipliers. They show that the technique goes back to work by
Farkas [44] in 1894 and Minkowski [88] in 1896.
5 For historical correctness it should be mentioned that Müller in his original papers
[96, 95] only considered source free conditions. It was later that Liu [79] looked at
open thermodynamic systems and required [A10].
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Section 4.5 we have already eliminated the nth volume fraction from the set
of constitutive variables and thus, there is no reason to consider the satu-
ration condition and a corresponding Lagrange multiplier explicitly in the
entropy inequality. We even observe that, if λν

n is introduced, the above con-
straint field arises naturally from the nth volume fraction balance equation.
It will be shown later that its Lagrange multiplier, λν

n, is independent of
the constitutive variables and therefore inherits the rôle of a constraint field
for the saturation.6 The above form of the entropy inequality is due to the
special structure of the Svendsen & Hutter-balance equations.

The density preserving assumption [A6], i. e. ρα = const. (α = m +
1, . . . , n), and the symmetry of the Cauchy stress tensors, Tα = TT

α (α =
1, . . . , n), are regarded as side conditions on the mass densities and the skew-
symmetric parts of all Tα. These conditions are simply inserted into (5.10)
without requiring new constraint fields.

Now, we substitute the saturation constraint (see (4.42)) and relation
[A10] into (5.10) and obtain

πρη = ∂ (ρη) −∇ · (φρη − ρηv)

−
∑

λρ
α {∂ρ̄α + ∇ · (ρ̄αvα) − ρ̄αcα}

−
∑

λv
α ·

{

∂ (ρ̄αvα) −∇ ·
(

T̄α − ρ̄αvα ⊗ vα

)

− m̄α

}

−λε {∂ (ρε) + ∇ · (q + ρεv) − T · (∇v)}

−
n−1∑

α=1

λν
α {∂να + ∇ · (ναvα) − n̄α}

−λν
n

⎧

⎨

⎩
−∂

(
n−1∑

β=1

νβ

)

+ ∇ · vn −∇ ·
(

n−1∑

β=1

νβvn

)

− n̄n

⎫

⎬

⎭

−
∑

λZ
α ·

{
´̄Zα −

[

Ωα, Z̄α

]

− Φ̄α

}

� 0 , (5.12)

Before substituting the constitutive laws, [A8], into (5.12), this inequal-
ity has to be manipulated in order, (i), to introduce the constituent density
constraint, [A6], (ii), to make the linear dependencies of (5.12) on the con-
stitutive variables and their derivatives explicitly apparent, (iii), to allow for

6
Bauer [10] presents a detailed discussion on the role of λν

n in a saturated mixture.
In addition, by mathematical reasoning he answers the question on how the saturation
condition must be incorporated into the system of mixture balance equations such
that the resulting system is solvable in a way that is unique in the sense of Cauchy

& Kovalevskaya [77].
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the identification of the constraint field for the saturation which is denoted
saturation field , s, and (iv), to allow for the introduction of the scalar-valued
and the vector-valued one-forms (cf. Svendsen & Hutter [115])7

P =
K∑

I=1

PxI
dxI := d (ρη) − λεd (ρε) (5.13)

and

F =
K∑

I=1

FxI
dxI := dφρη + λε (dq) −

∑(

dT̄α

)

λv
α (5.14)

into the entropy inequality. Here, the operator d(·) denotes the exterior
derivative (see Section 2.2), and the coefficients PxI

and FxI
represent the

following abbreviations

PxI
= (ρη),xI

− λε (ρε),xI
, (5.15)

FxI
= (φρη),xI

+ λε (q),xI
−
∑

λv
α

(

T̄α

)

,xI
. (5.16)

The quantity (·),xI
marks a partial derivative with respect to xI which also

includes t, but PxI
and FxI

are, in general, not differentials of a certain
potential function. Moreover, the contractions in the last summation terms
in (5.14) and (5.16),

(

dT̄α

)

λv
α and λv

α

(

T̄α

)

,xI
are understood in the sense

that
a ∗ dA := d

(

ATa
)

, (5.17)

where A, a and ∗ are a second rank tensor, a constant vector and the con-
traction operation.

The result of these manipulations reads

7 The notation of Chapter 2 is used.
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πρη =

Pt
︷ ︸︸ ︷

∂(ρη) − λε∂(ρε) +

Px
︷ ︸︸ ︷

{∇(ρη) − λε∇(ρε)} ·v

−

(

Fx

)

ii
︷ ︸︸ ︷
{

∇ · φρη + λε∇ · q −
∑(

λv
α · (∇ · T̄α)

)}

−
m∑

α=1

{

l̄ρα (∂ρα) + να ( lραvα − Γuα) · (∇ρα)
}

−
n−1∑

α=1

{(

lνα + s
)

(∂να) +
(

lναvα − ραΓuα + s
)

· (∇να)
}

−
n∑

α=1

{

ρ̄α λv
α · (∂vα) +

{

να lνα I − ρ̄α (Γ − λv
α ⊗ vα)

}

· (∇vα)
}

−
n∑

α=1

{

λZ
α ·

(

∂Z̄α

)

+
(

λZ
α ⊗ vα

)

·
(

∇Z̄α

)}

−
n∑

α=1

[

Z̄α , λZ
α

]

· Ωα +
n∑

α=1

Φ̄α · λZ
α

+
n∑

α=1

{

λv
α · m̄i

α + lραρ̄αcα + λν
αn̄α

}

� 0 , (5.18)

where m̄i
α is given in (4.6) and the inserted quantities lρα, lνα, Γ, s, s are

abbreviations defined as

lρα := λρ
α + λv

α · vα , (5.19)

lνα := ρα lρα + λν
α , (5.20)

Γ := λερ−1T + (η − λεε) I = ΓT , (5.21)

s := −lνn , (5.22)

s := svn + ρnΓun . (5.23)

The derivation of inequality (5.18) can be found in Appendix B.1.8

8 Some computations in this chapter are rather involved. Detailed and long compu-
tations are deferred to Appendix B. The reader may omit these in a first reading and
simply accept the results.
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The only assumption which has not yet been considered is the constitutive
law, [A8]. In the last subsection we manipulated the entropy inequality in
such a way, that we can now easily substitute the one-forms P and F into
the first two lines of (5.18). We observe that, except for the two one-forms, no
differentiation has to be performed for any other constitutive quantity. From
the definitions (5.13) and (5.14) and the constitutive law, [A8], we obtain

P = Pθ dθ + Pθ̇ dθ̇ + P∇θ · d(∇θ) +
m∑

α=1

Pρα
dρα +

m∑

α=1

P∇ρα
· d(∇ρα)

+
n−1∑

α=1

Pνα
dνα +

n−1∑

α=1

P∇να
· d(∇να) +

∑

Pvα
· dvα

+
∑

PBα
· dBα +

∑

PDα
· dDα +

∑

PWα
· dWα +

∑

PZ̄α
· dZ̄α

(5.24)

and

F = Fθ dθ + F θ̇ dθ̇ + F∇θd(∇θ) +
m∑

α=1

Fρα
dρα +

m∑

α=1

F∇ρα
d(∇ρα)

+
n−1∑

α=1

Fνα
dνα +

n−1∑

α=1

F∇να
d(∇να) +

∑

Fvα
dvα

+
∑

FBα
dBα +

∑

FDα
dDα +

∑

FWα
dWα +

∑

F Z̄α
dZ̄α .

(5.25)

In (5.25), the summed elements in the third line have to be interpreted as
FiBα

jk
dBα

jk, etc. The exterior derivatives d(·) arising in P and F have to be
adapted to the temporal and spatial derivatives of inequality (5.18). These
are given by



5.2 Mixture Entropy Inequality 85

Pt = Pθ ∂θ + Pθ̇ ∂θ̇ + P∇θ · ∂(∇θ) +
m∑

α=1

Pρα
∂ρα + · · · +

∑

PZ̄α
· ∂Z̄α ,

Px = Pθ ∇θ + Pθ̇ ∇θ̇ + P∇θ∇(∇θ) +
m∑

α=1

Pρα
∇ρα +

m∑

α=1

P∇ρα
∇(∇ρα)

+
n−1∑

α=1

Pνα
(∇να) +

n−1∑

α=1

P∇να
∇(∇να) +

∑

Pvα
Dα +

∑

Pvα
Wα

+
∑

PBα
∇Bα +

∑

PDα
∇Dα +

∑

PWα
∇Wα +

∑

PZ̄α
∇Z̄α ,

(Fx)ii = Fθ · ∇θ + F θ̇ · ∇θ̇ + (F∇θ)T · ∇(∇θ) +
m∑

α=1

Fρα
· ∇ρα

+
m∑

α=1

(F∇ρα
)T · ∇(∇ρα) +

n−1∑

α=1

Fνα
· (∇να) +

n−1∑

α=1

(F∇να
)T · ∇(∇να)

+
∑

(Fvα
)T · Dα +

∑

(Fvα
)T · Wα +

∑

(FBα
)T · ∇Bα

+
∑

(FDα
)T · ∇Dα −

∑

(FWα
)T · ∇Wα +

∑

(F Z̄α
)T · ∇Z̄α ,

(5.26)

where the transpose of a third order tensor A is defined here as

c · AT (a ⊗ b) = Ac · (a ⊗ b) , ∀ a, b, c ∈ W , (5.27)

which, for any A : V → L(V), interprets the transpose of A as a mapping
AT : L(V) → V. Trivially then AT

ijk = Ajki.
If we substitute (5.26) into (5.18), then partial time and partial space

derivatives of the temperature, θ, arise which can be combined to yield the
material derivative, θ̇. In fact, what is needed is the combination on the left-
hand side of (5.28) below. In Appendix B.2 it is shown that this identity can
be put into the following form:
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{

Pθ ∂θ + Pθ̇ ∂θ̇ + P∇θ · ∂(∇θ)
}

+
{

Pθ ∇θ + Pθ̇ ∇θ̇ + P∇θ∇(∇θ)
}

· v

−
{

Fθ · ∇θ + F θ̇ · ∇θ̇ + F∇θ · ∇(∇θ)
}

= Pθ θ̇ + Pθ̇ θ̈ − Fθ · (∇θ) − F∇θ · ∇(∇θ) +
{

P∇θ − F θ̇

}

· (∇θ̇)

−ρ−1
∑

ρ̄α (P∇θ ⊗∇θ) · (Dα − Wα)

−ρ−1
n−1∑

α=1

{ρα (P∇θ ⊗∇θ)uα − ρn (P∇θ ⊗∇θ)un} · ∇να

−ρ−1
m∑

α=1

{να (P∇θ ⊗∇θ) uα} · (∇ρα) . (5.28)

We further point out that v ·(PxI
∇xI), which arises in the first line of (5.18),

can be written as

(PxI
∇xI) · v =

(

(PxI
){··· } (xI){··· },i

)

vi = (PxI
⊗ v) · ∇xI , (5.29)

where xI stands for all vector and tensor-valued constitutive variables as
indicated in the first expression of (5.24). If we now substitute these relations
into (5.18), we obtain after lengthy manipulations and resorting of terms

πρη = Pθ(θ̇) + Pθ̇(θ̈) − Fθ · (∇θ) − F∇θ · ∇(∇θ) +
{

P∇θ − F θ̇

}

· (∇θ̇)

+
m∑

α=1

{

Pρα
− l̄ρα

}

( ∂ρα) +
m∑

α=1

P∇ρα
· ( ∂∇ρα)

+
n−1∑

α=1

{Pνα
− lνα − s} (∂να) +

n−1∑

α=1

P∇να
· ( ∂∇να)

+
n∑

α=1

{Pvα
− ρ̄αλv

α} · (∂vα) +
n∑

α=1

PDα
· (∂Dα)

+
n∑

α=1

PWα
· (∂Wα) +

n∑

α=1

(

PZ̄α
− λZ

α

)

· ∂Z̄α

(cont.)
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+
n∑

α=1

{

PBα
· (∂Bα) + (PBα

⊗ v) · (∇Bα) − (FBα
)T · (∇Bα)

}

+
m∑

α=1

{

{Pρα
v − Fρα

} − να ( lραvα − Γ uα)

−ρ−1να (P∇θ ⊗∇θ)uα

}

· (∇ρα)

+
m∑

α=1

{

P∇ρα
⊗ v − (F∇ρα

)T
}

· ∇(∇ρα)

+
n−1∑

α=1

{

{Pνα
v − Fνα

} − lναvα + ραΓ uα − s

+ρ−1ρα (P∇θ ⊗∇θ)uα + ρ−1ρn (P∇θ ⊗∇θ)un

}

· (∇να)

+
n−1∑

α=1

{

P∇να
⊗ v − (F∇να

)T
}

· ∇(∇να)

+
n∑

α=1

{{

Pvα
⊗ v − (Fvα

)T
}

− να lναI + ρ̄α (Γ − λv
α ⊗ vα)

−ρ−1ρ̄α (P∇θ ⊗∇θ)
}

· (Dα)

+
n∑

α=1

{{

Pvα
⊗ v − (Fvα

)T
}

− να lναI + ρ̄α (Γ − λv
α ⊗ vα)

+ρ−1ρ̄α (P∇θ ⊗∇θ)
}

· (Wα)

+
n∑

α=1

{

PDα
⊗ v − (FDα

)T
}

· (∇Dα)

+
n∑

α=1

{

PWα
⊗ v − (FWα

)T
}

· (∇Wα)

+
n∑

α=1

{{

PZ̄α
⊗ v − (F Z̄α

)T
}

−
(

λZ
α ⊗ vα

)}

·
(

∇Z̄α

)

−
n∑

α=1

[

Z̄α , λZ
α

]

· Ωα +
n∑

α=1

Φ̄α · λZ
α

+
n∑

α=1

{

λv
α · m̄i

α + lραρ̄αcα + λν
αn̄α

}

� 0 , (5.30)
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where Lα = ∇vα has been decomposed into its symmetric and skew-
symmetric parts. This is necessary, because in [A8] we have equally separated
Lα into Dα and Wα, respectively. These terms also arise in the sixth line of
inequality (5.30). Indeed we show in Appendix B.2 that

PBα
· (∂Bα) + (PBα

⊗ v) · (∇Bα)

= 〈Bα, PBα
〉 · Dα − [Bα, PBα

] · Wα − (PBα
⊗ uα) · (∇Bα) .

(5.31)

Moreover, it is also convenient to introduce the abbreviations

QxI
:= PxI

⊗ v − (FxI
)T (5.32)

and arrange the terms in such a way, that derivatives of those constitutive
variables which are not members of the set S

9 appear at the beginning of
the inequality.

In so doing the entropy inequality takes the final form

πρη = Pθ̇(θ̈) − F∇θ · ∇(∇θ) +
{

P∇θ − F θ̇

}

· (∇θ̇)

+
m∑

α=1

{

Pρα
− l̄ρα

}

( ∂ρα) +
m∑

α=1

P∇ρα
· ( ∂∇ρα)

+
n−1∑

α=1

{Pνα
− lνα − s} (∂να) +

n−1∑

α=1

P∇να
· ( ∂∇να)

+
n∑

α=1

{Pvα
− ρ̄αλv

α} · (∂vα) +
n∑

α=1

PDα
· (∂Dα) +

n∑

α=1

PWα
· (∂Wα)

+
n∑

α=1

(

PZ̄α
− λZ

α

)

· ∂Z̄α

+
m∑

α=1

Q∇ρα
· ∇(∇ρα) +

n−1∑

α=1

Q∇να
· ∇(∇να)

+
n∑

α=1

QDα
· (∇Dα) +

n∑

α=1

QWα
· (∇Wα)

(cont.)

9 In Section 5.1 we denoted these variables as YK (K = 1, . . . , R).
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+
n∑

α=1

{

QZ̄α
−
(

λZ
α ⊗ vα

)}

·
(

∇Z̄α

)

−
n∑

α=1

{

(PBα
⊗ uα) + (FBα

)T
}

· (∇Bα)

+Pθ(θ̇) − Fθ · (∇θ)

+
m∑

α=1

{

Qρα
− να ( lραvα − Γ uα) − ρ−1να (P∇θ ⊗∇θ)uα

}

· (∇ρα)

+
n−1∑

α=1

{

Qνα
− lναvα + ραΓ uα − s

−ρ−1ρα (P∇θ ⊗∇θ)uα + ρ−1ρn (P∇θ ⊗∇θ)un

}

· (∇να)

+
n∑

α=1

{

Qvα
− να lναI + ρ̄α (Γ − λv

α ⊗ vα)

+ 〈Bα , PBα
〉 − ρ−1ρ̄α (P∇θ ⊗∇θ)

}

· (Dα)

+
n∑

α=1

{

Qvα
− να lναI + ρ̄α (Γ − λv

α ⊗ vα)

− [Bα , PBα
] + ρ−1ρ̄α (P∇θ ⊗∇θ)

}

· (Wα)

−
n∑

α=1

[

Z̄α , λZ
α

]

· Ωα +
n∑

α=1

Φ̄α · λZ
α

+
n∑

α=1

{

λv
α · m̄i

α + lραρ̄αcα + λν
αn̄α

}

� 0 . (5.33)

This formidably looking inequality is now in the form from which all subse-
quent inferences are drawn. This will be done in the following two chapters.



Chapter 6

Thermodynamic Analysis I
Liu Identities, One-Forms and
Integrability Conditions

Abstract The extended entropy inequality, derived and stated at the end of Chap.

5 is used to derive the Liu identities and the reduced entropy inequality in Sect. 6.1.

Further reductions of the former are only possible if the implications of the symmetry

group of the material are accounted for. This is done here for isotropy of the mix-

ture, but also requires a number of ad-hoc assumptions. The most significant ones of

these suppose (i) that the Lagrange multiplier of the mixture energy equation is a

universal function of the (empirical) temperature and its time rate of change and (ii)

that the Lagrange multiplier of the constituent momentum equation is proportional

to the negative constituent diffusion velocity with the Lagrange multiplier of the

energy as proportionality factor. On the basis of a number of Lemmas proved by

Liu and an additional theorem motivated by him and a few technical assumptions

restricting the functional dependence of two-forms arising in the Liu identities, we are

then able to define the constituent thermodynamic pressures, the constituent config-

uration pressures and constituent free enthalpies as quantities that are derivable from

a Helmholtz-like free energy (whose number of independent variables is drastically

reduced) and the saturation pressure. Moreover, all Lagrange multipliers can be

expressed in terms of these variables; more specifically, they all have the Lagrange

multiplier of the energy as a common factor. Some of the above mentioned ad-hoc

assumptions are physically motivated, others are mathematically enforced, but all

clearly state the conditions for which the validity of the theory ensues.

6.1 Liu Identities and Residual Entropy Inequality

We recall Liu’s Lemma stated in relations (5.5) to (5.9). Inequality (5.33)
corresponds to (5.7), the Liu identities and the residual entropy inequal-
ity follow from (5.8) and (5.9). To deduce these, note that this inequal-
ity has been ordered such that the first nine lines are linear in Y =
{

θ̈, ∇(∇θ), ∇θ̇, . . . ∇Z̄α, ∇Bα

}

whereas the remaining terms do not con-
tain elements of Y. If we now follow Liu’s Lemma (see Section 5.1), a first

L. Schneider, K. Hutter, Solid-Fluid Mixtures of Frictional Materials 91
in Geophysical and Geotechnical Context, Advances in Geophysical
and Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-02968-4 6,
c© Springer-Verlag Berlin Heidelberg 2009
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set of the Liu identities, i. e.

Pθ̇ = 0, Pρα
= l̄ρα, α = 1, . . . , m,

P∇ρα
= 0, α = 1, . . . ,m, Pνα

= lνα + s, α = 1, . . . , n − 1,

P∇να
= 0, α = 1, . . . , n − 1, Pvα

= ρ̄αλv
α, α = 1, . . . , n,

PDα
= 0, α = 1, . . . , n, PZ̄α

= λZ
α , α = 1, . . . , n,

PWα
= 0, α = 1, . . . , n ,

(6.1)

can be read off from (5.33). Using these relations, the remaining Liu identities
for the vector-valued one-form F reduce to

F∇θ · ∇(∇θ) = 0, ∀ ∇(∇θ),
{

P∇θ − F θ̇

}

· ∇θ̇ = 0, ∀ ∇θ̇,

Q∇ρα
· ∇(∇ρα)

(6.1)3= −F∇ρα
· ∇(∇ρα) = 0, ∀ ∇(∇ρα),

α = 1, . . . , m,

Q∇να
· ∇(∇να)

(6.1)5= −F∇να
· ∇(∇να) = 0, ∀ ∇(∇να),

α = 1, . . . , n − 1,

QDα
· (∇Dα)

(6.1)7= −(FDα
)T · ∇Dα = 0, ∀ ∇Dα,

α = 1, . . . , n,

QWα
· (∇Wα)

(6.1)9= −(FWα
)T · ∇Wα = 0, ∀ ∇Wα,

α = 1, . . . , n,

{

QZ̄α
−
(

λZ
α ⊗ vα

)}

· ∇Z̄α

(6.1)8=
{

−(F Z̄α
)T −

(

PZ̄α
⊗ uα

)}

· ∇Z̄α = 0, ∀ ∇Z̄α,

α = 1, . . . , n,

{

PBα
⊗ uα + (FBα

)T
}

· ∇Bα = 0, ∀ ∇Bα,

α = 1, . . . , n .

(6.2)

Relations (6.2)1,3,4 are equivalent to the restrictions that
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F∇θ, F∇ρα
, F∇νβ

are all skew-symmetric ,

for α = 1, . . . , m and β = 1, . . . , n − 1 ,
(6.3)

where, the symmetry of the expressions ∇(∇θ), ∇(∇ρα) and ∇(∇να) is used.
In (6.2)5 we can use the symmetry of Dα in FDα

and ∇Dα to show that
FDα

has both properties, symmetry and skew symmetry. This can only be
satisfied if FDα

vanishes.1 Similarly, we can take the skew symmetry of Wα

in FWα
and ∇Wα into account to conclude that FWα

must vanish. With
the third order zero tensor 03 we write

FDα
= 03, FWα

= 03, α = 1, . . . , n . (6.4)

Furthermore, (6.2)2 simply implies

F θ̇ = P∇θ (6.5)

and the symmetry of Z̄α and Bα require the brackets in (6.2)7,8 to be skew-
symmetric. Thus, we infer that

{

(F Z̄α
)T +

(

λZ
α ⊗ uα

)}

,
{

(FBα
)T +

(

PBα
⊗ uα

)}

are both skew-symmetric for α = 1, . . . , n .

(6.6)

Via the symmetries of Z̄α and Bα in (F Z̄α
)T and (FBα

)T, respectively, it is
shown in Appendix B.3 that the following relations hold

F Z̄α
= −

(

uα ⊗ PZ̄α

) (6.1)8= −
(

uα ⊗ λZ
α

)

, α = 1, . . . , n,

FBα
= − (uα ⊗ PBα

) , α = 1, . . . , n .

(6.7)

It cannot be denied that the analysis from (5.12) to (5.33) is cumbersome,
prone to errors and demanding patience. However, the reward, expressed
by the Liu identities (6.1) to (6.7), that is gained from it, is far reaching
and justifies the effort. This should be kept in mind if such cumbersome
computations have to be conducted.

One immediate consequence of the statements in the left column of (6.1) is
that λε is a function of the independent constitutive variables and no more.
Indeed, from (5.24) and the definition

1 The proof is as follows: in index-notation (6.2)5 reads

∂Fi

∂Dα
jk

∂Dα
jk

∂xi
= 0

which implies that ∂Fi/∂Dα
jk must be skewsymmetric in j, k, since Dα

jk is symmetric

in these variables. However, Dα
jk is symmetric in j, k, so ∂Fi/∂Dα

jk is also symmetric
in j, k.
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P,xI
:= (ρη),xI

−λε(ρε),xI
, xI ∈ S , (6.8)

it follows e. g. that

λε =
(ρη),xI

(ρε),xI

, for xI ∈
{

θ̇, �∇ρ, �∇ν, �D, �W
}

, (6.9)

subject to the condition that for at least those xI for which neither the
numerator nor the denominator vanish, λε is defined by the right-hand side
of (6.9). It follows, since the right-hand side of (6.9) is a function of the
constitutive variables, the left-hand side is such a function as well. This is
motivation for us to assume that λε is a function of constitutive class also
when the right-hand side of (6.9) is not determined.2

Having shown this, it then also follows from the right column of (6.1) that
λρ

α, λν
α and λZ

α (α = 1, . . . , n) are functions of the same class.
To write down the residual inequality, which comprises the terms below

line 9 of (5.33), it is advantageous to introduce the abbreviations

Γ∗ := Γ − ρ−1 sym (P∇θ ⊗∇θ) = Γ∗T (6.10)
(

= λερ−1T + (η − λεε)I − ρ−1 sym (P∇θ ⊗∇θ)
)

,

s∗ := svn + ρnΓ∗un . (6.11)

With them, the residual entropy inequality takes the form

2 It will be shown in the course of the developments that numerator and denominator
of the right-hand side of equation (6.9) vanish for xI ∈ { �∇ρ, �D, �W} but differ

from zero for xI = θ̇ if θ̇ is an independent constitutive variable. If θ̇ should not
be an independent constitutive variable, then λε = (ρη),θ /ρε,θ of which again the
numerator and denominator on the right-hand side do not vanish. So, the claim that
λε is a function of the constitutive class is safe.
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πρη = Pθ (θ̇) − Fθ · (∇θ)

+
m∑

α=1

{να (Γ∗ − lραI)uα − Fρα

−ρ−1να skw (P∇θ ⊗∇θ)uα

}

· (∇ρα)

+
n−1∑

α=1

{

(ραΓ∗ − lναI)uα − Fνα
+ sv − s∗

− skw (P∇θ ⊗∇θ) (ξαuα − ξnun)
}

· (∇να)

+
n∑

α=1

{

να (ραΓ∗ − lναI) − ρ̄α sym (λv
α ⊗ uα)

−(Fvα
)T + 〈Bα , PBα

〉
}

· (Dα)

(cont.)

+
n∑

α=1

{

− ρ̄α skw (λv
α ⊗ uα) − skw

(

(Fvα
)T
)

− [Bα, PBα
]

+ρ−1ρ̄α skw (P∇θ ⊗∇θ)
}

· (Wα)

−
n∑

α=1

[

Z̄α, λZ
α

]

· Ωα

⎫

⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(∗)

+
n∑

α=1

λZ
α · Φ̄α +

n∑

α=1

{

λv
α · m̄i

α + lραρ̄αcα + λν
αn̄α

}

� 0 , (6.12)

where the obvious identities

skw (P∇θ ⊗∇θ) · Dα = 0 ,

skw (λv
α ⊗ uα) · Dα = 0 ,

(ρ̄αΓ∗ − lναI) · Wα = 0 ,

sym (λv
α ⊗ uα) · Wα = 0 ,

(Fvα
)T · Wα = skw

(

(Fvα
)T
)

· Wα

(6.13)
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have been used. Those lines in (6.12) which are marked with an asterisk will
be set to zero in the later assumptions [A13a] or [A13b]. However, before
we address further exploitations of this inequality, let us analyse in greater
depth the inferences that can be drawn from the Liu identities.

6.2 Exploiting the Isotropy of the Vector-valued
One-form

Owing to the assumption of material isotropy of the debris flow mixture and
due to the principle of objectivity, we concluded that equation (4.43) applies
to all constitutive quantities. Thus, the vector-valued one-form (5.14), viz.,

F := dφρη + λε (dq) −
∑

(dT̄α)λv
α , (6.14)

consists of elements which are of constitutive class and must satisfy the rela-
tion

QF̂ = F̂
(

θ, θ̇, Q(∇θ), �ρ, Q( �∇ρ), �ν, Q( �∇ν), Q(�v),

Q�BQT, Q�DQT, Q �WQT, Q�̄ZQT
)

(6.15)

for all orthogonal tensors Q(t). For the ensuing thermodynamic analysis it is
advantageous to define the extra entropy flux

k := φρη + λεq −
∑

T̄αλv
α , (6.16)

which is also of constitutive class. The determination of the connection be-
tween k and F is facilitated if one further assumption is made, namely

[A11] λv
α = −λεuα ;

its introduction is not absolutely necessary, but its adequacy will be discussed
in Section 6.3, cf. also Svendsen & Hutter [115] and Kirchner [71].
From the application of the exterior derivative to k and the product rule of
differentiation, we then obtain via (6.14)

dk = F + dλε
{

q +
∑

T̄αuα

}

+ λε
∑

T̄α(duα) . (6.17)

In this section we aim to exploit the isotropy of F in order to find further
restrictions on Fxi

, xi ∈ S, and also on k. For convenience we recall the Liu
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identities for F , given in (6.3)-(6.7),

F∇θ is skew-symmetric, FWγ
= 03,

F∇ρα
is skew-symmetric, FDγ

= 03,

F∇νβ
is skew-symmetric, F Z̄γ

= −
(

uγ ⊗ PZ̄γ

)

,

F θ̇ = P∇θ, FBγ
= −

(

uγ ⊗ PBγ

)

(6.18)

for α = 1, . . . , m, β = 1, . . . , n − 1, γ = 1, . . . , n. The ensuing analysis is
concerned with the identification of the conditions, according to which one
may claim that

F∇θ = 0, F∇ρα
= 0, F∇νβ

= 0 (6.19)

for α = 1, . . . ,m, β = 1, . . . , n − 1. We have failed to give an uncondi-
tional proof that would generally hold, but we can show, under which con-
ditions (6.19) hold true. These conditions are stated as assumptions [A12],
[A13 a,b] and [A14] and are statements on certain constitutive dependen-
cies and/or interrelations, which, of course, must be obeyed if (6.19) are used
(as we will do). The restricted proof of (6.19) follows in the next 11 pages,
involves mathematical theorems and ends with (6.55). In a first reading, the
proof may be skipped and only the assumptions [A12] - [A14] be carefully
looked at. We now outline the proof.

In the context of single-material bodies, Liu [80] proved useful theorems
in which restrictions on FxI

, xI ∈ S, and k were found via the isotropy of F .
Unfortunately, in our approach, we cannot directly rely on Liu’s theorems,
because (i) in the one-form, F , and in the extra entropy flux, k, the additional
flux terms

∑
(dT̄α)λv

α and
∑

T̄αλv
α arise which are absent in the single-

material analysis of Liu [80], (ii) there is no restriction on Fvα
which is

necessary for Liu’s derivations and (iii) the restrictions on F θ̇, F Z̄α
and

FBα
imply additional complications.

To circumvent these problems, let us, first, invoke the principle of objec-
tivity to find an additional restriction on Fvα

(α = 1, . . . , n). Even though
we recognised that Fvα

is in general not the gradient of a potential and
thus,

∑
Fvα

does not vanish directly by using objectivity reasons, we are,
however, able to use the result (4.50), deduced for any constitutive quantity
from the principle of objectivity for

∑
φρη

,vα
and

∑
q,vα

which are parts of
∑

Fvα
(see (5.14)), i. e.,

n∑

α=1

Fvα

(4.50)
=

n∑

α=1

φρη
,vα

︸ ︷︷ ︸

0

+λε
n∑

α=1

q,vα

︸ ︷︷ ︸

0

−
n∑

α=1

n∑

β=1

(

λv
βT̄β,vα

)

= −
n∑

β=1

n∑

α=1

(

λv
βT̄β

)

,vα
+

n∑

α=1

n∑

β=1

λv
β,vα

T̄β . (6.20)
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We can apply the principle of objectivity to
∑n

α=1

(

λv
βT̄β

)

,vα
and

∑n
α=1 λε

,vα
,

and claim them to vanish, because λv
β and λε have been proven to be consti-

tutive quantities. Therefore,

n∑

α=1

Fvα
=

n∑

α=1

n∑

β=1

λv
β,vα

T̄β . (6.21)

If we again apply [A11] to the right-hand side of (6.21) and use the identity

uβ,vα

(3.56)
=

(

δβα − ξ̄α

)

I , (6.22)

where δβα is the Kronecker delta with respect to the constituents, we
obtain

n∑

α=1

Fvα
= −

n∑

α=1

⎛

⎝

n∑

β=1

λε
(

δβα − ξ̄α

)

T̄β

⎞

⎠−
n∑

α=1

λε
,vα

︸ ︷︷ ︸

0

n∑

β=1

uβT̄β

= −
n∑

α=1

λεT̄α + λε
n∑

α=1

ξ̄α

︸ ︷︷ ︸

1

n∑

β=1

T̄β = 0 , (6.23)

where (3.54)1 and (4.50) with [A11] have been used. Consequently, we ob-
serve that if [A11] is required,

∑
Fvα

vanishes automatically.
In a second step, we extend Liu’s method published 1996 in [80] and

valid for vector-valued functions to those including tensor-valued functions.
Unfortunately, we cannot prevent additional assumptions, first on the skew-
symmetric part of Fvα

and, second, on the quantities [Bα, PBα
] and [Z̄α, λZ

α ]
arising in the term (∗) of (6.12) (see Theorem 1 below). First, we recall Liu’s
Lemma 1 ([80, Section 2]):

Lemma 1 (Liu’s Lemma 1 ) Let F (Q) be a (scalar-, vector- or tensor-
valued) function defined on the space of second order tensors L (W) and
suppose that F (Q) = 0 for any Q ∈ Q (W), where Q (W) is the group
of orthogonal tensors on W.
Then the gradient of F at the identity tensor is symmetric, i. e., for any
skew-symmetric W ∈ L (W),3

∂QF (I) {W} = 0. (6.25)

3 The braces, {·}, express linearity of the operator, i. e.,

A{V + λW} = A{V} + λA{W} (6.24)
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�
We cite Liu’s proof from [80]:

Proof. For the skew symmetric tensor W = −WT and 0 < ε � 1, the
equality

(I + εW)(I + εW)T = I + ε2WWT (6.26)

holds. Therefore, the tensor (I + εW) is orthogonal to within second order
terms O(ε2) in ε. This observation can be written as

I + εW = QW + O(ε2) , (6.27)

where QW ∈ Q (W). F (QW) = 0 and F (I) = 0 are valid by assumption. If
we now define the gradient ∂QF as a linear transformation on L (W) we can
use the above-mentioned results to conclude the proof with

F (I + εW) − F (I) =: ∂QF (I) {εW} + O(ε2)

= F
(

QW + O(ε2)
)

− F (QW)

= ∂QF (QW)
{

O(ε2)
}

+ O(ε2)

= O(ε2) ,

which implies that ∂QF (I) {W} must vanish. �

Liu’s second Lemma in [80] reads

Lemma 2 Let h (A,v) be an isotropic vector-valued function of a second
rank tensor A and a vector v. Then the function h satisfies the following
relation

(δijhk − δikhj) =
(

∂hi

∂vj
vk − ∂hi

∂vk
vj

)

+
(

∂hi

∂Ajl
Akl +

∂hi

∂Alj
Alk − ∂hi

∂Akl
Ajl −

∂hi

∂Alk
Alj

)

. (6.28)

�
We remark that a function h which depends on more than one second rank
tensor or more than one vector, h

(
�A, �v

)

= h (A1, · · · ,AR , v1, · · · ,vP ), sat-
isfies the identity

(δijhk − δikhj) =
∑

v

(
∂hi

∂vj
vk − ∂hi

∂vk
vj

)

+
∑

A

(
∂hi

∂Ajl
Akl +

∂hi

∂Alj
Alk − ∂hi

∂Akl
Ajl −

∂hi

∂Alk
Alj

)

, (6.29)
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where the symbols
∑

A and
∑

v stand for the summations over all tensors,
AI , and all vectors, vJ , upon which the function h depends. The proof of
Lemma 2 and the extension (6.29) were also performed by Liu [80]. For our
purpose, we expand Lemma 2 and relation (6.29) to tensor-valued functions.

Lemma 3 (Extension of Lemma 2)
Let T

(
�A, �v

)

= T (A1, · · · ,AR, v1, · · · ,vP ) be an isotropic tensor-valued
function of R tensors, AI , and P vectors, vJ . Then, the function T satisfies
the following relation

(δjiTkp + δpjTik) − (δkiTjp + δpkTij) =
P∑

J=1

(

∂Tip

∂vJ
j

vJ
k − ∂Tip

∂vJ
k

vJ
j

)

+
R∑

I=1

(

∂Tip

∂AI
jl

AI
kl +

∂Tip

∂AI
lj

AI
lk − ∂Tip

∂AI
kl

AI
jl −

∂Tip

∂AI
lk

AI
lj

)

. (6.30)

�
The proof of this third Lemma parallels Liu’s proof of Lemma 2 in [80].

Proof. Because T is isotropic, it must satisfy the following identity:

F (Q) := T
(

Q�AQT, Q�v
)

− QT
(
�A, �v

)

QT ≡ 0 . (6.31)

In the spirit of the proof of Lemma 1, we deduce from equation (6.31)

ε∂QF (I) {W} + O(2) = F (I + εW) − F (I)

=
(

T
(

{I + εW} �A {I + εW}T
, {I + εW}�v

)

−{I + εW}T
(
�A, �v

)

{I + εW}T
)

−
(

T
(
�A, �v

)

− T
(
�A, �v

))

= T
(

�A + ε2W�AWT + ε
{

W�A − �AW
}

, �v + εW�v
)

−
(

T
(
�A, �v

)

+ εWT
(
�A, �v

)

+ εT
(
�A, �v

)

WT

+ε2WT
(
�A, �v

)

WT
)

= T
(
�A, �v

)

+ ε
R∑

I=1

∂AI
T {WAI − AIW} + ε

P∑

J=1

∂vJ
T {WvJ}

−T
(
�A, �v

)

− εWT
(
�A, �v

)

− εT
(
�A, �v

)

WT + O(ε2) , (6.32)
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where ε is a small number. Dividing by ε and subsequently letting ε tend to
zero, then in view of Lemma 1 this yields,

∂QF (I) {W} =
R∑

I=1

∂AI
T {WAI − AIW} +

P∑

J=1

∂vJ
T {WvJ}

−
{

WT
(
�A, �v

)

+ T
(
�A, �v

)

WT
}

= 0 . (6.33)

If we now write the term in braces in the second row as

WT
(
�A, �v

)

+ T
(
�A, �v

)

WT = (δjiTkp + δpjTik) Wjk ei ⊗ ep , (6.34)

we obtain
{

R∑

I=1

(

∂Tip

∂AI
jl

AI
kl +

∂Tip

∂AI
lj

AI
lk

)

+
P∑

J=1

∂Tip

∂vJ
j

vJ
k

− (δjiTkp + δpjTik)

}

Wjk ei ⊗ ep = 0 ,

(6.35)

which must be satisfied for every skew-symmetric tensor W. Therefore, the
expression in braces in (6.35) must be symmetric in jk which can be written
as

{

(δjiTkp + δpjTik) − (δkiTjp + δpkTij)
}

ei ⊗ ep

=

{
P∑

J=1

(

∂Tip

∂vJ
j

vJ
k − ∂Tip

∂vJ
k

vJ
j

)

+
R∑

I=1

(

∂Tip

∂AI
jl

AI
kl +

∂Tip

∂AI
lj

AI
lk − ∂Tip

∂AI
kl

AI
jl −

∂Tip

∂AI
lk

AI
lj

)}

ei ⊗ ep .

(6.36)

The proof of Lemma 2 is analogous. �

The auxiliary results spelled out in Lemmae 2 and 3 allow the formulation
of the following theorem.

Theorem 1 (analogous to Theorem 1 of Liu [80])
Assume that the following properties hold [compare (6.14) and (6.18)]

(i) For the M vector variables xJ ∈
{

∇θ, �∇ν, �∇ρ
}

,4

4 See Liu identities (6.18)1,3,5.
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(FxJ )ij + (FxJ )ji =

(

∂φρη
i

∂xJ
j

+
∂φρη

j

∂xJ
i

)

+ λε

(

∂qi

∂xJ
j

+
∂qj

∂xJ
i

)

−
n∑

β=1

(λv
β)p

(

∂T̄ β
ip

∂xJ
j

+
∂T̄ β

jp

∂xJ
i

)

= 0.

(6.37)

(ii) For the vector variables vα, (α = 1, . . . , n),

[A12] (Fvα
)ij − (Fvα

)ji =

(

∂φρη
i

∂vα
j

−
∂φρη

j

∂vα
i

)

+ λε

(

∂qi

∂vα
j

− ∂qj

∂vα
i

)

−
n∑

β=1

(λv
β)p

(

∂T̄ β
ip

∂vα
j

−
∂T̄ β

jp

∂vα
i

)

= 0.

(iii) For every tensor variable Ă ∈
{

�D, �W
}

5 ,

(

F Ă

)

ijk
=

∂φρη
i

∂Ăjk

+ λε ∂qi

∂Ăjk

−
n∑

β=1

(

λv
β

)

p

(

∂T̄ β
ip

∂Ăjk

)

= 0 . (6.38)

(iv) For every tensor variable Ã ∈
{

�̄Z, �B
}

and the corresponding

PÃ ∈
{

PZ̄1
, · · · ,PZ̄n

, PB1 , · · · ,PBn

}
6 ,

(F Ã)
ijk

=
∂φρη

i

∂Ãjk

+λε ∂qi

∂Ãjk

−
n∑

β=1

(

λv
β

)

p

(

∂T̄ β
ip

∂Ãjk

)

= −uα
i (PÃ)

jk
, (6.39)

where the constituent-index α of uα
i has to match that of Ã.

(v) Moreover, if Ωα = Wα, assume that [compare (*) in (6.12)]

[A13a] [Bα, PBα
] +

[

Z̄α, λZ
α

]

= −ρ̄α skw(λv
α ⊗ uα)

− skw
(

(Fvα
)T
)

+ ρ−1ρ̄α skw (P∇θ ⊗∇θ) ,

5 See Liu identities (6.18)2,4.
6 See Liu identities (6.18)6,8.
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but when Ωα is independent of Wα, that

[A13b] [Bα, PBα
] = −ρ̄α skw(λv

α ⊗ uα) − skw
(

(Fvα
)T
)

+ ρ−1ρ̄α skw (P∇θ ⊗∇θ) ,

[

Z̄α, λZ
α

]

= 0,

for all α = 1, . . . , n.

(vi) Finally,

[A14] suppose that all FxJ , xJ ∈
{

∇θ, �∇ρ, �∇ν
}

are independent of
∇ρ1, . . . ,∇ρn, ∇ν1, . . . ,∇νn and ∇θ .

Then

F∇θ = 0, F∇ρα
= 0, F∇νβ

= 0, α = 1, . . . , m ,

β = 1, . . . , n − 1 .
(6.40)

�
We remark that owing to the isotropy of F the assumption of symmetry of all
Fvα

is justified for thermodynamic equilibrium (cf. Svendsen & Hutter

[115, page 2046]).
The assumptions in items (v) and (vi) do not follow from physical reason-

ing, but are necessary for the derivation of (6.40). Due to item (v), the terms
identified by the asterisk in the residual inequality (6.12), together vanish
identically.

Proof. Let us take the result of Lemma 3, apply it to the constituent Cauchy

stress tensor, T̄α, and multiply the resulting equation by

λv
α = (λv

α)l el . (6.41)

If, for convenience, we omit the basis vector ei and the bar in T̄α and use
the symmetry of Tα, we obtain via (6.36)



104 6 Thermodynamic Analysis I
{

δij(λv
α)pT

α
pk − δik(λv

α)pT
α
pj

}

−
{

(λv
α)kTα

ji − (λv
α)jT

α
ki

}

=
N∑

J=1

(λv
α)p

(

∂Tα
pi

∂xJ
j

xJ
k −

∂Tα
pi

∂xJ
k

xJ
j

)

+
∑

Ă,Ã

(λv
α)p

(
∂Tα

pi

∂Ajl
Akl +

∂Tα
pi

∂Alj
Alk −

∂Tα
pi

∂Akl
Ajl −

∂Tα
pi

∂Alk
Alj

)

,

(6.42)

where N (= M + n) is the number of vectors upon which the constituent
Cauchy stress tensors depend, i. e.

{

∇θ, �∇ν, �∇ρ, �v
}

. Moreover, Lemma
2, applied to φρη and q, yields

(

δijφ
ρη
k − δikφρη

j

)

=
N∑

J=1

(

∂φρη
i

∂xJ
j

xJ
k − ∂φρη

i

∂xJ
k

xJ
j

)

+
∑

ĂÃ

(
∂φρη

i

∂Ajl
Akl +

∂φρη
i

∂Alj
Alk − ∂φρη

i

∂Akl
Ajl −

∂φρη
i

∂Alk
Alj

)

(6.43)

and

λε (δijqk − δikqj)

=
N∑

J=1

λε

(

∂qi

∂xJ
j

xJ
k − ∂qi

∂xJ
k

xJ
j

)

+
∑

ĂÃ

λε

(
∂qi

∂Ajl
Akl +

∂qi

∂Alj
Alk − ∂qi

∂Akl
Ajl −

∂qi

∂Alk
Alj

)

.

(6.44)

If we now recall the definitions of k and F (see (6.14), (6.16)), sum equation
(6.42) over all constituents and subtract the result from corresponding sums
of (6.43) and (6.44), we obtain
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(δijkk − δikkj) −
n∑

α=1

(

(λv
α)j(T̄α)ki − (λv

α)k(T̄α)ji

)

=
N∑

J=1

(

FxJ

ij xJ
k −FxJ

ik xJ
j

)

+
∑

Ă

(

F Ă
ijlĂkl −F Ă

iklĂjl + F Ă
iljĂlk −F Ă

ilkĂlj

)

+
∑

Ã

(

F Ã
ijlÃkl −F Ã

iklÃjl + F Ã
iljÃlk −F Ã

ilkÃlj

)

,

(6.45)

where we employed the abbreviations

FxJ

ik := (FxJ )ik , xJ ∈
{

∇θ, �v, �∇ν, �∇ρ
}

,

F Ă
ijk :=

(

F Ă

)

ijk
, Ă ∈

{

�D, �W
}

,

F Ã
ijk := (FÃ)

ijk
, Ã ∈

{
�̄Z, �B

}

.

(6.46)

By using the Liu identities (6.4) (item (iii) of Theorem 1), we see that each
member in the sum over Ă ∈

{
�D, �W

}

vanishes by itself. Therefore, (6.45)
reads

(δijkk − δikkj) −
n∑

α=1

(

(λv
α)j(T̄α)ki − (λv

α)k(T̄α)ji

)

=
N∑

J=1

(

FxJ

ij xJ
k −FxJ

ik xJ
j

)

+
∑

Ã

(

F Ã
ijlÃkl −F Ã

iklÃjl + F Ã
iljÃlk −F Ã

ilkÃlj

)

.

(6.47)

The first part of the second sum on the right-hand side of (6.47) can be
expressed as
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∑

Ã

(

F Ã
ijlÃkl −F Ã

iklÃjl

)

= −
n∑

β=1

(

uβ
i (λZ

β )jlZ̄
β
kl − uβ

i (λZ
β )klZ̄

β
jl

)

−
n∑

β=1

(

uβ
i (PBβ

)jlB
β
kl − uβ

i (PBβ
)klB

β
jl

)

= −
n∑

β=1

uβ
i

([

λZ
β , Z̄β

]

jk
+
[

PBβ
, Bβ

]

jk

)

(6.48)

via the symmetry of Z̄β , Bβ , λZ
β and (6.1)8 & (6.7) (item (iv) of Theorem

1). Due to the symmetry of Z̄β , λZ
β , Bβ and PBβ

the same result follows also
for the second part of the second sum; we thus obtain

∑

Ã

(

F Ã
ijlÃkl −F Ã

iklÃjl + F Ã
iljÃlk −F Ã

ilkÃlj

)

= −2
n∑

β=1

uβ
i

([

λZ
β , Z̄β

]

jk
+
[

PBβ
, Bβ

]

jk

)

. (6.49)

In item (v) of Theorem 1 both assumptions, [A13a] and [A13b], allow us
to write (6.49) in the form

∑

Ã

(

F Ã
ijlÃkl −F Ã

iklÃjl + F Ã
iljÃlk −F Ã

ilkÃlj

)

= −2
n∑

α=1

uα
i

{(

skw(Fvα
)T
)

jk
+ ρ̄α

(

skw(λv
α ⊗ uα)

)

jk

−ρ−1ρ̄α

(

skw (P∇θ ⊗∇θ)
)

jk

}

(3.57)
= −2

n∑

α=1

uα
i

{(

skw(Fvα
)T
)

jk
+ ρ̄α

(

skw(λv
α ⊗ uα)

)

jk

}

(ii)
= −2

n∑

α=1

uα
i

{

ρ̄α

(

skw(λv
α ⊗ uα)

)

jk

}

[A11]
= 0 . (6.50)

With these manipulations (6.47) reduces to
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(δijkk − δikkj)−
n∑

α=1

(

(λv
α)j(T̄α)ki − (λv

α)k(T̄α)ji

)

︸ ︷︷ ︸

(∗)

=
N∑

J=1

(

FxJ

ij xJ
k −FxJ

ik xJ
j

)

. (6.51)

This equation is one major result of the proof. It will be of use later on. Liu

[80] derived a similar equation [80, eqn.(11)], but compared to (6.51) the ad-
ditional term (∗) does not occur. Liu [80] is only dealing with single-material
bodies, so this term is exclusively due to the mixture theory approach pursued
here.

We further exploit (6.51) by choosing special values for i, j and k. We
obtain
• (i, j, k) = (1, 2, 3) :

−
n∑

α=1

(

(λv
α)2(T̄α)31 − (λv

α)3(T̄α)21
)

=
M∑

J=1

(

FxJ

12 xJ
3 −FxJ

13 xJ
2

)

+
n∑

α=1

(Fvα
12 vα

3 −Fvα
13 vα

2 ) ,

(6.52a)

• (i, j, k) = (2, 3, 1) :

−
n∑

α=1

(

(λv
α)3(T̄α)12 − (λv

α)1(T̄α)32
)

=
M∑

J=1

(

FxJ

23 xJ
1 −FxJ

21 xJ
3

)

+
n∑

α=1

(Fvα
23 vα

1 −Fvα
21 vα

3 ) ,

(6.52b)

• (i, j, k) = (3, 1, 2) :

−
n∑

α=1

(

(λv
α)1(T̄α)23 − (λv

α)2(T̄α)13
)

=
M∑

J=1

(

FxJ

31 xJ
2 −FxJ

32 xJ
1

)

+
n∑

α=1

(Fvα
31 vα

2 −Fvα
32 vα

1 ) .

(6.52c)

If we now sum all three equations of (6.52), use the symmetry of all T̄α and
all Fvα

(item (ii) in Theorem 1 or [A12]) and the skew-symmetry of FxJ

with xJ ∈
{

∇θ, �∇ρ, �∇ν
}

, see (6.3), it is observed that
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2
M∑

J=1

(

FxJ

13 xJ
2 + FxJ

21 xJ
3 + FxJ

32 xJ
1

)

= 2
M∑

J=1

⎛

⎜
⎝

FxJ

32

FxJ

13

FxJ

21

⎞

⎟
⎠ ·

⎛

⎝

xJ
1

xJ
2

xJ
3

⎞

⎠

︸ ︷︷ ︸

xJ

= 0. (6.53)

In item (vi) of Theorem 1 we assumed that FxJ , xJ ∈
{

∇θ, �∇ρ, �∇ν
}

, are
independent of ∇ρ1, . . . ,∇ρn, ∇ν1, . . . ,∇νn and ∇θ. Therefore, since xJ in
(6.53) are arbitrary, we necessarily have

⎛

⎜
⎝

FxJ

32

FxJ

13

FxJ

21

⎞

⎟
⎠ = 0 , (6.54)

and with the skew-symmetry of FxJ we obtain

FxJ = 0, xJ ∈
{

∇θ, �∇ρ, �∇ν
}

. (6.55)

This completes the proof. �

The restriction (6.55) is not the only consequence of equation (6.51). When
choosing yet another set of indices a representation for k can be deduced. To
this end, we first incorporate (6.55) into (6.51) and obtain

(δijkk − δikkj) −
n∑

α=1

(

(λv
α)j(T̄α)ki − (λv

α)k(T̄α)ji

)

=
n∑

α=1

(

Fvα
ij vα

k −Fvα

ik vα
j

)

.

(6.56)

If we choose the indices

(i, j, k) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, 1, 2
1, 1, 3
2, 2, 1
2, 2, 3
3, 3, 1
3, 3, 2

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (6.57)

take into account assumptions [A11], [A12], use the fact that λε depends
only on constitutive variables and employ the result (4.50) of the principle of
objectivity for

∑
Fvα

we obtain, after a lengthy calculation (see Appendix
(B.4)),

k = − 1
2λε

∑

α

{{

T̄α−tr
(

T̄α

)

I
}

uα +(λε)−1
{

Fvα
−tr (Fvα

) I
}

uα

}

, (6.58)
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or
k = − 1

2λε
∑

α

Kα(S) uα , (6.59)

with

Kα =
{

T̄α − tr
(

T̄α

)

I
}

+ (λε)−1
{

Fvα
− tr (Fvα

) I
}

. (6.60)

So, k is given by a combination of the diffusion velocities with tensorial
coefficients which are constitutive quantities.

From the definition (6.16) of k and [A11], i. e.

k = φρη + λε
[

q +
∑

T̄αuα

]

, (6.61)

and the result (6.58), (6.59) we can now deduce a representation for φρη. If
we write the first sum on the right-hand side of (6.58) in the form

− λε
∑

1
2

{

T̄α − tr
(

T̄α

)

I
}

uα

, = −λε
∑{

1
2

(

T̄α − 1
3 tr(T̄α)I

)

− 1
3 tr(T̄α)I

}

uα

(6.62)

we obtain via the definition of k, (6.61),

φρη =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−λε
{

q +
∑{(

T̄α − 1
3 tr(T̄α)I

)

+ 1
3 tr(T̄α)I

}

uα

}

, if k = 0,

−λεq − λε
∑

{
3
2

{

T̄α − 1
3 tr(T̄α)I

}

uα

+ 1
2 (λε)−1

{

Fvα
− tr(Fvα

)I
}

uα

}

, if k �= 0.

(6.63)

For simple, single-material bodies the extra entropy flux is collinear with
the heat flux vector (cf. Svendsen et al. [116]). In (6.63) we observe that
this is no longer the case, if we have multiple constituents with differing
velocities. Thus, the present mixture model is, as expected, not in agreement
with the postulate of Clausius & Duhem. The additional contributions
to the entropy flux vector are, first, due to the deviatoric Cauchy stress
tensors

(

T̄α − 1
3 tr

(

T̄α

)

I
)

and, second, due to the vector-valued one-form
Fvα

(α = 1, . . . , n). Thus, the flux of entropy is not only due to heat-flux
but results also from shear-stresses (more precisely: deviatoric stresses) within
the constituents and, provided k �= 0, a contribution which is related to the
constituent velocity differences. In the context of the kinetic theory these
additional terms can be interpreted as ‘higher moments’ (cf. Truesdell and
Muncaster [120]).

Note also that k and (φρη + λεq) are both vectors that can be written
as vectorial combinations of uα. This implies that both vanish identically
provided uα = 0 for all components Kα,
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k
∣
∣
∀uα=0

= 0 , (φρη + λεq)
∣
∣
∀uα=0

= 0 . (6.64)

This is obvious from (6.58)-(6.59).
With the help of the result (6.58) we also intend to reduce the number

of dependencies of the Lagrange multiplier λε. If we account for relation
(6.17), apply the exterior derivative to (6.58) and use the product rule of
differentiation, we obtain

dk
(6.17)
= F + dλε

{

q +
∑

T̄αuα

}

+ λε
∑

T̄α(duα)

= −dλε
{∑

1
2

{

T̄α − tr(T̄α)I
}

uα

}

− 1
2λε

∑{{

T̄α − tr(T̄α)I
}

(duα) + d
(

T̄α − tr(T̄α)I
)

uα

}

− 1
2

∑{{

Fvα
− tr(Fvα

)I
}

(duα) + d
(

Fvα
− tr(Fvα

)I
)

uα

}

.

(6.65)

Unfortunately, we cannot reduce, on the basis of (6.65), the dependencies of
the function λε because no constitutive law has yet been specified for the
constituent Cauchy stress tensors and the one-form Fvα

.
However, (6.65) can be used to find a representation for F θ̇ or P∇θ, respec-

tively (see (6.18)7); indeed if we specialize the exterior derivatives in (6.65)
to the derivative with respect to θ̇, we obtain

k,θ̇ = F θ̇ + λε
,θ̇

{

q +
∑

T̄αuα

}

= −λε
,θ̇

∑{
1
2

(

T̄α − tr(T̄α)I
)

uα

}

−λε
∑{

1
2

(

T̄α − tr
(

T̄α

)

I
)

,θ̇
uα

}

−
∑

1
2

(

Fvα
− tr (Fvα

) I
)

,θ̇
uα , (6.66)

which, via (6.18)7, yields the expression

P∇θ = −λε
,θ̇

{

q +
∑

T̄αuα

}

−λε
,θ̇

∑{
1
2

(

T̄α − tr(T̄α)I
)

uα

}

−λε
∑{

1
2

(

T̄α − tr
(

T̄α

)

I
)

,θ̇
uα

}

−
∑

1
2

(

Fvα
− tr (Fvα

) I
)

,θ̇
uα . (6.67)
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If we again use relation (6.62) and write

∑

T̄αuα =
∑{(

T̄α − 1
3 tr(T̄α)I

)

+ 1
3 tr(T̄α)

}

uα , (6.68)

we obtain

P∇θ = −λε
,θ̇

q − 3
2λε

,θ̇

∑(

T̄α − 1
3 tr(T̄α)I

)

uα

− 1
2λε

∑(

T̄α − tr(T̄α)I
)

,θ̇
uα

− 1
2

∑(

Fvα
− tr (Fvα

) I
)

,θ̇
uα . (6.69)

In their frictional, single-material theory, Svendsen et al. [116] obtained the
result P∇θ = −λε

,θ̇
q which can be recovered from (6.69) if, for instance,

the number of constituents is set to one or if there is no constituent velocity
difference.

6.3 Integrability Conditions

In this section we aim to translate the Liu identities for the quantities (see
(6.1))

PxI
, xI ∈ S\

{

θ, ∇θ, ρ, ν
}

(6.70)

to conditions on constitutive quantities. For this purpose, we shall explore
the integrability conditions for the above terms; this is necessary if we wish
P =

∑K
I=1 PxI

dxI to be in the form of a total differential and thus form
the general Gibbs relation. In doing so, we are following the procedure of
Svendsen & Hutter [115]. Accordingly, the constitutive quantities, and in
particular d(ρη) and d(ρε) which arise in the definition of P, see (5.13), are
exact one-forms; i. e. they satisfy the relations

d2(ρη) = 0 and d2(ρε) = 0 . (6.71)

These restrictions on the derivatives of ρη and ρε correspond to their own
integrability conditions. The requirement d2(ρη) = 0 is equivalent to

(ρη),xIxJ
−(ρη),xJxI

= 0, ∀xI , xJ ∈ S . (6.72)

An analogous result also holds for ρε. Application of the exterior derivative
d(·) to

P := d(ρη) − λεd(ρε) , (6.73)

and use of (6.71), results in
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0 = d2(ρη) = dλε ∧ d(ρε) + dP . (6.74)

To prove this, we apply the exterior derivative to the definition of P and then
obtain

0 = d2(ρη) = d
(

λεd(ρε)
)

+ dP . (6.75)

The first term on the right-hand side of (6.75) can be written as in (6.72).
This yields

(

λε(ρε),xI

)

,xJ
−
(

λε(ρε),xJ

)

,xI

= λε,xJ
(ρε),xI

+λε(ρε),xIxJ
−λε,xI

(ρε),xJ
−λε(ρε),xJxI

= λε
{

(ρε),xIxJ
−(ρε),xJxI

}

︸ ︷︷ ︸

0

+λε,xJ
(ρε),xI

−λε,xI
(ρε),xJ

,
(6.76)

for all xI , xJ ∈ S. With the definition of the wedge product (see (2.18)) we
observe that

dλε ∧ d(ρε), (6.77)

is equivalent to

λε,xJ
(ρε),xI

−λε,xI
(ρε),xJ

∀xI , xJ ∈ S , (6.78)

and thus the desired relation (6.74) emerges. It can also be written as

PxI ,xJ
− PxJ ,xI

= λε,xI
(ρε),xJ

−λε,xJ
(ρε),xI

, (6.79)
xI , xJ ∈ S (I < J) .

This can be interpreted as integrability conditions for the one-form P.
From (6.1) we know that PxI

= 0 for xI ∈
{

θ̇, �∇ρ, �∇ν, �D, �W
}

and thus
(6.79) splits into the following statements

(i) PxI ,xJ
− PxJ ,xI

= λε,xI
(ρε),xJ

−λε,xJ
(ρε),xI

, (6.80)

xI , xJ ∈
{

θ, ∇θ, �ρ, �ν, �v, �B, �̄Z
}

(I < J) ,

(ii) PxI ,xJ
= λε,xI

(ρε),xJ
−λε,xJ

(ρε),xI
, (6.81)

xI ∈
{

θ, ∇θ, �ρ, �ν, �v, �B, �̄Z
}

,

xJ ∈
{

θ̇, �∇ρ, �∇ν, �D, �W
}

,

(iii) 0 = λε,xI
(ρε),xJ

−λε,xJ
(ρε),xI

, (6.82)

xI , xJ ∈
{

θ̇, �∇ρ, �∇ν, �D, �W
}

(I < J) .
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We are not able to derive any further restrictions for constitutive quantities
from equations (6.80) to (6.82), because within the present developments λε

still depends on the entire set of constitutive variabes, S. To make progress
in the thermodynamic analysis, we now drastically reduce the variable de-
pendence of λε by imposing the assumption

[A15] λε = λ̂ε
(

θ, θ̇
)

.

It is motivated by many earlier results, e. g. by Müller [97] and many others
for materials for which [A15] has been proved. We have stated before (see
Section 4.2) that the dependence of λε on θ̇ is necessary for the linearised
heat equation to be hyperbolic.

[A15] neglects contributions of all constituent quantities except θ and θ̇
which are common to all constituents. This is fairly well justified, because
λε is a Lagrange multiplier for a mixture balance equation which describes
the mixture as a whole. Consequently, contributions of single constituent
variables should not arise, rather only mixture quantities, e. g. apart from θ
and θ̇, the mixture mass density, ρ, the mixture stretching tensor, D, etc. If
we, in addition, think of λε as a quantity that describes only those effects
that are related to the mixture behaving as a single body, we can require
λε to have the same properties as its analogue in thermodynamic theories of
single material bodies (cf. Müller [97], Hutter [58]). There, it is shown
that λε is a universal function of θ̇ and θ, the terminology ‘universal’ meaning
‘independent of the material behaviour’. If λε is proved to be an universal
function of θ and θ̇ then the coldness λ̂ε

(

θ, θ̇
)

define a derived concept,
not given a priori. [A15] destroys this property and assigns to λ̂ε

(

θ, θ̇
)

a
similar role as is assigned to the absolute temperature in the Clausius-

Duhem inequality. So, from a conceptual point of view, one might equally
have assumed [A15] ab initio. This way, many computations would have
turned out to be simpler. This was not done because it was our intention to
possibly prove [A15].

With this assumption at hand, we can further reduce (6.80)-(6.82) to the
forms
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(i) PxI ,xJ
= PxJ ,xI

,

xI , xJ ∈
{

∇θ, �ρ, �ν, �v, �B, �̄Z
}

(I < J) ,

(ii) (ρη),xI θ̇ = λε(ρε),xI θ̇ ,

(ρη),xIθ −Pθ,xI
= λε(ρε),xIθ ,

xI ∈
{

∇θ, �ρ, �ν, �v, �B, �̄Z
}

,

(iii) ε,xI
= 0,

xI ∈
{

�∇ρ, �∇ν, �D, �W
}

,

(6.83)

where for (ii) the definition of P, (6.73), has been used. From the last of these
relations we immediately obtain

ε = ε̂
(

SR

)

, (6.84)

SR :=
{

θ, θ̇, ∇θ, �ρ, �ν, �v, �B, �̄Z
}

= S \ { �∇ρ, �∇ν, �D, �W} , (6.85)

which, with the help of

PxI
= (ρη),xI

−λε(ρε),xI
(6.86)

and the fact that PxI
has the same dependence as ε, see (6.1)3,5,7,9, leads to

the same dependence for the entropy, viz.,

η = η̂
(

θ, θ̇, ∇θ, �ρ, �ν, �v, �B, �̄Z
)

. (6.87)

If we consider the definition of the one-form P, along with the Liu iden-
tities (6.1) for P, we obtain

P := d(ρη) − λεd(ρε) =
K∑

I=1

PxI
dxI

= Pθ(dθ) + P∇θ(d∇θ) +
m∑

α=1

l̄ρα(dρα) +
n−1∑

α=1

(lνα + s) (dνα)

+
∑

ρ̄αλv
α · (dvα) +

∑

PBα
· (dBα) +

∑

λZ
α · (dZ̄α) ,

(6.88)

with l̄ρα, lνα and s defined in (5.19), (5.20) and (5.22). Relation (6.88) is re-
garded as the general Gibbs relation. Using definitions (3.64)2,3, we write
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d(ρε) = d(ρεI) + d(ρεD)

(3.57)
= d(ρεI) + d

(
n∑

α=1

1
2 ρ̄αuα · uα

)

= d(ρεI) +
n∑

α=1

{

ρ̄αuα · d(vα) + 1
2 (uα · uα)d(ρ̄α)

}

,

(6.89)

which, when substituted into

d(ρη) − λεd(ρε) =
K∑

I=1

PxI
dxI , (6.90)

yields

d(ρη) − λεd(ρεI)

=
K∑

I=1

PxI
dxI + λεd(ρεD)

=
K∑

I=1

PxI
dxI + λε

n∑

α=1

{

ρ̄αuα · d(vα) + 1
2 (uα · uα)d(ρ̄α)

}

.

(6.91)

Therefore, using (6.88), this expression takes the form

d(ρη) − λεd(ρεI) = Pθ(dθ) + P∇θ(d∇θ) +
m∑

α=1

l̄ρIα
(dρα)

+
n−1∑

α=1

(

lνIα
+ s

)

(dνα) +
∑

ρ̄α (λv
α + λεuα) · (dvα)

+
∑

PBα
· (dBα) +

∑

λZ
α · (dZ̄α) ,

(6.92)

in which we have used the definitions (5.19), (5.20), (5.22) with the aid of
which the quantities

lρIα
:= lρα + 1

2λε(uα · uα),

lνIα
:= lνα + 1

2λερα(uα · uα) − k,

k := 1
2λερn(un · un)

(6.93)

have been defined. Let us now employ the identity
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d(ρη) − λεd(ρεI) = −λεd
(

ρεI − (λε)−1ρη
)

+ (λε)−1 (ρη) dλε (6.94)

to write (6.92) as

−d
(

ρεI −
1
λε

ρη
)

= +
1
λε

{(

Pθ − (λε)−1ρη (λε),θ
)

(dθ)

− (λε)−1 ρη (λε),θ̇ (dθ̇) + P∇θ(d∇θ)

+
m∑

α=1

l̄ρIα
(dρα) +

n−1∑

α=1

(

lνIα
+ s

)

(dνα)

+
∑

ρ̄α (λv
α + λεuα) · (dvα)

+
∑

PBα
· (dBα) +

∑

λZ
α · (dZ̄α)

}

.

(6.95)

If we specialize d(·) in (6.95) to derivatives with respect to the constitutive
variables, the following set of equations is obtained

−
(

ρεI −
1
λε

ρη
)

,θ =
1
λε

Pθ −
1

(λε)2
ρη λε,θ ,

−
(

ρεI −
1
λε

ρη
)

,θ̇ = − 1
(λε)2

ρη λε,θ̇ ,

−
(

ρεI −
1
λε

ρη
)

,∇θ =
1
λε

P∇θ ,

−
(

ρεI −
1
λε

ρη
)

,ρα
=

1
λε

l̄ρIα
, α = 1, . . . ,m ,

−
(

ρεI −
1
λε

ρη
)

,να
=

1
λε

(

lνIα
+ s

)

, α = 1, . . . , n − 1 ,

−
(

ρεI −
1
λε

ρη
)

,vα
=

1
λε

ρ̄α(λv
α + λεuα) , α = 1, . . . , n ,

−
(

ρεI −
1
λε

ρη
)

,Bα
=

1
λε

PBα
, α = 1, . . . , n ,

−
(

ρεI −
1
λε

ρη
)

,Z̄α
=

1
λε

λZ
α , α = 1, . . . , n .

(6.96)

From these relations we observe that the Lagrange multipliers for the mo-
menta λv

α (α = 1, . . . , n), those for the masses λρ
α (α = 1, . . . ,m) and volume

fractions λν
α (α = 1, . . . , n − 1), hidden in the definitions of l̄ρIα

and lνIα
, see

(5.19), (5.20), depend on the constitutive variables, because they are deter-
mined by the ‘inner’ part of a Helmholtz free energy-like quantity, defined
as
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ΨG := ε − (λε)−1η = ΨG
I + ΨG

D ,

ΨG
I := εI − (λε)−1η , ΨG

D := εD .
(6.97)

Moreover, in view of (6.96)5, (6.93) and (5.20), λν
α (α = 1, . . . , n − 1) also

depend on the constraint variable, s, due to saturation. It is also not cor-
rect to call ΨG the Helmholtz free energy because we have not made the
assumption λε = (θ)−1 see [A15]. This is the reason for us to use the
superscript G as the identifier of this distinction. On the other hand, we can
regard ΨG

I as a potential because in (6.96), λε is at our disposal to ascertain
that d

(

ρεI − 1
λε ρη

)

is the total derivative of a well defined function. In this
way, we can regard λε as an integrating denominator .

In applying assumption [A11] to (6.96)6 we observe that its right-hand
side vanishes; so ΨG

I becomes independent of all vα. Thus, [A11] effectively
says that ΨG

I is unaffected by any vα, i. e.7

ΨG
I = Ψ̂G

I

(

θ, θ̇, ∇θ, �ρ, �ν, �B, �̄Z
)

. (6.98)

For single material bodies this assumption is a consequence of the princi-
ple of objectivity, however for mixtures, [A11] goes beyond the principle of
objectivity, because not only

∑

(ΨG
I ),vα

= 0 , (6.99)

for the sum over the constituents must hold, but a fortiori

(ΨG
I ),vα

= 0 , α = 1, . . . , n , (6.100)

for each constituent individually.
We now introduce the following definitions:

1. The (true) partial thermodynamic pressures

p̄G
α := ρρα(ΨG

I ),ρα
, α = 1, . . . , m , (6.101)

2. the configuration pressures

βG
α := ρ(ΨG

I ),να
, α = 1, . . . , n − 1 , (6.102)

3. the saturation pressure

ς :=
s

λε

(5.22)
= − lνn

λε

(5.19)
=

(5.20)
ρnun · vn − 1

λε
(ρnλρ

n + λν
n) . (6.103)

7 In fact, a relation like (6.96)6 arises in many mixture theories. It is the simplifiction
of this relation, which is the primary motivation for assumption [A11].
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The first two are functionally known, once the Helmholtz-like free energy is
determined as a function of ρα and να. If such dependencies are not present,
these pressures vanish and thus do not enter the field equations. For the
thermodynamic pressures this is e. g. the case for each volume preserving
constituent. The configuration pressure should be accounted for more often
than one might think; for instance, in soil mechanics any dependence on void
ratio corresponds here to a dependence of ΨG

I on the volume fractions. Finally,
the saturation pressure is a field related to the nth

Lagrange multiplier λρ
n,

λν
n and λε as indicated in (6.103).
The above definitions allow us to derive from (6.96)4,5 that

− (λε)−1 lρIα
= ΨG

I + ρ−1
α pG

α , α = 1, . . . , m , (6.104)

and

− (λε)−1 lνIα
=

s

λε
+ ρ,να

ΨG
I + ρ(ΨG

I ),να

= ς + (ρα − ρn)ΨG
I + βG

α , α = 1, . . . , n − 1 , (6.105)

in which we also used the auxiliary result

ρ,να
= ρα − ρn , α = 1, . . . , n − 1 . (6.106)

The set of (m + n− 1) relations in (6.96)4,5 which, besides s, includes the
(m+n−1) Lagrange multipliers for the constituent masses, λρ

α, and volume
fractions, λν

α, confirms that the field s (or ς) must be regarded as indepen-
dent of the constitutive variables, and thus is considered as an independent
constraint field.

Following Svendsen & Hutter [115], we also introduce the ‘inner ’ parts
of the Gibbs free energy-like quantities, μG

Iα
(α = 1, . . . , n), corresponding

to ΨG
I . As pointed out before, only when λε = θ−1 we are allowed to call

ΨG
I the ‘inner’ part of the Helmholtz free energy, and μG

Iα
the ‘inner’ parts

of the constituent Gibbs free energies (chemical potentials, free enthalpies);
nevertheless, all satisfy the requirements of potentials. We define μG

Iα
as

μG
Iα

:= −(λε)−1 lρIα

(6.104)
= ΨG

I + (ρα)−1pG
α , (6.107)

where the right-hand side of (6.107) is formally the same as the usual def-
inition of the Gibbs free energy of a viscous fluid (cf. Hutter [60] or any
other book on thermodynamics treating single fluids). If we consider relations
(6.101) to (6.105) and the identity

lνIα
= ρα lρIα

+ λν
α − k , (6.108)
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which is deducible from (6.93) and (5.20), we obtain for the above variant of
the Gibbs free energies

ρ̄αμG
Iα

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ρα(ρΨG
I ),ρα

(6.108)
= να

{

(ρΨG
I ),να

+ ια + ςI

}

, α = 1, . . . , m ,

να

{

(ρΨG
I ),να

+ ια + ςI

}

, α = m + 1, . . . , n − 1 ,

να(ια + ςI) , α = n ,

(6.109)

where the abbreviations
ια := (λε)−1λν

α (6.110)

and
ςI := ς − 1

2ρn(un · un) (6.111)

have been used. Whilst ια depends on the Lagrange multipliers λε and λν
α,

ςI also has a dependence on the diffusive kinetic energy of constituent Kn.

We continue with the integrability conditions on φρη, q and T̄α. In the
language of differentiable forms, we require dφρη, dq and dT̄α to be exact
one-forms, i. e.

d2 (φρη) = 0, d2 (q) = 0, d2
(

T̄α

)

= 0 . (6.112)

These relations must be satisfied to make F , defined in (5.14), an exact
differential. With the help of (5.14), we can transform (6.112)1 into8

0 = d2φρη = dF − (dλε) ∧ (dq) +
∑

(dλv
α) ∧ (dT̄α) , (6.113)

which can also be written as

FxI ,xJ
− FxJ ,xI

=
(

q,xI
(λε),xJ

−q,xJ
(λε),xI

)

−
∑{

(T̄α),xI
(λv

α),xJ
−(T̄α),xJ

(λv
α),xI

}

,

(6.114)

for xI , xJ ∈ S with (I < J). Taking into account [A11], [A15], uα =
ûα

(

�ρ, �ν, �v
)

and (see (6.2)2,4 and (6.4)),

FxI
= 0, xI ∈

{

∇θ, �∇ρ, �∇ν, �D, �W
}

(6.115)

we obtain

8 The derivation of (6.113) is similar to that of (6.74).
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FxI ,xJ
= FxJ ,xI

,

xI , xJ ∈ S\
{

θ, θ̇, �ρ, �ν, �v
}

,

FxI ,xJ
− FxJ ,xI

= λε
∑{

(T̄α),xI
(uα),xJ

−(T̄α),xJ
(uα),xI

}

,

xI , xJ ∈
{

�ρ, �ν, �v
}

,

FxI ,xJ
= (λε),xI

{

q,xJ
+
∑{

(T̄α),xJ
uα

}}

,

xJ ∈
{

∇θ, �∇ρ, �∇ν, �D, �W
}

,

xI ∈
{

θ, θ̇
}

,

FxI ,xJ
= λε

∑{

(T̄α),xJ
(uα),xI

}

,

xJ ∈
{

∇θ, �∇ρ, �∇ν, �D, �W
}

,

xI ∈
{

�ρ, �ν, �v
}

.

(6.116)

We listed these integrability conditions on F for the sake of completeness.
The above relations have no direct impact on the model, but of course, we
are not allowed to violate them.

It is worthwhile to highlight the key results obtained via the exploitation
of the integrability conditions which follow from the Liu identities.

(i) On the basis of [A11], i. e. λv
α = −λεuα and [A15], i. e. λε = λ̂ε

(

θ, θ̇
)

,
it was shown that with the aid of (6.83) and earlier relations the in-
ternal energy ε, entropy η and Helmholtz-like free energy ΨG

I can-
not depend on �∇ρ, �∇ν, �D and �W and are thus only functions of
SR =

{

θ, θ̇, ∇θ, �ρ, �ν, �v, �B, �̄Z
}

. Of these thermodynamic potentials,

ΨG, see (6.97) and (6.98), is particularly significant since [A11], in con-
junction with (6.96)6, also rules out a dependence of ΨG

I on any vα:
ΨG

I = ΨG
I (SR \ {�v}).

(ii) The constituent thermodynamic pressures, p̄G
α , constituent configura-

tion pressures, βG
α and the inner parts of the constituent Gibbs free en-

ergies, μG
Iα

are all density weighted derivatives of the inner part of the
Helmholtz-like free energy ΨG

I , see (6.101), (6.102), (6.107). They are,
hence, equally functions of SR \ {�v}.

(iii) All Lagrange parameters except λν
n can be expressed in terms of

thermodynamic quantities. To see this, let us combine the definitions (5.19)
and (6.93)1 with (6.104) to obtain
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lρα := λρ
α + λv

α · vα = −λε
(

ΨG
I + ρ−1

α pG
α − 1

2uα · uα

)

,

(α = 1, . . . , n) ,
(6.117)

or with [A11],

λρ
α = λε

(

uα · vα − ΨG
I − ρ−1

α pG
α + 1

2uα · uα

)

,

(α = 1, . . . ,m) .
(6.118)

Similarly, from a combination of (5.20) and (6.93)2,3 with (6.104) we de-
duce

λν
α = (−ραlρα) H(m − α) − λε ( ς + (ρα − ρn)ΨG

I

+ 1
2 (ραuα · uα − ρnun · un) )

= λεια , (α = 1, . . . , n − 1) ,

(6.119)

where H is the Heaviside step function. It is seen that with [A11] and
the above formulae (6.118), (6.119), all Lagrange multipliers, except λν

n,
are determined as functions of the universal coldness function λ̂ε

(

θ, θ̇
)

,
the Helmholtz-like free energy, the densities ρα, and diffusion velocities
uα.

(iv) The only undetermined field is a quantity proportional to −λν
n, defined

in (5.22) as s = −lνn, or in (6.103) as ς = s/λε and referred to as saturation
pressure, see e. g. (6.119). This scalar variable replaces as a new free field
the n-th volume fraction, that is lost as an independent field through the
saturation condition.

(v) Inner parts of the constituent Gibbs-like free energies, defined in
(6.107)1, have their analogue, ια := λν

α/λε (α ≤ n − 1), and later will
be shown to occur together only with the specific mass and volume frac-
tion production rate densities, respectively. Thus, they play only a role
when chemical reactions or fragmentations or internal phase changes oc-
cur and non-trivial volume fraction production rates arise. Therefore, in
processes where these are absent, they are ‘dormant’ variables.

(vi) It is straightforward to deduce from (6.96)1 and definition (6.97) that

η = − 1
(1/λε),θ

{

ΨG
I,θ +

Pθ

ρλε

}

, (6.120)

which reduces to the classical relation when θ̇ is not among the independent
constitutive variables,
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η = −ΨG
I,θ if θ̇ /∈ S , (6.121)

since in this case Pθ = 0, see e. g. (5.30). Else Pθ must be determined,
(see (vi),(7.36) and (7.86) for its equilibrium value).

(vii) It is equally straightforward to derive from (6.96)2,3,7,8, definition
(6.97) and (6.120) the formulae

η = − 1
(1/λε),θ̇

ΨG
I,θ̇

, (6.122)

Pθ = −ρλε
{

(1/λε),θη + ΨG
I,θ

}

, (6.123)

P∇θ = −ρλεΨG
I,∇θ , (6.124)

PBα
=

{
−ρλεΨG

I,Bα
− λεΨG

I να
∂ρα

∂Bα
, if α = 1, . . . , m ,

−ρλεΨG
I,Bα

, if α = m + 1, . . . , n ,
(6.125)

PZ̄α
= λZ

α = −ρλεΨG
I,Z̄α

, α = 1, . . . , n , (6.126)

provided θ̇ is an independent constitutive variable. These formulae com-
plete the evaluation of the integrability conditions (6.96). They are inter-
esting because: first, they show that non-equilibrium entropy and Pθ, P∇θ,
PBα

and λZ
α (α = 1, . . . , n) are all derivable from the Helmholtz-like free

energy, ΨG
I . Second, combining (6.120) with (6.122) yields an expression

for Pθ, namely

Pθ = ρλε(1/λε),θ

{
ΨG

I,θ̇

(1/λε),θ̇

−
ΨG

I,θ

(1/λε),θ

}

. (6.127)

Here, the term in braces is the dynamic minus the static entropy. Third, if
ΨG

I does not depend on θ̇, then Pθ = 0, and the entropy follows from
(6.120). Moreover, in this case F θ̇ = P∇θ = 0 (see (6.5)), and the
Helmholtz-like free energy is independent of ∇θ.
All these results show a structure which a posteriori support expectations
that one might have wished to guess but which are nevertheless surprising.
Totally new and surprising is perhaps only (6.127).



Chapter 7

Thermodynamic Analysis II
Residual Inequality, Thermodynamic
Equilibrium, Isotropic Expansion

Abstract After the full exploitation of the Liu identities in the preceding chapter,

we draw in this chapter some (but not all) inferences which follow from the condition

that the entropy production density assumes its minimum value in thermodynamic

equilibrium. This requirement implies that ∂πρη/∂nI

∣
∣
E = 0, where πρη is the en-

tropy production density and nI are those independent variables which vanish in

equilibrium. The evaluation of this condition first requires πρη to be expressed in an

appropriate form. Choosing for nI , in turn, the variables vα, θ̇, ∇θ and Dα, which

are the constituent velocities, the time rates of change of the temperature, the tem-

perature gradient and constituent stretchings, allows evaluation of the equilibrium

representations of the constituent interaction forces, entropy, heat flux vector and

constituent stress tensors, which exhibit a clear structure of their dependences on

(i) a thermodynamic potential (Helmholtz-like free energy) and thermodynamic,

configuration and saturation pressures, (ii) extra entropy flux, (iii) frictional effects

via their production terms and (iv) interaction rate densities of constituent mass and

volume fractions. It becomes very clear how the various equilibrium terms are affected

if simplifying assumptions are made about the functional dependencies of the above

mentioned production terms.

The remainder of the chapter deals with quasi-linear expansions of the constitutive

relations for the interaction rate densities of mass, volume fraction and for the extra

entropy flux vector about a state in which these quantities are linear in the thermo-

dynamic non-equilibrium variables and in the constituent mass and volume fraction

gradients. The formulae for the constituent interaction forces, entropy, equilibrium

heat flux and constituent stresses are slightly simplified thereby.

7.1 Residual Entropy Inequality in Final Form

In Section 6.1 we have already found one form of the residual entropy inequal-
ity, namely (6.12). Now, we wish to incorporate into the entropy inequality
the results from the last two sections, i. e. the extra entropy flux k, (6.16),

L. Schneider, K. Hutter, Solid-Fluid Mixtures of Frictional Materials 123
in Geophysical and Geotechnical Context, Advances in Geophysical
and Environmental Mechanics and Mathematics, DOI 10.1007/978-3-642-02968-4 7,
c© Springer-Verlag Berlin Heidelberg 2009
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the pressures pG
α and βG

β (α = 1, . . . ,m, β = 1, . . . , n − 1), (6.101) and
(6.102), and the potentials, ΨG

I ,(6.97) and μG
Iα
, (6.107). Recalling [A11] and

the definition (6.16) of k yields

k = φρη + λε
{

q +
∑

T̄αuα

}

, (7.1)

and its connection to F (see, (6.17)) implies the following relations:

k,xI
= 0, xI ∈

{

∇θ, �∇ρ, �∇ν, �D, �W
}

,

k,θ = Fθ + λε,θ
{

q +
∑

T̄γuγ

}

,

k,θ̇ = F θ̇ + λε,θ̇
{

q +
∑

T̄γuγ

}

,

k,ρα
= Fρα

+ λε
n∑

γ=1

T̄γ(uγ),ρα

(3.68)1= Fρα
− ναλερ−1TIuα ,

k,νβ
= Fνβ

+ λε
n∑

γ=1

T̄γ(uγ),νβ
= Fνβ

− λεTI

(

ξβuβ − ξnun

)

,

k,vγ
= Fvγ

+ λε
n∑

α=1

T̄α(uα),vγ

(4.48)1= Fvγ
+ λε

{

T̄γ − ξ̄γTI

}

,

k,Bγ
= FBγ

(6.18)8= −(uγ ⊗ PBγ
)

(6.96)7= λερ(uγ ⊗ (ΨG
I ),Bγ

) ,

k,Z̄γ
= F Z̄γ

(6.18)6= −(uγ ⊗ λZ
γ )

(6.96)8= λερ(uγ ⊗ (ΨG
I ),Z̄γ

) ,

for α = 1, . . . , m, β = 1, . . . , n − 1 and γ = 1, . . . , n .

(7.2)

The first of equations (7.2) follows from (6.17), (6.18)2,4 and (6.40). Equations
(7.2)4,5,6 are derived from (6.17) and one of the identities

(uγ),ρα
= − (ρ)−1ναuα ,

(uγ),νβ
= −

(

ξβuβ − ξnun

)

,

(uα),vγ
=
(

δαγ − ξ̄γ)I ,

(7.3)

where relations (7.3)1,2 are derived in Appendix B.5 whilst the derivation of
(7.3)3 is straightforward.

With relations (7.2) we are in the position to replace FxI
, (xI ∈

{

θ, �ρ,

�ν, �v
}

) in (6.12) by derivatives of k. If we also apply [A11] and use either
[A13a] or [A13b] we obtain the following alternative form of the residual
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entropy inequality:

πρη = Pθ (θ̇) −
{

k,θ −(λε),θ
{

q +
∑

T̄αuα

}}

· (∇θ)

+
m∑

α=1

{

να

(

Γ∗ − lραI
)

uα − k,ρα
−ναλερ−1TI uα

−ρ−1να skw (P∇θ ⊗∇θ)uα

}

· (∇ρα)

+
n−1∑

α=1

{(

ραΓ∗ − lναI
)

uα − k,να
−λεTI

(

ξαuα − ξnun

)

+sv − s∗ − skw (P∇θ ⊗∇θ)
(

ξαuα − ξnun

)}

· (∇να)

+
n∑

α=1

{

να

(

ραΓ∗ − lναI
)

+ ρ̄αλε(uα ⊗ uα) + 〈Bα , PBα
〉

−k,vα
+λε

(

T̄α − ξ̄αTI

)}

· (Dα)

+
n∑

α=1

λZ
α · Φ̄α

+
n∑

α=1

{

λv
α · m̄i

α + lραρ̄αcα + λν
αn̄α

}

� 0. (7.4)

In comparison to (6.12) the contribution indicated in (6.12) by the aster-
isk is now gone and FxI

are replaced by the derivatives of k with respect
to {θ, ρα, να, vα}. By incorporating (ΨG

I ),Bα
, (ΨG

I ),Z̄α
, the free enthalpies

μG
Iα
, the true thermodynamic and the configuration pressures, pG

α and βG
α , re-

spectively into (7.4), we obtain, after cumbersome calculations, the following
inequality (see Appendix B.6)
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πρη = Pθ (θ̇) −
{

k,θ −(λε),θ
{

q +
∑

T̄αuα

}}

· (∇θ)

+λε
m∑

α=1

{

να

(

Δ∗α
D + ρ−1

α pG
α I
)

uα − (λε)−1k,ρα

−να (ρλε)−1 skw (P∇θ ⊗∇θ)uα

}

· (∇ρα)

+λε
n−1∑

α=1

{{

ραΔ∗α
D + ζαI − 1

2ρn(un · un)I
}

uα − c − (λε)−1k,να

−(λε)−1 skw (P∇θ ⊗∇θ)
(

ξαuα − ξnun

)}

· (∇να)

+λε
n∑

α=1

{

ρ̄α

(

Δ∗α
D + uα ⊗ uα

)

+
(

ζ̄α − 1
2ναρn(un · un)

)

I

−2ρ sym
(

(ΨG
I ),Bα

)

Bα − (λε)−1k,vα
+T̄α

}

· (Dα)

−λε
n∑

α=1

ρ(ΨG
I ),Z̄α

·Φ̄α

−λε
n∑

α=1

{

uα · m̄i
α + ρ̄α

(

μG
Iα
+ 1

2uα · uα

)

cα − ιαn̄α

}

� 0 , (7.5)

in which the following definitions have been used:

Δ∗α
D := ρ−1

{

TD − (λε)−1 sym (P∇θ ⊗∇θ)
}

− ΨG
DI + 1

2 (uα · uα)I ,(7.6)

ζα :=

{
βG

α − ρnΨG
I + ς, α = 1, . . . , n − 1,

−ρnΨG
I + ς, α = n,

(7.7)

c :=
(

ρnΔ∗n
D + ζnI

)

un , (7.8)

with TD given in (3.68). For convenience, we also recall definitions (6.97),
(6.101), (6.102) and (6.103), i. e.

ΨG
I := εI − (λε)−1η , p̄G

α := ρρα(ΨG
I ),ρα

,

βG
α := ρ(ΨG

I ),να
, ς := s

λε ,

ια := λν
α

λε ,

(7.9)
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and also recall (6.120), (6.122)-(6.126). Needless to say, that all quantities
in (7.6)-(7.9) and (6.120), (6.122)-(6.126) are known once ΨG

I , ς and uα are
prescribed, where ια follow, from (6.110) and (6.119). Moreover, (7.5) has
the appropriate form from which thermodynamic equilibrium properties can
be deduced.

7.2 Mixture Thermodynamic Equilibrium

We say that a process describes a thermodynamic equilibrium if no entropy is
produced in the course of such a process. In the present situation the mixture
entropy production rate density, πρη, vanishes if the following conditions hold:

• the non-equilibrium variables, n, vanish, i. e.

n :=
{

θ̇, ∇θ, �v, �D, �W
}

= 0, (7.10)

• the constitutive quantities of the frictional production rate densities, Φ̄α

(α = 1, . . . , n), are zero in thermodynamic equilibrium,

lim
n→0

Φ̄α =: Φ̄α

∣
∣
E

= 0, α = 1, . . . , n , (7.11)

• the interaction rate densities for mass, cα, and volume fraction, nα (α =
1, . . . , n), also vanish in thermodynamic equilibrium,

lim
n→0

cα =: cα

∣
∣
E

= 0, lim
n→0

nα =: nα

∣
∣
E

= 0, α = 1, . . . , n . (7.12)

The complement to the set of non-equilibrium variables in S, n, is that of the
equilibrium variables

e :=
{

θ, �ρ, �ν, �∇ρ, �∇ν, �B, �̄Z
}

. (7.13)

Without loss of generality, it is reasonable to decompose all constitutive quan-
tities, denoted by Ĉ(e, n), into an equilibrium part, Ĉ

∣
∣
E
, and a non-equilibrium

part, Ĉ
∣
∣
N
, i. e.

Ĉ (e, n) = Ĉ
∣
∣
E
(e) + Ĉ

∣
∣
N
(e, n) ,

Ĉ
∣
∣
E
(e) := lim

n→0
Ĉ (e, n) ,

Ĉ
∣
∣
N
(e, n) := Ĉ(e, n) − Ĉ

∣
∣
E
(e) .

(7.14)

In the present section our aim is to find representations for the equilibrium
parts of the constitutive quantities. To this end, we exploit the fact that under
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conditions (i) to (iii) above, πρη assumes its minimum value. This property
of πρη is obvious, because, first, πρη satisfies the original entropy inequality

πρη � 0 , (7.15)

and, second, the right-hand side of (7.5) vanishes if conditions (i) to (iii) are
applied to it, i. e.

πρη
∣
∣
E

= 0 . (7.16)

For the proof of the latter statement, use has to be made of the facts

k
∣
∣
E

= 0 , k,ρα

∣
∣
E

= 0 , k,να

∣
∣
E

= 0 , (7.17)

results which directly follow from (6.58) or (6.59) and (B.43), (B.44). Thus,
necessary conditions for πρη having a minimum at n = 0, are

πρη,nI

∣
∣
E

= 0 ∀ nI ∈ n , (7.18)

as well as
{

πρη,nInJ

∣
∣
E

}

is non-negative definite nI , nJ ∈ n . (7.19)

In preparation for the exploitation of relation (7.18), we collect some aux-
iliary results:

• We have already mentioned that the vector-valued extra entropy flux k
vanishes in thermodynamic equilibrium (see (7.17)). In addition, from
(7.2)1 we observe that vα (α = 1, . . . , n) are the only vector-valued con-
stitutive variables which k depends upon, i. e.

k = k̂
(

θ, θ̇, �ρ, �ν, �v, �B, �̄Z
)

= k̂ (SR) . (7.20)

Thus, in every term of the isotropic representation of k, �v must be present
at least once1 and consequently,

k,yI

∣
∣
E

= 0 , k,yI yJ

∣
∣
E

= 0 , yI , yJ ∈ SR\{�v} , (7.21)

but in general

k,vα

∣
∣
E
�= 0 , k,vα yI

∣
∣
E
�= 0 , yI ∈ SR\{�v} , α = 1, . . . , n. (7.22)

• The interaction supply rate densities for momentum, mα (α = 1, . . . , n)
are allowed to be non-zero in thermodynamic equilibrium, but it follows
from (4.6) and (4.7)2 that

∑

m̄i
α

∣
∣
E

=
∑

m̄α

∣
∣
E

= 0 . (7.23)

1 This is confirmed by equation (6.58).
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• For convenience, we recall relations (3.66), (3.64) and (6.98):

TD = −
∑

ρ̄αuα ⊗ uα = T̂D

(

�ρ, �ν, �v
)

, (7.24)

ΨG
D = εD = 1

2

∑

ξ̄αuα · uα = Ψ̂D

(

�ρ, �ν, �v
)

, (7.25)

ΨG
I = Ψ̂G

I

(

θ, θ̇, ∇θ, �ρ, �ν, �B, �̄Z
)

. (7.26)

• The true thermodynamic pressures, pG
α (α = 1, . . . ,m), and the configu-

ration pressures βG
α (α = 1, . . . , n − 1), possess the same dependencies as

ΨG
I . If we consider relations (7.24), (7.25) and the definitions for Δ∗α

D and
c (see (7.6) and (7.8)), it is observed that

Δ∗α
D

∣
∣
E

= 0 and c
∣
∣
E

= 0. (7.27)

We start the exploitation of condition (7.18) for πρη having a minimum at
n = 0 with the evaluation of

πρη,vβ

∣
∣
E

!= 0 . (7.28)

With the help of (7.3)3, we obtain from (7.5)

πρη,vβ

∣
∣
E

= λε
∣
∣
E

m∑

α=1

{(

δαβ − ξ̄β

)

να (ρα)−1pG
α

∣
∣
E
I − (λε)−1

∣
∣
E
k,ραvβ

∣
∣
E

}

∇ρα

+ λε
∣
∣
E

n−1∑

α=1

{(

δαβ − ξ̄β

)

ζα

∣
∣
E
I − c,vβ

∣
∣
E
− (λε)−1

∣
∣
E
k,ναvβ

∣
∣
E

}

∇να

− λε
∣
∣
E

n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E

(

Φ̄α

)

,vβ

∣
∣
E

− λε
∣
∣
E

n∑

α=1

(

δαβ − ξ̄β

)

m̄i
α

∣
∣
E

− λε
∣
∣
E

n∑

α=1

{

ρ̄α μG
Iα

∣
∣
E

(cα),vβ

∣
∣
E
− ια

∣
∣
E
(n̄α),vβ

∣
∣
E

}

!= 0 .

(7.29)

This equation can be used to evaluate m̄i
α

∣
∣
E
. Taking into account that



130 7 Thermodynamic Analysis II

− λε
∣
∣
E

n∑

α=1

(

δαβ − ξ̄β

)

m̄i
α

∣
∣
E

(7.23)
= −λε

∣
∣
E

m̄i
β

∣
∣
E

+ λε
∣
∣
E
ξ̄β

n∑

α=1

m̄i
α

∣
∣
E

︸ ︷︷ ︸

0

, (7.30)

we obtain

m̄i
β

∣
∣
E

= m̄β

∣
∣
E

=
m∑

α=1

{(

δαβ − ξ̄β

)

να (ρα)−1pG
α

∣
∣
E

I − (λε)−1
∣
∣
E

k,ραvβ

∣
∣
E

}

∇ρα

+
n−1∑

α=1

{(

δαβ − ξ̄β

)

ζα

∣
∣
E
I − c,vβ

∣
∣
E
− (λε)−1

∣
∣
E

k,ναvβ

∣
∣
E

}

∇να

−
n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E

(

Φ̄α

)

,vβ

∣
∣
E

−
n∑

α=1

{

ρ̄αμG
Iα

∣
∣
E

(cα),vβ

∣
∣
E
− ια

∣
∣
E
(n̄α),vβ

∣
∣
E

}

. (7.31)

This result is significant for several reasons.
First, we observe that the frictional constitutive quantities, Φ̄α (α =

1, . . . , n), influence the equilibrium quantities, m̄i
β

∣
∣
E
, directly, via the term

involving
(

Φ̄α

)

,vβ

∣
∣
E
, but this term is not likely to be significant, so that fric-

tional effects will eventually influence the equilibrium interaction forces via
the constitutive variables Z̄α (α = 1, . . . , n). The argument why we will even-
tually assume

(

Φ̄α

)

,vβ

∣
∣
E

= 0 can be given as follows: In an expansion of the
isotropic tensor function Φ̄α(S) non-vanishing contributions of

(

Φ̄α

)

,vβ

∣
∣
E

can only come from symmetrized dyads a ⊗ vβ and scalar invariants of S

which are linear in vβ , where a is any vector formed with the set S, see [A8].
Such candidates are only {a} = { �∇ρ, �∇ν, �B �∇ρ, �B �∇ν, �̄Z �∇ρ, �̄Z �∇ν} and
higher order vector valued products of �B, �̄Z with �∇ρ and �∇ν and the first
invariants Isym(a⊗vα). In the most simple cases where ( �∇ρ, �∇ν) /∈ S, we have
{a} = {0} and consequently

(

Φ̄α

)

,vβ

∣
∣
E

= 0. This suggests that
(

Φ̄α

)

,vβ

∣
∣
E

is weak when ( �∇ρ, �∇ν) ∈ S. We may then write (7.31) without the frictional
term
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m̄i
β

∣
∣
E

= m̄β

∣
∣
E

=
m∑

α=1

{(

δαβ − ξ̄β

)

να (ρα)−1pG
α

∣
∣
E
I − (λε)−1

∣
∣
E
k,ραvβ

∣
∣
E

}

∇ρα

+
n−1∑

α=1

{(

δαβ − ξ̄β

)

ζα

∣
∣
E
I − c,vβ

∣
∣
E
− (λε)−1

∣
∣
E

k,ναvβ

∣
∣
E

}

∇να

−
n∑

α=1

{

ρ̄αμG
Iα

∣
∣
E

(cα),vβ

∣
∣
E
− ια

∣
∣
E
(n̄α),vβ

∣
∣
E

}

. (7.32)

Second, for the special case that all constituents are density preserving
and no mass- and volume fraction interaction rate densities are present (first
and fourth line on the right-hand side of (7.31) are absent), consideration of
∇να (α = 1, . . . , n) is essential for the description of m̄i

β

∣
∣
E

(β = 1, . . . , n).
However, if we would disregard all ∇να in the constitutive law [A8], m̄i

β

∣
∣
E

would not be zero in that case because the pressure like variable ζα contains
the saturation pressure, see (7.7).

Third, and conceptually significant, the equilibrium interaction supply rate
densities of momenta are given as a result of thermodynamic equilibrium
requirements even though they have purely mechanical significance.2 There
is no freedom for their choice.

If nI = θ̇, we derive from (7.18) and (7.5)

πρη,θ̇
∣
∣
E

= Pθ

∣
∣
E
− λε

∣
∣
E

n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E
· (Φ̄α),θ̇

∣
∣
E

−λε
∣
∣
E

n∑

α=1

{

ρ̄αμG
Iα

∣
∣
E

(cα),θ̇
∣
∣
E
− ια

∣
∣
E
(n̄α),θ̇

∣
∣
E

}

!= 0 . (7.33)

Here, we used the relations

k,ρα

∣
∣
E

= 0, k,να

∣
∣
E

= 0, k,ραθ̇

∣
∣
E

= 0, k,ναθ̇

∣
∣
E

= 0 (7.34)

and

c
∣
∣
E

= 0, c,θ̇
∣
∣
E

= 0 . (7.35)

2 We emphasise that this is a consequence of the Second Law of Thermodynamics.
Purely mechanical reasoning, that is sometimes used to ‘derive’ expressions for the
interaction force, must be regarded as a priori estimates. They must be complemented
by an additional term whose structure follows from the Second Law of Thermody-
namics.
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The identities (7.34) follow from (7.21), and (7.35) is obtained from the def-
inition of c (see (7.8)). Relation (7.33) allows determination of Pθ

∣
∣
E

and
yields

Pθ

∣
∣
E

= λε
∣
∣
E

n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E
· (Φ̄α),θ̇

∣
∣
E

+ λε
∣
∣
E

n∑

α=1

{

ρ̄αμG
Iα

∣
∣
E

(cα),θ̇
∣
∣
E
− ια

∣
∣
E
(n̄α),θ̇

∣
∣
E

}

,

(7.36)

which is a revealing by-product of our thermodynamic analysis. Indeed, with
(6.120), or

η = − 1
(1/λε),θ

{

ΨG
I,θ +

Pθ

ρλε

}

, (7.37)

the entropy in thermostatic equilibrium takes the form

η
∣
∣
E

=
−1

(1/λε),θ

∣
∣
E

{

(ΨG
I,θ)

∣
∣
E

+
Pθ

∣
∣
E

ρλε
∣
∣
E

}

=
−1

(1/λε),θ

∣
∣
E

{

(ΨG
I,θ)

∣
∣
E

+
n∑

α=1

(

ΨG
I

)

,Z̄α

∣
∣
E
· (Φ̄α),θ̇

∣
∣
E

+
n∑

α=1

1
ρ

{

ρ̄αμG
Iα

∣
∣
E

(cα),θ̇
∣
∣
E
− ια

∣
∣
E
(n̄α),θ̇

∣
∣
E

}
}

. (7.38)

Moreover, we remark that when θ̇ /∈ S, one has Pθ = 0, see (6.12),
λε = λε(θ) = 1/θ, so that (7.37) implies the classical relation η = −ΨG

I,θ.
Alternatively, for θ̇ ∈ S the right-hand side of (7.38) is known when the ther-
modynamic quantities ΨG

I , Φ̄α, μG
Iα

and ια are prescribed.

If we specialize nI to ∇θ we obtain from (7.18) and (7.5)

πρη,∇θ

∣
∣
E

= −
(

k,θ
∣
∣
E

︸ ︷︷ ︸

0

−(λε),θ
∣
∣
E
q
∣
∣
E

)

− λε
∣
∣
E

n∑

α=1

ρ
(

ΨG
I

)

,Zα

∣
∣
E
· (Φ̄α),∇θ

∣
∣
E

−λε
∣
∣
E

n∑

α=1

{

ρ̄α μG
Iα

∣
∣
E

(cα),∇θ

∣
∣
E
− ια

∣
∣
E
(n̄α),∇θ

∣
∣
E

}

!= 0 , (7.39)

where (7.21) has been used to derive
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k,θ
∣
∣
E

= 0, k,ρα ∇θ

∣
∣
E

= 0, and k,να ∇θ

∣
∣
E

= 0 . (7.40)

From equation (7.39) we obtain

(λε),θ
∣
∣
E

q
∣
∣
E

= λε
∣
∣
E

n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E
· (Φ̄α),∇θ

∣
∣
E

+ λε
∣
∣
E

n∑

α=1

{

ρ̄α μG
Iα

∣
∣
E

(cα),∇θ

∣
∣
E
− ια

∣
∣
E
(n̄α),∇θ

∣
∣
E

}

. (7.41)

We observe that the equilibrium mixture energy flux, q
∣
∣
E
, reduces to zero

if either, first, the interaction rate densities for mass and volume fraction
and the frictional production rate densities depend at least quadratically on
the temperature gradient, second, they do not depend on it or, third, the
interaction terms for mass, volume fraction and friction are not present at
all. Without making these assumptions, the energy flux vector does not vanish
a priori in mixture thermodynamic equilibrium.

At last, from
πρη,Dα

∣
∣
E

= 0 , (7.42)

we deduce a constitutive relation for the constituent equilibrium Cauchy

stress tensors Tβ (β = 1, . . . , n). With the help of inequality (7.5) we obtain

πρη,Dβ
|E = λε

∣
∣
E

{

ζ̄βI − 2ρ sym
(

(ΨG
I ),Bβ

)

Bβ − (λε)−1k,vβ
+T̄β

} ∣
∣
E

−λε
∣
∣
E

∑

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E
(Φ̄α),Dβ

∣
∣
E

−λε
∣
∣
E

∑{

ρ̄α μG
Iα

∣
∣
E

(cα),Dβ

∣
∣
E
− ια

∣
∣
E
(n̄α),Dβ

∣
∣
E

}

!= 0 , (7.43)

where again use has been made of (7.21)2 and (7.8) to rule out dependencies
on k,ραDα

∣
∣
E
, k,ναDα

∣
∣
E

and c,Dα

∣
∣
E
, respectively. Equation (7.43) can

be rewritten to yield the constitutive relations for the partial stresses

T̄β

∣
∣
E

= −ζ̄β

∣
∣
E
I + 2ρ sym

(

(ΨG
I ),Bβ

)∣
∣
E
Bβ + (λε)−1

∣
∣
E
k,vβ

∣
∣
E

+
∑

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E
(Φ̄α),Dβ

∣
∣
E

+
∑{

ρ̄α μG
Iα

∣
∣
E

(cα),Dβ

∣
∣
E
− ια

∣
∣
E
(n̄α),Dβ

∣
∣
E

}

(7.44)

which consist of five different terms. The first contains the configuration and
saturation pressures, βG

α and ς, through the combination ζ̄β

∣
∣
E

(see (7.7)).
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The true thermodynamic pressure, pG
α , does not arise explicitly in (7.44) but

with the help of (6.104), (6.105) and (6.108), i. e.

pG
α = βG

α + ς − ρn ΨG
I + ια − (λε)−1k

= ζα + ια − (λε)−1k,
α = 1, . . . , m , (7.45)

we could replace ζα by pG
α , ια and (λε)−1k at least for the first m constituents.

The second part of (7.44) which explicitly involves the constituent left
Cauchy-Green tensor, Bβ , describes the elastic contribution to the equi-
librium constituent Cauchy stress tensor, T̄β

∣
∣
E
.3 For mature debris flows it

is known that elastic effects are far from being dominant, but elastic contri-
butions are nevertheless often used to describe shear stresses in thermody-
namic equilibrium (‘heap problem’). We are inclined to think, however, that
the above shear stresses are less due to elastic and more to frictional effects
which are thought to be describable e. g. by means of the hypo-plastic theory.
The fourth term of constitutive relation (7.44) is exclusively due to frictional
effects and has already been introduced by Svendsen et al. [116].

It is evident from (7.31), (7.36), (7.37), (7.41) and (7.44) that m̄i
β

∣
∣
E
, Pθ

∣
∣
E

,
η
∣
∣
E
, q
∣
∣
E

and T̄β

∣
∣
E

contain in general terms which are due to the Helmholtz-
like free energy, the saturation pressure, elastic deformation, extra entropy
flux, frictional effects and mass and volume fraction interaction rate densi-
ties. There is obviously some structure in these formulae, but this structure
appears to be somewhat hidden in the overwhelming complexity of the nota-
tion. In the remainder of this section we shall attempt to shed light on this
structure.

In relations (7.31), (7.36), (7.41) and (7.44) the quantity λε
∣
∣
E

arises which,
owing to

λε = λε
∣
∣
E
(θ) + λε

∣
∣
N
(θ, θ̇), λε

∣
∣
E
(θ) := lim

n→0
(λε) , (7.46)

only depends on the temperature. If we again stress the connection of λε to
its equivalent variable in single-material theories, it is reasonable to assume
that

[A16] λε
∣
∣
E
(θ) = θ−1 ,

3 This dependence is not necessarily a collinearity of Bβ and T̄β

∣
∣
E, since in (7.44)

Bβ is premultiplied with a second rank tensor 2ρ sym
(

(ΨG
I ),Bβ

)∣
∣
E, which in most

cases is not proportional to the unit tensor.
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where θ is now identified with the Kelvin temperature. In this case ΨG
∣
∣
E

reduces to
ΨG

∣
∣
E

= ε
∣
∣
E
− θη

∣
∣
E

=: Ψ , (7.47)

in which the latter quantity represents the equilibrium part of the Helmholtz-
like free energy. It will be called Helmholtz free energy. However we shall
keep the notation ΨG

∣
∣
E

for it. Under assumption [A16] we recover from (7.31)

m̄i
β

∣
∣
E

=
m∑

α=1

{(

δαβ − ξ̄β

)

να (ρα)−1pG
α

∣
∣
E

I − θ k,ραvβ

∣
∣
E

}

∇ρα

+
n−1∑

α=1

{(

δαβ − ξ̄β

)

ζα

∣
∣
E
I − c,vβ

∣
∣
E
− θ k,ναvβ

∣
∣
E

}

∇να

+
n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E

(

Φ̄α

)

,vβ

∣
∣
E

−
∑{

ρ̄αμG
Iα

∣
∣
E

(cα),vβ

∣
∣
E
− ια

∣
∣
E
(n̄α),vβ

∣
∣
E

}

, (7.48)

which is observed to be at least structurally in agreement with the result
of Svendsen & Hutter [115, eqn.(8.9)]. The representations for q

∣
∣
E

and
T̄α

∣
∣
E
, ((7.41) and (7.44)), do not considerably alter under assumption [A16].

It is at this point worthwhile to pause and to summarize what has been
attained. We have expressed the equilibrium interaction forces (7.31), the
equilibrium entropy (7.38), the equilibrium energy flux (7.41) and the equilib-
rium partial stress tensors (7.44) in terms of clearly identifiable contributions,
all of which were obtained from the exploitation of the entropy principle, in
particular the so-called Liu identities and the inferences deduced from them.
A first set of these is generally of direct thermodynamic origin and involves
a thermodynamic potential, derivatives of it with respect to the true con-
stituent densities and the volume fraction densities, the saturation pressure
as well as certain derivatives of the extra entropy flux vector. In the expres-
sion for the interaction forces (7.31) these terms also depend explicitly on
∇ρα and ∇να (first two lines in (7.31)). In the expression for the entropy
(7.38) they only involve ΨG

I,θ

∣
∣
E
, in the heat flux (7.41) they are not present

at all, and in the expression for the equilibrium constituent stress tensors
(7.44) they comprise the pressure like quantity ζ̄α, the elastic contributions
and the extra entropy flux, stated in the first line of (7.44). The remaining
contributions to the above mentioned equilibrium quantities are equally of
thermodynamic origin, but they only exist if the production rate densities of
the frictional tensorial variable, Φ̄α and the constituent mass, cα and volume
fractions, nα do not vanish. They all appear as sums of products of deriva-
tives of Φ̄α, cα and nα with prefactors which are the same in the expressions
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of m̄i
β

∣
∣
E
, η
∣
∣
E
, q

∣
∣
E

and T̄α

∣
∣
E
. The prefactors are

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E

for the friction term Φ̄α

ρ̄αμG
Iα

∣
∣
E

for the mass production cα

ια

∣
∣
E

for the volume fraction production nα .

(7.49)

They are known once and for all when the inner Helmholtz-like free energy
is known as a function of its variables, and the constituent free energies, see
(6.109), and the parameters ια, see (6.119), are known. The above factors, in
turn, are multiplied

for m̄i
β

∣
∣
E

with
(

Φ̄α

)

,vβ

∣
∣
E

, (cα),vβ

∣
∣
E

, (n̄α),vβ

∣
∣
E

for η
∣
∣
E

with
(

Φ̄α

)

,θ̇
∣
∣
E

, (cα),θ̇
∣
∣
E

, (n̄α),θ̇
∣
∣
E

for q
∣
∣
E

with
(

Φ̄α

)

,∇θ

∣
∣
E

, (cα),∇θ

∣
∣
E

, (n̄α),∇θ

∣
∣
E

for T̄α

∣
∣
E

with
(

Φ̄α

)

,Dβ

∣
∣
E

, (cα),Dβ

∣
∣
E

, (n̄α),Dβ

∣
∣
E

(7.50)

and subsequently summed to reveal the corresponding representations arising
in (7.31), (7.38), (7.41) and (7.44). The two lists (7.49) and (7.50) disclose
the thermodynamic structure of the various contributions to the equilibrium
quantities m̄i

β

∣
∣
E
, η

∣
∣
E
, q

∣
∣
E

and T̄α

∣
∣
E

particularly clearly: The constituent
equilibrium interaction forces receive contributions exclusively via derivatives
of Φ̄α, cα and nα with respect to the constituent velocities. Analogously, the
equilibrium entropy is directly affected only by corresponding derivatives with
respect to θ̇, the equilibrium heat flux vector by corresponding derivatives
with respect to ∇θ and the equilibrium constituent stresses by those with
respect to Dβ . This demonstrates, on the one hand, that contributions to
m̄i

β

∣
∣
E

and div
(

T̄α

∣
∣
E

)

are not likely interchangeable. On the other hand, the
list (7.50) can serve as a help when explicitly parameterising constitutive
relations for Φα, cα and nα. For instance, we may have reason to assume
that thermal effects are insignificant. Then, it may be justified to postulate
that

(

Φ̄α, cα, nα

)

,θ̇ = 0 ,
(

Φ̄α, cα, nα

)

,∇θ = 0 . (7.51)

This would yield

η
∣
∣
E

= −ΨG
I,θ and q

∣
∣
E

= 0 , (7.52)

agreeing with the classical relations. Moreover, we have already provided
reasons to assume Φ̄α,vβ

= 0, see discussion following (7.31); in this case the
contribution of the frictional variable to the interaction force would vanish,
whilst that to the constituent stresses would still be present via

(

Φ̄α

)

,Dβ

∣
∣
E
.
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We shall see that these terms, when properly parameterised, will give rise to
the thermodynamic justification of hypo-plasticity. In any case, keeping the
full generality of the constitutive dependences of Φ̄α, cα and nα brought, via
(7.49) and (7.50), light into a deeper understanding of the structure of the
formulae of the constitutive quantities as imposed by the entropy principle.
It is now much easier to understand the role played by ad-hoc simplifications
of certain constitutive relations for Φ̄α, cα and nα than it would have been
if such simplifications had been introduced at the outset.

7.3 ‘Isotropic’ Expansions for the Interaction Supply
Rate Densities of Mass and Volume Fraction and
the Extra Entropy Flux

To further inspect the constitutive relations of the last section we perform an
‘isotropic’expansion (cf. Svendsen & Hutter [115]) of �c, �n and k about
the state Y = 0, where we define Y as

Y :=
{

θ̇, ∇θ, �∇ρ, �∇ν, �v, �D, �W
}

. (7.53)

It is observed that, first, the set of non-equilibrium variables n is a subset
of Y . Thus the state Y = 0 is a subspace of the space describing mixture
thermodynamic equilibrium because �∇ρ and �∇ν are also set to zero. In other
words, the set SY of elements Y is the direct sum of Sn of the non-equilibrium
elements n plus S �∇ρ ∪ S �∇ν ,

SY = Sn ⊕
(

S �∇ρ ∪ S �∇ν

)

(7.54)

Second, all vector-valued variables of the set of constitutive variables, S,
are included and thus all vector-valued, isotropic constitutive quantities and
therefore also k must vanish at Y = 0.

In this expansion only the most simple dependencies of the above vari-
ables are mentioned explicitly, where the higher non-linear contributions are
subsumed in residual quantities. By neglecting the higher non-linear contribu-
tions, we obtain an expansion about the state Y = 0 which, due to the addi-
tional requirements ∇ρα = 0 (α = 1, . . . ,m) and ∇να = 0 (α = 1, . . . , n−1),
is found to be more restrictive than an expansion about the mixture thermo-
dynamic equilibrium.
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Interaction rate densities cα and nα

A linear representation of the scalars cα and nα in terms of Y would only
involve θ̇ and tr(Dβ), which is too simple and likely unrealistic. So, at least a
quadratic expansion is necessary. A minimal form of an ‘isotropic’ expansion
of cα thus reads as follows

cα = cθ̇
α(θ̇) +

{ m∑

β=1

cθρ
αβ(∇ρβ) +

n−1∑

β=1

cθν
αβ(∇νβ)

}

· (∇θ)

+
n∑

β=1

{ m∑

γ=1

cvρ
αβγ(∇ργ) +

n−1∑

γ=1

cvν
αβγ(∇νγ)

}

· (vβ)

+
n∑

β=1

{

cD
αβI + CD

αβ

}

·
(

Dβ

)

+
n∑

β=1

{

CW
αβ

}

·
(

Wβ

)

+ cNα , (7.55)

where the term cNα accounts for the remaining non-linear contributions and
depends on all constitutive variables. It must vanish in thermodynamic equi-
librium, i. e.

cNα
∣
∣
E

= 0 , (7.56)

to be in accordance with (7.12)1. The tensors CD
αβ and CW

αβ are defined as

CD
αβ :=

m∑

δ=1

{ m∑

γ=1

cDρ
αβγδ sym

(

∇ρδ ⊗∇ργ

)

+
n−1∑

γ=1

cDνρ
αβγδ sym

(

∇ρδ ⊗∇νγ

)}

+
n−1∑

δ=1

{ n−1∑

γ=1

cDν
αβγδ sym

(

∇νδ ⊗∇νγ

)}

, (7.57)

and

CW
αβ :=

m∑

δ=1

{ m∑

γ=1

cWρ
αβγδ skw

(

∇ρδ ⊗∇ργ

)

+
n−1∑

γ=1

cWνρ
αβγδ skw

(

∇ρδ ⊗∇νγ

)}

+
n−1∑

δ=1

{ n−1∑

γ=1

cWν
αβγδ skw

(

∇νδ ⊗∇νγ

)}

. (7.58)
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The coefficients arising in (7.55), (7.57) and (7.58) are specified according to

cθ̇
α := (cα),θ̇

∣
∣
n=0

= ĉθ̇
α

(

θ, �ρ, �ν, �∇ρ, �∇ν, �B, �̄Z
)

,

cθρ
αβ I := (cα),∇θ∇ρβ

∣
∣
Y=0

= ĉθρ
αβ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cθν
αβ I := (cα),∇θ∇νβ

∣
∣
Y=0

= ĉθν
αβ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cvρ
αβγ I := (cα),vβ∇ργ

∣
∣
Y=0

= ĉvρ
αβγ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cvν
αβγ I := (cα),vβ∇νγ

∣
∣
Y=0

= ĉvν
αβγ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cD
αβ I := (cα),Dβ

∣
∣
Y=0

= ĉD
αβ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cDρ
αβγδ I := (cα),Dβ∇ργ∇ρδ

∣
∣
Y=0

= ĉDρ
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cDνρ
αβγδ I := (cα),Dβ∇νγ∇ρδ

∣
∣
Y=0

= ĉDνρ
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cDν
αβγδ I := (cα),Dβ∇νγ∇νδ

∣
∣
Y=0

= ĉDν
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cWρ
αβγδ I := (cα),Wβ∇ργ∇ρδ

∣
∣
Y=0

= ĉWρ
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cWνρ
αβγδ I := (cα),Wβ∇νγ∇ρδ

∣
∣
Y=0

= ĉWνρ
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

cWν
αβγδ I := (cα),Wβ∇νγ∇νδ

∣
∣
Y=0

= ĉWν
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

(7.59)

where I is the fourth order unit tensor and all coefficients are symmetric
with respect to constituent indices that arise in the derivatives, e. g.

cvν
αβγ = cvν

αγβ . (7.60)

The coefficients have to satisfy further restrictions, namely, first, according
to (4.7)1 the identity

n∑

α=1

ρ̄αcα = 0 (7.61)

must be assured and thus the conditions
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n∑

α=1

ρ̄αcθ
α = 0,

n∑

α=1

ρ̄αcθρ
αβ = 0,

n∑

α=1

ρ̄αcθν
αβ = 0,

n∑

α=1

ρ̄αcvρ
αβγ = 0,

n∑

α=1

ρ̄αcvν
αβγ = 0,

n∑

α=1

ρ̄αcD
αβ = 0,

n∑

α=1

ρ̄αCD
αβ = 0,

n∑

α=1

ρ̄αCW
αβ = 0,

n∑

α=1

ρ̄αcNα = 0

(7.62)

must hold. These conditions can, for instance, be met by expressing the nth

coefficient in terms of the (n − 1) first ones as follows:

cθρ
nβ =

n−1∑

α=1

ρ̄α

ρ̄n
cθρ
αβ =

n−1∑

α=1

{

ξ̄α

1 −
∑n−1

γ=1 ξ̄γ

}

cθρ
αβ , etc, (7.63)

as follows from (7.62).
Second, by invoking the principle of objectivity for the constitutive quan-

tity cα (see Section 4.6, eqs. (4.50) and (4.51)) i. e.,

n∑

β=1

(cα),vβ
= 0 and

n∑

β=1

(cα),Wβ
= 0 , (7.64)

we require that

n∑

β=1

cvρ
αβγ = 0 ,

{

α = 1, . . . , n ,
γ = 1, . . . ,m ,

n∑

β=1

cvν
αβγ = 0 ,

{

α = 1, . . . , n ,
γ = 1, . . . , n − 1 ,

n∑

β=1

(cNα ),vβ
= 0 , α = 1, . . . , n ,

n∑

β=1

CW
αβ = 0 , α = 1, . . . , n .

(7.65)

The ‘isotropic’ expansion of nα is analogously expressed as follows:
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nα = nθ̇
α(θ̇) +

{ m∑

β=1

nθρ
αβ(∇ρβ) +

n−1∑

β=1

nθν
αβ(∇νβ)

}

· (∇θ)

+
n∑

β=1

{ m∑

γ=1

nvρ
αβγ(∇ργ) +

n−1∑

γ=1

nvν
αβγ(∇νγ)

}

· (vβ)

+
n∑

β=1

{

nD
αβI + ND

αβ

}

·
(

Dβ

)

+
n∑

β=1

{

NW
αβ

}

·
(

Wβ

)

+ nN
α , (7.66)

where the term nN
α accounts for the remaining non-linear contributions and

depends on all constitutive variables. It must vanish in thermodynamic equi-
librium, i. e.

nN
α

∣
∣
E

= 0 , (7.67)

to be in accordance with (7.12)2. The tensors ND
αβ and NW

αβ are defined as

ND
αβ :=

m∑

δ=1

{ m∑

γ=1

nDρ
αβγδ sym

(

∇ρδ ⊗∇ργ

)

+
n−1∑

γ=1

nDνρ
αβγδ sym

(

∇ρδ ⊗∇νγ

)}

+
n−1∑

δ=1

{ n−1∑

γ=1

nDν
αβγδ sym

(

∇νδ ⊗∇νγ

)}

, (7.68)

and

NW
αβ :=

m∑

δ=1

{ m∑

γ=1

nWρ
αβγδ skw

(

∇ρδ ⊗∇ργ

)

+
n−1∑

γ=1

nWνρ
αβγδ skw

(

∇ρδ ⊗∇νγ

)}

+
n−1∑

δ=1

{ n−1∑

γ=1

nWν
αβγδ skw

(

∇νδ ⊗∇νγ

)}

. (7.69)

The coefficients arising in (7.66), (7.68) and (7.69) are specified according to
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nθ̇
α := (nα),θ̇

∣
∣
n=0

= n̂θ̇
α

(

θ, �ρ, �ν, �∇ρ, �∇ν, �B, �̄Z
)

,

nθρ
αβ I := (nα),∇θ∇ρβ

∣
∣
Y=0

= n̂θρ
αβ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nθν
αβ I := (nα),∇θ∇νβ

∣
∣
Y=0

= n̂θν
αβ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nvρ
αβγ I := (nα),vβ∇ργ

∣
∣
Y=0

= n̂vρ
αβγ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nvν
αβγ I := (nα),vβ∇νγ

∣
∣
Y=0

= n̂vν
αβγ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nD
αβ I := (nα),Dβ

∣
∣
Y=0

= n̂D
αβ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nDρ
αβγδ I := (nα),Dβ∇ργ∇ρδ

∣
∣
Y=0

= n̂Dρ
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nDνρ
αβγδ I := (nα),Dβ∇νγ∇ρδ

∣
∣
Y=0

= n̂Dνρ
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nDν
αβγδ I := (nα),Dβ∇νγ∇νδ

∣
∣
Y=0

= n̂Dν
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nWρ
αβγδ I := (nα),Wβ∇ργ∇ρδ

∣
∣
Y=0

= n̂Wρ
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nWνρ
αβγδ I := (nα),Wβ∇νγ∇ρδ

∣
∣
Y=0

= n̂Wνρ
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

nWν
αβγδ I := (nα),Wβ∇νγ∇νδ

∣
∣
Y=0

= n̂Wν
αβγδ

(

θ, �ρ, �ν, �B, �̄Z
)

I ,

(7.70)

where all coefficients are symmetric with respect to constituent indices that
arise in the derivatives, e. g.

nvν
αβγ = nvν

αγβ . (7.71)

As a constitutive quantity, the volume fraction production rate density nα

has to satisfy the principle of objectivity which is formulated in (4.50) and
(4.51). Applying these relations to nα, i. e.

n∑

β=1

(nα),vβ
= 0 and

n∑

β=1

(nα),Wβ
= 0 , (7.72)

we require that



7.4 Final Representations for m̄i
α

∣
∣
E, q

∣
∣
E, T̄α

∣
∣
E and η

∣
∣
E 143

∑n
β=1 nvρ

αβγ = 0 ,

{

α = 1, . . . , n ,
γ = 1, . . . ,m ,

∑n
β=1 nvν

αβγ = 0 ,

{

α = 1, . . . , n ,
γ = 1, . . . , n − 1 ,

∑n
β=1(n

N
α ),vβ

= 0 , α = 1, . . . , n ,

∑n
β=1 NW

αβ = 0 , α = 1, . . . , n .

(7.73)

We remark that the ‘isotropic’ expansion of nα in (7.66) to (7.73) is analogous
to that of cα (see (7.55) to (7.65)) except that in general one has (compare
with 7.61)

∑

ρ̄αnα �= 0 . (7.74)

Extra entropy flux k

If we apply the same expansion to the extra entropy flux, k, we know from
(6.58) that k is given by a vector combination of uα (or, equivalently of vα)
so that

k =
∑

(kv
α)vα + kN , (7.75)

where the coefficients kv
α are defined as

kv
αI := k,vα

∣
∣
Y=0

= k̂v
α

(

θ, �ρ, �ν, �B, �̄Z
)

I , α = 1, . . . , n (7.76)

and kN, again, subsumes all other contributions of the constitutive variables
and, due to the principle of objectivity k satisfies the sum relations (see
(4.50))

∑

k,vβ
= 0 ⇒

∑

kv
β = 0,

∑

(kN),vβ
= 0 . (7.77)

These restrict the independences of the parameters kv
β , (kN),vβ

.

7.4 Final Representations for m̄i
α

∣
∣
E
, q

∣
∣
E
, T̄α

∣
∣
E

and η
∣
∣
E

The purpose of the above ‘isotropic’ expansion is to simplify the derivatives
of �c, �n and k arising in the constitutive relations for the equilibrium quan-
tities m̄i

α

∣
∣
E
, q

∣
∣
E
, T̄α

∣
∣
E

and η
∣
∣
E

(see (7.48), (7.41), (7.44) and (7.38)). The
derivatives of �c, �n and k arising in those formulae have, in the representation
of the ‘isotropic’ expansion, the following form
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k,ραvβ

∣
∣
E

= (kv
β),ρα

I + (kN),ραvβ

∣
∣
E
,

k,ναvβ

∣
∣
E

= (kv
β),να

I + (kN),ναvβ

∣
∣
E
,

(cα),vβ

∣
∣
E

=
m∑

γ=1

cvρ
αβγ(∇ργ) +

n−1∑

γ=1

cvν
αβγ(∇νγ) + (cNα ),vβ

∣
∣
E
,

(nα),vβ

∣
∣
E

=
m∑

γ=1

nvρ
αβγ(∇νγ) +

n−1∑

γ=1

nvν
αβγ(∇νγ) + (nN

α ),vβ

∣
∣
E

(7.78)

for m̄i
α

∣
∣
E
. For the equilibrium energy flux, q

∣
∣
E
, the derivatives

(cα),∇θ

∣
∣
E

=
m∑

β=1

cθρ
αβ(∇ρβ) +

n−1∑

β=1

cθν
αβ(∇νβ) + (cNα ),∇θ

∣
∣
E
,

(nα),∇θ

∣
∣
E

=
m∑

β=1

nθρ
αβ(∇ρβ) +

n−1∑

β=1

nθν
αβ(∇νβ) + (nN

α ),∇θ

∣
∣
E

(7.79)

are needed and for the constituent Cauchy stress tensor T̄α

∣
∣
E
, (7.44), we

need the relations

k,vβ

∣
∣
E

= kv
αI + k,Nvβ

∣
∣
E
,

(cα),Dβ

∣
∣
E

= cD
αβI + CD

αβ + (cNα ),Dβ

∣
∣
E
,

(nα),Dβ

∣
∣
E

= nD
αβI + ND

αβ + (nN
α ),Dβ

∣
∣
E

,

(7.80)

whilst for the entropy η
∣
∣
E

(7.38)

(cα),θ̇

∣
∣
E

= cθ̇
α + (cNα )θ̇

∣
∣
E

,

(nα),θ̇

∣
∣
E

= nθ̇
α + (nN

α )θ̇

∣
∣
E

(7.81)

are needed.
If we now substitute the above representations into the equilibrium expres-

sions m̄i
α

∣
∣
E
, q

∣
∣
E
, T̄α

∣
∣
E

and ηα

∣
∣
E
, and if we further subsume the non-linear

contributions (kN),ναvβ

∣
∣
E
, (cNα ),vβ

∣
∣
E
, (nN

α ),vβ

∣
∣
E
, etc. into mN

α for mi
α, qN

for q, TN
α for Tα and ηN for η, respectively, we obtain from (7.48)
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m̄i
β

∣
∣
E

=
m∑

α=1

{

ρ−1
α p̄α

∣
∣
E

(

δαβ − ξ̄β

)

I − θ(kv
β),ρα

I

−
n∑

γ=1

ρ̄γ μG
Iγ

∣
∣
E

cvρ
γβα +

n∑

γ=1

ῑγ

∣
∣
E
nvρ

γβα

}

(∇ρα)

+
n−1∑

α=1

{

ζα

∣
∣
E
(δαβ − ξ̄β)I − c,vβ

∣
∣
E
− θ(kv

β),να
I

−
n∑

γ=1

ρ̄γ μG
Iγ

∣
∣
E

cvν
γβα +

n∑

γ=1

ῑγ

∣
∣
E
nvν

γβα

}

(∇να)

+
n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E

(

Φ̄α

)

,vβ

∣
∣
E

+ m̄N
β

∣
∣
E

.

(7.82)

With the help of the definitions (7.8), (7.6) and the auxiliary result (7.3)3,
c,vβ

∣
∣
E

takes the form

c,vβ

∣
∣
E

=
{(

ρnΔ∗n
D + ζnI

)

un

}

,vβ

∣
∣
E

= cβI . (7.83)

Since Δ∗n
D

∣
∣
E

= 0, see (7.27)1, the new abbreviation, cβ , is defined by

cβ := ζn

∣
∣
E
(δnβ − ξ̄β) . (7.84)

With the results (7.79) and [A16] the equilibrium energy flux vector, q
∣
∣
E
,

transforms into

λ,εθ
∣
∣
E
q
∣
∣
E

= θ−1
m∑

β=1

{ n∑

α=1

ρ̄αμG
Iα

∣
∣
E
cθρ
αβ −

n∑

α=1

ιαnθρ
αβ

}

(∇ρβ)

+ θ−1
n−1∑

β=1

{ n∑

α=1

ρ̄αμG
Iα

∣
∣
E
cθν
αβ −

n∑

α=1

ιαnθν
αβ

}

(∇νβ)

+ θ−1
n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E

(

Φ̄α

)

,∇θ

∣
∣
E

+ λ,εθ
∣
∣
E
qN

∣
∣
E

.

(7.85)

Next, applying this expansion procedure to the entropy (7.38) and using
(7.59)1, i. e. (cα),θ̇

∣
∣
n=0

= cθ̇
α and (7.70)1, i. e. (nα),θ̇

∣
∣
n=0

= nθ̇
α, yields
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η
∣
∣
E

= − 1
(1/λε),θ

∣
∣
E

{

(ΨG
I,θ)

∣
∣
E

+
Pθ

∣
∣
E

ρλε
∣
∣
E

}

=
−1

(1/λε),θ

∣
∣
E

{

(ΨG
I,θ)

∣
∣
E

+
n∑

α=1

(

ΨG
I

)

,Z̄α

∣
∣
E
· (Φ̄α),θ̇

∣
∣
E

+
n∑

α=1

{

να(μG
Iα
)
∣
∣
E

cθ̇
α −

ια

∣
∣
E

ρ
ναnθ̇

α

}
}

. (7.86)

Here (1/λε) ,θ
∣
∣
E

= 1, cθ̇
α = 0 and nθ̇

α = 0 if θ̇ /∈ S. In general, however,
(1/λε),θ

∣
∣
E
�= 1 even if cθ̇

α = 0 and nθ̇
α = 0.

Applying the ‘isotropic’ expansion, i. e. relations (7.80), to (7.44) and using
again [A16] we deduce

T̄β

∣
∣
E

= −ζ̄β

∣
∣
E
I + 2ρ sym

(

ΨG
I,Bβ

)∣
∣
E
Bβ

∣
∣
E

+ θkv
βI

+
∑

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E
(Φ̄α),Dβ

∣
∣
E

+
n∑

α=1

ρ̄α μG
Iα

∣
∣
E

{

cD
αβI + CD

αβ

}

−
n∑

α=1

ῑα

∣
∣
E

{

nD
αβI + ND

αβ

}

+ T̄N
β

∣
∣
E

.

(7.87)

It is convenient to collect all spherical contributions of T̄β

∣
∣
E

to define a new
pressure,

�̄β := ζ̄β

∣
∣
E
− θkv

β −
∑

α=1

ρ̄α μG
Iα

∣
∣
E

cD
αβ +

n∑

α=1

ῑα

∣
∣
E

nD
αβ . (7.88)

With this definition, (7.87) transforms into

T̄β

∣
∣
E

= −�̄βI + 2ρ sym
(

ΨG
I,Bβ

)∣
∣
E
Bβ

∣
∣
E

+
∑

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E
(Φ̄α),Dβ

∣
∣
E

+
n∑

α=1

ρ̄α μG
Iα

∣
∣
E

CD
αβ −

n∑

α=1

ῑα

∣
∣
E

ND
αβ + T̄N

β

∣
∣
E

. (7.89)

In this representation the explicit forms for ΨG
I and μG

Iα
in terms of the invari-

ants of vector and tensor valued variables may still yield additional isotropic
contributions.

The sum of (7.89) over all constituents yields the equilibrium mixture
Cauchy stress tensor, T

∣
∣
E
, in the form
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T
∣
∣
E

= TI

∣
∣
E

=
n∑

β=1

T̄β

∣
∣
E

= −�I + 2ρ
n∑

β=1

{

sym
(

ΨG
I,Bβ

)∣
∣
E
Bβ

∣
∣
E

}

+
n∑

β=1

n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E
(Φ̄α),Dβ

∣
∣
E

+
n∑

β=1

n∑

α=1

ρ̄α μG
Iα

∣
∣
E

CD
αβ −

n∑

β=1

n∑

α=1

ῑα

∣
∣
E

ND
αβ +

n∑

β=1

T̄N
β

∣
∣
E
,(7.90)

where � is defined as

� :=
∑

�̄β =
n∑

β=1

{

ζ̄β

∣
∣
E
−

n∑

α=1

ρ̄α μG
Iα

∣
∣
E

cD
αβ +

n∑

α=1

ῑα

∣
∣
E
nD

αβ

}

. (7.91)

In (7.91) we have used the principle of objectivity to rule out
∑

kv
β , see (7.77).

Obviously, those terms in (7.90) and (7.91) that are related to the inter-
action supply rate density of mass are not allowed to arise in T

∣
∣
E
, as it is a

mixture quantity. This drawback of our theory is exclusively due to the con-
sideration of Wα and Dα as independent constitutive variables instead of Lα

(α = 1, . . . , n). In the approach pursued here, we have two sets of coefficients,
namely

{

cD
αβ , CD

αβ

}

and
{

CW
αβ

}

, (7.92)

and when all Lα are independent variables, only one such set of coefficients
arises in the ‘isotropic’ expansion. The application of the principle of objectiv-
ity to the expansion of the interaction supply rate density of mass, when Lα

(α = 1, . . . , n) are constitutive variables, would have allowed the restrictions

n∑

β=1

cL
αβ =

n∑

β=1

(

cD
αβ

)

= 0 and
n∑

β=1

CL
αβ =

n∑

β=1

(

CD
αβ + CW

αβ

)

= 0,

(7.93)
and thus the independence of the mixture Cauchy stress tensor on the inter-
action supply rate densities of mass. As, in our approach, we are not dealing
with the mixture Cauchy stress tensor, but only with its constituent parts
one is inclined to think that the above drawback does not come into play. This
opinion is misleading, because in a mixture theory that correctly accounts for
Lα (α = 1, . . . , n), the principle of objectivity affects the symmetric parts of
the velocity gradients, too. Therefore, we are missing a restriction for the
coefficients of the constituent stretching tensors arising in the constituent
Cauchy stress tensors. We therefore propose
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n∑

β=1

CD
αβ = 0 ,

n∑

β=1

CW
αβ = 0 , (α = 1, . . . , n) (7.94)

as a sufficient condition satisfying (7.93)2. This analysis implies that the
constitutive coefficients cD

αβ and CD,W
αβ must satisfy conditions (7.93)1 and

(7.94)1,2 plus conditions (7.62). Therefore, since cD
αβ = cD

βα, we have

n∑

α=1

ρ̄αcD
αβ = 0 and

n∑

α=1

cD
αβ = 0 , β fixed. (7.95)

These equations state that two of the n coefficients cD
αβ (β fixed) are deter-

mined by the remaining ones. Solving (7.95) for cD
αβ for α = n − 1, n yields

cD
n−1β =

n−2∑

α=1

ρ̄α − ρ̄n

ρ̄n − ρ̄n−1
cD
αβ ,

cD
nβ = −

n−2∑

α=1

ρ̄α − ρ̄n−1

ρ̄n − ρ̄n−1
cD
αβ .

(7.96)

This, however requires that ρ̄n �= ρ̄n−1. A similar calculation also applies to
CD

αβ , CW
αβ .

The debris flow model presented in Chapter 8 does not suffer from this
complexity, because, there, the interaction supply rate densities for mass will
be set to zero ab initio.

For the next chapter, we also mention the results which emerge, when θ̇
is not considered an independent constitutive variable so that

[A17] λε(θ) = θ−1 .

In this case ΨG reduces to the Helmholtz free energy Ψ , and μG
Iα

are the ‘in-
ner’ parts of the usual Gibbs’ free energies, μ Iα

(α = 1, . . . , n). Furthermore,
we obtain from [(5.30), line 1]

Pθ = 0, P∇θ = 0 , (7.97)

as F θ̇ vanishes identically. Thus, (6.96)1 and (6.96)2 reduce to

− (ΨI),θ = η, (ΨI),∇θ = 0 . (7.98)
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Relations (7.98) are results known from many classical thermodynamic ma-
terial theories. The constitutive law for q

∣
∣
E

(see (7.85)) now takes the form

λ,εθ
∣
∣
E
q
∣
∣
E

= −θ−1
m∑

β=1

{ n∑

α=1

ρ̄αμG
Iα

∣
∣
E
cθρ
αβ −

n∑

α=1

ιαnθρ
αβ

}

(∇ρβ)

− θ−1
n−1∑

β=1

{ n∑

α=1

ρ̄αμG
Iα

∣
∣
E
cθν
αβ −

n∑

α=1

ιαnθν
αβ

}

(∇νβ)

− θ−1
n∑

α=1

ρ
(

ΨG
I

)

,Z̄α

∣
∣
E

(

Φ̄α

)

,∇θ

∣
∣
E

+ qN
∣
∣
E

.

(7.99)

Moreover, assumption [A17] implies no structural changes of the constitutive
laws for m̄i

β , η or T̄β (β = 1, . . . , n) (see (7.82), (7.88) and (7.89)). However,
for the sake of completeness, we state these constitutive equations here:

T̄β

∣
∣
E

= −�̄βI + 2ρ sym
(

ΨI,Bβ

)∣
∣
E
Bβ

∣
∣
E

+
∑

ρ (ΨI) ,Z̄α

∣
∣
E
(Φ̄α),Dβ

∣
∣
E

+
n∑

α=1

ρ̄α μG
Iα

∣
∣
E

CD
αβ −

n∑

α=1

ῑα

∣
∣
E

ND
αβ + T̄N

β

∣
∣
E

, (7.100)

m̄i
β

∣
∣
E

=
∑m

α=1

{

ρ−1
α p̄α

∣
∣
E

(

δαβ − ξ̄β

)

I − θ(kv
β),ρα

I

−
∑n

γ=1 ρ̄γ μG
Iγ

∣
∣
E

cvρ
γβα +

∑n
γ=1 ῑγ

∣
∣
E
nvρ

γβα

}

(∇ρα)

+
∑n−1

α=1

{

ζα

∣
∣
E
(δαβ − ξ̄β)I − c,vβ

∣
∣
E
− θ(kv

β),να
I

−
∑n

γ=1 ρ̄γ μG
Iγ

∣
∣
E

cvν
γβα +

∑n
γ=1 ῑγ

∣
∣
E
nvν

γβα

}

(∇να)

+
∑n

α=1 ρ
(

ΨG
I

)

,Z̄α

∣
∣
E

(

Φ̄α

)

,vβ

∣
∣
E

+m̄N
β

∣
∣
E

, (7.101)

with �̄β given in (7.88).
A complete exploitation of the equilibrium conditions also requires the

satisfaction of the minimality requirements (7.19) for thermodynamic equi-
librium. The exploitation of these is, however, better done with specialized
constitutive relations.
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It is worthwhile to discuss in some detail the results that have been reached
up to now. We start with the properties of the constituent stresses and inter-
action forces in thermodynamic equilibrium. The main results are collected
in the formulae (7.100), (7.101), (7.88), (7.85), (7.45), (7.7) and (7.9).

The equilibrium stress tensor (7.100) comprises six terms, a pressure, an
elastic and a frictional contribution in the first line of (7.100), and two terms
that trace back to non-vanishing interaction rate densities of mass and volume
fractions as well as terms that are due to higher order non-linearities, the
latter three in the second line of (7.100). We know of no formulation where
this last term would have a non-zero value. The first term in the first line
may be interpreted as ‘pressure’, but as shown by (7.88), it is itself composed
of a number of terms of different origin,

• ζ̄β

∣
∣
E

which may be called ‘true constituent pressure’,

• θkv
β of purely thermodynamic nature. Its origin is the extra entropy flux k

in (6.16) or (6.59), of which the isotropic representation is given in (7.75),
(7.76). Nothing is known about this term and no obvious arguments can
presently be given that θkv

β should be different from zero. So, we shall later
in [A23] set kv

β = 0 for all β.

• The remaining members of (7.88) may only differ from zero, when mass
and volume fraction interaction rate densities are different from zero.

Looking at the ‘true constituent pressure’ ζ̄β

∣
∣
E
, it follows from its definition,

see (7.7), that

ζα :=

{
βG

α − ρnΨG
I + ς, α = 1, . . . , n − 1,

−ρnΨG
I + ς, α = n,

(7.102)

which, for the first n − 1 components, is given by the configuration pressure
and for all constituents by the inner free energy and the saturation pressure.
It is evident from the definition above that ζ̄α has the form

ζ̄α = ναζn + ναβG
α , (α = 1, . . . , n − 1) , ζn = −ρnΨG

I + ς . (7.103)

Only the first term on the right-hand side has the structure ‘volume fraction
times an internal pressure’ where this internal pressure is the saturation pres-
sure plus a contribution due to the inner free energy. This part is reminiscent
of what is known as ‘pressure equilibrium’, which, later, will be discussed in
connection with the assumption of pressure equilibrium that applies to all
pressure terms not just to some parts of the constituent pressure. The last
two members of the pressure term (7.88) are the contributions due to the
inter-constituent mass and volume fraction interaction rate densities; they
obviously resemble the structure of interaction terms. Only if these produc-
tions are not present and the inner free energy does not depend on the con-
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stituent volume fractions, and when kv
β = 0, the equilibrium pressure is given

by
ζ̄α

∣
∣
E

= ναζn (α = 1, . . . , n) . (7.104)

Let us look next at the remaining contributions to the constituent equi-
librium stress tensors (7.100). They consist in the first line of elastic and
frictional contributions and both will, below, further be analysed. Here, it
may suffice to mention that the fluid and solid constituents need separate
attention. Moreover, compressible and density preserving constituents need
to be treated separately. We shall not go into any depth discussing the con-
tributions on the second line of (7.100) due to constituent mass and volume
fraction interaction rate densities except that the equilibrium stress of one
constituent is affected by contributions from all other constituents with non-
vanishing mass and volume fraction interaction rate densities. The coefficients
are given by the inner parts of the constituent free enthalpies (chemical po-
tentials, Gibbs free energies) defined in (6.109)-(6.111). Notice also that the
coefficient ια defined in (6.110) and given by the Lagrange multipliers λε

and λν
α only arises in connection with the constituent volume fraction pro-

duction rate densities.
Consider next the constituent interaction forces. Their equilibrium values

are given in (7.101). Apart from the very last non-linear term they consist of
contributions that are proportional to the density gradients and similar ones
that are proportional to the volume fraction gradients. Contributions of the
former are only present for compressible constituents. The coefficients of the
density gradient ∇ρα represent (i) a contribution due to the thermodynamic
pressure (6.101), (ii) due to the extra entropy flux (7.75), (later to be set
to zero), (iii) due to the constituent free enthalpies (6.109) and (iv) the
Lagrange multipliers in λν

α, defined in (6.119). Alternatively, the coefficients
of the volume fraction densities ∇να are (i) due to the true pressure (7.7),
(ii) due to the extra entropy flux (7.75), (7.76) (later to be set to zero), (iii)
due to the free enthalpies (6.109), and (iv), due to the Lagrange multipliers
in (6.119). These terms are very similar to one another, and they also have
their correspondences in the equilibrium stresses.

We note that, modulo our assumptions, the formulae revealing the equi-
librium properties of the constituent Cauchy stress tensors and the con-
stituent interaction forces are rational deductions from the Second Law of
Thermodynamics. In fact, there is no flexibility in their choice. Thermody-
namic arguments have resulted in their precise definition. We may now also
give a partial answer to the question whether the formulae provide room for
a different splitting of the divergence of the constituent stress tensor and the
interaction force. In principle, the formulae (7.87) to (7.101) show how terms
arising in the constituent stress tensors and interaction forces can be moved
from one to the other. They must appear in the interaction forces as the di-
vergence of a second order tensor or the gradient of a scalar. Or products of
scalars with gradients can be complemented to such terms. For instance a∇b
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is replaced by ∇(ab)−b∇a. Of course, there is a multitude of such possibilities
by way of the gradient operator of any pressure term or the divergence of any
stress contribution. Such transformations may, however, destroy the property
that the newly defined interaction force, summed over all constituents, must
vanish. Moreover, the thermodynamic structure explained in connection with
the properties (7.50) may be destroyed in this way. In addition, such transfor-
mations are always connected with differentiations which destroy the global
structure and therefore possibly weak formulation of the balance laws. It is
for these reasons that we do not recommend such transformations unless, of
course, one wishes to search for the equivalence or non-equivalence of seem-
ingly different formulations.



Chapter 8

Reduced Model

Abstract The intention of this chapter is to see whether (i) well known formulations

of binary mixture models can be derived from the thermodynamic model, (ii) clas-

sical hypo-plasticity is deducible from the frictional evolution equation and (iii) the

popular assumption of pressure equilibrium is justified. To this end, we ignore mass

and volume fraction interaction rate densities, restrict considerations to isothermal

processes, ignore higher order non-linearities in the constitutive relations and use the

principle of phase separation. These assumptions transform the equilibrium stresses,

heat flux and interaction forces to considerably simplified forms. Furthermore, the

analysis shows that classical hypo-plasticity can be reconstructed with the introduc-

tion of a new objective time derivative for the stress-like variable. Non-equilibrium

contributions to the stresses and interaction forces are also briefly discussed.

It is, finally, shown that the assumption of pressure equilibrium precludes the appli-

cation of frictional stresses in equilibrium. This unphysical assumption is therefore

replaced by a thermodynamic closure condition that is more flexible and less restric-

tive. It allows for frictional stresses in thermodynamic equilibrium and therefore is

sufficiently general for applications to mixture theories.

In the previous chapters we developed a theory for an isotropic visco-
elasto-plastic heat conducting mixture of n constituents, (i) in which mass
interactions between the constituents may occur, (ii) some or all of the con-
stituents are density preserving in the sense that they possess constant con-
stituent mass densities, (iii) which is saturated in the sense that no void
spaces are present in the mixture, (iv) that ignores constituent energy in-
teractions, (v) which is capable of measuring the distribution and evolution
of submacroscopic structures by means of new internal variables and corre-
sponding balance laws and (vi) allows in the linearised case for a hyperbolic
governing equation for the temperature distribution.

In the sequel, we aim to reduce the above theory to a model that is suffi-
ciently simple to be numerically solvable but, equally, allows for the descrip-
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tion of the main properties of debris flows, namely, (i) fluidisation in a thin
shear band close to the bed, (ii) particle size segregation, (iii) shear stresses
present in thermodynamic equilibrium and (iv) velocity differences of the
fluid and the solid grains.

To this end, we commence this chapter with the basic physical assump-
tions (Section 8.1), e. g. a binary mixture postulate, no mass-interaction, etc.
followed by ‘artificial’ assumptions (Section 8.2) on the free energy, ΨG, the
constitutive quantities for hypo-plasticity, Φ̄α, and on the non-equilibrium
parts of the constitutive quantities. Along with the latter suppositions co-
efficients are introduced that allow the specification of the material. At the
end of this chapter (Section 8.3) we inspect the reduced field equations under
the strong assumption of ‘pressure equilibrium’ (to be specified) and under
another, new and presumably weaker, assumption introduced by Hutter et
al. [63].

8.1 Physical Assumptions

We model debris flows here as saturated mixtures of two constituents, where
we interpret the first constituent as solid grains and the second as a fluid.
Thus, the Greek indices take the identifiers s, for the solid and f , for the
fluid. As a consequence of the saturation condition, [A7], the volume frac-
tion for the fluid, νf , is replaced by (1 − νs) and, as we have already seen,
an independent constraint field s arises for which the field equations (to
be specified) have to be solved. We also assume that both constituents are
density-preserving and thus, in the context of assumption [A6], we prescribe

ρs = const., ρf = const. , (m = 0) . (8.1)

The binary mixture concept, in which the solid constituent is not split into
a number of separate components, implies that different characterizations of
the solid component by the grain size or differences in resilience, etc., are not
accounted for. Furthermore, we shall also exclude melting of the solid par-
ticles in the moving process. This would in most situations require a three
constituent or even more detailed mixture concept. This excludes very large
landslides in which the frictional heat will melt the rock and – after solidifi-
cation of the molten rock – generate so-called frictionites. We formalised this
in assumption [A2] which in this binary mixture model reduces to

cs = cf = 0 . (8.2)

As a consequence of (4.39) and (8.2) the volume fraction production rate den-
sities, ns and nf , vanish and the mass- and volume fraction balance equations
turn into
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∂νs + ∇ · (νsvs) = 0 ,

∂νs −∇ · (vf ) + ∇ · (νsvf ) = 0 .
(8.3)

By subtracting these two equations one obtains

∇ · (νsvs + (1 − νs)vf ) = 0 , (8.4)

which may replace one of the equations (8.3). If we now define by

vvol = νsvs + (1 − νs)vf (8.5)

the volume-weighted mixture velocity , (8.4) states that

∇ · (vvol) = 0 . (8.6)

This result is sufficiently significant to state it in words: The volume-weighted
mixture velocity is solenoidal. We emphasize this property, because in the lit-
erature (primarily of fluvial hydraulics) it is often used without explicitly
mentioning that the mixture velocity is volume-weighted rather than mass
weighted (=barycentric). Its simplicity also yields modelling and computa-
tional advantages. For a formal comparison of volume and mass weighted
mixture concepts, see Chen & Tai [27].

In the previous chapters we were, besides other things, concerned with
thermal processes involving the temperature, θ, its gradient, ∇θ, and its
material time derivative, θ̇, and obtained e. g. the results (6.69), (6.96)1,2,3

and (7.36). However, for the sake of simplicity, from now on in this chapter

[A18] We regard debris flows as isothermal processes, i. e. each ma-
terial element of the mixture is thought to exhibit the same
temperature for all times.

Consequently, we can omit the temperature-related quantities, θ, ∇θ and θ̇
in the constitutive law, [A8], (cf. Hutter et al. [63]), so the mixture reduced
energy balance (4.1) is no longer of interest. As a consequence, the problem
of describing debris flows becomes purely mechanical.

We have also mentioned above that the concept of frictional, rate-independent
behaviour does not make sense for (viscous) fluids. We, therefore, omit the
internal variable, Z̄f , in all constitutive laws and also disregard for the fluid
constituent its evolution law.

The incorporation of the above simplifications into the constitutive law
[A8] then yields
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C =Ĉ
(

νs, ∇νs, vfs, Bs, Bf , Ds, Df , Wfs, Z̄s

)

,

for C :=
{

T̄s, T̄f , m̄i
s

}

.

(8.7)

As is proper in continuum theories of saturated mixtures the saturation pres-
sure, ς, is not treated as an independent constitutive quantity in the consti-
tutive law (8.7)1. We also recall the principle of objectivity, see Section 4.6,
(4.45), in which we choose

a = −vf , Ω∗ = −Wf (8.8)

and define2

vfs := vf − vs, Wfs := Wf − Ws (8.9)

as an objective difference velocity of the solid and the fluid and the difference
of the solid and fluid vorticity tensors, respectively. These variables are used
in relations (8.7) which now obey the principle of material objectivity. Fur-
thermore, we have omitted in (8.7)2 the fluid interaction force m̄i

f , because
m̄i

f = −m̄i
s.

For the ‘inner’ part of the Helmholtz free energy, we have the following
dependencies

ΨG
I = Ψ̂G

I

(

νs, Bs, Bf , Z̄s

)

. (8.10)

As ΨG is independent of ρα, see (8.1), the true thermodynamic pressures, pG
s

and pG
f , are not present in this model. We further remark, that ΨG

I only de-
pends on equilibrium quantities, and thus, the identifier (·)

∣
∣
E

can be omitted
for all quantities derived from ΨG

I , i. e. βG
s , ζα (α = s, f) and ΨG

I,xJ , where
xJ ∈

{

Bs, Bf , Z̄s

}

.

With all these simplifications the constitutive laws for the equilibrium
quantities q

∣
∣
E
, T̄β

∣
∣
E

(β = s, f) and m̄i
s

∣
∣
E

(see (7.99) to (7.101)) take the
forms

q
∣
∣
E

= qN
∣
∣
E

, (8.11)

T̄s

∣
∣
E

= −�̄sI + 2ρ sym(ΨG
I,Bs

)Bs + ρΨG
I,Z̄s

(Φ̄s),Ds

∣
∣
E

+ T̄N
s

∣
∣
E

, (8.12)

T̄f

∣
∣
E

= −�̄fI + 2ρ sym(ΨG
I,Bf

)Bf + T̄N
f

∣
∣
E

, (8.13)

1 To make a constraint variable an independent constitutive quantity as often done
is actually rather controversial: The saturation pressure is in any boundary value
problem uniquely defined up to an arbitrary constant (∇ς = 0). So, a dependence of
a constitutive quantity on ς is not unique!
2 Analogously vsf = vs − vf = −vfs. So, either vfs or vsf is the generic variable
and both are equivalent to one another.
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m̄i
s

∣
∣
E

=
{(

ζs − ξ̄sζs

)

+ ξ̄sζf − θ(kv
s ),νs

}

∇νs

+ρ
(

ΨG
I

)

,Z̄s

(

Φ̄s

)

,vs

∣
∣
E

+ m̄N
s

∣
∣
E

=
{

ζs − ξ̄s

(

ζs − ζf

)

− θ(kv
s ),νs

}

∇νs

+ρ
(

ΨG
I

)

,Z̄s

(

Φ̄s

)

,vs

∣
∣
E

+ m̄N
s

∣
∣
E

(7.7)
=

{

βG
s

(

1 − ξ̄s

)

− ρfΨG
I + ς − θ(kv

s ),νs

}

∇νs

+ρ
(

ΨG
I

)

,Z̄s

(

Φ̄s

)

,vs

∣
∣
E

+ m̄N
s

∣
∣
E

, (8.14)

in which

�̄s = νs

(

βG
s − ρfΨG

I + ς
)

− θkv
s , (8.15)

�̄f = (1 − νs)
(

− ρfΨG
I + ς

)

− θkv
f . (8.16)

The equilibrium momentum interaction force, m̄i
f

∣
∣
E

follows from m̄i
s

∣
∣
E

via

∑

m̄i
α

∣
∣
E

=
∑

m̄α

∣
∣
E

= 0 ⇒ m̄i
f

∣
∣
E

= −m̄i
s

∣
∣
E

. (8.17)

We know from hydrostatics, that fluids in thermodynamic equilibrium can
only sustain spherical stresses, i. e. pressures, and thus the second and third
term in (8.13) can only have the form

2ρ sym(ΨG
I,Bf

)Bf + T̄N
f

∣
∣
E

=: πfI , (8.18)

where πf is a scalar which depends only on equilibrium variables. In addition,
we know from the definition of �̄f , (7.88), that it contains the independent
saturation pressure, ς. Thus, and if one so desires, �̄f itself rather than ς or
ζf could be regarded as an independent quantity which is not determined by
constitutive relations but from the solution of the field equations. Without
loss of generality, it is therefore permissible to incorporate πf into �̄f , and
we are left with

T̄f

∣
∣
E

= −�̄fI . (8.19)

[A19] In the sequel, for simplicity, we will omit the higher non-linear
contributions to the equilibrium constitutive laws.

Although [A19] can be confirmed by convincing physical reasoning, i. e. (i)
the absence of heat flux in thermodynamic equilibrium and (ii) the disre-
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gard of non-linear terms in the equilibrium fluid momentum interaction (cf.
Svendsen & Hutter [115]) we will regard [A19] as an ad hoc assumption.

Considering the above arguments, we finally end up with

q
∣
∣
E

= 0 , (8.20)

T̄s

∣
∣
E

= −�̄sI + 2ρ sym(ΨG
I,Bs

)Bs + ρΨG
I,Z̄s

(Φ̄s),Ds

∣
∣
E

, (8.21)

�̄s = νs

(

βG
s − ρfΨG

I + ς
)

− θkv
s ,

T̄f

∣
∣
E

= −�̄fI , (8.22)

�̄f = (1 − νs)
(

− ρfΨG
I + ς

)

− θkv
f − πf ,

m̄i
s

∣
∣
E

=
{

βG
s

(

1 − ξ̄s

)

− ρfΨG
I + ς − θ(kv

s ),νs

}

∇νs

+ ρ
(

ΨG
I

)

,Z̄s

(

Φ̄s

)

,vs

∣
∣
E

,

(8.23)

where, in particular, the elastic and hypo-plastic parts of (8.21) still have to
be discussed in greater detail.

If we combine (8.21)2 and (8.22)2 and use relation (7.77)2, we obtain for
the pressure of the mixture Cauchy stress tensor the expression

� = �̄s + �̄f = νsβ
G
s +

(

− ρfΨG
I + ς

)

− πf . (8.24)

This pressure cannot be regarded as a very meaningful concept, because it
contains solid and fluid properties as well as properties of saturation. We re-
gard the partial stresses, Ts

∣
∣
E

and Tf

∣
∣
E
, as the better entities characterising

the state of normal stresses.

8.2 ‘Artificial’ Assumptions

Constituent Cauchy stress tensors

We have already pointed out that all constitutive quantities can be decom-
posed into equilibrium and non-equilibrium parts, i. e.

T̄s = T̄s

∣
∣
E
+T̄s

∣
∣
N

, T̄f = T̄f

∣
∣
E
+T̄f

∣
∣
N

, m̄i
s = m̄i

s

∣
∣
E
+m̄i

s

∣
∣
N

. (8.25)

The heat flux vector, q, is set aside, as it is unimportant for isothermal pro-
cesses. In the last section we have found representations for the equilibrium
parts of the constitutive quantities, but in particular the equilibrium solid
stress tensor, T̄s

∣
∣
E
, which consists of a constraint (cs), an elastic (es) and a
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frictional (fric) (hypo-plastic) part, i. e.,

T̄s

∣
∣
E

= −�̄sI
︸ ︷︷ ︸

T̄cs

+ 2ρ sym(ΨG
I,Bs

)Bs
︸ ︷︷ ︸

T̄es

+ ρΨG
I,Z̄s

(Φ̄s),Ds

∣
∣
E

︸ ︷︷ ︸

T̄fric

(8.26)

requires further modelling. Let us make the constitutive relations for T̄es and
T̄fric more specific. To this end, we assume the ‘inner’ free energy to have the
form

ΨG
I =

∑

ΨG
α = Ψ̃G

s

(

νs, Bs, Z̄s

)

+ Ψ̃G
f

(

(1 − νs), Bf

)

. (8.27)

By prescribing this representation for ΨG
s and ΨG

f we have used the3

[A20] ‘Principle of phase separation’ introduced by Passman et al.
[103], which requires the ‘material-specific’ constitutive quan-
tities for constituent Kα, to depend only on those constitutive
variables that belong to the same constituent. This principle
does not apply to the remaining quantities, e. g. those for the
whole mixture or those describing interactions between the con-
stituents.

We remark that for single-material bodies the ‘principle of phase separation’
reduces to the well known principle of equipresence, Truesdell & Noll

[121] . We further notice that the principle must likely be wrong when ex-
change processes between the constituents take place.

In order to specify the elastic parts, of the constituent Cauchy stress ten-
sors we isolate the elastic and frictional effects in ΨG

I separately by assuming
(cf. Hutter et al. [63])

[A21] ΨG
I = Ψ̂G

fric

(

νs, Z̄s

)

+ Ψ̂G
es

(

Bs

)

+ Ψ̂G
ef

(

Bf

)

. (8.28)

Here the indices ‘fric’, ‘es’ and ‘ef ’ stand for ‘friction’, ‘elastic-solid’ and
‘elastic-fluid’, respectively. The last two terms in (8.28) are thought to account
for the elastic contributions of the solid and fluid, respectively. In Ψ̂G

fric, on

3 [A20] was introduced into the literature much earlier by Morland [89], however
by not declaring it a ‘principle’. In Morland [90] and subsequent papers [91], [92]
it was re-iterated on and the poor terminology ‘effective’ was changed to ‘intrinsic’
which we call ‘true’.
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the other hand, we have subsumed all other dependencies of ΨG
I . It is believed

that the representation of Ψ̂G
fric in [A21] is able to describe all effects of the

visco-elasto-plastic binary mixture, except those of elasticity.

We know from the representation theory of isotropic functions, that
isotropic scalar-valued functions of a single symmetric tensor, such as Ψ̂G

es

and Ψ̂G
ef , can only depend on the invariants of this tensor (cf. Ogden [101]).

Consequently, those two functions exhibit the following dependencies

ΨG
es = Ψ̌G

es

(

IBs
, IIBs

, IIIBs

)

, ΨG
ef = Ψ̌G

ef

(

IBf
, IIBf

, IIIBf

)

, (8.29)

where the invariants for a general symmetric second-order tensor, A, are
defined according to

IA = tr(A), IIA = 1
2

( (

IA
)2 − IA2

)

, IIIA = det(A) . (8.30)

With these results in mind, we can now turn the attention to the contributions
of ΨG

I in the elastic parts of the constituent Cauchy stress tensors. If we,
first, ignore the arguments for πf (see Section 8.1, (8.18)) for a moment, the
elastic part of the fluid Cauchy stress tensor,

(

T̄f

)

ef
, can be written in the

forms
(

T̄f

)

ef
= 2ρ sym

(

(ΨG
I ),Bf

)

Bf
[A21]= 2ρ sym

(

(Ψ̂G
ef ),Bf

)

Bf

= 2ρ sym
(∂Ψ̌G

ef

∂IBf

∂IBf

∂Bf
+

∂Ψ̌G
ef

∂IIBf

∂IIBf

∂Bf
+

∂Ψ̌G
ef

∂IIIBf

∂IIIBf

∂Bf

)

Bf ,

= 2ρ
(∂Ψ̌G

ef

∂IBf

I +
∂Ψ̌G

ef

∂IIBf

(

IBf
I − Bf

)

+
∂Ψ̌G

ef

∂IIIBf

IIIBf
B−1

f

)

Bf ,

(8.31)

where the chain rule of differentiation has been used. For a general second-
rank tensor A the above derivatives take the forms (cf. Hutter & Jöhnk

[62])

∂IA
∂A

= I,
∂IIA
∂A

= (IAI − A) ,
∂IIIA
∂A

= IIIAA−1 . (8.32)

If we apply these results with A = Bf in (8.31), we see that the term in
parentheses is already symmetric, which justifies the last line in (8.31).

In Section 8.1 we mentioned that in thermodynamic equilibrium, fluids can
only sustain spherical stresses. Consequently, only those derivatives of the
invariants are to be considered which allow (T̄f )ef to become proportional to
the unit tensor, I. This situation can only be reached if we require

∂Ψ̌G
ef

∂IBf

=
∂Ψ̌G

ef

∂IIBf

= 0 . (8.33)
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It follows that Ψ̌G
ef cannot depend on IBf

and IIBf
. Furthermore, we observed

in Section 4.3 that only for mixtures with non-vanishing mass interactions,
i. e. cα �= 0, the variables Bα and ρα (α = 1, . . . , m) are independent of
one another. Thus, in the present model for which cα = 0 the assumption of
constant true mass densities and [A2] allow the conclusion4

det(Bf ) = IIIBf
= const. , det(Bs) = IIIBs

= const. (8.34)

and therefore, Ψ̌G
ef cannot depend on IIIBf

either, i. e.,

∂Ψ̌G
ef

∂IIIBf

= 0 . (8.35)

We obtain from (8.33) and (8.35) that

∂Ψ̂G
ef

∂Bf

[A21]=
∂ΨG

I

∂Bf
= 0 . (8.36)

Thus, ΨG
I cannot be a function of Bf . This, together with [A19], (8.18) and

(8.19) implies that πf can be neglected.
The elastic part of the solid Cauchy stress tensor, on the other hand,

becomes4

T̄es = 2ρ

(
∂Ψ̌G

es

∂IBs

+ IBs

∂Ψ̌G
es

∂IIBs

)

Bs − 2ρ
∂Ψ̌G

es

∂IIBs

B2
s . (8.37)

With this relation we have reached the point, where, except for the postulate
of an explicit representation for the elastic part of the solid free energy, ΨG

es,
no other simplification can be performed. The simple choice

ρΨ̌G
es = C1 (IBs

− 3) + C2 (IIBs
− 3) ,

C1 = 1
2μ

(
1
2 + β

)

= const., C2 = 1
2μ

(
1
2 − β

)

= const. ,
(8.38)

4 The density-preserving assumption for a constituent Kα whose mass production rate
is not present, cα = 0, implies according to (4.20) that it also preserves its volume
along its own trajectory. Hence cα = 0 also means detFα = constant. Otherwise
stated, the constituent motion is isochoric, and Fα and Bα are unimodular. So, the
elastic stress T̄es cannot depend on IIIBs

.
If cα were not zero, then Bα would not be unimodular and density-preserving

could not imply volume-preserving of constituent Kα. Insensitivity of T̄es to solid
volume changes would then require that (8.37) holds true if Bs is replaced by

Bunimod
s := (detBs)−1/3Bs .

This then simply would mean that there is no bulk elastic response.
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which is attributed to Mooney & Rivlin (cf. Rivlin & Saunders [109]),
leads to

T̄es = 2
(

C1 + C2IBs

)

Bs − 2C2B2
s . (8.39)

In (8.38), μ can be interpreted as the shear modulus of the solid grains and
β as a modelling parameter. For the special case of β = 1

2 , we attain a fairly
simple representation, namely

T̄es = μBs , (8.40)

which is denoted Neo-Hookean behaviour. Despite the simple structure, T̄es

in (8.40) still allows finite deformations, but, of course, its accuracy reduces
quickly with the extent of the deformation. For the natural configuration,
i. e. the situation of an undistorted mixture, which ought to be stress-free,
the solid left Cauchy-Green tensor, Bs, reduces to I. Therefore, the inde-
pendent pressure field (here �̄f ) has to be chosen in such a way that in the
undistorted mixture no stresses are present. A simple alternative would be
to replace Bs in (8.39) and (8.40) by Es := 1

2 (Bs − I). With the elastic free
energy given as Ψ̂G

es(Es) we then obtain instead of (8.37),

T̄es = 2ρ

(

∂ ˇ̌ΨG
es

∂IEs

+ IEs

∂ ˇ̌ΨG
es

∂IIEs

)

Es − 2ρ
∂ ˇ̌ΨG

es

∂IIEs

E2
s , (8.41)

and (8.38) changes to

ρ ˇ̌ΨG
es = Č1 (IEs

− 3) + Č2 (IIEs
− 3) ,

Č1 = 1
2 μ̌

(
1
2 + β̌

)

= const., C2 = 1
2 μ̌

(
1
2 − β̌

)

= const. ,

(8.42)

so that
T̄es = 2

(

Č1 + Č2IEs

)

Es − 2Č2E2
s , (8.43)

from which, with β̌ = 1
2 , we get

T̄es = μ̌Es . (8.44)

Even better, however, is to choose the elastic stress contribution as used by
geotechnical engineers.

The frictional part of the solid stress (8.26),

T̄fric = ρΨG
I,Z̄s

(Φ̄s),Ds

∣
∣
E

= ρΨG
fric,Z̄s

(Φ̄s),Ds

∣
∣
E
, (8.45)

is still an unknown function of the equilibrium quantities, since so far no
representation has been given for ΨG

fric and Φ̄s. We follow the argumentation
of Teufel [117] who formulated the following postulate:
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[A22] T̄fric is collinear to Z̄s, i. e.

T̄fric = ρδZ̄s, δ = constant . (8.46)

With the choice [A22] a special functional relation has been chosen for the
solid frictional stress. Substituting (8.46) into (8.45) allows by way of inte-
gration an explicit determination of ΨG

fric; so, [A22] is not a genuine assump-
tion but rather a convenient choice by which hypo-plastic behaviour can be
demonstrated. Using assumption (8.46), i. e. substituting Z̄s = T̄fric

/

(ρδ)
into the evolution equation for Z̄s, (4.36), yields

1
ρδ

◦
T̄fric −

1
ρ2δ

dsρ

dt
T̄fric

=
1
ρδ

{ds T̄fric

dt
− [Ωs, T̄fric] −

1
ρ

dsρ

dt
T̄fric

}

= Φ̄s

( 1
ρδ

T̄fric, ·
)

,

(8.47)

where the dot indicates additional dependencies, say on νs and Ds. If we use
in addition

dsρ

dt
= ρs

dsνs

dt
+ ρf

ds(1 − νs)
dt

= (ρs − ρf )
(

∂νs

∂t
+ ∇(νs)vs

)

= −νs(ρs − ρf )∇ · vs ,

(8.48)

which is obtained from (8.3) and the saturation condition [A7], (8.47) reduces
to

1
ρδ

{ ◦
T̄fric + νs

ρs − ρf

ρ

(

∇ · vs

)

T̄fric

}

= Φ̄s

( 1
ρδ

T̄fric, ·
)

. (8.49)

So far, we are dealing with a general constitutive quantity, Φ̄s, for which
the hypo-plastic behaviour has not been explicitly described, but could be.
We note that to model hypo-elastic behaviour, Φ̄s must be linear in Ds;
however, hypo-elasticity cannot capture the fact that the material behaviour
of debris in slow or rapid flows is, in general, different in extension from
compression (cf. Kolymbas [76]). To incorporate this property, we prescribe
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Φ̄s to have a hypo-plastic structure. Similarly to the approach outlined in
Section 4.4, we require

Φ̄s = Φ̂s

(

·, Z̄s,Ds

)

(8.50)

to be positively homogenous of the first degree in Z̄s and Ds. Analogously
to (4.31), we also decompose Φ̄s into an operator which is linear in Ds and
another one which is non-linear in Ds, i. e.

Φ̄s = L
(

·, Z̄s,Ds

)

+ N
(

·, Z̄s,Ds

)

. (8.51)

Following the proposal (4.32) we now assume the representation

Φ̄s = f1(·)
(

L
(

Z̄s

)

Ds + f2(·)N
(

Z̄s

)

|Ds|
)

, (8.52)

where the norm of Ds is defined as

|Ds| :=
√

tr(D2
s) , (8.53)

as in (4.33) and f1 and f2 are the coefficients of barotropy and pyknotropy ,
which may depend on the variables S. The tensors L and N are of fourth and
second order, respectively. Representation (8.52) satisfies automatically the
requirement of positive homogeneity in Ds. If we require homogeneity of Φ̄s

with respect to Z̄s, (8.49) can be reduced to the form

◦
T̄fric + νs

ρs − ρf

ρ

(

∇ · vs

)

T̄fric

= f1(·)
(

L
(

T̄fric

)

Ds + f2(·)N
(

T̄fric

)

|Ds|
)

.

(8.54)

This representation of the hypo-plastic evolution law is close to that pos-
tulated by Wu & Kolymbas [129]. The differences are those due to the
binary mixture, and an additional term bilinear in ∇ · vs and T̄fric. However
for ρf = 0, agreeing with the dry granular case, (8.54) reduces to the form
previously derived by Svendsen et al. [116]. By using the idea of Teufel

[117], we define the new objective time derivative5

�
Z̄s:=

ds Z̄s

dt
−
[

Ω , Z̄s

]

− νs
(ρs − ρf )

ρ
(∇ · vs)Z̄s , (8.55)

which in view of [A22] immediately leads to a form of the hypo-plastic stress
evolution equation agreeing with that of Wu & Kolymbas [129], i. e.

◦
T̄fric= f1(·)

(

L
(

T̄fric

)

Ds + f2(·)N
(

T̄fric

)

|Ds|
)

. (8.56)

5 On the basis that Z̄s and
◦

Z̄ are objective symmetric tensors, it is trivial to show

that
�

Z̄ is objective. Indeed, ρs, ρf , ρ and νs are objective scalars, as is ∇ · vs.
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Obviously, and importantly to recognise, the new objective time derivative
does change the above thermodynamic analysis, but only the result for the
solid equilibrium Cauchy stress tensor is affected by these changes. The
incorporation of

�

Z̄s = Φ̄s , (8.57)

instead of (4.36), into (5.10) leads to

T̄s

∣
∣
E

= −�̄sI + 2ρ sym(ΨG
I,Bs

)Bs

+ ρΨG
I,Z̄s

(Φ̄s),Ds

∣
∣
E

+ νs(ρs − ρf )
(

ΨG
I,Z̄s

· Z̄s

)

I (8.58)

rather than (8.21). The fact that the last term in (8.58) is spherical allows
its incorporation into �̄s, which therefore has the form

�̄s = νs

(

βs − ρfΨG
I + ς

)

− νs(ρs − ρf )
(

ΨG
I,Z̄s

· Z̄s

)

− θkv
s . (8.59)

Thus, by changing
◦

Z̄s to
�

Z̄s an additional contribution to the solid pressure
arises. This pressure contains contributions from the configration pressure,
saturation pressure, the free energy ΨG

I and extra entropy flux k.
Assumption [A22] also implies that

δZ̄s = ΨG
fric,Z̄s

(Φ̄s),Ds

∣
∣
E

, (8.60)

which follows from (8.45). When f1, f2, L
(

Z̄s

)

and N
(

Z̄s

)

in Φ̄s are specified,
the integration of (8.60) with respect to Z̄s leads to a representation for ΨG

fric.
Consequently, the assumption [A22] and the choice of Φ̄s determine the form
of ΨG

fric.
The obvious drawback of this hypo-plastic approach is the lack of differ-

entiability of Φ̄s at Ds = 0 and therefore the singularity of T̄fric in thermo-
dynamic equilibrium (see (8.26)). To circumvent this situation, Svendsen

et al. [116] proposed a so-called non-standard analysis which for the purpose
here is too complicated. We may try to regularize the problem by replacing
(Ds

/

|Ds|) which arises in (Φ̄s),Ds
by6

Ds

ε + |Ds|
, 0 < ε � 1 . (8.61)

Regularizing the problem in such a way has the advantage that the limit

lim
Ds→0

Ds

ε + |Ds|
= 0 (8.62)

6 Cf. Fang, Wang, Hutter [43, 40], however, the regularization proposal (8.61) is
well known in the rheological literature.
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is finite, in fact zero, but, on the other hand, this procedure contradicts
the requirement that Φ̄s is positively homogenous of first order in Ds and
consequently, T̄fric does not have a rate-independent part. Nevertheless, we
are convinced that for very small values of ε the term

{

Ds

/

(ε + |Ds|)
}

is
only affected by ε in the vicinity of Ds = 0. For rapid motions, i. e. steep
velocity gradients and thus large values of |Ds|, ε is negligibly small. However,
with the introduction of (8.61) the equilibrium stress (8.58) of the solid no
longer contains the frictional contribution, because this term now vanishes
in equilibrium. This means that the equilibrium stresses will now have to
be carried by the pressure like contributions and, above these, the elastic
stresses. This may be somewhat unrealistic, but it is so only in a very small
regime.

As an alternative method of regularization, we may apply the following
approach: When starting from a state of rest, at which the strains and stresses
must first be determined, an initial value problem of the quasi-static equations
using the stress representation (8.58) without the original frictional term
replaced by the frictional term with the regularization (8.61) is integrated in
time. As soon as |Ds| has reached the value 10n × ε, where n can be selected
(1 < n � 2), the actual value of

(

Ds

/

|Ds|
)

is assigned to the equilibrium
frictional stress in (8.58). Computations are then continued with the classical
hypo-plastic equations. On the other hand, for a decelerating phase of the
motion, the regularization (8.61) does not need to be introduced at all. If |Ds|
reaches the value ε from above, we then may simply maintain this limiting
value

(

Ds

/

|Ds|
)

also for smaller values of |Ds| down to |Ds| = 0 (essentially
locking it to the equilibrium). This then defines the equilibrium value for the
stress according to (8.58).7 Reloading phases of a dynamical process can then
be started from this ‘frozen’ equilibrium state. This procedure corresponds
to the approach of non-standard analysis.

When reviewing an earlier version of this manuscript Bob Svendsen noted:

‘Yet another possibility to analyse thermodynamic equilibrium for hy-
poplastic materials may be offered by non-convex analysis. If we consider
the ‘hypo-elastic’ form

Φ̄s = L(Bs,Zs)Ds (8.63)

for Φ̄s, then (8.63) fulfills the differentiability requirement since it is linear
in Ds. Here, L(Bs,Zs) represents a fourth-order-tensor valued isotropic
function, and as mentioned already, it is common in the soil mechanics
context to model the void ratio e as a function of Bs, which is reflected
in the dependence of Φ̄s on Bs. From (8.63) and (8.58) above follows, in
particular, the form

(

T̄s

∣
∣
E

)hypoelastic = 2ρ sym(ΨG
I,Bs

)Bs + ρLTΨG
I,Z̄s

(8.64)

7 This procedure is obviously ‘mesh’ dependent, the mesh being given by ε.
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for the equilibrium Cauchy stress. Models for granular materials based on
(8.63) in the realm of soil mechanics have been considered by, e.g., Stutz

[114], Romano [111], as well as Davis & Mullenger [31]; they were
criticized by Gudehus [47]. The basic problem of (8.63) is that it cannot
capture the fact that the material behaviour of granular materials is in
general different in extension than in compression. In contrast to (8.63),
the hypoplastic form (see (8.52))

Φ̄s = L
(

Bs, Z̄s

)

Ds + N
(

Bs, Z̄s

)

|Ds| (8.65)

for Φ̄s does account for the fact that the material behaviour of granular
materials is in general different in extension than in compression, i. e., via
the second term non-linear in Ds. Note that, in contrast to (8.63), (8.65) is
not (Fréchet) differentiable in Ds at Ds = 0 since the Euclidean norm
is not. Consequently, standard concepts of thermodynamic equilibrium
which presume such differentiability are not applicable to the hyperplastic
case.
One suggestion for further work on this issue was made by Svendsen et
al. [116] in the form of non-standard analysis. An alternative possibility
not suggested by them is convex analysis (e. g., Rockafellar [110]) and
the calculus of variations (i. e., for rate problems). To look into this briefly,
note that the hypoplastic form (8.65) of Φ̄s results in the quasi-bilinear
form8

Γ = Σs · Ds + σs|Ds| (8.66)

of the dissipation-rate density Γ , with the stress-like quantities

Σs := Ts − 2ρ sym(ΨG
I,Bs

)Bs + ρLTΨG
I,Z̄s

,

σs := −ΨG
I,Z̄s

· N ,
(8.67)

independent of Ds. As a function of Ds, note that Γ is closed, convex,
and positive-homogeneous of order one. Now, as discussed, Γ,Ds

does not
exist at Ds = 0. On the other hand, the subdifferential

∂Γ (D) := {(Γ ∗, σ∗) | Γ ∗·(D∗−D)+σ∗(|D∗|−|D|) ≤ Γ (D∗)−Γ (D), ∀D∗}
(8.68)

of Γ in the context of (8.66) does exist there. Since thermodynamic equi-
librium represents a minimum of Γ with respect to Ds at 0, a necessary
and sufficient condition for such equilibrium is

(0, 0) ∈ ∂Γ (0) . (8.69)

In particular, (8.67) implies that this can only be the case if N is per-
pendicular to ΨG

I,Z̄s
. Since ΨG

I is an isotropic function of Zs, this could be

8 The equilibrium variables Bs and Zs are left out of the notation for simplicity here.
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the case in general iff N is (i), deviatoric, (ii), perpendicular to Zs, and,
(iii), perpendicular to the cofactor of Zs. In the simplest case, i. e., if ΨG

I

were a function of the first invariant of Zs alone, then only (i) would have
to hold. The forms for N found in the literature (e. g., Wu et al. [128])
used to model the failure of various types of soils, however, satisfy none of
these conditions. Consequently, such models for granular materials would
appear to possess no state of thermodynamic equilibrium in the standard
sense. More generally, note that the assumption of an additional principle
such as maximum dissipation would imply the generalized normal from
(Σ, σ) ∈ ∂Γ (Ds) in this context.’

It is to be seen how this approach will open new avenues in elasto-visco-
plasticity of granular mixtures.

For the modelling of T̄fric there still remains the specification of L and
N. In general, both tensors are allowed to depend on the following set of
constitutive variables

{

νs, ∇νs, vfs, Bs, Bf , Wfs, Df , Z̄s

}

, (8.70)

but considering all these variables leads to very complex isotropic representa-
tions of L and N. Therefore, we here adopt the ‘principle of phase separation’,
[A20], and abandon those quantities which are related, (i) to the interaction
of the constituents, (ii) to the mixture and (iii) to the fluid constituent, i. e.
vfs, Wfs, Bf and Df . In the hypo-plastic single-material theory of Svend-

sen et al. [116], Φ is assumed to depend only on the set
{

B, Z, D
}

. In
the present model we are left with the equivalent quantities Bs, Z̄s and Ds,
but owing to the mixture character of the model the quantities νs and ∇νs

should also arise. To disregard the latter contributions is hardly feasible and
therefore, if we want to use the representations for L and N proposed in the
literature for single-body hypo-plasticity,9 their adaption is necessary. The
existing recent literature on hypo-plastic constitutive modelling and param-
eter identification for special choices of the operators L and N clearly point
at a dominant role played by the void ratio e = (1 − νs)/νs.

As we are presently not dealing with specific problems we leave the choice
of L and N open, but draw the reader’s attention to the footnote below.

Final equilibrium constitutive laws

One of the major achievements of the present work is the prescription of the
following constitutive laws for T̄s

∣
∣
E
, T̄f

∣
∣
E
, m̄i

s

∣
∣
E

and q
∣
∣
E
. They were found,

(i) by using the well-known principles and rules of material modelling (see

9 Cf. Svendsen et al. [116], Kolymbas [74]-[76], Niemunis [99], von Wolffers-

dorff [126], Bauer [8, 9], Masin [84], Wu [127], Wu & Kolymbas [129], Chambon

[26]-[25], Darve [29, 30].
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Chapter 4), (ii) by taking into account the Müller-Liu entropy principle
and its exploitation, (iii) by performing an ‘isotropic’ expansion about the
point Y = 0 (see (7.53)) and (iv) using the assumptions [A1] to [A22]. The
results read as follows

T̄s

∣
∣
E

= − �̄sI + μBs + ρδZ̄s ,

T̄f

∣
∣
E

= − �̄fI ,

m̄i
s

∣
∣
E

=
{

βG
s

(

1 − ξ̄s

)

− ρfΨG
I + ς − θ

(

kv
s

)

,νs

}

∇νs

+ ρ
(

ΨG
I

)

,Z̄s

(

Φ̄s

)

,vs

∣
∣
E

= − m̄i
f

∣
∣
E

,

(

q
∣
∣
E

= 0
)

,

(8.71)

with

�̄s = νs

(

βG
s − ρfΨG

I + ς
)

− θkv
s − νs(ρs − ρf )

(

ΨG
I,Z̄s

· Z̄s

)

,

�̄f = (1 − νs)
(

− ρfΨG
I + ς

)

− θkv
f .

(8.72)

The total pressure of the mixture Cauchy stress tensor becomes

� = �̄s + �̄f = νsβ
G
s +

(

− ρfΨG
I + ς

)

− νs(ρs − ρf )
(

ΨG
I,Z̄s

· Z̄s

)

. (8.73)

The formulae (8.72), (8.73) are interesting by the fact how friction contributes
to the total pressure. If the solid and fluid densities are the same (ρf =
ρs), then the last terms of (8.72)1 and (8.73) obviously vanish. In this case
the solid is completely buoyant in the fluid and friction is expected to be
minimal – in the equations (8.72) and (8.73) zero. In a dry granular material
(ρf = 0) rubbing friction operates and the frictional pressure contribution
is proportional to the partial density ρ̄s = νsρs. This form is adequate for
a solid body with voids, (νs < 1), or without voids (νs = 1). These results
appear to be reasonable.

Non-equilibrium contributions

So far, the findings were based on rather strong assumptions. Unfortunately,
only a few rational arguments exist that allow the construction of reason-
able constitutive laws for the quantities10 T̄s

∣
∣
N
, T̄f

∣
∣
N

and m̄i
s

∣
∣
N
. However,

10 Note the subscript (·)|N denotes non-equilibrium contributions, whilst the super-
script (·)N indicates a general non-linear expression.
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since we are assuming isothermal conditions, the heat flux vector, q, is of no
interest. In the literature, often, physically rather dubious assumptions are
made which facilitate the treatment and construction of solutions of certain
applied problems. Sometimes they contradict the physics of the respective
application. This is in particular the case for the assumption of ‘pressure
equilibrium’ (see Section 8.4), but also for the aforementioned ‘principle of
phase separation’, [A20]. Kirchner [71] pointed out that particle size seg-
regation, which is present in every debris flow, can only be modelled with
continuum mechanical methods if the latter principle is rejected. However, in
most of the existing models both assumptions are made. If we want to restate
in the subsequent treatment the non-equilibrium constitutive laws arising in
the prominent literature, we must, however, adhere to the ‘principle of phase
separation’.

We recall the dependencies of the constitutive quantities C = {T̄s , T̄f ,
m̄i

s} as listed in (8.7). Applying, now, the ‘principle of phase separation’,
[A20], to T̄s

∣
∣
N

and T̄f

∣
∣
N
, these dependencies reduce to

T̄s

∣
∣
N

=
∧

T̄s

∣
∣
N

(

νs, ∇νs, Bs, Ds, Z̄s

)

, (8.74)

T̄f

∣
∣
N

=
∧

T̄f

∣
∣
N

(

νf , Bf , Df

)

. (8.75)

The isotropic representations for T̄s

∣
∣
N

and T̄f

∣
∣
N

are still very complex and
therefore, we shall neglect dependencies on Bs, Z̄s and Bf . Doing so, we are
indeed loosing information, but as Bs and Z̄s affect the ‘equilibrium’ consti-
tutive laws, their information is automatically carried over to non-equilibrium
processes. The ‘principle of phase separation’ makes only sense in connection
with constituent-specific constitutive quantities. Interaction supply rate den-
sities, such as that for the solid momentum m̄i

s, are by definition excluded
from the application of this principle. Under these restrictive assumptions the
isotropic representations of the two non-equilibrium Cauchy stress tensors
(8.74) and (8.75) take the forms

T̄s

∣
∣
N

= κs
1IDS

I + κs
2Ds + κs

3D
2
s

+κs
4Ms + κs

5 sym
(

MsDs

)

+ κs
6 sym

(

MsD2
s

)

, (8.76)

T̄f

∣
∣
N

= κf
1 IDf

I + κf
2Df + κf

3D
2
f , (8.77)

where
Ms := ∇νs ⊗∇νs . (8.78)

The following dependences are explicitly not included in the isotropic repre-
sentations (8.76), (8.77):
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• M2
s, since M2

s = IMs
Ms,

• M3
s, since M3

s = (IMs
)2Ms,

• M2
sDs, since M2

sDs = (IMs
)MsDs,

• M2
sD

2
s, since M2

sD
2
s = (IMs

)MsD2
s.

The coefficients κs
1−6 are functions of νs, IDs

, IIDs
, IIIDs

, IMs
, IMsDs

and
IMsD2

s
. It can be shown with the help of definition (8.78) for Ms and the

Cayley-Hamilton theorem that IIMs
and IIIMs

are identically zero. There-
fore, in view of the properties of the above list, we also have IIIMsDs

= 0 and
IIIMsD2

s
= 0. The invariants IIMsDs

and IIMsD2
s

vanish as well, because of
the outlined proof provided in the footnote below11. Now, from the definition
of thermodynamic equilibrium (see Section 7.2), i. e.,

lim
n→0

T̄s

∣
∣
N

= 0 , (8.79)

and the fact, that ∇νs is an equilibrium quantity, it immediately follows that
κs

4

∣
∣
E

must vanish, i. e.
κs

4

∣
∣
E

= 0 . (8.80)

This implies that κs
4 = κs

4

∣
∣
N
, in general. A first guess may well simply be

κs
4

∣
∣
N

= 0.

11 Let a, b be vectors and A a second order tensor defined in three-dimensional space.
Then

(a ⊗ b)A = a ⊗ ATb, Aa · b = a · ATb .

So, with A = D = DT and M = a ⊗ a we have

MD = (a ⊗ a)D = a ⊗ Da ,

(MD)2 = (a ⊗ Da) (a ⊗ Da) = (a · Da)a ⊗ Da ,

MD2 = (a ⊗ a)D2 = a ⊗ D2a ,

(

MD2)2 =
(

a · D2a
)

a ⊗ D2a = (Da · Da)a ⊗ D2a ,

as well as

tr (MD) = (a · Da) ,

tr
(

(MD)2
)

= (a · Da)2 ,

tr
(

MD2) = a · D2a = Da · Da ,

tr
(

MD2)2 = (Da · Da)2 .

This implies

IIMD = 1
2

[

(IMD)2 − I(MD)2
]

= 0 ,

IIMD2 = 1
2

[

(IMD2)2 − I(MD2)2
]

= 0 ,
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The representations (8.76), (8.77) are fairly complicated, and identifica-
tion of the parameters by experiment or other means must be difficult. For
this reason simplification of (8.76), (8.77) is desired simply for technical rea-
sons. Such simplifications are the assumptions of quasi-linearity and strict
linearity . The first of these simplifications allows the vector or tensor valued
dependent constitutive quantities to depend explicitly and linearly on the
vector- and tensor-valued independent constitutive variables, respectively. In
contrast to the strict linearity, the coefficients introduced along with such a
representation are functions not only of the scalar-valued constitutive vari-
ables (as for strict linearity), but also of invariants of the independent vector-
and tensor-valued variables themselves.

Following Hutter et al. [63] we assume, for simplicity, that m̄i
s

∣
∣
N

and
T̄f

∣
∣
N

can be adequately modelled by their strict linear forms and T̄s

∣
∣
N

by
its quasi-linear form. In addition, we adopt the assumption that T̄s

∣
∣
N

and
m̄i

s

∣
∣
N

are independent of the variable ∇νs. From a mathematical point of
view there is no obvious reason for this assumption but at least for m̄i

s the
information contained in ∇νs is not entirely lost because its equilibrium part
depends linearly on ∇νs. The equations that evolve from these considerations
read as follows

T̄s

∣
∣
N

= κs
1IDs

I + κs
2Ds , T̄f

∣
∣
N

= κf
1 IDf

I + κf
2Df , m̄i

s

∣
∣
N

= mDvfs ,

(8.81)

where κs
1 and κs

2 are, in general, functions of νs, IDs
, IIDs

and IIIDs
, whilst

κf
1 and κf

2 depend on νf = (1 − νs), and mD is a function of νs. An explicit
dependence on Ms has dropped out entirely from (8.81).

The quasi-linearity of the solid Cauchy stress tensor which is expressed
through the non-linear dependence of κs

1 and κs
2 on Ds reflects the strong

non-linear stress-stretching behaviour that arises during creep or rapid shear
of the granular part of the debris flow (cf. Hutter et al. [63]). By excluding
the dependence upon D2, the proposal (8.81) is not capable of modelling
normal stress effects. These effects are not likely important in rapid granular
flows and only come to bear when strong decelerations in the approach to the
deposition are active. However, the above model properties for T̄s

∣
∣
N

are in
agreement with Bagnold’s experiments (cf. Hutter & Rajagopal [64]).

The interpretation of parameters κs
1, κs

2, κf
1 , κf

2 and mD depends on the
perspective which is taken when looking at relations (8.81). The parameter
m̂D

(

νs

)

is commonly known as a drag coefficient and can be prescribed in
terms of the Darcy permeability . Considering the well-known representation

T̄f

∣
∣
N

= κf IDf
I + 2μfD′

f ,

κf := κf
1 + 1

3κf
2 , μf := 1

2κf
2 ,

(8.82)
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where D′
f =

{

Df − 1
3 IDf

I
}

is the deviatoric part of Df , one is inclined to
regard κf (νs) and μf (νs) as bulk and shear viscosities of the fluid constituent.
For the model we could conclude from this interpretation that κf = 0 which
would be due to the assumed resistance of the fluid to volume changes. Al-
though this interpretation is convenient, it is only well founded for single-
material theories and in a mixture concept must be treated with care. A
similar conclusion also holds for T̄s

∣
∣
N

which is either written as

T̄s

∣
∣
N

= κsIDs
I + 2μsD′

s ,

κs := κs
1 + 1

3κs
2 , μs := 1

2κs
2 ,

(8.83)

where D′
s =

{

Ds − 1
3 IDs

I
}

is the deviatoric part of Ds, or in inversed form

Ds = KsITs|NI + Bs

(

T̄s

∣
∣
N

)′
,

with
(

T̄s

∣
∣
N

)′ =
{

T̄s − 1
3 IT̄s

I
} ∣
∣
N

.

(8.84)

The remaining task of finding appropriate constitutive laws for T̄s

∣
∣
N
, T̄f

∣
∣
N

and m̄i
s

∣
∣
N
, is the specification of the explicit functional forms of the coeffi-

cients mD, κf , μf , κs and μs (or Ks and Bs, respectively). These functions
shall be determined in such a way that (i) a large range of different debris
flow experiments can be correctly reproduced by the model, (ii) the aris-
ing material parameters are only to be calibrated for the material, but not
for special deformations or special geometries, (iii) only a small number of
material parameters arises.

Parameterization of the non-equilibrium stresses (8.82), (8.83) leans on vis-
cometric experiments, which are routinely performed in applied rheology. The
focus in such studies is the determination of the parameters κf,s, μf,s, Ks, Bs,
as functions of their variables, which are temperature (here kept constant
and not explicitly written), the volume fraction and the invariants of Ds,f or
T̄s

∣
∣
N
. We propose the following restricted dependencies:

κf,s = κ̂f,s(νs, IDf,s
) , μf,s = μ̂f,s(νs, IID′

f,s
, IIID′

f,s
) ,

Ks = K̂s(νs, ITs|N) , Bs = B̂s(νs, IIT̄′
s|N , IIIT̄′

s|N) ,
(8.85)

in which the ‘principle of phase separation’ is assumed to hold. Relations
(8.85) make the bulk viscosities to depend on νs and the first invariants of
Ds,f or T̄s

∣
∣
N
, respectively. The shear viscosities μs,f or the shear fluidity

Bs will depend on νs and the second and third invariants of Ds or T̄s

∣
∣
N
.

These assumptions imply that volume changes affect only the bulk parame-
ters, whilst the shear parameters do not. Conversely, the shear viscosities and
shear fluidity are assumed to depend only on the second and third invariants
of the stretching deviators D′

s,f and the stress deviator T̄′
s

∣
∣
N
, respectively,
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and not on the first invariants. This implies that they respond primarily to
shearing. In rheology of ‘viscoplastic’ liquids, as rheologists say, the above
dependence of the shear parameters μf,s,Bs on the third deviator invariants
IIID′

s
, IIIT̄′

s|N is generally omitted. The likely reason is that in plate-cone vis-
cometers the underlying deformation is simple shearing for which IIID′

s
= 0,

IIIT̄′
s|N = 0.12

Let us now focus on a number of idealised experiments:

(i) Isotropic extension-compression

In the laboratory such an experiment is not difficult to perform, but it may
be very hard to deduce inferences for the identification of the bulk viscosities
κs,f . So, this case is rather treated as a Gedanken experiment. We shall treat
the fluid as volume (and density) preserving and set κf ≡ 0. For the solid a
drained compression experiment is thought to be conducted. With

Ds = ε̇1, D′
s = 0, IDs

= 3ε̇, IID′
s

= 0, IIID′
s

= 0 , (8.86)

and T̄s

∣
∣
N

= σ1, one deduces from (8.83) that

σ = κs (νs, 3ε̇) 3ε̇ , (8.87)

or with ε̇vol := 3ε̇,
κs (νs, ε̇vol) =

σ

ε̇vol
. (8.88)

It should be clear that in the performance of this isotropic compression ex-
periment νs cannot be assumed to remain constant. As (−ε̇vol) increases in
a compression experiment, the compaction of the grains will also increase. It
follows that equation (8.88) is only meaningful as long as volumetric strains
remain small. We now introduce the 13

Postulate:

(i) κs does not depend on ε̇vol,
(ii) at densest packing, νs = νs max,
(iii) when νs � νs crit, κs = κs.

12 It is not difficult to show that triaxial experiments are needed in order that a
dependence of the parameters (8.85) on the second and third invariants can be ex-
perimentally identified.
13 νs crit is the solid volume fraction at which the nominal particle distance is larger
than, or equal to, the distance at which the particle contact ceases to exist. νs =
νs max is the maximum solid volume fraction
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0
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f(κs)
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{

−
(
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)2
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νscale = νs−νs crit
νs max−νs

νs crit+νs max
2

Fig. 8.1 (a) Dependence of the scaled solid bulk viscosity as a function of the solid
volume fraction and (b) as parameterizated in (8.90) with σscale = (1/ln2)(1/2) =
1.2011

With this postulate and the assumption that κ is monotonically decreasing
with growing νs reading the zero value at νs max, we may parameterize κs as
follows:

κs = κsf(κs)
s (νscale) , νscale =

(
νs − νs crit

νs max − νs

)

, (8.89)

where the shape of the function f(κs)
s is given in Fig. 8.1. According to this

graph, the bulk viscosity vanishes at densest packing and assumes the value
κs at the critical packing and beyond, when νs � νs crit. It is further assumed
that the value of κs stays constant for dilute concentrations. Apart from these
assumptions the graph in Fig. 8.1(a) simply connects these limiting stages
with a smooth curve. The function f(κs)

s is of sigmoidal type, and may, for
instance, be written as

f(κs)
s =

⎧

⎪⎨

⎪⎩

1 , − νs crit
νs max

� νscale � 0 ,

exp
[

−
(

νscale
σscale

)2
]

, 0 � νscale � ∞.
(8.90)
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If the value of f(κs)
s (νscale = 1) is given by fmean, then

σscale =
(

−1
ln(fmean)

)1/2

. (8.91)

A concrete identification would consist in matching the graph of Fig. 8.1
with experimental results. As far as relations (8.89) and (8.90) are concerned,
νs max and νs crit must be identified, which is not difficult, and κs must be
determined, which may be more difficult and may require (semi) inverse mod-
elling. The following first estimates are suggested.

νs max = 0.75

νs crit = 0.20

κs = 10−3 Pa s

⎫

⎪⎪⎬

⎪⎪⎭

only first estimates.

σscale = 1.20

(8.92)

(ii) Simple shearing

The rheologically most popular and probably simplest experiment is visco-
metric shearing e. g. in an axi-symmetric cone-plate viscometer. We consider
an experiment being conducted for the fluid14 and solid in isolation. With

Df,s = D′
f,s =

⎛

⎝

0 1
2 γ̇ 0

1
2 γ̇ 0 0
0 0 0

⎞

⎠ , (8.93)

for the fluid and the solid, one deduces

IDf,s
= 0, IID′

f,s
=

γ̇2

4
, IIID′

f,s
≡ 0 , (8.94)

and then obtains with

T̄f,s

∣
∣
N

=

⎛

⎝

0 τ 0
τ 0 0
0 0 0

⎞

⎠ , (8.95)

and (8.82), (8.83)

μf,s(νs,
γ̇2

4
, 0) =

τ

γ̇
. (8.96)

14 Most likely, the fluid in a debris flow will be loaded with silt to clay components of
the debris that extends over a large range of particle diameters. Therefore, the fluid
is not pure water, but a slurry with a certain concentration of the fine particles.
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Monitoring τ and measuring γ̇ allows identification of the functions μs,f in
(8.96). It is obvious from the above formulae (8.94)3 and (8.96) that simple
shearing experiments cannot identify a IIIDs,f

-dependence of the viscosity
functions μs,f (·). Applied rheologists, therefore, generally omit the third vari-
able, IIID′

s,f
, and also do not make the νs dependence explicit. Instead, we

shall use the following

Postulate:

(i) The shear viscosity functions μf,s(νs, IID′
f,s

, IIID′
f,s

) allow the prod-
uct decomposition

μf,s = Mf,s(IIID′
f,s

)η̄f,s(νs, IID′
f,s

) , (8.97)

with a first estimate Mf,s(IIID′
f,s

) = 1.
(ii) The solid volume fraction as a variable enters only the functions

η̄f,s(·). This dependence may again be separated from that of IID′
f,s

as follows
η̄f,s = gf,s(νs)

=
ηf,s(IID′

f,s
) , (8.98)

or the coefficients in the parameterizations may be assumed to be
νs-dependent.

With this postulate, we may identify the functions ηs,f (·) for a fixed solid
volume fraction, formally treated to have a reference value.

The literature dealing with shear viscosity functions (they will be called
here simply ‘viscosity functions’) is abundant; justification for all the pro-
posals is not possible. Therefore, we restrict here considerations to what is
referred to as viscometry of fluids with yield stress. These have been in the
past few years the concern of many rheologists. Our attention here is to pro-
pose formulae, which embrace possibly all cases that may occur in debris
flow modelling, so that only the identification of the parameters in specific
situations is left to the user. In the literature, the behaviour is often called
visco-plastic, but it is emphasised here that rate independence of the stress
in terms of the stretching is not a necessity of this characterization. The sub-
sequent analysis has been particularly influenced by contributions of Zhu et
al. [130], Mendes & Dutra [87] and the review article by Ancey [5]. In
the following, results by Luca et al. [82] will be reported, and Luca’s text
will closely be followed. To be in conformity with the rheological literature,
we shall write

τ∗
f,s = =

ηf,s

(
γ̇2

4

)

γ̇ = ηf,s (γ̇) γ̇ , (8.99)

where,
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τ∗
f,s =

τ

Mf,s

(

IIID′
f,s

)

gf,s(νs)
(8.100)

is an appropriately scaled stress, i. e., Mf,s and gf,s are dimensionless, so that
=
ηf,s or ηf,s has dimension [Pa s]. Clearly, =

ηf,s = =
ηf,s(γ̇2/4) := ηf,s(γ̇). In what

follows we shall drop the indices (s, f) and simply write η. The large variety of
grain size distributions in soils from clay to gabbro, and the tremendous range
of mixing of the soil with water in common debris flows, gives rise to a wide
diversity of non-Newtonian viscous behaviour. The compound materials can
arise as shear thinning15 fluids for which the viscosity at γ̇ = 0 is very small,
and shear thickening fluids for which the viscosity is bounded away from zero
for γ̇ = 0. Many materials such as paints, slurries, pastes, but also debris
are described by either the Bingham [12] or the Herschel-Bulkley [55]
model, whose viscous constitutive behaviour is described by the constitutive
relations

⎧

⎨

⎩

γ̇ = 0, if τ � τ0 ,

τ =
(

k + τ0
γ̇

)

γ̇, if τ � τ0 ,
Bingham (8.101a)

⎧

⎨

⎩

γ̇ = 0, if τ � τ0 ,

τ =
(

k γ̇λ−1 + τ0
γ̇

)

γ̇, if τ � τ0 ,
Herschel-Bulkley(8.101b)

in which k, λ and τ0 are model parameters. τ0 is the yield stress below which
no deformation occurs, and k and λ are viscosity parameters of Newtonian
(λ = 1) and power law (λ �= 1) behaviour, respectively, for excess stresses
(τ − τ0) > 0. Equations (8.101) can also be written in the form

η = kγ̇λ−1 +
τ0

γ̇
, λ > 0, k > 0, τ0 � 0 , (8.102)

and it is understood that, depending on the values of λ and τ0, the viscosity
may become infinitely large, when γ̇ = 0 is approached. When (i) λ ∈ (0, 1)
and (ii) λ = 1 and τ0 �= 0, relation (8.102) describes shear thinning behaviour,
whilst for λ > 1 shear thickening is described. Physically, arbitrarily large
viscosity at arbitrarily small stretching is unrealistic, and so, the Bingham

and Herschel-Bulkley models need to be amended by regularizing them.
Such attempts of regularizations have been proposed in the literature.

Papanastasiou [102] proposed such an amendment, involving a parameter
m of dimension ‘time’,

15 A fluid shows shear thinning or (pseudo-plastic)/shear thickening (or dilatant)
behaviour, if its viscosity decreases/increases with increasing shear rate. Accordingly,
a fluid is called shear thinning/thickening if it has only shear thinning/thickening
behaviour for all γ̇ ∈ [0, ∞).
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η(γ̇) = k +
τ0

γ̇
(1 − exp(−mγ̇)) , m > 0 , (8.103)

which for the Bingham model gives

lim
γ̇→0

η(γ̇) = k + τ0m �= ∞ . (8.104)

For λ ∈ (0, 1) with or without yield stress, Luca et al. [82] proposed

η(γ̇) = kγ̇λ−1
(

1 − exp
(

−lγ̇1−λ
))

+
τ0

γ̇
(1 − exp(−mγ̇)) , (8.105)

l > 0, m > 0 ,

which implies the following limiting values:

lim
γ̇→0

η(γ̇) = kl + τ0m �= 0 ,

lim
γ̇→∞

η(γ̇) ≈ kγ̇λ−1 ,

lim
γ̇→0

η′(γ̇) = −∞ ,

η′(γ̇) < 0 .

(8.106)

This shows that the singularity for η at zero stretching is removed, that
the viscosity at large stretching shows power law behaviour with an expo-
nent (λ − 1) ∈ (−1, 0) and a slope, reaching −∞ which is rather strange.
It also maintains a persistently negative slope, η′(γ̇) < 0. Thus, the essen-
tial features of the Herschel-Bulkley model are preserved as is the shear
thinning property in the range λ ∈ (0, 1). In passing, we may also mention
that Mendes & Dutra [87] introduced instead of (8.105) the following reg-
ularization of the Herschel-Bulkley model

η(γ̇) =
(

kγ̇λ−1 +
τ0

γ̇

)

(1 − exp(−mγ̇)) , m > 0 . (8.107)

Unlike (8.105), this viscosity formula shows shear thickening behaviour at
zero shear rate, since limγ̇→0 η′(γ̇) = +∞; moreover, it introduces a slope
singularity of the viscosity at zero shear rate.

To also remove the slope singularity of the viscosity function (8.105) [see
formula (8.106)3], Luca et al. [82] proposed the more suitable viscosity func-
tion
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η(γ̇) = η1 exp (−t1γ̇)

+
2
π

η2

(
γ̇

γ̇r

)λ−1

arctan

(

t2

(
γ̇

γ̇r

)β
)

τ0

γ̇
(1 − exp(−mγ̇)) , (8.108)

in which η1 and η2 are constant reference viscosities [Pa s], γ̇r is a constant
stretching [s−1], τ0 is the yield stress [Pa], t1 and m are reference times [s]
and λ, β and t2 are dimensionless constants, for which numbers must be given
subject to the following constraints:

η1 > 0, η2 > 0, τ0 � 0, λ ∈ (0, 1) ,

t1 > 0, t2, m > 0, β + λ − 2 > 0.
(8.109)

These guarantee the limits

lim
γ̇→0

η(γ̇) = η1 + τ0m �= ∞ ,

lim
γ̇→0

η′(γ̇) = −η1t1 − 1
2τ0m

2 = finite ,

lim
γ̇→∞

η(γ̇) ≈ η2

(
γ̇

γ̇r

)λ−1

,

(8.110)

and the shear thinning properties prevail for at least large stretchings. Model
(8.108) includes the Bingham - Papanastasiou fluid (8.103), if t0 = 0,
η2 = 0, τ0 �= 0 and the model introduced by Zhu et al. [130] (η2 = 0) as an
extension of the De Kee & Turcotte [32] proposal.

In the above, we started from the Bingham and Herschel-Bulkley

models as two popular models describing the stress-deformation response
of a large class of visco-plastic fluids. The behaviour in these formulae is
described by the yield stress, but this feature led to stress-stretching rela-
tions with slope discontinuities at zero stretching. They become manifest in
the formulae as an infinite viscosity at zero stretching. A similar singular-
ity also arises for the power law fluid (τ0 = 0) when λ ∈ (0, 1). For a fluid
with yield stress this singularity becomes physically apparent as an abrupt
transition from the viscous fluid to rigid solid behaviour, which generates
mathematical-numerical complexities which one wishes to avoid. The inten-
tion in all improved viscosity proposals is to smooth-out these singularities.
However, in so doing, the plastic, rate-independent response is formally re-
placed by a viscous, rate-dependent response. In the context of the model
equations in this book, such a ‘viscofaction’ is even a mandatory smoothing
operation, since the non-equilibrium stresses for which the above parameteri-
zations are presented must necessarily vanish in thermodynamic equilibrium.
As we know from the modelling of the hypo-plastic stress parameterization,
the rate independent parts do not vanish in thermodynamic equilibrium.
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From a purely practical point of view, it could also be criticized that the
regularized final formulae (8.108)-(8.110) are overly complicated, and identi-
fication of the many parameters by experiments must be very difficult, if not
impossible. However, since many parameters in the model (8.108) are intro-
duced for regularization purposes, they need not be ‘accurately’ determined.
Values can be estimated such that regularity is established and the graphs
of the functions η(γ̇) still mimic the experiments, which anyhow never allows
inferences without errors, reasonably well.

In the above formulae, a dependence of the viscosity parameters on solid
volume fraction has not been made explicit, but there are indications that
such dependencies exist. For instance, Ancey [5] reports work of Husband

et al. [57] and others, who identified clear yielding behaviour in suspensions
with solid-volume fractions νs � 0.47. They observed that this yield stress
increased dramatically when the solid concentration approached its densest
packing. Ancey [5] mentions other supporting evidences for such a yield
stress and quotes Wildemuth & Williams’ [122] yield stress formula

τ0 =
[

A
νs/ν0 − 1
1 − νs/ν∞

]1/m

, (8.111)

in which A, ν0, ν∞ and m are parameters fitting their data. This demonstrates
that yielding is associated with a size range νs ∈ (ν0, ν∞) of solid volume
fraction.

In slurries at moderate to small solid volume fraction, theoretical models
predict Newtonian behaviour with viscosities whose value depends on the vis-
cosity of the pure fluid, η

pure
f , and the solid volume fraction νs; this function

is increasing with growing νs. Two famous formulae are
{

ηf = η
pure
f (1 − 2.5νs), Einstein [36, 37],

ηf = η
pure
f (1 − 2.5νs − 7.6ν2

s ), Batchelor & Green [7] .
(8.112)

Ancey [5] quotes a general formula supposed to be adequate beyond small
ν2

s -terms,

ηf = η
pure
f

(

1 − νs

νs max

)−2.5νs max

. (8.113)

Relation (8.113) matches the Einstein [36, 37] relation at small νs. Formula
(8.113) becomes singular when νs → νs max which is certainly unphysical. So,
it can be only valid for νs sufficiently below νs max. For values of νs close
to νs max, the yield stress will become important and the parameterization
(8.108) should be used. For the latter, however, dependencies on the solid
volume fraction have to our knowledge not been suggested.

Finally, it is emphasised that the parameterizations as suggested by rheom-
etry are based on the relatively simple formulae (8.82), (8.83) and the ap-
plication of these formulae to only two very special processes of isotropic
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extension/compression and simple shear. This does not permit identification
of a third invariant dependence, as we have seen. To identify such possible
dependencies compound deformations consisting of shear and normal strains
are needed. To conduct such experiments for dynamic situations must be very
difficult. Moreover, it is also clear that (8.82), (8.83) do not include dynamic
normal stress effects for which the quadratic Df,s-dependences in (8.76),
(8.77) must not be dropped. Such arguments explain that non-equilibrium
stress parameterizations of the class (8.76), (8.77) will keep debris flow mod-
ellers busy for a long time until a complete satisfactory parameterization is
known.

8.3 Final Constitutive Laws

The reduced forms of the constitutive laws for the solid and fluid Cauchy

stress tensors and the interaction supply rate density for the solid momentum
now read

T̄s = − �̄sI + T̄es(Bs) + ρδZ̄s + λsIDs
I + 2μsD′

s ,

Φ̄s = f1
(

L
(

Z̄s

)

Ds + f2N
(

Z̄s

)

|Ds|
)

,

T̄f = − �̄fI + κf IDf
I + 2μfD′

f ,

m̄i
s =

{

βG
s

(

1 − ξ̄s

)

− ρfΨG
I + ς − θ

(

kv
s

)

,νs

}

∇νs

+ ρ
(

ΨG
I

)

,Z̄s

(

Φ̄s

)

,vs

∣
∣
E

+ mDvfs

= −m̄i
f ,

(8.114)

with

�̄s = νs

(

βG
s − ρfΨG

I + ς
)

− θkv
s − νs(ρs − ρf )

(

ΨG
I,Z̄s

· Z̄s

)

,

�̄f = (1 − νs)
(

− ρfΨG
I + ς

)

− θkv
f ,

(8.115)

and

� = �̄s + �̄f = νsβ
G
s +

(

− ρfΨG
I + ς

)

− νs(ρs − ρf )
(

ΨG
I,Z̄s

· Z̄s

)

(8.116)

for the spherical contribution to the mixture Cauchy stress tensor. T̄es fol-
lows from any elastic potential Ψ̄G

es, see (8.38), ff.
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8.4 An Alternative to the Assumption of ‘Pressure
Equilibrium’

To analyse the assumption of ‘pressure equilibrium’ we start with the col-
lection of balance equations for the reduced model. Under the suppositions
of isothermal conditions, [A18], density-preserving constituents, (8.1), satu-
ration, [A7], and the disregard of interaction supply rate densities for mass,
(8.2), the evolution law for the frictional behaviour, (4.36), the mass-, volume-
fraction- and momentum balance equations, (4.5)1,2 and (8.3) turn into

∂νs + ∇ · (νsvs) = 0 ,

∂νs −∇ · vf + ∇ · (νsvf ) = 0 ,

νsρs (∂vs + (∇vs)vs) = ∇ · T̄s + b̄s + m̄i
s ,

(1 − νs)ρf (∂vf + (∇vf )vf ) = ∇ · T̄f + b̄f + m̄i
f ,

�

Z̄s = Φ̄s .

(8.117)

Together with the constitutive laws for T̄s, T̄f , m̄i
s, m̄i

f and Φ̄s, given in
(8.114) and (8.115), a set of field equations can be constructed. For the solv-
ability of this set we have to ensure that the number of equations is in con-
formity with the number of unknown variables arising in the field equations.

‘Pressure equilibrium’

From (8.114) and (8.115) we observe that, besides mD, κf , μf , κs, μs, L and
N, we are still missing explicit expressions for ΨG

I and kv
α (α = s, f) which

are necessary for the description of the evolution of βG
s , ΨG

I,Z̄s
, �̄s and �̄f ,

respectively. To avoid postulating representations for ΨG
I and kv

α (α = s, f)
and to facilitate the construction of solutions of the field equations, in the
literature on multiphase mixtures (cf. Pitman & Le [104]), the assumption
of ‘pressure equilibrium’ is usually made. This assumption is not based on
any physical principle, but rather on surmised ‘feelings of adequacy’. For the
model it reads

�s = �f = π. (8.118)

In view of (8.115) this assumption can only hold if we

(i) abandon any hypo-plastic effects from the model, i. e. require that

ΨG
I,Z̄s

= 0 , (8.119)

(ii) require that
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kv
α = 0 (α = s, f), (8.120)

which follows from (8.118) and automatically satisfies the principle of ob-
jectivity for k (see (7.77)2) and

(iii) prescribe the Helmholtz free energy to be in conformity with

βG
s = ρ(ΨG

I ),νs
= 0 , (8.121)

implying that ΨG
I cannot be a function of νs.

The assumption states ‘physically’ that the spherical contribution to the mix-
ture Cauchy stress is distributed among the constituents according to their
volume fractions. With (8.118) to (8.121) the constitutive laws (8.114) reduce
to

T̄s = −νsπI + T̄es(Bs) + T̄s

∣
∣
N
,

T̄f = −(1 − νs)πI + T̄f

∣
∣
N
,

m̄i
s = π∇νs + mDvfs

= −m̄i
f ,

(8.122)

where, obviously, no frictional stress, T̄fric and no implicit volume fraction
dependence arise, because

ΨG
I �= Ψ̂G(νs, Z̄s) . (8.123)

Therefore, the hypo-plastic balance law (8.117)5 is no longer of interest, and
the dependence of ΨG

I reduces to

ΨG
I = Ψ̂G

I

(

Bs

)

. (8.124)

For ‘pressure equilibrium’ the field equations read

∂νs + ∇ · (νsvs) = 0 ,

∂νs −∇ · vf + ∇ · (νsvf ) = 0 ,

νsρs (∂vs + (∇vs)vs) = −∇(νsπ) + ∇ ·
(

T̄es(Bs) + T̄s

∣
∣
N

)

+ π∇νs + b̄s + mDvfs ,

(1 − νs)ρf (∂vf + (∇vf )vf ) = −∇((1 − νs)π) + ∇ ·
(

T̄f

∣
∣
N

)

− π∇νs + b̄f − mDvfs .

(8.125a)

To solve these equations in a well posed initial boundary value problem they
must be complemented by an evolution equation for Bs. This equation follows
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from the definition of Bs = FsFT
s as16

B′
s := ∂Bs + (∇Bs)vs = LsBs + BsLT

s . (8.125b)

If adequate initial values for νs, vf,s, Bs, π are prescribed and there exist
boundary conditions such that the resulting initial boundary value problem
(IBVP) is not ill-posed,17 we can, in principle, solve (8.125) for νs, vs, vf ,
Bs and π. Although this procedure seems convenient, we observe (see items
(i) to (iii)) that ‘pressure equilibrium’ is a rough ad hoc assumption that
destroys the structure of hypo-plasticity and that of configuration pressures;
moreover, it rules out the linear dependence of k on vs and vf (see (7.75)).
We conclude that the assumption of ‘pressure equilibrium’ is based on unnec-
essary restrictions and thus in general not appropriate for the modelling of
debris flows. These unnecessary restrictions prevent first, the description of
frictional stresses in thermodynamic equilibrium by means of a hypo-plastic
stress contribution and second, eliminate consideration of the configuration
pressure, βG

s , which represents the driving force between the grains and be-
tween the fluid and the grains (cf. Passman et al. [103]) and thus might
be necessary for the description of particle size segregation in debris flows.
Thus, we reject the pressure equilibrium assumption as a physical acceptable
assumption; this is also confirmed by Passman et al. [103]. In spite of this,
the assumption is still popular and often used, see e. g. Pitman & Le [104],
Iverson & Denlinger [69]. It is pleasing, however, that the thermodynamic
approach has proved the assumption to be superfluous, or replaceable by a
more useful alternative.

Thermodynamic closure assumption

A less restrictive assumption which replaces ‘pressure equilibrium’ was pro-
posed by Hutter et al. [63] who simply suppose that

[A23] kv
α = 0 (α = s, f) .

This assumption fixes the extra entropy flux without making it collinear with
the mixture heat flux. Obviously, [A23] is an ad hoc assumption, too, but
does not lose the possibility of modelling frictional effects by hypo-plasticity

16 If the elastic strain, used in T̄es, is not Bs but another strain measure, then the
evolution equation for that variable must be used, e. g. for Es = 1

2 (Bs − I), E′
s :=

∂Es + (∇Es)vs = LsEs + EsLT
s + Ds.

17 As pointed out by Passman et al. [103] well-posedness is not always the case.
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and maintains a possible dependence of ΨG
I on νs. With the above assumption

we obtain

�f = −ρfΨG
I + ς , �s = βG

s + �f − (ρs − ρf )
(

ΨG
I,Z̄s

· Z̄s

)

. (8.126)

If we, therefore, regard �f as an independent field, rather than ς, we obtain
the following set of field equations: The constitutive laws are expressed as

T̄s = − νs

{

βG
s + �f − (ρs − ρf )

(

ΨG
I,Z̄s

· Z̄s

)}

I + T̄es(Bs) + ρδZ̄s + T̄s

∣
∣
N

,

T̄f = − (1 − νs)�fI + T̄f

∣
∣
N

,

m̄i
s =

{

βG
s (1 − ξ̄s) + �f

}

∇νs + ρ
(

ΨG
I

)

,Z̄s

∣
∣
E

(

Φ̄s

)

,vs

∣
∣
E

+ mDvfs

= − m̄i
f ,

Φ̄s = f1
(

L
(

Z̄s

)

Ds + f2N
(

Z̄s

)

|Ds|
)

,

(8.127)

and the corresponding balance laws (see(8.117)) have the form

∂νs + ∇ · (νsvs) = 0 ,

∂νs −∇ · vf + ∇ · (νsvf ) = 0 ,

νsρs (∂vs + (∇vs)vs) = ∇ · T̄s + b̄s + m̄i
s ,

(1 − νs)ρf (∂vf + (∇vf )vf ) = ∇ · T̄f + b̄f + m̄i
f ,

ds Z̄s

dt
− [Ωs, Z̄s] − νs

(ρs − ρf )
ρ

Z̄s(∇ · vs) = Φ̄s ,

B′
s := ∂Bs + (∇Bs)vs = LsBs + BsLT

s .

(8.128)

If T̄es is given as T̄es(Es), where Es = 1
2 (Bs − I), then the evolution equa-

tion for Es is given by

E′
s := ∂Es + (∇Es)vs = LsEs + EsLT

s + Ds . (8.129)

Remarks:

• One of the equations (8.128)1,2 could be replaced by the mixture volume
balance

∇ · vvol = ∇ · (νsvs + (1 − νs)vf ) = 0 . (8.130)

Similarly, (8.128)3 or (8.128)4 could be replaced by the momentum bal-
ance relation for the mixture as a whole, but this equation does not offer
computational advantages.
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• There is still no restriction for the choice of the skew-symmetric tensor
Ωs, and, thus, we choose that form of Ωs which is the most convenient
one for the investigations at hand. Furthermore, the above field equations
have to be complemented by appropriate functions for the non-elastic part
of the ‘inner’ free energy, Ψ̂G

fric

(

νs, Z̄s

)

, for the tensors L̂
(

νs, ∇νs, Bs,

Z̄s

)

and N̂
(

νs, ∇νs, Bs, Z̄s

)

and for the coefficients mD(νs), λs(νs) and
μs(νs), κf (νs), μf (νs), f1 and f2. Suppose that these functions are known
and initial and boundary conditions are proposed such that the resulting
IBVP is well-posed; then we are, in principle, in the position to solve the
field equations for the variables

{

νs, vs, vf

}

.
Obviously, [A23] is a weaker assumption than that of ‘pressure equilib-
rium’, because it does not rule out hypo-plasticity and the configuration
pressure βG

s . The price we have to pay for [A23], i. e. for the gain of sensi-
tivity of the model, is the need of an additional postulate for the ΨG

I and,
presumably, the increased complexity of the resulting IBVP.

• According to (8.127)1,2, ‘pressure equilibrium’ is recovered in this formu-
lation only when

(i) ρs = ρf and βG
s = 0,

(ii) for ρs �= ρf when ΨG
I �= Ψ̂G(νs, Z̄s, ·) .

The second case is equivalent to (8.122), the first is not realistic for soil.



Chapter 9

Discussions and Conclusions

Abstract We review the essentials of the theory, discuss the highlights of the

achievements and the limitations of the model equations, and give an outlook of

some still unsolved problems.

Review

The thermodynamic analysis has been performed for a mixture of which the
constitutive relations are of the class (4.37) or [A7], viz.,

C = Ĉ(θ, θ̇, ∇θ
︸ ︷︷ ︸

(i)

, �ρ, �∇ρ
︸ ︷︷ ︸

(ii)

, �ν, �∇ν
︸ ︷︷ ︸

(iii)

, �v, �B, �D, �W, �Z) . (9.1)

Consideration of the thermal variables (i) accounts for effects of heat con-
duction and thermo-elasto-visco-plastic behaviour (when θ̇ is incorporated we
are also accounting for a finite speed of thermal pulses). Even though purely
mechanical processes were in focus, this makes the general model equations
also applicable for mixture flows in which heat transport may be important.
In geological applications such as pyroclastic gravity currents – a mixture of
hot debris and air with heat exchange to the atmosphere – the processes may,
perhaps, have to be described by a model of this complexity. In this model,
the air and the hot debris, however, have the same temperature. A formula-
tion in which the various constituents are given by different temperatures is
not contained in the results but may, perhaps, be necessary when describing
e. g. lahars.

Consideration of the true densities (given by (ii) in (9.1)) as indepen-
dent constitutive variables accounts for compressibility of the constituents.
The thermodynamic pressures (6.101) are the corresponding stress variables.
Incorporation of the compressibility is, however, hardly necessary for flows
envisaged in the context of geophysical applications. A possible application
may be a lahar in air which suffers during its motion such a large temperature
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drop that the thermal volume expansion of the air can no longer be ignored.
In snow avalanches a variable true density of the snow as an independent
constitutive variable may open the possibility to account for compaction of
the snow balls in motion. In a particle-laden turbulent boundary layer flow
such as a powder avalanche or a pyroclastic flow from a volcano, supersonic
conditions may develop in the gas of the flow, so that its compressibility can
not be ignored. These effects can be accounted for by the dependencies (ii)
in (9.1). Incorporation of the constituent volume fraction dependence (given
by (iii) in (9.1)) allows a dynamic description of the internal redistribution
of the constituents. The configurational pressures (6.102) that are due to this
dependence are the driving forces to achieve such redistributions. Omission of
both, (ii) and (iii) in (9.1), as independent variables eliminates, among other
things, these pressures, so that in this case the saturation pressure (6.103)
remains the only true pressure variable in the model. The dependence on �v,
�D, �W, and �Z allows that viscous and plastic effects are modelled; indeed, it
was demonstrated that a dependence on �v resulted in non-equilibrium inter-
action forces that depend e. g. on the constituent difference velocities, and
the incorporation of �D and �Z together with evolution equations for �Z led
to constitutive relations for the Cauchy stress tensor, which, by selecting
the tensorial production rate density Φα in the stress like evolution equa-
tion (4.36), [A4], yields theories of which hypo-plasticity is one of many. It
should further be noted that both dependencies on �B and �Z also give rise
to equilibrium stress contributions, provided the internal free energy ΨG

I de-
pends on �B and �Z, see (7.100). The dependence on �B allows elastic effects to
be modelled, but their incorporation needs to be carefully done for density-
preserving constituents, since ρα and Bα are related to one another when the
constituent mass production rate density cα of that constituent vanishes, see
(4.21). In that case the free internal energy should depend on IBα

, IIBα
, but

not on IIIBα
, (see 8.37). Note further, that equation (9.1), and therefore our

theory and the results it generates covers a large class of elasto-visco-plastic
mixtures, but not all which have been proposed in the debris flow literature
of single constituent continua. There are granular flow models, in which also
objective time derivatives of �D, the so-called Rivlin-Ericksen tensors, have
been introduced as additional independent constitutive variables. A thermo-
dynamic theory for such mixtures has, however, not yet been developed.

The focus in the above applications has been on binary mixtures and
‘reduced’ theories, in which the mass and volume fraction production rate
densities are set to zero. In mixtures for which the mass production rate
density for constituent Kα does not vanish, cα �= 0, formula (4.20) shows that
density-preserving does not imply volume-preserving, because (4.20) reduces
in this case to

(detFανα)́ = (detFανα) cα , (9.2)

which integrates to
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(detFανα) = (detFα 0να 0) exp
{∫ t

t0

cα(x(t′), t′)dt′
}

(9.3)

with Fα 0 = 1. Here, t0 is the initial time and να 0, Fα 0 are the initial volume
fraction and deformation gradient. This computation shows that in mixtures
with non-vanishing mass production rate densities, ‘density-preserving’ and
‘volume-preserving’ of a particular constituent are distinct concepts, lead-
ing likely to distinct inferences. In particular, when cα �= 0, the assump-
tion of density-preserving still eliminates the density variables (ii) in (9.1),
but parameterization of elastic effects does not constrain the form of the
Helmholtz-like free energy as a function of the invariants IBα

, IIBα
, IIIBα

.
Of course, the modeller is free to use a free energy parameterization, which
agrees with that valid for cα = 0, but such a choice is not necessary. However,
it may be advantageous, because it automatically merges into the required
form when cα = 0. In either case, the volume fraction changes may be ob-
tained from (9.3) by setting detFα 0 = 1.

Achievements

In this work we derived a general, thermodynamic consistent, multiphase
model that accounts for saturation, mass-interaction and the resistance to
volume changes of some or all constituents comprising the mixture. In addi-
tion, we extended the classical mixture theory by a new system of evolution
equations and constitutive laws that are thought to predict, first, the evo-
lution of internal structures present in immiscible mixtures and second, the
plastic behaviour of solid constituents. The latter extension follows the hypo-
plastic single-material theory proposed by Svendsen et al. [116] and is, as
far as we know, one of the first attempts to incorporate hypo-plasticity in
a thermodynamical consistent way into mixture theories. This is obviously
a rewarding result; however, the thermodynamic model presented here de-
livers also a straightforward method to generalize the modelling concept of
hypo-plasticity for fluid-solid mixtures with more than one solid constituent.
Such extensions are necessary if one intends to describe dynamic processes
in which particle size separation ought to be described. When starting this
research on dynamics of granular materials, it was not clear to us, how a
hypo-plastic constitutive model of a mixture with more than one fluid and
one solid component should be described. This is now absolutely clear, at
least within the context of the constitutive class (9.1). In fact, the thermo-
dynamic analysis performed in Chaps. 3-7 has been done for such a general
case – except for the explicit constitutive parameterization. The remaining
step as such is now straightforward, even though it is by no means easy.

As a geologically significant problem, consider a dynamical theory for a
landslide, which allows determination of dynamical particle size separation. A
mixture model for such a situation could consist of Ns solid constituents, each
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representing disjoint ranges of particle diameters. For these components, the
formulations of Chaps. 3-7 yield well defined field equations, yet the ‘crux’,
left for future research, will be to specify the parameterization for the free
energy and the frictional stresses accounting for interaction forces, which
favour the separation of the particle sizes. This will most likely mean that
the ‘principle of phase separation’ is not valid. When a fluid component is
present, such a model will also allow modelling abrasion and/or fragmentation
as a dynamical process of the mixture.

All these results were achieved with the aid of a form of the Second Law
of Thermodynamics, which was ‘flexible’ in its underlying basic postulates,
but still sufficiently restricted to allow useful practical inferences for the
emerging constitutive statements. More precisely, we formulated the Second
Law of Thermodynamics as an entropy principle, and we requested as ex-
pression of the irreversibility of the Second Law of Thermodynamics that
the entropy production rate density be non-negative for all processes which
obey the field equations for the postulated constitutive class (here (9.1))
plus constraint conditions of saturation, density-preserving and field equa-
tions of internal variables. Following Müller, the entropy flux vector and
the coldness function (as a generalization of the absolute temperature) were
not treated as primitive concepts, but rather as quantities to be delivered
as inferences from the exploitation of the entropy principle. This concept
stands in contrast to the approach of the Second Law of Thermodynamics
via the Clausius-Duhem inequality, in which entropy flux and absolute tem-
perature are given by a priori estimates.The results obtained with the more
flexible version of Müller’s entropy principle prove that this enhanced flex-
ibility is compelling, because the exploitation of the entropy principle via
the so-called Liu identities shows (with the aid of a number of simplifying
ad-hoc assumptions) expressions for the mixture entropy flux vectors k and
φρη, respectively, which are in conflict with results that could be obtained
with the Clausius-Duhem inequality. The results show that in contrast to
the Clausius-Duhem inequality postulate, φρη does not only depend on the
heat flux vector, but also on a linear combination of the constituent diffu-
sion velocities. Furthermore, with the exploitation of the Liu identities and
the assumption that the Lagrange parameter λε would depend only on the
temperature and its material time derivative, λε = λε(θ, θ̇), all Lagrange

parameters except one could be explicitly expressed in terms of constitutive
quantities. The exception is the nth solid volume fraction which is related to
the saturation pressure, the constraint variable maintaining the saturation
condition.

One further revealing result, obtained by the exploitation of the entropy
inequality, in particular the identical satisfaction of the Liu identities, is,
how the equilibrium values of the interaction forces, entropy, heat flux vector
and Cauchy stress tensor depend on the production rate densities of con-
stituent mass, volume fraction and frictional stress variables. The Second Law
of Thermodynamics has disclosed a beautiful structure of the contributions
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of these sub-processes to those variables, summarised in the formulae (7.49),
(7.50). According to these, the equilibrium contributions to the interaction
forces, entropy, heat flux vector and Cauchy stresses require non-vanishing
derivatives of the production rate densities Φ̄α, cα and nα in equilibrium with
respect to the constituent velocities, time derivative of the temperature, tem-
perature gradient and constituent stretching tensors (see (7.50)). Moreover,
the weights by which these contributions affect m̄i

β

∣
∣
E
, η

∣
∣
E
, q|E and T̄α

∣
∣
E
,

are fixed, once the Helmholtz free energy is prescribed, see (7.49). The re-
spective formulae (7.31), (7.36), (7.38), (7.41), (7.44) via (7.49), (7.50) make
it very clear, which specializations of the constitutive behaviour are required
to simplify the expressions of m̄i

β

∣
∣
E
, η
∣
∣
E
, q|E and T̄α

∣
∣
E
. This result indicates

e. g. that possible transfer of certain terms of the constituent equilibrium in-
teraction forces into the constituent equilibrium Cauchy stresses should not
be made, because they may destroy the structure of the formulae obtained
via the Second Law of Thermodynamics.

The reduction of the general mixture theory to a binary, isothermal mix-
ture model that accounts for two inert and density-preserving constituents of
solid and fluid aggregation led to a rich structure of model equations. More
specifically, the thermodynamic approach has led to expressions for the solid
and fluid equilibrium and non-equilibrium constituent stresses and interac-
tion momentum production rate densities, which are functionally determined.
Depending on the specific choice of the former, elastic and hypo-plastic fric-
tional effects are included in a functionally well defined form. Identification of
the non-equilibrium pressures for the solid and fluid stresses and interaction
force density has been implemented by following the methods of viscometry of
viscous fluids with plastic yield and regularization procedures that guarantee
vanishing of the non-equilibrium quantities in thermodynamic equilibrium.
This demonstrated both the restrictions, which are imposed on the stress
parameterizations by the simple shear configuration in standard viscometry,
and the relative complexity of the identification of the parameters of this
simple deformation.

These thermodynamic results also shed light on a popular ad hoc assump-
tion, called ‘pressure equilibrium’. The results indicate that this assumption
must be rejected for the modelling of multiphase mixtures, because it pre-
vents, first, the existence of configuration pressures which are essential for
this kind of mixtures and second, eliminates all hypo-plastic effects. Follow-
ing Hutter et al. [63] a more restrictive assumption was introduced that
avoids this collapse of the debris flow model.

Limitations and Outlook

Obvious limitations of the mixture model presented in this book are the
many assumptions laid down as [Aj] , j = 1, 2, . . . , 23. Some of these affect
the physical conditions to which the final model equations apply; some are



194 9 Discussions and Conclusions

made to simplify the mathematics or to streamline the deduction of explicit
formulae which can better be interpreted in terms of physics. Perhaps, future
research will show how some of these assumptions can be weakened or com-
pletely dispensed with. Such technical assumptions are e. g. [A11] through
[A15]. Assumptions which restrict the physics are e. g. [A2] and [A3]. They
restrict the model equations to continua with constituents having the same
temperature and no changes of the aggregation states. These are limitations
which exclude proper treatment of avalanching landslides from e. g. volca-
noes in which melting and solidification of the solid or molten constituents
can occur. A situation which is conceptually analogous, but not included in
the theory, is the motion of a pyroclastic landslide along a glacier surface, in
which the heat melts and evaporates the ice at the surface and incorporates
these components via entrainment mechanisms into the avalanche.

The fact that aggregation changes are excluded in the model does not
entirely exclude all mass changes between the constituents. If the solid con-
stituents are characterized by disjoint particle size ranges, then fragmentation
can, in principle, be handled as a process within this theory. However, the
prerequisite for it to be applicable is that the energy which is dissipated into
heat by the fracturing is small. Similarly, abrasion may be modelled by a
small mass transfer from the abrading constituents to the component with
the smallest size (clay, silt in a slurry).

Assumption [A3], stating that the constituent production rate of angu-
lar momentum in the model is given by the moment of the production of
linear momentum of the same constituent, is technical in form – it makes
all constituent Cauchy stresses symmetric and thus limits considerations to
non-polar theories – but is certainly physically doubtful. Rubbing friction
between particles (boulders in the application to landslides); this is, between
three-dimensional bodies transfers angular momentum between the bodies in
contact. It follows in reality that encounters between particles redistribute
the rotational and translational energies, which is not consistent with the
form of [A3]. However, any deviation from [A3] requires polar formulations
which are yet an order of magnitude more complex than the model in this
book.

It can not be denied that incorporation of dry friction between the parti-
cles was introduced into the model only indirectly through symmetric tensor
variables, for which evolution equations were postulated. This procedure was
required because a thermodynamic setting of hypo-plasticity could only be
achieved using such an ‘indirect’ approach. It is certainly a disadvantage,
if the modeling of the hypo-plastic stress contribution is considered only
in this somewhat awkward way. All derivations of the classical theories of
hypo-plasticity postulate an evolution equation for the Cauchy stress ten-
sor. Future theories of elasto-visco-plastic solid-fluid mixtures should attempt
to write down such evolution equations and incorporate these in the thermo-
dynamic formulation. If such a formulation can be pursued with the Müller
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& Liu entropy approach, the resulting model equations will perhaps be less
complex. In the past we have not been successful in any such attempt.

The above discussion indicates that considering the applicability of the
derived model equations to common geophysical mass flow problems leads to
a more realistic description of rapid granular fluid flows. From the present
work it transpires that the derivation of thermodynamically consistent gen-
eralizations may be difficult, but nevertheless fairly straightforward. More
urgent, however, is the application of the simplest form of these equations to
a realistic situation of rapid flow down arbitrary topography. At this point
we are still not able to estimate the adequacy and accuracy of the model,
because we are still lacking explicit functional forms for some of the consti-
tutive quantities such as Ψsf , L, N, mD, κf , μf , λs and μs. The present work
can only be regarded as a foundation or starting point for a mathematical
debris flow model, because to deduce a numerical model that allows the re-
production of realistic debris flow events, more sophisticated mathematical
refinements are necessary. First, the full field equations (with accelerations)
have to be formulated in topography following coordinates, such that, second,
a thin film (shallowness) approximation with respect to these coordinates can
be performed. In a third step one can introduce a depth integration to re-
duce the, then, two-dimensional problem, to a one-dimensional problem. For
the completion of the mathematical model we still have to face the chal-
lenge of finding appropriate boundary conditions, i. e. we have to deduce
representations for the basal friction and the entrainment rate (e. g. erosion,
water-infiltration etc.). Thus, for this type of model, there is still a long way
to go to finally gain a deeper insight into the physics of debris flow initiation,
evolution and deposition.



Appendix A

A Primer on Exterior Calculus

This Appendix summarizes the formal theory of Exterior Calculus and follows
very closely the approximately first 130 pages of the book by Edelen [35].

We assume that the reader is familiar with the basic concepts of (linear)
algebra and follow in the subsequent formal analysis the approach taken
by Edelen in his book on ‘Applied Exterior Calculus’ [35]. So, let En be
an n-dimensional Euclidean space and S ∈ En a subset or region of En. Let,
moreover, T (En) be the tangent space of En and {xi} its Cartesian coordinate
cover.

Definition 2.1: A vector field V on a region S of En is a smooth (C∞)-map

V : S → T (S) | vi = vi(xj) i = 1, . . . , n (A.1)

such that evaluation at (xj) ∈ S yields {vi(xj)} ∈ T (S). ♦

Let Λ0(En) be the vector space of all (C∞)-functions which form a commuta-
tive and associative algebra. This means that if ui(xj), vi(xj) are vector-fields
as given in the above definition and a(xi) and b(xi) are (C∞)-functions with
En as domain, then

wi(xj) = a(xi)ui(xj) + b(xi)vi(xj) (A.2)

is again an element of T (En). It is seen that with this understanding Λ0(En)
is closed under vector addition and multiplication of vectors with scalars.

In what follows the operator representation of vector fields is of sig-
nificance. To see this, recall that for n real-valued (C∞)-functions γi(t),
i = 1, . . . , n, the assignment

Γ : J → En | xi = γi(t), γi(0) = xi
0, J ∈ R (A.3)

defines a smooth (C∞)-function in En. If, moreover, F : r = f(x1, . . . , xn) =
f(xi), where f is a smooth function, then F̂(t) = f(γi(t)) evaluates the
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function along the curve Γ ; one may then also calculate its time rate of
change,

dF̂
dt

=
dγi(t)

dt

∂f(xj)
∂xi

∣
∣
∣
∣
xi=γi(t)

. (A.4)

Observe the occurrence of the coefficients {dγi(t)/dt} on the right-hand side
of (A.4), which is the velocity field in the direction of Γ . This suggests that
vector fields can be defined in a manner similar to (A.4). To this end, we first
simplify notation by introducing the abbreviation ∂i := ∂/∂xi. Defining the
operator H by

H := hi(xj)∂i (A.5)

its action on f is well defined,

H〈f〉〈xj〉 = hi(xj)∂if(xj) = g(xj) . (A.6)

It follows from the definition (A.5) that if f, g ∈ Λ0(En) and a, b ∈ R,

H〈af + bg〉 = aH〈f〉 + bH〈g〉 ,

H〈(f, g)〉 = (H〈f〉, g) + (f,H〈g〉) .
(A.7)

Definition 2.2: An operation H on an algebra A is a derivation if and only
if H maps A to A and satisfies (A.7). ♦

With these prerequisites we have

Definition 2.3: Let {vi(xj)} be a (C∞)-vector field on En. Its operator
representation is defined as the operator

V = vi(xj)∂i (A.8)

on the algebra Λ0(En) of (C∞)-functions on En. (A.8) is called a derivation,
and evaluation of V for f is given by

V〈f〉 = vi(xj)∂if . (A.9)

♦

The simplest function to which (A.8) can be applied is xk, for which ∂ix
k = δk

i

(= 1 for k = i, = 0 for k �= i). It follows directly from (A.8) that

V〈xk〉 = vi(xj)∂ix
k = vi(xj)δk

i = vk(xj) . (A.10)

Clearly, any derivation V = vi(xj)∂i reproduces its coefficients {vi(xj)} this
way. This fact may also be stated as the following
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Lemma 2.1: Let V be an operator representation of a vector field {vi(xj)}
on En. Then V is uniquely determined by the action on the n functions
x1, x2, . . . , xn,

V = vi(xj) ∂i = V〈xj〉(xj) ∂i , (A.11)

where V〈xj〉(xj), denotes the function that is obtained by allowing V to act
on xi. Thus, vi(xj) = V〈xi〉(xj), i = 1, . . . , n, and hence an operator repre-
sentation of a vector field on En reproduces the vector field on En. �

This lemma makes it quite clear that any derivation on the algebra Λ0(En)
determines a vector field on En. Furthermore, the tangent space T (En) is the
collection of all derivations on the algebra Λ0(En). Moreover,

Lemma 2.2: The n vector fields ∂1, ∂2, . . . , ∂n constitute a basis for T (En).
This basis is called the natural basis of T (En) with respect to the (xi) coordi-
nate cover of En. �

Proof: This is quite easy: Take (
∑n

i=1 ci∂i) 〈f〉 = 0 for any ci and for f = xk.
Then, (

∑n
i=1 ci∂i) 〈xk〉 = ck = 0 for any k ∈ (1, 2, . . . , n), proving Lemma

2.2. �

Note that in view of (A.9) the equation

V〈f〉 = 0 ⇒ vi(xj)
∂f

∂xi
= 0 (A.12)

can be viewed as a first order linear partial differential equation. With this
interpretation V = vi(xj)∂i is then called the characteristic equation to the
partial differential equation V〈f〉 = 0.

The natural Lie algebra of T (En): Recall that a vector space equipped
with a binary operation (·, ·) becomes an algebra. The tangent space is the
vector space whose elements are the derivations. Thus, the question arises as
to whether a binary operation can be defined over T (En) × T (En) for which
T (En) becomes an algebra.

Given two derivations, U and V, one may compute

U〈V〈f〉〉 = U〈vj∂jf〉 = ui∂i

(

vj∂jf
)

= ui∂iv
j

︸ ︷︷ ︸

wj

∂jf

︸ ︷︷ ︸

=derivation

+ uivj∂i∂jf
︸ ︷︷ ︸

=derivation
(A.13)

and thus sees, since the right-hand side is not expressible as a derivation,
that U〈V〈f〉〉 does not define a binary operation on T (En)×T (En) to T (En).
However, it is easy to show that
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W〈f〉 := U〈V〈f〉〉 − V〈U〈f〉〉 =
(

ui∂iv
j − vi∂iu

j
)

∂jf
︸ ︷︷ ︸

=derivation

+
(

uivj − ujvi
)

∂i∂jf
︸ ︷︷ ︸

=0

,

(A.14)
which is a derivation. The second term on the right-hand side vanishes since
it is the contraction of a skew-symmetric with a symmetric tensor. One may
conclude

Lemma 2.3: The binary operation [·, ·], defined by

[U,V]〈f〉 = U〈V〈f〉〉 − V〈U〈f〉〉 (A.15)

for all f ∈ Λ0(En) has the representation

[U,V] = (uj∂jv
i − vj∂ju

i)∂i (A.16)

for every U,V ∈ T (En). Thus, [·, ·] defines a binary map of T (En) × T (En)
to T (En). �

The multiplication operation [·, ·] is called Lie product. The following facts
on the Lie product hold:

Lemma 2.4: The Lie product satisfies the following identities:

(a) [U,V] = −[V,U], (A.17)

(b) [U, aV + bW] = a[U,V] + b[U,W], (A.18)

[aU + bV,W] = a[U,W] + b[V,W], (A.19)

(c) [U, [V,W]] + [V, [W,U]] + [W, [U,V]] = 0 (A.20)

for all U,V,W ∈ T (En) and all a, b ∈ R. The property (A.20) is called Jacobi
identity. �

The proof of (a) follows directly from (A.15), (b) and (c) can be verified by
performing the computations in long hand. The computation for the verifi-
cation of (c) is straightforward but long. �

The algebra that is based on the binary operations in (a) and (c) of Lemma
2.4 is called a Lie algebra.

Exterior forms: Consider again, as before, the Euclidean space En with
Cartesian coordinate cover {xi} and tangent space T (En). We have made
clear above that T (En) is a Lie algebra of derivations on Λ0(En) with the
basis fields {∂i, i = 1, . . . , n}. To define exterior forms the concept of the dual
space T ∗(En) to T (En) is needed.
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Definition 2.4: The dual space T ∗(En) of T (En) is the set of all functions
〈·, ·〉 with the properties

(a) ω : T (En) → R | r = 〈ω,V〉 , (A.21)

(b) 〈ω, fU + gV〉 = f〈ω,U〉 + g〈ω,V〉 , (A.22)

(c) 〈fω + gρ,V〉 = f〈ω,V〉 + g〈ρ,V〉 , (A.23)

for all ω, ρ ∈ T∗(En), all U,V ∈ T (En) and all f, g ∈ Λ0(En)). ♦

In this definition ω ∈ T ∗(En) and V ∈ T (En) are both fields defined on En,
a fact which may be expressed as ω(xj) and V(xj). Similarly, the value of
ω(xj) is given by 〈ω(xj),V(xj)〉 = h(xj) with h(xj) an element of Λ0(En). In
this spirit one may define

〈·, ·〉 : T ∗(En) × T (En) → Λ0(En) | 〈ω(xj ,V(xj)〉 = h(xj) . (A.24)

Finally, the properties (b) and (c) in the above definition demonstrate closure
under vector additions and multiplication with scalars so that T ∗(En) is in-
deed a vector space. One must equip T ∗(En) with a basis. This is established
by

Definition 2.5: A collection of n fields {θi, i = 1, 2, . . . , n} is a natural
basis for T ∗(En) (with respect to the (xi) coordinate cover) if and only if

〈θ, ∂j〉 = δi
j . (A.25)

♦

This definition of θi, i = 1, . . . , n is abstract and does not disclose its mean-
ing. Edelen [35] writes: ‘The fact that we can define something does not
necessarily mean that we can use it’. On the other hand, if a solution to
(A.25) exists, then it is unique. Indeed, let θi and ρi be two solutions; then,
in view of (A.25),

〈θi, ∂j〉 − 〈ρi, ∂j〉 = 〈θi − ρi, ∂j〉 = 0 . (A.26)

Thus, for every choice of (C∞)-functions {vi(xk)} we have

vj〈θi − ρi, ∂j〉 = 〈θi − ρi,V〉 = 0, for all V ∈ T ∗(En); (A.27)

thus, since the zero element 0∗ ∈ T (En) is unique, we have θi−ρi = 0∗, which
establishes uniqueness.

To establish existence, let us construct a solution explicitly: For any F ∈
Λ0(En) and any V = vi∂i ∈ T (En) we know that V〈f〉 = vi∂f/∂xi takes its
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values in R. Thus, V〈f〉 may be viewed as a linear functional on T (En) since
it has the required linearity properties V〈f +g〉 = V〈f〉+V〈g〉, (U+V)〈f〉 =
U〈f〉 + V〈f〉.

Having shown existence of V〈f〉 as an element of T ∗(En) for all V ∈ T (En),
let us now introduce a different notation for V〈f〉.

Definition 2.6: The symbol ‘df ’, defined by

〈df,V〉 = V〈f〉 (A.28)

for all V ∈ T (En) is an element of T ∗(En) for each f ∈ Λ0(En). ♦

This is an abstract definition of the symbol ‘df ’, saying only the outcome
of it when it is applied to a vector field V through 〈·, ·〉. More light into its
meaning is brought by the following

Lemma 2.5: The unique natural dual basis of T ∗(En) is given by the n
elements {dxi, i = 1, . . . , n}. Any element ω ∈ T ∗(En) can be written uniquely
as

ω = ωi(xj)dxi, (A.29)

where the coefficients {ωi(xj)} are determined by

ωi = 〈ω, ∂i〉 i = 1, . . . , n (A.30)

and thus belongs to Λ◦(En). �

Proof: The quantities dxi are defined via (A.28) by 〈dxi,V〉 = V〈xi〉
and therefore 〈dxi, ∂j〉 = ∂jx

i = δi
j . This establishes the existence of the n

quantities dxi and identifies them with the θi’s in (A.25), which have already
been shown to be a basis for the n-dimensional space T ∗(En). Consequently,
any ω ∈ T ∗(En) can be expressed as (A.29) with components shown in (A.30).

�

All this is formal, but does not yet establish a concrete realization of the
abstract symbol df . If one applies df to the basis {∂i}, then 〈df, ∂i〉 = ∂if is
obtained. Alternatively, df ∈ T ∗(En) can also be written as df = γi(xk)dxi

with γi(xk) = 〈df, ∂i〉 = ∂if(xk), implying that

df = ∂if(xk)dxi . (A.31)

This is the familiar total differential of the function f of the n variables
x1, x2, . . . , xn. This result is so important that we summarize it as

Lemma 2.6: The abstract element df ∈ T ∗(En) that is defined by (A.28)
for any f ∈ Λ0(En) has the realization
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df = ∂if(xk)dxi (A.32)

as the total differential of the function f(xk). �

In elementary calculus, if f and {xi} are viewed as functions of the variable
t, (A.32) is shown in the form when both sides of (A.32) are divided by dt,

df

dt
= ∂if(xk)

dxi

dt
. (A.33)

In this form it appears as the chain rule of differentiation for f : En → R

and {xi(t)} : R → En. This same view, when applied to an arbitrary element
ω = ωi(xk)dxi ∈ T ∗(En), takes the form

ω

dt
= ωi(xj)

dxi

dt
. (A.34)

The right-hand side of this expression is well defined whenever the x’s are
functions of the variable t, but the left-hand side ω/dt makes no sense; it is
not d/dt of any single function. One speaks of ω/dt as an inexact differential.
It is simply an expression of the form

ω = ωi(xk)dxi (A.35)

that is not necessarily the derivative of a function f(xk) with respect to t.
Quantities such as (A.35) are referred to as differential forms or Pfaffian
forms; they appear as exact and are then expressible as the total differential
of a function f ∈ Λ0(En) or inexact and then cannot be written as the
differential of a function. In association to Λ0(En) as the set of (C∞)-functions,
T ∗(En) is now identified with Λ1(En). We summarize this result as

Definition 2.7: Λ1(En), the space of differential forms of degree one on
En, coincides with the dual space T ∗(En). The elements Λ1(En) have the
representation

ω = ωi(xj)dxi (A.36)

in terms of the natural basis {dxi} and are referred to as differential forms
of degree one. Λ0(En) is referred to as the space of forms of degree zero. ♦

Note as an application of (A.36) that

〈ω,V〉 = 〈ωidxi, vj∂j〉 = ωiv
j〈dxi, ∂j〉

= ωiv
jδi

j = ωiv
i .

(A.37)

There still remains the following question: Given an inexact differential like
(A.36), can it be transformed, e. g. by multiplication with a ∈ Λ0(En), into a
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total differential; in other words, is

aω = a(xj)ωi(xj)dxi (A.38)

a total differential, and what are the conditions that functions a(xj) ∈ Λ0(En)
can be found which make (A.38) a total differential? Or, what are the condi-
tions that such an attempt is in vain? Towards this end we need

The exterior or ‘veck’ product: We start with

Definition 2.8: Let {dxi} be the natural basis for Λ1(En) and α, β, γ ∈
Λ1(En) be differential forms. The exterior or veck product ‘∧’ is defined on
Λ1(En) × Λ1(En) by

(a) dxi ∧ dxj = −dxj ∧ dxi, (A.39)

(b) dxi ∧ f(xk)dxj = f(xk)dxi ∧ dxj (A.40)

for any function f(xk) ∈ Λ0(En). Furthermore,

(c) α ∧ (β + γ) = α ∧ β + α ∧ γ,

α ∧ β = −β ∧ γ
(A.41)

for all α, β, γ ∈ Λ1(En). Property (a) implies at once

dxi ∧ dxi = ‘0’ , (A.42)

where ‘0’ is the zero element of the 2-forms. ♦

With the aid of this definition the following properties are straightforward to
prove:

(1) (α + β) ∧ γ = α ∧ γ + β ∧ γ , (A.43)

(2) α ∧ β = αiβjdxi ∧ dxj = −αjβidxi ∧ dxj , (A.44)

(3) 2α ∧ β = (αiβj − αjβi)dxi ∧ dxj . (A.45)

Proof: For item (1) we use properties (a) and (c) of the above definition
as follows:

(α + β) ∧ γ
(a)
= −γ ∧ (α + β)

(c)
= −γ ∧ α − γ ∧ β

(a)
= α ∧ γ + β ∧ γ .

(A.46)
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To prove item (2), let α = αidxi and β = βjdxj . Then evaluation of α ∧ β
yields

α ∧ β = (αidxi) ∧ (βjdxj)

= (αidxj) ∧ (β1dx1 + · · · + βndxn)

(c)
= (αidxi) ∧ β1dx1 + · · ·

+ (αidxi) ∧ βndxn

(b),(1)
= β1(αidxi) ∧ dx1 + · · ·

+ βn(αidxi) ∧ dxn

= αiβjdxi ∧ dxj .

Property (3) is obtained by using the two evaluations of α∧β in item (2). �

If we form all linear combinations of quantities thus formed with coefficients
from Λ0(En), we obtain a vector space over Λ0(En) that is denoted by Λ2(En).
Because of (A.39) its dimension is, however, not equal to n but n(n − 1)/2.
We state these properties as

Definition 2.9: The n(n − 1)/2 dimensional vector space Λ2(En) over
Λ0(En) with the basis

{dxi ∧ dxj , i < j} (A.47)

is the vector space of the exterior 2-forms over En. The elements of Λ2(En) are
referred to as 2-forms or exterior forms of degree 2. The elements of Λ0(En)
and Λ1(En) are now referred to as exterior forms of degree 0 and degree 1,
respectively. ♦

Having defined exterior forms of degree 2 it is now clear how we can proceed
to construct exterior forms of degree 3 by forming all linear combinations
of all veck products of the basis elements dxi taken three at a time. In this
process {dxi ∧ dxj ∧ dxk} is the natural basis for the vector space Λ3(En),
and for any α, β, γ ∈ Λ3(En) we request the multiplication to be associative,

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ . (A.48)

It is also easily shown that dxi ∧ dxj ∧ dxk does not change its value if the
indices i, j, k are altered with an even permutation, but its value changes to
its negative, if the permutation of i, j, k is odd; moreover and obviously, if
any two indices are the same, then dxi ∧ dxj ∧ dxj = 0. Explicitly,
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dxi ∧ dxj ∧ dxk = dxj ∧ dxk ∧ dxi

= dxk ∧ dxi ∧ dxj

= −dxi ∧ dxk ∧ dxj

= −dxj ∧ dxi ∧ dxk

= −dxk ∧ dxj ∧ dxi .

(A.49)

Therefore, the dimension of the vector space Λ3(En) is
(
n
3

)

= [n(n − 1)(n −
2)/3!].

It is now obvious how one may proceed, but the construction must termi-
nate at Λn(En) since this space only possesses one single independent element

dx1 ∧ dx2 ∧ · · · ∧ dxn (A.50)

because any other such element in which the sequence of the dx’s is altered
is ±dx1 ∧ dx2 ∧ · · · ∧ dxn. Moreover, vecking (A.50) with any dxj , j ≤ n
generates zero. So, Λn+m(En) = {0} for any m > 0. These considerations
lead to the

Definition 2.10: The space Λk(En), 0 < k ≤ n, of exterior forms of degree
k is the vector space of dimension

(
n

k

)

=
n!

k!(n − k)!
(A.51)

over Λ0(En) with the natural basis

{dxi1 ∧ dxi2 ∧ . . . ∧ dxik , i1 < i2 < . . . < ik} . (A.52)

If α ∈ Λk(En), then we write

deg(α) = k . (A.53)

♦

The above analysis leads to the properties of the veck product in the following
general form:

Lemma 2.7: Let α ∈ Λr(En) and β, γ ∈ Λs(En). The operation ∧ of exte-
rior multiplication generates a map ∧ : Λr(xj)×Λs(xj) → Λr+s(xj) with the
following properties:
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(a) α ∧ (β + γ) = α ∧ β + α ∧ γ , (A.54)

(b) α ∧ β = (−1)deg(α)deg(β)β ∧ α , (A.55)

(c) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ) . (A.56)

�

The properties (a) and (c) need no further proof, for (b) the reader may test
that (A.55) is correct for a selected case. However we state that

• elements from any Λk(En) may be multiplied with elements from Λ0(En),
but that elements from Λk(En) and Λm(En) with k �= m cannot be vecked;

• any element of Λk(En) can be vecked with any element from Λm(En), but
the answer belongs to Λk+m(En). If k + m > n this answer is zero.

A straightforward implication of (A.55) is the following:

• If ω ∈ Λk(En) with k = (2r + 1), then

ω ∧ ω = (−1)(2r+1)2ω ∧ ω (A.57)

and therefore ω ∧ ω = 0.
• However, if k is even, k = 2r, then ω ∧ ω does not vanish in general.

These properties suggest the following definition for the space encompassing
all exterior k-forms, k = 0, 1, . . . , n.

Definition 2.11: The graded exterior algebra of differential forms over En

is the direct sum

Λ(En) = Λ0(En) ⊕ Λ1(En) ⊕ · · · ⊕ Λn(En) (A.58)

with the vector space operations of each Λk(En) and together with the exterior
product ∧ as a map from Λ(En) × Λ(En) to Λ(En). ♦

It is obvious that a basis for Λ(En) is

1 ⊕ {dxi} ⊕ {dxi ∧ dxj , i < j} ⊕ · · · ⊕ {dx1 ∧ dx2 ∧ · · · ∧ dxn} (A.59)

and the dimension1

dim(∧) =
n∑

k=0

(
n

k

)

= 2n . (A.60)

We next perform a number of straightforward computations. To this end the
following definition is helpful:

1 Note that (1 + t)n =
∑n

k=0

(
n
k

)

; so for t = 2 this yields 2n =
∑n

k=0

(
n
k

)

.
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Definition 2.12: An element ω ∈ Λk(En) is said to be simple if and only
if there exist k elements {η1, η2, . . . , ηk} = {ηa} ∈ Λ1(En) such that

ω = η1 ∧ η2 ∧ · · · ∧ ηk . (A.61)

♦

• We have already encountered simple elements of Λk(En), namely the basis
elements of Λk(En). Now, the representation

ω =
∑

i1<i2<···<ik

ωi1,i2···ik(xm)dxi1 ∧ dxi2 ∧ · · · ∧ dxik (A.62)

shows that every element of Λk(En) consists of a linear combination of
simple elements of Λk(En) with coefficients from Λ0(En).

• Every ω ∈ Λn(En) is simple. This follows from the above by choosing
k = n. Or we may recall that dx1 ∧ dx2 ∧ · · · ∧ dxn is the natural basis for
Λn(En). Thus, any element of Λn(En) is simple.

• Let ω1, ω2, . . . , ωk be k given elements of Λ1(En) and construct the simple
k-form

Ω = ω1 ∧ ω2 ∧ · · · ∧ ωk . (A.63)

Then:

– A necessary and sufficient condition that the k given 1-forms are linearly
dependent is

Ω = 0 . (A.64)

– A necessary and sufficient condition that the k given 1-forms are linearly
independent is

Ω �= 0 . (A.65)

We leave the proof to the reader (see Edelen [35], page 89).
• If η1, η2, . . . , ηk are k elements of Λ1(En) and another collection of k ele-

ments of Λl(En) is defined by

ωa = Ka
b ηb , (A.66)

then
ω1 ∧ ω2 ∧ · · · ∧ ωk = det(Ka

b )η1 ∧ η2 ∧ · · · ∧ ηk . (A.67)

• Let ω1, . . . , ωk ∈ Λl(En) be linearly independent 1-forms; suppose, more-
over, that the 1-forms γ1, . . . , γr satisfy

r∑

i=1

ωi ∧ γi = 0 . (A.68)
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Then, each of the r 1-forms γ1, . . . , γr belongs to the subspace spanned by
ω1, . . . , ωr. Thus, there exists a matrix (Aab) such that γa = Aabω

b with
Aab = Aba, a, b = 1, . . . , r.
Proof: This is quite easy. Since ω1, . . . , ωr are linearly independent Ω =
ω1 ∧ ω2 ∧ · · · ∧ ωr �= 0. Thus, vecking (A.68) with Ωj

r−1 := ω1 ∧ · · ·
∧ωj−1 ∧ ωj+1 ∧ · · · ∧ ωr (ωj is missing), we obtain

r∑

i=1

γi ∧ Ωj
r−1 = γi ∧ Ω = 0, j = 1, . . . , r . (A.69)

So, each of the γ’s is linearly dependent on the ω’s. This establishes the
representation γa = Aabω

b with Aab = Aba.

Inner multiplication. The exterior product ∧ : Λk(En) × Λm(En) →
Λk+m(En) is an ascending operation. Hence, once reaching the topmost col-
lection Λn(En) a return to elements of Λk(En) with k < n cannot be achieved.
However, this backward operation down the ladder is provided by the pull
down operation of

Definition 2.13: Inner multiplication or the pull down is a map

∨ : T (En) × Λk(En) → Λk−l(En) (A.70)

with the following properties:

(a) V ∨ f = 0 for all V ∈ T (En) and all f ∈ Λ0(En) , (A.71)

(b) V ∨ ω = 〈ω,V〉 for all V ∈ T (En) and all ω ∈ Λ1(En) , (A.72)

(c) V ∨ (α + β) = V ∨ α + V ∨ β for all α, β ∈ Λk(En),

k = 1, 2, . . . , n and all V ∈ T (En) (A.73)

(d) V ∨ (α ∧ β) = (V ∨ α) ∧ β + (−1)deg(α)α ∧ (V ∨ β)

for all α, β ∈ Λ(En) and all V ∈ T (En) . (A.74)

♦

These properties also imply

(e) (fU + gV) ∨ ω = f(U ∨ ω) + g(V ∨ ω) (A.75)

(f) U ∨ (V ∨ ω) = −V ∨ (U ∨ ω) → V ∨ (V ∨ ω) = 0 . (A.76)
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The proofs of (e) and (f) are facilitated by recognizing that every k-form is
expressible as a linear combination of simple k-forms. So, for (e),

V ∨ (ω1 ∧ ω2 ∧ · · · ∧ ωk)

= (V ∨ ω1) ∧ ω2 ∧ · · · ∧ ωk − ω1 ∧ (V ∨ ω2 ∧ · · · ∧ ωk)

= 〈ω1,V〉 (ω2 ∧ · · · ∧ ωk) − ω1 ∧ {(V ∨ ω2) ∧ ω3 ∧ · · · ∧ ωk

− ω2 ∧ (V ∨ (ω3 ∧ · · · ∧ ωk))}

= 〈ω1,V〉 ω2 ∧ · · · ∧ ωk − 〈ω2,V〉 ω1 ∧ ω3 ∧ · · · ∧ ωk

+ 〈ω3,V〉 ω1 ∧ ω2 ∧ · · · ∧ ωk + · · ·

+ (−1)k−1〈ωk,V〉 ω1 ∧ · · ·ωk−2 ∧ ωk−1

=
k−1∑

j=1

(−1)j−1〈ωj ,V〉 Ω
(j)
k−1 ,

(A.77)

where

Ω
(j)
k−1 = ω1 ∧ · · · ∧ ωj−1 ∧ ωj+1 ∧ · · · ∧ ωk−1 ∈ Λk−1(En), (A.78)

which implies that (A.77) belongs to Λk−1(En). To prove (f), we start again
with (A.77) and allow U∨ to act on both sides of (A.77), reverse the roles of
U and V and then add the results. For basis elements of Λ2(En) this yields

V ∨ (dxi ∧ dxj) = (V ∨ dxi) ∧ dxj − dxi ∧ (V ∨ dxj)

= 〈dxi,V〉 dxj − 〈dxj ,V〉dxi

= vidxj − vjdxi , (A.79)

U ∨ (V ∨ (dxi ∧ dxj)) = viU ∨ dxj − vjU ∨ dxi

= viuj − vjui , (A.80)

V ∨ (U ∨ (dxi ∧ dxj)) = uivj − ujvi , (A.81)

which corroborates (A.76).

Exterior derivatives: In the preceding analysis the abstract operator
‘d’ was introduced as an element of Λ1(En) (see Definition 2.6 and following
discussion), and it was shown that it has realizations as exact and inexact
differentials (see Lemma 2.6 and following discussion), i. e., forms of degree
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zero. We ask whether an abstract operator ‘d’ can also be defined for forms
other than degree zero.

This is indeed so, and we begin by noting that any element of Λk(En) is
the sum of terms of the form f(xj)dxi1 ∧ · · · ∧ dxik and that we know the
meaning of df(xj). For any α, β ∈ Λ(En) we now propose to define ‘d’ via the
computational rules

d(α + β) = dα + dβ , (A.82)

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ . (A.83)

(A.82) makes d a linear operator, whilst (A.83) says that d is an anti-
derivation because of the factor (−1)deg(α). For any f ∈ Λ0(En) we have

df =
∂f

∂xj
dxj ,

ddf = d

(
∂f

∂xj
dxj

)

= d

(
∂f

∂xj

)

∧ dxj +
∂f

∂xj
ddxj

=
∂2f

∂dxk∂dxj
dxk ∧ dxj +

∂f

∂xj
ddxj

(A.83)
=

1
2

(
∂2f

∂xk∂xj
− ∂2f

∂xj∂xk

)

dxk ∧ dxj +
∂f

∂xj
ddxj

=
∂f

∂xj
ddxj .

(A.84)

Thus, the operator will provide a statement of necessary symmetry, namely
∂2f/(∂xk∂xj) = ∂2f/(∂xj∂xk) if

ddxi = 0 i = 1, . . . , n . (A.85)

We must now show that an operator d with the above properties is defined
for all elements of Λ(En). If β ∈ Λk(En), it is composed of terms of the form

γ = f(xm)dxi1 ∧ dxi2 ∧ · · · ∧ dxik . (A.86)

So, if we apply d to both sides of (A.86) and use (A.83), we obtain

dγ = df ∧ dxi1 ∧ · · · ∧ dxik + fd{dxi1 ∧ · · · ∧ dxik}

(A.83,A.85)
=

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik ,

(A.87)

which proves the statement that d is defined for every element of Λ(En); in
particular, d : Λk(En) → Λk+1(En). If we now apply d to both sides of (A.87),
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we obtain
ddγ = 0 (A.88)

for all γ ∈ Λ(En). Uniqueness is secured through the final requirement that
df = (∂f/∂dxi)dxi holds for all f ∈ Λ0(En).

In summary we have shown:

Theorem 2.1: There is one and only one operator d on Λ(En) with the
following properties:

(a) d(α + β) = dα + dβ , (A.89)

(b) d(α ∧ β) = dα ∧ β + (−1)deg(α)dβ , (A.90)

(c) df =
∂f

∂xi
dxi, f ∈ Λ0(En) , (A.91)

(d) ddα = 0 . (A.92)

If α ∈ Λk(En), then dα ∈ Λk+1(En) and hence d may be viewed as the map

d : Λk(En) → Λk+1(En) . (A.93)

which satisfies properties (a)-(d). d is called exterior differentiation. �

The actual calculation of the exterior derivative of any exterior form follows
from the properties (a) through (d) of the above theorem.

• For example, if α = αi(xk)dxi is a 1-form, then

dα = dαi ∧ dxi =
∂αi

∂dxj
dxj ∧ dxi = 1

2 (∂jαi − ∂iαj)dxj ∧ dxi , (A.94)

because dxj ∧ dxi = −dxi ∧ dxj .
• If β = 1

2βijdxi ∧ dxj , βij = −βji, then

dβ = 1
2dβij ∧ dxi ∧ dxj = 1

2 (∂kβij)dxk ∧ dxi ∧ dxj

= 1

3! (∂kβij + ∂iβjk + ∂jβki)dxk ∧ dxi ∧ dxj .
(A.95)

• If ω ∈ Λn(En), then dω = 0. Indeed, since d maps Λn(En) into Λn+1(En)
and Λn+1(En) only contains the element 0 we have dω = 0.

Definition 2.14

(1) An element α ∈ Λ(En) is said to be closed, if and only if α is in the kernel
of d:

dα = 0 . (A.96)
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(2) An element α ∈ Λ(En) is said to be exact, if α is in the range of d:

α = dβ . (A.97)

♦

Theorem 2.2 The collection of all closed elements of Λ(En) forms a sub-
space C(En) of Λ(En) over R, but not over Λ0(En). The collection of all exact
elements of Λ(En) forms a subspace D(En) of Λ(En) over R, but not over
Λ0(En). Moreover,

D(En) ⊂ C(En) . (A.98)

�

Proof: If α and β are closed elements, then dα = 0 and dβ = 0. For a
linear combination fα + gβ we have

d(fα + gβ) = df ∧ α + dg ∧ β + (−1)0fdα + (−1)0gdβ

= df ∧ α + dg ∧ β .
(A.99)

Thus, if df = 0, dg = 0, that is f = constant and g = constant, then
d(fα+gβ) = 0 and C(En) is a subspace of Λ(En) over R but not over Λ0(En),
since f , g must be constant.

Analogously, if α and β belong to D(En), there exist elements ρ and η
such that α = dρ and β = dη. Then, fα + gβ = fdρ + gdη = d(fρ) + d(gη)
−df ∧ ρ − dg ∧ η. But this only reduces to d(fρ + gη) if df = 0 and dg = 0,
hence f = constant and g = constant. So, D(En) is a vector subspace of
Λ(En) over R, but not over Λ0(En). Furthermore, for any element α ∈ D(En)
we automatically have α = dβ and, a forteriori, dα = ddβ = 0. So, every
α ∈ D(En) is also element of C(En), but not vice versa, proving (A.98). �

The inclusion D(En) ⊂ C(En) is the basis by which a large number of signifi-
cant problems are solved. For example, suppose that we are given a 1-form

F = Fi(xj)dxi , (A.100)

and we would like to find an element η ∈ Λ0(En) such that

F = dη = ∂iηdxi . (A.101)

Then, comparison shows that this is only the case if

Fi(xj) = ∂iη(xj) . (A.102)

In other words, the ‘force’ with components Fi(xj) admits the potential
function η. Such a function can exist if and only if F is exact, namely
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0 = dF = 1
2 (∂iFj − ∂jFi)dxi ∧ dxj , or

∂iFj = ∂jFi . (A.103)

Theorem 2.2, however, says quite a bit more. Suppose that α ∈ Λk(En) is a
k-form, and we ask the question under which conditions can we find a (k−1)-
form β such that α = dβ. Since this says that α is exact if there exists such
a β, then such an α must likewise be closed: dα = 0.

Suppose that we satisfy these necessary conditions for the existence of
solutions: α = dβ only if dα = 0. The question then arises as to whether
we can actually find a β that makes the equation α = dβ true for given α.
This would indeed be the case if we could show that every closed form is an
exact form. However, this is just wishful thinking because such a result can
not be true in general. For instance, suppose that we are in two dimensions
and F satisfies ∇× F = 0 on a region with a hole in it. We then know that
F = ∇η can not necessarily be satisfied by a single-valued function η because
of the hole. This is only so if there is no hole, that is if the region is simply
connected. A similar situation also exists here: under restricted properties
of the region S ∈ En there is a partial converse to (A.98) expressed in the
following

Lemma 2.8: (Poincaré theorem) If S is a region of En that can be
shrunk to a point in a smooth way (S is star shaped with respect to one of its
points), then

C(S) ⊂ D(S) . (A.104)

That is, if dα = 0 on S then there exists a β on S such that α = dβ. �

The proof of this theorem is given in Chap. 5 of Edelen [35].
For the further developments we need to recall the definition of an ideal. To

this end recall that a vector space V over R together with a binary operation
(· | ·) is an algebra if

(aU + bV | W) = a(U | W) + b(V | W) , (A.105)

(U | aV + bW) = a(U | V) + b(U | W) (A.106)

for U,V,W ∈ V and a, b ∈ R. An ideal is a subspace U of an algebra {V, (· | ·)}
such that

(W | V) belong to U for all W ∈ U and all V ∈ V , (A.107)

(V | W) belong to U for all W ∈ U and all V ∈ V . (A.108)

Definition 2.15: An ideal I of Λ(En) is said to be closed if and only if
dρ ∈ I for every ρ ∈ I in which case we write
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dI ⊂ I . (A.109)

♦

Obviously, any finitely generated ideal I(ω1, ω2, . . . , ωk) can be closed by for-
mation of a new ideal Ī(ω1, ω2, . . . , ωk, dω1, dω2, . . . , dωk), called the closure
of I(ω1, ω2, . . . , ωk). For if ρ ∈ Ī, then

ρ = γa ∧ ωa + Γa ∧ dωa (A.110)

and hence
dρ = dγa ∧ ωa + {(−1)deg(γa)γa + dΓa} ∧ dωa (A.111)

which belongs to Ī.
The important question to answer is: When is a given ideal I(ω1, ω2, . . . , ωk)

a closed ideal? The following theorems answer this question.

Theorem 2.3: Let I(ω1, ω2, . . . , ωk)
def
= I(ωa) be an ideal of Λ(En) such

that each of its generators is of the same degree. Then, I(ωa) is a closed ideal
if and only if there exist k2 1-forms {Γ a

b } such that the generators satisfy

dωa = Γ a
b ∧ ωb . (A.112)

�

Proof: Since ρ ∈ I{ωa} it possesses the representation ρ = γa∧ωa for some
k-tuple of forms {γa} with common deg(γa) = b. Therefore,

dρ = dγa ∧ ωa

︸ ︷︷ ︸

⊂I{ωa}

+(−1)bγa ∧ dωa

= (−1)bγa ∧ dωa mod I{ωk} .

(A.113)

Now, dρ ∈ I{ωa} for every ρ ∈ I{ωa} if and only if each of the forms dωa

belongs to I{ωa}. Thus, since dωa has one degree greater than ωa, dωa ∈
I{ωa} for a = 1, . . . , k, if and only if there exist k2 1-forms such that the
generators satisfy (A.112). �

Note that the Γ a
b ’s in (A.112) are not entirely arbitrary, since ddωa = 0.

Indeed
ddωa = (dΓ a

b − Γ a
c Γ c

b ) ∧ ωb = 0 . (A.114)

It seems quite plausible that not every ideal allows solutions satisfying
(A.112), (A.114); not every ideal generated by forms of the same degree is
closed.
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Of particular interest is the situation when the forms generating an ideal
are of degree 1. What are the conditions that such ideals are closed? The
answer to this question is given by the following

Theorem 2.4: Let I{ωa} be an ideal of Λ(En) whose generators ω1, . . . , ωk

are linearly independent 1-forms such that

ω1 ∧ ω2 ∧ · · ·ωk = Ω(I) �= 0 (A.115)

and k < n − 1. Then dI{ωa} ⊂ I{ωa} if and only if

dωa ∧ Ω(I) = 0, a = 1, . . . , k . (A.116)

�

Proof: If the generators satisfy (A.112), then they also satisfy (A.116),

dωa ∧ Ω(I) = Γ a
b ∧ ωb ∧ Ω(I) = 0 , (A.117)

since ωb arises twice in ωb ∧ Ω(I). To establish the converse, let ω1, . . . , ωk,
ωk+1, . . . , ωn be a basis of Λ1(En) and label the additional 1-forms with the
indices α, β, . . .. Since dωa ∈ Λ2(En) we may always write

dωa = ξa
ijω

i ∧ ωj = ξa
bcω

b ∧ ωc + 2ξa
αcω

α ∧ ωc + ξa
αβωα ∧ ωβ , (A.118)

and hence
Ω(I) ∧ dωa = ξa

αβΩ(I) ∧ ωα ∧ ωβ . (A.119)

Since k < n − 1, we have deg
(

Ω(I) ∧ ωα ∧ ωβ
)

≤ n; consequently, Ω(I) ∧
ωα∧ωβ is a simple nonzero (k+2)-form, because ωα and ωβ are independent
and not members of the subspace spanned by ω1, . . . , ωk. So, (A.116) is only
satisfied when ξa

αβ = 0, α, β = k + 1, . . . , n, a = 1, . . . , k; that is (A.118)
reduces to

dωa =
(

ξa
bcω

b + 2ξa
αcω

α
)

︸ ︷︷ ︸

Γ a
c

∧ωc = Γ a
c ∧ ωc . (A.120)

�

This proof excludes the case k ≥ n−1 because Ω(I)∧dωa would have degree
greater than n and hence vanish identically. This case is covered in

Theorem 2.5: If the ideal I is generated by either n − 1 or n linearly
independent 1-forms, then dI ⊂ I. �

Proof:

(1) For k = n, {ωc} is a basis for Λ1(En) and therefore dωa = (ξa
bcω

b)∧ωc =
Γ a

b ∧ ωc which agrees with (A.112).
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(2) For the case k = n − 1, let γ be an additional 1-form such that
{ω1, . . . , ωn−1, γ} is a basis for Λ1(En). We then have

dωa = ξa
bcω

b ∧ ωc + ξa
c γ ∧ ωc

= (ξa
bcω

b + ξa
c γc) ∧ ωc = Γ a

b ∧ ωc ,
(A.121)

again agreeing with (A.112). �
A simple example illustrates the above theorems. Consider the 1-form ω

on En that is defined by

ω = f(xj)dg(xj) = f∂igdxi, f �= 0 . (A.122)

Exterior differentiation yields

dω = df ∧ dg (A.123)

implying that
ω ∧ dω = fdg ∧ df ∧ dg = 0 . (A.124)

The result (A.124) coincides with Theorem 2.4 and agrees with (A.116). It
is here formulated for the ideal I{ω} generated by ω, which is closed: dI ⊂ I.
Indeed since f �= 0, we can rewrite (A.123) in the equivalent form

dω =
1
f

df ∧ fdg
︸︷︷︸

ω

(A.122)
=

1
f

df ∧ ω , (A.125)

which is of the form (A.112) in Theorem 2.3.
This idea is now generalized to the case of more than a single 1-form,

namely
ωa = Ka

b (xj)dgb(xj), Ka
b (xj) ∈ Λ0(En) . (A.126)

Its answer is the so-called Frobenius Theorem. We restrict attention to a
system of 1-forms which can without loss of generality be assumed to be
linearly independent and to span Λ1(En).

Definition 2.16: We call a collection of r linearly independent 1-forms,
{ωa, a = 1, . . . , r} an exterior system of dimension r and use the symbol Dr

to identify it. The ideal that is generated by {ωa} is denoted by I{Dr}. ♦

Definition 2.17: An exterior system Dr with 1-forms {ωa} is said to
be completely integrable if and only if there exist r independent functions
{ga(xj)} such that each of the r 1-forms {ωa} vanishes on each of the r-
parameter family of (n − r)-dimensional surfaces

{ga(xj)} = ca, a = 1, . . . , r , (A.127)
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generated by allowing the r constants {ca} to range over all r-tuples of real
numbers. ♦

Theorem 2.6: An exterior system Dr with 1-forms {ωa} is completely
integrable if and only if there exists a non-singular (r×r)-matrix of functions
(

Aa
b (xj)

)

and r independent functions {gb(xj)} such that

ωa = Aa
bdgb . (A.128)

�

Proof: Assume that (A.128) holds true with the non-singular matrix Aa
b (xj)

of functions. Thus, since det(Aa
b ) �= 0, we have

dωa = dAa
b ∧ dgb = (dAa

c )(A−1)e
c ∧ Ac

bdgb

︸ ︷︷ ︸

ωc

= (dAa
e)(A−1)e

c ∧ ωc = Γ a
c ∧ ωc ,

(A.129)

which agrees with formula (A.112) in Theorem 2.3. Conversely, suppose that
{ωa} is completely integrable, so that r linearly independent integrable func-
tions ga(xj) exist. We can then construct the ideal I{dga}, and this ideal is
the largest closed ideal such that every of its elements vanishes on the surfaces
{ga(xj) = constant, a = 1, . . . , r}. However, complete integrability of {ωa}
says that each ωa vanishes on the surfaces {ga(xj) = constant, a = 1, . . . , r},
and hence I{Dr} ⊂ I{dga}. Since both the ω’s and dg’s are 1-forms, the ideal
inclusion is satisfied only if there exists a matrix (Aa

b ) such that ωa = Aa
bdgb.

Since the ω’s and dg’s are both linearly independent, ω1 ∧ · · · ∧ ωr �= 0, and
dg1 ∧ · · · ∧ dgr �= 0. Therefore, since ω1 ∧ · · · ∧ ωr = det(Aa

b )dg1 ∧ · · · ∧ dgr,
we have det(Aa

b ) �= 0. �

Theorem 2.3 shows that the ideal I{Dr} is closed if Dr is completely inte-
grable. The converse is the famous

Theorem 2.7: (Frobenius) An exterior system Dr that is defined by
1-forms {ωa} is completely integrable if and only if the ideal I{Dr} is closed,
that is dI{Dr} ⊂ I{Dr} which is equivalent to

dωa = Γ a
b ∧ dωb (A.130)

or
ω1 ∧ ω2 ∧ · · · ∧ ωr ∧ dωa = 0, a = 1, . . . , r . (A.131)

�
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The proof of this theorem involves deeper methods of exterior calculus and
is given in Edelen [35].



Appendix B

Auxiliary Results

B.1 Manipulation of the Entropy Inequality

We repeat (5.12):

πρη = ∂ (ρη) −∇ · (φρη − ρηv) I

−
∑

λρ
α {∂ρ̄α + ∇ · (ρ̄αvα) − ρ̄αcα} II

−
∑

λv
α ·

{

∂ (ρ̄αvα) −∇ ·
(

T̄α − ρ̄αvα ⊗ vα

)

− m̄α

}

III

−λε {∂ (ρε) + ∇ · (q + ρεv) − T · (∇v)} IV

−
n−1∑

α=1

λν
α {∂να + ∇ · (ναvα) − n̄α} V

−λν
n

{

− ∂
( n−1∑

β=1

νβ

)

+ ∇ · vn −∇ ·
( n−1∑

β=1

νβvn

)

− n̄n

}

VI

−
∑

λZ
α ·

{
´̄Zα −

[

Ωα, Z̄α

]

− Φ̄α

}

VII

� 0 ,

(B.1)

where Latin identifiers are assigned to each row.
First, let us focus on the mixture quantities, namely lines I and IV. The partial
time derivatives and the second terms in the brackets of the divergence terms
are combined to give

∂ (ρη) + ∇ · (ρηv) − λε∂ (ρε) − λε∇ · (ρεv)

= ∂ (ρη) − λε∂ (ρε)

+ {∇ (ρη) − λε∇ (ρε)} · v + (ρη − λερε)∇ · v . (B.2)

The last term in (B.2) can be transformed into

221
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(ρη − λερε)∇ · v =

(η − λεε)
∑

{ρ̄α∇ · vα + ναuα · ∇ρα + ραuα · ∇να} ,
(B.3)

where (3.55), (3.56) and the product rule of differentiation have been used.
The divergence terms in lines I, III, IV containing the constitutive quantities
φρη, T̄α and q are simply added to yield

−
{

∇ · φρη + λε∇ · q −
n∑

α=1

(

λv
α · (∇ · T̄α)

)

}

. (B.4)

(B.4) and the first two terms in (B.2) have the desired structure to introduce
P and F .

In a second step, line II is split into the sums for the m compressible
constituents and the (n−m) density-preserving constituents. The result reads

−
n∑

α=1

λρ
α { ∂ρ̄α + ∇ · (ρ̄αvα) − ρ̄αcα}

= −
m∑

α=1

λρ
α

{

να(∂ρα) + ρα(∂να) + ναvα · ∇ρα

+ραvα · ∇να + ρ̄α∇ · vα − ρ̄αcα

}

−
n∑

α=m+1

λρ
α

{

ρα(∂να) + ραvα · ∇να + ρ̄α∇ · vα − ρ̄αcα

}

, (B.5)

where ρα = const. for α = m + 1, . . . , n and again the product rule of differ-
entiation has been used. The remainder of line III can be written as

III −
n∑

α=1

(

λv
α · (∇ · T̄α)

)

= −
n∑

α=1

λv
α ·

{

ναvα(∂ρα) + ραvα(∂να) + ρ̄α(∂vα)

+ναvα ⊗ vα∇ρα + ραvα ⊗ vα∇να

+ρ̄α∇vαvα + ρ̄αvα∇ · vα − m̄α

}

, (B.6)

where
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∇ · (ρ̄αvα ⊗ vα) · λv
α = (λv

α)i (ρ̄α vα
i vα

j ),j

= (λv
α)i (ρ̄α),j vα

i vα
j

+(λv
α)i ρ̄α (vα

i ),j vα
j + (λv

α)i ρ̄α vα
i (vα

j ),j

= λv
α · (vα ⊗ vα)(∇ρ̄α)

+ρ̄αλv
α · (∇vαvα) + ρ̄αλv

α · vα∇ · vα (B.7)

was applied. Later we will use the transformation

λv
α · (∇vαvα) = (λv

α)i (vα
i ),j vα

j = (λv
α ⊗ vα) · ∇vα (B.8)

for the first term in the last line of (B.7).
The remainder of line IV can be written as

λε T · (∇v)

= λε ρ−1 T ·
∑{

ρ̄α(∇vα) + ρα(uα ⊗∇να) + να(uα ⊗∇ρα)
}

, (B.9)

where the right-hand side of (B.9) is deduced from (3.56) and

T · (ρ∇v) = T · ∇ (ρv) − T · (v ⊗∇ρ)

= T ·
∑

∇ (ρ̄αvα) − T ·
∑

v ⊗ (∇ρ̄α)

...
= T ·

∑

ρ̄α∇vα + T ·
∑

uα ⊗ (∇ρ̄α) . (B.10)

Leaving lines V and VI unaltered, we transform line VII into

−
∑

λZ
α ·

{
´̄Zα −

[

Ωα , Z̄α

]

− Φ̄α

}

= −
∑

λZ
α ·

{

∂Z̄α + ∇Z̄αvα −
[

Ωα, Z̄α

]

− Φ̄α

}

,

where definition (3.8) has been applied. With these modifications and the
saturation condition, we can collect the coefficients belonging to ∂ρα, ∇ρα,
∂να, ∇να, ∂vα, ∇vα, ∂Z̄α and ∇Z̄α to obtain
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πρη = ∂ (ρη) − λε∂ (ρε) + {∇(ρη) − λε∇(ρε)} · v

−
{

∇ · φρη + λε∇ · q −
n∑

α=1

(

λv
α · (∇ · T̄α)

) }

−
m∑

α=1

{λρ
ανα + ναλv

α · vα} (∂ρα)

−
m∑

α=1

{

λρ
αναvα + να (λv

α · vα) vα

−ναλερ−1T uα − να (η − λεε)uα

}

· (∇ρα)

−
n−1∑

α=1

{λρ
αρα − λρ

nρn + ραλv
α · vα − ρnλv

n · vn + λν
α − λν

n} (∂να)

−
n−1∑

α=1

{

(η − λε ε) (−ραuα + ρnun)
︸ ︷︷ ︸

energy & entropy

+λρ
α ρα vα − λρ

n ρn vn
︸ ︷︷ ︸

mass

+ ρα(λv
α · vα)vα − ρn(λv

n · vn)vn
︸ ︷︷ ︸

momentum

−λερ−1ρα(T uα) + λερ−1ρn(T un)
︸ ︷︷ ︸

stress-energy

+ λν
αvα − λν

nvn
︸ ︷︷ ︸

volume fraction

}

· (∇να)

−
n∑

α=1

ρ̄αλv
α · (∂vα)

−
n∑

α=1

{(

ρ̄αλρ
α + ρ̄αλv

α · vα + ναλν
α

)

I

−ρ̄αρ−1λεT − ρ̄α (η − λεε) I + ρ̄αλv
α ⊗ vα

}

· (∇vα)

−
n∑

α=1

{

λZ
α ·

(

∂Z̄α

)

+
(

λZ
α ⊗ vα

)

·
(

∇Z̄α

)}

−
n∑

α=1

[

Z̄α, λZ
α

]

· Ωα +
n∑

α=1

Φ̄α · λZ
α

+
n∑

α=1

{

λv
α · (m̄α − vαρ̄αcα) + λv

α · vα ρ̄αcα + λρ
αρ̄αcα + λν

αn̄α

}

� 0 . (B.11)
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In the eighth sum in inequality (B.11) the identity

λZ
α · ∇Z̄α vα = λZα

ij Z̄α
ij,k vα

k = λZα
ij vα

k Z̄α
ij,k

=
(

λZ
α ⊗ vα

)

· ∇Z̄α ,
(B.12)

and in the ninth sum

− λZ
α ·

[

Ωα, Z̄α

]

= λZα
ij Z̄α

ik Ωα
kj − λZα

ij Z̄α
kj Ωα

ik

= Z̄α
ki λZα

ij Ωα
kj − λZα

ij Z̄α
jk Ωα

ik

= Z̄α
kj λZα

ji Ωα
ki − λZα

ij Z̄α
jk Ωα

ik

=
(

Z̄α λZ
α

)

ki
Ωα

ki −
(

λZ
α Z̄α

)

ik
Ωα

ik

=
[

Z̄α, λZ
α

]

· Ωα (B.13)

were applied. Moreover, at several places the fact was used that T̄α, T, λZ
α ,

Z̄α are symmetric second order tensors. If we now substitute abbreviations
of the form

lρα :=λρ
α + λv

α · vα, α = 1, ...,m,

lνα :=ρα (lρα) + λν
α, α = 1, ..., n,

Γ :=λερ−1T + (η − λεε) I = ΓT ,

s := − lνn,

s :=svn + ρnΓun ,

(B.14)

into (B.11) and recall (4.6) we immediately recover inequality (5.18). �

B.2 Other Auxiliary Results from Section 5.2

Identity (5.28) is deduced in the following way: First, we use the definition
of the mixture total derivative, ˙(·) = ∂(·) +∇(·)v, to merge the two brackets
in the first line of (5.28), i.e.

{

Pθ ∂θ + Pθ̇ ∂θ̇ + P∇θ · ∂(∇θ)
}

+
{

Pθ ∇θ + Pθ̇ ∇θ̇ + P∇θ∇(∇θ)
}

· v

= Pθ θ̇ + P∇θ · (∇θ)̇ + Pθ̇ θ̈ . (B.15)
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Obviously, (∇θ)̇ satisfies the identity

∇θ̇ = (∂θ + θ,k vk),j ej

= (∂θ,j +θ,kj vk + θ,k vk,j)ej = (∇θ)̇ + LT∇θ ,
(B.16)

and from the sum relation for L (see (3.58)) we obtain

(∇θ)̇ = ∇θ̇ − ρ−1
∑{

ρ̄αLT
α∇θ + (∇ρ̄α ⊗ uα)∇θ

}

= ∇θ̇ − ρ−1
{∑(

ρ̄αLT
α∇θ

)

+
m∑

α=1

(

να(∇ρα ⊗ uα)∇θ
)

−
n−1∑

α=1

(

ρα(∇να ⊗ uα)∇θ
)

+
n−1∑

α=1

(

ρn(∇να ⊗ un)∇θ
)}

.

(B.17)

If we use the decomposition of Lα (see (3.9)) and the identities

− ρ−1P∇θ ·
∑

ρ̄α LT
α∇θ = −ρ−1

∑

ρ̄αP∇θ · (Dα − Wα)∇θ

= −ρ−1
∑

ρ̄α (P∇θ)j (Dα − Wα)ji θ,i

= −ρ−1
∑

ρ̄α (P∇θ ⊗∇θ) · (Dα − Wα) , (B.18)

− ρ−1P∇θ ·
n−1∑

α=1

ρα (∇να ⊗ uα)∇θ = −ρ−1
n−1∑

α=1

ρα (uα · ∇θ) P∇θ · ∇να

= −ρ−1
n−1∑

α=1

ρα {(P∇θ ⊗∇θ)uα} · ∇να , (B.19)

− ρ−1P∇θ ·
m∑

α=1

να (∇ρα ⊗ uα)∇θ = −ρ−1
m∑

α=1

να (uα · ∇θ) P∇θ · ∇ρα

= −ρ−1
m∑

α=1

να {(P∇θ ⊗∇θ)uα} · ∇ρα , (B.20)

we immediately obtain relation (5.28). �
To prove (5.31), that is

PBα
· (∂Bα) +

(

PBα
⊗ v

)

· (∇Bα) = 〈Bα , PBα
〉 · Dα

− [Bα , PBα
] · Wα −

(

PBα
⊗ uα

)

· (∇Bα) ,
(B.21)
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we first take (3.56) to transform the left-hand side of (B.21) into

PBα
· (∂Bα) +

(

PBα
⊗ v

)

· (∇Bα)

= PBα
· (∂Bα) + (PBα

⊗ vα) · (∇Bα)
︸ ︷︷ ︸

(1)

− (PBα
⊗ uα) · (∇Bα) , (B.22)

where

(1) = (PBα
)ij (∂Bα)ij + (PBα

)ij Bα
ij,kvα

k

= (PBα
)ij

{

(∂Bα)ij + (∇Bα)ijk vα
k

}

= (PBα
)ij

(

B́α

)

ij
.

(B.23)

The last term in (B.23), which denotes the material derivative of Bα following
constituent Kα, can be transformed into

B́α =F́αFT
α + FαF́T

α

=LαFαFT
α + FαFT

αLT
α = LαBα + BαLT

α ,
(B.24)

where F́α = LαFα has been used. Now, (1) has the form

(1) = PBα
·
(

LαBα + BαLT
α

)

(B.25)

which, with the decomposition (3.9)1 and the definitions of the Lie- and
Jacobi-brackets (see (2.10)3,4), can be written as

(1) = 〈PBα
, Bα〉 · Dα + [PBα

,Bα] · Wα

= 〈Bα, PBα
〉 · Dα − [Bα, PBα

] · Wα .
(B.26)

The expression (B.26) together with (B.22) yields (B.21). �

B.3 Deduction of the Liu Identities (6.7)2,3

Let AI be a symmetric second rank tensor representing elements of either
{�̄Z

}

or
{
�B
}

, and let PAI
be one corresponding element of the set of one-

forms
{

PB1 , · · · , PBn
, PZ̄1

, · · · ,PZ̄n

}

. We then write equations (6.2)7,8 in
the form

{

(FAI
)T + (PAI

⊗ uα)
}

· (∇AI) = 0 ∀ ∇AI , (B.27)
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where the constituent-index of uα has to coincide with that of AI , when for
AI an element of

{�̄Z, �B
}

is chosen. In index notation (B.27) reads

{

(FAI
)T + (PAI

⊗ uα)
}

ijk
(∇AI)ijk = 0 ∀ (∇AI)ijk . (B.28)

As AI is symmetric and (B.28) must be true for all choices of ∇AI (I fixed),
it can only be satisfied if

{

(FAI
)T + (PAI

⊗ uα)
}

ijk
is skew-symmetric in

the first two indices. Using the latter result and the symmetry of AI in FAI

and PAI
yields

FiAI
jk

+ PAI
ij

uα
k = FjAI

ki
+ PAI

ij
uα

k

= FjAI
ik

+ PAI
ji

uα
k ,

(B.29)

which proves that
{

(FAI
)T + (PAI

⊗ uα)
}

ijk
is also symmetric with respect

to the first two inidices. This implies that

2
{

(FAI
)T + (PAI

⊗ uα)
}

ijk
= 0 , (B.30)

or
(FAI

)T = − (PAI
⊗ uα) , (B.31)

which can also be written as

FAI
= − (uα ⊗ PAI

) . (B.32)

Identifying AI with the elements of
{�̄Z, �B

}

, we obtain relations (6.7)1,2. �

B.4 Deduction of an Isotropic Representation of the
Mixture Flux Density

Let us first recall relation (6.56):

(δijkk − δikkj) −
n∑

α=1

(

(λv
α)j(T̄α)ki − (λv

α)k(T̄α)ji

)

=
n∑

α=1

(

Fvα
ij vα

k −Fvα

ik vα
j

)

. (B.33)

If we now use assumption [A11], the principle of objectivity for
∑

Fvα
, i.e.,

v ⊗
∑

Fvα
= 0 ,
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and definition (3.56), we can write (B.33) in the form

(δijkk − δikkj) + λε
n∑

α=1

(

uα
j (T̄α)ki − uα

k (T̄α)ji

)

=
n∑

α=1

(

Fvα
ij uα

k −Fvα

ik uα
j

)

, (B.34)

which with the aid of [A12] can be transformed into

(δijkk − δikkj) = −λε
n∑

α=1

(

uα
j (T̄α + 1

λε Fvα
)ki

︸ ︷︷ ︸

=:(Gα)ki

− uα
k (T̄α + 1

λε Fvα
)ji

︸ ︷︷ ︸

=:(Gα)ji

)

. (B.35)

Here, the abbreviation Gα is a symmetric second rank tensor. For the special
choices of indices, (6.57), we obtain from (B.35):

• (i, j) = (1, 1)
k = 2 : k2 = −λε

∑{

uα
1 Gα

21 − uα
2 Gα

11

}

,

k = 3 : k3 = −λε
∑{

uα
1 Gα

31 − uα
3 Gα

11

}

,

• (i, j) = (2, 2)
k = 1 : k1 = −λε

∑{

uα
2 Gα

12 − uα
1 Gα

22

}

,

k = 3 : k3 = −λε
∑{

uα
2 Gα

32 − uα
3 Gα

22

}

,

• (i, j) = (3, 3)
k = 1 : k1 = −λε

∑{

uα
3 Gα

13 − uα
1 Gα

33

}

,

k = 2 : k2 = −λε
∑{

uα
3 Gα

23 − uα
2 Gα

33

}

. (B.36)

Next, we add the expressions for ki (i = 1, 2, 3), and obtain

2k2 = λε
∑{

− uα
1 Gα

21 + uα
2 Gα

11 − uα
3 Gα

23 + uα
2 Gα

33

}

. (B.37)

If we now add and subtract λε
∑

(uα
2 Gα

22) on the right hand-side of (B.37),
we obtain

2k2 = λε
∑{

− uα
1 Gα

21 − uα
2 Gα

22 − uα
3 Gα

23 + uα
2 tr (Gα)

}

. (B.38)

A similar procedure for k1 and k3 leads to
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2k1 = λε
∑{

− uα
1 Gα

11 − uα
2 Gα

12 − uα
3 Gα

13 + uα
1 tr (Gα)

}

(B.39)

and

2k3 = λε
∑{

− uα
1 Gα

31 − uα
2 Gα

32 − uα
3 Gα

33 − uα
3 tr (Gα)

}

. (B.40)

In symbolic notation (B.38) to (B.40) read

2k = −λε
∑{

Gα − tr (Gα) I
}

uα , (B.41)

and if we replace Gα by its definition in (B.35), (B.41) can be written as

k = − 1
2λε

∑{{

T̄α − tr(T̄α)I
}

uα

+ (λε)−1
{

Fvα
− tr(Fvα

)I
}

uα

}

,

(B.42)

which is the desired relation (6.58). �

B.5 Auxiliary Results for Section 7.1

Equation (7.3)1 is derived in the following way:

(uγ),ρα

(3.56)
= (vγ),ρα

︸ ︷︷ ︸

0

−
(

ρ−1
n∑

β=1

ρ̄βvβ

)

,ρα

= −ρ−2
n∑

β=1

(

ρ να δβα vβ − ρ̄β να vβ

)

= −ρ−1να vα + να ρ−2
n∑

β=1

ρ̄βvβ

︸ ︷︷ ︸

ρv

= −ρ−1ναuα . (B.43)

�
Equation (7.3)2 is obtained via
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(uα),νβ

(3.56)
= (vα),νβ

︸ ︷︷ ︸

0

−
(

ρ−1
n∑

γ=1

ρ̄γvγ

)

,νβ

= −
{

(ρ−1),νβ

n∑

γ=1

ρ̄γvγ + ρ−1
(

n∑

γ=1

ρ̄γvγ

)

,νβ

}

= −
{

− ρ−2ρ,νβ

n∑

γ=1

ρ̄γvγ

+ρ−1
(

n−1∑

γ=1

ρ̄γvγ

)

,νβ
+ρ−1 (νnρnvn) ,νβ

}

= −
{

− ρ−2
{

n−1∑

γ=1

(νγργ),νβ
+(νnρn),νβ

}
n∑

γ=1

ρ̄γvγ

+ρ−1(ρβvβ) + ρ−1ρnvn

(

1 −
n−1∑

γ=1

νγ

)

,νβ

}

= −
{

ρ−2(ρn − ρβ)
n∑

γ=1

ρ̄γvγ

︸ ︷︷ ︸

ρv

+ρ−1
(

ρβvβ − ρnvn

)}

= −ξβuβ + ξnun . (B.44)

�



232 B Auxiliary Results

B.6 Derivation of Residual Inequality (7.5)

We recall inequality (7.4),

πρη = Pθ (θ̇) −
{

k,θ −(λε),θ
{

q +
∑

T̄αuα

}}

· (∇θ) (I)

+
m∑

α=1

{

να

(

Γ∗ − lραI
)

uα − k,ρα
−ναλερ−1TI uα

−ρ−1να skw (P∇θ ⊗∇θ)uα

}

· (∇ρα) (II)

+
n−1∑

α=1

{(

ραΓ∗ − lναI
)

uα − k,να
−λεTI

(

ξαuα − ξnun

)

+sv − s∗ − skw (P∇θ ⊗∇θ)
(

ξαuα − ξnun

)}

· (∇να) (III)

+
n∑

α=1

{

να

(

ραΓ∗ − lναI
)

+ ρ̄αλε(uα ⊗ uα) + 〈Bα , PBα
〉

−k,vα
+λε

(

T̄α − ξ̄αTI

)}

· (Dα) (IV)

+
n∑

α=1

λZ
α · Φ̄α (V)

+
n∑

α=1

{

λv
α · m̄i

α + lραρ̄αcα + λν
αn̄α

}

(VI)

� 0 .

(B.45)

If we write Γ∗ in the form

Γ∗ (6.10)
= Γ − ρ−1 sym (P∇θ ⊗∇θ)

(5.21)
= λερ−1T + (η − λεε)I − ρ−1 sym (P∇θ ⊗∇θ)

= λερ−1 (TI + TD) − λεΨGI − ρ−1 sym (P∇θ ⊗∇θ) , (B.46)

line (II) of inequality (B.45) can be transformed into
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(II) =
m∑

α=1

{ {

ναρ−1λεTI + ναρ−1λεTD − ναλεΨGI

−ναρ−1 sym (P∇θ ⊗∇θ)
}

uα

−l̄ραuα − 1
2λενα(uα · uα)uα

︸ ︷︷ ︸

−l̄
ρ

Iα
uα

+ 1
2λενα(uα · uα)uα − k,ρα

−ναρ−1λεTIuα − να ρ−1 skw (P∇θ ⊗∇θ)uα

}

· (∇ρα)

=
m∑

α=1

{

ναλε
{

ρ−1TD − ΨG
DI + 1

2 (uα · uα)I

−(λερ)−1 sym (P∇θ ⊗∇θ)
}

uα

−λε
{

ναΨG
I + (λε)−1 l̄

ρ
Iα

}

uα

−k,ρα
−να ρ−1 skw (P∇θ ⊗∇θ)uα

}

· (∇ρα) , (B.47)

in which ΨG = ΨG
I + ΨG

D , T = TI + TD were used. From (6.104) we deduce

− λενα

{

ΨG
I + (λε)−1l ρ

Iα

}

= λενα(ρα)−1pG
α , (B.48)

from which, together with the definition

Δ∗α
D := ρ−1

(

TD − (λε)−1 sym (P∇θ ⊗∇θ)
)

− ΨG
D I + 1

2 (uα · uα) I , (B.49)

we obtain

(II) = λε
m∑

α=1

{

να

{

Δ∗α
D + (ρα)−1pG

α I
}

uα − (λε)−1k,ρα

− να(λερ)−1 skw (P∇θ ⊗∇θ)uα

}

· (∇ρα) .

(B.50)

In line (III), we again apply (B.46) to derive
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(III) =
n−1∑

α=1

{

λερα

{

ρ−1
(

TI + TD

)

− ΨG
DI + 1

2 (uα · uα)I

−(ρλε)−1 sym (P∇θ ⊗∇θ)
}

uα

− 1
2λερα(uα · uα)uα − λεραΨG

I uα − lνα uα + sv − s∗ − k,να

−λεTI(ξαuα − ξnun) − skw (P∇θ ⊗∇θ) (ξαuα − ξnun)
}

· (∇να)

=
n−1∑

α=1

{

λεραΔ∗α
D uα − λεραΨG

I uα −
(

lνα + 1
2λερα(uα · uα) − k

)

︸ ︷︷ ︸

l ν
Iα

uα

−kuα + sv − s∗

−k,να
+λεξnTIun − skw (P∇θ ⊗∇θ) (ξαuα − ξnun)

}

· (∇να)

=
n−1∑

α=1

{

λεραΔ∗α
D uα − λε

(

(ρα − ρn)ΨG
I + (λε)−1l ν

Iα
+ ς

)

︸ ︷︷ ︸

−βG
α

uα

−λερnΨG
I uα + λεςuα − kuα + sv − s∗ − k,να

+λεξnTIun − skw (P∇θ ⊗∇θ) (ξαuα − ξnun)
}

· (∇να),(B.51)

where the definitions of Δ∗α
D , (B.49), and of l ν

Iα
, (6.93), have been used. If we

now consider relation (6.105), we are able to write

(III) =
n−1∑

α=1

{

λεραΔ∗α
D uα + λε

(

βG
α − ρnΨG

I + ς
)

uα − kuα + sv − s∗ − k,να

+ λεξnTIun − skw (P∇θ ⊗∇θ) (ξαuα − ξnun)
}

· (∇να) .

(B.52)

Furthermore, by defining

ζα :=

{
βG

α − ρnΨG
I + ς α = 1, ..., n − 1

−ρnΨG
I + ς α = n ,

(B.53)

and recalling the definition of s∗ in (6.11), viz.,

s∗ = svn + ρnΓ∗un , (B.54)
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and the representation of Γ∗ in (B.46), (B.52) can be transformed into

(III) =
n−1∑

α=1

{

λεραΔ∗α
D uα + λεζαuα − kuα + sv − svn

−ρn

{

λερ−1 (TI + TD) − λε(ΨG
I + ΨG

D )I

−ρ−1 sym (P∇θ ⊗∇θ)
}

un

−k,να
+λεξnTIun − skw (P∇θ ⊗∇θ) (ξαuα − ξnun)

}

· (∇να)

=
n−1∑

α=1

{ {

λεραΔ∗α
D + λεζαI − 1

2λερn(un · un)I
}

uα − λερnΔ∗n
D un

+λε
(

ρnΨG
I − ς

)

un − k,να

− skw (P∇θ ⊗∇θ) (ξαuα − ξnun)
}

· (∇να) .

(B.55)

In the last manipulation, we also used the definitions for k, (6.93)3, Δ∗n
D ,

(B.49), and that of ς, (6.103). If we take into account ζn in (B.53) and define

c =
(

ρnΔ∗n
D + ζn

)

un , (B.56)

we obtain from (B.55)

(III) = λε
n−1∑

α=1

{ {

ραΔ∗α
D + ζαI − 1

2ρn(un · un)I
}

uα − c − (λε)−1k,να

−(λε)−1 skw (P∇θ ⊗∇θ) (ξαuα − ξnun)
}

· (∇να). (B.57)

With the same definitions and the same manipulations as for lines (II) and
(III), line (IV) is transformed into

(IV) = λε
n∑

α=1

{

ρ̄α

(

Δ∗α
D + uα ⊗ uα

)

+ ζ̄αI − 1
2ναρn(un · un)I

+(λε)−1 〈Bα , PBα
〉 − (λε)−1k,vα

+ T̄α

}

· Dα .

(B.58)

The term 〈Bα , PBα
〉 · Dα is modified in the following way:
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〈Bα , PBα
〉 · Dα =

〈PBα
, Bα〉 · Dα =

{(

PBα
Bα

)

+
(

BαPBα

)}

· Dα

= (PBα
)ij (Bα)jk (Dα)ik + (Bα)ij (PBα

)jk (Dα)ik

= (PBα
)ij

{

(Bα)jk (Dα)ik

}

+ (PBα
)jk

{

(Bα)ji (Dα)ik

}

= (PBα
)ij

{

(Bα)jk (Dα)ik

}

+ (PBα
)ji

{

(Bα)jk (Dα)ki

}

=
{

(PBα
)ij + (PBα

)ji

}

(Bα)jk (Dα)ik

=
{

2 sym(PBα
)Bα

}

· Dα . (B.59)

If we further replace (PBα
) by

(

− λε ρ (ΨG
I ),Bα

)

(see relation (6.96)7) we
obtain

(IV) = λε
n∑

α=1

{

ρ̄α

(

Δ∗α
D + uα ⊗ uα

)

+ ζ̄αI − 1
2ναρn(un · un)I

− 2ρ sym
(

(ΨG
I ),Bα

)

Bα − (λε)−1k,vα
+ T̄α

}

· Dα .

(B.60)

In line (V) we simply replace (λZ
α ) by

(

−λερ(ΨG
I ),Z̄α

)

(see relation (6.96)8)
and in line (VI) we apply [A11] to obtain

(VI) = λε
n∑

α=1

{

− uα · m̄i
α +

lρα
λε

ρ̄α cα +
λν

α

λε
n̄α

}

. (B.61)

If we further use the definitions of the Gibbs free energies (see (6.107))

μG
Iα

:= −(λε)−1 lρIα
(B.62)

and that of ια

ια := (λε)−1λν
α , (B.63)

we obtain

(VI) = −λε
n∑

α=1

{

uα · m̄i
α + ρ̄α

(

μG
Iα
+ 1

2uα · uα

)

cα − ιαn̄α

}

. (B.64)

If all these results are substituted in (B.45) we obtain inequality (7.5). �
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acceleration of constituent Kα, 34
alternator, 16
areal fraction

of constituent Kα, 38
assumption

of additivity, 40
of Cauchy, 41
of continuity, 31
of fading memory, 59
of homogeneity, 59
of local action, 59
of pressure equilibrium, 6

balance equation, 39
angular momentum, for constituent

Kα, 52, 57
energy

for constituent Kα, 52
for the mixture, 56

entropy, for constituent Kα, 52
for porosity, 33
for volume fraction, 33
global

for constituent Kα, 42
for the mixture, 39

global mixture, 42
linear momentum, for constituent Kα,

52, 57
local

for constituent Kα, 47
for the mixture, 48

local, for constituent Kα, 52
mass, for constituent Kα, 52, 57

barotropy, 67, 164
Bingham model, 178
bracket

Jacobi, 17

Lie, 17, 66
bulk viscosity, 173
buoyancy, 4

Cauchy stress tensor
fluid, 169, 182
for the constituent Kα, 146
non-equilibrium part, 169–182
of constituent Kα, 47, 133
of the mixture, 51
solid, 169, 182

elastic part, 161
frictional part, 162

Cauchy-Green deformation tensor
of constituent Kα, 37

chemical potential
Gibbs-like free energy, 118

closure relation, 4
component, 30
concentration, 49
constituent, 30
constitutive

law, 39, 58, 70, 155
quantity, 58, 127
variable, 58, 70

constitutive quantity, 17

Darcy law, 4, 172
debris flow, 8, 10, 12
deformation gradient

of constituent Kα, 34
density

mass, 47
constraint, 69
mass, 62
of a physical field, 40
partial, 40
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true, 40
density-preserving, 13, 68
divergence theorem, 44

entropy
of the mixture, 121
extra flux, 96, 108, 143
inequality, 78, 89, 95
of constituent Kα, 47, 77
of the mixture, 77, 145
residual inequality, 94, 125

entropy flux
of constituent Kα, 47
of the mixture, 109

entropy principle, 59
of Clausius & Duhem, 76
of Müller & Liu, 76
of the mixture, 77

entropy production rate density
of constituent Kα, 47

exterior derivative, 82, 84
external supply

global, 40
external supply rate density, 80

energy, for constituent Kα, 47
entropy

for constituent Kα, 48
for the mixture, 80

momentum, for constituent Kα, 47
extra entropy flux, 96, 108, 143

fluid
Criminale-Filbey-Ericksen, 65
ideal, 4

fluidisation, 64
flux

global, 40
free energy

Gibbs-like, 118
Helmholtz-like, 116

free enthalpy
Gibbs-like free energy, 118

frictional effect, 134

heap problem, 64, 134
heat flux vector

of constituent Kα, 47
of the mixture, 51, 133, 145, 149

Herschel-Bulkley model, 178
hypo-plasticity, 11, 65–68, 163

ideal wall, 79
integrability condition, 111
integrating denominator, 117

interaction supply rate density, 47
energy, of constituent Kα, 47
entropy, of constituent Kα, 47
mass, of constituent Kα, 47, 138
moment of momentum, of constituent

Kα, 47
momentum of solid, 169, 182
momentum, for constituent Kα, 145
momentum, of constituent Kα, 47,

129–131
internal energy

‘inner’, of the mixture, 51
of constituent Kα, 47

isotropic
expansion, 137–143
extension-compression experiment,

174
function, 71

Jaumann time derivative, 66
jump condition

angular momentum, for constituent
Kα, 52

energy, for constituent Kα, 52
entropy, for constituent Kα, 52
for constituent kα, 47
for the mixture, 47
linear momentum, for constituent Kα,

52
local, mixture, 48
mass, for constituent Kα, 52

Kronecker delta, 16

Lagrange multiplier, 76, 78, 80, 120
for energy, 80, 110, 113
for frictional behaviour, 80
for mass, 80, 116
for momentum, 80, 116
for volume fraction, 80, 116

landslide, 8, 10
Lemma

of Cauchy, 43
of Liu, 78, 91

Liu identities, 78, 92, 112
for the vector-valued one-form, 97

macroscopic field, 32, 63
mass density

of constituent kα, 38
mass fraction, 49
material, 34

body, 33
derivative, 34
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isotropy, 96
objectivity, 59
region, 34
surface, 34
symmetry, 59

metaphysical principle, 31
mixture, 2, 10, 12, 30

binary, 3, 154
heterogeneous, 30
immiscible, 12, 30
miscible, 30
theory, density weighted, 53
theory, volume weighted, 53

mixture velocity, 49
volume-weighted, 155

mud flow, 31
multi-phase system, 2

non-Newtonian rheology, 8
non-standard analysis, 165
normal stress effect, 172

one-form
exact, 111
scalar-valued, 82, 111
vector-valued, 82

particle size segregation, 64
permeability, 4, 172
phase, 30

change, 56
polar effect, 13, 58
porosity, 64
positive homogeneous, 66
potential, 117
pressure

configuration, 4, 117
equilibrium, 150, 183
pore, 9
saturation, 5, 117
thermodynamic, 4, 117

principle
of material objectivity, 59, 71, 156
of phase separation, 159, 168, 170

product
cross, 16
dot, 16
dyadic, 16
scalar, 16

production
global, 40

production rate density
of volume fraction, 63, 138

pyknotropy, 67, 164

quasi-linearity, 172

regularize, 165
representative volume element, 30, 31
residual entropy inequality, 78, 94, 125
Rivlin-Ericksen tensor, 64

saturation, 5, 13
constraint, 69
field, 82

shear fluidity, 173
shear thickening, 178
shear thinning, 178
shear viscosity, 173
simple shearing experiment, 176
singular surface, 44
snow avalanche, 8
stretching tensor

of constituent Kα, 36
of the mixture, 50

strict linearity, 172
sum relation, 48

temperature, 135
absolute, 58
empirical, 58

thermodynamic
analysis, 8, 10
equilibrium, 127

tortuosity, 64
total derivative, 117
trace operator, 16
transport theorem, 45
transpose, 16

variable
constitutive, 58
equilibrium, 127
independent, 17, 33, 47, 58
internal, 4, 33, 67
non-equilibrium, 127

velocity
barycentric, see mixture velocity
diffusion, of constituent Kα, 50
mixture, see mixture velocity
of constituent Kα, 34, 47

velocity gradient
of constituent Kα, 34, 36, 50
of the mixture, 50

volume fraction
gradient, 63
of constituent Kα, 38, 47

vorticity tensor
of constituent Kα, 36
of the mixture, 50
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